
HAL Id: tel-03185160
https://theses.hal.science/tel-03185160

Submitted on 30 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive approximation of high-dimensional functions
with tree tensor networks for Uncertainty Quantification

Cécile Haberstich

To cite this version:
Cécile Haberstich. Adaptive approximation of high-dimensional functions with tree tensor networks
for Uncertainty Quantification. Data Structures and Algorithms [cs.DS]. École centrale de Nantes,
2020. English. �NNT : 2020ECDN0045�. �tel-03185160�

https://theses.hal.science/tel-03185160
https://hal.archives-ouvertes.fr

ACKNOWLEDGEMENT

Je souhaite tout d’abord remercier les membres de mon jury. Merci à Fabio Nobile et Lars

Grasedyck pour leur relecture approfondie du manuscrit ainsi que leurs questions lors de la soute-

nance qui témoignent de leur intérêt pour ces travaux de thèse. First of all, I would like to thank

the jury’s members. Fabio Nobile and Lars Grasedyck, thank you, for your thorough reviewing of

the manuscript as well as your questions during the defense, which show your interest in this work.

Merci à Albert Cohen pour avoir présidé ce jury et merci à Virginie Ehrlacher pour sa présence

enthousiaste et son intérêt.

Anthony et Guillaume merci infiniment. Merci à tous les deux pour votre engagement et votre

enthousiasme pour cette thèse, sans oublier votre bienveillance durant ces trois années.

3

TABLE OF CONTENTS

Introduction 8

1 Projection methods 29

1.1 Introduction . 29

1.2 Interpolation . 29

1.2.1 Interpolation in the one-dimensional case . 31

1.2.2 Interpolation with any arbitrary approximation space 33

1.2.3 Interpolation with tensor product bases . 34

1.3 Least-squares method . 35

1.3.1 Weighted least-squares projection . 36

1.3.2 Random sampling . 38

1.3.3 Optimal sampling measure . 40

2 Boosted Optimal Weighted Least-Squares 43

2.1 Introduction . 43

2.2 Boosted optimal weighted least-squares method . 44

2.2.1 Resampling and conditioning . 45

2.2.2 Subsampling . 49

2.3 The noisy case . 51

2.4 Numerical experiments . 54

2.4.1 Notations and objectives . 54

2.4.2 Qualitative analysis of the boosted optimal weighted least-squares method . . 56

2.4.3 Quantitative analysis for polynomial approximations 59

2.4.4 A noisy example . 68

2.4.5 Overall conclusion for all examples . 69

2.5 Conclusion . 70

3 Adaptive Boosted Optimal Weighted Least-Squares 75

3.1 Introduction . 75

3.2 Notations . 76

3.3 Optimal weighted least-squares with block-structured sampling 77

3.3.1 Approximation in a given space . 77

5

TABLE OF CONTENTS

3.3.2 Adaptive approximation with a nested sequence of spaces 78

3.4 Boosted optimal weighted least-squares with block-structured sampling 79

3.4.1 Approximation in a given space . 79

3.4.2 Adaptive approximation with a nested sequence of spaces 83

3.5 Numerical illustrations . 85

3.5.1 Illustration of the stability of the adaptive boosted least-squares strategy . . 85

3.5.2 Illustration for polynomial approximation . 89

3.6 Conclusion . 92

4 Tree-based tensor formats 95

4.1 Introduction . 95

4.2 Tensor spaces . 95

4.3 Tensor ranks and tree-based tensor formats . 96

4.3.1 Dimension partition tree . 97

4.3.2 Tree tensor networks and their representation 98

4.4 Principal Component Analysis for multivariate functions 101

4.4.1 α-principal subspaces . 101

4.4.2 Accuracy of the empirical α-principal subspaces 102

4.4.3 The case of functions with Sobolev regularity 103

4.5 Approximation power of tree tensor networks . 105

4.5.1 Truncation in tree-based format . 105

4.5.2 Approximation rates for Sobolev functions . 106

5 Principal Component Analysis for Tree-based tensor formats 107

5.1 Approximation of α-principal subspaces . 108

5.1.1 Choosing an oblique projection verifying a stability property 108

5.1.2 Choosing the boosted optimal weighted least-squares projection 110

5.2 Estimation of the α-principal subspaces . 113

5.2.1 Accuracy of the empirical α-principal subspaces 113

5.2.2 Adaptive estimation of the α-principal component subspaces 116

5.3 Learning tree tensor networks using PCA . 117

5.3.1 Description of the algorithm . 117

5.3.2 Error analysis . 118

5.3.3 Complexity analysis . 121

5.3.4 Heuristics used in practice . 122

5.4 Numerical examples . 124

5.4.1 Notations and objectives . 124

5.4.2 Adaptive determination of the approximation spaces in the leaves 125

6

TABLE OF CONTENTS

5.4.3 Adaptive estimation of the α-principal components subspaces 126

5.5 Conclusions . 130

6 Tree adaptation 137

6.1 Introduction . 137

6.2 Estimation of α-ranks . 139

6.2.1 Principle and algorithm . 139

6.2.2 Numerical illustration . 141

6.3 Leaves-to-root construction of the tree with local deterministic optimizations 143

6.3.1 Max-mean rank strategy . 143

6.3.2 Ballani and Grasedyck’s strategy . 145

6.4 Leaves-to-root construction of the tree with local stochastic optimizations 146

6.4.1 Principle and algorithm . 146

6.4.2 Illustration of the algorithm . 147

6.4.3 Illustration of the choices of the parameters 147

6.5 Adaptation of the tree with global stochastic optimizations 150

6.5.1 Principle and algorithm . 150

6.5.2 Illustration of the algorithm . 150

6.5.3 Illustration of the choice of the parameters 151

6.6 Numerical examples . 153

6.7 Conclusions . 157

Conclusion 159

A Approximate fast greedy algorithm 172

A.1 Computational strategy for the approximate fast greedy algorithm 172

A.2 Complexity analysis . 173

A.3 Illustration . 174

B Sampling of multivariate probability distribution in Tree-Based tensor formats177

B.1 Probability distributions in tree-based format . 177

B.1.1 Marginal distributions . 178

B.1.2 Conditional distributions . 179

B.2 Sampling from multivariate probability distributions in tree-based tensor formats . . 180

7

INTRODUCTION (EN FRANÇAIS)

Contexte

Grâce à des modèles de calcul, les chercheurs et les ingénieurs peuvent remplacer des expéri-

ences physiques particulièrement coûteuses et complexes à mettre en œuvre par des simulations

numériques. La réponse d’un modèle dépendant de certains paramètres peut être représentée par

une fonction u(x1, . . . , xd) de plusieurs variables. Malgré l’amélioration continue des ressources de

calcul, la plupart de ces simulations restent très coûteuses d’un point de vue informatique. En

outre, la résolution des problèmes de quantification de l’incertitude (UQ), comprenant notamment

la propagation des incertitudes, la calibration des modèles, les problèmes inverses ou l’analyse de

sensibilité [87], nécessite un grand nombre d’évaluations des modèles. Une solution consiste alors

à remplacer le modèle coûteux par un modèle approché, moins coûteux à évaluer, ce qui revient à

remplacer la fonction qui représente la réponse du modèle par une approximation.

Le but de l’approximation est de remplacer une fonction u par une fonction plus simple (c’est-

à-dire plus facile à évaluer) de telle sorte que la distance (mesurant la qualité de l’approximation)

entre la fonction u et son approximation, notée u⋆, soit aussi petite que possible. En général,

l’approximation est recherchée dans un sous-espace de fonctions Vm décrit par un certain nombre

de paramètres m. Une séquence de tels sous-espaces (Vm)m≥1 est appelée outil d’approximation

(ou classe de modèles), dont la complexité est mesurée par son nombre de paramètres m. L’erreur

de meilleure approximation de u par des éléments de Vm est définie par la distance minimale entre

u et tout élément de Vm. L’outil d’approximation doit être adapté à la classe de fonctions que nous

voulons approximer, ce qui se traduit par une erreur de meilleure approximation qui converge vers

zéro assez rapidement avec m.

Il existe différentes approches pour construire l’approximation d’une fonction, soit à partir

d’informations directes sur la fonction (par exemple des évaluations ponctuelles ou des mesures

linéaires...), soit à partir d’équations satisfaites par la fonction. Dans cette thèse, nous nous intéres-

sons aux fonctions de type boîte noire (éventuellement bruitées), ce qui correspond à la première

situation où l’information sur u est donnée par des échantillons. Par conséquent, pour constru-

ire l’approximation de la fonction u, nous utilisons les évaluations yi = u(xi) pour un ensemble

de points xi ou yi = u(xi) + ei dans le cas de données bruitées. Cependant, dans le contexte

d’un modèle coûteux, cette approximation devrait être construite en utilisant un nombre réduit

8

Introduction

d’échantillons, idéalement proche du nombre de paramètres m. Les échantillons xi peuvent être

soit indépendants et identiquement distribués selon une mesure µ, soit sélectionnés de manière

adaptative. Cette seconde approche est particulièrement pertinente lorsqu’aucune évaluation de la

fonction n’a encore été faite, ce qui sera le cadre de cette thèse.

Des méthodes typiques pour construire une approximation à partir d’échantillons sont l’interpolation

et les méthodes des moindres carrés [28]. Les méthodes d’interpolation classiques comprennent

l’interpolation polynomiale et l’interpolation par spline (où les échantillons sont en général choisis

par rapport à Vm, pour garantir de bonnes propriétés des opérateurs d’interpolation), ainsi que le

krigeage (qui est assez efficace lorsque les échantillons sont donnés et peut être amélioré avec une

sélection adaptative des échantillons) [82]. Pour un ensemble de m points, x1, . . . , xm l’interpolation

u⋆ de u dans Vm est définie par

u(xi) = u⋆(xi), pour tout 1 ≤ i ≤ m.

L’interpolation est bien étudiée dans le cas unidimensionnel mais dans le cas multivarié (d > 1),

trouver de bons points pour l’interpolation est un problème difficile, en particulier lorsque Vm est

un espace d’approximation non classique. En pratique, [18, 19] proposent des stratégies pour con-

struire de bonnes séquences de points pour l’interpolation parcimonieuse utilisant des polynômes ou

splines tensorisés. Cependant, pour les espaces d’approximation non classiques, même si certains

ensembles de points ont montré leur efficacité (voir [65, 15]), il n’y a pas de garantie pour l’erreur

d’interpolation.

Pour n échantillons x1, . . . , xn indépendants et identiquement distribués selon une mesure µ, la

méthode des moindres carrés classique définit l’approximation de u comme le minimiseur de

min
v∈Vm

1

n

n∑

i=1

(v(xi)− yi)2.

Un aspect intéressant des méthodes des moindres carrés est qu’elles sont capables, sous certaines

conditions sur le nombre d’échantillons n, de garantir une approximation stable et une erreur proche

de l’erreur de meilleure approximation mesurée avec la norme L2
µ. Toutefois, pour ce faire, elles

peuvent exiger une taille d’échantillon n bien supérieure à m (voir [22]). Les méthodes des moin-

dres carrés sont un cas particulier de minimisation de risque empirique en apprentissage supervisé

[30]. D’autres fonctionnelles de risque peuvent être utilisées, mais elles nécessitent également de

nombreuses évaluations afin d’assurer la stabilité.

Lorsque les échantillons xi peuvent être sélectionnés selon une mesure que l’on choisit, l’erreur

9

Introduction

d’estimation peut être améliorée en utilisant les moindres carrés pondérés [32, 73], qui définit

l’approximation de u par

min
v∈Vm

1

n

n∑

i=1

wi(v(x̃i)− yi)2,

où les poids sont adaptés à Vm et les points x̃i sont des échantillons indépendants et identiquement

distribués selon une mesure bien choisie. Cela peut permettre de réduire la taille de l’échantillon n

pour atteindre la même erreur d’approximation, par rapport aux moindres carrés standards. Dans

[24], les auteurs introduisent une mesure d’échantillonnage optimale dont la densité par rapport à

la mesure de référence dépend de l’espace d’approximation Vm. Ils montrent que la projection des

moindres carrés pondérés construite avec des échantillons de cette mesure est stable en espérance

avec des valeurs de n plus faibles qu’avec les moindres carrés classiques. Une approche similaire est

proposée dans [68], où la principale différence est que les échantillons aléatoires sont plus structurés

tout en garantissant des résultats de stabilité similaires. Néanmoins, dans les deux cas, la condition

nécessaire pour avoir une stabilité exige toujours un nombre élevé d’échantillons n, par rapport à

une méthode d’interpolation. Les auteurs proposent également des méthodes de moindres carrés

pondérés optimales dans le cas d’une approximation adaptative (lorsque Vm est choisi dans une

séquence d’espaces d’approximation imbriqués), voir [67] et [4]. Dans cette thèse, nous proposons

une nouvelle méthode de projection sur un espace d’approximation fixe Vm qui assure la stabilité

de la projection des moindres carrés en espérance avec une taille d’échantillon proche de m. Nous

proposons également une nouvelle méthode pour le cadre adaptatif qui réduit de manière significa-

tive le nombre d’échantillons et présente toujours des propriétés de stabilité.

Dans de nombreuses applications, les fonctions peuvent dépendre d’un nombre potentiellement

élevé de variables d ≫ 1. Lorsque la dimension d augmente, l’utilisation d’outils d’approximation

standards adaptés aux fonctions régulières (par exemple les splines pour les fonctions de Sobolev)

conduit à une complexité des méthodes d’approximation qui croît de manière exponentielle avec

d. C’est ce qu’on appelle la malédiction de la dimension, expression introduite par [12]. Par

conséquent, le nombre d’évaluations nécessaires pour approcher la fonction u avec des outils

d’approximation naïfs peut exploser. Dans cette thèse, nous supposons que les fonctions présen-

tent des structures de faible dimension, de sorte que nous pouvons nous attendre à une bonne

approximation en utilisant un nombre limité d’évaluations de la fonction. L’exploitation de ces

structures de la fonction nécessite généralement des outils d’approximation particuliers [29], qui

peuvent dépendre de l’application. Certains outils d’approximation parmi les plus courant sont

rappelés ci-après.

Une première approche consiste à utiliser la parcimonie de u en choisissant un ensemble par-

ticulier de fonctions {ϕj}j∈Λ parmi un ensemble de fonctions de base tensorisées, de sorte que

10

Introduction

u puisse être écrit sous la forme
∑

j∈Λ ajϕj(x). Des méthodes d’approximation parcimonieuses

ont été envisagées pour résoudre les problèmes de quantification d’incertitude, voir par exemple

[23, 6, 5, 18, 19] pour une approximation polynomiale parcimonieuse.

Des classes de modèles plus structurées pour traiter les problèmes de grande dimension sont les

modèles additifs, introduits par [41],
∑d

i=j uj(xj) ou plus généralement
∑

α∈T uα(xα) où T ⊂ 2{1,...,d}

est soit fixe (cela correspond à une approximation linéaire), soit un paramètre libre (cela correspond

à une approximation non linéaire). Il existe également des modèles multiplicatifs
∏d

j=1 uj(xj) ou

plus généralement
∏

α∈T uα(xα), où T est également un sous-ensemble de 2{1,...,d} et la même dis-

tinction entre approximation linéaire et non linéaire est faite, selon que T est fixe ou non. Ces

types d’outils d’approximation sont standards en statistique et en modélisation probabiliste (mod-

èles graphiques, réseaux bayésiens).

Des classes de modèles plus complexes basées sur la composition des fonctions ont également été

proposées. Parmi elles, les modèles ridge peuvent être écrits sous la forme v(Wx) avec W ∈ R
k×d,

où v appartient à une classe de fonctions de k variables avec une paramétrisation de faible dimen-

sion. Un exemple typique est le perceptron aσ(wTx+b), où σ est une fonction d’activation donnée,

introduit dans [83]. Ces modèles de composition comprennent également le modèle de projection

pursuit
∑k

j=1 vj(wT
j x), où pour j = 1, . . . , k, wj ∈ R

d, voir [41, 42]. Un cas particulier est celui

des réseaux de neurones avec une couche cachée
∑d

j=1 ajσ(wT
j x+ bj). On peut aussi considérer des

compositions de fonctions plus générales, telles que vL◦vL−1◦. . .◦v1. Dans le cas des réseaux de neu-

rones profonds, pour chaque j = 1, . . . , L, les fonctions vj s’écrivent vj(t) = σ(Ajt+bj), où σ est une

fonction d’activation choisie, tandis que bj ∈ R
k et Aj ∈ R

k×d sont des paramètres à estimer [45].

Malgré son formalisme général et les nombreux succès qu’ils ont acquis en matière d’approximation,

les réseaux de neurones profonds nécessitent généralement un nombre élevé d’évaluations pour ap-

prendre les paramètres, ce qui n’est pas possible dans le contexte d’évaluations coûteuses. De plus,

lorsque l’on considère les fonctions d’activation non linéaires générales, il est difficile de garantir

une approximation stable dont l’erreur est proche de l’erreur de meilleure approximation, ce qui

est un objectif central de cette thèse.

Dans ce travail, nous nous concentrons sur les modèles de fonctions de faible rang et en partic-

ulier sur l’ensemble des fonctions dans les formats de tenseurs basés sur des arbres ou les réseaux de

tenseurs basés sur des arbres, qui peuvent être considérés comme une classe particulière de réseaux

de neurones. Plus précisément, pour α un sous-ensemble de D = {1, . . . , d} et αc = D \ α son

complémentaire dans D, nous considérons les fonctions qui peuvent être écrites

v(x) =
rα∑

i=1

uα
i (xα)uαc

i (xαc), for all α ∈ T, (1)

11

Introduction

où T est un arbre de partition de dimension. Un arbre de partition de dimension est une collection

particulière de sous-ensembles de D, quelques exemples d’arbres sont donnés Figure 1. L’entier

minimal rα tel que v peut être écrit sous la forme (1) est appelé le rang α de v, noté rankα(v).

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Arbre trivial

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Arbre binaire linéaire

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Arbre de partition de dimension quelconque

Figure 1 – Exemples d’arbres de partition de dimension

L’ensemble des fonctions dans un format de tenseurs basé sur des arbres est défini par T T
r (H) =

{v ∈ H : rankα(v) ≤ rα, α ∈ T}, avec r = (rα)α∈T un tuple d’entiers, etH un espace d’approximation

de fonctions multivariées. Il comprend le format de Tucker pour un arbre trivial, le format tensor-

train (train de tenseurs) pour un arbre binaire linéaire [79] et le format hiérarchique plus général

pour un arbre de partition de dimension quelconque [54]. Toute fonction dans T T
r (H) admet une

paramétrisation multilinéaire avec des paramètres formant un réseau de tenseurs de faible ordre,

d’où le nom de réseaux de tenseurs basés sur des arbres, voir la Figure 2 pour une illustration

pour d = 5. Considérer les arbres de dimension pour T donne de bonnes propriétés topologiques

et géométriques à l’ensemble T T
r (H) [35, 37]. Les réseaux de tenseurs basés sur des arbres sont

particulièrement pertinents pour l’approximation en grande dimension, car la complexité de la

paramétrisation d’une fonction est linéaire en la dimension d et polynomiale en les rangs [53]. Ils

peuvent également être utilisés pour l’approximation de fonctions univariées [2, 3]. Toutefois, les

rangs (et donc le nombre d’évaluations n) nécessaires pour calculer une approximation dans un

format de tenseurs basé sur des arbres avec une tolérance donnée peuvent dépendre fortement de

l’arbre choisi T . La classe de modèles T T
r (H) peut également être interprétée comme une classe

de fonctions qui sont des compositions de fonctions multilinéaires, la structure des compositions

étant donnée par l’arbre. Elle a été identifiée avec une classe particulière de réseaux de neurones

profonds (plus précisément les réseaux somme-produit ou les circuits arithmétiques) avec une con-

nectivité parcimonieuse [26]. L’erreur d’approximation associée à cette classe de modèles a deux

contributions : l’erreur de troncature (due aux rangs finis r) et l’erreur de discrétisation (due à

12

Introduction

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Figure 2 – Un réseau de tenseurs basé sur des arbres admet une paramétrisation multilinéaire avec
des paramètres formant un réseau de tenseurs de faible ordre.

l’introduction de l’espace de dimension finie H).

Les réseaux de tenseurs basés sur des arbres sont un outil d’approximation qui permettent

d’obtenir de bonnes performances pour de nombreuses classes de fonctions. Dans [84] ou plus

récemment dans [7, 2, 3], les auteurs montrent que pour les fonctions u avec une régularité Sobolev,

ils atteignent (quel que soit l’arbre) un taux d’approximation optimal ou proche de l’optimal [61].

Ils prouvent également que pour les fonctions u avec une régularité Sobolev mixte, l’approximation

dans un format de tenseur basé sur des arbres atteint presque la performance idéale obtenue par

une approximation avec croix hyperbolique. Pour une revue de la littérature sur les méthodes

d’approximation de faible rang, voir [47]. Nous renvoyons également le lecteur à la monographie

[53] et à [8, 36, 59, 60, 77, 76].

Dans la littérature, des algorithmes construisant des approximations dans des formats de

tenseurs basés sur des arbres en utilisant des évaluations ponctuelles de fonctions ont déjà été

proposés. D’une part, il y a des approches d’apprentissage statistique qui utilisent des évaluations

aléatoires et non structurées des fonctions [48, 55]. La robustesse et l’efficacité de ces algorithmes

sont démontrées par des expériences numériques, mais ces algorithmes sont principalement basés

sur des heuristiques et manquent d’une analyse approfondie. D’autre part, il y a les algorithmes qui

utilisent des évaluations adaptatives et structurées des tenseurs, voir [64] (pour le format Tucker),

ou [80] et [78] pour les formats de tenseurs basés sur des arbres. Parmi les approches adaptatives,

la méthode de [78] présente un intérêt particulier. L’auteur propose une variante de la décomposi-

tion en valeurs singulières d’ordre supérieur (HOSVD) (des adaptations antérieures de la HOSVD

ont été faites en [46] et [80]). Le principe consiste à construire une hiérarchie de sous-espaces

optimaux qui aboutit à la construction d’un espace produit tensoriel dans lequel la fonction u

13

Introduction

est projetée, pour définir l’approximation finale u⋆. En se basant sur des hypothèses fortes sur

l’erreur d’estimation faite dans la détermination des sous-espaces, l’auteur de [78] montre qu’avec

un certain nombre d’évaluations de l’ordre de la complexité de stockage du format de tenseurs,

l’approximation satisfait l’erreur souhaitée à des constantes près dépendant de certains opérateurs

de projection, qui ne sont pas quantifiées.

Toutes ces conclusions montrent que les résultats théoriques sur la convergence des algorithmes

existants sont limités. Dans cette thèse, nous proposons un algorithme qui construit une approxi-

mation u dans un format de tenseur basé sur des arbres, en utilisant un échantillonnage adaptatif

et structuré avec quelques garanties théoriques, et nous proposons des stratégies heuristiques pour

obtenir une approximation avec une précision souhaitée et une complexité quasi optimale.

Contributions

Plus précisément, les contributions de cette thèse peuvent être résumées à travers les objectifs

suivants :

1. Proposer une méthode de projection dans un espace d’approximation linéaire, basée sur des

techniques d’échantillonnage, qui soit stable et dont la construction nécessite un nombre

d’évaluations proche de la dimension de l’espace d’approximation.

2. Proposer une stratégie pour construire des projections linéaires sur une séquence d’espaces

d’approximation imbriqués, en utilisant un nombre réduit d’échantillons.

3. Proposer une méthode pour construire l’approximation d’une fonction dans un format de

tenseur basé sur des arbres, avec des garanties de stabilité théoriques et proposer des heuris-

tiques pour contrôler l’erreur.

4. Proposer une stratégie pour choisir l’arbre de dimension T afin de réduire les rangs de

l’approximation à une précision donnée et donc sa complexité et le nombre d’évaluations

requises.

Cette thèse est divisée en six chapitres. Les chapitres 1 et 4 font le point sur les méthodes de

projection sur les espaces d’approximation linéaires et les formats de tenseur basés sur des arbres

respectivement. Les chapitres 2, 3, 5 et 6 correspondent aux principales contributions de cette

thèse en traitant les quatre objectifs ci-dessus. Dans l’annexe, on présente les aspects pratiques

pour l’échantillonnage de distributions de probabilités multivariées dans des formats de tenseurs

basés sur des arbres.

14

Introduction

Dans le chapitre 2, nous proposons une nouvelle méthode de projection, appelée méthode des

moindres carrés pondérés optimaux boostés, qui assure la stabilité de la projection des moindres

carrés avec une taille d’échantillon proche de celui de l’interpolation (n = m). Elle consiste à

échantillonner selon une mesure associée à l’optimisation d’un critère de stabilité sur une collection

de n-échantillons indépendants, et à rééchantillonner selon cette mesure jusqu’à ce qu’une condi-

tion de stabilité soit remplie. Une méthode greedy est alors proposée pour enlever des points à

l’échantillon obtenu. Des propriétés de quasi-optimalité en espérance sont obtenues pour la pro-

jection des moindres carrés pondérés, avec ou sans la procédure greedy. Si les observations sont

polluées par un bruit, la propriété de quasi-optimalité est perdue, en raison d’un terme d’erreur

supplémentaire dû au bruit. Ce dernier terme d’erreur peut cependant être réduit en augmentant n.

Afin de contrôler l’erreur d’approximation, on doit pouvoir choisir l’espace d’approximation de

manière adaptative (jusqu’à une dimension suffisamment élevée pour atteindre une certaine préci-

sion). Pour l’approximation polynomiale et les applications en UQ, plusieurs stratégies pour con-

struire de manière adaptative une séquence d’espaces d’approximation (Vml
)l≥1 ont été proposées,

voir [68, 18, 19]. Afin de limiter le nombre total d’évaluations de la fonction, il est important de

réutiliser les échantillons qui ont servis pour construire l’approximation dans Vml
afin de construire

l’approximation dans Vml+1
. Cependant, la projection de la méthode des moindres carrés pondérés

optimaux boostés du chapitre 2 dépend de l’espace d’approximation, de sorte que la réutilisation

des échantillons qui ont servis à construire une projection pour en construire une autre n’est pas

simple. Dans [68], l’auteur propose une méthode adaptative optimale des moindres carrés pondérés

qui recycle tous les échantillons d’une étape à l’autre. Dans le chapitre 3, nous proposons une

méthode adaptative des moindres carrés pondérés optimaux boostés inspirée de [68], en utilisant à

nouveau des procédures de rééchantillonnage, de conditionnement et greedy. Cette stratégie fonc-

tionne pour une séquence générale d’espaces d’approximation imbriqués et nous l’appliquons pour

l’approximation adaptative parcimonieuse.

Le chapitre 5 fournit un algorithme adapté de [78] pour construire l’approximation dans un

format de tenseur basé sur des arbres T T
r (H). En utilisant une approche allant des feuilles à la

racine, l’algorithme construit grâce à l’analyse en composantes principales (ACP) séquentiellement

le long de l’arbre de dimension T , des sous-espaces de faible dimension de fonctions de groupes

de variables associés à chaque noeud de l’arbre. Une illustration du principe de l’algorithme est

donnée dans Figure 3. Nous analysons l’algorithme dans le cas où la projection vérifie une propriété

de stabilité et dans le cas particulier de la projection des moindres carrés optimaux boostés. En

utilisant cette stratégie, l’erreur d’approximation a plusieurs contributions venant de la discrétisa-

tion (due à H), de la troncature (due à l’approximation de faible rang) et de l’estimation (due au

nombre limité d’échantillons). Nous proposons un algorithme adaptatif partiellement heuristique

15

Introduction

qui contrôle simultanément les erreurs de discrétisation, de troncature et d’estimation.

L’algorithme proposé au chapitre 5 fonctionne pour toute fonction u et tout arbre de parti-

tion de dimension T . Cependant, les rangs et donc le nombre d’évaluations n nécessaires pour

atteindre une précision donnée peuvent dépendre fortement de l’arbre choisi T . Le choix de l’arbre

qui minimise le nombre d’évaluations n pour une précision donnée est un problème d’optimisation

combinatoire qui ne peut pas être résolu en pratique. Dans [48], les auteurs proposent un algo-

rithme stochastique qui explore un nombre raisonnable d’arbres de dimension avec la même arité

(nombre maximal d’enfants que des noeuds d’un arbre). L’idée clé est de favoriser l’exploration

des arbres conduisant à des faibles rangs. Dans [10], les auteurs proposent une stratégie détermin-

iste qui construit un arbre de dimension des feuilles à la racine par concaténation successive des

nœuds, comme le suggère la Figure 4. Les regroupements sont décidés de manière à minimiser une

certaine fonctionnelle des α-rangs estimés. L’arbre sélectionné peut alors être utilisé pour calculer

l’approximation de u. Au nombre d’évaluations nécessaires pour calculer l’approximation s’ajoute

le nombre d’évaluations de la fonction utilisée pour estimer les α-rangs. Ces deux coûts doivent être

pris en compte pour évaluer l’efficacité d’une stratégie. Dans le chapitre 6, nous proposons trois

stratégies adaptatives différentes pour réaliser l’optimisation de l’arbre. Une stratégie stochastique

globale inspirée de [48] qui explore plusieurs arbres de dimension et sélectionne celui qui minimise

une fonctionnelle des α-rangs estimés. Les deux autres stratégies incluent l’optimisation des arbres

à l’intérieur de l’algorithme de construction de l’approximation présentée au chapitre 5. Au fur et à

mesure que l’algorithme va des feuilles à la racine, le nombre d’arbres possibles (et donc le nombre

de α-rangs à évaluer) diminue fortement. C’est pourquoi nous proposons (en plus de la stratégie

stochastique) une stratégie déterministe (qui permettra d’explorer un plus grand nombre d’arbres).

16

Introduction

{1, 2, 3, 4, 5}

{1, 2, 3}

V1

{2, 3}

V2 V3

{4, 5}

V4 V5

1. Introduction d’espaces d’approximation
de dimensions finies V1, . . . , V5.

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

{2, 3}

U2 U3

{4, 5}

U4 U5

2. Construction d’espaces de faibles
dimensions Uα ⊂ Vα pour les feuilles.

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

V23 = U2 ⊗ U3

U2 U3

V45 = U4 ⊗ U5

U4 U5

3. Tensorisation des espaces Uα

des feuilles vers la racine.

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

U23

U2 U3

U45

U4 U5

4. Construction d’espaces de faibles
dimensions Uα ⊂ Vα.

{1, 2, 3, 4, 5}

V123 = U1 ⊗ U23

U1

U23

U2 U3

U45

U4 U5

5. Tensorisation des espaces Uα

des feuilles vers la racine.

{1, 2, 3, 4, 5}

U123

U1

U23

U2 U3

U45

U4 U5

6. Construction d’espaces de faible
dimension Uα ⊂ Vα

{1, 2, 3, 4, 5}

U123

U1

U23

U2 U3

U45

U4 U5

7. Calcul de l’approximation finale u⋆

dans U123 ⊗ U45.

Figure 3 – Illustration de l’algorithme allant des feuilles à la racine du chapitre 5 pour la construction
de l’approximation d’une fonction dans un format de tenseur basé sur des arbres.

17

Introduction

U1 U2 U3 U4 U5

1. Construction d’espaces de faibles
dimensions Uα ⊂ Vα

U15

U1 U5

U34

U3 U4

U2

2. Test de plusieurs configurations de paires,
et choix de celle qui donne

des espaces Uα de faibles dimensions.

U234

U2 U34

U3 U4

U15

U1 U5

3. Recommencer pour le niveau suivant:
test de plusieurs configurations de paires,

et choix de celle qui donne des
espaces de faibles dimensions Uα.

U234

U1

U23

U2 U3

U15

U1 U5

4. Calcul de l’approximation finale u⋆

dans U234 ⊗ U15.

Figure 4 – Construction de l’arbre des feuilles vers la racine avec optimisation locale des regroupe-
ments.

18

INTRODUCTION

Context

Thanks to computational models, researchers and engineers are able to replace expensive physical

experiments by numerical simulations. The response of a model depending on some parameters can

be represented by a function u(x1, . . . , xd) of several variables. Despite the continuous improve-

ment of hardware resources, most of these simulations remain very costly to compute. Furthermore,

solving uncertainty quantification (UQ) problems, which include in particular forward uncertainty

propagation, model calibration, inverse problems or sensitivity analysis [87, 34], require a high num-

ber of model’s evaluations. One remedy is then to replace the costly model by a surrogate model,

cheaper to evaluate, which amounts in approximating the function that represents the model’s

response.

The goal of approximation is to replace a function u by a simpler one (i.e. easier to evaluate)

such that the distance (measuring the quality of the approximation) between the function u and

its approximation, denoted u⋆, is as small as possible. In general, the approximation is searched in

a subspace of functions Vm described by a number of parameters m. A sequence of such subspaces

(Vm)m≥1 is called an approximation tool (or a model class), whose complexity is measured by its

number of parameters m. The error of best approximation of u by an element of Vm is defined by

the minimal distance between u and any element of Vm. The approximation tool should be adapted

to the class of functions we want to approximate, meaning that the error of best approximation

should converge to zero quickly enough with m.

There exist different approaches to construct a function’s approximation either based on direct

information on the function (e.g. point evaluations, linear measurements...) or equations satisfied

by the function. In this thesis, we are interested in black-box (possibly noisy) functions (which

corresponds to the first situation where the information on u is given by samples). Therefore, to

construct the approximation of the function u, we rely on evaluations yi = u(xi) for a set of points

xi or yi = u(xi) + ei in the noisy case. However, in the context of costly model, this approximation

should be constructed using a reduced number of samples, ideally close to the number of parame-

ters m. The samples xi may either be independent and identically distributed from a measure µ

or adaptively selected. This second situation is particularly relevant when no function’s evaluation

has already been made and this will be the framework for this thesis.

19

Introduction

Typical methods to construct a sample-based approximation are interpolation and least-squares

methods [28]. Classical interpolation methods include polynomial and spline interpolation (where

the samples are in general chosen relatively to Vm, to ensure good properties of the interpolation

operators), as well as kriging (which is quite efficient when the samples are given and may be

improved with adaptive selection of the samples) [82]. For a given set of m points, x1, . . . , xm the

interpolation u⋆ of u in Vm is defined by

u(xi) = u⋆(xi), for all 1 ≤ i ≤ m.

Interpolation is well-studied in the one-dimensional case, see for example [57], but in the multivari-

ate case (d > 1), finding good points for the interpolation is a challenging problem, in particular

when Vm is a non-classical approximation space. In practice, for sparse polynomial or tensor prod-

uct spline interpolation, [18, 19, 16] propose strategies to construct good sequences of interpolation

points. However, for non-classical approximation spaces, even if some sets of points have shown

their efficiency (see [65, 15]), there is no associated guarantee on the resulting distance between u

and its interpolation.

Given n samples x1, . . . , xn independent and identically distributed from a measure µ, standard

least-squares methods define the approximation of u as the minimizer of

min
v∈Vm

1

n

n∑

i=1

(v(xi)− yi)2.

An interesting aspect of least-squares methods is that they are able, under conditions on the num-

ber of samples n, to guarantee a stable approximation and an error close to the best approximation

error measured in L2
µ norm. However, to do so, they may require a sample size n much higher

than m (see [70, 22, 69, 93, 1]). Least-squares methods are a particular case of empirical risk

minimization in supervised learning [30]. Other functionals can be used in this risk minimization,

but they also require many evaluations in order to ensure the stability.

When the samples xi can be selected, the estimation error can be improved using weighted

least-squares [32, 73], by solving

min
v∈Vm

1

n

n∑

i=1

wi(v(x̃i)− yi)2,

where the weights are adapted to Vm and the points x̃i are independent and identically distributed

samples from a well-chosen measure. It may allow to decrease the sample size n to reach the

20

Introduction

same approximation error, compared to standard least-squares. In [24], the authors introduce an

optimal sampling measure whose density with respect to the reference measure depends on the

approximation space Vm. In [68], a similar optimal sampling approach is proposed whose major

difference is that the random samples are more structured than in [24]. They both show that the

weighted least-squares projection built with samples from this measure is stable in expectation

under a milder condition on n compared to classical least-squares. Nevertheless, to ensure the sta-

bility of the weighted projection, these two optimal sampling measures still require a high number

of samples n, compared to an interpolation method. The authors also propose optimal weighted

least-squares methods in the case of adaptive approximation (when Vm is picked in a sequence of

nested approximation spaces), see [68] and [4]. In this thesis, we propose a new projection method

onto a fixed approximation space Vm which ensures the stability of the least-squares projection in

expectation with a sample size close to m. We also propose a new method for the adaptive setting

which significantly reduces the number of samples and still presents stability properties.

In many applications, functions may depend on a potentially high number of variables d ≫ 1.

When the dimension d increases, using standard approximation tools adapted to smooth functions

(e.g. splines for Sobolev functions) leads to a complexity of the approximation methods which

grows exponentially with d. This is the so-called curse of dimensionality, expression introduced in

[12]. As a consequence, the number of evaluations necessary to approximate the function u with

naive approximation tools may explode. In this thesis, we assume that the functions present some

low-dimensional structures, so that we can expect a good approximation using a limited number of

evaluations of the function. Exploiting these structures of the function usually requires particular

approximation tools [29], which may be application dependent. Some of the most usual ones are

detailed hereafter.

A first approach consists in using the sparsity of u by choosing a particular set of functions

{ϕj}j∈Λ among a set of tensorized bases functions, such that u(x) can be written as an expansion
∑

j∈Λ ajϕj(x). Sparse approximation methods have been considered for solving uncertainty quan-

tification problems, see e.g. [23, 6, 5, 18, 19, 74, 75] for sparse polynomial approximation.

More structured model classes to deal with high-dimensional problems are additive models,

introduced by [41],
∑d

i=j uj(xj) or more generally
∑

α∈T uα(xα) where T ⊂ 2{1,...,d} is either fixed

(this corresponds to linear approximation) or a free parameter (this corresponds to non-linear ap-

proximation). There are also multiplicative models
∏d

j=1 uj(xj) or more generally
∏

α∈T uα(xα),

where T is also a subset of 2{1,...,d} and the same distinction between linear and non-linear approx-

imation is made, depending if T is fixed or not. These types of approximation tools are standard

in statistics and probabilistic modelling (graphical models, bayesian networks).

21

Introduction

Furthermore, more complex model classes based on compositions of functions have been pro-

posed. Among them ridge models can be written under the form v(Wx) with W ∈ R
k×d, where

v belongs to a model class of functions of k variables with a low-dimensional parametrization. A

typical example is the perceptron aσ(wTx+b), where σ is a given activation function, introduced in

[83]. These compositional models also include projection pursuit models of the form
∑k

j=1 vj(wT
j x),

where for j = 1, . . . , k, wj ∈ R
d, [41, 42], a particular case being neural networks with one hidden

layer
∑d

j=1 ajσ(wT
j x+bj). More general compositions of functions vL ◦vL−1 ◦ . . .◦v1 have been con-

sidered. They include the trendy deep neural networks, which are such that for each j = 1, . . . , L,

the functions vj write vj(t) = σ(Ajt + bj), where σ is a chosen activation function, while bj ∈ R
k

and Aj ∈ R
k×d are parameters to estimate [45]. In spite of its general formalism and the many

successes that it has acquired in approximation, the use of deep neural networks generally requires a

high number of evaluations to learn the parameters, which is not affordable in the context of costly

evaluations. Furthermore, when considering general non-linear activation functions, it is difficult

to guarantee a stable approximation whose error is close to the best approximation error, which is

a central objective of this thesis.

In this work, we focus on the model class of rank-structured functions and in particular on

the set of functions in tree-based tensor formats or tree tensor networks, which can be seen as

a particular class of neural networks. More specifically, for α a subset of D = {1, . . . , d} and

αc = D \ α its complementary subset in D, we focus on functions that can be written as

v(x) =
rα∑

i=1

uα
i (xα)uαc

i (xαc), for all α ∈ T, (1)

where T is a dimension partition tree, which is a particular collection of subsets of D. Some exam-

ples of dimension trees are given in Figure 1. The minimal integer rα such that v can be written

under the form (1) is called the α-rank of v, denoted rankα(v). The set of functions in tree-based

tensor format is defined by T T
r (H) = {v ∈ H : rankα(v) ≤ rα, α ∈ T}, with r = (rα)α∈T a tuple of

integers, and H some approximation space of multivariate functions. It includes the Tucker format

for a trivial tree, the tensor-train format for a linear binary tree [79] and the more general hierarchi-

cal format for a general dimension partition tree [54]. Any function in T T
r (H) admits a multilinear

parametrization with parameters forming a tree network of low-order tensors, hence the name tree

tensor networks, see Figure 2 for an illustration in the case where d = 5. Considering dimension

trees for T gives nice topological and geometrical properties to the model class T T
r (H) [35, 37]. Tree

tensor networks are particularly relevant for high-dimensional approximation, because the complex-

ity of the parametrization of a function in tree-based tensor format is linear in the dimension d

and polynomial in the ranks [53]. It can also be used for one-dimensional approximation [2, 3].

22

Introduction

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Trivial tree

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Linear binary tree

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

General binary tree

Figure 1 – Examples of dimension partition trees with d = 5.

However the ranks and therefore the number of evaluations n necessary to compute an approxi-

mation in tree-based tensor format with a given tolerance may strongly depend on the chosen tree

T . The model class T T
r (H) can also be interpreted as a class of functions that are compositions of

multilinear functions, the structure of compositions being given by the tree. It has been identified

with a particular class of deep neural networks (more precisely sum-product networks or arithmetic

circuits) with a sparse connectivity and without parameter sharing [26]. The approximation error

associated to this model class has two contributions : the truncation error (due to the finite ranks

r) and the discretization error (due to the introduction of finite-dimensional spaces H).

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Figure 2 – A tree-based tensor network admits a multilinear parametrization with parameters
forming a tree network of low-order tensors.

Tree tensor networks are an approximation tool that achieve good performances for many classes

of functions. In [84] or more recently in [7, 2, 3], the authors show that for functions u with Sobolev

23

Introduction

regularity, they achieve (whatever the tree is) an approximation rate which is optimal or close to

optimal [61]. They also prove that for functions u with mixed Sobolev regularity, the approxi-

mation in tree-based tensor format achieves almost the ideal performance obtained by hyperbolic

cross approximation. For a literature review on low-rank approximation methods, see [47]. Also,

we refer the reader to monograph [53] and surveys [8, 36, 59, 60, 77, 76].

In the literature, some algorithms constructing approximations in tree-based tensor formats us-

ing points evaluations of functions have already been proposed. On the one hand, there are learning

approaches that use random and unstructured evaluations of the functions [48, 55]. Robustness

and effectiveness of such algorithms are observed on numerical experiments. However these algo-

rithms are mainly based on heuristics and lack of theoritical analysis. On the other hand, there are

algorithms that use adaptive and structured evaluations of tensors, see [64] (for the Tucker format),

or [80] and [78] for tree-based tensor formats. Among adaptive approaches, the method from [78]

is of particular interest, the author proposes a variant of higher-order singular value decomposition

(HOSVD) (previous adaptations of HOSVD can be found in [46] and [80]). The principle is to

construct a hierarchy of optimal subspaces that results in a final tensor product of subspaces in

which the function u is projected, to define the final approximation u⋆. Under strong assumptions

on the estimation error made in the determination of subspaces, the author in [78] shows that

with a number of evaluations scaling in the storage complexity of the tree-based tensor format, the

approximation satisfies the desired error up to constants depending on some projection operators,

which are not quantified.

All these conclusions show that theoretical results on the convergence of existing algorithms

are limited. In this thesis we propose an algorithm that constructs an approximation u in tree-

based tensor format, using adaptive and structured sampling with some theoretical guarantees,

and we propose heuristic strategies for obtaining an approximation with a desired precision and

near-optimal complexity.

Contributions

More precisely the contributions of this thesis can be summarized through the following objectives:

1. Propose a projection method in a linear space, based on sampling techniques, which is sta-

ble and whose construction requires a number of evaluations close to the dimension of the

approximation space.

2. Propose a strategy for computing linear projections onto a nested sequence of approximation

spaces, using a reduced number of samples.

24

Introduction

3. Propose a method to construct the approximation of a function in tree-based tensor format,

with theoretical stability guarantees and propose heuristics to control the error.

4. Propose a strategy to choose the tree structure T in order to reduce ranks of the approximation

at given precision and therefore its complexity and the required number of samples.

This thesis is divided into six chapters. Chapters 1 and 4 provide a state-of-the-art on projection

methods onto linear approximation spaces and tree-based tensor formats respectively. Chapters 2,

3, 5 and 6 correspond to the main contributions of this thesis addressing the four objectives listed

above. In the appendix implementation aspects for sampling multivariate probability distributions

in tree-based tensor formats are given.

In Chapter 2, we propose a new projection method, called boosted optimal weighted least-

squares method, that ensures stability of the least-squares projection with a sample size close to

the interpolation regime n = m. It consists in sampling according to a measure associated with the

optimization of a stability criterion over a collection of independent n-samples, and resampling ac-

cording to this measure until a stability condition is satisfied. A greedy method is then proposed to

remove points from the obtained sample. Quasi-optimality properties in expectation are obtained

for the weighted least-squares projection, with or without the greedy procedure. If the observations

are polluted by a noise, quasi-optimality property is lost, because of an additional error term due

to the noise. This latter error term can however be reduced by increasing n.

In order to control the approximation error, we should be able to choose the approximation

space adaptively (with a dimension high enough to reach a certain accuracy). For polynomial

approximation and applications in UQ, several strategies to construct adaptively a sequence of

approximation spaces (Vml
)l≥1 have been proposed in [43, 67, 18, 19]. To limit the total number of

evaluations of the function, it is necessary to reuse the samples used to build the projection onto

the space Vml
in order to construct the one onto the space Vml+1

. However, the optimal weighted

boosted least-squares projection from Chapter 2 depends on the approximation space, such that

reusing the samples used to construct a projection to construct another is not straightforward.

In [68], the author proposes an adaptive optimal weighted least-squares method that recycles all

samples from one step to another. In Chapter 3, we propose an adaptive boosted optimal weighted

least-squares method inspired from [68], using again resampling, conditioning and greedy proce-

dures. This strategy works for a general sequence of nested approximation spaces and we apply it

for adaptive sparse polynomial approximation.

Chapter 5 provides an algorithm adapted from [78] to construct the approximation in a tree-

based tensor format T T
r (H). Using a leaves-to-root approach, the algorithm constructs, thanks to

25

Introduction

a series of principal component analyses (PCA) along the tree structure T , low-dimensional sub-

spaces of functions of groups of variables associated with each node of the tree. This algorithm is

illustrated by the Figure 3. We analyse the algorithm in the case where the projection verifies a

stability property and in the particular case where the projection is the boosted least-squares pro-

jection. Using this strategy the approximation error has several contributions due to discretization

(due to H), truncation (due to low-rank approximation) and estimation (due to the limited number

of samples). We propose a partially heuristic adaptive algorithm that controls simultaneously the

discretization, truncation and estimation errors.

The proposed algorithm from Chapter 5 works for any function u and any dimension partition

tree T . However the ranks and therefore the number of evaluations n necessary to reach a given

precision may strongly depend on the chosen tree T . Choosing the tree which minimizes the number

of evaluations n for a given accuracy is a combinatorial optimization problem and it is not feasible

in practice. In [48], the authors propose a stochastic algorithm that explores a reasonable number

of dimension trees with the same arity (maximal number of children of any node of a tree). The

key idea is to favour the exploration of trees yielding low ranks. In [10], the authors propose a

deterministic strategy that constructs a dimension tree in a leaves-to-root approach by successive

concatenations of nodes. The groupings are decided in order to minimize a certain functional

based on estimated α-ranks. The selected tree can be used to compute the approximation of u. The

number of function’s evaluations used to estimate the α-ranks adds up to the number of evaluations

necessary to compute the approximation. This total number of samples should be used to evaluate

the efficiency of a strategy. In Chapter 6, we propose three different adaptive strategies to perform

tree optimization. A global stochastic strategy inspired from [48] which explores several dimension

trees and select the one minimizing a complexity functional depending on α-ranks estimations.

The two other strategies include tree optimization inside the algorithm for the construction of the

approximation presented in Chapter 5, as suggested in Figure 4. As the algorithm goes from the

leaves to the root, the number of possible trees (and thus the number of α-ranks to be evaluated)

decreases sharply. This is why we propose (in addition to the stochastic strategy) a deterministic

strategy (which will explore a larger number of trees).

26

{1, 2, 3, 4, 5}

{1, 2, 3}

V1

{2, 3}

V2 V3

{4, 5}

V4 V5

1. Introduction of finite dimensional
subspaces V1, . . . , V5.

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

{2, 3}

U2 U3

{4, 5}

U4 U5

2. Construction of low-dimensional
subspaces Uα ⊂ Vα

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

V23 = U2 ⊗ U3

U2 U3

V45 = U4 ⊗ U5

U4 U5

3. Leaves-to-root
tensorization of the Uα

{1, 2, 3, 4, 5}

{1, 2, 3}

U1

U23

U2 U3

U45

U4 U5

4. Construction of low-dimensional
subspaces Uα ⊂ Vα

{1, 2, 3, 4, 5}

V123 = U1 ⊗ U23

U1

U23

U2 U3

U45

U4 U5

5. Leaves-to-root
tensorization of the Uα

{1, 2, 3, 4, 5}

U123

U1

U23

U2 U3

U45

U4 U5

6. Construction of low-dimensional
subspaces Uα ⊂ Vα

{1, 2, 3, 4, 5}

U123

U1

U23

U2 U3

U45

U4 U5

7. Computation of the final
approximation u⋆ in U123 ⊗ U45.

Figure 3 – Illustration of the leaves-to-root algorithm from Chapter 5 for the construction of the
approximation of a function in tree-based tensor format.

U1 U2 U3 U4 U5

1. Construction of low-dimensional
subspaces Uα ⊂ Vα

U15

U1 U5

U34

U3 U4

U2

2. Try several pairings,
choose one which leads to

low-dimensional Uα.

U234

U2 U34

U3 U4

U15

U1 U5

3. Repeat for the next level:
try several pairings,

choose one which leads to
low-dimensional Uα.

U234

U2

U34

U3 U4

U15

U1 U5

4. Computation of the final
approximation u⋆ in U234 ⊗ U15.

Figure 4 – Leaves-to-root construction of the tree with local optimizations

Chapter 1

PROJECTION METHODS

Contents

1.1 Introduction . 29

1.2 Interpolation . 29

1.2.1 Interpolation in the one-dimensional case 31

1.2.2 Interpolation with any arbitrary approximation space 33

1.2.3 Interpolation with tensor product bases . 34

1.3 Least-squares method . 35

1.3.1 Weighted least-squares projection . 36

1.3.2 Random sampling . 38

1.3.3 Optimal sampling measure . 40

1.1 Introduction

In this chapter we present two classical families of methods to construct the approximation of a

function onto a linear space Vm, using evaluations of the function at suitably chosen points: inter-

polation and least-squares regression [28].

The outline of this chapter is as follows. In Section 1.2, we present the approximation of mul-

tivariate functions by interpolation. In Section 1.3, we present weighted least-squares projections.

Then, we recall the optimal sampling measure from [24], and outline its limitations.

1.2 Interpolation

In this section, we begin by recalling the definition of interpolation of a real-valued function u

defined on a subset X ⊂ R
d onto an approximation space Vm.

29

Chapter 1 – Projection methods

We consider a m-dimensional linear space Vm whose basis is denoted {ϕj}mj=1, where the ϕj can

be polynomials, splines or wavelets for instance. We denote by

ϕ = (ϕ1, . . . , ϕm) : X → R
m

the m-dimensional vector-valued function such that ϕ(x) = (ϕ1(x), . . . , ϕm(x))T .

Let Γm = {xi}mi=1 be a set of m points in X . The interpolation of u is defined as the approxi-

mation u⋆ ∈ Vm such that

u⋆(xi) = u(xi) for all xi ∈ Γm.

u⋆ can be written under the form

u⋆(x) =
m∑

j=1

ajϕj(x),

where the coefficients (aj)m
j=1 are solution of the following linear system,




ϕ1(x1) ϕ2(x1) . . . ϕm(x1)

ϕ1(x2) ϕ2(x2) . . . ϕm(x2)

. . .

ϕ1(xm) ϕ2(xm) . . . ϕm(xm)




︸ ︷︷ ︸
Vϕ(x1,...,xm)




a1

a2

...

am




=




u(x1)

u(x2)
...

u(xm)



.

Here, the matrix Vϕ(x1, . . . , xm) is called the Vandermonde like-matrix. We say that Γm is uni-

solvent for the space Vm = span{ϕj}mj=1 if Vϕ(x1, . . . , xm) is invertible, which implies that u⋆ is

uniquely defined for any u. A set of points that maximizes the determinant of the Vandermonde-like

matrix Vϕ(x1, . . . , xm) is called a set of Fekete points [40]. If Γm is unisolvent, the interpolation

operator Im : X → Vm is defined by Imu = u⋆ and the associated Lebesgue constant Lm (in L∞

norm) is defined by

Lm = ‖Im‖ = sup
v 6=0

‖Imv‖L∞

‖v‖L∞
.

It holds

‖u− u⋆‖L∞ ≤ (1 + Lm) inf
v∈Vm

‖u− v‖L∞ .

The Lebesgue constant Lm can be expressed in terms of interpolation functions, but in general an

expression of Lm can not be explicitly found. In dimension one, interpolation is well understood

for various types of approximations (e.g. with polynomials, splines). In particular for polynomial

spaces Vm there exists good sets of points Γm, such that the Lebesgue constant Lm is controlled.

Some of them are detailed in Section 1.2.1. However in higher dimension, finding good points for

polynomial approximation is a challenging problem. In Section 1.2.2, we consider the multivari-

30

1.2. Interpolation

ate setting and present several sets of interpolation points that have demonstrated their efficiency

in practice. In Section 1.2.3, we consider the case where the approximation space is constructed

from tensor product bases and present the construction of interpolation operator for approximation

spaces associated to downward closed index sets. The purpose of these three sections is not to give

an exhaustive list of already studied interpolation points but an insight on the most classical inter-

polation points and in particular the ones to which we will compare the boosted optimal weighted

least-squares method, contribution of this thesis.

1.2.1 Interpolation in the one-dimensional case

In this subsection, we recall some well-known results for one-dimensional polynomial interpolation

i.e. with Vm a space of degree m − 1 polynomials. A lower bound for the Lebesgue constant is

given by the Erdos theorem [33], which shows that in the best case, Lm grows as the logarithm of

the dimension m. More precisely for any set of points, there exists a constant C > 0 such that,

Lm ≥
2

π
log(m+ 1)− C.

Uniformly distributed points.

For uniformly distributed points over [−1, 1], it holds

Lm ∼
2m+1

em log(m)
as m→∞,

that shows that uniformly distributed points is clearly not a good option for interpolation.

Chebyshev points.

Another classical set of points is the Chebyshev set of points, which is defined as the solution of

min
x1,...,xm

max
x∈[−1,1]

m∏

j=1

|x− xj |.

For a given m, these points are near optimal asymptotically according to the Erdos theorem, since

Lm ∼
2

π
log(m) as m→∞.

However, Γm 6⊂ Γm+1 (i.e the set of the m Chebyshev points is not included in the set of m + 1

Chebyshev points), so that they are not really adapted for adaptive approximation.

31

Chapter 1 – Projection methods

Gauss-quadrature type points.

When the approximation space Vm is the span of the univariate Legendre polynomials {ϕj}mj=1,

the Gauss-Legendre points are well-suited for interpolation. For 1 ≤ i ≤ m, the ith point of the

Gauss-Legendre set of m points is given by the ith root of ϕm, the Legendre polynomial of degree

m− 1. The Lebesgue constant for the point set consisting of the Gauss-Legendre points is

Lm ≤ C
√
m, see [88].

Similarly, when the approximation space is the span of the Hermite polynomials, the Gauss-Hermite

points can be defined as the roots of the Hermite polynomials.

Clenshaw-Curtis points.

Clenshaw-Curtis points are the extrema of Chebyshev polynomials. For m ≥ 1, the sequence of m

Clenshaw-Curtis points is given by Γm = {cos(jπ
m−1) : j = 0, . . . ,m− 1} and the Lebesgue constant

verifies

Lm ≤
2

π
log(m− 1) + 1.

The interest is that Γ2m ⊂ Γ2m+1 , which is useful for adaptive approximation. But this requires to

double the dimension of the approximation space at each iteration.

Leja points.

Another sequence of points which is suitable for adaptive approximation is the Leja sequence,

which is defined recursively for j ≥ 2 by

xj ∈ arg max
x∈[−1,1]

j∏

l=1

|x− xl|,

with x1 taken equal to 0 or 1 in general. The definition is such that this sequence is not unique.

An equivalent definition for the Leja sequence of points is given by

xj ∈ arg max
x∈[−1,1]

|detVϕ(x1, . . . , xj−1, x)| for j ≥ 2.

Therefore Leja sequences can be seen as a greedy D-optimal experimental design [38]. It does not

exist any explicit expression for the Lebesgue constant associated to this set of points, but it has

been proven that it grows subexponentially [39].

R-Leja points are real part of the Leja points defined on the complex unit disc. In other terms,

they are defined as the projection on the real line of complex Leja points. In dimension one, it has

32

1.2. Interpolation

been proven (see [21]) that

Lm ≤ C(m+ 1)2.

1.2.2 Interpolation with any arbitrary approximation space

Leja points.

The definition of the Leja points can be extended to the cases where d > 1, for any compact set

E of Rd [66], for k ≥ 2, by

xk ∈ arg max
x∈E
|det Vϕ(x1, . . . , xk−1, x)|.

When d is high, this sequence of points may be costly to compute, therefore it can be replaced by

a so-called sequence of discrete Leja points which relies on a LU factorization with row-pivoting of

the Vandermonde-like matrix [15]. To deal with the case of unbounded domains, weighted versions

of discrete Leja points have been proposed [16].

Fekete points.

A set of points that maximizes the determinant of the Vandermonde-like matrix Vϕ(x1, . . . , xm) is

called a set of Fekete points [40]. These points are not limited to polynomial approximation but can

be used in a very general setting. In general they are very expensive to compute because it requires

a multivariate optimization. Therefore methods to compute approximate Fekete points based on

QR factorizations with column pivoting of the Vandermonde-like matrix have been proposed in

[86], [14] and [15]. To deal with the case of unbounded domains, weighted Fekete points have also

been introduced [51]. There exist connections between Leja and Fekete points [66].

Magic points.

In [65], the authors propose a sequence of interpolation points called magic points which provides

in practice good results in terms of the behaviour of the Lebesgue constant. An interest of this

method is that it is not limited to polynomial approximation. Furthermore, these points can be

relatively simply determined through a greedy algorithm. The procedure is as follows: we start

from a candidate set of points Γ and determine a first point x1 and an index i1 such that

|ϕi1(x1)| = max
x∈Γ

max
1≤i≤m

|ϕi(x)|.

33

Chapter 1 – Projection methods

Then for k ≥ 1, we define

ϕ̃k
i (x) = ϕi(x)−

k∑

l=1

k∑

p=1

ϕil
(x)ak

l,pϕi(x
p),

with the matrix A = (ak
l,p)1≤l,p≤k being the inverse of the matrix




ϕi1(x1) ϕi2(x1) . . . ϕik
(x1)

ϕi1(x2) ϕi2(x2) . . . ϕik
(x2)

. . .

ϕi1(xk) ϕi2(xk) . . . ϕik
(xk)



,

such that ϕ̃k
il

(x) = 0 for all 1 ≤ l ≤ k and x ∈ X and ϕ̃k
i (xp) = 0 for all 1 ≤ p ≤ k and 1 ≤ i ≤ m.

Then we determine the point xk+1 ∈ Γ and an index ik+1 such that

|ϕ̃k
ik+1

(xk+1)| = max
x∈Γ

max
1≤i≤m

|ϕ̃k
i (x)|.

The Lebesgue constant associated with the magic points behaves relatively well in practice [92].

1.2.3 Interpolation with tensor product bases

In this subsection, we consider the case where X has a product structure X = X1× . . .×Xd, then

multivariate interpolation on tensor product bases can be constructed from univariate interpolation.

For each k ∈ {1, . . . d}, we consider {ψk
ik
}ik≥1 a set of univariate functions defined on Xk. We

define for all i = (i1, . . . , id) ∈ N
d,

ϕi(x) =
d∏

k=1

ψk
ik

(xk). (1.1)

Let us introduce a set of multi-indices Λm ⊂ N
d such that #Λm = m. The set Λm ⊂ N

d is

said to be downward closed if for all α ∈ Λm and any β such that β ≤ α (i.e. for all 1 ≤ k ≤ d,

βk ≤ αk), then β ∈ Λm. We introduce Vm the associated approximation space

Vm = span{ϕi : i = (i1, . . . , id) ∈ Λm}.

Furthermore, for each k ∈ {1, . . . d}, we consider {xik

k }
mk
ik=1 a sequence of points in Xk unisolvent

for the basis {ψk
ik
}mk

ik=1, therefore defining a unique interpolation operator denoted Ik
mk

: Xk 7→ Vmk
.

34

1.3. Least-squares method

When Λm is a product set, i.e. Λm = Λ1
m1
× . . .× Λd

md
, the grid of interpolation points

Γm =
d×

k=1

{x1
k, . . . x

mk

k }

is unisolvent for the tensorized basis {ϕi}i∈Λm
from (1.1) and the associated interpolation operator

is uniquely defined as

Im =
d⊗

k=1

Ik
mk
.

When Λm is a general downward closed set, for each k ∈ {1, . . . d}, the univariate interpolation

operator Ik
mk

can be expressed as a sum of differences operators:

Ik
mk

=
mk∑

l=1

∆k
l , where ∆k

l = Ik
l − Ik

l−1 and using the convention Ik
0 = 0.

When d > 1, we consider nested sequences of points {xik

k }
mk
ik=1 for all k ∈ {1, . . . d}. Further-

more, for each i = (i1, . . . , id) ∈ Λm we introduce the tensorized differences operators ∆i =
⊗d

k=1 ∆k
ik

where i = (i1, . . . , id) and then the interpolation operator Im on the space Vm = span{ϕi :

i = (i1, . . . , id) ∈ Λm} can be expressed as

Im =
∑

i∈Λm

∆i.

It is associated with the sequence of interpolation points

Γm = {xi = (xi1
1 , . . . , x

id

d) : i ∈ Λm}

which is unisolvent for Vm [23].

Remark 1.1. Kriging interpolation.

Another widely used interpolation technique is kriging. Contrary to the interpolation techniques

mentioned above, the approximation is not constructed in Vm a linear space with a fixed basis but

in kernel-based space, which in general depends on the chosen points. This method has proved its

importance but is not used in this thesis (possibly in future work). For more details the reader is

refereed to [82].

1.3 Least-squares method

Let X be a subset of R
d equipped with a probability measure µ, with d ≥ 1. We consider a

function u from L2
µ(X), the Hilbert space of square-integrable real-valued functions defined on X .

35

Chapter 1 – Projection methods

We let ‖ · ‖L2
µ

be the natural norm in L2
µ(X) defined by

‖v‖2L2
µ

=
∫

X
v(x)2dµ(x).

When there is no ambiguity, L2
µ(X) will be simply denoted by L2

µ, and the norm ‖ · ‖2L2
µ

and asso-

ciated inner product (·, ·)L2
µ

will be denoted by ‖ · ‖ and (·, ·) respectively.

Let Vm be a m-dimensional subspace of L2
µ, with m ≥ 1, and {ϕj}mj=1 be an orthonormal basis

of Vm. The best approximation of u in Vm is given by its orthogonal projection defined by

PVmu := arg min
v∈Vm

‖u− v‖.

Least-squares regression, which defines the approximation by solving

min
v∈Vm

1

n

n∑

i=1

(u(xi)− v(xi))2,

where the xi are independent and identically distributed (i.i.d.) samples drawn from the measure µ.

However, to guarantee a stable approximation and an error close to the best approximation error,

least-squares regression may require a sample size n much higher than m (see [70, 22, 69, 93]). This

issue can be mitigated by weighted least-squares projection, which is obtained by solving

min
v∈Vm

1

n

n∑

i=1

w(xi)(u(xi)− v(xi))2,

where the xi are points not necessarily drawn from µ and the w(xi) are corresponding weights.

A suitable choice of weights and points may allow to decrease the sample size to reach the same

approximation error, see e.g. [32, 73]. In [24], the authors introduce an optimal sampling measure ρ

with a density w(x)−1 with respect to the reference measure µ which depends on the approximation

space. Choosing i.i.d. samples xi from this optimal measure, one obtains with high probability 1−η
a stable approximation and an error of the order of the best approximation error using a sample

size n = O(m log(mη−1)). Nevertheless, the necessary condition for having stability requires a

sample size n much higher than m, especially when a small probability η is desired.

1.3.1 Weighted least-squares projection

Letting xn := {xi}ni=1 be a set of n points in X , we consider the weighted least-squares projection

defined by

Qxn

Vm
u := arg min

v∈Vm

‖u− v‖xn ,

36

1.3. Least-squares method

where ‖ · ‖xn is a discrete semi-norm defined for v in L2
µ by

‖v‖2xn :=
1

n

n∑

i=1

w(xi)v(xi)2,

where w is a given non negative function defined on X . We recall that ϕ = (ϕ1, . . . , ϕm) : X → R
m

denotes the m-dimensional vector-valued function such that ϕ(x) = (ϕ1(x), . . . , ϕm(x))T . Also we

denote by Gxn the empirical Gram matrix defined by

Gxn :=
1

n

n∑

i=1

w(xi)ϕ(xi)⊗ϕ(xi).

The stability of the weighted least-squares projection can be characterized by

Zxn := ‖Gxn − I‖2,

which measures a distance between the empirical Gram matrix and the identity matrix I, with

‖ · ‖2 the matrix spectral norm. For any v in Vm, we have

(1− Zxn)‖v‖2 ≤ ‖v‖2xn ≤ (1 + Zxn)‖v‖2. (1.2)

We have the following properties that will be useful in subsequent analyses.

Lemma 1.1. Let xn be a set of n points in X such that Zxn = ‖Gxn−I‖2 ≤ δ for some δ ∈ [0, 1).

Then, for any v in Vm, we have

(1− δ)‖v‖2 ≤ ‖v‖2xn ≤ (1 + δ)‖v‖2 (1.3)

and the weighted least-squares projection Qxn

Vm
u associated with xn satisfies

‖u−Qxn

Vm
u‖2 ≤ ‖u− PVmu‖2 + (1− δ)−1‖u− PVmu‖2xn . (1.4)

Proof. The property (1.3) directly follows from (1.2) and the assumption that Zxn ≤ δ. Using the

property of the orthogonal projection PVmu and (1.3), we have that

‖u−Qxn

Vm
u‖2 = ‖u− PVmu‖2 + ‖PVmu−Qxn

Vm
u‖2

≤ ‖u− PVmu‖2 + (1− δ)−1‖PVmu−Qxn

Vm
u‖2xn .

Using the fact that Qxn

Vm
is an orthogonal projection on Vm with respect to the semi-norm ‖ · ‖xn ,

we have that for any v, ‖Qxn

Vm
v‖xn ≤ ‖v‖xn . We deduce that

‖PVmu−Qxn

Vm
u‖xn = ‖Qxn

Vm
(PVmu− u)‖xn ≤ ‖PVmu− u‖xn ,

37

Chapter 1 – Projection methods

from which we deduce (1.4).

We now provide a result which bounds the L2
µ error by a best approximation error with respect

to a weighted supremum norm.

Theorem 1.2. Let xn be a set of n points in X such that Zxn = ‖Gxn−I‖2 ≤ δ for some δ ∈ [0, 1).

Then,

‖u−Qxn

Vm
u‖ ≤ (B + (1− δ)−1/2) inf

v∈Vm

‖u− v‖∞,w (1.5)

where B2 =
∫

X w(x)−1dµ(x) and ‖v‖∞,w = supx∈X w(x)1/2|v(x)|.

Proof. Using the triangular inequality and Lemma 1.1 we note that for any v ∈ Vm,

‖u−Qxn

Vm
u‖ ≤ ‖u− v‖+ (1− δ)−1/2‖v −Qxn

Vm
u‖xn ,

and ‖v −Qxn

Vm
u‖xn = ‖Qxn

Vm
(v − u)‖xn ≤ ‖u− v‖xn .

We then conclude by using the inequalities ‖u− v‖xn ≤ ‖u− v‖∞,w and

‖u− v‖ ≤ (∫X w(x)−1dµ(x)
)1/2

supx∈X w(x)1/2|u(x)− v(x)|.

In the case where w−1 is the density of a probability measure with respect to µ (which will be

the case in the rest of the paper), the constant B from Theorem 1.2 is equal to 1.

1.3.2 Random sampling

We consider the measure ρ on X with density w−1 with respect to µ, i.e. dρ = w−1dµ. If the

x1, . . . , xn are i.i.d. random variables drawn from the measure ρ, or equivalently if xn = (x1, . . . , xn)

is drawn from the product measure ρ⊗n := ρn on X n, then for any function v in L2
µ (not only those

in Vm), we have

E(‖v‖2xn) = ‖v‖2. (1.6)

The condition (1.6) restricted to all functions v ∈ Vm implies that the empirical Gram matrix Gxn

satisfies

E(Gxn) =
1

n

n∑

i=1

E(w(xi)ϕ(xi)⊗ϕ(xi)) = I.

The random variable Zxn = ‖Gxn − I‖2 quantifies how much the random matrix Gxn deviates

from its expectation. For any δ ∈ [0, 1), if

P(Zxn > δ) ≤ η, (1.7)

then for all v ∈ Vm, Equation (1.3) holds with probability higher than 1− η. We directly conclude

from Theorem 1.2 that the weighted least-squares projection Qxn

Vm
satisfies Equation (1.5) with

38

1.3. Least-squares method

probability higher than 1− η (and B = 1).

Now, we present results in expectation which relate the L2
µ error with the best approximation

in L2
µ. We have the following result from [24] for a conditional weighted least-squares projection,

here stated in a slightly different form.

Theorem 1.3 ([24]). Let xn be drawn from the measure ρn and let Qxn

Vm
u be the associated weighted

least-squares projection of u. For any δ ∈ [0, 1) and η ∈ [0, 1] such that Equation (1.7) holds,

E(‖u−Qxn,C
Vm

u‖2) ≤ (1 + (1− δ)−1)‖u− PVmu‖2 + η‖u‖2, (1.8)

where Qxn,C
Vm

u = Qxn

Vm
u if Zxn ≤ δ and 0 otherwise.

Proof. We have

E(‖u−Qxn,C
Vm

u‖2) = E(‖u−Qxn

Vm
u‖21Zxn ≤δ) + ‖u‖2E(1Zxn >δ),

with E(1Zxn >δ) = P(Zxn > δ) and therefore according to Equation (1.7) E(1Zxn >δ) ≤ η. Then

using Lemma 1.1 and Equation (1.6), we have

E(‖u−Qxn

Vm
u‖21Zxn ≤δ) ≤ E((‖u− PVmu‖2 + (1− δ)−1‖u− PVmu‖2xn)1Zxn ≤δ)

≤ ‖u− PVmu‖2 + (1− δ)−1
E(‖u− PVmu‖2xn)

= (1 + (1− δ)−1)‖u− PVmu‖2,

which concludes the proof.

Also, we have the following quasi-optimality property for the weighted least-squares projection

associated with the distribution ρn conditioned to the event {Zxn ≤ δ}.

Theorem 1.4. Let xn be drawn from the measure ρn and let Qxn

Vm
u be the associated weighted

least-squares projection of u. For any δ ∈ [0, 1) and η ∈ [0, 1) such that Equation (1.7) holds,

E(‖u−Qxn

Vm
u‖2|Zxn ≤ δ) ≤ (1 + (1− δ)−1(1− η)−1)‖u− PVmu‖2. (1.9)

Proof. From Lemma 1.1, we have that

E(‖u−Qxn

Vm
u‖2|Zxn ≤ δ) ≤ ‖u− PVmu‖2 + (1− δ)−1

E(‖u− PVmu‖2xn |Zxn ≤ δ),

and

E(‖u− PVmu‖2xn |Zxn ≤ δ) ≤ E(‖u− PVmu‖2xn)P(Zxn ≤ δ)−1,

and we conclude by using P(Zxn ≤ δ) ≥ 1− η and the property (1.6).

39

Chapter 1 – Projection methods

1.3.3 Optimal sampling measure

An inequality of the form (1.7) can be obtained by concentration inequalities. A suitable sampling

distribution can then be obtained by an optimization of the obtained upper bound. An optimal

choice for w based on matrix Chernoff inequality is derived in [24] and given by

w(x)−1 =
1

m

m∑

j=1

ϕj(x)2 =
1

m
‖ϕ(x)‖22. (1.10)

Using this distribution, we obtain the following result, for which we provide a sketch of proof

following [24]. The result is here provided in a slightly more general form than in [24].

Theorem 1.5. Let η ∈ [0, 1) and δ ∈ [0, 1). Assume xn is drawn from the product measure

ρn = ρ⊗n, with ρ having the density (1.10) with respect to µ. If the sample size n is such that1

n ≥ n(δ, η,m) := d−1
δ m log

(
2mη−1

)
, (1.11)

with dδ := −δ + (1 + δ) log(1 + δ), then Zxn = ‖Gxn − I‖2 satisfies (1.7).

Proof. We have Gxn = 1
n

∑n
i=1 Ai where the Ai = w(xi)ϕ(xi) ⊗ ϕ(xi) are random matrices such

that E(Ai) = I and ‖Ai‖2 = w(xi)‖ϕ(xi)‖22 = m. The matrix Chernoff inequality from [91,

Theorem 5.1] gives that the minimal and maximal eigenvalues of Gxn − I satisfy

P(λmin(Gxn − I) < −δ) ∨ P(λmax(Gxn − I) > δ) ≤ m exp(−ndδ/m).

Under the condition (1.11), we have that m exp(−ndδ/m) ≤ η/2 and using a union bound, we

deduce Equation (1.7).

Remark 1.2. Noticing that dδ ≤ δ2, then a sufficient condition for satisfying the condition (1.11) is

n ≥ δ−2m log
(
2mη−1

)
.

Remark 1.3. The quantile function of Zxn is defined for t ∈ [0, 1] by F−
Zxn

(t) = inf{δ : FZxn (δ) ≥ t},
where FZxn is the cumulative density function of the random variable Zxn . For given n and η,

F−
Zxn

(1− η) is the minimal δ such that Equation (1.7) is satisfied. Denoting by δc(η, n) = min{δ :

n ≥ n(δ, η,m)}, we clearly have F−
Zxn

(1 − η) ≤ δc(η, n). The closer δc is from F−
Zxn

(1 − η), the

sharper the condition on the sample size n is for satisfying Equation (1.7).

Theorem 1.5 states that using the optimal sampling density from Equation (1.10), a stable

projection of u is obtained with a sample size n = O(m log(mη−1)) with high probability. Note that

a small probability η, and therefore a large sample size n, may be required for controlling the term

η‖u‖2 in the error bound (1.8) for the conditional projection, or for obtaining a quasi-optimality

1Note that the constant in the condition (1.11) differs from the one given in the reference [24] for δ = 1/2, which
was incorrect.

40

1.3. Least-squares method

property (1.9) in conditional expectation with a quasi-optimality constant close to 1 + (1 − δ)−1.

This will be improved in the next chapter by proposing a new distribution (obtained by resampling,

conditioning and subsampling) allowing to obtain stability of the empirical Gram matrix with a

moderate sample size.

41

Chapter 2

BOOSTED OPTIMAL WEIGHTED

LEAST-SQUARES

Contents

2.1 Introduction . 43

2.2 Boosted optimal weighted least-squares method 44

2.2.1 Resampling and conditioning . 45

2.2.2 Subsampling . 49

2.3 The noisy case . 51

2.4 Numerical experiments . 54

2.4.1 Notations and objectives . 54

2.4.2 Qualitative analysis of the boosted optimal weighted least-squares method . 56

2.4.3 Quantitative analysis for polynomial approximations 59

2.4.4 A noisy example . 68

2.4.5 Overall conclusion for all examples . 69

2.5 Conclusion . 70

2.1 Introduction

This chapter is based on the article [52]. We begin by recalling some notions and notations already

introduced in the previous chapter but necessary for a self-contained presentation of this chapter.

Here the goal is to construct the approximation of a function u onto a linear space Vm us-

ing evaluations of the function at suitably chosen points. We consider a weighted least-squares

projection, obtained by solving

min
v∈Vm

1

n

n∑

i=1

w(xi)(u(xi)− v(xi))2,

43

Chapter 2 – Boosted Optimal Weighted Least-Squares

where the xi are points sampled according to a measure constructed from the optimal measure ρ

introduced by [24] and recalled in the subsection 1.3.3 from Chapter 1, and where w(xi) are the

corresponding weights.

Here we introduce a boosted least-squares method which enables us to ensure almost surely

some stability property of the weighted least-squares projection (i.e of the Gram matrix or of the

L∞
µ → L2

µ projection) with a sample size close to an interpolation method (i.e n = m). It consists

in sampling according to a measure associated with the optimization of a stability criterion over a

collection of independent n-samples, and resampling according to this measure until a stability con-

dition is satisfied. A greedy method is then proposed to remove points from the obtained sample.

Quasi-optimality properties in expectation are obtained for the weighted least-squares projection,

with or without the greedy procedure.

If the observations are polluted by a noise, here modeled by a random variable e, then the

weighted least-squares projection is defined as the solution of

min
v∈Vm

1

n

n∑

i=1

w(xi)(yi − v(xi))2,

where yi = u(xi) + ei, with {ei}ni=1 i.i.d realizations of the random variable e. Quasi-optimality

property is lost in the case of noisy observations, because of an additional error term due to the

noise. This latter error term can however be reduced by increasing n.

The outline of this chapter is as follows. In Section 2.2, we present the boosted least-squares

method and analyze it in the noise-free case. The theoretical results are extended to the noisy case

in Section 2.3. In Section 2.4, we present numerical examples.

2.2 Boosted optimal weighted least-squares method

Let X be a subset of R
d equipped with a probability measure µ, with d ≥ 1. We consider a

function u from L2
µ(X), the Hilbert space of square-integrable real-valued functions defined on X .

Let Vm be a m-dimensional subspace of L2
µ, with m ≥ 1, and {ϕj}mj=1 be an orthonormal basis of

Vm. We also denote by

ϕ = (ϕ1, . . . , ϕm) : X → R
m

the m-dimensional vector-valued function such that ϕ(x) = (ϕ1(x), . . . , ϕm(x))T .

In this chapter, we propose an improved weighted least-squares method by proposing distribu-

tions over X n having better properties than ρn = ρ⊗n, where ρ is the optimal weighted least-squares

44

2.2. Boosted optimal weighted least-squares method

measure from [24] (see Subsection 1.3.3 from Chapter 1). The function w defining the weighted

least-squares projections will always be taken such that w−1 is the density of the optimal sampling

measure ρ with respect to the reference measure µ, defined by

w(x)−1 =
1

m

m∑

j=1

ϕj(x)2 =
1

m
‖ϕ(x)‖22. (2.1)

2.2.1 Resampling and conditioning

The first improvement we propose consists in drawing M independent samples {xn,i}Mi=1, with

xn,i = (x1,i, . . . , xn,i), from the distribution ρn, and then in selecting a sample xn,⋆ which satisfies

‖Gxn,⋆ − I‖2 = min
1≤i≤M

‖Gxn,i − I‖2,

where Gx denotes the empirical Gram matrix associated with a sample x in X n. If several samples

xn,i are solutions of the minimization problem, xn,⋆ is selected at random among the minimizers.

We denote by ρn,⋆ the probability measure of xn,⋆. The probability that the stability condition

Zxn,⋆ = ‖Gxn,⋆ − I‖2 ≤ δ is verified can be made arbitrarily high, playing on M , as it is shown in

the following lemma (whose proof is trivial).

Lemma 2.1. For any δ ∈ [0, 1) and η ∈ (0, 1), if n ≥ n(δ, η,m) := d−1
δ m log

(
2mη−1

)
, with

dδ := −δ + (1 + δ) log(1 + δ) (the condition from (1.11)), then

P(Zxn,⋆ ≤ δ) ≥ 1− ηM .

Therefore, we can choose a probability η arbitrary close to 1, so that the condition on the

number of samples from Lemma 2.1 requires a smaller sample size n, and still obtain the stability

condition with a probability at least 1 − ηM . This latter can be made arbitrarily close to 1 by

choosing a sufficiently large M . Even if ρn has a product structure, for M > 1, the distribution

ρn,⋆ does not have a product structure, i.e. the components of xn,⋆ = (x1,⋆, . . . , xn,⋆) are not

independent, and does not satisfy the assumptions of Theorems 1.3 and 1.4. In particular E(Gxn,⋆)

may not be equal to I and in general, E(‖v‖2xn,⋆) 6= ‖v‖2 for an arbitrary function v when M > 1.

Therefore, a new analysis of the resulting weighted least-squares projection is required.

Remark 2.1. Note that since the function x 7→ ‖Gx − I‖2 defined on X n is invariant through

permutations of the components of x, we have that the components of xn,⋆ have the same marginal

distribution.

In order to ensure that the stability property is verified almost surely, we consider a sample x̃n

of xn,⋆ conditioned on the event

Aδ = {‖Gxn,⋆ − I‖2 ≤ δ}, (2.2)

45

Chapter 2 – Boosted Optimal Weighted Least-Squares

which is such that for any function f , E(f(x̃n)) = E(f(xn,⋆)|Aδ). Let ρ̃n be the distribution of x̃n.

A sample x̃n from the distribution ρ̃n is obtained by a simple rejection method, which consists in

drawing samples xn,⋆ from the distribution ρn,⋆ until Aδ is satisfied. It follows that P(Zx̃n ≤ δ) = 1.

Remark 2.2. Let J be the number of trials necessary to get a sample xn,⋆ verifying the stability

condition Aδ. This random variable J follows a geometric distribution with a probability of success

P(Aδ). Therefore J is almost surely finite and

P(J ≥ k) = (1− P(Aδ))k,

i.e. the probability to have J greater than k decreases exponentially with k. An other property

of the geometric distribution is that E(J) = 1
P(Aδ) ≤ 1

1−ηM (as P(Aδ) ≥ 1 − ηM), such that the

average number of trials increases when η tends to 1. In particular for M = 1, we have E(J) = 2

for η = 0.5, and E(J) = 100 for η = 0.99. P(Aδ) increases with M and therefore E(J) decreases

with M .

Now we provide a result on the distribution of x̃n which will be later used for the analysis of

the corresponding least-squares projection.

Lemma 2.2. Let x̃n be a sample following the distribution ρ̃n, which is the distribution ρn,⋆

conditioned on the event Aδ defined by (2.2). Assume that n ≥ n(δ, η,m) for some η ∈ (0, 1) and

δ ∈ (0, 1). Then for any function v in L2
µ and any 0 < ε ≤ 1,

E(‖v‖2
x̃n) ≤ C(ε,M)(1− ηM)−1

E(‖v‖2/ε
xn)ε, (2.3)

with

C(ε,M) = M
(1− ε)1−ε

(M − ε)1−ε
≤M.

In particular, for ε = 1,

E(‖v‖2
x̃n) ≤M(1− ηM)−1‖v‖2. (2.4)

Also, if ‖v‖∞,w = supx∈X w(x)1/2|v(x)| <∞,

E(‖v‖2
x̃n) ≤ C(ε,M)(1− ηM)−1‖v‖2−2ε

∞,w ‖v‖2ε. (2.5)

Proof. See appendix.

Corollary 2.3. Let x̃n be a sample following the distribution ρ̃n and assume that n ≥ n(δ, η,m)

for some η ∈ (0, 1) and δ ∈ (0, 1). For any v ∈ L2
µ, the weighted least-squares projection Qx̃n

Vm
v

associated with the sample x̃n satisfies

E(‖Qx̃n

Vm
v‖2) ≤ (1− δ)−1M(1− ηM)−1‖v‖2.

46

2.2. Boosted optimal weighted least-squares method

Proof. Since Qx̃n

Vm
v ∈ Vm, we have that

‖Qx̃n

Vm
v‖2 ≤ (1− δ)−1‖Qx̃n

Vm
v‖2

x̃n ≤ (1− δ)−1‖v‖2
x̃n ,

where we have used the fact that Qx̃n

Vm
is an orthogonal projection with respect to the semi-norm

‖ · ‖x̃n . Taking the expectation and using (2.4), we obtain

E(‖Qx̃n

Vm
v‖2) ≤ (1− δ)−1M(1− ηM)−1‖v‖2.

Theorem 2.4. Let x̃n be a sample following the distribution ρ̃n and assume that n ≥ n(δ, η,m)

for some η ∈ (0, 1) and δ ∈ (0, 1). The weighted least-squares projection Qx̃n

Vm
u associated with the

sample x̃n satisfies the quasi-optimality property

E(‖u−Qx̃n

Vm
u‖2) ≤ (1 + (1− δ)−1(1− ηM)−1M)‖u− PVmu‖2. (2.6)

Also, assuming ‖u‖∞,w ≤ L, we have

E(‖u−Qx̃n

Vm
u‖2) ≤

(
‖u− PVmu‖2 + (1− δ)−1(1− ηM)−1D(M,L,m, ‖u− PVmu‖2)

)
(2.7)

where for all α ≥ 0, D(M,L,m,α) = inf0<ε≤1 D̃(M,L,m,α, ε), with

D̃(M,L,m,α, ε) := C(ε,M)(L(1 + cm))2−2εαε.

Here, C(ε,M) is the constant defined in Lemma 2.2 and cm the supremum of ‖PVmv‖∞,w over

functions v such that ‖v‖∞,w ≤ 1.

Proof. From Lemma 1.1, we have that

‖u−Qx̃n

Vm
u‖2 ≤ ‖u− PVmu‖2 + (1− δ)−1‖u− PVmu‖2x̃n

holds almost surely, and from Lemma 2.2, we have that

E(‖u− PVmu‖2x̃n) ≤ C(ε,M)(1− ηM)−1
E(‖u− PVmu‖2/ε

xn)ε

for all ε ∈ (0, 1]. Combining the above inequalities and then taking the infimum over ε, we obtain

E(‖u−Qx̃n

Vm
u‖2) ≤ ‖u− PVmu‖2 + (1− δ)−1(1− ηM)−1 inf

0<ε≤1
C(ε,M)E

(
‖u− PVmu‖2/ε

xn

)ε
. (2.8)

The particular case ε = 1 yields Equation (2.6). The second property (2.7) is simply deduced from

47

Chapter 2 – Boosted Optimal Weighted Least-Squares

Equation (2.8) by using the property (2.5) of Lemma 2.2 and by noting that ‖u − PVmu‖∞,w ≤
(1 + cm)‖u‖∞,w.

Remark 2.3. The constant cm in Theorem 2.4 is such that cm ≤ m. Indeed, PVmv(x) =
∑m

i=1 aiϕi(x)

with

ai = (v, ϕi) =
∫

X
v(x)ϕi(x)dµ(x) =

∫

X
v(x)ϕi(x)w(x)dρ(x),

so that

|ai| ≤ ‖v‖∞,w

∫

X
|ϕi(x)|w(x)1/2dρ(x) ≤ ‖v‖∞,w

(∫

X
ϕi(x)2w(x)dρ(x)

)1/2

= ‖v‖∞,w,

where we have used Cauchy-Schwarz inequality. Therefore,

‖PVmv‖∞,w ≤ ‖v‖∞,w sup
x∈X

w(x)1/2
m∑

i=1

|ϕi(x)|

≤ ‖v‖∞,w sup
x∈X

w(x)1/2m1/2

(
m∑

i=1

ϕi(x)2

)1/2

= m‖v‖∞,w,

thanks to the definition of w (see Equation (2.1)).

Remark 2.4. About the constant D(L,M,m,α).

The value of ε that minimizes D̃(M,L,m,α, ε) has no explicit expression, however numerical es-

timations can be calculated. Figure 2.1 illustrates the fact that D(M,L,m, ‖u− PVmu‖2) may be

lower than M‖u − PVmu‖2 for some conditions on M,L,m meaning that (2.7) should provide a

sharper result than (2.6). The legend "Initial bound" refers to the bound presented in Equation in

(2.6), and the legend "Improved bound" refers to the bound presented in Equation (2.7).

On the two Figures 2.1a and 2.1b, the x-axis represents the best approximation error, so that for

0 0.02 0.04 0.06 0.08 0.1

0

0.5

1

1.5

2

α

Initial bound

Improved bound with L(1 + cm) = 1.1

Improved bound with L(1 + cm) = 2

Improved bound with L(1 + cm) = 11

(a) M = 100, δ = 0.5, η = 0.011/M

0 0.02 0.04 0.06 0.08 0.1

0

20

40

α

Initial bound with M = 500

Improved bound with M = 500

Initial bound with M = 100

Improved bound with M = 100

(b) L(1 + cm) = 2, δ = 0.5, η = 0.011/M

Figure 2.1 – Improvement of the bound for different values of L(cm + 1) and M .

48

2.2. Boosted optimal weighted least-squares method

a given L = ‖u‖∞,w and a given cm = maxv∈Vm

‖PVm v‖∞,w

‖v‖∞,w
, the left part of the curve corresponds

to functions u which can be well approximated in Vm whereas on the contrary, the right part of

the curve corresponds to functions which are not well approximated in Vm (having a high best

approximation error in Vm). We observe that the bound from (2.7) improves the bound from (2.6)

when M is high (M ≥ 100), see Figure 2.1b and when L(1 + cm) is small (L(1 + cm) ≤ 1.1), see

Figure 2.1a. The details of the calculations to obtain these graphs are given in the Appendix of

this chapter.

2.2.2 Subsampling

For a given δ, without resampling, the number of samples necessary to guarantee the stability

with high probability η has to be greater than d−1
δ m log

(
2mη−1

)
. When resampling M times, only

d−1
δ m log

(
2mη−1/M

)
samples are necessary to guarantee the stability with the same probability

η. Although the resampling enables us to choose δ and η such that n is smaller than with the

initial strategy from [24], the value of n may still be high compared to an interpolation method.

Therefore, to further decrease the sample size, for each generated sample x̃n, we propose to select

a subsample which still verifies the stability condition.

We start with a sample x̃n = (x̃1, . . . , x̃n) satisfying ‖Gx̃n − I‖2 ≤ δ and then select a subsample

x̃n
K = (x̃k)k∈K with K ⊂ {1, . . . , n} such that the empirical Gram matrix defined by Gx̃n

K
=

1
#K

∑
k∈K w(x̃k)ϕ(x̃k)⊗ϕ(x̃k) still satisfies

‖Gx̃n
K
− I‖2 ≤ δ.

In practice, the set K is constructed by a greedy procedure. We start with K = {1, . . . , n}. Then

at each step of the greedy procedure, we select k⋆ in K such that

‖Gx̃n
K\{k⋆}

− I‖2 = min
k∈K
‖Gx̃n

K\{k}
− I‖2.

If ‖Gx̃n
K\{k⋆}

− I‖2 ≤ δ and #K > nmin then k⋆ is removed from K. Otherwise, the algorithm is

stopped. We denote by ρ̃n
g the distribution of the sample x̃n

K produced by this greedy algorithm.

Theorem 2.5. Assume n ≥ n(δ, η,m) for some η ∈ (0, 1) and δ ∈ (0, 1), and let x̃n
K be a sample

produced by the greedy algorithm with #K ≥ nmin. The weighted least-squares projection Q
x̃n

K

Vm
u

associated with the sample x̃n
K satisfies the quasi-optimality property

E(‖u−Qx̃n
K

Vm
u‖2) ≤ (1 +

n

nmin
(1− δ)−1(1− ηM)−1M)‖u− PVmu‖2. (2.9)

49

Chapter 2 – Boosted Optimal Weighted Least-Squares

Also, assuming ‖u‖∞,w ≤ L , we have

E(‖u−Qx̃n
K

Vm
u‖2) ≤ ‖u− PVmu‖2 +

n

nmin
(1− δ)−1(1− ηM)−1D(M,L,m, ‖u− PVmu‖2) (2.10)

where D(M,L,m, ‖u− PVmu‖2) is defined in Theorem 2.4.

Proof. Since Zx̃n
K
≤ δ, from Lemma 1.1, we have that for any v ∈ Vm, the least-squares projection

associated with x̃n
K satisfies

‖u−Qx̃n
K

Vm
u‖2 ≤ ‖u− PVmu‖2 + (1− δ)−1‖u− PVmu‖2x̃n

K

≤ ‖u− PVmu‖2 + (1− δ)−1 n

#K
‖u− PVmu‖2x̃n ,

where the second inequality simply results from

‖v‖2
x̃n

K

=
1

#K

∑

k∈K

w(x̃k)v(x̃k)2 ≤ 1

#K

n∑

k=1

w(x̃k)v(x̃k)2 =
n

#K
‖v‖2

x̃n .

Therefore, since #K ≥ nmin, we obtain from Lemma 2.2 that

E(‖u−Qx̃n
K

Vm
u‖2) ≤ ‖u− PVmu‖2 +

n

nmin
(1− δ)−1(1− ηM)−1 inf

0<ε≤1
C(ε,M)E

(
‖u− PVmu‖

2
ε
xn

)ε

.

The particular case ε = 1 yields the first property. For the second property, the proof follows the

one of the property (2.7) in Theorem 2.4.

Corollary 2.6. Assume n ≥ n(δ, η,m) for some η ∈ (0, 1) and δ ∈ (0, 1), and let x̃n
K be a sample

produced by the greedy algorithm with #K ≥ nmin. The weighted least-squares projection Q
x̃n

K

Vm
u

associated with the sample x̃n
K satisfies

E(‖Qx̃n
K

Vm
v‖2) ≤ (1− δ)−1M(1− ηM)−1 n

nmin
‖v‖2.

Proof. Since Q
x̃n

K

Vm
v ∈ Vm, we have that

‖Qx̃n
K

Vm
v‖2 ≤ (1− δ)−1‖Qx̃n

K

Vm
v‖2

x̃n
K

≤ (1− δ)−1‖v‖2
x̃n

K

≤ (1− δ)−1 n

#K
‖v‖2

x̃n ,

where we have used the fact that Q
x̃n

K

Vm
is an orthogonal projection with respect to the semi-norm

‖ · ‖x̃n
K

and the fact that ‖v‖2
x̃n

K

≤ n
#K ‖v‖x̃n . Taking the expectation, using Equation (2.4) and

assuming that #K ≤ nmin, we obtain

E(‖Qx̃n
K

Vm
v‖2) ≤ (1− δ)−1M(1− ηM)−1 n

nmin
‖v‖2.

50

2.3. The noisy case

If we set nmin = m, it may happen that the algorithm runs until #K = m, the dimension of the

approximation space. Choosing n ≥ n(δ, η,m) then yields a quasi-optimality constant depending on

log(m). It has to be compared with the optimal behaviour of the Lebesgue constant for polynomial

interpolation in one dimension. If we choose nmin = n/β for some fixed β ≥ 1 independent of m,

then we have n
nmin

≤ β and a quasi-optimality constant independent of m in Theorem 2.5, but the

algorithm may stop before reaching the interpolation regime (n = m).

Remark 2.5. Concerning the greedy subsampling, a direct approach to remove a point is to calculate

the norm of ‖Gx̃n
K\{k}

− I‖2 for each k ∈ K. However, it involves to calculate this norm for #K

points and this each time a point is removed. In the appendix A of this thesis, we present a method

which enables us to choose k⋆ by solving one eigenproblem and then performing simple matrix-

vector multiplications. Indeed, knowing the eigenvalues of a symmetric matrix, there exists bounds

on the eigenvalues of a rank-one update of this matrix (see [17] and [44] for more details, as well

as the more recent results from [13] that we use in practice).

2.3 The noisy case

We here consider the case where the observations are polluted with a noise, which is modeled by a

random variable e. More precisely the observed data take the form

yi = u(x̃i) + ei,

where {ei}i∈K are i.i.d realizations of the random variable e and {x̃i}i∈K = x̃n
K are the points built

with the boosted least-squares method. We assume the noise is independent of x̃n and K and

centered, i.e. E(e) = 0, and with bounded variance σ2 = E(|e|2) <∞. More general cases could be

considered as in [22] or [71].

The weighted discrete least-squares projection of u over Vm is defined by

ux̃n
K := arg min

v∈Vm

1

#K

∑

i∈K

w(x̃i)(yi − v(x̃i))2.

Theorem 2.7. Assume n ≥ n(δ, η,m) for some η ∈ (0, 1) and δ ∈ (0, 1), and let x̃n
K be a sample

produced by the greedy algorithm with #K ≥ nmin. The weighted least-squares projection ux̃n
K

associated with the sample x̃n
K and the data affected by the noise e, satisfies

E(‖u− ux̃n
K‖2) ≤ (1 +

2n

nmin
(1− δ)−1(1− ηM)−1M)‖u− PVmu‖2

+
2σ2mn

n2
min

(1− δ)−1(1− ηM)−1M.

(2.11)

51

Chapter 2 – Boosted Optimal Weighted Least-Squares

Proof. Thanks to the Pythagorean equality, it holds

‖u− ux̃n
K‖2 = ‖u− PVmu‖2 + ‖PVmu− ux̃n

K‖2

= ‖u− PVmu‖2 + ‖Qx̃n
K

Vm
(PVmu− u) +Q

x̃n
K

Vm
u− ux̃n

K‖2

where Q
x̃n

K

Vm
u is the boosted least-squares projection of the noiseless evaluations of u over Vm. Then

using the triangular inequality,

‖u− ux̃n
K‖2 ≤ ‖u− PVmu‖2 + 2‖Qx̃n

K

Vm
(PVmu− u)‖2 + 2‖Qx̃n

K

Vm
u− ux̃n

K‖2.

Taking the expectation and using Corollary 2.6, it comes

E(‖u− ux̃n
K‖2) ≤ (1 + 2

n

nmin
(1− δ)−1M(1− ηM)−1)‖u− PVmu‖2

+2E(‖Qx̃n
K

Vm
u− ux̃n

K‖2).
(2.12)

Then, we note that

‖Qx̃n
K

Vm
u− ux̃n

K‖2 ≤
m∑

k=1

|bk|2

where b = (bk)m
k=1 is solution to

Gx̃n
K

b = β, β :=

(
1

#K

∑

i∈K

eiw(x̃i)ϕk(x̃i)

)

1≤k≤m

.

Since ‖G−1
x̃n

K

‖22 ≤ (1− δ)−1 it holds

m∑

k=1

|bk|2 ≤ (1− δ)−1
m∑

k=1

|βk|2

and
m∑

k=1

|βk|2 =
m∑

k=1

1

(#K)2

∑

i∈K

∑

j∈K

eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j).

We have,

E


 1

#K2

∑

i∈K

∑

j∈K

eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)


 =

E(E(
1

#K2

∑

i∈K

∑

j∈K

eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)|K)) =

E(
1

#K2

∑

i∈K

∑

j∈K

E(eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)|K)).

52

2.3. The noisy case

By construction K is independent from the noise,

E(eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)|K) = E(eiej)E(w(x̃i)ϕk(x̃i)w(x̃j)ϕk(x̃j)|K).

Therefore, for i 6= j

E(eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)|K) = 0

and for i = j

E(eiw(x̃i)ϕk(x̃i)ejw(x̃j)ϕk(x̃j)|K) = σ2
E(w(x̃i)2ϕk(x̃i)2|K).

Then using #K ≥ nmin,

m∑

k=1

E(|βk|2) = σ2
E

(
1

#K2

∑

i∈K

w(x̃i)2
m∑

k=1

ϕk(x̃i)2

)

= mσ2
E

(
1

#K2

∑

i∈K

w(x̃i)

)
by definition of w, see Equation (2.1)

≤ m

n2
min

σ2
E

(
n∑

i=1

w(x̃i)

)
.

To bound the term E
(∑n

i=1w(x̃i)
)
, we use Equation (2.4) with v = 1,

E

(
n∑

i=1

w(x̃i)

)
≤ nE

(
‖1‖2

x̃n

)
≤ nM(1− ηM)−1‖1‖2 = nM(1− ηM)−1.

All in all,
m∑

k=1

E(|βk|2) ≤ σ2 mn

n2
min

(1− ηM)−1M.

When there is no subsampling (nmin = n) the bound from Equation (2.11) becomes

E(‖u− ux̃n
K‖2) ≤ (1 + (1− δ)−1(1− ηM)−1M)‖u− PVmu‖2

+
2σ2m

n
(1− δ)−1(1− ηM)−1M.

(2.13)

When nmin = m (allowing subsampling to reach #K = m), the bound becomes

E(‖u− ux̃n
K‖2) ≤ (1 +

2n

m
(1− δ)−1(1− ηM)−1M)‖u− PVmu‖2

+2σ2 n

m
(1− δ)−1(1− ηM)−1M.

(2.14)

In this particular case the influence of the noise may be more important, as for an interpolation

53

Chapter 2 – Boosted Optimal Weighted Least-Squares

method and there is no guarantee for convergence. Then in the noisy case, using nmin = n
β for

some fixed β > 1 allows to better control the noise term.

2.4 Numerical experiments

2.4.1 Notations and objectives

In this section, we focus on polynomial approximation spaces Vm. The aim is to compare the

performance of the method we propose with the optimal weighted least-squares method and inter-

polation (see Chapter 1). We are not trying to be exhaustive in this comparison, but to cover a

quite large panel of state-of-the art approximation methods.

First, we consider interpolation performed on deterministic set of points (Gauss-Hermite points for

a Gaussian measure, abbreviated I-GaussH and Gauss-Legendre points for a uniform measure,

abbreviated I-GaussL), magic points, abbreviated I-Magic, (see [65]), Leja points, abbreviated

I-Leja, (see [9],[15] and [16] for their weighted version dealing with unbounded domains), and

Fekete points, abbreviated I-Fekete, (see [86] and [51] for their weighted version dealing with

unbounded domains). The three last sets of points are chosen among a large set of points in X .

Then, we consider least-squares methods, more precisely standard least-squares methods, abbrevi-

ated SLS, optimal weighted least-squares projection (introduced in [24]), abbreviated OWLS, and

also the boosted optimal weighted least-squares projections we propose, abbreviated BLS, c-BLS

and s-BLS when we respectively use resampling, conditioning, and subsampling plus resampling

and conditioning. Algorithms 2.1, 2.2 and 2.3 present respectively the algorithms to generate the

sample for BLS, c-BLS and s-BLS.

Algorithm 2.1 Presentation of the BLS sampling

Inputs: δ, η, M , Vm.
Outputs: xn,⋆ for the BLS sampling.

for i = 1, . . . ,M do
Sample xn,i ∼ ρn

end for
Select at random I⋆ ∈ arg min1≤i≤M ‖Gxn,i − I‖2.
Set xn,⋆ = xn,I⋆

Remark 2.6. For a fixed approximation space Vm, it must be noticed that the methods OWLS,

BLS, I-GaussH, I-GaussL or I-Leja points, do not depend on the choice of the orthonormal

basis associated with Vm, as the quantity Zxn is independent of this choice. This is however not

the case for the methods I-Magic [65] or I-Fekete [86], for which the particular choice of the

basis will be mentioned in each example.

Remark 2.7. The difficulty of the optimal least-squares methods lies in the fact that we sample from

a standard probability density function (PDF). We need a sampling technique that is both accurate

54

2.4. Numerical experiments

Algorithm 2.2 Presentation of the c-BLS sampling

Inputs: δ, η, M , Vm.
Outputs: x̃n for the c-BLS sampling.
z =∞
while z > δ do

for i = 1, . . . ,M do
Sample xn,i ∼ ρn

end for
Select at random I⋆ ∈ arg min1≤i≤M ‖Gxn,i − I‖2.
Set xn,⋆ = xn,I⋆

and set z = ‖Gxn,⋆ − I‖2
end while
Set x̃n = xn,⋆

Algorithm 2.3 Presentation of the s-BLS sampling

Inputs: δ, η, M , Vm.
Outputs: x̃n

K , for the s-BLS sampling.
z =∞
while z > δ do

for i = 1, . . . ,M do
Sample xn,i ∼ ρn

end for
Select at random I⋆ ∈ arg min1≤i≤M ‖Gxn,i − I‖2.
Set xn,⋆ = xn,I⋆

and set z = ‖Gxn,⋆ − I‖2
end while
Set x̃n = xn,⋆

Set K = {1, . . . , n} and x̃n
K = x̃n

Set z = ‖Gx̃n
K
− I‖2.

while z ≤ δ do
Select k⋆ such that

‖Gx̃n
K\{k⋆}

− I‖2 = min
k∈K
‖Gx̃n

K\{k}
− I‖2.

Set z = ‖Gx̃n
K\{k⋆}

− I‖2
If z ≤ δ, set K ← K \ {k⋆}

end while

55

Chapter 2 – Boosted Optimal Weighted Least-Squares

and as fast as possible. Sampling from univariate densities can be done with classical techniques

such as rejection sampling [31], inverse transform sampling [31] and slice sampling [81]. This latter

is used for all the numerical examples. To sample from multivariate densities we use a sequential

sampling technique, which only requires samplings from univariate densities, see appendix B.

In the next section, two kinds of comparisons are performed. First, we compare qualitatively

the distributions of the random variable Zxn and the distributions of the n-points sample xn. These

analyses depend only on the choice of the approximation space Vm, and does not involve a function

to approximate. Secondly, we compare quantitatively the efficiency of the different methods to

approximate functions. We consider analytical functions on R
d or [−1, 1]d equipped with Gaussian

or uniform measures.

2.4.2 Qualitative analysis of the boosted optimal weighted least-squares method

Analysis of the stability

The objective of this paragraph is to compare the stability of the boosted optimal weighted least-

squares method, using subsampling from Section 2.2.2 or not, respectively s-BLS and c-BLS, with

two other state-of-the art methods, standard least-squares method, abbreviated SLS and OWLS

method. As explained in Section 1.3.1, the stability of the least-squares projection can be char-

acterized by the random variable Zxn = ‖Gxn − I‖2. The closer Zxn is to 0, the more stable

the approximation is. In this paragraph, we compare the distribution of this random variable Zxn

for the different sampling methods. For the SLS method, the sampling measure is the reference

measure µ. In the OWLS method, the sampling measure ρ is the measure with density w−1 with

respect to the reference measure µ, chosen as defined in (2.1).

In this paragraph, we consider d = 1 and we present results for polynomial approximation spaces

Vm = P5, where 5 is the polynomial degree and with µ a Gaussian or uniform measure. Figures 2.2a

and 2.2b show that using OWLS instead of SLS shifts the distribution of the random variable Zxn

to the left. Without surprise, we see that conditioning Zxn by the event Aδ = {Zxn ≤ δ} yields a

distribution whose support is included in [0, δ]. As expected, we also notice that very similar results

are obtained for the OWLS and c-BLS methods when choosing M = 1. In the same manner,

increasing the number of resampling M also shifts the PDF of Zxn to the low values, and decreases

its variability. When interested in maximizing the probability of Aδ, c-BLS method is therefore

an interesting alternative to SLS and OWLS. At last, looking at Figures 2.3b and 2.3a, we ob-

serve that the greedy selection moves the PDF of Zxn to the high values. This was expected: to

switch from c-BLS to s-BLS, the size of the sample is reduced, as points are adaptively removed.

However, as it is conditioned by Aδ, it remains better than SLS and OWLS methods.

56

2.4. Numerical experiments

0.5 1 1.5 2

0

1

2

3

4

Zx
n

SLS

OWLS

c-BLS (M = 1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

5

10

15

Zx
n

c-BLS (M = 1)
c-BLS (M = 10)
c-BLS (M = 100)

(a) Gaussian measure

0 0.5 1 1.5 2

0

1

2

3

Zx
n

SLS

OWLS

c-BLS (M = 1)

0 0.2 0.4 0.6 0.8

0

2

4

6

8

10

12

Zx
n

c-BLS (M = 1)
c-BLS (M = 10)
c-BLS (M = 100)

(b) Uniform measure

Figure 2.2 – Probability density function of Zxn = ‖Gxn − I‖2 for Vm = P5, with δ = 0.9 and
n = 100.

Distribution of the sample points

In this paragraph, we consider d = 1, we are interested in the distributions of the points sampled

with the c-BLS and s-BLS methods.

First, n = 10 points are sampled according to the c-BLS method for different values of M (from 1

to 50000). These points are then sorted in ascending order. After repeating this procedure r = 1000

times, the probability distributions of the sorted points are represented in Figures 2.4 and 2.5 (one

color per point).

57

Chapter 2 – Boosted Optimal Weighted Least-Squares

0.2 0.4 0.6 0.8

0

5

10

15

Zx
n

c-BLS (M = 100)
s-BLS (M = 100)

(a) Gaussian measure

0 0.2 0.4 0.6 0.8

0

2

4

6

8

10

12

Zx
n

c-BLS (M = 100)
s-BLS (M = 100)

(b) Uniform measure

Figure 2.3 – Probability density function of Zxn = ‖Gxn − I‖2 for Vm = P5, with δ = 0.9 and
n = 100.

For µ the Gaussian or the uniform measure, when M is small, (M = 1 or M = 10), we notice

a strong overlap between the support of the different distributions. This is no longer the case for

the highest values of M (M = 10000 or M = 50000). Hence, the larger M , the further apart the

points are from each other with high probability, and the more they concentrate around specific

values. Secondly, n = 6 points are sampled according to the s-BLS method. To this end, a greedy

procedure is applied to remove points from an initial sample of 10 points until we get the required

number of points. In that case, as we fix the size of the sample, there is a priori no guarantee that

the value of Zxn remains smaller than δ. The obtained 6-points sample is once again sorted in

ascending order, and we repeat the procedure r = 1000 times. As previously, the distributions of

the sorted points are represented in Figures 2.6 and 2.7 for different values of M . Only moderate

values of M are considered, as we empirically observed that choosing M higher than 100 had very

little influence on the results when considering subsampling.

Comparing the figures associated with the methods with or without greedy subsampling, we

finally observe that s-BLS method provides results that are very close to c-BLS method with a

very high value of M . This emphasizes the efficiency of the greedy selection to separate the support

of the distributions of points.

In Figure 2.6a, the distributions of the sorted points associated to the OWLS method are repre-

sented in dashed lines. This shows that even if no resampling is carried out (M = 1), using the

s-BLS method instead of OWLS improves the space filling properties of the obtained samples.

Remark 2.8. In Figures 2.4, 2.5, 2.6 and 2.7 black dots have been added to indicate the positions

of the first n Gauss-Hermite points in the Gaussian case, and the n first Gauss-Legendre points in

the uniform case. Interestingly, we observe that, in the Gaussian case, the distribution of points

58

2.4. Numerical experiments

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
p log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n
5 [-2.1; -1.8] 134 [-2.2; -1.9] 134 [-2.2; -1.8] 48 [-2.1; -1.8] [6; 6]
10 [-3.1; -3.1] 265 [-3.2; -3.0] 265 [-3.2; -3.1] 108 [-3.0; -2.6] [11; 13]
15 [-4.5; -4.2] 404 [-4.5; -4.3] 404 [-4.5; -4.3] 176 [-4.6; -4] [16; 17]
20 [-5.8; -5.7] 548 [-5.9; -5.7] 548 [-5.9; -5.7] 249 [-5.9; -5.3] [21; 23]
25 [-6.9; -6.7] 697 [-7; -6.8] 697 [-7; -6.7] 326 [-6.9; -6.6] [26; 28]
30 [-8.3; -8.1] 848 [-8.4; -8.2] 848 [-8.4; -8.2] 405 [-8.4; -8.0] [31; 36]
35 [-9.4; -9.3] 1001 [-9.4; -9.3] 1001 [-9.4; -9.2] 488 [-9.4; -8.9] [37; 39]
40 [-10.7; -10.5] 1157 [-10.7; -10.5] 1157 [-10.7; -10.6] 572 [-10.8; -10.3] [42; 44]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussH I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

p log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
5 [-2.2,-1.5] [-0.5; -0.5] [-1.3; -1.2] [-1.3; -1.2] [-1.8; -0.3] [-2.1; -1.6] [-2.1; -1.8]
10 [-3.1,-3.0] [-0.8; -0.8] [-2.1; -2.0] [-1.9; -1.9] [-2.6; -1.0] [-3.1; -1.9] [-3.0; -2.5]
15 [-4.5,-4.2] [-1.4; -1.4] [-2.6; -2.5] [-2.4; -2.3] [-4.4; -1.6] [-4.3; -2.2] [-4.6; -3.9]
20 [-5.9,-5.8] [-2.2; -2.2] [-4.2; -4.2] [-4.1; -4.1] [-5.9; -3.2] [-6.1; -4.3] [-5.9; -5.1]
25 [-6.8,-6.7] [-3.4; -3.4] [-4.4; -4.3] [-5.1; -5.0] [-6.8; -3.9] [-6.4; -4.7] [-6.9; -6.0]
30 [-8.6,-8.4] [-4.5; -4.4] [-5.7; -5.6] [-6.1; -6.1] [-9.1; -4.4] [-8.8; -5.2] [-8.5; -7.2]
35 [-9.3,-9.2] [-5.3; -5.3] [-7.1; -7.0] [-7.7; -7.6] [-10.4; -4.9] [-9.0; -6.4] [-9.4; -8.5]
40 [-9.8,-9.7] [-7.0; -7.0] [-8.6; -8.5] [-8.5; -8.5] [-10.9; -6.7] [-10.8; -7.1] [-11.0; -9.7]

(b) Given cost: n = m

Table 2.1 – Approximation error ε in log-10 scale for the example 1. Abbreviations are defined in
Subsection 2.4.1.

For this example, looking at Table 2.1a, we first observe that the approximation error decreases

in a similar way for the four methods OWLS, c-BLS (M = 1), c-BLS (M = 100) and s-BLS

(M = 100) when the size of the approximation space increases. However, the results for the c-BLS

(M = 100) method are using less evaluations of the function. Indeed, by resampling, that is to

say by increasing the value of M , the bound of the probability of getting a stable approximation is

1− ηM instead of 1− η. Hence if η is chosen equal to 0.01 for M = 1, taking η equal to 0.011/M for

higher values of M does not modify the bound of the probability of getting a stable approximation,

but allows us to strongly reduce the number of samples needed to guarantee the same stability

condition (the minimum number of samples is given in Lemma 2.1 by n = ⌈d−1
δ m log(2mη−1)⌉).

Regarding the number of evaluations of the function, the s-BLS (M = 100) method, which uses

greedy subsampling is even better.

Looking at Table 2.1b, we also observe that for all the methods, the error of approximation

decreases when the size of the approximation space increases. Nevertheless, it is interesting to

63

Chapter 2 – Boosted Optimal Weighted Least-Squares

notice that among the interpolation methods, the I-Magic method is less accurate than the

others. In practice, for the s-BLS method, letting the greedy algorithm reach the interpolation

regime (m = n) may provide a sample x̃n which does not guarantee the stability. However, focusing

on the upper bound of the errors, we also see that when n = m, only the s-BLS method seems to

be able to provide results that are compatible to the ones of the I-GaussH method.

Remark 2.10. The points for the I-Magic, I-Fekete and I-Leja are chosen among a sufficiently

large and dense discretization of X . Here, in the case where X = R, we choose a uniform discretiza-

tion of the bounded interval [−10, 10] with 10000 points.

A second function

In this section, we consider X = [−1, 1] equipped with the uniform measure and the function

u2(x) =
1

1 + 5x2
.

The approximation space is Vm = Pm−1 = span{ϕi : 1 ≤ i ≤ m}, where the basis {ϕi}mi=1 is chosen

as the Legendre polynomials of degree less than m− 1. This is referred to as example 2. For this

example, the same observations than for the first function can be made:

• when resampling, it is possible to guarantee the stability of the approximation at a lower

cost, without increasing the approximation error (see Table 2.2a),

• when resampling and also subsampling, it is possible to guarantee the stability of the ap-

proximation at a cost close to the interpolation regime, without increasing the approximation

error (see Table 2.2a),

• the s-BLS method is comparable to interpolation in terms of the accuracy of the approxi-

mation (see Table 2.2b).

The only difference is that the I-Magic method behaves almost as well as the other I- method,

which was not the case with the Gaussian measure.

A third function

We here consider the function

u3(x) =
p∑

i=0

exp
(
− i

2

)
ψi(x)

where X = R is equipped with the Gaussian measure, (ψ1, . . . , ψm) = U(ϕ1, . . . , ϕm), with {ϕi}mi=1

the set of Hermite polynomials of degree less than p and U an orthogonal matrix. In practice U

is taken as the matrix of the left singular vectors of a m ×m matrix A, whose elements are i.i.d.

realizations of a standard Gaussian random variable N (0, 1).

64

2.4. Numerical experiments

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
p log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n
5 [-1.3; -1.2] 134 [-1.3; -1.2] 134 [-1.3; -1.3] 48 [-1.2; -0.9] [6; 6]
10 [-2.4; -2.4] 265 [-2.4; -2.4] 265 [-2.4; -2.4] 108 [-2.3; -1.9] [11; 11]
15 [-3.1; -3.1] 405 [-3.2; -3.2] 405 [-3.2; -3.2] 176 [-3.1; -2.8] [16; 16]
20 [-4.3; -4.2] 548 [-4.3; -4.3] 548 [-4.3; -4.3] 249 [-4.2; -4.1] [21; 23]
25 [-5.0; -4.8] 697 [-5.1; -5.0] 697 [-5.1; -5.0] 326 [-5.0; -4.7] [26; 29]
30 [-6.2; -6.1] 848 [-6.2; -6.2] 848 [-6.2; -6.2] 405 [-6.1; -5.8] [31; 35]
35 [-6.9; -6.9] 1001 [-6.9; -6.9] 1001 [-6.9; -6.9] 488 [-6.9; -6.6] [36; 40]
40 [-8.0; -8.0] 1157 [-8.1; -8.1] 1157 [-8.1; -8.1] 572 [-8.0; -7.7] [42; 46]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussL I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

p log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
5 [-1.3; -1.3] [-0.9; -0.8] [-1.1; -1.1] [-1.1; -1.1] [-0.6; 0.5] [-1.1; -0.3] [-1.2; -1.0]
10 [-2.3; -2.3] [-2.2; -2.2] [-2.2; -2.2] [-2.2; -2.2] [-0.9; 1.1] [-1.7; 0.6] [-2.3; -1.6]
15 [-3.2; -3.1] [-2.9; -2.8] [-3.0; -2.9] [-3.0; -2.9] [-2.0; 1.5] [-2.5; 1.2] [-2.9; -2.6]
20 [-4.2; -4.2] [-4.0; -3.9] [-4.1; -4.1] [-4.1; -4.1] [-1.9; 1.1] [-2.8; 1.4] [-4.1; -3.3]
25 [-5.1; -5.0] [-4.9; -4.8] [-4.9; -4.8] [-4.8; -4.8] [-2.4; 1.5] [-3.5; 1.5] [-4.8; -4.2]
30 [-6.1; -6.0] [-5.7; -5.7] [-6.0; -5.9] [-6.0; -5.9] [-3.2; 2.1] [-4.0; 0.5] [-5.8; -5.0]
35 [-6.9; -6.9] [-6.6; -6.6] [-6.7; -6.7] [-6.7; -6.7] [-4.3; 3.0] [-4.0; 1.2] [-6.7; -5.3]
40 [-7.9; -7.9] [-7.7; -7.7] [-7.8; -7.8] [-7.8; -7.8] [-5.6; 3.8] [-4.7; 0.1] [-7.7; -6.6]

(b) Given cost: n = m.

Table 2.2 – Approximation error ε in log-10 scale for the example 2. Abbreviations are defined in
2.4.1.

In this example, p is chosen equal to 40, the approximation space Vm = span{ψi : 1 ≤ i ≤ m}, and

we consider different U for each trial. The basis (ψ1, . . . , ψm) is chosen as approximation basis.

This is referred to as example 3 and the associated results are summarized in Table 2.3a and Table

2.3b. Hence, in the same manner than in Table 2.1 and Table 2.2, we notice that

• the error of approximation decreases when the size of the approximation space increases for

all methods, we however notice that the I-Magic does not perform as well as the other

methods,

• the errors associated with s-BLS (M = 100) method are almost the same than the ones

associated with the OWLS, c-BLS (M = 1) and c-BLS (M = 100) methods while being

based on a number of evaluations of the function tending to the interpolation regime,

• the s-BLS method provides better results than the OWLS and BLS (M = 100) methods

when n is chosen equal to m (interpolation regime). It also provides really better results than

all the I-methods, except the I-GaussH (Gauss-Hermite points are still used).

65

Chapter 2 – Boosted Optimal Weighted Least-Squares

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
p log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n
5 [-1.7; -1.5] 134 [-1.7; -1.5] 134 [-1.7; -1.4] 48 [-1.6; -1.1] [6; 7]
10 [-2.7; -2.6] 265 [-2.8; -2.6] 265 [-2.8; -2.6] 108 [-2.7; -2.3] [11; 13]
15 [-3.9; -3.7] 405 [-3.8; -3.7] 405 [-3.9; -3.7] 176 [-3.7; -3.3] [18; 23]
20 [-5.0; -4.8] 548 [-5.0; -4.7] 548 [-5.0; -4.6] 249 [-4.9; -4.4] [24; 26]
25 [-6.1; -5.7] 697 [-6.0; -5.8] 697 [-6.0; -5.8] 326 [-6.0; -5.6] [29; 34]
30 [-7.1; -6.9] 848 [-7.1; -6.9] 848 [-7.1; -6.9] 405 [-7.1; -6.7] [34; 38]
35 [-8.2; -7.9] 1001 [-8.2; -8.0] 1001 [-8.2; -7.9] 488 [-8.3; -7.7] [40; 45]
40 [-15.8; -15.4] 1157 [-15.8; -15.5] 1157 [-15.8; -15.2] 572 [-15.7; -15.4] [41; 47]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussH I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

p log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
5 [-1.5; 0.2] [-1.4; -0.7] [-1.4; -0.8] [-1.4; -1.0] [-1.5; 0] [-1.6; -1.0] [-1.6; -1.1]
10 [-2.8; -1.2] [-2.3; -1.6] [-2.4; -1.8] [-2.3; -1.5] [-2.4; -1.3] [-2.4; -1.4] [-2.6; -1.7]
15 [-3.6; -2.5] [-3.5; -2.6] [-3.4; -2.4] [-3.4; -2.7] [-3.4; -0.9] [-3.3; -1.6] [-3.5; -1.0]
20 [-4.6; -3.6] [-4.4; -3.6] [-4.5; -3.9] [-4.5; -4.0] [-4.7; -3.8] [-4.6; -3.4] [-4.6; -3.8]
25 [-5.5; -4.2] [-5.3; -4.7] [-5.5; -4.8] [-5.5; -4.9] [-5.4; -3.3] [-5.5; -4.1] [-5.6; -5.1]
30 [-6.8; -5.6] [-6.5; -5.8] [-6.4; -5.9] [-6.5; -5.8] [-7.2; -5.5] [-6.6; -4.8] [-6.8; -5.8]
35 [-7.8; -6.5] [-7.4; -6.5] [-7.3; -6.9] [-7.3; -6.9] [-8.6; -6.8] [-7.7; -6.4] [-8.1; -7.2]
40 [-15.9; -14.6] [-8.2; -6.3] [-13.2; -11.4] [-12.4; -11.1] [-11.8; -4.2] [-14.2; -7.7] [-15.7; -15.1]

(b) Given cost: n = m.

Table 2.3 – Approximation error ε for the example 3. Abbreviations are defined in 2.4.1.

For this example, it is important to notice that the approximation space is not generated from

a set of commonly-used polynomials, for which there exists adapted sequences of points for inter-

polation. This highlights the interest of the s-BLS method, which guarantees good sequences of

points for the approximation, no matter what the approximation space is. The results obtained

with the other I-methods show that it is difficult to choose a suitable set of initial points (in size

and distribution).

Remark 2.11. As in example 2.4.3, the points for the I-Magic, I-Fekete and I-Leja are chosen

among a sufficiently large and dense discretization of X . Here, in the case where X = R, we choose

a uniform discretization of the bounded interval [−10, 10] with 10000 points.

66

2.4. Numerical experiments

Multi-dimensional example

Here, we consider X = [−1, 1]d, equipped with the uniform measure and the function

u(x) =
1

(1− 0.5
2d

∑d
i=1 xi)d+1

We consider the hyperbolic cross polynomial approximation space defined by

PΛ = span{ϕi(x) =
d∏

k=1

ψk
ik

(x) : i ∈ Λ}, where Λ = {i = (i1, . . . id) :
d∏

k=1

(ik + 1) ≤ p+ 1}

where the (ψk
ik

)ik≥1 are sequences of univariate Legendre polynomials. For each k ∈ {1, . . . , d},
{ψk

ik
}ik≥1 is an orthonormal basis of L2

µk
(Xk).

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Figure 2.8 – Illustration of an hyperbolic cross index set for d = 2 and p = 9.

To define a set of interpolation points unisolvent for the tensorized basis {ϕi}i∈Λ, we proceed

as follows. For each 1 ≤ k ≤ d, we introduce a set of points (zk
ik

)mk
ik=1 ∈ Xk unisolvent for the space

span{ψk
ik
}mk

ik=1 (either Gauss, Leja, Fekete or Magic points). Then we introduce the multivariate

sequence of points

ΓΛ = {zi = (z1
i1
, . . . , zd

id
) : i ∈ Λ,#Λ = m}.

67

Chapter 2 – Boosted Optimal Weighted Least-Squares

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
p m log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n
4 10 [-1.8; -1.7] 238 [-1.8; -1.8] 238 [-1.8; -1.8] 96 [-1.7; -1.5] [10; 12]
9 27 [-3.3; -3.2] 727 [-3.3; -3.3] 727 [-3.3; -3.3] 341 [-3.2; -3.0] [33; 38]
14 45 [-4.2; -4.1] 1282 [-4.2; -4.2] 1282 [-4.2; -4.2] 641 [-4.1; -3.9] [58; 63]
19 66 [-5.6; -5.5] 1960 [-5.7; -5.5] 1960 [-5.7; -5.6] 1019 [-5.6; -5.5] [92; 99]
24 87 [-6.5; -6.4] 2659 [-6.6; -6.4] 2659 [-6.5; -6.4] 1418 [-6.4; -6.3] [130; 137]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussL I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

p m log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
4 10 [-1.0; -1.0] [-1.0; -1.0] [-1.6; -1.6] [-1.0; -1.0] [-1.2; 0.5] [-1.5; 0.5] [-1.6; -1.4]
9 27 [-1.7; -1.6] [-2.2; -2.2] [-3.1; -3.0] [-1.7; -1.6] [-2.7; -0.5] [-2.7; -0.9] [-2.9; -1.8]
14 45 [-2.2; -2.1] [-3.1; -3.0] [-3.7; -3.6] [-2.2; -2.1] [-3.4; -1.5] [-3.2; -2.0] [-3.6; -2.4]
19 66 [-2.7; -2.6] [-4.0; -4.0] [-5.4; -5.0] [-2.7; -2.6] [-4.8; 0.5] [-4.5; -1.6] [-5.1; -3.7]
24 87 [-3.1; -3.0] [-4.1; -4.1] [-6.1; -6.0] [-3.0; -2.9] [-5.3; -2.8] [-5.2; -2.7] [-5.6; -4.2]

(b) Given cost: n = m

Table 2.4 – Approximation error ε for the example 4 with d = 2. Abbreviations are defined in
Subsection 2.4.1.

In Table 2.4, we observe that the best approximation errors are obtained with the least-squares

regression methods, when the stability is guaranteed:

• in Table 2.4a, the s-BLS method strongly reduces the number of samples necessary to get

this stability, it is about 1.5 times the interpolation regime.

• in Table 2.4b, the I-Leja is the only interpolation method which performs better than the

s-BLS method with a given cost. However, the I-Leja is less accurate than the s-BLS

method with guaranteed stability.

In Table 2.5, we observe that the conclusions are the same in dimension 4 than for the dimension

2. The only difference is that the number of samples necessary to get the stability is about 2 times

the interpolation regime.

2.4.4 A noisy example

In this example, we consider the case where the evaluations are affected by a noise e, which fulfils the

assumptions of Section 2.3 (the noise is independent from the sample x̃n
K , centred with a bounded

conditional variance). Here we choose e ∼ N (0, σ2).

68

2.4. Numerical experiments

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
p m log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n
4 23 [-1.5; -1.4] 608 [-1.5; -1.5] 608 [-1.5; -1.5] 279 [-1.5; -1.3] [27; 33]
7 63 [-2.2; -2.0] 1862 [-2.2; -2.1] 1862 [-2.2; -2.0] 963 [-2.1; -1.9] [99; 109]
10 93 [-2.2; -2.1] 2861 [-2.3; -2.1] 2861 [-2.3; -2.1] 1535 [-2.1; -2.0] [164; 172]
13 153 [-2.4; -2.3] 4946 [-2.5; -2.4] 4946 [-2.5; -2.4] 2763 [-2.4; -2.3] [291; 305]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussL I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

p m log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
4 23 [-0.6; -0.6] [-1.0; -0.9] [-1.3; -1.2] [-0.6; -0.6] [-1.1; 0.7] [-1.2; 0.1] [-1.0; 0.1]
7 63 [-0.9; -0.9] [-1.4; -1.3] [-1.2; -1.1] [-0.9; -0.9] [-1.2; -0.2] [-1.7; 0.1] [-1.6; -0.5]
10 93 [-1.0; -0.9] [-1.3; -1.3] [-0.5; -0.4] [-1.0; -0.9] [-1.2; 0] [-1.1; 1.0] [-1.4; 0.4]
13 153 [-1.2; -1.1] [-1.6; -1.5] [-2.2; -2.0] [-1.2; -1.1] [-1.7; -0.2] [-1.5; -0.3] [-1.6; -0.7]

(b) Given cost: n = m

Table 2.5 – Approximation error ε for the example 4 with d = 4. Abbreviations are defined in
Subsection 2.4.1.

Table 2.6 presents the obtained results for two different approximation spaces’ dimensions

(m = 10, 27) and 3 different standard deviations of the noise (σ = 0.1, 0.01, 0.001). The noiseless

case (corresponding to σ = 0 is also recalled). When the stability is guaranteed, see Table 2.6a, we

observe that the influence of the noise is more important in the s-BLS method (which is in line

with the expression from Equation (2.11), the higher n is the smaller the contribution due the noise

is). Furthermore, when m = 10 (p = 4), the approximation error is determined by the dimension of

the approximation space, whereas when m = 27 (p = 9), the approximation error decreases when

σ decreases.

In Table 2.6b, we observe that the I-methods are not robust to the noise (except I-Leja), the

approximation error is much higher than for the s-BLS method performed with m = n, for both

dimensions of approximation spaces.

2.4.5 Overall conclusion for all examples

When the stability is guaranteed (see Table 2.1a, Table 2.2a, Table 2.3a, Table 2.4a), the s-BLS

method, whose cost is close to m, behaves in the same way than the other least-squares regres-

sion methods and the best interpolation method. When n = m, the s-BLS method performs

better than most of the interpolation methods. Depending on the choice of the approximation

basis or the dimension of the problem d, the interpolation methods are more or less efficient. None

69

Chapter 2 – Boosted Optimal Weighted Least-Squares

OWLS
c-BLS

(M = 1)
c-BLS

(M = 100)
s-BLS

(M = 100)
m σ log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) n log(ε(u⋆)) # K

10 0.1 [-1.8; -1.8] 238 [-1.8; -1.7] 238 [-1.8; -1.8] 96 [-1.6; -1.3] [10; 11]
0.01 [-1.8; -1.7] 238 [-1.8; -1.6] 238 [-1.8; -1.8] 96 [-1.6; -1.3] [10; 11]
0.001 [-1.8; -1.6] 238 [-1.8; -1.8] 238 [-1.8; -1.7] 96 [-1.7; -1.4] [10; 12]

0 [-1.8; -1.7] 238 [-1.8; -1.8] 238 [-1.8; -1.8] 96 [-1.7; -1.5] [10; 12]
27 0.1 [-2.8; -2.6] 727 [-2.8; -2.6] 727 [-2.8; -2.6] 341 [-2.0; -1.8] [31; 35]

0.01 [-3.3; -3.2] 727 [-3.3; -3.3] 727 [-3.3; -3.3] 341 [-3.2; -3.0] [30; 37]
0.001 [-3.3; -3.3] 727 [-3.4; -3.3] 727 [-3.3; -3.3] 341 [-3.2; -2.9] [31; 36]

0 [-3.3; -3.2] 727 [-3.3; -3.3] 727 [-3.3; -3.3] 341 [-3.2; -3.0] [33; 38]

(a) Guaranteed stability with probability greater than 0.99 for OWLS and almost surely for the other
methods.

Interpolation Least-Squares regression

I-GaussL I-Magic I-Leja I-Fekete OWLS
BLS

(M = 100)
s-BLS

m σ log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆)) log(ε(u⋆))
10 0.1 [-1.1; -0.5] [-1.1; -1.0] [-1.5; -1.2] [-1.2; -0.5] [-0.8; 2] [-1.4; 0.0] [-1.6; -1.1]

0.01 [-1.0; -0.9] [-1.0; -1.0] [-1.4; -1.2] [-1.0; -0.9] [-1.3; 1.2] [-1.5; -0.1] [-1.6; -1.2]
0.001 [-1.0; -0.9] [-1.0; -1.0] [-1.4; -1.3] [-1.0; -0.9] [-1.5; 1.0] [-1.6; -0.1] [-1.6; -1.0]

0 [-1.0; -1.0] [-1.0; -1.0] [-1.6; -1.6] [-1.0; -1.0] [-1.2; 0.5] [-1.5; 0.5] [-1.6; -1.4]
27 0.1 [1.5; 2.2] [-0.8; 0.1] [-1.5; -1.5] [1.4; 2.2] [0.8; 7.6] [-0.7; 1.7] [-1.8; -0.7]

0.01 [-0.2; 0.3] [-2.5; -1.5] [-2.8; -2.7] [-0.2; 0.3] [-1.4; 6.8] [-2.3; 0.4] [-3.0; -2.3]
0.001 [-2.0; -1.4] [-2.2; -2.2] [-2.8; -2.8] [-2.0; -1.5] [-2.2; -0.3] [-2.8; -0.6] [-2.9; -1.9]

0 [-1.7; -1.6] [-2.2; -2.2] [-3.1; -3.0] [-1.7; -1.6] [-2.7; -0.5] [-2.7; -0.9] [-2.9; -1.8]

(b) Given cost: n = m

Table 2.6 – Approximation error ε for the example 4 noisy with d = 2. Abbreviations are defined
in Subsection 2.4.1.

of them give the best results in all situations, whereas the s-BLS method with stability guaran-

teed is as efficient as the best interpolation method while having a number of samples tending to m.

The example where the data are polluted with noise shows a greater robustness of the s-BLS

method (with the stability guaranteed) compared to the interpolation methods with a number of

samples not too far from the dimension of the approximation space.

2.5 Conclusion

We have proposed a method to construct the projection of a function u in a given approximation

space Vm with dimension m. In this method, the approximation is a weighted least-squares pro-

jection associated with random points sampled from a suitably chosen distribution. We obtained

quasi-optimality properties (in expectation) for the weighted least-squares projection, with or with-

out reducing the size of the sample by a greedy removal of points.

70

2.5. Conclusion

The error bound in the quasi-optimality property depends on the number of points selected by

the greedy algorithm. The more points removed, the larger the bound will be. Therefore, if the goal

is an accurate control of the error, as few points as possible should be removed. On the contrary, if

the goal is to reduce the cost as much as possible but allows a larger error, the maximum number

of points may be removed from the sample, which in some cases leads to n = m, the dimension of

the approximation space.

As the convergence of this greedy algorithm to the interpolation regime is not systematic, it

would be interesting to look for an optimal selection of the sub-sample with regard to the stability

criterion. That is to say that we would select the k points to remove at the same time, however it

is a combinatorial problem.

With this method, the points are sampled from a distribution which depends on the approxi-

mation space. In some cases, the approximation space is chosen adaptively among a sequence of

spaces, then to have a reasonable number of function’s evaluations, the samples used to build the

projection onto a given approximation space should be reused to construct the projection onto a

larger approximation space. In the next chapter, we propose an adaptive boosted optimal weighted

least-squares method which constructs a sequence of boosted weighted least-squares projections,

associated to a nested sequence of spaces.

71

Chapter 2 – Boosted Optimal Weighted Least-Squares

Appendix of this Chapter

Proof of Lemma 2.2

We recall that for any sample xn, Zxn = ‖Gxn − I‖2 and P(Aδ) ≥ 1 − ηM (Lemma 2.1). By

definition of xn,⋆, we have xn,⋆ = xn,I⋆
, where given the M samples xn,1, . . . ,xn,M , the random

variable I⋆ follows the uniform distribution on the set arg min1≤i≤M Zxn,i (possibly reduced to a

singleton). The property (2.4) is a particular case of Equation (2.3) for ε = 1. However, let us first

provide a simple proof of property (2.4). We have

E

(
‖v‖2

x̃n

)
= E

(
‖v‖2xn,⋆ |Aδ

)
≤ E

(
‖v‖2xn,⋆

)
P(Aδ)−1

≤ E

(
‖v‖2

xn,I⋆

)
(1− ηM)−1 ≤

M∑

j=1

E

(
‖v‖2xn,j

)
(1− ηM)−1

= ‖v‖2M(1− ηM)−1.

Now let us consider the proof of the other inequalities. We first note that Aδ = {Zxn,I⋆ ≤ δ} =

{min1≤i≤M Zxn,i ≤ δ} . We consider the events Bj = {I⋆ = j} which form a complete set of events.

From the definition of I⋆ and Aδ and the fact that the samples xn,i are i.i.d., it is clear that

P(Bj) = P(B1) = M−1 and P(Bj ∩Aδ) = P(B1 ∩Aδ) for all j. Therefore,

P(Aδ ∩B1) =
1

M

M∑

j=1

P(Aδ ∩Bj) =
1

M
P(Aδ) ≥ (1− ηM)

M
.

Then

E

(
‖v‖2

x̃n

)
= E

(
‖v‖2xn,⋆ |Aδ

)
=

M∑

j=1

E

(
‖v‖2xn,j |Aδ ∩Bj

)
P(Bj) = E

(
‖v‖2xn,1 |Aδ ∩B1

)

= E

(
‖v‖2xn,11Aδ∩B1

)
P(Aδ ∩B1)−1

≤ E

(
‖v‖2xn,11Z

xn,1 ≤δ1min2≤i≤M Z
xn,i ≥Z

xn,1

)
M(1− ηM)−1

= E

(
‖v‖2xn,11Z

xn,1 ≤δE

(
1min2≤i≤M Z

xn,i ≥Z
xn,1 |xn,1

))
M(1− ηM)−1

= E

(
‖v‖2xn,11Z

xn,1 ≤δE

(
1Z

xn,2 >Z
xn,1 |xn,1

)M−1
)
M(1− ηM)−1.

Using Hölder’s inequality, we have that for any 0 < ε ≤ 1,

E
(
‖v‖2

xn,⋆ |Aδ

)
≤ E

(
‖v‖

2

ε

xn,11Z
x

n,1 ≤δ

)ε

E

(
E
(
1Z

x
n,2 >Z

x
n,1
|xn,1

)M−1

1−ε

)1−ε

M(1− ηM)−1

≤ E

(
‖v‖

2

ε

xn,1

)ε

E

(
E
(
1Z

x
n,2 >Z

x
n,1
|xn,1

)M−1

1−ε

)1−ε

M(1− ηM)−1.

72

2.5. Conclusion

For any measurable function f and any two i.i.d. random variables X and Y , we have that

E(1f(X)>f(Y)|Y) is a uniform random variable on (0, 1). Therefore E

(
1Z

xn,2 >Z
xn,1 |xn,1

)
is uni-

formly distributed on (0, 1) and

E

(
E

(
1Z

xn,2 >Z
xn,1 |xn,1

)M−1
1−ε

)
=

1
M−1
1−ε + 1

=
1− ε
M − ε.

By combining the previous results, we obtain

E

(
‖v‖2xn,⋆ |Aδ

)
≤ E

(‖v‖
2
ε
xn

)ε
M(1− ηM)−1 (1− ε)1−ε

(M − ε)1−ε
.

For ε = 1, we recover the result (2.4). The last result simply follows from

E
(‖v‖

2
ε
xn

) ≤ E

(
‖v‖2xn

)
‖v‖2/ε−2

∞,w = ‖v‖2‖v‖2/ε−2
∞,w .

Details for the remark 2.4

We recall that D̃(M,L,m,α, ε) = C(ε,M)(L(1+cm))2−2εαε. Taking the logarithm of this expression

it comes,

log(D̃(M,L,m,α, ε)) = log(C(ε,M))︸ ︷︷ ︸
I

+ ε log(α) + (2− 2ε) log(L(1 + cm))︸ ︷︷ ︸
II

Considering I,

log(C(ε,M)) = log

(
M

(1− ε)1−ε

(M − ε)1−ε

)
= log(M) + (1− ε) log

(
1− ε
M − ε

)

Taking the derivative with respect to ε,

∂I

∂ε
= − log(1− ε)− 1− ε

1− ε +
1− ε
M − ε + log(M − ε)

= log
(
M − ε
1− ε

)
+

1− ε
M − ε − 1.

Looking at II,
∂II

∂ε
= −2 log(L(1 + cm)) + log(α).

All in all ∂I
∂ε + ∂II

∂ε = 0 gives

− log(
1− ε
M − ε) +

1− ε
M − ε = 1 + 2 log(L(1 + cm))− log(α).

73

Chapter 2 – Boosted Optimal Weighted Least-Squares

If, we set Y = 1−ε
M−ε , it comes

− log(Y) + Y = 1 + 2 log(L(1 + cm))− log(α)

also

exp(Y) = exp(1 + 2 log(L(1 + cm))− log(α))Y.

This equation has no explicit solution, however numerically we can found the value ε. Some

examples are shown in the remark 2.4 from this chapter.

74

Chapter 3

ADAPTIVE BOOSTED OPTIMAL WEIGHTED

LEAST-SQUARES

Contents

3.1 Introduction . 75

3.2 Notations . 76

3.3 Optimal weighted least-squares with block-structured sampling 77

3.3.1 Approximation in a given space . 77

3.3.2 Adaptive approximation with a nested sequence of spaces 78

3.4 Boosted optimal weighted least-squares with block-structured sampling 79

3.4.1 Approximation in a given space . 79

3.4.2 Adaptive approximation with a nested sequence of spaces 83

3.5 Numerical illustrations . 85

3.5.1 Illustration of the stability of the adaptive boosted least-squares strategy . 85

3.5.2 Illustration for polynomial approximation 89

3.6 Conclusion . 92

3.1 Introduction

For adaptive approximation of functions, a classical approach is to consider approximations in a

sequence of nested approximation spaces (Vml
)l≥1 with increasing dimension ml. In some cases, the

sequence (Vml
)l≥1 may be given a priori [20, 27] but this sequence may also be adaptively generated

in the sense that the construction of Vml+1
depends on the projection onto the approximation space

Vml
[18, 19].

In this chapter, we present an adaptive version of the boosted optimal weighted least-squares

method presented in Chapter 2 for computing projections associated with such nested sequences

of approximation spaces (Vml
)l≥1. The difficulty is that the optimal sampling measure (also used

to construct the boosted least-squares projection) depends on the approximation spaces (Vml
)l≥1.

75

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

However, to keep a reasonable number of function’s evaluations, we should avoid to draw new

samples to compute the weighted least-squares projection at each iteration of the adaptive strat-

egy. Here, the proposed adaptive boosted optimal weighted least-squares method relies on the

deterministic strategy from [68] (that recycles all the samples, going from the step l to the step

l + 1). In practice, at each step of the adaptive strategy we observe that the number of samples

used to build the projection is close to the one obtained with an interpolation method (i.e. n = ml).

In Section 3.3, we recall the main results from [68], by presenting the weighted least-squares

projection in a given approximation space using block-structured sampling and then its adaptation

to the sequential setting which takes advantage of this particular structure of samples, and allows

to reuse all the samples from one step to another. In Section 3.4.1, we present the boosted optimal

weighted least-squares method with block-structured sampling and in Section 3.4.2 we present the

adaptive boosted optimal weighted least-squares method.

3.2 Notations

We begin by recalling some notions and notations already introduced in the two first chapters

of this thesis but necessary for a self-contained reading of this chapter. Let X be a subset of

R
d equipped with a probability measure µ, with d ≥ 1. We consider a function u from L2

µ(X),

the Hilbert space of square-integrable real-valued functions defined on X . We let ‖ · ‖L2
µ

be the

natural norm in L2
µ(X). When there is no ambiguity, L2

µ(X) will be simply denoted L2
µ, the norm

‖ · ‖2L2
µ

and associated inner product (·, ·)L2
µ

will be denoted ‖ · ‖ and (·, ·) respectively. Let Vm

be a m-dimensional subspace of L2
µ, with m ≥ 1. The weighted least-squares methods allow to

define a particular projection of a function u ∈ L2
µ(X) onto Vm, using n evaluations of this function

at random points. Letting xn := {xi}ni=1 be a set of n points in X , we consider the weighted

least-squares projection defined by

Qxn

Vm
u := arg min

v∈Vm

‖u− v‖xn , (3.1)

where ‖ · ‖xn is a discrete semi-norm defined for v in L2
µ by

‖v‖2xn :=
1

n

n∑

i=1

w(xi)v(xi)2, (3.2)

where w is a given non negative function defined on X . We denote by {ϕj}mj=1 an orthonormal basis

of Vm and we denote by ϕ = (ϕ1, . . . , ϕm) : X → R
m the m-dimensional vector-valued function

such that ϕ(x) = (ϕ1(x), . . . , ϕm(x))T . Also PVmu denotes the orthogonal projection of u onto Vm.

76

3.3. Optimal weighted least-squares with block-structured sampling

In this chapter, the weight function w is chosen as

w(x)−1 =
1

m

m∑

j=1

ϕj(x)2 =
1

m
‖ϕ(x)‖22. (3.3)

The optimal sampling measure from [24] will be referred to as optimal weighted least-squares mea-

sure and the one from [68], because of the particular structure of the samples, will be referred to

as block-structured optimal weighted least-squares method.

3.3 Optimal weighted least-squares with block-structured sam-

pling

3.3.1 Approximation in a given space

Let us consider for each j = 1, . . . ,m, the measure dρj associated to the basis function ϕj defined

by

ρj = ϕj(x)2dµ.

For τ ≥ 1 an integer and n = τm, let xn := {xi}ni=1 be a set of n points such that for each

j = 1, . . . ,m, the samples x(j−1)τ+1, . . . , xjτ are drawn from the measure dρj . In other words, for a

given integer τ ≥ 1, the n independent samples (x1, . . . , xn) are drawn from the product measure

γn =
(
⊗m

j=1ρj

)⊗τ
. (3.4)

It is important to notice that, contrary to the approach from [24], the samples {xi}ni=1 are not

identically distributed, they are only i.i.d by batch of τ samples. We denote by Gm
xn the empirical

Gram matrix associated to the basis {ϕj}mj=1 of the approximation space Vm and the sample xn,

which is defined by

Gm
xn =

1

n

n∑

i=1

w(xi)ϕ(xi)⊗ϕ(xi). (3.5)

The random variable Zm
xn = ‖Gm

xn − I‖2 quantifies the numerical stability of the weighted least-

squares projection Qxn

Vm
.

The proof of the following lemma is inspired from [68], where they show that considering xn a

n-sample sampled from γn, with n = τm, it holds E(Gm
xn) = I.

Lemma 3.1. Let τ be an integer such that τ ≥ 1, and consider xn a n-sample from γn, with

77

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

n = τm. For all v ∈ L2
µ(X) it holds

E(‖v‖2xn) = ‖v‖2. (3.6)

Proof. Using the definition of the discrete semi-norm recalled in Equation (3.2) and taking the

expectation, we have

E(‖v‖2xn) =
1

n

n∑

i=1

E(w(xi)v(xi)2)

=
1

m

1

τ

τ∑

l=1

m∑

j=1

E(w(x(j−1)τ+l)v(x(j−1)τ+l)2), where for all 1 ≤ l ≤ τ, x(j−1)τ+l ∼ ρj

=
1

m

m∑

j=1

E(w(xj)v(xj)2), where for each 1 ≤ j ≤ m, xj ∼ ρj

=
1

m

m∑

j=1

∫

X
w(x)v(x)2dρj(x)

=
∫

X
v(x)2 1

m

m∑

j=1

ϕj(x)2w(x)dµ(x) = ‖v‖2,

thanks to the definition (3.3) of w.

We recall the following theorem, which states that the optimal weighted least-squares with

block-structured sampling verifies a stability property.

Theorem 3.2. [68, Theorem 2]

For any η, δ ∈ (0, 1), if n = τm, with τ := ⌈d−1
δ log

(
2mη−1

)⌉ and dδ = −δ+ (1 + δ) log(1 + δ), and

xn is a n-sample sampled from γn, then the following properties are verified:

(i) the random variable Zm
xn satisfies the tail bound

P(Zm
xn > δ) ≤ η, (3.7)

(ii) if u ∈ L2
µ(X) then the conditioned estimator Qxn,C

Vm
u, defined by Qxn,C

Vm
u = Qxn

Vm
u if Zm

xn ≤ δ

and Qxn,C
Vm

u = 0 otherwise, satisfies

E(‖u−Qxn,C
Vm

u‖2) ≤
(
1 + (1− δ)−1

)
‖u− PVmu‖2 + η‖u‖2. (3.8)

3.3.2 Adaptive approximation with a nested sequence of spaces

Using the particular block-structure of the sample xn ∼ γn, the author in [68] presents an adaptive

strategy, which constructs weighted least-squares projections of u in a sequence of nested spaces

78

3.4. Boosted optimal weighted least-squares with block-structured sampling

Vm1 ⊂ Vm2 ⊂ ... ⊂ Vmt ⊂ L2
µ(X), of increasing dimension ml, ensuring that the projections remain

stable in expectation, simultaneously for all iterations from one to t.

Theorem 3.3. [68, Theorem 3] Let η ∈ (0, 1), s > 1 be a real number and t ≥ 1 be an integer.

Given any sequence of nested spaces (Vml
)1≤l≤t in L2

µ(X) with dimensions m1 < . . . < mt, if

nl = τlml, τl := ⌈d−1
δ ln

(
ζ(s)ms+1

l η−1
)
⌉ for all l = 1, . . . , t, (3.9)

where ζ(s) denotes the Riemman-zeta function, then

P

(
t⋂

l=1

{
Zml

xnl ≤ δ
}
)
≥ 1− η (3.10)

with Zml

xnl = ‖Gml

xnl − I‖2, where G
ml

xnl ∈ R
ml×ml is the Gram matrix associated to an orthonormal

basis of Vml
defined by (3.5) and for any l = 1, . . . , t, the sample xnl is generated according to the

distribution γnl (associated to the space Vml
).

If u ∈ L2
µ(X), then for any l = 1, . . . , t, the conditioned estimator Qxnl ,C

Vml
u defined by Qxnl ,C

Vml
u =

Qxnl

Vm
u if Zml

xnl ≤ δ and Qxnl ,C
Vml

u = 0 otherwise, verifies

E(‖u−Qxnl ,C
Vml

u‖2) ≤
(
1 + (1− δ)−1

)
‖u− PVml

u‖2 + η‖u‖2. (3.11)

3.4 Boosted optimal weighted least-squares with block-structured

sampling

3.4.1 Approximation in a given space

In this section, we propose a boosted least-squares method whose principle is exactly the same

than in Chapter 2 (or see also [52]) but exploiting the measure γn. For the sake of completeness,

we remind in this section the main steps that consist in resampling according to γn until a stability

criterion Zm
xn ≤ δ is satisfied and then removing points from the samples using a greedy strat-

egy. Also we recall a theoretical result, which states that this method ensures the stability of the

weighted least-squares projection in expectation.

The first step consists in drawing M independent samples {xn,i}Mi=1, with xn,i = (x1,i, . . . , xn,i),

from the distribution γn, and then selecting a sample xn,⋆ which satisfies

Zm
xn,⋆ = min

1≤i≤M
Zm

xn,i , (3.12)

where Zm
x = ‖Gx− I‖ is the distance between the empirical Gram matrix associated to x and the

79

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

identity matrix, which quantifies the numerical stability for a sample x in X n. In the case where

several samples xn,i are solutions of the minimization problem, xn,⋆ is selected at random among

the minimizers. We denote by γn,⋆ the probability measure of xn,⋆. If n fulfills the condition from

Theorem 3.2, i.e n ≥ m⌈d−1
δ log

(
2mη−1

)⌉ the probability that the stability condition Zm
xn,⋆ ≤ δ is

verified is greater than 1− ηM and can thus be made arbitrarily high, playing on M .

In order to ensure that the stability property is verified almost surely we consider the sample

xn,⋆ conditioned on the event

Aδ = {Zm
xn,⋆ ≤ δ}. (3.13)

This conditioned sample is denoted x̃n and the associated distribution γ̃n. Such a sample is

obtained by a simple rejection method, which consists in drawing samples xn,⋆ from the distri-

bution γn,⋆ until Aδ is satisfied. It follows that P(Zm
x̃n ≤ δ) = 1 and that for any function f ,

E(f(x̃n)) = E(f(xn,⋆)|Aδ).

Although the resampling enables us to choose δ and η such that n is smaller than with the

initial strategy from [68], the value of n may still be high compared to an interpolation method.

Therefore, to further decrease the sample size, for each generated sample x̃n, we propose to select

a subsample which still verifies the stability condition.

We start with a sample x̃n = (x̃1, . . . , x̃n) satisfying Zm
x̃n ≤ δ and then select a subsample

x̃n
K = (x̃k)k∈K with K ⊂ {1, . . . , n} such that the random variable Zm

x̃n
K

still satisfies

Zm
x̃n

K

≤ δ.

In practice, the set K is constructed by a backward greedy procedure. Starting withK = {1, . . . , n},
at each step of the greedy procedure, we select k⋆ in K such that

Zm
x̃n

K\{k⋆}

= min
k∈K

Zm
x̃n

K\{k}

. (3.14)

If Zm
x̃n

K\{k⋆}

≤ δ and #K > nmin then k⋆ is removed from K. Otherwise, the algorithm is stopped.

We denote by γ̃n
g the distribution of the sample x̃n

K produced by this greedy algorithm, the entire

strategy is given by Algorithm 3.1.

80

3.4. Boosted optimal weighted least-squares with block-structured sampling

Algorithm 3.1 Boosted optimal sampling from γ̃n
g

Inputs: µ, {ϕi}mi=1, M , δ, η
Outputs: Sample x̃n

K from γ̃n
g

Set τ = ⌈d−1
δ log(2mη−1)⌉ with dδ = −δ + (1 + δ) log(1 + δ)

Set z =∞

Resampling and Conditionning
while z > δ do

for i = 1, . . . ,M do
Sample xn,i according to γn

end for
Select at random I⋆ ∈ arg min1≤i≤M Zm

xn,i

Set xn,⋆ = xn,I⋆
and z = Zm

xn,⋆

end while
Set x̃n = xn,⋆

Greedy subsampling
Set K = {1, . . . , n} and set z = Zm

x̃n

while z ≤ δ do
Select k⋆ ∈ K such that

Zm
x̃n

K\{k⋆}

= min
k∈K

Zm
x̃n

K\{k}

Set z = Zm
x̃n

K\{k⋆}

If z ≤ δ, set K ← K \ {k⋆}
end while

Theorem 3.4. Assume n satisfies the condition from Theorem 3.2 for any η and δ ∈ (0, 1). Let

x̃n
K be a sample produced by the greedy algorithm with #K ≥ nmin, then the two following properties

are verified:

(i) the random variable Zm
x̃n

K

satisfies

P(Zm
x̃n

K

≤ δ) = 1. (3.15)

(ii) The weighted least-squares projection Q
x̃n

K

Vm
u satisfies the quasi-optimality property

E(‖u−Qx̃n
K

Vm
u‖2) ≤

(
1 +

n

nmin
(1− δ)−1(1− ηM)−1M

)
‖u− PVmu‖2. (3.16)

Remark 3.1. Without subsampling, i.e. nmin = n, the quasi-optimality property (3.16) is

E(‖u−Qx̃n

Vm
u‖2) ≤

(
1 + (1− δ)−1(1− ηM)−1M

)
‖u− PVmu‖2. (3.17)

81

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

When nmin = βn, the quasi-optimality property (3.16) holds too.

Proof. The first property is deduced from the definition of x̃n
K .

As the property E(‖v‖2xn) = ‖v‖2 is still verified when xn ∼ γn, see Lemma 3.1, the results are

obtained in a similar manner than in Chapter 2 (or see [52]).

For any function v ∈ L2
µ(X),

E(‖v‖2
x̃n) = E(‖v‖2xn,⋆ |Aδ) ≤ E(‖v‖2xn,⋆)P(Aδ)−1 ≤

M∑

k=1

E(‖v‖2xn,j)(1− ηM)−1 = ‖v‖2M(1− ηM)−1.

Thanks to the Pythagorean equality, we have

‖u−Qx̃n
K

Vm
u‖2 = ‖u− PVmu‖2 + ‖PVmu−Q

x̃n
K

Vm
u‖2.

Using also that (PVm −Q
x̃n

K

Vm
)u ∈ Vm, and that Zm

x̃n
K

≤ δ almost surely, it comes

‖u−Qx̃n
K

Vm
u‖2 ≤ ‖u− PVmu‖2 + (1− δ)−1‖PVmu−Q

x̃n
K

Vm
u‖2

x̃n
K

.

Using the fact that Q
x̃n

K

Vm
is an orthogonal projection with respect to the discrete semi-norm ‖ · ‖x̃n

K
,

the Pythagorean equality for the discrete norm ‖ · ‖x̃n
K

yields

‖PVmu−Q
x̃n

K

Vm
u‖2

x̃n
K

+ ‖Qx̃n
K

Vm
u− u‖2

x̃n
K

= ‖PVmu− u‖2x̃n
K

,

which implies ‖PVmu−Q
x̃n

K

Vm
u‖2

x̃n
K

≤ ‖u− PVmu‖2x̃n
K

. Therefore,

‖u−Qx̃n
K

Vm
u‖2 ≤ ‖u− PVmu‖2 + (1− δ)−1‖u− PVmu‖2x̃n

K

.

By definition of the discrete semi-norm and since #K ≥ nmin, ‖v‖2
x̃n

K

can be bounded by n
nmin
‖v‖2

x̃n

for all v ∈ L2
µ and thus,

‖u−Qx̃n
K

Vm
u‖2 ≤ ‖u− PVmu‖2 +

n

nmin
(1− δ)−1‖PVmu− u‖2x̃n .

Taking the expectation, it comes

E(‖u−Qx̃n
K

Vm
u‖2) ≤ ‖u− PVmu‖2 +

n

nmin
(1− δ)−1M(1− ηM)−1‖PVmu− u‖2,

which ends the proof.

82

3.4. Boosted optimal weighted least-squares with block-structured sampling

3.4.2 Adaptive approximation with a nested sequence of spaces

In this section, we present the adaptive boosted optimal weighted least-squares strategy, which

constructs a sequence of projections of u onto a sequence of nested spaces (Vml
)l≥1, of increasing

dimension ml. We let {ϕi}i≥1 be a set of orthonormal functions, such that for each l ≥ 1, {ϕi}ml
i=1

is a basis of Vml
.

In practice, we build two increasing sequences of sets of points (x̃nl)l≥1 and (x̃nl

Kl
)l≥1, such that

for all l ≥ 1, x̃nl ⊂ x̃nl+1 and x̃
nl

Kl
⊂ x̃

nl+1

Kl+1
, with nl = τlml and τl is an integer. By construction x̃

nl

Kl

is also a subsample from x̃nl , and the discrete projection Q
x̃

nl
Kl

Vm
u is built with x̃

nl

Kl
. In the following

paragraphs, we describe the method to construct these samples.

Initialization step

Let τ1 be defined by τ1 = ⌈d−1
δ log(ζ(s)ms+1

1 η−1)⌉. For the initial space Vm1 , a n1-sample x̃n1 ,

with n1 = τ1m1 is drawn from γ̃n1 and a backward greedy algorithm is used to obtain x̃n1
K1

.

The sample x̃n1
K1

whose distribution is γ̃n1
g is obtained from Algorithm 3.1, using the parameters

µ, {ϕi}m1
i=1,M, δ, η.

Transmission step

For each step l, the overall number of samples is nl = τlml with τl a constant, which is defined

by τl = ⌈d−1
δ log(ζ(s)ms+1

l η−1)⌉. At the previous steps already nl−1 samples have been drawn

(with nl−1 = τl−1ml−1), such that if we add pl + ql samples to nl−1 with pl = (ml − (ml−1))τl and

ql = ml−1(τl−τl−1) we have nl = nl−1 +pl +ql = τl−1ml−1 +(ml−(ml−1))τl +ml−1(τl−τl−1) = mlτl

samples.

Remark 3.2. The particular choices of the values of τl, pl ql, that determine the number of samples

nl are based on the strategy from [68]. With these choices the author has proven that the optimal

weighted least-squares projections are stable in expectation (see Section 3.3). Even if we do not

have theoretical guarantees yet for our sampling strategy, the promising numerical results of the

following part justify these heuristic choices in our strategy.

At the step l, the sample x̃nl is constructed by reusing the sample x̃nl−1 and adding two blocks

of samples from two different measures. We resample M times a pl-sample from the measure

(⊗ml
j=1+ml−1

dρj)⊗τl , they are denoted {xpl,i
add}Mi=1 and a ql-sample from the measure (⊗ml−1

j=1 dρj)⊗(τl−τl−1),

they are denoted {xql,i
old}Mi=1.

83

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

For each i in {1, . . .M}, we denote by xnl,i the concatenation of the three samples x̃nl−1 ,xpl,i
add and

x
ql,i
old , such that xnl,i = [x̃nl−1 ,xpl,i

add,x
ql,i
old]. The samples xnl,i has a total size equals to nl−1+pl +ql =

τl−1ml−1 + (ml − (ml−1))τl +ml−1(τl − τl−1) = mlτl, which is nl as desired. We select the sample

xnl,⋆ which satisfies,

Zml

xnl,⋆ = min
1≤i≤Ml

Zml

xnl,i .

If several samples xnl,i are solutions of the minimization problem, xnl,⋆ is selected at random

among the minimizers. The probability that the stability condition Zml

xnl,⋆ ≤ δ is verified can be

made higher, playing on M . Furthermore, in order to ensure that this stability property is verified

almost surely we consider the sample xnl,⋆ conditioned by the event

Aδ = {Zml

xnl,⋆ ≤ δ}.

The resulting sample is denoted x̃nl . In practice, the sample x̃nl is then obtained by a simple

rejection method, drawing samples until Aδ = {Zml

xnl,⋆ ≤ δ} is satisfied.

Remark 3.3. To condition the sample xnl,⋆ by the event Aδ = {Zml−1

xnl,⋆ ≤ δ}, we assume that at

each step l, for any x verifying Z
ml−1
x ≤ δ,

P(Zml

xnl,⋆ ≤ δ | x̃nl−1 = x) > 0,

where the first part x̃nl−1 of the xnl,⋆ is assumed to be fixed equal to x. (This assumption remains

to be shown). Then, since x̃nl−1 satisfies Z
ml−1

x̃
nl−1

≤ δ, the event Aδ has a non-zero probability of

happening and our algorithm is well-defined.

To obtain x̃
nl

Kl
, we reuse x̃

nl−1

Kl−1
and select points in x̃nl with a forward greedy algorithm. More

precisely, starting from Kl = Kl−1 we select a k⋆ in {1, . . . , nl} \ Kl such that the new sample

x̃
nl−1

Kl∪{k⋆} verifies

Zml

x̃
nl
Kl∪{k⋆}

= min
k∈{1,...,nl}\Kl

Zml

x̃
nl
Kl∪{k}

.

We add k⋆ to Kl and while x̃
nl

Kl∪{k⋆} does not satisfy the stability criterion, i.e. Zml

x̃
nl
Kl∪{k⋆}

> δ,

we repeat the procedure. At the end of each step l, we keep both samples x̃nl and x̃
nl

Kl
. The

distribution of x̃
nl

Kl
is denoted γ̃nl

g . The overall strategy is described in Algorithm 3.2.

84

3.5. Numerical illustrations

Algorithm 3.2 Adaptive Boosted Least-Squares

Inputs: t, s, δ, η, M , (ϕj)j≥1

Outputs: samples x̃n1 , . . . , x̃nt and x̃n1
K1
, . . . , x̃nt

Kt

Sample x̃n1 and x̃n1
K1

using Algorithm 3.1 with inputs µ, {ϕi}m1
i=1, M , δ, η.

for l = 2, . . . , t do
Set τl = ⌈d−1

δ log(ζ(s)ms+1
l η−1)⌉, pl = (ml −ml−1)τl, ql = ml−1(τl − τl−1), and x̃nl = x̃nl−1 .

Set z =∞.

Resampling and conditionning
while z > δ do

for i = 1, . . . ,M do
Sample x

pl,i
add ∼ (⊗ml

j=1+ml−1
ρj)⊗τl .

Sample x
ql,i
old ∼ (⊗ml−1

j=1 ρj)⊗(τl−τl−1).

Set xnl,i = [x̃nl−1 ,xpl,i
add,x

ql,i
old]

end for
Select I⋆ ∈ arg min1≤i≤M Zml

xnl,i and set xnl,⋆ = xnl,I
⋆

z = Zml

xnl,⋆ .
end while
Set x̃nl = xnl,⋆

Greedy enrichment
Set Kl = Kl−1 and x̃

nl

Kl
= x̃

nl−1

Kl−1
.

while Zml

x̃
nl
Kl

> δ do

Select k⋆ in {1, . . . , nl} \Kl such that

Zml

x̃
nl
Kl∪{k⋆}

= min
k∈{1,...,nl}\Kl

Zml

x̃
nl
Kl∪{k}

. (3.18)

Set Kl = Kl ∪ {k⋆}.
end while

end for

3.5 Numerical illustrations

3.5.1 Illustration of the stability of the adaptive boosted least-squares strategy

Comparison with the adaptive optimal weighted least-squares with block-structured

sampling

In this section, we want to illustrate the efficiency of the adaptive boosted least-squares method

(abbreviated a-BLS) described by Algorithm 3.2, through Zml

x̃
nl
Kl

and #Kl. It is compared to the

adaptive optimal weighted least-squares method from [68] (abbreviated a-OWLS), whose efficiency

is measured through Zml

xnl and nl. Each algorithm is carried out 10 times and we provide 80% em-

85

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

pirical confidence intervals for the variables Zml

x̃
nl
Kl

, #Kl and Zml

xnl . We study the methods for the

uniform measure on X = [−1, 1]d and the standard Gaussian measure on X = R
d.

For d = 1, we consider the nested sequence of polynomial approximation spaces (Vml
)t
l=1, where

for each l ≥ 1, Vml
= Pl−1(X).

Gaussian measure Uniform measure
a-BLS a-OWLS a-BLS a-OWLS

ml Zml

x̃
nl
Kl

#Kl Zml

xnl nl Zml

x̃
nl
Kl

#Kl Zml

xnl nl

1 [0; 0] [1; 1] [0; 0] 16 [0; 0] [1; 1] [0; 0] 16
2 [0.01; 0.07] [2; 2] [0.05; 0.18] 28 [0; 0.21] [2; 2] [0.02; 0.17] 28
3 [0.1; 0.58] [3; 3] [0.07; 0.2] 60 [0.34; 0.6] [3; 3] [0.06; 0.2] 60
4 [0.23; 0.69] [4; 4] [0.1; 0.18] 95 [0.25; 0.57] [4; 4] [0.1; 0.21] 95
5 [0.46; 0.66] [5; 5] [0.09; 0.22] 130 [0.53; 0.75] [5; 5] [0.09; 0.23] 130
6 [0.62; 0.78] [6; 6] [0.12; 0.21] 168 [0.37; 0.78] [6; 6] [0.1; 0.22] 168
7 [0.42; 0.78] [7; 7] [0.13; 0.22] 202 [0.67; 0.84] [7; 7] [0.12; 0.23] 202
8 [0.46; 0.74] [8; 8] [0.14; 0.2] 237 [0.55; 0.8] [8; 8] [0.14; 0.24] 237
9 [0.56; 0.87] [9; 9] [0.14; 0.19] 282 [0.6; 0.84] [9; 9] [0.13; 0.24] 282
10 [0.54; 0.8] [10; 10] [0.15; 0.2] 320 [0.6; 0.8] [10; 10] [0.15; 0.25] 320

Table 3.1 – Comparison between the a-BLS method and a-OWLS method in dimension 1, for the
uniform and the Gaussian measure using s = 2, δ = 0.9, η = 0.01, M = 10 and t = 10.

Table 3.1 shows that with the a-BLS method, we ensure the stability of the empirical Gram

matrix with a number of samples #Kl = ml and this for both the uniform and gaussian measures.

Compared to the a-OWLS method using nl = ⌈d−1
δ ln

(
ζ(s)ms+1

l η−1
)
⌉ml for all l = 1, . . . , t,

which is the condition given by Theorem 3.3, the number of evaluations is divided by at least 20

for l ≥ 3.

In dimension d > 1, we consider the nested sequence of hyperbolic cross polynomial approxi-

mation spaces, (Vml
)t
l=1, where for each l ≥ 1,

Vml
= PΛl

= span{ϕi(x) =
d∏

k=1

xik

k , i ∈ Λl}, where Λl = {i = (i1, . . . id) :
d∏

k=1

(ik + 1) ≤ l}. (3.19)

For an illustration of an hyperbolic cross indices sets for d = 2, see Figure 2.8 from Chapter 2.

Both for the uniform and the gaussian measures, Tables 3.2, 3.3 and 3.4 show respectively for

d = 2, 5 and 8 that the number of samples necessary to ensure the stability condition is slightly

larger than the dimension of the approximation space ml. However, the gain compared to nl is

important, more precisely for d = 2 the number of evaluations is divided by at least 20 between the

86

3.5. Numerical illustrations

Gaussian measure Uniform measure
a-BLS a-OWLS a-BLS a-OWLS

ml Zml

x̃
nl
Kl

#Kl Zml

xnl nl Zml

x̃
nl
Kl

#Kl Zml

xnl nl

1 [0; 0] [2; 2] [0; 0] 16 [0; 0] [2; 2] [0; 0] 16
3 [0.23; 0.4] [3; 3] [0.09; 0.28] 62 [0.18; 0.42] [3; 3] [0.15; 0.27] 62
5 [0.56; 0.83] [5; 5] [0.19; 0.27] 136 [0.47; 0.76] [5; 6] [0.18; 0.32] 136
8 [0.64; 0.84] [8; 8] [0.25; 0.3] 256 [0.69; 0.82] [8; 10] [0.27; 0.38] 256
10 [0.77; 0.89] [10; 11] [0.22; 0.32] 348 [0.78; 0.89] [10; 12] [0.29; 0.38] 348
14 [0.77; 0.89] [14; 16] [0.27; 0.34] 532 [0.81; 0.88] [15; 17] [0.31; 0.41] 532
16 [0.78; 0.89] [16; 19] [0.26; 0.35] 616 [0.82; 0.87] [18; 22] [0.31; 0.39] 616
20 [0.84; 0.9] [21; 23] [0.28; 0.37] 808 [0.82; 0.89] [24; 27] [0.32; 0.37] 808
23 [0.86; 0.89] [24; 28] [0.29; 0.38] 943 [0.83; 0.9] [28; 34] [0.33; 0.39] 943
27 [0.83; 0.9] [30; 35] [0.29; 0.37] 1154 [0.85; 0.89] [34; 38] [0.33; 0.37] 1154

Table 3.2 – Comparison between the a-BLS method and a-OWLS method in dimension 2, for the
uniform and the Gaussian measures using s = 2, δ = 0.9, η = 0.01, M = 10 and t = 10.

Gaussian measure Uniform measure
a-BLS a-OWLS a-BLS a-OWLS

ml Zml

x̃
nl
Kl

#Kl Zml

xnl nl Zml

x̃
nl
Kl

#Kl Zml

xnl nl

1 [0; 0] [5; 5] [0; 0] 16 [0; 0] [5; 5] [0; 0] 16
6 [0.63; 0.81] [6; 6] [0.36; 0.46] 182 [0.57; 0.7] [6; 6] [0.41; 0.61] 182
11 [0.84; 0.89] [11; 13] [0.44; 0.54] 396 [0.79; 0.89] [11; 13] [0.45; 0.57] 396
26 [0.87; 0.9] [30; 32] [0.46; 0.56] 1189 [0.87; 0.9] [30; 37] [0.56; 0.66] 1189
31 [0.86; 0.9] [36; 41] [0.48; 0.62] 1429 [0.87; 0.89] [42; 49] [0.51; 0.64] 1429
56 [0.88; 0.9] [72; 77] [0.52; 0.61] 2934 [0.88; 0.9] [79; 91] [0.56; 0.63] 2934
61 [0.88; 0.9] [80; 86] [0.51; 0.62] 3209 [0.89; 0.9] [98; 111] [0.53; 0.6] 3209
96 [0.89; 0.9] [129; 138] [0.53; 0.62] 5457 [0.89; 0.9] [156; 174] [0.58; 0.62] 5457
111 [0.89; 0.9] [156; 169] [0.52; 0.61] 6357 [0.89; 0.9] [200; 218] [0.55; 0.6] 6357
136 [0.89; 0.9] [199; 211] [0.55; 0.62] 8018 [0.9; 0.9] [259; 287] [0.52; 0.59] 8018

Table 3.3 – Comparison between the a-BLS method and a-OWLS method in dimension 5, for the
uniform and the Gaussian measures using s = 2, δ = 0.9, η = 0.01, M = 10 and t = 10.

Gaussian measure Uniform measure
a-BLS a-OWLS a-BLS a-OWLS

ml Zml

x̃
nl
Kl

#Kl Zml

xnl nl Zml

x̃
nl
Kl

#Kl Zml

xnl nl

1 [0; 0] [8; 8] [0; 0] 16 [0; 0] [8; 8] [0; 0] 16
9 [0.76; 0.89] [9; 10] [0.48; 0.64] 317 [0.72; 0.85] [9; 10] [0.62; 0.81] 317
17 [0.83; 0.89] [19; 22] [0.53; 0.67] 706 [0.87; 0.9] [20; 25] [0.54; 0.68] 706
53 [0.89; 0.9] [69; 77] [0.6; 0.67] 2767 [0.88; 0.9] [75; 83] [0.72; 0.87] 2767
61 [0.89; 0.9] [86; 94] [0.61; 0.64] 3260 [0.89; 0.9] [98; 113] [0.67; 0.77] 3260

Table 3.4 – Comparison between the a-BLS method and a-OWLS method in dimension 8, for the
uniform and the Gaussian measures using s = 2, δ = 0.9, η = 0.01, M = 10 and t = 5.

87

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

a-OWLS method and the a-BLS method (for l ≥ 2) and even 30 for l = 10, in dimension d = 5,

it is divided by at least 30 (for l ≥ 3) and 40 for l = 10. In dimension d = 8 the ratio nl

#Kl
is also

greater than 30 for l ≥ 3.

Comparison with the non-adaptive optimal boosted least-squares strategy

In this subsection, we compare the efficiency of the a-BLS strategy compared to the boosted

least-squares method, as defined in Section 3.4 and abbreviated s-BLS (without using the fast

algorithm described in Appendix A). For a given approximation space Vml
(l > 1) of dimension

ml, the a-BLS strategy reuses samples from the previous step whereas the s-BLS uses only new

samples. The efficiencies of the a-BLS strategy and the s-BLS strategy are respectively measured

through Zml

x̃
nl
Kl

,#Kl and Zml

x̃n
K

,#K. We recall that x̃n
K is the sample associated to the distribution

ρ̃nl
g from Chapter 2 which is the boosted optimal weighted least-squares measure with subsampling

and #K the number of points that are in x̃n
K after the greedy subsampling.

Gaussian Measure Uniform Measure
a-BLS s-BLS a-BLS s-BLS

ml Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K

1 [0; 0] [1; 1] [0; 0] [1; 1] [0; 0] [1; 1] [0; 0] [1; 1]
2 [0; 0.18] [2; 2] [0.3; 0.43] [2; 2] [0; 0.3] [2; 2] [0.33; 0.39] [2; 2]
3 [0.13; 0.48] [3; 4] [0.17; 0.47] [3; 4] [0.17; 0.46] [3; 4] [0.16; 0.38] [3; 3]
4 [0.25; 0.44] [4; 6] [0.38; 0.5] [4; 6] [0.24; 0.49] [4; 5] [0.31; 0.42] [4; 6]
5 [0.22; 0.48] [5; 7] [0.31; 0.47] [5; 7] [0.3; 0.48] [5; 6] [0.33; 0.48] [5; 6]
6 [0.34; 0.47] [6; 9] [0.36; 0.49] [6; 8] [0.19; 0.49] [7; 8] [0.29; 0.46] [6; 9]
7 [0.32; 0.49] [8; 10] [0.38; 0.47] [7; 10] [0.27; 0.47] [7; 9] [0.38; 0.49] [7; 10]
8 [0.37; 0.5] [8; 12] [0.34; 0.48] [9; 11] [0.34; 0.48] [8; 10] [0.42; 0.48] [9; 12]
9 [0.45; 0.5] [10; 14] [0.4; 0.47] [10; 13] [0.37; 0.49] [11; 13] [0.37; 0.49] [10; 12]
10 [0.39; 0.48] [12; 15] [0.36; 0.49] [10; 13] [0.37; 0.49] [11; 14] [0.43; 0.48] [11; 14]

Table 3.5 – Comparison between the s-BLS method and the a-BLS method in dimension 1, for
the uniform and the Gaussian measures using s = 2, δ = 0.5, η = 0.01, M = 10 and t = 10.

In Table 3.5, when d = 1 for a given ml, we observe that using the a-BLS strategy requires

almost the same number of evaluations as for the s-BLS strategy and this both for the Gaussian

and the uniform measures. The advantage is that the adaptive strategy recycles the samples from

one step to another.

When d = 2, we observe in Table 3.7 that for ml ≥ 16, the boosted optimal weighted least-

squares method s-BLS behaves a bit better than the adaptive boosted optimal weighted least-

squares method a-BLS, the difference is stronger with the Gaussian measure.

88

3.5. Numerical illustrations

Gaussian Measure Uniform Measure
a-BLS s-BLS a-BLS s-BLS

ml Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K

1 [0; 0] [2; 2] [0; 0] [2; 2] [0; 0] [2; 2] [0; 0] [2; 2]
3 [0.16; 0.31] [3; 3] [0.36; 0.5] [3; 4] [0.1; 0.35] [3; 3] [0.15; 0.45] [3; 4]
5 [0.35; 0.49] [5; 7] [0.36; 0.49] [6; 7] [0.37; 0.48] [5; 7] [0.29; 0.49] [6; 7]
8 [0.41; 0.49] [10; 15] [0.39; 0.49] [9; 12] [0.42; 0.49] [10; 14] [0.41; 0.5] [9; 12]
10 [0.42; 0.5] [13; 21] [0.42; 0.49] [13; 15] [0.42; 0.49] [15; 20] [0.47; 0.49] [14; 16]
14 [0.45; 0.49] [21; 30] [0.44; 0.49] [20; 22] [0.44; 0.49] [24; 31] [0.46; 0.49] [21; 23]
16 [0.44; 0.49] [24; 39] [0.47; 0.5] [22; 25] [0.47; 0.5] [29; 38] [0.47; 0.5] [26; 29]
20 [0.46; 0.5] [31; 55] [0.47; 0.5] [28; 33] [0.46; 0.5] [39; 68] [0.48; 0.5] [33; 39]
23 [0.46; 0.5] [44; 62] [0.47; 0.5] [34; 42] [0.47; 0.5] [46; 73] [0.48; 0.5] [39; 47]
27 [0.47; 0.5] [54; 71] [0.48; 0.5] [40; 45] [0.48; 0.5] [63; 87] [0.48; 0.5] [51; 59]

Table 3.6 – Comparison between the s-BLS method and the a-BLS method in dimension 2, for
the uniform and the Gaussian measures using s = 2, δ = 0.5, η = 0.01, M = 10 and t = 10.

Gaussian Measure Uniform Measure
a-BLS s-BLS a-BLS s-BLS

ml Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K Zml

x̃
nl
Kl

#Kl Zml

x̃n
K

#K

1 [0; 0] [5; 5] [0; 0] [5; 5] [0; 0] [0; 0] [0; 0] [0; 0]
6 [0.32; 0.47] [6; 8] [0.31; 0.49] [8; 11] [0.34; 0.5] [6; 10] [0.38; 0.48] [7; 11]
11 [0.46; 0.49] [18; 25] [0.42; 0.5] [20; 28] [0.46; 0.49] [18; 24] [0.44; 0.49] [20; 27]
26 [0.48; 0.5] [61; 79] [0.46; 0.49] [66; 75] [0.49; 0.5] [66; 84] [0.48; 0.5] [71; 92]
31 [0.49; 0.5] [89; 115] [0.46; 0.5] [80; 104] [0.49; 0.5] [100; 126] [0.48; 0.5] [98; 118]
56 [0.49; 0.5] [192; 253] [0.48; 0.5] [171; 203] [0.49; 0.5] [224; 258] [0.49; 0.5] [203; 256]

Table 3.7 – Comparison between the s-BLS method and the a-BLS method in dimension 5, for
the uniform and the Gaussian measures using s = 2, δ = 0.5, η = 0.01, M = 10 and t = 5.

When d = 5, we observe in Table 3.7 that for ml ≥ 11, the boosted optimal weighted least-

squares method s-BLS behaves a bit better than the adaptive boosted optimal weighted least-

squares method a-BLS, the difference is stronger with the Gaussian measure.

3.5.2 Illustration for polynomial approximation

Basis adaptation

Here we describe adaptive strategies for constructing a sequence of polynomial approximation

spaces. This sequence will then be used to construct the boosted least-squares projection and

perform adaptive approximation. When d = 1, we simply successively increase the degree of the

polynomial space. In higher dimension, we adopt the following strategy originally proposed in [43]

89

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

and adapted for interpolation in [18] with bulk chasing procedure with θ a given parameter.

Let Λl ⊂ N
d, such that #Λl = ml and we let Vml

= span{ϕi : i ∈ Λl}. Λl is a downward closed

set (or lower set) if

∀i ∈ Λl, i
⋆ ≤ i⇒ i⋆ ∈ Λl.

We recall that for i⋆ = (i⋆1, . . . , i
⋆
d) and i = (i1, . . . , id), the inequality i⋆ ≤ i means that i⋆k ≤ ik for

all 1 ≤ k ≤ d. For Λl a downward closed set, we define its reduced margin,

Mr(Λl) = {i ∈ N
d \ Λl : ∀ k such that ik > 1, i− ek ∈ Λl}. (3.20)

where ek ∈ N
d is such that (ek)j = δjk, for k, j ∈ N.

At each step l, the Algorithm 3.3 selects a subset Nl of multi-indices in the reduced margin of

the downward closed set Λl. The boosted least-squares projection associated to the set Λl ∪ Nl

is computed and a corresponding error is calculated, the procedure is repeated until a certain

tolerance is reached for this error.

In the next example, we want to compare the different methods for adaptive approximation:

Algorithm 3.3 Adaptive approximation for boosted least squares projection

Inputs: δ, η, M , θ, desired tolerance E , function u.

Outputs: x̃
nl

Kl
, Q

x̃
nl
Kl

Vml
u, εl.

Initialization
Set l = 1, Λl = {1, . . . , 1}, Vml

= span{ϕi : i ∈ Λl}.
Sample x̃

nl

Kl
from γ̃nl

g associated to the space Vml
and set εl = 1.

Adaptation
while εl > E and l < t do

Compute Mr(Λl) the reduced margin of the index set Λl.
Set Λ⋆

l = Λl ∪Mr(Λl) and V ⋆
ml

= span{ϕi : i ∈ Λ⋆
l }.

Sample x̃
nl

Kl
from γ̃nl

g associated to the space V ⋆
ml

.

Compute Q
x̃

nl
Kl

V ⋆
ml

u =
∑

i∈Λ⋆
l
aiϕi.

Select Nl ⊂Mr(Λl) the smallest set such that
∑

i∈Nl
a2

i ≥ θ
∑

i∈Mr(Λl)
a2

i .
Update Λl+1 = Λl ∪Nl and Vml+1

= span{ϕi : i ∈ Λl+1}.
Sample x̃

nl+1

Kl+1
from γ̃

nl+1
g associated to the space Vml+1

.

Compute Q
x̃

nl+1
Kl+1

Vml+1
u =

∑
i∈Λl+1

aiϕi.

Compute ε2
l =

∑
i∈Nl

a2
i∑

i∈Λ⋆
l

a2
i

.

Update l = l + 1.
end while

adaptive interpolation with magic points (abbreviated a-I-Magic), adaptive optimal weighted

90

3.5. Numerical illustrations

least-squares (abbreviated a-OWLS) and the method presented in this chapter (abbreviated a-

BLS), in terms of approximation w.r.t complexity. The quality of the approximation u⋆ of a

function u ∈ L2
µ(X) is assessed by estimating the error of approximation with

ε(u⋆) =

(
1

ntest

∑

x∈xtest

(u(x)− u⋆(x))2

)1/2

.

In practice, we choose ntest = 1000. To study the robustness of the methods, we compute 10 times

the approximations and draw 10 different test samples xtest and compute empirical confidence in-

tervals of level 10% and 90% for the errors of approximation.

A first example with a bivariate function

Here, we consider X = [−1, 1]d, d = 2 equipped with the uniform measure and the function

u(x) =
1

(1− 0.5
2d

∑d
i=1 xi)d+1

(3.21)

Figure 3.1 shows that the number of samples necessary to reach a certain precision with the

a-OWLS-methods is much greater than the one used for the a-I-Magic method or the a-BLS.

The a-BLS reaches the desired tolerance E = 10−5 whereas the a-I-Magic method does not,

furthermore, the number of samples nl necessary to reach a certain tolerance is greater with the

a-I-Magic method than with the a-BLS method.

Now, we consider that we only have access to noisy evaluations, yi = u(xi) + ei where ei are

i.i.d realizations from a Gaussian variable e ∼ N (0, σ).

Figure 3.2 shows that the same conclusions can be drawn in the noisy case than in the previous

one (see figure 3.1). However due to the noise, none of these methods reach the required precision

in this case. We notice that both the a-BLS method and the a-OWLS are more stable than the

a-I-Magic method.

Figure 3.3 shows that, decreasing the noise level increases the reached precision. As in the pre-

vious case (with high noise-level), none of these methods reach the required precision in this case.

We notice that both the a-BLS method and the a-OWLS are more stable than the a-I-Magic

method. Furthermore the a-BLS method requires fewer evaluations than the a-I-Magic method

to reach a certain precision.

91

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

101 102 103

−5

−4

−3

−2

−1

0

nl

lo
g
1
0
(ε
(u

⋆
))

Interpolation

a-OWLS

a-BLS

Figure 3.1 – Illustration of the Algorithm 3.3 on the first example (3.21) with required precision
E = 10−5, δ = 0.9 and η = 0.01.

3.6 Conclusion

We have proposed a method to construct a sequence of boosted least-squares estimators associated

to a nested sequence of approximation spaces. Even if the numerical results are promising, we did

not manage to show that for each l > 1, the constructed least-squares estimators are stable in

expectation. The proposed strategy has an overall cost nl that is in practice of the order of ml. It

remains to understand the conditions for observing this nice property.

92

3.6. Conclusion

101 102 103

−2

−1.5

−1

−0.5

nl

lo
g
1
0
(ε
(u

⋆
))

Interpolation

a-OWLS

a-BLS

Figure 3.2 – Illustration of the Algorithm 3.3 for the first example (3.21) with noise with required
precision E = 10−5, δ = 0.9, η = 0.01 and σ = 0.01.

93

Chapter 3 – Adaptive Boosted Optimal Weighted Least-Squares

101 102 103

−3

−2

−1

nl

lo
g
1
0
(ε
(u

⋆
))

Interpolation

a-OWLS

a-BLS

Figure 3.3 – Illustration of the Algorithm 3.3 for the first example (3.21) with noise with required
precision E = 10−5, δ = 0.9, η = 0.01 and σ = 0.001.

94

Chapter 4

TREE-BASED TENSOR FORMATS

Contents

4.1 Introduction . 95

4.2 Tensor spaces . 95

4.3 Tensor ranks and tree-based tensor formats 96

4.3.1 Dimension partition tree . 97

4.3.2 Tree tensor networks and their representation 98

4.4 Principal Component Analysis for multivariate functions 101

4.4.1 α-principal subspaces . 101

4.4.2 Accuracy of the empirical α-principal subspaces 102

4.4.3 The case of functions with Sobolev regularity 103

4.5 Approximation power of tree tensor networks 105

4.5.1 Truncation in tree-based format . 105

4.5.2 Approximation rates for Sobolev functions 106

4.1 Introduction

This chapter is devoted to the presentation of model classes of rank-structured functions with a

focus on tree-based tensor formats. In Section 4.2, we introduce the tensor spaces of multivariate

functions. We present in Section 4.3 the tree-based tensor formats. In Section 4.4, we present the

extension of principal component analysis (PCA) for multivariate functions. In Section 4.5, we also

recall results from [84] and [7] that provide conditions on the complexity of the tree-based tensor

necessary to approximate a function with Sobolev regularity.

4.2 Tensor spaces

Let X be a subset of Rd with a product structure X = X1 × . . . × Xd and µ = µ1 ⊗ . . . ⊗ µd be

a product measure on X . For each 1 ≤ ν ≤ d, let us consider Hν a Hilbert space of univariate

functions defined on Xν , equipped with the inner product (·, ·)Hν and the associated norm ‖ · ‖Hν .

95

Chapter 4 – Tree-based tensor formats

The elementary tensor product v1⊗ . . .⊗vd of d univariate functions vν ∈ Hν is defined as the mul-

tivariate function v such that for x = (x1, . . . , xd) ∈ X , v(x) = (v1 ⊗ . . . ⊗ vd)(x1, . . . , xd) =

v1(x1) . . . vd(xd). The span of these elementary tensor products is the algebraic tensor space

H1 ⊗a . . . ⊗a Hd, which is the set of functions v that can be written as a finite linear combi-

nation of elementary tensors [50]. A canonical inner product over this algebraic tensor space is

defined by (v1 ⊗ . . .⊗ vd, u1 ⊗ . . .⊗ ud) = (v1, u1)H1 . . . (v
d, ud)Hd

. The associated canonical norm,

denoted ‖ · ‖, verifies ‖v1 ⊗ . . . ⊗ vd‖ = ‖v1‖H1 . . . ‖vd‖Hd
. A tensor Hilbert space H is defined as

the completion of this algebraic tensor space H = H1 ⊗ . . . ⊗Hd = H1 ⊗a . . .⊗a Hd
‖·‖H . We will

use the notation H = H1 ⊗ . . .⊗Hd =
⊗d

ν=1Hν .

For each 1 ≤ ν ≤ d, we consider L2
µν

(Xν), the Hilbert space of square-integrable, real-valued

univariate functions defined on Xν , equipped with the probability measure µν . The natural norm

in L2
µν

(Xν), denoted ‖ · ‖2L2
µν

(Xν), is defined for vν ∈ L2
µν

(Xν) by

‖vν‖2L2
µν

=
∫

Xν

vν(xν)2dµν(xν).

The space L2
µ(X) of square-integrable, real-valued functions defined on X equipped with the canon-

ical norm ‖v‖2L2
µ

=
∫

X v(x)2dµ(x) can be identified with the completion of the algebraic tensor space

L2
µ1

(X1)⊗ . . .⊗ L2
µd

(Xd).

From now, for the clarity of the notations and when there is no ambiguity L2
µ(X) will be simply

denoted L2
µ, the norm ‖ · ‖2L2

µ
and associated inner product (·, ·)L2

µ
will be denoted ‖ · ‖ and (·, ·)

respectively.

4.3 Tensor ranks and tree-based tensor formats

The canonical rank r of a tensor u ∈ H is the minimal integer such that the multivariate function

u can be written under the form

u(x1, . . . , xd) =
r∑

k=1

v1
k(x1) . . . vd

k(xd), (4.1)

for vν
k functions in Hν . An approximation in the form (4.1) is called an approximation in canonical

tensor format. This format has several drawbacks when d > 2 (see [85] and [56]) and is therefore

not very convenient for computational purposes. This is the reason why other notions of ranks

have been introduced. Of particular interest here is the notion of α-rank.

Let α denote a non-empty subset of D = {1, . . . , d}. We introduce xα = (xν)ν∈α, µα = ⊗ν∈αµν ,

96

4.3. Tensor ranks and tree-based tensor formats

Xα = ×ν∈αXν , and for its complementary set αc = D \ α, xαc = (xν)ν∈αc , µαc = ⊗ν∈αcµν and

Xαc = ×ν∈αcXν . Hα = ⊗ν∈αHν and Hαc = ⊗ν∈αcHν denote respectively the corresponding Hilbert

spaces of functions of groups of variables xα and xαc .

A multivariate function u(x1, . . . , xd) in H can be identified with a bivariate function u(xα, xαc),

implicitly considering the reordering of the variables, which is an order-two tensor denoted by

Mα(u) ∈ Hα ⊗ Hαc and called the α-matricization of the tensor u. In the literature the terms

unfoldings and flattenings are also employed. The α-rank of the tensor u is the canonical rank of

the order-two tensorMα(u), denoted rankα(u) = rank(Mα(u)), which is by definition the minimal

integer such that there exist functions vα
k ∈ Hα and vαc

k ∈ Hαc verifying

u(x1, . . . , xd) =
rankα(u)∑

k=1

vα
k (xα)vαc

k (xαc). (4.2)

We also consider cases where α-ranks are infinite.

For a function u that admits the representation (4.2), the space span{vα
k }

rankα(u)
k=1

‖·‖Hα

is called the

α-minimal subspace of u, denoted Umin
α (u) and rankα(u) = dim(Umin

α (u)) = dim(Umin
αc (u)) (see

[35]).

4.3.1 Dimension partition tree

Considering T ⊂ 2{1,...,d}, T is a dimension partition tree over D = {1, . . . , d}, if it has the following

properties:

• D is the root of the tree T ,

• a node α ∈ T is a non empty subset of D, whose cardinality is denoted by #α,

• for each node α ∈ T , the set of sons S(α) of α is either empty, if #α = 1, or forms a partition

of α, if #α > 1.

The nodes α such that #α = 1 are the leaves of the tree T and the set of leaves is denoted L(T).

By construction for each α ∈ L(T), S(α) = ∅. As an illustration, Figure 4.1 shows a particular

dimension partition tree, with d = 6,

T = {{1}, {2}, {3}, {4}, {5}, {6}, {2, 3}, {1, 2, 3}, {4, 5, 6}, {1, 2, 3, 4, 5, 6}}.

For a node α, l(α) denotes the level of the node α in the tree T . It is defined from the root to

the leaves, such that l(D) = 0 and if β ∈ S(α), l(β) = l(α) + 1. The maximum level of the nodes

97

Chapter 4 – Tree-based tensor formats

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Figure 4.1 – Dimension partition tree with its leaves represented in gray

in T is the depth of the tree depth(T) = maxα∈T l(α).

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

Tucker

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Tensor Train

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Hierarchical Tucker

Figure 4.2 – Examples of dimension partition trees

4.3.2 Tree tensor networks and their representation

Considering a function u which admits the representation (4.2) for each node α of a dimension

partition tree T , we define the T -rank of the function u, as the tuple rankT (u) = {rankα(u)}α∈T ,

with the convention rankD(u) = 1. With this notion of T -rank, we define an approximation format,

called tree-based tensor format, which is the set of functions with T -rank bounded by r = (rα)α∈T ,

T T
r (V) = {u ∈ V : rankT (u) ≤ r} =

⋂

α∈T

{u ∈ V : rankα(u) ≤ rα}, (4.3)

where V is a certain finite-dimensional tensor space of multivariate functions.

A tensor format is an intersection of subsets of tensors with bounded α-rank, α ∈ T , these for-

98

4.3. Tensor ranks and tree-based tensor formats

mats inherit most of the nice properties of low-rank approximation formats for order-two tensors.

In particular, best approximation problems in the set T T
r (V) are well posed [35].

Representation of tree tensor networks We consider a function u in tree-based tensor

format T T
r (V), whose T -rank is the tuple (rα)α∈T and V =

⊗d
ν=1 Vν a finite-dimensional tensor

product space. For each node α, the function u can be written under the form (4.2).

If α = {ν} ∈ L(T), we denote by {vν
kν
}rν

kν=1 a basis of the minimal subspace Umin
ν (u). If α /∈ L(T),

we denote its set of sons by S(α) and we have the relation of nestedness between the minimal

subspace Umin
α (u) associated to α, and the minimal subspace Umin

β (u) associated to β ∈ S(α) :

Umin
α (u) ⊂

⊗

β∈S(α)

Umin
β (u). (4.4)

Hence, if for all β ∈ S(α), {vβ
kβ
}rβ

kβ=1 is a basis of Umin
β (u), then

Umin
α (u) ⊂ span{

∏

β∈S(α)

vβ
kβ

(xβ) : 1 ≤ kβ ≤ rβ , β ∈ S(α)} (4.5)

contains a basis of Umin
α (u).

For each α ∈ T \ L(T), we let Λα =×β∈S(α){1, . . . , rβ} such that for each kα ∈ Λα, kα =

(kβ)β∈S(α). Thanks to (4.5), each element of a basis {vα
kα
}rα

kα=1 of Umin
α (u) can be expressed as

vα
kα

(xα) =
∑

1≤kβ≤rβ

β∈S(α)

Cα
kα,(kβ)β∈S(α)

∏

β∈S(α)

vβ
kβ

(xβ)

where Cα is a tensor of coefficients in R
rα×(×β∈S(α) rβ).

For example, if α = {β1, β2},

vα
kα

(xα) =
∑

1≤kβ1
≤rβ1

∑

1≤kβ2
≤rβ2

Cα
kα,kβ1

,kβ2
vβ1

kβ1
(xβ1)vβ2

kβ2
(xβ2).

Then, the function u can be expressed as

u(x) =
∑

1≤kD≤nD

CD
1,kD

vD
kD

(x) =
∑

1≤kβ≤rβ

β∈S(D)

CD
1,(kβ)β∈S(D)

∏

β∈S(D)

vβ
kβ

(xβ),

with CD a tensor of order #S(D), CD ∈ R
×β∈S(D) rD . We use the convention rD = 1, Umin

D (u) =

span{u}.

99

Chapter 4 – Tree-based tensor formats

If for each ν ∈ {1, . . . d}, {ϕν
kν
}mν

kν=1 denotes an orthonormal basis of Vν , this yields

u(x) =
∑

1≤kα≤rα

α∈T

∏

α∈T \L(T)

Cα
kα,(kβ)β∈S(α)

∏

ν∈L(T)

∑

1≤kν≤mν

ϕν
kν

(xν) . (4.6)

Representation complexity of the tree tensor networks

The representation complexity of a tree-based tensor u is defined by the number of parameters

necessary for its representation. The parameters correspond to the tensors of coefficients Cα for α ∈
T \L(T) and the coefficients of the basis functions coefficients vν

kν
for ν ∈ L(T). The representation

complexity is thus given by

S(T, r,m) =
∑

ν∈L(T)

mνrν +
∑

α∈T \L(T)

rα

∏

β∈S(α)

rβ , (4.7)

with mν = dim(Vν) for ν ∈ L(T). Denoting s the arity of the tree, that is to say the maximal

number of sons a node can have, R = maxα∈T rα the maximum α-rank and M = maxν∈L(T)mν

the maximum dimension of the bases of the spaces Vν , as the number of interior nodes in the tree

#T is bounded by d− 1, the storage complexity is bounded by

S(T, r,m) ≤ dMR+ (d− 2)Rs+1 +Rs. (4.8)

Tree-based tensor formats as deep neural networks with multilinear units

For a leaf node α = {ν} ∈ L(T), let denote ϕν(xν) = (ϕν
kν

(xν))mν

kν=1 ∈ R
mν and Cν the tensor

corresponding to the coefficients of the basis (vν
kν

(xν))rν

kν=1 into the basis (ϕν
kν

(xν))mν

kν=1. The tensor

Cν can be identified with a linear function fν : Rnν → R
rν and

(vν
kν

(xν))rν

kν=1 = fν(ϕν(xν)).

For each node α ∈ T \ L(T), a tensor Cα ∈ R
rα×(×β∈S(α) rβ) can be identified with a R

rα-valued

multilinear function fα :×β∈S(α) R
rβ → R

rα and

(vα
kα

(xα))rα

kα=1 = fα((vβ
kβ

(xβ))β∈S(α)).

Finally the function u has the representation

u(x) = fD((vD
kD

(xα))α∈S(D)),

so that u is a composition of multilinear maps, which is a particular class of deep neural networks,

known as sum-product networks (or arithmetic circuits).

100

4.4. Principal Component Analysis for multivariate functions

4.4 Principal Component Analysis for multivariate functions

We here consider functions in L2
µ. For a subspace Vα ⊂ L2

µα
(Xα), we denote by PVα the orthogonal

projection from L2
µα

(Xα) to Vα, and by PVα the orthogonal projection from L2
µ(X) to Vα⊗L2

µαc (Xαc),

such that for all xαc in Xαc , (PVαu)(·, xαc) = PVαu(·, xαc).

4.4.1 α-principal subspaces

Let u be a function of L2
µ. For each α ⊂ D, the function u admits a singular value decomposition

u(x) =
rankα(u)∑

k=1

σk
αv

α
k (xα)vαc

k (xαc), with ‖vα
k ‖L2

µα
(Xα) = ‖vαc

k ‖L2
µαc (Xαc) = 1. (4.9)

Here, σ1
α ≥ σk

α ≥ . . . are the singular values, which are assumed to be sorted in decreasing order,

and vα
k ∈ L2

µα
(Xα) and vαc

k ∈ L2
µαc (Xαc) are respectively the left and right singular functions. For

rα ≤ rankα(u), the truncated singular value decomposition of u up to the rank rα is then given by

urα(x) =
rα∑

k=1

σk
αv

α
k (xα)vαc

k (xαc). (4.10)

The rα dominant left singular functions, {vα
k }rα

k=1, are called the α-principal components of u,

while the linear span of these rα functions, denoted by Uα, is called the α-principal subspace of u.

The function urα = PUαu is optimal for the approximation of u, in the sense that it is the best

approximation of u with α-rank rα bounded by rα, i.e

‖u− PUαu‖L2
µ(X) = min

v∈L2
µ(X)

rankα(v)≤rα

‖u− v‖L2
µ(X) = min

Wα⊂L2
µα

(Xα)

dim(Wα)≤rα

‖u− PWαu‖L2
µ(X). (4.11)

We denote by eα
rα

(u) the best approximation error associated to PUαu, which verifies

eα
rα

(u)2 := ‖u− PUαu‖2L2
µ(X) =

rankα(u)∑

k=rα+1

(σk
α)2.

Noticing that ‖u − PWαu‖2L2
µ(X) = E

(
‖u(·, Xαc)− PWαu(·, Xαc)‖2L2

µα
(Xα)

)
, with Xαc a random

variable whose probability distribution is µαc , we introduce the empirical α-principal subspace of

u, written Ûα, as the solution of

min
dim(Wα)=rα

Wα⊂L2
µα

(Xα)

1

zαc

zαc∑

k=1

‖u(·, xk
αc)− PWαu(·, xk

αc)‖2L2
µα(Xα)

, (4.12)

101

Chapter 4 – Tree-based tensor formats

where the {xk
αc}zαc

k=1 are zαc i.i.d. realizations of Xαc .

‖u−PÛα
u‖ is the reconstruction error associated to the empirical α-principal subspace. It is a

random variable and this is the reason why we are interested in quantifying E(‖u − PÛα
u‖2). In

the next paragraph, we present some recent results obtained in [72] and [25].

4.4.2 Accuracy of the empirical α-principal subspaces

Replacing Uα by Ûα implies an estimation error. We would like to know how well can the em-

pirical α-principal subspace Ûα approximate the α-principal subspace Uα. In this paragraph, we

detail two existing results which connect the empirical reconstruction error of a function u with

the minimal reconstruction error eα
rα

(u).

In a first time, we recall the result from [72] which derives high-probability bounds for this

reconstruction error of the empirical α-principal subspace and look into the particular cases where

the singular values satisfy polynomial or exponential upper bounds. We recall the theorem from

[72] using our notations.

Theorem 4.1. [72, Theorem 2] Let u ∈ L2
µ, and {σk

α}k≥1 and {vα
k }k≥1 be respectively the α-singular

values and the α-left singular functions of u. Assume that the random variables

{Γk
α = 1

σk
α

(u(·, Xαc), vα
k)}k≥1 are independent and that there is a constant R > 0 such that

sup
k≥1

sup
q≥1

q−1/2(E|Γk
α|q)1/q ≤ R. (4.13)

Consider 1 ≤ r′
α ≤ rα such that σ

r′
α

α ≥
√

2σrα+1
α . If the number of samples zαc verifies

zαc ≥ c1(R) max


r′

α,
∑

k>rα

σk
α

σ
r′

α
α




with c1(R) a constant depending on R, then it holds

‖u− PÛα
u‖2 ≤ c(R)eα

rα
(u)2 with probability at least 1− exp(−c2(R)zαc), (4.14)

where eα
rα

(u) and ‖u−PÛα
u‖ are respectively the minimal reconstruction error of u and the recon-

struction error of the empirical α-principal subspace of u, and c2(R) and c(R) two other constants

depending on R.

This theorem is applied in two particular cases of interest, when the singular values satisfy

either a polynomial or exponential upper bound, as summarized in the following corollaries.

102

4.4. Principal Component Analysis for multivariate functions

Corollary 4.2. [72, Corollary 3] Assume the Equation (4.13) of Theorem 4.1 is verified and that

for some β > 1 and K > 0, it holds (σk
α)2 ≤ Kk−β for all k ≥ 1.

If zαc ≥ rαc1(R,K, β), then

‖u− PÛα
u‖2 ≤ c(R,K, β)eα

rα
(u)2 with probability at least 1− exp(−c2(R,K, β)zαc),

with c(R,K, β), c1(R,K, β) and c2(R,K, β) constants depending on β,K and R.

Corollary 4.3. [72, Corollary 4] Assume the Equation (4.13) of Theorem 4.1 is verified and that

the singular values of u satisfy an exponential upper bound, i.e. for some γ ∈ (0, 1] and β,K > 0

it holds K−1 exp(−βkγ) ≤ (σk
α)2 ≤ K exp(−βkγ) for all k ≥ 1.

If zαc ≥ rαc1(R,K, β, γ), then

‖u− PÛα
u‖2 ≤ c(R,K, β, γ)eα

rα
(u)2 with probability at least 1− exp(−c2(R,K, β, γ)zαc),

with c(R,K, β, γ), c1(R,K, β, γ) and c2(R,K, β, γ) constants depending on β,K, γ and R.

In practice, the assumption on the independence of the Γk
α but also the assumption (4.13) is

restrictive and we would like to work with functions that do not necessary verify it.

Secondly, in [25], the authors show that in the case where the minimal reconstruction error

eα
rα

(u) has a certain algebraic decay, the same rate of convergence can be obtained for ‖u−PÛα
u‖

the reconstruction error of the empirical α-principal subspace of u if the number of samples zαc is

chosen sufficiently high.

Theorem 4.4. [25] Assume that C4 :=
∫

Xαc
‖u(·, Xαc)‖4L2

µα
dµαc <∞. For all rα, zαc ≥ 0, one has

0 ≤ E(‖u− PÛα
u‖2)− eα

rα
(u)2 ≤ C1/2

4

(
rα

zαc

)1/2

.

In particular, when eα
rα

(u)2 has an algebraic decay with a certain rate r−s
α for some s > 1, the

same rate can be obtained for ‖u− PÛα
u‖2 if the number of samples zαc is greater than r1+2s

α .

Corollary 4.5. [25] Assume that C4 :=
∫

Xαc
‖u(·, Xαc)‖4L2

µα
dµαc < ∞. If eα

rα
(u)2 ≤ Cr−s

α and

zαc ≥ r1+2s
α , we have that

E(‖u− PÛα
u‖2) ≤ (C + C

1/2
4)r−s

α .

4.4.3 The case of functions with Sobolev regularity

The decay of singular values can be estimated for some classical regularity classes. Here we assume

X is compact and µ is the uniform measure.

103

Chapter 4 – Tree-based tensor formats

Functions with Sobolev regularity

Sobolev classes. The Sobolev space of functions u denoted W s,2
µ is the space of functions u with

bounded norms

‖u‖2
W s,2

µ
=
∑

|k|≤s

‖Dku‖2L2
µ

where for k ∈ N
d, |k| = k1 + . . .+ kd and Dku(x1, . . . , xd) = ∂|k|u

∂x
k1
1 ...∂x

kd
d

(x1, . . . , xd).

We recall that the Kolmogorov r-width of a subset of functions U ⊂ H represents the best approx-

imation rate that can be achieved by an approximation g in a linear space Vr of dimension r, see

[61]. It is defined by

dr(U)H = inf
dim(Vr)=r

sup
f∈U

inf
g∈Vr

‖f − g‖.

The behaviour of the Kolmogorov r-width of Sobolev balls has been studied in [63] and [90]. The

Kolmogorov r-width of the unit ball of W s,2
µ is dr(W s,2

µ)L2
µ
∼ r−s/d. This implies that to approxi-

mate a function u with tolerance ε, r has to be such that r ∼ ε−d/s.

From the above result and the relation between the Kolmogorov r-width and the minimal

reconstruction error, the authors in [7] showed the following result.

Proposition 4.6. [7] If u ∈W s,2
µ (X), then

eα
rα

(u) ≤ C(s, dα)r−s/dα
α ‖u‖

W s,2
µ
, dα = min{#α, d−#α}

with C(s, dα) a constant depending on s and dα.

The proposition 4.6 implies that to reach a certain accuracy ε for the minimal reconstruction

error, the rank rα has to be of the order of ε−dα/s.

Mixed Sobolev classes. The mixed Sobolev space denoted W s,2
µ,mix is the space of functions u

with bounded norms

‖u‖2
W s,2

µ,mix

=
∑

k≤s

‖Dku‖2L2
µ
.

The behaviour of the Kolmogorov r-width of balls of mixed Sobolev spaces has been studied

in [89]. The Kolmogorov r-width of the unit ball of u ∈ W s,2
µ,mix, is such that dr(W s,2

µ,mix)L2
µ
∼

r−s log(r)s(d−1). Using [84, Lemma 1], this implies that to approximate a function u with tolerance

ε, r has to be of the order of r ∼ s−(d−1)ε−1/s| log(ε)|(d−1).

Again from the above result and the relation between the Kolmogorov r-width and the minimal

reconstruction error, [7] showed the following result.

104

4.5. Approximation power of tree tensor networks

Proposition 4.7. [7] If u ∈W s,2
µ,mix(X), then

eα
rα

(u) ≤ (C(s, dα)r−s
α log(rα)s(dα−1))‖u‖

W s,2
µ,mix

, dα = min{#α, d−#α}

with C(s, dα) a constant depending on s and dα.

4.5 Approximation power of tree tensor networks

4.5.1 Truncation in tree-based format

Let T be a dimension tree, V =
⊗d

ν=1 Vν a finite-dimensional tensor product space and u ∈ L2
µ(X).

Consider a collection of α-principal subspaces Uα of dimension rα with α ∈ T \ {D}, defined as

the solutions of Equation (4.11). The approximation u⋆ obtained by successive suitably ordered

orthogonal projections,

u⋆ =
∏

α∈T \{D}

PUαu (4.15)

satisfies u⋆ ∈ T T
r (V) with V = V1 ⊗ . . .⊗ Vd, r = (rα)α∈T and

‖u− u⋆‖2 ≤
∑

α∈T \{D}

eα
rα

(u)2. (4.16)

For a proof see e.g [53] or [46].

If for all α ∈ T , the α-rank is chosen such that

eα
rα

(u)2 ≤ ε2

#T − 1
‖u‖2,

then u⋆ provides an approximation of u with relative precision ε, i.e.,

‖u− u⋆‖ ≤ ε‖u‖.

The approximation u⋆ obtained by the truncated higher-order singular value decomposition

(HOSVD) is a quasi-best approximation of u in T T
r (V) satisfying the following Theorem proved in

[46]. We state this result for u ∈ L2
µ(X).

Theorem 4.8. [46, Theorem 17]. Let u ∈ L2
µ(X). Consider T a dimension partition tree and the

collection of α-principal component subspaces Uα of u with dimension rα, determined by Equation

(4.11). Let u⋆ be the approximation obtained by successive orthogonal projections from Equation

(4.15). It holds

‖u− u⋆‖ ≤
√

#T − 1 inf
v∈T T

r (V)
‖u− v‖.

105

Chapter 4 – Tree-based tensor formats

To get more specific results, further assumptions have to be made on the function’s class. The

particular cases of Sobolev and mixed-Sobolev regularities have been studied in [84, 7].

4.5.2 Approximation rates for Sobolev functions

In [84], the authors provide asymptotic upper bounds for the storage complexity of the tree-based

tensor necessary to appproximate with precision ε a function having Sobolev or mixed-Sobolev

regularity. More recent results from [7] propose some refinements of these results.

Sobolev spaces

Theorem 4.9. [7] Let u ∈ W s,2
µ (X) and 0 < ε < 1 and let S(u, ε, d) be the minimal complexity

S(T, r,m) such that

inf
v∈T T

r (V)
‖u− v‖ ≤ ε‖u‖

W s,2
µ
,

where V = V1⊗ . . .⊗ Vd with Vν a spline space of dimension mν . For any dimension partition tree

T , it holds

S(u, ε, d) ≤ C(d)ε−d/s,with C(d) a constant depending on d.

Mixed Sobolev spaces

Theorem 4.10. [7] For u ∈ W s,2
µ,mix(X) and 0 < ε < 1. We denote by S(u, ε, d) the minimal

complexity S(T, r,m) such that

inf
v∈T T

r (V)
‖u− v‖ ≤ ε‖u‖

W s,2
µ,mix

,

where V = V1⊗ . . .⊗ Vd with Vν a spline space of dimension mν . For any dimension partition tree

T , it holds

• if T is a trivial tree (with depth one)

S(u, ε, d) ≤ C(d)ε−d/(2s) log(ε−1)d(d−2).

• if T is a binary tree

S(u, ε, d) ≤ C(d)ε−3/(2s) log(ε−1)3(d−2).

with C(d) a constant depending exponentially on d.

106

Chapter 5

PRINCIPAL COMPONENT ANALYSIS FOR

TREE-BASED TENSOR FORMATS

Contents

5.1 Approximation of α-principal subspaces 108

5.1.1 Choosing an oblique projection verifying a stability property 108

5.1.2 Choosing the boosted optimal weighted least-squares projection 110

5.2 Estimation of the α-principal subspaces 113

5.2.1 Accuracy of the empirical α-principal subspaces 113

5.2.2 Adaptive estimation of the α-principal component subspaces 116

5.3 Learning tree tensor networks using PCA 117

5.3.1 Description of the algorithm . 117

5.3.2 Error analysis . 118

5.3.3 Complexity analysis . 121

5.3.4 Heuristics used in practice . 122

5.4 Numerical examples . 124

5.4.1 Notations and objectives . 124

5.4.2 Adaptive determination of the approximation spaces in the leaves 125

5.4.3 Adaptive estimation of the α-principal components subspaces 126

5.5 Conclusions . 130

In this Chapter, we present an algorithm adapted from [78] that constructs the approximation

in tree-based tensor format. We will use the same notations as in Chapter 4. Using a leaves-to-root

approach, the algorithm constructs thanks to principal component analysis α-principal subspaces

of u. In practice, we replace the α-principal subspaces of u by approximations, as explained in

Section 5.1. In Section 5.2, we detail how these α-principal subspaces are estimated in practice.

Section 5.3 describes the whole algorithm. Section 5.4 shows the efficiency of the algorithm on

numerical examples.

107

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

5.1 Approximation of α-principal subspaces

In practice, we do not directly determine the α-principal subspaces of u, but an approximation

of Uα is searched in a low-dimensional approximation subspace of L2
µα

, denoted by Vα, with mα =

dim(Vα) ≥ rα, by solving

min
dim(Wα)=rα

Wα⊂Vα

‖u− PWαu‖2L2
µ

= min
dim(Wα)=rα

Wα⊂Vα

‖u− PVαu‖2L2
µ

+ ‖PVαu− PWαu‖2L2
µ
. (5.1)

For a subspace Vα ⊂ L2
µα

(Xα), we recall that PVα is the orthogonal projection from L2
µ(X) to Vα⊗

L2
µαc (Xαc), such that for all xαc in Xαc , (PVαu)(·, xαc) = PVαu(·, xαc) where PVα is the orthogonal

projection from L2
µα

(Xα) to Vα.

Since PWα = PWαPVα , solving (5.1) is equivalent solving

min
dim(Wα)=rα

Wα⊂L2
µα

‖PVαu− PWαPVαu‖2L2
µ
,

whose solution is the α-principal subspace of PVαu.

Since the orthogonal projection is usually not computable, the orthogonal projection PVα is replaced

by an oblique projection QVα from L2
µα

onto Vα. An approximate α-principal subspace U⋆
α is then

obtained by solving

min
dim(Wα)=rα

Wα⊂L2
µα

‖QVαu− PWαQVαu‖2L2
µ
, (5.2)

whose solution is the α-principal subspace of QVαu, where QVα is the oblique projection from L2
µ to

Vα⊗L2
µαc defined by (QVαu)(·, xαc) = QVαu(·, xαc). QVα may be a sample-based projection. In the

case where the samples are random, the quantity ‖QVαu−PU⋆
α
QVαu‖2L2

µ
is thus a random variable.

The objective of the next two sections is to define an oblique projection allowing us to control

‖QVαu − PU⋆
α
QVαu‖2L2

µ
the minimal reconstruction error associated to the α-principal subspace of

QVαu defined by the Equation (5.2).

5.1.1 Choosing an oblique projection verifying a stability property

In this section, we consider the general case where QVα is an oblique projection from L2
µα

to Vα

verifying a stability property, that is to say, for any function fα ∈ L2
µα

, it holds

‖fα −QVαf
α‖ ≤ C‖fα − PVαf

α‖, (5.3)

where PVα is the orthogonal projection from L2
µα

to Vα and C a constant independent of the

approximation space Vα.

108

5.1. Approximation of α-principal subspaces

Lemma 5.1. Assume QVα is a projection from L2
µα

to Vα verifying the stability property from

Equation (5.3) for all fα ∈ L2
µα

and let QVα be the associated oblique projection from L2
µ to Vα⊗L2

µαc

such that (QVαu)(·, xαc) = QVαu(·, xαc). Then it holds for all u ∈ L2
µ,

‖QVαu‖2 ≤ C1‖u‖2 with C1 = C2.

where C the constant from Equation (5.3).

Proof. In a first time, let us show that the assumption (5.3) implies that for all u ∈ L2
µ,

‖u−QVαu‖ ≤ C‖u− PVαu‖. The function u has a representation

u(x) =
rankα(u)∑

k=1

uα
k (xα)uαc

k (xαc)

with {uα
k}

rankα(u)
k=1 an orthogonal family of functions in L2

µα
.

Then

‖u−QVαu‖2 = ‖
rankα(u)∑

k=1

uα
k ⊗ uαc

k −QVα




rankα(u)∑

k=1

uα
k ⊗ uαc

k


 ‖2

=
rankα(u)∑

k=1

‖(uα
k −QVαu

α
k)⊗ uαc

k ‖2

=
rankα(u)∑

k=1

‖uα
k −QVαu

α
k‖2L2

µα
‖uαc

k ‖2L2
µαc

.

Using the assumption (5.3), we obtain

‖u−QVαu‖2 ≤
rankα(u)∑

k=1

C2‖uα
k − PVαu

α
k‖2‖uαc

k ‖2

=
rankα(u)∑

k=1

C2‖uα
k ⊗ uαc

k − (PVαu
α
k)⊗ uαc

k ‖2

= C2‖u− PVαu‖2.

For all u ∈ L2
µ, thanks to the Pythagorean equality ‖u−QVαu‖2 = ‖u−PVαu‖2 +‖PVαu−QVαu‖2,

so that
‖u− PVαu‖2 + ‖PVαu−QVαu‖2 ≤ C2‖u− PVαu‖2, which implies

‖PVαu−QVαu‖2 ≤ (C2 − 1)‖u− PVαu‖2.

Using the triangular inequality ‖QVαu‖ − ‖PVαu‖ ≤ ‖QVαu − PVαu‖ and the Cauchy-Schwarz

inequality
√
C2 − 1‖u−PVαu‖+ ‖PVαu‖ ≤ (1 +

√
C2 − 1

2
)1/2(‖u−PVαu‖2 + ‖PVαu‖2)1/2, we get

‖QVαu‖ ≤ C(‖u− PVαu‖2 + ‖PVαu‖2)1/2 ≤ C‖u‖,

109

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

which ends the proof.

Theorem 5.2. Assume QVα is a projection from L2
µα

to Vα verifying the stability property (5.3)

for all fα ∈ L2
µα

.

Then, it holds

‖QVαu− PU⋆
α
QVαu‖2 ≤ C1e

α
rα

(u)2, (5.4)

with C1 the constant from Lemma (5.1) and where eα
rα

(u) and ‖QVαu−PU⋆
α
QVαu‖ are respectively

the minimal reconstruction errors of u and QVαu associated to the α-principal subspaces Uα and

U⋆
α defined in Equations (4.11) and (5.2).

Proof. By definition, for all v ∈ L2
µ with rankα(v) ≤ rα,

‖QVαu− PU⋆
α
QVαu‖ = min

rankα(v)≤rα

‖QVαu− v‖.

If we choose in particular v = QVαPUαu, where Uα is the α-principal subspace of u, defined in

Equation (4.11), it comes

‖QVαu− PU⋆
α
QVαu‖ ≤ ‖QVαu−QVαPUαu‖ = ‖QVα(u− PUαu)‖.

Using Lemma 5.1 it comes,

‖QVαu− PU⋆
α
QVαu‖2 ≤ ‖QVα(u− PUαu)‖2 ≤ C2eα

rα
(u)2.

5.1.2 Choosing the boosted optimal weighted least-squares projection

In this paragraph, we propose to use the projection presented in Chapter 2 (or [52]), which verifies

the stability property from Equation (5.3) in expectation.

Let {ϕα
i }mα

i=1 be an orthonormal basis of the approximation space Vα ⊂ L2
µα

(Xα), and ρα be the

measure defined by

dρα(xα) = wα(xα)−1dµα(xα), wα(xα)−1 =
1

mα

mα∑

i=1

ϕα
i (xα)2. (5.5)

By construction, wα(xα)−1 is the density of ρα with respect to the reference measure µα. As it

is invariant by rotation of {ϕα
i }mα

i=1, ρα does not depend on the chosen basis but only on Vα. We let

QVα be the boosted optimal weighted least-squares projection introduced in Chapter 2, such that

110

5.1. Approximation of α-principal subspaces

for all fα ∈ L2
µα

(Xα),

QVαf
α = arg min

gα∈Vα

‖fα − gα‖xzα
α
,

with xzα
α := {xi

α}zα
i=1 a set of zα points in Xα and ‖ · ‖xzα

α
a discrete semi-norm defined for fα ∈ L2

µα

by

‖fα‖2xzα
α

=
1

zα

zα∑

i=1

wα(xi
α)fα(xi

α)2.

Here, x1
α, . . . , x

zα
α are dependent random variables drawn from a measure related to the measure

ρα from Equation (5.5). Without going into too much details (a precise description of the sampling

procedure can be found in Chapter 2), to select these zα points in Xα, we draw M times a nα-

sample according to the product measure ρ⊗nα
α and select in this collection of M samples the one

minimizing a stability criterion (based on the empirical Gram matrix). We resample in this way,

until a stability condition is verified. In a second time, we remove from this selected sample as many

points as possible while maintaining the stability condition and guaranteeing a resulting number

of samples zα higher than a chosen constant nα,min = prnα, with pr a constant independent of mα.

As proved in Chapter 2, this sampling procedure allows us to ensure in expectation the stability of

the projection. Indeed, Theorem 2.5 from Chapter 2 states that for any fα ∈ L2
µα

,

E(‖fα −QVαf
α‖2) ≤ (1 + γ) ‖fα − PVαf

α‖2, where γ = pr(1− δ)−1(1− ηM)−1M. (5.6)

In the case where Vα is a random linear space, the equation (5.6) becomes

E(‖fα −QVαf
α‖2|Vα) ≤ (1 + γ)E(‖fα − PVαf

α‖2|Vα).

Taking the expectation it comes

E(‖fα −QVαf
α‖2) ≤ (1 + γ)E(‖fα − PVαf

α‖2). (5.7)

By extension, the oblique projection QVα from L2
µ to Vα ⊗ L2

µαc such that (QVαu)(·, xαc) =

QVαu(·, xαc) is called boosted weighted least-squares projection.

Lemma 5.3. Let QVα be the boosted least-squares projection verifying the property (5.7) for all

fα ∈ L2
µα

. Let QVα be the oblique projection from L2
µ to Vα ⊗ L2

µαc , such that (QVαu)(·, xαc) =

QVαu(·, xαc) and assume nα ≥ d−1
δ mα log(2mαη

−1), with d−1
δ = −δ + (1 + δ) log(1 + δ) for some

η ∈ (0, 1) and some δ ∈ (0, 1). Then for all u ∈ L2
µ, it holds

E(‖QVαu‖2) ≤ C1‖u‖2 with C1 = 2 (1 + γ) ,

where γ = pr(1− δ)−1(1− ηM)−1M is the constant associated to the boosted weighted least-squares

projection with M the number of repetitions and pr the constant defining the maximal proportion

111

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

of samples to be removed.

Proof. The reasoning is almost the same as for Lemma 5.1, but the stability is verified in expecta-

tion, which leads to some differences.

In a first time, let us show that the assumption (5.7) implies that for all u ∈ L2
µ, E(‖u−QVαu‖2) ≤

(1 + γ)E(‖u− PVαu‖2), with γ = pr(1− δ)−1(1− ηM)−1M .

The function u has a representation

u(x) =
rankα(u)∑

k=1

uα
k (xα)uαc

k (xαc) with {uα
k} an orthogonal family of functions.

From Lemma 5.1, it holds

‖u−QVαu‖2 =
rankα(u)∑

k=1

‖uα
k −QVαu

α
k‖2L2

µα
‖uαc

k ‖2L2
µαc

.

By hypothesis on projection QVα we have E(‖uα
k −QVαu

α
k‖2) ≤ (1 + γ)E(‖uα

k − PVαu
α
k‖2). Then

E(‖u−QVαu‖2) ≤
rankα(u)∑

k=1

(1 + γ)E(‖uα
k − PVαu

α
k‖2)‖uαc

k ‖2

=
rankα(u)∑

k=1

(1 + γ)E(‖uα
k ⊗ uαc

k − (PVαu
α
k)⊗ uαc

k ‖2)

= (1 + γ)E(‖u− PVαu‖2).

Now, thanks to the Pythagorean equality, we have E(‖u−QVαu‖2) = E(‖u−PVαu‖2)+E(‖QVαu−
PVαu‖2), and then

E(‖u− PVαu‖2) + E(‖QVαu− PVαu‖2) ≤ (1 + γ)E(‖u− PVαu‖2),which implies

E(‖QVαu− PVαu‖2) ≤ γE(‖u− PVαu‖2).

Using the triangular inequality ‖QVαu‖2 ≤ 2‖QVαu− PVαu‖2 + 2‖PVαu‖2, we get

E(‖QVαu‖2) ≤ 2γE(‖u− PVαu‖2) + 2E(‖PVαu‖2) ≤ 2(γ + 1)‖u‖2,

which ends the proof.

Theorem 5.4. Let QVα be the boosted least-squares projection verifying the property (5.6) for all

fα ∈ L2
µα

. Let QVα be the oblique projection from L2
µ to Vα ⊗ L2

µαc , such that (QVαu)(·, xαc) =

QVαu(·, xαc). Also assume nα ≥ d−1
δ mα log(2mαη

−1), with d−1
δ = −δ + (1 + δ) log(1 + δ) for some

112

5.2. Estimation of the α-principal subspaces

η ∈ (0, 1) and some δ ∈ (0, 1), then it holds for all u ∈ L2
µ,

E(‖QVαu− PU⋆
α
QVαu‖2) ≤ C1e

α
rα

(u)2, with C1 = 2 (1 + γ) , (5.8)

where eα
rα

(u) and ‖QVαu − PU⋆
α
QVαu‖ are respectively the minimal reconstruction errors of u and

QVαu associated to the α-principal subspaces Uα and U⋆
α defined in Equations (4.11) and (5.2).

Proof. By definition, for all v ∈ L2
µ with rankα(v) ≤ rα,

‖QVαu− PU⋆
α
QVαu‖ = min

rankα(v)≤rα

‖QVαu− v‖.

If we choose in particular v = QVαPUαu, where Uα is the α-principal subspace of u, defined in

Equation (4.11), it comes,

‖QVαu− PU⋆
α
QVαu‖ ≤ ‖QVαu−QVαPUαu‖ = ‖QVα(u− PUαu)‖.

Taking the expectation and using Lemma 5.3 it comes,

E(‖QVαu− PU⋆
α
QVαu‖2) ≤ E(‖QVα(u− PUαu)‖2) ≤ C1e

α
rα

(u)2.

Remark 5.1. When QVα is a projection verifying a stability condition as in Equation (5.3), the term

E
(‖QVαu− PU⋆

α
QVαu‖2

)
is bounded by C2eα

rα
(u)2. When QVα is the boosted least-squares projec-

tion (verifying property (5.8)), the constant 2(1 + γ). We observe that having a quasi-optimality

property verified in expectation leads to a wider bound (multiplied by a factor 2).

5.2 Estimation of the α-principal subspaces

5.2.1 Accuracy of the empirical α-principal subspaces

The approximation U⋆
α of the α-principal subspace is solution of Equation (5.2), which is equivalent

to

min
dim(U⋆

α)=rα

E

(
‖QVαu(·, Xαc)− PU⋆

α
QVαu(·, Xαc)‖2L2

µα

)

where QVαu(·, Xαc) is a function-valued random variable. In practice, an estimation of U⋆
α, denoted

Û⋆
α, can be obtained using zαc independent and identically distributed (i.i.d) samples {QVαu(·, xk

αc)}zαc

k=1

of this random variable, where the {xk
αc}zαc

k=1 are i.i.d. samples of Xαc , and by solving

min
dim(Û⋆

α)=rα

1

zαc

zαc∑

k=1

‖QVαu(·, xk
αc)− PÛ⋆

α
QVαu(·, xk

αc)‖2L2
µα(Xα)

. (5.9)

113

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

Let (ϕα
i)mα

i=1 be an orthonormal basis of Vα. Then QVαu(·, xk
α) can be written

QVαu(·, xk
αc) =

mα∑

i=1

aik
α ϕ

α
i (·), (5.10)

where the coefficients aik
α depend on the samples {xl

α}zα

l=1 in Xα used to define the projection

QVα . Therefore, solving the Equation (5.9) requires evaluating the function u on a product grid

{(xl
α, x

k
αc) : 1 ≤ l ≤ zα, 1 ≤ k ≤ zαc}, where the samples (xl

α, x
k
αc) are not i.i.d.. We denote

by Aα ∈ R
mα×zαc the matrix formed with the coefficients (aik

α). The truncated singular value

decomposition of Aα is

Aα
rα

=
rα∑

i=1

σi
αvi

α(vi
αc)T

where vi
α = (vik

α)1≤k≤mα ∈ R
mα and vi

αc = (vik
αc)1≤k≤zαc ∈ R

zαc , and the σ1
α ≥ σi

α ≥ . . . σrα
α are the

singular values, which are assumed to be sorted in decreasing order.

The solution of Equation (5.9) is the subspace spanned by the functions

vα
i (·) =

mα∑

k=1

vik
α ϕ

α
k (·), for 1 ≤ i ≤ rα.

Letting V α
rα

= (v1
α, . . . ,v

rα
α), we have

zαc∑

k=1

‖QVαu(·, xk
αc)− PÛ⋆

α
QVαu(·, xk

αc)‖2L2
µα

= ‖Aα
rα
− V α

rα
(V α

rα
)T Aα

rα
‖2F =

∑

k>rα

(σk
α)2.

The rank rα can be chosen such that
∑

k>rα
(σk

α)2 ≤ ε2∑
k≥1(σk

α)2 implying that

1

zαc

zαc∑

k=1

‖QVαu(·, xk
αc)− PÛ⋆

α
QVαu(·, xk

αc)‖2L2
µα
≤ ε2

zαc

zαc∑

k=1

‖QVαu(·, xk
αc)‖2L2

µα
.

Remark 5.2. The determination of Û⋆
α depends both on the samples {xk

αc}zαc

k=1 and on the projection

QVα and thus on the samples {xl
α}zα

l=1.

As underlined in Section 4.4.2, an interesting question is the behaviour of the reconstruction

error ‖QVαu − PÛ⋆
α
QVαu‖ associated with the empirical subspace Û⋆

α compared to the minimal

reconstruction error ‖QVαu − PU⋆
α
QVαu‖ associated with U⋆

α. But a major difficulty comes from

the fact that we have to deal here with the α-principal subspaces of QVαu. Choosing a sample-

based projection QVα where the samples are not deterministic but randomly drawn from a certain

measure implies that QVα is random and depends on samples of the function u, which makes tricky

the interpretability of the hypotheses made on u.

Theorem 5.5. [72, Theorem 2] Let u be in L2
µ and QVα an oblique projection, which is fixed. For

114

5.2. Estimation of the α-principal subspaces

α ∈ T \D, let {σi
α,⋆}i≥1 and {vα,⋆

i }i≥1 be respectively the α-singular values and the α-left singular

vectors of QVαu.

Also assume that the random variables {Γi
α = 1

σi
α,⋆

(QVαu(·, Xαc), vα,⋆
i)}i≥1 are independent and that

there is a constant R > 0 such that

sup
i≥1

sup
q≥1

q−1/2
(
E|Γi

α|q
)1/q

≤ R. (5.11)

Consider 1 ≤ r′
α ≤ rα such that σ

r′
α

α,⋆ ≥
√

2σrα+1
α,⋆ . If the number of samples zαc verifies

zαc ≥ c1(R) max(r′
α,
∑

k>rα

σk
α

σ
r′

α
α

) with c1(R) a constant depending on R.

then it holds

‖QVαu− PÛ⋆
α
QVαu‖2 ≤ c(R)E(‖QVαu− PU⋆

α
QVαu‖2), (5.12)

with probability at least 1− exp(−c2(R)zαc), where c2(R) and c(R) are two constants depending on

R.

‖QVαu − PÛ⋆
α
QVαu‖2 and ‖QVαu − PU⋆

α
QVαu‖2 are the reconstruction errors of QVαu respectively

associated to the α-principal subspaces Û⋆
α and U⋆

α.

As already pointed out, the results from [72] are obtained under strong assumptions of the

function u. In [25], the framework is wider.

Proposition 5.6. [25] Let u be in L2
µ and QVα be an oblique projection, which is fixed and assume

that Cα =
(∫

Xαc
‖QVαu(·, Xαc)‖4L2

µα
dµαc

)1/2
<∞. It holds

E(‖QVαu− PÛ⋆
α
QVαu‖2) ≤ E(‖QVαu− PU⋆

α
QVαu‖2) + Cα

(
rα

zαc

)1/2

. (5.13)

Under some assumptions on the function u, we could bound the term E(‖QVαu−PU⋆
α
QVαu‖2).

Then, the number of samples zαc could be chosen to balance the second term Cα

(
rα

zαc

)1/2
with the

first term, but in practice this number seems overestimated. Furthermore, due to the fact that QVα

is a random projection, the hypotheses that have to be made in practice on u to ensure Cα < ∞
are difficult to validate on concrete examples.

For these reasons, in the next section, we propose an adaptive strategy to estimate the empirical α-

principal subspaces Û⋆
α with a given tolerance in order to choose a near-minimal number of samples

zαc .

115

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

5.2.2 Adaptive estimation of the α-principal component subspaces

For a given number of samples zαc , the reconstruction error of the empirical α-principal subspace

Û⋆
α is estimated by leave-one-out cross validation. While this error is greater than the desired

tolerance ε, we increase the dimension of Û⋆
α. If for dim(Û⋆

α) = zαc , the tolerance is not reached,

we increase the number of samples zαc and again estimate the leave-one-out error. We start from

zαc = 1 and have as upper bound, zαc ≤ kP CAmα, where kP CA ∈ N
⋆ is a sampling factor. This

procedure, presented in Algorithm 5.1, provides in many experiments a near-minimal number of

samples zαc to get the desired accuracy.

Algorithm 5.1 Adaptive algorithm for the estimation of the α-principal components of a function-
valued random variable Xαc 7→ QVαu(·, Xαc) with prescribed tolerance ε

Inputs: desired tolerance ε, random variable u(·, Xαc), approximation space Vα, (ϕi)
mα
i=1 an or-

thonormal basis of Vα, oblique projection QVα and sampling factor kP CA.
Outputs: V α

r matrix of singular vectors of Aα

Set zαc = 1
Compute the vector Aα corresponding to the coefficients of one realization QVαu(·, Xαc) in the
orthonormal basis of Vα.
Set E =∞
while E > ε and zαc ≤ kP CA dim(Vα) do

Update zαc ← zαc + 1
Update Aα = [Aα,aα], with aα the vector corresponding to the coefficients of one realization
of QVαu(·, Xαc) in the orthonormal basis of Vα.
Set r = 0
while E > ε or r ≤ zαc do

Update r ← r + 1
Estimate E the leave-one-out cross validation error,
for i = 1, . . . , zαc do

Determine the matrix V α
\i,r of r main left singular vectors of Aα

\i, which is Aα without its

ith column.
end for
Set

E =

∑zαc

i=1 ‖Aα
i − V α

\i,r(V α
\i,r)T Aα

i ‖22∑zαc

i=1 ‖Aα
i ‖22

. (5.14)

end while
end while
Determine the matrix V α

r of r left singular vectors of Aα.

Remark 5.3. The approximation space Vα could also be adaptively selected. Instead of choosing

Vα =
⊗

β∈S(α) Uβ, we could construct adaptively, relying on error estimates, Vα ⊂
⊗

β∈S(α) Uβ.

116

5.3. Learning tree tensor networks using PCA

5.3 Learning tree tensor networks using PCA

Relying on the results from the two previous sections, we here present an algorithm that constructs

an approximation u⋆ of the function u ∈ L2
µ in a tree-based tensor format (tree tensor networks).

This algorithm relies on the estimation of the α-principal subspaces of boosted optimal weighted

least-squares projections of u.

5.3.1 Description of the algorithm

For a given dimension tree T , the algorithm runs through all nodes α starting from the leaves

and going to the root of the tree, to determine the parameters of the tree-based tensor format

representation (4.6) of u⋆. For each node of the tree α ∈ T \{D}, we construct a subspace Û⋆
α ⊂ Vα

that is an approximation of the α-principal subspace of u, as explained in subsection 5.2.2.

When α ∈ L(T), Vα is a given finite dimensional approximation space of L2
µα

(Xα) (e.g. splines,

wavelets, polynomials, ...).

When α /∈ L(T), Vα is chosen as the tensor product space ⊗β∈S(α)Û
⋆
β for β ∈ S(α). Each space Û⋆

β

is a statistical estimation of the α-principal subspace associated to the node β and therefore Vα is

a random space, depending on the previously generated samples of u.

The final approximation u⋆ is defined as the projection of the function u on the tensor product

space formed by the α-principal subspaces of S(D), that is to say

u⋆ = QVD
u where VD =

⊗

α∈S(D)

Û⋆
α, (5.15)

with QVD
a boosted optimal least-squares projection. The final approximation is in T T

r (V) with

r = (rα)α∈T and rα = dim(Ûα), α ∈ T \ {D} and V =
⊗d

ν=1 Vν . The procedure is summarized in

Algorithm 5.2.

Also, we give an illustration of the algorithm in Figure 5.1 with d = 5. The step 1 corresponds

to the introduction of a finite-dimensional tensor product space V = V1 ⊗ . . . ⊗ V5 and a given

dimension partition tree T . Then going from the leaves to the root, the algorithm constructs low-

dimensional subspaces Uα ⊂ Vα (corresponding to the trees with the blue nodes) and the final

approximation is defined as the projection of u onto Û⋆
123 ⊗ Û⋆

45.

Remark 5.4. In practice, the boosted optimal weighted least-squares projection requires sampling

from the optimal measure from Equation (5.5). To this end, we now make explicit the expression

of this optimal measure, in the case where α is a leaf of the tree or an interior node.

• When α ∈ L(T) is a leaf node, Vα is a given approximation space of univariate functions,

such that sampling only implies one-dimensional distributions. One can then rely on standard

117

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

Algorithm 5.2 Construction of the approximation of a function in tree-based tensor format

Inputs: dimension tree T , function to approximate u, measure µ, finite-dimensional approximation
spaces Vν for ν ∈ L(T), desired tolerance ε.

Outputs: approximation u⋆ in tree-based tensor format T T
r (V)

for α ∈ T going by decreasing level do
if α /∈ L(T) then

Set Vα =
⊗

β∈S(α) Û
⋆
β

end if
Compute Û⋆

α the estimation of the α-principal subspaces with relative reconstruction error ε,
thanks to Algorithm 5.1.

end for
Set VD =

⊗
α∈S(D) Û

⋆
α.

Compute u⋆ = QVD
u.

simulation methods such as rejection sampling, inverse transform sampling or slice sampling

techniques, see [31].

• When α /∈ L(T), Vα = ⊗β∈SÛ
⋆
β . For each β, we let {ψβ

kβ
}rβ

kβ=1 be a basis of Û⋆
β . The product

basis of Vα is denoted by {ϕα
iα
}mα

iα=1, where mα =
∏

β∈S(α) rβ and for iα = 1, . . . ,mα,

ϕα
iα

(xα) =
∏

β∈S(α)

ψβ
kβ

(xβ), for iα ≡ (kβ)β∈S(α).

The sampling measure given by Equation (5.5) is such that

wα(xα)−1 =
1

mα

mα∑

iα=1

ϕα
iα

(xα)2 =
∏

β∈S(α)

1

rβ

∑

1≤kβ≤rβ

ψβ
kβ

(xβ)2

and using the product structure of µα, we have

dρα(xα) =
∏

β∈S(α)

dρβ(xβ) with dρβ(xβ) =
1

rβ

rβ∑

kβ=1

ψβ
kβ

(xβ)2dµβ(xβ).

As for each β ∈ S(α), dρβ(xβ) can be written in a tree-based tensor format, and its marginal

distributions can be efficiently computed. Then sampling from ρβ can be efficiently done

through sequential sampling, some implementation details are given in Appendix B.

5.3.2 Error analysis

Lemma 5.7. For α an interior node of a tree T such that Vα =
⊗

β∈S(α) Û
⋆
β , it holds almost surely

‖u− PVαu‖2 ≤
∑

β∈S(α)

‖u− PÛ⋆
β
u‖2.

118

5.3. Learning tree tensor networks using PCA

Proof. Let γ be an element of S(α), we have:

‖u− PVαu‖2 = ‖u−
∏

β∈S(α)

PÛ⋆
β
u‖2

= ‖u− PÛ⋆
γ
u‖2 + ‖PÛ⋆

γ
u− PÛ⋆

γ

∏

β∈S(α)\γ

PÛ⋆
β
u‖2

≤ ‖u− PÛ⋆
γ
u‖2 + ‖u−

∏

β∈S(α)\γ

PÛ⋆
β
u‖2.

Proceeding recursively, we obtain the desired result.

Lemma 5.8. Let u⋆ be the approximation of the function constructed with Algorithm 5.2. Assume

that for all α ∈ T , QVα is a projection verifying either the assumptions from Theorem 5.2 or the

boosted optimal weighted least-squares projection verifying the assumptions from Theorem 5.4.

Assume that for all α ∈ T \D, the empirical α-principal subspaces of QVαu solutions of Equation

(5.9), denoted Û⋆
α, are adaptively estimated with Algorithm 5.1.

The error of approximation is bounded in expectation as follows,

E(‖u− u⋆‖2) ≤
∑

α∈T \D

(2C1)l(α)
E(‖QVαu− PÛ⋆

α
QVαu‖2) +

∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dis

mα
(u)2,

where C1 is defined in Theorem 5.2 or 5.4 depending on the choice of the projection QVα, l(α) is

the level of the node α in the tree T , ‖QVαu−PÛ⋆
α
QVαu‖2 is the reconstruction error associated to

Û⋆
α, L(T) is the set of leaves of the tree T , and eα,dis

mα
(u) = ‖u−PVαu‖L2

µ
the error of discretization

made by introducing a finite-dimensional approximation space Vα for the leaf α.

Proof. The final approximation u⋆ is defined by u⋆ = QVD
u.

If α ∈ L(T), then Vα is a given deterministic approximation space. Therefore, E(‖u −QVαu‖2) ≤
C1‖u − PVαu‖2 where C1 is the constant from Theorem 5.2 or 5.4 depending on the choice of the

projection.

For each α ∈ T \ L(T), Vα =
⊗

β∈S(α) Û
⋆
β and from Lemma 5.7,

E(‖u− PVαu‖2) ≤
∑

β∈S(α)

E(‖u− PÛ⋆
β
u‖2) (⋆).

Using the triangular inequality, we can write:

‖u− PÛ⋆
β
u‖ = ‖u−QVβ

u+QVβ
u− PÛ⋆

β
QVβ

u+ PÛ⋆
β
QVβ

u− PÛ⋆
β
u‖

≤ ‖u−QVβ
u+ PÛ⋆

β
QVβ

u− PÛ⋆
β
u‖+ ‖QVβ

u− PÛ⋆
β
QVβ

u‖

≤ ‖(id− PÛ⋆
β
)(u−QVβ

u)‖+ ‖QVβ
u− PÛ⋆

β
QVβ

u‖

119

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

so that

‖u− PÛ⋆
β
u‖2 ≤ 2‖u−QVβ

u‖2 + 2‖QVβ
u− PÛ⋆

β
QVβ

u‖2.

Using the inequality (⋆) and taking the expectation, it comes

E(‖u− PVαu‖2) ≤
∑

β∈S(α)

2E(‖u−QVβ
u‖2) + 2E(‖QVβ

u− PÛ⋆
β
QVβ

u‖2).

The term E(‖QVβ
u − PÛ⋆

β
QVβ

u‖2) is the error due to principal component analysis. To deal with

the term E(‖u − QVβ
u‖2), we distinguish the case where β is a leaf or not. If β is a leaf, we use

again Theorems 5.2 or 5.4. If β is not a leaf, we proceed recursively. Going through all nodes, we

obtain

E(‖u− u⋆‖2) ≤
∑

α∈T \D

(2C1)l(α)
E(‖QVαu− PÛ⋆

α
QVαu‖2) +

∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

Theorem 5.9. Assume that for all α ∈ T , QVα is a projection verifying either the assumptions

from Theorem 5.2 or the boosted optimal weighted least-squares projection verifying the assumptions

from Theorem 5.4.

Assume that for all α ∈ T \D, the empirical α-principal subspaces of QVαu solutions of Equation

(5.9), denoted Û⋆
α, are such that the reconstruction errors verify

E(‖QVαu− PÛ⋆
α
QVαu‖2|QVαu) ≤ C2E(‖QVαu− PU⋆

α
QVαu‖2|QVαu), (5.16)

where ‖QVαu−PU⋆
α
QVαu‖2 is the reconstruction error associated with the α-principal subspace of U⋆

α

solution of Equation (5.2). Then the error of approximation is bounded in expectation as follows:

E(‖u− u⋆‖2) ≤ C1C2

∑

α∈T \D

(2C1)l(α)eα
rα

(u)2 +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dis

mα
(u)2, (5.17)

where C1 is defined in Theorem 5.2 or 5.4 depending on the choice of the projection QVα, l(α) is

the level of the node α in the tree T , ‖QVαu−PÛ⋆
α
QVαu‖2 is the reconstruction error associated to

Û⋆
α, L(T) is the set of leaves of the tree T , and eα,dis

mα
(u) = ‖u−PVαu‖L2

µ
the error of discretization

made by introducing a finite-dimensional approximation space Vα for the leaf α.

Proof. Taking the expectation in (5.16), we have for all α ∈ T \ {D}.

E(E(‖QVαu− PÛ⋆
α
QVαu‖2|QVαu)) ≤ C2E(E(‖QVαu− PU⋆

α
QVαu‖2|QVαu)),

120

5.3. Learning tree tensor networks using PCA

which yields

E(‖QVαu− PÛ⋆
α
QVαu‖2) ≤ C2E(‖QVαu− PU⋆

α
QVαu‖2).

Besides, the term E(‖QVαu− PU⋆
α
QVαu‖2) can be bounded thanks to Theorem 5.4, such that

E(‖QVαu− PÛ⋆
α
QVαu‖2) ≤ C2C1e

α
rα

(u)2.

Using this bound and theorem 5.8, it comes

E(‖u− u⋆‖2) ≤ C1C2

∑

α∈T \D

(2C1)l(α)eα
rα

(u)2 +
∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dis

mα
(u)2,

which ends the proof.

The first term in Equation (5.23) C1C2
∑

α∈T \D(2C1)l(α)eα
rα

(u)2 is the error due to the estima-

tion of the principal components. The second term
∑

α∈L(T)
1
2(2C2)l(α)+1eα,dis

mα
(u)2 is due to the

error of approximation made in the leaves.

Remark 5.5. In practice, the hypothesis (5.16) is related to the discussion made in the Subsection

5.2.

5.3.3 Complexity analysis

An important question is how many samples n are required by the algorithm to compute an

approximation with precision ε ?

Estimation of the number of samples. The total number of evaluations necessary to build the

approximation in tree-based tensor format using Algorithm 5.2, depends on the number of samples

zα used to build the projection and the number of samples zαc used to estimate the α-principal

subspaces. Under the assumptions of Theorem 5.9, that is to say when choosing the boosted least-

squares projection, zα scales in O(mα log(mα)). Thus, for each node α ∈ T \ {D}, the minimal

number of samples is Nα = O(mα log(mα)zαc). Summing over all nodes it comes

n =
∑

α∈T

Nα = O
(
∑

α∈T

mα log(mα)zαc

)
.

When α ∈ L(T), mα = dim(Vα) and rα = dim(Û⋆
α). When α /∈ L(T), mα =

∏
β∈S(α) rβ. Then

n = O

 ∑

α∈L(T)

mαzαc +
∑

α/∈L(T)

zαc

∏

β∈S(α)

rβ


 up to log factors.

121

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

The choice of zαc is tricky as mentioned in the discussions made above. Therefore, we rely on

the adaptive strategy from Algorithm 5.1. Assuming (as in [72]), that the number of samples zαc

necessary to control the reconstruction error of the empirical α-principal subspace is proportional

to rα (that is observed in many practical applications), the total number of samples n is

n =
∑

α∈T

Nα =
∑

α∈T

O(mα log(mα)rα)

=
∑

α∈L(T)

O(mα log(mα)rα) +
∑

α/∈L(T)

O(rα

∏

β∈S(α)

rβ

∑

β∈S(α)

log(rβ))

= O(
∑

α∈L(T)

mαrα +
∑

α/∈L(T)

rα

∏

β∈S(α)

rβ) up to log factors

= O(S(T, r,m)),

where S(T, r,m), r = {rα}α∈T , m = {mα}α∈L(T) is the storage complexity of the tree-based tensor

format T T
r (V), defined by

S(T, r,m) =
∑

α∈L(T)

mαrα +
∑

α/∈L(T)

rα

∏

β∈S(α)

rβ. (5.18)

5.3.4 Heuristics used in practice

According to Lemma 5.8, the error of approximation is bounded in expectation by

E(‖u− u⋆‖2) ≤
∑

α∈T \{D}

(2C1)l(α)
E(‖QVαu− PÛ⋆

α
QVαu‖2) +

∑

α∈L(T)

1

2
(2C1)l(α)+1eα,dis

mα
(u)2.

The term E(‖QVαu−PÛ⋆
α
QVαu‖2) includes the error due to the truncation and estimation of the α-

principal subspaces. The term eα,dis
mα

(u) is the discretization error made in the leaves, which comes

from the introduction of finite-dimensional subspaces. These two contributions are amplified by

constants depending on the boosted least-squares projection and the chosen tree. In the proposed

adaptive strategies, to obtain a certain precision ε, we have to take the constants into account.

Assuming that we want to reach a final error having the precision ε2, according to Lemma 5.8 the

following assumptions are now considered:

• For all α ∈ T \ D, the term E(‖QVαu − PÛ⋆
α
QVαu‖2) is controlled with Algorithm 5.1 with

prescribed tolerance ε2
pca i.e.

E(‖QVαu− PÛ⋆
α
QVαu‖2) ≤ ε2

pca :=
ε2

(2C1)l(α)(#T − 1)
,

where #T is the number of nodes in the tree.

• For α ∈ {1, . . . , d}, the discretization errors eα,dis
mα

(u) can be controlled by adapting the spaces

122

5.3. Learning tree tensor networks using PCA

Vα, using the adaptive boosted optimal least-squares strategy described in Chapter 3, for the

construction of a sequence of boosted least-squares projections adapted to the sequence of

approximation spaces. For polynomial approximation, the sequence of nested approximation

spaces is simply constructed by increasing the polynomial degree one by one. For wavelet

approximation, it can be defined by increasing the resolution. The difficulty is that we have to

perform this strategy for each sample k of the function-valued random variable QVαu(·, xk
αc).

To make things clearer the strategy is described in Algorithm 5.3.

Algorithm 5.3 Algorithm for adaptive approximation of u(·, xk
αc) in a leaf.

Inputs: desired tolerance εdis, a sequence of nested approximation spaces (V j
α)j≥1.

Outputs: aα the vector corresponding to the coefficients of the kth realization of Q
V j

α
u(·, xk

αc) in

the orthonormal basis of V j
α , with j depending on the desired tolerance ε.

Set E =∞
while E > εdis do

Compute the coefficients aα of the boosted least-squares projection Q
V j

α
u(·, xk

αc) in the or-

thonormal basis of V j
α

Set E =
aα

p√∑p

i=1
(aα

i
)2

Set j = j + 1
end while

For all α ∈ L(T), the term eα,dis
mα

(u) is controlled with Algorithm 5.3, using for all α ∈ L(T)

eα,dis
mα

(u)2 ≤ ε2
dis :=

ε2

1
2(2C1)l(α)+1d

.

Thus, under all these assumptions, we should get the desired accuracy for E(‖u−u⋆‖2). In practice,

for small values of ε, εpca and εdis may be very small. Indeed when choosing the boosted least-

squares projection the constant C1 defined in Theorem 5.4 may be very high, particularly if the

number of repetitions M is high or the proportion pr of removed points is important or when l(α)

is high (the case when using deep trees or when d > 1, l(α) ∼ d for linear trees). As a consequence

the ranks rα and the number of samples zαc necessary to determine the α-principal subspaces may

be high, and the dimension of the approximation spaces in the leaves may be high too.

In practice, we make the following heuristic choices:

• We replace the constant C1 = 2(1+pr(1−δ)−1(1−ηM)−1M) by C1 = 2(1+(1−δ)−1(1−η)−1),

which corresponds to the boosted optimal weighted least-squares projection from Theorem

5.4, with no repetition (M = 1) and no subsampling (pr = 1). In Chapter 2 (see [52]), we

observed on all the examples (without noise) that these two choices give comparable accuracy

123

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

for the error of approximation. This leads us to take the value C1 = (1− δ−1)(1− η−1) even

when there are repetitions and subsampling.

• When l(α) ≥ 3, we replace l(α) = 3 in the expressions of εdis and εpca. (In all the examples of

this chapter the depth of the tree is lower or equal to 3 so that this heuristic does not apply

but we have observed on some examples that taking l(α) = 1 is not enough to control the

precision).

5.4 Numerical examples

5.4.1 Notations and objectives

This numerical section aims at showing the efficiency of the following three contributions:

• Replacing a non-controlled projection (for example empirical interpolation as in [65]) by the

boosted least-squares projection presented in Chapter 2, for which we obtained a bound in

expectation of the approximation error. We choose the same parameters for this projection

in all the numerical examples: M = 100, δ = 0.9 and η = 0.01. The maximal proportion of

samples to be removed pr equals mα

nα
, implying that points are removed while the stability

condition is verified.

• Using the adaptive strategy for the determination of the approximation spaces in the leaves

(described in Algorithm 5.3), thanks to the adaptive boosted least-squares strategy from

Chapter 3.

• Using the adaptive strategy for the estimation of the α-principal components presented in

Algorithm 5.1. In this whole numerical part, the sampling factor kP CA is always taken equal

to 3, it is an arbitrary choice. When the principal components are not adaptively chosen, we

simply take zαc = mα (using notations from Algorithm 5.1).

To illustrate the efficiency of the strategies, we assess the quality of the approximation u⋆ of a

function u ∈ L2
µ(X) by estimating the error of approximation by

ε(u⋆) =

(
1

ntest

∑

x∈xtest

(u(x)− u⋆(x))2

)1/2

.

In practice, we choose ntest = #xtest = 1000. To study the robustness of the methods, we com-

pute 10 times the approximations and draw 10 different test samples xtest and compute empirical

confidence intervals of level 10% and 90% for the errors of approximation.

124

5.4. Numerical examples

5.4.2 Adaptive determination of the approximation spaces in the leaves

Henon-Heiles potential

The discretization error made in the leaves depends on the approximation spaces we choose. In this

section we focus on polynomial approximation spaces and we use the adaptive strategy presented

in Algorithm 5.3 to select the polynomial degree p necessary to reach the desired discretization

error εdis.

In this section, we consider the Henon-Heiles potential (see [62]) defined on X = R
d equipped

with the standard gaussian measure µ and d = 8.

u(x1, . . . , xd) =
1

2

d∑

i=1

x2
i + σ⋆

d−1∑

i=1

(xix
2
i+1 − x3

i) +
σ⋆

16

d−1∑

i=1

(x2
i + x2

i+1)2,

with σ⋆ = 0.2. We consider polynomial approximation spaces Vν = Pp(Xν), ν ∈ D. The Henon-

Heiles function is such that there is no discretization error for p ≥ 4.

Without basis adaptation With basis adaptation
p = 15 p = 4

S n S n S n
Interpolation [761; 761] [1097; 1097] [431; 431] [591; 591] [461; 461] [717; 717]

Boosted Least-squares [761; 761] [1108; 1109] [431; 431] [591; 591] [461; 461] [719; 720]

Table 5.1 – Comparison of the number of samples n without and with basis adaptation necessary
to get an approximation error ε = 10−14, using respectively interpolation with magic points and
boosted least-squares as projections. The α-principal components are estimated with zαc = mα.

Table 5.1 compares the storage complexity S, the number of evaluations n in three cases,. In

the first two cases, there is no basis adaptation and we use respectively p = 15 and p = 4 such

that in both cases there is no discretization error. In the third case, there is an adaptation of the

basis (thanks to Algorithm 5.3) with maximal polynomial degree p = 15. We observe that this

adaptive basis strategy select a polynomial degree p = 5 for each leaf. This is due to the fact that

the stopping criterion of the algorithm is based on E , see Algorithm 5.3.

125

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

5.4.3 Adaptive estimation of the α-principal components subspaces

Borehole function

We consider the Borehole function

u(x1, . . . , x8) =
2πx3(x4 − x6)

(x2 − log(x1))
(

1 + 2x7x3

(x2−log(x1))x2
1x8+

x3
x4

)

which models the water flow through a borehole as a function of 8 independent random vari-

ables X1 ∼ N (0.1, 0.0161812), X2 ∼ N (7.71, 1.0056), X3 ∼ U(63070, 115600), X4 ∼ U(990, 1100),

X5 ∼ U(63.1, 116), X6 ∼ U(700, 820), X7 ∼ U(1120, 1680), X8 ∼ U(9855, 12045).

We use polynomial approximation spaces Vν = Pp(Xν), ν ∈ D, with p adaptively chosen such that

there is a negligible discretization error.

We construct the approximation of u in a tree-based tensor format with a balanced binary tree,

using Algorithm 5.2.

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-2.8; -1.3] -1.8 [41; 51] [512; 518]
-3 [-3.1; -2.7] -2.9 [59; 72] [569; 593]
-4 [-3.6; -3.2] -3.4 [124; 131] [695; 721]
-5 [-3.9; -3.5] -3.7 [137; 146] [770; 788]
-6 [-5.4; -3.9] -4.7 [173; 200] [880; 926]
-7 [-6.1; -5.4] -5.8 [293; 377] [1101; 1301]
-8 [-6.9; -6.5] -6.7 [413; 451] [1442; 1554]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-3; -1.4] -2.2 [45; 51] [206; 212]
-3 [-3.2; -2] -2.6 [54; 93] [218; 264]
-4 [-4.3; -2.9] -3.5 [99; 140] [275; 320]
-5 [-5.4; -3.7] -4.6 [150; 183] [337; 370]
-6 [-5.6; -5] -5.3 [196; 245] [389; 440]
-7 [-6.2; -5.5] -5.8 [293; 418] [500; 638]
-8 [-7.9; -6.6] -7.3 [468; 564] [694; 791]

(b) With adaptive estimation of the principal components.

Table 5.2 – Borehole function. Approximation using interpolation as projections with a balanced
binary tree, with a prescribed tolerance εpca = ε for the estimation of the principal components.
Confidence intervals for relative error ε(u⋆), storage complexity S, number of evaluations n.

Table 5.2 shows that choosing ε2
pca = ε2 and using interpolation does not provide an approx-

imation error that is lower than ε. In this case, the adaptive strategy for the estimation of the

principal components performs better (in the sense that the obtained approximation error is lower)

126

5.4. Numerical examples

than in the non adaptive case and this with fewer evaluations.

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-3.6; -3.4] -3.5 [123; 127] [699; 705]
-3 [-4.3; -3.5] -3.9 [135; 156] [769; 800]
-4 [-5.4; -4.9] -5.2 [195; 208] [876; 928]
-5 [-6.2; -5.5] -5.8 [306; 365] [1102; 1270]
-6 [-7.1; -6.6] -6.8 [405; 450] [1422; 1533]
-7 [-8.0; -6.9] -7.5 [527; 603] [1642; 1831]
-8 [-9.2; -8.1] -8.7 [727; 815] [2049; 2325]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-4.4; -2.8] -3.5 [105; 140] [279; 323]
-3 [-5.3; -3.3] -4.5 [159; 181] [343; 370]
-4 [-5.5; -5.2] -5.4 [206; 273] [399; 471]
-5 [-6.0; -5.5] -5.7 [326; 417] [534; 636]
-6 [-7.9; -6.4] -7.1 [482; 561] [708; 791]
-7 [-9; -8.1] -8.5 [641; 808] [876; 1061]
-8 [-9.2; -8.7] -8.9 [751; 939] [1003; 1203]

(b) With adaptive estimation of the principal components.

Table 5.3 – Borehole function. Approximation using interpolation as projections with a balanced
binary tree, with a prescribed tolerance for each α ∈ T ε2

pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
for

the estimation of the principal components. Confidence intervals for relative error ε(u⋆), storage
complexity S, number of evaluations n.

Table 5.3 shows that for each α ∈ T , choosing ε2
pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
and using

interpolation provides a controlled approximation error (lower than ε), both when the principal

components are adaptively determined or not. However using the adaptive strategy, strongly re-

duces the number of samples.

We can draw the same conclusions from Table 5.4. For each α ∈ T , choosing

ε2
pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
and using the boosted optimal weighted least-squares projec-

tion (even with M = 100 repetitions and subsampling) provides a controlled approximation error.

Furthermore the adaptive strategy for principal components estimation strongly reduces the num-

ber of samples necessary to reach the desired accuracy. We also notice that the obtained error is

about 10 times smaller than the desired ε.

In this particular example, we observe that for a given ε, the obtained error is smaller using

the boosted least-squares projection than using the interpolation but the number of evaluations is

also slightly larger.

127

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-4.9; -4.4] -4.6 [167; 169] [1028; 1068]
-3 [-5.3; -4.6] -4.9 [167; 194] [1022; 1079]
-4 [-6.1; -5.2] -5.7 [211; 230] [1094; 1129]
-5 [-6.4; -6.1] -6.2 [305; 349] [1195; 1321]
-6 [-7.9; -7.1] -7.5 [424; 476] [1505; 1616]
-7 [-9; -7.7] -8.3 [534; 617] [1637; 1855]
-8 [-9.4; -9.1] -9.2 [809; 909] [2340; 2665]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-4.9; -3.1] -3.8 [141; 177] [342; 379]
-3 [-5.9; -4.1] -5.1 [182; 223] [388; 428]
-4 [-6; -5.6] -5.8 [232; 264] [435; 476]
-5 [-6.5; -6.0] -6.2 [335; 442] [555; 675]
-6 [-8.8; -6.6] -7.7 [518; 629] [756; 871]
-7 [-9.2; -7.2] -8.5 [718; 819] [964; 1136]
-8 [-9.6; -8.9] -9.2 [1046; 1297] [1418; 1940]

(b) With adaptive estimation of the principal components.

Table 5.4 – Borehole function. Approximation using boosted least-squares as projections with a bal-
anced binary tree, with a prescribed tolerance for each α ∈ T ε2

pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)

for the estimation of the principal components. Confidence intervals for relative error ε(u⋆), storage
complexity S, number of evaluations n.

Anisotropic multivariate function

We consider the following function in dimension d = 6 :

u(x) =
1

(10 + 2x1 + x3 + 2x4 − x5)2
(5.19)

defined on X = [−1, 1]d, equipped with the uniform measure.

We also consider the polynomial approximation spaces Vν = Pp(Xν), with p chosen adaptively such

that there is no discretization error (p ≤ 15). We construct the approximation in a hierarchical

tensor format with a balanced binary tree using Algorithm 5.2.

The conclusions for the Anisotropic function are similar to the one made for the Borehole func-

tion except for small desired tolerances ε.

Table 5.5 shows that choosing ε2
pca = ε2 and using interpolation does not provide an approx-

imation error that is lower than ε. In this case, the adaptive strategy for the estimation of the

principal components performs better (in the sense that the obtained approximation error is lower)

than in the non adaptive case and this with fewer evaluations.

128

5.4. Numerical examples

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-1.8; -0.8] -1.4 [66; 70] [468; 492]
-3 [-2.1; -1.6] -1.9 [111; 132] [586; 650]
-4 [-3.0; -2.3] -2.7 [160; 201] [715; 833]
-5 [-3.5; -3.1] -3.3 [250; 284] [944; 1080]
-6 [-4.5; -3.2] -3.8 [343; 400] [1194; 1449]
-7 [-5.2; -4.1] -4.7 [590; 700] [1597; 1999]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-1.7; -0.7] -1.3 [53; 74] [180; 204]
-3 [-2.3; -1.6] -1.9 [105; 153] [241; 292]
-4 [-3.2; -1.8] -2.5 [175; 211] [313; 361]
-5 [-4.1; -3] -3.6 [251; 365] [416; 533]
-6 [-4.7; -3.8] -4.2 [385; 490] [545; 655]
-7 [-5.7; -4.1] -4.8 [680; 875] [702; 895]

(b) With adaptive estimation of the principal components.

Table 5.5 – Anisotropic function. Approximation using interpolation as projections with a pre-
scribed tolerance for each α ∈ T ε2

pca = ε2 for the estimation of the principal components. Confi-
dence intervals for relative error ε(u⋆), storage complexity S, number of evaluations n.

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-3.3; -2.1] -2.8 [164; 185] [708; 781]
-3 [-3.7; -2.9] -3.3 [202; 263] [814; 1046]
-4 [-4.8; -3.4] -4.1 [333; 364] [1137; 1348]
-5 [-5.3; -4.1] -4.7 [450; 488] [1707; 1852]
-6 [-6.4; -4.6] -5.5 [566; 681] [2012; 2657]
-7 [-6.7; -5.4] -6 [855; 965] [2658; 3243]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√

E(ε(u⋆)2)) S n
-2 [-3.2; -1.7] -2.4 [129; 205] [269; 357]
-3 [-3.9; -2.5] -3.2 [240; 391] [395; 556]
-4 [-4.5; -3.3] -3.9 [399; 540] [557; 717]
-5 [-5.6; -4.3] -4.9 [526; 843] [705; 1042]
-6 [-6.3; -4.9] -5.5 [758; 1025] [959; 1223]
-7 [-7.3; -5.8] -6.5 [1070; 1461] [1124; 1520]

(b) With adaptive estimation of the principal components.

Table 5.6 – Anisotropic function. Approximation using interpolation as projections with a balanced
binary tree, with a prescribed tolerance for each α ∈ T ε2

pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
for

the estimation of the principal components. Confidence intervals for relative error ε(u⋆), storage
complexity S, number of evaluations n.

Table 5.6 shows that for each α ∈ T , choosing ε2
pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
and using

129

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

interpolation does not provide a controlled approximation error for the small values of ε (i.e log(ε)

lower than −4), both when the principal components are adaptively determined or not. However

using the adaptive strategy, strongly reduces the number of samples.

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-3.7; -2.3] -3.2 [213; 232] [759; 819]
-3 [-3.8; -2.8] -3.3 [253; 292] [837; 944]
-4 [-5.0; -3.4] -4.2 [321; 408] [981; 1275]
-5 [-5.1; -4.3] -4.6 [426; 507] [1353; 1692]
-6 [-5.8; -4.9] -5.4 [551; 656] [1823; 2329]
-7 [-6.7; -5.3] -6.0 [735; 875] [2851; 3791]

(a) Without adaptive estimation of the principal components.

log(ε) log(ε(u⋆)) log(
√
E(ε(u⋆)2)) S n

-2 [-3.6; -2.3] -3 [193; 270] [328; 403]
-3 [-5.0; -3.3] -4.1 [309; 430] [455; 579]
-4 [-4.9; -3.8] -4.4 [385; 531] [534; 697]
-5 [-6.2; -4.4] -5.3 [588; 805] [751; 985]
-6 [-6.7; -5.5] -6.1 [827; 1268] [1028; 1503]
-7 [-7.7; -6.2] -7.0 [1203; 1861] [1463; 2230]

(b) With adaptive estimation of the principal components.

Table 5.7 – Anisotropic function. Approximation using boosted least-squares as projec-
tions with a balanced binary tree, with a prescribed tolerance for each α ∈ T ε2

pca =
ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
for the estimation of the principal components. Confidence inter-

vals for relative error ε(u⋆), storage complexity S, number of evaluations n.

Table 5.7 shows that for each α ∈ T , choosing ε2
pca = ε2

(2(1+(1−δ)−1(1−η)−1))l(α)(#T −1)
and using

the boosted optimal weighted least-squares projection (even with M = 100 repetitions and subsam-

pling) provides a controlled approximation error. Furthermore the adaptive strategy for principal

components estimation strongly reduces the number of samples necessary to reach the desired ac-

curacy.

5.5 Conclusions

In this chapter, we have proposed an algorithm to construct the approximation of a function u in

tree-based tensor format T T
r (V) with V =

⊗d
ν=1 Vν some approximation spaces possibly selected

adaptively. Using adaptive strategies for the control of the discretization error, the control of

the α-ranks and the estimation of the principal components we are able to provide a controlled

approximation of the function u, assuming we have a sufficiently high number of evaluations. The

theoritical criteria used to control the approximation appear to be very pessimistic for two reasons:

130

5.5. Conclusions

• As underlined in Chapter 2, the constant of quasi-optimality C1 of the boosted least-squares

projection is loose compared to what we observe in practice.

• The proof of Theorem 5.9 leads to a bound with the constant C1 to the power of the depth

of the tree.

On the studied examples, these two observations turn out to be pessimistic. However, as this bound

has been etablished for any function from L2
µ, some functions may indeed verify this bound (we

have just not found them yet).

Appendix

An important question that is not fully answered yet is to be able to give the number of samples

necessary for the algorithm 5.2 to construct an approximation with controlled precision (under

some assumptions of the function class and the choice of the approximation tool T T
r (V)). In this

appendix we give some results on particular classes of functions that may be useful in future work

to answer the question of the number of evaluations in totality.

Error bounds for Sobolev spaces

Corollary 5.10. We consider u ∈W s,2
µ .

• Assume that for all α ∈ T , QVα is the boosted optimal weighted least-squares projection

verifying the condition from Lemma 5.3.

• Assume that for all α ∈ T \D, the empirical reconstruction error verifies,

E(‖QVαu− PÛ⋆
α
QVαu‖2|QVαu) ≤ C2E(‖QVαu− PU⋆

α
QVαu‖2|QVαu),

where C2 is a constant.

• Also assume that for all α ∈ T \D, the α-rank rα verifies

rα ≥
(
ε√
2

)−dα/s (
C2(#T − 1)(2C1)l(α)+1C(s, dα)2

)dα/(2s)
(⋆)

with C(s, dα) a constant depending on s and dα = min{#α, d−#α}

• For all ν ∈ L(T), the approximation space Vν is such that

‖u− PVνu‖2 ≤ m−2s
ν ‖u‖2

W s,2
µ
, (o)

131

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

and we assume that for ν ∈ L(T), mν ≥ ε−1/s(
√
d(2C1)l(ν)+1)1/s.

Then the error of approximation is bounded in expectation,

E(‖u− u⋆‖2) ≤ ε2‖u‖2
W s,2

µ
, (5.20)

Proof. Thanks to the two first hypotheses, it holds,

E(‖u− u⋆‖2) ≤ C2

∑

α∈T \D

1

2
(2C1)l(α)+1eα

rα
(u)2 +

∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

Proposition 4.6 states that

eα
rα

(u)2 ≤ C2

(
C(s, dα)r−s/dα

α ‖u‖
W s,2

µ

)2
.

Using the hypothesis (⋆) it comes,

eα
rα

(u)2 ≤ 1

2
C−1

2 (#T − 1)−1(2C1)−(l(α)+1)ε2‖u‖2
W s,2

µ
.

Replacing in the expression of the error bound, it comes

E(‖u− u⋆‖2) ≤ 1

2
ε2‖u‖2

W s,2
µ

+
∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

For the second term in the bound, using (o) and mν ≥ ε−1/s(
√
d(2C1)l(α)+1)1/s, it comes

‖u− PVαu‖2 ≤ (#T − 1)−1(2C1)−(l(α)+1)ε2‖u‖2
W s,2

µ
.

All in all the final error bound becomes

E(‖u− u⋆‖2) ≤ ε2‖u‖2
W s,2

µ
. (5.21)

Error bounds for mixed Sobolev spaces

Corollary 5.11. We consider u ∈W s,2
µ,mix.

• Assume that for all α ∈ T , QVα is the boosted optimal weighted least-squares projection

verifying the condition from 5.3.

• Assume that for all α ∈ T \D, the empirical reconstruction error verifies

E(‖QVαu− PÛ⋆
α
QVαu‖2|QVαu) ≤ C2E(‖QVαu− PU⋆

α
QVαu‖2|QVαu),

132

5.5. Conclusions

where C2 is a constant.

• Also assume that for all α ∈ T \D, the α-rank rα verifies

rα ≥ c(ε, d)(C(s, dα)(#T − 1)−1(2C1)−l(α))1/2ss−d+1ε−1/2s log(ε−1)d−2 (⋆)

• For all ν ∈ L(T) the approximation space Vν is such that

‖u− PVνu‖2 ≤ m−2s
ν ‖u‖2

W s,2
µ,mix

, (o)

and we assume that for ν ∈ L(T), mν ≥ ε−1/s(
√
d(2C1)l(ν)+1)1/s.

Then the error of approximation is bounded in expectation,

E(‖u− u⋆‖2) ≤ ε2‖u‖2
W s,2

µ,mix

, (5.22)

Proof. The beginning of the proof is the same than for the corollary 5.10.

Thanks to the two first hypotheses, it holds

E(‖u− u⋆‖2) ≤ C2

∑

α∈T \D

1

2
(2C1)l(α)+1eα

rα
(u)2 +

∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

Proposition 4.7 states that

eα
rα

(u)2 ≤ (C(s, dα)r−s
α log(rα)s(dα−1))2‖u‖2

W s,2
µ,mix

, dα = min{#α, d−#α}.

Using the hypothesis (⋆) it comes,

eα
rα

(u)2 ≤ C−1
2 (#T − 1)−1(2C1)−(l(α)+1)ε2‖u‖2

W s,2
µ,mix

.

Replacing in the expression of the error bound, it comes

E(‖u− u⋆‖2) ≤ 1

2
ε2‖u‖2

W s,2
µ,mix

+
∑

α∈L(T)

1

2
(2C1)l(α)+1‖u− PVαu‖2.

For the second term in the bound, using (o) and mν ≥ ε−1/s(
√
d(2C1)l(α)+1)1/s, it comes

‖u− PVαu‖2 ≤ (#T − 1)−1(2C1)−(l(α)+1)ε2‖u‖2
W s,2

µ,mix

.

133

Chapter 5 – Principal Component Analysis for Tree-based tensor formats

All in all the final error bound becomes,

E(‖u− u⋆‖2) ≤ ε2‖u‖2
W s,2

µ,mix

. (5.23)

134

5.5. Conclusions

{1, 2, 3, 4, 5}

{1, 2, 3}

V1

{2, 3}

V2 V3

{4, 5}

V4 V5

1. Introduction of finite dimensional
subspaces V1, . . . , V5.

{1, 2, 3, 4, 5}

{1, 2, 3}

Û⋆
1

{2, 3}

Û⋆
2 Û⋆

3

{4, 5}

Û⋆
4 Û⋆

5

2. Construction of low-dimensional
subspaces Û⋆

α ⊂ Vα

{1, 2, 3, 4, 5}

{1, 2, 3}

Û⋆
1

V23 = Û⋆
2 ⊗ Û⋆

3

Û⋆
2 Û⋆

3

V45 = Û⋆
4 ⊗ Û⋆

5

Û⋆
4 Û⋆

5

3. Leaves-to-root
tensorization of the Uα

{1, 2, 3, 4, 5}

{1, 2, 3}

Û⋆
1

Û⋆
23

Û⋆
2 Û⋆

3

Û⋆
45

Û⋆
4 Û⋆

5

4. Construction of low-dimensional
subspaces Uα ⊂ Vα

{1, 2, 3, 4, 5}

V123 = Û⋆
1 ⊗ Û⋆

23

Û⋆
1

Û⋆
23

Û⋆
2 Û⋆

3

Û⋆
45

Û⋆
4 Û⋆

5

5. Leaves-to-root
tensorization of the Uα

{1, 2, 3, 4, 5}

Û⋆
123

Û⋆
1

Û⋆
23

Û⋆
2 Û⋆

3

Û⋆
45

Û⋆
4 Û⋆

5

6. Construction of low-dimensional
subspaces Uα ⊂ Vα

{1, 2, 3, 4, 5}

Û⋆
123

Û⋆
1

Û⋆
23

Û⋆
2 Û⋆

3

Û⋆
45

Û⋆
4 Û⋆

5

7. Computation of the final
approximation u⋆ in Û⋆

123 ⊗ Û⋆
45.

Figure 5.1 – Illustration of the leaves-to-root algorithm 5.2 for the construction of the approximation
of a function in tree-based tensor format.

135

Chapter 6

TREE ADAPTATION

Contents

6.1 Introduction . 137

6.2 Estimation of α-ranks . 139

6.2.1 Principle and algorithm . 139

6.2.2 Numerical illustration . 141

6.3 Leaves-to-root construction of the tree with local deterministic opti-

mizations . 143

6.3.1 Max-mean rank strategy . 143

6.3.2 Ballani and Grasedyck’s strategy . 145

6.4 Leaves-to-root construction of the tree with local stochastic optimiza-

tions . 146

6.4.1 Principle and algorithm . 146

6.4.2 Illustration of the algorithm . 147

6.4.3 Illustration of the choices of the parameters 147

6.5 Adaptation of the tree with global stochastic optimizations 150

6.5.1 Principle and algorithm . 150

6.5.2 Illustration of the algorithm . 150

6.5.3 Illustration of the choice of the parameters 151

6.6 Numerical examples . 153

6.7 Conclusions . 157

6.1 Introduction

The choice of the tree may have a significant impact on the complexity required to reach a certain

precision. In this chapter, we introduce different strategies for tree adaptation.

The purpose of the following example is to show the influence of the choice of a particular di-

mension partition tree T on the number of evaluations n necessary to compute the approximation

137

Chapter 6 – Tree adaptation

u⋆ with a desired precision ε.

We consider X = [−1, 1]d, equipped with the uniform measure and the function u, which is the

sum of bivariate functions defined as follows,

u(x) = g(x1, x2) + g(x3, x4) + . . .+ g(xd−1, xd), where g(xν , xν+1) =
3∑

i=0

xi
νx

i
ν+1. (6.1)

We consider V =
⊗d

ν=1 P4(X ν), so that there is no discretization error in T T
r (V).

We compare the case when T is a balanced tree over {1, . . . , d} and when it is a balanced tree

over a permutation of {1, . . . , d} (see respectively Figures 6.1 and 6.2 for an illustration in the case

d = 8), the α-ranks are also represented respectively on Figures 6.1 and 6.2. We observe that the

α-ranks are higher with the permuted tree.

{1} {2} {3} {4} {5} {6} {7} {8}

1

2

2

4 4

2

4 4

2

2

4 4

2

4 4

Figure 6.1 – On the left balanced tree over {1, . . . , d} and on the right the α-ranks are noticed with
the nodes for the sum of bivariate functions defined by (6.1) with d = 8.

{2} {4} {6} {8} {1} {3} {5} {7}

1

13

7

4 4

7

4 4

13

7

4 4

7

4 4

Figure 6.2 – On the left balanced tree over a permutation of {1, . . . , d} and on the right the α-ranks
are noticed with the nodes for the sum of bivariate functions defined by (6.1) with d = 8.

As explained in Section 5.3.3 from Chapter 5, the number of evaluations n necessary to get

a desired accuracy ε using Algorithm 5.2 depends on the α-ranks required for such accuracy, and

this for all α ∈ T . For a given precision ε, the α-ranks of the leaves are independent of the choice of

the tree T . To reduce the number of evaluations n we propose to look for strategies which reduce

the α-ranks rα, for all interior nodes α ∈ T \ L(T). Several possibilities are considered,

138

6.2. Estimation of α-ranks

• either we minimize the maximum of the α-ranks,

• or we minimize a functional which expresses the storage complexity of the tensors associated

with the interior nodes

C(r, T) =
∑

α/∈L(T)

rα

∏

β∈S(α)

rβ. (6.2)

As the number of possible trees T scales exponentially in the dimension d, finding the best tree

(i.e. the tree that optimizes one of the above criteria) is a combinatorial problem and the global

cost, due to the estimations of the α-ranks, for the search of the best tree among all the possibilities

is not affordable in the context of costly evaluations.

In this chapter, we propose three different strategies to find a tree T with the objective of

reducing the number of evaluations necessary to get a certain accuracy. First, we present two

strategies that include tree optimization inside the algorithm for the construction of the approxi-

mation (Algorithm 5.2 presented in Chapter 5). As the algorithm goes from the leaves to the root,

the number of possible trees (and thus the number of α-ranks to be evaluated) decreases sharply.

This is why we propose both a stochastic strategy, (in Section 6.4) and a deterministic strategy

which will explore a larger number of trees, (in Subsection 6.3.1). Then, we also propose in Section

6.5 a global stochastic strategy inspired from [48] which explores several dimension trees and selects

the one minimizing the complexity functional given by Equation (6.2).

6.2 Estimation of α-ranks

6.2.1 Principle and algorithm

Performing tree optimization requires the estimations of α-ranks rα(ε) for reaching a precision ε.

These estimations require evaluations of the function u and this cost (denoted noptim) should be

reasonable, with respect to the number of evaluations required for constructing the approximation,

denoted n. In [10], the authors propose a strategy based on an adaptive cross approximation tech-

nique [11] to estimate the α-ranks.

In the following algorithm, we propose a strategy to estimate the α-ranks rα(ε) to achieve an

empirical relative error ε, based on leave-one-out cross validations. To do this, we consider the

matrix of the evaluations of u, Bα = {u(xl
α, x

k
αc) : 1 ≤ l ≤ zα, 1 ≤ k ≤ zαc} where {xl

α}zα

l=1 are i.i.d

samples of Xα and {xk
αc}zαc

k=1 are i.i.d samples of Xαc . We introduce Bα
\i, the matrix Bα without

the column i, which admits a singular value decomposition

Bα
\i =

∑

k≥1

σ\i,k
α v\i,k

α (v\i,k
αc)T , (6.3)

139

Chapter 6 – Tree adaptation

where σ\i,k
α are the singular values sorted in decreasing order, v

\i,k
α and v

\i,k
αc are respectively the

left and right singular vectors of Bα
\i. For all r ∈ J1 ; min(zα, zαc)K, let V α

\i,r be the matrix whose

columns are (vα
\i,1, . . . ,v

α
\i,r), the rank rα(ε) is estimated as the minimal integer such that

1

zαc

zαc∑

i=1

‖Bα
i − V α

\i,rα(ε)(V
α

\i,rα(ε))
T Bα

i ‖22 ≤ ε2 1

zαc

zαc∑

i=1

‖Bα
i ‖22, (6.4)

where Bα
i denotes the ith column of Bα.

Estimating the α-ranks with a small precision ε may require many evaluations. It is important to

underline that to perform tree optimization we do not need to know the exact value of rα(ε) but

we want to have an estimation accurate enough to detect whether rα(ε) is high or not. Therefore,

rα is estimated with a coarse precision εc. The whole strategy is described in the Algorithm 6.1.

Algorithm 6.1 Determination of the ranks rα(εc) of a function u

Inputs: coarse tolerance εc, function u, tuple α, product measure µ, nα and nαc

Outputs: rα and cost = zαzαc

Generate zα i.i.d samples {xi
α}zα

i=1 from the measure µα

Generate zαc = 1 sample {xj
αc}zαc

j=1 from the measure µαc

Evaluate the function u on the grid {(xi
α, x

j
αc) : 1 ≤ i ≤ zα, 1 ≤ j ≤ zαc} and set Bα =

(u(xi
α, x

j
αc))

Set r = 0 and E(r) =∞
while E(r) > εc and zαc ≤ nαc do

Set zαc ← zαc + 1
Sample {xzαc

αc } from the measure µαc

Update Bα = [Bα, bα], with bα the vector corresponding to the evaluations of u on the grid
{(xi

α, x
zαc

αc) : 1 ≤ i ≤ zα}
while (E(r) > εc and r < min(nα, zαc)) do

Set r ← r + 1
for i = 1, . . . , zαc do

Determine the matrix V α
\i,r of r left singular vectors of Bα

\i.
end for
Set

E(r)2 =

∑zαc

i=1 ‖Bα
i − V α

\i,r(V α
\i,r)T Bα

i ‖22∑zαc

i=1 ‖Bα
i ‖22

(6.5)

end while
end while
Set rα = min{1 ≤ k ≤ r : E(k) ≤ εc}

140

6.2. Estimation of α-ranks

6.2.2 Numerical illustration

In this section, to study the efficiency of Algorithm 6.1 we consider two numerical examples and we

observe how well the algorithm estimates the α-ranks. The robustness of the algorithm is evaluated

by repeating the algorithm 10 times and computing empirical confidence intervals of level 10% and

90% for the estimated rα(ε) and the associated cost.

Sum of a bivariate functions (with separated variables).

We consider X = [−1, 1]d, with d = 16, equipped with the uniform measure and the function u

defined by (6.1). Again, we consider V =
⊗d

ν=1 P3(X ν), so that there is no discretization error. We

want to estimate the α-ranks, for α = {1, 2}, α = {1, 3} and α = {1, 3, 5, 7} and this for different

values of the coarse precision εc. In this case, the α-ranks are exactly known and the results are

presented in Table 6.1.

α12 (rα12 = 2) α13 (rα13 = 8) α1357 (rα1357 = 16)
εc rα cost rα cost rα cost

0.05 [1; 1] [20; 20] [1; 3] [20; 40] [3; 5] [40; 60]
0.01 [1; 2] [20; 30] [3; 6] [40; 70] [7; 9] [80; 100]
0.001 [1; 2] [20; 30] [6; 7] [70; 80] [9; 9] [100; 100]
10−14 [2; 2] [30; 30] [7; 8] [80; 90] [9; 9] [100; 100]

(a) d = 16, nα = nαc = 10

α12 (rα12 = 2) α13 (rα13 = 8) α1357 (rα1357 = 16)
εc rα cost rα cost rα cost

0.05 [1; 1] [40; 40] [1; 3.5] [40; 90] [3; 6] [80; 140]
0.01 [1; 2] [40; 60] [3; 6] [80; 140] [8; 10.5] [180; 230]
0.001 [2; 2] [60; 60] [6; 7] [140; 160] [12; 13] [260; 280]
10−14 [2; 2] [60; 60] [7; 8] [160; 180] [13; 14] [280; 300]

(b) d = 16, nα = nαc = 20

Table 6.1 – Illustration of Algorithm 6.1 for the sum of bivariate functions defined by (6.1) with
d = 16.

Table 6.1a presents the results when nα = nαc = 10. The α-ranks to reach ε are relatively

well estimated when εc ≤ 0.01. However, when εc = 0.05, we are barely able to distinguish the

high ranks from the others. When εc = 10−14, the rank is almost full regarding the values of

nα and nαc . Table 6.1b shows that the strategy can estimate ranks that are higher than 10,

when nα = nαc = 20, but the number of evaluations is also higher. In conclusion for this example,

choosing nα = nαc = 10 and εc = 10−2 give a rather good distinction between high and low α-ranks.

141

Chapter 6 – Tree adaptation

Chain function.

We consider X = [−1, 1]d, with d = 16 equipped with the uniform measure and the function u,

which is the sum of trivariate functions defined as follows,

u(x) = g(x1, x2, x3) + g(x2, x3, x4) + . . .+ g(xd−3, xd−2, xd−1) + g(xd−2, xd−1, xd), (6.6)

where g(xν , xν+1, xν+2) =
∑2

i=0 x
i
νx

i
ν+1x

i
ν+2. We consider V =

⊗d
ν=1 P3(X ν), so that there is

no discretization error. We want to estimate the α-ranks, for α = {1, 2}, α = {1, 3, 5, 7} and

α = {1, 2, 3, 4, 5, 6, 7, 8} and this for different values of the coarse precision εc.

α12 α1357 α12345678

εc rα cost rα cost rα cost
0.05 [1; 1] [20; 20] [1; 1.5] [20; 25] [1; 1] [20; 20]
0.01 [1; 3.5] [20; 45] [6; 8] [70; 90] [1.5; 4] [25; 50]
0.001 [3.5; 5] [45; 60] [9; 9] [100; 100] [4; 6] [50; 70]
10−14 [5; 5] [60; 60] [9; 9] [100; 100] [6; 6] [70; 70]

(a) d = 16, nα = nαc = 10

α12 α1357 α12345678

εc rα cost rα cost rα cost
0.05 [1; 1] [40; 40] [1; 1.5] [40; 50] [1; 1] [40; 40]
0.01 [1.5; 4] [50; 100] [6.5; 10] [150; 220] [1; 4] [40; 100]
0.001 [3; 5] [90; 120] [11.5; 13] [250; 280] [4.5; 6] [110; 140]
10−14 [5; 5] [120; 120] [13; 13.5] [280; 290] [6; 6] [140; 140]

(b) d = 16, nα = nαc = 20

Table 6.2 – Illustration of Algorithm 6.1 for the chain function defined by (6.6) with d = 16.

The conclusions that can be drawn for the chain function are similar to the one made for the

sum of bivariate functions. Choosing nα = nαc = 10 and εc = 10−2 give a rather good distinction

between the high and low α-ranks. Increasing nα and nαc to 20 do not provide a better estimation

of the α-ranks for εc = 10−2 and imposing εc = 10−3 is not competitive regarding the cost. The

conclusion for this example is the same than with the sum of bivariate functions. In the following

numerical examples, we thus choose nα = nαc = 10 and εc = 10−2.

142

6.3. Leaves-to-root construction of the tree with local deterministic optimizations

6.3 Leaves-to-root construction of the tree with local determinis-

tic optimizations

In this section, we present a leaves-to-root strategy, called max-mean rank algorithm, and the

strategy from [10], where the tree T is adaptively constructed (with local deterministic optimiza-

tion) during the algorithm 5.2 from Chapter 5.

6.3.1 Max-mean rank strategy

Let Λ = {α1, . . . , αl} be a partition of D = {1, . . . , d}. For Λ = {α1 . . . , αl} the algorithm

will compare all the possible pairings denoted K(Λ) (detailed hereafter) and select the one which

minimizes a certain rank-based criterion (also detailed hereafter). We consider K(Λ) = {β =

(αi, αj) : (i, j) ∈ {1, . . . , l}2, i 6= j} the set containing all possible pairings of two elements of

Λ. The cardinal of K(Λ) is equal to l(l−1)
2 . For each β ∈ K(Λ), we estimate all the β-ranks and

evaluate Rβc = 1
#K(Λ\β)

∑
γ∈K(Λ\β) rγ , with Λ\β := Λ\({α1}∪{α2}). We select β which minimizes

max{rβ, Rβc}. If several β are solutions of the minimization problem minβ∈K(Λ) max{rβ, Rβc}, β⋆

is selected at random among the minimizers and the strategy is not fully deterministic. Once a

pair β ∈ K(Λ) is selected, the procedure continues with the set Λ private from the elements of the

chosen pairs. The strategy is summarized in Algorithm 6.2.

Algorithm 6.2 Deterministic optimization of nodes pairing

Inputs: function to approximate u, measure µ, partition Λ of D.
Outputs: Partition Γ of D.

Set Γ = ∅.
while #Λ > 2 do

For all β = (α1, α2) ∈ K(Λ), estimate the β-ranks rβ = rβ(ε) with Algorithm 6.1 and set
Rβc = 1

#K(Λ\β)

∑
γ∈K(Λ\β) rγ , with Λ \ β := Λ \ ({α1} ∪ {α2}).

Choose β⋆ = arg minβ∈K(Λ) max{rβ, Rβc}.
Set Λ← Λ \ ({α⋆

1} ∪ {α⋆
2}) with β⋆ = ({α⋆

1} ∪ {α⋆
2}) and Γ = Γ ∪ β⋆.

end while
if #Λ = 2 then
β⋆ = {Λ}

end if
Γ = Γ ∪ Λ

The overall strategy that constructs the tree during the algorithm to construct the approxima-

tion in tree-based tensor format is given in Algorithm 6.3.

143

Chapter 6 – Tree adaptation

Algorithm 6.3 Adaptive construction of the tree with local optimization

Inputs: function to approximate u, measure µ, approximation spaces Vα, α ∈ L(T), tolerance ε,
parameters relative to the rank estimation εc, nα, nαc .

Outputs: the dimension tree T and the approximation u⋆

Set Λ = {{1}, . . . , {d}} and T = Λ
while #Λ > 1 do

for α ∈ Λ do
if α /∈ L(T) then

Set Vα =
⊗

β∈S(α) Û
⋆
β

end if
Compute the estimation Û⋆

α of the α-principal subspace of QVαu with relative reconstruction
error ε, using Algorithm 5.1.

end for
Determine a partition Γ of D by pairing elements of Λ thanks to Algorithm 6.2.
Set T ← T ∪ Γ and Λ← Γ

end while
Set VD =

⊗
α∈S(D) Û

⋆
α

Compute u⋆ = QVD
u

Set T = T ∪D.

Illustration of the max-mean rank strategy

{2} {1} {6} {5} {8} {9} {4} {3}

1

2

2

4 4

2

4 4

2

2

4 4

2

4 4

Tree α-ranks

Figure 6.3 – Illustration of the max-mean rank algorithm for the sum of bivariate functions defined
by (6.1) with d = 8, εc = 10−2, ε = 10−14, nα = nαc = 10.

We consider again the sum of bivariate functions defined by (6.1) with d = 8. Figure 6.3 gives

the tree constructed with the max-mean rank strategy for one run of the algorithm 6.3. This al-

gorithm is not totally deterministic (because of the estimations of the α-ranks and the case where

there are several minimizers of the optimality criteria). We observe that the max-mean rank algo-

rithm finds the pairs which have the smallest α-ranks we can expect (as in the case of a balanced

tree).

144

6.3. Leaves-to-root construction of the tree with local deterministic optimizations

6.3.2 Ballani and Grasedyck’s strategy

In [10], the authors present a method to select an appropriate tree using a subset of tensor en-

tries without any a priori knowledge on the tree structure. Their goal is to minimize the storage

complexity of a given tensor, which is closely related to the number of evaluations of the function

u necessary to construct an approximation with a desired accuracy.

Their strategy constructs a tree in a leaves-to-root strategy by successive clusterings of disjoint

subsets of D = {1, . . . d}. p is the number of elements gathered at the same time (which corresponds

to the tree’s arity) and it can be chosen to limit the number of possibilities which are explored.

The clustering criterion is based on an estimation of the α-ranks. The reader is referred to [10]

for further details on this method. The authors explain that when p > 3 the computational cost

for the adaptive part is much higher than the cost necessary to compute the approximation in the

tree-based tensor format. As we only consider pairings, in the strategies from Sections 6.3.1 and

6.4, we set p = 2 in all the numerical examples. Let us notice that this strategy explores a larger

set of possibilities of trees than with the strategy from Subsection 6.3.1.

Remark 6.1. As for the max-mean rank strategy, the choice of the pairings is made on a minimiza-

tion criterion. In the case where there are several minimizers, we choose it randomly and therefore

the strategy is not totally deterministic.

Illustration of the Ballani and Grasedyck’s strategy

{4} {3} {8} {7} {2} {1} {6} {5}

1

2

2

4 4

2

4 4

2

2

4 4

2

4 4

Nodes α-ranks

Figure 6.4 – Illustration of the algorithm from [10] for the sum of bivariate functions defined by
(6.1) with d = 8, εc = 10−2, ε = 10−14, nα = nαc = 10.

We consider again the sum of bivariate functions defined in (6.1) with d = 8. The constructed

tree with the method from [10] is given by the Figure 6.4. This figure shows that the strategy from

[10] is able to recover a tree with the lowest α-ranks we can expect for this example.

145

Chapter 6 – Tree adaptation

6.4 Leaves-to-root construction of the tree with local stochastic

optimizations

6.4.1 Principle and algorithm

In this section, we present a leaves-to-root strategy, where the tree T is adaptively constructed

during the algorithm 5.2 from Chapter 5.

Let Λ = {α1, . . . , αl} be a partition of D = {1, . . . , d}. When l = #Λ is even, we con-

sider J (Λ) the set of all partitions of Λ where each element has a cardinal equal to two. Each

partition Γ ∈ J (Λ) contains thus l
2 elements. When #Λ is odd, we consider the set J (Λ) =

⋃
α∈Λ

⋃
Λ∈J (Λ\α){{α} ∪ Γ}. Among all partitions of J (Λ), the aim is to find the one Γ which

minimizes

Cl(Γ) =
∑

β∈Γ

rβ(ε)
∏

α∈β∩Λ

rα(ε). (6.7)

In practice, computing the function Cl(Γ) for all Γ ∈ J (Λ) requires a lot of α-ranks estimations

and it is therefore not affordable. To minimize Cl(Γ), we propose a stochastic algorithm which

finds a partition Γ associated to a minimal cost function Cl(Γ) among a limited set of different

partitions. The principle is to compare a current partition Γ of J (Λ) with a new one Γ⋆ obtained

from Γ by permuting two nodes selected according to a probability distribution defined hereafter,

and to accept Γ⋆ if Cl(Γ⋆) < Cl(Γ).

The first node ν1 is drawn in Λ according to the distribution

P(ν1 = α) ∝ rPΓ(α)(ε)
γ1 , where PΓ(α) is the parent of α in Γ . (6.8)

A higher γ1 increases the probability to select a node ν1 whose parent in Γ has a high rank. Once

the node ν1 is selected, we consider the set Λ \ ({ν1} ∪ {νb
1}), where νb

1 is the second element of the

pair formed with ν1 (in the case ν1 is a singleton νb
1 = ∅), that is to say PΓ(ν1) = ν1 ∪ νb

1. Then,

we draw a second node ν2 in Λ \ ({ν1} ∪ {νb
1}) according to the distribution

P(ν2 = α|ν1) ∝ rPΓ(α)
(ε)γ2 , where α ∈ Λ \ ({ν1} ∪ {νb

1}). (6.9)

Again, a higher γ2 increases the probability to select a node ν2 whose parent in Γ has a high rank.

If the permutation of the two nodes ν1 and ν2 decreases the cost function, then the two nodes

are permuted. nP successive random permutations of the nodes are performed according to this

distribution. The last partition Γ is the one associated to the lowest cost function Cl(Γ) among all

the visited partitions.

146

6.4. Leaves-to-root construction of the tree with local stochastic optimizations

Algorithm 6.4 Optimization of nodes pairing

Inputs: function to approximate u, partition Λ of D, maximal number of iterations nP , γ1, γ2.
Outputs: Γ

Choose randomly Γ ∈ J (Λ).
Calculate Cl(Γ) according to Eq. (6.7), with estimation of the α-ranks using Algorithm 6.1.
for k = 1, . . . , nP do

Γ⋆ ← Γ
Draw ν1 according to distribution (6.8) and then ν2 according to distribution (6.9).
Calculate Cl(Γ⋆) according to (6.7), with estimation of the α-ranks using Algorithm 6.1.
if Cl(Γ⋆) ≤ Cl(Γ) then

Γ← Γ⋆

end if
end for

To construct the final approximation, we use Algorithm 6.3, where the optimal pairings are

determined with Algorithm 6.4.

6.4.2 Illustration of the algorithm

{6} {5} {8} {7} {4} {3} {2} {1}

1

2

2

4 4

2

4 4

2

2

4 4

2

4 4

Nodes α-ranks

Figure 6.5 – Illustration of the stochastic algorithm for the sum of bivariate functions defined by
(6.1) with d = 8, εc = 10−2, ε = 10−14, nα = nαc = 10, γ1 = γ2 = 6 and nP = 2d.

We consider again the sum of bivariate functions from (6.1) with d = 8. The constructed tree

with the local stochastic algorithm is given by the Figure 6.5 for one run of the algorithm. This

algorithm is stochastic both for the estimations of the α-ranks and the choice of the tree so the

result may differ strongly for two different runs. We observe that for the sum of bivariate functions

defined by (6.1), the stochastic algorithm finds all the pairs which have the smallest α-ranks we

can expect (like for the balanced tree from Figure 6.1).

6.4.3 Illustration of the choices of the parameters

In this section, we want to study the influence of the choice of the parameters nP , γ1 and γ2 in

Algorithm 6.4 on the number of evaluations n necessary to compute the approximation and the

147

Chapter 6 – Tree adaptation

number of evaluations necessary for the α-ranks estimations noptim. To do this, we consider two

numerical examples: the sum of bivariate functions from (6.1), and the chain function from (6.6).

As in the previous chapters, the error of approximation is defined by

ε(u⋆) =

(
1

ntest

∑

x∈xtest

(u(x)− u⋆(x))2

)1/2

.

In practice, we choose ntest = #xtest = 1000. The robustness of the algorithm is evaluated by

repeating the algorithm 10 times and by computing empirical confidence intervals of level 10% and

90% for the error of approximation log(ε(u⋆)), the storage complexity S, the number of evaluations

necessary to compute the approximation n, the number of evaluations necessary to estimate the

α-ranks noptim and the total number of evaluations ntotal. To limit the number of choices, we

consider γ1 = γ2 = γ. The higher nP is, the more tree configurations are explored. The higher γ

is, the more configurations avoiding high ranks are privileged in the random search.

Remark 6.2. noptim denotes the number of evaluations of the function u that have been necessary to

estimate the α-ranks with Algorithm 6.1 and n is the number of evaluations necessary to construct

the approximation. We evaluate the performance of the algorithm for different choices of the

parameters by comparing ntotal = n+ noptim.

Local optimization
γ nP log(ε(u⋆)) S n noptim ntotal

2 d [-14.3; -13.9] [4220; 15782] [4988; 17045] [4580; 6190] [9748; 23190]
2d [-14.2; -13.7] [3324; 11961] [4013; 13090] [6310; 8405] [10288; 21035]
5d [-13.9; -13.4] [2276; 8982] [2882; 9990] [9495; 11925] [12377; 21290]

3 d [-14.5; -14.0] [4751; 13641] [5585; 14803] [4635; 5940] [10813; 20658]
2d [-14.1; -13.8] [3833; 13817] [4574; 15025] [5940; 7970] [11014; 23285]
5d [-14.1; -13.5] [2050; 7267] [2636; 8171] [7920; 10470] [10872; 17641]

4 d [-14.5; -14.1] [4989; 11285] [5853; 12375] [4100; 5790] [10348; 17689]
2d [-14.3; -13.9] [3406; 9701] [4092; 10755] [4715; 7850] [8742; 17697]
5d [-14; -13.7] [1458; 8581] [2016; 9589] [6175; 10170] [8772; 19611]

6 d [-14.5; -13.9] [4835; 13639] [5671; 14841] [3495; 5300] [9398; 20092]
2d [-14.2; -13.6] [3432; 10611] [4128; 11718] [4175; 6820] [8069; 18328]
5d [-14; -13.5] [1372; 6053] [1901; 6924] [4925; 8260] [7616; 15803]

Table 6.3 – Sum of bivariate functions defined by (6.1) with d = 24. Approximation with local
tree optimizations with prescribed tolerance ε = 10−13, γ1 = γ2 = γ and ranks estimations with
εc = 10−2, nα = nαc = 10. Confidence intervals for relative errors log(ε(u⋆)), storage complexity
S, number of evaluations for the estimations of the α-ranks noptim and the number of evaluations
for the approximation n.

148

6.4. Leaves-to-root construction of the tree with local stochastic optimizations

Table 6.3 presents the results for the sum of bivariate functions defined by (6.1). For small γ

(γ = 2), a small nP (nP = d) is better (in the sense of the total number of evaluations ntotal) than

a high nP . That means that the good partitions leading to small α-ranks are explored in the first

possibilities. We also observe that for γ higher than 2, high nP give better results than low nP . For

this particular example, the lowest total number of evaluations ntotal is obtained with the highest

γ (γ = 6), and the highest nP (nP = 5d). With this parametrization, the stochastic local strategy

tends to a deterministic strategy avoiding the nodes with the highest α-ranks.

Local optimization
γ nP log(ε(u⋆)) S n noptim ntotal

2 d [-14.1; -13.6] [12507; 18368] [13511; 19545] [7320; 8075] [21226; 27145]
2d [-13.9; -13.2] [13386; 18435] [14448; 19579] [10685; 11840] [25292; 30844]
5d [-13.6; -12.9] [11967; 17645] [12992; 18772] [16250; 17355] [30082; 35307]

3 d [-14; -13.8] [12678; 18703] [13688; 19841] [7270; 8155] [21229; 27636]
2d [-13.9; -13.6] [11432; 17016] [12388; 18154] [10665; 11645] [23138; 29674]
5d [-13.8; -13.3] [10876; 18316] [11844; 19514] [15740; 17185] [27584; 36516]

4 d [-14.0; -13.7] [13387; 16620] [14386; 17707] [7235; 8005] [21961; 25262]
2d [-13.9; -13.5] [13584; 16499] [14583; 17653] [10615; 11495] [25338; 28758]
5d [-13.8; -13.4] [12835; 16716] [13845; 17833] [15205; 16755] [29688; 34375]

6 d [-14.1; -13.8] [12265; 19663] [13249; 20804] [7185; 8170] [20434; 28629]
2d [-13.9; -13.4] [12292; 18079] [13205; 19301] [9890; 10935] [23790; 29366]
5d [-13.6; -13.1] [12332; 17397] [13327; 18554] [14670; 16160] [28947; 34119]

Table 6.4 – Chain function defined by (6.6) with d = 16. Approximation with local tree optimiza-
tions with prescribed tolerance ε = 10−13, γ1 = γ2 = γ and ranks estimations with εc = 10−2,
nα = nαc = 10. Confidence intervals for relative errors log(ε(u⋆)), storage complexity S, number
of evaluations for the estimations of the α-ranks noptim and the number of evaluations for the
approximation n.

Table 6.4 presents the results for the chain function defined by (6.6). For each γ, a small nP

(nP = d) is better (in the sense of the total number of evaluations ntotal) than a high nP . We

also observe that high γ give slightly better results than low γ. But the differences between the γ

are less marked than with the first function. However in this example low values of nP give better

results than high nP .

According to the observations made in the two cases, for the next numerical examples we choose

γ = 6 and nP = 2d (as a trade-off between the two examples).

149

Chapter 6 – Tree adaptation

6.5 Adaptation of the tree with global stochastic optimizations

In this section, we present a global stochastic optimization strategy to determine a relevant di-

mension tree before computing the approximation of the function u.

6.5.1 Principle and algorithm

We estimate the α-ranks for a given tree with Algorithm 6.1 and we search among a finite number

of trees the one that minimizes the cost function from Equation (6.2). The set of trees is obtained

by performing a random walk over the set of trees.

To explain the stochastic algorithm for tree optimization, we detail how to change a current

tree T into a new tree T ⋆ which decreases the cost function from Equation (6.2) with a relatively

high probability. Concretely, the new tree T ⋆ is obtained from T by permuting two nodes ν1 and

ν2. Considering a tree T , the first node ν1 is drawn in T \ {D} according to the distribution

P(ν1 = α|T) ∝ rPT (α)(ε)
γ1 , α ∈ T \ {D} (6.10)

where PT (α) denotes the parent of α in the tree T . A higher γ1 increases the probability to select

a node ν1 with a high parent’s rank. Once the node ν1 is selected, we draw a second node ν2 in

T \ {D} according to the distribution:

P(ν2 = α|T) ∝



dT (α, ν1)−γ2 if α ∩ ν1 = ∅
0 otherwise

(6.11)

with γ2 > 0 and dT (α, ν) = lT (α) + lT (ν) − 2lT (A(α, ν)) where A(α, ν) denotes the highest-level

common ascendant of α and ν in T and lT (α) is the level of α in T . If the permutation of the two

nodes decreases the cost function, the new tree T ⋆ is retained and the procedure is repeated, np

times. The procedure is formalized in Algorithm 6.5.

6.5.2 Illustration of the algorithm

We consider again the sum of bivariate functions from (6.1) with d = 8. The constructed tree

with the global stochastic algorithm is given by the Figure 6.6 for one run of the algorithm. This

algorithm is stochastic both for the estimations of the α-ranks and the choice of the tree so the re-

sult may differ for another run. We observe that in this case the stochastic algorithm does not find

all the pairs which have the smallest α-ranks we can expect (like for the balanced tree). However

it tends to moderate α-ranks (the α-ranks are far from the high ranks from the balanced tree with

150

6.5. Adaptation of the tree with global stochastic optimizations

Algorithm 6.5 Optimization of the dimension tree

Inputs: function to approximate u, measure µ, maximal number of iterations nP , parameters
relative to the α-ranks estimations εc, nα, nαc

Outputs: T , α-principal subspaces for the leaves Û⋆
α.

Generate a random tree T .
for α ∈ T \D do

if α ∈ L(T) then
Estimate Û⋆

α with Algorithm 5.1 with precision ε, rα(ε) = dim(Û⋆
α).

else
Estimate rα(ε) with Algorithm 6.1.

end if
end for
Calculate C(T, r) thanks to (6.2)
for k = 1, . . . , nP do

Draw α1 according to distribution (6.10) and then α2 according to distribution (6.11).
Estimate α-ranks rα(ε) for α ∈ T ⋆ \ T .
if C(T ⋆, r) < C(T, r) then
T ← T ⋆

end if
end for

permuted variables from Figure 6.2).

{5} {6}

{2} {1}

{3}{4}

{7}

{8}

2

4 4

2

5

2

4 4

5

2

4 4

4

4

Nodes α-ranks

Figure 6.6 – Illustration of the global stochastic algorithm for the sum of bivariate functions defined
by (6.1) with d = 8, εc = 10−2, ε = 10−13, nα = nαc = 10, γ1 = γ2 = 6 and nP = 3d.

6.5.3 Illustration of the choice of the parameters

In this section, we want to study the influence of the choice of the parameters nP , γ1 and γ2 in Algo-

rithm 6.4 on the number of evaluations n necessary to compute the approximation and the number

of evaluations necessary for the α-ranks estimations noptim. To do this, we consider again the two

numerical examples presented in Section 6.2.2. The robustness of the algorithm is evaluated by

151

Chapter 6 – Tree adaptation

repeating the algorithm 10 times and by computing empirical confidence intervals of level 10% and

90% for log(ε(u⋆)), S, n and noptim. To limit the number of choices, we consider γ1 = γ2 = γ. The

higher nP is, the more tree configurations are explored. The higher γ is, the more configurations

avoiding high ranks are privileged in the random search.

Remark 6.3. In the same manner than in Section 6.4, noptim denotes the number of evaluations

of the function u that have been necessary to estimate the α-ranks with Algorithm 6.1 and n is

the number of evaluations necessary to construct the approximation. We evaluate the performance

of the algorithm for different choices of the parameters by comparing the values of ntotal (with

ntotal = n+ noptim).

Initial Tree = Permuted Balanced tree
γ nP log(ε(u⋆)) S n noptim ntotal

2 d [-14.0; -13.4] [6066; 19394] [6996; 20897] [9130; 11765] [17166; 31177]
2d [-14.1; -13.3] [4496; 8810] [5334; 9887] [16460; 19585] [21889; 28409]
5d [-14.3; -13.6] [2162; 6101] [2790; 7023] [31790; 45720] [34580; 50806]

3 d [-14.0; -13.4] [5448; 12027] [6280; 13327] [7820; 11640] [14292; 23957]
2d [-14.1; -12.9] [3776; 11753] [4554; 12944] [14780; 19930] [19634; 31269]
5d [-14.3; -13.6] [1962; 6199] [2562; 7131] [29655; 41855] [32756; 46108]

4 d [-13.8; -13.0] [4966; 11946] [5844; 13230] [7460; 11250] [14519; 22929]
2d [-14.2; -13.7] [3931; 9046] [4730; 10169] [14840; 19145] [20322; 26233]
5d [-14.2; -13.3] [2327; 4739] [2979; 5585] [29695; 44000] [33247; 48853]

6 d [-13.8; -13.5] [6628; 12939] [7593; 14206] [8115; 10840] [16138; 24116]
2d [-14.1; -13.7] [4432; 8082] [5241; 9136] [14190; 20655] [21014; 29175]
5d [-14.2; -13.6] [1895; 6824] [2474; 7838] [33690; 44265] [36784; 50532]

Table 6.5 – Sum of bivariate functions defined by (6.1) with d = 24. Approximation with global
tree optimization with prescribed tolerance ε = 10−13 and rank estimation with εc = 10−2 and
nα = nαc = 10. Confidence intervals for relative errors log(ε(u⋆)), storage complexity S, number
of evaluations for the estimations of the α-ranks noptim and the number of evaluations for the
approximation n.

Table 6.5 presents the results with the sum of bivariate functions. It shows that choosing nP ≥ 2d

implies a number of evaluations for the α-ranks estimations that it is high compared to ntotal. This

is due to the fact that the initial tree is a tree with high α-ranks and it requires numerous iterations

to find a good tree. This observation is verified for all γ. However we notice that the the lowest

ntotal is given by γ = 4.

152

6.6. Numerical examples

Initial Tree = Permuted Balanced tree
γ nP log(ε(u⋆)) S n noptim ntotal

2 d [-13.9; -13.2] [10227; 18662] [11140; 19848] [7495; 10445] [20845; 28548]
2d [-14.2; -13.5] [7731; 19506] [8577; 20628] [13830; 17530] [26107; 34658]
5d [-14.0; -13.4] [7135; 18061] [7986; 19206] [30550; 43900] [40821; 62602]

3 d [-14.0; -13.3] [10161; 19387] [11148; 20760] [5875; 7560] [17498; 27965]
2d [-14.1; -13.5] [10345; 20527] [11401; 21777] [11605; 13635] [24142; 33382]
5d [-14.1; -13.5] [11171; 18471] [12150; 19539] [23735; 29005] [38135; 46313]

4 d [-14.0; -13.1] [11351; 20006] [12300; 21387] [5240; 6430] [17865; 27472]
2d [-14.0; -13.3] [11250; 19024] [12210; 20329] [7435; 10505] [21490; 29054]
5d [-14.1; -13.5] [10542; 20810] [11498; 22194] [17825; 20800] [30478; 41723]

6 d [-14.0; -13.3] [11700; 20489] [12654; 21682] [4085; 5340] [16924; 26202]
2d [-14.0; -13.6] [10229; 17952] [11129; 19147] [6070; 8330] [19003; 26535]
5d [-14.0; -13.3] [11424; 18925] [12356; 20053] [10900; 14255] [24326; 31610]

Table 6.6 – Chain function defined by (6.6) with d = 24. Approximation with global tree optimiza-
tion with prescribed tolerance ε = 10−14 and rank estimation with εc = 10−2 and nα = nαc = 10.
Confidence intervals for relative errors log(ε(u⋆)), storage complexity S, number of evaluations for
the estimations of the α-ranks noptim and the number of evaluations for the approximation n.

Table 6.6 presents the results for the chain function defined by (6.6). The conclusions that can

be drawn are the same than for the strategy with local optimizations (see Table 6.4). For each γ,

a small nP (nP = d) is better (in the sense of the total number of evaluations ntotal) than a high

nP . We also observe that high γ give better results than low γ. However regarding the number

of evaluations n for γ = 6, we conclude that for this function, avoiding pairings with the highest

α-ranks is an efficient strategy that leads to trees with low α-ranks.

According to the observations made in the two cases, for the next numerical examples we choose

γ = 4 for the following numerical experimentations.

Remark 6.4. Choosing a high value for γ tends to a deterministic strategy where we permute two

nodes whose parents have the highest α-ranks. It is limiting the probability to explore trees very

different from the initial one. However for these two examples, it seems relevant.

6.6 Numerical examples

In this section, we compare the different strategies for tree optimization, presented in this chapter

for two numerical examples : the sum of bivariate functions defined by (6.1) and the chain function

defined by (6.6). Among the leaves-to-root strategies, d-LO refers to the one with deterministic

local optimizations (from section 6.3.1), s-LO refers to the one with stochastic local optimizations

153

Chapter 6 – Tree adaptation

(from section 6.4), bg-LO refers to the strategy proposed in [10] where the optimization criterion is

a rank ratio. The global stochastic optimization strategy presented in Section 6.5 is denoted s-GO.

The choice of the parameters γ1, γ2 and nP for the s-LO strategy and for the s-GO strategy

are heuristic, they are made after the observations from Tables 6.3, 6.4, 6.5 and 6.6. They will

directly be specified in the examples.

These strategies are also compared with a random tree RT (with arity two) and a random

balanced tree referred to as RBT. In these two cases, the overall number of evaluations of the

function is dedicated to the computation of the approximation, such that noptim = 0 and n = ntotal.

Sum of bivariate functions

log(ε(u⋆)) S n ntotal

[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]
d-LO [-15.1; -15; -14.8] [354; 376; 406] [485; 512; 545] [2233; 2361; 2401]
s-LO [-14.9; -14.7; -14.0] [340; 529; 1360] [468; 689; 1552] [1243; 1699; 2752]

bg-LO [-15; -14.7; -14.5] [354; 376; 445] [485; 512; 574] [3239; 3372; 3611]
RBT [-14.4; -14.3; -13.9] [696; 925; 2198] [858; 1150; 2432] [858; 1150; 2432]
s-GO [-14.9; -14.6; -14.2] [390; 456; 791] [521; 595; 954] [1790; 2221; 2908]
RT [-14.6; -14.3; -14.1] [971; 1763; 2471] [1166; 1987; 2745] [1166; 1987; 2745]

Table 6.7 – Sum of bivariate functions defined by (6.1) with d = 8. Approximation with a prescribed
tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles for relative error
log(ε(u⋆)), number of evaluations n, for the s-LO strategy γ = 6 and nP = 2d, for the s-GO
strategy γ = 4 and nP = d.

Table 6.7 shows that all the optimization strategies decrease the number of evaluations n nec-

essary to compute the approximation with precision ε compared to a random tree RT or a random

balanced tree RBT. But only the s-LO strategy has a total number of evaluations lower in average

than the cost of a random tree RT. This is due to the fact that the dimension d = 8 is small and

the α-ranks (even chosen randomly) remain moderate.

When the dimension d increases, the Table 6.8 corresponds to d = 16, we observe that all opti-

mization strategies decrease the number of evaluations n necessary to compute the approximation

with precision ε compared to a random tree RT or a random balanced tree RBT. For all the

optimization strategies, the 90th quantile of the total number of evaluations ntotal is lower than

the cost of a random tree RT or a random balanced tree RBT. In this case, the s-LO strategy

is the most efficient as it decreases the three quantiles compared to the random trees. When the

154

6.6. Numerical examples

log(ε(u⋆)) S n ntotal

[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]
d-LO [-14.5; -14.2; -13.9] [699; 1390; 3289] [964; 1759; 3782] [8118; 9739; 12427]
s-LO [-14.4; -14.1; -13.7] [949; 2011; 4167] [1259; 2394; 4717] [3874; 4979; 7802]

bg-LO [-14.7; -14.5; -14.2] [692; 729; 882] [956; 993; 1165] [11336; 11869; 12773]
RBT [-14.0; -13.8; -13.2] [7476; 10888; 14837] [8148; 11657; 15651] [8148; 11657; 15651]
s-GO [-14.2; -14.0; -13.6] [1174; 1830; 7008] [1500; 2243; 7749] [5756; 7036; 13499]
RT [-14.0; -13.7; -12.7] [5033; 11320; 36456] [5600; 12154; 37635] [5600; 12154; 37635]

Table 6.8 – Sum of bivariate functions defined by (6.1) with d = 16. Approximation with a
prescribed tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles for
relative error log(ε(u⋆)), number of evaluations n, for the s-LO strategy γ = 6 and nP = 2d, for
the s-GO strategy γ = 4 and nP = d.

dimension increases, the interest of using optimizations strategies increases too.

log(ε(u⋆)) S n ntotal

[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]
d-LO [-14.1; -14; -13.8] [3160; 4843; 6339] [3826; 5670; 7284] [20866; 23859; 26077]
s-LO [-14.2; -13.9; -13.6] [2395; 5773; 8183] [3035; 6685; 9177] [7225; 12185; 15842]

bg-LO [-14.3; -13.6; -13] [1133; 1848; 2701] [1623; 2415; 3300] [25134; 27491; 29429]
RBT [-13.6; -13; -12.5] [16001; 22079; 46982] [17305; 23634; 48815] [17305; 23634; 48815]
s-GO [-13.9; -13.8; -13.4] [7471; 10319; 17918] [8495; 11532; 19264] [13135; 16089; 24299]
RT [-13.7; -12.9; -12.2] [15100; 22745; 32182] [16418; 24269; 33793] [16418; 24269; 33793]

Table 6.9 – Sum of bivariate functions defined by (6.1) with d = 24. Approximation with a
prescribed tolerance ε = 10−13, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles for
relative error log(ε(u⋆)), number of evaluations n, for the s-LO strategy γ = 6 and nP = 2d, for
the s-GO strategy γ = 4 and nP = d.

In Table 6.9, we see that choosing d = 24 highlights even more the advantages of performing

tree optimization. The number of evaluations n necessary to compute the approximation is strongly

reduced. In this case,for all optimization methods the 90th quantile of the number of total evalu-

ations is really lower than for both a random tree RT or a random balanced tree RBT. The two

deterministic strategies (and in particular the bg-LO method) recover the best trees. However,

the additional cost used to evaluate the α-ranks for the optimization which appears in ntotal is not

competitive for the 10th and 50th quantiles. The local stochastic strategy performs particularly

well as the 90th quantile of the number of evaluations is lower than the 10th quantile of the number

of evaluations necessary for a random tree RT and RBT.

Chain function.

155

Chapter 6 – Tree adaptation

log(ε(u⋆)) S n ntotal

[q10; q50; q90] [q10; q50; q90] [q10; q50; q90] [q10; q50; q90]
d-LO [-14.1; -13.8; -13.6] [8584; 16699; 19669] [9409; 17654; 20698] [25369; 33709; 36678]
s-LO [-14.3; -13.9; -13.7] [7733; 10812; 12189] [8376; 11574; 12977] [12211; 15487; 16987]

bg-LO [-14.3; -14.1; -14] [2204; 8267; 13762] [2665; 9076; 14755] [26450; 34031; 39490]
RBT [-14; -13.8; -13.4] [10647; 12420; 19681] [11392; 13235; 20673] [11392; 13235; 20673]
s-GO [-14.1; -13.8; -13.5] [7777; 11327; 14003.5] [8532; 12098; 15008] [11787; 15328; 18309]
RT [-14.2; -13.8; -13.3] [9063; 12262; 23263] [9817; 13164; 24406] [9817; 13164; 24406]

Table 6.10 – Chain function defined by (6.6) with d = 19. Approximation with a prescribed
tolerance ε = 10−14, εc = 10−2. q10, q50, q90 are the 10th, 50th and 90th quantiles for relative error
log(ε(u⋆)), number of evaluations n, for the s-LO strategy γ = 6 and nP = 2d, for the s-GO
strategy γ = 4 and nP = 3d.

Table 6.10 shows that all the optimization strategies decrease the number of evaluations n nec-

essary to compute the approximation with precision ε compared to a random tree RT or a random

balanced tree RBT. But the total number of evaluations for the deterministic optimization strate-

gies is higher than the cost of a random tree. However with the stochastic strategies, we have a

gain. This is due to the fact that whatever the tree is, the α-ranks (even chosen randomly) remain

moderates, such the additional cost due to the α-ranks estimations may not be useful.

Overall conclusion for the examples

The numerical examples have shown that the interest of using optimization for the determination

of the dimension tree T increases when the dimension d of the problem increases. When d is small

the α-ranks may remain moderate and the additional evaluations for the α-ranks estimations are

not useful.

With the choices we made for the parameters (nP , γ1, γ2) of the stochastic strategies, we observe

that the deterministic strategies (d-LO and bg-LO) explore more possibilities for the dimension

trees and therefore find the best trees (in the sense that the number of evaluations (n) is smaller).

However the number of evaluations necessary to estimate the α-ranks (noptim) is high. These

choices for the parameters (nP , γ1, γ2) of the stochastic strategies is a good trade-off to both have

a reasonable number of evaluations to compute the approximation n and moderate number of

evaluations for the α-ranks estimations noptim. Therefore they lead to a total number of evaluations

ntotal more competitive than computing directly the approximation on a random tree.

156

6.7. Conclusions

6.7 Conclusions

In this chapter, we proposed several optimization strategies for choosing a dimension partition

tree T , which is adapted to the function we want to approximate, in the sense that the α-ranks of

the approximation are as low as possible to get a certain accuracy. Deterministic strategies explore

a large number of trees and are able to recover really good trees to reach low α-ranks. However

this exploration is often too expensive compared to the number of evaluations necessary for the

approximation of the function. In the presented cases, using these strategies leads to an overall

number of samples which is better than the number of samples necessary for random trees with

high α-ranks. However this overall number of samples is not competitive compared to the number

of samples necessary to compute the approximation of a random tree in expectation.

Stochastic strategies (with a few exploration steps) are more competitive regarding the number

of evaluations for the estimations of the α-ranks. However these strategies involves several numerical

(and heuristics) parameters, which need to be tuned. Furthermore if the choices made for these

examples are working relatively well we do not claim that this will be efficient for any function.

157

CONCLUSION

Conclusions of this thesis and future works

In this thesis, we have first proposes a new projection method onto a linear space called the

boosted optimal weighted least-squares method, presented in Chapter 2. The proposed method

constructs a weighted least-squares projection associated with random points sampled from a suit-

ably chosen distribution. We obtained quasi-optimality properties (in expectation) for the weighted

least-squares projection, with or without reducing the size of the sample by a greedy removal of

points. The constant in the quasi-optimality property depends on the number of points selected

by the greedy algorithm. The more points removed, the larger the error bound will be. Therefore,

if the goal is an accurate control of the error, few points should be removed. On the contrary, if

the goal is to reduce the cost while allowing a larger bound of the error, the maximum number of

points may be removed from the sample, which in some cases leads to a number of samples equal

to the dimension of the approximation space. As the size of the sample obtained after the greedy

algorithm may differ from one run to another, it would be interesting to study the convergence

properties of this greedy algorithm. Also the selection of the points to remove is not an optimiza-

tion over the whole sample but a point-by-point greedy selection, therefore the resulting sample

may not be the best over all possible combinations. It would be interesting to look for an optimal

and efficient selection of the sub-sample with regard to the stability criterion (maybe using stochas-

tic optimization for this combinatorial problem). The constant obtained for the quasi-optimality

property is rather pessimistic regarding the numerical experiments. This suggests that our error

bounds could be further improved.

For adaptive approximation a classical approach is to consider approximations in a sequence

of nested approximation spaces. In Chapter 3, we proposed a method to construct a sequence of

boosted least-squares projections associated to a nested sequence of approximation spaces, which

reuses the samples from one approximation space to another. Even if the numerical results are

promising, we still did not manage to obtain theoretical guarantees for the algorithm that con-

structs this sequence of boosted optimal weighted least-squares projections. In practice, the nu-

merical examples show that the number of samples necessary to construct the adaptive boosted

least-squares projection is close to the dimension of the approximation space (only observed).

The model class of tree-based tensor formats (presented in Chapter 4) is a prominent tool for

159

the approximation of high-dimensional functions. In this thesis, one objective was to develop al-

gorithms that provide a controlled approximation while using as few evaluations as possible, (i.e

close to the complexity of the approximation tool). In Chapter 5, we proposed an algorithm that

constructs an approximation in tree-based tensor format which provides a controlled approxima-

tion for a sufficiently high number of evaluations of the function u. Using a leaves-to-root approach

the algorithm constructs low-dimensional subspaces in which the function is projected, thanks to

boosted optimal least-squares projections combined to principal component analyses. An impor-

tant question that is not fully answered yet is to determine the number of samples necessary for

the algorithm to construct an approximation with controlled precision (under some assumptions of

the function class and the choice of the approximation tool). In practice, estimations of the low-

dimensional subspaces are computed. As underlined in Chapter 5, the control of these estimations

of the principal components is not guaranteed yet. First the assumptions that have to be made on

the oblique projection of u are difficult to validate on concrete examples. Secondly, the condition

on the number of samples necessary to reach a given error seems to be overestimated according to

the numerical examples.

Chapter 6 was devoted to the presentation of adaptive strategies for the tree selection. We

showed on examples that when the dimension d is high, it is worth spending some function’s eval-

uations to estimate ranks and perform tree optimization. To this end, we propose deterministic

strategies that explore a large number of trees and also stochastic strategies that explore a reduced

number of trees, favouring the trees with low ranks. Deterministic strategies are only competitive

to avoid very bad trees, while stochastic strategies seem to be a good trade-off between the cost

devoted to the estimation of ranks and the number of function’s evaluations needed to compute the

approximation. However, these stochastic strategies involve several parameters which are chosen

heuristically and we observe that parameters which limit the exploration (by driving the algorithm

directly to trees without high ranks) are giving better results. It would be interesting to develop

strategies that could tune these parameters along the exploration.

Further outlooks

Longer-term general prospects can also be considered. Solving bayesian inverse problems with a

functional approach requires to approximate the posterior probability density function. One may

think of approximating multivariate probability distributions in tree-based tensor formats. This

would allow to easily extract information from the posterior (mean, moments) and also to sample

from it using the technique of Appendix B.

160

This raises the question of imposing some constraints on the approximation (positivity integral,

equal to one, monotonicity, ...).

The strategies for tree optimization proposed in this thesis are using only function’s evaluations.

In some situations we may have further information on the function (Sobol indices, equations sat-

isfied by the function,...) that would lead to different optimization strategies using this knowledge.

This thesis focused on the construction of surrogate models which is an important step to

solve Uncertainty Quantification problems. To solve more specific problems as model calibration,

estimation of rare event’s probability, sensitivity analysis, it would be interesting to combine the

approaches of this thesis with state-of-the art Uncertainty Quantification algorithms (for example

sequential approaches for rare event simulations,...).

In some situations, engineers need to add variables to the model during the study. A question

immediately raises: how can we adapt our strategies in order to deal with the more complicated

model while trying to reuse the function’s evaluations already made.

Also in practice, we may encounter vector-valued outputs or inputs that are correlated, such

situations would require new analyses.

161

162

BIBLIOGRAPHY

[1] G. Migliorati F. Nobile R. Tempone A. Chkifa, A. Cohen. Discrete least-squares polynomial

approximation with random evaluations - application to parametric and stochastic elliptic

pdes. ESAIM: Mathematical Modelling and Numerical Analysis, 49:815–837, 2015.

[2] M. Ali and A. Nouy. Approximation with tensor networks. Part i: Approximation spaces.

arXiv:2007.00118, 2020.

[3] M. Ali and A. Nouy. Approximation with tensor networks. Part ii: Approximation rates for

smoothness classes. arXiv:2007.00128, 2020.

[4] B. Arras, M. Bachmayr, and A. Cohen. Sequential sampling for optimal weighted least squares

approximations in hierarchical spaces. SIAM Journal on Mathematics of Data Science, 1:189–

207, 2019.

[5] M. Bachmayr, A. Cohen, R. DeVore, and G. Migliorati. Sparse polynomial approximation of

parametric elliptic pdes. Part ii: lognormal coefficients. ESAIM Math. Model. Numer. Anal.,

51(1):341–363, 2017.

[6] M. Bachmayr, A. Cohen, and G. Migliorati. Sparse polynomial approximation of parametric

elliptic pdes. Part i: affine coefficients. ESAIM Math. Model. Numer. Anal., 51(1):321–339,

2017.

[7] M. Bachmayr, A. Nouy, and R. Schneider. Approximation power of tree tensor networks for

compositional functions. In preparation, 2020.

[8] M. Bachmayr, R. Schneider, and A. Uschmajew. Tensor networks and hierarchical tensors for

the solution of high-dimensional partial differential equations. Foundations of Computational

Mathematics, 16:1423–1472, 2016.

[9] J. Baglama, D. Calvetti, and L. Reichel. Fast Leja points. Electronic Transactions on Numer-

ical Analysis, 7:124–140, 1998.

[10] J. Ballani and L. Grasedyck. Tree adaptive approximation in the hierarchical tensor format.

SIAM J. Sci. Comput., 36(4):A1415–A1431, 2014.

[11] M. Bebendorf. Approximation of boundary element matrices. Numerische Mathematik,

86(5):565–589, 2000.

163

[12] R. Bellmann. Adaptive Control Processes : A Guided Tour. 1961.

[13] J. Benasseni. Lower bounds for the largest eigenvalue of a symmetric matrix under perturba-

tions of rank one. Linear and Multi-linear Algebra, 2011.

[14] L. Bos and N. Levenberg. On the calculation of approximate fekete points: the univariate

case. Electronic Transactions on Numerical Analysis. Volume, 30:377–397, 2008.

[15] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Computing Multivariate Fekete and

Leja Points by Numerical Linear Algebra. SIAM Journal on Numerical Analysis, 48(5):1984–

1999, 2010.

[16] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Adaptive Leja Sparse Grid Con-

structions for Stochastic Collocation and High-Dimensional Approximation. SIAM Journal on

Scientific Computing, 36(6):A2952–A2983, 2014.

[17] J.R. Bunch, C.P. Nielsen, and D.C. Sorensen. Rank-one modification of the symmetric eigen-

problem. Numer. Math., 31:31–48, 1978.

[18] A. Chkifa, A. Cohen, and R. DeVore. Sparse adaptive taylor approximation algorithms for

parametric and stochastic elliptic pdes. ESAIM: Mathematical Modelling and NumericalAnal-

ysis, 47(1):253–280, 2013.

[19] A. Chkifa, A. Cohen, and C. Schwab. High-dimensional adaptive sparse polynomial interpo-

lation and applications to parametric pdes. Found. Comput. Math., 14:601–633, 2014.

[20] A. Cohen. Numerical Analysis of Wavelet Methods, volume 32. 2003.

[21] A. Cohen and A. Chkifa. On the Stability of Polynomial Interpolation Using Hierarchical

Sampling, pages 437–458. 2015.

[22] A. Cohen, A. Davenport, and D. Leviatan. On the stability and accuracy of least squares

approximation. Foundations of Computational Mathematics, 13(3):819–834, 2013.

[23] A. Cohen and R. DeVore. Approximation of high-dimensional pdes. Acta Numerica, 24:1–159,

2015.

[24] A. Cohen and G. Migliorati. Optimal weighted least-squares methods. SMAI Journal of

Computational Mathematics, 86(3):181–203, 2017.

[25] A. Cohen, A. Nouy, G Keryacharian, and D. Picard. Accuracy of principal component spaces.

Running notes, 2020.

[26] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep learning: A tensor

analysis. JMLR: Workshop and Conference Proceedings, 49:1–31, 2016.

164

[27] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica, 6, 2000.

[28] P.J. Davis. Interpolation and approximation. 1975.

[29] R. DeVore. Nonlinear approximation. Acta Numerica., pages 51–150, 1998.

[30] R. DeVore, G. Kerkyacharian, D. Picard, and V. Temlyakov. Approximation methods for

supervised learning. Fondations of Computational Mathematics, 6:3–58, 2006.

[31] L. Devroye. Non-uniform random variate generation. Springer, 1985.

[32] A. Doostan and J. Hampton. Coherence motivated sampling and convergence analysis of least

squares polynomial chaos regression. Computer Methods in Applied Mechanics and Engineer-

ing, 290(3):73–97, 2015.

[33] P. Erdos, A. Kroo, and J. Szabados. On convergent interpolatory polynomials. J. Approx.

Theory, 58:232–241, 1989.

[34] O. Ernst, F. Nobile, C. Schillings, and T. Sullivan. Uncertainty quantification. Oberwolfach

Reports, 16(1):695–772, 2020.

[35] A. Falco and W. Hackbusch. On minimal subspaces in tensor representations. Found. Comput.

Math., 12:765–803, 2012.

[36] A. Falco, W. Hackbusch, and A. Nouy. Tree-based tensor formats. arXiv:1810.01262, 2018.

[37] A. Falco, W. Hackbusch, and A. Nouy. On the Dirac-Frenkel variational principle on tensor

Banach spaces. Foundations of computational mathematics, 19(1):159–204, 2019.

[38] V. Fedorov. Theory of Optimal Experiments Designs. 1972.

[39] L. Fejér. Bestimmung derjenigen abszissen eines intervalles, für welche die quadratsumme der

grundfunktionen der lagrangeschen interpolation im intervalle ein möglichst kleines maximum

besitzt. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 2, 1(3):263–

276, 1932.

[40] M. Fekete. Über die verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganz-

zahligen Koeffizienten. Mathematische Zeitschrift, 1:377–402, 1923.

[41] J.H. Friedman and W. Stuetzle. Projection pursuit regression. Journal of the American

Statistical Association, 76:817–823, 2009.

[42] J.H. Friedman and J.W. Tukey. A projection pursuit algorithm for exploratory data analysis.

IEEE Transactions on Computers, 23(9):881–890, 1974.

165

[43] T. Gerstner and M. Griebel. Dimension–adaptive tensor–product quadrature. Computing,

71:65–87, 2003.

[44] G.H. Golub. Some modified matrix eigenvalue problems. SIAM Review, 15(2):318–334, 1973.

[45] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[46] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Analysis

Applications, 31:2029–2054, 2010.

[47] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor approximation

techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[48] E. Grelier, A. Nouy, and M. Chevreuil. Learning with tree-based tensor formats.

arXiv:1811.04455, 2018.

[49] E. Grelier, A. Nouy, and R. Lebrun. Learning high-dimensional probability distributions using

tree tensor networks. 2019.

[50] W.H. Greub. Linear algebra, volume 4th edition. New York, Springer-Verlag, 1981.

[51] L. Guo, A. Narayan, L. Yan, and T. Zhou. Weighted Approximate Fekete Points: Sam-

pling for Least-Squares Polynomial Approximation. SIAM Journal on Scientific Computing,

40(1):A366–A387, 2018.

[52] C. Haberstich, A. Nouy, and G. Perrin. Boosted optimal weighted least-squares methods.

arXiv:1912.07075, 2020.

[53] W. Hackbusch. Hierarchical Tensor Representation. 2015.

[54] W. Hackbusch and S. Kuhn. A new scheme for the tensor representation. Journal of Fourier

analysi and applications, 15(5):706–722, 2009.

[55] M. Hashemizadeh, J. Miller, M. Liu, and G. Rabusseau. Adaptive tensor learning with tensor

networks. arXiv:2008.05437, 2020.

[56] C.J. Hillar and L-K. Lim. Most tensors are np-hard. Journal of the ACM, 45, 2013.

[57] B. Ibrahimoglu. Lebesgue functions and lebesgue constants in polynomial interpolation. Jour-

nal of Inequalities and Applications, 2016, 2016.

[58] I.C.F. Ipsen and B. Nadler. Refined perturbation bounds for eigenvalues of hermitian and

non-hermitian matrices. SIAM J. Matrix Anal. Appl., 31(1):40–53, 2009.

166

[59] B. Khoromskij. Tensors-structured numerical methods in scientific computing: Survey on

recent advances. Chemometrics and Intelligent Laboratory Systems, 110:1–19, 2012.

[60] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51:455–500,

2009.

[61] A. Kolmogoroff. Über die beste annäherung von funktionen einer gegebenen funktionenklasse.

Ann. of Math., 37(2):389–434, 1936.

[62] D. Kressner, M.Steinlechner, and A.Uschmajew. Low-rank tensor methods with subspace

correction for symmetric eigenvalue problems. SIAM J. Sci. Comput., 36(5):A2346–A2368,

2014.

[63] Y. Liu and G. Xu. Widths and average widths of Sobolev classes. Acta Math. Sci. Ser. B

Engl. Ed. 23, 12(5):178–184, 2003.

[64] T.H. Luu, Y. Maday, M. Guillo, and P. Guérin. A new method for reconstruction of cross-

sections using Tucker decomposition. working paper or preprint, 2017.

[65] Y. Maday, N.C. Nguyen, A. Patera, and G. Pau. A general multipurpose interpolation proce-

dure: the magic points. Communications on Pure and Applied Analysis, 8(1):383–404, 2009.

[66] S. De Marchi. On leja sequences: some results and applications. Applied Mathematics and

Computation, 152(1):621–647, 2004.

[67] G. Migliorati. Adaptive polynomial approximation by means of random discrete least squares.

Lecture Notes in Computational Science and Engineering, 103:547–554, 2015.

[68] G. Migliorati. Adaptive approximation by optimal weighted least-squares methods. SIAM J.

Numer. Anal., 57(5):2217–2245, 2019.

[69] G. Migliorati and F. Nobile. Analysis of discrete least squares on multivariate polynomial

spaces with evaluations at low-discrepancy point sets. Journal of Complexity, 31(4):517 – 542,

2015.

[70] G. Migliorati, F. Nobile, E. Schwerin, and R. Tempone. Analysis of discrete l2 projection on

polynomial spaces with random evaluations. Found. Comput. Math., 14(3):419–456, 2014.

[71] G. Migliorati, F. Nobile, and R. Tempone. Convergence estimates in probability and in expecta-

tion for discrete least squares with noisy evaluations at random points. Journal of Multivariate

Analysis, 142:167–182, 2015.

[72] C. Milbradt and M. Wahl. High-probability bounds for the reconstruction error of pca. Statis-

tics and Probability Letters, 161, 2020.

167

[73] A. Narayan, J. Jakeman, and T. Zhou. A christoffel function weighted least squares algorithm

for collocation approximations. Mathematics of Computation, 86(5), 2017.

[74] F. Nobile, R. Tempone, and C.G. Webster. An anisotropic sparse grid stochastic collocation

method for partial differential equations with random input data. SIAM Journal on Numerical

Analysis, 46(5):2411–2442, 2008.

[75] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for

partial differential equations with random input data. SIAM Journal on Numerical Analysis,

46(5):2309–2345, 2008.

[76] A. Nouy. Low-rank rethods for high-dimensional approximation and model order reduction.

In P. Benner and A. Cohen and M. Ohlberger and K. Willcox (eds.), Model Reduction and

Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2017.

[77] A. Nouy. Low-Rank Tensor Methods for Model Order Reduction, pages 857–882. Springer

International Publishing, Cham, 2017.

[78] A. Nouy. Higher-order principal component analysis for the approximation of tensors in tree-

based low rank formats. Numerische Mathematik, 141:743–789, 2019.

[79] I. Oseledets and E. Tyrtyshnikov. Breaking the curse of dimensionality, or how to use SVD in

many dimensions. SIAM Journal on Scientific Computing, 31(5):3744–3759, 2009.

[80] I. Oseledets and E. Tyrtyshnikov. Tt-cross approximation for multidimensional arrays. Linear

Algebra and its Applications, 432:70–88, 2010.

[81] N.M. Radford. Slice sampling. Ann. Stat., 31(3):705–767, 2003.

[82] C.E Rasmussen and C.K.I Williams. Gaussian Processes for Machine Learning. MIT Press,

2006.

[83] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization

in the brain. Psychological Review, 65(6), 1958.

[84] R. Schneider and A. Uschmajew. Approximation rates for the hierarchical tensor format in

periodic Sobolev spaces. Journal of Complexity, 30:56–71, 2014.

[85] V. Silva and L-K. Lim. Tensor rank and the ill-posedness of the best low-rank approximation

problem. SIAM Journal on Matrix Analysis and Applications, 30, 2006.

[86] A. Sommariva and M. Vianello. Computing approximate Fekete points by QR factorizations of

Vandermonde matrices. Computers & Mathematics with Applications, 57(8):1324–1336, 2009.

168

[87] T.J. Sullivan. Introduction to Uncertainty Quantification, volume 63. 2015.

[88] G. Szego. Orthogonal Polynomials. Number vol. 23 in American Math. Soc: Colloquium publ.

American Mathematical Society, 1939.

[89] V.N. Temlyakov. Approximation of functions with bounded mixed derivative. Trudy Matem-

aticheskogo Instituta im. V. A. Steklova, 178(5), 1986.

[90] V.N. Temlyakov. Approximation of periodic functions with bounded mixed derivative. Nova

Science Publishers Inc. Commack NY, 1993.

[91] A.J. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math.,

12(5):389–434, 2012.

[92] O. Mula Y. Maday and G. Turinici. Convergence analysis of the generalized empirical inter-

polation method. SIAM J. Numer. Anal., 2016.

[93] T. Zhou, A. Narayan, and Z. Xu. Multivariate discrete least-squares approximations with a

new type of collocation grid. SIAM Journal on Scientific Computing, 36(5):A2401–A2422,

2014.

169

171

Appendix A

APPROXIMATE FAST GREEDY ALGORITHM

In this paragraph, we present a computational strategy for the approximate fast greedy algorithm.

As mentioned in Remark 2.5 from Chapter 2, the greedy subsampling is computationally costly.

More precisely, for each removal of a point, the greedy subsampling requires as many computations

of the norm ‖Gxn
K\{k}

− I‖2 as there are points in the sample from which we want to remove a

point. Therefore we propose an approximate but faster greedy algorithm.

A.1 Computational strategy for the approximate fast greedy al-

gorithm

For any k, we have

Gxn
K\{k}

=
#K

#K − 1
Gxn

K
− 1

#K − 1
w(xk)ϕ(xk)⊗ϕ(xk) (A.1)

and

Gxn
K\{k}

− I =
#K

#K − 1

(
Gxn

K
− I

)
− 1

#K − 1
w(xk)ϕ(xk)⊗ϕ(xk) +

1

#K − 1
I. (A.2)

Denoting B = #K
#K−1

(
Gxn

K
− I

)
− 1

#K−1w(xk)ϕ(xk)⊗ϕ(xk), it holds

‖Gxn
K\{k}

− I‖2 = max(λ1(B) +
1

#K − 1
,−λm(B) +

1

#K − 1
).

As the matrix B is a rank-one update of the symmetric matrix #K
#K−1

(
Gxn

K
− I

)
, from [44] and

[17], we can state that

λ1(B) ≤ #K

#K − 1
λ1(Gxn

K
− I), (A.3)

where λ1(B) and λ1(Gxn
K
− I) are respectively the maximal eigenvalues of B and Gxn

K
− I.

Bounds on highest and lowest eigenvalues are obtained in [58] or [13]. Here we consider the lower

172

bound from [13] for the highest eigenvalue

λ1(B) ≥ #K

#K − 1
λ1(Gxn

K
− I)− ρ̃(qT

1 ϕ(xk)),

where q1 = Q(:, 1) is the eigenvector of B associated to its highest eigenvalue λ1(B), and ρ̃ = m
#K−1 .

To bound the quantity −λm(B) + 1
#K−1 , we use the fact that

λ1(−B) = −λm(B)

and the bound on λ1(−B)

λ1(−B) ≥ #K

#K − 1
λ1(−(Gxn

K
− I)) + ρ̃(qT

1 ϕ(xk)),

such that

λm(−B) ≥ − #K

#K − 1
λm((Gxn

K
− I)) + ρ̃(qT

1 ϕ(xk)).

Instead of calculating ‖Gxn
K\{k}

− I‖2 for each k, we evaluate ρ̃(qT
1 ϕ(xk)), this operation only

involves matrix multiplications, and the knowledge of the spectrum of Gxn
K
−I, and we look for k1

which minimizes #K
#K−1λ1((Gxn

K
− I)) − ρ̃(qT

1 ϕ(xk)) and k2 which minimizes − #K
#K−1λm((Gxn

K
−

I)) + ρ̃(qT
1 ϕ(xk)). Then we choose

k⋆ ∈ arg min
k∈{k1,k2}

‖Gxn
K\{k}

− I‖2.

We may not find the minimizer over K, but in practice, we observe that this approach performs

almost as well as the exact greedy and it is faster.

A.2 Complexity analysis

We compare these two subsampling methods in terms of computational cost. For the exact greedy

subsampling, each time we remove a point from a l-sample, it requires l calculations of ‖Gxl −
I‖2, which takes O(m3) floating point operations. Furthermore, the computation of Gxl requires

O(m2l2) floating point operations. We start from l = n and let the greedy subsampling runs until

the stability condition is no longer verified to a sample of size k, summing over all withdrawn points

it comes

n∑

l=k+1

m3l +m2l2 =
m3

2
(n(n+ 1)− k(k + 1)) +

m2

6
(n(n+ 1)(2n+ 1)− k(k + 1)(2k + 1)).

173

Exact Greedy Subsampling Fast Greedy Subsampling
m ‖Gxn

K
− I‖2 #K log(ε(u⋆)) t (sec) ‖Gxn

K
− I‖2 #K log(ε(u⋆)) t (sec)

6 [0.34; 0.68] [6; 6] [-0.9; -0.7] [0.29; 0.43] [0.18; 0.71] [6; 6] [-1; -0.6] [0.03; 0.09]
11 [0.42; 0.76] [11; 11] [-2; -1.7] [1.43; 1.48] [0.41; 0.67] [11; 12] [-2.1; -1.9] [0.16; 0.22]
16 [0.47; 0.87] [16; 16] [-2.8; -2.4] [13; 15] [0.60; 0.88] [16; 17] [-2.8; -2.3] [0.52; 0.61]
21 [0.63; 0.87] [21; 21] [-4; -3.7] [52; 54] [0.74; 0.88] [21; 23] [-4; -3.6] [1.6; 1.9]
26 [0.67; 0.88] [26; 26] [-4.6; -4.4] [150; 204] [0.64; 0.89] [26; 29] [-4.8; -4.4] [3.5; 5.3]
31 [0.79; 0.89] [31; 31] [-5.7; -5.5] [429; 464] [0.73; 0.89] [31; 34] [-5.9; -5.5] [5.8; 8.6]
36 [0.68; 0.87] [36; 36] [-6.5; -6.3] [608; 1008] [0.70; 0.87] [36; 40] [-6.7; -6.4] [8.6; 12]
41 [0.77; 0.88] [41; 42] [-7.6; -7.4] [948; 999] [0.74; 0.89] [42; 48] [-7.8; -7.4] [11; 13]

Table A.1 – Comparison of the performance between exact and fast greedy approaches, using
δ = 0.9 and η = 0.01 both for different m. Number of samples #K, stability constant ‖Gxn

K
− I‖2

and CPU time t.

Assuming k = cm with c ≥ 1, the overall cost scales in

CE = O(m2n3).

The more points are withdrawn (c smaller), the sharper this bound is.

For the fast greedy subsampling method, each time we remove a point from a l-sample it requires

one singular value decomposition of Gxl − I, which takes O(m3) floating point operations. It also

requires O(m2l) for the computation of Gxl . Using the same assumptions than before, k = cm

with c ≥ 1, the overall cost scales in

CF = O(m2n2).

The more points are withdrawn (c smaller), the sharper this bound is.

In regards to the assumptions made in the Theorem 2.5, we can say n = O(m log(m)) and therefore,

CE = O(m5 log(m)3) and CF = O(m4 log(m)2).

A.3 Illustration

In the next table, we present the CPU computational times for the subsampling part, when using

the technique presented in this section compared to an exact greedy approach, we also illustrate

that its accuracy is the same by considering the example 2, with X = [−1, 1] equipped with the

uniform measure and the function

u(x) =
1

1 + 5x2
. (A.4)

The approximation space is Vm = Pm−1 = span{ϕi : 1 ≤ i ≤ m}, where the basis {ϕi}mi=1 is chosen

as the Legendre polynomials of degree less than m− 1.

174

Exact Greedy Subsampling Fast Greedy Subsampling
m ‖Gxn

K
− I‖ #K t (sec) ‖Gxn

K
− I‖ #K t (sec)

6 [0.32; 0.63] [6; 6] [0.28; 0.37] [0.21; 0.85] [6; 6] [0.03; 0.07]
11 [0.48; 0.82] [11; 11] [1.45; 1.48] [0.50; 0.77] [11; 11] [0.175; 0.22]
16 [0.61; 0.85] [16; 16] [13.9; 14.8] [0.56; 0.87] [16; 17] [0.53; 0.6]
21 [0.65; 0.84] [21; 21] [60; 68] [0.62; 0.86] [21; 23] [1.79; 2.17]
26 [0.72; 0.87] [26; 26] [173; 186] [0.68; 0.88] [26; 28] [3.5; 4.2]
31 [0.79; 0.87] [31; 32] [354; 377] [0.66; 0.87] [32; 35] [5.2; 6.5]
36 [0.74; 0.87] [36; 37] [584; 636] [0.64; 0.88] [36; 42] [8.2; 8.8]
41 [0.73; 0.87] [41; 42] [993; 1041] [0.74; 0.88] [41; 44] [11.9; 12.2]

Table A.2 – Comparison of the performance between exact and fast greedy approaches, using
δ = 0.9 and η = 0.01 both for different m. Number of samples #K, stability constant ‖Gxn

K
− I‖2

and CPU time t.

Indeed, looking at the CPU times in Table A.1 and Table A.2, we observe that with the fast

methods, the computational times are divided by about m log(m).

175

Appendix B

SAMPLING OF MULTIVARIATE

PROBABILITY DISTRIBUTION IN

TREE-BASED TENSOR FORMATS

B.1 Probability distributions in tree-based format

Let X be a subset of Rd with a product structure X = X1 × . . .×Xd and µ = µ1 ⊗ . . .⊗ µd be a

product measure on X . For each ν ∈ {1, . . . , d}, let Hν be a space of univariate functions defined

on Xν , we introduce an orthonormal basis of Hν , denoted {ϕν
kν

: kν ∈ Λν} and mν = dim(Hν) =

#Λν . Let H = H1 ⊗ . . . ⊗ Hd, for a multi-index k = (k1, . . . , kd) ∈ Λ1 × . . . × Λd = Λ, we let

ϕk = ϕ1
k1

(x1) . . . ϕd
kd

(xd). Then the set of functions {ϕk : k ∈ Λ} is a basis of H and any function

u ∈ H can be written,

u(x) =
∑

k1∈Λ1

. . .
∑

kd∈Λd

uk1,...,kd
ϕ1

k1
(x1) . . . ϕd

kd
(xd) =

∑

k∈Λ

ukϕk(x).

We consider ρ a probability distribution of a random vector X = (X1, . . . , Xd), defined by

its Radon-Nikodym derivative v with respect to the measure µ which is here a product measure,

µ = µ1 ⊗ . . .⊗ µd, i.e.

dρ(x) = v(x)dµ(x), (B.1)

where v is in tree-based tensor format T T
r (H). We assume for each ν ∈ {1, . . . , d}, dµν is of the

form dµν(x) = µν(x)dx, meaning that dµν is particularly continuous with respect to the Lebesgue

measure and thus dµ(x) = dµ1(x1) × . . . × dµd(xd). In this section, we are interested with the

problem of sampling from such a multivariate probability density.

Remark B.1. Such multivariate probability densities are encountered in Chapter 5, where they are

used to construct the approximation of u in tree-based tensor format (see Algorithm 5.2) as optimal

sampling measure for the boosted optimal weighted least-squares projection. Also it may have been

obtained by learning a high-dimensional probability distribution as in [49].

177

B.1.1 Marginal distributions

Let α denote a non-empty subset of D = {1, . . . , d} and αc = D \ α. We let xα = (xν)ν∈α,

µα = ⊗ν∈αµν and Xα = ×ν∈αXν and xαc = (xν)ν∈αc , µαc = ⊗ν∈αcµν and Xαc = ×ν∈αcXν .

The marginal distribution of dρ associated to the variables xα is defined by

dρα(xα) =
∫

Xαc

dρ(x), (B.2)

and thus

dρα(xα) =
∫

Xαc

v(x)dµ(x) = fα(xα)dµα(xα). (B.3)

where

fα(xα) =
∫

Xαc

v(x)dµαc(xαc) =
∫

Xαc

∑

k∈Λ

vkϕk(x)dµαc(xαc)

=
∑

kα∈Λα

ϕα
kα

(xα)
∑

kαc ∈Λαc

vk

∫

Xαc

ϕαc

kαc (xαc)dµαc(xαc)

=
∑

kα∈Λα

ϕα
kα

(xα)
∑

kαc ∈Λαc

vk

∏

ν∈α

∫

Xν

ϕν
kν

(xν)dµν(xν).

(B.4)

Denoting fα,kα =
∑

kαc ∈Λαc vk
∏

ν∈αc

∫
Xν
ϕν

kν
(xν)dµν(xν), for kα ∈ Λα, we can write,

fα(xα) =
∑

kα∈Λα

fα,kαϕ
α
kα

(xα). (B.5)

fα,kα is obtained by computing contractions of the tensor v along the dimensions ν ∈ αc with

vectors containing the integral of the basis function of spaces Hν , ν ∈ αc.

More precisely, let hν ∈ R
Λν

denote the vector containing the integral of the basis functions of the

space Hν ,

hν = (hν
kν

)nν

kν=1 with hν
kν

=
∫

Xν

ϕν
kν
dµν(xν).

Letting hαc ∈ R
Λαc

be the tensor defined by hαc

kαc
=
∏

ν∈αc hν
kν

, we have

fα,kα =
∑

kαc ∈Λαc

vk

∏

ν∈αc

∫

Xν

ϕν
kν

(xν)dµν(xν) =
∑

kαc ∈Λαc

vkα,kαc hαc

kαc

The contraction of the modes kαc of v and hαc
results in a tensor fα,kα ∈ R

Λα
.

Proposition B.1. Let v be a function in tree-based tensor format T T
r (H) associated with a certain

dimension tree T over {1, . . . , d}, the function fα(xα) defined by fα(xα) =
∫

Xαc
v(x)dµαc(xαc) is

also in tree-based tensor format associated with the tree Tα = {γ ∈ T : γ ⊂ α} \ ∅ with root α.

The goal is to sample from dρ and to do this, we present techniques to sample from dρ⋆.

178

{1, 2, 3, 4, 5}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5}

{4} {5}

Dimension partition tree T associated to the tensor v

{1, 2, 3, 4}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4}

Tα for α = {1, 2, 3, 4}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

Tα for α = {1, 2, 3}

{1, 2}

{1} {2}

Tα for α = {1, 2}

Figure B.1 – Examples of dimension partition trees

B.1.2 Conditional distributions

In this section, we introduce several notations and definitions that will be necessary for the mul-

tivariate algorithms.

We introduce the ordered set, [ν] = {1, . . . , ν} and denote x[ν] = (x1, . . . , xν). For all 2 ≤ ν ≤ d
the conditional distribution denoted ρν|[ν−1] of the random variable Xν knowing X[ν−1], and defined

by

ρν|[ν−1](xν |x[ν−1]) =
ρ[ν](x[ν])

ρ[ν−1](x[ν−1])
, (B.6)

where ρ[ν](x[ν]) and ρ[ν−1](x[ν−1]) denote the marginal distributions associated with the indices

{1, . . . , ν} and {1, . . . , ν − 1} respectively. Replacing the marginals ρ[ν](x[ν]) and ρ[ν−1](x[ν−1]) by

their expressions from equation (B.3) and thanks to the product structure of µ, it holds

dρν|[ν−1](xν |x[ν−1]) =
f[ν](x[ν])

f[ν−1](x[ν−1])
dµν(xν). (B.7)

Remark B.2. If both f[ν] and f[ν−1] admit a representation in tree-based format, the ratio
f[ν](x[ν])

f[ν−1](x[ν−1])

has not.

179

B.2 Sampling from multivariate probability distributions in tree-

based tensor formats

In this section, we describe a sequential sampling technique which allows sampling from multi-

variate probability distributions. It relies on the fact that any multivariate probability distribution

can be written,

dρ⋆(x1, . . . , xd) = dρ⋆
1(x1)dρ⋆

1|2(x2|x1) . . . dρ⋆
d|{1,...,d−1}(xd|x1, . . . , xd−1) (B.8)

where dρ⋆
1(x1) is the marginal of dρ⋆ associated to the variable x1, dρ⋆

ν|[ν−1](xν |x1, . . . , xν−1) is

the conditional distribution of xν knowing x1, . . . xν−1. The advantage of this technique is that

we only have to sample from univariate densities. The principle of sequential sampling is to first

sample xk
1 from dρ⋆

1(x1) and then for 2 ≤ ν ≤ d, successively sample xk
ν from the conditional

distribution of Xν knowing X1 = x1, . . . , X[ν−1] = x[ν−1]. This way, at each step of the algorithm,

we only have to sample from univariate densities, which are explicitly given. One may then rely

on standard simulation methods such as rejection sampling, inverse transform sampling or slice

sampling techniques, see section 3 or [31].

Algorithm B.1 Sequential conditional sampling for ρ⋆(x)

Inputs: Function v such that ρ(x) = v(x)µ(x)
Outputs: (x1, . . . , xn) sampled from ρ(x).

for k = 1, . . . , n do
Compute ρ1(x1) the marginal of ρ associated to the dimension 1
Sample xk

1 from x1 7→ |ρ1(x1)| using one technique for univariate sampling.
for ν = 2, . . . , d do

Compute ρ[ν](x[ν]) the marginal of ρ associated to the indices dimension 1, . . . , ν.

Compute xν 7→ ρν|V−1(xν |xk
V−1) = ρV (xV)

ρV−1(xV−1) the conditional distribution of Xν knowing

X1 = xk
1, . . . , Xν−1 = xk

ν−1.
Sample xk

ν from xν 7→ ρν|[ν−1](xν |xk
1, . . . , x

k
ν−1) using one technique for univariate sampling.

end for
Set xk = (xk

1, . . . , x
k
d).

end for

Remark B.3. When working with an approximate density which may take negative values, the

marginal and conditional densities may also take negative values. In practice, when working with

a marginal and conditional density w with respect to Lebesgue measure we take the positive part

of w.

Remark B.4. To avoid negative values in the approximated marginal ρα, we may replace it by its

positive part < ρα >+.

180

