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Abstract

Researches conducted in this thesis address the problem of deterministic prediction of ocean wave
fields around a marine structure, a key parameter for the analysis and control of a vast range
of offshore operations, on the basis of datasets acquired remotely by an optical sensor. Efforts
focus on the inclusion, at low computational cost, of the modeling of nonlinear hydrodynamic
phenomena, preserving the reliability the surface representation in case of severe sea state.

A weakly nonlinear Lagrangian approach (ICWM), whose hydrodynamic properties are eval-
uated by inter-comparison with reference wave models, is selected for the description of the free
surface. The prediction problem is then formulated as an inverse problem that aims at fitting
the solution described by the wave model to observations, here composed of free surface eleva-
tion datasets generated by a synthetic, yet realistic, lidar sensor scanning the ocean surface at
grazing angle. Predictions are then issued through the propagation in time and space of the
parameterized wave model.

The applicability of the methodology is validated using observations of both unidirectional
and directional wave fields, obtained at different instants to compensate for their strong spa-
tial non-uniformity. The relative performance comparison between ICWM and lower-order wave
models highlights the improvements due to the modeling of wave nonlinearities, especially those
pertaining to the correction of the dispersion relation. A demonstration of the usefulness of
ICWM is then provided by means of a procedure that is fully validated experimentally in a wave
tank.

Keywords: Ocean waves, Gravity waves, Deterministic prediction, Nonlinear waves, Hydrody-
namics, Inverse problem

Résumé

Les recherches présentées dans le cadre de cette thèse portent sur le traitement de mesures
par télédétection optique de la surface océanique en vue de la prédiction de champs de vagues
au voisinage d’une structure marine, information cruciale pour l’analyse et le contrôle d’une
large gamme d’opérations en mer. Elles visent notamment à inclure, à moindre coût calcul, la
modélisation de phénomènes non-linéaires, conservant une représentation réaliste de la surface
en cas d’état de mer sévère.

Une approche Lagrangienne faiblement non-linéaire (ICWM), dont les propriétés hydrody-
namiques sont étudiées par inter-comparaison avec des modèles de référence, est sélectionnée
pour la description de la surface libre. Le problème de prédiction est formulé comme un prob-
lème inverse dont le but est de faire correspondre la solution décrite par le modèle de vagues
à des observations, composées ici d’élévations de surface mesurées par un capteur lidar synthé-
tique balayant la surface en incidence rasante. Les prédictions résultent de la propagation en
temps/espace du modèle ainsi paramétré.

L’applicabilité de la méthodologie est validée à l’aide d’observations de champs de vagues
unidirectionnels et directionnels, acquises à des instants différents pour pallier à leur forte non-
uniformité spatiale. La comparaison relative des performances de ICWM et de modèles d’ordre
inférieur met en évidence les améliorations dues à la modélisation des non-linéarités, notamment
celles issues de la correction de la relation de dispersion. Une démonstration de la pertinence
de l’utilisation de ICWM est ensuite proposée au moyen d’une procédure entièrement validée
expérimentalement en bassin de houle.

Mots clés : Vagues, Houle, Ondes de gravité, Prédiction déterministe, Ondes non-linéaires, Hy-
drodynamique
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Résumé Substantiel

Dans l’environnement marin, les chargements induits par les ondes de gravité à la surface de
l’océan (vagues) constituent l’un des principaux phénomènes naturels déterminant le mouvement
des structures marines et leur fatigue structurelle. Ainsi, pour une large gamme d’applications
marines, la disponibilité d’une prédiction vague-à-vague (ou déterministe) en temps réel du champ
de vagues incident est cruciale pour leur optimisation. La prédiction et le contrôle du mouvement
induit par les vagues jouent un rôle essentiel dans l’accroissement de l’enveloppe opérationnelle
des opérations marines telles que la manœuvrabilité optimale des navires de surface, l’appontage
d’aéronefs, le transfert de biens entre navires ou l’installation et la maintenance de structures
offshores. Pour les systèmes de récupération d’énergies marines renouvelables (par exemple, un
système houlomoteur, une éolienne flottante), la connaissance des vagues incidentes conditionne
les performances des stratégies de contrôle. De telles prédictions déterministes des mouvements
de la surface océanique reposent sur l’extraction des caractéristiques du champ de vagues à partir
d’observations, c’est-à-dire des mesures contenant des informations relatives à l’évolution spatiale
et/ou temporelle de la surface océanique. Un modèle de vagues, paramétrés en conséquence, est
alors utilisé pour la propagation du champ vagues observé jusqu’à l’endroit d’intérêt, qui peut
être mobile (comme le voisinage d’un navire).

Cette thèse prend part à un projet dont le but est de prédire, de manière déterministe et en
temps réel, le mouvement d’un navire sur houle. La méthode généralement utilisée aujourd’hui
pour effectuer de telles prédictions est basée sur l’analyse des mouvements passés sur navire, et
permet à l’équipage d’anticiper les futurs mouvements à un horizon de quelques secondes. De
leur côté, les prédictions reposant sur l’observation à distance de l’évolution de la surface per-
mettent d’augmenter significativement l’horizon de prédiction pour atteindre quelques dizaines
de secondes, soit quelques périodes caractéristiques de l’état de mer. Cependant, cela implique
d’adresser trois difficultés majeures. La première est la mesure des grandeurs déterministes du
champ de vagues (comme les élévations de surface, variations de pression, profiles de vitesse, etc.)
permettant de procéder à une prédiction à un instant ultérieur et autour du navire qui peut être
mobile. La deuxième difficulté est l’extraction d’informations relatives aux vagues (par exemple,
amplitudes, phases) des mesures, dans le but d’initialiser un modèle physique et ainsi pouvoir
propager dans l’espace et dans le temps le champ de vagues sous-jacent. Les choix du modèle de
vagues et de la méthode d’extraction des informations relatives aux vagues pour son initialisation
sont à effectuer en considérant la contrainte du temps réel : les vagues incidentes doivent être
connues avant leur arrivées, avec un certain temps d’avance permettant à une stratégie de con-
trôle d’être exécutée ou à l’équipage d’utiliser un support de décision en cas d’opération délicate.
La troisième difficulté est l’estimation de la réponse du navire à l’excitation du champ de vagues,
elle aussi soumise à la contrainte du temps réel.

Les systèmes opérationnels fournissant des prédictions déterministes de champ de vagues en
temps réel (comme ceux proposés par Hilmer & Thornhill (2015), Kusters et al. (2016) ou Naai-
jen et al. (2018)) utilisent des images de radars à bande X et des modèles physiques linéarisés.
Ces choix proviennent de la capacités des radars nautiques à mesurer certaines propriétés locales
de la surface océanique sur un large domaine (jusqu’à ∼ 3–4 km2) autour de la structure sur
laquelle ils sont montés, et de la contrainte du temps réel restreignant fortement l’utilisation
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RÉSUMÉ SUBSTANTIEL

d’une modélisation complexe pour les processus physiques liés à la propagation vagues et à leur
interaction avec la structure. Les prédictions ainsi faites sont donc limitées aux conditions pour
lesquelles les processus physiques non-linéaires sont négligeables (comme en cas de mer peu ag-
itée ou d’horizon de prédiction restreint), affectant leur fiabilité lorsque ces conditions ne sont
pas vérifiées. Même si ces limitations peuvent être levées via l’utilisation de modèles de vagues
plus fidèles (voir, par exemple, Blondel et al., 2010; Klein et al., 2020; Qi et al., 2018a; Simane-
sew et al., 2017), l’initialisation de tels modèles non-linéaires reste une difficulté majeure (voir,
par exemple, Fujimoto & Waseda, 2020; Köllisch et al., 2018; Yoon et al., 2016) empêchant au-
jourd’hui leur utilisation pour la prédiction de champs de vagues en temps réel.

Cette thèse porte sur le problème de la prédiction de champs de vagues non-linéaires autour
d’un navire en mouvement, à un coût calcul modéré, en vue d’atteindre un horizon de prédiction
de quelques périodes caractéristiques de vagues. Comme présenté dans le premier chapitre,
seules les mesures s’appuyant sur des capteurs permettant de mesurer à distance sont capables
de fournir les informations nécessaires à la prédiction déterministe de champ de vagues autour
d’une structure mobile. Quelques études portant sur les solutions technologiques permettant
l’acquisition de mesures à distance se sont penchées sur les capacités des capteurs optiques, tels
que des caméras lidar, à fournir des mesures d’élévation de surface (Belmont et al., 2007; Kabel
et al., 2019). Grilli et al. (2011) et Nouguier et al. (2014) ont démontré l’exploitabilité de mesures
telles que fournies par un lidar pour la prédiction déterministe de vagues non-linéaires. Dans la
continuité de ces travaux, nous considérons dans cette thèse des mesures optiques similaires pour
la paramétrisation du modèle physique décrivant l’évolution spatiale et temporelle des champs
de vagues observés.

Les études de Grilli et al. (2011) et Nouguier et al. (2014) proposent également l’utilisation
d’un modèle de vagues faiblement non-linéaire, basé sur une description Lagrangienne de l’évolution
de la surface océanique afin de modéliser certaines propriétés non-linéaires avec une efficacité
numérique proche de celle associée à la théorie linéaire. Cette approche est davantage dévelop-
pée et qualifiée dans cette thèse, et les performances d’une version améliorée sont étudiées dans
le contexte de la prédiction déterministe.

Résumé des chapitres

Le premier chapitre de cette thèse commence par décrire la méthodologie classiquement util-
isée pour la caractérisation des propriétés statistiques des vagues, puis les différentes méthodes de
mesure envisageables pour la prédiction déterministe de champs de vagues sont présentées. Parmi
elles, les caméras lidar ont plusieurs avantages – le principe de fonctionnement qui permet une
mesure directe et à distance d’une grandeur d’intérêt (élévation de surface), l’échantillonnage
spatial et temporel élevé, et les récents développements en vue de systèmes opérationnels –
qui font d’elles une solution intéressante pour l’élaboration d’un nouvel algorithme de prédic-
tion. Les méthodes de prédiction déterministes existantes sont ensuite présentées, en insistant
sur les performances hydrodynamiques et computationnelles des modèles de vague utilisés et
des méthodologies d’inversion de ces modèles à partir des mesures. Nous remarquons que la
théorie linéaire – Linear Wave Theory (LWT) en anglais – permet une inversion aisée à partir de
n’importe quel jeu de mesure de vagues, même si des précautions doivent être prises concernant
le caractère non-uniforme et non-périodique des mesures. Cependant, les hypothèses relatives à
l’approche linéaire restreignent son application à la prédiction de champs de vagues en cas de
mer calme et pour un horizon de prédiction relativement court. Les modèles de vague faiblement
non-linéaires permettent, jusqu’à un certain degré, d’améliorer la précision des prédictions si des
corrections non-linéaires des vitesses de vague sont modélisées, ce qui nécessite un développement
à l’ordre trois au moins pour les modèles Eulériens. Les approches complètement non-linéaires,
comme la méthode High-Order Spectral (HOS), requièrent des procédures d’inversion complexes
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qui ne sont pas facilement applicable à des données réelles et dans des temps compatibles avec le
temps réel. De part son formalisme, l’approche Lagrangienne (Choppy Wave Model) permet de
modéliser des propriétés non-linéaires avec un faible coût en calcul. N’ayant pas été étudiée dans
le contexte de prédiction déterministe, la solution Lagrangienne au second ordre de perturbation,
qui comprend une correction (partielle) de la vitesse des vagues, apparaît donc comme un bon
compromis complexité/efficacité et sera étudiée par la suite.

Le deuxième chapitre présente l’approche Lagrangienne pour la modélisation des ondes de
gravité à la surface de l’océan, ainsi que les propriétés intrinsèques à cette approches. La dériva-
tion de la solution au premier ordre de perturbation est exposée, puis nous comparons, jusqu’au
second ordre, les descriptions Lagrangienne et Eulérienne de la surface libre pour différentes
configurations d’état de mer. La solution Lagrangienne inclut au second ordre des effets non-
linéaires qui affectent à la fois la forme de la surface libre et la relation de dispersion (reliant
fréquence et longueur d’onde des vagues). Le premier effet crée une asymétrie (c’est-à-dire des
crêtes plus prononcées et creux plus plats), alors que le second engendre une modification de
la vitesse de propagation des vagues. Nous introduisons ensuite une version améliorée de cette
solution au second ordre, appelée Improved Choppy Wave Model (ICWM), qui corrige la relation
de dispersion non-linéaire afin de mieux représenter les phases lors de la propagation du champ
de vagues. Nous montrons que ICWM permet de retrouver la solution Eulérienne au troisième
ordre pour une vague régulière. Dans le cas de champs de vagues irréguliers, ICWM corrige
convenablement les composantes énergétiques du champ de vagues, mais manque les effets de
modulation des vagues plus courtes. Afin d’utiliser ICWM lors de la reconstruction de champ
de vagues à partir des mesures, nous en proposons une formulation Eulérienne pour l’élévation
de surface. Nous montrons qu’une simple approximation dans un cadre Eulérien, ne nécessitant
pas de développements mathématiques complexe ni de procédure itérative, permet d’obtenir des
résultats consistants. Dans le but de valider l’intérêt de la formulation améliorée de la solu-
tion Lagrangienne, nous comparons divers résultats d’élévation de surface à une solution HOS
complètement non-linéaire (c’est-à-dire convergée en ordre de non-linéarité). Il est montré que
la correction non-linéaire de la vitesse de phase des vagues est cruciale pour une représentation
correcte du champ de vagues après seulement quelques périodes de propagation. Ce travail a
été publié dans Guérin et al. (2019). Pour finir, une caractérisation de quelques propriétés du
champ de pression issu de ICWM est présentée.

Nous nous concentrons dans le troisième chapitre sur la procédure d’assimilation de données,
consistant à accéder aux informations pertinentes contenues dans les mesures de vagues (ap-
pelées observations) afin de définir les conditions initiales du modèle physique servant à propager
le champ de vagues en vue de sa prédiction. La méthode d’assimilation développée ici se base
sur des mesures optiques telles que générées par une caméra lidar. La distribution de telles
mesures est d’abord caractérisée au travers d’un approche géométrique, mettant en avant leur
forte non-uniformité spatiale due à l’incidence rasante des rayons du capteur à la surface. La re-
construction du champ de vagues (c’est-à-dire l’inversion du modèle physique) est formulée pour
le modèle non-linéaire ICWM étudié dans le chapitre précédent, puis nous détaillons le processus
itératif de résolution. La formulation analytique de ICWM permet d’écrire le problème inverse
sous une forme matricielle explicite, et la solution est trouvée en passant par une procédure
de régularisation Tikhonov et une décomposition en valeurs singulières. Une fois le champ de
vagues reconstruit, la région spatio-temporelle dans laquelle les informations assimilées restent
valides pendant la propagation du modèle de vagues est bornée. À partir de l’étendue et de
l’échantillonnage des observations, nous décrivons l’évolution de la zone de prédiction théorique-
ment accessible. La distribution spatio-temporelle d’une erreur théorique de prédiction est décrite
à partir de la quantité d’énergie tronquée lors du processus de mesure, et montre que la taille
de la zone de prédiction est fortement dépendante de la précision attendue de la prédiction. Des
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critères sont ensuite présentés pour la sélection des fréquences et directions de coupure pour le
champ de vagues modélisé ainsi que pour l’évolution de la zone de prédiction, nous permettant
de fermer le problème inverse et définir clairement une région à l’intérieur de laquelle les per-
formances de prédiction de notre méthode seront évaluées. Enfin, les questionnements relatifs
à la détermination de la zone optimale de mesure (menant à l’horizon de prédiction souhaité)
sont exposés et en partie traités. Depuis la caractérisation des mesures optiques d’élévation de
surface jusqu’à la formulation du problème d’inversion de ICWM et la description de la zone de
prédiction théoriquement accessible, ce chapitre termine l’explication des bases théoriques de la
méthode de prédiction employée dans cette thèse.

Dans le quatrième chapitre, les propriétés et performances du modèle non-linéaire et de la
méthode de prédiction développés sont étudiés à partir de jeux de données réalistes – bien que
synthétiques et supposés sans erreur de mesure – de mesures optiques. Des simulations haute-
fidélité de champs de vagues sont utilisés pour fournir des surfaces océaniques de références, à
partir desquelles les observations sont générées. Après une description de la méthode de généra-
tion des mesures lidar synthétiques, nous étudions la dépendance de la précision des reconstruc-
tions/prédictions à divers paramètres d’assimilation, à savoir le nombre de composantes dans le
modèle pour la représentation du champ de vagues, la fréquence de coupure haute de l’intervalle
utilisé, la non-uniformité de la distribution des observations, la durée d’assimilation et l’étendue
directionnelle des observations dans le cas d’un champ de vagues directionnel. Nous montrons
que la précision de la reconstruction converge rapidement avec le nombre de composantes dans
le modèle de vagues (quelques dizaines suffisent pour un champ de vagues unidirectionnel), ainsi
qu’avec la fréquence de coupure haute. La caractéristique principale des mesures optiques, qui
est de produire des données distribuées spatialement de manière très irrégulière, rend la recon-
struction spatiale de champ de vagues particulièrement difficile. En revanche, inclure plusieurs
jeux de mesures acquis à des instants différents dans l’inversion du modèle de vagues permet de
contrer cette difficulté. Avec une procédure d’assimilation correctement paramétrée, l’effet de la
prise en compte des propriétés non-linéaires de ICWM sur la qualité de la prédiction est analysé
pour des champs de vagues de différentes cambrures caractéristiques. Il est montré que, malgré
sa formulation analytique relativement simple, ICWM est capable de modéliser des effets non-
linéaires menant à une amélioration non-négligeable de la prédiction. Comparée à celle de LWT,
l’utilisation de ICWM dans l’algorithme de prédiction permet une réduction relative de l’erreur
de prédiction de l’ordre de 25% pour la cambrure étudiée la plus élevée, soit Hs/λp ≈ 3.8%. Une
large partie des résultats de ce chapitre est également présentée dans Desmars et al. (2018a,b).

Dans le cinquième et dernier chapitre, nous appliquons notre algorithme de prédiction à des
données expérimentales issues d’une campagne menée dans le bassin océanique de l’École Cen-
trale de Nantes. Des champs de vagues de différentes cambrures caractéristiques et/ou différents
étalements directionnels ont été générés physiquement en bassin de houle, ainsi qu’à l’aide d’un
bassin numérique basé sur le formalisme HOS, fournissant un jumeau numérique (“digital twin”)
du dispositif expérimental. Les sondes (physiques ou numériques, mesurant des séries temporelles
d’élévation de surface en un point de l’espace) ont été non-uniformément distribuées en espace,
afin de représenter l’échantillonnage typique d’une surface par un capteur lidar observant la sur-
face avec un angle d’incidence rasant. Dans le but de valider la méthodologie de génération
de données, l’adéquation des états de mer générés avec leurs caractéristiques théoriques (hau-
teurs significatives cibles) est d’abord vérifiée. Ensuite, le jeu de données correspondant aux
cas de houle unidirectionnelle est analysé plus finement pour la quantification et la qualification
physique des perturbations relatives aux conditions expérimentales. Au travers de l’examination
des oscillations résiduelles mesurées par les sondes dans le bassin de houle réel, ces perturbations
semblent être la conséquence de l’excitation par le batteur de modes propres transverses dans
le bassin. Elles sont également identifiées comme la cause principale des différences observées
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entre les données expérimentales et numériques. Nous évaluons par la suite, la sensibilité de
l’algorithme de prédiction à des paramètres d’assimilation. Notre étude montre que la précision
de la prédiction converge avec la durée des séries temporelles d’élévation de surface assimilées,
c’est-à-dire la quantité de données utilisées pour effectuer la prédiction. Aussi, plus le pas de
temps des données assimilée est faible, plus la convergence est rapide, et plus la cambrure car-
actéristique est élevée, plus l’erreur de prédiction augmente, sous la forme d’un déphasage non-
linéaire des vagues prédites avec la solution de référence et d’une divergence de forme. Ces deux
types de désaccord sont explicités au travers de la comparaison entre des élévations de surface
pour un groupe de vagues spécifique. Les performances de ICWM relatives à LWT et LWT-
CDR (LWT incluant une correction de phase similaire à celle de ICWM) sont ensuite quantifiées
pour différentes configurations d’état de mer. Nous montrons que, pour l’estimateur d’erreur
définie dans le cadre de cette étude, ICWM améliore les prédictions à l’intérieur de la zone de
prédiction accessible, comparé à LWT, avec une réduction maximale de l’erreur de prédiction
de ∼ 35% pour une cambrure intermédiaire de Hs/λp ≈ 3.18% (résultats numériques). Dans la
région spatio-temporelle couverte par les observations, la correction non-linéaire de forme incluse
dans ICWM améliore la représentation de l’élévation de surface. Pour les vagues qui se sont
propagées (en espace ou en temps), le facteur principal de réduction d’erreur de prédiction est
la modélisation correcte des vitesses de propagation des vagues. En revanche, en ce qui con-
cerne la prédiction de pente, les propriétés de représentation de forme asymétrique des vagues
de ICWM permet d’obtenir une réduction de l’erreur moyenne de 20% sur la zone de prédiction,
pour une cambrure de ∼ 1–2% et des données numériques, en comparaison à une modélisation
linéaire avec correction de la vitesse de propagation (LWT-CDR). Au travers d’une procédure
entièrement validée expérimentalement, ces résultats démontrent la pertinence de l’utilisation de
ICWM en vue de la prédiction de champs déterministes de la surface océanique. Les résultats
présentés dans ce chapitre ont été publiés dans Desmars et al. (2020).

Perspectives

Le cœur de la méthode de prédiction proposée est l’inversion d’un modèle physique, consis-
tant, dans notre cas, en la minimisation d’une fonction quadratique. La résolution du problème
se fait au travers d’une décomposition en valeurs singulières à laquelle on adjoint une procédure
de régularisation, et un processus itératif est utilisé pour l’évaluation les termes non-linéaires.
Malgré le faible coût en calcul de la propagation en temps/espace d’un champ de vagues à
l’aide de ICWM, la méthode d’inversion (nécessaire à l’initialisation du modèle), choisie pour
sa robustesse et adaptation à la non-uniformité des observations, n’est pas numériquement effi-
cace et représente la limitation principale à son utilisation pour des applications nécessitant le
temps réel. Le temps de calcul de cette approche peut possiblement être modéré dans le cas de
prédiction linéaire via la définition d’un système inverse mieux conditionné ou l’utilisation d’un
environnement numérique hautes performances, mais l’estimation des non-linéarités reste hors de
portée en temps réel. Étant données les propriétés numériques de ICWM, une reformulation du
problème inverse utilisant efficacement ces propriétés pourrait significativement améliorer les per-
formances numériques de l’algorithme, probablement au prix d’une procédure de pré-traitement
des observations ou d’approximations hydrodynamiques supplémentaires. Plus généralement, les
stratégies d’inversion rendant compatibles la non-uniformité et la non-périodicité des mesures de
vagues avec des méthodes numériques rapides est un champ de recherche à approfondir, puisque
cette incompatibilité représente la contrainte majeure pour l’initialisation en temps réel des
modèles de vagues non-linéaires, y compris les modèles les plus efficaces à l’heure actuelle. Néan-
moins, l’algorithme de prédiction non-linéaire proposé ici peut d’ores et déjà être utilisé dans
des systèmes “off-line” à des fins d’analyse, donnant accès à une représentation de la surface plus
précise que celle issue de l’approche linéaire. De plus, la limitation de la disponibilité de mesures
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optiques de la surface, telles que produites par une caméra lidar, n’affecte pas l’applicabilité de
la méthode développée, car elle peut être facilement adaptée à tout autre type de mesures de
vague, qu’elles soient issues de capteurs in situ (par exemple une bouée) ou mesurant à distance
(par exemple un radar).

Même si la méthode de prédiction a été développée dans un cadre entièrement compatible
avec les champs de vagues directionnels, le travail présenté dans cette thèse traite principalement
de champs unidirectionnels. Compte tenu du fait que les propriétés non-linéaires de ICWM ne
sont pas affectées par le caractère directionnel du champ de vagues (c’est-à-dire qu’il n’y pas
d’émergence de nouveaux phénomènes non-linéaires dans le cas d’une distribution directionnelle
des vagues), les résultats étendus aux champs de vagues directionnels devraient être comparables
avec ceux issus des champs unidirectionnels. Cependant, dans le but de saisir en profondeur
le potentiel de ICWM dans des conditions réalistes, une étude dédiée à ses performances en
prédiction de champs de vagues directionnels est nécessaire. À cette fin, la procédure d’analyse
et les connaissances apportées par cette thèse sont d’un grand intérêt et doivent servir de base.
La plupart des aspects de la méthode d’analyse utilisée ici peuvent être étendus sans difficulté
aux champs de vagues directionnels. Les questions relatives à la quantification des indicateurs
de précision des prédictions doivent être adressées prudemment afin d’éviter des temps de calcul
excessifs dus au grand nombre requis de surfaces à analyser. Le jeu de données décrit dans le
dernier chapitre, généré pour des états de mer directionnels et déjà en partie caractérisé, fournit
un cadre approprié pour poursuivre la validation expérimentale.

Enfin, malgré l’application de la méthode de prédiction dans les conditions expérimentales de
bassin de houle, qui fournit déjà une preuve de concept solide, l’utilisation de données acquises
en milieu océanique est requise pour aboutir à une vue complète de son potentiel.
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General Introduction

In the ocean environment, loads induced by surface gravity waves constitute one of the main nat-
ural phenomena that drive the motion of marine structures and their structural fatigue. Hence,
for a vast range of marine applications, the availability of the real-time deterministic prediction
of the incoming waves is key for their optimization. The prediction and control of wave-induced
motion is of crucial importance to extend the operational envelope of operations such as optimal
maneuvering of surface vessels, aircraft takeoff/landing, ship-to-ship transfer or installation and
maintenance of marine structures. For ocean renewable energy harvesting systems, the knowl-
edge of the incoming waves conditions the performances of control strategies. Such deterministic
(or phase-resolved) ocean waves predictions rely on the retrieval of the wave field characteristics
from a set of observations, i.e., measurements that contain information about the space and/or
time evolution of the ocean surface. A parameterized wave model is then used for the propaga-
tion of the wave field to the region of interest, which can be mobile (e.g., a moving ship).

This thesis takes part in a project that aims at predicting, deterministically and in real time,
the motion of a ship exposed to ocean waves. The currently widely used method to achieve such
predictions is based on the analysis of the past ship motion, and allows the ship crew to anticipate
the future motion during a horizon of prediction on the order of several seconds. In contrast,
motion predictions based on the remote observation of the ocean surface are able to significantly
increase the horizon of prediction to reach several tens of seconds, namely several characteristic
wave periods of the sea state. This implies, however, to address three major issues. The first
one is the measurement of the appropriate wave quantities (e.g., surface elevations, pressure
variations, velocity profiles) to perform a prediction later in time and around a ship that can be
moving. The second issue is the extraction of the relevant wave information (e.g., amplitudes,
phases) from the measurements, in order to initialize a specific physical model for the space
and time propagation of the underlying wave field. Both the choices of the wave information
extraction method and of the wave model have to be made with respect to the constraint of
real-time computation, i.e., we want to know the incoming waves before they actually arrive,
with a certain time span in advance that allows a control strategy to be executed or the crew to
use a decision support system during a sensitive operation. The third one is the calculation of
the ship response from the wave-induced loads, also subjected to the real-time constraint.

Operational systems that provide real-time deterministic predictions of ocean wave fields
(e.g., Hilmer & Thornhill, 2015; Kusters et al., 2016; Naaijen et al., 2018) rely on X-band radar
images and linearized physical models. These choices come from the capacity of nautical radars
to measure some local properties of the ocean surface over a large domain (up to ∼ 3–4 km2)
around the structure upon which they are mounted, and on the real-time constraint that strongly
restrains from using a complex physical modeling of the wave propagation and wave/structure
interaction processes. Hence, limitations arise in conditions for which nonlinear physical pro-
cesses cannot be neglected (e.g., large prediction horizons, strong seas), affecting the reliability
of the predictions. Even if these limitations could be eliminated (to a certain extent) by the
use of more complex wave models (e.g., Blondel et al., 2010; Klein et al., 2020; Qi et al., 2018a;
Simanesew et al., 2017), the initialization of such nonlinear models is still a major issue (e.g.,
Fujimoto & Waseda, 2020; Köllisch et al., 2018; Yoon et al., 2016), preventing their use for the
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GENERAL INTRODUCTION

real-time prediction of wave fields.

This thesis focuses on the problem of the prediction of nonlinear wave fields around a mov-
ing structure at a moderate computational cost, in order to achieve a typical forecast horizon
of several characteristic wave periods. As we will see in the first chapter of this thesis, only
measurements that are done with remote sensing methods can provide the required wave infor-
mation to deterministically predict wave fields around a moving structure. Past investigations
on the technological solutions for the acquisition of remote wave measurements addressed the
capabilities of optical sensors, such as lidar cameras, to provide surface elevation measurements
(Belmont et al., 2007; Kabel et al., 2019). Grilli et al. (2011) and Nouguier et al. (2014) demon-
strated the usability of lidar-like measurements for deterministic prediction of nonlinear ocean
waves. Following the latter studies, we consider in this thesis similar optical measurements for
the parameterization of the physical model that describes the time and space evolution of the
observed wave fields.

Studies by Grilli et al. (2011) and Nouguier et al. (2014) also propose the use of a computa-
tionally efficient weakly nonlinear wave model, based on the Lagrangian description of the ocean
surface evolution, to represent some nonlinear features with a numerical efficiency that is close
to that belonging to the linear theory. This approach is further developed and qualified in this
thesis, and the prediction performances of an improved version is investigated throughout the
presented work.

Thesis summary

Chapter I first describes the classical methodology to characterize ocean waves statistical
properties, and the wave measurement methods that are used for deterministic prediction. It is
seen that lidar cameras have inherent qualities – the nature of their working principle that allows
a direct measurement of wave quantities (free surface elevations), their high sampling rate (in
both space and time) and the recent developments of operational systems – that make them a
relevant choice for the investigation of new prediction algorithms. We then review the existing
deterministic ocean waves prediction approaches, emphasizing on both the hydrodynamic and
computational performances of the used wave models and methodologies to invert them from
the wave measurements. We see that the Linear Wave Theory (LWT) is the most convenient
model for inversion from any set of wave measurements, even if precautions have to be taken
regarding non-uniformity and non-periodicity of the measured data. It appears, however, that
the hypotheses pertaining to this modeling approach restrict its application to the prediction of
wave fields of small steepness and of relatively short prediction horizons. Weakly nonlinear wave
models are able to significantly improve the prediction accuracy if nonlinear corrections of wave
velocities are taken into account. Fully nonlinear approaches, such as the High-Order Spectral
(HOS) method, require complex model inversion procedures that are not easily applicable to
real wave data and computable in real-time. In this context, the weakly nonlinear Lagrangian
approach appears to be a convenient method to model relevant nonlinear wave properties (wave
velocity corrections) at a low computational cost thanks to a simple analytical formulation of
the free surface elevation.

Chapter II presents the Lagrangian approach for ocean gravity waves modeling and some of
its intrinsic properties. We detail the derivation of the first-order solution, and show how the La-
grangian approach (up to the second-order) compares to its Eulerian counterpart in terms of free
surface description. The second-order Lagrangian solution includes nonlinear effects that both
affect the shape of the free surface and the dispersion relation. The former creates wave shape
asymmetry (i.e., sharper crest and flatter trough), while the latter results in a modification of the
wave velocity. Then, we introduce the improved Lagrangian second-order solution, referred to
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as Improved Choppy Wave Model (ICWM), that corrects the nonlinear dispersion relation mod-
eled by the classical second-order Lagrangian solution. It is shown that ICWM allows retrieving
the third-order Eulerian solution for regular waves. In the case of irregular waves, it leads to
an appropriate correction for energetic wave components but misses the modulation effects of
shorter waves. We then provide an Eulerian form of the corresponding free surface elevation that
is required for the reconstruction of the wave field from the wave measurements. We show that
a simple Eulerian approximate that does not necessitate complex mathematical developments
nor iterative procedures can be formulated and leads to consistent results. In order to validate
the relevance of the “improved” formulation of the Lagrangian solution, we compare various re-
sults of free surface elevation to a fully nonlinear (i.e., converged in order of nonlinearity) HOS
solution. It is found that the nonlinear correction of the phase velocity is crucial for accurate
wave representation after several periods of propagation. Note that this specific work has been
published in Guérin et al. (2019). A characterization of some properties of ICWM through the
derivation and computation of the wave induced pressure field is finally presented.

Chapter III focuses on the data assimilation process, which consists in getting access to rele-
vant information from the wave measurements (called observations) to properly define the initial
conditions of our wave model. The developed assimilation method is based on typical optical
measurements, such as a lidar camera observing the ocean surface would make. First, the distri-
bution of lidar-like measurements is characterized through a geometrical approach, highlighting
the strong spatial non-uniformity due to the grazing incidence of the sensor’s rays on the surface.
Then, the wave field reconstruction (i.e., wave model inversion) problem is formulated for the
nonlinear wave model ICWM studied in the previous chapter, and we detail the iterative solv-
ing process. The analytical formulation of ICWM allows us to write the inverse problem in an
explicit matrix form, and the solution is found using a Tikhonov regularization procedure and a
Singular Value Decomposition. Once the wave field is reconstructed, the spatio-temporal zone
within which the assimilated information remains valid during the model propagation is bounded.
Based on the extent and sampling characteristics of the observations, we formally describe the
evolution of the theoretically accessible prediction zone. The spatio-temporal distribution of a
theoretical prediction error is derived from the amount of truncated energy by the accessible
measured information, and shows that the extent of the prediction zone strongly depends on
the expected prediction accuracy. Criteria are presented for the selection of the frequency and
direction bandwidths for the modeled wave field as well as for the prediction zone evolution,
allowing us to close the wave-model inverse problem and to define a clear region within which
the prediction performance will be evaluated. Finally, issues related to the determination of
the optimal measurement zone (that leads to the desired prediction horizon) are exposed and
partly addressed. From the characterization of remote optical free surface observations to the
derivation of the ICWM inversion and the description of the accessible prediction region, this
chapter completes the theoretical basis of the prediction method employed in this thesis.

Chapter IV discusses the capabilities of the developed nonlinear wave model and prediction
method from non-uniform datasets of realistic – but synthetic and error free – optical measure-
ments. High-fidelity numerical simulations of wave fields are used to provide reference ocean
surfaces, from which the observations are generated. After a brief description of the method for
the generation of synthetic lidar observations, we study the dependence of the proposed predic-
tion algorithm, in terms of reconstruction/prediction accuracy, on some assimilation parameters,
namely the number of wave components in the wave models for the wave field representation,
the high cutoff boundary of the frequency bandwidth, the non-uniformity of the observations’
distribution, the assimilation time, and the directional extent of spatial observations in case of
short-crested waves. We found that the reconstruction accuracy converges quickly with the num-
ber of wave components (a few dozens are enough for long-crested waves), as well as with the
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high cutoff frequency. The main characteristic of optical measurements, which is to yield highly
sparsely distributed datasets, makes for a particularly challenging spatial reconstruction, but
including several spatial datasets acquired from different observation times in the wave model
inversion allows overcoming this issue. For a properly parameterized assimilation procedure, the
impact of the inclusion of the nonlinear properties of ICWM on the prediction accuracy is then
investigated for different characteristic wave steepnesses. It is shown that, despite its simple
analytical formulation, ICWM is able to model relevant nonlinear effects in ocean wave fields
that impact the accuracy of the wave prediction. The improvements using ICWM, as compared
to LWT, reaches a relative error reduction of 25% for the largest steepness investigated, i.e.,
Hs/λp ≈ 3.8%. A significant part of the results from this chapter is also presented in Desmars
et al. (2018a,b).

Chapter V investigates the application of our wave reconstruction and prediction algorithm
to experimental data generated in the ocean wave tank of École Centrale de Nantes. Sea states
of different characteristic wave steepness and/or directional spreading have been generated phys-
ically in a wave tank, as well as using a numerical wave tank based on the HOS formalism,
providing a digital twin of the experimental setup. A number of test cases were defined with
different directional spreading and characteristic wave steepness, from mildly to more strongly
nonlinear. The set of wave probes (physical or numerical, measuring time series of surface eleva-
tion at one point in space) was non-uniformly distributed in space, to mimic the typical uneven
sampling made by a lidar camera at grazing incidence. In order to validate the methodology
for the data generation, the adequacy between the generated sea states and their theoretical
characteristic quantities (namely, significant wave heights) is first verified. Then, the dataset
pertaining to cases of long-crested waves is further analyzed for the quantification and physi-
cal qualification of the perturbations belonging to the experimental conditions. Through the
examination of the residual oscillations measured by the physical probes, these perturbations
are found to be the consequence of the excitation of transverse modes of the wave tank by the
wavemaker. They are identified as the principal cause for the observed differences between the
experimental and numerical data. Next, the sensitivity of the developed prediction algorithm
to assimilation parameters is evaluated. Our study show that the prediction accuracy converges
with the duration of the assimilated surface elevation time series (i.e., amount of data used).
In addition, smaller data acquisition time steps yields higher convergence rates, and the larger
the characteristic wave steepness, the larger the prediction error, in the form of nonlinear phase
shifts (related to wave phase velocity) and wave shape discrepancies. These two type of disagree-
ments are highlighted by the comparison of predicted and reference surface elevation profiles of a
specific wave group. After that, we assess the performances and relative improvements of ICWM
compared to LWT and LWT-CDR (LWT with wave velocity correction similar to that of ICWM)
under different sea state configurations. We show that, for the prediction misfit indicator defined
for this study, ICWM yields improved predictions within the accessible prediction zone, as com-
pared to LWT, with a maximum prediction error reduction of ∼ 35% for an intermediate wave
steepness Hs/λp ≈ 3.18% (based on numerical data). In the spatio-temporal region correspond-
ing to the observations, the wave shape asymmetry represented in ICWM improved the surface
elevation representation. For waves that had propagated (in space and/or time), the main factor
for reducing the prediction misfit is the accurate modeling of nonlinear wave phase velocity. For
surface slope predictions, however, the improved representation of wave shape asymmetry in
ICWM allows to achieve an average prediction misfit reduction of 20% over the prediction zone,
for a low wave steepness of ∼ 1–2%, as compared to a linear model with a phase speed correction
(LWT-CDR). Through a procedure that has been fully validated experimentally, these relative
improvements demonstrate the benefits of using ICWM for the prediction of deterministic fields
of the ocean surface. Results presented in this chapter have been published in Desmars et al.
(2020).
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Résumé du premier chapitre

Le premier chapitre de cette thèse commence par décrire la méthodologie classiquement utilisée
pour la caractérisation des propriétés statistiques des vagues, puis les différentes méthodes de
mesure envisageables pour la prédiction déterministe de champs de vagues sont présentées. Parmi
elles, les caméras lidar ont plusieurs avantages – le principe de fonctionnement qui permet une
mesure directe et à distance d’une grandeur d’intérêt (élévation de surface), l’échantillonnage
spatial et temporel élevé, et les récents développements en vue de systèmes opérationnels –
qui font d’elles une solution intéressante pour l’élaboration d’un nouvel algorithme de prédic-
tion. Les méthodes de prédiction déterministes existantes sont ensuite présentées, en insistant
sur les performances hydrodynamiques et computationnelles des modèles de vague utilisés et
des méthodologies d’inversion de ces modèles à partir des mesures. Nous remarquons que la
théorie linéaire – Linear Wave Theory (LWT) en anglais – permet une inversion aisée à partir de
n’importe quel jeu de mesure de vagues, même si des précautions doivent être prises concernant
le caractère non-uniforme et non-périodique des mesures. Cependant, les hypothèses relatives à
l’approche linéaire restreignent son application à la prédiction de champs de vagues en cas de
mer calme et pour un horizon de prédiction relativement court. Les modèles de vague faiblement
non-linéaires permettent, jusqu’à un certain degré, d’améliorer la précision des prédictions si des
corrections non-linéaires des vitesses de vague sont modélisées, ce qui nécessite un développement
à l’ordre trois au moins pour les modèles Eulériens. Les approches complètement non-linéaires,
comme la méthode High-Order Spectral (HOS), requièrent des procédures d’inversion complexes
qui ne sont pas facilement applicable à des données réelles et dans des temps compatibles avec le
temps réel. De part son formalisme, l’approche Lagrangienne (Choppy Wave Model) permet de
modéliser des propriétés non-linéaires avec un faible coût en calcul. N’ayant pas été étudiée dans
le contexte de prédiction déterministe, la solution Lagrangienne au second ordre de perturbation,
qui comprend une correction (partielle) de la vitesse des vagues, apparaît donc comme un bon
compromis complexité/efficacité et sera étudiée par la suite.
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Chapter I

Existing Approaches for Deterministic
Ocean Waves Prediction

Introduction

In this first chapter, we propose to review the existing deterministic ocean waves prediction
algorithms. After defining the classical methodology to characterize ocean waves statistics and
the wave measurement methods that are used for deterministic prediction, we then focus on
different approaches for phase-resolved wave modeling. Each measurement method and wave
model implies constraints on the prediction algorithm in terms of performance and computational
effort. In the following, we highlight those constraints and describe the existing approaches to
address them.

I.1 Waves Statistical Characterization

We briefly remind in this first section the general method to study ocean waves and identify
their statistical properties. In many cases, ocean waves are analyzed by means of the power
spectral density of the surface elevation. This so-called wave spectrum is largely dominated by
surface gravity waves and, even if waves are highly irregular, a typical wave spectrum has a
characteristic time scale of several dozens of minutes to a few hours to exhibit significant varia-
tions. By this way, a wave field is reduced to a sea state characterized by the properties of the
directional wave spectrum, which describes the way the variance (or equivalently the energy) is
spread over wave frequencies f and directions of propagation θ. In the following, we will use the
term “long-crested waves” to refer to a purely unidirectional wave field (i.e., all waves propagate
along the same direction), while the term “short-crested waves” refers to a wave field exhibiting
a directional distribution of the waves’ direction of propagation. The most widely used variable
is the elevation variance spectrum S (f, θ) (unit: m2.Hz−1), which is frequently (and abusively)
called the “wave energy spectrum” in the literature. In the following, we will adopt this practice,
even if the true energy spectrum (unit: N.m−1.Hz−1) is in fact ρgS, with ρ the water density
and g the acceleration of gravity.

Usually, a sea state is characterized through the identification and separation of spectral
components in the measured wave spectrum. Each component is supposed to represent a specific
type of sea (e.g., swell, wind waves) that can then be described by a theoretical model with
appropriate parameters related to statistical properties of the wave spectrum. This methodology
further simplifies the description of wave fields and allows for predictive numerical modeling.
In ocean engineering, the two main variables used to parameterize a wave spectrum are the
significant wave height Hs and the dominant wave frequency fp. With only a few percents
of differences, the significant wave height can be compared to H1/3, the mean height of the
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highest third of the waves (calculated from the wave height distribution). It is also close to
the instinctive estimate of the wave height by a human being staring at the sea surface. It is
defined as Hs = Hm0 = 4

√
m0 wherem0 is the zeroth-order moment of the wave energy spectrum

following

m0 =

∫ +∞

0
E (f) df, where E (f) =

∫ 2π

0
S (f, θ) dθ,

is the frequency spectrum. The dominant (or peak) frequency fp = arg max
f

E (f) is the frequency

of maximal energy. For the sake of simplicity, the directional wave spectrum is often decomposed
as the product of E (f) and a directional spreading function G (f, θ) having the properties of a
probability density function, as

S (f, θ) = E (f)G (f, θ) , (I.1)

in which

G (f, θ) ≥ 0, θ ∈ [0, 2π] , and
∫ 2π

0
G (f, θ) dθ = 1.

The standard Pierson-Moskowitz frequency spectrum (Pierson Jr. & Moskowitz, 1964), describ-
ing fully-developed sea (i.e., produced by wind blowing steadily over a large area and over a
long time), only uses fp and an estimate of the wind velocity in the atmospheric boundary layer
(which can be directly related to Hs) as input parameters. The more widely used JONSWAP
(JOint North Sea WAve Project) spectrum (Hasselmann et al., 1973) can be parameterized with
fp, Hs and a peak enhancement factor γ to model non-fully developed seas. Since this JON-
SWAP spectrum is extensively used in the applications presented in this work, we explicit here
its formulation. It follows

E (f) = αs
g2

f5
exp

[
−5

4

(
fp
f

)4
]
γ

exp

[
− (f−fp)2

2σ2sf
2
p

]
, σs =

{
0.07, if f ≤ fp,
0.09, if f > fp,

(I.2)

where g is the gravity acceleration, αs is a tuned coefficient to ensure m0 = H2
s /16. To obtain a

realistic model of a directional spectrum, the frequency spectrum is multiplied by a directional
spreading function, such as the standard cosine squared function (e.g., Socquet-Juglard et al.,
2005)

G (θ) =

 1
ν cos2

[
π(θ−θdir)

2ν

]
, if

∣∣θ − θdir
∣∣ ≤ ν,

0, if
∣∣θ − θdir

∣∣ > ν,
(I.3)

where θdir is the main wave direction of propagation and ν is a spreading parameter. This way,
the wave energy spectrum is simply the multiplication of two independent functions describing
the frequency and the directional energy distributions.

Figure I.1 presents an example of a measured directional wave spectrum at the open-ocean
test site of École Centrale de Nantes (ECN), SEM-REV, a 1 km2 grid-connected area, located 20
km off from the coast from Le Croisic. We identify two wave systems, both swell, characterized by
peaked energy distributions in direction and frequency. One of the main directions corresponds
to θdir ≈ 270◦, the other slightly differs and is about 260◦. One of the peak frequencies is
fp ≈ 0.073 Hz (Tp = 1/fp ≈ 13.7 s), the other is about 0.05 Hz, or 20 s in period.

Depending on the measurement method, numerical model or application, it might be more
suitable to perform the spectral analysis using the wavenumber k instead of the wave frequency
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Figure I.1: Example of a directional wave spectrum at SEM-REV test site (ECN) on January,
6th 2014 at 12 a.m.

f . Since the total wave energy must not depend on which variable is used, it is possible to write∫
k

∫
θ

S (k, θ) dk dθ =

∫
f

∫
θ

S (f, θ) df dθ,

from which we deduce the relation

S (k, θ) = S (f, θ)
∂f

∂k
= S (f, θ)

cg
2π
,

where cg = ∂ω/∂k is the wave group velocity (i.e., the velocity of the wave energy transport),
and ω = 2πf is the angular frequency.

According to the linear wave theory (i.e., physical model derived with the hypothesis of
waves of infinitely small steepness, see section I.3.2 for details), the free surface elevation η of
any (linear) wave field can be represented by a linear superposition of n = 1, ..., N elementary
sine waves of wavenumbers kn, directions of propagation θn , amplitudes An and phases ϕn
following

η (x, y, t) =
N∑
n=1

An cos [kn (x cos θn + y sin θn)− ωnt− ϕn] ,

in which the angular frequencies and wavenumbers respect the linear dispersion relation ω2 = gk tanh (kh)
(where h is the water depth). Now, assuming that ϕn are random phases uniformly distributed
over [0, 2π], the amplitudes of the wave components are related to the directional wave spectrum
through

S (fn, θn) = lim
∆f→0

lim
∆θ→0

1

∆f∆θ

(
1

2
A2
n

)
, (I.4)

where ∆f and ∆θ are the spectral resolutions in frequency and direction. Note that it is not
possible to reconstruct the surface of the wave field directly from its spectrum, since it misses
phase information. However, assuming that the elevation is a Gaussian process, random phases
uniformly distributed can be used to generate a sea surface realization that is statistically similar
to the wave field described by the wave spectrum.
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I.2 Wave Measurement Methods

Wave spectra are calculated from space/time series of surface elevation measurements. We clas-
sify here the wave measurement systems in two categories: in situ measurement systems, which
are directly in contact with the ocean, and remote measurement systems, which use electromag-
netic waves that interact with the water and remotely give access to physical characteristics of the
ocean. We restrict the scope of this section to solutions that can be installed in the open ocean
and give access to instant surface elevation measurements, which are the conditions in case of
applications to deterministic wave field reconstruction around offshore structures. More detailed
information related to wave measurement systems are proposed by Benoit et al. (1997), Barstow
et al. (2005), Neill & Hashemi (2018) or Ardhuin (2019). Measurement methods adapted to ship
motion prediction are reviewed by Giron-Sierra & Jimenez (2010).

I.2.1 In Situ Technologies

Here, we focus on systems that are installed into the ocean, directly interacting with the water
to measure wave properties that can be used to retrieve the surface elevation.

I.2.1.1 Wave Buoys

Wave buoys are single-point systems that are the most widely used instruments to measure waves
at the ocean surface. Wave buoys (moored to the seabed or freely drifting) equipped with an
on-board accelerometer can deliver, based on an estimate of the horizon to define the vertical and
after a double time integration of the vertical acceleration, time series of the heave (i.e., vertical)
motion of the buoys at their specific location. Modern systems are able to send their data via
satellite communication. Recent systems rely on GPS (Global Positioning System) instead of
accelerometers to measure the buoy’s motion, which reduces the cost and ensure a long-term
calibration of the instrument, despite a higher energy consumption and the need of continuous
connection with GPS satellite.

Directional information can be obtained through the measure of the two components ∂z/∂x
and ∂z/∂y of the surface slope or the two horizontal motion in x (surge) and y (sway) of the
buoy. While horizontal motion can be recorded via accelerometers or a GPS, the surface slope es-
timation necessitates inclinometers to measure the tilt of the buoy. The former can be measured
by small buoys (e.g., Datawell < 1-m diameter buoys), whereas the latter is measured by larger
models (e.g., US National Data Buoy Center 3-m diameter buoys). For non GPS-based wave
motion sensor, another instrument (e.g., magnetic compass) is used to monitor direction of north
in order to geographically locate the wave direction. The determination of the directional spec-
trum is done using statistical methods such as Maximum Likelihood Method (Isobe et al., 1984;
Krogstad, 1988), Maximum Entropy Principle (Nwogu, 1989) or Bayesian Directional Method
(Hashimoto & Kobune, 1988).

Figure I.2 shows an operational wave buoy at the SEM-REV test site, which measures the
wave height, period and direction of propagation, as well as the water temperature at the surface.
The accuracy of this widely used system, the Datawell WaveriderTM, is advertised as follows:
the mean error of the heave motion measurement is 0.5% of the measured value, and the mean
heading error of the wave direction is 0.5◦, for wave periods ranging between the limiting values
of 1 s and 30 s. Note that in real operating conditions, this precision can be reduced due to the
influence of the ocean environment (e.g., biofouling, currents). If additional precision about the
wave field is required, such as the distinction between incident and reflected waves (for instance,
upstream a wave energy converter to quantified its radiation/diffraction properties), a network
a several sensors at different locations becomes necessary.
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Figure I.2: Datawell Waverider MKIIITM buoy installed at SEM-REV, measuring wave height,
period and direction of propagation using accelerometers. It also measures the water temperature
at the surface. Credit: ECN.

I.2.1.2 Acoustic and Pressure Sensors

Instead of relying on the motion of a moving structure, other instruments relate pressure vari-
ations or Doppler effects of acoustic waves to ocean wave properties in order to estimate the
surface elevation. These instruments are either bottom mounted or fixed on a submerged float-
ing platform, thus less subjected to strong current and storm waves than floating buoys.

Pressure transducers retrieve the surface elevation from a pressure signal and a transfer
function based, for instance, on the linear wave theory (see details in section I.3.2) (e.g., Bishop
& Donelan, 1987; Tsai et al., 2005) or on recently developed methods that include nonlinear
physics (e.g., Bonneton & Lannes, 2017; Bonneton et al., 2018). However, the limited extent
of the pressure variations induced by surface waves in the water column strongly impacts the
sensibility of the instrument to wave-induced pressure variations, especially from high frequency
components. If mounted on the seabed, these systems are thus limited to shallow water area
(typically with less than 20-m water depth). Pressure transducers provide a measurement of one
quantity at only one point in space, thus cannot be used to calculate a directional wave spectrum.
However, the simultaneous use of several sensors allows capturing directional phenomena and
calculate the directional spreading function G (f, θ). For instance, Howell (1998) describes and
tests an array of three pressure transducers deployed in shallow water depth to derive time series
spectral parameters such as significant wave heights, peak frequencies and mean directions of
propagation for each frequency.

Acoustic Doppler Current Profilers (ADCPs) are used to estimate the three-dimensional ve-
locity profile in the water column. Based on the measurement of the reflected echos of acoustic
signals by water particles, the Doppler drift from multiple divergent beams is estimated. Under
the hypothesis of homogeneous horizontal velocity within the cone formed by the beams, the
Doppler shift gives access to the full three-dimensional profile at many locations in the water
column. Similar to the pressure field, the surface elevation can be retrieved from the estimate
of the vertical velocity based on a transfer function, generally based on the linear wave theory.
Despite the fact that only three beams are needed for the velocity profile reconstruction process,
ADCPs are usually equipped with four beams, each titled with an angle of ∼ 25◦ with respect
to the vertical (the “Janus” configuration), to provide an estimate of the measurement error.
However, even if the homogeneous velocity hypothesis is valid to evaluate water displacement
in the case of currents, it may be no longer reliable for waves orbital velocities for which the
space variation rate exceeds the limitation imposed by the distance between the beams, espe-
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cially for short waves and for long measuring distances from the ADCP. This prevents from
accurately separating the horizontal and vertical components of the measured velocities, but,
under the assumption that the wave field is statistically stationary in time, the cross-spectra
between velocities measured at various locations contain relevant information about wave direc-
tion. Terray et al. (1997) employed the Maximum Likelihood Method to determine directional
wave spectra from such measurements, and found consistent results with spectra calculated from
a co-located array of pressure transducers. Jeans et al. (2003) also found good agreement be-
tween ADCP-based spectral wave parameters and similar quantities derived from directional
wave buoy measurements. Work (2008) further reports comparisons between wave spectra calcu-
lated from ADCP and directional wave buoy measurements and the Maximum Entropy Method,
and highlighted the dependence of the wave data quality on the type of system used.

Still, the homogeneous velocity hypothesis limits the physical description of the water kine-
matics related to short waves, and the lack of direct measurement of surface elevation time series
prevents from accurately calculating extreme value statistics. Terray et al. (1999) showed that
the use of surface tracking through echo-ranging (i.e., detection of the time for the acoustic signal
to reflect on the water-air interface and get back to the ADCP) for the direct determination of the
free surface displacement is possible and that the derived surface elevation spectra compare well
to those computed from ADCP velocity measurements or from an array of pressure transducers.
Accordingly, to measure waves, some ADCPs include a vertically oriented beam, dedicated for
surface tracking, such as the widely used AWAC (Acoustic Wave And Current Profiler) system
developed by NortekTM and showed by Pedersen et al. (2002) to improve the surface elevation
spectrum accuracy (better resolution of short waves) and completeness (possibility to calculate
the distribution of wave heights) compared to previous ADCPs systems relying on velocity mea-
surements. The benefits of a (vertical) dedicated beam for surface tracking to calculate the
surface elevation spectrum is confirmed by Birch et al. (2004) who compared the performances
of a similar AWAC system and an ADCP that uses the standard Janus configuration to measure
velocity profiles as well as surface elevations through echo ranging. The advantage of the vertical
beam configuration for the determination of the vertical velocity component in the water column
is demonstrated by Wanis (2013) using comparisons with velocity profiles derived from inclined
beams. Bouferrouk et al. (2016) also provide consistent conclusions about the advantages of
including a surface tracking with a vertically oriented beam for the wave parameter estimates.

I.2.1.3 Wave Probes

Wave probes (also called wave gauges) is the most frequently used system to directly measure
the surface elevation in controlled environment (i.e., laboratory wave tanks). By means of the
measurement of the resistance or capacity variation related to the submerged portion of the
probe, a very accurate estimate of the free surface elevation is calculated. Another widely used
wave probe system relies on ultrasonic waves to measure the distance between a transceiver
and the free surface elevation. Even if this technique is non-intrusive, it is not considered as a
remote sensing technique since the transducer needs to be located close to the surface. Similar to
pressure transducers, a network of several (at least three) wave probes is necessary to calculate
of the directional wave spectrum.

I.2.2 Remote Sensing Technologies

When wave measurements have to be made along a specific trajectory, e.g., at the location of
a moving ship, in situ measurement systems become not usable since they mainly depend on
non-moving structures to operate (e.g., mooring lines). Moreover, in situ measurement systems
would need to be far from the source of motion (e.g., a ship) in order to be unaffected by its
scattered wave field. Instead, remote systems measure at a distance the scattering characteristics
of electromagnetic waves by the water surface. Remote sensing instruments can be divided into
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two categories: passive systems, that only rely on natural sources of electromagnetic waves
emission (e.g., the sun) and active systems, that emit pulses with specific characteristics and
measure the backscattered signal.

One major advantage of remote sensing instruments over in situ systems is that they provide
a measurement of directional surface elevation fields η (x, y, t), from which the directional wave
spectrum can be calculated directly, without requiring a specific wave model, ensuring a correct
spectral representation of every directional wave component.

I.2.2.1 X-Band Radar

X-band radars are mounted on many vessels and offshore platforms for navigation, ship traf-
fic control and target identification purposes. They operate in the X-band microwave regime,
corresponding to the frequency range 8–12 GHz of the electromagnetic spectrum. The radar
backscattered signal includes echoes from structures such as ships and coastlines, but also in-
cludes an ensemble of echoes by the ocean surface called the sea clutter (figure I.3). Although

Figure I.3: Example of the backscatter signal from an X-band radar (Giron-Sierra & Jimenez,
2010). Tilt modulation (intensity variations of the radar backscattered signal depending on the
incidence angle) and wave shadowing effects (regions without return signal in black) are clearly
noticeable, suggesting the ocean surface deformation.

the sea clutter is a disturbing signal for navigation applications, it contains information that
can be used to characterize the surrounding surface wave field (Alpers et al., 1981). Sea-clutter
echoes are generated by the Bragg resonance between the radar microwaves (∼ 3 cm wavelength)
and short-wavelength capillary-gravity waves (∼ 1.5 cm wavelength) covering the ocean surface
due to wind generation. Hydrodynamic and tilt modulations of such short ripples by longer
gravity waves carrying them, that affect the backscattered signal, allow inverting for surface
elevations by means of a Modulation Transfer Function (MTF) (Dankert & Rosenthal, 2004;
Nieto Borge et al., 2004; Young et al., 1985). Moreover, since the angle of incidence radar pulses
is grazing, a wave shadowing phenomenon occurs, i.e., the wave troughs are hidden behind the
crests, improving long waves identification, therefore helping the wave field inversion through the
implementation of a shadowing mask in the MTF. This way, radars are able to generate large
spatio-temporal instantaneous datasets of wave elevations surrounding the structure upon which
they are mounted, with a typical space resolution (limited by their range resolution) of about
5–10 m at sampling frequency 0.5–1 Hz. This technology has been implemented in commercial
products such as WaMoS II developed by OceanWaveS GmbHTM (Hilmer & Thornhill, 2015), the
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prediction systems of Next OceanTM (Naaijen et al., 2018), or FutureWavesTM (Kusters et al.,
2016). A selection of radar images, together with the dispersion relation, can be used to estimate
the directional wave spectrum. However, the estimate of the surface elevation, both deterministi-
cally and for integral parameters, directly from the gain of radar images is not reliable due to the
unknown MTF over the specific wave field observed. Improvement in wave height estimation can
be done using an additional measurement of, for instance, the amplitude of the ship motions, or
from a finer analysis of the shadowing mask (e.g., Wijaya & van Groesen, 2016). Ocean current
and wind information are also available through a suitable analysis of radar images.

The main drawback of the use of radar images for the surface elevation measurement is the
incomplete understanding of the interaction processes between the radar microwaves and the
ocean surface (Plant & Farquharson, 2012), making radar images not easy to relate the ocean
surface properties. Hence, methods for the inversion of radar images to retrieve the surface
elevation thus rely either on empirical formulations for the MTF (e.g., Nieto Borge et al., 2004),
or on simplified models of the radar backscattered intensity (e.g., Dankert & Rosenthal, 2004;
Lyzenga & Walker, 2015).

I.2.2.2 Lidar Camera

Similar to radars, large spatio-temporal surface elevation datasets can be obtained by the way
of lidar (LIght Detection and Ranging) cameras, which operate in the visible light (e.g., green;
532 nm wavelength) or close to it (e.g., near-infrared; 1064 nm). Instead of using modulation
properties of Bragg waves to estimate gravity waves characteristics, lidar cameras provide direct
geo-referenced measurements of free surface elevations, computed based on laser beam travel
times. One advantage of this technique, as compared to X-band radars, is the higher spatial
resolution resulting from the smaller divergence of the light beams compared to the microwave
beams (Sviridov, 1993), providing a more accurate phase resolved (instantaneous) measurement
of the ocean surface. Depending on their wavelength, laser beams are scattered by the air/water
interface, by the water column if it has a sufficient turbidity (due to the presence of plankton or
other suspension particles), as well as by local surface phenomena such as capillary waves and
foam.

Two lidar technologies are available: rotating and flash lidars. Rotating lidars are based on a
single rotating beam, pointing in every desired direction at a very high rate thanks to the beams
going through a smart association of rotating mirrors. A set of measurements can be considered
as instantaneous since the time difference between each measurement points is short compared
to the characteristic time of waves propagation processes. For flash lidars, a defined number of
beams are distributed on a Cartesian grid, and all pulses are sent at the same time, providing
an instantaneous picture of the surface (time differences between instants of pulse reception are
negligible). The resulting map from a flash lidar can be compared to a surface photo in which a
beam represents a pixel, except data are 3D geo-referenced points. Figure I.4 shows examples of
typical instantaneous ocean surface samples using both rotating and flash lidars. Results with
and without shadowing effects are presented to highlight the induced irregularity on sampled
data.

Even if the lidar technology is widely used for bathymetry measurement from quite a long
time, in the form of airborne lidars, systems capable of measurement surface elevation are at their
early stage of development. Although no lidar-based commercial product for surface profiling has
been proposed so far, several prototypes has been tested, both in laboratory (Allis et al., 2011;
Belmont et al., 2007) and in real ocean conditions. Since installation is easier on the coastline,
surface elevation in swash/surf zones was investigated on the basis of point measurements or one-
directional profiles (i.e., lidar scans along only one direction) (Belmont et al., 2007; Blenkinsopp
et al., 2010; Harry et al., 2018; Irish et al., 2006; Martins et al., 2017). As part of the ANR-Astrid
PREDEMO-Nav project, a lidar camera was designed and tested at Ifremer, Brest, for surface
elevation measurement at one spatial point with a varying angle of incidence (figure I.5). Two-
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(a) (b) (c) (d)

Figure I.4: Typical instantaneous surface sampling from rotating (a,b) or flash (c,d) lidar tech-
nologies. For each one, surface sampling without (a,c) and with (b,d) shadowing effects are
shown. The exact same sensor’s geometrical parameters (viewing and aperture angles, height)
and number of points (64× 64) are used in all cases.

Figure I.5: Testing of surface elevation measurement using a lidar camera with grazing incidence
at Ifremer, Brest, in November 2018. This image corresponds to the calibration phase of the
instruments; during the measurements the laser target point was located on the right side of the
tower, below a ultrasound wave probe that was used to provide data to compare with. Credit:
ECN.

dimensional free-surface maps were obtained by Harry et al. (2010), but with a limited rotational
scan that introduced a time shift between measurements made at the beginning and at the end
of the scan, preventing from having ‘instantaneous’ spatial maps. Recently, open-ocean tests
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were conducted by Kabel et al. (2019) using a modern lidar camera from an offshore platform in
the North Sea, providing instantaneous two-directional maps of surface elevation.

I.2.2.3 Stereo Video

Stereo-video imagery is a passive technique that, based on a correlation analysis between two
images of the same region with different points of view, can lead to detailed estimate time-
varying surface elevation fields (see figure I.6) at a relatively high frequency (up to 15–20 Hz).
It is particularly efficient to qualify nonlinear spectral properties of the observed wave field (e.g.,

Figure I.6: Example of images from a stereo-video system with the calculated surface map on
top of the right image (Guimarães et al., 2020).

the energy distribution as a function of both frequency and wavenumber), wave breaking (as
white-capping appears explicitly), air-sea interaction or wave-current interaction. The depen-
dence on light conditions (i.e., not operational during the night) of stereo-video systems is a
disadvantage against radars and lidars for remote free surface elevation measurements. However,
its use becomes more common (e.g., Filipot et al., 2019; Guimarães et al., 2020), and a significant
development of stereo-video systems is expected in the near future.

We have seen in this section the working principles of the main technological solutions cur-
rently employed to measure deterministic ocean wave quantities, and their respective assets and
limitations have been highlighted. In the following section, after presenting the general govern-
ing equations for the physical description of ocean waves, we will explore the methods that have
already been developed to post-process wave measurements for deterministic prediction.

I.3 Wave Models and Associated Inversion Methods

Several wave models have been considered for wave prediction applications over the past. The
most used, which is also the simplest, is certainly the Linear Wave Theory. However, as we
will see below, this approach has several shortcomings regarding the prediction accuracy when
it comes to large horizon of prediction and large wave steepness. More complex approaches were
thus proposed and investigated in terms of prediction performances and calculation time. Since
the prediction algorithms must be able to run in real time, all considered wave models rely on
the potential flow theory, for which we briefly recall the governing equations. Only the methods
that were used in algorithms to deterministically predict a wave field are reviewed here (we refer
for instance to Blondel (2009) and Le Touzé (2003) for a detailed review of existing approaches
for wave fields modeling).
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I.3.1 General Governing Equations

In ocean waves analysis, fluid and flow hypotheses reasonably apply to the problem description,
drastically simplifying the corresponding mathematical modeling, and allowing the use of the
potential flow theory. These hypotheses are:

• Since the flow induced by ocean waves is associated with a high Reynolds number, viscous
effects are neglected, i.e., the induced dissipation on the spatio-temporal scale of interest
is negligible;

• Typical Mach number is very low in ocean waves flow and the temperature variations are
negligible within the spatio-temporal scale we are interested in here, the fluid can thus be
assumed isovolume (i.e., incompressible and indilatable);

• We do not consider cases of wave breaking and wave-structure interaction, which implies
that, under inviscid fluid assumption, there is no source of vorticity (i.e., irrotational flow).

We now consider an infinitely large fluid domain, of finite constant depth h, representing
the ocean. We choose a Cartesian coordinate system (r = (x, y) , z) with x, y-axes on the mean
water surface (i.e., the fluid level at rest) and z-axis positive upward so that the seabed is
located at z = −h. Governing equations for the velocity potential φ (r, z, t) in the fluid domain
are the Laplace equation (continuity equation) ∆φ = 0 and the Bernouilli-Lagrange equation
(momentum conservation equation) that reads

∂φ

∂t
+

1

2

∣∣∣∇̃φ
∣∣∣2 +

p

ρ
+ gz = c (t) , in the fluid domain, (I.5)

where ∇̃ is the three-dimensional gradient, t is time, c (t) is a time-dependent constant (also
known as the Bernoulli constant), ρ is the water density, p is the pressure and g is the gravity
acceleration. We further assume that the air above the ocean surface has no viscosity and a
constant pressure (i.e., c (t) is set to the normalized atmospheric pressure, there is no wind
forcing), and surface tension effects are neglected so that the only force on the water is the
gravitational force (i.e., no capillary waves). The problem reduces to the study of a single phase
with a single-valued free surface defined by the equation z = η (r, t), on which it is possible to
write equation (I.5) to obtain the following dynamic free-surface boundary condition

∂φ

∂t
+

1

2

∣∣∣∇̃φ
∣∣∣2 + gη = 0, on z = η (r, t) .

In order to close the problem, we join to the latter equation a kinematic boundary condition on
the free surface, stating that the fluid velocity V = ∇̃φ and the surface velocity U have equal
normal components at the free surface (according to the impermeability property of the surface),
following

V · n = U · n,

where n = (−∂η/∂x,−∂η/∂y, 1) is a free-surface normal vector. The free-surface velocity U is
calculated by the material derivative of the free surface location as

U =
u
Uz

=
D

Dt

r
η (r, t)

=

(
∂

∂t
+U · ∇̃

)
r

η (r, t)
=

u
∂η

∂t
+ u ·∇η

,

in which ∇ is the horizontal gradient, and from which we deduce

U · n =
∂η

∂t
, and V · n =

∂φ

∂z
−∇φ ·∇η.

17



I.3 EXISTING PREDICTION APPROACHES –Wave Models and Associated Inversion Methods

The kinematic boundary condition thus reads

∂η

∂t
=
∂φ

∂z
−∇φ ·∇η, on z = η (r, t) .

On the seabed, we suppose a slipping condition ∂φ/∂z = 0. Finally, the system of equations for
the velocity potential yields

∆φ = 0, in the fluid domain,
∂φ

∂t
= −gη − 1

2

∣∣∣∇̃φ
∣∣∣2 , on z = η (r, t) ,

∂η

∂t
=
∂φ

∂z
−∇φ ·∇η, on z = η (r, t) ,

∂φ

∂z
= 0, on z = −h.

(I.6)

Additionally, the lateral boundaries of the ocean domain will be assigned conditions related to
the considered wave models.

I.3.2 Linear Wave Theory

Linear Wave Theory (LWT) is derived from the linearization of the system of equations (I.6).
The linearization is classically done with respect to the normalized variable ε = kA characterizing
the wave steepness (Stokes, 1847), in which k is the wavenumber and A the wave amplitude.
Using a Taylor expansion of the elevation and the potential about the still water level z = 0, we
write {

η = η1 + η2 + η3 + ...,

φ = φ1 + φ2 + φ3 + ...,
(I.7)

in which ()(m) are mth-order terms. Note that the zeroth-order terms are equal to zero since
they correspond to the surface at rest. Then, the free-surface boundary conditions are expanded
and sorted to keep only the first-order terms in O (ε), to obtain the following linearized system

∆φ1 = 0, in the fluid domain,
∂φ1

∂t
= −gη1, on z = 0,

∂η1

∂t
=
∂φ1

∂z
, on z = 0,

∂φ1

∂z
= 0, on z = −h.

Assuming the waves periodic in time and space, the following analytical Airy solution is found
for the free surface elevation and velocity potential

η1 = A cos (k · r − ωt) ,

φ1 =
Ag

ω
sin (k · r − ωt) cosh [k (z + h)]

cosh (kh)
,

in which k = kk̂ = (k cos θ, k sin θ) where θ is the wave direction of propagation with respect
to the x-axis, and the wavenumber k and angular frequency ω are related through the linear
dispersion relation

ω2 = kg tanh (kh) . (I.8)
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This solution is then generalized to a superposition of individual waves to get the following
polychromatic solution

η (r, t) =
N∑
n=1

An cos (kn · r − ωnt− ϕn) , (I.9)

φ (r, z, t) =
N∑
n=1

Ang

ωn
sin (kn · r − ωnt− ϕn)

cosh [kn (z + h)]

cosh (knh)
.

According to ocean observations, ϕn are wave phases that can be, as a first approximation, as-
sumed uniformly distributed in [0, 2π]. The free surface elevation η is thus approximated by a
linear summation of N sinusoidal waves evolving independently, with their own amplitude An,
direction θn and speed, without interacting with other wave components. These waves are called
free waves.

Considering the simplicity of this solution to deterministically describe a phase-resolved wave
field, LWT was employed in many studies that aim at predicting surface waves, either as the
solution chosen in a specific prediction algorithm or as a reference to compare with more complex
wave models. Based on LWT, Morris et al. (1998, 1992) were the first to propose a deterministic
prediction method. They initiate the new discipline of Deterministic Sea Wave Prediction and
introduced the fundamental concept of prediction zone, i.e., a spatio-temporal region within
which the wave field is theoretically predictable from a specific set of wave measurements (see
section III.3 for details). In these papers, they state that the phase velocity is the criterion to
define the boundaries of the prediction zone. Later, Wu (2004) showed that it would rather be
related to the wave group velocities, from which follows a long-term discussion (reported in here
section III.3) about the correct formulation.

I.3.2.1 DFT-based Inversion Methods

If the measurement method allows generating observations that exhibit appropriate specifica-
tions for the application of Fourier analysis, i.e., uniform sample rates and periodicity, a linear
wave field can be reconstructed with Discrete Fourier Transforms (DFT), such as Fast Fourier
Transform (FFT) algorithms. Fourier coefficients then correspond to an estimate of free wave
amplitudes An and their associated phases. Only one inverse FFT (IFFT) is then necessary to
retrieve the surface elevation at any location rf and at any time instant tf in the future (i.e.,
wave components are just shifted by an amount kn · (rf − r)− ωn (tf − t)). This property makes
LWT a very good candidate for real-time applications. However, requirements for the application
of FFT on wave measurements is never met in practice, due to the non-periodicity of real wave
fields, and usually to the non-uniformity of measurement grids (especially for remote sensing
technologies that are affected by shadowing effects). 1D-FFTs can be applied to one-dimensional
data, such as time series of surface elevation from a fixed wave probe, and used to reconstruct
a long-crested wave field, given that (i) the signal has a constant time sampling rate, and (ii)
the signal is sufficiently long and finely sampled to contain enough spectral information (and to
limit the impact of windowing effects).

Because of the necessity to have access to measurements with a regular spatial sampling,
the process to retrieve a directional (short-crested) wave field through Fourier analysis is way
more challenging. Even if a constant time sampling is easy to set on measurement systems,
regularity of the spatial sampling is not compatible with the required measurement footprint
size and density. Indeed, the observations have to both cover a sufficiently large area to be able
to measure long waves and be dense enough for short waves to be detectable (i.e., Nyquist’s
limitation). From section I.2, it follows that no current systems are able to provide such data
with regularly sampled observations. Remote sensing technologies do give access to large and
dense spatial samples of surface elevations, but wave shadowing effects prevent from a priori
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defining measurement points locations, since it is related to the local surface elevations which
determination is the purpose of the measurement itself.

Adaptation to non-uniform input data

Still based on LWT, several studies have been done on how to deal with the non-uniform dis-
tribution of wave measurements. Belmont & Morris (1994) described a “non-uniform to uniform
mapping” adaptive strategy based on a measure of non-uniformity and an approximate interpo-
lation function to use in the context of remotely sampled surface elevations. Using simulated
instantaneous spatial scans, they found that the higher the waves amplitudes, the stronger the
non-uniformity and the higher the interpolation error. Belmont (1995) investigated the process
to recover the spectrum of non-uniformly sampled functions and proposed an extension of the
Nyquist’s theorem. Later, Belmont & Horwood (1999) quantified the discrepancy arising from
the non-uniform frequency distribution of the wave spectrum that is used to generate the input
data. In order to better compare prediction results using datasets generated with different spec-
trum, they suggested a procedure to produce consistent spectra leading to a similar amount of
discrepancy. To avoid errors during the phase shifting process due to discrete spectral descrip-
tion of the wave field, Belmont et al. (2003) developed analytical shifting functions that do not
require a discrete formulation of the frequency spectrum.

Adaptation to non-periodic input data

LWT and the other spectral models that are usually employed for wave modeling rely on
periodic functions to represent the ocean surface elevation. However, raw wave measurements
are always non-periodic. Considering wave measurements as periodic signals thus induces leak-
age errors in the wave field estimate, producing spectral distortion within the bandwidth of the
original sea spectrum and creating new components outside of it. Naaijen & Huijsmans (2008)
applied a “tanh-shaped window function with steep slopes” to their input signal before perform-
ing 1D-FFTs for long-crested waves predictions in order to reduce leakage errors. Experimental
data were used to predict wave elevation, ship motion (in heave and pitch) and their respective
envelopes. Encouraging results were found while leaving room for significant improvements in
prediction accuracy. In fact, classical signal processing windowing methods that work to improve
the spectral estimate in non-periodic conditions are not applicable for signal reconstruction since
information near the signal boundaries cannot be discarded. To assess this issue, Edgar et al.
(2000) proposed a preprocessing method consisting of producing a periodic subdomain of the sig-
nal by matching both surface elevation and slope between two parts of the signal before analysis.
This end-matching method, however, leads to a reduction of the length of the signal, causing
information to be lost, thus reducing the time for which predictions are available. Instead, Bel-
mont et al. (2006) adopted an approach based on convolution functions to obtain the required
phase shift (in time or space) for prediction at the desired location and time instant. Later,
Abusedra & Belmont (2011) introduced a “data extension method” based on an iterative scheme
that extends the input signal with adequately synthesized data to produce a dataset which has
the same bandwidth of the original sea spectrum.

Applications to X-band radar images

Despite the difficulties described above, DFTs are widely used for linear wave field reconstruc-
tions and predictions. The use of X-band radar images for deterministic wave field reconstruction
through consecutive 2D-FFTs (Atanassov et al., 1985) or 3D-FFTs (i.e., 2D space + time) and
a filtering method based on the linear dispersion relation (Nieto Borge et al., 2004; Young et al.,
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1985) opened the field for many developments of directional wave fields forecasting systems using
LWT and DFTs applied to radar images (for the most part in the context of ship motion pre-
diction) (e.g., Belmont et al., 2014; Blondel-Couprie & Naaijen, 2012; Dannenberg et al., 2010;
Hilmer & Thornhill, 2014; Hilmer & Thornhill, 2015; Naaijen & Blondel-Couprie, 2012; Serafino
et al., 2011). Qi et al. (2016) included a nonlinear wave model (third-order HOS, see section
I.3.4.1 for details about the HOS method) in the radar images inversion procedure in order to
better catch the observed surface dynamics and improve the surface elevation reconstruction.

On the basis of the theoretical relation between the angle of incidence of radar pulses and the
intensity of the backscattered signal (tilt modulation), Dankert & Rosenthal (2004) developed a
method to retrieve the surface elevation without requiring an empirical calibration of the MTF.
They later used their method to derive significant wave heights values from the obtained free
surface elevation fields, and compare the results with Waverider buoy and laser measurements
(Dankert et al., 2005).

Following a comparable approach, Naaijen & Wijaya (2014) developed an inversion method
that uses 1D-FFTs applied on tilt radar signal to retrieve the (unscaled) surface elevation along
each of the radar beam direction (i.e., in a polar coordinate system). An interpolation of η
on a Cartesian grid is then performed to apply 2D-FFTs on the interpolated map. The main
direction of propagation of the waves is calculated from the directional wave spectrum, which
can be obtained, for example, from a 3D-FFT of radar images or an auxiliary directional wave
buoy. A scaling factor is then applied to the wave coefficients that is calculated from another
measurement source (e.g., amplitude of a ship motion). The prediction is updated regularly ac-
cording to the procedure detailed by Wijaya et al. (2015), which consists in averaging the current
prediction with propagated radar images from previous time steps, except in the radar blind area
(i.e., center of the radar image). The inaccuracies pertaining to the shadowing effects are partly
compensated by the averaging process, and after a certain simulation time, the prediction in the
blind area of the radar is ‘initialized’ with propagated solutions. Naaijen et al. (2018) adopted
this approach to predict ship motion and validated it against field tests.

I.3.2.2 Alternative approaches

Although these DFT-based methods lead to accurate sea state statistics, their limited perfor-
mance in retrieving deterministic wave characteristics led to the development of alternative ap-
proaches, still using the LWT. For example, Belmont et al. (2014) proposed the “multiple fixed
point method” that was shown to yield better performances than the classical DFT approach
in the case of sea-state with narrow directional spreading. The principle of this method is to
calculate the incoming waves using wave measurements in the form of time series at a reasonable
number (e.g., three) of fixed spatial locations, which has been optimized (in a way to reduce
errors related to the wave field inversion method). Regarding the fact that it is based on fixed
point measurements, this method is not applicable to predict the incoming waves on moving
structures. Still on the basis of fixed-point measurements, Wada et al. (2016) and Takagi et al.
(2017) investigated the “Multi-Point Method”, which considers the surface velocity potential as
a distribution of sources using the free-surface Green function (Newman, 1985), and uses a con-
volution method to shift the reconstructed quantities to the point of interest for prediction.
Numerical simulations are used as wave measurements, and their results seem to give accurate
predictions of long-crested wave fields. In the short-crested case, predictions are of increasing ac-
curacy with the number of measurement points (varying from 1 to 20). However, no comparison
is done with respect to other inversion approaches.

An additional method developed by Mérigaud & Ringwood (2019) considers the wave descrip-
tion as a stationary, homogeneous Gaussian random field, and provides free surface predictions
as a function of the covariance matrix between the measurements and predictions, which is com-
pletely derived from the surface elevation spectrum and the linear dispersion relation. The use
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of a nonlinear dispersion relation would allow this method to take into account some nonlinear
effects. In a least mean square sense, the optimal prediction that corresponds to a minimal
error covariance matrix is found. Redundant statistical information are identified and discarded
to form a prediction matrix that only has to be multiplied to the observations to provide the
prediction, ensuring a very short computation time. This method is relatively simple, but it
relies on an a priori accurate estimate of the wave spectrum, and is not able to take into account
non-stationary processes. Also, since the calculation of the covariance matrix (which represents
the most computational effort in the prediction chain) is related to specific measurements lo-
cations, this method is not directly compatible with predictions around moving structures that
necessitate a constant update of the measurements locations. An experimental validation of
this approach was proposed by Mérigaud et al. (2018) based on ADCP measurements of wave
elevation. Due to the very short distances between the locations of their measurements, the
prediction performance of their setup was very limited. They however found results that are
quite consistent with the theoretical framework. Note that a comparable approach has been
employed by Simanesew et al. (2017) and compared to other methods for the prediction of wave
field with various characteristic using wave tank data. In their study, the covariance approach
leads to limited performances compared to the others. However, two major upgrades brought
by Mérigaud & Ringwood (2019) are the use of the wave spectrum for the calculation of the
covariance matrix and the elimination of redundant statistical information, which may have an
impact on the prediction performances.

Even for LWT, there are methods adapted to X-band radar images that do not use DFT
for wave inversions. Least square minimization was used by Naaijen et al. (2009), Connell et al.
(2015) and Kusters et al. (2016) to fit surface elevation maps. Paalvast et al. (2014) applied a
3D panel method using a frequency domain Green function and directly fed by either surface
elevation or tilt angle radar observations. They found that, in the case of truncated observations
due to shadowing effects, the method that uses tilt information performs better than the one
uses elevation information. This method is limited by the radar-images resolutions for the size
of the panels, which can lead to convergence issues, especially for short waves.

The use of LWT is limited to sea states exhibiting small characteristic steepness (typically
Hs/λp ∼ 0.01, where λp = 2π/kp is the peak wavelength and kp the peak wavenumber, i.e.,
of maximal energy), assuming that appropriate modeling of bound waves (i.e., harmonic waves
that do not obey the dispersion relation) can be neglected, and that the space and time scales
of the observations and prediction horizon do not allow time-dependent nonlinear wave-wave
interactions (e.g. nonlinear phase shift) to play a significant influence in the description of the
wave dynamics. As soon as these restrictions breach, partial or complete modeling of nonlinear
wave properties becomes important for an accurate prediction.

I.3.3 Weakly Nonlinear Models

In order to increase the range of physical phenomena described by the wave model, one method
consists in increasing the order of expansion of the perturbation approach described in the previ-
ous section. To further simplify the resolution, the perturbation approach can be supplemented
with developments of the surface elevation and velocity potential in harmonic series around a
carrier wave. The evolution of the envelope of the surface elevation is then described by the
NonLinear Schrödinger (NLS) equation or one of its modifications. A different approach is to
use the Lagrangian framework to describe the fluid dynamics, which is intrinsically appropriate
for describing steep waves. A similar perturbation approach to the one described in the previous
section can be done to derive solutions at different orders, leading to wave properties that differ
from (and are shown to exhibit more physical content than) the classical Eulerian approach.

As we will see, the drawback of these perturbation approaches is that the mathematical
complexity drastically increases with the order of expansion, making it not usable to model
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highly nonlinear effects, thus limiting its range of application. Only solutions expanded up
to the second-, third- or fourth-order (depending on the approach) are used in practice, which
makes this approach weakly nonlinear. Nevertheless, for practical ocean engineering applications,
accuracy of weakly nonlinear wave models is often sufficient.

I.3.3.1 Second-Order Solution

Similar to the first-order expansion of the governing wave equations (I.6), second-order solution
can be obtained by keeping terms up to O

(
ε2
)
in the elevation and potential expansions (I.7).

The first approach to derive nonlinear interactions between wave components is themode coupling
method as it was proposed by Phillips (1960), Longuet-Higgins (1962) and Hasselmann (1962)
under deep water assumption. This method is based on a Fourier decomposition of the free
surface elevation and velocity potential, and considers nonlinear interactions as coupling terms
between modal components of the wave field that is initially inferred from a superposition of
linear components. This approach was then extended to finite depth by Dalzell (1999). We
recall here Dalzell’s expression for the second-order free surface elevation, generalized to a discrete
directional spectrum, which follows

η (r, t) = η1 + η2 +O
(
ε3
)
, with η2 = ηstokes + η+ + η−. (I.10)

Each term in O
(
ε2
)
can be seen as the result of wave-wave interactions: ηstokes corresponds to

the interaction of the wave with itself, whereas η+ and η− correspond interactions between waves
of different frequencies. They read

ηstokes =
N∑
n=1

A2
nkn

4 tanh (knh)

[
2 +

3

sinh (knh)

]
cos (2ψn) ,

η± =
N∑

m<n

AmAnB
±
mn cos (ψm ± ψn) ,

where ψn = kn · r − ωnt− ϕn, and the kernel B±mn yields

B±mn =

(
ω2
m + ω2

n

)
2g

∓ ωmωn
2g

[
1∓ cos (θm − θn)

tanh (kmh) tanh (knh)

]
×
[

(ωm ± ωn)2 + g |km ± kn| tanh (|km ± kn|h)

D±mn

]

+
(ωm ± ωn)

2gD±mn

[
ω3
m

sinh2 (kmh)
± ω3

n

sinh2 (knh)

]
,

in which

D±mn = (ωm ± ωn)2 − g |km ± kn| tanh (|km ± kn|h) .

The dispersion relation (I.8) remains unchanged at second-order. We notice that the mathemat-
ical complexity pertaining to the second-order terms is higher compared to that of the linear
solution (I.9), and efficient wave field reconstruction/prediction methods based on (I)FFTs are
no longer adequate to estimate second-order quantities.

Blondel et al. (2010) and Blondel-Couprie et al. (2013) used equation (I.10) to reconstruct
and predict long-crested nonlinear wave fields, using both numerical and experimental data.
They employed the iterative procedure proposed by Duncan & Drake (1995) to initialize the
wave model, in which at each step, linear waves (free waves) and second-order effects (bound
waves) are decoupled using equation (I.10), to eventually converge (according to a prescribed
tolerance) leading to the knowledge of the free waves characteristics (namely their amplitude and
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phase). Once the free waves are known, the surface evolution is predicted at any time instant
by simply updating the time quantity in the model formulation. They found that the over-
all improvements of the prediction made using such second-order wave model are very limited
compared to the predictions using LWT. These results lead them to include a third-order correc-
tion to the dispersion relation, hence modifying waves velocities, as we will see in the next section.

Zhang et al. (1993) showed that the modal coupling approach for the calculation of nonlinear
interactions between two wave components having frequencies located far away in the wave
spectrum (i.e., large short-to-long wavelength ratio) converges slowly and eventually diverges.
Instead, they adopted a phase-modulation method to calculate second-order quantities. This
method consists in dividing the wave spectrum in several frequency bands and describing the
nonlinearities in terms of a phase-modulation of the short-wavelength components by the long-
wavelength ones. The phase-modulation method being less efficient than the modal coupling
method in the case of components having close frequencies, Zhang et al. (1993) proposed a
hybrid model based on modal coupling for the calculation of interactions between components
from the same or joint frequency bands, or on phase modulation for components from disjoint
frequency bands.

Such a Hybrid Wave Model (HWM) is used by Zhang et al. (1996) and Spell et al. (1996)
to reconstruct and predict long-crested wave fields, and was then extended by the same authors
to a Directional Hybrid Wave Model (DHWM) in the case of short-crested waves (Zhang et al.,
1999a,b). In the case of long-crested waves, irregular wave trains with a JONSWAP spectrum
were generated in narrow wave tanks, and times series of free surface elevation at different fixed
locations, and of orbital velocities at different water depths were recorded. A decoupling iteration
procedure based on FFTs applied to surface elevation measurements was used to retrieve the
amplitudes and phases of the free-wave components. Predictions of surface elevation and orbital
velocities were then performed using HWM to compute the effects of the nonlinear interactions.
Surface elevation predictions using the LWT were also performed, as well as velocity predictions
using the Wheeler stretching method (Wheeler et al., 1970) and the linear extrapolation (or delta-
stretching) method (Rodenbusch & Forristall, 1986). They found that HWM is more accurate
than LWT for predicting surface elevation than Wheeler stretching and linear extrapolation for
predicting orbital velocities, particularly for high wave steepness.

For short-crested waves, the first step is the use of an Extended Maximum Likelihood Method
(EMLM) according to Isobe et al. (1984) to obtain the wave amplitude distribution as a function
of the wave direction. Since EMLM does not retain the phases of the wave components, the
second step is to determine the phases by fitting the reconstructed wave field with the input
data, which consist of sets of laboratory data (surface elevation and pressure measurements)
as well as sets of field data (surface elevation, pressure and velocity measurements). Once a
first estimate of the free-wave amplitudes and phases is done, DHWM is used to compute the
wave-wave interactions, which are then subtracted from the measurements that are used for the
next EMLM, phase fitting, etc. Iterations are performed until convergence is achieved according
to a preset error tolerance between two estimates of the nonlinear effects. It is shown that the
predictions are more accurate when laboratory data are used compared to that from field data,
due to the uncontrolled environment leading to measurement errors. Also, better performances
were found when surface elevation times series are used for DHWM inversion than pressure
measurements, probably due to the wave induced pressure decay in the water column, making
components of high frequency hard to measure and globally increasing the noise to signal ratio.
Even if increasing the number directions per frequency (up to 7) allows to increase the accuracy
of the wave field reconstruction, due to the increase of degrees of freedom in the phase fitting
step, it has no significant effect on the prediction. The number of wave measurements (varying
from 3 to 5) only slightly affects the accuracy of the predictions.

Note that Prislin et al. (1997) were the first to predict second-order nonlinear short-crested
waves. However, since they used reference wave measurements recorded by pressure sensors

24



I.3.3 Weakly Nonlinear Models

deployed in the ocean, they were not able to properly measure the short wave dynamics. Hence,
they considered that the interactions between wave components of short-to-long wavelength ratio
were not significant, leading them to use the conventional mode coupling approach.

Even if the concept of accessible prediction zone was already introduced by Morris et al.
(1998, 1992), the studies described above (Prislin et al., 1997; Spell et al., 1996; Zhang et al.,
1996, 1999a,b) do not use it in their analysis.

I.3.3.2 Enhanced Second-Order Solution

As noticed in the previous section, the second-order terms modify the wave shape through the
modeling of bound waves resulting from self-interactions and interactions between two waves of
different frequencies. However, the dispersion relation, that governs waves velocity, is similar
to that of LWT. In order to further improve the modeling of nonlinear features and include
some wave-phase modifications, a third-order expansion has to be performed. Developing the
expansion up to the third order (e.g., Zakharov, 1968) produces both non-resonant terms (highly
complex to derive in practice since their expressions involve many cross interaction terms) and
resonant terms that model the energy exchange between wave components and necessitate a
temporal resolution. Some of these resonant terms result in a modification of the dispersion re-
lation that gives rise to a nonlinear wave velocity in amplitude. These resonant effects have been
implemented in a second-order solution (Blondel, 2009; Blondel et al., 2010; Blondel-Couprie
et al., 2013; Perignon, 2011), leading to the so-called enhanced second-order solution.

The Eulerian approach leads to a phase velocity correction at the third-order of expansion,
in the form of a wave-wave interactions effects. Third-order terms are calculated by consider-
ing interactions between four waves in two distinct cases: if all wave frequencies are equal (i.e.,
k1 = k2 = k3 = k4) or if they are equal two-by-two (i.e., k1 = k2 and k3 = k4). The case of inter-
action of waves having equal frequency was derived by Stokes (1847, p. 211), and corresponds,
for a wave of amplitude An, to the phase velocity correction

cstokes =
1

2
A2
nωnkn. (I.11)

The case of different wave frequencies was derived by Longuet-Higgins & Phillips (1962, equation
(2.11)). The same quantity is written for a discrete distribution of directional waves by Perignon
(2011, equation (3.12) which includes the Stokes term1) and yields the phase velocity correction

cLH
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K

2Anω2
n

, (I.12)

with
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,

in which θ, α and β are angular relations between wavelength vector km and vectors kn, km−kn
and km + kn, respectively (Longuet-Higgins & Phillips, 1962; Perignon, 2011). The nonlinear,

1Note that, in the expression of Stokes term by Perignon (2011, equation (3.14)) in K, the term should read
kijω

3
ijA

3
ij instead of k2

ijω
3
ijA

2
ij to yield the appropriate dimension and be consistent with the Stokes result.
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third-order, phase velocity is thus

cnl
n = cn + cstokes + cLH
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nωnkn +
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,

or equivalently, the nonlinear angular velocity is

ωnl
n = ωn

[
1 +

1

2
k2
n

(
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n +

K

Anknω3
n

)]
. (I.13)

This model was employed by Perignon (2011) to study its performance compared to a higher-
order model. It was found that this model brings a significant improvement compared to the
LWT and can be considered as a free surface representation of high accuracy during the first
characteristic periods of the wave field. Blondel (2009), Blondel et al. (2010) and Blondel-
Couprie et al. (2013) used the enhanced second-order model in the purpose of long-crested waves
prediction. Instead of formulating third-order corrections in terms of a nonlinear angular velocity
as it is done here in equation (I.13), they fixed the angular velocity and formulated a third-order
correction of the wavenumber. This way, the assimilation scheme, that relies on one single
time trace, is equivalent to the one employed in the classical second-order case (see previous
section) since wavenumbers do not influence the wave field when it is calculated at one location.
Results were first compared to synthetic data (Blondel et al., 2010), then to experimental data
(Blondel-Couprie et al., 2013), and they used a third-order model (HOS at order three, see section
I.3.4.1 for details on the HOS method) as reference model to compare the prediction accuracy
with. In the synthetic case (input data generated by a fourth-order HOS), they found that, in
contrast to the classical second-order model, the enhanced formulation improves considerably the
prediction accuracy for moderate wave steepness by decreasing the prediction error by almost a
factor two compared to the LWT and the second-order model. The full third-order solution still
allows decreasing further the prediction error by 40% compared to the enhanced solution (60%
compared to LWT and the second-order solution) for high wave steepness.

These observations are validated in the case of experimental data. The enhanced second-
order solution provides the most accurate predictions for moderate wave steepness and for a
limited prediction distance (i.e., distance from the recording location of input data). For small
steepness, the LWT, the second-order and the enhanced second-order prediction models give
equivalent results, while the third-order model seems to be less accurate. When the prediction
distance becomes large, nonlinear effects become significant and the full third-order model pro-
vides the lowest prediction errors. Also, as a consequence of nonlinear effects, increasing the wave
steepness reduces the prediction distance for the third-order model to exhibit the most accurate
prediction. The fact that the third-order model does not return the most accurate results for
short prediction distances and short steepness seems to be explained by an inadequate estimate
of the wave phases.

In conclusion, this model has shown reasonable performances in terms of accuracy of the
ocean surface representation with a limited computational cost. It significantly improves the
prediction accuracy compared to the second-order model that has shown to be almost equivalent
to the LWT when used in a prediction algorithm. This means that nonlinear phase modeling is
a crucial feature that needs to be properly taken into account in deterministic prediction.

I.3.3.3 NonLinear Schrödinger Equation

By assuming that the wave spectrum is narrow-banded, centered around the frequency of a
characteristic wave of small steepness, nonlinear wave properties can be modeled using the NLS
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equation or one of its modifications, which describes the evolution of the surface elevation en-
velope of the characteristic wave by means of modulations. This approach is widely used for
analysis of nonlinear wave-wave interaction phenomena such as the generation of rogue waves
(e.g., Chabchoub et al., 2011). Even if the hypothesis of narrow-banded wave spectrum is not
trivial for ocean waves, the performance of this approach has been investigated in the context of
deterministic prediction of typical ocean wave fields (Klein et al., 2020; Simanesew et al., 2017;
Trulsen, 2007; Trulsen & Stansberg, 2001).

Envelope equations

Assuming the slow variation of a wave train, the velocity potential and surface elevation can
be developed in harmonic series

η = η̄ + Re
(
Bei(kcx−ωct) +B2e

i2(kcx−ωct) +B3e
i3(kcx−ωct) + ...

)
, (I.14)

φ = φ̄+ Re
(
Aei(kcx−ωct) +A2e

i2(kcx−ωct) +A3e
i3(kcx−ωct) + ...

)
,

where kc and ωc are the characteristic wavenumber and angular velocity of the wave field, re-
spectively, and are related by the dispersion relation. η̄ is the mean surface elevation and φ̄ is
the mean flow. We further assume a narrow-banded frequency bandwidth centered around the
frequency of a characteristic wave of steepness ε = kcac (with ac its amplitude), i.e., the relative
bandwidth follows µ = |∆k| /kc � 1 in which ∆k is a characteristic modulation wave vector.

A perturbation approach with respect to ε and µ allows to describe the evolution of the
surface elevation envelop B by Schrödinger-type equations. The NLS equation is third-order
in wave steepness, but we describe hereafter the higher-order Modified NonLinear Schrödinger
(MNLS) equation (also known as the Dysthe equation) that neglects terms of relative order
higher than ε4. Note that there exists a Broad MNLS equation formulation (Trulsen & Dysthe,
1996) that relaxes the narrow banded constraint. Considering that the water depth is large,
and following Dysthe (1979) and Trulsen & Dysthe (1997), the space-domain formulation of the
MNLS equation describes the spatial evolution of B according to

∂B

∂x
+ LB + i |B|2B − 8 |B|2 ∂B

∂t
− 2B2∂B

∗

∂t
− 4i

∂φ̄

∂t
B = 0, (I.15)

where the superscript ∗ denotes the complex conjugate and each term is normalized in a similar
way to that of Simanesew et al. (2017). The operator L, which corresponds to the exact linear
dispersive part, is given by Trulsen et al. (2000) and yields

L = −i


[(

1 + i
∂

∂t

)4

+
∂2

∂y2

]1/2

− 1

 .

For the MNLS equation, only terms up to the fourth order are retained, hence every harmonic
in equation (I.14) is used to calculate the surface elevation, with η̄, B2 and B3 varying slowly
with time and space as

η̄ = −∂φ̄
∂t
, B2 =

1

2
B2 + iB

∂B

∂t
, and B3 =

3

8
B3,

and the governing equations for the potential φ̄ of the mean flow read

∂φ̄

∂z
= −∂ |B|

2

∂t
, on z = 0,

∆φ̄ = 0, in the fluid domain,
∂φ̄

∂z
= 0, on z = −h.
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Other Schrödinger-type equations can be formulated from equation (I.15): the cubic Nonlin-
ear Schrödinger (NLS) equation is obtained by discarding the last three terms, and the Linear
Schrödinger (LS) equation only retains the first two terms. The numerical procedure to solve
the above MNLS equation is not detailed here but examples can be found in Lo & Mei (1985,
1987).

Ocean wave fields prediction performance

Trulsen & Stansberg (2001) and Trulsen (2007) used the LWT, the NLS and MNLS equations
to deterministically predict the evolution of bichromatic waves by means of probes measurements.
One wave probe was used to initialize the models and predictions were compared to downstream
time series at fixed locations. It was found that the NLS equation gives almost equivalent results
than the LWT in terms of root mean square error, whereas the MNLS results are significantly
better.

Later, Simanesew et al. (2017) compared, still based on surface elevation experimental data,
the prediction performances of six prediction methods in the condition of bichromatic waves,
long-crested irregular waves, and short-crested waves with different directional spreading. Two
of the prediction methods rely on a simple least squares formulation of the problem in order
to calibrate a set of weights leading to an optimal prediction. One is just an empirical linear
calibration, while the second allows the predictions and the observations to be interdependent
stochastic variables, and the least squares minimization is performed using covariance matrices.
In practice, both least squares methods have been shown to give equivalent results. The other
four methods are based on the LWT and on the LS, NLS and MNLS equations. The initialization
of LWT is simply done through a 2D-FFT of the spatio-temporal input signal. The initialization
of LS, NLS and MNLS requires first an estimate of the characteristic angular frequency ωc (or
equivalently the characteristic wavenumber kc), which is typically calculated as a mean angular
frequency with respect to the wave spectrum S following

ωc =

∫∫
ωSp (ω, θ) dθ dω

/∫∫
Sp (ω, θ) dθ dω,

where p is a peak-enhancement parameter (e.g., p = 1 in Simanesew et al. (2017) and 5 in Klein
et al. (2020)). The second step consists in extracting the surface elevation envelope B from
the measurements ηm, which they do by low-pass filtering the Fourier transform of the quan-
tity 2 ηme

iωct
(
= (B +B∗) e−2iωct

)
. For bichromatic waves, similar results to those of Trulsen &

Stansberg (2001) are found concerning LWT and MNLS (actually the same dataset was used in
both studies and similar initialization procedures were employed). Despite their different initial
estimates, LWT and LS were found to give similar prediction results for all wave conditions.
Except in the case of short-crested waves with small directional spreading at short distances,
NLS does not improve the predictions from the linear wave theory and even leads to worse pre-
dictions in case of long-crested irregular waves. The least square approach is relatively efficient
only in the case of bichromatic waves. Overall, the MNLS equation gives better predictions, but
the directional spreading significantly affects the prediction accuracy and only short prediction
distances can be reached for short-crested waves. Authors indicate that this is mainly due to the
lack of directional observations.

The Schrödinger-equation approach was also investigated by Klein et al. (2020) by means of
experimental measurements of long-crested waves with different wave steepness and spectrum
peakedness factor. Since the objective is to evaluate the prediction performances of the methods
using radar images, input data were chosen to be spatial series of surface elevation. Hence,
they adopted a “semi-experimental” procedure: the input data are numerically generated on the
basis of digital twin of the wave tank experiments by means of the time-domain Finite Element
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Method potential flow solver waveTUB (Steinhagen, 2001). This technique allows using finely
sampled spatial series of surface elevation that could be very difficult to produce experimentally.
Accuracy of the predictions is then estimated by comparison with experimental time series at
three downstream locations and during time spans corresponding to the theoretically accessible
prediction zone. The prediction error indicator is a normalized “surface similarity parameter”
(Perlin & Bustamante, 2016).

Three NLS-type models are investigated: NLS and MNLS with a full linear dispersion re-
lation (that includes terms of higher-order than the limited truncation of (M)NLS) and NLS
with a consistently truncated linear dispersion relation. They showed that, due to the inaccurate
narrow-banded spectrum hypothesis, the modeling of the exact linear dispersion is crucial and
improves significantly the predictions compared to the truncated version in which the disper-
sion effects are only approached by a Taylor series expansion about the carrier wave. Still, due
to the narrow-banded spectrum hypothesis, results show that increasing the peakedness factor
(which concentrates the wave energy towards a peak of the spectrum) makes the prediction error
decrease. The benefits of MNLS arise for the highest steepness. The authors then compare
the MNLS results to the LWT and a fourth-order HOS solution (see section I.3.4.1 for details
about the HOS method). The overall better performance of HOS and the fact that HOS and the
input waveTUB records exhibit similar prediction error in every case indicates (i) that the use
of a complex wave model extends significantly the range of efficiency of a wave prediction tool
and (ii) that relative accuracy of the input data with respect to the actual wave quantities is a
crucial step in the prediction chain. They also note that results from LWT and NLS with full
dispersion are almost equivalent, with a slightly better prediction accuracy for the latter model.
This small difference could be explained by the underlying hypothesis of narrow-banded wave
spectrum pertaining to NLS, even if the full dispersion is modeled.

The MNLS equation appears to be able to compete with the classical perturbation approach
leading to the enhanced second-order solution described in section I.3.3.2. However, since the
wave spectrum distribution plays an important role in the model validity, its performance would
need to be further assessed in short-crested waves (i.e., using a setup that provides more direc-
tional observations than the one used by Simanesew et al. (2017)) to conclude on the actual
benefits of its use in the context of deterministic prediction.

I.3.3.4 Lagrangian Approach

Alternatively to the Eulerian description of the fluid dynamics which seeks the value of the fluid
velocity and pressure fields at fixed spatial locations, the Lagrangian approach uses the motion
of fluid particles and pressure at their location to describe the fluid behavior. Due to its intrin-
sic properties, the Lagrangian representation of the ocean surface of a given order can model
nonlinear wave properties that are not included in Eulerian developments of the same order (as
explicitly explained by Nouguier et al., 2015). For instance, the linear approximation of the
Lagrangian and Eulerian descriptions of an irregular wave field have similar mathematic com-
plexity, but the Lagrangian solution exhibits slope properties that correspond to a third-order
Eulerian solution (e.g., Lindgren, 2009; Nouguier et al., 2009). This characteristic comes from the
fact that the Lagrangian formulation satisfies the free surface boundary conditions on the actual
free surface, leading to the inclusion of interactions that are nonlinear in the Eulerian formulation.

The first solution to the Lagrangian equations was found more than two centuries ago by
Gerstner (1809), who derived a solution that exactly satisfies the nonlinear equations for a
periodic wave. Because his solution relies on the deep-water assumption and includes a second-
order vorticity term, it has not been investigated in depth: the Eulerian solution proposed by
Stokes (1847) was largely preferred by researchers. It is only one and a half centuries later that
Pierson (1961) proposed irrotational solutions based on a Lagrangian perturbation expansion
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with respect to the wave steepness up to the second order for long-crested waves.
Still, due to the theoretical complexity of the mathematical developments in a Lagrangian

framework, the majority of ocean wave investigations rely on the Eulerian formalism. A detailed
and complete description of the Lagrangian equations of motion is provided by Gjosund (2000).
Nevertheless, due to its suitableness to represent very steep waves and to evaluate wave field
statistical quantities at a moderate cost in terms of analytical complexity, a renewed interest in
the Lagrangian formalism has emerged (Nouguier et al., 2015) and its physical implications has
been investigated in the context of water waves. For instance, Gjosund (2003) used a first-order
solution to describe the surface elevation and kinematics of irregular long-crested wave fields of
intermediate water depth. Interesting features were highlighted such as the fact that it favorably
compares to the Wheeler method (Wheeler et al., 1970), providing a more accurate description of
the kinematics, within a theoretically consistent framework. Another notable study is provided
by Clamond (2007) who proposed a detailed overview of the physical and mathematical benefits
pertaining to the Lagrangian formulation in the case of a standing wave.

Nouguier et al. (2009) developed the “Choppy Wave Model” (CWM), an extension to the
Gerstner’s theory for the description of irregular short-crested waves. They showed that CWM
correctly approaches second-order (in an Eulerian sense, Longuet-Higgins, 1963) elevation and
slope properties for narrow-banded spectra. Later, Nouguier et al. (2015) derived an analytical
framework to describe short-crested Lagrangian waves at second order denoted CWM2. They
demonstrated that CWM2 is fully consistent with the classical second-order Eulerian expansion
by Longuet-Higgins & Phillips (1962) and even captures nonlinear effects that can be related to
third-order properties. Moreover, their analytical framework allows to improve the Lagrangian
second-order formulation by Pierson (1961) for long-crested waves by incorporating an essential
second-order term to ensure a zero-mean level.

CWM was used in for deterministic prediction by Grilli et al. (2011) and Nouguier et al.
(2014) on the basis of synthetic lidar measurements. They first compared the performance of
LWT and CWM to accurately reconstruct and predict a long-crested, uniformly sampled CWM
surface elevation, using a reconstruction method relying on the minimization of a quadratic cost
function. It was found that the higher the wave steepness, the better the performance of CWM
over LWT, suggesting that CWM was suitable for nonlinear wave field prediction. For long- and
short-crested waves, non-uniform lidar-like elevation measurements are then used as input for the
CWM inversion. It was shown that the use of multiple surface snapshots are crucial to reduce
the prediction error, countering the error induced by wave shadowing effects. The inclusion of
time information also leads to get access to the wave directionality, which directly affects and
improves the estimation of the wave amplitudes.

At second order, Lagrangian expansion includes a horizontal particle shift that affects the
dispersion relation, whereas, as explained in section I.3.3.2, nonlinear corrections of the dispersion
relation appear at third order with the Eulerian approach. At equivalent computational cost,
the Lagrangian description thus allows a more accurate modeling of wave velocity, and as seen
in section I.3.3.2, taking into account nonlinear corrections of the wave velocity is crucial to
issue accurate predictions. This suggests that this Lagrangian second-order model could be well
suited for fast and efficient wave predictions. Since this approach is the one chosen in this work
to perform nonlinear predictions, a detailed presentation of the Lagrangian equations and their
solutions is given in section II.1.

I.3.4 High-Order Spectral Method for Fully Nonlinear Predictions

Further nonlinear properties of the surface wave dynamics can be modeled by means of numerical
methods. The High-Order Spectral (HOS) method solves the fully nonlinear wave equations (I.6)
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using a pseudo-spectral approach. Because of its computational efficiency (numerical schemes
using FFTs) and high accuracy, this method is widely used for deterministic investigations of
highly nonlinear wave fields. The inversion of HOS, however, needs a significantly higher com-
putational efforts than the inversion of LWT or weakly nonlinear models, leading to calculation
times that are not compatible with the real-time constraint of prediction systems. Even if no
operating prediction systems based on HOS has been proposed so far, the increasing computa-
tional efficiency of modern machines allows considering making such real-time computations in
the near future.

I.3.4.1 Core of the HOS Method

The HOS method was developed independently by Dommermuth & Yue (1987) and West et al.
(1987). The core of the method consists in expressing the free surface boundary conditions
according to the Hamiltonian formalism formulated by Zakharov (1968), i.e., using the surface
velocity potential φs given by

φs (r, t) = φ (r, z = η (r, t) , t) .

Using the relation ∂φs/∂x∗ = ∂φ/∂x∗ + ∂η/∂x∗ × ∂φ/∂z for any variable x∗ ∈ {r, z, t}, the
modified surface boundary conditions follow

∂φs

∂t
= −gη − 1

2
|∇φs|2 +

1

2

(
1 + |∇η|2

)(∂φ
∂z

)2

,

∂η

∂t
=
(

1 + |∇η|2
) ∂φ
∂z
−∇φs ·∇η,

on z = η. (I.16)

The problem is now expressed with only free surface quantities η and φs, which reduces to two
dimensions a problem that was initially expressed in the fluid volume. Assuming that values
of these quantities are known at a given instant of time, the advance in time can be easily
performed using conditions (I.16) together with a numerical scheme, e.g., Runge-Kutta method.
The remaining unknown (and last volume quantity) is the vertical speed W = ∂φ/∂z|z=η, which
is evaluated through a high-order iterative process.

The problem is solved through the spectral approach, which is based on the a priori assump-
tion that our quantities of interest η, φs and φ can be decomposed, at each time, in sets of
eigenfunctions ψn (r) that suit the domain geometry and boundary conditions. Quantities are
thus expressed in a new basis which yields for the velocity potential

φ (r, z, t) =
N∑
n=1

An (t)ψn (r)
cosh [kn (z + h)]

cosh (knh)
.

The surface elevation and surface velocity potential follow similar expressions without the z-
dependent term. This approach is numerically very efficient as it converges rapidly and allows,
in our case, the use of FFTs to determine the modal amplitudes.

To calculate W , the potential φ is written as a perturbation series in η to a given arbitrary
order M (called the HOS order) as

φ (r, z, t) =
M∑
m=1

φ(m) (r, z, t) .

At z = η, the potential is further expanded in a Taylor series around z = 0, so that we have

φs (r, t) = φ (r, η, t) =

M∑
m=1

m−1∑
k=0

ηk (r, t)

k!

∂kφ(m−k)

∂zk
(r, 0, t) . (I.17)
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Since η and φs are known, equation (I.17) corresponds to a Dirichlet boundary condition for φ
on the free surface. It results a sequence of boundary conditions that yields, for each order φ(m)

φ(1) (r, 0, t) = φs (r, t) , and φ(m) (r, 0, t) = −
m−1∑
k=1

ηk (r, t)

k!

∂kφ(m−k)

∂zk
(r, 0, t) for 1 < m ≤M.

The resulting system is solved iteratively for the modal amplitudes A(m)
n (t) at increasing orders

m. Finally, and similar to the potential, the vertical velocity is expressed as a perturbation series

WM (r, z, t) =
M∑
m=1

W (m) (r, z, t) ,

which is derived on the free surface from a Taylor expansion according to

W (m) (r, η, t) =
∂

∂z

(
φ(m) (r, 0, t) + η (r, t)

∂φ(m−1)

∂z
(r, 0, t) +

η2 (r, t)

2

∂2φ(m−2)

∂z2
(r, 0, t) + ...

)

=
m−1∑
k=0

ηk (r, t)

k!

∂k+1φ(m−k)

∂zk+1
(r, 0, t) .

At a converged order of nonlinearity M (a typical value of M = 5 is often sufficient), this
method gives access to the fully nonlinear wave dynamics. It has been used for applications
related to highly nonlinear wave phenomena such as rogue waves modeling (Ducrozet et al.,
2007) or wave propagation over variable bathymetry (Gouin et al., 2016), and validated many
times against experiments (e.g., Bonnefoy et al., 2010; Ducrozet et al., 2012).

I.3.4.2 Model Inversion and Numerical Performances

All comparative studies have demonstrated that HOS gives the best prediction accuracy in all
waves conditions (Blondel, 2009; Blondel et al., 2010; Blondel-Couprie et al., 2013; Klein et al.,
2020; Qi et al., 2018a; Wu, 2004). However, the use of HOS for the deterministic prediction
involves considerably more calculations than the lower-order approaches, which makes it difficult
to use in practice. Using the same semi-experimental procedure as described by Klein et al.
(2020), Clauss et al. (2014) showed the capabilities of HOS to deterministically predict highly
nonlinear phenomenon, namely the propagation of solitons and Peregrine breathers (Peregrine,
1983). Later, Clauss et al. (2015) used the same approach to demonstrate the technical feasibil-
ity of ship motion predictions under unidirectional irregular sea states using HOS, at least when
the initial HOS solution that is propagated is known. The complexity of the HOS model for
prediction, however, lies in the model inversion step, which, due to the need for the simultane-
ous estimation of the HOS surface elevation and velocity potential, as well as due to the HOS
numerical complexity, requires more complicated methods than the ones used for lower-order
models. It is within the framework of data assimilation that the inversion of HOS models is
addressed. Given observations (measurements) of a specific process and a mathematical model
that describes its dynamics, the point of data assimilation is the determination of the optimal
model parameters that better describe the process through the minimization a global error that
accurately represents the misfit between the theory and the observed data. Detailed presentation
of classical data assimilation procedures can be found in Blondel (2009).

Before going into inversion methods based on assimilation, let us mention that a novel ap-
proach is being developed by Huchet et al. (2018) at ECN that aims at predicting wave fields
with HOS on the basis of horizontal velocity measurements, directly used as boundary conditions
of the wave model. This approach has the advantage of avoiding the time-consuming step of data
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assimilation, that is also an important source of errors in prediction algorithms. Developments
are made around the open source code HOS-NWT2 that simulates a numerical wave tank with
the HOS method. A wavemaker, modeled on one side of the wave tank and driven by horizontal
velocity conditions in the water column, deterministically generates waves that propagate using
the HOS method in the wave tank before being absorbed by a numerical beach on the other side
of the tank. A proper initialization of the wavemaker would theoretically lead to very accurate
predictions with the minimal computational effort pertaining to the propagation of the solution.
The main difficulty with this approach relies on the determination of the initial conditions in a
real environment, for which Huchet et al. (2018) propose a method based on ADCP measure-
ments. Specifically, the horizontal velocity profile in the water column is approached from profiles
of vertical velocity having close horizontal coordinates provided by at least two ADCPs or two
rows of multiple ADCPs along a sufficiently large distance in the case of long- or short-crested
waves, respectively. The deployment of ADCPs being not compatible with a constant update
of the measurement locations, this method is not yet applicable in the context of predictions
around a moving structure.

Two main approaches are used in data assimilation: the sequential and the variational ap-
proaches. In the former, the model is adjusted observation by observation, i.e., an estimate of
the model state (or parameterized model) is made from a first observation, then updated at each
new observation available. When all observations have been used, the last model state estimate
is used as initial condition for the model forecast. In this method, each correction step does not
take into account future observations. In contrast, the variational approach tries to assimilate all
observations at once through the minimization of a cost function. The obtained solution, which
serves as initial condition for the forecast, has the closest trajectory to the observations. This
method is thus more capable of capturing the dynamics of the observed process and is also more
adapted to nonlinear problems. As we will see below, most of the HOS inversion procedures are
based on variational assimilation, and it is also the approach employed in this work. A detailed
presentation of the variational cost function that is minimized is done in section III.2.

Variational approach with gradient-free optimization

The first procedure to invert HOS is proposed by Wu (2004). His method consists in min-
imizing the classical quadratic variational cost function for the initial η and φs through an
optimization process that determines their complex modal amplitudes. His cost function formu-
lation includes a weighting function that emphasizes the large surface displacements so that the
features near the wave peaks are better captured. Since HOS relies on a numerical integration
scheme, there is no analytical formulation of the derivatives of the cost function to the optimiza-
tion variables. Gradient-based optimization methods thus necessitate numerical calculation of
the derivatives and lead to a high number of computations. Instead, he used the gradient-free
optimization method proposed by Rosenbrock (1960). At each step of the optimization, the HOS
solution is propagated over the spatio-temporal region covered by the observations to obtain the
reconstructed wave signal. The initial surface elevation and velocity potential for the HOS propa-
gation are found by applying a FFT on the reconstructed wave elevation signal (from the previous
iteration) in order to find the free-waves components used in the calculation of the second-order
quantities using the mode coupling formulation (equation (I.10) for the surface elevation). The
surface potential is typically calculated with a Taylor series expansion of the potential around
z = 0 up to the second order. An intermediate step consists in making the second-order solution
periodic over the observation zone to ensure a consistent initialization of the HOS solution (which
is periodic). This process is repeated until the cost function converges to a prescribed precision.
Wu (2004) checked the uniqueness of the solution as well as the convergence of this approach

2https://github.com/LHEEA/HOS-NWT
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with increasing HOS order M .
Blondel (2009); Blondel et al. (2010) used a similar approach. The method proposed by

Duncan & Drake (1995) is used for the free-waves decoupling procedure, which is extended
to the enhanced second-order formulation and to finite depth. The code HOS-ocean3 (Ducrozet
et al., 2016) is used as numerical solver for the HOS simulations. They also used a complementary
weighting function which gives more weight to the observations near the end of the observation
times. Almost similar results as the ones provided by Wu (2004) are obtained. They later
validated this approach against experimental data (Blondel-Couprie et al., 2013).

The main downside of the gradient-free optimization technique is the high-number of itera-
tions needed to converge (e.g., ∼ 2500 cost function evaluations to reconstruct long-crested waves
of steepness Hs/λp = 2% in Blondel et al. (2010)).

Variational approach with gradient-based optimization

Qi et al. (2018a) developed a method that is almost similar to the one from Wu (2004), except
that they do not use weighting functions for the cost function formulation, and that they use
the quasi-Newton optimization procedure based on a gradient evaluation. The numerical details
concerning the calculation of the cost function derivatives are reported in Qi (2017). Numerical
and experimental validations are performed using surface elevation data and horizontal velocity
measurements in the water column.

Aragh & Nwogu (2008) and Aragh et al. (2008) chose an optimization method based on the
evaluation of the gradient of the cost function using adjoint equations. Before deriving the adjoint
equations, the “tangent linear model” equations that describe the evolution of an initial pertur-
bation of the solution, have to be calculated. This step is done by linearizing the HOS evolution
equations with respect to a small perturbation of the initial model parameters. Tangent equa-
tions return the discrepancy on the HOS solution after forward propagation. Adjoint equations
are derived from the tangent equations and describe the backward evolution of a discrepancy δy
and allow to find the initial HOS solution. This way, the comparison between an initial HOS
solution yi and the solution of the adjoint equations parameterized by the discrepancy yo − yf
between an observation yo and the propagated HOS simulation yf , allows the determination the
gradient of the cost function for a specific set of parameters. With this approach, estimating the
gradient only necessitates one forward (HOS) and one backward (adjoint model) model prop-
agations at each iteration, which significantly improves the computational efficiency compared
methods that only rely on a forward model propagations.

In their work, Aragh & Nwogu (2008) used a third-order HOS model and derived and used
the adjoint equations up to the third order, together with a conjugate gradient optimization
procedure, to predict unidirectional wave fields. However, since their observations are surface el-
evation series, their optimization parameters are the complex amplitudes of the surface elevation.
Hence, after an optimization iteration, they only have access to the updated surface elevation
amplitudes and do not know the corresponding velocity potential. They thus chose to estimate
the velocity potential using the linear formulation based on the free waves components to ini-
tialize the HOS model for forward propagation. Aragh et al. (2008) applied the same method
to directional wave data, but using an adjoint Newton optimization procedure and first-order
adjoint equations for the gradient calculation, which is lower than the order of the considered
wave model (third-order HOS) and limits the interest of this approach which was to calculate
the gradient with a high accuracy. Even if the convergence is achieved very rapidly compared
to the gradient-free optimization procedures, another drawback of this method is the increasing
complexity of the adjoint equations with the HOS order, which makes their implementation very
challenging.

3https://github.com/LHEEA/HOS-ocean
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In order to get rid of the complex adjoint derivation and implementation, Fujimoto & Waseda
(2020) used an ensemble-based method in the optimization process. This method consists in com-
puting the gradient of the cost function using perturbed ensemble simulations. More specifically,
they used the a4dVar method which finds the optimal perturbations on the initial wave model
parameters that minimize the cost function. A particular set of perturbations is selected at each
optimization iteration based on an analysis of the estimate model at previous iteration, leading
to a more efficient search for optimum. It can also be implemented in a parallelized way to
decrease the computational time. They named this method Surface Waves reconstruction by
Ensemble Adjoint-free Data assimilation. Besides the constraints imposed by the observations,
they applied a regularization of inverse problem through the modeling of the background error
covariance using the wave spectrum. In fact, they considered a diagonal background covariance
matrix where each term corresponds to the variance of one wave component amplitude, which
should be proportional to the power spectrum. Several values of the regularization parameter
were tested. With a third-order HOS model, they successfully reconstructed and predicted waves
fields that contain extreme wave events. Here, the surface velocity potential is estimated from
the linear wave theory, without a free-wave decoupling method, assuming the nonlinear surface
elevation amplitudes to be free wave components.

Jacobian-Free Newton-Krylov method

Remote observations consist of surface elevation fields (e.g., from radar or lidar measure-
ments), thus do not allow for a direct estimate of the velocity potential, which is necessary to
initialize HOS simulations. Inversion methods thus often rely on a linear or second order estimate
of the potential, reducing both the numerical performance of the inversion technique and the ac-
curacy of the result. Assuming that the temporal sampling of the observations is high enough to
calculate the surface elevation derivatives, Köllisch et al. (2018) developed a method to directly
estimate the surface velocity potential from the observations. Their estimate is done through
the minimization of the residual F arising from the kinematic surface boundary condition (I.16)
and follows

F (φsrec) =
∂ηobs

∂t
−
(

1 + |∇ηobs|2
)
W (ηobs, φ

s
rec) + ∇φsrec ·∇ηobs,

where ηobs corresponds to the surface elevation observations and φsrec to the reconstructed surface
velocity potential. They used the Newton method to iteratively minimize F , but since F is
nonlinear, the calculation of its Jacobian is non-trivial. Instead, they employed a Krylov subspace
method that allows solving the nonlinear minimization problem only through evaluations of F .

Concerning the computational efficiency, they obtained a calculation time of 0.6 s to invert
a JONSWAP sea state of steepness Hs/λp ≈ 3.2% on a 512× 512 points grid with a HOS order
M = 4, which is satisfactory. The forward propagation of the inverted sea state is then performed
approximately five times faster than real time.

Hence, this method seems promising for real-time applications, but it necessitates two ma-
jor prerequisites. First, the time derivative of every surface elevation observation needs to be
available from the measurements. Considering radar images which have a time sampling rate of
typically 1–2 s and exhibit shadowing effects that lead to constantly updated measurement points
locations, this is unlikely to be the case. The measurement configurations around a structure
with a forward speed would also lead to practical limitations for the estimate of ∂η/∂t. The
second requirement is the Cartesian layout of the observations, which, as seen in section I.2,
would necessitate interpolation.
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Kalman filter

The sequential approach was investigated by Yoon et al. (2016), who developed an efficient
Kalman filter (Kalman, 1960) that is analytically calculated. Their method associates the non-
linear HOS model at order three for forward propagation of the wave field, and LWT for the
calculation of the error covariance matrix that is used to determine the Kalman gain applied on
the model parameters at each update step. The key point of their approach is that the error
covariance matrix can be analytically formulated and efficiently calculated since it does not need
to be integrated in time but only estimated at each update instants.

Their method is shown to be stable, even when the observations are contaminated with a
normal random noise. However, for large steepnesses, the reconstruction procedure seems to
have difficulties to accurately represent the nonlinear dynamics of the wave field, which is mainly
due to the fact that the Kalman filter is based on a linearized wave model. Also, the sequential
nature of Kalman filtering may not ensure the physical consistency in case of highly nonlinear
events.

I.4 Use of Machine Learning

Due to the recent interest and impressive developments of machine learning approaches to address
engineering issues, several studies envisaged the prediction of ocean waves by a data-trained
parametric model instead of a physics-based model.

Desouky & Abdelkhalik (2019) investigated the prediction of waves ahead a controlled wave
energy converter. Synthetic linear long-crested waves are used first, and successful predictions
are obtained within a limited horizon of prediction. Real field data from surface buoys are then
used without achieving accurate prediction. This can be explained by the fact that they used
only one buoy to predict a real (thus directional) wave field.

Law et al. (2020) used an artificial neural network to predict synthetic nonlinear (HOS) long-
crested waves and compared the prediction results with the LWT. With input data generated in
different configurations (surface elevation time series at a fixed position, two times series of same
time interval at fixed positions and one surface series at a time instant), prediction error maps
are computed and the error over the theoretically accessible prediction zone are analyzed. It is
found that the developed data-driven model gives lower error than LWT in all configurations,
especially in case of high wave steepness, suggesting that the neural network approach is capable
of capturing some nonlinear features. After the necessary training step, the prediction can be
easily issued in real-time since no model inversion is required. However, this new approach
needs to be further investigated regarding the short-crested waves prediction capabilities. An
interesting improvement of this approach would be the integration of physics into a data-driven
model to increase its performances (e.g., a weakly nonlinear wave model supplemented by a
data-generated correction of highly nonlinear effects).

Conclusion

The benefits and drawbacks of the existing prediction methodologies have been reviewed. Each
methodology depends both on a specific wave model which has its own hydrodynamic properties
and on a specific wave measurement methods. We saw that the linear wave theory is the most
convenient model for inversion from any set of wave measurements, even if precautions have to
be taken regarding non-uniformity and non-periodicity of the measured data.

It appears, however, that the linear wave theory is only sufficient to predict wave fields of small
steepness and during limited prediction horizons. Investigations of weakly nonlinear wave models
showed that improvements are significant if nonlinear corrections of wave velocities are taken into
account, which are third-order quantities. Further increased hydrodynamic performances rely on
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numerical methods and require complex (and time-consuming) model inversion procedures, based
on data assimilation schemes, that are not easily applicable to real wave data measurements and
computable in real-time.

The objectives of this work being the deterministic prediction of wave fields around a moving
structure such as a ship with a forward velocity, we must rely on a remote sensing technology.
Datasets consisting of remotely measured free surface elevation fields will thus be assimilated for
prediction. The direct measurements of surface heights, the high sampling rate (in both space
and time), and the recent interests and developments for surface elevation profiling are inherent
qualities of lidar cameras that make them a relevant choice for the purpose of this work. Through
the generation of synthetic datasets, this technique will thus be considered are the source of wave
measurements for the following investigation of prediction algorithms. Regarding wave models,
we have seen that the Lagrangian approach has not been deeply investigated concerning its
phase-resolved prediction performances and seems to be able to model nonlinear wave velocity
corrections at a low computational cost. The development of an efficient Lagrangian model is
the object of the next chapter.
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Résumé du deuxième chapitre

Le deuxième chapitre présente l’approche Lagrangienne pour la modélisation des ondes de gravité
à la surface de l’océan, ainsi que les propriétés intrinsèques à cette approches. La dérivation
de la solution au premier ordre de perturbation est exposée, puis nous comparons, jusqu’au
second ordre, les descriptions Lagrangienne et Eulérienne de la surface libre pour différentes
configurations d’état de mer. La solution Lagrangienne inclut au second ordre des effets non-
linéaires qui affectent à la fois la forme de la surface libre et la relation de dispersion (reliant
fréquence et longueur d’onde des vagues). Le premier effet crée une asymétrie (c’est-à-dire des
crêtes plus prononcées et creux plus plats), alors que le second engendre une modification de
la vitesse de propagation des vagues. Nous introduisons ensuite une version améliorée de cette
solution au second ordre, appelée Improved Choppy Wave Model (ICWM), qui corrige la relation
de dispersion non-linéaire afin de mieux représenter les phases lors de la propagation du champ
de vagues. Nous montrons que ICWM permet de retrouver la solution Eulérienne au troisième
ordre pour une vague régulière. Dans le cas de champs de vagues irréguliers, ICWM corrige
convenablement les composantes énergétiques du champ de vagues, mais manque les effets de
modulation des vagues plus courtes. Afin d’utiliser ICWM lors de la reconstruction de champ
de vagues à partir des mesures, nous en proposons une formulation Eulérienne pour l’élévation
de surface. Nous montrons qu’une simple approximation dans un cadre Eulérien, ne nécessitant
pas de développements mathématiques complexe ni de procédure itérative, permet d’obtenir
des résultats consistants. Dans le but de valider l’intérêt de la formulation améliorée de la
solution Lagrangienne, nous comparons divers résultats d’élévation de surface à une solution
HOS complètement non-linéaire (c’est-à-dire convergée en ordre de non-linéarité). Il est montré
que la correction non-linéaire de la vitesse de phase des vagues est cruciale pour une représentation
correcte du champ de vagues après seulement quelques périodes de propagation. Ce travail a
été publié dans Guérin et al. (2019). Pour finir, une caractérisation de quelques propriétés du
champ de pression issu de ICWM est présentée.
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Chapter II

Choppy Wave Modeling

Introduction

The need for real-time prediction is not compatible with complex (i.e., highly nonlinear) wave
models, such as High-Order Spectral methods. Hence, we seek a model that is able to properly
take into account the nonlinear effects that play important roles in the propagation of the con-
sidered wave fields, while being suitable for the real-time constraint of the prediction problem. It
has been shown in last chapter that the Lagrangian approach could lead to interesting nonlinear
properties at a reasonable computational cost. In this chapter, we present and assess numer-
ically a novel derivation of the Lagrangian second-order solution adapted to wave prediction
applications. It has been published in Guérin et al. (2019).

We first present the Lagrangian approach and some of its intrinsic properties. We detail
the derivation of the first-order solution, show how the Lagrangian approach (up to the second-
order) compares to the Eulerian approach in terms of free surface description, and explain which
parameter bounds its applicability. Then, we introduce the improved Lagrangian second-order
solution, referred to as Improved ChoppyWave Model (ICWM). We explain the method employed
to derive the model, and provide a simple Eulerian form of the corresponding free surface elevation
that is required for the reconstruction of the wave field. In order to validate the relevance of
the “improved” formulation, we then compare various results of free surface elevation to a fully
nonlinear (i.e., converged in order of nonlinearity) HOS solution. Last, we study the dynamical
properties of ICWM through the derivation of the wave induced pressure field. Note that all the
model developments that are done in this chapter are for infinite water depth, but the extension
to finite depth is conceptually equivalent.

II.1 Lagrangian Approach

Alternatively to the Eulerian approach, where we seek the value of the fluid velocity and pres-
sure fields at fixed spacial locations, the Lagrangian approach uses the motion and pressure of
fluid particles to describe the fluid behavior. Even if a similar perturbation approach to that
described in section I.3.2 is used to obtain solutions at different orders, the intrinsic formulation
of the Lagrangian equations allows to express the free surface elevation boundary conditions
on the actual free surface. This makes Lagrangian wave models more adapted to steep waves,
and we will see in the following that the Lagrangian representation of a given order can model
nonlinear wave properties that are not included in Eulerian developments of the same order.

II.1.1 General Equations

We consider the spatial coordinates of a particleR = (x, y, z) which depend on their independent
reference labels (reference location coordinates) ζ = (α, β, δ) and time t. Explicitly, that is
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x = x(α, β, δ, t), y = y(α, β, δ, t) and z = z(α, β, δ, t). ζ is chosen to be the locus of particles at
rest. A particle motion is driven by Newton’s law on dynamics for an inviscid fluid, which is

∂2R

∂t2
+ g = −1

ρ
∇Rp, (II.1)

where g = (0, 0, g). This equation, through the operator ∇R = (∂x, ∂y, ∂z), contains differential
coefficients with respect to the particle coordinates R, instead of the particle position at rest ζ.
To eliminate these terms, we multiply equation (II.1) by the Jacobian matrix of R defined as

J = ∇
T
R =

 ∂αx ∂αy ∂αz
∂βx ∂βy ∂βz
∂δx ∂δy ∂δz

 ,
and we obtain the Lagrangian form of the dynamic equation

J
∂2R

∂t2
+ ∇ (gz) +

1

ρ
∇p = 0, (II.2)

where the spatial derivative operator ∇ relates to the independent Lagrangian variables ζ.
The determinant of matrix J expresses the volume ratio between the displaced fluid particle

and the particle at rest. Since we are assuming that the fluid is incompressible, we get the
continuity equation

|J | = ∂ (x, y, z)

∂ (α, β, δ)
= 1. (II.3)

One may express the solution as a perturbation expansion in wave steepness ε = kA for the
position and pressure {

R = R0 +R1 +R2 + ...,

p = p0 + p1 + p2 + ...,
(II.4)

the zeroth-order component being the particle at rest

R0 = ζ,

p0 = pa − ρgδ,

where pa is the atmospheric pressure. This perturbation approach will lead to the expression of
the solution at the first then the second order.

Note that the form of the Lagrangian governing equations are very different from the Eulerian
ones and may appear less explicit since the free surface does not appear explicitly and the velocity
is described through the derivatives of the particle coordinates. As we will see, the mathematical
framework needed to find consistent solutions to these equations is indeed not trivial, which
could explain the modest number of studies regarding these equations in the context of surface
waves.

II.1.2 First-Order Solution

We describe here the process to find a solution of the linearized Lagrangian equations system.
At first order, equation (II.2) writes

∂2R1

∂t2
+ ∇ (gz1) +

1

ρ
∇p1 = 0.
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II.1.2 First-Order Solution

The continuity equation (II.3) leads to

∂x1

∂α
+
∂y1

∂β
+
∂z1

∂δ
= ∇ ·R1 = 0.

In order to find a solution that fulfills the irrotational flow condition, we investigate solutions of
the form R1 = ∇w in a way that the function w (ζ, t) exists, and satisfies the following dynamic
and continuity equations

∇
(
∂2w

∂t2
+ g

∂w

∂δ
+
p1

ρ

)
= 0, (II.5)

∆w = 0. (II.6)

Setting p1 to zero at the free surface (p1|δ=0 = 0) leads to a solution of the dynamic equation
(II.5) of the form

w = cos (kαα+ kββ − ωt) ekδ, (II.7)

with kα, kβ and k constant numbers, and ω2 = gk. Injecting (II.7) in continuity equation (II.6)
gives

∆w =
(
−k2

α − k2
β + k2

)
w = 0,

which leads to k2 = k2
α + k2

β . Since the components of R1 have a spatial dimension, a suitable
solution is ∇

(
Ak−1w

)
, leading to the following spatial components at first-order expansion

x = α−Akα
k

sin (kαα+ kββ − ωt) ekδ,

y = β −Akβ
k

sin (kαα+ kββ − ωt) ekδ,

z = δ +A cos (kαα+ kββ − ωt) ekδ,
p = pa − ρgδ.

(II.8)

Even if the irrotationality hypothesis is not explicit here, this first-order solution can be
proven to be irrotational. Indeed, showing that there exists a scalar function F that satisfies

∂R

∂t
= ∇RF, (II.9)

(which denotes ∇×∂R
∂t = 0) implies that F is a velocity potential and the flow is irrotational.

Plus, by definition, a perfect differential of such a function follows

∇F · dζ = ∇RF · dR,

and we know that (
J
∂R

∂t

)
· dζ =

∂R

∂t
· dR,

which means that finding a function F such that ∇F = J ∂R∂t and ∇F ·dζ is a perfect differential
is equivalent to show that equation (II.9) is verified. At the first-order of expansion, we have

J
∂R1

∂t
= ∇F1 ⇐⇒ F1 = Ak−1∂w

∂t
=
Aω

g
sin (kαα+ kββ − ωt) ekδ.
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II.1 CHOPPY WAVE MODELING – Lagrangian Approach

Following Schwarz’s condition, it is necessary and sufficient to show that

∂F1α

∂β
− ∂F1β

∂α
= 0,

∂F1β

∂δ
− ∂F1δ

∂β
= 0,

∂F1δ

∂α
− ∂F1α

∂δ
= 0,

where ∇F1 = (F1α, F1β, F1δ), to prove that ∇F1 · dζ is a perfect differential. This is easily veri-
fied, hence the first order solution is intrinsically related to the description of an irrotational flow.

According to this first-order development, every fluid particle has a circular trajectory (see
figure II.1), with a radius Akekδ exponentially decreasing as the distance between the particle
and free surface increases. One particular feature of this first order solution is that it leads to a

Figure II.1: Snapshot of the fluid particles position according to the first-order solution for a
wave of steepness kA = 1 (theoretical limit allowed by the model) at a given time t = π/ω and
for different depths. The wave is going along the x-axis (i.e., y = β), and we are looking through
a plane perpendicular to the y-axis. Dashed lines represent the form taken by a line of particles
which is vertical at rest (and remains vertical when it passes through a crest or a trough).

nonzero mean surface level. Indeed, it introduces a wave shape modification, i.e., the crests are
sharper and the troughs flatter, that decreases the mean surface level by an amount 1

2A
2k. We

will see in the next section that a second-order correction corresponding to a wave self-interaction
effect removes this discrepancy.

It can be seen from equation (II.4) that the Lagrangian free-surface (i.e., δ = 0) particle
position can be expressed in the form

r (ξ, t) = ξ +
∑
i

Di (ξ, t) ,

z (ξ, t) =
∑
i

Zi (ξ, t) ,
(II.10)

where r = (x, y), ξ = (α, β) and Di and Zi are respectively the horizontal and vertical particle
relative displacements with respect to the particle position at rest ξ, associated with the ith-order
of expansion. According to equation (II.8), the relative displacements at first-order are{

D1 (ξ, t) = −Ak̂ sin (k · ξ − ωt) ,
Z1 (ξ, t) = A cos (k · ξ − ωt) ,
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II.1.3 Second-Order Solution

where k = (kα, kβ) = (k cos θ, k sin θ) with θ the direction of propagation of the wave with respect
to the x-axis, and k̂ = k/k. The generalization of this solution to the case of irregular waves is
straightforward since it is simply a linear superposition of individual linear regular waves. For a
wave field composed of a set of N frequencies, it gives

D1 (ξ, t) = −
N∑
n=1

Ank̂n sin (kn · ξ − ωnt− ϕn) = R (η (ξ, t)) ,

Z1 (ξ, t) =
N∑
n=1

An cos (kn · ξ − ωnt− ϕn) = η (ξ, t) ,

where ϕn are wave phases.
Note that the vertical displacement corresponds to the elevation according to the LWT (equa-

tion (I.9)), and the horizontal displacement is its Riesz transform R (generalization of a Hilbert
transform for a multi-dimensional signal). The latter feature could be helpful for an efficient cal-
culation of the first-order contributions of the particle position from a known linear free surface
elevation. Since its extension for the description of the statistical properties of irregular short-
crested waves by Nouguier et al. (2009), the Lagrangian solution is commonly referred to as
“Choppy Wave Model” (CWM). Accordingly, we will call in the following CWM1 the first-order
solution (II.8).

II.1.3 Second-Order Solution

A complete derivation of a solution to equations (II.2) and (II.3) to the second-order can be done
using the same method than the one detailed in section II.1.2 for the first-order contributions
(Nouguier et al., 2015; Pierson, 1961). In addition, we have shown in Guérin et al. (2019) that
it is also possible to use Eulerian velocity fields to retrieve those results without having to deal
with the Lagrangian equations of motion. In case of long-crested waves, both methods lead to
the following second-order contributions

x2 (α, δ, t) =

N∑
m<n

AmAn
g

[
ωn (ωn + ωm) e(kn−km)δ −

(
ω3
n + ω3

m

ωn − ωm

)
e(kn+km)δ

]
(sin Ψmn − sin Ψmn|t=0)

+

N∑
n=1

A2
nωnkne

2knδt,

z2 (α, δ, t) =

N∑
m<n

AmAn
g

[
−ωn (ωn + ωm) e(kn−km)δ +

(
ω3
n − ω3

m

ωn − ωm

)
e(kn+km)δ

]
cos Ψmn

+
N∑
n=1

1

2
A2
nkne

2knδ

p2 (α, δ, t) = 2ρ
∑
m<n

AmAnωmωn

[
e(kn−km)δ − e(kn+km)δ

]
cos Ψmn + ρg

N∑
n=1

1

2
A2
nkn

(
e2knδ − 1

)
(II.11)

where Ψmn = (kn − km)α−(ωn − ωm) t−ϕn+ϕm. Note that in x2, the subtraction of the sinus of
the initial phase Ψmn|t=0 is not directly derived from the second-order solution, but is introduced
in Guérin et al. (2019) to take care of the divergence of x2 when the frequency bandwidth becomes
infinitely small. Similarly to the first-order solution, it is possible to show that the second-order
solution leads to an irrotational flow (Nouguier et al., 2015; Pierson, 1961). The formulation of
the complete second-order solution for short-crested waves is derived by Nouguier et al. (2015).
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II.1 CHOPPY WAVE MODELING – Lagrangian Approach

The expression of these contributions becomes much simpler when we consider only a particle
on the free surface (i.e., δ = 0). Following the formalism of equation (II.10), it gives

D2 (α, t) = −
N∑

m<n

AmAnkm

(
ωn + ωm
ωn − ωm

)
(sin Ψmn − sin Ψmn|t=0) +

N∑
n=1

A2
nωnknt,

Z2 (α, t) =
N∑

m<n

AmAnkm cos Ψmn +
N∑
n=1

1

2
A2
nkn,

There are two terms in each contribution, the sums involving two indices m,n correspond of the
wave-wave interaction effects of different components, the other sums are self-interaction terms.
The horizontal self-interaction term is a non-periodic drift, linearly increasing with time. The
factor in front of the time quantity corresponds to the sum of the Stokes drift (i.e., nonlinear drift
experienced by the second-order regular waves) of all components. In the vertical contribution
Z2, the self-interaction term is a correction to the surface level, leading to retrieve zero mean.
The Lagrangian solution to the second-order is denoted CWM2.

II.1.4 Highest Wave Steepness

When the wave steepness is large, Lagrangian solutions can lead to nonphysical events (Pierson,
1961), i.e., the particles trajectories on the free surface are making a loop (free surface elevation
no longer single valued). Whenever the Lagrangian model is used, it is thus essential to verify
that the wave field characteristics fit into their limitations in steepness. For a regular wave,
the limiting steepness is kA = 1 (far above the theoretical highest steepness of a regular wave
field), which corresponds to the case depicted in figure II.1. The absolute limiting steepness
for a long crested irregular wave field is

∑N
n=1 knAn = 1. However, this quantity corresponds

to the steepness of the steepest wave that could appear in a wave field, i.e., if all components
have their phase synchronized. Since in a typical ocean wave field the initial phases are random,
uniformly distributed in [0, 2π], this event is very unlikely to happen, and this limitation is
generally overly conservative. In practice, it is sufficient to verify that the free surface particle
position r is monotonically increasing with its reference position ξ during the simulation time
over the calculation domain. For a long crested wave field, this condition follows

∂x (α, t)

∂α
> 0 ⇐⇒ −

∑
i

∂Di (α, t)

∂α
< 1. (II.12)

Note that the sum term in equation (II.12) represents a local steepness, or “effective steepness”,
which has to stay lower than one. Explicitly, the spatial derivatives of the first and second-order
contributions are

∂D1 (α, t)

∂α
=

N∑
n=1

Ankn cos (knα− ωnt− ϕn) ,

∂D2 (α, t)

∂α
= −

N∑
m<n

AmAnkm (kn − km)

(
ωn + ωm
ωn − ωm

)
(cos Ψmn − cos Ψmn|t=0) .

In the following numerical applications, we checked that our simulated wave fields respect cri-
terion (II.12). For examples, figure II.2 presents the time evolution of the maximal effective
steepness of a second-order unidirectional Lagrangian wave field for the sea states used in section
II.3.3 for the numerical assessment of our improved Lagrangian model, namely a fully devel-
oped (i.e., broad banded) JONSWAP spectrum of characteristic steepness Hs/λp ≈ 4%, and a
narrow-banded Gaussian spectrum of steepness 6%. It seems that, more than the characteristic
steepness of the wave field, the frequency spreading of the underlying spectrum plays a significant
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Figure II.2: Time evolution of the maximal effective steepness of unidirectional irregular waves for
broad-banded JONSWAP ( ) and narrow-banded Gaussian ( ) spectra, of characteristic
steepness Hs/λp ≈ 4% and 6%, respectively. A detailed description of both sea states and
calculation domains can be found in section II.3.3.

role in the value of the maximal effective steepness, which is about 0.5 for our JONSWAP sea
state. This might come from the fact that, in a wave field with a large spectral bandwidth, the
probability for short waves to ride long waves, creating a local steep event, is enhanced.

II.1.5 Comparison to the Eulerian Approach

In order to characterize the Lagrangian results, it is interesting to determine the equivalent
(however always approached) solution in the Eulerian framework, which is the basis of many of
classical wave models. We will derive in this section the expansion of the Lagrangian solution
up to the second-order for a regular wave in the Eulerian framework, and compare the results to
a Stokes expansion.

The second-order Lagrangian free surface elevation of a regular wave (for the sake of simplicity,
the wave is going along the x-axis, i.e., y = β)x (α, t) = α+D1 (α, t) +D2 (α, t) = α−A sin (kα− ωt) +A2ωkt,

z (α, t) = Z1 (α, t) + Z2 (α, t) = A cos (kα− ωt) +
1

2
A2k.

(II.13)

In order to simplify the following mathematical developments, we recast equation (II.13) to
implicitly integrate the particle shift D2 into the particle position coordinates. It followsX (α, t) = x (α−D2 (α, t) , t) = α+D1 (α−D2 (α, t) , t) = α+D (α, t) = α−A sinφ,

Z (α, t) = z (α−D2 (α, t) , t) = A cosφ+
1

2
A2k,

(II.14)

where φ = kα−ωLt and the modified angular frequency is ωL = ω
(
1 + k2A2

)
. Then, to approach

this solution (II.14) in the Eulerian framework, we seek a function ηL that gives explicitly the
free surface elevation at any abscissa α and satisfies ηL (X ) = Z (α). This will give us an explicit
expression between X and Z (or equivalently x and z). Such a function can be approached with
a Taylor series expansion about X = α+D (α) as

ηL (α) ≈ ηL (X ) + (α−X ) [ηL (X )]′ +
(α−X )2

2
[ηL (X )]′′

≈ ηL (X )−D (α) (α+D (α))′ η′L (X ) +
D2 (α)

2

[
(α+D (α))′ η′L (X )

]′
≈ Z (α)−D (α)

(
1 +D′ (α)

)
Z ′ (α) +

D2 (α)

2

[
D′′ (α)Z ′ (α) +

(
1 +D′ (α)

)
Z ′′ (α)

]
.
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II.1 CHOPPY WAVE MODELING – Lagrangian Approach

We look for an approximation to the second-order ε2 (where ε = kA is the steepness). The
derivative terms yield {

D′ (α) = −ε cosφ,

Z ′ (α) = −ε sinφ,

{
D′′ (α) = εk sinφ,

Z ′′ (α) = −εk cosφ,

and the approximated elevation turns into

ηL (α) ≈ A
(

cosφ+
1

2
ε

)
−A sinφ (1− ε cosφ) ε sinφ+

1

2
A2 sin2 φ [−εk sinφε sinφ− (1− ε cosφ) εk cosφ]

≈ A
{

cosφ+
1

2
ε− sinφ (1− ε cosφ) ε sinφ+

1

2
ε sin2 φ [−ε sinφε sinφ− (1− ε cosφ) ε cosφ]

}
≈ A

[
cosφ+

1

2
ε− ε sin2 φ (1− ε cosφ)− 1

2
ε sin2 φ

(
ε2 sin2 φ+ ε cosφ− ε2 cos2 φ

)]
.

Discarding the third-order terms, we get

ηL (α) ≈ A
[
cosφ+ ε

(
1

2
− sin2 φ

)
+ ε2

(
− sin2 φ cosφ− 1

2
sin2 φ cosφ

)]
≈ A

[
cosφ+

1

2
ε cos (2φ)− 3

2
ε2 sin2 φ cosφ

]
≈ A

[
cosφ+

1

2
ε cos (2φ)− 3

4
ε2 (cosφ− cosφ cos (2φ))

]
≈ A

{
cosφ+

1

2
ε cos (2φ)− 3

4
ε2
[
cosφ− 1

2
(cosφ+ cos (3φ))

]}
≈ A

[(
1− 3

8
ε2
)

cosφ+
1

2
ε cos (2φ) +

3

8
ε2 cos (3φ)

]
. (II.15)

From equation (II.15), we notice that the second-order Lagrangian expansion allows to retrieve
the complete expression of the Stokes third-order expansion. Note that, except the mean water
level, the wave shape modification only comes from the first-order Lagrangian terms. How-
ever, they manifest different nonlinear dispersion relations leading to different nonlinear wave
velocities. The Lagrangian phase velocity can be determined following

cL =
ωL

k
=
ω

k

(
1 + ε2

)
,

whereas the third-order Eulerian phase velocity is

cE =
ω

k

(
1 +

1

2
ε2
)
.

The correction in the second-order Lagrangian solution is twice the one from the third-order
Eulerian expansion. This was already noticed by Pierson (1961) but could not be explained. A
novel approach to address this issue is proposed in Guérin et al. (2019) and explained in the next
section.

It can be shown that the second-order solution derived from the Eulerian approach for a short-
crested irregular wave field is fully recovered by the second-order Lagrangian solution (Nouguier
et al., 2015). Specifically, only the first-order terms (D1, Z1) and second-order horizontal dis-
placement Z2 (including all wave-wave interaction terms) are needed to consistently represent
the second-order Eulerian solution. All effects derived from D2 correspond to Eulerian third-
and higher-order effects.
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II.2 Improved Choppy Wave Model

As shown in the previous section, the second-order Lagrangian solution does not recover all
third-order Eulerian features, specifically the nonlinear correction of the wave velocity. This
property influences the phase shift of wave components, it is thus of significant importance in
wave propagation process and has to be correctly modeled for an accurate free surface elevation
prediction. In this section, we explain the principle behind the derivation of a Lagrangian solution
that leads to a modified (or “improved”) nonlinear wave velocity correction that is latter shown
to be more accurate.

II.2.1 Derivation of an “Improved” Solution

The complete derivation of the Improved Choppy Wave Model (ICWM) is provided in Guérin
et al. (2019). In this section, we briefly explain the principle of the model correction and provide
its final expression.

Figure II.3: Particle horizontal shift for a periodic wave with steepness ε = kA = 0.3 according
to the Lagrangian second-order formulation. As time increases, the distance between the initial
particle location and its position grows two times faster than the distance between the initial
particle location and its mean horizontal location.

As noticed in the previous section, the nonlinear correction in the dispersion relation from
the Lagrangian approach leads to a discrepancy of the nonlinear correction of the wave phase
velocity compared to the results from a third-order Eulerian expansion. Even if this result was
already noticed by Pierson (1961), he did not provide an explanation of its origin. We have
recently shown in Guérin et al. (2019) that this discrepancy comes from the fact that the particle
reference location for the Lagrangian expansion, set to its initial location ζ, leads the particle
to undertake large displacements with respect to ζ. Figure II.3 shows the time evolution of a
free surface particle for a periodic wave of steepness ε = kA = 0.3 according to the second-order
Lagrangian solution. After three periods of propagation, the particle has already been shifted
about 0.25λ away its initial location. The idea proposed in Guérin et al. (2019) to, at least partly,
solve this drifting issue is to perform the Lagrangian expansion about a reference location that
minimizes the particle horizontal fluctuation. Adopting Guérin’s notation, the particle horizontal
motion is expressed as X (t) = x + x (t) where the reference location x is a linear function of
the particle horizontal shift. The magnitude of the horizontal particle fluctuation over a given
number n of motion cycles (i.e., over time interval [0, nT ] with T the wave period), quantified
by the following mean square distance to the reference location

〈x2〉 =
1

nT

∫ nT

0
x2 (t) dt,

is minimized for the optimal rate of horizontal drift of the reference location. With the optimal
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II.2 CHOPPY WAVE MODELING – Improved Choppy Wave Model

value, we find

x =
1

nT

∫ nT

0
X (t) dt,

which means that the reference location corresponds to the average particle motion over the
completed cycles. For instance, in figure II.3, the particle reference location coincides with the
vertical blue line after three completed cycles. For a periodic wave, this result leads to retrieve
a Lagrangian solution that exhibits the same nonlinear wave velocity correction than the one
appearing at the third-order Eulerian expansion.

Moreover, and as it will be shown in section II.3.3, despite their onerous computational
complexity, the second-order wave-wave interaction terms of different components in equation
(II.11) have a very limited influence on the solution compared to the self-interaction terms,
especially after a long time of propagation. Hence, in order to retain only the relevant effects for
the long-time propagation of a wave field, we choose in the following to only retain the horizontal
drift term and correction to the mean free surface elevation level in the formulation of ICWM.
It follows 

r (ξ, t) = ξ −
N∑
n=1

Ank̂n sin (kn · ξ − ω̃nt− ϕn) + Ust,

z (ξ, t) =
N∑
n=1

An cos (kn · ξ − ω̃nt− ϕn) +
N∑
n=1

1

2
A2
nkn,

where ω̃n = ωn − 1/2kn · Us and Us =
∑N

n=1A
2
nωnkn is the Stokes drift vector. In order to

simplify the following mathematical developments pertaining to the wave model inversion, the
equations are rewritten in the form

r (ξ, t) = ξ +

N∑
n=1

k̂n

(
−an sin ψ̃n + bn cos ψ̃n

)
+ Ust,

z (ξ, t) =

N∑
n=1

(
an cos ψ̃n + bn sin ψ̃n

)
+

N∑
n=1

1

2

(
a2
n + b2n

)
kn,

(II.16)

where ψ̃n = kn · ξ − ω̃nt, Us =
∑N

n=1

(
a2
n + b2n

)
ωnkn, and (an, bn) = (An cosϕn, An sinϕn) are

wave parameters describing the ocean surface.

We illustrate in figure II.4 the difference between the surface elevation associated with the
LWT and all the wave models described in this section (i.e., CWM1, CWM2 and ICWM) for a
regular wave of steepness H/λ ≈ 0.04 (i.e., ε = kA ≈ 0.125) which stands in the validity domain
of the Lagrangian approach (Pierson, 1961). A proper qualification of the models’ characteristics
is done in section II.3, and in Guérin et al. (2019). Figure II.4a shows that at initial time (i.e.,
t = 0), CWM1 corresponds to a simple geometrical transformation of the linear surface (LWT):
the crest is sharper and the trough flatter. Since time-dependent terms vanish, CWM2 and
ICWM give the exact same elevation, corresponding to a CWM1 surface with a mean surface
level correction. After approximately four periods of propagation (see figure II.4b), a phase shift
between CWM1, CWM2 and ICWM is already quite noticeable. While CWM1 keeps the same
phase value as the linear surface, CWM2 exhibits a nonlinear phase shift which is twice the one
experienced by ICWM. After four periods, the spatial horizontal shift is approximately 0.03λ.

Similarly, it is shown in figure II.5 the free surface elevation of an irregular long-crested wave
field (JONSWAP spectrum with peakedness γ = 3.3, equation (I.2)) of characteristic steepness
Hs/λp ≈ 0.04 (i.e., kpHs/2 ≈ 0.125) at initial time, and then after four peak periods of propaga-
tion. Like the periodic wave, we observe a surface shape modification leading to sharper crests
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(a)

(b)

Figure II.4: Elevation associated with LWT, CWM1, CWM2 and ICWM for a periodic wave
of steepness ε = kA ≈ 0.125 (a) at initial time and (b) after approximately four periods of
propagation.

and flatter troughs for CWM1 compared to LWT, and a correction of the mean surface level
for CWM2 and ICWM. However, CWM2 and ICWM are no longer strictly equivalent at initial
time, since CWM2 includes wave-wave interaction effects (barely noticeable on the figure II.5b)
of different components that are neglected in ICWM. Even after the relatively short propagation
time of four peak periods, nonlinear phase effects are clearly visible, suggesting that they play a
crucial role in deterministic prediction. As expected, CWM2 is shifted by twice the amount of
ICWM.

II.2.2 Simple Approximate of ICWM in Eulerian Form

Optical measurements of the ocean surface are expected to provide, at each time, the surface
elevation measured for a set of spatial points at irregular but defined Eulerian locations in a
reference coordinate system. Hence, the wave model used in the reconstruction method must also
be able to provide and use comparable information. The Lagrangian form of ICWM (II.16) is not
directly usable, and we must find an approximate equivalent model in the Eulerian framework. As
explained in section II.1.5, we have to find an explicit relationship between r and z, but this time,
we want the formulation to be as simple as possible to avoid losing the benefit of the Lagrangian
formulation’s simplicity. In order to formulate the approximation, it is more convenient to
implicitly incorporate the particle horizontal shift Ust to a modified angular frequency, in the
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(a)

(b)

Figure II.5: Elevation associated with LWT, CWM1, CWM2 and ICWM for an irregular wave
field (JONSWAP spectrum with peakedness γ = 3.3) of characteristic steepness Hs/λp ≈ 0.04
(i.e., kpHs/2 ≈ 0.125) (a) at initial time and (b) after four peak periods of propagation.

same way as in section II.1.5. From equation (II.16), we get
R (ξ, t) = r (ξ − Ust, t) = ξ + D (ξ) = ξ +

N∑
n=1

k̂n

(
−an sin φ̃n + bn cos φ̃n

)
,

Z (ξ, t) = z (ξ − Ust, t) =

N∑
n=1

(
an cos φ̃n + bn sin φ̃n

)
+

N∑
n=1

1

2

(
a2
n + b2n

)
kn,

where φ̃n = kn · ξ − ω̃Lnt and ω̃Ln = ωn + 1/2kn · Us A simple and direct way to proceed to
the approximation is to consider that the particle vertical displacement can be calculated at the
particle position instead of its reference location, following

Z (ξ) = Z (R−D (ξ)) ≈ Z (R−D (R)) = η̃ (R) . (II.17)

Accordingly, we now formulate explicitly the approximate ICWM free surface elevation at any
spatial point r following

η (r, t) =

N∑
n=1

(an cos Ψn + bn sin Ψn) +
1

2

(
a2
n + b2n

)
kn, (II.18)

in which Ψn = kn ·
[
r −

N∑
i=1

k̂i

(
−ai sin φ̃i + bi cos φ̃i

)]
− ω̃Lnt.

As detailed by Gjosund (2003), the discrepancy introduced in equation (II.17) can be reduced
using a convergence scheme, leading to the determination of the actual reference particle location
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ξc that should be taken to find the appropriate particle displacements at specified location r,
following ξ

(0)
c = r,

ξ(q+1)
c = r −D

(
ξ(q)
c

)
,

(II.19)

where q is the iteration number. With converged results, we would have Z (ξc) = η̃ (r). How-
ever, going through this convergence scheme is not appropriate for the real-time constraint of the
prediction process, since it requires a wave model inversion at each step. Moreover, we noticed
that the initial approximation (II.17) (i.e., ξc = r) leads to a very small error compared to the
other sources of error in the wave model inversion process. Figure II.6 shows elevations from both
the Lagrangian and Eulerian results for a regular wave. Even for the depicted large steepness

Figure II.6: Comparison of a Lagrangian second-order surface elevation ( ) and its Eulerian
approximation ( ) for a regular wave of steepness H/λ ≈ 8% (kA = 0.25). Lagrangian
reference particle locations in the water column (vertical black lines) as well as displaced locations
(red dotted lines) are plotted to highlight the imposed displacements.

H/λ ≈ 8% (kA = 0.25), the agreement between the two formulations is very good. Accordingly,
it was shown by Grilli et al. (2011) that this error is on the order of the mean square slope of the
surface. Hence, in the following, we will stick to the ICWM formulation (II.18), which leads to
the surface elevation calculation with the computational cost of only two IFFTs, provided that
wave amplitude coefficients are spectrally distributed in a suitable way.

ICWM formulation (II.18) includes a nonlinear correction of the deep water dispersion rela-
tion following

ω̃Ln =
√
gkn +

1

2
kn · Us. (II.20)

This correction induces modifications on both the wave phase and group velocities. The corre-
sponding phase velocity gives

cn =
ω̃Ln

kn
=

√
g

kn
+

1

2
k̂n · Us,

and similarly the corresponding group velocity is

cgn =
∂ω̃Ln

∂kn
=

1

2

√
g

kn
+

1

2
k̂n ·

N∑
m 6=n

ωmkm
(
a2
m + b2m

)
+ ωnkn

(
a2
n + b2n

)
.

Note that the nonlinear correction of the group velocity is always larger than the correction of
the phase velocity.

51
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II.2.3 Comparison Between ICWM and Eulerian Phase Velocity Corrections

The Eulerian third-order phase velocity correction terms for short-crested waves are given by
equations (I.11) and (I.12), corresponding to the Stokes correction term and a modulation cor-
rection, respectively. In the case of long-crested waves, it simplifies to

∆CEpn =
1

2
ωnknA

2
n +

N∑
m 6=n

ωm min (km, kn)A2
m.

The modulation term is the sum term in the above equation and corresponds to the modulation
of the short waves by the longer waves: as the wave frequency increases, the value of this term
monotonically increases as well. On the other hand and as shown in the previous section, the
correction introduced in the Improved Choppy Wave Model is independent of the properties of
individual wave components and is given by

∆CLp =
1

2

N∑
m=1

ωmkmA
2
m,

which is the sum of every wave component’s Stokes correction terms. For a particular wave, the
difference between those two corrections is

ζn = ∆CLp −∆CEpn =
1

2

N∑
m=1

ωmkmA
2
m −

1

2
ωnknA

2
n −

N∑
m 6=n

ωm min (km, kn)A2
m

=

N∑
m6=n

ωmA
2
m

(
1

2
km −min (km, kn)

)
.

We already see that this difference is bounded between two extreme values, ζ0 = 1
2Us for a fre-

quency approaching zero and ζ∞ = −1
2Us for a frequency approaching infinity, with Us =

∑
ωmkmA

2
m.

Compared to the Eulerian developments, our improved Lagrangian solution will tend to overes-
timate and underestimate the phase velocity correction of low and high frequencies, respectively.

Figure II.7 shows as a function of the wavenumber the evolution of correction difference ζ (k)
between the Lagrangian and Eulerian phase velocity corrections, considering the second order
(CWM2) and improved (ICWM) Lagrangian formulations, and normalized by the improved
Lagrangian phase velocity correction ∆CLp

(
= 1

2Us
)
. The wave spectrum is given on the same

figure to facilitate interpretations. We see that ζ crosses zero around the peak of the spectrum for
ICWM, which shows that the estimation of the elevation is globally correct (assuming that the
third-order Eulerian correction is accurate) for energetic wave components. In contrast, CWM2
always overestimates the phase velocity correction, with ζ approximately equal to ∆CLp around
the peak and going to zero for high frequencies.

Figure II.8 presents the same quantity for the improved Lagrangian formulation and for two
types of wave spectrum, namely a JONSWAP with a peakedness parameter γ = 1 and a Gaussian
spectrum with a normalized standard deviation σ/ωp ≈ 0.08. For the JONSWAP spectrum, even
if the peak enhancement factor γ is lower, similar results to that of previous paragraph are found.
In the Gaussian case, every phase velocity correction is underestimated compared to the Eulerian
correction, and is approximately equal to −0.5∆CLp at the peak wavenumber.

II.3 Numerical Assessment of ICWM

The accuracy and efficiency of the proposed improved second-order Lagrangian model (ICWM),
to perform the time updating of nonlinear surface waves, are numerically assessed by comparing
results to those of a fully nonlinear reference model based the HOS method (see section I.3.4.1 for
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Figure II.7: Evolution of the phase velocity correction difference between the (classical and
improved) Lagrangian second-order and Eulerian third-order expansion results (dashed lines, left
axis), and wave energy spectrum (continuous line, right axis) as a function of the wavenumber.
The spectrum is a JONSWAP with a peakedness parameter γ = 3.3.
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Figure II.8: Evolution of the phase velocity correction difference between the improved La-
grangian second-order and Eulerian third-order expansions (dashed lines, left axis), and wave
energy spectra (continuous lines, right axis) as a function of the wavenumber. The spectra follow
JONSWAP (γ = 3.3) and Gaussian (σ/ωp ≈ 0.08) formulations.

model details). In this comparison, we also include the complete original second-order Lagrangian
model (CWM2, equation (II.11)), where the terms corresponding to wave-wave interactions of
different frequencies in x2 have been discarded. Finally, for completeness, we also compare results
to those of a model based on linear wave theory (LWT).

There are at least three conceptual difficulties when comparing the time evolution of phased-
resolved Lagrangian and HOS surfaces, namely

(a) the selection of sampling points: Lagrangian and Eulerian surfaces are not evaluated on
the same grids;

(b) the selection of initial phases for an irregular surface: these should be identical in all
methods, but cannot in practice be strictly so;

(c) non-stationary statistics: because of the nonlinear interactions, the wave spectrum is evolv-
ing in time and thus cannot be prescribed except at initial time.
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II.3 CHOPPY WAVE MODELING – Numerical Assessment of ICWM

These issues will be further elaborated on below and partial solutions will be implemented
in order to achieve a meaningful comparison between the different methods and model results.

II.3.1 Reference Dataset and Error Definition

A synthetic reference nonlinear ocean surface is first generated using the open source code ‘HOS-
ocean’1 (Ducrozet et al., 2016), which can accurately simulate the propagation of nonlinear waves
over large spatio-temporal domains, up to a specified order in wave steepness. Since its initial
development by Dommermuth & Yue (1987) and West et al. (1987), the HOS method has been
extensively validated and used in various applications, such as the simulation of freak waves (e.g.,
Ducrozet et al., 2007), the implementation of a numerical wave tank (e.g., Ducrozet et al., 2012),
or ocean wave field reconstructions based on measurements (see section I.3.4.2). HOS-ocean
solves the fully nonlinear potential flow problem as a function of time, in terms of N complex
amplitudes An (t), for many wave components n, which are then used to reconstruct the ocean
surface at an arbitrary point (α, t) (for long-crested waves) as

ηHOS (α, t) = Re

(
N∑
n=1

An (t) eiknα

)
.

In the following applications, we use a fifth-order HOS model with 32 grid points per peak
wavelength λp, which was verified to provide converged results in terms of order of nonlinearity
as well as discretization. The three conceptual difficulties are addressed in the following ways.

(a) We compare the time evolution of the relative root-mean-square (RMS) difference between
the Lagrangian surface ηLAG (which can be generated either with CWM2 or ICWM) and
the HOS surface elevation ηHOS at the same points. Given that the Lagrangian surface
is implicitly defined by the surface particle locations, it is much easier to perform this
comparison on the Lagrangian grid (that is, the ensemble of points (x (t) , z (t))) rather
than the Eulerian grid (α, η (α)) which requires an explicit formulation of the Lagrangian
surface (which, referring to section II.2.2, can only be attained in an approximate way).
The RMS difference between a free surface representation and the HOS solution is thus
defined as

εLAG (t) =
1

rmsh

[
1

L

∫ L

0
(z (t)− ηHOS (x (t) , t))2 dx(t)

]1/2

(II.21)

where L is the computational domain length and the normalization constant ‘rmsh’ is
defined as

rmsh =

(
1

L

∫ L

0
η2

HOS(α, 0) dα

)1/2

=

(
1

2

N∑
n=1

|An(0)|2
)1/2

and represents the RMS elevation of the initial surface, which we also express as a function
of spectral amplitudes An(0).

(b) Given an energy density spectrum, the phases must be provided for each wave component
to generate an initial free surface, which is then propagated in the various models. A
rigorous comparison of time-evolving surfaces should thus be based on identical sets of
(random or deterministic) initial phases. However, such phases can only be prescribed
for linear surfaces but not for Lagrangian or HOS surfaces, which undergo a nonlinear
transformation. To mitigate possible discrepancies arising from the choice of initial phases,
the HOS model is initialized with an explicit nonlinear solution, which is close to the
Lagrangian solution, namely the second-order Eulerian Stokes solution for irregular wave

1https://github.com/LHEEA/HOS-ocean
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fields as detailed in section I.3.3.1. The relevance of this method has been investigated by
Perignon (2011). The same underlying linear surface can be used to generate Lagrangian
surfaces in the second-order expansions (CWM2, ICWM).

This method consists in approaching a nonlinear HOS solution from the spectral distri-
bution of linear waves that also serves for the calculation of the second-order Lagrangian
surface elevations. Another approach would have been to retrieve the free wave components
from a fully nonlinear HOS simulation through a free-waves decoupling procedure, such as
the one based on the Eulerian second-order expansion proposed by Duncan & Drake (1995)
and used by Blondel et al. (2010) for second-order and enhanced second-order waves recon-
struction. In our case, however, it would have required an adaptation to the Lagrangian
formulation, which is not trivial and would have been the object of a proper study.

(c) Given the initial wave spectrum of an irregular surface, the corresponding free surface el-
evation in the HOS model follows a modified energy density spectrum, due to nonlinear
wave-wave interactions and the redistribution of energy that occurs during wave propaga-
tion. Hence, free surface statistics are not stationary and thus not fully controlled during
the nonlinear time evolution. By contrast, our Lagrangian models, which formulate non-
linear properties from a prescribed underlying linear spectrum, have stationary statistics
(i.e., their wave spectrum should not evolve in time, even though it is modified by wave
interaction terms). Hence, a meaningful comparison between time-evolving surfaces in dif-
ferent models can only be performed within smaller time intervals, within which statistics
(essentially the energy density spectrum) can be assumed to be stationary. A measure
of differences between the initial spectrum and the evolving spectrum of HOS surfaces is
given by the RMS difference

εspec (t) =

(∑N
n=1 (|An(t)| − |An(0)|)2

)1/2

(∑N
n=1 |An(0)|2

)1/2
(II.22)

This measure thus provides a lower threshold to the error of Lagrangian methods εLAG (t)
(defined by equation (II.21)), which therefore provides a relevant indicator of the method
performance only if, εspec (t) << εLAG (t). In practice, for the typical wave spectra under
consideration and using the initialization procedure explained in point (b), it was found
that this is the case for an evolution time smaller than about 20 to 40Tp, depending on
the wave steepness and on the spectral bandwidth.

II.3.2 Periodic Waves

We first consider a strongly nonlinear periodic wave of steepness H/λ ≈ 0.08 and period T , where
H = 2A is the wave height and λ the wavelength. For linear deep water waves, T =

√
2πλ/g.

This steepness is over half the deep water limiting steepness and corresponds to kA ≈ 0.25,
which is in the domain of applicability of the Lagrangian approach (Pierson, 1961). For periodic
waves, free surfaces represented in the various models can be easily synchronized at initial time,
using the same phase as that of the fundamental component of the (stationary) HOS solution.
A domain of length equal to one wavelength is used to evaluate the error.

Figure II.9a shows that, at t = 0, the CWM2 and ICWM surface elevations are identical
since time dependent terms vanish. Both solutions also match quite well the HOS solution (very
small errors can be seen in the figure), and much better than the linear solution, whose error is
εLAG(0) ≈ 0.15, due to an inaccurate wave shape. In figure II.9a, the errors for the CWM2 and
linear model follow a parallel growth: while the linear wave does not experience nonlinear phase
velocity corrections, CWM2 is penalized by an overestimated nonlinear correction (close to twice
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(a)

(b)

Figure II.9: Comparison of results computed for a periodic wave of steepness H/λ ≈ 8%, with
the HOS ( ), linear ( ), CWM2 ( ), and ICWM ( ) models: (a) error as a func-
tion of time with respect to the HOS solution and (b) normalized free surface elevations after
approximately four periods of propagation.

the correct value, as discussed in Section II.1.5). By contrast, for ICWM, the improved estimate
of the nonlinear phase shift allows for errors to remain very small throughout the four-period
propagation time considered here. At this stage, figure II.9b shows a very marked phase shift
of the linear and CWM2 model results with respect to the HOS reference solution, whereas no
measurable shift is seen for the ICWM solution.

II.3.3 Irregular Waves

The performance of the improved Lagrangian formulation is now assessed for long-crested irreg-
ular waves generated on the basis of a specified energy density spectrum E (ω). Similar to the
periodic wave case, we investigate the time evolution of the error of the CWM2, ICWM, and lin-
ear solution, with respect to the HOS reference solution. Given a sea state of parameters (Hs, Tp),
the influence of energy spreading around the peak spectral frequency on the performance of the
various wave models is investigated by considering two different spectra.

II.3.3.1 Spectra Definitions

First, we consider a narrow-banded Gaussian spectrum whose definition follows

E (ω) = αs
1√

2πσ2
e−

(ω−ωp)2
2σ2 ,
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where the standard deviation is σ/ωp ≈ 0.08, in which ωp = 2π/Tp denotes the peak angular
frequency. The second spectrum is a JONSWAP with peakedness parameter γ = 1, explicitly
defined by

E (ω) = αs
g2

ω5
e−

5
4

(
ωp
ω

)4 .

It is similar to the Pierson-Moskowitz spectrum (Pierson Jr. & Moskowitz, 1964) of a fully
developed sea. In both cases, parameter αs is found based on a specified Hs value, defined from
the surface elevation standard definition as∫ ∞

0
E (ω) dω =

H2
s

16
.

In the applications, we use Tp = 10 s with Hs = 9 m for the Gaussian spectrum and Hs = 6
m for the JONSWAP spectrum. This yields characteristic deep water steepnesses Hs/λp ≈ 6%
(i.e., very nonlinear, close to wave breaking) and 4%, respectively, with λp = 2π/kp denoting the
peak spectral wavelength. The corresponding spectra are shown in figure II.10.

Figure II.10: Energy density spectrum as a function of the dimensionless angular frequency
ω/ωp, for a narrow (Gauss, solid line) or broad-banded (JONSWAP, dashed line) spectrum. The
characteristic steepness is Hs/λp ≈ 6% and 4% for each case, respectively.

For irregular waves, a larger number of dominant waves than in the periodic case must be
modeled in the computational domain, in order to achieve convergence of the integral error of
equation (II.21) Here we use a spatial domain spanning eight peak wavelengths, i.e., L = 8λp.
At t = 0, the linear and CWM free surfaces are constructed from the linear spectral information
using the same set of random phases. For the HOS model, however, unlike periodic waves, linear
information cannot be retrieved (except at initialization time t = 0) due to the implicit nonlinear
components. Moreover, using linear information to initialize the HOS nonlinear propagation
would lead to unstable calculations of higher-order terms (Dommermuth, 2000). Hence, to allow
for a deterministic comparison between models and as explained in paragraph (b), the HOS
was initialized with a nonlinear irregular wave field, here, a second-order Stokes wave solution,
following the method detailed by Perignon et al. (2010) and Perignon (2011).

II.3.3.2 Propagation Results

Figure II.11 shows the comparison of normalized surface elevations computed in the different
models at t = 4Tp, for the two types of spectra. For the wave train extracted from a Gaussian
spectrum, figure II.11a shows that the ICWM model prediction remains very accurate after 4Tp.
With the other models, for which wave celerity is inaccurate, waves are either delayed (linear
solution) or too fast (CWM2), with respect to the HOS reference solution. Similar observations
can be made in figure II.11b, although in a less obvious way, for waves extracted from a JON-
SWAP spectrum: after 4Tp of propagation, the overall locations of dominant waves modeled with
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(a)

(b)

Figure II.11: Normalized surface elevations computed with: HOS ( ), linear ( ), CWM2
( ), and ICWM ( ) models, after t = 4Tp of propagation, for irregular wave trains with
Tp = 10 s extracted from a: (a) Gaussian spectrum with standard deviation σ/ωp ≈ 0.08, Hs = 9
m and characteristic steepness Hs/λp ≈ 6%, and (b) a JONSWAP spectrum with peakedness
parameter γ = 1 (similar to a PM spectrum), Hs = 6 m, and Hs/λp ≈ 4%. See figure II.10 for
spectral shapes.

ICWM are consistent with the HOS solution (although not their smaller fluctuations), whereas
the linear and CWM2 solutions are already desynchronized with it. This remark is in agreement
with results from section II.2.3 showing that ICWM accurately predicts the nonlinear correction
of wave phase velocities of energetic waves, that is in a similar way to the Eulerian third-order
expansion solution.

More specifically, Figure II.12 shows the time evolution of relative errors computed with
equation (II.21) over the first 10 peak periods of propagation, for the two cases of figure II.11.
In the Gaussian spectrum case, the ICWM model yields errors reduced by a factor of ∼ 2 with
respect to the linear solution as well as a significant improvement with respect to results of the
CWM2 model. The overall error is larger in the JONSWAP spectrum case, but the same qualita-
tive observations hold true. To quantify the effect of second-order interaction terms, which have
been discarded in the ICWM model to obtain a numerically efficient solution, the CWM2 model
results with a corrected dispersion relationship (II.20) have also been computed (referred to as
“ICWM with interaction terms” in figure II.12). As seen in the figures, these terms only yield
significant effects within the first peak period of propagation (particularly in the Gaussian case)
and become rapidly negligible with respect to the correction due to the dispersion relationship
(ICWM). The black lines in figure II.12 show the relative variation of the wave energy spectrum
of the HOS reference surface, which is verified to remain small with respect to the relative er-
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(a)

(b)

Figure II.12: Time evolution of relative errors (equation (II.21)) for the two cases of figure II.11
(a and b), for the linear ( ), CWM2 ( ), ICWM ( ) and ICWM with interaction terms
( ) model results. The black solid line shows the relative change (equation (II.22)) of the
prescribed spectrum during the HOS time evolution.

ror between methods. This confirms that the improved accuracy of ICWM for wave prediction
is essentially due to a corrected wave celerity rather than an accurate description of bound waves.

II.3.3.3 Influence of Surface Shape and Wave Field Steepness

So far, numerical results are shown in figure II.12 for only one single steepness for each spectrum
(6% or 4%), which in fact represents the largest value achievable with the HOS model. At larger
steepnesses, this model breaks down after a few periods due to the occurrence of wave breaking
in the simulated sea-state, which is not explicitly treated in the version of HOS-ocean used in
this work. In this section, we perform a more systematic numerical investigation of the effect of
wave steepness for the Gaussian spectrum. Also, in order to investigate the relative importance
of the horizontal displacement term D1 with respect to the wave celerity correction, we consider
a model following LWT but using the corrected nonlinear dispersion relationship, similar to that
of ICWM, and denoted LWT-CDR (Linear Wave Theory with Corrected Dispersion Relation)
hereafter.

Hence, in the same way as in the previous section, the time evolution of the RMS error (II.21)
is quantified and presented in figure II.13 for the Gaussian spectrum and for three characteristic
steepnesses of 2%, 4% and 6%. We see that, at initial time, when it represents a purely linear
surface, LWT-CDR yields a significantly larger relative error than ICWM. However, after a few
peak periods of propagation, we find that the LWT-CDR and ICWM solutions yield comparable
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Figure II.13: Time evolution of relative errors (equation (II.21)) for LWT-CDR ( ), ICWM
( ) and ICWM with interaction terms ( ), for the described Gaussian spectrum with three
characteristic steepnesses Hs/λp ≈ 6%, 4% and 2%.

errors, showing once again that, as far as predicting surface elevations, the dominant source of
error is inaccuracies in wave celerity. As could be expected, increasing the characteristic steepness
both increases discrepancies between the linear and nonlinear model results and yields larger
overall errors. For all steepnesses, omitting the interaction terms yield lower divergences than
using a linear surface shape, and their effects become more rapidly negligible with the propagation
time: for the largest steepness, the error of ICWM needs ∼ 3–4Tp to reach approximately the
same level as ICWM with interaction terms, while LWT-CDR needs ∼ 8–9Tp. In contrast, the
error corresponding to the standard LWT diverges from the one of ICWM, as shown in figure
II.12a.

II.4 Dynamical Aspects

We saw in the previous sections that the ICWM was able to improve the free surface kinematics
representation. However, in order to calculate the motion of a structure induced by the pre-
dicted waves, the corresponding pressure field has to be solved. We propose in the next section
to investigate the properties of the Lagrangian pressure field, then to formulate its improved
formulation in a similar way to that of the free surface kinematics and see how it compares to
the exact Lagrangian formulation.

II.4.1 Lagrangian Dynamic Pressure Field

We first describe the Lagrangian dynamic pressure field, using the following methodology. We
recall that the Lagrangian solution of the fluid particle dynamics is of the form

r (ξ, δ, t) = ξ +
∑
i

Di (ξ, δ, t) ,

z (ξ, δ, t) = δ +
∑
i

Zi (ξ, δ, t) ,

p (ξ, δ, t) = pa − ρgδ +
∑
i

Pi (ξ, δ, t) ,

where r = (x, y), ξ = (α, β), Di and Zi are respectively the horizontal and vertical particle
relative displacements with respect to the particle position at rest ξ, and Pi is the pressure
field associated with the ith-order of expansion. According to this formalism, we formulate the
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II.4.1 Lagrangian Dynamic Pressure Field

dynamic pressure field at order i as

pdi = p− pa + ρgz = Pi (ξ, δ, t) + ρgZi (ξ, δ, t) .

Note that this formulation of the dynamic pressure includes both the Bernoulli’s term (propor-
tional to the squared velocity) and a non-stationary term.

II.4.1.1 First-Order Solution

The Lagrangian first-order solution is
D1 (ξ, δ, t) = −Ak̂ sin (k · ξ − ωt) ekδ,
Z1 (ξ, δ, t) = A cos (k · ξ − ωt) ekδ,
P1 (ξ, δ, t) = 0,

which leads to the dynamic pressure field (see figure II.14a)

pd1 = ρgA cos (k · ξ − ωt) ekδ.

We recognize here a sinusoidal variation that corresponds to the pressure induced by the first-
order term in the vertical displacement of the fluid particle. Note that this term is equivalent to
the dynamic pressure field derived from the LWT (i.e., term −ρ∂φ/∂t). However, we did not have
to linearize the free-surface boundary conditions about z = 0 to get this result. The pressure we
determined is attached to a particle at the location (r (ξ, δ, t) , z (ξ, δ, t)), and it ensures that the
pressure is zero on the free-surface, and not on z = 0 as according to the LWT. The first-order
Lagrangian pressure field is thus more accurate than the Eulerian result at the same order. This

(a) (b)

Figure II.14: (a) First- and (b) second-order Lagrangian dynamic pressure field for a wave of
steepness kA = 0.25 at t = 0. In both cases, the particles relative displacement with respect to
their reference location at the same order (i.e., first (a) or second (b)) is also plotted.

feature allows to calculate quantities (pressure, orbital velocities) above z = 0 without requiring
stretching or extrapolation such as Wheeler’s method (Wheeler et al., 1970) or delta-stretching
method (Rodenbusch & Forristall, 1986), which do not comply with the governing hydrodynamic
equations, limiting their reliability. As we will see later, this is true only to a limited extent,
which depends on the wave steepness.

II.4.1.2 Second-Order Solution

The Lagrangian second-order solution is
D2 (ξ, δ, t) = A2ωkte2kδ,

Z2 (ξ, δ, t) =
1

2
A2ke2kδ,

P2 (ξ, δ, t) = ρg
1

2
A2k

(
e2kδ − 1

)
,

(II.23)
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which leads to the dynamic pressure field (see figure II.14b)

pd2 = ρg
1

2
A2k

(
2e2kδ − 1

)
.

The term corresponds to the mean surface level correction that induced a pressure modification
that only depends on the particle reference position δ (and not on ξ nor t). The total dynamic
pressure field up to the second-order is then (see figure II.15a)

pd = pd1 + pd2 = ρgA cos (k · ξ − ωt) ekδ + ρg
1

2
A2k

(
2e2kδ − 1

)
.

(a) (b)

Figure II.15: (a) Lagrangian dynamic pressure field up to the second-order and (b) its approxi-
mate in the Eulerian framework for a wave of steepness kA = 0.25 at t = 0. The dashed line on
(b) corresponds to the free surface elevation.

II.4.2 Approximate in the Eulerian Framework

The dynamic pressure field derived in the previous section pd (ξ, δ, t) is related to the particle that
is located at coordinates (r (ξ, δ, t) , z (ξ, δ, t)). Both the pressure and the particle displacements
depend on the reference particle locations, but are not explicitly related together. Similar to
section II.2.2 in which we look for an approximate Eulerian expression of the surface elevation,
we want here to approximate a solution that allows us to determine the pressure field at any
location (r, z). First, we express the Lagrangian displacements in a way that the particle shift
is implicitly taken into account, following

R (ξ, δ, t) = r
(
ξ −A2ωkte2kδ, δ, t

)
= ξ + D (ξ, δ, t) ,

Z (ξ, δ, t) = z
(
ξ −A2ωkte2kδ, δ, t

)
= δ + V (ξ, δ, t) ,

P (ξ, δ, t) = p
(
ξ −A2ωkte2kδ, δ, t

)
= pa − ρgZ + Pd (ξ, δ, t) ,

where 
D (ξ, δ, t) = −Ak̂ sin (k · ξ − ωLt) e

kδ,

V (ξ, δ, t) = A cos (k · ξ − ωLt) e
kδ +

1

2
A2ke2kδ,

Pd (ξ, δ, t) = ρgA cos (k · ξ − ωLt) e
kδ + ρg

1

2
A2k

(
2e2kδ − 1

)
,

and

ωL = ω + k ·A2ωke2kδ = ω
(

1 +A2k2e2kδ
)
.

The reformulation of the Lagrangian coordinates in terms of a modified angular velocity ωL

allows us to go through the following approximation

P (ξ, δ) = P (R−D (ξ, δ) ,Z − V (ξ, δ)) ≈ P (R−D (R,Z) ,Z − V (R,Z)) = pE (R,Z) ,
(II.24)
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which leads to an explicit formulation of the pressure field in the Eulerian framework

pE (r, z, t) = pa − ρgz + pE
d (r, z, t) ,

where the Eulerian dynamic pressure (see figure II.15b) is

pE
d (r, z, t) = Pd (r −D (r, z, t) , z − V (r, z, t) , t)

= ρgA cos [k · (r −D (r, z, t))− ωLt] e
k(z−V(r,z,t)) + ρg

1

2
A2k

[
2e2k(z−V(r,z,t)) − 1

]
.

The Lagrangian and Eulerian total pressure fields are plotted on figure II.16. A way to directly
assess the accuracy of the Eulerian approximation is to compare the surface elevation and the
contour line corresponding to p = pa. According to the Lagrangian equations, the pressure should
be equal to the atmospheric pressure on the free surface (here, pa = 0). Figure II.16b shows
that the surface elevation and the pressure contour line are very close. Only a small difference
is found on the wave crest.

(a) (b)

Figure II.16: (a) Lagrangian pressure field up to the second-order and (b) its approximate in
the Eulerian framework for a wave of steepness kA = 0.25 at t = 0. The dashed line on
(b) corresponds to the surface elevation, while the continuous line is the pressure contour line
p = pa = 0.

II.4.3 Time Propagation of the Pressure Field

As explained by Gjosund (2000, section 4.3), the second-order Lagrangian solution leads to an
inconsistency when propagated in time due to the second-order secular term D2 in equation
(II.23). This term being a vertically non-uniform current (i.e., Stokes drift exponentially de-
creasing with depth), a time propagation will lead to a deformation of the initial distribution of
particle locations which will eventually break continuity. From a practical point of view, however,
a consistent Lagrangian solution can be formulated at every time based on the solution at t = 0,
that is without time-propagation. The key point is to define a solution that is ‘equivalent’ (in
a sense that there is no particle shift difference along the water column) to the initial solution
(i.e., t = 0) at every time by considering that the propagated solution is simply a ‘phase shift’ of
wave components, rather than a time propagation of the solution. This solution is the same as
the one derived above with a δ-independent phase shift (with δ = 0, i.e., the phase shift of the
free surface particles). This simply consists in removing the δ-dependence in the expression of
ωL, that is ωL = ω

(
1 +A2k2

)
. Using this method (which also works for irregular waves), results

of the pressure field with a wave steepness kA = 0.25 after a propagation of four wave periods
T = 2π/ω are shown in figures II.17 and II.18. Consistent results with the case of t = 0 are
found.
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(a) (b)

Figure II.17: (a) Lagrangian dynamic pressure field up to the second-order and (b) its approxi-
mate in the Eulerian framework for a wave of steepness kA = 0.25 at t = 4T . The dashed line
on (b) corresponds to the surface elevation.

(a) (b)

Figure II.18: (a) Lagrangian pressure field up to the second-order and (b) its approximate in
the Eulerian framework for a wave of steepness kA = 0.25 at t = 4T . The dashed line on
(b) corresponds to the surface elevation, while the continuous line is the pressure contour line
p = pa = 0.

II.4.4 Improved Choppy Irregular Waves

The ICWM Lagrangian components yield



r (ξ, δ, t) = ξ +
N∑
n=1

k̂n

(
−an sin ψ̃n + bn cos ψ̃n

)
eknδ + Ust,

z (ξ, δ, t) = δ +

N∑
n=1

[(
an cos ψ̃n + bn sin ψ̃n

)
eknδ +

1

2

(
a2
n + b2n

)
kne

2knδ

]
,

p (ξ, δ, t) = pa − ρgz + pd,

where ψ̃n = kn ·ξ−ω̃nt, ω̃n = ωn−1/2kn ·Us, Us =
∑N

n=1

(
a2
n + b2n

)
ωnkne

2knδ, and the dynamic
pressure field is

pd = ρg
N∑
n=1

[(
an cos ψ̃n + bn sin ψ̃n

)
eknδ +

1

2

(
a2
n + b2n

)
kn

(
2e2knδ − 1

)]
.

The Eulerian approximate of the ICWM Lagrangian results follows from the same procedure as
in the previous section. We first implicitly incorporate the particle shift in a modified angular
velocity as 

R (ξ, δ, t) = r (ξ − Ust, δ, t) = ξ + D (ξ, δ, t) ,

Z (ξ, δ, t) = z (ξ − Ust, δ, t) = δ + V (ξ, δ, t) ,

P (ξ, δ, t) = p (ξ − Ust, δ, t) = pa − ρgZ + Pd (ξ, δ, t) ,
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where

D (ξ, δ, t) =
N∑
n=1

k̂n (−an sinψLn + bn cosψLn) eknδ,

V (ξ, δ, t) =
N∑
n=1

[
(an cosψLn + bn sinψLn) eknδ +

1

2

(
a2
n + b2n

)
kne

2knδ

]
,

Pd (ξ, δ, t) = ρg
N∑
n=1

[
(an cosψLn + bn sinψLn) eknδ +

1

2

(
a2
n + b2n

)
kn

(
2e2knδ − 1

)]
,

and ψLn = kn · ξ − ωLnt and ωLn = ωn + 1/2kn · Us. Then, applying approximation (II.24) to
our ICWM equations, the Eulerian dynamic pressure follows

pE
d (r, z, t) = Pd (r −D (r, z, t) , z − V (r, z, t) , t) (II.25)

= ρg

N∑
n=1

{
(an cos Ψn + bn sin Ψn) ekn(z−V(r,z,t)) +

1

2

(
a2
n + b2n

)
kn

[
2e2kn(z−V(r,z,t)) − 1

]}
,

in which Ψn = kn ·
[
r −

N∑
n=1

k̂n (−an sinψLn + bn cosψLn) eknz

]
− ωLnt.

Similar to section II.4.3, the Lagrangian inconsistency is solved by removing the δ-dependency
of the Stokes drift according to Us =

∑N
n=1

(
a2
n + b2n

)
ωnkn.

II.4.4.1 Results for a Bichromatic Wave Field

A first polychromatic configuration is investigated through bichromatic waves. Two waves are
chosen: a short wave of amplitude A2 = 0.75 m and period T2 = 5 s is riding a longer wave of
amplitude A1 = 3 m and period T1 = 10 s. Results are presented in figures II.19 and II.20. Even
if small differences between the contour line p = pa of the Eulerian total pressure field and the
free surface are visible about the highest crest and lowest trough (figure II.20b), both Lagrangian
and Eulerian solutions agree very well.

(a) (b)

Figure II.19: (a) Lagrangian dynamic pressure field up to the second-order and (b) its approx-
imate in the Eulerian framework for a bichromatic wave field at t = 0. The dashed line on (b)
corresponds to the surface elevation. (A1 = 3 m, A2 = 0.75 m, T1 = 10 s, T2 = 5 s)

II.4.4.2 Results for a JONSWAP Spectrum

Now, we look at the results obtained for an irregular wave field prescribed by a JONSWAP spec-
trum (see equation (I.2) for detailed formulation) of peak period Tp = 10 s and peak enhancement
factor γ = 3.3. An example of a comparison of total pressure fields is shown in figure II.21 for a
wave field of small significant wave height Hs = 1 m (Hs/λp ≈ 0.64%). An excellent agreement
is found by looking at the correspondence between the Eulerian contour and the Lagrangian free
surface.
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(a) (b)

Figure II.20: (a) Lagrangian pressure field up to the second-order and (b) its approximate in the
Eulerian framework for a bichromatic wave field at t = 0. The dashed line on (b) corresponds to
the surface elevation, while the continuous line is the pressure contour line p = pa = 0. (A1 = 3
m, A2 = 0.75 m, T1 = 10 s, T2 = 5 s)

(a) (b)

Figure II.21: (a) Lagrangian pressure field up to the second-order and (b) its approximate in the
Eulerian framework for a JONSWAP spectrum (Hs = 1 m, Tp = 10 s, γ = 3.3) at t = 0. The
dashed line on (b) corresponds to the surface elevation, while the continuous line is the pressure
contour line p = pa = 0.

However, for larger steepness, discrepancies arise in the Eulerian solution, especially near
high wave crests, as it can be seen in figure II.22a that shows the Eulerian total pressure for
a sea state of significant wave height Hs = 5 m (Hs/λp ≈ 3.2%). It looks like from a certain
value zlim > 0, the pressure drops to zero. This effect can be reduced by using an iterative
scheme, such as describe by Gjosund (2003) and described by equation (II.19), to reduce the
discrepancy induced by the approximation (II.24). The converged Eulerian pressure is depicted
in figure II.22b. We see that one major correction in the converged solution is the non-null

(a) (b)

Figure II.22: Eulerian approximate of the second-order Lagrangian pressure field for a JONSWAP
spectrum (Hs = 5 m, Tp = 10 s, γ = 3.3) at t = 0 using (a) equation (II.25) and (b) a convergence
scheme. The dashed lines on correspond to the surface elevation, while the continuous line is the
pressure contour line p = pa = 0.

pressure above zlim. A closer look at the region near the free surface elevation is shown in figure
II.23. The relative improvement of the converged solution is noticeable even below zlim, and we
note that the value of the pressure above zlim for the converged solution seems to correspond to
a prolongation of the pressure value at zlim.

In order to be able to use this solution as input for a structure response motion solver, further
investigation should be done on the influence of such an inaccurate value of the pressure on the
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(a) (b)

Figure II.23: Similar to figure II.22, with a closer look at the free surface elevation.

structural response calculations. Also, note that a similar formulation of Eulerian estimate of
orbital velocities can be formulated for the same purpose of implementation in a wave-structure
interaction solver.

Conclusion

In this chapter, we detailed the Lagrangian approach for ocean gravity waves modeling and high-
lighted its advantages in terms of nonlinear features over its Eulerian counterpart. The properties
of a second-order solution for surface elevation kinematics are described, and we assessed the nu-
merical performances of an improved formulation, ICWM, that corrects the nonlinear dispersion
relation. In view of implementation in a wave prediction algorithm that is fed with geo-referenced
wave measurements, Eulerian approximate solutions of ICWM surface elevation and pressure are
derived and their accuracy with respect to the initial Lagrangian solution are investigated.

It was found that the nonlinear correction of the phase velocity is crucial for accurate wave
representation after several periods of propagation. The improved formulation allows retrieving
the third-order Eulerian solution for regular waves. In the case of irregular waves, it leads to
an appropriate correction for energetic wave components but misses the modulation effects of
shorter waves. A simple Eulerian approximate that does not necessitate complex mathematical
developments nor iterative procedures can be formulated and leads to consistent results. The
pressure estimate, however, can lead to spurious values (decrease to zero) near the wave crests
for large steepness if no numerical precautions are taken.
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Résumé du troisième chapitre

Nous nous concentrons dans le troisième chapitre sur la procédure d’assimilation de données,
consistant à accéder aux informations pertinentes contenues dans les mesures de vagues (ap-
pelées observations) afin de définir les conditions initiales du modèle physique servant à propager
le champ de vagues en vue de sa prédiction. La méthode d’assimilation développée ici se base
sur des mesures optiques telles que générées par une caméra lidar. La distribution de telles
mesures est d’abord caractérisée au travers d’un approche géométrique, mettant en avant leur
forte non-uniformité spatiale due à l’incidence rasante des rayons du capteur à la surface. La re-
construction du champ de vagues (c’est-à-dire l’inversion du modèle physique) est formulée pour
le modèle non-linéaire ICWM étudié dans le chapitre précédent, puis nous détaillons le processus
itératif de résolution. La formulation analytique de ICWM permet d’écrire le problème inverse
sous une forme matricielle explicite, et la solution est trouvée en passant par une procédure
de régularisation Tikhonov et une décomposition en valeurs singulières. Une fois le champ de
vagues reconstruit, la région spatio-temporelle dans laquelle les informations assimilées restent
valides pendant la propagation du modèle de vagues est bornée. À partir de l’étendue et de
l’échantillonnage des observations, nous décrivons l’évolution de la zone de prédiction théorique-
ment accessible. La distribution spatio-temporelle d’une erreur théorique de prédiction est décrite
à partir de la quantité d’énergie tronquée lors du processus de mesure, et montre que la taille
de la zone de prédiction est fortement dépendante de la précision attendue de la prédiction. Des
critères sont ensuite présentés pour la sélection des fréquences et directions de coupure pour le
champ de vagues modélisé ainsi que pour l’évolution de la zone de prédiction, nous permettant
de fermer le problème inverse et définir clairement une région à l’intérieur de laquelle les per-
formances de prédiction de notre méthode seront évaluées. Enfin, les questionnements relatifs
à la détermination de la zone optimale de mesure (menant à l’horizon de prédiction souhaité)
sont exposés et en partie traités. Depuis la caractérisation des mesures optiques d’élévation de
surface jusqu’à la formulation du problème d’inversion de ICWM et la description de la zone de
prédiction théoriquement accessible, ce chapitre termine l’explication des bases théoriques de la
méthode de prédiction employée dans cette thèse.
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Chapter III

Optical Data Assimilation and
Accessible Prediction Region

Introduction

This chapter focuses on the data assimilation process, which consists in getting access to relevant
information from the wave measurements (called observations) to properly define the initial
conditions of our wave model. As we saw in the first chapter, many methods can be employed
to invert wave models, and the methods have to be adapted to both the wave model and the
nature of the wave measurements. In the following, the developed assimilation method is based
on typical optical measurements such as the one that would be made by a lidar camera observing
the ocean surface, namely non-uniformly distributed free surface elevation observations. Also,
as our wave model follows an analytical formulation, an explicit inversion system is written and
solved. Then, once the wave field is reconstructed, the spatio-temporal zone within which the
assimilated information remains valid during the model propagation is bounded. Based on the
extent and sampling characteristics of the observations, we detail the evolution of this accessible
prediction zone.

We will thus first focus on the characterization of the optical free surface elevation mea-
surements in terms of non-uniformity. Then, the wave field reconstruction (i.e., wave model
inversion) problem is formulated for the nonlinear wave model ICWM studied in the previous
chapter. Last, the formulation of the theoretically accessible prediction zone is derived, and we
will see how it can be used for the determination of the appropriate measurement zone leading
to the desired prediction horizon, which is typically on the order of a few wave periods.

III.1 Properties of Optical Measurements

In this work, following the potential of optical sensors to provide accurate free surface elevation
measurements (see section I.2.2.2), synthetic lidar measurements are used as observations. The
produced observations have distribution properties that we will explicit in this section based on
a realistic setup: the sensor is mounted on top of a marine structure, observing the ocean surface
at a distance with a grazing angle. After detailing the setup parameters, the resulting spatial
sampling properties are described.

III.1.1 Setup Description and Parameters Definitions

We first denote the position and viewing parameters of a lidar camera. On a similar coordinate
system to the one described in the previous section for the definition of the wave model, we
consider that it is located at a point of coordinates (xc (t) , yc (t) , zc (t)) – the time dependence
is relevant in case the structure upon which the camera is mounted is moving (e.g., a ship, a
floating wind turbine). The camera is facing the ocean surface with viewing angles α (t) and
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β (t) in the vertical and horizontal directions, respectively. Associated aperture angles αa (t) and
βa (t) define the extent of the illuminated area, that is the observation zone (or measurement
zone). All these parameters and the resulting observation zone are depicted in figure III.1.

Figure III.1: Geometrical parameters leading to the observation zone.

The described setup leads to data distribution similar to the one originated from a rotating
lidar (see figures I.4a, b). This technology is the one employed by Kabel et al. (2019) to generate
two-dimensional maps of surface elevation from a sensor mounted on a fixed offshore platform
in the North Sea. Their light-emission system is based on a source sending simultaneously three
laser pulses at a very high rate of 190 kHz, leading to 570000 pulses per second. The associated
scanning system is composed of two rotating mirrors oriented in the horizontal and vertical
directions. In the horizontal direction, the mirror is a polygon with facets leading to a field
of view (or aperture angle) of 60◦ and rotating at 7270 rpm, while in the vertical direction, a
galvanometer mirror oscillates back and forth with a rotating motion of amplitude 10◦ to generate
10 frames per second in each rotation direction. This setup generates two frames of (theoretically)
28500 free surface elevation observations at a rate of 10 Hz. This high measurement rate with
respect to the characteristic time of ocean surface evolution allows to consider that, in each
frame, all measurements are evaluated at the same instant, forming a spatial map of the surface.
Accordingly, the synthetic observations generated in this work are of the form of instantaneous
spatial datasets of surface elevation measurements.

III.1.2 Implications of Shallow Incidence Angles

As mentioned previously, the altitude zc of the sensor being limited by the height above the
surface level of the structure upon which it is mounted, the vertical viewing angle α of the
camera observing the surface at a distance leads necessary to grazing incidence angles of rays
with the surface. The incidence angle αi is defined as the angle made by the lidar ray and the
local surface slope, such as depicted in figure III.2. It follows that, the larger the measurement

Figure III.2: Definition of the angle of incidence αi of the incident ray with respect to the sea
surface at their crossing location.

distance, the more likely the incidence angle is small. Through a simple geometrical analysis,
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we will see that grazing incidence angles have strong implications on the spatial distribution of
each dataset.

III.1.2.1 Non-uniform Spatial Sampling

Assuming that the lidar pulse rate is constant and the scanning system relies on mirrors with
uniform rotational motions (which is the case for the majority of existing rotating lidar tech-
nologies), the angular distribution of rays over the aperture angle is uniform. This angular
distribution leads to a geometrical decreasing density of measurement points with the distance
from the sensor. Figure III.3 shows an example of the spatial sampling of a one-directional wave
field, for which only the altitude zc, the vertical viewing angle α, aperture αa and number of
laser rays are used for the sensor’s definition. The progressive decrease of density of observations

Figure III.3: Spatial sampling of a long-crested wave field by an optical sensor (e.g., lidar camera).
Straight lines are ray trajectories.

ahead of the sensor is clear. If the ocean surface were completely flat, the irregularity of the
observation grid would be entirely determined by the sensor parameters (zc, α, αa, number of
beams). However, because of the surface deformation, wave shadowing effects occur, leading,
in regions of high surface slope, only wave sides that face the sensor to be illuminated. This
has two effects. First, it increases the irregularity in the spatial distribution of the observa-
tions, refining the wave crests sampling at the expense of wave troughs. Then, since the wave
shadowing phenomenon is related to the local surface elevations, unknown at the time of the
measurements, the observations locations cannot be predicted. Observations are thus made at a
priori unknown locations. As observed in figure III.3 as well as in figure III.4a for a directional
wave field, this effect becomes more important at grazing incidence angles, that is for the most
distant observation points.

III.1.2.2 Measurements Identification

Optical sensors relying on nadir observations of the surface have already been developed and
provide accurate measurement of free surface elevation. However, it becomes technically more
challenging to make similar measurements when the incidence angle of the sensor rays gets graz-
ing with respect to the free surface. For example, experimental results obtained by Kabel et al.
(2019) show that the light intensity of the backscattered signal is significantly higher for small
measurement distance, for which the incidence angle remains relatively large, participating fur-
ther in the decrease observations density with the distance from the lidar system. In this section,
we are interested in the modeling of this effect to see how it affects the identification of measure-
ment points. To do this, we assume that when this incidence angle is smaller than a limiting
value αlim

i , the power of the backscattered signal is so low that it becomes indistinguishable from
the ambient noise and no measurement is possible. This leads to a localized (i.e., non-random)
discrimination of observation points. An example of distribution of local incidence angles is
shown in figure III.4b. The decreasing probability of obtaining a high incidence angle with the
distance from the sensor is clear.

We quantify in figure III.5 the discriminated points over an entire spatial dataset for three
different limiting angles of incidence, i.e., αlim

i = 3, 4 and 5◦. Besides the fact that the number of
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(a) (b)

Figure III.4: Example of a spatial distribution of synthetic surface elevation lidar measurements:
(a) free surface elevation and (b) incidence angle of the sensor ray with respect to the surface.
The underlying sea state is a JONSWAP with Hs = 3 m, Tp = 10 s, γ = 3.3 and a main direction
of propagation along the x-axis. The optical sensor is located 30 m above the mean surface level
and observes the surface with angles α = 76◦, β = 0◦ and aperture angles αa = 20◦, βa = 110◦,
using 64× 64 rays. The sensor is located at (xc, yc) = (780, 780).

(a) (b) (c)

Figure III.5: Distribution of the discriminated points (•) over a set of spatial measurements (•)
for three different limiting ray angles of incidence with respect to the surface, αlim

i = (a) 3◦, (b)
4◦ and (c) 5◦. Sea state and optical sensor parameters are the same as in figure III.4.

discriminated points increases with the limiting angle of incidence (i.e., respectively 54, 106 and
200 discriminated points for limiting angles of 3, 4 and 5◦), we see that they are not randomly
distributed over the spatial dataset, which is in agreement with previous remarks: the points
corresponding to large measurement distances (left part of the observation grid) have a larger
probability to be discriminated than the other points.

Lidar cameras for free surface elevation measurements are not developed yet, hence no em-
pirical background knowledge is available so far for a high-fidelity modeling of such datasets
in terms of distributions, noise level, measurement errors, etc. The present characterization of
lidar observations is limited to a purely geometrical approach, and we will not further investigate
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their characteristics. Still, the main properties of the expected spatio-temporal distribution of
the observations, which, following section I.3, represents the main constrain for the data assimi-
lation method, have been highlighted. The wave model inversion method presented in the next
section is thus adapted to the described lidar observations, namely, a selection of instantaneous
spatial datasets containing a high number of surface elevations, highly irregularly distributed and
whose locations cannot be a priori calculated. Note that, after conversion to surface elevation
measurements, radar images give datasets of similar characteristics.

III.2 Variational Assimilation

As detailed in section I.3.4.2, the most common way to assimilate wave elevation data is the
variational approach and it is the one that we use to assimilate our lidar observations. The
principle is to minimize a quadratic cost function that represents the error between the recon-
structed wave field and the observations, through operators that link the wave measurements
and the parameters of the wave model. The classical variational cost function is formulated as

F (p) =
1

2

(
p− pb

)T
B−1

(
p− pb

)
+

1

2

K∑
k=1

(Qk (Mk (p))− qk)T R−1
k (Qk (Mk (p))− qk) ,

usually written in the more compact form

F (p) =
1

2

∣∣∣∣∣∣p− pb∣∣∣∣∣∣2
B−1

+
1

2

K∑
k=1

||Qk (Mk (p))− qk||2R−1
k
,

where ||.|| denotes the Euclidean norm, and K is total number of instantaneous spatial datasets
used in the observations. p is the control vector containing the unknown model parameters, and
pb is a first estimate of model parameters, called background and usually based on the results
from previous calculations. Mk =Mjk (j = 1, ..., J with J the number of spatial observations at
each instant) are model operators, mapping between control space and model space. Similarly,
Qk = Qjk are observation operators, mapping between model space and observation space.
qk = qjk are the observation vectors containing the measurements. B and Rk are the background
and observation error covariance matrices, respectively. These matrices are supposed to provide
statistical characterizations of the expected error related to the background estimate solution
(for B), and to the measurements and physical model (for Rk).

Note that the formulation of the variational cost function does not require any assumption
on the type of observations nor their space/time distribution. Disparate spatio-temporal sets of
observations are easily combined in one single minimization problem. Hence, this assimilation
method is well adapted to lidar measurements.

III.2.1 Application to Optical Wave Measurements

As a first approximation, we consider that we do not have access to a background and there is no
observation error (i.e., no measurement nor wave model errors). Accordingly, the cost function
reduces to

F (p) =
1

2

K∑
k=1

||Qk (Mk (p))− qk||2 . (III.1)

For our application, we assume that the lidar measurement system includes the observation oper-
ator that links the signal scattered by the surface to the free surface elevations so the observations
can then be directly compared to wave models estimates. The observations correspond to the
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free surface elevation measurements qk = ηk = ηjk at spatial location rj and time tk. The model
operator corresponds to the wave model. Here, the wave model is ICWM, that is Mk = ηk
and ηjk = η (rj , tk) with η following the Eulerian approximation (II.18) of ICWM equation. The
wave model parameters are a set of 2N unknowns p = {an, bn} (n = 1, ..., N with N the number
of wave components). In our case, the cost function (III.1) turns into

F (p) =
1

2

K∑
k=1

||ηk (p)− ηk||2 =
1

2

K∑
k=1

J∑
j=1

(
ηjk (p)− ηjk

)2
=

1

2

L∑
`=1

(η` (p)− η`)2 ,

in which ` is a double index that denotes the spatio-temporal location of the free surface elevation,
and L = J ×K is the total number of observations. Note that the minimization of the cost
function simplifies to a least square minimization, which can be achieved by specifying

∇F (p) = 0 ⇐⇒


∂F

∂am
= 0,

∂F

∂bm
= 0,

m = 1, ..., N. (III.2)

In section I.3, we saw that the calculation of the gradient of the cost function is non-trivial for
nonlinear wave models. Indeed, the reviewed models involve either mathematical terms that are
too complicated for an efficient gradient calculation (e.g., double summations in the expression
of the (enhanced) second-order solution), or implicit terms that require the use of numerical
integrations (e.g., HOS), both being computationally expensive. The reviewed minimization
problems thus rely on optimization procedures (based or not on the gradient calculation) that
iteratively converge to the optimal model parameters. Here, since ICWM is analytical and has
almost the same mathematical complexity as LWT, we choose to explicitly formulate the gradient
of the cost function in the form of a system that is directly inverted. Such as proposed by Grilli
et al. (2011) and Nouguier et al. (2014), a linear approximation followed by nonlinear iterations
are used to converge to the nonlinear solution.

III.2.2 System Formulation

Developing the terms from system (III.2) leads to

∂F

∂am
=

L∑
`=1

∂ (η` − η`)
∂am

(η` − η`) =
L∑
`=1

∂η`
∂am

(η` − η`) ,

and similarly (F )bm =
∑

` (η`)bm (η` − η`), where the notation (x∗)y∗ is used to denote the
derivation of the quantity x∗ with respect to y∗. We thus have to determine the derivative terms
(η`)am,bm to explicitly formulate the system that is solved for the wave parameters p. Using the
approximate Eulerian formulation of ICWM, equation (II.18), we get

(η`)am = (am cos Ψm`)am + (bm sin Ψm`)am + amkm,

(η`)bm = (am cos Ψm`)bm + (bm sin Ψm`)bm + bmkm.

We then calculate

(am cos Ψm`)am = cos Ψm` − am sin Ψm` (Ψm`)am ,

(bm sin Ψm`)am = bm cos Ψm` (Ψm`)am ,

(am cos Ψm`)bm = −am sin Ψm` (Ψm`)bm ,

(bm sin Ψm`)bm = sin Ψm` + bm cos Ψm` (Ψm`)bm .
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We now have to determine the modal derivatives of the phase term Ψm`, for which we recall here
the expression 

Ψm` = km ·
[
r` −

N∑
n=1

k̂n

(
−an sin φ̃n` + bn cos φ̃n`

)]
− ω̃Lmt`,

φ̃n` = kn · r` − ω̃Lnt`,

ω̃Lm = ωm + 1/2km · Us,

Us =
N∑
n=1

(
a2
n + b2n

)
ωnkn.

Its derivatives can be written in the form

(Ψm`)am,bm = (X1 +X2 +X3)am,bm ,

where

X1 = kmam sin φ̃m`, X2 = −kmbm cos φ̃m` and X3 = −ω̃Lmt`.

for which we calculate
(X1)am = km

[
sin φ̃m` + am cos φ̃m`

(
φ̃m`

)
am

]
,

(X2)am = kmbm sin φ̃m`

(
φ̃m`

)
am
,

(X3)am = −amωmk2
mt`,


(X1)bm = kmam cos φ̃m`

(
φ̃m`

)
bm
,

(X2)bm = −km
[
cos φ̃m` − bm sin φ̃m`

(
φ̃m`

)
am

]
,

(X3)bm = −bmωmk2
mt`.

Noticing that
(
φ̃m`

)
am,bm

= (X3)am,bm , we deduce the expressions for the phase terms

(Ψm`)am = km

{
sin φ̃m` −

[
km

(
am cos φ̃m` + bm sin φ̃m`

)
+ 1
]
amωmkmt`

}
,

(Ψm`)bm = km

{
− cos φ̃m` −

[
km

(
am cos φ̃m` + bm sin φ̃m`

)
+ 1
]
bmωmkmt`

}
.

It is now possible to retrieve the modal derivatives of the ICWM free surface elevation

(η`)am = cos Ψm` − km (am sin Ψm` − bm cos Ψm`)

×
{

sin φ̃m` −
[
km

(
am cos φ̃m` + bm sin φ̃m`

)
+ 1
]
amωmkmt`

}
+ amkm,

(η`)bm = sin Ψm` − km (am sin Ψm` − bm cos Ψm`)

×
{
− cos φ̃m` −

[
km

(
am cos φ̃m` + bm sin φ̃m`

)
+ 1
]
bmωmkmt`

}
+ bmkm.

Denoting (η`)am = Pm` and (η`)bm = Qm`, system (III.2) turns into

L∑
`=1

N∑
n=1

an

(
cos Ψn` +

1

2
ankn

)
Pm` + bn

(
sin Ψn` +

1

2
bnkn

)
Pm` =

L∑
`=1

η`Pm`,

L∑
`=1

N∑
n=1

an

(
cos Ψn` +

1

2
ankn

)
Qm` + bn

(
sin Ψn` +

1

2
bnkn

)
Qm` =

L∑
`=1

η`Qm`.

(III.3)

This system is then recast in a matrix form Ap = B, where, p is our wave model parameters
vector containing 2N unknown elements

pn = an, pN+n = bn,

75



III.2 ASSIMILATION AND PREDICTION REGION – Variational Assimilation

B is a vector containing the observation information

Bm =

L∑
`=1

η`Pm`, BN+m =

L∑
`=1

η`Qm`,

and A is a 2N × 2N matrix that follows

Amn =
L∑
`=1

(
cos Ψn` +

1

2
ankn

)
Pm`,

AN+m,n =

L∑
`=1

(
cos Ψn` +

1

2
ankn

)
Qm`,

Am,N+n =
L∑
`=1

(
sin Ψn` +

1

2
bnkn

)
Pm`,

AN+m,N+n =

L∑
`=1

(
sin Ψn` +

1

2
bnkn

)
Qm`.

System (III.3) is finally solved for optimal wave parameters (an, bn). However, since both A
and B depend on wave parameters, we make use of an iterative procedure, detailed in the next
section, to find the appropriate nonlinear solution. Note that similar inverse problems can be
formulated using CWM1 and LWT-CDR (see appendix A for details).

III.2.3 Linearization and Nonlinear Iterations

To be able to find solutions to the inverse problem (III.3), equations are linearized by computing
A(i) and B(i) based on wave parameters obtained at the previous iteration i when solving for
p(i+1) at iteration i + 1. The solution is initialized at i = 0 using A(0) and B(0) based on the
reconstruction problem formulated with LWT and detailed below. At each iteration i + 1, we
evaluate relative errors Ea and Eb between p(i) =

{
a

(i)
n , b

(i)
n

}
and p(i+1) =

{
a

(i+1)
n , b

(i+1)
n

}
, which

take the form

Ex =

[
N∑
n

(
x(i+1)
n − x(i)

n

)2
/

N∑
n

(
x(i+1)
n

)2
]1/2

,

in which x is refers either to a or b. The solution is considered converged when both Ea and Eb
are inferior to a tolerance tol = 10−6, which is typically achieved within a few to a few dozens
iterations depending on the wave steepness. Due to the problem formulation, the iteration process
does not necessary converge, requiring to set a maximal number of iterations Nmax

i . This number
is set high enough, such that the value of tol does not influence the number of inversions reaching
Nmax
i . A typical value of 100 was used in the presented numerical and experimental applications

of our prediction method.
Nonlinear inversions for which the number of iterations reached Nmax

i lead to inconsistent
physical representations of the ocean surface, which is why they are discarded from the ensemble
of results that is used to calculate the indicators that quantify the prediction accuracy. The
apparent randomness of the number of iterations – even if it clearly tends to increase for higher
wave steepness, the (nonuniform) spatial distribution of observations also play a significant role
– prevented us from properly evaluating the expected proportion of cases for which the number
of iterations reached Nmax

i . However, in operational conditions, this non-convergence is not a
major limitation since the linear inversion, which corresponds to the initialization step of the
nonlinear inversion (see below), could always be used instead.

The initial solution p(0) is found based on the inversion of LWT. In order to simplify the
system formulation, the linear elevation (I.9) is recast in the equivalent form

ηlin (r, t) =
N∑
n=1

an cosψn + an sinψn,
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in which ψn = kn · r − ωnt are spatio-temporal phases and (an, bn) = (An cosϕn, An sinϕn) are
the wave coefficients describing the ocean surface. Similar to ICWM, we find the free surface
elevation derivatives with respect to the wave coefficients, which yield(

ηlin
`

)
am

= cosψm`,(
ηlin
`

)
bm

= sinψm`,

and lead to the following linear system

L∑
`=1

N∑
n=1

an cosψn` cosψm` + bn sinψn` cosψm` =
L∑
`=1

η` cosψm`,

L∑
`=1

N∑
n=1

an cosψn` sinψm` + bn sinψn` sinψm` =

L∑
`=1

η` sinψm`.

In its matrix form Ap = B, B is now computed as

Bm =

L∑
`=1

η` cosψm`, BN+m =

L∑
`=1

η` sinψm`,

and A reads

Amn =

L∑
`=1

cosψn` cosψm`,

AN+m,n =
L∑
`=1

cosψn` sinψm`,

Am,N+n =

L∑
`=1

sinψn` cosψm`,

AN+m,N+n =
L∑
`=1

sinψn` sinψm`.

Inverting this system allows to get access to the representation of the free surface according to
LWT. The solution also serves as initialization of the iteration procedure described above for the
ICWM inversion. A similar method is used for the inversion of the other nonlinear wave models,
CWM1 and LWT-CDR, that are used in the presented numerical and experimental applications.

III.2.4 Regularization Procedure

In operative applications, the non-uniform spatial distribution of the measurements, the non-
periodicity of the assimilated data (while our wave model is intrinsically periodic), as well as
the generally overdetermined nature of the problem (i.e., more observations than unknowns)
can cause the inverse problem to be ill-conditioned. Nevertheless, consistent results can be
achieved, independently of the conditioning of the system matrix to invert (i.e., A), by applying
a Tikhonov regularization (Tikhonov, 1963), in which the matrix inversion is replaced by the
following minimization problem

min
{
||Ap− B||2 + r2 ||p||2

}
, (III.4)

where r denotes the regularization parameter. The value of r conditions the problem to provide
an optimal compromise between minimizing the residual error of the assimilation system and
ensuring that the norm of the solution does not become too large, avoiding overfitting issues.
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III.2.4.1 L-curve Method for the Selection of the Regularized Parameter

The optimal value of the regularization parameter is found using the ‘L-curve’ method, which
consists in finding the r value corresponding to the point of maximal curvature (i.e., corner) of the
parametric curve (log ||Ap− B|| , log ||p||). The L-curve corner can be determined analytically
through solving a singular value decomposition (SVD) problem (Calvetti et al., 2004; Hansen,
2000). The SVD consists in factorizing the matrix we want to invert in the form

A =

2N∑
i=1

uiσiv
T
i ,

where the singular values σi are non-negative quantities appearing in decreasing order, i.e.,
σ1 ≥ σ2 ≥ ... ≥ σ2N ≥ 0. Vectors ui and vi are the left and right singular vectors, respectively,
and are orthogonal, i.e., uT

i uj = vT
i vj = δij (with δij the δ-function). The number of non-zero

singular values indicates the rank of the matrix, hence, singular values of a well-conditioned
matrix are all strictly positive. Injecting this factorization in the least square minimization
(III.4), a regularized solution pr for a particular regularization parameter r is found as

pr =

2N∑
i=1

fi
uT
i B

σi
vi,

in which fi = σ2
i /
(
σ2
i + r2

)
are the Tikhonov filter factors varying between zero and one. The

role of Tikhonov filters is to give more weight to large singular values as the regularization
parameter increases, which stabilizes the inversion of A. For the ‘naive’ solution (i.e., r = 0), all
the Tikhonov filter factors are equal to one.

The minimization residual can also be written as a function of the resulting terms of the
SVD, and the squared norms of the solution and of the associated residual read

||pr||2 =
2N∑
i=1

(
fi
uT
i B

σi
vi

)2

= u and ||Apr − B||2 =
2N∑
i=1

[
(1− fi)uT

i B
]2

= v.

With these explicit expressions, and denoting u′ the derivative of u with respect to r, the curvature
of the L-curve yields (Hansen, 2000)

κ = 2
uv

u′
r2u′v + 2ruv + r4uu′

(r2u2 + v2)3/2
. (III.5)

The next step consists in sweeping values of r to find the point of maximal curvature. An example
of an L-curve and its corresponding curvature is shown in figure III.6. For very low (high) r-
values, the L-curve is vertical (horizontal), meaning that the residual (solution) norm is constant
and the solution (residual) norm drops logarithmically to zero. Between these two limits of very
low and very high r-values, we see that the curve is not clearly shaped as an ‘L’ with one corner
as it would ideally be, but exhibits several corners that represent local optimal regularizations.
Regarding the very small computational cost for the calculation of κ, the solution to find the
optimal regularization parameter is to sweep several values in a relevant range. From figure III.6,
it appears important to consider a relatively large range of r-values to be sure to catch the global
optimum, highlighted with a red dot on the presented curves. In our applications, r is swept
within the interval

[
10−5, 105

]
, logarithmically sampled with 103 values, which was found to be

appropriate for our model inversions.

III.2.4.2 Alternative Approach based on Wave Energy

Note that for a linear wave field, this procedure is equivalent to adding a constraint to the min-
imization problem, physically representing the total energy of the reconstructed wave spectrum,
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(a) (b)

Figure III.6: Example of (a) an L-curve obtained for the regularization of a wave model inversion
and (b) its corresponding curvature calculated with equation (III.5). The point of maximal
curvature is highlighted in red.

since the latter is proportional to the squared norm of p. Indeed, following relation (I.4), we
write

||p||2 =

N∑
n

(
a2
n + b2n

)
≈ 2

∫∫
S (k, θ) dθ dk = 2m0,

and the zeroth-order moment m0 correspond to the variance σ2
η of the free surface elevation,

which can be easily estimated from a standard deviation ση of set of elevation measurements. By
selecting a regularized parameter that leads to ||pr|| =

√
2ση, the solution would yield a consistent

energy quantity with the actual observations, giving a simpler way to determine the optimal r
than going through the calculation of the L-curve curvature. However, our inversions using this
technique generally led to solutions giving too much weight to high frequency components, that
is the regularization parameter was too low, leading to solutions that overfitted the observations.
Hence, we use the L-curve curvature method in the following.

III.2.4.3 Note on the Computational Cost of an ICWM Inversion

Following Plassman (2005), the SVD calculation for a dense, non-symmetric matrices is divided
in three phases: an orthonormal reduction of A to a bidiagonal form (phase 1), the computation
of the SVD of the bidiagonal form (phase 2) and the computation of the SVD of A (phase 3).
Phase 1 is typically calculated using Householder reflectors, such as in the Golub-Kahan bidiago-
nalization algorithm (e.g., Trefethen & Bau, 1997, p. 236), and yields an amount of computations
of 8

3 (2N)3 for a 2N × 2N matrix (corresponding to the inversion of a wave model with N wave
components). Phase 2 relies on an iterative procedure and the computational cost is dependent
on the performance of the chosen algorithm. The ‘divide and conquer’ approach is widely used,
and is the one employed by the LAPACK routine _gesdd used in this work. It requires, for the
worst case, O

(
8N3

)
computations. Phase 3 has a typical cost of O

(
8N3

)
computations. This

amount of operations, multiplied by the number of nonlinear iterations of the described iterative
procedure, is not compatible for real-time applications when N gets large, which is the case for
directional wave fields.

However, it is to be noted that, in the presented inversion method, efforts are concentrated
on accuracy and reliability of the predictions, and the described algorithm based on the SVD
calculation does not take full advantage of the computational efficiency of ICWM. Its compu-
tational advantage compared to other wave models is the modeling of nonlinear effects through
explicit and simple mathematical terms.
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In case of observations compatible with Fourier analysis, and in similar way to that of Duncan
& Drake (1995), an iterative procedure that aims at decoupling the linear wave components from
their nonlinear interactions can be performed with the cost of only three FFTs at each iteration,
namely O (3N logN) for a wave field modeled with N wave components. Indeed, the ICWM sur-
face elevation at iteration i is calculated through η(i) = Fη

(
η̂(i)
)
where Fη has the cost of 2 IFFTs

(according to equation (II.18)) and η̂(i) = FFT
(
ηlin(i)

)
are the Fourier coefficients of the quantity

ηlin(i) = η − Cnl(i) that corresponds to the observations η in which the ICWM nonlinear contribu-
tions have been discarded. Nonlinear contributions simply read Cnl(i) = η(i−1) − IFFT

(
η̂(i−1)

)
and is equal to zero at initialization step i = 0.

The implementation of such a fast ICWM inversion method is direct but necessitates wave
measurements compatible with Fourier analysis, which is not directly the case of remote op-
tical measurements. Hence, the computation of Cartesian surface elevation maps from optical
measurements would imply interpolation errors that affect the prediction accuracy. The quan-
tification of the errors induced by the interpolation is not provided in this work but should be
investigated prior to implementation of the described inversion procedure base on (I)FFTs.

III.3 Prediction Zone

As mentioned earlier, the spatio-temporal region within which the predictions resulting from
the analysis of a specific set of wave measurements is bounded. Specifically, when wave mea-
surements are made at a specific sampling rate and over a given observation zone, the amount
of accessible wave information contained in the measurements limits the assimilation process,
yielding a modeled surface in space/time defined with finite frequency and direction bandwidths.
In light of this, the sea-state prediction obtained by propagating the assimilated information is
similarly limited to a spatio-temporal region referred to as prediction zone. This region can be
theoretically calculated on the basis of the spatio-temporal distribution of the observations. Us-
ing the fact that the ‘observed’ (or measured) waves propagate at their respective phase velocity,
Morris et al. (1998, 1992) introduced the concept of prediction diagrams, defining the accessible
prediction zone by the intersection of the regions covered by the propagation of each measured
wave component, the limiting ones being the slowest and the fastest components. Even if an el-
ementary wave component propagates at its phase velocity, Wu (2004) showed that the accurate
description of a wave field is limited to the knowledge of its wave components energy, which prop-
agates at the wave group velocity, and found consistent results supporting this choice. Abusedra
& Belmont (2011) used the stationary phase approximation to justify the choice of the group
velocity over the phase velocity, but they also indicate that it only applies under the assumption
of large propagation distances. Making use of wave tank experiments and numerical simulations,
Naaijen et al. (2014) validated the approach based on the group velocity, even for short prediction
distances. Finally, Qi et al. (2018b) provides a theoretical justification not restrained to a short
prediction distances and valid even for nonlinear wave models. Through statistical analysis of
wave properties, Fucile et al. (2018) and Mérigaud & Ringwood (2019) derived a formulation of
the prediction error standard deviation and of the prediction mean error, respectively, that agree
well with the prediction diagrams relying on group velocities of the waves. Accordingly, we thus
consider in the following that the measured information related to wave components propagates
at group velocities.

III.3.1 Theoretical Prediction Error

A measure of the prediction error at each point in time and space can be formulated based
on the propagation properties of wave information. Indeed, the dispersive behavior of ocean
gravity waves makes wave information travels at different speeds depending on their frequency
(or equivalently their wavenumber). Hence, they get dispersed when the wave field is propagated,
making the accessible wave information dependent on the time and space location of the point at
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which the prediction is issued. The amount of accessible wave information can be used to define
an amount of wave energy based on the integration of the wave spectrum over a wavenumber band
bounded by the wavenumbers associated with the fastest and slowest waves whose information
reaches the prediction point.

For a particular set of observations of a unidirectional wave field, we define the ratio of the
amount of wave energy described by the accessible information to the total energy as

P (x, t) =

∫ k2

k1

E (k) dk

/
m0, (III.6)

in which wavenumbers k1,2 correspond to the slowest and fastest wave components whose group
velocity allows the point (x, t) to be reached by the measured wave information, E (k) =

∫ 2π
0 S (k, θ) dθ

is the surface elevation wavenumber spectrum and m0 the associated zeroth-order moment. The
quantity 1 − P can be used as a theoretical misfit indicator. k1 (k2) is defined as the lowest
(highest) measurable wavenumber by the observations.

In the example presented in figure III.7, we consider a unidirectional wave field where all
waves are propagating in the same direction and whose energy distribution follows a JONSWAP
spectrum of peakedness parameter γ = 3.3 (see equation (I.2) for detailed formulation). The

Figure III.7: Spatio-temporal distribution of the theoretical prediction error 1− P based on the
accessible measured information. The dashed line ( ) corresponds to the advection of wave
information related to the longest measured wave (i.e., wavelength of 3λp), while the continu-
ous line ( ) corresponds to the advection of wave information related to an infinitely high
frequency.

observations are distributed in space from x = 0 to Lo = 3λp, and we choose to set t = 0
at the beginning of the wave model propagation. The lowest measurable wavenumber is thus
2π/Lo, and the highest measurable wavenumber is taken equal to +∞ (i.e., we consider that
the observations have an infinite sampling rate). The spatio-temporal domain is divided in
four distinct subdomains (limited by the two crossing lines) within which group velocities are
calculated in different ways. Wave information reaching points located in regions 2© and 4© is
limited by the group velocity of the longest measurable wave, whose wave number is 2π/Lo.
Since every wave component propagates in the positive x-direction, points located in regions 3©
and 4© can be reached by wave information that is limited by the static information associated
with wavenumber k → +∞. Wave information reaching points located in region 1© propagates at
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velocities whose values are lower than the group velocity of the wavenumber 2π/Lo and higher
than the limit of zero (i.e., group velocity of a wave of infinite wavenumber). For the sake
of simplicity, we use the linear dispersion relation in deep water to relate group velocities to
corresponding wavenumbers, but its finite-depth version could also be used. Formally, the limits
for the integral term in the numerator of P yield

1©
∣∣∣∣∣ k1 = g/ (2cg1)2 ,

k2 = g/ (2cg2)2 ,
2©
∣∣∣∣∣ k1 = 2π/Lo,

k2 = g/ (2cg2)2 ,
3©
∣∣∣∣∣ k1 = g/ (2cg1)2 ,

k2 = +∞,
4©
∣∣∣∣∣ k1 = 2π/Lo,

k2 = +∞,

where the fastest group velocity is calculated as cg1 = x/t and the slowest is cg2 = (x− Lo) /t.
This same indicator has been employed by Naaijen et al. (2014) and was verified to give

consistent results with numerical simulations and wave tank experiments. More than the just a
binary indicator that states if a point (x, t) is in/out a prediction zone, this indicator allows to
get access to an a priori estimate of the prediction error. For the example presented in figure
III.7, the region in which 1−P is lower than 1% is bounded by a prediction time of ∼ 5Tp for a
downstream point located ∼ 3

4λp past the last observation. The region in which 1 − P is lower
than 10% extents to t > 8Tp and x > 5λp (i.e., > 2λp past the last observation). The extent
of the accessible prediction zone is thus strongly dependent on the desired prediction accuracy.
From equation (III.6), we notice that it is also dependent on the wave spectrum: for a similar
spectral shape (e.g., JONSWAP with different γ values), the larger the spectral bandwidth of
the spectrum, the higher the value of theoretical misfit 1− P .

III.3.2 Accessible Prediction Zone Evolution

We saw in the previous section that the limits of the prediction zone depends on the expected
prediction accuracy: the higher the prediction accuracy, the smaller the extent of the accessible
prediction zone. In this work, the performance of the predictions are quantified on a properly
limited prediction zone, hence, clear definitions of boundaries need to be formulated. Assuming
that limiting frequency and direction bandwidths of the wave model are known, we describe in
this section the spatio-temporal evolution of the prediction zone boundaries in both cases of long-
and short-crested waves when wave measurements are made using an optical sensor such as a
lidar camera.

III.3.2.1 Spatio-Temporal Evolution for Long-Crested Waves

As detailed in the introduction of this section, both theoretical and experimental studies have
shown that disturbances associated with wave components in a dispersive wave field, of given
amplitude, frequency, and phase, travel at the associated group velocity along their direction
of propagation. The intersection of the slowest and fastest components thus determines the
boundary of the spatio-temporal region within which information is available and a prediction
can be issued. The choice of the limiting wave frequencies is done regarding an “acceptable”
level of error (see section III.3.1 for details), and is discussed in section III.3.4. Consequently,
as time increases, the accessible prediction zone, denoted P, shrinks, to eventually disappear
when the assimilated information is completely dispersed in space. Figure III.8 illustrates this
phenomenon for a unidirectional wave field propagating in the x-direction. The last time used
for the assimilation corresponds to the reconstruction time tr. If only spatial data is used in
the assimilation (figure III.8a), the prediction zone at reconstruction time P (tr) is the spatial
area where observations were made. However, when spatio-temporal datasets are used (over an
assimilation time Ta, figure III.8b), P (tr) expands due to the advection of wave information
during Ta. A point (x, t ≥ tr) is included in the prediction zone if

xb
o + cg1 (t− tr) ≤ x ≤ xe

o + cg2 (t− tr) , (III.7)
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(a) (b)

Figure III.8: Evolution of the wave prediction zone in time and space for the assimilation of: (a)
spatial data and (b) spatio-temporal data (dash lines are prediction zones boundaries at time tk).
The increase in the prediction zone relative to that of spatial only observations is highlighted in
red. cg1 and cg2 denote the fastest and slowest group velocities, respectively.

where cg1 and cg2 are the fastest and slowest group velocities, respectively, and xb
o and xe

o define
the beginning and the end of P (tr) asx

b
o = min

k

{
xmin
ok + cg1 (tr − tk)

}
,

xe
o = max

k
{xmax

ok + cg2 (tr − tk)} ,
(III.8)

where index k ∈ {1, ...,K} with K the number of observation times.

In order to avoid confusion, we clarify here the different terms related to the notions of
observation, reconstruction and prediction:

• the prediction zone is defined by equations (III.7) and (III.8), and is denoted P (t) with
t ≥ tr;

• the observation zone (ormeasurement zone) corresponds to the spatio-temporal region
covered by the observations (or wave measurements);

• the predicted solution (or prediction) refers to the wave model solution included in the
prediction zone;

• the reconstructed solution (or reconstruction) refers to the wave model solution in-
cluded in the observation zone.

III.3.2.2 Extension to Short-Crested Waves

In case of short-crested waves, the wave field is decomposed in individual wave components
propagating in direction θ ∈

[
θmin, θmax

]
. The corresponding prediction zone can be calculated

for each direction using equations (III.7) and (III.8), as if it were a one-directional case, by
replacing xo by do = ro · k̂ = xo cos θ + yo sin θ, i.e., the distance along the considered direction.
The intersection of each zone forms the two-dimensional prediction zone. An exhaustive and
detailed formulation of the prediction zone boundaries is provided by Qi et al. (2018b). Here,
the prediction zone area is approximated based on two extreme directions θmin and θmax, as
shown in figure III.9.
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Figure III.9: Location of the prediction zone for a two-dimensional set of observations after a
propagation time of t = tr + ∆t. It is approximated by the intersection of the one-dimensional
prediction zones calculated at two extreme directions.

III.3.3 Bandwidths of the Modeled Wave Field

The dynamics of a wave field is dominated by the propagation of its most energetic compo-
nents. Since ocean wave generation processes yield energy spectra with fairly narrow frequency
bandwidth in their main direction of propagation, the dynamics of the wave field can be accu-
rately represented by finite frequency and direction bandwidths having appropriate cutoff limits(
kmin,max, θmin,max

)
. Appropriate definition of these limits is important for the assimilation pro-

cedure that parameterizes the wave model on the basis of prescribed values of wave frequencies
and directions.

III.3.3.1 Limitations Due to the Observation Grid

As mentioned above, the spatio-temporal characteristics of the observation grid constrain the
wave information that is accessible. The smallest wavenumber measurable in this grid kmin = 2π/Lo
is function of the largest distance Lo = xe

o−xb
o between two observation points at reconstruction

time tr (see figure III.8b). However, Lo itself depends on the minimum and maximum group
velocities, thus on the cutoff frequencies. This paradox is resolved by conservatively calculating
kmin = 2π/Lc, with Lc = xe

o − xmin
o(k=K) ≤ Lo. Lc only depends on the spatio-temporal loca-

tion of the observations and on the minimum group velocity, which is related to the high cutoff
wavenumber kmax.

When reconstructing a signal over a regular observation grid (i.e., with a constant spatial sam-
pling), the maximum high cutoff frequency must satisfy Shannon’s condition kmax ≤ 2π/ (2`o)
where `o is the distance between two observation points. Since the observation grid is highly
irregular when using an optical method (section III.1.2.1) and the prediction error depends on
the amount of energy included in the wave model (section III.3.1), kmax is set so that the spec-
tral energy truncated at higher frequencies is negligible for the dynamic description of the wave
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field (details in the next section). Also, since optical measurements provide observations at many
spatial locations, there is no constraint on the cutoff directions from the observation grid. Hence,
likewise kmax, θmin,max are calculated based on the truncation of a negligible amount of energy.

III.3.3.2 Wave Energy as Criterion

If an estimate of the underlying wave field is known, one way to choose these parameters is
to evaluate their influence on the quality of the reconstructed or predicted wave field, since a
convergence of the quality of the reconstruction/prediction is expected as kmax increases and[
θmin, θmax

]
gets larger.

In operational conditions, such information is not typically available and one must rely on
an estimate of the wave spectrum S (k, θ), for instance based on measurements of the motion of
the structure of interest, or from earlier measurements of free surface elevations. In this case,
relevant values of kmax and θmin,max can be selected by ensuring that∫ kmax

kmin

∫ θmax

θmin

S (k, θ) dθ dk ≤ (1− µ)

∫ +∞

0

∫ 2π

0
S (k, θ) dθ dk = (1− µ)m0, (III.9)

where µ � 1 is the fraction of total energy that can be considered as negligible on free surface
dynamics.

III.3.4 Group Velocities for the Determination of the Prediction Zone

In practice, the low cutoff wavenumber kmin calculated for the wave model parameterization is not
adapted for the determination of the evolution of the prediction zone. Indeed, kmin being defined
with respect to Lc (section III.3.3.1), which is calculated from a particular set of observations,
the comparison of predictions made from different observations would not be relevant since the
prediction zone evolution would be based on a different value of kmin, thus on different theoretical
prediction errors, as explained in section III.3.1.

The determination of cg1,2 that drive the evolution of P and limit its extent could then
be based on the amount of neglected energy beyond the boundaries of the interval formed by
the associated wavenumbers [k1, k2], i.e.,

∫ k1
0 E (k) dk =

∫ +∞
k2

E (k) dk � m0, where E (k) is
the wavenumber spectrum. However, the asymptotic behavior of the wave spectrum at large
wavenumbers influences the estimate of the integral of E (k) for k → +∞ in a way that
leads the wave amplitude associated with k1 to be larger than the one associated with k2, i.e.,
E (k1) > E (k2). Since one intended application of deterministic wave prediction is the motion
prediction of floating structures (whose response amplitude operators generally do not filter out
low-frequency excitations), long waves are important to take into account in the estimate of the
prediction accuracy. Hence, it appears important to impose a constraint on the amplitude of
waves associated to the cutoff wavenumbers.

Here, we choose to calculate the limiting wave amplitudes with respect to the peak of the
wave spectrum. Accordingly, the wave group velocities cg1,2 that govern the evolution of the
prediction zone boundaries are defined based on two angular velocities ω1,2 such that

E (ω1) = E (ω2) = µE (ωp) , (III.10)

where E (ω) = E (k) /cg is the surface elevation angular frequency spectrum, ωp is the angular
frequency based on its peak wavelength, i.e., that of maximum energy, and µ is a small fraction,
here, of the peak spectral energy. ω1 (ω2) is the smallest (largest) angular frequency to respect
condition (III.10). In the following, we will use the linear deep-water dispersion relationship
to estimate the group velocities from ω1,2. An example is given in figure III.10 that shows the
location of the angular frequencies ω1,2 with respect to the wave spectrum for µ = 0.05.
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Figure III.10: Wave spectrum ( ) bounded by angular frequencies ω1,2 ( ) calculated
according to equation (III.10) with µ = 0.05.

III.4 Measurement Zone Determination

In operations, a target observation zone has to be defined for the parametrization of the sensor’s
viewing and aperture angles. Then, the problem can be formulated as follows: for any wave field
of spectrum S (k, θ), find the appropriate spatio-temporal observation zone that leads the target
horizon of prediction H (t) to be included in the accessible prediction zone P (t). The target hori-
zon of prediction is a spatio-temporal region within which the wave field has to be predicted for
the purpose of the application. To solve this problem, the relationship between the observations
and the accessible prediction zone described previously has to be inverted. With no more infor-
mation than the horizon of prediction, however, this inversion problem is ill posed: many sets of
observations can lead to a prediction zone that includes the same horizon of prediction (but with
different prediction accuracy). The definition of the optimal inversion (i.e., observations that lead
to the most accurate prediction) involves many sea state and measurement properties and could
be the object of an independent study. Nevertheless, under specific constraining assumptions, it
is possible to relate the horizon of prediction and the sensor’s parameters, as we will see below.

In this section, we first investigate the implication of the extent of the measurement zone on
the time/space location of the farthest predictable point in case of a unidirectional wave field.
Then, in a restrictive configuration and still for unidirectional waves, we give the expression of
the camera’s viewing and aperture angles as a function of an arbitrary horizon of prediction.

III.4.1 Observation Footprint Versus High-Frequency Resolution

We saw in section III.3.1 that the extent of the prediction zone is strongly dependent on the
desired value of prediction error. Here, we try to address the following question: for a prescribed
theoretical prediction error (i.e., 1−P , equation (III.6)), what setup allows to predict the farthest?
Two strategies are used, one based on the truncation of low-frequency components by reducing the
footprint of the observations, the other based on the truncation of high-frequency components.
To do this, we consider a long-crested wave field and determine the value of the farthest point
included in the prediction zone, that is the point (xmax, tmax) where P (t) ends (see figure III.8),
as a function of the cutoff wavenumbers k1,2 that are used to calculate P .

Formally, xmax and tmax, respectively the farthest predictable location in the downstream
direction and the latest predictable time, are calculated as

tmax = Lo/ (cg1 − cg2) where Lo = 2π/k1, and xmax = tmaxcg2. (III.11)

Results are plotted in figure III.11, showing the evolution of P , xmax, tmax and Lo as a function
of k1 with a fixed k2 (case (1), dashed green line) or k2 with a fixed k1 (case (2), continuous
blue line). In both cases (1) and (2), the value of the fixed wavenumber is taken sufficiently
low or high (depending on the case) so the evaluation of P is considered independent on it. In
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Figure III.11: Evolution of P (top left), xmax (top right), tmax (bottom left) and Lo (bottom
right) as a function of k1 with a fixed k2 (case (1), ) or k2 with a fixed k1 (case (2), ).
In both cases, the cutoff wavenumbers leading to a theoretical prediction error of 5% are marked
(case (1): ; case (2): ).

practice, we take k2 = 5kp in case (1) and k1 = 0.3kp (leading to a realistic value of Lo ≈ 3.3λp)
in case (2). The wave spectrum (JONSWAP, γ = 3.3) is also given in the top-left plot as a
visual help for interpretation. We see that the truncation of the low frequency by reducing the
size of Lo do not directly lead to increase xmax and tmax, which both decrease until k1 & kp and
P . 0.4. It should then be preferred to truncate the spectrum at high frequencies which directly
contributes to increase both xmax and tmax. For example, for a theoretical prediction error of 5%
(i.e., P = 0.95), xmax attains approximately 1.25λp and tmax is on the order of 5Tp in case (2).
On the other hand, in case (1), xmax and tmax respectively drop approximately to 0.8λp and 4Tp.

III.4.2 Derivation in a Simple Configuration

We detail here the method to determine the measurement zone that leads to the desired prediction
zone. The problem being quite complex to formulate in the general case, we consider the simpler
configuration of long-crested waves whose cutoff frequencies beyond which the wave energy is
negligible are known.

The determination of the measurement zone starts from the horizon of prediction, defined as
a spatio-temporal region that has to be included in the accessible prediction zone. It is defined by
both a time interval [ta, tb] and a space interval xc (t)±d, in which d is a distance surrounding the
mobile location xc (t) of the center of the mobile structure of interest. It yields H (t) = xc (t)±d
for t ∈ [ta, tb]. The relation between the accessible prediction zone and the measurement zone is
not bijective: multiple sets of measurements can be used to get access to the desired prediction
zone. In the presented example, we limit the observations to a fixed spatial zone during the
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duration of the measurements and the assimilation time Ta is predefined.

To ensure that H (t) is included in the prediction zone, we determine the points (xp
1 , t

p
1)

and (xp
2 , t

p
2) constraining the size of the prediction zone as shown in figure III.12 and whose

expressions yield

tp1 = arg min
t
{xc (t)− d+ cg1 (t− ta)} ,

tp2 = arg min
t
{xc (t) + d+ cg2 (t− ta)} ,

for t ∈ [ta, tb] , and
xp

1 = xc (tp1)− d,
xp

2 = xc (tp2) + d.

From these points, it is possible to determine the size and localization of the measurement zone
using the group velocities corresponding to the cutoff frequencies, the assimilation time Ta and
the time instant tr at which the prediction is supposed to be issued. It follows

Figure III.12: Space/time diagram for the determination of the camera’s parameters (α, αa) from
a prediction horizon H (t), an assimilation time Ta and a mobile structure trajectory xc (t).

xm
1 = xp

1 − cg1 (tp1 − tr) ,
xm

2 = xp
2 − cg2 (tp2 − tr + Ta) .

Finally, from these measurement zone characteristics, we calculate the parameters of the sensor
as a function of time during Ta, as

α (t) =
1

2

[
tan−1

(
xm

1 − xc (t)

zc

)
+ tan−1

(
xm

2 − xc (t)

zc

)]
,

αa (t) = tan−1

(
xm

2 − xc (t)

zc

)
− tan−1

(
xm

1 − xc (t)

zc

)
,

for t ∈ [tr − Ta, tr] .
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At any time during the measurements, we are able to unambiguously determine the values
of the sensor parameters, being the viewing and aperture angles. To do this, we supposed that:
the wave field is unidirectional, we know the cutoff frequencies that govern the evolution of the
prediction zone, the assimilation time is predefined as well as the reconstruction instant, and
the spatial extent of the measurements is set constant during the whole assimilation time. The
above analysis is thus very limited, and issues related to the generalization of the solution are
addressed in the next section.

Quantification for a practical case

In order to have in mind some orders of magnitude related to the time and space scales
involved in the measurements, we consider in this paragraph the case of a ship that is 142 m
long, navigating in a unidirectional JONSWAP sea state of peak period Tp = 10 s and peakedness
parameter γ = 3.3. With similar assumptions to those in the configuration depicted above, we
consider a horizon of prediction that is 200 m long and centered on the ship location (i.e., d = 100
m), and that spans a 10 s time, from 20 s to 30 s after the first measured waves enter the region
(i.e., from ta = tr + 2Tp to tb = tr + 3Tp). Assuming that we limit the assimilation time Ta to 10
s (= Tp), we calculate the distance over which the lidar has to measure surface elevations (i.e.,
xm

2 − xm
1 ) for the horizon of prediction to be included in the accessible prediction zone, for two

configurations that are with and without a ship forward speed. In both cases, the group velocities
for the prediction zone calculation are determined for the wave spectrum using condition (III.10)
with µ = 0.05 (i.e., cg1 ≈ 10.8 m/s and cg2 ≈ 4.3 m/s).

For the first configuration in which the ship has no speed, we find a measurement distance of
395 m (≈ 2.5λp). For the second configuration in which the ship is moving in the opposite wave
direction with a forward speed of 15 m/s, we find a measurement distance of 545 m (≈ 3.5λp).
Considering a longer assimilation time of 20 s (i.e., Ta = 2Tp), we find 352 m (≈ 2.3λp) and 502
m (≈ 3.2λp) with and without the forward speed, respectively. In all cases, the measurement
distance is on the same order of magnitude than the theoretical possibilities of lidar sensors,
which should be able to measure over distances of several peak wavelengths when mounted on a
ship (example of such configuration in figure III.4a).

III.4.3 Difficulties for Generalization

As mentioned above, the principal difficulty to provide a reliable method for the determination
of the measurement zone in all configurations comes from the surjective relationship between the
measurement zone and the resulting prediction zone. Beyond the restrictions dictated by physical
description of the wave propagation processes (i.e., advection of the wave information at group
velocity) and the technical limitations of the sensor (e.g., altitude, grazing incidence, resolution),
it is necessary to formulate restrictions on the measurement strategy to close the problem and
be able to find a solution. Such restrictions can be formulated based on the relations between
some properties of the observations and how they condition the data assimilation procedure:

• The size in space/time of the observations determines the lowest measurable frequency. It
is thus important to either cover a surface (parameter Lo in figure III.8) large enough to be
equal to the longest wavelength of interest, or make sure that the measurements are made
during a time (Ta) that is long enough to be equal to the longest wave period of interest;

• The sampling rate in space/time of the observations determine the highest measurable
frequency. Nyquist theorem applies only in case of uniformly sampled data, which is not
the case of remote optical measurements. However, it is possible to say that, at least,
the minimal spatial (temporal) interval between two observations has to be lower than
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half of the lowest wavelength (period) of interest. Instead of the minimal interval, global
indicators that generalize the Nyquist theorem to non-uniformly sampled data can be used
(e.g., Belmont, 1995);

• The level of non-uniformity of the observations has an impact on the performances of the
assimilation process, thus influences the quality of the predictions. A limiting value of a
measure of the degree of non-uniformity such as the one proposed by Belmont & Morris
(1994) could serve as an additional restriction;

• The density in space/time of the observations determines the quantity of physics that can
be assimilated for a specific size of observations, and the larger the assimilated quantity of
physics, the more accurate the prediction;

• The angle of incidence of the sensor’s beams with the ocean surface, beyond the creation
shadowing effects and irregularity in the observations, increases the measurement error.
Since the angle of incidence increases with the measurement distance from the sensor, it
seems reasonable to impose a limitation of measurement distance.

The properties of the algorithm that is used to invert the wave model as well as the properties
of the considered optical sensor have not been investigated enough to provide clear restrictions in
every wave configuration. Moreover, the presented methodology is sensible to the complexity of
the sea state underlying the observations. In case of multi-modal sea state in which the directional
energy distribution is very spread out (e.g., superposition of two sea states with opposite main
directions of propagation) the described approach requires to cover a zone that is large enough
to measure every wave component that is supposed to interfere with the structure trajectory.

Conclusion

The distribution of lidar surface elevation measurements were characterized using a geometrical
approach, highlighting the strong spatial non-uniformity. An assimilation procedure adapted
to such data were developed to accurately parameterize the nonlinear wave model detailed in
chapter 2, namely ICWM. We then explained the relationship between the accessible prediction
zone and the spatio-temporal location of the wave measurements. The space/time distribution
of the theoretical prediction error was derived from the amount of truncated energy by the
accessible measured information, showing that the extent of the prediction zone strongly depends
on the expected prediction accuracy. Criteria are presented for the selection of the frequency
and direction bandwidths for the modeled wave field as well as for the prediction zone evolution,
allowing to close the wave-model inverse problem and to define a clear region within which the
prediction capabilities will be estimated. Finally, issues related to the determination of the
optimal measurement zone were exposed and partly addressed.

From the characterization of remote optical free surface observations to the derivation of the
ICWM inversion and the description of the accessible prediction region, this chapter completes
the theoretical basis of the prediction method employed in this thesis.
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Résumé du quatrième chapitre

Dans le quatrième chapitre, les propriétés et performances du modèle non-linéaire et de la méth-
ode de prédiction développés sont étudiés à partir de jeux de données réalistes – bien que synthé-
tiques et supposés sans erreur de mesure – de mesures optiques. Des simulations haute-fidélité
de champs de vagues sont utilisés pour fournir des surfaces océaniques de références, à partir
desquelles les observations sont générées. Après une description de la méthode de génération
des mesures lidar synthétiques, nous étudions la dépendance de la précision des reconstruc-
tions/prédictions à divers paramètres d’assimilation, à savoir le nombre de composantes dans le
modèle pour la représentation du champ de vagues, la fréquence de coupure haute de l’intervalle
utilisé, la non-uniformité de la distribution des observations, la durée d’assimilation et l’étendue
directionnelle des observations dans le cas d’un champ de vagues directionnel. Nous montrons
que la précision de la reconstruction converge rapidement avec le nombre de composantes dans
le modèle de vagues (quelques dizaines suffisent pour un champ de vagues unidirectionnel), ainsi
qu’avec la fréquence de coupure haute. La caractéristique principale des mesures optiques, qui
est de produire des données distribuées spatialement de manière très irrégulière, rend la recon-
struction spatiale de champ de vagues particulièrement difficile. En revanche, inclure plusieurs
jeux de mesures acquis à des instants différents dans l’inversion du modèle de vagues permet de
contrer cette difficulté. Avec une procédure d’assimilation correctement paramétrée, l’effet de la
prise en compte des propriétés non-linéaires de ICWM sur la qualité de la prédiction est analysé
pour des champs de vagues de différentes cambrures caractéristiques. Il est montré que, malgré
sa formulation analytique relativement simple, ICWM est capable de modéliser des effets non-
linéaires menant à une amélioration non-négligeable de la prédiction. Comparée à celle de LWT,
l’utilisation de ICWM dans l’algorithme de prédiction permet une réduction relative de l’erreur
de prédiction de l’ordre de 25% pour la cambrure étudiée la plus élevée, soit Hs/λp ≈ 3.8%. Une
large partie des résultats de ce chapitre est également présentée dans Desmars et al. (2018a,b).
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Chapter IV

Numerical Investigation of the
Prediction Algorithm

Introduction

In this chapter, we investigate the capabilities of the developed nonlinear wave model and pre-
diction method from synthetic data. High-fidelity numerical simulations of wave fields are used
to provide reference ocean surfaces, from which lidar-like observations are generated through a
geometrical approach.

After a brief description of the method for the generation of synthetic lidar observations, we
study the dependence of the proposed prediction algorithm, in terms of reconstruction/prediction
accuracy, on some assimilation parameters, namely the number of wave components in the wave
models for the wave field representation, the high cutoff boundary of the frequency bandwidth,
the non-uniformity of the observations’ distribution, the assimilation time, and the directional
extent of spatial observations in case of short-crested waves. For a properly parameterized
assimilation procedure, the impact of the inclusion of the nonlinear properties of ICWM on the
prediction accuracy is then investigated for different characteristic wave steepnesses.

IV.1 Generation of Synthetic Lidar Measurements

In this section, we first go through the numerical settings of a High-Order Spectral (HOS) model
to properly generate a realistic nonlinear surface, then we describe the process to calculate the
locations of lidar rays intersections with that reference surface.

IV.1.1 Reference Surface Generation

The reference surface is generated by means of HOS simulations through the open-source solver
HOS-ocean (Bonnefoy et al., 2010; Ducrozet et al., 2007, 2016), developed at ECN. The HOS
method allows performing deterministic and completely nonlinear (according to the potential flow
theory) simulations. It is thus adapted for the accurate and computationally efficient propagation
of complex sea states, even in the realistic configuration of a directional irregular waves. A
detailed description of the HOS framework is given in section I.3.4.1.

The numerical procedure to run HOS simulations is as follows. First, a linear surface is
generated through an IFFT using a specified wave energy spectrum and random phases to obtain
the initial elevation ηr (r, t = 0) that is propagated in time. The size of the spatial domain is
chosen so that it includes the spatial extent of both the observation and prediction zones. The
spatial discretization (directly linked to the number of modes for the surface representation) is
chosen high enough to ensure converged simulations. In the following, and according to previous
numerical studies (e.g., Ducrozet et al., 2016, 2012), we chose to have a number of nodes per
peak wavelength of 32 along the main direction of propagation. In case of short-crested waves,
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16 modes are used in the transverse direction. Periodic boundary conditions are used in order
to run simulations over a long period of time without boundary influence. Directly propagating
a linear surface with a nonlinear HOS procedure creates non-physical high-frequency standing
waves that critically affect the validity of the solution. In order to prevent the creation such
numerical perturbations, HOS-ocean uses an adjustment procedure developed by Dommermuth
(2000) to allow nonlinearities to develop smoothly during a relaxation time, here fixed to 10 peak
periods. A conservative time of 20 peak periods is taken before the surface is considered with
nonlinearities fully developed and used for the generation of the observations. In the presented
cases, the order M of the HOS expansion is set to 1 or 5, to generate a linear or a nonlinear
reference surface, respectively. Simulations result in complex modal amplitudes that serve to
directly reconstruct the free surface elevation on spatial grids. In all cases, the water depth is
taken so that the deep water assumption applies.

IV.1.2 Surface-Rays Intersection Calculation

From the nonlinear surface previously described and a supposed set of lidar camera parameters
(refer to section III.1.1 for details), we calculate the instantaneous intersections between lidar
rays and the free surface. In order to determine the intersection between a specific ray and the
surface, a purely geometrical approach is used: given a spatial set of free surface elevation values
ηr, we look for the surface point that minimizes its distance dr with the lidar ray trajectory. In
directional waves, this distance is

dr = ||us × ur|| ,

where us = (xr − xc, yr − yc, ηr − zc) is a vector defined by two points, the lidar location and
the free surface point of interest, and ur = (sinαr cosβr, sinαr sinβr,− cosαr) is a unit ray
vector. αr and βr are the vertical and horizontal ray angles and are swept within intervals
[α− αa/2, α+ αa/2] and [β − βa/2, β + βa/2] (where αa and βa are the lidar aperture angles,
see figure III.1), respectively. All these parameters are depicted in figure IV.1. In case of

Figure IV.1: Parameters for the calculation of the distance between synthetic lidar rays and free
surface elevation points.

unidirectional waves, this distance is calculated in a slightly different way:

dr = ||−us + (us.ur)ur|| ,

in which us = (xr − xc, ηr − zc) and ur = (sinαr,− cosαr).
After a first calculation on a relatively rough grid of surface points, the calculation of inter-

section is done using a refined grid around the initially found location. This ensures that each
ray leads to a unique observation, even in spatial zones of very dense measurements (i.e., close
to the lidar). In addition, we make sure to select the first crossing point of the surface by the
lidar ray, so that shadowing effects are accurately modeled. An example of a space series of
observations obtained using this method for a unidirectional wave field is depicted in figure III.3.
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IV.2 Sensitivity Analysis

In the following, we illustrate and discuss key characteristics of the proposed ocean wave predic-
tion algorithm through its application to reference synthetic surface elevation datasets generated
as explained in the previous section. For a unidirectional wave field, the influence of assimila-
tion parameters on the agreement between the reconstruction/prediction and the reference data
is studied, in particular, the number of wave components, the high cutoff frequency, the non-
uniformity of the distribution of the observations, and the number of assimilated space series,
while highlighting differences between linear and nonlinear prediction results. We then apply the
algorithm to predict a directional wave field and study the influence of the horizontal aperture
angle of the lidar camera.

IV.2.1 Synthetic Dataset Parameters

We use a JONSWAP spectrum with parameters Hs = 3 m and Tp = 10 s leading to the
characteristic steepness Hs/λp ≈ 2%, and a peak enhancement factor γ = 3.3. In case of short-
crested waves, the directional wave spectrum is obtained by multiplying equation (I.2) with the
directional spreading function (I.3) (using the spreading parameter ν = π/4 and main direction
of propagation θdir = 0◦, that is along the x-direction). The synthetic lidar is fixed, located at
an elevation zc = 30 m above the mean surface level, observing the surface with viewing angles
(α, β) = (76◦, 0◦) and aperture angles (αa, βa). αa is fixed to 20◦, while the influence of βa is
investigated in section IV.2.4.1.

Following the formalism introduced in section III.2, a number J of observations are created
to form each spatial series, which has to be multiplied by a number K of observation times to
get the total number of observations L = J ×K. The time sampling rate of the observations is
constant and set to 1 Hz (= 10fp).

IV.2.2 Prediction Error Definitions

The following normalized root mean square (rms) error is used to assess the prediction accuracy

Erms (t) =
1

Ns

Ns∑
i=1

[∫
P(t)

(ηi (r, t)− ηri (r, t))2 dr

/∫
P(t)

η2
ri dr

]1/2

. (IV.1)

It quantifies the scaled mean squared difference between the reconstructed (η (r, t)) and reference
(ηr) surface elevations over the prediction zone P (t). Since the quality of the prediction depends
on the measured local surface geometry at observation times, the misfit indicator is computed
by averaging error values for Ns surface predictions. An unbiased estimate can only be obtained
for a large number of samples from independent wave field realizations (i.e., of different set of
random wave phases using the same initial wave spectrum) with, to the limit, Ns →∞. In the
following numerical investigation, Ns = 50 realizations are generated (except where specified)
with HOS-ocean, which allows the presented results to be converged.

In order to locally assess the spatial agreement between the predicted and reference surfaces,
the following normalized misfit indicator is computed

E (r, t) =
1

Ns

Ns∑
i=1

|ηi (r, t)− ηri (r, t)|
/
Hs. (IV.2)

IV.2.3 Prediction of Long-Crested Waves

The quantification of the influence of the model and reconstruction parameters is first done for
long crested waves. The reconstruction is performed using N wave components whose wavenum-
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IV.2 NUMERICAL INVESTIGATION – Sensitivity Analysis

bers are linearly distributed in an interval
[
kmin, kmax

]
. The low cutoff wavenumber is cal-

culated from the spatial extent of the observation zone at the first observation time t1, i.e.,
kmin = 2π/

(
xmax
o1 − xmin

o1

)
(see figure III.8b). Both the number of wave components N and

high cutoff wavenumber kmax are investigated and chosen with respect to the convergence of the
reconstruction error, that is the rms prediction error at reconstruction time Erms (tr). In this
section, the wavenumbers k1,2 that are used to calculate the group velocities cg1,2 that decides
the prediction zone evolution are similar to the cutoff wavenumbers of the reconstructed wave
field, i.e., k1 = kmin and k2 = kmax.

IV.2.3.1 Convergence with Frequency Parameters

Linear long-crested wave fields are first generated and then reconstructed based on data acquired
at a single time (i.e., K = 1), with L = 64 observation points uniformly distributed over the
observation area. Figure IV.2 shows the prediction error Erms at reconstruction time tr, as a
function of the number of wave components N used in the reconstructed wave field, for various
high cutoff frequencies. Note that Shannon’s criterion yields kmax / 13.9kp, and the HOS

Figure IV.2: Reconstruction error of a linear surface as a function of the number of wave com-
ponents, for different high cutoff frequencies, using a uniform observation grid for K = 1 (i.e.,
only spatial observations).

surfaces were generated using a cutoff frequency kmax = 16kp. As expected, results show that
the reconstruction error decreases as the high cutoff frequency grows, and eventually converges
to a minimum, here approximately 10%, for kmax = 10kp. In all cases, the number of wave
components (N = 15 to 60) appears to have a very limited influence on the accuracy of the
reconstruction. In the following we use kmax = 10kp and N = 50.

IV.2.3.2 Modeling of Wave Nonlinearities

Next, nonlinear reference surfaces are generated using the same parameters and the rms error
over the prediction zone is computed as a function of time t = tr to tr+3Tp ≈ 0.8tmax (with tmax

calculated according to equation (III.11)), for the same L = 64 uniformly distributed observation
points, using either the LWT, CWM1, or ICWM model in the reconstruction (see appendix A.1
for details about CWM1 inversion).

For each model, the ocean surface is first reconstructed at tr and then propagated to a later
time when its prediction error (IV.1) with respect to the reference HOS solution is evaluated.
For comparison, the case of figure IV.2 propagated in time is also marked on the figure (i.e.,
prediction using the LWT of a linear reference surface). Figure IV.3 shows that at t = tr all
models give the approximately same results, whereas, as time increases, each wave model behaves
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IV.2.3 Prediction of Long-Crested Waves

Figure IV.3: Prediction error of a nonlinear ocean surface as a function of time, for different
wave models, using a uniform observation grid for K = 1 (i.e., only spatial observations).

according to its own properties. While the CWM1 model provides a better prediction than the
LWT model, the ICWM further improves the reconstruction accuracy as time increases, due to
the additional nonlinear phase velocity correction. Here, the improvement of the nonlinear over
the linear prediction is on the order of a few percent. The linear prediction of a linear reference
surface, shown on the same figure, is an indication of the best reconstruction accuracy that could
be achieved for this problem and dataset, if all nonlinear effects were properly accounted for in the
nonlinear wave models. Hence, the difference between this linear and nonlinear forecasts using
ICWM increases with time due to the incomplete representation of time-dependent nonlinear
effects in the latter model, to approximately reach 5% after 3Tp of propagation.

IV.2.3.3 Non-Uniformity of Observations and Inclusion of Time Information

In this section, the observations are no longer uniformly spread over the lidar footprint, but
follows the sampling procedure explained in section IV.1 that leads to non-uniform spatial dis-
tributions. First, considering a single observation time (i.e., K = 1), figure IV.4 shows that the
prediction error greatly increases (by more than a factor of 2) as compared to a uniform dataset.
As suggested in earlier work (Nouguier et al., 2014), this deterioration of the ocean reconstruc-

Figure IV.4: Prediction error of a nonlinear ocean surface as a function of time, for different
numbers of observation times K, using ICWM over a non-uniform grid of observation points.
Some LWT and/or uniform grid results are plotted for reference.

tion and prediction can be significantly reduced by increasing the number of observation times.
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IV.2 NUMERICAL INVESTIGATION – Sensitivity Analysis

Indeed, this has the effect of incorporating some surface kinematic properties (e.g., wave veloc-
ity) into the observation dataset, helping the wave model parameterization for an accurate wave
field representation. Thus, for K = 2, figure IV.4 shows that the error already drops by 10% as
compared to K = 1, and then further drops when increasing K to reach a minimum of ∼ 20%
for K = 10. The latter, however, is still ∼ 5% larger than the error achieved when using uniform
observations, for the same number of observation times (also shown in the figure). Comparing
results in figures IV.3 and IV.4 we also see that, when using a uniform grid of observation points,
increasing K has no significant effect on the prediction error. For both the LWT and ICWM
models, maximum errors indeed remain on the order of 15 to 20% for K = 1 and 10, even if
ICWM leads to a consistently better prediction.

Figure IV.4 also shows that the error decreases when K increases form 1 to 10, but then
gradually increases for larger K values. This is likely to result from increasing numerical errors
in the inverse problem solution, as the observed dataset becomes larger. The number of wave
components, here fixed to 50, might be the reason of the progressive increase of the prediction
error for K = 20 and 30: the larger the assimilation time, the larger the need for wave com-
ponents to accurately fit the data. Increasing the number of wave components would have lead
to continue the convergence of the prediction error to a minimal value, as it is shown later in
section V.3.2.

In general, increasing the assimilation time Ta results both in a decrease of the prediction
error and in an increase of the size of the prediction zone. Both effects are illustrated in figure
IV.5, which shows the reference and reconstructed surface elevations, for K = 1 and 30, at
reconstruction time tr (= t1 for K = 1), together with the observation points at this specific
instant. With K = 30, the reconstructed surface is much closer to the reference data than for
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Figure IV.5: Elevation of the reference (HOS) and reconstructed (ICWM) surfaces, for different
numbers of observation times. Vertical lines define the spatial limits of the accessible prediction
zones.

K = 1, and the prediction zone is larger. The figure shows that, for K = 30, the reconstructed
surface remains quite close to the reference data even beyond the prediction zone (x/λp & 3.8).
This suggests that the estimate for the upper limit of the prediction zone, which is calculated
based on the distance traveled by the slowest wave component during the assimilation time,
is conservative (equation (III.7)). As explained in section III.3.1 that presents a theoretical
approach to determine the prediction error, since longer waves travel faster, the prediction of low
frequency components can still be accurate beyond the upper limit (here, defined with respect
to kmax). A similar effect affects the high frequency components at distances below the lower
limit, when time increases (t > tr). This validates the presence of a “gray area” surrounding the
prediction zone and growing with time, over which the amount of measured information could
still be enough for an accurate prediction, but with decreasing accuracy as distance increases
from the prediction zone boundary.

In figure IV.5, when the density of observation points decreases (K = 1, 1.2 . x/λp . 2.3),
the reconstructed surface tends not to fit well the reference surface elevation. As Shannon’s
condition is not met over this part of the observation zone, an aliasing phenomenon leads to
overestimating high frequency component amplitudes, which causes the observed high frequency
surface oscillations. However, since this poorly reconstructed part of the observation zone is
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IV.2.3 Prediction of Long-Crested Waves

located close to the lower limit of the prediction zone, and the inaccuracy only affects high
frequency components, the growing “gray area” effect tends to remove that part of the surface
from the prediction zone, while the other part remains within it. This explains the decreasing
prediction error as a function of time for small K values observed in figure IV.4. As indicated
before, this phenomenon disappears with several observation times, due to an incorporation of
wave kinematic properties into the observations: wave propagation’s effects on the free surface
elevation are intrinsically captured in observations made at different times.

These effects are further shown in figure IV.6 which presents the spatio-temporal evolution
of the misfit E in case of the prediction of a linear surface. As explained above, for K = 1, the

Figure IV.6: Spatio-temporal evolution of the misfit E (Ns = 1) for K = 1 in both cases of (a)
non-uniform and (b) uniform distributions of observations, and for (c) K = 10 and (d) K = 30
in case of non-uniform observations. White lines define the theoretical boundaries of the spatio-
temporal region of low error. The reference surface is linear and waves propagate in the positive
x-direction. Observation zones correspond to horizontal lines in case of K = 1 (a,b) or rectangles
for K = 10 and 30 (c,d).

prediction inaccuracies are mainly located where the measurement density is poor (i.e., for low x
values along the horizontal line, figure IV.6a), allowing for high-frequency perturbations, which
are progressively removed from the prediction zone as time increases. This does not happen in

99



IV.2 NUMERICAL INVESTIGATION – Sensitivity Analysis

case of uniform observations, for which respecting Shannon’s condition prevents aliasing (figure
IV.6b). The consequences of increasing K are depicted in figures IV.6c,d, showing the results for
K = 10 and K = 30 in case of non-uniform observations. They consist in removing the initial
high-frequency perturbations and increasing the size of the prediction zone. Note that, similar
to the prediction zone, the boundaries of a “retrospection zone” is also plotted in figure IV.6 for
t < 0, showing the extent of the region within which assimilated wave information are enough
to accurately estimate the wave field hindcast.

IV.2.4 Prediction of Short-Crested Waves

We now generate a nonlinear short-crested wave field with HOS-ocean, for the same input
JONSWAP spectrum as before, multiplied by the directional spreading function (I.3) (recall-
ing ν = π/4 and θdir = 0◦) to obtain the directional spectrum depicted in figure IV.7. The

Figure IV.7: Directional wavenumber spectrum of the generated short-crested wave field. The
dashed lines mark the spectral boundaries used in the wave model to perform the predictions.

wave field reconstruction is done using an observation grid of 64× 64 spatial points (J = 4096)
with kmax = 10kp, K = 10, and 50 wave frequencies distributed over 30 directions, yielding
N = 1500 wave components. Lidar parameters detailed in section IV.2.1 are used. The low
cutoff wave number kmin is similarly defined as for long-crested waves, using the spatial extent
of the measurements at the first observation time along the main wave direction θdir. The limits
of the direction bandwidth

[
θmin, θmax

]
of the reconstructed wave field are chosen with respect

to a level of energy in the wave spectrum, and in a way that the direction bandwidth is cen-
tered on θdir. The criterion defined by equation (III.9) is used to truncate the directional wave
spectrum by an amount corresponding to 1% of the energy contained between kmin and kmax,
leading to θmin,max ≈ ±35◦. These frequency and directional boundaries are marked on top of
the directional wave spectrum in figure IV.7.

Since the number of spatial observations is significantly larger than before, calculating the
exact intersection of the L optical rays with time-varying reference surfaces becomes numerically
demanding. Thus, we estimate the horizontal location of observation points r` as if the reference

100



IV.2.4 Prediction of Short-Crested Waves

surface were plane, neglecting shadowing effects. Results are comparable since the major con-
tribution to the spatial spreading of observation points, i.e., the increasingly grazing incidence
of lidar rays at large distances, is accounted for. Also, the prediction error is now calculated for
one surface and not averaged over 50 surface realizations as before. However, even if the uncer-
tainty related to the calculation of the prediction error is complex to quantify, the estimate of
the mean rms error Erms is less dependent on the number of surface realizations for short-crested
waves than for long-crested waves, since the integral term in equation IV.1 is evaluated over an
extended (i.e., two-dimensional) spatial region P (t). Finally, the results presented here are lim-
ited to the linear wave prediction (although the reference oceanic surface is nonlinear), but the
comments pertaining to the two following sections deal with aspects that should be independent
of the wave model used.

IV.2.4.1 Directional Spreading of the Observation Datasets

In the following, we estimate the effect of the directional spreading of the observation datasets
on the ocean reconstruction, which is function of the horizontal aperture angle βa of the lidar
(figure III.1). Figure IV.8 shows the rms prediction error calculated as a function of time over the
two-dimensional prediction zone (see section III.3.2.2 for definition). With βa = 10◦, the error is

Figure IV.8: Prediction error of a nonlinear ocean surface (Ns = 1) as a function of time, using
LWT for different horizontal aperture angles.

∼ 70% at reconstruction time and almost monotonically decreases as time increases up to 3Tp of
propagation. Similar to long-crested waves, this decrease in error results from the growing “gray
area” surrounding the prediction zone boundary. Poorly reconstructed parts of the ocean surface
close to the initial prediction zone boundary are gradually removed as time increases. However,
with the decreasing size of the prediction zone, the error estimate becomes more subject to slight
variations, depending on which waves are crossing the prediction zone at the considered time,
which explains the increasing error at t = tr+2.5Tp. Such effects did not occur in the long-crested
case since errors were averaged over 50 different surface realizations. Figure IV.8 further shows
that increasing βa results in a significantly reduced error, which converges to a minimum on the
order of 15% for βa = 110◦, which is on the same order of magnitude as long-crested cases. This
large error reduction is related to the area of the ocean surface covered by the observation zone
(i.e., lidar footprint), as compared to the area of the prediction zone at reconstruction time P (tr).
As shown in figure III.9, the two-dimensional prediction zone depends on the range of directions
of propagation of wave components in the reconstructed wave field. Here, as θmin,max ≈ ±35◦ and
the lidar is facing the main wave direction, the optimal aperture angle that leads to a maximal
prediction zone coverage is 180−

(
|θmax|+

∣∣θmin
∣∣) ≈ 110◦.
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IV.2.4.2 Spatial Distribution of the Error

Figure IV.9 shows the reference (HOS-ocean) and predicted (LWT) surface elevation for the
previous case with βa = 110◦ after 2Tp of propagation. Within the prediction zone, whose

Figure IV.9: Elevation of (a) the reference surface ηr (HOS-ocean) and (b) the predicted surface
η (LWT) after 2Tp of propagation. Black lines mark the spatial boundaries of the prediction
zone.

boundaries are depicted by the straight lines, the agreement between the two surfaces is visually
good. In addition, due to wave dispersion effects, we notice that, further away the prediction
zone boundaries in the positive x-direction (i.e., main direction of propagation of the wave field),
the predicted surface is dominated by low-frequency components (long waves). In contrast, in the
spatial region located further away the prediction zone in the opposite direction, the predicted
surface elevation is dominated by high-frequency components (short waves). Implications on the
distribution of the prediction error are addressed below.

For the same case, figure IV.10 shows the horizontal distribution of the misfit E at recon-
struction time and after two peak periods of propagation. As expected, the misfit is clearly much
smaller within the prediction zone than outside of it. At both selected times, the “gray area” with
reduced local error, which surrounds the prediction zone boundary, can clearly be identified. At
reconstruction time, the “gray area” is close to the upper limit of the prediction zone (right side
of the boundary in figure IV.10a) because the reconstructed longer waves propagate faster, and
thus reach beyond this limit during assimilation time. After 2Tp, the “gray area” has expanded
and is now completely surrounding the prediction zone. This results in a different spatial distri-
bution of the prediction error: the right side of the “gray area” is dominated by perturbations
pertaining to short waves, while they pertain to long waves on the left side.

The presence of a growing low-error area surrounding the prediction zone confirms that the
method used here for estimating its boundary, i.e., considering k1 = kmin and k2 = kmax for the
determination of the group velocities cg1,2, is too conservative. As a result, for future prediction
applications, we choose to use the criterion based on the spectral amplitude of limiting wave
components (described in section III.3.4) for the determination of the limiting group velocities
cg1,2. As it will be seen later, this criterion leads the theoretical prediction zone boundaries to
better agree with the evolution of the actual region of low prediction error, using both numerical
and experimental input data.
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Figure IV.10: Spatial evolution of the misfit E (Ns = 1) at (a) reconstruction time and (b) after
2Tp of propagation. White lines mark the spatial boundaries of the prediction zone.

IV.3 Influence of Wave Steepness

In this application, we focus on the underlying physics of the sea state and its complexity which
is characterized, among other parameters, by its wave steepness. Similar to the previous section,
one-dimensional synthetic optical data is geometrically created for irregular sea states described
by their wave energy spectrum and generated using a nonlinear wave model (HOS-ocean). The
ocean surface is then reconstructed and predicted based on this dataset, using LWT and ICWM
algorithms, and compared to the reference HOS surface. This is repeated for sea states of various
characteristic wave steepnesses.

IV.3.1 Setup and Error Definitions

Sea state parameters and optical sensor configuration are similar to those used in the previous
section, except the significant wave heightHs that varies between 1.5 and 6 m, leading the charac-
teristic wave steepness to vary from Hs/λp ≈ 1% to 3.8% (i.e., close to the wave breaking limit).
Converged results were achieved using N = 50 frequency components, a high cutoff wavenumber
kmax = 10kp, and a number of observation times K = 10 with a sampling rate of 1 Hz. Here,
the low cutoff frequency is calculated according the theoretical lowest measurable wavelength,
i.e., kmin = 2π/Lo (see details in section III.3.3.1). Moreover, in operational conditions, the
predictions are only desired over a specific horizon of prediction corresponding to the space and
time scales of the operation. Accordingly, we choose here to evaluate the prediction error over
a spatio-temporal target zone T (t) that is 100 m long, centered on the lidar location xc, and
spans a 10 s time, from 20 s to 30 s after the first measured waves enter the region. Hence, a
point (x, t) is in the target zone if xc − 50 ≤ x ≤ xc + 50 and tr + 20 ≤ t ≤ tr + 30.

The two indicators described in section IV.2.2 are used, except that the integration for the rms
prediction error (IV.1) is now performed over the target zone T (t) instead of the entire prediction
zone P (t), and the resulting error is averaged over 1000 surface realizations. Compared to 50,
this high number of realizations allows reducing the uncertainty related to the estimate of the
mean prediction misfits by an factor

√
50/1000 ≈ 4.5 (according to the central limit theorem).

This is particularly important for the evaluation of the time evolution of the mean values of
E (x, t) presented in figure IV.11b, which are more sensible to each particular realization than
Erms (t) that is already averaged over a spatial region.
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IV.3.2 Prediction Results

Figure IV.11a shows E computed over a large spatio-temporal domain using ICWM, for a spe-
cific realization with Hs = 3 m. Boundaries of the prediction zone are calculated according to

(a) (b)

Figure IV.11: Numerical error of ocean prediction: (a) E (Ns = 1) using ICWM with Hs = 3 m;
white box marks the spatio-temporal target zone T (t), within the prediction zone P (t) marked
by oblique lines; dashed line at x = xc marks sensor location; (b) E (Ns = 1000) at x = xc, as
a function of time, for different steepnesses using LWT ( ) or ICWM ( ); vertical dotted
lines mark the prediction zone boundaries.

equation (III.7) and group velocities cg1,2, based on equation (III.10) for ω1,2, with µ = 5%.
For this realization, the prediction misfit is very low in the spatio-temporal target zone T (t),
within the prediction zone P (t). Note that the error is higher at t = tr for low x-values than in
the rest of the prediction zone. As explained in section IV.2.3.3, this is due to the poor spatial
sampling in this region which induces high-frequency perturbations in the reconstructed surface.
Since the badly resolved high-frequency components propagate slower than the rest of the wave
components, they progressively leave the prediction zone as time increases. Figure IV.11b shows
the time evolution of the same error averaged over 1,000 realizations at the sensor location xc,
for 4 different characteristic steepnesses (i.e., significant wave heights), using LWT and ICWM.
For each steepness, the error decreases from a relatively large value at t = tr, as waves enter
the prediction zone (located between the vertical dotted lines in the figure) where it reaches its
lowest value, and then increases to reach ∼ 0.2 after 8Tp of propagation. Within the prediction
zone, ICWM does reduce E in all cases as compared to LWT, but most significantly for the
largest steepness. Also, probably due to nonlinear phase shifts for steep waves, the location of
the minimum error shifts towards lower times as steepness increases.

Figure IV.12a further quantifies the prediction algorithm performance over the target zone
(box in figure IV.11a), by plotting the time evolution of Erms integrated within it, for LWT
and ICWM. As observed earlier, this error significantly reduces using ICWM for average to
high steepness. Moreover, Erms only slowly varies with time and, hence, its time-average 〈Erms〉
shown in figure IV.12b can provide a global estimate of the prediction model performance, as
a function of the characteristic steepness Hs/λp. In all cases this average error reduces using
ICWM rather than LWT, with the largest reduction, 13% (from 0.52 to 0.39), occurring for the
steepest wave field. This confirms the importance of accurately representing nonlinear effects,
with a model such as ICWM, when performing an ocean surface prediction based on observations,
and in particular wave asymmetry and phase shifts, which increase as the sea state becomes more
severe.
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(a) (b)

Figure IV.12: Numerical error of ocean reconstruction Erms: (a) instantaneous; and (b) time-
averaged over the target zone, for different steepnesses, using LWT ( ) or ICWM ( ).

Conclusion

In this chapter, we characterized the proposed ocean surface elevation prediction method and
showed that both long- and short-crested waves can be accurately predicted on the basis of non-
uniform datasets of realistic – but synthetic and error free – optical measurements. Algorithms
based on linear and various nonlinear wave models were applied and validated. We quantified
the influence of several wave model parameters which are shown to be of significant importance
to the wave field reconstruction. We found that the reconstruction accuracy converges quickly
with the number of wave components (a few dozens are enough for long-crested waves), as well
as with the high cutoff frequency, for which converged predictions are found for kmax = 10kp.
We also quantified effects of the main characteristic of optical measurements, which is to yield
highly sparsely distributed datasets, making for a particularly challenging spatial reconstruction.
However, we showed that using spatio-temporal information allows overcoming this issue.

Despite its simple analytical formulation, ICWM is able to model relevant nonlinear effects
in ocean wave fields that impact the accuracy of the wave prediction. The investigation of the
prediction performance with respect to the wave steepness showed that wave predictions were
significantly improved using ICWM, as compared to LWT, for moderate to relatively high steep-
ness of approximately 3.8%. The larger the wave steepness, the higher the relative improvement,
reaching a relative error reduction of 25% for the largest steepness.

In order to further assess the capabilities of the proposed prediction method in configura-
tions that are closer to the real operational conditions, predictions based on experimental data,
supplemented with digital twin simulations, are investigated in the next chapter.
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Résumé du cinquième chapitre

Dans le cinquième et dernier chapitre, nous appliquons notre algorithme de prédiction à des
données expérimentales issues d’une campagne menée dans le bassin océanique de l’École Centrale
de Nantes. Des champs de vagues de différentes cambrures caractéristiques et/ou différents
étalements directionnels ont été générés physiquement en bassin de houle, ainsi qu’à l’aide d’un
bassin numérique basé sur le formalisme HOS, fournissant un jumeau numérique (“digital twin”)
du dispositif expérimental. Les sondes (physiques ou numériques, mesurant des séries temporelles
d’élévation de surface en un point de l’espace) ont été non-uniformément distribuées en espace,
afin de représenter l’échantillonnage typique d’une surface par un capteur lidar observant la
surface avec un angle d’incidence rasant. Dans le but de valider la méthodologie de génération de
données, l’adéquation des états de mer générés avec leurs caractéristiques théoriques (hauteurs
significatives cibles) est d’abord vérifiée. Ensuite, le jeu de données correspondant aux cas
de houle unidirectionnelle est analysé plus finement pour la quantification et la qualification
physique des perturbations relatives aux conditions expérimentales. Au travers de l’examination
des oscillations résiduelles mesurées par les sondes dans le bassin de houle réel, ces perturbations
semblent être la conséquence de l’excitation par le batteur de modes propres transverses dans
le bassin. Elles sont également identifiées comme la cause principale des différences observées
entre les données expérimentales et numériques. Nous évaluons par la suite, la sensibilité de
l’algorithme de prédiction à des paramètres d’assimilation. Notre étude montre que la précision
de la prédiction converge avec la durée des séries temporelles d’élévation de surface assimilées,
c’est-à-dire la quantité de données utilisées pour effectuer la prédiction. Aussi, plus le pas
de temps des données assimilée est faible, plus la convergence est rapide, et plus la cambrure
caractéristique est élevée, plus l’erreur de prédiction augmente, sous la forme d’un déphasage non-
linéaire des vagues prédites avec la solution de référence et d’une divergence de forme. Ces deux
types de désaccord sont explicités au travers de la comparaison entre des élévations de surface
pour un groupe de vagues spécifique. Les performances de ICWM relatives à LWT et LWT-
CDR (LWT incluant une correction de phase similaire à celle de ICWM) sont ensuite quantifiées
pour différentes configurations d’état de mer. Nous montrons que, pour l’estimateur d’erreur
définie dans le cadre de cette étude, ICWM améliore les prédictions à l’intérieur de la zone de
prédiction accessible, comparé à LWT, avec une réduction maximale de l’erreur de prédiction
de ∼ 35% pour une cambrure intermédiaire de Hs/λp ≈ 3.18% (résultats numériques). Dans la
région spatio-temporelle couverte par les observations, la correction non-linéaire de forme incluse
dans ICWM améliore la représentation de l’élévation de surface. Pour les vagues qui se sont
propagées (en espace ou en temps), le facteur principal de réduction d’erreur de prédiction est
la modélisation correcte des vitesses de propagation des vagues. En revanche, en ce qui concerne
la prédiction de pente, les propriétés de représentation de forme asymétrique des vagues de
ICWM permet d’obtenir une réduction de l’erreur moyenne de 20% sur la zone de prédiction,
pour une cambrure de ∼ 1–2% et des données numériques, en comparaison à une modélisation
linéaire avec correction de la vitesse de propagation (LWT-CDR). Au travers d’une procédure
entièrement validée expérimentalement, ces résultats démontrent la pertinence de l’utilisation de
ICWM en vue de la prédiction de champs déterministes de la surface océanique. Les résultats
présentés dans ce chapitre ont été publiés dans Desmars et al. (2020).
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Chapter V

Experimental Investigation of the
Prediction Algorithm

Introduction

We further apply our wave reconstruction and prediction algorithm to experimental data gener-
ated in the ECN ocean wave tank. With the help of a digital twin provided by a fully nonlinear
HOS numerical framework, we investigate the performances and relative improvements of ICWM
compared to LWT and LWT-CDR under different sea state configurations.

We first describe the methodology applied to generate relevant free surface elevation data in
the wave tank and characterize the generated sea states regarding their adequacy with theoretical
characteristic quantities. Then, the dataset pertaining to cases of long-crested waves is further
analyzed through the quantification and physical qualification of the perturbations belonging
to the experimental conditions. After the definitions of the prediction misfit indicators used
in this study, we evaluate the sensitivity of the proposed prediction algorithms to assimilation
parameters. Their accuracy is finally discussed in the last section of this chapter. A significant
part of the following work is also presented in Desmars et al. (2020).

V.1 General Presentation of Experiments

This first section aims at describing the experimental campaign that will be used to perform
predictions from real wave data. After a general presentation of the methodology to record free
surface elevation fields, we quantify characteristic quantities of the generated sea states in order
to properly characterize the data and validate their usability.

V.1.1 Description of the Experimental Campaign

Long- and short-crested wave trains are generated in the ocean wave tank of ECN, which is 50 m
long, 30 m wide, and 5 m deep. Datasets are referred to full-scale wave parameters, but they
are performed at a `∗ = 1:50 geometric scale (corresponding time scale is t∗ =

√
`∗ ≈ 7.06 under

Froude scaling). Waves are generated at one side of the tank by 48 individual rotating flaps,
and absorbed by a beach at the other extremity. In the following, we detail the experimental
plan (i.e., the targeted sea states generated in the wave tank) and the experimental setup used
to acquire surface elevation data.

V.1.1.1 Specified Sea States

Two characteristic parameters of the sea states are investigated in our experimental campaign:
the directional spreading and the characteristic wave steepness. In each case, we use a JONSWAP
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V.1 EXPERIMENTAL INVESTIGATION – General Presentation of Experiments

wave frequency spectrum (see equation I.2), along with a directional spreading function defined
by

G (θ) = cos2s

(
θ − θdir

2

)
, (V.1)

in which s is the parameter that defines the directional spreading of the wave field and θdir is the
main wave direction of propagation, to obtain a directional wave spectrum according to equation
(I.1). The directional spreading function for the three s values that are used later is depicted in
figure V.1. The peak period Tp = 10 s (full scale) is kept constant for every generated sea states,
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Figure V.1: Directional spreading function (V.1) for different s values.

while the significant wave height Hs varies such that the characteristic wave steepness ranges
from Hs/λp ≈ 0.64% (virtually linear) to 7.05% (highly nonlinear).

As summarized in table V.1, four spreading parameters s = 15, 25, 60 and +∞ are chosen,
defining four sets of measurements. The steepness is swept for two of these sets, s = 25 and +∞,

set # Hs [m] Tp [s] Hs/λp [%] s

1 5.00 10 3.20 15

2

2.00 10 1.28 25
3.00 10 1.92 25
4.00 10 2.56 25
5.00 10 3.20 25
6.00 10 3.84 25
7.00 10 4.48 25
9.00 10 5.76 25
11.00 10 7.05 25

3 5.00 10 3.20 60

4

1.00 10 0.64 +∞
2.00 10 1.28 +∞
3.00 10 1.92 +∞
4.00 10 2.56 +∞
5.00 10 3.20 +∞
6.00 10 3.84 +∞
7.00 10 4.48 +∞
9.00 10 5.76 +∞

Table V.1: Summary of the full-scale sea states parameters used in the experiments.

the latter corresponding to the limiting case of long-crested waves. For one specific steepness
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V.1.1 Description of the Experimental Campaign

of Hs/λp ≈ 3.20%, sea states are generated using the four directional spreading values. Note
that, at wave-tank scale, the peak wavelength λp is about 3.12 m, which is lower that the water
depth, indicating that the bottom of the wave tank does not play a significant role in the wave
propagation processes and that deep-water approximation is applicable. Hence, the wave models
described in chapter II under the deep-water assumption are used in the following without further
consideration about the influence of the water depth.

V.1.1.2 Methodology and Setup Configuration

As discussed in section I.2.2.2, no off-the-shelf operational lidar camera for ocean surface profiling
is available so far. In our experiments, the surface elevation data are thus generated through
measurements of surface elevation time series using wave probes. For each sea state, the wave
fields are generated during a time period of 300 s at wave-tank scale (i.e., approximately 212Tp).
In order to partly reflect the influence of the nonuniform spatial distribution of optical mea-
surements, the wave probes disposition is decided with respect to what a realistic lidar camera
footprint would have on the surface. The space sampling rate is dictated by the number of
available wave probes for our experimental campaign. We have at our disposal 22 resistive plus 2
capacitive wave probes, leading to a total of 24 probes. Since this number is very low compared
to the number of spatial observations made by a real lidar sensor (refer to section III.1.1 for
details), we increase, in case of short-crested waves (i.e., s = 15, 25, 60), the total number of
spatial observations by relying on the wave tank ability to replicate sea state realizations. More
specifically, the same wavemaker motion is executed multiple times to generate wave fields of
similar deterministic characteristics (i.e., similar distributions of waves’ amplitudes, directions
of propagation and phases), while, at each time, the wave probes are positioned at different
locations.

Long-Crested Waves

In case of long-crested waves (s = +∞), the locations of the wave probes are determined as
follows. A virtual “one-directional” lidar camera is located approximately halfway through the
wave tank, at an elevation zc = 30 m (0.6 m in tank scale, zc/λp ≈ 0.19), and aims at the water
surface with an angle α = 76◦ and 20 virtual beams which are uniformly spread over an aperture
angle of αa = 20◦ (see figure III.3 for a representation of α and αa). We consider the illumination
of a flat surface, which allowed us to position the probes vertically into the water. This way,
wave-shadowing effects are not reproduced but only the geometrically decreasing density of ob-
servations, which is the prominent source of non-uniformity in the measurement points locations.
In order to assess the prediction performances, two additional probes are disposed further away,
generating reference surface elevations that can be compared to the predicted elevations. The
probes are distributed along the x-axis such that the lidar is facing the wavemaker, as depicted
in figure V.2. Every probe is labeled according to its x-location, from 1 for that closest to the

Figure V.2: Location of observation wave probes 1 to 20 (•) and of two additional downstream
probes 21 (N) and 22 (�). The wavemaker is located at x/λp = 0 and the beach at x/λp ≈ 14.86.

wavemaker to 22 for that furthest away. In this case, the number of spatial observations is
constant at J = 20.
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V.1 EXPERIMENTAL INVESTIGATION – General Presentation of Experiments

Short-Crested Waves

As mentioned above, the number of spatial observations in case of short-crested waves is
increased by generating similar wave fields for which the locations of the wave probes are different.
Practically, the aligned wave probes distribution described previously is mounted on a ladder,
and oriented for each sea state realization according to an angle χ with respect to the opposite
x-direction. As depicted in figure V.3, the rotational axis of the ladder coincides with the location
of the probe 21. The chosen χ values correspond to the horizontal viewing and aperture angles
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Figure V.3: Photo of the ladder upon which the wave probes are mounted. The whole ladder
can be rotated around a vertical axis located at the horizontal location of the probe 21.

of our virtual lidar camera (figure III.3), set to β = θdir = 0◦ and βa = 40◦, respectively. A
reasonable number of 9 wave-field replicates is chosen, fixing the directional sampling to the
following distribution of angles χ = {−20◦,−15◦,−10◦,−5◦, 0◦, 5◦, 10◦, 15◦, 20◦}, which yields
the geometrical distribution of the wave probe locations depicted in figure V.4. Hence, a total

Figure V.4: Locations of the wave probes in the ECN wave tank. Two sets of wave probes are
depicted: one is used to generate the observations (•), and the other to compare with predictions
(•). Waves propagate from the wavemaker to the beach, i.e., along the x-axis direction.

number of J = 20× 9 = 180 spatial observations are used in the case of short-crested waves.
Figure V.4 also shows the location of the downstream reference probes (in red), corresponding

to the probes 21 (fixed) and 22 (moving according to the rotation of the ladder), and to the
two capacitive probes that are positioned sideways, providing two additional surface elevation
references. The location of these reference probes is chosen with respect to the extent of the
accessible prediction zone for a typical horizon of prediction. For instance, we see on figure V.5
that these reference probes are centered in the prediction zone for a prediction time of 2.5Tp
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V.1.2 Sea States Characterization

after the reconstruction and calculated with an assimilation time Ta = Tp, a direction bandwidth[
θmin, θmax

]
(see figure III.9) centered on θdir and set to truncate 1% of the energy beyond the

limits (i.e., similar to section IV.2.4), and a spreading parameter s = 25.

Figure V.5: Similar to figure V.4 with a closer look at the location of the wave probes. The
parallelogram ( ) defines the spatial boundaries of the prediction zone after 2.5Tp of prop-
agation using and assimilation time Ta = Tp, a direction bandwidth that truncates 1% of the
wave energy and a spreading parameter s = 25.

The obtained spatial distribution is similar to what a rotating lidar would have yield, ne-
glecting wave shadowing effects, and with fewer spatial observations due to the limited number
of available wave probes for our experimental campaign.

V.1.2 Sea States Characterization

The wavemaker motion that is set for the wave field realizations is deduced by applying a transfer
function based on the finite-depth linear wavemaker theory and on the wavemaker geometry,
which is a rotating flap that is hinged three meters below the mean surface level. The amplitude
of the wavemaker deflection is adjusted according to the targetHs values. The Dalrymple method
(Dean & Dalrymple, 1991) for the generation of short-crested waves is employed to properly
manage the extent of the spatial region within which the directional properties of the generated
wave field are consistent with the specified sea state. Without further consideration, the obtained
theoretical motion serves as input for our physical wavemaker. In order to (i) verify that the
wave fields physically generated in the wave tank correspond to the theoretically specified sea
states, and to (ii) investigate the wave maker capacity to reproduce similar wave field realizations,
we quantify the significant wave height for different experimental configurations. Then, beyond
the evaluation of a statistical quantity, we check the agreement of the actual surface elevations
obtained for different wave-field replicates.

V.1.2.1 Significant Wave Height Definition

The estimation of the significant wave height is done through the calculation of the standard
deviation ση of the surface elevation over the steady part of the signal (i.e., when every generated
wave component has reach the furthest wave probes from the wavemaker) as

Hs = 4ση. (V.2)

As explained later in section V.2.3, the signals used to calculate ση contain ∼ 173 waves, which
is enough to yield converged results. Multiple mean values for Hs are calculated. First, the
estimates for every wave probes are averaged, yielding one mean value 〈Hs〉p for every wave
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V.1 EXPERIMENTAL INVESTIGATION – General Presentation of Experiments

probe network direction χ, which allows us to evaluate the wave tank ability to replicate wave
fields in terms of input energy. We also define a global mean 〈Hs〉 averaging all estimates that
should theoretically lead to the same value of Hs. Along with the mean values, we determine
their associated standard deviations (std (Hs)p and std (Hs)) in order to check the variability in
the Hs estimation in each configuration.

Wave-field replicates

We first evaluate the significant wave height for each wave-field replicates (i.e., sea-state
realizations with an identical set of wave phases), and for various directional spreading values.
Figure V.6a shows the estimates 〈Hs〉p normalized by the target value Htarget

s = 5 m that
corresponds to the specified value reported in table V.1. We first see that, for every sea-state

(a) (b)

Figure V.6: (a) Normalized global mean estimate of Hs and (b) associated standard deviation
for each similar wave field realization.

realization, the generated wave field has a significant height that is lower than the specified
one, but still higher than 87% of the target. As also explained later in section V.2.2.1, this
phenomenon is likely to come from properties of the physical wavemaker transfer function. While
for s = 15 and 60 the mean estimates 〈Hs〉p have similar values ranging from 87% to 89% of the
target, cases corresponding to s = 25 yield normalized values fluctuating between 91% and 95%.
The overall high ratios validate the capacity of the method (relying on the deep-water linear
wavemaker theory and the Dalrymple’s method) to generate wave fields of energy that is close
to the specified one. Additionally, variations of only ∼ 1–2% for s = 15 and 60, and of ∼ 3–4%
for s = 25, are observed between every wave-field replicate, which confirms that the wave-field
replicates are of comparable amount of energy.

Figure V.6b presents the corresponding standard deviations normalized with the associated
mean value. We see that, proportionally to the mean significant wave height, similar values of
standard deviations are obtained (∼ 1–2% of the measured mean significant wave height) for
every wave-field replicate as well as for every directional spreading. This indicates that, within
the spatial region over which the probes are deployed, the spatial variation of Hs is limited to
only ∼ 2%.

Characteristic wave steepness

For directional spreading values s = 25 and +∞, sea states of various wave steepnesses are
generated in the wave tank. For the case s = 25, we use data from the 9 wave-field replicates
to calculate a global mean significant wave height 〈Hs〉 (calculated at each probe using equation
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V.1.2 Sea States Characterization

(V.2), then averaged over the 24 × 9 = 216 recorded time series) and its associated standard
deviation std (Hs). For the case s = +∞, only one wave field realization was generated for each
steepness, meaning that we use 24 time series to calculate 〈Hs〉 and std (Hs).

Figure V.7a shows the measured significant wave heights as a function of the target wave
heights reported in table V.1. A clear trend in the evolution of the normalized Hs estimates is

(a) (b)

Figure V.7: (a) Normalized global mean estimate of Hs and (b) associated standard deviation
as a function of the characteristic wave steepness for both short-crested waves (s = 25) and
long-crested waves (s = +∞).

observable for both s values: the ratios increase to reach maximal values of ∼ 95% and ∼ 93% for
s = 25 and +∞, respectively, for a target value of 4 m, before deceasing for higher Htarget

s . Two
reasons can explain this behavior. First and as already mentioned in the previous paragraph,
the wavemaker does not behave exactly as what the linear wavemaker theory predicts. Indeed,
due to the generation of local disturbances as well as to possible inaccuracies in the wavemaker
motion amplitude (see section V.2.2.1 for details), the transmitted energy, quantified through
the estimate of Hs, is lower than the specified value. Second, for large steepness (typically for
Htarget
s & 4 m), local wave breaking events start appearing, leading to the dissipation of wave

energy. The larger the steepness, the larger the dissipation through wave breaking, which could
explain the decrease of the ratio 〈Hs〉/Htarget

s for large steepness. Even if the mean significant
wave heights are similar for both directional spreading values, standard deviations (see figure
V.7b) are lower for the long-crested than for the short-crested waves, for which they yield ∼ 1%
and ∼ 2–3% of the significant wave height, respectively. These values are almost constant for
each wave steepness, indicating that the variation of Hs linearly depends on the actual Hs. The
larger values for s = 25 is explained by the fact that 〈Hs〉 is calculated using different wave-field
replicates, which contributes to enlarge the spreading of the measured Hs values around the
mean.

Directional spreading

For each directional spreading, figure V.8a shows the normalized global mean estimate of Hs

for a steepness corresponding to Htarget
s = 5 m. No clear trend is observed as all values range

from 87% to 93%, the highest value corresponding to the moderate directional spreading s = 25.
For the same reason as that mentioned in the previous paragraph, the standard deviation is
larger for short-crested waves (i.e., for s = 15, 25, 60) than for long-crested ones (figure V.8b).
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(a) (b)

Figure V.8: (a) Normalized global mean estimate of Hs and (b) associated standard deviation
as a function of the directional spreading of the generated sea states. Data corresponding to a
target Htarget

s = 5 m are used for s = 25 and +∞.

V.1.2.2 Free-Surface Elevation

In order to check the repeatability of the generated wave fields in terms of deterministic quan-
tities, we quantify here the standard deviation of the free surface elevation at the location of
a fixed probe. For instance, at the location of one of the capacitive probe (the furthest along
the y-axis), figure V.9 presents a sample of the recorded time series of free surface elevation
for the sea state corresponding to s = 25 and Htarget

s = 5 m. The mean surface elevation 〈η〉

Figure V.9: Normalized mean free surface elevation with instantaneous standard deviation. The
directional spreading is s = 25 and the measured significant wave height is 〈Hs〉 ≈ 4.7 m.

(averaged over the nine wave field realizations) is plotted as well as the instantaneous standard
deviation. On average, the obtained standard deviation is about 4.5% of the measured signif-
icant wave height for the depicted case. For the other cases, the mean standard deviation is
about 3% to 5% depending on characteristic wave steepness. This quantification allows defining
an uncertainty that could help for the assessment of the performances of predictions based on
multiple wave-field replicates. Since the case of s = 25 yields the largest standard deviation for
the estimate of Hs, lower values are expected for the cases of other directional spreading.

Last, figure V.10 shows the mean surface elevations obtained at the same location for cases
of different characteristic wave steepness. We recall that, for all the presented cases, we keep the
same set of initial wave phases, such that only the amplitude of the wavemaker motion changes.
The two main nonlinear effects on surface wave kinematics (that are, at least partly, modeled in
ICWM) are clearly observable: waves get shifted towards lower times (i.e., waves propagate with
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Figure V.10: Normalized mean free surface elevations for different Hs values recorded at the
same location. The directional spreading is s = 25. The darker the color the larger the wave
steepness. Only the amplitude of the wavemaker motion changes between each case (i.e., the
initial set of wave phases is kept constant).

a larger velocity) and wave geometry gets sharper for higher steepness. Due to the modification of
the relative phase shifts between wave components as well as to other time- and space-dependent
nonlinear resonant phenomena, increasing the wave steepness also has nontrivial impacts on the
surface elevation, such as for 107 < t < 111 in figure V.10. In the following, we will investigate
the improvements pertaining to ICWM compared to LWT in predicting such nonlinear wave
fields.

V.2 Further Analysis of Long-Crested Waves

In this section, we further investigate the generated unidirectional sea states (set #4 in table
V.1). We first detail a numerical setup that is used to compute a digital twin of the experiments,
which later serves to improve the analysis pertaining to the experimental results. Then, we
investigate the adequacy between the specified sea states and the actually generated ones in
the physical and numerical wave tanks, and identify the sources of the differences in each case.
Finally, we analyze and quantify the influence of the perturbations pertaining to the limitations
of our experimental setup (referred to as “noise” throughout this work) on the recorded wave
signal.

V.2.1 Digital Twin of Set #4

In order to provide surface elevation data that are free of noisy perturbations, we use a numer-
ical model to compute similar cases to that described previously for unidirectional wave fields
(i.e., s = +∞). Numerical simulations are performed using the open-source code HOS-NWT
developed at ECN. It makes use of the HOS method to simulate a numerical wave tank, and has
been extensively used and validated against real wave tank experiments (Bonnefoy et al., 2010;
Ducrozet et al., 2012). Based on a pseudo-spectral approach, the HOS method solves, to an ar-
bitrary order M in wave steepness, the nonlinear free surface boundary conditions for a velocity
potential (see section I.3.4.1 for details). A converged estimate of the potential (for which a value
of M = 7 and a calculation grid made of 512 points are used hereafter) gives access to the fully
nonlinear solution. As waves of characteristic wave steepness larger than Hs/λp ∼ 0.035 will
start breaking, a wave breaking model allowing to both detect impending breaking and absorb
wave energy is used in HOS-NWT (Seiffert & Ducrozet, 2018; Seiffert et al., 2017). The same
wavemaker motion is specified in both laboratory experiments and numerical simulations, which
ensures a consistent comparison between experimental and numerical results. The numerical
wave tank geometry as well as the beach performance are similar to those of the physical wave
tank in used for our experimental campaign.
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V.2.2 Limitations of the Experimental/Modeling Setups

In both experiments and numerical simulations, we consider a full-scale one-directional wave
field extracted from a JONSWAP spectrum with a Tp = 10 s peak period (≈ 1.41 s at tank
scale) and a γ = 3.3 peakedness parameter. As detailed in section V.1.1.1, eight sea-states
are generated using the same set of wave phases (table V.2), with their significant wave height
Hs = Hm0 = 4

√
m0 (where m0 =

∫ +∞
0 Sη (f) df) selected such that the characteristic steepness

Hs/λp varies between ∼ 0.6% and ∼ 5%, with λp ≈ 156 m (3.12 m in tank scale). Note that

case target experiments simulations
Hs [m] Hs/λp [%] Hs [m] Hs/λp [%] Hs [m] Hs/λp [%]

A 1.00 0.64 0.89 0.57 1.01 0.65
B 2.00 1.28 1.86 1.19 2.02 1.29
C 3.00 1.92 2.81 1.80 3.02 1.93
D 4.00 2.56 3.79 2.43 4.01 2.57
E 5.00 3.20 4.64 2.97 4.98 3.18
F 6.00 3.84 5.60 3.59 5.87 3.76
G 7.00 4.48 6.46 4.14 6.69 4.28
H 9.00 5.76 8.02 5.13 8.06 5.16

Table V.2: Summary of the targeted and generated full-scale sea states in both experiments and
numerical simulations. Each case is labeled in alphabetical order from the smallest to the largest
characteristic wave steepness Hs/λp.

the Hs values reported in table V.2 are calculated as explained in section V.2.3, according to
equation (V.4a). As already mentioned, we notice differences between the target and generated
significant wave heights. The reduction of our estimates of Hs is easily explained by wave energy
dissipation through the apparition of wave breaking events for high steepness, i.e., Hs/λp & 3.5%
(cases E to H). Wave-breaking dissipation is encountered in both experiments and simulations
due to the wave breaking modeling in the numerical model. However, for sea states of small to
moderate steepness (cases A to D), these differences are mainly explained by the method used to
calculate the wavemaker transfer function, while the influence of wave reflection is very limited,
as shown in the following sections.

V.2.2.1 Wavemaker Transfer Function

In order to calculate a theoretical wavemaker motion, we used the classical method employed in
ocean-engineering wave-tank experiments based on the wavemaker geometry (which is identical
in both numerical and physical configurations) and on the finite-depth wavemaker linear theory
(e.g., Bonnefoy, 2005). The obtained theoretical motion is used to set both the numerical and
physical wavemaker motions, meaning that the theoretical amount of energy provided by the
wavemaker is the same in both cases. However, in addition to the use of the linear wavemaker
theory – which impacts the wave generation accuracy for large wave steepness and may play a
role the generation the nontrivial effects reported in the description of figure V.10 – two sources
of experimental uncertainties have been identified:

• While the numerical wavemaker is perfectly one-directional, i.e., the entire kinetic energy
of wavemaker is transmitted to the fluid in the form of a one-directional gravity wave field,
the physical one is composed of 48 individual flaps spread along the width of the tank.
Although each flap is perfectly aligned with the others and run with the exact same motion,
small gaps between flaps (see figure V.11) introduce directional perturbations whose energy
is not transmitted to the one-directional wave components of interest. Additionally, we
experienced the formation of horse-shoe pattern resulting from nonlinear wave interactions
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Figure V.11: Photo of the wave tank from above the wavemaker and looking along the x-
direction. All flaps composing the wavemaker are aligned but there are small interstices between
neighboring flaps.

during the propagation of steep waves, which contributes to the energy transfer between
longitudinal waves to transverse waves.

• While the numerical wavemaker reproduces exactly the theoretical motion, we did not
measure the actual motion of the physical one, which may slightly differ from the theory.
Dissimilarities would directly affect the generated waves.

The important point here is that we did not correct the wavemaker transfer function for the
calculation of the experimental wavemaker motion: the aforementioned sources of experimental
uncertainties affect the generated wave fields.

Hence, in experiments, the wavemaker transfer function leads the physical wavemaker to
generate waves of lower amplitude than according to the input. In contrast, simulations yield
Hs values that are slightly higher than the targets by an amount that, as explained in the next
section, is on the same order of magnitude as the expected effect pertaining to the wave reflection
on the beach.

V.2.2.2 Wave Reflection

We know that the measured reflection coefficient Cr of the ECN wave tank beach is small (below
10 % of wave amplitudes) for the range of the wave periods at aim. The incident and reflected
wave fields being incoherent, the total energy m0 is the sum of incident energy minc

0 and the
reflected energy that follows mref

0 = C2
rm

inc
0 . As a consequence, we expect the contribution of

the reflected waves on the estimated significant wave height Hs = 4
√
m0 to be

Hs/H
inc
s =

√
1 + C2

r . (V.3)

For a reflection coefficient of 10%, this gives a contribution of ∼ 0.5 % of the reflected waves on
the estimated Hs. The ratio Hs/H

inc
s has been quantified through Matlab simulations based on

the superposition of a linear wave field and its reflected wave field (in similar configurations to
those of the experiments) as a function of the reflection coefficient. Both theoretical (equation
(V.3)) and numerical results are shown in figure V.12 to agree very well. The described impact
of wave reflection on the estimate of Hs is in agreement with our HOS-NWT simulations (in
which the numerical beach is set such that its reflection rate is on the same order of magnitude
as the physical one (Bonnefoy, 2005)): in cases that do not exhibit wave breaking (i.e., A to D),
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Figure V.12: Contribution of reflected waves on the estimated significant wave height as a func-
tion of the reflection coefficient. Results from Matlab simulations based on a linear JONSWAP
spectrum and from the theoretical formula (V.3) are plotted.

we observe a very low overestimate of Hs values compared to the targets (lower than 1 % in each
case). The wave reflection is expected to have a comparable effect on the experimental results,
i.e., a very limited overestimation of Hs values.

Ideally, it would have been more relevant to either use a corrected experimental wavemaker
transfer function to take into account the physical effects that differ from the theory in the wave
generation, or calibrate our simulations to ensure consistency with the wave fields generated in
the physical wave tank. Still, experiments and simulations yield wave fields of comparable energy
content.

V.2.3 Characterization of the Experimental Noise

In order to fully characterize the experimental signals and understand what physical processes
are recorded by the wave probes, we further study the influence of the noise (i.e., experimental
perturbations) on the wave field of interest. Figure V.13 shows a typical time series of surface
elevation measured at a resistive probe in laboratory experiments. Time t = 0 corresponds to the

Figure V.13: Time series of surface elevation measured in experiments at probe 22 for case E
(table V.2). Three characteristic times are marked on the record, ta: all the generated wave
components have been measured at all probes; tb: shutdown of the wavemaker; tc: all the
generated wave components have propagated past all probes.

start of the wavemaker motion, i.e., the beginning of wave generation. At time ta, it is estimated
based on a truncation of the prescribed wave energy spectrum (similar to section III.3.4) that
all the energetic wave components generated at the wavemaker have been seen by all probes. At
time tb, the wavemaker is shutdown and waves generation is interrupted. Finally, similar to the
determination of ta, at time tc, it is estimated that all the generated energetic wave components
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V.2.3 Characterization of the Experimental Noise

have propagated past all probes. Based on this, the data used for the wave field prediction study
is restricted to the time interval [ta, tb], with tb − ta ≈ 173Tp.

V.2.3.1 Amplitude Quantification

We consider that the rest of the data acquired at wave probes, for a few dozen peak wave
periods beyond t = tc, provides a representation of noise during the entire data acquisition
duration. Based on this data, a noise to signal ratio NSR = Hn/Hs is computed as a function of
characteristic heights for both the primary wave (t ∈ [ta, tb]) and noise (t ≥ tc) signals following

Hs =
1

Np

Np∑
j=1

4ση (xj , ta ≤ t ≤ tb) , (V.4a)

Hn =
1

Np

Np∑
j=1

4ση (xj , t ≥ tc) , (V.4b)

respectively, where ση (x, t) denotes the standard deviation of the free surface elevation η (x, t)
and Np = 22 wave probes. The NSR is computed for each case A to H in table V.2 and plotted
in figure V.14 as a function of the corresponding characteristic wave steepness. We see that the
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Figure V.14: Noise amplitude to wave amplitude ratio as a function of characteristic wave
steepness.

NSR decreases as a function of wave steepness, with the largest value being about 25% for the
smallest steepness and the smallest value being about 11.5% for the largest steepness. It thus
appears that the geometry of our experimental set-up, in a 3D wave tank allowing the generation
of directional wave fields, may have significantly affected the targeted one-directional wave fields.
As will be detailed in section V.4.3, this potentially large NSR may affect the performance of
the wave prediction algorithm.

V.2.3.2 Physical Qualification

To better quantify noise effects on the desired experimental data and relate the generated noise
to a physical process, we computed the power spectral density Sn of the noisy part of the signal
(t ≥ tc) (using Welch’s method (Welch, 1967), with a Hanning window of length ∼ 10Tp, overlap
of ∼ 5Tp, and a zero padded FFT of length 4096; the total length of the window is ∼ 34Tp
sampled at ∼ 141fp, where fp = 1/Tp is the peak frequency). For each steepness, the spectrum
was averaged over results obtained at the 22 wave probes and normalized as S∗n = Snfp/m0,
where m0 = H2

n/16 is the zeroth-order moment of the spectrum. These normalized noise spectra
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V.2 EXPERIMENTAL INVESTIGATION – Further Analysis of Long-Crested Waves

were found to be nearly identical for each steepness. Figure V.15 shows their average, which is
composed of a narrow-banded peak, centered on ∼ 1.1fp, and a broad-banded high frequency
part of much lower amplitude. The wave spectrum, calculated on [ta, tb], is given on the same
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Figure V.15: Normalized noise ( ) and wave ( ) spectra averaged over all the characteristic
wave steepnesses.

figure as a visual help for interpretation.
Figure V.16 shows normalized surface elevations of the noise signal η/Hn measured at various

probes, in which frequencies f > 1.4fp have been removed by filtering, i.e., these correspond to
the dominant part of the noise signal. In figure V.16a, these are plotted at wave probe 22

Figure V.16: Normalized surface elevations (a) at the location of gauge 22 for cases A to H, and
(b) for case A at the locations of probes 1 to 22. Components of frequency higher that 1.4fp has
been removed using a low-pass filter.

for each case A to H of different steepness, and we see that the dominant noise signals are in
phase. This indicates that the noise generation process is deterministic: the chosen set of wave
phases, which is the same in each case, leads to the generation of perturbations that are also in
phase. Figure V.16b shows the dominant noise signal elevations for case A at wave probes 1 to
22 (which are aligned along the x-direction), and we see that noise signals are again mostly in
phase, suggesting that the dominant experimental noise may be caused by resonant excitations
of transverse modes in the 3D wave tank. This hypothesis is confirmed by our visual observations
of these waves during calm-down times between measurements, and is explained by the presence
of small interstices between the wavemaker flaps, locally generating transverse disturbances (see
section V.2.2.1). Even during the waves generation and propagation, clear periodic transverse
disturbances were observable, as shown in figure V.17. The much less energetic noisy components
of the signal, with frequencies f > 1.4fp, were not found to be in phase, indicating that they
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Figure V.17: Visual observation of periodic transverse disturbances during the generation of
long-crested waves in the tank.

result from aleatory processes.

V.3 Sensitivity to Prediction Algorithm Parameters

Still on the basis the generated long-crested waves (set #4), this section focuses on the sensibility
of the prediction accuracy to some algorithm parameters. After defining relevant indicators of
the quality of free surface prediction and the procedure implemented to reliably evaluate them,
we present the evolution of a global prediction error for different assimilation parameters, wave
models and wave steepness.

Before proceeding to predictions, we briefly recall the important quantities that govern the
assimilation procedure and the calculation of the accessible prediction zone. Wave probes provide
observations that are used as input to the surface reconstruction and prediction algorithms. Here,
the number of spatial observations is constant at J = 20 (probes 1 to 20), and the number of
observation times K depends on the assimilation time duration Ta and data acquisition time
step τ as K = Ta/τ. The calculation of the one-directional prediction zone is depicted in figure
V.18 for the setup used in this chapter (20 fixed observations). Further details regarding wave

Figure V.18: Evolution of the wave prediction zone in time and space for the assimilation of
spatio-temporal data. Green dash lines are prediction zones boundaries at times t1..tk..tr. The
increase in the prediction zone relative to that of spatial only observations (gray area) is high-
lighted in red.
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model inversion and prediction zone calculation are presented in chapter III.
Here, contrary to the previous chapter in which we look for the wave model parameters

p = {an, bn} on a wavenumber grid that is linearly distributed in the interval
[
kmin, kmax

]
, we

now use a logarithmic distribution of the wavenumbers . This allows a higher concentration of
wave components in the energetic part of the spectrum, thus the use of a higher value for the
high cutoff wavenumber without requiring the number of wave components N to be too large.
The low cutoff frequency is, as before, calculated according the theoretical lowest measurable
wavelength, i.e., kmin = 2π/Lo (see details in section III.3.3.1), but we now use a high cutoff
wavenumber kmax = 20kp (instead of 10kp in the previous chapter).

V.3.1 Misfit Indicators Definitions

The misfit indicator used to quantify the accuracy of the predicted wave field is defined by equa-
tion (IV.2), in which ηr refers here to the measured or calculated reference surface depending on
whether experimental or numerical data is used.

Ideally, we would like to analyze data generated before wave reflection starts impacting the
measurements. Using the same method as in section V.2.3 to determine the propagation speeds
of the longest and shortest waves of interest, the interval comprised between the time after the
slowest wave reaches probe 22 and the time before the same probe is reached by the fastest
reflected wave is about 10 seconds (i.e., approximately 7 peak periods). From a practical point
of view, taking only a time interval on the order of 10 seconds necessitates a high number of wave
field realizations with different sets of wave phases to generate enough data to properly estimate
the prediction error. Indeed, as already mentioned in section IV.2.2, an unbiased estimate can
only be obtained for a large number of samples from independent wave field realizations (i.e., of
different sets of random wave phases) with, to the limit, Ns → ∞. Even if this method (that
consists in a Monte-Carlo approach for the estimate of the prediction error) can be used in a
numerical framework, its application in experimental conditions is extremely time-consuming,
thus not usable in practice.

Instead, as described in the next section, we chose to run only one single realization that
we split into many time series that were used to perform statistical analyses. This method is
largely employed in experimental hydrodynamics to study the statistical properties of wave fields,
and, most importantly, wave reflections are expected to have a minor impact on the results, as
quantified in section V.2.2.2 for Hs calculations. Moreover, having only time series limited to 10
seconds in length would have limited the extent of the sensitivity analysis described in section
V.3.2, and the presence of residual reflections can be seen as a sensibility assessment of the
developed prediction method to “environmental perturbations” that always exist in open-ocean
conditions.

V.3.1.1 Generation of Surface Samples

We elect for this study to generate one single surface realization per sea state, but to record or
compute wave probe data over a long time so that the signals can be split into a sufficiently large
number of samples of meaningful duration Ta. Additionally, the number of samples is increased
by selecting them as partially overlapping , i.e., shifting them in time by ∆t < Ta, as illustrated
in figure V.19. Therefore, the information used to estimate the misfit is the surface elevation
data in the total time window covered by the samples, which has a duration

Tc = Ta + (Ns − 1) ∆t. (V.5)

A similar approach was employed by Naaijen et al. (2014) to investigate the spatio-temporal
evolution of the prediction zone based on experimental and numerical data.
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V.3.2 Prediction Error Sensitivity Assessment

Figure V.19: Each sample consists of a time trace from the same generated surface realization.
They can be partially overlapping, separated by a time span ∆t from their neighbors.

V.3.1.2 Time-Averaged Prediction Error

The wave field prediction error at a specific location x is computed by averaging the corresponding
misfit over the theoretical time-prediction zone t ∈

[
tmin, tmax

]
as

EP (x) =
1

tmax − tmin

∫ tmax

tmin

E (x, t) dt. (V.6)

Figure V.20 shows, for case E and using simulated (i.e., HOS-NWT) reference data, the evolution
of the wave field prediction error EP computed as a function of the amount of data used to
calculate it, quantified by the relative duration Tc/Tp (equation (V.5)) of the time window used
to evaluate the misfit E . We see that the prediction error converges for Tc/Tp ∼ 60 (similar results
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Figure V.20: Nonlinear (ICWM) prediction error estimate at the location of probe 22 as a
function of the length of the time window used to evaluate the misfit E , Tc (equation (V.5)),
normalized by the peak spectral period Tp, and in which ∆t/Tp ≈ 0.07. Here, Ta/Tp ≈ 7 and
τ/Tp ≈ 0.07, and simulated reference data from case E are used.

are obtained using experimental data). Note that the wave probe network used to generate the
observations covers a zone only slightly larger than 2λp. If this zone was larger, the optimal
number of peak wave periods for the sampling time window would likely be less than 60.

V.3.2 Prediction Error Sensitivity Assessment

We first assess the sensitivity of the prediction error to both the method used (linear or nonlinear)
and parameters of the assimilation procedure, namely the assimilation time Ta and the time shift
of the assimilated data τ.

For case A (which corresponds to a mild characteristic wave steepness of 0.65%) and sim-
ulated reference data, figure V.21a shows that the linear prediction error converges well as Ta
increases, for the three considered τ values, although convergence is slower for larger τ. Hence,
the converged error is independent of the time resolution of observations. This is a consequence
of the characteristics of the physical description emerging from observations. As the assimila-
tion time increases, the diversity of wave processes included in the assimilated information is
enhanced, with respect to the relevant physics simulated in the model, causing the prediction
error to converge. Additionally, the accuracy of the description of physical phenomena, which is
directly function of the time resolution of observations, affects the prediction error convergence
rate: for a given assimilation time Ta, a smaller time step τ will yield a prediction error closer
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Figure V.21: Prediction error at the location of probe 22 as a function of the normalized assim-
ilation time Ta/Tp in case (a) A (•) and (b) E (N). In case A, the linear error is plotted for
τ/Tp ≈ 0.07 ( ), 0.35 ( ) and 0.71 ( ). In case E, a time step τ/Tp ≈ 0.07 is used
and both the linear (LWT, ) and nonlinear (ICWM, ) errors are plotted. Simulated
reference data is used in both figures.

to the converged value. For the predictions presented later, we keep τ/Tp ≈ 0.07.

For case E, which corresponds to a larger wave steepness of 3.18% and hence a fairly nonlinear
case, figure V.21b shows that, overall, prediction errors are larger than for case A, increasing
from [0.005, 0.05] to [0.05, 0.075]. Figure V.21b also shows that, as could be expected for this
nonlinear case, the prediction errors are larger with the linear method than with the nonlinear
method. Finally, the convergence of the nonlinear method to achieve an approximately constant
value of EP requires a slightly larger Ta than for the linear method. This can be explained by
the higher level of physics represented in the ICWM model than in LWT, which requires larger
time scales to achieve convergence.

Note that, unlike section IV.2.3.3 in which the number of wave components for the wave
model inversion is fixed to N = 50, we adapt here the value of N to prevent the prediction
error from artificially increasing due to the insufficient number of wave components to accurately
fit the data. As a simple illustration of the need to increase the number of wave components
when the size of the assimilated data increases, figure V.22 shows the time propagation of cosine
waves s1 and s2 of very close angular frequencies ω and ω + ∆ω, respectively, with ∆ω = ω/50.
The sum s1 + s2 of the two waves can be formally seen as a third wave s3 of angular frequency
ω + ∆ω/2 modulated by a long wave s4 of angular frequency ∆ω/2. Then, if the propagation
time is not too large (in the depicted case, approximately lower than four periods 2π/ω), the
modulation effect remains negligible and s1 + s2 can be accurately approximated by s3. Since
a real ocean surface is formed by the superposition of an infinite number of elementary waves
with ∆ω → 0, a higher frequency resolution (thus a higher number of wave components) in the
search for an accurate solution to the inverse problem (III.2) will always be required when the
spatio-temporal extent of the assimilated data increases.

Attempts to automatize the determination of the optimal value of N (i.e., the lowest value to
allow a consistent inversion) have not been successful. Here is how we proceed. We tried to find
an optimal characteristic wavenumber discretization parameter ∆k̃ for the prescribed frequency
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Figure V.22: Illustration of the modulation effect between two cosine waves s1 and s2 of very
close angular frequencies ω and ω + ∆ω, with ∆ω = ω/50, respectively, and of the validity of
the approximation of the sum of these waves by another wave of angular frequency ω + ∆ω/2.

grid of our solution vector p. The characteristic discretization parameter have been defined by

∆k̃ =
1

N

N∑
n=1

∆kn
√

2Snorm (kn) ∆kn,

where Snorm = S/m0 is the normalized wave spectrum, which was assumed to be known before
the reconstruction. Then, the value of N have been selected such that

∆k̃ ≈ min (∆kTa ,∆kLo) ,

in which ∆kTa = 4π2/
(
gT 2

a

)
and ∆kLo = 1/Lo are characteristic wavenumber steps related

to the time and space scales of the inverse problem, respectively. ∆kTa (∆kLo) corresponds
to the wavenumber step of a time (space) DFT of a signal of length Ta (Lo). This method
tends to yield values of N that are too high compared to the what appears to be necessary for
an accurate inversion. For the results reported this section, we thus adapted N to avoid an
unnecessary increase of the calculation time. For the value of Ta ≈ 7Tp and τ≈ 0.07Tp that are
used hereafter, we selected N = 50.

V.4 Prediction Results and Discussion

Applications of the reconstruction and forecasting algorithms to cases of table V.2 (i.e., long-
crested waves) are presented in the following and the accuracy of the wave field forecast is
discussed, in particular, in terms of its sensitivity to the linear or nonlinear methods used.

V.4.1 Wave Group Analysis

All cases in table V.2 correspond to sea states generated using a JONSWAP spectrum with
identical peak period Tp = 10 s (at full scale) and peakedness γ = 3.3, but a different significant
wave height Hs and, hence, characteristic wave steepness Hs/λp. In both the physical and
numerical wave tanks, these sea states are generated using the same set of random phases, so
time series of surface elevations should be similar, except for small changes in amplitude due to
nonlinear effects, proportional to Hs.

V.4.1.1 Surface Elevation Series

In the following, we analyze the prediction error for a group of 8 waves of elevation on the
order of η ∼ 0.5Hs approximately centered at t = 113Tp, recorded/simulated at wave probe
22 for cases A to H (see figure V.13). The data used in the prediction algorithms was selected
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for the prediction zone to span t ≈ 108Tp to 118Tp at the location of probe 22. Figure V.23
shows time series of surface elevations for these wave groups in cases A, E and H, compared to
predictions of the linear (LWT), linear corrected (LWT-CDR), and nonlinear (ICWM) models,
using experimental (a, c, e) and numerical (b, d, f) data. For each case, only small differences
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Figure V.23: Time series of surface elevations measured/simulated at probe 22 for a group of
8 waves ( ) for cases: (a, b) A, (c, d) E and (e, f) H, of increasing nonlinearity. Predicted
surface elevations are shown for the: linear (LWT, ), corrected linear (LWT-CDR, ),
and nonlinear (ICWM, ) models. Left (a, c, e): experiments; right (b, d, f): simulations.

due to experimental noise can be seen between the experimentally and numerically generated
reference surfaces. While there is an overall agreement between the reference and predicted
surfaces, differences in wave phase and elevation increase with wave steepness, due to cumulative
effects of nonlinearity during wave propagation.

Accordingly, for the smallest wave steepness (case A), all three models predict the same
surface elevation, in good agreement with references, particularly for numerical data (b) for
which predictions almost perfectly overlap the HOS solution, but predictions become increasingly
different between the three algorithms, the larger the characteristic wave steepness. Although
differences do not appear visually large, this is more pronounced for the algorithm based on
ICWM, which, as will be shown next using various prediction error metrics, provides the most
accurate prediction.

V.4.1.2 Indicators Based on Cross-Correlation

For the deterministic comparison of the surface elevations associated with the analyzed wave
group, we make use of the cross-correlation between time series corresponding to the predicted
and the measured surface elevations, which provides a correlation factor C as a function of a
time-lag T . The maximal value of the correlation factor and its corresponding time-lag can be
interpreted as the correspondence in terms of shape and amplitude of the two elevations, and as
an estimate of the time shift between the two elevations, respectively. The cross-correlation is
defined by

C (T ) =
1

tmax − tmin

∫ tmax

tmin

η∗ (t)× η∗r (t+ T ) dt, (V.7)
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where tmin,max are the prediction zone boundaries and η∗ (t) = η (t) /ση
(
tmin ≤ t ≤ tmax

)
is the

normalized free surface elevation (similarly, η∗r = ηr/σηr for the reference surface).

V.4.1.3 Influence of Wave Modeling

Differences between the reference (measured or simulated with HOS) surface elevations and those
predicted by the three algorithms are quantified by their maximum cross-correlation max(C) (i.e.,
normalized convolution, equation (V.7)) and corresponding time-lag Ts = arg max (C). Both
parameters are shown in figure V.24 for all cases in table V.2, based on time series measured or
simulated at the location of wave probe 22 (e.g., figure V.23). The former quantifies the accuracy

Figure V.24: Normalized time-lag (a, b) and maximum cross-correlation (c, d) computed for
cases in table V.2, based on reference time series measured (left column)/simulated with HOS
(right column) at the location of wave probe 22 for wave groups similar to those in figure V.23,
based on: linear (LWT, ), corrected linear (LWT-CDR, ), and nonlinear (ICWM, )
prediction algorithms. Error bars in (a, b) result from the resolution of the time series.

of the prediction in terms of wave shape and amplitude, while the latter quantifies the time-shift
of the predicted signal compared to the reference signal. Figures V.24a,b show that, for all
prediction algorithms, time-lag increases with wave steepness (i.e., nonlinearity), from 0 for the
smallest steepness to a few percent of Tp for the largest one, consistent with the expected effects
of nonlinearity. As seen for instance in the time series of figure V.23, LWT yields the largest
time-lags compared to the nonlinear models. LWT-CDR, which includes a phase shift correction,
provides a time-lag very close to that of ICWM, particularly for the simulated data, indicating
that the nonlinear phase shift prevails over the nonlinear wave geometry represented in the latter
model for these cases. Also, the rate of increase of time-lag with wave steepness is similar whether
or not the nonlinear phase shift is included in the model. This result is unexpected since this
phase shift its due to nonlinear amplitude dispersion, which is function of wave steepness.

Figures V.24c,d show the maximum cross-correlations for the same cases. Consistent with
the larger time-lag, max(C) mostly decreases, the larger the wave steepness, to reach a mini-
mum of 96% for the largest wave steepness. Except for case G, which is discussed below, the
maximum cross-correlation is larger using ICWM, which is expected since only this model is
able to represent nonlinear wave geometry. The abnormal behavior of case G, which is seen
in both the experimental and numerical data, likely results from a significant increase in wave
breaking events within the considered wave group for this case. Note, for case H, which has an
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even larger steepness, wave phases were such that breaking was not as widespread as for case G.
Wave breaking affects wave geometry in a non-trivial manner and is not represented in ICWM.
In the case of the wave group considered here, for some unknown reason, it appears that broken
waves are better represented in the linear model than using ICWM.

V.4.1.4 Influence of Propagation Distance

Finally, figure V.25 shows results similar to figure V.24, using ICWM for numerical or experi-
mental data, at wave probes 20, 21 and 22. Observations are acquired (and reconstructed) at

Figure V.25: Normalized time-lag (a, b) and maximum of cross-correlation (c, d) for the nonlinear
(ICWM) predictions, at the location of probe 20 (�), 21 (N) and 22 (•). Left (a, c): experiments;
right (b, d): simulations. Error bars on (a, b) correspond to the time resolution of the time
series.

wave probe 20, which is the last probe used in observations, and predictions are made at the
other 2 probes, which are increasingly distant from it (figure V.2). For both the experimental
and numerical data, the time-lags and their rates of increase with wave steepness are lower for
prediction locations closer to the observation probe (figures V.25a,b). This results from inaccu-
racies in nonlinear wave propagation modeled by ICWM, which yield increasing differences in
predicted surface elevations with time or space traveled, compared to the reference data. Con-
sistent with this observation, figures V.25c,d show that, for steepnesses larger than ∼ 2.5%, the
maximum cross-correlation decreases as the distance of the prediction probe to the observation
location increases. Due to the disturbances related to the experimental conditions reported in
section V.2.3, the values of max (C) in case of experimental data are generally lower than their
numerical counterparts, especially for cases of small steepness for which the relative amplitude
of the disturbances is high compared to the amplitude of the waves of interest. Also, while the
numerical values of max (C) seem to reach a limit for the largest steepnesses, the experimental
results do not follow that trend and continue to decrease significantly.

V.4.2 Instantaneous Misfit of Wave Prediction

We investigate next the evolution of the instantaneous misfit E (x, t) of the wave prediction for
case E, which corresponds to a moderate steepness, although nonlinear effects already have a
marked influence on the wave field dynamics. For both experimental and numerical cases, we
compare the misfit obtained using the LWT, LWT-CDR and ICWM prediction algorithms.
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V.4.2 Instantaneous Misfit of Wave Prediction

Figure V.26 shows the temporal evolution of the wave prediction misfit computed using dif-
ferent algorithms, with respect to data simulated for case E, at both probe 22 (a) and for all
probes (b). The misfit at probe 22 is significantly lower within the accessible prediction zone,

(a) (b)

Figure V.26: Time evolution of wave prediction misfit E , computed with respect to data simulated
for case E: (a) at probe 22 using the linear (LWT, ) and nonlinear (ICWM, ) prediction
algorithms; (b) for all probes using the nonlinear (ICWM) prediction algorithm (black rectangle
encompasses assimilated observations; data was collected at probes’ x-locations (vertical lines)
and interpolated using the nearest neighbor method). In each subfigure, dotted lines ( ) mark
the prediction zone boundaries.[
tmin, tmax] (figure V.26a), reaching a minimum value of about 3.5% for ICWM, compared to
about 4.5% for LWT, whose misfit is consistently about 30% larger than that of ICWM. Within
the time prediction zone, the error gradually slightly increases due to the limited physics rep-
resented in both wave models. In the spatio-temporal domain (figure V.26b), ICWM’s misfit
is lowest within the theoretical prediction zone, reaching a maximum of about 7% along its
boundary. As the x-location of the wave probe increases, the misfit gradient decreases across the
prediction zone upper boundary tmax, or in other words the transition of the misfit values from
within to outside the prediction zone becomes more diffused, which is due to the dispersion of
the assimilated information. More specifically, as detailed in section III.3, the energy associated
with the reconstructed wave components disperses as x increases, gradually limiting the physical
description of the wave field. Even within the spatio-temporal region corresponding to the ob-
servations (black rectangle in figure V.26b), the misfit is non-zero since observations are discrete
rather than continuous samples of elevations. Hence, the reconstructed elevation (nowcast) is
always an estimate of the reference solution. Note that the accessible prediction horizon in the
depicted configuration is tmax− tr ≈ 3.7Tp and 4.3Tp at probes 21 and 22, respectively, and is ex-
pected to further increase at larger distances (at the expense of the prediction accuracy). Then,
from the location where the beginning of the prediction zone tmin matches the reconstruction
time tr, the accessible horizon starts decreasing.

For the same case E, figure V.27 shows for both experimental or simulated reference data, the
spatio-temporal evolution of the ratio of the nonlinear (ICWM) to linear (LWT; a, b) or linear
with corrected dispersion (LWT-CDR; c, d) wave prediction misfit. The purpose of computing
these error ratios is to characterize the improvements pertaining to ICWM relative to the other
wave models. For the simulated data (figure V.27b), the misfit is reduced by up to ∼ 35% within
the prediction zone when using ICWM instead of LWT. Compared to LWT-CDR (figure V.27d),
the reduction is smaller and mostly limited to the spatio-temporal region of assimilated data
(within the solid box), particularly where the wave probe density is larger. Outside of this region
(t > Ta ≈ 7Tp; time propagation) or at the location of probes 21 and 22 (space propagation),
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Figure V.27: Spatio-temporal evolution of the ratio of the nonlinear (ICWM) to (a, b) linear
(LWT) and (c, d) linear with corrected dispersion relation (LWT-CDR) wave prediction misfit E ,
with respect to: (a, c) experimental; and (b, d) simulated reference data for case E. Lines denote
prediction zone boundaries ( ) and domain of assimilated data ( ). Data was collected
at probes’ x-locations (vertical lines) and interpolated using the nearest neighbor method.

the misfit ratio rapidly approaches one, indicating that the improvement achieved using ICWM
rather than LWT-CDR becomes negligible. For the experimental data (figures V.27a,c), similar
patterns are observed, but the improvement achieved using ICWM is not as pronounced as for
simulated data.

These results indicate that the improved representation of nonlinear wave geometry using
ICWMmostly affects the accuracy of the reconstructed part of the wave field. Once reconstructed
waves are propagated to the prediction zone, the nonlinear phase shift, which is corrected in LWT-
CDR to the same level as in ICWM, becomes the main source of error and effects of nonlinear
wave geometry become negligible compared to it. The wave models are parameterized to provide
a relevant and consistent approximation of the wave field over the entire region covered by the
observations. Hence, while the reconstructed wave field is constrained to fit the measurements,
when waves are propagated to issue a prediction, only their propagation properties featured in
the models come into play.

V.4.3 Influence of Experimental Noise on Wave Prediction

The prediction misfits based on numerical and experimental reference data are compared in figure
V.28, at probes 20, 21, and 22, for all cases listed in table V.2, using the linear (LWT) or nonlinear
(ICWM) algorithms. To better assess the effect of experimental noise on the prediction misfit,
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Figure V.28: Prediction misfits for all cases in table V.2, using the linear (LWT, ) and
nonlinear (ICWM, ) algorithms, based on: experimental (•), numerical (N), and noisy
numerical (�) reference data, at probes (a) 20, (b) 21 and (c) 22.

a “noisy numerical dataset” was created by adding to the numerical data a noise signal having
the same spectral shape (or NSR) as that analyzed for the experiments (figure V.15), scaled
by the measured noise amplitude Hn (figure V.14), with independent random phases for each
wave probe. As would be expected, for both algorithms, the prediction misfits are larger at all
wave probes using experimental data, as compared to noise-free numerical data, particularly for
cases with a lower steepness, which have relatively larger noise levels. Using the noisy numerical
data, however, prediction misfits increase to nearly match those of the experimental data. This
indicates that the noisy numerical data is consistent with the experimental data and provides
a digital twin of experiments that explains, for the most part, differences observed between
predictions issued for experimental and noise-free numerical data.

V.4.4 Application to Remote Sensing: Free Surface Slope Prediction

In the free surface elevation predictions described above, the nonlinear phase correction was
responsible for the main relative improvement in prediction misfit, rather than the nonlinear
wave geometry represented in ICWM. While for many ocean engineering applications predicting
instantaneous free surface elevations is most important, such as when computing wave forces or
runup on structures, or controlling a wave energy converter, in some applications such as remote
sensing the main parameter of interest is free surface slope, which governs the backscattered signal
to the radar or optical sensor used (e.g., Nouguier et al., 2014, 2010). Hence, in the following, we
quantify the improvement in free surface slopes representation of achieved using ICWM rather
than LWT-CDR. More specifically, at the location of wave probe 20, we analyze the evolution
as a function of wave steepness of the maximum prediction misfit ratio EPICWM/EPLWT−CDR, for
both surface elevation and slope. As the distance between probes 19 and 20 is small (∼ 0.02λp),
the wave surface slope can be approximated by

s (t) =
η (x20, t)− η (x19, t)

x20 − x19
,

where η denotes the reference or predicted surface elevation and x19,20 the location of probe 19
and 20. We calculate the slope prediction misfit by replacing η with s in equation (IV.2) for the
determination of EP (equation (V.6)).

Results in figure V.29 show a consistently lower misfit ratio for the slope prediction, whether
experimental or numerical data is used (although in the latter case the ratios are lower in abso-
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lute value), indicating that, unlike with surface elevation predictions, geometrical nonlinearities
included in ICWM provide a significant improvement for predicting surface slopes.

Figure V.29: Ratio of the nonlinear (ICWM) to the linear with corrected dispersion relation
(LWT-CDR) prediction misfit for the surface elevation ( ) and the surface slope ( ) at
the location of probe 20 using experimental (•) and numerical (N) reference data.

Further, in ICWM, geometrical nonlinearities are second-order in wave steepness whereas
nonlinear phase shifts are third-order (Guérin et al., 2019; Nouguier et al., 2009, 2010). Accord-
ingly, in figure V.29, the improved performance of ICWM for predicting surface slopes is much
more significant at small wave steepness, when third-order effects are not prominent yet. Addi-
tionally, when using numerical data, the misfit ratios for surface elevation and slope predictions
become increasingly close, the larger the wave steepness. With experimental data, the residual
noise causes higher-frequency surface oscillations that significantly affect the slope calculation
and prevent a proper evaluation of the corresponding prediction misfit. Hence, in figure V.29
both elevation and slope misfit ratios are close to one at low wave steepness.

When initializing a nonlinear model based on a superposition of harmonics linearly extracted
from a standard wave spectrum (such as here a JONSWAP), nonlinearity in the model equations
will cause the generation of higher-frequency wave components that will translate into additional
spectral energy at those frequencies from the onset. Likewise, waves generated in a wave tank
based on a similar standard spectrum will evolve nonlinearly, which results in energy transfer
towards higher frequencies. This energy redistribution in wave spectra is referred to as the
dressing process (Nouguier et al., 2009). In our applications, it is thus the dressed spectrum
that is calculated based on the reference surface, both in experiments and simulations. This is
illustrated in figure V.30, which shows the normalized energy density spectra of the free surface,
S∗η = Sηfp/

(
H2
s /16

)
, computed for case E over the time interval corresponding to the prediction

zone
[
tmin, tmax

]
at the location of probe 20. Similar method and parameters to that of the

calculation of the noise spectrum (section V.2.3.2) are used to perform the spectral analysis.
Waves are only generated by both experimental and numerical wavemakers in the frequency
range f ∈ [fl, fh], with fl ≈ 0.68fp and fh ≈ 2.18fp, the low and high cut-off frequencies,
respectively. Within this frequency range (figures V.30a,c), spectral amplitudes agree well with
each other for the reference data and all wave models. However, as a result of nonlinearity in
the reference data, for f > fh (figures V.30b,d), energy increases in all cases as compared to
the targeted spectrum. More specifically, while for f > fh spectral amplitudes are lower in
all the models than in the reference data, ICWM provides results in much better agreement
with the latter, particularly for the numerical reference data, and LWT and LWT-CDR provide
similar results, both lower than those of ICWM. These results confirm that high-frequency wave
components that predominantly affect wave slope predictions, are more accurately predicted with
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Figure V.30: Normalized energy density spectra of free surface elevations computed for case E
over t ∈ [tmin, tmax], at probe 20, for the: reference data ( ), ICWM model ( ), LWT
model ( ) and LWT-CDR model ( ), in: (a, b) experiments; (c, d) simulations.

the latter model, due to its representation of nonlinear wave geometry (e.g., sharper crests).

Conclusion

We assessed the accuracy of the developed ocean wave prediction algorithm based on three wave
models having different nonlinear properties. The experimental campaign led to the generation
of data (time series of surface elevation) acquired for both long- and short-crested wave fields
using wave probes, in wave tank experiments as well as in simulations of similar experiments with
a high-order numerical wave tank. A number of test cases were defined with different directional
spreading and characteristic wave steepness, from mildly to more strongly nonlinear. The set of
wave probes (physical or numerical) was non-uniformly distributed in space, to mimic the typical
uneven sampling made by a lidar camera at grazing incidence.

The prediction method was tested against data generated for long-crested waves. For these
cases, residual oscillations observed in the physical wave tank were investigated and found to
result from perturbations caused by the wavemaker. These oscillations were identified as the
principal cause for observed differences between the experimental and numerical data. Adding
the experimental noise to numerical reference data in fact led to similar levels of wave prediction
misfit (or accuracy) as when using experimental data.

Our study showed that the prediction accuracy converged with the duration of the assimilated
surface elevation time series (i.e., amount of data used). In addition, smaller data acquisition
time steps yielded higher convergence rates, and the larger the characteristic wave steepness, the
larger the prediction error, in the form of nonlinear phase shifts (related to wave phase velocity)
and wave shape discrepancies. ICWM yielded improved predictions within the accessible predic-
tion zone, as compared to LWT, with a maximum prediction error reduction of ∼ 35% for an
intermediate wave steepness, Hs/λp ≈ 3.18% (based on numerical data). In the spatio-temporal
region corresponding to the observations, the wave shape asymmetry represented in ICWM im-
proved the surface elevation representation. For waves that had propagated (in space and/or
time), the main factor for reducing the prediction misfit was the accurate modeling of nonlinear
wave phase velocity. For surface slope predictions, however, the improved representation of wave
shape asymmetry in ICWM allowed to achieve an average prediction misfit reduction of 20% over
the prediction zone, for a low wave steepness of ∼ 1–2% and based on numerical data, as com-
pared to a linear model with a phase speed correction (LWT-CDR). Through a procedure that
has been fully validated experimentally, these relative improvements demonstrate the benefits of

133



V.4 EXPERIMENTAL INVESTIGATION – Prediction Results and Discussion

using ICWM for the prediction of deterministic fields of the ocean surface.
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General Conclusion

During this work, we addressed the problem of deterministic prediction of ocean waves on the
basis of datasets acquired by an optical sensor remotely observing the ocean surface. Efforts
were focused on the inclusion of relevant nonlinear wave properties in the prediction algorithm,
while preserving the computational efficiency of the wave model in order to prevent calculation
times from unreasonably growing.

To this end, the Lagrangian approach was selected for the free surface representation at a
low computational cost. Developments to the second order in wave steepness were used, which
includes both shape nonlinear effects from the modeling of bound waves and a partial modeling
of wave resonant effects, affecting the dispersion relation, thus the wave propagation velocity.
An extended qualification of the solution properties was proposed and a numerical assessment
was performed using a fully nonlinear solution in several configurations. Due to a more suitable
choice of the particle location around which the Lagrangian expansion is performed, the proposed
wave model, referred to as ICWM, was shown to provide, after a propagation time of several wave
periods, a more accurate description of the free surface elevation than the classical second-order
Lagrangian solution, even if the explicit terms modeling bound waves and resulting from the
interaction between waves of different frequencies are omitted in ICWM.

On the basis of the expected properties of remote optical measurements of surface elevation
– which are to yield measurement points with a highly nonuniform spatial distribution and
at, a priori, unknown locations –, a methodology for the extraction of the wave information
(i.e., amplitudes and phases for a set of frequencies and directions of propagation) from the
measurements was developed. Through the minimization of a quadratic cost function, this
data assimilation procedure consists in inverting the wave model to provide a description of the
observed waves, referred to as the reconstructed wave field. No preprocessing (e.g., interpolation,
windowing) of the surface elevation measurements is required. This initial solution is then
propagated in time and space with the wave model to provide a prediction. The theoretical
validity of the computed solution as well as the definition of the target measurement zone for a
desired forecast horizon are addressed based on the available wave information included in the
assimilated free surface elevation measurements.

This methodology is then applied to synthetically generated optical measurements (computed
from a realistic, fully-nonlinear wave model), providing a numerical demonstration of the validity
of the approach. It was proven to issue accurate predictions of both long- and short-crested waves
within the theoretically accessible prediction zone. The impact of the spatial non-uniformity of
the measurements – which reduces the accuracy of the wave field reconstruction in the region of
poor measurement density – decreases as the temporal extent of the assimilated measurements
increases. Comparisons between linear and nonlinear predictions showed that the nonlinear
features included in ICWM allows improving the prediction accuracy, especially for large wave
steepness. Experimentally generated data helped to characterize the improvements pertaining to
ICWM relative to a linear model, and to a linear model with a similar wave velocity correction
to that of ICWM. Based on data recorded for long-crested waves and their numerical counter-
part generated with a digital twin, we highlighted the benefits of the nonlinear wave velocity
correction for the accurate representation of the free surface elevation of propagated wave fields,
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while the nonlinear wave shape correction is important for the wave field reconstruction and the
free surface slope prediction. This provides a demonstration, fully validated experimentally, of
the usefulness of using ICWM for the prediction of deterministic fields.

The core of the proposed prediction methodology is the inversion of a physical wave model,
consisting, in our case, in the minimization of a quadratic cost function. The resolution of the
problem is based on a singular value decomposition plus a regularization, and an iterative pro-
cess is used for the evaluation of the nonlinear terms. Despite the low computational cost for
the spatio-temporal propagation of a known wave field using ICWM, the considered inversion
method (required to initialize the wave model), chosen for its robustness and adaptation to
non-uniform observations, is not numerically efficient and represents the main limitation of the
proposed approach for its use in real-time applications. The calculation time of this approach
could possibly be managed for predictions using the linear wave theory through the definition
of a better conditioned inverse system or the use of a high-performance numerical framework,
but the estimation of wave nonlinearities remains out of reach in real time. Given the efficient
numerical properties of ICWM, a reformulation of the inverse problem that effectively uses them
could significantly improve the current computational performances, probably at the expense
of a preprocessing procedure of the observations or further approximations regarding the wave
properties. More generally, the development of inversion strategies that make compatible the
non-uniformity and non-periodicity of the wave data with fast numerical methods are worth
investigating as this incompatibility represents the major constraint for the real-time initializa-
tion of nonlinear wave models, even the most computationally efficient ones. Nevertheless, the
proposed nonlinear prediction algorithm can already be used in off-line systems for analysis pur-
poses, providing a more accurate surface representation than the one pertaining to the linear
approach. Plus, the limitation of the availability of optical measurements such as provided by a
lidar camera does not affect the applicability of the developed methodology, since it can easily
be adapted to any kind of wave measurements, either from remote sensors (e.g., radar) or in situ
sensors (e.g., wave buoy).

Although the prediction method has been developed within a framework that is fully compat-
ible with directional wave fields, the work presented in this thesis mainly deals with unidirectional
wave fields. Considering that the nonlinear properties of ICWM are not affected by directional
considerations (i.e., no emergence of nonlinear phenomena in case of a directional distribution),
results extended to directional wave fields are expected to be in line with those of unidirectional
ones. Nonetheless, in order to thoroughly apprehend the capabilities of ICWM in realistic condi-
tions, a proper assessment of its performances in predicting directional wave fields is required. To
this end, the investigation procedure and knowledge provided in this thesis are of great interest
and should be used as a basis. In many aspects, the analysis developed herein can be extended to
directional wave fields straightforwardly. Questions regarding the quantification of the indicators
for the prediction accuracy have to be addressed carefully in order to avoid excessive calculation
times due to the necessary large number of surface samples. The experimental datasets described
in the last chapter, generated for directional sea states and already partly characterized, provide
an appropriate framework for further experimental validation.

Finally, despite the validation of the proposed approach in a wave tank environment, which
already provides a solid proof of concept, the use of field data acquired in the open ocean is
required to get the full picture of its potentiality.
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Appendix A

Assimilation using CWM1 and
LWT-CDR

We explicitly formulate here the system for the inversion of the nonlinear models CWM1 (first-
order Lagrangian solution) and LWT-CDR (LWT with corrected dispersion relation). We recall
that we aim at inverting the system described by equation (III.2), which, after straightforward
developments, leads to 

2N∑
n=1

(η`)am (η` − η`) = 0,

2N∑
n=1

(η`)bm (η` − η`) = 0.

(A.1)

We thus have to determine the derivative terms (η`)am,bm to explicitly formulate the system that
is solved for the wave parameters p = {an, bn}.

A.1 System Formulation for CWM1

Following a similar procedure to the one detailed in section II.2.2 for the approximation of
ICWM in an Eulerian framework, the Eulerian version of CWM1 surface elevation – including
the (second-order) mean water surface level correction – is given by

η (r, t) =
N∑
n=1

an cos Φn + bn sin Φn +
N∑
n=1

1

2

(
a2
n + b2n

)
kn,

in which Φn = kn ·
[
r −

N∑
i=1

k̂i (−ai sinψi + bi cosψi)

]
− ωnt.

The above formulation gives

(η`)am = (am cos Φm`)am + (bm sin Φm`)am + amkm,

(η`)bm = (am cos Φm`)bm + (bm sin Φm`)bm + bmkm.

We then calculate

(am cos Φm`)am = cos Φm` − am sin Φm` (Φm`)am ,

(bm sin Φm`)am = bm cos Φm` (Φm`)am ,

(am cos Φm`)bm = −am sin Φm` (Φm`)bm ,

(bm sin Φm`)bm = sin Φm` + bm cos Φm` (Φm`)bm .
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The derivatives of the phase term are

(Φm`)am = km sinψm`,

(Φm`)bm = −km cosψm`.

It is now possible to retrieve the modal derivatives of the CWM1 free surface elevation

(η`)am = cos Φm` − km (am sin Φm` − bm cos Φm`) sinψm` + amkm,

(η`)bm = sin Φm` + km (am sin Φm` − bm cos Φm`) cosψm` + bmkm.

Denoting (η`)am = Pm` and (η`)bm = Qm`, system (A.1) turns into

L∑
`=1

N∑
n=1

an

(
cos Φn` +

1

2
ankn

)
Pm` + bn

(
sin Φn` +

1

2
bnkn

)
Pm` =

L∑
`=1

η`Pm`,

L∑
`=1

N∑
n=1

an

(
cos Φn` +

1

2
ankn

)
Qm` + bn

(
sin Φn` +

1

2
bnkn

)
Qm` =

L∑
`=1

η`Qm`.

(A.2)

This system is then recast in a matrix form Ap = B, where, p is our wave model parameters
vector containing 2N unknown elements

pn = an, pN+n = bn,

B is a vector containing the observation information

Bm =
L∑
`=1

η`Pm`, BN+m =
L∑
`=1

η`Qm`,

and A is a 2N × 2N matrix that follows

Amn =

L∑
`=1

(
cos Φn` +

1

2
ankn

)
Pm`,

AN+m,n =

L∑
`=1

(
cos Φn` +

1

2
ankn

)
Qm`,

Am,N+n =

L∑
`=1

(
sin Φn` +

1

2
bnkn

)
Pm`,

AN+m,N+n =

L∑
`=1

(
sin Φn` +

1

2
bnkn

)
Qm`,

System (A.2) is finally solved for optimal wave parameters (an, bn). Since both A and B depend
on wave parameters we make use of the iterative procedure detailed in section III.2.3.

A.2 System Formulation for LWT-CDR

The LWT-CDR surface elevation is given by

η (r, t) =

N∑
n=1

an cos φ̃n + bn sin φ̃n,

in which φ̃n = kn · r − ω̃Lnt.

The above formulation gives

(η`)am =
(
am cos φ̃m`

)
am

+
(
bm sin φ̃m`

)
am
,

(η`)bm =
(
am cos φ̃m`

)
bm

+
(
bm sin φ̃m`

)
bm
.
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We then calculate (
am cos φ̃m`

)
am

= cos φ̃m` − am sin φ̃m`

(
φ̃m`

)
am
,(

bm sin φ̃m`

)
am

= bm cos φ̃m`

(
φ̃m`

)
am
,(

am cos φ̃m`

)
bm

= −am sin φ̃m`

(
φ̃m`

)
bm
,(

bm sin φ̃m`

)
bm

= sin φ̃m` + bm cos φ̃m`

(
φ̃m`

)
bm
.

We now have to calculate the modal derivatives of the phase term φ̃m`, for which we recall here
the expression 

φ̃m` = km · r` − ω̃Lmt`,

ω̃Lm = ωm + 1/2km · Us,

Us =

N∑
n=1

(
a2
n + b2n

)
ωnkn.

Its derivative yields

(
φ̃m`

)
am,bm

= (−ω̃Lmt`)am,bm =⇒


(
φ̃m`

)
am

= −amωmk2
mt`,(

φ̃m`

)
bm

= −bmωmk2
mt`.

It is now possible to retrieve the expression of the modal derivatives of the LWT-CDR free surface
elevation

(η`)am = cos φ̃m` + km

(
am sin φ̃m` − bm cos φ̃m`

)
amωmkmt`,

(η`)bm = sin φ̃m` + km

(
am sin φ̃m` − bm cos φ̃m`

)
bmωmkmt`.

Denoting (η`)am = Pm` and (η`)bm = Qm`, system (A.1) turns into

L∑
`=1

N∑
n=1

an cos φ̃n`Pm` + bn sin φ̃n`Pm` =
L∑
`=1

η`Pm`,

L∑
`=1

N∑
n=1

an cos φ̃n`Qm` + bn sin φ̃n`Qm` =
L∑
`=1

η`Qm`.

(A.3)

This system is then recast in a matrix form Ap = B, where, p is our wave model parameters
vector containing 2N unknown elements

pn = an, pN+n = bn,

B is a vector containing the observation information

Bm =

L∑
`=1

η`Pm`, BN+m =
L∑
`=1

η`Qm`,

and A is a 2N × 2N matrix that follows

Amn =

L∑
`=1

cos φ̃n`Pm`,

AN+m,n =
L∑
`=1

cos φ̃n`Qm`,

Am,N+n =

L∑
`=1

sin φ̃n`Pm`,

AN+m,N+n =
L∑
`=1

sin φ̃n`Qm`,

System (A.3) is finally solved for optimal wave parameters (an, bn). Since both A and B depend
on wave parameters we make use of the iterative procedure detailed in section III.2.3.
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Titre : Reconstruction et prédiction en temps réel de champs de vagues par télédétection optique 
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Résumé : Les recherches présentées dans le 
cadre de cette thèse portent sur le traitement de 
mesures par télédétection optique de la surface 
océanique en vue de la prédiction de champs de 
vagues au voisinage d’une structure marine, 
information cruciale pour l’analyse et le contrôle 
d’une large gamme d’opérations en mer. Elles 
visent notamment à inclure, à moindre coût 
calcul, la modélisation de phénomènes non-
linéaires, conservant une représentation réaliste 
de la surface en cas d’état de mer sévère. 
Une approche Lagrangienne faiblement non-
linéaire (ICWM), dont les propriétés 
hydrodynamiques sont étudiées par inter-
comparaison avec des modèles de référence, est 
sélectionnée pour la description de la surface 
libre. Le problème de prédiction est formulé 
comme un problème inverse dont le but est de 
faire correspondre la solution décrite par le 
 

modèle de vagues à des observations, 
composées ici d’élévations de surface mesurées 
par un capteur lidar synthétique balayant la 
surface en incidence rasante. Les prédictions 
résultent de la propagation en temps/espace du 
modèle ainsi paramétré. 
L’applicabilité de la méthodologie est validée à 
l’aide d’observations de champs de vagues 
unidirectionnels et directionnels, acquises à des 
instants différents pour pallier à leur forte non-
uniformité spatiale. La comparaison relative des 
performances de ICWM et de modèles d’ordre 
inférieur met en évidence les améliorations dues 
à la modélisation des non-linéarités, notamment 
celles issues de la correction de la relation de 
dispersion. Une démonstration de la pertinence 
de l’utilisation de ICWM est ensuite proposée au 
moyen d’une procédure entièrement validée 
expérimentalement en bassin de houle. 

 

 

Title: Real-time reconstruction and prediction of ocean wave fields from remote optical 
measurements 

Keywords: Ocean waves, Gravity waves, Deterministic prediction, Nonlinear waves, 
Hydrodynamics, Inverse problem 

Abstract:  Researches conducted in this thesis 
address the problem of deterministic prediction of 
ocean wave fields around a marine structure, a 
key parameter for the analysis and control of a 
vast range of offshore operations, on the basis of 
datasets acquired remotely by an optical sensor. 
Efforts focus on the inclusion, at low 
computational cost, of the modeling of nonlinear 
hydrodynamic phenomena, preserving the 
reliability the surface representation in case of 
severe sea state. 
A weakly nonlinear Lagrangian approach 
(ICWM), whose hydrodynamic properties are 
evaluated by inter-comparison with reference 
wave models, is selected for the description of 
the free surface. The prediction problem is then 
formulated as an inverse problem that aims at 
fitting the solution described by the wave model 
to observations, here composed of free surface 
 

elevation datasets generated by a synthetic, yet 
realistic, lidar sensor scanning the ocean 
surface at grazing angle. Predictions are then 
issued through the propagation in time and 
space of the parameterized wave model. 
The applicability of the methodology is validated 
using observations of both unidirectional and 
directional wave fields, obtained at different 
instants to compensate for their strong spatial 
non-uniformity. The relative performance 
comparison between ICWM and lower-order 
wave models highlights the improvements due 
to the modeling of wave nonlinearities, 
especially those pertaining to the correction of 
the dispersion relation. A demonstration of the 
usefulness of ICWM is then provided by means 
of a procedure that is fully validated 
experimentally in a wave tank. 
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