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Résumé
Dans le contexte actuel, l’Intelligence Artificielle (IA) est largement répan-
due et s’applique à de nombreux domaines tels que les transports, la mé-
decine et les véhicules autonomes. Parmi les algorithmes d’IA, on retrouve
principalement les réseaux de neurones, qui peuvent être répartis en deux fa-
milles : d’une part, les Réseaux de Neurones Impulsionnels (SNNs) qui sont
issus du domaine des neurosciences ; d’autre part, les Réseaux de Neurones
Analogiques (ANNs) qui sont issus du domaine de l’apprentissage machine.
Les ANNs connaissent un succès inédit grâce à des résultats inégalés dans
de nombreux secteurs tels que la classification d’images et la reconnaissance
d’objets. Cependant, leur déploiement nécessite des capacités de calcul consi-
dérables et ne conviennent pas à des systèmes très contraints. Afin de pallier
ces limites, de nombreux chercheurs s’intéressent à un calcul bio-inspiré, qui
serait la parfaite alternative aux calculateurs conventionnels basés sur l’ar-
chitecture de Von Neumann. Ce paradigme répond aux exigences de per-
formance de calcul, mais pas aux exigences d’efficacité énergétique. Il faut
donc concevoir des circuits matériels neuromorphiques adaptés aux calculs
parallèles et distribués.

Dans ce contexte, nous avons établi un certain nombre de critères en termes
de précision et de coût matériel pour différencier les SNNs et ANNs. Dans
le cas de topologies simples, nous avons montré que les SNNs sont plus effi-
caces en termes de coût matériel que les ANNs, et ce, avec des précisions de
prédiction quasiment similaires. Ainsi, dans ce travail, notre objectif est de
concevoir une architecture neuromorphique basée sur les SNNs. Dans cette
perspective, nous avons mis en place un flot de conception composé de trois
niveaux, qui permet la réalisation d’une architecture neuromorphique dédiée
et adaptée aux applications d’IA embarquée.

Dans un contexte d’efficacité énergétique, nous avons réalisé une étude ap-
profondie sur divers paradigmes de codage neuronal utilisés avec les SNNs.
Par ailleurs, nous avons proposé de nouvelles versions dérivées du codage
fréquentiel, visant à se rapprocher de l’activité produite avec le codage tem-
porel, qui se caractérise par un nombre réduit d’impulsions (spikes) se pro-
pageant dans le SNN. En faisant cela, nous sommes en mesure de réduire le
nombre de spikes, ce qui se traduit par un SNN avec moins d’événements à
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traiter, et ainsi, réduire la consommation énergétique sous-jacente. Pour cela,
deux techniques nouvelles ont été proposées : "First Spike", qui se caractérise
par l’utilisation d’un seul spike au maximum par donnée ; "Spike Select", qui
permet de réguler et de minimiser l’activité globale du SNN.

Dans la partie d’exploration RTL, nous avons comparé de manière quanti-
tative un certain nombre d’architectures de SNN avec différents niveaux de
parallélisme et multiplexage de calculs. En effet, le codage "Spike Select" en-
gendre une régulation de la distribution des spikes, avec la majorité générée
dans la première couche et peu d’entre eux propagés dans les couches pro-
fondes. Nous avons constaté que cette distribution bénéficie d’une architec-
ture hybride comportant une première couche parallèle et les autres multi-
plexées. Par conséquent, la combinaison du "Spike Select" et de l’architecture
hybride serait une solution efficace, avec un compromis efficace entre coût
matériel, consommation et latence.

Enfin, en se basant sur les choix architecturaux et neuronaux issus de l’explo-
ration précédente, nous avons élaboré une architecture évènementielle dé-
diée aux SNNs mais suffisamment programmable pour supporter différents
types et tailles de réseaux de neurones. L’architecture supporte les couches
les plus utilisées : convolution, pooling (mise en commun) et entièrement
connectées. En utilisant cette architecture, nous serons bientôt en mesure
de comparer les ANNs et les SNNs sur des applications réalistes et enfin
conclure sur l’utilisation des SNNs pour l’IA embarquée.

Mots clés— Réseaux de Neurones Artificiels, Intelligence Artificielle, Réseaux de

Neurones Impulsionnels, Codage Neuronal, Calcul Neuromorphique, Architecture

Matérielle, Consommation d’Energie, Systèmes Embarqués
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Abstract
Nowadays, Artificial Intelligence (AI) is a widespread concept applied to
many fields such as transportation, medicine and autonomous vehicles. The
main AI algorithms are artificial neural networks, which can be divided into
two families: Spiking Neural Networks (SNNs), which are bio-inspired mod-
els resulting from neuroscience, and Analog Neural Networks (ANNs), which
result from machine learning. The ANNs are experiencing unprecedented
success in research and industrial fields, due to their recent successes in many
application contexts such as image classification and object recognition. How-
ever, they require considerable computational capacity for their deployment
which is not adequate to very constrained systems such as ’embedded sys-
tems’. To overcome these limitations, many researchers are interested in
brain-inspired computing, which would be the perfect alternative to con-
ventional computers based on the Von Neumann architecture (CPU/GPU).
This paradigm meets computing performance but not energy efficiency re-
quirements. Hence, it is necessary to design neuromorphic hardware circuits
adaptable to parallel and distributed computing.

In this context, we have set criteria in terms of accuracy and hardware imple-
mentation cost to differentiate the two neural families (SNNs and ANNs).
In the case of simple network topologies, we conducted a study that has
shown that the spiking models have significant gains in terms of hardware
cost when compared to the analog networks, with almost similar prediction
accuracy. Therefore, the objective of this thesis is to design a generic neuro-
morphic architecture that is based on spiking neural networks. To this end,
we have set up a three-level design flow for exploring and implementing
neuromorphic architectures.

In an energy efficiency context, a thorough exploration of different neural
coding paradigms for neural data representation in SNNs has been carried
out. Moreover, new derivative versions of rate-based coding have been pro-
posed that aim to get closer to the activity produced by temporal coding,
which is characterized by a reduced number of spikes propagating in the
network. In this way, the number of spikes can be reduced so that the num-
ber of events to be processed in the SNNs gets smaller. The aim in doing this
approach is to reduce the hardware architecture’s energy consumption. The
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proposed coding approaches are: First Spike, which is characterized using
at most one single spike to present an input data, and Spike Select, which
allows to regulate and minimize the overall spiking activity in the SNN.

In the RTL design exploration, we quantitatively compared three SNN archi-
tectural models having different levels of computing parallelism and mul-
tiplexing. Using Spike Select coding results in a distribution regulation of
the spiking data, with most of them generated within the first layer and few
of them propagate into the deep layers. Such distribution benefits from a
so-called ’hybrid architecture’ that includes a fully-parallel part for the first
layer and multiplexed parts to the other layers. Therefore, combining the
Spike Select and the Hybrid Architecture would be an effective solution for
embedded AI applications, with an efficient hardware and latency trade-off.

Finally, based on the architectural and neural choices resulting from the pre-
vious exploration, we have designed a final event-based architecture ded-
icated to SNNs supporting different neural network types and sizes. The
architecture supports the most used layers: convolutional, pooling and fully-
connected. Using this architecture, we will be able to compare analog and
spiking neural networks on realistic applications and to finally conclude about
the use of SNNs for Embedded Artificial Intelligence.

Keywords— Artificial Neural Networks, Artificial Intelligence, Spiking Neural Net-

works, Neural Coding, Neuromorphic Computing, Hardware Architecture, Energy

Consumption, Embedded Systems
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Chapter 1

General introduction

1.1 Context

Artificial neural networks are derived and inspired from the biological brain,
and have become the most well-known and frequently used form of Artificial
Intelligence. Even though these neural models have garnered a lot of inter-
est in recent years, they stem from the 1940s with the apparition of the first
computer. Subsequent work and advancements have led to the development
of a wide variety of neural models. Convolutional Neural Network (CNN)
is the most used one today. It is inspired from the biological visual percep-
tion mechanism of living beings. In 1959, Hubel and Wiesel have found that
animals possess biological cells in their visual cortex which are detecting
the light present in their receptive field (Hubel and Wiesel, 1959). In 1980,
Fukushima was inspired by this finding and proposed what is considered as
the CNN’s predecessor : the neocognitron (Fukushima, 1980).

A decade later, LeCun et al. proposed the CNN revolutionary framework that
is presented as a Deep Neural Network (DNN) composed of several layers
of different types, called "LeNet-5" (LeCun et al., 1990). This DNN is specif-
ically used to ensure the handwritten digits classification task. More than a
decade later, several models have been proposed, they came with improve-
ments and facilitations in training DNNs. Krizhevsky, Sutskever, and Hinton
proposed one of them, the AlexNet model, it has a similar, but deeper, struc-
ture to LeNet-5 with more layers (Krizhevsky, Sutskever, and Hinton, 2017).
This model was very successful, it brought out many methods and materials
coming from other works that improved classification performances. Among
them, we can cite VGGNet (Simonyan and Zisserman, 2014), ZFNet (Zeiler
and Fergus, 2014), GoogleNet (Szegedy et al., 2015) and ResNet (He et al.,
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2015). Recent advances on DNNs can be found in the paper proposed by Gu
et al. in (Gu et al., 2015).

Meanwhile, these neural algorithms have become more popular with appli-
cations in several domains such as image and video recognition, image clas-
sification, medical image analysis, and natural language processing. This
success can be awarded to two factors. First, the high-performance com-
puting capabilities of modern CPU/GPU based computers that accelerated
the implementation, the training and the inference stages. Second, the huge
amount of available open source labeled data for training DNN algorithms,
which increased the number of applications and contributed to the improve-
ment of these algorithms.

These neural networks could be separated into three different generations,
distinguished by the neural computation and coding. The first generation
is composed of neural models based on the traditional McCulloch and Pitts
neuron, which outputs discrete binary values (Schuman et al., 2017).

The second generation is characterized by the use of continuous activation
functions within their neurons rising to more complex architectures, such as
Boltzmann Machines (Ackley, Hinton, and Sejnowski, 1985), Hopfield Net-
works (Hopfield, 1982), Perceptrons, Multi-Layer Perceptrons (MLP) (Rumel-
hart, McClelland, and PDP Research Group, 1986) and Convolutional Neural
Networks (Krizhevsky, Sutskever, and Hinton, 2017).

Finally, the third generation is composed of neural algorithms called Spik-
ing Neural Networks (SNNs). In SNN models, the neural information is en-
coded into spikes or action potentials, inspired from neuroscience. Indeed,
the spiking models and inter-neuron connections used with SNNs mimic bi-
ological neurons and synaptic communication mechanisms based on action
potentials. According to this spike-based coding paradigm, SNNs are char-
acterized by an event-based processing where spiking neuron computations
are operated only when receiving input spikes.

1.2 Problematic

The recent performance of DNNs in terms of image classification has given
them a major role in machine-learning field and AI research. After a first
phase of offline experiments, these methods have started to proliferate in our
daily life through autonomous applications everywhere and close to the user.
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Thus, an increasing number of applications such as smart devices, IoTs or
autonomous vehicles are requiring an efficient embedded implementation.

However, the fact that these neural networks process analog and continuous
data makes their computation more complex and requires to be executed on
high-performance computing platforms. As a result, their initial implemen-
tation on classical Von-Neuman architectures (CPU/GPU) is too resource-
and energy-intensive for such constraining systems (embedded systems). In
addition to their computational complexity, these intrinsically parallel algo-
rithms are not adapted to the general-purpose sequential processors. There-
fore, it is essential to, first, reduce the computation complexity of these neu-
ral systems and, second, deploy them on dedicated neuromorphic systems.
These architectures are designed to fit the parallel and distributed comput-
ing paradigm of ANNs, which allows their implementation on embedded
systems.

1.3 Objectives

Recent literature considers the third generation of neural algorithms, i.e. Spik-
ing Neural Networks (SNNs), as the alternative to Analog Neural Networks
(ANNs) for embedded artificial intelligence applications. According to their
spike-based coding paradigm, SNNs perform an event-based processing: com-
putation is held by a spiking neuron when and only when it receives an input
spike. Without any stimulation, the neuron remains idle. Hence, computa-
tion is strictly performed for relevant information propagation, in contrast to
ANNs, where the states of every neuron are updated periodically. Moreover,
the computation is usually much simpler in spiking neurons than in formal
neurons. Hence, SNNs are much more promising for low-power embedded
hardware implementations than ANNs, considering the advantages in terms
of event-driven computation and resource consumption brought by the spik-
ing neuron model. Consequently, the objective of this thesis is the hardware
design of a generic neuromorphic computing architecture capable of running
any embedded AI application based on SNNs. Indeed, the neural algorithm
structure depends on the user-defined application data, where different types
and sizes of the neural network models could be employed. Moreover, spik-
ing data is naturally very sparse but using rate-coding a huge quantity is
processed by the SNN, therefore, we explore novel coding schemes aiming
to reduce this spiking activity.
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1.4 Contributions

The thesis contribution consists in studying more precisely the question of
the digital hardware design of spiking neural networks for energy-efficient
implementation of embedded AI applications using static data. The SNNs
are all the more advantageous as we plan to execute them in dedicated ac-
celerators. Then they take full advantage of the event-driven nature of data
flows, the simplicity of their elementary operators and their local and dis-
tributed computing and learning properties. Several specific hardware solu-
tions have already been proposed in the literature, but they are only solutions
isolated from the overall design space where network topologies are often
constrained by the characteristics of the circuit architecture. We recommend
the opposite approach, which consists in generating the architecture that best
supports the network topology. This is done by: first, using a neural coding
scheme generating, as little as possible, spiking events while keeping the de-
sired accuracy; second, using an architectural model that optimally uses the
available hardware resources to best fit the energy- and processing-efficiency
requirements.

Through this study, we therefore propose an exploration framework that
makes it possible to evaluate the impact of different spiking models on the ef-
fectiveness of their hardware implementation. With this framework, we start
from a wide variety of hardware implementation choices to incrementally
refine the scope to find the most suitable at the end.

Moreover, we focus on neural coding for spike generation with SNNs by
studying its impact on neuromorphic system efficiency. Our intuition is that
using time-based coding instead of rate-based coding leads to a system with
reduced power consumption but with lower accuracy results. When using
time-based coding a few numbers of spikes are used to encode data, whereas
with rate-based coding a greater spiking activity is recorded in the network,
thus increasing resource and energy intensiveness of the system. However,
at the same time, higher accuracy results are obtained with rate coding than
with temporal coding. Therefore, we explore additional spike coding meth-
ods attempting to mimic time-based coding paradigm in terms of spiking
activity and rate-based coding in terms of accuracy performance.

In the context of hardware SNN implementation, we use a high-level neu-
romorphic architectural exploration simulator that provides rough energy
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consumption, latency and chip surface estimates for several built-in architec-
tural configurations. This simulator, acting as a first evaluation tool, provides
results helping the filtering of the large panel of architectural choices. There-
fore, fewer architecture candidates appear at the output of this stage that
are then described using VHDL to be tested at Register Transfer Level, thus
delivering precise timings, logic resources and energy measures. Notably,
we propose a novel Hybrid Architecture, which combines the advantages of
both multiplexed and parallel hardware implementations.

1.5 Thesis outline

The remaining part of this thesis manuscript is composed of six chapters.
First, in chapter 2 we describe the background and the context of spiking neu-
ral networks and neuromorphic computing. Then, in chapter 3, we present
the design framework of the thesis and give high-level results of some ar-
chitectural models for hardware SNNs. Then, we discuss neural coding and
report the results of some explored coding schemes ranging from rate-based
to time-based paradigms, in chapter 4. Then, in chapter 5, we describe a
Register-Transfer-Level (RTL) exploration of different neuromorphic archi-
tectures for SNNs that are based on fully-connected layers. This RTL explo-
ration comes up with a set of architectural choices that are used to design a
generic hardware architecture supporting spiking CNNs. This spiking CNN
architecture is described in chapter 6. Finally, we present the thesis conclu-
sions and propose some future directions in the final chapter 7.
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Chapter 2

Theoretical background

2.1 Introduction

The objective of this thesis is designing a neuromorphic architecture based on
bio-inspired approaches to adapt to the embedded system constraints. More-
over, the architecture has to respect some criteria in terms of configurability,
programmability, scalability and genericity.

In this chapter, we describe the theoretical concepts and methods that will
serve for the selection of some technical choices for achieving our objectives.
First, we introduce the neural network models found in literature and the
ones we are dealing with. Second, we present some spiking neuron mod-
els that are the main computing units of the spiking neural network. After-
wards, we discuss the SNN’s training and neural coding which are two im-
portant concepts in the construction of spiking neuromorphic systems. Then,
we define the basic paradigms and architectural models for the implemen-
tation of neuromorphic hardware chips. Finally, we present some related
works dealing with neuromorphic computing.

2.2 Neural network models

In this work, we deal with the design of embedded electronic systems capa-
ble of performing tasks commonly considered as AI applications such as im-
age classification or object recognition. For performing such tasks, the most
commonly used solution is based on artificial neural networks.

There are many types of neural network topology, such as recurrent, feed-
forward or self-organizing maps. In this work, we consider only feed-forward
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networks because they are the simplest for implementation in hardware and
provide the state-of-the-art accuracy performance for many AI applications.

These feed-forward networks are composed of neurons that are connected
between each other through synapses that conduct neural activities. Based
on these neurons, networks can be formed by organizing them in layers con-
nected to each other (Bebis and Georgiopoulos, 1994). An ANN consists of
an input layer and an output layer and at least one hidden layer. The input
layer consists of input neurons that only transmit the information to the rest
of the network by acting as buffers. The output layer contains the neurons
that represent the different classes of the data that the network is classifying
(Sze et al., 2017). The hidden layers are connected to the input and output
layers and may be of different types and sizes (number of neurons). In this
work, we have considered the most commonly used layer types, these are:
convolutional, pooling and fully-connected layers. Figure 2.1 shows an ex-
ample of such a CNN composed of 6 layer hidden layers, with, two convo-
lutional, two pooling and two fully-connected layers. This kind of ANN is
called "Convolutional Neural Network" or simply "CNN" because it has con-
volutional layers. In the following, we give a brief description of its different
layer types.

FIGURE 2.1: LeNet CNN architecture used with MNIST dataset
– generated from the N2D2 framework (Bichler et al., 2017).

Convolutional layer

The convolutional layer is composed of kernels or filters that are applied to
an input image or Feature Map (FM) to extract specific features. To do so,
each kernel has its unique weights that are defined after the learning process
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and applied at different positions of the input image or FM. The number
of these positions correspond to the size of the convolution layer’s output
feature map that is computed using equations 2.1 and 2.2 .

FMsize = Nout ∗ Nout (2.1)

Nout = (Nin − F + 2 ∗ P)/S + 1 (2.2)

Where Nout is the width/height of the output feature map, F is the receptive
field width (filter width), P is the padding, S is the stride and Nin is the input
FM width/height. In figure 2.1 an illustration showing the network LeNet-5
when used for MNIST classification tasks. Here, there are three convolutional
layers, one connected to the input and two others connected to the first and
second pooling layers. The first layer is composed of 6 convolution kernels
with the size of 5x5 that slide over the input image using a stride equal to 1
(the padding is equal to 0). This convolutional layer output is 6x28x28, i.e. 6
FMs of 28x28 size, this is obtained by applying the formulas in equations 2.1
and 2.2.

Pooling layer

Pooling layers, also called sub-sampling layers, are used to reduce the size
of input FMs. Actually, they are composed of average or maximum pooling
kernels that are applied to input FMs using the similar sliding technique used
with convolutional layers. Therefore, to compute the output feature map
size, we use the same formulas found in equations 2.1 and 2.2. For example,
in the third layer from the left in figure 2.1, applying 6 pooling kernels (of 2x2
size and with a stride of 2) on 6x28x28 FMs results in feature maps of 6x14x14
size.

Fully-Connected layer

Fully-connected layers are generally located at the last stages of a CNN net-
work. They come to process the output FM of the last CNN convolutional
or pooling layer, they are considered as the network’s classifier. These layers
are composed of neurons connected to all previous layer nodes.



10 Chapter 2. Theoretical background

Neural models

Indeed, there are many models of artificial neural networks that can be clas-
sified into two families according to the type of neurons and the method
of communication between them. First, there are the Analog Neural Net-
works (ANNs) which are widely used in the field of Machine Learning. They
are called Analog because the data flowing and processed by the network is
analog data (real valued data). Second, we have Spiking Neural Networks
(SNNs) that rise from the field of neuroscience.

2.2.1 Analog Neural Networks (ANNs)

The analog models (ANNs) constitute the first neural family that we are deal-
ing with in this work. As mentioned before, they are composed of analog
neurons organized in layers and connected in a feed-forward manner. The
data flowing in the network between its nodes represent neural activities of
the different neurons. These neural activities are output of neurons that have
processed input data coming from weighted input synapses. In this thesis,
we have used two different ANN models: Multi-Layer Perceptron (MLP)
and Convolutional Neural Network (CNN).

Multi-Layer Perceptron

The best-known network model in the machine-learning field is the MLP,
which is a feed-forward network that consists of only fully-connected layers.
Each layer has a number of neurons called perceptrons that are totally con-
nected to the neurons of the previous layer. The neuron j in layer l performs
the computation shown in equations 2.3 and 2.4.

yl
j(t) = f (sl

j(t)) (2.3)

sl
j(t) =

Nl−1−1

∑
i=0

wij × yl−1
i (t) (2.4)

Where yl
j is the output of the neuron j in the layer l, Nl is the number of

neurons in the layer l, wij is the synaptic weight between neuron i in layer
l − 1 and neuron j in layer l, and f () is the non-linear activation function.
There are several activation functions that can be used with perceptrons such
as Sigmoid (Narayan, 1997), hyperbolic tangent (TanH) (Lecun et al., 1998)
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and Rectified Linear Unit (ReLU) (Hahnloser et al., 2000; Agarap, 2018). In
this work, we use the ReLU function for two reasons: first, for its comput-
ing efficiency allowing the network to converge quickly and its prevention
from over-fitting (Krizhevsky, Sutskever, and Hinton, 2017); second, when
mapped to spiking domain, it results in a simple comparison with a thresh-
old (Perez-Carrasco et al., 2013).

FIGURE 2.2: A one hidden layer MLP network applied to
MNIST dataset.

The learning algorithm used to adapt the synaptic parameters of the MLP is
back-propagation, this algorithm is described later in subsection 2.4.2.1. An
example of an MLP with one hidden layer of 300 neurons applied to MNIST
data-set is shown in figure 2.2.

Convolutional Neural Networks (CNNs)

CNN is the most used deep learning architecture. It is inspired from the bi-
ological visual perception mechanism of living beings. Indeed, Hubel and
Wiesel have found, in 1959, that animals have cells in their visual cortex that
detect the light present in their receptive field (Hubel and Wiesel, 1959). In-
spired by this finding, Fukushima proposed in 1980 the neocognitron, which
is considered as the CNN’s predecessor (Fukushima, 1980). A decade later,
LeCun et al. proposed the revolutionary framework of CNN that is presented
as an ANN of several layers of different types, called "LeNet-5". This ANN is
specifically used to ensure the handwritten digits classification task (LeCun
et al., 1990).

More than a decade later, several models have been proposed, they came
with improvements and facilitation in training CNNs. Krizhevsky, Sutskever,
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and Hinton proposed one of them, AlexNet, it has similar structure to LeNet-
5 but with more layers (Krizhevsky, Sutskever, and Hinton, 2017). This
model was very successful, it brought out many methods coming from other
works that improved classification performances. Among them, we can cite
VGGNet (Simonyan and Zisserman, 2014), ZFNet (Zeiler and Fergus, 2014),
GoogleNet (Szegedy et al., 2015) and ResNet (He et al., 2015). Recent ad-
vances on CNNs can be found in the survey paper proposed by Gu et al. in
(Gu et al., 2015).

Meanwhile, CNNs have become more popular with applications in several
domains such as image and video recognition, image classification, natu-
ral language processing, and medical image analysis. This success can be
awarded to two factors. First, computing capabilities of modern CPU/GPU
based computers that accelerated learning and inference stages. Second, the
huge amount of available open source labeled data for training CNNs, which
increased the number of applications and contributed in the improvement of
CNN models.

2.2.2 Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs) are the second family of neural models
that we are studying in this thesis. In fact, SNNs are closer to the function-
ing of the brain than ANNs, thanks to the use of spiking neuron models.
These spiking neurons mimic the behavior of biological neural cells by in-
tegrating and communicating with each other action potentials or "spikes"
(Izhikevich, 2004; Pfeiffer and Pfeil, 2018; Tavanaei et al., 2019). Indeed, a
spike is an electrical impulse that is traveling from one neuron to another
and is considered as the elementary unit that is used to encode neural data
(Gerstner and Kistler, 2002b; Brette, 2015). The neural integration consists
in accumulating synaptic weights associated with pre-synaptic connections
that have conducted input spikes. Various neuron models that can be used
with SNNs will be presented in section 2.3.

The neuron’s computation in SNNs is a spatio-temporal mechanism because:
first, the neurons are spatially located in the SNN by belonging to neural re-
gions identified generally by layers; second, the SNN processes data tem-
porally where the neurons are activated at different dates depending on the
firing of their predecessor neurons (Kasabov, 2018; Behrenbeck et al., 2018).
This spatio-temporal property of SNNs fits perfectly event-based neuromor-
phic architectures. These neuromorphic systems have a structure adequate
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to the spatial organisation of an SNN with Neural Processing Units (NPUs)
representing layers (Esser et al., 2016; Schmitt et al., 2017; Rotermund and
Pawelzik, 2018; Luo et al., 2018; Carbon et al., 2018). The different NPUs
communicate between each other under the Address-Event-Representation
(AER) protocol that fits the temporal aspects of SNNs. In the coming chap-
ters, we will study neuromorphic architectures and their impact on the effi-
ciency of SNNs.

2.3 Spiking neuron models

For the neuron model, among several models identified in neuroscience liter-
ature and in a machine learning context, we use spiking neurons. This spik-
ing neuron model is used in the ANN-SNN conversion process to substitute
the Perceptron of the originate ANN. In this section, we present some spiking
neuron models found in literature and that can be used with neuromorphic
systems.

Hodgkin-Huxley

The Hodgkin-Huxley (HH) model is the first biologically plausible mathe-
matical neuron model that was proposed in 1952 by Hodgkin and Huxley. It
is designed to describe the membrane’s electrical behavior of a giant nerve
fibre (Hodgkin and Huxley, 1952).

The HH model is expressed in equation 2.5, it shows how the synaptic cur-
rent I flowing across the neuron’s membrane is integrated on the membrane
capacitance CM.

CM
dVM

dt
= −gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK) + I (2.5)

With VM the neuron’s membrane potential, g the conductance, E the equilib-
rium potential and "m,h and n" gating variables for activation and inactiva-
tion. The different HH model’s parameters have biophysical and biological
meaning, which makes it largely used in the study of neurological diseases
(Levi et al., 2018).
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Izhikevich

Proposed by Izhikevich, this spiking neuron model is considered as biologi-
cally plausible because it is capable of reproducing spiking and bursting fir-
ing pattern behaviors of known types of cortical neurons (Izhikevich, 2003).
It is used generally for real-time simulation of large-scale neural networks
(Izhikevich, 2004). The formulations of this model are shown in equations
2.6 and 2.7.

dv
dt

= 0.4v2 + 5v + 140− u + I (2.6)

du
dt

= a(bv− u) (2.7)

With v the neuron’s membrane potential, u the membrane’s recovery vari-
able. Activation and inactivation of K+ and Na+ ionic currents can be repre-
sented by the variable u which supplies v with a negative feedback. I is the
synaptic delivery current and "a,b,c and d" are the model’s dimensionless
parameters.

if v ≥ 30mV; then

 v = c

u = u + d
(2.8)

Equation 2.8 is used to update u and v when the amplitude of action potential
reaches the threshold of 30 mV.

Integrate-and-Fire

The Integrate-and-Fire (IF) model is the simplest spiking neuron model that
includes a hardware friendly computation with a simple addition and com-
parison. This IF rule is given in equation 2.9.

sl
j(t) = pl

j(t− 1) +
Nl−1−1

∑
i=0

(wij × γl−1
i (t)) (2.9)

With pl
j(t), the membrane potential of the jth neuron of layer l, and γl

j(t), the
binary output of jth neuron of layer l, being defined in equations 2.10 and
2.11. Note that θ is the activation threshold of the jth neuron of layer l.
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pl
j(t) =

 sl
j(t)− θ if sl

j(t) ≥ θ

sl
j(t) otherwise

(2.10)

γl
j(t) =

 1 if sl
j(t) ≥ θ

0 otherwise
(2.11)

As mentioned in equation 2.11, γl
i(t) is either "1" or "0". Therefore, in a con-

text of hardware implementation, the "×γl−1
i (t)" expression in equation 2.9

can be represented as a simple accumulation operation performed within the
hardware neuron. In case the neuron is enabled by a predecessor neuron
of layer l − 1, it does its computations. It accumulates the synaptic weight
(wij + pl

j(t− 1)) and compares this amount to the threshold to update its in-
ternal potential and eventually fire an output spike. Note that, the Leaky
Integrate-and-Fire model is slightly more complex (Liu and Wang, 2004) and
implies a continuously decreasing membrane potential.

Spike Response Model

The Spike Response Model (SRM) is a bio-inspired spiking neuron that is de-
scribing more precisely the effect of input spikes on the membrane potential.
The SRM model is slightly more complex than the LIF (Gerstner and Kistler,
2002b). Similar to the LIF model, SRM neuron generates spikes whenever its
internal membrane potential reaches the threshold. However, in contrast to
LIF, it includes a function dependent to reset and refractory periods. More-
over, unlike the LIF model that is modeled using differential equations for
the voltage potential, the SRM is formulated using response kernels (filters).
The SRM model mathematical formulation is expressed in equation 2.12.

v(t) = η(t− t̂) +
∫ +∞

−∞
κ(t− t̂, s)I(t− s)ds (2.12)

With v(t) being the neuron’s internal potential that is changing over time t,
t̂ the emission time of the last neuron output spike, η() describes the state of
the action potential, κ() is a linear response to an input spike. Both η() and
κ() are kernel functions. I(t) represents the stimulating or external current.
The different functions of the formula are detailed in (Gerstner and Kistler,
2002a),
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Equation 2.13 defines the spike emission condition where the internal poten-
tial v(t) is compared to the threshold θ. In case v(t) is equal or greater to the
threshold an output spike is generated at t̂ = t.

if v(t) ≥ θ and v′(t) > 0, then t̂ = t (2.13)

A recent work (Zhang et al., 2020) proposed a neuron model derived from the
SRM model, called Exponential-and-Fire neuron. Like the SRM model, the
EF model also uses kernel functions to process spiking data. These are two
exponentially growing functions, the first is a PostSynaptic Potential (PSP)
kernel that is used to integrate input spikes and the second one, an After
Hyperpolarizing Potential (AHP) kernel, is used to generate output spikes.

Spiking neuron for embedded AI

Among the spiking neuron models described so far, we notice that the com-
putationally simplest model is the Integrate-and-Fire model. In a machine
learning context, spiking neurons are most often based on this simple IF
model (Abbott, 1999). Moreover, the IF model is already known to be suffi-
cient for spike-based classification applications (Cao, Chen, and Khosla, 2015;
Cassidy et al., 2013; Cruz-Albrecht, Yung, and Srinivasa, 2012; Merolla et al.,
2011), where SNNs that are based on the IF neuron obtain higher results than
SNNs are based on the other spiking neuron models. Therefore, the only
model that results in equivalent accuracy is the ANN’s perceptron neuron
which is a non-spiking model. In this context, the IF model’s computations
when compared to the perceptron, show that this model is much more com-
petitive where multiplicative operations and a nonlinear function are found
in perceptrons which are much more resource-intensive than the addition
and comparison found in IF model. In this thesis, we use the IF model due
to its computation efficiency and accuracy performance.

2.4 SNN’s training

2.4.1 Unsupervised learning with STDP

Unsupervised learning of SNNs is based on the Hebbian rule that consists
in adapting the network’s synaptic connections to the data received by the
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FIGURE 2.3: Spike-time-dependent synaptic modification rule
presented in (Song, Miller, and Abbott, 2000).

neurons. Here, we present the Spike Timing Dependent Plasticity (STDP)
algorithm which is an implementation of Hebb’s rule.

STDP is an unsupervised brain-inspired learning algorithm that is used to
train SNNs on unlabeled data. The STDP rule is based on the Hebbian synap-
tic plasticity rule that is applied to SNN’s synapses locally. This is done by
considering only the timings of spikes released by the pre- and postsynaptic
neurons of a synaptic connection to either reinforce or depress it’s weight.

The concept is to detect the causality between the neurons for each input.
First of all, an expiry time ∆t is defined to strengthen or weaken a synaptic
connection of a neuron. Second, the synapses are classified into two cate-
gories of synapses depending on their arriving time and contribution to the
emission of output spikes. Long-Term Potentiation (LTP), reinforcement of
synaptic weights, is applied to the first category of synapses which are the
ones that have conducted spikes before the neuron fires (∆t > 0). The sec-
ond category of synapses are the ones that have conducted spikes after the
neuron’s firing. Long-Time Depression (LTD) is applied to these synapses,
which is the decrease of their synaptic weights (∆t < 0).

Several variants of STDP rule with different biological plausibility and com-
putational complexity are found in literature (Song, Miller, and Abbott, 2000;
Cruz-Albrecht, Yung, and Srinivasa, 2012; Diehl and Cook, 2015; Mozafari et
al., 2018; Kheradpisheh et al., 2018; Thiele, Bichler, and Dupret, 2018). They
have been discussed in the recent work (Vigneron and Martinet, 2020). The
formulation of the original STDP rule proposed in (Song, Miller, and Abbott,
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2000) is shown in equation 2.14. Figure 2.3, from (Song, Miller, and Abbott,
2000), shows a curve indicating the amount of synaptic modification origi-
nating from a single pre- and post-synaptic pair of spikes with a separation
of ∆t time.

F(∆t) =

A+e(∆t/τ+) i f ∆t < 0

−A−e(−∆t/τ−) i f ∆t > 0
(2.14)

With τ+ and τ− being the ranges of presynaptic to postsynaptic interspike
intervals over which the synaptic connections are modified. When ∆t is close
to zero, the maximum amounts of synaptic modifications are determined by
A+ and A−.

2.4.2 Supervised learning

The second approach of training SNNs is using supervised learning method-
ologies. The supervised methods rely on labeled data-sets to learn ANNs,
where a huge amount of labeled data examples are presented to the network
to incrementally adapt its synaptic parameters. Despite the fact that this ap-
proach is less biologically plausible, it achieves much higher performance
and remains more deployed in embedded AI than unsupervised learning.
Since the objective of the thesis consists in implementing SNNs for inference
in hardware, we have adopted this learning approach to get the ANN’s state-
of-the-art accuracy performance equivalent.

There are two possible ways to train SNNs in a supervised manner: map-
ping ANNs to SNNs and learning the SNNs in spiking domain. Let’s briefly
describe both the approaches.

2.4.2.1 ANN-SNN conversion

The ANN-SNN conversion approach has been already studied in several
works (Cao and Grossberg, 2012; Perez-Carrasco et al., 2013; Rueckauer et al.,
2016; Cao, Chen, and Khosla, 2015; Diehl et al., 2015; Rueckauer et al., 2017;
Zhang et al., 2020). This approach is based on mapping trained ANNs using
a supervised (back-propagation) learning algorithm to SNNs. Indeed, the
ANN is trained using a mature learning approach that is largely deployed in
machine learning and deep learning fields (Sze et al., 2017). Before describing
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the mapping approach, let’s give a brief description of the back-propagation
algorithm.

Backpropagation

The most common learning algorithm used with ANNs is the backpropa-
gation (Schuman et al., 2017; Sze et al., 2017), a supervised off-line learning
algorithm (LeCun et al., 1990). As shown in figure 2.4, the principle is to cal-
culate the gradient of the error between the desired output and actual output
and to back-propagate it to the neurons of the previous layers in order to ad-
just their synaptic weights. The process is repeated through all the learning
data-base until either the number of learning iterations or the validation rate
is reached. The synaptic weights are updated as shown in equation 2.15.

wl
ji(t + 1) = wl

ji(t) + η × δl
j(t)× yl−1

i (t) (2.15)

Where t is the learning iteration, η is the learning rate and δl
j is the error

gradient of the neuron j in the layer l, such that:
— At the output layer, δl

j(t) = f
′
(sl

j(t))× el
j(t) where el

j is the error, i.e.:
the difference between the correct and the actual network output of
the neuron j in the layer l.

— At the hidden layer, δl
j(t) = f

′
(sl

j(t))×∑
Nl+1
k=0 δl+1

k (t)×wl
kj(t) where f

′

is the derivative of f .

FIGURE 2.4: Back-propagation algorithm applied to a one-
hidden layer neural network.
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Conversion

Figure 2.5 illustrates a schematic diagram showing the different steps of the
ANN-SNN conversion. First, we train the neural model in the analog do-
main using a backpropagation learning algorithm. Then, we export the re-
sulting synaptic scalar weights to use them with the SNN, refer to figure
2.5. The SNN is composed of IF neurons organized in layers that follow the
same organization as the original ANN’s topology. The input data are con-
verted in the spiking domain using a neural coding methodology, refer to
2 for more details about spike generation. Second, we test both analog and
spiking ANNs on the patterns of the testing data-set. Finally, if the accu-
racy results of both the SNN and ANN are satisfying, then these networks
are ready for inference. Note that, building SNNs in the N2D2 framework
follows the same approach, refer to section 3.3.1 for more details.

Supervised learning
Backpropagation

Neural coding
spike generation

Spiking Neural 
Network

Synaptic 
weights

Input data Inference 

phase

Learning 

phase

Inference 

phase

Inference 

phase

Learning 

phase

FIGURE 2.5: ANN-SNN conversion mechanism.

2.4.2.2 Learning in spiking domain

Spiking neurons, like IF and LIF models, are of a non-differentiable and dis-
continuous nature, which renders the application of back-propagation based
on gradient descent on SNNs difficult. In practice, SNNs perform less well
than ANNs in terms of accuracy on traditional learning tasks. This fact has
motivated several works in recent years to propose algorithms and learning
rules to implement spiking CNNs as efficiently as traditional CNNs on com-
plex visual recognition tasks (Wu et al., 2019; Cao, Chen, and Khosla, 2015).
In addition to ANN-SNN conversion methods, several works investigate di-
rect spike-based supervised learning algorithms. In this context, spike-based
back-propagation rules have been proposed to perform gradient-based train-
ing over a complete SNN on spiking data. In spike-based back-propagation
approaches, two solutions are possible to overcome the non-differentiable
aspect of spiking neurons: 1- by using a continuous approximation of the
real gradient called a surrogate gradient (Wu et al., 2018; Bellec et al., 2018;
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Neftci, Mostafa, and Zenke, 2019); 2- by using an approximation of the neu-
ron model making it continuous and thus differentiable (Huh and Sejnowski,
2018). Among these works, we can cite Spike-Prop (Bohté, Kok, and Poutré,
2000), temporal-based learning (Mostafa, 2018), tempotron (Gütig and Som-
polinsky, 2006), Remote Supervised Method (ReSuMe) (Ponulak and Kasiński,
2009), SpikeGrad (C., Bichler, and Dupret, 2019), spiking back-propagation
using rank-order coding (Kheradpisheh and Masquelier, 2020), etc.

The adopted learning in this thesis

A recent work (Lee et al., 2020) has shown that SNNs resulting from spike-
based learning methods have an overall inference latency 10 times lower than
those stemming from conversion approaches. However, in terms of learning
time (development process), spike-based learning requires more total iter-
ations for learning compared to conversion approaches. Moreover, ANN-
SNN conversion technique takes advantage of the advance of research in the
field of deep-learning which has optimized and improved learning methods.

2.5 Neural coding

In this section, we present different neural coding paradigms for represent-
ing neural data in SNNs. In this part, we explore mainly the spike genera-
tion techniques that can be used to convert analog data to spike-based stim-
ulus. Therefore, when we refer to the notion of "neural coding", we mainly
insinuate the generation of spikes. Indeed, the first step of SNN’s imple-
mentation is selecting a spikes generation scheme for converting static input
data to spike-based stimuli that the SNN will process. Note that this spike
generation is limited to only static input data. Actually, much research has
been conducted to unravel neural coding in biological neurons, but so far
this “problem of neuronal coding” (Gerstner and Kistler, 2002b) remains un-
solved (Brette, 2015; Tavanaei et al., 2019). However, two paradigms stand
out, one leading to temporal coding (Thorpe, Delorme, and Rullen, 2001) and
the other to rate coding (Gerstner and Kistler, 2002b). Therefore, to perform
the spikes generation task with SNNs we have to select a neural coding tech-
nique rising either from one of these coding paradigms.
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2.5.1 Rate-based coding

With rate-based coding the neural data is represented as trains of spikes with
different firing rates. In this coding paradigm, an input neuron can be seen
as an analog to frequency converter: the neuron responds to input data with
output spikes represented as a train of spikes with a firing rate proportional
to the intensity of the input stimulus. This firing rate defines the number of
output spikes and their firing timings. Therefore, the information flowing in
the SNN is encoded using rates dictating the amount. Considering the spike
generation at the SNN’s input, the data is somehow converted to a firing
rate (or frequency) that is used to generate spike trains. Doing so, the input
stimulus is represented by a number of spike trains with different firing, this
number is equal to the input size. The most common technique that is used to
compute the firing rates of analog data to generate spike trains is the Poisson
distribution (Cao, Chen, and Khosla, 2015; Diehl et al., 2015).

2.5.2 Time-based coding

With Time-based coding, neural data flowing in the SNN are represented in a
code scheme based on the precise timing of spikes. In this coding paradigm,
neurons are considered as analog-to-delay converters rather than analog-to-
frequency converters, as in rate-coded networks (Thorpe and Gautrais, 1998).
Thus, when a neuron receives strong input data, its reaction is faster by trig-
gering a spike within a small delay. In case of weak data, the firing delay is
longer and the spike is triggered later. The generation of spikes using this
coding technique from input stimulus is done by converting each analog in-
put value into precise firing timing. Indeed, these precise times are inversely
proportional to the intensity of the input data. Thus, the spikes are gener-
ated earlier for high intense values and later for less intense ones. Several
techniques exist to determine these precise delays. Some of them are shown
in figure 2.6 and described below: rank order coding, time-to-first-spike and
relative latency coding.

Rank order coding

Rank order coding is a temporal coding scheme proposed by Thorpe and
Gautrais in 1998 (Thorpe and Gautrais, 1998). This coding technique is a
simpler version of temporal coding, where the arriving times are only used
to order the spikes. To generate spikes from an analog input data, the data
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(A) (B) (C)

FIGURE 2.6: Temporal coding: (A) rank order coding; (B) time-
to-first-spike coding and (C) relative latency coding. Legend:
n1 – n5 represent the neurons labels; the vertical bars represent
the neural firing times; the circled numbers indicate the arriv-
ing order of the spikes; ∆t is the latency between the stimulus
onset and the first spike; ∆t1 – ∆t4 are the inter-spike latencies

(from Ponulak and Kasinski, 2011).

would be first transformed to time amounts (delays) and then, based on these
timings the input stimulus spikes are ordered. In a context of hardware im-
plementation, rank order coding would be an effective solution for event-
based architectures where the spikes are ordered naturally. Moreover, the
spiking events will contain only the address of the emitting neuron because
there is no need to register an associated timestamp. Figure 2.6a shows a
group of output spikes coded using rank order coding, the spike arriving
from neuron 3 has the highest order compared to others because it is the first
to arrive.

Time-To-First-Spike

The Time-To-First-Spike (TTFS) coding scheme is another temporal coding
technique. To encode input stimulus in the spiking domain using TTFS scheme,
each input data is transformed to a spike with an emission timestamp equal
to the latency between the start of the stimulus and the first spike of the
neural response. Figure 2.6b shows how output spikes of four neurons are
encoded using the TTFS scheme. Each spike of the neurons is emitted at dif-
ferent timestamps ∆t which are the latencies defining time to the beginning of
the stimulus. This method, representing neural data by considering only the
time to first spike, has been shown to carry enough information to encode, in
the tactile system, touch signals at the finger tips (Johansson and Birznieks,
2004). This coding scheme reduces drastically the neural data flowing in the
SNNs and thus enables accelerating processing (Ponulak and Kasinski, 2011).
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Latency coding

Latency coding can be considered as an extension of TTFS coding where the
time difference is relative, in addition to the first spike, between all consec-
utive spikes. These relative time differences, especially between presynap-
tic and postsynaptic spikes, have been shown to play an important role in
synaptic learning processes (Markram et al., 1997). Latency code is also very
efficient In terms of information capacity, it is efficient where a few spike
timings are sufficient to carry a substantial information amount (Borst and
Theunissen, 1999; Ponulak and Kasinski, 2011). Figure 2.6c shows a group of
output spikes coded using latency coding, the spike arriving from neuron 1
has the lowest latency compared to others and thus arrives before all the rest.

2.5.3 Contributions

At this stage of the thesis, we have discussed the theoretical background of
spiking neural models, therefore, let’s select the neuron model, the synaptic
connection model, the neuronal coding and the learning method to be used
in the remaining parts of this thesis. First, for the neuron model, we have
chosen the IF neuron because it performs state-of-the-art recognition rates in
classification tasks while at the same time being the simplest computational
spiking model.

Second, a large number of "synapse models" found in the literature exhibit
a variable level of biological plausibility by reproducing different numbers
of neuronal behaviors and properties such as: synaptic delays, size, shape
and strength of synapses (Brette et al., 2007). For the purpose of reducing
SNNs complexity, we have selected the simplest model that reproduces only
the strength of the synaptic connections, which are given by their synaptic
weights.

Next, we adopt the ANN-SNN conversion approach to train the SNNs be-
cause, in addition to its maturity, it is characterized by a faster design time.
It should be noted that the training algorithm does not affect the final hard-
ware architecture and that both the conversion and the spiking learning ap-
proaches are possible. The architectures presented in chapters 5 and 6 are
generic and programmable by first configuring the SNNs topology and sec-
ond, uploading the synaptic weights issued from one of these training algo-
rithms.
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Finally, in designing the SNNs, the choice of the neural coding scheme used
to generate spikes is crucial. This coding scheme must perform the state-of-
the-art accuracy and generate as less spiking activity as possible in the SNN.
In this work, we study and explore techniques ranging from rate-based to
temporal-based coding paradigms.

2.6 Neuromorphic hardware

2.6.1 Hardware targets

Many application domains which are subject to the design constraints of em-
bedded systems, like sensor networks, IoT, smart devices, aeronautics or
autonomous vehicles require dedicated electronic systems for meeting the
requirements of area occupation, latency, heat dissipation and energy con-
sumption.

Under these conditions, general purpose programmable solutions on CPU
(Central Processing Unit) or GPU (Graphical Processing Unit) are no longer
suitable, and it becomes essential to implement dedicated hardware solu-
tions for ANNs instead of the software ones. These solutions are hardware
neuromorphic architectures that take advantage of the fundamentally paral-
lel and distributed nature of these ANN algorithms.

Several computing electronic substrates are available to deploy ANN mod-
els and can be classified into two categories: analog and digital substrates. In
this work, we use digital substrates to implement the neuromorphic architec-
tures because they benefit from the maturity of the associated manufacturing
technologies and their reprogramming / configuration facilities (Philippe et
al., 2015). Moreover, it is shown in (Joubert et al., 2012) that below 22nm, dig-
ital implementation becomes more attractive in terms of area and scalability
for LIF-based SNNs.

Indeed, the digital solutions could be implemented either on Field Programmable
Gate Array (FPGA) or on Application Specific Integrated Circuit (ASIC). These
hardware targets have been studied for several decades but no complete so-
lution has dealt with convolutional SNN.
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FPGA

In previous studies, FPGAs have been frequently employed for the design of
neuromorphic computing circuits (Pani et al., 2017) (Rotermund and Pawelzik,
2018). This technology can be used either for prototyping and delivering a
sub-part of a greater system, or directly as the final chip design implementa-
tion. The main advantages of this technology are its high programming / re-
configuration, and moderate cost. In the context of this thesis, which mainly
concerns an architectural exploration of SNN’s hardware design, we are in-
terested in a re-configurable platform : indeed, the chip must be reconfigured
for each architecture. Thus, an FPGA device is an adequate technology for
our purpose.

Some devices, namely SOCs (System On Chips), include one or several CPUs
alongside the programmable logic array, which offers possibilities for both
software and hardware programming. As we aim to develop a generic neu-
romorphic Intellectual Property (IP) capable of executing any feed-forward
SNN configuration, this type of device would suit the programmability re-
quirement.

ASIC

ASIC chips have also been widely employed for neuromorphic digital hard-
ware implementations (Painkras et al., 2013; Benjamin et al., 2014; Akopyan
et al., 2015).

In contrast with conventional processor architectures, which are designed to
handle a wide variety of tasks, ASICs are fully customized to run a partic-
ular type of application. Some of those chips, such as TrueNorth (Merolla
et al., 2014) (Akopyan et al., 2015), are very highly specific: they are de-
signed for one particular neuron model with very low reprogramming abili-
ties, whereas others such as SpiNNaker (Furber et al., 2014) (Painkras et al.,
2013), are designed with a much higher capacity for flexibility. Usually, these
chip architectures are designed to support the high level of parallelism and
distribution found in neural algorithms. Thus, most of the time they are
based on a massively parallel computation paradigm, with great care given
to the communication between computing units. However, these ASICs fo-
cus not only on pure computation acceleration, but also on the constraints of
their application domain.
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For integration in embedded systems for example, particular attention has
to be paid to the chip surface and energy consumption limitations. These
application-related constraints are also of major concern for ASIC design, and
can be found in the differences between TrueNorth and SpiNNaker: the first
is focused on energy savings, whereas the second is focused on flexibility.
Even if the task is very similar, the implementation design is dramatically dif-
ferent, and so are performances: TrueNorth (Merolla et al., 2014) (Akopyan
et al., 2015) shows an energy consumption of 12pJ per synaptic connection,
in contrast to 20nJ for SpiNNaker (Furber et al., 2014) (Painkras et al., 2013).
In this thesis, design space exploration requires a high reprogramming / re-
configuration abilities, and we have thus targeted FPGA design instead of
ASIC. By this way, we favour the automatic generation of architectures on a
re-configurable substrate rather than the definition of a programmable archi-
tecture on a fixed one.

2.6.2 Event-based computing

Neuromorphic Computing systems are said to be event-based or event-driven
if their states are updated asynchronously by incoming events. A spiking
neural network is by nature an event-based system because the spiking neu-
rons are triggered by input spikes or spiking events. When the neuron is not
stimulated, i.e. no input spikes, it’s internal state (membrane potential) is
not changed and thus it may stay in an idle state. Therefore, SNNs are com-
pletely event-based systems that can be efficiently implemented on event-
based computing architectures. Moreover, the spiking data flowing in SNNs
are characterized by a high degree of temporal and spatial sparsity. Unlike
the analog data, spikes are temporally sparse where, for example, neurons
belonging to the same layer will not fire at the same computing moment.
The spatial sparsity aspects concern the amount and location of spiking data.
For example with SNNs, the number of spikes is different to the number of
neurons and due to the filtering characteristic of the neurons when going
deeper in the SNNs this number of spiking events decreases incrementally.

To sum up, SNNs are completely event-driven algorithms that are favor-
able to event-driven computation. In addition to this event-driven aspect,
the spiking data are spatio-temporally sparse, which can influence the paral-
lelism of their computation which will be discussed in the following.
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2.6.3 Time-multiplexed and parallel computing

Since SNNs are intrinsically parallel algorithms, computation parallelization
should result in great acceleration of processing. Nevertheless, a high level
of parallelization requires a large number of NPUs (ideally, one per logi-
cal neuron), resulting in the drastic increase of chip surface and makes it a
non-scalable solution. As mentioned before, the spiking data is known to
be spatio-temporally sparse. First, the temporal aspect is due to the asyn-
chronous arriving of the spikes. Second, the spikes are spatially distributed
over the SNN’s layers and their number is going-down while going deeper
in the network. Therefore, SNNs can be implemented in a time-multiplexed
fashion benefiting from this spatio-temporal sparsity characteristic. Time-
multiplexing computing is a temporal serialization of parallel computing,
where the parallel tasks will be processed one after the other. Doing so, the
computing chip surface is reduced and becomes scalable. However, the la-
tency of the SNN will be increased. So, we need to find a good latency-
surface trade-off to efficiently implement SNNs for embedded AI applica-
tions. Therefore, in this thesis we explore different levels of architectural par-
allelism and multiplexing in order to better take advantage of spiking data
sparsity. In chapter 4, we compare three hardware architectures with differ-
ent degrees of parallelism.

2.7 Related works : neuromorphic hardware chips

In this section, we introduce some of the most recent neuromorphic hard-
ware architectures found in the literature. Those systems consist of ASIC or
FPGA chips, designed to simulate large numbers of spiking neurons. We
give a brief description of their features, alongside energy consumption in-
formation. Those information are summed up in table 2.1.

SpiNNaker

SpiNNaker (Furber et al., 2014) is a fully digital system aiming to simulate
very large spiking networks in real-time, and in an event-driven processing
fashion.

A SpiNNaker board is composed of 864 ARM9 cores, divided into 48 chips
containing 18 cores each. The memory is highly distributed, as there is no
global memory unit, but one small local memory unit for each core and a
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TABLE 2.1: Neuromorphic hardware architectures. Legend:
"D" for digital, "A" for Analog, "On" for online learning and

"off" for offline learning.

Chip - year Year Electronics Learning Programming Neuron
SpiNNaker 2010 D On & Off PyNN LIF, IZH, HH
NeuroGrid 2014 A & D On & Off NGPython Dimensionless
TrueNorth 2014 D Offline Corelets LIF
Loihi 2018 D On & Off Loihi API CUBA LIF
Minitaur 2014 D Offline RTL LIF
Fast pipeline 2015 D Offline RTL LIF
HFirst 2015 D Offline RTL Complex-IF
BrainScales 2017 A & D On & Off PyNN Exp-IF
DYNAPS 2017 A & D Offline CHP Exp-IF
ConvNode 2018 D Offline RTL LIF

This work 2020 D Offline N2D2/TF IF

shared memory for each chip. The main feature of SpiNNaker is its effi-
cient communication system: all the nodes are interconnected through high-
throughput connections designed for small packet routing, which contain
Address Event Representation (AER) spikes, i.e., the address of the trans-
mitter neuron, the date of the emission, and the destination neuron. This
communication scheme has been conceived to tolerate the intrinsic massive
parallelism of the ANNs. The SpiNNaker board is programmable thanks to
the PyNN interface, PyNN being a Python library for SNN simulation (Davi-
son et al., 2007; Davison et al., 2009), which provides various neuron models
(LIF, Izhikevich, etc.) and synaptic plasticity rules such as STDP (Spike-Time-
Dependent Plasticity)(Thiele, Bichler, and Dupret, 2018; Kheradpisheh et al.,
2018). In terms of energy usage, a SpiNNaker board has a peak power con-
sumption of 1W.

SpiNNaker is used to implement massively parallel hardware SNNs in the
litterature, such as NeuCube in (Behrenbeck et al., 2018), where a SNN is
implemented on SpiNNaker to capture and classify spatio-temporal infor-
mation from EEG (Electro-EncephaloGram). Notably, this architecture offers
the possibility to pause classification process to learn new samples or classes,
in an Incremental Learning (Carpenter et al., 1992) (Polikar et al., 2001) fash-
ion, which is an interesting property.
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Configurable event-driven convolutional node

The authors in (Camunas-Mesa et al., 2018) proposed a configurable event-
driven convolutional node with rate saturation mechanism in order to im-
plement arbitrary CNNs on FPGAs. The designed node consists of a convo-
lutional processing unit formed by a bi-dimensional array of IF neurons and
a router allowing to build large 2D arrays dedicated for ConvNets inference.
In this structure, each node is directly connected to four other neighboring
nodes through ports that carry bidirectional flow of events. Internally, all
input and output ports are connected to a router, which dispatches events
to its local processing unit or to the appropriate output port. The network
described in (Perez-Carrasco et al., 2013) for high-speed poker symbol recog-
nition was implemented on R©Xilinx R©Spartan 6 FPGA. With more than 5
K neurons and 500 K synapses, the generated circuit occupied 21,465 slices,
38,451 registers and 202 of block RAMs. The slower versions of the architec-
ture showed recognition rates around 96% when all the input events were
processed by the network, while less than 20% of the events were processed
at real time, obtaining a recognition rate higher than 63% with a power con-
sumption of 7.7 mW when the stimulus was being processed at real time,
and even lower consumptions for slower processing: 5.25 mW when it was
10 times slower, and 0.85 mW for a slow-down factor of 100.

Conv core

The work in (Yousefzadeh, Serrano-Gotarredona, and Linares-Barranco, 2015)
proposed a pipe-lined architecture for processing spiking 2D convolutional
layers in a fully event-driven system. Indeed, this system takes asynchronous
input data from a Dynamic Vision Sensor (DVS) (Lichtsteiner, Posch, and
Delbruck, 2008) (Delbrück et al., 2010), a bio-inspired vision sensor which
outputs a continuous flow of spikes corresponding to brightness gradient
variations in a dynamic image. This architecture benefits from the paral-
lelism offered by FPGAs by implementing a 3-stages-pipeline, thus reaching
the great performance of updating 128 pixels of the layer in 12ns; while run-
ning on R©Xilinx R©Spartan 6 FPGA. On the same board, the implementation
of a spiking convolutional layer with a 128x128 pixel input and a 23x23 con-
volution kernel occupies 48% of logic resources and 68% of block RAM. This
architecture uses the LIF neuron model, a bit more complex than our simple
IF neuron. This system is adapted to asynchronous spiking input, whereas
our system is adapted to conventional CCD (Charge Coupled Device) vision
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sensors, however, by the use of a spike-based learning algorithm, we could
adapt our architecture to DVS to benefit from the asynchronous input in par-
allel implementations.

HFirst

HFirst (Orchard et al., 2015) is a Spiking CNN architecture. It is based on a
frame-free paradigm, as it takes inputs from a DVS. HFirst’s particularity is
to focus on relative timing of spikes across neurons, benefiting from the con-
tinuous flow of input data. Hence, HFirst is dedicated to temporal pattern
recognition, whereas our architecture is dedicated to static image recogni-
tion, and uses the accessible CCD sensor. Moreover, HFirst uses another IF
neuron version which is more complex than ours, emulating the physical
behavior of an IF Neuron. This model uses several multiplications, which re-
sults in a more resource intensive implementation (17 DSP in HFirst versus 0
for ours). HFirst runs on Xilinx R©’s Spartan R© 6 FPGA, with a 100MHz clock,
and consumes between 150mW and 200mW. It performs 97.5% accuracy on
HFirst Cards data-set (4 classes), and 84.9% on HFirst Characters data-set (36
classes).

Minitaur

Minitaur (Neil and Liu, 2014) is an event-driven neural network accelera-
tor dedicated to high performance and low power consumption. This is an
SNN accelerator on R©Xilinx R©Spartan 6 FPGA board. The example LIF-
based network implemented on the board performs 92% accuracy on MNIST
dataset and 71% on 20 newsgroups dataset. The Minitaur architecture con-
sists of 32 LIF-based cores dedicated to parallel processing of spikes. The
input spikes arrive from a queue where they are stored as packets through
the USB interface. Those packets are encoded on 6 Bytes : 4 Bytes for times-
tamp, 1 Byte for layer index and 2 Bytes for the neuron address (Address-
Event-Representation). This is a semi-parallel architecture, where some lay-
ers are processed in parallel, and others are processed sequentially. Minitaur
achieves 19 million neuron update per second on 1.5 W of power and it sup-
ports up to 65K neurons per board within fully-connected layers based SNN.
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Loihi

Loihi (Davies et al., 2018) is again a fully-digital chip containing 128 cores,
each of which are able to simulate up to 1024 different neurons. The memory
is also largely distributed, with each core having a local 2MB SRAM memory
unit. The chip also contains 2x86 cores and 16MB of SRAM synaptic mem-
ory. Accordingly, it is able to support up to 130 000 neurons and 130 million
synapses. In contrast with previous systems, the Loihi board is able to per-
form learning. The chip can be programmed to implement various learning
rules, notably STDP. The chip is able to simulate up to 30 billion SOPS, with
an average of 10pJ per spike.

TrueNorth

TrueNorth (Akopyan et al., 2015) is another fully-digital system, capable of
simulating up to 1 million spiking neurons. A TrueNorth board is composed
of 4096 Neurosynaptic cores dedicated to LIF neuron emulation. Each core
contains a 12.75 KB of local SRAM memory, and is time-multiplexed up to
256 times so that one core can simulate 256 different neurons. Similarly to
SpiNNaker, the communication scheme is asynchronous, event-based and
able to tolerate a very high level of parallelism. TrueNorth can perform 46
billion synaptic operations per second (SOPS) per Watt, with a power con-
sumption of 100mW when running a 1 million neurons network. The system
is programmable thanks to the Corelet programming language (Amir et al.,
2013), allowing to tune neuron parameters, synapse connectivity and inter-
core connectivity.

DYNAPs

DYNAPs (Moradi et al., 2017) is a reconfigurable hybrid analog/digital archi-
tecture. Its hierarchical routing network allows the configuration of different
neural network topologies. This interesting method also tries to solve the
compromise between point-to-point communications and request broadcast-
ing in large neural topologies.

The use of mixed-mode analog/digital circuits allowed to distribute the mem-
ory elements across and within the computing modules. As a counterpart,
this requires the addition of conversion circuits. The analog parts are oper-
ated in the subthreshold domain to minimize dynamic power consumption
and to implement biophysically realistic behaviors.
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The approach is validated by a VLSI design implementing a three-layer CNN
network. If the circuit consumption is low (about ten pJ per data movement
in the network), the implementation of the 2560 neurons of the targeted spik-
ing CNN requires the use of a PCB composed of 9 circuits. The overall con-
sumption and scalability of the approach therefore remains to be confirmed.

BrainScaleS

BrainScaleS (Schemmel et al., 2010) is a mixed digital-analog system. The
processing units (neuron cores) are analog circuits, whereas the communi-
cation units are digital. BrainScaleS implements the adaptive exponential IF
neuron model, which can be configured to reproduce many biological firing
patterns. BrainScaleS is composed of HiCANN (High-Input Count Analog
Neural Network) chips, which are able to simulate 224 spiking neurons and
15 000 synapses. Several HiCANN units can be placed on a wafer, so that
a single wafer can simulate up to 180 000 neurons and 40 million synapses.
The system also integrates general purpose embedded processors, which are
able to measure relative spike timings, thus plasticity rules such as STDP
can be implemented. Other plasticity rules can also be programmed, and a
PyNN interface allows users to program the network in a similar fashion to
SpiNNaker. The BrainScaleS platform consumes between 0.1nJ and 10nJ per
spike depending on the simulated network model, and reaches a maximum
of 2kW of peak power consumption per module.

NeuroGrid

NeuroGrid (Benjamin et al., 2014) is also a mixed digital-analog system, which
targets real-time simulation of large SNNs. It employs subthreshold cir-
cuits, to model neural elements. The synaptic functions are directly emulated
thanks to the physics of the transistors operating in the subthreshold regime.
The board is composed of 16 NeuroCore chips, interconnected by an asyn-
chronous multicast tree routing digital communication system. Each core is
composed of 256*256 analog neurons, so that NeuroGrid is able to simulate
up to 1 million neurons and billions of synaptic connections. Concerning
energy, NeuroGrid consumes an average of 941pJ per spike and has a peak
power consumption of 3.1W.
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2.8 Conclusion

In this chapter, we have described the basic theoretical notions that are nec-
essary for selecting the neural and architectural models to use for achieving
the objectives of the thesis. Therefore, we have organized the chapter in three
parts. First, we presented the different neural network models and the cor-
responding neuron and training models. Afterwards, we discussed neural
coding by focusing on the spike generation and its impact on SNNs perfor-
mance. Finally, we have presented some architectural models that can be
used with neuromorphic systems and discussed their influence on the perfor-
mance of a hardware implementation of SNNs. In the context of low-power
embedded AI, we also discussed how to adapt the computing parallelism in
a neuromorphic architecture to get advantage of sparsity of spiking data. In
the last part of the chapter, we provided a description of several neuromor-
phic chips found in literature with some related metrics and key information.
We have seen from this review chapter that SNNs models are emerging at the
beginning of their use, yet only few works have dealt with them from a low-
power embedded systems point of view. Those research studies dealing with
the subject of neuromorphic computing, approach it from different sides, ei-
ther on the neural model (training or coding) or on the hardware implemen-
tation side. However, few of them deal with the subject from end-to-end,
starting from the model to the hardware implementation. Our thesis goes
in this direction, where we set a design flow to go from the neural model to
the hardware architecture of an AI accelerator. During the design flow, the
different constraints of the embedded systems, such as hardware resources,
energy budget and real-time restrictions, will be considered.
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Chapter 3

Design Space Exploration
Methodology

3.1 Introduction

In this chapter, we present a design flow framework that we have adopted
for the design space exploration of hardware spiking neural networks. In-
deed, there are plenty of architectural and neural possibilities to design and
implement SNN-based AI applications on powerful computing platforms.
However, when targeting hardware restricted platforms, such as embedded
systems, the number of possible solutions is drastically reduced due to the
low hardware budget in terms of power consumption, chip surface and real-
time processing constraints. Therefore, for dealing with the integration of
AI applications on embedded systems, we propose a design space explo-
ration framework that assists the designer in the implementation process of
such systems. The objective of this framework to organise the exploration of
SNNs for a hardware implementation by starting from the neural model to
the structure of the hardware architecture.

3.2 Design flow framework description

This design flow, synthesized in figure 3.1, follows a funnel philosophy: know-
ing the application context, we start from a wide variety of hardware imple-
mentation possibilities and incrementally refine the scope to find the most
suitable at the end. In our case, the application context will be embedded
image classification.

First, a behavioral software simulation using the N2D2 framework (Bichler
et al., 2017) (available online at N2D2) is carried out to perform learning, test
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and validation for several SNN topologies with different neural coding tech-
niques. The most suitable model in terms of prediction accuracy and spiking
activity (the amount of spikes processed by the SNN to perform classification
inference) is selected for the following steps, and the learned parameters are
then extracted.

Concurrently, a preliminary analytic study is carried out to get the first esti-
mations of flat hardware resources and memory intensiveness corresponding
to the chosen SNN model: these first results will serve as a frame for the next
steps of our design flow, giving indications for the most suitable hardware
architectural choices.

Second, we perform a high-level architectural exploration aiming to confirm
or invalidate the assumptions resulting from the preliminary analytic study.
The NAXT simulator has been developed for that purpose. The simulator is
configured with the model and parameters extracted from N2D2. The soft-
ware will generate SystemC architectures corresponding to different high-
level architectural choices, such as memory distribution, memory technol-
ogy and processing parallelism. Then, it performs high-level simulation of
the operations on the specific user-defined application task. For each simula-
tion, we obtain coarse estimates for power consumption, surface and latency:
those results allow us to discriminate suitable architectural models.

Finally, the resulting architectures from the previous round are described in
hardware using the parameters extracted from N2D2. This architectural de-
sign is done using the mean of the VHDL hardware description language
(Navabi, 1998), and a physical synthesis is performed. Thus, this last step
leads to a fine-grained evaluation of a suitable architecture on FPGA (Field-
Programmable Gate Arrays) or on ASIC (Application Specific Integrated Cir-
cuit).

3.3 Preliminary analytical exploration

The aim of this preliminary analysis is to refine the large amount of the de-
sign possibilities combining various architectural and neural models. In the
following, the preliminary analysis is described in two parts: firstly the neu-
ral network model, and secondly the hardware architectural model.
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FIGURE 3.1: Design space exploration framework diagram.

3.3.1 Spiking neural models exploration

Indeed, most of the algorithms used to perform image classification are based
on ANNs. In this work, we focus on SNNs to deal with embedded AI be-
cause they are very competitive in a hardware implementation context. As
mentioned in chapter 1, the neuron model and inter-neurons communication
in SNNs are more adequate to embedded systems compared to what is used
with analog neural models.

Therefore, in the neural model analysis step, we analyze SNNs in two phases:
— first, we explore different learning parameters to get state-of-the-art

prediction accuracy;
— second, we explore different neural information coding techniques in

terms of spiking activity and their impact on SNN performances.
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N2D2 : learning, validating and testing SNNs

In this work, the neural models are learned, validated and tested using the
open source Neural Network Deployment and Design (N2D2) framework
(Bichler et al., 2017). This software is an event-based simulator for DNNs that
we have selected from a wide variety of deep-learning frameworks which are
described in literature (Parvat et al., 2017; Mozafari et al., 2019). Actually, we
opted to N2D2 essentially for two reasons: first, it is an open source solution
that gives the ability to develop new methods without designing a whole
simulator. Second, N2D2 offers ANN-SNN conversion possibility to trans-
code ANNs into spiking domain, which is essential for our purpose. In order
to perform simulations of an SNN with N2D2, we follow these steps:

1. Define ANN topology;

2. Learn, validate and test the defined ANN;

3. Define the ANN-SNN conversion method to generate the SNN;

4. Test the SNN defined in 3.

Note that our configuration parameters are listed in table 3.1. We have chosen
Xavier Filler as a weight initialization method as it is a popular method which
offers state-of-the-art performance (Glorot and Bengio, 2010). Moreover, we
have chosen to implement the rectifier activation function (Krizhevsky, Sutskever,
and Hinton, 2012; Nair and Hinton, 2010) in hidden layers because it offers
state-of-the-art classification performances according to literature (Krizhevsky,
Sutskever, and Hinton, 2012). As in (Diehl et al., 2015), we use for classifica-
tion purposes a linear activation function in the output layer coupled with a
classification unit. The classification module follows a Terminate Delta pro-
cedure to determine the winning class, this method is discussed in section
4.3.

Neural coding analysis

In an energy consumption context, the neural coding used with SNNs is very
crucial, because it influences directly the SNN’s spiking activity and thus
its power consumption. Actually, the energy consumption for performing a
classification task can be estimated using the number of spikes generated to
process an input pattern. To do so, the amount of energy a spike consumes on
known neuromorphic architectures can be used to estimate the total energy
consumption by doing a simple multiplication between this amount and the
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TABLE 3.1: ANN’s learning hyper-parameters used in this
work. Legend : LR stands for Learning Rate.

Hyper-parameter Value
Weight Initialization Xavier Filler
Learning Rate 0.01
Momentum 0.9
Decay 0.0005
LR Policy Step Decay
LR Step Size 1
LR Decay 0.993

Activation function
Linear - last layer
Rectifier - other layers

total number of spikes (Cao, Chen, and Khosla, 2015). Indeed, this method
is not precise enough but it gives us first estimates that can help us to refine
our implementation choices even before moving to RTL design.

Therefore, in the second phase of the neural model analysis, we evaluate the
impact of neural coding methods on the spiking activity. These coding meth-
ods are presented in chapter 4. In fact, N2D2 simulation tool offers intrinsi-
cally Single Burst, Poissonian, Periodic and Jittered Periodic as coding meth-
ods with an ability to customize and develop new coding schemes. There-
fore, we integrated 2 new schemes : Spike Select and First Spike to N2D2 tool
in order to evaluate all the coding techniques under the same conditions and
fairly select the most suitable one for the user-defined application.

In this context, we apply these neural coding techniques to different image
classification tasks (MNIST, GTSRB) using various network topologies. The
networks are first learned and validated in analog domain as described in the
previous step. The discrimination of these methods is based on two metrics:
the spiking activity and the prediction accuracy. In fact, the neural coding
impact on energy-efficiency of SNN architectures is mainly reflected by the
prediction accuracy and the amount of spikes propagating in the networks.
In other words, we can judge that a coding method is effective if, when we
use it, we are able to reduce the spiking activity while keeping the state-of-
the-art recognition rate performance.

3.3.2 SNN architectural models exploration

The second part of the preliminary analysis within our design flow is an
architectural exploration of different implementation options of SNNs. In
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the following, some preliminary results are presented that guide further in-
vestigations. These results focus on on-chip memory capacity and resource
requirements, which need to be addressed upstream. Indeed, these two re-
strictions strongly influence later choices in terms of architectural model and
hardware target.

Memory capacity : a limiting factor

For any given hardware target, the on-chip memory capacity is always lim-
ited. Indeed, even the most recent FPGA devices such as Xilinx R© Virtex R©
UltrascaleTM + and Intel R© Stratix R© 10 offering high on-chip memory capac-
ity, remain insufficient to handle most neural network models. For reference,
the VGG16 ANN model requires a total of 230 MB to store the weight of
(Simonyan and Zisserman, 2014).

Consequently, we investigated the evolution of the required memory capac-
ity with respect to the number of weighted synaptic connections. The an-
alytical model for memory capacity is based on the total memory footprint
of network parameters and neurons activity, in our case: synaptic weights
storage and neurons internal potential. Hence, the analytical approach is
related to the parameters coding precision and the topology of the SNN. Fig-
ure 3.2 depicts the evolution of required memory capacity with respect to
the number of weighted synapses in the SNN. Indeed, the requirement in
memory does not depend on the architectural model but only depends on
the quantity of synaptic parameters. We observe on this figure that the re-
quired memory increases drastically with respect to the number of weighted
synapses of the network. Evidently, encoding weights in an 8 bits precision
results in less memory requirement than using 16 bits precision. The data in
this figure confirm our intuition about memory, which is the fact that it is a
major limiting factor when implementing neural networks in general.

Another aspect to take into consideration when dealing with SNNs is the
internal potential of the logical neurons. Indeed, due to the temporal compu-
tation characterizing SNNs, the internal potential of a spiking neuron must
be saved during all the classification period. This is to be able to process in-
put spikes arriving asynchronously. Therefore, the neuron’s activity memory
cannot be reused by other neurons like in analog models.

In this context, we present in tables 3.2 and 3.3 some analytical results show-
ing memory requirements of different neural models in terms of weights and
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FIGURE 3.2: Memory occupation of two encoding precisions (8
and 16 bits) versus the number of weighted synaptic connec-

tions.

TABLE 3.2: Neurons’ internal potential and synaptic weights
memory usage versus the number of hidden conv. layers – 8

bits encoding precision.

Topology 32x32-Nx(6C5)-10
Number of hidden

layers
1 2 3 4 5 6

Memory
usage
(bytes)

Weights 47190 35610 25950 18114 12294 8490
Neurons 4714 8170 10570 12106 12970 13354

Total 51904 43780 36520 30220 25264 21844

TABLE 3.3: Neurons’ internal potential and synaptic weights
memory usage versus number of hidden FC layers – 8 bits en-

coding precision.

Topology 32x32-Nx(300)-10
Number of hidden

layers
1 2 3 4 5 6

Memory
usage
(bytes)

Weights 310200 400200 490200 580200 670200 760200
Neurons 310 610 910 1210 1510 1810

Total 310510 400810 491110 581410 671710 762010

neurons memory requirements. Using these data we have plotted curves
showing memory requirements evolution versus the size of the network (num-
ber of hidden layers) and layer types. These curves are illustrated in figure
3.3, where 3.3a is dedicated to synaptic weights storage and 3.3b is dedicated
for neurons internal potential storage.

For the fully-connected based SNNs shown in blue, we observe that most of



42 Chapter 3. Design Space Exploration Methodology

Number of hidden layers

W
ei

gh
t's

 m
em

or
y 

oc
cu

pa
tio

n 
(%

)

0

20

40

60

80

1 2 3 4 5 6

FC Conv

(A) Synaptic weights

90,92

81,34

71,06

59,94

48,66

38,87

Number of hidden layers

N
eu

ro
n'

s 
m

em
or

y 
oc

cu
pa

tio
n 

(%
)

20

45

70

95

120

1 2 3 4 5 6

FC Conv

(B) Neurons’ internal potential

FIGURE 3.3: Neuron and weight memory requirements versus
the SNN size.

the memory is occupied by the weights (more than 99%) for all SNN sizes,
this because in this layer type there are a lot of connections and thus weights.
Whereas, with the spiking CNNs, the occupied memory by the neurons in-
ternal potential increases with respect to the number of layers. This is due to:
first, there are a considerable number of neurons when adding convolutional
layers; and second, only few weights are added due to the weights sharing.
Therefore, when dealing with deep CNNs having large feature maps, this
internal potential memory would be very large, which may limit the imple-
mentation of such neural systems. However, for small network topologies
this factor is yet neglectable.
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FPGA occupation: towards multiplexing

Logic resources occupation is the second limiting factor we encounter when
implementing SNNs on FPGA devices. The FPGA occupation statistics can
be obtained by FPGA synthesis simulation tools. However, this synthesis
requires a long processing time, especially when synthesizing a large-scale
network. Moreover, there is a large number of possible architectural models
that have to be designed in order to have robust statistical results. In order
to bypass this long implementation and processing time, we have built an
analytical model capable of estimating the number of logic cells occupied on
an FPGA according to the network topology and size.

To build our analytical model, we have decomposed a generic SNN hard-
ware architecture in elementary modules (neurons, spike generation cell,
counters, etc.). For each elementary element, we have measured the corre-
sponding hardware implementation cost in terms of logic cells, using Quar-
tus Prime 18.1.0 Lite edition. Quite straightforwardly, every SNN topology
is then expressed as a combination of those elementary modules, and hence
can be related to an estimation of its flat hardware implementation cost. Note
that some parts of the system can be multiplexed in the final design, but this
model only outputs the flat hardware resources as an indicator. The analyti-
cal results for a fully-parallel implementation of an SNN with 784 inputs, 10
outputs and a variable number of hidden layers with 100 neurons, are shown
in figure 3.4. As depicted in the figure, FPGA occupation grows drastically
with respect to network size. Note that this model does not reproduce the or-
ganization optimization that the synthesizer may apply when synthesizing
the architecture (for example, a single logic unit can be used to perform two
different functions in some cases). However, this model is sufficient to give
a proper estimation of FPGA occupation against network size in the early
stages of the design space exploration.

The analytic model shows, consistent with our expectations, that such fully-
parallel implementations face FPGA capacity limits: according to the model,
a fully-parallel implementation of 900 IF-neurons would cover 5465 logic
cells on FPGA.

Compared to real convolutional networks, which present several tens of thou-
sands of neurons (65,000 for AlexNet (Krizhevsky, Sutskever, and Hinton,
2017)), it is quite obvious that the fully-parallel implementation paradigm
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is not viable when using FPGA devices. Therefore, we assume that time-
multiplexed architectures are way more viable when dealing with the hard-
ware implementation of deep SNN.

On the other hand, time-multiplexing consists in implementing fewer neu-
rons in hardware than there is in the model : each hardware neuron will
thus operate successively for several neurons of the model. This method re-
sults in slowing down computation, but allows one to implement large-scale
networks with fewer resources, notably for FPGA implementation or cost
reduction purposes. Those assumptions will be evaluated in chapter 5.
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FIGURE 3.4: Theoretical FPGA occupation versus hidden layer
size – MNIST.

3.4 High-level SNN’s architectural modeling

In this section, we introduce a tool developed in collaboration with Edgar
Lemaire (a PhD student in our eBrain team), namely "NAXT" for Neuromor-
phic Architecture eXploration Tool, which aims to simulate SNN hardware
implementations with various architectural choices, such as processing par-
allelism, memory distribution and memory technology. The goal is to match
application specific constraints (power, consumption, logic resources) with
high-level architectural choices. The simulator is configured with the SNN
parameters extracted from N2D2 (topology and learned synaptic weights)
and with user-defined architectural choices (i.e., level of multiplexing, level
of memory distribution and memory technology). It subsequently generates
a SystemC code corresponding to those parameters, and performs inference
on a test data-set. The simulator estimates the chip surface, average latency
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and energy-consumption per inference. Hence, the role of NAXT simula-
tor, in the funnel-like architectural exploration workflow, is to easily and
quickly provide coarse estimates for different architectural paradigms. Al-
though RTL modeling gives much finer results, it requires a long design and
development time. Therefore, the NAXT simulator is used to clear the path,
as its results guide further and finer architectural exploration in the follow-
ing steps of the workflow. Hence, the NAXT simulator is quite innovative as
it brings hardware estimation at a very early stage of a design flow, based on
a functional description of the network.

Note that the chip surface estimations are relative to an ASIC target, and are
analogous to Gate Array occupation for an FPGA target. Indeed, these two
metrics are relative to the same "hardware resource" evaluation: a hardware
resource can be seen as a piece of circuit from the ASIC point-of-view, or as
a group of logic cells from an FPGA point-of-view. Accordingly, chip surface
estimations can be taken for FPGA occupation qualitative estimations.

SystemC modeling

To develop our simulator, we used SystemC (Panda, 2001), a behavioral-
level hardware description library for C++. This language is often chosen for
architectural exploration purposes at a high-level description, as it enables
simple functional system description, overcoming the usual finer-level de-
scription constraints (transaction modeling, etc.). SystemC enables users to
develop functional modules that run concurrent processes and communicate
with each other via signals. Thus, we developed three different modules as
"elementary bricks” of our hardware architecture models: a Neural Process-
ing Unit, a Memory Unit, and a spike generation module. Before we start
a more precise description of each module, it is important to note that our
simulator was developed according to a synchronous paradigm: every pro-
cess is executed at a clock rising edge. The clock signal is generated by the
spike generation module. Despite our enthusiasm for asynchronous process-
ing, we have chosen a synchronous simulation paradigm for the purposes of
coding ease. We plan to enable asynchronous processing simulation in future
development of NAXT simulator.

Neural Processing Unit

The NPU is basically a digital implementation of a spiking neuron. Thus, it
is fully dedicated to the Integrate and Fire task. At every clock rising edge,
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it integrates synaptic weights corresponding to spikes received during the
last cycle. The integration is done in a simple accumulator. After integration,
the accumulator value is compared to the membrane’s threshold value: if
the threshold is exceeded, a spike is emitted at the neuron’s output, and the
accumulator is reinitialized. If not, it waits until the next clock rising edge to
start a new integration, and so on.

Memory Unit

Synaptic weights are stored in memory units. Thus, NPUs must access mem-
ory units whenever a spike is integrated. As our architectures work on a
synchronous paradigm, integration processes are run simultaneously by all
NPUs. Consequently, a memory module can receive several access requests
at the same time, but real memory uUnits can only answer one request at a
time. Thus, the memory unit model focuses on this aspect: this module must
store incoming requests in the right order, and answer those requests one by
one in that same order.

Spike Generation module

The spike generation module is dedicated to input image transcoding. In-
deed, we have to translate input data from the analog domain to the spiking
domain. Various spike coding techniques exist, we will explore them in chap-
ter 4. The spike generation module is responsible for input data transcoding
and spike train injection into input neurons of the SNN. Ultimately, this mod-
ule should disappear as we aim to simulate and evaluate a fully spiking im-
plementation, with true spiking data coming from an asynchronous camera
for example.

3.4.1 Parallelism and distribution

As previously described, there are two main exploration steps available in
the NAXT simulator. The first is processing parallelism. Indeed, as SNNs are
intrinsically parallel algorithms, computation parallelization should result in
great acceleration of processing. On the other hand, a high level of paral-
lelization requires a large number of processing elements (ideally, one NPU
per logical neuron), resulting in the drastic increase of chip surface. This first
level of exploration allowed us to evaluate the trade-off between chip surface
savings and processing acceleration.



3.4. High-level SNN’s architectural modeling 47

In the NAXT simulator, this exploration level is modeled by two different
architectural paradigms: Fully-Parallel Architectures, and Time-Multiplexed
Architectures.

Fully-Parallel Architecture

Fully-Parallel Architecture (FPA) in NAXT stands for the extreme case where
every logical neuron in the algorithm is implemented by the mean of one
NPU on the chip. This architectural choice should result in fast processing
but a large area.

Time-Multiplexed Architecture

Time-Multiplexed Architecture (TMA) in NAXT simulator stands for the case
where each layer is composed of only one NPU. Indeed, we could have cho-
sen one single NPU for the whole network as an extreme case, but this would
be the equivalent to conventional ‘Central Processing Unit’ (CPU) based ar-
chitectures, which is not interesting as we want to explore innovative neuro-
morphic architectures. We have chosen one NPU per layer to pipeline com-
putations at network level, where there is at least one processing element per
layer. In future work, we plan to let the user choose the number of NPUs per
layer, for more flexibility and finer exploration purposes. Multiplexed archi-
tectures should result in slower processing, but will be interesting in terms
of chip area savings.

3.4.2 Memory organization

The second rung of architectural exploration in NAXT simulator is the mem-
ory distribution. Thus, three levels of memory distributions have been devel-
oped: a ‘Centralized Memory’ architecture (one memory unit for the whole
network), a ‘Layer-Shared Memory’ architecture (one memory unit per layer),
and ‘Fully-Distributed Memory’ architecture (one memory unit per NPU).
Note that in the case of TMA, in the current version of NAXT simulator, layer-
shared and fully-distributed memory organizations are the same (1 NPU per
layer = 1 memory unit per layer in both cases).

These three different memory architectures allow users to evaluate, once
again, the trade-off between processing latency, energy consumption and
chip surface (i.e., FPGA occupation). For example, a ‘Centralized Memory’
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architecture will be more compact than a multitude of ‘Distributed Memo-
ries’, but will slow down processing as it can only answer one single NPU
request at a time. ‘Layer-Shared Memory’ architecture is an intermediate
between both architectures. Therefore, in this work we adopt one memory
block per layer.

Figure 3.5 depicts all memory distribution levels for fully parallel architec-
tures, and figure 3.6 shows all memory distributions for multiplexed archi-
tectures.
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FIGURE 3.5: Memory organizations for FPA architectures.
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FIGURE 3.6: Memory organizations for TMA architectures.

3.4.3 Latency, Power and Surface estimations

The aim of NAXT Simulator is to give an estimation of power, latency and
logic resources for a user defined SNN topology considering different ar-
chitectural paradigms. To do so, estimations are performed ‘a posteriori’,
using traces generated during inference simulation. More precisely, during
inference, all events are recorded: spike emission, read memory access, write
memory access, etc. These records, alongside with the number of clock cycles
spent for processing, constitute the trace used for estimations.
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Latency

Latency is calculated as the product of the number of clock cycles spent
for processing and the clock period. The number of clock cycles are being
recorded in the trace file, thus we only have to estimate the clock period. To
do so, we have chosen to constrain the clock period to the maximum mem-
ory access latency, as it is often the limiting factor of computer architectures
(worst-case critical path). This latency is estimated using NVSim (Dong et
al., 2012), an open-source software aiming to simulate memory behavior for
different memory technologies and technology nodes, which return various
estimations, including memory access latency.

Hardware Resources

The hardware resources estimation is calculated in a similar fashion than in
3.3.2: we separate our architecture in elementary modules, for each of which
we measure the hardware implementation cost in terms of resources. Each
architecture is expressed as a combination of elementary modules, and hence
can be related to a global hardware resources cost estimation. In this case, the
architectural model is taken into consideration, where for example, if we se-
lect a time-multiplexed architecture, the resource cost will be equal to the
number of layers times the cost of a single NPU. Note that this estimation
method does not take into account placement and routing optimizations per-
formed by FPGA design software tools ( R©Quartus, R©Vivado, etc.).

Power

The power estimation is calculated as a sum of energy consumption of the
two main sub-parts of the system: memory and processing. Concerning
memory, static and dynamic energy consumption of Memory Units are ex-
tracted from NVSim offline simulations. Static energy consumption of Mem-
ory Unis are then multiplied by the total inference latency, and summed to-
gether. Dynamic energy consumption are multiplied by the number of mem-
ory accesses (read and write), and summed together. Both of those results are
summed together to give the total power estimation for memory units. Con-
cerning Neural Processing Units, we have taken from literature (Mayr et al.,
2015) the average energy consumption per spike of a state-of-the-art hard-
ware digital spiking neuron. This average energy consumption per spike
is multiplied by the number of spikes emitted during inference to obtain a
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global power estimation of Neural Processing Units. Although this power
estimation method is not directly related to our developed Neural Process-
ing Unit architecture, it is a relevant approximation, as it concerns state-of-
the-art hardware digital spiking neurons. Finally, both power estimations
(for Memory Units and for Neural Processing Units) are summed together to
give a global power estimation for the whole system. This power consump-
tion evaluation method is quite approximate and gives coarse estimations,
hence it should be improved in future works.

3.4.4 High-level modeling results

Here, we show some data obtained with the NAXT simulator. Note that these
estimations are made ‘a posteriori’ thanks to the network activity traces (the
number of spikes processed by each NPU, the number of memory accesses
per memory unit, etc.). Simulations have been run for a relatively small
network "784-10-10". Our simulator achieves 62% accuracy on MNIST data-
set, which roughly corresponds to the equivalent N2D2 recognition accuracy
for the same network. NAXT performs latency, surface and power estima-
tions based on traces generated during processing: during each inference,
we record the spiking activity of each NPU, alongside all memory accesses
for each memory unit. Memory-related estimations have been computed us-
ing SRAM technology.
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FIGURE 3.7: Qualitative cost function for a 804-hardware-
neurons SNN for the different architectures available in NAXT.

For a better understanding of the results presented in table 3.4, we depicted
them in figure 3.7 by virtue of a qualitative cost function. This cost function
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is calculated as the product of three parameters (latency, energy and chip
surface), as we seek to minimize those parameters at the same time. Note
that this representation is purely qualitative, but gives a good indication of
which architectures are the most suitable for embedded implementation.

TABLE 3.4: Simulation results for a 784-10-10 SNN hardware
for the available architectures in NAXT, with SRAM on-chip
memories. Legend: LD: Layer Distributed; LS: Layer Shared;

C: Centralized.

Architecture Fully parallel Multiplexed
Memory

organization 1 FD LS C LS C

Chip area
(mm2)

13 13 13 1.3 1.3

Energy
consumption per

inference (uJ)
3.34 3.37 3.35 27.9 27.2

Latency per
inference (us)

0.042 0.24 0.25 6.32 6.19

The obtained results are consistent with our expectations: the trade-off be-
tween chip surface on one side, and energy consumption and latency on the
other side, is clearly visible in these estimations. These results show that
fully-parallel architectures globally decrease latency and energy cost at the
expense of chip surface, while time-multiplexed architectures have the op-
posite effect. This acknowledgement is quite straightforward, as TMA is
based on an opposite design paradigm compared to parallel architectures:
they are more compact, but processing serialization results in higher latency,
increasing energy consumption (notably because of leakage power). More-
over, we confirmed that the more memory is distributed among processing
units, the faster processing will be. Indeed, when memory is centralized, par-
allel access to stored data is impossible and must be serialized as explained
in subsection 3.3.2. This involves a severe increase in latency when memory
is centralized. On the other hand, memory architecture does not significantly
influence energy consumption and chip surface.

Therefore, we found that both multiplexed and parallel architectures have
their own advantages and drawbacks, that is, the trade-off between pro-
cessing latency, energy consumption and chip surface (i.e., FPGA occupa-
tion). In light of these findings, we will develop three architectures: Fully-
Parallel, Time-Multiplexed, and the novel Hybrid Architecture, which uses
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both paradigms to optimally fit the spiking activity in the network.
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FIGURE 3.8: Average number of spikes generated for one pat-
tern per layer – "784-3x(300)-10" SNN on MNIST.

Indeed, as shown in figure 3.8, in a feed-forward SNN, the number of input
spikes per layer decreases drastically as we go deeper in the network: the first
layers are much more solicited than deeper layers during inference. This ef-
fect is even more prominent when using our novel Spike Select information
coding method (see chapter 4). Consequently, we assume that the first layers
must be implemented in a fully-parallel fashion to prevent spike bottlenecks,
whereas deeper layers can be implemented in a multiplexed fashion. From
this assumption, a hybrid architecture has been developed in VHDL and sim-
ulated at the Register Transfer Level (RTL), which provides finer estimations
than the NAXT simulator.

3.5 Hardware architecture description of SNNs

From the high-level modeling step of the design space exploration, we have
identified two possible ways for hardware implementation of SNNs: parallel
and time-multiplexed. On another hand, the analysis of spikes distribution
over SNN’s layers motivated the use of another architectural model consist-
ing in gathering both parallelism and multiplexing. In this section, we give a
brief description of these architectural models and how we implement them
on hardware.
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Fully-Parallel Architecture (FPA)

As described earlier, in FPA all the logical neurons of an SNN are imple-
mented physically in hardware. In other words, for each neuron of the SNN
a hardware neuron module is instantiated. Figure 3.9 shows a simplified
structure showing the connectivity and organisation of different components
that compose the architecture. Indeed, in this architecture, a parallel process-
ing is held in each layer of the network where an input spike is processed by
all the layer neurons simultaneously. The input layer is simply a buffer that
forwards input spikes to the first hidden layer. The output winner class of
the FPA is determined by a classification module that is connected to the last
layer of the SNN. Indeed, whenever an output neuron satisfies the classifica-
tion rule, the processing is ended and its address is considered as the winner
class.
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FIGURE 3.9: FPA simplified representation.

This parallel architectural choice should result in fast processing but with
high logic resource intensiveness. In the following subsection, we present the
second model which takes the opposite architectural choice : Time-Multiplexed
Architecture (TMA).

Time-Multiplexed Architecture (TMA)

The TMA comes to save hardware resources and overcome the limitation of
a parallel architecture. In this architectural type, the NPUs are used to pro-
cess several logical neurons. Doing so, the number of hardware neurons will
be smaller than the logical ones. One of the possible ways to multiplex com-
putations is to represent each layer by one single NPU, an example of that
structure is shown in figure 3.10. This one NPU per layer is required to per-
form network-level pipelined computations. This is necessary to benefit from
the sparsity of spiking data that was discussed in chapter 2. Indeed, within
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this TMA structure, each NPU computes successively for the layer’s logical
neurons in a time-multiplexed manner. Indeed, temporal multiplexing of
computations results in higher latency when compared to parallel comput-
ing. Therefore, this architecture should drastically diminish the hardware
occupation, but increase the system latency as a counterpart.

To sum-up, we have discussed two architectures (TMA and FPA) situated in
the two extremes of latency and hardware intensiveness. In the next subsec-
tion, we will describe a middle ground between those two extremes, taking
advantages from both to fit the reality of spiking activity in SNNs : the Hy-
brid Architecture (HA).
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FIGURE 3.10: TMA simplified representation.

Hybrid Architecture (HA)

HA represents the middle ground between those fully-parallel and time-
multiplexed extremes. The aim of this architecture is to take advantage of
both parallelism and multiplexing to fit the behavior of spiking data in SNNs.
The concept comes from the fact that spiking data are extremely sparse, with
most of the data located at first layers of the SNN, refer to section 2.6.2. There-
fore, having parallel computation in the first layer will speed-up the process-
ing since most of the spikes are located there. Moreover, since fewer spikes
are propagated to the deeper layers, NPUs are sufficient to efficiently pro-
cess those spiking events. A simplified representation version of this hybrid
architecture is shown in figure 3.11. Note that, the parallelism in the first
hidden layer is represented in a similar way to FPA, for each logical neuron
a physical one, and in the remaining layers is represented by NPUs to multi-
plex computations.

3.6 Conclusion

In this chapter, we have described a three-level funnel-like framework for
the design space exploration of hardware SNNs. This is a methodology for
addressing the efficient hardware implementation of SNNs for embedded AI
applications. In the first level, we analytically explore various neural models



3.6. Conclusion 55

spike gen
input 

neuron

neuron n

neuron 2

neuron 1

Input 
data

Hidden layer 1

NPU out
class 
select

Winner
class

Output layerInput layer

...

...

NPU 2

...

Hidden layer 2

FIGURE 3.11: HA simplified representation.

and architectural structures for inferring SNNs. The aim of this early stage is
to eliminate the solutions that do not fit embedded systems’ restrictions. Do-
ing so, we reduce the choice panel and have only a few possibilities presented
as friendly hardware architectures. In the second level, we model the result-
ing architectures in high-level. In this context, we have seen that some mem-
ory organizations, such as centralized memory and fully distributed memory,
are not suitable for our objectives due to the difficulty of controlling their
accesses (centralized) or their high implementation cost (fully-distributed),
refer to section 3.4.4. The most adequate one is the layer-shared organisa-
tion which facilitates the memory accesses and reduces their number. This
gives coarse estimations that help us to further refine the design models to
get some architecture candidates. At the final level, we do an RTL descrip-
tion of these architecture candidates to get more accurate estimates. In this
way, these latest results serve as the baseline for selecting the optimal solu-
tion as the final AI-accelerator. The resulting architectural organisations have
different computing parallelisms going from fully-parallel implementations
to time-multiplexed ones.

In the following chapters, we are going to discuss the other framework levels,
which concern neural coding and hardware architectures.
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Chapter 4

Neural coding

4.1 Introduction

Indeed, one of the biggest challenges of neuroscience researchers is to un-
derstand how the human brain processes and represents the very dynamic
and complex external world stimuli. This is a research question that has still
not been answered and is the subject of much scientific debate and this in
spite of the number of researchers and means made available. The debate
concerns mainly the question: does the brain use rate-based coding or spike-
based coding? This controversial question forms the subject of the article in
(Brette, 2015). In this chapter, we deal with this neural coding, which is the
subject of the first level of the framework presented in the previous chapter
(chap. 3), by exploring different techniques for SNN’s spike generation. First,
we present the basic rate-based and time-based neural coding paradigms and
show how they are inspired from the information representation in the brain.
Second, we discuss the thesis contributions that consist in exploring rate-
based and time-based coding schemes and in proposing modified versions
targeting low-power embedded hardware classification. Finally, we present
the obtained results from experimenting the coding schemes in two differ-
ent classification use-cases and then conclude about the spike generation for
SNNs in the embedded AI context.

Indeed, the brain is composed essentially of neurons and synaptic connec-
tions linking them. A neuron is connected to several neighboring input neu-
rons through connection synapses called "dendrites". These input synapses
transmit the information coming from the input neurons under the form of
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FIGURE 4.1: Simplified representation of a biological neuron -
from (Yu et al., 2014).

electrical action potential called spikes. These spikes are continuously inte-
grated to internal potential in the SOMA until the membrane potential ex-
ceeds the potential threshold. At this moment, the neuron emits and trans-
mits a spike to the output neurons through the axon and resets its internal
membrane potential, refer to figure 4.1. These spikes are used to exchange
data between neurons, and to represent input data using a rate-based or time-
based paradigm. In this chapter, we present coding techniques that can be
used to represent data and generate spikes for the spiking neurons of an SNN
into classification tasks. The different techniques are ranging from temporal
to rate coding.

4.1.1 Rate-based coding

From (Brette, 2015), we find three definitions of rate coding: over time: the
firing rate is captured by the number of spikes emitted by a neuron in a pre-
defined duration time; over neurons: rate represents the average number of
spikes produced by a defined number of neurons; and over trials: the firing
rate corresponds an average of spikes over a number of trials. Therefore, a
firing rate defines how the spikes are propagating in a network of neurons.
In this work, we focus on the generation of spikes at the entrance of the spik-
ing network by converting analog data into trains of spikes. In other words,
the data are represented in signals carrying flow of spikes, where each spike
train corresponds to an input data value. First, the time window is divided to
periods equivalent to the input value. Then in each period, a spike is emitted
at time "t" determined by applying a distribution function (Poissonian). In
figure 4.2, three pixels of a gray-scale image are transformed to spike trains.
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FIGURE 4.2: Rate-based coding paradigm

Several distribution functions can be used to determine the emission time of
spikes, we will present and compare them in the rest of this chapter.

4.1.2 Time-based coding

The time-based coding defined as spike-based coding is where the spikes
are representing discrete events occurring at relatively well-defined times
(Brette, 2015). Moreover, a single spike can represent a physically measurable
quantity. Therefore, with time-based coding the emission time of a spike is
what matters in decision making. Indeed, in this coding paradigm the infor-
mation is encoded into precise spike emission time. In an image processing
context, a pixel of an image is represented by a single spike emitted at a date
t that is inversely proportional to the pixel’s intensity, refer to figure 4.3.

Time

Intensity

FIGURE 4.3: Temporal coding paradigm
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4.1.3 Neural coding versus energy-efficiency

In SNN architectures, information is encoded in spikes. The spike, also called
"action potential" or "nerve pulse" in biology, is generated by a spiking neu-
ron, in a process called "firing". In a feed-forward SNN with Fully-Connected
(FC) layers, spikes are transmitted to all the next layer neurons.

Several neural information coding approaches have been proposed by neu-
roscience researchers, including Rate Coding, Time Coding, Phase Coding,
Rank Coding, Population Coding, etc. (Brette, 2015). In this study, we focus
on Rate Coding and Time Coding for two reasons:

1. Rate coding: for its maturity. When using this method, SNNs reach
State-of-the-Art performance on classification applications (Cao, Chen,
and Khosla, 2015; Khacef, Abderrahmane, and Miramond, 2018);

2. Time coding: when used, fewer spikes are propagated in the SNN,
which reduces computation and resource intensiveness during infer-
ence (Yu et al., 2014; Mostafa, 2018).

Based on these methods, we propose some modified versions of the stan-
dard Rate Coding to make trade-offs with the temporal coding paradigm:
maintain high accuracy and reduce the number of spikes flowing in the net-
work. Indeed, the energy consumption of an SNN hardware implementation
is directly proportional to the number of spikes it generates. As mentioned
in (Cao, Chen, and Khosla, 2015), an estimation of the energy consumed by
processing an image is calculated using the equation 4.1.

Etotal = Nspikes/image × α (J/image) (4.1)

Where Etotal is the average energy consumed for processing an image, Nspikes/image

is the total number of spike emissions per input pattern, and α is the energy
consumption of a spike emission. Note that the spiking-activity-related en-
ergy consumption varies from one accelerator to another and obviously de-
pends on the specific architecture.

4.2 ANN-SNN conversion

The Spiking Neural Networks are bio-inspired ANNs issued from neuro-
science. Compared to Analog Neural Networks, different neuron models
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(LIF, IF, Izhikevich, etc.) and neural coding are used as depicted in neuro-
science literature (Brette, 2015). In fact, we use the non-leaky IF model which
is composed of an adder and a threshold comparator, as shown in figure 4.4.
The leaky part is not considered in the implementation of the hardware neu-
ron for two reasons:

— The Leaky part implies a more complex hardware structure with a
larger chip surface;

— The non-leaky IF model gets equivalent accuracy records to analog
networks using rate coding.

In addition, the data exchanged between neurons are coded with one-bit sig-
nals using rate or time based coding. These aspects make the SNNs more
suitable for embedded AI applications.

FIGURE 4.4: Non-leaky Integrate-and-Fire neuron.

In this work, we build SNNs using the ANN-SNN conversion methodology
that is already described in (Diehl et al., 2015; Perez-Carrasco et al., 2013). In-
deed, there is other techniques to build and learn spiking neural neural net-
works like temporal back-propagation (Kheradpisheh and Masquelier, 2020;
Yu et al., 2014), spike-based back-propagation (Rotermund and Pawelzik,
2019; Lee et al., 2020; C., Bichler, and Dupret, 2019), STDP learning (Thiele,
Bichler, and Dupret, 2018; Kheradpisheh et al., 2018) or even reward-STDP
(Mozafari et al., 2018). However, in this work we adopted ANN-SNN con-
version because we get more easily the state-of-the-art classification results.
First, we define the analog neural networks topology and then use the rec-
tifier function for the neurons, set biases to zero and learn the network with
back-propagation. Then, the resulting weights from this first step are used
to define the SNN that is composed of IF neurons. At this point, the SNNs is
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ready for inference on spiking data that are generated using one of the neu-
ral coding techniques that will be described in the remaining of the chapter.
Finally, we test the converted SNN on spiking data generated by the spikes
generation cell. The classification result of the SNN is decided using the clas-
sification module that is described in the following.

4.3 SNNs classification policy

Usually, in ANNs, a Softmax layer is used at the output layer for classification
purposes. In the spiking domain, we often replace this classification method
by a linear activation function at the output layerDiehl et al., 2015 followed
by a spike-based classification procedure to determine the winning class.

As previously mentioned, the spiking data are different from the ANN ana-
log data, where neurons produce spike trains instead of activities. Therefore,
one possible softmax equivalent function with SNNs would be a function
which can identify the most spiking neuron at the output layer. That neuron
can then be selected as the winning class of the SNNs. Hereby, we present
two spiking classification methods that can be used with SNNs: Delta Termi-
nate and Max Terminate. Software versions of these procedures have been
implemented in the N2D2 tool. The figures 4.5 and 4.6 represent flowcharts
corresponding to operations of Terminate Delta and Max Terminate methods,
respectively.

On one hand, with the Terminate Delta procedure, class prediction occurs
when the most spiking neuron has fired "TD" times more than the second
most spiking neuron. Note that, a maximum number of spikes amount that
a neuron fires is defined to stop the processing if the terminate delta rule
is not reached. As depicted in the flow chart on figure 4.5, the output neu-
ron activations are recorded and updated at each incoming spiking event, by
checking the status of "Empty". Then for two neurons, those with the first
and second highest activity, the number of activations and address (Max1/2
and @Max1/2) are registered. For each new spike, its address is compared
to @Max1 for checking completion of the classification. Indeed, if the input
event corresponds to the most spiking neuron (@Max1), then the correspond-
ing number of activations is incremented (Max1++). Then, the difference be-
tween its activation (Max1) and the one of the second most spiking neuron
(Max2) is compared to the delta value (TD). If this difference is higher than
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the delta value, the processing is stopped and @Max1 is selected as the win-
ner class. There is another case where the input event does not match with
@Max1. In this case, there are two possibilities: first, if the input event ad-
dress is equal to @Max2, we check if this neuron becomes the first instead
of second most spiking neuron; second, the input event address is different
from @Max1 and @Max2, here we check if this new neuron has spiked more
the neuron @Max2.

On another hand, in Max Terminate, the classification process is completed
whenever an output neuron (the most spiking neuron) reaches the maximum
number of spikes ("Delta" in figure 4.6). Its detailed operation is depicted
by the flowchart on figure 4.6, it works similarly to the Terminate Delta
procedure but with a lot of simplifications. Therefore, compared to termi-
nated delta technique, the operation of this method requires fewer parame-
ters (Max, @Max and act) and is doing less computations. In section 4.5.2,
we confront the two methods in terms of accuracy and number of generated
spikes to select the most appropriate to use with SNNs.
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FIGURE 4.5: Terminate Delta flowchart.
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4.4 Spikes generation methodologies

4.4.1 Rate-based coding

Rate-based coding is the most widespread method for converting analog
data into spike trains. Based on the analog data value, a corresponding pe-
riod, that is equivalent to the spikes emission frequency, is computed using
equation ??. In figure 4.2, three gray-scale pixels of an image are transformed
into spike trains: each pixel is represented by a spike train whose frequency
is proportional to its intensity.

In N2D2 (Bichler et al., 2017), there are several rate coding techniques for
converting input stimulus data to spiking domain: Poissonian, Jittered Pe-
riodic and Periodic. These conversion methods are developed to feed an
event-based system, thus the output data are in a form of events defined
by their timestamps. They are computed as follows: First, some parameters
are defined: pmin and pmax the minimum and maximum mean periods cor-
responding to separation time between consecutive spikes, sdev the relative
standard deviation and Psys

min the minimum spikes separation time supported
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by the system. Second, the input data value, which is first re-scaled between
0 and 1, is converted to a time period p using the formula in equation 4.2.

p = 1/( fmax + (1− | value |) ∗ ( fmin − fmax)) (4.2)

Where fmax = 1/pmin and fmin = 1/pmax the maximum and minimum mean
periods. Then, from this period we compute a time step ∆t that is used to get
the input value spiking time, it is computed with one of the three methods:

— Poissonian: ∆t = fEdist(p), apply an exponential distribution function
to the period.

— Periodic: ∆t = fNdist(p, sdev), apply a normal distribution function to
the period, in our experiments we fix sdev to 0.

— Jittered Periodic: ∆t = fNdist(p, sdev) ∗ fUdist(), multiplication of the
normal distribution function of p with a random uniform variable.

These methods are injecting white noise to the time period p to get the time
step ∆t. Then, ∆t will be replaced by psys

min (∆t = psys
min) if it is too small (∆t <

psys
min), i.e. less than the spikes minimum separation time. Finally, the spiking

time is given by: t = tprevious + ∆t, where tprevious is the timestamp of the last
generated spike.

4.4.2 Temporal coding : Single Burst

With the Single Burst coding method the input data stimulus is mapped to
temporal domain. An input data value is represented using a one spike,
which is emitted at a specific time t, computed by "t =| 1− v | ∗wt", with
t the emission time, wt the time window dedicated for the generation of the
spikes, and v the input value. A software version of this method is present in
N2D2 (Bichler et al., 2017) as a stimulus transcoding type.

4.4.3 Temporal coding : First Spike

Derived from standard rate coding, the First Spike method is an intermediate
version between time-based and rate-based coding paradigms, by having as-
pects in common with both methods. On one hand, as for time-based coding,
it uses only one spike to represent information. On another hand, similar to
rate-based coding, the data flowing inside the SNN between the IF-neurons
is encoded in a rate-based paradigm. A pseudo-algorithm, presented in fig-
ure 4.7, shows a transformation of an input value (v) to spiking domain using
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the First Spike method. First, some parameters that will be used in the con-
version process are defined. Afterwards, a period p is calculated based on
the value v using equation 4.2.

Where, fmin and fmax are minimum and maximum frequency parameters.
Then, the period p is used to compute the time step ∆t, which corresponds
to the date of the next spike emission, thanks to the function ∆t() presented
in equation 4.3.

∆t(p) = fUdist( fNdist(p, sdev)) (4.3)

With sdev being the standard deviation, fNdist() the Random normal distribu-
tion function and fUdist() the Random uniform distribution function.

Next to that, the ∆t value is compared to Tmin, which is the minimum spike
delay (no spike can be emitted earlier than Tmin) to fire a spike. If ∆t > Tmin,
a spike is emitted at time ∆t, otherwise, the spike will be emitted at time
Tmin. This process is done only once for each pixel, because this method
consists in generating only one spike per input pixel.

Start

Define parameters:
Fmin, Fmax, StdDev, Tmin

Input: Value

Period = f(Value)
Δt = dev(Period)

Δt < Tmin

SpikingTime = TminSpikingTime = Δt

Emit the spiking event at:
t = SpikingTime

End

YesNo

FIGURE 4.7: First Spike method flow-chart.
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4.4.4 Hybrid coding : Spike select

Rate coding techniques, such as Jittered Periodic, rely strongly on the high
number of output spikes or the terminate delta rule to improve the accuracy.
When using the terminate delta classification module, increasing the delta
value results in more spikes at the output layer. This fact allows us to better
differentiate the data classes that are represented by the SNN output neurons.
Moreover, this delta value increase produces a larger number of spikes over
all the SNN’s layers. To diminish this number of spikes, especially in the
deeper layers, an opposite approach is used with the Spike Select method.

Instead of increasing the delta value of the Terminate Delta classification ap-
proach, which influences the overall activity over the network, spike select
uses the first hidden layer’s threshold to control the propagation of the spikes
and to improve the accuracy. This is done by increasing the threshold of this
first layer while keeping the base threshold in the other layers. Furthermore,
the delta value of the classification module is simply replaced by the base
threshold. As a result, the spikes generated by the neurons of the first hid-
den layer are reduced where most of these spikes come from the frequently
firing neurons when using Jittered Periodic coding. This spike selection al-
lows the use of a small delta value, that is equal to the base threshold, with
Terminate Delta without affecting the accuracy.

In figure 4.8 shows an example showing a group of neurons for which the
spike select method is applied, which is done by increasing their threshold.
The original threshold (base) used with Jittered Periodic for the neurons (in
left of the figure) is 1 and the one used with spike select ones (in right of the
figure) is 3. The neurons with spike select, having higher threshold, have a
reduced output spikes amount compared to the neurons with Jittered Peri-
odic. This is due to the fact that the neurons with spike select reach their
threshold less frequently because their threshold is 3 times higher than the
original one. On the same figure 4.8, a zoom-in is made on neuron number
0 (N0) to show the change of its internal potential state at each output spike.
Using Jittered Periodic coding, when an output spike is emitted, the internal
potential is greater than or equal to 1.0, which is the threshold amount, then
it is reset. Since for both the coding methods, the same input spikes are fed
to the neuron, then the internal potential is incremented similarly with both
coding methods. Since the difference between them is only the value of their
threshold, the difference is in their firing of output spikes and reset of the
potential. In the case of Spike Select, the firing of a spike and the potential
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reset occurs when the internal potential reaches 3.0 instead of 1.0 in case of
Jittered Periodic. Due to this difference, when going from Jittered Periodic to
Spike Select, the amount of output spikes is reduced from 8 spikes to only 2
for the neuron N0. Therefore, applying this method to a deep SNN would
drastically reduce the amount of spikes generated over the network. Note
that the amount of the spike select threshold is experimentally fixed through
several trials similarly as with Terminate Delta.
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FIGURE 4.8: Spike Select and Jittered Periodic codings effect on
output spikes of an integrate-and-fire neurons group.

Naturally, spiking data are characterized by a high level of sparsity with the
quantity of spikes decreasing increasingly as one goes deeper and deeper
in the network layers. Indeed, statistical results of SNNs with rate-based
coding, such as Jittered Periodic (refer to results section 4.5), have confirmed
this sparsity. The results show that most of the spiking activity is located in
the first layer and only few spikes are present in the deeper layers. Spike
select would result in a more sparse data since it is coming to enforce this
aspect by letting fewer spikes propagate in the deeper layers. Therefore, if
this method results in a to rate-based coding equivalent accuracy, it will be
one of the most suitable methods for implementing SNNs in hardware. These
assumptions will be verified in the experiments and results section 4.5.

From the hardware perspective, this is a very promising method that al-
lows for efficient hardware usage, especially with the hybrid architecture
presented in section 3.5. Indeed, in this architecture, the first hidden layer
is implemented in parallel, and the deeper layers are time-multiplexed : this
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architectural configuration fits well with the spiking distribution implied by
the spike select coding method.

4.5 Experiments and results

In this section, we present the experiments and results of the different neural
information coding techniques presented so far: analog to spiking domain
transcoding methodology, spike generation coding and classification policy
with SNNs.

In this section, the experiments and results that concern the neural coding,
that is covered in this chapter, are presented. First, we present data concern-
ing the ANN-SNN conversion, then the classification methods are reviewed,
and finally we discuss the results of the spike generation techniques.

4.5.1 Experiment setup

To check the validity of the ANN-SNN conversion method, we build several
ANN topologies using the N2D2 framework following the steps presented
earlier. For both the spiking and analog models, a rectifier function is used
for the hidden layers and a linear function is used at the output layer. The
weights initialization is done using the Xavier filler function and the learning
is done using the back-propagation algorithm.

To define our ANN models, we use a ".ini" file where a typical convolutional
layer is defined as follows:

[conv1]
Input=sp
Type=Conv
KernelWidth=4
KernelHeight=4
NbOutputs=32
Stride=1
WeightsFiller=XavierFiller
ActivationFunction=Rectifier
ConfigSection=common.config
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Where "[conv1]" indicates the name of the current layer, "Input" defines the
previous layer, "Type" defines the layer’s type, "KernelWidth" and "Kernel-
height" are used to configure the size of the filter and "NbOutputs" indicates
the number of filters in the layer.

In the same file, a configuration section "ConfigSection" that contains all the
learning hyper-parameters is defined as follows:

[common.config]
NoBias=1
WeightsSolver.LearningRate=0.01
WeightsSolver.Momentum=0.9
WeightsSolver.Decay=0.0005
Solvers.LearningRatePolicy=StepDecay
Solvers.LearningRateStepSize=[sp]_EpochSize
Solvers.LearningRateDecay=0.993
Solvers.Clamping=-1:1

Where "NoBias=1" means that we are not using bias neurons, the other lines
define the learning rate, momentum, decay, the learning hyper-parameters
(learning rate policy, etc.). "Solvers.Clamping=-1:1" is used to normalize the
weights between -1 and 1. Similarly to most of the ANN-SNN conversion
works, in this work we are not using bias neurons, which when combined
with ReLU activation functions allows to improve the SNN’s accuracy (Cao,
Chen, and Khosla, 2015).

Training and testing data-sets

For training, validating and testing the neural networks of this study, we
used two different data-sets: the handwritten digits MNIST dataset and the
traffic signs GTSRB dataset. On one hand, we have MNIST data-set, which
is a handwritten digit’s database of 70000 images (60000 for learning and
validation, 10000 images for test). Figure 4.9b shows some pattern examples
of this dataset.

On the other hand, we have GTSRB dataset that has 43 classes spread on
51840 colored (RGB) image samples (figure 4.9b), 50% of them is used for
training, 25% for validation and the remaining 25% is used for testing. The
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images have different sizes ranging from 15x15 to 250x250. Therefore, re-
scaling the input within the CNN is mandatory (Stallkamp et al., 2012).

(A) MNIST dataset examples.

(B) GTSRB dataset examples (Stallkamp et al., 2012).

FIGURE 4.9: Pattern examples of the datasets used in this work.

ANN topologies

In this work, we used two types of ANN topologies: the first one is com-
posed of networks having only fully-connected layers and the second one
is composed of CNNs that are constituted from convolutional, pooling and
fully-connected layers.

For both data sets, we defined 4 CNN topologies and 2 FC-based ones. First,
the FC-based networks are composed of an input layer of 28X28 (784) neu-
rons, one to three hidden layers of 300 neurons and 10 neurons in the output
layer for MNIST dataset and 43 neurons for GTSRB dataset. Second, the
CNNs used with MNIST are : Conv29: a CNN with a mono-channel (1C) in-
put with a size of 29x29 followed by 2 convolution layers, 2 pooling layers
and 2 Fc layers; ConvFc: a CNN composed of only convolution and fully-
connected layers; ConvPool: a CNN composed of only convolutional and
pooling layers; and the famous LeNet network. Finally, the 4 CNN topolo-
gies used with GTSRB data-set are two mono-channel networks, that process
the gray-level version of the data-set: LeNet-1C and Conv-1C, and two three-
channel networks having three-channel inputs that support the RGB version
of the data-set: LeNet-3C and Conv-3C.



72 Chapter 4. Neural coding

TABLE 4.1: ANN topologies used with MNIST and GTSRB
data-sets. Legends: "c" stands for convolution, "p" stands for
max pooling, "s" stands for stride and no letter means FC layer.

Dataset Network Topology

MNIST

FcNet1 784-300-10
FcNet2 784-3*(300)-10
Conv29 29x29-32c4s1-32p2s2-48c5s1-48p3s3-200-10
ConvFc 28x28-16c4s2-24c4s2-150-10
ConvPool 28x28-12c5s1-12p2s1-64c5s1-64p2s1-10
LeNet 32x32-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-84-10

GTSRB

FcNet3 784-300-43
FcNet4 784-3*(300)-43
Conv29-1C 29x29x1-32c4s1-32p2s2-48c5s1-48p3s3-200-43
Conv29-3C 29x29x3-32c4s1-32p2s2-48c5s1-48p3s3-200-43
LeNet-1C 32x32x1-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-84-43
LeNet-3C 32x32x3-6c5s1-6p2s2-16c5s1-16p2s2-120c5s1-84-43

4.5.2 SNN classification policies

In this section, we evaluate the impact of the classification policy on SNN’s
performances. To do so, we compare performances, in terms of accuracy and
spiking activity, of Max Terminate and Terminate Delta winner-class selec-
tion methods. For both methods, we used a three-hidden layers network
with the 784-3x(300)-10 topology. The recorded results for both accuracy and
average number of spikes generated per image are listed in tables 4.2.

TABLE 4.2: Terminate Delta and Max Terminate versus accu-
racy and spiking activity on MNIST dataset. Neural coding:

Jittered Periodic; Topology: 784-3x(300)-10.

Delta
Terminate Delta Max Terminate

Accuracy Spike/image Accuracy Spike/image
1 97.98 511.47 97.98 511.47
2 98.11 694.49 98.03 684.32
4 98.15 1106.24 98.10 1037.44
6 98.15 1499.56 98.15 1387.47
8 98.15 1877.50 98.15 1736.16

For better representation and based on the results of this table 4.2, we have
plotted the curves in figure 4.10. The first sub-figure 4.10a represents the evo-
lution of the accuracy versus different delta values for both methods, where
the red curve represents Terminate Delta and the blue one is for Max Termi-
nate. The second sub-figure 4.10b represents the evolution of the number of
spikes generated over the SNN in average per pattern versus the delta value.
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FIGURE 4.10: Terminate Delta and Max Terminate versus accu-
racy and spiking activity - 784-3x(300)-10 - MNIST data-set.

We notice that for both methods, the accuracy and the average number of
spikes increase continuously with respect to the TD/Max delta values. More-
over, using the Terminate Delta method the SNN performs slightly higher
accuracy than using Max Terminate while having a thin increase in the num-
ber of spikes. For delta values greater than 4, the accuracy begins to stabi-
lize and gets its maximum for Terminate Delta. Whereas with Max Termi-
nate method, this maximum accuracy is reached only when the delta value is
greater or equal to 6. Considering the spiking activity, we notice that the max-
imum accuracy is reached with Terminate Delta when the number of spikes
is equal to 1106.24. Whereas with the Max Terminate method, the maximum
accuracy is reached when the number of spikes is equal to 1387.47. From
these results, we conclude that Terminate Delta is more interesting since for



74 Chapter 4. Neural coding

equivalent accuracy, less spiking events are generated than with Max Ter-
minate approach. For this reason, we use the Terminate Delta method to
implement the SNNs in the remaining parts of the work.

4.5.3 ANN-SNN conversion versus accuracy

The mapping of ANNs to SNNs methodology is evaluated by comparing
the accuracy results in both spiking and analog domains. Note that Jittered
Periodic coding method is used to generate input spikes for the spiking mod-
els. From the table 4.3, which summarizes accuracy results of some SNNs on
both MNIST and GTSRB datasets, we observe that the records are slightly
similar for both spiking and analog models. These observed data validate
the adopted ANN-SNN conversion approach and allow us to continue our
investigation by exploring the different neural coding techniques.

TABLE 4.3: Accuracy results of analog and spiking models.

ANN topology
Accuracy (%)

Analog Spiking
FcNet1 97.85 97.74
FcNet2 98.35 98.24
Conv29 99.16 99.16
ConvPool 99.18 99.21
LeNet 99.18 99.15
ConvFc 99.09 99.09

(A) MNIST data-set

ANN topology
Accuracy (%)

Analog Spiking
FcNet3 90.25 89.81
FcNet4 91.18 90.68
Conv-1C 96.80 96.68
Conv-3C 97.86 97.75
LeNet-1C 95.84 95.76
LeNet-3C 96.25 96.19

(B) GTSRB data-set

4.5.4 State-of-the-art accuracy results

Before dealing with neural coding, let’s compare the obtained accuracy re-
sults using the ANN-SNN conversion approach to some records that are
found in literature. These comparison results, both on MNIST and GTSRB
data-sets, are listed in tables 4.4 and 4.5. First, with MNIST data-set, we ob-
tained accuracy results equivalent to the ones that are found in literature.
Second, with the GTSRB data-set, we get lower results compared to human
(Stallkamp et al., 2012) and architecture_32 network found in (Yang et al.,
2020) but higher than the other networks. From these results, we can vali-
date the mapping approach to be used for constructing the Spiking Neural
Networks.

In the context of embedded hardware classification, this step allows us to
use this Jittered-Periodic-based conversion approach to explore other neural
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TABLE 4.4: Classification accuracy results of different SNNs on
MNIST data-set

SNN topology Accuracy (%)
(Diehl et al., 2015): 784-2x(1200)-10 98.60
(Du et al., 2015): 784-300-10 95.40
(Mostafa, 2018): 784-800-10 97.55
(Kheradpisheh and Masquelier, 2020) 97.40
This work: FcNet1 97.74
This work: FcNet2 98.24
This work: LeNet 99.15
This work: Conv29 99.21

TABLE 4.5: Classification accuracy results of different network
topologies on GTSRB data-set

Network topology Accuracy (%) Spiking
Human (2012) 97.98 -
LeNet (2020) 92.68 No
Random forests (2011) 96.14 No
Architecture_32 (2020) 97.79 No
9 layers CNN on TrueNorth (2016) 96.50 Yes
This work: LeNet-1C 95.84 Yes
This work: LeNet-3C 96.25 Yes

coding techniques and to evaluate them in terms of accuracy and spiking
activity.

4.5.5 Spikes generation

In this part, we present the process of validating the spike generation neural
coding techniques which is organized in two parts: First, we test different
basic rate-based coding techniques; Second, we explore the different neural
coding schemes ranging from rate to temporal codings.

Rate-based coding

A very important part of SNNs is the neural information encoding or the
spikes generation scheme. In this section, we compare three different rate-
based coding techniques that are presented in section 4.4: Poissonian, Jittered
Periodic and Periodic. In this comparison experiment, we focus on the accu-
racy and the number of spikes propagated over the network using different
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SNN topologies. Accuracy results are illustrated in table 4.6 and spiking ac-
tivity results showing the amount of spikes propagated over the some SNNs
are listed in table 4.7.

TABLE 4.6: Rate-based coding versus accuracy - MNIST.

SNN topology
Accuracy (%)

Poissonian Periodic Jittered Periodic
784-100-10 96.29 96.31 96.30
784-200-10 97.20 97.31 97.29
784-300-10 97.55 97.71 97.70
784-300-300-10 97.86 97.99 98.00
784-300-300-300-10 97.96 98.11 98.11

TABLE 4.7: Rate-based coding versus spiking activity - MNIST.

SNN topology
Spikes / pattern

Poissonian Periodic Jittered Periodic
784-100-10 845.22 865.43 754.92
784-200-10 785.89 786.70 799.63
784-300-10 768.03 763.14 774.76
784-300-300-10 776.66 808.06 816.26
784-300-300-300-10 978.70 1096.64 1106.24

Based on the data presented in these tables, we have plotted histograms
showing the influence of the coding schemes on accuracy and spiking data
flow. First, figure 4.11a shows the impact on accuracy for different SNN
topologies and second, the figure 4.11b shows the influence on the average
number of spikes propagated over the SNN for an MNIST pattern. On one
hand, for most of the SNN topologies, Jittered Periodic and Periodic tech-
niques perform the highest accuracy results while generating approximately
similar number of spikes per pattern to Poissonian coding. On the other
hand, the Poissonian method, while being the most competitive in terms of
spiking activity, always performs the lowest recognition scores. Note that,
the Periodic coding technique is performing almost similar results to Jittered
Periodic, but, due to its periodicity, it is less robust to noise. Indeed, with Jit-
tered Periodic, a white Gaussian noise is injected to the signal generated for
the input data, thus making it more robust to noise than the Periodic method.
Thus, for the remaining parts of this neural coding exploration and for the
design of SNN’s hardware architectures, we will adopt Jittered Periodic.
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FIGURE 4.11: Rate-based coding – MNIST.

Exploring novel neural coding schemes

In this step, we compare the explored coding techniques with Jittered Peri-
odic by analyzing accuracy and spiking data flow. In this context, we have
recorded, in tables 4.8 and 4.9, accuracy results of different CNNs using Jit-
tered Periodic, Spike Select, First Spike and analog coding techniques on both
MNIST and GTSRB data-sets. From these data, we notice that the First Spike
method performs the lowest accuracy results on MNIST data-set, with more
than 9% accuracy loss using Conv29 and LeNet CNNs. Moreover, a huge
loss is recorded when applied to the GTSRB dataset, with scores varying
from 21.57% to 68.61%. This method shows a competitive spiking activity
compared to others due to the fact that it uses only one spike to encode an
input value. However, the important accuracy losses makes it not viable for
classification applications. A possible solution to improve the accuracy with
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First Spike is the use of a dedicated learning algorithm that is adapted to "at
most one spike per neuron" like in (Kheradpisheh and Masquelier, 2020).

TABLE 4.8: Spike generation versus accuracy – MNIST dataset.

Coding method
CNN model

Conv29 ConvPool LeNet ConvFc
Jittered Period 99.16 99.21 99.15 99.09

Spike Select 99.21 97.07 99.13 98.68
First Spike 87.21 96.56 90.87 96.16

Analog domain 99.16 99.18 99.18 99.09

TABLE 4.9: Spike generation versus accuracy – GTSRB dataset.

Coding method
CNN model

Conv-1C Conv-3C LeNet-1C LeNet-3C
Jittered Period 96.68 97.75 95.76 96.19

Spike Select 96.56 97.83 95.72 96.18
First Spike 21.57 45.49 25.46 68.61

Analog domain 96.8 97.86 95.84 96.25

This accuracy difference is more clearly shown on figure 4.12. For GTSRB
data-set, the bars representing First Spike method are too small compared
to the bars representing the other coding techniques. Concerning the other
coding schemes, we observe that Jittered Periodic and Spike Select methods
are more accurate and show equivalent records to the analog CNNs. For ex-
ample, applying the "Conv-1C" CNN on GTSRB using Jittered Periodic and
Spike Select results, respectively, in 96.68% and 96.56% accuracy which are
roughly similar to the analog’s accuracy that performs 96.80%. All the net-
works perform almost similar scores on both MNIST and GTSRB datasets
using Spike Select and Jittered Periodic coding schemes. Therefore, in the
following part, we will compare these two methods in terms of spiking ac-
tivity and prediction accuracy.

Rate-based coding versus hybrid coding

In this section, we compare rate-based coding to a hybrid coding, represented
by Spike Select and Jittered Periodic. This experiment is done because results
obtained so far show that these methods are the ones that lead to the high-
est accuracy on both datasets. In this experiment, we have applied the net-
works LeNet-1C, LeNet-3C and FcNet2 to MNIST and GTSRB datasets and
then recorded the obtained results in terms of accuracy and spiking activity.
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FIGURE 4.12: Spike generation versus accuracy - MNIST & GT-
SRB.

First in table 4.10, we show the spiking distribution over the layers of a fully-
connected based SNN FcNet2 and its accuracy on MNIST dataset using the
two coding schemes. With Spike Select coding scheme, FcNet2 reaches an
accuracy of 97.87% on MNIST data, which is very close to the Jittered Peri-
odic one (98.24%). However, the amount of spikes generated over the deeper
layers of this SNN, from FC1 to Output, is much smaller using Spike Select
than Jittered Periodic.

TABLE 4.10: Neural coding methods versus spiking data distri-
bution on MNIST. Network : "FcNet2 : 784-3x(300)-10".

Layer
Spikes per pattern

Jittered Periodic Spike Select
Input 724 1547
FC1 173 74,5
FC2 103,5 35
FC3 39 4
Output 4 1
Total 1043.5 1661.5

Accuracy % 98.24 97.87
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TABLE 4.11: Spike Select and Jittered Periodic versus total spik-
ing data – MNIST.

Network model Conv29 ConvPool LeNet ConvFc
Jittered Periodic 15153 8367 5359 1097
Spike Select 12281 1397 1698 380

TABLE 4.12: Spike Select and Jittered Periodic versus total spik-
ing data – GTSRB.

Network model Conv-3D Conv-1D LeNet-3D LeNet-1D
Jittered Periodic 102089 98036 35027 27066
Spike Select 39526 34975 18075 11563

Tables 4.11 and 4.12 show the average total number of spikes generated for
processing a single pattern of four different spiking CNNs when applied to
GTSRB dataset. Using the data on these tables, we have plotted histograms,
shown in figure 4.13, that represent this average total number of spikes with
both Spike Select and Jittered Periodic coding schemes. The data on these
illustrations confirm that Spike Select, represented with red bars, is more ef-
ficient than Jittered Periodic by generating less spikes for all the 4 topolo-
gies. For example with GTSRB dataset (GTSRB on figure 4.13), Spike Select
is generating around 50% less spikes than Jittered Periodic for all the spiking
ConvNets while keeping approximately similar recognition rates.

TABLE 4.13: Spike Select and Jittered Periodic versus spiking
data distribution – GTSRB.

Layer
LeNet-1C LeNet-3C

Jittered Periodic Spike Select Jittered Period Spike Select
Input 3295 3110 7692 6698
Conv1 12581 3028 15048 3553
Pool1 4160 1046 4956 1207
Conv2 4585 1463 4799 1542
Pool2 2209 723 2346 762
Conv3 115 37 91 29

Fc1 77 23 67 20
Output 44 8 28 5

Accuracy % 95.76 95.72 96.19 96.18
Total 27066 9438 35027 13816

In order to confirm the efficiency of spike select, we have performed sta-
tistical measurements to show the distribution of the spiking data over the
different layers of the network. To do so, we have applied two CNNs on
the GTSRB dataset. The first network is a mono-channel CNN (LeNet-1C)
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FIGURE 4.13: Spike Select and Jittered Periodic versus total
spiking data.

that is processing the "gray-level" version of GTSRB and the other is a "three-
channel" CNN addressing the colored (RGB) version of GTSRB. This statisti-
cal results, presented in table 4.13, are then used to plot two column charts,
shown in figure 4.14, showing the amount of spikes in each layer of the
two LeNet CNNs. These representations confirm that Spike Select is more
promising than Jittered Periodic, where fewer spikes are generated on all the
layers of both LeNet networks. Moreover, we observe a regulation of spiking
distribution over the CNN’s layers when applying Spike Select, by reducing
the huge amount of spikes present in the first layers present with Jittered Pe-
riodic. In addition, we notice a non uniform spikes distribution with Jittered
Periodic whereas when using Spike Select the number of spikes decreases
continuously from one layer to another.
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4.6 Discussions

The objective of neural coding exploration is to find the most efficient coding
schemes that minimize the spiking activity while performing the state-of-
the-art accuracy on known benchmarks. Therefore, we have first analyzed
rate-based coding that is the most used coding technique with SNNs to per-
form classification and which is rising to the state-of-the-art accuracy. Thus,
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we have set this coding as the reference in terms of accuracy. Since the ob-
jective is reducing spiking activity then naturally the best approach would
be the use of time-based coding which is known to represent information
with much fewer spikes defined by a precise timing. However, this coding
approach rises lower accuracy than the state of the art one because of this
spike’s amount reduction. Therefore, we have set time-coding as the ref-
erence in terms of spiking activity but not accuracy. Afterwards, we have
used these as references and explored other different coding techniques: Jit-
tered Periodic, Spike Select, First Spike and Single Burst. The results have
shown that Single Burst and First Spike methods are not adequate to spiking
CNNs because they present important accuracy losses compared to analog
CNNs. Therefore, we have selected Spike Select and Jittered Periodic as po-
tential solutions for spike generation technique with SNNs. In this way, we
have compared their accuracy records and spiking activities on two data-sets
(MNIST and GTSRB) using different topologies. In terms of recognition rate,
both methods perform results equivalent to analog CNNs scores. Whereas,
in terms of spiking activity, with Spike Select method we are able to regu-
late the spiking distribution over the network to get a more sparse spiking
data activity, where the number of spikes decreases when going deeper into
the network. Moreover, the overall amount of spikes is drastically reduced
using this method. Therefore, these findings make Spike Select a promis-
ing solution for embedded AI-application when dealing with spiking CNNs.
In addition, combining this coding scheme with the hybrid architecture (cf.
chapter 3) would offer a better latency-resources trade-off.

From this perspective, figure 4.15 shows how the use of the spike select
method would be adequate to the hybrid architecture, which involves both
parallel and multiplexed computings. Indeed, as mentioned in chapter 3,
the first layer is implemented in a massively parallel fashion and with multi-
plexed hardware for the remaining layers. This structure fits well the spikes
distribution when using Spike Select method. Because, the parallel part of
the architecture will process for the first layers where most of the spikes are
generated. In the remaining layers, there are only a few spikes which will be
processed by the multiplexed part of the architecture.
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FIGURE 4.15: Spike Select and Hybrid Architecture for embed-
ded hardware classification.

4.7 Conclusion

In this chapter, we have explored different neural coding schemes for spike
generation with SNNs. The objective is to select an efficient neural coding
technique that is adequate with low-power embedded systems. The cod-
ing scheme must perform, in classification tasks, the state-of-the-art accuracy
while minimizing the amount of spiking events. To this end, we have set
rate-based coding and temporal-based coding as references. First, rate-based
coding is the most commonly used coding scheme with SNNs that ensures
state-of-the-art accuracy performances but at the same time it induces the
use of a huge amount of spiking data. Second, temporal-based coding is
set as a reference for spiking activity because it is characterized by the use
of a smaller amount of events to encode data. Second, we set time-based
as the second for spiking activity for energy efficiency even though, it does
not achieve the state-of-the-art accuracy level. These two references are thus
used to explore other models that aim at meeting both activity and precision
requirements.



4.7. Conclusion 85

In this context, we have first explored the rate-based coding methods: Pois-
sonian, Periodic and Jittered Periodic. These coding techniques resulted in
similar performances to those obtained by analog neural networks in terms
of recognition rate, where they reach up to more than 98% on MNIST and
97% on GTSRB for some spiking CNN topologies. Afterwards, we evaluated
other forms of coding schemes ranging from rate-based to temporal-based
coding paradigms. This study shows that the most suitable neural coding
paradigm was the novel Spike Select coding, as it ensures high prediction
accuracy and sparse spiking activity in the network. Spiking data sparsity
implies a lower number of spikes per pattern, resulting in a shorter pro-
cessing and a lower energy consumption, which is suitable for embedded
system applications. Indeed, the use of this method drastically reduces the
network’s activity. Moreover, we noticed a regulation of the spiking data
distribution, where most spikes are generated in the input layer and few
of them propagate in the remaining ones. This spiking distribution would
benefit from the hybrid architecture that has a fully-parallel input layer and
multiplexed deeper layers; this architecture will be described in more detail
in the next chapter. Therefore, from this chapter we conclude that spike gen-
eration methods influence the global activity of the SNN and may reduce the
energy consumption of the neuromorphic chip. We have seen also that SNNs
are characterized by a very sparse data over its layers and in deep networks
most of the spikes are present in the first layers but only few are present in
the deeper ones. Therefore, two architectural aspects would benefit from this
sparsity and which are: first, the event-based computing which will allow
the processing of only spiking events to reduce the processing time; second,
adaptation of parallelism and multiplexing of computations within the archi-
tecture to the spiking data distribution like it is done with the hybrid archi-
tecture.

In the next chapter, we discuss the register transfer level design of SNNs
on FPGA using various event-based architectural models adopting different
levels of parallel and multiplexing computing.
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Chapter 5

RTL exploration of neuromorphic
architectures

5.1 Introduction

As mentioned earlier, there are a lot of applications requiring embedded im-
plementation of neural networks such as smart devices or autonomous vehi-
cles. Their classical implementation on CPU/GPU based systems is still too
expensive for an embedded context, because their computational model is
inadequate to the hardware target. To overcome this limitation, it is neces-
sary to design dedicated neuromorphic accelerators that fit the parallel and
distributed computation paradigm of neural networks. Moreover, an ade-
quate neural model would be SNNs that, in addition to their greater ease of
integration onto neuromorphic hardware, naturally take advantage of event-
driven computation. This paradigm assumes that only events are processed,
reducing the global chip activity to the units triggered by the flow of events.
Therefore in this chapter, we explore different architectural models in a Reg-
ister Transfer Level, i.e., a hardware implementation on FPGA, for designing
neuromorphic accelerators for SNNs inference. Thus, the objective of this
chapter is the exploration of different architectural models for implement-
ing SNNs. To this end, we consider only fully-connected deep SNNs and
assume that similar architectural models can be adapted to spiking CNNs.
Hence, in the next chapter we will use the results obtained in this chapter to
efficiently implement the spiking CNNs. Indeed, an RTL design of such ar-
chitectures rises to accurate estimation results serving as a quantification that
can be used to discriminate different architectural models. In this exploration
we first implement simple neural models rising from machine-learning and
neuroscience and second study and implement deep SNNs with different
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architectural models. The different hardware models are: Fully-Parallel Ar-
chitecture, Time-Multiplexed Architecture and Hybrid Architecture. The ar-
chitectural models are the result of the previous steps of the design space
exploration framework.

5.2 Preliminary SNN to ANN confrontation

In this section, we present a preliminary comparative study that is being
conducted to compare SNNs to ANNs. This study comprises a hardware
implementation of two simple neural networks stemming from two fami-
lies: an ANN from machine learning and an SNN from neuroscience. The
ANN and SNN models are feedforward neural networks composed of one
hidden layer of 300 neurons, an input layer of 784 neurons and an output
layer of 10 neurons. In chapter 4, these models have been already applied
to MNIST dataset, where the ANN accuracy was 97.85% and the SNN ac-
curacy was 97.74% (FcNet1 on the table 4.3). For this preliminary compar-
ative study, we have used a very simple topology in order to facilitate the
implementation. The goal of this experiment is to provide a preliminary es-
timation of the potential hardware cost gain that SNNs could have, which
will drive further implementations of more complex topologies. Both ANN
and SNN have been implemented using a similar structure but with different
neuron models. The integrate-and-fire neuron model is used with the SNN
and the perceptron is used with the ANN, these neuron models are described
in chapter 2. The ANN and SNN architectures have the structure that is il-
lustrated in figure 5.1, it is composed of three parts representing the different
layers of the network topology. The first part represents the input layer and
is temporally multiplexed using a single neuron that is simply buffering in-
put data (spikes for the SNNs and pixels for the ANN) to the neurons of
the hidden layer. The second part is dedicated to perform the processing of
the hidden layer neurons, where each neuron is represented by a hardware
Neuroni module. Similarly, the third part is composed of hardware Neuronj
units that represent the network’s output layer. Two counters are used to
indicate the address of the input spike/activity for the hardware neurons,
as shown in figure 5.1. The address given by one of these counters is used
by the hardware neurons to retrieve the synaptic weight corresponding to
the input spike/activity. Note that spikes are communicated between SNN
neurons, while activities are communicated between ANN neurons. Out-
put spikes/activities of the hidden layer neurons are processed, one after the
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other, by the output neurons. This is done by using a multiplexer that selects
the spikes/activities, one after the other, according to the address given by
the output counter.
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FIGURE 5.1: Input-time-multiplexed SNN’s architecture.

Comparison results

These architectures are then implemented both on FPGA and ASIC using
VHDL hardware description language. For the FPGA implementation, we
used Altera FPGA Cyclone V: 5CGXFC9E7F35C8 device that gives a good
flexibility in terms of resources (ALMs, memory bits and DSP blocks). For the
ASIC implementation, we targeted a CMOS 65nm technology to implement
our neural networks and we compiled our designs using Synopsys Design
Compiler.

The obtained comparison results on FPGA and ASIC in terms of resource
occupation and power consumption combined with the accuracy of both the
ANN and the SNN are summarized in table 5.1.

In terms of accuracy, as it has been shown in chapter 4, the SNN achieves
practically the same performance as the ANN. In terms of hardware cost,
first the FPGA implementation shows important gains for the SNN in terms
of logic utilization (43.46%) due to the extra ALMs used for the activation
function in the MLP, total pins (87.62%) due to the information coding and
DSP blocks (100.00%) due to the multipliers that are used for the MLP only,
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TABLE 5.1: SNN vs. ANN comparison results on the topology :
784-300-10. The ASIC results correspond to a CMOS 65nm tech-
nology obtained using Synopsys Design Compiler. The FPGA

device is an Intel Cyclone V (5CGXFC9E7F35C8).

Neural model MLP SNN SNN Gain (%)
Accuracy 97.85 97.74 -0.11

Events/Synapse/Pattern 1 0.26 73.20

FPGA

Logic (ALMs) 61809 34950 43.46
# registers 6275 6801 -8.38
Max # neurons 342 1007 194.45
DSP blocks 310 0 100
Dynamic power (mW) 12.03 4.95 58.86
Total power (mW) 538.78 530.21 1.60

ASIC

Total cell area (mm ) 1.88 0.86 53.98
Cell internal power (mW) 0.75 0.40 45.91
Net switching power (mW) 0.14 0.026 81.62
Dynamic power (mW) 0.88 0.42 51.63
Cell leakage power (mW) 51.22 28.04 45.26
Total power (mW) 52.11 28.46 45.37

with a small loss in the total registers (-08.40%), due to the stored spike sig-
nal in the SNN. In terms of power consumption, the SNN is more efficient
in dynamic power (58.86%), even if this gain is irrelevant in the total con-
sumption of the FPGA device (01.60%). Second, the ASIC implementation
shows a clear advantage for the SNN, as it is more efficient in terms of num-
ber of ports (87.62%) and total cell area (53.98%). These results are coherent
since they reflect the SNN gains in FPGA resources. In terms of power con-
sumption, the SNN is more efficient in total dynamic power (51.63%), that
is approximately the same result found in FPGA. However, the SNN is also
more efficient in cell leakage power (45.26%) as it is proportional to the used
area, and therefore more efficient in terms of total power (45,37%).

TABLE 5.2: Area gain compared to the architecture in Du et al.,
2015 study. The network topology is 784-300-10.

Network
ANN SNN

This work Du et al., 2015 This work Du et al., 2015
Learning Back-propagation ANN-SNN conversion STDP

Area (mm2) 01.89 79.63 00.87 38.89
Area gain 97.62% 97.76%

Now, the obtained results are compared to those of networks in the compara-
tive study conducted in (Du et al., 2015). Approximately the area gain of 50%
is obtained using similar precision. However, there is a very large difference
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in terms of SNN energy gain. In (Du et al., 2015), the ANN has an energy
gain of 96.38%. In this study, the SNN’s total energy gain is 45.37%, which
fits the theoretical study on the computational complexity of the two models,
where the spiking neuron performs a simpler computation based on spiking
events. Therefore, it is not the spike-based coding that penalizes the SNN in
the study conducted by Du et al., but the fact that they have implemented
an online STDP learning. When implementing the ANN and the SNN on the
same target technology (CMOS 65nm) with Synopsys Design Compiler, we
have an area gain of about 97% compared to (Du et al., 2015), as shown in
table 5.2.

5.3 Complete hardware architecture overview

The designed architectures in this thesis are to infer SNNs are implemented
in a modular structure based on a first-in first-out memory interface and an
event-based communication protocol. These architectures are modular, scal-
able and adaptable to the user-defined application because there are as many
hardware modules as the defined SNN has layers. The architecture is com-
posed of neural processing units, a spike generation module and class select
module. We have designed three types of NPUs: convolutional, pooling and
fully-connected. In this chapter, only fully-connected layers are used, the
pooling and convolutional layers will be used in the next chapter.

Within these architectures, each layer is represented by a mean of one of
these processing units depending on its type (convolutional, pooling or fully-
connected), refer to figure 5.2. Indeed, each NPU is processing spiking events
in a sequential fashion and whenever it has an output event it is stored in its
FiFo memory for the next layer’s NPU. Doing so, many computations could
be held concurrently with this event-based architecture. This pipeline com-
putational aspect, enabled by the use of the event-based communication pro-
tocol, when combined with the Terminate Delta classification policy acceler-
ates the computations and reduces the processing time. Due to the sparsity
of the spiking data in SNNs, the Terminate Delta module enacts the classifi-
cation by only receiving a few spiking events. Therefore, ensuring the path
of spikes from input to output of the SNN would benefit from the tempo-
ral nature of spiking data and activate the terminate-delta earlier. Indeed, if
enough spikes reach the output layer before receiving the whole input stim-
ulus, the classification module can designate the winner class and stop the
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processing in the architecture. In this case, which is so often with SNNs, the
processing time is drastically reduced because fewer events are processed be-
fore acting the classification. In this context and in order to benefit from this
temporal and sparsity aspect of SNNs, we have implemented this hardware
architecture using one processing module per layer to ensure the path of the
important spikes (first spikes) from input to output. In the remaining parts of
the chapter, the different modules of the architecture are described and then
some hardware cost quantification results are presented and discussed.

Classification 
module

Output layer2nd layer1st layer

Terminate 
DeltaFcPU

Spikes 
generation

Spike 
Gen PoolPUConvPUInput 

Pixel

stop processing

Output 
Class

FIGURE 5.2: Schematic diagram of proposed hardware archi-
tectures.

5.4 Event-based communication protocol

As mentioned previously, the implemented architectures are implemented in
an event-based structure. This is possible by the use of FiFo memories that
handle the flow of the spiking data through the different modules constitut-
ing the neural system. The spiking data flowing through this communication
protocol are events that indicate the location of neurons that emit spikes in
the network. Due to the feed-forward characteristic of the SNNs, an event
represents only the location of its emitting neuron inside the layer without
indicating the source and destination layers. The events are not assigned a
timestamp because of three reasons: first, since we are using FiFo modules,
the arriving order of spikes from one layer is respected; second, since each
layer is represented by a processing unit that uses an output FiFo module
then its output spikes are ordered, and since the layers are connected to each
other in a feedforward manner, then the global spikes of the hole network are
ordered; finally, what matters with Integrate-and-Fire neurons is the arriving
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order of spikes but not their exact time (similarly as in (Thorpe and Gautrais,
1998)).

Input / Output ports description

Actually, the different components of the system representing the spike gen-
eration module, the classification module and the different SCNN layer pro-
cessing unit modules have the same input and output interfaces that are
based on FiFo memory I/O ports. A typical processing unit module of the
SCNN system is illustrated in figure 5.3, it has three input ports and three
outputs.

— Previous layer ports:

1. i_Event : this is the port that is used to communicate the addresses
of the previous layer’s neurons that emitted spiking events. The
size of this ’i_Event’ input port depends on the output Feature
Map (FM) (or number of neurons for FC layers) size of the pre-
vious layer.

2. o_Rd_Event : this output signal indicates to the previous layer an
event has been read from its FiFo and therefore it has to remove it
from its memory.

3. i_Empty : this input indicates the presence of input spiking events
coming from the previous layer. This means that if this signal is
true (equals to ’1’), the previous layer’s FiFo is empty and thus
there is no input event for processing.

— Next layer ports:

1. o_Event : this output port is used to communicate the addresses of
the current layer’s neurons that emitted spiking events. The size
of this port depends on the output Feature Map (FM) (or number
of neurons for FC layers) size of the present layer.

2. i_Rd_Event : this input port is used by the next layer to inform the
current layer that it has read an event from the FiFo and therefore
it has to be removed.

3. o_Empty : this indicates the presence of output spikes in the cur-
rent layer’s FiFo memory.

Note that, in addition to these I/O ports, a clock and reset inputs are
used.
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FIGURE 5.3: FiFo-based communication system used to link the
architecture layers.

Communication protocol description

After defining the I/O ports of the architecture modules, let’s describe the
event-based communication protocol used to propagate spiking events be-
tween the different units from input to output of the SNN.

First, the architecture component checks the presence of input spiking events
for processing by looking at ’Empty’ input. Indeed, this empty input is high
when there is no event to process in the previous layer’s FiFo. Therefore, in
this case (Empty=’0’), the component does nothing and stays in an idle state.
In the other case, empty is low (Empty=’1’), the component processes the
event by reading the input ’Event’. After reading the event, the output ’Rd-
Event’ is set to high to indicate to the previous layer that the current event
is read. Second, when the component has an output event that is saved in
its FiFo it sets the output ’Empty’ to low and the output ’Event’ points to the
first event in the FiFo. When the next layer reads an event from the FiFo,
it sets the input ’Rd_Event’. In this case (Rd_Event = ’1’), the first event in
the FiFo is removed and the component’s ’Empty’ and ’Event’ outputs are
updated. Note that, the ’Full’ signal of the FiFo is internal to the component
and is influencing the readings and writings of input/output events, refer to
section 6.2.1.

We have used this communication protocol for its ease of integration in hard-
ware, to easily make the architecture modular, scalable and thus generic (able
to change the number of layers and neurons easily) and finally to take advan-
tage of the event-driven property of spiking neural networks.



5.5. Deep SNNs hardware implementation 95

5.5 Deep SNNs hardware implementation

In this section, we describe the implemented SNN architectural models on
FPGA for exploration purpose and which are: Fully-Parallel Architecture
(FPA), Time-Multiplexed Architecture (TMA), and the Hybrid Architecture
(HA). We have selected those architectural paradigms according to NAXT
results, which shows how those three architectures are adequate to evalu-
ate the trade-off between power consumption, resource intensiveness and
latency. To do so, we first describe the elementary modules that are used in
the different designs, then we present the complete architectures. As men-
tioned in chapter 3, we use N2D2 to extract the different parameters of SNNs
then move to the hardware implementation of the architectures. This phase
is realized with the Intel R©Quartus R© Prime 18.1.0 Lite edition for FPGA pro-
totyping, and ModelSim R© for the validation with simulation of the design
behavior.

5.5.1 Elementary hardware modules

Here we present the elementary components used to construct the different
SNN’s architectures. The modules are: a counter used for synchronization,
a FiFo memory to store spiking events, a ROM to save the synaptic weight
parameters, a spike generation module to generate spikes and a classification
module.

Counter

The counter modules are used for synchronizing the communication between
neurons of different layers. On one hand, they are ordering the start and
end of computations by the neurons and indicate the synaptic connection ad-
dresses corresponding to input spikes (in TMA architectures). On the other
hand, they are ensuring a coherent flow of spikes in the network to synchro-
nize the different layers, for more details refer to their usage in FPA architec-
ture (figure 5.11).

First-in First-out memory

The First-in First-out (FiFo) memory modules are used in the different hard-
ware architectures to serve as buffers between the different processing mod-
ules representing layers or neurons. These FiFos are used to ensure coherent
data flow in the SNN in an event-based processing way, where the neurons
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output spikes are interpreted as spiking events and, according to their ar-
rival dates, they are sorted in an ascending order. Doing so, the spikes are
processed by the different neurons in the correct order. Figure 5.4 illustrates
a schematic diagram representation of the designed module showing its I/O
ports. Indeed, the input and output data correspond to neurons addresses
(origin of the received spikes). Due to the huge number of weights, the spikes
are stored in this event-based format for facilitating the access of the related
weights in the next layer.

Read Only Memory

For the neuromorphic system proper operation, memory blocks are needed.
In FPGA devices, there different memory types: ROM, RAM, latches or reg-
isters. The ROM are used to store the SNN logical neurons’ synaptic weights,
where one ROM block is used for each layer, as concluded in chapter 3.
Therefore, different ROMs of different sizes are used which depend on the
amount of emulated synaptic weights. The ROM block I/O ports are illus-
trated in figure 5.4.
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FIGURE 5.4: I/O ports of FiFo and ROM memory blocks.

Spike generation

The input data received by the SNN architecture, in case of non-event-based
sensors, is in analog domain. Therefore, a spike generator must be used to
transform these analog data to spiking domain before its processing by the
SNN architecture. Indeed, some of the different neural coding techniques
presented in chapter 4 are implemented through the ’Spike Gen’ hardware
module. Till now, the coding method implemented through this module was
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Jittered Periodic. To get the other coding methods, some adjustments are
made:

— Periodic: use the periods as the emission times of the spikes;
— First spike: generate only the first spike per pixel;
— Spike select: keep the same spikes generation methodology, modify

the first layer’s threshold and reduce the Terminate Delta value.

The spikes generation module is designed to reduce computation cost as
much as possible: the input values v being 8-bit coded (to pixel’s intensity
ranging from 0 to 255) and the values of fmax and fmin being constant, the fre-
quency encoding function can be implemented as a simple Look-Up-Table of
256 cases. This procedure helps save logic and energy to reduce the cost of the
transcoding module. Within this module a counter is used to represent the
time in hardware and a FiFo module is used to memorize the output spikes
as events. Spike emission times ’tspike’ are computed from the input pixels
and whenever a spike emission time ’tspike’ is equal to the time displayed by
the counter, an event holding the address of the corresponding pixel is saved
in the output FiFo. The SNN accelerator reads the input spikes through this
FiFo module.

SNN class selection modules

During inference, the winning class is selected from one of the output neu-
rons using either Terminate Delta or Max Terminat. In the Terminate Delta
procedure, the classification is done when a neuron has spiked delta times
more than all the other neurons. On other hand, in Max Terminate, the clas-
sification process is enacted whenever an output neuron has fired max-value
spikes.

These classification modules are implemented in hardware using the struc-
tures shown in figure 5.5. The input of the module is a vector of activa-
tions containing the state of all the output neurons of the SNN. These acti-
vations are used to update the number of spiking times of the neurons and
which is then used to verify the classification. First, within the Terminate
Delta two maximum operation blocks are used to detect the maximum value
of the array holding this number of firings, which are then used to deter-
mine the winner class and to stops the processing. The first maximum block,
namely Max1, detects the most spiking neuron having the highest number
of spikes maximum, and the second, namely Max2, detects the second most
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spiking neuron. These Max blocks output also the number of spikes emit-
ted by both the neurons. Afterwards, a difference between these numbers of
spikes is computed and compared to the delta-value. Finally, if the difference
is greater than this delta-value, the class given by Max1 Module is enacted
as the winner. Otherwise, the same procedure is repeated until a class is se-
lected as a winner, more detailed description is given in chapter 4.
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FIGURE 5.5: Schematic diagram of the classification modules.

On the other hand, the Max Terminate module integrates only one maxi-
mum operation block that returns the address of the output neuron with the
highest number of spikes. Then its activity is compared to a user-defined
max-value. If the maximum spiking activity is greater than this max-value,
the corresponding output neuron is enacted as the winner class, and the pro-
cessing is stopped.

Integrate-and-Fire neuron

The IF-neuron hardware structure is illustrated in the simplified schematic
diagram presented in figure 5.6. In contrast to the perceptron, it does not
have a multiplier and thus results in cheaper hardware with only elementary
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components. The module has two inputs: the input spike and its correspond-
ing synaptic weight; and one output port for output events.

When the neuron receives an input spike, its corresponding weight is ac-
cumulated with the last internal potential update stored in a register. After-
wards, this accumulated potential is compared to a potential threshold to fire
whenever it is exceeded. In a firing case, the internal potential is decreased
by the threshold, otherwise, the internal potential is not modified.
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FIGURE 5.6: IF neuron module’s internal structure.

Neural Processing Unit module

The Neural Processing Unit (NPU) module is used to emulate time-multiplexed
layers. A single IF Neuron module will operate successively for all neurons
in the layer. Moreover, the NPU includes a counter module, a FiFo Memory
module and an NPU controller. These modules are used to build an NPU
that processes coherently spiking event, refer to figure 5.7.

FIGURE 5.7: Neural Processing Unit simplified block diagram.

Figure 5.8 is a flow chart of the steps for operating the Neural Processing
Unit module. The process begins by a first step of loading an input event,
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empty input signal and the stop processing signal. Whenever the Termi-
nate Delta module activates the stop processing signal, the process is ended.
Otherwise, the NPU checks the presence of input events by verifying the
state of the empty input ’i_Empty’ signal. Then, depending on the layer
type (i.e. a fully-connected layer or a convolutional layer), the addresses of
the logical neurons are forwarded to the hardware neuron to retrieve inter-
nal activities and weights to perform the integrate-and-fire rule. Note that
the ’map()’ function present on this flow chart will be described in the next
chapter (6.2.1). The address of the computed logical neuron is saved in the
FiFo buffer if its output spike is high (Spike=1). This process, controlled by
a counter, is repeated for all the logical neurons of the layer. Once all these
neurons are processed, new inputs are loaded to compute for the next input
spiking event.

Neural Core module

The Neural Core module, shown in figure 5.9, is a computation unit which
emulates two layers (an input layer and a first hidden layer). The input layer
comprises an Input Neuron module which forwards ’input events’, i.e. a
flow of spikes, to downstream neuron circuits which are implemented on a
parallel structure allowing to process in parallel the spiking events of input
layer to filter the number of spikes and generate a reduced number of spikes.
Each logical neuron is represented by a dedicated hardware circuit ’Neuron
1 to Neuron N’.

A reduced flow of spikes output from the first hidden layer is input to a
Neural-Core Control. The Neural-Core Control is composed of a ’1:N’ counter,
a multiplexer (MUX) and an output First-in First-out (FiFo) buffer. One can
note that ’N’ is the number of neuron circuits of the FP layer. When the N
neuron circuits of the FP layer have processed in parallel an input spiking
event (i.e. a spike from the input flow of spikes), their output spikes are
connected to the write-enable of the output FiFo buffer sequentially through
the multiplexer MUX. The MUX block is configured to select the output
spikes one after the other by using their addresses (@Neuron) given by the
1:N counter. These addresses are also connected to the input data of the
FiFo module. In the case the output spike is high (spike=1), the output
of the counter (i.e. the neuron’s address) is written into the output buffer
(FiFo). Once the counter ends the forward of all the fully-parallel layer out-
put spikes, it resets the count and repeats the same procedure for the next
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FIGURE 5.8: Flow chart of the NPU operating steps.

spikes. Next the output of the Neural Core - ’Output Event’- becomes the
input of the Time-Multiplexed part of the hybrid architecture.

Figure 5.10 is a flow chart of the steps for operating a Neural Core module.
The process begins by a first step of reading the input spike address (@In)
and a ’stop_network’ signal provided by the Terminate Delta module. On
one hand, the process allows verifying if the ’stop_network’ signal is equal
to ’1’ to end the process. On the other hand, the input spike address ’@In’
is forwarded to the neuron circuits of the first hidden layer to perform the
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integrate-and-fire rule. Each of the neurons is computed by using the in-
put address @In being to retrieve the corresponding weight that is accumu-
lated to its internal potential ’Si’. Each accumulated potential is compared
to a threshold ’TH’ in a parallel way. When this potential is higher than the
threshold, a spike is emitted, i.e. Spike=1, and the potential is updated by re-
ducing from it the threshold ’TH’. These spikes are then used to write output
spike addresses as spiking events in the FiFo. A multiplexer controlled by a
counter is used to sequentially forward the spikes one-by-one. If a spike is
emitted, the address of the neuron that has emitted it (spiking event), is saved
in the FiFo buffer. Once the counter has forwarded all the spikes, ’count =
N-1’ which is verified, the count is reset (count=0), and then the process is
repeated by reading new inputs (@In and stop network).

5.5.2 Fully-Parallel Architecture

This sub-section describes the FPA architecture. This architecture has been
designed alongside TMA architecture for evaluating the trade-off between
resource, latency and intensiveness at a lower level than using NAXT Simu-
lation tool.
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FIGURE 5.10: Flow chart of the Neural Core operating steps.

In the FPA architecture, all the SNN logical neurons are implemented in hard-
ware. That is, the IF neuron hardware module is instantiated as many times
as the SNN has logical neurons. Figure 5.11 shows the internal structure and
components of the FPA architecture. It is composed of counter modules, with
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one per layer to synchronize the overall SNN’s computations. In this archi-
tecture, each layer waits until the previous layer neurons finished all their
processing to start: all the spikes are processed layer after layer. The Input
Neuron forwards the data to the first hidden layer, spike by spike, where a
counter is managing their addresses. At each cycle, the IF neurons integrate
the input spike and buffer their output spikes. When all the input spiking
events are processed, the hidden counter triggers an end signal to the next
layer. Note that all the hidden layers do the similar process on their incoming
spikes, layer by layer. The last hidden layer’s counter enacts the completion
of the process to the output layer. Afterwards, the output layer’s counter en-
ables the output neurons to process their incoming spikes. Finally, the output
layer spikes are processed by the classification module to check the ending
of the computations and selecting the winner class.

This FPA architecture should result in fast processing but high logic resource
occupation. In the following part, we present the second architecture which
takes an opposite architectural choice : Time-Multiplexed Architecture.
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FIGURE 5.11: FPA simplified schematic diagram.

5.5.3 Time-Multiplexed Architecture

The TMA architecture is designed to save hardware resources, in contrast
with FPA architecture. In this implementation, the main computation unit is
the NPU module described in section 5.5.1. Contrary to FPA, the number of
hardware neurons is smaller than the number of logical neurons: each layer
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is represented by one single NPU, instead of one NPU per neuron. The com-
plete hardware architecture consists of NPU modules, interconnected with
each other as shown in figure 5.12. As in FPA, the input layer is represented
by a dedicated Input Neuron module, which forwards input spikes to the
first hidden layer. Each one of the other layers are represented by one sin-
gle NPU, which successively computes the layer’s logical neurons in a time-
multiplexed manner. These NPUs have their own ROM memory containing
their parameters. This architecture should drastically diminish the hardware
occupation, but increase the system latency as a counterpart. In other words,
TMA and FPA represent the two extremes of the latency versus hardware
intensiveness trade-off. In the next subsection, we will describe a middle
ground between those two extremes, taking advantages from both to fit the
reality of spiking activity in an SNN : the novel Hybrid Architecture (HA).
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FIGURE 5.12: TMA simplified schematic diagram.

5.5.4 Hybrid Architecture

In chapter 4, it was shown that most of the spiking activity in the network is
located in the first layer. Therefore, the first hidden layer is the most solicited
during processing. To take advantage of this aspect, the Hybrid Architecture
(HA) is designed, mixing both TMA and FPA. Moreover, this novel hybrid
architecture is appropriated for the use of the Spike Select method that is
described in chapter 4, in which spiking activity is concentrated in the first
layers. This implementation derives from the findings and observations we
made thanks to the funnel-like Design Space Exploration framework. As
shown in figure 5.13, this architecture is a mixture of FPA and TMA, where:
first, the initial two layers are implemented using a Neural Core module as



106 Chapter 5. RTL exploration of neuromorphic architectures

in FPA; second, the remaining layers are time-multiplexed using one NPU
per layer, as in TMA.
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FIGURE 5.13: HA simplified schematic diagram.

Advantageously, as the number of spikes is drastically reduced by the Neural
Core module, there is no such need of parallel computing and the plurality
of NPU modules are implemented as a time-multiplexed structure to allow
a sequential processing of the spikes. There is as much as computing cycles
as the number of logical neurons implemented in one NPU. The output of
the last NPU becomes the input of the classification module represented by
the Terminate Delta, which allows determining if the classification process
is ended or not, by determining if a sufficient number of spikes has been
received to classify the input image. If not, the process is iterated, or the
process stops ’Stop Processing’.

Figure 5.14 is a flow chart of the general steps for operating the hybrid archi-
tecture. The process begins by a first step of loading or receiving input data.
Next, the process allows the spike generator to generate a flow of spikes from
the analog input data. On a next step, the process allows the Neural Core
module to process the flow of spikes in a fully-parallel processing to reduce
the number of output spikes. On the next steps, the process allows each out-
put event to be sequentially processed by the plurality of Neural Processing
Units. Afterwards, the process allows the output of the last NPU to be pro-
cessed by the Terminate Delta or Classification module to determine a winner
class. During this last step, if the Terminate Delta determines a winner class,
the process allows the activation of the ’stop_network’ signal to stop the pro-
cess. Note that, like in the other architectures, all the steps of this hybrid ar-
chitecture process work in a pipelined way to optimally use the components
of the architecture over time. For example, while loading the next input data,
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the spike generator translates progressively the pixels of a previously gen-
erated flow of spikes. At the same time, the neural core is processing these
input spikes, the plurality of NPUs process other recent data, and the Ter-
minate Delta verifies the classification of current data received from the last
NPU.

Note that the process on this figure can be used in one hand to describe the
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TMA operation by simply replacing the neural core coming after the spike
generator by an NPU. On the other hand, it can describe the flow of the FPA
architecture by using instead of the NPUs neural cores to process data in
parallel (here, the neural cores would not have the input neuron).

5.6 Experiment and results

In the design of embedded neuromorphic architectures, it is important to
consider the resources occupation in order to estimate the required silicon
area. In this section, we quantify the hardware cost estimations of the dif-
ferent architectural models presented within this chapter. The architectures
are described using generic VHDL code, which is compatible with any fully-
connected multi-layer SNN topology. The VHDL codes describing the hard-
ware models are configurable by the parameters of the SNNs that are ris-
ing from N2D2 or any other neural networks building framework. Since
the objective of this chapter is exploring architectural models to implement
SNNs for embedded AI applications, we have used FPGA as the hardware
target and implemented SNNs with different topologies but based only fully-
connected layers. As mentioned in chapter 2, FPGA devices are reconfig-
urable platforms that fit well to our exploration purposes. Therefore, we
have synthesised the SNNs using the different architectural models using the
Quartus R©Prime Lite 18.10 edition tool and targeting the "5CGXFC7C7F23C8"
Cyclone R©V FPGA board.

In the following, we present the different hardware cost results that we have
obtained within this RTL architectural exploration of deep SNNs hardware
implementation. These results are issued from the synthesis of several SNN
topologies having different sizes using the three hardware architectures: FPA,
TMA and HA.

Fully-Parallel Architecture : towards multiplexing

In this exploration, we begin by synthesising different SNNs using the first
architectural model and with the fully-parallel architecture. Indeed, this
model is the extreme case that is targeting computing efficiency in terms of
processing time and speed. As mentioned earlier, each logical neuron of the
SNN is synthesised in hardware through the use of an IF-Neuron module.
These FPA synthesis results are summarized in table 5.3, giving the logic
(ALMs) and registers occupation related to the SNN topology. Then, those
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results are used to plot two graphs showing the evolution of resource inten-
siveness against the number of neurons (figures 5.15 and 5.16).

TABLE 5.3: FPGA Logic ALMs and registers utilization by the
FPA architecture.

SNN: Topology Logic Registers
784-100-10 13317 3836
784-200-10 26225 7048
784-300-10 31461 10974
784-300-300-10 47257 24008
784-3x(300)-10 60628 40600
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FIGURE 5.15: FPA architecture: FPGA logic (ALM) utilization
versus the SNN number of neurons; Different SNN topologies

are used, refer to table 5.3.
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sus the SNN number of neurons; Different SNN topologies are
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TABLE 5.4: FPGA resource occupation of different SNNs by the
TMA architecture.

SNN topology Logic Registers BRAM (KB)
784-100-10 690 1255 64
784-200-10 1192 2168 128
784-300-10 1714 3082 230
784-300-300-10 3235 5937 241
784-3x(300)-10 4736 8799 249

TABLE 5.5: FPGA cyclone V resources occupation of different
SNNs with by the HA architecture.

SNN topology Logic Registers
784-100-10 2440 1383
784-200-10 7478 2434
784-300-10 21406 3455
784-300-300-10 22638 6318
784-3x(300)-10 22859 9336

From these results, we observe that the FPA logic occupation is directly pro-
portional to the SNN’s topology (depth/size), i.e. increases linearly with
the number of neurons. Nevertheless, the generated circuits are supported
by the FPGA fabric when the networks are smaller than the 784-300-300-10
topology, but not for larger ones. Therefore, our first intuition regarding the
limited scalability of FPA when used for deep SNNs is confirmed. But, we
are yet to confirm if the TMA or HA architectures occupy less resources, and
are thus more viable.

Time-Multiplexed and Hybrid Architectures

In this context, we have synthesized the same SNN topologies using these
two architectures (TMA and HA), the results are shown in tables 5.4 and 5.5.
With these architectures, instead of using only registers and logic for mem-
ory, we also use on-chip BRAM memory. Besides the use of these different
memory types and organizations, the total memory footprint should be the
same since the same SNN topologies are implemented, i.e., equal amounts
of parameters and activities to store in memory. Therefore, we focus on the
occupation of FPGA logic cells, where the major difference between the three
architectures should be found. For improved clarity, we have plotted the his-
togram shown in figure 5.17 representing the logic occupation of the three
architectural models.



5.6. Experiment and results 111

Lo
gi

c 
(A

LM
)

0

10000

20000

30000

40000

FPA HA TMA

SNN : 784-300-10 SNN : 784-200-10

FIGURE 5.17: Logic occupation of two SNNs by the three archi-
tectures: FPA, TMA and HA.

As expected, compared to FPA, these architectures, TMA and HA, occupy
much less logic resources due to multiplexing. Indeed, one NPU per layer is
used for all the SNN’s layers with TMA and from the second layer with HA.
An NPU is using one hardware neuron coupled with some control logic to
represent all the neurons of a layer. Using the 784-3x(300)-10 for example, to
represent the three hidden layers 3 NPUs are sufficient with TMA but with
FPA 3× 300 neuron modules are required. Therefore, multiplexing hardware
to implement large-scale SNNs would be the more adequate solution. In
order to estimate the latency of these architectures, we have used the average
number of spikes generated for processing a pattern using different SNN
topologies on MNIST dataset (refer to chapter 4) and computed the number
of cycles, the results are summarized in table 5.6.

TABLE 5.6: Latency (number of cycles / image) of the three
architectures using three neural coding schemes – SNN : 784-

3x(300)-10.

Coding method Latency (cycles)
FPA HA TMA

Jittered Periodic 1039,5 84064 300540
Spike Select 1660,5 34437 496990
First Spike 332 23540 74370

Single Burst 3077 441432 459970

We observe that the processing latency is higher using TMA than HA and
even more than FPA. If we transpose these latency results on the hardware
logic occupation, we notice that the latency is inversely proportional to the
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logic occupation, where we find that the TMA, while having the highest la-
tency, occupies the lowest logic resource amount compared to the other struc-
tures. Indeed, time-multiplexing allows to reduce the quantity of hardware
resources, but relies on the serialization of a parallel task, thus resulting in a
higher processing latency. This is why three different architectures have been
designed to evaluate the trade-off between hardware resources and process-
ing latency. In this context, the HA is an intermediary solution with a sig-
nificant reduction in the amount of hardware resources, while maintaining
reasonable latency. Referring to the latency table 5.6 and to the logic occu-
pation tables 5.3, 5.4 and 5.5, we notice that on average, TMA has a gain of
56.19% in terms of latency when compared to TMA and 57.05% in terms of
logic occupation when compared to FPA.

Finally, to analyze the performance of our architectures, a measurement of
Synaptic Operation per Second (SOPS) was performed on all the architec-
tures using the 784-3x(300)-10 SNN topology on the same FPGA board tar-
get. The FPA achieves the best performance with 51.02 billion SOPS, whereas
TMA achieves only 283.80 million SOPS. The HA is below FPA, where it
achieves 23.12 billion SOPS using similar topology and FPGA device. Their
respective measured maximum frequencies are 83.51 MHz for FPA, 76.3 MHz
for TMA and 70.95 MHz for HA.

5.7 Discussions

As a reminder, the high-level results obtained with the NAXT simulator (in
chapter 3) are summarized in table 3.4 and figure 3.7. As already explained,
surface estimations provided by NAXT correspond to an ASIC target, and
can be seen as qualitatively equivalent to logic occupation for an FPGA tar-
get. In these results, the trade-off between latency and FPGA occupation
(i.e., chip surface in the figure and table) was clearly visible: FPA had low
latency but high FPGA occupation, and the opposite was true for TMA. Fine-
grained results provided by RTL synthesis and latency estimations for the
"784-3x(300)-10" SNN are summarized in figure 5.18.

This figure shows Pareto curves representing FPGA logic occupation versus
latency (number of cycles) for the three hardware architectures according to
the neural coding methods described in chapter 4. These results are consis-
tent with the high-level estimations, where the same trade-off can be seen
between latency and logic occupation: FPA has a low latency but high logic



5.7. Discussions 113

Logic occupation

La
te

nc
y 

- N
um

be
r o

f c
yc

le
s

0

110000

220000

330000

440000

550000

0 13000 26000 39000 52000 65000

Jittered Periodic - 98.24% Spike Select - 97.87% First Spike - 86.92%
Single Burst - 76.80%

HATMA
           FPA

FIGURE 5.18: Trade-off between logic and latency of the hard-
ware architectures according to three neural coding schemes.

occupation, whereas TMA has high latency but low logic occupation. If we
consider the neural coding scheme without looking at the recognition rate,
the First Spike method combined with TMA architecture has the best ’latency
/ chip surface’ trade-off. However, this method has a loss of around 10%
in terms of accuracy compared to Spike Select and Jittered Periodic meth-
ods, see section 4.5. Therefore, taking into account the accuracy criterion, the
Spike Select method combined with HA architecture has the best ’latency /
logic’ occupation trade-off. The method, while performing 97.87% accuracy
on MNIST dataset, allows only few spikes propagating in the deeper layers
of the SNN, which fits well the HA architecture making this combination
well-tailored for deep SNNs implementation.

The coherence of these results is shown in figure 5.19, which depicts the evo-
lution of FPGA occupation (in terms of logic cells) against the number of neu-
rons, for both theoretical estimations and Quartus R© experimental results.
The considered network has a fully-parallel architecture in both cases. Both
curves are very similar for a low number of neurons, which shows coherency
between estimations and experimental results. The divergence observed for
higher numbers of neurons is due to synthesis optimizations performed by
the Intel Quartus R© tool, which are not taken into account in our estimations.
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However, the two curves remain qualitatively coherent, as they follow sim-
ilar linear growths. Hence, the results are coherent between high-level and
low-level parts of the design flow. Even if the estimates could be improved
in the future.

EBS sensor: towards frame-free SNNs for video recognition

In this work, we have focused on static image recognition. Thus, we based
our approach on ANN-SNN conversion method in which input data are
translated into spikes (see chapter 4). This conversion step is one of the main
drawbacks of SNNs usage, as it may counterbalance the latency, energy and
surface savings that are achieved thanks to the spiking processing. For video
recognition, however, this issue can be tackled by using event-based cameras.

Indeed, in contrast to static images, videos can be directly recorded in an
event-based fashion, with so-called asynchronous cameras Delbrück et al.,
2010. In contrast to classical cameras, which output a succession of dis-
crete frames, an Event-Based Sensor (EBS) emits a continuous flow of events:
each pixel outputs a spike whenever an edge crosses its receptive field. In
other words, an event-based sensor outputs a flow of spikes representing the
movement happening in its receptive field. We expect that SNNs could ben-
efit from the use of such EBS sensors, as the processing would eliminate the
time and energy consuming spike generation phase.
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5.8 Conclusion

In this chapter, we dealt with the last level of the framework presented in
chapter 2. This represents the low-level RTL description that allows us to
determine the best implementation by providing fine-grained evaluations of
the architecture. Indeed, we have first implemented naively an SNN and
MLP with the same simple topology, then, realized three different SNN im-
plementations: first, Fully Parallel Architecture and Time-Multiplexed Architec-
ture that are developed to emphasize the two extremes of the latency versus
hardware resources trade-off; second, a novel and innovative Hybrid Archi-
tecture that is a middle ground, deriving from the findings and observations
of our Design Space Exploration work.

First, the confrontation of neuroscience to machine-learning algorithms showed
that the neuroscience approach reaches similar performance to machine learn-
ing one in terms of accuracy, while in terms of hardware implementation cost
(area, power), the SNN is about twice as efficient as the ANN.

Second, for deep SNNs, and according to our design flow, the most suitable
architecture is the Hybrid Architecture, as it takes advantage of the increasing
spiking activity sparsity as we go deeper into the network. This novel archi-
tecture has been developed in our lab, and to the best of our knowledge, is
completely original. Combined with Spike Select Coding, presented in chap-
ter 4, is a well-tailored approach for future Deep SNN implementation into
embedded systems.

Toward spiking CNNs

At this point, our work focused on fully-connected based networks, the so-
called classifiers (Zhang, 2000). However, this neural networks type is re-
strained to simple classification tasks: they are not able to perform classi-
fication on complex data, and are not resilient to image rotation or transla-
tion. Thus, modern ANNs for complex data recognition and classification in-
volve convolution and pooling layers (LeCun and Bengio, 1998; Krizhevsky,
Sutskever, and Hinton, 2017). The Convolutional and Pooling layers enable
feature extraction resulting in a Feature Map that can be afterwards fed to a
simple classifier. In order to simulate state-of-the-art ANN hardware imple-
mentations, in the next chapter, we present a generic event-based architecture
dedicated to spiking CNNs and also classifiers based on the fully-connected
layers developed in this chapter.
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Chapter 6

Spiking CNN hardware
architecture

6.1 Introduction

The current trend with artificial neural networks is towards the use of very
deep networks with a continuous increase in the number of layers. Net-
works like ResNet (He et al., 2015), AlexNet (Krizhevsky, Sutskever, and
Hinton, 2012) or GoogLeNet (Szegedy et al., 2015), that are comprised of
a large layers and neurons number, require a lot of hardware resources for
their proper execution. Parallel architectures are hardly conceivable with
this type of ANN topologies because their need in hardware resources is
very important. Consequently, to meet this need, the use of multiplexed
and event-driven architectures is more than essential. In this chapter, we
describe an architecture implemented in a completely time-multiplexed way
with the possibility to integrate in future parallel parts in order to implement
the hybrid architecture presented in the previous architecture. The current
architecture can infer any deep spiking CNN network topology. The archi-
tecture has a similar structure of the architectures presented in the previous
chapter, refer to section 5.3, but also includes processing units dedicated to
pooling and convolutional layers. Figure 5.2 shows the complete overview
of this hardware architecture for spiking CNNs. As shown in this figure, the
architecture is composed of three different neural processing unit types: Con-
volutional Processing Unit ’ConvPU’, Pooling Processing Unit ’PoolPU’ and
Fully-Connected Processing Unit ’FcPU’, a spike generation module ’Spike
Gen’ and classification module ’Terminate Delta’. The different computing
modules of this architecture communicate through FiFo-like interfaces and
use the event-based communication protocol that is presented in the section
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5.4 of the previous chapter.

6.2 Convolutional processing unit – ConvPU

In this section, we present a thorough description of the designed convo-
lutional processing unit (ConvPU). A schematic representation of ConvPU
internal structure is illustrated in figure 6.1.

FIGURE 6.1: Convolution Processing Unit schematic diagram.

This processing unit is composed of two main parts that are the convolution
control module and the convolution computing core. The control module is
connected to the inputs of ConvPU and the computing core is connected to
outputs. As shown in this figure, the control and computing units are con-
nected between each other through four signals communicating the neurons
and weights addresses, an enable of computations and a full signal. On one
hand, the control module is designed to manage the state of the ConvPU
by controlling its computing core. On the other hand, the computing core
is dedicated for processing the logical neurons of the convolutional layer.
These control and computing modules are described more precisely in the
following sub-sections.

6.2.1 Control module

The convolution control module is, as mentioned before, a sub-module of
the ConvPU and is used for managing and controlling the processing unit.
Figure 6.2 shows the internal structure of this module, where it has three
sub-modules that are a state machine, an address compute module and an
address generator.
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FIGURE 6.2: Convolution control module schematic diagram.

Finite State machine

The first module is a Finite State machine (FSM) that monitors the other sub-
modules and also enables the computing core. A graph representation of this
FSM is shown in figure 6.3, and states transitions in table 6.1.

FIGURE 6.3: Convolution control : finite state machine.

TABLE 6.1: Convolution FSM states transitions.

Source state Destination state Condition
AddressCompute EventRead None
EventRead StartGeneration None

Idle
Idle (!Empty).(!Full)
AddressCompute (Empty)+(Full)

OutputGeneration

Idle (Empty).(!Valid).(!Full)
OutputGeneration (Valid).(!Full)
StartGeneration Full
AddressCompute (!Empty).(!Valid).(!Full)

StartGeneration
OutputGeneration !Full
StartGeneration Full
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The FSM is composed of 5 states : "Idle", "AddressCompute", "StartGenera-
tion", "EventRead" and "OutputGeneration". At reset, the state machine is at
"Idle" state where all the outputs are equal to ’0’. Then, if there is an input
event and the FiFo is not full ((Empty = ’0’) and (Full= ’0’)) the FSM goes to
"AddressCompute" state otherwise it stays in "Idle" state.

In "AddressCompute" state, the module "Address Compute" is enabled by
setting "Add-Compt-Start" to ’1’ and the FSM goes directly to "StartGenera-
tion".

Once it is in "StartGeneration", the module "Address Compute" is disabled
and the output generator module is enabled by setting "Add-Compt-Start"
to ’0’ and "Out-Gen-Start" to ’1’. In case the FiFo is full, the FSM stays in the
current state otherwise it goes to "OutputGeneretation".

When the state machine is in "OutputGeneretation" state, the computing core
is receiving the neurons and weights addresses for doing its computations. If
the FiFo module is full, the state machine goes to the previous state and waits
until full signals goes low to go back at "OutputGeneration" state. Once the
Output Generator module finishes transmitting the addresses for the current
event it changes the state of valid to low ’1’. Therefore, the FSM changes the
state to "AddCompute" if there is an input event for processing (Empty=’0’).
If it is not the case, i.e. Empty=’1’, the FSM goes to "Idle" and waits for in-
put events. This process is repeated until the Terminate Delta sends a stop
processing signal.

Address management

In the previous section, we have seen how the different modules of the con-
trol module are managed and enabled by the state machine. In this section,
we describe the functioning of the address compute and address generator
modules.

Address compute

In order to reduce the number of hardware connections between the CNN
neurons, we have designed an algorithm to compute the addresses of the
weigths. It indicates the convolution neuron addresses corresponding to the
input event, refer to algorithm 1. Note that, "AddCompute” module is a
hardware implementation of this algorithm. The role of this module is to find
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FIGURE 6.4: Address management module’s internal structure.

the height and width coordinates of the convolution neurons intersecting the
input event from the previous layer feature map.

Algorithm 1: Address compute algorithm
(EC, EH, EW) = Map(Event);
Neuron’s width coordinates :
Result: (istart , iend)
if EW - F + 1 < 0 then

istart = 0;
iend = bEW/Sc;

else if EW + F - 1 >= Nin-1 then
istart = b(EW − F)/Sc+1;
iend = Nout-1;

else
istart = b(EW − F)/Sc+1;
iend = bEW/Sc;

end
Neuron’s height coordinates :
Result: (jstart , jend)
if EH - F + 1 < 0 then

istart = 0;
iend = bEH/Sc;

else if (EH + F - 1 >= Nin-1) then
istart = b(EH − F)/Sc+1;
iend = Nout-1;

else
istart = b(EH − F)/Sc+1;
iend = bEH/Sc;

end

Where:
EC : input event channel’s coordinate
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EH : input event height’s coordinate
EW : input event width coordinate
istart : convolution neuron width coordinate start-index
iend : convolution neuron width coordinate end-index
jstart : convolution neuron height coordinate start-index
jend : convolution neuron height coordinate end-index
F : kernel’s height/width
S : convolution stride
Nin : input FM height/width
Nout : output FM height/width
b./.c : integer division

This algorithm maps the input event into (EC, EH, EW), i.e. channel, height,
width, coordinates, and then gives its exact position in the input feature map.
We have separated the calculation of the output neuron addresses according
to the position of the input event. Two of them concern the case where the
event is located in the bordering extremities of the input feature map and the
remaining one is where it is inside the FM (normal case).

So let’s first consider the normal case. Indeed, a neuron of the convolution
layer with a width coordinate nW is intersecting all input events situated in
[ (nW*S), (nW*S+F-1)] . Where "nW*S" and "nW*S+F-1" are the start and end
coordinates of the convolution kernel when projected to the input feature
map. Therefore, all the convolution neurons intersecting the input event with
width coordinate EW must have EW in [ (nW*S) , (nW*S+F-1)] , thus, nW is
located in [ (bEW− 1/Sc + 1) , (bEW/Sc)] . This range is given in the algorithm
by istart / iend for width coordinates and jstart / jend for height coordinates.

The second case is where EW is situated between 0 and F-1: here the first
output neuron width coordinate is 0 (istart = 0) because the other positions
(b(EW − F)/Sc+ 1) are negative and cover positions out of the input FM.

The last case is where the event is situated between Nin − 1 and Nin − F:
here the last position is Nout − 1 because the other position are greater than
Nout − 1 and also cover positions out of the input FM.

This methodology is then applied similarly to the "EH" coordinate of the in-
put event to get the height coordinates range (jstart / jend) of the convolution
neurons intersecting the input spike.
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last convolutional neurons having input event in their recep-

tive field.

In figure 6.5, we illustrate the computation with an example of applying a
convolution kernel to a 13x13 (Nin=13) input feature map with a kernel of
size equal to 3x3 and a unity stride (S=1). In this example, we illustrate the
coordinates range of the neurons having the input event in their vision field.
With the first event which is located at the position (4,2), we consider only
the width axis. The first position of the kernel covers the input event with its
last cell. Then when we slide the filter to the right, we reach the last position
where the input event is located in its first cell. The same methodology is ap-
plied to get coordinates in the height axis and with the second event located
at the position (8,8).

Addresses generation

Algorithm 2 describes how the neurons and weights (@Neuron, @Weight)
are computed using the start and end indices of convolutional neurons in-
tersecting the input spiking event. These indices are generated by the "Add-
Compute" module as shown in figure 6.4.

Where:
NKernel : is the number of convolution kernels (filters);
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Algorithm 2: Convolutional layer’s address generation algorithm
for ( i = istart; i ≤ iend; i ++ ) {

for ( j = jstart; j ≤ jend; j ++ ) {
for ( k = 0; k ≤ NKernel − 1; k ++ ) {

@Neuron = i + j ∗ Nout + k ∗ N2
out;

WAddW = EW − i ∗ S ;
WAddH = EH − j ∗ S ;
WAddC = EC ;
@Weight =
WAddW + WAddH ∗ F + WAddC ∗ F2 + k ∗ NChannel ∗ F2;

}
}

}

NChannel: is the number of channels (number of input FMs).

In this algorithm, there are three nested loops iterating over width, height
and kernel coordinates. The first loop is going from istart to iend and it repre-
sents the width coordinates of the convolution neurons. The second one goes
from jstart to jend and represents the width coordinates and the last one goes
from 0 to NKernel − 1 and represents the kernel coordinates. These indices are
used in the following lines to compute first the neuron address and second
the weight address. For the neuron address, the computation is straight-
forward, which is just a mapping computation going from (Kernel, Height,
Width) coordinates to an address ranging from 0 to Nout ∗ Nout ∗ NKernel. The
weight addresses computation is done in two parts, first the different coordi-
nates and second the weight address itself (@Weight). Figure 6.6 shows a con-
volution filter covering an input event (orange cell) and showing these dif-
ferent parameters. In this representation, the convolution kernel is mapped
and superposed to the input feature map. The distances between the begin-
ning of the filter and the input event (WAddH in width axis and WAddW in
height axis) represent the coordinates of the synaptic input that are needed
to compute the synaptic weight.

The channel’s coordinate WAddC is simply the input event’s channel coordi-
nate EC. The address of the input synapse conducting the input event to the
first convolution kernel is computed by simply mapping the synapse coordi-
nates (WAddW , WAddH, WAddC) to an address ranging from 0 to NChannel ∗
F ∗ F. For the next kernel, an offset equals to the number of synapses in
one FM, so (NChannel ∗ F ∗ F) is added to the previous address. By doing
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this addition incrementally, we get the weight address equals, as depicted
in algorithm 2, to: @Weight = WAddW + WAddH ∗ F + WAddC ∗ F ∗ F + k ∗
NChannel ∗ F ∗ F.
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FIGURE 6.7: Convolution address generator module.

This algorithm is then implemented in hardware to get the address genera-
tion "AddGen" module that is shown in figure 6.7. The nested for loops in
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the presented algorithm are unrolled and represented in the hardware com-
ponent as three superposed counters that output the width (NAddH), the
height (NAddW) and the kernel (K) coordinates. These coordinates are then
used to compute the neuron and weight addresses (@Neuron and @Weight)
as described in algorithm 2. The addresses are then communicated to the
computing core of ConvPU that uses them to retrieve from memory the in-
ternal potential of neurons and the synaptic weights. In the next section, this
computing core will be presented in detail.

6.2.2 Computing core

The second part of the convolution processing unit is the computing core
that is responsible for integrating input spiking events and generating output
spikes. The computing core is composed of two memory blocks, an integrate-
and-fire neuron and an output FiFO buffer that is used to write the output
spikes. One of the memory blocks is used to store the synaptic weights and
the other is used to register the internal potential of the neurons. The internal
structure of the computing core is illustrated in figure 6.8.
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FIGURE 6.8: Convolution computing core schematic diagram.

The computing core is connected to the control module of the ConvPU and
the NPU of the next layer. On one hand, it uses the input port "i_Rd_Event"
and the output ports "o_Empty" and "o_Event" to communicate with the
next layer’s NPU. On the other hand, it is connected to the control module
through the inputs "i_NAdd", "i_WAdd" and "i_En", and the "o_Full" output
port.
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The next layer’s NPU or component sets "i_Rd_Event" to high when it has
read an event from the output FiFo. Indeed, before reading the event on the
"o_Event" output port, this NPU verifies first the presence of output events
by looking at "o_Empty", referring to the FSM control section 6.2.1. When
"i_Rd_Event" is high the content of the FiFo buffer is updated by removing
the read event.

When the computing core is enabled by the control module, the input i_En
is set to high and the data present on the other inputs are valid. First, us-
ing the neuron address (i_NAdd) the core accesses the RAM memory block
and retrieves the internal potential of the neuron. In the same clock cycle,
the weight’s address (i_WAdd) is used to get the synaptic weight from the
Conv_ROM block. Second, the IF-Neuron module integrates these weight
and internal potential data and applies the integrate-and-fire rule to them.
The neuron module accumulates these synaptic amounts and checks if the
result is higher than the threshold. In this case, a spike is generated and the
internal potential is reset otherwise the content of o_Spike is low and the po-
tential is kept at its state after the integration. Afterwards, the new potential
is written back to the RAM and the neuron’s output spike (o_Spike) is used as
a write-enable of the FiFo block. The input data of the FiFO is i_Event which
represents the coordinates of the logical neuron that has been computed in
the IF-Neuron module. Therefore, if the neuron’s output o_Spike is high the
coordinates present in i_Event input are written to the FiFo buffer.

6.3 Pooling Processing Unit – PoolPU

The second layer type we deal in this work is pooling layers that are widely
used with ConvNets to reduce the size of convolutional layers. In this sec-
tion, we present the Pooling Processing Unit (PoolPU) that is a hardware
implementation of pooling layers found in spiking ConvNets. The ConvPU
module is designed with a structure similar to ConvPU with two submod-
ules, one for control and the for computing. In this work, due to its large
use compared to average pooling we implemented max-pooling. However,
due to the modular structure of the PoolPU it would be easy to change the
pooling function to average.
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FIGURE 6.9: Pooling Processing Unit schematic diagram.

Control module

The control module is composed of an FSM and an address manager exactly
like in convolution control module. We used the same state machine as in
convolution with the pooling control unit. However, with the address man-
ager the same "AddCompute" component is instantiated and connected to an
address generator that is quite different. Indeed, with ConvNets the number
of pooling kernels is equal to the number of channels and the connectivity of
these kernels to the input feature maps is different from convolution layers,
refer to figure 6.10. In pooling layers, each kernel is connected to only one
channel of the input feature maps whereas a convolution kernel is connected
to all the input channels.

Algorithm 3: Pooling layer’s address generation algorithm
for ( i = istart; i ≤ iend; i ++ ) {

for ( j = jstart; j ≤ jend; j ++ ) {
@Neuron = i + j ∗ Nout + EC ∗ N2

out;
SynapseW = EW − i ∗ S ;
SynapseH = EH − j ∗ S ;
@Synapse = SynapseW + SynapseH ∗ F + @Neuron ∗ F2;

}
}

Therefore, we have designed a quite different algorithm for address gener-
ation to be used pooling layers, this is depicted in algorithm 3. If we com-
pare this algorithm to the convolution one (algo. 2), we observe two differ-
ences concerning the number of loops and the way addresses of neurons and
weights are computed.

Since each pooling kernel is connected to a unique input channel, an input
event will trigger neural computations of neurons belonging to a single fea-
ture map as shown in figure 6.10b. Therefore, the third loop in algorithm 2 is
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FIGURE 6.10: Convolution versus pooling features mapping.

not necessary in this case because only neurons of one kernel are triggered.

For the computation of the pooling neuron address, we replace "k" by "EC"
because the neurons that will process the input event are belonging to a ker-
nel that is in the same depth-level as the input event’s channel (EC).

Indeed, in pooling layers we do not have synaptic weights since the pooling
neurons are doing only maximum or average functions that don’t require
parameters. Thus, here we deal with synapse addresses (@Synapse) instead
of weight addresses. These synapse addresses are used by the computing
core to determine for each neuron which synaptic input is the most spiking.
As mentioned earlier, a pooling kernel is connected to only one channel and
thus has only width and height coordinates. Therefore, the channel’s coordi-
nate of the synapse (WAddC in algo. 2) does not exist. Thus, to compute the
synapse address only width and height coordinates are used (SynapseW and
SynapseH). Consequently, the synapse address @Synapse is a result of adding
its address in a single 2-dimensional kernel (SynapseW + SynapseH ∗ F) and
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an offset equals to (@Neuron− 1) ∗ F2. Indeed, each pooling neuron has F2

input synapses, thus the offset (@Neuron− 1) ∗ F2 is the number of synapses
preceding the synapses of the actual neuron at the address @Neuron.

Computing core

The Max pooling in formal is applied to activities of a neural group which
is different from spiking domain because the spiking neurons output spikes
instead of activities. With the formal CNNs, a max pooling cell delivers the
maximum activity of an input group of neurons representing its receptive
field. With the spiking CNNs, instead of finding this maximum activity,
the pooling cell searches for the most active input neuron. The activity of
a formal neuron is equivalent to a spiking rate of an SNN’s neuron. Thus,
the most active input neuron represents the neuron having the highest spik-
ing rate compared to its neighbors. To do so, the pooling neuron records a
spiking rate for each input neuron by assigning an activity rate for its input
synapses. Figure 6.11 shows the internal structure of the computing core that
is used to represent the pooling neuron in the hardware architecture.
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FIGURE 6.11: Pooling computing core internal structure.

The pooling computing core is composed of two read/write memory blocks,
the Max-Pool neuron and an output FiFo buffer. When an input spike arrives,
the computing core receives the corresponding pooling neuron (i_NAdd) and
input synapse (i_Synapse) addresses and the Max-Pool neuron is enabled
(i_En =′ 1′). The pooling neuron address is used to access the Max-Activity
RAM to get the activity of the synapse with the highest spiking rate. The
synapse address is used to retrieve the activity of the input synapse in the
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Synapses Activity RAM. Afterwards, the Max-Pool neuron increments the
activity of the input synapse (SynActivity_in+ 1) and compares it to the neu-
ron maximum activity (MaxActivity) to emit an output event if the activity is
higher or remains silent if it is not the case. The Max-Pool cell writes the up-
dated input synapse activity to Synapses Activity RAM (SynActivity_out =
SynActivity_in + 1). If the Max-Pool neuron has emitted a spike, the new
maximum activity of the pooling neuron is changed by the updated input
synapse’s activity (MaxActivity_out = SynActivity_in + 1). Otherwise, the
pooling neuron keeps its previous maximum activity (MaxActivity_out =

MaxActivity_in). Finally, similar to the convolution computing core, the out-
put spike of the pooling cell (spike) is used as a write-enable to the FiFO
buffer. In the case there is an output spike (spike =′ 1′), the pooling cell
coordinates present in the i_event port are written in the FiFo.

6.4 Fully-connected Processing Unit

In this section, we present the "FcPU” unit that is dedicated for processing
a fully-connected layer of a spiking CNN that is inferred in hardware us-
ing our architecture. Indeed, in fully-connected layers, which are the third
CNN’s layer type that we are dealing with, each neuron is connected to all
the previous layer neurons. The FcPU processing unit role is to represent
these fully-connected neurons. To do so, it follows the same structure philos-
ophy as convolution and pooling processing units, where it also has a con-
trol module and a computing core with similar roles. Here, we will briefly
describe the internal structure of this FcPU with emphasis on the changes
made to suit the FC layers. In the following subsections, we will present the
two components of this processing unit.

Control module

Similar to the other layers, we used a control module to manage a fully-
connected layer in hardware represented by its processing unit FcPU. This
control module is composed of a finite state machine and address manage-
ment module. Due to the connectivity of this type of layers, we do not
have an address compute module in the composition of the address man-
ager. Therefore, the address manager is simply the address generator.

This change at the address management level implicates a modification in the
state machine, where the address computation state is removed. On figure
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6.12 a graph representation of the fully-connected FSM is illustrated show-
ing its different states and transitions. The FSM transitions from a state to
another following the conditions are listed in table 6.2.

FIGURE 6.12: A graph representation of the fully-connected fi-
nite state machine.

TABLE 6.2: Fully-connected FSM states transitions.

Source state Destination state Condition
AddressCompute EventRead None
EventRead StartGeneration None

Idle AddressCompute (!Empty).(!Full)
Idle (Empty)+(Full)

OutputGeneration

Idle (Empty).(!Valid).(!Full)
OutputGeneration (Valid).(!Full)
AddressCompute (!Empty).(!Valid).(!Full)
StartGeneration Full

StartGeneration OutputGeneration !Full
StartGeneration Full

The address generator module used within this control module is composed
of a counter and a block indicating the logical neuron’s address that is cur-
rently computed and the address of the input synapse. The counter is go-
ing from 0 to N-1, with N the number of the Fc-layer’s neurons, which cor-
respond to the logical neuron addresses. The block that is calculating the
synaptic weight addresses takes as arguments the output of this counter and
the address of the input neuron encoded in i_event signal to compute the
weight address. Algorithm 4 details the behavior of the module by show-
ing, on one side, the counter represented by the loop, on the other side, the
calculation of the synapse address.
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Algorithm 4: Fully-connected layer’s address generation algorithm.
NAddIN = Map(Event);
for ( i = 0; i ≤ N − 1; i ++ ) {

NAdd = i;
WAdd = i + N ∗ NAddIN;

}

Computing core

The computing core used with a fully-connected layer has exactly the same
structure as the one used with convolutional layers. Indeed, it is composed
of a ROM to store the synaptic weights of the layer, a RAM to write and read
the activities of the logical neurons of the layer, an IF neuron and a FiFo to
record the output events.

6.5 Experiments and results

In this section, we will present the results of a functional validation of the
architecture and other results concerning the occupation of FPGA resources.
First, we use the ModelSim software to perform the functional validation by
running simulations on the MNIST database. Then, we will present resource
utilization results obtained through RTL synthesis using the Quartus tool.

6.5.1 Functional validation

In this part, we validate the functioning of the architecture by simulating a
hardware classification with the CNN spiking architecture using ModelSim.
With this tool, we visualize different signals of the modules that compose the
architecture and check their proper behavior. Indeed, we first validate the
elementary modules on synthetic data. Then, we proceed to the validation
of the complete architecture which is, in other words, the assembly of these
modules. The purpose of the functional validation is to resolve possible mal-
functions before moving on to hardware synthesis and on-chip operation.

We will now show signal captures of different regions of the in-phase archi-
tecture of a simulation of a classification of a MNIST image.

First, we visualize the top-level of the architecture which shows the input of
the image pixels, the activity of the neurons of the output layer, the winning
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FIGURE 6.13: Example of simulation under Modelsim tool of
the architecture showing the classification of the number "1".

class and the signal that stops the processing in the network. In this exam-
ple, illustrated in figure 6.13, we show a classification of an MNIST image
that contains the number "1". At the beginning, we observe the pixels that
arrive on "i_value" just after the release of the reset (goes to "0"). Then, these
values are processed by the architecture where the activation of the output
neurons changes progressively. By the end, the number of activations of neu-
ron 1 exceeds all the neurons by "10" which is the "terminate delta", this will
activate the stop network signal while the class winning signal is displaying
"1".

Spiking generation

In figure 6.14, the inputs/outputs and internal signals of the spikes genera-
tion module are illustrated. At the beginning of this diagram, the arrival of
the pixels is observed, followed by a time interval where the signals are un-
changed. During this period, the pixels are loaded and the various memories
are initialized. Then, the empty signal is reset to "0" after which spikes are
generated.

FIGURE 6.14: Spike generation simulation.

A zoom-in on this phase in figure 6.15 is showing a generation of two spikes.
These two spikes are generated by pixels at addresses 37 and 38 where we
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notice that the signal "o_wr_fifo" goes to "1" enabling the write of these ad-
dresses in the FiFo. The ConvPU of the first hidden layer reacts to this gener-
ation with the reading of a first spike by setting the "i_RD” to "1", this results
in the update of "o_event" from 37 to 38 for the next reading.

FIGURE 6.15: Zoom-in on spike generation simulation.

Convolutional layer

As indicated in section 5.3, the "spike gen" module is connected to the first
NPU that represents the first hidden layer of the spiking CNN. In this case,
the first layer is a convolution which is represented by a ConvPU. Simula-
tion results are shown in figure 6.16 that capture the behavior of this Con-
vPU I/Os when receiving input spikes resulting from the "spike gen" cell.
We have previously seen that this cell has generated two spikes with the ad-
dresses 37 and 38. These two addresses appear on the "i_event" input just
after the "i_Empty” input goes from 1 to 0. The spiking event "37" is then
processed by the ConvPU, which, in its turn, emits output spikes that are
reflected by the transition from 1 to 0 in "o_Empty" output and by the state
change of " o_Event” output. This process is then repeated for all the input
spikes and by all the NPUs of the spiking CNN.

FIGURE 6.16: Convolution layer simulation.

Control module

The ConvPU unit, as previously mentioned, contains a control module and
a computing core. The control module consists of a state machine "FSM"
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and an address manager. Figures 1 and 2 show diagrams resulting from the
simulation of the two modules.

The diagrams in Figure 1 show the behavior of the FSM by indicating the Pre-
sentState and NextState depending on the content of the inputs and outputs.
Indeed, the desired behavior of the FSM, described in section 6.2.1, can be ob-
served on these diagrams. At the beginning, the two states (PresentState and
NextState) are at "Idle" and when "i_Empty" goes to zero the FSM process de-
scribed later is triggered.In this process, NextState links the states: "Address-
Compute" - "EventRead" - "StartGeneration" - "OutputGeneration" in order.
This series of states is observed one cycle later in PresentState. This state
(PresentState) is then used to indicate the contents of the outputs. It is clear
that the outputs correspond to the displayed state, for example: "o_AC_Start"
changes to 1 when the displayed state is "AddressCompute" which is used to
activate the address generation module.

FIGURE 6.17: FSM simulation.

Figure 6.18 shows a simulation of the operation of the address generation
module. This module is enabled by the FSM which changes the state of
"i_AC_Start" to compute the address start indices that will be generated. This
generation begins when the input "i_AG_Start" is changed from 0 to 1. At this
point, the addresses are sequentially written in "o_NAdd" and "o_WAdd"
and then transmitted to the processing core. Notice that during this genera-
tion, the output "o_Valid" displays 1 until all the logical neuron addresses of
the layer have been transmitted.

FIGURE 6.18: Address generation module simulation.
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Processing core

The second component of the ConvPU is the processing core, which itself
consists of a neuron and three memory blocks of different types. Therefore,
the most interesting module to visualize and check its correct operation is the
hardware neuron. In this context, we show a simulation of a part of the op-
eration of this neuron in figure 1. Indeed, from the moment the input "i _En"
goes to "1" the neuron is activated. In this case, the neuron adds the value
of the synaptic weight with the internal potential of the neuron present on
"i_Weight" and "i_Potent" consecutively. In the figure, where the vertical in-
dicator in yellow is positioned, the neuron emits two spikes. Indeed, the sum
of the "weight" and "potent" observed at that moment exceeds the threshold,
which causes the emission of these spikes.

FIGURE 6.19: Simulation of hardware neuron.

On-chip validation

An on-chip functional validation is performed with the spiking CNN hard-
ware architecture. This on-chip validation is carried in collaboration with
Edgar Lemaire, who is a second year student in the eBrain team. The pur-
pose of this collaboration is to use this spiking CNN hardware architecture
in the context of his thesis project by first applying it to spacial applications
and second upgrading it to perform online learning (STDP) (Lemaire et al.,
2020). Indeed, in this context of satellite applications, a platform running on
a Xilinix FPGA board and which can host an AI accelerator has been devel-
oped. Figure 6.20 represents the structure of this platform by showing its
components, the spiking CNN accelerator is in the right-top of the figure.
Several AXI-bus interfacing modules are used to connect the PS and PL parts
and to manage memory accesses. The Xilinx R© Deep Learning Processing
Unit (DPU), which is a programmable accelerator for formal CNNs targeting
FPGA devices, is present in the platform for the context of Edgar Lemaire
thesis, which is to compare it with the spiking accelerator.

The winner class output of the spiking CNN is communicated to the Zynq
processor through the AXI bus when the stop network is set to high by the
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Terminate Delta module. With this implementation setup, we successfully
integrated our Spiking CNN architecture, using Vivado tool, and tested it on
the MNIST database using the LeNet-5 network. The results were equivalent
to those obtained on the N2D2 tool.
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FIGURE 6.20: On-chip validation platform structure (generated
from Vivado tool).

6.5.2 Hardware cost

Once the functional validation of the time-multiplexed architecture for spik-
ing CNNs in both ModelSim and on-chip simulation, we were interested in
its hardware resources occupation. To do so, we have made several synthesis
with different topologies by varying the number of FC and Conv layers. The
results of those synthesis, obtained with the Quartus tool and by instantiat-
ing the Intel Cyclone V board (5CGXFC7C7F23C8), are given in the tables 6.3
and 6.4. On one hand, the table 6.3 represents the results of the occupation of
the spiking CNNs that have two convolutional layers followed by a different
number of fully connected layers. On another hand, the table 6.4 presents
the occupation results of other spiking CNNs that have a different number
of convolutional layers followed by two fully-connected layers. The results
are presented in terms of logical occupation and memory block and register
utilization. We used this Cyclone V board because it is large enough to con-
tain a large amount of synaptic weights and thus be able to do several RTL
synthesis. From these result tables we have plotted curves associating the
resource occupation to the size of the network, these curves are illustrated in
the figures 6.21 and 6.22.
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TABLE 6.3: FPGA resources occupation of Spiking CNNs with
different number of fully-connected layers. Topology : "28x28 -
6c3s2-6c3s2 - N(FC) - 10" with N the number of FC layers that

are composed of 150 or 300 neurons.

FC neurons FC layers Logic - ALMs Memory Bits Registers

150

1 1852 294846 3917
2 1921 476546 4096
3 2000 658246 4269
4 2056 839946 4434
5 2137 1021646 4592
6 2205 1203346 4773

300

1 1856 567296 3938
2 1951 1290246 4130
3 2053 2013196 4308
4 2138 2736146 4492
5 2238 3459096 4678
6 2326 4182046 4847

Maximum 56480 7024640 225920

TABLE 6.4: FPGA resources occupation of Spiking CNNs with
different number of convolution layers. Topology : "28x28 -
N*(6c3) - 80 - 10" with N the number of convolution layers that
are composed of 6 kernels of size 3x3 and a stride of 1 or 2 (K=6,

F=3, S=1 or 2).

Stride Conv layers Logic - ALMs Memory Bits Registers

1

1 1862 2644942 3752
2 1957 2291832 4014
3 2096 1965026 4303
4 2214 1664908 4572
5 2351 1391862 4845

2

1 1756 673626 3708
2 1838 167676 3911
3 1927 47830 4070
4 2012 39200 4193

Maximum 56480 7024640 225920

The figure 6.21 shows the percentages of resources, logic (ALMs), memory
blocks and registers, occupied by different spiking CNNs with a 2 convo-
lutional layers and a varying number of FC layers. The data on this figure
is represented as the utilization percentage in relation to the number of FC
layers. The first sub-figure 6.21a shows spiking CNNs with FC layers of 150
neurons and the other shows other networks with FC layers of 300 neurons.
On these graphics, we observe two phenomena: first, the logic and register
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FIGURE 6.21: FPGA resources occupations versus the number
of FC layers.

occupation increases marginally as the number of layers increases; the sec-
ond point concerns the memory occupation, here, we notice that the mem-
ory amount increases considerably with the size of the network. The first
phenomenon is due to the fact that the architecture is implemented in a time-
multiplexed fashion. Appending a layer in a network is equivalent to adding
an NPU, which does not occupy a lot of resources, in the CNN architecture.
Nevertheless, in terms of memory (the second phenomenon), adding FC lay-
ers is very expensive. Indeed, this type of layers, by the fact that they are
fully connected, requires a large memory space to store the synaptic weights.
Note that, as you can see, the scales change between the two sub-figures due
to the number of neurons in the FC layers, but the tendencies of the curves
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do not.
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FIGURE 6.22: FPGA resources occupations versus the number
of convolutional layers.

The other curves in the figure 6.22 show the same phenomenon concerning
occupation in logic and registers. However, we find a completely differ-
ent scenario concerning the evolution of memory occupation. In this case,
the curve plotted to represent memory utilisation (in red) decreases propor-
tionally with the increase in the number of convolutional layers. Indeed,
the addition of convolution layers decreases the size of the features maps
and due to weight-sharing the memory needed to save the synaptic weights
is not increasing a lot. Therefore, the last convolution layer continuously
shrinks. Consequently, the number of connections between the last convo-
lutional layer and the FC layer is continuously decreasing. This part of the
network is the most memory space demanding due to its fully-connected
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aspect to the output FM. For this reason, the memory required to store the
synaptic weights decreases incrementally.

6.6 Discussions

Event-based computing

The spiking CNN architecture presented in this chapter is implemented in a
completely event-based fashion. This event-based aspect is well-tailored to
the spiking data stream found with SNNs. Furthermore, this architecture is
conceived in a layer-level pipelined structure with computational resources
in each layer. The computational resource used with each layer is a neural
processing unit capable of processing a number of logical neurons belonging
to a single layer. These two aspects, event-based computing and pipeline
structure, when combined together in the same hardware architecture ef-
fectively take advantage of the sparsity of spiking data. In addition to the
efficiency of the spiking computation found in IF neurons when compared
to perceptrons, the amount of operations in the network can be reduced in
SNNs due to the sparsity of spiking data. In figure 6.23, the amount of events
read per synapse in average per pattern of several SNNs and ANNs with the
same topology (with one hidden layer) is shown. For ANNs, obviously one
event is read per synapse since analog data is transmitted between neurons.
On the other hand, for SNNs, less data is used to do classification due to the
sparsity of spiking data.

FIGURE 6.23: A comparison between the number of events read
per synapse in SNNs and ANNs.
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In order to take advantage of this aspect, we must have computing resources
in each layer (pipeline) and use an event-based communication protocol to
propagate spiking events from one layer to another to the "terminate delta"
module in a short time. A spike, if it is sufficiently powerful, is able to prop-
agate from the first to last layer in 3 cycles. Assuming that we have a TD = 4
and that 4 ’strong’ spikes arrive one after the other, the classification can be
established 4 cycles after the arrival of the first spike (3 cycles), which results
in a total of 7 cycles. This scenario is only possible with an event-based and
pipelined architecture, ensuring a path from input to output for strong spikes
and a communication protocol of events from layer to layer.

Spike generation influence : towards EBS

In the current architecture, we use an input spike generator to transform ana-
log data into trains of spikes. This module is essential to process such data
provided from the classical sensors found in most applications. As indicated
in the chapter 4, this module, in addition to representing an additional hard-
ware cost, influences the accuracy performance and computational efficiency
by affecting the spikes propagation. Therefore, clearly this is the part that
needs to be adjusted to fully benefit from the sparse nature of spiking data. To
do this, two solutions are possible: either , as it is done in this thesis, continue
to optimize the generation of spikes to get closer and closer to temporal cod-
ing; or by adopting an event-based sensor that is naturally characterized by
delivering sparse data (Delbrück et al., 2010). In contrast to classical cameras,
which output a succession of discrete frames, an Event-Based Sensor (EBS)
emits a continuous flow of events: each pixel outputs a spiking event when-
ever an edge crosses its receptive field. In other words, an EBS sensor outputs
a flow of spikes representing the movement happening in its vision field.
Moreover, Farabet et al., 2012 have shown that a fully event-based frame-
free processing flow would bring input-to-output pseudo-simultaneity, that
is, real-time processing ability. Thus, we expect that SNNs combined with
asynchronous sensors would be very well suited to embedded artificial in-
telligence for real-time video recognition and classification.

Pooling Processing Unit

As we have seen in the results section, the pooling layers were not present in
the SNNs that were synthesized. We replaced these layers by using a stride
in the convolutional layers. In fact, the PoolPU, presented in the section 6.3,
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uses two memory blocks: one to store the number of spikes received by the
most active synapse; the other to store the number of spikes received by
each synapse. These two parameters are then used to determine the most
active synapse to be the maximum input of the pooling node. However, this
method is not the most optimal solution and including it in the current archi-
tecture would bias the results. It is planned to first implement a simplified
version of pooling proposed in Vincent Lorrain’s thesis (Lorrain, 2018) which
is much less expensive in memory and then synthesize both versions to com-
pare their performances.

6.7 Conclusion

The SNNs are spatio-temporal algorithms that are characterized by event-
based computing with a very sparse data processing. In this chapter, based
on these two aspects and on the conclusions of the previous chapters, we
have designed an architecture dedicated to SNNs (convolutional and Fc-
based classifiers) and adapted to event-driven computation of the extremely
sparse data. Such an architecture allows a hardware acceleration of the infer-
ence phase of spiking CNNs, while being able to be configured from several
parameters such as: network topology, neural coding, data encoding preci-
sion, etc. For benefiting from the spatio-temporality of SNNs, we have se-
lected an event-based communication and a layer-level pipeline structure.
Event-based communication allows for a coherent computation both tempo-
rally and spatially, i.e. spikes are processed according to their arrival order
(time) and by the appropriate neurons that are located at specific locations
in the network (space). The choice of the layer-level pipelined structure is
adopted to ensure an input-output data-path that accelerates the classifica-
tion by performing fewer computations and thus taking advantage of the
sparse nature of spiking data. This system could be improved by moving to
a fully event-based system with EBS input sensors leading to the removal of
the spike generator. Such a solution appears to be very promising because it
would provide a fully bio-inspired system.
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Chapter 7

Conclusion

7.1 Restatement of the objectives

In this thesis, we have studied spiking neural networks and neuromorphic
computing to achieve our objective of designing a neuromorphic hardware
architecture for processing embedded AI applications, that respects the fol-
lowing criteria in terms of configurability, programmability, scalability and
genericity. Where:

— configurability : no dependency of the architecture on a specific appli-
cation but can be configured for any application;

— programmability : this means that the SNN hardware architecture is
programmable using any machine learning framework;

— scalability : depending on the application and the available hardware
resources, the architecture adopts the suitable neural coding schemes
and architectural models;

— genericity : the architecture must have the ability to include any feed-
forward neural network topology with different sizes and types;

To achieve these objectives, we must also implement a design flow for the ex-
ploration and implementation of neuromorphic architectures that are adapted
to embedded systems.

7.2 Summary and review of the work done

Now that we have restated the objectives, it is time for a synthesis of the
thesis chapters.
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First, we started the manuscript with an introduction chapter (chap. 1) that
presented the context, the objectives and the contributions that are expected
from this thesis.

In chapter 2, we have reviewed the state-of-the-art describing the generalities
on neural network models and on the neuromorphic architectures that were
used as a basis for selecting some technical options such as the neural net-
work family, the neuron model and the hardware target. In this context we
have chosen to use IF neuron-based SNNs because of their computational ef-
ficiency and compatibility with embedded systems. For the training of these
neural models, we have selected the ANN-SNN conversion approach while
keeping the option to switch to another training technique such as off-line
spike-based learning or STDP. The reason for this choice was that, when we
started the thesis, this conversion approach was the most mature approach
and that the "N2D2" tool facilitated the training step using this method. In
order to reduce the energy consumption of the SNN during a hardware de-
ployment, we have also explored various methods of neural information cod-
ing. For the hardware implementation, we targeted the FPGA because it fits
our reconfiguration, programmability and exploration objectives. In addi-
tion, we analyzed different architectural settings for computing and memory
distribution.

Next, we presented in chapter 3 a design flow framework for the exploration
of neuromorphic hardware. In addition, we provided analytical results esti-
mating the hardware cost of some architectural models for implementing the
SNNs in hardware. Actually, the results showed that the latency and surface
area of SNN architectures are strongly influenced by the computing paral-
lelism and that the target’s memory capacity is a limiting factor in the design
of such systems.

In chapter 4, different neural coding schemes for spike generation with SNNs
have been explored. The aim of this exploration was the selection of an ef-
ficient neural coding strategy that is suitable for low-power embedded sys-
tems, by performing classification tasks with a state-of-the-art accuracy while
minimizing the quantity of spiking events. For this purpose, rate-based cod-
ing and time-based coding have been set as references for accuracy and spik-
ing activity. First, rate-based coding is the most widely used technique with
SNNs to ensure state-of-the-art accuracy performance, but at the same time,
it involves the use of a huge quantity of spiking data. Second, time-based
coding is used as the reference for spiking activity since it is characterized by
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the use of a smaller amount of spiking events to encode data. From an en-
ergy efficiency point of view, this second reference is very interesting, how-
ever, in terms of accuracy, it does not reach the state-of-the-art level (using
ANN-SNN conversion approach). Therefore, these two references are used
to explore other models that aim to meet both activity and accuracy require-
ments. In this context, we confronted two novel methods, namely "First
Spike" and "Spike Select", with the rate coding "Jittered Periodic" method.
These two new methods are actually derived from “Jittered Periodic” with
the aim of reducing the activity in the SNN. The First Spike method drasti-
cally reduces the number of spikes and achieves high accuracy performance
on simple topologies and on MNIST dataset. However, when using more
complex topologies such as CNNs and on other datasets such as GTSRB, only
Spike Select and Jittered Periodic coding schemes reach the state-of-the-art
performance of machine learning. In addition, we have analyzed the activity
generated by these two methods and we have seen that Spike Select reduces
it drastically. Moreover, we observed a regulation in the distribution of the
spikes on the SNN layers with most of them generated in the first layers and
the remaining ones in the deep layers.

In chapter 5, we have addressed the low-level exploration level of the de-
sign flow framework presented in chapter 3. Within this part, we have de-
scribed at RTL level three different architectural models for SNNs : Fully Par-
allel Architecture, Time-Multiplexed Architecture and Hybrid Architecture.
These architectures have been then synthesised to get hardware cost estima-
tion results in terms of logic, register, memory occupation and latency. These
results have been used to determine the best implementation of SNNs for
embedded AI applications and serve for selecting the architectural choices
for the final accelerator design. The results on deep fully-connected SNNs
have shown that the Hybrid architecture makes a better latency and logic
occupation trade-off and this is due to its structure taking advantage of the
sparsity of spiking data. This architecture is actually combining both FPA
and TMA to process the SNN with a first part implementing a fully-parallel
manner and another part implemented in a time-multiplexed way. If we con-
sider the neural coding presented earlier, we observe that the distribution of
spiking data using Spike Select fits well this architecture, where the parallel
part will represent the first layer, where most of the spikes are condensed,
and multiplexed part will represent the deeper layers that have less data to
process. Therefore, from this chapter we conclude that both parallelism and
multiplexing are important to optimally use the hardware for implementing
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SNNs. Moreover, to achieve the scalability purpose, it is crucial to use time-
multiplexing which is the best solution to deal with large-scale SNNs.

Based on these two aspects, we have designed an architecture dedicated to
SNNs adapted to calculation based on very rare data events. This architec-
ture allows hardware acceleration of the inference phase of spiking CNNs,
while being parameterizable by: the network topology, the neural coding,
the data encoding precision, etc. To benefit from this spatio-temporality, an
event-based communication and a layer-level pipeline structure has been se-
lected. The event-based communication allows a coherent computation both
temporally and spatially, where spikes are processed according to their ar-
rival order and by the appropriate neurons located at specific positions in the
network. In addition, the layer-level pipelined structure ensures an input-
output data path that allows for faster classification by performing fewer
computations to benefit from the sparse nature of spiking data.

7.3 Limitations and future directions

The conclusions of this thesis were: the use of the Hybrid Architecture com-
bined with Spike Select coding method makes an adequate resource and
latency trade-off for embedded AI; second, time-multiplexing is the archi-
tectural model that is fitting the implementation of realistic and large-scale
spiking neural networks. Thus, in the last part of the thesis, we have imple-
mented an event-based time-multiplexed architecture for spiking CNNs.

Several limitations have been faced during this thesis both in the neural and
the architectural models. In the neural coding exploration step, we have seen
that the spike generation influences the amount of spiking data but this may
decrease the accuracy of the SNN. Where in some cases we must process
more spikes to increase the accuracy. Despite the fact that we reduce the
number of spikes when using Spike Select instead of Jittered Periodic, we are
still emitting high numbers of spikes.The reason for this limitation is prob-
ably the unsuitability of the conversion method that is used for training the
SNNs. In fact, this method is more adequate with rate-based coding where a
lot of data is generated in order to have SNNs as efficient as the ANNs. One
possible solution is to investigate the use of other training methods that are
spike-based. For example, to build and train the SNNs we can use the S2Net
framework (available in open source online at S2Net).
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Concerning the hardware implementation of the SNNs, two memory-related
limitations have been observed: the storage of the neurons’ internal poten-
tials and the memory required to implement pooling layers. Due to the tem-
poral aspect of spiking data, the input spikes of a given neuron arrive at
different dates, whenever a spike is coming the neuron is updating its in-
ternal potential. Therefore, this internal potential must be stored during the
whole operation of the architecture and cannot be reused by another neu-
ron, like with ANNs, where the neuron does its computation in one time.
Therefore, when we consider spiking CNNs a memory with a size equiva-
lent to the size of the output feature maps of all the layers is permanently
required. This limitation must be investigated in future works in order to be
able to deal with deep neural networks like ResNet. The other hardware lim-
itation concerns pooling layers, where as mentioned in chapter 6, it is needed
to determine the most spiking input synapse of pooling node the activity of
each input synapse must be registered because of temporality of the spik-
ing data. To overcome this limitation, Lorrain proposed a simplified pooling
node to implement a max pooling with a reduced memory usage (Lorrain,
2018). A short-term perspective concerns the integration of this pooling node
to PoolPU presented in chapter 6 to extend the presented results to CNNs
with pooling layers instead of just using a stride instead.

An additional perspective would be to upgrade the architecture in order to
support different levels of parallelism and not be limited to the current hy-
brid architecture choice with a one-layer fully parallel layer. The idea is to
exploit different degrees of parallelism both at network level, with from one
layer to several layers being parallel, and at the layer level, with partial par-
allelism instead of either time-multiplexed (NPU) or fully-parallel (Neural
Core). When this perspective is completed, it would be time to evaluate more
accurately the energy consumption of the architecture directly on the target
chip. Then finally confront this architecture dedicated to SNNs with the oth-
ers that are based on ANNs (such as (Carbon et al., 2018)). Moreover, a possi-
ble improvement of the proposed hardware architecture would be moving to
a fully event-based system with input data coming from an Event-Based Sen-
sor (EBS) and thus remove the spike generator and thus having a complete
bio-inspired embedded AI system.

Finally, these different perspectives would allow us to practically evaluate
our architecture on realistic application contexts such as autonomous vehi-
cles with Renault or satellite systems with Thales.
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