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Introduction 
 
Sediments contain a range of fine particles that settle at the bottom of a body of water. 
They principally contain clay, sand, silt, and other fractions such as organic matter 
(OM) from the decomposition of plants and living organisms. Sedimentation induces a 
gradual decrease in the depth of navigation channels. The accumulation of sediments 
in large ports, especially in their berthing and manoeuvring areas, requires frequent 
dredging. Therefore, large quantities of sediment must be managed for the 
maintenance of waterways and harbour activities.  

Nowadays, human interventions impact the natural dynamic of sedimentation, 
considerably affecting ecosystems. With the rapid growth of industry worldwide, the 
annual accumulation of sediments has grown to hundreds of millions of cubic metres 
per year and is expected to increase in the coming years. Historically, dredged 
sediments were subjected to disposal at sea or simply relocated on land. Over the last 
few decades, regulation has become increasingly strict (OSPAR Convention, 2009), 
(London Protocol, 1996) concerning the disposal of sediments at sea or storage on 
land because of an increased number of polluted sites, incidents of contamination, and 
the scarcity of usable land (Suman Raj et al., 2005). Industrial and urban activities are 
responsible for the emission of hazardous chemicals to waterways due to the waste 
produced from mining, chemical industries, municipal sewage, agriculture, etc. 
Sediments are known to be a sink for different types of contaminants (toxic heavy 
metals (HM), TBT, PCB, PHC, mineral oils compounds, and organochlorins (Apitz, 
2010)). The pollutants tend to accumulate on the sediment particles. The disturbance 
or resuspension of sediments presents a source of toxic compounds to the 
environment and a risk for marine ecosystems and human health. Today, 
contaminated dredged sediment is considered as a waste and is classified in the 
European List of Waste by the Commission Decision 2000/532/EC. In Europe 
approximately 100-200 million m3/year of contaminated sediment can be produced and 
it requires an appropriate management strategy from international and local authorities 
and regulators (SedNet, European Sediment Network).  

Various remediation technologies are available for polluted sediments including both 
in-situ and ex-situ methods. Ex-situ applications include thermal treatments, washing, 
etc. In-situ applications include different capping solutions, the use of sorbents, 
solidification/stabilization (S/S), and biotechnological approaches (Akcil et al., 2015).  

The current study focuses on the use of the S/S remediation technology using 
cementitious materials for the treatment of genuine contaminated sediment. The S/S 
method was demonstrated to be a cost-effective solution to achieve the necessary 
engineering properties for the reuse of the treated materials and to encapsulate 
contaminants. The most common binding agents in S/S practices are Ordinary 
Portland Cement (OPC) and lime (Spence & Shi, 2005). However, nowadays there is 
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a strong demand for the sustainable management of waste materials. The production 
of OPC requires a high consumption of raw materials, energy, and moreover it emits 
1 tonne of carbon dioxide for each manufactured tonne of Portland cement. In order to 
reduce the carbon footprint of clinker production, there is a growing body of research 
that recognises the importance of the use of materials with a considerably lower 
emission factor. The current study investigates the application of ground granulated 
blast furnace slag (GGBS) for the treatment of a contaminated sediment. GGBS is a 
by-product of pig iron production in a blast furnace: the liquid molten slag is cooled and 
turned into a granulated material presenting latent hydraulic properties. It consists of a 
depolymerised calcium alumina-silicates amorphous structure with some low-
crystallinity phases from the mellite group (Walkley & Provis, 2019).  

It is now well established by a variety of studies that GGBS significantly improves the 
sulfate and chloride resistance of concrete, shows a significant reduction in 
permeability through reducing pore size and increasing density, as well as increases 
the ultimate strength with the replacement of OPC with GGBS (Mahedi et al., 2018; 
Özbay et al., 2016; Shi & Qian, 2000; Thomas et al., 2012). Moreover, GGBS can 
incorporate and retain heavy metals in hydration products such as C-S-H and 
hydrotalcite. However, despite the use of GGBS as a major supplementary 
cementitious material for more than a century (Yuksel, 2018), and growing research 
interest in alkali-activated GGBS within the past decade, there is little published 
research on the application of GGBS-based formulations in the field of 
Solidification/Stabilization of contaminated sediments.   

In order to assess the effectiveness of GGBS-based binding agents in the solidification 
of sediment and stabilization of contaminants, a sediment originating from the Dublin 
Port, Ireland was used in this study. The Dublin port is situated on the estuary of the 
River Liffey which crosses the city of Dublin and between the Great Wall and the North 
Bull Wall before entering Dublin Bay (Fig. 1). A capital dredging campaign is planned 
as a part of the Alexandra Basin Redevelopment (ABR) Project in the area to improve 
ship navigation (from -7,8 m to -10 m). Different types of works are planned within the 
Alexandra Basin such as the construction of new quay walls and structures. It is 
therefore proposed by port authorities to improve the engineering properties of the 
dredged material from the Alexandra Basin through S/S treatment in order to reuse it 
to fill and seal Graving Dock N2 and to an extent Alexandra Quay West.  
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Fig. 1 Proposed works areas within the Alexandra Basin and Navigation Channel & Disposal Site 
(www.housing.gov.ie) 

 
This study has several main objectives in order to valorise the contaminated sediment 
using S/S:  
- to characterize the sediment matrix through the range of available techniques; 
- to define an appropriate GGBS-based formulation, considering different types of 
activation, for the treatment of the Dublin Port sediment;  
- to assess the engineering properties of the GGBS-based mixtures required for the 
project; 
- to explore the mechanisms responsible for the mechanical performances of GGBS-
treated sediments;  
- to examine the mobility of trace elements from the treated sediment according to 
standardised leaching tests;  
- to investigate the mechanisms of stabilization of heavy metals within GGBS-based 
formulations.  
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Outline of the dissertation 
 
This dissertation is composed of five themed chapters.    
 
This study first gives an overview of the relevance of the management of dredged 
material and focusses on European legislation. Then the sediment’s geological origin 
and composition are discussed in general terms, revealing the complexity of the 
sediment matrix from the point of view of its potential treatment. Chapter I identifies the 
different toxic heavy metals occurring in sediments, their sources and chemical 
speciation, as well as factors affecting their mobility. The chapter reviews different 
remediation strategies for the treatment of contaminated sediments with particular 
focus on the Solidification/Stabilization method. The main properties of OPC and 
GGBS-based hydraulic binders are reviewed as well as their use as binding agents in 
recent S/S practices.  
 
In Chapter II, the range of experimental tools applied in this study are presented to 
characterize the Dublin sediment and examine the material after S/S. The 
mineralogical composition and chemical properties of the Dublin sediment are 
compared to the sediment which originated from the Gothenburg Port, used in this 
study in order to investigate the effectiveness of binding agents applied to sediments 
having different natures. The total amount of major and trace elements is assessed 
through the total attack procedure. Standardized techniques used to estimate the 
effectiveness of binding agents are described in this chapter, and more sophisticated 
tools (XANES, NMR, etc.) are presented which were used to investigate the 
mechanisms of the S/S process using GGBS-based binders. 
 
The third chapter is concerned with the solidification process of the treatment. First, 
different types of GGBS activation were applied in order to obtain the necessary 
strength. The choice of an appropriate binder for the Dublin sediment treatment was 
made based on the results of the strength evolution over 6 months of storage. Then 
the chosen GGBS-rich binder was compared to the OPC treatment through 
mineralogical, shrinkage, and microstructural analysis. In the sections that follow, the 
impact of different parameters on the compressive strength development was 
considered. Therefore, the next part of the chapter compares the compressive strength 
development of sediments having different origins. Further, the clay and organic 
fraction of the sediment were considered separately in order to get a deeper 
understanding of the mechanisms governing the solidification process. Finally, the role 
of the level of dispersion of the sediment and clay fabric on the evolution of 
compressive strength was examined with the help of rheological and zeta potential 
measurements. 
 
After investigating the impact of major sediments constituents on the solidification 
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process of the sediment, the impact of heavy metals was examined. Chapter IV 
presents the study of the impact of Zn, Cu, Cd, and Ni on the early hydration kinetics 
of the Portland cement binder (OPC), ground granulated blast furnace slag binder 
(GGBS) activated by OPC, and the supersulfated cement (SSC). The heavy metals in 
the form of nitrate salts were used for the considered simplified model. Hydration heat 
evolution of the binders with and without HM was assessed through isothermal 
calorimetry. The main hydration products were analysed through XRD after 24 hours 
and 7 days. The NMR investigation was conducted at long term to assess the changes 
in the formation of amorphous products after the addition of HM.  
 
Finally, the fifth chapter focuses on the effectiveness of GGBS-based binders to reduce 
the mobility of heavy metals after S/S treatment. The first part of the chapter provides 
the results of the batch leaching test evaluating the stability of the considered toxic 
elements within the matrix of the treated Dublin sediment. Moreover, an X-ray 
absorption spectroscopy (XAS) investigation was performed for the Dublin sediment 
and the sediment-binder system to observe changes in the speciation of Cu and Zn 
after treatment. The 4-step sequential extraction procedure was applied to the raw 
sediment and the sediment mixed with the OPC and GGBS-based binders to 
investigate the repartition of HM in different sediment fractions before and after S/S. A 
study on the speciation of Ni and Cd in the pure OPC and GGBS-rich binders was 
conducted using XAS.  
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I.1! Introduction 

 
The chapter aims to provide the bibliographic information necessary to understand the 
main mechanisms involved in the treatment of polluted marine sediments during the 
practice of Solidification/Stabilization (S/S). This literature review provides some 
important insights into the complex nature of multicomponent sediments as the main 
matrix for this study. The existing body of research on sediments suggests that their 
physicochemical characteristics are variable according to their origin, composition 
(such as clays minerals, organic matter, microbiota), etc., but they remain fairly stable 
in undisturbed environments. 
Changes in the biophysicochemical parameters of sediments during dredging 
operations and the application of the S/S remediation method have been observed in 
several studies. The factors influencing the physicochemical parameters of sediments 
such as pH, redox potential, salinity, etc. have been reported in previous studies. 
Depending on the given environment, these factors may vary, which has a significant 
impact on the mobility of toxic trace elements. 
This chapter provides an overview of the importance of dredging procedures and 
general information on the origin and composition of sediments, including the types of 
contaminants and their sources. Different types of remediation technologies are briefly 
presented in this chapter with special attention given to the S/S technique. Recent 
developments in the use of alternative binders for a range of applications have 
heightened the need to apply these materials as binding agents for S/S. The main 
properties of ordinary Portland cement and ground-granulated blast furnace slag as an 
alternative binder for the S/S method are reported in this chapter.  

 

I.2! Management of harbor sediments 
 

I.2.1! Defining dredging operations 
 
The accumulation of sedimentary inorganic particles and organic matter arises from 
natural processes and anthropogenic activities. The latter may contribute considerably 
to the rate of accumulation of sediments and their contamination by organic and 
inorganic pollutants from industrial sources located near ports, stormwater runoff, 
effluents containing heavy metals, pesticides, oils, etc.  
The term “dredging” describes the process of sediment disturbance by moving, 
extracting, transporting, or relocating the material from the bed of any waterway. This 
material is therefore specified as “dredged material” (DM). The dredging process can 
be divided between capital, maintenance, or remediation dredging.  
The dredging procedure has a crucial importance for maintaining the operability and 
economical effectiveness of harbors and waterways. Therefore, dredging actions 
cover many purposes – the removal of surplus sediment resulting from the transit of 
boats, extension of existing harbors, construction of new navigation channels, etc. 
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(Dede, 2018). The dredged material presents direct or indirect impacts on the 
environment depending on its volume, physicochemical characteristics, toxicity, the 
dredging method and disposal, dredging procedure duration, etc.  
The appropriate management of contaminated sediments becomes a big challenge for 
the port authorities because of an increase in polluted sites, and a range of complex 
political, economic, and technological issues.  
 
I.2.2! European management of sediments. Legislation. 
 
The total amount of dredged material in Europe can be estimated to be between 100 
to 200 million m3 per year (Subsed). In France, annual dredging reaches 40-50 million 
m3 of dredged sediments per year (Hayet et al., 2017). The dredged material in France 
has been subjected to stricter regulation since 2000 due to the environmental control, 
therefore specific tests are carried out regularly on the material after dredging. In 
Ireland, the volumes of dredged materials are relatively small compared to other 
European countries, around 0.64 million dry tonnes per year (Harrington et al., 2013). 
However, the dredging procedure is indispensable from the economical point of view 
– Irish ports and harbors regulate 99% of Ireland’s imports and exports by volume.  
Regarding the international regulation of dredging activities, they are maintained by 
three legal documents: 
 

•! The Convention for the Protection of the Marine Environment of the North-

East Atlantic (OSPAR), 1992. One of the main purposes of this convention, 
including its ecosystem approach, is described as follows: “the comprehensive 
integrated management of human activities based on the best available 
scientific knowledge about the ecosystem and its dynamics, in order to identify 
and take action on influences which are critical to the health of marine 
ecosystems, thereby achieving sustainable use of ecosystem goods and 
services and maintenance of ecosystem integrity” (OSPAR Commission | 
Protecting and conserving the North-East Atlantic and its resources, s. d.). In 
2009 OSPAR published new guidelines for dredged sediments characterization 
and management. 

•! The London Protocol, 1996 (updated London Convention - one of the first 
conventions that preserves the marine environment from anthropogenic 
activities). This protocol aimed to control and prevent marine pollution through 
regulating the dumping of waste material into the sea (adoption of “blacklist” 
approach – when dumping is prohibited due to environmental risks of hazardous 
material) (Convention on the Prevention of Marine Pollution by Dumping of 
Wastes and Other Matter, s. d.)  

•! The Barcelona Convention for the Protection of the Marine Environment 

and the Coastal Region of the Mediterranean, 1995. The main objective of 
the convention is to protect the marine environment through the sustainable 
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management of natural resources in order to reduce and control pollution 
(Barcelona Convention - Marine - Environment - European Commission, s. d.) 

 
In terms of local regulation, different countries have their own relevant legislation and 
directives for the management of dredging procedures. Here is a brief list of some 
legislative framework in Ireland (Harrington et al., 2013), which is included considering 
that the sediment investigated in this study was dredged in the Dublin port:  
 

!! Dredging/Dumping at Sea Legislation:  
- Foreshore Act (1933–2005) – manage dredged material from country owned 
foreshore, control its extraction and placement on the foreshore; 
- Dumping at Sea Act (1996-2010) - under the responsibility of EPA (Environmental 
Protection Agency). This agency admits and allows the beneficial use of dredged 
materials as well as mandates the evaluation of alternatives to dumping at sea. 
 

!! Beneficial Use/Treatment Legislation: 
- Waste Management Act (1996–2013) - under the responsibility of EPA. The license 
is applied to waste material >100,000 tonnes and is implemented to all land-based 
activities managing waste disposal; 
- Article 5 of the EU Framework Directive 2008/98/EC on Waste - under the 
responsibility of EPA. This article permits to consider dredged material as by-product; 
- EU Waste Acceptance Criteria for landfills 2003/33/EC - under the responsibility of 
EPA. These criteria summarize different values (e.g. leaching test) for landfill materials.  
 

A)! Regulation of dredged sediments in Ireland 
 
The chemical composition of dredged material in Ireland is a decisive factor for the 
beneficial use of this material.  The presence of heavy metals, organotin compounds 
(TBT, DBT), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 
(PAHs) should be quantified due to their high toxicity and risk of bioaccumulation. For 
this reason, based on the OSPAR requirements, Ireland established its own ‘Action 
List’ of contaminants with corresponding ‘Action Limits’ AL1 and AL2 (Table I.1). If the 
concentration of a listed contaminant is above the threshold values (AL2), they should 
be treated before further beneficial use. 
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Table I.1 Ireland Action List of contaminants with threshold values AL1 and AL2 

Chemical Compound Units (dry 
weight) 

Lower 
level - 
AL1 

Upper level 
- AL2 

Heavy Metals 

Arsenic (As) mg/kg 9 70 
Cadmium (Cd) mg/kg 0.7 4.2 
Chromium (Cr) mg/kg 120 370 

Copper (Cu) mg/kg 40 110 
Lead (Pb) mg/kg 60 218 

Mercury (Hg) mg/kg 0.2 0.7 
Nickel (Ni) mg/kg 21 60 
Zinc (Zn) mg/kg 160 410 

Organic Contaminants 

PCB 28  µg/kg 1 180 
PCB 52 µg/kg 1 180 

PCB 101 µg/kg 1 180 
PCB 118 µg/kg 1 180 
PCB 138 µg/kg 1 180 
PCB 153 µg/kg 1 180 
PCB 180 µg/kg 1 180 

Sum PCB 7 µg/kg 7 1260 
Hexachlorcyclohexane µg/kg 0.3 1 

Hexachlorbenzene µg/kg 0.3 1 
TBT + DBT µg/kg 0.1 0.5 

Total Extractable 
Hydrocarbon µg/kg 1000 - 

PAH 16 µg/kg 4000 - 
 

B)! Regulation of dredged sediments in France  
 
In France there are corresponding contamination thresholds named N1 (AL1) and N2 
(AL2), that should be evaluated as a part of a complex physicochemical analysis before 
dredging operations begin. The Circular No. 2000-62 of June 14, 2000 regulates the 
application of these threshold values – if the contamination level is <N1, the dredged 
material is allowed to be managed by disposal at sea; if the contaminants 
concentration is between N1 and N2, additional investigations are required (depends 
on the project risks); when contaminant concentrations exceed N2, land-based 
disposal is necessary (treatment or re-use of sediments) (Fig. I.1). 
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Fig. I.1 Management of dredged sediments in France, (Hayet et al., 2017) 

 
The land-based disposal of dredged sediments is subject to Decree No. 2002-540 of 
April 18, 2002. First, it should be classified according to ‘inert / non-hazardous / 
hazardous’ material’. The sediment is considered as hazardous if it has at least one of 
the characteristics defined in the document (HP1-HP15, hazard criteria defined in 
Annex I of the Decree No. 2002-540). However, these criteria cannot always be 
considered appropriate in the case of sediment management in relation to the correct 
assessment of the sediment’s ecotoxicity. Therefore, the Office of Geological and 
Mining Research of France proposed new ecotoxicological tests for continental and 
marine sediments (analysis of heavy metals, PCBs, PAHs, TBT according to N1 and 
N2 and then specific leaching tests of acute toxicity, chronic toxicity, etc.) (Hayet et al., 
2017), (Kribi, 2005).  
The Decree of 12/12/2014 manages landscaping, coastal engineering and 
construction product applications of possible valorisations of sediments in France. 
These applications require a special examination of the physicochemical 
characteristics of a dredged material before and after treatment (e.g. leaching test 
according to (NF EN 12457-2 - December 2002, s. d.)). Laboratory investigations and 
field studies may be required.  
 

C)!Comparison to the regulation of some other European countries  

Purposes fixed by international regulation of marine environment are common for all 
members (countries). At the same time, on the national level each country can proceed 
in its own way to achieve the sustainable management of dredging sediments, 
especially concerning waste and water legislation. For example, the threshold values 
of potential contaminants vary for some countries, based on local calculations and 
estimations of dangerousness. Table I.2 presents a comparison of threshold values for 
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dredged materials in different European countries. As can be seen from the table, 
Ireland and France present some of the most restrictive values for contaminant limits.  
 
Table I.2 Threshold values of contaminants in different European countries, (Hayet et al., 2017) 

 
 
Moreover, local legislation for the management of dredged materials which are 
classified as “hazardous waste” varies. In France there are no existing value-giving 
applications for hazardous materials compared for example to the Netherlands, where 
under certain conditions “hazardous” sediments can be valorised as a specific material 
based on the physicochemical characteristics of the dredged material and its final 
environmental impact after project realization. Furthermore, for some countries such 
as the Netherlands and Belgium, the most important contaminant values are the 
leached values rather than the total contaminant content in dredged sediments. This 
means that these countries are more focussed on the final material – if the 
contaminants are stable (leaching tests are required) in the material produced based 
on hazardous waste, this material can therefore change its status, meaning it is no 
longer classified as a hazardous material. (Hayet et al., 2017) and (Kribi, 2005) in their 
studies concluded that today in France there is a great demand and expectations 
concerning the relevant regulation of sediment valorisation (land managed sediments). 
Figure I.2 below shows a schematic representation of the French regulation of dredged 
material.  
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Fig. I.2 Sediments Land-based management in France (Regulation scope), (Hayet et al., 2017) 

 
I.2.3! Existing projects and hierarchy for DM management 
 
I.2.3.1! Projects for DM in France and Ireland  
 
The most important dredging sites in France are Port of Nantes St-Nazaire (10 
MM.m3), Port of Bordeaux (7 MM.m3), Port of Rouen (5 MM.m3), Port of Le Havre (1,5 
MM.m3), Port of Dunkirk, and Port of Marseille. Different types of inland management 
of DM in France were carried out such as land improvement, filling material for forestry, 
landfill capping, and beach nourishment.  
(Harrington et al., 2013) reported the different types of applications and practices 
performed to date in their guidance on the beneficial use of sediments in Ireland. 
Among them are beach nourishment projects, landfill cover (e.g. Dublin Royal Canal 
Dredging Project), coastal protection (e.g. breakwater constructions in Ireland), 
concrete manufacture (use as a raw material as aggregates for concrete manufacture, 
Caladh Mor), etc.  
 
I.2.3.2! Hierarchy of dredged materials  
 
(Apitz, 2010) in her article discusses the waste hierarchy of dredged materials (Fig. 
I.3) as an important factor to help decision makers adopt the most relevant waste 
treatment technology for sustainable management. She proposes the following 
definitions for the main classifications of the dredged materials hierarchy: 
 

!! Pollution Prevention: different strategies can be examined to prevent pollution 
in harbors – the reduction or refusal of dredging procedures as well as 
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controlling contaminant sources. Some approaches may help to avoid or reduce 
the dredging footprint, for example by using 2D or 3D site surveys in order to 
represent a more detailed contaminant distribution, to carry out more accurate 
and rigorous dredging procedures, or to reduce the volume of dredged material. 
 

!! Re-use : dredged material can be re-used depending on its contaminant 
concentration, therefore depending on the local or other level regulations. One 
of the main criteria is that sediments must stay in the same form as before 
treatment (e.g. sorting, cleaning). Dredged sediments may be relocated to 
maintain sediment balance in the environment without any risks, so this dredged 
material will be classified as re-used.  
 

!! Recycling : this strategy describes the use of dredged sediments in other forms 
than the original state – for example it can be used as a raw material for 
aggregate production, brick manufacturing, ceramics, etc. Recycling strategies 
are usually more expensive than disposal strategies, however contaminated 
sediments can present an attractive approach for construction materials 
production due to transport, energy, and resources economies.  
 

!! Recovery : the recovery strategy describes the beneficial use of contaminated 
or clean waste material if “biomass or energy is recovered” (e.g. materials that 
can be used as fuels).  
 

!! Disposal : this option is on the bottom of the waste hirarchy pyramid and is 
considered as the last resort for contaminated dredged material.  Disposal of 
sediments may require additional monitoring due to possible release of 
contaminants over time as well as may be restricted by additional space needs. 
Among categories listed by (Apitz, 2010) are uncontrolled marine diposal (not 
for contaminated sediments), confined disposal facilities, disposal at sea with 
capping with clean sediment, disposal in special geotextile bags or in 
impermeable basins. 
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Fig. I.3 Hierarchy for Prioritising DM Management (adapted from (Directive 2008/98/EC on waste 

(Waste Framework Directive) - Environment - European Commission))  
 

I.3! Origin and composition of sediments 
 
I.3.1! Geological origin of sediments 
 
The composition of sediments is highly dependent on the geology of the basin, 
topography, climate, and vegetation of a region. It is a highly dynamic and 
heterogeneous system (Schulz & Zabel, 2006). Regarding the geological provenance 
of sediments and their constituents’ formation, there are four main groups that can be 
distinguished: 

:! Lithogenous (terrigenous) sediments that come from crushed and dissolved 
continental rocks (through chemical and physical weathering taking into account 
climatic changes, biological activity, etc.); the geographical location (relief, 
surface area, land-use) plays a considerable role in the particles transport and 
disposal; eolian transport plays a non-negligible role in the sediments’ transport 
– the wind transports the fine fraction of sediments – clays and silts; 

:!  Biogenous sediment – the part of sediment that consists mostly of calcareous, 
siliceous, or phosphatic minerals which were formed in the biosphere. Some 
compounds of iron, aluminium, manganese, calcite, Mg-Calcite, or aragonite 
were formed by different groups of marine organisms (plankton, benthos). 

:! Hydrogenous (Authigenic) sediment – represents the new formations by 
precipitation, alteration of particles in solution or within the sediment; 

:! Anthropogenic sediments are formed due to human activity – port activities and 
urban areas produce industrial (mining industry, chemical industry, construction 
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etc.), agricultural wastes containing the organic matter, pollutants from 
wastewater and sewage treatment. 

I.3.2! Composition of sediments  

 
A knowledge of a sediment’s chemistry, meaning its organic and inorganic 
constituents, gives an understanding of the chemical reactions that may take place 
from the point of view of contamination of the environment. These reactions may alter 
the solubility, mobility, and bioavailability of pollutants in waters (Sparks, 2002). 

A sediment’s matrix consists of three main phases (Fig. I.4):  

- Inorganic phase,  
- Organic phase,  
- Liquid phase. 

Some amount of trapped air (hydrated gases) can be also found in sediments 
(Gamsonré, 2014). 

 

Fig. I.4 Main components of sediments (after (Cao et al., 2010)) 

I.3.2.1! Inorganic phase 
 

The inorganic constituents of sediments possess different physical and chemical 
properties and can differ significantly in size – from clay’s fine fraction (<2μm) to gravel 
(>2 mm) and rocks. (Sparks, 2002) distinguished primary and secondary minerals 
based on their formation – primary minerals were not transformed chemically since 
their deposition and crystallization from the liquid state (lava); these minerals are sands 
(particle diameters between 0.05 and 2 mm) and silts (particle diameters between 
0.002 and 0.05 mm). When the primary mineral’s structure was affected by weathering 
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(by dissolution), secondary minerals were formed. These minerals are commonly 
called aluminosilicates. They are clay minerals such as kaolinite, montmorillonite, 
oxides such as gibbsite, sulfurs, carbonate minerals, etc.  

I.3.2.1.1! Clays 
 

A large amount of chemical reactions are impacted by sediments’ secondary minerals. 
Clay minerals present a complex structure of tetrahedral and octahedral sheets. The 
linkage of one octahedral and one tetrahedral sheet forms a 1:1 clay mineral with an 
ideal formula of Si4IVAl4VIO10(OH)8. A 2:1 clay mineral presents the structure when two 
tetrahedral sheets are coordinated to one octahedral sheet – the formula is 
Si8IVAl4VIO20(OH)4. In the interlayer space there are individual cations or cations 
octahedrally bound with hydroxyls (e.g. chlorites).  

An isomorphous substitution phenomenon may take place during the formation of clay 
minerals. Depending on the cationic radius, different substitutions may occur. For 
example, in the octahedral sheet Fe2+, Fe3+, Mg2+, Ni2+, Zn2+, or Cu2+ can substitute for 
Al3+; or in the tetrahedral sheet Al3+ can substitute for Si4+ developing the charge 
imbalance compensated by cations (Sparks, 2002). 

Figure I.5 shows the main structural schemes of secondary minerals. Here are some 
well-defined clay minerals and their properties: 

1:1 Clay " Ex. Kaolinite. Its structure has a silica tetrahedral sheet bonded to an 
aluminium octahedral sheet assembled by hydrogen bonding; the ideal chemical 
formula is Si4IVAl4VIO10(OH)8; no interlayer bonding is possible for a 1:1 clay mineral.  

2:1 Clay " Ex. Montmorillonite. The cations for the tetrahedral sheet are Si4+ and for 
the octahedral sheet the cations are Al3+, Fe2+, and Mg2+ with a chemical formula M0.33, 
H2OAl1.67(Fe2+, Mg2+)0.33 Si4O10(OH)2 where M indicates a metal cation in the interlayer 
space between sheets, being either Na+, Ca2+ or Mg2+ as the dominant cations. 
Montmorillonite clay is characterized by the presence of a big amount of water 
molecules between the sheets. This makes this type of clay mineral sensitive to 
swelling or shrinkage. Montmorillonite presents a high cation exchange capacity and 
high specific surface.   

2:1 Clay " Ex. Illite. The chemical characteristics of illite are close to mica minerals 
and smectite minerals; one-fourth of the tetrahedral atoms are Al3+ and illite has more 
Si4+ and Mg2+ than muscovite. Therefore, the negative charge of the isomorphous 
substitution is balanced by the K+ cations in the interlayer space, as well as by Ca2+, 
Mg2+, or NH4

+, but less often. This type of clay is non-expanding and has a low CEC 
capacity (Sondi et al., 1996).  



Chapter I:  Literature review 26 

2:1:1 Clay " Ex. Chlorite. Chlorites are characterized by the non-expanding nature of 
2:1 clays when the charge is compensated by brucite (Mg hydroxide) or gibbsite-like 
(Al hydroxide) minerals, that are often positively charged.  
 

 
Fig. I.5 Structural scheme of soil minerals, (Schulz & Zabel, 2006) 

 
I.3.2.1.2! Oxides, hydroxides, oxyhydroxides  
 
Iron, aluminium, and manganese oxides play a crucial role in the chemistry of 
sediments regarding heavy metal mobility. Gibbsite (Al(OH)3) and boehmite (γ-AlOOH) 
are the most common Al-oxides naturally present in soils and sediments. For Fe 
oxides, goethite (FeO(OH)) is one of the most prevalent and thermodynamically stable 
minerals and takes the form of needle-shaped crystals. The other common Fe oxide is 
hematite. Some heavy metal cations can be found in Fe oxides - Ni, Ti, Co, Cu, Zn or 
Fe can be isomorphically substituted by Al, Mn, and Cr (Sparks, 2002). 
 
I.3.2.1.3! Carbonates  
 
Carbonate minerals are much more soluble compared to siliceous minerals. The most 
often encountered carbonates in soils are calcite (CaCO3) and magnesite (MgCO3). 
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Due to their instability, they can be converted to dolomite (CaMg(CO3)2), ankerite 
((Ca,Fe,Mg)2(CO3)2) or siderite (FeCO3) (Sparks, 2002). 
The solubility of carbonates partially controls the pH of the sediment’s solution due to 
the buffer effect. Therefore, at some concentration of carbonates, the pH of the 
sediment can be slightly alkaline (∼8) and some heavy metals may precipitate in the 
form of carbonates (hydroxycarbonates) – for example the zinc cation may precipitate 
in the form of  ZnCO3 or Zn5(OH)6(CO3)2 species and copper in the form of malachite 
(Cu2(OH)2CO3) or azurite (Cu3(OH)2(CO3)2) (Cazalet, 2012; Kribi, 2005).  
 
I.3.2.1.4! Sulfurs 
 
Sulfurs in sediments originate from the reduction process of sulfates ions in an 
anaerobic medium (Couvidat, 2016). The reduction reactions of sulfates in the 
sediment matrix are controlled biologically through the action of sulfate-reducing 
bacteria in the presence of reactive organic matter and without oxygen, (1) (Cazalet, 
2012; Lesven, 2008): 
 

!"#$%&'( ) *%+
$, - #*, ) !#"%.

, ) #/        (1)      
 
The formation of sulfurs plays a key role in the mobility of some trace elements in 
sediments like Fe, Mn, Pb, Cd, Hg, Cu, As, and Zn. Depending on the chemical and 
microbiological environment within the sediment matrix, the different oxidation states 
for sulfur may occur - from sulfates (+VI) in the oxygenated water-sediment interface 
to sulfurs in the most reduced form (-II). According to (Lesven, 2008) the principal 
dissolved species of sulfur is HS- in the natural environment. Subsequently, there are 
several reactions than can take place – the formation of organo-sulfur compounds, the 
precipitation of iron sulfide (pyrite) or the complexation of heavy metals, (2), (3) (Billon, 
2001): 
 

                           01$/ ) #*, - 01* ) #/2                        (2) 
                      3$/ ) #*, - 3* ) #/,  (M-metals)            (3) 

 
During the dredging and dewatering process, inorganic sulfurs may undergo oxidation 
and further sulfate formation. For example in the case of the reaction of pyrite with 
oxygen, the pH decreases due to  the formation of sulfuric acid (4), (Gamsonré, 2014): 
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The formation of sulfuric acid can produce the reaction of this acid with carbonates. 
Consequently, gypsum formation occurs following reaction (5) (Gamsonré, 2014): 
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The further crystallization of gypsum may become an important issue for sediment 
recycling and the risks of swelling and expansion should be taken into account. In the 
case of the S/S method, an appropriate binder should be designed in order to avoid 
degradation over time due to volumetric changes.  
 
I.3.2.2! Organic phase 
 
The organic compounds of marine geochemistry present a complex environmental 
system that controls different important processes in sediments. The large structural 
variety of the organic compounds turns out to be an important challenge to be 
quantified and distinguished as different groups and components co-exist. Most of the 
molecules in organic matter (OM) form macromolecules, for example proteins and 
polysaccharides, that have to be disassembled into smaller structural units - amino 
acids and sugars (Emerson & Hedges, 2008).  
The organic structure is built up of carbon-linked substructures of single molecules, 
such as hydrocarbons that have only carbon chains with hydrogen adjuncts and are 
considered as one of the simplest organic molecules.  
Organic matter is divided into two main groups of substances: humic and non-humic. 
Non-humic material contains carbohydrates, proteins, peptides, amino acids, fats, 
waxes, and low-molecular-weight acids. These OM components are not very stable 
and can be easily transformed by microorganisms (Sparks, 2002). Humic substances 
(HS) are subdivided into humic acid (HA), fulvic acid (FA), and humin, which have 
different solubilities in different pH mediums. Fulvic acid and humic acid are soluble in 
alkaline media (characteristic of hydraulic binders) but not humin (Fig. I.6). Humic 
substances vary considerably in molecular weight as well as in size. According to 
(Piccolo, 1996; Stevenson, 1982) HS present as two- or three-dimensional 
macromolecules (Fig. I.7) that are interconnected and form a negatively charged 
surface from the ionization of acidic functional groups, for example carboxyls.  
 

  
Fig. I.6 Fractionation of soil organic matter, 

(Sparks, 2002)
Fig. I.7 Two-dimensional HA model structure 

(Piccolo, 1996; Stevenson, 1982)
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 In geochemistry the “biomarkers” method is used to determine the properties and 
provenance of natural organic systems. Regarding organic carbon compounds, the 
main biomarkers are proteins, lipids and carbohydrates in living organisms, and other 
biopolymers such as lignin and tannin from plants (Emerson & Hedges, 2008). 
Concerning the protein amino acids group, these compounds are some of the most 
abundant in marine biomass, having carboxyl (COOH), amino (CNH2), hydrogen, and 
R groups. In the range of neutral pH, the amino acid group will present the ionized 
forms of COO- and CNH3+. The next most abundant biomarkers are carbohydrates with 
the general formula (CH2O)n. Carbon sugars are monomeric units of carbohydrates, 
combining in oligo- or polysaccharides. The next group of biomarkers consists of lipids, 
assembles hydrocarbons, fatty acids, sterols, and alkenones families. Lignins and 
tannins form the next group of biomarkers which represent the phenol biopolymer as 
products of vascular plants.  
One of the types of marine organic matter is dissolved organic matter (DOM) which is 
a form of dissolved carbon in water. This phase contains mostly biopolymers and can 
be chemically or biologically degraded in the water column (Cazalet, 2012). As DOM 
presents a source of bioactive elements, it plays an important role in photochemical 
reactions, metals complexation, etc.  
 

I.4! Contaminants in sediments and their sources 
 

Toxic elements are widespread within coastal and estuarine sediments and make up 
part of the complex environmental chemistry of sediments nowadays. Heavy metals, 
polyaromatic hydrocarbons, organochlorines (such as PCBs), pesticides, etc. may 
present a considerable risk for aquatic life and human health. Due to industrialization 
processes developed through the last decades, the heavy metals level in sediments is 
more elevated than naturally occurring metals in sediment minerals.  
Trace elements (<0.1% in natural materials) are considered as toxic if they exceed 
concentrations presenting risks for living organisms. They include trace and heavy 
metals, metalloids, micronutrients, and organic contaminants (Sparks, 2002). The 
source of these elements can originate from natural material as well as from 
anthropogenic activities – industrial discharges, mining activities, pesticides, 
agriculture, and harbor activities (e.g. boat painting). 
Regarding the complexity and heterogeneity of sediment composition and chemistry, 
there is evidence of their strong impact on the bioavailability and fate of toxic elements 
in the environment. It can be found in the literature that the term “sink” is widely used 
to emphasize the great capacity of sediments to retain and stock metals. Pollutant 
mobility and bioavailability are strongly dependent on their chemical speciation. In this 
part of the literature review, some main pollutants and their chemical and mineral forms 
occurring in sediments will be considered. Unlike organic molecules, the main problem 
with inorganic contaminants is that they cannot be biodegraded, therefore heavy 
metals have a tendency to bioaccumulate (Couvidat, 2016). In this part of the review, 
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some toxic elements encountered in Dublin’s sediment matrix are considered, 
specifically their sources and behaviour. The pe-pH (Pourbaix) diagrams were 
calculated at standard ambient temperature and pressure (25°C; 101.325 kPa).  
 
I.4.1! Organic contaminants  

 

The environmental risks related to organic contaminants increased sharply through the 
last decades. Anthropological activities generate a high rate of organic pollutants from 
different sources:  industrial leaks and spills, improper application of pesticides, leaks 
from oil and chemical storage tanks, leaks from pipelines, accidents, spills during 
transportation, etc. (Snousy, 2017). The primary source of groundwater contamination 
is petroleum hydrocarbons from underground storage tanks. Different physical forms 
of organic contaminants are presented in Fig. I.8. Most organic molecules will be 
adsorbed to the soils and sediments surface due to their hydrophobic nature.  
 

 
Fig. I.8 Different physical forms of organic pollutants in soil (Snousy, 2017) 

 

  
Fig. I.9 Chemical structure of TBT(Cl) molecule 

 
In the aquatic medium, the most widespread organic contaminates are PAHs 
(polycyclic aromatic hydrocarbons), PCBs (polychlorinated biphenyls) and different 
organometallic compounds such as TBT (tributyltin chloride) (Fig. I.9). TBT compounds 
were accumulated in sediments due to their large use as anti-foulants until they were 
banned due to their high toxicity. They can induce disruption in the reproductive 
function in mammals, behave as hepatoxins, immunotoxins, neurotoxins, and 
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obesogens (Haydee & Dalma, 2017).  
 
I.4.2! Inorganic contaminants  

 

I.4.2.1! Zinc 
                                 
Zinc is considered as an essential element for many metalloenzymes and it can be 
very toxic for plants at high concentrations. Zinc is found in sewage sludge at high 
concentrations. Its provenance is often associated with industrial waste and metal 
factories. In harbor areas, zinc is applied on the submerged parts of boats as an 
antifouling agent/paint (Alzieu, 1999).  
Regarding the mineralogy of zinc in sediments, it is often combined with lead or copper, 
as well as cadmium (Burnol et al., 2006; Lesven, 2008). It can be readily adsorbed 
onto clay minerals, carbonites, or hydroxides which retards its desorption into the 
environment (Burnol et al., 2006). (Tessier, 1979) reported an important affinity of zinc 
to iron and manganese oxides according to the following order: 
FeO/MnOOH>carbonates> clays.  
Zinc is found in nature in the oxidation state of +2. The most abundant mineral forms 
of zinc are zincite (ZnO), zinc carbonate (smithsonite, ZnCO3), sphalerite, or zinc 
sulfide (ZnS), as well as silicates and mixed oxides of zinc and iron. Zinc sulfides are 
the main insoluble form of zinc precipitate that is formed in anaerobic conditions 
(Burnol et al., 2006). The different ionic species of zinc that can be found in soils are 
presented in Fig. I.10 (Burnol et al., 2006). 

 
Fig. I.10 Zinc pe-pH diagram of solid (left) and aqueous phases 

 
I.4.2.2! Nickel 
 
Different types of nickel minerals are found in the geochemistry of soils and sediments. 
They can be found in the form of oxides, carbonates, and silicates and are particularly 
abundant in the form of sulfides (vaesite (NiS2), millerite (NiS), and iron nickel sulfide 
(pentlandite, Fe,Ni9S8)) (Gamsonré, 2014). Nickel minerals are poorly soluble in 
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natural systems. Nickel salts can also occur in the natural environment and nickel 
chlorides, sulfates, and carbonates are more soluble than nickel oxide. The presence 
of nickel in the aquatic environment can be attributed to the natural phenomena of 
volcanism or forest fires, as well as to sources from human activities such as the metal 
industry and petroleum combustion (Alzieu, 1999), (Lesven, 2008).  
 

         
Fig. I.11 pe-pH diagram of predominance of solid nickel phase (left) and aqueous species of Ni (right) 

 
Nickel has an important affinity to iron oxides via adsorption (e.g. goethite), kaolinite, 
and organic matter (Gamsonré, 2014). However, it is readily exchangeable because 
of the attached hydrated nickel species on the surfaces of inorganic or organic phases, 
governed by the electrostatic forces through hydrogen bonding (Rinklebe & Shaheen, 
2017).   
In aquatic media, nickel is present only in the oxidation state of +2. In anoxic sediments 
nickel will precipitate with HS- to form nickel sulfides. In acidic or neutral conditions, 
the concentration of nickel is dependent on the solubility of solid carbonates (Fig. I.11).  
 
I.4.2.3! Cadmium 

 

 
Fig. I.12 Origin of cadmium pollution in the environment  
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Cadmium is abundantly present in the environment and is both highly toxic and 
carcinogenic. (Kubier et al., 2019) reported in his review that cadmium is one of the 
most mobile toxic elements. It can easily replace calcium in minerals and consequently 
human bodies due to the similar ionic size and chemical behaviour. The anthropogenic 
sources of cadmium are mining, the metal industry, the petroleum industry, textiles, 
etc. (Fig. I.12).  
Cadmium in nature is often associated with zinc and can substitute for Zn in sphalerite 
(ZnS) or smithsonite (ZnCO3). Some other cations can also participate in isomorphous 
substitution with cadmium – Ca, Fe, Zn, and Pb (Kubier et al., 2019). In the anoxic 
sulfurs environment, cadmium can be present as the metal sulfide mineral greenockite 
(CdS). Adsorption is the main mechanism of cadmium immobilization/retention – it can 
be adsorbed onto the clay minerals, iron or manganese oxides, carbonates, or even 
associated with organic matter and sulfide complexes (Burnol et al., 2006). The most 
stable cadmium phase in reducible media is CdS.  
When cadmium ions are present in oxidation conditions, the solubility will be controlled 
by cadmium carbonate (CdCO3) at neutral pH, by sulfates/hydroxides at slightly more 
alkaline pH, and cadmium hydroxides will predominate in highly alkaline media (Fig. 
I.13). In the aquatic environment, the free ion Cd2+ is the most abundant form of the 
hydrolysable cation.  
 

 
Fig. I.13 pe-pH diagram of predominance of solid cadmium phases (left) and Cd aqueous species of 

Cd (right)
 

I.4.2.4! Copper 
 

According to the (OSPAR Commission, 2016), the main sources of copper in the 
environment are the mining industry (∼18 million tonnes per year), chemical production 
(chlorides, sulfides, and oxides), and electronics production. In the marine environment 
copper originates from boat propellers or chemicals used for antifouling treatments. 
Once TBT compounds were forbidden as efficient antifouling agents due to their high 
toxicity, copper use in boat paints and biocides increased significantly. The main 
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copper minerals found in nature are chalcocite copper(I) sulfide (Cu2S) and copper iron 
sulfide (chalcopyrite, CuFeS2). Some oxide minerals such as cuprite (Cu2O), tenorite 
(CuO), and carbonate minerals such as malachite (Cu2CO3(OH)2) and azurite 
(Cu3(CO3)2(OH)2) can also be found (Cazalet, 2012).  
Different sediment phases may adsorb copper in natural conditions – Cu ions have a 
great affinity for organic matter, iron and manganese oxides, clays, and organoclay 
complexes. In aquatic media the oxidation state of copper is +1 or +2 depending on 
the physicochemical conditions of the environment. When copper is in the oxidizing 
medium, the main phases controlling its availability are carbonites or oxides depending 
on the pH (Fig. I.15). Copper sulfides will precipitate in the reducing environment in the 
presence of sulfurs (Fig. I.14).  
The toxicity of copper depends on its oxidation state and chemical form. According to 
(Alzieu, 1999) copper is more toxic in the oxidation state of +1. (Fairbrother et al., 2007) 
reported that for some marine species even 2µg/L of copper can be critical and, in 
some cases, lethal. 
 

 
Fig. I.14 pe-pH diagram of predominance of solid phases of copper 

 

 
Fig. I.15 pH dependant copper species 



Chapter I:  Literature review 35 

I.4.2.5! Arsenic 
 

Arsenic can be found in nature in different oxidation states (-3, 0, +3 and +5), 
meanwhile in the aquatic environment arsenic occurs mostly as oxyanions of trivalent 
arsenite (As(III)) or pentavalent arsenate (As(V)). Some organic forms can also be 
found in sediments when industrial pollution is high. Inorganic arsenic naturally occurs 
in groundwater; it is used in the processing of glass, pigments, textiles, paper, metal 
adhesives, wood preservatives, and ammunition (Arsenic). Inorganic arsenic 
compounds are considered to be highly toxic and carcinogenic.   
More than 200 As minerals have been identified – among them elemental arsenic, 
arsenides, sulfides, oxides, arsenates and arsenites (Smedley, 2005). Arsenic in 
minerals is often found to be associated with other metals and one of the most 
abundant is arsenopyrite (FeAsS). Arsenic mobilization is controlled by its association 
with oxide minerals – many studies were conducted on the adsorption of arsenite and 
arsenate onto hydrous ferric oxides, aluminium and manganese oxides, and 
adsorption on clays minerals due to their oxide-like character of edges, e.g. kaolinite 
and montmorillonite (Burnol et al., 2006). The stabilization of As is a highly pH 
dependent process.  
The reduction of iron oxides produced in anaerobic sediments is an important 
phenomenon for arsenic mobility - adsorbed or combined arsenic with hydrous iron 
oxides will be dissolved.  
 

 
Fig. I.16 Eh-pH diagram of aqueous arsenic species in the system As–O2–H2O at 25°C  

 
As speciation is highly impacted by the environmental conditions – pH and redox 
potential (Eh). As can be seen in Fig. I.16, the predominant species of As under 
oxidizing conditions and at high pH are HAsO4

2- and AsO4
3-.  
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I.4.2.6! Chromium 
 

Due to the ionic radii of trivalent chromium (Cr3+), it can easily substitute for Al3+, Fe3+, 
Ti4+, and Mg2+ in different minerals (e.g. peridotite, serpentinite, etc.) (Chrysochoou et 
al., 2016). Chromium (Cr) occurs in sediments from different anthropogenic activities, 
for example in wood preservation, cement production, leather treatment, and metal 
dipping. Two main chromium species are prevalent and stable in aquatic environments 
– trivalent Cr(III) and hexavalent Cr(VI). Cr(VI) pollution is an important issue due to its 
toxic and carcinogenic character. Moreover, hexavalent chromium is very mobile 
because it exists in the form of oxyanions Cr2O7

2-, HCrO4
-, and CrO4

2- and therefore 
the adsorption sites in sediments are limited (e.g. positive sites of iron and aluminium 
oxides at neutral pH) and they decrease with increasing pH (Alzieu, 1999; Billon, 2001; 
Gamsonré, 2014).  
Fe(II), organic matter, bacteria, and HS- may promote the reduction of Cr(VI) to Cr(III) 
in acidic environments. Conversely, the presence of manganese oxides as well as 
dissolved oxygen, nitrates, and sulfates favour the oxidation of Cr(III) to Cr(VI)  
(Gamsonré, 2014), (Burnol et al., 2006). 
Trivalent chromium is less soluble and more stable due to the formation of hydroxyl 
complexes Cr(OH)2+, Cr(OH)2

+, Cr(OH)3, and Cr(OH)4
- (Fig. I.17).  

 

 
Fig. I.17 pH-potential diagram of predominance for chromium species 

 
I.5! Factors affecting HM availability 

 

Sediments present a heterogeneous system of solid fractions (minerals, e.g. clays, Fe, 
Mn and Al oxides), organic matter, and liquid phase, and thus the mobility of 
contaminants varies significantly depending on the sediment composition and its 
physicochemical properties.  
Acting as a ‘sink’, sediments interact with contaminants according to different 
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mechanisms such as ion exchange, adsorption and desorption (Fig. I.18), 
complexation, precipitation and dissolution, oxidation-reduction, biological 
immobilization and mobilization, and plant uptake (Alamgir, 2016). The intermolecular 
interactions occurring between the solid and liquid phases in sediments can be 
summarized as follows (Kabata-Pendias & Pendias, 2001): van der Waals forces, ion-
dipole forces, hydrophobic and hydrogen bonding, ion and ligand exchanges, 
chemisorption, etc.  
According to (Kabata-Pendias & Pendias, 2001) the most important properties of soils 
influencing the release of trace elements and bioavailability are: Eh (redox potential)-
pH profile, CEC (cation exchange capacity), salinity, organic matter type and content, 
water, temperature, and micro- and mezobiota activities. Each component of the 
sediment system can contribute to the accumulation of trace elements and reduce their 
mobility and toxicity for marine organisms. Consequently, when environmental 
changes or some sort of disturbance occurs in the system (e.g. dredging of harbor 
sediments), the remobilization of contaminants may occur as a result of desorption or 
chemical transformation of contaminants into more mobile and toxic forms (Eggleton 
& Thomas, 2004).  
 

 
                Fig. I.18 Various mechanisms of sorption of an ion at the mineral/water interface: 
(a) adsorption of an ion via formation of an outer-sphere complex; (b) loss of hydration water and 
formation of an inner-sphere complex; (c) lattice diffusion and isomorphic substitution within the mineral 
lattice; (d) rapid lateral diffusion and formation either of a surface polymer, or adsorption on a ledge 
(which maximizes the number of bonds to the atom) (e). Upon particle growth, surface polymers end up 
embedded in the lattice structure (f); finally, the adsorbed ion can diffuse back in solution, either as a 
result of dynamic equilibrium or as a product of surface redox reactions (g); (Sparks, 2002). 
 
I.5.1! Influence of pH  
 
Previous research has demonstrated the impact of pH on the mobility of the inorganic 
contaminants in the sediment matrix. A sediment’s pH is controlled by the biological 
activities and buffering capacities derived from the carbonate ion balance (CO3

2-

/HCO3-..), exchangeable ions, clays, and oxy- hydroxides. The oxidation environment 
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can induce the transformation of sulfides into sulfates and a decrease in pH (Cazalet, 
2012; Kribi, 2005).  
The surfaces of sediment minerals react over different pH range by developing 
electrical charges at the surface. At acidic pH there are more H+ ions that are available 
to saturate the metal vacant sites and therefore the mobility of trace elements may 
increase due to increased proton concentration (Alamgir, 2016). Typically, metal 
sorption by oxides surface increases with increasing pH. 
 

 
Fig. I.19 Schematic trends in the mobility of metals as influenced by soil pH.  

 
Trace elements can be divided into two groups – the first includes cationic metals (Pb, 
Cu, Zn, Ni, Cd, Hg, Cr(III), and Co), and the second contains anionic metals (As, Se, 
Cr(VI), Mo, and B) (Fig. I.19). The metals of the first group occur at low pH as free 
cations, then at neutral pH they can precipitate as hydroxylated cations or uncharged 
species. Under alkaline conditions hydroxyl species are formed.  
 
I.5.2! Oxidation-Reduction Potential 
 
The crucial parameter that governs the processes affecting the mobility of heavy 
metals in sediments (dissolution, sorption, complexation, diffusion, binding by organic 
complexes etc.) is redox potential. Reduction / oxidation potential (Eh, measured in  
mV) provides information about the geochemical environment of sediments and soils 
and varies widely from aerated conditions (>400 mV) to the anaerobic environment (-
300 mV).  
Dredging of sediments induces changes in redox potential due to the transition from 
an anaerobic reducing medium to an oxidizing medium. These modifications in the 
chemical environment cause the oxidation of sulfides into sulfates and the oxidation of 
organic matter and therefore desorption and increased mobility of trace elements. It 
was demonstrated that heavy metal solubility, as a function of pH, increases in 
oxidizing media comparing to reducing media (Kribi, 2005; Tack et al., 1996).  
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I.5.3! Cation exchange capacity (CEC) 
 
One of the predominant factors controlling heavy metal mobility is the cation exchange 
capacity (CEC) of sediment systems. CEC is expressed in centimoles per kg (cmol/kg) 
meaning the number of exchangeable cations that can adsorb onto a unit weight of 
soil (Alamgir, 2016). Typically, the  specific surface of solid phases in a soil is directly 
related to its capacity to adsorb cations, therefore clay minerals and organic matter will 
control the CEC of the system (Kabata-Pendias & Pendias, 2001). The clayey fraction 
of sediments and soils exhibits higher CEC values than the sandy fraction. Moreover 
2:1 clay structures have a larger capacity to adsorb cations than 1:1 clay structures. 
(Alamgir, 2016) presents that the following order for the CEC value of clay minerals 
(the higher the value, the more exchangeable sites) : montmorillonite, imogolite > 
vermiculite > illite, chlorite > halloysite > kaolinite. 
Ca and Mg have an important effect on the adsorption of trace elements due to their 
high abundance in the soil matrix, and they may compete with each other. Some 
cations are more capable of replacing others due to their ionic charge and radius, their 
affinities for organic matter, and the surface of oxides.  
According to (Sargent, 2015), soils with high CEC values arising from clays particles 
will undergo more important mechanical changes than those with low CEC. Figure I.20 
(Sargent, 2015) indicates that the low CEC value is attributed to soils with low organic 
matter content, low clay content, and high sand content.  
 

 
Fig. I.20 Variations of CEC according to the soil composition 

 

The factors that can impact CEC are pH, salinity (ionic strength of a soil’s solution), 
specific surface area, etc. (Robertson et al., 1999). The average CEC value of clays 
varies between 10-150 cmol(+)/kg, for organic matter 200-400 cmol(+)/kg, and for 
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sandy soils the CEC value is around 10 cmol(+)/kg (Botta et al., 2015).  
 
I.5.4! Organic matter 
 
The role of organic matter in the mobility of trace elements in sediment systems is 
extremely important. Humic substances in sediments participate in the sorption of 
heavy metals by forming strong complexes due to the large surface area of organic 
matter and its high reactivity arising from S-, O- and N- functional groups (Alamgir, 
2016). Different types of interactions of heavy metals and organic substances in the 
marine environment are shown in Fig. I.21 – reactions with dissolved organic carbon 
and complexation reactions with suspended organic matter and bottom sediment. The 
complexation reaction can be described as follows (6), (Alamgir, 2016): 
 

8 9 :;, ) 3</ = 8 9 : 93<,; ,      (6) 
 

where R - C-chain,  
L - active group which actually binds, 
M - metal, 
m and 1 - valences of metal and ligand 

 
There is a broad range of organic acid ligands in soils that may precipitate with heavy 
metals. Among them are oxalic, citric, formic, acetic, malic, succinic, malonic, maleic, 
lactic, aconitic, and fumeric acids (Alamgir, 2016). Many studies have focused on the 
specific role of the carboxyl and hydroxyl groups in the reactions between organic 
matter and trace elements. 

 
Fig. I.21 Complexation of metal ions by organic matter in suspended sediment, bottom sediment, 

colloidal, and dissolved phases  
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(Kabata-Pendias & Pendias, 2001) mentioned a correlation between pH and the 
binding capacity of the soil OM – with a pH increase from 3 to 7, the stability of heavy 
metals complexed by fulvic and humic OM fractions increased. Also some studies 
confirm that the binding capacity of fulvic acids are higher compared to humic acids. 
(Kodama & Schnitzer, 1980) presented the order of the affinity of some trace metal 
cations to form complexes with fulvic acids: 
 

Fe = Cr = Al > Pb = Cu > Hg > Zn = Ni = Co = Cd = Mn 
 

The amount of organic acid is important in the regulation of the mobility of heavy metals 
- when it is too low (<2%) the organic matter fraction cannot be considered as the main 
factor in controlling the sorption of trace elements, even if the metal sorption capacity 
on the organic matter fraction is significantly higher than that of the mineral fraction.   
 
I.5.5! Salinity 
 
Salinity is one of the important physicochemical parameters affecting heavy metal 
mobility and toxicity, especially in marine and estuarine environments where this 
parameter may vary considerably (Okoro & Fatoki, 2012). Major seawater ions such 
as Cl- and SO4

2- may compete with negatively charged particle surfaces and tend to 
stabilize heavy metals in solution. Several studies demonstrated the formation of 
chloro-complexes of cadmium, zinc, etc. (Mayer T. et al., 2008).  Therefore, the 
mobilisation of heavy metals may increase through complexation phenomena with 
seawater anions.  
 

I.6! Treatment technologies for dredged sediments 
 

Different remediation technologies have been developed for the management of 
contaminated sediments. To provide the best approach and meet the objectives of 
dredging and remediation operations, the decision makers (harbor managers, local 
authorities, etc.) have to evaluate the engineering feasibility, efficiency, cost, and 
performance of a remediation system. 
Contaminated sediment treatment options are numerous and some of them have 
proven their effectiveness on an industrial scale, while others were tested only at the 
laboratory or pilot scale. To design an optimal treatment technique, it is necessary to 
take into account the physicochemical characteristics of a sediment, the pollutants’ 
association with the sediment matrix, the volume of sediment, as well as local 
environmental aspects (Kribi, 2005).  
There are two main remediation technology groups – in-situ stabilization and ex-situ 
stabilization. In-situ stabilization includes one or more operations that do not require 
the displacement of contaminated sediment from its original location (Peng et al., 
2009). Therefore, contaminants are destroyed, isolated, or immobilized through 
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different techniques in-situ. This group comprises in-place capping, chemical 
treatments, biological treatments, etc. Ex-situ management is applied when dredged 
material is too contaminated and cannot be deposited in open water systems. 
Dredging, transport, and disposal increase the cost of ex-situ management, and the 
types and amount of contaminants may complicate the choice of treatment method. 
Sometimes several procedures are required to manage ex-situ dredged material 
(Keener, 1998). Remediation techniques can combine in-situ and ex-situ treatments in 
order to select the best strategy for the clean-up of contaminated materials. Below are 
some examples of remediation technologies that will be discussed in more detail.  
 
I.6.1! Pre-treatment 
 
Large debris and water should be removed before the main treatment stage, therefore 
the pre-treatment phase is necessary immediately after dredging. The dredging 
technology will determine the dewatering rate. For hydraulic dredging, sediments 
require a subsequent dewatering procedure while mechanical and pneumatic dredges 
occasionally directly provide a satisfactory water level for treatment (Keener, 1998). 
Some tools can be used during the dewatering stage such as centrifuges, filter 
presses, plate or diaphragm-plate filters, and gravity thickening (Mulligan et al., 2001). 
It must be noted that these tools are not always suitable for silt and clay particles.  
 
I.6.2! Physical separation 
 
Physical separation aims to separate smaller particles from larger ones, considering 
that smaller particles are often more contaminated. Different technologies have been 
applied to carry out the separation procedure – centrifugation, flocculation, screening, 
hydrocylones, etc. (Mulligan et al., 2001). Some chemicals combined with an aeration 
process can make contaminants flow and therefore separate. Screening technology is 
widely used for particles >1mm. Gravity separation may be applied depending on the 
specific gravity of the considered contaminated fraction. 
Physical separation is rarely economically advantageous and requires a high sand 
fraction (>25%). Overall, this procedure decreases the volume of contaminated 
material, reduces handling and disposal costs, but in any case, it always demands 
further treatment (e.g. chemical, thermal).  
 
I.6.3! Washing 
 
Washing processes present a comparably simple technique of transferring 
contaminants from dredged sediments into the wash solution. To perform a successful 
clean-up procedure, the extractant solution should be adapted to the contaminants and 
soil type. During the mixing of a sediment with the extractant solution, heavy metal 
contaminants may be transferred through different mechanisms – precipitation, ion 
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exchange, chelation, and adsorption (Khalid et al., 2017).  Different chemical additives 
can be applied to modify the efficiency of the washing technology – acids (e.g. H2SO4, 
HNO3), surfactants (e.g. biodegradable biosurfactants - surfactin, rhamnolipid, 
sophorolipid in oil contaminated material (Mulligan et al., 2001)), chelating agents (e.g. 
EDTA, DTPA and EDDS) (Peng et al., 2009), or organic acids. For washing cationic 
metals, the most effective chelating agent is EDTA, especially for Cd, Cu, Pb, and Zn 
(Khalid et al., 2017).  
The washing efficiency largely depends on the heavy metal fraction in dredged 
sediments – the weaker the metals are bound, the more successful their removal. 
Hydroxides, reducible oxides, and carbonates are the most likely to be transferred from 
sediments to the washing solution. One of the technology’s limitations, as noted by 
(Peng et al., 2009), is the granulometric variations meaning that this method is more 
relevant for sand and gravel fractions than for the fine grains. The degree of efficiency 
of the washing treatment can be improved by combining different chemical agents 
(Khalid et al., 2017). 
 
I.6.4! Electrokinetic remediation 
 
Electrokinetic remediation is a relatively new physical remediation technique which 
separates heavy metals through electrophoresis (charged particle movement), electro-
osmosis (fluid movement), electric seepage or electromigration (charged chemicals 
movement) phenomena (Khalid et al., 2017). The low intensity electric field gradient 
between a cathode and an anode makes charged particles in sediments move and 
therefore heavy metals can be eliminated. Hydroxides, oxides, carbonates, as well as 
soluble heavy metal ions can be removed quite effectively. However, heavy metals 
with low conductivity (like sulfides or the metallic form of Hg) may demand additional 
treatment. More precisely, an appropriate electrolyte should be used. Parameters that 
should be controlled during the procedure are the pH and electrolyte conditions in order 
to maintain the efficiency of the remediation process (e.g. to avoid anode drying) 
(Mulligan et al., 2001).  
In some cases, electrokinetic technology on its own is not sufficient to clean up the 
entire range of contaminants in a dredged material. Consequently, a combination of 
techniques can present an optimal solution. (Khalid et al., 2017) mentioned in his 
review the complementary processes to follow electrokinetic remediation: microbe 
remediation, oxidation/reduction technique, phytoremediation, and the use of 
permeable reactive barrier.  
Low permeability soils can be more easily decontaminated via electrokinetic 
techniques. The main limiting factor of the treatment is soil pH control, which can be 
resolved by using buffer solutions, complexants or an ion exchange membrane (Khalid 
et al., 2017). 
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I.6.5! In-situ Capping 
 
In-place capping is a suitable remediation strategy when a contaminated sediment is 
covered by a clean isolating material cap. The procedure is performed without 
disturbing the original location of a sediment and usually the sediment bed remains 
undisrupted (Keener, 1998). Materials that can be used for this type of remediation 
technique are natural sand, uncontaminated mud, and some geosynthetic materials 
(Keener, 1998). Caps present a natural barrier which protects the marine environment 
from coming into contact with the contaminants and from erosion.  
The capping solution can be beneficial when sediment moving and disposal present a 
high cost and risks for the environment. For an effective capping procedure, it is 
necessary to consider appropriate materials (type and quantity, conformity to the 
physicochemical parameters of the sediment and aquatic environment), hydraulic 
conditions, etc. Capping can be an optimal solution in cases when the sediment must 
stay in its location of origin (no navigation dredging in the area of interest), so the 
contaminants may be isolated and their release noticeably retarded. However, the cost 
of the procedure may be significant when the area of concerns is large.  
Figure I.22 below presents different concepts of remediation management and existing 
containment structures that can play a role in contaminated sediments management – 
containment approach, in-situ capping, and deep ocean dumping.   
 

 
Fig. I.22 Recovery technologies of contaminated sediments 

 
 
I.6.6! Biological remediation 
  
Biological treatment of contaminated sites presents a viable strategy for the natural 
restoration of an ecosystem. Bioremediation involves microbial degradation or 
detoxification/removal of contaminants with the help of plants or microorganisms. 
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!! Phytoremediation 
This remediation strategy presents an ecological alternative to most of the other 
remediation solutions due to its environmentally friendly, low-cost, and energy-efficient 
technology used to extract/detoxify contaminants. Phytoremediation technology can 
be classified into three groups: phytostabilization, phytoextraction, and 
phytoevaporation (Khalid et al., 2017).  
Phytovolatilization (phytoevaporation) decontaminates sediments through the 
transpiration phenomena of plants. Toxic trace elements from the sediment can be 
transformed into less toxic forms and then be evaporated into the atmosphere. Heavy 
metals such Se, Hg, and As can be converted into gaseous less toxic species. This 
transfer of heavy metals in plants is governed by enzymes and genes that are rarely 
present in natural plants. Therefore, genetically modified plants are widely used to 
improve the efficiency of phytovolatilization.  
Another phytoremediation technology is phytostabilization – plants immobilize heavy 
metals and thus decrease their bioavailability. There are several mechanisms of 
phytostabilization – the leaching of heavy metals is lowered due to the upstream flow 
of sediments solution, as well as due to the role of plants roots in decreasing erosion. 
Plants change the physico-bio-chemical conditions of soils. In some cases, these 
changes near the root zone induce the immobilization of heavy metals – for example, 
cadmium forms sulfide species and lead reacts with phosphates.  
The efficiency of phytoremediation techniques applied to contaminated sediments 
depends largely on the capacity of hydrophyte plants to detoxify polluted material. One 
study has indicated that the hydroremediation can be limited due to the low metals 
uptake by hydrophytes (Peng et al., 2009). 
 

!! Microbial remediation 
Microorganisms can be used as a remediation solution in contaminated soils and 
sediments because of their capacities to promote heavy metal precipitation, 
adsorption, and oxidation/reduction. Different mechanisms may be responsible 
concerning metals remediation via microorganisms – biosorption, enzyme-catalysed 
transformation, biomineralization, and redox reactions (Khalid). The biodegradation 
due to the microbial remediation of a variety of organic compounds was observed 
(PCBs, diesel oils, petroleum products, pesticides, etc.). 
However, microorganisms may also increase metals mobility, depending on the 
processes they induce. Before microbial remediation, different aspects should be 
evaluated such as sediment and pore water composition and benthic biology.  
 
I.6.7! Thermal Extraction 
 
Thermal treatment refers to the technology of exposing contaminants to high 
temperatures (Sharma et al., 2018).  It is known that some heavy metals (arsenic, 
mercury, cadmium) and their compounds are evaporated when exposed to 
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temperatures in the range of 800°C. The efficiency of this procedure highly depends 
on the temperature range and time adjustment. For example, some volatile and semi-
volatile organic contaminants can be eliminated from contaminated waste even at 
200°C-300°C. Gases produced during desorption via thermal treatment should be 
treated to remove dust and cooled. However, the liquid produced from condensation 
of the gas stream should be additionally treated in order to be decontaminated 
(Keener, 1998). Thermal desorption treatment can be very costly in the case of 
dredged material with high water content as a significant amount of additional energy 
is needed. 
The thermal destruction method is very effective for the elimination of contaminants.  
This method consists of combustion at >900°C in an oxidizing environment or 
reduction in non-flame reactor. Organic contaminants in combustion systems go 
through the contact with an oxidizing flame and are decomposed to carbon dioxide and 
water. Post-combustion treatment is required. Despite the effectiveness, this method 
remains very expensive.  
 
I.6.8! Solidification/Stabilization (S/S) 
 
Immobilization treatment presents an effective strategy to prevent the migration of 
contaminants in the environment. Different methods of waste contaminant 
immobilization reduces the mobility of pollutants by modifying the physicochemical 
properties of the waste matrix (e.g. dredged material). Among immobilization methods 
there are geopolymer based Solidification/Stabilization techniques, vitrification, 
carbonation (Li), NOVOSOL method (combustion plus phosphatation), cement based 
S/S process, etc. (Guo et al., 2017), (Kribi, 2005). An immobilization technique using 
cementitious materials is widely applied and is one of the most advantageous methods 
compared to other remediation strategies. The S/S method is relatively low-cost, 
simple to carry out, uses non-toxic materials, is easy to store long term due to physical 
and chemical stability, etc. (Paria & Yuet, 2006). According to the USEPA, the S/S 
method was reported to be effective in immobilizing a variety of inorganic 
contaminants: volatile and non-volatile metals, radioactive waste, asbestos, etc. 
Organic contaminants can also be treated with this method, but the challenge is more 
complicated, and therefore some additional additives can be needed. The reactions of 
hydrolysis, oxidation/reduction, and salt formation are likely to occur in cement-organic 
waste interactions (Bone et al., 2004).  
 
I.6.8.1! Tests for the S/S evaluation 
 
In order to assess the S/S mix design effectiveness, the treated material undergoes 
different tests to evaluate several main parameters – density, porosity, hydraulic 
conductivity, durability, CBR (California Bearing Ratio), but the principal and most 
essential parameters are the leachability of the contaminants and strength evolution. 
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The batch leaching test is applied to the crushed material, consequently the 
leachability may be overestimated regarding the increasing leaching potential. The 
tank leaching test analyses the diffusion processes in treated waste and can be 
considered as more real-life approach. The compressive strength criterion allows for 
an assessment of the hydration rate of the material. It is a key aspect regarding the 
durability and stability of the system (Kogbara, 2014). 
After a successful Solidification/Stabilization treatment the waste, or in this case the 
dredged sediment, presents a hardened stable monolith in which contaminants are 
encapsulated due to physical and chemical fixation. Cementation of the treated 
material leads to the decrease of contact of contaminants with water by forming a low 
permeability matrix (Saeed et al., 2012). This phenomenon can be described as 
physical encapsulation when heavy metal migration is significantly reduced. 
Mechanical strength in term of contaminants embedding exhibits the integrity of the 
treated matrix (Guo et al., 2017). The more resistant material potentially better 
stabilizes the trace elements. 
 
I.6.8.2! S/S main reactions mechanisms of HM fixation 
 
Regarding the main mechanisms of contaminant immobilization using the 
Solidification/Stabilization method, there are different fixation processes: adsorption to 
the solid phase, pH-dependent precipitation, oxidation/reduction precipitation, and 
isomorphic substitution with cement matrix. 
As was discussed previously regarding the importance of redox potential, some heavy 
metals exist in the form of stable sulfide compounds in reducing media. However, when 
the sediment is aerated during the drainage, dewatering and S/S procedures, sulfides 
of heavy metals may precipitate in the form of sulfates which are much more soluble 
(Kabata-Pendias & Pendias, 2001). Portland cement creates an oxidizing medium, 
because it possesses an Eh value between +100 and +200 mV due to dissolved 
oxygen (Taylor, 1997). Unlike Portland cement, GGBS creates a reducing environment 
– its redox potential is around -400 mV due to the presence of chemically reduced 
sulfurs in the slag glass structure. The reduced sulfurs may play an important role in 
decreasing the mobility of some toxic trace elements which precipitate in the form of 
highly stable sulfides (Glasser, 1997). It should be mentioned however that reducing 
conditions of GGBS may impact Fe/Mn oxides and therefore HM related to these 
phases.  
The equilibrium of the sediment system may be considerably impacted by highly 
soluble sulfate, chloride, and nitrate compounds. Cations and anions from soluble 
species and the surface of sediments (clays, organic matter) interact due to the ion 
exchange process, which can be impacted by the incorporation of the binder’s ions. 
The ion exchange describes the formation of electrostatic outer-sphere complexes 
arising from physical forces.  
The adsorption mechanisms of heavy metals on mineral surfaces are quite complex 
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and depend on many factors. When mineral surfaces are in contact with water, they 
will attract water molecules that will then dissociate making the surface covered by 
hydroxyls (≡SOH). These hydroxides behave as proton acceptors or proton donors 
depending on the pH of the medium (7), (8): 
 

> *%# ) #/ ?> *%#/      (7) 
> *%# ? *%, ) #/          (8) 

 
Regarding the complexity of the sediment environment and binders chemistry, it is 
possible to believe that different types of linkages are formed on the mineral surface 
(≡SOH) in presence of ligands (L) and metal cations M(Z+). Ligands in sediment-binder 
systems that may complex metal ions vary noticeably: water molecules (H2O), 
hydroxyls (OH-), carbonates (CO3

2-), chlorides (Cl-) and sulfates (SO4
2-) as well as 

ligands from the organic matter (Taneez, 2016). Figure I.23 describes different 
adsorption mechanisms occurring between the solid’s surface, a metal cation and 
different ligands: 
 

:! simple replacement of the surface proton;  
:! the metal can be bound on the ligand that previously replaced a surface OH 

group and also an adsorbed metal may bind a ligand;  
:! adsorption of metal or ligand to more than one surface site (called multidentate).  

 
The sorption process can be considered as one of the most important mechanisms of 
the interaction between inorganic contaminants and binders, especially in the early 
stages.  
 

              
Fig. I.23 (left) (Adsorption mechanisms (X – surface, L – ligand, M – metal).   Fig. I.24 (right) An 

illustration of metal ion sorption reactions on (hydr)oxide. (a) At low surface coverage, isolated site 
binding (adsorption) is the dominant sorption mechanism; (b) with increased metal loading, M 

hydroxide nucleation begins. Further increases in metal loadings results in (c) surface precipitation or 
(d) surface clusters 
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Another mechanism of immobilization is precipitation or co-precipitation, which is 
considered according to some studies (Saeed et al., 2012) as the most important 
mechanism of HM stabilization. Precipitation describes the process occurring after 
surface saturation – a new phase is formed, but its composition varies from the original 
solid. Figure I.24 shows the progressive surface saturation which leads to nucleation 
and further surface precipitation or cluster formation. When contaminants precipitate 
with other elements (e.g. elements dissolved from minerals) simultaneously, this 
process is called the co-precipitation and it depends largely on the minerals dissolution 
rate (Taneez, 2016).  
When one of the atoms of the crystalline lattice is substituted by another without 
disrupting the crystalline structure, the process is called isomorphic substitution. 
(Sparks, 2002) gives an example of the adsorption of nickel on the phyllosilicates and 
aluminium oxides resulting in the co-precipitation of Ni-LDH (layered double 
hydroxides). The ionic radii play an important role in the fixation of HM in the LDH 
structure. 
It should be mentioned that some trace elements can precipitate as metal salts from 
solution. The formation of metal salts is pH-dependent, therefore in the case of highly 
alkaline hydraulic binders the concentration of OH- will play an important role in simple 
and complex salts precipitation. The formation of metal hydroxides in the case of 
cations often occurs during the application of the S/S method. In the pH range of 9-12 
metal hydroxides remain insoluble, however with a pH increase the metal cations 
become much more mobile (Fig. I.25).  It seems that oxyanions like arsenates, 
chromates, and molybdates are less soluble in the same pH range, however the other 
anions in sediment-binder solutions (sulfates, carbonates, chlorides) may impact the 
availability of these metals by competing with them.   
In the case of sediment treatment, the pH, redox potential, organic matter, cation 
exchange capacity, and metal speciation will govern the potential salt formation and 
their solubility (Bone et al., 2004). For example, according to (Yousuf et al., 1995), Cd 
and Zn will be fixed in the cement matrix in the form of complex salts physically rather 
than chemically.  
 

 
Fig. I.25 Solubility of cationic metals (hydroxides) and oxyanions (calcium salts) as a function of pH 
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Regarding the complexity of the interaction of contaminants with mineral surfaces, the 
choice of a suitable binder should be made before treatment. Also, some additional 
additives can be used to enhance S/S performance. The pH, being one of the most 
important parameters regarding trace element adsorption/desorption and precipitation, 
can be adjusted to the range where HM are less soluble (pH=9-12) by using alternative 
binders.  
 
I.6.8.3! Stability of the treated matrix 
 
Successful S/S treatment considers the ability of the treated material to remain 
functional based on key parameters such as leachability and strength immediately after 
the treatment operation as well as in the long term. Internal and external factors may 
impact the performance of the system and alter the chemistry of the mixture. The 
formation and stability of the hydration products may be altered by a decrease in pH 
occurring due to an external environmental attack (e.g. CO2 penetration) or from the 
decomposition of organic matter and biological activity producing the acids. Changes 
in pH and redox potential may lead to microstructural changes (shrinkage/expansion) 
arising from hydration product degradation or the formation of new precipitates, Thus, 
the mobility of contaminants may increase significantly (Fig. I.26, (ITRC, 2011)).  

 
Fig. I.26 Potential risks of contaminants leachability  

 
The microstructure of the treated material determines its hydraulic conductivity, which 
is a crucial physical parameter for the contaminant stability within the matrix. Finer and 
more disconnected pore structures may result in higher conductivity in comparison to 
larger pores, and thus the treated material and contaminants remain stable during 
contact with water.  
External stresses such as mechanical stress or freeze/thaw cycles may also affect the 
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integrity of the hardened monolith due to cracking or erosion. Consequently, toxic 
elements may become more available for migration in the environment. However, there 
is a lack of studies investigating the durability of S/S treated sediments. Regarding all 
of these potential risks, degradation and aging processes should be accurately 
monitored in order to assess the performance and stability of the system.  
 

I.7! Considered binding agent properties 
 

(Kogbara, 2014) in his literature review sorted S/S binders according to their interaction 
and hydration with soils into primary and secondary stabilising agents. The first group 
comprises ordinary Portland cement (the most widely used S/S binder (Spence & Shi 
(2005)) and lime, materials that can be applied on their own in order to achieve some 
of the required parameters for remediation (e.g. mechanical strength, leachability). 
Secondary S/S agents require additional activation – these materials are PFA 
(pulverized fuel ash) and GGBS (ground granulated blast-furnace slag) (e.g. to 
produce pozzolanic reactions with cement or lime). Some other materials can also be 
used in solidification/stabilization processes – organophilic clays, bitumen, silica fume, 
natural bentonite clays, etc.  
The cement industry is responsible for approximately 9.5% of total CO2 emissions due 
to the global demand for cement increasing exponentially. It is known that cement 
production releases more than 900 kg of CO2 for every one tonne of Portland cement 
produced (Naqi & Jang, 2019). The CO2 emissions, as well as sulfur dioxides (SO2) 
and nitrous oxides (NOx) are responsible for the strengthening greenhouse effect and 
acid rains. Natural resource depletion also presents a big concern for the cement 
industry as one tonne of OPC requires nearly 1.5 tonnes of raw materials. Finally, the 
manufacturing process involves a high energy consumption – around 40% of CO2 
emissions are attributed to fuel combustion. 
The use of alternative cements can significantly reduce energy consumption and 
carbon dioxide emissions. Granulated slag presents important advantages in terms of 
energy and raw materials reductions as well as leads to the utilisation of industrial by-
products. For example, the replacement of 50% of OPC in a cement with GGBS may 
lead to a decrease of 0.5 tonnes of CO2 emitted. The potential use of novel GGBS-
based binders provides a beneficial solution over a wide range of applications, in 
particular in sediment Stabilization/Solidification processes, making it relevant for 
study.  
 

I.7.1! Ordinary Portland cement (OPC) 
 

Portland cement is one of the most widely used binding agents in 
Stabilization/Solidification processes. This binder is the major hydraulic binder used in 
civil engineering works all around the world and its production volume increased 
drastically over last 150 years and especially in the 21st century –  from 1.5 billion 
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tonnes in 2000 to over 3 billion tonnes in 2012. This growth of Portland cement 
consumption is directly related to the fast economic progress of developing countries 
and subsequent infrastructure expansion (Naqi & Jang, 2019).  
 
I.7.1.1! Composition of OPC 
 
According to European standard NF EN 197-1, cement is a hydraulic binder which 
produces a hardened material after mixing with water resulting from a hydration 
reaction creating bonds. Portland cement is produced from very abundant raw 
materials – clay and limestone – through complex pyroprocessing in a rotary kilns 
(heating to about 1450°C, Fig. I.27). These raw materials are transformed into clinker 
containing four main minerals (Aïtcin, 2016): 
 

•! C3S for 3CaO⋅SiO2 (tricalcium silicate or alite) 
•! C2S for 2CaO⋅SiO2 (dicalcium silicate or belite) 
•! C3A for 3CaO⋅Al2O3 (tricalcium aluminate) 
•! C4AF for 4CaO⋅Al2O3⋅Fe2O3 (tetracalcium ferroaluminate). 

 
Fig.I.27 Transformation of raw components into clinker 

 
The final material normally possesses a surface area (Blaine) of 300-350 m2/kg. There 
exist some standards with regards to the main mineral components and additional 
chemicals in order to control the composition of the final material. The content of 
calcium silicates typically reaches 70-80%, with the dominant mineral being alite (C3S, 
around 60%).  Regarding the minor components of Portland cement clinker production, 
their content may vary as follows: C3A and C4AF (15-16% of the total mass of the 



Chapter I:  Literature review 53 

cement), 0.5-6% MgO, 0.5-3% of alkali Na2SO4 and K2SO4; 0.2-4% free lime (Hewlett 
& Liška, 2019). 
Different cement clinkers are often compared in term of oxide contents (Table I.3) even 
if in a real system these oxides are part of different minerals. Briefly, the content of 
CaO may vary from 60 to 70%, the silica content is between 17-24%, however the 
Al2O3 and Fe2O3 content is more unstable and depends on the cement type.  
The impurities content may influence the crystallinity of the minerals.  For example, in 
some cases alkalis may become part of the crystalline lattice of minerals influencing 
the reactivity rate of the cement – cubic C3A may become orthorhombic, which has 
lower solubility (Aïtcin, 2016).  
 
Table I.3 Chemical composition of Portland cement  

 
 
In order to produce the final material ‘Portland cement’, the clinker should be ground 
with some amount of calcium sulfates, which can be in the form of gypsum, anhydrite, 
hemihydrate or synthetic calcium sulfate (Aïtcin, 2016). The reason why sulfates are 
added during the final stage of cement manufacturing, is to control the reactivity of C3A 
which in the absence of calcium sulfate hydrates very rapidly by forming hydrogarnet, 
causing flash setting to occur at the beginning of hydration. Soluble calcium sulfates 
prevent this situation by instead leading to the rapid formation of ettringite 
("#$%&'()*+,-(*.,/'0'$.'*,. After a few hours, with the depletion of sulfates ettringite is 
transformed into monosulfoaluminate (Marchon & Flatt, 2016).  
 
I.7.1.2 Hydration chemistry of OPC
 
When anhydrous cement compounds react with water, new compounds called 
‘hydrates’ are formed resulting in physico-chemical modifications of the system 
impacting setting and hardening (Hewlett & Liška, 2019). Different factors may change 
the hydration kinetics of this system – the phase composition of cement minerals (the 
occurrence of foreign ions (impurities) within clinker phases), the fineness, the water-
cement ratio, environmental conditions (e.g. temperature), chemical additives, etc. The 
hydration of the Portland cement was widely studied over recent decades – the 
dissolution-precipitation of the whole system as well as of individual components. The 
reactivity of the anhydrous phases follows the following order: C3A>C3S>C2S>C4AF 
(Bone et al., 2004).
In general, the hydration of Portland cement presents a number of reactions between 



Chapter I:  Literature review 54 

clinker’s minerals, calcium sulfates, and water. The hydration kinetics depend on the 
rate of dissolution of the different constituents, the rate of the nucleation of precipitated 
hydrates, and the diffusion of water and dissolved ions in the system (Odler, 1998).   
The hydration reactions of Portland cement can be described as follows: in the first 
minutes the dissolution of anhydrous C3S and C2S occur producing exothermic 
reactions. Moreover, soluble aluminate minerals react with calcium sulfates to produce 
ettringite. A deceleration of the reactions is observed followed by an induction period. 
After the induction period, the acceleration period corresponds to the broad 
precipitation of C-S-H and portlandite from the intense dissolution of C3S. Then the 
reactions slow down, however the exothermic reactions of sulfate depletion and 
ettringite precipitation after the complete dissolution of C3A are observed (Marchon & 
Flatt, 2016). The period of low hydration rate occurs due to the densifying and 
hardening of the material (Fig. I.28).  
 

1.! Hydration of C3A 
 

Due to the highest reactivity of the C3A phase, its role in early hydration is very 
important from the mechanical and rheological point of view. As was mentioned earlier, 
soluble calcium sulfates react with tricalcium aluminate to prevent rapid setting. As a 
result of this reaction, ettringite precipitates according to (9): 
 

&"6%(.7 @A$%. ) B "6*%+7 !#$% ) !C#$% D &&"6%(.7 @A$%.7 &"6*%+(.7 B!#$% )

@A$%.7 B#$%   (9) 

 
After sulfate depletion, ettringite reacts with the remaining C3A and 
monosulfoaluminate is formed (10): 
 

!&"6%(.7 @A$%. ) &"6%(.7 @A$%.7 &"6*%+(.7 B!#$% ) 4#$% D

B&"6%(.7 @A$%.7 "6*%+7 5!#$%     (10) 
 

2.! Hydration of C3S 
 

Tricalcium silicate is the most essential Portland cement component, controlling its 
Strength development. C3S (3CaO⋅SiO2) is known to exist in numerous polymorphs 
(triclinic, monoclinic, trigonal). The calcium silicate chain presents often as an impure 
material in Portland cement containing different ions which can substitute for silicon 
(e.g. AlO4

5-
 or PO4

3-
 for SiO4

4-) or oxygen (Walkley & Provis, 2019). This structure 
allows fast dissolution after the interaction with water to produce calcium silicate  
hydrate gel (C-S-H) and Portlandite (Ca(OH)2), (11).  C-S-H is an amorphous phase 
with a CaO/SiO2 molar ratio between 1.2 and 2.1. 
 

!&"6%(.7 *E%$ ) C#$% - B"6%7 !*E%$7 B#$% ) B"6&%#($      (11) 
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The hydration of alite can be described by periods or hydration stages: the highly 
exothermic peak due to C3S dissolution is marked at point 0; stage 1 presents a 
slowdown in dissolution, stage 2 is the induction period; stage 3 is the acceleration 
period, stage 4 a deceleration period, and stage 5 a slow ongoing hydration reaction 
(Fig. I.29, (Marchon & Flatt, 2016)). Many theories exist to explain the induction period 
of C3S hydration. One of the most widely accepted hypotheses is the formation of 
metastable C-S-H hydrates on C3S surfaces, preventing further dissolution. The end 
of the induction period is explained by the transformation of these membranes of 
metastable hydrates into a more permeable hydrates allowing for the migration of 
water ions, Ca2+ and silicon ions or by the membrane’s rupture due to osmotic 
pressure. However, despite available techniques there have been no observations 
confirming the ‘gel model’ (Scrivener et al., 2015). Some authors describe the induction 
period as a latent time until the nucleation and polymerization of silicates meaning that 
C-S-H nuclei are formed from the first beginning of hydration and continue to 
precipitate even during the induction period - reaching some critical size just before the 
acceleration stage (Marchon & Flatt, 2016).  
The acceleration period represents a massive precipitation and growth of C-S-H and 
portlandite corresponding to the main peak of heat release (Fig. I.29). During the 
acceleration stage the dissolution rate of C3S achieves its maximum, therefore the 
highest amount of Ca2+ can be detected in the solution between the two stages. 
Precipitated C-S-H is poorly crystalline; its atomic structure can be compared to 
tobermorite/jennite. C-S-H can be described as sheets of calcium and oxygen 
enclosed in tetrahedral silica chains and separated by water layers (Marchon & Flatt, 
2016).  
 

    
Fig. I.28 Hydration kinetic – formation of hydrates            Fig. I.29 Stages of alite hydration 
 
One of the explanations for the deceleration period can be the end of the nucleation of 
C-S-H on the new needles and further precipitation in the interface between anhydrous 
products and these new needles (Bazzoni, 2014). The low heat release of the last 
hydration stage coincides with low diffusion of ions because of the hydrates creating a 
dense microstructure. 
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I.7.2! Ground granulated blast-furnace slag (GGBS) 
 

I.7.2.1! What is GGBS? 
 
Blast furnace slag is a by-product of iron production in a blast furnace and it is 
composed mainly of silicates and aluminosilicates of calcium. Iron ore is heated to 
1400-1600°C together with limestone or dolomite (as fluxing agents) and with coke in 
order to reduce iron oxides (Fig. I.30). After melting these materials, two products are 
generated – molten iron and slag. The slag is lighter, and it rises to the surface of the 
molten iron. 

 
Fig. I.30 Production of slag  

 
When the rapid cooling is applied through high-pressure water jets to the molten slag, 
a glassy Ca-Al-Mg silicate is formed. Granular particles of slag no larger than 5 mm in 
diameter, and almost fully amorphous, are formed as a result of the rapid cooling 
procedure. In order to obtain good cementitious properties, the granulated blast 
furnace slag must be dehydrated, dried and finely ground. The final product is GGBS 
cement (ground granulated blast-furnace slag) and it is a binder with latent hydraulic 
properties. In order to accelerate the hydraulic reaction of GGBS, a source of basic pH 
is required. Activators can be sourced from Ordinary Portland cement or alkalis 
(hydroxide, silicate, and carbonate) (Özbay et al., 2016; Siddique, 2008).  
 
I.7.2.2! Chemical composition, mineralogy of GGBS 
 
GGBS can present a mixture of small amount (5-10%) of low crystallinity phases within 
the melilite group resembling gehlenite (2CaO⋅Al2O3⋅SiO2) and akermanite 
(2CaO⋅MgO⋅2SiO2) as well as depolymerized calcium silicate glass. GGBS also 
contains some amount of sulfur, binding around 1 mole of Ca per mole of S (Duxson 
& Provis, 2008). The chemical composition of GGBS can vary depending on the ore 
used for the iron production, as well as on the specifics of the manufacturing 
processes. A typical chemical composition of blast furnace slag in term of oxides is 
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given in the table below (Table I.4).  
 
Table I.4 Chemical composition of GGBS, (Glasser, 1997) 

 
 
The glass structure depends on the production conditions, such as temperature and 
cooling rate, which determine the degree of depolymerisation of the aluminosilicate 
framework and therefore its reactivity (Walkley & Provis, 2019). The formed glass can 
be described as a depolymerised silicate structure with Ca2+ and Mg2+ charge balanced 
Al as network modification cations. The degree of depolymerisation can be expressed 
with help of the basicity index and CaO/SiO2 (C/S) ratio with calcium cations increasing 
the depolymerisation of the aluminosilicate system and consequently its hydraulic 
activity (Özbay et al.).  
In order to explore the glass structure of GGBS, NMR studies of 29Si and 27Al were 
carried out. It was found that Si is present principally as a dimeric tetrahedral species 
and Al is present in tetrahedral coordination. (Shimoda et al., 2008) observed a 
depolymerised chain structure of SiO4 tetrahedra branched with AlO4 tetrahedra 
separated by Ca and Mg providing framework disorder to the system. 
 
I.7.2.3! Hydration of GGBS-based binders 
 
The ternary diagrams of Portland cement and alternative or supplementary 
cementitious materials (SCM) are presented in Fig. I.31.  These SCM are mostly silico-
aluminate materials with low calcium content compared to ordinary Portland cement, 
thus it can be seen that GGBS contains more silica, alumina, and magnesia and less 
CaO. Furthermore, the molecular structure of the OPC phases presents ionic bonding 
compared to the GGBS glass structure with covalent bonding. This means that the 
dissolution of Portland cement is easier and faster through hydrolysis than the 
dissolution of GGBS which requires breaking covalent bonds (Si-O). That is why 
concrete structures made with OPC usually set faster than concrete made with slag 
cement. At the same time, the addition of high amounts of GGBS to Portland cement 
results in a strength increase over longer periods, reduced permeability, good freeze-
thaw resistance, and high sulfate resistance.  
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Fig. I.31 (A) CaO–Al2O3–SiO2 ternary diagram of cementitious materials,  

(B) hydrate phases in the CaO–Al2O3–SiO2 system 
 
The potential phases development is shown in Fig. I.31, B in a CaO–SiO2–Al2O3 
system. C-S-H is the main hydration product of GGBS-based binders and its chemical 
structure and C/S ratio varies according to the type of activation. Besides using slag 
as a Portland cement additive, GGBS can be used as an independent binder by 
increasing its reactivity with alkali activators. GGBS activation can be classified 
according to the type of substances applied as an activator (M as alkaline): 
 

!! pH-based activation (MOH where M stands for Na, K, Ca, or Mg): these 
activators provide a pH source for the rapid precipitation of hydrates. However, 
in some cases, this type of activation promotes inappropriate strength 
development due to bad rheology and uneven hydrate distribution. Caustic 
alkalis are considered as health hazardous and expensive. 

!! Alkali-silicates (M2O⋅nSiO2): this activation gives a good strength development, 
better than OPC based binders. At the same time the activator is considered as 
health hazardous because of its high pH and it is also cost prohibitive. This type 
of GGBS-based binder is established to be effective for acid resistance.

!! Carbonate salts (M2CO3): Carbonate activation provides a low pH rise and 
develops seeds for hydration. It is interesting from practical point of view as it is 
not expensive and safe to handle. However, some challenges should be solved 
such as a long induction period and low temperature sensitivity. 

!! Sulfate activation (M2SO4, CaSO4.nH2O) provides seeds (ettringite, gypsum) 
necessary for hydration and is environmentally friendly. This activation needs 
an additional pH source to enhance the dissolution of GGBS.  

!! Portland cement can also be used as a GGBS activator. In this case granulated 
slag is activated by hydroxyl attack. Portland cement serves as a source of pH, 
particularly by establishing an equilibrium of precipitation-dissolution of calcium 
hydroxides (Van Rompaey, 2006). As a result of the GGBS activation by OPC, 
a pozzolanic reaction is produced by the precipitation of calcium hydroxides with 
silicates/aluminosilicates. Consequently, the Portlandite formation is 
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decreased. The acceleration hydration stage of GGBS/OPC system is produced 
mainly between 10 hours and 3 days when lime from the clinker grains reacts 
with GGBS glass. After this period, some amount of portlandite can be produced 
and its formation plays a role in further GGBS activation over time, even after 
more than 90 days. 

 
I.7.3! C-S-H structure  
 
As was mentioned before, calcium silicate hydrate (C-S-H) is the main hydration 
product of Portland cement as well as of GGBS-rich binders. Its structure varies 
depending on binder composition, but generally it presents a silicate Q2 Si chains of 
various length with Q1 Si sites at chain termination points containing in the interlayer 
space cationic species and surrounded by calcium oxide sheets (Walkley & Provis, 
2019). The ‘dreierketten’ silicate structure (Fig. I.32) is characteristic for C-S-H gel – 
the chain of dimeric silicates tetrahedra linked by a bridging silicate. It was established 
that the calcium to silicon ratio (Ca/Si) varies between 0.8 and 2 for cementitious 
materials. This value is lower in the case of GGBS-based binders making its C-S-H 
structure close to natural tobermorite (Kovačević et al., 2015). Moreover, in the case 
of the GGBS C-S-H structure, an important Al substitution may occur in bridging 
tetrahedral sites in the silicates chains (substitution of Si4+ by Al3+). This substitution 
results in a significant modification of C-S-H’s chemical structure compared to the plain 
OPC binder, resulting in the formation of C-A-S-H. Therefore, the charge deficit occurs 
from Al-Si substitution which should be counterbalanced by other cations. This charge 
deficit makes the activated slag calcium silicate structure a potential stabilizer for heavy 
metal cations due to their possible incorporation into C-A-S-H. It seems also that high 
GGBS content binders produce C-S-H with a different morphology compared to 
Portland cement binders –needle-like C-S-H is developed presenting a denser 
structure compared to the fibrous C-S-H of the OPC binder. It can be thus supposed 
that this type of morphology is responsible for the improved durability properties in the 
GGBS-based system.  
 

 
Fig. I.32 Schematic representation of the structural features of calcium-silicate hydrate (C-S-H) gels. 
Tetrahedral Si sites and CaO layers are shown by blue triangles and green rectangles, respectively. 

Circles denote various interlayer species (water or cations)  
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I.7.4! OPC and GGBS-based binders in S/S practice 
 

In the Solidification/Stabilization practice of hazardous waste treatment, different types 
of cementitious materials were tested in terms of mechanical and leaching 
performances in order to achieve and maintain the necessary physical properties of 
the formed monolith and stabilize contaminants in the new matrix. Hydraulic binders 
may transform contaminated dredged material into a new material suitable for 
engineering applications, road construction, or base material which remains a cost-
effective and efficient solution for remediation (Saeed et al., 2012). The S/S treatment 
for remediation of contaminated sites was reported to be the best technology for 57 
Resource Conservation and Recovery Act (RCRA) listed hazardous wastes based on 
a report by the USEPA (2004). However, the choice of a suitable binder should be 
carefully evaluated before treatment due to the different mechanisms occurring 
between binders and organic and inorganic constituents of contaminated sediments 
impacting immobilization or retarding the hardening of a new system. The degree of 
effectiveness of different binders may vary considerably. One of the main controlling 
factors is the increase in pH in the presence of a hydraulic binder and further 
precipitation of metal ions as hydroxides at the optimum pH level, which differs 
according to specific metal. According to (Du et al., 2010) increasing the pH higher 
than 12-13 may significantly reduce the effectiveness of S/S.  
 
I.7.4.1! OPC as a S/S agent 

 
Ordinary Portland cement is the most widely used binder in S/S due to its low cost and 
high availability. Most S/S studies analyse the OPC-treated waste material after 28 
days of storage. The general tendency shows an increase in compressive strength 
with increasing binder dosage (Bone et al., 2004; Kogbara, 2014). Studies considering 
the long-term behaviour of OPC-treated waste material show the plateau for uniaxial 
compressive strength (UCS) after the strength increase for a specific period. At the 
same time, (Al-Tabbaa & Boes, 2002) reported lower UCS after five years of curing. 
Many studies were conducted in order to investigate the impact of heavy metals on 
strength development as well as the impact of organic contaminants and organic 
matter. (Al-Sanad Hasan A. & Ismael Nabil F., 1997) reported lower UCS values for 
mixtures with hydrocarbon pollutants. (Tremblay, 2002) showed how different organic 
substances affect the properties of OPC-treated samples. The addition of 0.1% of 
sucrose retards cement hardening as was observed by (Taylor, 1997). (Saeed et al., 
2012) in their review reported the formation of weakened OPC paste and a retardation 
effect in the presence of high concentrations of lead, zinc, and copper (Alford et al., 
1981). (Du et al., 2010) in his review reported the retardation effect of HM on the 
hydration of cementitious materials during S/S treatment (Lee, 2005, Asavapisit, 2000).  
According to (Kogbara, 2014) the optimum OPC dosage for soils treatment is 20%, but 
10% can also be sufficient in some cases. He also concluded that sandy and gravelly 
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soils develop higher UCS than clayey soils. In the same paper, some mechanisms of 
the impact of HM on the UCS development were investigated: Zn, Cr and Cd promote 
increased ettringite formation with posterior cracking; Pb retards hydration by forming 
precipitates on the C3A and C3S grains. 
Regarding the leaching requirements, 15-20% of the OPC binder may significantly 
reduce the mobility of heavy metals. However, in some cases the leachability of some 
heavy metals increased in treated OPC material, making the OPC treatment not 
suitable for stabilization. This is especially concerning for Pb (Sanchez et al., 2002) 
and Cu (Voglar & Lestan, 2010). It seems that solubility was significantly affected by 
the high pH. There are very few studies assessing the long term behaviour of S/S 
treated material. (Antemir et al., 2010) reported the results for field trials of soils treated 
with 20% of sulfate-resisting PC after four years and showed that contaminant leaching 
remained low.  
One of the important conclusions made by (Hale et al., 2012) about the limiting factors 
in OPC or lime treated contaminated soils is the release of organic matter in solution 
and therefore of the heavy metals associated with DOM due to the high pH 
development.  
 
I.7.4.2! GGBS as a S/S agent 

 
Despite the use of slag-based binders in S/S practice for contaminated soils, ground 
improvement, and other hazardous waste treatment, very few studies can be found 
investigating the application of GGBS for the stabilization/solidification of sediments 
and the main mechanisms responsible for effective stabilization and strength 
development.  
From the review of (Kogbara, 2014) about the S/S of contaminated soils, the UCS of 
treated soil depends on the level replacement of OPC by GGBS. It seems that the 
higher replacement level gives lower strength, however the total amount of binder 
plays an important role (Allan & Kukacka, 1995). At the same time, there is a lack of 
UCS data measured after a long storage period, exceeding 28 days. An OPC 
replacement between 50 and 60 % was reported to be the optimum to achieve the best 
strength performance (Zhang et al., 2018), (Allan & Kukacka, 1995). (Zhang et al., 
2018) demonstrated higher strength values for a 1:1 GGBS:OPC ratio after 28 days. 
Regarding the leaching test performance, the OPC-GGBS binder was shown to be 
more effective in the stabilization of Pb than OPC alone (Akhter et al., 1990). An 
improved leaching performance was demonstrated by (Allan & Kukacka, 1995) through 
increasing the GGBS content in OPC-GGBS blends as well as the reduction of Cr(VI) 
to Cr(III) in chromium contaminated soils. The improved immobilization of Al, Cr, Mn, 
Ni, Cu, and Pb was observed by (Zhang et al., 2018)  with increasing GGBS content, 
however the Zn, Cd, and As were better stabilized with only OPC. (Deja, 2002) studied 
the effect of alkali-activated slag pastes on the stabilization of different types of heavy 
metals. It was shown that Zn2+, Pb2+, Cd2+, and Cr6+ can be immobilized in GGBS-
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based binders activated with NaOH, Na2CO3, or with sodium silicate activation very 
effectively. (Qian et al., 2003) showed that Hg2+ was well stabilized in the alkali-
activated slag cement. (Wang et al., 2019) demonstrated better efficiency of GGBS-
based binders in comparison to the OPC samples for the immobilization of As as one 
of the big concerns of marine sediment remediation.  
In order to reduce cement usage, different studies were conducted for cement 
replacement by GGBS. For example, (Wang et al., 2018) reported better leaching 
performance of OPC/GGBS blends compared to pure Portland cement systems by 
reducing the pH and therefore improving metal stabilization.  
(Limbachiya et al., 2016) demonstrated the beneficial use of GGBS as partial 
replacement of OPC in paving blocks in terms of increased density, a decrease in 
permeability, and improved strength performance compared to the control OPC-only 
blocks. 
GGBS was shown to be effective for the stabilization of soft marine clay using a 
combination of lime and GGBS. The compressive strength was higher for the 
lime/GGBS mixture than for the OPC-only condition. Lower porosity was also observed 
(Yi, Gu, et al., 2015). Soft marine clay can also be solidified using a combination of two 
types of slag as shown by (Yi, Li, et al., 2015) – GGBS and carbide slag (CS), which 
has a high Ca(OH)2 content. This mixture provided a strength lower than an OPC-
based formulation at 7 and 28 days, but higher strength at 90 days of storage. The 
binder demonstrating optimum performance was GGBS/CS activated by Na2SO4. This 
mixture exceeded the OPC strength at all ages. Reactive magnesia can be even more 
effective in the activation of GGBS for the stabilization of soft marine clays. (Yi et al., 
2014) demonstrated a good resistance to the sulfate attack of MgO-activated slag 
compared to Portland cement stabilised clay, and better strength development. 
One of the benefits of using GGBS is the improved sulfate and chloride resistance, 
especially for slag activated with lime (Wild et al., 1998). (Mahedi et al., 2018) 
demonstrated increased strength with curing time using high GGBS content in slag-
cement samples for the stabilization of different expansive soils collected in Texas. 
This strength improvement is attributed to a decrease in the Ca/Si ratio and a decrease 
in swelling potential. Moreover, it was mentioned that high OPC content does not 
necessary provide a suitable strength development and may lead to the degradation 
of mechanical properties over time. The improved strength of sulfate-bearing clay soils 
was reported by (Wild et al., 1998) when lime was combined with GGBS. (Cheng et 
al., 2016) demonstrated an effective stabilization of chloride saline soil using alkali-
activated GGBS. The 28-day strength was higher than the strength of Portland cement 
activation.  
The effect of a binder prepared with 70% GGBS and 30% pozzolanic cement mixed 
with organophilic bentonite on the stabilization of chloro-organic contaminants was 
shown to be quite effective despite changes in the microstructure, such as increased 
porosity (Cioffi et al., 2001). (Bone et al., 2004) provide some reasons of enhanced 
performances for S/S treatment via GGBS-based binders based on previous studies: 
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a GGBS-based binder increases the binding of contaminants in its matrix due to its 
dense microstructure; one of the main factors is GGBS’s Eh (redox potential) which 
produces a reducing environment compared to the oxidising OPC environment.  
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II.1! Introduction 
 
The experimental part of this study explores the mechanisms of the Solidification/ 
Stabilization treatment of contaminated sediments using GGBS-based binders. The 
purpose of this investigation is to explore the interaction between the sediment matrix 
and hydraulic binders in order to formulate a final mix design with an appropriate 
amount of GGBS, and to choose a type of activation for durable land disposal.  
The first part of this chapter seeks to examine the physicochemical characteristics of 
sediment from the Dublin port, being the main case sediment in this study, and 
compare it to sediment from the Gothenburg port. The port authorities of these two 
locations consider the S/S method as one of the most propitious remediation 
techniques for the treatment of dredged material.  The important indicators of the 
geochemical nature of the sediments considered in this study were pH, trace elements 
content and sequential extraction or fractionation of trace elements, total organic 
carbon, cation exchange capacity, mineralogy, as well as some physical 
characteristics such as density, porosity, and granulometry. Characterisation of the 
sediment is important to understand the effectiveness of the stabilizing agents. It was 
therefore examined at different levels – from the achievement of a required strength to 
the immobilization of trace elements through the formation of hydrates and developed 
microstructure.  
To enable assessment on an elementary level of the considered treated materials, the 
sophisticated tools of NMR Spectroscopy and 123#4!#567389:7;!;<#3!<=><!693?@9?3< 
(XANES) were used. These techniques allow for a better understanding of the 
stabilization mechanisms when hydraulic binders are applied as stabilizing agents and 
helped in the investigation of the impact of some heavy metals on the early hydration 
of the binders.  
In order to gain insights into the impact of clays and organic matter as important 
components of the sediment on the hydration of the mixtures, some investigations 
were conducted, and they are described in this chapter. 
 

II.2! Raw materials 
 
II.2.1! Sediment 

 

II.2.1.1! Origin of the considered sediments 
 
The considered sediment comes from the Dublin port. The Solidification/Stabilization 
method was considered as the main remediation strategy within the Alexandra Basin 
in Dublin (Fig.II.1). The dredging was performed at three different points by a special 
device for collecting sediment called a Van Veen grab (Fig. II.2).  
 
Different types of works were scheduled for the area. The construction after infilling the 
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Graving Dock N2 is a special concern for this study resulting in a minimum 
compressive strength requirement after sediment treatment of at least 2 MPa.   
 

    
                        Fig. II.1 Alexandra Basin, Dublin port                 Fig. II.2 Van Veen grab dredging device 

 
After the dredging procedure the Dublin sediment (D0) was placed in special tubes 
and sent for laboratory testing. The samples were stored at 0°±2°C and protected from 
light during the entire experimental study.  
Most research in the field of S/S treatment have focused only on one type of sediment 
when comparing  different binders. However, a major problem with this kind of 
application is to find a product to be effective for all types of sediments from the 
mechanical point of view, as well as a good stabilizer for organic and inorganic 
contaminants. For that reason, it was necessary to use a sediment from another 
location in order to have physico-chemical properties different from the main case 
study. In view of that, a second sediment was received from the Gothenburg port, 
designated as G0 (Fig. II.3). This contaminated sediment will be reused as construction 
material during the Gothenburg port expansion (Berman & correspondent, n.d.).  
 

 
Fig. II.3 Gothenburg project field trials, PEAB’s Prosol mixing 

 
The received Gothenburg samples (G0) were stored at the same conditions - at 0°±2°C 
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and with light protection. The Gothenburg sediment was mainly compared to the Dublin 
sediment in terms of compressive strength evolution.  
 
II.2.1.2! Physical analysis of the sediments 
 

II.2.1.2.1!Particle size distribution 
 
 

There are different systems for soil classification to facilitate the determination of a 
soil’s composition and texture in view of different applications such as construction, 
agriculture, etc.  
It is rare when a soil contains one particle size range as its texture is typically 
composed of clays, sands, and silts (Table II.1). Hence it is useful to know, in terms of 
civil engineering purposes, the full particle size distribution range (Gee & Bauder, 
1986). 
 
Table II.1 Particle size analysis according to different classifications schemes (Gee & Bauder, 1986) 
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Sediments present a complex system as sinks for the storage of different types of 
contaminants, depending also on the particle size distribution. Fine-grained sediment 
shows a particular risk for heavy metals accumulation and thus environmental 
pollution. This sorption process of contaminants on a sediment’s biofilm was described 
by (Flemming, 1995). 
The technique of laser diffraction using a CILAS 1090 particle-size-analyzer was 
selected to specify the particle size distribution of the Gothenburg and Dublin 
sediments. This method consists of a phenomenon whereby the difference in particle 
size is determined by the scattering of light intensity. The laser diffraction technique 
assumes a spherical form for all particles (Pye & Blott, 2004), which is why some micas 
can be overestimated by this method (Hayton et al., 2001). The Mie theory describing 
the interaction of light and small particles was used as an optical model for the analysis 
with a coefficient of absorption of 1.6 + 0.1*i.  
First of all, the sediments were sieved to remove large aggregates (≥2mm), then dried 
at 40°C, crushed and dispersed with 3%wt of hexametaphosphate solution (HMP) in 
order to put the samples in a deflocculated state.  
Both sediments are mostly fine silty clayey sediments (Fig. II.4). 100% of particles in 
the Dublin sediment had a diameter below 80µm and had a d50 between 12 and 13 µm 
and d90 ≈ 40 µm. The corresponding values for the Gothenburg sediment are d50 ≈ 20 
µm and d90 ≈ 72 µm. The Gothenburg sediment also contains some larger particles 
which correspond to the fine sand (≈0,1mm). The Dublin sediment can be texturally 
classed into the finer category probably containing more clay and carbonates particles, 
whereas the Gothenburg sediment texturally presents as a sandy clayey sediment. 
 

     
Fig. II.4 Particle size analysis by laser granulometer of the Dublin (D0) (left) and Gothenburg (G0) 

(right) sediments 
 
II.2.1.2.2!Density  
 
The bulk density of the considered sediments not only describes the physical 
properties of the materials but also defines the amount of binder needed for the S/S 
process.  (Jepsen et al., 1997) demonstrated an increase of the bulk density of the 
sediment with depth due to the compaction phenomenon. It is related to the water 
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content which can be variable from one location to another.  
This study used the pycnometer method for the determination of density  according to 
NF EN ISO 17892-3.  First, the samples were dried and passed through a 4mm sieve. 
After introducing the dry sediment sample into the pycnometer, the weight of the 
pycnometer plus the sample (ms) was measured.  Then it was filled with water (mw) 
ensuring there is no air inside and the total mass was registered (m’). Thus the volume 
of the added water (Vw) can be determined by (12): 
 

FG H
&<I,<J(

KJ
           (12) 

 
The volume of the solid and its density are calculated by (13, 14): 
 

FL H FMNOPQ<RSRT 9 FG         (13) 
                                                    U' H

<V
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                      (14) 

 
The measured bulk density (ρs) reveals the difference in physical properties of the two 
sediments. The Gothenburg sediment has a greater bulk density than the Dublin 
sediment (Table II.2). It is correlated with the water content and the organic matter 
content in both sediments and will be discussed further.   
 
Table II.2 Bulk density of the Dublin (D0) and Gothenburg (G0) sediments 

Samples Bulk density (kg/m3) 

D0 1400±70 
G0 1600±50 

 

II.2.1.3! Mineralogy 
 
II.2.1.3.1!XRD analysis 
 

X-Ray diffraction is a semi-quantitative analytical technique providing information 
regarding  the crystalline structure and mineralogy of poli- or monomineralic samples.  
The most important law giving the relation by which diffraction beam occurs is the 
Bragg law, (15): 
 

X H !YZ[\]E^_,     (15) 
 
λ - wavelength of X-rays; 
d – interplanar spacing, the distance between parallel planes of atoms in the family 
(hkl); geometric function of the size and shape of the unit cell; 
θ - X-ray angle. 
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In other words, this equation calculates the angle where reinforcing interference from 
X-rays scattered by parallel planes of atoms will produce a diffraction peak. 
 
The apparatus used in this study is a D2 PHASER from BRUKER with the anode made 
of cobalt as a metal target (λ=1.79Å) with a step size of 0.02° and 1.2 s counting time 
per step. Before analysis, the samples were dried at 40°C.  First, the fraction < 2 mm 
of both sediments were analysed. Samples D0 and G0 were ground thoroughly with a 
mortar and pestle. A small amount of ground material was placed in a special sample 
holder and X-rayed between 5° and 60° over a diffraction angle (2θ) (Fig. II.5).  
The crystallographic analysis of D0 and G0 presents the variation in mineral structure 
of the samples. The sediment which originated from the Dublin port is a mostly clayey 
sediment with illite identified as a major clay mineral. It contains an important carbonate 
fraction (identified as calcite) unlike the Gothenburg sediment. The Gothenburg 
sediment is predominately a siliceous sediment; the peaks of quartz, albite, and 
microcline were detected.   
 

 
Fig. II.5 X-Ray Diffraction analysis of the Dublin (D0) and Gothenburg (D0) sediments

 
In order to more precisely identify the fine clayey fraction of the Dublin and Gothenburg 
sediments (<2µm), the samples were characterized in the Laboratory of Oceanology 
and Geosciences (CNRS). The main clay fractions are reported in Table II.3.  
According to the report from the laboratory, the Dublin sediment (D0) is composed 
mainly of illite (59%) associated with chlorite (25%) and kaolinite (14%). Smectite is 
present in trace amounts <2%. 
The Gothenburg sediment (G0) contains 52% of illite associated with 22% of non-
swelling and non-heat resistant vermiculitic interstratified minerals. Chlorite and 
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kaolinite represent 18% and 13% respectively of the overall clay assemblage.  
 
Table II.3 X-Ray Diffraction analysis of the clayey fraction of D0 and G0 

Sample Smectite 

Interstratified Clays 

Illite Kaolinite Chlorite Accessory minerals 

Non-

swelling Swelling 

D0 <2% 3% - 59% 14% 25% Quartz 

G0 - 22% - 52% 13% 18% 
Quartz, plagioclase 

feldspars (albite-anorthite) 
 
 
II.2.1.3.2!TGA (Thermogravimetric analysis), DTA (Differential thermal analysis) 
 

The thermal analysis presents a method which identifies the changes in properties of 
a material provoked by temperature alterations (Brown, 2001). The temperature 
changes in a material can be described as phase transitions (new arrangement of 
elements), melting (relaxing of solid system to a liquid state), thermal decomposition, 
or sublimation (Brown, 2001). The quantification of variations of samples is made using 
a thermobalance.  
The technique of differential thermal analysis (DTA) is one of the most common 
procedures in thermal analysis. The difference between the reference material and the 
sample is measured (T∆) when both are under the same heating program. As a result, 
curves with exothermic (released energy; for ex. oxidation) and endothermic peaks 
(absorbed energy) are obtained which are in relation to thermal changes in the 
samples.  
The apparatus used in this study was Sytsys 16/18 TGA-DSC/TMA Instrument. The 
heating rate was set at 10°C.min-1 with temperature rising to 1200°C under argon 
atmosphere.  
Before introducing the sample in a special sample holder of 100µL volume, the 
sediments were dried at 40°C for 24h until all free water was removed. The samples 
were finely ground just before being placed in the TGA apparatus. To ensure the same 
procedural conditions, the mass of the samples was precisely measured to minimize 
the difference between the two samples, ∼ 60µg of each sample was placed in a 
sample holder.  
The data obtained from the TGA DTA analysis is shown in Fig. II.6. The exo- and 
endothermic peaks which correspond to sediment changes during heating have been 
analyzed on the basis of previous investigations on the mineral phases of the soils and 
sediments (Findoráková et al., 2015; Frost, 1996; Hasan & Masoud, 2014) as well as 
on the organic phase (Pallasser et al., 2013).  
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Fig. II.6 TGA DTA analysis of the Dublin (D0) and Gothenburg (D0) sediments 

 

What stands out in the graph is the difference in mass loss – for the Dublin port 
sediment the loss goes up to almost 20% of the mass compared to ≈ 2% for the 
Gothenburg sediment. The first endothermic peak from 40°C till 260°C corresponds to 
the dehydration of the sediments and the effect is stronger for the Dublin sediment. It 
can arise from the larger amounts of organic matter and clay in D0, known to be good 
water holders. The X-Ray diffraction analysis demonstrated that the Dublin sediment 
is mostly clayey sediment whereas the Gothenburg sediment contains a large amount 
of different siliceous minerals. As a result, the endothermic peak at 573°C corresponds 
to quartz transformation and is bigger for G0. The endothermic reactions occurring in 
the region from 230°C to 430°C correspond to OM release. This area of endothermic 
reactions is more pronounced for D0. According to (Pallasser et al., 2013) the area of 
430°C-590°C is attributed to the dehydroxylation of clay minerals. The data from the 
mineralogical analysis of the D0 sediment sample indicated a significant content of 
carbonate minerals. The TGA DTA analysis of the Dublin sediment highlighted the 
carbonates phase decomposition in the region between 700°C-840°C.  
 
II.2.1.4! Chemical properties of the sediments  
 

II.2.1.4.1!pH measurements 
 

The liquid part of the sediment is a phase where chemical reactions take place. The 
release of contaminants from the solid phase into the pore water is a pH dependent 
process as was discussed in the Chapter I. According to (Helali et al., 2009) the pH is 
one of the main variables controlling the mobility, bioavailability, and toxicity of trace 
elements. The pH is mainly controlled by the buffer capacity of the sediment as well 
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as by the biological activity within the sediment.  For example, the pH may rise if the 
reduction of sulfates to sulfides occurs, and on the contrary the pH decreases during 
the denitrification process. The sediment solid phase has non-permanent charge on 
the surface that can be changed with pH changes, when protonation or the dissociation 
of functional groups takes place, for example with the introduction of a hydraulic binder. 
These changes may considerably impact the adsorption process of metallic species.  
pH profiles for the solid part of the sediments were determined from three different 
locations (denominated as A, B, C) for each sediment according to NF ISO 10390. This 
standard consists of placing of the fine fraction of a sediment (<2 mm), dried at 40°C, 
in a glass flask to the 5 ml volume. Then the flask is filled with demineralized water 
counting 5-times the sample’s volume. The suspension is agitated till pH stabilization, 
avoiding any air penetration. The values of pH measurements are summarised in Table 
II.4. 
 
Table II.4 pH of the Dublin (D0) and Gothenburg (G0) sediments 

Sample pH (A) pH (B) pH (C) 

D0 7.3 7.6 7.6 
G0 7.5 7.5 7.6 

 

Both sediments have similar pH profiles for the solid part. These values are typical for 
marine sediments (Emerson & Hedges, 2008; Schulz & Zabel, 2006). In addition, the 
interstitial water pH was measured following the centrifugation of the raw samples. The 
obtained pore water is a result of compaction of the solid sediment fraction. Table II.5 
below shows the values of the pH of the interstitial water for the Dublin and Gothenburg 
sediments. As can be seen the obtained values present slightly more alkaline pH 
profiles compared to Table II.4.  
 
Table II.5 pH of the pore water of the Dublin (D0) and Gothenburg (G0) sediments 

Sample pH 

D0 8.0 
G0 8.1 

 

II.2.1.4.2!Total Organic Carbon (TOC) analysis  
 

Organic matter is one of the key parameters required in order to characterise a 
sediment’s nature. It is also an important biodynamic marker used to evaluate the state 
of an aquatic ecosystem (Dong et al., 2017), (Schaanning, 1994). Organic matter is a 
complex dynamic component of the carbon cycle (Emerson & Hedges, 2008; Strong 
et al., 2012). Further, organic matter is important due to its ability to form complexes 
with metal ions and to interact with clays and organic contaminants. The structure of 
fulvic and humic acids, which are main components of sediment organic matter, is 
highly dependent on the pH and ionic strength of the environment (Klučáková, 2018). 
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During the Solidification/Stabilization process some reactions may occur between a 
highly alkaline hydraulic binder and OM, such as the complexation or dissolution of 
OM.  
In this study the organic matter content was quantified using Total organic carbon 
analysis. The reliability of this method derives from the fact that the carbon is a major 
OM element : ∼45% c. by mass for carbohydrates, ∼85% c. by mass for lipids (Emerson 
& Hedges, 2008).  
The samples D0 and G0 were analysed according to NF 10693, NF 10694, and NF 
14235. First, the samples were oven dried to constant weight, homogenized, and 
sieved in order to obtain the fraction <250µm (NF ISO 23470).  
Second, hydrochloric acid with concentration [HCl] = 4 mol/l was added to a small 
amount of solid (D0, G0) to remove carbonates from the samples according to NF 
10693. The inorganic carbon value (IC) was obtained as an elimination product of the 
following chemical reactions (Me - Metal ion) (16), (17): 
 

31"%. ) !#
/ D 31$/ ) #$"%.       (16) 

                                            #$"%. D #$% ) "%$ `                      (17) 
 
Subsequently the samples were dried at 60°C-70°C for 4 hours and subjected to the 
heat till 900°C in a gas stream in order to oxidize the carbon to carbon dioxide. The 
amount of formed carbon dioxide was measured via a katharometer (thermal 
conductivity detector) after chromatographic separation. Thereby the total carbon (TC) 
value is obtained and so the total organic carbon value can be calculated as follows 
(18):  

 

       a%" H a" 9 b"              (18) 
 
The organic matter content is calculated by multiplying the TOC value by the 
conversion factor (f=1.72). The obtained values are summarised in Table II.6.  
 
Table II.6 TOC analysis results of the Dublin (D0) and Gothenburg (D0) sediments 

Sample Organic carbon (g/kg) (CaCO3) Total (g/kg) Organic matter (g/kg) 

D0 33.5 161 60 
G0 12.9 <1 22.3 

 
The results indicate higher TOC and OM content for the Dublin sediment as well as a 
significant carbonates content – 16%wt of the Dublin sediment against the absence of 
a carbonates fraction for the Gothenburg sediment. The results are in accordance with 
the XRD analysis. A number of studies have investigated the correlation between the 
particle size distribution and the amount of organic matter in sediments –  the finer the 
sediment is, the higher the amount of organic matter (Pelletier et al., 2011; Strong et 
al., 2012). The granulometric measurements demonstrated that the Dublin sediment 
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contains finer particles that the Gothenburg sediment.  
 
II.2.1.4.3!Cation Exchange Capacity (CEC) measurement  
 

Clays and organic matter give a negative charge to sediment particles. This implies 
that its capacity to adsorb and release cations into the solution is governed by 
electrostatic forces (Sposito, 2008), (Sidi et al., 2015; Toth & Ott, 1970). The Cation 
Exchange Capacities (CEC) value is used to evaluate the amount of exchangeable 
cations held by the sediment. It is a value of a net negative charge on the sediment 
particles originating from isomorphous substitution at the boundaries (Terzaghi, 1996). 
Thereby, this sediment parameter is interesting to measure from the point of view of 
the stabilization/solidification process. For example, a higher CEC can demand a 
higher amount of the binder to maintain a high pH in a system.  
The CEC test for the study was conducted according to NF ISO 23470. The 
determination of exchangeable cations (Al, Ca, Fe, K, Mg Mn, Na) was performed 
using a hexamminecobalt (III) chloride solution as extractant. The sediments samples 
D0 and G0 were prepared according to ISO 11464 and the fraction  <250µm was used 
for the extraction. The hexamminecobalt ions were exchanged with cations in 
sediments by agitating for 60 min. The difference between the initial amount of 
hexamminecobalt and the rest in the solution after the reaction gives a CEC value. The 
ICP-AES spectroscopic method was used to measure the quantity of exchangeable 
cations.  
 
Table II.7 CEC results of the Dublin (D0) and Gothenburg (D0) sediments 

Sample CEC (cmol/kg) 

D0 19 
G0 4.2 

 
As can be seen from Table II.7 above, D0 and G0 have a big difference in measured 
CEC values. This gap can be explained by the mineralogical XRD analysis (Fig. II.5) 
with regard to the more siliceous nature of the Gothenburg sediment and the more 
clayey Dublin sediment. In addition, the organic matter content is higher for the Dublin 
sediment (Table II.6), thereby the CEC value is higher for D0.   
 
II.2.1.5! Operational fractionation of inorganic pollutants 
 

II.2.1.5.1!Total Attack of the Dublin sediment and the main binding agents 
 

The total dissolution of Dublin port sediments, also called Total attack, determines the 
total concentration of heavy metals and major chemical species in said sediments. It 
should be mentioned that the term “heavy metals” seems not to be appropriate to 
describe potential pollution/toxicity of a metal (M. Hodson, 2004), but it is used in the 
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current study due to its common use in the environmental literature.   
The Dublin sediments, which originated from three different locations and depths within 
the Alexandra basin, were analysed [D0 (A), D0 (B), D0 (C)]. Pure anhydrous hydraulic 
binders, i.e. Ordinary Portland Cement (OPC) and GGBS, were also analysed.  
The total attack consists of a digestion procedure of all sediment components, with 
help of strong acids, in order to extract even the most stable heavy metals from the 
crystal lattices of the minerals (de Groot et al., 1982).  
After the cement manufacturing process, trace elements may be found in the final 
cement product (Cipurkovic et al., 2014; Gineys et al., 2011). The main sources of 
hazardous pollutants in cement are raw materials as well as fuels and waste 
combustion in the clinkering process (limestone, clay, cement kiln dust, raw mill, pet 
coke, scrap tires) (Arfala et al., 2018). Consequently, the incorporation of some heavy 
metals in clinker’s anhydrous phases can be expected. (Gineys et al. (2011) in their 
literature review reported the presence of Cu and Ni mostly in the ferrite phase, 
followed by alite. Zinc can be found in silicates as well as in ferrite phases. Ground 
granulated blast furnace slag may also contain some amount of heavy metals 
depending on the original ore composition.  
 
II.2.1.5.1.1!Total attack procedure  
 
In order to perform the total attack, the following protocol was applied (Fig. II.7): 
 

 
Fig. II.7 Total attack procedure 

 
- 200 mg of particles was introduced into a polytetrafluoroethylene (PTFE) 
reactor.  
- The first step was to add 10 mL of hydrofluoric acid (HF, 23 M Suprapur, Merck 
Millipore) and 5 mL of HNO3 [HNO3, 14M Normapur, VWR, further distillated in the 
laboratory at low temperature (∼ 70°C) to remove trace metal impurities] and to heat 
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the mixture to get a temperature of 140°C for 48 h. The solution was then evaporated 
completely.  
- The second step consisted of the addition of 6 mL of hydrochloric acid (HCl, 
12M, Normapur, VWR, further distillated as for HNO3) and 3 mL of nitric acid. The 
mixture was heated at 120°C for 24 h.  
- The acids were finally completely evaporated to get a volume of about 0.5 mL 
and 10 mL of MilliQ water were added. The solution was kept at room temperature 
before analysis by ICP-AES or ICP-MS according to the concentration ranges. 
For quality assurance, a certified reference sediment (MESS-3 provided by NRC-
CNRC) was also analysed and the recovery range was from 81 to 101% with an 
average of 93%.  
 
II.2.1.5.1.2! Results of the total attack of the Dublin sediment  
 

Table II.8 provides the results of the total attack analysis of the raw Dublin sediment 
as well as extracted metals content for the OPC and GGBS powders.  
 
Table II.8 Total attack results of the considered binders and the Dublin sediment (D0) from 3 different 
locations within the Dublin port. Concentrations are given in mg/kg. The relative standard deviations 
values performed on a triplicate are: 1% for Al, Ca, Cu, Mg, Ni, Sr, Ti and Zn; 3% for Co and Cr; 5% for 
Pb and 10% for Cd. 

 D0 (A) D0 (B) D0 (C) OPC GGBS 

Al 53500 54400 58400 22300 50600 
Ca 76600 75600 67400 442000 327000 
Fe 31900 31900 37300 21600 2000 
Mg 11100 11400 11300 6300 34000 
Ti 3960 3910 3860 1090 3780 

Mn 560 555 552 196 1010 
Co 13 13 15 6.6 4.4 
Cr 70 67.8 74.8 36 12 
Cu 62 63 104 230 0.49 
Cd 3.7 3.6 14 0.77 0.16 
Ni 35 33 43 34 1.1 
Pb 252 257 872 35 0.11 
Sr 260 258 232 910 332 
Zn 1340 1410 4350 274 1.3 

 
Major elements of the main sediment minerals such as Al, Ca, Fe, Mg and Ti were 
measured after rigorous application of the digestion procedure. The major element 
profiles of D0 (A) and D0 (B) are similar, however D0 (C) shows an increase in Al and 
Fe and a lower amount of calcium ions. For all samples, the content of the primary 
elements is in the following order: Ca>Al>Fe>Mg>Ti.  
Regarding trace elements content of the Dublin sediment, closer inspection of the table 
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shows that the D0 (C) sample is the most contaminated by far. It can be seen that the 
amount of zinc is almost three times greater for D0 (C) than for D0 (A) and D0 (B) 
samples. D0 (C) also contains a large amount of Cd, Cu, and Pb compared to the two 
others locations in the harbour. No significant differences were noticed for Co, Cr, Ni 
and Sr concentrations in the three different points. The average values of the metallic 
abundance are in the order: Zn>Mn>Pb>Sr>Cu>Cr>Ni>Co>Cd.   
With regard to the major elements of the Portland cement and GGBS, the prevalence 
of Ca and Fe ions can be observed for the OPC binder. On the other hand, the amount 
of Al and Mg is around twice as great in the case of GGBS. Portland cement presents 
a considerable content of trace elements compared to the ground granulated slag. 
Copper, strontium, and zinc metals have the values of 230mg/kg, 910 mg/kg and 274 
mg/kg respectively with Cu and Sr exceeding the values of D0.  
 
II.2.1.5.1.3! Enrichment factor  
 
The Enrichment factor (EF) is one of the indicators used to assess heavy metal 
pollution and its intensity. The method of EF calculation uses the normalization of one 
metal concentration to the concentration of a reference element (Abrahim & Parker, 
2007; Barbieri, 2016). The reference element is considered to be extremely stable in 
the sediment and is present at a relatively high concentration. Fe, Sr, or Al are often 
chosen as the reference element due to their mostly natural occurrence. In this study 
aluminium was used as a major constituent of clay minerals. 
The Enrichment factor (EF) was calculated according to the following equation (19): 
 

c0 H
&2d2R\R<RPS2e2'f<M\R2g2d2h\2e2'f<M\R2(

&2d2R\R<RPS2e2TRiRTRPOR2g2d2h\2e2TRiRTRPOR2(
,     (19) 

 
Where ‘reference’ are the values from the suitable background material. In this study 
the baseline reference material was adopted from (Sterckeman, 2006) with the 
reference values reported in Table II.9. 
 
Table II.9 Reference values, (Sterckeman (2006)) 

 Al Cd Co Cr Cu Ni Pb Zn 

ref. values 
(mg/kg) 50300 0.12 11.1 65 13.6 27.8 18.6 55 

 
According to the values obtained, the EF is used to define a pollution scale as 
proposed, for instance, by the French Water Agency (see Table II.10) in order to 
qualitatively rank the degree of environmental contamination. 
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Table II.10 Sediment quality according to EF 
Value Sediment quality 

EF ≤ 1 Deficiency enrichment 
1 < EF < 3 Minimal enrichment 
3 < EF < 9 Moderate enrichment 

EF ≥ 9 Very high enrichment 
 
The results for the three sediments are displayed in Figure II.8. It can be noticed that 
samples D0 (A), D0 (B) and D0 (C) are highly contaminated by Cd, Pb, and Zn. The 
moderate enrichment factor is related to copper. Co, Cr, and Ni present a minimal 
contamination level. Finally, as already mentioned above, sample D0 (C) comes from 
the most polluted location. Note further that this kind of contamination is very 
conventional in a harbour because Cd, Cu, Pb, and Zn are four metals widely used for 
industrial purposes. 
 

 
Fig. II.8 Enrichment factor of the Dublin sediment [D0 (A), D0 (B) and D0 (C)] 

 
II.2.1.5.2!Sequential extraction of HM from the Dublin sediment 
 
The sequential extraction method is a widely used technique for soils/sediments 
characterisation (Mufleh et al., 2010; Nowrouzi et al., 2014; Pagnanelli et al., 2004). 
The method provides a repartition of metallic elements in different sediment fractions. 
This fractionation technique helps to evaluate the potential risks of toxic elements 
according to their repartition in the sediment matrix and predicts the release of metals 
under different environmental conditions (Okoro & Fatoki, 2012).  
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Fig. II.9 Repartition of heavy metals in different sediments’ fractions. Abbreviation: NOM: Natural 

Organic Matter 
 
Numerous complex extraction techniques have been proposed for the investigation of 
the major and trace elements repartition between the different sediment phases. The 
goal of these techniques is to provide information regarding the lability (that might be, 
to a certain extent, compared to the concept of bio-availability) of the pollutants by 
dissolving the sample successively with reagents of increasing aggressivity (Ahnstrom 
& Parker, 1999). These reagents are adapted in order to attack main sediment 
fractions such as clays, organic matter, carbonates, iron and manganese hydroxides, 
and enable the operator to keep track of the leaching rate of heavy metals for each 
fraction (Fig. II.9).  
The first well known sequential extraction method was proposed by Tessier (1979) for 
cationic elements. Other methods have been developed using, for instance, different 
levels of acidity combined with EDTA (Maes et al., 2003). In Europe, the BCR 
(Community Bureau of Reference) has developed a normative procedure with a 
sediment reference material (CRM 701), based on the Tessier method (see Table 
II.11). 
 
Table II.11 Summary of sequential extractions of heavy metals by the Tessier and BCR schemes 
(Vodyanitskii, 2006) 
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II.2.1.5.2.1! Sequential extraction fractions proposed by Tessier protocol 
 
Five main fractions are considered through the sequential extraction method proposed 
initially by Tessier (1979). 
 

!! Exchangeable fraction 
The metals that are bound by the weak electrostatic interactions and that can be easily 
adsorbed or desorbed according to ion-exchange process are situated in this fraction. 
They are easily available to be released from the sediment matrix. For this purpose, 
some procedures use neutral salts (nitrate, chloride, or acetate salts) in order to 
replace the metals adsorbed on the negatively charged solid. This fraction usually 
represents a small proportion of leached heavy metals, except Mn, K, and Ca.  
 

!! Carbonate fraction 
In order to extract metals bound on the carbonate phase, the sediment has to be 
acidified. This phase is sensitive to pH changes and 1M sodium acetate solution 
adjusted to pH=5 can be used in order to solubilize the carbonate phase (mainly 
composed of calcite). Note that some trace metals weakly associated to the organic 
matter and to AVS (Acid Volatile sulphides) are also likely to be leached out during the 
solubilisation of this fraction.  

!! Reducible fraction 

Iron and manganese oxides are of the main concern of the reducible fraction of 
sediments. These oxides are able to accumulate trace metals due to 
adsorption/coprecipitation/surface complexation/penetration. These oxides are 
thermodynamically unstable under reducing conditions. Consequently, reagents 
generally used for this part of the extraction process are hydroxylamine hydrochloride 
in a nitric acid medium or oxalic acid/ammonium oxalate buffer (NH4Ox/HOx) at pH 3. 

!! Oxidisable fraction 

Several trace metals can be found in the organic matter fraction as specific complexes 
formed of trace elements with OM, or by bioaccumulation in living organisms. The 
degradation of organic matter in oxidizing conditions releases metals related to this 
phase. The organic matter has a special affinity to divalent ions in comparison to 
monovalent ions: Hg>Cu>Pb>Zn>Ni>Co (Filgueiras et al., 2002). The oxidants used 
for this phase extraction are hydrogen peroxide in an acid medium, NaOCl at pH=9.5, 
Na4P2O7 at pH=9.5, or K4P2O7. During this extraction step, trace metals associated 
with pyritic compounds are also leached out. 

!! Residual fraction 

Several other minerals remain after the fourth extraction procedure such as refractory 
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oxides (e.g. rutile) or clays. An aqua regia solution, eventually combined with HF, 
allows for the extraction of the remaining metals in the sediments. As these metals are 
strongly bound to this refractory material, they are generally considered as inert and 
not bioavailable. 

II.2.1.5.2.2! Procedure of sequential extraction applied in the study  
 

 
Fig. II.10 Sequential extraction procedure 

In this work, the four step procedure proposed by the European Commission and 
validated with a certified sediment (BCR-CRM 701) has been applied (Fig. II.10). This 
procedure is dedicated to divalent and trivalent trace metals and certified for Cd, Cr, 
Cu, Ni, Pb, and Zn. In this work, it was decided to extend this to some other elements 
including Ca, Co, Fe, Mg, Mn, Sr, and Ti. The protocol that has been applied is 
precisely described in Rauret et al. (2001). Briefly: 
 

!! Fraction 1 (F1): The first step permitted the extraction of metals weakly 
adsorbed to the particles, associated with carbonate phases, and trapped in 
most acid volatile sulphides (AVS). 0.5 g of dry material was placed in 20 mL of 
acetic acid (0.11 mol/L) solution at pH=4 for 12 hours at room temperature. For 
the sediments previously treated with the cement, the concentration of acetic 
acid was increased to 1 mol L-1 to keep the pH value at 4 (optimisation 
procedure not detailed here). 
 

!! Fraction 2 (F2): The second step released the remaining metals associated with 
acid volatile sulphides, the metals associated with iron and manganese oxides, 
and some metals associated with organic matter into solution. 20 mL of a 
mixture of HNO3 (0.05 mol L-1) and a reducing reagent (hydroxylamine 
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hydrochloride, 0.5 mol L-1) was used for a duration of 12 hours at room 
temperature.  

 
!! Fraction 3 (F3): Metals associated with pyritic compounds and refractory 

organic matter were extracted during the third step by heating the particles 
(85°C) in the presence of 2 × 5mL of hydrogen peroxide at a concentration of 
9.8 mol/L and pH=2-3 for a duration of 5 hours. After reducing the volume to 
around 3 mL, 25 mL of ammonium acetate (1 M), adjusted to pH = 2 with HNO3, 
was added to the particles to stabilize the extracted metals. 

 
!! Fraction 4 (F4): Finally, the last step consists of a mixture of acids as described 

in the section § II.2.1.5.1.1 (Total attack procedure). This allows for the recovery 
of the remaining metals associated with refractory materials like clays or 
titanium oxides. 
 

Note that after each extraction step, the solution was centrifuged for 20 min at 3000 
rpm and the supernatant was filtered at 0.45 µm for trace metal analysis. The 
remaining particles were rinsed two times with Milli-Q water before the next step. 
 
Finally, as this procedure is challenging, a certified reference sediment (BCR-CRM 
701) was also used for quality control. For Cd, Cr, Cu, Ni, Pb, and Zn, 17 results of 
recovery ranged between 90 and 110%, 5 ranged between 110 and 150% and 2 
ranged between 65 and 70%. 
 
II.2.1.5.2.3! Sequential Extraction results for the major elements   
 
The chemical fractionation of the Dublin sediment is quite similar for the three 
considered locations D0 (A), D0 (B) and D0 (C) (Fig. II.11, II.12, II.13).  
The majority of aluminium is included in the residual fraction of the Dublin sediment 
(95% on average, Fraction 4). Al is mostly present in primary or secondary 
aluminosilicate compounds which reflects its detrital origin from natural sources (Nasr 
et al., 2018) (Khan et al., 2013). Almost no Al was present in the carbonate fraction 
(Fraction 1). In the present study, Al bound to Fe-Mn oxides (Fraction 2) or to organic 
matter (Nasr et al., 2018) is also negligible. In general, these results indicate that there 
is no risk for Al availability in the aquatic environment. In the same way, Ti as a 
lithogenic element is completely associated with Fraction 4 and is geochemically 
stable, hosted by refractory minerals (Boës et al., 2011). 
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Fig. II.11 Sequential Extraction of D0 (A) 
 

 

Fig. II.12 Sequential Extraction of D0 (B) 
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Fig. II.13 Sequential Extraction of D0 (C) 

 
Regarding the calcium repartition among the sediment components, it showed a 
marked presence in the carbonate fraction with an average percentage of 92%. This 
significant presence of calcium in the carbonate and exchangeable fractions reflects 
its important mobility rate. It is generally known that Ca2+ ions are combined with 
inorganic carbon (CaCO3) and to a lesser extent to phosphorous in aquatic 
environments (He et al., 2015). Some amount of calcium is also present in the second 
fraction (5-6%) due to the presence of a small fraction of more refractory Ca minerals 
such as dolomite. 
Iron and manganese demonstrate a different geochemical pattern within the Dublin 
sediments. The majority of Fe (67% on average) is associated with aluminosilicate 
phases. This is in accordance with the XRD analysis of D0 that showed an important 
amount of chlorite present in the Dublin sediment. Fraction 2 contains a mixture of Fe 
and Mn oxyhydroxides. This fraction is more significant in the case of Fe (24% on 
average). It can be also attributed to the former presence of FeS (ferrous sulfides) that 
have been re-oxidized during the drying process (Hamilton-Taylor & Price, 1983). The 
large percentage of Mn is attributed to the Mn carbonate-bearing phase (∼44%) and 
some of the Mn is located in detrital silicate minerals (∼29%).  
The magnesium speciation in the Dublin sediment is characterized by a high 
concentration in the residual fraction (∼63%) and carbonate fraction (∼22%). According 
to (Berg et al., 2019), magnesium is incorporated into the crystal structure of authigenic 
carbonates and aluminosilicates in sediment.  
Finally, the results of the SE of the trace elements from the Dublin sediment and the 
sediment treated with Portland cement and GGBS-based formulations are presented 
in Chapter V.  
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II.2.2! Binders and other materials  
 

a)! GGBS and OPC  
 

The Ordinary Portland cement was supplied by Cap Vracs Cement Group which is 
located in Fos-sur-Mer, France, and complied with the requirements of BS EN 197-1. 
The ground granulated blast furnace slag was provided by the ECOCEM factory also 
situated in Fos-sur-Mer. The GGBS was manufactured according to NF EN 15167-1 
with a Blaine fineness of 4500 cm²/g. The chemical composition of both hydraulic 
binders is presented in Table II.12.  
 
Table II.12. Chemical composition of OPC and GGBS (XRF technique) 

wt% CaO SiO2 Al2O3 Fe2O3 TiO2 MgO Na2O K2O SO3 LOI 

GGBS 43.9 37.6 10.26 0.33 0.81 6.93 0.22 0.26 0.03 - 
OPC 64.06 20.01 3.96 3.08 0.17 1.25 0.15 0.74 5.2 1.26 

 
 

b)! Chemical additives  
 

For the manufacture of the supersulfated formulation, an anhydrous calcium sulfate 
(CaSO4) with a purity of 99% from Alfa Aesar was used. The other additives used as 
GGBS activators were provided by Sigma Aldrich (Na2CO3, MgSO4, and MgO).  
Dispersants used in this study were sodium hexametaphosphate (HMP) (NaPO3)n and 
a phosphonate agent provided by Italmatch Chemicals group denoted as B dispersant. 
 

II.3! Sediment-Binder Systems 

 

II.3.1! Samples’ preparation 
 
II.3.1.1! Samples for the main case Dublin port sediment 
 
In order to follow the evolution of the solidification process of sediments treated with 
hydraulic binders, the samples were prepared according to the procedure for the 
fabrication of standard mortars (NF 196-1). However, this procedure was slightly 
modified to take into account the use of raw sediment as a major element of the 
samples.  
The sediment was first sieved to remove large aggregates (larger than 4 mm). Before 
being mixed with the binder, the sediment sample was allowed to settle over 24h and 
the bleeding water was removed. The samples were prepared with sediments having 
water content of approximately 45%±1.5%wt. All specimens were manufactured based 
on the dry binder/wet sediment ratio of 150kg/m3 (∼10,7%wt of sediment) with an 
estimated sediment bulk density of 1400kg/m3. 
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The sediment-binder samples were manufactured as follows: 
 
- The binder powder was first dispersed in tap water at a water-binder ratio of 0.45 to 
form a paste.  
- The fresh paste was then gradually introduced into the sediment and mixed for 5 
minutes using a mortar mixer at low speed (rotation at 140 ± 5 min-1) until a 
homogeneous mixture was obtained. The mixing bowl was scraped after two minutes 
to remove unmixed components stuck to the bottom of the mixing bowl.   
- Prismatic molds (40x40x160 mm) were half-filled and compacted using 60 jolts with 
a jolting apparatus. The same procedure was repeated after complete filling of the 
molds.  
- The molds were wrapped with two layers of polyethylene film to prevent evaporation 
and maintained at constant temperature of 24°C±1°C.  
- The samples were demolded as soon as a sufficient strength (hardness) was reached 
(Fig.II.14) and then stored in same curing conditions prior to testing (24°C±1°C and 
relative humidity 91%±1.5%).  
 

 
Fig. II.14 Samples after demolding 

 
II.3.1.2! Samples for the study of the impact of the nature of sediments 
 
The Gothenburg sediment was used to help verify whether the selected binders 
demonstrate the same effectiveness when the S/S process is applied to sediments 
with different physicochemical characteristics, especially when Portland cement is 
replaced by a high percentage of GGBS (85%).  
Both sediments were prepared for mixing in the same way as was described previously 
(II.3.1.1), but this time the amount of binder was doubled (to 300 kg/m3) with the 
purpose of obtaining further in-depth information on the hydrates evolution by using 
the XRD method after the compressive strength test.  All specimens were 
manufactured according to (NF 196-1). 
For these specimens, two modes of storage were adopted prior to subsequent testing:  

:! T =24°C±1°C and RH= 91%±1.5%; 
:! T =24°C±1°C and RH= 100%. 
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II.3.2! Samples’ characterization 
 

II.3.2.1! Compressive Strength 
 
The compressive strength of the binder-blended sediment samples was tested using 
an electromechanical press (Instron 3360, Fig.II.15) at a loading rate of 100 N/sec. The 
load was applied to the 40 mmx40 mm section of the horizontally placed samples. UCS 
strength testing was performed at curing times of 28 days, 3 months, and 6 months.  
 

 
Fig.II.15 Instron 3360, Uniaxial Strength Testing 

 
II.3.2.2! Shrinkage Test 
 

To compare the shrinkage behaviour of two formulations – the first with only Portland 
cement and the second with high GGBS content - considered for the Dublin sediment 
S/S treatment, samples were prepared in the same way as for the compressive 
strength test (II.3.1.1). However, the amount of binder was doubled (to 300kg/m3) to 
ensure good adhesion between the treated sediment and measurement pins. The 
binder-sediment mixtures were well homogenized to manufacture three specimens for 
each binder formulation and placed in special molds with 6 plugs in heads for the pins. 
The molds were protected by a plastic film and stored until sufficient hardening in order 
to avoid the plastic shrinkage of a fresh mixture. After demolding, the drying and 
endogenous shrinkage were measured at long term. The samples were stored at 
24°C±1°C, and RH=91%±1.5%.  
To measure the length variations of the solidified sediments, a standard length 
comparator for expansion and shrinkage was used. This device consists of an 
aluminium base with adjustable feet and two stainless steel contact pins with an 
electronic counter with an accuracy of 0.001 mm. A calibration rod (160mm) was used 
each time before samples were introduced into the apparatus. Three measurements 
from three samples for each formulation were recorded at each time increment (till 90 
days of storage). Then the change in shrinkage-expansion was calculated with respect 
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to the initial sample length.  
 
II.3.2.3! Leaching Test 
 

The batch leaching test was carried out in order to assess the capacity of the 
considered binders to stabilize heavy metals. In parallel, the monolithic leaching test 
was performed to evaluate the stability of organic contaminates, especially tributyltin 
TBT (the details of the procedure and the results are given in Annex A). 
 
The leaching test of heavy metals from the raw Dublin sediment and the treated 
sediment was performed according to NF EN 12457-2.  The Dublin sediment mixed 
with 150kg/m3 of binder was investigated. After the mechanical tests, the sample 
fragments were dried at 40°C for 24h. According to the standards, the leaching tests 
should be performed with particles smaller than 2mm, but not too fine. The particles 
were thus sieved between 2 mm and 0.1 mm. The test consisted of dispersing 90±5g 
of solid particles in 900 ml of demineralized water (pH=5-7.5 and conductivity <0.5 
mS/m) for 24 hours at 10 rpm (horizontal rotation) in a room at a controlled temperature 
of 24°C±1°C (Fig. II.16).  
 

 
Fig. II.16 Leaching apparatus 

 
The leachates were then centrifuged to separate the solids, and filtered through 
vacuum filtration with filter paper with a pore size of 0.45μm to remove solid impurities. 
The leachates were stored in a refrigerator at 0°C before being sent to a chemistry 
laboratory for analysis using the ICP-MS technique. 
 

II.3.2.4! XRD analysis 
 
The same procedure as described in section § II.2.1.3.1 was applied to the sediments 
treated with hydraulic binders using a D2 PHASER apparatus from BRUKER.  
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II.3.2.5! Zeta Potential  
 
The zeta potential (ζ potential) is an important electrokinetic measurement in mineral-
water interfaces. When ionized solid particles become surrounded by dipolar water 
molecules, an electric potential occurs at the interface between these phases as a 
result of ionization of the surface, the adsorption of ions, or dissolution (Hunter, 1981). 
The ζ potential evaluates a theoretical function of electrostatic interactions between 
particles and is important from the point of view of dispersion-flocculation phenomena 
and hydrate formation in the current study. The charge of the solid particles impacts 
the arrangement of the surrounding ions in the liquid state – they attract the oppositely 
charged ions and repulse ions with equal charge (Salopek et al., 1992). The interface 
charge is governed by electrostatic interactions/thermic agitation and can be 
conceptualized as an electrical double layer.  
There are several theories concerning this electrical double layer. The simplest model 
is the Helmholtz theory (Fig. II.17). It consists of the formation of a dense layer of 
oppositely charged ions on the charged surface of the particle. The second model 
developed by Gouy & Chapman takes into account the thermic and disordered 
agitation of ions but neglects the ions that are situated very close to the charged 
surface. Finally, the Stern model combines these two theories: it describes a dense 
ionic layer of counter charges (Stern layer) followed by a diffused layer of ions of equal 
charge as the surface. 
 

       
Fig. II.17 Schematic models of electric double layer    Fig. II.18 Zeta Potential according to (Pate, 2016) 
 
Under external electric field solicitation, the particle moves with both the Stern and 
diffused layers. The layer between the Stern layer and diffused layer is called the 
‘slipping plane’, which divides the immovable and diffuse parts. The zeta potential 
value is an average value at the level of the slipping plane situated between the Stern 
layer and the diffused layer:  ψ (external value of diffused layer) < ζ < ψ(Stern layer) 
(Fig. II.18).  
Mechanisms of zeta potential variations involve interparticle forces. Strong attractive 
forces produce a suspension with an unstable agglomerated state while a dispersed 
state occurs between particles through repulsive forces. The DLVO theory (Derjaguin, 
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Landau, Verwey and Overbeek theory) outlines the model when van der Waals forces 
are combined with electrostatic forces. This model describes the case when the 
electrostatic double layer forces and the van der Waals forces are independent; they 
can be overlapped or added for two particles. The ionic strength and pH of a solution 
are the factors that can significantly affect the ζ potential value by adjusting various 
forces in the system. The ionic strength has an influence on the slipping plane position, 
whereas an increase in pH will bring the zeta potential value to zero. This means that 
the overall net charge is zero (called the ‘Isoelectric point’) and flocculation may occur. 
In the binder mixes, the surface charge changes through the dissolution of the 
anhydrous phases and adsorption of potential-determining ions such as Ca2+.  
The samples for the zeta potential measurements were prepared as follows: 

:! ζ potential of the raw Dublin sediment: the raw sediment was put in 
demineralized water with a water:(dry) sediment ratio of 10 by taking into 
account the water content of the sediment (∼45%); 

:! ζ potential of the Dublin sediment with binders: first, dry binder was added to 
the sediment at 10% per raw sediment weight. The remaining sample 
preparation procedure is the same as for the raw Dublin sediment. 

 
Zeta potential measurements were carried out using a Zetaprobe Analyser from 
Colloidal Dynamics, performing through the electroacoustic method. The values of zeta 
potential, conductivity, and pH were recorded every 2 minutes with constant stirring at 
250 rpm.  
 

II.3.2.6! Rheology  
 
Rheology represents an investigation of the deformation and flow of a matter (Vicente, 
2012). Concentrated suspensions such as fresh sediment-binder mixes exhibit 
complex rheological behaviour due to the physical and chemical properties of the 
suspended particles. (Tadros, 2010) highlights four main types of particle interactions 
that may impact the rheology of suspensions: hard-sphere interaction, ‘‘soft” or 
electrostatic interaction, steric interaction, and net attractive interaction or van de 
Waals attractions. Generally, sediments contain an important amount of clay particles 
that are expected to interact under electrostatic forces and to repulse due to increased 
double layers (Cruz & Peng, 2016). In the case when the electric charge of the double 
layer is neutral, van de Waals attractions govern the rheological behaviour of mixtures 
producing the maximum yield stress. Suspensions often show the same type of 
rheological behaviours: shear-thinning (with increasing shear rate the viscosity 
decreases); shear-thickening (with increasing shear rate the viscosity increases); yield 
stress (when the shear rate is decreased towards zero, the shear stress converges 
toward a constant value); viscoelasticity; etc. (Ancey, 2005). Sediments with high clay 
and organic matter content demonstrate a non-Newtonian nature with a high viscosity 
and decrease in shear rate suggesting the appearance of yield stress. Such materials 
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demonstrate different colloidal behaviours (thixotropy, viscoelasticity, yield stress) 
depending on the clay minerals, the composition of solution, CEC, pH, etc. Rheological 
properties may greatly impact the short and long term evolution of treated sediments, 
for example the mechanical strength of mixtures.  
The rheological measurements were evaluated in terms of stress versus shear rate on 
the raw sediment and on the sediment after the addition of the binding agents. Due to 
the complex nature of this type of material, only qualitative analysis was undertaken. 
Small deformations were considered because of the probable occurrence of slippage. 
The yield stress of a material such as sediment is linked to the radical increase of the 
slope of the curve of the shear rate as a function of the stress above a certain critical 
stress (Chaari et al., 2003). (Chaari et al., 2003) explains the origin of the yield stress 
of the paste-like sludge by the required hydrodynamic drag force to break the largest 
flocs in the system. The addition of highly alkaline binding agents may change the 
rheological behaviour through increased particle attraction or flocculation. The 
procedure used here consisted of applying increasing shear-stresses and measuring 
the resulting shear-rate. The yield stress of the material is determined by the value of 
the stress for which a non-zero shear rate is obtained. 
         

    Fig. II.19 Rheometer AR2000ex, TA Instruments                     Fig. II.20 Vane geometry 

The experiments were carried out with a stress-controlled rheometer AR2000ex from 
TA Instruments (Fig. II.19) adapted to study materials with fine particle sizes such as 
clay particles and binders. A constant temperature was maintained by a Peltier system 
at 20°C. The samples were sheared between two surfaces by rotating the central tool 
at a prescribed speed or torque. Vane geometry was used in this study (Fig. II.20) 
which allows minimal disturbance of the material and helps to avoid wall slip.   
 

II.3.2.7! Tomography 
 

X-ray microtomography was used in this study due to its ability to visualise the internal 
structure of a specimen in three dimensions in a non-destructive way, considering the 
relatively low mechanical properties of treated sediments. The method consists of two 
essential phases: acquisition of specimen projections and volume reconstruction. 



Chapter II: Materials and Methods 
 

100 

During the acquisition phase, the sample is turned around the rotation axis at a specific 
angle while the sample is exposed to X-ray radiation. The 2D detector reconstructs the 
X-Ray absorption images. During this 360° rotation (Fig. II.22) a selected number of 
2D radiographs is obtained (from 500 to 2000) and the volume reconstruction can be 
realised based on 2D projections(Hild, 2014).  
 

 Fig. II.21 Tomograph NSI (X50+)              Fig. II.22 Principle of tomography technique (Hain et al., 2011) 
 
Considering that specimens can be analysed without destructive pretreatment 
(physical cutting) and transformation, the samples of the Dublin sediment mixed with 
binders were placed in the special plastic molds (with ∅=6mm) after mixing and stored 
for 2.5 months at 24°C±1°C. The samples were placed in the Tomograph NSI (X50+) 
(Fig. II.21) directly in the molds and scanned in order to obtain a resolution of 7nm. 
Only comparative visual qualitative analysis of the samples was conducted in order to 
investigate the impact of different types of binders on the microstructure of the mixes.  
 
II.3.2.8! SEM analysis 
 

Scanning electron microscopy images are created when the apparatus’ source of 
primary electrons provides enough energy to the sample’s secondary electrons to be 
realised and collected from each point of the sample. The SEM chamber is maintained 
under vacuum conditions in order to prevent the interaction of electrons and gas 
molecules which can lower the image resolution. Furthermore, the primary electrons 
emitted by the SEM source are accelerated by heating or applying high energy (1-
40keV). When the primary electrons reach the near surface area of a specimen, the 
interaction between sample’s nuclei and electrons generates different signals – 
secondary electrons, backscattered electrons (BSE), photons, visible light (Fig. II.24). 
The SEM computer detector transforms these signals into images. The secondary 
electrons give the morphology of the sample while the backscattered electrons are 
responsible for the contrast of the created images (Akhtar et al., 2018).  
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Fig. II.23 SEM apparatus Hitachi S-3400N       Fig. II.24 The interaction of electron beam with specimen  
  
The apparatus used in this study was a Hitachi S-3400N (Fig. II.23). The samples for 
the microstructural investigation were prepared without polishing. The remaining parts 
of the 3 months aged specimens after the compression test were analysed. The 
samples were subjected to degassing and then coated with carbon as a conductive 
material to prevent charging of the surface, considering that samples of sediment-
binder mixes are poor electrical conductors.  
 

II.3.2.9! Solid State Nuclear magnetic resonance  
 

One of the most powerful technique for assessing dynamics and structure of material 
at molecular level is Nuclear magnetic resonance (NMR). NMR signals are dependent 
on changes in the local environment of nuclei especially nature and numbers of the 
neighbours in the first coordination sphere inducing changes in molecular symmetry, 
bond lengths and angles.  It appears as a complementary technique for mineralogical 
analysis of solids when amorphous phases cannot be detected by XRD analysis in the 
case of disordered crystalline material.  
Only isotopes having non-zero nuclear spin are considered as NMR active. The basis 
of solid NMR spectroscopy is an interaction between nuclear spins (I) and an external 
magnetic field (B0) (Fig. II.26), (Mehring, 1983). 
The spectrometer apparatus (Fig. II.25, (Roberts, 1959)) includes a magnet, radio-
frequency transmitter and oscillator and appropriate detector. Thereby the sample is 
placed in the magnetic field and undergone the radio-frequency field from oscillator, as 
a result the nuclei of atoms come into resonance in particular conditions (frequency 
and magnetic field strength) and produce an electromagnetic response. This response 
is then converted in NMR spectrum which is a fingerprint like of molecules (Roberts, 
1959).   
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Fig. II. 25 Schematic view of NMR spectrometer    

 
Fig. II.26 The effect of the magnetic field on the orientation of the spin magnetic moments  

 
Depending on the state of the samples the NMR technique can be divided into two 
categories – solution and solid state NMR. The first one gives a high-resolution 
spectrum due to its low viscosity state producing rapid molecular tumbling (Chen, 
2014). The solid state NMR does not have this fast molecular motion, so it conducts to 
broad powder patterns results. In order to cancel the interaction inducing this 
broadening, the magic-angle spinning method (MAS) is used (Andrew et al., 1958). 
This implies a fast spinning of the sample at a rotation angle of 54,74°. The spinning 
speed accessible range actually from few kHz to 110 kHz. 
In the solid state NMR nuclei of interest, especially for hydraulic binders in both 
anhydrous and hydrated states, are 1H, 13C, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, 
35Cl, 39K, 43Ca.  
The study uses SS NMR method to evaluate chemical environment of 13C to assess 
the Dublin sediment’s organic matter changes in the presence of hydraulic binders. 
Solid state 13C cross polarization magic angle spinning nuclear magnetic resonance 
(CP MAS NMR) (Hartmann & Hahn, 1962) was performed in the UMR Metis of 
Sorbonne University Pierre and Marie Curie on a Bruker AVANCE 500 at 125 MHz for 
13C using 4 mm diameter zircon rotors. Cross polarization allows the magnetization 
transfer from 1H to 13C, leading to an increase in the signal/noise ratio. Magic angle 
spinning at 14 kHz was used to reduce chemical shift anisotropy and to average dipolar 
interactions, hence decreasing the linewidths. The contact time between 13C and 1H in 
the CP MAS sequence was set to 1 ms and the repetition time to 1 s. 
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II.3.2.10! Pyrolysis GC/MS 
 

Analytical pyrolysis coupled with gas chromatography/mass spectrometry (GC/MS) 
provides structural information on a sediment’s organic matter. The benefit of this 
approach in this study is that this analysis can help to understand changes in OM 
structure caused by the addition of a hydraulic binder, e.g. the degradation rate of OM. 
Sediment organic matter is a complex heterogeneous system in terms of its origin, 
degree of decomposition, etc. Therefore, different components of OM have to be 
fractioned to facilitate its characterisation (Mehrabanian, 2013).  
The thermal pyrolysis technique decomposes the organic macromolecules into smaller 
organic components by cleaving the organic matter chemical bonds during heating in 
an oxygen free column. These smaller molecules are then separated in gas 
chromatography column and identified by mass spectroscopy. The identification of 
these molecules leads to the reconstruction of the initial chemical structure (Derenne 
& Quénéa, 2015). 
After mixing, the samples were stored for 7 days before being subjected to water 
removal by a lyophilizing process in order to stop the hydration process and all types 
of reactions in the mixtures.  
Samples were pyrolysed at a Curie temperature of 650 °C for 9.9 s using a pyrolysis 
unit (Pilodist), The pyrolysis unit is flushed with helium, which is also the carrier gas, 
and is mounted directly on the injector of a Agilent 7890B gas chromatograph (GC) 
coupled with a Agilent 5977B mass spectrometer (MS). The GC oven program includes 
a first step at 50 °C for 10 min prior to heating to 320 °C at 2 °C/min.  After 10 min at 
50 °C, the GC oven temperature gradually increased from 50 to 320 °C at 2 °C min−1, 
to end by a 30 min stabilization at 320°C. The injector temperature was 280 °C in 
spitless mode. The ion source of the mass spectrometer was at 220 °C, which was 
scanned from 29 to 800 amu.  
 
II.3.2.11! XAS (X-ray Absorption Spectroscopy) 
 

In order to assess the distribution and speciation of metals in the complex 
heterogeneous system, such as a Dublin sediment before and after treatment with 
hydraulic binders, the XAS technique was applied. 
XAS (X-ray Absorption Spectroscopy) is an element-specific and highly sensitive 
technique using Synchrotron as a powerful X-Ray source. Synchrotron accelerates 
electrons by magnets and undulators located perpendicularly to the electron beam 
providing strong magnetic fields, therefore the high electron energy is transformed into 
light (or other electromagnetic radiation) (Gaur et al., 2013). XAS consists of exiting a 
given atomic element to promote core electrons to continuum (photoelectric effect) and 
to measure the absorption coefficient as a function of the energy of the incident X-ray 
beam. 
When X-Rays of intensity I0 pass through a sample of thickness t (Fig. II.27), the 
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transmitted intensity can be described according to Beer’s law, (20) (Schnohr & 
Ridgway, 2015a): 
 

bS j H bk1
,l m S          (20) 

 
 

where     E – photon energy, 
           µ(E) - energy-dependent X-ray absorption coefficient. 
 

 
 

Fig. II.27 (left) Schematic of an X-Ray 
absorption measurement in transmission mode 

Fig. II.28 absorption coefficient μ(E) versus 
photon energy E including the fine structure 
above the edge divided into the XANES and 
EXAFS regions (Schnohr & Ridgway, 2015b) 

 
                            
XAS gives full information about the environment of the target atom including its 
oxidation state, coordination number/geometry/distortion, nature and spatial 
organization of the surrounding atoms at short distances, etc. The XAS signal can be 
divided into two parts: the region within about 50eV beyond the edge is called XANES 
(X-ray Absorption Near-Edge Structure). Because this region is characterized by the 
transition of photoelectrons to an unoccupied bound state, XANES provides an 
information about chemical bonding (oxidation state, coordination) of the atom. The 
region at high energy beyond 50 eV from the edge is called the EXAFS (Extended X-
ray Absorption Fine Structure) Fig. II.28. This region depends on the atomic 
environment and thus it will provide information about local structure surrounding the 
absorber (coordination number, interatomic distances, etc.).  
K-edge XAS characterization was performed at the Synchrotron SOLEIL (FRANCE) 
(Fig. II.29) at the beamline SAMBA. In the present study the speciation of Zn and Cu 
was investigated. Sediment-binder samples aged for three months were considered. 
The samples were collected from specimen remains after mechanical testing. The 
aggregates were ground using an agate mortar, and the obtained powder was dried in 
an oven at 40°C for 24h. Samples were finally prepared as pastilles of 1 mm thickness 
and 5 mm diameter for XAS measurements.  
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Fig. II.29 Synchrotron Soleil, France 

 
 

II.4! Simplified models 
 

II.4.1! Clay-Binder system 
 

In order to study the impact of the clay fraction of sediments on the evolution of 
mechanical strength, the experiments described in this section were carried out on 
samples of pure commercial clay mixed with OPC and GGBS-based binders. 
 
II.4.1.1! Materials 
 
The same hydraulic binders as for the sediment treatment were used - OPC and GGBS 
(see § II.2.2). 
 
The commercial clay was purchased from Argile de Velay, France (V0). The chemical 
analysis of the clay sample is presented in Table II.13.  
 
Table II.13 Chemical composition of the Velay Clay (V0) 

wt% SiO2 Al2O3 Fe2O3 MnO CaO K2O TiO2 MgO Na2O P2O5 

Clay 
(V0) 

42.6 25.5 8.5 11 8.2 7.1 0.8 3.5 3.05 0.25 

 
The choice of this type of clay was made in relation to the main clay minerals of the 
Dublin and Gothenburg sediments which are mostly illitic clays. As can be seen in Fig. 
II.30 representing the XRD analysis of the clay V0, the sample contains mainly illite as 
well as some associated minerals such as kaolinite, montmorillonite, and calcite.  
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Fig. II.30 X-Ray diffraction analysis of the clay sample (V0) 

 

II.4.1.2! Samples’ preparation 
 
In order to evaluate the impact of the clay as one of the important components of the 
sediments on the hydration kinetics of the binders considered for S/S treatment in this 
study, the samples were prepared as follows:  
 

:! First, the clay from Velay was mixed with tap water at a 0.55 clay:water ratio to 
ensure a good rheology of the mixture; 

:! The amount of the dry binder was set at 20% by weight of the wet clay mix. The 
hydraulic binder pastes were prepared with w:b=0.4 and then introduced in the 
wet clay mixture under a constant mixing speed for a total time of 5 min. The 
rest of the procedure was carried out according to (NF 196-1). 
 

Two modes of storage were adopted:  
:! T=24°C±1°C and RH= 91%±1.5%; 
:! T =24°C±1°C and RH= 100%. 

 
II.4.1.3! Samples’ characterization 
 

II.4.1.3.1!Compressive strength  
 
UCS strength testing was performed after curing times of 28 days, 2 months, and 3 
months according to the procedure described in section II.3.2.1.
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II.4.1.3.2!XRD analysis  
 

The mixtures of clay and hydraulic binders were X-rayed with the D2 PHASER 
apparatus from BRUKER in order to follow the formation of crystalline hydration 
products. The measurements were performed from 5° to 60° (2θ). More details are 
given in section II.2.1.3.1. 
 
II.4.1.3.3!27Al MAS NMR investigation  
 
The development of amorphous hydration products was assessed with the help of high 
resolution 27Al Nuclear Magnetic Resonance. The experiment was conducted in the 
CEMHTI laboratory on the hydrated clay samples aged for six months. The details of 
the procedure are given in § II.4.2.3.2. 
 
II.4.1.3.4!SEM analysis 
 

The fracture surface of samples aged for three months were analysed after the 
compressive strength test. The procedure was the same as described in II.3.2.8.  
 
II.4.1.3.5!Zeta Potential 
 

Zeta potential measurements were performed on the mixtures of the pure clay 
introduced in the diluted interstitial solution of the hydraulic binders in order to examine 
the impact of the ions from both binders on the charge of the clay surface.  
The interstitial solution of the OPC and GGBS-based binders was extracted after 
mixing with demineralized water with water:binder=4 for 10 min with magnetic stirring, 
then the obtained solutions were centrifuged and filtered. 
Regarding sample preparation, the measurements of zeta potential were carried out 
with a particle concentration of 10g/100ml for 80min with constant rotation. 
  
II.4.1.3.6!Rheology  
 
Increasing shear-stress at increments of 5 Pa were applied to the samples and a creep 
response in term of shear rate was measured.  The yield stress of the material was 
determined by the value of the stress for which a non-zero shear rate is obtained.  
First, the interstitial binder solution was extracted with a water / binder ratio of 2. The 
rheological measurements were carried out on the samples of the clay mixed with the 
hydraulic binder’s interstitial solution or demineralized water with clay:water=0.65 for 1 
min. Section II.3.2.6 provides the details on the apparatus and geometry used in this 
study.  
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II.4.2! Heavy metals - binders’ system for the investigation of early hydration  
 
The approach of the separate interaction of heavy metals and hydraulic binders was 
adopted to gain a more detailed understanding of the impact of trace elements on the 
early hydration of the treated sediment samples.  
 
II.4.2.1! Materials  
 
The same hydraulic binders as for the sediment treatment were used - OPC and GGBS 
(see § II.2.2). 
 
Heavy metals were added into the binders in the form of hydrated nitrate salts. They 
were procured from Sigma Aldrich: cadmium nitrate tetrahydrate (Cd(NO3)2.4H2O), 
nickel nitrate hexahydrate (Ni(NO3)2.6H2O), copper nitrate trihydrate (Cu(NO3)2.3H2O), 
and zinc nitrate hexahydrate (Zn(NO3)2.6H2O). 
 
II.4.2.2! Samples’ preparation 
 

Three types of binders – 100%OPC (OPC), 85%GGBS/15%OPC (GGBS85) & Super-
sulfated (85%GGBS/14%Ca2SO4/1%OPC) (SSC) - were mixed with heavy metals in 
the form of hydrated nitrate salts due to their high solubility. First, these salts were 
dissolved in demineralized water and then the solution was used as the mixing water 
with w:b=0.4. The dry binders were put in contact with water or the HM solution and 
mixed for 1 min before being introduced into the calorimeter cells. The remaining paste 
was put in small plastic molds and protected with parafilm to prevent carbonation. The 
samples for the XRD and NMR analysis were oven dried for 24 hours and hydration 
was stopped using isopropanol. The samples were analysed via XRD after 24 h and 7 
days of storage. The mix-designs are presented in Table II.14. 
 
Table II.14 Mix design of the system ‘Hydraulic binders-Heavy metals’ 

Samples Zn(NO3)2  

(%wt binder) 

Cu(NO3)2  

(%wt binder) 

Cd(NO3)2  

(%wt binder) 

Ni(NO3)2  

(%wt binder) 

100%OPC (OPC)  
 

0%;      0.1%;     0.5%;      2% 
85%GGBS/15%OPC (GGBS85) 

85%GGBS/14%Ca2SO4/1%OPC 

(SSC) 
 

II.4.2.3! Samples’ characterization 
 

II.4.2.3.1!XRD analysis  
 
The D2 PHASER apparatus from BRUKER was used for the analysis of the crystalline 
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phases of the hydraulic binders with and without the addition of heavy metals. The 
samples were X-rayed from 5° to 60° (2θ). More details are given in § II.2.1.3.1. 
 
II.4.2.3.2!27Al and 29Si MAS NMR investigation 
 
The local environment of aluminium and silicon in the binders’ systems was probed by 
solid state NMR in the CEMHTI laboratory in Orleans, France. In order to recognize 
the spectra only from hydrated phases, 1H-29Si and 1H-27Al Cross Polarization Magic 
Angle Spinning (CP-MAS) (Hartmann & Hahn, 1962) were performed for hydroxylated 
sites of Al and Si close to 1H atom.  
Aluminium spectra were recorded at room temperature on a Bruker AVANCE III  
850MHz spectrometer (20T magnetic field). The instrument is equipped with high 
speed MAS probe heads with spinning speed of 30kHz in 2.5mm aluminum-free 
zirconia rotors. The applied resonance frequencies were 221.6 MHz for 27Al and 850 
MHz for 1H. The MAS spectra were acquired after applying a 0.5µs short pulse (flip 
angle  π/18) to ensure quantitative reliability of the intensities observed for the 27Al 
central transition. Between 20000 and 30000 scans were accumulated with a 1s 
recycling delay.  
CP-MAS spectra were acquired using a 500µs contact time, around 5000 scans were 
added using a 1s  recycling delay. The chemical shifts were referred to 1M aqueous 
solution of Al(NO3)3. 
Silicon spectra were acquired on a Bruker AVANCE III 400 MHz (9,4 T magnetic field) 
spectrometer with Larmor frequency of 79.4 MHz for 29Si and 400 MHz for 1H . The 
MAS spinning rate was fixed at 8kHz using a 7mm probehead. The MAS spectra were 
acquired after applying a 5µs pulse (flip angle  π/4). Around 5000 scans were 
accumulated with a 10s recycling delay. CP-MAS spectra were acquired using a 5ms 
contact time, around 50000 scans were added using a 1s  recycling delay. Tetramethyl 
silane (TMS) was used as reference compound for 29Si. All the spectra were simulated 
using the DMFit software.  
 

II.4.2.3.3!Isothermal calorimetry analysis 
 

Isothermal conduction calorimetry is a largely used technique in the cement industry 
to evaluate the rate of hydration kinetics of different binders. When the binders are 
mixed with water and some chemical admixtures, exothermic reactions occur and 
output heat. The calorimetry test determines the heat release during the early age 
hydration until 7 days of storage. For example, for the pure OPC binder there are 
several hydration stages – dissolution of highly soluble constituents; dormant period; 
main peak of initial accelerating phase (C3S); small peak of sulphate depletion and 
remaining aluminate hydration; decreasing rate of hydration (Frølich et al., 2016).  
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Fig. II.31 TAM Air Isothermal calorimeter 

 

The Tam Air isothermal calorimeter (Fig. II.31) contains 8 coupled cells in the manner 
when one cell contains the sample and another one reference cell contains a blank 
sample which in this case is composed of 5g of sand and water. The output 
measurement is the difference between these two cells containing hydrated and 
reference samples.  
Before starting the procedure according to NF EN 196-11, the apparatus must be at 
stable temperature and the baseline must correspond to threshold values of heat 
variation.  
For each sample 50 g of dry binder was mixed with water for 60 s and 5 g of paste was 
placed immediately in the calorimeter cell. The measurements were performed for 72 
hours.  
The cumulative heat release of hydration was calculated without taking into account 
the first hour of measurements to avoid including the imbalance of the system due to 
the cell being opened (and thus destabilized) during sample placement. 
 
II.4.2.3.4!Zeta Potential measurements 
 

The electrokinetic properties of the OPC-based binder (OPC) and GGBS-based binder 
(GGBS85) in the presence of heavy metals salts Cu, Zn, Ni and Cd were measured in 
order to gain a more detailed understanding of the interaction mechanisms of trace 
elements and the surface of binders during primary hydration reactions. 
For this purpose, the dry binders were introduced in a heavy metal solution with 
concentration of 50 g/L. The solution was prepared with nitrate salts at 0.5% by weight 
of binder.  
 
II.4.3! Investigation of Ni and Cd in OPC and GGBS-based binders 
 
In order to obtain a further in-depth understanding of the interaction between cadmium 
and nickel and the cementitious matrix, XAS and leaching tests were performed on the 
hydraulic binder systems containing different amounts of GGBS. 
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II.4.3.1! Materials 
 

The same hydraulic binders as for the sediment treatment were used - OPC and GGBS 
(see § II.2.2). 
 
Cadmium and nickel were added into the binders in the form of chloride salts. 
Anhydrous cadmium chloride (CdCl2) and nickel chloride (NiCl2) were purchased from 
Alfa Aesar.  
 
II.4.3.2! Samples’ preparation 
 
The samples were prepared with water/binder ratios equal to 0.51. The heavy metals 
solution was used as a mixing water as well with metal salts dissolved in demineralized 
water at 0.5%wt of CdCl2 or NiCl2. After the samples were poured into plexiglass molds 
closed with polyethylene lids. They were stored at 23°± 1°C for 28 days. Just before 
analysis, the samples were ground and dried at 40°C.  
 
Table II.15 Mix design of the considered samples 

 0.5%wt CdCl2 0.5%wt NiCl2 
100%OPC 0.5%CdOPC 0.5%NiOPC 

50%GGBS/50%OPC 0.5%CdGGBS50 0.5%NiGGBS50 
85%GGBS/14%Ca2SO4/1%OPC 0.5%CdSSC 0.5%NiSSC 

 

II.4.3.3! Samples’ characterization 
 
II.4.3.3.1!Leaching test 
 
The leaching tests were performed according to the same standards described in 
section II.3.2.3. For each formulation, three samples were prepared and analyzed 
using the ICP-MS technique. Only heavy metal leaching was investigated. Results are 
expressed as average values.  
 
II.4.3.3.2!X-ray Absorption Fine Structure (XAFS) of Ni and Cd in binders 
 

XAFS experiments were conducted at the Argonne national laboratory in Chicago at 
the 5-BMD beamline. Only the X-ray absorption measurements have been studied. 
XAFS data analysis was performed using the ATHENA/ARTEMIS software. The 
software does automatically perform background reduction and normalization of the 
spectra. The X-ray absorption near edge structure (XANES) gives information on the 
local coordination environment and the element’s oxidation state. This technique 
allows for the determination of the speciation of cadmium and nickel in samples. The 
radial structure function was obtained by Fourier transformation the !!"" -weighted !!χ""#  
function between 3.0 !! ɶ"−"  and 10 !! ɶ"−" . Then an identification analysis was carried out 
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to obtain information about the phases formed during sample hydration. Thus, a linear 
combination fit (21) is made from comparing pure phases χ  function to samples 
between 1 and 8!! ɶ"−" . Above 8!! ɶ"−"  the signal was too noisy to be interpreted. The 
criterion used to determine the best combination is the minimum of the R-factor. 
 

n<opSqTR H 2 ro
P
os; no          (21) 

 
All materials were crushed as fine as possible with a grinder. Then they were placed 
on an adhesive tape in order to be put in place. 
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III.1! Introduction 
 
Solidification/stabilization technology is applied to soils and sediments in order to 
modify and improve their engineering properties. Ordinary Portland cement and lime 
are the most commonly used binding agents in S/S and ground improvement practices 
and they were demonstrated to be effective in enhancing the mechanical properties of 
treated materials through primary and secondary hydration reactions. After the addition 
of OPC, hydrated calcium silicates (C2SHx, C3S2Hx), calcium aluminates (C3AHx, 
C4AHx), and hydrated lime Ca(OH)2 are formed as the products of the primary 
reactions. Pozzolanic reactions occur at a later stage between hydrated lime and clay 
particles serving as a source of soluble silica and alumina. These secondary reactions 
lead to the formation of C-S-H and calcium aluminate hydrates. (Bergado et al., 1996; 
Chew et al., 2004). 
The current study investigates the use of GGBS as a sustainable alternative material 
for the improvement of the mechanical properties of complex systems such as 
sediments. In order to achieve the required compressive strength of the treated 
sediments (>2 MPa), the amount of slag and the type of activation were varied. The 
100% Portland cement formulation was selected as a reference because of its wide 
use in current S/S practices. It is known that several factors may affect the short and 
long term engineering properties of the treated materials such as the type of sediment, 
the water and organic matter content, clay content, exchangeable cations, etc. 
Therefore, the effect of binding agents on the development of compressive strength of 
sediments with different mineralogy was examined. 
One of the main objectives was to better understand the mechanisms governing the 
hydration process of binders when mixed with sediments. For this reason, the clay 
fraction similar to the clay mineralogy of the Dublin sediment has been studied 
separately and the results are presented in this chapter. Interactions between binders 
and organic matter in the Dublin sediments were also assessed. 
Finally, the role of particle dispersion as one of the key parameters modifying the 
mechanical properties and the microstructure of soils has been studied. This 
parameter was evaluated through rheological measurements on the original sediment 
as well as separately on the clay system with exchangeable ions of the two types of 
binders.  
XRD analysis, shrinkage measurements, microtomography, and zeta potential were 
used as tools to investigate the evolution of the mechanical properties and to develop 
a deeper understanding of the beneficial use of GGBS.  
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III.2! Main case - S/S treatment of the Dublin port sediment 
 

III.2.1! Compressive strength evolution of the Dublin sediment mixed with 
binders at 150 kg/m3 

 
Due to the application requirements, the Dublin sediment was mixed with the binders 
at 150 kg/m3 in order to achieve the necessary strength. Different GGBS-based 
formulations were tested to identify the optimal formulation which satisfies both 
treatment criteria: solidification of the matrix and stabilization of heavy metals in the 
final product (Table III.1). The GGBS-based formulations were designed in two 
different ways. First, samples with different percentages of OPC replacement by GGBS 
were prepared (D2 and D3). Second, different types of GGBS activation have been 
tested in order to obtain a material without Portland cement (D4 – D7). Numerous 
studies have demonstrated the effectiveness of the use of sulfatic activation, carbonate 
activation, as well as the addition of MgO for the rapid development of mechanical 
strength of GGBS-based formulations in order to produce a durable material for 
different applications. In this study, the quantity of activators was limited to 5% of the 
total binder due to cost limitations regarding the actual conditions of the project. 
 
Table III.1 Mix design of the considered formulations for the Dublin sediment S/S treatment  

 Composition 

D1 100% OPC 
D2 50%OPC+50%GGBS 
D3 15%OPC+85%GGBS 
D4 1%OPC+85%GGBS+14%Ca2SO4 
D5 95%GGBS+5%Na2CO3 
D6 95%GGBS+5%MgSO4 
D7 95%GGBS+5%MgO 

 
The results of the compressive strength test are presented in Figure III.1. 
 
At 28 days, when replacing 50% of the OPC with GGBS, the strength is unchanged 
(comparing D1 and D2). Increasing the replacement level to 85% (D3) leads to a 
significant decrease of the strength at 28 days. Surprisingly, the strength is high 
enough in all three cases for the formulations to be used as non-structural elements, 
even though the binder contents are relatively low.  

At 3 and 6 months the strength of the samples with OPC-activated GGBS exceeds that 
of the OPC-based condition (D1). In addition, the strength of the GGBS-based 
materials increases between 28 days and 6 months while the strength of D1 
decreases. It is well known that long term performances, including mechanical strength 
and durability, of GGBS-based materials are superior to those of Portland cement-
based materials (Divsholi et al., 2014; Shi et al., 2011, 2012; Teng et al., 2013). 
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Fig. III.1 Compressive strength of the Dublin sediment mixed with different hydraulic binders at 

150kg/m3 
 
The degradation of the strength of the OPC-based samples could be related to 
interactions with sediment constituents. For example, the organic matter fraction and 
clay fraction may potentially interfere with the hydration process of OPC (Chew et al., 
2004; Gaucher & Blanc, 2006; Rekik et al., 2009; Tremblay, 2002). Carbonation may 
also affect the mechanical properties of the mixtures (Gervais et al., 2004) and different 
ions present in sediments may be considered as aggressive for the cement structures. 
In particular, the presence of sulfates and chlorides in the embedded marine sediment 
may have harmful effects for the solidified sediment’s fabric (Borgne et al., 2008; 
kalıpcılar et al., 2016). Conversely, GGBS-based binders are characterized by high 
resistance to sulfate attack (Ortega et al., 2017). 

The supersulfated formulations (D4 and D6) and carbonate activation (D5) did not 
provide a sufficient strength to be measured using the electromechanical press. The 
MgO activated samples (D7) achieved a strength of about 1MPa only after 3 and 6 
months. At 28 days, these samples were not strong enough to be subjected to 
mechanical strength testing.  

Based on the main Solidification/Stabilization criteria, the D3 formulation with high 
GGBS content was chosen as the main alternative binder to the D1 formulation and 
was studied using various tools in this chapter. 

The following section provides pH measurements of the considered formulations as 
one of the main factors controlling the early strength development of the sediment after 
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the S/S treatment.  

III.2.2! pH of the mixtures 
 

The pH measurements are presented in Fig. III.2. The initial pH of the Dublin sediment 
D0 is ∼8. The OPC introduction rapidly increases the pH of D1. This can be explained 
by highly soluble alkalines (K+, Na+, Ca2+) being part of the chemical composition of 
Portland cement. The GGBS-OPC mixes D2 and D3 give a lower pH than that of D1 
(12.5 and 11.8, respectively). The origin of the pH developed by D3 comes from the 
lower alkali content, as well as the lower portlandite content and its rapid consumption 
for the hydration process. In addition, the low C/S value of the C-S-H phase in GGBS-
based binders is also responsible for pH buffering at lower values at long term 
(Richardson & Groves, 1992), (Codina, 2007).  
Regarding leachates, the highest pH was achieved with D1 and D2 due to the higher 
alkali content. The leachate pH is slightly lower for D2. When binding agents were 
mixed with the Dublin sediment, the pH of the mixtures decreased due to the high 
water-cement ratio but also due to the presence of different pH buffers originating from 
the sediment: clays, sulfates, carbonates, etc. At long term (3 months) the pH value of 
the D1 leachates is around 12. This relatively high pH of the interporal solution of the 
OPC binder is maintained due to the presence of portlandite (Atkinson et al., 1989). 
D3 had a pH of 11.8 once mixed with sediment. The pH of the D3 leachates at 1 and 
3 months was 11.5 and 11.2, respectively. The reason for the lower pH of leachates 
over time of D3 can be attributed to the consumption of OH- throughout the hydration 
process, especially the pozzolanic reactions.   
Concerning D4 and D6, they present a dramatic decrease in pH after being mixed with 
the sediment compared to the other formulations. The pH values are under 10 and it 
is known that GGBS remains poorly dissolved in this pH range. Thus, this can explain 
the absence of strength of the samples because these binders did not hydrate even 
after 90 days of storage. Unlike D4 and D6, the pH of D5 was quite high after mixing 
with the sediment. However, as shown in Fig. III.2, a decrease in pH occurred over 
time. This may also be the reason for the lack of strength for this type of GGBS 
activation. 
Finally, the leachate of D7 shows an increase in pH between 1 month and 3 months of 
storage. This pH evolution is in accordance with the appearance of strength measured 
only after 3 months of maturation of the samples (Fig. III.1).  
The pH measurements suggest that it is extremely important to regulate the pH to the 
range where the hydration rate of the mixtures can provide the necessary mechanical 
properties. At the same time, pH values that are too high can be critical for the 
stabilization of heavy metals with regard to their amphoteric behaviour. 
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Fig. III.2 pH evolution of the binders-sediments mixtures: pH of the pure binder pastes and pH of the 

mixtures immediately after mixing with the binders (left); pH of the leachates (right)   

 

III.2.3!Mineralogical analysis  
 
XRD analysis was carried out to investigate the formation of hydration products in 
samples D1 and D3 mixed with a binder content of 150kg/m3. Taking into account the 
low amount of binder and the amorphous nature of GGBS hydration products, XRD 
was finally not suitable in the case of the Dublin sediment treated with the D3 
formulation. Therefore, only the analysis of the D1 mixture is presented here. 
The results of the XRD measurements of D1 from 3 to 90 days are presented in Fig. 
III.3.                                   
 

 
Fig.III.3 XRD analysis of D1
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The hydration products identified in D1 that were precipitated after 90 days of storage 
are common phases for soils and sediments treated with Portland cement. The first 
stage of the hydration process of OPC-treated soils comprises the formation of 
hydrated calcium silicates (C2SHx, C3S2Hx) and calcium aluminates in the form of 
C3AHx and C4AHx, as well as portlandite precipitation (Ca(OH)2). At the second stage, 
slower pozzolanic reactions between calcium ions and silica and alumina from clay 
minerals occur depending on the nature of the soil. (Puppala, 2016; Wathiq Al-|Jabban 
et al., 2017), (Dong, 2014). 
As can be seen from the graph, the precipitated phases are not stable. The greatest 
amount of portlandite was formed between 7 and 30 days, but then its peaks 
decreased significantly. The ettringite phase completely disappeared after 45 days of 
storage. The C4AHx phase reached its maximum at 45 days and then decreased. The 
reduction in the amount of these hydration products may be attributed to internal 
carbonation resulting from the eventual decomposition of organic matter at high pH 
(Mitchell, 1981). This can lead to microstructural changes and a degradation of 
strength. Another possible explanation may come from the reactions of the hydration 
phases of OPC with the clay fraction of the Dublin sediment. The XRD analysis of the 
100% OPC formulation mixed with pure clay with similar mineralogy was carried out 
and is presented later in this chapter.  
This characterization of the hydration of sediment-binder mixes was completed to 
corroborate the different hypotheses and for the further comparison of both 
formulations (D1 and D3). The shrinkage test was carried out as well as microstructural 
observation using microtomography and SEM analysis. 
 
III.2.4! Shrinkage results  
 

The results of the shrinkage test are presented in Fig. III.4. There are a number of 
differences in the evolution of the volumetric changes of the mixtures D1 and D3 during 
endogenous and drying shrinkage as well as variations in mass.  
The evaporation of free water from large pores governs the early deformation of both 
formulations despite the storage conditions at RH=93%. Figure III.4 shows the rapid 
increase in deformation and mass loss for the D1 formulation after 60 days of storage. 
However, the D3 samples demonstrated a lower rate of deformation compared to D1, 
but higher loss of mass prior to 60 days. It is known that GGBS-based formulations 
develop a finer microstructure due to the essentially C-S-H formation that is 
characterized by a greater reticulation (Özbay et al., 2016). 
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Fig. III.4 Shrinkage and loss of mass results of the D1 and D3 samples 

 
A number of studies have investigated the shrinkage evolution when Portland cement 
has been partially replaced by GGBS. (Tazawa et al., 1989) shows that the use of slag 
in concrete and mortars increases the early age shrinkage (after 3 and 7 days). 
However, after 28 days the shrinkage was lower compared to the 100% OPC samples. 
(Yuan et al., 2015) concluded that GGBS-OPC mixtures have less free shrinkage that 
the samples containing only Portland cement. The study was conducted at equivalent 
paste volume and with the same w/c. However, there is a lack of consensus about the 
tendency of slag incorporation. For example, when (Brooks et al., 1992) replaced, from 
30% to 70%, OPC by GGBS the same shrinkage as for the reference 100%OPC was 
found. (Hooton, 2004) reported almost the same tendency in his review. The results 
presented in Fig. III.4 are mostly in accordance with the first two references mentioned 
here – at long term GGBS improves the volumetric stability of the mixtures.  
It is necessary to compare the results of the endogenous part of shrinkage test to the 
XRD results, at least for D1. The instability of some phases such as portlandite, 
ettringite, and CAH after 60 days of storage may lead to noticeable microstructural 
changes and thus to shrinkage and compressive strength degradation.  
(Kalankamary P., 1968) in his study compared different types of clays treated with 
cement and concluded that kaolinite mixed with cement shrinks faster than 
montmorillonite clay mixed with cement. The general conclusion was that the type of 
clay is a primary function of volumetric changes. Therefore, one of the reasons for total 
shrinkage can be the reactions of the binders with clays due to the high pH. The 
potential carbonation phenomenon of the mixtures must also be taken into account.  
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III.2.5!Microstructure investigation  
 
III.2.5.1!X-Ray microtomography  
 
A qualitative approach to X-Ray microtomography was employed to visualise the 
microstructure of D1 and D3. The study of the microstructure and porosity of the 
considered materials is complex due to their low strength, and therefore the samples 
cannot be cut or subjected to high pressure.   
The images of the samples after tomographical analysis at 75 days of storage are 
presented in Fig. III.5. 

 
Fig. III.5 X-Ray microtomography of D1 (left) and D3 (right) 

 
A significant difference between the two samples can be observed in term of porosity. 
D1 presents a very porous medium, containing many macro pores, compared to the 
denser structure of D3. The pore size that can be distinguished on the image of the D1 
sample is in the range of 15-150 µm. The improvement in the microstructure could be 
due to secondary pozzolanic reactions which reduce the size and connectivity of the 
pores (Divsholi et al., 2014). GGBS can decrease the permeability of the mixtures – 
(Teng et al., 2013) highlighted the benefits of using ultrafine GGBS to reduce chloride 
migration. 
A number of researchers have explored the role of GGBS when it is added partially to 
OPC in terms of improved durability through lower permeability and greater density in 
mortar (Condren & Pavía, 2007) . In the study of (Güneyisi & Gesoğlu, 2008), the 
optimal amount of GGBS for improved density and durability properties was 80% for 
wet cured samples. 
Regarding S/S treatment, there are not many studies available exploring the role of 
GGBS/OPC mixes. As an example, (Jin et al., 2016) concluded in his study on soil 
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stabilization that GGBS activated by MgO demonstrated increased strength and 
durability by decreasing the permeability of mixtures due to the denser microstructure 
of the slag-based samples.   
 
III.2.5.2!SEM observations 
 
Considering the relatively low strength of the samples, the SEM images were obtained 
without polishing. The remaining parts of the samples stored for 3 months after the 
compressive strength test were collected and subjected to the degassing process and 
carbon deposition. On the global images (yellow area), both samples present a fracture 
surface with a rough texture and cracks (Fig. III.6).  
The microstructure of the samples has a notable difference in the SEM images. In 
contrast to D1, D3 is more compact and dense, perhaps due to the more abundant 
gel-like C-S-H formation. D1 shows a considerable amount of pores in the range of 
∼10µm-40µm compared to D3. Portlandite crystals can also be distinguished in the D1 
images. It should be mentioned that the D1 mixture presents an important 
agglomeration of particles resulting in a more open structure compared to the D3
sample containing GGBS.  Sediment components such as quartz and clays are also 
visible in the SEM images. 
 
                   D1 (100% OPC)                                                      D3 (85%GGBS/15%OPC) 
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Fig. III.6 Comparative SEM analysis of the D1 and D3 samples 

 
The microstructure investigation aimed to compare D1 and D3 in order to explain the 
differences in mechanical properties developed by the two formulations. Specifically, 
explanations for the degradation of strength of D1 and the role of GGBS in the 
compressive strength improvement of D3 were sought. The compressive strength 
differences are likely related to the denser hydrate repartition of D3 as can be seen in 
the SEM images and from microtomography analysis, in particular due to the C-S-H-
like phase formation. D1 has developed an inhomogeneous porous structure which 
can have an impact on the solidification properties, as well as on the stabilization of 
contaminants that can be more easily leached. It can also be suggested that the 
significant increase in shrinkage for D1 may also result in carbonation of the hydrates. 
Under certain conditions (CO2 content and humidity), carbonation can lead to a 
reduction in the volume of a solid and increased porosity (Thiery et al., 2004). 
Unfortunately, due to the high carbonate content in the Dublin sediment, it is not simple 
to evaluate changes in their quantity.  
The zeta potential measurements provided in the next section allow for the 
determination of the impact of the OPC and GGBS-based binders on the surface 
charge of the Dublin sediment. The binders’ addition can induce changes in the 
particle’s arrangement within the sediment fabric compared to their original state and 
therefore have an impact on the engineering properties of the treated material.  
 
III.2.6! Electrokinetic properties 
 

Sediments can be described as complex colloidal systems. An electrokinetic 
experiment was carried out on the raw Dublin sediment and for the sediment mixed 
with the considered binders through zeta potential measurements in order to develop 
an understanding of the changes in surface charge of the sediment during the early 
hydration reactions. In addition to the zeta potential measurements, the apparatus 
recorded the pH and conductivity of the mixtures. 
 



Chapter III: Solidification of sediments  
 

129 

III.2.6.1!Results 
 

The results of zeta potential, pH, and conductivity of the mixes D0, D1, and D3 are 
presented in Fig. III.7, Fig. III.8, and Fig. III.9. 
The ζ potential of the untreated sediment (D0) is negative – it goes from -71.3 mV (the 
first measured value) and then it shows a steady evolution with a slight decrease in 
absolute value from -46.2 mV to -37.3 mV (Fig.III.7). The interesting aspect of this 
graph is that the GGBS-based mix (D3) shows almost the same electrokinetic potential 
evolution as the raw sample, only the first value defers – this time it is -52.1 mV. At the 
same time, the pH of D3 is much higher than the pH of the non-treated sediment:11.9 
versus 8.3, respectively (Fig. III.8).  
The evolution of ζ potential of the Dublin sediment in the presence of Portland cement 
presents a significant variation due to the rapid dissolution of ions from the anhydrous 
phases of the cement and their interaction with the sediment’s constituents (e.g. 
adsorption) or by forming new precipitates in the solution. The lowest measured 
negative value was -71.5 mV and the highest positive value was +22.3 mV. It can be 
seen that in the presence of the OPC binder that the isoelectric point was obtained at 
the considered concentration. D1 produced a higher pH than D0 and D3, pH=12.3.  
The conductivity values for all samples are presented in Fig. III.9. A gradual increase 
in conductivity can be observed for D1 and D3. However, D1 shows a greater slope 
with a more rapid dissolution of the cement grains compared to the GGBS-based 
formulation. This implies a higher amount of exchangeable ions available in the 
solution and therefore more considerable changes in the surface charge of the Dublin 
sediment at the early stage of hydration.  
 

 
Fig. III.7 Zeta Potential of D0, D1, D3 
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Fig. III.8 pH of D0, D1, D3 

 
 

 
Fig. III.9 Conductivity of D0, D1, D3 

 
III.2.6.2!Discussion 
 
The zeta potential measurements of D1 and D3 indicate a different evolution of the 
sediment’s surface charge in the presence of the OPC and GGBS-based formulations. 
The surface charge at the beginning of the hydration process can be responsible for 
the compressive strength evolution and will be discussed later in this chapter, in 
particular the flocculation/dispersion phenomenon.  
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Regarding the complexity of the sediment composition, it can be supposed that the 
main components likely to have an impact on the zeta potential of untreated sediments 
are clays and their CEC capacity (as well as the type of clay), organic matter, siliceous 
minerals, soluble ions present in the interstitial water of sediments, and also trace 
elements. Previous research has established that pure clay minerals present a high 
negative permanent charge (Sondi et al., 1996; Yukselen & Kaya, 2002). (Yukselen-
Aksoy & Kaya, 2016) reported in his study that the higher the pH of a solution, a more 
negative ζ potential will be produced. This phenomenon arises from the dissociation 
of OH- from the surface of clays due to the high pH, therefore more H+ goes into solution 
and the ζ potential decreases. The same study explores the effect of different salts on 
changes in the zeta potential of clay minerals. Na+ and Li+ ions exhibit similar 
behaviour, the values of ζ potential remain negative and do not pass through the zero 
point charge. However, the introduction of a calcium salt into the clay suspension 
produces a much more positive charge on the surface of a clay due to the important 
replacing capacity of calcium compared to the other ions, and the precipitation of 
calcium hydroxides at alkaline pH (Yukselen-Aksoy & Kaya, 2016).  
The pH-dependent behaviour of the Dublin sediment can be explained by the 
significant amount of illite and chlorite minerals, as well as by the organic matter 
content. (Sondi et al., 1996) investigated the electrokinetic behaviour of three types of 
clay minerals (illite, chlorite, and montmorillonite) as well as the influence of organic 
soil components, in particular FA (fulvic acid), on the development of the zeta potential 
of complex clay mixtures. The significant affinity for calcium ions and the charge 
reversal (from negative to positive) was obtained for the chlorite minerals producing 
the flocculation state. The capacity of organic substances to modify the electrokinetic 
response of a complex soil matrix has also been investigated by (Sondi et al., 1996). 
The surface of chlorite showed a noticeable increase in negative values in the 
presence of FA, at the same time illite and montmorillonite were less impacted. 
The impact of calcium ions on the negatively charged FA suspension was also briefly 
discussed in the study of (Sondi et al., 1996)  – the compensation of a negative surface 
charge by calcium cations can have a significant impact on changes in the charge of 
the suspensions. The strongly negative values of the zeta potential of an organic soil 
have also been reported by (Moayedi et al., 2011), however in the presence of Portland 
cement and CaCl2 ions, the reverse positive charge was produced.    
 
III.2.7! Conclusions 
 
This section has attempted to provide a detailed understanding of the hydration of the 
treated Dublin sediment with OPC and GGBS-based binders. Some limitations have 
been encountered. The relatively low content of binding agent content as well as the 
very large number of potentially disturbing sediment constituents are the key 
parameters for a better understanding of the mechanisms of the hydration processes. 
The following section of this document compares the results of the compressive 
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strength and hydrate formation of two sediments with different natures and origins, 
treated with OPC and GGBS-based binders. This time the quantity of the binding 
agents was doubled. Moreover, the clay and organic matter fractions will be considered 
separately to obtain more data on the interaction of the binders with certain major 
components of the sediments through the study of simplified binder systems.  
 
 

III.3! Study of the various factors impacting the evolution of compressive 
strength during S/S treatment 

 
III.3.1! Impact of the nature of sediments 
 
The origin of a sediment is one of the factors that can affect the solidification process. 
To investigate this parameter, the stabilisation of the Gothenburg sediment (G) by 
hydraulic binders was studied. The Gothenburg sediment has a significant siliceous 
fraction and a considerably lower amount of organic matter compared to the Dublin 
sediment (D), as well as no carbonate fraction. The characterization was conducted 
through compressive strength testing, pH measurements, and XRD. 
The mix design for each sample prepared for this study is presented in Table III.2. 
 
Table III.2 Mix design of the samples (D – Dublin sediment, G – Gothenburg sediment) 

 Binder content in kg per m3 of sediment 
Samples OPC GGBS 

100%OPC  
(D-OPC, G-OPC) 

300 - 

85%GGBS/15%OPC  
(D-GGBS, G-GGBS) 

45 255 

 
The pH was measured after each compressive strength test. The samples were dried 
at 40°C, submerged in demineralized water counting 5-times the sample’s volume and 
agitated. 
For a better evaluation of the hydration product development via XRD, the amount of 
a binder was increased to 300 kg/m3. The storage conditions were also changed. 
RH=100% was maintained in a special desiccator to prevent/limit CO2 penetration.  
It is possible to hypothesise that CO2 can significantly impact the stability of 
precipitated hydrates. There are several reactions that can be produced in the 
presence of CO2 that cause the degradation of mechanical properties of the mixtures. 
Briefly, due to the CO2 penetration carbonic acid (H2CO3) is formed (see reactions 23, 
and 24) which is an instable molecule (Cazalet, 2012; Thiery et al., 2004): 

 
#$"%. t #"%.

, ) #/     (23) 
#"%.

, t "%.
$, ) #/       (24) 
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In alkaline media, CO3
2- is a predominant ion. The carbonation of portlandite can be 

described through reactions 25 and 26: 
 

"6&%#($ t "6$/ ) !%#,     (25) 
"6$/ ) "%.

$, t "6"%.          (26) 
 

It can be seen that the portlandite dissolution due to the pH drop (conversion of 
hydroxides to carbonate species, (Gervais et al., 2004)) will induce the formation of 
calcium carbonates. Once portlandite is depleted, carbonation of the C-S-H phase can 
occur by decalcification. The formation of CaCO3 as well as the amorphous siliceous 
gel and water may take place according to reaction 27: 
 

"6%p*E%$N#$%u ) v#$"%. D v"6"%. ) w*E%$7 j#$% ) v 9 j ) x #$%       (27) 
 
 

III.3.1.1!Compressive strength results and pH measurements  
 
Figure III.10 presents the results of the compressive strength of the Dublin (D0) and 
Gothenburg (G0) sediments mixed with 100%OPC (D-OPC and G-OPC) and 
85%GGBS/15%OPC (D-GGBS and G-GGBS) at 300 kg/m3 in order to investigate the 
impact of GGBS on the development of the mechanical strength of sediments with 
different mineralogies.  
 

 
Fig. III.10 Compressive strength evolution of the OPC and GGBS-based formulations mixed with the 

Dublin and Gothenburg sediments at 300kg/m3 
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GGBS significantly improved the compressive strength of both sediments at long term. 
The strength of D-GGBS is 3.5 times greater than that of D-OPC and G-GGBS is 1.5 
times greater than G-OPC at 6 months of storage. Regarding D-OPC, in this case no 
degradation was observed compared to Fig. III.1. This evolution is probably due to the 
higher binder content and the different storage conditions. (Wathiq Al-|Jabban et al., 
2017) demonstrated that a small amount (1, 2, 4%wt) of the Portland cement binder 
tested on a clayey silt soil shows a decrease in mechanical properties after 28 days of 
storage or a stagnation of the strength development compared to the higher binder 
contents.  
At the same time, the compressive strength was doubled when the same formulation 
was applied to the Gothenburg sediment. The G-OPC formulation showed an increase 
in compressive strength prior to 3 months of storage, but a slight decrease was then 
observed.  
The strength values of the G-GGBS formulation were quite low after 28 days of storage 
compared to all of the other samples, however the results after 3 and 6 months were 
high and after 6 months the strength exceeded that of the Portland cement-based 
formulation (G-OPC).  
 

 
Fig. III.11 pH of the mixtures D-OPC, D-GGBS, G-OPC, G-GGBS 

 
The pH measurements of the considered mixtures are presented in Fig. III.11. It can 
be seen that the pH of both 100% OPC formulations (D-OPC, G-OPC) were quite 
stable up to 3 months, but then it decreased, probably due to pozzolanic reactions with 
clays. A reduction in pH was observed and explained by (Wilkinson et al., 2010) as a 
consequence of the interaction between soils and cements over time. In some cases, 
an increase in mechanical strength occurs through pozzolanic reactions which are 
accompanied by the depletion of hydroxyl ions. The GGBS-based formulations (D-
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GGBS, G-GGBS) develop a lower pH compared to 100% OPC. 
 

III.3.1.2!XRD analysis of the Dublin and Gothenburg sediments mixed with the 
binders 

 

Fig. III.12 and Fig. III.13 present the XRD analyses of the Dublin sediment mixed with 
the OPC and GGBS-based binders (D-PC and D-GGBS). The samples after 28 days, 
3 and 6 months of storage were analysed and compared to the raw Dublin sediment 
(D0).  
For D-OPC, a decrease in the intensity of the illite and kaolinite peaks can be observed. 
This can be attributed to the pozzolanic reaction of the cement with clays. However, 
this time the portlandite and ettringite phases, as well as C4AHx are relatively stable 
between 3 and 6 months in contrast to the samples with 150 kg/m3 of OPC (see Fig. 
III.3). This can be related to the storage conditions and to the higher binder content. 
Regarding D-GGBS, no crystalline hydration phases can be observed except for the 
low intensity peak of the C4AHx phase at 28 days of storage, which thereafter 
disappears. The amount of clays (illite, kaolinite, and montmorillonite) is likely to 
decrease over time. This could mean that there is a place for the pozzolanic reaction 
to occur over time which takes place at pH≥105 (Eades and Grim) when silicates and 
aluminates become soluble (Fig. III.14). The other minerals of the Dublin sediment 
such as calcite and quartz do not seem to be affected.  
 

 
Fig. III.12 XRD analysis of D-OPC 
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Fig. III.13 XRD analysis of D-GGBS 

 
 

 
Fig.III.14 Schematic pozzolanic reaction (P. Sargent, 2015) 

 
Figures III.15 and III.16 present the X-ray diffractograms of G-OPC and G-GGBS. As 
in the case of D-OPC and D-GGBS, G-OPC shows more crystalline hydration products 
formation compared to G-GGBS. The growth of the portlandite, ettringite and C4AHx 
phases can be observed over time. G-OPC shows stable phase development. For G-
GGBS there are fewer peaks of hydration products, except for the formation of 
ettringite at long term, and of the unstable C4AHx phase. It can be concluded that in 
the case of G-GGBS mostly amorphous phases were produced inducing a higher 
strength measured after 3 and 6 months compared to the G-OPC samples.  
The same trend occurred for the clay fraction of the Gothenburg sediment as in the 
case of the Dublin sediment mixed with the hydraulic binders; a steady decline in the 
intensity over time for illite and montmorillonite. These results are in line with previous 
studies concerning cement-clay interactions. (Gaucher & Blanc, 2006) reviewed the 
literature on the impact of an aggressive alkaline cement medium on the stability of 
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clay minerals as a function of clay reactivity (illite, kaolinite, and montmorillonite) and 
non-clays (micas, calcite, carbonates, sulfates, cristobalites, etc.) under alkaline 
conditions. One of the possible scenarios is the dissolution of clay as well as the 
dissolution of accessory minerals and further pH buffering limiting the pH rise. 
Therefore, the precipitation of C-S-H and C-A-S-H can be expected.  
 

 
Fig. III.15 XRD analysis of G-OPC 

 

 
Fig. III.16 XRD analysis of G-GGBS 

 
It should be noted that organic matter can prevent the dissolution of the clay fraction 
(Claret et al., 2002). It can thus be suggested that the Dublin sediment induces a lower 
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strength development in the case of the plain OPC binder due to the higher organic 
matter content. The OM covers the clay particles and forms a weak acid buffer due to 
the soluble organic matter fraction. 
 
III.3.1.3!Conclusions 
 
This part of the study was undertaken to demonstrate the importance of a sediment’s 
nature on the short and long-term compressive strength after the introduction of a 
hydraulic binder. This finding has important implications for the development of a mix 
design for S/S treatment, meaning the physicochemical characteristics of the sediment 
must be taken into account. The results indicate that the GGBS-based binder can 
provide very performant mechanical characteristics at long term when it is activated in 
a correct way, for example with a sufficient amount of OPC to maintain a necessary 
pH. The OPC-based samples show sufficient strength development at 28 days, but 
further stagnation or degradation of compressive strength occurs at long term. The 
difference between two binders may arise from the differences in pH development over 
time; the pH of OPC (∼13) is more aggressive for the sediment matrix compared to the 
GGBS-based formulation (∼12). As mentioned by (Gaucher & Blanc, 2006), numerical 
modelling of the alkaline disturbance of clays has shown that clays will be affected 10 
times more when the pH is one unit higher. Thus this disturbance of the sediment’s 
minerals may induce the degradation or stagnation of compressive strength 
development.  
 

 
Fig. III.17. Variations of CEC according to the soil composition  

 
The granulometry and cation exchange capacity (CEC) of the treated sediments also 
play an important role in the compressive strength development ((P. Sargent, 2015), 
Fig. III.17).  
For example, as can be seen in Table III.3 (Topolnicki & Pandrea, 2012), the 
unconfined compressive strength of fine soils (high CEC) are lower than for sandy 
coarse grain soils (low CEC). These field strength values corroborate the results shown 
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here for the samples with the OPC treatment, but the opposite trend can be observed 
for the GGBS-based formulation mixed with the Dublin and Gothenburg sediment. One 
of the reasons for the strong performance of GGBS at 28 days with the Dublin sediment 
may come from the interaction with the sediment’s constituents such as the clay 
fraction, organic matter, etc. It is known that soils with a high clay and organic matter 
content have a greater capacity to hold water (P. Sargent, 2015). Therefore, GGBS 
may have a constant and homogenous water storage to produce the hydration 
reactions at long term.  
 
Table III.3 Typical field strength and permeability for ranges of cement factors and soil types, 
(Topolnicki & Pandrea, 2012) 

 
 
Several studies have evaluated the effectiveness of the use of GGBS from the point of 
view of mechanical performance as well as for the stabilization of contaminants. 
(Wilkinson et al., 2010) demonstrated a higher shear strength value achieved with 
GGBS activated by lime for soil solidification. (Paul Sargent et al., 2013) presents the 
combination of NaOH and Na2SiO3 as activators for GGBS for an artificial silty sand 
stabilization. At 28 days the strength was twice the strength of Portland cement. 
Further case studies are needed to determine the main parameters that can help in 
selecting a binder composition and quantity, depending on the sediment’s nature.   
In the section that follows, certain components of sediments will be investigated 
separately in terms of their role on the evolution of mechanical properties.  
 
III.3.2! Impact of the sediment pore water  

In order to assess the impact of the Dublin sediment pore water on the development 
of the mechanical strength of the binder-sediment mixtures, standard mortars were 
prepared according to EN 196-1 with the water/binder ratio fixed at 0.5. For this reason, 
demineralized water was replaced by the sediment pore water. The Dublin sediment 
was centrifuged and the obtained solution was filtered in order to prepare the samples. 
The amount of chlorides and sulfates was measured (Table III.4). 
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Table. III.4 Chlorides and sulfates content in the Dublin sediment interstitial water 

Anion 
Concentration 

(mg/L) 
yz, 19300 
{|+

$, 399 
 

 
Fig. III. 18 Mechanical strength evolution of CEM I and CEM III (Van Rompaey, 2006) 

 

 
Fig. III.19 Standard mortars compressive strength with the Dublin sediment interstitial water as a 

mixture water 
 

Figure III.19 compares the results obtained for the 100% OPC and 85% GGBS / 15% 
OPC formulations after 1 and 3 months of storage. The Portland cement formulation 
demonstrates a mechanical strength performance almost twice as great compared to 
the GGBS-based formulation. This evolution differs considerably from the evolution of 
the sediment treated with the same hydraulic binders. Such a performance of OPC 
compared to CEM I in Fig. III.18 can be explained by the presence of sediment ions 
which may be favourable for hydrate formation. For example, the presence of chlorides 
can significantly improve the mechanical properties of Portland cement (Table III.4) 
(Huang & Shen, 2011; Van Rompaey, 2006).   
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These results may indicate that the liquid phase of the Dublin sediment has no or little 
impact on the compressive strength development of D1 and D3. Therefore, in the 
following sections the other fractions of the sediment will be examined more carefully. 
  
III.3.3! Impact of the clay fraction. Clay-Binder system’s study 
 
According to the compressive strength evolution of both the Dublin and Gothenburg 
solidified sediments, it can be inferred that the long term behaviour of the treated 
sediments can be highly improved by the proper activation of GGBS. The differences 
in the compressive strength evolution between 100% OPC and 85% GGBS / 15% OPC 
mixed with sediment can be explained by various mechanisms, one of which may be 
the impact of the clay fraction during the interaction with binders. Clay and cement 
media have highly contrasting chemistries that may lead to changes in mechanical 
properties during S/S treatment.  
In order to obtain further in-depth information on the interaction of clays and the 
considered hydraulic binders, the green illitic clay from Saint Paulien (“Argile du Velay”) 
was selected because of its similar mineralogical composition to the clay fraction of the 
considered sediments. It is denoted as V0. This clay consists mainly of natural illite 
clay (∼80%) with some accessory minerals (montmorillonite, kaolinite, calcite, and 
quartz). V1 is designated for the OPC binder and V2 for the GGBS-based binder 
(85%GGBS/15%OPC). The sample preparation procedure was described previously 
(see §II.4.1.2). The results discussed in this section were obtained from samples 
stored at 90%RH and 100%RH to evaluate the influence of curing conditions.  
The considered conditions are presented in Table III.5. 
 
Table III.5 Samples considered for studying the impact of clay 

Samples 
RH curing 
conditions 

OPC (%wt wet 
clay mixture) 

GGBS (%wt wet 
clay mixture) 

V0  - - 
V1_90RH 90% 20 - 
V2_90RH 3 17 

V1_100RH 100% 20 - 
V2_100RH 3 17 

 
III.3.3.1!Compressive strength and pH of the clay-binder systems 
 
The compressive strength results for samples with binder contents of 20%wt by the 
wet clay mixture (or 31%wt by the dry clay) are presented in Figure III.20. 
The general evolution of the compressive strength from 1 to 3 months is quite similar 
for each curing condition. However, V1_100RH presents a slight degradation at 3 
months compared to the stable strength values of V1_90RH from 1 to 3 months. At the 
same time, the GGBS-based samples V2_100RH and V2_90RH show a progressive 
increase in strength over time. These results are similar to those of the sediments 
mixed with the considered binders at different percentage. The general trend that is 
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observed is the deterioration or stagnation of mechanical strength development for 
OPC-based treatment and the continuous increase in strength for the GGBS-based 
binders.  
 
 

 
Fig. III.20 Results of the compressive strength of the samples V1 and V2 in two different curing 

conditions (90%RH and 100%RH) 
 
Regarding the pH measurements presented in Fig. III.21, the pH differs for V1 
according to the storage conditions.  
 
At 100%RH, the pH increased from 11.9 at 1 month to 12.4 at 3 months. In contrast, 
V1_90RH showed a decrease in measured pH values. This evolution can be explained 
in different ways. As was discussed previously, both pozzolanic reactions and 
carbonation may lower the pH at long term. The samples stored at 100%RH could 
theoretically be more protected against carbonation due to saturation of porosity than 
those stored at 90%RH.  The same tendency in pH evolution was observed for V2, but 
with lower average values than for V1: at 90%RH the pH decreased slightly, but at 
100%RH the pH value continued to grow.  
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Fig. III.21 pH measurements of the samples V1 and V2 in two different curing conditions (90%RH and 

100%RH) 
 

III.3.3.2!XRD analysis of the clay-binder systems 
 
In order to assess the evolution of the crystalline hydration products of both types of 
binders mixed with the clay, XRD was used. 
The results of XRD analysis for V1 are presented in Fig. III.22. The main hydration 
products produced at both storage conditions were portlandite, ettringite and 
monocarboaluminate phases (AFm). Portlandite almost completely disappeared at 
100%RH according to the results. A decrease in portlandite was previously observed 
for D1 at a binder content of 150 kg/m3. At 90% relative humidity, the portlandite phase 
slightly decreased at 3 months of storage. As can be seen from the graph, 
monocarboaluminate is a quasi-stable phase for both types of storage. This phase is 
formed in the presence of carbonates in solution, which probably originate from a 
partially soluble carbonate fraction present in the clay sample. The intensity of the 
ettringite phase is higher at 100%RH that at 90%RH. The samples stored at 90%RH 
show a decrease in ettringite over time. It is known that ettringite is highly sensitive to 
the presence of carbonates. A sufficiently high carbonate content destabilizes sulfate 
rich AFm phases and promotes monocarboaluminate precipitation (Feng et al., 2016; 
Pajares et al., 2003). 
At the same time, no visible modifications were observed for the V2 sample over 3 
months of storage (Fig. III.23). There is a small stable peak at 20.9 (2θ°) at both storage 
conditions, which can be attributed to the formation of a small amount of portlandite. It 
can be then supposed that the strength of the V2 samples originates mostly from the 
precipitation of amorphous phases.  
The following section aims to assess the evolution of the aluminate phases using NMR.  
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Fig. III.22 XRD analysis of the V1 samples 

 

 
Fig. III.23 XRD analysis of the V2 samples 

 
III.3.3.3! 27Al NMR analyses of the clay-binder systems 

As was mentioned previously, illitic clays have a dioctahedral 2:1 mineral structure of 
one octahedral sheet between two tetrahedral sheets (Fig. III.24) with the general 
formula Si8(Al,Mg,Fe)4∼6O20(OH)4.(K,H2O)2. The interlayer space of this structure is 
filled by K+ cations arising from the charge deficiency. The origin of this charge 
deficiency occurs from the Si4+ tetrahedral sheet replaced by Al3+. Aluminium is 
therefore an important element in the naturally occurring aluminosilicates structure, 
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such as illite with some associated clay minerals in this case.  
 

 
Fig. III.24 Schematic representation of Illitic clay (Sparks, 2002) 

 
NMR is one of the most powerful tools in studying the structure of synthetic or natural 
aluminosilicate minerals. The 27Al isotope has a spin I=5/2, therefore a nuclear 
quadrupole moment arises from a non-spherical distribution of nuclear electrical 
charge and can interact with electric field gradients at the nucleus. NMR is an effective 
tool to investigate the Al environment since the 27Al isotope is 100% abundant and 
presents rather fast relaxation times enabling a short recycling delay to be used.  
A High Resolution 27Al Nuclear Magnetic Resonance approach was chosen to allow a 
deeper insight into the evolution of a clay fraction (V0) mixed with two types of binders 
– V1 and V2– with a special attention given to the development of the amorphous 
phases over a 6-month hydration period (Fig. III.25). The samples studied here were 
stored at 90% RH.  
 

 
Fig. III.25 27Al NMR spectra of V0, V1, V2 after 6 months of storage 
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The V0 NMR spectrum exhibits both octahedral (0 to 20 ppm) and tetrahedral (50 to 
80 ppm) Al environments. As detected via XRD analysis, V0 is composed mainly of 
illite, but also of other types of clay minerals such as montmorillonite and kaolinite. All 
of these phases are composed of an octahedral aluminium sheet, the main signal at 5 
ppm is then the convolution of Al(VI) signal of each phase (Kinsey et al., 1985). In the 
same way, in almost all clay minerals aluminium can appear as a silicon substitute in 
a tetrahedral sheet. This is probably the reason why at least three signals are detected 
in Al(IV) range (at 71, 61, and 58 ppm), (Kinsey et al., 1985).  
In the V1 NMR spectrum, the signal previously assigned to V0’s mineral phases can 
be clearly distinguished. However, no signals possibly attributed to OPC can be 
detected. At the same time, the main component of Portland cement also contains 
aluminium. According to (Skibsted et al., 1993) the 27Al MAS spectrum of OPC is 
composed of a signal with a center of gravity at 86 ppm attributed to Al incorporated in 
dicalcium silicate (C2S) / tricalcium silicate (C3S) and a second signal with a center of 
gravity at 81 ppm corresponding to Al in tricalcium aluminate (C3A);  tetracalcium 
aluminoferrite phase being negligible. These signals are not distinguishable in the 
spectra due to the low amount of OPC or due to its disappearance during the hydration 
process. Additionally, for clay signals two narrow octahedral signals are observed at 
13 and 9.6 ppm. The first one is unambiguously attributed to aluminium in the ettringite 
phase (Aluminate ferrite trisulphate (AFt)) (Andersen et al., 2006). Ettringite 
precipitates from the dissolution of C3A in the presence of sulfates and forms a 
columnar crystal structure with octahedrally coordinated AlO6 (Walkley & Provis, 
2019). The second signal could be coherent with aluminium of octahedral sheet in 
layered double hydroxides (LDH). Its assignment remains ambiguous: AFm (Aluminate 
ferrite monosulphate, or monocarbonate). Finally, in the Al(IV) range, the signal is 
slightly different from those of V0. In particular, the signal at 71 ppm is broader and 
dissymmetric. This seems to indicate the presence of other Al(IV) species.  
 
On the V2 NMR spectrum, the spectral signature of clay materials, as well as slight 
contribution of ettringite and LDH are found. These last two are less intense than in the 
case of V1, consistent with the X-Ray analyses. As with V1, no signal corresponding 
to the aluminium of OPC can be detected. However, the signals observed in the Al(IV) 
range are slightly different. This is probably due to the overlapping of the clay signals 
with the broad peak corresponding to aluminium in GGBS. Indeed, the vitreous 
network of GGBS is mainly composed of SiO4 and AlO4 tetrahedra linked each other 
and charge balanced by calcium and magnesium. This type of aluminium species is 
known to induce a broad signal extending from 40 to 90 ppm (Neuville et al., 2008). 
Finally, a slight signal at around 75 ppm is also observed. This narrow signal 
corresponds to Al(IV) and could be attributed to aluminium incorporated in a C-A-S-H 
network (Colombet et al., 1998). Indeed, the incorporation of Al in the C-S-H gel 
structure is possible, that is to say, the formation of C-A-S-H gel depends on the 
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availability of Al3+ and its amount may increase with hydration time. Fig. III.25 reveals 
that there has been a slight increase in the intensity in the C-A-S-H region for the 
GGBS-based formulation compared to the OPC-based system. The formation of a 
higher amount of the aluminium-substituted C-S-H can be explained by the significant 
Al content within GGBS’s aluminosilicate depolymerised structure. Regarding the 
much higher strength development of V2, the C-A-S-H phase may theoretically 
contribute to this strong mechanical performance.  
Despite the efficiency of the 27Al MAS NMR technique in studying the structure of the 
hydrated binders, some limitations occurred here regarding the complexity of the 
considered system. The high amount of the clay considerably impacted and 
overlapped the regions of Al in the precipitated hydrates due to illite’s inner structure 
with Al in tetrahedral coordination.  
The next part of this study uses TGA analysis to allow a deeper insight into the hydrate 
evolution of the OPC and GGBS treated clay samples. 
 
III.3.3.4!TGA  
 
Fig.III.26. presents the evolution of V1 and V2 over time. The samples were stored at 
90% RH. The measurements performed for V0 show dehydration: loss of structure and 
absorbed water (< 180°C), dehydroxylation between (180 - 500°C), and rupture of 
bonds and collapse of the clay structure (600 - 850°C) (Flegar et al., 2019). The 
comparison of V1 and V2 reveals the development of the C-S-H phase in the presence 
of clay in the region of 200°C. The samples also demonstrate a difference in the region 
of carbonate polymorphs (calcite, aragonite, vaterite, etc.), with a different structure for 
the clay sample compared to that of the binders. The carbonates fraction was detected 
in the X-ray difractogram (Fig. II.30) of the raw clay sample. The peak at around 800°C 
corresponds to the formation of calcium carbonates within V1 and V2 due to the 
reactions of calcium bearing phases with CO2. This peak is more important for V1. 
V1 has a decrease in ettringite from 1 to 3 months with little modifications for other 
hydration products. This correlates with the XRD analysis (see Fig. III.22). V2 does not 
allow for the identification of ettringite because of its low proportion in the sample and 
the superposition with the peak attributed to the dehydration of clays. Finally, no 
significant evolution in hydration products can be observed except for a greater loss of 
mass with a time near to 600°C. Consequently, the formation of hydrates in the GGBS-
based system cannot fully explain the mechanical evolution of V2. 
 
Based on the above, the evolution of the mechanical properties can be linked to other 
factors, such as a lower pH of the GGBS-based formulations which presents a smaller 
disturbance for the clay-based systems as well as the distribution of the hydrates in a 
highly diluted matrix plays an important role. 
Taking into account previously discussed findings regarding the development of the 
microstructure for the two formulations mixed with the Dublin sediment (D1 and D3), 
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the distribution of hydrates providing strength may be different for the two types of 
activation. In order to observe the microstructure of the clay-based systems, SEM 
analysis was performed and the images are analyzed in the next section.  
 

 
Fig. III.26. Thermogravimetric analysis of the OPC and GGBS based binders mixed with clays (V1 and 

V2) at 1 month and 3 months compared with the clay sample (V0) 
 
 
III.3.3.5!SEM observations  
 

Figure III.27 compares the SEM images of V1_90RH and V2_90RH. More specifically, 
the fracture surface after compressive strength testing at 3 months for the samples 
stored at 90%RH are shown. The effect of the replacement of cement by GGBS can 
be clearly seen. V1_90RH presents a highly friable heterogeneous surface (green 
area) with visible flocs compared to V2 which shows a higher microstructure density. 
Slag’s unreacted angular particles with a sharp irregular morphology can be observed 
(yellow area). Some large pores and cracks can also be observed. The uniform matrix 
with high reticulation of C-S-H gel covering clay particles can be observed for both V1 
and V2 by increasing the magnification. However, the degree of reticulation of C-S-H 
gel for the GGBS-based sample seems to be higher and the gel structure is finer, thus 
the enhancement in the compressive strength can be explained by the microstructure 
development in the GGBS-based mixture.  
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The origin of the differences observed in the SEM images can potentially result from 
the very early interaction of the binder solutions with the clay fabric when the 
flocculation/dispersion phenomenon may take place. The impact of the binder ions on 
the clay particles is assessed in the next section through zeta potential and rheological 
measurements. 
 
                         V1_90RH                                                                       V2_90RH 

 

          
 

        
 

       
Fig. III.27 SEM microstructure images of the V1_90RH and V2_90RH samples 
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III.3.3.6!Impact of the binder’s ions on the rheology and zeta potential of the 
clay 

 
The results of the study of the impact of the clay fraction on the development of 
mechanical strength indicates the difference in behaviour for each formulation. 
According to the microstructure investigation, it can be supposed that changes in the 
physicochemical characteristics of clays occur after the clay comes into contact with 
binder solutions. The pH, ionic strength, and water content play an important role in 
the development of the mechanical properties and microstructure of the final material. 
(P. Sargent, 2015) suggests that there are several mechanisms which can cause a 
profound alteration in the physicochemical parameters of clays during treatment with 
binders: cation exchange, flocculation/agglomeration, formation of hydrates, 
secondary pozzolanic reactions, and eventually carbonation.  
In this part of the study the role of two first reactions produced during the solidification 
of clays are investigated. These reactions occur quite rapidly at the beginning. Thus, it 
can be supposed that the composition of binding agents and the effect of the interstitial 
solution of the binders have a considerable impact on the development of the 
mechanical properties in the soils/sediments Solidification/Stabilization practice. 
The schematic representation of cation exchange and further 
flocculation/agglomeration phenomena is presented in Fig. III.28. The majority of 
hydraulic binders contain calcium as the main exchangeable ion – it can replace the 
monovalent cations in a soil and cause potential flocculation (Dong, 2014). (Prusinski 
& Bhattacharja, 1999) showed a reduction of the double-layer thickness between 
negatively charged clay particles due to the higher charge density of di- or trivalent 
ions. Therefore, according to the cation order of replaceability, Ca2+ can easily replace 
Na+ and K+ due to its higher valence.  As can be seen in the image, the interparticle 
forces created between clay particles influence their arrangement due to flocculation 
or dispersion. It can be supposed that the position of particles or the fabric of clay has 
a great impact on the engineering properties of stabilised clayey soils (Le et al., 2012), 
(J.K. Mitchell, 1981). 
 

Fig. III.28 Cation exchange, flocculation and agglomeration processes (Prusinski & Bhattacharja, 
1999)
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In order to provide a detailed illustration of the role of the interstitial solutions of two 
types of binders considered earlier in this study for the solidification of the illitic clay, 
rheology and zeta potential measurements were chosen as relevant tools for this 
purpose.  
To analyze the interstitial solution of the binders, dry mixtures were put into contact 
with demineralized water with a water to binder ratio of 2 for 10 min with magnetic 
stirring, then centrifuged and filtered before being sent for analysis in the laboratory 
using ICP-AES, except for the sulfate concentration which was determined using ion 
liquid chromatography.  The chemical composition of the interstitial solutions of the two 
binders is presented in Table III.6. As can be seen, the concentration of Ca2+, Na+, K+, 
and sulfates is greater in the Portland cement solution.  
 
Table III.6. Chemical composition of the interstitial solutions of 100%OPC and 85%GGBS/15%OPC 
after 10 min of stirring 

Chemical element 
(mg/L) Formulations 

 100%OPC 85%GGBS/15%OPC 

SO4
2- 2900 1500 

Ca 983 543 
Na 373 56 
Al <0.02 <0.02 
K 2415 263 

Mg <0.02 <0.02 
 
The sample preparation procedure for obtaining the interstitial solution of two different 
formulations was reported in §II.4.1.3.5 and §II.4.1.3.6. 
 
III.3.3.6.1! Zeta Potential results of the clay-binder systems 
 
The values of the surface charge of the clay particles in demineralized water and in 
two types of interstitial solutions are presented in Fig. III.29. The clay particles in water 
(V0), at low ionic strength, show the most negative values of zeta potential: from -
3.2mV to -2.6mV with pH reaching a stable value from 7 to 7.8 and conductivity around 
0.5 mS/cm2. The 100%OPC solution (V1) significantly changed zeta potential of the 
clay from negative to positive. The measurements were between 0.8 and 1.0 mV. The 
highest pH as well as conductivity were measured for V1 with pH=12.6-12.9 and 
conductivity 10.5-10.6 mS/cm2 respectively (Fig. III.30, Fig. III.31). In contrast to V1, 
the zeta potential measurements for V2 show a similar behaviour to V0, but with 
greater variations in values over time, probably due to the reactions produced between 
the clay particles and the alkaline solution of 85%GGBS/15%OPC. Zeta potential 
slightly increased in comparison to V0 and varies from -2.6mV to -2.3mV; the pH of V2 
decreases from 12 to 11 over time. A stable conductivity value around 3 mS/cm2 was 
measured for V2.    
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Fig. III.29 Zeta Potential measurements of V0, V1, V2 

 
Fig. III.30 Conductivity measurements of V0, V1, V2 
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Fig. III.31 pH measurements of V0, V1, V2 

 
According to (Yukselen & Kaya, 2002), the decrease in the pH of clays in an alkaline 
solution may result from chemical reactions of Si4+ and Al3+ in the octahedral and 
tetrahedral clay layers and water, by increasing the concentration of H+ in solution (28), 
(29): 

 
*E+/ ) #$% } *E&%#(+ ) 4#

/     (28) 
@A./ ) B#$% } @A&%#(. ) B#

/   (29) 

 
Fig. III.32 Schematic representation of possible reactions between  

(a) siliceous faces or (b) aluminous faces (from (Konan et al., 2007)) 
 

However, according to (Konan et al., 2007), illite only has a siliceous layer whose 
proton acceptors govern pH changes, which is why illitic clay has a weakly basic pH 
compared to the mainly acidic pH of other types of clays (Fig. III.32). 
What can be clearly seen from the obtained results is the difference between V1 and 
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V2 in terms of surface charge. The amount of soluble calcium is higher for Portland 
cement (Table III.6) as is the initial pH (Fig.III.31). When OPC is replaced by GGBS 
the content of Ca2+ cations decreases, thus the electrokinetic behaviour of the clay will 
predominantly depend on this element, especially at the beginning of the interaction of 
the binders with the clay system.  
Previous studies (Konan et al., 2007), (Avadiar et al., 2012) have suggested that when 
Ca(II) is going into solution its large hydration energy captures 6 water molecules in 
the hydrated state (Ca(H2O)6

2+). (Konan et al., 2007) reported that these hydrated 
calcium ions, when they interact with clay suspension, will adsorb on silica faces 
(Figure III.33) and on deprotonated alumina faces when the pH increases above 9.5. 
Therefore, zeta potential increases significantly, especially in the high pH range, and 
this is in line with observations made here.   
 

 
Fig. III.33 Schematic representation of possible interactions  

between silica faces and hydrated calcium ions 
 

III.3.3.6.2! Rheological measurements of the clay-binder systems 
 
Figures III.34 and III.35 present the rheological behaviour of the clay in two different 
solutions - the variation of yield stress was measured using a vane geometry at 
constant temperature (20°C). The yield stress is an important rheological parameter 
which can be described in general terms as a transition state of elastic solid-like 
behaviour at low stress to liquid (viscous) behaviour at high stresses (Liddel & Boger, 
1996). In the case of clays this is an appropriate procedure for observing changes in 
terms of the flocculation rate.  
The lowest value of the yield stress immediately after mixing (Fig. III.34) was obtained 
for V0. Both binders increased the yield strength, which means the flocculation effect 
was produced for the clay mixed with two types of binder solutions. However, V1 
showed a much more significant effect on the creep behaviour of the clay – the yield 
stress of V1 is 100 Pa higher than that of V2. This behaviour can be explained by the 
interaction of 100%OPC ions with the illite clay system, more specifically the 
adsorption of Ca2+ onto illite particles causing flocculation, resulting in a high yield 
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stress due to the higher electrolyte concentration. The high amount of calcium ions 
introduced into the clay induces the flocculation and thickening of the system.  
As can be seen in Fig. III.35, the yield stress increased for all samples 10 min after 
mixing. At the same time, the general tendency remains the same – the highest yield 
stress was achieved with 100%OPC interstitial solution (V1). 
 

Fig. III.34 Rheological measurements of V0, V1, V2 (immediately after mixing) 
 

 
Fig. III.35 Rheological measurements of V0, V1, V2 (10 min after mixing) 
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III.3.3.7!Discussion 
 
In this investigation, the objective was to determine the effect of the clay fraction of 
sediments on the development of mechanical properties of the OPC and GGBS-based 
mixtures. The results revealed the same tendency in the development of compressive 
strength as for sediments mixed with binders – the gradual increase in strength in the 
case of GGBS treatment and the degradation/stagnation of the mechanical properties 
in the case of Portland cement. Thus, it can be supposed that the clay fraction is 
responsible for the evolution of mechanical properties of solidified sediments. 
The microstructure investigation together with the rheological and zeta potential 
measurements demonstrated the role of Ca2+ on the disturbance of the arrangement 
of clay particles, in particular concerning flocculation.   
(Avadiar et al., 2012) showed the strong attractive interaction when Ca(II) was added 
into kaolin slurries. The yield stress increased significantly due to the strong interaction 
of calcium cations with negatively charged clay particles in a highly alkaline medium. 
(Lowke & Gehlen, 2017) studied the oxide minerals, in particular the changes in the 
zeta potential of ground quartz with various salt contents. This study established the 
high affinity of the surface of minerals for calcium ions (Ca2+) compared to K+ or Na+ 
and therefore an important gradual increase in zeta potential with the increase in the 
molar concentration of Ca(OH)2.  
In this study the illite particles flocculated due to a high calcium content, especially in 
the OPC-based mixture. The formation of new clay fabric with face to edge contact 
resulting in a more open structure was observed. Some other studies in this area seem 
to be consistent with the findings presented here. The calcium-based reactions in soil-
water systems are complex and were largely studied in previous research (Barzegar 
et al., 1994; Cruz & Peng, 2016; Dong, 2014; Gaucher & Blanc, 2006; Lemaire, 2012). 
(Chew et al., 2004) investigated the microstructure evolution of a mixture of soft 
Singapore marine clay and Portland cement. The development of the microstructure 
leads to large pore formation due to flocculation which was increased with increasing 
content of OPC.  
This flocculated structure was also reported by (McCallister & Petry, 1992) for 
expansive clays treated with lime; the permeability was much greater for treated clays 
than for untreated clays. (Barzegar et al., 1994) investigated the effect of exchangeable 
cations on the compressive strength of different types of soils. It was found that the 
Na-based soils were highly dispersed compared to the flocculated calcium based soils, 
so the contact between clay particles was more important for Na-based soils resulting 
in a higher tensile strength. In the section that follows, the role of dispersing agents on 
the compressive strength of the Dublin sediment is evaluated.  
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III.3.4! Impact of dispersing agents. Dublin sediment – Binder system 

 
Based on the results discussed in this chapter, it can be concluded that one of the key 
aspects of the solidification process is the phenomenon of flocculation/dispersion.  The 
dispersed or aggregated (flocculated) state of a treated soil/sediment may have a 
considerable impact on the development of mechanical properties. Briefly, the 
improved rheology plays an important role in the development of fresh state properties   
through better homogeneity and hydrates repartition within the system. Therefore, the 
long term hydration can be also significantly improved.  
With the introduction of a hydraulic binder such as Portland cement or lime, the amount 
of calcium ions increases which are known to suppress the double layer of negatively 
charged clay particles producing the flocculation effect. It is well established from a 
variety of studies the role of simple inorganic ions on the flocculation/dispersion of clay 
particles, for example in ceramic processing. It has been demonstrated that sodium 
ions may disperse clays particles because of their monovalent nature and greater 
hydrated radii in contrast to Ca2+. The repulsion of clayey soils/sediments particles may 
occur due to the replacement of calcium ions by sodium ions.  
In this section 100%OPC and 70%GGBS/30%OPC formulations were added into the 
Dublin sediment (D0) at 10%wt with and without dispersing agents (Table III.7). 
 
Table III.7 Considered samples (OPC – Portland cement, GGBS - ground granulated blast-furnace 
slag, HMP – hexametaphosphate, B – phosphonate dispersing agent) 

Sample 
Composition (%wt of the raw 

Dublin sediment) 

D-OPC 10%OPC 
D-OPC-HMP 10%OPC+1%HMP 

D-GGBS 3%OPC+7%GGBS 
D-GGBS-B 3%OPC+7%GGBS+0,1%B 

D-GGBS-HMP 3%OPC+7%GGBS+1%HMP 
 
III.3.4.1!Effect on the rheological behaviour  
 
Two types of dispersants have been tested in this study. The first one is sodium 
hexametaphosphate (HMP, NaPO3) which is a widely used phosphate deflocculant. 
The action of hexametaphosphate consists of the sequestration of Ca2+ and 
introduction of Na+  into the system (Rolfe B. N., 1960). The reactions involved in the 
hexametaphosphate ionization according to (Rolfe B. N., 1960) are shown below in 
reactions 30 and 31: 
 

&~6�%.(Ä Å !~6/ ) &~6P,$&�%.(P(
,                (30) 

&~6P,$&�%.(P(
, Å !~6/ ) &~6P,+&�%.(P(

,       (31) 
 

As a result of these two steps, ionized sodium ions are ready to interact with the soil 
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surfaces. At the same time the formation of complex salts (CaNan-2(PO3)n or 2CaNan-

4(PO3)n) may take place. Consequently, less calcium is present to flocculate the soil 
system and the double layer thickness is increased as well as the interparticle 
repulsion due to Na cations having lower valence. This type of dispersant acts mainly 
on negatively charged clay particles. Another mechanism for increasing the dispersion 
of soil or sediment systems can be through the introduction of complex anions which 
change the remaining partially positive charge on the broken edges of the clay 
particles. (Rolfe B. N., 1960).  
The effect of different dosages of HMP on the rheological behaviour of the Dublin 
sediment is presented in Fig. III.36. The yield stress was gradually decreased with the 
increase in the HMP content from 0.5% to 2% by the weight of the sediment, which 
means that the dispersing effect occurs. 
However, the sediment is a very complex and heterogeneous fabric containing 
different components. It was noted that phosphonate organic salts dispersing agents 
(denoted as B) are effective enough to disperse the Dublin sediment, probably acting 
mainly on the carbonate fraction which is strongly present in this sediment. The 
phosphonate dispersing agents act mainly by adsorption on carbonate minerals as well 
as by producing the Ca2+ chelating effect and its sequestration (Nowack, 2003). The B 
dispersant agent considerably decreased the yield strength even at 0.1%wt of the 
sediment as shown in Fig. III.37.  

 
Fig. III. 36 Impact of HMP on the rheological behaviour of the Dublin sediment 
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Fig. III.37 Impact of B-dispersant on the rheological behaviour of the Dublin sediment 

 
III.3.4.2!Compressive strength results  
 
The compressive strength results are presented in Fig. III.38. The effect of HMP on the 
development of compressive strength of the Dublin sediment treated with Portland 
cement was assessed after 14 days of storage. The measured compressive strength 
was more than doubled in the presence of the HMP dispersant for the D-OPC-HMP 
samples.  
The D-GGBS-B samples containing a phosphonate-based organic dispersing agent 
demonstrated a retardation in hardening, so the compressive strength was measured 
after 28 days of storage instead. Despite this retardation effect, the strength of the 
GGBS-based treated samples with 0.1%B was almost twice the strength without the 
dispersing agent– 370 kPa for D-GGBS against 700 kPa for D-GGBS-B (Fig. III.39). 
 

  
Fig. III.38 14-day compressive strength results of 

D-OPC, D-OPC-HMP 
Fig. III.39 28-day compressive strength results 

of D-GGBS, D-GGBS-B 
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III.3.4.3!Zeta Potential measurements 
 
The zeta potential results are shown in Fig. III.40 and Fig. III.41. The measurements 
were carried out on a solution of demineralized water with a particle concentration of 
5% for 30 min. As can be seen in Fig. III.40, the raw Dublin sediment (D0) exhibits 
particles with negatively charged surfaces. The introduction of 1% of HMP slightly 
lowered the value of ζ potential. The most remarkable changes in zeta potential of the 
Dublin sediment was obtained with the Portland cement binder (D-OPC) – a significant 
fluctuation in electrokinetic potential was observed. The ζ potential twice reaches 
positive values crossing the zero-point charge. However, the presence of the 
dispersing agent considerably impacted the electrokinetic potential of the D-OPC-HMP 
mixture – the zeta potential remains negative across the  measurement period with 
less fluctuation. The sequestration of calcium ions in the presence of 1%HMP lowered 
the ζ potential values.  
 
In contrast to D-OPC, the values of the D-GGBS remains negative with some 
significant fluctuations compared to the D0 due to the dissolution of the binder (Fig. 
III.41). As was discussed previously, the GGBS contains fewer calcium ions, therefore 
the zeta potential remains more negative for the Dublin sediment mixed with the 
GGBS-based binder. The HMP effect can be clearly observed in the first 10 min of the 
measurements – the electrokinetic potential was lowered from -8 mV for D-GGBS to -
13 mV for D-GGBS-HMP.  
 

 
Fig. III.40 Zeta Potential measurements of D0, D-HMP, D-OPC, D-PC-HMP 
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Fig. III.41 Zeta Potential measurements of D0, D-HMP, D-GGBS, D-GGBS-HMP 

 

III.3.4.4!Discussion 
 
The measured compressive strength obviously results from the dispersed state of the 
sediment fabric in the presence of dispersing agents. In the study of Moevus et al., 
(2016) the impact of the clay platelets arrangement on the mechanical strength of soils 
mixed with hydraulic binders was investigated. It was concluded that a more compact 
structure is formed due to the addition of dispersants resulting in a more parallel 
arrangement of clay platelets.  
Barzegar et al., (1994) points out in his paper the difference in the microstructure 
development in Na- and Ca-soils. According to their observations, sodium ions in clay 
soils disperse the soil system and increase contact points between clay particles in the 
soil by increasing the tensile strength. In contrast to sodium ions, in calcium soils the 
microstructure presents a flocculated state with the development of a coarser granular 
configuration of the particles. 
The results of this study indicate the potential improvement in the mechanical 
performance of treated sediments with the introduction of dispersing agents. The 
successful use of dispersants depends on the sediment’s composition – the types of 
clays in the system, the organic matter content, etc. may complicate the action of 
dispersants. Nevertheless, the use of dispersants may potentially improve the 
processing of sediment treatment by improving the rheology, for example when 
pumping is necessary. Additional work is needed to study other types of sediment as 
well as other types of dispersants in order to provide economical and practical solutions 
for S/S treatment. 
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III.4! Interaction between the Dublin sediment’s organic matter and binders 
 
The organic fraction of the Dublin sediment cannot be neglected from the point of view 
of its interaction with hydraulic binders and its impact on the ability of binders to develop 
mechanical properties during the solidification process. Hydraulic binders may also 
disturb the mobility of heavy metals, considering that some of them are complexed by 
organic matter in the Dublin sediment. 
The changes in environmental factors such as pH, ionic concentration, and the nature 
of counter ions may strongly disrupt the organic matter species (Klučáková, 2018). The 
pyrolysis technique coupled with gas chromatography followed by mass spectroscopy 
(Py-GC-MS) investigation was applied to the sediment just after mixing in order to carry 
out the reconstruction of the organic matter in the raw sample D0 and in the treated 
Dublin sediment D1 (OPC-based treatment) and D3 (GGBS-based treatment). The 
13C-NMR technique contributed to a complete characterization of OM. 
 
III.4.1!Organic matter reconstruction before and after S/S treatment 
 
Figure III.42 provides the pyrochromatograms of D0, D1, and D3. It shows the main 
building blocks of the organic matter of the sediment and provides information on their 
sources. Typical pyrolysis products of carbohydrates are identified (furaldehyde, 
furfural) as well as acetamide for aminosugars. Some nitrogen containing heterocycles 
reflect a proteinaceous origin (Fig. III.42 B and C). D0 also presents some sulfur 
components (Fig. III.42 D), which completely disappeared in D1 after 28 days, but not 
in D3. 
The main observation from the pyrolysis analysis is the decrease in most of the organic 
compounds in the order D0<D3<D1, especially for those mentioned above (Fig. III.42 
B, C and D). These results suggest that there is an important impact of hydraulic 
binders on the organic molecules, especially with Portland cement. Nitrogen 
compounds, aromatic and amino- sugars as well as proteins were significantly 
influenced by the addition of OPC. The peaks of the relative abundance were 
decreased noticeably for D1 compared to the raw sediment. It can be concluded that 
the decrease in the quantity of the molecular rate is in the same order as the pH 
development in both formulations. The OPC-based binder develops a pH of 
approximately 13 compared to the GGBS-based binder with pH≈11.8 just after mixing. 
It can be thus supposed that the highly alkaline pH medium induces the dissolution of 
some organic compounds.  
Based on the characterization of the organic matter species, it is now interesting to 
follow the evolution of these components in D1 and D3 over time. Figure III.43 presents 
the global pyro-chromatograms of the sediment-binder systems at 1 month and 3 
months. The graphs are presented in detail in Fig. III.44 and Fig. III.45. After 3 months 
there is no evolution in the proportion of nitrogen compounds for D1 and D3. However, 
the peak at 27 min corresponding to the phenolic compounds increases with time for 
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the two samples. Also, it can be noted that after 3 months, the sulfur components 
decreased in D3. 
!
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Fig. III.42 Pyrochromatograms of the sediment and ‘sediment-binders’ systems: (A) Global 

chromatograms, (B) Aromatic and amino sugars, (C) Proteins and (D) Sulfur 

 

Fig. III.43 Global pyrochromatograms of the ‘sediment-binders’ system at 1 month and 3 months: (A) 
OPC binder D1, (B) OPC-GGBS binder D3 
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Fig. III.44 Evolution with time of the pyrochromatograms of sediment-OPC binder system D1 at 1 

month (black) and 3 months (red): (A) Nitrogen compounds, (B) Phenolic compounds 

 

 
Fig. III.45 Evolution with time of the pyrochromatograms of sediment-OPC/GGBS binder systems D3 
at 1 month (black) and 3 months (red): (A) Nitrogen compounds, (B) Phenolic compounds, (C) Sulfur 

compounds 

III.4.2! 13C – NMR investigation 
 
The 13C-NMR investigation adds supplementary information towards characterizing 
organic matter modifications in the sediment by hydraulic binder treatment. The 13C 
NMR spectra of the sediment D0 and the samples D1 and D3 are presented in Fig. 
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III.46. The 13C NMR spectra show the main organic functions in the samples. They 
exhibit a broad peak between 0 and 95 ppm that can be decomposed into several 
regions: 0-40 ppm aliphatic carbons, 40-60 ppm carbons in methoxyl groups and/or in 
amino acid side chains, 60-80 ppm carbon in C-O groups such as in carbohydrates. 
The peak located at 130 ppm is associated with aromatic carbons and at 160-180 ppm 
corresponds to carboxyl groups (including acids and amides functions).  
When normalized to the aliphatic peak (considered as the most stable functional 
groups), a substantial decrease is observed in the peak at 70 ppm from D0 to D3 and 
D1, which reflects the alteration of the carbohydrates with the addition of the hydraulic 
binders. This evolution is in perfect agreement with the observations made with Py-
GC-MS. 
 

 
Fig. III.46 13C NMR spectra of the sediment and the ‘sediment-binders’ system 

 
III.4.3! Discussion 
 
Different factors affecting the solubility of organic matter have been investigated in 
previous studies (Baldock & Skjemstad, 2000; Chantigny et al., 2010; Curtin et al., 
2016) such as environmental factors (salinity, pH, temperature, mineralogy of the soil)  
and proper OM characteristics (the size and chemical structure of OM compounds). 
(Curtin et al., 2016) investigated the effect of high pH on the solubility of organic matter 
and argued that the amount of DOM (dissolved organic matter) depends on the cation 
valence – the effect of Ca(OH)2 in comparison to the monovalent cations effect KOH 
was demonstrated. The pH and electrolyte concentration were greater for KOH, 
therefore in the higher pH medium (high OH- content) there was a greater release of 
organic (DOM) and inorganic anions. As soon as the organic matter solubilized it is 
decomposed quickly. Thus taking into account the lower concentration of Na+ and K+ 
in the GGBS interstitial solution, it can be concluded from the results shown here that 

13
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in the presence of the GGBS-based binder the sediment’s organic matter is more 
stable than in the presence of the OPC-based binder.  
Various studies have investigated the role of organic matter on the effectiveness of the 
S/S remediation technique. In the study of (Tremblay, 2002) different organic 
compounds were mixed with two types of soils and then treated with 10% of the OPC 
binder. She reported that the presence of organic compounds greatly delayed the 
hydration of mixtures compared to inorganic soil samples – the most important 
negative impact on undrained shear strength was produced with acetic acid, humic 
acid, tannic acid, and sucrose. Moreover, the lowest pH was produced with these 
compounds. Consequently, at low pH no hydration products were formed. Other tested 
compounds delayed hydration by coating the grains of cement. (Rekik et al., 2009) 
showed how different amounts of organic matter (from 2.5 to 7%) affects the 
geotechnical properties and the microstructure (higher flocculation-agglomeration rate) 
of the treated sediments. (Ma et al., 2016; Onitsuka et al., 2003) emphasized how the 
humic acid may affect the strength development of stabilized materials. In the study of 
(Ma et al., 2016) the hydrated lime reacts with black humic acid due to its special affinity 
to Ca2+ ions and forms insoluble calcium based humic acid. The last one may also 
cover the cement and clay particles and delay hydration. (Ma et al., 2016) have also 
discussed the role of fulvic acid which may affect the durability of cement treatment by 
the decomposition of the main hydration products such as C-S-H, C-A-H (calcium 
aluminate hydrates), etc. It is worth mentioning that GGBS activated by OPC has been 
reported as the best solution for highly organic peat soils, Table III.8 (EuroSoilStab, 
2002).  
 
Table III.8 Relative strength increase based on laboratory tests (UCS at 28 days) on Nordic soils 
(EuroSoilStab, 2002) 

 
 

To assess the delay in hydration of the binders caused by organic matter molecules, 
some model samples of binding agents and humic acids were examined through the 
calorimetry technique in the following section.  
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III.4.4! Effect of the organic matter on early age hydration of hydraulic binders 
 
In order to investigate the impact of organic matter on the early hydration of the binders 
considered in this chapter, humic acids were introduced into the binders during the 
mixing process. Humic substances are considered to be the most abundant organic 
molecules with two main different fractions being fulvic and humic acids. Humic acid 
molecules are often larger (2000-5000 g/mol) than fulvic acid’s (500-2000 g/mol) and 
mostly exist in colloidal form. The most important and common functional groups of 
both fractions are carboxylic acids, phenolic hydroxyl, carbonyl, and aliphatic hydroxyl 
groups.  
Isothermal calorimetry analysis was chosen to illustrate the impact of humic acids on 
the hydration kinetics of both types of binders. Humic acid in the solid state was 
introduced in the binders at different dosages – at 0.1%, 0.5%, 1%, 5%, 10% (by weight 
of the binder). First, the dry solid humic acids were premixed with binder powders (OPC 
- 100%OPC and GGBS85 - 85%GGBS/15%OPC) in order to obtain homogeneous 
mixtures; then the final formulations were prepared with a water:binder ratio of 0.4.  
 
III.4.4.1!Heat flow results 
 
Figure III. 47 presents the evolution of the heat produced during the hydration reactions 
of the 100%OPC binder with and without humic acids (HA). As can be seen on the 
graph, the low content of humic molecules (0.1% and 0.5%) slightly lowered the main 
peak of hydration. A delay of hydration was produced at 1% of HA, but it can be 
considered as an insignificant effect. However, after the introduction of noticeably 
higher dosages of HA (5% and 10%), the reaction pathways were greatly disturbed. 
The main peak of hydration of OPC mixed with 5%wt HA appeared only after 63 hours 
of measurements, but the heat release was very low. The addition of 10%wt HA 
completely annihilated the hydration process.  
The hydration evolution of the GGBS-based formulation in the presence of humic acids 
is presented in Fig. III.48. There is some correlation in the results between OPC and 
GGBS85 mixed with humic acids. The 0.1% and 0.5% dosages of HA slightly reduced 
the heat produced over the acceleration stage. At 1% the effect is more pronounced 
and the reaction kinetics are different. Almost the same negative impact of the higher 
dosages of humic acids can be observed in the figure. At the same time, the main 
hydration peak of GGBS85 with 5%HA occurs two times faster than in the case of the 
Portland cement with the same humic acid content. The most negative effect on 
hydration of GGBS85 was detected in the presence of 10%wt HA. 
It is important to understand the mechanisms of the interaction of humic acids with ions 
from the dissolution of binders. (Zhao et al., 2019) in his study of the fouling behavior 
of humic acids investigates the interaction of calcium ions and HA. Figure III.49 
summarizes mechanisms discussed in this paper: when calcium ions interact with 
humic acid molecules, there is an aggregation that can be produced due to charge 
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neutralization. The complexation occurs by reducing the negative charge of carboxilyc 
groups by Ca2+, therefore a bridge between HA molecules can be produced. This 
strong interaction (complexation) between calcium ions and humic acids may cause 
the delay in hydration of the considered binders regarding the important role of Ca2+ 

as an essential element for hydrate precipitation.  
 

 
Fig. III.47 Calorimetry measurements of OPC/HA impact 

 
Fig. III.48 Calorimetry measurements of GGBS85/HA impact 
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Fig. III.49 Proposed mechanism of the influence of Ca2+ on the structure of humic acid (Zhao et al., 

2019) 
 

III.5! Conclusions 
 

This study was undertaken to design the most appropriate GGBS-based formulation 
in order to provide the necessary engineering properties for the dredged Dublin 
sediment. The range of different types of mix designs was subjected to compressive 
strength testing after between 28 days and 6 months of storage. The results indicate 
that GGBS activated by a small amount of OPC (D3) provided the optimal strength, 
especially at long term storage and exceeded that of the OPC-based samples. 
Moreover, the strength of the OPC treated sediment showed a degradation of 
mechanical performances from 3 to 6 months.  
The purpose of the current study was to determine the mechanisms of the strength 
evolution of the Dublin sediment treated with two types of binding agents – OPC (D1) 
and GGBS-based (D3): 
 

-! First, a sediment with a different origin (Gothenburg port) and having a 
substantially different mineralogy and organic matter content was treated with 
the same binding agents and compared to the Dublin sediment in terms of 
compressive strength. The results confirmed the good long term performance 
of the GGBS-based formulation for both sediments with OPC samples showing 
stagnation/slight degradation of mechanical performance. The differences in 
CEC and particle size of the sediments seem to be responsible for the strength 
development. It was concluded that the interaction of hydraulic binders with the 
sediment constituents such as clays, organic matter, etc. play an important role 
in the solidification process.  

-! The impact of the clay fraction on the mechanical strength evolution was 
examined separately, as well as the action of exchangeable ions of the binder 
solutions on the surface charge and rheology of the raw clay sample.  This study 
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showed that the evolution of mechanical strength of both types of mixtures is 
similar to the sediment’s mechanical behavior. The rheological and zeta 
potential measurements revealed the role of calcium ions in the appearance of 
the flocculation phenomenon in the presence of the binders, especially of 
Portland cement having a greater amount of calcium in solution.  

-! It was then supposed that the dispersed state of the sediment fabric could 
contribute to the higher strength development. Two types of dispersing agents 
were applied to the Dublin sediment before treatment with OPC and GGBS-
based binders. Indeed, the improvement of rheology through dispersion 
increased twice the compressive strength of the mixtures.  

-! Finally, the interaction of the binders with organic matter within the Dublin 
sediment was assessed through the pyrolysis technique coupled with gas 
chromatography followed by mass spectroscopy and 13C NMR. The results of 
this research demonstrate a higher disturbance level of organic matter 
components with the Portland cement binder (D1) compared to the GGBS-
based formulation (D3).  

 
Taken together, these findings have significant implications for understanding of the 
main mechanisms governing sediment solidification: 
 

-! The pH is one of the most important parameters for strength development.  
-! Different sediments constituents (clays, organic matter) can affect the 

solidification process.  
-! It was shown that the strength of the treated material comes not only from the 

hydrates of the binders but also depends on their repartition within the sediment 
and on the impact of the binders on the microstructure development. The 
dispersed state of the sediment matrix shows the relationship between the 
rheological and microstructure improvements leading to a better strength 
development.  
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IV.1! Introduction 
 
The effectiveness of the Stabilization/Solidification process may be modified 
depending on the different constituents of a treated waste. During the treatment of 
sediments with cement, a delay or prevention of setting may occur, which can alter the 
properties of the final material. The type of heavy metals, their ionic radii, and their 
concentration may impact the hydration kinetics of binders and the growth and 
nucleation of hydrates in different ways (Mahedi et al., 2019). 
Numerous studies have attempted to explain the mechanisms involved in the 
retardation/acceleration of cementitious systems (Chen et al., 2009; Fernández Olmo 
et al., 2001; Gineys et al., 2010; Lu et al., 2017). Some heavy metals are thought to 
cover cement grains like a protective membrane of amorphous hydroxide species, 
preventing the dissolution of binders. However, there is a lack of direct evidence of 
such mechanisms and the experimental data are rather controversial. (Scrivener et al., 
2019; Weeks et al., 2008) doubt the validity of the protective membrane theory 
because such membranes have never been detected, even with help of advanced 
modern tools. Another possible retardation mechanism can potentially arise from the 
delayed nucleation of some important hydrates which usually occur during early 
hydration and cause the hardening of the treated material. This theory credits the 
induction period to the slow nucleation and growth of hydrates such as CH and C-S-H 
until the solution becomes supersaturated. In addition, some theories explain the 
induction and acceleration period only by C-S-H nucleation and growth which starts 
from the very beginning of hydration (Bazzoni, 2014). The recent theory of 
undersaturation of solution and dissolution of minerals is proposed in the literature. 
This theory explains the non-linear decrease in dissolution rate of minerals with the 
undersaturation decrease, meaning that the system goes towards equilibrium 
(Scrivener et al., 2019). With the decrease in the degree of undersaturation of the 
solution, the reaction rate decreases severely, which is related to the induction period 
observed through calorimetry analysis.  With an increase in the degree of 
undersaturation at the end of dormant period, cement dissolution takes place (Bazzoni, 
2014; P. Aïtcin and R. Flatt, 2016). After supersaturation with a sufficient concentration 
of calcium and silicates in solution, a massive nucleation of stable C-S-H occurs. 
However, further works need to be done in order to validate the theories and explain 
the first hydration steps of complex cement systems, especially concerning alternative 
cementitious materials and their use for waste treatment. The complexity arises from 
the variation of each type of binder, as well as from the coupling processes of 
dissolution-growth of hydrates. In a general sense, the extended induction period of 
the cement systems in the presence of foreign ions such as heavy metals may have 
two origins: ion-ion interaction or interactions taking place at the surface of a solid in 
solution (Nicoleau et al., 2014; Viallis-Terrisse et al., 2001). 
There are relatively few studies on the mechanisms changing the hydration kinetics of 
GGBS-based binders in the presence of heavy metals (Garg & White, 2017; Hekal et 
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al., 2012; Yoon et al., 2020). The present study was designed to determine the effect 
of Zn, Cu, Ni, and Cd on the early hydration of OPC, super-sulfated cements, and 
OPC-activated GGBS-based binders in order to optimize the S/S process and enhance 
its efficiency in various applications. The compressive strength results of the sediment 
mixed with the binders showed that the super-sulfated formulation (D4) did not reach 
a sufficient strength to be measured after being mixed with the contaminated sediment, 
whereas the OPC-based samples were hard enough after only a few days of storage. 
The GGBS formulation activated with OPC (D3) did sufficiently hydrate after 2 weeks, 
however at long term storage the strength of the samples with GGBS exceeded those 
of the OPC-based mixes (Fig. III.1). These findings demonstrated wide variations in 
hydration kinetics for the different types of binding agents once mixed with 
contaminated sediments, which could potentially be the result of the interaction with 
trace elements. Thus, four types of metal cations (Zn, Cu, Ni, and Cd) in the form of 
nitrate salts were chosen according to their abundance in polluted soil/sediment 
matrices as well as for the difference in their ionic size. They were introduced 
separately to the binders. The XRD, calorimetry, and zeta potential methods were used 
as tools to evaluate the impact of zinc, copper, nickel, and cadmium on the hydration 
kinetics of the binders at early age. NMR spectroscopy provided a deeper insight into 
how the hydraulic binders interacted with the considered heavy metals after 28 days 
and 3 months. 
 

IV.2! Early age hydration of the binders with HM 
 
IV.2.1! Impact of zinc 

 
Table IV.1 presents all the samples considered in this section:  
 
Table IV.1 Samples prepared for the zinc impact investigation on the early hydration of the binders 

 
Zn(NO3)2  

0.1% 0.5% 2% 
100%OPC 0.1%ZnOPC 0.5%ZnOPC 2%ZnOPC 

85%GGBS/15%OPC 0.1%ZnGGBS85 0.5%ZnGGBS85 2%ZnGGBS85 
85%GGBS/14%Ca2SO4/1%OPC 0.1%ZnSSC 0.5%ZnSSC 2%ZnSSC 

 
IV.2.1.1!100%OPC formulation 
 
The OPC formulation mixed with different amounts of zinc nitrate exhibited changes in 
the hydration behaviour (Fig. IV.1). For the control mixture (without zinc nitrate), the 
main hydration peak (MHP), corresponding to the rapid growth of CH (portlandite) and 
C-S-H, occurs at 11.4 h with a peak heat flow of 3.87 mW/g. The addition of a small 
dosage of zinc nitrate (0.1%wt) leads to the acceleration of the hydration kinetics with 
the MHP occurring at 8.7 h and with slightly higher peak heat rate release. However, 
a delay in hydration can be observed for the higher dosages of zinc. The induction 
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period is longer with MHP appearing at 13.6 h and 19.4 h, with a larger peak heat flow 
rates of 4.8 mW/g and 6 mW/g at 0.5% and 2% Zn(NO3)2 respectively. The value of 
the total heat flow after 72 h of hydration progressively decreased with increasing zinc 
nitrate dosage. 
 

 
Fig. IV.1 Isothermal calorimetry of 100%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2 

 
The main OPC hydration products, with and without zinc addition, were identified via 
XRD after 24 h and 7 days of storage (Fig. IV.2, Fig. IV.2). The compounds containing 
zinc were not detected due to the low amount of this element within the sample.  
Almost no difference in hydration product development can be observed between the 
control formulation and with the addition of 0.1% and 0.5% of Zn(NO3)2. At the same 
time for the 2% dosage of zinc nitrate, there is a higher amount of calcite and a lower 
amount of portlandite precipitation. The amount of calcite can indicate carbonation of 
the sample due to the effect of zinc during the deceleration and hardening period (8-
24 h) previously reported by (Chen et al., 2007; Taylor, 1997). This phenomenon was 
also observed by (McWhinney & Cocke, 1993), and is explained through a lowering of 
the buffering capacity of calcium due to the presence of different metal cations. As can 
be seen in Fig. IV.3, no significant difference in hydrate development was observed at 
7 days of storage between the control sample and 0.1%ZnOPC, 0.5%ZnOPC, and 
2%ZnOPC. 
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Fig. IV.2 XRD analysis of 100%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 2%Zn(NO3)2 after 

24 hours of storage 

 
Fig.IV.3 XRD analysis of 100%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 2%Zn(NO3)2 after 

7 days of storage 
 

IV.2.1.2!85%GGBS/15%OPC formulation 
 
Figure IV.4 presents the heat release profiles for the GGBS85 formulation with and 
without zinc nitrate. The main hydration peak of the control mixture (GGBS85) is 
attributed to the pozzolanic reaction of GGBS following Portland cement hydration 
acting as an activator of the system. It occurs at 13.5 h after mixing, releasing 0.71 
mW/g of heat. The 0.1%wt of zinc nitrate exhibits an acceleration of the main hydration 
peak. Meanwhile, the higher zinc dosages significantly impacted early hydration. The 
0.5%Zn(NO3)2 dosage has an significant retarding effect with the MHP occurring at 
50.7 h, with a peak heat release two times lower than the control at 0.34 mW/g, and 
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with an acceleration period that starts and ends over a longer duration. Moreover, the 
introduction of 2% Zn(NO3)2 completely annihilated the early hydration process. 

 

 
Fig. IV.4 Isothermal calorimetry of 85%GGBS/15%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2

 

The XRD analysis after 24 hours of hydration shows the precipitation of ettringite and 
portlandite for the control condition (Fig. IV.5). With the introduction of 0.1%Zn(NO3)2 
the intensity of these hydrates was two times lower. However, in the case of 0.5% and 
2% zinc nitrate, only ettringite was formed. The absence of portlandite is in accordance 
with the presence of the anhydrous peaks of C2S and C3S compared to their significant 
disappearance via dissolution in the case of the reference formulation and 
0.1%ZnGGBS85. It can be clearly seen that no portlandite is present even after 7 days 
of storage when 2% of Zn(NO3)2 was added (Fig. IV.6). The dissolution of alite and 
belite (C3S, C2S) was greatly inhibited by increasing the amount of zinc nitrate to 2%.  
The formation of C-S-H gel (broad peaks at 34°) can be detected on the XRD graph 
after 7 days of storage for GGBS85, 0.1%ZnGGBS85, and 0.5%ZnGGBS85, however 
for 2% of Zn(NO3)2 only calcite is present in this region.  
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Fig. IV.5 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2 after 24 hours of storage 
 

 
Fig. IV.6 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2 after 7 days of storage 
 

IV.2.1.3!Supersulfated formulation 
 
The supersulfated (SSC) formulation seems to be the most negatively impacted by the 
addition of zinc nitrate compared to OPC and GGBS85 (Fig. IV.7). The main hydration 
peak of the control sample of SSC was recorded after 14 h of hydration with a heat 
flow rate of 0.48 mW/g.  In the presence of 0.1% Zn(NO3)2 the induction period was 
twice as long. The MHP was considerably delayed, occurring after 28.3 h but with a 
similar heat flow rate. At the higher zinc dosages of 0.5%wt and 2%wt, no hydration 
reactions were detected over entire period of the calorimetry measurements.
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Fig. IV.7 Isothermal calorimetry of the Supersulfated formulation with addition of 0,1%Zn(NO3)2, 

0,5%Zn(NO3)2, 2%Zn(NO3)2 

According to the XRD results at 24 hours of storage, ettringite  is the main hydration 
product of the control sample (Fig. IV.8). Ettringite was also detected for the lowest 
zinc nitrate dosage. At higher zinc amounts the only phase identified on the graphs is 
gypsum. The same evolution is observed after 7 days of storage but with a more 
pronounced ettringite intensity for SSC and 0.1%ZnSSC (Fig. IV.9). An AFm peak of 
very low intensity can be observed in the case of 0.5% and 2% zinc nitrate at both time 
frames. 

 
Fig. IV.8 XRD analysis of the Supersulfated formulation with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2 after 7 days of storage 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

185 

 

 
Fig. IV.9 XRD analysis of the Supersulfated formulation with addition of 0,1%Zn(NO3)2, 0,5%Zn(NO3)2, 

2%Zn(NO3)2 after 7 days of storage 
 

IV.2.1.4!Discussion 
 
The results of the hydration heat evolution and XRD analysis indicate a retardation 
effect of zinc on the early hydration of the binders, except for 0.1%ZnOPC. The 
retardation of hydration in the presence of zinc was attributed, by many authors, to the 
coating of cement grains by the formation of the insoluble gel-like amorphous 
compound CaZn2(OH)6.2H2O which prevents surface dissolution. (Komarneni et al., 
1988) studied the solubility products of some metal hydroxides and established that 
heavy metals precipitate more readily on the surface of silica than in bulk solution
(Table IV.2).   

 
Table IV.2 The solubility product of metal hydroxides 

 
 

However, (Weeks et al., 2008) in his study highlights that there is no direct evidence 
of the formation of amorphous metal hydroxide gel layers on the cement grains. This 
was proposed to explain the delay in cement hydration by the lack of calcium and 
hydroxide ions to saturate the solution in order to form Ca(OH)2 and C-S-H gel due to 
the formation of calcium zincate (CaZn2(OH)6.2H2O). (Chen et al., 2007) observed that 
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calcium zincate was stable when the pH was lower than 12, therefore portlandite did 
not precipitate in this pH range (Fig. IV.10). However, calcium zincate may dissolve at 
later ages of hydration (over 1 year) because the hydration of C3S at long term will 
cause the pH to rise up to 12.5. This means that there is possibly an optimum pH for 
the stability and precipitation-dissolution of calcium zincate with an increase of the 
concentration of available hydroxides.  
 

 
Fig.IV.10 XRD analysis of the C3S pastes with HM after 1 month of storage (Chen et al., 2007) 

 
(Scrivener et al., 2019) confirms the inhibition of C-S-H nucleus formation within C3S 
samples doped with zinc during early hydration. At the same time, what is interesting 
about the incorporation of zinc in Portland cement is a greater magnitude of the MHP 
for dosages of 0.5% and 2%. According to (Scrivener et al., 2019) this increase in MHP 
corresponds to the changes in C-S-H morphology, in particular to the formation of 
longer C-S-H needles. (Bazzoni et al., 2014) observed the enhanced outward growth 
of C-S-H at some dosages of zinc. 
The evolution of the GGBS-based formulations seems to be attributed to the same 
mechanisms of the inhibition of hydration or even its absence. The formation of calcium 
zincate results in a lack of soluble calcium, from C2S and C3S, available for the 
formation of hydrates and for pozzolanic reactions to occur. In the case of GGBS85 
this retardation effect is more pronounced than in the case of OPC because of the 
lower amount of available calcium. Therefore, the impact of the same content of zinc 
will more strongly retard the hydration of the GGBS-based samples as can be seen 
from the XRD and heat evolution results. The supersulfated formulation contains only 
1% of OPC needed for the activation of the system. Therefore, the effect of the 
presence of zinc is more important compared to OPC and GGBS85, arising from the 
fast setting and the formation of gypsum.  
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Table IV. 3 Summary for the hydration heat rate results of OPC, GGBS85 and SSC mixed with Zn(NO3)2 
      OPC GGBS85 SSC 

Zn(NO3)2 

0% 

MHP (h) 11.4 13.5 14 
Peak height (mW/g)  3.87 0.71 0.48 
Total Heat Flow, 72h 

(J/g) 274.8 76.7 50.9 

0.1% 

MHP (h) 8.7 10.9 28.3 
Peak height (mW/g)  3.96 0.70 0.46 
Total Heat Flow, 72h 

(J/g) 205.6 68.5 39.4 

0.5% 

MHP (h) 13.6 50.7 - 
Peak height (mW/g)  4.8 0.34 - 
Total Heat Flow, 72h 

(J/g) 201.7 50 2.3 

2% 

MHP (h) 19.4 - - 
Peak height (mW/g)  6 - - 
Total Heat Flow, 72h 

(J/g) 192.9 2 4.2 

 
 
IV.2.2! Impact of copper 

 
Table IV.4 presents the samples prepared to investigate the impact of copper on the 
early hydration of the binders:  
 
Table IV.4 Samples prepared for the copper impact investigation on the early hydration of the binders 

 
Cu(NO3)2  

0.1% 0.5% 2% 

100%OPC 0.1%CuOPC 0.5%CuOPC 2%CuOPC 
85%GGBS/15%OPC 0.1%CuGGBS85 0.5%CuGGBS85 2%CuGGBS85 

85%GGBS/14%Ca2SO4/1%OPC 0.1%CuSSC 0.5%CuSSC 2%CuSSC 
 
IV.2.2.1!100%OPC formulation 
 

The early hydration of Portland cement in the presence of 0.1% of Cu(NO3)2 does not 
seem to be affected by the presence of the Cu2+ ions, the acceleration part of the curve 
was shifted only slightly to the right and the MHP occurred one hour later. As can be 
seen in Fig. IV.11, the 0.5% dosage of Cu(NO3)2 slightly shortened the induction period 
with the MHP occurring at 9.3 h. Nevertheless, the mixture with 2% of the copper salt 
exhibits an important retardation effect – the main peak finally occurs after 37.9 h with 
a relatively poor MHP heat release of 2.44 mW/g and with the total heat flow 
considerably lower than that of the control sample. 
 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

188 

 
Fig. IV.11 Isothermal calorimetry of 100%OPC with addition of 0,1%Cu(NO3)2, 0,5%Cu(NO3)2, 

2%Cu(NO3)2  
 
The 0.1% and 0.5% dosages of copper nitrate did not modify the formation of the main 
hydration phases of the 100% OPC formulation after 24 hours (Fig. IV.12). The most 
remarkable effect of the copper nitrate solution was obtained at the 2%Cu(NO3)2 
dosage. As can be seen on the graph, the anhydrous peaks of C2S and C3S seem to 
be unreacted. Portlandite was not formed and the ettringite peak is the only hydration 
product present in any significant amount for the 2%CuOPC mixture at 24 h. The 
intensity of the calcite peak is higher for 2%CuOPC compared to the other samples 
which can be related to accelerated carbonation. Almost no difference in hydration 
products was noticed after 7 days of storage for the control sample and for OPC doped 
with copper (Fig. IV.13).  
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Fig. IV.12 XRD analysis of 100%OPC with addition of 0,1%Cu(NO3)2, 0,5%Cu(NO3)2, 2%Cu(NO3)2 

after 24 hours of storage 
 

 
Fig. IV.13 XRD analysis of 100%OPC with addition of 0,1%Cu(NO3)2, 0,5%Cu(NO3)2, 2%Cu(NO3)2 

after 7 days of storage  
 

IV.2.2.2!85%GGBS/15%OPC formulation 
 
The results obtained over 72 hours of calorimetry measurements for the 
85%GGBS/15%OPC formulation mixed with different dosages of copper nitrate are 
set out below (Fig. IV.14). The induction period for 0.1%CuGGBS85 was extended 
with the main hydration peak of the acceleration-deceleration stages occurring at 15.4 
h, almost without change to the hydration evolution compared to the control. However, 
the higher dosages of Cu2+ had a severe negative impact on the early hydration of 
GGBS85. A very low heat release was measured for 0.5%CuGGBS85 with a value of 
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0.08 mW/g of the MHP emerging after 25 hours. The 2% dosage of copper nitrate 
impacted the GGBS85 mixture in the same way as 2% of zinc nitrate; a complete 
annihilation of hydration was observed. 
 

 
Fig. IV.14 Isothermal calorimetry of 85%GGBS/15%OPC with addition of 0,1%Cu(NO3)2, 

0,5%Cu(NO3)2, 2%Cu(NO3)2 
 

The impact of copper nitrate on the precipitation of hydrates of the GGBS85 
formulation can be clearly seen in Fig. IV.15 and Fig. IV.16. At 24 hours and 7 days 
the peak of portlandite was identified only for the control sample and for 
0.1%CuGGBS85. The dissolution of the anhydrous phases of C2S and C3S was 
inhibited by the introduction of 0.5% and 2% of copper salt. At the same time the 
ettringite phase is present at all dosages of copper nitrate. C-S-H formation can be 
distinguished after 7 days of storage only for the reference formulation and for 
0.1%CuGGBS85 – the broader peak can be observed in the region of 34°Theta (Fig. 
IV.16). The AFm phase (C4AH13) was also detected for the 0.1%CuGGBS85 sample. 
Ettringite was precipitated for all samples and in both time frames. 
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Fig. IV.15 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Cu(NO3)2, 0,5%Cu(NO3)2, 

2%Cu(NO3)2 after 24 hours of storage 
 

 
Fig. IV.16 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Cu(NO3)2, 0,5%Cu(NO3)2, 

2%Cu(NO3)2 after 7 days of storage 
 

IV.2.2.3!Supersulfated formulation 
 
The impact of copper on the hydration of the supersulfated formulation is even more 
noticeable that in the case of zinc (Fig. IV.17). This time the MHP for 0.1%CuSSC 
occurred after 41.3 h, but the heat rate of the exothermic reactions corresponding to 
the MHP was not as strongly affected.  The reactivity of the supersulfated binder was 
completely annihilated in the presence of the higher copper dosages.  
 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

192 

 
Fig. IV.17 Isothermal calorimetry of the Supersulfated formulation with addition of 0,1%Cu(NO3)2, 

0,5%Cu(NO3)2, 2%Cu(NO3)2 
 

After 24 hours of hydration only the reference sample shows the precipitation of 
ettringite. The copper nitrate at all dosages induced only gypsum formation after 24 h 
(Fig. IV.18). Further XRD analysis after 7 days exhibits almost the same amount of 
ettringite and gypsum precipitation for SSC and 0.1%CuSSC (Fig. IV.19). However, 
there is still only gypsum present for 0.5%Cu(NO3)2 and 2%Cu(NO3)2.  
 

 
Fig. IV.18 XRD analysis of the Supersulfated formulation with addition of 0,1%Cu(NO3)2, 

0,5%Cu(NO3)2, 2%Cu(NO3)2 after 24 hours of storage 
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Fig. IV.19 XRD analysis of the Supersulfated formulation with addition of 0,1%Cu(NO3)2, 

0,5%Cu(NO3)2, 2%Cu(NO3)2 after 7 days of storage 
 

IV.2.2.4!Discussion 
 
The addition of copper produced the most negative impact on the early hydration of 
the considered binders. In the case of 2%CuOPC, the Portland cement hydration was 
considerably impacted and no CH was detected after 24 hours. As in the case of zinc, 
copper greatly impacted the GGBS-based formulations by retarding the hardening of 
the samples at early age. The effect is more dramatic on the early hydration of the 
slag-based formulations than for the plain OPC samples due to the decrease in calcium 
required for the precipitation of portlandite and C-S-H nucleation. The annihilation of 
hydration of the supersulfated formulation can be explained by the same mechanism 
as for zinc – the dissolution of the anhydrous OPC and GGBS grains was slowed in 
presence of copper, or even completely annihilated. 
The retardation effect of copper was discussed in previous studies. (Gineys et al., 
2010) reported the considerable delay effect of copper on cement paste hydration, with 
the compressive strength at 2 days tending to be approximately non-existant. This 
retardation due to soluble copper salt at early age was attributed by the author to the 
low C3S dissolution rate. Two possible models related to the retardation of hydration 
in the presence of heavy metals in cement pastes were discussed in this study. The 
first one explains the retardation effect by a coating of the surface of cement grains by 
heavy metal hydroxides and the second one discusses the conversion of metal 
hydroxide species to metal hydroxyls. Due to this reaction there is a consumption of 
calcium and hydroxide ions and a lowering of the pH. Consequently, the precipitation 
of Ca(OH)2 and C-S-H are delayed and the dissolution of C3S remains low. (Chen et 
al., 2007) in his study detected the formation of the crystalline phase 
Ca2(OH)4.4Cu(OH)2·H2O. The highest rate of carbonation was reported in the 
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presence of copper as well.  
 
Table IV.5 Summary for the hydration heat rate results of OPC, GGBS85 and SSC mixed with Cu(NO3)2 

      OPC GGBS85 SSC 

Cu(NO3)2 

0% 

MHP (h) 11.4 13.5 14 
Peak height (mW/g)  3.87 0.71 0.48 
Total Heat Flow, 72h 

(J/g) 274.8 76.7 50.9 

0.1% 

MHP (h) 12.4 15.4 41.3 
Peak height (mW/g)  3.85 0.7 0.41 
Total Heat Flow, 72h 

(J/g) 267 72.3 39.8 

0.5% 

MHP (h) 9.3 25 - 
Peak height (mW/g)  3.79 0.08 - 
Total Heat Flow, 72h 

(J/g) 205.5 12 18,3 

2% 

MHP (h) 37.9 - - 
Peak height (mW/g)  2.44 - - 
Total Heat Flow, 72h 

(J/g) 163.1 3.1 1.6 

 
 
IV.2.3! Impact of nickel 
 

The samples prepared for the investigation of the impact of nickel on the early 
hydration of the binders are summarized in Table IV.6: 
 
Table IV.6 Samples prepared for the Nickel impact investigation on the early hydration of the binders 

 
Ni(NO3)2  

0.1% 0.5% 2% 
100%OPC 0.1%NiOPC 0.5%NiOPC 2%NiOPC 

85%GGBS/15%OPC 0.1%NiGGBS85 0.5%NiGGBS85 2%NiGGBS85 
85%GGBS/14%Ca2SO4/1%OPC 0.1%NiSSC 0.5%NiSSC 2%NiSSC 

 

IV.2.3.1!100%OPC formulation  
 

Figure IV.20 presents the isothermal calorimetry measurements for the Portland 
cement formulation mixed with Ni(NO3)2 at different percentages. The hydration 
reactions were accelerated in the presence of nickel ions and the induction period was 
considerably shortened, especially for the 2%NiOPC mixture. The 0.1%NiOPC and 
0.5%NiOPC formulations show almost the same hydration behaviour with earlier 
occurrences of the MHP at 7-8 h, almost without changing the heat release rate of the 
MHP compared to the control mixture. 
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Fig. IV.20. Isothermal calorimetry of 100%OPC with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 

2%Ni(NO3)2 
 
Figure IV.21 compares the XRD results of the hydration products formed at 24 hours 
of storage for the OPC sample doped with different amounts of Ni(NO3)2. There was 
no significant difference for the control sample and the samples containing nickel, 
except for the higher dissolution rate of C2S and C3S with 0.5% Ni(NO3)2. The lowest 
amount of portlandite was precipitated in the case of 2%NiOPC, as well as the highest 
amount of calcite. At first glance it seems that ettringite is more abundant for 2% 
Ni(NO3)2. It can be supposed that nickel favoured the formation of ettringite, which 
explains the acceleration effect. After 7 days of storage there is almost no difference 
in the hydrate formation apart from the slightly higher dissolution rate of C2S and C3S 
for 0.5%NiOPC (Fig. IV.22). 
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Fig. IV.21 XRD analysis of 100%OPC with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 2%Ni(NO3)2 after 

24 hours of storage 

 

 
Fig. IV.22 XRD analysis of 100%OPC with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 2%Ni(NO3)2 after 

7 days of storage 
 

IV.2.3.2!85%GGBS/15%OPC formulation  
 
With regard to GGBS85 mixed with nickel nitrate, the general trend demonstrates an 
acceleration of the hydration reactions for all considered dosages of Ni2+ (Fig. IV.23). 
The main hydration peak for GGBS85 in the presence of 0.1%Ni(NO3)2 emerges after 
8.8 h of hydration. The 0.5% and 2% dosages of nickel salt also shifted the MHP 
forward, occurring at 8.2 h and 8.6 h respectively. The heat rate corresponding to the 
MHP of all mixtures has almost the same value as the reference formulation, however 
the cumulative heat produced over 72 h of measurements was slightly lower for 
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0.1%NiGGBS85 and 0.5%NiGGBS85, but higher for 2%NiGGBS85.    
 
 

 
Fig. IV.23 Isothermal calorimetry of 85%GGBS/15%OPC with addition of 0,1%Ni(NO3)2, 

0,5%Ni(NO3)2, 2%Ni(NO3)2 

The evolution of the hydration products of GGBS85 and 0.1%NiGGBS85 is similar after 
24 hours (Fig. IV.24). By increasing the amount of nickel salt to 0.5%Ni(NO3)2 there is 
much less precipitated portlandite at 24 hours. In the presence of 2% Ni(NO3)2 the 
dissolution of C2S and C3S was inhibited. Consequently, no portlandite can be detected 
after 24 h. However, the highest intensity of the ettringite peak was obtained for 
2%NiGGBS85 as in the case of the OPC formulation. The samples with 0.1% and 
0.5% nickel nitrate showed almost the same hydration product evolution as the 
reference sample; the portlandite, ettringite, and C-S-H phases can be distinguished 
after 7 days of storage (Fig. IV.25). Furthermore, the calcium aluminate phase C4AH13 
was precipitated with the addition of 0.1% Ni(NO3)2. In the presence of 2% nickel nitrate 
the inhibition of the hydration of GGBS85 was observed also after 7 days with the 
lowest dissolution rate of the anhydrous OPC phases C2S and C3S and with a more 
significant calcite intensity. At the same time the most abundant ettringite precipitation 
was detected for 2%NiGGBS85 after 7 days of hydration, compared to the other 
samples. 
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Fig. IV.24 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 

2%Ni(NO3)2 after 24 hours of storage 
 

 
Fig. IV.25 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 

2%Ni(NO3)2 after 7 days of storage  
 
IV.2.3.3!Supersulfated formulation 
 
The addition of 0.1%Ni(NO3)2 to the supersulfated formulation shortened the induction 
period with the MHP occurring after 11.4 h, without impacting the heat release rate 
(Fig. IV.26). The 0.5%NiSSC formulation also demonstrated an acceleration of the 
main hydration reactions, however the measured heat rate of the MHP was two times 
lower than in the case of the control formulation. The addition of 2% Ni(NO3)2 produced 
an extension of the induction period, with the occurrence of the MHP occurring after 
32.9 hours with a heat rate of 0.25 mW/g. 
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Fig. IV.26 Isothermal calorimetry of the Supersulfated formulation with addition of 0,1%Ni(NO3)2, 

0,5%Ni(NO3)2, 2%Ni(NO3)2 
 

Regarding the results of the XRD analysis of the supersulfated formulation doped with 
nickel, there is an almost even hydrate repartition in terms of phases and intensity for 
the control sample (SSC), 0.1%NiSSC, and 0.5%NiSSC after 24 hours and 7 days of 
storage (Fig. IV.27, Fig. IV.28).  With addition of 2%Ni(NO3)2 the only detected phase 
was gypsum at both time frames. 
 

 
Fig. IV.27 XRD analysis of the Supersulfated formulation with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 

2%Ni(NO3)2 after 24 hours of storage 
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Fig. IV.28 XRD analysis of the Supersulfated formulation with addition of 0,1%Ni(NO3)2, 0,5%Ni(NO3)2, 

2%Ni(NO3)2 after 7 days of storage 
 
IV.2.3.4!Discussion 
 
In contrast to the impact of copper and zinc, the addition of nickel nitrate produced 
mostly an accelerating effect on early hydration. Nickel, at some specific dosages, 
appears to promote the hydration of the cementitious materials by the rapid dissolution 
of aluminium bearing phases and rapid precipitation of the ettringite and minor Ni-Al 
layered double hydroxides (Ni-Al LDH) phases (Scheidegger et al., 2000; Vespa et al., 
2006). (Vespa et al., 2006) performed an XAS study of cement mixed with different 
nickel salts. The predominance of Ni-Al LDH at first hours of hydration was 
demonstrated, and the competition for aluminium consumption between ettringite and 
LDH was observed. The EXAFS results of Ni presented later in this study confirm these 
findings (see Chapter V). According to the results of (Gineys et al., 2010), nickel did 
not affect the early compressive strength of the cement samples after 2 days of storage 
compared to the negative impact of zinc and copper. 
An acceleration of the MHP was observed in almost all samples, as well as the 
formation of more abundant ettringite. According to (Achternbosch et al., 2003),  nickel 
in the alkaline pH range of 9-11 precipitates as Ni(OH)2 and remains quite stable. It 
can be supposed that the retardation of hydration of the GGBS-based formulations at 
2%wt Ni(NO3)2 arises from the Ni(OH)2 precipitation and therefore the consumption of 
OH-.  
 
 
 
 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

201 

Table IV.7 Summary for the hydration heat rate results of OPC, GGBS85 and SSC mixed with Ni(NO3)2 
      OPC GGBS85 SSC 

Ni(NO3)2 

0% 

MHP (h) 11.4 13.5 14 
Peak height (mW/g)  3.87 0.71 0.48 
Total Heat Flow, 72h 

(J/g) 274.8 76.7 50.9 

0.1% 

MHP (h) 7.9 8.8 11.4 
Peak height (mW/g)  3.88 0.70 0.47 
Total Heat Flow, 72h 

(J/g) 208.6 64 37.5 

0.5% 

MHP (h) 7.6 8.2 8.8 
Peak height (mW/g)  3.8 0.69 0.24 
Total Heat Flow, 72h 

(J/g) 196.1 58.3 40.3 

2% 

MHP (h) 6 8.6 32.9 
Peak height (mW/g)  3.6 0.71 0.25 
Total Heat Flow, 72h 

(J/g) 186.2 78.1 41.5 

 
IV.2.4! Impact of cadmium 
 

The samples of the hydraulic binders mixed with cadmium nitrate are presented in 
Table IV.8: 
 
Table IV.8 Samples prepared for the cadmium impact investigation on the early hydration of the binders 

 
Cd(NO3)2  

0.1% 0.5% 2% 
100%OPC 0.1%CdOPC 0.5%CdOPC 2%CdOPC 

85%GGBS/15%OPC 0.1%CdGGBS85 0.5%CdGGBS85 2%CdGGBS85 
85%GGBS/14%Ca2SO4/1%OPC 0.1%CdSSC 0.5%CdSSC 2%CdSSC 

 
IV.2.4.1!100%OPC formulation  
 
The heat release during the calorimetry measurements of the 100%OPC formulation 
mixed with 0.1%, 0.5% and 2% Cd(NO3)2 is set out in Fig. IV.29. For the cadmium-
doped OPC mixtures, there is trend of accelerated hydration for all dosages. With the 
increase of the cadmium salt dosage, the acceleration effect becomes more 
noticeable. However, the heat release decreases to some extent gradually with the 
increase of cadmium nitrate. The MHP of 0.1%CdOPC occurs at 7.7 h, of 0.5%CdOPC 
at 6.4 h, and finally of 2%CdOPC at 4 h but with the lowest heat rate of 3.2 mW/g and 
with a much lower value of the total heat release at 72 h. 
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Fig. IV.29 Isothermal calorimetry of 100%OPC with addition of 0,1%Cd(NO3)2, 0,5%Cd(NO3)2, 

2%Cd(NO3)2 
 
X-ray diffractograms of the OPC formulation mixed with cadmium nitrate at different 
dosages show a uniform evolution of the hydration products after 24 hours, as well as 
after 7 days of storage (Fig. IV.30, Fig. IV.31). The only difference that stands out on 
the graph is the slight increase in ettringite intensity for the 2%CdOPC mixture. 
 

 
Fig. IV.30 XRD analysis of 100%OPC with addition of 0,1%Cd(NO3)2, 0,5%Cd(NO3)2, 2%Cd(NO3)2 

after 24 hours of storage 
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Fig. IV.31 XRD analysis of 100%OPC with addition of 0,1%Cd(NO3)2, 0,5%Cd(NO3)2, 2%Cd(NO3)2 

after 7 days of storage 
 

IV.2.4.2!85%GGBS/15%OPC formulation  
 
Cadmium nitrate at 0.1% and 0.5%, once mixed with GGBS85, shortened the induction 
period (Fig. IV.32). Therefore, the MHP for 0.1%CdGGBS85 occurred at 10.2 h and 
for 0.5%CdGGBS85 occurred even earlier at 8.2 h. At the same time the heat rate 
corresponding to the pozzolanic reaction of GGBS was lower for both dosages ∼ 0.6 
mW/g, but the pre-peak of the acceleration stage related to Portland cement hydration 
remained higher than that of the control sample, producing stronger exothermic 
reactions. The introduction of 2% Cd(NO3)2 retarded the hydration of the mixture with 
the MHP (occurring at 18.8 h) and produced half the heat of the control mixture, with 
the acceleration period starting and ending after more time had elapsed. However, this 
retardation effect is much less severe compared to the effect of copper and zinc. 

After 24 h of hydration, the GGBS85 formulation with and without cadmium addition 
shows the precipitation of portlandite, ettringite, and calcite (Fig. IV.33). The ettringite 
phase was precipitated in almost equal amounts for all samples, but not portlandite. 
The low intensity of the portlandite peak in this case was measured with 
0.1%CdGGBS85 and the highest peak with 0.5%CdGGBS85. After 7 days of storage 
the broad peak of C-S-H gel was identified for all samples (Fig. IV.34). The ettringite 
phase almost disappeared in the case of 0.5%CdGGBS85 and the appearance of 
monocarboaluminate was detected. A considerable amount of AFm (C4AH13) was 
formed in 0.1%CdGGBS85 after 7 days of storage. Portlandite remains stable for all 
samples. Thus, this time the hydration was less impacted compared to when the other 
metals were added at 2%wt.   
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Fig. IV.32 Isothermal calorimetry of 85%GGBS/15%OPC with addition of 0,1%Cd(NO3)2, 

0,5%Cd(NO3)2, 2%Cd(NO3)2 
 

 
Fig. IV.33 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Cd(NO3)2, 0,5%Cd(NO3)2, 

2%Cd(NO3)2 after 24 hours of storage 
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Fig. IV.34 XRD analysis of 85%GGBS/15%OPC with addition of 0,1%Cd(NO3)2, 0,5%Cd(NO3)2, 

2%Cd(NO3)2 after 7 days of storage 
 
IV.2.4.3!Supersulfated formulation  

 
The introduction of cadmium nitrate salt into the SSC formulation had the smallest 
negative impact on hydration compared to the other metals according to the 
calorimetry measurements (Fig. IV.35). For the 0.1%CdSSC mixture, the MHP occurs 
after 13.5 h meaning a slight acceleration of the hydration with a higher heat rate of 
0.52 mW/g. With a further increase in the content of cadmium nitrate, the occurrence 
of the main peak of SSC was retarded, but not completely annihilated as in the 
presence of copper or zinc. The MHP of 0.5%CdSSC and 2%CdSSC emerged after 
19.6 h and 32.9 h, respectively. 
 
The evolution of hydrates of the supersulfated formulation with and without cadmium 
addition are presented in Fig. IV.36 and Fig. IV.37. This time even at 2%wt of Cd(NO3)2 
the ettringite phase was detected after 24 h of storage, but with lower intensity than for 
the other samples. An increase in intensity of the ettringite peak was observed for 0.5% 
Cd(NO3)2 at 24 h. Interestingly, all samples present a uniform development of the 
hydration phases at 7 days of storage, in contrast to the supersulfated formulation 
mixed with zinc, copper, and nickel salts (Fig. IV.37). 
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Fig. IV.35 Isothermal calorimetry of the Supersulfated formulation with addition of 0,1%Cd(NO3)2, 

0,5%Cd(NO3)2, 2%Cd(NO3)2 
 

 
Fig. IV.36 XRD analysis of the Supersulfated formulation with addition of 0,1%Cd(NO3)2, 

0,5%Cd(NO3)2, 2%Cd(NO3)2 after 24 hours of storage 
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Fig. IV.37 XRD analysis of the Supersulfated formulation with addition of 0,1%Cd(NO3)2, 

0,5%Cd(NO3)2, 2%Cd(NO3)2 after 7 days of storage  
 

IV.2.4.4!Discussion 
 
The introduction of Cd in the considered binders accelerated the main hydration 
reactions for OPC and GGBS85 and did not have a negative effect on the hydration of 
the SSC formulation. Data from several studies suggests that cadmium in cement 
systems will precipitate in the form of cadmium hydroxide following earlier hydration 
(pH>12.5), or cadmium carbonate (pH 9-11) (Achternbosch et al., 2003; Halim et al., 
2004). The XANES spectra confirm the previous findings regarding the formation of 
cadmium hydroxides in the OPC formulation (see Chapter V). It seems that Cd(OH)2 
exists as distinct particles in the cementitious matrix. (Halim et al., 2004; McWhinney 
& Cocke, 1993) observed independent cadmium compounds such as cadmium oxides, 
hydroxides, and carbonates within the C-S-H of cement. The acceleration effect of 
cadmium on the three considered formulations may be explained by the formation of 
cadmium hydroxide. They may potentially provide additional sites for the nucleation of 
C-S-H. (Cartledge et al., 1990) suggested that the physical inclusion of Cd(OH)2 in 
C2SH may occur and even the acceleration of C-S-H gel precipitation by the presence 
of cadmium hydroxides could take place. The compressive strength developed by the 
cement samples mixed with 2% cadmium nitrate in the study of (Gineys et al., 2010) 
shows a slight decrease in strength after 2 days, but similar values were reported after 
28 days of storage for the reference OPC sample and the Cd-doped sample.  
At the same time, the formation of highly stable CdS in the GGBS-based formulations 
was detected in this study with an important prevalence of this cadmium compound 
due to the presence of sulfurs in GGBS (see Chapter V).  
Cadmium ions present the lowest negative impact on the hydration of the binders 
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compared to the other considered heavy metals. It can thus be concluded that 
cadmium precipitates in the form of simple hydroxides in Portland cement solutions 
and in the form of sulfurs within GGBS-based binders. It does not block the surfaces 
of C3S and C2S and it does not interact with the calcium ions necessary for hydrate 
formation. 
 
Table IV.9 Summary for the hydration heat rate results of OPC, GGBS85 and SSC mixed with 
Cd(NO3)2 

      OPC GGBS85 SSC 

Cd(NO3)2 

0% 

MHP (h) 11.4 13.5 14 
Peak height (mW/g)  3.87 0.71 0.48 
Total Heat Flow, 72h 

(J/g) 274.8 76.7 50.9 

0.1% 

MHP (h) 7.7 10.2 13.5 
Peak height (mW/g)  3.89 0.61 0.52 
Total Heat Flow, 72h 

(J/g) 192.5 71.1 41.4 

0.5% 

MHP (h) 6.4 8.2 19.6 
Peak height (mW/g)  3.59 0.6 0.42 
Total Heat Flow, 72h 

(J/g) 180.9 67.7 38.4 

2% 

MHP (h) 4 18.8 32.9 
Peak height (mW/g)  3.2 0.35 0.32 
Total Heat Flow, 72h 

(J/g) 151.5 60.8 33.8 

 
 
IV.2.5!Zeta Potential of the binders in the presence of HM 
 
IV.2.5.1!100%OPC formulation  
 
Figure IV.38 reveals the changes in the zeta potential evolution of the 100%OPC 
binder mixed with the four considered heavy metal salts. The control sample gives 
positive values from 6 to 8 mV over 80 min (the full test duration). The positive values 
of the plain Portland cement sample arise from an increase in the concentration of 
calcium ions (Ca2+) from Portland cement’s anhydrous minerals adsorbed onto the 
negative surfaces of the silanol groups during hydration. A marked decrease in zeta 
potential can be seen in the presence of the zinc and copper salts. The values for 
0.5%CuOPC at the beginning of the measurements are around 3.5 mV and they 
increase to 5.6 mV during the test. Zeta potential measured for the OPC binder mixed 
with the zinc solution presents slightly higher values, but they are still lower than the 
reference sample – from 4.2 mV to 6.9 mV. Meanwhile, the OPC formulation in the 
presence of nickel shows a considerable increase in zeta potential in contrast to the 
behaviour reported for copper and zinc. With the introduction of nickel, the values show 
an evolution of the zeta potential from 4.3 mV to  9 mV over the duration of the test. 
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Finally, OPC in the cadmium salt solution exhibits almost the same zeta potential 
evolution as the control sample. The trends measured in the conductivity analysis are 
quite similar to those of the zeta potential (Fig. IV.39). The conductivity of the samples 
increases gradually over time, except for the sample with 0.5%Cu(NO3)2 which 
remains almost stable. Zinc nitrate lowered the conductivity of the solution as well, 
compared to the reference sample. At the same time, the dissolution rate of the OPC 
binder in the presence of nickel nitrate increased. 
 

 
Fig. IV.38 Zeta potential measurements of the 100%OPC formulation doped with 0,5% of HM nitrates 

salts (Zn, Ni, Cu, Cd) 
 

 
Fig. IV.39 Conductivity of the 100%OPC formulation doped with 0,5% of HM nitrates salts (Zn, Ni, Cu, 

Cd) 
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In regard to the pH values presented in Fig. 4.40, all samples exhibit a highly alkaline 
pH, even when considering the low concentration of the cement. The values are pretty 
dispersed, but in general a decrease in pH can be noted for all samples over time. 
Nickel and cadmium nitrates showed the greatest pH values, followed by zinc and 
copper, and finally the reference sample.   

 

 
Fig. IV.40 pH of the 100%OPC formulation doped with 0,5% of HM nitrates salts (Zn, Ni, Cu, Cd) 

 

IV.2.5.2!85%GGBS/15%OPC 
 
The zeta potential evolution for the 85%GGBS/15%OPC formulation in demineralized 
water and in four heavy metal nitrate solutions is presented in Fig. IV.41. The values 
on the graph are noticeably lower than those of the OPC formulation but are still 
positive. What is interesting in the figure is the general trend in changes in zeta 
potential of the control sample when mixed with the heavy metal salts. This trend is 
fairly similar to the effect of the same considered heavy metals for the plain OPC 
binder. The zeta potential values of the reference formulation (GGBS85) were 
decreased under the influence of zinc and, especially, copper nitrate. The final value 
of zeta potential (after 80 min) for the reference formulation is 3.3 mV. Zinc lowered 
this value to 2.5 mV and copper to 1.8 mV. Unlike the effect of zinc and copper nitrates, 
cadmium and nickel present a growth in zeta potential. Nickel shows an increase from 
1.24 mV to 4.4 mV and cadmium from 1.8 mV to 4 mV compared to the evolution of 
the reference formulation (from 1.4 mV to 3.3 mV) over the duration of the experiment. 
The conductivity and pH of GGBS85 with and without the presence of the heavy metal 
salts are reported in Fig. IV.42 and IV.43. The lowest pH is attributed to the reference 
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formulation and all heavy metal salts slightly increased the pH of the solutions. The 
zinc sample has the lowest pH of all the metal salt samples and the lowest conductivity 
values. The highest conductivity was measured for 0.5%NiGGBS85.  

 

 
Fig. IV.41 Zeta potential measurements of the 85%GGBS/15%OPC formulation doped with 0,5% of 

HM nitrates salts (Zn, Ni, Cu, Cd) 
 
 

 
Fig. IV.42 pH of the 85%GGBS/15%OPC formulation doped with 0,5% of HM nitrates salts (Zn, Ni, 

Cu, Cd) 
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Fig. IV.43 Conductivity of the 85%GGBS/15%OPC formulation doped with 0,5% of HM nitrates salts 

(Zn, Ni, Cu, Cd) 
 

 
IV.2.5.3!Discussion 
 
The presented results of the evolution of zeta potential, pH, and conductivity of two 
binders – 100%OPC and 85%GGBS/15%OPC, introduced to pure water and four 
heavy metal solutions, reinforce the assumptions made about the mechanisms of the 
impact of heavy metals on the hydration kinetics of the binders discussed previously 
in this chapter. 
The main observations from the study suggest that at the considered dosages, copper, 
and zinc will mainly have a retarding effect on hydration, while nickel and cadmium will 
accelerate the reactions produced during the early hydration process, or not have a 
noticeable impact.  
The zeta potential of both binders is governed by the high pH development as well the 
high ionic strength, especially in case of Portland cement. At the very beginning of the 
contact between the cement grains with water, there are alkalis (Na+, K+), sulfates, and 
free lime (CaO) in the solution from the first minutes. After, Ca2+ and OH- are released 
into solution from C3A and C3S due to hydrolysis (Lowke & Gehlen, 2015). Therefore, 
it can be supposed that the adsorption of calcium and sulfate ions on the cement’s 
surface plays an important role for the zeta potential evolution. Regarding the higher 
calcium concentration for the plain OPC formulation compared to the GGBS-based 
formulation, the adsorption of divalent calcium cations will produce more positively 
charged surface demonstrated by higher zeta potentials. 
Zeta potential can be influenced by the size and type of an ion, as well as by the ionic 
strength of the solution (Yukselen-Aksoy & Kaya, 2016). There are many published 
studies on the behaviour of metal cations in highly alkaline media (Hunter, 1992; 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

213 

Weeks et al., 2008; Yukselen & Kaya, 2002). Regarding the results obtained after the 
calorimetry, XRD, and zeta potential measurements, it can be supposed that some 
heavy metal species will act in the alkaline solution following reactions 32 and 33 
(Weeks et al., 2008): 

 
3 D 3&%#($                   (in the presence of OH- ions)     (32) 

 
3 D "63$&%#(p Ç w#$%     (in the presence of excess OH- and Ca2+ ions)  (33) 

 

As was discussed previously, there is a strong possibility of the formation of the 
complex calcium salts CaZn2(OH)6.2H2O in the presence of zinc nitrate and 
Ca2(OH)4.4Cu(OH)2·H2O in the presence of copper nitrate. These reactions can 
explain the lowering of the zeta potential values measured here for 0.5%ZnOPC, 
0.5%CuOPC, 0.5%ZnGGBS85 and 0.5%CuGGBS85. The lack of calcium ions due to 
the precipitation of complex salt species with Zn and Cu will delay the dissolution of 
the anhydrous phases and the precipitation of calcium hydroxides and C-S-H.  
It can therefore be assumed that the reason why there is mostly an acceleration effect 
of the early reactions in the presence of nickel and cadmium (expressed here as an 
increase in zeta potential and conductivity) is that these heavy metals precipitate 
mostly as simple species (e.g. hydroxides) in the binder solutions without disturbing 
the availability of calcium for the main hydrate formation. Ni and Cd accelerate the 
hydration through increasing surface deprotonation probably due to additional seeds 
formation. In the case of nickel, the additional formation of Ni-Al double layer 
hydroxides contributes to the accelerated hydration.  
 
IV.2.6!Conclusions 
 
The effect of the heavy metals considered here at the chosen concentrations gives an 
insight into the importance of considering these variables for the choice or the correct 
adjustment of the binder used for the Solidification/Stabilization process of polluted 
sediments. Heavy metal cations may strongly affect the early hydration kinetics. The 
results provide some explanations for the delaying mechanisms observed in sediment-
binder systems.  
 
The results of the study can be categorized into two main groups according to the 
effect of the considered heavy metals on the hydration kinetics at early age: 
 

•! Copper and zinc mostly retarded the hydration of the OPC, GGBS85, and SSC 
formulations. It can be concluded that zinc and copper will precipitate in the form 
of complex calcium hydroxide compounds and retard hydration through the lack 
of calcium ions. Therefore, the extended induction period corresponds to the 
equilibrium of the system with a low dissolution rate of the anhydrous phases of 
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the binders. The key parameter of the retardation effect of Cu and Zn is lowered 
calcium activity in the binder solutions and the low dissolution rate of the 
binders. 

•! Ni and Cd ions demonstrated a different behaviour by accelerating the systems, 
or not dramatically impacting the hydration pathway. These heavy metals 
instead form simple hydroxides in the cement systems. The formation of Ni-LDH 
can be expected, providing additional seeds for hydration. The precipitation of 
CdS in the GGBS-based formulations takes place according to the EXAFS 
results (presented in the next chapter). Therefore, the calcium ions remain 
available for the formation of hydration products. Both metals increased the 
surface charge, inducing higher dissolution rates for the minerals. 

 
Heavy metals affected the binders’ early hydration following the order 
SSC>GGBS85>OPC (Table IV.10). 
 
Table IV.10 The effect of the considered heavy metals on the early hydration of the hydraulic binders 

(N – No effect, A – Accelerated, D – Delayed, I – Inhibited) 
Heavy metal 

in form of 
nitrate salt 

(%) OPC GGBS85 SSC 

Cu 

0,1 N D D 
0,5 A I I 
2 D I I 

Zn 

0,1 A A D 
0,5 D D I 
2 D I I 

Ni 

0,1 A A A 
0,5 A A D 
2 A A I 

Cd 

0,1 A A A 
0,5 A A D 
2 A D D 

 
-! The supersulfated formulation was shown to have the greatest sensitivity to the 

addition of the heavy metal nitrates. The most negative impact on the hydration 
was observed with the addition of copper and zinc. The ettringite formation of 
SSC was completely annihilated and only gypsum formation was observed. 
These findings provide an understanding of the lack of strength produced for 
the supersulfated formulation mixed with the Dublin sediment.  

-! GGBS85 was also significantly affected by the presence of copper and zinc as 
the hydration was considerably retarded. The slow emergence of hardening (∼1-
2 weeks) for the sediment samples in the GGBS85 formulation can be explained 
by the presence of heavy metals such as copper and zinc in  significant 
amounts.  
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-! The weakest perturbation rate at the early stages of hydration in the presence 
of heavy metals was observed for the Portland cement binder. This goes in 
accordance with the relatively fast hardening (a few days) of the samples of the 
Dublin sediment mixed with Portland cement.  

 
 
IV.3! 27Al and 29Si NMR spectra of the ‘hydraulic binders-heavy metals’ system. 

Long term hydration 

 
IV.3.1! Introduction 

 
As can be concluded from this chapter, the interaction of heavy metals with GGBS-
based binders causes, in some cases, a significant retardation in the formation of the 
main hydration products compared to the Portland cement binder.  
Most of the hydrated phases in GGBS-based binders are amorphous. Therefore, NMR 
spectroscopy is particularly well suited to quantify these phases and observe the 
changes in their morphology and abundance induced by the incorporation of heavy 
metals. The major phase in the case of the GGBS-based binder is C-A-S-H, which is 
the calcium silicate hydrate (C-S-H) gel phase containing aluminum. (Dong et al., 
2019) in his study of the gel structure of C-S-H in a pure Portland cement system and 
a GGBS-OPC system observed an increase in C-A-S-H gel with an increase of the 
hydration rate.  
 

 
Fig. IV.44 Schematic structure of C–A–S–H with potential immobilization effects indicated in red. 
ÉÑÖÜ
á (mAl): Q=SiO4 tetrahedron, n = number of neighbouring SiO4 tetrahedra, m = number of 

neighbouring AlO4 tetrahedra, p = pairing position, b = bridging position;  —: negative charge; H–H: 
hydrogen bridge bond (from (Baldermann et al., 2019)) 



Chapter IV: Impact of HM on the hydration of hydraulic binders 
 

216 

 
The substitution of Al for Si in tetrahedral sites occurs often with increasing GGBS 
content (Richardson & Groves, 1997). (Wang & Scrivener, 2003) also reported the 
incorporation of aluminium in the silicate chains of C-S-H gel in alkali-activated slag, 
whereas a lower Al/Si ratio was observed for the Portland cement system. 
Thus, in addition to the possible fixation of heavy metals by the substitution of Ca2+ 
ions in C-S-H , the possible incorporation of heavy metals into the C-A-S-H structure 
is also possible to compensate for the charge deficits occurring due to substitution of 
Si by Al. (Baldermann et al., 2019) reported several pathways for the removal of heavy 
metals during C-A-S-H formation. Among them there are isomorphous substitution in 
octahedral and tetrahedral positions, ion exchange in the interlayer sites, and 
potentially surface (ad)sorption, and surface precipitation (Fig. IV.44).  
At the same time, the AFm phases are also known to be responsible for heavy metal 
immobilization. For example, the sodium carbonate activated GGBS system produces 
the hydrotalcite-like phases known to have a strong removal capacity for heavy metals, 
exceeding those of OPC systems (B. Li et al., 2019). (Yang et al., 2020) demonstrated 
a strong uptake of Pb2+, Cu2+, and Cr3+ in the AAS due to the hydrotalcite phase.  
Thus, in the NMR investigation an attempt was made to evaluate the impact of the 
presence of heavy metals on the Al environment of the three different binder systems. 
The main objectives of the NMR analysis were to observe the changes induced in the 
hydrates formation at 1 and 4 months of storage when heavy metals are introduced in 
the mixtures. 
 
IV.3.2!Considered samples 
 
The binders considered for the NMR experiments are: 100%OPC, 
85%GGBS/15%OPC, as well as 100%GGBS/10%Na2CO3. In the case of OPC alone, 
potentially little incorporation of Al in the C-S-H phase takes place, knowing that it is 
rapidly consumed in ettringite and AFm. On the other hand, the slag is richer in Al and 
it is therefore incorporated in large quantities in C-A-S-H. Even greater substitution of 
Al for Si in the C-A-S-H phase can be expected for the AAS binder.  
Two heavy metals with different ionic radii were considered: Zn and Cd (Table IV.11). 
The heavy metals were incorporated into the binders in the form of soluble nitrate salts 
and the NMR analysis was carried out after 1 and 4 months of storage. 
 
Table IV.11 Considered samples for the NMR experiment 

Samples Zn(NO3)2  

(%wt binder) 

Cd(NO3)2  

(%wt binder) 

OPC (100%OPC)  
0; 2% 

 
GGBS85 (85%GGBS/15%OPC) 

AAS (100%GGBS/10%Na2CO3) 
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IV.3.3!27Al NMR spectra of the OPC system in the presence of Cd and Zn 
 
The 27Al MAS NMR spectra of the hydrated ordinary Portland cement mixed with heavy 
metal salts are presented in Fig. IV.45.  
The 4-coordinated (tetrahedral) aluminum signals can be clearly seen on the spectra 
in the region of 60-80 ppm. As previously said (III.3.3.3), the 27Al MAS spectrum of 
OPC is composed of a signal with a center of gravity at 86 ppm, attributed to Al 
incorporated in dicalcium silicate (C2S) / tricalcium silicate (C3S) and a second signal 
with center of gravity at 81 ppm corresponding to Al in tricalcium aluminate (C3A) (the 
tetracalcium aluminoferrite phase is generally unobservable) (Skibsted et al., 1993). 
This broad peak ranging from 60 to 80 ppm could probably be attributed to Al(IV) in C-
A-S-H, occurring during the hydration of the OPC binder and the incorporation of Al 
into C-S-H gel. In the range of 6-coordinated (octahedral) aluminium, three sharp 
signals can be distinguished at 13, 10, and 4 ppm assigned respectively to aluminium 
in ettringite, AFm, and a third aluminate hydrate (TAH) (Andersen et al., 2006). 
 

       
Fig. IV.45 27Al NMR spectra of OPC, 2%ZnOPC, 2%CdOPC after 1 month (left) and 4 months (right) 
 
Regarding the C-A-S-H region for the samples containing heavy metals (2%CdOPC 
and 2%ZnOPC), there is no significant difference in the appearance of the resonances 
that can be reported. At first glance, the samples with and without zinc incorporation 
present almost the same chemical and structural evolution over time in the Al(IV) 
region. The C-S-H structure is almost unchanged as well as silicate chain length, as 
was already observed by (Pomiès et al., 2001) after the cadmium incorporation. 
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IV.3.4!27Al NMR spectra of the GGBS85 system in the presence of Cd and Zn 
 

        
Fig. IV.46 27Al NMR spectra of GGBS85, 2%ZnGGBS85, 2%CdGGBS85 after 1 month (left) and 4 

months (right) 
 
The results obtained from the 27Al NMR analysis of the GGBS-based formulation 
activated with Portland cement (GGBS85) and for the mixtures 2%CdGGBS85 and 
2%ZnGGBS85 are compared in Fig. IV.46.   
The region of the 4-coordinated aluminum displays a broad resonance ranging from 
50 to 80 ppm. Regarding the high slag content (85%wt) this resonance is mainly 
attributed to the AlO4 tetrahedra of a depolymerized amorphous slag framework 
(Neuville et al., 2008). No signal corresponding to OPC is detectable on these spectra 
due to its low amount and its dissolution. On the contrary, the shoulder at around 
75ppm revealed the formation of C-A-S-H gel. According to the signal observed for C-
A-S-H in the case of the pure OPC system (cf. Fig. IV. 45) another contribution should 
overlap with the GGBS signal. The shoulder at 75 ppm becomes slightly sharper in the 
case of GGBS85 between 1 and 4 months of storage, probably showing a more 
significant incorporation of Al into the C-S-H structure. No significant differences can 
be found for Al in tetrahedral coordination in 2%ZnGGBS85 and 2%CdGGBS85 in the 
region of C-A-S-H.  
In the Al[VI] range, signals previously assigned to ettringite, AFm, and TAH are found. 
However, the proportion of ettringite is clearly different from the case of pure OPC. For 
the GGBS85 formulation, no ettringite is detectable both after 1 and 4 months of 
storage, whereas this phase was detected via XRD analysis at early age, after 24h 
and 7 days of storage (Fig. IV.5, IV.6). It can be concluded that AFt was transformed 
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into monosulfoaluminate (AFm). In the cases of 2%ZnGGBS85 and 2%CdGGBS85, a 
slight signal due to ettringite is observed and a more pronounced peak of ettringite 
occurs for the GGBS85 formulation in the presence of cadmium between 1 and 4 
months of storage (cf. Fig. IV.46). (Tashiro et al., 1979) reported the acceleration effect 
of ettringite crystal growth when some heavy metals were added to the mix of 
synthesized C3A and Ca2SO4.2H2O. (Tumidajski & Thomson, 1995) studied the impact 
of CdO on the hydration of 3CaO.Al2O3 and concluded that cadmium ions promote the 
precipitation of cubic hydrated phases. Thus, it can be supposed that the enhanced 
formation of AFt and AFm type phases occurs for the GGBS85 system in the presence 
of cadmium and zinc. 
 
IV.3.5!27Al NMR spectra of the AAS system in the presence of Cd and Zn 
 
The sodium carbonate activation of the blast furnace slag was adopted for the NMR 
study due to the potential capacity of binding heavy metals within developed hydrates. 
The dense C-A-S-H gel structure of AAS systems is known to have a good adsorption 
efficiency for the heavy metal stability (Deja, 2002; Yang et al., 2020). The hydrotalcite 
phase (Mg-Al LDH) is one of the main phases precipitated through Na2CO3 activation 
of GGBS. Hydrotalcite can also stabilize heavy metals within its structure of positively 
charged brucite-like sheets with its charge-balanced secondary anionic layer.  
The 27Al MAS NMR spectra of alkali activated slag (AAS) in the presence of 2%wt of 
zinc (2%ZnAAS) and cadmium nitrate salts (2%CdAAS) are shown in Fig. IV.47.  
As was mentioned earlier, the broad peak ranging from 50 to 80 ppm is mainly due to 
the 4-coordinated Al from the anhydrous GGBS framework. This signal overlaps Al(IV) 
which is the part of the C-A-S-H gel phase developed at 1 and 4 months of storage. 
However, unlike the two other binder systems (OPC and GGBS85), the sharp peak at 
∼75 ppm assigned here to Al in the C-A-S-H frame of the AAS is more intense. After 1 
month of storage, this peak is clearly visible for the AAS sample and for the 2%CdAAS 
sample. Nevertheless, zinc incorporated in the AAS system considerably retarded the 
appearance of the C-A-S-H peak. It can be also considered regarding the 6-
coordinated Al within the AFm phase structure that hydrotalcite in 2%ZnAAS 
precipitated in a smaller amount compared to AAS and 2%CdAAS. Therefore, it can 
be concluded that cadmium causes a lesser impact on hydrate formation after 1 month 
of storage compared to zinc. Despite this retardation effect of zinc after 1 month of 
storage, the NMR spectra of all the samples after 4 months of hydration demonstrate 
a similar evolution of the hydrates.  
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Fig. IV.47 Al NMR spectra of AAS, 2%CdAAS, 2%ZnAAS after 1 month (left) and 4 months (right) 

 
In order to distinguish the MAS spectra of aluminum close to 1H atoms, a new series 
of 1H-27Al CP-MAS experiments were carried out only for the pure sample of AAS and 
2%ZnAAS. This method is particularly useful for identifying hydrous alumina within the 
samples and in this case to more closely inspect the effect of zinc on the hydration 
product development.  
The CP-MAS signals (dotted lines) are compared to the 27Al spectra (full lines) in Fig. 
IV.48. The CP-MAS signals of AAS after 1 and 4 months as well as those of 2%ZnAAS 
after 4 month show that the Al(IV) signals of Al in C-A-S-H are complex and exhibit at 
least two components, including the sharp signal at 75ppm. This shape was already 
observed in the case of the pure OPC system (cf. Fig. IV.45). Interestingly, the 1H-27Al 
CP-MAS signal of the C-A-S-H phase after 1 month of storage is significantly different 
for the sodium carbonate activated GGBS in the presence of zinc A noticeable 
retardation is observed, expressed as very low peak in the region from 50 to 80. 
However, the 4-month hydration rate of both samples is similar. 
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Fig. IV.48 27Al MAS and 1H-27Al CP-MAS spectra of AAS and 2%ZnAAS samples after 1 month (left) 

and 4 months (right) 
 
IV.3.5.1!29Si NMR and 1H-29Si spectra of the AAS system in the presence of Zn 
 
Regarding the evidence of the impact of the addition of zinc nitrate on the reactivity of 
the AAS system, and especially on the formation of C-A-S-H phase, a 29Si MAS NMR 
analysis was performed in order to provide a deeper understanding of the hydrates 
evolution of the sample doped with zinc nitrate.  
During the hydration of cements, C-S-H with different degrees of silicate polymerization 
is precipitated. Therefore, 29Si NMR is largely applied to study the hydration of different 
cement materials. Si in cements is present in four-fold coordination with the Si-O unit’s 
chemical shift occurring from -60 to -120 ppm. The degree of polymerization of C-S-H 
can be presented in terms of “Qn” with Q as silicon bonded to four oxygen atoms and 
n=0 to 4 corresponding to the number of bonding oxygen, namely oxygen bonded to 
another forming atom (Si, Al, B, etc…).  
Figure IV.49 provides the spectrum of the 29Si environment in the anhydrous GGBS as 
well as the 29Si MAS and 1H-29Si CPMAS spectra for the sodium carbonate activated 
slag with and without zinc addition.  
The anhydrous GGBS sample presents a broad signal with a centre at around -75 ppm 
with an extension from -65 ppm to -90 ppm. It corresponds to the overlapping of 
Q1(0Al), Q2(0Al), and Q2(1Al) units and is coherent with a depolymerized silicate 
structure. The spectrum of the AAS system presents the 29Si signal of the residual 
unaltered GGBS but reveals also Q1 and Q2 chain units within the C-A-S-H phase with 
the predominance of Q2 suggesting long polymerized silicate chains. On the other 
hand, 2%ZnAAS shows a completely different evolution, which can be clearly seen on 
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the spectrum obtained with the 1H-29Si CP-MAS experiment. After 1 month of 
hydration, the spectrum of 2%ZnAAS is still dominated by the signal of the unreacted 
slag, but a broad signal centred at around -93 ppm and ranging from -85 to -105 ppm 
corresponding to silicon in vicinity with proton is also observed (signal also observed 
by CP-MAS). The chemical shift range corresponds to more polymerized silicon 
species, namely Q3 (0Al) or Q4(mAl) units as reported by (C. Li et al., 2010). This signal 
could be attributed to a polymerized silicon gel on the surface of the GGBS grains in 
which a Zn-Si interaction may take place and act as passivation layer. This layer can 
explain the hindered formation of C-A-S-H. At the same time, it can be clearly seen 
from 29Si MAS and 1H-29Si CPMAS experiments of 2%ZnAAS after 4 months of storage 
that the formation of C-A-S-H is then unblocked. (Qian et al., 2003) demonstrated in 
his study the same retardation effect of 2%Zn(NO3)2 after 28 days of storage for the 
AAS samples. He concluded in his study that the formation of the insoluble zinc silicate 
gel and calcium zincate retard the precipitation of C-S-H.  
 

 
Fig. IV.49 29Si MAS and 1H-29Si CPMAS spectra of the anhydrous GGBS, AAS and 2%ZnAAS 

samples after 1 month and 4 months of storage 
 

 
IV.3.5.2!Conclusions 
 
The results of the 27Al NMR study demonstrated the impact of Zn and Cd on the 
formation of hydration products of the OPC and GGBS-based formulations. However, 
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it was difficult to observe direct evidence of the effect of Zn or Cd on the Al environment 
within the C-A-S-H phase, except for the samples of sodium carbonate activated 
GGBS (in particular the retardation impact of zinc).  1H-27Al CP-MAS and 1H-29Si 
spectra were particularly useful to obtain further in-depth information on the 
mechanisms of the delayed C-S-H precipitation in the AAS system doped with zinc – 
the formation of a zinc silicate gel on the surface of GGBS grains seems to be detected 
on the spectra. 
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V.1! Introduction 
 
The Solidification/Stabilization method for dredged sediments remediation can be very 
effective for the immobilization of inorganic contaminants. Its importance has increased 
over recent years due to prosperous results produced with this cost-effective 
technology and the increasing interest of researchers to use alternative cementitious 
materials. Ground granulated blast furnace slag can be a good binder option to 
enhance the mechanical and leaching performances of treated sediments. The results 
of the leaching tests conducted as part of the work presented in this chapter are 
promising for the use of GGBS. In order to gain an understanding of the efficiency of 
GGBS for the stabilization of heavy metals and demonstrate the benefits of using this 
binder, this chapter provides some explanations of the mechanisms involved in the 
process of reduced mobility of inorganic contaminants. 
According to (Kabata-Pendias & Pendias, 2001), the most important properties of soils 
affecting the release and bioavailability of trace elements are: Eh (redox potential)-pH 
profile, CEC (cation exchange capacity), salinity, organic matter type and content, 
water, temperature, and microbiota and mezobiota activities. Each component of the 
sediment system can contribute to the accumulation of trace elements and reduce their 
mobility and toxicity for marine organisms. In order to characterize the heavy metal 
repartition using different extraction methods, sediments are usually fractioned 
according to the most important phases responsible for the bioavailability of HM: clays, 
organic matter, carbonates, sulfides, and oxides. Consequently, when environmental 
changes occur or some sort of disturbance of the system takes place (e.g. dredging of 
harbor sediments), the remobilization of contaminants may occur as a result of 
desorption or the chemical transformation of contaminants into more mobile and toxic 
forms (Eggleton & Thomas, 2004).   
This work focused on the efficiency and the chemical impact of treating heavy metals 
contaminated port sediments with two different hydraulic binders: OPC and GGBS-
based binders. The efficiency of the stabilization step was evaluated by the means of 
leaching tests performed on the raw form of the sediment and the treated material with 
binders after given curing periods. In the meantime, the impact on the chemistry of the 
pollutants was evaluated by means of sequential extraction and X-ray Adsorption 
Near-Edge Structure (XANES). The sequential extraction enabled, through the 
application of four selective dissolution steps, for the determination of which 
component/phase of the sediments were withholding a given heavy metal, whether 
before or after treatment with the binders. Eventually, XANES measurements 
indicated, for a limited number of pollutants, their initial chemical speciation within the 
sediment matrix and how that speciation evolved with the introduction of the different 
binders. 
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V.2! Batch leaching test 
 
The leaching test was carried out on the range of samples at two storage periods (after 
1 and 3 months) just after the compressive strength tests. Heavy metals such as As, 
Cd, Cr, Cu, Zn, Ni, Pb, and Hg were analyzed by the ICP-MS technique after the 
leaching procedure. The amount of the leached heavy metals was measured for the 
raw Dublin sediment as well as for the sediment treated with two types of binders – the 
reference condition (100% Portland cement) and GGBS-based binders. 
The considered binder formulations for the leaching test were added at 150 kg/m3 to 
the Dublin sediment (Table V.1.): 
 
Table V.1. Composition of the binders used for the leaching test 

 Composition 

D1 100% OPC 
D2 50%OPC+50%GGBS 
D3 15%OPC+85%GGBS 
D4 1%OPC+85%GGBS+14%Ca2SO4 
D5 95%GGBS+5%Na2CO3 
D6 95%GGBS+5%MgSO4 
D7 95%GGBS+5%MgO 

 
It should be mentioned that certain formulations are only taken into account in this 
chapter concerning the stabilizing effect of GGBS for the immobilization of inorganic 
contaminants. The results of the compressive strength demonstrated that formulations 
D4, D5 and D6 did not provide the necessary strength as required by the Dublin port 
project. Good leaching performance is not sufficient for the future application of treated 
dredged material. The compressive strength must be taken into account to make an 
optimal choice of a binder. However, these formulations are part of a discussion in this 
chapter and can potentially be optimized to give the necessary strength. 
 
V.2.1! Leaching test Results 
 
The leaching test results are reported in Fig. V.1.  
The leachability of the heavy metals from the non-treated sediment (D0) is rather low. 
This suggests that they should be present in rather stable compounds.  
As can be seen, most of the considered heavy metals are efficiently immobilised with 
the addition of the binders, especially chromium, zinc, lead, and arsenic (except for 
D5). On the other hand, Cu and Ni are destabilized in the presence of the binders. It is 
apparent from the graph that a clear trend of decreasing leached heavy metals can be 
observed when the level of OPC substitution with GBBS increases. For example, the 
D1 formulation increased by approximately 13 times the amount of copper in the 
leachate solution after 28 days (389 µg/L) and almost doubled copper leaching 
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(697µg/L) after 3 months of storage whereas D3, with the highest GGBS replacement 
rate, slightly lowered copper leaching compared to D0.  
Other types of GGBS activation have also effectively stabilized various types of heavy 
metals in the Dublin sediment. D4 and D6 were the most effective in copper 
stabilization. They significantly decreased (∼10 times)  the leaching of copper after 28 
days of storage. However, D4 presents the same leaching level of Cu as the raw 
sediment at 3 months. The D6 formulation remains the most effective for the 
immobilization of copper after 3 months of storage. MgO activation (D7) demonstrated 
a low rate of leached copper (6.4 µg/L) at 28 days, however after 3 months of storage 
the copper detected in the leachate solution increased significantly (227 µg/L).  
Turning now to the other heavy metals one by one, the value of nickel leached from 
the raw sediment was 20 times less than for the sediment treated with the pure OPC 
binder which presents the highest destabilization impact: 11.5 µg/L for D0 and 175 
µg/L at 28 days for D1. D2 with an OPC:GGBS ratio of 1 was also proved to be 
ineffective at nickel stabilization with the value 10 times greater than nickel leached 
from the non-treated sediment. D3, with the highest GGBS replacement of Portland 
cement, and D7 demonstrated almost the same leaching performance with a nickel 
leaching value of 50 µg/L. The most effective formulations to immobilize nickel are D5 
and D6. They decreased the leaching rate of nickel after 28 days and 3 months of 
storage. D4, the supersulfated mix, doubled the leaching of nickel.  
Lead was effectively immobilized with all of the considered binders. The value of 
leaching from the raw sediment was 13.8 µg/L. The most instable metal in the Dublin 
sediment matrix is zinc. At the same time, zinc was well stabilized with all binders, 
especially after 3 months of storage. Cadmium and mercury were below the detection 
limit and were not destabilized in the presence of the binders. Chromium was 
effectively stabilised with almost all the binders at 28 days except for D5 and D7. 
Nevertheless, after 3 months of storage the leaching of chromium appeared for D3 and 
D7 and with the maximum occurring in D1.The amount of leached chromium  in all 
cases is still less than was leached from the raw sediment. 
Overall, the results reported in Fig. V.1 indicate that the supersulfated mixes (D4, D6) 
have the lowest destabilization effect, although they did not provide any strength (Fig. 
III.1). Taken together, these results suggest that there is a correlation between the 
effective stabilization of heavy metals and the increase in the amount of slag when 
replacing OPC. The dissolution of metal species is correlated and highly dependent 
upon the pH, therefore the next section is concerned with the pH of each binder.  
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Fig. V.1. Leaching test results after 1 and 3 months of storage 



Chapter V: Stabilization of HM  
 

233 

V.2.2! pH measurements 
 
The pH, as one of the main factors affecting the leaching behaviour of metals, was 
measured accurately at the end of each leaching procedure (Fig. V.2).  
 

 
Fig. V.2 pH evolution of the binders-sediments mixtures: pure binders’ pH and the sediment pH 

immediately after mixing with the binding agents (left); pH of leachates (right)  

As was discussed in Chapter I (§ I.6.8.2) based on the literature review, most heavy 
metals are stable around neutral pH and can be highly destabilized in the strongly 
acidic or basic pH range. Fig. V.2 shows the trend of the pH decreasing with increasing 
amounts of GGBS depending on the type of the activation. The highest pH was 
obtained with the D1 formulation. The pH of the leachates of D1 were pretty similar 
after 1 and 3 months and was around 12.2. When the replacement rate of Portland 
cement with GGBS increases, the overall pH of the formulations decreases. This trend 
was already reported by many authors. (Eguchi et al., 2019) replaced OPC with GGBS 
with replacement rates from 50% to 90% and showed that the pH decreased 
progressively for GGBS pastes with the lowest value obtained with 90% GGBS. The 
composition of pore solutions in terms of ionic concentrations was reported by 
(Bertolini, 2014) for the different binders, mortars, and concrete and the lowest pH 
values were measured for blended cements. For example, the [OH-] concentration of 
80%GGBS/20%OPC mortar paste was reported to be 170 mmol/L comparing to the 
OPC mortar with a [OH-] concentration of 391 mmol/L. The pH produced by D3 is 
around 12 for the binder paste and around 11.8 immediately after mixing with the 
Dublin sediment. Moreover, the leachate pH of D3 is about 11.5 after 1 month of 
storage and even lower after 3 months of storage, with a value of 11.2. As can be seen 
on the graph, the values of pH for the D2 samples with an OPC:GGBS ratio of 1 are 
situated between D1 and D3. 
Finally, for D1, D2, and D3 the measured pH values are strongly correlated with the 
leaching rate of copper and nickel presented in Fig. V.1. The high pH of OPC 
destabilizes copper and nickel. The substitution of cement by GGBS makes it possible 
to decrease the pH and thus to decrease the destabilization of these metals in a 
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proportional way. The pH can be a primary explanation for the increased leaching of 
Cu and Ni metals in OPC environments. 
The supersulfated activation also allows for a decrease in pH. The lowest pH was 
obtained with D4, which presents a pH around 11.4 and produces a pH of the 
sediment-binder mixture around 8. This may explain the highest stability and the lowest 
leaching rate of trace elements in the presence of this formulation. The pH of the D4 
leaching solution increased to 10.4 at 1 month and then decreased to 9. A correlation 
between low pH with effective stabilization of metals can be also observed for D6, 
which is the most effective immobilizing agent among all the considered binders. The 
pH of the D6 binder’s paste was around 10 decreasing to the value of 9 after interaction 
with the sediment matrix. The leachate’s pH measurements gave values of around 9 
after 1 month and 3 months of storage.  
The carbonate activation of GGBS, denoted as D5, had a low pH of 9 following the 
leaching test. This decrease in pH over time can be explained by the lack of rapid 
hydration of the sediment-binder mixture and potential carbonation. 
Finally, D7 demonstrated a paste pH of around 11.3 and 11 for the sediment-binder 
mix. The D7 leachate samples show a different trend compared to the other 
formulations; they exhibit an increase in pH between 1 and 3 months of storage. This 
increase corresponds to the hydration of GGBS and the appearance of mechanical 
strength. It can be supposed that this pH rise may potentially induce the leaching of 
some trace elements such as Cr, Ni, Zn, and Cu. 
Taken together, these results suggest that there is an association between the pH 
produced during the hydration period of the treated sediment with the stabilizing agents 
and heavy metal stability. The next section provides experimental evidence of the pH-
dependent leaching of HM from the Dublin sediment.  
 
V.2.3! Impact of a strongly acidic and basic pH on the stability of HM in the 

Dublin sediment 
 

In order to evaluate the impact of pH on the mobility of heavy metals species in the 
Dublin port sediment, the leaching test was performed according to the same 
procedure as on the raw sediment (NF EN 12457-2), however this time the initial pH 
of the leaching water was modified. Three types of leaching solution were used during 
the leaching procedure: 
 

-! Demineralized water; 
-! Acidic solution with 0.1M HCl (pH≈3); 
-! Highly alkaline solution prepared by using 1M of NaOH (pH=13.5). 

 
The results of the leaching test after 24 hours of continuous rotation of the Dublin 
sediment sample with three different types of leaching water are presented in Fig. V.3.  
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Fig. V.3 Impact of different leaching solutions on the stability of HM in the Dublin sediment 

 
The data in this graph demonstrate evidence for the role of pH as one of the key 
parameters in controlling the mobility of trace elements. The lowest leaching rate was 
obtained with demineralized water as a leaching solution, confirming the relative 
stability of most heavy metals near neutral pH. Cr, Cu, Ni, Pb, and Zn exhibit similar 
overall trends – these metals are leached at all pH ranges with the minimum values at 
neutral pH and the maximum values at strongly alkaline pH. The use of the acidic 
solution for the leaching test increased the amount of leached metals by two to three 
times compared to the neutral pH. 
The impact of the highly alkaline NaOH solution can be considered as the most 
aggressive medium with regard to the stability of heavy metals and can be correlated 
with certain leaching results for the sediment-binder mixtures presented in the previous 
section, in particular in the case of the mobility of copper and nickel. What stands out 
in the graph is the high rate of arsenic leaching when the highly basic solution was 
applied as a leaching water. It can be seen that the arsenic was not disturbed in the 
case of demineralized water and the acid leaching solution, but it was highly impacted 
by the NaOH solution. Finally, a small amount of mercury was leached into the highly 
alkaline medium despite the stability of this metal in the case of the introduction of the 
binders, when its amount was below the detection limit. 
 
V.2.4! Discussion 
 
The relative stability of heavy metals at neutral pH and increased mobilization of these 
metals at strongly acidic and basic pH reveal their amphoteric nature. 
Numerous studies have reported a great impact of the pH factor in controlling the 
leaching behaviour of organic and inorganic species. (Mahedi et al., 2019) observe the 
minimum concentration of Al, Cu, and Zn near a neutral pH and an increasing 
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concentration in the range of acidic and basic pH. Thus, the authors provide a 
statement that the pH and the total concentration of metals play a crucial role in the 
stability of HM. Indeed, (Cetin et al., 2012) indicate in their study that Portland cement 
contributes to the increase in pH in the case of the activation of GGBS or fly ash and 
that it is responsible for the leaching of trace elements from the soil. The same 
correlation can be observed in the case of the Dublin sediment for the increased 
leaching of copper and nickel with an increase in the quantity of Portland cement. The 
high pH promotes the formation of metal hydroxides, carbonates, or hydrous oxides. 
The behaviour of metal amphoteric hydroxides can be determinative in the S/S system 
with high Portland cement ratio. Above a specific pH level with an excess of hydroxide 
ions in the interstitial solution, certain metal cations are transformed into complex 
anions.  This can explain the beneficial use of GGBS, producing a pH lower than that 
of Portland cement. 
 
V.2.4.1!Oxyanions metals  
 
Arsenic and chromium detected in the Dublin sediment present a group of oxyanions. 
They are negatively charged species containing oxygen. These species vary 
depending on the pH and the redox potential of the environment. Examples of arsenic 
and chromium oxyanions are chromate, dichromate, arsenite, and arsenate (Bone et 
al., 2004). (Cornelis et al., 2008) indicate that the leached amount of oxyanion metals 
may be higher than in the case of cationic species due to their high solubility in alkaline 
waste.  
In sediment pore water, arsenic occurs in two main soluble species (arsenite (AsO3

3-) 
and arsenate (AsO4

3-)) in both oxic and anoxic environments (Smrzka et al., 2019). In 
sediments under sulfur-reducing conditions, arsenic has a strong affinity to interact 
with sulfides. The most abundant species are thioarsenites and thioarseniates as 
dissolved species or in solid Fe/As sulfides form (Wang et al., 2018).  
It is known that As(III) is more mobile and toxic than As(V). (Paria & Yuet, 2006) 
reported in his review that oxidation of As(III) to As(V) is favourable to decrease the 
leaching of arsenic through the formation of more stable compounds to obtain effective 
precipitation with calcium or iron. Lime, cement, or pozzolanic material added to soils 
contaminated with arsenic may form Ca-As precipitates such as Ca3(AsO4)2 or 
CaHAsO3. The formation of these compounds may explain the stability of arsenic in all 
of the binders used for the Dublin sediment stabilization, except the carbonate 
activation (D5). At the same time, there is a possible explanation for the increased 
mobility of arsenic in the presence of carbonates. Oxyanions such arsenic may simply 
compete with other anions in the sediment-binder system such as carbonates (CO3

2-), 
sulfates (SO4

2-), and chlorides (Cl-) as well as with high amounts of OH-. It can be 
supposed that the sodium carbonate introduction to activate GGBS and the pH rise 
induced the desorption of arsenic oxyanions into the pore solution. The same effect 
can be observed in the case of NaOH solution with high OH- concentration (Fig. V.3).  
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Another mechanism for immobilizing arsenic is the formation of ettringite in the pure 
cement systems or in GGBS/OPC. The incorporation of arsenates occurs through the 
replacement of sulfates in the ettringite structure (Fig. V.4).  
 

 
Fig. V.4 Arsenic incorporation in Ettringite (Myneni et al., 1997) 

 
Hydrotalcite-like minerals (Mg6[Al(OH)6]2CO3.4H2O) were demonstrated to be able to 
stabilize oxyanions such as arsenate (Doušová et al., 2003). They act like an 
adsorbent having a permanent positive charge. Hydrotalcite is one of the often-formed 
phases in GGBS-based binders. 
Regarding chromium behaviour in solution, this metal also forms anionic species and 
is known to change its valence under different redox conditions. The most toxic and 
mobile is Cr6+ which appears in the form of the chromate oxyanion CrO4

2- in the 
leaching solution of waste stabilized with Portland cement due to its low sorption to the 
cement phases (Achternbosch et al., 2003). The prior reduction in 
Solidification/Stabilization processes of Cr6+ to Cr3+ may be required because of the 
stability and low solubility of reduced species e.g. in the form of Cr(III) oxides or 
hydroxides at high pH. According to (Allan & Kukacka, 1995), GGBS-based binders 
provide a favourable reducing environment to transform Cr6+ to Cr3+ and ensure further 
stabilization of the chromium salts due to the formation of stable, inert, and highly 
insoluble Cr(III) complexes. (Cornelis et al., 2008) also reported the strong reduction 
capacities of GGBS and mentioned the possible low leaching of Cr(III) in GGBS 
environments in the form of Cr(OH)4

- .  
Numerous studies have attempted to explain the immobilization mechanisms of 
chromium wastes blended with hydraulic binders. Thereby, considering the high pH 
produced during the S/S process, the Cr(III) solubility is controlled by the stability of 
Cr(OH)3. The replacement of Al3+ by Cr3+ can also be mentioned as a chemical 
incorporation mechanism (Glasser, 1997). (Stephan et al., 1999) demonstrated the 
formation of Ca4Al6O12CrO4 (valence +6) and Ca6Al4Cr2O15 (valence +3) at the 
beginning of C3A hydration with the latter being a more stable compound. (Q. Y. Chen 
et al., 2007) demonstrated the formation of double hydroxides with calcium and Cr(III) 
in pure C3S paste; Ca2Cr(OH)7·3H2O was detected.  
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The incorporation of CrO4
2- into the ettringite structure due to the substitution for SO4

2- 

is known (Guo et al., 2017; Karamalidis & Voudrias, 2009). The mechanism is similar 
to arsenic incorporation as illustrated in Fig. V.4. However, the sulfatic ettringite is more 
stable and the reversible leaching of chromium oxyanions may occur. Therefore, the 
incorporation of oxyanions may be questionable in mixed systems compared to the 
pure paste systems due to the presence of chlorides, sulfates, and carbonates. 
(Cornelis et al., 2008) also reported the possible precipitation of Cr(III) hydrotalcite.  
The results of the leaching test indicate the highest leaching rate for chromium for the 
pure OPC binder (D1) after 3 months of storage. The possible explanation may be the 
disappearance of ettringite over time as demonstrated by the XRD analysis (Fig. III.6). 
The leaching of chromium in the presence of the sulfatic formulation D4 is likely to be 
due to chromium oxyanions competing with sulfates.  
 
V.2.4.2!Cationic heavy metals  
 
Regarding the behaviour of trace elements in sediments and their sources in 
sedimentary pore waters, (Smrzka et al., 2019) combined cadmium, nickel, copper, 
and zinc in the group with similar pathways from organic and inorganic sediments 
phases. According to this review, Cu and Ni are strongly complexed by organic matter 
(Fig. V.5) in sediments or are adsorbed onto manganese oxides. Therefore, the 
disturbance of organic matter will induce the transport of  copper (∼90%) into the 
sediment pore water as a part of dissolved organic matter complexes. As stated by 
(Bruland, 1989) zinc, copper, nickel, and cadmium form strong complexes with DOC 
in marine sediments. Consequently, their leaching profiles may reflect some similarities 
in their behaviour.  
Regarding the results of the leaching test for the Dublin sediment mixed with different 
binders, copper and nickel showed similar trends. The high leachability of these 
elements in the presence of the binders can be explained by their affinity to the organic 
matter. As was reported in Chapter III from the pyrolysis and 13C NMR results, Portland 
cement induced a higher degradation level of the Dublin sediment organic matter 
compared to the GGBS-rich binder.  
(Mckinley et al., 2001) observed the same trend in the leaching behaviour of copper 
and nickel in soils stabilized with the addition of hydrated lime. He reported an 
increased leaching level of Cu and Ni from the treated samples compared to the 
untreated samples. The measured high concentration of these elements is related to 
the presence of Ca(OH)2 as a stabilizing agent and therefore with an increase in pH 
inducing the dissolution of organic matter. (Mckinley et al., 2001) also reported a high 
level of dissolved organic matter in the leachates after treatment and associated the 
Cu, Cd, and Ni high leaching levels with their complexation by DOM. (Hale et al., 2012) 
also established the relation of high copper leaching at high pH with the use of cement 
or Ca(OH)2 in soils with significant organic matter content. The difficulties in the 
stabilization of copper were related to the high DOM concentration in the treated 
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samples (4 times higher than in the untreated samples) and with copper associated 
with DOM. Probably, there is place for the same mechanism of leaching to be produced 
in the case of the Portland cement treatment of the Dublin sediment regarding the high 
pH produced during the hydration process. The high pH is likely to attack the Dublin 
sediment organic matter, especially in the case of D1, D2 and D7 with the latter 
increasing over time.  
 

 
Fig. V.5 Complexation occurring between copper ion and organic substrate (after (Yong et al., 1992)) 

 
What is interesting about the leaching results of copper (Fig. V.1) is the good 
performance of D5 after 3 months of storage compared to the other formulations. Data 
from several studies suggest that copper in the alkaline medium in the presence of 
carbonates ions will react with carbonates to form Cu2CO3(OH)2,known as malachite 
(Achternbosch et al., 2003). In the review by (Q. Y. Chen et al., 2009), the 
immobilization mechanism through precipitation of heavy metals as carbonates is also 
mentioned and in some cases is more favoured over hydroxides. In order to confirm 
the effectiveness of carbonates for copper stabilization, 2%wt of Na2CO3 was added 
to the D3 formulation and the leaching test was carried out after a few days of storage. 
As can be seen on the graph (Fig. V.6), copper was very effectively stabilized with the 
addition of sodium carbonate. However, further analysis of the precipitated phases and 
the long-term effectiveness of this mix should be carried out. 
 
Previous research has established that in the pure cement systems copper will 
precipitate as Cu(OH)2 during the early hydration period. Also reported in the literature 
was the formation of double hydroxides (Ca2(OH)4.4Cu(OH)2·H2O) as was discussed 
in the previous chapter (Achternbosch et al., 2003; Q. Y. Chen et al., 2007).  The 
incorporation of Cu2+ in C-S-H gel has been demonstrated. (Q. Y. Chen et al., 2007) 
reported the higher polymerization rate of copper and zinc doped C3S samples 
compared to the samples without heavy metals after 1 year of storage. (Gineys et al., 
2010) also supposes that copper and lead are trapped in the silica tetrahedral of the 
C-S-H gel during OPC hydration or by substituting Ca2+ in the C-S-H structure. The 
formation of CuO or CuO.3H2O can be also expected in pure cement systems (Roy & 
Cartledge, 1997). In the review of (Kogbara, 2014) OPC-GGBS mixes are shown to be 
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more effective for copper stabilization compared to the pure Portland cement systems 
or to OPC-PFA mixes.  
 

 
Fig. V.6 Carbonates effect on the copper stabilization. Leaching results  

 
The results of the leaching test of zinc showed that it was effectively stabilized with all 
binders. Zinc in alkaline solution exists as ZnO22- in dissolved form. The stability of this 
element in the highly alkaline pH range is ensured by zincite (ZnO) and Zn(OH)2 
formation controlling the leaching of zinc (Bone et al., 2004), (Mahedi et al., 2019). The 
formation of ZnCO3 can also be expected under some specific conditions.  
Data from several sources have identified the retardation effect of zinc on Portland 
cement hydration due to the formation of double hydroxides (CaZn2(OH)6.2H2O) or 
calcium zincate, expected to be more stable than simple hydroxides (Q. Y. Chen et al., 
2007; Gineys et al., 2010). (Gineys et al., 2010) observed mostly Zn(OH)2 in the 
intergranular porosity of the OPC paste. 
Zinc ions can be also embodied into the C-S-H structure. (Ziegler et al., 2001) provided 
results indicating the immobilization of Zn in the amorphous C-S-H structure in the 
interlayer region or adsorption in the form of hemimorphite (Zn4Si2O7(OH)2·H2O) or γ-
Zn(OH)2 onto C-S-H. The substitution of Ca2+ by Zn2+ may also occur during AFt, AFm, 
and C-S-H formation.  Resuming the possible ways of zinc stabilization, it can be 
supposed that this metal can be effectively stabilized within hydrates in the Dublin 
sediment-hydraulic binder mixes with increasing age of treated material. 
 
One of the highly disturbed heavy metals in the presence of almost all types of the 
considered binders is nickel. It exists in dissolved form as Ni2+ at neutral pH and 
becomes HNiO2- in highly alkaline media. The leachability of nickel in the presence of 
binders is governed by the precipitation of Ni(OH)2 with relative stability over the pH 
range of 9-11. Therefore, the decrease in pH with the substitution of Portland cement 
with GGBS may be the reason for the reduced leaching of nickel. Furthermore, as was 
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indicated in the case of Cu, the affinity of nickel to the organic matter in the Dublin 
sediment may also explain the highest leaching of Ni in the presence of the OPC 
binder.   
Nickel and cadmium hydroxides may also become physically encapsulated in the C-
S-H gel (Q. Y. Chen et al., 2009). At the same time, one of the largely discussed 
potential immobilization mechanisms of Ni in cement systems is the precipitation of Ni-
Al LDH (Scheidegger et al., 2000; Vespa et al., 2006). The minor metastable 
compounds which can be formed in the presence of carbonates is NiCO3. 
 

 
Fig. V.7 The approximate structure of C-S-H and the potential positions occupied by heavy metals 

(Vespa et al., 2014) 
 
Another toxic element which has been effectively stabilized with all binders is lead, 
despite its amphoteric behaviour resulting in a high leaching rate when the NaOH 
solution was applied as a leaching solution to the Dublin sediment. The complexation 
of lead with organic matter may take place in sediments, with carbon-lead covalent 
bonding (Bone et al., 2004). The adsorption of Pb on kaolinite and illite clays is known 
(Yong et al., 1992). The successive stabilization of lead contaminated kaolin soils was 
reported using a GGBS/MgO binder with the formation of hydrocerussite 
(Pb2(CO3)2(OH)2) (Wu et al., 2018).  
The most likely precipitates controlling Pb solubility in the early ages after the cement 
treatment is Pb(OH)2 (Hale et al., 2012). However, soluble plumbite species may occur 
when the pH increases above12, which are highly mobile (PbO2H-). It can be supposed 
that this species occurred during the leaching test with the NaOH solution. The 
precipitation of carbonate or sulfate salts with Pb can take place at lower pH (<11) 
(Cocke et al., 1989). The occurrence of Pb mixed salts in OPC binders was mentioned 
as a retarding mechanism for mechanical strength development (Cartledge et al., 
1990). 
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Table. V.2 Reported ion substitution in Ettringite (Q. Y. Chen et al., 2009) 

 
 
The prevalence of sorption processes over the substitution of heavy metals for Ca due 
to the formation of C-S-H in cement systems has been discussed in the literature (Park 
& Batchelor, 1999). However, (Gineys et al., 2010) discusses the possibility of 
substitution of calcium ions by lead in cement hydrates due to their similar ionic size. 
The lead silicate Pb2SiO4 was identified when fly ash treatment was applied to the 
contaminated soils (Moon & Dermatas, 2006). The pozzolanic reaction produced over 
the hydration period of the binder-soil mixes favouring Pb silicate precipitation with Si-
O-Pb bonds is considered in several studies (Moulin et al., 1999). (Lasheras-Zubiate 
et al., 2012) indicated the precipitation of different types of silicates – plumalsite 
(Pb4Al2(SiO3)7), Pb2SiO4.xH2O, and alamosite (PbSiO3).  
 
The leaching results showed that the amount of leached cadmium is situated below 
the detection limit. Cadmium demonstrates an amphoteric geochemical behaviour and 
can be leached as CdO2

2- in highly alkaline environments with a pH greater than 12.5. 
Several studies investigated the formation of Cd(OH)2. The precipitation of this 
compound is accompanied by a drop in pH at the early hydration stage (Malviya & 
Chaudhary, 2006). (J. Zhang et al., 2008) also demonstrated in his study that the 
solubility of cadmium is controlled by Cd hydroxide compounds in geopolymeric 
binders. The formation of cadmium carbonates (CdCO3) can also be expected to occur 
during cement treatment. (Halim et al., 2004) observed the presence of both Cd(OH)2 
and CdCO3 as discrete particles within the cement system. A number of studies 
reported the precipitation of otavite (CdCO3) which controls the leaching of Cd when 
the pH of the treated matrix goes down (Y. Zhang et al., 2016), (Achternbosch et al., 
2003). The formation of Cd hydroxyl-species which have a negative impact on the 
hydration of binders was also discussed in the literature (Weeks et al., 2008). The 
reactions require the consumption of calcium, hydroxide ions, and heavy metals to 
produce complex salts (CaCd(OH)4). This reaction retards C-S-H nucleation by 
consuming calcium ions.  The incorporation of cadmium into C-S-H gel is more likely 
to be due to the physical encapsulation. At the same time, the formation of CaCd2(OH)4 
on the C-S-H surface was mentioned by (Yousuf et al., 1995).  
 
In view of all that has been mentioned so far, one may conclude that the GGBS-based 
binders introduced into the Dublin sediment demonstrated better stabilization 
capacities for HM. However, the leaching results provide no information to explain the 
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mechanisms of such behaviour of the GGBS-based systems. Therefore, in the 
following sections XAS and sequential extraction approaches have been employed to 
deliver a more in-depth understanding of the stabilization process of the Dublin 
sediment.  
 

V.3! XAS Investigations 

 

V.3.1! Speciation of Zn and Cu in the raw Dublin sediment and the sediment 
mixed with the binders  

 
XAS (X-ray Absorption Spectroscopy) as an element-specific and highly sensitive 
Synchrotron-based technique was applied to the raw sediment and the sediment 
treated with three different types of binding agents. The selected formulations are D1, 
D3, and D4. Very little was found in the literature on the question of changes in 
speciation of heavy metals after the introduction of hydraulic binders in hazardous 
waste systems. The present experiment was designed to determine the effect of the 
binders on Cu and Zn speciation in the Dublin sediment matrix. Sediment-binder 
samples aged for three months were considered. 

V.3.1.1!Zinc speciation 
 
Only three samples are considered for Zn: raw sediment (D0), Portland cement 
blended sediment (D1), and 85%GGBS/15%OPC blended sediment (D3). The XAS 
signals of the samples are compared in Fig. V.8.  

 

 
Fig. V.8 XAS spectra of the three different samples considered 
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The EXAFS part of the XAS signal is identical for the 3 samples considered. This 
indicates that the short-range atomic environment of Zn within the three samples is the 
same. The relatively high amplitude of the EXAFS oscillations indicates that the 
structure is crystalline (at least at short range (4- 5 atoms)). One may be tempted to 
use X-ray diffraction to characterize this structure. However, this would be a difficult 
task due to the very low content of this Zn-based phase. XRD is much less sensitive 
than XAS, which is element specific. 
 
The XANES of the sediment and D3 are identical. This indicates that there is no 
modification of the chemical environment of Zn in the presence of the high content 
GGBS binder. In the D1, the Zn K-edge XANES is only slightly modified, but this 
suggests an actual change of the chemical environment of Zn when the sediment is 
embedded in this binder. Indeed, the ratio between the first peak corresponding to the 
white line and the second peak is smaller compared to the case of the two other 
samples.  
 

 
Fig. V.9 Zn K-edge XANES spectra of the samples considered 

 
By qualitatively comparing the XAS results shown here with those of reference 
compounds reported in the literature (Lützenkirchen‐Hecht et al., 2014), it can be 
concluded that the Zn in these samples is not in oxide, nor hydroxide, nor sulfide form, 
as one may expect since these compounds are highly stable.  
In Fig. V.9 the XANES part of the three samples are reported. These results are very 
similar to those of zinc chromate spinels at different Zn/Cr molar ratios and annealing 
temperatures reported in (Tian et al., 2015). Note that the XANES of the sediment and 
that of the sediment embedded in the GGBS binder are indistinguishable from each 
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other. The signals are very similar, suggesting that Zn in the sediments are very likely 
to be mainly in zinc chromate form.  
The pre-edge shoulder corresponds to the transition 1S"3d. The shoulder almost 
disappears in the presence of Portland cement. This suggests a transition from 
tetrahedral to octahedral coordination type of Zn (Tian et al., 2015). The presence of 
Portland cement also impacts the pro-edge features similar to the value of the Zn/Cr 
molar ratio.  
The probable presence of Zn-chromate in the sediment may explain the high level of 
chromium found in the sediment as determined with XRF. Zn-chromate has been 
largely used as primer in boat paints. This compound is highly stable and may 
accumulate over time in port sediments. 
 
V.3.1.2!Copper speciation 

 
The figure below (Fig. V.10) represents the K-edge XANES spectra of Cu in four 
different samples: plain sediment (D0), sediment blended with Portland cement (D1), 
sediment blended with 85%GGBS/15%OPC (D3) and a sediment blended with a 
supersulfated binder (D4).  
It can be noted that the chemical environment of Cu is not modified when the sediment 
is embedded in the GGBS-based binder. On the other hand, there is a significant 
change of the speciation of Cu in the presence of Portland cement.  
 
Fig. V.11 shows the XANES spectra of typical Cu-compound references (data kindly 
supplied by Søren Kristiansen from Aarhus University, Denmark). The available 
reference data do not match the whole XANES spectra. However, based on these 
references it can be supposed the precipitation of CuSO4 in the case of OPC-based 
treatment. The closest XANES reference signals for the other samples can be found 
in (Kumar et al., 2013). The XANES signal of the supersulfated sample is very close 
to that of cuprous sulfide (Cu2S) (Kumar et al., 2013). The XANES of the sediment and 
the 85%GGBS/15%OPC blended sediment may be a combination of those of cuprous 
sulfide and cupric sulfide (CuS). 
 
At first glance the presence of these sulfide compounds is rather intriguing. Yet a 
possible explanation may be put forward. Indeed, copper sulfate was widely used as 
an antifouling agent in boat paints for a long time. Under anaerobic conditions the 
eventual presence of sulfate-reducing bacteria (SRB), which breath sulfates reducing 
them to sulfides, may actually lead to the transformation of cupper sulfates to cuprous 
(or cupric) sulfides. This phenomenon should take place in a similar manner as 
reported in (S. Chen et al., 2014) regarding the issue of corrosion of copper in seawater 
due to SRB, leading to the formation of a biofilm, which is mainly composed of cuprous 
sulfide.  
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Fig. V.10 Cu K-edge XANES spectra in the different samples considered 

Regarding the mainly reducing environment providing by GGBS-based binders, the 
sulfide compounds remain stable when embedded in GGBS binders during 
Solidification/Stabilization treatment. At the same time, Portland cement probably 
significantly changes the redox potential of the sediment matrix increasing the mobility 
of Cu; it is known that inorganic sulfurs may undergo oxidation during S/S treatment. 
Further measurements are required to provide more information about the chemical 
speciation of the heavy metals in the sediment matrix and to evaluate the changes 
implemented due to the reactions produced over the hydration period of the binders 
within the sediment system. 
  

 
Fig. V.11 Cu K-edge XANES spectra of various Cu-compound references 



Chapter V: Stabilization of HM  
 

247 

V.3.2! Speciation of Ni and Cd in the binders  
 

This time in order to simplify the polluted sediment-binding agent systems, XAFS 
experiments were conducted on the pure hydrated binders mixed with cadmium and 
nickel chloride salts. This permitted avoiding interaction with sediment constituents or 
with other types of heavy metals. The investigation of Ni and Cd speciation was carried 
out for OPC and GGBS-based binders. 
Three hydraulic binders were considered: Portland cement (OPC), blended cement 
with 50% of Ground Granulated Blast-Furnace Slag and 50% of Portland cement 
(GGBS50), and the Supersulfated cement with 85% of GGBS, 14% of sulfates 
(CaSO4) and 1% of Ordinary Portland cement (SSC). In these pastes metal salt 
concentrations of anhydrous cadmium CdCl2 and nickel NiCl2 were added separately 
at 0.5% (Table V.3). The metal salts were dissolved in demineralized water before 
being mixed with the binders.  
 
Table V.3 Samples prepared for the zinc impact investigation 

 0.5%wt CdCl2 0.5%wt NiCl2 

100%OPC 0.5%CdOPC 0.5%NiOPC 
50%GGBS/50%OPC 0.5%CdGGBS50 0.5%NiGGBS50 

85%GGBS/14%Ca2SO4/1%OPC 0.5%CdSSC 0.5%NiSSC 
 
V.3.2.1!Cadmium speciation 
 
K-edge XANES spectra for cadmium added to the different hydraulic binders 
containing 0.5% CdCl2 are presented in Fig. V.12. It can be found from the results that 
cadmium is expected to be present solely in the (II) oxidation state in the studied 
binders. The spectra differ from each other due to differences in coordination geometry 
and ligand forms of the absorber atom. The presence of GGBS leads to the decrease 
in the amplitude of the XANES oscillations. The K-edge XANES spectra of cadmium 
for individual cadmium compounds and the studied matrixes 0.5%CdOPC, 
0.5%CdGGBS50 and 0.5%CdSSC are given in Fig. V.13, Fig. V.14, and Fig. V.15 
respectively. The spectrum for 0.5%CdOPC is quite consistent with that of Cd(OH)2 
whereas the spectra for the matrixes with GGBS are quite similar to that of CdS. 
Moreover, the similarity with the CdS spectrum increases with the GGBS content.  
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Fig. V.12 Average XANES spectra for cadmium in hydraulic binders 

 
Based on these first observations, it seems that the main species of cadmium is 
Cd(OH)2 in the hydrated Portland cement and CdS in the hydrated matrix containing a 
high GGBS content. This difference in behaviour is partially linked to the initial sulfur 
content of the anhydrous compounds and the pH of the interstitial solution. Indeed, 
cadmium hydroxide forms at high pH. As already mentioned, cadmium in cementitious 
materials is also present in other forms such as CdO and CdCO3. Indeed, cadmium is 
rarely present as a single compound, it often has more than one phase. 
 

 
Fig. V.13 XANES spectra for cadmium in OPC and individual compounds 
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Fig. V.14 XANES spectra for cadmium in GGBS50 and individual compounds 

 

Fig. V.15 XANES spectra for cadmium in SSC and individual compounds 

 
The type and the proportion of cadmium species in the cementitious matrix are 
determined by means of the EXAFS signal fingerprints of individual cadmium 
compounds based on the k²-weighted EXAFS functions (Fig. V.16). These results 
confirm the previous observations. The main compounds are Cd(OH)2 for 0.5%CdOPC 
and CdS for 0.5%CdGGBS50 and 0.5%CdSSC. The large content of CdS is also 
confirmed by the sample colour (yellowish colour) as observed by (McWhinney & 
Cocke, 1993), (Fig. V.17). It is from these observations that the sulfur from the blast-
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furnace slag can be presumed to react principally with cadmium. The added cadmium 
salt (CdCl2) is the second product present in the studied binders. In spite of the care 
taken to avoid carbonation, CdCO3 is the third compound identified for 0.5%CdOPC 
and 0.5%CdSSC. This is in agreement with (McWhinney & Cocke, 1993) which found 
an increase in the surface carbonate formation in the metal-ion doped cement. This 
may be due to the presence of cations directly or indirectly inducing the formation of 
greater quantities of surface carbonate species. A small content of CdS has already 
been detected in 0.5%CdOPC as well as a small amount of Cd(OH)2 in 
0.5%CdGGBS50 and 0.5%CdSSC. Finally, the compound identified in the lowest 
amount is CdO for 0.5%CdOPC and 0.5%CdGGBS50. It is not detected in 
0.5%CdSSC. These results show that the addition of cadmium salt during the hydration 
process of cementitious matrices allows for the formation of new precipitates.  
In order to examine the cadmium immobilization in three binder systems, the leaching 
tests were performed on the cementitious matrices with 0.5% of CdCl2. 

 
Fig. V.16 Proportion of cadmium species determined from k²-weighted EXAFS signal 

 

               
 

Fig. V.17 Difference in colour for SSC (left) and 0,5%CdSSC (right) after 7 days of storage 
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V.3.2.2!Cadmium Leaching 
 
Figure V.18 presents the leached cadmium content for the three studied mixtures after 
24 hours. The values are 8.41 µg/L, 2.6 µg/L and 0.16 µg/L for 0.5%CdOPC, 
0.5%CdGGBS50 and 0.5%CdSSC respectively. For all mixtures, the cadmium 
leaching is low. This can be partially explained by the cadmium speciation as Cd(OH)2 
and CdS have low solubility. However, the addition of blast-furnace slag improves the 
cadmium immobilization capacity and this increases with the blast-furnace slag 
content. The benefit of GGBS can be explained by its larger content of C-S-H allowing 
a physical immobilization by cadmium sorption on its surface area (Gougar et al., 1996) 
and by the lower pH of its interstitial solution. Indeed, (Kogbara & Al-Tabbaa, 2011) 
found that the cadmium leaching is lower for a pH value between 10.8 and 12.2. The 
very low value of leached cadmium content for 0.5%CdSSC can be related to its lower 
pH and to the formation of a supplementary hydration product (ettringite) favourable to 
fix heavy metals (Peysson et al., 2005), (Berardi et al., 1998). Indeed, a cationic 
substitution can occur with Ca2+ in the crystal lattice (Albino et al., 1996). These results 
are also in agreement with other studies (Peysson et al., 2005) showing that calcium 
sulfoaluminate cement containing phosphogypsum (20-30%) has a good cadmium 
retention capacity.   
 

 
Fig. V.18 Content of leached cadmium after 28 days of storage 

 
V.3.2.3!Nickel speciation and leaching results 
 
The investigation of nickel speciation and its local chemical environment was 
determined using the same technique and procedure as for cadmium. Figure V.20 
exhibits K-edge XANES spectra of Ni in the three binding systems: 0.5%NiOPC, 
0.5%NiGGBS85, and 0.5%NiSSC. From the spectra of the formation of Ni-Al Layered 
Double Hydroxides phase can be detected. Nickel is also present as a minor 
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compound as Ni(OH)2 as can be seen in the EXAFS region spectra of the plain 
Portland cement formulation and with 50% substitution by GGBS (Fig. V.20). However, 
this compound is not present in the Supersulfated formulation doped with nickel, which 
contains only the Ni-Al LDH phase. It can be concluded from the results that Ni-Al LDH 
is the main controlling phase of nickel immobilization in the cement systems for all 
considered formulations. Moreover, the results are in agreement with (Scheidegger et 
al., 2000; Vespa et al., 2006) who studied the hydrated cement system in the presence 
of Ni. (Vespa et al., 2006) highlighted the importance of Al availability from the 
beginning of the hydration process and observed the formation of Ni Al-LDH from the 
first hours of hydration.  

 

 
Fig. V.19 K-edge XANES spectra of 0,5%NiOPC, 0,5%NiGGBS85 and 0,5%NiSSC 

 

 
Fig. V.20 K-edge XANES spectra of 0,5%NiOPC, 0,5%NiGGBS85 and 0,5%NiSSC 
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The leaching test was carried out after 28 days of storage for the 0.5%NiOPC, 
0.5%NiGGBS85 and 0.5%NiSSC formulations doped with 0.5% NiCl2 (Fig.V.21). The 
highest leaching rate of nickel was measured for the Portland cement formulation. With 
replacement of 50%OPC by GGBS the amount of leached nickel decreased 
significantly to the very low value of 0.01µg/L. The Supersulfated formulation provides 
the highest nickel immobilization rate with nickel amount below the detection limit.  
As was discussed previously, the availability of nickel is governed partially by the 
solubility of Ni(OH)2. Thus it can be supposed that in the case of 100% Portland 
cement, the nickel hydroxide species will solubilize due to the high pH produced within 
this formulation. The low nickel leaching with 50% GGBS can be explained by the lower 
pH of this mixture. It can be also expected that the highest amount of Ni-Al LDH 
formation will occur due to the higher amount of aluminum available over the hydration 
period. The Supersulfated formulation gives the lowest pH and it appears that Ni 
remains stable within the Ni-Al LDH phase in GGBS-based systems.  
 

 
Fig. V.21 Content of leached nickel after 28 days of storage 

 
 

 
V.4! Sequential Extractions of HM from the Dublin sediment with and without 

hydraulic binders’ addition 
 
This work focused on the chemical impact of two different hydraulic binders (OPC (D1) 
and a GGBS-based binder (D3)) on the partitioning of heavy metals in the Dublin 
sediment. The sequential extraction enabled, through the application of four selective 
dissolution steps, the determination of which component/phase of the sediments were 
withholding a given heavy metal whether before or after treatment with the binders. 
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V.4.1! Untreated sediments samples 
 

Chemical fractionation of trace metals in untreated sediments from three different 
locations in the port of Dublin (D0 (A), D0 (B) and D0 (C)) was determined by means 
of the sequential extraction protocol described in § II.2.1.5.2.2.  
As a reminder, Fraction 1 corresponds to the Exchangeable/Carbonate phase, 
Fraction 2 to the reducible fraction, Fraction 3 to the oxidisable fraction, and finally 
Fraction 4 corresponds to the remaining metals associated to refractory materials such 
as clays.  
In this part chromium, copper, nickel, zinc, lead, and cadmium were evaluated. The 
results are presented in Table V.4.  
 
Table V.4. Sequential extractions of HM and recovery percentages for the untreated sediments samples  

  
Fraction 1 

(%) 

Fraction 2 

(%) 

Fraction 3 

(%) 

Fraction 4 

(%) 

Recovery 

(%) 

Cr 

D0 (A) 0.1 6.2 15 79.1 97 
D0 (B) 0.1 6.6 14 79.7 99 
D0 (C) 0.3 8.1 18 74.1 100 

Cu 

D0 (A) 3.5 46.5 35.3 14.6 100 
D0 (B) 4.0 45.0 35.7 15.2 102 
D0 (C) 4.3 45.1 41.2 9.4 100 

Ni 

D0 (A) 7.4 13.5 25.3 53.9 86 
D0 (B) 7.1 15.0 20.1 57.8 91 
D0 (C) 10.4 16.3 22.7 50.7 88 

Pb 

D0 (A) 0.5 51.7 38.7 9.1 101 
D0 (B) 0.5 61.8 27.8 9.9 106 
D0 (C) 1.7 52.6 34.0 11.8 106 

Zn 

D0 (A) 3.9 4.8 73.2 18.2 100 
D0 (B) 4.4 4.9 74.0 16.7 102 
D0 (C) 3.8 3.2 64.9 28.1 95 

Cd 

D0 (A) 12.8 7.7 64.1 15.4 105 
D0 (B) 12.2 4.9 68.3 14.6 114 
D0 (C) 6.8 3.4 58.2 31.5 107 

 
Between the three different samples of contaminated sediments, HM sequential 
extractions did not show significant differences, despite the significant differences in 
their total amounts obtained after the Total Attacks (II.2.1.5.1).  
Firstly, it was noted that the HM considered in this study can be separated into three 
pairs. The first pair that gathers chromium and nickel showed large contents in Fraction 
4, representing respectively more than 75% and 50%. The second pair made of copper 
and lead is mostly included in Fraction 2 and Fraction 3. Copper showed a repartition 
around 45% in F2 and more than 35% in F3, while lead was shared between 30-35% 
in F3 and more than 51% in F2. The sequential extraction experiments highlighted that 
the third pair, concerning zinc and cadmium, was in its vast majority concentrated in 
the organic matter phase (Fraction 3) with levels around 70% and 60% respectively. 
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In all cases, with the exception of cadmium, it was also noted that the most soluble 
phase, associated with the carbonate fraction (F1), represented the lowest fraction of 
retrieved contaminants. This confirms that sediments dried under air results in the 
presence of low labile percentage of trace metals, although some acid volatile sulfides 
(representing an efficient scavenging phase for trace metals) have been re-oxidised. 
However, it also confirms that metals included in F2 and F3 may be available in case 
of some redox biogeochemical transformations. 
Recovery is calculated as the ratio between the cumulated mass proportions of a given 
trace metal obtained at the end of the four step sequential extraction divided by the 
amount of the same heavy metal obtained in the protocol of the total attack. Regarding 
the recovery ratios calculated for each sample of sediments and each metal, the 
calculated values were all close to 100% showing the relatively high effectiveness of 
the sequential extraction protocol compared to the total attack. Variations in recovery 
ratios observed in the table were associated to the intrinsic variability of each extraction 
protocol (total and/or sequential). 
Finally, considering the limited differences between the three samples of untreated 
sediments, in the following part, sequential extraction values of the mix noted D0 
(untreated sediment) correspond to the average values over the three samples, for 
each individual fraction and HM considered. 
 
V.4.2! Impact of the addition of hydraulic binder on the fractionation of HM 
 
In order to investigate the impact of both stabilizing agents, OPC and GGBS-based, 
on the fractionation of HM in the Dublin sediments, two formulations considered for the 
mechanical strength testing and the leaching test were chosen for the sequential 
extraction analysis: D1 and D3.  
Figure V.22 summarizes the results obtained from the sequential extraction protocol. 
Chromium was altered when both hydraulic binders were added to the contaminated 
sediments. Mostly, it was seen that the treatment with the binders increased 
significantly the proportion contained in F1 (from 0.2% to 20-30%) while negatively 
impacting the proportions of the three other fractions. The F4 fraction, where the trace 
metal is considered to be associated with clay minerals, remained the predominant 
fraction for chromium despite the hydraulic binder addition. It was eventually noted that 
the pure OPC treatment (D1) had a stronger impact on all fractions proportions than 
the GGBS-rich binder (D3).  
Similarly, the impact of the hydraulic binder addition in the sediments showed an 
important increase of Cu in the most soluble phase (F1) and a progressive reduction 
of the other phase proportions. While fractions F2 and F3 were the main identified 
environment for copper association, F1 became the predominant fraction after the 
treatment. As for chromium, treatment with pure OPC (D1) had a stronger impact on 
the fraction distribution than D3. 
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Fig. V.22 Sequential extractions of heavy metals from the mixes D0, D1 and D3 

 
As for Cr and Cu, addition of the hydraulic binders led to a significant increase of Ni in 
the F1 proportion from 8% (D0) to 20% (D3) to more than 40% (D1). In the meantime, 
F2 showed the most significant decrease, dividing by more than two the proportion 
measured through sequential extraction (from 14% to 6%). It was eventually noted in 
the case of nickel that the higher increase in F1 when using OPC-based treatment was 
also compensated by a decrease in F4 (from 54% to 30%). 
In the case of lead, the treatment with hydraulic binders led to a strong switch in 
proportions between fractions 1 and 2. The “highly soluble” fraction (F1) increased from 
1% to 20-30% when binders were added while the reducible fraction (F2) was 
decreased from more than 50% to around 15%. Other fractions (F3 and F4) were not 
significantly impacted by the addition of hydraulic binders.  
Concerning zinc, the major fraction remained identical before and after the treatment, 
i.e. the fraction where the metal was expected to be associated with organic matter 
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(F3). In all cases its value remained above 70% of the total measured proportions. As 
for the others heavy metals, the addition of the binders led to a strong increase of 
fraction F1 (from 4% to 10-15%), a slight decrease in fraction F2 (from 4% to 2%) and 
eventually a strong decrease in clay associated phase (F4), going from over 20% to 
roughly 8%.  
Finally, regarding cadmium, the addition of hydraulic binders reduced the proportion 
associated with fraction F4 and equivalently increased the proportion associated with 
fraction F1. In the particular case of OPC-based treatment (D1), a very low value was 
noted for fraction F2. 
 

V.4.3! Discussion 
 
Chromium and Nickel - The results of the leaching test showed a relatively good 
stabilization of chromium with both stabilizing agents and with the GGBS-based 
binders acting better than the OPC-based binder. The occurrence of chromium mainly 
in the residual fraction (∼77,7%) of D0 suggests the low mobility of this trace element 
due to the incorporation into the lattices of aluminosilicates phases as well as its non-
anthropogenic origin (Audry et al., 2006). Chromium was also found in the reducible 
(CrF2=7%) and oxidisable (CrF3=15,2%) fractions; it can partition to solids such as Fe-
Al oxides or remain in the organic matter phase. Under anoxic conditions chromium(VI) 
can be reduced by sulfides, iron(II) species, organic material, and bacteria to form, for 
instance, stable Cr(OH)3 compounds (Rifkin et al., 2004), (Gorny et al., 2016). 
Therefore, Cr(OH)3 simple hydroxide presence can be expected in Fractions 2 and 3. 
The noticeable changes in chromium association can be observed after the binding 
agents’ addition. The occurrence of Cr in the exchangeable/carbonate fraction was 
observed for D1 and D3, with a more noticeable Cr presence in Fraction 1 for the 
Portland cement formulation (D1(Cr)F1 = 30%, D3(Cr)F1 = 16%). The OPC-based 
formulation impacted more significantly the oxidisable fraction as well as the residual 
fraction of chromium. Therefore, it can be supposed that Portland cement increased 
the labile fraction of chromium more considerably than GGBS by mainly affecting the 
organic matter and clay components within the Dublin sediment. It should be 
mentioned that this toxic element was found also in Portland cement (36 mg/kg) and 
in GGBS (12 mg/kg), therefore the contamination of the system by the binders should 
be taken into account.  
Nickel was found in all fractions in D0, the dominant phase being in the residual fraction 
(55%). This metal is likely to be incorporated into aluminosilicate minerals within the 
Dublin sediment. The high portion of Ni presents an approximately equal distribution 
between reducible and oxidisable fractions meaning that this metal is associated with 
iron and manganese oxides, sulfides, as well as organic matter and pyritic compounds. 
Nickel bound to carbonates, probably under solid dilutions, represents only ∼ 9%. 
Nickel is one of the elements that was demonstrated to be significantly destabilized 
during the leaching test, especially in the presence of the Portland cement formulation. 



Chapter V: Stabilization of HM  
 

258 

The sequential extraction results show the significant migration of Ni with stabilizing 
agents in comparison to its initial distribution between the sediment fractions. The 
Exchangeable/Carbonates nickel fraction of D0 shows an increase with the addition of 
hydraulic binders. Both D1 and D3 reduced almost two times the reducible fraction of 
nickel bound to manganese/iron oxides. The most important alteration rate of 
oxidisable (Fraction 3) and residual aluminosilicates (Fraction 4) can be observed with 
addition of Portland cement.  
These findings are consistent with the leaching test and XANES investigations. The 
high pH of the Portland cement induces the desorption of nickel from sediment 
components and the formation of Ni hydroxides that are soluble at high pH.  
 
Copper and Lead - Significant contamination of the Dublin sediment by copper was 
demonstrated by the total attack procedure. Copper and lead show a similar 
fractionation tendency in the raw Dublin sediment. An almost equal partition of Cu and 
Pb between Fractions 2 and 3 can be observed. Previous studies have investigated 
the association of Cu with Fe and Mn oxide weathered minerals (Silveira et al., 2006) 
as well as with organic matter through the formation of Cu-Organic complexes 
solubilized by the H2O2 extraction step (Audry et al., 2006; Lestari et al., 2018). Audry 
et al. (2006) also proposed the possible occurrence of copper in sulfide phases, for 
example the formation of CuFe2S. These results further confirmed the presence of CuS 
within the Dublin sediment as it was detected by XANES spectra. Finally, the carbonate 
fraction contains ∼4% copper.  
Pb is also mainly associated with the organic matter phase and sulfides and with 
amorphous Fe/Mn oxides. Filgueiras et al. (2002) reported a high degree of adsorption 
of copper and lead by the organic matter through the complexation or bioaccumulation 
processes. The formation of PbS and to a much lesser extent PbSO4, is likely to occur. 
The residual fraction recovered for Cu and Pb in the Dublin sediment was rather 
low,13 % and 10 % respectively.  
Both stabilizing agents induced the migration of Cu to the most labile Fraction 1: 
D0(Cu)F1 = 4 %, D1(Cu)F1 = 63%, D3(Cu)F1 = 42%. As can be seen the most noticeable 
migration rate was caused by Portland cement. The proportion of copper associated 
with organic matter/pyritic compounds considerably decreased in the presence of 
hydraulic binders: by 23% for the OPC-based formulation and by 14% in the case of 
the GGBS-based formulation. As was discussed previously, the high pH produced in 
the case of the Portland cement formulation disturbs more significantly the Dublin 
sediment compounds such as organic matter, clays, or Fe-Mn oxides. Due to the pH 
increase, the formation of Cu(OH)2 is possible. The changes in the chemical 
environment of Cu in the presence of the OPC formulation was investigated by the 
XANES experiment (V.3.1.2). The formation of the less stable CuSO4 was observed 
due to the oxidation of CuS. Finally, copper was extremely mobile in the presence of 
Portland cement and it was leached 13 times more than from the raw sediment. This 
high rate of contamination of the sediment and the important mobility rate of Cu can 
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be also related to the presence of the high amount of Cu in Portland cement. Further 
investigations are required.  
 
Regarding Pb redistribution after the mixture of the Dublin sediment with two binders, 
the considerable enrichment of the labile exchangeable/carbonates fraction occurs 
from the reducible fraction, especially for D1. It can be thus supposed that lead 
combined with hydrous oxides of manganese or iron was desorbed from this fraction 
under the binders’ action. The oxidisable fraction of lead in the sediment was only 
slightly altered by the binders. The unexpected increase for the lead portion in the 
residual fraction in the case of D3 may arise from the formation of highly stable lead 
silicates as was mentioned previously. In contrast the predominant labile lead species 
for D1 and D3 could include carbonates, sulfates, hydroxides, as well as mixed calcium 
salts.  
 
Zinc and Cadmium - According to the leaching results, zinc was well stabilized with all 
binders, especially after 3 months of storage. As was already mentioned, zinc and 
cadmium demonstrated similar distribution profiles in the Dublin sediment. Moreover, 
these metals exhibited an atypical behaviour compared for instance to the reference 
values where the majority of Cd and Zn occur in the most mobile Fraction 1 and 2 
(BCR-701, 2001). In the present study the highest percentage of cadmium and zinc 
was found in Fraction 3 with 71% and 64% respectively. This high proportion of Cd 
and Zn associated with the oxidisable fraction can be explained by the binding to the 
pyritic compounds (ZnS and CdS being solubilized during the second step of the 
sequential extraction) as well as the formation of Zn- and Cd-organic matter 
complexes. Similar behaviour of cadmium and zinc can be explained by similarities in 
their chemistry such as electronegativities, ionic structures, and ionization energies 
(Fuge et al., 1993). Binding of Cd and Zn to reducible and carbonate fractions remains 
relatively low (∼10%), whereas in other sediments, these HM are characterized by high 
mobility (see for instance (Billon et al., 2001), (Boughriet et al., 2007)). Residual zinc 
and cadmium accounted for around 21%. Primary aluminosilicate minerals play an 
important role in Zn retention (Silveira et al., 2006). It should be mentioned that zinc 
chromate compound was detected in the Dublin sediment after XANES investigation. 
Therefore, the unusual behaviour of zinc may be explained by the presence of this 
highly stable compound. 
Both stabilizing agents altered the reducible and residual fractions of zinc in the 
sediment by reducing them twofold. However, the predominant oxidisable Zn fraction 
seems to be unaffected and even enriched in the case of D3. 
Cadmium is one of the main contaminants in the Dublin sediment. Its concentration 
significantly increased in Fraction 1, especially for D1. The GGBS-based binder also 
increased the proportion of cadmium in the exchangeable/carbonate fraction but to a 
lesser extent than the OPC-based formulation. It can be assumed that the hydraulic 
binders caused the migration of cadmium mainly from the reducible and residual 
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fractions. Portland cement also caused a higher alteration of cadmium associated with 
Fraction 3. The higher alteration rate of the organic matter by Portland cement, as 
demonstrated Chapter III, can explain the reduced percentage of cadmium in Fraction 
3 and its migration to Fraction 1. As was already mentioned earlier, the formation of 
CdCO3 or Cd(OH)2 as well as CaCd2(OH)4 can be expected in the presence of 
hydraulic binders (§IV.5.4). Cd(OH)2 was probably the dominant species for the OPC-
based formulation and the formation of CdS in the presence of GGBS is expected as 
confirmed by the XANES investigation. CdS is known to be extracted in the second 
stage (Fraction 2). The leaching test demonstrated a good stability of cadmium with 
both binders. 
 
V.4.4! Conclusions 
 
The selective extraction procedure can be an effective method to assess the 
distribution of heavy metals before and after treatment with hydraulic binders. The 
results were validated according to the recovery calculations. Despite variations in the 
contaminant content at three different locations in the port of Dublin, sequential 
extraction has shown that the chemical speciation/distribution is roughly the same 
among all samples. The treated samples show a significant redistribution of toxic 
elements in certain cases under modified environmental conditions after the 
introduction of the hydraulic binders. It concerns particularly the OPC binding agent 
which has considerably increased the proportion of F1 fraction compared to GGBS 
treatment. It should be mentioned, that both binders add significant concentrations of 
HM. Therefore, the contamination of the system by the binders is possible, especially 
by Portland cement, which has very high concentrations of Cu, Ni, Zn, Cr.  
 

V.5! Conclusions 
 
To summarize this chapter of the leaching results and potential mechanisms of heavy 
metals immobilization using different hydraulic binders, some main conclusions can be 
drawn: 
 

•! The partitioning of contaminants in different fractions of the Dublin sediment is 
roughly the same among three different locations considered for dredging 
operations according to the sequential extraction analysis. 

•! Concerning the untreated samples, the contaminants are rather stable and 
their leaching from the sediments is quite low compared to the total quantity of 
these elements. This indicates that the sediment under its current conditions 
tends to stabilize pollutants. Probably, under natural conditions, these 
sediments are anoxic and trace metals are well stabilized by the reduced sulfur 
pool, which is partially oxidized during the dredging and drying process. 
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•! Almost all of the toxic elements were fairly well stabilized with binding agents 
after the S/S treatment, except for Cu and Ni.  

•! OPC is the most disturbing binding agent for the contaminants distribution. The 
sequential extraction method demonstrated the highest migration level of 
contaminants to the Exchangeable/Carbonate fraction in the presence of the 
OPC formulation compared to the GGBS-based binder. XANES results 
revealed a modified chemical environment of Cu and Zn after the treatment 
with OPC compared to the raw Dublin sediment and GGBS-treated samples;  

•! It seems that pH is one of the main parameters controlling the leaching 
behaviour of trace elements. The pH measurements showed that the 100% 
Portland cement formulation developed the highest pH during the treatment 
which can disturb the Dublin sediment constituents serving as a sink for the 
considered heavy metals. Heavy metal hydroxide compounds can solubilize 
with the pH increasing above 12.5.  

•! The most effective stabilizers were the supersulfated formulations which 
develop the lowest pH. 

•! GGBS-based binders were shown to be the least destabilizing solution. XANES 
results of Cu and Zn speciation show the undisturbed state of these elements 
after GGBS-based treatment.  

•! The presence of sulfides as a minor element (<1%) in GGBS can provide an 
additional advantage of its use due to the possible precipitation of sulfide 
species which have a very low solubility rate under alkaline conditions (Fig. 
V.23).  
 

 
Fig. V.23 Metal sulfide solubility vs pH (Conner & Hoeffner, 1998) 

 
•! It seems that GGBS produces a denser material over time due to the formation 

of mostly amorphous phases, as demonstrated Chapter III. The potential 
incorporation of mobilized pollutants in the hydrated phases of the GGBS-
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based binders can take place. The lower amount of calcium in GGBS/OPC 
blends compared to OPC promotes the formation of C-A-S-H with a lower Ca/Si 
ratio providing additional sites for trace metals as charge compensators of 
aluminium. Hydrotalcite LDH-like phases are also effective in immobilizing 
pollutants and are known to be precipitated with a high GGBS content. 
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The aim of the present research was to develop an appropriate GGBS (ground 
granulated blast-furnace slag) -based formulation for the Solidification/Stabilization 
(S/S) treatment of contaminated sediments from the Dublin Port, Ireland. The port 
authorities require an improvement in the engineering properties of the dredged 
material for its reuse in the Alexandra Basin Redevelopment (ABR) Project. One of the 
main concerns regarding the reuse of dredged material (DM) is the presence of toxic 
trace metals within the sediment matrix. Consequently, the stabilization of 
contaminants is also critical. From the economical point of view, the amount of the 
binder was fixed at 150 kg per cubic meter of sediment with the sediment having a 
density of 1400 kg/m3 and a water content of 45% after the dewatering process.  
Regarding the low amount of binder and high water content in the system, as well as 
the complex nature of the sediment, the selection of an appropriate S/S binding agent 
to achieve the required properties of the final material was challenging. Therefore, this 
study has explored the mechanisms that govern the evolution of the mechanical 
properties of the GGBS-treated sediment, as well as the mechanisms of the 
stabilization of pollutants within the newly formed solidified system.  
 
 
First, the results of the physical and chemical analysis of the Dublin sediment (D0) 
were obtained in order to characterize its nature and then to investigate the main 
parameters governing mechanical strength development, and mobility of HM. The 
study compares the physicochemical parameters of D0 with the sediment which 
originated from the Gothenburg Port (G0) to assess the efficiency of the solidification 
process using a GGBS-based formulation in different cases. Physical analysis showed 
a difference in particle size, with the Dublin sediment having a finer texture compared 
to G0 and also a lower density. The mineralogy of both sediments was explored using 
XRD analysis. A mostly clayey nature was detected for the Dublin sediment, with a 
significant amount of calcite and quartz. The Gothenburg sediment mainly contains 
siliceous minerals. The XRD analysis of the clay fraction showed that illite is the main 
clay phase of both sediments. The samples were also characterized in terms of Cation 
Exchange Capacity (CEC), Total Organic Carbon (TOC), and organic matter content 
as important parameters controlling heavy metal (HM) mobility and mechanical 
changes. The results indicated much greater values for the Dublin sediment.  
 
 
During the next stage of the project the uniaxial compressive strength of the treated 
Dublin sediment was tested from 1 to 6 months of storage for the range of GGBS-
based formulations and the Portland cement (OPC) formulation (D1) as reference 
introduced into the sediment at 150 kg/m3. An important decrease in uniaxial 
compressive strength (UCS) of the reference mix was measured between 3 and 6 
months of storage. At the same time, the investigation of strength development 
demonstrated the improvement in long-term strength when the OPC binder was 
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partially replaced by GGBS. Based on the UCS results, the most efficient GGBS-based 
formulation with the highest proportion of granulated slag was 85%GGBS/15%OPC 
(D3). An absence of strength was observed for the supersulfated mixes and carbonate 
activation of GGBS. Adding these binders to the sediment produced a low pH, which 
is not sufficient for the hydration process. Therefore, at this stage of the project, D3 
was chosen as the optimal GGBS-based formulation for the S/S process and 
compared to the widely-used OPC binder D1. The XRD analysis of D1 demonstrated 
a significant decrease in the intensity of the main crystalline OPC phases after 1 month 
of storage – portlandite, ettringite and C4AHx. In addition, the test for assessing the 
volumetric variations of the mixtures demonstrated a greater shrinkage rate for the 
OPC formulation compared to D3. The microstructure investigation revealed the 
denser microstructure of the GGBS-based sample D3 compared to the more porous 
and inhomogeneous medium of D1. Therefore, the results of the compressive strength 
were attributed to the hydration phases development in both mixtures over time as well 
as to the microstructure evolution.  
 
 
The following part of the solidification study assessed the impact of the same 
formulations on the engineering behaviour of the Dublin and Gothenburg sediments. 
This time the binder content was 300 kg/m3. The results demonstrated a steady 
increase in strength for the GGBS formulation from 1 to 6 months of storage, with 
higher values for the Dublin sediment. Unlike the GGBS formulation, OPC mixed with 
the sediments showed a stagnation in strength development, with greater values for 
the Gothenburg sediment. It was concluded that the granulometry and CEC values 
play an important role in the sediments/soils solidification process. The results of the 
OPC treatment of both sediments confirmed earlier findings – a finer sediment 
structure provides lower strength due to a higher CEC. However, an opposite trend 
was observed for the GGBS-based samples. This led to the conclusion that the higher 
content of organic matter (OM) and clay in the Dublin sediment provides a good 
capacity for water storage necessary for long term hydration of GGBS. XRD analysis 
demonstrated that due to the addition of the binding agents, the peaks of clay minerals 
(illite and montmorillonite) decreased over time due to the high pH of the mixtures and 
pozzolanic reactions produced over time.  
 
The study thus suggested that the interaction of binding agents with the clay fraction 
is one of the important parameters for strength development. Therefore, the illitic clay 
was mixed with both binders to assess UCS and microstructure evolution. The results 
showed the same trend of UCS as in the case of sediments – a considerable increase 
over time for the GGBS-based formulation and a stagnation/slight degradation for the 
OPC samples. The investigation of hydration products did not provide a clear vision of 
the mechanisms responsible for hydration. At the same time, the microstructure 
investigation revealed the flocculated state of the OPC-based formulation and a more 
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homogenous and dense microstructure of the GGBS-based sample. It was then 
concluded that the repartition of hydrates plays an important role in the strength 
development in such dilute systems, in particular the flocculation/dispersion 
phenomenon. The impact of the interstitial solution of the binding agents on the clay 
particle arrangement was investigated through zeta potential and rheology. The higher 
flocculation rate in the presence of Portland cement was confirmed due to the greater 
calcium content. This leads to the more open and porous structure of the clay fabric, 
or of the sediment in this case.  
 
Taken together, these findings suggest that for the solidification of sediment/soil 
systems with a low amount of binding agent, flocculation/dispersion is a crucial 
indicator. To evaluate the role of a more dispersed state of the sediment matrix, two 
types of dispersing agents were introduced into the Dublin sediment before treatment 
with the OPC and GGBS-based formulations. Indeed, the UCS was twice as much for 
both formulations in the case of the dispersed state of the sediment prior to S/S 
treatment.  
 
The current study found that the organic matter of the Dublin sediment was impacted 
in the presence of hydraulic binders with a significant alteration of carbohydrates, 
amino-sugars, and nitrogen compounds as demonstrated by 13C NMR and the 
reconstruction of OM via Py-GC-MS. The alteration rate of OM compounds was greater 
for the OPC-based formulation compared to the GGBS-based treated Dublin sediment. 
This more significant perturbation of OM in the presence of OPC can be explained by 
the higher pH produced during S/S treatment. The delay in hydration of the OPC and 
GGBS-based binders with the addition of humic acids was assessed separately using 
calorimetry measurements. A significant retardation/annihilation was observed from 
5%wt dosage. Thus, these experiments provide evidence of the important role of 
organic matter as part of a complex sediment matrix. The changes in environmental 
factors (pH, ionic concentration, etc.) of the sediment due to the addition of binding 
agents can have a considerable impact on organic matter and consequently on the 
evolution of mechanical properties, as well as on the migration of contaminants having 
a great affinity for OM. 
 
Another question in this study was to assess the impact of trace metals on the early 
hydration of the treated sediments. Three types of binding agents – OPC, GGBS/OPC 
and the supersulfated formulation – were mixed with Zn, Cu, Cd, and Ni in the form of 
nitrate salts at 0.1%wt, 0.5%wt and 2%wt. The observations of early hydration 
demonstrated widely different effects for the introduced metal ions; copper and zinc 
greatly retarded or even annihilated the hydration pathway, whereas nickel and 
cadmium mostly accelerated or had no impact on the precipitation of hydrates. The 
hydration of the GGBS-based formulations was greatly affected by Cu and Zn 
compared to OPC, especially the supersulfated mix. These results further support the 
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hypothesis that calcium depletion occurs due to the formation of Cu and Zn complex 
calcium salts (e.g. calcium zincate), therefore the formation of hydrates is delayed. 
Unlike copper and zinc, nickel and cadmium form hydroxide species (or layered double 
hydroxide (LDH), sulfides) without calcium consumption. These findings partially 
explain the longer hydration period for the sediments treated with GGBS-based 
binders.  
 
 
The last part of this study investigates the mechanisms of stabilization of trace metals 
of the Dublin after S/S treatment sediment using GGBS-based binders. First, the 
results of the leaching test showed a relatively low leaching rate of HM from the 
untreated sediment and the increased mobility of trace metals after the use of hydraulic 
binders, especially copper and nickel. The leaching test has shown that with an 
increase in the amount of GGBS, the level of leached HM decreased significantly 
compared to the OPC-based treatment. The most performant formulations were 
supersulfated mixes. This study has found that the crucial parameter controlling the 
mobility of trace metals is pH. OPC provided the highest pH after being mixed with the 
sediment with the highest leaching rate of HM, whereas the supersulfated formulations 
developed the lowest pH. Moreover, X-ray absorption spectroscopy (XAS) analysis of 
the Dublin sediment with and without the addition of binding agents revealed changes 
in the chemical environment of Cu and Zn after OPC addition. The speciation of zinc 
in the raw sediment is very close to the highly stable zinc chromate used as a primer 
in marine paints. GGBS activated by a small amount of OPC did not impact the 
chemical environment of Zn, while the Portland cement formulation changed its 
coordination number. In the same way, copper’s oxidation state was changed with the 
addition of Portland cement, but not with the formulations with the high proportion of 
GGBS. The presence of cuprous sulfide and cupric sulfide was detected in the raw 
sediment and for the GGBS treated sediment.  
 
XAS analysis was also performed for Ni and Cd, introduced into the pure OPC and 
GGBS-based binders in form of chlorides. The results for Cd have shown the 
precipitation of Cd(OH)2 in the case of the OPC binder and the more stable CdS in the 
case of GGBS formulations due to the presence of sulfurs in GGBS. Hydroxide species 
of nickel was also detected for the OPC binder and 50%GGBS/50%OPC after NiCl2 
addition, with the majority being the Ni-Al Layered Double Hydroxides phase. It can be 
concluded that the formation of these compounds governs the mobility of Cd and Ni in 
sediment-binder systems in practice.  
 
Finally, the method of sequential extraction was applied to the Dublin sediment before 
and after the addition of the OPC and GGBS-based formulations. The Dublin sediment 
from three different locations within the Alexandra Basin was subjected to the analysis 
and the results demonstrated a similar distribution of trace metals between the main 
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fractions. After the hydraulic binders’ introduction, a different partitioning of HM was 
observed with migration to the less stable fractions (Exchangeable/Carbonates 
fractions), especially in the case of Portland cement.  
 
 
This work has contributed to the understanding of the main parameters that govern the 
evolution of the mechanical strength of the Dublin sediment treated with GGBS-based 
binders as well as the stabilization of contaminants. The findings of this study have a 
number of practical implications for the ABR project as well as in the field of the 
Solidification/Stabilization remediation practice.  
 
 

Perspectives 
 

This research has raised numerous questions in need of further investigation.  
 
Specifically, the following issues were identified regarding solidification: 
 

•! The issue of different sediments having different natures depending on their 
origin and composition could be explored further in terms of the applicability of 
a GGBS-based formulation developed in the current study to successfully treat 
different types of dredged materials. The extensive uniaxial compressive 
strength (UCS) and leaching testing program with practical implications can be 
adopted for the samples from different dredged locations.   

•! One question raised by the study of the solidification process of sediments is 
the addition of dispersants to improve the engineering behaviour of the 
mixtures. More research is needed using a wider range of dispersing agents as 
well as sediments from other locations. Evaluation and improvement of the use 
of dispersants on the industrial scale can be proposed according to market 
needs.  

•! Another important question that remains to be answered is the durability of 
GGBS-treated sediments. The compressive strength results demonstrated a 
significant increase in the performance of the GGBS-based mixtures over 6 
months of storage as well as a good stability of heavy metals after treatment. 
However, the potential risks of environmental, chemical, or physical attacks 
(e.g. freeze/thaw) should be examined.  
 

For the stabilization of contaminants, the following items merit further investigation: 
 

•! Further experimental study is needed to assess the effect of GGBS-based 
treatment on the stabilization of organic contaminants which are of a great 
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concern for many harbours areas (i.e. PCB, PAH, TBT). The existing solutions 
for the stabilization of organic contaminants (oxidation, various adsorbents) can 
be potentially combined with GGBS-based formulations.  

•! A further in-depth study is required to investigate the interaction of additional 
types of heavy metals with GGBS-based binders to better understand their 
impact on early hydration and to explain the long term immobilization of HM. As 
was shown in Chapter V, the XAS experiment can be very useful in observing 
the formation of new precipitates and the incorporation of HM into hydrates.  

•! The total attack of OPC and GGBS revealed a considerable amount of heavy 
metals, especially in the case of Portland cement. Further research needs to be 
done to establish whether trace metals in binders are responsible for leaching 
after S/S treatment and to investigate the stability of these HM compounds 
before and after the hydration process. 
 

Due to the increasing demand for alternative ‘low carbon’ binders for different 
construction fields, the following perspectives can be proposed: 

 
•! Further research could be conducted to develop an efficient and economically 

viable “zero Portland cement” binder with low environmental impact for the 
Solidification/Stabilization treatment of dredged material. !

•! Different types of supplementary cementing materials could be used today to 
reduce the carbon footprint. Further, it is possible to thermally activate 
sediments due to their significant clay content. Once activated, the sediment 
can replace a certain amount of clinker in certain products to reduce CO2 
emissions. !
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Annex A 
 

Stabilization of the Dublin sediment contaminated by Tributyltin (TBT). 
Leaching test results  

 
 
Organotin compounds have been introduced into the aquatic environment over the 
past decades from various industries and agriculture. Tributyltin (TBT) has been widely 
used as an anti-fouling agent on ships, but its use is currently limited in many countries. 
At the same time, some organotin compounds are still present in waterbodies at 
concentrations that are very toxic to the aquatic ecosystem.  
TBT (tributyltin), MBT (monobutyltin) and DBT (dibutyltin) are initially present in Dublin 
sediment at 205, 78.9 and 34.3 µ(Sn)/kg, respectively. The presence of DBT is usually 
linked to the degradation of TBT by microbial activity and/or photochemical reactions 
in sediments. These values are consistent with the conclusion of some authors who 
establish that the TBT degradation occurs in stages with the loss of butyl group (Furdek 
et al. 2016). In this study, the Solidification/Stabilization method using a hydraulic 
binder for sediments valorization is considered because of technical, environmental 
and economic benefits. On this way, Granulated ground blast-furnace slag (GGBS) 
based binders is used as stabilizing agent in immobilizing butyltins compounds 
(Gutsalenko T. et al., 2018).  
The hydraulic binders considered consisted of mixtures of Portland cement (OPC) and 
slag (GGBS) from ECOCEM. Three different hydraulic binders were mixed with 
sediments. The mixtures are reported in Table A.1. F1 correspond to the Portland 
cement (OPC) binder, F2 and F3 are Portland cement-Granulated ground blast furnace 
slag (GGBS) mixtures at two different GGBS contents. Initially, the binder is mixed with 
water with at w/b ratio 0.45. Samples F1 and F2 are obtained by mixing 150 kg of total 
binder with 1 m3 of sediment, the F3 sample was prepared at 175kg/m3.  
 
The considered samples in this study are presented in Table A.1. 
 
Table A.1. Sediment-Binder mixtures 

Mixture Binder content (%)  

 Cement GGBS  

F1 100 0  
F2 50 50  
F3 15 85  

 
 
 
 
 



 
 

276 

Procedure 
 
The monolithic leaching test for tributyltin (TBT) from the Dublin sediment treated with 
different binding agents was performed according to C1308-08. 
This test method provides procedures for measuring the leaching rates of elements 
from a solidified matrix material and allows for the determination of the leaching 
trajectories of specific contaminants as a function of the cumulative mass flux over a 
cumulative period. 
 

 
Fig. A.1 TBT leaching test 

 
The method applied in this study measures the release of a component from a 
cylindrical solidified waste specimen into water. Thus, the samples were prepared 
using special cylindrical molds with dimensions 40x40mm in order to respect a 
diameter-to-height ratio of 1:1. Leaching containers made of glass were used during 
this test in order to prevent any possible reactions with the leachant, leachate, or 
specimen. The top of the container was fit tightly to minimize evaporation (Fig. A.1). 
The leachant volume used for each interval was 10×the surface area of the specimen, 
or 600 ml for each sample. 
After each time increment (0, 0.25, 1, 2.25, 4, 9, 16, ... days) the leachates were sent 
for analysis by gas chromatography. The mass and dimensions of the specimens as 
well as the pH of the leachates were recorded. 
 
Results  
 
The TBT leaching test were conducted on the sediment-binder mixes, the results are 
presented in Fig. A.2. TBT, MBT and DBT are quite efficiently immobilized with all the 
binders.  
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Fig. A.2 Leaching measurements of TBT, MBT and DBT and pH of the considered leachates 
 

The compounds could stay strongly adsorbed to clays minerals, oxides and 
hydroxides, and organic material. It can be noticed that the destabilizing effect 
decreases when the level of OPC substitution with GBBS increases. These trends 
seem to be related to the pH of the samples (Fig. A.2). The highest pH is obtained with 
the OPC based sample F1 (around 12.5). Overall the pH decreases when increasing 
the fraction of GGBS. The lowest pH is obtained with F3. The effect of pH on TBT or 
DBT adsorption was already studied by (E. Burton, 2004 and M. Hoch, 2003) and 
showed a destabilization at low and high pH. From pH = 6, neutral species are present: 
TBT(OH), MBT(OH)3 and DBT(OH)2 (Fang et al. 2012). The adsorption of TBT, MBT 
and DBT on adsorbent surfaces would therefore be predominated by a hydrophobic 
adsorption mechanism (Hoch, Alonso-Azcarate, and Lischick, 2002). However, the 
gap between pHs for the different mixes is decreasing over time whereas the 
concentration gap of pollutant increasing. Therefore, pH does not seem to be the only 
parameter influencing the leachability of TBT and its derivatives. Further studies are 
required in order to get a deeper understanding of the mechanisms governing TBT 
immobilization using S/S method. Summing up, with regard to the leachability of TBT 
and its derivatives over time, the values are very weak. The values are the lowest using 
high percentage of GGBS in binder. 
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Titre : Solidification/Stabilisation des sédiments portuaires à l’aide des liants hydrauliques à base de laitier de haut-
fourneau 

Mots clés : laitier de haut-fourneau, sédiment pollué, métaux lourds, Solidification/Stabilisation 

Résumé : L’accumulation des sédiments sur les littoraux se créée à partir des processus physiques, chimiques et 
biologiques. Les activités anthropiques participent fortement à l’augmentation du taux de sédimentation.  Elles sont 
également une source de contaminants chimiques notamment des métaux lourds qui sont un risque pour l’environnement 
aquatique et la santé publique. Afin de dégager les voies de navigation, des opérations régulières de dragage dans les 
grands ports industriels sont réalisées et produisent autour de 100-200 millions m3/an de déblais de dragage contaminés. 
Il peut donc être nécessaire de traiter ces sédiments, notamment par Solidification/Stabilisation (S/S).  

L’étude actuelle s’intéresse plus particulièrement à la valorisation de sédiments provenant de Dublin (Irlande) pour une 
réutilisation potentielle comme matériaux de remplissage dans le cadre du projet de réaménagement du bassin d'Alexandra 
(ABR). Les sédiments contaminés en métaux lourds, doivent être stabilisés par la technologie de S/S au moyen d’un liant 
hydraulique. Cette recherche propose l’utilisation du laitier de haut-fourneau (LHF) comme agent liant alternatif au ciment 
Portland largement utilisé. L’objectif de cette étude est donc de développer un liant à base de LHF pour fournir un 
comportement mécanique requis pour une utilisation ultérieure du nouveau matériau en s’intéressant à comprendre les 
mécanismes ayant un rôle dans la solidification du sédiment traité mais également la stabilisation des métaux lourds.  

Les sédiments traités par liants hydrauliques à base de LHF ont fait l’objet d’un suivi de la résistance à la compression en 
comparaison à des sédiments traités par liant à base d’OPC. Le traitement au LHF activé par une petite quantité d’OPC a 
démontré une augmentation significative de la résistance au fil du temps, tandis que celle du traitement à l’OPC a montré 
une dégradation des propriétés mécaniques. Dans le but d’expliquer les résultats obtenus, des études de suivi de la 
formation des hydrates, de retrait et de microstructure ont été menées. En outre, les interactions avec les différents liants 
de la fraction argileuse, de la matière organique et des métaux lourds, qui constituent les sédiments de Dublin étudiés, ont 
été évaluées séparément et au moyen de milieux simplifiés. La thèse met en évidence par l’étude de l’impact de la fraction 
argileuse que le phénomène de dispersion/floculation est un des principaux mécanismes responsables de l’évolution des 
propriétés mécaniques du sédiment traité. L’étude des interactions entre la matière organique avec les liants montre une 
dégradation de certains composés organiques au cours de temps et ce d’autant plus avec l’OPC. Enfin, certains métaux 
lourds impactent par un retard ou une accélération significative de l’hydratation des liants considérés.  

La mobilité des métaux lourds du sédiment de Dublin après le traitement S/S a été examiné en utilisant un test de lixiviation 
standardisé. L’augmentation de la proportion de LHF induit une diminution de la quantité de métaux lourds lixiviés. En 
effet, l’analyse par extraction séquentielle a permis de suivre la distribution des métaux lourds parmi les principales 
fractions de sédiments avant et après traitement. L’emploi de LHF permet une réduction de la migration des métaux dans 
la fraction la moins stable après le traitement S/S. Dans le but d’explorer les mécanismes de stabilisation, en particulier 
les changements dans l’environnement chimique des métaux lourds (état d’oxydation/numéro de coordination etc.), la 
spectroscopie d’absorption aux rayons X s’est avérée être une technique pertinente. Ainsi, il a été observé que 
l'environnement chimique du Cu et du Zn n'a pas été modifié dans le cas des liants à forte teneur en LHF.  
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Title: Solidification/Stabilization of harbor sediments using GGBS-based hydraulic binders 

Keywords: GGBS, contaminated sediment, heavy metals, Solidification/Stabilization 

Abstract: The accumulation of sediment particles in coastal areas arises from physical, chemical, and biological processes. 
Anthropogenic activities dramatically increase the sedimentation rate. Sediments may contain chemical contaminants 
including heavy metals (HM) and are consequently a risk to the aquatic environment and human health. Regular dredging 
of important shipping lanes in large industrial ports is required and this produces around 100-200 million m3 of 
contaminated dredged material per year. Therefore, proper treatment of the contaminated sediments is necessary, with 
Solidification/Stabilization (S/S) remediation technology at the forefront.  
 
The current study is specifically interested in the treatment of sediment originating in the Dublin Port for its potential reuse 
as a fill material for the Alexandra Basin Redevelopment (ABR) Project. The sediment is contaminated with heavy metals 
and must be stabilized by S/S technology using a hydraulic binder. This research proposes the use of ground granulated 
blast furnace slag (GGBS) as an alternative binding agent to the widely used Portland cement. The objective of this study 
is therefore to develop an appropriate GGBS-based binder to provide the required engineering properties for further reuse 
of the newly formed solidified material by focusing on understanding the mechanisms having a role in the solidification 
of the treated sediment, but also in the stabilization of heavy metals. 
 
The compressive strength of the range of GGBS-based formulations was assessed with the UCS test and compared to the 
OPC-based treatment. GGBS activated by a small amount of Portland cement demonstrated a considerable increase in 
strength over time while that of only OPC showed a degradation of mechanical properties. To explain the obtained results, 
XRD, shrinkage, and microstructure investigations were conducted. In addition, the interaction of the binders with the clay 
fraction, organic matter, and trace metals, which were found in the studied Dublin sediments, was assessed separately 
through simplified models. The study of the clay fraction highlights that the phenomenon of dispersion/flocculation is one 
of the main mechanisms responsible for the evolution of the mechanical properties of the treated sediment. The findings 
from the organic matter study show a decrease of the content of some organic compounds over time, with the greatest 
impact observed via treatment with Portland cement.  Moreover, certain heavy metals have an impact by delaying or 
significantly accelerating the hydration of the considered binders. 
 
The mobility of heavy metals in the treated Dublin sediment was examined using a standard leaching test. It was found 
that with an increase in the proportion of GGBS, the amount of leached HM decreased. Moreover, sequential extraction 
analysis was shown to be effective in studying the distribution of trace metals among the main sediment fractions before 
and after treatment. The use of GGBS as a stabilizing agent allows a decrease of the migration of heavy metals into the 
less stable fraction after S/S treatment. X-ray Adsorption Spectroscopy (XAS) was demonstrated to be a useful technique 
to explore the stabilization mechanisms, in particular changes in the chemical environment of HM (oxidation state, 
coordination number, etc.). It was observed that the chemical environment of Cu and Zn was not modified in the case of 
binders with high GGBS content. 
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