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R�esum�e

Formation de singularit�es en temps �ni pour les �equations aux d�eriv�ees

partielles non sym�etriques ou non variationnelles

Dans le cadre de cette th�ese, nous nous int�eresserons �a la formation de singularit�es
en temps �ni pour les �equations d'�evolution de type parabolique. En particulier, nous
nous concentrons sur l'�etude des deux ph�enom�enes principaux suivants : l'explosion et
l'extinction en temps �ni. Dans cette th�ese, nous consid�erons les �equations suivantes :

@tu = � u + jujp� 1u ln� (2 + u2); p > 1; � 2 R et u : (x; t ) 2 RN � [0; T) ! R; (1)

@tu = � u + up; p > 1 et u : (x; t ) 2 RN � [0; T) ! C; (2)

@tu = � u +
�

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 ; u: (x; t ) 2 
 � [0; T)! [0; 1); (3)

o�u 
 est un domaine born�e de classeC2 dansRN et �;  sont positifs.

Ces mod�eles se rapportent �a plusieurs ph�enom�enes naturels. En particulier, l'�equation
(3) mod�elise un syst�eme micro �electro-m�ecanique (MEMS).

Dans ce travail, nous avons construit des solutions explosives (pour (1) et des (2)) et
des solutions avec extinction pour (3). En plus de �ca, nous d�ecrivons le comportement
asymptotique des solutions autour du point singulier.

Comme cadre pour notre travail, nous utilisions celui desvariables auto-similaires
qui a �et�e introduit par Giga et Kohn dans CPAM 1985. Nous obtenons les r�esultats en
utilisant une r�eduction en dimension �nie du probl�eme et un argument topologique qui a
�et�e notamment introduit par Bressan, Bricmont et Kupiainen ainsi que par Merle et Zaag.

Clairement, notre travail n'est pas une simple adaptation des travaux cit�es ci-haut.
En e�et, nos mod�eles, par leur proximit�e avec les applications, sortent du cadre id�eal
consid�er�e dans les travaux pionniers. En particulier, l'�equation (1) n'est pas invariante par
changement d'�echelle, alors que (2) n'admet pas de structure variationelle. Quant �a (3), la
pr�esence du terme int�egral (donc non-local) nous oblige �a une manipulation plus d�elicate.
En fait, nous avons atteint nos objectifs grâce �a quelques nouvelles id�ees. Plus pr�ecis�ement,
pour (2), nous e�ectuons un contrôle d�elicat de la solution a�n qu'elle reste dans un domaine
o�u la nonlin�earit�e est d�e�ne sans ambigu•�t�e. Pour (3), nous contrôlons l'oscillation du terme
non-local a�n qu'il reste assez petit et nous en d'�eduisons sa convergence.
||||||||||||||||||||||||||||||||||
Mots cl�es : �equation de type parabolique, �equation des MEMS, explosion en temps �ni,
extinction en temps �ni, pro�l �a l'explosion, explosion de type I, comportement asympto-
tique.





Abstract

Finite time singularity formation for non symmetric or non variational

partial di�erential equations

In the context of this thesis, we are interested in �nite time singularity formation for non
symmetric or non variational partial di�erential equations of parabolic type. In particular,
we mainly focus on the following two phenomena:blowup and quenching(touch-down) in
�nite time. In this thesis, we aim at studying the following equations:

@tu = � u + jujp� 1u ln� (2 + u2); p > 1; � 2 R et u : (x; t ) 2 RN � [0; T) ! R; (4)

@tu = � u + up; p > 1 et u : (x; t ) 2 RN � [0; T) ! C; (5)

@tu = � u +
�

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 ; u: (x; t ) 2 
 � [0; T)! [0; 1); (6)

where 
 is a C2 bounded domain inRN and �;  are positive constants.

These models are closely related to many common phenomena in nature. In particular,
equation (6) is a model for Micro Electro Mechanical Systems (MEMS).

In this work, we construct blowup solutions to (4) and (5) and solutions with extinction
to (6). In addition to that, we describe the asymptotic behavior of these solutions around
the singular point.

We use in this thesis the framework ofsimilarity variables, introduced by Giga and
Kohn in CPAM 1985. We �nally derive the results by using a reduction to a �nite dimen-
sional problem and a topological argument which was introduced in particular by Bressan,
Bricmont and Kupiainen, and also Merle and Zaag.

Clearly, our work is not a simple adaptation of the works cited above. Indeed, our
models, by their proximity to applications, are outside the ideal framework considered in
pioneering works. In particular, equation (4) is not scaling-invariant, whereas (5) does not
admit variational structure. As for (6), the presence of the integral term (non-local term)
requires us to treat this term more delicately. In fact, we have achieved our goals thanks
to some new ideas. More precisely, for (5), we carry out a delicate control of the solution
so that it always stays in the domain where the nonlinearity is de�ned with no ambiguity.
For (6), we control the oscillation of the non-local term to keep it small enough, and this
allows us to deduce its convergence.

||||||||||||||||||||||||||||||||||
Keywords : Parabolic equation, MEMS model, �nite time blowup, touch-down phenomenon,
blowup pro�le, type I blowup, asymptotic behavior.
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Introduction

Science is a di�erential equation and religion is a boundary condition

Alan Turing

I. Modeling nature by parabolic PDE

In the age of science and technology, mathematics strongly shows us its inuence in our
life. Particularly, there is a wide variety of phenomena which have been mathematically
modeled by partial di�erential equations (PDE) such as: heat transfer, propagation of
waves, electrodynamics, uid dynamics, elasticity, quantum mechanics and so on. The more
we understand these equations, the better we know about the corresponding phenomena.

More speci�cally, the class of parabolic PDE is important in modeling nature. As many
authors did earlier, we are interested in this thesis in reaction-di�usion systems of the
following type

8
><

>:

@tu = D � � u + F (u; r u;
R


 g(u)dx) in 
 � [0; T);

u = 0 on @
 � [0; T);

u(:; 0) = u0 in 
 ;

(7)

where u : (x; t ) 2 
 � [0; T) 7! KM ; u0 : x 2 
 7! KM ; K is R or C; 
 is an open set of
RN ; g : KM ! K is continuous andF : DF � KL ! KM is continuous on its domain. In
addition to that, we note that r u = ( @x1 u; :::; @xn u), � u =

P N
j =1 @2

x2
j
u and D = ( D i;j ) i;j � N

is a diagonal matrix of di�usion coe�cients. Note that when 
 = RN , there is no boundary
condition in (7).

Reaction-di�usion systems are mathematical models which correspond to many physi-
cal, chemical and biological phenomena. For more details about the applications of these
models, we kindly address the readers to some representative works:

- The combustion phenomenon: We have Bebernes and Eberly [3]; Bebernes and Kassoy
[4]; Galaktionov and V�azquez [30]; Kapila [49]; Kassoy and Poland [51]; [52]; Williams [85];
Zel'dovich, Barenblatt and Librovich in [87] and their references.

- Superconductivity phenomenon: This is described by a mathematical physical theory,
often called Ginzburg-Landau theory, named after Ginzburg and Landau, see the works
by Ginzburg and Landau [38]; Aranson and Kramer in [1]; Popp et al [74]; Cross and
Hohenberg [15].

- Fluid mechanics and opticsderived from Ginzburg-Landau theory, see Levermore and
Oliver [54].

- Theory of Micro-electro-mechanical systems (MEMS) devices: We would like to adress
to Guo and Kavallaris [42]; Pelesko and Bernstein [48]; Kavallaris and Suzuki [53]; Pelesko
and Triolo [73] and references therein.
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- The physical mechanism of vortex stretching, turbulent ows: These theories have
a relation to the Constantin-Lax-Majda equation, as in the works of Constantin, Lax and
Majda [14]; Guo, Ninomiya, Shimojo and Yanagida [40]; Murthy [66] and references therein.

There are many other phenomena which are not presented in this text, because of lack
of time and space.

II. De�ning �nite time singularity

In this section, we are interested in introducing the notion of �nite time singularity
formation in parabolic PDE. Then, we aim at considering some illustrating examples.

II.1. Mathematical treatment

When facing any submodel included in (7), we �rst address the issue of existence and
uniqueness of solutions, or the \Cauchy problem". As a matter of fact, some of the submod-
els can be solved in a lot of classes of functional spaces such as:Lp(
) ; p 2 [1; 1 ], Sobolev
spacesW 1;p(
) and so on. For more details on the Cauchy problem, we kindly refer the
readers to Friedman [24]; Henry [44]; Pazy [72]; Lady�zenskaja, Solonnikov and Ural'ceva
[70]; Souplet and Quittner [75]. In this thesis, we mainly focus onL1 (
). Indeed, thanks
to the regularity of the semi-groupet � (see its de�nition and its properties in [70] and
[75]), parabolic regularity and a �xed-point argument, the Cauchy problem is well-posed in
L1 (
) (also in W 1;1 (
)) under some reasonable conditions onF and g in (7). Roughly
speaking, we may de�neTmax > 0 as the maximal existence time of the solution. Then,
one of the following statements holds:

(a) Either Tmax = + 1 , which implies that the solution is global.

(b) Or Tmax < + 1 , which implies that

ku(:; t)kL 1 (
) ! + 1 (or ku(:; t)kW 1;1 (
) ! 1 ) as t ! T:

We call the second case �nite time blowup phenomenon andT is called the blowup time
of u. We may also introduce the de�nition of aBlowup point. Note that these notations
follow the introduction of Friedman and McLeod [25]:

De�nition 0.1 (Blowup point) . Let us consideru, a function on 
 � [0; T); T > 0 which
blows up at timeT. A point a 2 �
 is called a blowup point ofu, if and only if there exist
f (xn ; tn )gn� 1 � 
 � [0; T), converging to(a; T) as n ! + 1 , such that the following holds

ju(xn ; tn )j ! + 1 as n ! + 1 :

If we work in L1 (
) with 
 bounded, then we can prove that there exists at least a blowup
point. Following this, two interesting issues arise:

a) Existence: Does a blow up solution for system (7) exist?

b) Asymptotic behavior: Can we describe the asymptotic behavior of the solution near
the blowup point?

Thus, we aim in this thesis at studying the following two main issues:
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1) Construct blowup solutions to system (7) for some explicit cases.

2) Describe the asymptotic behavior of the constructed solutions near the blowup point.

II.2. Blowup examples in ODE and PDE

As we mentioned at the head of this section, we would like to take the following examples:

- Example 1: Let us consider (p; a0) 2 R2; a0 > 0; p > 1 and the following Ordinary
Di�erential Equation (ODE)

�
u0(t) = up(t); t > 0;
u(0) = a0:

Then, the solution is
u(t) = � (T0 � t)� 1

p� 1 ;

where� = ( p � 1)� 1
p� 1 and T0 = 1

(p� 1)ap� 1
0

> 0. We observe more closely that the existence

time interval of that solution cannot crossT0, because of the following fact

u(t) ! + 1 ; as t ! T0:

We say that u(t) blows up at time T0.

- Example 2 (Osgood's condition): More generally, we consider the following
ODE:

�
u0(t) = f (u(t)) ; t > 0;
u(0) = a0 > 0:

If f is a positive and continuous function which satis�es
Z 1

0

dx
f (x)

< + 1 ;

then, the solution cannot be globally extended to in�nity. This result was established in
[71] by Osgood, as the necessary and su�cient condition so that the solution of the above
equation blows up for any positive initial data.

- Example 3: We next consider the following PDE:

�
@tu = � u + up; (x; t ) 2 
 � [0; T);

u(0) = u0(x):
(8)

If u0 2 H 1
0 (
) ; u0 6� 0; u0 � 0; 
 is bounded and u0 satis�es the following condition:

E[u0] � 0 where E[u] =
1
2

Z



jr uj2dx �

1
p + 1

Z



up+1 dx; (9)

then, u blows up in �nite time. This result was proved in [55] by Levine (see also Ball [2]).

The above-mentioned examples show us an important thing: Under some conditions and
even for a small and smooth initial data, the solution to some PDE may develop singularities
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in some �nite time T > 0. In particular, they may become large in the functional spaces
where the PDE is considered: we say that they develop singularities in �nite time. This
phenomenon occurs in a variety of PDEs, including those modeling the real world. For
more information on singularities phemomena, we kindly refer the readers to Horstmann
[47]; Martel, Merle and Rapha•el [57], Galaktionov and V�azquez [30]; Aranson and Kramer
[1]; Bebernes and Eberly [3]; Bressan [6]; Constantin, Lax and Majda [14]; Cross and
Hohenberg [15]; Flores, Mercado, Pelesko and Smyth [23]; Ginzburg and Landau [38]; Guo
[41]; Guo and Kavallaris [42]; Pelesko and Bernstein [49]; V�azquez [77] and the references
therein.

II.3. Notion of \structure" in PDE

As illustrated in Example 3 above, many blowup results take advantage of the \struc-
ture" of the PDE. Indeed, we say for example that equation (8) has a variational structure,
which results in the existence of the Lyapunov functionalE[u] de�ned as in (9), crucial in
deriving the above-mentioned blowup criterion.

It happens that other elements of \structure" are important in the literature, when it
comes to study PDE, in particular in the context of singularity formation.

Let us introduce in the following the de�nitions of symmetric and variational structures
in PDE, in the context of this thesis.

(i ) Symmetric structure: A PDE is symmetric if for any solution u we have that u(t +
t0; x); u(t; x + x0) or ei� u(t; x ) are also solutions.

(ii ) Variational structure : Let us consider the following parabolic equation

@tu = � u + F (u) ; (10)

whereu : (x; t ) 2 
 � [0; T) ! RM . Then, problem (10) is variational if there exists
a function

G : RM ! R such that F = r G:

In this case, equation (10) has the energy functional which is decreasing in time:

E [u] =
mX

i =1

Z




jr ui j2

2
dx �

Z




G (u)dx:

We say that E[u] is a Lyapunov functional for equation (10).

Note that the notion of \Symmetric structure" and \Variational structure" holds also
for other types of PDE, in particular, hyperbolic PDE. However, we don't consider
them in this thesis.

II.4. Relevant questions for blowup

As in many mathematical areas, two major questions arise when we consider a given
PDE. The study of blowup is no exception to that.
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These are the questions one may ask when studying blowup for some given PDE:

- Classi�cation of general solutions : Given a general blowup solution, can we give
a full classi�cation of all possible asymptotic behaviors at blowup?

- Construction of examples of solutions : Can we �nd some examples of solutions
showing some speci�c blowup behaviors?

These two questions are related, in the sense that the \construction" may provide ex-
amples con�rming some type of behavior available in the \classi�cation".

Sometimes, as this is the case in this thesis, the \classi�cation" may be too hard to
obtain, because of the lack of structure in the PDE. In that case, the \construction" may
be of great help, in the sense that its products will be theonly examples available.

In this thesis, we precisely consider PDE lacking \structure", making the classi�cation
question out of reach. Accordingly, we will only focus on the \construction" issue, providing
important examples of blowup solutions,presenting novel and unprecedented types
of behaviors .

III. Speci�c di�culties in this thesis: non symmetric or non variational PDE

As we mentioned before, we treated in this thesis models with non symmetric or non
variational structure. Let us explain in the following why we focus on such models in
our works. It happens in fact that most of the mathematical analysis of singularities was
done for \idealized" situations, where the models were simpli�ed in order to be easily track
able in mathematical tools. Indeed, having a variational structure, satisfying a maximum
principle property, or enjoying a scaling invariance property do help a lot in understanding
�nite time singularity occurrance in PDE.

However, when simplifying some model, we may loose essential physical features, making
the PDE behavior very far from reality. Therefore, this motivates us to study models that
are close to the realty and are eithernon-symmetric or non-variational or both. As a
matter of fact, we consider in this thesis some real-world situations which are far from the
\idealized" situations described earlier, and we try to built new tools on order to better
understand �nite-time singularity formation via this modest dissertation.

As we pointed out earlier, the \classi�cation" question is largely out of reach in this
thesis, because of the lack of structure. As a consequence, we focus on the question of
\construction" here.

For the sake of completeness, we will address in the following the two questions:

- The classi�cation in the literature, for some ideal standard case
- The construction in the literature and in our work.

IV. The classi�cation question in the literature for some ideal standard case

In this section, we address the \classi�cation" question in the literature, for some ideal
standard case of system (7), studied by many authors:

@tu = � u + jujp� 1u; (11)
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where u : (x; t ) 2 
 � [0; T) ! R; 
 is a open set of RN and p is assumed to satisfy the
following subcritical condition

p 2 (1; + 1 ) if N � 2 and p 2
�

1;
N + 2
N � 2

�
if N � 3: (12)

As one may think, this is an idealized case which is out of the scope of the thesis.
Nevertheless, we choose to include information on it for the sake of historical completeness.
Indeed, equation (11) is the simplest parabolic PDE showing blowup, and it has attracted
a lot of attention in the last 50 years.

IV.1. The existence of the �nite time blowup phenomenon

In this part, we aim at introducing some results related to the existence of �nite time
blowup and blowup points in particularlly. In fact, these problems have been studied by
many authors such as Ball [2]; Fujita [27] and [28]; Kaplan [50]; Levine [55]; Weissler [82].
For example, Levine [55] and Ball [2] have obtained an existence by using the following
Lyapunov functional de�ned as in (9):

E[u] =
1
2

Z



jr uj2 dx �

1
p + 1

Z



jujp+1 dx:

More precisely, this is the statement (see for example Theorem 3.2 in [2]):

Let us consider 
 a bounded open subset ofRN with smooth boundary@
 . If u0 2
H 1

0 (
) ; u0 6� 0 and E[u0] � 0, then there existsTmax (u0) 2 (0; + 1 ) such that u 2
C([0; Tmax ); H 1

0 (
)) and the following holds

ku(t)kL p+1 (
) ! + 1 as t ! Tmax :

In this case, we say thatu blows up in �nite time.

Next, we would like to mention some results related to the existence of blowup points.
In order to get more information, we kindly refer the reader to Ca�arelli and Friedman [11];
Chen and Suzuki [13]; Chen and Matano [12]; Friedman [26]; Friedman and McLeod [25];
Fujita and Chen [29] and so on. In particular, Giga and Kohn have established in [35] a
criterion which allows us to conclude whether a given point is singular or not. In fact, they
mainly used the following local energy functional:

Ea;t [u] = t
2

p� 1 � N
2 +1

Z




�
1
2

jr uj2 �
1

p + 1
jujp+1

�
e� j x � a j 2

4t dx (13)

+ t
2

p� 1 � N
2

Z




1
2(p � 1)

juj2e� j x � a j 2

4t dx;

wherea 2 
 and t > 0. The following is their result (see Corollary 3.6 in [35]):

Let us consider
 a domain which is strictly star-shaped abouta 2 �
 . Then, there exists
� (
 ; p) > 0 such that the following holds: Ifu is a solution of (11) which blows up at time
T satisfying Ea;T (u0) < � , then a cannot be a blowup point.
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In addition to that, these authors have also proved in Corollary 4.3 in [35], another
important criterion which implies whether a given point is a blowup point or not.

Let us consider
 a convex domain inR2 with C2 boundary. Then,a 2 
 is a blowup
point if and only if the following holds:

lim
t ! T

(T � t)
1

p� 1 u(a + y
p

T � t; t ) = � �; where� = ( p � 1)� 1
p� 1 ; (14)

uniformly for y in compact sets.

In particular, in the case where 
 is bounded, the Dirichlet condition implies that
u(:; t)j@
 = 0; for all t < T . Then, this rises the question whetheru blows up at @
 or not.
As a matter of fact, we don't have the answer in the general case. However, the answer is
negative for some special cases. More precisely, we have the following result (see Theorem
5.3 in [35]):

We consider 
 a C2;� domain which is strictly star-shaped abouta, where a 2 @
 .
Then, a cannot be a blowup point.

Furthermore, we have the situation where the solution blows up at many points in 
.
In that case, the blowup set is an interesting object to study. For example, in Theorem 5.1
of [35], the authors proved the following:

If u0 2 H1(Rn ) and u blows up in �nite time, the blowup set is then compact.

On the other hand, there were also many authors who have constructed special initial
data u0 so that the blowup set is explicit. For example, Merle in [60] gave a construction
with k exactly given blowup points. Another example for dimensionN � 2: Giga and
Kohn gave the existence of a positive, radially symmetric initial data for which the blowup
set is some (N � 1)-dimensional sphere (see Corollary 5.7 in [35]).

Allowing the solution to be independent of some coordinate, we may obtain examples
where the blowup set is some in�nite cylinder, or parallel hyperplanes or even concentric
spheres, which all come from the case ofk given points or a sphere we have just mentioned
above.

Apart from these two cases, no other example of blowup sets in known. For example, the
question of constructing a solution for (11) blowing up on a ellipse in a 2 space dimensional
remains largely open.

IV.2. Blowup asymptotic behavior and blowup pro�le

In this paragraph, we aim at mentioning some results about the aysmptotic behavior of
the solution of equation (11) when the blowup phenomenon occurs. In order to study the
asymptotic behavior, we have many ways to approach this problem. One of them is to use
the so-called self-similar variables(note that this notation was initially used in the work
of Giga and Kohn [33]):

wa(y; s) = ( T � t)
1

p� 1 u(x; t ); y =
x � a

p
T � t

and s = � ln(T � t): (15)

With this transformation, the study of the blowup behavior of u reduces to the study of
the asymptotic behavior ofwa as s ! + 1 .
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From equation (11), we easily write the equation satis�ed byw(y; s) as follows:

@swa = � wa �
1
2

y � r wa �
wa

p � 1
+ jwajp� 1wa: (16)

Note that w is de�ned on f (y; s) 2 
 a;s = e
s
2 (
 � a) � [� ln T;+ 1 )g.

From comparison techniques, we may show (at least when 
 =RN ) that

ku(:; t)kL 1 (
) � � (T � t)� 1
p� 1 ; 8t 2 [0; T);

(see Weissler [83], Friedman and McLeod [25], Giga and Kohn [35]). Following this fact,
two situations which identi�ed in the literature named by Matano and Merle [59]:

The blowup solutionu is of type I if there existsC > 0 such that

ku(:; t)kL 1 (
) � Ch(t); 8t 2 [0; T);

whereh(t) is the positive solution of the ODE, connected to(11). Namely, we can explicitly
write the formula of h(t):

h(t) = ( T � t)� 1
p� 1 :

Otherwise, the solutionu is called of type II.

In the context of this thesis, we only focus on type I blowup (of course, for other
equations di�erent from (11)). In other words, we are interested in the case where we may
�nd the lower and upper bounds foru. This means there existC > 0 such that the following
holds

1
C

(T � t)� 1
p� 1 � k u(t)kL 1 (
) � C(T � t)� 1

p� 1 : (17)

This leads the following estimates:

1
C

� k wa(:; s)kL 1 (
 a;s ) � C: (18)

In fact, we call the above bounds the blowup rates. The upper bound in (17) has been
discovered by Mueller and Weissler [65], Weissler [82] and [84] under some conditions. In
particular, Giga and Kohn have established in [34] (see also [35]) the bounds of (17) in the
case where 
 is a bounded convex domain with the assumption that one of the following
conditions holds:

- Either initial data u0 is nonnegative orp satis�es furthermore the following condition

p > 1 if N = 1 and p 2
�

1;
3N + 8
3N � 4

�
if N � 2: (19)

Later, Giga, Matsui and Sasayama have removed condition (19) (see [36] for the case

 = RN , and then, [37] for a more general smooth convex domain 
), extending the result
to all Sobolev subcritical exponentp > 1 as in (12). In order to overcome the challenges, the
authors used the arguments on the following Lyapunov functional associated to equation
(16):

E[wa](s) =
Z


 a;s

�
1
2

jr waj2 +
1

2(p � 1)
jwaj2 �

1
p + 1

jwajp+1

�
� (y)dy: (20)
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where

� (y) =
1

(4� )
N
2

e� j y j 2

4 : (21)

Finally, they have obtained the key integral estimate in the sense that for allq � 2 and
a 2 
, there exists R1(N; p; q;
) > 0, independent ofa such that the following estimate
holds

sup
s�� ln T

Z s+1

s
kwa(; s)k(p+1) q

L p+1 (
 a;s \ B (0;R1 )) ds � Ĉ; (22)

whereĈ depends only onN; p; q;
 and a bound on E[wa](0) as well as some norms ofw0
a,

where w0
a is initial data of wa. We kindly refer the reader to page 1774 in [35] for more

details.

On the other hand, Merle and Zaag obtained in [64] (see also [62]) the following optimal
blowup rates:

Let us consider
 a convex boundedC2;� domain in RN and u a solution which blows
up at time T > 0. We assume furthermore thatu0 2 H 1(
) . Then, the following limits
hold:

kwa(:; s)kL 1 (
 a;s ) ! � = ( p � 1)� 1
p� 1 ; (23)

and
kr wa(:; s)kL 1 (
 a;s ) + k� wa(:; s)kL 1 (
 a;s ) ! 0;

as s ! + 1 and for any a 2 
 .

As a matter of fact, studying blowup rates is a fundamental step towards the study of
the asymptotic behavior of solutions to problem (16) as we will mention below.

We now assume thatu blows up at time T and at some pointa 2 
. Firstly, we derive
from (14) the asymptotic behavior ofwa on every compact set: for eachK > 0

sup
jyj� K

jwa(y; s) � � � j ! 0; as s ! + 1 ; (24)

where � � 2 f� �; � g and � is de�ned in (14). Note that �; � �; 0 are constant solutions of
(16). In particular, in the case where 
 = RN , they are the only stationnary solutions
under condition (12) (see Giga and Kohn [33]). Concerning the blowup behavior, we kindly
refer the readers to Filippas and Kohn [21]; Filippas and Liu [22]; Herrero and Vel�azquez
[45] and [46]; and Vel�azquez [78] and [81].

More precisely, Giga and Kohn used in [33] some analysis in Sobolev spaces with the
Gaussian weight� de�ned in (21) to derive (24), see also [21]; [22]; [33]; [45]; [46]; [78]
and [81]. More importantly, Vel�azquez established in [79] a classi�cation of the asymptotic
behavior of solutions to problem (16) (although some of the above-mentioned authors may
have considered the nonlinearityup instead ofjujp� 1u, all their results hold also forjujp� 1u
with the same proof). More precisely, this is the result in [79]:

There exist an orthogonal matrixO of order N and an integer numberk 2 f 0; :::; N � 1g
such that one of the following statements holds (up to replacingu by � u if necessary):
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a)- Exponential decay: There exists� > 0 such that for all K > 0, we have

sup
jyj� K

jwa(y; s) � � j � C(K )e� �s ; 8s � � ln T: (25)

b)-Non exponential decay: There exists� > 1 such that for all K > 0, we have

sup
jyj� K

�
�
�
�wa(y; s) �

�
� +

�
2ps

�
(N � k) �

1
2

yT M ky
�� �

�
�
� = O

�
1
s�

�
; as s ! + 1 ; (26)

where

M k = O� 1

0

B
B
B
B
B
@

0

B
B
B
@

1 0 ::: 0
0 1 ::: 0
... 0

. . . 0
0 0 :::: 1

1

C
C
C
A

0

0 0

1

C
C
C
C
C
A

O; with N � k of 10s digits: (27)

In this thesis, we are interested in caseb), non exponential decay, of course, for other
equations more general than (11). Note that using (26), we have the behavior ofw in the
set jyj � K; for any K > 0. This fact is equivalent to the behavior ofu in a small ball
jx � aj � K

p
T � t ! 0 as t ! T. The more t approaches the blowup time, the less

we know about the behavior ofwa. In fact, both for u and wa, we see that the solution
becomes at approaching a constant, and no shape arises. This is disappointing from a
physical point of view.

Later, Herrero and Vel�azquez [45] (in the one dimensional case), Liu [56] (in the multi-
dimensional case) have dealt with this challenge. More precisely, they improved the estimate
in (27) by �nding another expansion valid in larger domains of the formfj yj � K

p
sg for

any K > 0. In addition to that, Merle and Zaag [63] have obtained later the same result
with a di�erent proof based on some compacness properties ofwa, uniformly with respect
to a 2 RN . Note that this uniform property on a 2 RN was not proven before. This result
helped Merle and Zaag to establish in [63] the following blowup pro�le with respect to the
variable

z =
y

p
s

; (28)

which may be called theblowup variable. The following is their result:

There exist k 2 f 0; 1; ::::; Ng and an orthogonal matrixO such that for all K > 0, the
following holds:

sup
jzj� K

�
�wa(z

p
s; s) � f k(z)

�
� ! 0 as s ! + 1 ; (29)

where

f k(z) =
�

p � 1 +
(p � 1)2

4p
zT M kz

� � 1
p� 1

; (30)

with M k de�ned as in (27). Note that whenk = N in caseb) mentioned aboved, this is
a degenerate case withM N = 0, and in fact, we are in casea). Note also that the pro�le
(30) is referred to as the \intermediate" blowup pro�le of w, since it is close to the solution
for s 2 [s0; + 1 ) for somes0 (or t 2 [T � e� s0 ; T)) by (15). In fact, we will introduce later
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a notion of \ �nal " blowup pro�le. In the case wherek = 0, we would like to mention that
(29) was �rst found numerically by Berger and Kohn in [5].

Let us now introduce the notion of �nal pro�le where k = 0 in (27). In fact, Herrero and
Vel�aquez [45] (see also [78] and [80]) derived a �nal pro�le for the blowup solution. More
precisely, there existsu� (x) such that u(x; t ) ! u� (x) as t ! T, for any x 6= a. Moreover,
we have the following

u� (x) �
�

8p
(p � 1)2

j ln(x � a)j
jx � aj2

� 1
p� 1

; as x ! a: (31)

V. The construction of Type I blowup solutions

In this section, we address the question of \construction" of examples of blowup solutions
for some PDE.

In fact, we rely here on some general method which we could adapt in our work to
various situations, after many nontrivial adaptations.

This method was introduced by various authors, and goes back to the works of Bressan
[6] and [7]; Bricmont and Kupiainen [8] and [9]; Merle and Zaag [61].

It relies on some two parts:

- The derivation of approximatesolution, through a formal approach;

- The construction of an exact solution close to the approximate solution, through
a perturbative rigorous argument. This part relies on a good knowledge of the special
properties of the linearized operator around the approximate solution. It consists in 2
steps:

Step 1
Reduction to a �nite dimensional problem, to control the negative directions of the

operator

Step 2
Topological argument based on index theory, to control the nonnegative directions of the

spectrum

In the context of this thesis, we call it the �nite reduction method. As a matter of fact, this
method was introduced in Merle and Zaag [61] by improving of the proof given in Bricmont
and Kupiainen [9]. In particular, the �nite reduction method can be resumed by two steps:

In some speci�c situations, the construction method provides the stability of the blowup
pro�le under perturbations of initial data by using the interpretation of the parameters of
the �nite-dimensional problem in terms of the blowup time and the blowup point. In fact,
the construction in [61] corresponds to case (26) wherek = 0.

To be more speci�c, we will present in the following the \construction" method as it is
available in the literature for the ideal case of equation (11).

The construction result is due to Bricmont and Kupiainen [8] who have constructed
a nonnegative blowup solutionu(x; t ) to (11) (see also Bricmont and Kupiainen [9], and
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Bricmont, Kupiainen and Lin [10]), satisfying the followingL1 -estimate, after the change
of variables (15): 



 wa(:; s) � f 0

�
y

p
s

� 




L 1 (RN )

! 0 ass ! + 1 ; (32)

where

f 0(z) =
�

p � 1 +
(p � 1)2

4p
jzj2

� � 1
p� 1

: (33)

Estimate (32) yields in fact the following





(T � t)

1
p� 1 u(:; t) � f 0

 
: � a

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

! 0; (34)

whereu is the constructed solution of equation (11), blowing up at timeT and only at a.

V.1. A formal approach to derive an approximate solution (i.e the blowup
pro�le)

We aim at explaining in this part how the blowup pro�le (33) arises formally. In order
to get a simple situation, we suggest to takeN = 1, and 
 = R and in the nonnegative
case.

In fact, in order to get a blowup solution to (11), we will in fact construct a bounded
solution to (16). Since (16) is of parabolic type, it is reasonable to work with the \blowup
variable"

z =
y

p
s

;

as mentioned by Tayachi and Zaag in [76]. Following these authors and adpting an original
idea by Berger and Kohn in [5], we may try to �nd a solutionw with the following form

wa(y; s) =
1X

j =0

wj (z)
sj

; (35)

where functionswj ; j � 0 are assumed to be smooth and bounded. In particular,w0 � 0
because of the assumption thatw is nonnegative.

Using equation (16), (35) and gathering terms of order1sj ; j = 0; 1, we derive the following
equations

�
1
2

z:w0
0(z) �

w0(z)
p � 1

+ wp
0(z) = 0 ;

and

�
1
2

z:w0
1(z) �

w1(z)
p � 1

+ pwp� 1
0 w1(z) + w00

0(z) +
z:w0

0

2
= 0:

Following for example the justi�cation in Berger and Kohn [5] and Duong [17], we get

w0(z) =
�
p � 1 + bz2

� � 1
p� 1 ; (36)

and

w1(z) =
(p � 1)

2p
(p � 1 + bz2)� p

p� 1 �
(p � 1)

4p
z2 ln(p � 1 + bz2)

�
p � 1 + bz2

� � p
p� 1 ;
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where

b=
(p � 1)2

4p
:

Thus, from (36), we can formally derivef 0 as the blowup pro�le in our construction. More
precisely, we can see that for alljyj � K 0

p
s for someK 0 > 0, we have

wa(y; s) � ' 1(y; s) as s ! + 1 ; (37)

where

' 1(y; s) = w0(z) +
w1(0)

s
= f 0

�
y

p
s

�
+

�
2ps

and f 0 de�ned in (33). (38)

Note that for N � 2, our pro�le will be the following

' N (y; s) = f 0

�
y

p
s

�
+

N�
2ps

: (39)

V.2. The rigorous proof

In this paragraph, we present the perturbative rigorous method which provides the
existence of a solution to equation (16) inRN satisfying

kwa(:; s) � ' N (:; s)kL 1 (RN ) ! 0 ass ! + 1 ; (40)

where ' N is de�ned as in (39).

Introducing
q(y; s) = wa(y; s) � ' N (y; s);

we transform the PDE (11) into the following equation satis�ed byq:

@sq = [ L + V(y; s)]q+ B(q; y; s) + R(y; s); (41)

where

L = � �
1
2

r � y + Id; (42)

V(y; s) = p
�
' p� 1

N (y; s) �
1

p � 1

�
; (43)

B(q; s) = jq+ ' N jp� 1 (q+ ' N ) � ' p
N � p' p� 1

N q; (44)

R(y; s) = � ' N (y; s) �
1
2

r ' N (y; s) � y �
' N (y; s)

p � 1
(45)

+ ' p
N (y; s) � @s' N (y; s):

As a matter of fact, our problem is reduced to the construction of a solution for equation
(41) satisfying

kq(:; s)kL 1 (RN ) ! 0 ass ! + 1 : (46)

We �rst note the following fact

kR(s)kL 1 (RN ) .
1
s

:

Moreover, onceq is small enough inL1 , the term B is then formally \quadratic". This
leads to the smallness ofB . It remains to understand the e�ects ofL and V.
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(i ) Operator L : It is self-adjoint in D(L ) � L2
� , where

L2
� (RN ) = f f 2 L1

loc(R
N ) such that

Z

RN
jf (y)j2� (y)dy < + 1g with � de�ned as in (21):

On the other hand, we have

SpecL =
n

1 �
n
2

�
�
� n 2 N

o
;

Note that the largest eigenvalue is 1, and for every eigenvalue 1� n
2 , we have the

associated eigenspace

En =

*

H � (y) = h� 1 (y1):::h� N (yN )

�
�
�
�
�
j� j =

NX

i =1

� i = n and � = ( � 1; :::; � N ) 2 NN

+

;

where function h� i (yj ) is the rescaled Hermite polynomial of order� i (see [19] and
[61] for more details). In addition to that, the following set

B = f H � (y) j � 2 NN g;

makes a basis ofL2
� .

(ii ) Potential V : In fact, the value of V depends on the time variables and also on the
reduced variable

z =
y

p
s

;

rather than on y itself. For that reason, its behavior will dramatically depend on the
size ofz. More speci�cally, inside the blowup regionfj yj � K

p
sg for someK > 0,

we have the following estimate

V(s) ! 0 in L2
� (RN ) as s ! + 1 ;

which shows that the e�ect ofV will be a perturbation of the e�ect of L , except may
be on the null modes ofL , on the one hand.

On the other hand,V signi�cantly changes the e�ect ofL outside the blowup region,
namely in the setfj yj � K

p
sg. Indeed, for each� > 0, there existK � > 0 ands� > 0

such that

sup
j y jp

s
� K � ;s� s�

�
�
�
�V (y; s) +

p
p � 1

�
�
�
� � �:

Since� p
p� 1 < � 1 and bearing in mind that 1 is the largest eigenvalue ofL , we can

see thatL + V behaves as an operator with a fully negative spectrum.

From the above information aboutL and V, the behavior ofL + V inside and outside
the blowup region is di�erent. Hence, this motivates us to consider the dynamics of the
solution �rst on fj yj � K

p
sg, then on fj yj � K

p
sg. As the authors in [9] and [61] did,

we introduce the following cut-o� function

� (y; s) = � 0

�
jyj

K
p

s

�
;
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where� 0 2 C1
0 [0; + 1 ); k� 0kL 1 � 1 and

� 0(x) =
�

1 for x � 1;
0 for x � 2:

Then, we decomposeq as the following

q = �q + (1 � � )q = qb + qe:

Note that supp(qb) � B (0; 2K
p

s) and supp(qe) � RN n B(0; K
p

s). Moreover, if q 2
L1 (RN ), then we have the fact that qb; qe 2 L1 (RN ) � L2

� (RN ). Accordingly, we may
expandq on the eigenfunctions ofL as follows:

qb = q0 + q1 � y + yT � q2 � y � 2Tr(q2) + q� ;

where

qm =

 
hH � ; qbi L 2

�

hH � ; H � i L 2
�

!

j � j= m

; m � 0:

Note that q0 is in R, q1 is a vector in RN and q2 is a square matrix of orderN .

Finally, we write

q = qb + qe = q0 + q1 � y + yT � q2 � y � 2Tr(q2) + q� + qe: (47)

As a conclusion to this paragraph, we recall that our goal is to construct a solutionq
to equation (41) satisfying (46), whereq is decomposed as in (47), a decomposition well
adapted to the properties ofL + V, the linearized operator of (41).

The control of q towards 0 in (46) will follow from the control of its components
q0; q1; q2; q� and qe shown in (47), two of them being in�nite dimensional (q� and qe).

V.2.1 . Reduction to a �nite dimensional problem

In this part, we show that the control of q towards 0 in (46) reduces in fact to the
control of q0 and q1. From the fact that (q0; q1)(s) 2 R1+ N , this makes a reduction to a
�nite dimensional problem.

Indeed, from the de�nitions of q� and qe in (47), we get the following facts:

- For q� : This part corresponds to the eigenvectorsH � where j� j � 3. Then, we may
derive from the properties of operatorL + V that q� is associated to the negative eigenvalues
of L + V. Hence, it is easily controllable to 0.

- For qe: We havesupp(qe) � fj yj � K
p

sg, a region whereL + V has a strictly negative
spectrum. Hence,qe is easily controllable to 0.

After this reduction, when q is small, we project equation (41) onEm , m = 0; 1 and 2,
then we obtain the following system:

q0
0(s) � q0(s); (48)

q0
1(s) �

1
2

q1(s); (49)

q0
2(s) � �

2
s

q2(s); (50)
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as s ! + 1 . From (50) and introducing � = ln( s), we can write

@� q2(� ) � � 2q2(� ) as � ! + 1 ;

where we still noteq2(� ) = q2(s(� )), This yields that q2(� ) is associated to a strictly negative
eigenvalue. Then,q2(� ) can be controlled to 0 andq2(s) too.

The problem remains to control two components:q0 and q1. As a matter of fact, we see
from (48) and (49) that these components are associated to strictly positive eigenvalues. So,
we cannot do as we did with the others components. Finally, we have reduced problem (46)
to a �nite one on q0 and q1 for which we will �nd initial data ( q0; q1)(s0) wheres0 = � ln T
such that

(q0; q1)(s) ! 0 ass ! + 1 :

V.2.2. A topological argument

In order to give a avor of our argument, we will consider the following two-dimensional
model problem: (

q0
0 = q0 + q2

1 + 1
s2 ;

q0
1 = 1

2q1 � q0q1 � 2
s2 ;

(51)

�tted with initial data
(q0; q1)(s0) = ( d0; d1) 2 R2;

wheres0 will be taken large enough.

As mentioned in the previous part, we aim at constructing initial data (d0; d1) such that

(q0; q1)(s) ! 0 ass ! + 1 :

More precisely, we prove that there exists (d0; d1) 2 V(s0) such that

jqm (s)j �
A
s2

; 8m = 0; 1 and 8s � s0; (52)

where

V(s) �
�
�

A
s2

;
A
s2

� 2

;

and A will be taken large enough.

Indeed, by a contradiction, we assume for all (d0; d1) 2 V(s0) that (52) fails at time s,
for somes 2 [s0; + 1 ). In that case, there existss� = s� (d0; d1) such that

jqm (s)j �
A
s2

8s 2 [s0; s� ] and 8m 2 f 0; 1g;

and

jq0(s� )j =
A
s2

�
or jq1(s� )j =

A
s2

�
:
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From the ODE system (51), we derive that the ow ofjqm (s)j is transverse outgoing on
the curve

s 7!
A
s2

;

at the crossing times = s� . This implies that

(d0; d1) 7! s� (d0; d1)

is continuous.

Making the change of variables

(d0; d1) =
A
s2

0
(� 0; � 1) where (� 0; � 1) 2 [� 1; 1]2;

we can construct the following mapping

� : [ � 1; 1]2 ! @[� 1; 1]2;

(� 0; � 1) 7! s2
�

A (q0; q1)(s� );

wheres� = s� (d0; d1) and (d0; d1) = A
s2

0
(� 0; � 1).

From the previous analysis, we derive that � has the following properties:

(i ) � is continuous

(ii ) The restriction � j@V0 is equal to the identity.

Using a consequence of Brouwer's lemma, � cannot exist. Thus, there is (d0; d1) 2h
� A

s2
0
; A

s2
0

i 2
such that

8s � s0; 8m 2 f 0; 1g; we have jqm (s)j �
A
s2

:

This was the solution for the model (51). In the PDE that we consider in this thesis,
we will handle other system similar to (51). We will use the same contradiction argument
and construct a similar mapping � which will be continuous but not necessarily equal to
the identity on the boundary. However, that property will be replaced by the following

deg
�
�

�
�
@[� 1;1]2

�
6= 0

(in one dimension), which will lead to a contradiction from the degree theory.

IV.3. Construction of blowup solutions to other problems

In this paragraph, we would like to mention some constructions of blowup solutions, de-
rived by the above-mentioned construction method. In particular, we consider the following
parabolic equation

@tu = � u + F (u):

First, we mention the work of Bressan [6] (see also [7]) with the nonlinearityF (u) = eu.
Then, we also have the paper by Bricmont and Kupiainen [9] with the nonlinearityF (u) =
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up; u 2 R+ . Later, we have the construction of Merle and Zaag [61] with the nonlinearity
F (u) = jujp� 1u.

Next, we also mention the paper by Nguyen and Zaag [67], with a quasi-critical double
source

F (u) = jujp� 1u +
�

lna(2 + u2)
jujp� 1u; a > 1 and � 2 R:

In addition to that, we also mention the cases where the nonlinearity contains gradient
terms such as in the work of Ebde and Zaag [20] with

F (u; r u) = � jr ujq + jujp� 1u; where 0� q < qcri =
2p

p + 1
and p > 1:

Later, Tayachi and Zaag have treated in [76] the critical case of the above problem where
q = qcri and p > 3. In addition to that, we also mention the work of Ghoul, Nguyen and
Zaag [32] withF (u; r u) = � jr uj2 + eu; � > � 1.

Moreover, Ghoul, Nguyen and Zaag have considered some vector cases (i.e parabolic
systems). For example, there is the work by Ghoul, Nguyen and Zaag [31] who treated the
case of

F
�

u1

u2

�
=

�
ju2jp� 1u2

ju1jq� 1u1

�
; p; q > 1:

Next, we would like to mention some cases where the solution takes complex values such
as the Complex Ginzburg-Landau (CGL) equation

@tu = (1 + i� )� u + (1 + i� )jujp� 1u; �; � 2 R:

There were some cases of CGL which have been considered earlier such as: Zaag [86] for
the case where� = 0 and � 2 (� � 0; � 0) for some small� 0 > 0; Masmoudi and Zaag [58] for
the following subcritical condition

p � (p + 1) �� � � 2 > 0:

Later, Nouaili and Zaag treated in [69] a critical case of the above-mentioned relation,
where� = 0 and � = � p. This leaves unanswered the case where

p � (p + 1) �� � � 2 = 0 and � 6= 0:

We also mention the following complex heat equation, where

F (u) = up; p > 1:

In fact, this model has an important role in the literature. More precisely, wherep = 2, it
has been studied by many authors in the world (see [23], [39], [42] and their references). In
particular, Nouaili and Zaag have constructed a blowup solution in the case wherep = 2.
Moreover, Harada obtained in [43] the same result by using another method. However,
they leaved the unanswered question for the general case wherep > 1.

VI. Our main results in this thesis
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In this section, we aim at introducing the main results in this thesis. In fact, our results
focus on the construction blowup solutions for a non-homogeneous PDE, a complex valued
equation, and a MEMS model of parabolic type.

VI.1. Existence of a stable blowup solution with a prescribed behavior for a
non-scaling invariant semilinear heat equation

We consider here the problem of the construction of a blowup solution to the following
semilinear heat equation:

(
@tu = � u + jujp� 1u ln� (2 + u2);

u(0; x) = u0(x) 2 L1 (RN );
(53)

whereu : (x; t ) 2 RN � [0; T) ! R, p > 1 and � 2 R. In particular, we aim at constructing
a blowup solution which blows up in �nite time T, only at one blowup pointa 2 RN . From
the invariance of equation (53) under translations in space,a is always assumed to be the
origin. The following results follow [19] (this work is an collaboration with V. T. Nguyen
and H. Zaag):

Theorem 0.1 (See Theorem 1.1 in [19], page 16). There exist initial data u0 2 L1 (RN )
such that the corresponding solution to equation(53), blows up in �nite time T = T(u0) > 0;
only at the origin. Moreover, we have

(i ) For all t 2 [0; T), there exists a positive constantC0 such that






 � 1(t)u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C0p

j ln(T � t)j
; (54)

where (t) is the unique positive solution of the following ODE

 0(t) =  p(t) ln � ( 2(t) + 2) ; lim
t ! T

 (t) = + 1 ; (55)

and the pro�le f 0 is de�ned by

f 0(z) =
�

1 +
(p � 1)

4p
jzj2

� � 1
p� 1

: (56)

(ii ) There exits u� (x) 2 C2(RN nf 0g) such that u(x; t ) ! u� (x) as t ! T uniformly on
compact sets ofRN n f 0g, where

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

�
4

p � 1
j ln jxjj

� � �
p� 1

as x ! 0; (57)

Remark 0.2. We derive from (i ) that u(0; t) �  (t) ! + 1 as t ! T, which yields that
our solution blows up in �nite time T at x = 0. In addition to that, (ii ) gives us the fact
that the solution blows up only at the origin.
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Remark 0.3. When � = 0, (54) is the same as the standard power-like case treated in [9]
and [61]. It is di�erent if � 6= 0. More precisely, the �nal pro�le u� has a di�erence coming
from the extra multiplication of the size byj ln jxjj � �

p� 1 , which shows that the nonlinear
source in equation(53) has a strong e�ect on the dynamics of the solution in comparison
with the standard case� = 0.

Remark 0.4. Using the parabolic regularity, we can show that if the initial datau0 2
W 2;1 (Rn ), then we have fori = 0; 1; 2,






 � 1(t)(T � t)

i
2 r i

xu(:; t) � (T � t)
i
2 r i

x f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1

�
C

p
j ln(T � t)j

;

wheref 0 is de�ned by (56).

Using the techniques given by Merle in [60], we can construct a blowup solution with
arbitrarily given points. We would like to refer the readers to Corollary 1.6 in [19].

Next, we use the techniques of the interpretation of the parameters of the �nite dimen-
sional problem in terms of the blowup time and blowup point given in [61] to derive the
stability of the solution constructed in Theorem 1.

Theorem 0.5 (See Theorem 1.7 in [19]). Consider û the solution constructed in Theorem
0.1 and denote byT̂ its blowup time. Then, there existsU0 � L1 (RN ) a neighborhood of
û(0) such that for allu0 2 U0, equation (53) with initial data u0 has a unique solutionu(t)
blowing up in �nite time T(u0) at a single pointa(u0). Moreover, the statements(i ) and
(ii ) in Theorem 0.1 are satis�ed byu(x � a(u0); t), and

(T(u0); a(u0)) ! (T̂ ;0) as ku0 � û0kL 1 (RN ) ! 0: (58)

VI.2. Existence of a pro�le for the imaginary part of a blowup solution to a
complex-valued semilinear heat equation

Let us consider here the following complex heat equation
(

@tu = � u + up;

u(x; 0) = u0(x) 2 L1
�
RN ; C

�
;

(59)

whereu : (x; t ) 2 RN � [0; T) ! C and p > 1.

Our goal is to construct a blowup solution to equation (59), and to describe its asymp-
totic behavior as we did with (53).

a) Integer case forp

Inspired by the works of Nouaili and Zaag in [68] (N dimensions) and Harada in [43] (1
dimension) who treated the casep = 2, we extended in [17] the results of [68] to arbitrary
p > 1 which takes an integer value. Moreover, we obtained a better result than the one in
[68], in the sense that we derived the pro�le of the imaginary part. More precisely, we have
the following result:
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Theorem 0.6 (See Theorem 1.1, page 6 in [17]). For each p � 2; p 2 N and p1 2 (0; 1),
there existsT1(p; p1) > 0 such that for all T � T1; there exist initial data u0 = u0

1 + iu 0
2;

such that equation(59) has a unique solution on[0; T), satisfying the following:

i ) The solution u blows up in �nite time T only at the origin. Moreover, it satis�es the
following estimates






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

p
j ln(T � t)j

; (60)

and





(T � t)

1
p� 1 j ln(T � t)ju2(:; t) � g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

j ln(T � t)j
p1
2

;

(61)
wheref 0 is de�ned in (56) and g0(z) is de�ned as follows

g0(z) =
jzj2

�
p � 1 + (p� 1)2

4p jzj2
� p

p� 1
: (62)

ii ) There exists a complex functionu� (x) 2 C2(RN nf 0g) such thatu(t) ! u� = u�
1 + iu �

2
as t ! T uniformly on compact sets ofRN nf 0g and we have the following asymptotic
expansions:

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

; as x ! 0: (63)

and

u�
2(x) �

2p
(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0: (64)

Remark 0.7. We easily derive from(60) that u blows up only at0 . Note that both the
real and the imaginary parts ofu blow up. We also show that the singularity ofu2 is softer

than u1 because of the quantity
1

j ln jxjj
.

Remark 0.8. From the case wherep = 2 treated by Nouaili and Zaag [68], we suspect the
behavior in Theorem 0.6 to be unstable. This is due to the number of parameters in initial
data. More precisely, the number of parameters used in the proof is higher thanN +1 which
is contributed from N for the blowup point and1 for the blowup time.

Let us mention that Theorem 0.6 naturally leaves a question: can we extend the result
to the general case wherep > 1? This question will be treated in the next section.

b) General case forp

In this part, we handle the case wherep is not an integer number in (59). It took a
long time to �ne-tune and develop our method such that the result holds in general. The
following is our main result (this is in fact the same statement as Theorem 0.6, if one
replaces \For any integerp � 2" by \For any p > 1"; of course, the proof is much harder
in the second case):
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Theorem 0.9 (See Theorem 1.1, page 3 in [16]). For each p > 1 and p1 2 (0; 1), there
existsT1(p; p1) > 0 such that for allT � T1; there exist initial data u0 = u0

1 + iu 0
2; such that

equation (59) has a unique solutionu on [0; T) satisfying the following:

i ) The solution u blows up in �nite time T only at the origin. Moreover, it satis�es the
following estimates






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

p
j ln(T � t)j

; (65)

and





(T � t)

1
p� 1 j ln(T � t)ju2(:; t) � g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

j ln(T � t)j
p1
2

;

(66)
wheref 0 and g0 are de�ned in (56) and (62), respectively.

ii ) There exists a complex functionu� (x) 2 C2(RN nf 0g) such thatu(t) ! u� = u�
1 + iu �

2
as t ! T uniformly on compact sets ofRN nf 0g and we have the following asymptotic
expansions:

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

; as x ! 0: (67)

and

u�
2(x) �

2p
(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0: (68)

VI.3. Pro�le of touch-down solution to a nonlocal MEMS model

In this part, we are interested in the quenching phenomenon with MEMS models. More
precisely, we consider the following equation

8
>>>><

>>>>:

@tu = � u +
�

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 ; x 2 
 ; t > 0;

u(x; t ) = 0 ; x 2 @
 ; t > 0;
u(x; 0) = u0(x); x 2 
 :

(69)

We construct a solution to equation (69) such thatu touches down in �nite time T only
at one point a 2 
 (in the sense u(a; t) ! 1 as t ! T). In addition to that, we also
aim at showing its asymptotic behavior in some neighborhood of the quenching point. The
following are our main statements:

Theorem 0.10 (Existence of a qenching solution, see Theorem 1.1 in [18]). Consider
� > 0;  > 0 and 
 a C2 bounded domain inRN containing the origin. Then, there exist
initial data u0 2 C1 ( �
) such that the solution of(69) quenches in �nite timeT = T(u0) > 0
only at the origin. In particular, the following holds:



23

(i ) The intermediate pro�le: For all t 2 [0; T)







(T � t)
1
3

1 � u(:; t)
� � �

 

3 +
9
8

j:j2
p

(T � t)j ln(T � t)j

! � 1
3








L 1 (
)

�
C

p
j ln(T � t)j

; (70)

for some� � = � � (�; ; 
 ; T) > 0.

(ii ) The �nal pro�le: There exists u� 2 C2(
) \ C( �
) such thatu uniformly converges to
u� as t ! T; and

1 � u� (x) � � �

�
9
16

jxj2

j ln jxjj

� 1
3

as x ! 0: (71)

In addition to that, we also proved the stability of the constructed quenching solution
in Theorem 0.10 under perturbations of initial data:

Theorem 0.11 (Stability of the constructed solution, see Theorem 1.12 in [18] ). Let us
consider û; the solution which we constructed in Theorem 0.10 and we also de�neT̂ as the
quenching time of the solution and̂� � as the coe�cient in front of the pro�les (70) and
(71). Then, there exists a open subset̂U0 in C0;+ ( �
) ; containing û(0) such that for all
initial data u0 2 Û0; equation (69) has a unique solutionu quenching in �nite time T(u0)
at only one quenching pointa(u0). Moreover, the asymptotic behaviors of(70) and (71)
hold by replacingu(x � a(u0); t); and �̂ � by some� � (u0) and

(a(u0); T(u0); � � (u0)) ! (0; T̂ ; �̂ ); as ku0 � û0kC( �
) ! 0:
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Chapter 1

Construction of a stable blowup
solution with a prescribed behavior
for a non-scaling invariant semilinear
heat equation 1

G. K. Duong, V. T. Nguyen and H. Zaag

Abstract: We consider the semilinear heat equation

@tu = � u + jujp� 1u ln� (u2 + 2) ;

in the whole spaceRN , where p > 1 and � 2 R. Unlike the standard case� = 0, this
equation is not scaling invariant. We construct for this equation a solution which blows up
in �nite time T only at one blowup pointa, according to the following asymptotic dynamics:

u(x; t ) �  (t)
�

1 +
(p � 1)jx � aj2

4p(T � t)j ln(T � t)j

� � 1
p� 1

as t ! T;

where (t) is the unique positive solution of the ODE

 0 =  p ln� ( 2 + 2) ; lim
t ! T

 (t) = + 1 :

The construction relies on the reduction of the problem to a �nite dimensional one and a
topological argument based on the index theory to get the conclusion. By the interpretation
of the parameters of the �nite dimensional problem in terms of the blowup time and the
blowup point, we show the stability of the constructed solution with respect to perturbations
in initial data. To our knowledge, this is the �rst successful construction for a genuinely
non-scale invariant PDE of a stable blowup solution with the derivation of the blowup pro�le.
From this point of view, we consider our result as a breakthrough.

Mathematics Subject Classi�cation: 35K50, 35B40 (Primary); 35K55, 35K57
(Secondary).

Keywords: Blowup solution, Blowup pro�le, Stability, Semilinear heat equation, non-
scaling invariant heat equation.

1 This work was published in Tunisian J. Math , vol. 1, no. 1, pp 13{45, 2019.
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1.1 Introduction.

We are interested in the semilinear heat equation
�

@tu = � u + F (u);
u(0) = u0 2 L1 (RN );

(1.1)

whereu(t) : RN ! R; � stands for the Laplacian in RN and

F (u) = jujp� 1u ln� (u2 + 2) ; p > 1; � 2 R: (1.2)

By standard results, the model (1.1) is well-posed inL1 (RN ) thanks to a �xed-point
argument. More precisely, there is a unique maximal solution on [0; T); with T � + 1 . If
T < + 1 , then the solution of (1.1) may develop singularities in �nite timeT, in the sense
that

ku(:; t)kL 1 (RN ) ! + 1 as t ! T:

In this case, T is called the blowup time ofu. A given point a 2 RN , we say that a is
a blowup point of u if and only if there exists (aj ; t j ) ! (a; T) as j ! + 1 such that
ju(aj ; t j )j ! + 1 as j ! + 1 .

In the special case where� = 0, equation (1.1) becomes the standard semilinear heat
equation

@tu = � u + jujp� 1u: (1.3)

As a matter of fact, equation (1.3) is invariant under the following scaling transformation

u 7! u� (x; t ) := �
2

p� 1 u(�x; � 2t): (1.4)

An extensive literature is devoted to equation (1.3) and no review can be exhaustive.
Given our interest in the construction question with a prescribed blowup behavior, we only
mention previous work in this direction.

In [2], Bricmont and Kupiainen showed the existence of a solution of (1.3) such that

k(T � t)
1

p� 1 u(a + :
p

(T � t)j ln(T � t)j; t) � ' 0(:)kL 1 (RN ) ! 0; as t ! T; (1.5)

where

' 0(z) =
�

p � 1 +
(p � 1)2

4p
z2

� � 1
p� 1

;

(note that Herrero and Vel�azquez [9] proved the same result with a di�erent method; note
also that Bressan [1] made a similar construction in the case of an exponential nonlinearity).

Later, Merle and Zaag [13] (see also the note [12]) simpli�ed the proof of [2] and proved
the stability of the constructed solution verifying the behavior (1.5). Their method relies
on the linearization of the similarity variables version around the expected pro�le. In that
setting, the linearized operator has two positive eigenvalues, then a non-negative spectrum.
In fact, they proceed in two steps:

- Reduction of an in�nite dimensional problem to �nite dimensional one: they show
that controlling the similarity variable version around the pro�le reduces to the control
of the components corresponding to the two positive eigenvalues.
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- Then, they solve the �nite dimensional problem thanks to a topological argument
based on index theory.

The method of Merle and Zaag [13] has been proved to be successful in various situations.
This was the case of the complex Ginzgburg-Landau equation by Masmoudi and Zaag [10]
(see also Zaag [19] for an ealier work) and also for the case of a complex semilinear heat
equation with no variational structure by Nouaili and Zaag [16]. We also mention the
work of Tayachi and Zaag [18] (see also [17]) and the work of Ghoul, Nguyen and Zaag
[6] dealing with a nonlinear heat equation with a double source depending on the solution
and its gradient in a critical way. In [5], Ghoul, Nguyen and Zaag successfully adapted
the method to construct a stable blowup solution for a non variational semilinear parabolic
system.

In other words, the method of [13] was proved to be e�cient even for the case of systems
with non variational structure. However, all the previous examples enjoy a common scaling
invariant property like (1.4), which seemed at �rst to be a strong requirement for the
method. In fact, this was proved to be untrue.

In addition to that, Ebde and Zaag [3] were able to adapt the method to construct
blowup solutions for the following non scaling invariant equation

@tu = � u + jujp� 1u + f (u; r u); (1.6)

where
jf (u; r u)j � C(1 + jujq + jr ujq

0
); with q < p; q0 <

2p
p + 1

:

These conditions ensure that the perturbationf (u; r u) turns out to exponentially small
coe�cients in the similarity variables. Later, Nguyen and Zaag [15] did a more spectacular
achievement by addressing the case of stronger perturbation of (1.3), namely

@tu = � u + jujp� 1u +
� jujp� 1u

lna(2 + u2)
; (1.7)

where � 2 R and a > 0. When moving to the similarity variables, the perturbation turns
out to have a polynomial decay. Hence, whena > 0 is small, we are almost in the case of
a critical perturbation.

In both cases addressed in [3] and [15], the equations are indeed non-scaling invariant,
which shows the robustness of the method. However, since both papers proceed by per-
turbations around the standard case (1.3), it is as if we are still in the scaling invariant
case.

In this paper, we aim at trying the approach on a genuinely non-scaling invariant case,
namely equation (1.1). The following is our main result.

Theorem 1.1 (Blowup solution for equation (1.1) with a prescribed behavior). There exist
initial data u0 2 L1 (RN ) such that the corresponding solution to equation(1.1) blows up
in �nite time T = T(u0) > 0; only at the origin. Moreover, we have

(i ) For all t 2 [0; T), there exists a positive constantC0 such that





 � 1(t)u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C0p

j ln(T � t)j
; (1.8)
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where (t) is the unique positive solution of the following ODE

 0(t) =  p(t) ln � ( 2(t) + 2) ; lim
t ! T

 (t) = + 1 ; (1.9)

(see Lemma 1.17 for the existence and uniqueness of ), and pro�le f 0 is de�ned by

f 0(z) =
�

1 +
(p � 1)

4p
jzj2

� � 1
p� 1

: (1.10)

(ii ) There exits u� (x) 2 C2(RN nf 0g) such that u(x; t ) ! u� (x) as t ! T uniformly on
compact sets ofRN n f 0g, where

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

�
4j ln jxjj
p � 1

� � �
p� 1

as x ! 0; (1.11)

Remark 1.2. From (i ), we see thatu(0; t) �  (t) ! + 1 as t ! T, which means that the
solution blows up in �nite time T at x = 0. From (ii ), we deduce that the solution blows
up only at the origin.

Remark 1.3. Note that the behavior in(1.8) is almost the same as the standard case� = 0
treated in [2] and [13]. However, the �nal pro�le u� has a di�erence coming from the extra
multiplication of the size j ln jxjj � �

p� 1 , which shows that the nonlinear source in equation
(1.1) has a strong e�ect to the dynamic of the solution in comparison with the standard
case� = 0.

Remark 1.4. Item (ii ) is in fact a consequence of(1.8) and Lemma 1.20. Therefore, the
main goal of this paper is to construct for equation(1.1) a solution blowing up in �nite time
and verifying the behavior(1.8).

Remark 1.5. By the parabolic regularity, one can show that if initial datau0 2 W 2;1 (RN ),
then we have fori = 0; 1; 2,





 � 1(t)(T � t)

i
2 r i

xu(:; t) � (T � t)
i
2 r i

x f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

p
j ln(T � t)j

;

wheref 0 is de�ned by (1.10).

From the technique of Merle [11], we can prove the following result.

Corollary 1.6. For arbitrary given set of m points x1; :::; xm . There exists initial data u0

such that the solutionu of (1.1) with initial data u0 blows up exactly atm points x1; :::; xm .
Moreover, the local behavior at each blowup pointx i is also given as in(1.8) by replacingx
by x � x i and L1 (RN ) by L1 (jx � x i j � � i ) for some� i > 0 small enough.

As a consequence of our technique, we prove the stability of the solution constructed in
Theorem 1.1 under the perturbations of initial data. In particular, we have the following
result.
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Theorem 1.7 (Stability of the solution constructed in Theorem 1.1). Consider û the so-
lution constructed in Theorem 1.1 and denote bŷT its blowup time. Then there exists
U0 � L1 (RN ) a neighborhood of̂u(0) such that for all u0 2 U0, equation (1.1) with initial
data u0 has a unique solutionu(t) blowing up in �nite time T(u0) at a single pointa(u0).
Moreover, the statements(i ) and (ii ) in Theorem 1.1 are satis�ed byu(x � a(u0); t), and

(T(u0); a(u0)) ! (T̂ ;0) as ku0 � û0kL 1 (RN ) ! 0: (1.12)

Remark 1.8. We will not give the proof of Theorem 1.7 because the stability result follows
from the reduction to a �nite-dimensional case as in [13] with the same proof. Here we only
prove the existence and refer to [13] for the stability.

1.2 Formulation of the problem.

In this section, we �rst use the matched asymptotic technique to formally derive the be-
havior (1.8). Then, we give the formulation of the problem in order to justify the formal
result.

1.2.1 A formal approach.

In this part, we follow the approach of Tayachi and Zaag [18] to formally explain how to
derive the asymptotic behavior (1.8). In fact, we introduce the following self-similarity
variables

u(x; t ) =  (t)w(y; s); y =
x

p
T � t

; s = � ln(T � t); (1.13)

where (t) is the unique positive solution of equation (1.9) and (t) ! + 1 ast ! T. Then,
we see from (1.1) thatw(y; s) solves the following equation: for all (y; s) 2 RN � [� ln T;+ 1 )

@sw = � w �
1
2

y:r w � h(s)w + h(s)jwjp� 1w
ln� ( 2

1w2 + 2)
ln� ( 2

1 + 2)
; (1.14)

where
h(s) = e� s p� 1

1 (s) ln � ( 2
1(s) + 2) ; (1.15)

and
 1(s) =  (T � e� s): (1.16)

Note that h(s) admits the following asymptotic behavior ass ! + 1 ,

h(s) =
1

p � 1

�
1 �

�
s

�
� 2 ln s

s2

�
+ O

�
1
s2

�
; (1.17)

(see item ii) in Lemma 1.21 for the proof of (1.17)). From (1.13), we see that the study
of the asymptotic behavior ofu(x; t ) as t ! T is equivalent to the study of the long time
behavior of w(y; s) as s ! + 1 . In other words, the construction of the solutionu(x; t ),
which blows up in �nite time T and veri�es the behavior (1.8), reduces to the construction
of a global solutionw(y; s) for equation (1.14) satisfying

0 < � 0 � lim sup
s! + 1

kw(s)kL 1 (RN ) �
1
� 0

for some� 0 > 0; (1.18)
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and






w(y; s) �

�
1 +

(p � 1)y2

4ps

� � 1
p� 1







L 1 (RN )

! 0 ass ! + 1 : (1.19)

In the following, we will formally explain how to derive the behavior (1.19).

Inner expansion

We remark that 0; � 1 are the trivial constant solutions to equation (1.14). Since we are
looking for a non zero solution, let us consider the case whenw ! 1 ass ! + 1 (up to
replacingw by � w if necessary). We now introduce

w = 1 + �w; (1.20)

then from equation (1.14), we see that �w satis�es

@s �w = L ( �w) + N ( �w; s); (1.21)

where

L = � �
1
2

y:r + Id ; (1.22)

and

N ( �w; s) = h(s)j �w + 1jp� 1( �w + 1)
ln� ( 2

1( �w + 1) 2 + 2)
ln� ( 2

1 + 2)
� h(s)( �w + 1) � �w; (1.23)

with  1(s) and h(s) are de�ned in (1.16) and (1.15), respectively. Note thatN admits the
following asymptotic behavior (see Lemma 1.22 for the proof of this one):

N ( �w; s) =
p �w2

2
+ O

�
j �wj ln s

s2

�
+ O

�
j �wj2

s

�
+ O(j �wj3) as ( �w; s) ! (0; + 1 ): (1.24)

Since �w(s) ! 0 ass ! + 1 and N is formally \quadratic" in �w, we see from equation
(1.21) that the linear part will play the main role in the analysis of our solution. Let us
recall some properties ofL . In fact, L is self-adjoint in D(L ) � L2

� (RN ), where L2
� (RN ) is

the weighted space associated with the weight� de�ned by

� (y) =
e� j y j 2

4

(4� )
N
2

;

and
SpecL =

n
1 �

m
2

; m 2 N
o

:

More precisely, we have
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� When N = 1, all the eigenvalues ofL are simple and the eigenfunction corresponding
to the eigenvalue 1� m

2 is the Hermite polynomial de�ned by

hm (y) =
[m

2 ]X

j =0

(� 1)j m!ym� 2j

j !(m � 2j )!
: (1.25)

In particular, we have the following orthogonality
Z

R
hi hj �dy = i !2i � i;j ; 8(i; j ) 2 N2:

� When N � 2, the eigenspace corresponding to the eigenvalue 1� m
2 is de�ned as

follows

Em =


h� = h� 1 � � � h� N ; for all � 2 NN ; j� j = m; j� j = � 1 + � � � + � N

�
: (1.26)

Since the eigenfunctions ofL is a basic ofL2
� , we can expand �w in this basic as follows

�w(y; s) =
X

� 2 NN

�w� (s)h� (y):

For simplicity, let us assume that �w is radially symmetric in y. Since h� with j� j � 3
corresponds to negative eigenvalues ofL , we may consider the solution �w taking the form

�w = �w0 + �w2(s)( jyj2 � 2N ); (1.27)

wherej �w0(s)j and j �w2(s)j go to 0 ass ! + 1 . Injecting (1.27) and (1.24) into (1.21), then
projecting equation (1.21) on the eigenspaceEm with m = 0 and m = 2;

8
>>>>>>>>>><

>>>>>>>>>>:

�w0
0 = �w0 +

p
2

�
�w2

0 + 8n �w2
2

�
+ O

�
(j �w0j + j �w2j) ln s

s2

�

+ O
�

j �w0j2 + j �w2j2

s

�
+ O

�
j �w0j3 + j �w2j3

�
;

�w0
2 = 4p �w2

2 + p �w0 �w2 + O
�

(j �w0j + j �w2j) ln s
s2

�

+ O
�

j �w0j2 + j �w2j2

s

�
+ O

�
j �w0j3 + j �w2j3

�
;

(1.28)

as s ! + 1 . In addition to that, we now assume thatj �w0(s)j � j �w2(s)j as s ! + 1 , then
(1.29) becomes the following

8
><

>:

�w0
0 = �w0 + O(j �w2j2) + O

�
j �w2 j ln s

s2

�
;

�w0
2 = 4p �w2

2 + o(j �w2j2) + O
�

j �w2 j ln s
s2

�
;

as s ! + 1 : (1.29)

Let us consider the following cases:

- Case 1: Eitherj �w2j = O
�

ln s
s2

�
or j �w2j � ln s

s as s ! + 1 , then the second equation in
(1.29) becomes

�w0
2 = O

�
j �w2j ln s

s2

�
as s ! + 1 ;
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which yields

ln j �w2j = O
�

ln s
s

�
as s ! + 1 ;

this contradicts the assumption that �w2(s) ! 0 ass ! + 1 .

- Case 2:j �w2j � ln s
s2 as s ! + 1 , then (1.29) becomes

(
�w0

0 = �w0 + O(j �w2j2);

�w0
2 = 4p �w2

2 + o(j �w2j2);
as s ! + 1 :

This yields (
�w0 = O

�
1
s2

�
;

�w2 = � 1
4ps + o( 1

s );
as s ! + 1 : (1.30)

Substituting (1.30) into (1.29) yields
(

�w0
0 = O

�
1
s2

�
;

�w0
2 = 4p �w2

2 + O
�

ln s
s3

�
;

as s ! + 1 ;

from which we improve the error for �w2 as follows
8
>><

>>:

�w0 = O
�

1
s2

�
;

�w2 = �
1

4ps
+ O

�
ln2 s
s2

�
;

as s ! + 1 : (1.31)

Thus, from (1.20), (1.27) and (1.31), we derive

w(y; s) = 1 �
y2

4ps
+

N
2ps

+ O
�

ln2 s
s2

�
in L2

� (RN ); (1.32)

ass ! + 1 . Note that the asymptotic expansion (1.32) also holds for alljyj � K for some
K > 0.

Outer expansion

The asymptotic behavior of (1.32) suggests that the blowup pro�le may be depend on
the following variable

z =
y

p
s

;

From (1.32), let us try to search a regular solution of equation (1.14) of the form

w(y; s) = � 0(z) +
N
2ps

+ o
�

1
s

�
in L1

loc(R
N ) as s ! + 1 ; (1.33)

where � 0 is a bounded, smooth function to be determined. From (1.32), we impose the
following condition

� 0(0) = 1 and � 0(z) � 0: (1.34)
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Sincew(y; s) is supposed to be bounded, we obtain from Lemma 1.23 that
�
�
�
�h(s)jwjp� 1w

ln� ( 2
1w2 + 2)

ln� ( 2
1 + 2)

�
jwjp� 1w
p � 1

�
�
�
� �

C
s

;

Note also from (1.33) that

�
� jwjp� 1 w � j � 0(z)jp� 1� 0(z)

�
� = O

�
1
s

�
in L1

loc(R
N ) as s ! + 1

Injecting (1.33) into equation (1.14) and comparing terms of orderO (1), we derive the
following equation

�
1
2

z:r � 0(z) �
� 0(z)
p � 1

+
j� 0jp� 1� 0(z)

p � 1
= 0; 8z 2 RN : (1.35)

Solving (1.35) with condition (1.34), we obtain

� 0(z) =
�
1 + c0jzj2

� � 1
p� 1 ; (1.36)

for some constantc0 � 0 (since we want� 0 to be bounded for allz 2 RN ). From (1.33),
(1.36) and a Taylor expansion, we obtain

w(y; s) = 1 �
c0y2

(p � 1)s
+

N
2ps

+ o
�

1
s

�
; 8jyj � K as s ! + 1 ;

from which and the asymptotic behavior (1.32), we �nd that

c0 =
p � 1

4p
:

In conclusion, we have just derived the following asymptotic pro�le

w(y; s) � ' (y; s) as s ! + 1 ; (1.37)

where

' (y; s) =
�

1 +
(p � 1)y2

4ps

� � 1
p� 1

+
N
2ps

: (1.38)

1.2.2 Formulation of the problem.

In this subsection, we set up the problem in order to justify the formal approach presented
in the Section 1.2.1. In particular, we give a formulation to prove item (i ) of Theorem
1.1. We aim at constructing for equation (1.1) a solution blowing up in �nite timeT only
at the origin and verifying the behavior (1.8). In comparison with (1.13), our problem is
reduced to the construction of a solutionw(y; s) for equation (1.14) de�ned for all (y; s) 2
RN � [s0; + 1 ); s0 = � ln T and satisfying (1.19). The formal approach given in Subsection
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1.2.1 (see (1.37)), we are interested in the linearizationw around pro�le ' , de�ned by
(1.38). Let us introduce

q(y; s) = w(y; s) � ' (y; s); (1.39)

where ' is de�ned in (1.38). From (1.14), we see thatq satis�es the following equation

@sq = L q+ V q+ B(q) + R(y; s) + D(q; s); (1.40)

whereL is the linear operator de�ned in (1.22), and

V =
p

p � 1

�
' p� 1 � 1

�
; (1.41)

B(q) =
jq+ ' jp� 1(q+ ' ) � ' p � p' p� 1q

p � 1
; (1.42)

R(y; s) = � ' �
1
2

yr ' �
'

p � 1
+

' p

p � 1
� @s'; (1.43)

and D is de�ned as follows

D(q; s) = ( q+ ' )
��

h(s) �
1

p � 1

�
�
jq+ ' jp� 1� 1

�
+ h(s)jq+ ' jp� 1(q+ ' )L(q+ '; s )

�
;

(1.44)
where

L(v; s) =
2� 2

1

ln( 2
1 + 2)(  2

1 + 2)
(v � 1) +

1
ln� ( 2

1 + 2)

Z v

1
f 00(u)(v � u)du; (1.45)

and h;  1(s) and ' being de�ned by (1.15), (1.16) and (1.38) respectively, and

f (z) = ln � ( 2
1z2 + 2) ; z 2 R:

Thus, problem (1.8) is reduced to construct for equation (1.40) a solutionq such that

kq(:; s)kL 1 (RN ) ! 0 ass ! + 1 :

Since we construct for equation (1.40) a solutionq verifying kq(s)kL 1 ! 0 ass ! + 1 ,
and the fact that

jB (q)j � Cjqjmin (2 ;p) ; kR(s)kL 1 (RN ) + kD(q; s)kL 1 (RN ) �
C
s

;

(see Lemmas 1.24, 1.25 and 1.26 for these estimates), we see that the linear part of equation
(1.40) will play an important role in the analysis of the solution. The property of the linear
operator L has been studied in previous section (see page 39), and the potentialV has the
following properties:

i ) Perturbation of e�ect of L inside the blowup regionfj yj � K
p

sg:

kV(s)kL 2
�

! 0 as s ! + 1 :

ii ) For each � > 0, there existK � > 0 and s� > 0 such that

sup
yp
s

� K � ;s� s�

�
�
�
�V (y; s) +

p
p � 1

�
�
�
� � �:
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Since 1 is the biggest eigenvalue ofL , the operator L + V behaves as one with a fully
negative spectrum outside blowup regionfj yj � K

p
sg, which makes the control of the

solution in this region easily.

Since the behavior of the potentialV inside and outside the blowup region is di�erent,
we will consider the dynamics of the solution forjyj � 2K

p
s and for jyj � K

p
s separately

for some K to be �xed large. We introduce the following function

� (y; s) = � 0

�
jyj

K
p

s

�
; (1.46)

where� 0 2 C1
0 [0; + 1 ); k� 0kL 1 (RN ) � 1 and

� 0(x) =
�

1 for x � 1;
0 for x � 2;

and K is a positive constant to be �xed large later. We now decomposeq by

q = �q + (1 � � )q = qb + qe: (1.47)

(Note that supp(qb) � fj yj � 2K
p

sg and supp(qe) � fj yj � K
p

sg). Since the eigenfunc-
tions of L span the whole spaceL2

� (RN ), let us write

qb(y; s) = q0(s) + q1(s) � y + yT � q2(s) � y � 2Tr(q2(s)) + q� (y; s); (1.48)

whereqm (s) =
�
q� (s)

�
� 2 NN ;j� j= m

and

8� 2 NN ; q� (s) =
Z

RN
qb(y; s)~h� (y)�dy; ~h� =

h�

kh� k2
L 2

�

; (1.49)

and
q� (y; s) =

X

� 2 NN ;j� j� 3

q� (s)h� (y): (1.50)

In particular, we denote q1 = ( q1;i )1� i � N and q2(s) is a N � N symmetric matrix de�ned
explicitly by

q2(s) =
Z

qbM (y)�dy = ( q2;i;j )1� i;j � N ; (1.51)

with

M (y) =
�

1
8

yi yj �
� i;j

4

�

1� i;j � N

: (1.52)

Thus, by (1.47) and (1.48), we can write

q(y; s) = q0(s) + q1(s) � y + yT � q2(s) � y � 2Tr(q2(s)) + q� (y; s) + qe(y; s): (1.53)

Note that qm (m = 0; 1; 2) and q� are the components ofqb, and not those ofq.
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1.3 Proof of the existence assuming some technical
results

In this section, we shall describe the main argument behind the proof of Theorem 1.1. In
order to avoid winding up with details, we shall postpone most of the technicalities involved
to the next section.

According to transformations (1.13) and (1.39), the proof of item (i ) of Theorem 1.1
is equivalent to showing that there exists initial dataq0(y) at the time s0 such that the
corresponding solutionq of equation (1.40) satis�es

kq(s)kL 1 (RN ) ! 0 ass ! + 1 :

In particular, we consider the following function

 d0 ;d1 (y) =
A
s2

0
(d0 + d1:y) � (2y; s0); (1.54)

as initial data for equation (1.40), where (d0; d1) 2 R1+ N are the parameters to be deter-
mined, s0 > 1 and A > 1 are constants to be �xed large enough, and� is the function
de�ned by (1.46).

We aim at proving that there exists (d0; d1) 2 R � RN such that the solution q(y; s) =
qd0 ;d1 (y; s) of (1.40) with initial data  d0 ;d1 (y) satis�es

kqd0 ;d1 (s)kL 1 (RN ) ! 0 ass ! + 1 :

More precisely, we will show that there exists (d0; d1) 2 R� RN such that solutionqd0 ;d1 (y; s)
belongs to the shrinking setSA de�ned as follows:

De�nition 1.1 (A shrinking set to zero). For all A � 1; s � 1 we de�ne SA (s) being the
set of all functionsq 2 L1 (RN ) such that

jq0j �
A
s2

; jq1;i j �
A
s2

; jq2;i;j j �
A2 ln2 s

s2
; 81 � i; j � N;






q� (y)
1 + jyj3






L 1 (RN )

�
A
s2

; kqe(y)kL 1 (RN ) �
A2

p
s

;

whereq0, q1 =
�
q1;i

�
1� i � N

, q2 =
�
q2;i;j

�
1� i;j � N

, q� and qe are de�ned as in (1.53).

We also denote byŜA (s) being the set

Remark 1.9. For eachA � 1; s � 1, we have the following estimates for allq(s) 2 SA (s):

jq(y; s)j �
CA2 ln2 s

s2
(1 + jyj3); 8y 2 RN ; (1.55)

kq(s)kL 1 (fj yj� 2K
p

sg) �
CA
p

s
; (1.56)

kq(s)kL 1 (RN ) �
CA2

p
s

: (1.57)
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In fact, we aim at proving the following central proposition which implies Theorem 1.1:

Proposition 1.10 (Existence of a solution trapped inSA (s)) . There existsA1 � 1 such
that for all A � A1, there existss1(A) � 1 such that for all s0 � s1(A), there exists
(d0; d1) 2 R1+ N such that the solutionq(y; s) = qd0 ;d1 (y; s) of (1.40) with initial data
q(y; s0) =  d0 ;d1 (y) de�ned in (1.54), satis�es

q(s) 2 SA (s); 8s 2 [s0; + 1 ):

From (1.57), we see that once Proposition 1.10 is proved, item (i ) of Theorem 1.1
directly follows. In the following, we shall give all the main arguments for the proof of this
proposition assuming some technical results which are left to the next section.

As for initial data at time s0 de�ned as in (1.54), we have the following properties:

Proposition 1.11 (Properties of initial data (1.54)). For eachA � 1, there existss2(A) > 1
such that for all s0 � s2(A) we have the following properties:

i ) There existsDA;s 0 � [� 2; 2]� [� 2; 2]N such that the mapping

� 1 : R1+ N ! R1+ N ;

(d0; d1) 7!
�
 0;  1

�

is linear, one to one fromDA;s 0 onto ŜA (s0). Moreover, we have

� 1 (@DA;s 0 ) � @̂SA (s0);

whereŜA (s) is de�ned as follows:

ŜA (s) =
�
�

A
s2

;
A
s2

�
�

�
�

A
s2

;
A
s2

� N

: (1.58)

ii ) For all (d0; d1) 2 DA;s 0 , we have d0 ;d1 2 SA (s0) with strict inequalities in the sense
that

j 0j �
A
s2

0
; j 1;i j �

A
s2

0
; j 2;i;j j <

A ln2 s0

s2
0

; 81 � i; j � N;





 �

1 + jyj3






L 1 (RN )( R)

<
A
s2

0
;  e � 0:

where� (y; s0) is de�ned in (1.46),  0; ( 1;i )1� i � N ; ( 2;i;j )1� i;j � N ;  � ,  e are the components
of  d0 ;d1 de�ned as in (1.53),  d0 ;d1 is de�ned by (1.54).

Proof. See Propositon 4.5 in Tayachi and Zaag [18] for a similar proof to this proposition.

From now on, we denote byC as the universal constant which only depends onK ,
whereK is introduced in (1.46). Let us now give the proof of Proposition 1.10 to complete
the proof of item (i ) of Theorem 1.1.
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Proof of Proposition 1.10 . We proceed into two steps to prove Proposition 1.10:

- In the �rst step, we reduce the problem of controllingq(s) in SA (s) to the control of
(q0; q1)(s) in ŜA (s), where q0 and q1 are the component ofq corresponding to the positive
modes de�ned as in (1.53) andŜA is de�ned by (1.58). This means that we reduce the
problem to a �nite dimensional one.

- In the second step, we argue by contradiction to solve the �nite dimensional problem
thanks to a topological argument.

Step 1: Reduction to a �nite dimensional problem

In this step, we show througha priori estimate that the control of q(s) in SA (s) reduces
to the control of (q0; q1)(s) in ŜA (s). This mainly follows from a good understanding of the
properties of the linear partL + V of equation (1.40). In particular, we claim the following
which is the heart of our analysis.

Proposition 1.12 (Control of q(s) in SA (s) by (q0; q1)(s) in ŜA (s)) . There existsA3 � 1
such that for all A � A3, there existss3(A) � 1 such that for all s0 � s3(A), the following
holds: If q(y; s) is the solution of equation(1.40) with initial data at time s0, given by
(1.54) with (d0; d1) 2 DA;s 0 , and q(s) 2 SA (s) for all s 2 [s0; s1] for some s1 � s0 and
q(s1) 2 @SA (s1), then:
(i ) (Reduction to a �nite dimensional problem): We have(q0; q1)(s1) 2 @̂SA (s1).
(ii ) (Transverse outgoing crossing): There exists� 0 > 0 such that

8� 2 (0; � 0); (q0; q1)(s1 + � ) 62ŜA (s1 + � ):

Hence, q(s1 + � ) 62SA (s1 + � ), where ŜA is de�ned in (1.58) and DA;s 0 is introduced in
Proposition 1.11.

Let us suppose for the moment that Proposition 1.12 holds. Then, we can take advantage
of a topological argument quite similar to that already used in Merle and Zaag [13].

Step 2: A basic topological argument

From Proposition 1.12, we claim that there exists (d0; d1) 2 DA;s 0 such that equation
(1.40) with initial data given as in (1.54), has a solution

qd0 ;d1 (s) 2 SA (s); 8s 2 [s0; + 1 );

for suitable choice of the parametersA; K and s0. Since, the argument is analogous as in
[13], we only give the main ideas.

In fact, let us considerK; A and s0 such that Propositions 1.11 and 1.12 hold. From
Proposition 1.11, we have

8(d0; d1) 2 DA;s 0 ; qd0 ;d1 (y; s0) :=  d0 ;d1 2 SA (s0);
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where  d0 ;d1 is de�ned by (1.54). As a matter of fact,  d0 ;d1 2 L1 (RN ) for all ( d0; d1) 2
DA;s 0 , we then deduce from the local existence theory inL1 (RN ) that we can de�ne for
each (d0; d1) 2 DA;s 0 , a maximum time s� (d0; d1) 2 [s0; + 1 ) such that

qd0 ;d1 (s) 2 SA (s); 8s 2 [s0; s� (d0; d1)) :

If s� (d0; d1) = + 1 for some (d0; d1) 2 DA;s 0 , then we have the conclusion of Proposition
1.10.

Otherwise, we argue by contradiction and assume thats� (d0; d1) < + 1 for all (d0; d1) 2
DA;s 0 . By continuity and the de�nition of s� , we deduce thatqd0 ;d1 (s� ) is on the boundary
of SA (s� ). Using item (i ) in Proposition 1.12, we derive the following

(q0; q1)(s� ) 2 @̂SA (s� ):

Hence, we may de�ne the rescaled function

� : DA;s 0 7! @
�
[� 1; 1]1+ N

�

(d0; d1) !
s2

�

A
(q0; q1)(s� ):

From item (i ) of Proposition 1.11, we see that if (d0; d1) 2 @DA;s 0 , then

q(s0) 2 SA (s0); (q0; q1)(s0) 2 @̂SA (s0):

From item (ii ) of Proposition 1.12, we see thatq(s) must leaveSA (s) at s = s0, this yields
that s� (d0; d1) = s0. Therefore, the restriction of � to @DA;s 0 is homeomorphic to the
identity mapping, which is impossible thanks to index theorem, and the contradiction is
obtained. This concludes the proof of Proposition 1.10 as well as item (i ) of Theorem 1.1,
assuming that Proposition 1.12 holds.

The proof of Theorem 1.1

As we mentioned in the above, item (i ) of Theorem 1.1 follows from Proposition 1.10
and the proof of item (ii ) is the following:

Proof of item (ii ) of Theorem 1.1. The existence ofu� 2 C2(RN n f 0g) follows from the
technique of Merle [4]. Here, we want to �nd an equivalent formation foru� near the
blowup point x = 0. The case � = 0 was treated in [19]. When� 6= 0, we follow the
method of [19], and no new idea is needed. Therefore, we just sketch the main steps for
the sake of completeness.

We considerK 0 > 0, a constant to be �xed large enough, andjx0j 6= 0 small enough.
Then, we introduce the following function

� (x0; �; � ) =  � 1(t0(x0))u(x; t ); (1.59)

where (�; � ) 2 RN �
h
� t0 (x0 )

T � t0 (x0 ) ; 1
�

, and

(x; t ) =
�
x0 + �

p
T � t0(x0); t0(x0) + � (T � t0(x0))

�
; (1.60)
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with t0(x0) being uniquely determined by

jx0j = K 0

p
(T � t0(x0)) j ln(T � t0(x0)) j: (1.61)

From (1.8), (1.59), (1.60) and (1.61), we derive that

sup
j � j< 2j ln( T � t0 (x0 )) j

1
4

jv(x0; �; 0) � ' 0(K 0)j �
C

1 + ( j ln(T � t0(x0)) j
1
4 )

! 0 asx0 ! 0;

where ' 0(x) =
�

1 + (p� 1)
4p jxj2

� 1
p� 1

. As in [19], we use the continuity with respect to initial

data for equation (1.1) associated to a space-localization in the ballB (0; j� j < j ln(T �
t0(x0)) j

1
4 ) to derive

sup
j � j< j ln( T � t0 (x0 )) j

1
4 ;� 2 [0;1)

jv(x0; �; � ) � v̂K 0 (� )j � � (x0) ! 0; as x0 ! 0; (1.62)

wherev̂K 0 (� ) =
�

(1 � � ) + (p� 1)K 2
0

4p

� � 1
p� 1

.

From (1.60) and (1.62), we deduce

u� (x0) = lim
t ! T

u(x0; t) =  (t0(x0)) lim
� ! 1

v(x0; 0; � ) �  (t0(x0))
�

p � 1
4p

� � 1
p� 1

: (1.63)

Using the relation (1.61), we �nd that

T � t0(x0) �
jx0j2

2K 0j ln jx0jj
and ln(T � t0(x0)) � 2 ln(jx0j); as x0 ! 0; (1.64)

The formula (1.11) then follows from Lemma 1.17, (1.63) and (1.64). This concludes
the proof of Theorem 1.1, assuming that Proposition 1.12 holds.

1.4 Proof of Proposition 1.12.

This section is devoted to the proof of Proposition 1.12, which is the heart of our analysis.
We proceed into two parts. In the �rst part, we derivea priori estimates on q(s) in SA (s).
In the second part, we show that the new bounds are better than those de�ned inSA (s),
except for the �rst two components (q0; q1). This means that the problem is reduced to
the control of a �nite dimensional function (q0; q1), which is the conclusion of item (i ) of
Proposition 1.12. Item (ii ) of Proposition 1.12 is just direct consequence of the dynamics
of q0 and q1. Let us start the �rst part.
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1.4.1 A priori estimates on q(s) in SA(s).

In this part we derive the a priori estimates on the componentsq2; q� ; qe which implies the
conclusion of Proposition 1.12. Firstly, let us give some dynamics ofq0; q1 = ( q1;i )1� i � N and
q2 = ( q2;i;j )1� i;j � N . More precisely, we claim the following.

Proposition 1.13 (Dynamics of equation (1.40)). There existsA4 � 1; such that8A � A4

there existss4(A) � 1, such that the following holds for alls0 � s4(A): Assume that for all
s 2 [s0; s1] for somes1 � s0, q(s) 2 SA (s), then, we have for alls 2 [s0; s1]:

(i ) (ODE satis�ed by the positive and null modes)

�
�
�q0

m (s) �
�

1 �
m
2

�
qm (s)

�
�
� �

C
s2

; 8m = 0; 1; (1.65)

and �
�
�
�q

0
2(s) +

2
s

q2(s)

�
�
�
� �

C ln s
s3

: (1.66)

(ii ) (Control of the negative and outer parts)






q� (y; s)
1 + jyj3






L 1

�
C
s2

�
(s � � ) + e� s� �

2 A + e� (s� � )2
A2

�
; (1.67)

kqe(s)kL 1 �
C
p

s

�
(s � � ) + A2e� s� �

p + Aes� �
�

: (1.68)

Proof. We proceed in two steps:

- In the �rst step we project equation (1.40) to write ODEs satis�ed byqm for m = 0; 1; 2.

- In the second step we use the integral form of equation (1.40) and the dynamics of the
linear operator L + V to derive a priori estimates onq� and qe.

Part 1: ODEs satisfying by the positive and null modes

We give the proof of (1.65) and (1.66) in this step. However, we only deal with the
proof of (1.66) because the other one is the same the proof (1.65).

In fact, by formula (1.51) and equation (1.40), we write for each 1� i; j � N ,

�
�
�
�q

0
2;i;j (s) �

Z

RN
[L q+ V q+ B(q) + R(y; s) + D(q; s)] �

�
yi yj

8
�

� i;j

4

�
�dy

�
�
�
� � Ce� s: (1.69)

Using the assumptionq(s) 2 SA (s) for all s 2 [s0; s1], we derive the following estimates
for all s 2 [s0; s1]: �

�
�
�

Z
L (q)�

�
yi yj

8
�

� i;j

4

�
�dy

�
�
�
� �

C
s3

:
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On the other hand, from Lemmas 1.24, 1.25 and 1.26, we have
�
�
�
�

Z
V q�

�
yi yj

8
�

� i;j

4

�
�dy +

2
s

q2;i;j (s)

�
�
�
� �

CA
s3

;
�
�
�
�

Z
B(q)�

�
yi yj

8
�

� i;j

4

�
�dy

�
�
�
� �

C
s3

;
�
�
�
�

Z
R�

�
yi yj

8
�

� i;j

4

�
�dy

�
�
�
� �

C
s3

;
�
�
�
�

Z
D(q; s)�

�
yi yj

8
�

� i;j

4

�
�dy

�
�
�
� �

C ln s
s3

:

Gathering all these above estimates to (1.69) yields
�
�
�
�q

0
2;i;j +

2
s

q2;i;j

�
�
�
� �

C ln s
s3

:

This concludes the proof of (1.66).

Part 2: Control of the negative and outer parts

We give the proof of (1.67) and (1.68) in this part. In fact, the control ofq� and qe

mainly bases on the dynamics of the linear operatorL + V. In particular, we use the
following integral form of equation (1.40): for eachs � � � s0,

q(s) = K (s; � )q(� ) +
Z s

�
K (s; � ) [B (q)( � ) + R(� ) + D(q; � )] d� =

4X

i =1

#i (s; � ); (1.70)

wheref K (s; � )gs� � is de�ned by
�

@sK (s; � ) = ( L + V)K (s; � ); s > �;
K (�; � ) = Id;

(1.71)

and

#1(s; � ) = K (s; � )q(� ); #2(s; � ) =
Z s

�
K (s; � )B (q)( � )d�;

#3(s; � ) =
Z s

�
K (s; � )R(:; � )d�; # 4(s; � ) =

Z s

�
K (s; � )D(q; � )d�:

As a matter of fact, in (1.70), it is clear to see the strong inuence of the kernelK . It is
therefore convenient to recall the following result which the dynamics of the linear operator
K = L + V.

Lemme 1.14 (A priori estimates of the linearized operator in the decomposition in (1.53)).
For all � � � 0, there existss5(� � ) � 1, such that the following holds: If� � s5(� � ) and
v 2 L2

� (RN ) satisfying

2X

m=0

jvm j +






v�

1 + jyj3






L 1 (RN )

+ kvekL 1 (RN ) < 1 ; (1.72)
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then, 8s 2 [�; � + � � ], the function � (s) = K (s; � )v satis�es


 � � (y;s)

1+ jyj3





L 1 (RN )
�

Ces� � ((s� � )2+1 )
s (jv0j + jv1j +

p
sjv2j)

+ Ce� ( s� � )
2



 v�

1+ jyj3





L 1 (RN )
+ C e� ( s� � ) 2

s
3
2

kvekL 1 (RN ) ;
(1.73)

and

k� e(y; s)kL 1 (RN ) � Ces� �

 
2X

l=0

s
l
2 jvl j + s

3
2






v�

1 + jyj3






L 1 (RN )

!

+ Ce� s� �
p kvekL 1 (RN ) : (1.74)

Proof. The proof of this result was given by Bricmont and Kupiainen [2] in one dimensional
case. It was then extended in higher dimensional case in Nguyen and Zaag [14]. We kindly
refer interested readers to Lemma 2.9 in [14] for a detail of the proof.

In view of formula (1.70), we see that Lemma 1.14 plays an important role in deriving
the new bounds on the componentsq� and qe. Indeed, given bounds on the components
of q, B(q), D(q) and R, we directly apply Lemma 1.14 withK (s; � ) replaced by K (s; � )
and then integrating over � to obtain estimates onq� and qe. In particular, we claim the
following which immediately follows (1.67) and (1.68) by addition.

Lemme 1.15. For all ~A � 1; A � 1; � � � 0, there existss6(A; � � ) � 1 such that 8s0 �
s6(A; � � ) and q(s) 2 SA (s); 8s 2 [�; � + � � ] where� � s0, we have the following properties:

a) Case� � s0: for all s 2 [�; � + � � ],

i ) The linear term #1(s; � )






(#1(s; � )) �

1 + jyj3






L 1 (RN )

� C

�
1 + e� s� �

2 A + e� (s� � )2
A2

�

s2
;

k(#1(s; � ))ekL 1 (RN ) � C
A2e� s� �

p + Aes� �

s
1
2

:

ii ) The quadratic term#2(s; � )





(#2(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2+ �
; k(#2(s; � ))ekL 1 (RN ) �

C(s � � )

s
1
2 + �

:

where� = � (p) > 0.

iii ) The correction term #3(s; � )





(#3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#3(s; � ))ekL 1 (RN ) �

C(s � � )

s
3
4

:

iv ) The nonlinear term #4(s; � )





(#4(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#4(s; � ))ekL 1 (RN ) �

C(s � � )

s
3
4

:
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b) Case� = s0, we assume in addition

jqm (s0)j �
~A

s2
0
; jq2(s0)j �

~A ln2 s0

s2
0

;





q� (y; s0)
1 + jyj3






L 1 (RN )

�
~A

s2
0
; kqe(s0)kL 1 (RN ) �

~A
p

s0
:

Then, for all s 2 [s0; s0 + � � ] we havea) and the following properties:






(#1(s; s0)) �

1 + jyj3






L 1 (RN )

�
C ~A
s2

; k(#1(s; s0))ekL 1 (RN ) �
C ~A(1 + es� s0 )

p
s

:

Proof. The proof simply follows from the de�nition of SA and Lemma 1.14.

In fact, from the fact that q 2 SA (s), we derive that Lemmas 1.24 , 1.25 and 1.26 hold.
Then, we obtain the following:

2X

m2 Nn ;jmj=0

jB (q)m (s)j �
C
s3

;






B (q)� (s)
1 + jyj3






L 1 (RN )

�
C

s2+ �
; kB(q)e(s)kL 1 (RN ) �

C

s
1
2 + �

;

and

2X

m2 Nn ;jmj=0

jRm (s)j �
C
s2

;






R� (s)
1 + jyj3






L 1 (RN )

�
C

s2+ 1
2

; kRe(s)kL 1 (RN ) �
C

s
3
4

;

and

2X

m2 Nn ;jmj=0

jD(q)m (s)j +






D(q)� (s)
1 + jyj3






L 1 (RN )

�
C ln s

s3
; kD(q)e(s)kL 1 (RN ) �

C

s
3
4

;

where� = � (p) > 0.

We simply inject these bounds to the a priori estimates given in Lemma 1.14 to obtain
the bounds on

�
#m )� and

�
#m

�
e

for m = 2; 3; 4.
On the other hand, the estimates on#1 directly follow from Lemma 1.14 and the fact

that q(s) 2 SA (s).

Thus, we get the conclusion the proof of Lemma 1.15.

Bearing in mind that we are in the proof of Proposition 1.13. Indded, from formula
(1.70) and Lemma 1.15, estimates in (1.67) and (1.68) simply follow by addition. Thus,
conclusion of Proposition 1.13 follows.
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1.4.2 Conclusion of Proposition 1.12

In this part, we give the proof of Proposition 1.12 which is considered as a consequence of
the dynamics of equation (1.40) given in Proposition 1.13. Indeed, item (i ) of Proposition
1.12 directly follows from the following result:

Proposition 1.16 (Control of q(s) by (q0; q1)(s) in SA (s)) . There existsA7 � 1 such that
8A � A7, there existss7(A) � 1 such that for all s0 � s7(A), the following holds: If we
have

a) q(s0) =  d0 ;d1 (y), where(d0; d1) 2 DA;s 0 ,

b) For all s 2 [s0; s1], q(s) 2 SA (s).

Then, for all s 2 [s0; s1], we have

8i; j 2 f 1; � � � ; N g; jq2;i;j (s)j <
A2 ln2 s

s2
; (1.75)






q� (y; s)
1 + jyj3






L 1 (RN )

�
A

2s2
; kqe(s)kL 1 (RN ) �

A2

2
p

s
; (1.76)

whereDA;s 0 is introduced in Proposition 1.11 and d0 ;d1 is de�ned as in (1.54).

Proof. Since the proof of (1.76) is similar to the one written in [13], we only deal with the
proof of (1.75) and refer the readers to Proposition 3.7 in [13] for the proof of (1.76). We
argue by contradiction to prove (1.75).

Indeed, let i; j 2 f 1; � � � ; N g and assume that there iss� 2 [s0; s1] such that

8s 2 [s0; s� ); jq2;i;j (s)j <
A2 ln2(s)

s2
and jq2;i;j (s� )j =

A2 ln2(s� )
s2

�
:

In addition to that, we assume thatq2;i;j (s� ) > 0 (the negative case is the same), then,
we have on the one hand

q0
2;i;j (s� ) �

d
ds

�
A2 ln2 s

s2

�

s= s�

=
2A2 ln s�

s3
�

�
2A2 ln2 s�

s3
�

:

On the other hand, we have from (1.66),

q0
2;i;j (s� ) � �

2A2 ln2 s�

s3
�

+
C ln s�

s3
�

:

The contradiction then follows if 2A2 > C . This concludes the proof of Proposition 1.16.

We now come back to the proof of item (i ) of Proposition 1.12. Indeed, from Proposition
1.16, we see that ifq(s) 2 @SA (s1), then, the �rst two components (q0; q1)(s1) must be in
@̂SA (s1), which is the conclusion of item (i ).
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The proof of item (ii ): Indeed, it is easy to deduce from (1.65) the following property:

If q0(s1) = "0
A
s2

1
for some"0 2 f� 1; 1g, then, the sign of

d
ds

q0 (s1) is opposite to the sign of

d
ds

�
"0A
s2

�
(s1)

Moreover,q1;i has the same property asq0, for all i 2 f 1; :::; Ng.

Hence, (q0; q1)(s) will actually leave ŜA (s) at s1 � s0 for s0 large enough. Thus concludes
the proof of Proposition 1.12.

1.5 Some elementary lemmas.

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

Lemme 1.17. For each T > 0, there exists only one positive solution of equation(1.9).
Moreover, the solution satis�es the following asymptotic:

 (t) � � � (T � t)� 1
p� 1 j ln(T � t)j �

�
p� 1 ; as t ! T; (1.77)

where� � = ( p � 1)� 1
p� 1

� p� 1
2

� �
p� 1 .

Proof. Let us consider the following ODE

 0 =  p ln� ( 2 + 2) ;  (0) > 0: (1.78)

In fact, the uniqueness and local existence are derived by the Cauchy-Lipschitz property.

Let Tmax ; Tmin be the maximum and minimum time of the existence of the positive
solution, i.e.  (t) exists for all t 2 (Tmin ; Tmax ). We now prove that Tmax < + 1 and
Tmin = �1 . By contradiction, we suppose that the solution exists on [0; + 1 ), we have

lim
t1 ! + 1

Z t1

0

 0

 p ln� ( 2 + 2)
dt = lim

t1 ! + 1

Z t1

0
dt = + 1 :

However, we can prove that
Rt1

0
 0

 p ln � ( 2+2) dt is bounded by using the fact that

Z + 1

0

1
tp ln� (t2 + 2)

dt < + 1 ; for all � 2 R and p > 1:

The contradiction then follows. In particular, we can proveTmin = �1 by using a similar
argument.

Thus, we have proved that for every solution of (1.78), there exists a maximal time
Tmax 2 (0; + 1 ) such that  exists on (�1 ; Tmax ) and

 (t) ! + 1 as t ! Tmax :

In addition to that, if  1, a solution of (1.78) which blows up atT1, then,

 (t + T1 � T2) blows up at T2:
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Then, we can derive that for everyT > 0, there exists T a solution of (1.78) such that

 T (t) ! + 1 as t ! T:

We now aim at proving the uniqueness. Indeed, we suppose that 1;  2 satisfy equation
(1.78) and blow up a the same timeT > 0. If there existst � < T such that

 1(t � ) 6=  2(t � ):

By using the following fact

T � t =
Z + 1

 (t )

du
up ln� (u2 + 2)

; (1.79)

we deduce that Z  2 (t � )

 1 (t � )

du
up ln� (u2 + 2)

= 0:

This is impossible and we obtain the uniqueness.

Let us now prove (1.77). Using (1.79), we deduce that for all� 2 (0; p � 1), there exists
t � such that for all t 2 (t � ; T), we have

Z + 1

 (t )

du
up+ �

� T � t �
Z + 1

 (t )

du
up� �

:

This follows for all t 2 (t � ; T):

(p � 1 + � )� 1
p� 1+ � (T � t)� 1

p� 1+ � �  (t) � (p � 1 � � )� 1
p� 1� � (T � t)� 1

p� 1� � ;

from which we have
ln  (t) � �

1
p � 1

ln(T � t) as t ! T:

So, we have

ln( 2(t) + 2) � �
2

p � 1
ln(T � t) as t ! T:

Hence, we obtain

 0(t) =  p(t) ln � ( 2(t) + 2) �  p

�
�

2
p � 1

ln(T � t)
� �

as t ! T; (1.80)

which yields
 0

 p
�

�
2

p � 1

� �

j ln(T � t)j � as t ! T:

This implies

1
p � 1

 1� p(t) �
�

2
p � 1

� � Z T

t
j ln(T � v)j � dv �

�
2

p � 1

� �

(T � t)j ln(T � t)j � as t ! T;

which concludes the proof of (1.77).
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Lemme 1.18. Let us consider� 2 (0; 1); � > 0 and 0 < h < 1. Then, the following integral

I (h) =
Z 1

h
(s � h)� � s� � ds

satis�es:

i ) if � + � > 1, then

I (h) �
�

1
1 � �

+
1

� + � � 1

�
h1� � � � :

ii ) If � + � = 1, then

I (h) �
1

1 � �
+ j ln hj:

iii ) If � + � < 1, then

I (h) �
1

1 � � � �
:

Proof. See Lemma 2.2 of Giga and Kohn [8].

Lemme 1.19 (A version of Gronwall Lemma). If y(t); r (t) and q(t) are continuous func-
tions de�ned on [t0; t1] such that

y(t) � y0 +
Z t

t0

y(s)r (s)ds+ +
Z t

t0

h(s)ds;8t 2 [t0; t1]:

Then,

y(t) � e

Z t

t0

r (s)ds
2

6
4y0 +

Z t

t0

h(s)e
�

Z s

t0

r (� )d�
ds

3

7
5 :

Proof. See Lemma 2.3 of Giga and Kohn [8].

Lemme 1.20. For each T2 < T; � > 0. There exists� = � (T; T2; �; n; p ) > 0 such that for
eachv(x; t ) satisfying

j@tv � � vj � Cjvjp ln� (v2 + 2) ; 8jxj � �; t 2 (T2; T); � > 0; (1.81)

and
jv(x; t )j � � (t); 8jxj � �; t 2 (T2; T); (1.82)

where (t) is the unique positive solution of(1.9). Then, v(x; t ) does not blow up at(0; T).

Proof. Since the argument is almost the same as in [8] treated for the case� = 0, we only
sketch the main step for the sake of completeness. Let� 2 C1 (RN ); � = 1 if jxj � �

2 ; � =
0 if jxj � � , and consider! = �v satisfying

@t ! � � ! = f � + g; (1.83)
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where
f = @tv � � v and g = v� � � 2r :(vr � ):

By using the Duhamel's formula, we write

! (t) = e(t � T2 )� (! (T2)) +
Z t

T2

�
e(t � � )� (�f ) + e(t � � )� (g)

�
d�; 8t 2 [T2; T); (1.84)

whereet � is the heat semigroup satisfying the following properties: for allh 2 L1 ,

ket � hkL 1 (RN ) � k hkL 1 (RN ) and ket � r hkL 1 (RN ) � Ct � 1
2 khkL 1 (RN ) ; 8t > 0:

The formula (1.84) then yields

k! (t)kL 1 (RN ) � C + C
Z t

T2

k! (� )kL 1 (RN )kjvjp� 1 ln� (v2 + 2)( � )kL 1 (jx j� � )

+ C
Z t

T2

(t � � )� 1
2 kv(� )kL 1 (jx j� � )d�; (1.85)

for some constantC = C(n; p; �; T; T 2; � ) > 0.

From (1.81), (1.82) and Lemma (1.17), we �nd that for alljxj � � , and � 2 [T2; T),

jv(� )jp� 1 ln� (v2(� ) + 2) � C p� 1(� ) ln � ( 2(� ) + 2) � C(T � � )� 1;

and
jv(� )j � C(T � � )� 1

p� 1 j ln(T � � )j �
�

p� 1 :

The estimate (1.85) becomes

k! (t)kL 1 (RN ) � C + C� p� 1
Z t

T2

(T � � )� 1k! (� )kL 1 (RN )d�

+ C�
Z t

T2

(t � � )� 1
2 (T � � )� 1

p� 1 j ln(T � � )j �
�

p� 1 d�: (1.86)

In particular, we now consider 0< � � 1
2 �xed, then we have:

(T � � )� 1
p� 1 j ln(T � � )j �

�
p� 1 � C(�; � )(T � � )� ( 1

p� 1 + � ); 8� 2 (T2; T):

Hence, we rewrite (1.86) as follows

k! (t)kL 1 (RN ) � C + C� p� 1
Z t

T2

(T � � )� 1k! (� )kL 1 (RN )d�

+ C�
Z t

T2

(t � � )� 1
2 (T � � )� ( 1

p� 1 + � )d�; (1.87)

whereC(n; p; �; �; �; �; p ). Beside that, by changing variabless = T � �; h = T � t we have

Z t

T2

(t � � )� 1
2 (T � � )� � (p;� )d� =

Z T � T2

h
(s � h)� 1

2 (s)� � (p;� )ds; (1.88)



58

where� (p; � ) =
�

1
p� 1 + �

�
.

Case 1: If � (p; � ) < 1
2 , by using iii ) of Lemma 1.18, we deduce from (1.87) and (1.88)

that

k! (t)kL 1 (RN ) � C + C� p� 1
Z t

T2

(T � s)� 1k! (s)kL 1 (RN )ds;

Therefore, by Lemma 1.19,

k! (t)kL 1 (RN ) � C(T � t)� C� p� 1
; (1.89)

Choosing� small enough such thatC� p� 1 � 1
2(p� 1) . Then, we conclude from (1.89) that

jv(x; t )j � C(T � t)� 1
2( p� 1) ; for jxj �

1
2

; t � T: (1.90)

By using parabolic regularity theory and the same argument as in Lemma 3.3 of [7], we
can prove that (1.90) actually prevents blowup.

Case 2: � (�; p ) = 1
2 ; it is similar to the �rst case, by using ii ) of Lemma 1.18, (1.87)

and (1.88) we yield

k! (t)kL 1 (RN ) � C(1 + j ln(T � t)j) + C� p� 1
Z t

T2

(T � s)� 1k! (s)kL 1 (RN )ds:

However, we derive from Lemma 1.19 that

k! (t)kL 1 (RN ) � C(T � t)� K� p� 1
; (1.91)

where C = C(n; p; �; T; T 2; � ). We now take � is small enough such thatC� p� 1 � 1
2(p� 1) ,

which follows (1.90).

Case 3: � (�; p ) > 1
2 ; by using Lemmas 1.18 1.19 and arguments similar to obtain

jv(x; t )j � C(T � t)
1
2 � � (p;� ) ; 8jxj � �; t 2 [T2; T):

Repeating the step in �nite steps would end up with (1.90). This concludes the proof of
Lemma 1.20.

The following lemma gives the asymptotic behaviors ofh(s) ans  1(s) de�ned in (1.15)
and (1.16), respectively.

Lemme 1.21. Let h(s) and  1(s) be de�ned as in (1.15) and (1.16), respectively. Then
we have

i )
1

ln( 2
1(s) + 2)

=
p � 1

2s
+

� (p � 1) ln s
2s2

+ O
�

1
s2

�
; as s ! + 1 : (1.92)

ii )

h(s) =
1

p � 1

�
1 �

�
s

�
� 2 ln s

s2

�
+ O

�
1
s2

�
; as s ! + 1 : (1.93)
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Proof. i ) Consider  (t) the unique positive solution of (1.9). We have

T � t =
Z + 1

 (t )

dx
xp ln� (x2 + 2)

: (1.94)

An integration by parts yields

T � t =
1

 p� 1(t) ln � ( 2(t) + 2)

�
1

p � 1
�

2�
(p � 1)2 ln( 2(t) + 2)

+ O
�

1
(ln2( 2(t) + 2))

��
:

(1.95)
Let us write  (t) =  1(s) where s = � log(T � t), then we have

ln( 1(s)) =
s

p � 1
�

�
(p � 1)

ln (ln(  1(s))) + O (1) ; as s ! + 1 ; (1.96)

from which, we deduce that

ln( 1(s)) =
s

p � 1
�

� ln (s)
p � 1

+ O(1); as s ! + 1 ; (1.97)

which is the conclusion of itemi).

ii ) From (1.15) and (1.95), we have

h(s) =
1

p � 1
�

2�
(p � 1)2 ln( 2

1(s) + 2)
+ O

�
1

ln2( 2
1(s) + 2)

�
: (1.98)

Using (1.92) we conclude the proof of (1.93) as well as Lemma (1.21).

Lemme 1.22. Let N be de�ned as in(1.23), we have

N ( �w; s) =
p �w2

2
+ O

�
j �wj ln s

s2

�
+ O

�
j �wj2

s

�
+ O(j �wj3) as ( �w; s) ! (0; + 1 ): (1.99)

Proof. From the de�nition (1.23) of N , let us write

N ( �w; s) = N1( �w; s) + N2( �w; s);

where

N1( �w; s) = h(s)
�
j �w + 1jp� 1( �w + 1) � ( �w + 1)

�
� �w;

N2( �w; s) = h(s)j �w + 1jp� 1( �w + 1)
�

ln� ( 2
1( �w + 1) 2 + 2)

ln� ( 2
1 + 2)

� 1
�

:

From (1.93) and a Taylor expansion, we �nd that

N1( �w; s) =
p �w2

2
�

� �w
s

+ O
�

j �wj ln s
s2

�
+ O

�
j �wj2

s

�
+ O(j �wj3) as ( �w; s) ! (0; + 1 ):

We now claim the following

N2( �w; s) =
� �w
s

+ O
�

j �wj ln s
s2

�
+ O

�
j �wj2

s

�
as ( �w; s) ! (0; + 1 ); (1.100)
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then, the proof of (1.99) simply follows by addition.
Let us now give the proof of (1.100) to complete the proof of Lemma 1.22 . We set

f ( �w) = ln � ( 2
1( �w + 1) 2 + 2) ; j �wj �

1
2

:

We apply Taylor expansion tof ( �w) at �w = 0 to �nd that

f ( �w) = ln � ( 2
1 + 2) + 2 � ln� � 1( 2

1 + 2)
 2

1

 2
1 + 2

�w +
f 00(� )

2
( �w)2;

where� is between 0 and �w, and

f 00(� ) = � (� � 1) ln� � 2( 2
1(� + 1) 2 + 2)

�
2(� + 1)  2

1

 2
1(� + 1) 2 + 2

� 2

+ � ln� � 1( 2
1(� + 1) 2 + 2)

(4 1 � 2 4
1(� + 1) 2)

( 2
1(� + 1) 2 + 2) 2

:

Sincej� j � 1
2 , one can show that

jf 00(� )j � C ln� � 1( 2
1 + 2) ; 8j� j �

1
2

:

Thus, we have

f ( �w) = ln � ( 2
1 + 2) + 2 � ln� � 1( 2

1 + 2) �w + O
�
j �wj2 ln� � 1( 2

1 + 2)
�

+ O
�

j �wj ln� � 1( 2
1 + 2)

 2
1

�
;

as s ! + 1 . This yields

ln� ( 2
1( �w + 1) 2 + 2)

ln� ( 2
1 + 2)

= 1 +
2� �w

ln( 2
1 + 2)

+ O
�

j �wj2

ln( 2
1 + 2)

�
+ O

�
j �wj

ln( 2
1 + 2)  2

1

�
;

as ( �w; s) ! (0; + 1 ), from which and (1.92) we derive

ln� ( 2
1( �w + 1) 2 + 2)

ln� ( 2
1(s) + 2)

� 1 =
� (p � 1) �w

s
+ O

�
ln sj �wj

s2

�
+ O

�
j �wj2

s

�
: (1.101)

From the de�nition of N2, (1.93), (1.101) and the fact that

j �w + 1jp� 1( �w + 1) = 1 + p �w + O(j �wj2) as �w ! 0;

we conclude the proof of (1.100) as well as Lemma 1.22.

Lemme 1.23. For all jzj � K 1, then there existsC(K 1) such that8s � 1, we have
�
�
�
�h(s)jzjp� 1z

ln� ( 2
1z2 + 2)

ln� ( 2
1 + 2)

�
jzjp� 1z
p � 1

�
�
�
� �

C(K 1)
s

; (1.102)

whereh(s) and  1(s) are de�ned in (1.15) and (1.16), respectively.
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Proof. We considerf (z) = ln � ( 2
1z2 + 2) ; 8z 2 R, then we write

ln� ( 2
1z2 + 2) = ln � ( 2

1 + 2) +
Z jzj

1
f 0(v)dv:

Recall from (1.17) that h(s) = 1
p� 1 + O( 1

s ), we have then
�
�
�
�h(s)jzjp� 1z

ln� ( 2
1z2 + 2)

ln� ( 2
1 + 2)

�
jzjp� 1z
p � 1

�
�
�
� �

Cjzjp

ln� ( 2
1 + 2)

Z jzj

1
jf 0(v)jdv +

Cjzjp

s
: (1.103)

From item i) of Lemma 1.21 that shows 1
ln(  2

1 +2) � C
s . Hence, it is su�cient to prove

the following

A(z) :=
jzjp

ln� � 1( 2
1 + 2)

Z jzj

1
jf 0(v)jdv � C(K 1); 8jzj � K 1;

where

f 0(v) = � ln� � 1( 2
1v2 + 2)

2v 2
1

 2
1v2 + 2

:

For 1 � j zj � K 1, it is trivial to see that jA(z)j � C(K 1): For jzj < 1, we consider two
cases:

- Case 1:� � 1 � 0, then

A(z) � 2j� jj zjp
Z 1

jzj

1
v

dv � C(K 1):

- Case 2:� � 1 < 0, then

A(z) � 2j� jj zjp
ln� � 1( 2

1z2 + 2)
ln� � 1( 1 + 2)

Z 1

jzj

1
v

dv:

+ If  1z2 � 1 then

A(z) � 2j� j
ln1� � ( 2

1 + 2)
ln1� � ( 1 + 2)

jzjp
Z 1

jzj

1
v

dv � C(K 1):

+ If  1z2 � 1 then jzj � v �  
� 1

2
1 we deduce that

jA(z)j � 2j� j 
1� p

2
1

ln1� � ( 2
1 + 2)

ln1� � (2)
jzj

Z 1

jzj
� C(K 1):

This concludes the proof of Lemma 1.23.

Lemme 1.24 (Control of the nonlinear term D in SA (s)) . For all A � 1, there exists
� 3(A) � 1 such that for all s � � 3(A); q(s) 2 SA (s) implies

8jyj � 2K
p

s; jD(q; s)j � C(K )
ln s(1 + jyj)4

s3
; (1.104)

and
kD(q; s)kL 1 (RN ) �

C
s

: (1.105)
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Proof. From the de�nition (1.44) of D, let us decompose

D(q; s) = D1(q; s) + D2(q; s);

where

D1(q; s) =
�

h(s) �
1

p � 1

�
�
jq+ ' jp� 1(q+ ' ) � (q+ ' )

�
;

D2(q; s) = h(s)jq+ ' jp� 1(q+ ' )L(q+ '; s );

and h(s) admits the asymptotic behavior (1.93),L is de�ned in (1.45). The proof of (1.104)
will follow once the following is proved: for alljyj � 2K

p
s

�
�
�
�D1 �

�
� (jyj2 � 2N )

4ps2
�

�
s

q
� �

�
�
� � C

(1 + jyj4) ln s
s3

; (1.106)

and �
�
�
�D2 +

�
� (jyj2 � 2N )

4ps2
�

�
s

q
� �

�
�
� � C

(1 + jyj4) ln s
s3

: (1.107)

Let us give a proof of (1.106). From the de�nition ofSA (s), we note that if q(s) 2 SA (s),
then

8y 2 RN ; jq(y; s)j �
CA2 ln2 s(1 + jyj3)

s2
; (1.108)

kq(s)kL 1 (RN ) �
CA2

p
s

: (1.109)

From the de�nition (1.38) of ' and (1.109), we see that for alljyj � 2K
p

s, there exists a
positive constant C(K) such that

0 <
1

C(K )
� (q+ ' )(y; s) � C(K ): (1.110)

Using Taylor expansion and the asymptotic (1.93), we write

D1(q; s) =
�

�
�

(p � 1)s
+ O

�
ln s
s2

��
�
' p � ' +

�
p' p� 1 � 1

�
q
�

+ O
�
q2

�
: (1.111)

Using again the de�nition of ' and a Taylor expansion, we derive

' p = 1 �
(jyj2 � 2N )

4s
+ O

�
1 + jyj4

s2

�
;

' = 1 �
(jyj2 � 2N )

4ps
+ O

�
1 + jyj4

s2

�
;

p' p� 1 � 1 = p � 1 �
(p � 1)(jyj2 � 2N )

4ps
+ O

�
1 + jyj4

s2

�
;

as s ! + 1 . Inserting (1.108) and these estimates into (1.111) yields (1.106).

We now turn to the proof of (1.107). Recall from (1.45) the de�nition ofL,

L(q+ '; s ) =
2� 2

1

ln( 2
1 + 2)(  2

1 + 2)
(q+ ' � 1) +

1
ln� ( 2

1 + 2)

Z q+ '

1
f 00(v)(q+ ' � v)dt;
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wheref (v) = ln � ( 2
1v2 + 2) ; v 2 R. From (1.110) and a direct computation, we estimate

�
�
�
�

1
ln� ( 2

1 + 2)

Z q+ '

1
f 00(v)(q+ ' � v)dv

�
�
�
� � C(K )

jq+ ' � 1j2

s
;

which yields �
�
�
�L(q+ '; s ) �

2� 2
1(q+ ' � 1)

ln( 2
1 + 2)(  2

1 + 2)

�
�
�
� � C(K )

jq+ ' � 1j2

s
: (1.112)

From (1.92) and (1.112), we then have
�
�
�
�L(q+ '; s ) �

� (p � 1)(q+ ' � 1)
s

�
�
�
� � C(K )

�
jq+ ' � 1j2

s
+

ln sjq+ ' � 1j
s2

�
;

and beside that we have

jq+ ' � 1j �
C(1 + jyj2

s
;

imply that �
�
�
�L(q+ '; s ) �

� (p � 1)(q+ ' � 1)
s

�
�
�
� � C(K )

ln s(1 + jyj4)
s3

; (1.113)

Moreover, from de�nition of D2 and (1.113) we deduce that

�
�
�D2(q; s) �

�
s

�
' p+1 � ' p + (( p + 1) ' p � p' p� 1)q

� �
�
� � C

(1 + jyj4) ln s
s3

;

and

' p+1 � ' p = �
(jyj2 � 2N )

4ps
+ O

�
1 + jyj4

s2

�
; as ;

(p + 1) ' p � p' p� 1 = 1 �
(jyj2 � 2N )

2s
+ O

�
1 + jyj4

s2

�
; as ;

as s ! + 1 which yield (1.107).

We now give a proof to (1.105). From (1.93) and the boundedness ofq and ' , we have

jD1(q; s)j �
C
s

:

In fact, it is su�cient to prove that for all y 2 RN ,

jD2(q; s)j �
C(K )

s
;

Using the de�nition of L in (1.45), we deduce that

D2(q; s) = h(s)jq+ ' jp� 1(q+ ' )
ln� ( 2

1z2 + 2)
ln� ( 2 + 2)

� h(s)jq+ ' jp� 1(q+ ' ):

Using Lemma 1.23, we obtain the following

jD2(q; s)j �
C(K )

s
:

This completes the proof of Lemma 1.24.
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Lemme 1.25. When s large enough, then we have for ally 2 RN :

i ) Estimates onV:

jV(y; s)j �
C(1 + jyj2)

s
; 8y 2 RN ;

and

V = �
(jyj2 � 2N )

4s
+ ~V with ~V = O

�
1 + jyj4

s2

�
; 8jyj � K

p
s:

ii ) Estimates onR

jR(y; s)j �
C
s

; 8y 2 Rn ;

and

R(y; s) =
cp

s2
+ ~R(y; s) with ~R = O

�
1 + jyj4

s3

�
; 8jyj � K

p
s:

Proof. The proof simply follows from Taylor expansion. We refer to Lemmas B.1 and B.5
in [19] for a similar proof.

Lemme 1.26 (Estimates onB(q)). For all A > 0 there exists� 5(A) > 0 such that for all
s � � 5(A); q(s) 2 SA (s) implies

jB (q)j � Cjqj2; 8jyj � 2K
p

s; (1.114)

and
kB(q)kL 1 (RN ) � Cjqj �p; (1.115)

with �p = min( p;2).

Proof. See Lemma 3.6 in [13] for a same proof of this lemma.
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Chapter 2

Pro�le for the imaginary part of a
blowup solution for a complex valued
semilinear heat equation 1

G. K. Duong

Abstract: In this paper, we consider the following complex-valued semilinear heat
equation

@tu = � u + up; u 2 C;

in the whole spaceRN , where p 2 N; p � 2. We aim at constructing for this equation a
complex solutionu = u1 + iu 2, which blows up in �nite time T and only at one blowup point
a, with the following asymptotic behaviors

u(x; T ) �
�

(p � 1)2jx � aj2

8pj ln jx � ajj

� � 1
p� 1

;

u2(x; T ) �
2p

(p � 1)2

�
(p � 1)2jx � aj2

8pj ln jx � ajj

� � 1
p� 1 1

j ln jx � ajj
; as x ! a:

Note that the imaginary part is non-zero and that it blows up also at pointa. Our method
relies on two main arguments: the reduction of the problem to a �nite dimensional one and
a topological argument based on the index theory to get the conclusion.

Mathematics Subject Classi�cation: 35K55, 35K57 35K50, 35B44 (Primary);
35K50, 35B40 (Secondary).

Keywords: Blowup solution, Blowup pro�le, Semilinear complex heat equation, non
variation heat equation.

1 This work was accepted for publication in J. Funct. Anal (2019).
Doi: 10.1016/j.jfa.2019.05.009
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2.1 Introduction

In this work, we are interested in the following complex-valued semilinear heat equation
(

@tu = � u + F (u); t 2 [0; T);

u(0) = u0 2 L1 ;
(2.1)

where F (u) = up, and u(t) : RN ! C, L1 := L1 (RN ; C) and p > 1. Though our results
hold only whenp 2 N (see Theorem 2.1 below), we keepp 2 R in the introduction, in order
to broaden the discussion.

In particular, when p = 2, model (2.1) evidently becomes
(

@tu = � u + u2; t 2 [0; T);

u(0) = u0 2 L1 :
(2.2)

We remark that equation (2.2) is rigidly related to the viscous Constantin-Lax-Majda equa-
tion with a viscosity term, which is a one dimensional model for the vorticity equation in
uids. The readers can see more in some of the typical works: Constantin, Lax, Majda [2];
Guo, Ninomiya, Shimojo and Yanagida [7]; Okamoto, Sakajo and Wunsch [20]; Sakajo [21]
and [22]; Schochet [23] and their references.

The local Cauchy problem for model (2.1) can be well solved (locally in time) inL1 (RN )
in the case wherep is integer, by using a �xed-point argument. However, whenp is not
integer, the local Cauchy problem has not been sloven yet, up to our knowledge. This
probably comes from the discontinuity ofF (u) on f u 2 R�

� g.

In addition to that, let us remark that equation (2.1) has the following family of space
independent solutions:

uk(t) = �e i 2k�
p� 1 (T � t)� 1

p� 1 ; for any k 2 Z; (2.3)

where� = ( p � 1)� 1
p� 1 . In particular, we have two situations:

+ If p 2 Q, this makes then a �nite number of solutions.

+ If p =2 Q; then, the following set
(

uk(t)
(T � t)

1
p� 1

�
j k 2 Z

)

; (2.4)

is countable and dense in the unit circle ofC.

This latter case (p =2 Q), is somehow intermediate between the case (p 2 Q) and the case
of the twin PDE

@tu = � u + jujp� 1u; (2.5)

which admits the following family of space independent solutions

u� (t) = �e i� (T � t)� 1
p� 1 ;

for any � 2 R, which turns to be in�nite and covers all the unit circle, after rescaling as in
(2.4). In fact, equation (2.5) is certainly much easier than equation (2.1). As a mater of
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fact, it reduces to the scalar case thanks to a modulation technique, as Filippas and Merle
did in [5].

Since the Cauchy problem for equation (2.1) is already hard whenp =2 N, and given that
we are more interested in the asymptotic blowup behavior, rather than the well-posedness
issue, we will focus in our paper on the casep 2 N. In this case, from the Cauchy theory,
the solution of equation (2.1) either exists globally or blows up in �nite time. Let us recall
that the solution u(t) = u1(t) + iu 2(t) blows up in �nite time T < + 1 if and only if it
exists for all t 2 [0; T) and

lim sup
t ! T

fk u1(t)kL 1 (RN ) + ku2(t)kL 1 (RN )g ! + 1 :

If u blows up in �nite time T, a point a 2 RN is called a blowup point if and only if there
exists a sequencef (aj ; t j )g ! (a; T) as j ! + 1 such that

ju1(aj ; t j )j + ju2(aj ; t j )j ! + 1 as j ! + 1 :

The blowup phenomena occur for evolution equations in general, and in semilinear
heat equations in particular. Accordingly, an interesting question is to construct for those
equations a solution which blows up in �nite time and to describe its blowup behavior.
These questions are being studied by many authors in the world. Let us recall some blowup
results connected to our equation:

(i ) The real case: Bricmont and Kupiainen [1] constructed a real positive solution to
(2.1) for all p > 1, which blows up in �nite time T, only at the origin and they also gave
the pro�le of the solution such that






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

1 +
p

j ln(T � t)j
;

where the pro�le f 0 is de�ned as follows

f 0(z) =
�

p � 1 +
(p � 1)2

4p
jzj2

� � 1
p� 1

: (2.6)

In addition to that, with a di�erent method, Herrero and Vel�azquez in [12] obtained the
same result. Later, in [15] Merle and Zaag simpli�ed the proof of [1] and proposed the
following two-step method (see also the note [14]):

- Reduction of the in�nite dimensional problem to a �nite dimensional one.

- Solution of the �nite dimensional problem thanks to a topological argument based on
Index theory.

We would like to mention that this method has been successful in various situations such
as the work of Tayachi and Zaag [24], and also the works of Ghoul, Nguyen and Zaag in [9],
[10] and [8]. In those papers, the considered equations were scale invariant; this property
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was believed to be essential for the construction. Fortunately, with the work of Ebde and
Zaag [4] for the following equation

@tu = � u + jujp� 1u + f (u; r u);

where
jf (u; r u)j � C(1 + jujq + jr ujq

0
) with q < p; q0 <

2p
p + 1

;

that belief was proved to be wrong.

Going on the same direction as [4], Nguyen and Zaag in [18], have achieved the construction
with a stronger perturbation

@tu = � u + jujp� 1u +
� jujp� 1u

lna(2 + u2)
;

where � 2 R; a > 0. Though the results of [4] and [18] show that the invariance under
dilations of the equation in not necessary in the construction method, we might think that
the construction of [4] and [18] works because the authors adopt a perturbative method
around the pure power caseF (u) = jujp� 1u. If this is true with [4], it is not the case for [18].
In order to totally prove that the construction does not need the invariance by dilation,
Duong, Nguyen and Zaag considered in [3], the following equation

@tu = � u + jujp� 1u ln� (2 + u2);

for some where� 2 R and p > 1, where we have no invariance under dilation, not even for
the main term on the nonlinearity. They were successful in constructing a stable blowup
solution for that equation. Following the above mentioned discussion, that work has to be
considered as a breakthrough.

Let us mention that a classi�cation of the blowup behavior of (2.2) was made available
by many authors such as Herrero and Vel�azquez in [12] and Vel�azquez in [25], [26], [27]
(see also Zaag in [30] for some re�nement). More precisely and just to stay in one space
dimension for simplicity, it is proven in [12] that if u a real solution of (2.1), which blows
up in �nite time T and a is a given blowup point, then:

A: Either

sup
jx � aj� K

p
(T � t )j ln( T � t )j

�
�
�
�
�
(T � t)

1
p� 1 u(x; t ) � f 0

 
x � a

p
(T � t)j ln(T � t)j

! �
�
�
�
�

! 0 ast ! T;

for any K > 0 wheref 0(z) is de�ned in (2.6).

B: Or, there exist m � 2; m 2 N and Cm > 0 such that

sup
jx � aj� K (T � t )

1
2m

�
�
�
�
�
(T � t)

1
p� 1 u(x; t ) � f m

 
Cm (x � a)

(T � t)
1

2m

! �
�
�
�
�

! 0 ast ! T;

for any K > 0, wheref m (z) = ( p � 1 + jzj2m )� 1
p� 1 .
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(ii ) The complex case: The blowup question for the complex-valued parabolic equa-
tions has been studied intensively by many authors, in particular for the Complex Ginzburg
Landau (CGL) equation

@tu = (1 + i� )� u + (1 + i� )jujp� 1u: (2.7)

This were some ealier works treated to CGL such as: Zaag [28] for the case where� = 0
and � small enough; Masmoudi and Zaag [16] and Nouaili and Zaag [19]. More precisely,
the authors in [16], generalized the result of [28] and constructed a blowup solution for (2.7)
with p � � 2 � �� � ��p > 0 such that the solution satis�es the following






(T � t)

1+ i�
p� 1 j ln(T � t)j � i� u(:; t) �

�
p � 1 +

bsubj:j2

(T � t)j ln(T � t)j

� � 1+ i�
p� 1







L 1

�
C

1 +
p

j ln(T � t)j
;

where

bsub =
(p � 1)2

4(p � � 2 � �� � ��p )
> 0:

Then, Nouaili and Zaag in [19] has constructed for (2.7) (in case the critical where� = 0
and p = � 2) a blowup solution satisfying







(T � t)

1+ i�
p� 1 j ln(T � t)j � i� u(:; t) � � � i�

 

p � 1 +
bcri j:j2

(T � t)j ln(T � t)j
1
2

! � 1+ i�
p� 1








L 1 (RN )

�
C

1 + j ln(T � t)j
1
4

;

with

bcri =
(p � 1)2

8
p

p(p + 1)
; � =

�
8b

:

As for equation (2.2), there are many works done in dimension one, such as the work
of Guo, Ninomiya, Shimojo and Yanagida, who proved in [7] the following results (see
Theorems 1.2, 1.3 and 1.5 in that work):

(i ) (A Fourier- based blowup criterion). We assume that the Fourier transform of
initial data of (2.2) is real and positive, then the solution blows up in �nite time.

(ii ) (A simultaneous blowup criterion in dimension one) If the initial datau0 = u0
1+ iu 0

2;
satis�es

u0
1 is even; u0

2 is odd with u0
2 > 0 for x > 0:

Then, the fact that the blowup set is compact implies thatu0
1; u0

2 blow up simultaneously.

(iii ) Assume thatu0 = u0
1 + iu 0

2 satisfy

u0
1; u0

2 2 C1(RN ); 0 � u0
1 � M; u0

1 6� M; 0 < u 0
2 � L;



72

lim
jx j! + 1

u0
1(x) = M and lim

jx j! + 1
u0

2 = 0;

for some constantL; M . Then, the solution u = u1 + iu 2 of (2.2), with initial data u0,
blows up at timeT(M ); with u2(t) 6� 0. Moreover, the real partu1(t) blows up only at space
in�nity and u2(t) remains bounded.

Still for equation (2.2), Nouaili and Zaag constructed in [17] a complex solutionu = u1+ iu 2;
which blows up in �nite time T only at the origin. Moreover, the solution satis�es the
following asymptotic behavior






(T � t)u(:; t) � f

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

! 0 ast ! T;

wheref (z) = 1
8+ jzj2 and the imaginary part satis�es the following estimate for allK > 0

sup
jx j� K

p
T � t

�
�
�
�
�
(T � t)u2(x; t ) �

1
j ln(T � t)j2

nX

j =1

Cj

�
x2

j

T � t
� 2

� �
�
�
�
�

�
C(K )

j ln(T � t)j �
; (2.8)

for some (Ci ) i 6= (0 ; :::; 0) and 2 < � < 2 + �; � small enough. Note that the real and the
imaginary parts blow up simultaneously at the origin. Note also that [17] leaves unanswered
the question of the derivation of the pro�le of the imaginary part, and this is precisely our
aim in this paper, not only for equation (2.2), but also for equation (2.1) withp 2 N; p � 2.

Before stating our result (see Theorem 2.1 below), we would like to mention some classi-
�cation results by Harada for blowup solutions of (2.2). As a matter of fact, in [11], he
classi�ed all blowup solutions of (2.2) in dimension one, under some reasonable assumption
(see (2.9), (2.10)), as follows (see Theorems 1.4, 1.5 and 1.6 in that work):

Consideru = u1 + iu 2 a blowup solution of(2.2) in one dimension space with blowup time
T and blowup point� which satis�es

sup
0<t<T

(T � t)ku(t)kL 1 (R) < + 1 : (2.9)

Assume in addition that
lim

s! + 1
kw2(s)kL 2

� (R) = 0; w2 6� 0; (2.10)

where� is de�ned as follows

� (y) =
e� y 2

4

p
4�

; (2.11)

and w2 is de�ned by the following change of variables (also called similarity variables):

w1(y; s) = ( T � t)u1(� + e� s
2 y; t) and w2(y; s) = ( T � t)u2(� + e� s

2 y; t); wheret = T � e� s:

Then, one of the following cases occurs

(C1)

8
<

:

w1 = 1 � c0
s h2 + O( ln s

s2 ) in L2
� (R);

w2 = c2s� me� ( m � 2) s
2 hm + O

�
s� (m+1) e� ( m � 2) s

2 ln s
�

in L2
� (R); m � 2:

(C2)

8
<

:

u = 1 � c1e� (k� 1)sh2k + O(e� (2 k � 1) s
2 ) in L2

� (R);

v = c2e� ( m � 2) s
2 hm + O

�
e� ( m � 1) s

2

�
in L2

� (R); k � 2; m � 2k:
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wherec0 = 1
8 ; c1 > 0; c2 6= 0 and � (y) is de�ned in (2.11) and hj (y) is a rescaled version of

the Hermite polynomial of ordermth de�ned as follows:

hm (y) =
[m

2 ]X

j =0

(� 1)j m!ym� 2j

j !(m � 2j )!
: (2.12)

Besides that, Harada has also given a pro�le to the solutions in similarity variables:

There exist �; �; c > 0 such that

(C1) )

�
�
�
�u �

1
1 + c0s� 1h2

�
�
�
� +

�
�
�
�s

m
2 e

( m � 2) s
2 v �

c2s� m
2 hm

(1 + c0s� 1h2)2

�
�
�
� < cs � � ; (2.13)

for jyj � s(1+ � ) :

(C2) )

�
�
�
�u �

1
1 + c1e� (k� 1)sh2k

�
�
�
� +

�
�
�
�
�
e

( m � 2k ) s
2k v �

c2e� ( k � 1) ms
2k hm

(1 + c1e� (k� 1)sh2k)2

�
�
�
�
�
; (2.14)

for jyj � e
( k � 1+ � ) s

2k :

Furthermore, he also gave the �nal blowup pro�lesThe blowup pro�le of u = u1 + iu 2 is
given by

(C1) )

8
><

>:

u1(x; T ) = 2
c0

�
j ln jx jj

x2

�
(1 + o(1));

u2(x; T ) = c2
2m � 2 (c0 )2

�
xm � 4

j ln jx jj m � 2

�
(1 + o(1));

(C2) )

8
>>>><

>>>>:

u(x; T ) = 1+ ic1
(c1 � ic2 ) x

� 2k(1 + o(1));

if m = 2k;

u1(x; T ) = ( c1)� 1x � 2k(1 + o(1)) and u2(x; T ) = c2
(c1 )2 xm� 4k(1 + o(1));

if m > 2k:

Then, from the work of Nouaili and Zaag in [17] and Harada in [11] for equation (2.2),
we derive that the imaginary part u2 also blows up under some conditions, however, none
of them was able to give a global pro�le (i.e. valid uniformly onRN , and not just on an
expanding ball as in (2.13) and (2.14)) for the imaginary part. For that reason, our main
motivation in this work is to give a sharp description for the pro�le of the imaginary part.
Our work is considered as an improvement of Nouaili and Zaag in [17] in dimensionN ,
which is valid not only for p = 2, but also for any p � 3; p 2 N. In particular, this is the
�rst time we give the pro�le for the imaginary part when the solution blows up. Without
loss of generality, we assume that the blowup point,a = 0 and the following Theorem is
our result:

Theorem 2.1 (Existence of a blowup solution for (2.1) and a sharp discription of its
pro�le) . For each p � 2; p 2 N and p1 2 (0; 1), there existsT1(p; p1) > 0 such that for all
T � T1; there exist initial data u0 = u0

1 + iu 0
2; such that equation(2.1) has a unique solution

u on [0; T), satisfying the following:
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i ) The solution u blows up in �nite time T only at the origin. Moreover, it satis�es the
following estimates






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

p
j ln(T � t)j

; (2.15)

and





(T � t)

1
p� 1 j ln(T � t)ju2(:; t) � g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

j ln(T � t)j
p1
2

;

(2.16)
wheref 0 is de�ned in (2.6) and g0(z) is de�ned as follows

g0(z) =
jzj2

�
p � 1 + (p� 1)2

4p jzj2
� p

p� 1
: (2.17)

ii ) There exists a complex functionu� (x) 2 C2(RN nf 0g) such thatu(t) ! u� = u�
1 + iu �

2
as t ! T uniformly on compact sets ofRN nf 0g and we have the following asymptotic
expansions:

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

; as x ! 0: (2.18)

and

u�
2(x) �

2p
(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0: (2.19)

Remark 2.2. The initial data u0 is given exactly as follows

u0 = u0
1 + iu 0

2;

where

u0
1 = T � 1

p� 1

( �
p � 1 +

(p � 1)2jxj2

4pTj ln Tj

� � 1
p� 1

+
N�

2pj ln Tj

+
A

j ln Tj2
(d1;0 + d1;1 � y) � 0

 
2x

K
p

Tj ln Tj

!)

;

u0
2 = T � 1

p� 1

(
jxj2

Tj ln Tj2

�
p � 1 +

(p � 1)2jxj2

4pTj ln Tj

� � p
p� 1

�
2N�

(p � 1)j ln Tj2

+
�

A2

j ln Tjp1+2
(d2;0 + d2;1 � y) +

A5 ln(j ln(T)j)
j ln Tjp1+2

�

�
1
2

yT � d2;2 � y � Tr (d2;2)
��

� 0

 
2x

K
p

Tj ln Tj

!)

:

with � = ( p� 1)� 1
p� 1 , K; A are positive constants �xed large enough,d(1) = ( d1;0; d1;1); d(2) =

(d2;0; d2;1; d2;2) are parameters we �ne tune in our proof, and� 0 2 C1
0 [0; + 1 ); k� 0kL 1 (RN ) �

1; supp� 0 � [0; 2].
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Remark 2.3. We see below in(2.23) that the equation satis�ed by ofu2 is almost 'linear' in
u2. Accordingly, we may change a little our proof to construct a solutionuc0 (t) = u1;c0 + iu 2;c0

with t 2 [0; T); c0 6= 0, which blows up in �nite time T only at the origin such that(2.15)
and (2.18) hold and the following holds






(T � t)

1
p� 1 j ln(T � t)ju2;c0 (:; t) � c0g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

j ln(T � t)j
p1
2

;

(2.20)
and

u�
2(x) �

2pc0

(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0; (2.21)

Remark 2.4. We deduce from(ii ) that u blows up only at0. In particular, note that both
u1 and u2 blow up. However, the blowup speed ofu2 is softer thanu1 because of the quantity

1
j ln jx jj .

Remark 2.5. Nouaili and Zaag constructed a blowup solution of(2.2) with a less explicit
behavior for the imaginary part (see(2.8)). Here, we do better and we obtain the pro�le
for the imaginary part in (2.16) and we also describe the asymptotics of the solution in
the neighborhood of the blowup point in(2.19). In fact, this re�ned behavior comes from
a more involved formal approach (see Section 2.2 below), and more parameters to be �ne
tuned in initial data (see De�nition 2.2 where we need more parameters than in Nouaili and
Zaag [17], namelyd2 2 RN 2

). Note also that our pro�le estimates in (2.15) and (2.16) are
better than the estimates(2.13) and (2.14) by Harada (m = 2), in the sense that we have
a uniform estimate for whole spaceRN , and not just for all jyj � s1+ � for some � > 0.
Another point: our result hold in N space dimensions, unlike the work of Harada in [11],
which holds only in one space dimension.

Remark 2.6. As in the casep = 2 treated by Nouaili and Zaag [17], we suspect this behavior
in Theorem 2.1 to be unstable. This is due to the fact that the number of parameters in the
initial data we consider below in De�nition 2.2 is higher than the dimension of the blowup
parameters which isN + 1 (N for the blowup points and1 for the blowup time).

Besides that, we can use the technique of Merle [13] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 2.7 (Blowing up at k distinct points) . For any given points, x1; :::; xk , there
exists a solution of (2.1) which blows up exactly atx1; :::; xk . Moreover, the local behavior
at each blowup pointx j is also given by(2.15), (2.16), (2.18), (2.19) by replacingx by x � x j

and L1 (RN ) by L1 (jx � x j j � � 0); for some� 0 > 0.

This paper is organized as follows:

- In Section 2.2, we adopt a formal approach to show how the pro�les we have in Theorem
2.1 appear naturally.

- In Section 2.3, we give the rigorous proof for Theorem 2.1, assuming some technical
estimates.

- In Section 2.4, we prove the techical estimates assumed in Section 2.3.
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2.2 Derivation of the pro�le (formal approach)

In this section, we aim at giving a formal approach to our problem which helps us to
explain how we derive the pro�les of solution of (2.1), given in Theorem (2.1), as well the
asymptotic behaviors of our solution.

2.2.1 Modeling the problem

In this part, we will give some important de�nitions and special symbols in our work and
explain then how functionsf 0 ans g0 arise as blowup pro�les for equation (2.1) as stated
in (2.15) and (2.16). Our aim in this section is to give solid (though formal) hints for the
existence of a solutionu(t) = u1(t) + iu 2(t) to equation (2.1) such that

lim
t ! T

ku(t)kL 1 (RN ) = + 1 ; (2.22)

and u obeys the pro�les in (2.15) and (2.16), for someT > 0. By using equation (2.1), we
deduce thatu1 and u2 satisfy the following

(
@tu1 = � u1 + F1(u1; u2);

@tu2 = � u2 + F2(u1; u2):
(2.23)

where
8
<

:

F1(u1; u2) = Re [( u1 + iu 2)p] =
P [ p

2 ]
j =0 C2j

p (� 1)j up� 2j
1 u2j

2 ;

F2(u1; u2) = Im [( u1 + iu 2)p] =
P [ p� 1

2 ]
j =0 C2j +1

p (� 1)j up� 2j � 1
1 u2j +1

2 ;
(2.24)

with Re[z] and Im[z] being respectively the real and the imaginary part ofz and Cm
p =

p!
m!(p� m)! ; for all m � p.

Let us introduce the similarity-variables:

w(y; s) = ( T � t)
1

p� 1 u(x; t ); y =
x

p
T � t

; s = � ln(T � t) and w = w1 + iw2: (2.25)

Thanks to (2.23), we derive the system satis�ed by (w1; w2); for all y 2 RN and s � � ln T
as follows: (

@sw1 = � w1 � 1
2y � r w1 � w1

p� 1 + F1(w1; w2);

@sw2 = � w2 � 1
2y � r w2 � w2

p� 1 + F2(w1; w2):
(2.26)

Then note that studying the asymptotic of u as t ! T is equivalent to studying the
asymptotic of w in long time. In particular, we are �rst interested in the set of constant
solutions of (2.26) (2.26), denoted by

S = f (0; 0)g[
��

� cos
�

2k�
p � 1

�
; � sin

�
2k�

p � 1

��
where� = ( p � 1)� 1

p� 1 ; k = 0; :::; p � 1
�

:

From transformation (2.25), we slightly precise our goal in (2.22) by requiring in addition
that

(w1; w2) ! (�; 0) ass ! + 1 :
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Introducing w1 = � + �w1; our goal is to get

( �w1; w2) ! (0; 0) ass ! + 1 :

From (2.26), we deduce that �w1; w2 satisfy the following system
�

@s �w1 = L �w1 + �B1( �w1; w2);
@sw2 = L w2 + �B2( �w1; w2);

(2.27)

where

L = � �
1
2

y � r + Id; (2.28)

�B1( �w1; w2) = F1(� + �w1; w2) � � p �
p

p � 1
�w1; (2.29)

�B2( �w1; w2) = F2(� + �w1; w2) �
p

p � 1
w2; (2.30)

and the de�nitions of F1 and F2 are given in (2.24).

It is important to study the linear operator L and the asymptotic behaviors of�B1; �B2

as ( �w1; w2) ! (0; 0) which will appear as \quadratic" terms.

� The properties ofL :

We observe that operatorL plays an important role in our analysis. In fact,L is self-
adjoint in D � L2

� (RN ), whereL2
� is the weighted space associated with the weight� de�ned

by

� (y) =
e� j y j 2

4

(4� )
N
2

=
NY

j =1

� j (yj ); with � j (yj ) =
e�

j y j j 2

4

(4� )
1
2

; (2.31)

and the spectrum set ofL is given as follows

Spec(L ) =
n

1 �
m
2

; m 2 N
o

:

Moreover, we can �nd eigenfunctions which correspond to each eigenvalue 1� m
2 ; m 2 N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1 � m

2 is hm , the rescaled Hermite polynomial given in (2.12). In particular, we have
the following orthogonality property:

Z

R
hi hj �dy = i !2i � i;j ; 8(i; j ) 2 N2:

- The higher dimensional case:N � 2, the eigenspaceEm , corresponding to the eigen-
value 1� m

2 is de�ned as follows:

Em =

*

h� (y) = h� 1 (y1):::h� N (yN )

�
�
�
�
�
j� j =

NX

i =1

� i = m and � = ( � 1; :::; � N ) 2 NN

+

:

(2.32)
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As a matter of fact, so we can represent an arbitrary functionr 2 L2
� as follows

r =
X

�;� 2 Nn

r � h� (y);

wherer � is the projection of r on h� for any � 2 NN which is de�ned as follows:

r � = P� (r ) =
Z

rk � �dy; 8� 2 Nn ; (2.33)

with

k� (y) =
h�

kh� k2
L 2

�

: (2.34)

� The asymptotic behaviors of�B1( �w1; w2); �B2( �w1; w2): The following hold:

�B1( �w1; w2) =
p

2�
�w2

1 + O(j �w1j3 + jw2j2); (2.35)

�B2( �w1; w2) =
p
�

�w1w2 + O
�
j �w1j2jw2j

�
+ O

�
jw2j3

�
; (2.36)

as ( �w1; w2) ! (0; 0) (see Lemma 2.17 below).

2.2.2 Inner expansion

In this part, we study the asymptotic behavior of the solution inL2
� (RN ): Moreover, for

simplicity we suppose thatN = 1, and we recall that we aim at constructing a solution
of (2.27) such that ( �w1; w2) ! (0; 0). Note �rst that the spectrum of L contains two
positive eigenvalues 1; 1

2 , a neutral eigenvalue 0 and all the other ones are strictly negative.
So, in the representation of the solution inL2

� (R), it is reasonable to think that the part
corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect ofy, it is reasonable to look for a solution �w1; w2 of the forms:

�w1 = �w1;0h0 + �w1;2h2;

w2 = w2;0h0 + w2;2h2:

From the assumption that ( �w1; w2) ! (0; 0), we see that �w1;0; �w1;2; w2;0; w2;2 ! 0 ass !
+ 1 . We see also that we can understand the asymptotic behaviors of �w1 and w2 in L2

�
from the study of the asymptotic behaviors of �w1;0; �w1;2; w2;0 and w2;2. We now project
equations (2.27) onh0 and h2: Using behaviors of�B1; �B2, given in (2.35) and (2.36), we get
the following ODEs for �w1;0; �w1;2; w2;0; w2;2 :

@s �w1;0 = �w1;0 +
p

2�

�
�w2

1;0 + 8 �w2
1;2

�
+ O(j �w1;0j3 + j �w1;2j3) + O(jw2;0j2 + jw2;2j2); (2.37)

@s �w1;2 =
p
�

�
�w1;0 �w1;2 + 4 �w2

1;2

�
+ O(j �w1;0j3 + j �w1;2j3) + O(jw2;0j2 + jw2;2j2); (2.38)

@sw2;0 = w2;0 +
p
�

[ �w1;0w2;0 + 8 �w1;2w2;2] + O(( j �w1;0j2 + j �w1;2j2)( jw2;0j + jw2;2j)) (2.39)

+ O(jw2;0j3 + jw2;2j3);

@sw2;2 =
p
�

[ �w1;0w2;2 + �w1;2w2;0 + 8 �w1;2w2;2] + O(( j �w1;0j2 + j �w1;2j2)( jw2;0j + jw2;2j))(2.40)

+ O(jw2;0j3 + jw2;2j3):
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Assuming that
�w1;0; w2;0; w2;2 � �w1;2 as s ! + 1 ; (2.41)

we may simplify the ODE system as follows:

� The asymptotic behavior of�w1;2:

We deduce from (2.38) and (2.41) that

@s �w1;2 �
4p
�

�w2
1;2 as s ! + 1 ;

which yields

�w1;2 = �
�

4ps
+ o

�
1
s

�
; as s ! + 1 : (2.42)

Assuming futher that

�w1;0; w2;0; w2;2 .
1
s2

; (2.43)

we see that

�w1;2 = �
�

4ps
+ O

�
ln s
s2

�
; as s ! + 1 : (2.44)

� The asymptotic behavior of�w1;0 :

By using (2.37), (2.41) and the asymptotic behaviors of �w1;2 in (2.44), we see that

�w1;0 = O
�

1
s2

�
as s ! + 1 : (2.45)

� The asymptotics ofw2;0 and w2;2: Bisides that, we derive from (2.39), (2.40) and
(2.43) that

@sw2;2 =
�

�
2
s

+ O
�

ln s
s2

��
w2;2 + o

�
1
s3

�
; (2.46)

@sw2;0 = w2;0 + O
�

1
s3

�
;

which yields

w2;2 = o
�

ln s
s2

�
;

w2;0 = O
�

1
s3

�
; (2.47)

as s ! + 1 . This also yields a new ODE forw2;2 :

@sw2;2 = �
2
s

w2;2 + o
�

ln2 s
s4

�
;

which implies

w2;2 = O
�

1
s2

�
:
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Using again (2.46), we derive a new ODE forw2;2

@sw2;2 = �
2
s

w2;2 + O
�

ln s
s4

�
;

which yields

w2;2 =
~c0

s2
+ O

�
ln s
s3

�
; for some ~c0 2 R� : (2.48)

Noting that our �nding (2.44), (2.45), (2.47) and (2.48) are consistent with our hypotheses
in (2.41) and (2.43), we get the asymptotics of the solutionw1 and w2 as follows:

w1 = � �
�

4ps
(y2 � 2) + O

�
1
s2

�
; (2.49)

w2 =
~c0

s2
(y2 � 2) + O

�
ln s
s3

�
; (2.50)

in L2
� (R) for some ~c0 in R� . Using parabolic regularity, we note that the asymptotic behav-

iors (2.49) and (2.50) also hold for alljyj � K; whereK is an arbitrary positive constant.

2.2.3 Outer expansion

As Subsection 2.2.2 above, we assume thatN = 1. We see that asymptotics (2.49) and
(2.50) can not give us a shape, since they hold uniformly on compact sets, and not in larger
sets. Fortunately, we observe from (2.49) and (2.50) that the pro�le may be based on the
following variable:

z =
y

p
s

: (2.51)

This motivates us to look for solutions of the form:

w1(y; s) =
1X

j =0

R1;j (z)
sj

;

w2(y; s) =
1X

j =1

R2;j (z)
sj

:

Using system (2.26) and gathering terms of order1sj for j = 0; :::; 2, we obtain

0 = �
1
2

R0
1;0(z) � z �

R1;0(z)
p � 1

+ Rp
1;0(z); (2.52)

0 = �
1
2

zR0
1;1 �

R1;1

p � 1
+ pRp� 1

1;0 R1;1 + R00
1;0 +

zR0
1;0

2
; (2.53)

0 = �
1
2

R0
2;1(z) � z �

R2;1

p � 1
+ pRp� 1

1;0 R2;1; (2.54)

0 = �
1
2

R0
2;2(z):z �

R2;2

p � 1
+ pRp� 1

1;0 R2;2 + R00
2;1 + R2;1 (2.55)

+
1
2

R0
2;1 � z + p(p � 1)Rp� 2

1;0 R1;1R2;1:
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We now solve the above equations:

� The solution R1;0: It is easy to solve (2.52)

R1;0(z) = ( p � 1 + bz2)� 1
p� 1 ; (2.56)

whereb is an unknown constant that will be selected accordingly to our purpose.

� The solution R1;1: We rewrite (2.53) under the following form:

1
2

z:R0
1;1(z) =

�
(p � 1)2 � bz2

(p � 1)(p � 1 + bz2)

�
R1;1 + F1;1(z);

where

F1;1(z) = �
2b

p � 1
(p � 1 + bz2)� p

p� 1 +
4pb2z2

(p � 1)2
(p � 1 + bz2)� (2 p� 1)

p� 1

�
bz2

p � 1
(p � 1 + bz2)� p

p� 1 :

Thanks to the variation of constant method, we see that

R1;1 = H � 1(z)
� Z

2
z

H (z)F1;1(z)dz + C1

�
; (2.57)

where

H (z) =
(p � 1 + bz2)

p
p� 1

z2
:

Besides that, we have:

2H
z

F1;1 = �
4b

(p � 1)z3
+

8pb2

(p � 1)2

�
1

z(p � 1 + bz2)

�
�

2b
(p � 1)z

= �
4b

(p � 1)z3
+

1
z

�
�

2b
p � 1

+
8pb2

(p � 1)3

�

+ ( p � 1 + bz2)� 1

�
�

8pb3z
(p � 1)3

�
:

We can see that if the coe�cient of 1
z is non zero, then we will have a \lnz" term in

the formula of R1;1 and this makes the fact that R1;1 would not be analytic, creating a
singularity in the solution. In order to avoid this singularity, we impose that

�
2b

p � 1
+

8pb2

(p � 1)3
= 0;

which yields

b=
(p � 1)2

4p
: (2.58)

Besides that, for simplicity, we assume thatC1 = 0: Using (2.57), we see that

R1;1 =
(p � 1)

2p
(p � 1 + bz2)� p

p� 1 �
p � 1

4p
z2 ln(p � 1 + bz2)(p � 1 + bz2)� p

p� 1 : (2.59)
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� The solution R2;1: It is easy to solve (2.54) as follows:

R2;1(z) =
z2

(p � 1 + bz2)
p

p� 1
: (2.60)

� The solution R2;2: We rewrite (2.55) as follows

1
2

z � R0
2;2(z) =

�
(p � 1)2 � bz2

(p � 1)(p � 1 + bz2)

�
R2;2(z) + F2;2(z);

where

F2;2(z) = R00
2;1 + R2;1 +

1
2

R0
2;1 � z + p(p � 1)Rp� 2

1;0 R1;1R2;1

= 2( p � 1 + bz2)� p
p� 1

�
10pbz2

p � 1
(p � 1 + bz2)� 2p� 1

p� 1 + 2z2(p � 1 + bz2)� p
p� 1 +

(p � 1)2

2
z2(p � 1 + bz2)� 3p� 2

p� 1

+
4p(2p � 1)b2z4

(p � 1)2
(p � 1 + bz2)� 3p� 2

p� 1 �
pbz4

p � 1
(p � 1 + bz2)� 2p� 1

p� 1

�
(p � 1)2

4
z4 ln(p � 1 + bz2)(p � 1 + bz2)� 3p� 2

p� 1 :

By using the variation of constant method, we have

R2;2(z) =
z2

(p � 1 + bz2)� p
p� 1

 Z
2(p � 1 + bz2)� p

p� 1

z3
F2;2(z)dz + C2

!

; (2.61)

where

2(p � 1 + bz2)� p
p� 1

z3
F2;2(z) =

4
z3

+
�
5 �

20pb
(p � 1)2

�
1
z

+
z

p � 1 + bz2

�
20pb

(p � 1)2
� b�

2pb
p � 1

�

+
�

8p(2p � 1)b2

(p � 1)2
� (p � 1)p

�
z

(p � 1 + bz2)2

�
(p � 1)2

2
z ln(p � 1 + bz2)(p � 1 + bz2)� 2:

We observe that

5 �
20pb

(p � 1)2
= 0; becauseb=

(p � 1)2

4p
:

So, from (2.61) and assuming thatC2 = 0; we have

R2;2(z) = � 2(p � 1 + bz2)� p
p� 1 + H2;2(z); (2.62)

where

H2;2(z) = C2;1(p)z2(p � 1 + bz2)� 2p� 1
p� 1 + C2;3(p)z2 ln(p � 1 + bz2)(p � 1 + bz2)� p

p� 1

+ C2;3(p)z2 ln(p � 1 + bz2)(p � 1 + bz2)� 2p� 1
p� 1 :
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Matching asymptotic

Since the outer expansion has to match the inner expansion, we will �x several constants
and derive the following pro�les forw1 and w2:

�
w1(y; s) � � 1(y; s);
w2(y; s) � � 2(y; s);

(2.63)

where

� 1(y; s) =
�

p � 1 +
(p � 1)2

4p
jyj2

s

� � 1
p� 1

+
N�
2ps

; (2.64)

� 2(y; s) =
jyj2

s2

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � p
p� 1

�
2N�

(p � 1)s2
; (2.65)

for all (y; s) 2 RN � (0; + 1 ).

2.3 Existence of a blowup solution in Theorem 2.1

In Section 2.2, we adopted a formal approach on order to justify how the pro�lesf 0; g0 arise
as blowup pro�les for equation (2.1). In this section, we give a rigorous proof to justify the
existence of a solution approaching those pro�les.

2.3.1 Formulation of the problem

In this section, we aim at formulating our problem in order to justify the formal approach
which is given in the previous section. Introducing

�
w1 = � 1 + q1;
w2 = � 2 + q2;

(2.66)

where � 1; � 2 are de�ned in (2.64) and (2.65) respectively, then using (2.26), we see that
(q1; q2) satisfy

@s

�
q1

q2

�
=

�
L + V 0

0 L + V

� �
q1

q2

�
+

�
V1;1 V1;2

V2;1 V2;2

� �
q1

q2

�
+

�
B1

B2

��
q1

q2

�
+

�
R1(y; s)
R2(y; s)

�
; (2.67)

where linear operatorL is de�ned in (2.28) and:
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- Potential functions V; V1;1; V1;2; V2;1; V2;2 are de�ned as follows

V(y; s) = p
�

� p� 1
1 �

1
p � 1

�
; (2.68)

V1;1(y; s) =
[ p

2 ]X

j =1

C2j
p (� 1)j (p � 2j )� p� 2j � 1

1 � 2j
2 ; (2.69)

V1;2(y; s) =
[ p

2 ]X

j =0

C2j
p (� 1)j :(2j )� p� 2j

1 � 2j � 1
2 ; (2.70)

V2;1(y; s) =
[ p� 1

2 ]X

j =0

C2j +1
p (� 1)j (p � 2j � 1)� p� 2j � 2

1 � 2j +1
2 ; (2.71)

V2;2(y; s) =
[ p� 1

2 ]X

j =1

C2j +1
p (� 1)j (2j + 1)� p� 2j � 1

1 � 2j
2 : (2.72)

- Quadratic terms B1(q1; q2) and B2(q1; q2) are de�ned as follows:

B1(q1; q2) = F1 (� 1 + q1; � 2 + q2) � F1(� 1; � 2) �
[ p

2 ]X

j =0

C2j
p (� 1)j (p � 2j )� p� 2j � 1

1 � 2j
2 q1 (2.73)

�
[ p

2 ]X

j =0

C2j
p (� 1)j :(2j )� p� 2j

1 � 2j � 1
2 q2;

B2(q1; q2) = F2 (� 1 + q1; � 2 + q2) � F2(� 1; � 2) �
[ p� 1

2 ]X

j =0

C2j +1
p (� 1)j (p � 2j � 1)� p� 2j � 2

1 � 2j +1
2 q1

�
[ p� 1

2 ]X

j =0

C2j +1
p (� 1)j (2j + 1)� p� 2j � 1

1 � 2j
2 q2: (2.74)

- Rest termsR1(y; s); R2(y; s) are de�ned as follows:

R1(y; s) = �� 1 �
1
2

y � r � 1 �
� 1

p � 1
+ F1(� 1; � 2) � @s� 1; (2.75)

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ F2(� 1; � 2) � @s� 2; (2.76)

whereF1; F2 are de�ned in (2.24).

By the linearization around � 1; � 2; our problem is reduced to constructing a solution
(q1; q2) of system (2.67), satisfying

kq1kL 1 (RN ) + kq2kL 1 (RN ) ! 0 ass ! + 1 :
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Concerning equation (2.67), we recall that we already know some main properties of linear
operator L (see page 77). As for potential functionsVj;k where j; k 2 f 1; 2g, they admit
the following asymptotic behaviors

X

j;k � 2

jVj;k (y; s)j �
C
s

; 8y 2 RN ; s � 1;

(see Lemma 2.18). Regarding the termsB1; B2; R1; R2, we see that wheneverjq1j + jq2j � 2;
we have

jB1(q1; q2)j � C(q2
1 + q2

2);

jB2(q1; q2)j � C
�

jq1j2

s
+ jq1q2j + jq2j2

�
;

kR1(:; s)kL 1 (RN ) �
C
s

;

kR2(:; s)kL 1 (RN ) �
C
s2

;

(see Lemmas 2.19 and 2.20).

In fact, the dynamics of equation (2.67) will mainly depend on the main linear operator
�

L + V 0
0 L + V

�
;

and the e�ects of the other terms will be less important. For that reason, we need to un-
derstand the dynamics ofL + V. Since the spectral properties ofL were already introduced
in Section 2.2.1, we will focus here on the e�ect ofV .

i ) E�ect of V inside the blowup regionfj yj � K
p

sg with K > 0 arbitrary, we have

V ! 0 in L2
� (jyj � K

p
s) as s ! + 1 ;

which means that the e�ect of V will be negligible with respect of the e�ect ofL ; except
perhaps on the null mode ofL (see item (ii ) of Proposition 2.13 below)

ii ) E�ect of V outside the blowup region: for each� > 0; there exist K � > 0 and s� > 0
such that

sup
yp
s

� K � ;s� s�

�
�
�
�V (y; s) �

�
�

p
p � 1

� �
�
�
� � �:

Since 1 is the biggest eigenvalue ofL , the operator L + V behaves as one with with a fully
negative spectrum outside blowup regionfj yj � K �

p
sg, which makes the control of the

solution in this region easily.

Since the behavior of the potentialV inside and outside the blowup region is di�erent,
we will consider the dynamics of the solution forjyj � 2K

p
s and for jyj � K

p
s separately

for someK to be �xed large. For that purpose, we introduce the following cut-o� function

� (y; s) = � 0

�
jyj

K
p

s

�
; (2.77)
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where� 0 2 C1
0 [0; + 1 ); k� 0kL 1 (RN ) � 1 and

� 0(x) =
�

1 for x � 1;
0 for x � 2;

and K is a positive constant to be �xed large later. Hence, it is reasonable to consider
separately the solution in the blowup regionfj yj � 2K

p
sg and in the regular region

fj yj � K
p

sg. More precisely, let us de�ne the following notation for all functionsq in
L1 (RN ):

q = qb + qe with qb = �q and qe = (1 � � )q; (2.78)

Note in particular that supp(qb) � B(0; 2K
p

s) and supp(qe) � RN n B(0; K
p

s).

In addition to that, we also expandqb in L2
� , according to the spectrum ofL (see Section

2.2.1 above):

qb(y) = q0 + q1 � y +
1
2

yT � q2 � y � Tr ( q2) + q� (y); (2.79)

where

q0 =
Z

RN
qb� (y)dy;

q1 =
1
2

Z

RN
qby� (y)dy;

q2 =
� Z

RN
qb

�
1
4

yj yk �
1
2

� j;k

�
� (y)dy

�

1� j;k � N

;

and Tr (q2) is the trace of the matrix q2. The reader should keep in mind thatq0; q1; q2

are just coordinates ofqb, not for q. Note that qm is the projection ofqb as the eigenspace
of L corresponding to the eigenvalue� = 1 � m

2 : Accordingly, q� is the projection ofqb on
the negative part of the spectrum ofL : As a consequence of (2.78) and (2.79), we see that
every q 2 L1 (RN ) can be decomposed into 5 components as follows:

q = qb + qe = q0 + q1 � y +
1
2

yT � q2 � y � Tr( q2) + q� + qe: (2.80)

2.3.2 The shrinking set

In this part, we will construct a shrinking set, such that the control of (q1; q2) ! 0; will be
a consequence of the control of (q1; q2) in this set, where (q1; q2) is the solution of (2.67).
The following is our de�nition:

De�nition 2.1 (Shrinking set). For all A � 1; p1 2 (0; 1) and s � 1, we introduceVp1 ;A; (s),
denoted for simplicity byVA (s), as the set of all(q1; q2) 2 (L1 (RN ))2 satisfying the following
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conditions:

jq1;0j �
A
s2

and jq2;0j �
A2

sp1+2
;

jq1;j j �
A
s2

and jq2;j j �
A2

sp1+2
; 81 � j � N;

jq1;j;k j �
A2 ln s

s2
and jq2;j;k j �

A5 ln s
sp1+2

; 81 � j; k � N;





q1;�

1 + jyj3






L 1

�
A
s2

and






q2;�

1 + jyj3






L 1

�
A2

s
p1+5

2

;

kq1;ekL 1 �
A2

p
s

and kq2;ekL 1 �
A3

s
p1+2

2

;

where the above components are ofq1;b and q2;b, respectively, decomposed as in(2.80).

In the following Lemma, we show that belonging toVA (s) implies the convergence to 0.
In fact, we have a more precise statement in the following:

Lemme 2.8. For all A � 1; s � 1; if we have(q1; q2) 2 VA (s), then the following estimates
hold:

(i ) Estimates in L1 (RN ): kq1kL 1 (RN ) � CA 2
p

s and kq2kL 1 (RN ) � CA 3

s
p1+2

2
.

(ii ) For all y 2 RN , we have

jq1;b(y)j �
CA2 ln s

s2
(1+ jyj3); jq1;e(y)j �

CA2

s2
(1+ jyj3) and jq1j �

CA2 ln s
s2

(1+ jyj3);

and

jq2;b(y)j �
CA3

s
p1+5

2

(1 + jyj3); jq2;e(y)j �
CA3

s
p1+5

2

(1 + jyj3) and jq2j �
CA3

s
p1+5

2

(1 + jyj3):

where C will henceforth be an universal constant in our proof which depends only on
K; N and p1.

Proof. We only prove the estimates ofq2. Since, the other ones forq1 will similarly follow
and have already been proved in previous papers (see for intance Proposition 4.7 in [24]).

Let us considerA � 1; s � 1 and (q1; q2) 2 VA (s) and y 2 RN . We also recall from
(2.80) that

q2 = q2;b + q2;e;

where supp(q2;b) � B(0; 2K
p

s) and supp(q2;e) � RN n B(0; K
p

s).

(i ) From (2.79), we have

qb = q2;0 + q2;1 � y +
1
2

yT � q2;2 � y � Tr( q2;2) + q2;� :

Therefore,

jq2;b(y)j � j q2;0j + jq2;1jj yj + C max
1� j;k � N

jq2;j;k j(1 + jyj2) +






q2;�

1 + jyj3






L 1 (RN )

(1 + jyj3):(2.81)
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Then, recalling that supp(q2;b) � B(0; 2K
p

s) and using De�nition 2.1, we see that

jq2;b(y)j �
CA3

s
p1+2

2

:

On the other hand, we also have

jq2;ej �
A3

s
p1+2

2

:

So, we end-up with the following

kq2kL 1 (RN ) � k q2;bkL 1 (RN ) + kq2;ekL 1 (RN ) �
CA3

s
p1+2

2

:

Thus, this yields the conclusion.

(ii ) Using (2.81) and De�nition 2.1, we derive that

jq2;b(y)j �
CA3

s
p1+5

2

(1 + jyj3): (2.82)

We claim that q2;e satis�es a similar estimate:

jq2;e(y)j �
CA3

s
p1+5

2

(1 + jyj3): (2.83)

Indeed, since supp(q2;e) � RN n B(0; K
p

s); we may assume that

jyj
K

p
s

� 1:

Hence, from De�nition 2.1, we write

jq2;e(y)j �
A3

s
p1+2

2

:1 �
A3

s
p1+2

2

jyj3

K 3s
3
2

�
CA3

s
p1+5

2

(1 + jyj3);

and (2.83) follows. Using (2.82) and (2.83), we see that

jq2j � j q2;bj + jq2;ej �
CA3

s
p1+5

2

(1 + jyj3):

2.3.3 Initial data

In this paragraph, we suggest a class of initial data, depending on some parameters to be
�ne-tuned in order to get a good solution for our problem. This is initial data:

De�nition 2.2 (Initial data) . For each A � 1; s0 � 1; d1 = ( d1;0; d1;1) 2 R � RN ; d2 =
(d2;0; d2;1; d2;2) 2 R � RN � RN 2

, we introduce

� 1;A;d 1 ;s0 (y) =
A
s2

0
(d1;0 + d1;1 � y) � (2y; s0);

� 2;A;d 2 ;s0 (y) =
�

A2

sp1+2
0

(d2;0 + d2;1 � y) +
A5 ln s0

sp1+2
0

�
1
2

yT � d2;2 � y � Tr( d2;2)
��

� (2y; s0):
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Remark: Note that d1;0 and d2;0 are scalars,d1;1 and d2;1 are vectors,d2;2 is a square
matrix of order N . For simplicity, we may drop down the parameters expects0 and write
� 1(y; s0) and � 2(y; s0).

We next claim that we can �nd a domain for (d1; d2) so that initial data belongs to
VA (s0) :

Lemme 2.9 (Control of initial data to be in VA (s0)) . There existsA1 � 1 such that for all
A � A1, there existss1(A) � 1 such that for all s0 � s1(A); if (q1; q2)(s0) = ( � 1; � 2) (s0)
where(� 1; � 2)(s0) are de�ned in De�nition 2.2, then, the following properties hold:

i ) There exists a setDA;s 0 � [� 2; 2]N
2+2 N +2 such that the mapping

	 1 : RN 2+2 N +2 ! RN 2+2 N +2

(d1; d2) 7! (q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s0)

is linear, one to one fromDA;s 0 to V̂A (s0), where

V̂A (s) =
�
�

A
s2

;
A
s2

� 1+ N

�
�
�

A2

sp1+2
;

A2

sp1+2

� 1+ N

�
�
�

A5 ln s
sp1+2

;
A5 ln s
sp1+2

� N 2

: (2.84)

Moreover,
	 1(@DA;s 0 ) � @̂VA (s0) and deg(	 1

�
�
@DA;s 0

) 6= 0: (2.85)

ii ) In particular, we have(q1; q2)(s0) 2 VA (s0); and

jq1;j;k (s0)j �
A2 ln s0

2s2
0

; 81 � j; k � N;





q1;� (:; s0)
1 + jyj3






L 1 (RN )

�
A

2s2
0

and






q2;� (:; s0)
1 + jyj3






L 1 (RN )

�
A2

2s
p1+5

2
0

;

q1;e(:; s0) = 0 and q2;e(:; s0) = 0 :

Proof. The proof is straightforword and a bit length. For that reason, the proof is omitted,
and we friendly refer the reader to Proposition 4.5 in [24] for a quite similar case.

Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove an existence of a solution of equation (2.67) trapped in the shrinking
set:

Proposition 2.10 (Existence of a solution trapped inVA (s)) . There existsA2 � 1 such
that for all A � A2 there existss2(A) � 1 such that for all s0 � s2(A), there exists
(d1; d2) 2 RN 2+2 N +2 such that the solution(q1; q2) of equation(2.67) with initial data at the
time s0, given by(q1; q2)(s0) = ( � 1; � 2)(s0), where (� 1; � 2)(s0) depends on(d1; d2) and is
de�ned in De�nition 2.2, we have then

(q1; q2) 2 VA (s); 8s 2 [s0; + 1 ):

The proof is divided into 2 steps:
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� The �rst step: In this step, we reduce our problem to a �nite dimensional one. In
other words, we aim at proving that the control of (q1; q2)(s) in the shrinking set
VA (s) reduces to the control of the following components:

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s)

in V̂A (s), de�ned as in (2.84).

� The second step: We get the conclusion of Proposition 2.10 by using a topological
argument in �nite dimension.

Proof. We here give proof of Proposition 2.10:

- Step 1: Reduction to a �nite dimensional problem:Using a priori estimates, our
problem will be reduced to the control of a �nite number of components.

Proposition 2.11 (Reduction to a �nite dimensional problem). There existsA3 � 1 such
that for all A � A3, there existss3(A) � 1 such that for alls0 � s3(A), the following holds:
If the two following are satis�ed:

(a) If (q1; q2)(s) a solution of equation(2.67) with initial data (q1; q2)(s0) = ( � 1; � 2)(s0),
de�ned as in De�nition 2.2 for some (d1; d2) 2 DA;s 0 , introduced in Lemma 2.9

(b) If we furthemore assume that(q1; q2)(s) 2 VA (s) for all s 2 [s0; s1] for somes1 � s0

and (q1; q2)(s1) 2 @VA (s1).

Then, we have the following conclusions:

(i ) (Reduction to �nite dimensions): We have

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s1) 2 @̂VA (s1)

(ii ) (Transverse outgoing crossing): There exists� 0 > 0 such that

8� 2 (0; � 0); (q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s1 + � ) =2 V̂A (s1 + � );
(2.86)

which implies that(q1; q2)(s1 + � ) =2 VA (s1 + � ) for all � 2 (0; � 0):

This proposition makes the heart of the paper and needs many steps to be proved. For
that reason, we dedicate a whole section to its proof (Section 2.4 below). Let us admit it
here, and get to the conclusion of Proposition 2.10 in the second step.

- Step 2: Conclusion of Proposition 2.10 by a topological argument.In this step, we
�nish the proof of Proposition 2.10. In fact, we aim at proving the existence of parame-
ters (d1; d2) 2 DA;s 0 such that the solution (q1; q2)(s) of equation (2.67) with initial data
(q1; q2)(s0) = ( � 1; � 2)(s0), exists globally for all s 2 [s0; + 1 ) and satis�es

(q1; q2)(s) 2 VA (s);

where initial data (� 1; � 2)(s0) is introduced in De�nition 2.2.

In fact, our argument is analogous to the argument of Merle and Zaag [15]. For that
reason, we only give a brief proof. Let us �xK; A and s0 such that Lemma 2.9 and
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Proposition 2.11 hold. We �rst consider (q1; q2)d1 ;d2 (s); s � s0 a solution of equation (2.67)
with initial data ( q1; q2)(s0) which depends on (d1; d2) as follows

(q1; q2)d1 ;d2 (s0) = ( � 1; � 2)(s0):

From Lemma 2.9 and by construction ofDA;s 0 ; we know that

(q1; q2)(s0) 2 VA (s0): (2.87)

By contradiction, we assume that for all (d1; d2) 2 DA;s 0 , there existss1 2 [s0; + 1 )
such that

(q1; q2)d1 ;d2 (s1) =2 VA (s1):

Then, for each (d1; d2) 2 DA;s 0 ; we can de�ne

s� (d1; d2) = inf f s1 � s0 such that (q1; q2)d1 ;d2 (s1) =2 VA (s1)g:

From the fact that (q1; q2)(s1) =2 VA (s1), we deduce thats� (d1; d2) < + 1 for all (d1; d2) 2
DA;s 0 : Besides that, using (2.87), and the minimality ofs� (d1; d2); the continuity of (q1; q2)
in s and the closeness ofVA (s) we derive that (q1; q2)(s� (d1; d2)) 2 @VA (s� (d1; d2)) and for
all s 2 [s0; s� (d1; d2)];

(q1; q2)(s) 2 VA (s):

Therefore, from item (i ) of Proposition 2.11 we see that

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s� (d1; d2)) 2 V̂A (s� (d1; d2)) :

This means that following mapping � is well-de�ned:

� : DA;s 0 ! @
�

[� 1; 1]N
2+2 N +2

�

(d1; d1) 7! �( d1; d2);

where
�

s2
�

A
(q1;0; (q1;j )1� j � N )(s� );

sp1+2
�

A2
(q2;0; (q2;j )1� j � N )(s� );

sp1+2
�

A5 ln s�
(q2;j;k )1� j;k � N (s� )

�
;

wheres� = s� (d1; d2). Moreover, it satis�es the two following properties:

(i) � is continuous from DA;s 0 to @
�

[� 1; 1]N
2+2 N +2

�
: This is a consequence of item (ii )

in Proposition (2.11).

(ii) The degree of the restriction � j @DA;s 0
is non zero. Indeed, again by item (ii ) in

Proposition 2.11, we have
s� (d1; d2) = s0;

in this case. Applying (2.85), we get the conclusion.

In fact, such a mapping � can not exist by Index theorem, this is a contradiction. Thus,
Proposition 2.10 follows, assuming that Proposition 2.11 (see Section 2.4 for the proof of
latter)
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2.3.4 The proof of Theorem 2.1

In this section, we aim at giving the proof of Theorem 2.1.

Proof. Proof of Theorem 2.1 assuming that Proposition 2.11

+ The proof of item(i ) of Theorem 2.1: Using Proposition 2.10, there exist initial data
(q1; q2)d1 ;d2 (s0) = ( � 1; � 2)(s0) such that the solution of equation (2.67), exists globally on
[s0; + 1 ) and satis�es:

(q1; q2)(s) 2 VA (s); 8s 2 [s0; + 1 ):

Thanks to similarity variables (2.25), (2.66) and item (i ) in Lemma 2.8, we conclude that
there exist initial data u0 of the form given in Remark 2.2 with (d1; d2) given in Proposition
2.10 such that the solutionu(t) of equation (2.1) exists on [0; T); where T = e� s0 and
satis�es (2.15) and (2.16). Using these two estimates, we see that

u(0; t) � � (T � t)� 1
p� 1 as t ! T;

which means thatu blows up at time T and the origin is a blowup point. It remains to
prove that for all x 6= 0; x is not a blowup point of u. The following Lemma allows us to
conclude.

Lemme 2.12 (No blow up under some threshold). For all C0 > 0; 0 � T1 < T and � > 0
small enough, there exists� 0(C0; T; � ) > 0 such that the following holds: Ifu(�; � ) satis�es
the following estimates for allj� j � �; � 2 [T1; T):

j@� u � � uj � C0jujp;

and
ju(�; � )j � � 0(1 � � )� 1

p� 1 ;

then, u does not blow up at� = 0; � = T.

Proof. The proof of this Lemma is processed similarly to Theorem 2.1 in [6]. Although the
proof of [6] was given in the real case, it extends naturally to the complex valued case.

We next use Lemma 2.12 to conclude thatu does not blow up atx0 6= 0: Indeed, if x0 6= 0
we use (2.15) to deduce the following:

sup
jx � x0 j� j x 0 j

2

(T � t)
1

p� 1 ju(x; t )j �

�
�
�
�
�
f 0

 
jx0 j

2p
(T � t)j ln(T � t)j

! �
�
�
�
�
+

C
p

j ln(T � t)j
! 0; as t ! T:

(2.88)
Applying Lemma 2.12 tou(x � x0; t); with some� small enough such that� � jx0 j

2 ; and T1

close enough toT; we see thatu(x � x0; t) does not blow up at timeT and x = 0. Hence
x0 is not a blow-up point of u. This concludes the proof of item (i ) in Theorem 2.1.

+ The proof of item (ii ) of Theorem 2.1: Here, we use the argument of Merle in [13] to
deduce the existence ofu� = u�

1 + iu �
2 such that u(t) ! u� as t ! T uniformly on compact

sets ofRN nf 0g. In addition to that, we use the techniques in Zaag [29], Masmoudi and
Zaag [16], Tayachi and Zaag [24] for the proofs of (2.18) and (2.19).
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Indeed, for all x0 2 RN and x0 6= 0, we deduce from (2.15), (2.16) that not only (2.88)
holds but also the following is satis�ed:

sup
jx � x0 j� j x 0 j

2

(T � t)
1

p� 1 j ln(T � t)jju2(x; t )j �

�
�
�
�
�

3jx0j2

2(T � t)j ln(T � t)j
f p

0

 
jx0 j

2p
(T � t)j ln(T � t)j

! �
�
�
�
�

+
C

j ln(T � t)j
p1
2

! 0; as t ! T: (2.89)

We now considerx0 such that jx0j is small enough, andK 0 to be �xed later. We de�ne
t0(x0) by

jx0j = K 0

p
T � t0(x0)j ln(T � t0(x0)) j: (2.90)

Note that t0(x0) is unique when jx0j is small enough andt0(x0) ! T as x0 ! 0. We
introduce the rescaled functionsU(x0; �; � ) and V2(x0; �; � ) as follows:

U(x0; �; � ) = ( T � t0(x0))
1

p� 1 u(x; t ): (2.91)

and
V2(x0; �; � ) = j ln(T � t0(x0)) jU2(x0; �; � ); (2.92)

whereU2(x0; �; � ) is de�ned by

U(x0; �; � ) = U1(x0; �; � ) + iU2(x0; �; � );

and

(x; t ) =
�
x0 + �

p
T � t0(x0); t0(x0) + � (T � t0(x0))

�
; and (�; � ) 2 RN �

�
�

t0(x0)
T � t0(x0)

; 1
�

:

(2.93)
We can see that with these notations, we derive from item (i ) in Theorem 2.1 the following
estimates for initial data at � = 0 of U and V2

sup
j � j�j ln( T � t0 (x0 )) j

1
4

jU(x0; �; 0) � f 0(K 0)j �
C

1 + ( j ln(T � t0(x0)) j
1
4 )

! 0 asx0 ! 0; (2.94)

sup
j � j�j ln( T � t0 (x0 )) j

1
4

jV2(x0; �; 0) � g0(K 0)j �
C

1 + ( j ln(T � t0(x0)) j  1 )
! 0 asx0 ! 0:(2.95)

where f 0 and g0 are de�ned as in (2.6) and (2.17) respectively and 1 = min
�

1
4 ; p1

2

�
.

Moreover, using equations (2.23), we derive the following equations forU; V2: for all
� 2 RN ; � 2 [0; 1)

@� U = � � U + Up; (2.96)

@� V2 = � � V2 + V2G2(U1; U2); (2.97)

whereG is de�ned by
G(U1; U2)U2 = F2(U1; U2); (2.98)

and F2 is de�ned in (2.24). We note that G2; F2 are polynomials ofU1; U2.
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Besides that, from (2.89) and (2.96), we can apply Lemma 2.12 toU whenj� j � j ln(T �
t0(x0)) j

1
4 to get the following

sup
j � j� 1

2 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jU(x0; �; � )j � C: (2.99)

We aim at now proving the following

sup
j � j� 1

16 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � C: (2.100)

+ The proof for (2.100): We �rst use (2.99) to derive the following rough estimate:

sup
j � j� 1

2 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j: (2.101)

We �rst introduce  2 C1
0 (RN ); 0 �  � 1; supp( ) � B (0; 1);  = 1 on B(0; 1

2): We also
de�ne

 1(� ) =  

 
2�

j ln(T � t0(x0)) j
1
4

!

and V2;1(x0; �; � ) =  1(� )V2(x0; �; � ): (2.102)

Then, we deduce from (2.97) an equation satis�ed byV2;1

@� V2;1 = � � V2;1 � 2 div(V2r  1) + V2�  1 + V2;1G1(U1; U2): (2.103)

Hence, we can writeV2;1 with a integral equation as follows

V2;1(� ) = e� � (V2;1(0)) +
Z �

0
e(� � � 0)� (� 2 div (V2r  1) + V2�  1 + V2;1G(U1; U2)( � 0)) d� 0:

(2.104)
Besides that, using (2.99) and (2.101) and the fact that

jr  1j �
C

j ln(T � t0(x0)) j
1
4

; j�  1j �
C

j ln(T � t0(x0)) j
1
2

;

we deduce that
�
�
�
�

Z �

0
e(� � � 0)� (� 2 div (V2r  1)) d� 0

�
�
�
� � C

Z �

0

kV2r  1kL 1 (� 0)
p

� � � 0
d� 0 � Cj ln(T � t0(x0)) j

3
4 ;

�
�
�
�

Z �

0
e(� � � 0)� (V2(� 0)�  1) d� 0

�
�
�
� � C

Z �

0
kV2�  1k1 (� 0)d� 0 � Cj ln(T � t0(x0)) j

1
2 ;

�
�
�
�

Z �

0
e(� � � 0)� (V2 1G(U1; U2)( � 0)) d� 0

�
�
�
� � C

Z �

0
kV2;1G2(U1; U2)kL 1 (� 0)d� 0:

Note that G2(U1; U2) in the last line is bounded onj� j � j ln(T � t0)j
1
4 ; � 2 [0; 1) because it

is a polynomial in U1; U2 and (2.99) holds, then, we derive

kV2;1G2(U1; U2)kL 1 (� 0) � CkV2;1kL 1 (� 0):
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Hence, from (2.104) and the above estimates, we derive

kV2;1(� )kL 1 � Cj ln(T � t0(x0)) j
3
4 + C

Z �

0
kV2;1(� 0)kL 1 d� 0:

Thanks to Gronwall Lemma, we deduce that

kV2;1(� )kL 1 � Cj ln(T � t0(x0)) j
3
4 ; 8� 2 [0; 1);

which yields

sup
j � j� 1

4 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j
3
4 : (2.105)

We apply iteratively for

V2;2(x0; �; � ) =  2(� )V2(x0; �; � ) where  2(� ) =  

 
4�

j ln(T � t0(x0)) j
1
4

!

:

Similarly, we deduce that

sup
j � j� 1

8 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j
1
2 :

We apply this process a �nite number of steps to obtain (2.100). We now come back to our
problem, and aim at proving that:

sup
j � j� 1

16 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

�
�
�U(x0; �; � ) � ÛK 0 (� )

�
�
� �

C
1 + j ln(T � t0(x0)) j  2

; (2.106)

sup
j � j� 1

32 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

�
�
�V2(x0; �; � ) � V̂2;K 0 (� )

�
�
� �

C
1 + j ln(T � t0(x0)) j  3

; (2.107)

where  2;  3 are positive small enough and (̂UK 0 ; V̂2;K 0 )( � ) is the solution of the following
system:

@� ÛK 0 = Ûp
K 0

; (2.108)

@� V̂2;K 0 = pÛp� 1
K 0

V̂2;K 0 : (2.109)

with initial data at � = 0

ÛK 0 (0) = f 0(K 0);

V̂2;K 0 (0) = g0(K 0):

given by

ÛK 0 (� ) =
�

(p � 1)(1 � � ) +
(p � 1)2K 2

0

4p

� � 1
p� 1

; (2.110)

V̂2;K 0 (� ) = K 2
0

�
(p � 1)(1 � � ) +

(p � 1)2K 2
0

4p

� � p
p� 1

: (2.111)
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for all � 2 [0; 1). The proof of (2.106) is cited to Section 5 of Tayachi and Zaag [24] and the
proof of (2.107) is similar. For the reader's convenience, we give it here. Let us consider

V2 = V2 � V̂2;K 0 (� ): (2.112)

Then, V2 satis�es
sup

j � j� 1
16 j ln( T � t0 (x0 )) j

1
4 ;� 2 [0;1)

jV2j � C: (2.113)

We use (2.97) to derive an equation onV2 as follows:

@� V2 = � V2 + pÛp� 1
K 0

V2 + p(Up� 1
1 � Ûp� 1

K 0
)V2 + G2(x0; �; � ); (2.114)

where
G2(x0; �; � ) = V2[G2(U1; U2) � pUp� 1

1 ]:

Note that, from de�nition of G2 and (2.99) we deduce that

sup
j � j� 1

2 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jG2(U1; U2) � pUp� 1
1 j � CjU2j:

Hence, using (2.92) and (2.100) and we derive

sup
j � j� 1

16 j ln( T � t0 (0)) j
1
4 ;� 2 [0;1)

jG2(x0; �; � )j �
C

j ln(T � t0(x0)) j
: (2.115)

We also de�ne
�V2 =  � (� )V2;

where

 � =  

 
16�

j ln(T � t0(x0)) j
1
4

!

;

and  is the cut-o� function which has been introduced above. We also note thatr  � ; �  �

satisfy the following estimates

kr �  � kL 1 �
C

j ln(T � t0(x0)) j
1
4

and k� �  � kL 1 �
C

j ln(T � t0(x0)) j
1
2

: (2.116)

In particular, �V2 satis�es

@�
�V2 = � �V2 + pÛp� 1

K 0
(� ) �V2 � 2 div (V2r  � )+ V2�  � + p(Up� 1

1 � Ûp� 1
K 0

) � V2 +  � G2; (2.117)

By Duhamel principal, we derive the following integral equation

�V2(� ) = e� � ( �V2(� )) +
Z �

0
e(� � � 0)�

n
pÛp� 1

K 0
�V2 � 2 div (V2r  � ) (2.118)

+ V2�  � + p(Up� 1
1 � Ûp� 1

K 0
) � V2 +  � G2

o
(� 0)d� 0: (2.119)
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Besides that, we use (2.106), (2.110), (2.113), (2.116), (2.115) to derive the following esti-
mates: for all � 2 [0; 1)

jÛK 0 (� )j � C;

kV2r  � kL 1 (� ) �
C

j ln(T � t0(x0)) j
1
4

;

kV2�  � kL 1 (� ) �
C

j ln(T � t0(x0)) j
1
2

;




�

Up� 1
1 � Ûp� 1

K 0

�
 �





L 1
(� ) �

C
j ln(T � t0(x0)) j  2

;

kG2 � kL 1 (RN ) �
C

j ln(T � t0(x0)) j
:

where 2 given in (2.106). Hence, we derive from the above estimates that: for all� 2 [0; 1)

je(� � � 0)� pÛp� 1
K 0

�V2(� 0)j � Ck�V2(� 0)k;

je(� � � 0)� (div( V2r  � )) j � C
1

p
� � � 0

1

j ln(T � t0(x0)) j
1
4

;

je(� � � 0)� (V2�  � )j �
C

j ln(T � t0(x0)) j
1
2

;

je(� � � 0)� (p(Up� 1
1 � Ûp� 1

K 0
) � V2)( � 0)j �

C
j ln(T � t0(x0)) j  2

;

je(� � � 0)� ( � G2)( � 0)j �
C

j ln(T � t0(x0)) j
:

Plugging into (2.118), we obtain

k�V2(� )kL 1 �
C

j ln(T � t0(x0)) j  3
+ C

Z �

0
k�V2(� 0)kL 1 d� 0;

where 3 = min( 1
4 ;  2). Then, thanks to Gronwall inequality, we get

k�V2kL 1 �
C

j ln(T � t0(x0)) j  3
:

Hence, (2.107) follows . Finally, we easily �nd the asymptotics ofu� and u�
2 as follows,

thanks to the de�nition of U and V2 and to estimates (2.106) and (2.107):

u� (x0) = lim
t ! T

u(x0; t) = ( T � t0(x0)) � 1
p� 1 lim

� ! 1
U(x0; 0; � ) � (T � t0(x0)) � 1

p� 1

�
(p � 1)2

4p
K 2

0

� � 1
p� 1

;

(2.120)
and

u�
2(x0) = lim

t ! T
u2(x0; t) =

(T � t0(x0)) � 1
p� 1

j ln(T � t0(x0)) j
lim
� ! 1

V2(x0; 0; � )

�
(T � t0(x0)) � 1

p� 1

j ln(T � t0(x0)) j

�
(p � 1)2

4p

� � p
p� 1

(K 2
0)� 1

p� 1 : (2.121)
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Using the relation (2.90), we �nd that

T � t0(x0) �
jx0j2

2K 2
0 j ln jx0jj

and ln(T � t0(x0)) � 2 ln(jx0j); as x0 ! 0: (2.122)

Plugging (2.122) into (2.120) and (2.121), we get the conclusion of item (ii ) of Theorem 2.1.
This concludes the proof of Theorem 2.1 assuming that Proposition 2.11 holds. Naturally,
we need to prove this proposition on order to �nish the argument. This will be done in the
next section.

2.4 The proof of Proposition 2.11

This section is devoted to the proof of Proposition 2.11, which is the heart of our analysis.
We proceed into two parts. In the �rst part, we derive a priori estimates on q(s) in
VA (s). In the second part, we show that the new bounds are better than those de�ned in
VA (s), except for the �rst components (q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s).
This means that the problem is reduced to the control of these components, which is the
conclusion of item (i ) of Proposition 2.11. Item (ii ) of Proposition 2.11 is just a direct
consequence of the dynamics of these modes. Let us start the �rst part.

2.4.1 A priori estimates on (q1; q2) in VA(s).

In this subsection, we aim at proving the following proposition:

Proposition 2.13. There existsA4 � 1; such that for all A � A4 there existss4(A) � 1
such that for alls0 � s4(A) the following holds: If we assume that for alls 2 [�; s 1]; (q1; q2)(s) 2
VA (s) for somes1 � s0, then, for all s 2 [s0; s1]:

(i ) (ODE satis�ed by the positive modes) For allj 2 f 1; :::?N g, we have

�
�q0

1;0(s) � q1;0(s)
�
� +

�
�
�
�q

0
1;j (s) �

1
2

q1;j (s)

�
�
�
� �

C
s2

; 81 � j � N; (2.123)

�
�q0

2;0(s) � q2;0(s)
�
� +

�
�
�
�q

0
2;j (s) �

1
2

q2;j (s)

�
�
�
� �

C
sp1+2

; 81 � j � N: (2.124)

(ii ) (ODE satis�ed by the null modes) For allj; k 2 f 1; :::; Ng, we have
�
�
�
�q

0
1;j;k (s) +

2
s

q1;j;k (s)

�
�
�
� �

CA
s3

; (2.125)

�
�
�
�q

0
2;j;k (s) +

2
s

q2;j;k (s)

�
�
�
� �

CA2 ln s
sp1+3

: (2.126)

(iii ) (Control the negative part)





q1;� (:; s)
1 + jyj3






L 1

� Ce� s� �
2






q1;� (:; � )
1 + jyj3






L 1

+ C
e� (s� � )2

s
3
2

kq1;e(:; � )kL 1 +
C(1 + s � � )

s2
;

(2.127)




q2;� (:; s)
1 + jyj3






L 1

� Ce� s� �
2






q2;� (:; � )
1 + jyj3






L 1

+ C
e� (s� � )2

s
3
2

kq2;e(:; � )kL 1 +
C(1 + s � � )

s
p1+5

2

:

(2.128)
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(v) (Outer part)

kq1;e(:; s)kL 1 � Ce� ( s� � )
p kq1;e(:; � )kL 1 + Ces� � s

3
2






q1;� (:; � )
1 + jyj3






L 1

+
C(1 + s � � )es� �

p
s

;

(2.129)

kq2;e(:; s)kL 1 � Ce� ( s� � )
p kq2;e(:; � )kL 1 + Ces� � s

3
2






q2;� (:; � )
1 + jyj3






L 1

+
C(1 + s � � )es� �

s
p1+2

2

:

(2.130)

Proof. The proof of this Proposition is given in two steps:
+ Step 1: We will give a proof to items (i ) and (ii ) by using the projection the

equations which are satis�ed byq1 and q2.
+ Step 2: We will control the other components by studying the dynamics of the

linear operator L + V.
a) Step 1: We observe that the techniques of the proofs for (2.123), (2.124), (2.125) and

(2.126) are the same. So, we only deal with the proof of (2.125). For eachj; k 2 f 1; :::; Ng
by using the equation in (2.67) and the de�nition ofq1;j;k we deduce that

�
�
�
�q

0
1;i;j (s) �

Z
[L q1 + V q1 + B1(q1; q2) + R1(y; s)] � (y; s)

�
yi yj

4
�

� i;j

2

�
�dy

�
�
�
� � Ce� s;

(2.131)
if K is large enough. In addition to that, using the fact (q1; q2) 2 VA (s) and Lemma 2.8,
Lemma 2.18, Lemma 2.19, Lemma 2.20 that

�
�
�
�

Z
L (q)�

�
yi yj

4
�

� i;j

2

�
�dy

�
�
�
� �

C
s3

;
�
�
�
�

Z
V q1�

�
yi yj

4
�

� i;j

2

�
�dy +

2
s

q1;i;j (s)

�
�
�
� �

CA
s3

;
�
�
�
�

Z
B1(q1; q2)�

�
yi yj

4
�

� i;j

2

�
�dy

�
�
�
� �

C
s3

;
�
�
�
�

Z
R1(y; s)�

�
yi yj

4
�

� i;j

2

�
�dy

�
�
�
� �

C
s3

;

provided that s � s4(A). Then, (2.125) is derived by adding all the above estimates.

Step 2: In this part, we will concentrate on the proofs of items (iii ) and (iv ). We now
rewrite (2.67) in its integral form: for eachs � �

8
>><

>>:

q1(s) = K (s; � )q1(� ) +
Rs

� K (s; � ) [(V1;1q1)( � ) + ( V1;2q2)( � ) + B1(q1; q2)( � ) + R1(� )] d�
=

P 5
i =1 #1;i (s; � );

q2(s) = K (s; � )q2(� ) +
Rs

� K (s; � ) [(V2;1q1)( � ) + ( V2;2q2)( � ) + B2(q1; q2)( � ) + R2(� )] d�
=

P 5
i =1 #2;i (s; � );

(2.132)
wheref K (s; � )gs� � is the fundamental solution associated toL + V and de�ned by

�
@sK (s; � ) = ( L + V)K (s; � ); 8s > �;
K (�; � ) = Id:

(2.133)
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Let us now introduce some notations:

#1;1(s; � ) = K (s; � )q1(� ); #1;2(s; � ) =
Z s

�
K (s; � )(V1;1q1)( � )d�;

#1;3(s; � ) =
Z s

�
K (s; � )(V1;2q2)( � )d�; # 1;4(s; � ) =

Z s

�
K (s; � )(B1(q1; q2))( � )d�;

#1;5(s; � ) =
Z s

�
K (s; � )(R1(:; � ))d�;

and

#2;1(s; � ) = K (s; � )(q2(� )) ; #2;2(s; � ) =
Z s

�
K (s; � )(V2;1q1)( � )d�;

#2;3(s; � ) =
Z s

�
K (s; � )(V2;2q2)( � )d�; # 2;4(s; � ) =

Z s

�
K (s; � )(B2(q1; q2))( � )d�;

#2;5(s; � ) =
Z s

�
K (s; � )(R2(:; � ))d�:

From (2.132), we can see the strong inuence ofK . For that reason, we will study the
dynamics of that operator:

Lemme 2.14 (A priori estimates of the linearized operator). For all � � � 0, there exists
s5(� � ) � 1 such that� � s5(� � ) the following holds: If we havev 2 L2

� (RN ), satisfying

2X

m=0

jvm j +






v�

1 + jyj3






L 1 (RN )

+ kvekL 1 (RN ) < 1 ; (2.134)

where the above components are introduced in(2.80), then, for all s 2 [�; � + � � ]; the function
� (s) = K (s; � )v satis�es



 � � (y;s)

1+ jyj3





L 1 (RN )
�

Ces� � ((s� � )2+1 )
s (jv0j + jv1j +

p
sjv2j)

+ Ce� ( s� � )
2



 v�

1+ jyj3





L 1 (RN )
+ C e� ( s� � ) 2

s
3
2

kvekL 1 (RN ) ;
(2.135)

and

k� e(y; s)kL 1 (RN ) � Ces� �

 
2X

l=0

s
l
2 jvl j + s

3
2






v�

1 + jyj3






L 1 (RN )

!

+ Ce� s� �
p kvekL 1 (RN ) :

(2.136)

Proof. The proof of this result was given by Bricmont and Kupiainen [1] in the one dimen-
sional case. Later, it was extended to the higher dimensional case by Nguyen and Zaag
[18]. We kindly refer interested readers to Lemma 2.9 in [18] for details of the proof.

We now use Lemmas 2.14, 2.8, 2.18, 2.19 and 2.20 to deduce the following Lemma which
implies Proposition 2.13.

Lemme 2.15. For all A � 1; � � � 0, there existss6(A; � � ) � 1 such that8s0 � s6(A; � � )
and q(s) 2 SA (s); 8s 2 [�; � + � � ] where� � s0. Then, we have the following properties: for
all s 2 [�; � + � � ],
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i ) (The linear term #1;1(s; � ) and #2;1(s; � ))





(#1;1(s; � )) �

1 + jyj3






L 1

� Ce� s� �
2






q1;� (:; � )
1 + jyj3






L 1

+
Ce� (s� � )2

s
3
2

kq1;e(� )kL 1 +
C
s2

;

k(#1;1(s; � ))ekL 1 � Ce� s� �
p kq1;e(� )kL 1 + Ces� � s

3
2






q1;� (:; � )
1 + jyj3






L 1

+
C
p

s
;






(#2;1(s; � )) �

1 + jyj3






L 1

� Ce� s� �
2






q2;� (:; � )
1 + jyj3






L 1

+
Ce� (s� � )2

s
3
2

kq2;e(� )kL 1 +
C

s
p1+5

2

;

k(#2;1(s; � ))ekL 1 � Ce� s� �
p kq2;e(� )kL 1 + Ces� � s

3
2






q2;� (:; � )
1 + jyj3






L 1

+
C

s
p1+2

2

;

whereL1 = L1 (RN ).

ii ) The quadratic term#1;2(s; � ) and #2;2(s; � )





(#1;2(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#1;2(s; � ))ekL 1 (RN ) �

C(s � � )

s
1
2

;






(#2;2(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s
p1+5

2

; k(#2;2(s; � ))ekL 1 (RN ) �
C(s � � )

s
p1+2

2

:

iii ) The correction terms#1;3(s; � ) and #2;3(s; � )





(#1;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#1;3(s; � ))ekL 1 (RN ) �

C(s � � )

s
1
2

;






(#2;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s
p1+5

2

; k(#2;3(s; � ))ekL 1 (RN ) �
C(s � � )

s
p1+2

2

:

iv ) The correction terms#1;4(s; � ) and #2;4(s; � )





(#1;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#1;3(s; � ))ekL 1 (RN ) �

C(s � � )

s
1
2

;






(#2;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s
p1+5

2

; k(#2;3(s; � ))ekL 1 (RN ) �
C(s � � )

s
p1+2

2

:

v) The correction terms#1;5(s; � ) and #2;5(s; � )





(#1;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s2
; k(#1;3(s; � ))ekL 1 (RN ) �

C(s � � )

s
1
2

;






(#2;3(s; � )) �

1 + jyj3






L 1 (RN )

�
C(s � � )

s
p1+5

2

; k(#2;3(s; � ))ekL 1 (RN ) �
C(s � � )

s
p1+2

2

:

Proof. The result is implied from the de�nition of the shrinking set VA (s) and Lemma 2.8
and the bounds forV; Vj;k ; B1; B2; R1; R2 with j; k 2 f 1; 2g which are shown in Lemmas
2.18, 2.19 and 2.20. For details in a quite similar case, see Lemma 4.20 in Tayachi and Zaag
[24].

We now come back to the proof of Proposition (2.13): In fact, the conclusion of (iii ) and
(iv ) of Proposition 2.13 follows by using formula (2.132) and Lemma (2.15). This concludes
the proof of Proposition 2.13.
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2.4.2 Conclusion of the proof of Proposition 2.11

In this subsection, we will give prove a Proposition which implies Proposition 2.11 directly.
More precisely, this is our statement:

Proposition 2.16. There existsA7 � 1 such that for all A � A7, there existss7(A) � 1
such that for all s0 � s7(A), we have the following properties: If the following conditions
hold:

a) (q1; q2)(s0) = ( � 1; � 2) with (d0; d1) 2 DA;s 0 ,

b) For all s 2 [s0; s1] we have(q1; q2)(s) 2 VA (s).

Then, for all s 2 [s0; s1], we have

8i; j 2 f 1; � � � ; N g; jq1;i;j (s)j �
A2 ln s

2s2
; (2.137)






q1;� (y; s)
1 + jyj3






L 1 (RN )

�
A

2s2
; kq1;e(s)kL 1 (RN ) �

A2

2
p

s
; (2.138)






q2;� (y; s)
1 + jyj3






L 1 (RN )

�
A2

2s
p1+5

2

; kq2;e(s)kL 1 (RN ) �
A3

2s
p1+2

2

: (2.139)

Note that DA;s 0 is introduced in Lemma 2.9 and(� 1; � 2) is de�ned as in De�nition (2.2).

Proof. The proof relies on Propostion 2.13 and is quiet similar to Proposition 4.7 in Merle
and Zaag [15]. For that reason, we only give a short proof to (2.137).

We use (2.125) to deduce that
�
�
�
�

Z s

s0

(� 2q1;j;k (� ))d�

�
�
�
� � CA(ln( s) � ln(s0)) ; 8j; k 2 f 1; :::; Ng;

this yields

jq1;j;k (s)j � CAs� 2 ln s �
A2 ln s

2s2
;

if A � A7 large enough ands � s7(A). Then, (2.137) follows. This also �nishes the proof
of Proposition 2.16.

Conclusion of the proof of Proposition 2.11

Proof. From Proposition 2.16, if (q1; q2)(s1) 2 @VA (s1) then:

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N ) (s1) 2 @̂VA (s1): (2.140)

This concludes item (i ) of Proposition 2.11.

The proof of item (ii ) of Proposition 2.11: In fact, thanks to (2.140), we derive the two
following situations:

+ The �rst situation: Either there exists � 0 2 f� 1; 1g such that q1;0(s1) = � 0
A
s2

1
; or there

exist j 0 2 f 1; :::; Ng and � 0 2 f� 1; 1g such that q1;j 0 = � 0
A
s2

1
; or exists� 0 2 f� 1; 1g such that

q2;0 = � 0
A 2

sp1+2
1

; or there exist j 0 2 f 1; :::; Ng and � 0 2 f� 1; 1g such that q2;j 0 (s1) = � 0
A 2

sp1+2
1

.
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Without loss of generality, we can suppose thatq1;0 = � 0
A
s2

1
(the other cases are quiet

similar). Then, by using (2.123), we can prove that the sign ofq0
1;0(s1) is oppsite to the

sign of
�

� 0
A
s2

1

� 0
. In other words,

� 0

�
q1;0 � � 0

A
s2

� 0

(s1) > 0:

+ The second situation: There existj 0; k0; � 0 2 � 1; 1 and � 0 2 f� 1; 1g such that
q2;j 0 ;k0 (s1) = � 0

A 5 ln s
sp1+2

1

, by using (2.126), we can prove that

� 0

�
q2;j 0 ;k0 (s) � � 0

A5 ln s
sp1+2

� 0

(s1) > 0:

From two situations in the above, we deduce that there exists� 0 > 0 such that for all
� 2 (0; � 0)

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N ) (s1 + � ) =2 V̂A (s1 + � ):

provided that A � A3 and s0 � s3(A). Then, the item (ii ) of Proposition follows. Thus,
we derive the conclusion of Proposition 2.11.

2.5 Appendix

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

We �rst give a Taylor expansion of the quadratic terms de�ned in (2.29) and (2.30).

Lemme 2.17 (Asymptotics of �B1 and �B2). Let us consider �B1( �w1; w2) and �B2( �w1; w2),
de�ned in (2.29) and (2.30), respectively. Then, the following holds

�B1( �w1; w2) =
p

2�
�w2

1 + O(j �w1j3 + jw2j2); (2.141)

�B2( �w1; w2) =
p
�

�w1w2 + O
�
j �w1j2jw2j

�
+ O

�
jw2j3

�
; (2.142)

as ( �w1; w2) ! (0; 0).

Proof. In fact, bearing in mind that p 2 N. Then, by using the Newton binomial formula,
we derive the following:

( �w1 + � + iw2)p = ( �w1 + � )p + ip( �w1 + � )p� 1w2 + p(p � 1)( �w1 + � )p� 2w2
2 + G( �w1; w2);

where
jG( �w1; w2)j � Cjw2j3; 8j �w1j + jw2j � 1:

This gives us

Re (( �w1 + � + iw2)p) = ( �w1 + � )p + p(p � 1)( �w1 + � )p� 2w2
2 + Re (G); (2.143)

Im (( �w1 + � + iw2)p) = p( �w1 + � )p� 1w2 + Im ( G): (2.144)
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Moreover, we apply again the Newton binomial formula to (� + �w1)p; (� + �w1)p� 1 and we
get

(� + �w1)p = � p +
p

p � 1
�w1 +

p
2�

�w2
1 + O(j �w1j3); (2.145)

(� + �w1)p� 1 =
1

p � 1
+

1
�

�w1 + O(j �w1j2): (2.146)

Thus, (2.141) follows by (2.143) and (2.145). Moreover, (2.142) follows by (2.144) and
(2.146).

Now, we give an expansion of the potentials de�ned in (2.68) and (2.69) - (2.72). The
following is our statement:

Lemme 2.18 (The potential functions V andVj;k with j; k 2 f 1; 2g). We considerV; V1;1; V1;2; V2;1

and V2;2 as de�ned in (2.68) and (2.69) - (2.72). Then, the following holds:
(i ) For all s � 1 and y 2 RN , we havejV(y; s)j � C;

jV(y; s)j �
C(1 + jyj2)

s
; (2.147)

and

V(y; s) = �
(jyj2 � 2N )

4s
+ ~V(y; s); (2.148)

where ~V satis�es

j ~V(y; s)j � C
(1 + jyj4)

s2
; 8s � 1; jyj � 2K

p
s: (2.149)

(ii ) For all s � 1 and y 2 RN ; the potential functionsVj;k with j; k 2 f 1; 2g satisfy

jV1;1(y; s)j + jV2;2(y; s)j �
C(1 + jyj4)

s4
;

jV1;2(y; s)j + jV2;1(y; s)j �
C(1 + jyj2)

s2
:

In particular, we have

kV1;1kL 1 (RN ) + kV2;2kL 1 (RN ) �
C
s2

;

kV1;2kL 1 (RN ) + kV2;1kL 1 (RN ) �
C
s

:

Proof. We see that item (ii ) is derived directly from the de�ntions of Vj;k ; j; k 2 f 1; 2g. In
addition to that, the proof of ( i ) is quite similar to Lemma B.1, page 1270 in [18].

Now, we give some Taylor expansions ofB1 and B2, introduced in (2.73) and (2.74),
respectively.

Lemme 2.19 (The quadratic termsB1(q1; q2) and B2(q1; q2)) . Let us considerB1(q1; q2) and
B2(q1; q2), de�ned in (2.73) and (2.74) respectively. For allA � 1; there existss8(A) � 1
such that for all s � s8(A); if (q1; q2)(s) 2 VA (s); then

jB1(q1; q2)j � C
�
jq1j2 + jq2j2

�
; (2.150)

jB2(q1; q2)j � C
�

jq1j2

s
+ jq1:q2j + jq2j2

�
: (2.151)
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Proof. Let us recall the two functionsF1(u1; u2) and F2(u1; u2) which are de�ned in (2.24).
As a matter of fact, they belong toC1 (R2). Then, by using Taylor expansion, we obtain

F1(� 1 + q1; � 2 + q2) =
X

j;k � p

1
j !k!

@j + k
u j

1uk
2
F1(� 1; � 2)qj

1qk
2 ;

F2 (� 1 + q1; � 2 + q2) =
X

j;k � p

1
j !k!

@j + k
u j

1uk
2
F2(� 1; � 2)qj

1qk
2 :

Thus, (2.150) and (2.151) follow by de�nitions ofB1; B2 and the de�nition of VA (s).

In the following lemma, we give various estimates involving rest termsR1 and R2,
de�ned in (2.75) and (2.76), respectively.

Lemme 2.20 (Rest terms R1; R2). For all s � 1, let us considerR1; R2 de�ned in (2.75)
and (2.76). Then,

(i ) For all s � 1 and y 2 RN

R1(y; s) =
c1;p

s2
+ ~R1(y; s);

R2(y; s) =
c2;p

s3
+ ~R2(y; s);

wherec1;pand c2;p are constants depended onp and ~R1; ~R2 satisfy: for all jyj � 2K
p

s

j ~R1(y; s)j �
C(1 + jyj4)

s3
;

j ~R2(y; s)j �
C(1 + jyj6)

s4
:

(ii ) Moreover, we have for alls � 1

kR1(:; s)kL 1 (RN ) �
C
s

;

kR2(:; s)kL 1 (RN ) �
C
s2

:

Proof. The proofs forR1 and R2 are quite similar. For that reason, we only give the proof
of the estimates onR2. This means that we need to prove the following estimates:

R2(y; s) = �
N (N + 4) �
(p � 1)s3

+ ~R2(y; s); (2.152)

where

j ~R2(y; s)j � C
(1 + jyj6)

s4
; 8jyj � 2K

p
s;

and

kR2(:; s)kL 1 (RN ) �
C
s2

: (2.153)
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We recall the de�nition of R2(y; s) in (2.76) as follows

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ F2(� 1; � 2) � @s� 2:

Then, we can rewriteR2

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ p� p� 1

1 � 2 � @s� 2 + R�
2(y; s);

where
R�

2(y; s) = F2(� 1; � 2) � p� p� 1
1 � 2:

Using the de�nition of F2 in (2.24), and the de�ntions of � 1; � 2 in (2.64) and (2.65), we
derive that

jR�
2(y; s)j �

C(1 + jyj6)
s4

; 8jyj � 2K
p

s;

and

kR�
2(:; s)kL 1 (RN ) �

C
s2

:

In addition to that, we introduce �R2 by

�R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ p� p� 1

1 � 2 � @s� 2:

Then, we may obtain the conclusion if the following two estimates hold:
�
�
�
�
�R2(y; s) +

N (N + 4) �
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; (2.154)

k �R2(:; s)kL 1 (RN ) �
C
s2

: (2.155)

+ The proof of (2.154): We �rst aim at expanding �� 2 in a polynomial in y of order less
than 4 via the Taylor expansion. Indeed, �� 2 is given by

�� 2 =
2N
s2

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
(p � 1)jyj2

s3

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 2p� 1
p� 1

�
(N + 2)( p � 1)jyj2

2s3

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 2p� 1
p� 1

+
(2p � 1)(p � 1)2jyj4

4ps4

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 3p� 2
p� 1

:

Besides that, we use Taylor expansion in the variablez = jyjp
s to function

�
p � 1 + (p� 1)2

4p
jyj2

s

� � p
p� 1

in the domain wherejzj � 2K and this yields the following:
�
�
�
�
�

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
�

p � 1
+

�
4(p � 1)

jyj2

s

�
�
�
�
�

�
C(1 + jyj4)

s2
; 8jyj � 2K

p
s:
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which yields
�
�
�
�
�
2N
s2

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
2N�

(p � 1)s2
+

N� jyj2

2(p � 1)s3

�
�
�
�
�

�
C(1 + jyj6)

s4
;

for all jyj � 2K
p

s.

It is similar to estimate the other terms in the formula of �� 2, de�ned in the above.
Therefore, we �nally obtain

�
�
�
� �� 2 �

2N�
(p � 1)s2

+
N� jyj2

(p � 1)s3
+ 2

kjyj2

(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; 8jyj � 2K
p

s: (2.156)

As we did for �� 2, we estimate similarly the other terms in formula of �R2, for all jyj �
2K

p
s:

�
�
�
� �

1
2

y � r � 2 +
� jyj2

(p � 1)s2
�

� jyj4

4(p � 1)s3
�

� jyj4

4(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; (2.157)
�
�
�
� �

� 2

p � 1
+

� jyj2

(p � 1)2s2
�

� jyj4

4(p � 1)2s3
�

2N�
(p � 1)2s2

�
�
�
� �

C(1 + jyj6)
s4

; (2.158)

�
�p� p� 1

1 � 2 + T(y; s)
�
� �

C(1 + jyj6)
s4

; (2.159)
�
�
�
� � @s� 2 �

2� jyj2

(p � 1)s3
+

4N�
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; (2.160)

where

T(y; s) = �
p� jyj2

(p � 1)2s2
+

(2p � 1)� jyj4

4(p � 1)2s3
�

N� jyj2

(p � 1)s3
+

2pN�
(p � 1)2s2

+
N 2�

(p � 1)s3

Thus, by an addition (2.156), (2.157), (2.158), (2.159) and (2.160), we obtain the following
�
�
�
�
�R2(y; s) +

N (N + 4) �
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; 8jyj � 2K
p

s;

this concludes (2.154).
+ The proof (2.155): We rewrite � 1; � 2 as follows

� 1(y; s) = R1;0(z) +
N�
2ps

and � 2(y; s) =
1
s

R2;1(z) �
2N�

(p � 1)s2
wherez =

y
p

s
;

whereR1;0 and R2;1 are de�ned in (2.56) and (2.60), respectively. In addition to that, we
rewrite �R2 in terms of R1;0 and R2;1, and we note that R1;0 and R2;1 satisfy (2.52) and
(2.54). Then, it follows that

j �R2(y; s)j �
C
s2

; 8y 2 RN :

Hence, (2.155) follows. This concludes the proof of this Lemma.
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Chapter 3

A blowup solution of a complex
semilinear heat equation with an non
integer power 1

G. K. Duong

Abstract: In this paper, we consider the following semi-linear complex heat equation

@tu = � u + up; u 2 C

in RN ; with an arbitrary power p; p > 1. We construct for this equation a complex solution
u = u1 + iu 2, which blows up in �nite time T and only at one blowup pointa: Moreover,
we also describe the asymptotic behaviors of the solution by the following �nal pro�les:

u(x; T ) �
�

(p � 1)2jx � aj2

8pj ln jx � ajj

� � 1
p� 1

;

u2(x; T ) �
2p

(p � 1)2

�
(p � 1)2jx � aj2

8pj ln jx � ajj

� � 1
p� 1 1

j ln jx � ajj
> 0; as x ! a:

In addition to that, since we also haveu1(0; t) ! + 1 and u2(0; t) ! �1 as t ! T;
the blowup in the imaginary part shows a new phenomenon unknown for the standard heat
equation in the real case: a non constant sign near the singularity, with the existence of
a vanishing surface for the imaginary part, shrinking to the origin. In our work, we have
succeeded to extend for any powerp where the non linear termup is not continuous if p is
irrational. In particular, the solution which we have constructed has a positive real part.
We study our equation as a system of the real part and the imaginary partu1 and u2. Our
work relies on two main arguments: the reduction of the problem to a �nite dimensional
one and a topological argument based on the index theory to get the conclusion.

Mathematics Subject Classi�cation: 35K55, 35K57 35K50, 35B44 (Primary);
35K50, 35B40 (Secondary).

Keywords: Blowup solution, Blowup pro�le, Semilinear complex heat equation, non
variation heat equation.

1 This work was accepted for publication in J. Di�erential Equations , (2019).
Doi: 10.1016/j.jde.2019.05.024
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3.1 Introduction

3.1.1 Earlier work

In this work, we are interested in the following complex-valued semilinear heat equation
(

@tu = � u + F (u); t 2 [0; T);

u(0) = u0 2 L1 (RN );
(3.1)

whereF (u) = up, and u(t) : RN ! C, L1 (RN ) := L1 (RN ; C) and p > 1.

Typically, when p = 2, model (3.1) becomes the following
(

@tu = � u + u2; t 2 [0; T);

u(0) = u0 2 L1 (RN ):
(3.2)

This model is connected to the viscous Constantin-Lax-Majda equation with a viscosity
term, which is a one dimensional model for the vorticity equation in uids. For more
details, the readers are addressed to the following works: Constantin, Lax, Majda [2]; Guo,
Ninomiya, Shimojo and Yanagida [8]; Okamoto, Sakajo and Wunsch [24]; Sakajo [25] and
[26]; Schochet [27].

The local Cauchy problem for model (3.1) can be solved inL1 (RN ) when p is integer,
thanks to a �xed-point argument. However, if p is an irrational number, then, the local
Cauchy problem has not been solved yet, up to our knowledge. In my point of view, this
probably comes from the discontinuity ofF (u) on f u 2 R�

� g and this challenge is also one
of the main di�culties of the paper. As a matter of fact, we solve the Cauchy problem in
Appendix 3.5 for data u0 2 L1 (RN ); with Re(u0) � �; for some� > 0. Accordingly, a
maximal solution may be global in time or may exist only fort 2 [0; T); for someT > 0:
In that case, we have to options:

(i ) Either ku(:; t)kL 1 (RN ) ! + 1 as t ! T.

(ii ) Or min x2 RN Re(u(x; t )) ! 0 ast ! T.

In this paper, we are interested in case (i ) which is referred to as�nite-time blow-up in
the sequel.

In addition to that, a blowup solution u is calledType I if

lim sup
t ! T

(T � t)
1

p� 1 ku(:; t)kL 1 (RN ) < + 1 :

Otherwise, the solutionu is calledType II .

In addition to that, T is called the blowup time ofu and a point a 2 RN is called a
blowup point if and only if there exist sequencesf (aj ; t j )g ! (a; T) as j ! + 1 such that

ju1(aj ; t j )j + ju2(aj ; t j )j ! + 1 as j ! + 1 :

In our work, we are interested in constructing a blowup solution of (3.1) which is ofType I.
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Let us quickly mention some typical works for this situation (for more details, the readers
can see the introduction in Duong [5] where has treated for the integer case).

(i ) For the real case: We �rst mention to Bricmont and Kupiainen [1], the authors
have constructed a real positive solution to the following equation

@tu = � u + jujp� 1u; p > 1; (3.3)

which blows up in �nite time T, only at the origin and they have also derived the pro�le of
the solution such that






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

1 +
p

j ln(T � t)j
;

wheref 0 is de�ned by

f 0(z) =
�

p � 1 +
(p � 1)2

4p
jzj2

� � 1
p� 1

: (3.4)

In addition to that, Herrero and Vel�azquez derived in [13], the same result with a di�erent
method. Particularly, Merle and Zaag gave in [17], a proof which is simpler than the one
in [1] and proposed the following two-step method (see also the note [15]):

- Reduction of the in�nite dimensional problem to a �nite dimensional one.

- Solution of the �nite dimensional problem thanks to a topological argument based on
Index theory.

Moreover, they also proved the stability of the blowup pro�le for (3.3). In addition to
that, we would like to mention that this method has been successful in various situations
such as: Ebde and Zaag [6]; Tayachi and Zaag [28] and Ghoul; Nguyen and Zaag [9]; [10]
(with a gradient term) and [11]. We would like to mention Nguyen and Zaag [21] who have
considered the following quasi-critical double source equation

@tu = � u + jujp� 1u +
� jujp� 1u

lna(2 + u2)
:

Besides that, we have Duong, Nguyen and Zaag [4], the authors have considered the fol-
lowing non scale invariant equation

@tu = � u + jujp� 1u ln� (2 + u2):

(ii ) For the complex case: The blowup problem for the complex-valued parabolic
equations has been studied intensively by many authors, in particular for the Complex
Ginzburg Landau equation (CGL)

@tu = (1 + i� )� u + (1 + i� )jujp� 1u: (3.5)

This is the case of an ealier work of Zaag in [29] for equation (3.5) when� = 0 and � small
enough. Later, Masmoudi and Zaag generalized in [18] the result of [29] and constructed a
blowup solution for (3.5) with a super critical conditionp � � 2 � �� � ��p > 0:
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Recently, Nouaili and Zaag in [23] have constructed a blowup solution for equation (3.5),
for a critical case where� = 0 and p = � 2.

In addtiion to that, there are many works for equation (3.1), in particular for equation
(3.2). We mention Nouaili and Zaag [22], these authors have constructed for equation (3.2),
a complex solutionu = u1 + iu 2 which blows up in �nite time T only at the origin. Note
that the real and the imaginary parts blow up simultaneously. In particular, [22] leaves
unanswered the question of the derivation of the pro�le of the imaginary part, and this is
precisely our aim in this paper, not only for equation (3.2), but also for equation (3.1) for
all p > 1.

Besides that, we would like to mention also some classi�cation results, proven by Harada in
[12], for blowup solutions of (3.2) which satisfy some reasonable assumptions. In particular,
in that works, we are able to derive a sharp blowup pro�le for the imaginary part of the
solution. However, [12] is limited withp = 2.

Recently, we mention Duong [5], the author has treated for the cases wherep takes an
arbitrary integer value.

3.1.2 Statement of the result

As we mentioned in the previous section, we only have treated in [5] the case wherep 2
N; p � 2 which the handling of the nonlinear term is much easier. In this work, we do
better and give a proof which holds also for the cases wherep =2 N. We believe we made an
important achievement, we acknowledge that we left unanswered the case wherep > 1 and
p =2 N. From the limitation of the mentioned works in the previous section, it motivates us
to study model (3.1) in general even for an irrational number. More precisely, the following
theorem is our main result:

Theorem 3.1 (Existence of a blowup solution for (3.1) and a sharp discription of its
pro�le) . For each p > 1 and p1 2

�
0; min

� p� 1
4 ; 1

2

��
, there existsT1(p; p1) > 0 such that for

all T � T1; there exist initial data u(0) = u1(0) + iu 2(0) such that equation(3.1) has a
unique solutionu on RN � [0; T) satisfying the following:

i ) The solution u blows up in �nite time T only at the origin and Re(u) > 0 on RN �
[0; T). Moreover, it satis�es the following






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

1 +
p

j ln(T � t)j
; (3.6)

and





(T � t)

1
p� 1 j ln(T � t)ju2(:; t) � g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

(3.7)

�
C

1 + j ln(T � t)j
p1
2

;

wheref 0 is de�ned in (3.4) and g0 is de�ned as follows

g0(z) =
jzj2

�
p � 1 + (p� 1)2

4p jzj2
� p

p� 1
: (3.8)
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ii ) There exists a complex functionu� in C2(RN nf 0g) such thatu(t) ! u� = u�
1 + iu �

2 as
t ! T; uniformly on compact sets ofRN nf 0g; and we have the following asymptotic
behaviors:

u� (x) �
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

; as x ! 0; (3.9)

and

u�
2(x) �

2p
(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0: (3.10)

Remark 3.2. We remark that the condition on the parameterp1 < min
� p� 1

4 ; 1
2

�
comes

from the de�nition of the set VA (s) (see in item (i ) of De�nition 3.1), Proposition 3.18
and Lemma 3.26. Indeed, this condition ensures that the projections of the quadratic term
B2(q2; q2) on the negative and outer parts are smaller than the conditions inVA (s). Then,
we can conclude(3.132) and (3.134) by using Lemma 3.26 and de�nition ofVA (s).

Remark 3.3. We can show that the constructed solution in the above Theorem satis�es
the following asymptotic behaviors:

u(0; t) � � (T � t)� 1
p� 1 ; (3.11)

u2(0; t) � �
2N�

(p � 1)
(T � t)� 1

p� 1

j ln(T � t)j2
; (3.12)

as t ! T, (see (3.91) and (3.92)). Therefore, we deduce thatu blows up at timeT only
at 0. Note that, the real and imaginary parts simultaneously blow up. Moreover, from item
(ii ) of Theorem 3.1, the blowup speed ofu2 is softer than u1 because of the quantity 1

j ln jx jj

(see (3.9) and (3.10)).

Remark 3.4 (A strong singularity of the imaginary part). We observe from(3.10) and
(3.12) that there is a strong sigularity at the neighborhood ofa as t ! T; whenx close to
0; we haveu2(x; t ) which becomes large and positive ast ! T, however, we always have
u2(0; t) ! �1 as t ! T: Thus the imaginary part has no constant sign near the singularity.
In particular, if t is near T, there existsb(t) > 0 in RN and b(t) ! 0 as t ! T such that
at time t; u2(:; t) vanishes on some surface close to the sphere of center0 and radius b(t).
Therefore, we don't haveju2(x; t )j ! + 1 as(x; t ) ! (0; T). This non constant property for
the imaginary part is very surprising to us. In the frame work of semilinear heat equation,
such a property can be encountered for phase invariant complex equations, such as the
Complex Ginzburg-Landau (CGL) equation (see Zaag in [29], Masmoudi and Zaag in [18],
Nouaili-Zaag [23]). As for complex parabolic equation with no phase invariance, this is the
�rst time such a sign change in available, up to our knowledge. We would like to mention
that such a sign change near the singularity was already observed for the semilinear wave
equation non characteristic blowup point (see Merle and Zaag in [19], [20] and Côte and
Zaag in [3]).

Remark 3.5. For eacha 2 RN ; by using the translationua(:; t) = u(: � a; t); we can prove
that ua also satis�es equation(3.1) and the solution blows up at timeT only at the point
a. We can derive thatua satis�es all estimates(3.6) - (3.10) by replacingx by x � a.
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Remark 3.6. In Theorem (3.1), the initial data u(0) is given exactly as follows

u(0) = u1(0) + iu 2(0);

where

u1(x; 0) = T � 1
p� 1

( �
p � 1 +

(p � 1)2jxj2

4pTj ln Tj

� � 1
p� 1

+
N�

2pj ln Tj

+
A

j ln Tj2

�
d1;0 + d1;1 �

x
p

T

�
� 0

 
16jxj

K 0

p
Tj ln Tj

!)

� 0

�
jxj

p
Tj ln Tj

�

+ U� (x)
�

1 � � 0

�
jxj

p
Tj ln Tj

��
+ 1;

u2(x; 0) = T � 1
p� 1 � 0

�
jxj

p
Tj ln Tj

� (
jxj2

Tj ln Tj2

�
p � 1 +

(p � 1)2jxj2

4pTj ln Tj

� � p
p� 1

�
2N�

(p � 1)j ln Tj2

+
�

A2

j ln Tjp1+2

�
d2;0 + d2;1 �

x
p

T

�
+

A5 ln(j ln(T)j)
j ln Tjp1+2

�
1
2

xT

p
T

� d2;2 �
x

p
T

� Tr (d2;2)
��

� � 0

 
2jxj

K 0

p
Tj ln Tj

!)

:

where� = ( p � 1)� 1
p� 1 ; K 0 and A are positive constants �xed large enough;d1 = ( d1;0; d1;1)

andd2 = ( d2;0; d2;1; d2;2) are parameters which we �ne tune in our proof; and� 0 2 C1
0 [0; + 1 )

satis�es k� 0kL 1 (RN ) � 1; supp� 0 � [0; 2] and � 0(x) = 1 for all jxj � 1 and U� is given in
(3.86) which is related to the �nal pro�le, given in (3.9).

Note that whenp 2 N; we took in [5] a simpler expression for initial data, not in involving
the �nal pro�le U� ; nor the (+1) term in u1(0). In particular, adding this (+1) term in our
idea to ensure that the real part of the solution straps positive.

Remark 3.7. We see in(3.17) that the equation satis�ed by ofu2 is almost \linear" in u2.
Hence, given an arbitraryc0 6= 0; we can change a little in our proof to construct a solution
uc0 = u1;c0 + iu 2;c0 in t 2 [0; T), which blows up in �nite time T only at the origin such that
(3.6) and (3.9) hold and the following holds






(T � t)

1
p� 1 j ln(T � t)ju2;c0 (:; t) � c0g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
C

j ln(T � t)j
p1
2

;

(3.13)
and

u�
2(x) �

2pc0

(p � 1)2

�
(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1 1

j ln jxjj
; as x ! 0; (3.14)

Remark 3.8. As in the casep = 2 treated by Nouaili and Zaag [22], and we also mentioned
we suspect the behavior in Theorem 3.1 to be unstable. This is due to the fact that the number
of parameters in the initial data we consider below in De�nition 3.2 (see also Remark 3.6
above) is higher than the dimension of the blowup parameters which isN + 1 (N for the
blowup points and1 for the blowup time).
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Besides that, we can use the technique of Merle [14] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 3.9 (Blowing up at k distinct points) . For any given points, x1; :::; xk , there
exists a solution of (3.1) which blows up exactly atx1; :::; xk . Moreover, the local behavior
at each blowup pointx j is also given by(3.6), (3.7), (3.9), (3.10) by replacingx by x � x j

and L1 (RN ) by L1 (jx � x j j � � 0); for some� 0 > 0.

3.1.3 The strategy of the proof

From the singularity of the nonlinear termF (u) = up whenp is irrational, we can not apply
the techniques we used in [5] wherep 2 N (also used in [17], [?], ...). We need to modify this
method. We see that, although our nonlinear term in not continuous inC, it is continuous
in the following half plane

f z 2 C jRe(z) > 0g:

Relying on this property, our problem will be derived by using the techniques which were
used in [5] and the �ne control of the positivity of the real part. In fact, the control of
the positivity follows from ideas given in Merle and Zaag [16] (see also Ghoul, Nguyen and
Zaag in [10] where inherited ideas from [16]) which helps us to construct initial data.

In addition to that, we also de�ne a shrinking setS(t) (see in De�nition 3.1) which allows
a very �ne control of the positivity of the real part. More precisely, it is proceed to control
our solution on three regionsP1(t); P2(t) and P3(t) which are given in subsection 3.3.2 and
which we recall here:

- P1(t); called the blowup region, i.ejxj � K 0

p
(T � t)j ln(T � t)j: We control our

solution as a perturbation of the intermediate blowup pro�les (fort 2 [0; T)) f 0 and g0

given in (3.6) and (3.7), respectively.

- P2(t); called the intermediate region, i.eK 0
4

p
(T � t)j ln(T � t)j � j xj � � 0: In this

region, we will control our solution by control the rescaled functionU of u (see more
(3.74)) to approachÛK 0 (� ) (see in (3.79)), by using a classical parabolic estimates. Roughly
speaking, we control our solution as a perturbation of the �nal pro�les fort = T given in
(3.9) and (3.10).

- P3(t); called the regular region, i.ejxj � � 0
4 : In this region, we control the solution as a

perturbation of initial data ( t = 0). Indeed, T will be chosen small by the end of the proof.

Fixing some constants involved in the de�nitionS(t), we can prove that our problem
will be solved by the control of the solution inS(t). Moreover, we prove via a priori
estimates in the di�erent regionsP1; P2; P3 that the control is reduced to the control of a
�nite dimensional components of the solution. Finally, we may apply the techniques in [5]
to get our conclusion.

We will organize our paper as follows:

- In Section 3.2: We give a formal approach to explain how the pro�les given in Theorem
3.1, appear naturally. Moreover, we also approach our problem through two independent
directions: Inner expansionand Outer expansion, in order to show that our pro�les are
reasonable.
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- In Section 3.3: We give a formulation for our problem (see equation (3.56)) and, step
by step we give the rigorous proof for Theorem 3.1, assuming some technical estimates.

- In Section 3.4, we prove the techical estimates assumed in Section 3.3.

3.2 Derivation of the pro�le (formal approach)

In this section, we would like to give a formal approach to our problem which explains
how we derive the pro�les for the solution of equation (3.1), given in Theorem (3.1), as
well the asymptotic behaviors of the solution. In particular, we would like to mention that
the main di�erence between the casep 2 N and p =2 N resides in the way we handle the
nonlinear term up. For that reason, we will give a lot of care for the estimates involving
the nonlinear term, and go quickly while giving estimates related to other terms, kindly
refering the reader to [5] where the casep 2 N was treated.

3.2.1 Modeling the problem

In this part, we will give de�nitions and special symbols important for our work and explain
how f 0 and g0 arise as the blowup pro�les for the solution of equation (3.1) as stated in (3.6)
and (3.7). Our aim in this section is to give solid (though formal) hints for the existence of
a solution u(t) = u1(t) + iu 2(t) to equation (3.1) such that

lim
t ! T

ku(:; t)kL 1 (RN ) = + 1 ; (3.15)

and u obeys the pro�les in (3.6) and (3.7), for someT > 0. As we have pointed out in the
introduction, we are interested in the case where

p =2 N;

noting that in this case, we already have a di�culty to properly de�ne the nonlinear term
up as a continuous term. In order to overcome this di�culty, we will restrict ourselves to
the case where

Re(u) > 0: (3.16)

Our main challenge in this work will be to show that (3.16) is propagated by the ow, at
least for the initial data we are suggesting (see De�nition 3.2 below). Therefore, under the
condition (3.16), by using equation (3.1), we deduce thatu1; u2 solve:

�
@tu1 = � u1 + F1(u1; u2);
@tu2 = � u2 + F2(u1; u2):

(3.17)

whereF1(0; 0) = F2(0; 0) = 0 and for all (u1; u2) 6= 0 we have
(

F1(u1; u2) = Re [( u1 + iu 2)p] = jujp cos [p Arg (u1; u2)] ;

F2(u1; u2) = Im [( u1 + iu 2)p] = jujp sin [p Arg (u1; u2)] ;
(3.18)

with juj = ( u2
1 + u2

2)
1
2 and Arg(u1; u2); u1 > 0 is de�ned as follows:

Arg(u1; u2) = arcsin

"
u2p

u2
1 + u2

2

#

: (3.19)
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Note that, in the case wherep 2 N, we had the following simple expressions forF1; F2

8
<

:

F1(u1; u2) = Re [( u1 + iu 2)p] =
P [ p

2 ]
j =0 C2j

p (� 1)j up� 2j
1 u2j

2 ;

F2(u1; u2) = Im [( u1 + iu 2)p] =
P [ p� 1

2 ]
j =0 C2j +1

p (� 1)j up� 2j � 1
1 u2j +1

2 :
(3.20)

Of course, both expressions (3.18) and (3.20) coincide whenp 2 N. In fact, we will follow
our strategy in [5] for p 2 N and focus mainly on how we handle the nonlinear terms, since
we have a di�erent expression whenp =2 N:

Let us introduce the similarity-variables for u = u1 + iu 2 as follows:

w(y; s) = ( T � t)
1

p� 1 u(x; t ); y =
x

p
T � t

; s = � ln(T � t) and w = w1 + iw2: (3.21)

Then, w1 and w2 are real functions. Moreover, by using (3.17), we obtain a system satis�ed
by (w1; w2); for all y 2 RN and s � � ln T as follows:

�
@sw1 = � w1 � 1

2y � r w1 � w1
p� 1 + F1(w1; w2);

@sw2 = � w2 � 1
2y � r w2 � w2

p� 1 + F2(w1; w2):
(3.22)

Then note that studying the asymptotic behavior ofu1 + iu 2 as t ! T is equivalent to
studying the asymptotic behavior ofw1 + iw2 in long time. We are �rst interested in the
set of constant solutions of (3.22), denoted by

S = f (0; 0)g [
�

�
�

cos
�

2k�
p � 1

�
; sin

�
2k�

p � 1

��
where� = ( p � 1)� 1

p� 1 ; and k 2 N
�

:

We remark that S is in�nity if p is irrational. However, from the transformation (3.21), we
slightly precise our goal in (3.15) by requiring in addition that

(w1; w2) ! (�; 0) ass ! + 1 :

Introducing w1 = � + �w1; our goal because to get

( �w1; w2) ! (0; 0) ass ! + 1 :

From (3.22), we deduce that �w1; w2 satisfy the following system
�

@s �w1 = L �w1 + �B1( �w1; w2);
@sw2 = L w2 + �B2( �w1; w2);

(3.23)

where

L = � �
1
2

y � r + Id; (3.24)

�B1( �w1; w2) = F1(� + �w1; w2) � � p �
p

p � 1
�w1; (3.25)

�B2( �w1; w2) = F2(� + �w1; w2) �
p

p � 1
w2: (3.26)

It is important to study the linear operator L and the asymptotic behaviors of�B1 and
�B2 as ( �w1; w2) ! (0; 0) which will appear as \quadratic" terms.
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� The properties ofL :

In fact, L plays an important role in our analysis. It is easy to �nd an analysis space such
that operator is self-adjoint. Indeed,L is self-adjoint in D(L ) � L2

� (RN ), where L2
� (RN ) is

the weighted space associated to the weight� de�ned by

� (y) =
e� j y j 2

4

(4� )
N
2

=
NY

j =1

� (yj ); with � (� ) =
e� j � j 2

4

(4� )
1
2

; (3.27)

and the spectrum set ofL

spec(L ) =
n

1 �
m
2

; m 2 N
o

: (3.28)

Moreover, we can �nd eigenfunctions which correspond to each eigenvalue 1� m
2 ; m 2 N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1 � m

2 is hm , the rescaled Hermite polynomial given as follows

hm (y) =
[m

2 ]X

j =0

(� 1)j m!ym� 2j

j !(m � 2j )!
: (3.29)

In particular, we have the following orthogonality property:
Z

R
hi hj �dy = i !2i � i;j ; 8(i; j ) 2 N2:

- The higher dimensional case:N � 2, the eigenspaceEm , corresponding to the eigen-
value 1� m

2 is de�ned as follows:

Em =

*

h� (y) = h� 1 (y1):::h� N (yN )

�
�
�
�
�
j� j =

NX

i =1

� i = m and � = ( � 1; :::; � N ) 2 NN

+

:

(3.30)

Accordingly, we can represent an arbitrary functionr 2 L2
� (RN ) as follows:

r (y) =
X

�;� 2 NN

r � h� (y);

wherer � is the projection of r on h� for any � 2 NN which is de�ned as follows:

r � = P� (r ) =
Z

rk � �dy; 8� 2 Nn ; (3.31)

with

k� (y) =
h�

kh� k2
L 2

�

: (3.32)

� The asymptotic behaviors of�B1( �w1; w2); �B2( �w1; w2): The following holds:

�B1( �w1; w2) =
p

2�
�w2

1 + O(j �w1j3 + jw2j2); (3.33)

�B2( �w1; w2) =
p
�

�w1w2 + O
�
j �w1j2jw2j

�
+ O

�
jw2j3

�
; (3.34)

as ( �w1; w2) ! (0; 0): Note that although we have here the expressions of nonlinear terms
F1 and F2 which are di�erent from the casep 2 N (see (3.18) and (3.20)), the expressions
coincide, since we havew � � = ( p � 1)� 1

p� 1 in all case (see Lemma 3.24 below).
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3.2.2 Inner expansion

In this part, we study the asymptotic behaviors of the solution inL2
� (RN ): Moreover, for

simplicity we suppose thatN = 1, and we recall that we aim at constructing a solution
of (3.23) such that ( �w1; w2) ! (0; 0). Note �rst that the spectrum of L contains two
positive eigenvalues 1; 1

2 , a neutral eigenvalue 0 and all the other ones are strictly negative.
So, in the representation of the solution inL2

� (R); it is reasonable to think that the part
corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect ofy, it is reasonable to look for a solution �w1; w2 of the form:

�w1 = �w1;0h0 + �w1;2h2;

w2 = w2;0h0 + w2;2h2:

From the assumption that ( �w1; w2) ! (0; 0), we see that �w1;0; �w1;2; w2;0; w2;2 ! 0 ass !
+ 1 . We see also that we can understand the asymptotic behaviors of �w1 and w2 in L2

� (RN )
from the study of the asymptotic behaviors of �w1;0; �w1;2; w2;0 and w2;2:

We now project equation (3.23) onh0 and h2. Using the asymptotic behaviors of�B1 and
�B2 in (3.33) and (3.34), we get the following ODEs for �w1;0; �w1;2; w2;0 and w2;2

@s �w1;0 = �w1;0 +
p

2�

�
�w2

1;0 + 8 �w2
1;2

�
(3.35)

+ O(j �w1;0j3 + j �w1;2j3) + O(jw2;0j2 + jw2;2j2);

@s �w1;2 =
p
�

�
�w1;0 �w1;2 + 4 �w2

1;2

�
(3.36)

+ O(j �w1;0j3 + j �w1;2j3) + O(jw2;0j2 + jw2;2j2);

@sw2;0 = w2;0 +
p
�

[ �w1;0w2;0 + 8 �w1;2w2;2] (3.37)

+ + O(( j �w1;0j2 + j �w1;2j2)( jw2;0j + jw2;2j)) + O(jw2;0j3 + jw2;2j3);

@sw2;2 =
p
�

[ �w1;0w2;2 + �w1;2w2;0 + 8 �w1;2w2;2] (3.38)

+ O(( j �w1;0j2 + j �w1;2j2)( jw2;0j + jw2;2j)) + O(jw2;0j3 + jw2;2j3):

Assuming that
�w1;0; w2;0; w2;2 � �w1;2; (3.39)

and
�w1;0; w2;0; w2;2 .

1
s2

; (3.40)

as s ! + 1 .
Similarly in Duong [5] where the author have treated forp 2 N, we also obtain the

following asymptotic behaviors of �w1;0; �w1;2; w2;0 and w2;2

�w1;0 = O
�

1
s2

�
;

�w1;2 = �
�

4ps
+ O

�
ln s
s2

�
;

w2;0 = O
�

1
s3

�
;

w2;2 =
c2;2

s2
+ O

�
ln s
s3

�
for somec2;2 2 R;
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as s ! + 1 under the assumptions in (3.39) and (3.40).
Thus, we have

w1 = � �
�

4ps
(y2 � 2) + O

�
1
s2

�
; (3.41)

w2 =
c2;2

s2
(y2 � 2) + O

�
ln s
s3

�
; (3.42)

in L2
� (R) for somec2;2 in R. Note that, by using parabolic regularity, we can derive that the

asymptotic behaviors (3.41)and (3.42) also hold for alljyj � K; whereK is an arbitrary
positive constant.

3.2.3 Outer expansion

As for the inner expansion, we here also assume thatN = 1. We see that asymptotic
behaviors (3.41) and (3.42) can not give us a shape, since they hold uniformly on compact
sets (where we only see the constant solution (�; 0)) and not in larger sets. Fortunately, we
observe from (3.41) and (3.42) that the pro�le may be based on the following variable:

z =
y

p
s

: (3.43)

This motivates us to look for solutions of the form:

w1(y; s) =
1X

j =0

R1;j (z)
sj

;

w2(y; s) =
1X

j =1

R2;j (z)
sj

:

Note that, our purpose is to construct a solution where the real part is positive. So, it is
reasonable to assume thatw1 > 0 and it follows that R1;0(z) > 0 for all z 2 R. Besides
that, we also assume thatR1;j ; R2;j are smooth and have bounded derivatives. From the
de�nitions of F1 and F2, given in (3.18), we have the following

�
�
�
�
�
F1

 
1X

j =0

R1;j (z)
sj

;
1X

j =1

R2;j (z)
sj

!

� Rp
1;0(z) �

pRp� 1
1;0 (z)R1;1(z)

s

�
�
�
�
�

�
C(z)

s2
;

�
�
�
�
�
F2

 
1X

j =0

R1;j (z)
sj

;
1X

j =1

R2;j (z)
sj

!

�
pRp� 1

1;0 (z)R2;1(z)

s

�
1
s2

�
pRp� 1

1;0 (z)R2;2 + p(p � 1)Rp� 2
1;0 (z)R1;1(z)R2;1(z)

�
�
�
�
� �

C(z)
s3

:
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Thus, for eachz 2 R; by using system (3.22), takings ! + 1 ; we obtain the following
system:

0 = �
1
2

R0
1;0(z) � z �

R1;0(z)
p � 1

+ Rp
1;0(z); (3.44)

0 = �
1
2

zR0
1;1(z) �

R1;1

p � 1
(z) + pRp� 1

1;0 (z)R1;1(z) + R00
1;0(z) +

zR0
1;0(z)

2
; (3.45)

0 = �
1
2

R0
2;1(z) � z �

R2;1

p � 1
(z) + pRp� 1

1;0 (z)R2;1(z); (3.46)

0 = �
1
2

R0
2;2(z):z �

R2;2(z)
p � 1

+ pRp� 1
1;0 (z)R2;2(z) + R00

2;1(z) + R2;1(z) (3.47)

+
1
2

R0
2;1(z) � z + p(p � 1)Rp� 2

1;0 (z)R1;1(z)R2;1(z):

This system is quite similar to [5] (wherep 2 N), and we can �nd the formulas of
R1;0; R1;1; R2;1 and R2;2 as follows:

R1;0(z) =
�
p � 1 + bjzj2

� � 1
p� 1 ; (3.48)

R1;1(z) =
(p � 1)

2p
(p � 1 + bz2)� p

p� 1 (3.49)

�
p � 1

4p
z2 ln(p � 1 + bz2)(p � 1 + bz2)� p

p� 1 ;

R2;1(z) =
z2

(p � 1 + bz2)
p

p� 1
; (3.50)

R2;2(z) = � 2(p � 1 + bz2)� p
p� 1 + H2;2(z); (3.51)

whereb= (p� 1)2

4p and

H2;2(z) = C2;1(p)z2(p � 1 + bz2)� 2p� 1
p� 1 + C2;2(p)z2 ln(p � 1 + bz2)(p � 1 + bz2)� p

p� 1

+ C2;3(p)z2 ln(p � 1 + bz2)(p � 1 + bz2)� 2p� 1
p� 1 ;

for someC2;1; C2;2 and C2;3 in R.

3.2.4 Matching asymptotic behaviors

By comparing the inner expansion and the outer expansions and �xing several constants,
we then have the following pro�les forw1 and w2

�
w1(y; s) � � 1(y; s);
w2(y; s) � � 2(y; s);

(3.52)

where

� 1(y; s) =
�

p � 1 +
(p � 1)2

4p
jyj2

s

� � 1
p� 1

+
N�
2ps

; (3.53)

� 2(y; s) =
jyj2

s2

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � p
p� 1

�
2N�

(p � 1)s2
; (3.54)

for all (y; s) 2 RN � (0; + 1 ). In the next section, we will give a rigorous proof for the
existence of a solution (w1; w2) of equation (3.22) satisfying (3.52).
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3.3 Existence of a blowup solution in Theorem 3.1

In Section 3.2, we adopted a formal approach in order to justify how pro�lesf 0 and g0 arise
as blowup pro�les for the solution of equation (3.1), given in Theorem 3.1. In this section,
we give a rigorous proof to justify the existence of a solution approaching those pro�les.

3.3.1 Formulation of the problem

In this subsection, we aim at giving a complete formulation of our problem in order to
justify the formal approach which is given in the previous section. We introduce

�
w1 = � 1 + q1;
w2 = � 2 + q2;

(3.55)

where � 1; � 2 are de�ned in (3.53) and (3.54), respectively. Then, by using (3.22), we derive
the following system, satis�ed by (q1; q2)

@s

�
q1

q2

�
=

�
L + V 0

0 L + V

� �
q1

q2

�
+

�
V1;1 V1;2

V2;1 V2;2

� �
q1

q2

�
+

�
B1(q1; q2)
B2(q1; q2)

�
+

�
R1

R2

�
; (3.56)

where linear operatorL is de�ned in (3.24) and:

- Potential functions V; V1;1; V1;2; V2;1 and V2;2 are de�ned as follows

V(y; s) = p
�

� p� 1
1 �

1
p � 1

�
; (3.57)

V1;1(y; s) = @u1 F1(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) � p� p� 1
1 ; (3.58)

V1;2(y; s) = @u2 F1(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) ; (3.59)

V2;1(y; s) = @u1 F2(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) ; (3.60)

V2;2(y; s) = @u2 F2(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) � p� p� 1
1 : (3.61)

- Quadratic terms B1(q1; q2) and B2(q1; q2) are de�ned as follows:

B1(q1; q2) = F1 (� 1 + q1; � 2 + q2) � F1(� 1; � 2) � @u1 F1(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 )q1(3.62)

� @u2 F1(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 )q2;

B2(q1; q2) = F2 (� 1 + q1; � 2 + q2) � F2(� 1; � 2) � @u1 F2(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 )q1

� @u2 F2(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 )q2: (3.63)

- Rest termsR1(y; s) and R2(y; s) are de�ned as follows:

R1(y; s) = �� 1 �
1
2

y � r � 1 �
� 1

p � 1
+ F1(� 1; � 2) � @s� 1; (3.64)

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ F2(� 1; � 2) � @s� 2; (3.65)

whereF1; F2 are de�ned in (3.18).
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By the linearization around � 1; � 2; our problem is reduced to constructing a solution
(q1; q2) of system (3.56), satisfying

kq1(:; s)kL 1 (RN ) + kq2(:; s)kL 1 (RN ) ! 0 ass ! + 1 :

Looking at system (3.56), we already know some of the main properties ofL (see page 121).
As for potentials Vj;k wherej; k 2 f 1; 2g, they admit the following asymptotic behaviors:

kV1;1(:; s)kL 1 (RN ) + kV2;2(:; s)kL 1 (RN ) �
C
s2

;

kV1;2(:; s)kL 1 (RN ) + kV2;1(:; s)kL 1 (RN ) �
C
s

; 8s � 1;

(see Lemma 3.25 below).

Regarding B1 and B2 which are considered as \quadratic" terms, we have in fact the
following estimates

kB1(q1; q2)kL 1 (RN ) �
CA4

s
min(2 ;p )

2

;

kB2(q1; q2)kL 1 (RN ) �
CA2

s1+min ( p� 1
4 ; 1

2 )
;

provided that q1 and q2 are small in some senses (see Lemma 3.26 below).

In addition to that, we also mentionR1 and R2 which are considered as rest terms, satisfying
in fact the following asymptotic behaviors

kR1(:; s)kL 1 (RN ) �
C
s

;

kR2(:; s)kL 1 (RN ) �
C
s2

;

(see Lemma 3.27 below).

As a matter of fact, the dynamic of equation (3.56) will mainly depends on the main linear
operator �

L + V 0
0 L + V

�
;

and the e�ects of the other terms will be less important except on the zero mode of this
equation. For that reason, we need to understand the dynamics ofL + V. Since the spectral
properties ofL were already introduced in Section 3.2.1, we will focus here on the e�ect of
V .

i ) E�ect of V inside the blowup regionfj yj � K 0
p

sg with K 0 > 0 : It satis�es the
following estimate:

V ! 0 in L2
� (jyj � K 0

p
s) as s ! + 1 ;

which means that the e�ect of V will be negligible with respect of the e�ect ofL ; except
perhaps on the null mode ofL (see item (ii ) of Proposition 3.18 below).

ii ) E�ect of V outside the blowup region: For each� > 0; there existK � > 0 and s� > 0
such that

sup
yp
s

� K � ;s� s�

�
�
�
�V (y; s) �

�
�

p
p � 1

� �
�
�
� � �:
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Since 1 is the biggest eigenvalue ofL (see (3.28)), the operatorL + V behaves as one
with with a fully negative spectrum outside blowup regionfj yj � K �

p
sg, which makes the

control of the solution in this region easy.

Since the asymptotic behavior of potentialV inside and outside the blowup region is
di�erent, we will consider the dynamics of the solution forjyj � 2K 0

p
s and for jyj � K 0

p
s

separately for someK 0 to be �xed large. For that purpose, we introduce the following
cut-o� function

� (y; s) = � 0

�
jyj

K 0
p

s

�
; (3.66)

where� 0 is de�ned as a cut-o� function

� 0 2 C1
0 [0; + 1 ); � 0(x) =

�
1 for x � 1;
0 for x � 2;

and k� 0kL 1 (RN ) � 1: (3.67)

Hence, it is reasonable to consider separately the solution in the blowup regionfj yj �
2K 0

p
sg and in the regular regionfj yj � K 0

p
sg. More precisely, let us de�ne the following

notation for all functions r in L1 (RN ) as follows

r = rb + re with rb = �r and re = (1 � � )r: (3.68)

Note in particular that supp(rb) � B(0; 2K 0
p

s) and supp(re) � RN nB(0; K 0
p

s). Besides
that, we also expandrb in L2

� (RN ) according to the spectrum ofL (see Section 3.2.1 above):

rb(y) = r0 + r1 � y +
1
2

yT � r2 � y � Tr ( r2) + r � (y); (3.69)

wherer0 is a scalar,r1 is a vector in RN and r2 is a N � N matrix de�ned by

r0 =
Z

RN
rb� (y)dy;

r1 =
Z

RN
rb

y
2

� (y)dy;

r2 =
� Z

RN
rb

�
1
4

yj yk �
1
2

� j;k

�
� (y)dy

�

1� j;k � N

;

with Tr( r2) being the trace of matrix r2. The reader should keep in mind thatr0; r1; r2 are
only the coordinates ofrb, not for r . Note that rm is the projection ofrb on the eigenspace
of L corresponding to the eigenvalue� = 1 � m

2 : Accordingly, r � is the projection of rb on
the negative part of the spectrum ofL : As a consequence of (3.68) and (3.69), we see that
every r 2 L1 (RN ) can be decomposed into 5 components as follows:

r = rb + re = r0 + r1 � y +
1
2

yT � r2 � y � Tr( r2) + r � + re: (3.70)

3.3.2 The shrinking set

According to (3.21) and (3.55), our goal is to construct a solution (q1; q2) of system (3.56)
such that they satisfy the following estimates:

kq1(:; s)kL 1 (RN ) + kq2(:; s)kL 1 (RN ) ! 0 ass ! + 1 : (3.71)
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Here, we aim at constructing a shrinking set to 0. Then, the control of (q1; q2) ! 0;
will be a consequence of the control of (q1; q2) in this shrinking set. In addition to that, we
have to control the solutionq1 so that

w1 = q1 + � 1 > 0; (3.72)

(this is equivalent to haveu1 > 0) and it is one of the main di�cults in our analysis. As
a matter of fact, the shrinking sets which were constructed in [17] by Merle and Zaag or
even in [5], are not sharp enough to ensure (3.72). In other words, our set has to shrink to
0 ass ! + 1 and ensure that the real part of the solution to (3.22) is always positive. In
fact, the positivity is the �rst thing to be solved. For the control of the positivity of the
real part, we rely on the ideas, given by Merle and Zaag [16] for the control of the solution
of the following equation:

@tu = � u � �
jr uj2

u
+ jujp� 1u; u 2 R: (3.73)

In [16], the authors needed a sharp control ofu and jr uj near zero, in order to bound
the term jr uj2

u : Here, we will use their ideas in order to controlu1 near zero and ensure
its positivity. As in [16], we will control the solution di�erently in 3 overlapping regions
de�ned as follows:

For K 0 > 0; � 0 > 0; � 0 > 0; t 2 [0; T) and s = � ln(T � t), we introduce a cover ofRN as
follows

RN � P1(t) [ P2(t) [ P3(t);

where

P1(t) = f xj jxj � K 0

p
(T � t)j ln(T � t)jg = f xj jyj � K 0

p
sg = f xj jzj � K 0g;

P2(t) =
�

xj
K 0

4

p
(T � t)j ln(T � t)j � j xj � � 0

�
=

�
xj

K 0

4

p
s � j yj � � 0e

s
2

�

=
�

xj
K 0

4
� j zj �

� 0p
s

e
s
2

�
;

P3(t) =
n

xj jxj �
� 0

4

o
=

�
xj jyj �

� 0e
s
2

4

�
=

�
xj jzj �

� 0

4
p

s
e

s
2

�
;

with
y =

x
p

T � t
and z =

y
p

s
=

x
p

(T � t)j ln(T � t)j
:

In the following, let us explain how we derive the positivity condition from the various
estimate we impose on the solution in the 3 regions. Then

a) In P1(t), the blowup region: In this region, we control the positivity ofu1 by controlling
the positivity of w1 (see the similarity variables given in (3.21)). More precisely, as
we mentioned in Subsection 3.1.3,w will be controlled as a pertubation of the pro�les
� 1; � 2 ((3.53) and (3.54)). By using the positivity of � 1 and a good estimate of the
distance ofw1 to these pro�les, we may deduce the positivity ofw1; which leads to
the positivity of u1:
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b) In P2(t), the intermediate region: In this region, we controlu via a rescaled function
U of u as follows:

U(x; �; � ) = ( T � t(x)) � 1
p� 1 u(x + �

p
T � t(x); t(x) + � (T � t(x))) ; (3.74)

wheret(x) is uniquely de�ned for jxj small enough by

jxj =
K 0

4

p
(T � t(x)) jln(T � t(x)) j: (3.75)

We also introduce
� (x) = T � t(x): (3.76)

We see that, on the domain (�; � ) 2 RN �
h
� t (x)

T � t (x) ; 1
�

, U satis�es the following
equation:

@� U = � � U + Up: (3.77)

By using classical parabolic estimates onU; we can prove the following the rescaledU
at time � (x; t ), has a behavior similar toÛK 0 (� (x; t )) ; for all j� j � � 0

p
j ln(T � t(x)j

where

� (x; t ) =
t � t(x)
T � t(x)

;

and ÛK 0 (� ) is unique solution of the following ODE
8
<

:

@� ÛK 0 = Ûp
K 0

(� );

ÛK 0 (0) =
�

p � 1 + (p� 1)2K 2
0

64p

� � 1
p� 1

:
(3.78)

In particular, we can solve (3.78) with an explicit solution:

ÛK 0 (� ) =
�

(p � 1)(1 � � ) +
(p � 1)2K 2

0

64p

� � 1
p� 1

; 8� 2 [0; 1): (3.79)

Then, by using the positivity of ÛK 0 ; we derive that u1 > 0; in this region.

c) In P3(t); the regular region: We control the solution in this region as a perturbation of
initial data, thanks to the well-posedness property of the Cauchy problem for equation
(3.1), to derive that our solution is close to initial data, (in fact,T will be taken small
enough). Therefore, if initial data is strictly larger than some constant, we will derive
the positivity of u1.

The above strategy makes the real part of our solution becomes positive. Therefore, it
remains to control the solution in order to get

kq1(:; s)kL 1 (RN ) + kq2(:; s)kL 1 (RN ) ! + 1 ;

(see (3.55)). This part is in fact quite similar to the integer case, done in [5].

From the above arguments, we give in the following our de�nition of the shrinking set.
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De�nition 3.1 (A shrinking set to 0). For all T > 0; K 0 > 0; � 0 > 0; � 0 > 0; A > 0; � 0 >
0; � 0 > 0; p1 2

�
0; min

� p� 1
4 ; 1

2

��
and t 2 [0; T), we de�ne the setS(T; K 0; � 0; � 0; A; � 0; � 0; t) �

C([0; t]; L1 (RN )) (or S(t) for short) as follows:u = u1 + iu 2 2 S(t) if the following condi-
tion hold:

(i ) Control in the blowup regionP1(t): We have (q1; q2)(s) 2 Vp1 ;K 0 ;A (s) where s =
� ln(T � t); (q1; q2) is de�ned as in (3.55) and Vp1 ;K 0 ;A (s) = VA (s) 2 (L1 (RN ))2 is
the set of all function(q1; q2) 2 (L1 (RN ))2 such that the following holds:

jq1;0(s)j �
A
s2

and jq2;0(s)j �
A2

sp1+2
;

jq1;j (s)j �
A
s2

and jq2;j (s)j �
A2

sp1+2
; 81 � j � N;

jq1;j;k (s)j �
A2 ln s

s2
and jq2;j;k (s)j �

A5 ln s
sp1+2

; 81 � j; k � N;





q1;� (y; s)
1 + jyj3






L 1 (RN )

�
A
s2

and






q2;� (y; s)
1 + jyj3






L 1 (RN )

�
A2

s
p1+5

2

;

kq1;e(:; s)kL 1 (RN ) �
A2

p
s

and kq2;e(:; s)kL 1 (RN ) �
A3

s
p1+2

2

;

where the coordinates ofq1 and q2 are introduced in (3.70) with r = q1 or r = q2.

(ii ) Control in the intermediate regionP2(t): For all jxj 2
h

K 0
4

p
(T � t)j ln(T � t)j; � 0

i
;

� (x; t ) = t � t (x)
T � t (x) and j� j � � 0

p
j ln(T � t(x)) j; we have

�
�
�U(x; �; � (x; t )) � ÛK 0 (� (x; t ))

�
�
� � � 0;

whereÛK 0 de�ned in (3.79).

iii Control in the regular regionP3(t): For all jxj � � 0
4 ,

ju(x; t ) � u(x; 0)j � � 0; 8i = 0; 1:

Finally, we also de�ne the setS� (T; K 0; � 0; � 0; A; � 0; � 0) � C([0; T); L1 (RN )) as the set of
all u 2 C([0; T); L1 (RN ) such that

u 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t); 8t 2 [0; T):

The following lemma, we show the estimates of the fuction being inVA (s) and this
lemma is given in [5]:

Lemme 3.10. For all A � 1; s � 1; if we have(q1; q2) 2 VA (s), then the following estimates
hold:

(i ) We have

kq1kL 1 (RN ) �
CA2

p
s

and kq2kL 1 (RN ) �
CA3

s
p1+2

2

:
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(ii ) For all y 2 RN , we have

jq1;b(y)j �
CA2 ln s

s2
(1+ jyj3); jq1;e(y)j �

CA2

s2
(1+ jyj3) and jq1j �

CA2 ln s
s2

(1+ jyj3);

and

jq2;b(y)j �
CA

s
p1+5

2

(1 + jyj3); jq2;e(y)j �
CA3

s
p1+5

2

(1 + jyj3) and jq2j �
CA3

s
p1+5

2

(1 + jyj3):

and

whereC will henceforth be an constant which depends only onK 0:

Proof. See Lemma 3.2, given in [5].

As matter of fact, if u 2 S( t) then, from item (i ) of Lemma 3.10, the similarity variables
(3.21) and (3.55), we derive the following






(T � t)

1
p� 1 u(:; t) � f 0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
CA2

1 +
p

j ln(T � t)j
;(3.80)

and





(T � t)

1
p� 1 j ln(T � t)ju2(:; t) � g0

 
:

p
(T � t)j ln(T � t)j

! 





L 1 (RN )

�
CA3

1 + j ln(T � t)j
p1
2

:(3.81)

We see in the de�nition of S(t) that there are many parameters, so the dependence of
the constants on them is very important in our analysis. We would like to mention that,
we use the notationC for these constants which depend at most onK 0: Otherwise, if the
constant depends onK 0; A1; A2; ::: we will write C(A1; A2; :::).

We now prove in the following lemma the positivity of Re(u) at time t if u belongs to
S(t) (this is a crucial estimate in our argument):

Lemme 3.11 (The positivity of the real part of functions trapped in S(t)) . For all K 0; A �
1 � 0 > 0; � 0 < Û(0)

2 ; � 0 < 1
2 ; there exists� 1(K 0) > 0 such that for all � 0 � � 1 there exists

T1(A; K 0; � 0) such that for all T � T1 the following holds: ifu 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t)
for all t 2 [0; t1] for somet1 2 [0; T); and Re(u(0)) � 1 for all jxj � � 0

4 , then

Re(u(x; t )) �
1
2

; 8(x; t ) 2 RN � 2 [0; t1]:

Proof. We write that u = u1 + iu 2; with Re(u) = u1: Then, we estimateu1 on the 3 regions
P1(t); P2(t) and P3(t).

+ The estimate in P1(t): We use the fact that (q1; q2) 2 VA (s) together with item (i )
in Lemma 3.10, and the de�nition (3.55) ofq1 and the de�nition of � 1 given in (3.53), to
derive the following: for all jyj � K 0

p
s;

�
�
�
�w1(y; s) � f 0

�
y

p
s

� �
�
�
� �

CA2

p
s

:
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Using the de�nition (3.53) of � 1; we write for all jyj � 2K 0
p

s

w1(y; s) � f 0

�
y

p
s

�
�

CA2

p
s

�
�

p � 1 +
(p � 1)2

4p
K 2

0

� � 1
p� 1

�
CA2

p
s

;

By de�nition (3.21) of the similarity variables, we implies that

(T � t)
1

p� 1 u1(x; t ) �
�

p � 1 +
(p � 1)2

4p
K 2

0

� � 1
p� 1

�
CA2

p
j ln(T � t)j

;

for all jxj � K 0

p
(T � t)j ln(T � t)j.

Therefore,

u1(x; t ) � (T � t)� 1
p� 1

" �
p � 1 +

(p � 1)2

4p
K 2

0

� � 1
p� 1

�
CA2

p
j ln(T � t)j

#

�
1
2

;

provided that T � T1;1(K 0; A):

+ The estimate inP2(t): Since we haveu 2 S(t); using item (ii ) in the De�nition 3.1,

we derive that: for all x 2
h

K 0
4

p
(T � t)j ln(T � t)j; � 0

i

�
�
�U(x; 0; � (x; t )) � ÛK 0 (� (x; t ))

�
�
� � � 0;

where� (x; t ) = t � t (x)
T � t (x) . In particular, by using the de�nition of t(x) given in (3.75) and the

fact that
jxj �

K 0

4

p
(T � t)j ln(T � t)j;

we have� (x; t ) 2 [0; 1): Therefore,

U1(x; 0; � (x; t )) � ÛK 0 (� (x; t )) � � 0

� ÛK 0 (0) � � 0

�
1
2

ÛK 0 (0) =
1
2

�
p � 1 +

(p � 1)2

4p
K 2

0

16

� � 1
p� 1

;

provided that � 0 � 1
2ÛK 0 (0): By de�nition (3.74) of U; this implies that

(T � t(x))
1

p� 1 u1(x; t ) = U1(x; 0; � (x; t )) �
1
2

�
p � 1 +

(p � 1)2

4p
K 2

0

16

� � 1
p� 1

:

Using the de�nition of t(x) in (3.75) we write

T � t(x) �
8

K 2
0

jxj2

j ln jxjj
; as jxj ! 0:

Therefore, there exists� 1;1(K 0) > 0 such that for all � 0 � � 1;1; and for all jxj � � 0; we have

(T � t(x)) � 1
p� 1

1
2

�
p � 1 +

(p � 1)2

4p
K 2

0

16

� � 1
p� 1

�
1
2

:
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Then, we conclude that for alljxj 2
h

K 0
4

p
(T � t)j ln(T � t)j; � 0

i
; we have

u1(x; t ) �
1
2

;

provided that T � T2;1(� 0; K 0).

+ The estimate inP3(t): It is very easy to control our solution in this region. Indeed,
item (iii ) of De�nition 3.1, we have for all jxj � � 0

4

u1(x; t ) � Re(u)(x; 0) � � 0 � 1 �
1
2

=
1
2

;

provided that � 0 � 1
2 . This concludes the proof of Lemma 3.11.

Thanks to Lemma 3.11, we can handle the singularity of the nonlinear termup when
our solution is in S(T; A; � 0; � 0; A; � 0; � 0): In addition to that, from item ( i ) of Lemma 3.11,
(3.80) and (3.81) our problem is reduced to �nding parametersT; K 0; � 0; � 0; A; � 0; � 0; and
constructing initial data u(0) 2 L1 (RN ) such that the solution u of equation (3.1), exists
on [0; T) and satis�es

u 2 S� (T; K 0; � 0; � 0; A; � 0; � 0): (3.82)

3.3.3 Preparing initial data and the existence of a solution trapped
in S(t)

In this subsection, we would like to de�ne initial datau(0), which depend on some param-
eters to be �ne-tuned in order to get a good solution. The following is our de�nition:

De�nition 3.2 (Preparing of initial data). For each A � 1; T > 0; d1 = ( d1;0; d1;1) 2
R1 � RN ; and d2 = ( d2;0; d2;1; d2;1) 2 R � RN � RN 2

; we introduce the following functions
de�ned at s0 = � ln T :

� 1;K 0 ;A;d 1 (y; s0) =
A
s2

0
(d1;0 + d1;1 � y) � 0

�
16jyj

K 0
p

s0

�
;

� 2;K 0 ;A;d 2 (y; s0) =
�

A2

sp1+2
0

(d2;0 + d2;1 � y) +
A5 ln s0

sp1+2
0

�
1
2

yT � d2;2 � y � Tr ( d2;2)
��

� 0

�
16jyj

K 0
p

s0

�
:

We also de�ne initial data uK 0 ;A;d 1 ;d2 (0) = u1;K 0 ;A;d 1 (0) + iu 2;K 0 ;A;d 2 (0) for equation (3.1) as
follows:

u1;K 0 ;A;d 1 (x; 0) = T � 1
p� 1

�
� 1;K 0 ;A;d 1

�
x

p
T

; � ln T
�

+ � 1

�
x

p
T

; � ln T
��

� 1 (x)(3.83)

+ U� (x)(1 � � 1(x)) + 1 ;

u2;K 0 ;A;d 2 (x; 0) = T � 1
p� 1

�
� 2;K 0 ;A;d 2

�
x

p
T

; � ln T
�

+ � 2

�
x

p
T

; � ln T
��

� 1(x);(3.84)

where� 1 and � 2 are de�ned in (3.53), (3.54) and � 1(x) is de�ned as follows

� 1(x) = � 0

�
jxj

p
Tj ln Tj

�
; (3.85)
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with � 0 de�ned in (3.67), and U� 2 C1(RN nf 0g; R) is de�ned for all x 2 RN ; x 6= 0

U� (x) =

8
>>><

>>>:

h
(p� 1)2 jx j2

8pj ln jx jj

i � 1
p� 1

if jxj � C � ;

1
1+ jxj2 if jxj � 1;

U� (x) > 0 for all x 6= 0;

(3.86)

where C � is a �xed constant strictly less than1 enough, andU� satis�es the following
property: for each� 0 � C �

2 we have

U� (x) � U� (� 0); for all jxj � � 0: (3.87)

Remark 3.12. Roughly speaking, the critical data we done here are superposition of two
items:

- T � 1
p� 1 f � 1 + � 1g in P1(0)

- U� in P2(0):

The �rst form is well-known in previous construction problems. As for the second, we
borrowed it from Merle and Zaag in [16]. Note thatU� is the candidate for the �nal pro�le
of the real part, as we can see from own main result in Theorem 3.1. More crucially,
we draw your attention to the fact that in comparision with [16], we add here+1 to the
expression in(3.83), and this term will allow us to have the initial condition

Re(u(0)) � 1;

which is essential to make the nonlinear termup well-de�ned, and the Cauchy problem
solvable (see Appendix 3.5). This is an important idea of ours.

From the above de�nition, we show in the following lemma some rough properties of
the initial data.

Lemme 3.13. For all K 0 � 1; A � 1; jd1j � 2; jd2j � 2; and for all � 0 � C �

2 (where C � is
introduced in (3.87)), there exists T2(� 0; K 0; A) > 0 such that for all T � T2; if u(0) =
uK 0 ;A;d 1 ;d2 (0) is de�ned as in De�nition 3.2, then the following holds:

(i ) The initial data belongs toL1 (RN ) and satis�es the following

ku(:; 0)kL 1 (jx j� � 0 ) � 1 +
�

(p � 1)2j� 0j2

8pj ln � 0j

� � 1
p� 1

:

(ii ) The real part of the initial data, Re(u(0)) is positive. In particular,

Re(u(x; 0)) � 1; 8x 2 RN :

Proof.
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(i ) It is obvious to see that the initial data belongs toL1 (RN ) with the assumptions in this
Lemma. It remains to prove the estimate in item (i ). We now take � 0 � C �

2 ; and we use
de�nition of � 1 in (3.85) to deduce that supp(� 1) � fj xj � 2

p
Tj ln Tjg. Moreover, we have

p
Tj ln Tj ! 0 asT ! 0:

Then, we have p
Tj ln Tj �

� 0

4
;

provided that T � T2;1(� 0). Hence,

supp(� 1) � fj xj �
� 0

2
g;

Hence, it follows the de�nition of u(0) that: for all jxj � � 0; we have

u(x; 0) = U� (x) + 1 ;

Using (3.87), our result follows.

(ii ) We see in the de�nition of u(0) that we have supp(� 1;K 0 ;A;d 1 ) � fj yj � K 0
8

p
s0g and we

have the following

k� 1;K 0 ;A;d 1

�
x

p
T

; � ln T
�

kL 1 (RN ) �
CA

j ln Tj
3
2

:

In addition to that, in the region fj xj � K 0
8

p
Tj ln Tjg; the function � 1

�
xp
T

; � ln T
�

is
bounded from below by a positive constant which depends only onK 0. Therefore, there
exists T2;2(A; K 0) > 0 such that for all T � T2;2 for all jxj � K 0

8

p
Tj ln Tj we have

� 1;K 0 ;A;d 1

�
x

p
T

; � ln T
�

+ � 1

�
x

p
T

; � ln T
�

> 0:

Therefore: for all jxj � K 0
8

p
Tj ln Tj; we have

Re(u(x; 0)) � 1:

Now, if jxj � K 0
8

p
Tj ln Tj; then we have� 1;K 0 ;A;d 1 (y; s0) = 0 : Since � 1(y; s0) > 0 from

(3.53) and U� (x) > 0 from (3.87), we directly see from the de�nition (3.83) for Re(u(0))
that

Re(u(x; 0)) � 1:

This concludes the proof of Lemma 3.13.

Following the above lemma, we will prove that there exists a domainDK 0 ;A;s 0 ; with
s0 = � ln T such that for all (d1; d2) 2 DK 0 ;A;s 0 ; the initial uK 0 ;A;d 1 ;d2 (0) is trapped in

S(T; K 0; � 0; � 0; A; � 0; � 0; 0) = S(0):

In particular, we show that the initial data strictly satis�es almost the conditions of S(0)
except a few of the conditions in item (i ) of De�nition 3.1. More precisely, these conditions
concern the following modes

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s0):

The following is our lemma:
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Lemme 3.14 (Control of initial data) . There existsK 3 � 1 such that for all eachK 0 �
K 3; A � 1 and � 1 > 0; there exists � 3(K 0; � 1) such that for all � 0 � � 3; there exists
� 3(K 0; � 0; � 1) > 0 such that for all � 0 � � 3; � 0 > 0; there existsT3(K 0; � 0; � 1; A; � 1; � 0) > 0
such that for all T � T3 and s0 = � ln T, there existsDK 0 ;A;s 0 � [� 2; 2]N

2+2 N +2 such that
the following holds: ifu(0) = uK 0 ;A 0 ;d1 ;d2 (0) (see De�nition 3.2), then
(I ) For all (d1; d2) 2 DK 0 ;A;s 0 ; we haveu(0) 2 S(T; K 0; � 0; � 0; A; � 1; � 0; 0). In particular, we
have:

(i ) Estimates in P1(0): We have(q1; q2)(s0) 2 VA (s0) where (q1; q2)(s0) are de�ned in
(3.21) and (3.55). Moreover, we have also the following strictly estimates:

jq1;j;k (s0)j �
A2 ln s0

2s2
0

; 81 � j; k � N





q1;� (:; s0)
1 + jyj3






L 1 (RN )

�
A

2s2
0

and






q2;� (:; s0)
1 + jyj3






L 1 (RN )

�
A2

2s
p1+5

2
0

;

kq1;e(:; s0)kL 1 (RN ) �
A2

2
p

s0
and kq2;e(:; s0)kL 1 (RN ) �

A3

2s
p1+2

2
0

:

(ii ) Estimates inP2(0): For all jxj 2
h

K 0
4

p
Tj ln Tj; � 0

i
; � 0(x) = � t (x)

� (x) with � (x) = T � t(x)

and j� j � � 0

p
j ln(T � t(x)) j; we have

jU(x; �; � 0(x)) � ÛK 0 (� 0(x)) j � � 1;

whereU(x; �; � ) is de�ned in (3.74) and ÛK 0 (� ) is de�ned in (3.79).

(II ) There exists a mapping	 1 such that

	 1 : RN 2+2 N +2 ! RN 2+2 N +2

(d1; d2) 7! 	 1(d1; d2);

where
	 1(d1; d2) = ( q1;0; (q1;j )1j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s0);

and 	 1 is linear, one to one fromDK 0 ;A;s 0 to V̂A (s0), where

V̂A (s) =
�
�

A
s2

;
A
s2

� 1+ N

�
�
�

A2

sp1+2
;

A2

sp1+2

� 1+ N

�
�
�

A5 ln s
sp1+2

;
A5 ln s
sp1+2

� N 2

: (3.88)

Moreover, we have
	 1(@DK 0 ;A;s 0 ) � @̂VA (s0);

and
deg

�
	 1jDK 0 ;A;s 0

�
6= 0: (3.89)

Proof. If we forget about the terms involvingU� and the +1 term in our de�nition (3.83)
- (3.84) of initial data, then we are exactly in the framework of the integer case, treated
in Duong [5] (see Lemma 3.4 in [5]). Therefore, whenp is not integer, we only need to
understand the e�ect ofU� and the +1 term in order to complete the proof. The argument
is only technical. For that reason, we leave it to Appendix 3.7.
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Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove the existence of a solution of equation (3.56) trapped in the shrinking
set:

Proposition 3.15 (Existence of a solution trapped inS� (T; K 0; � 0; � 0; A; � 0; � 0)) . We can
chose the parametersT; K 0; � 0; � 0; A, � 0 and � 0 such that there exists(d1; d2) 2 RN 2+2 N +2

such that the solutionu of equation(3.1) with initial data given in De�nition 3.2, exists on
[0; T) and satis�es

u 2 S� ;

whereS� = S� (T; K 0; � 0; � 0; A; � 0; � 0) is de�ned in De�nition 3.1.

Proof. The proof of this Proposition is given 2 steps:

� The �rst step: We reduce our problem to a �nite dimensional one. In other words,
we aim at proving that the control of u(t) in the shrinking set S(t) reduces to the
control of the components

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s)

in V̂A (s); de�ned in (3.88).

� The second step: We get the conclusion of Proposition 3.15 by using a topological
argument in �nite dimension.

- Step 1: Reduction to a �nite dimensional problem:Using a priori estimates, our
problem will be reduced to the control of a �nite number of components.

Proposition 3.16 (Reduction to a �nite dimensional problem). There exist parameters
K 0; � 0; � 0; A; � 0; � 0 and T > 0 such that the following holds:

(a) Assume that initial datau(0) = uK 0 ;A;d 1 ;d2 (0) is given in De�nition 3.2 with (d1; d2) 2
DK 0 ;A;s 0

(b) Assume furthermore that the solutionu of equation (3.1) satis�es:

u 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t);

for all t 2 [0; t � ]; for somet � 2 [0; T) and

u 2 @S(T; K 0; � 0; � 0; A; � 0; � 0; t � ):

Then, we have:

(i ) (Reduction to �nite dimensions): It holds that

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s� ) 2 @̂VA (s� );

where the above components are of(q1; q2)(s), de�ned in (3.21), and (3.55), V̂A (s) is
de�ned as in (3.88) and s� = � ln(T � t � ).
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(ii ) (Transverse outgoing crossing): There exists� 0 > 0 such that

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s� + � ) =2 V̂A (s� + � ); (3.90)

for all � 2 (0; � 0). This implies that there exists� 1 > 0 such thatu exists on[0; t � + � 1)
and for all � 2 (0; � 1)

u(t � + � ) =2 S(T; K 0; � 0; � 0; A; � 0; � 0; t � + � ):

The proof of this Lemma uses techniques given in [16] which were developed from [1]
and [17] in the real case. However, it is true that our shrinking set involves more conditions
than the shrinking set used in [1], [5], [16] and [17]. In fact, the additional conditions
are useful to ensure that our solution always stays positive. In particular, the setVA (s)
plays an important role. Indeed, as for the integer case in [5], only the nonnegative modes
(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s� ) may touch the boundary ofV̂A (s� ) and
leave in short time later. However, the control of the solution with the positive real part
is also our highlight and of course it is the main di�culty in our work. This proposition
makes the heart of the paper and needs many steps to be proved. For that reason, we
dedicate a whole section to its proof (Section 3.4 below). Let us admit it here, and get to
the conclusion of Proposition 3.15 in the second step.

- Step 2: Conclusion of Proposition 3.15 by a topological argument.In this step, we
give the proof of Proposition 3.15 assuming that Proposition 3.16 holds. In fact, we aim at
proving the existence of a parameter (d1; d2) 2 DK 0 ;A;s 0 such that the solutionu of equation
(3.1) with initial data uK 0 ;A;d 1 ;d2 (0) (given in De�nition 3.2), exists on [0; T) and satis�es

u 2 S� (T; K 0; � 0; � 0; A; � 0; � 0);

where the parameters will be suitably chosen. Our argument is analogous to the argu-
ment of Merle and Zaag [17]. For that reason, we only give a brief proof. Let us �x
T; K 0; � 0; � 0; � 0; A; � 0; � 0 such that Lemma 3.14, Proposition 3.16 and Lemma 3.11 hold.
Then, for all (d1; d2) 2 DK 0 ;A;s 0 and from Lemma 3.14 we have the initial data

uK 0 ;A;d 1 ;d2 (0) 2 S(T; K 0; � 0; � 0; A; � 0; � 0; 0):

Thanks to Lemmas 3.11 and 3.14, for each (d1; d2) 2 DK 0 ;A;s 0 we can de�net � (d1; d2) 2 [0; T)
as the maximum time such that the solutionud1 ;d2 of equation (3.1), with initial data
uK 0 ;A;d 1 ;d2 (0) trapped in S(T; K 0; � 0; � 0; A; � 0; � 0; t) for all t 2 [0; t � (d1; d2)) : We have the
two following cases:
+ Case 1: If there exists (d1; d2) such that t � (d1; d2) = T then our problem is solved
+ Case 2: For all (d1; d2) 2 DK 0 ;A;s 0 ; we have

t � (d1; d2) < T:

By contradiction, we can prove that the second case can not occur. Indeed, if it is true, by
using the continuity of the solution u in time and the de�nition of t � = t � (d1; d2); we can
deduce thatu 2 @S(t � ): Using item (i ) of Proposition 3.16, we derive

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N )(s� ) 2 @̂VA (s� );
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wheres� = � ln(T � t � ): Then, the following mapping � is well-de�ned

� : DK 0 ;A;s 0 ! @
�

[� 1; 1]N
2+2 N +2

�

(d1; d1) 7! �( d1; d2);

where

�( d1; d2) =
�

s2
�

A
(q1;0; (q1;j )1� j � N )(s� );

sp1+2
�

A2
(q2;0; (q2;j )1� j � N )(s� );

sp1+2
�

A5 ln s�
(q2;j;k )1� j;k � N (s� )

�
;

and s� = s� (d1; d2) = � ln(T � t � (d1; d2)).

Moreover, it satis�es the two following properties:

(i) � is continuous from DK 0 ;A;s 0 to @
�

[� 1; 1]N
2+2 N +2

�
. This is a consequence of item

(ii ) in Proposition (3.16).

(ii) The degree of the restriction � j @DK 0 ;A;s 0
is non zero. Indeed, again by item (ii ) in

Proposition 3.16, we have
s� (d1; d2) = s0;

in this case. Applying (3.89), we get the conclusion.

In fact, such a mapping � can not exist by Index theorem and this is a contradiction. Thus,
Proposition 3.15 follows, assuming that Proposition 3.16 holds (see Section 3.4 for the proof
of latter).

3.3.4 The proof of Theorem 3.1

In this section, we aim at giving the proof of Theorem 3.1 by using Proposition 3.15.

The proof of Theorem 3.1: Except for the treatment of the nonlinear term, this part
is quite similar to what we did in [5] whenp is integer. Nevertheless, for the reader's
convenience, we give the proof here, insisting on the way we handle the nonlinear term.

+ The proof of item (i ) of Theorem 3.1: Using Proposition 3.15, there exists (d1; d2) 2
RN 2+2 N +2 such that the solution u of equation (3.1) with initial data uK 0 ;A;d 1 ;d2 (0) (given
in De�nition 3.2), exists on [0; T) and satis�es:

u 2 S� (T; K 0; � 0; � 0; A; � 0; � 0):

Thanks to item (i ) in De�nition 3.1, item ( i ) of Lemma 3.10, and de�nitions (3.21) and
(3.55) of (w1; w2) and (q1; q2), respectively, we conclude (3.6) and (3.7). In addition to that,
we have Re(u) > 0. Moreover, we use again the de�nition ofVA (s) to conclude the following
asymptotic behaviors:

u(0; t) � � (T � t)� 1
p� 1 ; (3.91)

u2(0; t) � �
2N�

(p � 1)
(T � t)� 1

p� 1

j ln(T � t)j2
; (3.92)

as t ! T, which means that u blows up at time T and the origin is a blowup point.
Moreover, the real and imaginary parts simultaneously blow up . It remains to prove that
for all x 6= 0; x is not a blowup point of u. The following Lemma allows us to conclude.
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Lemme 3.17 (No blow-up under some threshold; Giga and Kohn [7]). For all C0 > 0; 0 �
T1 < T and � > 0 small enough, there exists� 0(C0; T; � ) > 0 such that if u(�; � ) satis�es
the following estimates for allj� j � �; � 2 [T1; T):

j@� u � � uj � C0jujp;

and
ju(�; � )j � � 0(1 � � )� 1

p� 1 :

Then, u does not blow up at� = 0; � = T.

Proof. See Theorem 2.1 in Giga and Kohn [7]. Although the proof of [7] was given in the
real case, it extends naturally to the complex valued case.

We next use Lemma 3.17 to conclude thatu does not blow up atx0 6= 0: Indeed, let us
considerx0 6= 0. Then, we use (3.6) to deduce the following:

sup
jx � x0 j� j x 0 j

2

(T � t)
1

p� 1 ju(x; t )j �

�
�
�
�
�
f 0

 
jx0 j

2p
(T � t)j ln(T � t)j

! �
�
�
�
�
+

C
p

j ln(T � t)j
! 0; (3.93)

as t ! T. Applying Lemma 3.17 to u(x � x0; t); with some � small enough such that
� � jx0 j

2 ; and T1 close enough toT; we see thatu(x � x0; t) does not blow up at timeT
and x = 0. Hence, x0 is not a blow-up point of u. This concludes the proof of item (i ) in
Theorem 3.1.

+ The proof of item (ii ) of Theorem 3.1: Here, we use the argument of Merle in [14] to
deduce the existence ofu� = u�

1 + iu �
2 such that u(t) ! u� as t ! T uniformly on compact

sets ofRN nf 0g. In addition to that, we use the techniques in Zaag [30], Masmoudi and
Zaag [18], Tayachi and Zaag [28] for the proofs of (3.9) and (3.10).

Indeed, for all x0 2 RN ; x0 6= 0, we deduce from (3.6), (3.7) that not only (3.93) holds but
also the following is satis�ed

sup
jx � x0 j� j x 0 j

2

(T � t)
1

p� 1 j ln(T � t)jju2(x; t )j �

�
�
�
�
�

9jx0j2

4(T � t)j ln(T � t)j
f p

0

 
jx0 j

2p
(T � t)j ln(T � t)j

! �
�
�
�
�

+
C

j ln(T � t)j
p1
2

! 0; as t ! T: (3.94)

We now considerx0 such that jx0j is small enough, andK to be �xed later. We de�ne
t0(x0) by

jx0j = K
p

(T � t0(x0)) j ln(T � t0(x0)) j: (3.95)

Note that t0(x0) is unique whenjx0j is small enough andt0(x0) ! T as x0 ! 0.

We introduce rescaled functionsU(x0; �; � ) and V2(x0; �; � ) as follows:

U(x0; �; � ) = ( T � t0(x0))
1

p� 1 u(x; t ): (3.96)

and
V2(x0; �; � ) = j ln(T � t0(x0)) jU2(x0; �; � ); (3.97)
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whereU2(x0; �; � ) is de�ned by

U(x0; �; � ) = U1(x0; �; � ) + iU2(x0; �; � );

and

(x; t ) =
�
x0 + �

p
T � t0(x0); t0(x0) + � (T � t0(x0))

�
; and (�; � ) 2 RN �

�
�

t0(x0)
T � t0(x0)

; 1
�

:

(3.98)
We can see that with these notations, we derive from item (i ) in Theorem 3.1 the following
estimates for initial data at � = 0 of U and V2

sup
j � j�j ln( T � t0 (x0 )) j

1
4

jU(x0; �; 0) � f 0(K 0)j �
C

1 + ( j ln(T � t0(x0)) j
1
4 )

! 0; (3.99)

sup
j � j�j ln( T � t0 (x0 )) j

1
4

jV2(x0; �; 0) � g0(K 0)j �
C

1 + ( j ln(T � t0(x0)) j  1 )
! 0; (3.100)

as x0 ! 0 and note that f 0 and g0 are de�ned as in (3.4) and (3.8) respectively, and
 1 = min

�
1
4 ; p1

2

�
.

Moreover, using equations (3.17), we derive the following equations forU; V2: for all � 2
RN ; � 2 [0; 1)

@� U = � � U + Up; (3.101)

@� V2 = � � V2 + jln(T � t0(x0)) j F2(U1; U2); (3.102)

whereF2 is de�ned in (3.18).

Besides that, from (3.93) and (3.101), we can apply Lemma 3.17 toU when j� j � j ln(T �
t0(x0)) j

1
4 and obtain:

sup
j � j� 1

2 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jU(x0; �; � )j � C: (3.103)

Then, we aim at proving forV2(x0; �; � ) that

sup
j � j� 1

16 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � C: (3.104)

+ The proof for (3.104): We �rst use (3.103) to derive the following rough estimate:

sup
j � j� 1

2 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j: (3.105)

We �rst introduce  a cut-o� function  2 C1
0 (RN ); 0 �  � 1; supp( ) � B (0; 1);  = 1

on B(0; 1
2): Introducing

 1(� ) =  

 
2�

j ln(T � t0(x0)) j
1
4

!

and V2;1(x0; �; � ) =  1(� )V2(x0; �; � ): (3.106)
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Then, we deduce from (3.102) an equation satis�ed byV2;1

@� V2;1 = � � V2;1 � 2 div(V2r  1) + V2�  1 + j ln(T � t0(x0)) j 1F2(U1; U2): (3.107)

Hence, we can writeV2;1 with an integral equation as follows

V2;1(� ) = e� � (V2;1(0)) +
Z �

0
e(� � � 0)� f� 2 div (V2r  1) + V2�  1 (3.108)

+ j ln(T � t0(x0)) j 1F2(U1; U2))( � 0)gd� 0:

Besides that, using (3.103) and (3.105) and the fact that

jr  1j �
C

j ln(T � t0(x0)) j
1
4

and j�  1j �
C

j ln(T � t0(x0)) j
1
2

;

we deduce that
�
�
�
�

Z �

0
e(� � � 0)� (� 2 div (V2r  1)) d� 0

�
�
�
� � C

Z �

0

kV2r  1kL 1 (RN )(� 0)
p

� � � 0
d� 0 � Cj ln(T � t0(x0)) j

3
4 ;

�
�
�
�

Z �

0
e(� � � 0)� (V2(� 0)�  1) d� 0

�
�
�
� � C

Z �

0
kV2�  1k1 (� 0)d� 0 � Cj ln(T � t0(x0)) j

1
2 ;

and
�
�
�
�

Z �

0
e(� � � 0)� ( 1j ln(T � t0(x0)) jF2(U1; U2)( � 0)) d� 0

�
�
�
�

� C
Z �

0
kj ln(T � t0(x0)) j 1F2(U1; U2)kL 1 (RN )(�

0)d� 0:

Since the last term in (3.108) involves the nonlinear termF2(U1; U2); we need to handle it
di�erently from the case wherep is integer: using the de�nition (3.18) ofF2; and (3.103)
and the fact that U1 is positive, we write from for all j� j � 1

2 j ln(T � t0(x0)) j
1
4 ; � 2 [0; 1) we

have

j 1 ln(T � t0(x0))F2(U1; U2)( � )j � C
�
U2

1 + U2
2

� p� 1
2 j 1 ln(T � t0(x0))U2(� )j

� CkV2;1(� )kL 1 (RN ) :

Hence, from (3.108) and the above estimates, we derive

kV2;1(� )kL 1 (RN ) � Cj ln(T � t0(x0)) j
3
4 + C

Z �

0
kV2;1(� 0)kL 1 (RN )d� 0:

Thanks to Gronwall Lemma, we deduce that

kV2;1(� )kL 1 (RN ) � Cj ln(T � t0(x0)) j
3
4 ; 8� 2 [0; 1);

which yields

sup
j � j� 1

4 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j
3
4 : (3.109)
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We apply iteratively for

V2;2(x0; �; � ) =  2(� )V2(x0; �; � ) where  2(� ) =  

 
4�

j ln(T � t0(x0)) j
1
4

!

:

Similarly, we deduce that

sup
j � j� 1

8 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2(x0; �; � )j � Cj ln(T � t0(x0)) j
1
2 :

We apply this process a �nite number of steps to obtain (3.104). We now come back to our
problem, and aim at proving that:

sup
j � j� 1

16 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

�
�
�U(x0; �; � ) � ÛK 0 (� )

�
�
� �

C
1 + j ln(T � t0(x0)) j  2

; (3.110)

sup
j � j� 1

32 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

�
�
�V2(x0; �; � ) � V̂2;K 0 (� )

�
�
� �

C
1 + j ln(T � t0(x0)) j  3

; (3.111)

where  2;  3 are positive small enough and (̂UK 0 ; V̂2;K 0 )( � ) is the solution of the following
system:

@� ÛK 0 = Ûp
K 0

; (3.112)

@� V̂2;K 0 = pÛp� 1
K 0

V̂2;K 0 : (3.113)

with initial data at � = 0

ÛK 0 (0) = f 0(K 0);

V̂2;K 0 (0) = g0(K 0):

given by

ÛK 0 (� ) =
�

(p � 1)(1 � � ) +
(p � 1)2K 2

0

4p

� � 1
p� 1

; (3.114)

V̂2;K 0 (� ) = K 2
0

�
(p � 1)(1 � � ) +

(p � 1)2K 2
0

4p

� � p
p� 1

: (3.115)

for all � 2 [0; 1). The proof of is cited to Section 5 of Tayachi and Zaag [28] and here we will
use (3.110) to prove (3.111). For the reader's convenience, we give it here. Let us consider

V2 = V2 � V̂2;K 0 (� ): (3.116)

Using (3.104), we deduce the following

sup
j � j� 1

16 j ln( T � t0 (x0 )) j
1
4 ;� 2 [0;1)

jV2j � C: (3.117)

In addition to that, from (3.102) we write an equation onV2 as follows:

@� V2 = � V2 + pÛp� 1
K 0

V2 + p(Up� 1
1 � Ûp� 1

K 0
)V2 + G2(x0; �; � ); (3.118)
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where

G2(x0; �; � ) = j ln(T � t0(x0)) j
�
F2(U1; U2) � pUp� 1

1 U2
�

:

As for the last term in (3.118), we need here to carefully handle this expression, sine it
involves a nonlinear term, which needs a treatment di�erent from the case wherep is
integer. From the de�nition (3.18) of F2; we have

�
�F2(U1; U2) � pUp� 1

1 U2

�
� �

�
�
�pU2

�
(U2

1 + U2
2 )

p� 1
2 � Up� 1

1

� �
�
�

+

�
�
�
�
�
(U2

1 + U2
2 )

p
2

(

sin

 

parcsin

 
U2p

U2
1 + U2

2

!!

�
pU2p

U2
1 + U2

2

) �
�
�
�
�
:

And we deduce from (3.104) and (3.110) with� 0 > 0 small enough that

�
�F2(U1; U2) � pUp� 1

1 U2

�
� � CjU2j3;

Plugging the above estimate and using (3.97) and (3.104), we have the following

sup
j � j� 1

16 j ln( T � t0 )j
1
4 ;� 2 [0;1)

jG2(x0; �; � )j �
C

j ln(T � t0(x0)) j2
: (3.119)

Introducing
�V2 =  � (� )V2;

where

 � =  

 
16�

j ln(T � t0(x0)) j
1
4

!

;

and  is the cut-o� function which has been introduced above. We also note thatr  � ; �  �

satisfy the following estimates

kr �  � kL 1 (RN ) �
C

j ln(T � t0(x0)) j
1
4

and k� �  � kL 1 (RN ) �
C

j ln(T � t0(x0)) j
1
2

: (3.120)

In particular, �V2 satis�es

@�
�V2 = � �V2 + pÛp� 1

K 0
(� ) �V2 � 2 div (V2r  � )+ V2�  � + p(Up� 1

1 � Ûp� 1
K 0

) � V2 +  � G2; (3.121)

By Duhamel principal, we derive the following integral equation

�V2(� ) = e� � ( �V2(� )) +
Z �

0
e(� � � 0)�

n
pÛp� 1

K 0
�V2 � 2 div (V2r  � ) + V2�  � (3.122)

+ p(Up� 1
1 � Ûp� 1

K 0
) � V2 +  � G2

o
(� 0)d� 0:

Besides that, we use (3.110), (3.114), (3.117), (3.120), (3.119) to derive the following esti-
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mates: for all � 2 [0; 1)

jÛK 0 (� )j � C;

kV2r  � kL 1 (RN )(� ) �
C

j ln(T � t0(x0)) j
1
4

;

kV2�  � kL 1 (RN )(� ) �
C

j ln(T � t0(x0)) j
1
2

;




�

Up� 1
1 � Ûp� 1

K 0

�
 �





L 1 (RN )
(� ) �

C
j ln(T � t0(x0)) j  2

;

kG2 � kL 1 (RN ) �
C

j ln(T � t0(x0)) j2
:

where 2 given in (3.110). Hence, we derive from the above estimates that: for all 0� � 0 <
� < 1

je(� � � 0)� pÛp� 1
K 0

�V2(� 0)j � Ck�V2(� 0)k;

je(� � � 0)� (div( V2r  � )) j � C
1

p
� � � 0

1

j ln(T � t0(x0)) j
1
4

;

je(� � � 0)� (V2�  � )j �
C

j ln(T � t0(x0)) j
1
2

;

je(� � � 0)� (p(Up� 1
1 � Ûp� 1

K 0
) � V2)( � 0)j �

C
j ln(T � t0(x0)) j  2

;

je(� � � 0)� ( � G2)( � 0)j �
C

j ln(T � t0(x0)) j
:

Plugging into (3.122), we obtain

k�V2(� )kL 1 (RN ) �
C

j ln(T � t0(x0)) j  3
+ C

Z �

0
k�V2(� 0)kL 1 (RN )d� 0;

where 3 = min( 1
4 ;  2). Then, thanks to Gronwall inequality, we get

k�V2kL 1 (RN ) �
C

j ln(T � t0(x0)) j  3
:

Hence, (3.111) follows. Finally, we easily �nd the asymptotics ofu� and u�
2 as follows,

thanks to the de�nition of U and V2 and to estimates (3.110) and (3.111):

u� (x0) = lim
t ! T

u(x0; t) = ( T� t0(x0)) � 1
p� 1 lim

� ! 1
U(x0; 0; � ) � (T� t0(x0)) � 1

p� 1

�
(p � 1)2

4p
K 2

0

� � 1
p� 1

;

(3.123)

u� (x0) = lim
t ! T

u(x0; t) = ( T � t0(x0)) � 1
p� 1 lim

� ! 1
U(x0; 0; � )

� (T � t0(x0)) � 1
p� 1

�
(p � 1)2

4p
K 2

0

� � 1
p� 1

; (3.124)
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and

u�
2(x0) = lim

t ! T
u2(x0; t) =

(T � t0(x0)) � 1
p� 1

j ln(T � t0(x0)) j
lim
� ! 1

V2(x0; 0; � )

�
(T � t0(x0)) � 1

p� 1

j ln(T � t0(x0)) j

�
(p � 1)2

4p

� � p
p� 1

(K 2
0)� 1

p� 1 : (3.125)

Using the relation (3.95), we �nd that

T � t0(x0) �
jx0j2

2K 2
0 j ln jx0jj

and ln(T � t0(x0)) � 2 ln(jx0j); as x0 ! 0: (3.126)

Plugging (3.126) into (3.123) and (3.125), we get the conclusion of item (ii ) of Theorem
3.1.

This concludes the proof of Theorem 3.1 assuming that Proposition 3.16 holds. Natu-
rally, we need to prove this proposition on order to �nish the argument. This will be done
in the next section.

3.4 The proof of Proposition 3.16

This section is devoted to the proof of Proposition 3.16, which is considered as central in
our analysis. We would like to proceed into two parts:

+ In the �rst part, we derive a priori estimates on u in every componentPj (t) where
j = 1; 2 or 3:

+ In the second part, we use a priori estimates to derive new bounds which improve all
the bounds in De�nition 3.1, except for the non-negative modes

(q1;0; (q1;j )1� j � N ; q2;0; (q2;j )1� j � N ; (q2;j;k )1� j;k � N ):

This means that the problem is reduced to the control of these components, which is the
conclusion of item (i ) of Proposition 3.16. As for item (ii ) of Proposition 3.16 is just a
direct consequence of the dynamics of these modes.

3.4.1 A priori estimates in P1(t); P2(t) and P3(t)

In this section, we aim at giving a priori estimates to the solution u(t) on P1(t); P2(t) and
P3(t) which are important to get the conclusion of Proposition 3.16:

+ A priori estimates in P1(t): Here we give in the following proposition some estimates
relevant to the regionP1(t) :

Proposition 3.18. For all A; K 0 � 1 and � 0 > 0; � 0 > 0; � 0 > 0; � 0 > 0; there exists
T4(K 0; A; � 0) such that for allT � T4; if u is a solution of equation(3.1) on [0; t1] for some
t1 2 [0; T) and u 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t) for all t 2 [0; t1], then, the following holds:
for all s0 � � � s � s1 with s1 = ln( T � t1); we have:

(i ) (ODE satis�ed by the positive modes) For allj 2 f 1; :::; Ng, we have

�
�q0

1;0(s) � q1;0(s)
�
� +

�
�
�
�q

0
1;j (s) �

1
2

q1;j (s)

�
�
�
� �

C
s2

; 81 � j � N; (3.127)
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and
�
�q0

2;0(s) � q2;0(s)
�
� +

�
�
�
�q

0
2;j (s) �

1
2

q2;j (s)

�
�
�
� �

C
sp1+2

; 81 � j � N: (3.128)

(ii ) (ODE satis�ed by the null modes) For all1 � j; k � N , we have
�
�
�
�q

0
1;j;k (s) +

2
s

q1;j;k (s)

�
�
�
� �

CA
s3

; (3.129)

and �
�
�
�q

0
2;j;k (s) +

2
s

q2;j;k (s)

�
�
�
� �

CA2 ln s
sp1+3

: (3.130)

(iii ) (Control of the negative part) We have the following estimates





q1;� (:; s)
1 + jyj3






L 1 (RN )

� Ce� s� �
2






q1;� (:; � )
1 + jyj3






L 1 (RN )

(3.131)

+ C
e� (s� � )2

s
3
2

kq1;e(:; � )kL 1 (RN ) +
C(1 + s � � )

s2
;

and





q2;� (:; s)
1 + jyj3






L 1 (RN )

� Ce� s� �
2






q2;� (:; � )
1 + jyj3






L 1 (RN )

(3.132)

+ C
e� (s� � )2

s
3
2

kq2;e(:; � )kL 1 (RN ) +
C(1 + s � � )

s
p1+5

2

:

(v) (Control of the outer part) We have the following estimates

kq1;e(:; s)kL 1 (RN ) � Ce� ( s� � )
p kq1;e(:; � )kL 1 (RN ) (3.133)

+ Ces� � s
3
2






q1;� (:; � )
1 + jyj3






L 1 (RN )

+
C(1 + s � � )es� �

p
s

;

and

kq2;e(:; s)kL 1 (RN ) � Ce� ( s� � )
p kq2;e(:; � )kL 1 (RN ) (3.134)

+ Ces� � s
3
2






q2;� (:; � )
1 + jyj3






L 1 (RN )

+
C(1 + s � � )es� �

s
p1+2

2

:

Proof. By using the fact that u(t) 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t) for all t 2 [0; t1] ; we derive
that ( q1; q2)(s) 2 VA (s) for all s 2 [s0; s1] and (q1; q2)(s) satis�es equation (3.56). In addition

to that, we deduce also the fact thatq1(s) + � 1(s) � e
� s

p� 1

2 for all s 2 [s0; s1] (see Lemma
3.11). Although potential terms Vj;k ; j; k 2 f 1; 2g, quadratic terms B1; B2 and rest terms
R1; R2 (see equation (3.56)) are di�erent from the case wherep is integer, they behavior
as in that case (see Lemmas 3.25, 3.26, 3.27 below). Thus, the result is derived from the
projection of equation (3.56) and the dynamics of the operatorL + V. For that reason, we
kindly refer the the reader to the proof of Lemma 4.2 given in [5] for the case wherep is
integer.
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+ A priori estimates in P2(t):
In this step, we aim at proving the following lemma which gives a priori estimates onu

in P2(t). The following is our main result:

Lemme 3.19. For all K 0 � 1; � 1 2 (0; 1); � 0 � 1; � 5 > 0; � 5 > 0; the following holds: If
U(�; � ) a solution of equation(3.101), for all � and � 2 [� 1; � 2] with 0 � � 1 � � 2 � 1; such
that for all � 2 [� 1; � 2] and for all � 2 [� 2� 0; 2� 0]; we have

jU(�; � )j � � 5 and Re(U(�; � )) � � 5 and
�
�
�U(�; � 1) � ÛK 0 (� 1)

�
�
� � � 1; (3.135)

then, there exists� = � (K 0; � 5; � 5; � 1; � 0) such that for all� 2 [� � 0; � 0] and for all � 2 [� 1; � 2]
we have �

�
�U(�; � ) � Û(� )

�
�
� � �;

whereÛK 0 (� ) is given (3.79). In particular, we have � (K 0; � 5; � 5; � 1; � 0) ! 0 as (� 1; � 0) !
(0; + 1 ).

Proof. We introduce  as a cut-o� function in C1
0 (R) which satis�es the following:

 (x) = 0 if jxj � 2; j (x)j � 1 for all x and  (x) = 1 for all jxj � 1;

and we also de�ne 1 as follows

 1(� ) =  
�

j� j
� 0

�
:

Then, we have 1 2 C1
0 (RN ); and supp( 1) � fj � j such that j� j � 2� 0g and  1(� ) = 1 for

all j� j � � 0: In addition to that, we let

V1(�; � ) =  1(� )
�

U(�; � ) � ÛK 0 (� )
�

; 8� 2 [� 1; � 2]; � 2 RN :

Thanks to equation (3.101), we derive thatV1 satis�es the following equation:

@� V1 = � � V1 � 2 div (Ur  1) + U�  1 +  1(� )
�

Up � Ûp
�

: (3.136)

Therefore, we can writeV1(�; � ) under the following integral equation

V1(� ) = e(� � � 1 )� (V1(� 1)) +
Z �

� 1

e(� � � 0)�
�

� 2 div (Ur  1) + U�  1 +  1

�
Up � Ûp

��
(� 0)d� 0:

(3.137)
In addition to that, we have the following fact from (3.135) (in particular the estimate
Re(U(�; � )) � � 5 in (3.135) is crucial for the 4th term in (3.137)): for all � 2 [� 1; � 2]

kV1(� 1)kL 1 (RN ) � � 1;

kUr  1kL 1 (RN ) (� ) �
C(� 5)

� 0
;

kU�  1kL 1 (RN ) (� ) �
C(� 5)

� 2
0

;


  1(Up � Ûp)





L 1 (RN )
(� ) � C(K 0; � 5; � 5)kV1kL 1 (RN )(� );
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which yields when� 1 � � 0 < � � � 2;

 e(� � � 1 )� (V1(� 1))


 � � 1;



 e(� � � 0)� (div ( Ur  1)( � 0))





L 1 (RN )
�

C(� 5)
� 0

1
p

� � � 0
;



 e(� � � 0)� (U�  1(� 0))





L 1 (RN )
�

C(� 5)
� 2

0
;



 e(� � � 0)� ( 1(Up � Ûp)( � 0))





L 1 (RN )
� C(K 0; � 5; � 5)kV1kL 1 (RN )(�

0):

Plugging into (3.137), we have for all� 2 [� 1; � 2]

kV1(� )kL 1 (RN ) � C(K 0; � 5; � 5)
�

� 1 +
1
� 0

�
+ C(K 0; � 5; � 5)

Z �

� 1

kV1(� 0)kL 1 (RN ) d� 0:

Thanks to Gronwall lemma, we obtain the following

kV1(� )kL 1 (RN ) � C(K 0; � 5; � 5)
�

� 1 +
1
� 0

�
; 8� 2 [� 1; � 2]:

SinceV1(� ) = U(� ) � Û(� ) for all � 2 [� � 0; � 0] and for all � 2 [� 1; � 2]; this concludes our
lemma.

+ A proiori estimates in P3(t): We aim at proving the following lemma which gives a
priori estimates onu in P3(t):

Lemme 3.20 (A priori estimates in P3(t)) . For all K 0 � 1; A � 1; � > 0; � 0 > 0; � � 1 and
jd1j + jd2j � 2, there existsT6(K 0; A; � 0; �; � ) > 0; such that for all T � T6 the following
holds: If u is a solution of equation(3.1) for all t 2 [0; t � ] for somet � 2 [0; T) with initial
data u(0) = uK 0 ;A;d 1 ;d2 (0) (see De�nition 3.2) and

ju(x; t )j � �; 8jxj 2
h� 0

8
; + 1

�
; t 2 [0; t � ]; (3.138)

then,
ju(x; t ) � u(x; 0)j � �; 8jxj �

� 0

4
; t 2 [0; t � ]:

Proof. We introduce  ; a cut-o� function in C1 (R) de�ned as follows

 (r ) = 0 if jr j �
1
2

;  (r ) = 1 for all jr j � 1 and j (r )j � 1 for all r;

and we also introduce � 0 2 C1 (RN ) as follows

 � 0 (x) =  
�

4jxj
� 0

�
:

Then,  � 0 2 C1 (RN ); and  � 0 (x) = 1 for all jxj � � 0
4 and  � 0 = 0 for all jxj � � 0

8 . We de�ne
as well

v =  � 0 u:
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Thanks to equation (3.1), we derive an equation satis�ed byv

@tv = � v � 2 div(ur  � 0 ) + u�  � 0 +  � 0 up = � v � 2div (ur  � 0 ) + G(u); (3.139)

where
G(u) = u�  � 0 +  � 0 up:

Using (3.138), we get

kG(t; u(t))kL 1 (RN ) � C(�; � 0); 8t 2 [0; t � ]:

By Duhamel formula, we derive

v(t) = et � (v(0)) +
Z t

0
e(t � s)� (G(s; u(s))) ds; (3.140)

which yields

v(t) � v(0) = et � (v(0)) � v(0) +
Z t

0
e(t � s)� (G(s; u(s))) ds:

Thus,

kv(t) � v(0)kL 1 (RN ) � k et � (v(0)) � v(0)kL 1 (RN ) +






Z t

0
e(t � s)� (G(s; u(s))) ds






L 1 (RN )

:

In addition to that, if T � T6;1(� 0); we have� 1(x) = 0 ; for all jxj � � 0
8 ; where � 1 de�ned

in (3.87) is involved in De�nition 3.1 of initial data u(0). As a matter of fact, from the
de�nition of u(0); we deduce from this fact that

v(0) =  � 0 (U� + 1) :

Since � v(0) 2 L1 (RN ); it follows that

 et � (v(0)) � v(0)




L 1 (RN )
! 0 ast ! 0:

Besides that, we have also





Z t

0
e(t � s)� (G(s; u(s))) ds






L 1 (RN )

! 0 ast ! 0:

Therefore, for all t 2 [t0; t � ] we have

kv(t) � v(0)kL 1 (RN ) � �;

provided that T � T6;2(K 0; A; � 0; �; � ). This concludes our lemma.

Finally, we need the following Lemma to get the conclusion of our proof:

Lemme 3.21. There existsK 7 � 1 such that for all K 0 � K 7; A � 1; and � 1 > 0; there
exists � 7(K 0; A; � 1) > 0 such that for all � 0 � � 7; there exists� 7(K 0; � 0; A; � 1) > 0 such
that for all � 0 � � 7 there exist � 7(� 1) > 0; T7(K 0; � 0; A; � 1) > 0; � 7(K 0; � 0; A) > 0 such that
for all � 0 � � 7; � 0 � � 7 and for all T � T7 if u 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t) for all t 2 [0; t � ];
for somet � 2 [0; T); then the following holds:

wheneverjxj 2
�

K 0

4

p
(T � t � )j ln(T � t � )j; � 0

�
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(i ) For all j� j � 2� 0

p
j ln(T � t(x)) j and for all

� 2
�
max

�
0;

� t(x)
T � t(x)

�
;
t � � t(x)
T � t(x)

�
;

if U(x; �; � ) satis�es equation (3.101), then

jU(x; �; � )j � C �
7(p) and Re(U(�; � )) � C ��

7 (K 0; p);

whereU(�; � ) is de�ned as in (3.74), t(x) is de�ned in (3.75), and C �
7 depends only

on the parameterp and C ��
7 (K 0; p) depends on parametersK 0 and p.

(ii ) For all j� j � 2� 0

p
j ln(T � t(x)) j; if we de�ne

� 0(x) = max
�

0;
� t(x)

T � t(x)

�
; (3.141)

then, we have
jU(x; �; � 0) � ÛK 0 (� 0)j � � 1:

Proof. The idea of the proof relies on the argument in Lemma 2.6, given in [16].

+ The proof of item(i ): We aim at proving that for all jxj 2
h

K 0
4

p
(T � t � )j ln(T � t � )j; � 0

i
;

j� j � 2� 0

p
j ln(T � t(x)) j and t 2 [max(0; t(x)) ; t � ] ; we have

jU(x; �; � (x; t )) j � C �
7 ; (3.142)

and
Re (U(�; � )) � C ��

7 ; (3.143)

where � (x; t ) = t � t (x)
T � t (x) and C �

7 ; C��
7 > 0. Let us introduce a parameter� > 0 to be �xed

later in our proof, small enough (note that� has nothing to do with the parameters� 0; � 1 in
the statement of our lemma). We observe that if we have� 0 � � 1;7(K 0; � ) for some� 1;7 > 0
and small enough, then for allj� j � 2� 0

p
j ln(T � t(x)) j; we have

(1 � � )jxj � j x + �
p

T � t(x)j � (1 + � )jxj: (3.144)

We also recall the de�nition of rescaled functionU(x; �; � (x; t )) as follows

U(x; �; � ) = ( T � t(x))
1

p� 1 u(x + �
p

T � t(x); t(x) + � (T � t(x))) :

Introducing X = x + �
p

T � t(x); we write

U(x; �; � (x; t )) = ( T � t(x))
1

p� 1 u(X; t ):

We here consider 3 cases:
+ Case 1: We consider the case where

jX j �
K 0

4

p
(T � t)j ln(T � t)j:
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Using the fact that u 2 S(t), in particular item ( i ) of De�nition 3.1, we see that Lemma
3.10 and (3.80) hold, hence

�
�
�
�
�
(T � t)

1
p� 1 u(X; t ) � f 0

 
X

p
(T � t)j ln(T � t)j

! �
�
�
�
�

�
CA3

p
1 + j ln(T � t)j

:

Then, we derive the following

jU(x; �; � (x; t )) j �
�

T � t
T � t(x)

� � 1
p� 1

 

f 0 (0) +
CA3

p
1 + j ln(T � t)j

!

=
�

T � t
T � t(x)

� � 1
p� 1

 

� +
CA3

p
1 + j ln(T � t)j

!

; (3.145)

Re(U(x; �; � (x; t ))) �
�

T � t
T � t(x)

� � 1
p� 1

 

f 0 (0) �
CA3

p
1 + j ln(T � t)j

!

=
�

T � t
T � t(x)

� � 1
p� 1

 

� �
CA3

p
1 + j ln(T � t)j

!

: (3.146)

Besides that, we deduce the following from (3.144) and the following fact

jX j �
K 0

4

p
(T � t)j ln(T � t)j;

that
jxj �

K 0

4(1 � � )

p
(T � t)j ln(T � t)j:

In addition to that, we have that the function T � t(x) is an increasing function ifjxj small
enough. Therefore,

T � t(x) � T � t
�

K 0

4(1 � � )

p
(T � t)j ln(T � t)j

�
: (3.147)

As a matter of fact, we have the following asymptotic behavior of� (x) = T � t(x)

ln � (x) � 2 ln jxj and � (x) �
8

K 2
0

jxj2

j ln jxjj
as jxj ! 0: (3.148)

Plugging (3.148) in (3.147), we obtain the following

T � t(x) � T � t
�

K 0

4(1 � � )

p
(T � t)j ln(T � t)j

�
�

8K 2
0(T � t)j ln(T � t)j

K 2
016(1� � )2 1

2 j ln(T � t)j
=

(T � t)
(1 � � )2

:

In particular, from t 2 [max(0; t(x)) ; t � ]; we have the following

T � t(x) � T � t:

Plugging into (3.145) and (3.146), we obtain

jU(x; �; � )j � C �
1;7(p; � );
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and
Re(U(x; �; � (x; t ))) � C ��

1;7(p; � );

provided that � is small enough,K 0 � K 1;7(� ) which is large enough andT � T1;7(K 0; A).
Note that C �

1;7(p; � ) and C ��
7 (p; � ) depend on� and p, in particular, C �

1;7(�; p) is bounded
when � ! 0.

+ The second case: We consider the case where

jX j 2
�

K 0

4

p
(T � t)j ln(T � t)j; � 0

�
:

By using the de�nition of U(x; �; � (x; t )) ; we deduce that

U(x; �; � (x; t )) =
�

T � t(x)
T � t(X )

� 1
p� 1

U(X; 0; � (X; t )) :

However, using the fact thatu 2 S(t), in particular item ( ii ) of De�nition 3.1, we have

jU(X; 0; � (X; t )) j � � 0 + Û(1):

In addition to that, we use (3.144), the de�nition of t(x) and the fact that

jX j �
K 0

4

p
(T � t)j ln(T � t)j

to derive the following

1 �
T � t(x)
T � t(X )

� 2;

provided that � > 0, small enough. Therefore, we have

jU(x; �; � (x; t )) j � 2
1

p� 1

�
� 0 + ÛK 0 (1)

�
�

1
2

;

and
Re(U(x; �; � (x; t ))) � ÛK 0 (0) � � 0 �

1
2

ÛK 0 (0);

provided that � 0 � 1
2ÛK 0 (0) and K 0 � K 2;7:

+ The third case: We consider the case wherejX j � � 0: Using the fact that u 2 S(t);
in particular item ( iii ) of De�nition 3.1, we have

jU(x; �; � (x; t )) j = ( T � t(x))
1

p� 1 ju(X; t )j � (T � t(x))
1

p� 1 (ju(X; 0)j + � 0);

Re (U(x; �; � (x; t ))) = ( T � t(x))
1

p� 1 Re(u(X; t )) � (T � t(x))
1

p� 1 (Re(u(X; 0)) � � 0) :

Using the de�nition (3.83), we have for alljX j � � 0

u(X; 0) = U� (X ) + 1 ;

provided that T � T2;7(� 0): In addition to that, we have the following fact

T � t(x) �
16jxj2

K 2
0 j ln jxjj

;

u(X; 0) � U� (X ) =
�

(p � 1)2jxj2

8pj ln jxjj

� � 1
p� 1

;
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as (X; x ) ! (0; 0), and in particular, from (3.144), we have

(1 � � )jxj � j X j � (1 + � )jxj:

Therefore, we have

jU(x; �; � (x; t )) j � C �
2;7(� );

Re(U(x; �; � (x; t ))) � C ��
2;7(K 0; � );

provided that K 0 � K 3;7; � 0 � � 1;7(� ) and � is small. We conclude item (i ).
The proof of item (ii ): We aim at proving that for all j� j � 2� 0

p
j ln � (x)j and � 0(x) =

max
�

0; � t (x)
� (x)

�
; we have

�
�
�U(x; �; � 0(x)) � ÛK 0 (� 0(x))

�
�
� � � 1: (3.149)

Considering 2 cases for the proof of (3.149):
+ Case 1: We consider the case where

jxj �
K 0

4

p
Tj ln Tj;

then, we deduce from the de�nition oft(x) given by (3.75) that t(x) � 0. Thus, by de�nition
(3.141), we have

� 0(x) =
� t(x)
� (x)

:

Therefore, (3.149) directly follows item (ii ) of Lemma 3.14 withK 0 � K 4;7; � 0 � � 3;7; � 0 �
� 3;7 (see in Lemma 3.14)

+ Case 2: We consider the case where

jxj �
K 0

4

p
Tj ln Tj;

which yields t(x) � 0. Thus, by de�nition (3.141), we have

� 0(x) = 0 :

We let X = x + �
p

� (x): According to the de�nitions of U;ÛK 0 which are given by (3.74)
and (3.79), we write

�
�
�U(x; �; 0) � ÛK 0 (0)

�
�
� =

�
�
�
�
�
� � 1

p� 1 (x)u (X; t (x)) �
�

(p � 1) +
(p � 1)2

4p
K 2

0

16

� � 1
p� 1

�
�
�
�
�

=

�
�
�
�
�
� � 1

p� 1 (x)u (X; t (x)) �
�

(p � 1) +
(p � 1)2

4p
jX j2

� (x)j ln � (x)j

� � 1
p� 1

+
�

(p � 1) +
(p � 1)2

4p
jX j2

� (x)j ln � (x)j

� � 1
p� 1

�
�

(p � 1) +
(p � 1)2

4p
K 2

0

16

� � 1
p� 1

�
�
�
�
�

� (I ) + ( II );
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where� (x) = T � t(x); and

(I ) =

�
�
�
�
�
� � 1

p� 1 (x)u (X; t (x)) �
�

(p � 1) +
(p � 1)2

4p
jX j2

� (X )j ln � (X )j

� � 1
p� 1

�
�
�
�
�
;

(II ) =

�
�
�
�
�

�
(p � 1) +

(p � 1)2

4p
jX j2

� (X )j ln � (X )j

� � 1
p� 1

�
�

(p � 1) +
(p � 1)2

4p
K 2

0

16

� � 1
p� 1

�
�
�
�
�
:

Since

jX j � (1 + � )jxj �
(1 + � )K 0

4

p
(T � t(x)) j ln(T � t(x)) j � K 0

p
(T � t(x)) j ln(T � t(x)) j;

Using item (i ) of De�nition 3.1, taking t = t(x); we write

(I ) �
C(K 0)A2

p
j ln(T � t(x)) j

�
C(K 0)A2

p
j ln Tj

�
� 1

2
;

provided that T � T4;7(K 0; A; � 1). Besides that, from (3.144) we have

(1 � � )2 K 2
0

16
�

jX j2

� (X ) jln � (X )j
� (1 + � )2 K 2

0

16
:

This yields

(II ) �
� 1

2
;

provided that � is small enough. Then, (3.149) follows. Finally, we �x� > 0 small enough
and we conclude our lemma.

3.4.2 The conclusion of Proposition 3.16

It this subsection, we would like to conclude the proof of Proposition 3.16. As we mentioned
earlier, in the analysis of the shrinking setS(t); the heart is the setVA (s) (see item (i ) of
De�nition 3.1 of S(t)). So, let us �rst give an important argument related the analysis
of VA (s); the reduction to �nite dimensions. More precisely, we prove that if the solution
(q1; q2) of equation (3.56) satis�es (q1; q2)(s) 2 VA (s) for all s 2 [s0; s� ] and (q1; q2)(s� ) 2
@VA (s� ) for somes� 2 [s0; + 1 ) with s0 = � ln T; then, we can directly derive that

(q1;0; (q1;j ) j � n ; q2;0; (q2;j ) j � n ; (q2;j;k ) j;k � n )(s� ) 2 @̂VA (s� );

where V̂A (s� ) is de�ned in (3.88). After that, we will use the dynamic of these modes to
derive that they will leave V̂A after that. The following is our statement

Proposition 3.22 (A reduction to �nite dimensional problem). There existsA8 � 1; K 8 �
1 such that for all A � A8; K 0 � K 8, there existss8(A; K 0) � 1 such that for all s0 �
s8(A; K 0), we have the following properties: If the following conditions hold:

a) We take the initial data (q1; q2)(s0) are de�ned byuA;K 0 ;d1 ;d2 (0) with s0 = � ln T (see
De�nition 3.2, (3.21) and (3.55)) and (d0; d1) 2 DK 0 ;A;s 0 (see in Lemma(3.14)).
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b) For all s 2 [s0; s1]; the solution(q1; q2) of equation (3.56) satis�es: (q1; q2)(s) 2 VA (s)
and q1(s) + � 1(s) � 1

2e� s
p� 1 .

Then, for all s 2 [s0; s1], we have

8i; j 2 f 1; � � � ; ng; jq1;i;j (s)j �
A2 ln s

2s2
; (3.150)






q1;� (:; s)
1 + jyj3






L 1 (RN )

�
A

2s2
; kq1;e(s)kL 1 (RN ) �

A2

2
p

s
; (3.151)






q2;� (:; s)
1 + jyj3






L 1 (RN )

�
A2

2s
p1+5

2

; kq2;e(s)kL 1 (RN ) �
A3

2s
p1+2

2

: (3.152)

Proof. The proof is quite similar to Proposition 4.4 in [5]. Indeed, the proof is a consequence
of Proposition 3.18, exactly as in [5]. Thus, we omit the proof and refer the reader to [5].

Here, we give the conclusion of the proof of Proposition 3.16:
Conclusion of the proof of Proposition 3.16:We �rst choose the parametersK 0; A; � 0; � 0;

� 0; � 1; � 0; � and T > 0 such that all the above Lemmas and Propositions which are necessary
to the proof, are satis�ed. In particular, we also note that the parameters� 1and � which are
introduced in Lemma 3.14 and Lemma 3.20, will be small enough (� 1 � � 0 and � � � 0).
Finally, we �x the constant T small enough, depending on all the above parameters, then
we conclude our Proposition. We now assume the solutionu of equation (3.1) with initial
data uK 0 ;A;d 1 ;d2 (0), de�ned in De�nition 3.2, satis�es the following

u 2 S(T; K 0; � 0; � 0; A; � 0; � 0; t) = S(t);

for all t 2 [0; t � ] for somet � 2 [0; T) and

u 2 @S(t � ):

We aim at proving that
(q1; q2)(s� ) 2 @VA (s� ); (3.153)

wheres� = ln( T � t � ). Indeed, by contradiction, we suppose that (3.153) is not true, then,
by using De�nition 3.1 of S(t); we derive the following:

(I ) Either, there exist x � ; � � which satisfy

jx � j 2
�

K 0

4

p
(T � t � )j ln(T � t � )j; � 0

�
;

j� � j � � 0

p
j ln(T � t(x � )) j:

and
jU(x � ; � � ; � (x � ; t � )) � Û(� (x � ; � � )) j = � 0:

(II ) Or, there existsx � such that jx � j � � 0
4 and

ju(x � ; t � ) � u(x � ; 0)j = � 0:

We would like to prove that (I ) and (II ) can not occur. Indeed, if the �rst case occurs,

then, letting � 0(x � ) = max
�

� t (x � )
� (x � ) ; 0

�
, it follows from Lemma 3.21 that: For all j� j �

2� 0

p
j ln(T � t(x � )) j; we have

�
�
�U(x � ; �; � 0(x � )) � Û(� 0(x � ))

�
�
� � � 1;
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and for all � 2
h
max

�
� t (x � )

T � t (x � ) ;
t � � t ( x � )
T � t (x � )

�i
; we have

jU(x � ; �; � (x � )) j � C �
7 ;

Re(U(x � ; �; � (x � ))) � C ��
7 ;

whereC �
7 ; C��

7 are given in Lemma 3.21.

Then, we apply Lemma 3.19, with� 0 = � 0

p
j ln(T � t(x � )) j; � 1 = � 0(x � ); � 2 = t � � t (x � )

T � t (x � ) ; � 5 =
C ��

7 and � 5 = C �
7 ; to derive that: for all � 2 [� � 0; � 0]

�
�
�U(x � ; �; � (x � ; t � )) � Û(� (x � ; t � ))

�
�
� � C(K 0; � 5� 5; � 1; � 0);

whereC(K 0; � 5; � 5; � 1; � 0) ! 0 as (� 1; � 0) ! (0; + 1 ). Taking ( � 1; � 0) ! (0; + 1 ) and note
that � 0 ! + 1 as � 0 ! 0, we write

�
�
�U(x � ; � � ; � (x � ; t � )) � Û(� (x � ; t � ))

�
�
� �

� 0

2
;

this is a contradiction.
If ( II ) occurs, we have for alljxj 2

�
� 0
8 ; + 1

�

ju(x; t )j � C(� 0; A; � 0; � 0); 8t 2 [0; t � ]:

Indeed, we consider the two following cases:
+ The case wherejxj � � 0

4 ; using item (iii ) if the de�nition of S(t); we derive the
following

ju(x; t )j � j u(x; 0)j + � 0 � C(A; � 0); 8t 2 [0; t � ]:

+ The case wherejxj 2
�

� 0
8 ; � 0

4

�
; using item (ii ) in the de�nition of S(t); we have

ju(x; t )j � C(� 0) (T � t(x)) � 1
p� 1 � C(� 0; � 0); 8t 2 [0; t � ]:

Then, we apply Lemma 3.20 with� � � 0
2 and � = C(� 0; A; � 0; � 0); to derive the following

ju(x � ; t � ) � u(x � ; 0)j �
� 0

2
:

Therefore, (II ) can not occurs. Thus, (3.153) follows. In addition to that, from (3.153),
Proposition 3.18 and Lemma 3.22, we conclude the proof of item (i ) of Proposition 3.16.
Since, item (ii ) follows from item (i ) (see for instance the proof of Proposition 3.6, given in
[5]). This concludes the proof of Proposition 3.16.

3.5 Cauchy problem for equation (3.1)

In this section, we give a proof to a local Cauchy problem in time.

Lemme 3.23 (A local Cauchy problem for a complex heat equation). Let u0 be any function
in L1 (RN )

�
RN ; C

�
such that

Re(u0(x)) � �; 8x 2 RN ; (3.154)

for some constant� > 0. Then, there existsT1 > 0 such that equation(3.1) with initial
data u0; has a unique solution on(0; T1] : Moreover, u 2 C

�
(0; T1] ; L1 (RN )

�
and

Re(u(t)) �
�
2

; 8(t; x ) 2 [0; T1] � RN :
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Proof. The proof relies on a �xed-point argument. Indeed, we consider the space

X = C
�
(0; T1]; L1 (RN )(RN ; C)

�
:

It is easy to check thatX is an Banach space with the following norm

kukX = sup
t2 (0;T1 ]

ku(t)kL 1 (RN ) ; 8u = ( u(t)) t2 (0;T1 ] 2 X:

We also introduce the closed setB +
�

�
0; 2ku0kL 1 (RN )

�
� X de�ned as follows

B +
�

�
0; 2ku0kL 1 (RN )

�
=

�
u 2 X such that kukX � 2ku0kL 1 (RN )

	

\
�

u 2 X j8t 2 (0; T1]; Re(u(t; x )) �
�
2

a. e
�

:

Let Y be the following mapping

Y : B +
�

�
0; 2ku0kL 1 (RN )

�
! X;

whereY(u) = ( Y(u)(t)) t2 (0;T1 ] is de�ned by

Y(u)(t) = et � (u0) +
Z t

0
e(t � s)� (up(s))ds: (3.155)

Note that, when u 2 B +
�

�
0; 2ku0kL 1 (RN )

�
; up is well de�ned as in (3.18) and (3.19). We

claim that there exists T � = T � (ku0kL 1 (RN ) ; � ) > 0 such that for all 0 < T 1 � T � , the
following assertion hold:

(i ) The mapping is reexive onB +
�

�
0; 2ku0kL 1 (RN )

�
; meaning that

Y : B +
�

�
0; 2ku0kL 1 (RN )

�
! B +

�

�
0; 2ku0kL 1 (RN )

�
:

(ii ) The mapping Y is a contraction mapping onB +
�

�
0; 2ku0kL 1 (RN )

�
:

kY(u1) � Y(u2)kX �
1
2

ku1 � u2kX ;

for all u1; u2 2 B +
�

�
0; 2ku0kL 1 (RN )

�
.

The proof for (i ): By observe that, by using the regular property of operatoret � ; we
conclude that Y(u) 2 C

�
(0; T1]; L1 (RN )(RN ; C) \ C(RN ; C)

�
: Besides that, for all u 2

B +
�

�
0; 2ku0kL 1 (RN )

�
we derive from (3.155) that for allt 2 (0; T1]

kY(u)(t)kL 1 (RN ) =




 et � (u0) +

Z t

0
e(t � s)� (up(s))ds






L 1 (RN )

�

 et � (u0)




L 1 (RN )
+






Z t

0
e(t � s)� (up(s))ds






L 1 (RN )

� k u0kL 1 (RN ) + t2pku0kp
L 1 (RN ) :
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Hence, if we takeT1 � 1
2p ku0kp� 1

L 1 ( RN )

then we have

kY(u)kX = sup
t2 (0;T1 ]

kY(u)kL 1 (RN ) � 2ku0kL 1 (RN ) :

Now, let us note from (3.154) that

Re
�
et � (u0)

�
= et � (Re(u0)) � et � (� ) = �:

Therefore, from (3.155) for all (t; x ) 2 (0; T1] � RN

Re(Y(u)(t; x )) � � �






Z t

0
e(t � � )� (up)( � )d�






L 1 (RN )

:

Note that, 




Z t

0
e(t � � )� (up)( � )d�






L 1 (RN )

� t2pku0kp
L 1 (RN ) :

So, if T1 � �
2p+1 ku0kL 1 ( RN )

; then for all t 2 (0; T1] � RN

Re(Y(u)(t; x )) �
�
2

:

Therefore,
Y(u) 2 B +

�

�
0; 2ku0kL 1 (RN )

�
:

The proof of (ii ): We �rst recall that the function G(u) = up; u 2 C is analytic on
�

u 2 C such that Re(u) �
�
2

�
:

Then, there existsC2(ku0kL 1 (RN ) ; � ) > 0 such that

kY(u1) � Y(u2)kX = sup
t2 (0;T1 ]






Z t

0
e(t � s)� (up

1 � up
2) (s)ds






L 1 (RN )

� T1C2 sup
t2 (0;T1 ]

ku1 � u2kL 1 (RN ) :

Then, if we impose

T1 �
1

2C2
;

(ii ) follows.

We now chooseT � = min
�

1
2p ku0kp� 1

L 1 ( RN )

; �
2p+1 ku0kp

L 1 ( RN )

; 1
2C2

�
. Then, for all T1 � T � ; item

(i ) and (ii ) hold. Thanks to a Banach �xed-point argument, there exists a uniqueu 2
B +

�

�
0; 2ku0kL 1 (RN )

�
such that

Y(u)(t) = u(t); 8t 2 (0; T1];

and we easily check thatu(t) satis�es equation (3.1) for all (0; T1] with u(0) = u0. Moreover,
from the de�nition of B +

�

�
0; 2ku0kL 1 (RN )

�
we have

Re(u)(t; x ) �
�
2

:

This concludes the proof of Lemma 3.23.
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3.6 Some Taylor expansions

In this section appendix, we state and prove several technical and straightforward results
needed in our paper.

Lemme 3.24 (Asymptotics of �B1; �B2). We consider �B1( �w1; w2) as in (3.25), (3.26). Then,
the following holds:

�B1( �w1; w2) =
p

2�
�w2

1 + O(j �w1j3 + jw2j2); (3.156)

�B2( �w1; w2) =
p
�

�w1w2 + O
�
j �w1j2jw2j

�
+ O

�
jw2j3

�
: (3.157)

as ( �w1; w2) ! (0; 0).

Proof. The proof of (3.156) is quite the same as the proof of (3.157). So, we only prove
(3.157), hoping the reader will have no problem to check (3.156) if necessary. Since,� =
(p � 1)� 1

p� 1 > 0; we derive� + �w1 > 0 when �w1 is near 0, so we can writeB2( �w1; w2) as
follows

�B2( �w1; w2) =
�
(� + �w1)2 + w2

2

� p
2 sin

"

parcsin

 
w2p

(� + �w1)2 + w2
2

!#

�
p

p � 1
w2;

as �w1 ! 0: Thus,

B2( �w1; w2) =
�
(� + �w1)2 + w2

2

� p
2

pw2p
(� + �w1)2 + w2

2

�
p

p � 1
w2

+
�
(� + �w1)2 + w2

2

� p
2

(

sin

"

parcsin

 
w2p

(� + �w1)2 + w2
2

!#

�
pw2p

(� + �w1)2 + w2
2

)

=
�
(� + �w1)2 + w2

2

� p� 1
2 pw2 �

p
p � 1

w2

+
�
(� + �w1)2 + w2

2

� p
2

(

sin

"

parcsin

 
w2p

(� + �w1)2 + w2
2

!#

�
pw2p

(� + �w1)2 + w2
2

)

= ( I ) + ( II ):

In addition to that, we have the fact

sin(px) � px = O(jxj3);
w2p

(� + �w1)2 + w2
2

= O(jw2j);

as x ! 0 and ( �w1; w2) ! (0; 0). Plugging these estimates in (II ), we obtain

(II ) = O(jw2j3):

as ( �w1; w2) ! (0; 0). For (I ); we use a Taylor expansion for ((� + �w1)2 + w2
2), around

( �w1; w2) = (0 ; 0) :

(( � + �w1)2 + w2
2)

p
2 =

1
p � 1

+
(p � 1)

� (p � 1)
�w1 + O(j �w1j2) + O(jw2j2):
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Plugging this in (I ); we derive the following:

(I ) =
p
�

�w1w2 + O(j �w1j2w2) + O(jw2j3);

as ( �w1; w2) ! (0; 0): From the estimates of (I ) and (II ); we conclude the Lemma.

In the following lemma, we aim at giving some bounds and expansions ofV and
Vi;j ; j; k 2 f 1; 2g

Lemme 3.25 (The potential functions V andVj;k with j; k 2 f 1; ng). We considerV; V1;1; V1;2;
V2;1 and V2;2 de�ned in (3.57) and (3.58) - (3.61). Then, the following holds:

(i ) For all s � 1 and y 2 RN , we havejV(y; s)j � C;

jV(y; s)j �
C(1 + jyj2)

s
; (3.158)

and

V(y; s) = �
(jyj2 � 2N )

4s
+ ~V(y; s); (3.159)

where ~V satis�es

j ~V(y; s)j � C
(1 + jyj4)

s2
; 8s � 1; jyj � 2K 0

p
s: (3.160)

(ii ) Potential functions Vj;k with j; k 2 f 1; 2g satisfy the following estimates

kV1;1kL 1 (RN ) + kV2;2kL 1 (RN ) �
C
s2

;

kV1;2kL 1 (RN ) + kV2;1kL 1 (RN ) �
C
s

;

and

jV1;1(y; s)j + jV2;2(y; s)j �
C(1 + jyj4)

s4
;

jV1;2(y; s)j + jV2;1(y; s)j �
C(1 + jyj2)

s2
;

for all s � 1 and y 2 RN .

Proof. We note that the proof of (i ) was given in Lemma B.1, page 1270 in [21]. So, it
remains to prove item (ii ). Moreover, the technique for these estimates is the same, so we
only give the proof to the following estimates:

kV1;1kL 1 (RN ) + kV2;2kL 1 (RN ) �
C
s2

; (3.161)

jV1;1(y; s)j + jV2;2(y; s)j �
C(1 + jyj4)

s4
: (3.162)

+ The proof of (3.161): We recall the expressions ofV1;1 and V2;2 :

V1;1 = @u1 F1(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) � p� p� 1
1 ;

V2;2 = @u2 F2(u1; u2)j(u1 ;u2 )=(� 1 ;� 2 ) � p� p� 1
1 ;
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where � 1; � 2 are given by (3.58) and (3.61). Hence, we can rewriteV1;1 and V2;2 as follows

V1;1 = p(u2
1 + u2

2)
p� 2

2

 

u1 cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

+ u2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

� p� p� 1
1 ;

V2;2 = p(u2
1 + u2

2)
p� 2

2

 

u1 cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

+ u2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� p� p� 1
1 ;

We �rst estimate to V1;1, from the above equalities, we decomposeV1;1 into the following

V1;1 = V1;1;1 + V1;1;2 + V1;1;3; (3.163)

where

V1;1;1 = p
�
� 2

1 + � 2
2

� p� 2
2 � 1 � p� p� 1

1 ;

V1;1;2 = p
�
� 2

1 + � 2
2

� p� 2
2 � 1

 

cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� 1

!

;

V1;1;3 = p(� 2
1 + � 2

2)
p� 2

2 � 2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

:

As matter of fact, from the de�nitions of � 1; � 2; we have the following





� 2(:; s)
� 1(:; s)






L 1 (RN )

�
C
s

; (3.164)

k� 1(:; s)kL 1 (RN ) � C; (3.165)

k� 2(:; s)kL 1 (RN ) �
C
s

; (3.166)

for all s � 1 and

jcos(parcsinx) � 1j � Cjxj2; (3.167)

jsin(parcsinx) � pxj � Cjxj3; (3.168)

for all jxj � 1. By using (3.164), (3.165), (3.166), (3.167) and (3.168), we get the following
bound for V1;1;2 and V1;1;3

kV1;1;2(:; s)kL 1 (RN ) + kV1;1;3(:; s)kL 1 (RN ) �
C
s2

: (3.169)

For V1;1;1; using (3.164), we derive

jV1;1;1j =

�
�
�
�
�
p� p� 1

1

 �
1 +

� 2
2

� 2
1

� p� 2
2

� 1

! �
�
�
�
�

�
C
s2

:
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This gives the following

kV1;1(:; s)kL 1 (RN ) �
C
s2

:

We can apply the technique toV2;2 to get a similar estimate as follows

kV2;2(:; s)kL 1 (RN ) �
C
s2

:

Then, (3.161) follows.

+ The proof of (3.162): We can see that on the domainfj yj � K 0
p

sg, we have the
following fact

1 + jyj4

s4
�

C
s2

;

and in particular, (3.161) holds. Thus, for alljyj � K 0
p

s, we have

jV1;1(y; s)j + jV2;2(y; s)j �
C(jyj4 + 1)

s4
:

Therefore, it is su�cient to give the estimate on the domainfj yj � 2K 0
p

sg. In fact, on
this domain there existsC(K 0) > 0 such that

1
C

� � 1(y; s) � C:

In addition to that, using the de�nition of � 2 given by (3.53), we derive the following

j� 2(y; s)j � C
(jyj2 + 1)

s2
; 8(y; s) 2 RN � [1; + 1 ): (3.170)

Then, from (3.163) we have

jV1;1;2(y; s)j � j � 2(y; s)j2 � C
(1 + jyj4)

s4
;

jV1;1;3(y; s)j � j � 2(y; s)j2 � C
(1 + jyj4)

s4
:

We now estimateV1;1;1, thanks to a Taylor expansion of (�2
1 + � 2

2)
p� 2

2 ; around � 2

�
�
�(� 2

1 + � 2
2)

p� 2
2 � � p� 2

1

�
�
� � Cj� 2j2:

This directly yields

jV1;1;1(y; s)j � C(K 0)j� 2j2 � C
(1 + jyj4)

s4
:

So,

jV1;1(y; s)j � C
(1 + jyj4)

s4
; 8y 2 RN :

Moreover, we can proceed similarly forV2;2, and get

jV2;2(y; s)j � C
(1 + jyj4)

s4
; 8y 2 RN :

Thus, (3.162) follows.



165

Now, we give some estimates on quadratic termsB1(q1; q2) and B2(q1; q2)

Lemme 3.26 (The termsB1(q1; q2) and B2(q1; q2)) . Let us considerB1(q1; q2) andB2(q1; q2),
de�ned in (3.62) and (3.63), respectively. For allA � 1, there existss9(A) � 1 such that
for all s0 � s9(A); if (q1; q2)(s) 2 VA (s) and q1(s)+ � 1(s) � 1

2e� s
p� 1 for all s 2 [s0; s1], then,

the following holds: for alls 2 [s0; s1];

j� (y; s)B1(q1; q2)j � C
�
jq1j2 + jq2j2

�
; (3.171)

j� (y; s)B2(q1; q2)j � C
�

jq1j2

s
+ jq1jjq2j + jq2j2

�
; (3.172)

kB1(q1; q2)kL 1 (RN ) �
CA4

min(2 ;p)
2

; (3.173)

kB2(q1; q2)kL 1 (RN ) �
CA2

s1+min ( p� 1
4 ; 1

2 )
; (3.174)

where� (y; s) is de�ned as in (3.66).

Proof. We �rst would like to note that the condition q1(s) + � 1(s) � 1
2e� s

p� 1 is to ensure
that the real part w1 = q1(s) + � 1(s) > 0. Then, (3.16) holds and functionsF1 and F2

which are involved in the de�nitions of B1 and B2 are well-de�ned (see (3.18)). For the
proof of Lemma 3.26, we only prove for (3.172) and (3.174), because the other ones follow
similarly.

+ The proof for (3.172): Using the fact that the support of � (y; s) is fj yj � 2K 0
p

sg; it
is enough to prove (3.172) for allfj yj � 2K 0

p
sg. Since we have (q1; q2) 2 VA (s); we derive

from item (ii ) of Lemma 3.10 and the de�nition of � 1; � 2 that

1
C

� q1 + � 1 � C; jq2 + � 2j �
C
s

:

and

jq1j �
CA
p

s
; jq2j �

CA2

s
p1+2

2

; 8jyj � 2K 0
p

s: (3.175)

In addition to that, we write B2(q1; q2) as follows:

B2(q1; q2) = F2 (� 1 + q1; � 2 + q2) � F2(� 1; � 2) � @u1 F2(q1 + � 1; q2 + � 2)q1

� @u2 F2(q1 + � 1; q2 + � 2)q2:

where

F2(u1; u2) =
�
u2

1 + u2
2

� p
2 sin

"

parcsin

 
u2p

u2
1 + u2

2

!#

:

Using a Taylor expansion for the functionF2(q1 + � 1; q2 + � 2) at (q1; q2) = (0 ; 0); we derive
the following

F2(q1 + � 1; q2 + � 2) =
X

j + k� 4

1
j !k!

@j + k
qj

1qk
2
(F2(q1 + � 1; q2 + � 2))

�
�
(q1 ;q2 )=(0 ;0) qj

1qk
2 +

+
X

j + k=5

Gj;k (q1; q2)qj
1qk

2 ;
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where

Gj;k (q1; q2) =
5

j !k!

Z 1

0
(1 � t)4@5

qj
1qk

2
(F2(� 1 + tq1; � 2 + tq2))dt:

In particular, we have

jGj;k (q1; q2)j � C; 8j + k = 5:

As a matter of fact, we have

@j + k
qj

1qk
2
(F2(q1 + � 1; q2 + � 2))

�
�
(q1 ;q2 )=(0 ;0) = @j + k

u j
1uk

2
F2(u1; u2)

�
�
(u1 ;u2 )=(0 ;0) (3.176)

Therefore, from (3.175), we have

�
�
�
�
�
F2(q1 + � 1; q2 + � 2) �

X

j + k� 5

1
j !k!

@j + k
u j

1uk
2
F2(u1; u2)

�
�
(u1 ;u2 )=(� 1 ;� 2 ) qj

1qk
2

�
�
�
�
�

� C
5X

j =0

jqj
1q5� j

2 j � C
�

jq1j2

s
+ jq1jjq2j + jq2j2

�
:

In addition to that, we have the following fact,

j@j + k
u j

1uk
2
F2(u1; u2)

�
�
(u1 ;u2 )=(� 1 ;� 2 ) j � C; 8j + k � 4;

and for all 1 � j � 4; we have

�
�
�@j

u j
1
F2(u1; u2)

�
�
�
(u1 ;u2 )=(� 1 ;� 2 )

�
C
s

:

This concludes (3.172).
The proof of (3.174): We rewrite B2(q1; q2) explicitly as follows:

B2(q1; q2) =
�
(q1 + � 1)2 + ( q2 + � 2)2

� p
2 sin

"

parcsin

 
q2 + � 2p

(q1 + � 1)2 + ( q2 + � 2)2

!#

� (� 2
1 + � 2

2)
p
2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� p
�
� 2

1 + � 2
2

� p� 2
2

 

� 1 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� � 2 cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

q1

� p
�
� 2

1 + � 2
2

� p� 2
2

 

� 2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

+ � 1 cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

q2:

Then, we decomposeB2(q1; q2) as follows:

B2(q1; q2) = B2;1(q1; q2) + B2;2(q1; q2) + B2;3(q1; q2) + B2;4(q1; q2) + B2;5(q1; q2) + B2;6(q1; q2);
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where

B2;1(q1; q2) = p(q2 + � 2)
�
(q1 + � 1)2 + ( q2 + � 2)2

� p� 1
2 � p(� 2

1 + � 2
2)

p� 1
2 � 2 (3.177)

� p
�
� 2

1 + � 2
2

� p� 2
2 � 1q2;

B2;2(q1; q2) = (( q1 + � 1)2 + ( q2 + � 2)2)
p
2

(

sin

"

parcsin

 
q2 + � 2p

(q1 + � 1)2 + ( q2 + � 2)2

!#

�
p(q2 + � 2)

p
(q1 + � 1)2 + ( q2 + � 2)2

)

; (3.178)

B2;3(q1; q2) =
�
� 2

1 + � 2
2

� p
2

 
p� 2p

� 2
1 + � 2

2

� sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

; (3.179)

B2;4(q1; q2) = p(� 2
1 + � 2

2)
p� 2

2 � 1

 

1 � cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#!

q2; (3.180)

B2;5(q1; q2) = p
�
� 2

1 + � 2
2

� p� 2
2

(

� 2 cos

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� � 1 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#)

q1; (3.181)

B2;6(q1; q2) = � p(� 2
1 + � 2

2)
p� 2

2 � 2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

q2: (3.182)

we prove that: for all y 2 RN :

jB2;j (q1; q2)j �
CA2

s1+min ( p� 1
4 ; 1

2 )
; 8j = 1; :::; 6:

We now aim at an estimate onB2;1(q1; q2): We �rst need to prove the following:
�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 1
2

�
�
� � C jZ jmin ( p� 1

2 ;1) ; (3.183)

where
jZ j = 2q1� 1 + 2q2� 2 + q2

1 + q2
2:

Note that Z is bounded. On the other hand, we have (�1 + q1)2 + (� 2 + q2)2)
p� 1

2 = (� 2
1 +

� 2
2 + Z)

p� 1
2 : Then, if p� 1

2 � 1, using a Taylor expansion of the function (�21 + � 2
2 + Z)

p� 1
2

around Z0 = 0 (note that � 2
1 + � 2

2 is uniformly bounded), we obtain the following:
�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 1
2

�
�
� � C jZ j ;

which yields (3.183). If p� 1
2 < 1; then, we have

�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 1
2

�
�
� =

�
� 2

1 + � 2
2

� p� 1
2

�
�
�(1 + � )

p� 1
2 � 1

�
�
� ;

where
� =

Z
� 2

1 + � 2
2
:
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In particular, we have � � � 1. In addition to that, we have the following fact: for all
� � � 1 �

�
�(1 + � )

p� 1
2 � 1

�
�
� � C j� j

p� 1
2 (3.184)

Therefore, (3.184) gives the following

�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 1
2

�
�
� � C

�
� 2

1 + � 2
2

� p� 1
2

�
�
�
�

Z
� 2

1 + � 2
2

�
�
�
�

p� 1
2

� C jZ j
p� 1

2 :

Then, (3.183) follows. Using (q1; q2)(s) 2 VA (s) and Z = 2� 1q1 + 2� 2q2 + q2
1 + q2

2; we write

kZkL 1 (RN ) �
CA2

p
s

; 8s � 1:

So, we deduce from (3.183) that

kp� 2

�
((� 1 + q1)2 + (� 2 + q2)2)

p� 1
2

�
� p� 2(� 2

1 + � 2
2)

p� 1
2 kL 1 (RN ) �

CA2

s1+min ( p� 1
4 ; 1

2 )
: (3.185)

Using (3.183), we have the following




�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 2
2 � 1





L 1 (RN )
�

CA2

smin ( p� 1
4 ; 1

2 )
: (3.186)

Indeed, we have
�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 2
2 � 1

�
�
�

�
�
�
�
�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 1
2

�
�
�

+
�
�
�(� 2

1 + � 2
2)

p� 1
2 � (� 2

1 + � 2
2)

p� 2
2 � 1

�
�
�

�
CA2

s
min ( p� 1

2 ;1)
2

+
C
s2

:

Then, (3.186) holds.
On the other hand, using (3.186) and the following

kq2(:; s)kL 1 (RN ) �
CA3

s
p1+2

2

; p1 > 0;

we conclude that


 pq2

�
(� 1 + q1)2 + (� 2 + q2)2

� p� 1
2 � (� 2

1 + � 2
2)

p� 2
2 � 1





L 1 (RN )
�

CA2

s1+min ( p� 1
4 ; 1

2 )
; (3.187)

provided that s � s1;9(A). From (3.185) and (3.187), we have

kB2;1(q1; q2)kL 1 (RN ) �
CA2

s1+min ( p� 1
4 ; 1

2 )
: (3.188)
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We next give a bound toB2;2(q1; q2) : Using the following fact

jsin(parcsinx) � pxj � Cjxj3; 8jxj � 1;

we derive the following
�
�
�
�
�
sin

"

parcsin

 
q2 + � 2p

(q1 + � 1)2 + ( q2 + � 2)2

!#

�
p(q2 + � 2)

p
(q1 + � 1)2 + ( q2 + � 2)2

�
�
�
�
�

� C
j(q2 + � 2)j3

((q1 + � 1)2 + ( q2 + � 2)2)
3
2

:

Plugging the above estimate intoB2(q1; q2); we deduce the following

jB2;2(q1; q2)j � C
�
(q1 + � 1)2 + (� 2 + q2)2

� p� 3
2 jq2 + � 2j3 ;

which yields

jB2;2(q1; q2)j � Cjq2 + � 2jmin( p;3);

Using (q1; q2) 2 VA (s); it gives the following

jq2 + � 2j �
C
s

;

provided that s � s2;9(A). Then,

kB2;2(q1; q2)kL 1 (RN ) �
C

smin( p;3)
: (3.189)

It is similar to estimate to B2;3(q1; q2)

kB2;3(q1; q2)kL 1 (RN ) �
C
s3

: (3.190)

We estimate toB2;4(q1; q2), using the following

j1 � cos(parcsinx)j � Cjxj2; 8jxj � 1;

we write

jB2;4(q1; q2)j � C






� 2

� 1






2

L 1 (RN )

kq2kL 1 (RN ) �
CA3

s3
:

Then, we derive that

kB2;4(q1; q2)kL 1 (RN ) �
CA3

s3
: (3.191)

We also estimate toB2;5; B2;6 as follows:

kB2;5(q1; q2)kL 1 (RN ) �
CA2

s
3
2

; (3.192)

kB2;6(q1; q2)kL 1 (RN ) �
CA3

s2
: (3.193)

Thus, from (3.188), (3.189), (3.190), (3.191), (3.192) and (3.193), we conlude (3.174), pro-
vided that s � s3;9(A).
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In the following Lemma, we aim at giving estimates to the rest termsR1; R2 :

Lemme 3.27 (The rest terms R1; R2). For all s � 1, let us considerR1 and R2 , de�ned
in (3.64) and (3.65), respectively. Then,

(i ) For all s � 1 and y 2 RN , we have

R1(y; s) =
c1;p

s2
+ ~R1(y; s);

R2(y; s) =
c2;p

s3
+ ~R2(y; s);

wherec1;pand c2;p are constants depended onp and ~R1; ~R2 satisfy

j ~R1(y; s)j �
C(1 + jyj4)

s3
;

j ~R2(y; s)j �
C(1 + jyj6)

s4
;

for all jyj � 2K 0
p

s:

(ii ) Moreover, we have for alls � 1

kR1(:; s)kL 1 (RN ) �
C
s

;

kR2(:; s)kL 1 (RN ) �
C
s2

:

Proof. The proof for R1 is quite the same as the proof forR2. For that reason, we only
give the proof of the estimates onR2. This means that, we need to prove the following
estimates:

R2(y; s) = �
N (N + 4) �
(p � 1)s3

+ ~R2(y; s); (3.194)

with

j ~R2(y; s)j �
C(1 + jyj6)

s4
; 8jyj � 2K 0

p
s:

and
kR2(:; s)kL 1 (RN ) �

C
s2

: (3.195)

We recall the de�nition of R2(y; s):

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ F2(� 1; � 2) � @s� 2;

Then, we can rewriteR2 as follows

R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ p� p� 1

1 � 2 � @s� 2 + R�
2(y; s);

where

R�
2(y; s) =

�
� 2

1 + � 2
2

� p
2 sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� p� p� 1
1 � 2:
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Using the de�ntions of � 1; � 2 given in (3.53) and (3.54), we obtain the following:

jR�
2(y; s)j �

�
�
�
�
�

�
� 2

1 + � 2
2

� p
2

(

sin

"

parcsin

 
� 2p

� 2
1 + � 2

2

!#

� p
� 2p

� 2
1 + � 2

2

) �
�
�
�
�

+
�
�
�p� 2((� 2

1 + � 2
2)

p� 1
2 � � p� 1

1 )
�
�
� :

It is similar to the proofs of estimations given in the proof of Lemma 3.26, we can prove
the following

jR�
2(y; s)j �

C(1 + jyj6)
s4

; 8jyj � 2K 0
p

s;

and

kR�
2(:; s)kL 1 (RN ) �

C
s2

:

In addition to that, we introduce �R2 as follows:

�R2(y; s) = �� 2 �
1
2

y � r � 2 �
� 2

p � 1
+ p� p� 1

1 � 2 � @s� 2:

Then, we aim at proving the following:
�
�
�
�
�R2(y; s) +

N (N + 4) �
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; for all jyj � 2K 0
p

s; (3.196)

k �R2(:; s)kL 1 (RN ) �
C
s2

: (3.197)

+ The proof of (3.196): We �rst aim at expanding �� 2 in a polynomial in y of order less
than 4 via the Taylor expansion. Indeed, �� 2 is given by

�� 2 =
2N
s2

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
(p � 1)jyj2

s3

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 2p� 1
p� 1

�
(N + 2)( p � 1)jyj2

2s3

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 2p� 1
p� 1

+
(2p � 1)(p � 1)2jyj4

4ps4

�
p � 1 +

(p � 1)2

4p
jyj2

s

� � 3p� 2
p� 1

:

Besides that, we make a Taylor expansion in the variablez = jyjp
s for

�
p � 1 + (p� 1)2

4p
jyj2

s

� � p
p� 1

when jzj � 2K , and we get
�
�
�
�
�

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
�

p � 1
+

�
4(p � 1)

jyj2

s

�
�
�
�
�

�
C(1 + jyj4)

s2
8jyj � 2K

p
s:

which yields
�
�
�
�
�
2N
s2

�
p � 1 +

(p � 1)2jyj2

4ps

� � p
p� 1

�
2N�

(p � 1)s2
+

N� jyj2

2(p � 1)s3

�
�
�
�
�

�
C(1 + jyj6)

s4
; 8jyj � 2K

p
s:
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It is similar to estimate the other termes in �� 2 as the above. Finally, we obtain
�
�
�
� �� 2 �

2N�
(p � 1)s2

+
N� jyj2

(p � 1)s3
+ 2

kjyj2

(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; 8jyj � 2K
p

s: (3.198)

As we did for �� 2, we estimate similarly the other terms in �R2: for all jyj � 2K
p

s
�
�
�
� �

1
2

y � r � 2 +
� jyj2

(p � 1)s2
�

� jyj4

4(p � 1)s3
�

� jyj4

4(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; (3.199)
�
�
�
� �

� 2

p � 1
+

� jyj2

(p � 1)2s2
�

� jyj4

4(p � 1)2s3
�

2N�
(p � 1)2s2

�
�
�
� �

C(1 + jyj6)
s4

; (3.200)

�
�p� p� 1

1 � 2 + T(y)
�
� �

C(1 + jyj6)
s4

; (3.201)
�
�
�
� � @s� 2 �

2� jyj2

(p � 1)s3
+

4N�
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; (3.202)

where

T(y) = �
p� jyj2

(p � 1)2s2
+

(2p � 1)� jyj4

4(p � 1)2s3
�

N� jyj2

(p � 1)s3
+

2pN�
(p � 1)2s2

+
N 2�

(p � 1)s3
:

Thus, we use (3.198), (3.199), (3.200), (3.201) and (3.202) to deduce the following
�
�
�
�
�R2(y; s) +

N (N + 4) �
(p � 1)s3

�
�
�
� �

C(1 + jyj6)
s4

; 8jyj � 2K
p

s;

and (3.196) follows
+ The proof (3.197): We rewrite � 1; � 2 as follows

� 1(y; s) = R1;0(z) +
N�
2ps

and � 2(y; s) =
1
s

R2;1(z) �
2N�

(p � 1)s2
wherez =

y
p

s
;

whereR1;0 and R2;1 are de�ned in (3.48) and (3.50), respectively. In addition to that, we
rewrite �R2 in terms of R1;0 and R2;1, and we note that R1;0 and R2;1 satisfy (3.44) and
(3.46). Then, it follows that

j �R2(y; s)j �
C
s2

; 8y 2 RN :

Hence, (3.197) follows. This concludes the proof of this Lemma.

3.7 Preparation of initial data

Here, we here give the proof of Lemma 3.14. We can see that part (II ) directly follows from
item (i ) of part ( II ). The techniques of the proof are given in [16] and [28]. Although those
papers are written in the real-valued case, unlike ours, where we handle the complex-valued
case, we reduce in fact to the real case, for the real and the imaginary parts. In addition to
that, the set DK 0 ;A;s 0 is the product of two parts, the �rst one depends only ond1; and the
other one depends only ond2. Moreover, the real part is almost the same as initial data in
the Vortex model, treated in [16], except for the new term 1, but this term is very small
after changing to similarity variables: e� s

p� 1 : In fact, handling the imaginary part is easier
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than handling the real part. For those reasons, we kindly refer the reader to Lemma 2.4 in
[16] and Proposition 4.5 in [28] for the proof of item (i ) of (I ) and (II ). So, we only prove
that our initial data satis�es item ( ii ) in de�nition of S(0) (item ( iii ) is obvious).

Let us considerT > 0; K 0; � 0; � 0 and � 1 which will be suitably chosen later. In fact, we aim
at proving the following: For all jxj 2

h
K 0
4

p
Tj ln Tj; � 0

i
, and j� j � 2� 0

p
j ln(T � t(x)) j and

� 0(x) = � t (x)
T � t (x) , we have

�
�
�U(x; �; � 0(x)) � Û(� 0(x))

�
�
� � � 1: (3.203)

We now introduce some necessary notations for our proof,

� 0 = T; r(0) =
K 0

4

p
� 0j ln(� 0)j and R(0) = �

1
2
0 j ln � 0j

p
2 : (3.204)

Then, we have the following asymptotic behaviors:

� (r (0)) � � 0; � (R(0)) �
16
K 2

0
� 0j ln � 0j; � (2R(0)) �

64
K 2

0
� 0j ln � 0jp� 1; (3.205)

ln � (r (0)) � ln � (R(0)) � ln � (2R(T)): (3.206)

In addition to that, if � 0 � K 0
16 and � 0 � 2

3C � ; where C � is introduced in (3.87), then,
from the de�nition (3.75) and jxj 2 [r (0); � 0] ; and for all j� j � 2� 0

p
j ln � (x)j; with � (x) =

T � t(x), we have
�
�
� �

p
� (x)

�
�
� �

1
2

jxj;

which yields

r (0)
2

�
jxj
2

= jxj �
jxj
2

� j x + �
p

� (x)j �
3
2

jxj �
3
2

� 0 � C � : (3.207)

Hence, using (3.74), (3.2) and the de�nition of� 1 and the fact that j� j � 2� 0

p
j ln � (x)j,

we can write
U(x; �; � 0) = U1(x; �; � 0) + iU2(x; �; � 0);

where

U1(x; �; � 0) = ( I )� 1(x + �
p

� (x)) + ( II )(1 � � 1(x + �
p

� (x))) + ( III );

(I ) =
�

� (x)
� 0

� 1
p� 1

� 1

 
x + �

p
� (x)

p
T

; j ln(T)j

!

;

(II ) = ( � (x))
1

p� 1 U�
�

x + �
p

� (x)
�

;

(III ) = ( � (x))
1

p� 1 ;

U2(x; �; � 0) =
�

� (x)
� 0

� 1
p� 1

� 2

 
x + �

p
� (x)

p
T � t0

; j ln(T � t0)j

!

:
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Then, the conclusion of the proof of (3.203) will follow from the 4 following estimates:

�
�
�(I ) � Û(� 0)

�
�
� �

� 1

4
; for all jxj 2

�
r (0);

200
99

R(0)
�

and j� j � 2� 0

p
j ln � (x)j;(3.208)

�
�
�(II ) � Û(� 0)

�
�
� �

� 1

4
; for all jxj 2 [r (0); � 0] and j� j � 2� 0

p
j ln � (x)j; (3.209)

j(III )j �
� 1

4
; for all jxj 2 [r (0); � 0] and j� j � 2� 0

p
j ln � (x)j; (3.210)

jU2(x; �; � 0)j �
� 1

4
; for all jxj 2

�
r (0);

200
99

R(0)
�

and j� j � 2� 0

p
j ln � (x)j:(3.211)

In fact, it is very easy to estimate for (3.210) for� 0 small enough.

We now estimate (3.211): We rewriteU2(x; �; � 0) by using (3.84) as follows:

jU2(x; �; � 0)j = U2

�
x; �;

� t(x)
T � t(x)

�

=
�

� 0

� (x)

� � 1
p� 1 jx + �

p
� (x)j2

Tj ln Tj

 

p � 1 +
jx + �

p
� (x)j2

Tj ln Tj

! � p
p� 1 1

j ln Tj

�
C

j ln Tj

�
(p � 1)

� 0

� (x)
+

(p � 1)2

4p
jx + �

p
xj2

� (x)j ln(� 0)j

� � 1
p� 1

:

In addition to that, for all jxj 2
�
r (0); 200

99 R(0)
�

and j� j � 2� 0

p
j ln � (x)j, we have

jx + �
p

xj2

� (x)j ln(� 0)j
�

1
CK 2

0
;

which yields

jU2(x; �; � 0)j �
CK

2
p� 1
0

j ln Tj
�

� 1

4
;

provided that T � T1;3(K 0; � 1; � 0) and for all jxj 2
�
r (0); 200

99 R(0)
�
.

Estimate of (3.208): We derive from the de�nition of � 1 in (3.53) and the de�nition of
Û(� ) in (3.113) that

�
�
�
�(I ) � Û

�
� t(x)
� (x)

� �
�
�
� =

�
�
�
�
�
�
�
�

0

B
@(p � 1)

�
� 0

� (x)

�
+

(p � 1)2

4p

�
�
�x + �

p
� (x)

�
�
�
2

� (x)j ln � 0j

1

C
A

� 1
p� 1

�
�

(p � 1)
�

� 0

� (x)

�
+

(p � 1)2

4p
K 2

0

16

� � 1
p� 1

�
�
�
�
�

In addition to that, from (3.75), we have

(1 � 2� 0)2 K 2
0

16
j ln � (x)j
j ln � 0j

�

�
�
�x + �

p
� (x)

�
�
�
2

� (x)j ln � 0j
� (1 + 2� 0)2 K 2

0

16
j ln � (x)j
j ln � 0j

; (3.212)
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for all j� j � 2� 0

p
j ln � (x)j.

Using the monotonicity of � (x), we have the fact that for all jxj 2
�
r (0); 200

99 R(0)
�

j ln r (0)j
j ln � 0j

�
j ln � (x)j
j ln � 0j

�
j ln R(0)j

j ln � 0j
:

Thanks to (3.205), we derive
j ln � (x)j
j ln � 0j

� 1 asT ! 0: (3.213)

This yields
�
�
�
�(I ) � Û

�
� t(x)
� (x)

� �
�
�
� � C(K 0)

�
�
�
�
�
jx + �

p
� (x)j2

� (x)j ln � 0j
�

K 2
0

16

�
�
�
�
�

! 0

uniformly for all jxj 2
�
r (0); 200

99 R(0)
�

; j� j � 2� 0

p
j ln � (x)j as � 0 ! 0 and T ! 0. Hence,

there exists� 2;3(K 0; � 1) and T2;3(K 0; � 1) such that
�
�
�
�(I ) � Û

�
� t(x)
� (x)

� �
�
�
� �

� 1

4
; 8jxj 2

�
r (0);

200
99

R(0)
�

and j� j � 2� 0

p
j ln � (x)j;

provided that � 0 � � 2;3 and T � T2;3. This concludes the proof of (3.208).

Estimate (3.209): Letjxj 2
�

99
100R(0); � 0

�
: We use the de�nition of U� to rewrite (II ) as

follows

(II ) =

0

B
@

(p � 1)2

8p

�
�
�x + �

p
� (x)

�
�
�
2

� (x)j ln(x + �
p

� (x)) j

1

C
A

� 1
p� 1

=

0

B
@

(p � 1)2

8p

�
�
� K 0

4

p
j ln � (x)j + �

�
�
�
2

j ln(x + �
p

� (x)) j

1

C
A

� 1
p� 1

=

0

B
@

(p � 1)2K 2
0

64
+

(p � 1)2

8p

0

B
@

�
�
� K 0

4

p
j ln � (x)j + �

�
�
�
2

j ln(x + �
p

� (x)) j
�

K 2
0

8

1

C
A

1

C
A

� 1
p� 1

:

Then,

�
�
�
�(II ) � Û

�
t0 � t(x)

� (x)

� �
�
�
� =

�
�
�
�
�
�
�
�

0

B
@

(p � 1)2K 2
0

64
+

(p � 1)2

8p

0

B
@

�
�
� K 0

4

p
j ln � (x)j + �

�
�
�
2

j ln(x + �
p

� (x)) j
�

K 2
0

8

1

C
A

1

C
A

� 1
p� 1

�
�

(p � 1)2K 2
0

64p
+ ( p � 1)

� 0

� (x)

� � 1
p� 1

�
�
�
�
�

� C(K 0)(( II 1) + ( II 2)) ;

where

(II 1) =

�
�
�
�
�
�
�

�
�
� K 0

4

p
j ln � (x)j + �

�
�
�
2

j ln(x + �
p

� (x)) j
�

K 2
0

8

�
�
�
�
�
�
�
;

(II 2) = ( p � 1)
� 0

� (x)
:
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Let us give a bound to (II 1): Becausej� j � 2� 0

p
j ln � (x)j, we have

j(II 1)j �

�
�
�
�
�
�
�

�
�
� K 0

4

p
j ln � (x)j + 2� 0

p
ln � (x)

�
�
�
2

j ln jx + 2� 0

p
� (x)j ln � (x)jjj

�
K 2

0

8

�
�
�
�
�
�
�

=

�
�
�
�
�

ln � (x)

j ln jx + � 0K 0 jx j
2 jj

�
K 0

4
+ 2� 0

� 2

�
K 2

0

8

�
�
�
�
�
:

Using the fact that
ln � (x) = ln( T � t(x)) � 2 ln jxj;

and
j ln(jx + 2� 0

p
� (x) ln � (x)j)j = j ln jx +

K 0

2
jxjjj � j ln jxjj ;

as jxj ! 0; we derive that, there exists� 3;3(K 0; � 1) such that for all � 0 � � 3;3; there
exists � 3;3(K 0; � 0; � 1) such that for all � 0 � � 3;3; for all x 2

�
99
100R(0); � 0

�
and for all j� j �

2� 0

p
j ln � (x)j; we obtain

j(II 1)j �
� 1

2
:

It remains to give a bound for (II 2). From (3.205), the fact that jxj � 99
100R(0) and the

monotonicity of � (x), we have

j(II 2)j �

�
�
�
�
�

� (0)
�

�
99
100R(0)

�

�
�
�
�
�

� Cj ln � (0)j � (p� 1) �
� 1

2
;

provided that T � T4;3(K 0; � 1): This gives (3.203), and concludes the proof of Lemma 3.14.
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Chapter 4

Pro�le of a touch-down solution to a
nonlocal MEMS Model

1.

G. K. Duong and H. Zaag

Abstract: In this paper, we are interested in the mathematical model of MEMS devices
which is presented by the following equation on(0; T) � 
 :

@tu = � u +
�

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 and 0 � u < 1;

where 
 is a C2 bounded domain inRN and �;  > 0. In this work, we have succeeded to
construct a solution which quenches in �nite time T only at one interior pointa 2 
 . In
particular, we give a description of the quenching behavior according to the following �nal
pro�le

1 � u(x; T ) � � �

�
jx � aj2

j ln jx � ajj

� 1
3

for some� � > 0 as ; x ! a:

The construction relies on some connection between the quenching phemonenon and the
blowup phenomenon. More precisely, we change our problem to the construction of a blowup
solution for a related PDE and describe its asymptotic behaviors. The method is inspired by
the work of Merle and Zaag [14] with a suitable modi�cation. In addition to that, the proof
relies on two main steps: A reduction to a �nite dimensional problem and a topological
argument based on Index theory. The main di�culty and novelty of this work is that we
handle the nonlocal integral term in the above equation. The interpretation of the �nite
dimensional parameters in terms of the blowup point and the blowup time allows to derive
the stability of the constructed solution with respect to initial data.

Mathematics Subject Classi�cation: 35K50, 35B40 (Primary); 35K55, 35K57
(Secondary).

Keywords: Blowup solution, Blowup pro�le, MEMS model, touch-down phenomenon,
asymptotic behavior.
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4.1 Introduction.

We are interested in the motion of some elastic membranes which is usually found in Micro-
Electro Mechanical Systems (MEMS) devices, which are available in a variety of electronic
devices such as: microphones: transducers; sensors; actuators and so on. Described briey,
MEMS devices contain an elastic membrane which is hanged above a rigid ground plate
connected in series with a �xed voltage source and a �xed capacitor. For more details on
the physical background and possible applications, we refer the reader to [4], [10], [18] and
[19].

For a MEMS device (in [9] and [10]), the distance between the rigid ground plate and
the elastic membrane changes with time. It is referred to as thedeection of the membrane.
Here, we assume that this distance is very small compared to the device. In fact, we can
fully describe the behavior of the deection by the following hyperbolic equation

8
>>>>>>>>>><

>>>>>>>>>>:

"2@tt u + @tu = � u +
�f (x; t )

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 ; x 2 
 ; t > 0;

u(x; t ) = 0 ; x 2 @
 ; t > 0;

u(x; 0) = u0(x); x 2 �
 :

(4.1)

where 
 is considered as the domain of the rigid plate,u is the deection of the membrane
to the plate, � > 0;  > 0 and f is continuous. Here, the distance between the rest position
of the membrane and the rigid plate is normalized to 1. When the device is under voltage,
u will vary in the interval [0 ; 1). In addition to that, the parameter � represents the ratio
of the reference electrostatic force to the reference elastic force and" is the ratio of the
interaction of the inertial and damping terms in our model. Moreover, the functionf
represents the varying dielectric properties of the membrane, see [7] for more details.

In fact, we are interested in a simpler case of (4.1) considered in the following parabolic
equation:

8
>>>><

>>>>:

@tu = � u +
�

(1 � u)2

�
1 + 

Z




1
1 � u

dx
� 2 ; x 2 
 ; t > 0;

u(x; t ) = 0 ; x 2 @
 ; t > 0;
u(x; 0) = u0(x); x 2 
 :

(4.2)

Moreover, we are also interested in the following generalization of problem (4.2):
8
>>>><

>>>>:

@tu = � u +
�

(1 � u)p

�
1 + 

Z




1
1 � u

dx
� q ; x 2 
 ; t > 0;

u(x; t ) = 0 ; x 2 @
 ; t > 0;
u(x; 0) = u0(x); x 2 
 ;

(4.3)

wherep; q > 0. Introducing

QT = (0 ; T) � 
 ; whereT > 0; (4.4)
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we say that u is a classical solutionof (4.2) (in the sense of Proposition 1.2.2 page 13 in
Kavallaris and Suzuki [11]) if u is a function in C2;1(QT ) \ C( �QT ) that satis�es (4.2) at
every point in QT as well as the boundary and initial conditions, with

u(x; t ) 2 [0; 1); 8x 2 
 ; t 2 (0; T):

According to the above mentioned reference in [11], the local Cauchy problem of (4.2) is
solved. Then, either our solution is global in time or there existsT > 0 such that

lim inf
t ! T

�
min
x2 �


f 1 � u(t; x )g
�

= 0: (4.5)

We can see that if the above condition occurs, the right-hand side of (4.2) may become
singular. This phenomenon is referred to astouch-down in �nite time T in reference to
the physical phenomenon, where the membrane \touches" the rigid ground plate which is
placed below. In fact, in our setting, we follow the literature and place the regid plate at
u = 1, above the membrane which is located atu(x; t ). Note that in case oftouch-down,
the MEMS device breaks down.

Mathematically, we may refer to the behavior in (4.5) as �nite-time quenching. More-
over, a 2 
 is a quenching point if and only if there exist sequences (an ; tn ) 2 
 � (0; T)
such that

u(an ; tn ) ! 1; as n ! + 1 :

The touch-downphenomenon has been strongly studied in recent decades. In one space
dimension, we would like to mention the paper by Guo, Hu and Wang in [6] who gave a
su�cient condition for quenching, and also a lower bound on the quenching �nal pro�le (see
Remark 4.5 below). There is also the paper by Guo and Hu in [5] who �nd a constant limit
for the similarity variables version valid only on compact sets, and yielding the quenching
rate.

In higher dimensions, let us for example mention the following result by Guo and Kaval-
laris [7]:

Consider 
 such that j
 j � 1
2 . Then, for all � > 0 �xed and  > 0, there exist initial

data with a small energy such that problem(4.2) has a solution which quenches in �nite
time.

In our paper, we are interested in proving a general quenching result with no restriction
on any � > 0;  > 0 andC2 bounded domain 
. In fact, we do much better than [5] and [6],
and give a sharp description of the asymptotic behavior of the solution near the quenching
region. The following is the main result:

Theorem 4.1 (Existence of atouch-downsolution). Let us consider� > 0;  > 0 and 
 a
C2 bounded domain inRN ; containing the origin. Then, there exist initial datau0 2 C1 ( �
)
such that the solution of(4.2) quenches in �nite timeT = T(u0) > 0 only at the origin. In
particular, the following holds:

(i ) The intermediate pro�le: For all t 2 [0; T)







(T � t)
1
3

1 � u(:; t)
� � �

 

3 +
9
8

j:j2
p

(T � t)j ln(T � t)j

! � 1
3








L 1 (
)

�
C

p
j ln(T � t)j

; (4.6)

for some� � = � � (�; ; 
 ; T) > 0.
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(ii ) The �nal pro�le: There exists u� 2 C2(
) \ C( �
) such thatu uniformly converges to
u� as t ! T; and

1 � u� (x) � � �

�
9
16

jxj2

j ln jxjj

� 1
3

as x ! 0: (4.7)

Remark 4.2. Note that when = 0, our problem coincides with the work of Filippas and
Guo [3] and also Merle and Zaag [14]. Our paper is then meaningful when 6= 0, and the
whole issue is how to control the non local term. Note that [3] derived the �nal quench-
ing pro�le, however, only in one space dimension, whereas [14] constructed a quenching
solution in higher dimensions, proved its stability with respect to initial data, and gave its
intermediate and �nal pro�les.

Remark 4.3. For simplicity, we choose to write our result when the solution quenches at
the origin. Of course, we can make it quenches at any arbitrarya 2 
 , simply replacex by
x � a in the statement.

Remark 4.4. In Theorem 4.1, we can describe the evolution of our solution atx = 0 as
follows:

1 � u(0; t) �
3
p

3
� �

(T � t)
1
3 ; as t ! T:

Remark 4.5. From (4.7), we see that the �nal pro�le u� has a cusp at the origin which is
equivalent to

C0jxj
2
3

j ln jxjj
1
3

:

This description is in fact much better than the result of Guo, Hu and Wang in [6] who gave
some su�cient conditions for quenching in one space dimension, and proved the existence
of a cusp at the quenching point bounded from below byC(� )jxj � for any � 2

�
2
3 ; 1

�
, which

is less accurate than our estimate(4.7).

Remark 4.6. Note that we can explicitly write the formula of the initial data

u(x; 0) =
�u(x; 0)

�u(x; 0) + 1
; (4.8)

where

�u(x; 0) =
�� (0)

�
1
3

U(x; 0);

with

U(x; 0) = T � 1
3

�
' (

x
p

T
; � ln T) + ( d0 + d1 � z) � 0

�
32jzj
K 0

��
� 1(x) + (1 � � 1(x))H � (x);

z =
x

p
Tj ln Tj

;

� 1(x) = � 0

�
jxj

p
Tj ln Tj

�
;
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and �� (0) is the unique positive solution of the following equation

�� (0) =
�

1 +  j
 j +


3
p

�
�� (0)

Z



U(0)dx

� 2
3

;

and note that� 0; ' and H � are de�ned in (4.28), (4.33) and (4.62), respectively. Here,T is
small enough and parametersd0 and d1 are �ne-tuned in order to get the desired behavior.

Remark 4.7 (An open question). How big can� � be? This question is related to the work
of Merle and Zaag in [14] (see the Theorem on page 1499), which corresponds to the case
where  = 0. For that case, the answer is� � = 1

3p �
. It is very interesting to answer the

question in the general case. By a glance to(4.18), (4.86) and (4.87), we know that� � is

strictly greater than (1+  j
 j)
2
3

3p �
. Let us de�ne

Tmax =

 
(1 +  j
 j)

2
3

3
p

�
; + 1

!

;

and

T = f � � 2 R such that(4.6) holds withu a positive solution to(4.2); for someT > 0g:

Then, by a �ne modi�cation in the proof, we can construct a solution such that� � arbitrarily
takes large values inTmax . In particular, we can prove thatT is a dense subset ofTmax .
We would like to make the following conjecture

T = Tmax :

Now, we would like to mention that our proof of Theorem 4.1 holds in a more general
setting. More precisely, if we consider problem (4.3) in the following regime

N �
2

p + 1
> 0; and q > 0 and N � 1; (4.9)

then, Theorem 4.1 changes as follows:

Theorem 4.8 (Existence of atouch-down solution to (4.3)). Consider �;  > 0; and 

a C2 bounded domain inRN and condition (4.9) holds. Then, there exist initial dataû0

in C1 ( �
) such that the solution of equation(4.3) touches down in �nite time only at the
origin. In particular, the following holds:

(i ) The intermediate pro�le, for all t 2 [0; T)







(T � t)
1

p+1

1 � u(:; t)
� �̂ �

 

p + 1 +
(p + 1) 2

4p
j:j2

p
(T � t)j ln(T � t)j

! � 1
p+1








L 1 (
)

�
C

p
j ln(T � t)j

;

(4.10)
for some�̂ � (�; ; 
 ; p; q) > 0.



186

(ii ) The existsû� 2 C2(
) \ C( �
) such thatu uniformly converges toû� as t ! T; and

1 � û� (x) � �̂ �

�
(p + 1) 2

8p
jxj2

j ln jxjj

� 1
p+1

as x ! 0: (4.11)

Remark 4.9. We don't give the proof of Theorem 4.8 here because the techniques are the
same as for Theorem 4.1. In fact, for simplicity, we will only give the proof for the MEMS
case

p = q = 2;

considered in equation(4.2) and Theorem 4.1. Of course, all our estimates can be carried
on for the general case.

In addition to that, we can apply the techniques of Merle in [12] to create a solution
which quenches at arbitrary given points.

Corollary 4.10. For any k points a1; a2; ::::; ak in 
 ; there exist initial data such that(4.3)
has a solution which quenches exactly ata1; :::; ak . Moreover, the local behavior at eachai

is also given by(4.10), (4.11) by replacingx by x � ai and L1 (
) by L1 (jx � ai j � ! 0);
for some! 0 > 0; small enough.

As a consequence of our techniques, we can derive the stability of the quenching solution
which we constructed in Theorem 4.8 under the perturbations of initial data.

Theorem 4.11 (Stability of the constructed solution). Let us considerû; the solution which
we constructed in Theorem 4.8 and we also de�nêT as the quenching time of the solution
and �̂ � as the coe�cient in front of the pro�les (4.10) and (4.11). Then, there exists an
open subset̂U0 in C0;+ ( �
) ; containing û(0) such that for all initial data u0 2 Û0; equation
(4.3) has a unique solutionu quenching in �nite time T(u0) at only one quenching point
a(u0). Moreover, the asymptotic behaviors(4.10) and (4.11) hold by replacingû(x; t ) by
u(x � a(u0); t); and �̂ � by some� � (u0) . Note that, we have

(a(u0); T(u0); � � (u0)) ! (0; T̂ ; �̂ ); as ku0 � û0kC( �
) ! 0:

Let us now comment on the organization of the paper. As we have stated earlier,
Theorem 4.1 is a special case of Theorem 4.8. For simplicity in the notations, we only prove
Theorem 4.1. The interested reader may derive the general case by inspection. Moreover,
we don't prove Corollary 4.10 and Theorem 4.11, since the former follows from Theorem
4.8 and the techniques of Merle in [12], and the latter follows also from Theorem 4.8 by the
method of Merle and Zaag in [15]. In conclusion, we only prove Theorem 4.1 in this paper.

The paper is organized as follows:
- In Section 2, we give a di�erent formulation of the problem, and show how the pro�le

in (4.6) arises naturally.
- In Section 3, we give the proof without technical details.
- In Section 4, we prove the technical details.
Some appendices are added at the end.
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4.2 Setting of the problem

4.2.1 Our main idea

We aim in this subsection at explaining our key idea in this paper. The rigorous proof will
be given later. Introducing

� (t) =
�

�
1 + 

Z




1
1 � u(t)

dx
� 2 ; (4.12)

we rewrite (4.2) as the following

@tu = � u +
� (t)

(1 � u)2
: (4.13)

Under this general form, we see our equation (4.2) as a step by step generalization, starting
from a much simpler context:

- Problem 1: Case where � (t) � � 0. This case was considered by Merle and Zaag
in [14] where, the authors constructed a solutionu� 0 satisfying

u� 0 (x; t ) ! 1 as (x; t ) ! (x0; T);

for someT > 0; and x0 2 
. In particular, they gave a sharp description for the quenching
pro�le. Technically, the authors in that work introduced

�u =
1

1 � u
� 1 =

u
1 � u

;

and constructed a blowup solution for the following equation derived from (4.13):

@t �u = �� u � 2
jr �uj2

�u
+ � 0 �u4; with � (t) � � 0; (4.14)

(see equation (III), page 1500 in [14] for more details).

- Problem 2: Case where 0 < � 1 � � (t) � � 2 for all t > 0 for some 0 < � 1 < � 2.
This case is indeed a reasonable generalization which follows with no di�culty from the
stategy of [14] forProblem 1 .

- Problem 3: Equation (4.2). Our idea here is to see (4.2) as a coupled system
betweenProblem 2 and (4.12):

8
><

>:

@tu = � u + � (t )
(1� u)2 ;

� (t) = �

(1+ 
R



1

1� u dx)2 :

A simple idea would be to try a kind of �xed-point argument starting from some solution
to Problem 1 , then de�ning � (t) according to (4.12) de�ned with this solution, then solving
Problem 2 with this � (t), then de�ning a new � (t) with the new solution, and so forth.
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In order to make this method to work, one has to check whether the iterated� (t) stay
away from 0 and +1 , as requested in the context ofProblem 2 . We checked whether this
holds whenu solvesProblem 1 . Fortunately, this was the case, and this gave us a serious
hint to treat our equation (4.2) as a perturbation of Problem 1 .

In fact, our proof uses no interation, and we diredly apply the stategy of Merle and
Zaag in [14] to control the various terms (including the nonlocal term), in order to �nd a
solution which stays near the desired behavior.

4.2.2 Formulation of the problem

In this section, we aim at setting the mathematical framework of our problem. The rigorous
proof will be given later. Our aim is to construct a solution for equation (4.2), de�ned for
all (x; t ) 2 
 � [0; T); for someT > 0 with 0 � u(x; t ) < 1; and

u(x; t ) ! 1 as (x; t ) ! (x0; T);

for somex0 2 
. Without loss of generality, we assume that

x0 = 0 2 
 :

Introducing,

�u =
1

1 � u
� 1 =

u
1 � u

2 [0; + 1 ); (4.15)

we derive from (4.2) the following equation on �u
8
>>>>><

>>>>>:

@t �u = �� u � 2jr �uj2

�u+1 +
� (�u + 1) 4

(1 +  j
 j + 
Z



�udx)2

; x 2 
 ; t > 0;

�u(x; t ) = 0 ; x 2 @
 ; t > 0;

�u(x; 0) = �u0(x); x 2 �
 :

(4.16)

Our aim becomes then to construct a blowup solution for equation (4.16) such that

�u(0; t) ! + 1 as t ! T:

In order to see our equation as a (not so small) perturbation of the standard case in (4.14),
we suggest to make one more scaling by introducing

U(x; t ) =
�

1
3

�� (t)
�u(x; t ); U(x; t ) � 0; 8(x; t ) 2 
 � [0; T); (4.17)

with

�� (t) =
�

1 +  j
 j + 
Z



�u(t)dx

� 2
3

: (4.18)

Then, thanks to equation (4.16), we deduce the following equation to be satis�ed byU:
8
>>>><

>>>>:

@tU = � U � 2 jr Uj2

U+ �
1
3

�� ( t )

+
�

U + �
1
3

�� (t )

� 4
�

�� 0(t )
�� (t ) U; x 2 
 ; t > 0;

U(x; t ) = 0 ; x 2 @
 ; t > 0;

U(x; 0) = U0(x); x 2 �
 :

(4.19)
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Note that in the blowup regime, which is our focus,U is large and equation (4.19) appears
indeed as a perturbation of equation (4.14).
Introducing the following notation

�� (t) =
Z



U(t)dx; (4.20)

we may rewrite (4.18) as the following equation

�� (t) =
�

1 +  j
 j +


�
1
3

�� (t)�� (t)
� 2

3

: (4.21)

This implies that �� (t) solves the following cubic equation

� 3(t) =
�

1 +  j
 j +


�
1
3

�� (t)�� (t)
� 2

= ( A + B(t) �� (t))2 = A2 + 2AB (t) �� (t) + B 2(t) �� 2(t);

(4.22)
where

A = 1 +  j
 j and B(t) =


�
1
3

�� (t):

Since it happens that�� (t) is the unique positive solution of (4.22), we may solve (4.22) and
express�� (t) in terms of �� (t) as follows

�� (t) =
3

q
27A2 + 3 3

p
3
p

27A2 + 4A3B 3(t) + 18AB 3(t) + 2 B 6(t)

3 3
p

2
+

B 3(t)
3

(4.23)

+
3
p

2(6AB (t) + B 4(t))
3

q
27A2 + 3 3

p
3
p

27A2 + 4A3B 3(t) + 18AB 3(t) + 2 B 6(t)
:

Particularly, we show here the equivalence between equation (4.16) and (4.19).

Lemme 4.12 (Equivalence between (4.16) and (4.19)). Consider � > 0;  > 0 and 
 a
bounded domain inRN . Then, the following holds:

(i ) We consider�u a solution of equation(4.16) on [0; T); for someT > 0 and introduce

U(t) =
�

1
3

�� (t)
�u(t);

where �� (t) =
�
1 +  j
 j + 

R

 �u(t)dx

� 2
3 . Then, U is a solution of equation(4.19) on [0; T).

(ii ) Otherwise, we considerU a solution of equation(4.19) on [0; T); for someT > 0
and introduce

�u(t) =
�� (t)

�
1
3

U(t); 8t 2 [0; T);

where�� (t) is de�ned as in relation (4.21), then �u is the solution of equation(4.16) on [0; T).
In particular, the uniqueness of the solution is preserved.

Proof. The proof is easily deduced from the de�nition in this lemma. We kindly ask the
reader to self-check.
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Remark 4.13. From settings (4.15) and (4.17) and the local well-posedness of equation
(4.2) in the sense of classical solutions (see Proposition 1.2.2 at page 12 in Kavallaris
and Suzuki [11]), we can derive the local existence and uniqueness of classical solutions of
equations (4.16) and (4.19). Since the nonnegativity is preserved for these equations, we
will assume that�u and U are nonegative.

Thanks to Lemma 4.12, our problem is reduced to constructing a nonnegative solution
to (4.19), which blows up in �nite time only at the origin. We also aim at describing its
asymptotic behaviors at the singularity.
Since we de�nedU in (4.17) on purpose so that (4.19) appears as a perturbation of equation
(4.14) for U large, it is reasonable to make the following hypotheses:

(i ) 1 � �� (t) � C0 for someC0 > 0. Note that from (4.21), we have�� (t) � 1:

(ii ) j �� 0(t)j � U3(t) when U large:

It is then reasonable to expect for equation (4.19) the same pro�le as the one constructed
in [14] for equation (4.14). So, it is natural to follow that work by introducing the following
Similarity-Variables:

W(y; s) = ( T � t)
1
3 U(x; t ); and s = � ln(T � t) and y =

x
p

T � t
: (4.24)

Using equation (4.19), we write the equation ofW in (y; s) as follows
8
>>>><

>>>>:

@sW = � W � 1
2y � r W � W

3 � 2 jr W j2

W + �
1
3 e� s

3
� ( s)

+
�

W + �
1
3 e� s

3

� (s)

� 4
� � 0(s)

� (s) W;

W(y; s) = 0 ; y 2 @
 s; s > � ln T;

W(y; � ln T) = W0(y); y 2 �
 s;
(4.25)

where
� (s) = �� (t(s)) = �� (T � e� s); (4.26)

and

 s = e

s
2 
 ; (4.27)

with �� satis�es (4.21) and (4.23).

We observe in equation (4.25) that 
s changes ass ! + 1 . This is a major di�culty
in comparison with the situation where 
 = RN . In order to overcome this di�culty, we
intend to introduce some cut-o� of the solution, so that we reduce to the case 
 =RN . Of
course, there is a price to pay, in the sense that we will need to handle some cut-o� terms.
Our model for this will be the work made by Mahmoudi, Nouaili and Zaag in [13] for the
construction of a blowup solution to the semilinear heat equation de�ned on a certain circle.
Let us note that the situation with 
 bounded was already mentioned in [14]. However,
the authors in that work avoided the problem by giving the proof only in the case where

 = RN . In this work, we are happy to handle the case with a bounded 
, following the
ideas of Mahmoudi, Nouaili and Zaag in [13]. Let us mention that Vel�azquez was also
faced in [22] by the question of reducing a problem de�ned on a bounded interval to a
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problem considered on the whole real line. He made the reduction thanks to the extension
of the solution de�ned on a interval to another solution de�ned on the whole line, thanks
to some truly 1-d techniques. In our case, given that we work in higher dimensions, we
use a di�erent method, based on the localization of the equation, thanks to some cut-o�
functions.

More precisely, we introduce the following cut-o� function� 0 2 C1
0 ([0; + 1 )), satisfying

supp(� 0) � [0; 2]; 0 � � 0(x) � 1; 8x and � 0(x) = 1 ; 8x 2 [0; 1]: (4.28)

Then, we de�ne the following function

 M 0 (y; s) = � 0
�
M 0ye� s

2
�

; for someM 0 > 0: (4.29)

Let us introduce

w(y; s) =

(
W(y; s) M 0 (y; s) if y 2 
 s;

0 otherwise:
(4.30)

We remark that w is de�ned on RN and s � � ln T and w � 0 wheneverjyj � 2
M 0

e
s
2 . Note

that M 0 will be �xed large enough together with others parameters at the end of our proof.

Using equation (4.25), we derive from (4.21) the equation satis�ed byw as follows

@sw = � w �
1
2

y � r w �
1
3

w � 2
jr wj2

w + �
1
2 e� s

3

� (s)

+

 

w +
�

1
3 e� s

3

� (s)

! 4

�
� 0(s)
� (s)

w + F (w; W); (4.31)

whereF (w; W) encapsulates the cut-o� terms and is de�ned as follows

F (w; W) =

8
>>>>>>>><

>>>>>>>>:

W
�
@s M 0 � �  M 0 + 1

2y � r  M 0

�
� 2r  M 0 � r W

+2 jr wj2

w+ �
1
2 e� s

3
� ( s)

� 2 jr W j2  M 0

W + �
1
2 e� s

3
� ( s)

+  M 0

�
W + �

1
3 e� s

3

� (s)

� 4
�

�
w + �

1
3 e� s

3

� (s)

� 4

if y 2 
 e
s
2 ;

0 otherwise:
(4.32)

We remark that F � 0 on the regionf y 2 RN j j yj � 1
M 0

e
s
2 or jyj � 2

M 0
e

s
2 g and that we

have from the conditions (i ) and (ii ) on �� (t) on page 190 that

1 � � (s) � C0; and j� 0(s)j � W 3(y; s):

Making the further assumption that

� 0(s) ! 0;

we see that equation (4.35) is almost the same as equation (15) at page 1502 in [14] at least
when jyj � e

s
2

M 0
. Hence, it is reasonable to expect for equation (4.31) the same pro�le as

the authors found in [14] for equation (15) in that work, namely

' (y; s) =
�

3 +
9
8

jyj2

s

� � 1
3

+
(3)� 1

3 N
4s

; (4.33)
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(note that, this pro�le was also de�ned in [14] for a generalp > 2, and that here we need
to take p = 4 and a = 2, hence� = (3) � 1

3 ). In particular, we would like to construct w as
a perturbation of ' . So, we introduce the following function

q = w � ': (4.34)

Using equation (4.25), we easily write the equation ofq

@sq = ( L + V)q+ T(q) + B(q) + N (q) + R(y; s) + F (w; W); (4.35)

where

L = � �
1
2

y � r + Id; (4.36)

V(y; s) = 4
�

' 3(y; s) �
1
3

�
; (4.37)

T(q; � (s)) = � 2
jr q+ r ' j2

q+ ' + �
1
3 e� s

3

� (s)

+ 2
jr ' j2

' + �
1
3 e� s

3

� (s)

; (4.38)

B(q) =

 

q+ ' +
�

1
3 e� s

3

� (s)

! 4

� ' 4 � 4' 3q; (4.39)

R(y; s) = � @s' + � ' �
1
2

y � r ' �
'
3

+ ' 4 � 2
jr ' j2

' + �
1
3 e� s

3

� (s)

; (4.40)

N (q) = �
� 0(s)
� (s)

(q+ ' ) ; (4.41)

with � (s) de�ned in (4.26) and F (w; W) given in (4.32).

In particular, we assume thatU and q have good conditions such that Lemmas 4.36,
4.37, 4.38, 4.39 and 4.40 hold. Then, it is easy to see that all terms in the right-hand side
of (4.35) become very small, except for (L + V)q. As a matter of fact, this term plays the
most important role in our analysis. Therefore, we show here some main properties on the
linear operator L and the potential V (see more details in [1], [2]):

- Operator L : This operator is self-adjoint inD(L ) � L2
� (RN ); whereL2

� (RN ) is de�ned
as follows

L2
� (RN ) =

�
f 2 L2

loc(R
N ) j

Z

RN
jf (y)j2� (y)dy < + 1

�
;

and

� (y) =
e� j y j 2

4

(4� )
N
2

:

This is the spectrum set of operatorL

Spec(L ) =
n

1 �
m
2

j m 2 N
o

:

The eigenspace which corresponds to� m = 1 � m
2 is given by

Em = hhm1 (y1):hm2 (y2)::::hmN (yN ) j m1 + ::: + mN = mi ;

wherehm i is the (rescaled ) Hermite polynomial in one dimension.

- Potential V : It has two important properties:
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(i ) The potential V(:; s) ! 0 in L2
� (RN ) as s ! + 1 : In particular, in the region jyj �

K 0
p

s ( the singular domain),V has some weak perturbations on the e�ect of operator
L .

(ii ) V(y; s) is almost a constant on the regionjyj � K 0
p

s: For all � > 0, there exists
C� > 0 and s� such that

sup
s� s� ; j y jp

s
� C�

�
�
�
�V (y; s) �

�
�

4
3

� �
�
�
� � �:

Note that � 4
3 < � 1 and that the largest eigenvalue ofL is 1. Hence, roughly speaking,

we may assume thatL + V admits a strictly negative spectrum. Thus, we can easily
control our solution in the regionfj yj � K 0

p
sg with K 0 large enough.

From these properties, it appears that the behavior ofL + V is not the same inside and
outside of the singular domainfj yj � K 0

p
sg. Therefore, it is natural to decompose every

r 2 L1 (RN ) as follows:

r (y) = rb(y) + re(y) � � (y; s)r (y) + (1 � � (y; s))r (y); (4.42)

where� (y; s) is de�ned as follows

� (y; s) = � 0

�
jyj

K 0
p

s

�
; (4.43)

and � 0 is given in (4.28). From the above decomposition, we immediately have the following:

Supp (rb) � fj yj � 2K 0
p

sg;

Supp (re) � fj yj � K 0
p

sg:

In addition to that, we are interested in expandingrb in L2
�

�
RN

�
according to the basis

which is created by the eigenfunctions of operatorL :

rb(y) = r0 + r1 � y + yT � r2 � y � 2 Tr( r2) + r � (y);

or

rb(y) = r0 + r1 � y + r? (y);

where
r i = ( P� (rb)) � 2 NN ;j� j= i ; 8i � 0; (4.44)

with P� (rb) being the projection ofrb on the eigenfunctionh� de�ned as follows:

P� (r ) =
Z

RN
rb

h�

kh� kL 2
� (RN )

�dy; 8� 2 NN ; (4.45)

and
r? = P? (r ) =

X

� 2 NN ;j� j� 2

h� P� (rb); (4.46)
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and
r � =

X

� 2 RN ;j� j� 3

h� P� (rb): (4.47)

In other words,r? is the part of rb which is orthogonal to the eigenfunctions corresponding to
eigenvalues 0 and 1 andr � is orthogonal to the eigenfunctions corresponding to eigenvalues
1; 1

2 and 0. We should note thatr0 is a scalar,r1 is a vector andr2 is a square matrix of
order n and that they are the components ofrb not r . Finally, we write r as follows

r (y) = r0 + r1 � y + yT � r2 � y � 2 Tr( r2) + r � (y) + re(y); (4.48)

or

r (y) = r0 + r1 � y + r? (y) + re(y): (4.49)

A summary of our problem: Even though we created many extra functions from
U to q, we always concentrate on solutionU to equation (4.19). More precisely, we aim at
constructing U blowing up in �nite time. Then, we will use equation (4.35) as a crucial
formulation in our proof. Indeed, in order to control U blowing up in �nite time, it is
enough to control the transform functionq of U (see de�nitions (4.24), (4.30) and (4.34))
satisfying

kq(:; s)kL 1 (RN ) ! 0; as s ! + 1 : (4.50)

4.3 The proof of the existence result assuming tech-
nical details

In this section, we aim at giving a proof without technical details to Theorem 4.1. We
would like to summarize the structure of this section as follows:

- Construction of a shrinking set: We rely here on the ideas of the Merle and Zaag's
work in [14] to introduce a shrinking set that will guarantee the convergence to zero for
q de�ned in (4.34). This set will constrain our solution as we want. Once our solution
is trapped in, we may show the main asymptotic behavior of our solution. In particular,
(4.50) holds and our result follows.

- Preparation of initial data: We introduce a family of initial data to equation (4.19) de-
pending on some �nite set parameters. As a matter of fact, we will choose these parameters
such that our solution belongs to the shrinking set for allt 2 [0; T).

- The existence of a trapped solution:Using a reduction to a �nite dimensional problem
(corresponding to the �nite parameters introduced in our initial data) and a topological
argument, we can derive the existence of a blowup solution in �nite time, trapped in the
shrinking set. More precisely, we show in this part that there exist initial data in that
family of initial data such that our solution is completely con�ned in the shrinking set.

- The conclusion of Theorem 4.1:Finally, we rely on the existence of a blowup solution,
trapped in the shrinking set to get the conclusion of Theorem 4.1.

4.3.1 Shrinking set

In order to control the solution U blowing up in �nite time and satisfying (4.50), we adopt
the general ideas given by Merle and Zaag in [14]. For eachK 0 > 0; � 0 > 0; � 0 > 0 and
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t 2 [0; T) with T > 0, we de�ne

P1(t) =
n

x 2 RN j j xj � K 0

p
(T � t)j ln(T � t)j

o
; (4.51)

P2(t) =
�

x 2 RN j
K 0

4

p
(T � t)j ln(T � t)j � j xj � � 0

�
; (4.52)

P3(t) =
n

x 2 RN j j xj �
� 0

4

o
: (4.53)

As a matter of fact, we have


 � RN = P1(t) [ P2(t) [ P3(t); for all t 2 [0; T):

We aim at controlling our problem onP1(t); P2(t) and P3(t) as follows:
- On regionP1(t)(blowup region): We control w (see (4.24)) instead ofU. More precisely,

we show thatw is a perturbation of the pro�le ' (the blowup pro�le, introduced in (4.33)).
Then, (4.50) will follow from the control of w.

- On region P2(t)( intermidiate region): We control a rescaled functionU instead ofU.
More precisely,U is de�ned as follows: For allx 2 P2(t); � 2 (T � t(x)) � 1

2 ( �
 � x) and

� 2
h
� t (x)

T � t (x) ; 1
�

; we de�ne

U(x; �; � ) = ( T � t(x))
1
3 U

�
x + �

p
T � t(x); (T � t(x)) � + t(x)

�
; (4.54)

wheret(x) is de�ned as the solution of the following equation

jxj =
K 0

4

p
(T � t(x)) j ln(T � t(x)) j and t(x) < T: (4.55)

We remark that if � 0 is small enough, thent(x) is well de�ned for all x in P2(t). In addition
to that, using (4.55), we have the following asymptotic

t(x) ! T; as x ! 0:

For convenience, we introduce
%(x) = T � t(x): (4.56)

Then, the following holds
%(x) ! 0 asx ! 0:

As a matter of fact, using (4.19), we write the equation satis�ed byU in (�; � ) 2 %� 1
2 (x)( �
 �

x) �
h
� t (x)

%(x) ; 1
�

as follows:

@� U = � � U � 2
jr Uj2

U + �
1
3 %

1
3 (x)

~� (� )

+

 

U +
�

1
3 %

1
3 (x)

~� (� )

! 4

�
~� 0

� (� )
~� (� )

U; (4.57)

where
~� (� ) = �� (�%(x) + t(x)) ; (4.58)

with �� (t) de�ned in (4.56). We now consider the following domain

j� j � � 0

p
j ln(%(x)) j and � 2

�
�

t(x)
%(x)

; 1
�

:
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When � = 0, we are in regionP1(t(x)), in fact (note that P1(t(x)) and P2(t(x)) have some
overlapping by de�nition). From our constraints in P1(t(x)), we derive that U(x; �; 0) is at
in the sense that

U(x; �; 0) �
�

3 +
9
8

K 2
0

16

� � 1
3

:

Our idea is to show that this atness will be conserved for all� 2 [0; 1) (that is for all
t 2 [t(x); T)), in the sense that the solution will not depend that much on space. In one
word, U is regarded as a perturbation of̂U(� ); whereÛ(� ) is de�ned as follows

8
><

>:

@� Û(� ) = Û4(� );

Û(0) =
�

3 +
9
8

K 2
0

16

� � 1
3

:
(4.59)

Note that, we can give an explicit formula to the solution of equation (4.59)

Û(� ) =
�

3(1 � � ) +
9
8

K 2
0

16

� � 1
3

: (4.60)

- On regionP3(t)(regular region): Thanks to the well-posedness property of the Cauchy
problem for equation (4.35), we control the solutionU as a perturbation of initial data
U(0). Indeed, the blowup timeT will be chosen small in our analysis.

Relying on those ideas, we give in the following the de�nition of our shrinking set:

De�nition 4.1 (De�nition of S(t)) . Let us considerT > 0; K 0 > 0; � 0 > 0; � 0 > 0; A >
0; � 0 > 0; C0 > 0; � 0 > 0 and t 2 [0; T): Then, we introduce the following set

S(T; K 0; � 0; � 0; A; � 0; C0; � 0; t) (S(t) for short);

as a subset ofC2;1 (
 � (0; t)) \ C( �
 � [0; t]); containing all functions U satisfying the
following conditions:

(i ) Estimates in P1(t): We haveq(s) 2 VK 0 ;A (s); where q(s) is introduced in (4.34),
s = � ln(T � t) and VK 0 ;A (s) is a subset of all functionr in L1 (RN ); satisfying the
following estimates:

jr i j �
A
s2

; (i = 0; 1); and jr2j �
A2 ln s

s2
;

jr � (y)j �
A2

s2
(1 + jyj3); and krekL 1 (RN ) �

A2

p
s

;

j(r r )? j �
A
s2

(1 + jyj3); 8y 2 RN ;

where the de�nitions of r i ; r � ; (r r )? are given in (4.44), (4.46) and (4.47), respec-
tively.

(ii ) Estimates in P2(t): For all jxj 2
h

K 0
4

p
(T � t)j ln(T � t)j; � 0

i
; � (x; t ) = t � t (x)

%(x) and

j� j � � 0

p
j ln %(x)j; we have the following

�
�
�U(x; �; � (x; t )) � Û(� (x; t ))

�
�
� � � 0;

jr � U(x; �; � (x; t )) j �
C0p

j ln %(x)j
;
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