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Resune

Formation de singularies en temps ni pour lesequations aux eriees

partielles non synetriques ou non variationnelles

Dans le cadre de cette these, nous nous ineresserons a la formation de singularies
en temps ni pour les equations devolution de type parabolique. En particulier, nous
nous concentrons sur letude des deux prenonenes principaux suivants :l'explosion et
I'extinction en temps ni. Dans cette these, nous consicerons lesequations suivantes:

@ = u+juf uln 2+ud);p>1L 2Retu:(x;t)2RY [0;T)! R; (1)
@ = u+u;p>letu:(xt)2RY [0;T)! C; (2)
@ = u+ Z 5 Ul (X 1) 2 [0;T)! [0;1); )

dx

1 2 1+
@ v -

@ est un domaine borre de classeC? dansRN et ; sont positifs.

Ces mocktles se rapportenta plusieurs prenonenes naturels. En particulier, lequation
(@) mocklise un syseme microelectro-nmecanique (MEMS).

Dans ce travail, nous avons construit des solutions explosives (po{if (1) et def (2)) et
des solutions avec extinction pour[(3). En plus de ca, nous cecrivons le comportement
asymptotique des solutions autour du point singulier.

Comme cadre pour notre travail, nous utilisions celui desvariables auto-similaires
qui aek introduit par Giga et Kohn dans CPAM 1985. Nous obtenons les esultats en
utilisant une eduction en dimension nie du probeme et un argument topologique qui a
et notamment introduit par Bressan, Bricmont et Kupiainen ainsi que par Merle et Zaag.

Clairement, notre travail n'est pas une simple adaptation des travaux cies ci-haut.
En e et, nos moctles, par leur proximie avec les applications, sortent du cadre ickal
consicee dans les travaux pionniers. En particulier, lequation [3) n'est pas invariante par
changement dechelle, alors que {2) n'admet pas de structure variationelle. Quanta|(3), la
pesence du terme inegral (donc non-local) nous obligea une manipulation plus celicate.
En fait, nous avons atteint nos objectifs gracea quelques nouvelles ickes. Plus peciement,
pour (2), nous e ectuons un contréle celicat de la solution a n qu'elle reste dans un domaine
a la nonlirearie est ce ne sans ambiguse. Pour (3)] nous contrélons l'oscillation du terme
non-local a n qu'il reste assez petit et nous en deduisons sa convergence.
UITHTTHTTHTETETRT T
Mots ckés : equation de type parabolique, equation des MEMS, explosion en temps ni,
extinction en temps ni, pro la I'explosion, explosion de type |, comportement asympto-
tique.






Abstract

Finite time singularity formation for non symmetric or non variational

partial di erential equations

In the context of this thesis, we are interested in nite time singularity formation for non
symmetric or non variational partial di erential equations of parabolic type. In particular,
we mainly focus on the following two phenomenéablowup and quenching(touch-down) in
nite time. In this thesis, we aim at studying the following equations:

@ = u+juf luln 2+u?);p>1L 2Retu:(x;t)2RY [0;T)! R; (4)

@ = u+u;p>letu:(xt)2RY [0;T)! C; (5)

@ = u+ — 5 Ul (x;t) 2 [0;T)! [0;1); (6)
1 uw?z 1+ 1 udx

where is a C? bounded domain inRN and ; are positive constants.

These models are closely related to many common phenomena in nature. In particular,
equation () is a model for Micro Electro Mechanical Systems (MEMS).

In this work, we construct blowup solutions to [(#) and[(5) and solutions with extinction
to (B). In addition to that, we describe the asymptotic behavior of these solutions around
the singular point.

We use in this thesis the framework okimilarity variables, introduced by Giga and
Kohn in CPAM 1985. We nally derive the results by using a reduction to a nite dimen-
sional problem and a topological argument which was introduced in particular by Bressan,
Bricmont and Kupiainen, and also Merle and Zaag.

Clearly, our work is not a simple adaptation of the works cited above. Indeed, our
models, by their proximity to applications, are outside the ideal framework considered in
pioneering works. In particular, equation [(§) is not scaling-invariant, wherea$|(5) does not
admit variational structure. As for (B)), the presence of the integral term (non-local term)
requires us to treat this term more delicately. In fact, we have achieved our goals thanks
to some new ideas. More precisely, fof|(5), we carry out a delicate control of the solution
so that it always stays in the domain where the nonlinearity is de ned with no ambiguity.
For (B)), we control the oscillation of the non-local term to keep it small enough, and this
allows us to deduce its convergence.

Keywords : Parabolic equation, MEMS model, nite time blowup, touch-down phenomenon,
blowup pro le, type | blowup, asymptotic behavior.
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Introduction

Science is a di erential equation and religion is a boundary condition

Alan Turing

I. Modeling nature by parabolic PDE

In the age of science and technology, mathematics strongly shows us its in uence in our
life. Particularly, there is a wide variety of phenomena which have been mathematically
modeled by partial di erential equations (PDE) such as: heat transfer, propagation of
waves, electrodynamics, uid dynamics, elasticity, gquantum mechanics and so on. The more
we understand these equations, the better we know about the corresponding phenomena.

More speci cally, the class of parabolic PDE is important in modeling nature. As many
authors did earlier, we are interested in this thesis in reaction-di usion systems of the
following type

g @ = D u+F(ur u;R g(u)dx) in [0:T):
S u =20 on @ [O,T), (7)
u(:;0) = uo in ;

whereu : (x;t) 2 [O;T) 7' KM ug:x2 7! KM: KisRorC; isan open set of

RN:g:KM 1 Kiscontinuous andF : Dg K- 1 KM is;continuous on its domain. In

addition to that, we note that r u= (@, u;::;;@,u), U= sz1 @_zu andD =(Djj)ij w
J

is a diagonal matrix of di usion coe cients. Note that when = RN, there is no boundary
condition in (7).

Reaction-di usion systems are mathematical models which correspond to many physi-
cal, chemical and biological phenomena. For more details about the applications of these
models, we kindly address the readers to some representative works:

- The combustion phenomenanWe have Bebernes and Eberly[3]; Bebernes and Kassoy
[4]; Galaktionov and Vazquez [[30]; Kapila[[49]; Kassoy and Poland [51]; [52]; Williams [85];
Zel'dovich, Barenblatt and Librovich in [87] and their references.

- Superconductivity phenomenonThis is described by a mathematical physical theory,
often called Ginzburg-Landau theory, named after Ginzburg and Landau, see the works
by Ginzburg and Landau [38]; Aranson and Kramer in]1]; Popp et al [74]; Cross and
Hohenberg [[15].

- Fluid mechanics and opticgerived from Ginzburg-Landau theory, see Levermore and
Oliver [54].

- Theory of Micro-electro-mechanical systems (MEMS) device®Ve would like to adress
to Guo and Kavallaris [42]; Pelesko and Bernstein [48]; Kavallaris and Suzuki[53]; Pelesko
and Triolo [73] and references therein.



- The physical mechanism of vortex stretching, turbulent owsThese theories have
a relation to the Constantin-Lax-Majda equation, as in the works of Constantin, Lax and
Majda [14]; Guo, Ninomiya, Shimojo and Yanagida [40]; Murthy [66] and references therein.

There are many other phenomena which are not presented in this text, because of lack
of time and space.

[1. De ning nite time singularity

In this section, we are interested in introducing the notion of nite time singularity
formation in parabolic PDE. Then, we aim at considering some illustrating examples.

I1.1. Mathematical treatment

When facing any submodel included in[{7), we rst address the issue of existence and
uniqueness of solutions, or the \Cauchy problem”. As a matter of fact, some of the submod-
els can be solved in a lot of classes of functional spaces suchlL®§:) ;p2 [1;1 ], Sobolev
spacesWP() and so on. For more details on the Cauchy problem, we kindly refer the
readers to Friedman[[24]; Henry(144]; Pazy [72]; Ladyenskaja, Solonnikov and Ural'ceva
[70]; Souplet and Quittner [75]. In this thesis, we mainly focus oh? (). Indeed, thanks
to the regularity of the semi-groupée' (see its de nition and its properties in [70] and
[75]), parabolic regularity and a xed-point argument, the Cauchy problem is well-posed in
L* () (also in W*! ())) under some reasonable conditions orF and g in (7). Roughly
speaking, we may de neTax > 0 as the maximal existence time of the solution. Then,
one of the following statements holds:

(a) Either Tax =+ 1 , which implies that the solution is global.
(b) Or Thax < +1 , which implies that

ku(Gt)kea oy ! +1 (or ku(;;t)kwar y 11 ) ast! T

We call the second case nite time blowup phenomenon and is called the blowup time
of u. We may also introduce the de nition of aBlowup point Note that these notations
follow the introduction of Friedman and McLeod [[25]:

De nition 0.1  (Blowup point). Let us consideru, a function on [0;T); T > 0 which
blows up at timeT. A point a2 is called a blowup point ofi, if and only if there exist
f(Xn;th)On 1 [0; T), converging to(a; T) asn! +1 , such that the following holds

juXn;ty)j! +1 asn! +1:
If we work in L () with bounded, then we can prove that there exists at least a blowup
point. Following this, two interesting issues arise:
a) Existence Does a blow up solution for systen (7) exist?

b) Asymptotic behavior Can we describe the asymptotic behavior of the solution near
the blowup point?

Thus, we aim in this thesis at studying the following two main issues:



1) Construct blowup solutions to system[([7) for some explicit cases.
2) Describe the asymptotic behavior of the constructed solutions near the blowup point.

[1.2. Blowup examples in ODE and PDE

As we mentioned at the head of this section, we would like to take the following examples:

- Example 1:  Let us consider p; &) 2 R? a, > 0;p > 1 and the following Ordinary
Di erential Equation (ODE)

uyt)

uP(t);t> 0;
u(0) :

do.

Then, the solution is
1

ut)= (To ) » 3

where =(p 1) 51 and To = —=5—1 > 0. We observe more closely that the existence

(P Dag
time interval of that solution cannot c?ossTO, because of the following fact

u(t)! +1; ast! To:

We say that u(t) blows up at time T.

- Example 2 (Osgood's condition): More generally, we consider the following
ODE:

uit)
u(0)

f(u(t));t> O;
a, > 0:

If f is a positive and continuous function which satis es

Z1 dx
— < +1;
o f(X)

then, the solution cannot be globally extended to in nity. This result was established in
[71] by Osgood, as the necessary and su cient condition so that the solution of the above
equation blows up for any positive initial data.

- Example 3: We next consider the following PDE:

@ = u+uh(xt)2 [0;T); )
u@) = uo(x):
If up2 H3() ;up6 O;up O; is bounded and ug satis es the following condition:
Z Z
— 1 H i2 1 p+1 .
E[ug] O where EJ[u]= > jr ujedx o+ 1 uP™ dx; (9)

then, u blows up in nite time. This result was proved in [55] by Levine (see also Balll[2]).

The above-mentioned examples show us an important thing: Under some conditions and
even for a small and smooth initial data, the solution to some PDE may develop singularities
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in some nite time T > 0. In particular, they may become large in the functional spaces
where the PDE is considered: we say that they develop singularities in nite time. This
phenomenon occurs in a variety of PDEs, including those modeling the real world. For
more information on singularities phemomena, we kindly refer the readers to Horstmann
[47]; Martel, Merle and Raphael[[57], Galaktionov and VazqueZ [30]; Aranson and Kramer
[1]; Bebernes and Eberly[|3]; Bressan![6]; Constantin, Lax and Majda [14]; Cross and
Hohenberg[[15]; Flores, Mercado, Pelesko and Smyith![23]; Ginzburg and Landau [38]; Guo
[41]; Guo and Kavallaris [[42]; Pelesko and Bernstein [49]; Vazquéz[77] and the references
therein.

11.3. Notion of \structure" in PDE

As illustrated in Example 3 above, many blowup results take advantage of the \struc-
ture” of the PDE. Indeed, we say for example that equatior{ {8) has a variational structure,
which results in the existence of the Lyapunov functiondk [u] de ned as in (9), crucial in
deriving the above-mentioned blowup criterion.

It happens that other elements of \structure" are important in the literature, when it
comes to study PDE, in particular in the context of singularity formation.

Let us introduce in the following the de nitions of symmetric and variational structures
in PDE, in the context of this thesis.

(i) Symmetric structure: A PDE is symmetric if for any solution u we have thatu(t +
to; X); u(t; X + Xg) or € u(t;x) are also solutions.

(i) Variational structure: Let us consider the following parabolic equation

@u= u+F(u); (10)

whereu : (x;t) 2 [0;T)! RM. Then, problem (10) is variational if there exists
a function

G:RM! RsuchthatF =r G:
In this case, equation|[(1D) has the energy functional which is decreasing in time:
Z Z
A T

2' dx G (u)dx:

E[u] =

i=1
We say that E[u] is a Lyapunov functional for equation [(1D).

Note that the notion of \Symmetric structure” and \Variational structure” holds also
for other types of PDE, in particular, hyperbolic PDE. However, we don't consider
them in this thesis.

[1.4. Relevant questions for blowup

As in many mathematical areas, two major questions arise when we consider a given
PDE. The study of blowup is no exception to that.



These are the questions one may ask when studying blowup for some given PDE:

- Classi cation of general solutions : Given a general blowup solution, can we give
a full classi cation of all possible asymptotic behaviors at blowup?

- Construction of examples of solutions : Can we nd some examples of solutions
showing some speci ¢ blowup behaviors?

These two questions are related, in the sense that the \construction” may provide ex-
amples con rming some type of behavior available in the \classi cation".

Sometimes, as this is the case in this thesis, the \classi cation” may be too hard to
obtain, because of the lack of structure in the PDE. In that case, the \construction” may
be of great help, in the sense that its products will be thenly examples available.

In this thesis, we precisely consider PDE lacking \structure”, making the classi cation
question out of reach. Accordingly, we will only focus on the \construction" issue, providing
important examples of blowup solutionspresenting novel and unprecedented types
of behaviors .

[1l. Speci ¢ di culties in this thesis: non symmetric or non variational PDE

As we mentioned before, we treated in this thesis models with non symmetric or non
variational structure. Let us explain in the following why we focus on such models in
our works. It happens in fact that most of the mathematical analysis of singularities was
done for \idealized" situations, where the models were simpli ed in order to be easily track
able in mathematical tools. Indeed, having a variational structure, satisfying a maximum
principle property, or enjoying a scaling invariance property do help a lot in understanding
nite time singularity occurrance in PDE.

However, when simplifying some model, we may loose essential physical features, making
the PDE behavior very far from reality. Therefore, this motivates us to study models that
are close to the realty and are eithenon-symmetric or non-variational or both. As a
matter of fact, we consider in this thesis some real-world situations which are far from the
\idealized" situations described earlier, and we try to built new tools on order to better
understand nite-time singularity formation via this modest dissertation.

As we pointed out earlier, the \classi cation" question is largely out of reach in this
thesis, because of the lack of structure. As a consequence, we focus on the question of
\construction™ here.

For the sake of completeness, we will address in the following the two questions:

- The classi cation in the literature, for some ideal standard case
- The construction in the literature and in our work.

IV. The classi cation question in the literature for some ideal standard case

In this section, we address the \classi cation" question in the literature, for some ideal
standard case of systen] [7), studied by many authors:

@ = u+juPf u; (11)



whereu : (x;t) 2 [0;T)! R; is aopen set of RN and p is assumed to satisfy the
following subcritical condition

: N+2
p2(1;+1)ifN 2andp2 1;N—2 ifN 3 (12)

As one may think, this is an idealized case which is out of the scope of the thesis.
Nevertheless, we choose to include information on it for the sake of historical completeness.
Indeed, equation [(1]L) is the simplest parabolic PDE showing blowup, and it has attracted
a lot of attention in the last 50 years.

IV.1. The existence of the nite time blowup phenomenon

In this part, we aim at introducing some results related to the existence of nite time
blowup and blowup points in particularlly. In fact, these problems have been studied by
many authors such as Ball([2]; Fujital[2[7] and[28]; Kaplan [50]; Levine[55]; Weisslerl [82].
For example, Levine([[55] and Ball[J2] have obtained an existence by using the following
Lyapunov functional de ned as in [9):

Z Z

E[u]=% jr uj%dx p+1 juiP*t dx:

More precisely, this is the statement (see for example Theorem 3.2 [in [2]):

Let us consider a bounded open subset &" with smooth boundary@ . If uy 2
Ha() ;uo 6 0 and E[ug] 0, then there existsTmax(Ug) 2 (0;+1 ) such thatu 2
C([0; Tmax ); Ha()) and the following holds

Ku(t)kpen(y ! +1 ast! Tpax:
In this case, we say thatu blows up in nite time.

Next, we would like to mention some results related to the existence of blowup points.
In order to get more information, we kindly refer the reader to Ca arelli and Friedman[11];
Chen and Suzukil[13]; Chen and Matano [12]; Friedman |26]; Friedman and McLeod [25];
Fujita and Chen [29] and so on. In particular, Giga and Kohn have established in"[35] a
criterion which allows us to conclude whether a given point is singular or not. In fact, they
mainly used the following local energy functional:

Z
+ . . l . ap4 ix_aj?
Eat[u] = trr zt S uj? p+—1]u1'° 1 e Fwdx (13)
Z
o b 1 e M
2p 1) ’

wherea2 and t> 0. The following is their result (see Corollary 3.6 in[35]):

Let us consider a domain which is strictly star-shaped abowt2 . Then, there exists
( ;p) > 0 such that the following holds: 11 is a solution of (L) which blows up at time
T satisfying E,.tr(Up) < , then a cannot be a blowup point.



In addition to that, these authors have also proved in Corollary 4.3 in[35], another
important criterion which implies whether a given point is a blowup point or not.

Let us consider a convex domain inR? with C2 boundary. Then,a2 is a blowup
point if and only if the following holds:

—— 1

Im(T Oty T L= where =(p 1) 7 (14)

uniformly for y in compact sets.

In particular, in the case where is bounded, the Dirichlet condition implies that
u(;;t)je =0; forall t<T . Then, this rises the question whetheu blows up at @ or not.
As a matter of fact, we don't have the answer in the general case. However, the answer is
negative for some special cases. More precisely, we have the following result (see Theorem
5.3 in [35]):

We consider a C?% domain which is strictly star-shaped abou#, wherea 2 @ .
Then, a cannot be a blowup point.

Furthermore, we have the situation where the solution blows up at many points in .
In that case, the blowup set is an interesting object to study. For example, in Theorem 5.1
of [35], the authors proved the following:

If up 2 H;(R") and u blows up in nite time, the blowup set is then compact.

On the other hand, there were also many authors who have constructed special initial
data up so that the blowup set is explicit. For example, Merle in(J60] gave a construction
with k exactly given blowup points. Another example for dimensioiN 2. Giga and
Kohn gave the existence of a positive, radially symmetric initial data for which the blowup
setis somell 1)-dimensional sphere (see Corollary 5.7 in‘[35]).

Allowing the solution to be independent of some coordinate, we may obtain examples
where the blowup set is some in nite cylinder, or parallel hyperplanes or even concentric
spheres, which all come from the case kfgiven points or a sphere we have just mentioned
above.

Apart from these two cases, no other example of blowup sets in known. For example, the
question of constructing a solution for[(11) blowing up on a ellipse in a 2 space dimensional
remains largely open.

IV.2. Blowup asymptotic behavior and blowup pro le

In this paragraph, we aim at mentioning some results about the aysmptotic behavior of
the solution of equation [(11) when the blowup phenomenon occurs. In order to study the
asymptotic behavior, we have many ways to approach this problem. One of them is to use
the so-called self-similar variables(note that this notation was initially used in the work
of Giga and Kohn [33]):

Wa(y;s) = (T )FTu(xt): y:pXTi_at and s= In(T t):  (15)

With this transformation, the study of the blowup behavior ofu reduces to the study of
the asymptotic behavior ofw, ass! +1 .



From equation (11), we easily write the equation satis ed byv(y; s) as follows:

Wa

1 ..
@W, = W, Ey I Wy 1 + JWajP 1Wa: (16)

Note that w is de ned onf(y;s) 2 as = ez ( a [ InT;+1)g.
From comparison techniques, we may show (at least when =RN) that
kuG; ke o (T 1) 71862 [0;T);
(see Weissler [83], Friedman and McLeod |25], Giga and Kohn][35]). Following this fact,

two situations which identi ed in the literature named by Matano and Merle [59]:
The blowup solutionu is of type | if there existsC > 0 such that

ku(;;)kcr () Ch(t); 8t 2 [0;T);

whereh(t) is the positive solution of the ODE, connected t{LT). Namely, we can explicitly
write the formula of h(t):

hty=(T t) 71
Otherwise, the solutionu is called of type II.

In the context of this thesis, we only focus ontype | blowup (of course, for other
equations di erent from (11)). In other words, we are interested in the case where we may
nd the lower and upper bounds foru. This means there exisC > 0 such that the following
holds

1

é(T t) " u(t)kea p  C(T t) » 1 a7
This leads the following estimates:
1
c K Wa(i;S)kit ( .oy  Co (18)

In fact, we call the above bounds the blowup rates. The upper bound ifi (17) has been
discovered by Mueller and Weisslefr [65], Weisslér [82] and![84] under some conditions. In
particular, Giga and Kohn have established in[34] (see also[35]) the bounds|[of| (17) in the
case where is a bounded convex domain with the assumption that one of the following
conditions holds:

- Either initial data ug is nonnegative orp satis es furthermore the following condition

3N +8

>1i = :
p>1ifN=1andp2 1’3N 1

iftN 2 (19)

Later, Giga, Matsui and Sasayama have removed conditiof (19) (se€el[36] for the case
= RN, and then, [37] for a more general smooth convex domain ), extending the result

to all Sobolev subcritical exponenp > 1 as in (12). In order to overcome the challenges, the

authors used the arguments on the following Lyapunov functional associated to equation

[o): z

1. . 1 . .
Elw,](s) = SIr Wajz + —JWaJ2

ws 2 20 1) p+1

jwaj*t (y)dy: (20)



where n »
M= ge (21)

Finally, they have obtained the key integral estimate in the sense that for alf 2 and
a2 , there exists Ri(N;p;q;) > 0, independent ofa such that the following estimate
holds

YA s+l
. (p+1) .

U kel kG s oryds (22)
where€ depends only onN; p; q; and a bound on E[w,](0) as well as some norms of?,
wherew! is initial data of w,. We kindly refer the reader to page 1774 ir_[35] for more
details.

On the other hand, Merle and Zaag obtained in [64] (see also][62]) the following optimal
blowup rates:

Let us consider a convex bounded? domain in RN and u a solution which blows
up at time T > 0. We assume furthermore thau, 2 H() . Then, the following limits
hold: .

kwa(5;9)Kis ( .)! =(p 1) P 7, (23)

and
Kr Wa(i;8)Kir ( .e) + K Wa(ii9)ke ¢ .oy ! 0

ass! +1 and foranya?2
As a matter of fact, studying blowup rates is a fundamental step towards the study of
the asymptotic behavior of solutions to problem[(16) as we will mention below.

We now assume thatu blows up at time T and at some pointa 2 . Firstly, we derive
from (14) the asymptotic behavior ofw, on every compact set: for eack > 0

sup jwa(y;s) j! 0, ass! +1; (24)
yi K
where 2f ; gand isdenedin (14). Note that ; ; O are constant solutions of
(16). In particular, in the case where = RN, they are the only stationnary solutions

under condition (12) (see Giga and Kohri33]). Concerning the blowup behavior, we kindly
refer the readers to Filippas and Kohn[21]; Filippas and Liu[22]; Herrero and Vehzquez
[45] and [46]; and Vehzquez [78] and [81].

More precisely, Giga and Kohn used i [33] some analysis in Sobolev spaces with the
Gaussian weight de ned in (1) to derive (24), see also [21][ [22]; [33];_[45]; [46];1[78]
and [81]. More importantly, Vehzquez established in[79] a classi cation of the asymptotic
behavior of solutions to problem[(16) (although some of the above-mentioned authors may
have considered the nonlinearityP instead ofjujP *u, all their results hold also forjuj® u
with the same proof). More precisely, this is the result ir [79]:

There exist an orthogonal matrixO of order N and an integer numbek 2 f 0;::;;N 19
such that one of the following statements holds (up to replaciady u if necessary):
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a)- Exponential decay: There exists> 0 such that for allK > 0, we have

supjwa(y;s) ] C(K)e °;8s InT: (25)
jyi K

b)-Non exponential decay: There exists> 1 such that for allK > 0, we have

,-;UE Wa(y;s) + 205 (N k) %VTMky =0 Si ,ass! +1,;  (26)
where 00 1 1
1 0 @2 0
01 0
hmzolggou, Oowmm k of 1% digits: (27)
00 = 1
0 0

In this thesis, we are interested in casb), non exponential decay, of course, for other
equations more general than (31). Note that using (26), we have the behaviorwfin the
setjyj K; I~f)or any K > 0. This fact is equivalent to the behavior ofu in a small ball
X g KT t! Oast! T. The moret approaches the blowup time, the less
we know about the behavior ofw,. In fact, both for u and w,, we see that the solution
becomes at approaching a constant, and no shape arises. This is disappointing from a
physical point of view.

Later, Herrero and Vehzquez|]45] (in the one dimensional case), Liu [56] (in the multi-
dimensional case) have dealt with this challenge. More precisely, they improved tlae estimate
in (27) by nding another expansion valid in larger domains of the fornfjyj K" sg for
any K > 0. In addition to that, Merle and Zaag [63] have obtained later the same result
with a di erent proof based on some compacness properties\wf, uniformly with respect
to a2 RN. Note that this uniform property on a2 RN was not proven before. This result
helped Merle and Zaag to establish in'[63] the following blowup pro le with respect to the

variable
z= 1%; (28)

which may be called theblowup variable The following is their result:

There existk 2 f 0; 1;:::;; Ng and an orthogonal matrixO such that for allK > 0, the
following holds:

sup wa(zIo s;s) f(z) ! Oass! +1; (29)
jzj K
where )
2 P 1
= p 1+P Yoy, P (30)

4p

with M de ned as in (27). Note that whenk = N in caseb) mentioned aboved, this is
a degenerate case witivy = 0, and in fact, we are in casea). Note also that the pro le
([B0) is referred to as the Intermediate” blowup pro le of w, since it is close to the solution
for s2 [sg;+1 ) for somesy (or t 2 [T e *;T)) by (IL5). In fact, we will introduce later
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a notion of \ nal " blowup pro le. In the case wherek = 0, we would like to mention that
[9) was rst found numerically by Berger and Kohn in [5].

Let us now introduce the notion of nal pro le wherek = 0 in (27). In fact, Herrero and
Vehquez [45] (see alsa [78] and [B0]) derived a nal pro le for the blowup solution. More
precisely, there existau (x) such that u(x;t) ! u (x) ast! T, forany x 6 a. Moreover,
we have the following

8 jin(x a)j vt
(0 12 jx aj

u (x) ;asx! a (31)

V. The construction of Type | blowup solutions

In this section, we address the question of \construction" of examples of blowup solutions
for some PDE.

In fact, we rely here on some general method which we could adapt in our work to
various situations, after many nontrivial adaptations.

This method was introduced by various authors, and goes back to the works of Bressan
[6] and [7]; Bricmont and Kupiainen [[8] and([9]; Merle and Zaag [61].

It relies on some two parts:
- The derivation of approximate solution, through aformal approach

- The construction of anexact solution close to the approximate solution, through
a perturbative rigorous argument. This part relies on a good knowledge of the special
properties of the linearized operator around the approximate solution. It consists in 2
steps:

Step 1
Reduction to a nite dimensional problem, to control the negative directions of the
operator

Step 2
Topological argument based on index theory, to control the nonnegative directions of the
spectrum

In the context of this thesis, we call it the nite reduction method As a matter of fact, this
method was introduced in Merle and Zaag [61] by improving of the proof given in Bricmont
and Kupiainen [9]. In particular, the nite reduction method can be resumed by two steps:

In some speci ¢ situations, the construction method provides the stability of the blowup
pro le under perturbations of initial data by using the interpretation of the parameters of
the nite-dimensional problem in terms of the blowup time and the blowup point. In fact,
the construction in [61] corresponds to casg (26) wheke= 0.

To be more speci c, we will present in the following the \construction" method as it is
available in the literature for the ideal case of equatior] (11).

The construction result is due to Bricmont and Kupiainen[IB] who have constructed
a nonnegative blowup solutionu(x;t) to (1) (see also Bricmont and Kupiainen[]9], and
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Bricmont, Kupiainen and Lin [10]), satisfying the followingL?! -estimate, after the change

of variables [15):
Wa(i;s)  fo py—_ I Oass! +1; (32)
L1 (RN)
where

12, b1

fo(z)= p 1+

Estimate (32) yields in fact the following
!

a

(T e rut)  fo p(_l_ é)jln(T 0;

Lo (34)

L1 (RN)
whereu is the constructed solution of equation[(1l1), blowing up at tim& and only at a.

V.1. A formal approach to derive an approximate solution (i.e the blowup
pro le)

We aim at explaining in this part how the blowup pro le (33) arises formally. In order
to get a simple situation, we suggest to tak®& = 1, and = R and in the nonnegative
case.

In fact, in order to get a blowup solution to [1]), we will in fact construct a bounded
solution to (16). Since [1b) is of parabolic type, it is reasonable to work with the \blowup

variable"
2= o

as mentioned by Tayachi and Zaag in [76]. Following these authors and adpting an original
idea by Berger and Kohn in[[5], we may try to nd a solutionw with the following form

X w(2)

g (35)

Wa(y;s) =
j=0
where functionsw;;j 0 are assumed to be smooth and bounded. In particulan, 0
because of the assumption thaiv is nonnegative.

Using equation [16), [(35) and gathering terms of ordei—;j =0;1, we derive the following
equations

WO(Z% + Wh(z) = 0;

1
523\’\’8(2)

and
w1 (2)
1

Following for example the justi cation in Berger and Kohn [5] and Duong[]17], we get

Zwp _
=

22wd(2) + pud wi(2) + Wtz) + 2 = 0

1

Wo(z)= p 1+bZ °T; (36)

and

p

P Dy 1402 o (p4—p1)zzln(p 1+bZ) p 1+b2 77;

wy(z) = 2p
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where 2
b= (P17
p

Thus, from (3§), we can formally derivef g as the blowup pro le in our construction. More
precisely, we can see that for ajlyj Ko s for someK, > 0, we have

Wa(y;s) "a(y;s)ass! +1; (37)
where 0
1(Y;s) = wo(2) + Wls( ) - fo py—§ * s and f, de ned in (B3). (38)

Note that for N 2, our pro le will be the following

NS =fo P 4

S 2ps’ (39)

V.2. The rigorous proof

In this paragraph, we present the perturbative rigorous method which provides the
existence of a solution to equation (16) iRM satisfying

kwa(5;8) " N(59)Ki gy ! Oass! +1; (40)

where'  is de ned as in (39).

Introducing
aly;s) = wa(y;s) ' n(y;s);
we transform the PDE (11) into the following equation satis ed byq:

@q=[L + V(y;9la+ B(q;y;9+ R(y:9); (41)
where
L = %r y + Id; (42)
1
V(y;s) = p 'Ry 51 (43)
B(@:;9 = ja+'nj® “(a+'n) 'ROP R (44)
R(Y;s) = 'n(Y:9) %r "n(Y;S) Y :(y’ls) (45)
+ "Nyss) @ n(y;s):

As a matter of fact, our problem is reduced to the construction of a solution for equation

(@1) satisfying
ka(:;;s)ki: rvy ! Oass! +1: (46)

We rst note the following fact

1
kR(S)kLl (RN)Y - g:

Moreover, onceq is small enough inL?! , the term B is then formally \quadratic". This
leads to the smallness oB. It remains to understand the e ects ofL and V.
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(i) Operator L: It is self-adjointin D(L) L2, where
Z

L2(RN) = ff 2 Li)o(RV) such that  jf (y)j* (y)dy < +1g with de ned as in (21)
RN

On the other hand, we have
n n 0
Sped. = 1 > n2N ;

Note that the largest eigenvalue is 1, and for every eigenvalue 1%, we have the
associated eigenspace
* +
- . w N
Eo= H(y)=h,(y)zh W) Jij= i=nand =( 5 N)2NY

i=1

where functionh ;(y;) is the rescaled Hermite polynomial of order; (see [19] and
[61] for more details). In addition to that, the following set

B=fH (y)j 2NVg;
makes a basis of 2.

(i) Potential V: In fact, the value of V depends on the time variables and also on the
reduced variable
2= o

rather than ony itself. For that reason, its behavior will dramﬁtically depend on the
size ofz. More speci cally, inside the blowup regiorfjyj K" sg for someK > 0,
we have the following estimate

V(s)! O0inL?RN)ass! +1;

which shows that the e ect of V will be a perturbation of the e ect of L, except may
be on the null modes ot , on the one hand.

On the other hand,V signiocantly changes the e ect of L outside the blowup region,
namely in the setfijyj K sg. Indeed, for each > 0, there existK > 0ands > 0

such that
p
1

sup V(y;s)+
}9’% K s s p

Since p—pl < 1 and bearing in mind that 1 is the largest eigenvalue df, we can

see thatL + V behaves as an operator with a fully negative spectrum.

From the above information aboutL and V, the behavior ofL + V inside and outside
the blowup region is di ebent. Hence, this moti¥ates us to consider the dynamics of the
solution rston fijyj K sg,thenonfjyj K" sg. As the authors in [9] and[[61] did,
we introduce the following cut-o function

(y;9)= o ﬁj&_ ;

K"s
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where o2 C}[0;+1 );k ok.: 1 and

(x) = 1 for x 1,
= 0 for x 2

Then, we decompose as the following
q=q +(1 )4= O+ G

Note that supp(t) B (0; 2K P s) and supp(c) RN nB(0;K p§). Moreover, if q 2
L (RV), then we have the fact thatg,;g 2 L' (RN)  L?(RV). Accordingly, we may
expandq on the eigenfunctions oL as follows:

B=C+0q Y+Yy &Y 2T(q)+q;
where !
H o

R ETTE— ; 0
H H . m

On =
jj=m
Note that oy is in R, ¢ is a vector inRN and ¢ is a square matrix of orderN .

Finally, we write

0= G+ G=G+ G Y+Y Gy 2T(k)+q + G (47)

As a conclusion to this paragraph, we recall that our goal is to construct a solutiog
to equation (41) satisfying [46), whereq is decomposed as irf (47), a decomposition well
adapted to the properties ofL + V, the linearized operator of [(4]L).

The control of g towards O in (46) will follow from the control of its components
O; th; ;q and g shown in (47), two of them being in nite dimensional ¢ and ).

V.2.1 . Reduction to a nite dimensional problem

In this part, we show that the control of q towards O in (48) reduces in fact to the
control of gy and ;. From the fact that (op; qr)(s) 2 RN, this makes a reduction to a
nite dimensional problem.

Indeed, from the de nitions of g and ¢ in (47)), we get the following facts:

- For g : This part corresponds to the eigenvectorsl wherej j 3. Then, we may
derive from the properties of operatot. + V that q is associated to the negative eigenvalues
of L + V. Hence, it is easily controllable to O.

- For gq.: We havesupp(ae) fj yj K sg, aregion wherel + V has a strictly negative
spectrum. Henceg is easily controllable to 0.

After this reduction, when g is small, we project equation[(41) orE,, m = 0;1 and 2,
then we obtain the following system:

®B(s) b(S); (48)
@) S (49)

®B(s) ng(s); (50)
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ass! +1 . From (50) and introducing = In('s), we can write

@xp( ) 2p( )as ! +1;

where we still notep( ) = (s( )), This yields that gu( ) is associated to a strictly negative
eigenvalue. Theng( ) can be controlled to 0 andg,(S) too.

The problem remains to control two componentsg, and ;. As a matter of fact, we see
from (48) and (49) that these components are associated to strictly positive eigenvalues. So,
we cannot do as we did with the others components. Finally, we have reduced problem (46)
to a nite one on @ and g, for which we will nd initial data ( o; 1)(So) wheresp = InT
such that

(p;a)(s)! Oass! +1:

V.2.2. A topological argument

In order to give a avor of our argument, we will consider the following two-dimensional
model problem: (

o

G+ G+ 5

(51)
50 B Z

tted with initial data
(Gb; &)(So0) = (do; dh) 2 R?,
wheresy will be taken large enough.

As mentioned in the previous part, we aim at constructing initial data ¢; d;) such that

(p;cp)(s)! Oass! +1:

More precisely, we prove that there existsdy; d;) 2 V(sp) such that

. . A
19 (9)] §; 8m=0;1and8s sg; (52)
where )
A A
V(s) ?; o) ;

and A will be taken large enough.

Indeed, by a contradiction, we assume for alldg; d;) 2 V(so) that (52) fails at time s,
for somes 2 [sp; +1 ). In that case, there existss = s (dp; d;) such that

. . A
19 (9)] s 8s2 [sg;s]and 8m 2 f 0; 1g;

and A A
j(s)i= 5 orja(s)i=
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From the ODE system [51), we derive that the ow ofjgy,(s)j is transverse outgoing on

the curve A
s7! §;

at the crossing times = s . This implies that
(do; d1) 7! s (do; dy)

is continuous.

Making the change of variables
A 2
(do; dy) = ?( o, 1) where (o; 1) 2[ L 1]

0

we can construct the following mapping
I LIF! @ LR
2
(or 1) 7! S(aia)(s);

wheres = s (do; d;) and (do; dy) = ?—g( 0, 1)

From the previous analysis, we derive that has the following properties:

(i) is continuous

(ii) The restriction jay, is equal to the identity.
h Usinp a consequence of Brouwer's lemma, cannot exist. Thus, there idy(d;) 2

2
%;% such that

8s s0;8m 2 f 0;1g; we havejg,(S)] g:

This was the solution for the model[(5]1). In the PDE that we consider in this thesis,
we will handle other system similar to[(5[L). We will use the same contradiction argument
and construct a similar mapping which will be continuous but not necessarily equal to
the identity on the boundary. However, that property will be replaced by the following

deg @ 11 60

(in one dimension), which will lead to a contradiction from the degree theory.
IV.3. Construction of blowup solutions to other problems

In this paragraph, we would like to mention some constructions of blowup solutions, de-
rived by the above-mentioned construction method. In particular, we consider the following
parabolic equation

@ = u+ F(u):

First, we mention the work of Bressan [6] (see alsd [7]) with the nonlinearify(u) = €.
Then, we also have the paper by Bricmont and Kupiainen[9] with the nonlineariti (u) =
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uP;u 2 R*. Later, we have the construction of Merle and Zaag [61] with the nonlinearity
F(u) = juj tu.

Next, we also mention the paper by Nguyen and Zaag [67], with a quasi-critical double
source

F(u) = jujf tu+ juP 'u;a>1and 2R:

In%(2 + u?)
In addition to that, we also mention the cases where the nonlinearity contains gradient
terms such as in the work of Ebde and Zaag [20] with
] gy s 1 ) ]

F(u;r u)= jr uj9+ juj® *u; where 0 q<qyi = pel andp> 1.
Later, Tayachi and Zaag have treated in[[7/6] the critical case of the above problem where
g= ¢y andp > 3. In addition to that, we also mention the work of Ghoul, Nguyen and
Zaag [32] withF (u;r u) = jr uj>+ e“; > 1.

Moreover, Ghoul, Nguyen and Zaag have considered some vector cases (i.e parabolic
systems). For example, there is the work by Ghoul, Nguyen and Zaag|[31] who treated the

case of

-
E up  _  Jug)” “Uz

uz jugj tug g > L

Next, we would like to mention some cases where the solution takes complex values such
as the Complex Ginzburg-Landau (CGL) equation
@=N1+i) u+@+ i)juyf u; ; 2R

There were some cases of CGL which have been considered earlier such as: Zaag [86] for
the case where =0 and 2 ( o; o) for some small o > 0; Masmoudi and Zaag |58] for
the following subcritical condition

p (p+1) 2> 0
Later, Nouaili and Zaag treated in [[69] a critical case of the above-mentioned relation,
where =0and = p. This leaves unanswered the case where
p (p+1) 2-0and 60:

We also mention the following complex heat equation, where

F(uy=uP;p>1

In fact, this model has an important role in the literature. More precisely, wherg = 2, it

has been studied by many authors in the world (see 23], [39],/[42] and their references). In
particular, Nouaili and Zaag have constructed a blowup solution in the case whepe= 2.
Moreover, Harada obtained in[[43] the same result by using another method. However,
they leaved the unanswered question for the general case where 1.

VI. Our main results in this thesis
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In this section, we aim at introducing the main results in this thesis. In fact, our results
focus on the construction blowup solutions for a non-homogeneous PDE, a complex valued
equation, and a MEMS model of parabolic type.

VI.1. Existence of a stable blowup solution with a prescribed behavior for a
non-scaling invariant semilinear heat equation

We consider here the problem of the construction of a blowup solution to the following
semilinear heat equation:

(

Qu
u(0; x)

u+jujiP tuln (2 + u?);

Uo(x) 2 L* (RY); ©9

whereu: (x;t) 2 RN [0;T)! R,p>1and 2 R. In particular, we aim at constructing
a blowup solution which blows up in nite time T, only at one blowup pointa 2 RN. From
the invariance of equation [(5B) under translations in space, is always assumed to be the
origin. The following results follow [19] (this work is an collaboration with V. T. Nguyen
and H. Zaag):

Theorem 0.1 (See Theorem 1.1 in[19], page 16¥here exist initial data up 2 L (RV)
such that the corresponding solution to equatiof®3), blows up in nite time T = T(uo) > 0;
only at the origin. Moreover, we have

(i) For all t 2 [0;T), there exists a positive constan€C, such that
!
Co

P (54)

1 .
Ou:t) fo RO

P - .
(T Oin(T™ OF | gy

where (t) is the unique positive solution of the following ODE
W= "M (A)+2); lm (O)=+1; (55)

and the pro le f, is de ned by

1), ., ¥t
(p4p )1212 : (56)

fo(z)= 1+

(i) There exitsu (x) 2 C?(RNnfOg) such thatu(x;t) ! u (x) ast! T uniformly on
compact sets oRN nf0g, where

(p 12jxj2 st 4 . . 1
u (x —_ ——jlInjx asx! O 57
) e S i (57)
Remark 0.2. We derive from (i) that u(0;t) (t)! +1 ast! T, which yields that
our solution blows up in nite time T at x = 0. In addition to that, (ii) gives us the fact
that the solution blows up only at the origin.



20

Remark 0.3. When =0, (54) is the same as the standard power-like case treated!in [9]
and [61]. Itis dierentif 6 0. More precisely, the nal prole u has a di erence coming
from the extra multiplication of the size byjInjxjj » T, which shows that the nonlinear
source in equation(53) has a strong e ect on the dynamics of the solution in comparison
with the standard case =0.

Remark 0.4. Using the parabolic regularity, we can show that if the initial datag, 2
W21 (R"), then we have foi =0;1;2,
!

. o : C
1 5 | . 7 | n pi

|_l
wheref is de ned by (56).

Using the techniques given by Merle in_[60], we can construct a blowup solution with
arbitrarily given points. We would like to refer the readers to Corollary 1.6 in [19].

Next, we use the techniques of the interpretation of the parameters of the nite dimen-
sional problem in terms of the blowup time and blowup point given in_[61] to derive the
stability of the solution constructed in Theorem 1.

Theorem 0.5 (See Theorem 1.7 in[19])Consider & the solution constructed in Theorem
and denote byf its blowup time. Then, there existd), L* (RN) a neighborhood of
0(0) such that for allug 2 Uy, equation (53) with initial data u, has a unique solutioru(t)
blowing up in nite time T(up) at a single pointa(uy). Moreover, the statementqi) and
(i) in Theorem|[0.1 are satis ed byu(x  a(uo);t), and

(T(uo);a(up)) ! (T:;0) askuy ok 1 ry! O (58)

VI.2. Existence of a prole for the imaginary part of a blowup solution to a
complex-valued semilinear heat equation

Let us consider here the following complex heat equation
(
@ = u+ud

u(x; 0) ug(x) 2 L* RN;C ; 59)

whereu: (x;t) 2 RN [0;T)! Candp> 1.

Our goal is to construct a blowup solution to equation[(59), and to describe its asymp-
totic behavior as we did with {53).

a) Integer case forp

Inspired by the works of Nouaili and Zaag in[68]N dimensions) and Harada in[[43] (1
dimension) who treated the cas@ = 2, we extended in [17] the results of [68] to arbitrary
p > 1 which takes an integer value. Moreover, we obtained a better result than the one in
[68], in the sense that we derived the pro le of the imaginary part. More precisely, we have
the following result:
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Theorem 0.6 (See Theorem 1.1, page 6 inJl7]for eachp 2;p2 N andp; 2 (0;1),
there existsTy(p;p) > O such that for all T Ty; there exist initial data u® = u? + iu9;
such that equation(59) has a unique solution orf0; T), satisfying the following:

i) The solutionu blows up in nite time T only at the origin. Moreover, it satis es the

following estimates
!

1 : C
(T trtut) fo P . . p—— (60)
ST OINT 0]y, T D)
and |
(T )5 5In(T  Djual:;t) ' | c

p 1 - P —
J PR P EOIMT 0 L, IN(T 0%
(61)

wheref is de ned in (56) and go(z) is de ned as follows

2

w(z) = = : (62)

P
1)2._. 1
p 1+—(p4p) jzj2 *

i) There exists a complex functiom (x) 2 C?(RNnf0g) such thatu(t)! u = u,+ iu,
ast! T uniformly on compact sets oRN nfOg and we have the following asymptotic
expansions:

(P 1Pixi? 7T

. ' .
u (x) 801 In ixij ;asx! O (63)

and .

2p (p 1Pjxj* PT 1 as
(p 1) 8pjlnjxjj jInjxjj’
Remark 0.7. We easily derive from(60) that u blows up only at0 . Note that both the
real and the imaginary parts ofu blow up. We also show that the singularity ak is softer

x! O (64)

U,(X)

than u; because of the quantity——-.
1 Injxjj

Remark 0.8. From the case wherg = 2 treated by Nouaili and Zaag [68], we suspect the
behavior in Theoren] 0.6 to be unstable. This is due to the number of parameters in initial
data. More precisely, the number of parameters used in the proof is higher tiér1 which

is contributed from N for the blowup point andl for the blowup time.

Let us mention that Theorem[0.6 naturally leaves a question: can we extend the result
to the general case wherp > 1? This question will be treated in the next section.

b) General case forp

In this part, we handle the case where is not an integer number in [59). It took a
long time to ne-tune and develop our method such that the result holds in general. The
following is our main result (this is in fact the same statement as Theorefn 0.6, if one
replaces \For any integerp 2" by \For any p > 1"; of course, the proof is much harder
in the second case):
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Theorem 0.9 (See Theorem 1.1, page 3 in [16]For eachp > 1 and p; 2 (0; 1), there
exists T1(p; p1) > O such that for allT  Ty; there exist initial datau® = u$+ iu9; such that
equation (59) has a unique solutioru on [0; T) satisfying the following:

i) The solutionu blows up in nite time T only at the origin. Moreover, it satis es the
following estimates
!

1 : C

T t)e1u(;t) fo p _ - P 65

Ol b PERE O L, T
and

I
1 . C

T t)r1jIn(T  t)jua(:;t P . . P —

O OTIRT DR PERE 0 Ly T 017

(66)

wheref and go are de ned in (56) and (62), respectively.

i) There exists a complex functiom (x) 2 C?(RNnf0g) such thatu(t)! u = u,+ iu,
ast! T uniformly on compact sets oRN nfOg and we have the following asymptotic
expansions:

1

(P 17xj* »*

. | .
u (x) 8pi N X ;asx! O (67)

and .
2ivi2 o1
2p 5 (p - 1)JXJ ’ ;, asx !
(p 1) 8pjlnjxjj jInjxjj

U,(X) 0. (68)

VI.3. Pro le of touch-down solution to a nonlocal MEMS model

In this part, we are interested in the quenching phenomenon with MEMS models. More
precisely, we consider the following equation

8
3 Q= u+ z— ;i X2 5t> 0
1 w2 1+ 1 udx (69)
5 u(x;t) = 0;x2@;t> 0
Cu(x;0) = ug(x);x 2

We construct a solution to equation [(6P) such thatu touches down in nite time T only

at one pointa 2 (in the sense u(a;t) ! 1 ast! T). In addition to that, we also
aim at showing its asymptotic behavior in some neighborhood of the quenching point. The
following are our main statements:

Theorem 0.10 (Existence of a genching solution, see Theorem 1.1 in[18{Yonsider

> 0; > 0Oand a C? bounded domain inRN containing the origin. Then, there exist
initial data ug 2 C* () such that the solution of(69) quenches in nite timeT = T(up) > 0
only at the origin. In particular, the following holds:
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(i) The intermediate prole: For all t 2 [0; T)

Wik

(T 1)3 9 jij? C
A A 3+ =p p———: (70
1 u(:;t) 8" (T tjIn(T 1) jIn(T )] 7o
Lt ()
forsome = (;; ;T)>0.

(i) The nal prole: There exists u 2 C?() \ C() such thatu uniformly converges to
u ast! T;and
9 jxjz 3

LUt Tefinxg

asx! O (71)

In addition to that, we also proved the stability of the constructed quenching solution
in Theorem[0.10 under perturbations of initial data:

Theorem 0.11 (Stability of the constructed solution, see Theorem 1.12 in[18] Let us
consider 0; the solution which we constructed in TheoreO and we also de feas the
guenching time of the solution and' as the coe cient in front of the proles (70) and
(71). Then, there exists a open subsdl, in Co+ () ; containing &(0) such that for all
initial data ug 2 Oo; equation (69) has a unique solutioru quenching in nite time T (u)
at only one quenching poing(us). Moreover, the asymptotic behaviors of[70) and (71)
hold by replacingu(x  a(uo);t); and " by some (uo) and

(a(uo); T(Uo); (Uo)) ! (0;T;7); askup  Ookg(y ! O
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Chapter 1

Construction of a stable blowup
solution with a prescribed behavior
for a non-scaling invariant semilinear
heat equation "

G. K. Duong, V. T. Nguyen and H. Zaag

Abstract: We consider the semilinear heat equation
@ = u+juf uln (U*+2);

in the whole spaceRN, wherep > 1 and 2 R. Unlike the standard case = 0, this
equation is not scaling invariant. We construct for this equation a solution which blows up
in nite time T only at one blowup poing, according to the following asymptotic dynamics:

(P Dix aj? P

A TG

ast! T;

where (t) is the unique positive solution of the ODE
= Pln ( 2+2); tIlqu ty=+1:

The construction relies on the reduction of the problem to a nite dimensional one and a
topological argument based on the index theory to get the conclusion. By the interpretation
of the parameters of the nite dimensional problem in terms of the blowup time and the
blowup point, we show the stability of the constructed solution with respect to perturbations
in initial data. To our knowledge, this is the rst successful construction for a genuinely
non-scale invariant PDE of a stable blowup solution with the derivation of the blowup pro le.
From this point of view, we consider our result as a breakthrough.

Mathematics Subject Classi cation: 35K50, 35B40 (Primary); 35K55, 35K57
(Secondary).

Keywords: Blowup solution, Blowup pro le, Stability, Semilinear heat equation, non-
scaling invariant heat equation.

! This work was published in Tunisian J. Math, vol. 1, no. 1, pp 13{45, 2019.
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1.1 Introduction.

We are interested in the semilinear heat equation

@ = u+ F(u);
uO) = up2 Lt (RV); (1.1)
whereu(t) : RN I R; stands for the Laplacian in RN and
F(u)=jui’ 'uln (W*+2); p>1 2R (1.2)

By standard results, the model [(1]l) is well-posed in! (R") thanks to a xed-point
argument. More precisely, there is a unique maximal solution on;[D); with T +1 . If
T < +1, then the solution of (1.]) may develop singularities in nite timeT, in the sense
that

kKu(;t)k gvy ! +1 ast! T

In this case, T is called the blowup time ofu. A given point a 2 RN, we say thata is
a blowup point of u if and only if there exists @;tj) ! (a;T) asj ! +1 such that
ju(a;;t)j! +1 asj! +1.

In the special case where = 0, equation (1.1) becomes the standard semilinear heat
equation
@= u+juPf tu (1.3)

As a matter of fact, equation [1.B) is invariant under the following scaling transformation
U7l u ()= pru(x  2b): (1.4)

An extensive literature is devoted to equation[(1]3) and no review can be exhaustive.
Given our interest in the construction question with a prescribed blowup behavior, we only
mention previous work in this direction.

In [2], Bricmont and Kupiainen showed the existence of a solution df (1.3) such that

k(T t)p%u(a+ :IO (T 0jiin(T )j;t) o)kt rvy! 0; ast! T; (1.5)

where )
(p 1) 22 L
4p '
(note that Herrero and Vebzquez [|9] proved the same result with a di erent method; note
also that Bressan(|l1l] made a similar construction in the case of an exponential nonlinearity).

"o(z2)= p 1+

Later, Merle and Zaag[[13] (see also the note [12]) simpli ed the proof 6f [2] and proved
the stability of the constructed solution verifying the behavior [(1.5). Their method relies
on the linearization of the similarity variables version around the expected pro le. In that
setting, the linearized operator has two positive eigenvalues, then a non-negative spectrum.
In fact, they proceed in two steps:

- Reduction of an in nite dimensional problem to nite dimensional one: they show
that controlling the similarity variable version around the pro le reduces to the control
of the components corresponding to the two positive eigenvalues.
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- Then, they solve the nite dimensional problem thanks to a topological argument
based on index theory.

The method of Merle and Zaadg [13] has been proved to be successful in various situations.
This was the case of the complex Ginzgburg-Landau equation by Masmoudi and Z&gag [10]
(see also Zaad [19] for an ealier work) and also for the case of a complex semilinear heat
equation with no variational structure by Nouaili and Zaag [[16]. We also mention the
work of Tayachi and Zaag[|18] (see alsd [17]) and the work of Ghoul, Nguyen and Zaag
[6] dealing with a nonlinear heat equation with a double source depending on the solution
and its gradient in a critical way. In [5], Ghoul, Nguyen and Zaag successfully adapted
the method to construct a stable blowup solution for a non variational semilinear parabolic
system.

In other words, the method of[[13] was proved to be e cient even for the case of systems
with non variational structure. However, all the previous examples enjoy a common scaling
invariant property like ([L.4), which seemed at rst to be a strong requirement for the
method. In fact, this was proved to be untrue.

In addition to that, Ebde and Zaag [3] were able to adapt the method to construct
blowup solutions for the following non scaling invariant equation

@= u+julf tu+f(ur u); (1.6)
where
2p
p+1
These conditions ensure that the perturbatiorf (u;r u) turns out to exponentially small

coe cients in the similarity variables. Later, Nguyen and Zaag/[15] did a more spectacular
achievement by addressing the case of stronger perturbation ¢f (1.3), namely

jif(uir uj  C@+jujf+ jr uj); with q <p; <

. jujP tu

= u+juP u+ o ——;
Qu 4 IN?(2 + u2)

where 2 R anda > 0. When moving to the similarity variables, the perturbation turns

out to have a polynomial decay. Hence, whea > 0 is small, we are almost in the case of
a critical perturbation.

(1.7)

In both cases addressed in![3] and [15], the equations are indeed non-scaling invariant,
which shows the robustness of the method. However, since both papers proceed by per-
turbations around the standard case[(1]3), it is as if we are still in the scaling invariant
case.

In this paper, we aim at trying the approach on a genuinely non-scaling invariant case,
namely equation [1.1). The following is our main result.

Theorem 1.1 (Blowup solution for equation [1.1) with a prescribed behavior) There exist
initial data up 2 L* (RV) such that the corresponding solution to equatio(fL.1)) blows up
in nite time T = T(ug) > 0; only at the origin. Moreover, we have

(i) Forallt2 [0;T), there exists a positive constan€, such that
!

1 .. n : Co .
(OUEDTo P o) ST T

L1 (RN)
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where (t) is the unique positive solution of the following ODE

W= "M (20+2); lm (O)=+1; (1.9)

(see Lemmd 1.1)7 for the existence and uniqueness 9f and pro le f, is de ned by

1

fo(2) = 1+(p4p1)jzj2 " (1.10)

(i) There exitsu (x) 2 C?(RNnfOg) such thatu(x;t) ! u (x) ast! T uniformly on
compact sets oRN nf0g, where
(P DX 77 4injxj o

YO Tegingxi b 1

asx! O (2.112)

Remark 1.2. From (i), we see thatu(0;t) (t)! +1 ast! T, which means that the
solution blows up in nite time T at x = 0. From (ii), we deduce that the solution blows
up only at the origin.

Remark 1.3. Note that the behavior in(L.§) is almost the same as the standard case= 0
treated in |[2] and [13]. However, the nal proleu has a di erence coming from the extra
multiplication of the sizejInjxjj » T, which shows that the nonlinear source in equation
(1.7) has a strong e ect to the dynamic of the solution in comparison with the standard
case =0.

Remark 1.4. Item (i) is in fact a consequence off1.8) and Lemma[1.2D. Therefore, the
main goal of this paper is to construct for equatioifl.1)) a solution blowing up in nite time
and verifying the behavior(1.8).

Remark 1.5. By the parabolic regularity, one can show that if initial datai, 2 W2t (RV),
then we have foi =0;1; 2,
!

- o : C
1 sr | .. sp | n .

L1 (RN)

wheref is de ned by (1.10).

From the technique of Merle[[111], we can prove the following result.

Corollary 1.6. For arbitrary given set of m points X4; :::; Xm. There exists initial data ug
such that the solutionu of (1.1)) with initial data uo blows up exactly am points X1; :::; Xm.
Moreover, the local behavior at each blowup poikt is also given as in(1.8) by replacingx
byx x;andL!(RV) byL! (jx xj ;) for some ; > 0 small enough.

As a consequence of our technique, we prove the stability of the solution constructed in
Theorem[1.] under the perturbations of initial data. In particular, we have the following
result.
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Theorem 1.7 (Stability of the solution constructed in Theorem[1.1) Consider 0t the so-
lution constructed in Theorem and denote by its blowup time. Then there exists
Uo L* (RY) a neighborhood ofi(0) such that for allug 2 Uo, equation (L.1)) with initial
data up has a unique solutioru(t) blowing up in nite time T(ug) at a single pointa(up).
Moreover, the statementgi) and (ii) in Theorem[1.] are satis ed byu(x  a(uo);t), and

(T(uo);a(up)) ! (T:0) askuy ok 1 rry! O (1.12)

Remark 1.8. We will not give the proof of Theorem 1]7 because the stability result follows
from the reduction to a nite-dimensional case as in[13] with the same proof. Here we only
prove the existence and refer to [13] for the stability.

1.2 Formulation of the problem.

In this section, we rst use the matched asymptotic technique to formally derive the be-
havior (1.8). Then, we give the formulation of the problem in order to justify the formal
result.

1.2.1 A formal approach.

In this part, we follow the approach of Tayachi and Zaag [18] to formally explain how to
derive the asymptotic behavior [(1.8). In fact, we introduce the following self-similarity
variables

uxt) = (OWY;9); y:p%; s= In(T t); (1.13)

where (t) is the unique positive solution of equation[(1]9) and (t) ! +1 ast! T. Then,
we see from[(1]1) thatv(y; s) solves the following equation: forally;s) 2 RN [ InT;+1)

n (3w?+2)

1
— =\ ) 1
@ WSy w h(s)w + h(s)jwj? *w n(2+2) (1.14)
where
hs)=e s D Y(s)In ( 3(s)+2); (1.15)
and
1(s)= (T e ?®): (1.16)
Note that h(s) admits the following asymptotic behavior ass! +1 ,
1 2Ins 1
h(S) = m 1 g 2 + O ? ; (117)

(see item ii) in Lemma[1.2]L for the proof of[(1.17)). From[(1.13), we see that the study

of the asymptotic behavior ofu(x;t) ast! T is equivalent to the study of the long time
behavior ofw(y;s) ass! +1 . In other words, the construction of the solutionu(x;t),
which blows up in nite time T and veri es the behavior [1.8), reduces to the construction
of a global solutionw(y; s) for equation (1.14) satisfying

. 1
0< o limsupkw(s)k 1 gvy — forsome o> 0; (1.18)
0

sl +1
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and

(p Ly* *rt |

w(y;s) 1+ 2ps

0 ass! +1: (1.19)
Ll (RN)

In the following, we will formally explain how to derive the behavior|(1.19).
Inner expansion

We remark that 0; 1 are the trivial constant solutions to equation|(1.14). Since we are
looking for a non zero solution, let us consider the case when! 1 ass! +1 (up to
replacingw by w if necessary). We now introduce

w=1+ w; (2.20)
then from equation (1.14), we see thaiv satis es

@w = L(w)+ N(w;s); (1.21)
where 1
L = Ey:r +1d; (1.22)
and

In ((3(w+1)2+2)
in ( 2+2)

N (w;s) = h(s)jw+1j° Y(w+1) h(s)(w+1) w; (1.23)

with  1(s) and h(s) are de ned in (1.18) and [1.15), respectively. Note thatN admits the
following asymptotic behavior (see Lemmp 1.22 for the proof of this one):

jwj?

wlns +0 +O(jwj®) as w;s)! (0;+1): (1.24)

g2

2
N (w;s) = %+ 0

Sincew(s)! Oass! +1 andN is formally \quadratic" in w, we see from equation
(1.21) that the linear part will play the main role in the analysis of our solution. Let us
recall some properties of.. In fact, L is self-adjoint inD(L) L?(RN), whereL?(RV) is
the weighted space associated with the weightde ned by

e 4

N ?
2

(y) =

and n 0

More precisely, we have
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When N =1, all the eigenvalues olL are simple and the eigenfunction corresponding
to the eigenvalue 1 % is the Hermite polynomial de ned by

Rl gymym o

In particular, we have the following orthogonality
z
hihy dy =12 i; 8(i;j) 2 N%
R
When N 2, the eigenspace corresponding to the eigenvalue 17 is de ned as
follows
En= h =h, h;forall 2NV;jj=m;jj= 1+ + y : (1.26)
Since the eigenfunctions of is a basic ofL?, we can expandw in this basic as follows
X
w(y;s) = w (s)h (y):
2NN

For simplicity, let us assume thatw is radially symmetric iny. Sinceh with j j 3
corresponds to negative eigenvalues bf we may consider the solutiorw taking the form

W= Wy + Wa(s)(jyj2  2N); (1.27)

wherejwy(s)j and jw,(s)j goto O ass! +1 . Injecting (L.27) and (1.24) into (1.21), then
projecting equation [1.21) on the eigenspadg, with m =0 and m = 2;

8

% wd = wp + g w5 +8nws + O

(jwoj + jwoj)In's
52

+O JWOJ +JW2J + O jW0j3+jW2j3 :
L 1.28
(iWoj + jwai)In s (1.28)

g2

% W3 = 4pw3 + pwew, + O

jWoj? + jwaj?

+0 + O jwoj® + jwyj® ;

ass! +1 . In addition to that, we now assume thatjwg(s)j j w»(s)j ass! +1 ,then
(1.29) becomes the following
8

2 Wl = wo+ O(w,j?) + O Mane
S o ass! +1: (1.29)
T wg=4pwi+ ofjwy?) + O MEne

Let us consider the following cases:

- Case 1. Eitherjw,j = O '2—23 or jwyj st ass! +1 ,then the second equation in
(1.29) becomes
jWojins

0 —
w, = 0O <

ass! +1;
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which yields
Injw,j = O In?s ass! +1,;

this contradicts the assumption thatw,(s) ! 0 ass! +1 .
- Case 2:jw;,j '2—25 ass! +1 ,then (1.29) becomes

( W = Wo + O(jwj?);
ass! +1:
W3 = 4pw3 + o(jwzj?);
This yields (
Wo = O Siz ;
L L ass! +1: (2.30)
W2 = g0t 0(3);
Substituting ([L.30) into (IL.29) yields
( wg=0 5 ;
ass! +1;
wi=4pws+ O o2
from which we improve the error forw, as follows
8 1
5 W = O o) ;
| .
5 o 1 o n?s ass! +1: (1.31)
© 2T 4ps 2
Thus, from (1.20), (1.27) and [(1.3]1), we derive
y2 N In*s ., _\
;89 =1 —+ —+ — L(R™); 1.32
WY EL gt ot O g LARY); (1.32)

ass! +1 . Note that the asymptotic expansion|(1.3R) also holds for ajyj K for some
K> 0.

Outer expansion

The asymptotic behavior of [1.3R) suggests that the blowup pro le may be depend on
the following variable
2=

From (L.32), let us try to search a regular solution of equatior] (1.14) of the form

N 1 . l N
;9) = +o—+o0 = 41 .
w(y;s) o(2) 2ps 0 S in Li,c(R") ass 1; (1.33)
where ¢ is a bounded, smooth function to be determined. Fron] (1.32), we impose the
following condition

o0)=1and o(z) O (1.34)
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Sincew(y; s) is supposed to be bounded, we obtain from Lemna 1]23 that

n (3w?+2) jwPw C
In ( 2+2) p 1 s’

h(s)iwj® *w
Note also from [1.3B) that

loc

Wi fw j o(2)iP  o(z) = O % in LL (RV)ass! +1

Injecting (1.33) into equation (1.14) and comparing terms of orde® (1), we derive the
following equation

1. o) ,Jjd® o) _ 4. N.
2z.r o(2) 0 1+ 0 1 =0; 8z2R"“: (1.35)
Solving (1.3%) with condition (1.34), we obtain
o2)= 1+ajz? 77 (1.36)

for some constantc, 0 (since we want o to be bounded for allz 2 RY). From ({.33),
(1.36) and a Taylor expansion, we obtain

cy? , N
(p s 2ps

w(y;s) =1 +0 % ; 8yl Kass! +1;

from which and the asymptotic behavior|(1.32), we nd that

_p 1
0= 5

In conclusion, we have just derived the following asymptotic pro le
w(y;s) ' (y;s) as s! +1; (1.37)

where

Ca . Dy TN
(y;9)= 1+ ~aps + s (1.38)

1.2.2 Formulation of the problem.

In this subsection, we set up the problem in order to justify the formal approach presented
in the Section[1.2.1.. In particular, we give a formulation to prove itemif of Theorem
[1.1. We aim at constructing for equation[(1.]l) a solution blowing up in nite timeT only
at the origin and verifying the behavior [1.8). In comparison with[(1.13), our problem is
reduced to the construction of a solutiorw(y; s) for equation (1.14) de ned for all (y;s) 2
RY [so;+1);s0= InT and satisfying {1.19). The formal approach given in Subsection
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(see[(T.37)), we are interested in the linearizatiow around prole ', de ned by
(1.38). Let us introduce

aly;s) = w(y;s) ' (y:9); (1.39)
where' is de ned in (1.38). From (1.14), we see thag satis es the following equation

@q=Lg+ Va+ B(g+ R(y;s)+ D(a;9); (1.40)

whereL is the linear operator de ned in [1.22), and

= P rp 1 .
v o1 1; (1.41)
g+ 'iP 1 ' 'p ppl

B(g = )9+ (9+ ") P " "q. (1.42)

p 1
R ' ' | - ' 1.43
(yis) = P o itp 1 @ (1.43)

and D is de ned as follows

D(@;9=(a+") h(s) p—ll jg+ " Pt 1+h(s)ia+ " P g+ " )L(q+ 5s) ;
(1.44)
where
2 2 1 4
n( 7+2) 2+ 2" YTh(vd |
and h; 4(s)and' being de ned by (1.1%), [1.16) and|(1.38) respectively, and

f(z)=In ( 22°+2);z2 R:

L(v;s) = Vf Ru)(v  u)du; (1.45)

Thus, problem (1.8) is reduced to construct for equatiorf (1.40) a solutiomsuch that

ka(:;;s)ki: rvy ! Oass! +1:

Since we construct for equation| (1.40) a solutiog verifying kg(s)k.: ! Oass! +1,
and the fact that

. . T C
iB(@j Cjg™@P;  KR(S)ki: (rn) + KD(Q; 9KL: (rr) <

(see Lemmas 1.24, 1.25 and 1|26 for these estimates), we see that the linear part of equation
(1.40) will play an important role in the analysis of the solution. The property of the linear
operator L has been studied in previous section (see pdgé 39), and the potertiahas the
following properties:

i) Perturbation of e ect of L inside the blowup regionfjyj K P

ek
kKV(s)k,2! 0 ass! +1:

i) For each > 0, there existK > 0 ands > 0 such that

sup V(y;s)+ 5 P

pLgK;ss 1
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Since 1 is the biggest eigenvalue a&f, the operato|5L + V behaves as one with a fully
negative spectrum outside blowup regioffjyj K sg, which makes the control of the
solution in this region easily.

Since the behavior of the potentiaV inside and outsgie the blowup re%on is di erent,
we will consider the dynamics of the solution fojyj 2K "™ sand forjyj K s separately
for some K to be xed large. We introduce the following function

(Y:9)= o ﬁl\ée ; (1.46)

K's
where ¢2 CJ [0;+1 );k oki: (rvy 1 and

(x) = 1 forx 1
A= 0 forx 2

and K is a positive constant to be xed large later. We now decomposgby
q=qg+(1  )g= o+ G (1.47)

(Note that supp(q,) fj yj 2K P sgand supp@) fi vj K P sg). Since the eigenfunc-
tions of L span the whole spac&?(RN), let us write

B(Y;S) = B(S)+ tu(S) y+y' &(s) y 2Tr(a(s)+ q (y;s); (1.48)

wheregn(s) = q(s) L\ ijem and
z h
8 2NY; q(s)= ;9 (y)dy; A = ——5; (1.49)
N kh k2,

R

and X
q (y;s) = q (s)h (y): (1.50)

2NN j 3
In particular, we denotecy = (thii)1 i n @and p(s) isa N N symmetric matrix de ned
explicitly by 7
®(s)=  aM(y)dy =(ijl1 ij n; (1.51)
with

(1.52)

oL,
M(y)_ 8ylyl 4

16 N '
Thus, by (1.47) and [1.48), we can write
ay;s) = a(s)+ a(s) y+y' a(s) y 2Tr(a(s)+ q (v;s)+ G(y;9): (1.53)

Note that g,(m =0;1;2) andq are the components of},, and not those ofq.
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1.3 Proof of the existence assuming some technical
results

In this section, we shall describe the main argument behind the proof of Theor¢gm]1.1. In
order to avoid winding up with details, we shall postpone most of the technicalities involved
to the next section.

According to transformations [1.18) and [(1.39), the proof of itemi§ of Theorem|1.]
is equivalent to showing that there exists initial datagy(y) at the time sy such that the
corresponding solutiong of equation [1.40) satis es

ka(s)k.: (rvy! Oass! +1:

In particular, we consider the following function
A
doic (Y) = g (do+ dity) (2y;0); (1.54)
0

as initial data for equation (1.40), where ¢o;d;) 2 R™*N are the parameters to be deter-
mined, s, > 1 and A > 1 are constants to be xed large enough, and is the function

de ned by (IL.46).
We aim at proving that there exists (do;d;) 2 R RN such that the solution g(y; s) =
Oho:a: (Y; S) Of (L.4Q) with initial data gy, (y) satis es
KOo:a, (S)kL 2 (rvy ! O ass! +1:

More precisely, we will show that there existsdp; d;) 2 R RN such that solution gy, .4, (Y; S)
belongs to the shrinking setS, de ned as follows:

De nition 1.1 (A shrinking set to zero) For all A 1;s 1 we de ne Sx(s) being the
set of all functionsq2 L* (RV) such that

. A .. A . A%n?s ,
o o Il g %) <+ 81l i N
q (y) A AZ

. — k k p—;
1+jyj® gy  S? Bk ) s

where, th = i , ; v B = %y , g N d and g are de ned as in ([L.53).

We also denote byS,(s) being the set

Remark 1.9. For eachA 1;s 1, we have the following estimates for atfs) 2 Sa(S):

. . CAZ?In?s .
jacy; 9)i —g ivi®); 8y2RN; (1.55)
CA
Ka(s)Ki 1 (fiyj 2k P sg) P—g; (1.56)
CAZ

Ka(S)Ks () (1.57)

o
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In fact, we aim at proving the following central proposition which implies Theorerp 1.1:

Proposition 1.10 (Existence of a solution trapped inSa(s)). There existsA; 1 such
that for all A A1, there existss;(A) 1 such that for all sq s1(A), there exists
(do;di) 2 R™N such that the solutiong(y;s) = uya, (Y;S) of (L.40) with initial data

a(Y;So) = doias(Y) de ned in (1.54), satis es
q(s) 2 Sa(s); 8s2[sp;+1):
From (1.57), we see that once Propositioh 1.]L0 is proved, iten) (of Theorem[1.]

directly follows. In the following, we shall give all the main arguments for the proof of this
proposition assuming some technical results which are left to the next section.

As for initial data at time so de ned as in (1.54), we have the following properties:

Proposition 1.11 (Properties of initial data (1.54)). For eachA 1, there existss,(A) > 1
such that for allsy, s;(A) we have the following properties:

i) There existsDas, [ 2;2] [ 2;2]N such that the mapping

. RI+N 1+N.
1R R,

(do;dy) 7! 0r 1
is linear, one to one fromDa.s, onto §A(so). Moreover, we have

1(@a;s,) @A (S0);

where S, (s) is de ned as follows:

S9= S5 Sin . (1.58)
ii) For all (do;d;) 2 Dass,, We have ¢,.q, 2 Sa(So) With strict inequalities in the sense
that
i ol ot I il 2 o2l < %gso; 81 i) N
A
TF VP s g < S—g; e O
where (Yy;So) is de ned in ), oo ui)1i no( 2i5)1 5 N3, e arethe components

of g0, dened as in (L.53), g4, is de ned by (L.54).

Proof. See Propositon 4.5 in Tayachi and Zaa@ [18] for a similar proof to this proposition.
O

From now on, we denote byC as the universal constant which only depends oN,
whereK is introduced in (1.46). Let us now give the proof of Propositioh 1.1.0 to complete
the proof of item (i) of Theorem[1.].
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Proof of Proposition 1.10 | We proceed into two steps to prove Propositiop 1.10:

- In the rst step, we reduce the problem of controllingqg(s) in Sa(s) to the control of
(0p; o )(s) in Sa(s), where gy and ¢ are the component ofg corresponding to the positive
modes de ned as in [(Z.53) andS, is de ned by (1.58). This means that we reduce the
problem to a nite dimensional one.

- In the second step, we argue by contradiction to solve the nite dimensional problem
thanks to a topological argument.

Step 1: Reduction to a nite dimensional problem

In this step, we show througha priori estimate that the control of q(s) in Sa(s) reduces
to the control of (p; a1)(s) in 8a(s). This mainly follows from a good understanding of the
properties of the linear partL + V of equation (1.40). In particular, we claim the following
which is the heart of our analysis.

Proposition 1.12 (Control of g(s) in Sa(s) by (%; &)(s) in Sa(s)). There existsA; 1
such that for allA  Ags, there existssz(A) 1 such that for allsy  s3(A), the following
holds: If g(y;s) is the solution of equation(.40) with initial data at time so, given by
(1.54) with (do; d1) 2 Das,, and q(s) 2 Sa(s) for all s 2 [sg;s] for somes; sp and
qd(s1) 2 @R(s1), then:

(i) (Reduction to a nite dimensional problem): We havecp; th)(S1) 2 @a(s1).

(i) (Transverse outgoing crossing): There existg > 0 such that

8 2(0; o); (Giau)(si+ )6a(si+ )

Hence, q(s; + ) 62Sa(s; + ), where S, is de ned in (1.58) and Da;s, is introduced in
Proposition [1.17.

Let us suppose for the moment that Propositiop 1.12 holds. Then, we can take advantage
of a topological argument quite similar to that already used in Merle and Zaag [13].

Step 2: A basic topological argument

From Proposition|1.12, we claim that there existsdp;d;) 2 Da:s, Such that equation

(1.40) with initial data given as in (1.54), has a solution
Qo;d1 (S) 2 Sa(S); 8s2 [sp;+1);

for suitable choice of the parameteré&; K and sy. Since, the argument is analogous as in
[13], we only give the main ideas.

In fact, let us considerK; A and s, such that Propositions[ 1.1l and 1.12 hold. From
Proposition[1.1], we have

8(d0’ dl) 2 DA;SO; %O;dl(y; SO) = do;d1 2 SA(SO)a



a7

where 4,4, iS de ned by (1.54). As a matter of fact, 4,4, 2 L* (RV) for all (do;dy) 2
Das,,» We then deduce from the local existence theory in' (RV) that we can de ne for
each (o;d;) 2 Da:s,, @ maximum time s (do; d;) 2 [So; +1 ) such that

Chio:d1 (S) 2 Sa(S); 852 [So;s (do; 0h)):
If s (do;dy) =+ 1 for some €lo; d;) 2 Dass,, then we have the conclusion of Proposition

[1.10.

Otherwise, we argue by contradiction and assume that (dy;d;) < +1 for all (do; d;) 2
Das,- By continuity and the de nition of s, we deduce thatgy,.q,(S ) is on the boundary
of Sa(s ). Using item (i) in Proposition [1.12, we derive the following

(G h)(S ) 2 @a(s ):
Hence, we may de ne the rescaled function
Das, 7! @[ 1; 1N
SZ
(do; dy) ! K(Cbich)(s ):
From item (i) of Proposition[1.1], we see that ifdo; d1) 2 @as,, then

a(So) 2 Sa(So); (G A)(So) 2 @a(So):

From item (ii ) of Proposition|1.12, we see thag(s) must leave S, (S) at s = S, this yields
that s (do;d;) = so. Therefore, the restriction of to @a.s, IS homeomorphic to the
identity mapping, which is impossible thanks to index theorem, and the contradiction is
obtained. This concludes the proof of Proposition 1.10 as well as item) 6f Theorem[1.],
assuming that Proposition 1.1P holds. O

The proof of Theoren{ 1.1

As we mentioned in the above, itemi] of Theorem[1.] follows from Propositiofi 1.10
and the proof of item (i) is the following:

Proof of item (ii ) of Theorem[1.1. The existence ofu 2 C?(RN nf0g) follows from the
technique of Merle [[4]. Here, we want to nd an equivalent formation fou near the
blowup point x = 0. The case = 0 was treated in [19]. When 6 0, we follow the
method of [19], and no new idea is needed. Therefore, we just sketch the main steps for
the sake of completeness.

We considerKy > 0, a constant to be xed large enough, angixqj & 0 small enough.
Then, we introduce the following function

(Xo; 5 )= Hto(xo))u(x;t); (1.59)
h

. N to(Xo) .
where (; )2 R T OtO(OXO),l , and

D= X0+ | T WOtk (T toxo) ; (1.60)
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with to(Xo) being uniquely determined by

ixol = Ko (T to(xo)iIN(T to(xo))i: (1.61)

From (1.8), (1.59), (1.60) and [(1.6]1), we derive that

C
sup jv(Xo; ; 0) " o(Ko)j : = !
i i<2iIn(T to(xo))j? 1+(JIn(T  to(X0))j*)

0 asxg! 0

1
p 1

where' o(x) = 1+ ®Djxj2 " *. As in [19], we use the continuity with respect to initial
data for equation (1.]) associated to a space-localization in the bal(0;j j < jIn(T
to(Xo))j*) to derive

sup jV(Xo; 7 ) Wo( )i (xo)! O asxo! O (1.62)
§i<iin(T to(xo)j?; 2[0:1)

1

, L
wherewk,( )= (1 )+ @ 4ng0 =

From (L.60) and (1.62), we deduce

, , 1 »t
U () = lim uGoit) = (o) imvixsi0 ) (tolo)) Pp= T (169
Using the relation {1.61), we nd that
T  to(Xo) L and In(T  to(xo)) 2In(jXqj); asxo! O; (1.64)
2K o] In jXol]

The formula (1.11) then follows from Lemmd 1.17] (1.63) and (1)64). This concludes
the proof of Theoren 1.]1, assuming that Proposition 1.1.2 holds. O

1.4 Proof of Proposition 1.12. |

This section is devoted to the proof of Propositioh 1.12, which is the heart of our analysis.
We proceed into two parts. In the rst part, we derivea priori estimates on (s) in Sa(S).

In the second part, we show that the new bounds are better than those de ned Bx(s),
except for the rst two components (p; ). This means that the problem is reduced to
the control of a nite dimensional function (q; 1), which is the conclusion of item () of
Proposition[1.12. Item (i) of Proposition[1.12 is just direct consequence of the dynamics
of g and ;. Let us start the rst part.
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1.4.1 A priori estimates on  ((S) in Sa(s).

In this part we derive the a priori estimates on the componentsy; q ; g which implies the
conclusion of Propositio} 1.12. Firstly, let us give some dynamics@f op = (). i ~ and
& = (%ij)1 ij ~. More precisely, we claim the following.

Proposition 1.13 (Dynamics of equation (1.4D)) There existsA, 1, such that8A A,
there existss;(A) 1, such that the following holds for alég  s4(A): Assume that for all
S 2 [so;S1] for somes;  sg, Q(S) 2 Sa(S), then, we have for alls 2 [s; s1]:

(i) (ODE satis ed by the positive and null modes)

m C
qs) 1 5 d() 4 8m=0iL (1.65)
and
2 Clins
B(s) + () o (1.66)
(ii) (Control of the negative and outer parts)
q (y;9) C s (s )?p2 .
1+—jyj3 2 ? (S )+ e A+e Ac (167)
kap(s)K, 1 p% (s )+ A% 7 +Ae° (1.68)

Proof. We proceed in two steps:
- Inthe rst step we project equation (1.40) to write ODEs satis ed byqg, form = 0; 1; 2.

- In the second step we use the integral form of equatioh (1]40) and the dynamics of the
linear operatorL + V to derive a priori estimates onq and G.

Part 1. ODEs satisfying by the positive and null modes

We give the proof of [1.6p) and[(1.66) in this step. However, we only deal with the
proof of (1.66) because the other one is the same the propf (1.65).

In fact, by formula (1.51) and equation |(1.4D), we write for each 1 i;j N,

z
i (5) . [La+ Va+ B(g)+ R(y;8)+ D(q;9)] % %

dy Ce ® (1.69)
Using the assumptionq(s) 2 Sa(s) for all s 2 [sg; s1], we derive the following estimates
for all s2 [so;Sy]: 7
YiYi

L@ %

C.
dy <t

4
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On the other hand, from Lemmas 1.24, 1.25 arid 1]26, we have

Z
YiVi i 2 CA,
Vq Z? e dy + ng;i:j (s) <K
Wi i C.
Bl@ =5~ o d =t
‘ YiYi i C
Yi¥i i <.
~ R 8 4 dy s3’
_ A/ Clns
Dy XA Loy =2

Gathering all these above estimates td (1.69) yields

0 2 Cins,
C|2;i;j + qu;i;j ?

This concludes the proof of[(1.66).
Part 2: Control of the negative and outer parts

We give the proof of ) and[(1.68) in this part. In fact, the control ofy and g
mainly bases on the dynamics of the linear operatdr + V. In particular, we use the

following integral form of equation [1.4D): for eacts So,
Z, et
ais) = K(s; )a( )+  K(s; )[B(@( )+ R()+ D(q; )ld =  #(s; ); (1.70)

i=1
wherefK(s; )gs is de ned by
@K(s; )=(L+ V)K(s; ); s>;

K(; )= 1d (.71)
and
ZS
#ai(s; )= K(s; )a( ); #us; )= K(s; )B(a)( )d;
ZS ZS
#3(s; )= K(s; )R(; )d;  #a(s; )= K(s; )D(q; )d:

As a matter of fact, in (1.70), it is clear to see the strong in uence of the kern&. It is
therefore convenient to recall the following result which the dynamics of the linear operator
K=L+V.

Lemme 1.14 (A priori estimates of the linearized operator in the decomposition irj (1.53))
For all 0, there existsss( ) 1, such that the following holds: If ss( ) and
v 2 L2(RN) satisfying

P Er— + kvek; 1 (g <1; (172)
T4y gy oo D)
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then,8s2 [; + ], the function (s)= K(s; )v satis es

: Ces (s )2+1) ,. . .. p- .
1+(jyy'jsé) 1 (RN ( s ) (JVol * Jvij + * sjvzj)
GO v o P2 _ (1.73)
+Ce 2 1+jyj3 L1 (RN) + C_rsz kVekLl (RN)»
and
!
S 1. . 3 s
K ey ki ) C€ stjvij+ st + Ce T kvekus i: (L74)
1=0 1+JY] L1 (RN)

Proof. The proof of this result was given by Bricmont and Kupiainen’]2] in one dimensional
case. It was then extended in higher dimensional case in Nguyen and Zaag [14]. We kindly
refer interested readers to Lemma 2.9 in [14] for a detail of the proof. O

In view of formula (1.70), we see that Lemmp 1.14 plays an important role in deriving
the new bounds on the componentg and ¢. Indeed, given bounds on the components
of g, B(q), D(g) and R, we directly apply Lemma[1.14 withK(s; ) replaced byK(s; )
and then integrating over to obtain estimates onq and . In particular, we claim the
following which immediately follows [(1.6]7) and[(1.68) by addition.

Lemme 1.15. Forall A 1A 1; 0, there existssg(A; ) 1 such that8s
Ss(A; ) andq(s) 2 Sa(s);8s2[; + ] where So, We have the following properties:

a) Case So: foralls2[; + 1],

i) The linear term #,(s; )

5 (s )?p2
(#a(s: ) o e TAre” A
1+ L1y s? ’
AZe 5+ Aes

k(#l(s, ))ekLl (RN) C

1
S2

i) The quadratic term#;,(s; )

(#2(s; ) C(s ). . C(s ).
L+)yP® Ly g KRS ek ) szt
where = (p) > 0.
lii ) The correction term #5(s; )
(#s(s; )) C(s ). . C(s ).
L+Jy° L1y g M Dk si
iv) The nonlinear term #4(s; )
(#a(s; ) C(s ) C(s )
— —_—, k(# S, K 1 (rn 3 .
1 + Jyj3 i (RN) Sz ( 4( ))e L (R ) ss
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b) Case = sp, we assume in addition

. A . AKlIn®s
om(s0)i i iG(So)] 2 °.
0 0
q (Y;So) A A
T —a —: Koe(So)K_ 1 (rn —
1+ s 2 Ge(So)KL1 (RN 19—80

Then, for all s2 [sg;Sp + ] we havea) and the following properties:

isi%) cA CA(L+ & )
ETEER o k(#a(s; K o :
1+ JyJ3 L1 (RN) g2 ( l(s SO))E L1 (RV) p <

Proof. The proof simply follows from the de nition of S, and Lemma[ 1.14.

In fact, from the fact that g2 Sa(s), we derive that Lemmag 1.24 |, 1.25 and 1.26 hold.
Then, we obtain the following:

x . C  B(9 (s C C
B@m(s) S % o KB(@e(S)kis rvy T
m2N";jmj=0 1yl L1 (RN) S2
and
S C R (s) C C
m2N" jmj=0 £ 1P Ly $72 s
and
@i+ 2@ © SIS | b Sk c.
A Y ey g

m2N";jmj=0
where = (p) > 0.

We simply inject these bounds to the a priori estimates given in Lemnja 1]14 to obtain
the bounds on #,) and #, . form=2;3;4.

On the other hand, the estimates or#; directly follow from Lemma|1.14 and the fact
that q(s) 2 Sa(s).

Thus, we get the conclusion the proof of Lemnia 1]15. O

Bearing in mind that we are in the proof of Propositior] 1.13. Indded, from formula

(1.70) and Lemma[ 1.15, estimates irf (1.67) andl (1]68) simply follow by addition. Thus,
conclusion of Propositiorj 1.13 follows. O
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1.4.2 Conclusion of Proposition 1.12 ]

In this part, we give the proof of Proposition 1.1R which is considered as a consequence of
the dynamics of equation [(1.40) given in Propositioh 1.13. Indeed, iten) (of Proposition
directly follows from the following result:

Proposition 1.16 (Control of q(s) by (tp; a)(S) in Sa(s)). There existsA; 1 such that
8A Ay, there existss;(A) 1 such that for allsy,  s7(A), the following holds: If we
have

a) q(SO) = doids (Y), where (dO; dl) 2 DA;SO!
b) For all s2 [so;S1], A(S) 2 Sa(S).

Then, for all s 2 [sg; 1], we have

- . . A?In?s
8ij 2f1  INg o (S)] < @ (1.75)
q (y;s) A A?
—_— k Ki 1 (pN —P—=; 1.7
1+ JYJS L1 (RN) 252’ qa(S) L5 (RT) 2 s’ ( 6)

whereDps, is introduced in Proposition[1.1] and g4, is de ned as in (L.54).

Proof. Since the proof of [(1.76) is similar to the one written in[13], we only deal with the
proof of (1.75) and refer the readers to Proposition 3.7 in [13] for the proof ¢f (1,76). We

argue by contradiction to prove |(1.75).
Indeed, leti;j 2f1;, ;Ngand assume that there is 2 [Sp;s;] such that

AZIn?(s)

: : : . A%In?(s
852 [s0;S);  jij (S)i < e and jop; (s)j= #:

82

In addition to that, we assume thatg; (s ) > O (the negative case is the same), then,
we have on the one hand

0 d A?In’s _ 2A%Ins  2A%In®s
G () ds 2 = ~ o

On the other hand, we have from[(1.66),

2A?In?s , Clns
s3 s3

q(2);i;j (S )
The contradiction then follows if 22 > C . This concludes the proof of Proposition 1.16.

We now come back to the proof of itemij of Proposition[1.12. Indeed, from Proposition
1.16, we see that ifg(s) 2 @R(s1), then, the rst two components (op; ¢h)(S1) must be in
@A (s1), which is the conclusion of item ).
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The proof of item (i ): Indeed, it is easy to deduce from[ (1.65) the following property:
If op(sy) = "og for some"y 2 f 1;1g, then, the sign Ofd—SCb (s1) is opposite to the sign of
1
d "oA
ds 2 (s1)
Moreover, u;; has the same property asp, for all i 2 f 1;::;; Ng.

Hence, €p; cu)(s) will actually leave S5(s) at s;  so for sg large enough. Thus concludes
the proof of Proposition[1.1P.

1.5 Some elementary lemmas.

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

Lemme 1.17. For eachT > 0, there exists only one positive solution of equatioffL.9).
Moreover, the solution satis es the following asymptotic:

) (T t) #1jIn(T 1t)j #1; ast! T; (1.77)

where =(p 1) 71 B,

Proof. Let us consider the following ODE
°= Pln ( 2+2); (0)>0: (1.78)

In fact, the uniqueness and local existence are derived by the Cauchy-Lipschitz property.

Let Tmax; Tmin b€ the maximum and minimum time of the existence of the positive
solution, i.e. (t) exists for allt 2 (Tmin; Tmax). We now prove that Tpox < +1 and
Tmin = 1 . By contradiction, we suppose that the solution exists on [@ 1 ), we have

Z Z,,

. — 41
tl!llrpl 0 PIn ( 2+2)dt t1|!|n11 0 dt 1

t1 0

R
t
However, we can prove that ;'

dt is bounded by using the fact that

0
Pin ( 2+2)

1

———dt< +1; forall 2R > 1
) tpln(t2+2)d ; for a andp

The contradiction then follows. In particular, we can provel,, = 1 by using a similar
argument.

Thus, we have proved that for every solution of (1.78), there exists a maximal time
Tmax 2 (0;+1 ) such that exists on (1 ;Tnax) and

(t)y! +1 ast! Tna:
In addition to that, if 1, a solution of {1.78) which blows up afTy, then,

(t+ Ty T,) blows up at Ty:
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Then, we can derive that for everyT > 0, there exists 1 a solution of (1.78) such that
() +1 ast! T:

We now aim at proving the uniqueness. Indeed, we suppose that; , satisfy equation
(1.78) and blow up a the same tim& > 0. If there existst < T such that

1(t ) 8 o(t):
By using the following fact
YA 1
" du
= _— 1.7
T, wh @y (79)
we deduce that 7

Z(t ) du _ O
() UPIn (uz+2)

This is impossible and we obtain the uniqueness.

Let us now prove [(1.7]7). Using[(1.79), we deduce that for all2 (0;p 1), there exists
t such that forallt2 (t ;T), we have

Z ., Z .,

du du
m uf m uw

This follows for allt 2 (t ;T):

1

(p 1+ )su (T t)yss () (p 1 )sr (T t) st

from which we have

1
= T
In (t) 5 1In(T t)y as t! T:

So, we have 5
In( 2(t) + 2) p—lln(T t) as t! T:

Hence, we obtain

)= Pt)In ( 3(t)+2) P pilln(T t) as t! T, (1.80)
which yields
0 2 . : -
— P 1 JIIn(T 1)) as t! T:
This implies
Z
1 ., 2 T . 2 : :
— t ——— In(T v)j dv —— (T t)jIn(T t ast! T;
pl()pltJ()J Iol()J()J

which concludes the proof of[ (1.77). O
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Lemme 1.18. Letus consider 2 (0;1); > OandO<h < 1. Then, the following integral
Z 1

I (h)= (s h) s ds
h

satis es:

i) if + > 1, then

1 1
I (h h'
N
i) If + =1, then
[ (h) + jIn hj
i) If + < 1, then
1
TR
Proof. See Lemma 2.2 of Giga and Kohnl[8]. O

Lemme 1.19 (A version of Gronwall Lemma) If y(t);r(t) and g(t) are continuous func-
tions de ned on [ty; t;] such that
Z t YA t
y(t) Yot y(s)r(s)ds++  h(s)ds;8t 2 [to; ts]:

to to

Then, Z, 5 Z., 3
r(s)ds Z, r( )d
yit) et Qv+ h(s)e t dst :
to
Proof. See Lemma 2.3 of Giga and Kohnl[8]. O

Lemme 1.20. For eachT, <T; > 0. There exists = (T;T,; ;n;p) > 0 such that for
eachv(x;t) satisfying

j@v  vi CjviPIn (v*+2); 8xj ; t2(TxT); > O (1.81)

and
V(X t)] (1), 8jixj ; t2(TxT), (1.82)
where (t) is the unique positive solution of({1.9). Then, v(x;t) does not blow up a(0; T).

Proof. Since the argument is almost the same as inl [8] treated for the case 0, we only
sketch the main step for the sake of completeness. Le2 C* (RV); =1if jxj 5 =
0 if jX] , and consider! = v satisfying

@ '=f +g; (1.83)
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where
f=@v v and g=vVv 2r :(vr ):
By using the Duhamel's formula, we write
YA t
L= T (1 (T))+ e ) (f)+ e ) (g d;8t2[TxT); (1.84)
T2
where€' is the heat semigroup satisfying the following properties: for ai 2 L*

ket hkLl (RN) k hkLl (RN) and ket r hkLl (RN) Ct %khkLl (RN),8t > O

The formula (1.84) then yields

Z t
k! (t)kLl (RN) C+C k! ( )kLl (RN)ijjp 1|n (V2+2)( )k|_1 Gxi )
T2
Z, .
+C (t ) zZkv( )kii gy Hd; (1.85)
T2

for some constantC = C(n;p; ;T;T,; ) > 0.
From (L.81), (1.82) and Lemma([(1.17), we nd that for allixj ,and 2 [T;T),
VOIP tin (()+2) C PRI (*()+2) C(T )4

and )
jv()j C(T ) »1jIn(T )j I

The estimate (1.85) becomes

Z t
Kl (ks vy C+CP L (T ) 'k (ke reyd
z, "
t
+C ot )T ) Aijn(T )j Fid: (1.86)
T2
In particular, we now consider 0< % xed, then we have:

(T )esiln(m i es o)t ) 65 g 2 (1)

Hence, we rewrite[(1.86) as follows

Z t
Kl (ks vy C+CP L (T ) 'k (ke reyd
z, "
t 1 1,
+c @ )zir ) Gerd; (1.87)
T2
whereC(n;p; ; ;;;p ). Beside that, by changing variables=T ;h =T t we have
Z . Z1 .
t )1t ) ®P)d = (s h) 2(s) ®)ds; (1.88)
Ta h
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where (p; )= p—ll +
Case 1: If (p; ) < 3, by usingiii ) of Lemma[1.18, we deduce fronj (1.B7) anfl (1]88)
that 7
t

kl (t)kLl (RN) C + C p 1 (T S) lk' (S)kLl (RN)dS,

T

Therefore, by Lemmg 1.1)9,

kI (ke gy C(T 1) €77 (1.89)
Choosing small enough such thatC P ! Tll) Then, we conclude from[(1.89) that
Vot C(T t) % ; for jx] %;t T (1.90)

By using parabolic regularity theory and the same argument as in Lemma 3.3 of [7], we
can prove that (1.90) actually prevents blowup.

Case 2: (;p) = 3; itis similar to the rst case, by usingii) of Lemma[1.18, [(1.8]7)
and (1.88) we yield
Z t
Kl (ks rey CA+]IN(T O+ CP L (T s) ki (Sku: rmyds:

T2

However, we derive from Lemma 1.19 that

kI (ke gy C(T 1) %77 (1.91)

1

whereC = C(n;p; ;T;T,; ). We now take is small enough such thatC P ! FCRL

which follows (1.90).
Case 3: (;p) > 3; by using Lemmag 1.18 1.19 and arguments similar to obtain
jvot)] C(T )z ®): 8ixj t 2 [TyT):

Repeating the step in nite steps would end up with [(1.90). This concludes the proof of
Lemmal1.20. O

The following lemma gives the asymptotic behaviors df(s) ans 1(s) de ned in ([L.15)
and (1.16), respectively.

Lemme 1.21. Let h(s) and ;(s) be de ned as in(1.158) and (1.18), respectively. Then
we have

i)
1 _p 1 (p Dins 1 . |
n(2e+2) 2 ' 2 0 g ¢ asst+li (192
i )
2
h(s):i 1 ns .o L ; ass! +1: (1.93)

1 s s2 s2
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Proof. i) Consider (t) the unique positive solution of [1.9). We have
Z 1
* dx

T t= — !
o XPIn (x2+2)

(1.94)

An integration by parts yields
1 1 2 1

T U S on (202 b 1 G N 20+ O nX 2n+2)
(1.95
Let us write (t) = .(s) wheres= log(T t), then we have
In( 1(s)) = psl T In(In( 1(s)))+ O(1); ass! +1; (1.96)
from which, we deduce that
In( 1(s)) = psl p'”(i) +0O(1); ass! +1; (1.97)

which is the conclusion of item).

i) From (fL.15) and (1.95%), we have
1 2 1

h(s) = — 1.98
O b pm ) W A9+ D) .
Using (1.92) we conclude the proof of (1.93) as well as Lemnja (1.21). O

Lemme 1.22. Let N be de ned as in(1.23), we have

, - -
pw” JWJS'Z”S + 0 JW_; +O(w® as (wis)! (0:+1): (1.99)

O

N(w;s) =

Proof. From the de nition (1.23) of N, let us write
N (w;s) = Ni(w;s) + Na(w;s);
where
Ni(w;s) = h(s) jw+1j> Y(w+1) (w+1) w;

In ((f(w+1)2+2)

1
In (£+2)

N2(w;s) = h(s)iw+1j° *(w+1)

From (1.93) and a Taylor expansion, we nd that

2 -
Niwg= P W, o Jwiins

+0 wi® + O(jwj®) as w;s)! (0;+1):
2 s s ’ '

We now claim the following

o o
w jwjins + 0 JW_SJ as Ww;s)! (0;+1); (1.100)

Na(w;s) = e + 0O
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then, the proof of {1.99) simply follows by addition.
Let us now give the proof of [(1.100) to complete the proof of Lemma 1]22 . We set

f)=in (Aw+D2+2); jw o

We apply Taylor expansion tof (w) at w = 0 to nd that

fw=In ( 2+2)+2 In Y 2+2) i W+f0‘a)(w)2'
! ! 242 2 ’

where is between 0 andwv, and

2( +1) 2 2
2( +1)2+2
@, 23 +1)?,
(2( +1)2+2)2 "

%)= ( Din (I +1)*+2)

+ I I +D2+2)
Sincej | % one can show that

£ 00\ 1 2 . .

RN Cin A 1+2); 8 3

Thus, we have

.. 1 2
fW)=ln (2+2)+2 In X 2+2)w+ O jwitin * 2+2) +o I (1+2)
1

ass! +1 . This yields

In ((fw+1)%+2) 14 _2W jwj? L0 jwj :
In ( £+2) In( £+2) In( £+2) In( $+2) § °
as ;s)! (0;+1 ), from which and (1.92) we derive
From the de nition of N, (1.93), (1.101) and the fact that
jw+1jP (w+1)=1+ pw+ O(jwj?>) asw! O;
we conclude the proof of[(1.100) as well as Lemra 1.22. O

Lemme 1.23. For all jzj K4, then there existsC(K;) such that8s 1, we have

n (322+2) jzP 'z C(Ky).
In ( 2+2) p 1 s (1.102)

whereh(s) and 1(s) are de ned in (1.15) and ([1.16), respectively.

h(s)jzj® z
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Proof. We considerf (z) =In ( 2z%+2);8z 2 R, then we write
Z iz
In ( 222+2)=In ( 2+2)+ f qv)dv:
1

Recall from (1.17) thath(s) = - + O(%), we have then

a
In ( l22+2) jzj? 1z Cjzj® 2 . CjzjP
n(Z+2) p 1 n(2+2 , v

h(s)jzj® z (1.103)

From item i) of Lemma|1.2]1 that showslré—z) % Hence, it is su cient to prove
the following

(2) = n L 2+2) , jf (v)jdv (K1); 8jz] 1
where oy 2
— 1 2 1 .
fqv)= In (2 V+2)—fv2+2'

For1 j zj Ky, itis trivial to see that jA(z)] C(K.): For jzj < 1, we consider two
cases:
- Case 1: 1 O, then
Z, 1
A(z) 2 jizi* -dv C(Ky):
jzj v
- Case 2: 1< 0, then

Z
1r 252 1
A 3 iDLy,
In *( 1+2) 4V

+1f .z% 1then

Z
cnt (2+2) T 11
A(z 2 j——————jzj° —dv C(K,):
(2) JJInl (1+2)JJ oy (K1)

+1f .z 1thenjzj v 1% we deduce that

z
. . .ielnt (2+2) "1

A 2 2 117 C(K,):
A2 2, @ iz . (K1)

This concludes the proof of Lemmga 1.23. O

Lemme 1.24 (Control of the nonlinear term D in Sa(s)). For all A 1, there exists
3(A) 1 such that for alls 3(A); q(s) 2 Sa(s) implies

Ins(1+ JyJ)4

. p_ .
8yj 2K''s; jD(a;9] C(K) &

(1.104)

and
C,

KD (Q; 9ki1 (rv) (1.105)
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Proof. From the de nition (1.44) of D, let us decompose
D(g;9 = D1(q;9 + D2(q;9);
where

Di@9= he) S dar P lar’) (@)

Do(q;9 = h(s)ig+ " jP *(a+ ")L(q+ ;s );
and h(s) admits the asymptotic behavior [1.98) L is de ped in (1.45). The proof of [1.104)

will follow once the following is proved: for allyj 2K s

iviz 2N 1+jyi%Ins
D, —(Jy‘4psz ) ~ ctyins ‘Zi )ins. (1.106)
and (- |2 2N) (1 - -4)|
+ ns
D,+ M4T ~q C%: (1.107)

Let us give a proof of |(1.106). From the de nition ofSa(s), we note that if q(s) 2 Sa(s),
then

CA?In?s(1+ jyj®)

8y 2 RY;jq(y; )] 2 (1.108)
CA?
kq(S) k|_l (RN) —pg: (1109)

P

From the de nition ({.38) of ' and (1.109), we see that for allyj 2K " s, there exists a

positive constant C(K) such that

0 (+ " )(y;s) C(K): (1.110)

<
C(K)
Using Taylor expansion and the asymptotic[(1.93), we write

|
+O 25 b 4 gPl o 1g+0 @ (L111)

Dl(q's) = (p 1)5 52

Using again the de nition of ' and a Taylor expansion, we derive

- -
(yi> 2N) , o 1+Jyi

1 p = .
1 4s s? ’
- -
-1 (Jyi© 2N) + 0 1+]y] ;
dps s?
Pl g (P 1)(yi*> 2N) 1+jyj*
P 1=p 1 4ps YO T '

ass! +1 . Inserting (1.108) and these estimates intd (1.1]L1) yields (1.106).

We now turn to the proof of (1.107). Recall from[(1.45) the de nition ofL,

2 2 . 1 Z g . |
T zea( 090 D mzey , W@ 0

L(g+";s)
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wheref (v) =In ( 2v2+2);v2 R. From (1.110) and a direct computation, we estimate
Z

FChy L Pt va ceoltt I
which yields , . _ S
L(g+ s ) |nz( %1iq2;'( %+12)) C(K)WT”: (1.112)
From (1.92) and (1.11R), we then have
D@+ 1 jg+ ' 1>  Insjg+"'
Lg+ns) P )(2 ) ¢ g i’ JO|32 i
and beside that we have | o+ iy
g+t 1 T;
imply that
Lg+is) DAY D gynsr v, (1.113)

S s?
Moreover, from de nition of D, and (1.113) we deduce that

-
D2(a;9 g'p+1 "P+((p+1)'P p'P Ny cdryrjins,

s? ’
and
e e (WP N 1epyit
4ps s?
b wpi_q (yi* 2N) 1+jyj* .
(p+1) p 1 s tO —g — ias;

ass! +1 which yield (1.107).
We now give a proof to [(1.105). From[(1.93) and the boundednessagénd ' , we have
. C
jD1(q; 9] S
In fact, it is su cient to prove that for all y 2 RN,
. . C(K
iDa(qi9] o,
Using the de nition of L in ([L.45), we deduce that

L o cIn (222 +2) L .
Do(q;9 = h(s)ia+ ' j* *(q+ )m(1—2+2) h(s)ia+ ' P *(a+ " ):
Using Lemma| 1.2]3, we obtain the following
, . C(K
iDa(q;9) <&

This completes the proof of Lemma 1.24. O
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Lemme 1.25. When s large enough, then we have for a2 RN:

i) Estimates onV:

-
Vel S gy 0 e
and . -
+ _
v= W7 2N) = )+ v with v=0 Siyj 8y K's:

i) Estimates onR
R;9j <18y 2 R,
and

1+ jyj?
S3

R(y;s) = §+ R(y;s) with R=0 ; 8JYj Kp§:

Proof. The proof simply follows from Taylor expansion. We refer to Lemmas B.1 and B.5
in [19] for a similar proof. O

Lemme 1.26 (Estimates onB(q)). For all A > 0 there exists 5(A) > 0 such that for all
S 5(A); q(s) 2 Sa(s) implies
B@j Cidsgyi K"s; (1.114)
and
kB(a)k.: rvy  CjgP; (1.115)
with p = min( p;2).

Proof. See Lemma 3.6 in[13] for a same proof of this lemma. ]
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Chapter 2

Pro le for the imaginary part of a
blowup solution for a complex valued
semilinear heat equation *

G. K. Duong

Abstract: In this paper, we consider the following complex-valued semilinear heat
equation

@Qu= u+uf;u2C;

in the whole spaceRN, wherep 2 N;p 2. We aim at constructing for this equation a
complex solutionu = u; + iu,, which blows up in nite time T and only at one blowup point
a, with the following asymptotic behaviors

(P 1Pix & Fr.

ueaT) giinix @ ’

2: 2 L
2p > (p .1).JX ?J i rErEE— asx! a:
(p 12 8plnjx aj jinjx  ajj

Ux(X; T)

Note that the imaginary part is non-zero and that it blows up also at poiat Our method
relies on two main arguments: the reduction of the problem to a nite dimensional one and
a topological argument based on the index theory to get the conclusion.

Mathematics Subject Classi cation: 35K55, 35K57 35K50, 35B44 (Primary);
35K50, 35B40 (Secondary).

Keywords: Blowup solution, Blowup pro le, Semilinear complex heat equation, non
variation heat equation.
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2.1 Introduction

In this work, we are interested in the following complex-valued semilinear heat equation
(

Qu

u(0)

u+ F(u);t2[0;T);

2.1
U02 L1 ; ( )

whereF(u) = uwP, andu(t) : RN I C, L' = L* (RV;C) and p > 1. Though our results
hold only whenp 2 N (see Theorenj 2]1 below), we kegp2 R in the introduction, in order
to broaden the discussion.

In particular, when p = 2, model (2.1) evidently becomes
(

@Qu

u(0)

u+ u%t2[0;T);

2.2
Up2 Lt : (22)

We remark that equation (2.2) is rigidly related to the viscous Constantin-Lax-Majda equa-
tion with a viscosity term, which is a one dimensional model for the vorticity equation in
uids. The readers can see more in some of the typical works: Constantin, Lax, Majda [2];
Guo, Ninomiya, Shimojo and Yanagidal]7]; Okamoto, Sakajo and Wunsc¢h [20]; Sakajo [21]
and [22]; Schochet [23] and their references.

The local Cauchy problem for mode[[(2]1) can be well solved (locally in time) In* (R")
in the case wherep is integer, by using a xed-point argument. However, wherm is not
integer, the local Cauchy problem has not been sloven yet, up to our knowledge. This
probably comes from the discontinuity ofF (u) onfu2 R g.

In addition to that, let us remark that equation (.1)) has the following family of space
independent solutions:
w()= er (T t) 71;foranyk2 Z; (2.3)

1

where =(p 1) » 1. In particular, we have two situations:
+ If p2 Q, this makes then a nite number of solutions.

+ If p ZQ; then, the following set
1
T t)r 1,
a5 ka7 (2.4)
is countable and dense in the unit circle of.

This latter case  Z Q), is somehow intermediate between the casp 2 Q) and the case
of the twin PDE
@ = u+jupf 'y (2.5)

which admits the following family of space independent solutions
u()y= e’ (T t) s

forany 2 R, which turns to be in nite and covers all the unit circle, after rescaling as in
[@.4). In fact, equation (2.5) is certainly much easier than equatior| (3.1). As a mater of
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fact, it reduces to the scalar case thanks to a modulation technique, as Filippas and Merle
did in [5].

Since the Cauchy problem for equatior] (2/1) is already hard wher2 N, and given that
we are more interested in the asymptotic blowup behavior, rather than the well-posedness
issue, we will focus in our paper on the cage2 N. In this case, from the Cauchy theory,
the solution of equation [2.1) either exists globally or blows up in nite time. Let us recall
that the solution u(t) = uy(t) + iu,(t) blows up in nite time T < +1 if and only if it
exists for allt 2 [0; T) and

lim SUpfk Ul(t)kLl (RN) + kUz(t)kLl (RMYO I +1:
th T

If u blows up in nite time T, a point a2 RN is called a blowup point if and only if there
exists a sequencé(a;;tj)g! (a;T)asj ! +1 such that

jur(a;t))j+ jua(ay;t)j! +1 asj! +1:

The blowup phenomena occur for evolution equations in general, and in semilinear
heat equations in particular. Accordingly, an interesting question is to construct for those
equations a solution which blows up in nite time and to describe its blowup behavior.
These questions are being studied by many authors in the world. Let us recall some blowup
results connected to our equation:

(i) The real case: Bricmont and Kupiainen [1] constructed a real positive solution to
2.7) for all p > 1, which blows up in nite time T, only at the origin and they also gave
the pro le of the solution such that

!

1 : C
T t)p tu(;;t) fo p P
GOUTHED e PEORT 0 L, L+ 0O O
where the prole f is de ned as follows
(P 17 _, P
fo(z)= p 1+ izj ; (2.6)

4p

In addition to that, with a di erent method, Herrero and Vehzquez in [12] obtained the
same result. Later, in [[15] Merle and Zaag simpli ed the proof of [1] and proposed the
following two-step method (see also the noté [14]):

- Reduction of the in nite dimensional problem to a nite dimensional one.

- Solution of the nite dimensional problem thanks to a topological argument based on
Index theory.

We would like to mention that this method has been successful in various situations such
as the work of Tayachi and Zaag [24], and also the works of Ghoul, Nguyen and Zaag in [9],
[10] and [8]. In those papers, the considered equations were scale invariant; this property
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was believed to be essential for the construction. Fortunately, with the work of Ebde and
Zaag [4] for the following equation

@ = u+jui’ tu+f(ur u);

where
2p

jf(u;r uw)j C@A+juj9+jr uJ'qO) with g < p; < ot 1’

that belief was proved to be wrong.

Going on the same direction as[4], Nguyen and Zaag in[18], have achieved the construction
with a stronger perturbation

_ cep juiP tu
@ = u+juP “u+ N2+ u?)’
where 2 R;a > 0. Though the results of [[4] and([18] show that the invariance under
dilations of the equation in not necessary in the construction method, we might think that
the construction of [4] and [[18] works because the authors adopt a perturbative method
around the pure power cas€ (u) = juj® u. If this is true with [4], it is not the case for [18].

In order to totally prove that the construction does not need the invariance by dilation,
Duong, Nguyen and Zaag considered inl[3], the following equation

@ = u+juP uln 2+ u?);

for some where 2 R and p > 1, where we have no invariance under dilation, not even for
the main term on the nonlinearity. They were successful in constructing a stable blowup
solution for that equation. Following the above mentioned discussion, that work has to be
considered as a breakthrough.

Let us mention that a classi cation of the blowup behavior of [(2]2) was made available
by many authors such as Herrero and Vehzquez in [12] and Vehzquez in [25], 1[26],][27]
(see also Zaag in [30] for some re nement). More precisely and just to stay in one space
dimension for simplicity, it is proven in [12] that if u a real solution of [2.1), which blows
up in nite time T and a is a given blowup point, then:

A: Either
!
psup (T t)r%l ux;t) fo p X. a - | Qast! T,;
X a K' (T 0T 0] (T OIn(T 1)
for any K > 0 wherefo(z) is de ned in (2.6).
B: Or, there existm 2;m 2 N and C,, > 0 such that
!
C
sup (T Oetuect) fn % @y gastr T
X aj K(T t)yzm (T t)am

for any K > 0, wherefm(z) = (p 1+ jzj2™) # 1.
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(i) The complex case: The blowup question for the complex-valued parabolic equa-
tions has been studied intensively by many authors, in particular for the Complex Ginzburg
Landau (CGL) equation

@=(1+1i) u+(l+i)juPf u (2.7)

This were some ealier works treated to CGL such as: Zaagl[28] for the case where0
and small enough; Masmoudi and Zaag |16] and Nouaili and Zaagl[19]. More precisely,
the authors in [16], generalized the result of [28] and constructed a blowup solution for {2.7)
with p 2 p > 0 such that the solution satis es the following

1+

k]
[N

bsubj:j2
(T OjIn(T 1)

(T e Tjin(T o) fut) p 1+
|_1

n C .
1+ jin(T vj

where
(p 1)

(I p)>0:

bsub: 4

Then, Nouaili and Zaag in[19] has constructed fof (2.7) (in case the critical where= 0
and p=2) a blowup solution satisfying

1+ . ) YA . p1
(T 0¥ 0 uiy 0 op 14—l
(T t)jIn(T 1)j2
L1 (RN)
C
1+jIn(T t)js
with )
ECEE S
"8 pp+t1)’ b

As for equation {2.2), there are many works done in dimension one, such as the work
of Guo, Ninomiya, Shimojo and Yanagida, who proved ir[7] the following results (see
Theorems 1.2, 1.3 and 1.5 in that work):

(i) (A Fourier- based blowup criterion). We assume that the Fourier transform of
initial data of (2.2) is real and positive, then the solution blows up in nite time.

(i) (A simultaneous blowup criterion in dimension one) If the initial datau® = u?+ iu?;
satis es
ud is even; uj is odd withu3 > 0 for x > O:

Then, the fact that the blowup set is compact implies thaf; u3 blow up simultaneously.

(iii ) Assume thatuy = u? + iu9 satisfy

u;ud2 C*RV);0 u? M;ufe M;0<ul L;
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lim uw(x)=M and lim ud=0;

xppo+1 ixjt +1
for some constantL; M . Then, the solutionu = u; + iu, of (2.9), with initial data u®,
blows up at timeT (M ); with u,(t) 6 0. Moreover, the real partu,(t) blows up only at space
in nity and uy(t) remains bounded.

Still for equation (2.2), Nouaili and Zaag constructed in[17] a complex solutian= uy + iu;
which blows up in nite time T only at the origin. Moreover, the solution satis es the

following asymptotic behavior '

(T tu(:;t) p - _ I Qast! T;
T OiT 0 |, g
wheref (z) = g5 and the imaginary part satis es the following estimate for allK > 0
1 X x? C(K)
su (T Huxt) ——— G ) —  (2.8)
w KPT A0 T o, T Tt in(T D)
for some Ci); 6 (0;::;;0) and 2< < 2+ ; small enough. Note that the real and the

imaginary parts blow up simultaneously at the origin. Note also that]17] leaves unanswered
the question of the derivation of the pro le of the imaginary part, and this is precisely our
aim in this paper, not only for equation [2.2), but also for equation[(2]1) witp2 N;p 2.

Before stating our result (see Theorem 2.1 below), we would like to mention some classi-
cation results by Harada for blowup solutions of [(2.2). As a matter of fact, in[[11], he
classi ed all blowup solutions of [2.2) in dimension one, under some reasonable assumption
(see [2.9), [2.1D)), as follows (see Theorems 1.4, 1.5 and 1.6 in that work):

Consideru = u; + iu, a blowup solution of@) in one dimension space with blowup time
T and blowup point which satis es

Ongp (T tku(t)ke: ry < +1: (2.9)
Assume in addition that
S!Iir+nl kwa(S)kL2ry = 0; W, 6 O (2.10)
where is de ned as follows P
()= P (211)

and w, is de ned by the following change of variables (also called similarity variables):
wi(y;s) = (T tuy( +e zy;t) andwy(y;s) = (T  t)uy( + e 2y;t); wheret=T e S
Then, one of the following cases occurs

8

<w =1 %hy+ O('g—;) in L2(R);

(Cl) . m s m s
LW, = Gs Me " h,+0 s MDe "2 Ins in L’(R);m 2
8 K 1 2k 1)s . 2
<u =1 ce®Ihy+0( =z )in L3R);

(CZ) : (m 2)s (m 1)s

Vv e z hpn+0 e =z inL%R);k 2m 2k
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whereco = ;¢ > 0;c, 6 0 and (y) is de ned in (2.17) and h; (y) is a rescaled version of
the Hermite polynomial of orderm™ de ned as follows:

Rl ymym a

hm (y) = W (2.12)

j=0

Besides that, Harada has also given a pro le to the solutions in similarity variables:
There exist ; ;¢ > 0 such that
1 m (m 2)s CS 2 hn
C —— 4+ S2e 2 V <
( 1) ) 1+ CoS :|_h2 (1+ CoS lh2)2
for jyj st ):

cs (2.13)

(k 1L)ms

1 (m_2k)s e  x hpy
C u + e & vV :
() L+ cie & Dshy, (1+ cie  Dshy)?

(2.14)

(k 1+ )s
2k .

for jyj e

Furthermore, he also gave the nal blowup pro lesThe blowup prole ofu = u; + iu; is
given by

2u(xT) = 2 EE (14 o1));
() ) .
' UZ(X;T) = om gz(CO)Z j|n)}ijm 2 (1+ 0(1))1
% UOGT) = FHex H(L+ o)
ifm = 2k;
(C) )
2 uT) = (@) X L+ o1) and i T) = (Zx™ *(1+ ofL);
' ifm > 2k:

Then, from the work of Nouaili and Zaag in[[17] and Harada ir [11] for equatiof (2.2),
we derive that the imaginary partu, also blows up under some conditions, however, none
of them was able to give a global pro le (i.e. valid uniformly onRN, and not just on an
expanding ball as in [2.1B) and[(2.14)) for the imaginary part. For that reason, our main
motivation in this work is to give a sharp description for the pro le of the imaginary part.
Our work is considered as an improvement of Nouaili and Zaag in"[17] in dimensibin
which is valid not only for p = 2, but also for any p  3;p 2 N. In particular, this is the
rst time we give the pro le for the imaginary part when the solution blows up. Without
loss of generality, we assume that the blowup poing = 0 and the following Theorem is
our result:

Theorem 2.1 (Existence of a blowup solution for [(2]1) and a sharp discription of its
prole). For eachp 2;p2 N andp; 2 (0;1), there existsT,(p; p.) > 0 such that for all
T  Ty; there exist initial datau® = ug+ iu3; such that equation(2.1)) has a unique solution
u on [0; T), satisfying the following:
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i) The solutionu blows up in nite time T only at the origin. Moreover, it satis es the

following estimates
!

1 : C
ST O 0] L, T )
and |
(T 07T Oju(:) o ' | <
! 205 P . . R E——
ST 0N 0], IINT 07
(2.16)
wheref is de ned in (2.6) and go(z) is de ned as follows
2
®(z) = 12 . (2.17)

1)2._. 1

i) There exists a complex functiom (x) 2 C?(RNnf0g) such thatu(t)! u = u,+ iu,
ast! T uniformly on compact sets oRN nfOg and we have the following asymptotic

expansions:
(p 1pjxjz T
u (X —_— pasx! O 2.18
G 8pj In jxjj (218)
and .
2p (p 1Pjxj* PT 1
u,(X L ——; asx! O 2.19
2() (p 1) 8pjlnjxjj j Injxjj ( )
Remark 2.2. The initial data u® is given exactly as follows
uw = ul+ iud;
where (
1
0o = T i (P D% vt N
Up = T2t P I T ¥ 2)ijnTj
I
b (ot ) 0 P
iinTj2 1.0 11 Y) o K m
0 Lo ) (p 1?xj2 o7 2N
U2 = T p 1 . 2 + U ——— —2
TjInTj ApTjInT]j (p L)jInTj
A2 A% In(j In(T)j)
W(dZOJ’ daa1 y)+ “jinTjme )
1+ 2X
=y dy Tr (do: —
2y 2.2 Y (d22) 0 m

with =(p 1) 71, K:A are positive constants xed large enoughi® = (dy0; dpq); d@ =
(d2.0; d2:1; do,2) are parameters we ne tune in our proof, and ¢ 2 CJ [0;+1 ); k oki: (rv)
1 supp o [0;2]
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Remark 2.3. We see below in(2.23) that the equation satis ed by ofi, is almost 'linear' in
u,. Accordingly, we may change a little our proof to construct a solutiam, (t) = Ujy.c,+ iUz,
with t 2 [0; T); ¢ 6 0, which blows up in nite time T only at the origin such that(2.15)

and (2.18) hold and the following holds
!

) . C
T t)p 3jIn(T  t)juze (it p P —
( )P IjIn( )il (51)  CoGo P T 0T 0 . T 0%
(2.20)
and .
2pc, (p 1)pxjz ¢t
U, (X — ———; asX 0} 2.21
2() (p 12 8pjInjxj j Injxijj (2.21)

Remark 2.4. We deduce from(ii ) that u blows up only at0. In particular, note that both

u; and u, blow up. However, the blowup speedwsfis softer thanu, because of the quantity
1

Remark 2.5. Nouaili and Zaag constructed a blowup solution o2.2) with a less explicit
behavior for the imaginary part (see(2.8)). Here, we do better and we obtain the pro le
for the imaginary part in (2.16) and we also describe the asymptotics of the solution in
the neighborhood of the blowup point i2.19). In fact, this re ned behavior comes from
a more involved formal approach (see Sectign .2 below), and more parameters to be ne
tuned in initial data (see De nition P.2|where we need more parameters than in Nouaili and
Zaag [17], namelyd, 2 RN*). Note also that our pro le estimates in(@.15) and (2.18) are
better than the estimates2.13) and (2.14) by Harada (n = 2), in the sense that we have
a uniform estimate for whole spac®", and not just for all jyj s'* for some > O.
Another point: our result hold in N space dimensions, unlike the work of Harada in_[11],
which holds only in one space dimension.

Remark 2.6. As in the casep = 2 treated by Nouaili and Zaag [17], we suspect this behavior
in Theorem[2.] to be unstable. This is due to the fact that the number of parameters in the
initial data we consider below in De nition[2.2 is higher than the dimension of the blowup

parameters which isN +1 (N for the blowup points andl for the blowup time).

Besides that, we can use the technique of Merle [13] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 2.7 (Blowing up at k distinct points). For any given points, X1; :::; Xk, there
exists a solution of (2.1)) which blows up exactly axy;:::;xc. Moreover, the local behavior
at each blowup poink; is also given by(2.15), (2.16), (2.18), (2.19) by replacingx by x  x;
andL! (RY) byL* (jx X;j  o); for some o> 0.

This paper is organized as follows:

- In Section[2.2, we adopt a formal approach to show how the pro les we have in Theorem
2.7 appear naturally.

- In Section[2.3, we give the rigorous proof for Theorem 2.1, assuming some technical
estimates.

- In Section[2.4, we prove the techical estimates assumed in Secfiorj 2.3.
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2.2 Derivation of the pro le (formal approach)

In this section, we aim at giving a formal approach to our problem which helps us to
explain how we derive the pro les of solution of[(2]1), given in Theorenj (3.1), as well the
asymptotic behaviors of our solution.

2.2.1 Modeling the problem

In this part, we will give some important de nitions and special symbols in our work and
explain then how functionsf, ans g, arise as blowup pro les for equation[(2]1) as stated
in (.15) and (2.16). Our aim in this section is to give solid (though formal) hints for the
existence of a solutioru(t) = us(t) + iu,(t) to equation (2.1) such that

tIlqu Ku(t)ki: rvy =+ 1 (2.22)

and u obeys the pro les in [2.15) and[(2.16), for som& > 0. By using equation [(2.1), we
deduce thatu; and u, satisfy the following

(
@Qu, = u; + Fy(ug; up); .23
@u; = U+ Fa(up;up): '
where
g . P [2] s _ o o
S Fuuiu) = Ref(ui+iuz)=" 2 CFI( 1yuf “ug (2.24)
: Pret] R :
Foluitg) = Im[(ug+ iuP)= ' 15 1CA"( 1y 3

with Re[z] and Im[z] being respectively the real and the imaginary part ot and C7" =

p! .
i forallm p.

Let us introduce the similarity-variables:

w(y;s)=(T t)ﬁu(x;t);y = p%;s = In(T t)andw= w;+ iwy: (2.25)

Thanks to (2.23), we derive the system satis ed byv;; w,); forally 2 RN and s InT

as follows: ( . .
@i = wi gy rwr g+ Fa(waiwy);

@v, = Wy Y Wy 2+ Fp(w;wy):

Then note that studying the asymptotic of u ast ! T is equivalent to studying the
asymptotic of w in long time. In particular, we are rst interested in the set of constant

solutions of [2.26) [(2.2p), denoted by

(2.26)

2k H 2k . — " e
S=1(0;0)g[ cos b1 sin p 1 where =(p 1) pi;k=0;:5p 1

From transformation (2.25), we slightly precise our goal in (2.22) by requiring in addition
that
(wi;wp) ! (; O)ass! +1:
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Introducing w; =+ wjy; our goal is to get
(wi;wy) ! (0;0) ass! +1:
From (2.28), we deduce thatw;; w, satisfy the following system

@Qw,

Lwy + Bi(wy;wy);

- 2.27
@Q@w, = Lw;+ Ba(wg;wy); ( )
where
1
L = Ey r + Id; (2.28)
BiWyiw,) = Fi( +wiwg) P pplwl; (2.29)
Bo(wi;wy) = Fo( + wy;w,) plwz; (2.30)

and the de nitions of F; and F; are given in [2.24).
It is important to study the linear operator L and the asymptotic behaviors oB; B,
as (w1;wy) ! (0;0) which will appear as \quadratic" terms.
The properties ofL :

We observe that operatorL plays an important role in our analysis. In fact,L is self-
adjointin D L2(RN), whereL? is the weighted space associated with the weightde ned

by

yi2 W ivji?
W= o= ) with ()= (2:31)
- N T J\Jp/ I\Jy, = i '
4)z ja (4 )2
and the spectrum set olL is given as follows
n m 0
Spec()= 1 E; m2 N

Moreover, we can nd eigenfunctions which correspond to each eigenvalue £;m 2 N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1 Tis hm, the rescaled Hermite polynomial given in[(2.12). In particular, we have
the following orthogonality property:

Z

hihy dy =12 i; 8(i;j) 2 N%
R

- The higher dimensional caseN 2, the eigenspacé&,,, corresponding to the eigen-
value 1 7 is de ned as follows:
* +
. . X\I N
En= h()=h.(y)xh (W) ]ij= i=mand =( 15 n)2N

i=1
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As a matter of fact, so we can represent an arbitrary function 2 L? as follows

X
ro= r h(y);

;o 2NN

wherer is the projection ofr onh forany 2 NN which is de ned as follows:

r =P (r)= ’ rk dy; 8 2 N"; (2.33)
with h
k (y) = kh—kfz: (2.34)
The asymptotic behaviors oB1(wi;W;); B2(wq; W,): The following hold:
Bi(wi;wy) = 2£w§+ O(jwaj® + jwaf?); (2.35)
BoWiwz) = Pwawz+ O jwijdiwaj + O jwij® (2.36)

as (wi;wy) I (0;0) (see Lemma 2.7 below).

2.2.2 Inner expansion

In this part, we study the asymptotic behavior of the solution inL2(RN): Moreover, for
simplicity we suppose thatN = 1, and we recall that we aim at constructing a solution
of (2.27) such that v;;wz) ! (0;0). Note rst that the spectrum of L contains two
positive eigenvalues ,]% a neutral eigenvalue 0 and all the other ones are strictly negative.
So, in the representation of the solution irL2(R), it is reasonable to think that the part
corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect ofy, it is reasonable to look for a solutiorw;; w, of the forms:

W1 = Wi ohg + Wihy;
Wy = Waohg + Wahy!

From the assumption that (wy;w;) ! (0;0), we see thatwy.g; Wi.p; Wa0;Woo | 0 ass !
+1 . We see also that we can understand the asymptotic behaviors wf and w, in L?
from the study of the asymptotic behaviors ofwy.o; Wi.2; W20 and wy.,. We now project

equations [2.2]) orhg and h,: Using behaviors oB4; B,, given in (2.35) and [2.36), we get
the following ODES forwy.g; W1.2; Wo.0; Wa:p

@wip = Wi+t 2£ Wio+8WE, + O(jwigj® + jwipj®) + O(jWaoj® + jWo2j%); (2.37)
@wy, = P WioWip + 4W2, + O(jWiof® + jWij®) + O(jWa0j® + jW2:0j%); (2.38)
@Wyp = Wyt P [W1.0Wa2.0 + 8W1.2Wo.0] + O((le;on + jW1;2j2)(jW2;0j + jWa0))) (2.39)

+ O(J'Wz;oj3 + sz;zj?’);
@w,, = P [W1.0W2:2 + Wi:oWoi0 + 8Wi:pWa.o] + O((jWi0j” + jWa:2?) (jWaiof + jWa:2{.40)

+ O(J'Wz;oj3 + sz;zj3)3
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Assuming that
Wi.0; Wo.0; Woo  Wpp ass! +1; (2.41)

we may simplify the ODE system as follows:

The asymptotic behavior ofv;.;:

We deduce from [(2.38) and[(2.41) that

4
@ws2 —pwiz ass! +1;
which yields
1
W= —+0 — ;ass! +1: 242
12 4ps s (2.42)
Assuming futher that
1
W10, W2;0; W2;2 . gi (2.43)
we see that
Wy = +0 M . agst 41 (2.44)
1,2 — 4|OS 52 y H . .

The asymptotic behavior ofvy. :

By using (2.37), [2.41) and the asymptotic behaviors ofi., in (2.44), we see that
1
Wi.0 = O ? ass! +1: (245)

The asymptotics ofw,o and w,,: Bisides that, we derive from [(2.39), [(2.40) and
(2.43) that

2 Ins 1
@\Nz;z = 5 + 0 ? W2.o +0 g ; (246)
— 1 .
@wyo = Wyot O 3
which yields
a Ins
Wyo = O <
1 .
Wz;o = 0 g ; (247)

ass! +1 . This also yields a new ODE fomw;., :
— 2 -
@w,, = §W2;2 +0 Rl

which implies
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Using again [2.45), we derive a new ODE fow,.,

2 Ins
@ws.p = gW2;2+O = ;

which yields

_ & Ins .
Wap = ?+ @) < : for somecy2 R : (2.48)

Noting that our nding (2.44), (2.45), (2.47) and (2.48) are consistent with our hypotheses
in (2.41)) and (2.43), we get the asymptotics of the solutiom; and w;, as follows:

1
= —(y* 2 S 2.4
Wi 4pS(y )+O s2 ! ( 9)
Ins
W, = g(y2 2+0 (2.50)

in L2(R) for somecy in R . Using parabolic regularity, we note that the asymptotic behav-
iors (2.49) and [2.5D) also hold for allyj K; whereK is an arbitrary positive constant.

2.2.3 Outer expansion

As Subsectior] 2.2]2 above, we assume thidt = 1. We see that asymptotics [(2.49) and
(2.50) can not give us a shape, since they hold uniformly on compact sets, and not in larger
sets. Fortunately, we observe from[ (2.49) and (2.50) that the pro le may be based on the
following variable:

z= py—g: (2.51)
This motivates us to look for solutions of the form:
wi(y;s) = —1;J( )
j=0
X R, (z
wa(y;s) = —Zg( ).

j=1
Using system [(2.26) and gathering terms of ordes% forj =0;:::; 2, we obtain

1 Rl;O(Z)

0 = IR 2 2+ Rio(2); (2.52)
— 1 0 I:21;1 p 1 00 ZR(l);O.
0 = EZRl;l p 1 + PRy Rii+ Ry + 5 (2.53)
1 R>.
0 = ER(Z);l(Z) Z 5 2'11 + pRY Ra1; (2.54)
1 Ro.
0 = SRz o 1+ PRI Raz2 + REL + Raa (2.55)

1
éRg;l z+ p(p 1)RE;02R1;1R2;11

+
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We now solve the above equations:
The solution Ry.o: It is easy to solve |(2.5P)

1

Rio(z)=(p 1+bZ) 51, (2.56)

wherebis an unknown constant that will be selected accordingly to our purpose.
The solution Ry.;: We rewrite (2.53) under the following form:

1 0 /oy (p 1 bZ .
2Z.Rl;l(z)— ® Do 1+b3 Ri1+ F11(2);
where
_ 2b o dplrz? @p 1)
Fii(z) = p—l(p 1+ bZ) » +W(p 1+bZ)
pb—zzl(p 1+b?) v
Thanks to the variation of constant method, we see that
z 2
Ri1=H (2 EH(z)Fm(z)dz+ C, ; (2.57)
where .
1+bA)r 1
H(z) = (P 2 ) :
Besides that, we have:
H_ b 8 1 2b
z P T (p DB (p 1?2 z(p 1+bBR) (p 1)z
4b 1 2b 8pl?
= - 4+ - +
(P Dz2 z p 1 (p 1P
8pb’z
+ 1+b7A) * ——/——
(p ) TR

We can see that if the coe cient of% is non zero, then we will have a \lrg" term in
the formula of Ry, and this makes the fact thatRi.; would not be analytic, creating a
singularity in the solution. In order to avoid this singularity, we impose that

2b N 8pl? _=0;
p 1 (p 1)
which yields
_(p 17
b= = (2.58)
Besides that, for simplicity, we assume tha€, = 0: Using (2.57), we see that
(p 1) 1

11 —

G 1+b7) 71 p4—pz2|n(p 1+b2)(p 1+bA) 71:(2.59)
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The solution R,;: It is easy to solve |(2.54) as follows:

22
(p 1+bB)rr

R21(2) =

The solution R,.,: We rewrite (2.58) as follows

1 0 _ (p 1)* bZ )
27 Redld = T 1epg) ReAAT Feld)
where
1
F2a(2) = R(2);01+ Roa + ERg;l z+ p(p 1)RE;02R1;1R2;1

p

2(p 1+bZ) 51
10pbZ

o (p 1)

0 1(Io 1+b2) 71 +222(p 1+ bP) pl+Tzz(p
4p(2p 1)k’ w2 pb? 2 1
e e P 1+b7) » 1 == (p 1+bZ) v
2 3 2
(P 41) ZIn(p 1+bA(p 1+b?) vr:
By using the variation of constant method, we have
Z ; !
_ z? 20 1+bR) vt _
R22(2) = b 1+D2) = Fao(z)dz+ C,
where
20 1+bR) 7t 4 20b 1 z 20pb
23 FZ;Z(Z) - ; + 5 (p 1)2 E + D 1+ b22 (p 1)2
8p(2p 1) z
T R LA —
(P 1) (p 1+b2A)
(p 17

5 zin(p 1+bZA)(p 1+b7) %

We observe that X
(p 1)
4p

20pb
———— =0; becauseb=
(p 1)

So, from {2.61) and assuming thaC, = 0; we have

Roa(z)= 2(p 1+bZ) 71+ Hyy(2);

where

H2o(2) = Ca(p)Z(p 1+b2) 77 + Coa(p)Z2in(p 1+ bZ2)(p 1+bP) 7

+ Coa(@Z2In(p 1+bA)(p 1+bP) 5t

(2.60)

3p 2

1+b2) 71

(2.61)

2pb
p 1

(2.62)

P
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Matching asymptotic

Since the outer expansion has to match the inner expansion, we will x several constants
and derive the following pro les forw; and ws;:

wi(y;s) 1(Y;9);
Wa(y; s) 2y: 9); (2.63)

where

I

i(y;s) = p s +2T-s; (2.64)
P

R '/ & (P 1Vjyj* ** Z

2Ayis) = 5 P 1+ b s b D% (2.65)

forall (y;s) 2 RN (0;+1).

2.3 Existence of a blowup solution in Theorem 2.1 [ |

In Section[2.2, we adopted a formal approach on order to justify how the pro Ids; g arise
as blowup pro les for equation [2.1). In this section, we give a rigorous proof to justify the
existence of a solution approaching those pro les.

2.3.1 Formulation of the problem

In this section, we aim at formulating our problem in order to justify the formal approach
which is given in the previous section. Introducing

Wi

1+ G,
W, (2.66)

2+ O

where ; ; are dened in (2.64) and [2.65) respectively, then usind (2.26), we see that
(Ch; @) satisfy

@ _ L+V 0 G, Via Viz @ . Bi a4 | Ruy9) . (2.67)

@qz_ 0 L+V g Va1 Vap o B, @ Ra(Y;s)

where linear operatorL is de ned in (2.28) and:
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- Potential functions V;Vi.1; Vi.2; Va.1; Vo are de ned as follows

V(y;s)

Vi1(y; 9)

Vi2(Y; 9)

Va(Y; S)

Va2(Y; 9)

CH( D 2)%7* 7
j=1
oo o
CH( V@) 17 3%
j=0
Kl |
CZ( 1(p 2

Co( @+ § 7
j=1

- Quadratic terms B1(tq; ) and B,(q; @) are de ned as follows:

Bi(t; ) = Fi( 1+ 2+ %) Fi( 15 2)
j=0
¥ o
CI( 1:@) 77 7
j=0
5
Ba(dh;p) = Fo( 1+ 2+ &) Fao 15 2) CI'M( Y(p 2
j=0
el | o
CIT( @+ 17 Jo
j=0
- Rest termsR(y; S); R2(y; s) are de ned as follows:
1 1
Ri(y;s) = 1 éy roa 1+F1( 15 2) @ g
1
Rao(y;s) = 2 éy roo» 0 21+F2( 15 2) @ 2

whereFy; F, are de ned in (2.24).

By the linearization around ;;

(ou; @) of system [2.67), satisfying

Kopki1 (rvy + Kpki1 (gvy ! Oass! +1:

p 2 2 2+1.
1) 1 2

CA( (p 2) 572" Ja

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

p 2 2 2j+1
1) 1 2 G

(2.74)

(2.75)

(2.76)

2; our problem is reduced to constructing a solution
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Concerning equation [(2.67), we recall that we already know some main properties of linear
operator L (see page 77). As for potential function®j, wherej;k 2 f 1;2g, they admit
the following asymptotic behaviors

X . C y
Vik(y;9)i  <i8y2RYs L

ik 2
(see Lemm4 2.18). Regarding the termB;; B,; Ry; Rz, We see that whenevejoj + jipj 2
we have

iB1(th; @)j C(cf + %);

- G i .o o
iB2(th; &)j C T+JQ1QZJ+JCIZJ ;
C
le(, S)kLl (RN) g,
C
KR2(:;S)KL1 (rY) =t

(see Lemma$ 2.19 and 2.p0).

In fact, the dynamics of equation ) will mainly depend on the main linear operator

L+V 0
0 L+V °

and the e ects of the other terms will be less important. For that reason, we need to un-
derstand the dynamics oL + V. Since the spectral properties df were already introduced

in Section[2.2.1, we will focus here on the e ect df.

i) E ect of V inside the blowup regionfjyj] K P sg with K > 0 arbitrary, we have

VI 0inL%(jyj Kp§)ass! +1;

which means that the e ect of V will be negligible with respect of the e ect ofL ; except
perhaps on the null mode of. (see item (i) of Proposition[2.13 below)

ii) E ect of V outside the blowup region: for each> 0; there existK > 0 ands > 0
such that
. p
= K s s p 1
Since 1 is the biggest eigenvalue &f, the operatorL + V behaves as one with with a fully
negative spectrum outside blowup regiofjy; K p§g, which makes the control of the

solution in this region easily.

Since the behavior of the potentiaV inside and outsgie the blowup re%on is di erent,
we will consider the dynamics of the solution fojyj 2K sand forjyj K s separately
for someK to be xed large. For that purpose, we introduce the following cut-o function

(y:9)= o ﬁj& ; (2.77)

K"s
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where o2 C§ [0;+1 );k ok (rvy 1 and

(x) = 1 forx 1
= 0 forx 2

and K is a positive constant to be xed large later. Heﬁce, it is reasonable to consider
separate% the solution in the blowup regionfj yj 2K " sg and in the regular region
fiyi K sg. More precisely, let us de ne the following notation for all functionsg in

LY (RV):

0=+ G With = q andg. = (1 )d; (2.78)
Note in particular that supp(g,) B(0;2K P s)and supp@) RN nB(0O;K P S).

In addition to that, we also expandq, in L?, according to the spectrum of. (see Section

above):

1
BY)= G+ Y+ éyT @y Tr(ep)+q(y); (2.79)
where
Z
@ = O (y)dy;
Ry
1
@ = 5 ay (y)dy;
zR"
@ = o 1yy L (y)dy ;
- Y Yk A Jk y
RN 47 2! Lk N

and Tr (@) is the trace of the matrix ¢p. The reader should keep in mind thato; o1; &
are just coordinates ofg,, not for g. Note that g, is the projection ofq, as the eigenspace
of L corresponding to the eigenvalue =1  5: Accordingly, g is the projection ofg, on
the negative part of the spectrum oL : As a consequence of (2.]/8) anfl (2]79), we see that
everyq2 L! (RV) can be decomposed into 5 components as follows:

1
0= b+ G= @+ G Y+ §yT @Yy Tr(p)+q + g (2.80)

2.3.2 The shrinking set

In this part, we will construct a shrinking set, such that the control of ¢;; ) ! 0; will be
a consequence of the control ofy; @) in this set, where ;@) is the solution of (2.67).
The following is our de nition:

De nition 2.1  (Shrinking set). Forall A 1;p; 2 (0;1) ands 1, we introduceVp, a: (S),
denoted for simplicity by, (s), as the set of alla; ) 2 (L (RV))? satisfying the following
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conditions:
A Az
%o o and oo P2’
A A% S
il 5 oand oyl 58l ) N
: A?lns . AdIns, N .
1 Gk ~ and  jop;k] oz 81 jk N;
G é and % A_2
1 + JyJ3 L1 SZ l + JyJ3 L1 SP12+5 y

3

A2
kq:]_;ekLl p—§ and qu;ekLl W,
S 2

where the above components are gf, and o, respectively, decomposed as i2.80).

In the following Lemma, we show that belonging td/s(s) implies the convergence to O.
In fact, we have a more precise statement in the following:

Lemme 2.8. Forall A 1;s 1;if we have(q:; &) 2 Va(S), then the following estimates
hold:

3

(i) Estimates inL! (RV): kaik.: vy F and kapk,: av) S%:;

(i) For all y2 RN, we have

CAZIns CA?Z CAZIns

SN e () andad (L i),

J%n(Y)i

and
3 3

. . CA Cm . CA® . .. CA o
j%Rn(Y)] S,)T(lﬂyﬁ); jpe(Y) S,)T(lﬂyﬁ) and jpj S,,T(lﬂyf’):

where C will henceforth be an universal constant in our proof which depends only on
K;N and p;.

Proof. We only prove the estimates ofp. Since, the other ones fog, will similarly follow
and have already been proved in previous papers (see for intance Proposition 4.7 1n [24]).

Let us considerA 1;s 1 and ;) 2 Va(s) andy 2 RN. We also recall from

(2.80) that
& = Gt Cpe;
where supp,) B(0; 2K P s) and supp@e) RN nB(0;K P S).

(i) From (2.79), we have
1
B= ot G1 Y+ 2y Go Y TH(Gho)*+ &
Therefore,

Cb; - 3xc
— 1+ jyj’f2.81
1+ jyj3 L1(R(N) Jyi*j2.81)

j%n(Y)i ] Qo + jaliyj+ C 1 rjr_‘kaXN Jojk (1 + Mz) +
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Then, recalling that supp(@:n) B(0; 2K P s) and using De nition P.1], we see that

) . CA3
(V)i
S 2
On the other hand, we also have ,
o A
1%l 7
S 2z

So, we end-up with the following

kq2k|_l (RN) k QZ;bkLl (RN) + qu;ekLl (RN) M

Thus, this yields the conclusion.

(i) Using (2.81) and De nition [2.1], we derive that
. . CA3 .
jesi (1 ivi®): (2.82)
2

We claim that .. satis es a similar estimate:

. . CA®
i%e(Y)] S,E(l + jyj®): (2.83)
2

Indeed, since suppbe) RN nB(0;K P S); we may assume that

i\éi—_lz

K" s

Hence, from De nition [2.1, we write

. . A3 A3y CA3 o
and (2.83) follows. Using[(2.82) and (2.83), we see that

3

.. . . . CcA o
%I § G + jCbe] S,)T(lﬂyﬁ):
2

2.3.3 Initial data

In this paragraph, we suggest a class of initial data, depending on some parameters to be
ne-tuned in order to get a good solution for our problem. This is initial data:

De nition 2.2  (Initial data) . For eachA  1;sy  1;d; = (dio;d11) 2 R RN;d, =
(d20;d21;d22) 2 R RN RN’, we introduce
A
tadiso(Y) = o (duot dia y) (2y:%0);
0

A2 ASlns, 1
o (dpo+ Dot V) + e 2y oo Yy Tr(dp) (2y; so):
g st 2

2Ad2:s0(Y)
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Remark: Note that d;.c and d,,o are scalarsd;.; and d,.; are vectors,d,.; is a square
matrix of order N. For simplicity, we may drop down the parameters expect, and write

1(Y: o) and  2(y; o).

We next claim that we can nd a domain for (d;;d,) so that initial data belongs to
Va(So) :

Lemme 2.9 (Control of initial data to be in Va(Sg)). There existsA; 1 such that for all
A Ay, there existss;(A) 1 such that for allsy  s1(A); if (ch;B)(So) = ( 15 2) (So)
where( 1; 2)(So) are de ned in De nition then, the following properties hold:

i) There exists a seDas, [ 2;2]" 2N*2 such that the mapping
1 RN2+2N+2 [ RN2+2N+2
(di;d2) 70 (Ouos ()1 j Ni o ()1 § nNs (k)1 jk ~N)(So)

IS linear, one to one fromD s, tO \7A(so), where

A BN A2 A2 BN ASins ASIns N
\/7A (s) = 232 P2’ it iz e (2.84)
Moreover,
1(@ns,)  @a(so) and deg( 1 @, ) 60: (2.85)
ii) In particular, we have(t; &)(So) 2 Va(So); and
: : A%Insg N _
J otk (So)] 22 ;81 jk N;
%; (% S0) A % (%5 So0) AZ
Trivie og and S o
JyJ L1 (RN) 0 Jyj L1 (RN) 230 2

Ge(5S0) =0 and  Gpe(:;Sp) =0:

Proof. The proof is straightforword and a bit length. For that reason, the proof is omitted,
and we friendly refer the reader to Proposition 4.5 i [24] for a quite similar case. [

Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove an existence of a solution of equatign (2/67) trapped in the shrinking
set:

Proposition 2.10 (Existence of a solution trapped inVa(s)). There existsA, 1 such
that for all A A, there existss,(A) 1 such that for all sq s2(A), there exists
(di; dz) 2 RN**2N+2 sych that the solution(c; @) of equation (2.67) with initial data at the
time so, given by (th; ®)(So) = ( 1; 2)(So), Where( 1; 2)(So) depends on(d;;dz) and is
de ned in De nition 2.2,| we have then

(Ch; %) 2 Va(s); 8s2[sp;+1):

The proof is divided into 2 steps:
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The rst step: In this step, we reduce our problem to a nite dimensional one. In
other words, we aim at proving that the control of (;; )(s) in the shrinking set
Va (s) reduces to the control of the following components:

(G0 (C)1 ) NS Gos ()1 § NG (k)1 jk nN)(S)
in Ya(s), de ned as in (2.83).

The second step: We get the conclusion of Proposition 2,10 by using a topological
argument in nite dimension.

Proof. We here give proof of Propositiof 2.70:

- Step 1. Reduction to a nite dimensional problem:Using a priori estimates our
problem will be reduced to the control of a nite number of components.

Proposition 2.11 (Reduction to a nite dimensional problem). There existsA; 1 such
that for all A Ags, there existssz(A) 1 such that for alls,  s3(A), the following holds:
If the two following are satis ed:

(@) If (ou; p)(s) a solution of equation(2.67) with initial data (o; )(So) = ( 1; 2)(So),
de ned as in De nition 2.2]for some (dy;d;) 2 Dass,, introduced in Lemma[2.9

(b If we furthemore assume thafq,; )(S) 2 Va(s) for all s 2 [sg;s:] for somes; s
and (au; )(s1) 2 @X(s1)-

Then, we have the following conclusions:

(i) (Reduction to nite dimensions): We have
(Gos ()1 j n3Goi (Gj)1 j NG (Gej)1 jx n)(S1) 2 @a(sn)
(i) (Transverse outgoing crossing): There existg > 0 such that

8 2 (0; 0);(thoi ()1 nioi ()1 i nil(iw)1 jk n)(S1+ ) 2Va(s: +( ); )
2.86
which implies that(oy; p)(s1+ ) 2Va(si+ ) forall 2 (0; o):

This proposition makes the heart of the paper and needs many steps to be proved. For
that reason, we dedicate a whole section to its proof (Sectibn P.4 below). Let us admit it
here, and get to the conclusion of Proposition 2.1L0 in the second step.

- Step 2: Conclusion of Propositio 2.0 by a topological argumenia this step, we
nish the proof of Proposition [2.10. In fact, we aim at proving the existence of parame-
ters (di;dz) 2 Das, such that the solution (t; @)(s) of equation (2.67) with initial data
(; ®)(so) =( 1; 2)(so), exists globally for alls 2 [sp; +1 ) and satis es

(h; )(S) 2 Va(s);
where initial data ( 1; 2)(Sp) is introduced in De nition

In fact, our argument is analogous to the argument of Merle and Zaag [15]. For that
reason, we only give a brief proof. Let us xK;A and s, such that Lemma[2.9 and
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Proposition[2.1] hold. We rst consider (4; )q,.0,(S);S  So @ solution of equation )
with initial data ( o; &p)(So) Which depends on @;; d,) as follows

(O B)dyid2(So) = (15 2)(So):

From Lemma[2.9 and by construction oD »s,; we know that

(0; ) (S0) 2 Va(So): (2.87)

By contradiction, we assume that for all ¢;;d;) 2 Das,, there existss; 2 [So;+1 )
such that
(s %) a0, (S1) Z Va(s):

Then, for each €;;d;) 2 Das,; We can de ne
S (dy;dy) =inffs;  sp such that (th; &)d,:0,(S1) Z Va(S1)0:

From the fact that (o; 3)(S1) 2 Va(S1), we deduce thats (d;;d;) < +1 for all (dy;dy) 2
Das,: Besides that, using[(2.87), and the minimality of (d; d,); the continuity of (oy; p)
in s and the closeness oA (s) we derive that (qi; p)(s (di;d;)) 2 @Y(s (dy; dy)) and for
all s 2 [sg; s (di; d2)];

(Gh; &)(S) 2 Va(s):

Therefore, from item () of Proposition[2.1] we see that
(Ao ()1 1 NG G0 ()1 j ns ()1 e n (S (disdl)) 2 Va(s (di; d)):
This means that following mapping is well-de ned:
: Das, | @[ L;1NrEN+2
(di;di) 70 (di;d);

where
p1+2 p1+2

(@i (@)1 (8 )i e (@i )s ik n(S)

s? S
A (@0 (@)1 w)(S);
wheres = s (d;;d;). Moreover, it satis es the two following properties:

(i) is continuous from Das, t0 @ [ 1; 1N**2N+2 : This is a consequence of itemii()
in Proposition (2.11).

(i) The degree of the restriction j@DA_S0 is non zero. Indeed, again by itemii() in

Proposition[2.11, we have
S (di; dp) = So;

in this case. Applying [2.85), we get the conclusion.

In fact, such a mapping can not exist by Index theorem, this is a contradiction. Thus,
Proposition follows, assuming that Propositioh 2.11 (see Sectjon|2.4 for the proof of
latter) m
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2.3.4  The proof of Theorem 2.1 ]

In this section, we aim at giving the proof of Theorem 2]1.

Proof. Proof of Theorem[2.] assuming that Propositioh 2.11

+ The proof of item (i) of Theorem[2.]: Using Proposition[2.1), there exist initial data
(h; )d,:0,(S0) = (15 2)(So) such that the solution of equation ), exists globally on
[so;+1 ) and satis es:

(0 ®)(S) 2 Va(s); 852 [sp;+1 ):
Thanks to similarity variables (2.25), {2.66) and item {) in Lemma/[2.8, we conclude that
there exist initial data u® of the form given in RemarK 2.2 with (I;; d,) given in Proposition

such that the solutionu(t) of equation (2.1) exists on [0T); where T = e ® and
satis es (2.15) and [2.1p). Using these two estimates, we see that

1

u(o; t) (T t) »Tast! T;

which means thatu blows up at time T and the origin is a blowup point. It remains to
prove that for all x 6 0; x is not a blowup point of u. The following Lemma allows us to
conclude.

Lemme 2.12 (No blow up under some threshold)For all Co> 0;0 T, <T and > 0
small enough, there existsy(Co; T; ) > 0 such that the following holds: 1i( ; ) satis es
the following estimates for alj j ; 2 [Ty;T):

j@u uj  Cojuj;

and
jut; )i o) P
then, u does not blow up at =0; =T.

Proof. The proof of this Lemma is processed similarly to Theorem 2.1 in [6]. Although the
proof of [6] was given in the real case, it extends naturally to the complex valued casél

We next use Lemma 2.72 to conclude thai does not blow up atx, 6 0: Indeed, ifxo 6 0
we use [(2.15) to deduce the following:
!

1 L} C
sup (T t)7 fju(x;t)j fo p 2 . +p——— 1 0 ast! T:
i xoj Kol ST OiIn(T )] jin(T )]
(2.88)

Applying Lemma tou(x Xp;t); with some small enough such that ‘XT"‘ and T,
close enough tor; we see thatu(x Xp;t) does not blow up at timeT and x = 0. Hence
Xp IS not a blow-up point of u. This concludes the proof of itemi() in Theorem|2.1.

+ The proof of item (ii) of Theorem[2.]: Here, we use the argument of Merle in[13] to
deduce the existence ai = u, + iu, such thatu(t) ! u ast! T uniformly on compact
sets of RN nf0Og. In addition to that, we use the techniques in Zaag [29], Masmoudi and

Zaag [16], Tayachi and Zaagd [24] for the proofs df (2|18) ar{d (3.19).
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Indeed, for allxo 2 RN and xo 6 0, we deduce from [(2.15), [(2.16) that not only [(2.88)
holds but also the following is satis ed:
!

sup (T 7 5In(T  t)jjiup(x;t)] 3o} P g 2
ol ol o 20 Hin(T 9 ° " T ojin(T 0]
+ __c I 0, ast! T: (2.89)

in(T  1)j%

We now considerxg such that jxqj is small enough, andK, to be xed later. We de ne
to(Xo) by

- p . .
Xoj = Ko T to(Xo)j In(T  to(Xo0))]: (2.90)
Note that to(Xo) is uniqgue whenjxgj is small enough andtg(xo) ! T asxe ! 0. We
introduce the rescaled functionsJ(Xo; ; ) and V,(Xq; ; ) as follows:

UXo; ; )=(T  to(Xo)7 T u(x;t): (2.91)
and
Va(Xo; 5 ) = jIn(T  to(X0))jUz2(Xo0; ; ); (2.92)

whereUy(Xo; ; ) Is de ned by
U(Xo; 5 )= Ui(Xo; ;5 )+ iUa(Xo; 5 );
and

to(Xo)
T to(xo)
(2.93)
We can see that with these notations, we derive from iteni)in Theorem|2.] the following
estimates for initial data at =0 of U and \,

(X;t) = Xo+ P T to(Xo);to(Xo)+ (T to(Xo) ; and (; )2 RN

sup jJU(Xo; 5 0) fo(Ko)j c I 0asxg! 0;(2.94)

P35 (T to(xo))id 1+(jIn(T  to(xo)j)
C

T+GInT tox))] ) |

sup iVa(Xo; ; 0)  do(Ko)j 0 asxg! 0:(2.95)

- .1
i3] In(T to(xo0))j4

where fo and g, are de ned as in [2.§) and ) respectively and; = min 3; 8 .
Moreover, using equations[(2.23), we derive the following equations for, Vs: for all
2RN; 2][0;1)

@U= U+ UM (2.96)
@V = Vo + VoGa(Ug; Uy),; (2.97)

where G is de ned by
G(U1; Ux)Uz = F2(Ug; Up); (2.98)

and F; is de ned in (2.24). We note that G,; F, are polynomials ofU;; U,.
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Besides that, from [2.8D) and[(2.96), we can apply Lemna 2|12tbwhenj j j In(T
to(Xo0))j* to get the following

sup jUxe; ; )i C: (2.99)

i AIn(T to)id; 2[0)
We aim at now proving the following

sup Vo(xo; ; )i Co (2.100)
i1 AT to(xo)ik; 2[0;1)

+ The proof for (2.100Y We rst use (2.99) to derive the following rough estimate:

sup Va(Xo; 5 )i CjIn(T  to(Xo))j: (2.101)
i AT tko)it; 2[0)
We rstintroduce 2 C} (RV);0 1L;suppl ) B(0;1); =1onB(0;3): We also
de ne
!
2
()= and Vo1 (Xo; 5 )= 1( )Va(Xo; 5 ): (2.102)

iIn(T to(xo))j*

Then, we deduce from[(2.97) an equation satis ed by,.,

@Vo1 = Vo 2div(Vor 1)+ Voo 1+ Vo Gy(Ug; Us): (2.103)
Hence, we can writéV,.; with a integral equation as follows
Z
Var( )= e (Voa(0)+ & 7 ( 2div(Vor 1)+ Vo 1+ VouG(UyU)( 9)d @
0

(2.104)

Besides that, using|(2.99) and| (2.101) and the fact that

C , . C

jr : o) BT =
J1In(T  to(Xo))j? JIn(T  to(Xo))j2

we deduce that

Z Z
& O (2dvvr )d° ¢ e K Ogo gt it
0 7 ZO
€ 9 ((9 Dd®  C Kb ki (9% Ciln(T  to(xo))j?;
Z 0 70
e 9 (Vo 1G(UU)( ¥d° C  KkV21Go(Ur; Upke: ( 9d ©
0 0

Note that G,(U;; Uy) in the last line is bounded onj | j In(T to)j%; 2 [0;1) because it
is a polynomial in U;; U, and (2.99) holds, then, we derive

KV21Ga(Ur; Upkes (9 CkVaik: (9:
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Hence, from |(2.104) and the above estimates, we derive
Z

KVar( Dkt CjIn(T  to(Xo)ja + C  kVai( Yku: d @
0
Thanks to Gronwall Lemma, we deduce that
KVor( Dkis  CjIn(T  to(xo))j#;8 2 [0;1);
which yields

sup Va(xo; 5 )i Ciln(T  to(xo))ji: (2.105)
P LT to(xo)i®; 2[0:2)

We apply iteratively for

4
in(T to(xo))j*

Voo(Xo; 3 )= 2( )Va(Xo; 5 ) where ()=

Similarly, we deduce that

sup Va(Xo; ;)i Ciln(T  to(xo))jz:
Pi HI(T toxo)id; 2[0:1)

We apply this process a nite number of steps to obtain (2.100). We now come back to our
problem, and aim at proving that:

C
sup U, ;) Ok,() : _: (2.106)
i AT toxo)id;: 2(0:) 1+jIn(T  to(x0))] 2
C
sup Va(xo; 5 ) Vawo( ) . (2.107)

o~ —
P &in(T to(xo)id; 2[0:1) L+JIn(T to(xo))]

where ,; 3 are positive small enough andQKo;\%;Ko)( ) is the solution of the following
system:

@0, = O0f; (2.108)
@%x, = pOR, ok, (2.109)
with initial dataat =0
Ok, (0) = fo(Ko);
Vo o(0) = Go(Ko):
given by
22 oI
0,() = (o na )+ BT (2.110)
2K 2 51
Oo() = KZ (0 D )+ PDHKo 7T (2.111)

4p
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forall 2 [0;1). The proof of (2.106) is cited to Section 5 of Tayachi and Zaag [24] and the
proof of (2.107) is similar. For the reader's convenience, we give it here. Let us consider

Vo=Vo Vo, ): (2.112)

Then, V, satis es
>up Vil C: (2.113)

We use [2.9]) to derive an equation oW, as follows:
@Vz = Vz+pOF,"Va+ p(Uf 1 Of HVa+ Golxoi 5 ) (2.114)

where
G(xo; i )= Va[Ga(Ur;Uz)  pUP 'T:
Note that, from de nition of G, and (2.99) we deduce that

sup jG2(Ui;Up)  pUP Y CjUsi:
i1 LT to(xo)i®; 2[0:2)

Hence, using[(2.92) and (2.100) and we derive

. ) C
sup 1G(Xo; 5 ) - - (2.115)
1 AIN(T to)i; 2[0:1) JIN(T To(xo))]
We also de ne
Vo= ()Va
where !
3 16
iIn(T to(xo)j
and is the cut-o function which has been introduced above. We also note that ;
satisfy the following estimates
kr k|_1 C and k k|_1 C (2116)

(T toxo))i? (T toxo))i?

In particular, V, satis es
@Vo= Vo+pOR Y()Vo 2div(Vor )+V,  +pUft O Y Vot Gy (2.117)

By Duhamel principal, we derive the following integral equation
Z n

Vo() = e (Vo )+ e 20 pOR Vo 2div(Var ) (2.118)
0

0
+V,  +pUft O W+t G (9d° (2.119)
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Besides that, we use| (2.106)| (2.1[10), (2.113), (2.116), (2.115) to derive the following esti-
mates: for all 2 [0;1)

i%,()i G

Wor k()
JIn(T  to(Xo))j=

C
kV> Kea () : T
JIn(T  to(Xo))j2

C
p 1 p 1 .
V0T L0 I e e

C

sz kLl (RN)

jIn(T  to(Xo0))j’
where , given in (2.106). Hence, we derive from the above estimates that: for alR [O; 1)

jet 9 p0£01V2( ) CkVa( 9k;

o . 1 1 _
€0 @v(Var i Che— e
o9y . C B
T T
il 9 1 1 - C .
e 2 eur T 08D VIO E
C

e 9 ( &) 9

JIn(T  to(x0))j’
Plugging into (2.118), we obtain
c Z
kV Kk 1 : —+ C kV ki1 d 0;
R A R

where 3 = min( %1; »). Then, thanks to Gronwall inequality, we get

C .
JIn(T  to(xo))j @

Hence, ) follows . Finally, we easily nd the asymptotics ofi and u, as follows,
thanks to the de nition of U and V, and to estimates (2.106) and|(2.107):

kVok 1

1 1 2 Plil
60 = im Ui = (T tali) 5 IMUGei0 ) (T toxa) 77 Pk
(2.120)
and
. (T to(xo) 7T .
U,(Xo) = Itl!mT Us(Xo;t) = T to(xo)] ||!mlv2(x0,o, )
(T to(x0)) Pt (p 1) ﬁ(Ké) 5. (2.121)

JIn(T  to(Xo0))] 4p
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Using the relation {2.90), we nd that
JXoj?

2K §j In jXojj

Plugging (2.122) into [2.12D) and[(2.131), we get the conclusion of iterin)(of Theorem[2.].

This concludes the proof of Theorern 2.1 assuming that Propositipn 2111 holds. Naturally,

we need to prove this proposition on order to nish the argument. This will be done in the
next section. O

T to(Xo) and |n(T to(Xo)) 2 |n(]X0]), asXg ! 0: (2122)

2.4 The proof of Proposition 2.11 |

This section is devoted to the proof of Proposition 2.11, which is the heart of our analysis.
We proceed into two parts. In the rst part, we derive a priori estimates on ¢(s) in
Va(S). In the second part, we show that the new bounds are better than those de ned in
Va(s), except for the rst components @o; (Gh)1 j n:Goi ()1 j v (@)1 i n)(S).
This means that the problem is reduced to the control of these components, which is the
conclusion of item () of Proposition[2.1]. Item (i) of Proposition is just a direct
consequence of the dynamics of these modes. Let us start the rst part.

2.4.1 A priori estimates on  (g; ) in Va(S).

In this subsection, we aim at proving the following proposition:

Proposition 2.13. There existsA; 1, such that for allA A4 there existss;(A) 1
such that for alls,  s4(A) the following holds: If we assume that for al2 [ ;s 1]; (or; B)(S) 2
Va(s) for somes; sg, then, for all s 2 [Sg; s1]:

(1) (ODE satis ed by the positive modes) For al] 2 f 1;:::?Ng, we have

®ol(S)  wo(s) + &f;(9) %qu,-(s) %;81 i N; (2.123)
BolS) Gol) * By Sei(9 Bl | N (2124)

(i) (ODE satis ed by the null modes) For allj;k 2 f 1;:::; Ng, we have
CA

2
Rixc () + Shinc () o (2.125)
2 CAZ?Ins
0g;j;k (S)+ gq2§j;k (S) Sp1+3 : (2126)
(iii ) (Control the negative part)

& (:9) s (5) el ” Cl+s ).

teye . OF T awpE L PO el e g
(2.127)

. (39) s o () e s ) Cl+s )

Ty Ce 22 ——= +C Kipe(i; kit + ————=:

1 + JyJ3 L1 1 + JyJS L1 S% QZ,e( ) L SL

" (2.128)
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(v) (Outer part)

. s ) . O (5) Cl+s )& |

Khe(islls  Ce v kel Jhur + Ce 2 1+jyj® " Us ’

(2.129)

kipe(:;S)k:  Ce S kel Yk + CE 57 B (.:;_3) L C@+ SWZ e .
1+)yP s s 7z

(2.130)

Proof. The proof of this Proposition is given in two steps:

+ Step 1: We will give a proof to items () and (ii) by using the projection the
equations which are satis ed by and .

+ Step 2: We will control the other components by studying the dynamics of the
linear operatorL + V.

a) Step 1: We observe that the techniques of the proofs for (2.123), (2.124), (2.125) and
(2.126) are the same. So, we only deal with the proof df (2.125). For egrk 2 f 1;::;;Ng
by using the equation in [2.6F) and the de nition ofcy;x we deduce that

Z

s () [Lop+ Vg + Bi(th; @) + Ru(y;s)] (v;9)

YiYi i s.
2 o dy Ce %
(2.131)

if K is large enough. In addition to that, using the fact ¢;; ) 2 Va(s) and Lemma[2.8,
Lemma[2.18, Lemma 2.19, Lemnia 220 that

z
] L@ By
qu o4 dy+§q1;m (s) i—f;
B Y0 D dy é;
4
Rityi9) 10y g;

provided that s s4(A). Then, (2.125) is derived by adding all the above estimates.

Step 2: In this part, we will concentrate on the proofs of itemsi(i ) and (iv). We now

rewrite (2.67) in its integral form: for eachs

8
a(S)
2 - #1i(S) )R

2 Q(S)
' = Ll );

R
|§(§: Jau( )+ TK(S ) I(Vina)( )+ (Vaa®)( )+ Ba(c)( )+ Ra( )ld

K(si )e( )+ “K(s; )(Vaa@)( )+ (Vap®)( )+ Ba(aa)( )+ Ro( )1d

(2.132)

wherefK(s; )gs is the fundamental solution associated t@ + V and de ned by

@K(s; )=(L+V)K(s; ); 8s>;

K(; )= Id:

(2.133)
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Let us now introduce some notations:
Z

#11(s; )= K(s; )l );  #ia(s; )= SK(s; Y(Viian)( )d;
Z S Z S

#1a(s; )= K(s; )(Vi2®)( )d; #1a(s; )= K(s; )(Ba(a; @) )d;
Z S

#is(s; )= K(s; )(Ru(:; )d;

and
Z S

#21(5 )= K(s; N @()); #a2(s; )= K(s; )(Vaua)( )d;
Z S Z S

#os(s; )= K(s; )(Ma2®)( )d; #24(s; )= K(s; )(Ba(an; &)( )d;
z

#as(s; )= K(s; )(Ra(; ))d:

From (2.132), we can see the strong inuence df. For that reason, we will study the
dynamics of that operator:

Lemme 2.14 (A priori estimates of the linearized operator) For all 0, there exists
ss( ) 1 such that ss( ) the following holds: If we have 2 L2(RV), satisfying

ﬁ . .
Vi +

m=0

— + kvek <1; (2.134)
1+ Jng Lt (RN) enLt (RN)

where the above components are introduced (.80), then, foralls2 [; + ]; the function
(s) = K(s; )v satises

. ces ((s )2+1),. . . . P= .
I 14 ) o (& 1) (ugj + juaj + P Sivai)
(2.135)
+Ce S ¥ + Ce T hvekis o
WP |1 Ry T3 et (R

and

; 1 (RN 2jvj + S2 + P 1 (RNY-
K e(y;S)kis rvy C€ , S?jvj + sz TS VER Ce 7 kveki1 (rr)

(2.136)

Proof. The proof of this result was given by Bricmont and Kupiainen'|[1] in the one dimen-
sional case. Later, it was extended to the higher dimensional case by Nguyen and Zaag
[18]. We kindly refer interested readers to Lemma 2.9 in[18] for details of the proof. [

We now use Lemmas 2.14, 2.8, 2118, 2.19 and 2.20 to deduce the following Lemma which
implies Proposition[2.18.
Lemme 2.15. Forall A 1, 0, there existssg(A; ) 1 such that8sy sg(A; )

andq(s) 2 Sa(s);8s2[; + ]where So. Then, we have the following properties: for
alls2[; + 1],
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1) (The linear term #1.1(s; ) and #,.4(s; ))

(#1a(s: )) s % () Ce s )’ C
1+jyj3 L1 Ce 1+jyj3 Ll+ Sg Kope( )kiz + o
5 (5 C
K(#1,1(S; ))ekes Ce » kape( )k: + Ce€ s? Ci-l_(Jng) L_:_ p_g;
(#F21(s; ) . @ (;) ,Cet ) c
A C —— + 2 Kape( Kt o
1+jyi2 s € 1+jyi® . 3 QL i
K(#2.1(s; ))ekir Ce STKCIZ;e( Yk 1 + Ce S% b (5 ) + p(l:+2 ,

1+jyj3 L1 S 2
whereL! = Lt (RV).

i) The quadratic term#.5(s; ) and #2.(S; )

(#1.2(s; ) C(s ) C(s )
AT St — % k(#5(s: K1 (gN —_—,
L+iyPP Ly g KOs Dekir sz
(#22(s; ) C(s ). : C(s ).
L+iyi® L ry s K(Faalsi Nelar @y s%
iii ) The correction terms#,.3(s; ) and #,.3(S; )
(#13(s; ) C(s ). : C(s ).
L+y° L1y g+ Kals Delws ) s:
(#2:3(s; ) C(s ). . C(s ).
I L s Ol Doy T
iv) The correction terms#,.4(s; ) and #,.4(s; )
(#13(s; ) C(s ) C(s )
—_— o k(#1 ; K 1 (gn ;
T+ Ly $? (Fras(S: Delor @y =
(#2:3(s; ) C(s ). : Cs ).
TIDE s, e oS ee T
v) The correction terms#,.5(s; ) and #,.5(s; )
(#13(s; ) C(s ) C(s )
ASHiA et S ——~ k(#13(s; k e
L+iy° ey s? (Frs(si ek ey s?
(#2:3(s; ) C(s ). : Cs ).
T+jyi® 1y s" Kias(si Nelar @y s

Proof. The result is implied from the de nition of the shrinking setVa(s) and Lemma[2.8
and the bounds forV; Vi ;B1; B2, Ry; Ry with j;k 2 f 1;2g9 which are shown in Lemmas
[2.18,[2.19 andl 2.20. For details in a quite similar case, see Lemma 4.20 in Tayachi and Zaag
[24]. O

We now come back to the proof of Proposition (2.13): In fact, the conclusion difi () and
(iv) of Proposition[2.13 follows by using formula] (2.132) and Lemmf (2]15). This concludes
the proof of Proposition[2.1B. O
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2.4.2  Conclusion of the proof of Proposition 2.11 |

In this subsection, we will give prove a Proposition which implies Propositidn 2]11 directly.
More precisely, this is our statement:

Proposition 2.16. There existsA; 1 such that for allA Ay, there existss;(A) 1
such that for allsy,  s7(A), we have the following properties: If the following conditions
hold:

a) (G ®)(So) =( 1, 2) with (do; d1) 2 Das,,
b) For all s 2 [Sp; s1] we have(t; g)(S) 2 Va(S).

Then, for all s 2 [sg; s1], we have

e . Allns
8i;j 21, Ng joi (S)] e (2.137)
% (¥;9) A Az
1+ YP oy 2% Ke(Okir vy P (2.138)
- (y;s A2 A3
@ (i) L Kape(9ki: miy)  —r (2.139)
S 2 2s 2

1+JY® L1 ryy
Note that D o, is introduced in Lemma[2.9 and( ;; ») is de ned as in De nition (2.2).

Proof. The proof relies on Propostiof 2.13 and is quiet similar to Proposition 4.7 in Merle
and Zaag [15]. For that reason, we only give a short proof tp (2.137).

We use (2.12p) to deduce that
Z S
( o () CA(n(s) In(so));8jk 27115 Ng,

So

this yields ,
A<lns
i i 2 .
J (s)]  CAs “Ins  — o
if A A; large enough ands  s7(A). Then, (2.137) follows. This also nishes the proof
of Proposition[2.16. O

Conclusion of the proof of Proposition 2.11 ]

Proof. From Proposition[2.16, if @; &)(S1) 2 @¥(s1) then:
(G0 (G)1 § niGoi ()1 j i (@)1 i n)(S1) 2 @a(sy): (2.140)
This concludes item {) of Proposition[2.1].

The proof of item (ii) of Proposition[2.1]: In fact, thanks to (2.140), we derive the two
following situations:

+ The rst situation: Either there exists 2 f 1;1g such that oy.o(S;) = o%; or there
existjp 2f1;::;Ngand o2 f 1;1gsuchthatog, = 0%; or exists o 2f 1;1g such that

2

Gbo = ogre; OF there existjo 2 f 1;:Ngand o2 f 119 such that tpjo(S1) = orer-
1 1
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Without loss of generality, we can suppose thatyo = og} (the other cases are quiet
1
similar). Then, by using (2.12B), we can prove that the sign of,,(s:1) is oppsite to the
0

sign of % . In other words,
1

A O
o OQuo 02 (s1) > O

+ The second situation: There existjg;ko; 0 2 1;1 and o 2 f 1;1g such that
b o:ko (S1) = 0%‘;, by using (2.126), we can prove that
1

Asins °
0 Gjoiko(S) 0"z (s1) > G

From two situations in the above, we deduce that there existsy, > 0 such that for all
2 (0; o)
(Co; ()1 j ns 0o (G)1 g nG (@)1 jk n) (St ) 2Va(si+ )

provided that A Az andsy, s3(A). Then, the item (ii) of Proposition follows. Thus,
we derive the conclusion of Propositiop 2.11. O

2.5 Appendix

In this appendix, we state and prove several technical and and straightforward results need
in our paper.

We rst give a Taylor expansion of the quadratic terms de ned in |(2.2P) and|(2.30).

Lemme 2.17 (Asymptotics of B, and B,). Let us considerB(wy;w,) and Ba(wy;w,),
de ned in (2.29) and (2.30), respectively. Then, the following holds

w2 + O + wif?); (2.141)

Piiw, + O jwijtiws + O jwai® (2.142)

B1(wi; w,)

Ba(wi; W,)

as (wq;wy) ! (0;0).

Proof. In fact, bearing in mind that p 2 N. Then, by using the Newton binomial formula,
we derive the following:

Wi+ +iwa)P=(wi+ P+ipwi+ )P two+p(p L)(wi+ )P 2w5+ G(Wi;wy);

where
jG(wy;wo)j  Cjwaj®;  8jwaj + jwgj L
This gives us
Re ((wi+ +iwp)P) (wi+ P+p(p 1w+ )° °wW;+ Re (G); (2.143)
Im (Wi +  +iwo)P) = pwi+ )P wo+ Im (G): (2.144)
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Moreover, we apply again the Newton binomial formula to (+ wy)P;( + wy)P ! and we
get

( +w)P = P+ 5 i Wt 2£w§+ O(jw1j%); (2.145)
1 1 o
(+w)Pt = o 1t Wt O(jwij?): (2.146)
Thus, (2.147) follows by [(2.143) and[(2.145). Moreover| (2.142) follows by (2.144) and
@.148). 0

Now, we give an expansion of the potentials de ned i (2.68) and (2]69)[- (2|72). The
following is our statement:

Lemme 2.18 (The potential functionsV andVjy with j;k 2 f 1;2g). We considerV;\Vi.1; Vi.2; Va1

and V,;, as de ned in (2.6§) and (2.69) - (2.72). Then, the following holds:
(i) Foralls 1andy2 RN, we havejV(y;s)j C;

. . C(1L+ ] i2
Mo %; (2.147)
and .
o9 % +Vis) (2.148)
whereV satis es
4
709 C(“s%”;88 SVEESE (2.149)
(i) Foralls 1landy2 RV; the potential functionsVj; with j;k 2 f 1;2g satisfy
: N : C(1+jyj*
IV1:1(Y; 9)j + [Va:2(Y; 9)) %;
: . . . C(1L+ | i2
JV1.2(y; 9)j + [V2:1(Y; 9)) %:

In particular, we have
kV]_;]_kLl (RN) + kV2;2k|_1 (RN)

kV]_;szl RNy T sz;lkLl (RV)

w|ORIO

Proof. We see that item (i) is derived directly from the de ntions of Vi ;j;k 2 f1;29. In
addition to that, the proof of (i) is quite similar to Lemma B.1, page 1270 iri [18]. O

Now, we give some Taylor expansions &; and B, introduced in (2.73) and [2.74),
respectively.

Lemme 2.19 (The quadratic termsB(q;; ) and Bo(tq; &)). Let us considerB,(q:; &) and

B2(th; @), de ned in (2.73) and (2.74) respectively. For allA  1; there existssg(A) 1
such that for alls  sg(A); if (tr; )(S) 2 Va(S); then

Bi(miw)i  C i+ j%i® ; (2.150)
Baci@)i  C o+ o+l (2.151)
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Proof. Let us recall the two functionsF;(uy; u,) and F(uy; up) which are de ned in (2.24).

As a matter of fact, they belong toC* (R?). Then, by using Taylor expansion, we obtain
X 1

m ) k Fi( 1 2)dd;

Fi( 1+ Gy 2+ @)

ik p
1
Jlkl

Fo( 1+ @y 2+ ) Fo( 1 2)chdk:

ik p

Thus, (2.150) and (2.1501) follow by de nitions ofB1; B, and the de nition of Va(s). O

In the following lemma, we give various estimates involving rest termR; and R,
de ned in (2.75) and (2.76), respectively.

Lemme 2.20 (Rest termsR;;Ry). For all s 1, let us considerR;; R, de ned in (2.75)

and (2.76). Then,

(i) Foralls 1landy2 RN

Riyis) = P+ Ruy;9);
Rao(y;s) = §+mW$
wherec;.,and ¢, are constants depended op and Ry; R, satisfy: for all jyj 2K P S
Riyie) SO,
Ry SO,
(it) Moreover, we have forals 1
RGOk )
KR2(:;8)K 1 (rN) %:

Proof. The proofs forR; and R, are quite similar. For that reason, we only give the proof
of the estimates onR,. This means that we need to prove the following estimates:

Ra(y;s) = % + Ra(y; ), (2.152)
where
JR>(y; 9)] C(Sﬂ siyi 2k
and c
KR2(:;8)Kr (rhy =50 (2.153)

g2
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We recall the de nition of R,(y;s) in (2.76) as follows

2
1

1
Ro(y;s) = 2 =Y I 2 +F( 15 2) @ 2

2

Then, we can rewriteR,

+p Lt 2 @ 2+ Ry(Y;S);

1
Ra(y;s) = 2 éy roo»
where
Ru(y;S)=Fa( 1 2) P& by
Using the de nition of F; in (2.24), and the de ntions of ;; , in (2.64) and (2.6%), we

derive that

. . C(1+ jyj® . P_
IR(y: 8)] %; 8jyj 2K's;
and
C
KR, (5 9)KL 1 (rY) ot
In addition to that, we introduce R, by
1
Ra(y;8)= 2 AR p21+p212 @ 2

Then, we may obtain the conclusion if the following two estimates hold:

N(N +4 C(+jyj°
Ra(y; ) + —(:) 1)3)3 cld* iy 2 ), (2.154)
C
Rk vy = (2.155)

+ The proof of (2.154) We rst aim at expanding - in a polynomial iny of order less
than 4 via the Taylor expansion. Indeed,  is given by

p

2p 1
2N (P Dyi® P*  (p Dyi? (P 1Pjyj? »*
2 > p 1+ " aps 3 o1+ 4 s
(N+2)(p 1y PRI
2s8 9 s
.. .. 3p_ 2
@p L) 1%y 1+ P iyt e
4ps* 4p S ’

Besides that, we use Taylor expansion in the variable= b‘% tofunction p 1+ %”’T‘Z
in the domain wherejzj 2K and this yields the following:

p
(P 1pyj* ** yiZ  CA+jyiY. 4o P
1+ -~ 4ps p 1 ¥ Ap 1) s 2 o o Kos

p

|
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which yields
N, RPN NP Ca i),
s? 4ps (p sz 2(p 1)sB s? ’

foralljyj 2k"s.

It is similar to estimate the other terms in the formula of ,, de ned in the above.
Therefore, we nally obtain

2N L Ny Kjyj C+jyi®),

. p_.
2 o D2 (P DL “(p 1S o 8yl K's (2156)

As E“’e did for  ,, we estimate similarly the other terms in formula ofR,, for all jyj
K" s:

1 ) jyi® jyi‘ C(L+yi®).

27 (p D2 4(p 1)s3 4(p 1)s8 7 (2.157)
2 ivi? jyj* 2N C@ + jyj®)
P 1" (p 122 4(p 128 (p 1)3s? — (2.158)
6
2y , 4N CL+ jyi).
@: (p 1)s8 * (p 1)s3 g (2.160)
where
2 — - ,
Ty:9= PI°  @p 1iyi® Ny . 2pN N

(b D2 4p 1p$ (p 1S (p 1P (p DS
Thus, by an addition (2.156), [2.15]),[(2.158),[(2.1%9) and (2.160), we obtain the following

: N(N +4) CA+jyi%). o P
Ra(y;s) + b D g 8jyj 2K s;
this concludes [(2.154).
+ The proof (2.153) We rewrite i; » as follows
N 1 2N
1(y:9) = Ruo(@) + 5ocand o(yis) = (Rou(@) o=y wherez = v

where R0 and R,.; are de ned in (2.56) and [2.6]), respectively. In addition to that, we
rewrite R, in terms of Ry,o and Rz, and we note that Ry, and R, satisfy (2.52) and

(2.54). Then, it follows that
: . C
iRay;9)i 8y 2 RY:
Hence, (2.15p) follows. This concludes the proof of this Lemma. O
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Chapter 3

A blowup solution of a complex
semilinear heat equation with an non
integer power °

G. K. Duong

Abstract: In this paper, we consider the following semi-linear complex heat equation
@Qu= u+ut;u2cC

in RN; with an arbitrary power p; p > 1. We construct for this equation a complex solution
U = U + iup, which blows up in nite time T and only at one blowup poina: Moreover,
we also describe the asymptotic behaviors of the solution by the following nal pro les:

1

(P 1¢x a® 7

T Tenx @
| 2p (P 1%x & pr 1 et
T o Tenx i jnx a0 X ®

In addition to that, since we also havei;(0;t) ! +1 and u,(O;t) ! 1 ast! T;

the blowup in the imaginary part shows a hew phenomenon unknown for the standard heat
equation in the real case: a non constant sign near the singularity, with the existence of
a vanishing surface for the imaginary part, shrinking to the origin. In our work, we have
succeeded to extend for any powprwhere the non linear termuP is not continuous ifp is
irrational. In particular, the solution which we have constructed has a positive real part.
We study our equation as a system of the real part and the imaginary pagtand u,. Our
work relies on two main arguments: the reduction of the problem to a nite dimensional
one and a topological argument based on the index theory to get the conclusion.

Mathematics Subject Classi cation: 35K55, 35K57 35K50, 35B44 (Primary);
35K50, 35B40 (Secondary).

Keywords: Blowup solution, Blowup pro le, Semilinear complex heat equation, non
variation heat equation.
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3.1 Introduction

3.1.1 Earlier work

In this work, we are interested in the following complex-valued semilinear heat equation

(

= u+ F(u);t2[0;T);
@Qu (u);t2[0;T) (3.1)
u(0) = up2 L (RN);
whereF (u) = uP, andu(t):RN! C,L*(RV):= L* (RN;C)and p > 1.
Typically, when p = 2, model (3.1) becomes the following
(
@ = u+Uu%t2I[oT);
o) (3.2)
u@© = ug2L!(RVN):

This model is connected to the viscous Constantin-Lax-Majda equation with a viscosity
term, which is a one dimensional model for the vorticity equation in uids. For more
details, the readers are addressed to the following works: Constantin, Lax, Majda [2]; Guo,
Ninomiya, Shimojo and Yanagida[[8]; Okamoto, Sakajo and Wunsch [24]; Sakajo![25] and
[26]; Schochet[[27].

The local Cauchy problem for model[(3]1) can be solved In* (RV) when p is integer,
thanks to a xed-point argument. However, ifp is an irrational number, then, the local
Cauchy problem has not been solved yet, up to our knowledge. In my point of view, this
probably comes from the discontinuity ofF (u) on fu 2 R g and this challenge is also one
of the main di culties of the paper. As a matter of fact, we solve the Cauchy problem in
Appendix for dataug 2 L1 (RN); with Re(uo) ; for some > 0. Accordingly, a
maximal solution may be global in time or may exist only fot 2 [0; T); for someT > O:

In that case, we have to options:

(i) Either ku(;;t)k.: gvy ! +1 ast! T.

(i) Or min,,gnv Re(u(x;t))! Oast! T.

In this paper, we are interested in casa ) which is referred to as nite-time blow-up in
the sequel.

In addition to that, a blowup solution u is called Type | if
limsup(T t)rﬁku(:;t)ku RV < +1:
t T

Otherwise, the solutionu is called Type II.

In addition to that, T is called the blowup time ofu and a pointa 2 RN is called a
blowup point if and only if there exist sequenceb(a;;tj)g! (a;T)asj ! +1 such that

jus(ay;t)j + jua(ay;ty)j! +1 asj! +1:

In our work, we are interested in constructing a blowup solution of (31) which is diype I.
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Let us quickly mention some typical works for this situation (for more details, the readers
can see the introduction in Duong[[5] where has treated for the integer case).

(i) For the real case: We rst mention to Bricmont and Kupiainen [L], the authors
have constructed a real positive solution to the following equation

@ = u+juP tup>1; (3.3)

which blows up in nite time T, only at the origin and they have also derived the pro le of

the solution such that
!

) C -
1+ jin(T v)j

(T HrtuGt) fo p k :
T OIT O, g

wherefg is de ned by

(p 12 _, 71

—_ 2 .
fo(z)= p 1+ 2 jZj : (3.4)

In addition to that, Herrero and Vebzquez derived in [13], the same result with a di erent
method. Particularly, Merle and Zaag gave in[[17], a proof which is simpler than the one
in [1] and proposed the following two-step method (see also the natel[15]):

- Reduction of the in nite dimensional problem to a nite dimensional one.

- Solution of the nite dimensional problem thanks to a topological argument based on
Index theory.

Moreover, they also proved the stability of the blowup pro le for [3.B). In addition to
that, we would like to mention that this method has been successful in various situations
such as: Ebde and Zaag[6]; Tayachi and Za&g [28] and Ghoul; Nguyen and Zaag|[9]; [10]
(with a gradient term) and [11]. We would like to mention Nguyen and Zaag [21] who have
considered the following quasi-critical double source equation

. jujP tu
= u+juf tu+ o ——
Qu I 22 + 12)

Besides that, we have Duong, Nguyen and Zaag [4], the authors have considered the fol-
lowing non scale invariant equation

@ = u+juf tuln 2+ u?:

(i) For the complex case: The blowup problem for the complex-valued parabolic
equations has been studied intensively by many authors, in particular for the Complex
Ginzburg Landau equation (CGL)

@=@1+i) u+@+ i)juyP *u (3.5)

This is the case of an ealier work of Zaag in [29] for equatidn (B.5) wherr 0 and  small
enough. Later, Masmoudi and Zaag generalized in [18] the result[of][29] and constructed a
blowup solution for (3.5) with a super critical conditionp 2 p> O
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Recently, Nouaili and Zaag in[[23] have constructed a blowup solution for equatidn (3.5),
for a critical case where =0 and p= 2.

In addtiion to that, there are many works for equation [(3.1L), in particular for equation
(B.2). We mention Nouaili and Zaag[[22], these authors have constructed for equatipn [3.2),
a complex solutionu = u; + iu, which blows up in nite time T only at the origin. Note
that the real and the imaginary parts blow up simultaneously. In particular, [[22] leaves
unanswered the question of the derivation of the pro le of the imaginary part, and this is
precisely our aim in this paper, not only for equation[(3]2), but also for equatior (3.1) for
all p> 1.

Besides that, we would like to mention also some classi cation results, proven by Harada in
[12], for blowup solutions of [(3.R) which satisfy some reasonable assumptions. In particular,
in that works, we are able to derive a sharp blowup pro le for the imaginary part of the
solution. However, [[12] is limited withp = 2.

Recently, we mention Duong[]5], the author has treated for the cases whgrdakes an
arbitrary integer value.

3.1.2 Statement of the result

As we mentioned in the previous section, we only have treated in [5] the case whpr2
N;p 2 which the handling of the nonlinear term is much easier. In this work, we do
better and give a proof which holds also for the cases whey@& N. We believe we made an
important achievement, we acknowledge that we left unanswered the case where 1 and

p Z N. From the limitation of the mentioned works in the previous section, it motivates us
to study model (3.1) in general even for an irrational number. More precisely, the following
theorem is our main result:

Theorem 3.1 (Existence of a blowup solution for [(3]1) and a sharp discription of its
prole). For eachp > 1andp; 2 0O;min pTl;% , there existsT;(p; p1) > 0 such that for
all T Ty; there exist initial data u(0) = uy(0) + iu,(0) such that equation(3.1) has a
unique solutionu on RN [0; T) satisfying the following:

i) The solution u blows up in nite time T only at the origin and Réu) > 0 on RN
[0; T). Moreover, it satis es the following

1 ; C
T triu(t) fo p p———, (3.6
GOUTHED e PEhinT 0 L, e 00 0
and |
T trfin(T  tju(;t P ' 3.7
( )P 2jIn( Jjuz(:t) Qo P E oI 0 L (3.7)
l(RN)
c .
1+jin(T  t)j7’
wheref is de ned in (3.4) and g is de ned as follows
jzj?
%®(2) = : (3.8)

P
1)2._. 1
p 1+—(p4p) jzji2 °
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i) There exists a complex function in C?(RNnf0Og) such thatu(t)! u = u,+iu, as
t ! T; uniformly on compact sets oRNnfQg; and we have the following asymptotic

behaviors:
(P 1)%xj2 »t
u (X e asx! O 3.9
0 8pj In jxjj (3:9)
and )
20 (p 1Pjxj* P11
u,(X — ———:asx! O 3.10
2() (p 12 8pjlnjxjj jInjxjj ( )
1.1

Remark 3.2. We remark that the condition on the parametep; < min pT; 5 comes
from the de nition of the set Va(s) (see in item (i) of De nition 3.1}, Proposition
and Lemma[ 3.26. Indeed, this condition ensures that the projections of the quadratic term
B,(; ) on the negative and outer parts are smaller than the conditions W (s). Then,

we can conclude(3.132) and (3.134) by using Lemmg 3.26 and de nition ofVa(s).

Remark 3.3. We can show that the constructed solution in the above Theorem satis es
the following asymptotic behaviors:

u(0; 1) (T t) 5o (3.11)
2N (T t) s1
(P Djin(T 1)j?’

ast! T, (see (3.91) and (8.92)). Therefore, we deduce thau blows up at timeT only
at 0. Note that, the real and imaginary parts simultaneously blow up. Moreover, from item
(ii) of Theorem , the blowup speed af is softer thanu; because of the quantitW

(see (3.9) and (B.10).

Remark 3.4 (A strong singularity of the imaginary part). We observe from(3.10) and
(8.12) that there is a strong sigularity at the neighborhood @fast! T; whenx close to

0; we haveu,(x;t) which becomes large and positive 4d T, however, we always have
u,(0;t) ! 1 ast! T:Thus the imaginary part has no constant sign near the singularity.

In particular, if t is near T, there existsb(t) > 0in RN andb(t)! Oast! T such that

at time t; u,(:;t) vanishes on some surface close to the sphere of ceft@nd radius It).
Therefore, we don't havgu,(x;t)j! +1 as(x;t)! (0;T). This non constant property for

the imaginary part is very surprising to us. In the frame work of semilinear heat equation,
such a property can be encountered for phase invariant complex equations, such as the
Complex Ginzburg-Landau (CGL) equation (see Zaag in |29], Masmoudi and Zaag/in [18],
Nouaili-Zaag [23]). As for complex parabolic equation with no phase invariance, this is the
rst time such a sign change in available, up to our knowledge. We would like to mention
that such a sign change near the singularity was already observed for the semilinear wave
equation non characteristic blowup point (see Merle and Zaag in [19], [20] and Co6te and
Zaag in [3]).

u,(0;t) (3.12)

Remark 3.5. For eacha 2 RN; by using the translationu,(:;t) = u(: a;t); we can prove
that u, also satis es equation(3.1)) and the solution blows up at tim& only at the point
a. We can derive thatu, satis es all estimates(3.6) - (3.10) by replacingx by x a.
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Remark 3.6. In Theorem (B.1)), the initial data u(0) is given exactly as follows

u(0) = uy(0) + iu2(0);

where
( )
o = T (0 DAx 7T, N
W0 = T =t P I T ¥ 2T
!
+ A dyo + dig px— 0 —pil—GXj 0 197])(]
jinTj2 T Ko TjInT]j TilnT]j
P UM 1 o Pl
Tj|rtTj
p
L — 2 X jxj? (p 1)%xj*2 *°7T 2N
R(G0) = T 7o Py T PO aptiinT (P 1jInTj?
A? X ASIn(jIn(T)j) 1 xT X
iinTjP2 d20+IC;2;1 p= +W 2Pz da: P= Tr (dz;2)
2jX]
Ko TjInT]j

where =(p 1) ﬁ; Ko and A are positive constants xed large enougld; = (dy.o; d1.1)
andd, = (dyo; dz.1; dy.») are parameters which we ne tune in our proof; and, 2 C} [0;+1 )
satises K oki1 grvy 1 supp o [0;2]and o(x) =1 forall jxj 1landU is given in
(3.86) which is related to the nal pro le, given in (8.9).

Note that whenp 2 N; we took in |[5] a simpler expression for initial data, not in involving
the nal prole U ; nor the (+1) term in uy(0). In particular, adding this (+1) term in our
idea to ensure that the real part of the solution straps positive.

Remark 3.7. We see in(8.17) that the equation satis ed by ofl, is almost \linear" in u,.
Hence, given an arbitrarycy 6 0; we can change a little in our proof to construct a solution
Ug, = Ugg, + 1U2c, IN T2 [0; T), which blows up in nite time T only at the origin such that
(B.6) and (B.9) hold and the following holds

|

1 : C
T t)p 3jIn(T  t)juze (it p — 7
( )P TjIn( iUz (55t)  CoGo P T O O L g, ICT 0%
(3.13)
and .
2iyi2 o1
u,(x) LI I M 1. asx! 0 (3.14)

(P 17  8pjlnjxj jInjxjj’
Remark 3.8. As in the casep = 2 treated by Nouaili and Zaag[22], and we also mentioned
we suspect the behavior in Theorem 3.1 to be unstable. This is due to the fact that the number
of parameters in the initial data we consider below in De nitiorf 3]2 (see also Remdrk B.6

above) is higher than the dimension of the blowup parameters whiciNist 1 (N for the
blowup points andl for the blowup time).
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Besides that, we can use the technique of Merle [14] to construct a solution which blows
up at arbitrary given points. More precisely, we have the following Corollary:

Corollary 3.9 (Blowing up at k distinct points). For any given points, Xy; :::; Xk, there
exists a solution of (3.1)) which blows up exactly ats;:::;x«. Moreover, the local behavior

at each blowup poink; is also given by(3.6), B.7), (8.9), (3.10) by replacingx by x  x;
andL! (RY) byL! (jx X;j  o); for some o> 0.

3.1.3 The strategy of the proof

From the singularity of the nonlinear termF (u) = uP whenp s irrational, we can not apply
the techniques we used in [5] whe@2 N (also used in[[1[7],7], ...). We need to modify this
method. We see that, although our nonlinear term in not continuous i€, it is continuous
in the following half plane

fz2 C jRe(z) > 0Og:

Relying on this property, our problem will be derived by using the techniques which were
used in [5] and the ne control of the positivity of the real part. In fact, the control of
the positivity follows from ideas given in Merle and Zaad [16] (see also Ghoul, Nguyen and
Zaag in [10] where inherited ideas from [L6]) which helps us to construct initial data.

In addition to that, we also de ne a shrinking setS(t) (see in De nition 8.1)) which allows
a very ne control of the positivity of the real part. More precisely, it is proceed to control
our solution on three regiong;(t); P,(t) and P5(t) which are given in subsectiofi 3.3|2 and
which we recall here:

- P1(t); called the blowup region, i.ejx] Kop (T ©)jIn(T t)j: We control our
solution as a perturbation of the intermediate blowup proles (fort 2 [0;T)) fo and go
given in (3.6) and [3.7), respectively.

- Py(t); called the intermediate region, i.eK4—Op (T )jn(T t)j j xj o Inthis
region, we will control our solution by control the rescaled functiorJ of u (see more

([B.74)) to approachOx,( ) (see in [3.79)), by using a classical parabolic estimates. Roughly
speaking, we control our solution as a perturbation of the nal proles fort = T given in

(B.9) and (3.10).

- P3(t); called the regular region, i.gxj 2 In this region, we control the solution as a
perturbation of initial data (t = 0). Indeed, T will be chosen small by the end of the proof.

Fixing some constants involved in the de nitionS(t), we can prove that our problem
will be solved by the control of the solution inS(t). Moreover, we prove via a priori
estimates in the di erent regionsPy; P,; P3 that the control is reduced to the control of a
nite dimensional components of the solution. Finally, we may apply the techniques inl[5]
to get our conclusion.

We will organize our paper as follows:

- In Section[3.2: We give a formal approach to explain how the pro les given in Theorem
[3.1, appear naturally. Moreover, we also approach our problem through two independent
directions: Inner expansionand Outer expansion in order to show that our pro les are
reasonable.
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- In Section[3.3: We give a formulation for our problem (see equatioh (3]56)) and, step
by step we give the rigorous proof for Theorein 3.1, assuming some technical estimates.

- In Section[3.4, we prove the techical estimates assumed in Secfiorj 3.3.

3.2 Derivation of the pro le (formal approach)

In this section, we would like to give a formal approach to our problem which explains
how we derive the pro les for the solution of equation[(3]1), given in Theorenj (3.1), as
well the asymptotic behaviors of the solution. In particular, we would like to mention that

the main di erence between the cas@ 2 N and p Z N resides in the way we handle the

nonlinear term uP. For that reason, we will give a lot of care for the estimates involving
the nonlinear term, and go quickly while giving estimates related to other terms, kindly
refering the reader tol[5] where the cage2 N was treated.

3.2.1 Modeling the problem

In this part, we will give de nitions and special symbols important for our work and explain
how f o and g arise as the blowup pro les for the solution of equatiorf (3]1) as stated ifi (3.6)
and (3.7). Our aim in this section is to give solid (though formal) hints for the existence of
a solution u(t) = uy(t) + iu,(t) to equation (3.1) such that

tl.'”} Ku(:; ks gey =+ 1 (3.15)

and u obeys the pro les in (3.6) and [(3.7), for som& > 0. As we have pointed out in the
introduction, we are interested in the case where

pZN;

noting that in this case, we already have a di culty to properly de ne the nonlinear term
uP as a continuous term. In order to overcome this di culty, we will restrict ourselves to
the case where

Re() > O: (3.16)

Our main challenge in this work will be to show that |(3.16) is propagated by the ow, at
least for the initial data we are suggesting (see De nitioh 3|2 below). Therefore, under the
condition (3.16), by using equation[(3.]1), we deduce that;; u, solve:

@ = @17
whereF{(0; 0) = F»(0;0) = 0 and for all (uy;u,) 6 0 we have
Fi(u;uz) = Re[(ug+ iuz)P] = jujPcosp Arg (ug; uz)]; (3.18)
Fa(ui;up) = Im[(uy+ iuz)’] = jujPsin[p Arg (us;up)];
with juj = (u?+ u2)z and Arg(us; Up);u; > 0 |s de ned a; follows:
Arg(usy; up) = arcsin pL : (3.19)

u? + u3
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Note that, in the case wherep 2 N, we had the following simple expressions fdé1;; F,

2 P[5

< Fi(ugu) = Re[(up+iup)?)= L ca( 1yub dud;

P2t R, (3.20)
Im[(uy + iuy)P] = j:(z) Cgﬁl( 1) u’{ 2 1u§‘+l:

Fa(us; up)

Of course, both expressions (3.]L8) anfl (3]20) coincide whe N. In fact, we will follow
our strategy in [5] forp 2 N and focus mainly on how we handle the nonlinear terms, since
we have a di erent expression whem 2 N:

Let us introduce the similarity-variables for u = u; + iu, as follows:

w(y;s)=(T t)ﬁu(x;t);y = p%;s = In(T t)andw= wy+ iwy: (3.21)

Then, w; and w;, are real functions. Moreover, by using (3.17), we obtain a system satis ed

by (wi;w,); forally 2 RN and s InT as follows:
@v: = wp ly rwg M+ Fy(wgwy);
_ 1 R - (3.22)
@w; = Wz 3y rw, =5+ Fa(wi; Wa):

Then note that studying the asymptotic behavior ofu; + iu, ast ! T is equivalent to
studying the asymptotic behavior ofw; + iw, in long time. We are rst interested in the
set of constant solutions of[(3.32), denoted by

2k 1

S=1(0;0)g[ cos pZL ;sin p—l where =(p 1) »T; andk2 N

1

We remark that Sis in nity if pis irrational. However, from the transformation [3.21L), we
slightly precise our goal in|(3.15) by requiring in addition that

(wi;wp) ! (; 0)ass! +1:
Introducing w; =+ w;y; our goal because to get
(w;wp) I (0;0)ass! +1:

From (8.22), we deduce that;; w, satisfy the following system

@w; = Lw;+ Bi(wg;wy);
3.23
@w, = Lw;+ By(wg;wy); ( )

where
1

L = éy r + 1d; (3.24)
Bi(wi;w,) = Fi( + wy;w,) P pplwl; (3.25)
Bo(wp;wo) = Fo( + wywy) Wo! (3.26)

1

It is important to study the linear operator L and the asymptotic behaviors oB; and
B, as (wy;wy) ! (0;0) which will appear as \quadratic" terms.
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The properties ofL :

In fact, L plays an important role in our analysis. Itis easy to nd an analysis space such
that operator is self-adjoint. Indeed,L is self-adjointinD(L) L?(RN), whereL?(RN) is
the weighted space associated to the weightde ned by

iyi? W ii®

e & e =
(y) = Tl (y); with ()= T (3.27)
4): 4 (4 )3
and the spectrum set ofL
n m 0
specL)= 1 E; m2N : (3.28)

Moreover, we can nd eigenfunctions which correspond to each eigenvalue £;m 2 N:

- The one space dimensional case: the eigenfunction corresponding to the eigenvalue
1 T ishy, the rescaled Hermite polynomial given as follows

Rl ymym 2

hm (y) = W (3.29)

j=0
In particular, we have che following orthogonality property:

hihy dy =12 i;; 8(i;j) 2 N%
R

- The higher dimensional caseN 2, the eigenspacé&,,, corresponding to the eigen-
value 1 7 is de ned as follows:

* +
X
En= h(y)=h. (y)=h ) ji= =mand =( 5 8) 2N
i=1
(3.30)
Accordingly, we can represent an arbitrary functiorr 2 L2(RN) as follows:
X
ry) = rh(y);
;2NN

wherer is the projection ofr onh for agy 2 NN which is de ned as follows:

r =P (r)= rk dy;8 2 N"; (3.31)
with
k (y)= kh—kﬁz: (3.32)
The asymptotic behaviors oB(w;; W,); Bo(wy; wW,): The following holds:
Bi(Wi;wy) = 2£w§+ O(jwaj® + jwaf?); (3.33)
Bo(WiiWz) = Pwawp+ O jwawy + O jwi® (3:34)

as (wvi;wy) ! (0;0): Note that although we have here the expressions of nonlinear terms

F. and F, which are di erent from the casep 2 N (see [3.1B) and[(3.20)), the expressions
1
coincide, since we havev =(p 1) » T in all case (see Lemma 3.24 below).
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3.2.2 Inner expansion

In this part, we study the asymptotic behaviors of the solution inL?(RN): Moreover, for
simplicity we suppose thatN = 1, and we recall that we aim at constructing a solution
of (3.23) such that (v;;wz) ! (0;0). Note rst that the spectrum of L contains two
positive eigenvalues ;L% a neutral eigenvalue 0 and all the other ones are strictly negative.
So, in the representation of the solution irL2(R); it is reasonable to think that the part
corresponding to the negative spectrum is easily controlled. Imposing a symmetry condition
on the solution with respect ofy, it is reasonable to look for a solutiorwy; w, of the form:

Wy
W7

W1.0ho + W1.2hy;
Wa.0ho + Wa.ohy:

From the assumption that (wi;w;) ! (0;0), we see thatw;.g; Wi.o; Wao;Woo | 0 ass !
+1 . We see also that we can understand the asymptotic behaviorsvef and w, in L?(RN)
from the study of the asymptotic behaviors ofvy.o; Wi.2; Wo.0 @and wa.,:

We now project equation |(3.23) orhg and h,. Using the asymptotic behaviors oB; and
B, in (B.33) and (3.34), we get the following ODEs fow;.o; W1.2; W20 and wo.,

@wio = Wyt 23 W+ 8w, (3.35)
+ O(jwiof® + jwi2)®) + O(jwaof® + jWo2)%);

@wip = P W1,0W1;2 +4Wi2 (3.36)
+ O(jwa0f° + jwioj®) + O(jWa)” + jWa2j%);

@wzo = Wyot P [W1:0W20 + 8W12W25] (3.37)

+ + O((jwro)® + JWi2J?)(jWao] + jWa2))) + O(Waof® + jWaoj°);
@wyp = P [W1;0Wa;2 + W12War0 + 8 W1 2Wao] (3.38)
+ O((jwaof® + W) (IWaof + JWa2j)) + O(jWaof® + jWaj®):
Assuming that
W10, W20, W22 W25 (3.39)
and
W10, Wo;0; W2;2 . (3.40)

?;
ass! +1.

Similarly in Duong [5] where the author have treated fop 2 N, we also obtain the
following asymptotic behaviors ofw;.g; Wy.2; Wo.o @and wy.»

1
Wiy = O =
3 sz
e = Ins
1.2 — A 5 )
4ps s?
1
Wyo = O —
3 83

ns
Wopo = —+ 0O = for somec;; 2 R;
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ass! +1 under the assumptions in|(3.39) and (3.40).
Thus, we have

1

= —(y?* 2)+0 = 3.41

Wy 4ps(y ) 2 (3.41)
Cy- Ins

we = 2 2+ 0 5 (3.42)

in L2(R) for somec,., in R. Note that, by using parabolic regularity, we can derive that the
asymptotic behaviors [(3.4fl)and (8.43) also hold for alljyj K; whereK is an arbitrary
positive constant.

3.2.3 Outer expansion

As for the inner expansion, we here also assume thit = 1. We see that asymptotic
behaviors [3.4]l) and|(3.42) can not give us a shape, since they hold uniformly on compact
sets (where we only see the constant solution (0)) and not in larger sets. Fortunately, we
observe from [(3.4]1) and[(3.42) that the pro le may be based on the following variable:

7= p’%: (3.43)

This motivates us to look for solutions of the form:

X R
wi(y;s) = —1é(z);

j=0
Wa(y;s) = —2';-( ).

j=1

Note that, our purpose is to construct a solution where the real part is positive. So, it is
reasonable to assume thatv; > 0 and it follows that R;.0(z) > O for all z 2 R. Besides
that, we also assume thalRy;;R,; are smooth and have bounded derivatives. From the
de nitions of F; and F;, given in (3.18), we have the following

: 1
F, X Rl;j_(z);)é Rz;j_(z) R (2) PR (2R1(2) C(Z);
g S 1;0 s SZ
j=0 j=1 |
- X Ry ® Ry(2) PRY'(2)R21(2)
2 s g s
j=0 j=1
1 C(z
) pR?;ol(Z)Rz;z + p(p 1)R5);02(Z)R1:1(Z)R2:1(Z) 5(3):
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Thus, for eachz 2 R; by using system |(3.2R), takings ! +1 ; we obtain the following
system:

0= IRL@ z 0@ r ) (3.44)
1 Ri. zZRY,(z

0= RLE@ R+ ol @Ru@ + RY@ T 8D (34
1 Ro.

0= SRL@ z =@+ PRI (DR (3.46)
1 Ro.a(z

0 = JRL@z "L R AR+ RE@)F Raale)  (347)

¢ SRLE) 24P DREADR@RA():

This system is quite similar to [5] (wherep 2 N), and we can nd the formulas of
R1.0; R11; R21 and Ry, as follows:

1

Rio(z2) = p 1+bz® 77 (3.48)

Rua@ = oD 1e02) o (3.49)
p4—plz2|n(p 1+bZ)(p 1+bd) 71,

R = z : 3.50

21(2) = (p 1+ bzz)le’ (3.50)

Ros(z) = 2(p 1+Db2) 71+ Hap(2); (3.51)

whereb = % and

P

Hoo(z) = Coa(p)Z3(p 1+bZ) 71 + Cop(p)Z2In(p 1+bA)(p 1+b2) 5
+ Cos(P)ZZI(p 1+bA)(p 1+b2)

p 1
p 1 ;
for someC,.1; Cy2 and Cy3 in R.

i

3.2.4 Matching asymptotic behaviors

By comparing the inner expansion and the outer expansions and xing several constants,
we then have the following pro les forw; and w,

wi(y;s) 1(y; 9);
3.52
Wy (y; S) 2(y:9); (3.52)
where
1
L (P 1)2%jyi®? *T N
i(y;s) = p 1+ s +2ps, (3.53)
p
) (P 1Pjy* »* 2N
z(y,s) - 32 p 1+ 4p s (p 1)32’ (354)

for all (y;s) 2 RN (0;+1 ). In the next section, we will give a rigorous proof for the

existence of a solution\;; w,) of equation (3.22) satisfying [(3.502).
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3.3 Existence of a blowup solution in Theorem 3.1 [ |

In Section[3.2, we adopted a formal approach in order to justify how pro lef, and gy arise
as blowup pro les for the solution of equation[(3]L), given in Theorern 3.1. In this section,
we give a rigorous proof to justify the existence of a solution approaching those pro les.

3.3.1 Formulation of the problem

In this subsection, we aim at giving a complete formulation of our problem in order to
justify the formal approach which is given in the previous section. We introduce

Wy

= 1+ G
- (3.55)

2+ b

where i; ; are de ned in (3.53) and [3.54), respectively. Then, by using (3.22), we derive
the following system, satis ed by (y; )

L+V 0 @ , Vi V2 G, Bi(@®) | Ri

G
= : (3.56
@ % 0 L+V o Voi Voo @ B2(0h; &) Ro (3:59)
where linear operatorl is de ned in (3.24) and:
- Potential functions V;Vi.1; Vi.2; Vo1 and V,., are de ned as follows
V9 = p Pt ot (3.57)
! 1 p 1 ’ .
Via(y;s) = @ F1(UsW)juiun)=( ;2 P g 1: (3.58)
Vl;Z(y; S) = @2 Fl(ul; u2)j(U1;U2)=( 1 2) (359)
Vou(y;s) = @, F2(Us; U2)jusiuz)=( 1 o) (3.60)
Voo(Y;s) = @,Fa(Us; Ui~ 1: ) P 5 (3.61)

- Quadratic terms B(tq; @) and B,(qi; &) are de ned as follows:

Bi(;) = Fi( 1+ 2+ ) Fi( 15 2) @ F1(Us;U2)juiun)=( 1: »)h(3.62)
@zFl(ul; u2)j(U1ZU2)=( 1 2%y
Bo(; ) = Fo( 1+ 2+ &) Fao( 15 2) @ Fa(Us U2)jusun=( 1 2%

@2F2(u1;u2)j(u1:uz):( 1; 2)q2: (363)

- Rest termsRy(y; s) and R(y;s) are de ned as follows:

1
1

2
1

Ri(y;s)

1
1 éy ra +Fi( 15 2) @ 1; (3.64)

Ra(y;9) AN SF 1 2) @ o (3.65)

whereFy; F, are de ned in (3.18).
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By the linearization around ; 5; our problem is reduced to constructing a solution
(au; @) of system [3.56), satisfying
Kap(:;S)kpr (ryy + kop(5;8)k 2 (rvy ! O ass! +1:

Looking at system [3.5), we already know some of the main propertieslo{see page 121).
As for potentials Vjx wherej; k 2 f 1;2g, they admit the following asymptotic behaviors:

C
le;l(:;S)kLl (RN) + kVZ;Z(:; S)kLl (RN) ?,

C
KVi2(S)kpt rvy + KV21 (55 S)Kp1 (rh) E;SS 1;

(see Lemmd 3.25 below).

Regarding B; and B, which are considered as \quadratic" terms, we have in fact the
following estimates

CA*
KB1(0h; p)Ki1 (rY) SM;
2

CA2

gltmin (%z3)’

kB2(0h; )KLt (rY)

provided that o, and ¢ are small in some senses (see Lemma .26 below).

In addition to that, we also mentionR; and R, which are considered as rest terms, satisfying
in fact the following asymptotic behaviors

le(, S)kLl (RN)

2 On|[O

KR2(:;S)KL1 (rY)

(see Lemmd 3.27 below).

As a matter of fact, the dynamic of equation|(3.56) will mainly depends on the main linear

operator
L+V 0
0 L+V "’

and the e ects of the other terms will be less important except on the zero mode of this
equation. For that reason, we need to understand the dynamicsloft V. Since the spectral
properties ofL were already introduced in Sectioh 3.2.1, we will focus here on the e ect of
V.

i) E ect of V inside the blowup regionfjyj Kop sg with Ko > 0 : It satis es the
following estimate: D
V! 0inL%jyj Ko s)ass! +1;
which means that the e ect of V will be negligible with respect of the e ect ofL; except
perhaps on the null mode of. (see item (i) of Proposition[3.18 below).

ii) E ect of V outside the blowup region: For each> 0; there existK > 0 ands > 0
such that

p
su V(y:s _—
p\%Kgs (y) p 1
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Since 1 is the biggest eigenvalue af (see [3.2B)), the Operaton_p+ V behaves as one
with with a fully negative spectrum outside blowup regiorfjyj K = sg, which makes the
control of the solution in this region easy.

Since the asymptotic behavior of potentiaV inside and outsi%e the blowup regi%n is
di erent, we will consider the dynamics of the solution fojyj 2K, sandforjyj Ko s
separately for someK, to be xed large. For that purpose, we introduce the following

cut-o function o
(Y;9)= o L (3.66)

Ko s
where g is de ned as a cut-o function
1 forx 1
02C3 [0+1); o(x)= 5 (o 5 andk okiieny L (3.67)

Henlge, it is reasonable to consider sep%ately the solution in the blowup regifyj
2K, sgand in the regular regionfijyj Ko sg. More precisely, let us de ne the following
notation for all functions r in L! (RV) as follows

r=rp+rewithrp=r andre=(1 )r: (3.68)

Note in particular that supp(rp) B(O; 2K0p s)and suppfe) RNNB(O; Kopﬁ. Besides
that, we also expandry in L2(RN) according to the spectrum oL (see Sectiof 3.2]1 above):

1
oY) = To+ i y+ 5y 12y Tr(ra)+ 1 (y); (3.69)
wherer, is a scalar,ry is a vector inRN andr, isaN N matrix de ned by
Z
ro = ry (y)dy;
ZR"
_ y .
rn = rb§ (y)dy;
1 1
rp = ' —YiYk 5k (Y)dy :
RN 47 2 1k N

with Tr( r,) being the trace of matrixr,. The reader should keep in mind thatg;r;r, are
only the coordinates ofry,, not for r. Note that ry, is the projection ofr, on the eigenspace
of L corresponding to the eigenvalue =1  3: Accordingly, r is the projection ofry, on
the negative part of the spectrum oL : As a consequence of (3.68) anfl (3]69), we see that
everyr 2 L (RV) can be decomposed into 5 components as follows:

1
F=rp+re=Tro+r; y+ EyT ro y Tr(rp)+r +re (3.70)

3.3.2 The shrinking set
According to (3.21) and [3.55), our goal is to construct a solutiong(; @) of system [3.56)

such that they satisfy the following estimates:

Kop(:;S)Kp (ryy + kop(5;8)ki 2 (rvy ! O ass! +1: (3.71)
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Here, we aim at constructing a shrinking set to 0. Then, the control ofg(;) ! O;
will be a consequence of the control ofy; @) in this shrinking set. In addition to that, we
have to control the solutiong; so that

W=+ 1>0 (3.72)

(this is equivalent to haveu; > 0) and it is one of the main di cults in our analysis. As

a matter of fact, the shrinking sets which were constructed in [17] by Merle and Zaag or
even in [5], are not sharp enough to ensurg (3]72). In other words, our set has to shrink to
Oass! +1 and ensure that the real part of the solution to[(3.22) is always positive. In
fact, the positivity is the rst thing to be solved. For the control of the positivity of the
real part, we rely on the ideas, given by Merle and Zaag |16] for the control of the solution
of the following equation:

2

@Qu = I l:JJ +juji® tu;u 2 R: (3.73)

In [16], the authors needed a sharp control ai and jr uj near zero, in order to bound
i i2 . .. .

the term "%: Here, we will use their ideas in order to control; near zero and ensure

its positivity. As in [L6], we will control the solution di erently in 3 overlapping regions

de ned as follows:

ForKo>0;, >0, > 0;t2[0;T)ands= In(T t), we introduce a cover ofRN as
follows

RY  Pa(t) [ Pa(t) [ Pa(t);

where

o p : : o p_ o
Pi(t) = fxj jxj Ko (T DjIn(T tjg="Fxj jyi Ko sg=1xj jzj Kog;

PAD = xS O O X o = x2Sy el
= X g plet
: ° e .
Ps() = X X 4 = X i o = X jd e
with « «
y:pﬁandzzp\%:pa Din(T 0]

In the following, let us explain how we derive the positivity condition from the various
estimate we impose on the solution in the 3 regions. Then

a) In Py(t), the blowup region In this region, we control the positivity ofu; by controlling
the positivity of w; (see the similarity variables given in[(3.21)). More precisely, as
we mentioned in Subsectioh 3.1].3y will be controlled as a pertubation of the pro les

1, 2 ((8.53) and (3.54)). By using the positivity of ; and a good estimate of the
distance ofw; to these pro les, we may deduce the positivity ofv,; which leads to
the positivity of u;:
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b) In P,(t), the intermediate regiornt In this region, we controlu via a rescaled function
U of u as follows:

U : )=(T t(x) »1u(x+ P 7 tx);tx)+ (T t(X); (3.74)

wheret(x) is uniquely de ned for jxj small enough by

.. KoP . .
jxj = 7" (T t(x)jIn(T  t(x))j: (3.75)
We also introduce
xX)=T t(x): (3.76)
h
We see that, on the domain ( ) 2 RN Tt(—i‘()x);l , U satis es the following
equation:
@uU= U+ UP; (3.77)

By using classical parabolic estimates od; we can prove the foIIowinIg the rescaled
at time (x;t), has a behavior similar toOKo( (x;t)); for all j j o JIn(T t(x)]

where o
t t(x
R BTES )
and Ok, ( ) is unique solution of the following ODE
8
< @OKO = 0}50( )1 1
OK (O) = p 1+ (p 1)°K2 p I, (378)
0 .

64p

In particular, we can solve |(3.78) with an explicit solution:

. (b 1KE w1

O()= (b D@ )+ P

;8 2 [0;1): (3.79)

Then, by using the positivity of OKO; we derive thatu, > 0; in this region.

¢) In P3(t); the regular regiont We control the solution in this region as a perturbation of
initial data, thanks to the well-posedness property of the Cauchy problem for equation
(B.1)), to derive that our solution is close to initial data, (in fact, T will be taken small
enough). Therefore, if initial data is strictly larger than some constant, we will derive
the positivity of uj.

The above strategy makes the real part of our solution becomes positive. Therefore, it
remains to control the solution in order to get

Kop(:; S)kir (rvy + Kp(59)Kr (myy ! +1 5

(see [3.5p)). This part is in fact quite similar to the integer case, done inl[5].

From the above arguments, we give in the following our de nition of the shrinking set.
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De nition 3.1 (A shrinking setto 0). Forall T > O;Kg> 0; ¢>0; o> O;A> 0; o >
0, 0> 0;pr2 O;min pTl;% andt 2 [0; T), we de ne the setS(T; Ko; o; 0;A; 0; o)
C([0;t]; LY (RN)) (or S(t) for short) as follows:u = uy + iu, 2 S(t) if the following condi-
tion hold:

(i) Control in the blowup regionP;(t): We have (th; %)(S) 2 Vp,k,a(S) Wheres =
IN(T  t); (ch; @) is de ned as in (B.58) and Vy, k,:a(S) = Va(s) 2 (L (RV))? is
the set of all function(q; @) 2 (L (RN))? such that the following holds:

. . A . . A2
jao(s)l & and %o(S) 5
. . . . A2 .
i (S) 5 and jo(s) 08l ] NS
. . A?Ins . . A®Ins .
Juk ()] & and  jcp;x ()] 2 81 ik N;
&, (Y;9) A %, (Y;9) A%
1T Ve g and  Smle PR
Jyj L1 (RN) S 1+ JyJ L1 (RN) S 2
A2 A3
Kthe(:5 )KL (RN pTg and  kape(:;S)ki1 (ry) spj

where the coordinates ofy and g, are introduced in (8.7Q) with r = @, or r = 0.
h i

(i) Control in the intermediate regionP,(t): For all jxj 2 %p (T jIn(T Vj; o ;
(1) = +oh andj | Op iIn(T  t(x))j; we have

U 5 (6t) Ok (1)) 0
where U, de ned in (3.79).

i Control in the regular regionP3(t): For all jxj 2,
jux;t)  u(x;0)  0;8i =0;L
Finally, we also de ne the setS (T;Ko; o, 0;A; o; o) C(0;T);L! (RV)) as the set of
allu2 C([0;T);L* (RV) such that
u2 S(T;Ko; o; 0;A; o) 0;1);8t2[0;T):

The following lemma, we show the estimates of the fuction being M (s) and this
lemma is given inl[5]:

Lemme 3.10. Forall A 1;s 1;if we have(q;; &) 2 Va(S), then the following estimates
hold:

(i) We have

CA? CA3
kqj_kLl (RN) —p§ and qukLl (RN) Spj
2
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(i) Forally2 RN, we have

CA?Ins . . . CA? . .. CAZ?Ins
7 WHIYP) dte()i  —(L+ivi°) and jayj 2

jon(Y)] (L+]yi®);

and

. . CA .. . CA® . CAY
j%p(Y)] Spj(lﬂyﬁ); je(Y)] Spj(lﬂyﬁ) and jcpj S,,E(lﬂyﬁ):
2 2 2

and
where C will henceforth be an constant which depends only &n:

Proof. See Lemma 3.2, given in[5]. O

As matter of fact, if u 2 St) then, from item (i) of Lemma[3.10, the similarity variables
(B.21) and (3.55), we derive the following

2
oA .(3.80)

(T ) u(t)  fo 1+ P T 0;

P = .
(T Oin(™ OF L gy

and
I

CA3
7 (3.81)

(T 9 IjIn(T  t)ju(t) G T+ in(T 02

(T Oin(T O | gy

We see in the de nition of S(t) that there are many parameters, so the dependence of
the constants on them is very important in our analysis. We would like to mention that,
we use the notationC for these constants which depend at most oK o: Otherwise, if the
constant depends orK g; A1; Ay; - we will write C(Aq; Ag; ).

We now prove in the following lemma the positivity of Re() at time t if u belongs to
S(t) (this is a crucial estimate in our argument):

Lemme 3.11 (The positivity of the real part of functions trapped in S(t)). For all Kq; A

1 0>0 o< 0(_20); 0 < %; there exists 1(K) > 0 such that for all 1 there exists
T1(A;Ko; o) such that for allT T, the following holds: ifu 2 S(T;Ko; o; 0;A; o, o;t)
for all t 2 [0;t;] for somet; 2 [0;T); and Rgu(0)) 1forall jxj 2, then

Re(u(x;t)) %;8(x;t)2RN 2 [Oty]:

Proof. We write that u = u; + iu,; with Re(u) = u;: Then, we estimateu, on the 3 regions
P]_(t), Pz(t) and P3(t)

+ The estimate inP4(t): We use the fact that ;&) 2 Va(S) together with item (i)

in Lemma[3.10, and the de nition @) ofqp and the de nition of ; given in (3.53), to
derive the following: for alljyj Kg S;

CA?
wiy:s) fo py—g boA

S
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Using the de nition (B.53) of 1; we write for all jyj 2K Op S

CA
wi(y;s)  fo B Po

S S
(p 1) 2 P CAZ.
p 1+ 4p KO —pgy
By de nition (3.21) of the similarity variables, we implies that
1 (P 17, P CA?
T t)r Tuy(x;t 1+ K P
T 0wy p w K8 e
foralljxi Ko (T DjN(T D).
Therefore,
2 L 2 #
n (P 12, 7° CA 1
uq(X;t T t) p1 1+ K —_—— =,
1(x;t) - ( ) p I 0 pm 5

provided that T  Ty.1(Ko; A):
+ The estimate inP,({): Since we haveu 2 S(t);jusing item (i ) in the De nition

we derive that: for allx 2 2" (T t)jIn(T  t)j; o

U0, (xt) Okl (xt) o

where (x;t) = }t—t((’;)) In particular, by using the de nition of t(x) given in (3.75) and the
fact that

. KoP . .
ixj > (T 0iin(T 0

we have (x;t) 2 [0;1): Therefore,

Ui(x; 0; (x;t)) Ok ( (1) o
OKO(O) 0

1
1 _1 (p 1PKE *1,
EOKO(O) =5 b 14 i 16 1

provided that o %OKO(O): By de nition (3.74) of U; this implies that

kel
|

(P 1PK¢

(T tOQ)7 Tus(x;t) = Uy(x; 0; (x;t)) % p 1+ b1

Using the de nition of t(x) in (B.75) we write

X2

8 o
T t(x) nglnjxjj,aSij. 0:

Therefore, there exists 1.1(Ko) > 0 such that for all o 1.1, and for all jxj 0. we have

) 22 5
T o) iy op o1+ @ TR T2

4 16 2
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h [

Then, we conclude that for alljxj 2 %p (T OjIn(T 1t)j; o ; we have

1
us(x;t) >

provided that T  T,.1( o; Ko).

+ The estimate inP3(t): It is very easy to control our solution in this region. Indeed,
item (iii ) of De nition we have for alljxj 2

us(x;t) Re(u)(x; 0) o 1 %:%;

provided that o 3. This concludes the proof of Lemmp 3.11. O

Thanks to Lemma[3.1], we can handle the singularity of the nonlinear term when
our solution is inS(T; A; o; 0;A; o; o): In addition to that, from item ( i) of Lemma[3.11,
(3.80) and (3.81) our problem is reduced to nding parameter$;Ko; o; o;A; o; o; and
constructing initial data u(0) 2 L* (RV) such that the solution u of equation (3.1), exists
on [0, T) and satis es

u2S (T;Ko; o 0sA; 05 0): (3.82)

3.3.3 Preparing initial data and the existence of a solution trapped
in S(t)

In this subsection, we would like to de ne initial datau(0), which depend on some param-
eters to be ne-tuned in order to get a good solution. The following is our de nition:

De nition 3.2  (Preparing of initial data). For eachA 1, T > 0; d; = (dyo;d11) 2
R! RMN;andd, = (dyo;021;021) 2 R RV RN?; we introduce the following functions
denedatsg= InT:

A 16vi
?(d1;0+ dii YY) o A%BL ;
0

1K 0:Ad 1 (Y S0)

A? A%Insy 1 16yj
2komds(Yi%0) = oz (Gao* Oon Y+ —orp oY Gz Yy Tr(de2) o 4%&
So So 2 Ko™ S

We also de ne initial data Uk ,:ad;:d,(0) = Uzk o:a:0, (0) + U2k 4:0:0,(0) for equation (B.1) as
follows:

1 X X

I 1KoAd: 19?; InT + ; p?; InT 1(x)3.83)
()1 (x)+1;

1

X X
p 1 2;Ko;A;d>2 p?; InT + 2 p?; InT 1(X)(384)

U1K o:a:d, (X; 0)

+
-4 c H

U2:K o:a:d2 (X; 0)
where ; and , are de ned in (8.53), (8.54) and (x) is de ned as follows

iXj
X) = — : 3.85
1(X)= o piTj nTi (3.85)
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with o denedin (8.67) andU 2 C*(R"nfOg;R) is de ned for all x 2 RN;x 6 0

8 h( b S
3 BT ifjxj C;
U x)= 3 e if jxj L (3.86)

U >0 for all x 6 0;

where C is a xed constant strictly less thanl enough, andU satis es the following
property: for each % we have

U (X)) U/(o); forall jx] 0 (3.87)

Remark 3.12. Roughly speaking, the critical data we done here are superposition of two
items:

- T 51f 1+ 4gin P;(0)
- U in P,(0):

The rst form is well-known in previous construction problems. As for the second, we
borrowed it from Merle and Zaag in[[16]. Note thaU is the candidate for the nal pro le

of the real part, as we can see from own main result in Theoren B.1. More crucially,
we draw your attention to the fact that in comparision with[[16], we add herel to the
expression in(3.83), and this term will allow us to have the initial condition

Re(u0)) L

which is essential to make the nonlinear terma® well-de ned, and the Cauchy problem
solvable (see Appendix 3.5). This is an important idea of ours.

From the above de nition, we show in the following lemma some rough properties of
the initial data.

Lemme 3.13. Forall Ko 1A 1;jdy 2;jdoj 2; and for all % (where C is
introduced in (B.87)), there exists To( o;Ko;A) > 0 such that for all T Ty; if u(0) =
Uk o:Ad;:d, (0) is de ned as in De nition then the following holds:

(i) The initial data belongs toL* (RN) and satis es the following

(P 1)3 of? =
Ku(:; O)ke (ixi Y Tein g :
u(;; 0)KLe (xj o) 8pjIn o

(i) The real part of the initial data, Rqu(0)) is positive. In particular,

Re(u(x; 0)) 1;8x 2 RN:

Proof.
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(i) Itis obvious to see that the initial data belongs toL! (RN) with the assumptions in this
Lemma. It remains to prove the estimate in itemi). We pow take g %; and we use

de nition of ; in (3.85) to deduce that supp(1) fi xj 2 TjInTjg. Moreover, we have
pfj InTj! OasT! O
Then, we have
"TinT 2,
Jinty 7
provided that T  T,4( o). Hence,
supp( 1) fi xj g
Hence, it follows the de nition of u(0) that: for all jxj  o; we have
ux;0)0=U (x)+1;

Using (3.87), our result follows.
KoP

(i) We see in the de nition of u(0) that we have supp( 1kqad,) fi YI 7 Sog and we

have the following
CA

inTj?

X
K 1K 0:ad; p?; INT K1 gy

In addition to that, in the region fj X] %p TjInTjg; the function ; #<; InT is

bounded from below by a positive constant which depends gnly df,. Therefore, there
exists To.»(A; Ko) > 0 such that for all T T, for all jxj % TjInTj we have

X X
LK oAy p?; InT + p?; InT >0

Therefore: for alljxj %p TjInTj; we have
Re(u(x;0)) 1

Now, if jxj %p TjInTj; then we have 1x,ad,(Y;S) = 0: Since 1(y;So) > 0 from

(B.53) and U (x) > 0 from (3.87), we directly see from the de nition [(3.8B) for Ra{(0))
that

Re(u(x;0)) 1
This concludes the proof of Lemma 3.13. O

Following the above lemma, we will prove that there exists a domaiBg ,.a.s,; With
So = InT such that for all (di;d;) 2 Dk ,.as,; the initial uk ,.a.4,:4,(0) is trapped in

S(T;Ko; 0r 0:A; 05 0;0) = S(0):

In particular, we show that the initial data strictly satis es almost the conditions of S(0)
except a few of the conditions in itemi() of De nition More precisely, these conditions
concern the following modes

(005 (Cj)1 j NoGos ()1 j N (k)1 jk nN)(So):

The following is our lemma:
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Lemme 3.14 (Control of initial data) . There existsK; 1 such that for all eachK

Ks A 1 and ; > O; there exists 3(Kp; 1) such that for all o 3; there exists
3(Ko; o; 1) > 0 such that for all ¢ 3; 0> 0; there existsT3(Ko; o; 1;A; 1; 0) > 0
such that for allT  Tsandsy = InT, there existsDg,as, [ 2;2]N°*2N*2 such that

the following holds: ifu(0) = Uk 4;a0;0::0.(0) (see De nition B.2), then
(I') For all (d;;d2) 2 Dkyas,; We haveu(0) 2 S(T;Ko; o; 0;A; 1, 0;0). In particular, we
have:

(i) Estimates in P1(0): We have (t1; ®)(So) 2 Va(Se) Where (or; )(So) are de ned in
(B.21) and (B.55). Moreover, we have also the following strictly estimates:

: : A?Insy. )
JO;k (S0)] 252 ;81 j;k N
o; (%5 S0) A 4 & (%) AZ
L+ WP gy, 2% 0 LIER gy o
Lt (RY) LY (RN)  2s,
A2 A3
Kae(:;So)kis rvy  sp—= and  Kkope(:;So)ki rvy —:
2 %o 25,2
h p
(i) Estimates inP,(0): Forall jxj2 2" TjInTj; o ; o(x) = <& with (x)= T t(x)

andj | Op jIn(T  t(x))j; we have
U5 o)) Oko( oG 3
whereU(x; ; ) is de ned in (3.74) and Ok, ( ) is de ned in (B.79).

(I1') There exists a mapping ; such that
1 RN2+2N+2 ! RN2+2N+2
(dy;dp) 7! 1(dy1; d2);

where
1(d1; d2) = (os (Guj)y N Gos ()1 j NG (k)1 ik ~)(So);
and  is linear, one to one fromDy a5, tO \’7A(so), where

O(s)= 2.2 FN AT A7 MM ASIns AdIns M (3.68)
s?' g2 SP1t2 ' gp1+2 gPit2 ' gpi+2 :
Moreover, we have
(@« g:a0) @A(So);
and
deg 1jDK0;A;S0 60: (3.89)

Proof. If we forget about the terms involvingU and the +1 term in our de nition (3.83)

- (8.84) of initial data, then we are exactly in the framework of the integer case, treated
in Duong [5] (see Lemma 3.4 in_[5]). Therefore, whegmis not integer, we only need to
understand the e ect ofU and the +1 term in order to complete the proof. The argument
is only technical. For that reason, we leave it to Appendik 3]7. ]
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Now, we give a key-proposition for our argument. More precisely, in the following
proposition, we prove the existence of a solution of equation (3]56) trapped in the shrinking
set:

Proposition 3.15 (Existence of a solution trapped inS (T;Ko; o; 0o;A; o; 0)). We can
chose the parameterd;Kg; o; 0;A, o and g such that there existqd;;d,) 2 RN?#2N+2
such that the solutionu of equation(3.1)) with initial data given in De nition exists on
[0; T) and satis es

u2s,

whereS =S (T;Ko; o; 0;A; o; o) is dened in De nition
Proof. The proof of this Proposition is given 2 steps:

The rst step: We reduce our problem to a nite dimensional one. In other words,
we aim at proving that the control of u(t) in the shrinking set S(t) reduces to the
control of the components

(005 ()1 § N Gos ()1 j nNs (k)1 ik n)(S)

in ¥a(s); de ned in (3.89).

The second step: We get the conclusion of Propositipn 3/15 by using a topological
argument in nite dimension.

- Step 1: Reduction to a nite dimensional problem:Using a priori estimates our
problem will be reduced to the control of a nite number of components.

Proposition 3.16 (Reduction to a nite dimensional problem). There exist parameters
Ko; o 0;A; o; oandT > 0 such that the following holds:

(@) Assume that initial datau(0) = Uk a4, :0,(0) is given in De nition 8.2]with (dy; d;) 2
Dkoaso

(b Assume furthermore that the solutioru of equation (8.1) satis es:
u2 S(T;Ko; o 0iA; o5 ort);
forall t 2 [0;t ]; for somet 2 [0;T) and
u2 @¥T;Ko; o; oA o) ot ):
Then, we have:
(i) (Reduction to nite dimensions): It holds that
(Ao (Gj)1 § N3Gl ()1 j ni (@i )1 i n)(S) 2 @h(s);

where the above components are @; ¢,)(s), de ned in (3.21), and B.58), Va(s) is
dened as in 8.8§)ands = In(T t).
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(i) (Transverse outgoing crossing): There exists, > 0 such that

(%o ()1 N0 (i) j NG (ik)1 jk NS + ) 2Va(s + ), (3.90)

forall 2 (0; o). Thisimplies that there exists ; > 0 such thatu exists on[0;t + ;)
and for all 2 (0; ,)

ut + )2S(T;Ko; o A o) oit + )

The proof of this Lemma uses techniques given in_|16] which were developed from [1]
and [17] in the real case. However, it is true that our shrinking set involves more conditions
than the shrinking set used in[[1],[[5],[116] and [17]. In fact, the additional conditions
are useful to ensure that our solution always stays positive. In particular, the séf,(s)
plays an important role. Indeed, as for the integer case inl[5], only the nonnegative modes
(cos (G)1 § Ni%oi (G)1 § ni(Gejk)1 jx n)(S ) may touch the boundary ofVa(s ) and
leave in short time later. However, the control of the solution with the positive real part
is also our highlight and of course it is the main di culty in our work. This proposition
makes the heart of the paper and needs many steps to be proved. For that reason, we
dedicate a whole section to its proof (Sectign 3.4 below). Let us admit it here, and get to
the conclusion of Propositiory 3.75 in the second step.

- Step 2: Conclusion of Proposition 3.15 by a topological argumernia this step, we
give the proof of Propositior] 3.15 assuming that Propositidn 3.116 holds. In fact, we aim at
proving the existence of a parameterdq; d;) 2 Dk ,.a:s, SUCh that the solutionu of equation
(B.1)) with initial data Uk a4, :9,(0) (given in De nition 3.2}, exists on [0; T) and satis es

u2S (T;Ko; o 0:A; o) 0);

where the parameters will be suitably chosen. Our argument is analogous to the argu-
ment of Merle and Zaag([17]. For that reason, we only give a brief proof. Let us x

T;Ko; 0; o 0;A; 0, o such that Lemma[3.14, Propositiof 3.16 and Lemma 3]11 hold.

Then, for all (dy; dy) 2 Dk yas, and from Lemma[3.14 we have the initial data

Uk o:ad1:d2(0) 2 S(T; Ko, o) o;A; o) 0;0):

Thanks to Lemmag 3.1]1 anf 3.14, for eachly; d;) 2 Dk a5, We cande net (dy;dz) 2 [0; T)
as the maximum time such that the solutionug,,¢, of equation (3.1), with initial data
Uk o:ad;:d, (0) trapped in S(T;Ko; o) 0;A; o oit) forall t 2 [0;t (dy;dp)): We have the
two following cases:

+ Case 1: If there exists @;;d;) such thatt (d;;d;) = T then our problem is solved

+ Case 2: For all (d;;d;) 2 Dk y:ais.; We have

t (dl, dz) <T:

By contradiction, we can prove that the second case can not occur. Indeed, if it is true, by
using the continuity of the solutionu in time and the de nition of t =t (d;;d,); we can
deduce thatu 2 @® ): Using item (i) of Proposition[3.16, we derive

(Cos (G)1 7 NG %o (G)1 § ns (k)1 jk n)(S) 2 @a(s);
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wheres = In(T t): Then, the following mapping is well-de ned
. DKo;A;So I @[ 1 1]N2+2N+2
(d;di) 70 (di;dy);
where
Sp1+2 p1+2
(di;dp) = —(Q10,(CI11)1 i N)(S ) —5(Roi ()1 j N)(S); ASInS e (k)1 jk ~n(S)

ands = s (dy;dy) =  In(T t (dq;dy)).
Moreover, it satis es the two following properties:

(i) is continuous from Dy, as, 0 @ [ 1;1N°*2N*2 | This is a consequence of item
(i) in Proposition (3.16).

(i) The degree of the restriction j@DKO;A;S0 is non zero. Indeed, again by itemii() in
Proposition[3.16, we have
S (di;dp) = So;
in this case. Applying [3.89), we get the conclusion.

In fact, such a mapping can not exist by Index theorem and this is a contradiction. Thus,
Proposition[3.1% follows, assuming that Proposition 3.16 holds (see Secfiorj 3.4 for the proof
of latter). O

3.3.4 The proof of Theorem 3.[ ]

In this section, we aim at giving the proof of Theorem 3|1 by using Propositidn 3]15.

The proof of Theorem[3.]l: Except for the treatment of the nonlinear term, this part
is quite similar to what we did in [5] whenp is integer. Nevertheless, for the reader's
convenience, we give the proof here, insisting on the way we handle the nonlinear term.

+ The proof of item (i) of Theorem[3.]: Using Proposition[3.15, there existsd;; d,) 2
RN**2N+2 gych that the solutionu of equation {3.1) with |n|t|al data Uk o:ad 1, (0) (given
in De nition 3.2), exists on [0; T) and satis es:

u2S (T;Ko; 05 oiA; 05 0):

Thanks to item (i) in De nition item (i) of Lemma[3.10, and de nitions [3.2]1) and
(B.59) of (w1;w,) and (ai; @), respectively, we conclud€ (3]6) and (3.7). In addition to that,
we have Re(l) > 0. Moreover, we use again the de nition of/5 (s) to conclude the following
asymptotic behaviors:

u(0; t) (T t) »1; (3.91)
2N (T t) 71
(P Djin(T 1)’

ast ! T, which means thatu blows up at time T and the origin is a blowup point.
Moreover, the real and imaginary parts simultaneously blow up . It remains to prove that
for all x 6 0; x is not a blowup point ofu. The following Lemma allows us to conclude.

u2(0; t) (3.92)
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Lemme 3.17 (No blow-up under some threshold; Giga and Kohi][7]}For all Cy > 0;0
T, <T and > 0 small enough, there existsy(Co; T; ) > 0 such that ifu(; ) satises
the following estimates for al] j ; 2 [Ty T):

j@u  uj  Cojuj;

and

1

jut; )i o ) P
Then, u does not blow up at =0; =T.

Proof. See Theorem 2.1 in Giga and Kohn][7]. Although the proof ofl[7] was given in the
real case, it extends naturally to the complex valued case. m

We next use Lemmg 3.77 to conclude tha does not blow up atx, 6 0: Indeed, let us
considerx, 8 0. Then, we use [3.6) to deduce the following:
!

1 X0 C
sup (T )7 Tjux;t)j  fo P = -+ p—————1 0; (3.93)
i xo 2ol T (T Djin(T 0] (T v

ast ! T. Applying Lemma[3.1T7 tou(x Xo;t); with some small enough such that

P2l and T, close enough toT; we see thatu(x  Xo;t) does not blow up at timeT
and x = 0. Hence, X is not a blow-up point of u. This concludes the proof of itemi() in
Theorem[3.1.

+ The proof of item (ii ) of Theorem[3.1: Here, we use the argument of Merle in[14] to
deduce the existence ai = u, + iu, such thatu(t) ! u ast! T uniformly on compact
sets of RN nf0Og. In addition to that, we use the techniques in Zaag [30], Masmoudi and
Zaag [18], Tayachi and Zaagd [28] for the proofs df (8.9) and (3]10).

Indeed, for allxo 2 RY;x, 6 0, we deduce from [(3.5), [(3.]7) that not only [3.98) holds but
also the following is satis ed
!

sup (T )7 5In(T  t)jjup(x;t)] 9o} P g 2
i xoj Bl s aT oin(™ 0] ° T im0
+ #! 0; ast! T: (3.94)

iin(T  1)j%

We now considerxy such that jxqj is small enough, andK to be xed later. We de ne
to(Xo) by

o p . .

Xoj = K (T to(X0))jIn(T  to(Xo))i: (3.95)
Note that to(Xg) is unique whenjx,j is small enough andg(xg) ! T asxg! 0.

We introduce rescaled functiondJ(Xq; ; ) and V,(Xo; ; ) as follows:

UXo; ; )=(T  to(Xo)7 T u(x;t): (3.96)

and
Vo(Xo; 5 ) = JIn(T  to(Xo))jU2(Xo0; 3 ); (3.97)
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where U,(Xo; ; ) is de ned by
U(Xo; ; )= Ui(Xo; ; )+ iUa(Xo; 5 );
and

to(Xo)
T to(Xo)’
(3.98)
We can see that with these notations, we derive from iteni)in Theorem(3.] the following
estimates for initial data at =0 of U and V,

(X;t) = Xo+ P T to(Xo);to(Xo)+ (T to(Xo) ; and (; )2 RN

C
sup JU(Xo; 5 0)  fo(Ko)j : —! 0, (3.99)
i IN(T to(xo)j® 1+(In(T  to(Xo0))j*)
. . C
sup JVa(Xo; 5 0)  go(Ko)j 0; (3.100)

!
P 0i (T to(xo))i¥ 1+ In(T  to(Xo0))j )
asXo ! 0 and note that fo and gy are de ned as in [3.4) and [(3.B) respectively, and

=min 1A
1 =Mmin 12 -

Moreover, using equations[(3.17), we derive the following equations forVs: for all 2
RN: 2[0;1)

@u

@V,
whereF; is de ned in (3.18).
Besides that, from [3.98) and[(3.141), we can apply Lemna 3|17 tbwhenj j j In(T

to(Xo))j# and obtain:

U+ UP; (3.101)
Vo + jIn(T  to(Xo))j F2(Uy; Uy); (3.102)

sup jUXo; 5 ) C: (3.103)
i LT tko)id; 2[0)

Then, we aim at proving forV,(Xo; ; ) that

sup Vo(Xo; 5 )] C (3.104)

i AT toxo)id; 2[0:1)
+ The proof for 104y We rst use (8.103) to derive the following rough estimate:

sup Va(Xo; 5 ) CjIn(T  to(Xo0))j: (3.105)

Cq. 1
i 7 ziin(T to(xo))j4; 2[0;1)

We rst introduce a cut-o function 2 C} (RN);0 Lsuppl ) B(0;1); =1
on B(0; 1): Introducing

2
in(T to(xo)i*

()= and Vo1 (Xo; 5 )= 1( )Va(Xo; 5 ): (3.106)
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Then, we deduce from{(3.102) an equation satis ed by,
@V21 = Va1 2div(Var 1)+ Vo 1+ IN(T to(Xo))j 1F2(Us; Up): (3.107)

Hence, we can writéV,.; with an integral equation as follows
Z
Voar() = e (Var(0)+ & 0 f 2div(ver )+Ve 1 (3.108)
0

+JIn(T to(x0))j 1F2(Uy; U))( 9gd

Besides that, using|(3.103) and (3.105) and the fact that
C : C

roa - : I -
jIn(T  to(xo))j jIn(T  to(Xo))j2
we deduce that
Z Z
kV. K 1 pN
& 9 2div(Ver 1)d° C 2 gt (RO)( g o Ciln(T  to(xo))ji:
0 Z ZO
¢ P (W(9 Dd°  C K% ki (90 CjIn(T  to(xo))iZ;
0 0
and
Z
%e< D (4In(T to(Xo))jF2(Ur; Uo)( 9)d ©
C KiIn(T  to(Xo))] 1F2(Uq; Ux)kg 1 (RN)( fbd 0

0

Since the last term in [3.10B) involves the nonlinear ternfr,(U;; U,); we need to handle it
di erently from the case wherep is integer: using the de nition (3.18) of F»; and (3.103)

and the fact that U, is positive, we write from for allj | %j In(T to(xo))j%; 2 [0;1) we
have

j (T to(xo)Fa(UiU)( )j  C U2+ U2 7 j 4In(T  to(Xo)) Un( )]
Csz;]_( )kLl (RN):

Hence, from |(3.108) and the above estimates, we derive
Z

KVaa( Dkt mvy  CiIN(T to(xo))i + C  KVaa( Okyr ryd @
0

Thanks to Gronwall Lemma, we deduce that
KVa1( ki vy Ciln(T  to(X0))j#;8 2 [0;1);
which yields

sup Va(xo; i )i Ciln(T  to(xo))j?: (3.109)
P LIn(T to(xo)i®; 2[0:2)
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We apply iteratively for

4

Vao(Xo; 5 )= 2( )Va(Xo; ; ) where ()= T oo’

Similarly, we deduce that

sup Va(xo 3 )i CHIN(T  to(xo))j?:
i HI(T toxo)id; 2[0:2)
We apply this process a nite number of steps to obtain (3.104). We now come back to our
problem, and aim at proving that:

C

sup Uo; 5 ) Oko() : —; (3.110)
P15 AT toxo)ik; 2(0:) 1+JIn(T  to(x0))]
C
sup Vo(xo; i ) Yool ) . (3.111)

1+jIn(T Xo))j @
i Lin(T to(xo)i¥; 2[0;1) JIn(T to(x0))]

where ,; 5 are positive small enough andQx,; V., )( ) is the solution of the following
system:

@0, = OF; (3.112)
@%k, = POR "ok, (3.113)
with initial dataat =0
Ok, (0) = fo(Ko);
V2k0(0) = Go(Ko):
given by
22 5
0,() = (0 na )+ B JEE T (3.114)
2K2 v
o) = KE (e )+ B KT (3.115)

forall 2 [0;1). The proof of is cited to Section 5 of Tayachi and Zaag [28] and here we will
use (3.110) to prove|(3.111). For the reader's convenience, we give it here. Let us consider

Vo=V, <>2;Ko( ): (3.116)
Using (3.104), we deduce the following

sup jVoj  C: (3.117)
P &N to(xo)i¥; 2[051)

In addition to that, from (8.102) we write an equation onV; as follows:

@Vo= Vo+ pOf 'Vo+ p(UP ' Of Vot Go(xo; 5 ); (3.118)
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where
Go(xoi i )= ]IN(T  to(Xo))] Fa(UuiUz) pUP U :
As for the last term in (3.118), we need here to carefully handle this expression, sine it

involves a nonlinear term, which needs a treatment di erent from the case whem is
integer. From the de nition (B.18) of F,; we have

PlUil) PR Rl (UP LD 0 ) )
) pUy

+ (UZ+UD% sin parcsin % 0 0
And we deduce from[(3.104) and (3.110) with, > 0 small enough that

Fo(UiUz)  pUf "Wz Cjli?
Plugging the above estimate and using (3.97) andl (3.104), we have the following

C .
JIn(T  to(X0))j?

sup 1&(Xo; 5 )i (3.119)

] AT t0)i4; 2[01)
Introducing
Vo= ()Vz
where !
16
iIn(T to(xo))jt

and is the cut-o function which has been introduced above. We also note that ;
satisfy the following estimates

kr ! (RN) c and k K, 1 (RN) c

Tttt (T oot

(3.120)

In particular, V, satis es

@Vo= Vo+pOR ()Vo 2div(Vor )+V, +pUP 't O Y W+ Gy (3.121)

By Duhamel principal, we derive the following integral equation
V4 n

Vo( )= e (Vo)) + et 7 pOR Vo 2div(Var )+ Vo (3.122)
0

0
+ puft 08YH Ve+r G (9d°

Besides that, we use| (3.110)] (3.114), (3.117), (3.120), (3.119) to derive the following esti-
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mates: for all 2 [0; 1)

0.0 &
el oot

C
R O
e A T

C

G Kee T o

where , given in (3.110). Hence, we derive from the above estimates that: for all 0 °<
<1

jet 9 pOR MVy( 9] CkV,( 9k;

o . 1 1 _
je (div(Var )] Cp =0T )i
o0y . C -
© M T it
. 0 1 1 . C .
e (et 0 VIO
C

inl 9 ; )
N G

Plugging into (3.122), we obtain
Z
C

kV K 1 (gn ; —+ C kV K 1 Ndo;
2( )KLr (r) (T to(xa)] ° , 2(%L(R)

where 3 = min( %; 2). Then, thanks to Gronwall inequality, we get

C .
JIn(T  to(xo))j @

Hence, (3.1111) follows. Finally, we easily nd the asymptotics ofi and u, as follows,
thanks to the de nition of U and V, and to estimates |(3.110) and[(3.111):

szkLl (RN)

1

(p 1)2K2 P

‘p

1

k=]

u (xo) = Iti!rnT U(Xo;t) = (T to(Xo)) F1 Ii!m1U(xo;0; ) (T to(Xo))

4p 0 :
(3.123)

U (x0) = lim u(xeit) = (T to(xo) 7 M U(x0:0; )
T ot 71 P Dz T (3124

4p
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and
(T to(xo) 7t
JIn(T  to(x0))]

(T to(xo) #¢ (p 12 71
(T t(xo)i  4p

Using the relation (3.95%), we nd that

U,(Xo) = |ti|mT Uz(Xo;t) = ”‘mlvz(xo;O; )

(K2) #1: (3.125)

JXol® TR e
—ZngInjxojj and In(T to(Xo)) 2In(jxoj); asxp! O (3.126)

Plugging (3.126) into (3.128) and|(3.125), we get the conclusion of iterii Y of Theorem
3.1

This concludes the proof of Theorerp 3.1 assuming that Propositipn 3116 holds. Natu-
rally, we need to prove this proposition on order to nish the argument. This will be done
in the next section.

T to(Xo)

3.4 The proof of Proposition 3.16 |

This section is devoted to the proof of Propositiof 3.16, which is considered as central in
our analysis. We would like to proceed into two parts:

+ In the rst part, we derive a priori estimates on u in every componentP; (t) where
j=1;20r3

+ In the second part, we use a priori estimates to derive new bounds which improve all
the bounds in De nition B.1, except for the non-negative modes

(o (a)1 § N o ()1 § N (k)1 ik N

This means that the problem is reduced to the control of these components, which is the
conclusion of item {) of Proposition[3.16. As for item {i) of Proposition is just a
direct consequence of the dynamics of these modes.

3.4.1 A priori estimates in  Pq(t); P»(t) and Ps(t)

In this section, we aim at giving a priori estimates to the solution u(t) on Py(t); P»(t) and
Ps3(t) which are important to get the conclusion of Propositior 3.16:

+ A priori estimates in P,(t): Here we give in the following proposition some estimates
relevant to the regionPy(t) :

Proposition 3.18. For all A;Kg land o> 0 o> 0 o> 0; o > 0O; there exists
Ta(Ko;A; o) such that for allT ~ Ty; if u is a solution of equation(B.1)) on [0; t;] for some
t; 2 [0;T) andu 2 S(T;Ko; o; o;A; o; o;t) for all t 2 [0;t,], then, the following holds:
for all sq s sy withs;=In(T t;); we have:

(i) (ODE satis ed by the positive modes) For al] 2 f 1;::;; Ng, we have

Rols) ol * (9 sas(s) 8L | N; (3.127)
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and
0 0] 1 C . H .
Bo(8)  o(s) + Bi(9) S%i() 558l | N (3.128)

(i) (ODE satis ed by the null modes) For alll j;k N, we have

2 CA
By () + i () (3.129)
and 2 CA?|
0 ns,
G (S) + ik (S)  —pm (3.130)
(iii ) (Control of the negative part) We have the following estimates
M Ce = &3) (3.131)
1+)YP L1 rey 1+)yP |1 gy
e s )’ Cl+s )
" O g+ T
and
% (9) cer &) (3.132)
1+)y)P° 1 (RN) 1+)y)P . (RN)
e (s ) C(1+s
+ C 3 ka;e(:; )kLl (RN) + %:
S2 S 2
(v) (Control of the outer part) We have the following estimates
(s )
KOe(5; )KL 1 () Ce 7 kaue(:; )k (ry) (3.133)
- (5 + e
+ ce s & (.’.3) LCdry e
1+)yP L1 gy S
and
(s )
Kope(:; S)K, 1 (RV) Ce 7 kope(:; )Kkit (ry) (3.134)
pce s B0 ,Cars e
1+)y)° (RN) S 7

Proof. By using the fact that u(t) 2 S(T;Kg; o; 0;A; o; o;t) forall t 2 [0;t,]; we derive
that (on; @)(S) 2 Va(s) for all s 2 [so; s1] and (an; p)(S) satis es equation (3.56). In addition

to that, we deduce also the fact thaty(s) + 1(s) &5 for all s 2 [so; s1] (See Lemma
B.11). Although potential terms Vi ;j;k 2 f 1;2g, quadratic terms B;; B, and rest terms

Ri; R2 (see equation [(3.56)) are di erent from the case whene is integer, they behavior

as in that case (see Lemmas 3)25, 3126, 3.27 below). Thus, the result is derived from the
projection of equation {3.5) and the dynamics of the operatdr + V. For that reason, we
kindly refer the the reader to the proof of Lemma 4.2 given in|[5] for the case whearas
integer. m
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+ A priori estimates in P,(t):
In this step, we aim at proving the following lemma which gives a priori estimates an
in P,(t). The following is our main result:

Lemme 3.19. Forall Ko 1, 12 (0;1); o 1, s> 0; 5> O; the following holds: If
U(; ) a solution of equation(3.103), for all and 2[4 oJwithO 1 , 1;such
thatforall 2[4; oJand forall 2[ 2,;2 o]; we have

jU(; )i sand Re(U(; )  sand U(; 1) Oko(1) o (3.135)

then, there exists = (Kg; s5; 5, 1; o) Suchthatforall 2[ o; oJandforall 2 1; 5]
we have

uG; ) 0()

where O, ( ) is given (B:79). In particular, we have (Ko; s; s; 1; 0)! 0as( 1 o)
(0;+1).

Proof. We introduce as a cut-o function in C} (R) which satis es the following:
xX)=0if jxj 2;j (x)j 1lforallxand (x)=1forall jxj 1,

and we also de ne ; as follows

1()= =

0

Then, we have ; 2 C} (RV); and supp( 1) fi jsuchthatjj 2,gand 4()=1for
allj j o Inaddition to that, we let

Vi(; )= 1() UG ) Ok() 58 2[4 2 2RM:

Thanks to equation (3.101), we derive that/; satis es the following equation:

@V;= VWV, 2div(Ur )+U 1+ () ur 0O°F (3.136)
Therefore, we can writeVi( ; ) under the following integral equation
z
Vi()=e P (M(a)+ e D 2div(Ur )+ U g+ g UP 0P (9d

1

(3.137)
In addition to that, we have the following fact from (3.135) (in particular the estimate

ReU(; )) s in (B.138) is crucial for the &' term in (8.137)): forall 2 [ ;; ;]
KVi( 1)k 1 (RV) 1,

kUT 1K gy () C(OS);
KU ks gy () C((Z)S);
L(UP 0P () C(Ko; 5 s)kViki: mry( );

L1 (RV)
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which yields when ;  °< 2;
e 1 (Vi( 1) 1
¢ 9 (@dv(Ur (9 Cle)g 1.
L1 (RN) 0 0
C( s)
€ (u 1( ()) L1 RY) g ,
el ) ((UP 0P 9) L RY) C(Ko; 5 s)kViki: mny( 9:
Plugging into (3.137), we have for all 2 [ ;; ;]
Z

1
kVi( )kl gvy  C(Koj 5 5) 1+ " + C(Ko; 5 5)  kVi( k1 (gn)d @

1

Thanks to Gronwall lemma, we obtain the following
1
KVi( )ki: gvy  C(Ko; 5 5) 1+ - 8 2 [ 1; 2l

SinceVi( )= U() O()forall 2[ o o andforall 2 [ ,]; this concludes our
lemma. O

+ A proiori estimates in P3(t): We aim at proving the following lemma which gives a
priori estimates onu in P3(t):

Lemme 3.20 (A priori estimates in P3(t)). Forall K, 1L,A 1, > 0; o> 0 1 and
jdij + jdoj 2, there existsTg(Ko; A; o; ; ) > 0; such that for allT T4 the following
holds: If u is a solution of equation(3.1) for all t 2 [0;t ] for somet 2 [0; T) with initial
data u(0) = Uk ,.ad,:d,(0) (see De nition and

h
juxt)i o 8ixj2 §°;+1 12 [0t ]; (3.138)

then,
ju;t) u(;0) o 8jX] ZO;tZ[O;t]:

Proof. We introduce ; a cut-o function in C! (R) de ned as follows
(r)=01f jrj %; (ry=21forall jrj 1andj (r);] 1forallr,
and we also introduce , 2 C! (RV) as follows
=
0
Then, ,2C!'(R");and ,(x)=1forall jxj 2and ,=0Oforalljxj -2. Wedene

as well
v= U
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Thanks to equation (3.1), we derive an equation satis ed by
@= v 2dvur J+u + U= v 2div(ur )+ G(u); (3.139)
where
Guy=u ,+ ,uP
Using (3.138), we get
KG(tu(t))ke: rvy  C(;5 0):8t2 [0t ]

By Duhamel formula, we derive
V4

v(t) = € (v(0)) + te(t S (G(s;u(s)))ds; (3.140)
0

which yields
Z

v(t) v(0)= € (v(0) v(0)+ e (G(s; u(s))) ds:
0

Thus,
Z

(D) VO @y k€ (VO) VO o+ &9 (Glsiue)ds
L1 (RN)

In addition to that, if T  Tea( o); we have 1(x) = 0; for all jxj &; where ; de ned
in (B.87) is involved in De nition of initial data u(0). As a matter of fact, from the
de nition of u(0); we deduce from this fact that

vi0)= (U +1):
Since v(0) 2 L! (RN); it follows that

e (v(0)) V() , myy ! Oast! O
Besides that, we have also
Z t
e 9 (G(s;u(s)))ds | Qast! O
0 L1 (RV)

Therefore, for allt 2 [to;t ] we have
kv(t) Vv(O)ki: ryvy
provided that T  Ts.2(Ko;A; o; ; ). This concludes our lemma. m

Finally, we need the following Lemma to get the conclusion of our proof:

Lemme 3.21. There existsK; 1 such that for allK, K7 A 1, and ; > 0O; there
exists 7(Kg;A; 1) > 0 such that for all o 7; there exists 7(Ko; o;A; 1) > 0 such
that for all 7 there exist 7( 1) > 0; T/(Ko; 0;A; 1) > 0; 7(Ko; o;A) > 0 such that
for all 7.0 sandforallT  T;ifu2 S(T;Ko; o; 0;A; o; o;t) forallt2 [O;t ];
for somet 2 [0; T); then the following holds:

Kop

wheneverjxj 2 7 (T t)In(T t)j; o
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(i) Foralljj 2 Op jIn(T  t(x))j and for all

)t t(x)
T tx) 'T t(x)

if U(x; ; ) satis es equation (3.101), then
jux; 5 )i Ci(p) and Re(U(; )  C; (Kosp);

whereU(; ) is de ned as in (8.74), t(x) is de ned in (8.75), and C, depends only
on the parameterp and C, (Ko; p) depends on parameterk, and p.

2 max O

(i) Foralljj 2 op JIn(T  t(x))j; if we de ne

t(x)

o(X) = max O;_I_ t(x) ;

(3.141)

then, we have
U ;s o) Okl i o

Proof. The idea of the proof relies on the argument in Lepima 2.6, given in_[16]. i
+ The proof of item(i): We aim at proving that for all jxj 2 % (T t)jIn(T t)j; o ;

i] 2 Op jIn(T  t(x))j andt 2 [max(0; t(x));t ]; we have

Jux 5 (xt))j Gy (3.142)

and
ReU(; ) GC;; (3.143)
where (x;t) = } tt(&)) and C,;C, > 0. Let us introduce a parameter > 0 to be Xxed

later in our proof, small enough (note that has nothing to do with the parameters; ; in
the statement of our lemma). We obseB/e that if we have, 1.7(Ko; ) forsome ;7> 0
and small enough, thenforali j 2 o jIn(T t(x))j; we have

(L )ixj j x+ P T tx)j @+ )ixi: (3.144)
We also recall the de nition of rescaled functiolJ(x; ; (x;t)) as follows
UGG )=(T 1) Tuxs T T T00:00+ (T t00):
Introducing X = x + P T t(x); we write
UeG 5 6D) = (T t00)7 Tu(X;t):

We here consider 3 cases:
+ Case 1:We consider the case where

. KoP _ .
iXj 2 (T 0iin(T i
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Using the fact that u 2 S(t), in particular item (i) of De nition we see that Lemma
13.10 and (3.8D) hold, hence

!
X CA3

T 0jin(T b)) T1+jn(T b))

(T OFIu(X;t) fo

Then, we derive the following

jux 5 (x1))j TT—t(tX) h fo0)+ P 1+j(:|r'?\(? D
_ TT t(tx) T 1+jCIr'1A(3:I' = | (3.145)
Re(U(x; ; (x;1))) TT t(tx) g fo0) P 1+jC|nA(3T D
B !
= T i 1+JCI:\<3T 0] o

Besides that, we deduce the following from (3.144) and the following fact

. KoP . .

iXj > (T 0iin(T i
that

. Ko P : .

Mooggy (T 0in(™ i

In addition to that, we have that the function T  t(x) is an increasing function ifjxj small
enough. Therefore,

Ko P
41 )

T t(x) T t

T Ojin(T t) : (3.147)

As a matter of fact, we have the following asymptotic behavior of(x) = T  t(x)

xj?

In (x) 2Injxj and (x) Fjlnjxjj
0

asjxj! O (3.148)

Plugging (3.148) in (3.14]7), we obtain the following

Ko
41 )

8K2(T t)jIn(T t)j _ (T t)
K316(1 )2ijIn(T t)j (1 )%

T t(x) T t p(T t)jIn(T 1))

In particular, from t 2 [max(0;t(x));t ]; we have the following
T tx) T t
Plugging into (3.145) and [3.14p), we obtain
JUG 5 )i Coa(ps )
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and
ReU(x; ; (X;1)))  Cpa(p; );
provided that is small enoughKy K.7( ) which is large enough andl'  Ty.7(Kg; A).
Note that C,,(p; ) and C; (p; ) depend on and p, in particular, C,,(;p) is bounded
when ! O.
+ The second case: We consider the case where
Kop

Xjzo = (T )iin(T 1j; o

By using the de nition of U(x; ; (x;t)); we deduce that

Uk (t) = TT—J&)) "TUX 0 (X:)):

However, using the fact thatu 2 S(t), in particular item (i) of De nition we have
UK 0, (Xit))i o+ O(D):
In addition to that, we use (3.144), the de nition of t(x) and the fact that

. KoP . .
iXj = (T 0in(T b

to derive the following

T W .
1 T—t(>() 21

provided that > 0, small enough. Therefore, we have

U 3 () 20t o+ O, ()

Nl =

and L
Re(U(x: ; (x1)  O(0) o 50k,(0);
provided that o 10y, (0) and Ko Ko
+ The third case: We consider the case whergX | o: Using the fact that u 2 S(t);
in particular item (iii ) of De nition we have
UG5 (6t)i = (T )P TjulGt)i (T te))7 T (ulX; 0) + o);
Re(U(x; 5 (xt)) = (T t(x))P *Re(X;t)) (T t(x))? T (Re(u(xX;0)) o):

Using the de nition (B.83), we have for alljXj o
uX;0)=U (X)+1;
provided that T  T,.7( o): In addition to that, we have the following fact

16xj°
B [
(P 1Pixi® 7T

0 U O = T
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as X;x) ! (0;0), and in particular, from (3.144), we have
@ )ixi §Xj o @+ )ixj:
Therefore, we have

Jux 5 (xxt))j Cuq();
ReU(x; 5 (X;1)))  Cur(Ko; );

provided that Ko K375 o 1.7( ) and is small. We conclude,item i().
The proof of item (ii): We aim at proving that forall jj 2 ¢ jIn (X)j and o(x) =
max 0; ‘& ;we have

U o) Ok o(x) 1 (3.149)

Considering 2 cases for the proof of (3.149):
+ Case 1: We consider the case where

i S0P T,

then, we deduce from the de nition oft(x) given by (3.75) thatt(x) 0. Thus, by de nition

(B.141), we have

t(x).

)

Therefore, [3.14p) directly follows item if ) of Lemma[3.14 withKy  Ka7; o 37 o
37 (see in Lemmg 3.14)

+ Case 2: We consider the case where

X TjInTj;

o(X) =

which yieldst(x) 0. Thus, by de nition (8.141)), we have
o(x) = 0:

We let X = x + P (x): According to the de nitions of U;OK0 which are given by (3.74)
and (3.79), we write

l 2 2 p 1
Ux; ;00 Ok, (0) =  mIixu(Xt(x) (p 1)+ . 4p1) %
- | (P 1  iXj? ﬁ
= TSt (P D T 0i
(b 17 Xj2  #e b 1Pk o
+  (p 1+ 4p  (X)jIn (X)j P 1)+4—p1_6

(1) +(1);
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where (x)= T t(x); and

C oouix © 2 xE T
M) = Feueate  eops PR BT
_ (b 17 X2 (b 1PKE 7
(= D 6o o)) e TR
Since
p p
Xi @+ SN TGN 00 Ko (T Wit

Using item (i) of De nition taking t = t(x); we write

1) p CKIA?  GKoA®
Ciin(m tx)j jinTj 2

provided that T T47(Ko; A; 1). Besides that, from (3.144) we have

2 iYW 12 2
@ ple PP g, 2R
16 (X)) jIn (X)j 16
This yields
1.
provided that is small enough. Then,|(3.149) follows. Finally, we x > 0 small enough
and we conclude our lemma. O

3.4.2 The conclusion of Proposition 3.16 |

It this subsection, we would like to conclude the proof of Propositidn 3.]L6. As we mentioned
earlier, in the analysis of the shrinking seB(t); the heart is the setVa(s) (see item () of
De nition 3.1]of S(t)). So, let us rst give an important argument related the analysis
of Va(s); the reduction to nite dimensions. More precisely, we prove that if the solution

(au; @) of equation (3.56) satis es €u; ®)(S) 2 Va(s) for all s 2 [sp;s ] and (op; B)(S ) 2
@Y(s ) for somes 2 [sg;+1 ) with s = InT; then, we can directly derive that

(cho; (G)i ni %os (G )i ns (G )ik n)(S) 2 @X(s );

whereVa(s ) is de ned in (B.89). After that, we will use the dynamic of these modes to
derive that they will leave V)5 after that. The following is our statement

Proposition 3.22 (A reduction to nite dimensional problem). There existsAg 1;Kg
1 such that for allA  Ag;Kg  Kg, there existssg(A; K o) 1 such that for all sy
ss(A; K o), we have the following properties: If the following conditions hold:

a) We take the initial data(o; @)(So) are de ned byuak 4:d,:0,(0) With sp = InT (see

De nition (.27) and (3.55)) and (do; di) 2 Dk,ias, (s€€ in Lemma(3.14)).
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b) For all s2 [so;s4]; the solution(a; @) of equation (3.56) satis es: (th; )(S) 2 Va(s)
and qu(s) + 1(s) 3e P *.

Then, for all s 2 [sg; s1], we have

. : A?lns
8i;j 21, ing;  jouij (9)] g (3.150)
o (59) A A2
: — ko K| 1 (N —P—=; 151
T+yP gy 287 BelSr @y P (3:151)
%, (59) A% A®
TP o U Kpe(S)KL1 (M) S (3.152)

Proof. The proof is quite similar to Proposition 4.4 in[[5]. Indeed, the proof is a consequence
of Proposition[3.18, exactly as in[5]. Thus, we omit the proof and refer the reader o [5].]

Here, we give the conclusion of the proof of Propositi¢n 3]16:
Conclusion of the proof of Propositiof 3.16MWe rst choose the parameterKo; A; o; o;

o, 1, o; andT > 0 such that all the above Lemmas and Propositions which are necessary
to the proof, are satis ed. In particular, we also note that the parameters;and which are
introduced in Lemma[3.14 and Lemma 3.20, will be small enough{ , and 0)-
Finally, we x the constant T small enough, depending on all the above parameters, then
we conclude our Proposition. We now assume the solutienof equation {3.1) with initial
data Uk ,:ad,:d,(0), de ned in De nition satis es the following

u2 S(T;Ko; o0; ;A 0; o) = S(1);
forall t 2 [0;t ] for somet 2 [0;T) and
u2 @% ):

We aim at proving that
(@)(s) 2 @X(s); (3.153)
wheres =In(T t ). Indeed, by contradiction, we suppose that (3.1%3) is not true, then,
by using De nition B.1] of S(t); we derive the following:
(1) Either, there exist x ;  which satisfy
o KoP . .
xj 2 2 (T 0T o ;
. P - .
] o JIn(T t(x ))j:

and
U s 5 (xst) O0((xs D= o
(11') Or, there existsx suchthatjx j 2 and
jux ;t) u(x;0)j= o

We would like to prove that (I) and (I ) can not occur. Indeed, if the rst case occurs,

then, letting o(x ) = max  ‘§4;0 , it follows from Lemma|3.21 that: For allj ]

2 Op jIn(T  t(x ))j; we have
U ox)) O(o(x)) 1)
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h

i
and forall 2 max ) .t tx)

T t(x )' T t(x)
I O ) | B F
ReU(x ;5 (x)) G
whereC,; C; are given in Lemmg 3.21.

:we have

tot(x ). —

Then, we apply Lemmag 3.19, with ¢ = Op JIN(T t(x ))j; 1= oX); 2= T 5°

C, and 5= C,; toderive that: forall 2 [ o; o]
U ;; (x;t) O((x:t) CHKo s 5 1;0);

whereC(Ko; 55 5, 15 0)! 0as(1; o)! (0;+1). Taking ( 1; o) ! (0;+1 ) and note
that ¢! +1 as (! O, we write

Ux; ;5 (xst)) O((x;t)) 50;

this is a contradiction.

If (I1') occurs, we have for aljxj2 2;+1

jux;t)i C(oA; o 0);8t2[0t1]:
Indeed, we consider the two following cases:
+ The case wherejxj 0. using item (jii ) if the de nition of S(t); we derive the

Zl
following
jux;t)j j u(x0)j+ o C(A; o)8t2 [0t ]

+ The case whergjxj2 ;2 ;using item (i) in the de nition of S(t); we have
ju)j C(o)(T t(x) 77 C(o o)i8t2 [0t ]:

Then, we apply Lemmg 3.20 with 2 and = C( o;A; o; 0); to derive the following
jut t) u(x ;0 v
Therefore, (1 ) can not occurs. Thus, |(3.153) follows. In addition to that, from|{(3.153),

Proposition [3.18 and Lemm4 3.22, we conclude the proof of itert) of Proposition [3.16.
Since, item (i) follows from item (i) (see for instance the proof of Proposition 3.6, given in

[5]). This concludes the proof of Propositiof 3.16.

3.5 Cauchy problem for equation  (3.1)

In this section, we give a proof to a local Cauchy problem in time.

Lemme 3.23 (A local Cauchy problem for a complex heat equation)Let u, be any function
in LY (RY) RN;C such that

Re(Uop(x)) ; 8x 2 RY; (3.154)

for some constant > 0. Then, there existsT; > 0 such that equation(3.1) with initial
data up; has a unique solution or{(0; T1]: Moreover,u2 C (0;T,];L* (RN) and

Re(u(t))  5:8(tx) 2 [0;Ty] RN:
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Proof. The proof relies on a xed-point argument. Indeed, we consider the space
X =C (0;Ty];L* (RY)(RY;C) :
It is easy to check thatX is an Banach space with the following norm

kukx = sup Kku(t)kp: rny;8u = (Uu(t))2o;ry 2 X:
t2(0;T1]

We also introduce the closed seB™ 0; 2kugk, 1 (rn) X de ned as follows
B* 0;2kugki: rvy = u2 X suchthatkukx — 2Kugki: gw)

\ u2 Xj8t 2 (0; T1]; Re(u(t; x)) > a. e :

Let Y be the following mapping
Y:B" 0;2kuoki: rvy ! X;

whereY(u) = ( Y(u)(t))i2(:7,] is de ned by
Z,
Y(u)(t) = € (ug)+ et ¥ (uP(s))ds: (3.155)
0

Note that, whenu 2 B* 0; 2kugk 1 (rvy ; UP is well de ned as in (3.18) and [(3.19). We
claim that there exists T = T (kuok.: (gv); ) > O such that forall 0< T, T, the
following assertion hold:

(i) The mapping is re exive onB™ 0; 2kugk, : (rvy ; Meaning that

Y:B" 0;2kuok i rvy ! BT 0;2kugki: gy
(i) The mapping Y is a contraction mapping onB™  0; 2kugky 1 (rn)
1
KY(u1)  Y(uz2)kx ékul U2Kx ;

for all uj;u; 2 B* 0; 2kugky 1 (rv) -

The proof for (i): By observe that, by using the regular property of operatoe' ; we
conclude that Y(u) 2 C (O;T,];L* (RN)(RN;C)\ C(RN;C) : Besides that, for allu 2
B* 0;2kugk : (rv) we derive from [3.15p) that for allt 2 (0; T4]

Z

KY(U)(DKs rvy = € (ug)+ €9 (uP(s))ds
0 - LL (RN)
t
€ (Uo) L1 muyt e 9 (uP(s))ds
0 L1 (RN)
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Hence, if we takeT; then we have

1
p p 1
2 kl,lokLl (RN )

kY(U)kx = Sup kY(U)kLl (RN) 2kugk 1 (RN)-
t2(0;Tq]

Now, let us note from (3.154) that
Re € (up) =€ (Re(up) € ()=
Therefore, from [3.15p) for all ¢ x) 2 (0;T,] RN

Z t
Re(Y(u)(t; X)) et ) (uh)( )d
0 L1 (RN)

Note that, 7

t

et ) (W) )d t2Pkuok?, RN):

0 L1 (RN)

So, if Ty m; thenforallt2 (0;T,] RN
Re(Y(u)(tx)) =

Therefore,

Y(u) 2 B* 0;2kuok 1 (rv) :
The proof of (ii): We rst recall that the function G(u) = uP;u 2 C is analytic on

u 2 C such that Re(u)

2
Then, there existsCy(kugk 1 (grnvy; ) > 0 such that
Z t
kY(u)  Y(uz)kx = sup e P (U uh)(s)ds
t2(0;T1] 0 Lt (RN)
T,C, sup kUl U2k|_1 (RN
t2(0;Ty]
Then, if we impose
T 1.
1 2C,’
(ii) follows.
— H 1 . .1 .
We now choosel' = min 2PI<UO'<E11(RN) ' P Kk, (RN)’E . Then, forall T, T ;item

(i) and (ii) hold. Thanks to a Banach xed-point argument, there exists a uniquai 2
B* 0;2kugk, : (rv) such that
Y(u)(t) = u(t); 8t 2 (O; T4];

and we easily check that(t) satis es equation (3.1) for all (Q T;] with u(0) = uo. Moreover,
from the de nition of B™ 0; 2kugk,: (rvy we have

Re(u)(t; x) E:

This concludes the proof of Lemma 3.23. O
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3.6 Some Taylor expansions

In this section appendix, we state and prove several technical and straightforward results
needed in our paper.

Lemme 3.24 (Asymptotics of By;B;). We considerB,(wy; w;) as in (3.25), (3.26). Then,
the following holds:

ZBWE + O(jwaj® + jwaj); (3.156)

Poviw, + 0 jwijtiwg + O jwoj® (3.157)

B1(wi; w,)

Ba(wi; W,)

as (wg;wy) I (0;0).

Proof. The proof of (3.156) is quite the same as the proof of (3.157). So, we only prove
(8.157), hoping the reader will have no problem to check (3.156) if necessary. Since;

(p 1) > 0; we derive + w; > 0 whenw; is near 0, so we can writdB,(wq; W;) as
follows

n !#
b . w
Bao(wi;wo) = ( + wip)?+ w2 2sin parcsin p 2 P Wo;
( +w)2+ w3 p 1
asw; ! 0O: Thus,
» W
Bo(wi;wo) = ( + wy)?+ wh 2 p P 22 > P 1W2
o . w W
+ ( +wy)?+ w5 ?Z sin parcsin p 2 > P PWe :
(+ w2+ ws (+ w2+ ws
p_1
= (+w)P+ W 2 pw, p1W2
( n p !# )
b . w W
+ ( +wy)?+ w5 2 sin parcsin p 2 P PWe
( +wi)?2+ w3 (+wy)?+ w3

(H+(1):

In addition to that, we have the fact

sin(px)  px = O(jxj%);

Wo ..
= O(jw,));
P (+ w2+ W2 (jwzj)

asx! 0and (wy;wy) ! (0;0). Plugging these estimates inl{ ), we obtain
(1) = O(jwj®):

as (wi;wo) ! (0;0). For (1); we use a Taylor expansion for ((+ w;)? + w2), around
(wi;wz) =(0;0):

R P () wi + O(jwij?) + O(jwyj?):

(C+w)?+ )t = S Sl




162

Plugging this in (1); we derive the following:
— E . 2 . .3 .
(1) = =wiw; + O(jwaj W) + O(jwaj°);

as (wy;wy) ! (0;0): From the estimates of () and (11 ); we conclude the Lemma. O

In the following lemma, we aim at giving some bounds and expansions gf and
Vij ik 21,29

Lemme 3.25 (The potential functionsV andV,, with j;k 2 f 1;ng). We considerV; V;.1; Vi.2;

V21 and V,,; de ned in (8.57) and (3.58) - (3.61). Then, the following holds:
(i) Foralls 1andy2 RN, we havejV(y;s)j C;

CL+jyi?).

jV(y;9)j S (3.158)
and iz N
V(y;s) = % + V(y;s); (3.159)
whereV satis es -
i (y;9)] c(ll%”;ss Liyi Ko s: (3.160)

(ii) Potential functions V; with j;k 2 f 1;2g satisfy the following estimates

kV]_;]_kLl (RN) + kV2;2k|_1 (RN)

kV]_;szl RNy T kV2;1k|_l (RV)

nl O O

and

C(+jyiY.
st '

C(+jyj?d).
s2 '

IVi1(y; )i + [Va(Y; 9)i
IVi2(y; ) + [Vau(y; 9)i

foralls landy2 RN.

Proof. We note that the proof of () was given in Lemma B.1, page 1270 in [21]. So, it
remains to prove item (i ). Moreover, the technique for these estimates is the same, so we
only give the proof to the following estimates:

C

KViaKis mvy + KV22Ki s (ry)y gi (3.161)
| o O C+ i

NVaa(y: 9] + Vaalyr ) S, (3.162)

S4

+ The proof of (3.161) We recall the expressions of.; and V., :

Vir = @ F1(Us; U2)juiun=( 1 2 pFl) :
V2;2 = @2F2(u1;u2)j(u1;u2)=( 1, 2) p g
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where ; » are given by [3.58) and[(3.61). Hence, we can rewrit§.; and V,., as follows

" I# " 1#!
Via = p(u?+ u3) 2 ujcos parcsin p% + U, Sin parcsin pﬁ
1t 2 1t 2
p 1.
Pis " 1 " 1
b2 : 2 : : 2
Voo = p(U2+ U3) 2 uycos parcsin P + Upsin parcsin p——
1t 2 1t 2
p 1.
P11

We rst estimate to Vy.1, from the above equalities, we decomposg.; into the following

Vi = Vi + Vi + Vigs, (3.163)
where

p_2
Vita = p i+ 57 1 p i I1# !

p_2
Viip = p %+ 3 7 ; cos parcsin p% 1

+
" 1 '#2

2 . 2
Vi3 p( i+ 3z »sin parcsin p——
+
1 2

As matter of fact, from the de nitions of i; ,; we have the following

2(:35) c. (3.164)

1(:;8) L1 (RN) S
K 1(:;8)ki1 (ry) C; (3.165)

C
K 2(:;8)ki1 (ry) E; (3.166)

foralls 1 and

jcosparcsinx) 1j Cjxj?; (3.167)
jsin(parcsinx) pxj Cjxj*; (3.168)

for all jxj 1. By using (3.164), [(3.165),[(3.186)] (3.167) andl (3.168), we get the following
bound for V1;1;2 and V1;1;3

C
kV]_;l;z(:; S)kLl (RN) + kV]_;l;g(:; S)kLl (RN) g: (3169)

For Vy.1.1; using (3.164), we derive

2
Vizaj= p &} ! 1+ _5 1 ="
1
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This gives the following

C
KV1(5s)kie gy §:
We can apply the technique toV,.,; to get a similar estimate as follows
C
KV2,2(:; S)KL1 (rM) ?:

Then, (3.161) follows.

+ The proof of (3.162y We can see that on the domairfj yj Kop sg, we have the
following fact
1+jyj* C.
st s?’
and in particular, (3.163) holds. Thus, for alljyj Kop s, we have

_ L . C(jyj*+1
Vui(y; )i + [Va(y: s)i %:

Therefore, it is su cient to give the estimate on the domainfj yj 2K0ID sg. In fact, on
this domain there existsC(Kg) > 0 such that

1
c ne C
In addition to that, using the de nition of , given by (3.53), we derive the following
. . jyj2+1
iyl W a2 RY 1) 3170)
Then, from (3.163) we have
: o : 1+ jyj*
Mua(y;9)i 0 aly:9)i? C(S#:
: o : 1+ jyj*
MoaiS)i o a(yi9)j? C(S#i

We now estimateV;.;.;, thanks to a Taylor expansion of ( % + §)¥; around -

(3+ 9% 17 Cj
This directly yields
- . o 1+ jyj*
Muaa(y;9)i - C(Ko)j 2j° C(S#:
So,
: : 1+ jyj*
IVia(y: 9)j C(S#;Sy 2 RV:
Moreover, we can proceed similarly fov,.,, and get
-
Voatyi 9l €D gy 0 s

Thus, (3.162) follows. O
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Now, we give some estimates on quadratic terni®,; (¢; &) and B,(q; &)

Lemme 3.26 (ThetermsBi(q:; &) and B,(h; ). Let us considerB1(o; ) and Bo(th; &),
de ned in (8.63) and (3.63), respectively. For allA 1, there existsss(A) 1 such that
forall so  So(A); if (i B)(S) 2 Va(s) and cu(s)+ 1(s) 3e 77 for all s 2 [so; 1], then,
the following holds: for alls 2 [sg; s1];

j (y;9)B1(th; B)j C jouj®+ jopi® ; (3.171)
o
j (y:9)B2(th; @)j C %ﬂ'chjjchjﬂﬁhjz ; (3.172)
CA*
kB1(h; )KLt (rr) P (3.173)
min2 p)
CA?2
KB 2(th; )KL (v (3.174)

where (y;s) is de ned as in (3.66).

Proof. We rst would like to note that the condition u(s) + 1(S) %e 51 is to ensure
that the real part w; = qu(s) + 1(s) > 0. Then, (3.16) holds and functions~; and F,
which are involved in the de nitions of B; and B, are well-de ned (see[(3.18)). For the
proof of Lemma[ 3.2B, we only prove foff (3.172) andl (3.174), because the other ones follow

similarly.
+ The proof for (3.172) Using the fact taat the support of (y;s) is fjyj 2K0p sg; it

is enough to prove|(3.172) for alfjyj 2K, sg. Since we haved; &) 2 Va(s); we derive
from item (ii) of Lemma[3.10 and the de nition of ;  that

1 . c ims . G
c G 1 ¢ 2) s
and CA CA?
o o o p_
jw Pg il Spj;&w Ko st (3.175)
2

In addition to that, we write B,(q; &) as follows:
Ba(di; ) = Fo( 1ty 2t @) Fol 15 2) @F(+ G+ 2)a
@,Fo(w+ 1+ )
where " I#

[ . uo
Fa(ui;uz) = uf+ U3 2sin parcsin p——o
us + U3

Using a Taylor expansion for the functionF,(qu+ 1;+ 2) at (¢h; ) = (0; 0); we derive
the following

X 1 .. .
Folh+ 1,0+ 2) = m qE(FZ(ql + 1,0+ 2) (qae)=0:0) Cﬁolé +
j+ 4 H 2 1
+ G (0h; ) h T

j+k=5
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where 7

5 1
Gix (n; @) = K, (1 t)4@1q5(|:2( 1+ tgr; 2+ top))dt:
In particular, we have

Gk (i @)] C;8) + k=5:

As a matter of fact, we have

-:qZ(Fz(Cth 1%t 2) (=00 = @;ukg F2(U1;U2) (u1u2)=0 0) (3.176)
Therefore, from (3.17p5), we have
. X1 . i K
Falth+ 15+ 2) m@jlung(ULUZ) ()= 1 2)
ok sl k!
x ioni2
¢’ idg’i ¢ ™+ jgiiei+ o
j=0
In addition to that, we have the following fact,
i@ P W) = 2 0] GBI+ K4
and foralll | 4; we have
; C
@j Fa(uy; up) -
1 (uuz)=( 1; 2) S
This concludes ((3.1772).
The proof of (B.174) We rewrite By(a1; @) explicitly as follows:
" 1#
P +
Ba(; )= (+ 1)2+(qp+ 2)? “ sin parcsin p B o
" 14 (+ 12+ (gt 2)?
( 2+ 2)Zsin parcsin p%
" it 2 I# " 141
2
p 2+ 22 sin parcsin P 2COS parcsin p—— o
" 1t 214 " 1t 2 14
2
p 2+ 3 T ,sin parcsin pﬁ + ,c0s parcsin p% O
1t 2 1t 2

Then, we decompos®,(q;; &) as follows:

B2(th; &) = Boa(th; &) + Boo(th; @) + B2a(th; &) + Boa(tu ) + B2s(h; &) + Boe(th &);
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where
p 1 1
Boi(ti®) = P(@+ 2) (m+ 12+(k+ 22 7 p( 2+ 37 (3.177)
2 o B2 .
Pt 32 7 10y ( "
: : +
Boo(ah; @) = ((+ 1)2+(q+ 2)?)? sin parcsin p 0‘22 2 _
) (+ )2+ (+ 2)
p_ P&+ o (3.178)
(h+ 1)?+(p+ 2)? |
I#!
B2s(th; ) = 24 23 p% sin parcsin pﬁ (3.179)
it 2, 1"]#|2
Boa(th;p) = p( I+ %)pTz 1 1 cos parcsin pi b; (3.180)
( |#2
Bos(;p) = p §+ % ks > COS parcsin 19ﬁ
" 1t 2
I#)
1SIin parcsin p% O; (3.181)
vt 2 "
Bao(chi®) = P( i+ 3 2sin paresin p—2— @ (3.182)
1 2
we prove that: for ally 2 RN:
. . CA2 _
B2 (s )] W ;8] =116
We now aim at an estimate orB,.1(tq; @): We rst need to prove the following:
1+ @)?+( 2+ @? T ( 2+ 2% cjzimn (), (3.183)
where
jZj=20 1+2% 2+ €+ G
Note that Z is bounded On the other hand, we have (1 + oqu)?+( »+ qz)Z)% =( 2+
2+ 7)% : Then, if &2 1, using a Taylor expansion of the function (2+ 2+ Z)"z

around Zo =0 (note that 2+ 2 is uniformly bounded), we obtain the following:

p_1 1 .
(1+@)?+( 2+x)? 2 ( 2+ 27 Cjzj;

which yields (3.18B). If2* < 1; then, we have

(1+@)?+( 2+ @2 7T (2+ 2% = 2+ 2%T 14y g

where
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In particular, we have 1. In addition to that, we have the following fact: for all
1

p_1 . .p 1
@+ )z 1 Cjj-? (3.184)
Therefore, (3.184) gives the following

p 1
p_1 1 p_1 Z z P 1
Cara@+(2+@® 7 (i+ D7 C i+ 37 i cjzj > :
Then, (3.183) follows. Using @; 3)(s) 2 Va(s)and Z =2 1qp+2 L0+ 8 + B; we write
2
KZK 1 (rn) —%%;85 1
So, we deduce from (3.183) that
1 1 CAZ
ke 2 (Car@+( 2+ @) pal i+ D7kewy Smmy (3185)
Using (3.1838), we have the following
2 2 Pt 2, 222 CA?
(1% @)?+( 2+ @) (1 D% 0 et (G189)
Indeed, we have
p 1
(1+@?+( 2+ ®)? 7 (2+ 3%
p 1 1
(1+@)’+( 2+ ®)® 7 (i+ D7
(3 DT (3 D
CA? N C.
S 2
Then, (3.186) holds.
On the other hand, using |(3.186) and the following
CA3
Kop(:; S)KL1 (M) Spj;pl >0
we conclude that
p_1 p 2 CA2
P ( 1+ w)’+( 2+ ) 7 ( T+ %)pz L m, (3.187)
provided that s s;.9(A). From (3.185) and (3.18}), we have
CA?
sz;l(Ch; qZ)kLl (RN) (3188)

gt (P58)



169

We next give a bound toB,.,(ty; @) : Using the following fact
jsin(parcsinx) pxj Cjxj*;8jxj 1

we derive the following
" I#
g+ 2 ~ p(g+ 2)
@+ 02+(e+ 27  (@+ )7+(%+ 2)?
e+ 2)j° .
(+ )2+(@+ 2)2)2
Plugging the above estimate intdB,(q; &); we deduce the following

sin parcsin p

3

Baa@i®)i C (m+ 02+( 2+ @) 7 ikt o
which yields
jB2a(ti )] Cigp+ of™P9;
Using (or; ) 2 Va(S); it gives the following

. . C
J[¢ 2) S’
provided that s  s,.9(A). Then,
. C .
kB2:2(0h; )KL (rw) Sn(p3) (3.189)
It is similar to estimate to B,.3(0y; )
C
KB2.3(th; )KLt (RN §: (3.190)

We estimate toB,.4(ty; @), using the following

jl cosparcsinx)] Cjxj%8jxj 1

we write ) ,
. . CA
jBaa(d;p)j C — Kok s gy —5
1 L1 (RV) S
Then, we derive that
. CA3.
sz;4(Q1, 02) kLl (RN) S8 (3191)
We also estimate toB,.5; B¢ as follows:
CA?
kB2;s(0h; )KLz (rN) N ; (3.192)
CA3
KB2:6(0h; )KL 1 (M) < : (3.193)

Thus, from (3.188), [3.18D), [(3.190),[(3.191)[ (3.1P2) and (3.193), we conlude (3]174), pro-
vided that s s39(A). H
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In the following Lemma, we aim at giving estimates to the rest termR1; R, :

Lemme 3.27 (The rest termsR1;R,). For all s 1, let us considerR; and R, , de ned

in (3.64) and (3.69), respectively. Then,
(i) Foralls 1andy2 RN, we have
G-
Riyi9) = 2+ Ru(y;s);
Co.
Rayis) = ~3'+ Re(Y;9);

wherec;pand c,,, are constants depended op and R1; R, satisfy

. . C(1+ jyj*
LAV
. . C(1+ jyj®
IR2(y; 9)] e+ ) 54”” );

foralljyj 2Ko' &:

(it) Moreover, we have forals 1
le(, S)kLl (RN)

KR2(:; S)Kp1 (rn)

QOO

Proof. The proof for R; is quite the same as the proof foR,. For that reason, we only
give the proof of the estimates orR,. This means that, we need to prove the following

estimates:
N (N +4)

Ra(y;s) = o D + Ra(y;s); (3.194)
with c+ iy
. . + .. pP-
JR2(Y; 9)] %;SM Ko s:
and c
kRz(:; S)k|_1 (RN) ?: (3195)
We recall the de nition of R,(y; s):
1 2
Ra(y;s) = 2 5Y roo2 0 1+ Folt 1, 2) @ o
Then, we can rewriteR, as follows
1
Ra(y;s) = 2 YT o2 0 21"' pht, @ 2+ RyY;9);

where
" I#

sin parcsin p—2— p bt o

2 2
1t 3

o

2 2
1t 3

R,(Y:9)
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Using the de ntions of 1; , given in (3.53) and [3.54), we obtain the following:
¢ 7 # )

sin parcsin p—22 ppi2
2

2 2 2
1t it 3

NIT

jR,(Y; 9)] i+ 3

+op o 2+ )T B

It is similar to the proofs of estimations given in the proof of Lemma 3.26, we can prove
the following

. . C(1+ jyj® . p_
JR(y;9)j car i 54“” ); 8iyj 2Ko s;
and
C
KR,(:;8)KL1 (rY) ?:
In addition to that, we introduce R, as follows:
1
Ra(y;s) = 2 YT 2 p21+p212 @ 2
Then, we aim at proving the following:
: N(N +4) C(1+jyi®. - P_.
Ro(y;s) + b DS - ; foralljyj  2Kg s; (3.196)
C
KR2(:; s)KL 1 (Y ?: (3.197)

+ The proof of (3.196) We rst aim at expanding  ; in a polynomial in y of order less
than 4 via the Taylor expansion. Indeed,  is given by

p

N oo, DAyi2 7 (p Diyi? PRI
? s? 4ps s3 4 s
.. .. 2p 1
(N+2)(p 1y PRI
2s3 4p s
p L 1Yy’ 1+ P iyt e
4pst 4p S |

p

Besides that, we make a Taylor expansion in the variable= #‘% for p 1+ %”’T‘z P

whenjzj 2K, and we get

P

(P 1Pyj* 71 iZ CA+jyiY 4o P
p 1+ 4ps p 1+ 4p 1) s s? By Ko s
which yields
202 51 . -
2N o 1+ ()7 2N N jyj CQA+vP). siyi 2"s:

2 4ps (p 12 2(p 1)s3 st
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It is similar to estimate the other termes in  , as the above. Finally, we obtain

N N yiE L, Ky C+jyP°).

2 8jyj 2K P s: (3.198)

(P sz (p Ds* (p Ds® S
As we did for 5, we estimate similarly the other terms inR,: for all jyj 2K P S
L - o, e
Lo e W v v CA+ WM. (3199
2 (p Ds*> 4(p 1)s® 4(p 1)s st
o ) e
2 . i jyi 2N CA+ WM. (3200
p 1 (p 1)’* 4(p 1ys* (p 1y st
C(1+ jyj®
pitoeTly)  SHEM o0
2 jyi® 4N C(1+jyi®.
@ - b D DS g (3202
where
- o - X
Ty= PV @ Dyt Ny 2N N

(b 178 4 128 (p DS (p 1P (p DS
Thus, we use[(3.198),[(3.199)[ (3.2p0), (3.201) and (3.202) to deduce the following

N(N +4) C(L+jyi°. p

Ra(y;s) + TR g 8 XK'

and (3.196) follows
+ The proof (8.197) We rewrite 4; » as follows

N 1 2N
:S) = Ry + — and :S) = —R,. — wherez = p—;
(9= Ruol@) + e and oyi9 = [Ra(@) =g wherez = B
whereRy,o and R, are de ned in (3.48) and [3.5D), respectively. In addition to that, we
rewrite R, in terms of Ry and Ry, and we note that Ry,o and R, satisfy (3.44) and

(3.46). Then, it follows that
: . C
R2(y;8)] 58y 2 RN:
Hence, ) follows. This concludes the proof of this Lemma. O

3.7 Preparation of initial data

Here, we here give the proof of Lemnja 3]14. We can see that pdit ) directly follows from
item (i) of part (11 ). The techniques of the proof are given in [16] and [28]. Although those
papers are written in the real-valued case, unlike ours, where we handle the complex-valued
case, we reduce in fact to the real case, for the real and the imaginary parts. In addition to
that, the set D ,.a:s, IS the product of two parts, the rst one depends only ord;; and the
other one depends only onl,. Moreover, the real part is almost the same as initial data in
the Vortex model, treated in [16], except for the new term 1, but this term is very small
after changing to similarity variables: e 71 In fact, handling the imaginary part is easier
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than handling the real part. For those reasons, we kindly refer the reader to Lemma 2.4 in
[18] and Proposition 4.5 in[[28] for the proof of itemif of (1) and (Il ). So, we only prove
that our initial data satis es item (ii) in de nition of S(0) (item (iii ) is obvious).

Let us considerT > O;Kq; o; o and p which will be suitably chosen later. In fact, we aim

at proving the following: For all jxj 2 % TjInTj; o ,andjj 2 o jIn(T t(x))jand

o(X) = Tt(;‘()x), we have

U 5 ox) O(o(x) 1 (3.203)

We now introduce some necessary notations for our proof,

o=T; r(0)= %p ol In( 0)j and R(0) = éj In oj%: (3.204)
Then, we have the following asymptotic behaviors:
16 . . 64 . .
(rO) o (RO) i dln oji  (RO) 5 oln o % (3.205)
0 0
In (r(0)) In (R(0)) In (2R(T)): (3.206)

In addition to that, if o %52 and o %C ; whereC is intrBduced in (3.87), then,
from the de nition (8.75) and jxj 2 [r(0); o]; and forallj j 2 o jIn (x)j; with (x)=
T t(x), we have
" L
SIXI;
which yields

r@ jxj ... jxj . P— 3. 3 _
- SN J X+ (x)] SX 5o C: (3.207)

Hence, using[(3.74),[(3]2) and the de nition of ; and the fact thatj j 2 Op jin (x)j,
we can write
U ; o) = Ui(X; 5 o)+ iUa(X; ; o);

where
Ui 5 o) = (1) st © 0)+(I)A ax+ GO+ );
1 p—— !
(1) = ﬂ o ipT—(x);jlnmj ;
) = ( )™ TU x+ © 0 ;
Iy = ( )7e; |
W o = X7, X O )

0 T to
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Then, the conclusion of the proof of|(3.203) will follow from the 4 following estimates:

(1) 0(o) Zl; for all jxj 2 r(O);zg—%oR(O) andjj 2 Op jln (x)j(3.208)
() 0(o) Zl; for all jxj2 [r(0); o] andj j 2 oIo jin (x)j; (3.209)

J( ) Zl; forall jxj2 [r(0); oJandj ] 2 Op jIn (X)j; (3.210)
JUa(X; 5 0)] Zl; for all jxj2 r(0); gR(O) andjj 2 Op jIn (x)j(3.211)

In fact, it is very easy to estimate for {(3.210) for o small enough.
We now estimate [(3.21}1): We rewritdJ,(x; ; o) by using (3.84) as follows:

e o i — . tx)
JUZ(X11 0)] - UZ X5, T t(X)
1 P —— p — I o
_ o Pljx+ (x)j? D jx+ x)jiz "1
(X) TjInTj TjInTj jInTj
5 P_., 1
AT P SR I ) L e
jinTj (x) 4p (X)iIn( o)j
In addition to that, for all jxj2 r(0);2°R(0) andjj 2 Op jIn (x)j, we have
x+ Pxz 1

xJIn( 0)] CKg'

which yields
2
. o . CK{*! 1.
jU2(%; 5 0)] inT] 2’
provided that T Ty.3(Ko; 1; o) and for all jxj 2 r(0); 22°R(0) .

Estimate of (3.208): We derive from the de nition of ; in (8.53) and the de nition of

O( ) in (3113 that

p__2t 4

t(x) _ o (p 12 Xt (x)

I - I B T
0 (p 1)2K2 O
® D 4 4 16
In addition to that, from (8.75), we have
"™

K2jin (x)j X7 X Kgjln (x)j.

G 20Ty g T2 m g (3.212)
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foralljj 2 Op jin (x)j.

Using the monotonicity of (x), we have the fact that for alljxj 2 r(0); 2°R(0)
jinr(0)j jIn (x)j jln R(O)J':
jin o] jin o] jIn o]

Thanks to (3.20%), we derive

UG BN (3.213)
jin oj
This yields
. P ——.
t(x) x+ = (0i* K§
I CKo) —————F— ——<10
® 00 TG 16
uniformly for all jxj 2 r(0); 3°R(0) ;jj 2 Op jln (x)jas o! OandT! 0. Hence,
there exists ,.3(Ko; 1) and T,.3(Ko; 1) such that
1) 0~ ez re: RO andij 24 in 005

provided that o 2zandT  T,s. This concludes the proof of|(3.208).

Estimate (3.209): Letjxj2 =5R(0); o : We use the de nition of U to rewrite (11 ) as

follows
0 1 0 1 1

p——2 p 1 _ 2 p 1
(p 12 *x* (X ¢ (p 1) ko Jin (] +
) = P = pP—
" = & & (ilhx+ ()] =6 jin(x+ = )]
0 O p 2 Il
_ B 1KZ, (p g & I 00t kg
- & T e %Jln(H ") 8
Then,
0 0 11 o
(x) (p 12K2 . (p 1) 9P I+ ke |
to  t(X _ p 1)°K§ p 1 2 N Kg
R R %jln(x+ T 8
(P 1YK3 51
64p +(p 1)@
C(Ko)((1T 1)+ (1132));
where
2
iy = SN kg
jin(x+ " (x)] 8

(I2) =

|
—~
©
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Let us give a bound to (I ;): Becausgj | 2 Op jIn (x)j, we have

P — P ——2
£om jin (X)L+2 o In (X) K2

j(11 )]

jinjx+2 o ®jin X)jj 8

In (x K 2
- Sl (o)Kojxi" To *2 0
jinjx + 52

~
®|2,

Using the fact that
In X)=In(T t(x)) 2Injxj;

and

A P Ko. .. .

jIn(jx+2 o (X)In (X)))j=jInjx+ TJXJJJ I Injxjj;
asjxj ! 0O; we derive that, there exists 33(Ko; 1) such that for all o 33; there
exists 3.3(Ko; o; 1) such that for all 3:3; for all x 2 %R(O); o and for allj j
2 o jIn (x)j; we obtain

i

It remains to give a bound for (I ;). From (B.208), the fact that jxj -2R(0) and the
monotonicity of (x), we have

1) J—— -

Ciln @ ® ¥ 2
106 (0) 2

provided that T T43(Ko; 1): This gives (3.20B), and concludes the proof of Lemrha 3,14.
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Chapter 4

Pro le of a touch-down solution to a
nonlocal MEMS Model °“

G. K. Duong and H. Zaag

Abstract: In this paper, we are interested in the mathematical model of MEMS devices
which is presented by the following equation ¢@; T)

@Qu= u+ 7 >and0 u< 1
1 uw? 1+ dx

1 u

where is a C? bounded domain inRN and ; > 0. In this work, we have succeeded to
construct a solution which quenches in nite time T only at one interior poine2 . In
particular, we give a description of the quenching behavior according to the following nal
pro le

1
3

. >
1 u(x;T) & forsome > Oas;x! a:
jinjx  ajj

The construction relies on some connection between the quenching phemonenon and the
blowup phenomenon. More precisely, we change our problem to the construction of a blowup
solution for a related PDE and describe its asymptotic behaviors. The method is inspired by
the work of Merle and Zaad [14] with a suitable modi cation. In addition to that, the proof
relies on two main steps: A reduction to a nite dimensional problem and a topological
argument based on Index theory. The main di culty and novelty of this work is that we
handle the nonlocal integral term in the above equation. The interpretation of the nite
dimensional parameters in terms of the blowup point and the blowup time allows to derive

the stability of the constructed solution with respect to initial data.

Mathematics Subject Classi cation: 35K50, 35B40 (Primary); 35K55, 35K57
(Secondary).

Keywords: Blowup solution, Blowup pro le, MEMS model, touch-down phenomenon,
asymptotic behavior.

1This work was accepted for publication in Math. Models Methods Appl. Sci(2019).
Doi: 10.1142/S0218202519500222
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4.1 Introduction.

We are interested in the motion of some elastic membranes which is usually found in Micro-
Electro Mechanical Systems (MEMS) devices, which are available in a variety of electronic
devices such as: microphones: transducers; sensors; actuators and so on. Described brie y,
MEMS devices contain an elastic membrane which is hanged above a rigid ground plate
connected in series with a xed voltage source and a xed capacitor. For more details on
the physical background and possible applications, we refer the reader(to [4],) [10] [18] and
[1<].

For a MEMS device (in [9] and[[10]), the distance between the rigid ground plate and
the elastic membrane changes with time. It is referred to as thde ection of the membrane.
Here, we assume that this distance is very small compared to the device. In fact, we can
fully describe the behavior of the de ection by the following hyperbolic equation

8
"@Qu+ @ = u+ f(X'Zt) x2 t> 0
w1+ ok
% u(x;t) = 0;x2 @ ;t> 0 (4.1)
' u(x;0) = Ug(X);x 2

where is considered as the domain of the rigid plateu is the de ection of the membrane
to the plate, > 0; > 0 andf is continuous. Here, the distance between the rest position
of the membrane and the rigid plate is normalized to 1. When the device is under voltage,
u will vary in the interval [0;1). In addition to that, the parameter represents the ratio
of the reference electrostatic force to the reference elastic force dnas the ratio of the
interaction of the inertial and damping terms in our model. Moreover, the functiorf
represents the varying dielectric properties of the membrane, séé [7] for more detalils.

In fact, we are interested in a simpler case of (4.1) considered in the following parabolic
equation:

8
3 Q= u+ z— 51 X2 5t>0
2 +
1 w2z 1 1 udx 4.2)
E uix;t) = 0;x2 @ ;t> 0
ou(x;0) = ug(x);x 2
Moreover, we are also interested in the following generalization of problem (4.2):
8
% @ = u+ Z I G X2 ;t>0
P14+
@ uwr 1 1 udx (4.3)
E ux;t) = 0;x2@;t> 0
Tu(x;0) = up(x);x2

wherep; g > 0. Introducing
Qr =(0;T) . whereT > 0; (4.4)
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we say thatu is a classical solutionof (4.2) (in the sense of Proposition 1.2.2 page 13 in
Kavallaris and Suzuki [11]) ifu is a function in C#*(Qr) \ C(Qr) that satis es (4.2) at
every point in Qt as well as the boundary and initial conditions, with

u(x;t) 2 [0;1);8x 2 ;t2 (0;T):

According to the above mentioned reference in_[11], the local Cauchy problem [of [4.2) is
solved. Then, either our solution is global in time or there exist$ > 0 such that

liminf minfl wu(t;x)g =0: (4.5)
tr T X2

We can see that if the above condition occurs, the right-hand side df (#.2) may become
singular. This phenomenon is referred to agouch-down in nite time T in reference to
the physical phenomenon, where the membrane \touches" the rigid ground plate which is
placed below. In fact, in our setting, we follow the literature and place the regid plate at
u = 1, above the membrane which is located ati(x;t). Note that in case oftouch-down
the MEMS device breaks down.

Mathematically, we may refer to the behavior in[(4.p) as nite-time quenching. More-
over,a 2 is a quenching point if and only if there exist sequencesa;;t,) 2 0;T)
such that

u(an;th) ! 1, asn! +1:

The touch-downphenomenon has been strongly studied in recent decades. In one space
dimension, we would like to mention the paper by Guo, Hu and Wang inl[6] who gave a
su cient condition for quenching, and also a lower bound on the quenching nal pro le (see
Remark[4.5 below). There is also the paper by Guo and Hu in [5] who nd a constant limit
for the similarity variables version valid only on compact sets, and yielding the quenching
rate.

In higher dimensions, let us for example mention the following result by Guo and Kaval-
laris [7]:

Consider such thatj | % Then, for all > 0 xed and > 0, there exist initial
data with a small energy such that problerf#.2) has a solution which quenches in nite
time.

In our paper, we are interested in proving a general quenching result with no restriction
onany > 0; > 0andC? bounded domain . In fact, we do much better than [5] and[[6],
and give a sharp description of the asymptotic behavior of the solution near the quenching
region. The following is the main result:

Theorem 4.1 (Existence of atouch-downsolution). Let us consider > 0; > Oand a
C? bounded domain irRN ; containing the origin. Then, there exist initial datauy 2 C* ()
such that the solution of(4.2) quenches in nite timeT = T(uo) > O only at the origin. In
particular, the following holds:

(i) The intermediate prole: For all t 2 [0; T)

(T t)s 9 jij 3 C _
1ouGy ML ¢ s T O] P o Y

Lt ()
forsome = (;; ;T)>0.
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(i) The nal prole: There exists u 2 C?() \ C() such thatu uniformly converges to
u ast! T;and

Lo L
9 jxj as

= IO
1 u((x) 16]1n jxj x! O 4.7)

Remark 4.2. Note that when =0, our problem coincides with the work of Filippas and
Guo [3] and also Merle and Zaag [14]. Our paper is then meaningful whe® 0, and the
whole issue is how to control the non local term. Note that| [3] derived the nal quench-
ing pro le, however, only in one space dimension, whereas [14] constructed a quenching
solution in higher dimensions, proved its stability with respect to initial data, and gave its
intermediate and nal pro les.

Remark 4.3. For simplicity, we choose to write our result when the solution quenches at
the origin. Of course, we can make it quenches at any arbitragy2 , simply replacex by
X ain the statement.

Remark 4.4. In Theorem[4.1, we can describe the evolution of our solution &t= 0 as
follows:

3
1 u(O;t) —(T t)%; ast! T:

Remark 4.5. From (4.7), we see that the nal proleu has a cusp at the origin which is
equivalent to

CojXj*

iIn jxjis

This description is in fact much better than the result of Guo, Hu and Wang inl[6] who gave
some su cient conditions for quenching in one space dimension, and proved the existence
of a cusp at the quenching point bounded from below®§ )jxj for any 2 %; 1, which

is less accurate than our estimaté4.7).

Remark 4.6. Note that we can explicitly write the formula of the initial data

u(x; 0)

U(X; 0) = W; (48)
where
w0 = - Quecoy
with
UKO)=T 3 (% T+ (ch+di 2) 0 ol 400+@ M ()
— X .

iXj

X) = —
1) =0 TjinTj
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and (0) is the unique positive solution of the following equation
Z 2

0= 1+ jj+g=(0) U@Odx ;

and note that ;' andH are de ned in (4.28), (4.33) and (4.63), respectively. HereT is

small enough and parameterd, and d; are ne-tuned in order to get the desired behavior.

Remark 4.7 (An open question) How big can be? This question is related to the work
of Merle and Zaag in[[14] (see the Theorem on page 1499), which corresponds to the case
where = 0. For that case, the answer is = g-=. It is very interesting to answer the

question in the general case. By a glance (@.18), (4.86) and (4.87), we know that is
2

strictly greater than &g Let us de ne

and
T=f 2 R such that(4.6) holds withu a positive solution to(#.2); for someT > 0g:

Then, by a ne modi cation in the proof, we can construct a solution such that arbitrarily
takes large values inM.. In particular, we can prove thatT is a dense subset OF -
We would like to make the following conjecture

Now, we would like to mention that our proof of Theorenj 4]1 holds in a more general
setting. More precisely, if we consider problenj (4.3) in the following regime

o0+ 1 >0, andg>0andN 1, (4.9)

then, Theorem[4.1 changes as follows:
Theorem 4.8 (Existence of atouch-down solution to (4.3)). Consider ; > 0; and
a C? bounded domain inRN and condition (4.9) holds. Then, there exist initial data

in C! () such that the solution of equatior(4.3) touches down in nite time only at the
origin. In particular, the following holds:

(i) The intermediate pro le, for all t 2 [0; T)

D O X N - R

1 u(so) 4 T (T (T ] _ (T o)
LY O

(4.10)

for some” (;; ;p;g > 0.
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(i) The existsd 2 C?() \ C() such thatu uniformly converges tod ast! T;and

A (P12 X7 T
8 jInjxj

1 0(x) asx! O (4.12)

Remark 4.9. We don't give the proof of Theoreni 4|8 here because the techniques are the
same as for Theorenj 4]1. In fact, for simplicity, we will only give the proof for the MEMS
case

p=0q=2;

considered in equation(4.2) and Theorem[4.1. Of course, all our estimates can be carried
on for the general case.

In addition to that, we can apply the techniques of Merle in[[12] to create a solution
which quenches at arbitrary given points.

Corollary 4.10. For any k points a;; a; :::;; & in  ; there exist initial data such that(4.3)
has a solution which quenches exactly at; :::; ac. Moreover, the local behavior at each,
is also given by(@.10), (4.11) by replacingx by x & andL* () byL* (jx aj !o);
for some! o > 0; small enough.

As a consequence of our techniques, we can derive the stability of the quenching solution
which we constructed in Theorenji 418 under the perturbations of initial data.

Theorem 4.11 (Stability of the constructed solution). Let us consider(; the solution which

we constructed in Theore8 and we also de ri€ as the quenching time of the solution
and " as the coe cient in front of the proles (4.10) and (.11). Then, there exists an

open subsef), in Co+ () ; containing (0) such that for all initial data ug 2 Oo; equation

(@.3) has a unique solutioru quenching in nite time T(ug) at only one quenching point
a(up). Moreover, the asymptotic behaviorg4.10) and (4.11) hold by replacingd(x;t) by

u(x a(uo);t); and* by some (up) . Note that, we have

(auo); T(Uo); (uo)) ! (O;T;7); askug  Ookg(y ! O

Let us now comment on the organization of the paper. As we have stated earlier,
Theorem[4.] is a special case of Theor¢m]4.8. For simplicity in the notations, we only prove
Theorem[4.]. The interested reader may derive the general case by inspection. Moreover,
we don't prove Corollary[4.10 and Theorem 4.11, since the former follows from Theorem
and the techniques of Merle ir [12], and the latter follows also from Theorém|4.8 by the
method of Merle and Zaag in[[15]. In conclusion, we only prove Theor¢m]4.1 in this paper.

The paper is organized as follows:

- In Section 2, we give a di erent formulation of the problem, and show how the pro le
in (4.6) arises naturally.

- In Section 3, we give the proof without technical details.

- In Section 4, we prove the technical details.

Some appendices are added at the end.
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4.2  Setting of the problem

4.2.1 Our main idea

We aim in this subsection at explaining our key idea in this paper. The rigorous proof will
be given later. Introducing

(t) = (4.12)

N

1 2

1+ 1 u(t)dX

we rewrite (4.2) as the following

® .
1 w>

@= u+ (4.13)

Under this general form, we see our equatioh (4.2) as a step by step generalization, starting
from a much simpler context:

- Problem 1: Case where (1) o- This case was considered by Merle and Zaag
in [14] where, the authors constructed a solution , satisfying

u,x;t)! lasit)! (Xo;T);

for someT > 0; and Xo 2 . In particular, they gave a sharp description for the quenching
pro le. Technically, the authors in that work introduced

1 u

u= X
1 u 1 u

and constructed a blowup solution for the following equation derived fronj (4.]13):

_ jr uj? 4o )
@Qu= u 2 u + ou”; with (1) 0; (4.14)

(see equation (I1l), page 1500 in_|14] for more details).

- Problem 2: Case where 0< () > forall t> 0forsome 0< ;< .
This case is indeed a reasonable generalization which follows with no di culty from the
stategy of [14] forProblem 1 .

- Problem 3: Equation (4.Z). Our idea here is to see[ (42) as a coupled system
betweenProblem 2 and (4.12):

8
— (t) .
R @Qu = U+ g 52

.> (t) = (Tﬁl—dx)z:

A simple idea would be to try a kind of xed-point argument starting from some solution
to Problem 1 , then de ning (t) according to (4.12) de ned with this solution, then solving
Problem 2 with this (t), then de ning a new (t) with the new solution, and so forth.
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In order to make this method to work, one has to check whether the iterated(t) stay
away from 0 and +1 , as requested in the context oProblem 2 . We checked whether this
holds whenu solvesProblem 1 . Fortunately, this was the case, and this gave us a serious
hint to treat our equation (4.2) as a perturbation of Problem 1 .

In fact, our proof uses no interation, and we diredly apply the stategy of Merle and
Zaag in [14] to control the various terms (including the nonlocal term), in order to nd a
solution which stays near the desired behavior.

4.2.2 Formulation of the problem

In this section, we aim at setting the mathematical framework of our problem. The rigorous
proof will be given later. Our aim is to construct a solution for equation[(4]2), de ned for
all (x;t) 2 [0;T); for someT > 0 with 0  u(x;t) < 1; and

ux;t) ! last)! (xo;T);

for somexg 2 . Without loss of generality, we assume that

Xg=0 2
Introducing,
uzllu 1:1“u2[o;+1); (4.15)
we derivg from [4.2) the following equation om
% @ = u 25+ WD x2 >0
1+ jj+ udx)? (4.16)
uix;t) = 0;x2 @ ;t> 0
u(x;0) = up(x); x2

Our aim becomes then to construct a blowup solution for equatiof (4]16) such that
u@O;t) ! +1 ast! T:

In order to see our equation as a (not so small) perturbation of the standard casein (4.14),
we suggest to make one more scaling by introducing

1

U(x;t)=(—:)u(x;t); u(x;t) 0O; 8(x;t)2 [0;T); (4.17)

with 7 .
3

= 1+ jj+  u®dx (4.18)

Then, thanks to equation [4.16), we deduce the following equation to be satis ed Hy:
8

. 1 4
2 au = U 20+ U+ 5 Huix2 > o
Ut o
uixt) = 0;x2@;t>0; (4.19)

U(x; 0) Uo(X); X 2
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Note that in the blowup regime, which is our focusU is large and equation[(4.19) appears
indeed as a perturbation of equation[(4.14).
Introducing the following notation

Z

) =  U@®dx (4.20)

we may rewrite (4.18) as the following equation

2
3

O= 1+ i+ @O0 - (4.21)

This implies that (t) solves the following cubic equation

2
(1) (t) =(A+B(t) (1)*= A*+2AB(t) (t)+ B>(t) *(t);

(4.22)

MW= 1+ jj+

w\r—\|

where
A=1+ j jandB(t)= — (t):
3

Since it happens that (t) is the unique positive solution of [(4.22), we may solve (4.22) and
express (t) in terms of (t) as follows

q

P 27A2+3°3 27A7 +4AIB3(D) + 18ABI(1) + 2BS(1)  B(t)
(t)y = R= + (4.23)
32 3
. g £ 2(6AB (1) + B4(t)) _
\.1 .
S 27A2+3°3 27A2+ 4A3B (1) + 18 AB3(t) + 2 BS(t)

Particularly, we show here the equivalence between equatign (4.16) and (4.19).

Lemme 4.12 (Equivalence between[(4.16) and (4.19))Consider > 0; > Oand a
bounded domain inRN. Then, the following holds:
(i) We consideru a solution of equation(4.16) on [0; T); for someT > 0 and introduce

3
U(t) = —u(®;
. R 2 . . .
where ()= 1+ j j+ u(t)dx *. Then, U is a solution of equation(.19) on [0; T).
(i) Otherwise, we considet a solution of equation(.19) on [0; T); for someT > 0
and introduce
3

where (t) is de ned as in relation (4.21), then u is the solution of equation(d.16) on [0; T).
In particular, the uniqueness of the solution is preserved.

U(t);8t 2 [0;T);

Proof. The proof is easily deduced from the de nition in this lemma. We kindly ask the
reader to self-check. O
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Remark 4.13. From settings (4.15) and (4.17) and the local well-posedness of equation
(@.2) in the sense of classical solutions (see Proposition 1.2.2 at page 12 in Kavallaris
and Suzuki([11]), we can derive the local existence and uniqueness of classical solutions of
equations (4.16) and (4.19). Since the nonnegativity is preserved for these equations, we
will assume thatu and U are nonegative.

Thanks to Lemma[4.12, our problem is reduced to constructing a nonnegative solution
to (%.19), which blows up in nite time only at the origin. We also aim at describing its
asymptotic behaviors at the singularity.

Since we de nedU in (%.17) on purpose so that[(4.19) appears as a perturbation of equation
(@.19) for U large, it is reasonable to make the following hypotheses:

(i1 (t) Cofor someCy> 0. Note that from (4.21), we have (t) 1

(i) j Qt)j U3(t) whenU large

It is then reasonable to expect for equatior| (4.19) the same pro le as the one constructed
in [14] for equation [4.14). So, it is natural to follow that work by introducing the following
Similarity-Variables:

W(y;s)=(T t)%U(x;t); ands= In(T t)andy= p%: (4.24)
Using equation [4.1p), we write the equation oV in (y;s) as follows
8
1 s 4
- jir Wj? 0 .
3 @V = W oy rw S 2im gt Wy “W
(s)
3 W(y;s) = 0;y2@s;s> InT;
W(y; InT) = Wo(y);y2 s
(4.25)
where
()= (t(s)= (T e?); (4.26)
and
s= e | (4.27)

with  satis es (4.21) and (4.28).

We observe in equation[(4.25) that s changes ass ! +1 . This is a major di culty
in comparison with the situation where = RN. In order to overcome this di culty, we
intend to introduce some cut-o of the solution, so that we reduce to the case =RN. Of
course, there is a price to pay, in the sense that we will need to handle some cut-o terms.
Our model for this will be the work made by Mahmoudi, Nouaili and Zaag iri [13] for the
construction of a blowup solution to the semilinear heat equation de ned on a certain circle.
Let us note that the situation with bounded was already mentioned in [14]. However,
the authors in that work avoided the problem by giving the proof only in the case where
= RN. In this work, we are happy to handle the case with a bounded , following the
ideas of Mahmoudi, Nouaili and Zaag in[[13]. Let us mention that Vehzquez was also
faced in [22] by the question of reducing a problem de ned on a bounded interval to a
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problem considered on the whole real line. He made the reduction thanks to the extension
of the solution de ned on a interval to another solution de ned on the whole line, thanks
to some truly 1d techniques. In our case, given that we work in higher dimensions, we
use a di erent method, based on the localization of the equation, thanks to some cut-o
functions.

More precisely, we introduce the following cut-o function o 2 C} ([0;+1 )), satisfying
suppl o) [0;2], O olX) 1;8x and o(x)=1;8x2 [0;1] (4.28)

Then, we de ne the following function

Mo(YiS) = o Mgye 2 ; for someMg > O: (4.29)
Let us introduce ( _
W(y;s) mo(y;s) if y2
w(y;s) = (4.30)
0 otherwise
We remark that w is de ned onRN and s INT andw 0 whenevelyj Mioe%. Note

that My will be xed large enough together with others parameters at the end of our proof.

Using equation [4.25), we derive froml (4.21) the equation satis ed by as follows
!

1 1 ir wj? fe s " s)
@v= W —yrw -w 21—115+ w + ——w+ F(w;W); (4.31)
2 37 s de (5) (5)
(s)
whereF (w; W) encapsulates the cut-o terms and is de ned as follows
8
% w @Mo M0+%y r wm 2r Mo r w
ir wij? r Wiz 3 %4 3 %4
. 3.3 2 nst om W W+ =5
F(w, W)= 6) W+ =05
ify2 ez;
0 otherwise
(4.32)

We remark that F 0 on the regionfy 2 RV jjyj ez orjyj jZezgand that we
have from the conditions {) and (ii) on (t) on page[ 19D that

1 (s) Co andj qs)i W3(y;9):
Making the further assumption that

L) ! o

we see that equation[(4.35) is almost the same as equation (15) at page 1502 1h [14] at least

when jyj &—i . Hence, it is reasonable to expect for equation (4]31) the same pro le as

the authors found in [14] for equation (15) in that work, namely

A 9jyiz 7. (3) IN|
(yis)= 3+ o= P (4.33)
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(note that, this pro le was also de ned in [14] for a generap > 2, and that here we need
to take p=4 and a= 2, hence =(3) %). In particular, we would like to construct w as
a perturbation of ' . So, we introduce the following function

g=w =" (4.34)
Using equation (4.25), we easily write the equation af
@q=(L+V)g+ T(q)+ B(a)+ N(qg) + R(y;s) + F(w; W); (4.35)
where
L = %y r +1d; (4.36)
Viyis) = 4 '3yis) 3 (4.37)
jra+r'j jr ' J?
T(a; (5)) = 2 — 2 o (4.38)
' 3e 3 ' 3e 3
ar TG, NG
1 s 4
— ' 3€ 3 v 4 v 34
B(® = q+'+ B 4 3q: (4.39)
, L
R = @+ gyr g+t 2 g
1 3e 3
()
= .
N(g) = E(‘” ); (4.41)

with (s) de ned in (#.26) and F (w; W) given in (4.32).

In particular, we assume thatU and q have good conditions such that Lemmas 4.36,
4.37,[4.38] 4.39 anfl 4.40 hold. Then, it is easy to see that all terms in the right-hand side
of (4.35) become very small, except fol.(+ V)q. As a matter of fact, this term plays the
most important role in our analysis. Therefore, we show here some main properties on the
linear operatorL and the potential V (see more details inJ1]/]2]):

- Operator L: This operator is self-adjoint inD(L) L2(RN); whereL?(RN) is de ned
as follows Z

L2RM) = 2 L (RY)] " if (i? (Ndy <+1

and

jyi?

o 2
4

(y) =

NZ

e
N

This is the spectrum set of operatoL
n 0

Spec(L)= 1 gjmz N

The eigenspace which corresponds tg, =1 % is given by
Em = M, (Y1):hm,(Y2):ihmy (WN) T M+ 20+ my = mi
wherehy,, is the (rescaled ) Hermite polynomial in one dimension.
- Potential V: It has two important properties:
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(i) Th% potential V(:;s) ! 0inL?(RN)ass! +1 : In particular, in the region jyj
Ko s(the singular domain),V has some weak perturbations on the e ect of operator
L.

p

(i) V(y;s) is almost a constant on the regiorjyj Ko s: For all > 0, there exists

C > 0 ands such that

sup  V(y;9)

o

1%

i

(@]
wl

Note that % < 1 andthatthe largest eigenvalue df is 1. Hence, roughly speaking,

we may assume that + V admits a strictlyb negative spectrum. Thus, we can easily
control our solution in the regionfjyj Ky sg with K, large enough.

From these properties, it appears thzi;[ the behavior df + V is not the same inside and
outside of the singular domainfjyj Ko sg. Therefore, it is natural to decompose every
r 2 L* (RV) as follows:

rly) = ro(y) + re(y)  (v;9r(y)+(1 (y;9)r(y); (4.42)

where (y;s) is de ned as follows

(i) = o Ajy# ; (4.43)

Ko S
and o is given in (4.28). From the above decomposition, we immediately have the following:

. |
Supp o) fj yi 2Kg sg;
Supp (fe) fi yi Ko sg:

In addition to that, we are interested in expandingr, in L? RN according to the basis
which is created by the eigenfunctions of operatdr:

r(y) = To+ri y+y' rpy 2Tr(ra)+r (y);
or
r(y) = Trot+ry y+ro(y);
where
ri=(P (ro)) oy =381 O (4.44)
with P (rp) being the projection ofry, on the eigenfunctionh de ned as follows:
z
P (r)= rye————dy; 8 2 NV; 4.45
M= "ok ke (4.45)
and X
r, = Po(r)= h P (ry); (4.46)

2NNGi o2
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and X
r = h P (rp): (4.47)
2RNGjj 3
In other words, r- is the part of r, which is orthogonal to the eigenfunctions corresponding to
eigenvalues 0 and 1 and is orthogonal to the eigenfunctions corresponding to eigenvalues
1;% and 0. We should note thatrg is a scalar,r; is a vector andr, is a square matrix of
order n and that they are the components of, not r. Finally, we write r as follows

rly) = ro+trs y+y' ray 2Tr(ra)+r (y)+ re(y); (4.48)
or
ry) = rotry y+ra(y)+ re(y): (4.49)
A summary of our problem: Even though we created many extra functions from

U to g, we always concentrate on solutiot to equation (4.19). More precisely, we aim at
constructing U blowing up in nite time. Then, we will use equation (4.3%) as a crucial
formulation in our proof. Indeed, in order to controlU blowing up in nite time, it is
enough to control the transform functionq of U (see de nitions (4.24), [4.30) and [(4.34))
satisfying

ka(;; )k 1 gvy ! 0y @ass! +1: (4.50)

4.3 The proof of the existence result assuming tech-
nical details

In this section, we aim at giving a proof without technical details to Theoremh 41. We
would like to summarize the structure of this section as follows:

- Construction of a shrinking set: We rely here on the ideas of the Merle and Zaag's
work in [14] to introduce a shrinking set that will guarantee the convergence to zero for
g de ned in (). This set will constrain our solution as we want. Once our solution
is trapped in, we may show the main asymptotic behavior of our solution. In particular,
(4.50) holds and our result follows.

- Preparation of initial data: We introduce a family of initial data to equation (4.19) de-
pending on some nite set parameters. As a matter of fact, we will choose these parameters
such that our solution belongs to the shrinking set for all 2 [O; T).

- The existence of a trapped solutiontUsing a reduction to a nite dimensional problem
(corresponding to the nite parameters introduced in our initial data) and a topological
argument, we can derive the existence of a blowup solution in nite time, trapped in the
shrinking set. More precisely, we show in this part that there exist initial data in that
family of initial data such that our solution is completely con ned in the shrinking set.

- The conclusion of Theorenj 4]1Finally, we rely on the existence of a blowup solution,
trapped in the shrinking set to get the conclusion of Theorein 4.1.

4.3.1  Shrinking set

In order to control the solution U blowing up in nite time and satisfying (¢.50), we adopt
the general ideas given by Merle and Zaag ih |14]. For eakly > 0; ¢ > 0; o > 0 and
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t2[0;T) with T > 0, we de ne
n

(0]
Pit) = x2RVjjxj Kop T OinT b ; (4.51)
Py(t) = x2 RNj%p T OiNT Y jxi o ; (4.52)
n (0]
Pst) =  x2RVjjX] ZO : (4.53)

As a matter of fact, we have
RN = Py(t) [ Pa(t) [ Ps(t); forallt2 [0:T):

We aim at controlling our problem onP4(t); P,(t) and Ps(t) as follows:

- On regionPy(t)(blowup regior): We control w (see [4.2})) instead o). More precisely,
we show thatw is a perturbation of the pro le ' (the blowup pro le, introduced in (4.33)).
Then, (4.50) will follow from the control of w.

- On region P,(t)(intermidiate region): We control a rescaled functionU instead ofU.
Morg precisely,U is de ned as follows: For allx 2 Py(t); 2 (T  t(x)) %( x) and

t(x) . .
2 T—t(x),l :we de ne

uix;, ; )=(T t(x))%U X + pT t(x); (T t(x)) +t(x) ; (4.54)

wheret(x) is de ned as the solution of the following equation
Ko
4
We remark that if ¢ is small enough, thert(x) is well de ned for all x in P,(t). In addition
to that, using (4.53), we have the following asymptotic

ixj = p(T tx)jIN(T t(x))j and t(x) < T: (4.55)

t(x)! T;asx! O

For convenience, we introduce
Ux)=T t(x): (4.56)

Then, the following holds
%x)! Oasx! O

As a matter of fact, using [4.19), we write the equation satis ed byJ in (; ) 2 % 2 (x)(

t(x) . .
X) %X),l as follows:
2 Log Ha
o 1 -
@u= u 2. "YUy 2% Oy (4.57)
U+ jfy) ) )
where
)= (%x)+ t(x)); (4.58)
with (t) de ned in (#.56). We now consider the following domain

t(x) .

%x)

o P ——
1) o jIn(%x))j and 2
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When =0, we are in regionP(t(x)), in fact (note that P;(t(x)) and P,(t(x)) have some
overlapping by de nition). From our constraints in P1(t(x)), we derive that U(x; ; 0) is at
in the sense that

Wl

9K 2
+ -
8 16
Our idea is to show that this atness will be conserved for all 2 [0;1) (that is for all
t 2 [t(x);T)), in the sense that the solution will not depend that much on space. In one
word, U is regarded as a peéturbation of)( ); where 0( ) is de ned as follows

U(x; ; 0) 3

2 @0() = O%);
9K2 3 (4.59)
> = 0
> 0(0) 3+ 53¢
Note that, we can give an explicit formula to the solution of equation (4.59)
1
_ 9K§ *.
O()= 31 )+ s16 - (4.60)

- On regionP3(t)(regular region): Thanks to the well-posedness property of the Cauchy
problem for equation [4.35), we control the solutiorlJ as a perturbation of initial data
U(0). Indeed, the blowup timeT will be chosen small in our analysis.

Relying on those ideas, we give in the following the de nition of our shrinking set:
De nition 4.1  (De nition of S(t)). Let us considerT > O;Kg > 0; ¢ > 0; o> O0;A >
0, 0>0,Co>0; o>0andt2[0;T): Then, we introduce the following set

S(T;Ko; 0, 0;A; 0;Co; o;t) (S(t) for short);

as a subset ofCZ(  (0;t)) \ C( [0;t]); containing all functions U satisfying the
following conditions:

(i) Estimates in  Py(t): We haveq(s) 2 Vk,.a(s); whereq(s) is introduced in (4.34),
s= In(T t) and Vk,a(s) is a subset of all functionr in L (RY); satisfying the
following estimates:

A?lns
sz’

o A .
Irij ?;(l =0;1); andjryj

o %

. . A? -

ir i G @+ i) andkrekis ey

. . A . .3 . N .

. S@+yr):8y 2 R
where the de nitions ofri;r ;(r r), are given in (4.44), (4.46) and (4.47), respec-

tively.
h |

(i) Estimates in  P(t): For all jxj2 KTp (T il Bis o 5 (1) = F5! and

J] o jIn%x)j; we have the following

ux; 5 (b)) OC (xt)) 0;

roueG ;o (Gt 0.
j In %x)j
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