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Résumé

La plasticité corticale du cerveau est l’une des principales caractéristiques qui nous
permettent d’apprendre et de nous adapter à notre environnement. En effet, le cortex
cérébral a la capacité de s’auto-organiser grâce à deux formes de plasticité : la plas-
ticité structurelle qui crée ou coupe les connexions synaptiques entre les neurones,
et la plasticité synaptique qui modifie la force des connexions synaptiques. Ces mé-
canismes sont très probablement à la base d’une caractéristique extrêmement in-
téressante du développement du cerveau humain : l’association multimodale. Mal-
gré la diversité des modalités sensorielles, comme la vue, le son et le toucher, le
cerveau arrive aux mêmes concepts. De plus, les observations biologiques montrent
qu’une modalité peut activer la représentation interne d’une autre modalité lorsque
les deux sont corrélées. Pour modéliser un tel comportement, Edelman et Damasio
ont proposé respectivement la réentrance et la zone de convergence/divergence où
les communications neurales bidirectionnelles peuvent conduire à la fois à la fusion
multimodale (convergence) et à l’activation intermodale (divergence). Néanmoins,
ces cadres théoriques ne fournissent pas de modèle de calcul au niveau des neu-
rones.

L’objectif de cette thèse est d’abord d’explorer les fondements de l’auto-organisat-
ion inspirée par le cerveau en termes (1) d’apprentissage multimodal non super-
visé, (2) de calcul massivement parallèle, distribué et local, et (3) de traitement ef-
ficace sur le plan énergétique. Sur la base de ces lignes directrices et d’une étude
des modèles neuronaux de la littérature, nous choisissons la carte auto-organisée
(SOM) proposée par Kohonen comme composant principal de notre système. Nous
introduisons la grille itérative, une architecture entièrement distribuée avec une con-
nectivité locale entre les neurones matériels qui permet un calcul cellulaire dans le
SOM, et donc un système qui passe à l’échelle en termes de temps de traitement
et de connectivité. Ensuite, nous évaluons la performance du SOM dans le prob-
lème de l’apprentissage non supervisé post-étiqueté : aucun label n’est disponible
pendant l’entrainement, puis très peu de labels sont disponibles pour étiqueter les
neurones du SOM. Nous proposons et comparons différentes méthodes d’étiquetage
afin de minimiser le nombre d’étiquettes tout en conservant la meilleure précision.
Nous comparons nos performances à une approche différente utilisant des réseaux
neuronaux à spike (SNN).

Ensuite, nous proposons d’améliorer les performances du SOM en utilisant des
caractéristiques extraites au lieu de données brutes. Nous menons une étude com-
parative sur la classification du SOM avec extraction non-supervisée de caractéris-
tiques à partir de la base de données MNIST en utilisant deux approches différentes
: une approche d’apprentissage machine avec des auto-encodeurs convolutionnels
et une approche bio-inspirée avec des SNN. Pour prouver la capacité du SOM à clas-
sifier des données plus complexes, nous utilisons l’apprentissage par transfert dvec
la base de données mini-ImageNet.

Enfin, nous passons au mécanisme d’association multimodale. Nous constru-
isons le modèle bio-inspiré ReSOM basé sur les principes de réentrance en utilisant
les SOMs et l’apprentissage Hebbien. Nous proposons et comparons différentes
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méthodes de calcul pour l’apprentissage et l’inférence multimodale non supervisée,
puis nous quantifions le gain des mécanismes de convergence et de divergence sur
trois bases de données multimodales. Le mécanisme de divergence est utilisé pour
étiqueter une modalité à partir de l’autre, tandis que le mécanisme de convergence
est utilisé pour améliorer la classification globale du système. Nous comparons nos
résultats avec des SNNs, puis nous montrons le gain de la plasticité dite matérielle
induite par notre modèle, où la topologie du système n’est pas fixée par l’utilisateur
mais apprise au fil de l’expérience du système par l’auto-organisation.

Mots clés

Calcul bio-inspiré; réseaux de neurones artificiels; cartes auto-organisatrices réen-
trantes; apprentissage multimodal non-supervisé; architectures distribuées cellu-
laires; implémentation neuromorphique.

Résumé vulgarisé

L’auto-organisation, aussi appelée neuro-plasticité, c’est la capacité des neurones
biologiques à créer, modifier ou défaire des connexions entre eux pour apprendre et
s’adapter à l’environnement. En effet, l’intelligence est souvent définie comme cette
capacité d’adaptation au changement à travers l’apprentissage. Dans cette thèse, je
modélise des réseaux de neurones artificiels auto-organisés grâce à un mécanisme de
plasticité structurelle pour créer ou couper des connections, ainsi qu’un mécanisme
de plasticité synaptique qui permet de modifier la force de ces connections. Ainsi,
le modèle que je propose est capable de calculer de manière distribuée, d’apprendre
de manière non-supervisée et d’exploiter plusieurs modalités sensorielles, telle que
la vision, l’audition et le toucher afin d’améliorer sa perception de l’environnement.
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Abstract

Lyes KHACEF

Exploration of brain-inspired computing with self-organizing
neuromorphic architectures

The brain’s cortical plasticity is one of the main features that enable our capability
to learn and adapt in our environment. Indeed, the cerebral cortex has the ability
to self-organize itself through two distinct forms of plasticity: the structural plastic-
ity that creates (sprouting) or cuts (pruning) synaptic connections between neurons,
and the synaptic plasticity that modifies the synaptic connections strength. These
mechanisms are very likely at the basis of an extremely interesting characteristic of
the human brain development: the multimodal association. In spite of the diversity
of the sensory modalities, like sight, sound and touch, the brain arrives at the same
concepts. Moreover, biological observations show that one modality can activate the
internal representation of another modality when both are correlated. To model such
a behavior, Edelman and Damasio proposed respectively the Reentry and the Con-
vergence Divergence Zone frameworks where bi-directional neural communications
can lead to both multimodal fusion (convergence) and inter-modal activation (diver-
gence). Nevertheless, these theoretical frameworks do not provide a computational
model at the neuron level.

The objective of this thesis is first to explore the foundations of brain-inspired
self-organization in terms of (1) multimodal unsupervised learning, (2) massively
parallel, distributed and local computing, and (3) extremely energy-efficient process-
ing. Based on these guidelines and a review of the neural models in the literature, we
choose the Self-Organizing Map (SOM) proposed by Kohonen as the main compo-
nent of our system. We introduce the Iterative Grid, a fully distributed architecture
with local connectivity amongst hardware neurons which enables cellular comput-
ing in the SOM, and thus a scalable system is terms of processing time and connec-
tivity complexity. Then, we assess the performance of the SOM in the problem of
post-labeled unsupervised learning: no label is available during training, then very
few labels are available for naming the SOM neurons. We propose and compare dif-
ferent labeling methods so that we minimize the number of labels while keeping the
best accuracy. We compare our performance to a different approach using Spiking
Neural Networks (SNNs) with Spike Timing Dependant Plasticity (STDP) learning.

Next, we propose to improve the SOM performance by using extracted features
instead of raw data. We conduct a comparative study on the SOM classification ac-
curacy with unsupervised feature extraction from the MNIST dataset using two dif-
ferent approaches: a machine learning approach with Sparse Convolutional Auto-
Encoders using gradient-based learning, and a neuroscience approach with SNNs
using STDP learning. To prove the SOM ability to handle more complex datasets,
we use transfer learning in the mini-ImageNet few shot classification benchmark to
exploit a Wide Residual Network backbone trained on a base dataset as a feature ex-
tractor, then we use the SOM to classify the obtained features from the target dataset.
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Finally, we move into the multimodal association mechanism. We build the
Reentrant SOM (ReSOM), a brain-inspired neural system based on the Reentry prin-
ciples using SOMs and Hebbian-like learning. We propose and compare different
computational methods for multimodal unsupervised learning and inference, then
quantify the gain of both convergence and divergence mechanisms on three multi-
modal datasets. The divergence mechanism is used to label one modality based on
the other, while the convergence mechanism is used to improve the overall accuracy
of the system. We compare our results to SNNs with STDP learning and different
fusion strategies, then we show the gain of the so-called hardware plasticity induced
by our model, where the system’s topology is not fixed by the user but learned along
the system’s experience through self-organization.

Keywords

Brain-inspired computing; artificial neural networks; reentrant self-organizing maps;
multimodal unsupervised learning; cellular distributed architectures; neuromorphic
implementation.

Vulgarized abstract

Self-organization, also called neuro-plasticity, is the ability of biological neurons to
create, modify or cut connections amongst them in order to learn and adapt to the
environment. Indeed, intelligence is often defined as the ability to adapt to change
through learning. In this thesis, I model self-organizing artificial neural networks
using a mechanism of structural plasticity to create or cut connections, as well as a
mechanism of synaptic plasticity to modify the strength of these connections. Thus,
the model I propose is able to compute in a distributed way, to learn in an unsu-
pervised fashion and to exploit several sensory modalities such as sight, sound and
touch in order to improve its perception of the environment.
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“It’s not about how hard you hit,
it’s about how hard you can get hit
and keep moving forward. . . ”

Rocky Balboa.
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Chapter 1

Introduction, context and
motivation

1NT3LL1G3NC3 1S 7H3 4B1L17Y 7O
4D4P7 7O CH4NG3.

ST3PH3N H4WK1NG.

1.1 Brain-inspired self-organization

“The brain is the seat of intelligence”. This affirmation was first made in the antiq-
uity (around the 5th century BCE) by Alcmaeon of Croton, a Greek medical writer
and philosopher-scientist (Huffman, 2017). He was the first to identify the brain as
the seat of understanding and to distinguish understanding from perception. Al-
cmaeon thought that the sensory organs were connected to the brain by channels
and may have discovered the optic nerve that connects the eyes to the brain. We
know since then that our brain gives rise to our perceptions, memories, thoughts
and actions. However, more than 2,500 years later, we still do not know how these
phenomena precisely arise in the brain, and it is considered to be the greatest sci-
entific mystery and challenge of our time (Maass et al., 2019). The only plausible
hypothesis that has been strongly suggested over the decades (Marr, 1982) (Valiant,
1984) (Hawkins and Blakeslee, 2004) is that the answer to this question will be at
least partly computational (Maass et al., 2019). In this manuscript, we will refer
to the brain as a computational system based on neurons and synapses and try to
explore its principles to propose a model for brain-inspired computing.

Of course, the goal is ambitious and we do not intend to build an artificial brain,
but rather to get inspiration from how the biological brain works and try to use it
to approach a certain behavior at a low hardware cost. Indeed, despite the huge
scientific and technological advancements in the last decades, we are still unable to
produce intelligent artificial systems that can autonomously learn and adapt to their
environment or integrate 86 billion neurons (Herculano-Houzel, 2009) with 10 thou-
sand connections each at the cost of 20 watts. One main reason for this is certainly
grounded in the way biological systems are built, which is very different from the
traditional, human way of building things (Bauer, 2013). Instead of having a "con-
struction blueprint" that is implemented by an external observer, biological organ-
isms develop as a result of local cellular behaviors which are specified in the genetic
code, and every process relies solely on local information exchange with no global
controller or supervisor. While the general structure of the brain is similar in all indi-
viduals of the same species (Pfister et al., 2018), local synaptic connections and their
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reinforcement are more dependent on experience and interaction with the environ-
ment (Varela, Rosch, and Thompson, 1991). The particular case of subjects with early
lesions clearly shows that even with different general structures, some individuals
are capable of similar tasks (Rita and W. Kercel, 2003).

Early research into the brain revealed a structure comprising a complicated inter-
communicating network of billions of neurons, with a relatively simple structure for
the neuron itself as modeled by Mcculloch and Pitts (Mcculloch and Pitts, 1943).
The field of connectionism (Buckner and Garson, 2019) was thereafter fostered upon
the idea that global intelligent behavior, such as memory and pattern recognition
emerges from local interactions among a large number of simple processing units
working independently. This is the computational basis of self-organization. While
the simple neuron model has long been overthrown in the neuroscience community,
the success of Artificial Neural Networks (ANNs) in diverse application areas has
ensured continued interest in them among researchers from different disciplines in
Artificial Intelligence (AI) (Ranganathan and Kira, 2003). This self-organized devel-
opment holds the key to the unique characteristics of the brain (Bauer, 2013). It also
leads to the notion of evolution which not only applies to nature but also to artificial
systems as long as they are guided by some principle of self-organization (Richter,
1994). After these findings of self-organization in the brain were discovered, they
were embraced by the AI community as something that could provide clues as to
what intelligence really is (Ranganathan and Kira, 2003). Therefore, understand-
ing brain’s self-organization and natural development would extend our biological
knowledge but also enable unprecedented technological progress.

This is the main motivation of the Self-Organizing Machine Architecture (SOMA)
project where this thesis takes place. The objective of the project is to study neural-
based self-organization in computing systems and to prove the feasibility of a self-
organizing hardware structure. Today, several current issues such as analysis and
classification of major data sources (sensor fusion, Internet of Things, etc.) and the
need for adaptability in many application areas (automotive systems, autonomous
drones, space exploration, etc.) lead us to study a desirable property from the brain
that encompasses all others: the cortical plasticity. This term refers to one of the
main developmental properties of the brain where the organization of its structure
(structural plasticity) and the learning of the environment (synaptic plasticity) de-
velop simultaneously toward an optimal computing efficiency. In other words, the
cortical plasticity enables the self-organization in the brain, that in turn enables the
emergence of consistent representations of the world (Varela, Rosch, and Thompson,
1991). We claim that the expected properties of such alternative computing devices
could emerge from a close interaction between neural processing (self-organization
and adaptation) and cellular computing (decentralization and hardware compliant
massive parallelism). Therefore, we propose to combine both principles through a
neuro-cellular approach of structural and synaptic self-organization that defines a
fully distributed and self-organizing neuromorphic architecture.

1.2 Multimodal unsupervised learning

Intelligence is often defined as the ability to adapt to the environment through learn-
ing. “A person possesses intelligence insofar as he has learned, or can learn, to ad-
just himself to his environment”, S. S. Colvin quoted in (Sternberg, 2000). The same
definition could be applied to machines and artificial systems in general. Hence, a
stronger relationship with the environment is a key challenge for future intelligent
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artificial systems that interact in the real-world environment for diverse applica-
tions like object detection and recognition, tracking, navigation, etc. The system
becomes an "agent" in which the so-called intelligence would emerge from the in-
teraction it has with the environment, as defined in the embodiement hypothesis that
is widely adopted in philosophy (Clark, 2001), cognitive science (Damasio, 1994),
cognitive neuroscience (Varela, Rosch, and Thompson, 1991), developmental psy-
chology (Smith and Gasser, 2005) and developmental robotics (Droniou, Ivaldi, and
Sigaud, 2015). In this thesis, we tackle the first of the six fundamental principles for
the development of embodied intelligence as defined in (Smith and Gasser, 2005):
the multimodality. Indeed, the brain uses multiples sensory and motor modalities
to perceive and act on its environment. But how does the brain handle multimodal
association? In fact, it is most likely the emergent result of one of the most impressive
abilities of the embodied brain that we previously discussed: the self-organization
which is enabled by cortical (structural and synaptic) plasticity.

These principles could apply to biological as well as artificial systems, because
both can acquire information about the information through various biological and
artificial sensors, and the same way act on it. Multimodal data fusion is in fact a di-
rect consequence of the well-accepted paradigm that certain natural processes and
phenomena are expressed under completely different physical guises, each of which
brings different but complementary information to the others (Baltrusaitis, Ahuja,
and Morency, 2019). Multimodal information processing is a vital condition in or-
der for AI to make progress in understanding the world around us. Multimodal ML
is thus a vibrant multidisciplinary field of increasing importance with a great poten-
tial. Recent works show a growing interest toward multimodal association in several
applicative areas such as developmental robotics (Lallee and Dominey, 2013) (Dro-
niou, Ivaldi, and Sigaud, 2015), audio-visual signal processing (Shivappa, Trivedi,
and Rao, 2010) (Rivet et al., 2014), spacial perception (Pitti et al., 2012) (Fiack, Cuper-
lier, and Miramond, 2015), attention-driven selection (Braun et al., 2019) and track-
ing (Zhao and Zeng, 2019), memory encoding (Tan et al., 2019), emotion recognition
(Zhang, Wang, and Du, 2019) (Mansouri-Benssassi and Ye, 2020), human-machine
interaction (Turk, 2014), remote sensing and earth observation (Debes et al., 2014),
medical diagnosis (Hoeks et al., 2011), understanding brain functionality (Horwitz
and Poeppel, 2002), etc.

Following a brain-inspired approach, we couple multimodal association with
unsupervised learning. Even though the brain may exhibit several forms of learn-
ing, namely supervised learning in the cerebellum, reinforcement learning in the
basal ganglia and unsupervised learning in the cerebral cortex (Doya, 1999), the
brain seems to be mostly unsupervised (Dayan, 1999). In 1949, Donald Hebb was
the first to link neuro-biological experiments on plasticity to a purely unsupervised
statistical method (Hebb, 1949). Today, many in the ANN community, including pi-
oneers of DL such as Yann Lecun and Geoffray Hinton, claim that we rely primarily
on unsupervised paradigms to construct our representations of the world (Zador,
2019). This is interesting because, indeed, unsupervised learning is becoming one of
the most important challenges in ML and AI, as we gather more and more data ev-
eryday but we cannot annotate each sample of them. The possibility to learn useful
representations from the raw data without labels would create incredible opportu-
nities for many application areas. Hence, from a biological plausibility perspective
as well as from the purely pragmatic point of view, unsupervised learning is of great
interest. Nevertheless, unsupervised learning is most of the time of a less good per-
formance that supervised learning, especially for classification tasks. We argue here
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that the gap of performance between unsupervised learning and supervised learn-
ing could be reduced when using multiple modalities that complement each other
to improve the overall accuracy of the system. This is one of the most important
questions that we want to tackle in this thesis.

1.3 Neuromorphic engineering

ANNs are experiencing today an unprecedented interest in both research and indus-
try thanks to two main changes: the explosion of open data that is necessary for their
training, and the increasing computing power of today’s computers that makes the
training part possible in a reasonable time. The recent results of neural-based Deep
Learning (DL) on various classification tasks has given ANNs the leading role in
Machine Learning (ML) algorithms and AI technologies. However, in addition to
the limits of supervised learning discussed before, most applications such as smart
devices or autonomous vehicles require an embedded implementation of ANNs for
real-time processing on the edge. Their implementation in conventional Von Neu-
mann architectures (von Neumann, 1993) such as CPU and GPU remains too expen-
sive, mostly in energy consumption. This is due to the non-adaptation of the cen-
tralized hardware to the distributed computation model. We are today at a turning
point, where Moore’s law is reaching its end leading to a stagnation of the perfor-
mance of our computers. Therefore, the research community came to the conclusion
that AI needs new hardware, not just new algorithms (Strukov et al., 2019). That’s
how neuromorphic engineering was born.

In fact, the idea of a brain-inspired computing machine with physical parallel
and distributed components was already imagined by Alan Turing. In addition
to the work leading to the digital computer, Turing anticipated connectionism and
neuron-like computing. In 1948, Turing described in his paper entitled "Intelligent
machinery" (Turing, 1948) a machine that consists of artificial neurons connected in
any pattern with modifier devices that could be configured to pass or block a sig-
nal. The neurons were composed of NAND gates that Turing chose because they are
universal gates, i.e. any other gate can be represented as a combination of NAND
gates. Nevertheless, it is in the late 1980s that Carver Mead, professor of electri-
cal engineering and computer science at Caltech published "Analog VLSI and Neu-
ral Systems" (Mead, 1989) and developed the concept of neuromorphic engineer-
ing (Mead, 1990), also known as neuromorphic computing. He described how to
design Very Large Scale Integration (VLSI) systems containing electronic analog cir-
cuits to mimic neuro-biological architectures present in the nervous system. In recent
years, the term neuromorphic has been used to describe analog (Indiveri et al., 2011)
(Chicca et al., 2014), digital (Merolla et al., 2014) (Davies et al., 2018), mixed-mode
analog/digital (Schemmel et al., 2010) (Moradi et al., 2018) and emerging technolo-
gies such as Resistive RAMs and memristors (Bichler et al., 2012) (Querlioz et al.,
2013) that implement models of neural systems for perception, motor control, or
multisensory integration.

These efforts in both research and industry attest to the necessity of designing
neuromorphic architectures, i.e. hardware accelerators that fit to the Parallel and
Distributed Processing (PDP) paradigm of neural networks for reducing their hard-
ware cost implementation (Schuman et al., 2017). We tackle this issue by proposing
a fully distributed and cellular neuromorphic architecture with local connectivity,
which is at the same time the essence of self-organization but also the path toward
more energy-efficient implementations. Furthermore, we introduce in this thesis the
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concept of hardware plasticity, which is the hardware implementation of the struc-
tural plasticity for sprouting (creating) and pruning (cutting) synaptic connection
amongst neurons. Indeed, as previously discussed, these plasticity mechanisms are
the core of self-organization in the brain, and they could enable neuromorphic cir-
cuits to calibrate themselves without the need of an external supervisor. The hard-
ware issue addressed by the SOMA project is how the communications within and
between the dynamic computing areas self-organize by means of a particular type
of dynamically re-configurable Network-on-Chip (NoC) (Moraes et al., 2004) con-
trolled by the neural network, thus transposing structural plasticity principles onto
FPGA hardware (Vannel et al., 2018) (Khacef et al., 2018). Even though the hardware
implementation is not part of this thesis, the proposed neural model and cellular
neuromorphic architecture will be consequent steps toward it. Both contributions
will mainly answer the question of how to use structural and synaptic plasticities to
build a self-organizing neural system capable of learning from multiple modalities
in an unsupervised fashion, and what is the gain of the multimodal association and
the so-called hardware plasticity compared to standard approaches.

1.4 Outline

This manuscript is organized as follows: Chapter 2 summarizes the foundations of
brain-inspired computing which will guide us to choose the Self-Organizing Map
(SOM) as a principal component of the proposed self-organnizing neural system.
It also introduces the Iterative Grid, a cellular neuromorphic architecture proposed
to distribute the SOM computation with local connectivity. Chapter 3 introduces
the post-labeled unsupervised learning problem, then presents the proposed label-
ing method based on very few labels and confronts SOMs to Spiking Neural Net-
works (SNNs) in terms of classification accuracy on MNIST and scalability in terms
of time and connectivity complexities. Chapter 4 compares different methods for
feature extraction in order to improve the SOM performance on MNIST classifica-
tion, namely AutoEncoders (AEs) and SNNs. Next, it assesses the SOM perfor-
mance on miniImageNet with transfer learning to figure out if the SOM can be
used in the real-world environment to classify complex data. Chapter 5 proposes
the Reentrant Self-Organizing Map (ReSOM), a new brain-inspired computational
model of self-organization for multimodal unsupervised learning in neuromorphic
systems. It first describes the Reentry framework of Edelman (Edelman, 1982) and
the Convergence Divergence Zone framework of Damasio (Damasio, 1989), two dif-
ferent theories in cognitive neuroscience for modeling multimodal association in the
brain, and then reviews some of their recent computational models and applica-
tions. Afterwards, it introduces the ReSOM model and the proposed multimodal
unsupervised learning and inference algorithms. Chapter 6 presents the databases,
experiments and results with three different case studies, then it relates the ReSOM
learning paradigm as well as the convergence and divergence mechanisms to stud-
ies on infants development. Finally, it discusses the results and quantifies the gain
of the multimodal association and the so-called hardware plasticity through self-
organization. Chapter 7 concludes this manuscript with a discussion on the most
salient results and the different perspectives for the future works.
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Chapter 2

Brain-inspired computing and
self-organization

The whole is greater than the sum of
its parts.

Aristotle.

2.1 Introduction

Brain-inspired computing is a broadly interdisciplinary field which may refer to
multiple paradigms and concepts, some of which we discussed in chapter 1. It may
thus lead to some confusion depending from which domain and perspective it is
seen. In this chapter, we define our foundations for brain-inspired computing and
present the biologically plausible properties that will guide us toward the choice of
the main component of the proposed self-organizing neural system. Afterwards,
we review the main computational models of neural self-organization, and we then
choose the one that fits the most for unimodal processing, i.e. processing the in-
formation of an independent modality alone. Finally, we present the Iterative Grid
(IG), a cellular neuromorphic architecture proposed to distribute the model’s com-
putation with local connectivity, a necessary step at this point because the hardware
scalability of the model is a necessary condition before going further in the multi-
modal framework modeling and experimentation process.

2.2 Brain-inspired computing foundations

Brain-inspired computing can be described at different levels of abstraction, going
from the hardware implementation into the overall behavior of the system. In order
to clearly present the different paradigms and concepts that we claim to be at the
foundations of brain-inspired computing and self-organization, we use the taxon-
omy proposed by David Marr in 1976 (Marr and Poggio, 1976). It is a three-level
approach to understand brain’s computation as summarized in (Maass et al., 2019):

• At the behavioural level, we describe the input-output behavior of the system,
i.e. what the system does in a particular context.

• At the algorithmic level, we explain the organizations and dynamics of the par-
ticular processes used by the system, i.e. how does the system compute.

• At the hardware level: we identify the physical elements like Neural Processing
Units (NPUs) employed by the system to realize the algorithm.
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2.2.1 Behavioral level: embodied computing toward adaptation

At the behavioral level, a brain-inspired computational system should be able to
learn in an unsupervised fashion by exploiting the multimodal information in the en-
vironment through a constant sensori-motor interaction with it. In this section, we
present the biological observations of these three mechanisms and explain why we
need them concretely.

Unsupervised learning

It has been shown that the response tuning of the neurons in the cortex is highly
dependent on the sensory experience (Blakemore and COOPER, 1970) (Hirsch and
Spinelli, 1970). It suggests that the information coding in the cerebral cortical ar-
eas is established by the unsupervised learning paradigm in which the synapses are
updated by a Hebbian rule (Doya, 1999). In summary, the "learner" must build a
probabilistic model of given inputs and use it to generate a recognition distribution
for a specific input (Ranganathan and Kira, 2003). In addition to the bioligcal plau-
sibility, unsupervised learning is extremely useful because it would only require the
data without the labels. Today, DL models that reach the best performance in classi-
fication tasks are mostly based on supervised learning, which implies building huge
labeled datasets to implement the gradient-based back-propagation training (Lecun,
Bengio, and Hinton, 2015). It suggests that we have to label each sample of each
training database depending on the application, and that approach can obviously
not be generalized to all types of data and applications. Moreover, it is unlikely
that such an algorithm based on neuron-specific error signal would be implemented
in the brain (O’Reilly and Munakata, 2000). Hinton, one of the pioneers of DL, ac-
knowledges that "as a biological model, back-propagation is implausible" (Hinton,
1989). Therefore, the neural model we propose should rely on unsupervised learn-
ing for the synaptic weights adaptation.

Multimodal association

Multimodality is the first principle for the development of embodied intelligence
(Smith and Gasser, 2005). Indeed, biological systems perceive their environment
through diverse sensory channels: vision, audition, touch, smell, proprioception,
etc. The fundamental reason lies in the concept of degeneracy in neural structures
(Edelman, 1987), which is defined by Edelman as the ability of biological elements
that are structurally different to perform the same function or yield the same output
(Edelman and Gally, 2001). In other words, it means that any single function in the
brain can be carried out by more than one configuration of neural signals, so that the
system still functions with the loss of one component. It also means that sensory sys-
tems can educate each other, without an external teacher (Smith and Gasser, 2005).
The same principles can be applied for artificial systems, since the information about
the same phenomenon in the environment can be acquired from various types of
sensors: cameras, microphones, accelerometers, etc. Each sensory-information can
be considered as a modality. Due to the rich characteristics of natural phenomena, it
is rare that a single modality provides a complete representation of the phenomenon
of interest (Lahat, Adali, and Jutten, 2015). Hence, the multimodality is necessary to
have a complete representation of the environment.
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Sensori-motor interaction

Another principle for the development of embodied intelligence as defined in (Smith
and Gasser, 2005) is the sensory-motor loop or interaction. "The intelligence of ba-
bies resides not just inside themselves but is distributed across their interactions and
experiences in the physical world" (Smith and Gasser, 2005). This physical world in
which we live is rich in regularities that organize perception and action through a
continual life-long interaction. This behavior is expecially interesting in the context
of robotics, where robotic "agents" have to acquire knowledge via the interaction
with their environment. In such a case; learning from the sensori-motor experience
would result in a more efficient strategy for a life-long perspective (Droniou, Ivaldi,
and Sigaud, 2015). However, the sensori-motor interaction is out of the scope of
this thesis. We focus on multimodal perception, and argue that motor skills can be
considered as an additional modality but would require a robotic platform or sim-
ulation for experimentation (Lallee and Dominey, 2013). This will be discussed in
chapter 7.

2.2.2 Algorithmic level: cellular computing toward emergence

The brain is made of billions of neurons with ten thousands of connections each. It
forms a self-organizing biological system that relies on local computation which is
distributed amongst neurons. There is no central unit that orchestrates the process.
The structural and synaptic plasticities that enable the self-organization only depend
on local information stored between correlated neurons that can directly connect and
communicate to each other, following a Hebbian learning paradigm (Hebb, 1949).
The adaptation to the environment is thereby the emergent global behavior of the
local computations. Such a mechanism is a fundamental aspect for brain-inspired
computing, as it is important for both the behavior and the implementation of the
self-organizing neural system. Indeed, the self-organization impacts the hardware-
efficiency of the system, since the neurons inter-connections are not fixed by the
designer but learned via structural and synaptic plasticities. From an algorithmic
point of view, self-organization can then be defined as the formation of patterns and
structures from the initial state without intervention through the interaction of finite
state automata (Bremermann, 1994), or cellular automata. Stephen Wolfram defines
cellular automata as “discrete dynamical systems with simple construction but com-
plex self-organizing behaviour” (Wolfram, 1984b). In fact, simple nearest neighbour
rules of cellular automata may simulate the complexity of universal computers (Wol-
fram, 1984a) (Cook, 2004). Therefore, we follow a cellular automata approach where
each node represents a neuron to ensure a local and distributed computing.

2.2.3 Hardware level: embedded computing toward efficiency

The idea of neuromorphic engineering is to take inspiration from the brain for de-
signing dedicated chips that merge memory and processing in a distributed non-Von
Neumann architecture. In the brain, synapses provide a direct memory access to the
neurons that process information. That’s how the brain achieves impressive compu-
tational power and speed with very little power consumption (Strukov et al., 2019).
Neuromorphic engineering tries to imitate such an architecture for designing ded-
icated NPUs that are hardware-efficient in terms of electronic components, power
consumption and latency. In sum, it leads to extremely energy-efficient processing
which is needed for embedded systems where energy is very limited. We merge the
cellular automata paradigm and neuromorphic engineering principles to design the
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IG, a cellular neuromorphic architecture that supports self-organization to adapt to
its environment, i.e. learn useful representations from multimodal information and
use them to classify new inputs. The IG will be prototyped into multi-FPGA devices
based on the work of Vannel et al. (Vannel et al., 2018), but the hardware imple-
mentation is out of the scope of this thesis: we focus on the modeling of the neural
system and its architectural design based on the IG substrata.

2.3 Computational models for neural self-organization: his-
torical overview

In this section, we review the most influent ANNs models of self-organization and
choose the one that suits best as a main component for the new model that we pro-
pose in this thesis.

2.3.1 Cognitron (1975) and Neocognitron (1980)

One of the first models of neural self-organization is the Cognitron (Fukushima,
1975) proposed by Kunihiko Fukushima in 1975. He introduced a new hypothesis
for the organization of synapses between neurons in a multilayered neural network,
summarized in the following: “The synapse from neuron x to neuron y is reinforced
when x fires provided that no neuron in the vicinity of y is firing stronger than y”.
The primary drawback with the Cognitron model was the high sensitivity to shift in
position or any distortion in shape of the input. 15 years before in the 1960’s, Hubel
and Wiesel have already introduced the concept of simple cells (S-cells) and complex
cells (C-cells) as a biological model for the structure of the visual cortex (Hubel and
Wiesel, 1959). This model inspired Fukushima’s new model in 1980: the Neocogni-
tron (Fukushima, 1980). The Fukushima’s Neocognitron divides indeed the neural
network layers into S-cell layers and the C-cell layers. The input connections to the
S-cell are plastic and could have their weights modified or even cut. The S-cells
acted as input to the C-cells that were in contrary static and could not be varied.
This way, the S-cell layers are responsible for forming weights to recognize patterns
(synaptic strengths are adjusted layer by layer following the original Cognitron self-
organization) while the C-cell layers ensure that the recognition was possible even
after a shift of position or distortion in shape for the input. The Neocognitron is
the predecessor of modern Convolutional Neural Networks (CNNs): the S-cell layer
became the convolution layer while the C-cell layer became the max pooling layer.

2.3.2 Self-Organizing Map (SOM) (1982)

The Self-Organizing Map (SOM) algorithm was proposed by Teuvo Kohonen in 1982
(Kohonen, 1982) as a computational model for synaptic plasticity in the brain. It
is one of the most popular models in the field of computational neurosciences, as
it gives a plausible account on the self-organization of sensory areas in the cortex
where adjacent neurons share similar representations (Kohonen, 1990). Indeed, it
is possible to identify seemingly specialized cortical areas that, for example, encode
information about faces (Strukov et al., 2019). The SOM defines an ANN in a two-
dimentional map topology where each neuron is connected to the input. Technically,
the SOM is a vector quantization algorithm, as it models the probability density
function of the training dataset into a set of prototype vectors that are represented
by the neurons afferent weights (Kohonen, Schroeder, and Huang, 2001) (Rougier
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and Boniface, 2011). SOMs apply unsupervised learning in a form of competitive
learning that uses a neighborhood function to preserve the topological properties
of the input space. Basically, for each input stimulus, the SOM neurons compete
to "win", i.e. to be the Best Matching Unit (BMU) that is the neuron representing
best the stimulus. Then, the winning neuron and its neighborhood neurons adapt
their afferent synaptic weights in order to improve the representation of the input
pattern as detailed in section 2.4. The idea is that each neuron becomes a "prototype"
that represents an average of similar-enough inputs. Many variants of the SOM
have been proposed like the Receptive Field Laterally Interconnected Synergetically
SOM (RF-LISSOM) (Miikkulainen et al., 1997) where the neurons receive inputs from
local receptive fields on the input instead of the entire input, and are also laterally
connected via excitatory and inhibitory synapses.

2.3.3 Neural Gas (1991) and Growing Neural Gas (1995)

The Neural Gas (NG) is an ANN inspired by the SOM and introduced in 1991 by
Thomas Martinetz and Klaus Schulten (Martinetz and Schulten, 1991). The NG is
an algorithm for finding optimal data representations based on feature vectors. The
main difference with the SOM is that the modulation of learning in the NG is not
dependent on the structure of the network, it is in the reverse the structure of the
network that becomes dependent on the distance of each prototype from the stim-
uli. The algorithm was indeed called a "neural gas" because of the dynamics of
the neurons during learning such that they distribute themselves like a gas within
the data space. In 1995, Bernd Fritzke introduced the Growing NG (GNG) (Fritzke,
1994) as an incremental network model that learns topological relations by using a
Hebbian-like learning. The GNG follows the same concept as the NG with two main
differences: first, unlike the NG, the GNG has no hyper-parameters that change over
time, it is hence more dynamic and capable of continuous learning. Second, the GNG
can "grow" as indicated in its name, i.e. create neurons or inversely cut them when
necessary, depending on the error to the input stimuli. The GNG grows and learns
to represent the data until a given criterion is satisfied, e.g. a number of epochs or a
maximum number of neurons.

2.3.4 Spiking Neural Network (SNN) with Spike-Timing-Dependent Plas-
ticity (STDP) (1997)

Spiking Neural Networks are a particular model of ANNs in terms of information
coding, as they use impulsion-based or spike-based coding amongst neurons, as fur-
ther discussed in chapter 3. With such a coding scheme where information about the
neurons activities is not frame-based but event-based, the time of the spike emission
between two neurons can be used to modify the weight of the synapse connecting
them. This is the basic principle of Spike-Timing-Dependent Plasticity (STDP) in-
troduced by Henry Markram in 1997 (Markram et al., 1997), even though it is in
2000 that Sen Song et al. formalized the mechanism and named it as STDP (Song,
Miller, and Abbott, 2000). In short, STDP is a form of Hebbian learning where the
strengthening of a synapse occurs not only when two neurons spike at the same
time, but also when one spikes just before the other as further detailed in chapter 3.
It introduces therefore a form of causality in a particular topology. Indeed, Markram
showed that in neocortical slices, Long-Term Potentiation (LTP) of synapses occurs
if pre-synaptic spikes precede post-synaptic firing by no more than about 50 ms.
In the reverse, Long-Term Depression (LTD) of synapses occurs when pre-synaptic
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spikes follow the post-synaptic spikes (Markram et al., 1997). As all Hebbian mod-
els of development and learning, STDP requires both an activity-dependent synaptic
plasticity and a competition mechanism (Song, Miller, and Abbott, 2000). This com-
petition was further discussed and deployed in the form a Winner-Takes-All (WTA)
mechanism in more recent works including Querlioz et al. in 2013 (Querlioz et al.,
2013) and Diehl and Cook in 2015 (Diehl and Cook, 2015). The WTA induces a global
inhibition so that each neuron learns a different pattern. A "soft" WTA mechanism
inspired from the SOM mechanism was introduced by Hazan et al. in 2018 (Hazan
et al., 2018), where the authors showed that it reaches a better performance in a clas-
sification task. It is further described in chapter 3.

2.3.5 Summary

We have reviewed the most important models of self-organization that exhibit some
of the brain-inspired computing foundations that we previously discussed in section
2.2. At this point, we have to choose the model that will be used as the main com-
ponent for unimodal processing in our multimodal self-organizing neural system.
Thus, the model has to learn useful representations from unlabeled data and use
them to classify new samples. The Neocognitron is therefore not a suitable model
because it is mainly useful for feature extraction through its multi-layered architec-
ture. The GNG, on the other hand, lacks the topological properties that are inherent
to the cortical areas since the structure of the GNG is dependent on the distance of
each prototype from the stimuli. Hence, the choice is between the SOM and the
SNN with STDP. Both models show interesting properties like unsupervised learn-
ing and distributed computing, but at the cost of massive interconnections amongst
neurons. In fact, even though the learning process of the SOM (Kohonen, 1982) and
SNN (Diehl and Cook, 2015) can be distributed with local computing, the competi-
tion mechanism based on inhibition requires either a centralized unit or an all-to-all
connectivity amongst neurons, as further discussed in chapter 3.

Following the work initiated by Laurent Rodriguez in 2015 (Rodriguez, 2015),
we propose in section 2.5 to distribute the SOM computing based on the IG, a cel-
lular neuromorphic architecture with local connectivity amongst neighbor neurons.
Moreover, it has been shown that SOMs have a better performance in representing
overlapping structures compared to classical clustering techniques such as partitive
clustering or K-means (Budayan, Dikmen, and Birgonul, 2009). It partly explains
why the SOM is one of the most popular ANNs in the unsupervised learning cate-
gory (Kohonen, Schroeder, and Huang, 2001), used in a large range of applications
going from high-dimensional data analysis (Kohonen et al., 1996) to more recent
developments such as identification of social media trends (Silva et al., 2018), incre-
mental change detection (Nallaperuma et al., 2018) and energy consumption mini-
mization on sensor networks (Kromes et al., 2019). Therefore, we choose to explore
the SOM and two of its major variants with the IG substrata, which we confront
thereafter to the SNN in chapter 3 in terms of classification accuracy, learning dy-
namicity and hardware scalability.

2.4 SOM models

We present in this section three models of SOMs: the original Kohonen SOM (KSOM)
(Kohonen, 1982), the Dynamic SOM (DSOM) (Rougier and Boniface, 2011) proposed
by Rougier et al. in 2011 and the Pruning Cellular SOM (PCSOM) (Upegui et al.,
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FIGURE 2.1: Self-Organizing Map (SOM) topology.

2018) proposed by Upegui et al. in 2018. Each SOM uses a two-dimensional grid
of neurons, where each neuron has a respective two-dimensional position in the
grid and is connected to the input stimulus through afferent synapses that carry the
weights where the learning occurs. The weights of the neuron are represented as
an m-dimensional vector where m is defined by the dimensions of the input stimuli.
Each neuron is then connected to its four neighbors from north, east, south and west
through lateral synapses without weights, as shown in figure 2.1. The mechanism
by which the neuron communicates with its neighbors is detailed in section 2.5.

2.4.1 Kohonen SOM

The original KSOM algorithm introduced by Kohonen (Kohonen, 1982) is described
in algorithm 1, where we use a two-dimensional array of k neurons.

It is to note in algorithm 1 that t f is the number of epochs, i.e. the number of times
the whole training dataset is presented. We introduced a new activity computation
from the distance d in equation 2.2 so that this activity could later be used for the
Hebbian learning in the multimodal association mechanism presented in chapter 5.
The α hyper-parameter in equation 2.2 is the width of the Gaussian kernel. Its value
is fixed to 1 in the SOM training, but it does not have any impact in the training phase
since it does not change the neuron with the maximum activity. Its value becomes
critical though in the labeling process presented in chapter 3.

The KSOM has a decaying learning rate ε which regulates the weights update
and a decaying neighborhood width σ which defines a Gaussian neighborhood around
the BMU where neurons learn, so that the learning stabilizes after a certain number
of iterations. When t = t f , the KSOM is almost unable to learn any change in the
input stimuli, as ε f << εi and σf << σi. Therefore, the learning is stable but not
dynamic. It can be considered as an off-line unsupervised learning algorithm.
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Algorithm 1: Kohonen SOM algorithm
1: Initialize the network as a two-dimensional array of k neurons, where each

neuron n with m inputs is defined by a two-dimensional position pn and a
randomly initialized m-dimensional weight vector wn.

2: for t from 0 to t f do
3: for every input vector v do
4: for every neuron n in the network do
5: Compute the afferent activity an from the distance d:

d = ‖v− wn‖ (2.1)

an = e−
d
α (2.2)

6: end for
7: Compute the winner s such that:

as =
k−1

max
n=0

(an) (2.3)

8: for every neuron n in the network do
9: Compute the neighborhood function hσ(t, n, s):

hσ(t, n, s) = e
− ‖pn−ps‖2

2σ(t)2 (2.4)

10: Update the weight wn of the neuron n:

wn = wn + ε(t)× hσ(t, n, s)× (v− wn) (2.5)

11: end for
12: end for
13: Update the learning rate ε(t):

ε(t) = εi

(
ε f

εi

)t/t f

(2.6)

14: Update the width of the neighborhood σ(t):

σ(t) = σi

(
σf

σi

)t/t f

(2.7)

15: end for

2.4.2 Dynamic SOM

The DSOM introduced by Rougier et al. (Rougier and Boniface, 2011) is a variation
of the KSOM algorithm where the time dependency of the learning rate and neigh-
borhood function has been replaced by the distance between the winning neuron
and the input stimulus, as shown in algorithm 2.

It is to note in algorithm 2 that η is the elasticity or plasticity parameter. In the
DSOM algorithm, if a neuron is close enough to the stimulus, then this neuron is
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Algorithm 2: Dynamic SOM algorithm
1: Initialize the network as a two-dimensional array of neurons, where each

neuron n is defined by a two-dimensional position pn and a randomly
initialized m-dimensional weight vector wn.

2: for every new input vector v do
3: Compute the winner s such that ws is the closest to v following equations 2.1,

2.2 and 2.3.
4: for every neuron n in the network do
5: Compute the neighborhood function hσ(t, n, s):
6: if v = ws then
7:

hη(n, s, v) = 0 (2.8)

8: else
9:

hη(n, s, v) = e
− 1

η2
‖pn−ps‖2
‖v−ws‖2 (2.9)

10: end if
11: Update the weight wn of the neuron n:

wn = wn + ε× ‖v− wn‖ × hη(n, s, v)× (v− wn) (2.10)

12: end for
13: end for

already representing well the stimulus, hence there is no need for any neuron to
learn (the extreme case where v = ws and thus hη(n, s, v) = 0). In the other case, if
there is no neuron close enough to the stimulus, all neurons learn according to their
weight distance to this new stimulus and their topological distance to the BMU.

This mechanism allows a dynamic learning to adapt to any change in the envi-
ronment at any moment. The DSOM can therefore be used for on-line unsupervised
learning. However, in contrast with SOM, the DSOM self-organizes into the sup-
port of the distribution of the input stimuli and does not try to match the density
(Rougier and Boniface, 2011).

2.4.3 Pruning Cellular SOM

The PCSOM introduced by Upegui et al. (Upegui et al., 2018) is also abstracted
from the time dependency of the KSOM, it is hence made for continuous on-line
unsupervised learning. In addition, it models a specific mechanism of biological
neurons: the synaptic pruning. Indeed, each neuron of the PCSOM has a number
of associated lateral synaptic connections varying from 0 to 4 that define its lateral
influence during training.

These lateral synapses can be seen as interconnection matrices that are initially
interconnecting every neuron to its four physical neighbors. Afterwards, during the
network lifetime where the network learns to represent the input stimuli, some of
these synapses will be pruned (removed) in order to allow the prototype vectors to
better fit their density function. After a certain number of iterations, the PCSOM
begins to create clusters, i.e. group of topologically close neurons which represent
variations of the same class. The idea is then to prune the synaptic connections
between the frontiers neurons of different topological clusters and isolate them, so



16 Chapter 2. Brain-inspired computing and self-organization

that one class does not affect the learning of the other. The PCSOM algorithm is
described in algorithm 3.

Algorithm 3: Pruning Cellular SOM algorithm
1: Initialize the network as a two-dimensional array of neurons, where each

neuron n is defined by a two-dimensional position, a randomly initialized
m-dimensional weight wn vector and a set of synapses defining connections to
other neurons with respect to its position.

2: for every new input vector v do
3: Compute the winner s such that ws is the closest to v following equations 2.1,

2.2 and 2.3.
4: Update the weight of the winner ws:

ws = ws + α× (v− ws)× ‖v− ws‖ (2.11)

5: for every other neuron n in the network do
6: Update the weight wn of the neuron n:

wn = wn + α× (wi − wn)× e(−
1
η

hops
‖wi−wn‖ ) (2.12)

7: end for
8: for every synapse in the network do
9: Apply pruning following the probability:

Pij = e
(− 1

ω
1

‖wi−wj‖ti tj
)

(2.13)

10: end for
11: end for

It is to note in algorithm 3 that α is the learning rate, wn is the weight vector of the
neuron to be updated, hops is the number of propagation hops from the winner, wi is
the weight vector of the influential neuron, η is the elasticity of the network, Pij is the
probability of pruning the synapse interconnecting ni and nj, ω is the pruning rate,
and ti is the time from the last winning of neuron ni. With respect to the neuron n to
be updated, the influential neuron i is the connected neighbor neuron that is closest
to the winner neuron s in terms of number of hops. In the case where two connected
neighbor neurons have the same number of hops, the choice of the influential neuron
is made randomly.

Thanks to the propagation of the neurons update through the neurons neighbors,
the overall network weights are influenced by every new input vector depending on
the network connectivity: if a neuron n is a topological neighbor of the influential
neuron i, it is only updated if the synapse connecting n to i has not been pruned. The
PCSOM is therefore modifying the connectivity of the neural network by pruning
the useless synapses that connect two neurons whose activities are poorly correlated,
as shown in figure 2.2 where ω = 3e − 07. It allows the network to better fit the
probability density function of the input stimuli. Preliminary results in (Upegui et
al., 2018) have shown that the proposed pruning mechanism improves the network
performance by reducing the Average Quantization Error (AQE) of the system for
two-dimensional stimuli.
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FIGURE 2.2: PCSOM after training: (left) cellular connections; (right)
weights and inputs probability density.

The PCSOM is thus a dynamic and evolving (with respect to pruning) SOM
that may reach a better performance than DSOM for on-line unsupervised learning
thanks to the pruning mechanism. The comparative results on image classification
for the three SOM models will be discussed in chapter 3.

2.5 Cellular neuromorphic architecture

As discussed in chapter 1, the centralized neural models that run on classical com-
puters suffer from the Von-Neumann bottleneck due to the overload of communica-
tions between computing memory components, leading to a an over-consumption
of time and energy. One attempt to overcome this limitation is to distribute the com-
puting amongst neurons as done in (Kohonen, 1982) and (Diehl and Cook, 2015), but
it implies an all-to-all connectivity to calculate the global information, i.e. the BMU
and the topological distance of each neuron to it. Therefore, this solution does not
completely solve the initial problem of scalability.

An alternative approach to solve the scalability problem can be derived from the
Cellular Automata (CA) which was originally proposed by John von Neumann (Ke-
meny, 1967) and further formalized by Wolfram (Wolfram, 1984b). The CA paradigm
relies on locally connected cells with local computing rules which define the new
state of a cell depending on its own state and the states of its neighbors. All cells can
then compute in parallel as no global information is needed. Therefore, the model is
massively parallel and is an ideal candidate for hardware implementations (Halbach
and Hoffmann, 2004).

A recent FPGA implementation to simulate CA in real time has been proposed in
(Kyparissas and Dollas, 2019), where authors show a speed-up of 51× compared to
a high-end CPU (Intel Core i7-7700HQ) and a comparable performance with recent
GPUs with a gain of 10× in power consumption. With a low development cost, a
low cost of migration to future devices and a good performance, FPGAs are suited
to the design of cellular processors (Walsh and Dudek, 2012). Cellular architectures
for ANNs were common in early neuromorphic implementations and have recently
seen a resurgence (Schuman et al., 2017). Such implementation is also refered as
near-memory computing where one embeds dedicated co-processors in close prox-
imity to the memory unit, thus getting closer to the PDP paradigm (Blazewicz et
al., 2000) formalized in the theory of ANNs. An FPGA distributed implementation
model for SOMs was proposed in (Sousa and Del-Moral-Hernandez, 2017), where
the local computation and the information exchange among neighboring neurons
enable a global self-organization of the entire network.
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Similarly, following the work initiated in (Rodriguez, 2015), we proposed a cel-
lular formulation of the related neural models which would be able to tackle the full
connectivity limitation by iterating the propagation of the information in the net-
work (Rodriguez, Khacef, and Miramond, 2018). This particular cellular implemen-
tation, named the Iterative Grid (IG), reaches the same behavior as the centralized
models but drastically reduces their computing complexity when deployed on hard-
ware. Indeed, as detailed in chapter 3, the time complexity of the IG is O(

√
n) with

respect to the number of neurons n in a squared map, while the time complexity of a
centralized implementation is O(n). In addition, the connectivity complexity of the
IG is O(n) with respect to the number of neurons n, while the connectivity complex-
ity of a distributed implementation with all-to-all connectivity is O(n2) (Diehl and
Cook, 2015). The principles of the IG are summarized in this section followed by a
new SOM implementation over the IG substrata which takes in account the needs of
the multimodal association learning and inference.

2.5.1 Iterative Grid (IG) substrata

Let’s consider a two-dimensional grid shaped Network-on-Chip (NoC). This means
that each node (neuron) of the network is physically connected (only) to its four
closest neighbors. At each clock edge, each node reads the data provided by its
neighbors, computes on these data and then propagates the result to its own neigh-
bors on the next clock edge. The data is propagated (or broadcasted) in a certain
amount of time to all the nodes. The maximum amount of time Tp which is needed
to cover all the NoC (worst case reference) depends on its size: for a N × M grid,
Tp = N + M− 2. After Tp clock edges, new data can be sent. A set of Tp iterations
can be seen as a wave of propagation.

For the SOM afferent weights learning, the data to be propagated is the maxi-
mum activity for the BMU election, plus its distance with respect to every neuron
in the map. The maximum activity is transmitted through the wave of propagation,
and the distance to the BMU is computed in the same wave thanks to this finding:
“When a data is iteratively propagated through a grid network, the propagation
time is equivalent to the Manhattan distance between the source and each receiver”.

The cellular propagation wave algorithm executed by each cell synchronously is
detailed in Algorithm 4, where Ti is the iteration time that goes from 0 to Tp. This Ti
is to distinguish from t in algorithm 1 which is relative to the training epoch. R the
data stored in the node, Dj is the data given by the neighbor j with j ∈ [[0; 3]] and the
output buffers are memories used to keep the data consistency during the process.
Each connection to neighbor nodes is provided with output double buffers, since we
need to save the data of both current and previous clock edges.

A number of generic functions have been defined and explained in section 2.5.2.
In summary, the IG substrata allows to implement a cellular architecture able to
distribute the centralized behavior of SOMs into each node of the NoC, transforming
the connectivity complexity into a scalable time complexity in O(

√
n) with respect

to the number of neurons n regardless of the simulated SOM model.

2.5.2 IG for cellular distributed SOM

The SOM implementation on the IG has to take in consideration the needs of the
multimodal association that will be presented in chapter 5: (1) we add the Worst
Matching Unit (WMU) activity needed for the activities min-max normalization in
the convergence step, and (2) we use the Gaussian kernel in equation 2.2 to transform
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Algorithm 4: Cellular propagation wave algorithm
1: T0: Let Dc the initial data of the cell.
2: Compute R← g1(Dc)
3: Write R on the output buffer.
4: for all Ti do
5: for all Dj do
6: Compute Rj = f (Dj, Ti)
7: end for
8: Compute R = g4(R, R0, R1, R2, R3)
9: Write R on the output buffer.

10: Switch output buffers.
11: end for

FIGURE 2.3: Flowchart: BMU and WMU distributed computing for
each neuron.
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the euclidean distances into activities. Therefore, the BMU is the neuron with the
maximum activity and the WMU the neuron with the minimum one. The winner
search wave and learning step are summarized as a flowchart in figure 2.3. This
flowchart describes the KSOM learning, but the winner wave is applied the same
way for all steps of the multimodal learning while the learning part can be replaced
by Hebbian-like learning or inference.

BMU/WMU search wave

FIGURE 2.4: Iterative Grid BMU/WMU search wave in a 5× 5 SOM.

In order to compute the BMU and WMU search, we have to define Dc, R, g1,
f , and g4. Figure 2.3 shows the BMU/WMU search IG implementation with a
flowchart representation. Here, Dc is the activity A computed by the neuron be-
fore the wave, as defined in equation 2.2. R contains AMIN and (AMAX, TM) with
AMIN and AMAX the current known WMU and BMU activities respectively which
are detected by the neuron at the iteration of propagation TM. g1 initializes R with
AMIN = AMAX = Dc and TM = 0. Because the propagation time T is equivalent to
the Manhattan distance, T must be coherently coupled with AMAX for the learning
equation computation. i is the radius of the propagation which goes from 1 to half
the perimeter of the grid. f is very similar to g1 and sets Rj values to the respective
value [AMINj , (AMAXj , Ti)]. Finally, g4 selects the minimum activity AMIN and the
maximum one AMAX between R, R0, R1, R2, R3 and stores it as a result in the neu-
ron’s output buffer. After this propagation wave, each neuron n contains its own
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[AMIN , (AMAX, TM)] with AMIN and AMAX common for each of them and TM dis-
tinct values depending on their respective Manhattan distances to the BMU. Hence,
equation 2.3 is implemented without using a central controller or a full connectivity,
but with a simple iterative cellular method based on a local connectivity.

Figure 2.4 shows how the BMU information (color) and the topological distance
to it (index) evolves with the cycles for each neuron of the SOM implemented with
the IG. At T0, each of the 25 neurons compute their respective distance and activity
to the input; then from T1 to T8, during (N+M-2 = 8 cycles), each neuron operates
simultaneously and synchronously the operations defined in algorithm 4; and at T9,
each neuron operates its afferent synaptic weights. Even though the propagation
is complete at T5, its computation must continue until the pre-defined number of
cycles corresponding to the worst case.

SOM learning

From the winner propagation wave, all useful data are present in each neuron to
compute the learning equation. No propagation wave is necessary at this step. We
notice that the AMIN information is not necessary for the KSOM learning, but it is
needed for the upcoming multimodal convergence step.

Behavioral study

The iterative grid is based on the time to distance transformation. This implies the
use of a Manhattan distance in the models despite of the Euclidean one often used
in software or centralized hardware implementations. Otherwise, if the Manhattan
distance decreases the performance of the SOM, it is also possible to include the two-
dimensional position of the BMU with its activity so that each neuron can calculate
its Euclidean distance to the BMU. It would, however, increase the size of the data
to be shared amongst neurons.

In order to prove the same behavior between the centralized and the distributed
implementations of the SOM, we run three scenarii with three different distributions
of two-dimensional data, keeping the same random seed on both architectures. Af-
terwards, we compare the AQE and the afferent weights between the same neurons
after the same number of training iterations. When we use the Manhattan distance
for the centralized version of the KSOM, the two implementations lead to exactly the
same results for the AQE and a zero distance for the afferent weights. This illustrates
that the model behaves the same way with or without using the IG formalism and
substrata. The same result is obtained when the IG is used with the DSOM. More
generally, the IG substrate can distribute any SOM-like model without extra design
efforts. If we need to use the Euclidean distance as originally defined by Kohonen
(Kohonen, 1982), then we only need to transmit the topological position of the BMU
along its activity to the four neighbor neurons. There is then a compromise between
the classification accuracy and the hardware efficiency of the system.

2.5.3 FPGA hardware support

The multi-FPGA implementation of the IG is a work in progress based on a pre-
viously implemented Neural Processing Unit (NPU) (Rodriguez, Fiack, and Mira-
mond, 2013) (Fiack, Rodriguez, and Miramond, 2015). As shown in figure 2.5, the
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FIGURE 2.5: Neural Processing Units (NPUs) grid on FPGA.

NPU is made of two main parts: the computation core and the communication en-
gine. The computation core is a lightweight Harvard-like accumulator-based micro-
processor where a central dual-port RAM memory stores the instructions and the
data, both separately accessible from its two ports. A Finite State Machine (FSM)
controls the two independent ports of the memory and the Arithmetic and Logic
Unit (ALU), which implements the needed operations to perform the operations of
algorithm 4. The aim of the communication engine is to bring the input stimuli vec-
tor and the neighbors activities to the computation core at each iteration. The values
of the input vector flow across the NPUs through their xin and xout ports which are
connected as a broadcast tree. The output activity ports of each NPU are connected
to the four cardinal neighbors through a dedicated hard-wired channel. Originally
implemented on an Altera Stratix V GXEA7 FPGA, the resources (LUT, Registers,
DSP and memory blocks) consumption is indeed scalable as it increases linearly in
function of the size of the NPU network (Rodriguez, Fiack, and Miramond, 2013) (Fi-
ack, Rodriguez, and Miramond, 2015). Future works will focus on configuring the
new model in the NPU and implementing it on a more recent and adapted FPGA
device, particularly for the communication part between multiple FPGA boards that
will be based on (Vannel et al., 2018). It will be further discussed in chapter 7.

In terms of scalable FPGA designs for neural networks, we find in the literature
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the work of Moore et al. (Moore et al., 2012) with the Bluehive project, a custom
64-FPGA machine made for large-scale real-time neural network simulation with
a reconfigurable communication topology. Moore et al. showed that FPGAs per-
form much better than current CPUs/GPUs for cellular architectures due to the
low-latency and high-bandwidth communication needs. More recently, Wang et al.
proposed an advanced multipurpose neuromorphic engine that breaks the Liebig’s
law, i.e. the problem that the performance of the system is limited by the component
in shortest supply. The authors implemented an array of identical components, each
of which can be configured as a Leaky Integrate-and-Fire (LIF) neuron, a learning-
synapse or an axon with trainable delay. Wang et al. also proposed an FPGA imple-
mentation of parallel and scalable neuromorphic cortex simulator (Wang, Thakur,
and Schaik, 2018), arranged in minicolumns and hypercolumns. Similarly to (Fiack,
Rodriguez, and Miramond, 2015), the cortex simulator can be reconfigured for sim-
ulating different neural networks without any change in hardware structure by pro-
gramming the memory. However, works in (Moore et al., 2012), (Wang and Schaik,
2018) and (Wang, Thakur, and Schaik, 2018) target SNNs with no on-chip learning
for (Moore et al., 2012) and (Wang, Thakur, and Schaik, 2018). Our goal in terms
of multi-FPGA communication is similar to (Moore et al., 2012), while neurons in-
terconnections are local and thus different from (Wang and Schaik, 2018) (central
controller) and (Wang, Thakur, and Schaik, 2018) (hierarchical communication).

2.5.4 Comparison to state of the art approaches

Finally, the only cellular approach for implementing SOM models is proposed by
Sousa et al. (Sousa and Del-Moral-Hernandez, 2017). It is an FPGA implementation
that shares the same approach as the IG with distributed cellular computing and
local connectivity. However, the IG has two main advantages over the proposed
cellular model in (Sousa and Del-Moral-Hernandez, 2017):

• Waves complexity: The ”smallest of 5” and ”neighborhood” waves in (Sousa
and Del-Moral-Hernandez, 2017) have been coupled into one wave called the
”winner wave”, as the iterative grid is based on time to distance transforma-
tion to find the Manhattan distance between the BMU and each neuron. We
have therefore a gain of about 2× in the time complexity of the SOM training.

• Sequential vs. combinatory architecture: The processes of calculating the neu-
ron distances to the input vector, searching for the BMU and updating the
weight vectors are performed in a single clock cycle. This assumption goes
against the iterative computing paradigm in the SOM grid to propagate the
neurons information. Hence, the hardware implementation in (Sousa and Del-
Moral-Hernandez, 2017) is almost fully combinatory. It explains why the max-
imum operating frequency is low and decreases when increasing the number
of neurons, thus being not scalable in terms of both hardware resources and
latency.

2.6 Conclusion

In this chapter, we have defined our foundations for brain-inspired computing with
the biologically plausible properties that we aim to model in our proposed self-
organizing neural system, namely the multimodal unsupervised learning at the be-
havioral level, the cellular computing at the algorithmic level and the neuromorphic
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implementation at the hardware level. Next, we have made a historical review for
the most successful computational models of neural self-organization, then we have
made the choice of the SOM as a main component for unimodal processing in our
multimodal framework. Finally, we introduced the IG, a cellular neuromorphic ar-
chitecture used to distribute the SOM computation with local connectivity. The idea
is to propagate the neurons information through the neurons grid in a certain num-
ber of iterations until the global information, i.e. the BMU and the distance of each
neuron to it, emerges from the local interactions of connected neurons. We showed
the generalization of the mechanism to any SOM-like model, the IG can therefore
be used as a computing substrata to distribute neural models that use competition-
based learning with excitation/inhibition mechanisms. We further discuss in chap-
ter 3 its impact on scalability in terms of time complexity and connectivity complex-
ity for hardware implementation.
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Chapter 3

Confronting SOMs to SNNs for
unsupervised learning

We can’t afford that all of our research
is devoted to the machine: what we are
trying to learn about isn’t the machine
that we are building, it’s the brain.

Misha Mahowald.

3.1 Introduction

During the last years, Deep Neural Networks (DNNs) have reached the highest per-
formance in classification tasks. However, as previously discussed, such a success is
mostly based on supervised and off-line learning: they require huge labeled datasets
for learning, and once it is done, they cannot adapt to any change in the data from the
environment. Consequently, with the increasing amount of unlabeled data gathered
everyday through Internet of Things (IoT) devices and the difficult task of label-
ing each sample, DNNs are slowly reaching the limits of supervised learning (Dro-
niou, Ivaldi, and Sigaud, 2015) (Chum et al., 2019). Hence, unsupervised learning
is becoming one of the most important and challenging topics in ML and AI. In the
context of brain-inspired computing, we apply the KSOM (Kohonen, 1982) for un-
supervised learning without labels, and we explore two of its major extensions: the
DSOM (Rougier and Boniface, 2011) that enables continuous learning and the PC-
SOM (Upegui et al., 2018) that adds lateral synaptic pruning. First, we present the
spiking neuron and the STDP learning rule of the SNNs that will be our reference for
the comparative study. Afterwards, we introduce the post-labeled unsupervised learn-
ing problem and propose an automatic labeling method with three different variants
to assign the class of each neuron, trying to reach the best accuracy while minimizing
the number of labeled images we need. Finally, we confront the performance of the
Kohonen-based SOMs with STDP-based SNNs in terms of classification accuracy,
learning dynamicity and hardware scalability.

3.2 Spiking Neural Networks (SNNs)

3.2.1 Spiking neurons

Figure 3.1 (“Neurons and glial cells”) represents a simplified anatomy of the biolog-
ical neuron. It contains long and short extensions called axon and dendrites, respec-
tively. Dendrites carry electric potentials towards the cell (inputs) and the axon carry
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FIGURE 3.1: Anatomy of a biological neuron.

them away from the cell (output). The dendrite of one cell is connected to the axon
of another, with a small gap in between called the synaptic gap or the synapse. In
order to transmit information between cell, the cell transmits electrical signals called
"spikes" that travel down the axon and causes the release of neurotransmitters that
travel through the synapse to the other cell (Ranganathan and Kira, 2003). Although
numerous models have been proposed by drawing inspiration from neuroscience
like the biologically plausible complex Hodgkin–Huxley model (Hodgkin and Hux-
ley, 1952) and the Izhikevich model (Izhikevich, 2003), most SNNs rely on the simple
Integrate-and-Fire (IF) or Leaky IF (LIF) neuron models that provide reduced com-
plexity, especially for hardware implementation, while producing the required key
dynamics for computation. Equations 3.1 and 3.2 describe the discrete IF neuron
computation in a multi-layer SNN topology.

sl
j(t) = pl

j(t− 1) +
Nl−1−1

∑
i=0

wl
ij × γl−1

i (t) (3.1)

pl
j(t) =

{
sl

j(t) if sl
j(t) ≤ θ

0 otherwise
γl

j(t) =

{
0 if sl

j(t) ≤ θ

1 otherwise
(3.2)

It is to note in equations 3.1 and 3.2 that Nl−1 is the number of neurons in the layer
l− 1, wij is the synaptic weight between the neuron i the in layer l− 1 and the neuron
j in the layer l, pl

j is the potential of the neuron j in the layer l, θ is the threshold

and γl−1
i is the spike state (0 or 1) of the neuron i in the layer l − 1. Therefore, in

an event-based hardware implementation, the multiplication in equation 3.1 can be
represented as a simple chip enable that triggers the hardware neuron whenever
γl−1

i = 1.
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FIGURE 3.2: STDP modification function.

3.2.2 Spike Timing Dependant Plasticity (STDP)

As previously discussed, connections among neurons are plastic, i.e. locally strength-
ened and weakened so that a global learning could emerge. This synaptic plasticity
in spiking neurons is modeled in the STDP, a brain-inspired unsupervised learning
algorithm where the idea is to detect the causality between the neurons for each
input: if a neuron spikes soon (before the expiry of a time ∆t) after receiving a
spike from a given synapse, it suggests that synapse played an important role in
the triggering of the neuron, and therefore it reinforces that synapse by increasing
its corresponding weight (LTP). In the other case, if a neuron spikes just before or a
long time after receiving a spike from a given synapse, it suggests that synapse has
no impact in the spike of the neuron, and therefore it decreases its corresponding
weight (LTD). Song et al. (Song, Miller, and Abbott, 2000) explain that “the largest
changes in synaptic efficacy occur when the time difference between pre- and post-
synaptic action potentials is small, and there is a sharp transition from strengthening
to weakening as this time difference passes through zero”. This is illustrated in fig-
ure 3.2 (Song, Miller, and Abbott, 2000), where ∆t is the time of the presynaptic spike
minus the time of the postsynaptic spike. The change of the peak conductance at a
synapse due to a single pre- and postsynaptic action potential pair is F(∆t)× Cmax,
where Cmax is the maximum conductance. The original STDP learning rule proposed
by Song et al. (Song, Miller, and Abbott, 2000) is expressed in equation 3.3.

F(∆t) =

{
A+e(∆t/τ+) i f ∆t < 0
−A−e(−∆t/τ−) i f ∆t > 0

(3.3)

It is to note in equation 3.3 that τ+ and τ− determine the ranges of pre- to postsy-
naptic interspike intervals over which synaptic strengthening and weakening occur,
while A+ and A− determine the maximum amounts of synaptic modification which
occur when ∆t is close to zero. The STDP formalized in equation 3.3 provides a rea-
sonable approximation of the dependence of synaptic modification on spike timing
seen in the experimental data (Song, Miller, and Abbott, 2000), but other models of
STDP with different levels of biological plausibility and computational complexity
have been proposed and used, like in (Querlioz et al., 2013), (Diehl and Cook, 2015),
(Kheradpisheh et al., 2018) and (Vigneron and Martinet, 2020).
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3.2.3 SNN models

Baseline SNN

In 2015, Diehl and Cook (Diehl and Cook, 2015) proposed a SNN structure imple-
menting STDP for unsupervised learning with lateral inhibition that generates com-
petition amongst neurons, so that each neuron learns a different pattern. Indeed, as
discussed in chapter 2, STDP requires both an activity-dependent synaptic plasticity
and a competition mechanism (Song, Miller, and Abbott, 2000). This competition is
implemented through a WTA inhibition mechanism. The SNN architecture is made
of input, excitatory and inhibitory layers. Each excitatory neuron receives an SDTP-
modifiable synapse from the input layer, and is connected to one neuron of the in-
hibitory layer which connects back to all the other excitatory neurons. Consequently,
the first neuron that spikes inhibits all others. In order to have a first assessment and
confrontation of the SOM and SNN classification accuracies, we choose the small-
est topology that could be compared in the literature, i.e. 10× 10 map of excitatory
neurons. It implies a 10× 10 map of inhibitory neurons as well, but we do not count
them as effective neurons since they only represent an all-to-all connectivity amongst
excitatory neurons for the inhibition mechanism. The baseline SNN accuracy on
MNIST classification using 100 neurons is 80.71% (Hazan et al., 2018).

Lattice Map SNN (LMSNN)

In 2018, Hazan et al. proposed the Lattice Map SNN (LMSNN) (Hazan et al., 2018),
an extension of (Diehl and Cook, 2015) that combines STDP with a inherent charac-
teristic of the SOM: the topological neighborhood. To do so, the degree of compe-
tition imposed by the connections from the inhibitory layer is curved by increasing
the level of inhibition with the distance between neurons. This form of competition,
called soft competition, has two main advantages over hard competitive methods:
first, in a hard competitive learning system, it is possible to have some “dead units”,
in this case neurons that are never winners for any input signal and, therefore, keep
their initial random weights and remain as unused network resources (Ranganathan
and Kira, 2003). Second, different random initializations may lead to widely differ-
ing results, because the purely local adaptations may not be able to get the system
out of the local minimum where it started (Ranganathan and Kira, 2003). Hence,
the soft WTA mechanism is preferred to the hard WTA for most purposes, including
classification tasks. Indeed, the LMSNN achieved an accuracy of 85.71% ± 0.85%
on MNIST classification with 100 neurons, which improves the performance of the
baseline SNN with hard WTA (Hazan et al., 2018).

Nevertheless, the works of (Diehl and Cook, 2015) and (Hazan et al., 2018) are
limited in their labeling approach: since the training is unsupervised, we need a
labeled subset of the training dataset in order to label the neurons for evaluation
purposes and inference. Still, we must not use the whole training dataset for label-
ing. In the literature, the labeling is performed using one presentation of the whole
training dataset (Diehl and Cook, 2015) (Hazan et al., 2018). It means that the DNNs
initial limit of using labels is only shifted from the training part to the labeling part.
In our work, we evaluate the minimal subset of labeled samples necessary to reach
the best accuracy, as described in section 3.3.
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3.3 SOM labeling and test

3.3.1 Post-labeled unsupervised learning problem

With the fast expansion of IoT devices, a huge amount of unlabeled data is gath-
ered everyday. While it is a big opportunity for AI and ML, the difficult task of
labeling DL techniques slowly reaching the limits of supervised learning (Droniou,
Ivaldi, and Sigaud, 2015; Chum et al., 2019). Hence, unsupervised learning is be-
coming one of the most important and challenging topics in ML. In this thesis, we
introduce the problem of post-labeled unsupervised learning: no label is available
during training and representations are learned in an unsupervised fashion, then
very few labels are available for assigning each representation the class it represents.
The latter is called the labeling phase. The labeling phase is to distinguish from the
fine-tuning process in semi-supervised learning where a labeled subset is used to
re-adjust the synaptic weights and improve the neurons representations. Here, the
synaptic learning is fully unsupervised, and labels are only used to name the class
that each neuron represents. In certain cases such as classification tasks on the edge
where the representations can be qualitatively named (e.g. written digits), this la-
beling phase can be replaced by an expert that should nevertheless not be prompted
often. We consider the general case where the labeling phase is based on a labeled
subset, then we try to minimize its size while maximizing the classification accuracy
on the MNIST dataset (LeCun and Cortes, 1998).

3.3.2 Proposed labeling and test methods

At the end of the training process, each neuron of the SOM corresponds to a cluster
prototype in the considered problem. At this stage, these prototypes are anonymous
and cannot be directly used to perform classifications. The next step explains the
neurons labeling process for transforming the SOM into a classifier. The labeling is
the step between training and test (or inference) where we assign each neuron the
class it represents in the training dataset. In our case with MNIST, each neuron has
to be assigned a digit label from 0 to 9.

We propose in this section a labeling algorithm based on very few labels. The
idea is the following: we consider a randomly chosen labeled subset of the training
dataset, and we try to minimize its size while keeping the best classification accuracy.
The proposed labeling is illustrated as a flowchart in figure 3.3. It can be summarized
in five steps:

• First, we calculate the neurons activations based on the labeled input samples
from the euclidean distance following Equation 2.2, where v is the input vector,
wn and an are respectively the weights vector and the activity of the neuron n.
The parameter α is the width of the Gaussian kernel that becomes a hyper-
parameter for the method.

• Second, the Best Matching Unit (BMU), i.e. the neuron with the maximum
activity is elected.

• Third, each neuron accumulates its normalized activation (simple division)
with respect to the BMU activity in the corresponding class accumulator, and
the three steps are repeated for every sample of the labeling subset.

• Fourth, each class accumulator is normalized over the number of samples per
class.
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FIGURE 3.3: Flowchart: SOM labeling.

• Fifth and finally, the label of each neuron is chosen according to the class accu-
mulator that has the maximum activity.

One could think about a simpler process where we simply count the number of
times each neuron has been BMU for each class, and assign its label accordingly. The
problem with this method is that some neurons are never elected as a BMU within
the labeling subset, especially when this subset is very small and when the number
of neurons grow. Our proposed labeling process prevents from this issue and guar-
antees that all neurons are labeled at the end of the labeling phase regardless of the
labeling subset or SOM sizes.

The generic labeling process is detailed in algorithm 5. We tried three differ-
ent methods that define the functions we use in the generic algorithm: Activation,
Distance and Gaussian. For each of the three methods, we need a labeled subset as
we need to know the class of each sample of it. Hence, we try to find the labeling
method that requires the minimum number of labeled samples without reducing the
best accuracy.

The associated functions of the three methods are detailed in table. 3.1, and their
impact on accuracy with different labeling subset sizes is explained in section 3.3.3.

The parameter σ that we use in the function dist_method of the Gaussian method
is the width of the Gaussian function that weighs the relevance of each neuron to
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Algorithm 5: SOM labeling algorithm
1: Initialize label_count = zeros[number_of_classes];

accumulator = zeros[number_of_neurons, number_of_classes].
2: for every input sample in the labeling subset do
3: for every neuron in the SOM network do
4: dist_matrix[neuron.index] = dist_method(neuron.weights, image.pixels)
5: end for
6: best_dist = best_dist_method(dist_matrix)
7: label_count[image.label] += 1
8: accumulator[neurons, image.label] += norm_acc_method(dist_matrix,

best_dist)
9: end for

10: for i in range(number_of_classes) do
11: accumulator[neurons, i] /= label_count(i)
12: end for
13: for every neuron in the SOM network do
14: neuron_label[neuron.index] = find_best(accumulator[neuron.index])
15: end for

TABLE 3.1: SOM labeling and test methods.

Function
Method

Activation Distance Gaussian

dist_method(x, y) ∑max
i=0 (x[i]× y[i])

√
∑max

i=0 (x[i]− y[i])2 e
−
√

∑max
i=0 (x[i]−y[i])2

σ

best_dist_method(x) max(x) min(x) max(x)
norm_acc_method(x, y) x / y x - y x / y
find_best(x) argmax(x) argmin(x) argmax(x)

the input sample with respect to its weights distance to the sample. We propose a
method to approximate σ in algorithm 6.

Algorithm 6: σ computation algorithm for gaussian labeling method
1: Initialize dist_to_origin = zeros[number_of_neurons].
2: for every neuron in the SOM network do
3: dist_to_origin[neuron.index] =

√
∑max

i=0 (neuron.weights[i])2

4: end for
5: σ = standard_deviation(dist_to_origin)

After training and labeling, the remaining step is the test for accuracy which is
detailed in algorithm 7. Here again, we try three test methods for inference, each
of them corresponding to one of the three labeling methods whose functions are
detailed in table 3.1.

3.3.3 Labeling methods: comparative study

After training the KSOM in 10 epochs on MNIST, we performed the labeling on the
same trained network using three methods as shown in figure 3.4. The results are
averaged over 10 different subsets of the same size each time.
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Algorithm 7: SOM test algorithm
1: Initialize accuracy_count = 0; confusion_matrix = zeros[number_of_classes,

number_of_classes]
2: for every input sample in the test subset do
3: for every neuron in the SOM network do
4: dist_matrix[neuron.index] = dist_method(neuron.weights, image.pixels)
5: end for
6: best_neuron = find_best(dist_matrix)
7: if best_neuron.label = image.label then
8: accuracy_count += 1
9: end if

10: Update confusion_matrix
11: end for
12: accuracy = (accuracy_count ÷ test_subset_size) × 100%

On the one hand, the Activation method does not perform well because of the
confusion it creates between two different samples during labeling: for example, the
activity (multiplication and activation) between the prototype neuron 1 and the two
digits 1 and 7 is nearly the same, because the horizontal bar of 7 that makes the
difference is multiplied by zero. Hence, the Activation method can hardly recognize
which of the digits 1 and 7 the prototype neuron 1 represents. This confusion may
also happen for other digits where one of them is "part of the other", like the digits
6 and 8. In contrary, the Distance method does not cancel this difference. On the
other hand, the Gaussian method leads to a better accuracy than the Distance method,
because of the distance modulation mechanism that gives more importance to the
neurons whose weights are closer to the input sample during labeling. Moreover,
the Gaussian method reaches the best accuracy with only 1% of labeled data, and the
performance does not fluctuate a lot with different labeling subsets (±0.23).
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FIGURE 3.4: SOM labeling methods comparison.

In order to qualitatively asses our best labeling method with the minimal labeled
subset size, i.e. the Gaussian method with 1% of labeled data, we displayed the
KSOM trained weights in figure 3.5-a and their corresponding labels in figure 3.5-b.
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We see that we would manually do the same labeling, except for one neuron which
didn’t converge well (neuron in the bottom right corner of the KSOM grid, labeled
as 4). We could only hesitate between some labels whose representations are very
close, like 4 and 9, and this is an interesting point that we discuss further in section
3.4. Hence, we tried to manually label the KSOM, modifying some labels of the
Gaussian method: the accuracy decreased by approximately 1%. It shows that the
Gaussian method performs better than a qualitative manual labeling.

FIGURE 3.5: KSOM trained on MNIST: (a) neurons synaptic weights;
(b) neurons labels; (c) neurons BMU counters; (d) confusion matrix.

3.4 MNIST unsupervised classification performance

3.4.1 Confronting KSOM, DSOM and PCSOM

In order to compare the accuracy performance of our three SOMs with each other
and with respect to the state of the art, the first step is to perform the training of each
of the KSOM, DSOM and PCSOM over the MNIST training dataset for the same
number of iterations, and then to perform the labeling and the test. Even though
the DSOM and PCSOM enable on-line learning, we stop it during labeling and test
to assess the performance of our three SOMs with the same number of images for
training. Once again, we do not use any label for training, even if they are actually
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available in the MNIST training dataset, as the goal of our work is to generalize our
method for unlabeled datasets and data from the real-world environment where
there is no label.

A important step was to determine the number of iterations that we needed for
learning in order to achieve the best accuracy. In other words, we had to set a con-
vergence criterion that would guide us to the number of iterations we need, and we
have chosen the Average Quantization Error (AQE) as done in (Upegui et al., 2018).
It is calculated after each iteration on the same randomly chosen subset of 10% of
the training dataset following equation 3.4.

AQE =
1
K

K

∑
i=1

min
1≤n≤N

(√√√√max

∑
p=0

(imagei[p]− neuronn[p])2

)2

(3.4)

It is to note in equation 3.4 that K is the number of input vectors used as reference
for computing the AQE (we use 10% of the training dataset, so K = 6000), N is
the total number of neurons and p is the index of the pixel in the image and the
corresponding synaptic weight in the neuron. We notice that we only consider the
minimum euclidean distance between the image and the neurons, i.e. the distance
between the image and the BMU.

TABLE 3.2: SOMs training hyper-parameters.

KSOM DSOM PCSOM
εi ε f σi σf ε η α η ω
1 0.01 5 0.01 0.005 0.1 0.01 0.1 0

We trained the three SOMs over 10 epochs on the 60, 000 training images of
MNIST database. The hyper-parameters were found with a grid search and are re-
ported in table 3.2. To assess the learning convergence, we calculated the AQE after
each iteration on the same randomly chosen subset of 10% of the training dataset.
The results in figure 3.6, averaged over 10 runs of training, show that the three SOMs
learnings converge with different speeds: the KSOM converges after approximately
7 iterations, while the DSOM and PCSOM converge after only 3 iterations, with the
two plots almost superposed. This is due to the absence of temporal dependency
in both DSOM and PCSOM. Nevertheless, the KSOM converges to a slightly better
AQE value that is reflected by a better accuracy, as shown in figure 3.7. The AQE,
though, is not directly proportional to the accuracy, as two different representations
may have the same AQE but different test (generalization) accuracies.

We computed the test accuracy after each training epoch, as shown in figure 3.7,
averaged on 10 runs of training. We see that the DSOM and PCSOM learn faster than
the KSOM, but the KSOM reaches the highest accuracy of 87.36%± 00.23%. Like for
STDP-based learning (Diehl and Cook, 2015), one good property of Kohonen-based
learning is the absence of over-fitting even when performed for 100 epochs, i.e 6 mil-
lion samples (accuracy of approximately 87%). Indeed, unlike many ANNs which
tend to over-fit the data (Diehl and Cook, 2015), the SOMs learning is stable over
time. We calculated the average and standard deviation of the test accuracy for each
of the three models over 10 runs of training (10 epochs each, with random initializa-
tion and training dataset shuffle after each epoch). The results are summarized in
table 3.3.
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FIGURE 3.6: SOMs training AQE on MNIST.
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FIGURE 3.7: SOMs classification accuracy on MNIST.

Figure 3.5-c shows the number of times each neuron has been BMU during test.
Since the number of digits per class in the MNIST test dataset is nearly equal, the
neurons which have been BMUs the most are the neurons that are the fewest to rep-
resent a class, like the digit class 1. This is an interesting behavior which shows that
the more diverse the class is, the more neurons it needs to represent it. The digit 1, in
contrary, does not have a high diversity, it can thus be represented by fewer neurons
which are then BMUs more often. To understand the KSOM mistakes, we plot the
confusion matrix in figure 3.5-d where the left column represents the image class and
the top row represents the BMU label. We notice that the biggest values occur in the
diagonal, with some peak values between the digits whose representations are close:
16.75% of the digits 9 are classified as a 4, and 14.46% of the digits 4 are classified as
9. We find the same mistakes with a lower percentage between the digits 3, 5 and
8, because of their proximity in the 784-dimensional vector space. Our hypothesis is
that the multimodal association can overcome these mistakes by adding a different
but complementary modality like sound, and exploiting both modalities to improve
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the overall accuracy. This will be explored in detail in chapter 5.

3.4.2 Confronting SOMs to SNNs

Both SOMs and SNNs are brain-inspired neural models that were intitially pro-
posed to model the cortical plasticity as presented in chapter 2. They both learn
a compressed representation of the data in an unsupervised fashion by using a two-
dimensional neural map topology. The neurons of SOMs and SNNs have excitatory
afferent connections and a lateral competition mechanism necessary for the learn-
ing, which is based on two phases: the global election of the winning neuron (called
a BMU in the SOM and a WTA in the SNN) and the local synaptic weights update.
SOMs and SNNs only differ in the way they encode information. SNNs use spike
coding in a certain temporal window while SOMs use activities that can be consid-
ered as an average spiking rate. In spite of the different information coding schemes,
the SOM and SNN neurons prototypes are very similar and the learning converges
in a similar way. The work of Hazan et al. (Hazan et al., 2018) where the authors
merged the baseline SNN model with the topolgical neighborhood inherent to the
SOM to improve the SNN accuracy is another evidence of the strong link between
the two models. This is further discussed in the comparative study of this section,
where we first compare the SOM models then confront them to SNNs.

In terms of accuracy, the KSOM outperforms the DSOM and PCSOM. However,
the DSOM and PCSOM enable on-line learning and can continuously learn from a
dynamic environment. The PCSOM can also enable the lateral synaptic pruning,
but this mechanism does not achieve a better accuracy on MNIST classification, and
that’s why we disabled it (ω = 0 in table 3.2). Indeed, the hyper-parameter ω is very
difficult to adjust so that we have the desired amount of pruning that separates the
neurons clusters. Moreover, the neurons representing the same class are not always
in the same topological neighborhood, as shown in figure 3.5-a. This is the natural
behavior of the KSOM with the chosen hyper-parameters and the small number of
neurons. It causes topologically close neurons whose weights are close at the be-
ginning of the training to converge toward different classes at the end. Therefore,
the learning with pruning is inefficient for our application with high-dimensional
data. Furthermore, in order for the PCSOM to be totally dynamic, it needs to im-
plement in addition a form of sprouting so that two neurons that would have been
disconnected could reconnect to each other if the input stimuli change accordingly.
However, one could think the opposite way: the pruning can be "stable" and even be
done manually if we know from the beginning the number of classes that are present
in our data. The idea is that the topological pruning will separate during training
the neurons clusters of different classes and thus prevent them from learning from
one another. It can be a solution to the catastrophic forgetting that occurs in ANNs,
but this topic is out of the scope of this manuscript.

Some previous works attempted to use SOMs for MNIST classification, using
complex multi-layered SOM structures to behave as receptive field in a local re-
gion of the input. They achieved classification accuracies of 80.46% (Liu, Wang, and
Gong, 2015) and 82.10% (Wickramasinghe, Amarasinghe, and Manic, 2017) at the
cost of thousands of neurons. We showed that we can achieve a better performance
with a standard SOM architecture plus a well defined labeling mechanism with very
few labels.

Compared to SNNs, the KSOM (87.36% ± 00.23%) achieves a better accuracy
than the the state of the art LMSNN (85.71%± 00.85%) for the same number of neu-
rons (100). In addition, the SOMs only needs 1% of labeled samples for the neurons
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TABLE 3.3: MNIST unsupervised learning with SOMs and SNNs.

Learning ANN Model # neurons
Labeled images

Test accuracy (%)
Number %

STDP
SNN (Diehl and Cook, 2015) 100 60,000 100 80.71 ± 1.66
LMSNN (Hazan et al., 2018) 100 60,000 100 85.71 ± 0.85

Kohonen
KSOM [Our work] 100 600 1 87.36 ± 0.23
DSOM [Our work] 100 600 1 85.19 ± 0.54
PCSOM [Our work] 100 600 1 84.53 ± 0.95

labeling. However, the LMSNN, just like the DSOM and PCSOM, enables dynamic
learning, and the three models reach approximately the same accuracy. From a hard-
ware perspective, the SNNs computation is shown to be hardware-efficient (Khacef,
Abderrahmane, and Miramond, 2018). Nevertheless, even though the STDP itself
is local, the excitatory/inhibitory mechanism that allows the STDP learning conver-
gence implies an all-to-all connectivity that is not scalable, especially for embedded
applications. We discuss the scalability performance of the SOM with the IG in sec-
tion 3.5.

3.5 Scalability performance for hardware implementation
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FIGURE 3.8: IG time complexity.

First, in order to express the time complexity of the IG formalism, we consider
the case of square maps of n = m×m neurons. Let Ot be the computing time com-
plexity of a neuron regardless of the simulated model. The standard centralized
implementation must sequentially compute the equation of each neuron. That is to
say m × m ×Ot and thus a time complexity in O(m2)Ot = O(n)Ot. The IG imple-
mentation in software (sequentially simulated) adds 2m− 2 propagation iterations
for which each cell computes Ot, i.e. 2m×m×m×Ot and thus a time complexity in
O(m3)Ot = O(n

√
n)Ot. The fully distributed IG hardware implementation allows the

cells to compute (the Ot) in parallel. It means that the m2 factor is transformed into
hardware resources and the time complexity becomes O(m)Ot. It is thus a square
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root complexity in O(
√

n)Ot when expressed relatively to the number of neurons n.
These results are illustrated in figure 3.8.
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Second, in order to express the connectivity complexity of the IG formalism, we
consider the same case of square maps of n neurons. Let Oc be the connectivity com-
plexity of a synapse between two neurons. The original distributed SOM (Kohonen,
1982) as well as the SNN (Diehl and Cook, 2015) with fully-connected architectures
have n × n connections and thus a connectivity complexity in O(n2)Oc. The fully
distributed IG hardware implementation requires 4 connections per neuron (except
for the border neurons which need less), so that each neuron is connected to each
of its local neighbors by two connections. This way, two connected neurons can si-
multaneously read information from each other. The total number of connections is
therefore 4n, which means a linear connectivity complexity in O(n)Oc.

Here, the O(n) complexity is studied in terms of time and connectivity, but since
all cells are identical and because of the grid mesh structure of the IG substrata,
the complexity in terms of chip area and power consumption also follows a linear
curve (Rodriguez, Fiack, and Miramond, 2013) (Fiack, Rodriguez, and Miramond,
2015) (Khacef, Abderrahmane, and Miramond, 2018). Therefore, we can use the IG
concept to design a scalable implementation for SOM-like models.

3.6 Conclusion

In the context of brain-inspired computing for unsupervised learning, we have re-
viewed the state of the art SNN models with STDP learning and different inhibition
mechanisms. Then we have introduced the post-labeled unsupervised learning problem
and proposed an automatic labeling method with three different variants, in order
to assign each neuron the class it represents. Afterwards, we applied the KSOM,
DSOM and PCSOM for training without labels, and showed that the best labeling
method needs only 1% of labeled data and outperforms the qualitative manual la-
beling in terms of accuracy. We have then confronted the Kohonen-based SOMs
with STDP-based SNNs on MNIST classification, and the KSOM achieves the best
accuracy (87.36%± 00.23%) with the same number of neurons (100), as summarized
in table 3.4.
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TABLE 3.4: SOM vs. SNN: comparative study summary.

Criteria SNNs SOMs SOMs with IG
Accuracy (100 neurons) 85.71% 87.36% 87.36%
Labeled training subset 100% 1% 1%
Unsupervised learning Yes Yes Yes
Dynamic learning Yes Yes Yes
Dsitributed computing Yes No Yes
Local connectitivy (scalable) No No Yes
Hardware cost Very low High Low

Overall, the SOMs with IG offer a better compromise than SNNs with a better ac-
curacy using very few labeled samples for labeling, as well as a scalable neuromor-
phic architecture. Nevertheless, SNNs remain interesting to their very low hardware
cost (Abderrahmane, Lemaire, and Miramond, 2020) that needs to be further quanti-
fied. Before going into the multimodal association mechanism in chapter 5, we want
to show that the SOM can achieve better results in MNIST and deal with more com-
plex datasets such as natural images without increasing exponentially the number
of neurons: we will instead use feature extraction.
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Chapter 4

Improving the SOM performance
with feature extraction

Brains operate not by logic but by
pattern recognition. This process is not
precise [...]. Instead, it trades off
specificity and precision, if necessary,
to increase its range.

Gerald Edelman.

4.1 Introduction

We propose in this chapter to improve the SOM performance by using extracted
features instead of raw data in two different contexts: fully unsupervised learn-
ing and transfer learning. In the first part, we will conduct a comparative study
on the SOM classification accuracy with unsupervised feature extraction using two
different approaches: a machine learning approach with Sparse Convolutional Auto-
Encoders using gradient-based learning, and a neuroscience approach with convo-
lutional SNNs using STDP learning. The SOM is trained on the extracted features,
then very few labeled samples are used to label the neurons with their correspond-
ing class, as explained in chapter 3. We investigate the impact of the feature maps,
the features sparsity, the SOM size and the labeled subset size on the MNIST hand-
written digits classification accuracy using the different feature extraction methods.
We also experiment a supervised Convolutional Neural Network (CNN) with the
same topology for approximating the best accuracy we can expect from the fea-
ture extraction. In the second part, we use the SOM to classify more complex data:
natural images in the mini-ImageNet few-shot classification task, a state of the art
ML challenge where the goal is to train a classifier using a very limited number
of labeled examples. This scenario is likely to occur frequently in real life when
data acquisition or labeling is expensive. To address this problem, we consider an
algorithm consisting in the concatenation of transfer learning with clustering us-
ing SOMs, then we demonstrate the ability of the proposed method in reaching
top performance with the challenging benchmark of mini-ImageNet classification
task. To speedup the SOM training process, we propose in appendix A a GPU-
based SOM implementation with TensorFlow capable of running 100× faster on av-
erage on Nvidia GPUs compared to the standard CPU implementation. The com-
plete GPU-based source code for the SOM training, labeling and test is available in
https://github.com/lyes-khacef/GPU-SOM.

https://github.com/lyes-khacef/GPU-SOM
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4.2 SOM on MNIST unsupervised classification

4.2.1 Unsupervised feature extraction

In this section, we review the related work and present the proposed methodology
for unsupervised feature extraction.

Sparse Convolutional AutoEncoders (SCAE)

Introduced by Rumelhart, Hinton and Williams (Rumelhart, Hinton, and Williams,
1988), AEs were designed to address the problem of back propagation without su-
pervisor via taking the input data itself as the supervised label (Baldi, 2012). To-
day, AEs are typically used for dimensionality reduction or weights initialization in
CNNs to improve the classification accuracy (Masci et al., 2011) (Kohlbrenner, 2017).
In this work, we want to use AEs as feature extractors with unsupervised learning.
In such cases, the feature map representation of a Convolutional AE (CAE) is most
of the time of a much higher dimensionality than the input image. While this feature
representation seems well-suited in a supervised CNN, the so-called overcomplete
representation becomes problematic in an AE since it gives the autoencoder the pos-
sibility to simply learn the identity function by having only one weight “on” in the
convolutional kernels (Masci et al., 2011). Without any further constraints, each con-
volutional layer in the AE could easily learn a simple point filter that copies the input
onto a feature map (Kohlbrenner, 2017). While this would later simplify a perfect re-
construction of the input, the CAE does not find any more suitable representation
for our data. To prevent this problem, some constraints have to be applied in the
CAE to increase the sparsity and therefore the saparability of the features.

The concept of sparsity was introduced in computational neuroscience, as sparse
representations resemble the behavior of simple cells in the mammalian primary vi-
sual cortex which is believed to have evolved to discover efficient coding strategies
(Olshausen and Field, 1997). It has been proven that encouraging sparsity when
learning the transformed representation can improve the performance of classifica-
tion tasks (Hoyer, 2004). Indeed, the overcomplete architecture of a CAE allows a
larger number of hidden units in the code, but this requires that for the given input,
most of hidden neurons result in very little activation (Ng, 2011). In a Sparse CAE
(SCAE), activations of the encoding layer need to have low values in average. Units
in the hidden layers usually do not fire (Charte et al., 2018) so that the few non-zero
elements represent the most salient features (Ng, 2011).

In order to increase the sparsity of the CAE’s feature representation, several
methods can be found in the literature. In (Masci et al., 2011), the authors use max-
pooling to enforce the learning of plausible filters, but the filters are then fine-tuned
with supervised learning for the classification. Since we do not want to use any label
in the training process, we apply additional constraints in the SCAE, namely weights
and activity constraints of types L2 and L1, respectively (Nan Jiang et al., 2015).

Convolutional SNNs (CSNNs)

As explained in the previous chapters, SNNs are a brain-inspired family of ANNs
used for large-scale simulations in neuroscience (Furber et al., 2014) and efficient
hardware implementations for embedded AI (Davies et al., 2018). They are charac-
terized by the spike-based information coding, a computational model of the elec-
trical impulses amongst the biological neurons. The amplitude and duration of all
spikes are almost the same, so they are mainly characterized by their emission time
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(Kheradpisheh et al., 2018). Furthermore, spiking neurons appear to fire a spike only
when they have to send an important message, which leads to the fast and extremely
energy-efficient neural computation in the brain.

Moreover, SNNs have a great potential for unsupervised learning through STDP
(Diehl and Cook, 2015), a biologically plausible local learning mechanism that uses
the spike-timing correlation to update the synaptic weights. Kheradpisheh et al.
proposed in (Kheradpisheh et al., 2018) a SNN architecture that implements con-
volutional and pooling layers for spike-based unsupervised feature extraction. The
SNN processes image inputs as follow. The first layer of the network uses Differ-
ence of Gaussians (DoG) filters to detect contrasts in the input image. It encodes the
strength of the edges in the latencies of its output spikes, i.e. the higher the contrast,
the shorter the latency. On the one hand, neurons in convolutional layers detect
complex features by integrating input spikes from the previous layer, and emit a
spike as soon as they detect their "preferred" visual feature. A WTA mechanism is
implemented so that the neurons that fire earlier perform the STDP learning and
prevent the others from firing. Hence, more salient and frequent features tend to be
learned by the network. On the other hand, neurons in the pooling layers provide
translation invariance by using a temporal maximum operation, and help the net-
work to compress the flow of visual data by propagating the first spike received from
neighboring neurons in the previous layer which are selective to the same feature.
However, in (Kheradpisheh et al., 2018), the extracted features were classified using
a supervised Support Vector Machine (SVM). In this work, we use the unsupervised
SOM classifier to keep the unsupervised training from end to end.

4.2.2 CNN, SCAE and SNN training methods

In order to compare the feature extraction performance, we use the topologies shown
in table 4.1 for the three approaches.

TABLE 4.1: CNN, SCAE and SNN feature extractors topologies.

Model Topology
CNN 28× 28× 1− 64c5− Xc5− p5
SCAE 28× 28× 1− 64c5− Xc5− p5
SNN 28× 28× 1− 64c5− p2− Xc5− p2

We therefore use two convolutional layers of 64 maps and X maps respectively.
Each one uses 5 × 5 kernels followed by a max-pooling layer. The reason for the
different pooling mechanism of the SNN is explained in the following. We explore
the impact of the number of features X on the classification accuracy.

CNN training

The CNN is modeled in TensorFlow/Keras (Abadi et al., 2016) (Chollet et al., 2015)
and trained with Adadelta (Zeiler, 2012) gradient-based algorithm for 100 epochs
with a learning rate of 1.0. Since the goal is to estimate the maximum accuracy we
can expect from each topology, the CNN is trained with the labeled training set by
using 10 neurons with a Softmax activation function on top of the last pooling layer.
Even though the CNN uses the sparsity constraints described in the following, this
network is simply noted as CNN+MLP in the rest of this section.
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SCAE training

The SCAE is also modeled in TensorFlow/Keras and trained using Adadelta (Zeiler,
2012) gradient-based algorithm for 100 epochs with a learning rate of 1.0. However,
no label is used in the training process, as the goal of the SCAE is to reconstruct the
input in the output. The complete SCAE topology is 28 × 28 × 1 − 64c5 − Xc5 −
p5− u5− 64d5− 1d5, where u stands for up-sampling and d stands for deconvolu-
tion (or transposed convolution) layers. The complete architecture is thus symetric.
We add to every convolution and deconvoltion layer a weight constraint of type L2
(λ ∑max

i=0 w2
i ), and we add to the second convolution layer that produces the features

an activity constraint of type L1 (λ ∑max
j=0 ‖aj‖). The weights and activity regularisa-

tion rates λ are set to 10−4. Therefore, the objective function of the SCAE takes in
account both the image reconstruction and the sparsity constraints.

SNN training

The SNN is modeled in SpykeTorch (Mozafari et al., 2019), an open-source simulator
of convolutional SNNs based on PyTorch (Paszke et al., 2019). The SNN is trained
with STDP layer by layer, with a different pooling mechanism than the CNN and
SCAE. Except for the number of feature maps and kernel sizes, we kept the same
hyper-parameters as the original implementation of (Kheradpisheh et al., 2018) that
can be found on (Mozafari et al., 2019). Hence, we used a pooling layer of 2× 2 after
each convolutional layer, with a padding of 1 before the second convolutional layer.
The threshold of the neurons in the last convolutional layer were set to be infinite
so that their final potentials can be measured (Kheradpisheh et al., 2018). Finally,
the global pooling neurons compute the maximum potential at their corresponding
receptive field and produce the features that will be used as input for the SOM. Our
experimental study showed that the added padding and the pooling mechanism
proposed in (Mozafari et al., 2019) performs better than the one used in the CNN
and SCAE (i.e. no padding and one pooling layer), with a gain of 1.43% on the
maximum achievable accuracy.

4.2.3 Confronting SCAE, SNN and CNN feature extraction with a SOM
classifier

Comparative study: feature maps, SOM neurons and labels

For simplicity, we refer as SOM to the original KSOM described in chapters 2 and 3.
The following SOM training hyper-parameters for the different settings were found
with a grid search: εi = 1.0, ε f = 0.01, ηi = 10.0, η f = 0.01, α = 1.0 and the number
of epochs is 10.

First, figure 4.1 shows the impact of the number of feature maps in the second
convolutional layer, using 256 neurons in the SOM and 10% of labels. We deliber-
ately use a large number of labels to avoid any bias due to the labeling performance,
and focus on the impact of the feature maps. The accuracy of the CNN+SOM and
SCAE+SOM is increasing with respect to the number of feature maps, reaching a
maximum at 256 maps. Interestingly, the CNN+SOM performs better with 8 maps
(97.56%) than with 16 (97.25%), 32 (97.00%), 64 (97.26%) or 128 (97.31%) maps. This
is due to the tradeoff between additional information and additional noise induced
by more feature maps according to the SOM classification. In fact, the CNN+MLP
supervised baseline accuracy is increasing from 98.7% to 99% when the feature maps
increase from 8 to 512. This observation is more pronounced when we look at the
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Feature maps in the last convolutional layer
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FIGURE 4.1: SOM classification accuracy on MNIST using CNN,
SCAE and SNN feature extraction vs. number of feature maps with

256 SOM neurons and 10% of labels.

SNN+SOM that reaches a maximum accuracy for 64 maps then drastically decreases
with more feature maps. Following the approach of (Kheradpisheh et al., 2018), we
used a SNN+SVM supervised baseline and its accuracy increases from 97% to 98%
when the feature maps increase from 64 to 512. It means that the increasing number
of feature maps for the SNN produces noisy features that do not affect the super-
vised classification but do decrease the unsupervised classification accuracy. This
is due to the overlapping of the SOM prototypes overlap that become then less de-
scriminative. In fact, this behavior is either due to the STDP learning or to the spike
coding paradigm of SNN. In order to eliminate the wrong answer, we trained a SNN
with spike-based surrogate gradient in SpykeTorch (Mozafari et al., 2019) and varied
the number of feature maps for comparison with the SNN+SOM in figure 4.1. We
found that the gradient-based SNN+SOM is reaching an accuracy plateau of 98.2%
starting from 256 feature maps with 256 neurons. Thus, the decreasing performance
with large features for the SNN+SOM is not due the spike coding but to the STDP
local learning. We observe that the STDP-based SNN+SOM with large features does
not converge well with the chosen hyper-parameters. Finally, we choose 256 maps
for the CNN and SCAE that produce a feature size of 4096, and 64 maps for the SNN
that produces feature maps of size 3136. We remark that the SNN features size is dif-
ferent from the CNN/SCAE features size, which is due to the added padding and
the different pooling mechanism as explained in section 4.2.2.

Second, with the above mentioned topologies, we investigated the impact of the
SOM size with 10% of labels, from 16 to 10,000 neurons. We see in figure 4.2 that
the accuracy of the four systems is increasing with respect to the number of neurons.
We notice that the SNN-SOM reaches the same accuracy as the SCAE+SOM starting
from 1024 neurons. Nevertheless, for the next step of the study, it is important to
keep the same number of neurons. Hence, we have chosen the number of neurons
for which one of the SCAE+SOM or SNN+SOM reaches the maximum accuracy,
which is equal to 256 neurons with respect to the SCAE+SOM accuracy.

Third, using 256 neurons for the SOM, we investigated the impact of the label-
ing subset size in terms of % of the training set. Figure 4.3 shows that the accu-
racy increases when the labeled subset increases. Interestingly, the CNN+SOM and
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FIGURE 4.2: SOM classification accuracy on MNIST using CNN,
SCAE and SNN feature extraction vs. number of SOM neurons with

the optimal topologies and 10% of labels.
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FIGURE 4.3: SOM classification accuracy on MNIST using CNN,
SCAE and SNN feature extraction vs. % of labeled data from the
training subset for the neurons labeling with the optimal topologies

and 256 SOM neurons.

SCAE+SOM reach their maximum accuracies with only 1% of labeled data, while the
SNN+SOM and SOM need approximately 5% of labeled data. Since the SCAE+SOM
performs better than the SNN+SOM, we only need 1% of labeled data. It confirms
the results obtained in chapter 3.

Finally, the comparative study of the four settings with their best topologies, us-
ing 256 neurons for the SOM and 1% of labeled data for the neurons labeling is sum-
marized in figure 4.4. As expected, the SOM without feature extraction has the worst
accuracy of 90.81% ± 0.15 and the CNN+SOM with supervised feature extraction
reaches the best accuracy of 97.94%± 0.22. More interestingly, with fully unsuper-
vised learning, the SCAE performs better than the SNN (+1.53%), with 96.9%± 0.24
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FIGURE 4.4: SOM classification accuracy on MNIST using CNN,
SCAE and SNN feature extraction: summary of the comparative
study with the optimal topologies, 256 SOM neurons and 1% of la-

bels.

and 95.37%± 0.58 respectively. In the following section, we try to investigate the
role of sparsity in the features separability and classification with the SOM.

Features sparsity investigation

Sparsity is commonly imposed in AEs, especially when the set of features is over-
complete, i.e. the dimension of the feature is larger than the dimension of the input
(Nan Jiang et al., 2015). As discussed before, it implies that most units take values
close to zero while only few take significantly non-zero values. In this section, we
quantifity the sparsity of the extracted features of the CNN, SCAE and SNN using
the sparseness measure proposed in (Hoyer, 2004). It is based on the relationship
between the L1 norm and the L2 norm as expressed in equation 4.1.

Sparsity( f ) =

√n f − ∑
n f
i=0 | fi |√
∑

n f
i=0 f 2

i√n f − 1
(4.1)

It is to note in equation 4.1 that f is the feature vector and n f is the dimension
of f . The sparsity value lies between 0 and 1: a vector with all elements equal has a
sparsity of 0, whereas a vector with only a single non-zero component has a sparsity
of 1. It means that larger values indicate sparser features.

The sparsity results are reported in table 4.2. First, if we look at the unsupervised
models, we see that the SCAE is sparser than the SNN which is in turn sparser than
the CAE. The SNN is not the sparsest model because even though each neuron can
only spike once, it does not prevent the other neurons to spike as well. The SNN
features are therefore binary with only 0 and 1 values but less sparse compared to
the SCAE.
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TABLE 4.2: Features sparsity: comparative study.

Features learning Model Sparsity constraints Sparsity SOM accuracy (%)

Unsupervised
CAE No 0.35 94.9
SNN Yes1 0.57 95.4
SCAE Yes2 0.78 96.9

Supervised CNN
No 0.42 97

Yes2 0.92 97.9

1 WTA inhibition mechanism.
2 L1 and L2 constraints on activities and weights, respectively.

FIGURE 4.5: SOM prototypes with different features extractors on
MNIST.
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This is illustrated in figure 4.5 that shows SOM prototypes labeled "3" with the
different feature extractors. The SCNN stands for sparse CNN which is simply noted
as CNN in the rest of the section. It is to note that the SNN features (64× 49 = 3136)
are smaller than the others (256× 16 = 4096) because of the different pooling mech-
anism explained in section 4.2.2. Also, even though the SNN features are binary,
their prototypes are not binary since they are centroids of a cluster of features. Fur-
thermore, we can notice some similar characteristics amongst the CAEs and CNNs
with or without sparsity constraints, in the form of horizontal bars corresponding to
the activations of the same weighted neurons connected to different visual fields.

Overall, the most important remark for the unsupervised models is that the in-
crease in sparsity is reflected in a better accuracy. The same remark is correct when
we look at the supervised models alone, namely the CNN without and with sparsity
constraints. We can therefore conclude that within the same learning paradigm for
the feature extraction, unsupervised or supervised, the features sparsity measure is
a good indicator that is strongly correlated with the SOM classification accuracy.

However, this conclusion cannot be extended in general, because of the counter-
example of the CNN without sparsity: its features are less sparse (0.42) than those
of the SNN (0.57) and the SCAE (0.78), but the CNN features classification accuracy
with the SOM is better. Our results are in the continuity of the literature findings in
two aspects. First, although sparsity is a desirable property for good representation,
an excessive level of sparsity can be detrimental (Nan Jiang et al., 2015) (Falez et al.,
2019), that’s why we had to optimize the λ hyper-parameter for the CNN and SCAE
trainings in section 4.2.2. Second, the sparsity measure alone is not a sufficient indi-
cator to assess for the quality of features before classification. Indeed, we have seen
that the sparsity is not always correlated with the classification accuracy, especially
when comparing features that are extracted with different learning paradigms, i.e.
supervised and unsupervised learning.

Summary

TABLE 4.3: Comparison of unsupervised feature extraction and clas-
sification techniques in terms of accuracy and hardware cost.

Feature extraction Classification Performance
Model Learning Model Learning Accuracy (%) Error (%) Hardware cost
CNN Supervised MLP Supervised 99.00 1.00 High
CNN Supervised SOM Unsupervised 97.94 2.06 Medium
SCAE Unsupervised SOM Unsupervised 96.90 3.10 Medium
SNN Unsupervised SOM Unsupervised 95.37 4.63 Low

To summarize, we can see in table 4.3 the gap between supervised and unsuper-
vised methods for feature extraction and classification. Interestingly, we only lose
about 1% of accuracy when going from CNN+MLP to CNN+SOM, and another 1%
when going from CNN+SOM to SCAE+SOM. The gap is slightly higher when go-
ing from SCAE+SOM to SNN+SOM, which is about 1.5%. In return, the hardware
cost decreases when using SOMs and SNNs, thanks to the brain-inspired computing
paradigm (distributed and local). Indeed, we showed in (Khacef, Abderrahmane,
and Miramond, 2018) that the SNN has a gain of approximately 50% in hardware re-
sources and power consumption when implemented in dedicated FPGA and ASIC
hardware. However, this study was performed on fully connected layers only, and
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needs to be extended to convolutional and pooling layers to have a more precise
quantification of the hardware gain we can expect from convolutional SNNs. More-
over, the SNN features are binary, which provides an additional gain in the input
memory footprint.

TABLE 4.4: MNIST unsupervised learning with AE-based feature ex-
traction: state of the art reported from (Ji, Vedaldi, and Henriques,

2018) and completed.

Method Accuracy (%)
AE + K-means (Bengio et al., 2006) 81.2
Sparse AE + K-means (Ng, 2011) 82.7
Denoising AE + K-means (Vincent et al., 2010) 83.2
Variational Bayes AE + K-means (Kingma and Welling, 2013) 83.2
SWWAE + K-means (Zhao et al., 2015) 82.5
Adversarial AE (Makhzani et al., 2015) 95.9
Sparse CAE + SOM [Our work] 96.9

Overall, the SCAE+SOM reaches the best accuracy of 96.9% ± 0.24 on MNIST
classification with unsupervised learning. As shown in table 4.4, we achieved state
of the art accuracy compared to similar works that followed an AE-based approach.
The sparsity constraints of the SCAE through the weights and activities regulariza-
tion significantly improved the SOM classification accuracy. Indeed, without these
constraints, the CAE+SOM with the same configuration achieves an accuracy of
94.9%± 0.24, which means a loss of −2% and a less good performance compared
to the SNN+SOM.

A similar comparative study was conducted in (Falez et al., 2019), but the study
was limited to one layer SCAE and SNN, and a supervised SVM was used to assess
the classification accuracy. The authors concluded that the SCAE reaches a better
classification accuracy. Our study extends their finding to multiple convolutional
layers by using unsupervised learning for both feature extraction and classification.
Nevertheless, the SNN+SOM remains attractive due to the hardware-efficient com-
putation of spiking neurons (Khacef, Abderrahmane, and Miramond, 2018) and the
possible association to the cellular neuromorphic architecture of the SOM presented
in chapter 2.

4.3 SOM on mini-ImageNet few shot classification

4.3.1 Few-shot classification: state of the art approaches

In the last decade, DL techniques have achieved state of the art performance in
many classification problems. However, DL heavily relies on supervised learning
with abundant labeled data. As discussed before, the fast expansion of IoT devices
gathers a huge amount of unlabeled data everyday, but labeling these data is a very
difficult task because of the human annotation cost as well as the scarcity of data
in some classes (Chen et al., 2019). Finding methods to learn to generalize to new
classes with a limited amount of labeled examples for each class is therefore a very
active topic of research in ML. This is the main motivation for few-shot learning (Hu,
Gripon, and Pateux, 2020). Recently, three main approaches have been proposed in
the literature:
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• Hallucination methods where the aim is to augment the training sets by learn-
ing a generator that can create novel data using data-augmentation techniques
(Chen et al., 2019). However, these methods lack precision which results in
coarse and low-quality synthesized data that can sometimes lead to very poor
gains in performance (Wang et al., 2019).

• Meta-learning where the goal is to train an optimizer that initializes the net-
work parameters using a first generic dataset, so that the model can reach good
performance with only a few more steps on the new dataset (Thrun and Pratt,
2012). This type of solution suffers from the domain shift problem (Chen et al.,
2019) as well as the sensitivity of hyper-parameters.

• Transfer learning where a model developed for a given task is reused as the
starting point for a model on a different task. In real-world problems, it hap-
pens that we have a classification task in one domain of interest, but we only
have sufficient training data in another domain of interest. Therefore, knowl-
edge transfer would greatly improve the performance of learning by avoiding
much expensive data-gathering and data-labeling efforts (Pan and Yang, 2010).
Hence, transfer learning has emerged as the new learning framework for the
few-shot classification task.

The problem becomes even harder when facing technical limitations, such as us-
ing embedded implementations for real-time processing on the edge. As a matter
of fact, in many real-world scenarios, the training data is acquired using the same
device that will later be used for training and inference, and labels could be given
at any time of the process. To encompass for this added difficulty, we consider in
this work the problem of post-labeled few-shot unsupervised learning. In this prob-
lem, learning algorithms can be deployed using no annotated data, for example to
learn representations using the data acquired by the considered device. These al-
gorithms can later be "adjusted" using a few labeled samples so that they become
able to make predictions, at the condition that this adjustment comes with almost no
added complexity to the process, so that it can be performed on the edge. Compared
to the post-labeled unsupervised learning problem introduced in chapter 3, the only
difference is that we know at the beginning the "few shot" labels we can use.

To address this problem, we propose a solution that combines transfer learning
and unsupervised learning with the SOM. On the one hand, transfer learning is used
to exploit a DNN trained on a large collection of labeled data as a "universal" feature
extractor. On the other hand, the SOM is used to leverage the obtained features and
make predictions. Following the same approach defined in chapter 3, this algorithm
works in two steps: first, clusters prototypes are learned using no annotated data,
then the prototypes are labeled using the few available annotated samples.

4.3.2 Transfer learning for feature extraction

We consider that we are given an unlabeled dataset X = {x, x ∈ X}. Our first
step consists in extracting relevant features from these inputs. For this purpose,
we follow the approach proposed by (Hu, Gripon, and Pateux, 2020) and train a
supervised feature extractor fϕ that we call a backbone on a large annotated dataset.
The parameters of the backbone are then fixed and used to obtain generic features
from any input. In our case, we therefore transform X into V = fϕ(X) = { fϕ(x), x ∈
X}.
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We perform our experiments using the mini-ImageNet (Vinyals et al., 2016) bench-
mark. mini-ImageNet is a subset of ImageNet (Russakovsky et al., 2015) that con-
tains 60,000 images divided into 100 classes of 600 images, each image has 84× 84
pixels. Following the standard approach (Ravi and Larochelle, 2017), we use 64 base
classes with labels to train the backbone, 16 base classes for validation and 20 novel
classes to draw the novel datasets from. For each run, 5 classes are drawn uniformly
at random among these 20 classes, then q unlabeled inputs and s labelled inputs per
class are chosen uniformly at random among the 5 drawn classes. The features of the
(q + s)× 5 samples are used to train the SOM, then the s labeled samples are used to
label the SOM neurons. Finally, the Q = q× 5 unlabeled samples are classified and
produce a classification accuracy for each run. We run 10,000 random draws to ob-
tain a mean accuracy score and indicate the confidence scores (95%) when relevant.

The feature extractor we use is the same as in (Hu, Gripon, and Pateux, 2020). It
is mostly based on a Wide Residual Network (WRN) (Zagoruyko and Komodakis,
2016) as a backbone extractor, with 28 convolutional layers and a widening factor of
10. As a result, the output feature size (the dimension of a vector v ∈ V) is 640. Let
us insist on the fact the backbone is trained on a completely disjoint dataset with the
tasks we consider thereafter.

The next steps consist in training, labeling and testing the SOM using the trans-
formed representations in V, i.e. the extracted features. In transfer learning, the
backbone feature extractor is trained and validated with 80 classes that are different
from the 20 classes we classify using the SOM. Hence, the features amplitude is not
relevant, and the Euclidean distance of the SOM does not provide the best perfor-
mance. Therefore, we replace the Euclidean distance in equation 2.1 with the Cosine
distance in Equation 4.2.

d = 1− cos(v, wn) = 1− v.wn

‖v‖ × ‖wn‖
(4.2)

The Cosine distance is also used in the labeling and test phases. The comparison
to Euclidean distance is discussed in section 4.3.3.

4.3.3 mini-ImageNet few-shot classification performance

The following SOM training hyper-parameters for transfer learning were found with
a grid search: εi = 1.0, ε f = 0.01, ηi = 10.0, η f = 0.1, α = 1.0 and the number of
epochs is 10.

First, we investigated the impact of the SOM size on the classification accuracy
for the commonly used number of unlabeled samples q = 15 and labeled samples
s = [1, 3, 5] (Hu, Gripon, and Pateux, 2020). Figure 4.6 shows that there is an optimal
point at 25 neurons for s = 1 and 100 neurons for s = 3 and s = 5. There is a tradeoff
between the number of neurons that learn different prototypes and the quality of
the learning/labeling of these neurons. The more neurons we have, the more po-
tential to learn different prototypes of the data but the more fuzzy the prototypes
become, which makes the labeling part more difficult. For example, a neuron may
be assigned a class "A" with respect to the labeled subset, but will be more active for
a class "B" with respect to the test set. When we only have one labeled sample per
class, i.e. s = 1, then a SOM of only 25 neurons achieves the best accuracy because
more neurons will not converge as well.

Next, we varied the number of unlabeled data Q = q× 5 with the above men-
tioned SOM sizes. Figure 4.7 shows that even though the labels are only used for
the neurons class assignment and not in the training process, they still have a large
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FIGURE 4.6: SOM classification accuracy on mini-ImageNet transfer
learning for different numbers of labeled samples s vs. number of

SOM neurons.
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FIGURE 4.7: SOM classification accuracy on mini-ImageNet transfer
learning for different numbers of labeled samples s vs. number of

unlabeled samples to classify Q.

impact on the accuracy. Naturally, the more labeled data we have, the better accu-
racy we get. A second remark is that the more unlabeled data we have, the better
accuracy we get too. This is not intuitive, because the unlabeled data are the queries,
i.e. the samples to classify, so the more we have the harder the classification task
becomes. However, since the SOM is trained on these data, its adaptation capabil-
ities makes the accuracy increase with the number of unlabeled data for the same
number of labels. The only exception is when s = 1, where there is a small decrease
in accuracy between Q = 250 (71.74%± 0.21) and Q = 500 (71.27%± 0.21). A third
remark is that the SOM reaches the same accuracy of 80.6% for [s = 5, Q = 25] and
[s = 3, Q = 250], which means that the lack of labeled data can be compensated
by more unlabeled data. In fact, it is a very interesting property since unlabeled
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data can be gathered much more easily, and no extra-effort for labeling these data is
needed.

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (%

)

50

60

70

80

90

s = 1 s = 3 s = 5

Euclidean distance Cosine distance

FIGURE 4.8: SOM classification accuracy on mini-ImageNet transfer
learning with few labels using Euclidean distance and Cosine dis-

tance.

The choice of using the Cosine distance in the SOM computation (training, la-
beling and test) was inspired from the work of (Hu, Gripon, and Pateux, 2020). In
fact, figure 4.8 shows that replacing the Euclidean distance by the Cosine distance
significantly improves the SOM classification accuracy, with a gain of +5.9%, +4.96%
and +4.68% for s = 1, s = 3 and s = 5, respectively. It validates our hypothesis about
the non-effectiveness of the Euclidean distance when using transfer learning.

TABLE 4.5: mini-ImageNet few labels transfer learning with a WRN
backbone and q = 15 (Q = 75): state of the art reported from (Hu,

Gripon, and Pateux, 2020) and completed.

Method Classifier 1-shot (%) 5-shot (%)
wDAE-GNN (Gidaris and Komodakis, 2019) Supervised 61.07 ± 0.15 76.75 ± 0.11
ACC+Amphibian (Snell, Swersky, and Zemel, 2017) Supervised 64.21 ± 0.62 87.75 ± 0.73
BD-CSPN (Liu, Song, and Qin, 2019) Supervised 70.31 ± 0.93 81.89 ± 0.60
Transfer+SGC (Hu, Gripon, and Pateux, 2020) Supervised 76.47 ± 0.23 85.23 ± 0.13
Transfer+SOM [Our work] Unsupervised 71.53 ± 0.23 82.22 ± 0.15

Finally, table 4.5 reports the recent works that proposed solutions to the mini-
ImageNet few labels classification problem using transfer learning with the WRN
backbone feature extractor. The SOM reaches top-2 accuracy for s = 1 and top-3 ac-
curacy for s = 5, which is a good result that proves the SOM ability to handle com-
plex datasets. Nevertheless, one has to keep in mind that while the other works use
the few labels in the training process, we only use them for neurons labeling phase.
Our accuracy performance is therefore obtained with fully unsupervised learning
followed by post-labeling. We argue that this is the right approach for the few-shot
classification problem, especially in the context of embedded systems on the edge.
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4.4 Conclusion

In this chapter, we have demonstrated the ability of the SOM to improve its ac-
curacy on MNIST and achieve top performance on the challenging mini-ImageNet
task when using extracted features instead of the raw data. First, in the context of
unsupervised learning, we conducted a comparative study for unsupervised feature
extraction, and concluded that the SCAE+SOM achieves a better accuracy thanks to
the sparsity constraints that were applied to the SCAE through weights and activ-
ities regularization. However, the SNN+SOM remains interesting due to the hard-
ware efficiency of spiking neurons. We improved the SOM classification by +6.09%
and achieved state of the art performance on MNIST unsupervised classification,
using post-labeled unsupervised learning. Second, in the context of transfer learn-
ing, we proposed a solution that combines transfer learning and SOMs. Transfer
learning was used to exploit a WRN backbone trained on a base dataset as a generic
feature extractor, and the SOM was used to classify the obtained features from the
target dataset. The SOM is trained with no label, then labeled with the few avail-
able annotated samples. We showed that we reach a good performance on the mini-
ImageNet few shot classification benchmark with an unsupervised learning method.
Furthermore, the SOM is suitable for hardware implementations based on a cellular
neuromorphic architecture, which enables its application on the edge.
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Chapter 5

Reentrant Self-Organizing Map
(ReSOM): Proposed model

Learning is about stabilizing
pre-established synaptic combinations.
It also means eliminating the others.

Jean-Pierre Changeux.

5.1 Introduction

Cortical plasticity is one of the main features that enable our capability to learn and
adapt in our environment. Indeed, as discussed in chapters 1 and 2, the cerebral cor-
tex has the ability to self-organize itself through two distinct forms of plasticity: the
structural plasticity that creates (sprouting) or cuts (pruning) synaptic connections
between neurons, and the synaptic plasticity that modifies the synaptic connections
strength. These mechanisms are very likely at the basis of an extremely interesting
characteristic of the human brain development: the multimodal association. The
brain uses spatio-temporal correlations between several modalities to structure the
data and create sense from observations. Thus, in spite of the diversity of the sen-
sory modalities, like sight, sound and touch, the brain arrives at the same concepts.
Moreover, biological observations show that one modality can activate the inter-
nal representation of another modality when both are correlated. To model such a
behavior, Gerald Edelman and Antonio Damasio proposed respectively the Reen-
try and the Convergence Divergence Zone frameworks where bi-directional neural
communications can lead to both multimodal fusion (convergence) and inter-modal
activation (divergence). Nevertheless, these frameworks do not provide a compu-
tational model at the neuron level, and only few works tackle this issue of brain-
inspired multimodal association (Althaus and Mareschal, 2013) which is yet neces-
sary for a complete representation of the environment. In this chapter, we propose
the Reentrant Self-Organizing Map (ReSOM), a brain-inspired neural system based
on the Reentry principles, using Self-Organizing Maps and Hebbian-like learning.
We propose different computational methods for multimodal unsupervised learning
and inference, with both divergence and convergence mechanisms. The divergence
mechanism is used to label one modality based on the other, while the convergence
mechanism is used to improve the overall accuracy of the system. Finally, we pro-
pose an extension of the IG introduced in chapter 2 to the multimodal framework.
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5.2 Reentry and Convergence Divergence Zone (CDZ)

Brain’s plasticity, also known as neuro-plasticity, is the key to humans capability to
learn and adapt their behaviour. The plastic changes happen in neural pathways as
a result of the multimodal sensori-motor interaction in the environment (Escobar-
Juárez et al., 2016). But since most of the stimuli are processed by the brain in more
than one sensory modality (Meyer and Damasio, 2009), how do the multimodal in-
formation converge in the brain?

FIGURE 5.1: Schematic representation of the (a) CDZ and the (b)
reentry frameworks. The CDZ paradigm (Damasio) implies hier-
archical neurons that connect unimodal neurons, while the reentry
paradigm (Edelman) states that unimodal neurons connect to each

other through direct connections.

Indeed, we can recognize a dog by seeing its picture, hearing its bark or rubbing
its fur. These features are different patterns of energy at our sensory organs (eyes,
ears and skin) that are represented in specialized regions of the brain. However,
we arrive at the same concept of the "dog" regardless of which sensory modality
was used (Man et al., 2015). Furthermore, modalities can diverge and activate one
another when they are correlated. Recent studies have demonstrated cross-modal
activation amongst various sensory modalities, like reading words with auditory
and olfactory meanings that evokes activity in auditory and olfactory cortices (Kiefer
et al., 2008) (González et al., 2006), or trying to discriminate the orientation of a tactile
grid pattern with eyes closed that induces activity in the visual cortex (Sathian and
Zangaladze, 2002). Both mechanisms rely on the cerebral cortex as a substrate. “We
see with the brain, not the eyes”, Paul Bach-y-Rita quoted in (rita, 1972). But even
though recent works have tried to study the human brain’s ability to integrate inputs
from multiple modalities (Calvert, 2001) (Kriegstein and Giraud, 2006), it is not clear
how the different cortical areas connect and communicate with each other.



5.3. Models and applications 59

To answer this question, Edelman proposed in 1982 the Reentry (Edelman, 1982)
(Edelman, 1993): the ongoing bidirectional exchange of signals linking two or more
brain areas, one of the most important integrative mechanisms in vertebrate brains
(Edelman, 1982). In a recent review (Edelman and Gally, 2013), Edelman defines
reentry as a process which involves a localized population of excitatory neurons
that simultaneously stimulates and is stimulated by another population, as shown
in figure 5.1-b. It has been shown that reentrant neuronal circuits self-organize early
during the embryonic development of vertebrate brains (Singer, 1990) (Shatz, 1992),
and can give rise to patterns of activity with Winner-Take-All properties (Douglas
and Martin, 2004) (Rutishauser and Douglas, 2009). When combined with appropri-
ate mechanisms for synaptic plasticity, the mutual exchange of signals amongst neu-
ral networks in distributed cortical areas results in the spatio-temporal integration of
patterns of neural network activity. It allows the brain to categorize sensory inputs,
remember and manipulate mental constructs, and generate motor commands (Edel-
man and Gally, 2013). Thus, reentry would be the key to multimodal integration in
the brain.

Damasio proposed another answer in 1989 with the Convergence Divergence
Zone (CDZ) (Damasio, 1989) (Damasio and Damasio, 1994), another biologically
plausible framework for multimodal association. In a nutshell, the CDZ theory
states that particular cortical areas act as sets of pointers to other areas, with a hierar-
chical construction: the CDZ merges low level cortical areas with high level amodal
constructs, which connects multiple cortical networks to each other and therefore
solves the problem of multimodal integration. The CDZ convergence process in-
tegrates unimodal information into multimodal areas, while the CDZ divergence
process propagates the multimodal information to the unimodal areas, as shown
in figure 5.1-a. For example, when someone talks to us in person, we simultane-
ously hear the speaker’s voice and see the speaker’s lips move. As the visual move-
ment and the sound co-occur, the CDZ would associate (convergence) the respective
neural representations of the two events in early visual and auditory cortices into
a higher cortical map. Then, when we only watch a specific lip movement without
any sound, the activity pattern induced in the early visual cortices would trigger the
CDZ and the CDZ would retro-activate (divergence) in early auditory cortices the
representation of the sound that usually accompanied the lip movement (Meyer and
Damasio, 2009).

The bidirectionality of the connections is therefore a fundamental characteristic
of both reentry and CDZ frameworks, that are likewise in many aspects. Indeed, we
find computational models of both paradigms in the literature. We review the most
significant ones to our work in Section 5.3.

5.3 Models and applications

In this section, we make a chronological review of the recent works that explored
brain-inspired multimodal learning for two main applications: sensori-motor map-
ping and multisensory classification.

5.3.1 Sensori-motor mapping

Lallee and Dominey (Lallee and Dominey, 2013) proposed one of the first models of
brain-inspired multimodal association: the MultiModal Convergence Map (MMCM)
that applies the SOM (Kohonen, 1990) to model the CDZ framework. A hierarchy
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of SOMs is used to reduce the dimensionality of the input, using the coordinates of
the most active unit of each unimodal map as input of the multimodal map. The
MMCM was applied to encode the sensori-motor experience of a robot based on
the language, vision and motor modalities. This "knowledge" was used in return to
control the robot behaviour. The experiments were conducted in both a simulated
and a real humanoid robot, the iCub (Metta et al., 2008). In a nutshell, the MMCM
provides an implemented framework in which multiple modalities are represented
in distinct and converging maps. Activation in one modality can be used to generate
a mental image in the other modalities. Lallee and Dominey demonstrated how this
can be used to increase the performance of the iCub in the recognition of its hand in
different postures.

A quite similar approach is followed by Escobar-Juarez et al. (Escobar-Juárez et
al., 2016) who proposed the Self-Organized Internal Models Architecture (SOIMA)
that models the CDZ framework based on internal models, where sensory and motor
information merge in a natural way and create a multimodal representation (Wolpert
and Kawato, 1998). The work focused on the pair formed by inverse-forward mod-
els. The inverse model is a controller that generates the motor command (Mt) needed
to achieve a desired sensory state (St+1) given a current sensory state (St), while the
forward model is a predictor that predicts the sensory state entailed (St+1) by some
action of the agent (Mt) given a current sensory state (St). The necessary property
of bidirectionality is once again pointed out by the authors. SOIMA relies on two
main learning mechanisms: the first one consists in SOMs that create clusters of uni-
modal information coming from the environment. The second one codes the internal
models by means of connections between the first maps using Hebbian learning that
generates sensory–motor patterns. As in (Lallee and Dominey, 2013), a hierarchy of
SOMs is used such that the inputs to the top multimodal map are the coordinates of
the winning neurons in the unimodal maps. The SOIMA architecture was success-
fully experimented on a saccadic control and hand-eye coordination tasks.

A different approach is used by Droniou et al. (Droniou, Ivaldi, and Sigaud,
2015) where the authors proposed an architecture based on DNNs, which is used by
the iCub (Metta et al., 2008) to learn a task from multiple perceptual modalities: pro-
prioception, vision and audition. The DNN is based on the auto-encoder paradigm
for both reducing the dimensionality of data as in a standard auto-encoding ap-
proach and for clustering, adding a Softmax activation function (Memisevic et al.,
2010) to make the compressed representation sparser and cluster the data. Globally,
the system of Droniou et al. relates to the CDZ framework even if the actual pur-
pose was not to provide a computational model for the theory. First, for a bi-modal
task and given one modality alone, the network was able to infer a classification and
a parametrization which can be used to reconstruct the missing modality. Second,
the proposed network was able to exploit multimodal correlations to improve the
representation of each modality alone.

Following the reentry paradigm, Zahra et al. (Zahra and Navarro-Alarcon, 2019)
proposed the Varying Density Self-Organizing Map (VDSOM) for characterizing
sensorimotor relations in robotic systems with bidirectional connections. The pro-
posed method relies on self-organizing properties through SOMs and associative
properties through Oja’s learning (Oja, 1982) that enables it to autonomously ob-
tain sensori-motor relations without any prior knowledge of either the motor (e.g.
mechanical structure) or perceptual (e.g. sensor calibration) models. This solution
relies on collecting data samples by motor babbling and is therefore suitable for var-
ious robotic manipulators without prior information about robot kinematics. Even
though the paper (Zahra and Navarro-Alarcon, 2019) does not state so explicitly, the
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VDSOM is closer to the reentry paradigm where direct bidirectional connections are
learned amongst neurons.

5.3.2 Multisensory classification

Parisi et al. (Parisi et al., 2017) proposed a hierarchical architecture with Grow-
ing When Required (GWR) networks (Marsland, Shapiro, and Nehmzow, 2002) for
learning human actions from audiovisual inputs. The neural architecture consists of
a self-organizing hierarchy with four layers of GWR for the unsupervised process-
ing of visual action features. The fourth layer of the network implements a semi-
supervised algorithm where action–word mappings are developed. This is done by
binding co-occurring audiovisual inputs using bidirectional inter-layer connectivity,
and thus learning multimodal representations of actions. The direct bidirectional
connections follow the reentry paradigm.

With the same paradigm, Jayaratne et al. (Jayaratne et al., 2018) proposed a mul-
tisensory neural architecture that consists of multiple self-organizing neural layers
of Growing SOMs (GSOM) (Alahakoon, Halgamuge, and Srinivasan, 2000) for mod-
elling the respective cortical areas of each sensory modality, and inter-sensory asso-
ciative connections representing the co-occurrence probabilities of the modalities.
Here again, there is no hierarchy in the bidirectional connections, thus referring to
the reentry paradigm. The system was implemented in Apache Spark (Zaharia et
al., 2016) to distribute the GSOM computing with respect to data, i.e. distribute data
across a cluster of computers to process them in parallel, and thus improving its
scalability to big datasets. The system’s principle is to supplement the information
on a single modality with the corresponding information on other modalities with
the Tulips1 audio-visual dataset (Movellan, 1995) (not available), exploiting the co-
occurrence relationship across the modalities for a better classification accuracy.

Using spike coding, Rathi and Roy (Rathi and Roy, 2018) proposed an STDP-
based multimodal unsupervised learning for SNNs. The goal of this work was
to learn the cross-modal connections between areas of single modality in SNNs
to improve the recognition accuracy and make the system robust to noisy inputs.
Each modality is represented by a specific SNN trained with its own data follow-
ing the learning framework proposed in (Diehl and Cook, 2015). The SNN com-
putation is distributed, but requires an all-to-all connectivty amongst neurons. As
discussed and quantified in chapter 3, this full connectivity goes against the scal-
ability of the network. In addition, the cross-modal connections between the two
SNNs are trained along with the unimodal connections. The cross-modal connec-
tions are sparsely connected following the reentry paradigm and initialized with
random weights. Afterwards, STDP is used to update these weights as both SNNs
are presented with two inputs of the same class at the same time. The correlation
between neurons of different modalities is captured in the cross-modal connections,
which assist the network in making the right decision by increasing the spikes for the
correct class. The proposed method was experimented with a written/spoken digit
classification task, and the collaborative learning results in an accuracy improve-
ment of 2% compared to the best unimodal accuracy. Furthermore, the multimodal
approach makes the network noise tolerant. The work of Rathi and Roy (Rathi and
Roy, 2018) is the first to train SNNs with multimodal inputs, and is the closest to our
work. Hence, a detailed comparison is presented in section 6.4.2.

Finally, Cholet et al. (Cholet, Paugam-Moisy, and Regis, 2019) proposed a mod-
ular architecture for multimodal fusion using Bidirectional Associative Memories
(BAMs), which were initially proposed by Kosko (Kosko, 1988) as an adaptation of
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the Hopfield network (Hopfield, 1982) for hetero-association. The BAMs is com-
posed of two fully and bidirectionally connected layers. The proposed architecture
can be summarised in three stages: unimodal data are first processed by as many
independent prototype-based Incremental Neural Networks (INNs) (Azcarraga and
Giacometti, 1991) as the number of modalities to be combined. The second stage
consists of multiple BAMs that achieve the fusion of modalities by learning pairs of
unimodal prototypes towards the integrative layer which builds an abstract repre-
sentation. Finally, the third stage is an INN that performs supervised classification.
Even though we can see a form of hierarchy in the third stage with the INN that
takes the BAMs as input for classification, the multimodal association itself is made
with direct BAMs between uni-modal representations, thus following the reentry
paradigm.

5.3.3 Summary

TABLE 5.1: Models and applications of brain-inspired multimodal
learning.

Application Work Paradigm Learning Computing

Sensori-motor
mapping

(Lallee and Dominey, 2013) CDZ Unsupervised Centralized
(Droniou, Ivaldi, and Sigaud, 2015) CDZ Unsupervised Centralized
(Escobar-Juárez et al., 2016) CDZ Unsupervised Centralized
(Zahra and Navarro-Alarcon, 2019) Reentry Unsupervised Centralized

Multisensory
classification

(Parisi et al., 2017) Reentry Semi-supervised Centralized
(Jayaratne et al., 2018) Reentry Semi-supervised Distributed1

(Rathi and Roy, 2018) Reentry Unsupervised Centralized ∗∗

(Cholet, Paugam-Moisy, and Regis, 2019) Reentry ∗ Supervised Centralized
(Khacef et al., 2020) [Our work] Reentry Unsupervised Distributed2

1 data level.
2 system level.
∗ with an extra layer for classification.
∗∗ learning is distributed but inference for classification is centralized.

Overall, the rentry and CDZ frameworks share two key aspects: the multimodal
associative learning based on the temporal co-occurrence of the modalities, and the
bidirectionality of the associative connections. We summarize the most relevant pa-
pers to our work in Table 5.1, where we classify each paper with respect to the ap-
plication, the brain-inspired paradigm, the learning type and the computing nature.
We notice that sensori-mapping is based on unsupervised learning, which is natu-
ral as no label is necessary to map two modalities together. However, classification
is based on either supervised or semi-supervised learning, as mapping multisen-
sory modalities is not sufficient: we need to know the corresponding class to each
activation pattern. That’s why we proposed in chapter 3 a labeling method based
on a small labeled subset, so that we do not use any label in the learning process.
The same approach is used in (Rathi and Roy, 2018), but the authors rely on the
complete labeled dataset, as further discussed in section 6.4.2. Finally, all previous
works rely on the centralized Von Neumann computing paradigm, except (Jayaratne
et al., 2018) that attempts a partially distributed computing with respect to data, i.e.
using the MapReduce computing paradigm to speed up computations. It is based
on Apache Spark (Gu and Li, 2013), mainly used for cloud computing. Also, STDP
learning in (Rathi and Roy, 2018) is distributed, but the inference for classification
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requires a central unit, as discussed in section 6.4.2. We propose a fully distributed
computing on the edge with respect to the system, i.e. the neurons computing it-
self to improve the SOMs scalability for hardware implementation thanks to the IG
presented in chapter 2.

Consequently, we chose to follow the reentry paradigm where multimodal pro-
cessing is distributed in all cortical maps without dedicated associative maps for
two reasons. First, from the brain-inspired computing perspective, more biologi-
cal evidences tend to confirm the hypothesis of reentry as reviewed by (Barth et
al., 1995), (Allman, Keniston, and Meredith, 2009) and (Lefort, Boniface, and Gi-
rau, 2013). Indeed, biological observations highlight a multimodal processing in the
whole cortex including sensory areas (Calvert, Spence, and Stein, 2004) which con-
tain multimodal neurons that are activated by multimodal stimuli (Barth et al., 1995)
(Bizley and King, 2008). Moreover, it has been shown that there are direct connec-
tions between sensory cortices (Cappe, Rouiller, and Barone, 2009) (Schroeder and
Foxe, 2005), and neural activities in one sensory area may be influenced by stimuli
from other modalities (Allman, Keniston, and Meredith, 2009) (Dehner et al., 2004).
Second, from a pragmatical and functional perspective, the reentry paradigm fits
better to our cellular architecture based on the IG, and thus increases the scalability
and fault tolerance thanks to the fully distributed processing (Lefort, Boniface, and
Girau, 2013). Nevertheless, we keep the convergence and divergence terminology to
distinguish between, respectively, the integration of two modalities and the activa-
tion of one modality based on the other.

5.4 Reentrant Self-Organizing Map (ReSOM)

In this section, we introduce the Reentrant Self-Organizing Map (ReSOM) neural
system described in figure 5.2, a new model composed of two or more SOMs with af-
ferent connections each and lateral connections amongst them, following the reentry
paradigm. The ReSOM will be used for learning multimodal associations, labeling
one modality based on the other and converging the two modalities with cooperation
and competition for a better classification accuracy.

The initial convergence zone model was proposed by Moll and Miikkulainen in
1997 (Miikkulainen and Moll, 1997), but it lacked the self-organizing and topograph-
ical property inherent to cortical maps (Lallee and Dominey, 2013). Hence, we use
SOMs and Hebbian-like learning in two times to perform multimodal learning as
illustrated as a flowchart in figure 5.3: first, unimodal representations are obtained
with SOMs and, second, multimodal representations develop through the associa-
tion of unimodal maps via bidirectional synapses that can be seen as BAMs. The
development of associations between co-occurring stimuli for multimodal binding
has been strongly supported by neurophysiological evidence (Fiebelkorn, Foxe, and
Molholm, 2010), and follow the reentry theory (Edelman and Gally, 2013).
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FIGURE 5.2: Schematic representation of the proposed ReSOM for
multimodal association. For clarity, the lateral connections of only

two neurons from each map are represented.
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FIGURE 5.3: Flowchart: Multimodal unsupervised learning
overview.
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5.4.1 ReSOM multimodal association learning

Brain’s plasticity can be divided into two distinct forms of plasticity: the (1) struc-
tural plasticity that changes the neurons connectivity by sprouting (creating) or prun-
ing (deleting) synaptic connections, and (2) the synaptic plasticity that modifies (in-
creasing or decreasing) the existing synapses strength (Fauth and Tetzlaff, 2016). We
explore both mechanisms for multimodal association through Hebbian-like learn-
ing, as illustrated as a flowchart in figure 5.4.

FIGURE 5.4: Flowchart: Multimodal association learning.

The original Hebbian learning principle (Hebb, 1949) proposed by Hebb in 1949
states that “when an axon of cell A is near enough to excite a cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the cells firing B, is in-
creased.” In other words, any two neurons that are repeatedly active at the same
time will tend to become "associated" so that activity in one facilitates activity in the
other. The learning rule is expressed by equation 5.1. The Hebbian learning exhibits
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Algorithm 8: ReSOM multimodal association learning
1: Learn neurons afferent weights for SOMx and SOMy corresponding to

modalities x and y respectively.
2: for every multimodal input vectors vx and vy do
3: Compute the SOMx and SOMy neurons activities.
4: Compute the unimodal BMUs nx and ny with activities ax and ay

respectively.
5: if Lateral connection wxy between nx and ny does not exist then
6: Sprout (create) the connection wxy = 0.
7: else
8: Update lateral connection wxy:
9: if Hebb’s learning then

10:
wxy = wxy + η × ax × ay (5.1)

11: else if Oja’s learning then
12:

wxy = wxy + η × (ax × ay − wxy × a2
y) (5.2)

13: end if
14: end if
15: end for
16: for every neuron x in the SOMx network do
17: Sort the lateral synapses wxy and deduce the pruning threshold γ.
18: for every lateral synapse wxy do
19: if wxy < γ then
20: Prune (delete) the connection wxy.
21: end if
22: end for
23: end for

several interesting computational features like the storage of patterns, pattern com-
pletion, or temporal storage (Hopfield, 1982) (Bauer, 2013). Although Hebb could
not verify his theory himself, some evidence for Hebb’s rule was later found in the
hippocampus in the form of LTP (Ranganathan and Kira, 2003).

However, Hebb’s rule is limited in terms of stability for online learning, as synap-
tic weights tend to infinity with a positive learning rate. This could be resolved
by normalizing each weight over the sum of all the corresponding neuron weights,
which guarantees the sum of each neuron weights to be equal to 1. The effects of
weights normalization are explained in (Goodhill and Barrow, 1994). However, this
solution breaks up with the locality of the synaptic learning rule, and that is not bi-
ologically plausible. In 1982, Oja proposed a Hebbian-like rule (Oja, 1982) that adds
a "forgetting" parameter, and solves the stability problem with a form of local mul-
tiplicative normalization for the neurons weights, as expressed in equation 5.2. In
addition, It has been shown that Oja’s learning performs an on-line Principal Com-
ponent Analysis (PCA) of the data in the neural network (Fyfe, 1997), which is a very
interesting property in the context of unsupervised learning since the PCA finds the
best linear compression of data by finding the linear basis of the dataset that min-
imizes the Mean Squared Error (MSE) between the compressed and uncompressed
data (Ranganathan and Kira, 2003).
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Nevertheless, Hebb’s and Oja’s rules were both used in recent works with good
results, respectively in (Escobar-Juárez et al., 2016) and (Zahra and Navarro-Alarcon,
2019). Hence, we applied and compared both rules. The proposed reSOM multi-
modal association model is detailed in algorithm 8, where η is a learning rate that
we fix to 1 in our experiments, and γ is deduced according to the number or the
percentage of synapses to prune, as discussed in section 6.2. The neurons activities
in the line 3 of algorithm 8 are calculated following equations 2.1 and 2.2.

5.4.2 ReSOM divergence for labeling

FIGURE 5.5: Flowchart: Divergence mechanism for labeling.

As explained in chapter 3, neurons labeling is based on a labeled subset from
the training database. We tried use the fewest labeled samples while keeping the
best accuracy, which was 1% of the training set for MNIST. However, we will see
in section 6.2 that depending on the database, we sometimes need a considerable
number of labeled samples, up to 10% of the training set. In this section, we propose
an original method based on the divergence mechanism of the multimodal associa-
tion, as illustrated as a flowchart in figure 5.5: for two modalities x and y, since we
can activate one modality based on the other, we propose to label the SOMy neu-
rons from the activity and the labels induced from the SOMx neurons, which are
based on the labeling subset of modality x. Therefore, we only need one labeled
subset of a single modality which needs the fewest labels to label both modalities,
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Algorithm 9: ReSOM divergence for labeling
1: Initialize classact as a two-dimentionnal array of accumulators: the first

dimension is the neurons and the second dimension is the classes.
2: for every input vector vx of the x-modality labeling set with label l do
3: for every neuron x in the SOMx network do
4: Compute the afferent activity ax:

ax = e−
||vx−wx ||

α (5.3)

5: end for
6: for every neuron y in the SOMy network do
7: Compute the divergent activity ay from the SOMx:

ay =
n−1

max
x=0

(
wxy × ax

)
(5.4)

8: Add the normalized activity with respect to the max activity to the
corresponding accumulator:

classact[y][l]+ = ay (5.5)

9: end for
10: end for
11: Normalize the accumulators classact with respect to the number of samples per

class.
12: for every neuron y in the SOMy network do
13: Assign the neuron label neuronlab:

neuronlab = argmax(classact[y]) (5.6)

14: end for

taking profit of the bidirectional aspect of reentry. A good analogy to biological ob-
servations would be the retro-activation of the auditory cortical areas from the visual
cortex, if we take the example of written/spoken digits presented in section 6.3. It is
also similar to how infants respond to sound symbolism by associating shapes with
sounds (Asano et al., 2015). The proposed ReSOM divergence method for labeling
is detailed in algorithm 9.

5.4.3 ReSOM convergence for classification

Once the multimodal learning is done and all neurons from both SOMs are la-
beled, we need to converge the information of the two modalities to achieve a bet-
ter representation of the multisensory input, as illustrated as a flowchart in figure
5.6. Since we use the reentry paradigm, there is no hierarchy in the processing, and
the neurons computing is fully distributed based on the IG. We propose an origi-
nal cellular convergence method in the ReSOM, as detailed in algorithm 10. We can
summarize it in three main steps:

• First, there is an independent activity computation (Equation 5.7) where each
neuron of the two SOMs computes its activity based on the afferent activity
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FIGURE 5.6: Flowchart: Convergence mechanism for classification.

from the input.

• Second, there is a cooperation amongst neurons from different modalities (Equa-
tions 5.8 and 5.9) where each neuron updates its afferent activity via a multi-
plication with the lateral activity from the neurons of the other modality.

• Third and finally, there is a global competition amongst all neurons (line 19 in
Algorithm ??) where they all compete to elect a winner, i.e. a global BMU with
respect to the two SOMs.

We explore different variants of the proposed convergence method regarding
two aspects. First, both afferent and lateral activities can be taken as raw values
or normalized values. We used min-max normalization that is therefore done with
respect to the BMU and the Worst Matching Unit (WMU) activities. Second, the
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Algorithm 10: ReSOM convergence for classification
1: for every multimodal input vectors vx and vy do
2: Do in parallel every following step inter-changing modality x with modality

y and vice-versa:
3: Compute the afferent activities ax and ay:
4: for every neuron x in the SOMx network do
5: Compute the afferent activity ax:

ax = e−
||vx−wx ||

β (5.7)

6: end for
7: Normalize (min-max) the afferent activities ax and ay.
8: Update the afferent activities ax and ay with the lateral activities based on the

associative synapses weights wxy:
9: if Update with maxupdate then

10: for every neuron x in the SOMx network connected to n neurons from the
SOMy network do

11:

ax = ax ×
n−1

max
x=0

(
wxy × ay

)
(5.8)

12: end for
13: else if Update with sumupdate then
14:
15: for every neuron x in the SOMx network connected to n neurons from the

SOMy network do
16:

ax = ax ×
∑n−1

x=0
(
wxy × ay

)
n

(5.9)

17: end for
18: end if
19: Compute the global BMU with the maximum activity between the SOMx

and the SOMy.
20: end for

afferent activities update could be done for all neurons or only the BMUs. In the sec-
ond case, the global BMU cannot be another neuron but one of the two local BMUs,
and if there is a normalization then it is only done for lateral activities (otherwise, the
BMUs activities would be 1, and the lateral map activity would be the only relevant
one). The results of our comparative study are presented and discussed in section
6.3.

5.5 Discussion: Hardware support for multimodal associa-
tion

For the multimodal association learning in algorithm 8, the local BMU in each of the
two SOMs needs both the activity and the position of the local BMU of the other
SOM to perform the Hebbian-like learning in the corresponding lateral synapse.
This communication problem has not been experimented in this work. However,
this suppose a simple communication mechanism between the two maps that would
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implemented in two FPGAs where only the BMUs of each map send a message to
each other in a bidirectional way. The message could go through the routers of the
IG thanks to an XY-protocol to reach an inter-map communication port in order to
avoid the multiplication of communication wires. It is to note that in this work, we
follow the same approach as (Escobar-Juárez et al., 2016) since we only reinforce the
synaptic connections between the two unimodal BMUs for each sample. The other
approach is the learning with all neurons, but it would create a bottleneck in the
inter-map communication and thus drastically increase the learning time.

For the divergence and convergence methods in algorithm 9 and algorithm 10
respectively, the local BMU in each of the two SOMs needs the activity of all the
connected neurons from the other SOM after pruning, i.e. around 20 connections
per neuron in a 10 × 10 neurons map, as further detailed in chapter 6. Because
the number of remaining synapses is statistically bounded to 20%, the number of
communications remains low in front of the number of neurons. Here again, we
did not experiment on this communication mechanism but the same communication
support could be used. Each BMU can send a request that contains a list of connected
neurons. This request can be transmitted to the other map through the IG routers
to an inter-map communication channel. Once on the other map, the message could
be broadcasted to each neuron using again the routers of the IG. Only the requested
neurons send back their activity coupled to their position in the BMU request. This
simple mechanism supposes a low amount of communications thanks to the pruning
that has been done previously. This inter-map communication can be possible if the
IG routers support XY or equivalent routing techniques and broadcast in addition to
the one of the propagation wave.

At this point of our work, each neuron is implemented in a NPU based on a
previous implementation (Fiack, Rodriguez, and Miramond, 2015) with all the com-
puting and memory resources, amongst which a list of the lateral synaptic weights
with indexes to identify existing connections from pruned (or not sprouted) con-
nections. Therefore, each lateral weight is saved by two neurons in the case of two
SOMs. This aspect has to be further studied, as discussed in chapter 7.

5.6 Conclusion

We proposed in this chapter a new brain-inspired computational model for mul-
timodal unsupervised learning called the ReSOM. Based on the reentry paradigm
proposed by Edelman, it is a generic model regardless of the number of maps (as fur-
ther discussed in chapter 7) and the number of neurons per map. The ReSOM learns
unimodal representations with Kohonen-based SOMs, then creates and reinforces
the multimodal association via sprouting, Hebbian-like learning and then pruning.
It enables both structural and synaptic plasticities that are the core of neural self-
organization. We exploited both convergence and divergence that are highlighted by
Damasio thanks to the bi-directional property of the multimodal representation in a
classification task: the divergence mechanism is used to label one modality based on
the other, and the convergence is used to introduce cooperation and competition be-
tween the modalities and reach a better accuracy than the best of the two unimodal
accuracies. The experimental results on three datasets are presented in chapter 6.



73

Chapter 6

ReSOM performance in
multimodal unsupervised learning

The mind is embodied, in the full
sense of the term, not just embrained.

Antonio Damasio.

6.1 Introduction

In this chapter, we experiment the ReSOM model with three multimodal datasets.
First, we use a constructed written/spoken digits database with raw data. Second,
we use a DVS/EMG hand gestures database with extracted features. Third and fi-
nally, we use a constructed DVS hand gestures/spoken digits database in which we
associate each hand gesture to a spoken digit that serves as a label as we can ob-
serve it in infants development. We compare the ReSOM computational methods
proposed in chapter 5, then we quantify the gain of both convergence and diver-
gence mechanisms in the three multimodal classification tasks. Finally, we discuss
the gain of the so-called hardware plasticity induced by the ReSOM model, where the
system’s topology is not fixed by the user but learned along the system’s experience
through self-organization (Rodriguez, Fiack, and Miramond, 2013).

6.2 SOM unimodal classification results

6.2.1 Multimodal databases

The first database is the constructed written/spoken digits database (Khacef, Ro-
driguez, and Miramond, 2019) with the visual MNIST handwritten digits (LeCun
and Cortes, 1998) and the spoken version that we call Spoken MNIST (S-MNIST)
(Warden, 2018). Following the original MNIST structure, the dataset consists of
70, 000 samples (60, 000 for training and 10, 000 for test). For this first experimen-
tation, we do not rely on the feature extraction methods presented in chapter 4 for
MNIST classification. Instead, the ReSOM learns on the raw data in order to quan-
tify the impact on the classifier performance only. To validate our results, we exper-
iment our model on a second database that was originally recorded with multiple
sensors: the DVS/EMG hand gestures database (Ceolini et al., 2019). The dataset
consists of 6, 750 samples (5, 400 for training and 1, 350 for test) of muscle activities
via EletroMyoGraphy (EMG) signals recorded by a Myo armband (Thalmic Labs
Inc) from the forearm, and video recordings from a Dynamic Vision Sensor (DVS).
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The details on both databases are presented in appendix B. The most important hy-
pothesis that we want to confirm through this work is that the multimodal associa-
tion of two modalities leads to a better accuracy than the best of the two modalities
alone.

In this section, we present the results from our experiments with each modality
alone, summarized in table 6.1. All unimodal trainings were performed with the
KSOM over 10 epochs with the same hyper-parameters used in chapter 3: εi = 1.0,
ε f = 0.01, σi = 5.0 and σf = 0.01. All the results presented in this work have
been averaged over a minimum of 10 runs, with shuffled datasets and randomly
initialized neurons afferent weights.

TABLE 6.1: ReSOM classification accuracies and conver-
gence/divergence gains for multimodal digits and hand gestures.

Database
Digits Hand gestures

MNIST S-MNIST DVS EMG

SOMs

Dimensions 784 507 972 192
Neurons 100 256 256 256
Labeled data (%) 1 10 10 10
Accuracy (%) α 87.04 1.0 75.14 0.1 70.06 2.0 66.89 1.0

ReSOM divergence
Labeled data (%) 1 0 10 0
Gain (%) / +0.76 / -1.33
Accuracy (%) / 75.90 / 65.56

ReSOM convergence
Gain (%) +8.03 +19.17 +5.67 +10.17
Accuracy (%) 95.07 75.73

6.2.2 Written/spoken digits

MNIST classification with the KSOM was already performed in chapter 3, achieving
around 87% of classification accuracy using 1% of labeled images from the training
dataset for the neurons labeling. The only difference is the computation of the α in
equation 2.2 for the labeling process, for which an approximation method was pro-
posed in algorithm 6. In this chapter, we consider it as a simple hyper-parameter.
We therefore calculate the best value off-line with a grid search since we do not want
to include any centralized computation, and because we can find a closer value to
the optimum, as summarized in table 6.1. The same procedure with the same hyper-
parameters defined above is applied for each of the remaining unimodal classifica-
tions. Finally, we obtain 87.04%± 0.64 of accuracy. Figure 6.1-a shows the confusion
matrix that highlights the most frequent mis-classifications between the digits whose
representations are close: 23.12% of the digits 4 are classified as 9 and 12.69% of the
digits 9 are classified as a 4. We find the same mistakes with a lower percentage be-
tween the digits 3, 5 and 8, because of their proximity in the 784-dimensional vector
space. That’s what we aim to compensate by adding the auditory modality.

Even though we achieved state of the art performance with the same number
of neurons (100) and only 1% of labeled samples for neurons labeling, the obtained
accuracy of 87.36% on MNIST is not comparable to supervised DNNs, and only two
approaches have been used in the literature to bridge the gap: either use a huge num-
ber of neurons (6400 neurons in (Diehl and Cook, 2015)) with exponential increase
in size for linear increase in accuracy (Rathi and Roy, 2018) which is not scalable for
complex databases, or use unsupervised feature extraction followed by a supervised
classifier such as a SVM in (Kheradpisheh et al., 2018) which relies on the complete
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labeled dataset. We propose the multimodal association as a way to bridge the gap
while keeping a small number of neurons and an unsupervised learning method
from end to end. For this purpose, we associate MNIST to an auditory modality:
Spoken-MNIST (S-MNIST).

We extracted S-MNIST from Google Speech Commands (GSC) (Warden, 2018),
an audio dataset of spoken words that was proposed in 2018 to train and evaluate
keyword spotting systems. It was therefore captured in real-world environments
though phone or laptop microphones. The dataset consists of 105, 829 utterances
of 35 words, amongst which 38, 908 utterances (34, 801 for training and 4, 107 for
test) of the 10 digits from 0 to 9. We constructed S-MNIST associating written and
spoken digits of the same class, respecting the initial partitioning in (LeCun and
Cortes, 1998) and (Warden, 2018) for the training and test databases. Since we have
less samples in S-MNIST than in MNIST, we duplicated some random spoken digits
to match the number of written digits and have a multimodal-MNIST database of
70, 000 samples.

A pre-processing was done via the extraction of the Mel Frequency Cepstral Co-
efficients (MFCC) with a framing window size of 50ms and frame shift size of 25ms.
Since the speech samples are approximately 1s long, we end up with 39 time slots.
For each one, we extract 12 MFCC coefficients with an additional energy coefficient.
Thus, we have a final vector of 39× 13 = 507 dimensions. Standardization and nor-
malization were applied on the MFCC features. The SOM classification accuracy is
75.14%± 0.57. The confusion matrix in Figure 6.1 shows that the confusion between
the digits 4 and 9 is almost zero, which strengthens our hypothesis that the auditory
modality can complement the visual modality for a better overall accuracy.

6.2.3 DVS/EMG hand gestures

The framework was applied for the hand gestures recognition task with five hand
gestures: Pinky (P), Elle (E), Yo (Y), Index (I) and Thumb (T). In order to use the DVS
events with the ReSOM, we converted the stream of events into frames (event-based
computing is out of the scope of this work). The frames were generated by counting
the events occurring in a fixed time window for each of the pixels separately, fol-
lowed by a min-max normalization to get gray scale frames. The time window was
fixed to 200ms so that the DVS frames can be synchronized with the EMG signal,
as further detailed in Reference (Ceolini et al., 2019b). The event frames obtained
from the DVS camera have a resolution of 128× 128 pixels. Since the region with the
hand gestures does not fill the full frame, we extract a 60× 60 pixels patch that al-
lows us to significantly decrease the amount of computation needed during learning
and inference.

Even though unimodal classification accuracies are not the first goal in this chap-
ter, we need to reach a satisfactory performance before going to the multimodal as-
sociation. Since the dataset is small and the DVS frames are of high complexity
with a lot of noise from the data acquisition, we either have to significantly increase
the number of neurons for the SOM or use feature extraction. We decided to use
the second method with a CNN-based feature extraction as described in chapter 4.
We use supervised feature extraction to demonstrate that the ReSOM multimodal
association is possible using features. Future works will focus on the transition to
unsupervised feature extraction with more complex datasets than MNIST. Thus, we
used a supervised CNN feature extractor with the LeNet-5 topology (Lecun et al.,
1998) except for the last convolution layer which has only 12 filters instead of 120.
The CNN topology is therefore 60× 60× 1− 6c3− p2− 16c3− p2− 12c5− 84d− 5d.



76 Chapter 6. ReSOM performance in multimodal unsupervised learning

FIGURE 6.1: KSOM learning confusion matrix: (a) MNIST (b) S-
MNIST divergence; (c) DVS hand gestures; (d) EMG hand gestures

divergence.

Hence, we extract CNN-based features of 972 dimensions that we standardize and
normalize. We obtain an accuracy of 70.06%± 1.15.

For the EMG signal, we selected two time domain features that are commonly
used in the literature (Phinyomark, N Khushaba, and Scheme, 2018): the Mean Ab-
solute Value (MAV) and the Root Mean Square (RMS) which are calculated over
the same window of length 20ms, as detailed in appendix B. With the same strat-
egy as for DVS frames, we use a supervised CNN for feature extraction with the
LeNet-5 topology (Lecun et al., 1998) without pooling. The CNN topology is thus
16× 1− 6c3− 16c3− 120d− 84d− 5d. Hence, we extract CNN-based features of 192
dimensions that we standardize and normalize. The SOM reaches a classification
accuracy of 66.89%± 0.84.

6.3 ReSOM multimodal classification results

In this section, we present the results from our experiments with the multimodal
association convergence and divergence mechanisms. After inter-SOM sprouting
(figure 6.2), training and pruning (figure 6.3), we move to the inference for two dif-
ferent tasks: (1) labeling one SOM based on the activity of the other (divergence), and
(2) classifying multimodal data with cooperation and competition between the two
SOMs (convergence).
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FIGURE 6.2: SOMs lateral sprouting in the multimodal association
process: (a) Written/Spoken digits maps; (b) DVS/EMG hand ges-

tures maps.

FIGURE 6.3: Divergence and convergence classification accuracies
vs. the remaining percentage of lateral synapses after pruning: (top)
Written/Spoken digits maps; (bottom) DVS/EMG hand gestures

maps.
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FIGURE 6.4: Multimodal convergence classification: (top) Writ-
ten/Spoken digits; (bottom) DVS/EMG hand gestures.

6.3.1 ReSOM divergence results

Table 6.1 shows unimodal classification accuracies using the divergence mechanism
for labeling, with 75.9%± 0.2 for S-MNIST classification and 65.56%± 0.25 for EMG
classification. As shown in figure 6.3, we reach this performance using respectively
20% and 25% of the potential synapses for digits and hand gestures. We see in figure
6.3 that we need more connections per neuron for the divergence process, because
the pruning is done by the neurons of one of the two maps, and a small number
of connections results in some disconnected neurons in the other map. Since the
pruning is performed by the neurons of the source SOMs, i.e. the MNIST-SOM and
DVS-SOM, pruning too much synapses causes some neurons of the S-MNIST-SOM
and EMG-SOM to be completely disconnected from the source map, and therefore
do not get any activity for the labeling process. Hence, the labeling would be incor-
rect in that case, with the disconnected neurons stuck with the default label 0. In
comparison to the standard labeling process with 10% of labeled samples, we have
a loss of only −1.33% for EMG, and even a small gain of 0.76% for S-MNIST even
though we only use 1% of labeled digits images. The choice of which modality to use
to label the other is made according to two criteria: the source map must (1) achieve
the best unimodal accuracy so that we maximize the separability of the transmitted
activity to the other map, and it must (2) require the least number of labeled data



6.3. ReSOM multimodal classification results 79

for its own labeling so that we minimize the number of samples to label during data
acquisition. Overall, the divergence mechanism for labeling leads to approximately
the same accuracy than the standard labeling. Therefore, we perform the unimodal
classification of S-MNIST and EMG with no corresponding labels from end to end.

6.3.2 ReSOM convergence results

FIGURE 6.5: Written/Spoken digits neurons BMU counters during
multimodal learning and inference using Hebb − MaxBMU

Norm method:
(a) MNIST SOM in learning; (b) S-MNIST SOM neurons during learn-
ing; (c) MNIST SOM neurons during inference; (d) S-MNIST SOM

neurons during inference.

We proposed eight variants of the convergence algorithm for each the two learn-
ing methods. For the discussion, we denote them as follow: Learning−UpdateNeurons

Normalization
such that Learning can be Hebb or Oja, Update can be Max or Sum, Normalization
can be Raw (the activites are taken as initially computed by the SOM) or Norm (all ac-
tivities are normalized with a min-max normalization thanks to the WMU and BMU
activities of each SOM), and finally Neurons can be BMU (only the two BMUs up-
date each other and all other neurons activities are reset to zero) or All (all neurons
update their activities and therefore the global BMU can be different from the two
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FIGURE 6.6: DVS/EMG hand gestures neurons BMU counters during
multimodal learning and inference using Hebb − SumAll

Norm method:
(a) DVS SOM in learning; (b) EMG SOM neurons during learning; (c)
DVS SOM neurons during inference; (d) EMG SOM neurons during

inference.

local BMUs). It is important to note that since we constructed the written/spoken
digits dataset, we maximized the cases where the two local BMUs have different la-
bels such as one of them is correct. This choice was made in order to better assess the
accuracies of the methods based on BMUs update only, as both cases when the two
BMUs are correct or incorrect at the same time lead to the same global results regard-
less of the update method. The convergence accuracies for each of the eight method
applied on the two databases are summarized in table 6.2 and figure 6.4. The red
and green lines are respectively the lowest and highest unimodal accuracies. Hence,
there is an overall gain whenever the convergence accuracy is above the green line.

For the digits, we first notice that the Hebb’s learning with all neurons update
leads to a very poor performance, worse than the unimodal classification accura-
cies. To explain this behavior, we have to look at the neurons BMU counters during
learning in figure 6.5. We notice that some neurons, labeled as 1 in Figure 3.5-c,
are winners much more often that other neurons. Hence, their respective lateral
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FIGURE 6.7: Written/Spoken digits confusion matrices using Hebb−
MaxBMU

Norm method: (a) convergence; (b) convergence gain with respect
to MNIST; (c) convergence gain with respect to S-MNIST.

TABLE 6.2: ReSOM multimodal unsupervised classification accura-
cies.

Learning
ReSOM convergence method and accuracy (%) β

Update
algorithm

Neurons
activities

Digits Hand gestures
All neurons BMUs only All neurons BMUs only

Hebb
Max

Raw 69.39 1 91.11 1 71.57 5 73.01 5
Norm 79.58 20 95.07 10 71.63 3 72.67 20

Sum
Raw 66.15 1 91.76 10 75.20 4 73.69 4

Norm 71.85 1 93.63 20 75.73 4 73.84 20

Oja
Max

Raw 88.99 4 91.17 1 71.35 3 73.96 10
Norm 94.79 4 87.56 3 74.44 30 71.32 10

Sum
Raw 74.34 2 89.89 3 75.10 4 73.63 10

Norm 91.59 15 89.32 30 73.75 4 74.22 30
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FIGURE 6.8: DVS/EMG hand gestures confusion matrices using
Hebb− SumAll

Norm method: (d) convergence; (e) convergence gain with
respect to DVS; (f) convergence gain with respect to EMG.

synapses weights increase disproportionately compared to other synapses, and lead
those neurons to be winners most of the time after the update, as their activity is
higher than other neurons very often during convergence. This behavior is due to
two factors: first, the neurons that are active most of the time are those that are the
fewest to represent a class. Indeed, we have less neurons labeled 1 compared to
other classes, because the digit 1 have less sub-classes. In other words, the digit 1
has less variants and therefore can be represented by less prototype neurons. Con-
sequently, those neurons are active more often because the number of samples for
each class is approximately equal. Second, the Hebb’s learning is unbounded, lead-
ing the lateral synapses weights to increase indefinitely. Thus, this problem occurs
less when we use Oja’s rule, as shown in figure 6.4. We notice that Oja’s learning
leads to more homogenous results, and normalization often leads to a better accu-
racy. The best method using Hebb’s learning is Hebb−MaxBMU

Norm with 95.07%± 0.08,
while the best method using Oja’s learning is Oja−MaxAll

Norm with 94.79%± 0.11.
For the hand gestures, all convergence methods lead to a gain in accuracy even

though the best gain is smaller than for digits, as summarized in Table 6.1. It can
be explained by the absence of neurons that would be BMUs much more often than
other neurons, as shown in Figure 6.6. The best method using Hebb’s learning is
Hebb− SumAll

Norm with 75.73%± 0.91, while the best method using Oja’s learning is
Oja− SumAll

Raw with 75.10%± 0.9. In contrast with the digits database, here the most
accurate methods are based on the Sum update. Thus, each neuron takes in account
the activities of all the neurons that it is connected to. A plausible reason is the fact
that the digits database was constructed whereas the hand gestures database was
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initially recorded with multimodal sensors, which gives it a more natural correlation
between the two modalities.

Overall, the best methods for both digits and hand gestures databases are based
on Hebb’s learning, even though the difference with the best methods based on Oja’s
learning is very small, and Oja’s rule has the interesting property of bounding the
synaptic weights. For hardware implementation, the synaptic weights of the Hebb’s
learning can be normalized after a certain threshold without affecting the model’s
behavior, since the strongest synapse stays the same when we divide all the synapses
by the same value. However, the problem is more complex in the context of on-line
learning as discussed in section 6.6. Quantitatively, we have a gain of +8.03% and
+5.67% for the digits and the hand gestures databases respectively, compared to the
best unimodal accuracies. The proposed convergence mechanism leads to the elec-
tion of a global BMU between the two unimodal SOMs: it is one of the local BMUs
for the Hebb−MaxBMU

Norm method used for digits, whereas it can be a completely dif-
ferent neuron for the Hebb− SumAll

Norm used for hand gestures. In the first case, since
the convergence process can only elect one of the two local BMUs, we can compute
the absolute accuracy in the cases where the two BMUs are different with one of them
being correct. We find that the correct choice between the two local BMUs is made in
about 87% of the cases. However, in both cases, the convergence leads to the election
a global BMU that is indeed spread in the two maps, as shown in figures 6.5 and 6.6.
Nevertheless, the neurons of the hand gestures SOMs are less active in the inference
process, because we only have 1350 samples in the test database.

The best accuracy for both methods is reached using a sub-part of the lateral
synapses, as we prune a big percentage of the potential synapses as shown in figure
6.3. We say "potential" synapses, because the pruning is performed with respect to a
percentage (or number) of synapses for each neuron, and the neuron does not have
the information of other neurons due to the cellular architecture. Thus, the percent-
age is calculated with respect to the maximum number of potential lateral synapses,
that is equal to the number of neurons in the other SOM, and not the actual number
of synapses. In fact, at the end of the Hebbian-like learning, each neuron is only con-
nected to the neurons where there is at least one co-occurrence of BMUs, as shown
in figure 6.2. We notice that less than half of the possible lateral connections are cre-
ated at the end of the Hebbian-like learning, because only meaningful connections
between correlated neurons are created. Especially for the hand gestures database,
the sprouting leads to a small total number of lateral synapses even before pruning,
because of the small number of samples in the training dataset. Finally, we need
at most 10% of the total lateral synapses to achieve the best performance in con-
vergence as shown in Figure 6.3. However, if we want to maintain the unimodal
classification with the divergence method for labeling, then we have to keep 20%
and 25% of the potential synapses for digits and hand gestures, respectively.

One interesting aspect of the multimodal fusion is the explainability of the better
accuracy results. To do so, we plot the confusion matrices with the best convergence
methods for the digits and hand gestures datasets in Figures 6.7 and 6.8, respectively.
The gain matrices mean an improvement over the unimodal performance when they
have positive values in the diagonal and negative values elsewhere. If we look at the
gain matrix of the convergence method compared to the image modality, we notice
two main characteristics: first, all the values in the diagonal are positive, meaning
that there is a total accuracy improvement for all the classes. Second and more in-
terestingly, the biggest absolute values outside the diagonal lie where there is the
biggest confusion for the images, i.e. between the digits 4 and 9, and between the
digits 3, 5 and 8, as previously pointed out in section 6.2. It confirms our initial
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hypothesis, which means that the auditory modality brings a complementary in-
formation that leads to a greater separability for the classes which have the most
confusion in the visual modality. Indeed, the similarity between written 4 and 9 is
compensated by the dissimilarity of spoken 4 and 9. The same phenomenon can be
observed for the auditory modality, where there is an important gain for the digit 9
that is often mis-classified as 1 or 5 in the speech SOM, due to the similarity of their
sounds. Similar remarks are applicable for the hand gestures database with more
confusion in some cases, which leads to a smaller gain.

Our results confirm that multimodal association is interesting because the strengths
and weaknesses of each modality can be complementary. Indeed, Rathi and Roy
(Rathi and Roy, 2018) state that if the non-idealities in the unimodal datasets are
independent, then the probability of mis-classification is the product of the mis-
classification probability of each modality. Since the product of two probabilities
is always lower than each probability, then each modality helps to overcome and
compensate for the weaknesses of the other modality. Furthermore, multimodal as-
sociation improves the robustness of the overall system to noise (Rathi and Roy,
2018), and in the extreme case of losing one modality, the system could rely on the
other one which links back to the concept of degeneracy in neural structures (Edel-
man, 1987).

6.4 Comparative study

In this section, we compare our ReSOM model to three different approaches. First,
we compare our results with STDP approaches to assess the classification accuracy
with a comparable number of neurons. Next, we confront our results with early data
fusion using one SOM. Third and finally, we use supervised perceptrons to learn the
multimodal representations based on the two unimodal SOMs activities.

6.4.1 SOM early data fusion

We find in the literature two main different strategies for multimodal fusion (Bal-
trusaitis, Ahuja, and Morency, 2019) (Cholet, Paugam-Moisy, and Regis, 2019): (1)
score-level fusion where data modalities are learned by distinct models then their
predictions are fused with another model that provides a final decision, and (2) data-
level fusion where modalities are concatenated then learned by a unique model. Our
approach can be classified as a classifier-level fusion which is closer to score-level
fusion and usually produces better results than feature-level or data-level fusion
for classification tasks (Guo et al., 2014) (Peng et al., 2016) (Biagetti, Crippa, and
Falaschetti, 2018). However, it is worth trying to learn the concatenated modalities
with one SOM having as much neurons as the two uni-modal SOMs, for a fair com-
parison.

We use 361 and 529 neurons for digits and hand gestures respectively. We have
few neurons more compared to the sum of the two uni-modal SOMs, as we want
to keep the same square grid topology. We train the SOMs with the same hyper-
parameters as for the uni-modal SOMs, and reach 90.68%± 0.29 and 75.6%± 0.32
accuracy for digits and hand gestures, respectively. We still have a gain compared to
the uni-modal SOMs, but have an important loss of −4.39% for digits and a negligi-
ble loss of −0.13% for hand gestures compared to the proposed ReSOM multimodal
association. The incremental aspect of the ReSOM from simple (unimodal) to more
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complex (multimodal) representations improves the system’s accuracy, which is co-
herent with the literature findings. Furthermore, the accuracy is not the only metric,
as the memory footprint is an important factor to take in consideration when choos-
ing a fusion strategy (Castanedo, 2013), especially for embedded systems. Today,
implementing a large number of synapses in a neuromorphic device is a great chal-
lenge (Strukov et al., 2019). Indeed, since we target a hardware implementation on
FPGA, the total number of afferent and lateral synaptic weights are parameters that
require on-chip memory, which is very limited. With a simple calculation using the
number of neurons and input dimensions, we find that we have a gain of 49.84% and
40.96% for digits and hand gestures respectively (before the lateral pruning) using
the multimodal association compared to a data-level fusion strategy.

6.4.2 Confronting SOMs to SNNs for multimodal association

TABLE 6.3: Digits unsupervised classification comparison.

ANN Model Neurons Labels (%) * Modality Dataset Accuracy (%)

SNN

(Diehl and Cook, 2015) 400 100 Unimodal MNIST 88.74
(Hazan et al., 2018) 400 100 Unimodal MNIST 92.56
(Rathi and Roy, 2018) 400 100 Unimodal MNIST 86.00

(Rathi and Roy, 2018) 400 100 Multimodal
MNIST +

TI46
89.00

SOM (Khacef et al., 2020) 356 1 Multimodal
MNIST +
SMNIST

95.07

∗ Labeled data are only used for the neurons labeling after unsupervised training.

Table 6.3 summarizes the digits classification accuracy achieved using brain-
inspired unsupervised approaches, namely SOMs with self-organization (Hebb, Oja
and Kohonen principles) and SNNs with STDP. We achieve the best accuracy with
a gain of about 6% over Rathi and Roy (Rathi and Roy, 2018) with approximately
the same number of neurons, which is to the best of our knowledge the only work
that explores brain-inspired multimodal learning for written/spoken digits classifi-
cation. It is to note that we do not use the TI46 spoken digits database (Liberman
et al., 1991), but a subpart of GSC (Warden, 2018) because the TI46 is not freely avail-
able.

We notice from table 6.3 that all other works use the complete training dataset
to label the neurons, which is incoherent with the first goal of not using labels, as
explained in chapter 3. Moreover, the work of Rathi and Roy (Rathi and Roy, 2018)
differs from our work in the following points:

• The cross-modal connections are formed randomly and initialized with ran-
dom weights. The multimodal STDP learning is therefore limited to connec-
tions that have been randomly decided, which induces an important variation
in the network performance.

• The cross-modal connections are not bi-directional, thus breaking with the bio-
logical foundations of reentry and CDZ. Half the connections carry spikes from
image to audio neurons and the other half carry spikes from audio to image
neurons, otherwise making the system unstable.
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• The accuracy goes down beyond 26% connections. When the number of ran-
dom cross-modal connections is increased, the neurons that have learned dif-
ferent label gets connected. We do not observe such a behavior in the ReSOM,
as shown in figure 6.3.

• The decision of the multimodal network is computed by "observing" the spik-
ing activity in both ensembles, thus requiring a central unit.

Nevertheless, the STDP-based multimodal learning is still a promising approach
for the hardware efficiency of SNNs (Khacef, Abderrahmane, and Miramond, 2018),
and because of the alternative they offer for using even-based sensors with asyn-
chronous computation.

6.4.3 SOMs coupled to supervised fusion

In order to have an approximation of the best accuracy that we could obtain with
multimodal association, we used a number of perceptrons equal to the number of
classes on top of the two uni-modal SOMs of the two databases, and performed
supervised learning for the same number of epochs (10) using gradient descent
(Adadelta algorithm). We obtain 91.29%± 0.82 and 80.19%± 0.63 of accuracy for
the digits and hand gestures respectively. Surprisingly, we have a loss of −3.78%
for the digits. However, we have a gain of 4.43% for the hand gestures. We argue
that the hand gestures dataset is too small to construct robust multimodal represen-
tations through unsupervised learning, and that could explain the smaller overall
gain compared to the digits dataset.

6.5 Coupling DVS hand gestures with spoken digits

6.5.1 Motivation and goal

An important question in developmental robotics is how the conceptual system and
language co-develop (Pointeau, Petit, and Dominey, 2014). In cognitive and de-
velopmental psychology (Waxman and Markow, 1995) (Waxman and Braun, 2005),
words are often seen as an invitation to the infant to form categories. Infancy re-
search demonstrates indeed a facilitation of visual category formation in the pres-
ence of verbal labels. The term label refers here to the spoken modality of the infor-
mation when, for example, infants learn to associate objects with their names in a
particular language (this label is written in italic in the rest of this section to distin-
guish from the label as the class of the sample). However, there is an open question
about the role of these verbal labels: do they function as features that increase sepa-
rability between objects (Gliozzi et al., 2009) or do they act as a referential, serving
as "names" (“Early word-learning entails reference, not merely associations” 2009)?

Several works in experimental psychology tend to pick up the first answer. For
example, Plunkett et al. (Plunkett, Hu, and Cohen, 2008) highlighted the construc-
tive effects of labels on categorization. In their study, 10-month-old infants were
provided with identical labels and formed a single category over a set of stimuli.
However, they divided the same stimuli into two groups when familiarized in si-
lence. It indicates that infants relied on the label’s identity to form categories. Sim-
ilarly, Althaus and Westermann demonstrated in (Althaus and Westermann, 2016)
that labeling caused infants to use more restrictive criteria for a classification of two
items as similar, effectively producing two smaller categories. These experimental
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results show that the so-called label serves not so much as an additional "name" but
instead as a feature that modulates the way in which visual features are classified. It
suggests that object categories and words develop interactively in infants (Althaus
and Mareschal, 2013) to facilitate categorization (Althaus and Mareschal, 2014).

In the following, we experiment our ReSOM model on a third database that we
construct using two previously seen unimodal databases: the DVS hand gestures
for the visual modality and the spoken digits for the auditory modality, as further
detailed in section 6.5.2.

6.5.2 Database construction

We have already shown in this chapter that spoken digits help to improve the rep-
resentation of written digits, providing labels (as referred to in psychology) that im-
prove the digits classification. The objective with this third database is to confirm
that the auditory modality can improve the representation of the visual modality
with a complex dataset such as the DVS hand gestures, even though the auditory
dataset was associated offline to the DVS visual modality. In fact, we could associate
any gesture to a spoken label, even though both do not represent the same "concept"
in our common representation. The ReSOM model exploits the intrinsic complemen-
tarity of multiple modalities, we can therefore expect an improvement in accuracy
when associating both modalities.

A necessary and sufficient condition when constructing the dataset is to associate
every class in the DVS hand gestures dataset to a unique class in the spoken digits
datatset. The goal is to retrieve the co-occurrence of the multimodal information
which is necessary for the multimodal association learning. We have arbitrarily cho-
sen to couple the classes as follows: Pinky - one, Elle - two, Yo - three, Index - four and
Thumb - five. We therefore extracted only 5 classes from the 10 classes of S-MNIST,
which made a database of 17204 samples for training and 2073 samples for test. We
call this spoken digits database of 5 digits S-MNIST-5. Since we have less samples
in the DVS hand gestures than in S-MNIST, we duplicated some random DVS hand
gestures to match the number of spoken digits.

6.5.3 ReSOM divergence and convergence results

TABLE 6.4: ReSOM classification accuracy and conver-
gence/divergence gain for DVS hand gestures with spoken

labels.

Database DVS hand gestures S-MNIST-5

SOMs

Dimensions 972 507
Neurons 256 256
Labeled data (%) 10 10
Accuracy (%) α 70.06 2.0 84.62 0.1

ReSOM divergence
Labeled data (%) 0 10
Gain (%) 2.01 /
Accuracy (%) 72.07 /

ReSOM convergence
Gain (%) +18.3 +5.75
Accuracy (%) 90.37

In this section, we present the results from our experiments with the multimodal
association convergence and divergence mechanisms for the third database of DVS
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FIGURE 6.9: KSOM learning confusion matrix: (a) DVS hand gestures
divergence; (b) S-MNIST-5.

hand gestures associated with S-MNIST-5. The first step was to train and label a
SOM with the unimodal S-MNIST-5 database, using the same hyper-parameters as
the original S-MNIST database as reported in table 6.4. We achieved an accuracy
of 84.62%± 0.4 on S-MNIST-5, which is better than the S-MNIST accuracy because
S-MNIST-5 only contains 5 classes. For the DVS hand gestures, we used the same
SOM that was previously trained for the DVS/EMG hand gesture multimodal as-
sociation in section 6.2.3, with an accuracy of 70.06%± 1.15. Figure 6.9 shows that
the two SOMs have different confusion matrices, meaning that their respective mis-
classifications do not occur within the same classes with the same percentage. There
is therefore a potential for the ReSOM to exploit this complementarity in order to
improve the overall accuracy. Afterwards, we trained the multimodal association as
explained in chapter 5 with sprouting, Hebbian-like learning and pruning to keep
20% of all lateral connections.

Then, we move to the ReSOM divergence mechanism, i.e. labeling the DVS hand
gestures SOM with the lateral activity from the S-MNIST-5 SOM. As explained be-
fore, we use the SOM with the best accuracy as the reference map that we use to label
all other maps, so that we maximize the separability of the lateral activity. The results
in table 6.4 show that the DVS hand gestures classification reaches 72.07%± 0.46 of
accuracy using the divergence mechanism for labeling, which means a gain of 2.01%
compared to the original afferent labeling with DVS hand gestures data. It shows
that even though both modalities need approximately the same amount of labels
(10%), we still have a gain in performance regarding the unimodal accuracy of the
labeled SOM with the divergence mechanism.

Moreover, the ReSOM divergence performance is very interesting in the context
of experimental studies with infants. For example, Gliga et al. (Gliga, Volein, and
Csibra, 2010) measured the induced EEG gamma-band activation in the brain of 12-
month-old infants. They showed that hearing previously labeled objects modulated
visual processing of that object, even though the object was not shown. This is what
the ReSOM simulates for labeling the DVS hand gestures visual modality with the S-
MNIST-5 spoken labels. Furthermore, Mani and Plunkett (Mani and Plunkett, 2010)
demonstrated that infants as young as 18 months implicitly generate phonological
representations upon seeing a picture for which they know a word, which demon-
strates the bi-directional aspect of the lateral connections and provides experimental
evidence for the ReSOM biological plausibility.

Finally, we conducted a comparative study for the eight variants of the ReSOM
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FIGURE 6.10: DVS hand gestures and spoken digits confusion matri-
ces using Hebb−MaxBMU

Norm method: (a) convergence; (b) convergence
gain with respect to DVS hand gestures; (c) convergence gain with

respect to S-MNIST-5.

convergence for each of the two learning methods, i.e. Hebb’s and Oja’s learning, as
explained in section 6.3.2. Similarly to the written/spoken digits convergence, the
best performance was obtained using Hebb−MaxBMU

Norm (β = 50) with 90.37%± 0.3,
which means a gain of +5.75% compared to the best unimodal accuracy achieved
with S-MNIST-5 as reported in table 6.4. Interestingly, figure 6.10 shows that both
modalities had a positive impact on each other, leading to an increase in accuracy for
every class except Index in the DVS hand gestures. It is mainly because it was already
well classified in the unimodal SOM. Overall, the confusion matrices of gain in figure
6.10 reflect well the better accuracy of the ReSOM compared to the unimodal SOMs.

The ReSOM convergence results are coherent with respect to recent computa-
tional models in cognitive and developmental psychology, in which authors try
to simulate the role of word labels for categorization. For example, Althaus and
Mareschal (Althaus and Mareschal, 2013) demonstrated how early interactions be-
tween word learning and learning about objects led to improved category repre-
sentations compared to isolated learning without spoken words acting as labels. In-
terestingly, the model of (Althaus and Mareschal, 2013) uses SOMs and Hebbian
connections to propagate activation between the visual and auditory maps during
learning. Even though no classification accuracy was reported, the results show that
categorical perception emerges from these early audio–visual interactions in both
domains. Another example is the work of Westermann and Mareschal (Westermann
and Mareschal, 2014) who proposed a model that shows how spoken labels can af-
fect the similarity relations between objects, by increasing the perceptual distance
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between objects that have different labels. These results contrast with the notion that
words are simply mapped onto previously existing categories. They reinforce the
idea that spoken labels and the auditory modality in general adds a complementary
information that affects the classification accuracy. These findings are supported by
the ReSOM convergence results.

6.6 Discussion

6.6.1 A universal multimodal association model?

The development of associations between co-occurring stimuli for multimodal bind-
ing has been strongly supported by neurophysiological evidence (Fiebelkorn, Foxe,
and Molholm, 2010) (Ursino, Cuppini, and Magosso, 2014). Similarly to (Vavrecka
and Farkas, 2013), (Morse et al., 2015) and (Parisi et al., 2017) and based on our ex-
perimental results, we argue that the co-occurrence of sensory inputs is a sufficient
source of information to create robust multimodal representations. This is achieved
using associative links between unimodal representations that can be incrementally
learned in an unsupervised fashion.

In terms of learning, the best methods are based on Hebb’s learning with a slightly
better accuracy over Oja’s learning, but the overall results are more homogeneous
using Oja’s learning that prevents the synaptic weights from growing indefinitely.
The best results are obtained using Hebb−MaxBMU

Norm with 95.07%± 0.08 and Hebb−
SumAll

Norm with 75.73% ± 0.91 for the digits and hand gestures datatabases, respec-
tively. We notice that the BMU method is coupled with the Max update while the
All neurons method is coupled with the Sum update, and the Norm activities usu-
ally perform better than Raw activities. However, we cannot have a final conclusion
on the best method, especially since it depends on the nature of the dataset.

Moreover, the experimental results depend on the β hyper-parameter, the Gaus-
sian kernel width that has to be tuned for every database and every method. Thanks
to the multiplicative update, the values of both SOMs are brought into the same scale
which gives the possibility to elect the correct global BMU, and we get rid of a sec-
ond hyper-parameter that would arise with a sum update method like in (Jayaratne
et al., 2018). However, it is still time-taking in the exploration of the proposed meth-
ods for future works, even if it is a common limit when dealing with any ANN.
Finding a more efficient approach for computing β will be part of our future works.

Finally, multimodal association bridges the gap between unsupervised and su-
pervised learning, as we obtain approximately the same results compared to uni-
modal MNIST using a supervised Multi-Layer Perceptron (MLP) with 95.73% (Khacef,
Abderrahmane, and Miramond, 2018) and S-MNIST using a supervised attention
Recurent Neural Network (RNN) with 94.5% (Andrade et al., 2018) (even though
this result was obtained on 20 commands rather than 10). Multimodal association
can also be seen as a way to reach the same accuracy of about 95% as (Diehl and
Cook, 2015) with much less neurons, going from 6400 neurons to 356 neurons, i.e. a
gain of 94% in the total number of neurons. It therefore is a very promising approach
to deeper explore, as we have in most cases the possibility to include multiple sen-
sory modalities when dealing with the real-world environment.
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6.6.2 Offline vs. online multimodal association learning

The ReSOM multimodal association learning methods explored in this work are
performed sequentially in two times: first, we train the SOMs for unimodal clas-
sifications, and second we create and reinforce bidirectional connections between
the two maps based upon their activities on the same training dataset. We refer to
this learning approach as asymmetric. This is particularly interesting in the context
of off-line learning when working on pre-established datasets. First, from a purely
practical way, it gives a lot of flexibility since we could train the unimodal SOMs
on their respective available data separately, then train the multimodal association
based on a smaller synchronized multimodal dataset. The synchronicity here means
that the multimodal samples that belong to the same class are presented at the same
time. Second, from a developmental point of view, it has been shown that auditory
learning begins before birth while visual learning only starts after birth (Althaus
and Mareschal, 2013). Moreover, the ability to build associations between words
and objects in infants appears to develop at about 14 months of age (Werker et al.,
1998). The opportunity to process visual and auditory information sequentially may
offer computational advantages in infants learning, as it could be a facilitating fac-
tor in the extraction of the complex structures needed for categorisation (Althaus
and Plunkett, 2015). These observations support the actual learning approach of the
ReSOM, where multimodal associations begin to develop after unimodal represen-
tations are learned sequentially.

Nevertheless, in the context of on-line learning in a dynamic and changing envi-
ronment, another approach would be to perform both Kohonen-like and Hebbian-
like learning at the same time, continuously. We refer to this learning apporach as
symmetric. For example, this approach is followed with STDP learning in (Rathi and
Roy, 2018). For this purpose, The KSOM would be replaced by the DSOM presented
in chapter 2. The reason is that the KSOM has a decaying learning rate and neigh-
borhood width, so that the learning stabilizes after a certain number of iterations.
Therefore, the learning is stable but not dynamic. It can be considered as an off-line
unsupervised learning algorithm. In contrast, the DSOM introduced by Rougier et
al. (Rougier and Boniface, 2011) is a variation of the KSOM algorithm where the
time dependency of the learning rate and neighborhood function has been replaced
by the distance between the BMU and the input stimulus. Even if the DSOM is less
accurate than the KSOM, as shown in chapter 3, it is more suitable for on-line learn-
ing. Moreover, Oja’s learning would be the only alternative because we need the
forgetting parameter that enables the synaptic weights decaying, which is not avail-
able in Hebb’s learning. In addition, we would need a dynamic learning rate so that
the multimodal association becomes stronger when the sample is well learned by the
SOM, i.e. when the distance between the BMU and the sample is small. One way
to do that is to add a Gaussian kernel to that distance, so that the multimodal bind-
ing becomes more relevant after the convergence of the SOMs without any manual
tuning on the hyper-parameters of the SOM.

6.6.3 SOMA: Toward hardware plasticity

As discussed in chapter 1, this work is part of the SOMA project (Khacef et al., 2018),
where the objective is to study neural-based self-organization in computing systems
and to prove the feasibility of a self-organizing multi-FPGA hardware structure. The
concept of the IG is further supported in (Heylighen and Gershenson, 2003) as it
states the following: “Changes initially are local: components only interact with
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their immediate neighbors. They are virtually independent of components farther
away. But self-organization is often defined as global order emerging from local in-
teractions”. Moreover, it states that “a self-organizing system not only regulates or
adapts its behavior, it creates its own organization. In that respect it differs funda-
mentally from our present systems, which are created by their designer”. Indeed,
the multimodal association through Hebbian-like learning is a self-organization that
defines the inter-SOMs structure, where neurons are only connected to each other
when there is a strong correlation between them. That’s a form of hardware plasticity.
The hardware gain of the ReSOM is therefore the gain in communication support,
which is proportional to the percentage of remaining synapses for each neuron after
learning and pruning. Indeed, the multimodal learning via structural and synap-
tic plasticity allows the pruning of the majority of the potential lateral synapses
amongst the SOMs. It reduces the number of connections, thus the number of com-
munications and therefore the overall energy consumption. Hence, the system is
more energy-efficient as only relevant communications are performed without any
control by an external expert.

6.7 Conclusion

We have experimented in this chapter our ReSOM model and demonstrated its good
performance in divergence and convergence for three datasets. First, we have shown
that the divergence labeling leads to approximately the same unimodal accuracy as
when using labels, with even a consequent gain of +2.01% for the DVS hand ges-
tures labeled using spoken digits. The divergence mechanism is hence extremely
interesting for real-world applications: even though we usually have the same num-
ber of labels in all modalities, it happens that the divergent lateral labeling performs
better than the afferent labeling with the same amount of labels, because the lateral
activity is "pre-processed" by the SOM and has therefore a better separability.

Second, we showed that the ReSOM convergence leads to a gain in the multi-
modal accuracy of +8.03% for the written/spoken digits database, +5.67% for the
DVS/EMG hand gestures database and +5.75% for the DVS hand gestures/spoken
digits. The ReSOM exploits the natural complementarity between different modali-
ties like sight and sound as shown by the confusion matrices, so that they complete
each other and improve the multimodal classes separability and classification. In
addition to the ReSOM biological plausibility with respect to Edelman (Edelman,
1982) and Damasio (Damasio, 1989) theories in cognitive neurosciences, our results
find an echo amongst many works in cognitive and developmental psychology in
infants (Althaus and Mareschal, 2013). There experimental studies support our mul-
timodal learning approach and both the convergence and divergence mechanisms.

Implemented on the IG, the ReSOM’s inter-map structure is therefore learned
along the system’s experience through self-organization and not fixed by the user.
It leads to a gain in the communication time compared to the fully-connected topol-
ogy without pruning. Indeed, this gain is proportional to the number of pruned
lateral synapses for each neuron, which is about 80% of the possible connections.
In addition to the convergence and divergence gains, the ReSOM self-organization
induces a form of hardware plasticity which has an impact on the hardware effi-
ciency of the system, reducing its overall energy consumption. That is a first result
that opens very interesting perspectives for future designs and implementations of
self-organizing architectures inspired from the brain’s plasticity.
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Chapter 7

Conclusion and further works

Listen to the technology; find out what
it’s telling you.

Carver Mead.

7.1 Conclusion

We have seen through this manuscript that brain-inspired computing is an interdis-
ciplinary field in the intersection of many disciplines amongst which we find em-
bedded electronics, developmental robotics, cellular computing, machine learning,
computational and theoretical neurosciences, cognitive psychology, philosophy, etc.
The objective of this thesis was to explore brains-inspired computing from these
different perspectives and bring the pieces of the puzzle all together, in order to pro-
pose a computational model that satisfies some particular behavioral, algorithmic
and hardware properties. For this purpose, this manuscript was built around one
fundamental paradigm of brain’s computation: the self-organization.

We have started in chapter 2 by defining our foundations for brain-inspired com-
puting (in three levels): multimodal unsupervised learning with structual and synap-
tic plasticities (behavioral level), cellular computing (algorithmic level) and neuro-
morphic implementation (hardware level). These properties guided us toward the
choice of the SOM model associated with the proposed IG cellular neuromorphic
architecture as the main component for unimodal processing in our multimodal
framework. Then, we introduced in chapter 3 the post-labeled unsupervised learning
problem in which training is fully unsupervised, then very few labels are used to
name the learned representations with a proposed labeling method. In fact, one
major limit in the literature is the use of the whole labeled training set for labeling.
From then, we confronted the Kohonen-based SOMs with STDP-based SNNs on
MNIST unsupervised classification. The comparative results showed that the SOM
achieves a better accuracy using only 1% of labels with the same number of neurons
(100). Moreover, we have analytically demonstrated that the SOM with the IG cellu-
lar substrata is scalable in terms of time complexity and connectivity complexity, as
opposed to centralized or fully-connected architectures. This was an important step
in the construction of the proposed multimodal framework which needs to scale-up
to multiple SOM networks.

The next step was to show that the SOM could achieve better results in MNIST
unsupervised classification and reach a good performance with more complex datasets
such as mini-ImageNet without increasing exponentially the number of neurons. In-
stead, we investigated feature extraction in chapter 4 for two case studies. First, in
the context of unsupervised learning, we conducted a comparative study for unsu-
pervised feature extraction, and concluded that the SCAE+SOM achieves a better
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accuracy than the SNN+SOM thanks to the sparsity constraints that were applied
to the SCAE. We improved the SOM classification by +6.09% and achieved state of
the art performance on MNIST unsupervised classification, using only 256 neurons
with post-labeled unsupervised learning. Second, in the context of transfer learning,
we proposed a solution that combines transfer learning and the SOM. We reached a
good performance on the mini-ImageNet few shot classification benchmark, which
proves that the SOM can handle complex data provided that we have an efficient
feature extraction strategy.

At this point of the work, the unimodal learning and inference using the SOM
reached state f the art performance in terms of classification accuracy, with the ad-
vantage of hardware scalability. Therefore, we proposed in chapter 5 the ReSOM
model inspired from the brain’s self-organization for multimodal unsupervised learn-
ing. Based on the reentry theory of Edelman (Edelman, 1982), the ReSOM learns uni-
modal representations with multiple SOMs supported by the IG cellular substrata,
then it creates and reinforces the multimodal association via sprouting, Hebbian-like
learning and pruning. It relies on both structural and synaptic plasticities that enable
self-organization. Thanks to the bi-directional property of the multimodal repre-
sentation, we exploited both convergence and divergence mechanisms highlighted
by Damasio (Damasio, 1989) in classification tasks: the divergence mechanism was
used to label one modality based on the other, and the convergence mechanism was
used to introduce cooperation and competition between the modalities and improve
the overall accuracy of the system.

Finally, the ReSOM experiments described in chapter 6 have been conducted on
three different datasets. The results show that, on the one hand, the ReSOM diver-
gence labeling leads to approximately the same unimodal accuracy as when directly
using labels. Interestingly, the divergent lateral labeling can perform better than the
afferent labeling with the same amount of labels, because the lateral activity is "pre-
processed" by the SOM and has therefore a better separability. On the other hand,
the ReSOM convergence mechanism leads to a gain in the multimodal accuracy of
+8.03% for the written/spoken digits database, +5.67% for the DVS/EMG hand
gestures database and +5.75% for the DVS hand gestures/spoken digits. Interest-
ingly, whether the database is originally recorded with multiple sensors or artifi-
cially constructed for experimental purposes, the ReSOM exploits the natural com-
plementarity between different modalities to improve the classification accuracy.

Overall, this work was a step forward in our understanding of the important
concepts and paradigms of brain-inspired computing in the behavioral, algorithmic
and hardware levels. We used these new insights gathered from different and com-
plementary disciplines to complete previous works in the literature with the pro-
posed ReSOM model. It assembles all our efforts and provides the community with
a quantitative analysis of the gap we bridged in the three levels with respect to our
foundations listed in chapter 2 and discussed in the following:

• Behavioral level: The ReSOM learns from multiple modalities in a completely
unsupervised fashion, then needs very few labels from one of the learned
modalities for the neurons labeling process, as opposed to most works in the
literature where all labels are used. In addition to the redundancy provided by
multiple modalities which keeps the system working in the case of the loss of
one modality, the results show a consequent increase in accuracy for the three
experimented datasets, both using raw data and extracted features. The lat-
ter is further discussed in section 7.2.2. The ReSOM biological plausibility re-
garding the works in neuroscience (Edelman, 1982) (Damasio, 1989) is further
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supported by experimental results in cognitive and developmental psychol-
ogy in infants (Althaus and Mareschal, 2013). The proposed ReSOM model can
therefore serve as a base to further explore the self-organizing multimodal as-
sociation mechanisms for two objectives: first, a more detailed understanding
of biological observations and, second, a better performance in classification
tasks. Nevertheless, the question of the sensori-motor loop was not handled in
our experiments, as further explained in section 7.2.2.

• Algorithmic level: The ReSOM neuromorphic architecture is based on the IG
cellular substrata, which gives the model scalability properties in terms of time
complexity and connectivity complexity. The ReSOM exploits the huge poten-
tial of cellular automata, where the global behavior emerges from local inter-
actions amongst neurons without any centralized controller.

• Hardware level: The hardware implementation was not handled in this thesis.
Nevertheless, the architectural design was studied with the IG which is the cel-
lular substrata that supports the ReSOM computation, and in turn takes profit
from the structural plasticity mechanism that reduces the lateral connections.
This aspect is further discussed in section 7.2.1.

We believe that the studied self-organization concepts and paradigms at different
levels and from different disciplines should be studied together as much as possible,
because only then we can handle the remaining scientific and technical challenges
of brain-inspired computing. Our results are promising and encourage this inter-
disciplinary approach.

7.2 Perspectives

In this final section, we discuss the limits and perspectives of our work, especially
regarding the ReSOM model in two levels: the hardware level and the behavioral
level with respect to the sensori-motor interaction in the environment.

7.2.1 From brain’s plasticity to hardware plasticity

The proposed ReSOM model is based on the IG substrata for scalability purposes,
which means that each neuron computes in a distributed fashion and exchanges in-
formation only with its local neighbor neurons. Therefore, the ReSOM self-organizing
neuromorphic architecture is adapted to the multi-FPGA hardware structure tar-
geted in the SOMA project. The idea for future works is to process each modality
in a specific FPGA board, then implement the multimodal mechanisms through the
boards inter-connections based on the SCALP plateform proposed by Vannel et al.
(Vannel et al., 2018). These works have to focus particularly on the communication
part between multiple FPGA boards.

Importantly, the hardware inter-map structure is not fixed by the user but self-
organized along the system’s experience. This self-organization of the ReSOM’s lat-
eral connections impacts the hardware that takes profit from the structural plastic-
ity. This comes from the pruning mechanism that reduces the number of connections
compared to a non-adaptive fully-connected topology. It reduces thus the number of
communications and therefore the overall energy consumption of the hardware. The
energy-efficiency gain of the hardware plasticity would be proportional to the num-
ber of pruned lateral connections which is about 80% of the possible connections,
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but this claim needs to be further quantified in short-term future works through
measurement on the FPGA hardware.

Mid-term future works will focus on transposing the ReSOM model into the
spiking domain for direct integration with event-based sensors. The idea is to re-
place the SOMs with SNNs and the Hebbian-like learning with symmetric STDP.
The main difference would be an additional hyper-parameter which is the time win-
dow during which every pixel is converted into spikes in the case of original frame-
based data, or the time window during which the modalities should be presented in
the case of event-based data. A first interesting attempt to that was done by Rathi
et al. (Rathi and Roy, 2018) with some limitations as explained in chapters 5 and
6. Therefore, it would be an extension of the comparative study that we started in
this thesis between SOMs and SNNs to multimodal association in terms of accuracy,
scalability and energy-efficiency.

7.2.2 Toward intelligent artificial systems

The ReSOM model exhibits very interesting properties of self-organization, and pro-
vides a base-line model to improve toward the design of intelligent artificial systems
that can autonomously learn and adapt in their environment. A technical limit of the
ReSOM multimodal association learning and convergence is the hyper-parameter β
in equation 5.7. Even though it is common to ANNs in general, it should be men-
tioned because it is a true limit when put in the context of autonomous systems that
should not need any human supervision. In our work, this hyper-parameter was
approximated with a simple grid-search approach. Future works may tackle this
question to figure the optimal function for tuning this particular hyper-parameter.

Thereafter comes the question of feature extraction, which is necessary when
working on real-world data with complex structures. We have seen that the ReSOM
is capable of handling extracted features, and that unsupervised feature extraction
provides good performance on MNIST either using an gradient-based SCAE or an
STDP-bases SNN associated with the SOM. However, the task is much more diffi-
cult for complex datasets, and that is why we experimented the DVS/EMG hand
gestures with supervised features. Mid-term works should focus on more generic
strategies for unsupervised feature extraction, by providing a new metric for the
quality of the features. We have seen that sparsity is part of that metric, but our
experimental results have shown that it cannot be considered as a reliable quantifi-
cation alone.

Finally, the ReSOM algorithm is generic in terms of the number of modalities to
be used. As a short-term objective, we can add a third modality to the framework by
investigating a DVS/EMG hand gestures/spoken digits. Since the overall accuracy
is an emergent result of the self-organization, it is difficult to provide an hypothesis
on the overall accuracy gain we can expect from three modalities. Furthermore, the
third modality can be a motor modality, following the work of Lallee and Dominey
(Lallee and Dominey, 2013). Their proposed model encoded the sensori-motor ex-
perience of a robot based on the visual, auditory and motor modalities, then used
the learned representations to control the robot behaviour. However, the model’s
computation relies on a centralized controller. As a long-term objective, the ReSOM
model must be extended to the motor modality because it is a necessary condition
for a complete biologically plausible model at the behavioral level, and because self-
organization coupled with the sensori-motor interaction in the environment is the
key to enable intelligence in biological as well as artificial systems.
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Appendix A

GPU-based software
implementation for fast simulation

A.1 TensorFlow-based SOM

The SOM was implemented using TensorFlow (TF) (Abadi et al., 2016) 2.1, an end-to-
end open source platform for machine learning that uses dataflow graphs to repre-
sent computation, shared state, and the operations that mutate that state. It maps the
nodes of a dataflow graph across multiple computational devices including multi-
core CPUs, general-purpose GPUs and custom-designed ASICs known as Tensor
Processing Units (TPUs) (Abadi et al., 2016). TF facilitates the design of many ma-
chine learning models providing built-in functionalities such as convolution, pool-
ing and fully-connected layers. However, TF does not provide computational neu-
roscience models, and to the best of our knowledge, there is no efficient implementa-
tion for SOMs using TF. The complete GPU-based source code for the SOM training,
labeling and test is available in https://github.com/lyes-khacef/GPU-SOM.

A.2 CPU and GPU speedups

The SOMs of different sizes were trained for 10 epochs on MNIST database, i.e.
600,000 samples of 784 dimensions. The CPU mono-core implementation is based
on NumPy (van der Walt, Colbert, and Varoquaux, 2011) and run on an Intel Core
i9-9880H CPU (2.3 GHz × 16), while the GPU implementation is based on TF 2.1
(Abadi et al., 2016) and run on two different GPUs: Nvidia GeForce RTX 2080 with
Max-Q, and Nvidia Tesla K80 GPU (2.3 GHz) freely available from Google Colab
cloud service (Carneiro et al., 2018). Interestingly, the TF-based SOM can also run on
the multiple cores of the CPU, providing a speed-up even without access to GPU.
Figure A.1 shows that the time complexities of the CPU, TF-CPU and TF-GPU imple-
mentations are all linear. It is to note that the time complexity slope of the TF-CPU,
TF-GPU GeForce and TF-GPU Tesla implementations changes at 1600 neurons, 400
neurons and 1024 neurons respectively, which is due to their different degrees of
parallelism.

As shown in figure A.2 and reported in table A.1, we achieved a minimum
speedup of 12× (22×) and a maximum speedup of 161× (138×) with the TF-GPU
Tesla (TF-GPU GeForce) implementation, with an increasing speedup with respect to
the number of neurons. Our GPU implementation is therefore scalable in simulation
time with respect to the SOM size, which is an important aspect to accelerate the
simulations and hyper-parameters exploration. For example, with a 32× 32 SOM

https://github.com/lyes-khacef/GPU-SOM
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FIGURE A.1: SOM training speed on MNIST database for 10 epochs
(i.e. 600,000 samples of 784 dimensions) vs. number of SOM neu-
rons: (top-left) CPU (mono-core) implementation; (top-right) TF-
CPU implementation; (bottom-left) TF-GPU GeForce implementa-

tion; (bottom-right) TF-GPU Tesla implementation.
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FIGURE A.2: TF-CPU and TF-GPU speed-ups compared to CPU.

(1024 neurons) trained on MNIST, we achieve a speedup of 118× going from 60 im-
ages/s on the Intel Core i9-9880H mono-core CPU to 7142 images/s on the Nvidia
GeForce RTX 2080 GPU.

Between the two GPU devices, we find that the Nvidia GeForce is faster for small
SOMs (< 1024 neurons), while the Nvidia Tesla is faster for bigger networks (> 1600
neurons). In addition, we achieved a minimum speedup of 11× times and a max-
imum speedup of 29× times with the TF-CPU implementation, which runs the 16
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cores of the CPU. Nevertheless, the gap between the GPU and CPU speed-ups in-
creases with the number of neurons, which is expected due to the highly parallel
computation of the GPU hardware.

TABLE A.1: TF-CPU and TF-GPU minimum, maximum and average
speed-ups compared to CPU.

Hardware Min speedup Max speedup Average speedup
CPU (Intel Core i9-9880H x16) 11× 29× 19×
GPU (Nvidia GeForce RTX 2080) 22× 138× 102×
GPU (Nvidia Tesla K80) 12× 161× 100×

Recent works have tried an other approach using CUDA acceleration on Nvidia
GPUs. They showed relative gains to CPU of 44× (Moraes et al., 2012), 47× (Gav-
val et al., 2019) and 67× (McConnell et al., 2012). Our implementation reaches an
average gain of 19× in a multi-core Intel Core i9 CPU, 100× in a Nvidia Tesla GPU
and 102× in a Nvidia GeForce GPU. A fair comparison is difficult since we do not
target the same hardware, but the order of magnitude is comparable and our results
are in the state of the art. Moreover, another advantage of our TF-based approach
is the easy integration of the SOM layer into Keras (Chollet et al., 2015), a high-level
neural networks API capable of running on top of TF with a focus on enabling fast
experimentation. The TF SOM implementation was therefore a big step forward to
overcome the technical limitation of the classical CPU implementation.
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Appendix B

Multimodal databases details

B.1 Written/spoken digits database

The written and spoken digits database available in (Khacef, Rodriguez, and Mira-
mond, 2019) is not a new database but a constructed database from existing ones.
The objective is to provide a ready-to-use database for multimodal fusion.

B.1.1 Written digits

The Mixed National Institute of Standards and Technology (MNIST) database (Le-
Cun and Cortes, 1998) is a database of 70000 handwritten digits (60000 for training
and 10000 for test) proposed in 1998. Even if the database is quite old, it is still com-
monly used as a reference for training, testing and comparing various ML systems
for classification tasks.

B.1.2 Spoken digits

Speech recognition is more and more present in human-computer interfaces like per-
sonal assistants (Google Assistant, Microsoft Cortana, Amazon Alexa, Apple Siri,
etc.). The most commonly used acoustic feature in speech recognition is the Mel
Frequency Cepstral Coefficients (MFCC) (Luque et al., 2018) (Darabkh et al., 2018)
(Pan et al., 2018). MFCC was first proposed in (Mermelstein, 1976), which has since
become the standard algorithm for representing speech features. It is a representa-
tion of the short-term power spectrum of a speech signal, based on a linear cosine
transform of a log power spectrum on a nonlinear Mel scale of frequency. We first ex-
tracted the MFCC features from the S-MNIST data, using the hyper-parameters from
(Pan et al., 2018): framing window size = 50ms and frame shift size = 25ms. Since
the S-MNIST samples are approximately 1s long, we end up with 39 dimensions.
However, it’s not clear how many coefficients one has to take. Thus, we compared
three methods: (Chapaneri, 2012) proposed to use 13 weighted MFCC coefficients,
(Sainath and Parada, 2015) proposed to use 40 log-mel filterbank features, and (Pan
et al., 2018) proposed to use 12 MFCC coefficients with an additional energy coef-
ficient, making it 13 coefficients in total. The classification accuracy is respectively
61.79%± 1.19, 50.33%± 0.59 and 75.14%± 0.57. We therefore chose to work with a
39× 13 dimensional features that are standardized (each feature is transformed by
subtracting the mean value and dividing by the standard deviation of the training
dataset, also called Z-score normalization) then min-max normalized (each feature
is re-scaled to 0 − 1 based on the minimum and maximum values of the training
dataset).
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B.2 DVS/EMG hand gestures database

The discrimination of human gestures using wearable solutions is extremely im-
portant as a supporting technique for assisted living, healthcare of the elderly and
neuro-rehabilitation. More generally, the gestural interaction is a well-known tech-
nique that can be utilized in a vast array of applications (Yasen and Jusoh, 2019)
such as sign language translation (Cheok, Omar, and Jaward, 2019), sports (Loss
et al., 2012), Human-Robot Interaction (HRI) (Cicirelli et al., 2015) (Liu and Wang,
2018) and other applications related to Human-Machine Interaction (HMI) (Haria et
al., 2017). Hand-gesture recognition systems also target medical applications, where
they are detected via bioelectrical signals instead of vision. In particular, among
the biomedical signals, ElectroMyoGraphy (EMG) is the most used for hand-gesture
identification and for the design of prosthetic hand controllers (Benatti et al., 2015)
(Chen et al., 2020) (Donati et al., 2019).

EMG measures the electrical signal resulting from muscle activation. The source
of the signal is the motor neuron action potentials generated during the muscle con-
traction. Generally, EMG can be detected either directly with electrodes inserted in
the muscle tissue, or indirectly with surface electrodes positioned above the skin
(sEMG). For simplicity, we will refer to it as EMG. The EMG is more popular for
its accessibility and non-invasive nature. However, the use of EMG to discrimi-
nate hand-gestures is a non-trivial task due to several physiological processes in the
skeletal muscles underlying their generation. One way to overcome these limita-
tions is to use a multimodal approach, combining EMG with recordings from other
sensors. Therefore, we consider the complementary system comprising of a vision
sensor and EMG measurements. Using EMG or camera systems separately presents
some limitations, but their fusion has several advantages, in particular EMG-based
classification can help in case of camera occlusion, whereas the vision classification
provides an absolute measurement of hand state.

For this purpose, we proposed in (Ceolini et al., 2019b) a framework that allows
the integration of EMG and vision data to perform sensor fusion based on super-
vised learning. The software version of the system was run on a mobile phone (Ce-
olini et al., 2019a) with a good performance on real-time multimodal classification.
Afterwards, we proposed a neuromorphic hardware implementation (Ceolini et al.,
2020) for energy-efficient processing on two target devices: Intel Loihi (Davies et al.,
2018) and ODIN (Frenkel et al., 2019) + MorphIC (Frenkel, Legat, and Bol, 2019).

B.2.1 DVS sensor and pre-processing

The DVS is an event-based camera inspired by the mammalian retina (Lichtsteiner,
Posch, and Delbruck, 2006), such that each pixel responds asynchronously to changes
in brightness with the generation of events. Whenever the incoming illumination in-
creases or decreases above a certain threshold, it generates a polarity spike event.
The polarity corresponds to the sign of the change, "ON" polarity for increasing
in light and "OFF" polarity for decreasing in light, as shown in figure B.1. Hence,
only the active pixels transfer information and the static background is directly re-
moved on hardware at the front-end. The event-based asynchronous nature of the
DVS makes the sensor low power, low latency (down to 10 µs) and low-bandwidth,
as the amount of data transmitted is very small. Each event (also called spike) is
encoded using the Address Event Representation (AER) communication protocol
(Deiss, Douglas, Whatley, et al., 1999) and is represented by the address of the pixel
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FIGURE B.1: Example of data from the DVS/EMG hand gestures
dataset: (a) original frame; (b) DVS frame generated by the accumu-
lation of events during 200ms; (c) EMG features for the 8 channels of

the Myo.

(in x-y coordinates), the polarity (1 bit for the sign), and the timestamp (in microsec-
ond resolution).

In order to use the DVS events for gesture classification with conventional algo-
rithms, we need to turn the stream of events into frames, which we refer to as event
frames. These frames are generated by accumulating the events occurring in a fixed
time window of length Tms. DVS frames can so be synchronized with the EMG
signal. In particular, we consider all the events within the time window (ignoring
their polarity) and count how many events occur for each of the pixels separately.
We then transform the event count frame into gray scale by min-max normalization.
The event frames obtained from the DVS sensor have a resolution of 128x128 pix-
els. Since the region with the hand gestures does not fill the full frame, we extract a
60× 60 pixels patch that allows us to significantly decrease the amount of computa-
tion needed during the visual feature extraction. This patch is extracted by detecting
the hand in the frame with the zeroth order moment. This approach is reliable for
event frames and has very low computational complexity.

B.2.2 EMG sensor and pre-processing

We collected the EMG corresponding to the hand gestures by using the Myo arm-
band made by Thalmic Labs Inc. The Myo armband is a wearable device provided
with eight equally spaced non-invasive EMG electrodes and a Bluetooth transmis-
sion module. The EMG 8 electrodes detect the signals from the forearm muscles
activity and afterwards the acquired data is sent to an external electronic device, as
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shown in figure B.1. The sampling rates for Myo data are fixed at 200Hz and the
data is returned as a unitless 8− bit unsigned integer for each sensor representing
"activation" and does not translate to mV.

We extracted two time domain features generally used in the literature (Phiny-
omark, N Khushaba, and Scheme, 2018), namely the Mean Absolute Value (MAV)
and the Root Mean Square (RMS) shown in equation B.1. The MAV is the average
of the muscles activation value and it is calculated by a stride-moving window. The
RMS is represented as amplitude relating to a gestural force and muscular contrac-
tion. The two features are calculated across a window of 40 samples, corresponding
to 200ms.

MAV(xc) =
1
T

T

∑
t=0
|xc(t)| RMS(xc) =

√√√√ 1
T

T

∑
t=0

x2
c (t) (B.1)

It is to note that xc(t) is the signal in the time domain for the EMG channel with
index c and T is the number of samples in the considered window, which was set to
be T = 40 (N = 200ms) across this work. The features were calculated for each chan-
nel separately and the resulting values were concatenated in a vector F(n) described
in equation B.2.

F(n) = [F(x1), ..., F(xC)]
T (B.2)

It is to note that F is MAV or RMS, n is the index of the window and C is the
number of EMG channels. The final feature vector E(n) for window n is shown in
equation B.3, it is used for the classification and is obtained by concatenating the two
single feature vectors:

E(n) =
[
MAV(n)T, RMS(n)T

]T
(B.3)

B.2.3 DVS/EMG dataset

The DVS/EMG hand gestures database available in (Ceolini et al., 2019) contains
recordings from 21 subjects: 12 males and 9 females of age from 25 to 35. This first
version contains therefore 6750 samples (5400 for training and 1350 for test). The
structure is the following: each subject repeats 3 sessions, in each session the subject
performs 5 hand gestures as shown in figure B.2: Pinky, Elle, Yo, Index and Thumb,
repeated 5 times. Each single gesture recording lasts 2s. The gestures are separated
by a relaxing time of 1s, in order to remove any residual activity from the previ-
ous gesture. Every recording is cut in 10 chunks of 200ms each, this duration was
selected to match the requirements of a real-case scenario of low latency prosthesis
control where there is a need for the classification and creation of the motor com-
mand within 250ms (Smith et al., 2011). The Myo records the superficial muscle
activity at the middle forearm from 8 electrodes with a sampling rate of 200Hz. Dur-
ing the recordings, the DVS was mounted on a random moving system to generate
relative movement between the sensor and the subject hand. As shown in figure B.2,
the hand stands static during the recording to avoid noise in the Myo sensor and the
gestures are performed in front of a static white background.
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FIGURE B.2: System overview: (a) data collection setup featuring the
DVS, the traditional camera and the subject wearing the EMG arm-
band sensor; data streams of (b1) DVS and (b2) EMG transformed
into spikes via the Sigma Delta modulation approach; the two neu-
romorphic systems namely (c1) Loihi and (c2) ODIN + MorphIC; (d)

the hand gestures that the system is able to recognize in real time.
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