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Titre : Modélisation constructive des systèmes à événements discrets: Application aux organismes

arti�ciels ...

Résumé : Les humains peuvent ressentir leurs muscles. Ils peuvent également reconnaître leur

environnement et les objets qui s'y trouvent. En�n, ils sont capables de se situer dans cet

environnement et d'y atteindre des objets. Comment ces capacités sont acquises et interagissent

les unes avec les autres au cours du développement ? Cette question demeure ouverte en biologie.

Notre objectif est donc d'aider les biologistes à mieux comprendre comment un humain est capable

de construire sa carte cognitive et d'e�ectuer des mouvements dirigés vers un objectif. Sur le plan

développemental, l'acquisition des capacités sensorimotrices humaines débute avec le f÷tus. Nous

présentons ici un modèle théorique du développement de la carte cognitive d'un f÷tus humain

à partir de son système sensorimoteur. Le modèle intègre les proprioceptions des membres du

corps et les perceptions de l'environnement et comment celles-ci coopèrent pour construire une

carte cognitive. Cette carte est essentielle a�n d'e�ectuer des mouvements dirigés vers un objectif

et atteindre di�érents objets au sein de l'environnement. Nous proposons un nouvel algorithme

de clustering appelé �Frequency-based-means�, qui est utilisé pour obtenir les proprioceptions et

les perceptions qui constituant la carte d'association. Des modèles de Markov cachés sont utilisés

pour modéliser l'apprentissage et la production de mouvements.
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system

Title :Constructive Modeling of Discrete-Event Systems: Application to Arti�cial Organisms ...

Abstract :Humans can internally sense their muscles. They can also recognize their environment

with its objects and are able to navigate through it easily to reach them. How these abilities are

gained and interact each other is still an open question in biology. Our aim is to help biologists to

understand how a human is able to build his cognitive map and make goal-directed movements.

The origin of human capabilities goes back to the fetus stage. We present a theoretical model of

the development of the cognitive map of a fetus human from his sensorimotor system. The model

integrates the proprioceptions of body limbs and perceptions from the environment and how these

cooperate to build a cognitive map, which in turn, is essential for making goal-directed movements

to reach di�erent objects in the surrounding environment. We propose a new clustering algorithm

called �Frequency-based-means�; which is used to get the proprioceptions and the perceptions

that form the association map. Hidden Markov Models are used to model movement learning

and production.
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ABSTRACT

In English

Humans can internally sense their muscles. They can also recognize their environment

with its objects and are able to navigate through it easily to reach them. How these

abilities are gained and interact each other is still an open question in biology. Our aim

is to help biologists to understand how a human is able to build his cognitive map and

make goal-directed movements. The origin of human capabilities goes back to the fetus

stage. We present a theoretical model of the development of the cognitive map of a fetus

human from his sensorimotor system. The model integrates the proprioceptions of body

limbs and perceptions from the environment and how these cooperate to build a cognitive

map, which in turn, is essential for making goal-directed movements to reach di�erent

objects in the surrounding environment. We propose a new clustering algorithm called

�Frequency-based-means�; which is used to get the proprioceptions and the perceptions that

form the association map. Hidden Markov Models are used to model movement learning

and production.

En français

Les humains peuvent ressentir leurs muscles. Ils peuvent également reconnaître leur en-

vironnement et les objets qui s'y trouvent. En�n, ils sont capables de se situer dans cet

environnement et d'y atteindre des objets. Comment ces capacités sont acquises et interagis-

sent les unes avec les autres au cours du développement ? Cette question demeure ouverte

en biologie. Notre objectif est donc d'aider les biologistes à mieux comprendre comment un

humain est capable de construire sa carte cognitive et d'e�ectuer des mouvements dirigés

vers un objectif. Sur le plan développemental, l'acquisition des capacités sensorimotrices

humaines débute avec le f÷tus. Nous présentons ici un modèle théorique du développement

de la carte cognitive d'un f÷tus humain à partir de son système sensorimoteur. Le mod-

èle intègre les proprioceptions des membres du corps et les perceptions de l'environnement

vii



et comment celles-ci coopèrent pour construire une carte cognitive. Cette carte est essen-

tielle a�n d'e�ectuer des mouvements dirigés vers un objectif et atteindre di�érents objets

au sein de l'environnement. Nous proposons un nouvel algorithme de clustering appelé

�Frequency-based-means�, qui est utilisé pour obtenir les proprioceptions et les perceptions

qui constituant la carte d'association. Des modèles de Markov cachés sont utilisés pour

modéliser l'apprentissage et la production de mouvements.
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CHAPTER 1

INTRODUCTION

1.1 Domain

This PhD thesis focuses on creating models to elaborate how humans learn making goal-

directed movements. It has been found that the fetus has adult-alike brain. The fundamental

organization of brain networks is established in utero during the second and third trimesters

of fetal development [6]. It has a complete nervous system which enables it to control all

its muscles and make di�erent movements. We are working based on a hypothesis that the

fetus begins with doing some random movements that enables it to discover its abilities. The

received sensory feedbacks are used to build a representation of its environment in a simple

cognitive map. Then, it starts learning to change its limbs from one position to another.

After that, it starts to specify goals and learns how to reach them. We are building an

abstract theoretical model on the system level to be able to understand the process of goal-

directed movements evolution based on biological facts found in literature. The modeling of

functional areas of the brain is built, then computational intelligent techniques are employed

to test our hypotheses using simulated data.

1.2 De�nition of the Problem

Any human can sense the position of every muscle in his body. How this sensation is

developed is unknown. In addition, s/he is able to identify her/his surrounding environment,

navigate it easily and reach any position s/he wants. How the human acquired this skill

is still an open question in biology. It seems that human mind can build a map of her/his

1



surroundings through which s/he can reach any position. But, what does the notion of

�position� represent to the human mind? and how can s/he use it to navigate and reach

di�erent objects? These are the questions we are interested to answer in this work. From

biology, we know that at the end of the fetus stage, the fetus has the same brain structure

as the adult human brain. In addition, it is able to do primary moves such as sucking its

thumb, kicking, and grasping its umbilical cord. These kinds of actions provoke the idea that

the learning of movement starts at this early stage. Accordingly, we will use a constructive

methodology to learn how the fetus human learns to make its primary movements using its

sensorimotor system, how it will generate the �position� notion by its mind, then how it will

integrate all this information to produce goal-directed movements to reach a target position

or objects afterwards. For the sake of simplicity, we will model the vertical movement from

bottom to top positions for one muscle only.

1.3 General Methodology

We have very few data on the fetus sensorimotor development. So, the goal of modeling the

motion seems to be unreachable.

Nevertheless, in neurosciences it is usual to have very few data but to try to make models of

the functions. For example, the measurements we can do inside the brain are far too poor

to validate any model of the functioning of the brain.

Even if we don't have enough data, what we can do is to check the consistency of bio-

logical hypotheses via the study of computational models or mathematical models which

re�ect these hypotheses and this allows to give advances in neurosciences. Investigating the

consistency of hypotheses is useful for biologists.

The fact that the model is mathematical or computational facilitates the systematic checking

of its consistency because every part of the model can be observed, or modi�ed, during

simulation. So, it is an indirect way to study complex systems where operability (the ability

to put the real system in a given set of initial states) and observability (the ability to get

enough information from the system to deduce in which state the real system is) of the

states of the real systems is low.

This kind of approach, when we lack data, is an important scienti�c activity because it re-

duces the number of hypotheses to investigate experimentally, focusing on the most promis-

ing ones.

We will follow a methodology that is inspired from system-based modeling in computer

science. This approach starts with a black box for which we partially know the external

(input/output) behavior. Then according to the knowledge acquired about the system, we

propose an internal structure of the black box that is able to reproduce the known external

behavior. This internal structure can call for smaller black boxes and we iterate until we

get consistent with the knowledge. This way, the model follows a constructive approach.

2



To choose a structure when we have a few knowledge we have to apply heuristics. One

particularly important heuristic is the Occam razor. A complementary heuristic in this

constructive approach is to use tools that are known to provide certain well-de�ned behaviors

for example mathematical and computer science tools (e.g. Markov chains, machine learning

algorithms, etc)

At the end of this constructive method, the model we obtained is by construction consistent

with the biological hypotheses made about the problem. So, the study of this model is in

fact a study of these hypotheses.

Due to the unavailability of real data about the fetus, we will use simulated data extrapolated

from the knowledge about the children sensory motor development.

1.4 Thesis Organisation

The structure of the thesis is as follows:

Chapters 2 provides the illustrations of the basics used in the thesis including biological

background and machine learning background.

Chapter 3 outlines previous work on understanding human cognition and movement de-

velopment. This work is essential as it comprises some of the ground work, upon which this

thesis is based.

Chapter 4 brie�y outlines our approach to build the model.

Chapter 5-8 explain the details of each component of our model.

Chapter 9 describes how the simulated data are generated.

Chapter 10 presents the experimental setup and results

Chapter 11 draws conclusions and contains a summary of the contributions of the work.
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CHAPTER 2

BASICS

This chapter covers the basics required for our problem. These include basics in biology,

modeling of dicrete-event systems, mathematics and machine learning.

2.1 Biological Background

This section covers the basics for the brain structures that are needed in our problem and

the communications between them through neurons. This is in addition to demonstrating

the neurons involved in making movements and receiving sensory feedback from the body

and the environment. It also provides an explanation for the body muscle structure and

how it changes to make a movement.

2.1.1 Brain Areas Development

The human brain passes through di�erent stages during development: from the embryo to

the fetus and the new born. The embryonic stage lasts until the 8th week of gestation

while the fetus stage starts from the 9th week of gestation until the end of gestation. The

brain begins in the third gestational week and continues to develop after birth. The brain

regions develop incrementally during the stages as shown in Figure 2.1. By the end of the

embryonic period the rudimentary structures of the brain and the central nervous system

are established. The major compartments of the central and peripheral nervous systems are

de�ned and primitive patterning of sensorimotor regions within the neocortex is established

[7, 8].

Neuron production in humans begins at embryonic day 42, and extends through midgesta-
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tion in most brain areas [9,10]. Di�erent populations of neurons form gray matter structures

in many regions of the brain including hindbrain and spinal column, cerebellum, midbrain

structures, deep subcortical nuclei and the neocortex.

Figure 2.1 � Brain structure development [1].

The duration of pregnancy is usually divided into three trimesters; each lasts for three

months. In the �rst trimester: 16 days after conception, the neural plate forms; it acts as

the foundation of the baby's brain and spinal cord. It grows longer and folds onto itself,

until that fold morphs into a groove, and that groove turns into a tube (the neural tube).

At around week 6 or week 7 of pregnancy, the neural tube closes and makes three sec-

tions known as the prosencephalonhe (forebrain), the mesencephalon (midbrain) and the

rhombencephalon (hindbrain) [11]. After that, these areas are divided further.

It is widely accepted that the forebrain forms structures such as the cerebrum, the thalamus

and the hypothalamus, the hindbrain forms other structures including the cerebellum. The

spinal cord is formed just to the rear of the hindbrain. Some of these structures are involved

in the sensorimotor development. The cerebrum is the biggest part of the brain, and it is

responsible for thinking, remembering and feeling. This is where the cerebral cortex and

its various lobes reside while the cerebellum is the area in charge of motor control. The

cerebral cortex contains the somatosensory cortex responsible for collecting all the sensory

data from di�erent body parts, the motor cortex which is able to control di�erent muscles by

sending motor commands, and the association cortex which can blend di�erent information

to obtain higher level interpretation [12,13].

These regions continue to develop with time. The fetus develops its brain structures through

6



using them by interaction with its environment. The fetus lives inside the uterus (or the

womb) surrounded by �uid.

It is connected to the placenta by the umbilical cord so that it can take in oxygen, nutrients,

and other substances and eliminates carbon dioxide and other wastes. The fetal human

possesses an active central nervous system from at least the eighth week of development [14].

With its rapidly maturing nervous system, its nerves are connecting its brain to the rest of

its body traveling from the brainstem down to the spine �nally extending to its torso and

limbs. During the second trimester, using its developing muscles and re�exes, the fetus is

able to move its limbs. The soft cartilage hardens into bones starting with arms and legs.

The sensory system develops such that the brain dedicates special areas for smell, taste,

hearing, vision and touch. At this stage, it may be able to hear mother's heart beat and

voice, sucking its thumb. It starts feeling movements and its �exing arms and legs are soft

and becoming stronger. After that, it may make movements in response to presses on the

mother's belly as explained in [15]. By the end of the �rst trimester, it starts to wiggle its

limbs and develop the sense of touch. It can feel its own face and anything within its reach,

it will be experimenting and re�ning its sense of touch and grasp by touching the womb

surrounding it and grasping its cord. Until this stage, eyelids may open as a re�ex but it

cannot see yet.

At the third trimester, there is a rapid development of neurons and wiring. At the same

time, the cerebellum (motor control) is developing faster than any other area of the fetal

brain [16]. This is coupled with the growing of the cerebral cortex that is responsible for

thinking, remembering and feeling [17].

Though this important area of the brain is developing rapidly during pregnancy, it really

only starts to function around the time a full-term baby is born and it continues to mature

gradually in the �rst few years of life through the baby interaction with its surrounding

environment.

We will explain below the brain regions that are involved in making voluntary movements

and in cognition.

The Cerebrum

The cerebrum is divided into two cerebral hemispheres namely right and left hemispheres.

The left hemisphere controls the right side of the body, and the right hemisphere controls the

left side of the body. Corpus callosum is the joining element which links the two hemispheres

of the brain, which passes messages between the two hemispheres. Each cerebral hemisphere

is divided into four regions called lobes that control senses, thoughts, and movements. The

four lobes are the frontal, parietal, temporal and occipital lobes shown in Figure 2.2. The

frontal lobe contains the motor cortex responsible for voluntary movements, the parietal

lobe is in charge of sensations, the temporal lobe is for auditory information processing, and

the occipital lobe is for vision processing.
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Figure 2.2 � The Cerebrum Lobes [2].

The outer layer gray matter of the cerebrum is called the cerebral cortex. According to

the function, the regions of the cerebral cortex can be divided into three general categories,

namely, motor, sensory, and associative. The motor cortex is generally associated with the

movement of body parts and sensory cortex such as auditory cortex, visual cortex, etc.

is associated with sensory organs. There is a portion of the cerebral cortex which is not

occupied by motor and sensory cortices, known as the `association cortex'.

The Cerebellum

The cerebellum has two hemispheres and consists of outer grey matter and inner white

matter. Each cerebellum hemisphere consists of three lobes namely anterior, posterior and

�occulonodular lobe. The cerebellum plays a fundamental role in motor functioning where a

brain is giving signals to the rest of body parts to carry out a particular task. It is involved

in motor learning, cognitive functions, maintenance of balance and posture, etc.

Figure 2.3 describes the overall organization of neural structures involved in the control of

movement. Basal ganglia are group of neurons in the brain that are located deep beneath the

cerebral cortex [18]. Upper and lower motor neurons connect the motor cortex and muscles.

The upper motor neurons originate within the motor cortex and then travel down the spinal

cord [19] and is responsible for the initiation of voluntary movement, the maintenance of

muscle tone for support of the body against gravity, and the regulation of posture to provide

a stable background to initiate voluntary activity [20]. The cell bodies of the lower neurons

are located in the ventral horn of the spinal cord gray matter and in the motor nuclei of the

cranial nerves in the brainstem. Lower motor neurons are used to control the muscles [2].

2.1.2 Neurons and Muscles

The brain consists of billions of neurons that act together to perform various tasks. A neuron

has three main parts including the cell body (known as the Soma), the dendrites and the

axon. The cell body contains the nucleus which has cell's genetic material and controls cell's
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Figure 2.3 � Brain Connections [2].
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activities. Dendrites are tree-like structures that extend away from the cell body to receive

messages from other neurons at specialized junctions called synapses. Once a signal is

received by the dendrite, it then travels almost passively to the cell body. Every neuron has

a single axon which looks like a long tail coming outwards the cell body and is responsible

for transmitting messages from the cell through the axon tree-like structured terminals to

the synapse. When input signals are received from the dendrites, they are collected by the

cell body and can cause the neuron to ��re� sending action potentials through the axon [21].

Neurons use electrical impulses and chemical signals exchanged between di�erent areas of

the brain, and between the brain and the rest of the nervous system. They communicate

with each other by �ring action potentials which causes sending chemicals, called neuro-

transmitters, across the synaptic junctions between the axons and dendrites of adjacent

neurons [22].

The neurons can be classi�ed into three main classes which are the interneurons, the motor

neurons and sensory neurons. Figure 2.4 shows the di�erent types of neurons and their

structures.

Sensory neurons are the nerve cells that are activated by sensory inputs from the envi-

ronment. They are considered as a�erent neurons because they communicate information

from a stimulus to the brain or the spinal cord. Motor neurons are e�erent neurons that

communicate information from the brain or the spinal cord to body muscle. They are used

to control muscles. Interneurons are used to transmit messages between the neurons.

Neurons structures can be classi�ed according to the form and the number of dendrites

extending from the cell body. Multipolar neurons have several dendrites. Bipolar neurons

have only two processes: a single dendrite and an axon and Unipolar neurons lack dendrites

and have a single axon, and are also sensory neurons. The majority of neurons in the spinal

chord and brain are multipolar but bipolar neurons are found in the sense organs in the

retina of the eye and in olfactory cells [23].
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Figure 2.4 � Di�erent Neuron Structures [24]. a) An interneuron as a multipolar neuron is shown
having one cell body with a tree of dendrites and one axon. b) An example of motor neuron is
depicted. It is also a multipolar neuron but its axon terminals are a�erents to a muscle. c) A
sensory neuron is represented as a unipolar neuron that has no dendrites but has two axons. This
is because the input to a sensory neurons usually comes directly from axons of receptor cells in the
body.

Until recently, most neuroscientists thought we were born with all the neurons we were ever

going to have. But, it has been found that the forebrains of male canaries get new neurons

during the mating season. This was the same time in which the birds had to learn new songs

to attract females. This was followed by other publications found that there is a generation

of new neurons in the adult brain (neurogenesis) as in [25] , [26], [27].

Sensory Neurons

Sensory neurons are the nerve cells that are activated by sensory inputs from the envi-

ronment which can be physical or chemical, corresponding to all our �ve senses. Thus, a

physical input can be sound, touch, heat, or light. The neurons that are activated by touch

stimuli at the skin surface are known as mechanoreceptors. They convey sensory signals

from the body peripherals to the somatosensory cortex of the brain and can be further clas-

si�ed into proprioceptors, exteroceptors and interoceptors [28] [29]. The proprioceptors give

detailed and continuous information about the position of the limbs and other body parts.

They include muscle spindles and Golgi tendon organs. The major function of the muscle

spindles is to provide information about the muscle length (the degree of muscle stretch) to

the Central Nervous System (CNS) through �Ia� a�erent axons while Golgi tendon organs,

located at the tendons attaching the muscles to the bones, are specialized to signal changes
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Figure 2.5 � Sensory Receptors Types. It shows the sensory mechanoreceptors classi�ed as extero-
ceptors, proprioceptors and interoceptors with examples of each type. The words marked in bold are
the receptors that will be used in this thesis.

in muscle's tension to the CNS through �Ib� a�erent axons. They are distributed among

the collagen �bers that form the tendons. On the other hand, the exteroceptors are sen-

sory neurons that help in acquiring information about the surrounding environment. These

include tactile, smell, hearing, taste and vision. Fo instance, the cutaneous (skin) pressure

provides information from external stimuli as follows:

When an external stimulus is applied to the skin, it a�ects the ionic permeability of the

receptor (sensory neuron) cell membrane which generates a depolarizing current producing

a receptor (sensory neuron) action potential that reach to the CNS at the Somatic Sensory

Cortex in the end. The CNS then interprets and triggers a command. The strength of the

stimulus is represented by the rate of action potential discharge triggered by the receptor

(sensory neuron) action potential.

Also, for Tactile stimuli, the accuracy with which it can be sensed di�ers from one region of

the body to another. This is due to the fact that the number of sensory neurons (density)

and the size of their receptive �elds varies from one region to another.

Another type of sensory neurons is interoceptors, they give feedback to internal senses such

as pain, hunger, etc.

Figure 2.5 summarizes the di�erent types of the mechanoreceptors.

2.1.3 Motor Neurons

Amotor neuron (or motoneuron) is a neuron whose cell body is located in the spinal cord and

whose axon projects outside the spinal cord to directly or indirectly control e�ector organs,

mainly muscles and glands. Motor neurons' axons are e�erent nerve �bers that carry signals

from the spinal cord to the e�ectors to produce e�ects. Types of motor neurons are alpha

motor neurons, beta motor neurons, and gamma motor neurons. For voluntary movements

that require muscle contraction, alpha motor neurons are used to send command signals

to the muscle to be contracted. Alpha motor neurons (also called alpha motoneurons) are

large, multipolar lower motor neurons of the brainstem and spinal cord. They innervate

extrafusal muscle �bers of skeletal muscle and are directly responsible for initiating their

contraction. Alpha motor neurons are distinct from gamma motor neurons, which innervate

intrafusal muscle �bers of muscle spindles. An alpha motor neuron and the muscle �bers it
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innervates is a motor unit. A motor neuron pool contains the cell bodies of all the alpha

motor neurons involved in contracting a single muscle [30].

2.1.4 Muscles and Neurons

Muscles exist in pairs called antagonist muscles. One muscle performing an action is called

the agonist and the other muscle performs the opposite action and is referred to as the

antagonist. Each antagonist muscle has a set of sensory neurons called proprioceptors

that transmit sensory information to the brain. The brain uses sensory information to

gain its awareness of the positions of the di�erent limbs among the body [31]. Among the

proprioceptors is the Golgi Tendon Organ that signals the tension of the tendon and Muscle

Spindle which provides the brain with muscle length information [32].

The brain can control any muscle contraction by activating the corresponding motor neurons.

The pair of antagonist muscles are connected through tendons attaching them to the bones.

One antagonist muscle contraction causes the extension of the other antagonist muscle in

the pair. Muscle contraction causes an increase in tension at the tendon and decrease in the

muscle length. Consequently, it causes an increase in the length of its antagonist muscle. The

tension at the tendon is signaled by the Golgi Tendon Organ and it is activated as soon as

there is tension. Tension is relaxed due to re�exes unless contraction occurs. Muscle Spindle

activates when the muscle is stretched indicating the rate of change of muscle length and

signals the new length after the stretch is �nished [30].

Each muscle in the body is composed of muscle �bers, organized into groups called motor

units. A motor unit is composed of a single motor neuron and all of the muscle �bers

it stimulates as shown in Figure 2.6. When one motor neuron �res, all of the muscle

�bers which are stimulated by that one neuron will contract. These motor neurons receive

signals, from the motor cortex in the brain through the spinal cord and local nerves, when

a movement is desired. The number of muscle �bers within a motor unit determines the

degree of movement when that motor unit is stimulated. Motor units vary in size. Small

motor units are used for precise, small movements; large motor units are used for gross

movements.

In a motor unit, the amount of muscle �bers innervated by a motor neuron varies from

fewer than 10 �bers for small muscles to more than 100 for larger muscles. The strength of

a muscle contraction is determined by the size and number of motor units being stimulated.

When stimulated, all the �bers innervated by the stimulated motor unit contract. To

increase strength of contraction, more motor units are recruited to contract or equivalently,

the frequency of the signal to contract (the rate of spikes forming the command to the motor

neurons) is increased.

The signal from a motor neuron to its muscle �bers is a discrete time signal, it is a sequence

of spikes at di�erent times. If the time di�erence between two spikes becomes greater than or

equals to an elapsed time, the muscle contracts then returns back to rest and after receiving
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Figure 2.6 � Motor Units: When the nerve impulse gets down to the branches, it separates and
goes down each branch. Only the muscle �bers that have neuromuscular junctions with one of the
branches of that particular neuron will contract. Motor neuron A stimulates fewer muscle �bers
than motor neuron B. When motor unit A is stimulated, the force of contraction is less than that
generated when motor unit B is stimulated. [33]

the next spike it contracts again with the same amount it did before. On the other hand,

if the frequency of spikes is high, the successive muscle contractions sum up producing a

faster contraction. The spikes from a motor neuron has a maximum frequency; exceeding it

will not result in more contraction.

2.2 Fetus Behavior vs Human Behavior

Figure 2.7 � The fetus inside the womb [3].

The fetus lives inside the womb as shown in Figure 2.7. As soon as its brain provides it

with the ability to move, it starts making simple moves. These movements include the

ability to suck its thumb, touch di�erent parts of its body and grasp its umbilical cord. The

new born can make these movements more strongly. The infant can move freely from one

place to another but slowly. The child is able to move from one room to another and to go

get the food from the kitchen when s/he desires. An adult can move from one address to
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another and do more complex movements. Accordingly, the movements become more and

more complex as the human develops. His environment also gets larger.

2.3 Discrete-Event Systems

A Discrete Event System (DES) is a dynamic system whose behavior is characterized by

abrupt changes in the value of its state due to the occurrence of events [34]. Several modeling

speci�cations have been proposed to model DES such as Discrete-Event Systems Speci�ca-

tions (DEVS); DEVS can be either an atomic model or a coupled model. Atomic models

give a local description of the dynamic behavior of the studied problem, while the coupled

models represent the di�erent interconnections between a set of model elements [35,36].

Many biological problems can be modeled as Discrete-Event Systems. For instance, The

NEURON simulation environment presented in [37] simulates networks of such arti�cial spik-

ing neurons using discrete event simulation techniques in which computations are performed

only when events are received. In [38], a formulation of the human motor decision-making

problem as a discrete-event system is provided. Similarly, voluntary movements can be

modeled as Discrete-Event System because the body state changes due to the occurrence of

motor commands issued by the Central Nervous System (CNS) to muscles as explained in

the previous section.

2.4 Learning Approaches

We are going to use machine learning techniques to implement our model. This section

provides background about the machine learning techniques and their di�erences. It focuses

on the unsupervised learning which is used in our implementation.

2.4.1 Machine Learning Techniques

In 1959, Arthur Samuel de�ned machine learning as a �Field of study that gives computers the

ability to learn without being explicitly programmed �. With the evolution of computing and

communication technologies, it became possible to utilize these machine learning algorithms

to identify increasingly complex and hidden patterns in the data [39].

The process of learning begins with observations of data in order to �nd patterns in the data

which will help in making better decisions in the future. Machine learning is an application

of Arti�cial Intelligence whose primary aim is to allow the computers learn automatically

without human intervention and adjust actions accordingly.

Machine learning techniques can be classi�ed according to the type of learning into:

• Supervised: which involves using labeled training data that can be used by the system

to infer a model function that can be used to label future data. It uses an error function

to iteratively modify the model function so that it models the training data correctly,

hence, assumed to make better prediction for the future data.
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• Unsupervised: it involves unlabeled data. It studies how systems can infer a function

to describe a hidden structure from unlabeled data. It is a simple and natural approach

that depends on grouping based on similarity. It is used in many biological problems.

• Semi-supervised: fall somewhere in between supervised and unsupervised learning,

since they use both labeled and unlabeled data for training. It is useful when the

system has a small amount of labeled data and a large amount of unlabeled data and

requires to label them. Usually, semi-supervised learning is chosen when the acquired

labeled data requires skilled and relevant resources in order to train it or learn from

it.

• Reinforcement learning: is a learning method that interacts with its environment by

producing actions and getting errors or rewards. Trial and error search and delayed

reward are the most relevant characteristics of reinforcement learning. This method

allows machines and software agents to automatically determine the ideal behavior

within a speci�c context in order to maximize its performance. Simple reward feedback

is required for the agent to learn which action is best; this is known as the reinforcement

signal [40].

Machine learning problems can also be classi�ed into prediction, classi�cation, clustering

and regression. In our problem, we will use clustering which is an unsupervised machine

learning approach that groups the data into clusters according to similarity [41]. The most

famous clustering technique is k-means. In k-means clustering, the unlabeled data are

grouped into k clusters according to the similarity measure which is the distance between

each data sample and the cluster centers. Each data sample is assigned to the cluster of the

nearest cluster center. This is the simplest and most commonly used clustering technique.

Its drawback is that we have to pre-determine the number of clusters and the algorithm can

result in di�erent clusters each time it is run due to the usage of random seeds. Di�erent

criteria and metrics that calculate the value of k are used. These include the Elbow method

which determines the k value by plotting the Sum of Squared Error (SSE) between the

sample points in each cluster and the centroid of the cluster curve at di�erent values of

k, then �nding the in�ection point down. There are many adaptive clustering techniques

in which the clusters can be formed and adapted according to the online data [42�44]. It

refers to the problem of adapting the result of a clustering when the object feature set is

extended. Examples of the adaptive clustering algorithms can be found in [45]. Among

them are,the Adaptive Sample Set Construction. It is a heuristic technique that uses the

distance measure to create clusters in addition to two parameters θ (a fraction from 0 to 1)

chosen according to design requirements and τ which is the distance threshold. The �rst

cluster center is chosen arbitrarily. A pattern is assigned to a given cluster if the distance

from the sample to the cluster is less than θτ . If that distance is greater than τ , a new

cluster is created. No decision will be made if the pattern falls in the intermediate region.

After the training is complete, all patterns are assigned to the nearest class according to the

minimum distance rule. Some patterns could be considered unclassi�ed if their distances to

all cluster centers are greater than τ . In adaptive clustering techniques, the creation of the
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clusters are based on statistical properties but they do not have biological interpretation.

2.4.2 Discrete Markov Process

Observable Markov Model.

Consider a system that can be described at any time as being a state belonging to a set of

S = {S1, S2, · · · , SN} and each state Si corresponds to an observable event. At a regularly

spaced discrete times, the system can change its state by moving from the current state to

a new one or even to the same current state according to a set of probabilities associated

with the current state; this set is referred to as state transition probabilities A = {aij}. We

denote the time instants associated with state changes as t = 1, 2, 3, ...T , and we denote the

actual state at time t as qt. The state transition probability aij from one state i to the next

state j is given by:

aij = P (qt = Sj |qt−1 = Si) , 1 ≤ i, j ≤ N (2.1)

with the state transition coe�cients having the standard stochastic properties
N∑
j=1

aij = 1

such that aij ≥ 0.

The output of this process at any time t is the observation ot seen at the current state qt.

Hidden Markov Models

Suppose that there is a set of observations O = {o1, o2, · · · , oM} from which one observation

can be seen at any state qt and that the choice of the observation is a stochastic process.

In this system, the output is a set of observations seen from a set of states at di�erent times.

Accordingly, there are two stochastic processes, the choice of the state and the choice of the

observation within the state. As explained previously, the choice of the state depends on the

state transition probability (A) starting from an initial state speci�ed according to initial

probability distribution π = {πi} such that:

πi = P (q1 = Si) , 1 ≤ i ≤ N (2.2)

The observations output from state qt = Sj has probability distribution B = {bj (k)} known
as the Emission probability distribution and is given by:

bj (k) = P (ok,t|qt = Sj) ,
1 ≤ j ≤ N
1 ≤ k ≤M.

(2.3)

In this setting, the states are hidden while the output observations are observable. That is

why it is called a hidden Markov model (HMM).
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Given a HMM model λ = (π,A,B) with set of hidden states S of N states and a set of

observations O with M observations, the HMM can be used to generate an observation

sequence as follows:

1. Set t = 1.

2. Choose an initial state q1 = Si according to the initial state probability distribution

π.

3. Choose an observation ot according to the emission probability distribution B.

4. Move to a new state qt+1 = Sj according to the state transition probability distribution

A.

5. Set t = t+ 1 then return to step 3 if t < T ; otherwise terminate the procedure.

Additionally, HMM [46] is used to solve one of the following problems:

• Problem 1 (Likelihood): Given an HMM λ = (π,A,B) and an observation sequence

O, determine the likelihood P (O|λ). This is an evaluation problem of how well a given

model matches a given observation sequence. It allows us to choose the model that

best matches the observations.

• Problem 2 (Decoding): Given an observation sequence O and an HMM λ = (π,A,B),

discover the best hidden state sequence Q. It tries to uncover the hidden part of the

model under an optimality criterion. The most widely used criterion is to �nd the

single best state sequence (path). The Viterbi algorithm can be used for solving this

problem.

• Problem 3 (Learning): Given an observation sequence O and the set of states in

the HMM Q, learn the HMM parameters A and B. It is used to train the model

by adapting its parameters to observed training sequence. Baum-Walsh Expectation

Maximization algorithm can be used for this problem.

Baum-Walsh Expectation Maximization It is an iterative procedure that is used to

�nd the maximum likelihood estimate of the parameters of a hidden Markov model given

a training set of observed sequences. It is referred to as reestimation because in each step,

the algorithm iteratively updates and improves the values of the HMM parameters using

two main steps: the Expectation (E-step) and the Maximization (M-step). The algorithm

is explained below in Algorithm 1.
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Algorithm 1 EM Algorithm

• Start with a random or preselected model λ.
• E-step: run O through the current model to estimate the expectations of each model

parameter (π,A,B).

− Forward procedure: calculate αi (T ) = P (o1...oT , qT = Si|λ)

αi(1) = a0ibi (o1)

αi (t+ 1) =

N∑
i=1

αi (t) aijbj (ot+1)

− Backward procedure: calculate βi(t) = P (ot+1ot+2...oT |qt = Si, λ)

βi(t) =

N∑
j=1

aijbj (ot+1)βj (t+ 1)

βi (T ) = 1

− Calculate
∑T

t=1 γi (t): the expected number of transitions from Si.

γi (t) =
αi (t)βi (t)

P (O|λ)

− Calculate
∑T

t=1 ξt (i, j): the expected number of transitions from qt = Si to

qt+1 = Sj .

ξt(i, j) = P (qt = Si, qt+1 = Sj |O, λ)

ξt(i, j) =
αi(t)aijbj (ot+1)βj(t+ 1)

P (O|λ)

• M-step: change the model to maximize the values of the paths that are used a lot by

estimating parameters using the ratio of expected counts

a′ij =

∑T−1
t=1 ξt (i, j)∑T−1
t=1 γj (t)

bi (ok) =

∑T−1
t=1 γj (t) p (ot = k)∑T−1

t=1 γj (t)

• Repeat until convergence.

Viterbi Algorithm There are several paths through the hidden states that lead to the

given observation sequence, but they do not have the same probability. The Viterbi algo-

rithm is a dynamic programming algorithm that allows us to compute the most probable

path.

To �nd the best state sequence Q = {q1q2, · · · qT } for the given observation sequence O =
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{o1o2 · · · oT }, we will de�ne δt (i) as the highest probability along a single path that has t

observations and ends in state Si at time t, and is given by:

δt (i) = max
q1q2···qt−1

P [q1q2 · · · qt = i|, o1o2 · · · ot|λ] (2.4)

• By induction, we have:

δt+1 (j) =

[
max

i
[δt (i) aij ]

]
.bj (ot+1) (2.5)

• By keeping track of the states that maximize equation 2.5, we will be able to retrieve

the best state sequence. The whole algorithm is explained in Algorithm 2.

Algorithm 2 Viterbi Algorithm

1. Initialization

δ1 (i) = πsibi (y1) (2.6)

Θ1 (i) = 0 (2.7)

2. Recursion : calculate the Maximum Likelihood (ML) state sequence and their proba-

bilities

δt (i) =
N

max
j=1

[δt−1 (j) aij ] .bi (yt) (2.8)

Θt (i) = argmax
j

[δt−1 (j) .aij ] (2.9)

3. Termination: retrieve the most likely �nal state

P̂ = max
j

(δT (j)) (2.10)

Ŝ = argmax
j

[δT (j)] (2.11)

4. State Sequence Backtracking : retrieve the most likely state sequences

St =
∧
Θ
t+1

(
∧

St+1

)
(2.12)

such that t = T − 1, T − 2, . . . , 1

HMMs have been successfully applied to problems including speech recognition, optical

character recognition (OCR) and computational biology. In Computational Biology, it is

used for modeling biological sequences such that a sequence is modeled as an output of a

discrete stochastic process, which progresses through a series of states that are hidden. Each

hidden state emits a symbol representing a basic unit of the modeled data, for example, in
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case of a protein sequence, the basic unit is an amino acid.

2.5 Miscellaneous Basics

Bernoulli Distribution

It is a discrete distribution having two possible outcomes (n) labeled by 1 or zero which

means success or failure, respectively. The success occurs with probability p and the failure

occurs with probability (1-p) where

Therefore, Bernoulli distribution function is given by:

qn = pn (1− p)1−n (2.13)

We will be using Bernoulli distribution to generate random binary sequences.

Convolution

It is a mathematical operation on two functions that produces a third function that shows

how the shape of one function is modi�ed by the other, and it is given by:

(f ∗ g) (t) =

∞∫
−∞

f (τ) g (t− τ) dτ (2.14)
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CHAPTER 3

STATE OF THE ART

Many studies have been performed to understand how the human becomes capable of doing

various tasks such as moving his body parts, navigating through his environment, gener-

ating intentions and making goal-directed movements. Some studies have focused on the

sensorimotor system which investigates the relation between the sensory neurons, the mo-

tor neurons and the body muscles states. Other research is specialized in understanding

the brain signals obtained from fMRI as a way to understand how the muscles are con-

trolled and which brain areas are responsible for certain movements. Others are interested

in modeling the human learning of motion with respect to producing motion, getting the

sensory feedbacks and correcting the motion. Machine learning techniques have been used

in some research such as using Self-Organizing-Maps (SOM) to generate joint angles from

proprioceptors as in [47].

Even though the main regions of the brain are well-known, the function of each region is still

undetermined especially when it comes to achieving a certain objective. For instance, how

these regions contribute to make a goal-directed movement is still unknown. Some work has

been done to understand the function of the brain structures and how they are functionally

integrated. In [48], a general plan of the nervous system is presented. It proposes an idea

about how the sensory nervous system, motor system and autonomic system work, and how

they are all functionally integrated. Although the sensory data and the perceptions are

usually noisy and the brain is usually unable to perceive the precise perceptive values, the

brain learns through the imperfect perceptions [49,50].

In this chapter, we present the recent research done for the sensorimotor system, the per-

ceptions and perceptual learning, the cognition and the cognitive maps.

23



Figure 3.1 � The sensorimotor loop [4]

3.1 Sensorimotor System

The sensorimotor loop has been extensively studied in literature. Wolpert demonstrated that

the sensorimotor loop can be divided into three stages, which govern the overall behavior of

the sensorimotor system. The �rst stage speci�es the motor command generated by the CNS

given the state and a particular task. The second stage determines how the state changes

given the motor command. The third closes the loop by getting the sensory feedback given

this new state. These three stages are represented in the CNS as internal models, being the

inverse model, forward dynamic model and forward sensory model respectively [4].

It is widely accepted that the cerebellum acquires and maintain internal models for motor

control [51]. Cerebellar internal models can be forward models or inverse models. Forward

internal models represents the causal relationship between actions and their consequences.

The primary role of these models is to predict the behavior of the body and world, so they

can be seen as predictors. A forward model transforms a motor command into a prediction of

the sensory consequences of the movement. On the other hand, an inverse model computes

the motor command required to achieve the desired state change of the body (i.e. reach the

target sensory state) [52]. Figure 3.2 shows the di�erence between the inverse model and

the forward model.

An abstract architecture for the sensorimotor loop is provided in Figure 3.3 with biological
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Figure 3.2 � Inverse Model versus Forward Model

illustration. This model provides a demonstration of the main building blocks that are

needed to make a movement and get response [5]. It has included that there is an intention

to move, for instance, to reach an object. A movement is prepared by issuing the necessary

motor command to the target muscle which will change the target muscle state. At the same

time, an e�erence copy of this motor command is given to a forward model which predict the

next motor command sequence based on the actual current state of the sensory information.

A feedback model estimates the sensory feedback to be received from the muscle after the

movement. In addition to the output of the forward model, these predictions are used for

making rapid decisions about the movement. The movement preparation generates a motor

plan based on the intention, the motor prediction and sensory error. Some aspects are

not covered in this model, these includes, the representation of the intention to our mind,

how can the movement preparation be implemented, and what is the role of cognition in

the perfomance of the sensorimotor system. In our system, we will try to answer these

questions.

Figure 3.3 � SMILE sensorimotor loop [5]
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All the presented work are performed for child or adult sensorimotor systems. It is still un-

known how the sensorimotor system originates and develops into this structure. Hypothesis

of developmental psychology states that, in the �rst months of their life, infants perform

exploratory/random movements referred to as motor babbling, in order to create associa-

tions between such movements and the resulting perceived e�ects [53]. Recent research [54]

tracks the fetal origin of infants' sensorimotor behavior. It shows how observations on fe-

tuses suggest that the fetus's �rst motor activity allows it to feel the space around it and

to feel its body and the consequences of its movements on its body.

3.2 Perception and Perceptual Learning

Perception is the interpretation of sensory information [55]. Looking at some stationary

rocks produces a perception that they are not moving from their position. However, a person

who looks at a waterfall for a minute, and then looks away at the rocks, sees the rocks as

moving even though they are not. This is a short-term change in perception that remains

for few seconds before the original perception is retrieved. There are short-term changes

and long-term changes of perceptions. Long-term changes in perception sometimes happen

through exposure to stimuli, and without any instruction. Hence, perceptual learning can

be a form of unsupervised learning [56]. Most aspects of our body and sensory organs, such

as the spacing between our eyes and the length of our limbs, change as we age. Perceptual

learning enables our perceptual systems to tune representations of our body and sensory

organs and update these representations as we grow [57]. Perceptual learning is the discovery

of new structure in sensory stimulation [58]. Although the sensory stimulation are the same,

with repetitions, new structures start to appear which changes our perceptions. For instance,

beginners in tennis do not have the same level of perceptions as experts. With practice,

the perception of the �ow of the ball itself will change, they will detect and distinguish

features, di�erences and relations in the basic sensory information that were not previously

registered at all. Similarly, experienced chefs are able to perceive structures in their sensory

environment, i.e. they are able to easily detect ingredients in a given dish, where there was

none before and that is invisible to those who do not have the same level of experience.

Another example is a student reading an article, s/he perceives more information each time

s/he reads it.

In both, neurobiology and in machine learning, learning has been considered to take place

only at the cognitive level, i.e., either being processed in cognitive regions of the brain

or handled by complex machine learning algorithms. However, many tasks in real life

require humans to perform learning at the perceptual level. Learning was considered at

the cognitive level where identi�cation and categorization should be processed. However,

perceptual learning is used to quickly discriminate between close colors, objects, odours

or tastes that can make many categorization task possible. Thus, perceptual learning can

be seen as a speci�c process that learns how to transform the data before the traditional

learning task itself takes place [59]. As an example,the importance of perceptual learning
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has also been shown in human for face recognition [60] and object recognition [61] using the

visual system.

In [62], a study of the perceptual skills development for infants recognition of faces and

spoken words is presented. It is shown that they follow similar trajectories; which supports

the idea of development of the perceptual spaces representing the organization of the sensory

information relating to all aspects of faces and spoken words. The paper concluded that

the perceptual space is initially elaborated according to physical statistical properties in the

infant's environment that lead to narrowing in discrimination of non-experienced stimuli

during the �rst year of life for both faces and spoken words. Thus perceptual narrowing

refers to developmental improvement in perception of often-experienced stimuli, re�ecting

the strengthening of neural pathways that are consistently stimulated.

Perceptual learning is used for skill learning which can take place both in sensory and in

motor tasks. Sensory skill acquisition using perceptual learning tasks is measured by im-

provements in sensory acuity through practice-induced changes in the sensitivity of relevant

neural networks [63]. Motor skill is a term used whenever a motor learning behavior im-

proves along some dimension [64]. It is believed that motor skills have a direct relation with

perceptual skills [65].

3.3 Perception and Proprioception

Proprioception predominates as the most misused term within the sensorimotor system. It

has been incorrectly used synonymously and interchangeably with kinesthesia (the sense of

limb movement), joint position sense, somatosensation, balance, and re�exive joint stability

[66]. We will use the de�nition that is most commonly used in the literature which is the

sense of �self� position, where self refers to the body muscles or joints [32] [67] [68].

The mechanoreceptors that are used to produce proprioception such as the muscle spin-

dles and Golgi Tendon Organs (GTOs) are called proprioceptors [66]. Muscle spindles are

considered as the principal proprioceptors [47, 69]. Unlike vision and auditory senses, the

proprioception development is not studied much due to the di�culty to measure its per-

formance, but in [70], a study was presented to explain the proprioception development in

children and it concluded that its precision improves with age.

Proprioception map can be produced to identify di�erent positions of each limb [71]. It re-

mains unclear how visual, proprioceptive, and tactile modalities come together to create the

structure of the hand-location map. Proprioception can be interacted with tactile informa-

tion to produce haptic perception that helps us identify and grasp di�erent objects [72] [73].

Since tactile pressure does not provide us with information about the muscle length position,

it can not be considered as a proprioceptor. But, it enables us to identify whether there is

an object or not at this muscle length. Hence, it is necessary for identifying positions in the

cognitive map and it helps us in choosing goals.
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The term proprioception for an experience of the body itself whereas perception is for an

experience of the environment surrounding the body. Now it is a fact that an environment

implies something that is surrounded, and therefore an awareness of the environment implies

an awareness of the body existing in the environment. Equally, an awareness of the body

entails some feeling of its relation to the surroundings. So there can be no perception without

an implied proprioception, nor can there be any proprioception without some awareness.

The process of forming a perception begins with sensory experiences of the world. This

stage involves the recognition of environmental stimuli provided through the �ve senses. It

is to be noted that proprioception is a form of perception in which the sensory information

is obtained from the body only [74].

3.4 Cognition

Cognition is a term referring to the mental processes involved in gaining knowledge and com-

prehension. These processes include thinking, knowing, remembering, judging and problem-

solving. These are higher-level functions of the brain and encompass language, imagination,

perception, and planning .

The study of how we think dates back to the time of the ancient Greek philosophers Plato

and Aristotle. In his study of the mind, Plato proposed that people understand the world

by �rst identifying basic principles stored inside themselves and then using rational thought

to create knowledge. This viewpoint was later advocated by other philosophers such as

Rene Descartes and linguist Noam Chomsky. This approach to cognition is often referred

to as rationalism. Another approach to cognition is referred to as empriricism. This was

introduced by Aristotle who believed that people acquire their knowledge through the obser-

vations they collect from the world. Later, thinkers including John Locke and B.F. Skinner

advocated this point of view.

During the earliest days of psychology and for the �rst half of the twentieth century, psy-

chology was largely dominated by psychoanalysis, behaviorism, and humanism. A formal

�eld of study devoted solely to the study of cognition emerged as part of the �cognitive

revolution� of the 1960s. The �eld of psychology concerned with the study of cognition is

known as cognitive psychology [75].

One of the earliest de�nitions of cognition was presented in the �rst textbook on cognitive

psychology published in 1967. According to Neisser [76], cognition is "those processes by

which the sensory input is transformed, reduced, elaborated, stored, recovered, and used".

This means transforming the Sensory Inputs (sensations from the environment surrounding

you such as the information that you see, hear, taste and smell) into signals that your brain

can understand and act upon. For example, if we see an object �ying through the air toward

us, the information is taken in by our eyes and transferred as a neural signal to our brain.

Our brain then sends out signals to our muscle groups so that we are able to respond and

move out of the way before the object smacks us in the head [77].
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The world is full of enormous amount of sensory experiences. To get a meaning out of all

this incoming information, it is important for the brain to be able to reduce experience

of the world down to the fundamentals (i.e. get a summary or the key points only). For

instance, instead of remembering every detail about what the professor wore each day,

where we sat during each class session and how many students were in the class, we focus

your attention and memory on the key ideas presented during each lecture. The key points

represent perceptions. Hence, perceptual learning and cognitive learning are strongly related

[59]. However, there is a sharp distinction between perception (the processing of sensory

information that occurs at several levels) and cognition (the judging of representational

contents related to reasoning) [78].

Recently, many studies are performed to understand the fetus cognition development. In

[79], the cognitive functions of the fetus are investigated. The human brain is designed to

execute cognitive functions, such as perception, attention, action, memory and learning. It

has been found that the fetal action planning is established by 22 weeks and investigations

using four-dimensional ultrasound reveal that complexity of fetal motor action and behavior

increases as pregnancy progresses whereas the fetus processes sensory stimuli at a cortical

level starting from the 25 weeks of gestation.

3.5 Cognitive maps

Tolman proposed the term cognitive map, which is an internal mental representation (or

image) of external environmental feature or landmark. He thought that individuals acquire

large numbers of cues (i.e. signals) from the environment and could use these to build a

mental image of an environment (i.e. a cognitive map) [80�82]. The cognitive map is a per-

son's spatial memory that store knowledge of the world and its events and processes [83,84].

A cognitive map consists of �positions�. By using this internal representation of a physical

space they could get to the goal by knowing where it is in a complex of environmental

features through di�erent paths. Cognitive mapping is usually divided into building two

internal representations: one for developing person to object relation (egocentric) and an-

other for object to object relation (allocentric). Imperfections in encoding either relations

can introduce imperfections in representations of environments in memory [85].

Burgess & O'Keefe considered that the cognitive map provides a Euclidean description

of the surroundings from an allocentric reference perspective, informing on places in the

environment, objects to be found in that places, and spatial relations, driving way�nding,

goal-directed behavior and exploration [86]. Some studies done on cognitive map consider

it allows one to locate oneself in a familiar environment and to go from one place to another

even through parts of the environment were never visited before. Others see that it is not a

unitary integrated representation, but consists of stored discrete pieces including landmarks,

route segments, and regions [87]. Although there are many studies performed on high-level

cognitive maps whose purpose is to navigate to go from one route to another, how to link

routes to go from one location to another, and how people have di�erent abilities to form
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cognitive maps. There are no studies done on the origin of the cognitive maps in the fetus

stage.

The formation of cognitive maps are still unknown. Recently, a study [54] highlighted that

the sensorimotor system of the fetus plays an important role in forming the cognitive map.

They track the fetal origin of infants' sensorimotor behavior. Their observations on fetuses

suggests that the fetus's �rst motor activity allows it to feel the space around it and to feel

its body. This primitive motor babbling gives way progressively to sensorimotor behavior

which already possesses most of the characteristics of infants' later behavior, for instance,

repetition of actions leading to sensations, building intentions, getting motor control and

oriented reactions to sensory stimulation. In this way the fetus can start developing a body

map and acquiring knowledge of its limited physical and social environment.

The in�uence of proprioception on human spatial cognition is investigated in [88] and it is

found that proprioception can in�uence the time necessary to use spatial representations

while other factors such as visuo-spatial abilities can in�uence the capacity to form accu-

rate spatial representations [89]. This was done by the study of the navigation of blind

individuals and comparing to the navigation and way �nding in individuals without any

visual impairments [90]. It is found that the combination of both proprioception and au-

ditory sense helps the blind individuals to build their cognitive map for the surrounding

environment and they are able to navigate easily after a number of trials [85]. These studies

included the sense of touch with the proprioception. Some applications are made to help

blind individuals move freely, based on these �ndings [91]. Accordingly, the spatial posi-

tions can be represented interms of proprioceptions and the sense of touch (i.e. pressure

perception).
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CHAPTER 4

THE PROPOSED FRAMEWORK

We will follow a methodology that is inspired from system-based modeling in computer

science. This approach starts with a black box for which we partially know the external

(input/output) behavior. Then according to the knowledge acquired about the system, we

propose an internal structure of the black box that is able to reproduce the known external

behavior. This internal structure can call for smaller black boxes and we iterate until we

get consistent with the knowledge. This way, the model follows a constructive approach.

To choose a structure when we have a few knowledge, we have to apply heuristics. One par-

ticularly important heuristic is the Occam razor. Our knowledge is that the fetus learns by

interaction with its environment using its sensorimotor system. The inputs to the sensori-

motor system are the sensory feedbacks. These will represent the basic data upon which the

knowledge is acquired. Using the repetitive recieved sensory feedbacks, it begins building

perceptions as explained in previous chapter in sections 3.2, 3.3. Using perceptual learn-

ing, cognition will evolve making cognitive maps that represent an internal structure of the

environment as illustrated in previous chapter in sections 3.4, 3.5.

We have made the simplest choices with high level of abstraction in the model implementa-

tion following Occam razor. For instance, our model focuses on the problem of moving the

elbow upwards to reach di�erent locations vertically at di�erent speeds and get the corre-

sponding sensation, binary sequences are used to represent the motor command signal sent

from the CNS to the muscle. For movement leaning and generation, we use HMM because

it is simple and suitable for dealing with sequences. In addition, it has a probabilistic basis

and enable us to get the most probable sequence. An inverse model is used to generate

command sequences as mentioned in the previous chapter in section 3.1.
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At the end of this constructive method, the model we obtained is by construction consistent

with the biological hypotheses made about the problem. So, the study of this model is in

fact a study of these hypotheses.

Due to the unavailability of real data about the fetus, we will use simulated data extrapolated

from knowledge about the children sensory motor development.

De�nitions

Due to the availability of many de�nitions in literature for each part of our model as ex-

plained in chapter 2.5, the de�nitions chosen with respect to our model are demonstrated

below. This provides better understanding for the model and alleviate any possible confu-

sion.

• Sensorimotor map: is a map that associates the motor command to its corresponding

sensory data 3.1.

• Perceptions: is the process of interpreting sensory information. We identify it as

the interpretation of the sensory information coming from the environment and it

is a cognitive process. For instance, the cutaneous pressure obtained by touching an

object from the environment produces a perception that there is an object. In addition,

di�erent objects result in di�erent pressures, so, we refer to these pressures as pressure

perceptions 3.2.

• Proprioception: is a special form of perception in which the sensory information is

obtained from the body only. For instance, it is the ability to interpret the sensory

information from the muscle spindle as a self-position in space without any external

information from the environment 3.3.

• Proprioceptors: are mechanoreceptors (sensory neurons) that are used to produce

proprioception which is the self-position in space 3.3. We use muscle spindle to get

the length information of the muscle. A muscle can have di�erent length values, some

of them are well-perceived and recognized as self-position for this muscle, we refer to

these as length proprioceptions.

• Position: it is a proprioception when experienced from the body itself and is a percep-

tion when experienced from the environment. For instance, the position of a muscle

is determined from the length of the muscle obtained by the muscle spindle. But, to

make an interpretation about the state of that position (whether there is an object or

not), other sensory data such as the tactile pressure is needed. In other words, the

muscle position is a proprioception but when it touches an object in the environment,

it creates a perception regarding that position (i.e. there is an object here). Hence, it

is a pair of length (obtained from muscle spindle) and pressure (obtained by the tactile

sensation of the surrounding environment) 3.3.

• Cognitive map: a map of positions 3.5. The fetus is able to move its hand to suck its

thumb, which means it has the ability to recognize its mouth location and learn how

to reach it. Similary, it can grab its umbilical cord which means it is able to reach
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it. From these simple moves, we believe that the fetus forms a simple cognitive map

that enables it to reach di�erent objects in the womb. We will focus on egocentric

map which depends on changing the body position to go to an object rather than

allocentric. It can be 1D in case of moving in one direction or 2D in case of moving

vertically and horizontally. But, the structure of the cognitive map is not our concern

in this work. We are more interested in the content of the cognitive map and how it

can be expressed in terms of the input sensory data.

4.1 Simplifying Hypotheses

For the tractability and traceability of the model, we use four simplifying hypotheses in our

model:

1. An increase in contraction of one muscle causes the increase in length of the antagonist

muscle by the same amount during motion.

2. Due to the dependency relation between the length and the contraction during mo-

tion, we abstract the pair of antagonist muscles into one muscle and use the length

proprioception.

3. After the muscle stops, the tension caused by contraction relaxes and decreases while

the length remains the same.

4. The sensation of the environment is represented by the cutaneous pressure as either

zero indicating the �uid pressure or one indicating an object.

4.2 Biological knowledge and hypotheses captured by the model

Based on the hypothesis developmental psychology, explained in section 3.1, that the infants

depends on performing exploratory or random movements to create associations between

such movements and the resulting perceived e�ects. We extrapolate the hypothesis that the

fetus learns through two main phases namely, the Exploration phase and the Exploitation

phase. The Exploration phase is the �rst phase that the fetus passes through to collect

large amount of sensory and motor data by making random movements. During this phase,

it makes vast amount of random movements without having any intention or goal. These

random movements result in sensations collected through its body and sent to its mind. This

helps it to develop its sensorimotor capabilities and their usage in making the cognitive map.

On the other hand, in the Exploitation phase, the fetus has already gained some awareness

and starts learn making intended movements. To make the transition from the Exploration

phase to the Exploitation phase, it is necessary to have improved cognitive abilities such as

di�erentiating between di�erent sensations to various stimuli, linking these information in

building the cognitive map of positions of the surrounding environment. This is in addition

to being able to learn the relation between the motor skills required to move from one
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position to another. After that, exploiting all these information to make a goal-directed

movement can be done in the Exploitation phase. Both phases are explained as follows:

1. Exploration Phase: it is responsible for developing the sensorimotor map and helps in

building a primary cognitive map.

(a) Issue a random command that activates a random motor neuron.

(b) The motor neuron sends a contraction signal to the muscle.

(c) Execution of the command (muscle contraction)

(d) Sense the perceived state (muscle length, tactile pressure), this state represents

a position in the cognitive map.

(e) Learn and record the association : this motor command = these proprioceptions

and perceptions (L,P ) = this position.

(f) Repeat from (a) until the space is entirely covered.

2. Exploitation Phase:

On the basis of the exploration phase, the fetus is now able to reach a given position

stored in its cognitive map. To do so the fetus system uses the information from the

cognitive map to build a speci�c internal model to program a given movement in a

given context. For instance, it can choose to put its thumb in its mouth either quickly

or slowly.

(a) Build an intention (reach a given target state/position)

(b) Build a motor program (build an internal model from the cognitive map: Given

the current perceived state, if you want this position, so you want these perceived

states, so you want this command)

(c) Generate a motor command (stimulates one or more alpha motor neurons)

(d) Execution (muscle contraction)

(e) Get the perceived state (muscle length, tactile pressure)

(f) Comparison of the target state and the perceived state, if there is a discrepancy,

repeat from (b).

Passing through these phases, all the required building blocks for making a goal-directed

movements are generated.

4.3 The Proposed Framework

This sub-section explains the proposed framework of the development of the human cognitive

processes and the ability to make goal-directed movements.

34



Figure 4.1 � The System Framework. The system works in bottom-top approach where the bot-
tom represents the low-level processes and the top depicts the high-level processes. There are four
main building blocks of our system. 1. The Environment with which the fetus interacts and gets
its exteroceptions in response to its actions such as the pressure in case of touching an object. 2.

Muscle it is the source of interaction of the body with the environment. 3. Cognitive Processes

of the mind: it includes, a. Sensorimotor map: it is a map that contains the command se-
quences issued by the brain to a muscle and the corresponding sensory information that includes
both exteroceptions and proprioceptions such as the muscle length. b. Proprioception: it uses
the length information in the sensory map to perform higher level processing. c. Perception: it
uses the rest of the information in the sensorimotor map to perform higher level processing and gen-
erate perceptions from the sensory data. d. mechanoreceptors-association-map: it generates
associations of the recorded proprioceptions and perceptions to generate the position concept. e.

Cognitive Map: it represents all the positions ident�ed by the mechanorecepor association map.
f. Movement learning: it learns how to go from one position to another. g. Goal-directed

movement: it chooses the target task that should be done to move from the current position to the
target position. h. Inverse Internal Model: it learns how to achieve a task that is speci�ed by
the goal-directed movement block and it learns how to generate the required command sequence to
perform that task.
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The system framework consists of three main building blocks shown in Figure 4.1:

1. The Environment

It is a representation of the locations of di�erent objects around the fetus. It will be

re�ected as exteroceptors (pressure values) in the sensorimotor map.

2. The Muscle

It is part of the body that interacts with the environment and allow the sensorimotor

map to get updated. It provides the sensorimotor map with data about the motor

command applied to it and the sensory feedback sent by its mechanoreceptors to the

CNS.

3. The Cognitive Processes

(a) The sensorimotor Map Memory

It is a memory recording all the commands that are issued and the corresponding

sensory feedbacks from the body and the environment, referred to as propriocep-

tors and exteroceptors, respectively. It is shown in Figure 4.2.

Figure 4.2 � The Sensorimotor Map

(b) Proprioception Generation

The input sensory data (sensory length from the muscle spindle) is converted into

higher-level proprioceptions though time. Their numbers usually increase with

time as the fetus reach more sensory values as its physical abilities improves.

It is implemented as a form of clustering where the number of clusters is dy-

namically increasing with repetition. Figure 4.3 shows how the proprioceptions

corresponding to sensory values are depicted in the rest of the thesis.
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Figure 4.4 � The mechanoreceptors-association-map

Figure 4.3 � From Sensory data to Proprioception

(c) Perception Generation

It is a cognitive process in which the input sensory pressures are grouped such

that each group gives a sensation di�erent from the other groups.

(d) The mechanoreceptors-association-map between length proprioceptions and pres-

sure perceptions

As time moves on, more values for both length and pressure will be obtained

from the sensory neurons. Hence, more proprioceptions are generated. Then, it

will generate connections between the length and its corresponding pressure over

time. Figure 4.4 demonstrates how the the relation between length and pressure

perceptions.

(e) The Cognitive Map

In literature, the cognitive map is de�ned as a person's spatial memory that store

knowledge of the world and its events and processes [83] [84]. In other word, it is
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a map of all the positions identi�ed by our mind. The cognitive map is used to

reach any of these positions which is the base of making goal-directed movements.

We are interested in the Cognitive Map formed only from proprioceptions and

pressure perceptions, vision will not be considered because it is not fully developed

in the fetus stage.

(f) Movement Learning

Its objective function is learning how to change the muscle length from an initial

value to a �nal value by generating the suitable command sequence.

We see that moving from one length to another can be seen as a task in a broader

sense. Hence, we will use it to represent the cognition ability of the fetus of its

body in the �rst place. From our point of view, the movement learning comprises

two main units:

i. Tasks Perception

Tasks are then de�ned out of the length proprioceptions. They are transi-

tions from one proprioception to another. A muscle movement means that its

length is changed from initial to �nal length. Hence, the brain will learn the

task of how to move from any initial length proprioceptions to a �nal length

proprioception. The number of tasks depends on the number of propriocep-

tions. This means the number of tasks are increasing with time. The task

Task(Li, Lf) is a tuple of a motor command, initial length proprioception

(Li) and �nal length proprioception (Lf). Figure 4.5 shows how a task is

de�ned from proprioceptions.

Figure 4.5 � Task

ii. Tasks Learning

Each perceived task is to be learned in this unit to get the parameters that

represent this task. The task parameters are saved in the cognitive memory.

This module is implemented using HMM. For learning a task to move from

one initial length to another �nal length, all the sub-sequences that start at

the speci�ed initial length and end at the �nal length are collected with their
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Figure 4.6 � Movement Learning

corresponding command sequences. This forms the training set. HMM trains

using this training set and gets parameters that corresponds to this task. It

is to be noted that the command sequence may di�er in these sub-sequences

although they cause the change between the same lengths. This is due to the

fact that to reach from one position to another can be done with di�erent

behaviors. This information is included in the motor command sequence and

is taken into consideration in the learning process.

(g) Learning how to make a goal-directed movement

The fetus will combine the learned di�erent movements and the learned relation

between length and pressure to learn how to make an intended movement to reach

a certain position referred to as a goal. Its objective function is to change the

length from the current value to a new value and get the intended pressure as

well. Accordingly, it will calculate:

i. length proprioception Error

EL = (Lt − La)2 (4.1)

where L referes to length proprioception, Lt is the target length and La is

the actual length.

ii. pressure perception Error

EP = (Pt − Pa)2 (4.2)

where P referes to pressure perception, Pt is the target pressure and Pa is

the actual pressure.
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Figure 4.7 � Goal-directed movement

Figure 4.8 � Inverse Internal Model

(h) The Inverse Internal Model

When a fetus intends to accomplish a task, it will need to issue the corresponding

command sequence. It will exploit the learned task parameters to estimate the

command sequence. The internal model is responsible for applying the decoding

(inverse model). HMM is used to estimate the command sequence using the

Viterbi algorithm.

Figure 4.9 demonstrates the implementation of each cognitive process.

Our aim is to build a clear and simple model that can illustrate how the fetus human is

able to move its muscle to go from one position to another either to reach an object or just

to move freely. To achieve this aim, we need to go through di�erent levels of processing in

the mind. We will start from the low-level sensorimotor system to the high-level cognitive

processes.
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Figure 4.9 � The cognitive processes implementation
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CHAPTER 5

GENERATION OF PROPRIOCEPTIONS AND

PERCEPTIONS

Do we feel the exact sensory information sent from the body to our brain? The answer is no.

We may sense our arm moving around, but we can not measure its length precisely. We can

tell where it is approximately only. This is because our mind works with approximations

and makes interpretations accordingly. Similarly, during your daily life, there is massive

amount of information, but your mind does not preserve them all. For instance, moving in

a street in one day, hearing a lot of noise and passing by di�erent buildings. In the end of

the day, our mind will not remember everything you have heard and will not remember all

the buildings we have passed by. It will only remember the main things like the building

we were going to, the people we have talked to. To save more information, they need to be

repeated several times until they become recognizable and be stored in our memory.

Our mind processes the sensory information the same way as explained in previous section

3.3. It does not save every single value each time. Instead, it processes the incoming values

and save the important information from them. For instance, the sensory information

coming from a muscle spindle will be used to generate a sense about the length of that

muscle (i.e. a proprioception). Each time a proprioception value is obtained, it will be

saved in memory. In the same way, the tactile pressure information collected by touching

di�erent objects from the environment forms perceptions that are saved in memory. It is to

be noted that proprioception is not recognized once being obtained, instead, it needs to be

repeated several times to be saved in the memory as explained in previous section 3.2.

To summarize, getting proprioceptions and perceptions are cognitive processes that work

on the input sensory data collected over time and saved in memory. It is to be noted that

our mind is not accurate, the cognition is a high-level processing but is not very accurate.

Hence, our mind is not supposed to identify the exact values of the sensory data, instead,

it determines an approximation for them.
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Since the proprioceptions are representations of the muscle lengths that are recognized

cognitively by the mind and the perceptions are interpretation of di�erent tactile sensations

and separating them according to similarity, unsupervised learning seems to �t well for

these representations. For proprioceptions, the sensory lengths are clustered to determine

if they represent the same cognitive length or a di�erent one. Similarly, for perceptions,

the sensations are clustered to identify either we are touching the same object or a di�erent

one. Accordingly, a clustering algorithm should be used to generate proprioceptions and

perceptions. K-means clustering seems to be a good candidate because it makes clustering

using similarity and, at the same time, gives approximation for each cluster represented by

the mean. Both proprioceptions and perceptions can be presented by these means. But,

the shortcoming of the k-means clustering is the predetermination of the number of clusters

(k) which can not be biologically interpreted. Accordingly, we need to �nd a natural way

for choosing the number of clusters.

The learning process evolves with time as inputs are presented. For example, adults learn

new skills by practicing it through time. The learning process builds the human mind. The

human mind is not the brain; the mind refers to the mental and cognitive processes while

the brain represents a set of physical neurons. The mind is a higher-level structure that is

built gradually using cognitive processes as the brain gets more inputs. In our problem, we

model the production of proprioceptions and perceptions from the input sensory data.

As in the case of learning a new skill, in which a human learns gradually as inputs are

presented, with repetition, we believe that a fetus human develops its cognition through the

repetition of certain values with time.

Initially, the fetus will not be able to distinguish precise sensory values, due to its limited

abilities that improve with time. We are interested in how this cognition ability increases

with time. Our idea is based on that the most repeated value in a given cluster will dominate.

It is not allowed that two values dominate together. So, in case another value in the cluster

is repeated many times as the dominant value, it is expelled from the cluster and forms a

new cluster on its own and take the similar values as its cluster members.

Applying this to our problem, at �rst, the fetus will group all the sensory values it receives in

one cluster. When a sensory value is repeated a lot with time, its mind starts to distinguish

it from the rest of values. This will create a new cluster for this value as the center of the

cluster, the cluster members will be its similar values.

Through time, it will be able to distinguish all the values incrementally by repeating its

actions and receiving the same sensory values. Since, the brain is not very precise and

noisy, the center is updated to be the average value of the cluster members. Following

this idea, we propose a new clustering technique referred to as, frequency-based-means clus-

tering, explained in Figure 5.1. We use the frequency-based-means clustering to obtain

proprioceptions and perceptions over time.

In this algorithm, the input is either a sensory length or a sensory pressure. If it is the �rst
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time to receive an input, this input is considered as the center of the �rst cluster, the number

of samples in this cluster becomes one and one is the maximum count in this cluster. When

another input is received, it is compared to all the previous inputs, in case it is the old

sample, the sample count is incremented. After that, the sample count is compared to the

maxcount of the cluster and the repetition threshold. If it is greater than the maxcount or

the repetition threshold, the sample will be expelled from the cluster and form a cluster on its

own and take the similar samples as its cluster members; then the cluster center is calculated

as the average of all cluster members. Otherwise, the cluster center will be updated to be

the new average, the count and maximum count will be incremented. Otherwise, the sample

is new, it is assigned to the cluster with the nearest cluster center with count equals to one.

After that, the cluster center is updated.

The cluster centers are referred to as either the proprioceptions or perceptions (according

to the input) in our case. This process will be applied to all the sensory information such

as length and skin pressure.

This way the human mind perceptions evolve with time; which represents cognition im-

provement.

The sequence of observations O is formed of the perceptions oi ∈ X.

By recording all this information, the fetus brain builds its training dataset. After that,

it starts to learn the relation between O and Q and gets the mapping parameters as in

problem 3 mentioned in previous section 2.3.

The fetus brain then learns di�erent tasks where each task represents moving to a new

perception value from the current perception value.

Input data 

sample (𝑙(𝑡))

𝑡 > 1?
Create first cluster with 

center = 𝑙(𝑡)

Calculate the maxcount of 

each cluster

Initialize 𝑐𝑜𝑢𝑛𝑡(𝑙(𝑡)) = 1

Is 𝑙(𝑡) New?

Assign to the 

nearest cluster

𝐶𝑜𝑢𝑛𝑡(𝑙(𝑡)) = 𝑐𝑜𝑢𝑛𝑡(𝑙(𝑡 − 1)) + 1

𝐶𝑜𝑢𝑛𝑡 𝑙 𝑡 in 𝑐 ≥

𝑚𝑎𝑥𝑐𝑜𝑢𝑛𝑡 𝑐
OR

𝐶𝑜𝑢𝑛𝑡 𝑙 𝑡 ≥

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Create a new cluster with 

center = the sample.

Redistribute all the samples among 

the available clusters

Is 𝑙(𝑡) a 

cluster center?

No Yes

Yes No

Yes

No

Update each cluster center = the 

average of the cluster members

𝑡 = 𝑡 + 1 No

Figure 5.1 � Frequency-based-means Clustering
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We present below an example that traces the frequency-based-means clusering algorithm

using given sensory data.

Tracing Example.

Assume that we have sensory data sequence in which one sensory value is input at each

time t as shown in table 5.1. We provide the tracing of grouping them using the frequency-

based-means clustering algorithm.

time t sensory value

1 1

2 2

3 1

4 10

5 10

6 11

7 10

Table 5.1 � Input sensory values at di�erent times

1. At time t = 1:

cluster 1 = 1

cluster center=1

count(1) = 1

2. At timet = 2:

cluster 1 = 1, 2

cluster center = 1.5

counts = 1, 1, maxcount = 1

3. At time t = 3:

cluster 1 = 1, 2

cluster center = 1.3

counts = 2, 1, maxcount = 2

4. At time t = 4:

cluster 1 = 1, 2, 10

cluster center = 3.5

counts = 2, 1, 1, maxcount = 2
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5. At time t = 5:

cluster 1 = 1, 2, 10

cluster center = 4.8

counts = 2, 1, 2, maxcount = 2

6. At time 6:

cluster 1 = 1, 2, 10, 11

counts = 2, 1, 2, 1, maxcount = 2

cluster center = 5.8

7. At time 7:

cluster 1 = 1, 2, 10, 11

counts = 2, 1, 3, 1

count(10) >maxcount at time t = 6 , Then form a new cluster with cluster

center = 10 and redistribute the previous samples.

cluster 1 = 1, 2

counts 1 = 2, 1

cluster center 1 = 1.3

cluster 2 = 10, 11

counts 2 = 3, 1

cluster center 2 = 10.25

The frequency-based-means clustering algorithm can work on sequential online data. Its

time of convergence is independent from the data values but it is dependent on the frequency

of the data values and the repetition threshold that is chosen. Table 5.2 summarizes the main

di�erences between the K-means clustering and the Frequency-based-means clustering.
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Point of Comparison K-Means Frequency-based Means

Requires

Pre-determined

Number of Clusters

True False

Results may be altered

from one run to another

True False

Number of Required

Parameters

1 1

Suitable for Online

Input Data

False True

Clustering Criteria Distance-based Distance-based

Type of data Quantitative Repetitive Quantitative data

Table 5.2 � Comparison between K-means clustering and the Frequency-based-means clustering

It is shown that the proposed frequency-based-means clustering algorithm is suitable for

online quantitative data that have repetitions. It does not require a predetermined number

of clusters and evolves with time according to the chosen repetition threshold. It is used

for creating perceptions and proprioceptions in our problem because they are acquired by

repetitions as was explained in section 3.3.
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CHAPTER 6

CREATING THE

MECHANORECEPTORS-ASSOCIATION-MAP

As explained in previous chapter 1.4 in section 2.1, the cerebral cortex contains somatosen-

sory cortex which collects all the sensory data from di�erent sensory organs and the asso-

ciation cortex which blends di�erent data to obtain higher-level interpretations. Based on

this biological knowledge, we create a map referred to as a mechanoreceptors-association-

map. According to the collected sensory data, higher level perceptions are created. The

perceptions obtained from di�erent sensory neurons are associated in the mechanoreceptors-

association-map. The association links are dynamically updated with time as more cognitive

abilities are acquired or as there is a change in the environment. Once an ensemble of per-

ceptions are produced together, they are linked together using links with small weights.

These weights are increased everytime this ensemble is repeated in order to strengthen the

association between them. This way, the association link weights between di�erent percep-

tions of an ensemble are proportional to the strength of the ensemble. This means that the

perceptions that do not occur together should have zero weights for their association links.

In case of a dynamically changing environment, some ensembles may exist for some times

then they no longer do. In that case, the association link weights of that ensemble should

decrease gradually until they become zero.

Figure 6.1 demonstrates the association between length proprioceptions and pressure per-

ceptions in the mechanoreceptors-association-map. The length proprioceptions are created

from sensory length values and the pressure perceptions are formed from sensory pressures.

Their integration re�ects whether there is an object in the environment or not. Both the pro-
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prioceptions and perceptions that occur together have association link created with weight

greater than or equals to 1. If any proprioception does not exist simultaneously with a

perception, their link weights are zeros.

Figure 6.1 � Length-pressure perceptions Relation. (a) The muscle has sensory length values from
LS1 to LS6. The environment represents the objects by tactile pressures at di�erent proprioceptive
lengths, zero means there is no object while one means there is an object at that proprioceptive length.
(b) At time t1, all the length sensory values received are perceived as one proprioception, the same is
done for the pressure sensory values. This is because none of the sensory values is repeated as much
as it is needed to be signi�cantly noticed. At time t2, three sensory length values (LS1, LS3, LS6) are
repeated signi�cantly to be proprioceptions. They form the main proprioceptions as clusters with the
similar sensory received until this time without being signi�cantly repeated. On the other hand, The
pressure P2 = 1 is also repeated much to be a perception. This is when the fetus starts to feel this
object and save this sensation in its memory. Notice the association link between L6 and P2 because
they occur together. Each length proprioception is connected to all the pressure connections with
weights equal to their occurrence together. The �gure does not show the zero weights for simplicity.

These associations are updated through time when new perceptions are added or even

deleted from one or more sensory neurons. For any length proprioception (Li) and pressure

proprioception (Pj) , there is a associations (Li, Pj), with weight = wLiPj .

When a command sequence (Qt) results in perceptions Li, Pj , then the weight is updated

according to algorithm 3. When a pair of a length proprioception and pressure propriocep-

tion occurs at the same time, their link weight increase by one unless it reached a maximum

threshold to prevent domination. Similarly, the links between pairs of this length and other

pressures will decrease. This is to model the case of dynamic environment where an ob-

ject exists sometimes then disappears due to either its movement or the body movement.

Accordingly, the object is not in the same previous place and does not correspond to this

length anymore. Despite this change, the mind does not forget that this length corresponds

to that pressure (of the object) instantly. It needs some time to forget this link. That is

why the link weight decreases gradually by one each time this link is not correct until it

reaches zero when it is assumed it does not exist anymore. The resulting weights are saved
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in memory for future use in making goal directed movements.

Algorithm 3 The relation between length perceptions and pressure perceptions

Variables:

T : The �nal time.

L: The set of length values.

P : The set of pressure values.

Li ∈ L: Length value.

Pj ∈ P : Pressure value.
wLiPj : The connection weight between length value Li and pressure value Pj.

Begin

for t = 1: T do

for each Li ∈ L do

for each Pj ∈ P do

if (Lt == Li) ∧ (Pt == Pj) then

wLiPj (t)=wLiPj (t− 1) + 1

wLiPk
(t)=max (0, wLiPk

(t− 1)− 1)

such that k 6= j.

end if

end for

end for

end for

End

Hence, this architecture is dynamic as the number of perceptions changes with time until it

reaches stability, when the change in weights is nearly constant and no new perceptions are

created.
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CHAPTER 7

MOVEMENT LEARNING AND THE INVERSE

INTERNAL MODEL

As illustrated in previous chapter 1.4, muscle �bers are innervated by motor neurons. Signal

must be transmitted from the CNS to motor neurons in order to contract their muscle �bers.

When muscle contracts, sensory feedbacks are sent from the muscle sensory neurons to the

CNS. The coordination of this process forms the sensorimotor loop explained in section 3.1.

In order to reach a position, a speci�c signal must be sent from the CNS to the motor

neurons reponsible for contracting the muscle. The production of this signal is a form of

learning.

This chapter illustrates the process of learning to move a muscle from one position to another

using HMM explained in previous section 2.4.2. This process is based on the previous cogni-

tive processes of proprioception generation and building the mechanoreceptors-association-

map which de�nes positions. Once the positions are determined, tasks can be de�ned such

that a task is the transition from one proprioception to another. Accordingly, the number

of de�ned tasks is proportional to the number of generated proprioceptions. It is important

to note that the task is related to proprioceptions but is not related to perceptions. This is

because it is focused on learning how to change the muscle lengths without any knowledge

of pressures. Since we are interested in vertical movement upwards only, the tasks will be

de�ned for pairs of proprioceptions with increasing order. For instance, a task is de�ned

from L1 to L2 if and only if L1 < L2. Figure 7.1 shows how the tasks are obtained and

used.
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Figure 7.1 � Task Life Cycle

Once the tasks are obtained, each task will be learned using HMM as shown in Figure 7.2.

The command sequence represents the hidden state sequence Q such that any command qt

at time t represents whether there is a spike (1) or not (0).
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Figure 7.2 � The structure of a HMM of one task.

Accordingly, a HMM model λ = (Q,A,O,B, π), is built for each task with the following

characteristics:

• The set of hidden states Q = {q1, q2} is a set of 2 states corresponding to 1 or 0

commands.

• A =

[
a11 a12

a21 a22

]
is a transition probability matrix A, each aij representing the

probability of moving from state i to state j, s.t.
∑n

j=1 aij = 1∀i.

• O = o1o2...oT is a sequence of T observations, each one is drawn from the set of the

de�ned proprioceptions X = {x1, x2, ...xN}.

• B = bi(ot) is the emission probability matrix of size 2×N such that 2 is the number

of the states and N is the number of the de�ned proprioceptions. Each cell represents

the probability of an observation ot being generated from a state i.

• π is the initial probabilities of all the states.

To learn a task, we need to estimate its transition probability matrix (A) and its emission

probability matrix (B). This is done using Baum-Walsh Expectation Maximization algo-

rithm. The algorithm starts with a randomly chosen A and B, then it iterates through the

E-step and M-step illustrated in chapter 1.4. Finally, it will converge to good estimates for

A and B.

The estimated A and B act as the parameter of this task. They will be saved in the memory

so that whenever a task is required to be done, its parameters will be retrieved from memory.

These parameters are used by the inverse internal model that is responsible for estimating the

motor command sequence needed to make a task. In our model, this is implemented using

the Viterbi algorithm which chooses the most probable sequence given the task parameters.
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CHAPTER 8

MAKING A GOAL-DIRECTED MOVEMENT

Voluntary movements can be done to change a limb position from one position to another

by sending a motor command sequence to the limb muscles. The voluntary movements are

said to be goal-directed when they are required to reach a position with some perceptions.

For instance, reaching a certain object in the environment can be considered as a goal. In

case of a fetus, there are some simple goals such as sucking its thumb as already mentioned

in chapter 1.4. To achieve this, the fetus thumb has to reach the position of the mouth

and feel the required sensation of its tongue. This simple goal requires recognition of the

current proprioception and the current pressure perception (to say if the thumb is in the

mouth or not), a cognition of di�erent positions, the ability to identify a task of moving from

the current to the target positions and to estimate the required motor command sequence

then issuing the required motor command sequences using the sensorimotor system to the

muscles. Other examples can be grasping the umbilical cord or touching the womb. Despite

that the environment of the fetus is small and its goals are simple, they help in building the

basic building blocks for making complex directed movements. For the infants and adults,

the goals are more complex and may need making a plan for a series of movements. For

example, reaching an object which is far away such as a food in the refrigerator in another

room. This requires planning of many movements starting from knowing the way to the

refrigerator from the current position, reaching there, then opening the door and taking

the target food. Looking at such a complex goal, it can be divided into a series of motor

commands given to many body muscles to move from one position to another until the

target is achieved.

In this chapter, we demonstrate how goal-directed movements can be generated. In addition
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to the sensorimotor system, each of the cognitive processes de�ned in the previous chapters

play an important role in making the goal-directed movement.

The role of the cognitive map

The cognitive map consists of positions identi�ed by proprioceptions and perceptions, the

goal is de�ned by choosing to reach one target position from the cognitive map according

to the target perceptions. The cognitive map develops through time as more positions are

produced. Figure 8.1 shows an example of a cognitive map that has �ve positions and

depicts the current and the target positions.

Figure 8.1 � The cognitive map. An example of a cognitive map with �ve positions showing the
current position of the muscle and the target position required to be reached (the goal).

The role of the mechanoreceptors-association-map

Di�erent identi�ed proprioceptions and perceptions that occur together are associated to-

gether. This association de�nes a position in the cognitive map. The more proprioceptions

and perceptions are obtained, the more positions are de�ned, the larger the cognitive map,

the more goals can be chosen. Figure 8.2 shows how positions are represented by the asso-

ciation links between proprioceptions and perceptions. There can be proprioceptions and

perceptions values that are not connected together because they did not exist together at

the same time such as L1 and P1. In this case, there is no position de�ned at this length

L1 with that perception P1.
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Figure 8.2 � The mechanoreceptors-association-map showing de�ned positions in the cognitive map.
In time t = 1, only one position is de�ned between L1 and P1. At time t = 2, positions are formed
for (L1,P1), (L3,P1) and (L6,P2) because they occured together many times. On the other hand,
no positions are de�ned between L1 and P2 or L3 and P2 or L6 and P1 because they didn't exist
simulatenously.

The role of the sensorimotor system

A muscle can contract and change its length based on command sequences sent to its motor

neurons as shown in Figure 8.3. Accordingly, motor commands are essential for muscle

movements which are, in turn, necessary to obtain di�erent sensory data. We make the

hypothesis that the fetus starts making a large number of random movements by issuing

random motor commands in the Exploration phase in which it collected a vast amount of

sensory data. These sensory data are the basic building blocks for making the cognitive

map.

Figure 8.3 � Moving a muscle from one position to another. The motor command sequences
controls a muscle to change its initial length to reach the �nal target length.
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The role of the movement learning

It learns the relation between positions and how to move from one position to another by

identifying a task for each transition. It improves over time as more positions are generated

and as their frequencies increase.

The role of the inverse internal model

It translates the required movement from the current position to the target position into a

sequence of motor commands and send it to the muscle. Figure 8.4 summarizes the de�nition

of a goal and how it can be reached through proprioceptions and perceptions. These pairs

of proprioceptions act as positions in the cognitive map. After a task is determined, the

inverse model generates the corresponding motor command sequence and send it to the

target muscle.

Figure 8.4 � A summary of the goal-directed movement. Given a goal perceived pressure, the fetus
should be able to get the length that is associated with this pressure according to its percepion. This
is depicted by the lines between the length and pressure perceptions. Then, a task of moving from the
current length to the target length is de�ned. After that, a motor command sequence is generated to
accomplish the task. The creation of perceptions is a cognitive process applied to the sensory data.

The development of this kind of movement requires the integration of all these cognitive

processes. The developments starts from the early age of a fetus and continues improvement

across the successive stages. The more the human capabilities increase, the more cognitive

abilities it has, the more goals it becomes able to choose and learns to reach them.

We make the hypothesis that the fetus starts with interacting with its environment doing

random movements produced by generating random command sequences. These command
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sequences will result in receiving sensory data like length and pressure. After these sensory

data are collected, primary proprioceptions and perceptions are generated. This is in addi-

tion to their associations. Then, the primary positions are sent to the immature cognitive

map. Tasks are de�ned from the length proprioceptions and learned. The cognitive map size

is proportional to the number of positions, which is proportional to the determined number

of proprioceptions and perceptions. Accordingly, the more motor commands generated, the

more sensory data obtained, the more proprioceptions and perceptions are produced, the

more positions are de�ned from the association links, the larger the cognitive map. After

some time, the fetus capabilities are enhanced and it is able to choose to either make a

random movement or an intended movement based on a goal of reaching a target position

or object from its memory.

Figure 8.5 demonstrates the whole process. At �rst random command sequence is generated,

the sensory data are updated. Proprioceptions are produced from the length sensory data

and perceptions are created from the pressure. Association links between the resulted pro-

prioceptions and perceptions are developed with small weights. At the same time, tasks are

formed and learned between pairs of proprioceptions. After some time, with the repetition

of movements, the proprioceptions and perceptions increase , their links are strengthened.

Hence, their corresponding positions are well-recognized in the cognitive map. Then, the

fetus becomes able to choose a goal-directed movement choosing a target position to go to

from the cognitive map. Based on its current position and the target position, a task to be

performed is determined and the corresponding command sequence is issued.
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Figure 8.5 � The Model of Learning How to make a goal-directed Movement. At any stage with
a certain energy level, the fetus may try issuing either a random command movements or a goal-
directed movements. This will generate a command sequence that will produce both proprioceptive
length data and pressure data. Perceptions will be updated according to the newly added sensory
data. Weights between length and pressure perceptions will be updated while tasks between length
proprioceptions will be updated or even created and learned. The fetus may choose to either target a
pressure proprioception goal and issue the required task or make any random action.
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CHAPTER 9

MODEL DATA GENERATION

Due to the unavailability of real data, we test our model using simulated data. The sen-

sorimotor data are calculated by using equations from the literature [30]. We have used

statistical and mathematical methods to obtain this data.

First, the command sequence is generated using Bernoulli distribution. Then, the pro-

prioceptive length data are calculated using mathematical convolution. After that, the

proprioceptions are produced and updated as more movements are done. A task between

each pair of proprioceptions is de�ned as explained above. Figure 9.1 describes the whole

process.

The command sequence

Motor neurons �re when they receive a command so that the corresponding muscle �bers

contract. Hence, there will be a spike coming out from the �ring neuron when there is a

command. Accordingly, the command sequence represents the hidden state sequence Q such

that any command qt at time t represents whether there is a spike (1) or not (0). In other

words, a command state sequence is represented by a binary sequence such that 1 implies

contraction and 0 implies no contraction.

Initially, the time between consecutive command signals is large and it decreases gradually

as the fetus gets older as it gains more energy and becomes able to get stronger contraction.

The command state sequence Q is generated from a Bernoulli distribution given by:

qt = pt (1− p)1−t (9.1)
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Figure 9.1 � The Generated Data. First, the command sequence is generated. Second, the propri-
oceptive length data are calculated. Then, the proprioceptions are produced. m1 and m2 refer to the
�rst and the second movements, respectively.
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such that t = 1 refers to issuing a command with probability p and t = 0 implies the absence

of command with probability (1− p).

The sensory data

It dictates the sensory values obtained after using a given command sequence. As explained

above, this includes both the proprioception which represents the length and the exterocep-

tion which is pressure in our problem.

When a command is given to a muscle, a force is generated causing increase in its �bers

tension. Muscles di�er in terms of the number of �bers and size such that increasing them

means the ability to get more force. Each muscle is represented by a Gaussian function with

large variance for large muscles and small variance for small muscles.

Muscle = exp

(
−(x−mean)2

σ2

)
(9.2)

where x represents the �ber sizes.

The contraction is given by a convolution function between the muscle and the command

sequence:

contraction = MuscleΘQ (9.3)

where Θ denotes the convolution operator and Q is that state sequence.

The length sensory values are generated based on the fact that it increases by increasing

the contraction and it is constant when the contraction is either constant or decreasing.

For an action with duration T , the length is given by:

length (t) =


lengthinit (t)

length (t− 1) + ∆contraction

length (t− 1)

t mod T = 0

∆contraction > 0

∆contraction ≤ 0

(9.4)

The pressure appears when the fetus senses an obstacle (e.g. its face) that brings a di�erent

sensation. Initially, when the fetus has low energy, its muscle won't be able to reach any

obstacle and hence, the pressure is zero. For simplicity, the pressure is modeled as either

there is an object or not. The pressure is modeled as a unit step function .

pressure (t) =

 1

0

length (t) ≥ Thresholdlength
length (t) < Thresholdlength

(9.5)
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Figure 9.2 shows an example of the data generated for the motor command sequence. the

sensory length and the sensory pressure.

Figure 9.2 � An example of the generated data. The x-axis represents the time units and the y-axis
represents the motor commands, the sensory length values and the sensory pressure values from top
to bottom, respectively. The x-axis is divided into 20 time units which is the assumed duration of
one upward movement.
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CHAPTER 10

EXPERIMENTAL SETUP AND SIMULATION

RESULTS

We have modeled the movement learning evolution through a stage in which the fetus will be

able to make movements by issuing commands with probability 0.9 using Bernoulli equation

explained above. This probability was chosen empirically to re�ect more movements are done

upwards to get a wide range of sensory length values useful in our test. Choosing smaller

probabilities will result in smaller range of length values obtained using convolution. In

addition, our focus is on making volunatry movements so it is better to use high probability

of issuing the commands. We assumed that the fetus will repeat moving its muscle upwards

10 times during this stage. So, the simulation is presented by 10 movements each has a

duration of 20 time units. The number of movements and the duration of each movement are

also chosen empirically to build our dataset with repetitive sensory length values to be used

in getting the proprioceptions. Each movement will start at a random length starting with 5

which is the assumed minimum muscle length. It is to be noted that we are only interested

in moving upwards using a voluntary movement. Accordingly, any change in length could

have been done within these movements due to involuntary movements, re�exes or even

voluntary movements in the opposite direction. Hence, we chose to start at random length

values instead of a constant value. The Environment is modeled as either having an object

or not at di�erent lengths. If there is an object, the pressure is 1, otherwise, the pressure is

zero. We have assumed that the object is static and is heavy (e.g. its face), so preprocessing

is done to crop the lengths greater than the length at which the object is located, which is

chosen as 14 in our experiment. It is a value chosen from the generated length values (from

5 to 20) less than the maximum value to describe the case when an object is placed at a
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length value less than the maximum limit. The model runs incrementally as explained in

the previous sections.

10.1 Experimental Results for getting the proprioceptions and

perceptions

For getting the proprioceptions and the perceptions, we have used k-means clustering al-

gorithm with k chosen using the Calinski Harabasz index criterion [92]. The interval given

to the Calinski Harabasz index criterion was increasing with each movement by 1. Results

have shown that increasing the number of clusters improves the performance which means

that the number of clusters can re�ect the enhancement of cognition level for propriocep-

tions and perceptions. Accordingly, we need to �nd a way of choosing k that is natural

and can be interpreted biologically. This is provided by using the frequency-based means

clustering which presents a way of evolution of cognition through increasing the number of

clusters based on repeated feedbacks. Figure 10.1 shows how the input sensory data are

clustered using the Frequency-based-means clustering and shows how the mean squared er-

ror decreases as movements increase; thus re�ecting the fact that proprioceptions approach

the sensory data. Figure 10.2 demonstrates how the threshold a�ects the performance of the

clustering. When the threshold is low, the clustering process is fast and the mean squared

error decreases fast. On the other hand, high threshold results in slow clustering and large

clusters causes larger error. Figure 10.3 presents a comparison between the performance

of the Frequency-based-means clustering and the k-means clustering using a constant value

for k or using Calinski Harabasz index criterion. It shows that the Frequency-based-means

clustering performs as good as the k-means using the Calinski Harabasz index whereas the

constant k value has the worst performance. This result strengthens the idea that propri-

oceptions and perceptions must be increasing with time, otherwise, the human cognition

capabilities deteriorate.
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(a)

(b)

Figure 10.1 � An example of perceptions evolution across movements in one simulation. (a) The
x-axis shows the sensory length values found per movement. Each color represents a cluster with
cluster center marked by �x�. Initially, all the obtained length values are assigned to one cluster.
With the repetition of length values, they will be recognized as perceptions, hence, the number of
perceptions increases with time. Here, the presented maximum length is the assumed maximum
muscle length. (b) depicts the mean squared error between the actual length values and the perceived
length values as well as the standard deviation across all movements. From (a) and (b), It is noticed
that some movements that have the same perceptions incorporate an increase in the error as seen
in the 2nd and the 3rd movements. This is due to the inclusion of either new length values or
old values that are larger than the recognized perceptions which increases the error as well as the
variance, those will be discriminated with time.
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Figure 10.2 � Threshold e�ect in Frequency-based-means Clustering. Mean Squared Error between
the actual sensory length values and the perceived ones are shown when the input data are clus-
tered using Frequency-based-means clustering using di�erent threshold values. When the threshold
decreases, more clusters are produced. Hence, the average approaches the cluster members resulting
in smaller MSE.

70



Figure 10.3 � Comparison between the performance of the Frequency-based-means clustering and
K-means clustering. The results of generating perceptions for 10 movements obtained from 10
smulations and 10 LOOCV are depicted for the frequency-based-means with a threshold values equal
to 4, k-means with k = 4, and k-means where k is chosen by Caliniski Harabasz. Mean Squared Error
is calculated between the actual sensory length values that are clustered and the perceived lengths in
each case. The frequency-based-means clustering gets nearly similar results to the k-means with
the Caliniski Harabasz. The constant k-means has the worst performance because as the number of
movements increase, more data are obtained and are distributed among the same number of clusters
resulting in large clusters with increased intra-cluster distance. Accordingly, using a constant number
of clusters is not suitable for data that increases with time and this demonstrates that perceptions
must be increasing with time.

10.2 Experimental results of building the

mechanoreceptor-association-map

and the cognitive map

After getting the proprioceptions and perceptions, the mechanoreceptors-association-map is

created using Algorithm 3 and it is shown in Figure 10.4. It can be seen that there can be

a length having two pressure perceptions in early movements. This is due to the immature

di�erentation between the di�erent proprioceptions and mixing di�erent sensory values that

have di�erent sensations in one group. This will be solved in the next movements as the

sensory values with the same sensations are grouped together and the old association links

fade.
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Figure 10.4 � An example of the mechanoreceptors-association-map. The x-axis represents the
length proprioceptions and the y-axis represents the pressure perceptions. Both the dots and the
crosses depict the pressure perceptions at di�erent length proprioceptions. Dots refer to one pressure
perception and the crosses refer to another one.

Figure 10.5 demonstrates how the cognitive map is formed through consecutive movements.

The number of positions of the cognitive map increases as more movements are done and

as the mechanoreceptors-association-map is updated.

Figure 10.5 � An example of the resulting cognitive map.
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10.3 Experimental Results of the Movement Learning and the

Inverse Internal Model Implementations

For producing the proprioceptions for lengths and the perceptions for pressures, we assumed

that a sensory data must be repeated at least 5 times to be recognized as a proprioception

or a perception and saved in memory. The value 5 was chosen because it is half the number

of movements; consequently, the sensory value repeated that much can be distinguished

as perceptions. The sensory length values are used to create length proprioceptions, this

is shown by Figure 10.8. It is noticed that the number of perceived lengths increases with

time as more movements are generated, which means increasing the proprioceptions and the

sense of the self-position. From the created perceptions, tasks are de�ned to move from one

proprioception to a higher proprioception. The number of tasks produced across di�erent

movements is demonstrated by Figure 10.6. All the sequences of each task are collected

and used for training and testing its HMM model using 10-Leave One Out Cross Validation

(LOOCV). An example of the change in the number of sequences per each task is depicted

by Figure 10.7.

Figure 10.6 � Number of Perceived Tasks Versus Number of Repetition of Moving Upwards. For the
�rst three movements, no tasks are de�ned because there is only one perceived length. It is noticed
that the number of tasks increases with the repetition as more proprioceptions will be recognized,
hence, new tasks will be created. After sometimes, all the length domain is covered, so the number
of tasks remains constant.
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Figure 10.7 � One Example of The Number of Sequences per Tasks for many Movements Upwards.
The x-axis represents the task number and the y-axis depicts the number of sequences per each task.
The �gure shows that the number of tasks increases with the repetition of movements as well as the
increase in the number of sequences per tasks at a constant the number of tasks as in the 5th, 6th
movements and the 7th, the 8th movements. The increase in the number of sequences for a task will
help in better learning.

74



(a)

(b)

Figure 10.8 � Perception Evolution across Movements for the 10 LOOCV runs. (a) Shows the
mean and the standard deviation of the number of the de�ned length proprioceptions . Initially, all
the obtained length values are assigned to one cluster. With the repetition of length values, they will
be recognized as perceptions, hence, the number of perceptions increases with time. (b) Depicts the
mean squared error between the actual proprioceptive length values and the perceived length values
as well as the standard deviation across all movements. It is noticed that the proprioceptive length
approaches the sensory length as more movements are generated as more proprioceptions are created.
In addition, the standard deviation decreases.

Results shows that the perception approaches the correct senses as time increases due to

the increase in the repetitions of movements and gaining more data. Accordingly, the

pressure error decreases with time as well as the length errors. Figure 10.9 shows the HMM

performance results for consecutive movements in one simulation. It depicts the results for
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a subset of tasks de�ned from the 4th movement until the 10th. The HMM prediction of the

suitable command sequence is enhanced as more movements are made. Hence, the HMM

predicted command sequence will produce predicted proprioceptive length that is closer to

the actual proprioceptive length as more movements are generated with time.

Figure 10.10 demonstrates the performance of the HMM according to di�erent levels of

perceptions de�ned by the clustering algorithm. The mean squared errors are also decreasing

as more movements are made. The di�erence between Figure 10.9 and Figure 10.10 is that

according to the perception, the fetus seems to reach the correct position while in fact it did

not according to the proprioceptive length. This may result that it will not feel the correct

pressures although his mind �thinks� that it is at the right length. The mean squared error

between the actual proprioceptive length and the predicted perceived length is shown in

Figure 10.11, in which it can be seen that the predicted perceived length will approach the

actual proprioceptive length with time, as more movements are made.

Figure 10.12 depicts the mean squared error for the sensed pressures, which also improves

with time.

Figure 10.9 � Mean Squared Error between the Actual and the Predicted proprioceptive lengths. It
shows the performance of the HMM in predicting the state sequence that gets the actual proprioceptive
length for di�erent tasks. The prediction improves as more movements are made because more
sequences becomes available for training the HMM.

Figure 10.10 � Mean Squared Error between the Actual and the Predicted Perceived Lengths for a
group of Tasks de�ned in one simulation.
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Figure 10.11 � Mean Squared Error between the Actual Sensory Length and the Predicted Perceived
Length for a group of Tasks de�ned in one simulation.

Figure 10.12 � Mean Squared Error between the Actual and Predicted Pressures of a group of
Tasks de�ned in one simulation.
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CHAPTER 11

CONCLUSION AND PERSPECTIVES

In this work, we are trying to answer questions such as, how does the human gain his ability

to make goal-directed movements and navigate his environment easily?, how can he identify

di�erent objects in his environment? and what is a goal for a human in the �rst place?

From Biology and literature review, we know that the origin of the human sensorimotor

system goes back to the fetus stage. The fetus is able to interact with his environment, which

is the womb and its body. Accordingly, we build a theoretical model of how his cognition can

improve during this stage and how he becomes able to make goal-directed movements such

has grabbing his umbilical cord or sucking his thumb. We have used biological hypothese

that the fetus passes through two di�erent stages; these are an exploration phase and an

exploitation phase. In the exploration phase, it starts making random movements and save

in his memory the corresponding sensoy feedbacks. These form his data that are further

processed into perceptions and then cognition. In the exploitation phase, it uses what is

learned to make movements. We have used simplifying hypotheses to elaborate the idea

and to build a simple tractable model. We abstracted the details of a movement into signals

that are sent from the brain to the motor neurons. Similarly, the sensory feedbacks are

represented by signals. We focus on the vertical movement upwards of the elbow using one

muscle.

We have proved that this set of biological knowledge and our hypotheses are consistent,

as the model exhibits sensible behavior, and are su�ciently complete as no additional hy-

potheses are required for the fetus to learn reaching di�erent objects; which represent its

goals.
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Our model integrates the sensorimotor system and the cognitive map to make goal-directed

movements. The sensorimotor system is the source of the data to be further processed into

higher-level proprioceptions and perceptions using the proposed �Frequency-based-means

clustering algorithm�. These, in turn, form cognitive map positions. In addition, a move-

ment learning unit is used to learn the relation between the proprioceptions and motor

commands, and and inverse model is used to generate the suitable commands to obtain tar-

get proprioceptions. We have used Hidden Markov Model (HMM) to model the movement

learning and the inverse model.

11.1 Summary of results

We have proposed a modular structured system in which each module is responsible for

a speci�c operation. We have eliminated confusion of biological terminologies found in

literature such as the proprioceptions. In addition, the cognitive map terminology is given

a broader sense than how it is expressed in the literature. Rather than focusing on its

representation, we focused on its content which is made of positions and what they represent

with respect to the sensorimotor system. A de�nition is given to the notion of �position�

in terms of proprioceptions and perceptions obtained from the sensorimotor system. The

cognitive processes are explained in details with a module responsible for each process. The

role of proprioception in de�ning positions in the cognitive map is demonstrated. We have

provided an explanation of how a goal-directed movement can be planned and accomplished

using the information given by the cognitive map and the proprioceptions. In addition. we

have shown the importance of an inverse internal model that issues command sequences

according to its target.

11.2 Perspectives

We have built a modular model in which each module is responsible for a function. Results

show that this model is valid based on the simulated data. This makes the proposed model

a candidate hypothesis for the biologists who should further investigate it on real data as

well as perform mapping of each module to the di�erent brain areas. This will help them

explain the cause of di�erent impairments or shortage in many human biological functions.

Understanding something in biology is usually a primary step for future progresses in many

�elds. Our problem can be useful for the medical �eld, it can provide us solutions to

alleviate some syndromes and can explain the di�erences found between people regarding

their muscular and mental abilities. The separation between proprioceptions, perceptions

and cognition is useful in medical applications. Our model o�ers a �main structure� that

should be more detailed once biological knowledge grows and it can be customized to other

problems. For instance, in case a patient su�ers from problems in proprioceptions, we

can identify damaged areas in the brain. Similarly, people who can not remember their

ways or those who can recognize them once they pass through, it will be there cognitive

abilities to build their cognitive maps that can explain this, and any shortage can be found
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in the region of the brain responsible for this task (the hippocumpus). It can help predict

autism in early stages and �nd solutions for it. In computer sciences, it gives new ideas

to develop more intelligent and accurate systems that can be used in various applications.

As an example. it can be used in the �eld of robotics for making enhanced humanoids

whose perceptions and cognition abilities develop naturally. The proposed frequency-based

means clustering algorithm can be used in applications that has online data, for example,

it can be used in detecting areas that incorporate similar climate phenomena changes and

decide whether these phenomena will be related to these areas or not. Additionally, it

can be used in recommendation systems by identifying the new interests of users, which

provide opportunities of making better, more-oriented, recommendations. This algorithm

can only work on data that is characterized by having repetitions. As a future work, it

will be extended to eliminate this limitation to be valid for use for a greater number of

applications.

Despite that our model is based on one muscle but can be generalized to work with a group

of muscles. As a future work, we should investigate how multiple muscles can cooperate

together to reach positions in the cognitive map. This can be accomplished by choosing the

appropriate length for each muscle of the limb. In addition, the model can be generalized

to work on new born and infants which will require the inclusion of vision. Optimizations

will be done to choose which tasks must be done to reach more complex positions. An

analogy between the proposed simple cognitive map and higher-level cognitive maps can

be useful in order to explain the fact that some people have better cognitive maps than

others. For instance, positions can represent landmarks in real life and tasks can be going

from one landmark to another. The choice of the sequence of tasks to go from a source to

a destination is essential in that case. Reasons of failing to reach the destination can refer

to a problem in the association map or proprioceptions.
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