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Abstract
In this work, we introduce different weak formulations based on time continuous

Galerkin methods for several types of problems, governed by partial differential
equations in space and time. Our approach is based on a simultaneous and
arbitrary discretization of the space and time. The Isogeometric Analysis (IGA)
is employed instead of the classical Finite Element Method (FEM) in order to
take advantage of the continuity properties of B-splines and NURBS functions.
A detailed state of the art is narrated first to introduce the concept of both of
these methods and to show the work already done in literature regarding the
space-time methods on a first basis, and the IGA on a second basis. Then, the
methods are applied to different types of mechanical problems. These problems
are mainly engineering problems such as elastodynamics, thermomechanics, and
history dependant behaviors (viscoelasticity). We compare different types of
variational formulations and different discretizations. We show that in the case
of problems having discontinuous solutions such as impact problems, the use
of both a formulation with derived in time test functions and additional least
square terms makes it possible to avoid the spurious numerical oscillations often
observed for these type of problems. Furthermore, we introduce a new stabilization
technique that can be used easily for non-linear problems. It is based on the
consistency condition of the acceleration, so we call it Galerkin with Acceleration
Consistency (GAC). The problems investigated take both linear and non-linear
forms. We solve elastodynamics, thermomechanics and viscoelatic type problems
at small and finite strains. Both compressible and incompressible materials are
considered. The convergence of the method is numerically studied and compared
with existing methods. We verify, where applicable, the conservation properties of
the formulation and compare them to the conservation properties of the classical
methods such as the FEM equipped with an HHT scheme for the time discretization.
The numerical results show that space-time methods are more energy conserving
than classical methods for the elastodynamic problems. Different convergence tests
are leaded and optimal convergence rates are obtained, showing the efficiency of
the method. We show furthermore that heterogeneous and asynchroneous schemes
can be built in a very simple manner, opening up many possibilities while dealing
with space-time methods. Finally, the performances observed on different problems
and the versatility of the approach suggest that ST IGA methods have a strong
potential for advanced simulations in engineering.

Keywords: Space-time methods, isogeometric analysis, coupled multiphysics,
viscoelastic wave equation, thermomechanics, continuous Galerkin method, optimal
rates of convergence
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Résumé
Dans ce travail, nous introduisons différentes formulations faibles basées sur

des méthodes de Galerkin continues en temps pour plusieurs types de problèmes,
pilotés par des équations aux dérivées partielles dans l’espace et le temps. Notre
approche repose sur une discrétisation simultanée et arbitraire de l’espace et du
temps. L’analyse isogéométrique (IGA) est utilisée comme outil de discrétisation à
la place de la méthode classique des éléments finis (FEM) afin de bénéficier des
propriétés de continuité des fonctions B-splines et NURBS. Un état de l’art détaillé
est présenté pour introduire le concept de ces deux méthodes et pour montrer
les travaux déjà réalisés dans la littérature concernant les méthodes espace-temps
d’une part, et l’IGA d’une autre part. Les méthodes seront combinées et appliquées
à différents types de problèmes mécaniques. Ces problèmes sont principalement
des problèmes d’ingénierie tels que l’élastodynamique, la thermomécanique et les
problèmes viscoélastiques. On compare différents types de formulations variation-
nelles et différentes configurations de discrétisation. On montre que dans le cas de
problèmes ayant des solutions discontinues en temps comme les problèmes d’impact,
l’utilisation conjointe d’une formulation avec des fonctions test dérivées en temps
et des termes de stabilisation de type moindres carrés permettent de contrôler les
oscillations numériques souvent observées pour ce type de problèmes. De plus,
nous introduisons une nouvelle stratégie de stabilisation qui peut être utilisée
facilement pour des problèmes non linéaires. Celle-ci est basée sur la condition de
consistence de l’accélération, nous l’appelons donc Galerkin avec consistence sur
l’accélération. Les problèmes étudiés prennent donc à la fois des formes linéaires et
non linéaires. Nous résolvons des problèmes en petites et en grandes déformations:
que ce soit pour l’élastodynamique, la thermomécanique ou pour les problèmes de
type viscoélatique. Des matériaux compressibles et incompressibles sont considérés.
La convergence de la méthode est étudiée numériquement et comparée aux méth-
odes existantes. Nous vérifions autant que possible les propriétés de conservation
de la formulation et les comparons aux propriétés de conservation des méthodes
classiques telles que la FEM équipée d’un schéma HHT en temps. Les résultats
numériques montrent que la méthode espace-temps est plus conservative en énergie
que les méthodes classiques pour les problèmes d’élastodynamique. Différents tests
de convergence sont menés et des taux de convergence optimaux sont obtenus
à chaque fois, montrant l’efficacité de la méthode. Nous montrons en outre que
des schémas hétérogènes et asynchrones peuvent être construits d’une manière
très simple, ouvrant à de nombreuses possibilités avec les méthodes espace-temps.
Enfin, les performances observées sur différents problèmes et la polyvalence de
l’approche suggèrent que les méthodes IGA espace-temps ont un fort potentiel dans
le domaine de la simulation numérique en ingénierie.
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Introduction
Engineering problems are encountered in everyday’s life and concern the de-

sign, building, and use of engines, machines, and structures. These problems are
modelled and simulated by advanced numerical models that mostly consider space
and time as separate variables. The space discretization is done with FEM or
Finite Volume Method (FVM) in most of the commercial softwares available, and
the time discretization is done with time advancing scheme, such as the Hilber-
Hughes-Taylor (HHT) method, the explicit central difference method, implicit
Crank–Nicolson schemes, etc. While these modelling strategies are robust in most
cases, they nevertheless have limitations or drawbacks. The first drawback is
due to the fact that time advancing can be only done in a sequential manner.
Therefore, if one needs to compute the full history of a part with a time dependent
nonlinear material for a high cycle fatigue conditions, the computational power
of even an hpc system might be of no help. A second drawback appears in the
case of multiphysics problems where each physics may have a huge difference in
its characteristic times while being strongly coupled. In this case, if one adopts a
fully coupled resolution, the global time step will be constrained by the shortest
characteristic time. And if one uses a staggered scheme, divergence from the fully
coupled problem may be observed. These typical problems occur, for example, in
the case of elastomer-based structures for which we can have very complex material
models (viscoelasticity, damage, dynamic softening, etc) and strongly coupled
multiphysics (thermo-mechanical or thermo-chemo-mechanical, etc). In this work,
we propose to explore a more original method for solving different engineering
problems, including elastodynamics and thermomechanics. The originality is the
combination of the so-called space-time method, with the Isogeometric Analysis.
This combination may offer great potential in the solving of engineering problems
and may help to overcome the difficulties mentionned above caused by traditional
methods.

The space-time methods are very promising for the resolution of many types
of problems. They may be efficient in the resolution of inverse type problems,
where the solution is known at the final time and is to be computed at the ini-
tial one. These methods may also be promising for the treatment of problems
having internal variables (viscoelasticity, for example). Moreover, parallel meth-
ods not only in space but also in time are possible as well due to space-time methods.

Our aim in this work is to investigate the efficiency of the space-time methods
together with the isogeometric analysis for different kinds of problems. These
problems are mainly mechanical ones where multi-fields are used in the variational
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formulations. In this manuscript, the space-time isogeometric method was compared
to classical methods such as the finite element method equipped with a classical
time solver such as an HHT scheme. We show that this method may help gain
more stability in numerical schemes compared to explicit solvers where the CFL
condition is necessary to be fulfilled. Moreover, space-time methods are more energy
conservative than traditional schemes. It was also proven in the literature that it
allows to control numerical oscillations encountered while solving complex problems
having discontinuous solutions such as impact problems. In such problems, classical
methods fail to provide accurate solutions, often giving solutions with numerous
oscillations and therefore a larger numerical error. But classical variational formula-
tions in the context of space-time methods could not solve these types of problems
and additionnal terms should be added to the formulation to reduce the oscillations.

We investigate the choice of the test functions employed in the variational for-
mulations. Instead of using classical test functions, we use test functions that
are derived in time (Petrov-Galerkin type formulations). This choice of replacing
regular test functions with derived ones is discussed, and different examples are
provided in the discussion for problems where a comparison between using both
types of functions was made.

In the context of thermomechanical models, we investigate the choices of dis-
cretization for multi-field formulations : we employ a grid that is finer in time for
some fields, displacement and velocity, and coarser for others, the temperature.
On a second basis, we test the use of a smaller degree for the temperature field in
comparison with the displacement and velocity fields. This shows the possibility
of using heterogeneous (using multiple patches in space-time) and asynchroneous
(using multi-grids in time) schemes when space-time methods are employed. For
time dependent behaviors with internal variables as the case of viscoelasticity, we
propose new formulations for which the treatment of the internal variables is made
as regular variables that are discretised over the space-time domain. This allows to
get rid of the global/local paradigm that is mainly used in standard models. We
show that promising results can be obtained with this approach, opening lots of
new possibilities and applications.

This thesis lies within the following context : in a previous work [102], IGA was
implemented in an in-house code, femJava, that allows to straightfowardly treat
multi-field and multiphysics problems with FE. Elemental and material formulations
are independent of the approximation field and the same code can be solved
with either B-splines or NURBS approximation, or classical Lagrange polynomial
approximations. In [102], the focus was done on convergence properties of IGA and
the implementation of nonlinear thermoelastic couplings and nearly incompressible
hyperelastic behaviors with IGA. In [5], nonlinear thermochemomechanical problems
in rubbers have been investigated. These problems lead to complex numerical
formulations and the time integration scheme is clearly a limiting aspect of standard
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methods in these cases. Therefore, our ambition in this thesis is to develop new tools
that will help to overcome current limits for complex nonlinear and multiphysics
evolution problems in mechanics.

In chapter 1, a state of the art is provided for space-time methods and IGA and
basic principles for both methods are discussed. Numerous references for which
space-time methods are adapted in the resolution of engineering problems are
observed. The authors used finite elements discretization or a richer discretizaton
such as the IGA. The interest of using such methods is discussed and examples
taken from literatures are shown proving the true interest behind the use of such
methods in numerical analysis. Comparisons between these methods and classical
ones such as the Implicit Euler method or the trapezoidal rule are provided.
Only few references exist where the space-time isogeometric method is employed,
but this method could nowadays be used without any impediment due to the
efficiency of modern softwares and hardware systems. In Chapter 2, the space-time
isogeometric method was employed in the resolution of elastodynamics equation.
In Chapter 3, the method was used for the resolution of multiphysics equations,
more precisely for thermomechanics, and in Chapter 4, the method was applied for
solving viscoelastic problems. Optimal convergence rates were obtained for several
applications, including elastodynamics or thermomechanics. All the problems were
solved at small and finite strains, showing the efficiency of the method for linear
and nonlinear cases. To our knowledge, it is the first time that the space-time
method is employed for solving finite strains elastodynamics, thermomechanics and
viscoelastodynamics including compressible and nearly incompressible cases.
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1. State of the art of isogeometric
and space-time methods

This chapter is dedicated to the description of the state of art of space-time
methods and the isogeometric method. In the literature, one can see that the space-
time method or the isogeometric analysis can be applied for the resolution of a wide
range of problems such as elastodynamics problems, heat propagation problems,
contact problems, shell and plate problems, structural dynamics problems, etc. The
results taken from literature show the differences between IGA and the FEM on one
hand, ST methods and semi-discrete ones on the other hand. These comparisons
emphasis the interest of the ST IGA method. Moreover, we cite examples where
stability and convergence analysis were proposed for different kinds of space-time
formulations, whether it’s in a continuous or in a discontinuous Galerkin context,
showing that the space-time formulations possess a strong mathematical firm. We
explain as well our point of view and the reason that made us use these specific
methods in our numerical study.

1.1. Isogeometric Analysis: A global overview
Engineering and applied mathematics problems are mostly modelled by a set of

PDEs to be solved numerically. The finite element method is one of the most widely
adopted methods used for solving such problems. The main idea of this method
is to solve boundary value problems based on a variational formulation and to
approximate the domain and the solution on adequate polynomial space. This leads
to a system of simple algebraic equations. The domain of definition of the PDE
is decomposed into simple shapes called elements (triangles, squares, rectangles,
hexahedra, tetrahedral, etc). In [45], this method is detailed and applied to statics
and dynamics. While the finite element method is widely used and proved to be
efficient in lots of mathematical physics and engineering problems, it has also some
limitations. First, the solution is built with a low order of continuity, typically
C0-continuous interpolation on the boundary of the element. In some cases, higher
orders are used; these cases are the construction of thin shells, for example, or
thin plates. Second, inter-element low order continuity and low order polynomial
approximation have a negative impact on the accuracy of the shape. The IGA was
introduced in 2005 by Hughes and al. in [43] as a numerical method that offers
real perspectives in the integration of geometric and computational models. The
isogeometric method is linked to the finite element method given that both are
based on the same variational frame. The fundamental concept of the IGA is to
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1. State of the art of isogeometric and space-time methods – 1.1. Isogeometric
Analysis: A global overview

Figure 1.1. – B-spline, piecewise quadratic curve in R2. The knots are denoted by
red squares, control points by red dots (figure taken from [23])

employ the basis functions used for geometric description as a discretization tool
for analysis as well: the same basis functions (B-splines and NURBS) are used
for both describing the geometry of the computational domain and approximating
the solution. This method has shown very good numerical qualities even with
coarse meshes (numerical accuracy, capacity in supporting large deformations. . . ).
It allows, on one hand, to exactly represent complex geometries, and on the other
hand, to enrich the approximation basis compared to classical Lagrange polynomials
(higher order of continuity between elements) which is highly important due to
the fact that complex geometries can be made and represented in CAD design
tools. Spline functions are widely used in computer graphics to manage surfaces
and geometries. Via these functions and the control points, complex shapes and
surfaces can be approximated through curve fitting. Splines are popular and simple
to build (see Figure 1.1 for an example of a B-spline curve). In numerical analysis,
B-spline interpolation is considered better than polynomial interpolation because it
can keep the interpolation error small without the need of high degree polynomials,
avoiding in this way the Runge’s phenomenon, that states that oscillation problems
can be occurred at the edges of an interval when using polynomial interpolation
with polynomials of high degree.

1.1.1. B-splines or NURBS for IGA
B-Spline functions are defined from a knot vector which is a set of points, a

sequence of ordered numbers, defined in a parametric space (the parametric space
has the same dimension as the physical space). A knot vector is written by
E = {ξ1, ξ2, ..., ξn+p+1}, where:

• ξi ∈ R is the ithelement of the sequence
• i is the knot index, i = 1, 2, ..., n+ p+ 1
• p is the polynomial order
• n is the number of basis functions used to construct the B-spline curve

(1.1)
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The interval [ξi, ξi+1] is called the ith knot span. One knot may appear more than
once in a knot vector. The number of times this knot is present in the knot vector
is called the order of multiplicity of the knot. A uniform knot vector is where all
the knots are equidistant, e.g. E = {0, 1, 2, 3, 4, 5}. An open knot vector is where
the first and last knots are repeated p+ 1 times. In this case, the corresponding
basis functions are interpolating at the boundaries, but not in the middle of the
parameter space. In the middle, this phenomenon can be occurred only if the order
of multiplicity of the knot in question is equal to the degree of the polynomial,
unlike in finite element analysis where the basis is interpolating at each node. For
a specified knot vector, the relation between the number of knots m, the degree of
basis function p and the number of basis functions n is:

m = n+ p+ 1 (1.2)
This equality states that once the knot vector and the degree of the functions are

chosen, the number of basis functions is automatically defined. In one dimension,
if E = {ξ1, ξ2, ..., ξn+p+1}, is a knot vector (where p is the polynomial order and n
is the number of basis functions), B-Splines functions are recursively defined by
the Cox–de-Boor formula:

For p = 0

Ni,0(ξ) =
1 if ξi ≤ ξ < ξi+1

0 otherwise
For p > 0

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ)

(1.3)

Let’s consider a trial example based on a simple uniform knot vector that contains
6 knots (m = 6), E = {0, 1, 2, 3, 4, 5}. For degree p = 0, the number of basis
functions is n = 5. For degree p = 1, the number of basis functions is n = 4. For
degree p = 2, there are 3 quadratic basis functions, n = 3. These basis functions
are plotted in Figure 1.2.
Basis functions of order p have p − mi continuous derivatives across knot ξi,

where mi is the multiplicity of the value of ξi in the knot vector. When the
multiplicity of a knot value is exactly p, the basis is interpolating at that knot.
When the multiplicity is p + 1, the result is “C−1”-continuity, that is, the basis
is fully discontinuous, naturally terminating the domain. Consider the open knot
vector given by E = {0, 0, 0, 1, 1, 3, 3, 3}, the quadratic basis functions (p = 2) are
drawn in Figure 1.3. The knot vector has 8 knots (m = 8). Hence, the number of
basis functions is n = 5. The first and last knots have both a multiplicity order of
p + 1, the knot vector is open. The knot value ξ = 1 is repeated twice, thus the
basis functions are C0 across knot ξ = 1.
NURBS (Non-Uniform Rational B-Splines) is a type of mathematical model
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Figure 1.2. – B-Spline basis functions of degrees p = 0, 1 and 2 using the knot
vector E = {0, 1, 2, 3, 4, 5}

Figure 1.3. – An example of B-spline basis functions

that helps in representing all conic sections, complex forms of curves, surfaces and
solids, such as circles, cylinders, spheres, ellipsoids, contrarily to B-splines. They
are commonly used in industrial CAD software. From B-Spline functions, NURBS
functions can be defined such that:

Rp
i (ξ) = N(i,p)(ξ)ωi

W (ξ) = N(i,p)(ξ)ωi
Σn
j=1Nj,p(ξ)ωj

(1.4)

where ωi denotes the weight of the ith B-Spline function. This rational basis
degenerates the B-spline basis functions when ωi = 1 for every control point
because B-Spline functions have the partition of unity property. For the description
of the geometry, a tensorial construction of the approximation basis is used. For a
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Figure 1.4. – Projection from a B-spline based spatial curve to a NURBS based
perfect circle

1D problem in space, one has:

uh(ξ, η) =
n∑
i

m∑
j

Rp,q
i,j (ξ, η)Bi,j (1.5)

where Bi,j are called control points (similar to nodes dofs for finite elements) and
Rp,q
i,j corresponds to a 2D NURBS basis of orders p in direction ξ and q in direction

η such that:
Rp,q
i,j (ξ, η) = Ni,p(ξ)Mj,qωi,j∑n

k=1
∑m
l=1Nk,l(ξ)Ml,q(η)ωk,l

(1.6)

Approximation basis for 2D and 3D cases can be derived in the same manner. As
an example, consider the construction of a plane circle based on NURBS functions.
The plane circle is in R2, hence we need a spatial curve based on B-spline in R3

(see Figure 1.4). The spatial B-spline is represented by the black curve in Figure
1.4 with its control points indicated by the blue points. A radial projection on
the plane z = 1 leads to define the red circle, and the projected control points are
denoted by green points. The circle is exactly constructed based on NURBS.
As mentionned before, the IGA uses the same basis functions to approximate

the geometry and to calculate the solution. Figure 1.5 illustrates this difference
between IGA and FEM, which is the fact that in the IGA, the CAD functions are
used as basis functions for the variational framework approximation, whereas in the
case of the finite element method, the domain generated from CAD is discretized,
and then the solution is calculated on this discretized domain.

A comparison between FEM and IGA concerning the inter-element continuity is
shown in Figure 1.6: B-spline basis functions (left) and Lagrange basis functions
(right) are plotted, both of degree p = 2 and consisting of 3 unidimensional elements
[0, 1], [1, 2] and [2, 3]. The inter-element continuity of the B-spline functions is higher,
and it can be controlled by simply repeating the knots in the parametric space.
Due to the fact that basis functions of order p have p−mi continuous derivatives
across knot ξi, when the multiplicity of each knot value is exactly p = 2, the two
sets of basis functions become similar. The ability of controlling the inter-element
continuity of the basis functions is a major advantage of the IGA compared to
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Figure 1.5. – Difference in conception between IGA and FEM

Figure 1.6. – B-Spline basis functions vs. Lagrange basis functions for degree p = 2
and based on 3 elements

the FEM and may have an influence on the convergence for some formulations.
Not only it makes the IGA capable of representing complex geometries and shapes
that cannot be represented using Lagrange polynomials, but also gives better
convergence results.

1.1.2. Mesh refinement strategies
The IGA allows refinement strategies available for B-spline basis. These strategies

may look similar at first to those of the finite element method but they are in fact
much richer: we have control over the element size and the order and continuity
of the basis. The refinement strategies that can be used are the knot insertion,
the order elevation and the k-refinement. The insertion of knots can take place
without bringing any changes on the geometric curve itself. So, if we consider
the knot vector E = {ξ1, ξ2, ..., ξn+p+1}, we add m knots into it and we have a
new knot vector Ē = {ξ̄1 = ξ1, ξ̄2, ..., ¯ξn+m+p+1 = ξn+p+1}, such that E ⊂ Ē. This
knot insertion will lead to a larger number of basis functions, due to the relation
m = n + p + 1 explained before. Knot values already present in the knot vector
may be repeated in this way, thereby increasing their multiplicity, but as described
before, the continuity of the basis will be reduced. An example of knot insertion
for a simple, one-element, quadratic B-spline curve is presented on the upper left
of Figure 1.7. The knot vector of the original curve is E = {0, 0, 0, 1, 1, 1}. A
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new knot ξ̄ is inserted such that ξ̄ = 0.5. There is one more control point, one
more element, and one more basis function compared to the unrefined case. The
h-refinement strategy in finite element analysis is similar to the knot insertion; they
both consist of splitting new elements into new ones. The continuity of the basis
functions in the finite element method being C0 across boundaries against Cp−1

in the IGA, inserting p times the new knot allows to replicate h-refinement. The
difference between the two mechanisms is the fact that the inter-element continuity
in the FE analysis cannot be controlled by knot insertion as it is the case in IGA,
the continuity across boundaries being always C0.

Figure 1.7. – Different refinement mechanisms

Order elevation, or degree elevation, is the second mechanism that allows to
enrich the B-spline basis. Obviously, it is based on raising the value of the degree of
the basis functions used to represent the geometry. As we’ve seen in Section 1.1.1,
the basis has p−mi continuous derivatives across element boundaries. To change
the value of p, we will also have to change that of mi by increasing the order of
multiplicity of each knot value by 1, in order to keep the number of continuous
derivatives of the basis functions the same. An example of order elevation for
a one-element curve is depicted on the upper right of Figure 1.7. The order of
multiplicity of the knots is increased by one but, as stated above, no new knot
values are added. For this simple case, the number of control points and the
number of basis functions each increase by one. There are now four cubic basis
functions. Order elevation clearly resembles to the classical p-refinement strategy
in finite element analysis, since both mechanisms rely on the augmentation of the
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polynomial order of the basis to refine it. When both the knot insertion and degree
elevation are employed to perform refinement on a B-spline geometry, the order
of combination changes the resulting description since these two processes do not
commute. Consider a pth degree spline curve as the geometry that we would like to
refine. Applying the knot insertion first then degree elevation will result in a curve
whose basis functions are Cp−1 at knot ξ, see the lower part on the left of Figure
1.7 for an example. Degree elevation first then knot insertion give a curve in which
the basis functions have Cq−1 continuity order at knot ξ, see the lower part on the
right of Figure 1.7 for an example. Since q > p, the second scheme leads to basis
functions with higher order continuity. This scheme is referred as k-refinement and
has no analogous in finite element analysis.

1.1.3. Beyond B-splines/NURBS
Despite all, B-splines and NURBS may cause some difficulties in numerical

simulations. In order to topologically model complex geometries, one has to deal
with multi-patch. A knot insertion refinement on B-splines/NURBS requires the
insertion of an entire row of control points because of the B-splines/NURBS tensor
product structure, so mesh refinement has global effects. Adaptive and local
refinement on single patch of B-splines/NURBS is not possible. Alternative spline
forms are developed in order to overcome these difficulties, that are Hierarchical
B-splines, T-splines, Subdivision Surface and Spline forest. Hierarchical B-splines
introduced in [31, 32] allow to localize the effect of refinement through the use of
overlays. These overlays are hierarchically controlled subdivisions. Hierarchical
B-splines rely on two things: the principle of B-spline subdivision, which allows to
maintain linear independence throughout the refinement process, and on a local
tensor product structure. However, just like B-splines/NURBS, hierarchical B-
splines suffer from topological limitations due to their hierarchically tensor-product
structure. T-spline basis functions were initially introduced in [11]. They possess
a local refinement property that allows to obtain an acurate numerical solution
with less control points compared to B-splines/NURBS basis functions, thus less
degrees of freedom. Hence, a row of T-spline control points is allowed to to be
added and yet not include the entire surface. This property can drastically reduce
the numerical cost. Subdivision schemes [19], Splines forest [86], polynomial splines
over T-meshes [24] and LR B-splines [26, 80] are also powerful computational
geometry techniques in surface modeling. They allow geometry refinement with a
well-chosen approximation scheme.

IGA has been widely applied in different fields of computational mechanics. For
example in [23], various examples of applications of this method in different fields
are given such as structural mechanics, solid mechanics, fluid-structure interaction
problems and contact problems, fluid flows, wave propagation problems...

The Isogeometric Analysis has been applied for solving shell and plate problems
[61, 60, 13, 12, 14]. The IGA was also used for solving problems with incompressible
or nearly incompressible materials, which is of high importance in many engineering
applications to consider for example rubber, elastomers and elasto-plastic materials.
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Elguedj & al. were the first to apply the IGA to nearly-incompressible elasticity
problems in [28] and in [29] on problems of large strain plasticity. In [94], Taylor
used a three-field mixed formulation in an isogeometric context to solve problems in
finite deformation solid mechanics in which compressible and nearly incompressible
behaviors may be encountered. Later, Galerkin Least Squares terms were added to
the formulation to stabilize it in [20] and [57]. In [58], Kadapa & al. used the IGA
to propose a two-field mixed variational formulation at small and large strains to
solve solid mechanics problems in order to deal with the issues of incompressibility.
The authors employed the subdivision property of NURBS to develop an inf–sup
stable displacement–pressure combination. Numerical examples involving nearly
incompressible and incompressible elastic and elasto-plastic materials at both
small and large strains regimes confirmed the accuracy of the formulation and
the inf-sup stability. The IGA was also used in fluid mechanics for solving Stokes
and incompressible Navier-Stokes problems [10, 79, 18] and contact problems [95,
56, 96, 25]. The fact that the NURBS basis functions allow higher inter-elements
continuity enables to have better convergence results for contact problems compared
to Lagrange polynomials that are only C0 inter-element continuous. More smooth
contacts surfaces are obtained, leading to more physically accurate stress. The IGA
was also used for solving structural vibration problems [10, 44, 100], optimization
problems [99, 84, 70] and others problems. Today, the isogeometric analysis is
being widely used for solving many types of problems as it allows to attain high
order space interpolation in an easy and straightforward manner. It is therefore
employed in various fields.

1.2. Space-time methods
1.2.1. Historical point of view
In the resolution of partial differential equations, the finite element method is

widely applied in the discretization of space: the system of partial differential
equations is then transformed into a system of ordinary differential equations in
time. Then, the resulting initial value problem is solved with a time stepping
method such as the finite differences for the time resolution, a so-called semi-
discrete method (see [38] for an example of a time-stepping method), leading to
a sequential calculation in time. This is called the vertical method of lines. The
Rothe Method discretizes in reverse order: it first discretizes in time and then
solves the PDE. Space-time discretization consists of considering time dependence
as spatial dependence. Time is considered to be an extra dimension and so the time
variable t is treated in the same way as the spatial coordinates, and a space-time
variational principle is used.

The very first publications on space-time methods began to show in the late
60s for solving elastodynamics problems: Argyris and Scharpf [7] and Oden [81]
were the first to develop the so-called space-time method. In [7], the authors
proposed a standard finite element formulation for space for solving an elastody-
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namics problem. The corresponding discrete time-dependent problem was handled
using a second finite element interpolation over a time interval. They used a
Hamiltonian formulation considering both velocities and displacements; in fact,
for elastodynamics problems, using the Hamiltonian principle constitutes a com-
mon approach and has been used by many authors both for displacement and
displacement-velocity formulations. Clearly, the drawback of using a two-field
formulation (e.g. a displacement-velocity formulation) is the increase of the number
of unknowns in the resulting system. On another side, such formulation allows
the authors to impose straightforwardly velocity boundary and initial conditions.
It also gives the possibility of considering different approximation functions for
the displacement and the velocity and reduce the order of the PDE. Argyris and
Scharpf then showed that the elastodynamics problem leads to the resolution of
sequential linear problems. This approach implies a separation of time and space
(always structured mesh). In [81], Oden proposed an alternative approach for
solving the elastodynamics problem for which space and time are considered as
an augmented dimensional finite element problem. He proposed the concept of
meshing the space-time domain with finite elements in a more general manner. In
this approach, polynomial approximations should be the same for space and time
as the finite element can be positioned arbitrary in the space-time mesh. This type
of methods didn’t gain immediate popularity because employing it means having
one extra dimension in the problem to be solved, and, at the same time, robust
and efficient implicit algorithms, such as the HHT [38], were developed during the
70’s that could be applied to engineering problems with an acceptable numerical
cost for the ressources that were available back then. But since, the technology
of computers has far developed, not only in number of cores but also in speed,
and from our point of view, the space-time method might today be an interesting
alternative for solving complex problems.

1.2.2. Space-time finite element methods
Authors have proposed different numerical applications since the space-time

method was proposed, mainly in elastodynamics. Consider the space-time cylinder
Q = Ω × [0, T ], where Ω ⊂ Rd is a closed domain and d is the number of space
dimensions, T is the final time. The boundary of Ω is denoted by Γ. Let Γu and Γσ
denote the non-overlapping subregions of Γ such that : Γ = Γu ∪ Γσ, Γu ∩ Γσ = φ.
The equation of elastodynamics is given by:

ρü− divxσ = f ∀(x, t) ∈ Q (1.7)

where ρ(x) is the material density, u(x, t) is the displacement field, σ(x, t) is the
stress tensor and f(x, t) is the applied body load.

Literature shows that the space-time formulation can be used both in continuous
and discontinuous finite element methods, and the difference relies on whether
continuous or discontinuous basis functions are used inside a space-time slab.
One can find formulations based on a single field (the displacement). Another
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approach is to transform the original problem into a system of first-order equations,
rendering a two field formulation, displacement and velocity. One of the pioneering
works on time-discontinuous Galerkin methods is that of Hughes and Hulbert [46]
and Hulbert and Hughes [48], in which the authors developed an unconditionally
stable formulation for elastodynamics using space-time unstructured meshes while
allowing discontinuities in the principal unknowns at finite time intervals. In
[46], the method employed was based on the natural framework of second-order
hyperbolic equations, while in [48], a single-field formulation was employed. This
means that the displacement field is chosen as the single unknown in the problem.
Figure 1.9 shows a comparison between a 2D space-time discretization arising from
the semi-discrete approach and a 2D space-time finite element mesh, accomodating
unstructured meshes in the space-time domain for a two-material elastic 1D bar
problem in dynamics (see Figure 1.8), where non-uniform traction is applied near
the material interface at the initial time. A relatively sharp stress distribution
propagates throughout the bar, and the interest of this problem is tracking it. The
unstructured mesh shown in Figure 1.9 and accomodated from the space-time finite
element method may be considered to arise from an adaptive mesh refinement
strategy: fine mesh can be employed in regions near the stress wave fronts and a
coarser mesh is used where the solution is smooth, and in this way, a uniformly-
refined and computationally expensive mesh is not necessarily needed to obtain an
accurate solution.

Figure 1.8. – Bimaterial elastic bar problem. (figure taken from [48])

In [48], the authors were interested in solving the impact problem of a 1D elastic
bar shown in Figure 1.10.
Linear stabilizing dissipative Galerkin Least Squares (GLS) type terms and

non-linear discontinuity capturing operators are added to the formulation in order
to reduce the oscillations in the computed response and achieve stability. In
elastodynamics, these terms follow the form:

∑
e

∫
Qe

(ρüh − divxσ − fh)ρ−1τ(ρδüh − divx(C : ε(δuh))dQ (1.8)

where τ is a stabilization parameter and C is the 4th order elasticity tensor. Being
evaluated elementwise, these additional terms do not affect the continuity of the
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Figure 1.9. – Comparison between semidiscrete space-time structured mesh (left)
and space-time finite element non-structured mesh (right) (figure
taken from [48])

Figure 1.10. – One-dimensional elastic bar impact problem: exact solution (figure
taken from [48])

original variational formulation. Moreover, they are based on residual forms, hence
the exact solution satisfies the formulation, meaning that the consistency condition
is satisfied. The authors showed that the computed response using discrete methods
such as trapezoidal or HHT methods exhibits oscillations in the solution (see Figure
1.11 for an example of the solution obtained using the HHT method). As a matter
of fact, the authors explained that the semi-discrete approach has a disadvantage
which is the difficulty in offering algorithms that accurately capture discontinuities
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or sharp gradients in the solution.

Figure 1.11. – Stress distribution in the bar calculated using the HHT algorithm
(figure taken from [48])

For this reason, they adopted the time-discontinuous Galerkin method and added
the dissipative terms (least-squares type terms) to the formulation, further reducing
by that the oscillations in the solution, see Figure 1.12. They proved stability and
convergence of the method, showing the firm mathematical foundation that this
method possesses.

In [47], Hulbert & al. give further results of a dispersion and dissipation analysis.
The authors proved that their method possesses high accuracy properties.

French, in [34], used the discontinuous Galerkin space-time FE methods for

Figure 1.12. – Stress distribution in the bar calculated using Galerkin/least-squares
algorithm (figure taken from [48])
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solving the wave equation using a single-field formulation with test functions
derived with respect to time. His formulation is very similar to the one developed
in [48] but no least-square terms were added. He gave stability and convergence
theorems, where no restriction on the time slab thickness should be taken, in
contrast to the case in [48] where the thickness of each time slab is proportional to
the size of the element domain. An error analysis for the scheme was presented. the
author showed that for the case of piecewise linear basis functions, the asymptotic
rate of convergence of the approximation to the exact solution in an H1-norm is
O(h 1

2 ), and is O(hp+1) for degree p > 1.
In [55] and [53], mesh-dependent norms were introduced and a priori error esti-

mates were derived in such norms for first-order hyperbolic systems concerning fluid
mechanics and conservation laws. In [53], the capacity of the time-discontinuous
Galerkin methods to conveniently represent discontinuities when the problem to be
treated has a discontinuous solution was shown. The time-discontinuous Galerkin
method allows higher order A-stable time stepping schemes. Optimal or nearly
optimal a priori and a posteriori error estimates were given. A generalization to
second order hyperbolic problems was done in [54]: a priori and a posteriori error
estimates were given for a finite element method for linear second order hyperbolic
equations based on a two-field (displacement and velocity) time- discontinuous
Galerkin finite element discretization using linear basis functions in time and space.
It can be proved that the a priori and a posteriori error estimates are nearly
optimal. The authors gave general structures of the proofs of both the a priori
and a posteriori error estimates. These error estimators yield upper and lower
bounds for the error. In literature, one can see that the discontinuous Galerkin
approach was used in spatial discretization as well as in temporal discretization
of partial differential equations, allowing discontinuities at the element interfaces.
Researchers used the discontinuous Galerkin method for a wide range of applica-
tions. In particular, the discontinuous Galerkin method was applied for solving
shock wave propagation problems, because of its good stability properties. The
authors in [6] used a discontinuous Galerkin formulation in space and time and
compared the solution with these obtained using the Newmark method, showing
that the space-time method is more performant for bar impact problems. The
authors also proposed a bi-material bar impact problem and a suddenly loaded
axi-symmetric circular plate to further prove the accuracy of the method used.
Huang in [42] used the time-discontinuous Galerkin method for solving shock wave
propagation problems for solid dynamics including both stationary and moving ma-
terial interfaces. He adopted the single-field formulation proposed by [48], meaning
that the displacement field is the primary unknown field, for the study of dynamic
solid–solid phase transitions, and Galerkin least square terms were added to the
formulation. He compared the solution obtained with the theoretical one in order
to prove the accuracy of the method. The authors also presented a unicity and
stability analysis of the solution, describing the conditions needed for the solution
to be unique and unconditionally stable. In [22], a modification of the formulation
of [42] was presented, making it become unconditionally stable. This means that
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no restriction on the grid topology has to be considered. A two-field space-time
discontinuous Galerkin formulation was adopted in [68, 69]. The authors applied the
time-discontinuous Galerkin method for 2D structural dynamic and elastodynamic
problems using linear interpolation functions in time for unknown displacement
and velocity. In [90], an efficient predictor-multicorrector iteration algorithm was
presented which is implicit, unconditionally stable and capable of filtering the
effects of high spurious modes. In [69], the authors extended the algorithm to the
analysis of continuum problems. Moreover, they proposed an h-adaptive procedure
using the time-discontinuous Galerkin method capable of updating the spatial mesh
and the time step size automatically. Thus, the estimated errors could be controlled
within specified tolerances. The authors concluded from the accuracy of their
numerical results (the time- discontinuous ST method is of second-order accuracy
in space in the L2-norm and third-order accuracy in time) that time-discontinuous
Galerkin finite element method is well suited for structural dynamic analysis. Abedi
& al. [2] introduced a novel space–time discontinuous Galerkin method, allowing
for displacement discontinuities across every inter-element boundary. Stability and
a-priori error estimates were given and proven, showing the effectiveness of their
space-time formulation. They showed that their formulation can accurately capture
shocks and can be used with fully unstructured non-conforming space-time grids.

Beside discontinuous formulations, authors have worked on continuous Galerkin
formulations (time-continuous Galerkin). The use of a Galerkin continuous for-
mulation is similar to the strategy adopted by Oden in [81], i.e. no separation
of space and time is made and a space-time mesh that can be either structured
or non-structured is used on the entire space-time domain. In [9], triangular
and tetrahedral ST elements based on the principle of virtual work were used for
vibration analysis. Hou & al. in [41] applied the ST method using Hamilton’s
weak principle and triangular elements were adopted for solving 1D elastodynamics
problems. They showed that there is an interest of using the p-version of finite
element in space and time by showing the accuracy of the numerical results obtained
concerning the wave propagation in a rod and in a Timoshenko beam. In [27],
Dumont & al. developped a 4D ST formulation for elastodynamics, established
a stability and convergence analysis and compared it to a Newmark integration
scheme, proving by that the effectiveness and accuracy of their space-time finite
element formulation for 4D elastodynamics. A numerical example of a problem of
mobile loading was given. Idesmann in [49] introduced a new form of weighting
functions, that is λ(t)(w + aẇ) where w is the standard test function used. The
author used this form of test functions with different values of λ’s and a’s forming
a Petrov-Galerkin variational formulation to control the numerical dissipation
in the resolution of linear elastodynamics 1D elastic bar impact problem using
structured and unstructured meshes. He compared time-continuous Galerkin with
time-discontinuous Galerkin methods using both standard test functions and his
proposed test functions, showing that the convergence of the time continuous
Galerkin is faster than the one of the time-discontinuous Galerkin using the new
form. The time continuous Galerkin method developed is unconditionally stable
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and numerial results showed that it has a higher order of accuracy by the factor
of two than the standard time continuous Galerkin method due to the additional
terms aẇ. For the same number of degrees of freedom, the accuracy of the new
implicit time continuous Galerkin method is one order higher than the accuracy
of the standard implicit time-discontinuous Galerkin method. The accuracy and
stability of the approach were analytically analyzed for structured meshes, proving
that the theoretical results that were obtained are in agreement with analytical
estimations, thereby showing the effectiveness of space–time elements on structured
and unstructured meshes.
Beyond elastodynamics, other applications were proposed such as free surface

problems [15], compressible fluid flows [52], heat transfer problems [1, 21], advection-
diffusion equations [78], contact problems [3, 4]. Time-discontinuous Galerkin
methods were used in the domain of fluid mechanics [91, 93]. The space-time
method was employed for solving the Navier-Stokes equations in compressible
and incompressible regimes. High-performance computing implementations were
developed in the context of ST formulations. The authors showed that accurate
large scale problems can be solved within this framework. In [87], additional
terms of least-square type were added to the variational formulation of a time-
dependent linear scalar advective-diffusive model problem. A Fourier stability and
accuracy analysis were proven as well. A Galerkin least-squares formulation was also
developed in [71] for the Navier-Stokes equations for moving domain problems in a
space-time FE context. An interesting feature of the ST method is its capacities to
compute the solution of problems having deforming boundaries. The STFE method
has also been adopted for solving acoustic problems [98, 97]. Podhorecki was among
the first authors who used this method for linear viscoelasticity in [83] for solving
a 1D problem. He introduced general forms for the stifness matrices concerning
different types of viscoelastic models, like Maxwell’s, Kelvin voigt’s, Burger’s and
Zener’s. In [17], the authors used the continuous Galerkin method for the treatment
of symmetric and non-symmetric formulations of two different viscoelastic three-
parameter models: the Malvern Model (generalized Maxwell Model) in 1D and
the generalized Kelvin-Voigt Model in 3D. The authors gave numerical results
that underline the advantage of this method compared to the semi-discrete one.
The numerical results also show both the effectiveness of parallel computation and
adaptive refinement in time and space. Moreover, the efficiency of the p-adaptation
was shown and yielded a higher rate of convergence than h-adaptation. In [50], a
modification of the variational formulation, the discrete system of equations and
the solver of [17] was done allowing the use of an iterative solver within parallel
computations, showing by that high parallel effectiveness of simultaneous space-time
finite element calculations. The authors used the continuous and discontinuous
Galerkin space-time for the viscoelastic Malvern model. Numerical examples were
given for both methods showing optimal convergence rates for a coupled adaptive
refinement in space and time for viscoelastic problems with smooth boundary and
initial conditions. Moreover, the effectiveness of the discontinuous Galerkin method
in the case viscoelastic problems with discontinuous boundary conditions was
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underlined. In [51], a generalization of the work done in [51] was done to the case
of the generalized viscoelastic Maxwell Model in which several Maxwell elements
are assembled in parallel. Li & al. [67] worked on space-time viscoelasticty in
2D and introduced a continuous Galerkin two-field formulation (displacement and
velocity). The authors stated that space-time continuous Galerkin finite element
method retains energy conservation properties. They proved existence, uniqueness
and stability of the ST continuous FE solution of the viscoelastic wave equation.
The authors also showed optimal convergence rates for different norms including
the L2 and H1 norms. In [76], the finite element method was employed in space
and time simultaneously to establish the space-time variational formulation of the
heat equation. The space-time finite element method was used for the numerical
solution of parabolic evolution problems in moving spatial computational domains.
The authors employed C0 continuous basis functions and used a time upwind test
function of the form vh+θh∂tvh where θ is a positive constant to derive the discrete
bilinear form, elliptic on a mesh-dependent norm that they introduced. Moore then
proved boundedness and consistency of the bilinear form and use the ellipticity,
boundedness and consistency results to derive a priori discretization error estimates
in the discrete norm. Finally, numerical results are given for moving spatial domains
with unstructured mesh and optimal convergence rates are obtained. The stability
of Petrov–Galerkin discretizations with application to parabolic evolution problems
in space-time weak form was discussed in [74]. In [8], the authors presented the
formalism of using time-derivatives of the space–time continuous test functions
for the resolution of the heat equation with the space-time continuous Galerkin
method. This means that they replaced the test function δθ by its derivative in
time, for it to become δ̇θ. They showed numerical results concerning a simple 2D
example and concluded from the results the fact that a given accuracy of solution
is obtained more rapidly by a higher-order method, and proved the fact that, for at
least this smooth example, as the order of the method increases, the time necessary
for a given accuracy of solution decreases. In [37], different problems were treated:
the thermal conduction problem, a non-linear elasticity problem and a fluid system.
The authors presented many numerical results including convergence studies that
show the accuracy of space-time methods compared to standard time-stepping
schemes, see Figure 1.13. The authors compared the efficiency of the space-time
method to the trapezoidal and the implicit Euler methods for the heat conduction
equation. The second example concerned a non-linear elasticity test applied to a
continuum body having the form of an L-shaped block. The authors compared
using a convergence analysis the space-time method to a midpoint rule and an
implicit Euler formulation. The convergence results showed the better accuracy of
space-time methods compared to traditionnal time-stepping schemes, see Figure
1.14.

The space-time method was also used for solving problems in multiphysics.
For example in [65], the authors used a space–time finite element method for
the linear thermo-elasticity problem and established an exact a posteriori error
representation formula using the standard Galerkin method in space and the
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Figure 1.13. – Convergence curves for heat conduction equation (figure taken from
[37])

Figure 1.14. – Convergence curves for non-linear elasticity equation (figure taken
from [37])

discontinuous Galerkin method in time. Moreover, in [59], a space-time finite
element method was employed to solve the thermoelasticity equation at finite
strains. Time-discontinuous Galerkin methods have also given rise to other original
methods such as the TX-FEM (Time Extended Finite Element Method) [85] or
the combination of time-discontinuous Galerkin and PGD (Proper Generalized
Decomposition) [16].

1.2.3. Space-time isogeometric methods
ST-IGA methods (continuous of discontinuous) can be an attractive alternative

to ST-FEM methods. References in literature dealing with the Galerkin space-time
method in an isogeometric framework are very recent. In [64], the space-time
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isogeometric method was adopted for solving the heat equation in fixed and moving
spatial computational domains using a continuous Galerkin formulation. They used
a time upwind test function of the form vh + θh∂tvh, where θ is a positive constant,
to derive the discrete bilinear form, elliptic on a mesh-dependent norm ‖.‖h that
they introduced. They proved boundedness and consistency of the bilinear form
and used the ellipticity, boundedness and consistency results to derive a priori
discretization error estimates in the discrete norm ‖.‖h. Numerical examples for
fixed and moving spatial computational domains were given for polynomial degrees
p = 1, 2, 3 and 4 in 3D showing optimal convergence rates obtained with respect to
the norm ‖.‖h and with respect to the L2− norm. The authors also showed results
in 4D for polynomials of degrees p = 1 and 2 for both of the norms as well. In all of
these cases, optimal convergence rates were obtained, that are O(hp) with respect
to ‖.‖h and O(hp+1) for the L2 norm. These results are for fixed domains, and the
authors showed convergence rates for the case of moving domains as well, reflecting
the interest of using space-time methods even though it means having one large
space–time system of linear algebraic equations instead of many smaller systems
like in traditional time-stepping methods. As a matter of fact, parallel computers
with many cores can allow to overcome the sequentiality of time. Langer & al. [63]
introduced a posteriori error estimates for the same initial boundary value problem.
These a posteriori error estimates were proven to be efficient and reliable, in the
sense that different forms of a posteriori error majorants were established and
proven equivalent to the energy error norm. They are also flexibile with respect to
several free parameters. Using these parameters, it is possible to obtain estimates
for different error norms and minimise the respective majorant in order to find
the best possible bound of the error. According to the authors, full space-time
approach combined with IGA technologies means having efficient fully-adaptive
and heavily parallelised schemes and is a major step for solving industrial problems.
Moreover, the error estimates that the authors made provide guaranteed, sharp,
and fully computable upper bound of the error e = ‖uexact − uh‖, where uexact is
the exact solution of the problem and uh is the approximated solution computed
with the space-time isogeometric method. These majorants provide reliable and
efficient upper bounds of the total energy error and a quantitatively sharp indicator
of local errors.

These massively parallel computers have made parallel time integration methods
a possible and easy thing over the last decade and a domain-decomposition can
be applied by modern multigrid solver. An overview of time parallel methods
is made in [35] and the methods are classified into four groups: methods based
on multiple shooting, methods based on domain decomposition and waveform
relaxation, space-time multigrid methods and direct time parallel methods. The
author explained the history and the core ideas of each technique.
In [39, 77], the authors generalized the results of [64] from the single-patch

to the multipatch Galerkin space-time IGA schemes considering the same initial
boundary value problem of the heat conduction equation. As a matter of fact, in
most industrial applications, the computational domain involves several patches.
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Hence, the IGA enables a multipatch discretizations that can involve several
domains. Hofer & al [39] established the communication of the discrete solution
across the time patch interfaces using time-discontinuous Galerkin techniques
with time-upwind fluxes. They defined appropriate discontinuous B-spline spaces
and a related discrete norm. They proved that the produced discrete bilinear
form is coercive (elliptic) with respect to this norm, which ensures uniqueness
and existence of the IGA solution. They then gave boundedness and consistency
results of the discrete bilinear form, and finally estimated the discretization error
with respect to this discrete norm. The authors showed that the sequentiality
inherited from classical time-stepping methods could be overcomed even though a
huge linear system should be solved. They proved that this could be possible by
adopting a space-time multigrid method that solves the complete system in parallel.
Numerical results verified the A-priori error estimate that was made for high order
B-Splines in case of a 2D space-time cylinder. The convergence curves exhibit
optimal convergence rates, i.e. the defined discrete norm behaves like O(hp), where
p is the B-Spline degree. The authors also showed numerical examples including
optimal convergence rates for norms in L2 and the discrete norm in case of a 4D
space-time cylinder for degree p = 1, where the IGA coincides with the FEM,
proving the accuracy of their technique for generating and solving the large system
of IGA equations on massively parallel computers. In [77], the author proposed
a discontinuous Galerkin method in both space and time and derived a stable
scheme. The author gave accurate numerical results concerning two and three
dimensional space-time domains. He showed that optimal convergence rates are
obtained for the discrete norm that was defined and for the L2-norm in the case
of a moving 2D spatial domain. The convergence rates are O(hp); p > 2 for the
defined discrete norm and O(hp+1); p > 2 for the L2-norm. In [75], the space-time
isogeometric method was applied for the parabolic problem and least square terms
were added to the variational formulation. A-priori error estimates were given and
confirmed. Moreover, the authors proposed a preconditioning strategy and showed
its performance using numerical results.

In [37], a space-time isogeometric method was used for solving the Kuramoto–
Sivashinsky equation in 3D. The authors compared the solution obtained using the
space–time approach to the one obtained using a classical time stepping scheme,
which is the midpoint time integration scheme. They used quadratic NURBS
functions in space and time showing thereby the possibility of the application of
higher-order shape functions in time as well. Recently, Takizawa and Tezduyar [92]
used a NURBS interpolation with continuous representation in time for solving
fluid equations in order to enhance the accuracy and obtain a temporally smooth,
NURBS-based solution. In [62], the authors described different aspects of space-
time methods, among them the ST IGA, concerning tire aerodynamics. They
advocated the use of higher-order basis functions in time and the benefit of using
higher-order basis functions in space. The authors also pointed out that the ST-IGA
allows to make a more accurate representation of the motion of the solid surfaces,
a more efficient temporal representation of the motion and deformation of the
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volume meshes, and more efficient remeshing. The benefits of using IGA in space
(as it was described before in the IGA section) was pointed out in this paper: the
authors explained that ST-IGA with IGA basis functions in space allows to have
more accurate representation of the geometry, especially in the cases where the
geometry to be described is not so simple, such as the one of a tire. Lastly, the
authors mentioned the fact that ST-IGA enables the use of larger time-step sizes
while keeping the Courant number at a desirable level for good accuracy.

1.3. Conclusion
In this chapter, a state of art was given for the space-time method based on

FE and IGA schemes. Space-time methods seem to guarantee less numerical
dissipation, more stability and versatility in computed responses. Comparisons
were provided between the FEM and the IGA on one side, and space-time methods
and semi-discrete methods on the other side. Stability, convergence and error
analysis concerning space-time formulations were developed in many references of
the literature. The idea of solving one huge linear system instead of smaller ones
with incremental equations may look disadvantageous, but the power of massively
parallel computers available nowadays may overcome this difficulty. In semi-discrete
methods, only one spatial problem can be solved in parallel at a certain time step.
So in the case where many time steps are necessary together with a relatively small
number of degrees of freedom for the spatial discretization, the parallel efficiency
becomes very low. Hence, for an efficient parallelization, it would be better to
be able to compute the whole problem in a distributed way. The total algebraic
equation system in space and time could be parallelized efficiently in the case of
the space-time methods. Many techniques of parallel time integration started to
emerge for over a decade ago, and therefore space-time methods could be used
without any impediment with the emergence of space-time multigrid methods that
solve the complete system in parallel. Moreover, both h- and p-adaptation can be
realized. It became quite natural to treat time as another dimension in space in the
evolutionary equations. As seen in this chapter, very few applications are found in
literature where the space-time method is combined with the IGA for the resolution
of mechanical problems. Hence we would like in the next chapter to examine
and evaluate the numerical performance of continuous ST-IGA for elastodynamics
problems, in both linear and non-linear cases, at both small and finite strains. We
also apply the ST IGA to compressible and incompressible material behaviors. We
introduce a simple and robust variational form compared to other formulations
found in literature. This form can be straightforwardly extended to non-linear
cases. We compare the numerical results obtained using our ST-IGA formulations
to continuous ST-FEM ones and semi-discrete FEM simulations with the HHT
scheme for transient dynamic problems with and without discontinuities. The work
provided by literature will serve as a reference to our work.
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2.1. Introduction
The classical method for solving elastodynamics problems is to discretize first

the space domain using the finite element method, and then the time using a
time-stepping method (trapezoidal method, HHT method...). An alternative
of this classical method can be the so-called space-time method where the full
space-time problem is solved without iteration. This method may have many
advantages compared to classical time-stepping methods. For instance, it may
help gain more stability in numerical schemes compared to explicit solvers where
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the CFL condition is necessary to be fulfilled. Moreover, space-time method may
be more energy conservative than traditional schemes. As seen in the previous
chapter, these methods may also allow to control numerical oscillations that can
be encountered while solving problems having discontinuous solutions such as
impact problems. In this chapter, we propose alternative space-time isogeometric
formulations for elastodynamics problems. We use IGA in order to take benefit
from its numerical qualities, taking advantage of higher inter-element continuity.
Least-square terms are added to the space-time formulations for problems at small
and finite strains for stabilizing purpose. In the literature, there are very few
references where the space-time isogeometric methods are used for the resolution of
the elastodynamics problem, at small or at finite strains. We focus on two points:
stabilized formulations, and the interest of using continuous Galerkin schemes in
space and time with higher order and higher continuity approximation basis. We
illustrate the numerical performance of these methods through typical impact or
vibration problems commonly encountered in the field of elastodynamics of solids.
For compressible elasticity, we adopt a two-field formulation (displacement/velocity)
with additional least square terms. We adopt a simpler form than the ones found
in the literature, that can actually be straightforwardly extended to non-linear
cases. This form can be interpreted as a penalized formulation with a consistency
condition on the acceleration field. It makes sense with high continuity order of
the NURBS-based approximations compared to piecewise Lagrange polynomials.
The proposed formulation leads to optimal rates of convergence on trial problems
and we show that the additional stabilization terms play a fundamental role
in controlling numerical oscillations that occur in problems with discontinuities,
such as impact problems. We compare the numerical results obtained using
our space-time isogeometric formulations to continuous space-time finite elements
formulations and semi-discrete FEM simulations with the HHT scheme for transient
dynamic problems with and without discontinuities. An important property of our
formulation is that space-time isogeometric formulations allow us to obtain more
conservative solutions than semi-discrete methods.

2.2. Small-strain formulation
We consider the space-time cylinder Q = Ω× [0, T ], where Ω ⊂ Rd is a closed

domain, d is the number of space dimensions and T is the final time. The boundary
of Ω is denoted by Γ. Let Γu and Γσ denote the non-overlapping subregions of Γ
such that : Γ = Γu ∪ Γσ, Γu ∩ Γσ = φ. The conservation of the linear momentum
on Q takes the following form in the small strain case:

ρü− divxσ = f ∀(x, t) ∈ Q (2.1)

where ρ(x) is the material density, u(x, t) is the displacement field, σ(x, t) is
the stress tensor and f(x, t) is the applied body load. Assuming linear isotropic
elasticity, the stress tensor can be related to the strain field, ε(x, t) = 1

2(∇xu+∇T
xu),
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by the following standard constitutive equation

σ = 2µε+ λtr(ε)1 (2.2)

where λ(x, t) and µ(x, t) are Lamé elasticity parameters and 1 is the second order
identity tensor. The problem’s boundary and initial conditions are the following:

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
u̇(x, t = 0) = v0(x) for x ∈ Ω

(2.3)

where n(x) is the normal to the boundary Γσ, g is the prescribed displacement
at the boundary Γu, T is the prescribed traction at the boundary Γσ, u0(x) and
v0(x) are respectively the initial displacement and velocity fields.

2.2.1. Two-fields variational formulations
First, we define the Sobolev spacesH l,k(Q) = {u ∈ L2(Q) : ∂αxu ∈ L2(Q) ∀ α with 0 ≤
|α| ≤ l, ∂it ∈ L2(Q), i = 0, ..., k} of functions defined in the space-time cylinder Q,
where L2(Q) denotes the space of square-integrable functions, α = (α1, ..., αd) is
a multi-index with non-negative integers α1, ..., αd, |α| = α1 + ... + αd, ∂

α
xu :=

∂|α|/∂xα1 = ∂|α1|...∂xαdd and ∂itu := ∂iu/∂ti.
In order to obtain a 2-field weak form, we first introduce the velocity field,

v(x, t) = u̇, then we transform the second order problem of eq. (2.1) to a first
order system, such that:{

ρv̇− divxσ − f = 0
ρ(v− u̇) = 0

∀(x, t) ∈ Q

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
v(x, t = 0) = v0(x) for x ∈ Ω

(2.4)

Thus, we obtain a two-field form of the problem. This form allows us to impose
velocity initial and boundary conditions as Dirichlet conditions. We would like to
show in the following how the choice of the test functions can affect the solution of
the problem to be solved. For that, we first consider the classical form where we use
test functions defined in appropriate spaces. We weight the first two equations of
the system (2.4) by these test functions and we integrate them over the space-time
cylinder Q. We then obtain:
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Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu
0 ×Hv

0∫
Q

(ρv̇− divxσ − f) δudQ+
∫
Q
ρ (v− u̇) δvdQ = 0

(2.5)

where Hu = {u ∈ (H1,1(Q))d, u = g on Γu ,u(x, t = 0) = u0(x)}, Hv = {v ∈
(H0,1(Q))d v = ġ on Γu,v(x, t = 0) = v0(x)}, Hu

0 = {u ∈ (H1,1(Q))d, u =
0 on Γu,u(t = 0) = 0}, Hv

0 = {v ∈ (H0,1(Q))d, v = 0 on Γu,v(t = 0) = 0}.
After integrating by parts the divergence operator and using traction boundary
conditions, the weak variational formulation of eq (2.5) becomes:

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu
0 ×Hv

0∫
Q
ρv̇δudQ+

∫
Q
σ : ε(δu)dQ−

∫
P

TδudP −
∫
Q

fδudQ

+
∫
Q
ρ (v− u̇) δvdQ = 0

Form 1

where P = Γσ × [0, T ] is the space-time boundary where external forces apply.
We therefore obtain a form similar to the principle of virtual work that can also
be obtained by considering the stationarity of a Hamiltonian form. Consider for
instance the following Lagrangian L:

L(u, u̇,v) = KHR(u̇,v)− P(u) (2.1)

where KHR and P are kinetic (modified according to the Hellinger-Reisner mixed
form) and potential energy defined such that:

KHR(u̇,v) =
∫

Ω
ρvu̇− 1

2ρvvdΩ

P(u) =
∫

Ω

1
2σ : εdΩ−

∫
Ω

fudΩ−
∫

Γσ
TudS

(2.2)

Using the stationnarity of the Hamiltonian, H(u, u̇,v) =
∫ T
0 L(u, u̇,v)dt, leads to:

−
∫
Q
ρ(v− u̇)δvdQ+

∫
Q
ρvδu̇dQ−

∫
Q
σ : ε(δu)dQ+

∫
P

TδudP +
∫
Q

fδudQ = 0
(2.3)

By integrating by parts the second integral and choosing δu such that δu(t = 0) = 0
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and δu(t = T ) = 0, we obtain:

−
∫
Q
ρ(v− u̇)δvdQ−

∫
Q
ρv̇δudQ−

∫
Q
σ : ε(δu)dQ+

∫
P

TδudP +
∫
Q

fδudQ = 0
(2.4)

Another alternative is to choose the first order time derivatives as weighting
functions (see [48]). Thus, we weight the two first equations of system (2.4) by the
time derivatives of the test functions and we integrate over the space-time domain
just like we did for the first case, we obtain:

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu
0 ×Hv

0∫
Q

(ρv̇− divxσ − f) ˙δudQ+
∫
Q
ρ (v− u̇) ˙δvdQ = 0

(2.5)

where Hu
0 = {u ∈ (H1,1(Q))d, u = 0 on Γu}, Hv

0 = {v ∈ (H0,1(Q))d, v = 0 on Γu}.
After integrating by parts the divergence operator and using traction boundary
conditions, we can rewrite eqs (2.5) and finally obtain Form 2:

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu
0 ×Hv

0∫
Q
ρv̇δu̇dQ+

∫
Q
σ : ε(δu̇)dQ−

∫
P

Tδu̇dP −
∫
Q

fδu̇dQ

+
∫
Q
ρ (v− u̇) δv̇dQ = 0

Form 2

Remarks
1. The choice of using the time derivatives of test functions is made here as done

previously by other authors (see for e.g. [48, 47, 34] and references therein).
The first part of Form 2 can also be obtained from the principle of virtual
power if we consider ˙δu to be a virtual velocity field.

2. Note that the variational form of Form 2 leads to a non-symmetric bilinear
form while the one of From 1 is symmetric as expected. For some specific
choices for the approximation space of u and v and for structured meshes,
classical time integration schemes such as Crank-Nicholson can be recovered
in the case of piecewise linear approximation functions. However, the use
of continuous B-Spline approximations for test functions and possibly the
use of unstructured meshes allow the construction of richer time integration
schemes.

3. One advantage of a two field formulation is that it allows to impose velocity
conditions (initial or boundaries) as Dirichlet conditions.
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2.2.2. Stabilization in presence of discontinuities using Galerkin
least squares terms

The variational formulations presented previously give accurate representation
of the solution only in the case of smooth problems, whereas these formulations
exhibit solutions with spurious oscillations for sharp problems, such as impact
problems for example, where time-discontinuities appear. A way to control these
oscillations is to add stabilization terms in the variational formulation. In the
following, we consider continuous Galerkin forms enriched with least square terms.
(uh,vh) are taken to be the continuous approximation fields of the displacement
and the velocity respectively. The space-time cylinder is discretized. We denote by
Qh its discrete form, such that Qh = ∑

eQe where Qe are elements. Note that the
formulation holds for FE and for IGA.

We first define a standard Galerkin Least Square form (GLS) in a similar manner
as done in [48, 33]. In these references, the proposed stabilized formulation is shown
to be stable. These stabilizing terms are added to Form 1, that becomes:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t))
∈ Huh

0 ×Hvh
0∫

Qh

ρv̇hδuhdQ+
∫
Qh

σ : ε(δuh)dQ−
∫
Ph

ThδuhdP −
∫
Qh

fhδuhdQ

+
∑
e

∫
Qe

(ρüh − divxσ − fh)ρ−1τ̃(ρδüh − divx(C : ε(δuh))dQ

+
∫
Qh

ρ (vh − u̇h) δvhdQ = 0

Form 1 + GLS

where τ̃ is a stabilization (numerical) parameter (unit s2) and C is the 4th order
elasticity tensor.

On a second basis, we add the same least square terms to Form 2, that becomes:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t))
∈ Huh

0 ×Hvh
0∫

Qh

ρv̇hδu̇hdQ+
∫
Qh

σ : ε(δu̇h)dQ−
∫
Ph

Thδu̇hdP −
∫
Qh

fhδu̇hdQ

+
∑
e

∫
Qe

(ρüh − divxσ − fh)ρ−1τ(ρδüh − divx(C : ε(δuh))dQ

+
∫
Qh

ρ (vh − u̇h) δv̇hdQ = 0

Form 2 + GLS

34



2. Space-Time for Elastodynamics – 2.2. Small-strain formulation

Figure 2.1. – Stress along the bar at t = 0.5 s using GLS stabilisation for derived
and non derived test functions for τ = 0.02 and same mesh size in
time and space

where τ is also a stabilization parameter as τ̃ (unit s).
We compare the two stabilized formulations on the bar impact problem. We in-

vestigate this problem on the unit spatial region Ω = [0, 1] and the temporal interval
[0, 1]. The parameters of the problem are chosen such that ρ = 1 kg.m−3, τ = 0.02 s
and τ̃ = τ∆t. We compare the results of the two formulations using for both cases
a degree p = 2 and 50 elements in space and time for the discretization. Figure
2.1 shows that the oscillations in the solution computed using Form 2 + GLS
vanish, whereas spurious oscillations are seen in the solution computed using Form
1 + GLS. This study shows that when dealing with a sharp problem such as bar
impact, test functions derived in time must be used in order to obtain a more
stable solution. For this reason, time derivative test functions will be adopted for
the following.

2.2.3. Stabilization using acceleration consistency
The GLS form can be easily implemented in the linear case but not as easily in

the non-linear case because of the term divxσ. We propose an alternative form for
which we use the strong form of the first momentum conservation, ρv̇ = divxσ + f ,
as the least square term. We obtain the following form:
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Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t))
∈ Huh

0 ×Hvh
0∫

Qh

ρv̇hδu̇hdQ+
∫
Qh

σ : ε(δu̇h)dQ−
∫
Ph

Thδu̇hdP −
∫
Qh

fhδu̇hdQ

+
∑
e

∫
Qe
ρ(üh − v̇h)τ(δüh − δv̇h)dQ+

∫
Qh

ρ (vh − u̇h) δv̇hdQ = 0

Form 2 + GAC

This form remains fully consistent even in non-linear cases. The proof of con-
sistency is straightforward and does not pose any difficulties. Its implementation
is easier than Form 1 + GLS and Form 2 + GLS. We choose to call it Galerkin
with Acceleration Consistency condition (GAC). Both stabilization strategies share
the main idea of adding a mesh- dependant perturbation term. In the following,
we describe the discretization procedure and the convergence properties of these
formulations for both IGA and FE space-time approximations from the numerical
point of view.

2.2.4. Space-time discretization
2.2.4.1. B-Spline/NURBS approximation

For the sake of simplicity, we choose to represent a 1D space-time domain, defined
by the following parametric surface:

t(ξ, η) =
n∑
i=1

n∑
j=1

Ri,p(ξ)Rj,p(η)Bt
i,j

x(ξ, η) =
n∑
i=1

n∑
j=1

Ri,p(ξ)Rj,p(η)Bx
i,j

(2.1)

where Bi,j = {Bt
i,j, B

x
i,j} are the control points. In Figure 2.2, a synthetic view of

the description of a space-time domain within the IGA for a 2D case is given.
For the 1D problem in space, the discretised kinematic and velocity fields are:

uh(ξ, η) =
n∑
i=1

n∑
j=1

Ri,p(ξ)Rj,p(η)dui,j

vh(ξ, η) =
m∑
i=1

m∑
j=1

Ri,q(ξ)Rj,q(η)dvi,j
(2.2)

where di,j = {dui,j,dvi,j} are the values that control the approximation of the fields
at control points (which are not interpolant in general). Here we illustrate the
discretization scheme using same approximations for displacements and velocities.
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Space-Time mesh

Parametric space 
discretisation (knots)

B-Splines function of order p 
(here p=2)

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

Space-Time domain

Control points

Figure 2.2. – Space-Time cylinder described with B-Spline functions

We use this approximation within this work. Discretisations for 2D and 3D space
domains can be derived in the same manner.
Remarks

1. The main concept of space-time IGA (or space-time FE) is not assuming, a
priori, any separations of space and time.

2. In this work, we only consider cases where we use the basis functions of
same order in all the parametric directions. The tensorial structure of
the approximation allows to consider higher polynomial orders in a specific
parametric direction. This can be relevant to very specific cases, e.g. when the
jacobian operator between the parametric space and the space-time domain
is diagonal.

3. We assume in the following that the displacement and the velocity fields are
described with the same approximation basis (i.e. p = q and m = n). As for
the FE method, the IGA in a multifield context allows to control the meshing
(subdiscretization technique) and the order of approximation of each field.

4. In the case of IGA, we have additional possibilities: we can control the
inter-element order of continuity of each field, which is not the case for FE.

2.2.4.2. Matrix form of space/time problems

The matrix/vector representation of the approximations of eq. (2.2) is given by:

uh(ξ, η) = Npdu

vh(ξ, η) = Npdv (2.3)

where Np is a matrix obtained from the approximation functions such that Np =
[N1, ..., Nn]; n is the number of control points, and du,dv are the vectors obtained
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from the unknown values at control points. We can define the following differential
operators (that operate on real or test fields):

u̇h(ξ, η) = Btdu

∇xuh(ξ, η) = Bxdu

ε(uh(ξ, η)) = Bsym
x du

üh(ξ, η) = Bttdu

∇xu̇h(ξ, η) = Bxtdu

ε(u̇h(ξ, η)) = Bsym
xt du

(2.4)

such that

Bx = [∂N1

∂x
, ...,

∂Nn

∂x
]

Bt = [∂N1

∂t
, ...,

∂Nn

∂t
]

Btt = [∂
2N1

∂t2
, ...,

∂2Nn

∂t2
]

Bxt = [ ∂N1

∂x∂t
, ...,

∂Nn

∂x∂t
]

Bsym
x = 1

2(Bx + BT
x )

Bsym
xt = 1

2(Bxt + BT
xt).

(2.5)

These operators require the computation of the second derivatives of the approx-
imation functions (we therefore need p ≥ 2). With the operators defined in eq.
(2.4) and using the mapping of a space-time element to the parametric space, the
previous weak formulations can be rewritten without difficulties into a matrix form.
For instance, the formulation of Form 2 + GAC can be written as (linear case):[

Kuu Kuv
Kvu Kvv

]{
d̃u

d̃v

}
=
{

f̃u
f̃v

}
(2.6)

The tilde symbol stands for degrees of freedom that are not prescribed by a Dirichlet
boundary condition (the right hand side is therefore modified in consequance during
the assembly procedure). The matrix and vector introduced in eq. (2.6) are defined

38



2. Space-Time for Elastodynamics – 2.2. Small-strain formulation

by (again for a 1D space problem for the sake of simplicity):

Kuu = Ae
∫
Qe

(
BsymT

xt DBsym
x + ρBtt

TτBtt
)
dQ

Kuv = Ae
∫
Qe

(
ρBt

TBt − ρBtt
TτBt

)
dQ

Kvu = Ae
∫
Qe

(
−ρBt

TBt − ρBt
TτBtt

)
dQ

Kvv = Ae
∫
Qe

(
ρBt

TNp + ρBt
TτBt

)
dQ

(2.7)

and:

fu = Ae
∫
Qe

Bt
TfhdQ+Ae

∫
Pe

Bt
TThdP

fv = 0
(2.8)

The assembly operator on elements is denoted by Ae and Pe are boundary
element surfaces of the space domain (i.e. x = 0 or x = L for a 1D problem).
Remarks

1. As mentionned previously, the left-hand side of the linear system is unsym-
metric.

2. Initial and kinematic/velocity boundary conditions are prescribed directly
using the values at control nodes located on the boundary (we have to pay
attention to the non interpolant behavior of B-Spline functions on boundaries
when g(x, t) and T(x, t) are not constant functions).

2.2.5. Numerical applications at small-strain
2.2.5.1. A clamped bar subjected to a body load

We consider a unit bar (1D space problem) with homogeneous boundary condi-
tions in space and time for both the displacement and the velocity, subjected to
body load f(x, t) defined such that the exact solution of system (2.4) is:

u(x, t) = sin(2πx) log
(

1 + cos2(2πt)
2

)

v(x, t) = −4π sin(4πt) sin(2πx)
3 + cos(4πt)

(2.9)

The space-time domain is a unit square. Figure 2.3 illustrates the test considered.
The material parameters are: E = 2 Pa and ρ = 1 kg.m−3.

This test allows to establish a convergence study while considering both space-
time FE and space-time IGA. For the finite elements, we use quadratic quadrangle
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t

x

(a) displacement field
t

x

(b) velocity field

Figure 2.3. – Unit space-time domain with body load and homogeneous dirichlet
boundary conditions

with 9 nodes. We compute L2 errors on the space-time domain Q, such that:

erU =
∫
Q
‖uh(x, t)− u(x, t)‖2dQ

erV =
∫
Q
‖vh(x, t)− v(x, t)‖2dQ

(2.10)

where (uh, vh) is the approximated solution and (u, v) is the exact solution given
by eq. (2.9). We first plot the results without any stabilization (τ = 0). We use a
uniform mesh refinement (in space and time) and we plot the L2 error with respect
to the element size. Figure 2.4 shows that we obtain a monotone convergence
behavior and by computing the rate of convergence for different polynomial orders
(from 2 to 4 for IGA), we obtain an optimal rate of convergence for both ST-FE and
ST-IGA. If we consider ST-FE and ST-IGA for the same polynomial order (p=2),
we can see that there are no differences between the quadratic finite elements and
the quadratic NURBS elements for this test.

Figure 2.5 shows a comparison of the results for different stabilization strategies.
It can be noticed that all formulations are convergent. The convergence rate is
affected in a similar manner with both stabilization strategies (GAC or GLS) with
ST-FE or ST-IGA. For the same value of the stabilization parameter, we obtain a
stronger influence on approximations of order 2 while approximations of order 3 do
not seem much affected by the additional stabilization terms.

This simple convergence study illustrates the interest of using higher polynomial
orders for space-time discretizations. It also confirms that GLS and GAC stabiliza-
tion strategies behave in a similar manner for both ST-FE and ST-IGA, at least
for this simple and smooth test.
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Figure 2.4. – Convergence study for the bar test without stabilization

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

 0.01  0.1

L
2 

er
ro

r

Element size

FE τ=0
IGA p=2 τ=0

FE GAC τ=0.021
IGA GAC p=2 τ=0.021

FE GGLS τ=0.021
IGA GGLS p=2 τ=0.021

IGA GAC p=3 τ=0.021
IGA p=3 τ=0

(a) L2 error on u

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

 0.01  0.1

L
2 

er
ro

r

Element size

FE τ=0
IGA p=2 τ=0

FE GAC τ=0.021
IGA GAC p=2 τ=0.021

FE GGLS τ=0.021
IGA GGLS p=2 τ=0.021

IGA GAC p=3 τ=0.021
IGA p=3 τ=0

(b) L2 error on v

Figure 2.5. – Convergence study for the bar test with stabilization (p = 2)

2.2.5.2. Impact of an elastic bar

We consider the test of the impact of a 1D elastic bar on a rigid wall. This
test has been investigated with ST-FE in [46] and it is a typical benchmark to
investigate the behavior of numerical oscillations for a wave propagation problem.
The problem is illustrated in Figure 2.6(a). A 1D bar is submitted to an initial
homogeneous velocity v0. The impact against the rigid wall is taken into account
with displacement and velocity conditions at one end of the bar (here x = 0) such
that: u(x = 0, t) = 0 and v(x = 0, t) = 0. The other side of the bar is stress free.
The material parameters are E = 1 Pa and ρ = 1 kg.m−3. The bar is of length
L = 1 m and the initial velocity is v0 = 1 m/s. The analytical stress solution is a
compressive wave that propagates with the velocity c =

√
E/ρ = 1 m/s.
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(a) Ge-
ometry
and
bound-
ary
condi-
tions

x    

t

(b) Stress field on the Space-Time domain (ST-
IGA without stabilization, τ = 0, p = 2)

Figure 2.6. – 1D bar impact problem against a rigid wall

Using ST-IGA or ST-FE without any stabilization, we obtain the typical stress
solution in the space-time domain shown at Figure 2.6(b). Spurious numerical
oscillations are obtained regardless the mesh size or the polynomial order of the
approximations. These oscillations propagate in time and the solution for a longer
period of time shows an increasingly noisy solution.

The stress along the bar at t = 0.5 s and using unstabilized formulations (i.e. for
τ = 0) exhibits spurious numerical oscillations. Figure 2.7(a) shows a comparison
of the results between ST-FE and ST-IGA using the same mesh size, and we
observe the same behavior for both methods. However, as can be seen from the
plot of the total energy (see Figure 2.7(b)), non-stabilised space-time methods are
conservative.

Numerical oscillations can be controlled by adding stabilization terms as shown
in Figures 2.8(a) and 2.8(b). First, we can notice from Figure 2.8(a) that ST-FE
and ST-IGA with GLS stabilisation for p = 2 behave in the same way. As expected,
increasing the order of NURBS while keeping other parameters constant (mesh size
and stabilization parameter) leads to a more accurate result in terms of localisation
of the compression wavefront. Second, if we compare GAC and GLS stabilizations,
we can see from Figure 2.8(b) that the GAC stabilization seems to be less dissipative
than GLS for the same order of approximation, both for ST-IGA and ST-FEM.
This point is more evident in Figure 2.8(c) where a comparison of the total energy
integrated over the bar upon time is plotted: dotted lines (GAC stablization) are
always above solid lines (GLS stabilization). It is also important to notice that as
shown on the zoom in Figure 2.8(d), small oscillations are still present for ST-FEM
but not for ST-IGA.

Another interesting aspect is to investigate the behavior of stabilization strategies
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Figure 2.7. – Results of the bar impact test without stabilisation with: ∆t =
0.0125 s and ∆x = 0.0125 m

for different values of the stabilization parameter τ . Figure 2.9 shows that as
expected, the numerical dissipation is directly related to the value of τ . A good
option with ST-IGA of order 2 seems to choose τ approximately in the same order
of magnitude of the meshsize of the time because using a larger value leads to a
strong numerical dissipation without improving the numerical solution. We can
also notice that the GLS stabilization with IGA can produce irregular behavior
on the total energy for large values of the stabilization parameter for which the
formulation dissipates too much energy.
The mesh size ratio plays an important role in space-time methods. We define

h = ∆t/∆x as the ratio of the time increment under the space discretization
parameter. Figure 2.10 shows the results obtained with ST-IGA for GLS and
GAC stabilization parameters using a constant size of the space discretization and
different time increments. We obtain a correct description of the compression wave
using GAC and GLS only until h = 4. Higher values of the mesh ratio lead to
oscillations whatever the value of the stabilization parameter is. Nevertheless, we
can obtain satisfactory results for moderate mesh size ratios without being limited
by the CFL ≤ 1 condition where CFL is the Courant-Friedrichs-Lewy number

(CFL = h here because CFL =
E

∆x
ρ

∆t
with E = ρ = 1). Whatever the mesh ratio

is, the results seem to be stable. Only the accuracy of the solution seems to be
affected.

This example illustrates the behaviour of space-time methods. But these results
are obviously not general and should be confirmed by a mathematical study that
is beyond the scope of the present work.
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Figure 2.8. – Results of the bar impact test with different stabilisation strategies
with: ∆t = 0.0125 s and ∆x = 0.0125 m

2.2.5.3. Two bars impact

This test is very similar to the previous one. We consider the case of an elastic
bar with an initial velocity v0 = 1 m/s that impacts a second elastic bar with
different material properties. Boundary conditions and the dimensions of the
bars are provided in Figure 2.11. The material properties of the first bar (in
blue) are: ρ = 1 kg.m−3, E = 1 Pa, and those of the second bar (in red) are:
ρ = 1 kg.m−3, E = 5.5 Pa. The solution just after the impact is the propagation of
two compressive waves from the interface (impact zone) with two different velocities.
After reflecting on both sides, these waves interact at the interface (with reflexion
and transmission) on one hand and with each-other on the other hand. Therefore,
we obtain after few interactions several waves that propagate with constant but
different velocities (Figure 2.11 shows this typical solution obtained with stabilized
ST-IGA with GAC).
For this test, we compare the results obtained with ST-IGA stabilized using
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Figure 2.9. – Comparison of stabilization strategies for the bar impact test with
ST-IGA of order 2, ∆t = ∆x = 0.0125
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Figure 2.10. – Results of the bar impact test with ST-IGA and ST-FE for various
values of the mesh ratio h = ∆t/∆x, with ∆x = 0.0125 m

the GAC formulation (for this example the stabilization paramater was fixed
such that τ = (∆t)1/(p−1) where p is the polynomial order of the approximation)
for different polynomial oders from 2 to 4 with a standard finite element model
on Abaqus. For this model, we used quadratic truss element with the implicit
resolution. The time integration scheme is the Hilber-Hughes-Taylor scheme (see
[38]) with the following parameters α = −0.05, β = 0.275, γ = 0.55 that correspond
to a transient fidelity integration. For all models, we used the same space-time
discretisation with ∆t = 0.033 s and ∆x = 0.033 m. Figure 2.12 shows the stress
along the bar at different times. It can be seen that the finite element models
exhibit strong oscillations where the ST-IGA solutions do not. Increasing the order
of approximation both in space and time for the ST-IGA allows to obtain better
and more conservative numerical solutions. This can be clearly in Figure 2.13,
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Figure 2.11. – Impact of 2 elastic bars. The blue bar has an initial velocity v0 =
1 m/s and it is assumed that the two bars stay perfectly tied after
impact. A typical Stress field on the Space-Time domain (ST-IGA
with GAC stabilisation) is shown.
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Figure 2.12. – Stress along the two bars for different times after impact. Space
and time increments are identical for all models: ∆t = ∆x = 0.033

ST-IGA schemes of order 3 and 4 are more conservative than the ones obtained
with the FE model on Abaqus.
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2.2.5.4. Extension of the bar test for truss structures

We show in this section that the previous formulation concerning 1D bar problems
can be extended to the case of bar in space for applications to truss structures. We
assume that each truss in a structure is described by a space-time patch. Each
patch have a local coordinate system with 2 dimensions in space, (e′x, e′y), that is
related to a global coordinate system (ex, ey) with the following rotation matrix:{

e′x
e′y

}
=
{

R1
R2

}
=
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]{
ex
ey

}
= R(θ)

{
ex
ey

}
(2.11)

where R1 and R2 correspond respectively to the first and second row of R(θ).
The axis e′x corresponds to the direction of the truss and e′y is normal to the
truss. We denote by (u′x(x, t), u′y(x, t)) and (v′x(x, t), v′y(x, t)) the displacement and
velocity of the truss in a patch. We also assume that the normal velocity is constant
and the normal displacement is only a function of time, such that:v

′
y(x, t) = cst

u′y(x, t) = y(t)
(2.12)

or equivalently: v̇
′
y = 0
∇x′u

′
y = 0

(2.13)

The uniaxial strain and stress in the truss are defined by:

ε(x, t) = ∇x′u
′
x(x, t) σ(x, t) = Eε(x, t) (2.14)
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The weak form for this problem on a patch is simply obtained from an extension
of eq. Form 2 + GAC. We first assume that the angle θ is constant (no time
dependance) and we add two least-square type terms that correspond to the
constraints defined in eq. (2.13):

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t)) ∈ Huh
0 ×Hvh

0∫
Qh

ρ(R1v̇h)(R1 ˙δuh)dQ+
∫
Qh

σ : ε̇(R1δuh)dQ−
∫
Ph

(R1Th)(R1 ˙δuh)dP

−
∫
Qh

(R1fh)(R1 ˙δuh)dQ+
∑
e

∫
Qe
ρ(R1üh −R1v̇h)τ(R1δ̈uh −R1δv̇h)dQ

+
∫
Qh

ρ (R1vh −R1u̇h) R1δv̇hdQ+
∑
e

∫
Qe
k1(R2v̇h)(R2δv̇h)dQ

+
∑
e

∫
Qe
k2(∇x′R2uh)(∇x′R2δuh)dQ = 0

(2.15)

such that u′x = R1uh and u′y = R2uh, k1, k2 are penalty parameters. For
a multipatch configuration we simply proceed as in the previous example, two
connected patches share a common interface with the same refinement and the
same controls points.
As an example, we consider the case of an assembly of two trusses that are

connected with a given angle θ0. Each truss is of unit length with the same material
such that E = 1 Pa, ρ = 1 kg.m−3. The trusses have an unit initial velocity and
impact a wall on one side (we assume that the trusses stay fixed to the wall after
impact), see Figure 2.14.

Figure 2.14. – Truss impact: Geometry and boundary conditions

Figure 2.15 shows the results obtained for two configurations: θ0 = 20o and
θ0 = 90o. The mesh size is chosen such that ∆t = 0.02 s and ∆x = 0.02 m. The
parameters of stabilisation and penalty conditions are taken to be τ = 0.02, k1 =
109, k2 = 109. It can be observed that in the situation where θ0 = 90o, the upper
truss move vertically with a constant velocity but without stress. The impact wave
is not transmitted to the upper truss in this case, contrarily to the case where
θ0 = 20o. This simple example illustrates the potential of space-time methods for

48



2. Space-Time for Elastodynamics – 2.3. Finite-strain formulations

application to wave propagation problems in structures. Furthermore it could be
extended to cases where the rotation matrix R is not constant in time to treat the
case of truss structures with pivot connection between truss. Beams, shells and
other structural elements can be developed in this framework in a straightforward
manner.

(a) deformed configuration for θ0 = 20o (isocolor
correspond to the x component of the displace-
ment field)

(b) stress field for θ0 = 20o

(c) deformed configuration for θ0 = 90o (isocolor
correspond to the x component of the displace-
ment field)

(d) stress field for θ0 = 90o

Figure 2.15. – Result of the truss impact test: x direction correspond to time, y to
x and z to y (ST-IGA with GAC stabilisation and p = 2)

2.3. Finite-strain formulations
2.3.1. Problem statement
In this section, we consider the current domain Ω(t). The initial one at t = 0,

Ω0, is taken as reference. A material point in Ω0 is denoted by X, and by x in
Ω(t). The transformation, φ(X, t), allows to relate between both configurations,
such that x = φ(X, t). We assume that φ is a bijective function, so we can always
switch from a current description to a description in the initial configuration. In
the following we adopt a Lagrangian representation of the problem. The space-time
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domain is defined such that Q = Ω0 × [0, T ]. Therefore, time and space integration
commute such that

∫
Q dQ =

∫ T
0
∫

Ω0
dQ =

∫
Ω0

∫ T
0 dQ. The conservation of the linear

momentum on Q is similar to eq. (2.1):

ρ0ü−DIVXΠ = f (2.16)

where ρ0(X) is the initial material density, Π is the first Piola-Kirchoff stress, DIVX
is the Lagrangian divergence operator and f is the body force defined by unit of
initial volume. The dot superscript stands for the so called material time derivative
(derivative with respect to time holding X constant), such that for a Lagrangian
field u̇(X, t) = (∂u(X, t)/∂t)X.

For the constitutive behavior, we restrict ourselves to the case of isotropic hyper-
elastic materials and we consider two cases: compressible and nearly-incompressible
materials. For the first case, the stress/strain relation is simply obtained from the
derivative of a specific free energy potential ψ(F), such that (Lagrangian form):

Π = ρ0
∂ψ

∂F
(2.17)

where F is the transformation gradient: F = ∇Xφ = ∇Xu + 1. For a nearly
incompressible behavior, we adopt a formalism based on a hybrid free energy as
described in [66]. This formalism is similar to a partial Legendre transformation of
the Helmoltz energy formulated with a volumetric part. It allows us to introduce
the hydrostatic pressure, p, as a thermodynamic state variable and naturally leads
to a displacement/pressure formulation of the conservation equations.
The first Piola-Kirchoff stress is therefore decomposed as:

Π = Π̄ : PF + JpF−T (2.18)

where J = det(F), PF is a 4th order tensor that corresponds to the deviatoric
operator in the Lagrangian configuration, Π̄ = ρ0∂ϕ/∂F̄ where ϕ is a hybrid free
energy potential (a detailed description of the formulation is given in [66]) and
F̄ = J−1/3F. The additional field p(X, t) stands for the hydrostatic pressure and we
have to define a supplementary constitutive equation that relates p to the volume
variation J . For the sake of simplicity, we consider the simplest form:

J − 1 = g(p) (2.19)

where g is a compressibility function.
The problem is fully defined by taking into account the same boundary and

initial conditions as defined in eqs. (2.3).
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2.3.2. Variational formulations for compressible and
nearly-incompressible problems

For the compressible problem, the variational formulation is very similar to the
one of eq. (2.5):

Find (u(x, t),v(x, t)) ∈ Hu ×Hv, such that ∀ (δu(x, t), δv(x, t)) ∈ Hu
0 ×Hv

0∫
Q

(ρ0v̇−DIVXΠ− f) δu̇dQ+
∫
Q
ρ0 (v− u̇) δv̇dQ = 0

(2.20)

By integrating by parts the divergence operator and adding a least square term,
the stabilized version of the previous equation can be written as:

Find (uh(x, t),vh(x, t)) ∈ Huh ×Hvh , such that ∀ (δuh(x, t), δvh(x, t))
∈ Huh

0 ×Hvh
0∫

Qh

ρ0v̇hδu̇hdQ+
∫
Qh

Π : ∇Xδu̇hdQ− β
∫
Ph

Thδu̇hdP − β
∫
Qh

fhδu̇hdQ

+
∑
e

∫
Qe
ρ0(üh − v̇h)τ(δüh − δv̇h)dQ+

∫
Qh

ρ0 (vh − u̇h) δv̇hdQ = 0

Form 3 + GAC

Here Th = ΠN where N is the normal to the initial contour Γ. A load parameter
β ∈ [0, 1] is introduced here to control the iterative convergence of the numerical
scheme. As for the small strain case, we recover the principle of virtual power in
the first part of the system of eqs. (2.3.2).
For the nearly-incompressible formulation, we adopt a 3-field formulation in a

similar way as it was previously proposed in [66]:

Find (uh(x, t),vh(x, t), ph(x, t)) ∈ Huh ×Hvh × L2(Q)
such that ∀ (δuh(x, t), δvh(x, t), δph(x, t)) ∈ Huh

0 ×Hvh
0 × L2(Q)

∫
Qh

ρ0v̇hδu̇hdQ+
∫
Qh

(Π̄ : PF + phJF−T) : ∇Xδu̇hdQ− β
∫
Ph

Thδu̇hdP

− β
∫
Qh

fhδu̇hdQ+
∑
e

∫
Qe
ρ0(üh − v̇h)τ(δüh − δv̇h)dQ

+
∫
Qh

ρ0 (vh − u̇h) δv̇hdQ+
∫
Qh

(J(uh)− 1− g(ph)) δphdQ = 0 (2.1)
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2.3.3. Space-time discretization
For a non-linear problem, such as the one of eq. Form 3 + GAC, we obtain a

non-linear system to be solved in the vector form:{
ru(d, β) = 0
rv(d, β) = 0

(2.2)

where (ru, rv) are defined by:

ru(d, β) = Ae
∫
Qe

(
ρ0Bt

Tv̇h + BT
xtΠ(uh) + Btt

Tρ0τ(üh − v̇h)
)
dQ− βfu

rv(d, β) = Ae
∫
Qe

(
ρ0Bt

T ((vh − u̇h) + τ(üh − v̇h))
)
dQ

(2.3)

and β ∈ [0, 1] is a load factor. The procedure used to solve this non-linear
system is very standard and completely identical to a predictive/corrective Newton-
Raphson procedure for a quasi-static problem. Starting from a known solution,
(dk, βk), at increment k, we search ∆dk for a given load increment ∆βk such that
ru(dk + ∆dk, βk + ∆βk) = rv(dk + ∆dk, βk + ∆βk) = 0. The linearisation of this
non-linear problem leads to:[

Kuu(ukh,vkh) Kuv(ukh,vkh)
Kvu(ukh,vkh) Kvv(ukh,vkh)

]{
∆duk

∆dvk

}
=
{
−ru(dk, βk)− fu∆βk
−rv(dk, βk)

}
(2.4)

We distinguish the predictive and the corrective phases. For the predictive phase,
the previous solution is convergent and therefore ru(dk, βk) = 0, rv(dk, βk) = 0
and ∆βk = l where l is a prescribed value. For the corrective phase, the loading is
frozen: ∆βk = 0 and ru(dk, βk) 6= 0, rv(dk, βk) 6= 0. We iterate with (dk+1, βk+1) =
(dk + ∆dk, βk + ∆βk) until convergence to a given tolerance. The matrix terms
Kvu,Kvv,Kuv are identical to the one defined previously in eq. (2.7), the term
Kuu is slightly different and is defined as follow:

Kuu = Ae
∫
Qe

(
BT
xtDnlBx + ρBtt

TτBtt
)
dQ (2.5)

where Dnl = ∂Π/∂F.

2.3.4. The specific case of nearly-incompressible problems
The three field formulation presented in eq. (2.3.2) is well adapted for nearly-

incompressible situations but we have to pay attention to numerical instabilities or
oscillations that occur if we don’t carefully choose the approximation spaces for the
pressure and displacement. For isogeometric analysis, different propositions can be
found in the literature. We chose here the one proposed in [58]. It consists of using
the same order of approximations for the pressure and the displacement fields but
with a grid subdivision for the pressure field (i.e. a coarser mesh for pressure than
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Geometry

Field Field Field

x
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t

Figure 2.16. – Mesh subdivision technique for the pressure field (3-field formulation
for nearly-incompressible problems)

the one used for velocity/displacement). Using the same interpolation order for
the displacement and pressure fields mostly leads to unstable formulations with
Lagrange finite elements. But due to the subdivision properties of B-Splines, this is
not the case for IGA. It was shown in [kadapa2016] that this formulation satisfies
the inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) condition for small strain
formulations. This property seems conserved for finite strain formulations, at least
for simple problems. In any case, no typical pressure instabilities or volumetric
locking were observed with this formulation.
For the space-time formulation, we chose to use a coarser mesh size for the

pressure only for space discretization. Figure 2.3.4 presents a synthetic view for a
2D space problem. The numerical integration is done on the finest mesh for all
fields using a standard Gauss-Legendre scheme.

2.3.5. Numerical applications at finite-strain
2.3.5.1. Nearly-incompressible plane-strain structure subjected to a

harmonic loading

We consider the case of a non-linear beam like structure (2D plane-strain case)
that is of 5 length unit height and 1 length width (see Figure 2.17(a)). The
beam is clamped at one side and subjected to a harmonic homogeneous body
load f(t) = f0 cos(2πFt) in direction x. The constitutive material is chosen to be
hyperelastic and we adopt a Mooney-Rivlin potential:

ρ0ϕ = c10(I1(C̄)− 3) + c01(I2(C̄)− 3)

For the compressible part, we consider the following compressibility function:

g(p) = exp
(
p

k

)
− 1
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5

1

x

y

(a) Geometry of the struc-
ture (plane strain case)

time

x
y

(b) ST-IGA solution on a time slab (isocolor
correspond to the horizontal displacement)

Figure 2.17. – Harmonic oscillations of a nearly-incompressible beam-like structure

The material parameters are: c10 = 0.9, c01 = 0.1, k = 1000 N/sK, ρ0 =
0.001 Ns2/m4. From a linear vibration analysis, we determine the three first linear
modes of this structure. The frequencies of these modes are: F1 = 0.56 Hz, F2 =
2.92 Hz, F3 = 4.5 Hz. In the following we consider a harmonic body load and
choose the frequency between the first and the second modes of the structure:
F = 1.3 Hz with an amplitude of f0 = 0.0184. As for the previous example, we
compare the results of ST-IGA with the one obtained on Abaqus using implict
and explicit solvers. For the space discretization, we used the following mesh size:
∆x = ∆y = 0.25 m. For the implicit solver, we considered quadratic hybrid ele-
ments (CPE8H) that are adapted to the case of near-incompressible behavior. For
the explicit solver, we are restricted to use linear element with reduced integration
(CPE4R). For ST-IGA model, we use the GAC stabilized form with the stabilisation
parameter taken at τ = ∆t/(

√
E/ρ), where E = 6(c10 + c0.1) is the infinitesimal

Young modulus and ∆t = 0.14 s is the time mesh size.
A typical response of the ST-IGA model for the time interval, [0, 10], is given in

Figure 2.17(b). Figure 2.18 shows a comparison between the different numerical
methods for the displacement and the velocity at a node located at the top of the
structure (the red point of figure 2.17(a)). As expected, the solutions obtained using
ST-IGA and FE with implicit resolution are almost identical, while the explicit
resolution exhibits some differences that are certainly due to the fact that only
linear elements are used.

Figure 2.19 illustrates the best numerical performances of ST-IGA methods for
non-linear problems: we can obtain more conservative solutions than with standard
implicit integration schemes such as the HHT scheme. Table 2.1 allows us to
compare the numerical behaviour of the different methods. For ST-IGA, we obtain
the solution on the time slab with only 6 Newton iterations (for only one increment
for this test) while the implicit resolution requires 250 increments with 1 or 2
Newton iterations per increments. Obviously, the difference between space-time
continuous formulations and other methods in terms of the size of the linear system
to be solved at each iteration is much larger. The advantage of the ST formulation
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Figure 2.18. – Displacement and velocity of at the top left corner of the structure
upon time
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Figure 2.19. – Energy balance (kinetic energy + strain energy - external power
integrated over time) integrated over the space domain

depends drastically on it.
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∆t Number of load increments Newton Iterations
ST-IGA 0.14 1 6
FE implicit (HHT) 0.05 250 1 or 2 per increments
FE explicit 0.00016 62500 -

Table 2.1. – Comparison between classical and space-time time integration

1

1

0.6

(a) Geometry and boundary con-
ditions of a plane strain structure
impact

y

x

t

(b) ST-IGA solution on a time slab (isocolor corresponds
to the norm of the displacement)

Figure 2.20. – Impact of a plane strain structure on a wall at finite strain

2.3.5.2. Plane strain structure subjected to an impact

The purpose of this test is to qualitatively evaluate the numerical behavior
of the ST-IGA method in a context where we have a complexity due to both
the dynamics (impact situation and non-linear behavior) and the geometry. The
boundary conditions and the geometry of the structure are given in Figure 2.20.
This plane strain structure has an initial vertical velocity v0 = 5 m/s. At t = 0 s,
it impacts a wall on the top of the structure. The material is assumed to be elastic
and isotropic and we adopt the following potential of energy:

ρ0ψ = µ

2 (I1(C)− 3) + λ

2 ln(J)2 − µ ln(J) (2.6)

where λ = 0.52, µ = 0.34 and ρ0 = 0.001 Ns2/m4. As in the previous example, we
compare the results obtained with standard implicit and explicit finite elements on
Abaqus with the results of space-time methods (FE or IGA based) stabilized with
GAC. On Abaqus, the constitutive law is defined using the subroutine UHYPER.
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Figure 2.21. – Displacement and velocity at the bottom right corner of the structure
upon time

Therefore we only use the implicit version of Abaqus with transient-fidelity resolu-
tion (HHT scheme with α = −0.05, β = 0.275, γ = 0.55). We use the same mesh
size for the discretisation of the space domain: ∆x = ∆y = 0.036 m for all models.
Figure 2.21 shows a comparison of the methods for solutions concerning the

displacement and velocity components of a point located at the bottom of the
structure (red point in figure 2.20(a)). First, it can be seen that the response
obtained with Abaqus exhibits a lot of oscillations for the velocity field. The
solution obtained using ST-FE is globally in accordance with the one obtained
with Abaqus implicit. ST-IGA exhibits a similar response just after the impact
but deviates from FE responses especially on the vertical componant (both for
displacement and velocity). Obviously, all these models are questionable and we
cannot define a reference solution for this problem as each model has its own bias.
We also plot the evolution of the total energy (kinetic energy+strain energy

integrated over the space domain) upon time. Figure 2.22 shows that the evolution
of this energy with the implicit solver of Abaqus exhibits a non monotonic behavior
(increase and decrease of the total energy). This non-monotonic behavior is
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Figure 2.22. – Energy balance (kinetic energy + strain energy - external power
integrated over time) integrated over the space domain

obviously completely inconsistent: we can expect a loss of energy due to numerical
dissipation which is intrinsic to the HHT scheme but we do not expect an energy
increase. Space-time methods have a more expected behavior with a monotonic
decrease in energy due to the contribution of stabilization terms. It can also be
noted that ST-FE have a higher rate of decrease than ST-IGA. Therefore, from an
energy point of view, space-time methods behave better than Abaqus Implicit for
this test.
Table 2.2 allows to compare the numerical behaviour of each model.

∆t Nbr of load increments Newton Iterations
ST-IGA (p=2,3) 0.01 2 5 for 1st inc. & 1 for 2nd
ST-FE (p=2) 0.01 2 5 for 1st inc. & 1 for 2nd
FE Implicit (HHT) 0.001 212 3 to 6 per inc.

Table 2.2. – Comparison of characteristics between incremental and space-time
resolutions

We can see from Table 2.2 that for a fixed mesh in space, the HHT scheme uses
a time step that is 10 times smaller compared to the time step used for space-time
metods in order to converge. Moreover, for space-time methods, 2 load increments
per time step are enough to solve this non-linear problem with a small number of
Newton iterations per increment, whereas for the implicit case, 212 load increments
are needed, with 3 to 6 Newton iterations per increment, which shows that the
number of Newton iterations needed in the case of the implicit method for this
problem to converge is huge. These results show that the ST methods represent a
very interesting alternative for solving nonlinear dynamics problems.
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2.4. Conclusion
In this chapter, stabilized ST IGA methods are used for solving elastodynamics

problems in both linear and non-linear cases. We introduced a new form of
stabilization which is the so-called GAC based on classical GLS techniques. A
qualitative study of the GAC formulation on 1D impact problems shows the stability
of the formulation compared to classical forms. Moreover, comparisons between
our ST-IGA formulation and ST-FEM methods and semi-discrete FEM simulations
(HHT scheme) were made for transient dynamic problems showing the efficiency of
the method. The ST IGA was also employed for the first time for solving finite
strains elastodynamics including compressible and nearly-incompressible cases, and
accurate results were obtained showing the interest and potential of the method.
The formulation is general enough to be applied to different kinds of problems:
small-strain elasticity, compressible and quasi-incompressible hyperelasticity with
displacement/velocity/pressure formulations. It is also is easily extendable to multi-
field and multi-physics problems such as thermo-elasticity. Space-time methods
were shown to be more conservative than traditional semi-discrete methods on
the examples chosen here. They seem to have better stability properties than the
classical methods such as the explicit ones when employed in simple test problems.
However, in the case of problems with discontinuous solutions, dissipative terms of
type GLS or GAC should be added in order to control the oscillations. Obviously
the numerical cost of such methods is high, especially for multi-field formulations,
but employing high-order space-time schemes allows to obtain accurate numerical
solutions with coarser mesh in time compared to implicit semi-discrete methods (in
space and time). Furthermore, the numerical cost must be carefully considered as
it strongly depends on the problem. Space-time formulations are also well adapted
for the development of parallel resolution in space and time, references on this
topic can be found in the literature (e.g. [37, 64]). Time-stepping strategies based
on Galerkin discontinuous formulation in time should lead to have solvers with
large time steps, allowing computations for long-term simulations.
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3.1. Introduction
In this chapter, we are interested in the resolution of thermo-mechanical problems.

The thermodynamics leads to strong or weak coupling depending on the problem
considered and/or on the material parameters dependency. In literature, one can
find various strategies to tackle these problems: fully coupled resolutions mainly
based on backward Euler scheme for the time discretization or alternate resolution
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of each physics with staggered schemes. The temperature plays a crucial role in
engineering problems. During a mechanical solicitation, the deformation of an
elastomer is frequently accompanied by thermal changes. When an isotropic, linearly
elastic material is subjected to a temperature field θ, this may imply expansions
and contractions in the material. In the literature, only few references can be
found where the thermoelasticity problems are treated using a space-time numerical
method, e.g. [59, 65]. To the author’s knowledge, the IGA space-time method
has not yet been used for the resolution of such problems, and it could be a good
alternative of the usual semi-discrete methods. Notice that space-time methods
allow the use of different interpolation degrees for space and time approximations
for each field in the case of a multifield problem such as multiphysics. Different
grids could be chosen for each field of the equation, especially in time. Space-
time methods allow us to have heterogeneous and asynchronous schemes. In this
chapter, a space-time B-spline/NURBS based isogeometric analysis is investigated
for a 3-field formulation (displacement, velocity and temperature). Such as for
elastodynamics, both linear and non-linear cases are investigated.

3.2. Small-strain thermoelasticity: linear case
3.2.1. Problem statement
We consider a thermo-elastodynamic problem. The basic equations of linear

thermoelasticity are as follows:

ρü− divxσ = f ∀(x, t) ∈ Q
ρCθ̇ + divq = r ∀(x, t) ∈ Q

(3.1)

where u(x, t) is the displacement field, σ(x, t) is the Cauchy stress tensor, f(x, t)
is the applied body load, θ(x, t) is the temperature field. The vector field q(x, t)
denotes the heat flux, r(x, t) is the external heat supply, ρ(x) is the initial material
density, C is the specific heat, q = −Kθ∇θ is the heat flux density linearly
dependent to the gradient of the temperature (isotropic Fourier’s law); Kθ is
the thermal conductivity (isotropic conduction for the sake of simplicity). The
definition of the thermoelastic stress is given by:

σ = 2µε+ λtrεI − αKB∆θI (3.2)
where µ and λ are the Lamé parameters, KB is the bulk modulus and ∆θ =

θ − θ0; θ0 is the initial temperature value .
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The problem’s boundary and initial conditions are the following:

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
u̇(x, t = 0) = v0(x) for x ∈ Ω
θ = h(x, t) for x ∈ Γθ, t ∈ [0, T ]
q.n = q̄(x, t) for x ∈ Γq, t ∈ [0, T ]
θ(x, t = 0) = θ0(x)

(3.3)

where n(x) is the normal to the boundary Γσ, u0(x) and v0(x) are respectively the
initial displacement and velocity fields, h is the prescribed boundary temperature
and q̄ is the prescribed boundary heat flux.

3.2.2. A 3-field weak form
As done in the previous chapter, we introduce the velocity field, thereby tran-

forming the problem into a 3-field form:


ρv− divxσ − f = 0
ρ(v− u̇) = 0
ρCθ̇ + divq = r

∀(x, t) ∈ Q

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
v(x, t = 0) = v0(x) for x ∈ Ω
θ = h(x, t) for x ∈ Γθ, t ∈ [0, T ]
q.n = q̄(x, t) for x ∈ Γq, t ∈ [0, T ]
θ(x, t = 0) = θ0(x)

(3.4)

Concerning the choice of test functions, we would like to study the results using
both variational formulations consisting first of classical test functions for the
elastodynamics equation, and second of test functions derived in time, for the
elastodynamics equation as well. To begin, we propose a variational formulation
consisting of the classical test functions for both the parabolic (heat conduction)
and hyperbolic (elastodynamics) equations, that is:
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Find (u(x, t),v(x, t), θ(x, t)) ∈ Hu ×Hv ×Hθ, such that ∀ (δu(x, t), δv(x,
t), δθ(x, t)) ∈ Hu

0 ×Hv
0 ×Hθ

0∫
Q
ρv̇δudQ+

∫
Q
ε(δu) : C : ε(u)dQ−

∫
Q
αKB∆θI : ε(δu)dQ−

∫
P

TδudP

+
∫
Q

fδudQ+
∑
e

∫
Qe
ρ(üh − v̇h)τ(δüh − δv̇h)dQ+

∫
Q
ρ (v− u̇) δvdQ+∫

Q
ρCθ̇δθdQ+

∫
Q
Kθ∇θ∇δθdQ−

∫
Pθ

q.nδθdPθ −
∫
Q

rδθdQ = 0

Form 1 + GAC

where Pθ = Γθ × [0, T ]. The variational formulation consisting of derived test
functions in time for the elastodynamics equation is:

Find (u(x, t),v(x, t), θ(x, t)) ∈ Hu ×Hv ×Hθ, such that ∀ (δu(x, t), δv(x,
t), δθ(x, t)) ∈ Hu

0 ×Hv
0 ×Hθ

0∫
Q
ρv̇δu̇dQ+

∫
Q
ε(δu̇) : C : ε(u)dQ−

∫
Q
αKB∆θI : ε(δu̇)dQ−

∫
P

Tδu̇dP

+
∫
Q

fδu̇dQ+
∑
e

∫
Qe
ρ(üh − v̇h)τ(δüh − δv̇h)dQ+

∫
Q
ρ (v− u̇) δv̇dQ+∫

Q
ρCθ̇δθdQ+

∫
Q
Kθ∇θ∇δθdQ−

∫
Pθ

q.nδθdPθ −
∫
Q

rδθdQ = 0

Form 2 + GAC

3.2.3. Space-time matrix form
In this section, the matrix form is derived. The representations of the displace-

ment, velocity and temperature are:

uh(ξ, η) = Nudu

vh(ξ, η) = Nvdv

θh(ξ, η) = Nθdθ
(3.1)

64



3. Space-Time for Multiphysics Problems – 3.2. Small-strain thermoelasticity:
linear case

We define the following differential operators:

u̇h(ξ, η) = Bu
t du

GRADxuh(ξ, η) = Bu
xdu

ε(uh(ξ, η)) = (Bu
x)symdu

üh(ξ, η) = Bu
ttdu

GRADxu̇h(ξ, η) = Bu
xtdu

ε(u̇h(ξ, η)) = (Bu
xt)symdu

trε(u̇h(ξ, η)) = (Bu
xt)sym

Trdu

θ̇h(ξ, η) = Bθ
tdθ

GRADxθh(ξ, η) = Bθ
xdθ

(3.2)

Then, the matrix form of the thermoelasticity problem (in 1D) holds:
Kuu Kuv Kuθ
Kvu Kvv Kvθ
Kθu Kθv Kθθ




d̃u

d̃v

d̃θ

 =


f̃u
f̃v
f̃θ


where for Form 2 + GAC, one has:

Kuu = Ae
∫
Qe

(
(Bu

xt)sym
TDBu

x
sym + ρBtt

TτBtt
)
dQ

Kuv = Ae
∫
Qe

(
ρBu

t
TBv

t − ρBtt
TτBt

)
dQ

Kuθ = Ae
∫
Qe
−NθTαKBBu

xtdQ

Kvu = Ae
∫
Qe

(
−ρBv

t
TBu

t − ρBt
TτBtt

)
dQ

Kvv = Ae
∫
Qe

(
ρBv

t
TNv + ρBt

TτBt
)
dQ

Kvθ = 0

Kθθ = Ae
∫
Qe

(
ρCNθTBθ

t +KθBθ
x

TBθ
x

)
dQ

Kθu = 0
Kθv = 0

(3.3)
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and:

fu = Ae
∫
Qe

Bt
TfhdQ+Ae

∫
Qe
α(Bu

xt)sym
Tr
KBθ0dQ

+Ae
∫
Pe

Bt
TThdP

fv = 0

fθ = Ae
∫
Qe

Np
TrhdQ+Ae

∫
Pe

Np
Tq̄dP

(3.4)

In the case of Form 1 + GAC, the matrix form is obtained in a similar way but
all the terms BsymT

xt should be replaced by BsymT
x in Kuu and the terms Bt

T should
be replaced by Nu

T in the other components of the tangent matrix.

3.2.4. Numerical applications at small-strain
3.2.4.1. Space-Time domain submitted to a body load

We solve the thermoelastodynamics problem applied on an elastic bar. The
space-time domain with boundary and initial conditions is shown in Figure 3.1.
The length of the bar is L = 1 m, and so is the final time, T = 1 s. Elasticity
modulus is chosen such that E = 2 Pa, heat capacity is C = 0.1 J , density ρ and
thermal conductivity Kθ are taken to be unity. The coupling coefficient α is taken
to be α = 0.01 K−1.

Figure 3.1. – Space-time domain with boundary and initial conditions for a trial
thermoelastic problem

No GAC terms were added to the formulation here, the stabilizing parameter
is chosen such that τ = 0. B-Splines are used as basis functions. The space-time
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solution was compared to the exact solution of the problem. The exact solution is
given by : uexact = t2(t− T )2sin(2πx) and θexact = 1

4sin(2πx)sin(2πt) + θ0 where
θ0 = 273 K. The corresponding body load is f = ρ[2(t − T )2sin(2πx) + 8t(t −
T )sin(2πx)+2t2sin(2πx)]+4Eπ2t2(t−T )2sin(2πx)+ π

2αKBcos(2πx)sin(2πt) and
the heat source is r = ρC π

2sin(2πx)cos(2πt) + Kθπ
2sin(2πx)sin(2πt). Optimal

convergence rates for this problem are obtained for the displacement, the velocity
and the temperature, showing the convergence of the space-time method, for both
of the variational formulations proposed in the last section, as Figures 3.2 and 3.3
show, on this simple problem.

(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.2. – Convergence curves for displacement, velocity and temperature for
degrees p = 2, 3, and 4 for the thermoelasticity equation applied on a
1D elastic bar using the variational formulation Form 1 + GAC

These results show that both of these formulations give similar results with the
optimal rates of convergence for this simple test. Next, we would like to study the
consequence of using subgrid techniques in time for some fields (asynchroneous
scheme in time). For that, the same test case is done while taking a coarser mesh
in time for the temperature field. The number of elements in space is the same for
all fields. We then plot the convergence curves obtained.

Figure 3.4 shows that similar convergence rates are observed for displacement and
velocity for the asynchroneous scheme and for the scheme where all 3 fields have
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.3. – Convergence curves for displacement, velocity and temperature for
degrees p = 2, 3, and 4 for the thermoelasticity equation applied on a
1D elastic bar using the variational formulation Form 2 + GAC

the same time grid: taking a coarser subgrid for the temperature field and a finer
subgrid for the displacement and the velocity fields also gives optimal convergence
rates. In the case of the temperature field, we can notice that the convergence
curves concerning the subdivision test are always above the convergence curves
concerning the test where the same number of elements was taken in space and in
time. This result is normal because in the case of the subdivision, half the number
of elements in time was used for the temperature field, making the mesh of the
temperture looser than the mesh of the 2 other fields.

3.2.4.2. Impact of a thermoelastic bar on a wall

In this case, we investigate the bar impact problem as done in Chapter 2. We
adopt first the formulation Form 1 + GAC proposed previously in section 3.2.2
where classical test functions are used for both of the equations. The stabilizing
parameter is chosen such that τ = 0.02 and τ̃ = τ∆t. As Figure 3.5 shows,
the 1D thermoelastic bar is submitted to an initial velocity v0. For t ≥ 0, we
impose conditions for displacement, velocity and temperature on the rigid wall:
u(x = 0, t) = 0, v(x = 0, t) = 0 and θ(x = 0, t) = 293 K. The free end is stress
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(a) Displacement field
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(b) Velocity field

2× 101 3× 101 4× 101 6× 101

Number of elements of the temperature

10−11

10−10

10−9

10−8

10−7

10−6

10−5

L
2
−
er
ro
rs

p=2

p=3

p=4

p=2 with subdivision

p=3 with subdivision

p=4 with subdivision

(c) Temperature field

Figure 3.4. – Comparison of convergence curves for displacement, velocity and
temperature for the thermoelasticity equation applied on a 1D elastic
bar using a regular and a coarser mesh in time for the temperature
field

free and the temperature is imposed such that θ(x = 1, t) = 293 K . The material
parameters are E = 1 Pa, ρ = 1 kg.m−3, the bar is of length L = 1 m, the initial
velocity is v0 = 1 m/s, α = 0.01 K−1, C = 0.1 J .

The number of elements in space and time are chosen such that ∆x = 0.02 m
and ∆t = 0.02 s. The degree of approximation is p = 2.

The isovalues of displacement, velocity and temperature are given in Figure 3.6.
The oscillations are clearly numerous for all 3 fields. This result is coherent with
the one already obtained in Chapter 2 where a comparison on the test functions
was done for elastodynamics. For a better visualization, the solution of the problem
for the displacement, velocity and temperature along the time interval [0, 1] at the
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Figure 3.5. – 1D bar impact problem against a rigid wall

(a) Displacement field (b) Velocity field (c) Temperature
field

Figure 3.6. – Space-time isovalues of displacement, velocity and temperature for
the thermoelastic impact problem with formulation Form 1 + GAC

center of the bar is given in Figure 3.7 using Form 1 + GAC. The plot confirms the
presence of multiple oscillations on all of the 3 fields, making the solution computed
not accurate at all.
The same test problem is solved with the formulation Form 2 + GAC. The

results are plotted in Figure 3.8. Compared to formulation Form 1 + GAC, the
oscillations on the displacement, temperature and velocity fields are vanished.

Once again, the plot of the solution of the problem for the displacement, velocity
and temperature along the time interval [0, 1] at the center of the bar is given in
Figure 3.9, now for Form 2 + GAC.

These results confirm the fact that the choice of test functions used highly affects
the computational results, and using test functions derived in time gives much
better results. In the following, we will definitely adopt Form 2 + GAC.

The same test case is held with a coarser mesh in time for the temperature field
compared to the displacement and velocity fields. The isovalues in space-time for
displacement, velocity and temperature are plotted in Figure 3.10.
The results are similar to the ones obtained with the same grid for the 3 fields.

To confirm the results, we plot the solution for the displacement, velocity and
temperature fields along the time interval [0, 1] at the center of the bar.
Figure 3.11 shows that accurate solutions are obtained with respect to time,

proving the efficiency of the method when using smaller subgrids for a specific field.
At last, the same test case is used to evaluate mixed order interpolation for

displacement, velocity and temperature: we take one order lower for the temperature
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.7. – Time evolution of the solution for the thermoelastic impact problem
at the center of the bar with formulation Form 1 + GAC

(a) Displacement field (b) Velocity field (c) Temperature
field

Figure 3.8. – Space-time isovalues of displacement, velocity and temperature for
the thermoelastic impact problem with formulation Form 2 + GAC

field. The idea is to test the use of consistent approximation scheme for displacement
and temperature with respect to the formulation (see [102] and references therein).
The number of elements in space and time is similar for all fields (50 elements in
space and 50 elements in time). We choose a degree p = 2 for the displacement
and velocity fields, and a degree p = 1 for the temperature field.
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.9. – Time evolution of the solution for the thermoelastic impact problem
at the center of the bar with formulation Form 2 + GAC

(a) Displacement field (b) Velocity field (c) Temperature
field

Figure 3.10. – Space-time isovalues of displacement, velocity and temperature for
the thermoelastic impact problem with formulation Form 2 + GAC
and coarse mesh in time for temperature

Results shown in Figure 3.12 and Figure 3.13 are similar to the ones of the
previous test. We can observe that no oscillations appear with this mixed order of
approximation which is consistent.
In Figure 3.14, we plot on the same graph the temperature solutions. No

difference is observed when taking a different grid and different approximation
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.11. – Time evolution of displacement, velocity and temperature solution
at the center of the bar with formulation Form 2 + GAC and a
coarse mesh in time for temperature

(a) Displacement field (b) Velocity field (c) Temperature field

Figure 3.12. – Space-time isovalues of displacement, velocity and temperature for
the thermoelastic impact problem with p = 2 for the displacement
and velocity and p = 1 for the temperature with formulation Form
2 + GAC
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.13. – Time evolution of displacement, velocity and temperature solution
with p = 2 for the displacement and velocity and p = 1 for the
temperature at the center of the bar with formulation Form 2 +
GAC

order for the temperature field. As shown, the solutions obtained are very similar.
A close zoom is made on the solution, confirming that the 3 solutions are indeed
very close to one another. The ST method allowed to obtain the same quality of
the solution with less numerical cost.

3.3. Small-strain thermoelasticity: non-linear case
3.3.1. Problem statement

In this section, we consider a non-linear thermoelastic problem. A term is added
into the model problem. It is the term in red in eq. (3.5), it is the latent heat
term, the coupling effect applied on the equation of heat, making the problem to
be solved non-linear.
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(a) Space-time solution
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(b) Zoom in on the solution

Figure 3.14. – Space-time temperature solution of the thermoelastic impact prob-
lem with the standard case, the case of one order lower, and the
case of a coarser subgrid


ρv̇− divxσ − f = 0
ρ(v− u̇) = 0

ρCθ̇ − θ(∂σ
∂θ

: ε̇) + divq = r
∀(x, t) ∈ Q (3.5)

3.3.2. Variational formulation
The variational formulation is directly inspired from Form 2 + GAC, and

the difference between the two formulations is only one term. The variational
formulation helds :

Find (u(x, t),v(x, t), θ(x, t)) ∈ Hu ×Hv ×Hθ, such that ∀ (δu(x, t), δv(x, t),
δθ(x, t)) ∈ Hu

0 ×Hv
0 ×Hθ

0∫
Q
ρv̇δu̇dQ+

∫
Q
ε(δu̇) : C : ε(u)dQ−

∫
Q
αKB∆θI : ε(δu̇)dQ−

∫
P

Tδu̇dP

+
∫
Q

fδu̇dQ+
∑
e

∫
Qe
ρ0(üh − v̇h)τ(δüh − δv̇h)dQ+

∫
Q
ρ (v− u̇) δv̇dQ

+
∫
Q
ρCθ̇δθdQ−

∫
Q
θ(∂σ
∂θ

: ε̇)δθdQ+
∫
Q
Kθ∇θ∇δθdQ−

∫
Pθ

q.nδθdPθ

−
∫
Q

rδθdQ = 0

(3.6)
Note that for this non-linear case, and as discussed in Chapter 2, the addition of
stabilization terms of type GAC is possible, easy and straightforward.
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3.3.3. Space-time matrix form
The matrix form of the non-linear thermoelastic system is:

ru(d, β) = 0
rv(d, β) = 0
rθ(d, β) = 0

(3.7)

such that d = (du,dv,dθ). ru, rv and rθ are defined by:

ru(d, β) = Ae
∫
Qe

(
ρ0Bt

Tv̇h + BT
xtσ(uh) + Btt

Tρ0τ(üh − v̇h)
)
dQ− βfu

rv(d, β) = Ae
∫
Qe

(
ρ0Bt

T(vh − u̇h) + τ(üh − v̇h)
)
dQ

rθ(d, β) = Ae
∫
Qe

(
ρCNT

θ θ̇h −NT
θ θh[

∂σh
∂θ

: ε̇h] +KθBT
xGRADxθh

)
dQ− βfθ

(3.8)

As was done in the precedent chapter, we employ the Newton-Raphson procedure
for a quasi-static problem to solve this non-linear system. So starting from a known
solution, (dk, βk), at increment k, we search ∆dk for a given load increment ∆βk
such that ru(dk + ∆dk, βk + ∆βk) = rv(dk + ∆dk, βk + ∆βk) = rθ(dk + ∆dk, βk +
∆βk) = 0. The linerization of this problem leads to the following linear system:

Kuu(ukh,vkh, θkh) Kuv(ukh,vkh, θkh) Kuθ(ukh,vkh, θkh)
Kvu(ukh,vkh, θkh) Kvv(ukh,vkh, θkh) Kvθ(ukh,vkh, θkh)
Kθu(ukh,vkh, θkh) Kθv(ukh,vkh, θkh) Kθθ(ukh,vkh, θkh)




∆duk

∆dvk

∆dθk

 (3.9)

=


−ru(ukh,vkh, θkh)− fu∆βk
−rv(ukh,vkh, θkh)

−rθ(ukh,vkh, θkh)− fθ∆βk


Kuu,Kuv,Kvu and Kvv are exactly similar to the ones defined in eqs. (3.3).

The extra term which is the coupling term in the thermal equation gives:

Kθu = Ae
∫
Qe

NθTBu
xt

(
−GhθBu

xtNθ + GhεθBu
x

)
dQ

Kθθ = Ae
∫
Qe

NθT (
ρCBθ

t −NθGhθBu
xt −NθGhθθBu

xt

)
+KθBθ

x
TBθ

xdQ

Kθv = 0

The matrix terms Ghθ , Ghθθ and Ghεθ are issued from the matrix/vector representa-
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tion of the constitutive tangent operator Gθ, Gθθ and Gεθ defined by:

Gθ = ∂σ

∂θ

Gθθ = ∂2σ

∂θ2

Gεθ = ∂2σ

∂ε∂θ

3.3.4. Numerical applications at small-strain
3.3.4.1. Non-linear space-time domain submitted to a body load

In this section, we use the variational formulation defined in eq. (3.6). The
domain, the boundary and initial conditions are defined in Figure 3.1. In this case,
we choose ρ = 0.1 kg.m−3, α = 0.1 K−1, and the parameters of the problem are
chosen to be the same as the one of the linear case. In this case, the source term of
the heat equation is defined by r = ρC π

2sin(2πx)cos(2πt)+Kθπ
2sin(2πx)sin(2πt)+

αKB[1
4sin(2πx)sin(2πt) + θ0][4πt(t− T )2cos(2πx) + 4πt2(t− T )cos(2πx)].

Optimal convergence rates are obtained for this test case for the case of the
displacement field, the velocity field and the temperature field, as shown in Figure
3.15. On this non-linear thermomechanical problem, the ST formulation exhibits
good convergence properties.

3.3.4.2. Lamé parameters θ-dependent

We consider the case of non constant material parameters. Lamé parameters λ
and µ depend on θ here. The body loads and heat source are defined as:

f = ρ[2(t− T )2sin(2πx) + 8t(t− T )sin(2πx) + 2t2sin(2πx)]

+ 4Eπ2t2(t− T )2sin(2πx) + π

2αKBcos(2πx)sin(2πt)− E ′π2 cos(2πx)sin(2πt)

+ αK ′B
π

2 cos(2πx)sin(2πt)(θ − θ0)

r = ρC
π

2 sin(2πx)cos(2πt) +Kθπ
2sin(2πx)sin(2πt) + αKB[14sin(2πx)sin(2πt)

+ θ0][4πt(t− T )2cos(2πx) + 4πt2(t− T )cos(2πx)]

+ αK ′B[14sin(2πx)sin(2πt) + θ0][4πt(t− T )2cos(2πx)

+ 4πt2(t− T )cos(2πx)](θ − θ0)− θE ′[4πt(t− T )2cos(2πx)
+ 4πt2(t− T )cos(2πx)][2πt2(t− T )2cos(2πx)

(3.10)

The boundary conditions of this test are as the ones defined in Figure 3.1.
Optimal convergence rates are obtained for the degrees p = 2, 3 and 4. The results
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.15. – Convergence curves for displacement, velocity and temperature for
degrees p = 2, 3, and 4 for the non-linear thermoelasticity equation
of the variational formulation of eq. (3.6) for a 1D elastic bar

confirm that the space-time IGA is effective for the linear and non-linear problems
defined here.

3.4. Finite-strain thermoelasticity
3.4.1. Thermomechanical coupling at finite strain for

nearly-incompressible media
3.4.1.1. Free energy and thermodynamics principles

In this section, we use the results obtained in [66] to develop the process of
construction of the equations of the problem at finite strains. We assume first that
the transformation can be split into a pure thermal expansion and a pure mechanical
deformation. The intermediate thermal state free of mechanical deformation is
assumed to be stress free and we adopt the following multiplicative decomposition:

F = FΘFm (3.11)
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(a) Displacement field (b) Velocity field

(c) Temperature field

Figure 3.16. – Convergence curves for displacement, velocity and temperature for
the non-linear thermoelasticity problem of a 1D elastic bar

where FΘ = J
1/3
Θ 1 is a pure thermal expansion and Fm is the mechanical de-

formation gradient (this is a classical approach, see e.g. [40]). Splitting the
isochoric-volumetric of the total deformation gradient F = (J1/31)F̄, one has:

J = JΘJm and Fm = F̄ (3.12)

We adopt here the hybrid free energy concept that can be viewed as a generalization
of a partial Legendre transform of the Helmoltz free energy to take into account
the nearly-incompressible behavior (see [66]). We assume that the state variables
are the isochoric deformation F̄, the temperature Θ and a stress like variable q
that is dual to the mechanical volume variation Jm . The first thermodynamics
principle (conservation of energy) can be written in the reference configuration as:

ρ0ė = Π : Ḟ + ρ0r − divXQΘ (3.13)

where e is the internal energy, Π is the first Piola-Kirchoff stress, r is an external
heat source, divX is the Lagrangian divergence, QΘ is the Lagrangian heat flux.
The entropy production (second principle of thermodynamics) in the reference
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configuration can be written under the following local form:

ρ0Θṡ− ρ0r + divXQΘ −
gradXΘ

Θ ·QΘ ≥ 0 (3.14)

where gradX is the gradient in the reference configuration. Introducing the time
derivative of the hybrid free energy ϕ, one has:

ϕ̇ = ė− ṡΘ− sΘ̇ + β̇ (3.15)

where β here is an additional volumetric potential. Combining eq. (3.15) and eq.
(3.13) in eq. (3.14), the so-called Clausius-Duhem inequality is obtained:

φ = Π : Ḟ− ρ0ϕ̇+ ρ0β̇ − ρ0sΘ̇−
gradXΘ

Θ ·QΘ ≥ 0 ∀ Ḟ, Θ̇,QΘ (3.16)

where φ is the dissipation. The time derivative of the hybrid free energy and the
volumic energy can also be computed taking into account their dependency on the
state variables (F̄, q,Θ) such that:

ϕ̇ = ∂ϕ

∂F̄
: ˙̄F + ∂ϕ

∂q
q̇ + ∂ϕ

∂ΘΘ̇ (3.17)

β̇ = ∂β

∂J
J̇ + ∂β

∂q
q̇ + ∂β

∂ΘΘ̇ (3.18)

The time derivative of strain quantities leads to the following expressions:

J̇ = JF−T : Ḟ (3.19)
˙̄F = J−1/3

[
I− 1

3F⊗ F−T
]

: Ḟ = PF : Ḟ (3.20)

where I is the fourth order identity tensor. Inserting eqs. (3.19), (3.20) in eqs.
(3.17) and (3.18) and combining with eq. (3.16), the Clausius-Duhem inequality
can be rewritten as follows:

φ =
(

Π− ρ0
∂ϕ

∂F̄
: PF + ρ0J

∂β

∂J
F−T

)
: Ḟ− ρ0

(
s+ ∂ϕ

∂Θ −
∂β

∂Θ

)
Θ̇

− ρ0

(
∂ϕ

∂q
− ∂β

∂q

)
q̇ − gradXΘ

Θ ·QΘ ≥ 0 ∀D, α̇i, Θ̇, q̇,QΘ

(3.21)

We can therefore obtain a relation between entropy and hybrid energy:

s = − ∂ϕ
∂Θ + ∂β

∂Θ (3.22)
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and the following expressions for the dissipation terms:

φint =
(

Π− ρ0
∂ϕ

∂F̄
: PF + ρ0J

∂β

∂J
F−T

)
: Ḟ

−ρ0

(
∂ϕ

∂q
− ∂β

∂q

)
q̇ ≥ 0 (3.23)

φtherm = −gradXΘ
Θ ·QΘ ≥ 0 (3.24)

We also assume that the behavior is perfectly elastic (φint = 0), therefore we have:

Π = ρ0
∂ϕ

∂F̄
: PF + ρ0J

∂β

∂J
F−T (3.25)

∂ϕ

∂q
= ∂β

∂q
(3.26)

To proceed further, the hybrid energy is assumed to be decomposed additively
as follows:

ϕ(F̄, q,Θ) = ϕiso(F̄,Θ)− g(q)
ρ0

+ ϕther(Θ) (3.27)

where g(q) = q2/2k with k the bulk modulus. For the potential β, we choose:

β(J, q,Θ) = q
(1− Jm)

ρ0
(3.28)

We therefore obtain the following expression for the entropy:

s = −∂ϕiso
∂Θ − ∂ϕther

∂Θ + Jq

J2
Θρ0

∂JΘ

∂Θ (3.29)

We can also notice that the hydrostatic pressure p is related to q through: p = q/JΘ.
Combining eq. (3.15) and eq. (3.13), we obtain:

ρ0ṡΘ = Π : Ḟ + ρ0r − divXQΘ − ρ0ϕ̇+ ρ0β̇ − ρ0sΘ̇ (3.30)

Using equations (3.17) and (3.18) and regrouping terms, we have:

ρ0ṡΘ = φint + ρ0r − divXQΘ (3.31)

The variation of the entropy can be computed from (3.29):

ṡ = −
∂2ϕther

∂Θ2 + ∂2ϕiso
∂Θ2 + 2Jq

J3
Θρ0

(
∂JΘ

∂Θ

)2

− Jq

J2
Θρ0

∂2JΘ

∂Θ2

 Θ̇

−
(
∂2ϕiso

∂Θ∂F̄
: PF −

JqF−T

J2
Θρ0

∂JΘ

∂Θ

)
: Ḟ + 1

ρ0

(
J

J2
Θ

∂JΘ

∂Θ

)
q̇

(3.32)
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Inserting (3.32) in (3.31) and recalling that φint = 0 in the thermoelastic case, we
obtain the heat transfer equation:

ρ0CpΘ̇ = lm + lq + ρ0r − divXQΘ (3.33)

where Cp is the isobaric heat capacity

Cp = −Θ
∂2ϕther

∂Θ2 + ∂2ϕiso
∂Θ2 + 2Jq

J3
Θρ0

(
∂JΘ

∂Θ

)2

− Jq

J2
Θρ0

∂2JΘ

∂Θ2

 (3.34)

and lm, lq are mechanical coupling terms

lm = Θ
(
ρ0
∂2ϕiso

∂Θ∂F̄
: PF −

JqF−T

J2
Θ

∂JΘ

∂Θ

)
: Ḟ = Θ∂Π

∂Θ : Ḟ

lq = −Θ
(
J

J2
Θ

∂JΘ

∂Θ

)
q̇

(3.35)

3.4.2. Variational formulation for nearly-incompressible
materials

We restrict our study to quasi-static loading. The mechanical equilibrium of the
continuum body at time t is expressed in the initial configuration:

DIVXΠ + ρ0f = 0 in Q, Π ·N = t on Γσ, u = u0 on Γu (3.36)

where Π = Jσ · F−T is the first Piola-Kirchoff stress, f are body loads, t are
surface loads applied on Γσ, N is the outward normal on Γσ, u0 are the prescribed
displacements on the reference surface Γu. Thermal equilibrium is expressed in the
initial configuration:

ρ0CpΘ̇ = lm + lq + ρ0r− JDIVXQ in Q, Θ(t = 0) = Θ0,

Q = Qh on Γ0, Θ = Θd on ΓΘ
(3.37)

where Q = Jq · F−T is the Lagrangian heat flux. We propose the following weak
form of the equilibrium equations 1:

1. The functional space of variations is defined by the spaces Hu = {δu ∈ (H1(Ω0))n, δu =
0 on ∂Ωud

}, HΘ = {δΘ ∈ (H1(Ω0))n, δΘ = 0 on ∂ΩΘ0}, with n the physical dimension of the
space, H1(Ω0) a one order Hilbert space.
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Find (u,Θ, p) ∈ Hu ×HΘ ×Hp such that ∀(δu, δΘ, δp) ∈ Hu
0 ×HΘ

0 ×H
p
0, one has:∫

Q
(Π + p

J

JΘ
F−T) : F(δu)dQ−

∫
Q
ρ0f · δudQ−

∫
S

t · δudS +
∫
Q
ρ0CpΘ̇δΘdQ

−
∫
Q

(lm + lq + ρ0r) δΘdQ−
∫
Q
JQ ·GRADXδΘdQ+

∫
S

Qh ·NδΘdS = 0∫
Q

(
(Jm − 1) + pJΘ

Kv

)
δpdQ = 0

(3.38)
Note that the previous variational system is obtained without the use of La-

grange multipliers as done in general. The variable p naturally comes from the
thermodynamical framework.

3.4.3. Space-time discretization
Our aim is to check the capacities of the numerical schemes we usually use

to accurately solve the proposed model. In the following, we give the main
issues of both models, the finite element model and the isogeometric analysis
one. A similar formalism can be used to derive the matrix equation for both
the finite element model and the isogeometric analysis one. Once again, the
Newton-Raphson procedure is employed to solve this non-linear system. We start
from a known solution, (dk, βk), at increment k, we search ∆dk for a given load
increment ∆βk such that ru(dk + ∆dk, βk + ∆βk) = rΘ(dk + ∆dk, βk + ∆βk) =
rp(dk + ∆dk, βk + ∆βk). The linerization of this problem leads to the following
linear system:

Kuu(ukh,Θk
h, p

k
h) KuΘ(ukh,Θk

h, p
k
h) Kup(ukh,Θk

h, p
k
h)

KΘu(ukh,Θk
h, p

k
h) KΘΘ(ukh,Θk

h, p
k
h) KΘp(ukh,Θk

h, p
k
h)

Kpu(ukh,Θk
h, p

k
h) KpΘ(ukh,Θk

h, p
k
h) Kpp(ukh,Θk

h, p
k
h)




∆duk

∆dΘk

∆dpk

 (3.39)

=


−ru(ukh,Θk

h, p
k
h)− fu∆βk

−rΘ(ukh,Θk
h, p

k
h)− fΘ∆βk

−rp(ukh,Θk
h, p

k
h)


The components of the tangent matrix are given by:

Ke
tpp = Ae

∫
Qe

NpT JΘ

Kv

NpdQ

Ke
tpu = Ae

∫
Qe

NpTF-T J

JΘ
BFdQ

Ke
tpΘ

= Ae
∫
Qe

NpT
(
αJ

JΘ
+ αp

Kv

)
NΘdQ
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Ke
tΘu

= −Ae
∫
Qe

NΘTChΘḞNΘdQ

Ke
tΘp

= −Ae
∫
Qe

NΘTBp
t

(
GhΘ + Θh∂GhΘ

∂Θ

)
dQ

Ke
tΘΘ

= Ae
∫
Qe

NΘT [
ρ0CpBΘ

t −
(
ChΘ + ChΘΘΘh

)
[JḞ]

]

+KΘBΘT
xBΘ

x dQ

Ke
tuu = Ae

∫
Qe

BF
TChuBFdQ

Ke
tup = Ae

∫
Qe

BF
TF

J

JΘ
NpdQ

Ke
tuΘ

= Ae
∫
Qe

BF
TChΘNΘdQ

such that the differential operator BF is defined by:

∂u
∂X

= BFdu (3.40)

The matrix terms Chu , ChΘ, ChΘΘ and GhΘ are derived from the matrix/vector
representation of the constitutive tangent operator Cu, CΘ, CΘΘ and GΘ defined
from:

Cu = ∂Π
∂F

CΘ = ∂Π
∂Θ

CΘΘ = ∂2Π
∂Θ2

GΘ = ∂

∂Θ

(
J

J2
Θ

∂JΘ

∂Θ

)
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Moreover, we have:

ru = Ae
∫
Qe

BF
TΠdQ− βfu

rΘ = Ae
∫
Qe
ρ0CpNΘT

(
BΘ
t + ḞChΘNΘ −NΘBp

tα
J

J2
Θ

)
dQ− βfΘ

rp = −Ae
∫
Qe

NpT (Jh − 1− g(ph)) dQ

such that:

fu = Ae
∫
Qe

NuTfhdQ+Ae
∫
Pu

NuTThdP

fΘ = Ae
∫
Qe

NΘTrhdQ−Ae
∫
Pq

NΘTQNdP

3.4.4. Numerical applications at finite-strain
We consider the following isochoric and thermal potentials:

ρ0ϕiso = c10
Θ
Θ0

(Ī1 − 3), ρ0ϕther = C0

(
Θ−Θ0 −Θ log

(
Θ
Θ0

))
− C1

(Θ−Θ0)2

2Θ0
(3.41)

where c10, C0 and C1 are material coefficients. For the thermal volume variation,
we consider a very simple linear expansion relation:

JΘ = 1 + α(Θ−Θ0) (3.42)

where α is the volumetric expansion coefficient and Θ0 is the initial temperature.
The isobaric heat capacity takes the following form:

Cp = 1
ρ0

(
C0 + C1

Θ
Θ0
− 2α2JqΘ

J3
Θ

)
= 1
ρ0

(
C0 + C1

Θ
Θ0
− 2α2JpΘ

J2
Θ

)
(3.43)

The problem chosen here is taken from Erbts and Düster [30]. It concerns an
incompressible beam submitted to a thermomechanical loading. The length of the
beam is taken such that L = 10 m, and the final time is T = 1 s.

Figure 3.17. – 2D clamped beam for the thermoelastic problem

The domain of the problem is plotted in Figure 3.17. The boundary conditions
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are considered such that the left end of the beam is clamped and the temperature at
both ends is imposed for it to be equal to the reference temperature θ0 = 293.15 K.
Adiabatic conditions are considered on the other faces. On the right end, a
time-dependent displacement is imposed. Due to the thermoelastic coupling,
the temperature of the beam will evolve due to the deformation of the beam.
The parameters of the problem are chosen such that c10 = 0.22 × 106, Kv =
1500× 106, ρ = 1 kg.m−3, α = 6.0× 10−4 K−1, C0 = 1.6× 106, C1 = 3.6× 103.

This problem is solved with the space-time isogeometric method on one side,
and with the finite element method for the space discretization equipped with the
Euler implicit scheme for the time discretization on the other side. A comparison
of the results is given in Figure 3.18.
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Figure 3.18. – Space-time solution of the thermoelastic problem at finite strains
computed with the IGA and FE method

The results show that only 4 elements in time are needed in the case of the
space-time isogeometric method, versus 1000 elements in time for the classical finite
element method (with backward Euler scheme for time advancing) to obtain a
similar solution. This huge difference between the number of time elements in both
cases underlines the interest of using space-time methods compared to classical
methods. Note that the number of space elements is fixed for both cases at 32
space elements. Figure 3.18 also represents a zoom of the solution. It can be seen
that on the boundaries of the solutions, there are some oscillations. In the middle
of the solution, the blue line, referring to the ST IGA solution obtained using only
4 elements in time, meets perfectly the red line, which is the FE element solution
obtained using 1000 elements in time.

We would like to test the heterogeneous and asynchronous aspects of the space-
time method on this test as well, as done for the small strain case. For this reason,
the same test is repeated taking, for the first case, one order of approximation that
is lower for the temperature field compared to the displacement, the velocity and
the pressure fields: we choose p = 1 for the temperature field and p = 2 for the
other fields. For the second case, we take a coarser grid in time for the temperature
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field compared to the time grid of all the other fields: the number of elements
in time is 4 time steps for the temperature field and 8 time steps for the other
fields. Note that the number of elements in space is fixed to 32 elements for all
fields. The plot of the 2 solutions computed for these 2 test cases, along with the
solution computed where no heterogeneous nor asynchroneous scheme was taken,
are plotted in Figure 3.19. This figure shows that the 3 solutions are very close
to eachother, meaning that an accurate solution could be obtained for a lower
cost, and a close zoom in on the space-time solution confirms this result. This is a
strong aspect for the space-time methods and it indeed opens up a valuable track
of research: a similar and accurate response could be obtained for a given problem
by using a cost that is lower, whether it is in terms of the approximation order or
the mesh size of time.
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Figure 3.19. – Space-time solution of the thermoelastic problem at finite strains
computed with a standard scheme, heterogeneous scheme and asyn-
chroneous scheme

3.5. Conclusion
In this chapter, the space-time isogeometric method was applied for the resolution

of thermomechanical problems at small-strain in a linear and non-linear context and
at finite strains. Optimal rates of convergence were obtained on simple problems,
and accurate solutions were observed for impact problems. Subdivision techniques
were tested and proved to be effective for space-time methods. These techniques
consist of taking a subgrid in time that is finer for certain fields and looser for others.
In our case, we chose to take a finer grid for the displacement and velocity fields, and
a looser one for the temperature field, and accurate results were achieved. Another
technique was to take a higher order approximation for some fields and a lower
one for other fields: a lower order was taken for the temperature field generating
accurate results as well. All these qualitative results confirm the efficiency of
space-time methods when dealing with thermomechanical problems at small strains
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for linear and non-linear cases and at finite strains. They also show that it is
possible to have heterogeneous and asynchroneous schemes using the space-time
methods. We can therefore adapt in a very simple way the parameters of the
model (mesh size, approximation order, sub-discretization, etc) without changing
the formulation while having a very effective model whatever the level of coupling
(strong or weak) is.
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4.1. Introduction
As discussed in Chapter 1, the viscoelastic problem was treated in a space-time

context in the literature, e.g. [83, 17], but only in linear cases. The viscosity
in these references is treated by considering an additional viscous part of the
displacement. Here, we adopt another strategy, where its novelty consists of
considering the problem’s unknown to be an internal variable. Hence, we would
not consider any additional contribution on the displacement field, but we will
consider a deformation field. The idea is to approximate internal variables such as
the unknowns of the problem. This has an obvious advantage for non-local problem
but may be interesting for local constitutive law in order to have better convergence
rate of non-linear problems. To the author’s knowledge, the space-time method
has not yet been applied for the resolution of non-linear viscoelastic problems. In
this chapter, viscoelastic problems of Zener’s viscoelastic model are investigated for
linear and non-linear cases using the space-time isogeometric method: both small
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and finite strain cases are treated. We use a 3-field formulation (displacement,
velocity and viscous deformation). Stabilizing terms of type GAC were adopted in
responses where numerous oscillations are found in order to vanish these oscillations.
Accurate results are obtained for all cases: the linear case and the non-linear case
at finite strains.

4.2. Small-strain formulation
4.2.1. Problem Statement
In this section, the problem of Chapter 3 is considered with a slightly different

form. Here, the strain ε is divided into two parts : an elastic strain εe and a viscous
strain εv. The basic equations of viscoelasticity are the following:

ρü− divxσ = f equilibrium equation
σ =

(
2µεD +KtrεI

)
+ 2µV εDe = σ1 + σ2 constitutive law

εD = DEV (ε) = ε− 1
3trεI Deviatoric operator

ε = εe + εv strain decomposition

ε̇v = 1
η
σ2 = 2µv

η
(ε− εv)D = 1

τv
(ε− εv)D evolution law of viscosity

(4.1)

where u(x, t) is the displacement field, v(x, t) is the velocity field, εv(x, t) is the
viscous deformation, τv is the characteristic time of viscosity and K = 3λ+2µ. The
constitutive model corresponds to Zener’s linear viscoelasticity model, see Figure
4.1 for the equivalent rhelogical model.

Figure 4.1. – Zener’s equivalent rheological model

The problem’s boundary and initial conditions are defined as:

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
u̇(x, t = 0) = v0(x) for x ∈ Ω
εv(x, t = 0) = 0 for x ∈ Ω
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As done in the previous chapter, we introduce the velocity field v as unknown:

ε̇v = 1
τv

(ε− εv)D

ρv̇− divσ = f
ρ(v− u̇) = 0

(4.2)

where

σ =
(
2µεD +KtrεI

)
+ 2µV (ε− εv)D

The initial and boundary conditions of the system (4.2) are:

u = g(x, t) for x ∈ Γu, t ∈ [0, T ]
σ.n = T(x, t) for x ∈ Γσ, t ∈ [0, T ]
u(x, t = 0) = u0(x) for x ∈ Ω
v(x, t = 0) = v0(x) for x ∈ Ω
εv(x, t = 0) = 0 for x ∈ Ω

4.2.2. Space-time variational formulation for viscoelasticity
Multiplying the equations of system (4.2) by test functions defined on appro-

priate spaces and integrating over the space-time cylinder Q, the following 3-field
variational formulation is obtained:

Find (u(x, t),v(x, t), εv(x, t)) ∈ Hu ×Hv ×Hε such that ∀ (δu(x, t), δv(x, t),
δεv(x, t)) ∈ Hu

0 ×Hv
0 ×Hε0∫

Q
ε̇vδε̇vdQ−

∫
Q

1
τv

(ε− εv)D δε̇vdQ+∫
Q
ρv̇δu̇dQ+

∫
Q
σε (δu̇) dQ−

∫
Q

fδu̇dQ+
∑
e

∫
Qe
ρ0(üh − v̇h)τ(δüh − δv̇h)dQ

+
∫
Q
ρ (v− u̇) δv̇dQ = 0

(4.3)

Note that the variational formulation here is obtained in the same manner as
the formulations of the precedent chapter. Hu and Hv are defined in Chapter 2,
and Hε = {ε ∈ (H0,1(Q))d, ε(x, t = 0) = 0}

4.2.3. Numerical examples
We propose a test case of a viscoelastic bar submitted to a body load as shown

in Figure 4.2. The representation of the body load chosen for this test case is also

91



4. Space-time Formulations and Internal Variables – 4.3. Finite-strain formulation

sketched in Figure 4.2.

(a) Space-time do-
main

0 t

f(t)

0.25 0.50 4.0

1.0

(b) Body load

Figure 4.2. – Space-time domain of the viscoelastic problem and body load f
applied to the bar

The parameters of the problem are chosen such that L = 1 m and T = 4 s. The
discretization is 90 elements in the time direction and 20 elements in the space
direction and the interpolation is of degree p = 2. The evolution with respect to
time at the center of the bar of the displacement field and the velocity field for
different values of ρ is computed. For ρ small, stabilizing terms are needed in the
variational formulations in order to reduce the oscillations, and we choose τ = 0.02 s.
The results were obtained using different values of µV : µV = 0 (no viscosity is
considered), µV = 0.1 Pa and µV = 0.9 Pa. Figures 4.3, 4.4 and 4.5 show the
evolution of the displacement, velocity and stress fields for ρ = 0.001 kg.m−3 using
the different values of µV . It is clear that the GAC terms play a crucial role in the
stabilization of the oscillations present in the numerical response for the 3 fields.

The same test case was done using a higher value ρ = 1 kg.m−3, see Figure 4.6. No
stabilization terms are needed in this case. Figure 4.6 illustrates the displacement,
velocity and stress fields obtained for different viscosity degrees (i.e for different
values of µV ). The effect of the viscosity is obvious in the representation of this
numerical solution, that seems to be quite accurate. This shows that the space-time
isogeometric method is well-suited for solving linear viscoelastic problems.

4.3. Finite-strain formulation
4.3.1. Nearly incompressible viscoelasticity with internal

variables
4.3.1.1. Local constitutive behavior: the non-linear generalized maxwell

model

To take into account the nearly incompressibility constraint, we proceed as done
in Chapter 3. First, the deformation gradient is decomposed into an isochoric part
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0 1 2 3 4
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
is

p
la

ce
m

en
t

µv = 0

µv = 0.1 Pa

µv = 0.9 Pa

(b) Displacement field with stabilization

Figure 4.3. – Displacement field for the viscoelastic test with and without GAC
stabilizing terms for ρ = 0.001 kg.m−3
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(a) Velocity field without stabilization
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(b) Velocity field with stabilization

Figure 4.4. – Velocity field for the viscoelastic test with and without GAC stabiliz-
ing terms for ρ = 0.001 kg.m−3

and a volumetric part:
F = F̄(J1/31) (4.4)

where J = detF is the volume variation. As seen in Chapter 3, the hybrid energy
concept can be viewed as a generalization of a partial Legendre transform of a
Helmoltz free energy by replacing the volume variation, J , by a pressure like
variable that is noted q. The viscosity is modelled here with internal variables
by a decomposition of the isochoric deformation gradient, F̄, in n elastic and
viscous intermediates deformation gradients with the so-called multiplicative split
(following the concept of intermediate configurations, e.g. [88, 89]):

F̄ = F̄i
eFv

i
i = 1..n (4.5)

where the indice i denotes the ith viscous mechanism. It is important to note
that the intermediate configurations are not uniquely defined (there is an arbitrary
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(a) Stress field without stabilization
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Figure 4.5. – Stress field for the viscoelastic test with and without GAC stabilizing
terms for ρ = 0.001 kg.m−3
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Figure 4.6. – Displacement and velocity fields for the viscoelastic test without
stabilization terms for ρ = 1.0 kg.m−3

rotation). Furthermore, we assume in the following that the viscous flow is purely
incompressible, therefore det(F̄i

e) = det(Fv
i) = 1. Neglecting the effect of the
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temperature (isothermal and adiabatic conditions), the state variables that define
the local behavior are F̄, q,Fv

i. Restricting the model to an isotropic behavior, the
hybrid free energy ϕ can be considered as a function of C̄, C̄i

e, q due to representation
theorem of isotropic functions where C̄ = F̄TF̄ and C̄i

e = F̄iT
e F̄i

e are right Cauchy
green tensors. The hybrid free energy can be related to the internal energy e and
the entropy s through the relation:

ϕ(C̄, q, C̄i
e) = e− sΘ + β(J, q) (4.6)

where the function β allows to relate J and q from a thermodynamical point of view
(duality principle). Combining the first and second thermodynamics principles, we
can obtain the so-called Claussius-Duhem (or Coleman-Noll) inequality in adiabatic
and isothermal conditions:

Φ = Π : Ḟ− ρ0ϕ̇+ ρ0β̇ ≥ 0 ∀ Ḟ (4.7)

where Φ is the dissipation, ρ0(X) is the initial local density and the dot superscript
denotes the so-called material time derivative. The material time derivatives of the
hybrid free energy and volumic energy can be computed such that:

ϕ̇ =
(

2F̄
∂ϕ

∂C̄

)
: ˙̄F + ∂ϕ

∂q
: q̇ +

n∑
i=1

(
2F̄i

e
∂ϕ

∂C̄i
e

)
: ˙̄Fe

i
(4.8)

β̇ = ∂β

∂J
J̇ + ∂β

∂q
q̇ (4.9)

Computing the material time derivative of eqs (4.4) and (4.5), one can show that:

˙̄F = J−1/3
(
I− 1

3F⊗ F−T
)

: Ḟ = P : Ḟ (4.10)

˙̄Fe
i

= ˙̄FFv
i−1
− F̄i

e
˙̄Fv

i
Fv

i−1
(4.11)

Inserting eqs. (4.8-4.11) in eq. (4.7), we obtain the following expression for the
dissipation:

Φ =
(

Π− ρ0

(
2F̄

∂ϕ

∂C̄

)
: P− ρ0

n∑
i=1

(2F̄i
e
∂ϕ

∂C̄i
e
Fv

i−T
) : P + ρ0

∂β

∂J
JF−T

)
: Ḟ

− ρ0

(
∂ϕ

∂q
− ∂β

∂q

)
q̇

+ ρ0

n∑
i=1

(2F̄i
e
∂ϕ

∂C̄i
e
Fv

i−T
) : (F̄i

e
˙̄Fv

i
) ≥ 0 ∀ Ḟ, q̇, ˙̄Fv

i
with Fv

i-T : ˙̄Fv
i

= 0

(4.12)

The restriction Fv
i-T : ˙̄Fv

i
= 0 is due to the incompressible assumption on the

viscous flow that can take the following forms: det(Fv
i) = 1 or Fv

i-T : ˙̄Fv
i

= 0 or
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˙̄Cv
i

: C̄i−1
v = 0.

Assuming that the intrinsic dissipation is only due to the evolution of the
viscous internal variables, we can deduce from eq. (4.12) the following constitutive
equations:

Π =
(

Π̄eq +
n∑
i=1

Π̄i

v

)
: P− ρ0

∂β

∂J
JF−T (4.13)

∂ϕ

∂q
= ∂β

∂q
(4.14)

where Π̄eq = ρ02F̄∂ϕ/∂C̄ is the fully relaxed stress (equilibrium) and Π̄i

v =
ρ0(2F̄i

e∂ϕ/∂C̄i
e)Fv

i−T
is the ith viscous stress. Equation (4.14) gives a compressibil-

ity law that allows the definition of a constitutive relation between q and J . With
these definitions, the remaining terms in the intrinsic dissipation are expressed by:

Φ =
n∑
i=1

Π̄i

v : (F̄i
e
˙̄Fv

i
)︸ ︷︷ ︸

Φiv

≥ 0 ∀ ˙̄Fv
i

with Fv
i-T : ˙̄Fv

i
= 0 (4.15)

The ith viscous contribution can also be rewritten as:

Φi
v =

(
2ρ0Fv

i−1
C̄i

e
∂ϕ

∂C̄i
e
Fv
−T
)

:
(
Fv

iT ˙̄Fv
i
)

(4.16)

By a symmetry property of the first term between parenthesis in eq. (4.16), we
also have:

Φi
v =

(
ρ0Fv

i−1
C̄i

e
∂ϕ

∂C̄i
e
Fv
−T
)

: ˙̄Cv
i

(4.17)

After some calculus, one can show that Fv
i−1

C̄i
e(∂ϕ/∂C̄i

e)Fv
−T = −∂ϕ/∂C̄i

v and
eq. (4.17) can also be rewritten by:

Φi
v =

(
−ρ0

∂ϕ

∂C̄i
v

)
: ˙̄Cv

i
(4.18)

Taking into account the incompressibility constraint on the viscous flow (that can
take the following forms: det(Fv

i) = 1 or Fv
i-T : ˙̄Fv

i
= 0 or ˙̄Cv

i
: C̄i−1

v = 0), eq.
(4.15) can be rewritten as follows:

Φ =
n∑
i=1

(
−ρ0

∂ϕ

∂C̄i
v

: PC̄i
v

)
: ˙̄Cv

i
∀ ˙̄Cv

i
with ˙̄Cv

i
: C̄i−1

v = 0 (4.19)

where PC̄i
v
is a deviatoric projector for the viscous intermediate configuration. It

can be expressed by:
PC̄i

v
=
(
I− 1

3C̄i−1

v ⊗ C̄i
v

)
(4.20)
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The expression in eq. (4.19) exhibits objective thermodynamics fluxes ( ˙̄Cv
i
) and

forces (−ρ0(∂ϕ/∂C̄i
v) : PC̄i

v
) for the Lagrangian viscous flow. Using the framework

of standard generalized materials (e.g. see [36]), we can define a pseudo-potential of
dissipation, ζ( ˙̄Cv

i
), that is a convex function of the thermodynamics fluxes. Using

the normality principle, we can postulate the following flow rules that automatically
satisfies the Clausius-Duhem inequality:

− ρ0
∂ϕ

∂C̄i
v

: PC̄i
v

= ∂ζ

∂ ˙̄Cv
i i = 1..n (4.21)

Equations (4.13),(4.14) and (4.21) define a viscous model that can be viewed as
a parallel assembly (in terms of stresses) of n viscous incompressible elements
with a nearly incompressible hyperelastic element and therefore corresponds to a
Generalized Maxwell model in a Lagrangian formalism.

4.3.2. A space-time mixed variational principle for the
evolution problem

Following the work presented in [73, 72], we propose to define a rate-type mixed
variational principle stating the following potential:

L(u̇, q̇, ˙̄Cv
i
) =

∫
Q

{
ρ0ϕ̇(C̄, q, C̄i

e)− ρ0β̇(J, q) + ζ( ˙̄Cv
i
)
}
dQ−

∫
Q

f u̇dQ−
∫
P

Tu̇dP
(4.22)

The evolution of the displacements, viscous internal variables and pressure-like
stress is determined from the following minimization principle:

{
u̇, q̇, ˙̄Cv

i}
= Arg

 inf
u̇∈Hu

sup
q̇∈Hq

inf
˙̄Cv

i
L(u̇, q̇, ˙̄Cv

i
)
 (4.23)

Considering the variation of the potential previously defined in eq. (4.22), we
can find the Euler equations associated with the previous variational principle:

δu̇L ≡
∫
Q

Π : F( ˙δu)dQ−
∫
Q
fδu̇dQ−

∫
P

Tδu̇dP = 0 (4.24)

δq̇L ≡
∫
Q
ρ0

(
∂ϕ

∂q
− ∂β

∂q

)
δq̇dQ = 0 (4.25)

δ ˙̄Cv
iL ≡

∫
Q

ρ0
∂ϕ

∂C̄i
v

: PC̄i
v

+ ∂ζ

∂ ˙̄Cv
i

 : δ ˙̄Cv
i
dQ = 0 i = 1..n (4.26)

Using the divergence theorem and traction boundary condition allows us to see
that eq. (2.1) corresponds to the local form of the space-time variational. Eqs.
(4.24) and (4.25) correspond to the constitutive compressibility relation and eq.
(4.26) corresponds to the ith Maxwell viscous flow rule. These relations, as well as
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the local constitutive eq. (4.13) for the stress, constitute a mixed form of n + 2
fields of a quasi-static, non-linear, viscous space-time problem formulated in terms
of the rate of the unknowns of the problem.

4.3.3. IGA space-time discretization
We consider the discretisation of the space-time cylinder with NURBS functions.

Using the matrix/vector representation of the tensorial description of the space-time
cylinder, we consider the approximations of the unknown fields u, q, C̄i

v. For the
sake of simplicity, we consider a 1D problem:

uh(ξ, η) = Nu(ξ, η)du

qh(ξ, η) = Nq(ξ, η)dq

C̄1
vh

(ξ, η)− 1 = Nc(ξ, η)dc1

...
C̄n

vh
(ξ, η)− 1 = Nc(ξ, η)dcn

(4.27)

where Nu, Nq and Nc, for fields u, q and C̄i
v respectively. du, dq and dci are the

vectors of degrees of freedom. The continuous space-time approximation allows us
to define the rate of the unknowns from the first derivative of the approximation
functions. In the matrix/vector representation, we have:

u̇h(ξ, η) = Bu
t (ξ, η)du

q̇h(ξ, η) = Bq
t (ξ, η)dq

˙̄Cvh

1
(ξ, η) = Bc

t(ξ, η)dc1

...
˙̄Cvh

n
(ξ, η) = Bc

t(ξ, η)dcn

(4.28)

The discretized variational principle defined at eq. (4.23) then reads
{
du,dq,dc1, . . . ,dcn

}
= Arg

{
statdu,dq,dciLh(u̇h, q̇h, ˙̄Cvh

i
)
}

(4.29)
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We therefore obtain a discrete non-linear system to resolve that consists of cancelling
the following residue: (again for a 1D problem)

R(du,dq,dc1, . . . ,dcn) =



Ae
∫
Qe

BuT

xt ΠdQ−Ae
∫
Qe

BuT

t fdQ

−Ae
∫
Se

BuT

t TdP

Ae
∫
Qe
ρ0BqT

t

(
∂ϕ

∂q
− ∂β

∂q

)
dQ

Ae
∫
Qe

BcT

t

ρ0
∂ϕ

∂C̄1
v

: PC̄1
v

+ ∂ζ

∂ ˙̄Cv
1

 dQ
...

Ae
∫
Qe

BcT

t

ρ0
∂ϕ

∂C̄n
v

: PC̄n
v

+ ∂ζ

∂ ˙̄Cv
n

 dQ



(4.30)

The operator Bu
xt corresponds to the gradient of the rate of the displacement such

that:
∇Xu̇h = Bu

xt(ξ, η)du (4.31)
A standard Newton scheme can be used to solve the system defined in eq. (4.53).

This process consists of an iterative update of the degrees of freedom: d̃u
d̃q
d̃c

⇐
 d̃u

d̃q
d̃c

−
 Kuu Kuq Kuc

Kqu Kqq Kqc

Kcu Kcq Kcc


−1  R̃u

R̃q

R̃c

 (4.32)

The tilde upper-script denotes degrees of freedom that are not prescribed by a
Dirichlet boundary condition and the tilde over the residue denotes a modified
residue to take into account of the Dirichlet boundary conditions (initial conditions
for the evolution problems correspond to Dirichlet boundary conditions on the
space-time domain). The terms of the tangent matrix, K, are defined by:

Kuu = Ae
∫
Qe

BuT

xt ChuBu
xdQ (4.33)

Kuq = Ae
∫
Qe

BuT

xt

(
−ρ0

∂β2

∂J∂q

[
JF−T

])
NqdQ (4.34)

Kuc = Ae
∫
Qe

BuT

xt Chc NcdQ (4.35)
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Kqu = Ae
∫
Qe
ρ0BqT

t

(
∂ϕ2

∂q∂F
− ∂β2

∂q∂J

[
JF−T

])
Bu
xdQ (4.36)

Kqq = Ae
∫
Qe
ρ0BqT

t

(
∂ϕ2

∂2q
− ∂β2

∂2q

)
NqdQ (4.37)

Kqc = Ae
∫
Qe
ρ0BqT

t

(
∂ϕ2

∂q∂C̄i
v

)
NcdQ (4.38)

Kcu = Ae
∫
Qe

BcT

t GuBu
xdQ (4.39)

Kcq = 0 (4.40)

Kcc = Ae
∫
Qe

BcT

t GcNc + BcT

t

∂ζ2

∂2 ˙̄Cv
i B

c
t

 dQ (4.41)

The operator Bu
x corresponds to the gradient of the approximation of the dis-

placement field such that:
∇Xuh = Bu

xdu (4.42)
The matrix terms Chu and Chc are issued from the matrix/vector representation of
the constitutive tangent operator Cu and Cc defined by:

Cu = ∂Π
∂F

(4.43)

Cc = ∂Π
∂C̄i

v
(4.44)

In a similar way, the terms Ghu and Ghc come from the matrix/vector representation
of the following derivatives:

Gu = ρ0
∂

∂F

(
∂ϕ

∂C̄i
v

: PC̄1
v

)
(4.45)

Gc = ρ0
∂

∂C̄i
v

(
∂ϕ

∂C̄i
v

: PC̄1
v

)
(4.46)

4.3.4. Application with invariant-based free energies
(generalized Maxwell model)

We consider here invariant-based energies used to model rubber viscoelasticity.
The hybrid free energy is assumed to be as follows:

ρ0ϕ = c10(I1(C̄)− 3) + c01(I2(C̄)− 3) +
n∑
i=1

µi
2 (I1(C̄i

e)− 3)− k
(

exp( q
k

)− 1
)

+ q

(4.47)
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where I1(•) = tr(•) and I2(•) = 1/2(I1(•)2 + tr(• : •)) are the two first invariants
of a deformation tensor. The compressibility potential β is defined by:

β = q
1− J
ρ0

(4.48)

and the dissipation potential ζ is chosen such that:

ζ =
n∑
i=1

ηi
2

˙̄Cv
i

: ˙̄Cv
i

(4.49)

This model corresponds to a generalized Maxwell model written in the Lagrangian
configuration. The set of material parameters is: {c10, c01, k, µ1, ..., µn, η1, ..., ηn}.
Using eq. (4.13), the first Piola Kirchoff stress can be computed:

Π =
(

2c10F̄ + 2c01F̄(I1(C̄)1− C̄) +
n∑
i=1

µiF̄C̄i−1

v

)
: P + qJF−T (4.50)

The compressibility relation is given by eq. (4.14):

− exp
(
q

k

)
= −J (4.51)

and the ithviscoelastic flow rule is obtained from eq. (4.21):

µi
2
(
C̄i−1

v C̄C̄i−1

v

)
: PC̄i

v
= ηi

˙̄Cv
i

(4.52)

At last, the residual system (eq. (4.53)) can be rewritten such that:

R(du,dq,dc1, . . . ,dcn) =



Ae
∫
Qe

BuT

xt ΠdQ−Ae
∫
Qe

BuT

t fdQ

−Ae
∫
Se

BuT

t TdP

Ae
∫
Qe

BqT

t

(
− exp

(
q

k

)
+ J

)
dQ

Ae
∫
Qe

BcT

t

(
−µ1

2
(
C̄
)

: PC̄1
v

+ η1
˙̄Cv

1)
dQ

...

Ae
∫
Qe

BcT

t

(
−µn2

(
C̄
)

: PC̄n
v

+ ηn
˙̄Cv

n)
dQ



(4.53)
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4.4. Numerical applications
4.4.1. Homogeneous traction

We consider the case of a homogeneous cyclic tension/compression test in plane
strain. The computational domain is a unit cube that corresponds to a unit square
space domain on the time interval [0, 1]. We use symmetric boundary conditions
on the space-time domain to obtain homogeneous strain and stress fields. We
apply initial conditions and cyclic (harmonic) displacements on one side of the
space-time domain (see Figure 4.7). To impose the sinusoidal signal, we first have
to interpolate it with B-spline functions to define the correct values at control
points (recall the non-interpolant behavior of the B-spline basis). We followed
algorithms given in [82].

t

x

y

uy(x,0,t)=0

ux(0,y,t)=0

ux(x,y,0)=0
uy(x,y,0)=0
q(x,y,0)=0

uy(x,1,t)= 

Figure 4.7. – Boundary and initial conditions on the space-time domain for the
homogeneous traction test

For this test, a semi-analytical solution can be obtained. Using the homogeneity
of the stress and strain fields, we have:

F =


J
λ

0 0
0 λ 0
0 0 1

 , λ(t) = 1 + a0sin(2πft) (4.54)

Therefore, the left Cauchy-Green tensor and the first strain invariant are given by:

C̄ =


J4/3

λ2 0 0
0 λ2

J2/3 0
0 0 1

J2/3

 , I1 = (1 + λ2 + J2

λ2 )J−2/3 (4.55)

The ith viscous strain is assumed to be of the following form:

C̄i
v =

 αi11 0 0
0 αi22 0
0 0 αi33

 (4.56)

The non-zero component of the first Piola-Kirchoff stress can be obtained from eq.
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(4.50) and using the traction boundary conditions, Πxx = 0, one can obtain the
following expression for q:

q = 1
3J2λ2

(
2c01(2λ4 − J2(1 + λ2)) + 2c10J

2/3(−2J2 + λ2 + λ4)

+
n∑
i=1

µiJ
2/3
(
λ2

αi33
+ λ4

αi22
− 2J2

αi11

) (4.57)

Replacing q in Πyy = 0, one has:

Πyy = 2
Jλ3 (c01 + c10J

2/3)(λ4 − J2) +
n∑
i=1

µi(
λ

αi22J
1/3 −

J5/3

αi11λ
3 ) (4.58)

Considering the compressibility relation defined in eq. (4.51) into eq. (4.57), one
obtains a non-linear equation that relates J, λ, αi11, α

i
22, α

i
33. Additionally to this

non-linear equation, we can obtain the ith differential system that corresponds to
the viscous flow defined at eq. (4.52):

α̇i11 = µi
2ηi

(2
3J

4/3λ−2αi
−2

11 −
1
3J
−2/3αi11(λ2αi

−3

22 + αi
−3

33 )
)

(4.59)

α̇i22 = µi
2ηi

(2
3J
−2/3λ2αi

−2

22 −
1
3J
−2/3αi22(J2λ−2αi

−3

11 + αi
−3

33 )
)

(4.60)

α̇i33 = µi
2ηi

(2
3J
−2/3αi

−2

33 −
1
3J
−2/3(J2αi

−3

11 + λ4αi
−3

22 )
)

(4.61)

The previous system of equations was implemented with Mathematica [101] using
the function NDSolve.
Adopting the material parameters given in table 4.1, we compute the first four

periods of the stress response with the following loading parameters: a0 = 0.3
and f = 4Hz. Figure 4.8 shows a comparison between the solution obtained with
Mathematica, the one obtained with standard FE, and the one obtained with the
ST-IGA. For the FE model, we used a backward Euler scheme to integrate the
viscous flow rules. For ST-IGA and FE, as the solution is homogeneous in space,
we only used one element (of order 2 for both models in space). We vary the mesh
size in time for ST-IGA (dt = 1/40 means 40 elements in the [0, 1] time interval)
and with the time increment for FE. As expected, the stress response is smoothly
captured with the ST-IGA. If we consider the solution computed with Mathematica
to be the reference, we can compute the following L2 error:

errST−IGA,FE =
∫ 4/f

0

(
ΠMathematica
yy (t)−ΠST−IGA,FE

yy (t)
)2
dt (4.62)

Figure 4.9 clearly shows a faster convergence of ST-IGA compared to the standard
backward Euler FE scheme: for this problem, the convergence rate is 6 times higher
with ST-IGA (with p=2) than with the standard backward FE Euler scheme.
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Figure 4.8. – Comparisons of the hysteresis computed with Mathematica, FE with
backward Euler time integrator and ST-IGA.
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Figure 4.9. – L2 error on the stress response computed from a reference obtained
with Mathematica

4.5. Conclusion
In this chapter, the viscoelastic problem was treated by considering the unknown

of this problem as internal variables: a deformation field was considered, which is
different from the strategy found in literature, for which the viscosity is considered
as an extra part of the displacement field. Thanks to this strategy, we solved the
viscoelastic problem of Zener’s viscoelastic model for linear and non-linear cases.
Small and finite strain cases were considered in this study. In the linear case,

c10 (MPa) c01 (MPa) k (MPa) µ1 (MPa) µ2 (MPa) η1 (MPa.s) η2 (MPa.s)
1.0 0.1 10000 0.8 1.9 0.01 0.09

Table 4.1. – Material parameters
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accurate numerical results were obtained. GAC stabilizing terms were added to the
formulation when the solution needed to be stabilized. Moreover, at finite strains,
a comparison of convergence was made between the ST IGA method and the finite
element method with backward Euler time scheme. We showed on this simple test
that the convergence rate obtained with the ST IGA is 6 times higher than the
one obtained with the standard backward FE Euler scheme. All these results show
that the space-time method is a good candidate for solving viscoelastic problems.
The extension to more complicated viscoelastic models should be further studied.
Moreover, applications to viscoplastic model could be carried out in future. In the
case of generalized Maxwell behavior, it would be interesting to study asynchroneous
strategies to see if there is an interest of such methods when characteristic times of
viscosity are different (long term and short term of relaxation).
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Conclusion
In this work, we propose a preliminary study of the numerical performances of

the space-time isogeometric method in the context of multi-field mechanical formu-
lations. This was done using an existing Java object-oriented hierarchy initially
designed for solving multi-field coupled problems at finite strains.

First, a detailed state of art was given for the space-time method based on FE
and IGA schemes. We gave references where the space-time method was used
for the solving of different kinds of problems: elastodynamics problems [48, 47],
thermomechanical problems [65, 59], fluid flow problems [91, 93], heat transfer
problems [39, 77], viscoelastic problems [83, 67], etc. We showed that the references
concerned the space-time method used on one hand in a context of finite element
interpolation or with an isogeometric interpolation, and on the other hand using
the continuous or the discontinuous Galerkin method. We also showed that in the
literature, only few applications exist for the space-time method combined with
the IGA. This may be due to the fact that these two methods are considered to
have high numerical cost, especially when combined. The global efficiency of ST
IGA is an issue, but it could be overcomed with the power of massively parallel
computers available nowadays, especially with the emergence of many techniques
of parallel time integration that solve the complete system in parallel, making it
possible to adopt the space-time methods without any difficulty.

Second, we developed a space-time variational formulation for elastodynamics
equation. We used a special form of test functions that are derived in time and
a comparison of the use of regular test functions and derived ones was provided.
In the context of problems where an impact is imposed in the initial conditions,
extra terms are obligatory to be employed in the variational formulation in order
to reduce the oscillations exhibited in the response. These are least-square terms
that help in reducing the oscillations in the solution. We propose an alternative
form of least-square terms that we added into the variational formulation that
make the formulation straightforwardly applied in non-linear cases, which is not
quite easy to do while having to implement least-square terms. We applied the
space-time isogeometric method on different types of elastodynamics problems :
linear ones such as problems at small strains and non-linear ones at finite strains
for compressible and nearly-incompressible materials. Optimal convergence rates
were obtained for high orders as well because employing the IGA allowed us to
employ high order interpolation degrees in an natural and immediate way. Different
comparisons were provided between the ST-IGA formulations on one hand and
continuous ST-FEM ones and semi-discrete FEM simulations with the HHT scheme
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on the other hand.

Third, we applied the space-time isogeometric method on mutiphysics problems
: we used the method for the resolution of thermomechanical problems in both
linear and non-linear cases. We showed that the method is accurate when having
problems where different fields are involved, mechanical and thermal ones in this
case. The variational formulations used concerned 3 fields that are the displacement,
the temperature and the velocity. Optimal convergence rates were obtained for
this type of problems as well. Moreover, we proved that the space-time solution
remains accurate when using one order lower for the temperature field on one hand,
and a smaller grid for the temperature also on the other hand. This shows that
heterogeneous asynchronous schemes are possible to be built while applying the
space-time methods. This feature gives important aspects for the method because
it means that the method can be used with lower cost.

At last, the space-time isogeometric method was applied for problems having
internal variables. The viscoelastic problem was treated at small and finite strains
where the viscosity was employed being an internal variable, and new variational
formulations were proposed. Accurate solutions were obtained proving once again
the power of the space-time method in the resolution of different kinds of problems.

The global aim of our work was achieved in the sense that we have developed
and examined trustable space-time IGA mixed formulations for elastodynamics,
thermomechanical and viscoelastic problems at small and large strains. The next
step would be to extend the framework to other problems having other origins
of complexity. For instance, we can combine the methods developed here with
phase field formulations to deal with fracture mechanics. We can also explore the
potential of discontinuous formulations to deal with viscoplastic behaviors, damage
or contact problems.

We think that the space-time methods may be promising in the resolution of
industrial problems. Compared to classical time-stepping methods, these methods
could be more effective in some cases. We proved that they help achieve more
stability in numerical schemes compared to explicit solvers where the CFL condition
is necessary to be fulfilled. Moreover, we showed that they can be more energy con-
servative than traditional schemes. They also allow to control numerical oscillations
that can be encountered when solving problems with discontinuities such as impact
problems. Even if it remains a lot of technical work and software developments
to deal with real industrial problems, all these advantages make the space-time
methods a good candidate in solving large industrial problems, especially with the
development of computers and technologies of nowadays, making the use of huge
parallel solvers possible.
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Appendices

A. Heat Equation
A.1. Model Problem
The parabolic heat equation has the following form:

ρCθ̇ + divq = r (.1)

where θ is the temperature field, the vector field q denotes the heat flux, r
is the external heat supply, ρ is the material density, C is the specific heat,
q = −Kθgradθ is the heat flux density linearly dependent of the gradient of the
temperature (Fourier’s law); Kθ is the conductivity.
The problem’s boundary and initial conditions are the following:

θ = h(x, t) for x ∈ Γθ, t ∈ [0, T ]
q.n = q̄(x, t) for x ∈ Γθ, t ∈ [0, T ]

(.2)

where n(x) is the normal to the boundary Γθ, h is the prescribed boundary
temperature, q̄ is the prescribed boundary heat flux.

A.2. Space-Time Variational Formulation
We use classical test functions for this simple parabolic problem and so we have

the following space-time variational formulation:

Find θ(x, t)) ∈ Hθ, such that ∀ δθ(x, t) ∈ Hθ
0∫

Q
ρCθ̇δθdQ+

∫
Q
KθgradθgradδθdQ−

∫ T

0

∫
Γθ

q.nδθdQ−
∫
Q
rδθdQ = 0

(.3)

A.3. Convergence Tests
We consider the space-time domain Q = (0, 1)2. The parameters of the problem

are chosen such that Kθ = 100W/(m.K), C = 1kg.m2

K.s2
and ρ = 1kg.m−3. The

right-hand side of the equation is calculated such that θexact = sin(2πx)sin(2πt),
and therefore we have f = 2πsin(2πx)cos(2πt) + 4π2Kθsin(2πx)sin(2πt).
The domain of study is illustrated in Figure .1 with homogeneous Dirichlet

boundary and initial conditions. The convergence curves concerning L2 errors of

I



Appendices – B. Elastodynamics

Figure .1. – Domain of study in space-time with homogeneous boundary and initial
conditions for the heat equation

the temperature field for this space-time IGA problem are represented for several
degrees p of B-spline functions of maximum continuity order and several values of
thermal conductivity Kθ.

Figure .2. – Convergence curves for the L2-errors concerning the heat equation for
degrees p = 1, 2, 3 and 4

As it is shown in Figure .2, optimal convergence rates are obtained. In other
words, we always find a slope of p+ 1, where p is the degree of the basis functions.
The formulation of the problem is convergent on the test case considered.

B. Elastodynamics
B.1. Test functions vs their derivatives in time

A numerical study is given in order to be able to compare and decide which type
of test functions works better than the other and gives a more accurate response.
To do so, we will first start by a simple test case where we will be taking the
classical linear elastodynamics equation applied on a 1D elastic bar of length L.
Homogeneous Dirichlet initial and boundary conditions are taken for the sake

of simplicity. The space-time domain is represented in Figure .3 . We impose the
body load f = ρ2sin(2πx)[(t− T )2 + 4t(t− T ) + t2] + 4π2t2(t− T )2sin(2πx) such
that the exact solution is: uexact = t2(t− T )2sin(2πx).
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Figure .3. – The space-time domain concerning the wave propagation problem
along with the corresponding boundary and initial conditions

(a) Space-time errors for displacement (b) Space-time errors for velocity

Figure .4. – Convergence curves in L2-errors for displacement and velocity con-
cerning the elastodynamics problem for degrees p = 1, 2 and 3 using
classical test functions

The convergence curves of this problem in norm L2 are plotted and optimal
convergence curves are obtained for both cases. Figure .4 shows the optimal conver-
gence rates obtained for the displacement using a variational formulation containing
classical test functions. Obviously, optimal convergence rates are obtained. In
other words, we obtain slopes of p+ 1 for every degree p used.

Optimal convergence curves were also obtained for the case where the variational
formulation consisted on test functions derived in time. These convergence curves
are plotted in Figure .5 and the figure shows that optimal convergence rates are
obtained for this test case also.
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(a) Space-time errors for displacement (b) Space-time errors for velocity

Figure .5. – Convergence curves in L2-errors for displacement and velocity concern-
ing the elastodynamics problem for degrees p = 1, 2 and 3 using test
functions derived in time

It is noticed from the convergence curves that one must not use a large number
of elements in the discretization, especially when using a high value of the degree p
(such as p = 4, for example).
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