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RÉSUMÉ DE LA THÈSE

Étude des interactions hadron-hadron en théorie effective des champs

A. Introduction

Nous savons maintenant que notre univers est régi par 4 forces fondamentales: la gravitation, l’électromagnétisme,

la force forte et la force faible. Alors que la gravitation concerne principalement les plus grandes structures de

l’univers, les trois autres forces sont responsables de la dynamique des structures les plus petites, autrement dit des

particules élémentaires, dont les dimensions sont inférieures de 39 ordres de grandeur à celles des grandes struc-

tures. La théorie de ces trois dernières forces constitue le fameux Modèle Standard au sein duquel l’interaction

forte est décrite par la chromodynamique quantique (QCD).

La QCD a été largement développée dans la deuxième moitié du siècle dernier. La résolution d’une séries de

paradoxes apparents, comme le fait que l’on n’observe pas de quarks isolés, a nécessité une réflexion approfondie

qui a révélé deux propriétés essentielles de la QCD. La première est l’hypothèse du confinement de la couleur

qui implique que seules les particules neutres en couleur, comme les mésons ou les baryons, sont physiquement

observables alors même que les degrés de liberté de base de la théorie, les quarks et les gluons, ont des charges de

couleur. La deuxième propriété est la liberté asymptotique qui peut être simplement formulée comme le fait que

la constante de couplage devient petite quand le moment de transfert devient grand et, au contraire, la constante

de couplage augmente quand le moment de transfert devient petit. Cette propriété implique qu’à basse énergie, le

couplage est grand ce qui rend le développement perturbatif inapplicable alors qu’il donne de bons résultats à haute

énergie. Pour résoudre la QCD dans ce domaine des basses énergies, deux types d’approches ont été développées:

d’une part les théories effectives de champs (EFT) et d’autre part, plus directement, la résolution numérique par

discrétisation sur un réseau.

Le théorie effective des champs est une approximation de la QCD dans le domaine de basse énergie. L’idée

principale est que les interactions dans le régime de basse énergie sont découplées de celles du domaine des hautes

énergies. Par ailleurs, dans ce domaine, la présence de mésons très légers en QCD, qui peuvent s’interpréter

comme des pseudo-bosons de Goldstone (associés à la brisure spontannée de la symétrie chirale) joue un grand

rôle. En pratique, on introduit de nouveaux paramètres qui absorbent les contributions de ce domaine des hautes

énergies. Il est alors nécessaire d’introduire une échelle d’énergie, Λ, que l’on appelle “l’échelle dure”, qui définit
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explicitement la délimitation entre les régimes des basses et des hautes énergies. Ainsi, l’échelle Λ caractérise

avec précision le domaine d’énergie dans lequel l’EFT est applicable. D’un autre côté, on peut toujours introduire

une échelle Q “molle” en référence aux impulsions externes ou aux masses des quarks légers. De cette façon

s’introduit la quantité petite Q/Λ << 1, qui est le paramètre fondamental du développement perturbatif basé

sur l’EFT. De plus, une fois ce développement effectué pour une observable, il devient possible de déterminer

l’importance relative des diverses contributions.

Cette méthode est appliquée en pratique à l’aide de règles de comptage des puissances qui permettent d’évaluer

l’importance de chaque diagramme de Feynman en fonction de l’ordre de chacun de ses vertex et du nombre de

boucles du diagramme. Ces règles de comptage permettent de déterminer sans ambiguı̈té l’ordre du lagrangien

qu’il est nécessaire de considérer ainsi que les diagrammes de Feynman à calculer afin d’évaluer une amplitude à

un ordre donné. On peut ainsi organiser les amplitudes en fonction de leur ordre déterminé par les règles de comp-

tage des puissances ce qui permet d’explorer les corrections d’une manière systématique. Bien que, formellement,

l’EFT puisse se substituer à une résolution non perturbative de la QCD à basse énergie et donne lieu à de nom-

breuses prédictions, le principal inconvénient est que le nombre d’opérateurs augmente rapidement avec l’ordre,

de sorte qu’en pratique, cette approche n’est applicable qu’aux premiers ordres.

Bien qu’étant un outil puissant pour l’interaction forte à basse énergie, l’EFT chirale (ou ChPT) n’en reste pas

moins un développement perturbatif en fonction des masses des mésons légers et de leurs impulsions. Dans ce

cadre, l’EFT n’est pas capable d’engendrer les résonances que peuvent former les systèmes de plusieurs mésons

légers, qui sont des phénomènes non perturbatifs. Dans cette thèse, je présenterai deux méthodes de resommation

de ce développement qui permettent de contourner cette limitation en s’appuyant sur la propriété d’unitarité des

amplitudes. L’une d’elle utilise l’équation de Bethe et Salpeter associée à une prescription sur-couche et l’autre est

une méthode plus générale qui s’avère efficace pour les amplitudes calculées à un ordre élevé.

Dans cette thèse, j’appliquerai la théorie effective des champs à l’étude de trois types d’interactions hadron-

hadron: l’interaction entre un baryon charmé et un méson pseudo-Goldstone, l’interaction entre un baryon ordi-

naire et un méson pseudo-Goldstone et finalement à des interactions entre deux mésons pseudo-Goldstone, des

aspects différents seront considérés dans chacun des cas. Ces trois études font l’objet de trois parties de la thèse

qui sont présentées ci-dessous.

Partie I:

Des phénomènes nouveaux ont été récemment mis en évidence dans la physique des saveurs lourdes autour,

par exemple, du boson X(3872) découvert par la collaboration BELLE, ou du baryon Λc(2595), qui ont suscité

un intérêt très fort de la part des physiciens. Des explications théoriques basées sur plusieurs types de modèles

ont été proposées, en particulier des modèles de type moléculaire faiblement liés et des modèles multiquarks

(tetraquarks, pentaquarks) faisant appel à la symétrie chirale, l’unitarité ainsi que la symétrie de quarks lourd, qui

est particulièrement utile.

Dans ce contexte nous avons étudié l’interaction entre un baryon mono-charmé et un méson pseudo-scalaire
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léger dans la théorie de perturbation chirale unitarisée se basant sur les amplitudes chirales calculées à l’ordre dom-

inant. Nous nous focalisons sur les aspects non-perturbatifs, tels que les resonances et leurs propriétés. Nos calculs

montrent que les interactions sont suffisamment fortes pour que la resommation génère des résonances (génération

dite dynamique). Certains états peuvent être comparés de manière naturelle à des états observés expérimentalement

tels que le Λc(2595) (Λ∗c(2625)). Une fois ajusté un paramètre (constante de soustraction en régularisation dimen-

sionnelle ou valeur du paramètre de coupure en régularisation par coupure) de manière à reproduire les masses

expérimentales, nous prédisons également un certain nombre d’états supplémentaires qui n’ont pas encore été

observés.

Anticipant l’arrivée prochaine de résultats sur les longueurs de diffusion provenant de simulations de QCD sur

réseau, comme il en existe déjà pour les baryons légers, nous avons calculé les longueurs de diffusion entre les

baryons charmés et les mésons pseudo-scalaires. La comparaison entre nos résultats et le calcul en ChPT à O(p3)

confirme qu’il y a effectivement une attraction forte dans certains des canaux couplés ce qui suggère que des états

puissent être générés dynamiquement.

Dans le but d’améliorer la description des interactions, nous avons utilisé l’EFT pour effectuer le calcul complet

des contributions sous-dominantes (NLO) dans le développement de basse énergie. Malheureusement, on doit

alors faire face à une augmentation du nombre de paramètres. Les données expérimentales disponibles ne sont

pas suffisantes pour déterminer quantitativement tous les paramètres présents dans le lagrangien à cet ordre sous-

dominant et on ne peut utiliser que des contraintes de naturalité sur leur ordre de grandeur. Nous n’avons donc pas

pu faire de prédictions quantitatives basés sur ce calcul NLO mais nous avons pu montrer que les prédictions que

nous avions faites sur l’interprétation moléculaire du Λc(2595) et de son partenaire 3/2− n’étaient pas remises en

cause par les corrections NLO.

Afin de mieux préciser les composantes du baryon Λc(2595) comme état généré dynamiquement, nous avons

fait appel à deux approches communément utilisées: le critère d’état composite de Weinberg et l’évolution en

grand Nc. Nos résultats montrent que si l’importance relative de chaque voie dans un système de canaux couplés

ne peut pas être établie de manière non dépendante d’un modèle, l’image de base d’une composante meson-baryon

essentielle pour le Λc(2595) est bien confirmée. Notre étude montre que la façon habituelle de définir un état

composite dépend des canaux pris en considération ainsi que du schéma de renormalisation utilisé pour éliminer

les divergences des fonctions de boucle dans les approches par unitarisation. L’image moléculaire est par ailleurs

renforcée par notre étude de la variation de la masse et de la largeur du Λc(2595) en fonction du nombre de couleurs

en QCD. Nous montrons, en effet, que cette variation est très différente de celle d’un baryon ordinaire formé de 3

quarks.

Partie II:

Les collisions élastiques entre un méson et un baryon, tous deux légers, sont des processus fondamentaux qui

permettent de tester notre compréhension de l’interaction forte et qui jouent également un rôle important pour

étudier les propriétés des baryons isolés et des systèmes multi-baryons. Les interactions des bosons de Nambu-
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Goldstone entre eux sont fortement contraintes par la symétrie chirale ce qui implique que la puissance prédictive

de la ChPT est la meilleure dans le secteur purement mésonique. Dans le secteur à un baryon la prédictivité est

moins bonne à cause du nombre important de constantes de basses énergie qui s’introduisent. Une complication

supplémentaire vient du problème de la brisure du comptage des puissances en régularisation dimensionelle pour

la ChPT en présence d’un baryon (BChPT). Dans les dernières décennies, plusieurs solutions ont été proposées à

ce problème. Celles qui ont été le plus étudiées sont la méthode du baryon lourd (HB), la méthode de régularisation

infrarouge et, enfin, l’approche dite de renormalisation étendue sur couche de masse (EOMS). Il est devenu clair

dans les années récentes, à la fois formellement et empiriquement, que cette approche EOMS satisfait à la fois

toutes les contraintes de symétrie ainsi que celle d’analyticité (ce qui n’est pas le cas des autres méthodes) et

converge également plus rapidement que les autres.

Dans cette partie de la thèse, nous nous concentrons principalement sur les contributions à une boucle aux

amplitudes de diffusion méson-baryon, sur la renormalisation et sur la convergence. Nous avons étudié la diffu-

sion élastique avec le développement à trois saveurs (symétrie SU(3)) et dans le cadre chiral covariant jusqu’à

l’ordre p3. Nous avons considéré principalement les canaux πN (I=1/2, 3/2) ainsi que les canaux KN (I=0, 1)

pour lesquels des mesures expérimentales existent. Nous avons appliqué la méthode EOMS afin de rétablir le

comptage correct en puissance et nous avons ensuite déterminé les constantes de couplage par fit conjoint sur les

déphasages expérimentaux des deux canaux. Nous parvenons ainsi à une bonne description du canal πN jusqu’à

une énergie de 1.16 GeV et du canal KN jusqu’à 1.52 GeV. Pour πN nos résultats dans le développement SU(3)

sont comparables en qualité aux résultats SU(2) et bien meilleurs que ceux de l’approche HB en SU(3). Pour les

canaux KN , nous montrons que la connaissance des déphasages n’est pas suffisante pour déterminer de manière

unique la totalité des constantes de couplage.

Nous avons également étudié la possibilité de reproduire à la fois les masses de l’octet des baryons et les pro-

priétés de la diffusion méson-baryon dans le cadre du développement à l’ordre p3. Ainsi, nous déterminons d’abord

les trois constantes de couplage b0, bF , bD à l’aides des masses et effectuons ensuite le fit des déphasages des on-

des partielles en les maintenant fixés. Nous trouvons qu’une description simultanée des masses et des amplitudes

méson-baryon est possible avec le développement chiral EOMS à l’ordre p3 mais une étude plus systématique des

ordres supérieurs serait nécessaire.

Les longueurs de diffusion des canaux πN et KN que nous prédisons sont en bon accord avec les résultats HB

ainsi qu’avec les mesures expérimentales. Par ailleurs, nous avons étudié la convergence du développement BChPT

pour les amplitudes meson-baryon. On observe une cancellation importante entre les ordres NLO et NNLO ce qui

pourrait suggérer une convergence lente, similaire a celle du développement en SU(2). Toutefois, dans le secteur

à un baryon, l’augmentation de l’ordre chiral se fait unité par unité, il est possible que des cancellations s’opèrent

entre les ordres pairs et les ordres impairs adjacents. Cela a été observé dans l’étude des masses du décuplet de

baryons.

Le canal particulièrement intéressant K̄N et sa résonance proche du seuil Λ(1405) n’a pas été pris en compte
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dans notre analyse. Dans notre travail, nous avons effectué le calcul perturbatif des amplitudes méson-baryon

à l’ordre p3. Une extension intéressante (que nous projetons d’explorer ultérieurement) serait d’appliquer une

méthode de resommation non perturbative sur notre résultat ce qui permettrait d’inclure ce canal K̄N dans notre

analyse. Ainsi, il deviendrait possible de déterminer la totalité des constantes de couplage qui apparaissent dans le

lagrangian à l’ordre p3.

Partie III

Dans cette dernière partie nous nous intéressons au secteur des mésons. Dans le cas de la diffusion meson-

meson dans l’isospin I=0, des méthodes théoriques s’appuyant sur la ChPT ont permis d’établir l’existence de la

résonance large f0(500) et de déterminer avec précision ses propriétés ainsi que celles de la résonance f0(980).

Cela a été possible grâce à la disponibilité de résultats expérimentaux de diffusion ππ → ππ et ππ → (KK̄)I=0

détaillés et précis. La situation est différence dans le cas de l’isospin I = 1 et des résonances a0(980), a0(1450)

car on ne peut pas accéder expérimentalement aux amplitudes de diffusion πη → πη ou πη → (KK̄)I=1. Les

propriétés de ces amplitudes et du méson a0(980) doivent être reconstruites en analysant les effets de rediffusion

du système πη produit dans un état final.

Dans cette partie de la thèse nous avons reconsidéré la diffusion d’une paire méson-méson isovecteur produite

dans l’état final par collision de deux photons. Pour cela nous avons appliqué le formalisme des équations intégrales

d’Omnès-Muskhelishvili en utilisant pour l’onde J = 0 un modèle de matrice de diffusion à deux canaux (πη,

KK̄) construit à partir des amplitudes chiralesO(p4) unitarisées par une méthode de type matriceK. Notre modèle

d’amplitude photon-photon prend aussi en compte l’effet des échanges de mésons vecteurs légers dans les voie

croisées t, u ainsi que la résonance tenseur dans la voie directe J = 2, décrite simplement par la forme de Breit-

Wigner. Les paramètres du modèle sont ajustés à l’aide des résultats expérimentaux récents de haute statistique

sur γγ → π0η, γγ → KSKS obtenus par la collaboration Belle. Nous trouvons deux solutions différentes à la

minimisation du χ2. Une de ces solutions produit une résonance a′0 légère et étroite très similaire à celle trouvée

dans l’analyse effectuée par la collaboration Belle. Bien que permise formellement, nous présentons des arguments

indiquant que cette solution est probablement non physique et doit être rejetée. La solution correspondant au

deuxième minimum contient une résonance a′0 large.

Concernant la résonance a0(980) nous trouvons qu’elle est générée par nos amplitudes ajustées aux données γγ

comme un pôle sur le deuxième feuillet de Riemann avec une masse et une largeur compatibles avec les moyennes

données par le PDG et un fort couplage aux deux canaux π0η etKK̄. La encore, nos résultats diffèrent de l’analyse

effectuée par Belle avec une méthode plus naive consuisant à une résonance a0(980) dont la masse et la largeur

sont nettement plus élevées que les valeurs du PDG et qui ne se couple qu’au canal π0η.

Conclusion

En résumé, la théorie effective des champs s’est imposée comme un des outils les plus performants pour

l’étude des interactions hadron-hadron. Dans cette thèse, nous avons appliqué l’EFT pour étudier la génération
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dynamique de baryons charmés au sein de la nouvelle famille de hadrons contenant des quarks lourds et nous avons

exploré la structure d’un état typique, le Λc(2595), en utilisant le critère d’état composite et le développement en

grand Nc. Nous avons par ailleurs étudié la renormalisation et les propriétés de convergence du développement

perturbatif chiral en considérant les amplitudes méson-baryon. Finalement, nous avons reconsidéré l’interaction

méson-méson isovecteur en utilisant la production dans les collisions photon-photon et en s’appuyant sur des

méthodes rigoureuses de traitement de la rediffusion dans l’état final ainsi que sur des contraintes expérimentales

récentes provenant de la collaboration Belle.
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Abstract

With the development of accelerator and detector techniques, experimentalists have obtained quite a large amount

of data on hadron-hadron interactions with much higher statistics based on large experimental accelerators such as

BEKB, LHC, BEPC and so on, revealing a large variety of phenomena for theoretical researches. In order to pro-

vide a reliable understanding on these experimental data, theorists continually investigate new models or improve

the original ones. Among all the approaches for studying hadron-hadron interactions in the low energy regime,

the Effective field theory(EFT) has now become one of most popular approaches. Due to the asymptotic freedom

and the color confinement, the fundamental theory for the strong interaction, quantum chromodynamics(QCD) is

perturbative at high energy, while at low energies it is in a strongly coupled and confining regime and perturbation

theory is not applicable. With the chiral symmetry and its spontaneous breaking fully taken into account, chiral

perturbation theory and its unitary version make it possible to improve the descriptions order by order according

to a certain power counting rule. One can thus improve the description systematically and evaluate the uncer-

tainties. Applications to hadron-hadron interactions, including meson-meson, meson-baryon and baryon-baryon

interactions have turned out to be very successful.

In the present work, we first briefly introduce the main idea of effective field theory. Then we study three

typical scattering processes as examples to show how EFT helps to understand experimental data and further more,

its power for predicting the unmeasured ones.

• Part I: In this part we investigate the interactions between singly charmed baryons and Goldstone bosons

with a unitary chiral perturbation theory combined with approximate heavy quark symmetry. We compare

different regularization methods for the two-point integral. In the lowest order, we fix the only free parameter

in our model by reproducing the Λc(2595) and predict a number of resonances. We then extend our study to

include the next-to-leading order contributions. Further more, we utilize the compositeness rules and large

Nc expansion to study the internal structure of Λc(2595).

• Part II: In this part we study the interactions between ground state baryons and pseudoscalar mesons up to

one loop level with covariant SU(3) baryon chiral perturbation theory. We apply the extended-on-mass-shell

scheme to absorb the Ultraviolet divergences and power counting breaking terms. For the first time we

perform a combined fit for both πN and KN scattering phase shifts. Further more, we perform a global

fit to meson-baryon scattering phase shifts and baryon masses and show that it can provide a reasonable
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description of the experimental data. In the end of this part we discuss in detail the convergence of covariant

BChPT.

• Part III: In this part, we study the πη interaction with isospin I = 1 as final state interactions in photon-

photon scattering. Muskhelishvili-Omnès (MO) representation based on dispersion relations and analytical

properties of amplitudes are applied. The most recent experimental data on γγ → πη and γγ → KSKS

with much higher statistics from the Belle Collaboration are used to fix the parameters of our model, with

which we calculate the positions of a0(980) and a0(1450), whose information still remains ambiguous.

Keywords: effective field theory, chiral perturbation theory, hadron-hadron interactions
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Résumé

Les progrès techniques dont ont bénéficié les accélérateurs de particules ainsi que les détecteurs ont permis aux

expérimentateurs de collecter des résultats sur un grand nombre d’interactions hadron-hadron, avec de grandes

statistiques auprès d’accélérateurs tels que KEK, LHC, BEPC ce qui fournit de nombreux sujets d’étude pour les

théoriciens. Ces derniers développent de nouveaux modèles ou améliorent de plus anciens afin de fournir des

explications fiables aux divers phénomènes qui sont observés. Parmi les nombreuses approches utilisées pour

décrire les interactions hadron-hadron à basse énergie, celles qui se basent sur la théorie effective des champs

(EFT) deviennent les plus populaires. La théorie fondamentale des interactions fortes, la QCD, est perturbative

aux grandes énergies (liberté asymptotique) mais pas aux basses énergies où la physique associée est dominée

par le couplage fort et le confinement. Dans le régime de basse énergie on substitue à la QCD l’EFT dont le

degrés de liberté sont les hadrons, mésons et baryons, et non plus les quarks et les gluons. Dans ce cadre, la

brisure spontanée de la symétrie chirale est prise en compte et un développement perturbatif chiral est possible sur

lequel sont également applicables des méthodes d’unitarisation. Des règles de comptage en puissance peuvent être

introduites qui permettent la description d’une interaction hadron-hadron ordre par ordre. On peut ainsi améliorer

la description de manière systématique et faire une évaluation des incertitudes. Cette approche a été appliquée avec

succès aux diverses classes d’interaction hadron-hadron: méson-méson, méson-baryon et baryon-baryon.

Dans le présent travail, nous présentons tout d’abord brièvement les idées de base de la théorie effective des

champs. Nous étudions ensuite trois processus de diffusion hadron-hadron, ayant chacun un intérêt particulier,

dans le cadre de l’EFT. Nous montrerons ainsi la capacité de cette approche à expliquer les observables mesurées

et de plus, à faire des prédictions sur des quantités qui ne le sont pas encore.

• Première partie: Dans cette partie nous examinons la possibilité d’engendrer des résonances dans les interac-

tions entre un baryon charmé ou un baryon bottom et un boson de Goldstone en utilisant un développement

chiral unitarisé et en exploitant la symétrie approximative de quark lourd. Nous comparons plusieurs

méthodes de régularisation pour l’intégrale de la fonction a deux points. A l’ordre dominant, l’unique

paramètre de la théorie est fixé de manière a reproduire les états Λb(5912) et Λc(2595). Cette étude est

ensuite étendue de manière à inclure les contributions sous-dominantes. Par ailleurs, nous avons étudié la

structure du Λc(2595) en utilisant le critère d’état composite de Weinberg ainsi que le développement en

grand Nc.
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• Deuxième partie: Dans cette partie nous calculons les amplitudes d’interaction entre mésons légers et

baryons de l’état fondamental dans le cadre de la théorie de perturbation chirale baryonique (BChPT) co-

variante et du groupe de saveur SU(3) à l’ordre d’une boucle. Nous appliquons la méthode dite sur-couche

étendue qui permet d’absorber à la fois les divergences ultra-violettes et les contributions qui violent la règle

de comptage en puissances. Nous avons effectué, pour la première fois, un fit combiné des déphasages πN

et KN . De plus, nous effectuons un fit global simultanément des déphasages méson-nucléon et des masses

des baryons et nous trouvons un bon accord avec les données expérimentales. A la fin de cette partie nous

discutons en détail les propriétés de convergence de la BChPT covariante.

• Troisième partie: Dans cette partie nous étudions l’amplitude d’interaction d’une paire méson-méson dans

l’isospin I = 1 via le processus de production par des collisions photon-photon. Nous construisons les

amplitudes de production en résolvant les équations d’Omnès-Muskhelishvili qui sont basées sur les pro-

priétés générales d’analyticité et d’unitarité. Les mesures expérimentales de sections efficaces γγ → πη

et γγ → KSKS de haute statistique effectuées récemment par la collaboration Belle nous permettent de

contraindre les paramètres de notre modèle d’amplitude mśon-méson (deux solutions sont trouvées) et d’en

déduire les propriétés des résonances a0(980) et a0(1450) d’après leur position dans le plan complexe en

énergie.

Mots clés: théorie effective des champs, théorie de perturbation chirale, interactions hadron-hadron
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Chapter 1

Introduction

1.1 Standard Model of particle physics

As is well known, our world is constructed via 4 fundamental forces: gravitational, the electromagnetic, the strong

and the weak force. While the gravity mainly concerns the largest structures of our universe, the rest three forces

are responsible for the dynamics of the smallest structures, or in another word, elementary particles which are

about 39 orders of magnitudes smaller than the former one. The theory concerning the latter one is the famous

Standard Model.

Through out the latter half of the 20th century, the Standard Model of particle physics was developed, aiming

to classify what the elementary particles of our world are and how they interact, with the collaborative effort of

scientists all around the world. Starting from the experimental confirmation of quarks in the middle of 1970s,

the last building blocks was finally accomplished till 2013 when Higgs boson was confirmed by Atlas and CMS

collaboration [12, 13]. So far, there is no doubt that the Standard Model has been proved to be a huge success since

it almost perfectly explains a large variety of experimental results.

The elementary particles in the Standard Model can be divided into three categories, the fermions, gauge

bosons and the higgs boson. The fermions of the Standard Model, together with their anti-particle partners, are

the building blocks of the matter world. They are identified via the charges they carried. Totally there are 12

different kinds including six quarks (up, down, charm, strange, top, bottom) and six leptons (electron, electron

neutrino, muon, muon neutrino, tau and tau neutrino). They can further be collected into 3 generations in which

each pair exhibits similar properties. Besides their own charges which are also known as flavors, quarks also carry

color charges. There are three kinds of color charges, ‘red’, ‘green’ and ‘blue’, and the quarks participate in the

strong interaction via their color charges. On the other hand, leptons do not carry color charges and hence they

cannot contribute to the strong interaction. But they are crucial participants of the weak and electromagnetic force.

Particularly, the three kinds of neutrinos do not carry electric charges thus only show up in the weak interaction.

This is why they are extremely difficult to be detected.
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The Standard Model describes a physical pattern for the fundamental forces in which matter particles exchange

some kinds of other particles. These mediating particles serve as force carriers and are called gauge bosons. All of

these gauge bosons have integer spins which makes them obey the Bose-Einstein statistics. Hence there is no limit

on the number of gauge bosons in one single energy level. There are three kinds of gauge bosons, corresponding

to three fundamental forces (except gravity) respectively. Photons mediate the electromagnetic force between

particles with electrical charges. The W+, W− and Z gauge bosons are responsible for the weak force between

quarks with different flavors. And the gluons propagate the strong interaction among quarks with color charges.

The last building block of the standard model is the Higgs boson. It is a very massive scalar particle and the

key to explain the masses of elementary particles and why photons and gluons are massless. It was first predicted

by theorists Robert Brout, François Englert and Peter Higgs in 1964 [14, 15] and immediately followed by G. S.

Guralnik, C. R. Hagen and T. W. B. Kibble [16]. They were rewarded by the Nobel prize after the discovery of the

Higgs in 2013.

Figure 1.1: Standard model of particle physics(from wikipedia).

The theories corresponding to each of the four fundamental forces have been well established so far. The Elec-

tromagnetic force is well described by the theory of quantum electrodynamics(QED). Sheldon Glashow managed

to find a way to combine the electromagnetic and the weak force [17]. Later on, Steven Weinberg [18] and Abdus

Salam [19] unified the two forces into the electroweak interaction. For the strong interaction, the theory is called

quantum chromodynamics(QCD).

For scientists, the Standard Model is a treasure full of symmetries and their spontaneous symmetry break-

ing, anomalies and non-perturbation phenomena covering a large variety of physics. It is now recognized as “the
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theory of almost everything” and is the basis of more exotic models such as all kinds of effective field theory. How-

ever, with the repaid improvement of accuracy for experimental measurements, people are now very enthusiastic

searching for clues beyond the Standard Model, which is, however, beyond this thesis.

1.2 Quantum chromodynamics

QCD is the modern quantum theory for the strong interaction, which has been developed for over half a century.

The foundation of QCD is the quark model which could be dated back to 1960s when physicists attempted to

sort out the large amount of new particles detected in 1950s according to their electrical charges, isospins and

strangeness. In 1963, Gell-Mann[20, 21] and George Zweig [22] independently proposed a simple but very suffi-

cient model in which a more elementary unit with spin one-half was introduced. At that time, with only 3 kinds,

i.e., up, down and strange, one can reproduce all the new particles detected. These elementary fermions got their

name ‘quark’ from Gell-mann later. From then the objects of QCD are established [23, 24].

However, people realized immediately that the understanding of quarks was far from enough when Boris

Struminsky proposed the problem of Ωsss, in which the three strange quarks process common value of spin,

violating the Pauli exclusion rule(see Ref. [25] for the translated version). Moo-Young Han, Yoichiro Nambu and

Oscar W. Greenberg [26] suggested that this antinomy indicated that quarks should carry extra charges except

their flavors. This extra charge is then called ‘color’. Every quark is actually a triplet in color space. This fact

also implies that the transformation of quarks should obey the 3-dimensional representations of SU (3) Lie group,

which is known as Yang-Mills theory proposed by Chen-Ning Yang and Robert Mills [27]. This means that totally

there will be eight generators, corresponding to eight kinds of gluons who mediate the strong interaction between

quarks. From then on, QCD got its initial version.

Although the quark model has been successfully applied to explain all the particles detected before 1965 and

has been described with strict mathematical language, there was still doubt on whether quarks really existed or

not because one never detected a single quark, which made the explanation of extra color charges an unconvincing

patch. This embarrassing situation was finally terminated when a new kind of quarks, the charm quark, was

discovered in mid-1970s by Ting ChaoChung [28] and Burton Richter [29] independently. The discovery of charm

quark and its related physical observables verified a large amount of predictions based on the quark model, which

greatly improved people’s confidence on the existence of quarks. Later on, another two heavier quarks were

predicted and detected in 1977, the bottom quark [30], and in 1995, the top quark [31, 32].

The deep thinking of the antinomy that there is no isolated quark finally reveals two critical features of QCD.

The first is the asymptotic freedom. Asymptotic freedom was first proposed in 1973 by David Gross, Franks

Wilczek [33] and David H. Politzer [34]. They suggested that the theory of the strong interaction should be

established based on non-Abelian gauge symmetry, which in turn has asymptotic behavior. Nowadays, the QCD
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couplings α reads

αs(Q
2) =

1

1 + α(µ) β0

4π ln(Q
2

µ )
, (1.1)

where Q is the transfer momentum, µ the renormalization scale, β0 = 11− 2
3NF with NF the number of flavors.

WhenNF is no more than 16, one has β0 > 0, and the coupling constant decreases rapidly as the Q increases. Thus

in higher energy regions, quarks behave more like free particles. Considering that the Yang-Mills theory has been

proved to be renormalizable, QCD in higher energy regions can be treated strictly within a perturbative framework.

On the other hand, the QCD coupling constant will rise exponentially as the distance r between quarks increases

since r is inversely proportional to the transfer momentum Q. As a results, the interactions between quarks will

be so strong that degrees of freedom relevant will be changed. The energy that separates quarks will produce a

new quark anti-quark pair in versus. This feature of QCD is known as confinement hypothesis, which provides a

explanation why isolated quark cannot be detected [35].

αs	
  

αs	
        αs	
  

confinement 

asymptotic 
freedom 

Figure 1.2: QCD coupling constant αs as a function of 1/Q or r [36].

While the asymptotic freedom guarantees that QCD can be treated perturbatively in higher energy regions,

the perturbative solution of QCD is no longer reliable in lower energy regions. Besides, the degrees of freedom

are no longer quarks and gluons but color singlet hadrons according to the confinement hypothesis. To solve this
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non-perturbative problem, people turned to effective field theory(EFT) or direct numerical solutions, that is, lattice

QCD(LQCD), which will be introduced afterwards.

The modern version of QCD is a rigorous mathematical model based on quantum field theory, whose La-

grangian reads

LQCD =
∑
f

q̄if (iγµD
µ
ij −mfδij)q

j
f −

1

4
GaµνG

µν
a . (1.2)

The first term is related to quark fields with i, j the indices for color charge taking the value from 1 to 3, mf

denotes the masses of quarks, f refers to the flavors of quarks thus we have to sum over all the six kinds. The

covariant derivative Dµ
ij reads

Dµ
ij = ∂µδij + igsΣ

8
a=1A

µ,aT aij . (1.3)

The second term on the right is the coupling of quark-quark-gluon, which contains the gluon field Aµ,a, the

generator matrix T aij and the QCD coupling constant g. The subscript a running from 1 to 8 refers to the 8

generators of the representation of SU(3) Lie group and the 8 corresponding gluons. Usually the generators are

expressed as 8 Gell-Mann Matrices T aij = λaij/2,

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , (1.4)

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

Having [λa, λb] = 2ifabcλc, the Gell-Mann matrices lead to a Lie algebra, in which fabc is the so-called

structure constant for such a SU(3) Lie group.

The second term of LQCD denotes the gluon interaction part, also known as Yang-Mills field part. The field-

strength tensor for gluons Gaµν reads

Gaµν = ∂µA
a
ν − ∂νAaµ − gsfabcAbµAcν . (1.5)

This term describes the vertices with three or four gluon legs. The last term of Eq. 1.5 represents the self-interaction

of gluons. This is the consequence of non-Abelian character of QCD and is the main difference between a non-

Abelian gauge theory and Abelian gauge theory, like QED, in which the photon mediating electromagnetic inter-

actions does not interact with another photon. Also this is the crucial part where the asymptotic freedom comes
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from, making QCD in lower energy regime a true non-perturbative theory.s

With the lagrangian LQCD above, one can calculate the correlation function from the action S =
∫
d4xLQCD

via the path integral

〈0|T Ôn(xn) · · · Ô1(x1)|0〉 =
1

Z

∫
DADΨDΨ exp[iS]On(xn) · · · O1(x1) , (1.6)

with T the time ordering operator.

Z ≡
∫
DADΨDΨ exp[iS] . (1.7)

However, the solution for such a path integral is a tough task. In higher energy regime, perturbative methods

can be applied, which makes the problem much easier to handle since one can calculate the integral up to certain

orders within a renormalizable framework. But for the non-perturbative QCD, the only practical method is lattice

QCD [35, 37]. Lattice QCD discretizes the space-time into lattices. The lattice points represent the quarks and the

links between points are gluons. In this way, the momentum can only take discrete values inversely proportional

to the size of the lattice spacing a. Hence lattice QCD can reproduce the realistic world at the limit a→ 0. Based

on this, one can find that the smaller the size of the lattice spacing a is, the more expensive the calculations are. As

a consequence, lattice QCD only makes big progress after the ground-broken progress in computer science.

1.3 Hadrons and exotic hadrons

The confinement hypothesis indicates that in the lower energy regime, the degrees of freedom are no longer quarks

and gluons but hadrons. Hadrons can be divided into two kinds: baryons composed of three quarks, like pro-

ton(uud) and neutron(udd), and mesons composed of a pair of quark and anti-quark such as pion and Kaon mesons.

Among the six quark flavors, u, d and s quarks are grouped as light quarks since their masses are smaller

compared to the lightest hadron 1. In the limit of massless light quarks, the three light quarks behave almost the

same in the strong interaction. Thus we can investigate them within a SU(3) symmetry of flavor space. This extra

symmetry, as well as their hyperon charge which is also conserved in the strong interaction, make the SU(3) basis

their eigenstates, which allows us to collect the large amount of hadrons into different groups from the point of

view of group theory.

In the language of group theory, the light quarks belong to a triplet and the anti-quarks an anti-triplet. Thus the

mesons containing one pair of quark-anti-quark can be sorted out as

3⊗ 3̄ = 8⊕ 1. (1.8)

1The mass of s quark ms = 90MeV is somehow not much smaller than that for the lightest meson pion mπ = 140MeV. This is the main
reason for the breaking of SU(3) flavor symmetry.
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That means that for a certain angular momentum, parity and C-parity, there will be 9 possible qq̄ mesons, including

one singlet and one octet.

If we enlarge the flavor space to include the charm quark, the SU(3) symmetry will be extended to SU(4). How-

ever, since the mass of charm quark is much heavier and compatible to the mass of nucleon, the SU(4) symmetry

is naturally badly broken. Nevertheless, in this assumed SU(4) frame, there will be 16 possible combinations,

grouped into a 15-plet and a singlet

4⊗ 4̄ = 15⊕ 1. (1.9)

In Fig. 1.3, multiplets of mesons consisting of u, d, s, c quarks are listed in the SU(4) weight diagram for the

ground-state pseudoscalar JPC = 0−+ and vector JPC = 1−− mesons.

(a)

(b)

(c)

(d)

Figure 1.3: The SU(4) weight diagram for multiplets of mesons and baryons consisting of u, d, s, c quarks [1].

For ordinary baryons made of three light quarks, they can be grouped into 4 parts similarly as

3⊗ 3⊗ 3 = 10S ⊕ 8M ⊕ 8M ⊕ 1A, (1.10)

including 1 singlet, two octets and a decuplet, where the subscriptsA, S andM means that the flavor wave-function

are antisymmetric, symmetric or mixed-symmetric. As is mentioned before, baryons are color singlet, which is

completely antisymmetric in color space. On the other side, Pauli exclusion rule requires that the 3-quark wave
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function must be antisymmetric under the exchange of any two of the quarks. All of these constraints guarantee

that the space, spin and flavor parts of wave function must be symmetric which can be expressed as

|qqq〉A = |color〉A × |space, spin, flavor〉S (1.11)

One can again extend the SU(3) to SU(4) flavor symmetry by introducing the forth quark, such as the charm or

the bottom quark. In this case, the decomposition of the inner product reads

4⊗ 4⊗ 4 = 20S ⊕ 20M ⊕ 20M ⊕ 4A. (1.12)

We also show in Fig. 1.3 the baryon multiplets with JP = 1
2

+ and 3
2

+.

Besides the ordinary mesons and baryons mentioned above, there is one special kind of hadrons detected by

experiments but not compatible with the traditional quark model. They are called exotic hadrons. Basically we have

two kinds of exotic hadrons. Those of the first kind have quantum number which are forbidden by the traditional

quark model. Taken mesons as examples, considering the conservations in the strong interaction, mesons are

actually JPC multiplets. For a neutral quark antiquark configuration, the quantum number JP = 0+−, JP = 1−+

are forbidden. The light excited mesons π1(1400) as a JP = 1−+ state is such an exotic state. The other kind of

exotic states have the quantum number of qq̄ or qqq but have exotic structures. The light scalars such as a0(980),

f0(980), f0(500) and K∗0 (700) with JPC = 0++ observed experimentally should be qq̄(L = 1) states according

to the quark model. However, such a physical pattern cannot explain why the mass of a0(980) is close to that

of f0(980) and much larger than that of f0(500). Later, this problem was solved and these exotic mesons are

usually considered to have an extra pair of qq̄. The same thing happens in the baryon sector. In the classical quark

model, N(1535)(JP = 1
2

−
) was expected to be the lightest excited baryons with one lowest excited quark with

an orbital angular momentum L = 1. However, experimentally the lightest baryon with the same quantum number

was found to be Λ(1405). The mass anomaly was finally explained by the multi-quark or molecule models. For a

recent review of this, we refer to Refs. [38, 39].

Exotic hadrons beyond the traditional quark model were noticed quite a long time ago. Gell-Mann [21] and

Zweig [22] suggested that there was no reason that complex structures such as tetraquark(qqq̄q̄) with baryon num-

ber B = 0 or pentaquark(qqqqq̄) with baryon number B = 1 cannot exist. Earlier discoveries such as the scalar

mesons a0(980), f0(980), f0(500), K∗0 (700) and light baryons Λ(1405), N(1535) confirmed this conjecture.

With huge improvement of accelerator techniques, more and more new exotic hadrons containing heavier charm

quarks or bottom quarks are detected, including X(3872), Zc(3900), Y (4260), Zb(10610) and the exotic heavy

baryons Λc(2595), Λb(5912)(See reviews of Particle data group [1]).

Every new exotic state turns out to be a grand banquet for scientists. Theoretically there may be various ex-

planations for a single exotic state, such as compact multi-quark state, dynamically generated molecule, kinematic

effect like cusp structure or triangle singularity, or their mixture. The compact multi-quark model starts from the
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degrees of quarks and gluons, while molecule models take hadrons as the degree of freedom. On the other hand

when the state locates very close to thresholds of related channels, kinematic effect will be largely enhanced. For

instance, D∗s0(2317) is now generally recognized as a dynamically generated molecule which mainly couples to

KD channel or a tetraquark state, X(3872) as a D∗D̄ molecule or tetraquark state [40]. Thus it is not easy to

know for sure the internal structure of one exotic hadron. Most probably it is a mixing of various configurations

but with different weight. For example, it takes scientists half of century and lots of delicate analysis before it is

finally concluded that Λ(1405) is more in favor of a dynamically generated molecule [41]. For a review of this

topic, we refer to Ref. [38] and Ref. [36].

1.4 Outline of the dissertation

In Chaper 2, we first introduce the main idea for effective field theory, followed by a brief introduction of chiral

symmetry and its spontaneous breaking. We take the meson-meson interactions as an example to illustrate how to

construct the chiral effective Lagrangian. In the last section of this chapter, we discuss the unitary method, which

is essential to interpret the non-perturbation phenomena in the scattering process.

Then we are prepared to study realistic scattering processes after all the general discussions. In this thesis,

we applied effective field theory to study three typical hadron-hadron interactions, i.e., the interaction of singly

charmed baryons and Goldstone mesons in Chapter 3, those of ground state baryons and Goldstone bosons in

Chapter 4 and those of meson-meson as final state interactions of photon-photon scattering in Chapter 5. Finally

we present a brief summary and outlook.
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Chapter 2

Chiral Effective field theory

Quantum chromodynamics(QCD) is the fundamental theory of the strong interaction. However, as mentioned in

the introduction, two critical features of this fundamental theory make a direct solution a difficult task, especially in

the lower energy regime. One is the so-called color confinement hypothesis [35], implying that although in QCD,

the basic degrees of freedom are quarks and gluons, which are color-charged, one can only observe color-neutral

particles, such as mesons and baryons in nature. The other is asymptotic freedom [33, 34], which simply states

that the QCD coupling constant increases fast as the decrease of transfer momentum. This feature implies that the

coupling constant may be too large in the lower energy regions, declaring the failure of a perturbative treatment for

QCD [42], which, however, has been applied successfully in the higher energy regions.

2.1 Effective field theory and Weinberg’s power counting rule

Effective field theory is an approximation of QCD in the lower energy regions. The main idea is that interactions

in the lower energy regime do not depend on those in the higher energy region, which can be integrated out in

advance. Practically, one can introduce new parameters to absorb the contributions from the higher energy regime.

Hence an energy scale Λ, which is usually named as ‘hard scale’, is required to define explicitly the dividing point

between the low energy regime and the high energy regime. Therefore, the hard scale Λ accurately characterizes

the energy regime in which the EFT is reliable. On the other hand, one can always define a ‘soft’ scaleQ in contrast

to the hard scale, which usually refers to the external momentum and quark masses. In this way, one finds a small

quantity Q
Λ � 1, which provides the stepping stones for expansions in the framework of EFT. Further more, once

the interaction can be expanded according to the small quantity, one can immediately evaluate quantitatively the

importance of each part of contributions.

In Ref [43], Weinberg firstly proposed a theorem which says that although individual quantum field theories

have of course a good deal of content, quantum field theory itself has no content beyond analyticity, unitarity,

cluster decomposition, and symmetry. That is to say, if we calculate the matrix elements with the most general
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possible Lagrangian, which includes all terms consistent with assumed symmetries up to any given order, the

results will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster

decomposition, and assumed symmetry principles. This theorem was then proved in Ref. [44] and Ref. [45]

based on Lorentz invariance, as well as the invariance of the generating function under local transformation. As a

consequence, an EFT is local invariant although originally the symmetry taken into account may be a global one.

From the theorem above, the most general Lagrangian for an EFT is expected to be

LMM =
∑
i

ciOi, (2.1)

where Oi are the operators which are usually constructed via fields, derivatives, and lorentz algebra following the

principles with which one starts. The ci are called low-energy constants(LECs). As mentioned in the beginning of

this section, the LECs practically absorb the contributions from the higher energy regime. Hence these LECs can

in principle be calculated out theoretically from the high energy theory, though in most cases, they are treated as

free parameters determined by fitting relevant experimental data.

However, Weinberg immediately noticed that for a realistic EFT, the most general Lagrangian contains infinite

series of operators of higher and higher dimensionality. Weinberg then proposed power counting rules for such an

effective field theory, based on dimensional analysis [43]. With the help of power counting rules, one can estimate

the importance of each Feynman diagram via the number and the order of vertices and loops with the soft energy

scale Q quantitatively. This is significant. The Weinberg power counting rules formulate unambiguously that in

order to obtain the amplitude up to a given order, which Lagrangian we need to know and which Feynman diagrams

we need to calculate. Hence one can quantitatively re-organize the amplitudes according to their orders obtained

from the power counting rules, which makes it possible to systematically explore corrections. This advantage in

turn is quite helpful for testing the convergence of such a perturbation theory.

Taking the meson sector as an example, the effective Lagrangian following the power counting rules can be

written as

LMM = L2
MM + L4

MM + · · · , (2.2)

where the superscripts denote the chiral order. i.e., the order in the momentum and mass expansion, of correspond-

ing terms.

Based on naive dimension analysis, the momentum of external meson legs are counted as O(p) and the light

quark masses as O(p2) considering the relations of masses between light quarks and Goldstone bosons. To be

more explicit, the chiral order D for a given Feynman diagram is defined as,

pi → αpi, mq → α2mq,

A(αpi, α
2mq) =αDA(pi,mq).

(2.3)
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Therefore

D = 2 +

∞∑
n=1

2(n− 1)N2n + 2NL, (2.4)

where N2n denotes the number of vertices at order O(p2n) and NL the number of independent loops.

It has been already noted in Ref. [46] and Ref. [47] that the effective field theory cannot be renormalized like

what one does in QED. However, with the help of Weinberg power counting rules, one can calculate the ultraviolet

divergences in loops order by order, which can be absorbed via LECs of corresponding order. Therefore the EFT

is as a matter of fact renormalizable order by order.

Although the EFT is very sufficient as the substitute of non-perturbative QCD in the low energy regime and

very powerful for making prediction, it has a main shortcoming that the number of the possible operators increases

so rapidly that it can only be practically applied for lower orders.

Afterwards a series of works witnessed the huge success of the applications of chiral perturbation theory(ChPT)

in the mesonic sector. In Ref. [48], Gasser and Leutwyler proposed a systematic method which allows one to extend

Weinberg’s S-matrix analysis to an expansion of Green functions in powers of momenta and quark masses. Shortly

followed by Ref. [46] and Ref. [47], in which the most general Lagrangian up to next-to-leading order O(p4) was

constructed and meson-meson interactions was calculated up to one loop order not only in SU(2) but also in SU(3).

So far in the mesonic sector, the original effective Lagrangian has been extended to next-to-next-to-leading order

or O(p6) [49] in the standard power counting rule in which two-loop diagrams arise. For a review of this, we refer

to Ref. [50].

For comprehensive reviews of EFT, we refer to Refs. [51, 52, 53, 54, 55, 56, 57, 58].

2.2 Chiral effective field theory

2.2.1 Chiral symmetry and its breaking

In EFT, the basic degrees of freedom are mesons and baryons instead of quarks and gluons. Besides, it reserves

more or less all the symmetries that QCD contains. Inspired by the much smaller masses [59] of u, d and s quarks

in comparison with the masses of typical light hadrons such as ρ meson(770MeV) or the proton(938MeV), people

find that in the limit where the masses of light quarks go to zero, the left-handed and the right-handed quark fields

are decoupled from each other in the LQCD. This is the so-called chiral limit.


mu = 2.16+0.49

−0.26MeV

md = 4.67+0.48
−0.17MeV

ms = 93+11
−5 MeV

� 1GeV�


mc = 1.27+0.02

−0.02GeV

mb = 4.18+0.03
−0.02GeV

mt = 172.76+0.30
−0.30GeV

 , (2.5)

where the 1GeV is the typical masses of light hadrons mentioned above.
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The QCD Lagrangian in Eq. 1.2 can be divided into two pieces,

LQCD = L0
QCD + LM , (2.6)

with

L0
QCD =

∑
f

q̄f (iγµD
µ)qf −

1

4
GaµνG

µν
a , (2.7)

LM = q̄fMqf . (2.8)

Note that compared to Eq. 1.2, we have already collected the quarks with different colors into a 3-dimension vector.

And the quark masses are collected into a diagonal matrixM = diag(mu,md.ms). In the chiral limit, the LM
related to quark masses vanishes.

The right and left hand projecting operators (also called chiral operators) are defined as

PR =
1

2
(1 + γ5), PL =

1

2
(1− γ5). (2.9)

They are unitary operators and represent a transformation under U(3) group. One can easily find the auxiliary

formulae via Dirac algebra, which read

γ5PR = PRγ5 = PR, γ5PL = PLγ5 = −PL, (2.10)

γµPR = PLγµ, γµPL = PRγµ. (2.11)

With the operators above, the quarks field can be divided into 2 pieces, i.e., the left- and right-handed pieces,

qf =
1

2
(1 + γ5)qf +

1

2
(1− γ5)qf = PRqf + PLqf ≡ qf,R + qf,L. (2.12)

Making use of the auxiliary formulae, one can immediately observe the decoupling of the left- and right-handed

quark fields:

L0
QCD =

∑
f

q̄f,R(iγµD
µ)qf,R + q̄f,L(iγµD

µ)qf,L −
1

4
GaµνG

µν
a . (2.13)

Since in Eq. 2.7, L0 is invariant under the classical global U(3) symmetry, the left- and right-handed piece of

L0 are invariant separately under their own U(3) transformation qR 7→ RqR and qL 7→ LqL with R ∈ UR(3) and

L ∈ UL(3). This means that the L0 actually exhibits a UL(3) × UR(3) symmetry. In accordance with the group
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theory, a group of UL(3)× UR(3) can be further decomposed as

U(3)L × U(3)R ≡ SUL(3)× SUR(3)× UV (1)× UA(1), (2.14)

where the subscripts V refers to the vector (R+ L) and A the axial-vector (R− L).

With all the discussions above, we can find that the QCD hamiltonian is actually symmetric under SU(3)L ×

SU(3)R × U(1)V , where the U(1)V symmetry is commonly related to the conservation of baryon number. The

U(1)A is not preserved by the so-called anomalies [60, 61, 62, 63].

Under the symmetry of SU(3)L × SU(3)R, one could construct 8 left- and right-handed transformation oper-

ators corresponding to the eight generators of SU(3) group.

gaL = exp(−iΘa
L

λa

2
), gaR = exp(−iΘa

R

λa

2
), a = 1, . . . , 8, (2.15)

where λa with a = 1, . . . , 8 is the Gell-Mann matrices in Eq. 1.5.

According to Noether’s theorem, every invariance results in a conserved current. Therefore, one obtains 8

conserved left- and right-handed currents from the corresponding transformation, which can be expressed as

Lµ,a =q̄Lγ
µλ

a

2
qL, ∂µL

µ,a = 0,

Rµ,a =q̄Rγ
µλ

a

2
qR, ∂µR

µ,a = 0.

(2.16)

The conserved vector and axial-vector currents as the linear combinations of Lµ,a and Rµ,a read

V µ,a =Rµ,a + Lµ,a = q̄γµ
λa

2
q,

Aµ,a =Rµ,a − Lµ,a = q̄γµγ5λ
a

2
q,

(2.17)

the name of which originates from the behavior like a vector or axial-vector under Parity transformation,

P : V µ,a(~x, t) =V aµ (−~x, t)

P : Aµ,a(~x, t) =−Aaµ(−~x, t).
(2.18)

Corresponding to the 16 conserved currents, the charge operators can be defined as

QaV (t) =

∫
d3xq†(~x, t)

λa

2
q(~x, t), a = 1, . . . , 8,

QaA(t) =

∫
d3xq†(~x, t)γ5λ

a

2
q(~x, t), a = 1, . . . , 8.

(2.19)

At the chiral limit, the charge operators commute with the QCD Hamiltonian under the symmetry of SU(3)L ×

SU(3)R × U(1)V , but with opposite parity. As a consequence, if there exists a multiplet of hadrons with positive

parity, a negative partner will be expected. However, experimentally such a degeneration was never detected in the
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low-energy hadron spectrum, forcing people reexamine the SU(3)L × SU(3)R × U(1)V symmetry. In ref. [64],

the authors pointed out that the ground states are necessarily invariant under SU(3)V × U(1)V symmetry at the

chiral limit. That is, the ground state vanishes under the eight vector charge operators and the baryon number

operator.

QaV |0〉 = QV |0〉 = 0. (2.20)

This implies that the QCD Hamiltonian is invariant at least under SU(3)V × U(1)V at the chiral limit and the

ground states can be grouped with corresponding irreducible representation.

Since the subgroup SU(3)V × U(1)V symmetry is necessarily observed, the coset group is then the only

choice responsible for the absence of the degeneration of hadron spectrum. One naturally assumes that QaA cannot

annihilate the ground state

QaA|0〉 6= 0. (2.21)

All the discussions above indicate that although at the chiral limit, the QCD lagrangian is invariant under SU(3)L×

SU(3)R × U(1)V , the ground state is only invariant under a subgroup symmetry of SU(3)V × U(1)V . Thus the

chiral symmetry is spontaneously broken or hidden. A symmetry is spontaneously broken if the ground state of the

system is no longer invariant under the full symmetry of the Hamiltonian. According to the Goldstone theorem [65,

66, 67, 68, 69], the eight symmetry breaking axial-vector currents lead to eight massless Goldstone bosons φa(x)

with spin 0. The Goldstone bosons correspondingly follow the same behavior of parity transformation.

P : φa(~x, t) = −φa(−~x, t), (2.22)

which implies that the Goldstone bosons are pseudoscalar mesons. The smaller masses of pseudoscalar meson

octet (π,K, η) compared to the JP = 1− vector mesons are also convincing evidences that they are actually

candidates of Goldstone bosons of the spontaneous breaking of chiral symmetry.

2.2.2 Construction of chiral effective lagrangian

Generally speaking, in order to construct an effective Lagrangian for interactions of one’s interest, one needs two

steps. The first is to find a suitable representation of the hadron fields according to the symmetry of chiral trans-

formation. Secondly, one applies the Weinberg theorem, finding out all possible terms satisfying all symmetries

required up to a given order following power counting rules. In fact, Callan, Coleman, Wess, and Zumino have

already elaborated the standard method for constructing an effective field theory with certain spontaneously sym-

metry breaking [70, 71]. In this section, I will briefly show the standard procedure of constructing an effective

lagrangian taking the lightest octet of pseudoscalar mesons of (π,K, η) as an example.

In the preceding section, it was mentioned that the global symmetry G = SU(3)L × SU(3)R of the QCD

lagrangian is spontaneously broken to a vectorial subgroup H = SU(3)V , during which eight Goldstone bosons,
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or the octet of pseudoscalar meson, are generated corresponding to the eight generators not belonging to the

subgroup H . This means that the Goldstone bosons can actually be represented by a matrix Û belonging to the

coset group G/H , which is isomorphic to a SU(3) group. Thus what we need to do next is to find a proper

representation for this coset group G/H .

For an element g ∈ G = SU(3)R × SU(3)L, the Goldstone boson field φa transforms in the following way

φa → φa
′

= F (g, φa), (2.23)

with F a representation of the group G. Considering the spontaneous symmetry breaking, the transformation

g ∈ G can be decomposed as

g = qh, h ∈ H = SU(3)V , q ∈ G/H. (2.24)

Associated with the left- and right-handed transformation, such a transformation g ∈ G can be represented as

g = (gR, gL) = (gR, gLg
†
RgR) = (1, gLg†R)(gR, gR), (2.25)

or arbitrarily

g = (gL, gR) = (gL, gRg
†
LgL) = (1, gRg†L)︸ ︷︷ ︸

(1,Û)

(gL, gL), (2.26)

in which the second factor (gR, gR) or (gR, gR) actually belongs to H = {(V, V )|V ∈ SU(3)V }.

The decomposition above indicates that under the chiral transformation, the element Û ∈ G/H behaves as

(1, Û)→ (1, Û ′) = g(1, Û) = (gL, gR)(1, Û) = (gL, gRÛ) = (1, gRÛg†L)(gL, gL), (2.27)

Û → Û ′ = gRÛg
†
L. (2.28)

With Eq. 2.28, the Goldstone boson matrix Û can be defined by means of exponential representation

Û = exp(i
φ

Fφ
), (2.29)

φ =

8∑
a=1

φaλa =
√

2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

 , (2.30)

where λa are again the Gell-mann matrices. The Fφ is related to the decay constant of Goldstone bosons at the
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chiral limit.

Now we have obtained an appropriate representation for the pseudoscalar meson field U(φ). The derivative of

U has exactly the same behavior under the chiral transformation

∂µÛ → ∂µÛ
′ = gR∂µÛg

†
L. (2.31)

Therefore, the building blocks of the effective Lagrangian contains the field operator U and its derivative

Leff = Leff(U, ∂µU, . . .). (2.32)

Taking into account pseudoscalar mesons having JP = 0−, the parity transformation for the field operator φ

or U reads

φ→ φ′ = −φ, U → U ′ = U†, (2.33)

which implies that in the effective Lagrangian, one U must accompany one U† to guarantee the parity invariance.

On the other hand, the Lorentz invariance requires that the derivatives should also appear in pairs. Thus the possible

configurations are

〈UU†〉, 〈UU†UU†〉, 〈∂µU∂µU†〉, · · · , (2.34)

where the symbol 〈. . .〉 denotes the trace of flavor space. The configurations in Eq. 2.36 are all invariant under the

chiral transformation since

〈UU†〉 →〈gRUg†LgLU†g†R〉 = 〈g†RgRUg†LgLU†〉 = 〈UU†〉,

〈∂µU∂µU†〉 →〈gR∂µUg†LgL∂µU†g†R〉 = 〈g†RgR∂µUg†LgL∂µU†〉 = 〈∂µU∂µU†〉.
(2.35)

As a low-energy effective field theory, the small quantityQ can be naturally chosen to be the momentum. Thus

one can organize the effective Lagrangian in powers of momenta or equivalently the number of derivatives on the

meson fields. As is shown in Eq. 2.34, the lowest term with minimal meson field reads 〈UU†〉. However, this term

is trivial since UU† = 1. Thus the lowest order non-trivial Lagrangian starts from the second order and reads

L(2)
φ =

F 2
φ

4
〈∂µU∂µU†〉. (2.36)

The factor F 2
φ/4 comes from the normalization of the kinematic term in the standard form

L(2)
φ =

1

2
〈∂µφ∂µφ〉+

1

12F 2
φ

〈(φ∂µφ)(φ∂µφ)〉+ · · · . (2.37)

Now one obtains the lowest order chiral effective Lagrangian which is invariant under Lorentz, charge conju-

gate, parity, time reversal and, especially, chiral symmetry. However, as mentioned in the preceding section, chiral
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symmetry is explicitly broken because of the finite quark masses. The mass term LM in Eq. 2.8 mixes left- and

right-handed fields under the projection of chiral operators,

LM = −q̄Mq = −(q̄RMqL + q̄LMqR). (2.38)

According to the statement in Ref. [72], LM would be invariant if the diagonal matrix M of quark masses

transformed as the meson field U ,

M→ gRMg†L. (2.39)

Under this assumption, one can construct the effective Lagrangian L(M, U) following the same method with the

two building blocks, quark massM and meson field U . Chiral symmetry requires that the sum of the number of

M and U in the product of L(M, U) should be even. Besides, sinceM itself does not carry intrinsic parity, one

U must be accompanied with one U† either as a product or alternatively as a sum.

With all the discussions above, one can find a configuration L(M, U) invariant under the assumed symmetries

the same as Eq. 2.36, which reads

LS.B. =
F 2
φB0

2
〈MU† + UM†〉, (2.40)

where the subscript S.B. means symmetry breaking. The new parameter B0 = −〈0|q̄q|0〉/F 2
φ is related to chiral

quark condensate and then to the masses of Goldstone bosons.

LS.B. = −B0〈φ2M〉+ · · · , (2.41)

Expanding the first term of Eq. 2.41 at the isospin limit mu = md = ml, one can obtain the masses of Goldstone

bosons as functions of B0 and quark masses

M2
π = 2B0ml,

M2
K = B0(ml +ms),

M2
η =

2

3
B0(ml + 2ms),

(2.42)

which satisfy the Gell-mann-Okubo relation [73, 74]

4M2
K = M2

π + 3M2
η . (2.43)

Now we have obtained the effective Lagrangian for the explicit chiral symmetry breaking terms. The power

counting above then needs modifications accordingly. Based on the naive dimensional analysis, LM has the same

chiral order as L(2)
φ withM as O(p2).
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Collecting all the pieces above, the lowest order chiral effective Lagrangian for Goldstone bosons reads

L(2) =
F 2
φ

4
〈∂µU∂µU†〉+

F 2
φB0

2
〈MU† + UM†〉, (2.44)

where the corresponding power counting evaluated via the order of momenta and masses of Goldstone bosons is

U,U† ∼ O(p0), ∂µ ∼ O(p1), M∼ O(p2). (2.45)

2.2.3 External sources

Once the interaction of interest involves external sources, such as scalar(s), pseudoscalar(p), vector(vµ) and axial-

vector(aµ), one needs to include these external sources explicitly into the QCD Lagrangian 2.6. In this case, the

QCD Lagrangian with external sources satisfying Lorentz, spin, charge conjugate and time reversal invariance

which was given by Gasser and Leutwyler in Ref. [46, 47] reads,

LexQCD = L0
QCD + q̄(γµv

µ + γµγ5a
µ)q − q̄(s− iγ5p)q, (2.46)

where the external fields vµ, aµ, s and p denote eight vector currents and axial-vector currents, as well as the scalar

and pseudoscalar source, which read

vµ =

8∑
a=1

λa
2
vµa , aµ =

8∑
a=1

λa
2
aµa , s =

8∑
a=1

λasa, p =

8∑
a=1

λapa. (2.47)

Note here we have omitted the singlet vector current vµ(s). All the external fields above are hermitian, color neutral

3 × 3 matrices in flavor space. One can easily find that the ordinary QCD Lagrangian can be recovered when

vµ = aµ = p = 0, s =M.

Following the same method above, one can construct the most general chiral effective Lagrangian. Taking into

account chiral symmetry and its spontaneous breaking, it is much easier to rewrite the Lagrangian with left- and

right-handed currents similar to Eq. 2.10, Eq. 2.11, Eq. 2.16, Eq. 2.17, which reads

q̄γµ(vµ + γ5aµ)q =
1

2
q̄γµ(rµ + lµ + γ5(rµ − lµ))q

=q̄Rγ
µrµqR + q̄Lγ

µlµqL,

(2.48)

in which

rµ = vµ + aµ, lµ = vµ − aµ. (2.49)

The rest piece of LexQCD containing external scalar and pseudoscalar sources can be rewritten similarly as

q̄(s− iγ5p)q = q̄L(s− iγ5p)qL + q̄R(s− iγ5p)qR. (2.50)
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With Eq. 2.48 and Eq. 2.50, the LexQCD finally reads

LexQCD =L0
QCD + q̄Rγ

µrµqR + q̄Lγ
µlµqL

− q̄L(s− iγ5p)qL − q̄R(s− iγ5p)qR.

(2.51)

The LexQCD now exhibits a local UL(3)× UR(3) symmetry in the presence of external sources, indicating that

LexQCD is invariant under SUL(3)× SUR(3) gauge transformation,

qR 7→ R(x)qR, qL 7→ L(x)qL, R(x), L(s) ∈ SU(3), (2.52)

under the conditions that external sources transform as

rµ 7→ R(x)rµR(x)† + iR(x)∂µR(x)†,

lµ 7→ L(x)lµL(x)† + iL(x)∂µl(x)†,

s+ ip 7→ R(x)(s+ ip)L(x)†,

s− ip 7→ L(x)(s− ip)R(x)†.

(2.53)

Similar to what is done for a gauge theory like QED, one can write the covariant derivative for the field U in the

effective Lagrangian containing external sources

DµU = ∂µ − irµU + ilµU. (2.54)

And it is straightforward to prove that DµU transforms in the same way as U

U 7→ R(x)UL(x)†, DµU 7→ R(x)DµUL(x)†, (2.55)

which is also the requirement of a gauge theory.

The external sources lead to extra building blocks, i.e., the field strength tensor fLµν and fRµν respect to the

corresponding gauge field,

fµνL =∂µlν − ∂ν lµ − i[lµ, lν ],

fµνR =∂µrν − ∂νrµ − i[rµ, rν ].

(2.56)

The remaining scalar and pseudoscalar sources are collected in

χ = 2B0(s+ ip). (2.57)

In conclusion, the effective Lagrangian for the modified QCD with external sources will containU,DµU, f
µν
L , fµνR , χ
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as building blocks

Lexeff = Lexeff(U,DµU, f
µν
L , fµνR , χ, . . .). (2.58)

And in the chiral counting scheme, these building blocks are counted as

U ∼ O(p0), DµU, rµ, lµ ∼ O(p), fµνL , fµνR , χ ∼ O(p2). (2.59)

In accordance with the chiral order of each building block, the lowest order effective Lagrangian containing

external sources has almost the same form as Eq. 2.44

L(2) =
F 2
φ

4
〈DµUDµU

†〉+
F 2
φ

4
〈χU† + Uχ†〉. (2.60)

2.2.4 Chiral effective Lagrangian at NLO in the meson sector

In the above subsections, we introduced briefly the construction of effective Lagrangians in chiral perturbation

theory. Meanwhile, the lowest order effective Lagrangian, with and without external sources are presented as an

example. Following the same idea, Gasser and Leutwyler further constructed the chiral effective Lagrangian at

O(p4) [47] for meson-meson interactions, which reads

L4 =L1{Tr[DµU(DµU)†]}2 + L2Tr[DµU(DnuU)†]Tr[DµU(DnuU)†]

+ L3Tr[DµU(DµU)†DνU(DνU)†] + L4Tr[DµU(DµU)†]Tr[χU† + Uχ†]

+ L5Tr[DµU(DµU)†(χU† + Uχ†)] + L6[Tr(χU† + Uχ†)]2

+ L7[Tr(χU† − Uχ†)]2 + L8Tr(Uχ†Uχ† + χU†χU†)

− iL9Tr[fRµνD
µU(DνU)† + fLµν(DµU)†DνU ] + L10Tr[UfLµνU

†fµνR ]

+H1Tr(fRµνf
µν
R + fLµνf

µν
L ) +H2Tr(χχ†)

(2.61)

where fRµν , fLµν are the field strength tensors defined in Eq. 2.56 and DµU the covariant derivative defined in

Eq. 2.54. TheLi are low energy constants which, in principal, could be calculated from QCD. However, practically,

these parameters are determined by fitting to observables.

Table 2.1: Two scenarios of centra values of Li with µ = 0.77GeV from NLO fits [10].

Lr1 Lr2 Lr3 Lr4 Lr5 Lr6 Lr7 Lr8

(I)(10−3) 1.11 1.05 −3.82 1.87 1.22 1.46 −0.39 0.65

(II)(10−3) 1.00 1.48 −3.82 0.30 1.23 0.14 −0.27 0.55

The values of these low energy constants are necessary for numerical analysis of chiral amplitudes. In Ref. [10]

the authors updated the values of Li with global fits to a number of related observables and presented two sets of

values obtained from different fitting strategies. The set (I) are obtained via a fit without constraints, while the
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set (II) is managed to be compatible with the results obtained from lattice QCD simulations on Lr4 and Lr6. It is

obvious that the two scenarios really differ, especially the values of L4 and L6, which as a consequence leads to

significant differences for certain observables such as the scattering length and the chiral amplitude of ηπ → ηπ.

For a detailed discussion of the influence on observables of these two sets of values, we refer to Ref. [75].

2.3 Chiral effective field theory for meson-baryon interactions

2.3.1 The lowest order effective lagrangian

The success of chiral perturbation theory in the meson sector illuminates the way to the solutions of non-perturbation

QCD in the low energy regime. Thus the application to interactions involving baryons is naturally expected. In

this section, we concentrate on the description of the dynamics containing a single baryon in initial and final states

at low energies in the framework of chiral perturbation theory. The interaction of multi-baryons are beyond the

concern of this work, for a review of which we refer to Refs. [52, 56].

The method of constructing the effective chiral Lagrangian for meson-baryon interactions is in principle the

same as that for meson-meson interactions. The biggest difference is that the baryon mass at the chiral limit does

not vanish, which makes the baryon mass a hard scale counted as O(1) in chiral dimension analysis. This feature

further leads to the breaking of power counting rules when loop diagrams containing internal baryons are involved.

Besides, contrary to the meson sector, performing the Hermitian of B does not go back to B, i.e., U−1 = U† but

B 6= B†.

Now we will take the interaction of baryon octet with JP = 1/2+ and Goldstone bosons as an example. The

ground state octet of baryons can be collected in a 3× 3 traceless matrix as

B =

8∑
a=1

λa√
2
Ba =


1√
2
Σ0 + 1√

6
Λ Σ+ p+

Σ− − 1√
2
Σ0 + 1√

6
Λ n0

Ξ− Ξ0 − 2√
6
Λ

 . (2.62)

For the building blocks for mesons in the construction of effective chiral Lagrangian for meson-baryon interac-

tions, it is more convenient to introduce the standard non-linear realization [70, 71] for Goldstone bosons u =
√
U .

Similar to the cases for pure mesonic interactions, besides the baryon field B and meson field u, the building blocks

of the effective chiral Lagrangian for meson-baryon interactions should of course include the covariant derivatives

of both fields,

DµB = ∂µB + [Γµ, B]

Γµ =
1

2
{u†∂µu+ u∂µu

†}

uµ = i{u†∂µu− u∂µu†}

(2.63)
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in which Γµ is also known as chiral connection.

With all the building blocks mentioned above, B, B̄, DµB, u, uµ, together with the baryon mass at the chiral

limit m0 and Clifford Algebra Γi ∈ {1, γ5, γµ, γ5γµ, σµν}, we are ready to write the most general effective chiral

Lagrangian for meson-baryon interactions. The chiral dimensions for these building blocks are

B, B̄,DµB ∼ O(1), (i /D −m0)B ∼ O(p) (2.64)

1, γµ, γ5γµ, σµν ∼ O(1), γ5 ∼ O(p). (2.65)

In accordance with the power counting rule of Eq. 2.64 and Eq. 2.65, the effective Lagrangian can be organized

as

Leff
φB = L(1)

φB + L(2)
φB + L(3)

φB + · · · (2.66)

For the lowest order, it reads

L(1)
φB = 〈B̄(iγµDµ −m0)B〉+

D/F

2
〈B̄γµγ5[uµ, B]±〉, (2.67)

in which D, F are the axial-vector coupling of the baryons to mesons. In SU(2) flavor cases where only u and

d quarks are taken into account, these two parameters are actually related to the axial-vector coupling of nucleon

gA = D+F . Similar to the Li in Eq. 2.61, the values of D, F cannot be determined by chiral symmetry, but fit to

physical observables instead. For practical applications, the common values of these two parameters comes from

the semi-lepton decay of B → B′ + e−ν̄e, which leads to D = 0.8 and F = 0.5 [76].

Imitating the derivation of Eq. 2.4, one can work out the chiral order for a Feynman diagram, which reads

D = 4L− 2NM −NB +
∑
n

nVn, (2.68)

where L denotes the number of independent loops, NM (NB) the number of meson(baryon) internal propagators,

Vn the vertices at order O(pn).

2.3.2 Effective Lagrangians at NLO and NNLO

In this work, since we attempt to calculate the meson-baryon interactions up to higher orders, i.e., next-to-next-to-

leading order (NNLO) or O(p3), the effective chiral Lagrangian at O(p2) and O(p3) are necessary.

Following the method in the preceding subsection, one can easily construct the most general effective chiral

Lagrangian for meson-baryon interactions with the building blocks and their corresponding chiral dimension listed

in Eq. 2.64, Eq. 2.65. The most difficult and complicated point then is how to find the minimal one among all the

possible expressions with the help of assumed symmetries and, more importantly, equation of motion.
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The construction of chiral Lagrangian in the two flavor case was the first to complete , i.e., for pion-nucleon

interaction. In Ref. [77], the Lagrangian at O(p4) was presented both in the relativistic scheme and heavy baryon

scheme. The three flavor chiral Lagrangian came afterwards in Ref. [78, 79, 80] for O(p3) and, most recently, in

Ref.[81] for O(p4).

As has been mentioned before, one of the drawbacks for an EFT is that the number of terms increases rapidly

along with the increase in chiral order. Taking the SU(3) flavor chiral Lagrangian for example, in the leading

order(LO) counted as O(p), one has only three terms as in Eq. 2.67, while in the next-to-leading order(NLO),

there are 16 terms and 78 terms for NNLO. And finally for the next-to-next-to-next-to-leading order(N3LO), one

finds 540 terms.

In our calculation, we utilize the minimal chiral lagrangian in a covariant scheme given in Ref. [78] and

Ref. [80] with the latter one as a revisited version. Since not all terms contribute in the meson-baryon interactions,

we only list here those relevant. The meson-baryon Lagrangian at orderO(p2) relevant to meson-baryon scattering

has 14 terms of the following form:

L(2)
φB =bD〈B̄{χ+, B}〉+ bF 〈B̄[χ+, B]〉+ b0〈B̄B〉〈χ+〉+

b1〈B̄[uµ, [uµ, B]]〉+ b2〈B̄{uµ, {uµ, B}}〉+

b3〈B̄{uµ, [uµ, B]}〉+ b4〈B̄B〉〈uµuµ〉+

ib5

(
〈B̄[uµ, [uν , γµ

−→
DνB]]〉 − 〈B̄←−Dν [uν , [uµ, γµB]]〉

)
+

ib6

(
〈B̄[uµ, {uν , γµ

−→
DνB}]〉 − 〈B̄

←−
Dν{uν , [uµ, γµB]}〉

)
+

ib7

(
〈B̄{uµ, {uν , γµ

−→
DνB}}〉 − 〈B̄

←−
Dν{uν , {uµ, γµB}}〉

)
+

ib8

(
〈B̄γµ

−→
DνB〉 − 〈B̄

←−
DνγµB〉

)
〈uµuν〉+

ic1〈B̄{[uµ, uν ], σµνB}〉+ ic2〈B̄[[uµ, uν ], σµνB]〉+ ic3〈B̄uµ〉〈uνσµνB〉,

(2.69)

with χ± = u†χu† ± uχ†u.

The meson-baryon Lagrangian contributing toMB →MB at orderO(p3) has 13 terms of the following form:
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L(3)
MB =id1

(
〈B̄γµ

−→
DνρB[uµ, hνρ]〉+ 〈B̄←−DνργµB[uµ, hνρ]〉

)
+

id2

(
〈B̄[uµ, hνρ]γµ

−→
DνρB〉+ 〈B̄←−Dνρ[u

µ, hνρ]γµB〉
)

+

id3

(
〈B̄uµ〉〈hνργµ

−→
DνρB〉 − 〈B̄

←−
Dνρh

νρ〉〈uµγµB〉
)

+

id4〈B̄[uµ, h
µν ]γνB〉+ id5〈B̄γνB[uµ, h

µν ]〉+

id6

(
〈B̄uµ〉〈hµνγνB〉 − 〈B̄hµν〉〈uµγνB〉

)
+

id7

(
〈B̄σµν

−→
DρB{uµ, hνρ}〉 − 〈B̄

←−
DρσµνB{uµ, hνρ}〉

)
+

id8

(
〈B̄{uµ, hνρ}σµν

−→
DρB〉 − 〈B̄

←−
Dρ{uµ, hνρ}σµνB〉

)
+

id9

(
〈B̄uµσµν

−→
DρBh

νρ〉 − 〈B̄←−Dρu
µσµνBh

νρ〉
)

+

id10

(
〈B̄σµν

−→
DρB〉 − 〈B̄

←−
DρσµνB〉

)
〈uµhνρ〉+

d48〈B̄γµB[χ−, u
µ]〉+ d49〈B̄[χ−, u

µ]γµB〉+

d50

(
〈B̄uµ〉〈χ−γµB〉 − 〈B̄χ−〉〈uµγµB〉

)
,

(2.70)

where Dνρ = DνDρ +DρDν and hµν = Dµuν +Dνuµ.

For Born terms at O(p3) and vertex corrections, we also need the following Lagrangian, which contributes to

B1 →M1B2 and has 10 terms

L(3)
BMB = d38〈B̄uµγ5γµBχ+〉+ d39〈B̄χ+γ5γµBu

µ〉+ d40〈B̄uµγ5γµB〉〈χ+〉+ d41〈B̄γ5γµBu
µ〉〈χ+〉

+ d42〈B̄γ5γµB〉〈uµχ+〉+ d43〈B̄γ5γµB{uµ, χ+}〉+ d44〈B̄{uµ, χ+}γ5γµB〉

+ d45〈B̄{χ−, γ5B}〉+ d46〈B̄[χ−, γ5B]〉+ d47〈B̄γ5B〉〈χ−〉. (2.71)

2.3.3 Power counting breaking

In the preceding section, we have mentioned that the biggest difference between the chiral perturbation theory in

the pure meson sector and meson-baryon sector is that the baryon mass at the chiral limit does not vanish. The

non-vanishing baryon mass at the chiral limit yields terms which break the power counting rules in Eq.2.68. This

problem was first noticed in Ref. [82] when the authors firstly attempt to extend chiral perturbation theory to elastic

πN scattering.

Solutions of this issue has been discussed for about three decades. The first and direct solution to restore

the power counting rules is to perform the extension in the baryon sector under the heavy baryon approximation,

which is known as heavy baryon ChPT(HBChPT) [83]. The essential idea of this heavy baryon approximation is

that since the violation of power counting rules comes from the fact that baryon momentum contains both a hard
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scale and a soft scale, one then needs to separate the two parts manifestly,

pµ = mBv
µ + kµ, (2.72)

where vµ denotes the baryon velocity with v2 = 1. The second term of the decomposition above kµ denotes the

residual momentum and one has v · k � mB . In this way, derivations on the baryon field are divided explicitly

where the baryon mass is treated as a hard scale and the residual momentum kµ as a pure soft scale. Therefore,

higher order contributions are suppressed by k/Λ, together with k/m0 instead of p/Λ, which are strictly small

quantities for expansion. In this way, one achieves a systematic expansion in powers of derivatives.

The baryon field B should also be decomposed into a light piece and a heavy piece in the same way as its

derivative ∂µB with the projection operator Pv±

Pv± =
1± /v

2
,

B =Bv +Hv,

Bv = Pv+B, Hv = Pv−B.

(2.73)

The derivative on the so-called heavy baryon field ∂µBv then generates the residual momentum kµ, which as

mentioned is a pure small quantity, with which one can rewrite the covariant effective chiral Lagrangian in Eq. 2.67

in this heavy baryon scheme. Weinberg has proved in Ref. [84, 85] that the HB ChPT is the non-relativistic

approximation of the covariant Baryon ChPT with the baryon velocity vµ = (1, 0, 0, 0).

Since the HB ChPT solves the power counting breaking problem, it is then successfully applied to study the

phenomena related to nucleons [52]. However, the drawbacks and limitations of HB ChPT are also obvious. As

a non-relativistic theory, the power counting rule is restored at a cost of manifest Lorentz invariance. The non-

relativistic expansion in HB ChPT modifies the analytical property of baryon propagator, resulting in divergences

in certain parts of the low energy regime [86, 87]. A direct example is the nucleon pole in πN scattering. On the

other hand, in order to restore Lorentz invariance, one has to include 1/m0 corrections in the effective Lagrangian,

resulting in more terms compared to the covariant scheme at a given order, which makes the calculation quite

complicated.

The so-called infrared regularization(IR) scheme which keeps manifest Lorentz invariance was proposed by El-

lis and Tang [88]. The basic idea of this regularization is to rewrite the loop integral after Feynman parametrization

into two parts, i.e., irregular part and regular part,

I(p) =

∫ 1

0

dz · · · =
∫ ∞

0

dz · · · −
∫ ∞

1

dz · · · . (2.74)

The first part, so-called infrared integral, satisfies power counting rule, while the remainder, known as the regular

part is just ordinary Taylor expansion and can be absorbed into LECs.
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The IR scheme reserves the power counting rule and Lorentz invariance simultaneously. But the decomposition

again modifies the analyticity of loop integral. Besides, not all of the regular parts to be subtracted violate the power

counting rule. This breaking effect is supposed to be of minor importance but later studies of baryon magnet

momentum [89, 90] challenge this assumption. Another example is the nucleon mass where a unphysical cut

appears. In particular, this treatment makes a dispersion relation no longer available because of extra cuts [86, 89].

The third solution is the so-called extended-on-mass-shell(EOMS) scheme, which was proposed by Gegelia

and Fuchs et al [91]. Since all the power counting breaking terms are contained in the regular part of Feynman

integration and can be absorbed into LECs, the authors proposed to subtract them explicitly instead of the whole

regular part. In other words, the idea of this scheme is that the power counting breaking terms could be treated

as part of the re-normalization of LECs. This is actually quite similar to the treatment of UV-divergence in the

minimal subtraction scheme(MS) or the modified version M̃S. For a given LEC, the re-normalization in the

EOMS scheme reads

Li = Lri + LdiR+ LPCB
i (2.75)

whereLri denotes the bare value ofLi,R = 2
ε+γE−1−ln(4π) with γE the Euler constant the UV divergence from

loops. In this way, the Ldi , LPCB
i absorbs all the UV divergence and power counting breaking terms respectively

for the corresponding order.

In practical applications, these power counting breaking terms could be extracted out before Feynman inte-

gration. One needs first to perform Feynman parametrization for the amplitude of a given loop diagram and then

expand the amplitude in terms of small quantities, such as meson masses, momenta et al. Since one can easily

work out the chiral dimension D of this given loop diagram in accordance with the power counting rule, all terms

in the expansion with chiral order lower than D are supposed to violate the power counting rule. Finally the power

counting terms to be subtracted from the amplitudes can be easily obtained by integration over feynman parame-

ters. In this scheme, neither power counting nor Lorentz invariance is a problem. Besides, it has been illustrated

that the EOMS scheme owns an extra advantage that it converges relatively faster [90, 92, 93].

2.4 Unitarity in hadron-hadron interactions

In the preceding section, we briefly introduced chiral perturbation theory and the construction of effective chiral

lagrangian for both pure mesonic interactions as well as those involving a single baryon. Shortly after the founda-

tion of ChPT, it has turned out to be a huge success in describing these interactions. A large number of physical

observables calculated theoretically in the framework of ChPT are quite consistent with their experimental values,

such as the masses and decay constants of Goldstone bosons, ππ and πK scattering [46, 47]. In the single baryon

system, M. Mojžiš [94] and N. Fettes et al. [95] calculated the threshold parameters and scattering amplitudes of

pion-nucleon scattering within the HB CHPT mentioned in the previous section.

However, even thought it is a powerful tool for low-energy strong interactions, ChPT is essentially a pertur-
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bation method based on the expansion of small quantities like momenta and meson masses. As a consequence,

dealing with non-perturbation phenomena, typically resonances, is beyond its capacity. In 1990s, people realized

that pure chiral perturbation theory can never reproduce a resonance in a perturbation framework at any finite order

because of the large rescattering effect, which is essentially non-perturbative [83, 96, 52, 88, 86]. One can find

examples such as ρ(770) in ππ scattering, ∆(1232) in πN scattering and Λ(1405) in K̄N scattering. On the

other hand, ChPT actually cannot be applied to covering the energy region near these resonances(the so-called

resonance region) unless these excited mesons or baryons are included explicitly in the degrees of freedom. Thus

these resonances are in fact the upper boundary of the applicable range.

A proper approach of resummation or unitarization of chiral perturbation theory is strongly needed. In 1990,

Weinberg proposed one solution [84], that one can first work out the effective potential with ChPT and then iterate it

into the Lippmann-Schwinger equation to calculate the S-matrix. It succeeded. In Refs. [97, 98] this approach was

applied to K̄N scattering where the coupled channel Lippmann-Schwinger equation was solved with potentials

from the lowest order and next-to-leading order Lagrangians respectively. By taking all the open channels, that

is, K−p, K̄0n, π0Λ, π0Σ, π−Σ+, π+Σ− into account, a good agreement with the experimental data including

the total cross sections for the K−p elastic and inelastic scattering channels mentioned above can be achieved by

fitting only a few parameters.

In Refs. [99, 100], a more technically simplified method based on the Bethe-Salpeter equation was proposed.

In this approach, a good description of the experimental data was obtained via the lowest order Lagrangian and

coupled channel effects together with a cutoff method for regularizing the intermediate meson-baryon loop. The

so-called on shell approximation was applied, which makes the Bethe-Salpeter equation an algebraic equation

instead of a integral one. Then in Ref. [101], where a unitary approach based on subtracted dispersion relations

was proposed, now known as the N/D approach. This approach was then applied to the strangeness S = −1

meson-baryon interaction in Ref. [102], where more dynamically generated resonances like Λ(1670) and Σ(1620)

were studied. The discussion of this unitary method was continued in Ref. [41].

2.4.1 Unitary relation

Before we start this section, it is necessary to specify the definition of various symbols for a scattering process. We

show in Fig. 2.1 the standard definition for a two-body scattering process, where p, p′,q, q′ are the four-momenta

of incoming and outgoing particles. On the other hand, it is more convenient to utilize the Mandelstam variables

s, t, u, which are pure Lorentz scalars, instead of the four-momentum. They are defined as

s =(p+ q)2 = (p′ + q′)2,

t =(p− p′)2 = (q − q′)2,

u =(p− q′)2 = (p′ − q)2.

(2.76)
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With the Mandelstam variables, the module of momentum |~qcm| in the center mass of frame can be expressed as

qcm =

√
(s− (M +m)2)(s− (M −m)2)

2
√
s

, (2.77)

with M,m the masses for the two incoming or outgoing particles.

p = (E, ~p) p′ = (E ′, ~p′)

q = (ω, ~q) q′ = (ω′, ~q′)

s

t

Figure 2.1: Kinematics of meson-baryon scattering.

Considering the conservation of total angular momentum in the scattering process, it is more convenient to

perform the partial wave decomposition first on the scattering amplitudes, which is essentially the projection of the

amplitude with given angular momentum J

T (s, t, u) =
∑

(2J + 1)TJ(s)PJ(cos θ), (2.78)

where TJ denotes the scattering amplitudes with total angular momentum J and PJ the Legendre polynomials, θ

is the scattering angle in the center of mass frame.

Unitarity is one of properties that must be satisfied by S-matrix, which as a matter of fact comes from the

conservation of probability, i.e., S · S† = 1. Taking the meson-meson interactions with two coupled channels as

an example, the S-matrix for a given J can be parameterized as a 2× 2 unitary matrix:

SJ =

 ηe2iδ1 i
√

1− η2ei(δ1+δ2)

i
√

1− η2ei(δ1+δ2) ηe2iδ2

 , (2.79)

in which η is the inelasticity and δ1, δ2 the phase shifts of corresponding channels.

Conventionally, the relation of S-matrix and the partial wave amplitudes T J is defined as

SJ11 =1 + 2iσ1T
J
11,

SJ22 =1 + 2iσ1T
J
22,

SJ12 =SJ21 = 2i
√
σ1σ2T

J
12,

(2.80)

where σi = 2 qi√
s
. Note that the convention for the relation of S-matrix and T-matrix may be different for different
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processes. For instance, for meson-baryon interactions, the phase space σi has an extra factor of 1
8π , i.e., σi =

qi
4π
√
s
.

With Eq. 2.79 and Eq. 2.80, the unitary relation for T-matrix of momentum J can be expressed in matrix form

as

ImTJ = TJΣT ∗J , (2.81)

with

Σ =

 σ1θ(s− sth1 ) 0

0 σ2θ(s− sth2 )

 , (2.82)

where sthi denotes the threshold for channel i. The step function comes from the opening at the threshold of phase

space of corresponding channel.

One point to be noted is that the unitary relation actually cannot be exactly satisfied by the amplitudes obtained

in ChPT, but only in a perturbative way. This is because the unitary relation in Eq. 2.81 is linear on the left hand

side but quadratic on the other side. Taking the amplitude for meson-meson interactions as an example, it can be

organized as T = T2 + T4 + · · · according to the power counting rule. The unitary relation can only be satisfied

at any given order:

ImT2 =0,

ImT4 =T2ΣT2.

(2.83)

Immediately one can find a simple unitary method based on this exact perturbative unitarity, that is, the Inverse

Amplitude Method(IAM). Starting from the unitary relation in Eq. 2.81, one can divide the inverse of the unitary

amplitude into its real part and imaginary part

T−1 = ReT−1 − iΣ, (2.84)

in which T−1 on the right hand side can be approximated with the perturbation amplitude in ChPT. Finally one

can obtain the unitary amplitude which reads

ReT−1 ' T−1
2 (1− (ReT4)T−1

2 ),

T ' T2(T2 − T4)−1T2,

(2.85)

where Eq. 2.83 has been applied for simplification. This unitary method has been successfully applied to describe

the phase shifts of ππ and πK scattering [103] and was able to generate resonances such as σ, ρ and K∗.
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2.4.2 Bethe-Salpeter equation

In order to take the rescattering effect into account, the scattering equation is applied which can be expressed

schematically as

T = V + V GV + V GV GV + · · ·

= V + V G(V + V GV + · · · )

= V + V GT,

(2.86)

where V the arbitrary potential for scattering, which is usually obtained from ChPT, andG contains the propagators

of two intermediate particles. Note both V and T have been projected to a given partial wave and the subscript J

has been omitted here and afterwards in this subsection for simplification.

Based on Eq. 2.86, one well established relativistic equation is the Bathe-Salpeter equation(BSE) proposed in

Ref.[104], which reads

T (p1, p2, p
′
1, p
′
2) = V (p1, p2, p

′
1, p
′
2) +

∫
d4k

(2π)4
V (p1, p2, k, P − k)G(k, P − k)T (k, P − k, p′1, p′2) (2.87)

where p1, p2, p
′
1, p
′
2 are the momenta of incoming and outgoing particles, P = p1 + p2 = p′1 + p′2 the total

momentum, k the momentum of intermediate particle as shown in Fig. 2.2. With all these definitions and taking

meson-meson interactions for an example, G can be expressed as

G = i
1

k2 −m2 + iε

1

(P − k)2 −M2 + iε
(2.88)

= + + · · ·

= +

p1

p2

p′1

p′2

p1

p2

k

P − k

p′1

p′2

Figure 2.2: Kinematics of meson-baryon scattering.

Obviously, the Bethe-Salpeter equation in Eq. 2.87 is an integral equation, the solution of which is quite a

tough task. One will need the discretization of the integral and the knowledge of principle values(see the solution

of Lippmann-Schwinger Equation or Kadyshevsky equation), which is beyond the concern of this work. In this

work, we will follow the treatment in Ref. [100] and simplify the integral equation into an algebra equation with

the on-mass shell approximation.
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The basic idea is to divide the potential V and scattering amplitude T inside the integral kernel into the on-

shell parts and off-shell parts and put the two propagators in the rescattering process on their mass shell. For the

potential V of a given partial wave, the decomposition can be approximately expressed as

V (p1, p2, p
′
1, p
′
2) = Von(P 2) + (p2

1 −m2
1)V

(1)
off (P 2) + (p2

2 −m2
2)V

(2)
off (P 2)

+ (p′21 −m′21 )V
(3)
off (P 2) + (p′22 −m′22 )V

(4)
off (P 2),

(2.89)

with P = p1 + p2 = p′1 + p′2 again the total momentum. Obviously, Von and V (i)
off in Eq. 2.89 are independent of

the integral variables. Note that here in order to make the left hand side of Eq. 2.89 strictly equal to the right hand

side, only separable potentials are allowed like, for example, the Weinberg-Tomozawa term. Otherwise it is only a

approximation of a Taylor expansion over the off-shell parts p2 → m2 under the approximate on-shell condition.

Performing the same decomposition for T, the BS equation becomes now

Ton = Von +

∫
d4k

(2π)4

VonTon
(k2 −m2)[(P − k)2 −M2]

+

∫
d4k

(2π)4

V
(3)
offTon + VonT

(1)
off + (k2 −m2)V

(3)
offT

(1)
off

(P − k)2 −M2

+

∫
d4k

(2π)4

V
(4)
offTon + VonT

(2)
off + ((P − k)2 −M2)V

(4)
offT

(2)
off

k2 −m2

+

∫
d4k

(2π)4
(V

(4)
offT

(1)
off + V

(3)
offT

(2)
off ).

(2.90)

Similarly, all Ton and Toff are also independent of the integral variables and thus can be moved out from the

integrand. The second term in Eq. 2.90 only contains the on-shell parts of V and T. After integration, the remaining

three pieces containing off-shell parts leads to chiral logarithms or divergences, both of which can be absorbed by

the renormalization of couplings and masses [99]. Hence they can be neglected in the calculation.

With all the discussions above, the BS equation now becomes an ordinary algebraic equation

T = V + V GT, (2.91)

with G the scalar loop integral

G(s) = i

∫
d4k

(2π)4

1

k2 −m2 + iε

1

(P − k)2 −M2 + iε
. (2.92)

However, the scalar loop integral is actually divergent in the four dimensional Minkowski space. There are two

widely used methods for regulating this divergence. One is the cutoff method, in which one gives the upper limit

of the integration interval a finite value instead of infinity. Usually one needs to integrate the energy component

out first and introduce a proper form factor. For practical applications, the cutoff method is very convenient since

we only need to handle a numerical integration. But on the other hand, it works at the sacrifice of the analyticity
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of loop integral, because it does not fulfill the dispersion relation in Eq. 2.100.

GCUT (s) =

∫ qmax

0

d3q

(2π)3

1

4EMEm

1√
s− EM − Em + iε

, (2.93)

where qmax denotes the cutoff value, EM(m) =
√
q2 +M2(m2) and M(m) the energy and masses of two

propagating hadrons.

The other method is the dimensional regularization method(DRM). One first transforms the 4-dimensional

integral into d-dimension and then performs Feynman parametrization, wick rotation and shift the momentum. In

this way, the loop integral can be finally simplified as a polynomial of Gamma function via the Beta function

B(x, y) =

∫ ∞
0

tx−1dt

(1 + t)x+y
=

Γ(x)Γ(y)

Γ(x+ y)
. (2.94)

In this way, the divergence is contained in the Gamma functions with ε = d−4→ 0 and can be extracted explicitly

via ordinary algebraic operations. The divergent part reads

δG =
µε

16π2
(
1

ε
− 1

2
[ln(4π)− Γ′(1) + 1]), (2.95)

where µ is the regularization scale. This convention is also known as minimal subtraction scheme(MS).

Utilizing the dimensional regularization and omitting the ultra-violet divergence, the finite part of G can be

expressed as

GMS(s) =
1

16π2

[
m2 −M2 + s

2s
log

(
m2

M2

)
− q√

s
(log[2q

√
s+m2 −M2 − s] + log[2q

√
s−m2 +M2 − s]

− log[2q
√
s+m2 −M2 + s]− log[2q

√
s−m2 +M2 + s])

+

(
log

(
M2

µ2

)
+ a

)]
.

(2.96)

Note that the a here denotes the subtraction constant.

Practically both the subtraction constant a and cutoff momentum qmax should be treated as free parameters

and determined via fits to experimental observables. This is because the potential is always truncated at a finite

order and these two parameters actually contain contributions from higher orders.

However, the subtraction constant and the cutoff momentum can also be treated model independently. Con-

ventionally one can choose the scale of chiral symmetry breaking, i.e., the mass of ρ(770) or 1GeV for the cutoff

momentum. For the subtraction constant, it could be treated as a function of the regularization scale a = a(µ),

which can then be obtained by setting G(µ) = 0 manifestly or requiring the G(s) at threshold equal to that

calculated in the cutoff scheme.

One can easily prove that the T-matrix obtained from the BS equation automatically satisfies the unitary relation
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for a real potential. From Eq. 2.91, one can find

T−1 = V −1 +G (2.97)

which is exactly matched to Eq. 2.84 with ReT−1 = V −1 and ImGi = −σi/2 1.

The method combined ChPT and the Bethe-Salpeter equation with the on-shell approximation is now known as

chiral unitary theory(UChPT). The application in, for example, Ref. [100] has proved that the UChPT is a powerful

tool for the study on hadron-hadron interactions, especially covering the resonance region. It can dynamically

generate the resonances of our interest with very few free parameters. In most cases, there will be only one free

parameter, the subtraction constant a or the cutoff momentum qmax, besides the LECs in chiral Lagrangians.

However, one may find that in the re-summation of the loop chain for the BS equation, only s channel vertices

are involved. As a consequence, potentials containing the born term and the crossed born term are not appropriate

for such a resummation. Generally speaking the solution of the BS equation are not crossing symmetric. Further

more, potentials containing box diagrams or any once iterated diagrams involving born terms(and crossed ones)

are also not proper for the UChPT.

2.4.3 Unitarity in general

As has been mentioned in the previous subsection, although UChPT is quite a simple and powerful approach, the

loss of crossing symmetry makes it unsuitable for applications involving potentials at loop level. In this subsection,

we will introduce a more general unitary method which was proposed by J. A. Oller and Ulf-G. Meissner in

Ref.[41].

The starting point is the unitary relation in Eq. 2.84, from which one finds the discontinuity for Tij when

crossing the real axis

ImT−1
ij (s) = ρi(s)θ(s− sth)δij . (2.98)

with ρi = −σi2 = − qcm
8πW . According to the Cauchy theorem, T−1

ij (s) can be expressed with once subtracted

dispersion relation as

T−1
ij (s) = δijgi(s) + T −1

ij (s), (2.99)

with

gi(s) =

(
ã+

s− s0

π

∫ ∞
sth

ds′
ρi(s)

(s′ − s)(s′ − s0)

)
, (2.100)

where ã is again the subtraction constant and s0 the subtraction point. T (s) above denotes the remaining part of T

after subtracting the right hand cut, which includes contributions from local and pole terms and crossed diagrams.

Compared to Eq. 2.97, one can immediately find that g(s) is exactly the once subtracted dispersion relation for

G(s) since ImG = −σ(s)
2 θ(s− sth). Also note that here we also required that the T-matrix above does not contain

1Here, the convention is switched to be matched to Eq. 2.96.
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the left hand cut.

The basic idea of this general unitary method is to match the remaining part T simultaneously with the pertur-

bation amplitudes from ChPT and guarantee that it does not contain the unitary cut. One first rewrites Eq. 2.99 as

T (s) = [I + T (s) · g(s)]−1 · T (s), (2.101)

where I is the unit matrix. The equation is expressed in matrix form to be more general. The resummation of the

right hand cut contribution can be expressed as the expansion of Eq. 2.101, which is

T (s) = T (s)− T (s) · g(s) · T (s) + · · · . (2.102)

Now we are able to find the explicit matching relation between T and the perturbation amplitudes at the i-th order

T (i) from ChPT. Take meson-meson interaction as an example. Since g(s) is counted asO(1) and only even order

terms are allowed according to power counting rules, the lowest order of the right hand cut is T (2) · g(s) · T (2),

which is at order O(p4). Thus at the lowest order, T (s) = T (2) + O(p4) is free of loops and unitary cut, which

indicates that the remaining part T (2)(s) is exactly T (2).

Substituting T (2)(s) = T (2)(s) into Eq. 2.101, one can obtain the unitary amplitudes

T (s) = [I + T (2)(s) · g(s)]−1 · T (2)(s). (2.103)

This method can be applied to calculate the unitary amplitudes at any given order. For higher order involving

loop contributions, for instance, the O(p4) for meson-meson interactions, the remaining part T (s) is

T (4)(s) = T (4)(s) + T (2)(s) · g(s) · T (2)(s), (2.104)

where the last term guarantees T (s) free of right hand cuts.

As a summary, we introduced a general scheme to unitarize the amplitudes, which is particularly convenient

when considering higher order contributions up to loop level. However, at loop level, amplitudes usually contain

complicated analytical structures including a variety of right hand cuts and left hand cuts. To restore the strict

unitary relation, one will have to make some approximations for the perturbation amplitude via subtracting the left

hand piece or, the most simple method, subtracting the whole imaginary part from the perturbation amplitude.

2.4.4 Resonances

Once we take rescattering effects into account via the resummation of unitary cuts, resonances can then be gener-

ated dynamically. The resonance behaves as a pole of unitary amplitude for a given partial wave in the complex

plane of
√
s. The pole on the real axis corresponds to a bound state while those with finite imaginary parts reso-
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nances.

One point to be noted is that although a resonance rises up as a pole of unitary amplitude, there are also other

processes which could lead to enhancement on the complex plane. For example, threshold effect because of the

step function of phase space may result in peaks but not singularities at threshold. These kinds of phenomena

are known as cusps, which can be distinguished from a resonance by the residue of the unitary amplitude at the

pole position. Another kind of enhancement is caused by the kinematical effect such as the triangle singularity.

When the three propagators are approximately on their mass shell, a peak will appear. Compared to a resonance,

these kinds of singularities are actually a perturbation effect. One can find quite a large number of discussion on

these topics and here I only refer to Ref. [105] as an example for interested readers, where a triangle singularity

explanation was given for the f2(1810).

On the other hand, we are also faced with one problem that the unitary T-matrix is as a matter of fact a multi-

valued complex function due to the qcm in the scalar loop integral of Eq. 2.96. For an arbitrary complex number z,

we have z = ze2πi. Thus, the qcm as a square root of a complex number will naturally lead to two values,
√
z and

√
zeπi. As a consequence, for each single channel, one will have two so-called Riemann sheets.

The function on the first Riemann sheet is defined by the requirement of 0 ≤ θ ≤ 2π. With the unitary relation

in Eq. 2.97, we can write the unitary cut for GI(s) where the superscript denotes the first Riemann sheet

ImGi(
√
s) =

1

2i
(GIi (

√
s+ i0)−GIi (

√
s− i0)) = −σi/2 = − qcm

8π
√
s
, (2.105)

where 0 here refers to a positive infinitesimal. The G on the second Riemann sheet GII is then defined as

GII(
√
s+ i0) ≡ GI(√s− i0). (2.106)

With Eq. 2.105 and Eq. 2.106, one can finally obtain the relation between GI and GII

GII(
√
s) = GI(

√
s) + iσi. (2.107)

Note that all the momentum in both sides of the above equation are calculated in the first Riemann sheet.

One may also define the G on the so-called physical Riemann sheet via

Gph =


GI(
√
s), Re[

√
s] <

√
sth;

GI(
√
s), Re[

√
s] >

√
sth, Im[

√
s] > 0;

GII(
√
s), Re[

√
s] >

√
sth, Im[

√
s] < 0.

(2.108)

The physical Riemann sheet is directly connected to the physical real axis and thus related to the pole structure for

physical observables. For practical applications, one can directly search for poles on this physical Riemann sheet.

Assuming that there exists a pole at
√
s0 = M − iΓ/2 with M , Γ the mass and width of the resonance, one
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can perform a Laurent expansion for the T-matrix element Tij over
√
s−√s0, which reads

T (
√
s)ij =

gigj√
s−√s0

+ c1 + c2(
√
s−√s0) + · · · , (2.109)

where gi denotes the coupling of the resonance to the i-th channel, which indicates the relative importance of

different coupled channels to the resonance. ci’s are complex coefficients. Note that the first term is just the

familiar Breit-Wigner term for a scattering amplitude.
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Chapter 3

Dynamically generated excited charmed

baryons

In the preceding chapters, we introduced the theoretical framework for low energy dynamics of hadrons, i.e., chiral

perturbation theory and its unitary approach(UChPT). In this chapter we will apply UChPT to study the interactions

between Goldstone bosons and heavy baryons containing one single charm quark, and the internal structure of the

dynamically generated states in these interactions.

3.1 Introduction

As has been mentioned in section. 1.3, ordinary mesons consist of a pair of quark and anti-quark while baryons

contain three quarks. Except for only a few anomalies, for instance, the lowest lying scalar nonet such as a0(980),

f0(980), f0(500), K∗0 (700) and the excited baryons like Λ(1405), most hadrons can be explained via the naive

quark model [5] till the end of last century. However, with the development of accelerator techniques, the exotic

XYZ states were discovered one by one, the first of which is the famous X(3872) states in 2003 by the Belle

Collaboration [106]. Some of these exotic hadrons contain apparently extra pairs of quark and anti-quark, such as

Zc(4430) [107] and Zc(3900) [108] for heavy mesons or the most recently discovered heavy baryons, pentaquark

states Pc by the LHCb Collaboration. For a review of this topic, we refer to Ref. [109].

Compared to the case of heavy meson states, the spectrum for the exotic heavy-flavor baryon sector is much

less complete, partly because production cross sections of exotic baryons are small. Up to now, there are only a few

experimental observations of excited charmed and bottom baryons (see Ref. [110] for a recent and comprehensive

review). In the charmed baryon sector, various collaborations have observed a number of excited states, including

Λc(2595), Ξc(2790) with JP = 1/2− and Λc(2625), Ξc(2815) with JP = 3/2− [5]. While in the bottom baryon

sector, the LHCb Collaboration has reported two excited Λb states, Λb(5912) and Λb(5920) [111]. The CDF

Collaboration then confirmed the second state [112].
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These variety of discoveries has attracted worldwide attention of physicists. Theoretical explanations based on

different kinds of models such as weakly bound molecular states or contact multi-quark states, i.e., tetra-quark or

penta-quark states, have been proposed based on chiral symmetry, unitarity and heavy quark symmetry, the last of

which is particularly helpful in such a case. Besides, considering that most of these exotic states are located quite

close to the thresholds of some two-body channels, one can naturally expect significant coupled channel effects.

A series of work [2, 4, 113, 114, 115] have proposed that these excited charmed or bottom baryons are not the

traditional orbital excited states, or at least not completely. These studies provide instead a interpretation from the

point of view of dynamically generated states, or molecule via different approaches including the unitary chiral

approach(UChPT), the hidden gauge symmetry approach or EFT based on heavy quark symmetry. As a matter of

fact, such a molecular interpretation has been successfully applied for the exceptions mentioned at the beginning

of this section, e.g., the scalar nonet and Λ(1405).

In the present work, we apply the unitary chiral approach to study the interactions between the ground-state

charmed baryons and the pseudoscalar mesons with effective chiral Lagrangians up to next-to-leading order(NLO).

Heavy quark spin symmetry is applied to build a relation between the potentials for JP = 1/2+ and JP = 3/2+.

We search for poles on the complex plane to identify dynamically generated states. Besides, we investigate the

impact of different regularization schemes to regularize the loop function in the UChPT, in which corrections from

the heavy quark symmetry are taken into account. This work was published in Ref. [11].

3.2 Framework

In the standard quark model, the ground state singly charmed baryons(see Fig. 1.3), can be grouped into two SU(3)

representations, i.e., an anti-triplet and a sextet according to the two light quarks as

3× 3 = 3̄ + 6, (3.1)

where the heavy quark is treated as a spectator. Charmed baryons belonging to these two representations should

be treated separately.

The chiral Lagrangian for the leading order interaction between the sextet or anti-triplet and a pseudoscalar

meson in a covariant scheme is provided in Refs. [113, 116]:

L =
i

16f2
0

Tr(H̄[3̄](x)γµ[H[3̄](x), [φ(x), (∂µφ(x))]−]+) (3.2)

+
i

16f2
0

Tr(H̄[6](x)γµ[H[6](x), [φ(x), (∂µφ(x))]−]+), (3.3)

where f0 is the pseudoscalar decay constant at the chiral limit, φ the familiar pseudoscalar octet, H[3] and H[6]
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collect the charmed baryons, respectively:

φ =
√

2


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K0 − 2√
6
η

 , (3.4)

H[3] =


0 Λ+

c Ξ+
c

−Λ+
c 0 Ξ0

c

−Ξ+
c −Ξ0

c 0

 , (3.5)

H[6] =


Σ++
c

Σ+
c√
2

Ξ
′+
c√
2

Σ+
c√
2

Σ0
c

Ξ
′0
c√
2

Ξ
′+
c√
2

Ξ
′0
c√
2

Ω0
c

 . (3.6)

With the Lagrangian of Eq. 3.2, one can easily obtain the interaction kernel for the φ(p2)B(p1)→ φ(p4)B(p3)

process of our interest where pi’s are the four momenta of the respective particles

V =
C

(I,S)
ij

4f2
0

γµ(pµ2 + pµ4 ) ≈
C

(I,S)
ij

4f2
0

(E2 + E4), (3.7)

where C(I,S)
ij denote the Clebsch-Gordan coefficients given in the Appendix. A. Note that in the expression above,

we have neglected the three momenta component since in the present study we are only interested in the energy

region close to the thresholds of the respective coupled channels.

In the framework of UChPT, the Bethe-Salpeter equation is applied to resum the unitary cut. With the on-

shell approximation discussed in the preceding chapter, the BS equation can be simplified as an ordinary algebraic

equation in Eq. 2.91. We put it here again for convenience.

T = V + V GT, (3.8)

where V denotes the kernel in Eq. 3.7 and G the familiar scalar integral in Eq. 2.92. We have introduced two reg-

ularization schemes, dimensional regularization scheme and cutoff scheme, to regulate the divergence in Eq. 3.10

and Eq. 2.93. However, in Ref. [117], the authors proposed a new regularization scheme based on heavy quark

symmetry, or the HQS scheme in short, which manifestly satisfies both the chiral power counting and the heavy-

quark spin and flavor symmetry up to 1/MH with MH a generic heavy-hadron mass. In the HQS scheme, the

scalar integral reads

GHQS = GMS −
2M̊

16π2

(
log

(
M̊2

µ2

)
− 2

)
+

2msub

16π2

(
log

(
M̊2

µ2

)
+ a

)
, (3.9)
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GMS(s,M2,m2) =
2M

16π2

[
m2 −M2 + s

2s
log

(
m2

M2

)
(3.10)

− q√
s

(log[2q
√
s+m2 −M2 − s] + log[2q

√
s−m2 +M2 − s] (3.11)

− log[2q
√
s+m2 −M2 + s]− log[2q

√
s−m2 +M2 + s]) (3.12)

+

(
log

(
M2

µ2

)
−2

)]
. (3.13)

Note that we have moved the subtraction constant in Eq. 3.10 into the correction part and left a −2 which is

underlined in the corresponding position. In the above equations, msub is a generic pseudoscalar meson mass and

M̊ the chiral limit value of the charmed baryon masses, which can practically be taken the average values of the

masses of pseudoscalar mesons and charmed baryons listed in Table 3.1. Clearly the HQS inspired regularization

method is a straightforward extension of the minimal subtraction scheme, which, in spirit, is very similar to the

extended-on-mass-shell scheme [91].

In Fig. 3.1, we compared the scalar loop integral from the three regularization schemes mentioned above.

The subtraction constants or cutoff momentum are fixed such that Λc(2595) can be reproduced having the mass

measured experimentally. In the comparison, we apply the pion mass m = 138 MeV for the pseudoscalar meson

and the regularization scale in the two dimensional regularization methods GMS and GHQS is chosen to be µ = 1

GeV. The loop function in the exact heavy quark limit is obtained by replacing M̊ with M , and expanding GHQS

in inverse power of M up to O(1/M) [117]. It is clear that the scalar loop integral in the HQS inspired scheme

and the cutoff scheme remain almost independent on the heavy baryon mass, indicating the conservation of heavy

quark symmetry, while the strong dependence on M of the naive MS scheme imply the breaking of the symmetry.

The behaviors are consistent with the finding in heavy meson cases in Ref. [117]. To be conservative, we shall

always exhibit the results of dynamically generated charmed baryons obtained in the HQS inspired scheme as well

as in the cutoff scheme in the following section.

Table 3.1: Numerical values of isospin and SU(3)-multiplet averaged masses, the pion decay constant fπ , and the
SU(3) averaged pseudoscalar meson decay constant f0 (in units of MeV) [5].

M̊
[3̄]
c MΛc MΞc M̊

[6]
c MΣc MΞ′c

MΩc

2408.5 2286.5 2469.5 2534.9 2453.5 2576.8 2695.2

MΣ∗c
MΞ∗c

MΩ∗c
M̊

[6]
c∗

2517.9 2645.9 2765.9 2601.9

mπ mK mη msub fπ f0 = 1.17fπ

138.0 495.6 547.9 368.1 92.21 107.8
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Figure 3.1: Loop function G(M) as a function of the heavy hadron mass M in different regularization schemes:
HQS (the heavy quark symmetry inspired scheme), MS (the modified minimal subtraction scheme), CUT (the
cutoff regularization scheme), and HH (the exact heavy-quark limit). The subtraction constants or cutoff values
have been fixed by reproducing Λc(2595). In calculating the loop function G, the pseudoscalar meson mass is
fixed at that of the pion m = 138 MeV and the renormalization scale in the dimensional regularization methods is
fixed at µ = 1 GeV.

3.3 Results and discussions

In this unitary approach, there is no free parameter in the potential V at the lowest order. The only unknown

parameter exists in the scalar loop integral, i.e., the subtraction constant a in the dimensional regularization scheme

or the cutoff momentum Λ in the cutoff regularization scheme. As I have mentioned in the preceding chapter, these

two parameters could be treated model independently. Conventionally, one often chooses a cutoff of the order of

the chiral symmetry breaking scale or mass of ρ meson, while one can fix a “natural” value for the subtraction

constant by requiring the G function evaluated at threshold to be equal in both methods. Such a treatment is

adequate to produce some of the dynamically generated states, which, however, in most cases will not be located

exactly at the position observed experimentally. This is because the potential is only calculated up to a finite order

with higher order contributions absorbed into a or Λ. In order to guarantee that the dynamically generated state

coincide with its experimental counterpart, Λ or a usually needs slightly fine-tuning accordingly. One can further

use Λ or a obtained to make predictions. In the present work we will follow the same line.

One can easily extend the study of the 1/2− sector to the 3/2− sector since heavy-quark spin symmetry implies

that in the limit of infinite heavy quark masses, the interactions between a ground state baryon and a pseudoscalar

meson are the same no matter whether the spin of the baryon is 1/2 or 3/2. As a consequence, in order to search

for the excited heavy baryons with JP = 3/2−, we only need to replace the masses of the 1/2+ baryons by their

3/2+ partners (see Table 3.1). The differences will be of higher orders. Searching for poles on the complex plane,
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we find the partner state Λ∗c(2625) in the charmed sector with the same quantum numbers as Λc(2595).

It should be noted that unlike the heavy meson sector, the present lattice QCD simulations of charmed [118,

119, 120, 121, 122] or bottom [120, 123, 122] baryons still focus on the ground states with the exception of

Ref. [124] and Ref. [125], where excited triply charmed and bottom states were studied, respectively. Future

lattice QCD simulations of the excited singly charmed and bottom baryons will be extremely valuable to test the

predictions of the present work and those of other studies. 1

3.3.1 Excited charmed baryons

Once the subtraction constant is fixed with the mass of Λc(2595) with JP = 1/2− or Λc(2625) with JP = 3/2−,

one can use the same constant to predict the counterparts of the dynamically generated states with different isospin

and strangeness. Our calculation indicates that Λc(2595) can indeed be identified as a Σcπ state, as first pointed out

in Refs. [3, 113]. To account for moderate heavy-quark flavor symmetry breaking corrections, we slightly fine-tune

the subtraction constant in the dimensional regularization scheme or the cutoff value in the cutoff regularization

scheme so that the mass of Λc(2595) is reproduced to be 2591 MeV.2 The predictions are then tabulated in Tables

3.2 and 3.3.

Similar predictions are also made in Refs. [2, 4] but with different interaction kernel. In Ref. [4], a Weinberg-

Tomozawa like Lagrangian based on full SU(8) = SU(4)f × SU(2) symmetry was applied, while in Ref. [2],

the transition amplitudes are obtained via vector meson or pion exchanges with corrections from box diagrams.

The coupled channels to be taken into account thus differs accordingly. Taking I = 0 channel as an example,

one finds 16 channels in the kernel of Ref. [4], 7 in Ref. [2] but 2 in the present work. In other words, we

only keep the minimum number of channels to construct the LO chiral Lagrangian. One should also note that in

Refs. [2, 4], the anti-triplet [3̄] and sextet [6] of charmed baryons are mixed up while it is not in our case. All

the differences mentioned above lead to disagreements among the predictions from the three works. For example,

four (S = 0, I = 0) states and five (S = 0, I = 1) states are predicted in Ref. [2]. The number of dynamically

generated states in Ref. [4] is even larger. Somehow, it seems that the number of states generated is proportional to

the number of coupled channels considered. As a consequence, one needs to be careful to compare our predictions

with those in Refs. [2, 4].

In addition, our Λc(2595) is predominantly a Σcπ state, while it is more in favor of a DN state in Ref. [2] and

a D∗N state in Ref. [4]. Despite of the different dominant components, it is clear that coupled channel effects or

multi quark components may not be negligible in the wave function of Λc(2595).

In Table. 3.2, we have temporarily identified the states appearing at
√
s = (2721, 0) MeV,

√
s = (3069− i12)

MeV,
√
s = (2827− i55) MeV, and

√
s = (3123,−i44) MeV as Λc(2765), Λc(2940), Ξc(2790), and Ξc(3123).

These identifications are mainly based on the masses of these states [5]. Since the spin-parity’s of these states are

1We note that preliminary results on the excited state spectroscopy of singly and doubly charmed baryons have recently been presented at
conferences [126, 127].

2Experimentally, Λc(2595) is found at 2592.25 ± 0.28 MeV with a width of 2.6 ± 0.6 MeV [5] . We need to slightly increase f0 to put
Λc(2595) exactly at this position because of the closeness of the Σcπ threshold.
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not yet known, the associations of our states with their experimental counterparts should be taken with care. A

second complication comes from the fact that other coupled channels other than those considered here may not be

negligible as can be seen from Fig. 3.2.

In Ref. [128], Λc(2940) was suggested to be a molecular state with spin-parity JP = 1/2− or 3/2−, because

of its proximity to the D∗0p threshold. In Ref. [4], none of the dynamically generated states with JP = 1/2− or

3/2− can be associated to Λ(2940). In Ref. [2], a state at 2959 MeV with a small width could be associated to

the Λc(2940), which, however, couples mostly to ρΣc. In our present study, since the DN (D∗N ) channels are

not taken into account explicitly, we have found only two states at about 3050 MeV (see Tables 3.2 and 3.4), one

of which we tentatively associate to Λ
(∗)
c (2940). However, one definitely needs to take into account the missing

D(∗)N channels to be more conclusive. It should be noted that in the molecular picture, Dong et al. have studied the

strong two-body decays of Λc(2940) and shown that the JP = 1/2+ assignment is favored [129]. Assuming this

particular quantum number, they later studied the radiative [130] and strong three-body [131] decays of Λc(2940).

Molecular nature of Λc(2940) has recently been studied in the framework of QCD sum rules [132], the constituent

quark model [133], and the effective Lagrangian method [134], as well.

In Tables 3.4 and 3.5, we tabulate the dynamically generated states in the 3/2− sector. It should be noted that

compared to the 1/2− sector, an extra pole is produced in the (S, I) = (−2, 1) channel. On the other hand, its

counterpart is found in both the 3/2− and 1/2− bottom sector. This seems to indicate that the breaking of heavy

quark flavor symmetry is larger than that of the heavy quark spin symmetry, as naively expected.

It should be noted that to confirm the identification of the dynamically generated states with their experimental

counterparts, one needs to study their decay branching ratios, since many approaches used the masses of these

states to fix (some of) their parameters. Strong and radiative decays are both very important in this respect since

they may probe different regions of their wave functions. In the past few years, many such studies of the decays of

charmed baryons have been performed, see, e.g., Refs. [129, 130, 131, 135, 136, 137, 138, 139, 140]. 3

3.3.2 Further Discussions

One can certainly extend the calculation to the bottom sector with the help of heavy quark flavor symmetry as

was done in the published version [11], which for simplification is not shown here. Superficially, exact heavy

quark flavor symmetry would dictate that the number of dynamically states in the bottom sector and that in the

charm sector is the same. A comparison in Ref. [11] shows that this is almost the case, but not exactly since heavy

quark symmetry could be broken. For instance, some counterparts of the dynamically generated bottom baryons

are missing in the charm sector. A closer look at these channels reveals that they simply become too broad and

develop a width of 200 ∼ 300 MeV, which are not considered in our study.

The broadening of these states can be traced back partially to the weakening of the corresponding potentials

and partially to the calibration of our framework to reproduce Λc(2595) in the charmed sector. Since Λc(2595) is

3For similar studies in the heavy-flavor mesonic sector, see, e.g., Refs. [141, 142, 143, 144, 145, 146, 147, 148].
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Table 3.2: Dynamically generated charmed baryons of JP = 1/2−. The subtraction constant is fixed in a way
such that Λc(2595) mass is produced to be 2591 MeV with a = −8.27. All energies are in units of MeV and
(S, I)M denotes (strangeness, isospin)SU(3)multiplet.

Pole position (S, I)M Main channels (threshold) Exp. [5]

(2721, 0) (0, 0)[3] ΞcK(2965.1) Λc(2765)?

(2623,−i12) (−1, 1
2 )[3] ΛcK(2782.1)

(2965, 0) (−2, 0)[3] ΞcK(2965.1)

(2948, 0) (1, 1
2 )[6] ΣcK(2949.1)

(2674,−i51) (0, 1)[6] Σcπ(2591.5)

(2999,−i16) (0, 1)[6] Σcη(3001.4),Ξ′cK(3072.4)

(2591, 0) (0, 0)[6] Σcπ(2591.5) Λc(2595)

(3069,−i12) (0, 0)[6] Ξ′cK(3072.4) Λc(2940)?

(2947,−i34) (−1, 3
2 )[6] ΣcK(2949.1)

(2695, 0) (−1, 1
2 )[6] ΣcK(2949.1)

(2827,−i55) (−1, 1
2 )[6] Ξ′cπ(2714.7) Ξc(2790)?

(3123,−i44) (−1, 1
2 )[6] ΩcK(3190.8) Ξc(3123)?

(2946, 0) (−2, 0)[6] Ξ′cK(3072.4),Ωcη(3243.1)

Table 3.3: Same as Table 3.2, but obtained in the cutoff regularization scheme with Λ = 1.35 GeV.

Pole positions (S, I)M Main channels (threshold) Exp. [5]

(2707, 0) (0, 0)[3] ΞcK(2965.1) Λc(2765)?

(2622,−i12) (−1, 1
2 )[3] ΛcK(2782.1)

(2965, 0) (−2, 0)[3] ΞcK(2965.1)

(2949, 0) (1, 1
2 )[6] ΣcK(2949.1)

(2672,−i53) (0, 1)[6] Σcπ(2591.5)

(2996,−i21) (0, 1)[6] Σcη(3001.4)

(2591, 0) (0, 0)[6] Σcπ(2591.5) Λc(2595)

(3072,−i15) (0, 0)[6] Ξ′cK(3072.4) Λc(2940)?

(2946,−i35) (−1, 3
2 )[6] ΣcK(2949.1)

(2683, 0) (−1, 1
2 )[6] ΣcK(2949.1)

(2813,−i44) (−1, 1
2 )[6] Ξ′cπ(2714.7) Ξc(2790)?

(3121,−i61) (−1, 1
2 )[6] ΩcK(3190.8) Ξc(3123)?

(2909, 0) (−2, 0)[6] Ξ′cK(3072.4)

much closer to the threshold of its main coupled channel than Λb(5912), the calibration implies a weaker potential

in the charm sector than in the bottom sector. Due to this weakening, the dynamical generation of some charmed

baryons requires a slight readjustment of the potential by changing either f0 and a slightly within a few percent.

Otherwise, they will show up as cusps. The pole positions of these states have been underlined to denote such a
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Table 3.4: Dynamically generated charmed baryons of JP = 3/2−. The subtraction constant is fixed in a way
such that Λ∗c(2625) mass is produced to be 2625 MeV with a = −12.0. All energies are in units of MeV and
(S, I)M denotes (strangeness, isospin)SU(3)multiplet.

Pole position (S, I)M Main channels (threshold) Exp. [5]

(2952, 0) (1, 1
2 )[6] Σ∗cK(3013.5)

(2685,−i15) (0, 1)[6] Σ∗cπ(2655.9)

(2977,−i23) (0, 1)[6] Σ∗cη(3065.8)

(2625, 0) (0, 0)[6] Σ∗cπ(2655.9) Λ∗c(2625)

(3066,−i19) (0, 0)[6] Ξ∗cK(3141.5)

(2968,−i33) (−1, 3
2 )[6] Σ∗cK(3013.5)

(2656, 0) (−1, 1
2 )[6] Σ∗cK(3013.5)

(2827,−i17) (−1, 1
2 )[6] Ξ∗cπ(2783.9) Ξ∗c(2815)?

(3113,−i45) (−1, 1
2 )[6] Ω∗cK(3261.5)

(3118,−i80) (−2, 1)[6] Ω∗cπ(2903.9)

(2885, 0) (−2, 0)[6] Ξ∗cK(3141.5)

Table 3.5: Same as Table 3.2, but obtained in the cutoff regularization scheme with Λ = 2.13 GeV.

Pole position (S, I)M Main channels (threshold) Exp. [5]

(2962, 0) (1, 1
2 )[6] Σ∗cK(3013.5)

(2684,−i15) (0, 1)[6] Σ∗cπ(2655.9)

(2980,−i28) (0, 1)[6] Σ∗cη(3065.8)

(2625, 0) (0, 0)[6] Σ∗cπ(2655.9) Λ∗c(2625)

(3059,−i22) (0, 0)[6] Ξ∗cK(3141.5)

(2974,−i33) (−1, 3
2 )[6] Σ∗cK(3013.5)

(2653, 0) (−1, 1
2 )[6] Σ∗cK(3013.5)

(2816,−i13) (−1, 1
2 )[6] Ξ∗cπ(2783.9) Ξ∗c(2815)?

(3093,−i51) (−1, 1
2 )[6] Ω∗cK(3261.5)

(3103,−i74) (−2, 1)[6] Ω∗cπ(2903.9)

(2858, 0) (−2, 0)[6] Ξ∗cK(3141.5)

fine-tuning.

One should note that we have used an averaged pseudoscalar decay constant, f0 = 1.17fπ , in our calculations.

Using the pion decay constant, f0 = fπ , will not change qualitatively our results and conclusions, but can shift the

predicted baryon masses by a few tens of MeV depending on the particular channel. In addition, the differences

between the results obtained in the dimensional regularization scheme and those obtained in the cutoff regulariza-

tion scheme also indicate inherent theoretical uncertainties of the UChPT method, which can be as large as 30 to

40 MeV depending on the channels. It should be mentioned that though formally, the dimensional regularization

scheme might be preferred to the cutoff regularization scheme, they yield quite similar results in our present work,
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both in terms of heavy-quark symmetry conservation and in terms of prediction of dynamically generated states

once the relevant parameters are fixed in such a way that Λc(2595) and Λb(5912) are produced.

As mentioned previously, compared to the studies of Refs. [2, 4, 114, 115], we have only considered the

minimum number of coupled channels dictated by chiral symmetry and its breaking. Such an approach is only

appropriate if close to the dynamically generated states, no other coupled channels with the same quantum numbers

exist. Otherwise, one may need to take into account those channels involving either vector mesons (light or heavy)

and non-charmed baryons. As can be seen from Fig. 3.2, it is clear that for the dynamical generation of Λc(2595),

our minimum coupled channel space indeed includes the most relevant channels, i.e., the Σcπ, while the next

closest coupled channels excluded in our space, the ND, are roughly 200 MeV above, respectively. On the other

hand, the Λc(2940) state is close not only to the Ξ′cK channel taken into account in our framework but also to Λcω

and ΛDs. As a result, our model space may be too restricted and the result should be taken with care. This might

be the reason why our prediction is about 100 MeV off the experimental mass of this resonance.

3.3.3 Scattering Lengths

Scattering lengths provide vital information on the strong interaction. Although direct experimental measurements

of the scattering lengths between a charmed baryon with a pseudoscalar meson cannot be foreseen in the near

future, rapid developments in lattice QCD may soon fill the gap. In Tables 3.6, and 3.7, we tabulate the scattering

lengths calculated in the dimensional regularization scheme, defined as

ajj = − Mj

4π(Mj +mj)
T

(S,I)
jj , (3.14)

for channel j with strangeness S and isospin I , where Mj and mj are the respective baryon and meson masses of

that channel. For the sake of comparison, we list the ChPT results of Ref. [116]. One should note that Ref. [116]

calculated the scattering lengths up toO(p3), while in our study only the leading order (O(p)) ChPT kernel is used

and in addition we work with the UChPT.

Examining the scattering lengths in the charmed sector, we notice that because of the existence of a bound

state just below their respective thresholds, the scattering lengths for the ΣcK channel with (S, I)M = (1, 1/2)[6]

and for the Σcπ channel with (S, I)M = (0, 0)[6] are quite large and negative, i.e., aΣcK = −8.114fm and

aΣcπ = −28.204fm. Therefore, future lattice QCD study of these two channels may be able to test to what extent

that the scenario of these states being dynamically generated is true.
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Figure 3.2: Thresholds of the coupled channels considered in different works for the singly charmed sector with
JP = 1/2− and (S = 0, I = 0): Liang et al. [2], Hofmann et al. [3],Garcia-Recio et al. [4],and Exp [5]. Two
model spaces denoted by dot-dot-dashed lines (PB) and dashed lines (VB), respectively, were studied in Ref. [2].
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3.3.4 An exploratory NLO study

In this section, we study the effects of the NLO potentials. In principle, higher order effects in the UChPT can

be taken into account systematically if relevant LECs can be fixed reliably. However, in the present case, the

experimental data available is not enough. Therefore, we have to turn to some phenomenological means to fix

some of the LECs and vary others within their natural range to study the effects of the NLO potentials. As an

exploratory study, we limit ourselves to the 1/2− sector.

To reduce the number of unknown LECs, we use the following NLO Lagrangian in the heavy-meson formula-

tion [116]:

L(2)
HΦ = c̄0Tr[H̄3̄H3̄]Tr[χ+] + c̄1Tr[H̄3̄χ̃+H3̄] + (c̄2 −

2g2
6 + g2

2

4M0
)Tr[H̄3̄v · uv · uH3̄] (3.15)

+ (c̄3 −
2g2

6 − g2
2

4M0
)H̄ab

3̄ v · ucav · udbH3̄,cd + c0Tr[H̄6H6]Tr[χ+] + c1Tr[H̄6χ̃+H6] (3.16)

+ (c2 −
2g2

2 + g2
1

4M0
)Tr[H̄6v · uv · uH6] + (c3 +

2g2
2 − g2

1

4M0
)H̄ab

6 v · ucav · udbH6,cd (3.17)

+ c4Tr[H̄6H6]Tr[v · uv · u], (3.18)

where χ+ and χ̃+ are defined as ,

χ± = ξ+χξ+ ± ξχξ (3.19)

χ = diag(m2
π,m

2
π, 2m

2
K −m2

π) (3.20)

χ̃± = χ± −
1

3
Tr[χ±], (3.21)

with ξ = exp(i φ
2fφ

).

The LECs g2 and g4 can be fixed by reproducing the Σc and Σ∗c widths, while the other gi’s can be related to

them using either quark model symmetries or heavy quark spin symmetry. The LECs c̄i and ci are fixed using the

(broken) SU(4) symmetry in Ref. [116] 4. The LEC α′ can not be determined and we will estimate its contribution

below assuming a natural value within the range of −1 ∼ 1 as in Ref. [116]. In the present work, we follow

Ref. [116], and use the values determined there and reproduced in Tables 3.8, 3.9, and 3.10 5.

In the NLO study, we fix the subtraction constant in the same way as in the LO case and search for poles on

the complex plane. The results are tabulated inTable 3.11.

Compared to the LO case, we find some substantial changes when the NLO potentials are taken into account.

For instance, in the charmed sector, one dynamically generated state in the anti-triplet sector disappears while a

new one appears with α′ = −1.0. This implies that the NLO chiral potential has a huge impact on the predicted

states in the anti-triplet sector.

4The matching relations between the SU(4) Lagrangian and the SU(3) one lead to 8 equations between LECs, while here we have 9 LECs
to be determined. Therefore the α′ is introduced.

5The values are slightly different from those of Ref. [116] because there relations among the LECs are stated incorrectly there.
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Table 3.8: Constants in Eq. (3.15) for the anti-triplet.

|g1| |g2| |g3| |g4| |g5| |g6|
0.98 0.60 0.85 1.0 1.5 0

Table 3.9: Constants in Eq. (3.15) for the anti-triplet (in units of GeV −1).

c̄0 c̄1 c̄2 c̄3

−0.32 −0.52 −1.78 + 1
3
α′

4πf −0.03− 1
3
α′

4πf

Table 3.10: Constants in Eq. (3.15) for the sextet (in units of GeV −1).

c0 c1 c2 c3 c4

−0.61 −0.98 −2.07− 2 α′

4πf −0.84 α′

4πf

In the sextet sector, on the other hand, the changes are more moderate. Most states move a few tens of MeV

compared to their LO counterparts with a few exceptions. However, the unknown LEC α′ seems to affect a lot

the predictions. In particular, when α′ = −1, many states disappear. Clearly, from the comparison with the LO

results, we may conclude that α′ = −1 is not preferred.

One of the possible reasons why the results in the anti-triplet sector change more dramatically than those in

the sextet sector is the following. In the sextet sector, we have refitted the subtraction constant to produce the

state at (2591, 0) MeV, while no such readjustments have been made for the anti-triplet sectors. Nevertheless, one

should note that even at NLO, Λc(2595) appears naturally as a dynamically generated state without the need for

an unnatural subtraction constant.

In fact, due to the lack of enough experimental information to have a good control on the NLO LECs, none

of the above observations are surprising. In Ref. [116], Liu and Zhu already found that in many cases the NLO

potentials are larger than the LO ones (see Tables I, II, III of their paper). Our studies confirmed their findings and

showed that some of the LO predictions are subject to substantial modifications while some others may remain

relatively stable. More experimental or lattice QCD inputs are clearly needed to check the results and clarify the

situation. On one hand, one needs to be cautious about those results where higher order potentials are shown to be

particularly relevant. On the other hand, one should note that the NLO contributions depend critically on the way

the relevant LECs are estimated. If we had put them equal to zero, the contributions would vanish. Clearly, the

LECs should be determined in a more reliable way in order to study the effects of higher order potentials.
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3.4 The compositeness condition of Λc(2595)

3.4.1 Introduction

In principle, wave-functions are not observables themselves. As a result, it is difficult to pin down the exact

nature of a hadronic state. The claims regarding the largest Fock component in its wave function are often model

dependent. In recent years, the compositeness condition, first proposed by Weinberg to explain the deuteron

as a neutron-proton bound state [149, 150], has been advocated as a model independent way to determine the

relevance of hadron-hadron components in a molecular state. With renewed interests in hadron spectroscopy,

this method has been extended to more deeply bound states, resonances, and higher partial waves [151, 152,

153, 154, 155, 156, 157, 158, 159, 160]. The theoretical aspects have been further discussed in [158, 161, 160].

However, for the particular case of Λc(2595), the message has been a bit unclear. For instance, it was shown

in Ref. [162] that Λc(2595) is not predominantly a πΣc molecular state using the effective range expansion. A

similar conclusion was reached in Ref. [163], using the generalized effective range expansion taking into account

CDD pole contributions. In this latter work, the effects of isospin breaking corrections were taken into account

and the extended compositeness condition developed in Ref. [164] was used. Furthermore, although in the unitary

approaches [2, 3, 4, 11, 113] Λc(2595) is found to be of molecular nature, the dominant meson-baryon component

differs.

In this section, we utilize the compositeness condition to examine the molecule interpretations for Λc(2595).

Following Ref. [158], the weight of a hadron-hadron component in a composite particle is defined as

Xi = −Re

[
g2
i

[
∂GIIi (s)

∂
√
s

]
√
s=
√
s0

]
(3.22)

where
√
s0 is the pole position, GIIi is the loop function evaluated on the second Riemann sheet, and gi is the

coupling of the respective resonance or bound state to channel i calculated as

g2
i = lim√

s→√s0
(
√
s−√s0)T IIii , (3.23)

where T IIii is the ii element of the T amplitude on the second Riemann sheet.

The deviation of the sum of Xi from unity is related to the energy dependence of the s-wave potential,

∑
i

Xi = 1− Z, (3.24)

where

Z = −
∑
ij

[
giG

II
i (
√
s)
∂Vij(

√
s)

∂
√
s

GIIj (
√
s)gj

]
√
s=
√
s0

. (3.25)

The quantity Z, which is also called field renormalization constant, is often attributed to the weight of the missing
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channels. For a bound state on the first Riemann sheet, the compositeness
∑
iXi and Z are real numbers and

related to the probability of finding state to channel i. But for a resonance on the second Riemann sheet, they

becomes complex numbers and, therefore, a strict probabilistic interpretation is lost. However, the compositeness

Xi and field renormalization constant Zi themselves are well defined even for resonant states. In this case, Xi is

still related to the squared wave function of the ith channel in a phase prescription that automatically renders the

wave function to be real for bound states [158]. Thus it still can measure the weights of the molecular component

for a resonant state. As forZ, it is always related to the residue of two-point scalar integral [165]. As a consequence

the only problem seems to be that the complex value makes the probabilistic interpretation not straightforward, but

nevertheless, Xi and Z contain important information on the structure of resonances.

In the picture advocated in Ref. [158] imaginary parts of Xi and Z are neglected. The quantity 1− Z is taken

to represent the compositeness of the hadronic state in terms of all the considered channels, and Z is referred to

as its elementariness. Within this picture, a non-vanishing Z means that the model is an effective one. The energy

dependent interaction effectively accounts for other possible interaction mechanisms not explicitly included in

the s-wave hadron-hadron description. These could be other hadron-hadron interactions, or even genuine hadron

components not of the molecular type (hence the appellative elementariness). Thus, a small value of Z indicates

that the state is well described by the contributions explicitly considered, namely, s-wave hadron-hadron channels.

However, it is not clear how to interpret Z obtained from the smooth energy dependence of the chiral potential

V [159]. In addition, it should be emphasized that, for processes involving short distances, it is the wave function

at the origin that matters (giGi for the s wave) [166]. For an extensive discussion on this issue, see Ref. [159],

which concluded that to judge the relevance of each channel one has to study different physical processes.

On the other hand, in Ref. [164], it was claimed that one can formulate a meaningful compositeness relation

with only positive coefficients thanks to a suitable unitary transformation of the S matrix. This in practice amounts

to take the absolute value of Xi in Eq. 3.22 to quantify the probability of finding a specific component in the

wave function of a hadron. Notice that the recipe advocated in Ref. [164] is not applicable to all types of poles.

In particular the arguments of this reference exclude the case of virtual states or resonant signals which are an

admixture between a pole and an enhanced cusp effect by the pole itself. More specifically, the probabilistic

interpretation given in [164] to Xi is only valid when Res0 > si;th, with si;th the corresponding threshold of

channel i. This compositeness condition has been used in Ref. [167] to claim that Pc(4450) might be a χc1p bound

state.

We calculate the compositeness for Λc(2595) within three different models in which the potentials are obtained

using either chiral Lagrangian [11], the extended hidden gauge Lagrangian [2], or the SU(6)×HQSS model [168]

respectively. In all the three models, the scattering amplitudes are calculated based on unitary chiral perturbation

theory, which is introduced in the preceding section but differs in the number of coupled channels and how chiral

symmetry and heavy quark symmetry are taken into account.

On the other hand, we follow the strategy in the previous section to apply different regularization schemes to
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remove the divergence in the two-point scalar integral in the Bethe-Salpeter equation, including the heavy quark

symmetry inspired one in Eq. 3.9 and the cutoff scheme in Eq. 2.93. As mentioned before, any change of the

values of variables in the correction part of GHQS is essentially equivalent to a re-adjustment of the subtraction

constant in theMS scheme for different coupled channels. Therefore we will avoid extra discussions on this point.

One can also alternatively follow the regularization scheme in Ref. [168] where a natural subtraction constant is

determined by requiring the unitary amplitudes reduce to only contain tree level at certain energy scale µ0, such as

G(µ0) = 0. This scheme is later denoted as “DR-Naturalness”.

In the following, we would like to examine how the number of coupled channels and the particular regular-

ization scheme affect the predicted (calculated) compositeness of the Λc(2595). For such a purpose, we first fix

the number of coupled channels and then compare the calculated compositeness. This work was published in

Ref. [169].

According to the PDG, Λc(2595) has a mass of 2592.25 ± 0.28 MeV and a width of 2.6 ± 0.6 MeV [5].

Therefore, the only parameter in each of the three different approaches are fixed in such a way that the mass

of Λc(2595) is produced. We do not attempt to fix the width because here we only consider two-body coupled

channels and work at the isospin symmetric limit, both of which can have a large effect on the width than on the

mass (see an elaborate discussion in Ref. [163]).

3.4.2 16 channels

The SU(6)×HQSS model used in Ref. [4] is basically a SU(8) spin-flavor extension of the SU(3) chiral WT leading

order meson-baryon interaction term, including ground state vector meson and JP = 3/2+ baryon as degrees of

freedom. This is actually strictly correct only when coupled channels involving ccc̄ components are neglected.

These channels are OZI disconnected from those involving just one heavy quark. Note that in the heavy-quark

limit, the OZI rule becomes exact because the number of charm quarks and the number of charm antiquarks are

separately conserved. (For a more detailed discussion see Ref. [170]).

It is to be noted that in the 16 channels framework of the SU(3)×HQSS model, there exist two Λc(2595)

states, resemblance of the two Λ(1405) states, with one of them narrower than the other [4, 168]. To make a fair

comparison, we adjust the only parameter in each of the regularization schemes we study to fix the real part of the

pole position. This yields the following parameters, α′ = 0.97952 for the naturalness scheme [4], qmax = 0.67898

GeV for the cutoff scheme [2], and a = −3.37865 for the heavy-quark symmetry (HQS) scheme [11] , which is in

the present case equivalent to the modified minimal subtraction scheme.

From Table. 3.12 and Table. 3.13, one can see that among the 16 coupled channels, the most relevant three

channels are πΣc, DN and D∗N . For the sibling state of Λc(2595), it seems that the πΣc channel plays the

dominant role, except in the cutoff scheme of Ref. [2], where it appears as a bound state and DN and D∗N

channels are more important. Whileas for the state that we assign to Λc(2595), different regularization schemes

yield slightly different results. The D∗N channel plays a leading role in the naturalness scheme of Ref. [4]. In
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the cutoff scheme of Ref. [2], πΣc is the dominant channel, with D∗N the next important channel. In the HQS

scheme, all three channels seem to be equally important, with a large imaginary part for XπΣc . On the other

hand, interpreting the compositeness using the prescription of Ref. [164], we find that the weights of πΣc inside

Λc(2595) are 0.11, 0.71 and 0.97 for the DR-naturalness, cutoff and DR-HQS schemes, respectively.

Clearly one can conclude that the regularization scheme plays a relevant role in the so-determined composite-

ness even with the same number of coupled channels and the same kernel potentials. In other words, the so-called

compositeness used in the present way cannot be taken as a model-independent quantity. Similar conclusions have

been reached in Ref. [161]. It needs to noted that except in the naturalness scheme, the width of Λc(2595) turns

out to be much larger than its experimental counterpart. This might be due to the isospin breaking effects neglected

in the present work [163].

Table 3.12: Compositeness of each of the 16 coupled channels for the narrow state corresponding to Λc(2595).
The only parameter in the meson-baryon loop function is fixed by reproducing the nominal Λc(2595) mass with
the following parameter: α′ = 0.97952 [4] , qmax = 0.67898 [2] , and a = −3.37865 [11] .

Couple channels DR-naturalness cutoff DR-HQS

Fitted position 2592.25− i0.16 2592.25− i9.18 2592.25− i3.83

πΣc −0.024 + i0.107(0.110) 0.319 + i0.637(0.712) −0.137 + i0.960(0.970)

DN 0.292− i0.026(0.294) 0.025 + i0.018(0.031) 0.343− i0.277(0.441)

ηΛc 0.009− i0.001(0.009) 0.004− i0.001(0.004) 0.040− i0.042(0.058)

D∗N 0.451− i0.055(0.454) 0.155− i0.044(0.161) 0.243− i0.302(0.388)

KΞc 0.001− i0.000(0.001) 0.000− i0.000(0.000) 0.001− i0.001(0.001)

ωΛc 0.001− i0.000(0.001) −0.000− i0.001(0.001) 0.014− i0.012(0.018)

KΞ
′

c 0.000 + i0.000(0.000) 0.000− i0.001(0.001) 0.002− i0.001(0.002)

DsΛ 0.026− i0.003(0.026) 0.004− i0.000(0.004) 0.018− i0.019(0.026)

D∗sΛ 0.057− i0.006(0.057) 0.008− i0.001(0.008) 0.051− i0.054(0.074)

ρΣc 0.005− i0.000(0.005) −0.000− i0.002(0.002) 0.007− i0.004(0.008)

η
′
Λc 0.018− i0.002(0.018) 0.003− i0.000(0.003) 0.018− i0.019(0.026)

ρΣ∗c 0.006− i0.001(0.006) 0.003− i0.002(0.004) 0.006− i0.008(0.010)

φΛc −0.000− i0.000(0.000) −0.000− i0.000(0.000) 0.000− i0.000(0.000)

K∗Ξc 0.000 + i0.000(0.000) 0.000− i0.000(0.000) 0.001− i0.001(0.002)

K∗Ξ
′

c 0.000− i0.000(0.000) −0.000− i0.000(0.000) −0.000− i0.000(0.000)

K∗Ξ∗c 0.000− i0.000(0.000) 0.000− i0.000(0.000) 0.000− i0.000(0.000)

X 0.843 + i0.012(0.983) 0.521 + i0.602(0.932) 0.607 + i0.219(2.025)

3.4.3 Two channels

With the two channels of πΣc and KΞ′c, as included in the unitarized chiral approach [11], all the three regular-

ization schemes yield consistent values for the compositeness, although all with a large imaginary part. The same
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Table 3.13: Same as Table 3.12, but for the broader sibling of the Λc(2595).

Couple channels DR-naturalness cutoff DR-HQS

Fitted position 2606.7− i32.4 2572.2 2627.9− i37.4

πΣc 0.307 + i0.429(0.527) 0.041(0.041) 0.494 + i0.109(0.506)

DN 0.005− i0.044(0.044) 0.254(0.254) −0.115 + i0.001(0.115)

ηΛc 0.000 + i0.000(0.000) 0.009(0.009) 0.014 + i0.024(0.028)

D∗N 0.048 + i0.024(0.054) 0.278(0.278) 0.322 + i0.172(0.365)

KΞc −0.000 + i0.000(0.000) 0.001(0.001) −0.000 + i0.001(0.000)

ωΛc 0.001− i0.006(0.006) 0.001(0.001) −0.005 + i0.002(0.006)

KΞ
′

c 0.001− i0.005(0.005) 0.000(0.000) −0.001− i0.004(0.004)

DsΛ −0.000 + i0.001(0.001) 0.012(0.012) 0.006 + i0.011(0.013)

D∗sΛ 0.001 + i0.002(0.003) 0.021(0.021) 0.016 + i0.029(0.033)

ρΣc 0.013− i0.027(0.030) 0.002(0.002) 0.000− i0.012(0.012)

η
′
Λc 0.000 + i0.001(0.001) 0.007(0.004) 0.007 + i0.011(0.012)

ρΣ∗c 0.007− i0.006(0.010) 0.002(0.002) 0.015 + i0.001(0.015)

φΛc −0.000− i0.000(0.000) −0.000(0.000) 0.000 + i0.000(0.000)

K∗Ξc 0.002− i0.004(0.004) 0.000(0.000) 0.000− i0.002(0.002)

K∗Ξ
′

c 0.000− i0.002(0.002) 0.000(0.000) 0.001− i0.001(0.002)

K∗Ξ∗c 0.000− i0.001(0.001) 0.000(0.000) −0.000− i0.001(0.001)

X 0.388 + i0.363(0.688) 0.616(0.616) 0.755 + i0.339(1.114)

can be said about the single channel case with πΣc, independent of what value used for the decay constant. The

cutoff value needed to fit the Λc(2495) position in the cutoff scheme seems to be rather natural, so can be said

about the subtraction constant in the HQS scheme. On the other hand, the α′ in the naturalness scheme does seem

a bit small, compared to the value of 1, dictated by the naturalness arguments.

Table 3.14: Compositeness of each of the two coupled channels for Λc(2595). The only parameter in the meson-
baryon loop function is fixed by reproducing the nominal Λc(2595) mass with the following parameter: α′ =
0.8268 [4] , qmax = 0.7969 [2] , and a = −5.3768 [11].

Couple channels DR-naturalness cutoff DR-HQS

Fitted position 2592.25− i12.7 2592.25− i15.6 2592.25− i13.5

πΣc 0.215 + i0.731(0.762) 0.196 + i0.770(0.794) 0.225 + i0.720(0.754)

KΞ
′

c 0.003− i0.006(0.007) 0.001− i0.002(0.003) 0.003− i0.007(0.007)

X 0.218 + i0.725(0.769) 0.196 + i0.768(0.797) 0.228 + i0.713(0.761)

3.4.4 Three channels

In Ref. [2], three channels are used, namely πΣc, DN , and ηΛc. Repeating what we did earlier, we see that

in the naturalness method, the DN dominates, while in the HQS method, the πΣc dominates. It is clear that the
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regularization method has an impact on the dominance of the particular coupled channel. Again, we reach the same

conclusion that the compositeness defined in the present work cannot be taken as a model-independent quantity.

Table 3.15: Compositeness of each of the three coupled channels for Λc(2595). The only parameter in the meson-
baryon loop function is fixed by reproducing the nominal Λc(2595) mass with the following parameter: α′ =
0.96048 [4] , qmax = 0.67535 [2] , and a = −5.6365 [11].

Couple channels DR-naturalness cutoff DR-HQS

Fitted position 2592.25− i0.86 2592.25− i11.4 2592.25− i12.1

πΣc −0.060 + i0.483(0.487) 0.057 + i1.002(1.004) 0.212 + i0.729(0.759)

DN 0.815− i0.390(0.904) 0.136− i0.355(0.380) 0.001− i0.001(0.002)

ηΛc 0.017− i0.008(0.019) 0.002− i0.006(0.007) 0.001− i0.001(0.001)

X 0.772 + i0.085(1.409) 0.195 + i0.641(1.391) 0.214 + i0.727(0.761)

3.5 Nc dependence of Λc(2595)

3.5.1 Introduction

In this section, we apply an alternative approach to test the dominant component of a hadronic state, that is, to study

the dependence on the number of colors, Nc, of the poles associated to resonances that appear in the unitarized

meson-meson [171, 172, 173, 174, 175, 176, 177] or meson-baryon [178, 179, 180] scattering amplitudes. The

1/Nc expansion [181, 182, 183, 184, 185, 186] is valid for the whole energy region and makes specific predictions

for qq̄ states and qqq states. A genuine qq̄ state becomes bound as Nc → ∞ with its mass scaling as O(1) and its

width as O(1/Nc). Mesonic states of other nature may show different behavior [187]. The mass of a generic qqq

state with two or three flavors evolves as O(Nc) while its widths scales as O(1) at leading order [182, 188, 189].

For dynamically generated mesons or molecular mesonic states, the evolution can deviate strongly from such

a dependence. Compared with dynamically generated mesons, a study of dynamically generated baryoic states is

complicated by the fact that flavor representations of baryons change with Nc when the number of flavors is larger

than two [190, 191, 192]. Such a factor has been taken into account in the study of Λ(1405) in Refs. [179, 180] as

well as in the study of negative parity s-wave resonances [178].

In the present exploratory work, we limit ourselves to the two coupled channels scenario of Λc(2595). Within

the unitarized approaches, in order to obtain the large Nc evolution of dynamically generated states, we need to

know how the masses of the interacting hadrons evolve as a function of Nc, how the loop function evolves, and

how the couplings evolve. The latter evolution is a result of the change of the flavor representation of the baryons.

In the following, we examine the evolution as a function of Nc of all the inputs in the unitary approach.
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3.5.2 Baryon and meson masses

Ground-state heavy flavor baryon masses in the 1/mQ and 1/Nc expansions have been studied in Ref. [193, 194,

195]. Up to leading order in 1/Nc, one has

Mi = mQ + ΛNc + δi, (3.26)

where mQ is the Nc independent heavy quark mass, Λ the contribution of the light u, d, s quarks, and δi the SU(3)

breaking contributions. For the present study, we take mQ = mc = 1.275 GeV, Λ = 0.3 GeV, and δi is chosen

such that Mi equals to its physical counterpart. The pseudoscalar meson masses scale as O(1) and are taken as

constants, while the pseudoscalar decay constant scales as O(
√
Nc), namely,

f(Nc) = f(Nc = 3)

√
Nc
3
. (3.27)

3.5.3 Loop function

The generic form of a meson-baryon loop function is

G = i

∫
d4q

(2π)4

2MB

[(P − q)2 −m2
φ + iε][q2 −M2

B + iε]
, (3.28)

which is logarithmically divergent, and should be renormalized using either the dimensional regularization method

or the cutoff scheme. The latter is particularly useful, because it is more transparent to be extended to arbitrary Nc.

In the cutoff scheme, the loop function reads

Gcut =

Λ∫
0

q2 dq

2π2

EM + Em
2EMEm

2M

s− (EM + Em)2 + iε
, (3.29)

with EM =
√
q2 +M2, and Em =

√
q2 +m2.

Conventionally, one chooses a cutoff of the order of 1 GeV. When extended to arbitrary Nc, depending on

the origin of this ultraviolet cutoff, there are two possible scenarios[175]. First, one can consider the value corre-

sponding to the spontaneous chiral symmetry breaking Λ ∼ 4πf ∼ 1 GeV. Thus, the cutoff will share the same

Nc dependence with the decay constant, that is, Λ ∼ O(
√
Nc). The second scenario is that the cutoff is the mass

of a heavier qqq state integrated out in order to construct the effective theory. In this case, Λ scales as O(1) since

the energy difference between ground state baryons and excited baryons scales as O(1). In the present work, we

apply both interpretations, which yield consistent conclusions, as shown below.
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3.5.4 Group representation-Clebsch-Gordan coefficients

In the unitary approach of Ref. [11], Λc(2595) is dynamically generated from the interaction between the pseu-

doscalar octet and the sextet charmed baryons. In the language of the SU(3) group theory, it follows the decompo-

sition of:

8⊗ 6 = 3̄⊕ 6⊕ 1̄5⊕ 2̄4. (3.30)

Although the decomposition implies 4 channels in the SU(3) basis, only the 3̄ and 1̄5 are relevant to the isospin

zero case. Obviously, the extrapolation will be more convenient and intuitive if we transform the amplitude from

the isospin basis to the SU(3) one. Using the SU(3) Clebsch-Gordan coefficients, the transformation matrix for

strangeness zero and isospin zero is

U =

 − 1
2 −

√
3

2

−
√

3
2

1
2

 (3.31)

in the order of 3̄ and 1̄5. Now, the coefficients Cij in the SU(3) basis can be obtained straightforward,

C
SU(3)
ij = U†CIijU =

 −5 0

0 −1

 . (3.32)

While in the mesonic sector, the flavor representation remains the same with the increase of Nc, the situation

in the baryonic sector is complicated because of the nontrivial Nc dependence. One way to extend the irreducible

flavor representation from Nc = 3 to arbitrary Nc is the following:

[p, q]→ [p, q +
Nc− 3

2
], (3.33)

where [p, q] refers to the SU(3) irreducible representation. 6 Extrapolating to arbitrary Nc, the 6, 3̄, and 1̄5 repre-

sentations become 7

“6” = [2,
Nc− 3

2
],

“3̄” = [0,
Nc− 1

2
],

“1̄5” = [1,
Nc+ 1

2
].

(3.34)

Following group theory [196], the coupling strengths in the SU(3) basis of arbitrary Nc should have the fol-

lowing form:

C
SU(3)
ij (Nc) =

 −5 0

0 − 5−Nc
2

 , (3.35)

6There are two alternative ways to perform the extension. The one adopted in the present work, referred to as the standard one in Ref. [191],
has the advantage of keeping the spin, isospin, and strangeness of the original representation at Nc = 3.

7We adopt the notation that representation “R” reduces to R at Nc = 3 [190, 191, 192].
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which reduces to Eq. (3.32) at Nc = 3.

Considering the fact that the representation of SU(3) changes withNc, the transformation matrix U should also

be Nc dependent. Using the recursion relations of Ref. [197] or the results of Ref. [198], one can easily obtain the

explicit form of U(Nc) for 8⊗ “6”.

Following the usual convention, the SU(3) Clebsch-Gordan (CG) coefficients can be expressed as the products

of isoscalar factors and ordinary SU(2) CGCs.

 R1 R2

I1, I1z, Y1 I2, I2z, Y2

∣∣∣∣∣∣∣
Rγ

I, I2z, Y

 =

 R1 R2

I1, Y1 I2, Y2

∣∣∣∣∣∣∣
Rγ

I, Y


 I1 I2

I1z I2z

∣∣∣∣∣∣∣
I

Iz

 (3.36)

where the label R indicates the SU(3) representation, which can be denoted using the usual weight diagram notation

(λ, µ). γ labels degenerate representations occurring in a given product.

With the formula given in table 4 of Ref. [198], the U matrix can be derived straightforward. The first element,

for instance, can be written as

U11 =

√
(p+ 1)(λ− 1− p)q(λ+ µ+ 1− q)(λ+ µ+ 2− q)

λ(λ+ 1)(µ+ 1)(λ+ µ+ 2)(µ+ p− q + 2)
(3.37)

with

Y = p+ q − 2λ′ + µ′

3
, I =

µ′ + p− q
2

(3.38)

where Y is related to a quantity called ε by ε = −3Y . (λ′, µ′) refer to the representation labeled by “3̄” and “1̄5”

and their values are listed in Eq.3.34. And keep in mind that the formula above are used to calculate the isoscalar

factors of “6” ⊗ 8. We need to perform an extra step to get the U matrix for 8 ⊗ “6” with correct convention.

Finally, the U matrix can be written as

U(Nc) =

 −
√

2
5+Nc

−
√

3+Nc
5+Nc

−
√

3+Nc
5+Nc

√
2

5+Nc

 . (3.39)

The Nc dependent coefficients in the isospin basis can then be obtained:

CIij(Nc) =

 Nc−7
2 −

√
Nc+3

2

−
√

Nc+3
2 −4

 . (3.40)

It is interesting to note that the self-interaction of πΣc is attractive and does not change withNc. On the other hand,

the KΞ′c self-interaction is attractive at Nc = 3, but becomes repulsive at Nc > 7. The off-diagonal transition,

however, is always attractive and the strength increases with Nc.

Now it is straightforward to study the Nc dependence of the mass and width of Λc(2595). In Figs. 3.3 and

3.4, we show the imaginary and real pars of Λc(2595) pole position, in comparison with those of a conventional
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Figure 3.3: Imaginary part of the Λc(2595) pole position, where “Scaling” refers to the cutoff dependence
O(
√
Nc/3), while “No scaling” refers to the use of a constant cutoff O(1).

qqq baryon. It is clear that they differ quite strongly from those expected for a naive qqq state. Therefore, the

Nc evolution supports the conjecture that the meson-baryon component in the wave function of Λc(2595) plays a

relevant role.

The above analysis can be straightforwardly extended to the three-channel picture of Ref. [2] and qualitatively

similar conclusions can be reached. We, however, do not attempt to study the 16 coupled channel scenario of

Ref. [4], which, we believe, will yield the same conclusion.

It is interesting to note that recently lattice QCD simulations have started to probe the Nc dependence of

mesonic states [199] and baryonic states [200, 201]. See, Ref. [185] for a comprehensive review. Checking the Nc

dependence of Λc(2595) and other proposed molecular states can help to unravel their true nature. In this sense,

the present study should serve a motivation for such studies.

3.6 Summary

In this chapter, we have studied the interaction between a singly charmed baryon and a pseudoscalar meson in the

unitarized chiral perturbation theory using the leading order chiral Lagrangian. It is shown that the interactions

are strong enough to generate a number of dynamically generated states. Some of them can be naturally as-

signed to their experimental counterparts, such as Λc(2595) [Λ∗c(2625)]. An extension to bottom sector via heavy

quark symmetry is straightforward. By slightly fine-tune the subtraction constant in the dimensional regularization

scheme or the cutoff value in the cutoff regularization scheme, we predicted a number of additional states, whose

experimental counterparts remain unknown. We strongly encourage future experiments to search for these states.

In anticipation of future lattice QCD simulation of scattering lengths, as already happened in the light baryon

sector or the heavy meson sector, we have calculated the scattering lengths between the charmed baryons and the
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Figure 3.4: Real part of the Λc(2595) pole position with respect to the πΣc threshold, where “Scaling” refers to
the cutoff dependence O(

√
Nc/3), while “No scaling” refers to the use of a constant cutoff O(1).

pseudoscalar mesons. A comparison between our results and those of the O(p3) ChPT study confirmed that there

is indeed strong attraction in some of the coupled channels, which hint at the possible existence of dynamically

generated states.

In future, the effects of higher-order potentials in the unitarized chiral perturbation theory need to be studied

more carefully once relevant experimental or lattice QCD data become available. It should be noted, however,

Λc(2595) and their JP = 3/2− counterparts seem to qualify as dynamically generated states even at next-to-

leading order in the unitarized chiral perturbation theory.

In order to further qualify the components for the well established Λc(2595) as a dymically generated state, we

also utilize two commonly accepted approaches, namely, the compositeness condition and the large Nc evolution.

Our results show that although the relative importance of a coupled channel cannot be determined model indepen-

dently, the basic picture that Λc(2595) has relevant meson-baryon components does not change. From our study, it

is clear that the commonly defined compositeness depends on the coupled channels included and the regularization

scheme adopted to regularize the divergent loop function in the unitarized approaches. The molecular picture is

also collaborated by our study of the dependence on the number of colors of the mass and width of Λc(2595). It is

shown that they differ largely from those expected for a naive qqq state, further confirming the molecular picture

for Λc(2595).
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Chapter 4

Meson-baryon interactions up to NNLO

In this chapter we will go further into EFTs to investigate the influence from higher order contributions. Since

in the preceding chapter, the NLO LECs for interactions between Goldstone bosons and charmed baryons cannot

be fixed reliably, we turn to the ground-state octet baryon sector, where there are plenty of data available for a

study up to next-to-next-to leading order(NNLO). We analyse the scattering amplitudes in a covariant framework,

renormalizing the LECs within the EOMS scheme. A global fit to πN and KN phase shift was performed to

determine the LECs, with which the scattering lengths and convergence are discussed.

4.1 Introduction

Elastic meson-baryon scattering 1 is a fundamental process that not only can test our understanding of the strong

interaction but also plays a relevant role in the studies of the properties of single and multiple baryons. For instance,

one can derive from pion-nucleon scattering the nucleon sigma term, which is essential to understand the quark

flavor structure of the nucleon in the scalar channel and plays an important role in direct dark matter searches [202,

203, 204, 205, 206, 207, 208]. In addition, meson-baryon scattering also provides key inputs in the construction

of the chiral baryon-baryon interactions and may affect the equation of state of dense matter at high densities and

therefore help to understand the so-called hyperon puzzle [209, 210, 211, 212] in explaining the existence of two-

solar-mass neutron stars [213, 214]. Furthermore, meson-baryon scattering appears in the final states of heavier

hadron decays and therefore becomes an integrated part in the test of the Standard Model [215, 216, 217, 218, 219]

and in the search of beyond standard model physics [220]. Because of these, one has seen increasing theoretical,

such as chiral perturbation theory (ChPT) [221, 222, 223, 224, 225, 7] and lattice QCD [226, 227], as well as

experimental interests [228, 229, 230, 231, 232] in meson-baryon scattering in recent years.

ChPT, as a low-energy effective field theory of QCD, plays an important role in our understanding of the non-

perturbative strong interaction physics [43, 46, 47, 82]. In particular, it provides a model independent framework

1In this chapter, the mesons and baryons here refer specifically to the octet of Nambu-Goldstone bosons and the ground-state octet baryons,
unless otherwise specified.
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to describe the dynamics of the Nambu-Goldstone bosons interacting among themselves and with other hadrons

containing light (u, d, and s) quarks. For comprehensive reviews, see, e.g., Refs. [51, 52, 53, 54, 55, 56].

The constraints imposed by chiral symmetry and its breaking are the most stringent on the self-interactions of

the Nambu-Goldstone bosons and therefore ChPT has the largest predictive power in the pure mesonic sector. In

the one-baryon sector, its predictive power decreases because a large number of unknown low energy constants

(LECs) has to be introduced. As only a finite number of them appears in a particular process, this does not severely

hamper its applicative power. A further complicating factor is the power counting breaking (PCB) issue. Namely,

because of the large non-zero baryon masses m0 in the chiral limit, lower order analytical terms appear in nominal

higher order loop calculations, and therefore a consistent power counting is lost [82]. In the past three decades,

several solutions have been proposed. The most studied ones are the heavy baryon ChPT [83, 52], the infrared

(IR) baryon ChPT [86], and the extended-on-mass-shell (EOMS) baryon ChPT [233, 91]. For a short summary

and comparison of these different schemes, see, e.g., Ref. [234]. In recent years, it has been shown that both

formally and empirically, the EOMS BChPT seems to be more appealing because it satisfies all the symmetry and

analyticity constraints and converges relatively faster.

Although the EOMS BChPT has been successfully applied to study pion-nucleon scattering [235, 236, 6, 237,

238, 239, 240], it has not been applied to study kaon-nucleon, or more generally, meson-baryon scattering. Our

present study aims to fill this gap. It is particularly timely given the extensive studies of baryon masses [241, 242,

243, 244, 245] and the recent attempt to construct baryon-baryon interactions using covariant BChPT [246, 247,

248, 249, 250]. As mentioned above, meson-baryon scattering connects these studies and provides a non-trivial

test of the consistency of BChPT.

4.2 Theoretical formalism

In this section, we explain in detail how to calculate the meson-baryon scattering amplitudes in covariant BChPT

with the EOMS scheme. As pion-nucleon scattering has been studied in this framework previously [235, 236, 6,

237], we will highlight the new ingredients in extending the study from SU(2) to SU(3). For details similar to the

SU(2) case, we refer the reader to Refs. [235, 236, 6, 237].

4.2.1 Scattering amplitudes and partial wave phaseshifts

In the isospin limit, the standard decomposition of the meson-baryon scattering amplitude reads [82, 251],

TMB = u(p′, s′)

[
A+

1

2
(/q + /q

′)B

]
u(p, s), (4.1)
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where p(p′) and q(q′) are the momentum of the initial (final) baryons and mesons, respectively (see Fig. 2.1).

Introducing the Mandelstam variables s, t, u, one can rewrite Eq. 4.1 in an alternative form 2

TMB = u(p′, s′)

[
D +

i

mi +mf
σµνq′µqνB

]
u(p, s), (4.2)

where σµν = i
2 [γµ, γν ] andD = A+ s−u

2(mi+mf )B. However, as noted in Ref [6], since the leading part ofA andB

may cancel each other, one better uses B and D to perform the low energy expansion of the scattering amplitudes

when extracting the PCB terms.

The above scattering amplitudes can be projected onto specific partial waves in the following form:

T l±MB =
1

2
(f l1 + f l±2 ), (4.3)

where f l1 and f l2 take the forms of

f l1 =

√
E +mi

√
E′ +mf

8π
√
s

(Al +
ω + ω′

2
Bl + (

|~q|2
2(E +mi)

+
|~q′|2

2(E′ +mf )
)Bl), (4.4)

f l2 =

√
E +mi

√
E′ +mf |~q||~q′|

8π
√
s

(
Bl

2(E +mi)
+

Bl
2(E′ +mf )

− Al − ω+ω′

2 Bl

(E +mi)(E′ +mf )
), (4.5)

Al(s) =

∫ 1

−1

A(s, t)Pl(cos θ)d cos θ,

Bl(s) =

∫ 1

−1

B(s, t)Pl(cos θ)d cos θ,

(4.6)

where E,E′, ω, ω′ are the energy of the incoming and outgoing particles in the center of mass (c.m.) frame, ~q and

~q′ are the c.m. momentum of the incoming(outgoing) mesons, mi and mf are the masses of the incoming and

outgoing baryons. The Pl above refers to the Legendre polynomials with angular momentum l.

From the partial wave amplitudes, one can obtain the corresponding phase shifts [95]

δl± = arctan{|~p|Refl±(s)}. (4.7)

In the present work, we will rely on the modern partial wave analysis of the George Washington University

group [252, 253] to fix the relevant LECs. 3

2This can be easily checked by noting that [γµ, γν ]qµq′ν = 2(mi +mf )/q − s+ u.
3For pion-nucleon scattering, one may also use the latest analysis based on the Roy-Steiner equation [254]. However, as our primary

interest is to compare different formulations of BChPT, we choose to use the same data to fix the relevant LECs as those used by the previous
studies [6, 7].
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4.2.2 Power counting

In ChPT, the relative importance of a certain Feynman diagram contributing to a particular process is determined

by its chiral order, ν, whose size is of the order of (p/Λχ)ν , where p denotes a generic small quantity and Λχ the

chiral symmetry breaking scale. In the one-baryon sector, where only one baryon is involved in both the initial and

the final states, the chiral order for any given Feynman diagram with L loops, Vn n-th order vertices, NM internal

meson lines, and NB internal baryon lines, is

ν = 4L+
∑
n

nVn − 2NM −NB . (4.8)

In the present context, the small quantities or expansion parameters are

s− m̃2 ∼ O(p), t ∼ O(p2), mπ,mK ,mη ∼ O(p), mN,Λ,Σ,Ξ − m̃ ∼ O(p2), (4.9)

Note that although in principle m̃ here refers to m0, the chiral limit baryon mass, in the study of πN and KN

scattering, we set m̃ = mN .

4.2.3 Chiral Lagrangians

In order to calculate the meson-baryon scattering amplitudes up to the leading one-loop order, i.e.,O(p3), we need

the following meson-meson and meson-baryon Lagrangians:

Leff = L(2)
MM + L(4)

MM + L(1)
MB + L(2)

MB + L(3)
MB , (4.10)

where the superscripts denote the chiral order. The corresponding expressions for each part of Lagrangians can be

found in Chapter 2.

It should be noted that not all of the O(p2) and O(p3) terms contribute to a specific process. Particularly,

for pion-nucleon and kaon-nucleon scattering, only 24 out of the total 37 LECs contribute. They are tabulated in

Table. 4.1.

For an explicit study of the matching between SU(3) and SU(2), we refer the reader to Refs. [224, 255, 256].

In doing so, one should note that the Lagrangian in Eqs. 2.69,2.70,2.71 do not share the same Lorentz structures

with those used in SU(2). To obtain the matching relations between the LECs in the SU(2) and SU(3) Lagrangian,

the following relation between Dµ and the Dirac matrix γµ is needed, which reads:

Ψ̄AµiDµΨ + h.c.
.
= 2mΨ̄γµA

µΨ, (4.11)

where Aµ is an external field, and the symbol .= means equal up to terms of higher orders. Neglecting the possible

higher order corrections, which is beyond our concern here, it is straightforward to reduce the SU(3) Lagrangian
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Table 4.1: Independent (combinations of) LECs contributing to πN and KN scattering. For the sake of later
reference, we introduce α1,··· ,8, β1,··· ,8, γ1,··· ,8 to denote different combinations of LECs. The units of the LECs
are given in the last column.

πN KNI=0 KNI=1

α1 = b1 + b2 + b3 + 2b4 β1 = b3 − b4 γ1 = b1 + b2 + b4 [GeV−1]

α2 = b5 + b6 + b7 + b8 β2 = 2b6 − b8 γ2 = 2b5 + 2b7 + b8 [GeV−2]

α3 = c1 + c2 β3 = 4c1 + c3 γ3 = 4c2 + c3 [GeV−1]

α4 = 2b0 + bD + bF β4 = b0 − bF γ4 = b0 + bD [GeV−1]

α5 = d2 β5 = d1 + d2 + d3 γ5 = d1 − d2 − d3 [GeV−4]

α6 = d4 β6 = d4 + d5 + d6 γ6 = d4 − d5 + d6 [GeV−2]

α7 = d8 + d10 β7 = d7 − d8 + d10 γ7 = d7 + d8 + d10 [GeV−3]

α8 = d49 β8 = d48 + d49 + d50 γ8 = d48 + d49 − d50 [GeV−2]

to those of their SU(2) counterparts. We notice that although the application of Eq. 4.11 only leads to difference of

higher orders, which could be ignored from the point of view of effective field theories, it results in a reorganization

of the scattering amplitudes when divided into A and B parts. As a consequence, the explicit expressions of the

tree level diagrams will be different.

We would like to point out that compared to the 9 free LECs in the πN channel in SU(2) [6], we find that

only 8 of them are actually independent. All of the LECs in Eq. 2.71, which correspond to the d16 and d18

terms of Ref. [6], will eventually not contribute to the scattering amplitudes. In the O(p3) Born diagrams, the

contributions from the d38,...,44 terms are canceled by the corrections from vertex renormalization. The remaining

part, containing d45, d46, d47, can be absorbed into those of the d48,...,50 terms via

2mΨ̄γ5χ−Ψ
.
= −Ψ̄γ5γ

µ[iDµ, χ−]Ψ +
gA
2

Ψ̄[/u, χ−]Ψ, (4.12)

where gA refers to the axial-vector current coupling constant. The first term on the right hand side will be canceled

as the d38,...,44 terms do, while the second term is in the form of the d48,...,50 terms. Thus in the final scattering

amplitudes, only 8 combinations of the LECs will survive, which is consistent with the HBChPT study [7].

In addition, we note that the b5, b6, b7 terms in the Lagrangian (Eq. 2.69 and Eq. 2.70) are not symmetric under

the exchange of the Lorentz indices µ, ν, while the b8 term is. As a consequence, these four terms do not share

the same expression. The same applies to the d1, d2, d3 terms. Considering that the differences are two chiral

orders higher, we supplement these terms with configurations containing exchanged Lorentz indices to make these

Lagrangians symmetric with respect to the exchange of Lorentz indices. For instance, the modified b5 and d3 terms
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O(p1):
(a) (b)

O(p2):
(c)

O(p3):
(d) (e) (f)

Figure 4.1: Tree level diagrams contributing to meson-baryon scattering up to O(p3). The solid lines correspond
to baryons, and the dashed lines represent mesons. The vertices with filled circles and hollow blocks stem from
the L(2)

MB and L(3)
MB Lagrangian, respectively.

finally utilized in our calculation read

Lb5 =i
(
〈B̄[uµ, [uν , γµDνB]]〉 − 〈B̄←−Dν [uν , [uµ, γµB]]〉

)
+i
(
〈B̄[uν , [uµ, γµDνB]]〉 − 〈B̄←−Dν [uµ, [uν , γµB]]〉

)
,

Ld3 =i
(
〈B̄uµ〉〈hνργµDνρB〉 − 〈B̄

←−
Dνρh

νρ〉〈uµγµB〉
)

−i
(
〈B̄hνρ〉〈uµγµDνρB〉 − 〈B̄

←−
Dνρu

µ〉〈hνργµB〉
)
.

(4.13)

4.2.4 Feynman diagrams up to NNLO

• Tree level contact terms

The tree level contributions up to O(p3) are shown in Fig. 4.1. In the present work, we focus on the πN and

KN sectors. They can be organized into the following four isospin multiplets: πN I=3/2,1/2 and KN I=1,0.

The calculation of the contact terms is rather straightforward and the corresponding results are given in

Appendix B.1.

• Tree level Born terms

In general, the amplitude for a Born diagram could be written as

A =
−ūf/qf (/P −mP )/qiui

P2 −m2
P

, (4.14)

where ui, ūf refer to the spinors of the incoming or outgoing baryons, qi and qf are the momentum of the

incoming or outgoing mesons, mP is the mass of the baryon propagated, and P is the total four momentum.

The Born terms at O(p3) can be categorized into two different groups. The first group contains the LECs

d38 . . . d44. They share the same expression with that of Eq. 4.14. The second group includes the LECs
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Figure 4.2: Leading one-loop contributions to meson-baryon scattering up to O(p3). Note that the wave function
renormalization and crossed graphs are not shown explicitly.

(a) (b) (c)

Figure 4.3: Wave function renormalization contributions to meson (dashed) and baryon (solid) fields. Counterterms
from L(4)

MM are donated by the filled block.
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d45, d46, d47 and the form is slightly different:

A =
iūf (−/P +mP )/qiui

P2 −m2
P

. (4.15)

The explicit results for the Born diagrams are given in Appendix B.2.

• Mass insertion diagrams

Mass insertions are induced by the SU(3) breaking corrections to the chiral limit baryon mass m0, which are

of order O(p2) and have the following explicit form:

∆N =4mK
2(b0 + bD − bF ) + 2mπ

2(b0 + 2bF ),

∆Σ =2mπ
2(b0 + 2bD) + 4b0mK

2,

∆Λ =
2

3

(
mK

2(6b0 + 8bD) +mπ
2(3b0 − 2bD)

)
,

∆Ξ =4mK
2(b0 + bD + bF ) + 2mπ

2(b0 − 2bF ).

(4.16)

One easy way to include these corrections is to supplement the intermediate baryon mass of the Born terms

with the O(p2) corrections given in Eq. 4.16. The contribution from this part can be automatically included

if one performs a substitution of m0 → m2 = m0 + ∆B in the mass renormalization of baryons. Thus we

will not explicitly show the contribution of this part.

• Leading one-loop diagrams

The leading one-loop contributions to meson-baryon scattering include the Feynman diagrams shown in

Fig. 4.2.

The crossed diagrams, if exist, can be obtained with the same replacement rule as in the case of the crossed

Born diagrams:

BLoop =B(s)−B(s↔ u,Mi ↔Mf ),

ALoop =A(s) +A(s↔ u,Mi ↔Mf ),

(4.17)

where Mi,f refer to the masses of incoming and outgoing mesons. In the numerical evaluation of all these

loop diagrams, we adopt physical values for all the quantities appearing in the amplitudes, including decay

constants and masses. Employing their chiral limit values only lead to differences of higher chiral order.

• Wave function renormalization

The wave function renormalization of the external mesons and baryons are shown in Fig. 4.3. From Fig. 4.3(a)(b),
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one obtains the wave function renormalization constants for the Goldstone bosons up to NLO [55]

Zπ =1− 1

F 2
0

[
8L4(2m2

K +m2
π) + 8L5m

2
π +

1

3
I(m2

K) +
2

3
I(m2

π)

]
,

ZK =1− 1

F 2
0

[
8L4(2m2

K +m2
π) + 8L5m

2
π +

1

2
I(m2

K) +
1

4
I(m2

π) +
1

4
I(m2

η)

]
,

Zη =1− 1

F 2
0

[
8L4(2m2

K +m2
π) +

8

3
L5m

2
η + I(m2

K)

]
,

(4.18)

where I(M2) = − M2

16π2 ln M2

µ2 is the one point function, and L4 and L5 are the NLO LECs of meson-meson

interactions. For the baryons, as depicted in Fig. 4.3(c), the wave function renormalization constants up to

O(p3) are

ZB = 1− (f(m2
B) + 2m2

Bf
′(m2

B)− 2mBmP g
′(m2

B)), (4.19)

where f(m2
B) and g(m2

B) come from the baryon self-energy −iΣself = −/Pf(P2) +mP g(P2) with P2 =

s = m2
B and can be written as

f(s) =− i

32π2s

((
−mP

2
(
2s+Mφ

2
)

+ s
(
s−Mφ

2
)

+mP
4
)
B0

(
s,mP

2,Mφ
2
)

+
(
mP

2 − s
)
A0

(
Mφ

2
)
−
(
s+mP

2
)
A0

(
mP

2
))
,

g(s) =
i
(
Mφ

2
(
−B0

(
s,mP

2,Mφ
2
))
−A0

(
mP

2
))

16π2
,

(4.20)

where mP and Mφ refer to the masses of propagated baryons and mesons, mB is the mass of incoming or

outgoing baryons, and A0, B0 are the one and two point scalar functions in the Passarino-Veltman notation.

In numerical calculations, we utilize the package OneLoop [257, 258].

The above obtained scattering amplitudes still need further treatment before being employed to describe meson-

baryon scattering. First, since in all the calculations above we used the physical values instead of the corresponding

bare ones, the amplitudes must be properly renormalized. The procedure of renormalization is quite standard, see,

e.g., Ref. [6]. We only need to point out that 1) the baryon mass normalization is implemented perturbatively

and 2) the vertex renormalization is achieved via the two-body decay process, as in Ref. [237], and 3) the chiral

corrections to decay constants are considered up to NLO [47] . To recover a proper power counting, we adopt the

EOMS scheme.

4.3 Renormalization

The main purpose of renormalization is to compensate the corrections caused by the differences between the

physical values of LECs, masses and decay constants, and the corresponding bare ones. In the present work, these

corrections will promote the order of the original amplitudes by 2, leading to a contribution at the order of O(p3).

Thus we only need to study the O(p) tree level amplitudes.
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4.3.1 Mass renormalization

The calculation of the diagram (e) in Fig. 4.2 shows a double pole structure in the amplitudes. This unphysical

structure can be removed, as it should be, after the masses of the propagating baryons in the Born terms are

correctly renormalized. Following the same power counting rule as specified above, the physical baryon masses

can be expressed up to the NNLO as

mphys = m0 + ∆N,Λ,Σ,Ξ + ΣO(p3), (4.21)

wherem0 refers to the chiral limit baryon mass, ∆N,Λ,Σ,Ξ and ΣO(p3), given by Eq. 4.16 and Eq. 4.20 respectively,

denote the NLO and NNLO contributions. As mentioned before, a replacement of m0 → m2 = m0 + ∆N,Λ,Σ,Ξ

automatically include the contributions from mass insertions.

Specifying the intermediate baryons and mesons in Eq. 4.20, the O(p3) self energy reads

ΣO(p3) ≡ Σ(B,Φ, P )

= −i /Pf(P2) + imP g(P2) |/P=mB ,P2=m2
B

−
m̃
(

2m̃2 − 2mP m̃+M2
φ + log

(
µ2

m̃2

)(
−2m̃2 + 3mP m̃+M2

φ

))
8π2

,

(4.22)

where B denote the incoming or outgoing baryon, and Φ and P represent the intermediate meson and baryon. The

last term of the above equation is actually the power counting breaking term, which will be absorbed into m2.

Below, we list the expressions for the O(p3) baryon masses:

ΣN =
1

12f2

(
Σ(N, η,N)(D − 3F )2 + Σ(N,K,Λ)(D + 3F )2

+9
(
Σ(N,K,Σ)(D − F )2 + Σ(N, π,N)(D + F )2

))
,

ΣΣ =
1

6f2

(
3Σ(Σ,K,N)(D − F )2 + 3Σ(Σ,K,Ξ)(D + F )2

+2
(
(Σ(Σ, η,Σ) + Σ(Σ, π,Λ))D2 + 6Σ(Σ, π,Σ)F 2

))
,

ΣΛ =
1

6f2

(
2(Σ(Λ, η,Λ) + 3Σ(Λ, π,Σ))D2 + Σ(Λ,K,Ξ)(D − 3F )2

+Σ(Λ,K,N)(D + 3F )2
)
,

ΣΞ =
1

12f2

(
Σ(Ξ,K,Λ)(D − 3F )2 + Σ(Ξ, η,Ξ)(D + 3F )2

+9
(
Σ(Ξ, π,Ξ)(D − F )2 + Σ(Ξ,K,Σ)(D + F )2

))
.

(4.23)

One can of course simply replace m2 in Eq. B.10 with mphys −ΣO(p3) to complete the mass renormalization,

ignoring the resulting higher order differences. However, the treatment here needs to be much more careful.

The series of studies on baryon masses show that with the EOMS scheme, one can achieve a pretty good and well-

converged description at the complete one-loop level, which is N3LO. But when limited to NNLO, the convergence
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is not as good as expected [244]. Contributions from NNLO and N3LO will largely cancel each other. From another

point of view, the χ2/d.o.f. from a NNLO fit is much larger than that of a N3LO fit, which implies a relatively

unsatisfying description. As a consequence, although a direct replacement is not WRONG, it is not appropriate

since the higher order contribution, N3LO here, to the baryon masses may worsen the description of scattering

process at the order of our interest. Thus we expand the amplitudes of the Born terms after the substitution at

s = m2
2, in order to cancel the double pole structure strictly and avoid worsening of the convergence.

4.3.2 Vertex renormalization

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4.4: Feynman diagrams contributing to vertex renormalizations. The hollow block represents the contribu-
tions of the O(p3) vertices.

Several methods are available to renormalize the vertices. Of course, all of the renormalization methods are

eventually equivalent. For instance, the authors in Ref. [6] chose to renormalize the coupling constants with the

axial-vector current. In this work, we choose to achieve the vertex corrections at the one loop level via the two-body

decay process, as in Ref. [237]. The two-body decays of a baryon up to O(p3) are depicted in Fig. 4.4.

The renormalization of the vertices can be schematically expressed as the following:

Cphγ
5
/qf = Cbareγ

5
/qf + Cphγ

5
/qfZ + Cphγ

5Aloop(s) + Cphγ
5
/qf∆F . (4.24)

The five terms on the right hand side of the above equation come from tree diagrams (a,b), wave function renor-

malization (g,h), one loop diagrams (c,d,e,f), and the renormalization of the decay constant, respectively, where Z

refers to the wave function renormalization constants, ∆F is the decay constant at O(p2). This leads to

Cbare = Cph − CphZ − Cph∆F − Cph
Aloop

mi +mf

≡ Cph − Cre.
(4.25)
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The explicit form of Aloop can be found in Appendix B.3.

Substituting Eq. 4.24 into the Born terms leads to

C1
bareC

2
bareABorn = (C1

ph − C1
re)(C

2
ph − C2

re)ABorn

' (C1
phC

2
ph − C2

phC
1
re − C1

phC
2
re)ABorn,

(4.26)

where the last two terms in Eq.(4.26) are the correction parts we need and the C1
reC

2
reABorn has already been

omitted since its order is higher.

4.3.3 Chiral corrections to the decay constants

To obtain the full meson-baryon amplitudes, one should also take into account the chiral corrections to the decay

constants. In practice, one should use the bare decay constant F0 instead of the corresponding physical ones Fπ ,

FK , and Fη [47].

Since the chiral corrections increase the chiral order by O(p2), we only need to replace F0 with Fπ , FK , and

Fη in the tree level diagrams of order O(p1).

AO(p1)

F 2
0

=
AO(p1)

F 2
π , F

2
K , F

2
η

(1− 2∆Fπ,K,η), (4.27)

where

∆Fπ =
2
(
A0

(
mπ

2
)

+ 64π2
(
2L4mK

2 + L4mπ
2 + L5mπ

2
))

+ A0

(
mK

2
)

32π2F0
2

,

∆FK =
3A0

(
mη

2
)

+ 6A0

(
mK

2
)

+ 3A0

(
mπ

2
)

+ 1024π2L4mK
2 + 512π2L4mπ

2 + 512π2L5mK
2

128π2F0
2

,

∆Fη =
3A0

(
mK

2
)

+ 128π2
(
L4

(
2mK

2 +mπ
2
)

+ L5mη
2
)

32π2F0
2

.

(4.28)

4.4 Ultraviolet divergence and power counting breaking terms

As mentioned above, the one-loop integrals calculated above are ultraviolet divergent. Applying the MS − 1 di-

mensional regularization scheme, the ultraviolet divergent part can be absorbed into the LECs at the corresponding

order.

One can separate the LECs in the counter terms into their finite parts and infinite parts as,

Li = Lri + LdiR, (4.29)

where R = 2
d−4 + γE − 1 − ln(4π) with γE being the Euler constant and d the space-time dimension. The Ldi s

are listed in Appendix B.4. All other Ldi s not listed are equal to zero. Note that here we approximate all the baryon

masses with m̃ just to simplify the expressions.
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Since the chiral limit baryon mass does not vanish, the naive powering counting rule is broken when theMS−1

scheme is adopted [82]. As we have mentioned above, in the covariant amplitudes, the A and B parts may cancel

each other. It is better to use the modified D and B functions when one removes the PCB parts.

The power counting breaking terms are tightly related to the small quantities in the chiral expansion, which

have been listed at the very beginning in Eq. 4.9. In the present work, since we are working in the SU(3) case, the

situation is a bit more complicated because of the mass differences among the octet baryons, which we count as

O(p2). To make sure the factor in front of the B part counts as a pure O(p2), we rewrite the scattering amplitude

in the following way:

TMB = u(p′, s′)

[
D +

i

mi +mf
σµνq′µqνB

]
u(p, s)

= u(p′, s′)

[
D +

i

2m̃
σµνq′µqν

2m̃

mi +mf
B

]
u(p, s)

= u(p′, s′)

[
D +

i

2m̃
σµνq′µqνB̃

]
u(p, s),

(4.30)

where D = A+ s−u
2(mi+mf )B. Now we can see that we only need to pick up the PCB terms up to O(p2) for the D

functions and those up to O(p0) for the B̃ functions since the term σµνq′µqν is of O(p2).

The terms that break the power counting have been shown to originate from the regular part of the loop integrals

by Becher and Leutwyler [86]. This provides a simple way to subtract the PCB terms by working out all the regular

parts first. Alternatively, one can also perform the chiral expansions of small quantities directly.

Once we get rid of all the PCB terms, we obtain

T
′

= u(p′, s′)

[
D
′
+

i

2m̃
σµνq′µqνB̃

′
]
u(p, s),

= u(p′, s′)

[
D
′
+

i

mi +mf
σµνq′µqν

mi +mf

2m̃
B̃
′
]
u(p, s).

(4.31)

The final A and B functions, where we use Af and Bf to distinguish them from A and B, are then

Bf =
mi +mf

2m̃
B̃
′
,

Af = D
′ − s− u

4m̃
B̃
′
.

(4.32)

As shown in Ref. [91], the PCB terms are all analytical and can be absorbed into the LECs at the corresponding

orders. Assuming that LEC = LECb + LECPCB , we have worked out all the power counting breaking terms,

which are explicitly shown in Appendix B.5.

4.5 Results and discussion

The scattering of a pseudoscalar meson off an octet baryon can be grouped into 11 combinations of isospin and

strangeness as tabulated in Table. 4.2. In the present work we focus on the πN and KN channels, because only
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for these channels partial wave phase shifts are available.

Table 4.2: 11 coupled channels of meson-baryon scattering of conserved strangeness (S) and isospin (I).

(1, 1) (1, 0) (0, 3
2 ) (0, 1

2 ) (−1, 2) (−1, 1) (−1, 0) (−2, 3
2 ) (−2, 1

2 ) (−3, 1) (−3, 0)

KN KN KΣ KΣ πΣ πΣ πΣ K̄Σ K̄Σ K̄Ξ K̄Ξ

πN KΛ ηΣ ηΛ πΞ K̄Λ

ηN πΛ K̄N ηΞ

πN K̄N KΞ πΞ

KΞ

With the amplitudes properly renormalized, we are now ready to determine the LECs by fitting to the partial

wave phase shifts. For πN , we choose the phase shifts from the analysis of WI08 [252] in the S11, S31, P11, P31, P13, P33

partial waves, where in the convention L2I,2J , L denotes the total orbit angular momentum, I the total isospin,

and J the total angular momentum. Correspondingly, the phase-shift analysis of the SP92 solution [253] in the

S01, P01, P03, S11, P11, P13 partial waves are used for KN where the symbols mean LI,2J .

For the πN channels, we choose the phase shifts with
√
s between 1082 MeV, which is slightly above the

threshold, and 1130MeV, with an interval of 4 MeV. Thus totally we will have 13 points for each of the 6 partial

waves. For the KN channels we follow the same strategy. Starting from 1435MeV to 1475MeV, the interval is set

to be 2 MeV, with totally 20 points for each partial wave.

Since WI08 does not provide the errors for the data, we follow Refs. [259, 260] and take

err(δ) =
√
e2
s + e2

rδ
2, (4.33)

with the systematic error es = 0.1◦ and the relative error er = 2%.

Throughout the numerical study, we use the physical decay constants for the corresponding vertices. The

renormalization scale µ in the loop integrals is chosen to be the average mass of the baryon octet, and the m̃,

appearing in the power counting breaking terms via s−m̃2, is taken to equal to the mass of the nucleon, considering

that we focus now on the πN and KN channels. The physical values employed in the present work are collected

in Table. 4.3.

Table 4.3: Masses and decay constants (in units of GeV) and axial-coupling constants relevant in the present work.
Note the mass of the K meson is taken to be 0.493 GeV to be consistent with the SP92 data, which were originally
from K+n scattering.

mπ mK mη mN mΛ mΣ mΞ

0.139 0.493 0.54765 0.939 1.1157 1.1934 1.3183

Fπ FK Fη D F µ m̃

0.0924 0.11003 0.11088 0.8 0.467 1.16 mN=0.939
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4.5.1 Fitting strategy one: direct fit to the phase shifts

We find that to describe the pion-nucleon scattering data, one needs to go to at least O(p3). On the other hand, a

reasonable reproduction of the kaon-nucleon data can already be achieved at O(p2). We follow the same strategy

in the first attempt to provide a simultaneous fit of both the πN and KN data.4

A least-of-squares fit yielded a χ2/d.o.f. = 0.154 for the 78 data points in the pion-nucleon channel. The

corresponding fit results associated with errors propagated from the uncertainties of LECs are compared with the

empirical data in Fig. 4.5. For the sake of comparison, we show as well theO(p3) results of the SU(3) HB [225, 7]

and the SU(2) EOMS BChPT [6].

Clearly, the EOMS results can describe the phase shifts quite well. Although the data are only fitted up to
√
s = 1.13 GeV, the phase shifts are described very well even up to

√
s = 1.16 GeV for some partial waves,

corresponding to a momentum in the laboratory frame of |~plab| = 200 MeV. In addition, our calculation in SU(3)

shows a compatible description compared to that in SU(2), which implies that the inclusion of strangeness has

small effects on the fitting results.

We note that even with the relative large uncertainties, we cannot achieve a satisfying description of the P11,

P13 and P33 partial waves at higher energy regions. Particularly, in the P11 channel, the solution of WI08 tends

to increase with energy in the higher energy region while the EOMS results, both in the SU(3) and SU(2) cases,

decrease. This disagreement has already been noted in Ref. [6], where the authors pointed out that including

the contribution of ∆(1232) may improve the description. Inspired by this, we have checked that in SU(3) the

inclusion of the lowest order contribution from the decuplet can have the same positive effect. One can achieve a

pretty good description even up to
√
s = 1.2 GeV, quite close to the region of the ∆ resonance. For a description

bridging over this ∆ resonance region, one needs to include the ∆ explicitly, unitarize the amplitudes, and modify

the powering counting rule. For a discussion of these, we refer the reader to Ref. [237].

For the KN scattering, as noted in the HB study [225, 7], a quite good description of the phase shifts can

already be achieved at NLO. In the present work, we will present two studies of the KN scattering. One is

performed up to O(p2) and the other is performed up to O(p3) but only the loop contributions are included,

because the phase shifts data are not enough to fix the relevant O(p3) LECs. Other inputs in addition to the KN

phase shifts are needed. The second study will be denoted by O(p3)∗.

In Fig. 4.6 we show our fitted results together with the experimental data. We find that in the KN channels,

the error bands are very narrow for both the O(p2) and O(p3)∗ results. In most partial waves, they are only a

few percent of the corresponding phase shifts. For the sake of comparison, we show as well the HB results of

Refs. [225, 7]. It is clear that the EOMS descriptions are slightly better than the HB results when extended to

higher energies.

From the above discussions, it is clear that the EOMS provides a satisfactory description of both the pion-

nucleon and kaon-nucleon scattering data up to O(p3), while the SU(3) HB ChPT fails.

4As a matter of fact, different LECs contribute to πN and KN scattering independent of each other.
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Figure 4.5: Pion-nucleon phase shifts. The blue lines denote our results and the black dots with error bars rep-
resent the WI08 solution with empirical errors given in Eq. 4.33. The blue bands correspond to the uncertainties
propagated from the errors of LECs. In some partial waves, the error bands are of the size of the thickness of the
lines. For the sake of comparison, we show as well the EOMS SU(2) results [6] (green dot-dashed lines) and the
HB SU(3) results [7] (red dashed lines).

Table 4.8: LECs contributing to the I = 0 KN scattering.

β1[GeV−1] β2[GeV−2] β3[GeV−1] β4[GeV−1] χ2/d.o.f.

O(p2) −0.495(1) 0.113(0) 0.447(2) 0.136(1) 0.829

O(p3)∗ −0.767(1) 0.126(0) 0.604(3) 0.093(1) 0.971

Table 4.9: LECs contributing to I = 1 KN scattering.

γ1[GeV−1] γ2[GeV−2] γ3[GeV−1] γ4[GeV−1] χ2/d.o.f.

O(p2) −0.122(0) 0.0084(0) 0.264(1) −0.270(1) 0.765

O(p3)∗ −0.419(2) 0.429(0) 0.616(1) −0.090(3) 0.471

4.5.2 Fitting strategy two: combined study of baryon masses and meson-baryon scatter-

ing

One merit of ChPT is that it connects different observables with the same set of LECs. Thus it is interesting to

explore how one observable imposes restrictions on others. In this covariant baryon ChPT framework, baryon

masses and scattering process are such a pair of observables which are described by the same Lagrangian. Most

of the LECs appear in both the meson-baryon scattering and the baryon masses, such as, b0, bD, bF and b1,··· ,8. A

naive idea for a combined study of these two observables can be performed in two ways. First, calculating baryon

masses at O(p3) and using the experimental data as well as the pion-nucleon sigma term to constrain b0, bD, bF ,

and then with these LECs fixed, study pion-nucleon and kaon-nucleon scattering. Or conversely one can study the
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Figure 4.6: I = 0 (upper panel) and I = 1 (lower panel) KN phase shifts. The orange long-short dashed lines
and blue solid lines represent our O(p2) and O(p3)∗ results while the red dashed lines denote those of the HB
ChPT [7]. The blue bands correspond to the uncertainties of the O(p3)∗ results propagated from the uncertainties
of the LECs. The error bands of the O(p2) results are not shown here to make the figures easier to read. In some
partial waves, the error bands are of the size of the thickness of the lines.

Figure 4.7: Same as Fig. 4.5, but the black dot-dashed lines associated with the black bands denote the EOMS
results and their errors with b0, bD, and bF fixed by fitting to the physical (isospin averaged) octet baryon masses
at NNLO. In some partial waves, the error bands are of the size of the thickness of the lines.
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Figure 4.8: Same as Fig. 4.6, but the purple dotted lines and black dot-dashed lines denote the O(p2) and O(p3)∗

results in the EOMS scheme with b0, bD, and bF fixed by fitting to the physical (isospin averaged) octet baryon
masses at NNLO. The black bands correspond to the uncertainties of the O(p3)∗ results propagated from the
uncertainties of the LECs. The error bands of O(p2) results (purple) are not shown here to make the figures easier
to read. In some partial waves, the error bands are of the size of the thickness of the lines.

baryon masses with some LECs determined via meson-baryon scattering and, furthermore, make predictions on

sigma terms 5.

However, we note that the LECs actually contribute at different chiral orders to these two observables. In

meson baryon scattering, all of these LECs appear at O(p2), the second order of the chiral Lagrangian. On the

other hand, b0, bD, bF contribute to the baryon masses both at O(p2) and O(p4) via tree level as well as mass

insertions, while b1,··· ,8 only contribute to the baryon masses via tadpole diagrams at O(p4). This complicates

things a lot. In principle, from the point of view of effective field theories, to achieve a fully self-consistent and

combined study of baryon masses and meson-baryon scattering, one needs to renormalize the LECs in the same

framework. In other words, the calculation for baryon masses and meson-baryon scattering ought to be performed

up to the same order. Otherwise the LECs in these two sectors are mismatched. Thus if one tries to determine

b1,··· ,8 through baryon masses, a calculation up to O(p4) will be needed, which should be matched with scattering

amplitudes also at O(p4). As a consequence, the number of LECs will be too large compared with the number of

data available both for baryon masses and meson-baryon scattering from experiments and lattice QCD simulations.

On the other hand, if one is not so ambitious and only calculates the scattering amplitudes and baryon masses up to

O(p3), new problems show up. In this case, only 3 parameters(b0, bD, bF ) in addition to m0 appear in the baryon

masses. Although the physical baryon masses can be accurately reproduced, the study in Ref. [241] showed that it

is not possible to provide a satisfactory description of the LQCD baryon masses up to this order. In addition, the

constraints from baryon masses to meson-baryon scattering will be very weak because there are 24 combinations

of LECs in meson-baryon scattering up to O(p3).

5One can of course calculate the sigma terms directly from scattering amplitudes via the corresponding subthreshold parameters using the
Cheng-Dashen theorem [262].
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Table 4.10: LECs determined by fitting to the experimental baryon masses up to NLO in the EOMS BChPT and
the corresponding fitted results, in comparison with the experimental data. All of the masses are in units of GeV.

m0 b0 bD bF

Fit 0.88(FIX) −0.6232(1) 0.0570(1) −0.4022(7)

mN mΛ mΣ mΞ

Fit 0.9392 1.1157 1.1862 1.3272

Exp. 0.938925(645) 1.115683(6) 1.19315(430) 1.31828(343)

Taking all these into account, we calculate the baryon masses up to O(p3) in the present work. Using the

chiral limit baryon mass determined in Ref. [241], m0 = 0.880 GeV, we determine b0, bD, bF by fitting to the

experimental octet baryon masses, with the pseudoscalar decay constants fixed as explained above. The resulting

LECs and the fitted octet baryon masses are given in Table. 4.10.

Table 4.11: LECs in the I = 0 KN channel with β4 = b0 − bF fixed by fitting to the baryon masses.

β1[GeV−1] β2[GeV−2] β3[GeV−1] β4[GeV−1] χ2/d.o.f.

O(p2) −0.284(1) 0.144(0) 0.443(3) −0.221 4.66

O(p3)∗ −0.582(11) 0.153(3) 0.601(5) −0.221 3.93

Table 4.12: LECs in the I = 1 KN channel with γ4 = b0 + bD fixed by fitting to the baryon masses.

γ1[GeV−1] γ2[GeV−2] γ3[GeV−1] γ4[GeV−1] χ2/d.o.f.

O(p2) −0.236(11) −0.033(3) 0.246(5) −0.566 1.45

O(p3)∗ −0.604(15) 0.364(4) 0.588(6) −0.566 2.24

Compared to the fit up toO(p3) to the scattering phase shifts, a combined fit of the baryon masses and scattering

amplitudes yields a slightly worse description of the scattering phase shifts to some extent. Particularly, the fitting

results are worse in the KN channel where the χ2/d.o.f. increases by a factor of about 4 with larger error bands.

This is understandable as the number of free LECs decreases. Despite of this, the negative effects do not spoil

the description. For the p-wave, the descriptions of the phase shifts are of very similar quality, whether one fixes

b0, bD, bF or treats them as free LECs. For the s-wave, the differences are rather moderate, particularly in the low

energy region. This study indicates that the EOMS BChPT is able to describe the baryon masses and meson-baryon

scattering simultaneously, as it should be. Nevertheless, as mentioned at the beginning of this section, to draw a

firm conclusion, more systematic studies are needed.

As for the sigma terms, we find that meson-baryon scattering up to O(p3) is not very useful at this moment

because the tree level contributions at O(p3) in the KN channels are neglected, leading to unusually large bD, bF

compared to an independent study of the baryon masses in, e.g., Ref. [241]. Thus we will refrain from performing

such a study here.
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4.5.3 Scattering lengths

Scattering lengths, also known as s-wave threshold parameters, can be predicted with the LECs determined above.

The general form of the effective range expansion reads

|p|2l+1 cot δIl± =
1

aIl±
+

1

2
rIl±|p|2 +

∞∑
n=2

vIn,l±|p|2n, (4.34)

where |p| refers to the three-momentum of the baryon in the c.m. frame, ` is the angular momentum, a is the

threshold parameter, r is the effective range and vn are the shape parameters. We can easily obtain the expression

of threshold parameters from Eq. (4.34) by taking the limit of |p| → 0 as

aIl± = lim
|p|→0

tan δIl±
|p|2l+1

= lim
|p|→0

Ref Il±
|p|2l . (4.35)

The scattering lengths for these channels are collected in Table. 4.7.

It is clear that our results based on the EOMS scheme are in very good agreement with the experimental data and

the HB results, while the IR results [224] seem to be compatible with data only in the KN channels. We note that

for the two πN channels, the LO scattering lengths, to which no unknown LECs contribute, are already compatible

with the experimental data. Meanwhile the contributions of the two consecutive orders decrease order by order.

Compared to the HB case [7]: a3/2
πN (O(p2)) = 0.05fm, a3/2

πN (O(p3)) = −0.05fm and a1/2
πN (O(p2)) = 0.05fm,

a
1/2
πN (O(p3)) = −0.03fm, the EOMS results decrease much faster, indicating that the scattering amplitudes in this

covariant framework converge faster than in the non-relativistic calculation close to threshold and the improvement

is significant. In the KN channels, one can see that the NLO results can already describe the experimental data.

The improvement from O(p3) are so tiny that can be neglected. However, different from the πN channels, the

LO scattering lengths in the KN channels are far from the corresponding experimental data. As a consequence,

relatively large contributions from NLO and NNLO are naturally expected. Indeed our calculations yield extremely

large values at O(p2) and O(p3)∗ with significant cancelations. All of these point to a unsatisfying convergence

even very close to threshold in the KN channels. Nonetheless, one should keep in mind that we have neglected

the O(p3) tree level contribution. To draw a firm conclusion, more experimental data or lattice simulations are

strongly needed. More discussions can be found in the following subsection.

4.5.4 Convergence of BChPT

The convergence of SU(3) BChPT has remained an issue of heated debate for many years. See, e.g., Ref. [263] for

early discussions, and Refs. [242, 264] for more recent studies of baryon magnetic moments and masses. From the

latter studies, it seems that the EOMS scheme can speed up the convergence of BChPT, particularly, in the SU(3)

sector. Nonetheless, even in the EOMS scheme, the convergence turns out to be relatively slow. The origin of this

slow convergence in the SU(3) sector is the large expansion parameter MK

ΛχPT
, which is approximately 1/2 in the
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physical world. For a LQCD simulation, the situation can become even worse.

The discussion on the convergence of BChPT for meson-baryon scattering can be dated back to the first attempt

in the HB scheme by M. Mojžiš [94] where the convergence of threshold parameters was studied. Afterwards

N. Fettes et al. [95] worked out the pion-nucleon scattering amplitudes up to O(p3). Their calculation implies that

the third-order contributions are in general small in the lower energy region, while there exist large cancelations

for higher energies. However, the discussion of convergence is rather limited and no firm conclusion could be

drawn there. The situation was significantly improved once the full one-loop results became available [265].

They concluded that the contributions from the fourth-order are, in most partial waves, indeed not large, indicating

the convergence of BChPT. Recently, the discussion on this issue based on SU(3) HBChPT were performed in

Refs. [225, 7] up to O(p3), where a conclusion very similar to those in SU(2) was drawn.

As well known, the HB ChPT recovers a neat power counting rule at a cost of manifestly Lorentz covariance.

It suffers from the deficiency that the corresponding perturbation series fail to converge in parts of the low-energy

region [86]. Thus an analysis based on covariant BChPT was strongly needed. In Ref. [236], the πN scattering

amplitudes were calculated up to O(p3) in SU(2) with the EOMS scheme. The authors pointed out that the

convergence of the ∆-less amplitudes is questionable because there exists a large cancelation between O(p2) and

O(p3) in almost all partial waves. However, including ∆ as an explicit degree of freedom, the amplitudes turn

out to present a natural convergence from subthreshold up to energies well above threshold. Very soon after this

work, Chen et al. showed [6] that after promoting the calculation to O(p4), the convergence pattern is reasonable

even without ∆. Later in Ref. [237] a full third order calculation with explicit ∆ is performed. More recent

studies, such as those of Refs. [236, 238, 240], further confirmed that the convergence pattern is visibly improved

in a covariant scheme via a detailed study on threshold and subthreshold parameters, associated with the extracted

LECs. They also highlighted the improvements by taking the contributions of resonances such as ∆ and Roper

into consideration.

It is interesting to check the convergence pattern in SU(3) as well. Nevertheless, one has to be cautious about

any conclusion drawn from a leading one-loop study such as the present one. We show the phase shifts of each

order in Fig. 4.9 for the πN channels and Fig. 4.10 for the KN channels. For the two π-N S-waves, the LO

contribution itself describes the behavior of phase shifts very well in subthreshold regions while the NLO and

NNLO terms only provide visible effect at higher energies. Especially in the S11 partial wave, the contributions

decrease order by order well above threshold, indicating a reasonable convergence. On the other hand, for all the

P -waves, the contributions from the NNLO terms are smaller than those from the NLO terms. The LO terms are

now of approximately the same size as NLO or even smaller because the partial wave decomposition filters out

the LO contact terms. In particular, the ratio of the NNLO over NLO terms can be lower than 1/2 for the two

J = 3
2 partial waves in quite a wide region above threshold. Despite the cancellation of the NLO and NNLO terms

in these partial waves, these smaller ratios actually indicate a reasonable convergence. For the rest partial waves,

we find a ratio of 0.7 ∼ 0.8 even very close to threshold, implying a sizable cancelation and, thus, a much slower
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Figure 4.9: Order by order decomposition of the πN phase shifts. The blue lines donate the total results, while
those of the O(p), O(p2), and O(p3) are represented by the green-dashed, red-dot-dashed, and black-dotted lines,
respectively.

convergence.

For the KN channels, the LO results are in general quite small. This is not only because of the partial wave

decomposition, but also because the LO Born term can only contribute via u-channel. In the two S-waves, the

third order contribution is compatible with the second order and the large cancelation points to a questionable

convergence. However, for most P -waves except P13, the second order contribution dominates the behavior and

the third order contribution is significantly smaller than the second order, implying a reasonable convergence, if

we ignore the small LO contributions.

In general we do not find a fast decrease of higher order contributions and the conclusion on the convergence

to be drawn here is quite similar to that in SU(2). However, we would like to point out that in some P -waves for

both the πN and KN channels, the chiral expansions seem to convergence at least near threshold if we only focus

on the NLO and NNLO contributions. We ascribe the slower convergence of the two S-waves in the KN channels

partially to the fact that we have not taken into account the O(p3) tree level contributions. Inspired by the SU(2)

studies, we expect that the contributions of the decuplet could significantly improve the convergence pattern at

least at O(p3). Meanwhile a calculation up to the full one loop order is needed to test the convergence of SU(3)

BChPT.

4.5.5 Decuplet contributions

In this section, we evaluate the contributions of the virtual decuplet to meson-baryon scattering by including the

lowest order exchange diagrams. For the construction of HBChPT and covariant BChPT with ∆ or decuplet fields

in general, we refer the reader to Refs. [83, 266], and Ref. [267], respectively.

In the following we show the lowest order contributions of the decuplet adopting the so-called δ-expansion [268].
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Figure 4.10: Order by order decomposition of the KN phase shifts. The blue lines donate the total results, while
those of theO(p),O(p2), andO(p3)∗ are represented by the green-dashed, red-dot-dashed, and black-dotted lines,
respectively.

Figure 4.11: Lowest order contribution from the intermediate decuplet. The double line refers to the spin- 3
2

propagator.

That is, the decuplet contributions are counted differently for energies well below the resonances or around the res-

onance peaks:

1. low-energy: mφ ∼ p, m∆ −mN ∼ p1/2

2. resonance peak: mφ ∼ p2, m∆ −mN ∼ p

At the lowest order, the decuplet exchange diagram is shown in Fig.4.11. The relevant effective Lagrangian

with decuplet as explicit degrees of freedom is

LΦBD =
iC

mD0FΦ
εabc(∂αT̄

ade
µ )γαµνBec∂νΦdb +H.c. (4.36)

where we have adopted the so-called “consistent” coupling scheme for the meson-octet-decuplet vertices [269,

270]. T is the tensor collecting the decuplet baryons, B is the baryon octet, and Φ is the Goldstone boson octet.

mD0 here refers to the chiral limit decuplet mass. The total antisymmetric gamma matrix products are defined as

γµν =
1

2
[γµ, γν ], γµνρ =

1

2
{γµν , γρ}. (4.37)
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Similar to the Born terms, the contribution of the decuplet exchange diagram reads

BDBorn(s,Bi,Φi, Bf ,Φf , D) =− 1

6 (s−m2
D)

(
−mDmi

(
m2
f −M2

f + s
)
−mDmf

(
m2
i −M2

i + s
)

+
(
m2
f −M2

f + s
) (
m2
i −M2

i + s
)
− 3s

(
m2
f +m2

i − t
)
− 2smfmi

)
,

ADBorn(s,Bi,Φi, Bf ,Φf , D) =− 1

12 (s−m2
D)

(
s
(
mD

(
4mfmi − 6m2

f − 6m2
i + 6t

)
+mf

(
−3m2

i − 2M2
i + 2s+ 3t

)
+mi

(
−2M2

f − 3m2
i + 2s+ 3t

)
−3m2

fmi − 3m3
f

)
−mDmf (mf +mi)

(
m2
i −M2

i + s
)

+
(
m2
f −M2

f + s
) (

(4mD +mf +mi)
(
m2
i −M2

i + s
)

−mDmi (mf +mi))) ,

(4.38)

where the symbols Bi, Bf , D,Φi,Φf refer to incoming/outgoing baryons, intermediate decuplet, and incom-

ing/outgoing mesons. Note that in this notation, the coupling constant C of the meson-octet-decuplet vertices

has a factor of 2
√

2 compared to the hA in, for instance, Ref. [6]. Taking this into account, we set mD0 = m∆ in

the fitting process. The B parts of the scattering amplitudes are

B
I=3/2
πN =

2C2(BD(u,N, π,N, π,∆)− 3BD(s, t,N, π,N, π,∆))

3f2m2
D0

,

B
I=1/2
πN =

8C2BD(u,N, π,N, π,∆)

3f2m2
D0

,

(4.39)

BI=1
KN =

C2BD(u,N,K,N,K,Σ∗)

3f2m2
D0

,

BI=0
KN =

C2BD(u,N,K,N,K,Σ∗)

f2m2
D0

.

(4.40)

The A parts can be easily obtained with the same replacement as that in the Born terms.

We first follow exactly the same fitting strategy as in the decuplet-less case except enlarging the fitting range

up to 1.2GeV in the πN channel. A direct fit of these 9 parameters(α1,...,8 , C) yields a hA = 2.900(44),

which is almost exactly equal to the value t determined by fitting to the Breit-Wigner width of the ∆, i.e.,

Γ∆ = 118MeV [236, 6]. Thus we fix hA to be exactly 2.9 and fit(refit) the LECs in the KN (πN ) channel.

The fitting results are collected in Tables 4.6, 4.14, 4.13.

Taking the lowest order contribution into account, we re-plot the phase shifts with the new set of LECs. The

results are shown in Figs. 4.12, 4.13. Clearly, the description is compatible with that in the SU(2) case. Compared

with the results without the decuplet contributions, the description is obviously improved up to higher energies,

especially for the P11 channel, as mentioned in the main text. Meanwhile, for theKN channel, taking the decuplet

contribution into account or not does not seem to make any noticable difference.
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Figure 4.12: πN phase shifts with the lowest order decuplet contribution included. The blue lines are our results in
SU(3) while the green dashed lines are the results in SU(2) from Ref. [6]. The black dots denote the experimental
data.

Figure 4.13: KN phase shifts with the lowest order decuplet contribution included. The blue solid lines are our
results in SU(3) while the red dashed lines are the results without the decuplet contributions. The black dots denote
the experimental data. The blue solid lines and the red dashed lines overlap each other.

Table 4.13: LECs in the I = 0 KN channel including the lowest order decuplet contribution with hA = 2.9 at
O(p3)∗.

β1[GeV−1] β2[GeV−2] β3[GeV−1] β4[GeV−1] C χ2/d.o.f.

−0.831(1) 0.1535(2) 0.608(2) −0.055(1) hA
2
√

2
1.02

Table 4.14: LECs in the I = 1 KN channel including the lowest order decuplet contribution with hA = 2.9 at
O(p3)∗.

γ1[GeV−1] γ2[GeV−2] γ3[GeV−1] γ4[GeV−1] C χ2/d.o.f.

−0.398(22) 0.420(7) 0.615(6) −0.103(42) hA
2
√

2
0.491
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One interesting point is that the consideration of the decuplet contributions changes the values of LECs, similar

to the case of baryon masses [242]. In the δ-expansion, the leading order decuplet contribution is counted as of

O(p3/2). Up to O(p3), one is supposed to include the NLO contributions, which counts of as O(p5/2). However,

as shown in the SU(2) case [236], the inclusion of the NLO decuplet contribution will only introduce redundant

parameters which could be absorbed into C and b0, bD, bF , b1,...,8.

4.6 Summary

In this chapter, we performed a SU(3) study of the meson-baryon elastic scattering up toO(p3) in covariant baryon

chiral perturbation theory. Due to lack of experimental data, we only focused on the πN I=3/2,1/2 and KN I=0,1

channels. We applied the extended-on-mass-shell (EOMS) scheme to restore the power counting and determined

the corresponding low energy constants by fitting to the experimental phase shifts. We achieved a pretty good

description in these channels simultaneously up to 1.16GeV for πN and 1.52GeV for KN . For πN channels,

our study in SU(3) shows a compatible description as that in SU(2) and much better compared to the HB SU(3)

results. For the KN channels, we found that with only phase shifts one can not uniquely determine all the LECs.

Nevertheless, neglecting O(p3) tree level contributions, we obtained a description in good agreement with the

experimental data.

We attempted a combined study of the baryon masses and meson-baryon scattering up to O(p3). We first

determined b0, bF , bD using the baryon masses and then kept them fixed in the fitting of the partial wave phase

shifts. Our study showed indeed that the EOMS BChPT can describe simultaneously the baryon masses and

meson-baryon scattering, but a firm conclusion needs more systematic studies at higher orders.

The predicted scattering lengths for the πN and KN channels are in good agreement with the HB results and

the experimental data. In addition, we explored the convergence of BChPT in meson-baryon scattering. The large

cancelation between the NLO and NNLO contributions implies an unsatisfying convergence rate, similar to that of

the SU(2) sector up toO(p3). On the other hand, since in the one baryon sector, chiral orders increase by unit of 1.

It might well be the case that one will see cancelations among the contributions of even and odd adjacent orders,

as one already noted in the study of decuplet masses.

The predicted phase shifts and scattering lengths for other channels listed in Table. 4.2 for the case of O(p3)∗

should be taken with caution since the O(p3) LECs are not fully determined. Thus additional data, such as the

cross sections in the K̄N channel, ought to be taken into account. As the interaction in this channel is by nature

non-perturbative, tiled to the existence of a shallow bound state of K̄N , Λ(1405), we leave such a study to a future

work.
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Chapter 5

The πη interaction and a0 resonances in

photon-photon scattering

In the previous chapters, we show how EFT improves the descriptions of experimental data order by order, and

how the contradiction between the increasing number of LECs and the limited experimental data prevents further

improvements of EFT moving to higher orders. In this chapter, we will turn to pure the mesonic sector to revisit

the interaction of πη − KK̄ with I = 1 and the two a0 resonances in this channel, i.e., a0(980) and a0(1450),

whose positions and widths have remained controversial for a long time, through the final state interactions of

photon-photon scattering.

Based on chiral perturbation theory and the unitary relation, we first construct a model for the S-wave am-

plitudes of πη − KK̄ interactions. Then we deduce the photon-photon scattering via the Muskhelishvili-Omnès

(MO) representation [271, 272]. The parameters are fitted to the most recent measurements of photon-photon

scattering data with much higher statistics from the Belle Collaboration [8], with which the two a0 resonances are

dynamically generated.

5.1 Introduction

The meson-meson interactions in the low energy regime has been one of the most challenging topics in hadron

physics because of the rich spectrum of resonances in a variety of scattering process [273], such as the isoscalar

f0(500) state in ππ scattering and f0(980) in ππ − KK̄ channel, the isovector a0(980) in πη − KK̄ channel

and the isospin one-half K∗0 (800) in πK channel. These lightest scalar resonances are the first observed exotic

members in low energy QCD. However, the precise knowledge for most of them are still missing.

Significant progress has been made since the proposal of ChPT [43]. Together with the unitary relation and

dispersion relation, ChPT provided people a powerful tool to obtain further and much clear insights into the meson-

meson scattering amplitudes. For instance, using the precise ππ scattering data as inputs to determine free param-
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eters in the model, people are able to determine the precise pole position of f0(500) and figure out the most

dominant channel for the non-perturbation effect [274]. Through this approach, one can also reproduce f0(980)

with the help of ππ scattering data around 1 GeV [99, 275, 101, 276].

Although the unitary ChPT approach provides such a powerful tool, the disadvantage of this method is equally

obvious. Scattering data are indispensable to determine the free parameters in the model. The description of the

resonances are highly dependent on the statistics of the input scattering data. As a consequence for a0(980), the

situation is much less clear and its pole position is still controversial [275, 101, 75, 277, 278, 279, 280] because up

to now there are no direct experimental πη scattering data available.

One may also note the recent lattice QCD simulations in Ref. [278]. Besides the πη channel of our particular

interest, KK̄ and πη′ channel were also investigated. In Ref. [278], the πη phase shifts and inelasticity are

extracted from the energy levels via Lüscher’s method and parametrizing the K matrix in various approaches.

They found a pole corresponding to a0(980) in the fourth Riemann sheet, which is not directly related to the

physical sheet. Chiral extrapolation of the lattice simulation was then performed by Guo et al. in Ref. [280] within

ChPT in finite volume. Consistent results were observed. However, the simulation was performed with quite a

large pion mass mπ = 391MeV. Whether the pole still remains in the fourth Riemann sheet after evolving from

the heavy pion mass to its physical value needs more discussions.

As a consequence, the a0(980) properties have to be determined solely from final-state rescattering effects. In

the PDG [1], the width of a0(980) is simply quoted as a range from 50 to 100 MeV. Besides we are more curious

about on which unphysical Riemann sheets the a0 resonances are. This information is closely tied to a better

knowledge of the physical scattering T matrix and as a consequence, makes different models distinguishable.

Among the processes containing πη final state interactions, the photon-photon scattering is the most popular

ones. This kind of processes is actually more well-known since it is related to the so-called hadronic light-by-light

contribution to the muon g − 2(see, i.e. Ref. [281]). Motivated by this, measurements with quite a high statistics

for the photon-photon to πη process have been recently released by the Belle Collaboration [8], which provides

much more precise constrains on the πη scattering amplitudes. Furthermore, two unexpected points really interest

us. In the data analysis afterwards, the authors reported that a0(980) is best described by a ordinary(i.e. essentially

elastic) Breit-Wigner like potential. Besides, the higher resonance a0(1450) observed has much smaller mass and

width, Ma0(1450) = 1316.8+0.7
−1.0MeV, Γ = 65+2.1

−5.4MeV, than the averages in PDG.

Theoretically, the photon-photon to meson-meson processes are free of initial state interactions and satisfy the

dispersion relation which is further constrained by the soft pion condition in the case of πη [282]. In order to

obtain the amplitudes, one needs to write the unitary relation and solve the resulting Muskhelishvili-Omnès (MO)

equations [271, 272] for such a coupled channel scattering. Although there will not be analytical solutions, it can

be solved numerically with well-established mathematical frameworks in which the polynomial ambiguities of the

dispersion relation can be taken under control. As was illustrated in the seminal papers [283, 284], a predictive

representation can be implemented at the level of the partial-waves with a simple modelling of the left-hand cut.
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Recently after the publication of the experimental paper, these data have been re-analysed in Ref. [285] with a

Muskhelishvili-Omnès (MO) construction based on a specific meson-meson T matrix model [286]. Including

also the a2(1320) resonance but without a0(1450) a good description of the data up to 1.1 GeV and a qualitative

description up to 1.4 GeV has been achieved. The a0(980) pole, in this model, lies on the fourth Riemann sheet,

which is consistent with the lattice QCD simulations.

We perform here a global fit which takes into account both πη and KK̄ photon-photon data including all the

differential cross sections up to 1.4 GeV. For the meson-meson interactions, we follow the S-wave coupled-channel

T matrix model developed in ref. [75] unitarized in the way introduced in Chapter 3 but with a slightly different

convention for G. The S-wave photon-photon amplitudes are then deduced from a modified MO representation

with a left hand cut from cross-channel vector meson exchanges. This is quite similar to ref. [285], but we differ

mainly by using chiral symmetry, which allows to fix one of the two subtraction constants through a soft pion

theorem1. The J = 2 partial-waves are described more phenomenological as a sum of cross-channel resonance

exchanges and a direct a2(1320) Breit-Wigner amplitude. The γγ → (KK̄)I=1 amplitudes are then combined

with I = 0 amplitudes taken from a previous work [287] which considered γγ → (ππ)I=0,2, (KK̄)I=0 in order

to reconstruct the physical K+K−, K0K̄0 amplitudes.

5.2 Framework

5.2.1 Scattering amplitudes and right hand cuts
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Figure 5.1: Physical regions for γγ → πη, γπ → γη scattering and η → γγπ0 decay.

1A further difference is that the soft photon constraints at s = 0 are not imposed in the dispersion relations used in [285].
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In the helicity basis, the amplitudes for γ(q1)γ(q2)→M1(p1)M2(p2) can be written in general as

〈M1(p1)M2(p2)|γ(q1, λ)γ(q2, λ
′)〉 = ie2(2π)4δ(Pf − Pi) ei(λ−λ

′)φAλλ′(s, t), (5.1)

in which qi,pi are the momentum for incoming photons and outgoing mesons. s, t are Mandelstam variables

defined in the usual sense

s = (q1 + q2)2, t = (q1 − p1)2, u = (q1 − p2)2. (5.2)

The various physical regions in the s, t−uMandelstam plane for the γγ → πη, γπ → γη and η → γγπ processes

are shown on Fig. 5.1.

The amplitude above can be further deduced into tensor amplitude as

ei(λ−λ
′)φAλλ′(s, t) = εµ1 (q1, λ)εν2(q2, λ

′)Wµν(q1, q2, p1, p2) . (5.3)

By gauge invariance, the tensor amplitude Wµν must satisfy the two Ward identities

qµ1Wµν = qν2Wµν = 0 . (5.4)

The tensor amplitude Wµν can then be expressed in terms of two scalar amplitudes A, B as

Wµν(q1, q2, p1, p2) = A(s, t, u)Tµν1 +B(s, t, u)Tµν2 , (5.5)

where

Tµν1 =
1

2
sgµν − qν1 qµ2

Tµν2 =2s∆µ∆ν + 4q1.∆ q2.∆ gµν

− 4q2.∆ qν1 ∆µ − 4q1.∆ qµ2 ∆ν ,

(5.6)

with ∆ = p1 − p2.

With all the formula above, the amplitudes in helicity basis are

A++ = A−− =
s

2
A(s, t) + s(2m2

1 + 2m2
2 − s)B(s, t),

A+− = A−+ = sin2 θλ12(s)B(s, t),

(5.7)

with λ12 = (s− (m1 +m2)2)(s− (m1 −m2)2), cos θ = t−u√
λ12

. The differential cross sections for the scattering
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process of our interest then reads

dσγγ→M1M2

d cos θ
=
πα2

4s2

√
λ12(s)

(
|A++|2 + |A+−|2

)
. (5.8)

with α ≡ e2

4π ' 1
137 the fine structure constant.

Following the partial wave decomposition and unitary method in section 2.4, the right hand cuts for the γγ →

πη(KK̄) can be expressed as

Im

 l0,++(s)

k0,++(s)

 = T ∗J (s)Σ(s)

 l0,++(s)

k0,++(s)

 , (5.9)

where T ∗J (s) collects the meson-meson scattering amplitudes for the πη −KK̄ coupled channel, Σ(s) the phase

space integral, l0,++ and k0,++ denote the partial wave amplitudes for photon-photon scattering to πη and KK̄

final states respectively. The final amplitudes Lλλ′ and Kλλ′ can be obtained via

 Lλλ′

Kλλ′

 =
∑
J

(2J + 1)

 lJ,λλ′

kJ,λλ′

 dJλ−λ′,0(θ). (5.10)

5.2.2 Left hand cuts

Born amplitudes

(a) (b) (c)

Figure 5.2: Born amplitudes of γM → γM .

The left hand cut part in the γγ scattering comes from singularities in the cross channel as depicted in Fig. 5.2.

The scalar amplitudes reduced following the decomposition mentioned above reads

ABornP (s, t, u) =
s

(t−m2
P )(u−m2

P )
,

BBornP (s, t, u) =
1

2(t−m2
P )(u−m2

P )
,

(5.11)

with P = K+, π+. In the present work, since the neutral channel πη is free of such terms, we only need to pay
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attention to the charged channel, KK̄, which reads

k1,Born
0,++ (s) = −2

√
2m2

K+

s
LK+(s) ,

k1,Born
2,++ (s) =− 2m2

K+

s β2
K+(s)

[
(β2
K+(s)− 3)LK+(s) + 6

]
,

k1,Born
2,+− (s) =

√
6

4sβ2
K+(s)

[
(1− β2

K+(s))2 LK+(s) +
10

3
β2
K+(s)− 2

]
.

(5.12)

with

βP (s) =
√

1− 4m2
P /s,

LK+(s) =
1

βK+(s)
log

1 + βK+(s)

1− βK+(s)
.

(5.13)

The superscripts for k1,Born
J,++ refer to I = 1 and the subscripts donate the total angular momentum and the helicities

of initial photons.

Vector meson exchanges

Besides the QED born terms, the vector meson exchanges through cross channel will contribute to the left hand

cuts in a similar way. The leading order effective Lagrangian for V → Pγ vertex reads

LV Pγ = eGV P ε
µναβFµν∂αPVβ , (5.14)

in whichGV P denotes the couplings constants for the correspond vertices, V and P collect the vector meson nonet

and pseudoscalar meson octet.

Expressions for the amplitudes of vector exchange born diagrams are straightforward,

Wµν
V =

e2GV P1
GV P2

m2
V − t

(
s− 4t− 2m2

1 − 2m2
2

2
Tµν1 +

1

4
Tµν2 ) + (t↔ u), (5.15)

where the coupling constantsGV P1
,GV P2

for each intermediate vector propagator are related to the corresponding

decay width via

ΓV→Pγ = α
G2
V P

2

(m2
V −m2

P )3

3m3
V

, (5.16)

with α ≡ e2

4π ' 1
137 the fine structure constant. The corresponding partial wave amplitudes for J = 0, 2 and

non-vanishing combinations of helicities are

lV0,++(s) =GV πGV η 2s
(
1−m2

V LV (s)
)
,

lV2,++(s) =GV πGV ηm
2
V s
{

(1− 3X2
V (s))LV (s) +

6XV (s)√
λ12(s)

}
,

lV2,+−(s) =

√
6

8
GV πGV η

{
λ12(s)(1−X2

V (s))2 LV (s)− 2

3

√
λ12(s)XV (s)(3X2

V (s)− 5)
}
,

(5.17)
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where

XV (s) =
s−m2

1 −m2
2 + 2m2

V√
λ12(s)

,

LV (s) =
log(XV (s) + 1)− log(XV (s)− 1)√

λ12(s)
.

(5.18)

The discontinuity of LV occurs when X2
V − 1 < 0, which leads to a left hand cut from minus infinity to sV ,

sV = − (m2
1 −m2

V )(m2
2 −m2

V )

m2
V

. (5.19)

The corresponding left hand cut can then be easily calculated

Im [LV (s+ iε)] = − π√
λ12(s)

θ(sV − s), (5.20)

with which the left hand cut for the whole vector meson exchange amplitudes reads

1

π
Im [lV0,++(s)] =2CV πCV η

sm2
V√

λ12(s)
θ(sV − s),

1

π
Im [lV2,++(s)] =CV πCV η

sm2
V√

λ12(s)
(3X2

V (s)− 1) θ(sV − s),

1

π
Im [lV2,+−(s)] =−

√
6

8
CV πCV η

√
λ12(s) (1−X2

V (s))2θ(sV − s).

(5.21)

Similarly, one can obtain the left hand cut for the KK̄ channel once isospin factors are taken into account. In

this case, the effective coupling constant is

C̃
(1)
K∗ ≡

1√
2

(
−C2

K∗K+ + C2
K∗K0

)
. (5.22)

Table 5.1: Radiative widths of vector mesons and corresponding coupling constants. The relative signs of the
couplings are determined assuming flavour symmetry.

Γ (keV) CV P (GeV−1)

ρ0 → π0γ 69(9) 0.368(24)

ρ0 → ηγ 44(3) 0.789(30)

ω → π0γ 713(26) 1.160(20)

ω → ηγ 3.8(4) 0.222(11)

φ→ π0γ 5.5(2) 0.067(1)

φ→ ηγ 55(1) 0.345(4)

K∗± → K±γ 50(5) 0.418(22)

K∗0 → K0γ 116(11) −0.636(30)
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5.2.3 Muskhelishvili-Omnès representations

The MO method is one of the most sufficient method for dealing with final state interactions. It has been applied

to study γγ → ππ scattering by Gourdin and Martin [288], which is similar to the problem in the present work.

The main idea of the MO representation is first to construct an adjoint amplitude F̃ in terms of the amplitude

of our interest F and parts of the left hand cut FL, with a special chosen Omnes function Ω(s). Schematically it

can be expressed as

F̃ (s) =
F (s)− FL(s)

Ω(s)
. (5.23)

The Omnes function Ω(s) is constructed to only contain the same unitary cut with the final state interactions,

ImΩJ(s) = TJ(s)Σ(s)Ω∗J(s), (5.24)

which makes the ratio F (s)/Ω(s) in the right hand side free of right hand cuts, i.e. Disc[F (s)/Ω(s)] = 0. As a

consequence, the dispersion relation applied on F̃ will only contain the unitary cut and left hand cut part of F (s),

which is usually much easier to calculate.

In the present work, we follow a modified MO representation applied in Ref. [287], in which only the QED

born term piece is subtracted, i.e., FL ≡ FBorn
L . Therefore, the adjoint amplitude F̃ contains both right hand cuts

and left and cuts.

Model for πη −KK̄ final state interactions

We first briefly recall the approach for the T matrix responsible for the meson-meson interactions, which is the key

input in the MO representation for the photon-photon scattering. A variety of methods have been applied to investi-

gate this issue, including the N/D method based on dispersion relations [286], a K matrix inspired approach [289],

inverse amplitude method(IAM) [290] and chiral perturbation theory [290, 280]. However, as mentioned in the

very beginning, the lack of direct experimental data results in inconsistent descriptions of the amplitudes from

different approaches, which further leads to the ambiguity of the positions for the two a0 resonances. In this work,

we model the T matrix following the K matrix approach in Ref. [289], which has explicit matching relations to the

chiral amplitudes. This kind of approach was initiated in [291], See ref. [292] for a review. Here we only briefly

recall the parametrization of this approach and refer to Ref. [289] for more details.

The T matrix for the meson-meson scattering amplitudes can be written as

T (s) = (1−K(s)Φ(s))
−1

K(s) , (5.25)
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where Φ(s) denotes the two-point scalar integral

Φ(s) =

 α1 + β1s+ 16πJ̄ηπ(s) 0

0 α2 + β2s+ 16πJ̄KK(s)

 , (5.26)

with αi, βi phenomenological subtraction terms. The K matrix collects the leading order and next-to-leading order

potentials from ChPT, as well as a phenomenological approximation of the O(p6) piece, which reads

K(s) = K(2)(s) + K(4)(s) + K(6)(s), (5.27)

where the subscripts are the chiral orders. The K(6)(s) reads

[
K(6)(s)

]
ij

= λ
gigj
16π

(
1

m2
8 − s

− 1

m2
8

)
,

g1 =

√
6

3F 2
π

(
c′d(s−m2

η −m2
π) + 2c′mm

2
π

)
,

g2 =
1

F 2
π

(
c′d(s− 2m2

K) + 2c′mm
2
K

)
,

(5.28)

where g1, g2 are derived from a resonance chiral Lagrangian [293]. In this model, there will be 7 free parameters,

that is, α1, β1, α2, β2, m8, λ and the ration c′m/c
′
d. This is essentially the same method mentioned in section. 2.4,

but with an extra phenomenological O(p6) piece. The ratio c′m/c
′
d is expected to be of order 1 − 2. We will use

c′m/c
′
d = 2 as the central value and include the variation as a source of error.

For the Li in the NLO chiral amplitudes, we apply the same values with those in Ref. [289]. Obviously, such a

model which implements two-channel unitarity is mostly justified in the a0(980) region and below. We will assume

that it remains qualitatively acceptable up to E ' 1.4 GeV. The T matrix is computed from Eq. 5.25 for E ≤ E1,

E1 = 1.5 GeV. In the higher energy regionE > E1, the T matrix is described through a simple interpolation of the

phase-shifts and the inelasticity such that δ11(∞) = 2π, δ22(∞) = 0 and η(∞) = 1. These conditions introduce a

smooth cutoff in the integral equations satisfied by the matrix elements of the MO matrix and ensure the existence

of a unique solution.

Amplitudes for the S-waves

With all the analytical properties, i.e., the right hand cut and left hand cut mentioned in the preceding section, we

are ready to write the dispersion representation for the photon-photon to meson-meson scattering amplitudes. Since

the S-wave amplitudes obey soft-photon theorems [294, 295], the ratios l0++(s)/s and (k1
0++(s)− k1,Born

0++ (s))/s

remain finite when s → 0. Thus they can be constructed via un-subtracted dispersion relations in terms of their

109



right hand cut and left hand cut as

l0++(s) = s
[ 1

π

∫ sV

−∞
ds′

Im [l0++(s′)]

s′(s′ − s) +
1

π

∫ ∞
m2

+

ds′
Im [l0++(s′)]

s′(s′ − s)
]
,

k1
0++(s) = k1,Born

0++ (s) + s
[ 1

π

∫ sK∗

−∞
ds′

Im [k0++(s′)]

s′(s′ − s) +
1

π

∫ ∞
m2

+

ds′
Im [k0++(s′)]

s′(s′ − s)
]
,

(5.29)

where m+ = mπ +mη , sV and sK∗ the branching points of the left hand cut for the corresponding vector meson

exchange terms.

Under the assumption of two-channel unitarity the dispersion relations in Eq. 5.29 lead to a set of coupled

inhomogeneous Muskhelishvili equations. They can be solved in terms of a two-channel MO matrix which sat-

isfies a homogeneous set of coupled equations in terms of the T matrix for the πη − KK̄ interactions. The MO

representation for such a coupled channel problem is

 φ1(s)

φ2(s)

 ≡ Ω−1
0 (s)

 l0++(s)/s

(k1
0++(s)− k1,Born

0++ (s))/s

 , (5.30)

where the Ω0(s) refers to the 2× 2 Omnès function satisfying

Ω0(s) =
1

π

∫ ∞
m2

+

ds′

s′ − sT (s)Σ(s)Ω∗0(s) . (5.31)

To obtain a unique solution of the integral equation above, boundary condition are necessary. For s → ∞,

asymptotic conditions on the phase-shifts are imposed. At s = 0 we take

Ω0(0) =

 1 0

0 1

 . (5.32)

Applying dispersion relations on the left hand side of Eq. 5.30, one can obtain the MO-type representation for

the photon-photon scattering amplitudes

 l0++(s)

k1
0++(s)

 =

 0

k1,Born
0++

+ sΩ0(s)

 bl + L1(s) +R1(s)

bk + L2(s) +R2(s)

 , (5.33)

where the bl, bk denote the subtraction constants, Li, Ri the dispersive integrals over left hand cut and right hand

cut respectively, which read

Li(s) =
s− sA
π

{∫ sV

−∞

ds′

s′(s′ − sA)(s′ − s) Ω−1
i1 (s′) Im [lV0++(s′)]+∫ sK∗

−∞

ds′

s′(s′ − sA)(s′ − s) Ω−1
i2 (s′) Im [kV0++(s′)]

}
,

Ri(s) =− s− sA
π

∫ ∞
4m2

K

ds′

s′(s′ − sA)(s′ − s) Im [Ω−1
i2 (s′)] k1,Born

0++ (s′) .

(5.34)

110



Note that in the dispersion integral above, we have introduced the Adler zero as a subtraction point. In the soft

pion limit for γγ → πη where the four-momentum p1 for pion vanishes, one has

s = m2
η, t = u = 0. (5.35)

At this limit, the amplitude γγ → πη vanishes exactly,

A(m2
η, 0)Tµν1 +B(m2

η, 0)Tµν2 = [A(m2
η, 0) + 2m2

ηB(m2
η, 0)]Tµν1 = 0, (5.36)

The expression in front of Tµν1 is just the L++ helicity amplitude in the soft pion limit. Although the soft pion

limit is not physical, this zero should be held in realistic cases within corrections of O(m2
π). As a consequence,

the physical L++ should also have a Adler zero at sA = m2
η +O(m2

π) with t = u or cos θ = 0. Considering the

decomposition

L++(s, cos θ = 0) =
∑
j even

(2j + 1) (−1)j/2
(j − 1)!!

j!!
lj,++(s) , (5.37)

the partial waves with J ≥ 2 are suppressed by the angular momentum barrier factor, indicating that the J = 0

partial wave dominates. The soft pion condition therefore implies that the J = 0 partial-wave should satisfy

l0,++(m2
η) = O(m2

π) such that an Adler zero should be present in this partial-wave amplitude,

l0,++(sA) = 0. (5.38)

Under the assumption of the existence of an Adler zero in l0,++, one can derive a relation between the two

subtraction constants bl and bk at s = sA

bl = −bkΩ12(sA)/Ω11(sA) . (5.39)

The bk will finally be determined by fitting to the experimental data.

Amplitudes for the D-waves

For the J = 2 partial wave, one must take into account the s-channel resonance a2(1320). However, it is difficult

to deal with the amplitudes fulfilling the unitary relation like the S-wave cases because in the energy region of our

interest, a large variety of decay channels are open, such as ρπ, πη, KK̄, ωππ and so on. Their decay branching

ratios are [1]

Bηπ = (14.5± 1.2)%, BKK̄ = (4.9± 0.8)%,

Bρπ = (70.1± 2.7)%, Bωππ = (10.6± 3.2)%.

(5.40)
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As a consequence, we choose to approximate the right hand cut of the D-wave amplitudes with a phenomenological

Breit-Wigner approach.

The effective Lagrangians for the two vertices γγ → a2 and a2 → πη are

La2ηπ = Ca2ηπ Tµν(x)∂µη(x)∂νπ0(x) ,

LTγγ = e2 Tµν(x)
{
Ca2γγ F

µβ(x)F ν
β (x) +

Da2
γγ

m2
T

∂µFαβ(x)∂νFαβ(x)
}
,

(5.41)

where Tµν refers to the tensor field for a2(1320), Fµν the field strength tensor, Ca2ηπ and Ca2γγ(Da2
γγ) the coupling

constants for the corresponding vertices. The coupling constants can be determined via the partial decay widths,

which read

Γ[a2 → ηπ] =
(Ca2ηπ)2

60π

(
qηπ(m2

T )
)5

m2
T

,

Γ[a2 → γγ] =
e4m3

T

80π

(
(Ca2γγ)2 +

1

6
(Da2

γγ)2

)
,

(5.42)

with qηπ the momentum in the C.M. frame. Utilizing the branching ratios listed in Eq. 5.40 and the total decay

width Γa2 = 107± 5MeV [1], the coupling constants are determined to be

Γa2γγ = 1.00± 0.06 keV ,

Ca2KK = −(10.5± 0.9) GeV ,

Ca2ηπ = (10.8± 0.5) GeV−1,√
(Ca2γγ)2 +

1

6
(Da2

γγ)2 =(0.115± 0.005) GeV−1 .

(5.43)

Note that although we can only obtain the absolute values for the 4 coupling constants via the partial decay widths,

the relative signs can be easily determined with simple numerical experiments when fitting to the experimental

data.

Collecting all the pieces above, the Breit-Wigner form amplitudes can be constructed following the same width

function for the a2(1320) propagator with that applied in the experimental publication [8], which read

lBW2++(s′) =
Da2
γγC

a2
ηπ

60m2
T

√
W2(qηπ(m2

T )R)

W2(qηπ(s′)R)

s′ληπ(s′)

m2
T − s′ − imTΓT (s)

,

lBW2+−(s′) =

√
6Ca2γγC

a2
ηπ

60

√
W2(qηπ(m2

T )R)

W2(qηπ(s′)R)

ληπ(s′)

m2
T − s′ − imTΓT (s)

.

(5.44)

with

ΓT (s) =
∑

ΓX1X2
(s),

ΓX1X2
(s) =Γa2B(a2 → X1X2)(

qX(s)

qX(m2
a2)

)5 W2(qX(s)ra2)

W2(qX(m2
a2)ra2)

,
(5.45)
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Table 5.2: Parameters of the two-channel T matrix in the two fits.

α1 β1(GeV−2) α2 β2(GeV−2) m8(GeV) λ χ2

fit I 4.00(8) −2.23(4) −0.545(5) 0.167(6) 1.304(4) 0.47(4) 428

fit II 0.98(3) −4.07(1) −0.495(1) −0.18(1) 0.900(2) 1.064(1) 439

where X1, X2 denote the outgoing particles, Γa2 the total decay width, W2(x) = 1/(9 + 3x2 + x4) the Blatt-

Weisskopf related function, and ra2 = 3.09 ± 0.53(GeV/c)−1 the effective interaction radius. For the three-body

decay channel a2 → ωππ, the decay width is Γ = Γa2B(a2 → ωππ) s
m2
a2

instead.

With Eq. 5.44 and Eq. 5.17, the D-wave amplitudes for γγ → πη(KK̄) are

l2,λλ′(s) = lBW
2,λλ′(s) + lV2,λλ′(s),

k2,λλ′(s) = − 1√
2
kQED

2,λλ′(s) + kBW
2,λλ′(s) + kV2,λλ′(s),

(5.46)

where the − 1√
2

in front of the QED contributions comes from the isospin factor.

5.3 Results and discussions

With the S-wave and D-wave amplitudes obtained in the previous section, we are ready to fit to the experimental

data. In the present work, we performed a global fit to the differential cross sections of γγ → πη [8] which

was done recently in ref. [285] and additionally, the γγ → KSKS data [9]. We will restrict ourselves to the

energy range E ≤ 1.4 GeV: totally 448 differential cross section points for πη (0.85 ≤ E ≤ 1.39 GeV) and 240

differential cross section points for KSKS (1.105 ≤ E ≤ 1.395 GeV). Older data with much less statistic such as

the γγ → K+K− data from the ARGUS Collaboration are omitted.

Note that to obtain the cross sections for KSK̄S , we also need the amplitude for γγ → (KK̄)I=0, which has

been calculated with a similar MO representation in Ref. [287]. As a consequence, besides the 6 parameters in

the T matrix for the πη − KK̄ scattering, we have 7 extra parameters, i.e., the coupling constants Ca2γγ , Da2
γγ to

a2(1320) for the I = 1 channel, the coupling constants Cf2γγ , Df2
γγ to f2(1270) for the I = 0 channel, the mass and

width ma2 and Γa2 for a2(1320), as well as the subtraction constant bk in the MO representation. The other one

bl can then be determined via the Adler zero by Eq.5.39. Therefore, we have totally 13 parameters.

We performed a standard least squares chi square fit with the package MINUIT. At first, we have kept the T

matrix parameters fixed to be one of the sets determined previously in Ref. [75] (which, in particular, used the

pole positions of the two a0 resonances as input). It was not possible to obtain a good fit of the γγ data in this

manner: using these sets of parameter values one finds that the πη cross sections at the a0(980) peak tends to

be too large and the energy of the peak tends to be somewhat displaced compared to experiment. Relaxing the

T matrix parameters, we actually obtained two distinct minimums of the total χ2 of the global fit, as exhibited in

Table. 5.2.
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Figure 5.3: Phase-shifts and inelasticity from the two-channel T matrix model using the two sets of parameters
corresponding to the two χ2 minimums.

In Fig. 5.3 we show the phase shifts δ11, δ22 and of the inelasticity η as a function of energy, corresponding

to the two fits. At low energies, the two sets of parameters lead to similar behaviors of T matrix. One may note

that the πη phase shifts change sign and become negative below KK̄ threshold. This low-energy behaviour is not

anticipated in simple hadronic models of the πη amplitude (e.g. [296]) but it was also observed to emerge from

fitting the γγ data in ref. [297].

At higher energies, the behaviors of the two fits are significantly different. For fit I, we observe a clear sharp

increase around E ' 1.32GeV and a platform afterwards in the phase shift, indicating a narrow resonance in the

usual sense. Indeed, we find a resonance pole in the T matrix located on the third Riemann sheet with the value

√
sa′0 = 1315(4)− i 24(3) MeV (fit I) . (5.47)

Though a′0 is much lower and narrower compared to the average of a0(1450) in PDG, it is quite consistent with

the a0(Y ) found in the best fit of the Belle Collaboration [8] via a completely different parameterization.

In fit II we also find a resonance a′0 but this time, it locates at

√
sa′0 = 1421(5)− i 175(4) MeV (fit II) , (5.48)

the mass of which is consistent with experimental value but the width is much broader.

The differential cross sections for γγ → πη and γγ → KSKS are exhibited in Fig. 5.4 and Fig. 5.5 for the

two set of parameters. We find both fitting results are in good agreement with the experimental data and there are

no significant differences between them. Similar phenomena can be observed from the total cross sections shown

in Fig. 5.6 for the two photon-photon scattering process when integrated over cos θ < 0.8 as done experimentally.

Larger discrepancy is observed only atE = 1.01GeV in the γγ → πη process, which is close to theKK̄ threshold.

Our results underestimate the differential cross section at this point. Correspondingly the peak in the total cross

114



 4

 6

 8

 10

 12

 14

 16

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=0.91 GeV Belle
a'0(broad)

a'0(narrow)

 30

 35

 40

 45

 50

 55

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=1.01 GeV Belle
a'0(broad)

a'0(narrow)

 14

 16

 18

 20

 22

 24

 26

 28

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=1.11 GeV Belle
a'0(broad)

a'0(narrow)

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=1.21 GeV Belle
a'0(broad)

a'0(narrow)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=1.31 GeV Belle
a'0(broad)

a'0(narrow)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.2  0.4  0.6  0.8

d
σ
γ
γ
→

 π
0
η
/d

co
s(
θ

) 
 (

n
b

)

cos(θ)

E=1.37 GeV Belle
a'0(broad)

a'0(narrow)

Figure 5.4: Experimental γγ → πη differential cross sections compared with the two fits.

sections for this process seems a bit to the left compared to the experimental data. This may be because the

Kaon masses applied in our calculation are not exactly the same as those in the experimental analysis. We utilize

the masses of charged Kaons as those at the isospin limit mK = mK+ thus the peak locates at exactly 2mK+ .

Physically the different masses of charged Kaons and neutral Kaons should lead to cusp in the invariant mass

distribution.

One may also notice that in the total cross sections of Fit I, no clear signal of a′0 is visible. We attribute this

to the interference between the S-wave and D-wave amplitudes. We find that in fit I around
√
s ' 1.32GeV the

contribution from l0,++ is approximately proportional to that from the l2,++. As a consequence, the a0 resonance

effect in the S-wave is absorbed into the a2(1320) effect from D-wave and no visible effect remains. In the KK̄

channel, the inelasticity around
√
s ' 1.32GeV is very close to 1, indicating that in this energy region, the KK̄ is

actually decoupled. Therefore one cannot find any signal of a′0 from KK̄ cross sections neither. We thus conclude

that Fit I is not favored because of the overlap between the S-wave resonance and the D-wave one.

Now we can focus on the properties of the two a0 resonances with the parameters from fit II. Corresponding

to a0(980) observed experimentally, we find a resonance at (1000.7,−i36.6)MeV on the second Riemann sheet,

which locates slightly above the KK̄ threshold. Compared to the previous studies listed in PDG [1], a0(980) in

our model is closest to the one predicted by Oller in Ref. [99] via the lowest order chiral amplitudes and the one

by Guo in Ref. [280] also with leading order chiral amplitude but with constrains from lattice QCD. The three

a0(980) states all locate on the second Riemann sheet. However, the resonance in Ref. [280] moves to the fourth

sheet when the calculation is extended up to next-to-leading order, which is consistent with the calculation in

Ref. [285] and lattice QCD simulations [278]. One can obtain the coupling constants of this resonance to the πη
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Figure 5.5: Experimental γγ → KSKS differential cross sections compared with the two fits.

Table 5.3: Positions of two a0 resonances predicted by our model, as well as the coupling constants to each channel.

Position(MeV) |gπη|(GeV) |gKK̄ |(GeV) Γa0→γγ(keV)

a0 1000.7(7)− i36.6(1.3)(II) 2.17(2) 4.03(2) 0.52(1)

a′0 1421(5)− i175(4)(III) 3.15(4) 1.89(4) 1.05(5)

and KK̄ channels via

16πT
(II)
11 (z)

∣∣∣
pole

=
g2
a0πη

za0 − z
,

16πT
(II)
12 (z)

∣∣∣
pole

=
ga0πηga0KK̄
za0 − z

,

(5.49)

where T II denotes the T matrix of meson-meson interactions on the second Riemann sheet. Similarly, the coupling

constants to the photon-photon amplitudes and the partial decay width can be calculated via

e2l
(II)
0++(z)

∣∣∣
pole

=
ga0γγga0πη
za0 − z

,

Γa0→γγ =
|ga0γγ |2
16πma0

.

(5.50)

The results are collected in Table. 5.3.
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Figure 5.6: Cross sections for γγ → πη,KSKS integrated in the range | cos θ| < 0.8. The data are from Refs. [8,
9], they are compared with the two fits.
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5.4 Conclusion

In this chapter we revisited the scattering of meson-meson in the isovector channel as final state interactions

of photon-photon scattering. We implemented a standard Muskhelishvili-Omnès representation for the J = 0

amplitudes in which the left hand cut is modelled from light vector meson exchanges. We followed the K matrix

approach in the previous work [75], in which the underlying T matrix satisfies unitarity with two coupled channels

(πη,KK̄) and involves six phenomenological parameters. In the case of the J = 2 amplitudes the constraints

from unitarity are more difficult to implement. Thus a crude description of Breit-Wigner form is used. In order to

constrain the free parameters we fitted to both πη and KSKS data with high-statistics data below 1.4 GeV, and we

found two different acceptable solutions to the minimisation. In one of our fits the S-wave amplitudes display a

light and narrow a′0 resonance similar to the one found in the Belle analysis. While this is mathematically allowed

we have argued that the other fit which displays a broad a′0 is likely to be more physical.

Concerning the a0(980) resonance, we find that a rather conventional picture i.e. a pole on the second sheet

with a mass and width consistent with the PDG is compatible with both the πη and the KSKS data. This is in

contrast with the Belle analysis which uses an elastic Breit-Wigner description and also with the recent analysis of

Ref. [285] in which the mass and width are found to be both significantly larger than the PDG values. Data with a

better energy resolution would be useful to resolve these remaining ambiguities. The γγ → K+K−,KSKS cross

sections close to the KK̄ thresholds are also very sensitive to the position of a0(980). Our results in this energy

region are in qualitative agreement with the chiral-unitary calculations from Ref. [298] and with the estimates made

in Ref. [299] but not with those from Ref. [300]. Experimental data in this near-threshold region would obviously

be very constraining. Finally, it will be quite interesting to see how the pole position determined in a lattice QCD

simulation [278] evolves when mπ is decreased.
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Chapter 6

Summary and Outlook

In this thesis, we applied effective field theory to study three typical hadron-hadron interactions, i.e., the interaction

of singly charmed baryons and Goldstone mesons, those of ground state baryons and Goldstone bosons and those

of meson-meson, in each of which we focus on different points.

In the interactions between singly charmed baryons and Goldstone bosons, we mainly focus on the typical non-

perturbation phenomena, resonances and their internal structures. In the leading order, under the approximation

that all channels with different isospins and strangeness share one common subtraction constant which is fixed by

reproducing Λc(2595), we predicted a number of dynamically generated states, which are contrasted with those

of other approaches and available experimental data. These results provide basic information for experimentalists,

that where the resonances locate and to which channel they mainly coupled. In order to obtain a better description

of the interactions, we attempted to add the next-to-leading order contributions. However, due to the lack of

experimental data in these scattering process, we were not able to determine all the low energy constants in the

NLO Lagrangian and could only constrain them to be of natural size. As a consequence, our model can hardly

make any precise predictions at this order. Despite of this, the molecular interpretation for Λc(2595) and its

counterpart with JP = 3/1− was not spoiled at NLO. More experimental data or lattice QCD simulations are

highly expected. We then turned back to investigate in detail the structure of Λc(2595), whose mass has been

measured precisely. We first applied the compositeness rule proposed by Weinberg to analyse the components

of Λc(2595) as a molecular state. We found although in different models the component to each channel differs

from each other, they are all in favor of a relatively large molecular picture. Besides, it is also obvious that the

relative importance from the compositeness rule for each channel is not model independent. We then compared the

behavior of Λc(2595) in the large Nc expansion to the generic qqq baryon. Significant differences were observed,

which confirmed the former conclusion.

In the second part, we mainly concentrate on the one-loop level contribution to the meson-baryon scattering,

and particularly, its renormalization and convergence. The divergence in the loop diagrams and power counting

breaking terms in baryon chiral perturbation theory has been discussed since people first attempted to apply EFT to
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baryons. We performed a global fit which includes both πN and KN scattering data, and further more, the baryon

masses at the same order. Compared to the results of heavy baryon ChPT, our descriptions were in good agreement

with experimental data. Besides, we took the ∆ into account, after which we could obtain a good description up

to a higher energy region. We then calculated the scattering lengths, which were also consistent with experimental

data, and discussed the convergence of covariant baryon ChPT. However, the large number of free parameters made

the fit a tough task and we were not able to determine all the related LECs. Therefore, the most interesting point in

the K̄N channel, i.e., the double-pole structure of Λ(1405), has not been involved yet. With the chiral amplitudes

calculated in this present work and a proper unitary method, we will be able to take the non-perturbative effect

into account and then determine all the LECs up to O(p3) by fitting to the cross sections of K̄N . This work is in

progress.

In the last part, we combined chiral perturbation theory with dispersion relations to handle a final state inter-

action problem. The discussions of πη interaction and the two a0 resonances in this channel have continued for

quite a long time due to the lack of direct experimental data. Lattice QCD collaborations published their results but

at a quite large pion mass. With the most recent experimental data on photon-photon scattering, we were able to

introduce constraints on the πη interaction which appears as final state interactions. Fully taking into account the

analytical properties of the amplitudes, a Muskhelishvili-Omnès version of dispersion relation was applied and an

Adler zero was introduced. We fitted the γγ → πη and γγ → KSKS differential cross sections to determine the

parameters in the πη interaction, with which we finally obtained a a0(980) state slightly above the KK̄ threshold

and typically on the second Riemann sheet and a broader a0(1450) on third sheet. On the other hand, the amplitude

of photon-photon scattering is related to the decay process η → πγγ. Since the isospin breaking effect of π − η

mixing plays an important role in this process, I do not present the results here.

In the three scattering processes studied in the present work, we have seen the power of EFT to interpret the

experimental data and make predictions, as well the drawback, that is, the increasing number of free parameters.

The phenomena in particle physics are so abundant that those involved in the present work are only tiny corners.

Taking the meson-baryon interaction without heavy flavors as an example, although the double-pole structure of

Λ(1405) has been discussed for over sixty years, it still remains controversial nowadays. Besides Λ(1405), we

still have a variety of excited baryons, such as Λ(1670), Λ(1690), Σ(1385), Ω(2012) and so on, whose structure

needs further investigation. When interactions involves heavy flavors, either hidden or open, the variety of exotic

particles, XY Z and Pc, are continually challenging our understanding of the strong interaction. The nucleon-

nucleon interaction, which is the building blocks of nuclear physics, is another most challenging topic. Although

non-relativistic nucleon force has been calculated up to higher orders, the covariant version falls far behind, let

alone the hyperon-hyperon interactions. One can go even further beyond two-body systems to few-body systems.

One interesting example is the DK, DDK, DDDK systems [301, 302] where D can be replaces with D∗ under

heavy quark symmetry. In these few-body systems, DK can bind to form D∗s0(2317) and D(∗)D to X(3872) or

Zc(3900). This makes the whole few-body systems bind as a series of counterparts ofD∗s0(2317), providing a new
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idea to understand hadron spectrum.
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Appendix A

Clebsch-Gordan coefficients

In this section, we tabulate the Clebsch-Gordan coefficients appearing in Eq. (3.7) for the anti-triplet (Tables A.1

to A.7) and sextet (Tables A.8 to A.17) ground-state charmed or bottom baryons interacting with the pseudoscalar

mesons.

Table A.1: (S = 1, I = 1/2)

ΛcK

ΛcK 1

Table A.2: (S = 0, I = 1)

ΞcK Λcπ

ΞcK 0 1

Λcπ 1 0

Table A.3: (S = 0, I = 0)

ΞcK Λcη

ΞcK −2 −
√

3

Λcη −
√

3 0

Table A.4: (S = −1, I = 3/2)

Ξcπ

Ξcπ 1
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Table A.5: (S = −1, I = 1/2)

Ξcπ Ξcη ΛcK

Ξcπ −2 0
√

3/2

Ξcη 0 0 −
√

3/2

ΛcK
√

3/2 −
√

3/2 −1

Table A.6: (S = −2, I = 1)

ΞcK

ΞcK 1

Table A.7: (S = −2, I = 0)

ΞcK

ΞcK −1

Table A.8: (S = 1, I = 3/2)

ΣcK

ΣcK 2

Table A.9: (S = 1, I = 1/2)

ΣcK

ΣcK −1

Table A.10: (S = 0, I = 2)

Σcπ

Σcπ 2

Table A.11: (S = 0, I = 1)

Ξ
′

cK Σcη Σcπ

Ξ
′

cK 0 −
√

3 −
√

2

Σcη −
√

3 0 0

Σcπ −
√

2 0 −2

Table A.12: (S = 0, I = 0)

Ξ
′

cK Σcπ

Ξ
′

cK −2 −
√

3

Σcπ −
√

3 −4
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Table A.13: (S = −1, I = 3/2)

Ξ
′

cπ ΣcK

Ξ
′

cπ 1
√

2

ΣcK
√

2 0

Table A.14: (S = −1, I = 1/2)

Ξ
′

cπ Ξ
′

cη ΩcK ΣcK

Ξ
′

cπ −2 0 −
√

3 1√
2

Ξ
′

cη 0 0 −
√

3 3√
2

ΩcK −
√

3 −
√

3 −2 0

ΣcK
1√
2

3√
2

0 −3

Table A.15: (S = −2, I = 1)

Ξ
′

cK Ωcπ

Ξ
′

cK 1
√

2

Ωcπ
√

2 0

Table A.16: (S = −2, I = 0)

Ξ
′

cK Ωcη

Ξ
′

cK −1
√

6

Ωcη
√

6 0

Table A.17: (S = −3, I = 1/2)

ΩcK

ΩcK 2
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Appendix B

Tree amplitudes and renormalization of

LECs

B.1 Tree level contact terms

In this subsection, we list the contributions of the tree-level contact terms of πN and KN scattering. To simplify

the expressions, we first define

νπ =
(
−s+mN

2 +mπ
2
)

2 +
(
mN

2 +mπ
2 − u

)
2,

νK =
(
−s+mN

2 +mK
2
)

2 +
(
mN

2 +mK
2 − u

)
2.

(B.1)

The contributions in the respective channels are

• πN I=3/2

B
I=3/2
πN =− 1

2f2
+

2(s− u)(b5 + b6 + b7 + b8)

f2
− 8mN (c1 + c2)

f2

4
(
d2νπ + d4

(
t− 2mπ

2
)
− 2d49mπ

2
)

f2
− 8mN (s− u)(d10 + d8)

f2
,

(B.2)

A
I=3/2
πN =

2mπ
2(−2b0 + b1 + b2 + b3 + 2b4 − bD − bF )− t(b1 + b2 + b3 + 2b4)

f2

+
2(s− u)(c1 + c2)

f2
+

2(s− u)2(d10 + d8)

f2
.

(B.3)

125



• πN I=1/2

B
I=1/2
πN =

1

f2
+

2(s− u)(b5 + b6 + b7 + b8)

f2
+

16mN (c1 + c2)

f2

8
(
−d2νπ + d4

(
2mπ

2 − t
)

+ 2d49mπ
2
)

f2
− 8mN (s− u)(d10 + d8)

f2
,

(B.4)

A
I=1/2
πN =

2mπ
2(−2b0 + b1 + b2 + b3 + 2b4 − bD − bF )− t(b1 + b2 + b3 + 2b4)

f2

− 4(s− u)(c1 + c2)

f2
+

2(s− u)2(d10 + d8)

f2
.

(B.5)

• KN I=1

BI=1
KN =− 1

f2
+

2(2b5 + 2b7 + b8)(s− u)

f2
− 4mN (4c2 + c3)

f2
− 8mN (s− u)(d10 + d7 + d8)

f2

+
4
(
νK(−d1 + d2 + d3) + 2mK

2(−d4 + d48 − d49 + d5 + d50 − d6) + t(d4 − d5 + d6)
)

f2
,

(B.6)

AI=1
KN =

4mK
2(−b0 + b1 + b2 + b4 − bD)− 2t(b1 + b2 + b4)

f2
+

(s− u)(4c2 + c3)

f2

+
2(s− u)2(d10 + d7 + d8)

f2
.

(B.7)

• KN I=0

BI=0
KN =

2(b8 − 2b6)(s− u)

f2
+

4mN (4c1 + c3)

f2
− 8mN (s− u)(d10 + d7 − d8)

f2

+
4
(
−νK(d1 + d2 + d3) + 2mK

2(d4 + d48 + d49 + d5 − d50 + d6)− t(d4 + d5 + d6)
)

f2
,

(B.8)

AI=0
KN =

4mK
2(−b0 − b3 + b4 + bF ) + 2t(b3 − b4)

f2
− (s− u)(4c1 + c3)

f2

+
2(s− u)2(d10 + d7 − d8)

f2
.

(B.9)

126



B.2 Tree level Born diagrams

Once simplified with the on-shell condition, the amplitude for the Born diagram could be rewritten as

BBorn(s,Bi, Bf , P ) =− s+mP (mf +mi) +mfmi

s−mP
2

,

ABorn(s,Bi, Bf , P ) =− mP

(
−2s+mf

2 +mi
2
)

+ (mf +mi)(mfmi − s)
2 (s−mP

2)
,

(B.10)

where s is the invariant mass squared, mi, and mf are the masses of the initial and final baryons, Bi, Bf , P are the

incoming, outgoing, propagating baryons respectively. For a crossed Born diagram, one can obtain the amplitude

from the corresponding direct one with the following replacement s→ u.

For the d45, d46, d47 terms, the expressions are slightly different

B2
Born(s,Bi, Bf , P ) =

mi +mP

s−mP
2
,

A2
Born(s,Bi, Bf , P ) =

−2s+mP (mf −mi) +mfmi +mi
2

2 (s−mP
2)

.

(B.11)

For the A parts of the Born terms, one would need to perform two replacements

B(s)↔ A(s), B(u)↔ −A(u). (B.12)

The contributions of the Born diagrams are

• πN I=3/2
Born

B
I=3/2
πN = −B(u,N,N,N)(D + F )2

2f2

+
4B(u,N,N,N)(D + F )

(
2d38mK

2 − d38mπ
2 + 2d40mK

2 + d40mπ
2 + 2d44mπ

2
)

f2

− 4mπ
2B2(u,N,N,N)(D + F )(d45 + d46)

f2
.

(B.13)

• πN I=1/2
Born

B
I=1/2
πN =

(D + F )2(3B(s,N,N,N) +B(u,N,N,N))

4f2

− 2(D + F )(3B(s,N,N,N) +B(u,N,N,N))

f2

(
2d38mK

2 − d38mπ
2

+2d40mK
2 + d40mπ

2 + 2d44mπ
2
)

2mπ
2(D + F )(d45 + d46)(3B2(s,N,N,N) +B2(u,N,N,N))

f2
.

(B.14)
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• KN I=1
Born

BI=1
KN =− B(u,N,N,Λ)(D + 3F )2 + 3B(u,N,N,Σ)(D − F )2

12f2

− 2

3f2

(
mπ

2 (B(u,N,N,Λ)(D + 3F )(2d38 + d39 − 2d40 + d41)

+3B(u,N,N,Σ)(F −D)(d39 + d41))

−2mK
2 (B(u,N,N,Λ)(D + 3F )(2d38 + 2d40 − d41 − d43 + 2d44)

−3B(u,N,N,Σ)(F −D)(d41 + d43)))

− 2mK
2(B2(u,N,N,Λ)(D + 3F )(d45 + 3d46)− 3B2(u,N,N,Σ)(F −D)(d45 − d46))

3f2
.

(B.15)

• KN I=0
Born

BI=0
KN =

B(u,N,N,Λ)(D + 3F )2 − 9B(u,N,N,Σ)(D − F )2

12f2

− 2

3f2

(
2mK

2 (B(u,N,N,Λ)(D + 3F )(2d38 + 2d40 − d41 − d43 + 2d44)

+9B(u,N,N,Σ)(F −D)(d41 + d43))

−mπ
2 (B(u,N,N,Λ)(D + 3F )(2d38 + d39 − 2d40 + d41)

−9B(u,N,N,Σ)(F −D)(d39 + d41)))

2mK
2(B2(u,N,N,Λ)(D + 3F )(d45 + 3d46) + 9B2(u,N,N,Σ)(F −D)(d45 − d46))

3f2
.

(B.16)

B.3 Vertex renormalization

To simplify the final expression, we provide the amplitudes without integrating over the intermediate momentum.

The integral can be easily performed with the help of the OneLoop package [257, 258]. The contributions are

Reab(Bi, Bf ,Φ, P ) =
−i(/k + /qf )(/P − /k +mP )γ5/k

(k2 −m2
Φ)((P − k)2 −m2

P )
, (B.17)

Recd(Bi, Bf ,Φ,Φf , P1, P2) =
iγ5/k(/pf − /k +m2)γ5/qf (/P − /k +m1)γ5/k

(k2 −m2
Φ)((pf − k)2 −M2

2 )((P − k)2 −M2
1 )
, (B.18)
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Reno(Bi, Bf ,Φ, ) =
−iγ5/k(/pf + /k +mP )(/qf + /k)

(k2 −m2
Φ)((pf + k)2 −m2

P )
, (B.19)

Repr(Φ) =
iγ5/qf

k2 −m2
Φ

, (B.20)

where Bi, Bf ,Φf refer to initial and final state baryons and mesons, Φ is the propagated meson, and P, P1, P2 are

the propagated baryons.

In numerical calculations, when limited to πN and KN channels, only vertices listed below are needed,

V Rep→π0p =− ∆Fπ(D + F )

2f
− (D + F )

24f3

(
ZB(N, η,N)(D − 3F )2 + ZB(N,K,Λ)(D + 3F )2

+9
(
ZB(N,K,Σ)(D − F )2 + ZB(N, π,N)(D + F )2

))
− (D + F )ZΦ(π)

8f

− Reab(N,N,K,Λ)(D + 3F )

16f3
+
Reab(N,N,K,Σ)(F −D)

16f3
− Reab(N,N, π,N)(D + F )

4f3

− Recd(N,N, η, π,N,N)(D − 3F )2(D + F )

24f3
− DRecd(N,N,K, π,Λ,Σ)(F −D)(D + 3F )

12f3

− DRecd(N,N,K, π,Σ,Λ)(F −D)(D + 3F )

12f3
− FRecd(N,N,K, π,Σ,Σ)(F −D)2

2f3

+
Recd(N,N, π, π,N,N)(D + F )3

8f3
+
Reno(N,N,K,Λ)(D + 3F )

16f3

− Reno(N,N,K,Σ)(F −D)

16f3
+
Reno(N,N, π,N)(D + F )

4f3

+
(D + F )(Repr(K) + 2Repr(π))

6f3
,

(B.21)
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V Rep→K+Σ0 =
(F −D)∆FK

2f
− D − F

48f3

(
ZB(N, η,N)(D − 3F )2 + ZB(N,K,Λ)(D + 3F )2

+9ZB(N,K,Σ)(D − F )2 + 9ZB(N, π,N)(D + F )2 + 4ZB(Σ, η,Σ)D2

+6ZB(Σ,K,N)(D − F )2 + 6ZB(Σ,K,Ξ)(D + F )2 + 4ZB(Σ, π,Λ)D2 + 24ZB(Σ, π,Σ)F 2
)

− (D − F )ZΦ(K)

8f
− Reab(m,Σ, η,N)(D − 3F )

16f3
+
Reab(N,Σ,K,Σ)(F −D)

4f3

− Reab(N,Σ, π,N)(D + F )

16f3
− DRecd(N,Σ, η,K,N,Σ)(D − 3F )(F −D)

12f3

− Recd(N,Σ,K,K,Λ,Ξ)(D − 3F )(D + 3F )(D + F )

24f3

− Recd(N,Σ,K,K,Σ,Ξ)(F −D)(D + F )2

8f3

+
DRecd(N,Σ, π,K,N,Λ)(D + 3F )(D + F )

12f3
+
FRecd(N,Σ, π,K,N,Σ)(F −D)(D + F )

2f3

− Reno(N,Σ,K,N)(D − F )

8f3
− Reno(N,Σ,K,N)(F −D)

4f3

+
DReno(N,Σ, η,Σ)

8f3
+
DReno(N,Σ, π,Λ)

8f3
− FReno(N,Σ, π,Σ)

4f3

(D − F )(Repr(η) + 2Repr(K) +Repr(π))

8f3
,

(B.22)

V Rep→K+Λ =
(D + 3F )∆FK

2
√

3f
+
D + 3F

4
√

3f

(
ZB(N, η,N)(D − 3F )2

12f2
+
ZB(N,K,Λ)(D + 3F )2

12f2

+
3ZB(N,K,Σ)(F −D)2

4f2
+

3ZB(N, π,N)(D + F )2

4f2
+
ZB(Λ, η,Λ)D2

3f2

+
ZB(Λ,K,N)(D + 3F )2

6f2
+
ZB(Λ,K,Ξ)(D − 3F )2

6f2
+
ZB(Λ, π,Σ)D2

f2

)
+

(D + 3F )ZΦ(K)

8
√

3f
+

3
√

3Reab(N,Λ, π,mN)(D + F )

16f3

−
√

3Reab(N,Λ, η,mN)(D − 3F )

16f3
+
DRecd(N,Λ, η,K,N,Λ)(D + 3F )(D − 3F )

12
√

3f3

+
Recd(N,Λ,K,K,Λ,Ξ)(D + 3F )(D − 3F )2

24
√

3f3

−
√

3Recd(N,Λ,K,K,Σ,Ξ)(F −D)(D + F )(D − 3F )

8f3

+

√
3DRecd(N,Λ, π,K,N,Σ)(F −D)(D + F )

4f3
−
√

3Reno(N,Λ,K,N)(D + 3F )

8f3

−
√

3DReno(N,Λ, η,Λ)

8f3
+

√
3DReno(N,Λ, π,Σ)

8f3

− (D + 3F )(Repr(η) + 2Repr(K) +Repr(π))

8
√

3f3
,

(B.23)

V Rep→π+n =
√

2V Rep→π0p, V Ren→π−p =
√

2V Rep→π0p, V Ren→π0n = −V Rep→π0p, (B.24)
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V Rep→K0Σ+ =
√

2V Rep→K+Σ0 , V Ren→K0Σ0 = −V Rep→K+Σ0 , V Ren→K+Σ− =
√

2V Rep→K+Σ0 , (B.25)

V Ren→K0Λ0 = V Rep→K+Σ0 . (B.26)

B.4 Divergent parts of the LECs

As mentioned in the main text, the LECs can be divided into finite parts and infinite parts as shown in Eq. (4.29),

The divergent parts absorb all the ultraviolet divergences from the loop diagrams. Their explicit expressions are

c1d =− −27mDF 3 − 31mD3F + 9mDF

192f2π2
,

c2d =− −27mF 4 − 106mD2F 2 + 18mF 2 − 19mD4 − 6mD2 + 9m

768f2π2
,

c3d =− 11mD4 + 9mF 2D2 + 9mD2

72f2π2
,

b1d =− 207mF 4 + 738mD2F 2 + 18mF 2 − 73mD4 − 6mD2 − 45m

2304f2π2
,

b2d =− −45mF 4 + 90mD2F 2 + 90mF 2 − 5mD4 − 30mD2 − 9m

256f2π2
,

b3d =− 3
(
3mDF 3 −mD3F +mDF

)
32f2π2

,

b0d =− m
(
9F 2 + 13D2

)
144f2π2

,

b4d =− mD4 − 81mF 2D2 + 27mD2

144f2π2
,

bDd =− 3mF 2 −mD2

32f2π2
,

bFd =− 5mFD

48f2π2
,

b5d =− −15F 4 + 30D2F 2 + 30F 2 + 9D4 − 10D2 − 15

768f2π2
,

b6d =− −9DF 3 − 13D3F + 9DF

96f2π2
,

b7d =− −9D4 + 18D2F 2 + 18F 2 −D4 − 6D2 − 9

256f2π2
,

b8d =− −5D4 − 27F 2D2 + 9D2

144f2π2
,

(B.27)
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d5d =− d48d −
9F 4 − 36DF 3 + 46D2F 2 − 18F 2 − 20D3F + 36DF + 17D4 − 26D2 − 9

1536f2π2
,

d6d =d50d −
D4 + 3F 2D2 − 3D2

96f2π2
,

d4d =− d49d −
−9F 4 − 36DF 3 − 46D2F 2 + 18F 2 − 20D3F + 36DF − 17D4 + 26D2 + 9

1536f2π2
,

d10d =
b8d
4m
− 5D4 + 27F 2D2 − 9D2

576f2mπ2
,

d7d =
b5d
8m
− b6d

8m
− 21F 4 − 36DF 3 − 42D2F 2 − 42F 2 − 52D3F + 36DF − 3D4 + 14D2 + 21

3072f2mπ2
,

d9d =− b5d
2m

+
b7d
2m
− 3F 4 − 6D2F 2 − 6F 2 + 3D4 + 2D2 + 3

384f2mπ2
,

d8d =
b5d
8m

+
b6d
8m

+
b7d
8m
− 21F 4 + 36DF 3 − 42D2F 2 − 42D2

r + 52D3F − 36DF − 3D4 + 14D2 + 21

3072f2mπ2
.

(B.28)

B.5 Power counting breaking terms of the one-loop diagrams

In this subsection, we list the power counting breaking terms for the πN and KN channels.

• πN I=3/2
PCB

DPCB =− 1

1152π2f4m̃

(
2m̃2

(
2mπ

2
(
369D4 + 108D3F + 18D2

(
43F 2 − 4

)
+12DF

(
25F 2 + 2

)
+ 5F 2

(
29F 2 − 8

))
− t
(
369D4 + 108D3F + 9D2

(
86F 2 − 1

)
+6DF

(
50F 2 + 9

)
+ F 2

(
145F 2 + 3

)))
− σ2

(
171D4 + 108D3F + 138D2F 2

+60DF 3 + 35F 4 + 63
))
,

(B.29)

BPCB = −m̃
2
(
9D4 + 9D3F + 2D2F 2 − 3DF 3 + 9DF + 3F 4 − 2F 2

)
12π2f4

. (B.30)

• πN I=1/2
PCB

DPCB =− 1

1152π2f4m̃

(
2m̃2

(
2mπ

2
(
369D4 + 108D3F + 18D2

(
43F 2 − 4

)
+12DF

(
25F 2 + 2

)
+ 5F 2

(
29F 2 − 8

))
− t
(
369D4 + 108D3F + 9D2

(
86F 2 − 1

)
+6DF

(
50F 2 + 9

)
+ F 2

(
145F 2 + 3

)))
− σ2

(
171D4 + 108D3F + 138D2F 2

+60DF 3 + 35F 4 + 63
))
,

(B.31)
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BPCB =
m̃2
(
9D4 + 9D3F + 2D2F 2 − 3DF 3 + 9DF + 3F 4 − 2F 2

)
6π2f4

. (B.32)

• KN I=1
PCB

DPCB =− 1

576π2f4m̃

(
2m̃2

(
2mK

2
(
369D4 + 18D2

(
F 2 − 3

)
+ F 2

(
85F 2 − 14

))
−t
(
369D4 + 9D2

(
2F 2 − 1

)
+ F 2

(
85F 2 + 3

)))
− σ2

(
171D4 − 6D2F 2 + 19F 4 + 63

))
,

(B.33)

BPCB = − im̃
2
(
27D4 − 3D2F 2 + 8F 4 + 3F 2

)
18π2f4

. (B.34)

• KN I=0
PCB

DPCB =
1

144π2f4m̃

(
Fσ2

(
−27D3 + 36D2F − 15DF 2 + 4F 3

)
+m̃2

(
2mK

2
(
54D3F +D2

(
9− 378F 2

)
+ 6D

(
25F 2 + 2

)
F − 30F 4 + 13F 2

)
+3Ft

(
−18D3 + 126D2F −D

(
50F 2 + 9

)
+ 10F 3

)))
,

(B.35)

BPCB = −Fm̃
2
(
−27D3 + 9D2F + 9D

(
F 2 − 3

)
+ F

(
F 2 − 9

))
18π2f4

. (B.36)

In the above equations, σ = s − m̃2. We have already set the scale µ in the MS scheme to be equal to the chiral

limit baryon mass m̃. All these power counting breaking terms are absorbed into the corresponding LECs in the
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EOMS scheme, i.e.,

bPCB0 = bPCB4 +
m̃
(
9D2

(
42F 2 − 1

)
+ F 2

(
30F 2 − 13

))
288π2f2

,

bPCBD =
m̃
(
F 2 − 3D2

)
64π2f2

,

bPCBF = − 5DFm̃

96π2f2
,

bPCB1 = −m̃
(
333D4 − 9D2

(
74F 2 − 7

)
+ F 2

(
5F 2 − 21

))
1152π2f2

,

bPCB2 = −m̃
(
45D4 − 9D2

(
10F 2 + 1

)
+ F 2

(
5F 2 + 3

))
128π2f2

,

bPCB3 = −DFm̃
(
18D2 + 50F 2 + 9

)
96π2f2

,

bPCB5 = −−87D4 + 46D2F 2 + F 4 − 15

768π2f2
,

bPCB6 =
9D3F + 5DF 3

96π2f2
,

bPCB7 =
9D4 − 18D2F 2 + F 4 + 9

256π2f2
,

bPCB8 =
144π2bPCB4 f2m̃t+ 2F 2σ2

(
9D2 + F 2

)
+ 3F 2m̃2t

(
63D2 + 5F 2

)
144π2f2σ2

,

cPCB1 =
DFm̃

(
3D2 − F 2 + 3

)
32π2f2

,

cPCB2 =
m̃
(
9D4 + 2D2F 2 + 3F 4 − 2F 2

)
96π2f2

,

cPCB3 = −F
2m̃
(
9D2 + F 2 − 9

)
72π2f2

.

(B.37)
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Résumé : Les progrès techniques dont ont bénéficié 
les accélérateurs de particules ainsi que les 
détecteurs ont permis aux expérimentateurs de 
collecter des résultats sur un grand nombre 
d'interactions hadron-hadron, avec de grandes 
statistiques auprès d’accélérateurs tels que KEK, LHC, 
BEPC. Parmi les nombreuses approches utilisées pour 
décrire les interactions hadron- hadron à basse 
énergie, celles qui se basent sur la théorie effective 
des champs (EFT) deviennent les plus populaires. La 
théorie fondamentale des interactions fortes, la QCD, 
est perturbative aux grandes énergies (liberté 
asymptotique) mais pas aux basses énergies où la 
physique associée est dominée par le couplage fort 
et le confinement. Dans ce cadre, la brisure 
spontanée de la symétrie chirale est prise en compte 
et un développement perturbatif chiral est possible 
sur lequel sont également applicables des méthodes 
d'unitarisation. Des règles de comptage en puissance 
peuvent être introduites qui permettent la 
description d’une interaction hadron-hadron ordre 
par ordre. On peut ainsi améliorer la description de 
manière systématique et faire une évaluation des 
incertitudes.  
Dans le présent travail, nous présentons tout d’abord 
brièvement les idées de base de la théorie effective 
des champs. Nous étudions ensuite trois processus 
de diffusion hadron-hadron, ayant chacun un intérêt 
particulier, dans le cadre de l’EFT. Nous montrerons 
ainsi la capacité de cette approche à expliquer les 
observables mesurées et de plus, à faire des 
prédictions sur des quantités qui ne le sont pas 
encore. 
Première partie : Dans cette partie nous examinons la 
possibilité d’engendrer des résonances dans les 
interactions entre un baryon charmé ou un baryon 
bottom et un boson de Goldstone en utilisant un 
développement chiral unitarisé et en exploitant la 
symétrie approximative de quark lourd. Nous 
comparons plusieurs méthodes de régularisation 
pour l’intégrale de la fonction a deux points. 

A l’ordre dominant, l’unique paramètre de la 
théorie est fixé de manière a reproduire les états 
Λc(2595). Cette étude est ensuite étendue de 
manière à inclure les contributions sous-
dominantes. Par ailleurs, nous avons étudié la 
structure du Λc(2595) en utilisant le critère d'état 
composite de Weinberg ainsi que le 
développement en grand Nc. 
Deuxième partie : Dans cette partie nous calculons 
les amplitudes d’interaction entre mésons légers et 
baryons de l'état fondamental dans le cadre de la 
théorie de perturbation chirale baryonique (BChPT) 
covariante et du groupe de saveur SU(3) à l'ordre 
d'une boucle. Nous appliquons la méthode dite 
sur-couche étendue qui permet d'absorber à la fois 
les divergences ultra-violettes et les contributions 
qui violent la règle de comptage en puissances. 
Nous avons effectué, pour la première fois, un fit 
combiné des déphasages piN et KN. De plus, nous 
effectuons un fit global simultanément des 
déphasages méson-nucléon et des masses des 
baryons et nous trouvons un bon accord avec les 
données expérimentales. A la fin de cette partie 
nous discutons en détail les propriétés de 
convergence de la BChPT covariante. 
Troisième partie : Dans cette partie nous étudions 
l'amplitude d'interaction d'une paire méson- 
méson dans l'isospin I=1 via le processus de 
production par des collisions photon-photon. Nous 
construisons les amplitudes de production en 
résolvant les équations d'Omnès-Muskhelishvili qui 
sont basées sur les propriétés générales 
d'analyticité et d'unitarité. Les mesures 
expérimentales de sections efficaces γγ→πη; et 
γγ→KS KS de haute statistique effectuées 
récemment par la collaboration Belle nous 
permettent de contraindre les paramètres de notre 
modèle d’amplitude méson-méson (deux solutions 
sont trouvées) et d’en déduire les propriétés des 
résonances a₀(980) et a₀(1450) d’après leur position 
dans le plan complexe en énergie.  

 

 



 

Université Paris-Saclay           
Espace Technologique / Immeuble Discovery  
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France  

 

Title : Effective field theory studies of hadron-hadron interactions 
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Abstract : With the development of accelerator and 
detector techniques, experimentalists have obtained 
quite a large amount of data on hadron-hadron 
interactions with much higher statistics based on 
large experimental accelerators such as BEKB, LHC, 
BEPC and so on, revealing a large variety of 
phenomena for theoretical researches. In order to 
provide a reliable understanding on these 
experimental data, theorists continually investigate 
new models or improve the original ones. Among all 
the approaches for studying hadron-hadron 
interactions in the low energy regime, the Effective 
field theory(EFT) has now become one of most 
popular approaches. Due to the asymptotic freedom 
and the color confinement, the fundamental theory 
for the strong interaction, quantum 
chromodynamics(QCD) is perturbative at high 
energy, while at low energies it is in a strong coupled 
and confining regime and perturbation theory is not 
applicable. With the chiral symmetry and its 
spontaneous breaking fully taken into account, chiral 
perturbation theory and its unitary version make it 
possible to improve the descriptions order by order 
according to a certain power counting rule. One can 
thus improve the description systematically and 
evaluate the uncertainties. 
 In the present work, we first briefly introduce the 
main idea of effective field theory. Then we study 
three typical scattering processes as examples within 
the framework of EFT to show how EFT helps to 
understand experimental data and further more, its 
power for predicting the unmeasured ones. 
Part I : In this part we investigate the interactions 
between singly charmed baryons and Goldstone 
bosons with a unitary chiral perturbation theory 
combined with approximate heavy quark symmetry. 

We compare different regularization methods for 
the two-point integral. In the lowest order, we fix 
the only free parameter in our model by 
reproducing the Λc(2595) and predict a number of 
resonances. We then extend our study to include 
the next-to-leading order contributions. Further 
more, we utilize the compositeness rules and large 
Nc expansion to study the structure of Λc(2595) in 
different models.  
Part II : In this part we calculate the interaction 
between ground state baryons and pseudoscalar 
meson up to one loop level with covariant SU(3) 
baryon chiral perturbation theory. We apply the 
extended-on-mass-shell scheme to absorb the 
Ultra-violate divergence and power counting 
breaking terms. For the first time we performed a 
combined fit for both piN and KN scattering phase 
shifts. Further more, we perform a global fit to 
meson-baryon scattering phase shifts and baryon 
masses and show that it can provide a reasonable 
description of the experimental data. In the end of 
this part we discuss in detail the convergence of 
covariant BChPT. 
 Part III : In this part, we study the meson-meson 
interaction with isospin I = 1 as final state 
interaction in photon-photon scattering. 
Muskhelishvili-Omnès (MO) representation based 
on dispersion relations and analytical properties of 
amplitudes are applied. The most recent 
experimental data on γγ→πη; and γγ→KS KS with 
much higher statistics from the Belle Collaboration 
are used to fix the parameters of our model, with 
which we calculate the position of a₀(980) and 
a₀(1450) which still remain ambiguous. 
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