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Initially created for a reimbursement purpose, non-clinical claim databases are exhaustive 

Electronic Health Records (EHRs) which are particularly valuable for evidence-based stud- ies.  

The objective of this work is to develop predictive methods for patient pathways data, which 

leverage the complexity of non-clinical claims data and produce explainable results. Our first 

contribution focuses on the modeling of event logs extracted from such databases. New process 

models and an adapted process discovery algorithm are introduced, with the objective of 

accurately model characteristic transitions and time hidden in non-clinical claims data.    

The second contribution is a preprocessing solution to handle one complexity of such data, 

which is the representation of medical events by multiple codes belonging to different 

standard coding systems, organized in hierarchical structures. The proposed method uses 

auto-encoders and clustering in an adequate latent space to automatically produce relevant 

and explainable labels. From these contributions, an optimization-based predictive method is 

introduced, which uses a process model to perform binary classifica- tion from event logs and 

highlight distinctive patterns as a global explanation. A second predictive method is also 

proposed, which uses images to represent patient pathways and a modified Variational 

Auto-Encoders (VAE) to predict. This method globally explains predictions by showing an 

image of identified predictive factors which can be both frequent and infrequent. 

Abstract 
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Les bases de données médico-administratives sont des bases de données de santé partic- 

ulièrement exhaustives. L’objectif de ce travail réside dans le développement d’algorithmes 

prédictifs à partir des données de parcours patients, considérant la complexité des données 

médico-administratives et produisant des résultats explicables. De nouveaux modèles de 

processus et un algorithme de process mining adapté sont présentés, modélisant les transi- 

tions et leurs temporalités. Une solution de prétraitement des journaux d’événements est 

également proposée, permettant une représentation des évènements complexes caractérisés 

par de multiples codes appartenant à différents systèmes de codage, organisés en structures 

hiérarchiques. Cette méthode de clustering par auto-encodage permet de regrouper dans 

l’espace latent les événements similaires et produit automatiquement des labels pertinents 

pour le process mining, explicables médicalement. Un premier algorithme de prédiction 

adapté aux parcours est alors proposé, produisant via une procédure d’optimisation un 

modèle de processus utilisé pour classifier les parcours directement à partir des données de 

journaux d’événements. Ce modèle de processus sert également de support pour expliquer 

les patterns de parcours distinctifs entre deux populations. Une seconde méthode de pré- 

diction est présentée, avec un focus particulier sur les événements médicaux récurrents. En 

utilisant des images pour modéliser les parcours, et une architecture d’auto-encodage vari- 

ationnel modifiée pour l’apprentissage prédictif, cette méthode permet de classifier tout en 

expliquant de manière globale, en visualisant une image des facteurs prédictifs identifiés. 

Résumé 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

“Tu veux savoir c’qui m’effraie ? 

C’est pas  c’que j’ignore, 

Mais tout c’que je sais qui n’est pas    vrai.” 

 
Médine, Global 
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This manuscript presents a thesis organized as a collection of research articles (Chap-       

ters 2-5). To improve its readability and overall coherence, each article is preceded by an 

introduction including the motivation behind the article, a brief summary and conclusion. 

Note to the reader 
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Over the past years, a new vision regarding healthcare has emerged, advocating for a more 

predictive, preventive, personalized and participatory (P4) medicine [1], [2]. Considering 

medicine as an information science, this vision is widely adopted today [3]. The use of 

scientific and technological innovations constitutes a real opportunity to improve health 

systems, by providing more cost-effective disease care, reducing incidence of diseases, and 

constantly improving health systems through a global learning process [4]. The digital 

revolution takes a significant part in the emergence of technological innovations in health- 

care. Recent advances in information and computer science have empowered countries, 

administrations, hospitals and health companies, by giving them the tools to pursue the 

path of P4 medicine. 

 
Artificial  Intelligence 

Artificial Intelligence (AI) was formally introduced as a scientific discipline in 1955. The 

assumption laying the foundation of this new discipline is that “every aspect of learning or any 

other feature of intelligence can in principle be so precisely described that a machine can be 

made to simulate it” [5]. In the past 30 years, through the fast evolution of compu- tational 

power, the discipline has dramatically extended. The milestones and advances in AI have 

been marked by the achievement of very complex tasks. In 1997, IBM’s Deep Blue algorithm 

defeated World Chess Champion Garry Kasparov in a six-game match [6]. In 2011, IBM’s 

Watson participated in Jeopardy!, an American television game show in which questions have 

to be identified based on the answers. In a real-time two-game competition, Watson defeated 

the best participants of Jeopardy! [7]. In 2016, Google Deep Mind’s Al- phaGo [8] defeated 

Lee Sedol, the winner of 18 world titles and considered the greatest Go player of the past 

decade. Improvements in computer vision [9], [10] and natural language processing [11]–[13] 

further contributed to the large development of the field. In parallel  to these  

advancements, the democratization of AI facilitated the practical deployment of AI 

algorithms across various industries and companies. These developments were fueled by a 

large amount of open-source scientific research and practical resources. 

The discipline of AI regroups different trends and methodologies. Strengthened by an 

increasing availability of data, many advances in AI have been data driven. Machine learn- 

ing, a subset of AI, enables “computers to tackle problems involving knowledge of the real 

world and make decisions that appear subjective” [14]. Data constitutes this “knowledge”, 

which can be of various formats, more or less structured. The representation of data is a 

crucial machine learning task, referred to as representation  learning  [15].  As   learning 

Introduction 
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an accurate representation of data is a complex task, deep  learning  constitutes a solution    

in which a complex representation is expressed in terms of other simpler representations 

[14]. By using successive layers of simple non-linear functions, deep learning methods are 

able to learn a more complex function with a high level of abstraction. The two math- 

ematical pillars of deep learning are linear algebra and probability. Optimization is also  

part of the scientific brick of deep learning, as the training of deep architecture is per- 

formed through gradient-based optimization. Figure 1 positions deep learning among the 

previously introduced disciplines of AI. 

 

 

Figure 1: Positioning of deep learning in AI (based on Goodfellow et al. [14]). 

 

 
Electronic health records 

Electronic Health Records (EHRs) can be defined as a longitudinal collection of electronic 

health information for individual patients and populations [16]. The initial motivation for 

the deployment of EHRs was to document patients’ care for reimbursement [17]. However, 

the data contained in EHRs is a gold mine for research, which constitutes a major secondary 

use of EHRs.  In the context of evidence-based  medicine  [18], the use of these data serves      

to validate assumptions and draw conclusions from quantitative information and observed 

medical practices. As detailed by Yadav et al. [17], EHR data have used to derived research 

assumptions, analyze quantitative information and observe medical practices. Descriptive 

information about a diseases is useful to understand the evolution of disease for patients   

at scale (from a subgroup of patients to an  entire  population).  The  understanding  of 

patients’ medical trajectories, as well as the analysis of related comorbidities give insights 

into understanding a given pathology and practical care. Cohort analysis, involving two 

similar groups of patients with and without a given outcome, can be performed at a very 

large scale due to EHR data being widely available.  In a next step,  risk prediction can      

be performed based on the results obtained from cohort analysis.   Another application      

of data analysis using EHR data is the quantification of drug or surgery effects. One 

particularity of EHRs is their ability to store information in various formats. Structured  

data is commonly the most encountered data format. Examples of structured data are 

patient information (age, gender, address), or medical event characteristics (medical codes 

regarding diagnosis or medical procedures, description of the medical unit, tests results). 

Unstructured data such as free text, images or sensor signals can also be found in EHRs. 

The unstructured data format is useful to store precise medical information, but is more 

complex to process. 

Deep Learning 
Representation 

Learning 
Machine 
Learning 

Artificial 
Intelligence 



  Hugo De Oliveira 

19 

 

 

 

The French national health data 

In France,  the national health insurance information system (SNIIRAM) was created in  

1999 in order to improve the overall management of the national health insurance. Among 

the objectives were the improvement of health care policies and care quality as well as     

the provision of useful information to health practitioners. The data is collected from re- 

imbursements which are registered by the national health insurance. In 2006, almost all 

French citizens became part of the SNIIRAM, leading to colossal quantity of information  

(66 million inhabitants in 2015 [19]). Based on reimbursements, it contains non-clinical  

claims data [20]. This database contains individual data used for billing outpatient health- 

care consumption,  and is linked to the national hospital discharge database (PMSI) by  

using a unique anonymous identifier for each patient, derived from the social security 

number. Since 2016, medical causes of death are transmitted to the national health insur- 

ance by the center for epidemiology of medical causes of death (CépiDc), and are linked    

to the SNIIRAM using the same unique anonymous identifier. 

Figure 2 shows a schematic representation of these databases. The SNIIRAM includes 

outpatient healthcare consumption (along with private clinics healthcare expenditures).  

The PMSI includes data  about  hospital  stays  in  short-stay  wards,  rehabilitation  units, 

home care units and psychiatric institutions. At the end of each stay, an anonymous dis- 

charge summary is produced, with information such as the duration of stay, month and 

year of discharge, source and destination before and after the stay, and multiple informa- 

tion about diagnosis, related comorbidities and care (medical procedures, drugs, medical 

devices). The CépiDc includes the date, place, and the medical causes of death.  More  

details can be found in Appendix A. 

The complexity of these databases is a challenge: an extensive number of tables, based 

on reimbursements and with complex relations. Also, the lack of precise medical infor- 

mation (such as test results, imaging reports, or vital signs) can be a limiting factor for 

certain studies. However, the main advantage of the SNIIRAM is that it forms an exhaus- 

tive database as all patients’ characteristics, hospitalizations, and outpatient information are 

recorded at the scale of an entire population. 
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Figure 2: Schematic representation of the SNIIRAM, the PMSI and the CépiDc. 

 
More recently, a governmental initiative in favor of the development of AI has promoted 

the application of AI for the analysis of health data.        Mandated by  the French  Prime 

CépiDC 
(medical causes of death) 
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Minister, the mathematician and deputy Cédric Villani was asked to conduct a study and 

report on the French and European strategy regarding the deployment of AI methods and 

technologies. Delivered in October 2018, this report recommends priority investments and 

proposes future developments [21]. Among discussions on interdisciplinary topics such as 

economy, research and ethics, a focus on healthcare was presented. One recommendation 

related to healthcare was the creation of a platform for access and sharing of health data,   

to facilitate research and innovation. This platform, referred to as the Health Data Hub 

(HDH)1, is built on one main principle:  because the national  health data are financed       

by  the national solidarity,  the data should be shared.  Created in 2019,  the motivation      

of the HDH is to promote unified and secure access to the national health data, for all 

stakeholders, while strictly respecting ethical guidelines and citizen rights. As a result, each 

request to access data from the HDH need to be precisely detailed in a study protocol. Each 

submission is then examined by a multidisciplinary assembly of experts which evaluates  

the quality of the protocol, the aim of the project and its benefits for the common good. 

Today, the access to the PMSI or to extractions of the SNIIRAM database are possible 

through the HDH. 

 
Scientific objectives 

In accordance of the development of a more preventive and predictive medicine, the general aim 

of this work is the predictive modeling of patient pathways. In terms of the methods used, 

the positioning of this work falls into two  disciplines.      The first is process  mining 

[22] with multiple recent applications in health care [23], [24]. The second discipline, often 

used  to  prediction  but  not  only,  is  machine  learning,  and  more  precisely  deep  learning. 

The data analyzed in this work are part of the the French  national health data.  Due to     

the challenges arising from the practical deployment of predictive methods, this work puts 

special emphasis on the explainability of predictions. The predictive models and methods 

developed in this work are designed to highlight predictive factors extracted during the 

training. This achieves transparency which in turn allows for the discovery of new patterns 

hidden in the data and facilitates the discussion of predictive results with medical experts 

and decision makers. This transparency may be useful for practical applications, in order to 

discover new patterns hidden in the data and discuss it with medical experts and decision 

makers. 

Thus, the scientific objectives of the presented work are twofold, each one formulated  

as a research question: 

 
1. How to properly model patient pathways information for descriptive and 

predictive data analysis? Extracted from non-clinical claims data , the complex 

representation of such information is multifaceted. Two axes are explored in this  

work, namely the modeling of time (causal and numerical), and the complexity of 

medical events (macro events described by multiple codes from varied coding systems, 

each one having its own hierarchy structure). 

2. How to perform predictions from the analysis of complex patient pathways 

while including explainability? In this work, process mining and deep learning 

methods are used to propose adapted predictive modeling methods for patient path- 

ways. 

1https://www.health-data-hub.fr/ 

https://www.health-data-hub.fr/
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Thesis outline 

The rest of this manuscript is organized as follows. 
 

• Chapter 1 presents a literature review of the topics covered by this work, starting  

with a general overview of recent innovations involving health data. As predictive 

modeling is the main objective of this work, the related literature is reviewed. Recent 

advances of process mining are also exposed, with a particular focus on applications 

in healthcare. 

• A new process mining framework adapted to time modeling is presented in Chap-  

ter 2. This framework includes two new process models, an optimization procedure 

to perform process discovery from event logs, and a list of adapted descriptors for 

both event logs and process models. 

• Chapter 3 introduces a preprocessing method for event log data, useful for process 

mining applications in healthcare. Focused on complex macro medical events, this 

deep learning-based method serves to assign synthetic labels to events through clus- 

tering in an adapted latent space, learned using autoencoding. The decoding learned 

serves to explain and medically interpret the synthetic labels created. This contri- 

bution can be used to preprocess medical events before performing process discovery 

such as the one introduced in Chapter 2. 

• An optimization-based predictive algorithm is presented in Chapter 4, constructed 

using the process mining framework presented in Chapter 2. By performing classifi- 

cation of traces from event logs using an adapted learned process model, the method 

is explainable thanks to the characteristics of the resulting process model. 

• A second predictive method is presented in Chapter 5. Based on a Variational Au- 

toEncoder (VAE),  an adapted representation of patients and their medical events   

over  the time is introduced.  The advantage  of this method is to be able to iden-      

tify both frequent and infrequent predictive factors, while explaining the learning by 

producing an image of risk patterns. 

• Finally, the main contributions and results are summarized and discussed. Perspec- 

tives for future works are also proposed. 

A schematic representation of the relations between the technical chapters is presented 

on Figure 3. 
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Abstract 

 

This chapter presents a literature review of data in healthcare applications, especially 

with a predictive perspective. A general overview of recent data-driven innovation in 

healthcare is presented.  The topic of predictive analysis in healthcare is then addressed,   

by giving the different targets of prediction noticed in the literature and presenting the 

evolution of the methods used. Particular attention is given to the modeling of patient 

pathways and the explainability of results. In a next step, recent developments in the field 

of process mining are reviewed, particularly applications of process mining in healthcare. 

Finally,  the research findings that motivated this thesis are presented and the objectives    

of this work are positioned amid the literature reviewed. 
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1.1 Data in Healthcare 

Data analytics has been strongly developed over the past years. These developments have 

been reinforced by a constant increase in data availability and the constant growth of 

computational power. As a result, the following progress can be observed: performance 

improvement of existing methods, introduction of new algorithms, reinforcement and grow- 

ing of technical communities, multiplication of available knowledge and teaching resources, 

and deployment in new field of applications. Among the recent improvements in health- 

care, the use of data and data-related algorithms took a non-negligible place in various 

industrial applications and axis of research. This section presents a general overview of re- 

cent scientific advances in the field of healthcare data. In order to map recent data-driven 

innovations in healthcare, each of the following sections focuses on a particular field in 

which the generation of data has guided scientific contributions in a new direction. 

 
Hospital  resource  management 

Hospital resource management and the organization of care is a crucial issue. With limited 

resources, it is challenging to find the right balance between adequate care and economic 

efficiency. For the patient, it is important to receive comprehensive care. For the orga- 

nization, it is important to treat patients in a reasonable time and at reasonable costs.        

For the medical staff, proper working conditions are a necessity. In some extreme situ- 

ations, working conditions may worsen, leading to risks for health practitioners, such as 

mental  health  risks  [25].  Taking  all  these  parameters  into  account,  it  can  be observed 

that the organization of care is a complex problem for national and regional health ser- 

vices, hospitals and medical units. With the development of information technology (IT) 

systems, data analytics has proven useful to improve the organization of care.  The field     

of operation research (OR) regroups a set of algorithms, methods and tools which are 

deployed in hospital resource management. Some examples of application are operating 

room planning and scheduling [26] and emergency department optimization [27]. For these 

applications, methods identified by the authors are various: mathematical programming 

(linear, mixed integer programming, column generation), improvement heuristic, queuing 

theory and simulation (discrete-event, Monte Carlo). The use of simulation is a widespread 

practice in order to test different scenarios, evaluate and quantify the sensitivity of these 

changes and find an optimal policy [28]. In this context, quantitative measures extracted 

from real-world data serve as input parameters for the simulation. 

 
Medical imaging 

For many pathologies, the use of medical imaging is central for diagnosis and computer- 

aided diagnosis has become an important field of applied research in medical imaging and 

diagnostic radiology [29]. Automated image analysis showed promising advances in the 

past decade, particularly using deep learning [30]. One widespread application is the auto- 

mated classification of images. This is the case for medical disciplines such as dermatology 

for skin cancer detection [31], or ophthalmology using retinal fundus photographs for di- 

abetic retinopathy detection [32].  Furthermore,  automated classification of ultrasounds     

is used to identify breast lesions, and pulmonary nodules identification is derived from 

computed tomography (CT) scans [33].  The segmentation of medical images is possible,  

for magnetic resonance imaging (MRI) images of the knee cartilage [34], or for positron 

emission tomography (PET) scans [35]. 
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Connected devices 

Nowadays, the use of monitoring devices is democratizing, leading to an increasing quan- 

tity of generated data, such as the position, behavior or user’s vital signs. Sensors, which 

produce such data, are found in many different devices. Wearable devices, such as smart- 

phones and smart watches, can monitor movements and deduce activities [36]. In addition, 

smart watches are able to recognize the user’s activity, detect sleep patterns and measure 

the heart beat [37]. Ambient-assisted living for healthcare consist in created a connected 

environment using sensors, databases and applications, in order to assist the patients at 

their home [38]. These connected devices can estimate physical activity, detect behavioral 

changes and potential accidents or emergencies [39]. Medical devices, which are more and 

more connected,  can produce data reports over  the time.  An analysis of resulting data      

is crucial for risk identification and prevention. The same applies to implantable medical 

devices such as implantable cardioverter-defibrillators, where an effective follow-up enables 

a rapid evaluation of critical events by a physician [40]. Regular monitoring may improve 

the quality of care for all patients. The monitoring of activity for patients suffering from 

chronic diseases such as diabetes is one example where monitoring can improve the qual- 

ity of care by personalizing the approach [41].  Moreover, the monitoring of vital signs    

after a patient has been discharged from the hospital, has the potential to improve patient 

follow-up after surgery by early detection of risks [42]. At the hospital, a constant control   

of patients’ vital signs is essential:  automated monitoring can improve patient outcomes, 

by detecting a deterioration of health which allows for a fast intervention by a physician  

[43]. Among the monitoring exams, electroencephalography (EEG) and electrocardiogra- 

phy (ECG) provide complex data which can be automatically analyzed. In fact, recent 

developments in this area are the use of EEG data for automated medication classifica- 

tions [44], the use of ECG data for automated sleep stage scoring [45] and for diagnosis of 

arrhythmia [46], [47]. 

 
Natural medical language 

Natural language processing (NLP) is a research topic in the field of AI with multiple pos- 

sible applications such as speech recognition, natural language understanding and natural- 

language generation. In healthcare, the comprehension of clinical notes is one example of 

automated processing and understanding of free text data. As shown by the systematic 

review of Sheikhalishahi et al. [48], a majority of the research in the area of chronic diseases 

centers around identification of risk factors and the classification of diseases. A significant 

increase in the use of machine learning compared with rule-based methods is noted by the 

authors. The generation of free text is another research topic which could be useful in 

healthcare applications. As an example, Xiong et al. propose a deep architecture to auto- 

matically generate discharge summary in Chinese [49]. Also, Lee proposed in 2018 a deep 

neural network architecture to generate synthetic chief complaints from variables found in 

electronic health records (EHR) data, such as the age category, gender, and diagnosis [50]. 

 
Bioinformatics 

The field of bioinformatics focuses on biological processes at a molecular level. The se- 

quencing of the human genome constituted an initial step for further analysis. The Human 

Genome Project was an innovative project, which produced a first version of the sequence 

of the human genome in the beginning of this century [51], [52].  By initiation an in-  

novative movement, the results of this project motivated the recent developments in the 
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field of computational biology [53]. Personal medicine, through personalized sequencing, 

can be useful to optimize individual treatments [54].  Today,  the cost of the sequencing      

of a human genome is less than US$1, 000 [53], which makes it affordable compared to    

the first sequencing methods.  The three main applications in the field of bioinformatics   

are the prediction of biological processes, the prevention of diseases and the production of 

personalized treatments [55]. 

 
Drug discovery 

Machine learning has the potential to improve drug discovery processes at all stages, from 

target discovery to post approval [56]. However, the quality and quantity of such data are 

critical challenges. Pharmaceutical companies have large data sets which dates back to the 

1980s [57]. As these data are proprietary, sharing these data is impossible because of com- 

petitive interests. In this context, the use of federated learning is promising. The main idea 

of federated learning is to leave the data in silos and make the learning algorithm transit 

between databases in order to learn from the entire available data. As a result, multiple 

actors can build a common machine learning model without sharing data.  For example,   

the MELLODDY1  project aims to use federated learning to capitalize from the data of      

ten pharmaceutical companies and to advance drug development. Regarding molecular 

research, the space of all small molecules is very large (theoretically around 1060) [57].      

As a result, innovative computational approach can help in searching promising molecule 

candidates. Quantum computing is a set of methods which are promising regarding drug 

discovery. Quantum simulation for example is an alternative to quantum chemistry meth- 

ods for the characterization of molecular systems [58]. Also, quantum machine learning 

methods may, in the future, replace the classical machine learning approach in early phases 

of drug discovery. [58]. 

 
Discussion 

Although recent data-driven healthcare innovations can be useful, their practical deploy- 

ment is complex. The complexity is mainly due to a large variety of stakeholders who are 

involved in the deployment of such an innovative approach. As explained by Hood and 

Friend in the context of P4 cancer medicine, one requirement for a successful deployment   

is to align the objectives of all stakeholders (patients, health practitioners, industries) [3]. 

Trust in a new technology by all the stakeholders is an indispensable condition. This trust 

can be built throughout a lengthy process consisting of discussions, demonstrations, ex- 

planations and teaching.  During the deployment, severe errors must be limited to avoid     

a quick collapse of the slowly constructed trust. A common fear regarding innovation is 

that an innovative method may lead to the loss of jobs or the loss of a complete medical 

profession.  Medical imaging is an example of a discipline in which medical professionals 

are already confronted with this issue. Due to the high performance achieved by medical 

imaging algorithms, some tasks can be automated, resulting in an increased deployment of 

these algorithms. Knowledge regarding these methods should be integrated in the training of 

diagnostic radiographers, to promote acceptance and to facilitate the collaboration be- tween 

radiographers and their “virtual colleagues”, as referred to by Lewis et al. [59]. As these 

innovations are often data-driven, another common concern is data security which makes 

guarantees in terms of data privacy mandatory. Recent European initiatives go in 
 

1https://www.imi.europa.eu/projects-results/project-factsheets/melloddy 

http://www.imi.europa.eu/projects-results/project-factsheets/melloddy
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that direction.  The General Data Protection Regulation2  (GDPR) imposes “data protec-  

tion as a pillar of citizens’ empowerment and the EU’s approach to the digital transition” 

[60]. The right to obtain, reuse and delete personal data (portability), is a powerful man-  

ner to empower patients and make it easier for them to allow the use of their data for the 

public good [60]. Lastly, equality is a major concern when discussing the benefits of AI. 

Facial recognition has become one of the most controversial applications of AI in terms of 

discrimination and inequality. Training the algorithm on an insufficient amount of data of 

minorities, will result in a performance gap of the algorithm, making it more susceptible to 

errors when it comes to recognizing the faces of a minority group. One example is the use 

of facial recognition software by the police in the United States, leading to serious errors 

towards minorities [61]. Unfortunately, AI in healthcare is not spared from an equality 

deficit. Some recent examples show how healthcare related algorithms can discriminate 

minorities if the data used to train these algorithms are patchy or biased [62]. 

 
1.2 Predictive Analysis of Health Data 

In this section, the focus is on predictive analysis using EHR data. Recently, the interest in 

this research topic has rapidly grown due to an increased availability of these types of data. 

In the following, general objectives, methods, recent advances and current challenges regarding 

predictive analysis of EHRs data are presented. 

 
1.2.1 Machine  Learning 

Initially, in order to identify at-risk patients, medical scores have been introduced in the 

literature. These scores make it possible to classify the condition of a patient on a mostly 

one-dimensional scale. One widespread example is the Charlson index [63], which predicts 

the one-year mortality for a patient who may have a range of comorbidities. In the context 

of automatically defining such scores, statistical and more recently machine learning meth- 

ods are relevant. The most common machine learning algorithm design considers a future 

medical condition of patients as a prediction target and tries to fit a learning algorithm      

on previously observed scenarios. Starting from previous cases targets and features, these 

methods are able to find relevant relations, in order to predict for new cases. In comparison 

to manual assessment of medical scores, the machine learning algorithm assigns predictions 

based on the knowledge learned. In the literature, many different studies have applied ma- 

chine learning to health data. Examples of these studies, detailed in the following, differ 

regarding, for example, the target of prediction, the type of data and data features, the   

type of algorithm used, or the pathology studied. 

 
Length of stay 

The prediction of the Length Of Stay (LOS) is one of the possible machine learning pre- 

diction targets. The ability to identify patients with a risk to stay for a long period of time in 

the hospital is useful for an organizational purpose. This problem can be addressed as a  

regression problem, or as a classification problem in which thresholds are specified to 

define different categories of LOS such as short and long stays for example. An examples of 

such a study was presented by Morton et al. [64], which predicts the LOS for diabetic 

2Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the 

protection of natural persons with regard to the processing of personal data and on the free movement of 

such data, and repealing Directive 95/46/EC - OJ L 119, 4.5.2016, p.     1-88 
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patients using binary classification. Different algorithms such as random forest or support 

vector machine were used to identify long stays. Daghistani et al. [65] also studied LOS for 

cardiac patients as a classification problem, using random forest, multi-layer perceptron 

and bayesian networks.  An example of treating LOS prediction problem as a regression    

is the work of Turgeman et al. [66], which uses cubist trees for patients with congestive  

heart failure. 

 
Mortality 

Another example of predictive analysis using machine learning is the prediction of mortal- 

ity. Multiple binary classification algorithms can be used to predict the mortality of high risk 

patients. For example, multivariate statistical analysis was used by Billings et al. [67] and 

logistic regression by Di Marco et al.  [68].  Using data extracted from the MIMIC-II data  

set, Salcedo et al. [69] performed a benchmark study of predictive algorithms such as logistic 

regression, multi-layer perceptron, k-nearest neighbors and decision tree, conclud- ing that 

the multi-layer perceptron and logistic regression with radial kernel models were the most 

adapted. In addition, the configuration of algorithms parameters was identified as a key 

determinant in performances. 

 
Admission and readmission 

The prediction of patients’ admission represents another use case for predictive analysis 

using machine learning techniques. Rahimian et al. [70] used a random forest and gradi-  

ent boosting classifier to predict unplanned emergency admissions and to compare to the 

results of a cox proportional hazards (CPH) model.  They found that the machine learn-   

ing methods outperformed the CPH model. Moreover, they included time-related features 

such as durations or the time since some given events, which increased the performances. 

In addition, by assessing the probability of the patient’s short-term readmission prior to 

being discharged from the hospital, a decline of the patient’s health outside the hospital   

can be prevented. For this purpose, logistic regression was used by Ben-Assuli et al. [71]. 

Futoma et al. [72] compared various machine learning methods, showing that random for- 

est and penalized logistic regression outperformed support vector machine.  Desautels at 

al. [73] predicted unplanned Intensive Care Unit (ICU) readmissions, with the particular- 

ity of using transfer learning between two databases to improve prediction performances. 

Other type of methods have been developed to predict readmission. For example, Lee et al.  

introduced an optimization based method, the DAMIP [74]. This method uses discrim- inant 

analysis with swarm optimization for feature selection. This work was extended by 

Hooijenga et al. [75], by implementing a tabu search-based feature selection method and 

preventing the model from classifying patients with uncertain prediction results. 

 
Discussion 

The use of machine learning methods for predictive analysis of health data has been dis- 

cussed in the literature. Based on the preceding literature review, a few interesting point can 

be concluded. The first observation is that medical outcomes are in many cases pre- dicted 

as a binary classification problem.  The machine learning algorithms used in this context  

are often part of a list of conventional algorithms. Furthermore, it can be observed that the 

input data used to train these machine learning algorithms are data features cre- ated from 

raw health data. These features can be demographic (e.g. age, gender), related to 

hospitalization (e.g.  vital signs, test results) or to the patient overall health condition 
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(e.g. comorbidities). The creation and formatting of these features is a challenging task re- 

lying on expert knowledge, and often depends on the database available and the pathology 

studied. Finally, it can be noted that patient pathway information (e.g. the successions of 

medical events and time in-between) is rarely considered when creating features for ma- 

chine learning algorithms. When considering patient pathway history structured in event 

logs, the considered binary classification problem is a sequence classification problem. 

 
1.2.2 Sequence  classification  and modeling 

Xing et al. [76] identified three main solutions to solve the binary classification problem of 

sequences. The first solution is feature-based classification: by extracting features directly 

from an event log, common machine learning algorithms can be applied. However, the 

construction of such features and the modeling of time is complex.  The second solution     

is distance-based classification, were the similarity of sequences is analyzed in order to 

classify a new sequence. This approach is commonly used in bioinformatics for deoxyri- 

bonucleic acid (DNA) alignment, often by using the method developed by Needleman and 

Wunsch [77] or the one of Smith and Waterman [78]. The third solution is model-based 

classification, which uses statistical models as Hidden Markov Models (HMMs) (see for 

example Yoon [79] or Blasiak and Rangwala [80]). 

The problem of extracting predictive patterns from sequential data has been discussed 

in the literature, with and without consideration of the temporal aspect.  The work of  

Klema et al. [81] studies the development of associated health conditions and risk factors for 

patients suffering from atherosclerosis. To extract the predictive patterns, three different 

sequential mining approaches were used: windowing, inductive logic programming and 

episode rules. To perform sequence classification based in extracted patterns, Zhou et al. 

[82] tested two methods: one based on association rules, the other based on a ranking 

system which used the previously defined rules and the actual element to classify.   In   

their work, Bose and van  der Aalst [83] define “characteristic patterns that can be used      

to discriminate between desirable and undesirable behavior” as signatures, another well- 

known term for patterns. They presented a methodology to mine such patterns using a 

feature-based representation of events, prior to apply decision tree and association rules    

to classify traces while finding patterns.  They applied the method to discover signatures   

in event logs of X-ray diagnoses.       Signature mining was also addressed by Wang et al. 

[84] in the context  of  longitudinal  heterogeneous  event  data  extracted  from  EHRs.  A 

useful 2-dimensional representation of patients was proposed to model event data. In 

addition, a framework for mining signatures is presented, which is based on convolution 

and has the particularity to be shift-invariant (discrete time-invariant). Vandromme et al.  

[85] presented a hybrid model for classification tasks which handles both non-temporal 

attributes and sequences, using various types of data such as numeric, binary, symbolic or 

temporal. Based on a heuristic approach, the method extracts classification rules. A case 

study using the French national hospital database shows accurate performances.  Among 

the possible extension discussed, a better handling of recurrent events and taxonomy of 

events are mentioned. 

 
1.2.3 Deep Learning 

As presented before, machine learning methods use patients’ features which are often ex- 

tracted and structured from raw data following expert knowledge. A recent evolution is the 

use of deep learning for predictive modeling, with two main advantages. The first one is the 
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use of deep architectures, allowing a high degree of abstraction in the learning process. In 

the case of difficult tasks, this abstraction can strongly improve performances. The second 

advantage is that in deep learning methods the creation of data features from raw data is 

automated.  When constructing features for machine learning, a simplified representation 

of data is performed. But the representation of the data can strongly impact performances 

of machine learning methods [15]. Thus, by learning a representation from raw data during the 

training, deep learning methods avoid the feature creation step and let the algorithm learn 

an optimal representation. The shift from manually defined features to deep learning had an 

significant impact, particularly in healthcare, as shown in the following. 

 
Recent reviews of deep learning from health data 

 
In many studies,  deep learning has been applied on health data and particularly EHR  

data,  using various methods and architectures for different purposes.   In 2018,  Ravi  et  

al. [55] presented a review focused on the development of deep learning methods applied 

to health informatics, which regroups multiple applications such as medical informatics, 

sensing, bioinformatics, imaging and public health. According to Ravi et al., between 2010 

and 2015, a rapid increase in terms of the number of publications in health informatics oc- 

curred. This is particularly the case for publications in medical imaging and public health. 

In terms of deep learning methods deployed, the authors identified deep neural networks, 

Convolution Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) as the most 

commonly applied methods. Regarding health informatics, the quantity and the variety of 

data contained in EHRs are noted as factors of success (from previous diagnoses, exams, 

and medications, to precise information such as radiology images or sensors multivariate 

time series).  The quality, variability and complexity of the data are challenges for prac-   

tical deployment of analytical methods. Long term dependencies and interpretabilty are 

also important issues that need to be addressed. The authors further underlined that the 

systematic use of deep learning in healthcare can be problematic, as it could restrain the 

development of other methods which are less resource-greedy and more interpretive. A 

similar review was presented by Miotto et al. [86] in 2018. Possible use cases for deep 

learning methods are identified such as clinical imaging, genomics and data analysis of 

sensors and mobile devices. According to the authors, challenges of deep learning on EHR 

data were the high volume, a lack of quality and the complexity of the data, the latter    

being particularly relevant for the healthcare domain. The author highlights two other 

limitations of deep learning methods:  the temporality and the interpretability.  The first  

one is still a challenge today, as many existing methods use fixed vector-based input data. 

This formalization is not optimal to represent the linear characteristic of time. The second 

limitation, the interpretability, is particularly important for medical experts to facilitate the 

practical deployment of a method. Two other publications of 2018 focused on describ- ing 

the application of deep learning methods on EHRs data. In their review, Shickel et al. 

[87] highlighted the recent increase in terms of publications in the field of deep learning 

applied to EHR data.  Among the areas of application, the authors identified prediction  

and representation as the most frequent. Moreover, unsupervised learning and deep archi- 

tectures such as CNNs, RNNs, Long-Short Term Memorys (LSTMs) and AutoEncoders 

(AEs) were commonly used learning algorithms. The systematic review of Xiao et al. [88] 

also identified five common areas of application for deep learning in healthcare: disease 

detection, sequential prediction, concept embedding, data augmentation and data privacy. 

The main architectures used were CNNs, RNNs, AEs embedding methods and Generative 
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Adversarial Networks (GANs). In terms of evaluation metrics, the authors found accuracy and 

the area under the curve (AUC) to be the most commonly used methods. Challenges noted 

when working on EHR data were the temporality (the complex long- and short-term relations 

between events), the multi-modality (the use of heterogeneous data), the lack of labels (even 

if labeling using a given medical code is used in practice), and last but not least the 

interpretability. 

 

Prediction 

 
Identified as one of the main topics when applying deep learning on EHR data, relevant 

studies performing predictions are described in the following. Doctor AI [89] was intro- 

duced by Choi et al. in 2016. In their paper, they presented a deep learning framework 

which was able to perform differential diagnosis using EHR data.  The same year, Miotto  

et al. [90] presented Deep Patient. Using a stack of denoising  AEs,  they  learn  an  un- 

supervised representation of patients from EHR data. A random forest algorithm was 

trained over encoded patients in order to predict the probability of disease appearance.  

This method shown better performances than the original representation or other dimen- 

sion reduction methods. An exhaustive study was conducted by Rajkomar et al. [91] in  

2018. With a focus on scalability, different models were used to perform various predic-  

tive tasks, such as in-hospital mortality,  30-day unplanned readmission, prolonged LOS    

or patient’s final discharge diagnoses. Zhang et al. [92] focused on limited data samples 

predictions and proposed MetaPred for clinical risk prediction. LSTM was used by Ashfaq  

et al. [93] to predict readmission using human and machine-derived features from EHRs. 

Choi et al [94] introduces graph convolutional transformer (GCT) to learn hidden struc- 

tures of EHRs and perform predictions.  Studies using data from the SNIIRAM database  

for predictive tasks are not numerous. In 2018, Janssoone et al. [95] compared multiple 

models  to  predict  medication  non-adherence  using  this  database.   Recently,  Kabeshova 

et al. [20] presented ZiMM ED, a predictive model for the long-term prediction of adverse 

events.  However, the performances of deep recurrent models have been tempered by Min 

et al. [96] in the context of readmission risk prediction after a hospitalization for chronic 

obstructive pulmonary disease (COPD). In their studies, machine learning methods using 

knowledge-driven and data-driven features achieved the best  performances. 

 

Embedding 

 
As reported by recent reviews on the subject [87], [88], embedding applied on EHR data     

is also a topic of interest. Embedding for patient representation is widely tackled in the 

literature.  Henriksson et al.  [97] used multiple semantic spaces to learn a representation   

of free-text clinical notes and clinical codes such as diagnosis, drugs and measurements. 

They tested their method to provide input data to random forest, reducing sparsity and 

improving performances in adverse drug event detection tasks. Zhu et al. [98] focused on 

measuring patient similarities, and proposed a deep architecture using CNNs to learn a 

representation for patients which preserves the temporal ordering properties. In order to 

perform patient clustering, Landi et al. [99] recently used a convolutional AE to learn a 

latent representation of patients. Medical concept embedding is also useful to construct 

meaningful labels directly from data. Notable examples of medical concept embedding are 

Med2Vec [100], GRAM [101], and more recently Cui2vec [102]. 
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1.2.4 Explainability 

Identified as one of the main challenges regarding deep learning applied in health data, the 

explainability of deep learning methods is an important topic. But this research track is 

neither limited to healthcare nor to deep learning, and general works on the subject can    

be referred to one field: eXplainable Artificial Intelligence (XAI). 

 
Overview 

Explainability and interpretability in AI has become critical, motivating the expansion of 

the XAI field. As shown by Barredo Arrieta et al. [103], the number of publications related 

to the subject strongly increased in the past few years.  On the one hand, interpretability    

is defined as “the ability to explain or to provide the meaning in understandable terms      

to a human” [103]. On the other hand, explainability is “associated with the notion of 

explanation as an interface between humans and a decision maker that is, at the same   

time, both an accurate proxy of the decision maker and comprehensible to humans” [103]. 

Explainability is more an active characteristic for the model, in opposite to interpretabil-   

ity which is a passive and inherent component of the method. Without being focused on 

deep learning methods, model-agnostic explainable frameworks exist in order to explain 

black-box model predictions. Examples are LIME [104], which uses linear models to ap- 

proximate local behaviors, and SHAP [105], which uses Shapley values for both global and 

local interpretability. The main noted limitation of these model-agnostic methods is the  

need to run multiple evaluations of the model to provide interpretations, the use of such 

methods in practice being time consuming. Moreover, a recent comment by Rudin in 2019 

[106] arbitrates for the use of intrinsically interpretative models for high stakes instead of 

trying to explain black box models. 

 
Explainability of deep learning for EHRs 

In some fields like healthcare, the chance of adoption of a method that relies on machine 

learning may be seriously limited [107]. When deployed on health data, the explainability 

of deep learning models becomes a promising research topic in recent years, as suggested 

by recent reviews [55], [87], [88], [90].  For  example, Choi et al.  presented RETAIN [108]     

in 2016. This two-level neural model is designed for an interpretation purpose, while 

keeping comparable performances. Interpretations are provided for a given patient, by 

giving importance of each element of its history. In 2017, Suresh et al. [109] benchmarked 

LSTM and CNNs for the prediction of clinical intervention using the MIMIC-III database. 

They used feature-level occlusion for LSTM and filter/activation visualization for CNN to 

explain predictions. RoMCP [110] was introduced by Xu et al. in 2018. This representation of 

clinical pathways has the advantage to capture both diagnostic information and temporal 

relations. Moreover, interpretations are provided using a top-k medical activities when 

predicting. The use of attention mechanism to provide explainability is also an actual topic 

of research. Patient2Vec [111], proposed by Zhang et al.  the same year, is a framework  

which learns a deep representation of longitudinal EHR data which is interpretable, and 

personalized for each patient. RNNs are used to capture the relations between medical 

events and attention mechanism for personalized representation. LSTM with attention 

mechanisms was used by Kaji et al. [112] in 2019 to predict from ICU data. Personalized 

attention maps were presented in order to show how explainability can be presented, as the 

scale of a patient and form several prediction targets. Yin et al. [113] introduced DG-RNN 

in 2019 a model which incorporates medical knowledge graph information into LSTM, using 
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attention. Interpretations are provided by showing the contribution of medical events over 

time. 

 
 

1.3 Process Mining 
 

When working with processes, the most commonly encountered data format is event logs. 

These event logs regroup instances called traces, for which time-ordered events are listed. 

Each event carries single or multiple information, of various formats. To study such event 

logs, a field grew in the past 20 years, bridging process sciences and data sciences: process 

mining [22]. In this first section, an overview of main concepts and contributions of process 

mining is presented. 

 

1.3.1 Recent Reviews 

Recently, exhaustive mappings of the process mining field have been proposed. As an ex- 

ample, the systematic mapping of Maita et al. [114] depicts the main trends, topics and 

applications of process mining. 705 papers published from 2005 to 2014 are analyzed. The 

study shows an increasing dynamic in terms of the number of publications, year after year. 

“Business process discovery” is identified as the most frequent area of process mining (504 

studies), in front of “Business process conformance” (259) and “Business process enhance- 

ment” (120). Regarding the tools used, ProM is undoubtedly the preferred choice, with 295 

papers.  In comparison, “in-house frameworks”, which are the second most used category 

of tools, gather only 51 studies.  However,  in a non-negligible number of studies (304),    

no particular tool is mentioned. Regarding applied sectors where process mining methods are 

deployed, “Entreprise”, “Medicine and Healthcare” and “Manufacture industry” are the three 

most represented in this systematic mapping (with 61, 59, and 48 papers, respec- tively). 

104 papers are also identified as “Pure or theoretical research: algorithm”, with no particular 

field of application. To the best of our knowledge, the most recent systematic mapping of 

process mining techniques and applications is the one of Garcia et al. [115]. 1, 278 papers 

published between 2002 and 2018 were selected to perform the systematic mapping. A 

useful labeling in terms of categories of process mining is presented. In addi- tion to the three 

widespread areas of process mining, “Supporting Area” was used to gather publications related 

to projects, applications and tools. 528 papers analyzed are part of the latter category, in 

front of “Discovery” (480), “Enhancement” (306) and “Conformance” (247). These results align 

with the first aim of the IEEE Task Force on Process Mining, which is to “promote the 

application of process mining” [116]. In the detail of application domains, 6 major area 

categories regroup almost 80% of the papers: “Healthcare” (162), “Information and 

communication technology” (95), “Manufacturing” (77), “Education” (61, also noticed by 

Maita et al. [114] as an emerging application), “Finance” (37), “Logistic” (27). 

 

1.3.2 Process Discovery 

Process discovery is, according to the previously presented reviews, the main process mining 

category. In the following, features of process discovery are discussed, starting with existing 

process discovery algorithms. 
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Process discovery algorithms 

 
As mentioned before, performing process discovery is the most encountered task in the 

literature. Many process discovery algorithms exist, starting, according to Garcia et al.  

[115], in 1995 by Cook and Wolf [117]. 

In 2004, the α-algorithm [118] is introduced, being one of the pioneer process discovery 

algorithms, able to deal with concurrency [22].  Many improvements of this algorithm  

exist, developed in the past few years. Examples are the α+-algorithm [119] introduced in 

2004 to deal with repeated occurrences (short loops), or the α++-algorithm [120] of 2007 

(to model causal dependencies).  In 2010, the α#-algorithm [121] extent the α-algorithm    

by  detecting  invisible  tasks  from  event  logs  (tasks  that  are  not  directly  observable  in 

the event log). The 2015 α$-algorithm [122] is introduced to mine process models with 

invisible tasks but also dependencies. Heuristic mining algorithms deal with a  major 

drawback of the previous described α-family algorithms, which is to take frequency into 

account [22]. In fact, considering the frequency of events and transitions in order to clean 

infrequent path from the resulting process model is valuable for practical use. It avoids the 

discovery of “spaghetti-like” process models, particularly when applying process discovery 

on real noisy event logs resulting from unstructured processes.  The  “HeuristicsMiner” 

[123] and its updated version the “FlexibleHeuristicsMiner”  [124] are practical examples   

of such algorithms.   The Fuzzy  Miner [125],  introduced by  Gunther and van  der Aalst    

in 2007, is another technique which deals with the frequency directly when constructing  

the dependency graph, being also able to extract hierarchical models [22]. The Genetic 

Miner [126] algorithm is a process discovery approach based on an evolutionary algorithm. 

Process discovery algorithms of this category are flexible, robust, but not very efficient     

for  large  process  models  and  logs  [22].   In  2012,  the  Evolutionary  Tree  Miner  (ETM) 

is introduced by Buijs et al.  [127].  The  method  uses  an  evolutionary  algorithm  and 

process trees to only consider sound process models as solutions, reducing the research space 

and improving performances. Moreover, the four quality dimensions are used to evaluate 

possible solutions.  The Inductive Miner [128], introduced in 2013, also uses process trees 

to discover a directly-follows graph from an event log. This method is flexible, robust and 

do not suffer from scalability problems [22]. Even if some limitations have been noticed, 

contributions to leverage issues of the Inductive Miner have been proposed [129]–[131] 

(infrequent, incompleteness, directly-follows based). WoMan [132], a framework based on 

First order Logic, was introduced by Ferilli in 2014.  The particularity of this framework     

is its ability to learn but also refine a process model, which makes it suitable for dynamic 

environments. Activity prediction is also possible to use this framework [133]. Chapela- 

Campa et al. introduced WoMine-i [134], which focuses on mining infrequent behaviors 

from event logs. In 2019, Augusto et al. introduced the Split Miner [135]. The method uses 

a directly-follows graph but analyzes loops and concurrency relations prior to the filtering 

step, the later allowing a balance between fitness and precision. 

Thus, many process discovery algorithms have been introduced since 1995. In the recent 

years, improvements of existing algorithms but also new methods were proposed. In terms 

of practical deployments on real case studies, Garcia et al. noted that Heuristic miner and 

Fuzzy miner were the most frequently used [115]. Benchmarks of these algorithms were 

proposed by De Weerdt et al.  [136] in 2012, and Augusto et.  al.  [137] in 2019.  In the   

later, performances of actual state-of-the-art methods were compared on 24 real-life event 

logs. Conclusions drawn are that the Inductive Miner and the Evolutionary Tree Miner are 

able to achieve good performances regarding fitness, precision, and complexity. Also, the 
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Split Miner produces good results in terms of F-score. An observation made regarding very 

complex event logs is that the use of a filtering method prior to the discovery is necessary. 

 
Modeling languages 

A majority of process discovery algorithm used in practice are procedural, using common 

process modeling languages. For example, transition system is a notation which is com- 

posed of two main elements: states and transitions. Petri nets are the most investigated 

language used to model processes, which deal with concurrency. WorkFlow nets (WF-  

nets) are particular Petri Nets with a source to start,  a sink to end,  and for all nodes,           

a direct path from  the  start and  to the  end.   Another useful and  widespread  language 

for business processes is the Business Process Modeling Notation (BPMN). When directly 

used to perform process discovery, a majority of the previous formalism are unsound (they 

carry undesirable properties which are independent of the input event log).  Process trees  

is a notation useful to represent a category of models which is sound by construction: the 

block-structured models. Process trees are used by inductive process discovery techniques, 

as well as the Evolutionary Tree Miner. Causal nets (C-net) are representations which are 

less constraint in their formalism, making them suitable for many process discovery 

algorithm. Another family of modeling methods uses declarative statements to represent 

processes. These methods are referred to as Declarative Process Mining methods. In such 

languages like Declare for example, everything is possible unless explicitly forbidden [22]. 

 
Quality measures 

In order to quantitatively measure the quality of a process model, four quality criteria are 

used [22]: fitness, simplicity, precision and generalization. The fitness measures the ability 

of a process model to represent a given event log. The simplicity characterizes the ability of 

the model to explain the event log while being simple. The precision is introduced to clarify 

that an acceptable model needs to be restricted to traces actually present in the log. The 

generalization states that the model should not focus too much to all the traces actually 

present in the considered event log.  A parallel can be drawn between machine learning  

and process mining, with, on the one hand, precision/generalization, and, on the other 

hand, underfitting/overfitting.  Thus, an opposition exists between fitness and simplicity, 

as it also exists between precision and generalization. As a result, one challenge of process 

discovery is to deal with the four aspects of the quality,  which can depend on the case  

study and the intended purpose. 

 
Readability of process models 

As the aim of process discovery is the output of a visual representation of processes, the 

notion of readability and interpretation is a key issue in practice. The size of resulting 

models is one of the most  notable  parameters,  but  other  factors  exist.  In  their  study, 

Reijers et al. [138] analyses the impact of personal and model factors using a questionnaire 

submitted to students regarding various process models. The results show a clear influence 

of personal factors (theory, practice, education) on understanding, much more explaining 

the understanding that other model-related factors. However, the two most impacting 

model factors were the average connector degree and the density.  A recent contribution    

of van der Aalst [139] warns the practitioners on the use of directly-follows graph and 

frequency-based simplification. Such simplifications can produce different models, leading 

to different conclusions. 
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1.3.3 Augmented Process Mining 

As process mining is presented by van der Aalst to be a bridge between process science   

and data science [22], trends in terms of combining process mining with other methods 

emerged. As an example, the use of simulation can turn process mining into a more 

forward-looking method [140]. In their work [141], Augusto et al. proposed a methodology 

which automatically creates a simulation model from raw event logs using process mining 

techniques. The method, tested on patient pathways extracted from the French national 

hospital database, appears to be useful to test different scenarios and policies. A similar 

methodology was used by Phan et al. [142], applied on the same type of data. Machine 

learning methods could also be useful when combined with process mining. An example is 

the work of Prodel et al. [143], where decision trees are fitted on patients’ features in order 

to refine the process mining-based simulation. Predictive tasks in process mining are also 

practical perspectives, useful for many applications. In their work, Maquez-Chamoro et al.  

[144] present a survey on predictive monitoring of business processes. Prediction tasks 

identified were classified as numerical predictions (e.g.  the time before the next event of  

the cost) or categorical predictions (e.g.  the risk category or the next event) and a third  

more recent task which is the prediction of the next activities. A split in the results is 

presented, by considering the process-awareness of the methods. They noted that process- 

aware methods were more frequently used for regression.  Results of the study show that   

a majority of the methods use the sequence of events for the prediction. Generally, an 

encoding of the sequences of events was noted by the authors, in order to produce vectors 

of features. The main reason is the use of well-known machine learning methods, which 

strictly use this kind of data to perform predictions. The history of events also need to be 

considered when encoding events. Finally, the lack of interpretability for predictive models 

is noticed, where the majority of the studies do not mention relevant explanation factors. 

 
1.3.4 Process Mining and Healthcare 

Process mining was largely applied on health data, for different case studies and various 

purposes. 

 
Recent reviews 

In a literature review, Rojas et al. [23] selected 74 papers focused on health processes 

(excluding clinical pathways related studies) and published before February 8, 2016. The 

majority of the studies were related to process discovery (control flow), often using Heuris- tic  

Miner and Fuzzy Miner.  The choice of these methods mainly is driven by the noise and   

the less structured processes encountered in health data. Oncology, surgery and car- diology 

were the main medical fields of applications. One of the improvement tracks noted by the 

authors is the lack of a good visualization of the process models. This could be useful, 

particularly when working on the complex and less structured processes found in the 

healthcare domain. Moreover, a great amount of reliance on process mining experts is 

noted, motivating future efforts on developing more straightforward solutions. A sys- 

tematic review focused on healthcare was conducted by Erdogan and Tarhan in 2018 [24]. 

They selected 172 studies, between 2005 and 2017, with 93 on healthcare processes and  

59 on clinical pathways. Generally, a dramatic increase in the volume of publication is  

noted in the past years. Process discovery is also the main objective of these studies (156 

papers). The most frequently used process mining algorithms are the Heuristic Miner (39) 
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and Fuzzy Miner (28). But no more than 46 papers introduced new process discovery 

techniques. This may illustrate the need for custom-made methods for healthcare process 

mining, motivated by the complexity and the challenges of healthcare data. Oncology, 

surgery, emergency departments, neurological diseases and cardiovascular diseases were 

the most represented healthcare specialty. Finally, a few studies were deployed in multiple 

departments or multiple hospitals. This is a challenge pointed out by the authors, to be 

addressed in the future. In their general review on process mining [115], Garcia et al. ded- 

icated a section on healthcare. Most contributions noted were related to clinical pathways, 

using conformance checking or process discovery. The topics of interest are numerous, but 

mostly centered on resource utilization, the identification of bottlenecks and the point- ing 

of potential improvements in processes. The high variability in health event logs is  

identified as a major challenge. Moreover, many context-specific information is needed to 

successfully conduct process discovery on health data.  Thus, mobilizing medical experts  

in order to retrieve specific knowledge is necessary, but may also be challenging in some 

organizations. Two literature reviews focused on two healthcare specialties: oncology and 

cardiology. In the first review, Kurniati et al. [145] identified 37 papers published between 

2008 and 2016. One suggestion noted is the need to develop new mining techniques to 

obtain understandable and high-level information.  In the review of Kusuma et al.  [146],  

32 papers were selected. In these two studies, major limitations were related to the data 

(missing values, noise, dimensionality and  complexity). 

 
Clinical  pathways 

 
To use the definition given by Yang et al. [147] and inspired by Ireson [148]: “Clinical 

pathways (CP) is a structured, multidisciplinary, patient care plan in which diagnostic and 

therapeutic interventions performed by physicians, nurses, and other staff for a particular 

diagnosis or procedure are sequenced on a timeline”. Yang et al., in their literature review 

of process mining studies applied on clinical pathways, selected 37 studies [147]. Results of 

their works are multiple. Firstly, the identification of variants is a key point to adapt the 

clinical pathway (leading to its adjustment or its redesign). Related to adjustment, the self-

learning improvement of the clinical pathway is also necessary. Moreover, the diversity of 

events and the complexity of chronic disease in clinical pathways are challenging. These 

complexities make traditional process mining algorithms not practically suitable for clinical 

pathways [147]. Finally, the entire medical process needs to be considered when studying 

clinical pathways in hospital. The integration of prevention and pre-hospitalization (before) 

and rehabilitation (after) is necessary to fully consider the patient journey. In fewer details, 

Baker et al. [149] used routinely collected EHR data from a UK oncology center. After eight 

iterations over nine months, a final process model was produced, resulting in a gap between 

real processes and assumed care pathways. The case study depicted in the paper of Prodel 

et. al. [160] show how process mining can model the clinical pathway of patients being 

implemented of an implantable cardioverter defibrillators. An event log extracted from the 

PMSI was used. Opportunities and challenges regarding clinical guidelines and process 

mining have been discussed in the work of Gatta et al.  [151], where 12 research centers  

were included in a collegial discussion. According to the authors, one role of process mining 

for physicians in this context is to check how the patients conform to clinical guidelines    

but also to identify patients who do not conform in order to identify the reasons and         

the implications. This problematic is complex, as described by Gatta et al.: “we need to 

provide models formal but understandable; complete, but usable; standard, but adaptable; 
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specific, but flexible; general, but personalized...” [151]. In their study, Rovani et al. [152] 

used declarative process mining to analyze medical treatment processes. By using, on the 

one hand, real process data, and, on the other hand, clinical guidelines, they discovered 

deviations and created a compromise model. The conducted case study concerned patients 

affected by cryptorchidism, the data being extracted from the urology department of the 

Isala hospital. Referring to “patient trajectories”, Mannhardt et al. [153] analyzed the stay  

of sepsis patients within a Dutch hospital. By using procedural process mining, they show 

that this approach could still by applied in healthcare context. Many practical challenges 

were noticed, as the absence of flexibility when applying an end-to-end process mining 

project on a particular sub-group  of  patients.  Also,  the  first  obtained  model  was  not 

totally recognized by the people working in the process. An iterative work with experts 

seems to be inevitable to produce accurate results. 

 
Disease trajectories 

The study of disease trajectory is another topic of interest when working on health pro- 

cesses. In such studies, the goal is to identify relations between disease and their pro- 

gressions in time. In 2014, Jensen et al. [154] studied disease correlations and temporal 

disease progressions at a very large scale. Using the Danish national hospital database,  

they studied the data of 6.2 million patients, recorded for 14.9 years, and identified 1, 171 

trajectories. Pathology-centered clusters were created, using ICD-10 codes to characterize the  

diseases.  Relative risks (RR) were computed to measure diagnosis pair correlation.  In  

2020, Kusuma et al. [155] show how the use of process mining could be valuable to study 

disease trajectories. By using EHR data, they extracted an event log of disease by selecting 

the first occurrence for each patient. This feasibility study shows an example of a recent 

topic where process mining could be useful. 

 
Health processes challenges 

As the main noted challenges when deploying process mining on health data is the data 

itself, some studies addressed some data-related issues. In the work of Alharbi et al. [156], 

the problem of repeated event selection and removing was tackled. By using an interval- 

based selection method, the authors reduced the number of repeated events, deleting out- 

liers. The method was applied on a case study regarding diabetes, using the MIMIC-III 

database. As pointed out by Kaymak et al. [157], when working on health processes, the 

data need to be reprocessed in order to keep the correct level of granularity. The work of 

Hompes et al. [158] shows how the analysis of a causality matrix serves to group similar 

events  and improve the labeling of event  logs.  Alharbi et al.  [159] used HMMs to help     

in preprocessing events for process mining.  By automatically detecting hidden patterns,  

the method is a useful preprocessing step which does not need domain experts. In their 

work, Prodel et al. [160] used an automatic approach to deal with the hierarchy of ICD-10 

codes directly during the process discovery. Considering outpatient clinic’s appointment, 

Martin et al. [161] propose an interactive approach for process mining data cleaning. The 

data-based cleaning (missing or overlapping timestamps, time ordering violation, appoint- 

ment using the same resource) on the one hand, and the discovery-based cleaning (mainly 

anomalies regarding expert knowledge of the process) on the other hand, are considered. 

Other challenges such as working with text and unstructured data were also tackled. An 

example is the work of Weber et al. [150], where free text and web scrapping were used to 

label events of the log. 
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1.4 Context and Positioning 

Starting in 2017 from our knowledge about the literature, preliminary predictive analyses 

were conducted. The first objective was to perform predictions using machine learning al- 

gorithms applied on the PMSI. In the literature, a shortlist of machine learning algorithms 

for binary predictions was identified, without having one method clearly outperforming the 

others. Moreover, hyperparameter tuning was identified as a challenge in deploying these 

methods in practice for healthcare. As a result, a benchmark of 7 machine learning algo- 

rithms was performed, on 3 case studies where features were defined using medical expert 

knowledge. Efficient Global Optimization (EGO) [162] algorithm was used for hyperpa- 

rameter tuning.  According to the results obtained, hyperparameter tuning is mandatory   

in order to avoid overfitting, particularly for tree-based methods. Moreover, random forest 

was identified as the best method on the 3 case studies. These results gave inputs for future 

studies deployed on the PMSI database.  These results are published and were presented  

at  the  2018  IEEE  International  Conference  on  Systems,  Man  and  Cybernetics  [163]. 

However, no real pathway information was used in this study. In order to verify that 

patient history was valuable to improve performances, a case study about predicting read- 

mission after a stroke episode was conducted. Patients with a stroke episode in 2015 were 

selected, using data extracted from the PMSI. 3, 787 binary sparse features were created, 

from patient information, diagnosis, medical procedures, and medical unit information. 

These features were created with and without considering patients’ history (all the previ- 

ous medical stays between 2010 and the stroke episode for each patient). As the case study 

was really unbalanced, two balancing methods were compared. The first one was a random 

undersampling strategy. In the second one, training elements of the majority class were 

shuffled and grouped in batches of the size of the minority class. Then, for each batch, a 

classifier was fitted using majority class observations from the batch and all observations 

from the minority class. Finally, the classification of patients from the test set is used by 

taking the majority vote of all the classifiers. The classifier used was a simple decision tree 

in order to perform explainable predictions. The results show that the balancing method 

based on a majority vote generally outperformed the simple undersampling method. More- 

over, adding the history of the patient improves the predictions, which motivates the future 

works on modeling patient history when training predictive methods. This work has been 

presented  at  the  2018 European  Conference  on  Operational Research3. 

Starting from these results, the modeling of history appears as an essential challenge  

for prediction. This information, contained in patient history, is mainly structured as a 

patient pathway when working on non-clinical claims data. As a result, some challenges 

were identified in order to properly model patient pathways: 

 

• The modeling of time, in order to capture logic transitions between events, but also 

modeling the time between two particular medical events; 

 

• The complexity of macro-medical events, as it consists of multiple codes from different 

hierarchy systems; 

 

• The need of constructing methods which are interpretative or explainable,  in or-     

der to facilitate discussions with all the stakeholders, to identify potential biases or 

inequalities, and also facilitating practical deployment. 
 

3Presentation   material   is   accessible   here:  http://doi.org/10.13140/RG.2.2.26336.10249 

http://doi.org/10.13140/RG.2.2.26336.10249
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Thus, the use of process mining to perform prediction appeared as a first track. As 

patient pathways can be seen as processes, and process mining bridges process science    

and data science according to van der Aalst [22], the starting point of our work focused     

on developing predictive modeling using process mining. Starting from the previous work 

of Prodel et al. [141], [143], [160], we  introduce new process models which accurately  

model and capture time patterns during the optimization process of discovery.  This work  

is presented in Chapter 2. 

The second challenge is the modeling of complex medical events such as the ones found 

in non-clinical claims data. As these events were either manually defined by experts rules  

or partial information, the help of domain experts to improve the quality of events in event 

logs is necessary, but can be expensive and time consuming [159]. As a result, Chapter 3 

presents a preprocessing step which automatically define events prior to the use of process 

discovery from event logs. As noted by Mannhardt et al. [153], working on health data to 

perform process mining studies is an iterative process. Thus, this contribution serves as a 

tool to facilitate such iterative discussions with medical experts, based on AEs to perform 

latent space clustering. The use of AEs to preprocess event logs were also used by Nguyen 

et al. in 2019 [164] in order to improve the quality of event logs by dealing with anomalies 

or missing values. 

As Chapters 2 and Chapters 3 introduce contributions in modeling complex sequential 

data, Chapter 4 introduces an optimization-based predictive methods. By using the process 

models presented in Chapter 2, starting from event logs of positive and negative classes,  

the optimization process outputs a process model which characterizes the positive class 

while badly representing the negative one. Predictions are provided for a new trace by 

computing its fitness regarding the previously fitted process model. As a result, patterns 

observed on the latter process model highlights distinctive patterns of the positive class, in 

terms of events, transitions, and time characteristics.  These patterns constitute a support  

for global explainability. 

This method, based on process models, suits well for macro medical events. Unfortu- 

nately, performances are impacted when working with more frequent events. To also deal 

with frequent events, another method to model, predict and explain from patient path-  

ways is presented in Chapter 5. By using a VAE, an end-to-end methodology is presented, 

Starting from a raw event log, time and codes’ hierarchy are models in order to keep all the 

relevant information. Predictions are provided for an individual patient pathway, and a 

global explanation is deduced from the proposed model. This contribution is an alternative 

to widespread, interpretable but simple algorithms (such as decision tree), high performing 

but deep complex networks based on attention mechanisms, or to the use of model-agnostic 

explainable frameworks (i.e. SHAP or LIME). 
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2.1 Motivation 

The field of process mining proposes methods and tools to work on patient pathways data. 

As part of process mining, process discovery serves to mine patterns directly from event 

logs. The initial motivation of this work is the idea of using process mining for explainable 

predictive analysis of patient pathways. For the purpose of prediction, the extraction of 

distinctive patterns from pathways  is performed first.  Starting from the work of Prodel    

et al. [160], which proposes a process discovery algorithm adapted to patient pathways, 

some modeling limitations were identified. Patterns such as the repetition of a given event 

but also the time separating two events were noticed as being neither explicitly modeled  

nor embedded in the optimization process.  Moreover, readability of a process model in   

the context of patient pathways appears to be impaired by self-loops and backward edges 

cutting the linearity of pathways observed in practice. 

 
2.2 Summary 

In this chapter, a new problem is introduced, which is the problem of determining the 

optimal process model of an event log of traces of events with temporal information. To 

solve this problem, two new process models are introduced: the grid process model and the 

time grid process model. The first one is reminiscent of Petri net unfolding, and is a  graph 
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with multiple layers of labeled nodes and arcs connecting lower to upper layer nodes. The 

second one is an extension of the first, which assigns a time interval to each arc, with the 

particularity to have multiple edges connecting the same nodes. The property is useful  

when defining characteristic time patterns in the model and incorporate such information 

directly during the optimization process. Moreover, the two previously defined process 

models address the problem of impaired readability described before. The fitness measure is 

adapted and a new replayability score is defined. The optimization procedure produces a 

process model which maximizes the replayability score, under the constraints of the 

maximal number of nodes and edges. As demonstrated in this chapter, the replayability 

game for defined process models does not depend on the choice of edges.  As a result, for   

a given node configurations, optimal edges can be selected under the size constraint, which 

reduces the search space by only selecting accurate node configurations. In order to capture 

time characteristic patterns, Kernel Density Estimation (KDE) is used to model time 

transition distributions and automatically define adequate intervals from the event log 

before the beginning of the optimization. Experiments are conducted on synthetic and noisy 

event logs, in order to compare performances of the tabu search with other heuristics. The 

results validate the good performances of the method, particularly when the property of 

independence of the replayability regarding the edges is used. Finally, a real-life case study 

is presented, to analyze the pathways of diabetic patients before the occurrence of certain 

complications. 
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Abstract 

The problem of determining the optimal process model of an event log of traces of events with temporal 
information is presented. A formal description of the event log and relevant complexity measures are detailed. 
Then the process model and its replayability score that measures model fitness with respect to the event log 
are defined. Two process models are formulated, taking into account temporal information. The first, called 
grid process model, is reminiscent of Petri net unfolding and is a graph with multiple layers of labeled nodes 
and arcs connecting lower to upper layer nodes. Our second model is an extension of the first. Denoted the 
time grid process model, it associates a time interval to each arc.  Subsequently, a Tabu search algorithm  
is constructed to determine the optimal process model that maximizes the replayability score subject to 
the constraints of the maximal number of nodes and arcs. Numerical experiments are conducted to assess 
the performance of the proposed Tabu search algorithm. Lastly, a healthcare case study was conducted to 
demonstrate the applicability of our approach for clinical pathway modeling. Special attention was paid on 
readability, so that final users could interpret the process mining results. 

Keywords:  process mining, event log, time modeling, tabu search, healthcare data, patient pathways. 
 

 

1. Introduction 

The digital revolution affects all industries and businesses and produces a huge amount of data. Numerous 
decision aid analytical methods and tools are available to take advantage on relevant data. Machine Learning 
methods have been widely used. Supervised and unsupervised learning for knowledge discovery, when applied 
to matrix data where each row is an observation characterized by features in columns, have spread over. 

Knowledge discovery from healthcare data, such as patient lifetime hospitalization history is presently 
not optimal yet crucial. Therefore, we want to find common patterns, process models, or care pathways of 
hospitalization histories for cohorts honed to a specific time periods. Such studies are important to detect 
relevant “causal” relationships or transitions, to check the conformance of practice to guidelines, etc. An 
example of a causal relation could be “most patients of a given surgery had the same prior underlining 
condition or past medical event”. 

Traditional machine learning techniques are not well suited to generate process models from data. Process 
mining is well suited for this purpose, and has been first formalized in 2004 [14], followed by developments 
in various fields [7] including healthcare [1]. Temporal information such as the time between two events 
and the number of repetitions of a given event in the past are particularly important in process modeling 
and prediction.  In healthcare, a second hospital visit shortly after the first, unfortunately is likely to be   
an undesirable complication or result of the earlier admission. A patient having been hospitalized several 
times for a given disease or had a much longer prior hospital stay before recovery is more likely to need a 
non-standard surgery than a patient having no or just one past hospitalization. Unfortunately, such features 
are rarely taken into account by process mining approaches. For example, repeated events are prohibited 
for the sake of visibility and time is not considered during model construction. A previous study on the 
understanding of process models found that the average connector degree and density are two identified 
factors which induce negative effects on comprehension (at a fixed size) [11]. 
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Starting from these limitations regarding time consideration and comprehension, an extension of exist- 
ing optimal process mining theory is presented. Thus, the main scientific contribution of this paper is the 
mathematical formalization of a new ascending and time-dependent process mining approach, structured 
on a grid for a better representation and understanding. Reminiscent of Petri net unfolding [2], ascending 
representation forbids loops and confusing backward transitions, whereas the time-dependent feature con- 
siders time patterns of event logs during optimization. Descriptors are introduced, characterizing event logs 
complexity and process models structure. The replayability indicator [10] is slightly modified and acts as a 
key performance indicator to evaluate the resulting process models. Finally, a new Tabu search procedure 
for process mining optimization is presented, tested and validated through a series of designed experiments 
as well as a real-life healthcare case study. 

The rest of this paper is organized as follows. A literature review focused on recent work in process mining 
with a particular focus on healthcare is presented in Section 2. General definitions of event log representation 
are given in Section 3. A mathematical formulation of the new process models and optimization problems is 
presented in Section 4. Section 5 describes the process discovery methods involved and Section 6 details in 
depth computational experiments designed to test methods on different simulated event logs. A case study 
based on real data is presented in Section 7. Finally, conclusion and perspectives are given in Section 8. 

 

2. Literature  Review 
 

The raison d’être of Process mining is to discover, monitor and ameliorate actual processes as they occur 
by extracting knowledge from event logs readily available in I.T. systems. Process mining is situated between 
Big Data and Data Mining on one side, and Business Process Modeling and Analysis on the other. The field 
of process mining can be divided in 3 main areas: process discovery, conformance checking and extension of 
a model [13]. 

Recently, two systematic studies mapped out Process Mining [7, 1], which are valuable to describe the 
scope and the dynamics of this field. Maita et al. regrouped in their study 705 papers about process mining 
from 2005 to 2014 [7]. The number of publications addressing process mining has significantly increased 
from 2005 to 2014. “Discovery” is the main purpose for the use of process mining (71% of papers), with 
“graph structure-based techniques” being the most common intersection. For studies mentioning a specific 
application domain, “Medicine and Healthcare” is the second most frequent domain just after the overall 
sector “Enterprise”. Moreover, “clinical analysis pathway” ranks third as data sources used for case studies 
or experiments. Importantly, the majority of these studies does not mention any process mining tool being 

used. For the rest, ProM is the most often mentioned with in-house frameworks a distant second. 
A similar work [1] on healthcare studies considers 172 papers from 2005 to 2017. Observations detail a 

rapid expansion of the field, giving new opportunities for further research and practice. Process discovery 
appears as the most important activity of process mining when applied to healthcare. Studies on “Health- 
care process” (93) are more common than “Clinical pathway” (59). Furthermore, studies corresponding to 
“Multiple hospital” data are less frequent (14) compared to “Single hospital” data (130). The same obser- 
vation is true for studies regarding “Multiple department” data (13) and “Single department” data (122). 
Finally, the number of studies which propose a new tool, model or metric is low (17%). This limited body 
of relevant papers in our field seems to imply the originality of our contribution. 

Since the later systematic review on healthcare, new process mining contributions applied to healthcare 
have been proposed. Kusuma et al. compiled a literature review of process mining in cardiology [5]. 
Promising opportunities to assist medical experts in care analysis were shown, although few formal process 
mining methodologies were included. Litchfield et al. [6] introduced a study protocol to apply process 
mining to primary care in the UK for the first time. The use of orthodox process mapping in addition to 
data-driven process mining is presented as useful to identify differences and similarities. 

Similar works on patient pathways mining were published using discrete optimization [8] and simulation 
[9]. The most related paper to our work is of Prodel et al. in 2018, where a mathematical formulation of 
the problem was presented, along with a Tabu search optimization process to search for best process model. 
In addition, to reduce the computation time for large-scale data sets, they used a Monte Carlo sampling 
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method. As healthcare data often contains hierarchical structure (ICD-10 codes for example), this data 
characteristic for labels was considered during the optimization process [9]. The large scale problematic and 
the hierarchical structure of labels were also addressed. 

There are two limitations. First, qualitative representation of pathways with repeated events is not 
readily understood by decision makers and clinicians. Indeed, a repeated event pattern in the event log will 
be represented by a loop, which does not take into account the linear characteristic of patient pathways. 
More importantly, the time is not considered during the optimization process. The including of time as a 
parameter could be beneficial to highlight hidden time patterns contained in the event log. 

Therefore, two extended process mining approaches are presented in this paper. New descriptors to 
characterize data sets and newly formulated process models are also presented. The Tabu search used by 
Prodel et al. [10] is tested and compared to other methods. Moreover, an improved version of the Tabu 
Search algorithm adapted to new process model is suggested. 

 

3. Event, Trace and Log 
 

This section provides a formal description of data involved including events, traces and event logs. 

Definition 1. (Event). Each event denoted e is a couple (a, t) where a  A is an element of a finite set A 

of labels corresponding to the event class of e, and t T with T = N or R corresponding to the event time 

also called time-stamp. An event e is then equivalently defined by the two following functions: 

• label(e) = a called labeling function; 

• time(e) = t called timing function. 

Definition 2. (Trace). A trace is a sequence of events denoted as σ = e1, e2, . . . , em with m ∈ N∗ such that 

ek ∈ A × T and time(ek ) < time(ek+1). A trace leads to the following  functions: 

• trace(ek ) denoting the trace ID of each event; 

• position(ek ) = k denoting the order of the event in the trace; 

• |σ| = m denoting the length of the trace. 

Definition 3. (Event log). An event log is a set of traces denoted as L = σ1, σ2, . . . , σn with n N∗. An 

event log contains all input data of this paper. Without loss of generality, we assume that each label appears 

at least once in the event log L, i.e.  a  A :  σ  L, e   σ   e = (a, t).  The set of possible combinations of 

labels and positions in L is: 
Alab,pos = 

σ=e1 ,...,em∈L 

{(label(e1), 1), . . . , (label(em), m)} 

Definition 4. (Causal relations). For each trace σ = e1, . . . , em in L, all pairs of labels (label(ek ), label(el)) 
such that 1 k < l m are called causal relations and pairs (label(ek ), label(ek+1)) are called direct causal 

relations. Let T C be the set of all causal relations and T DC be the set of direct causal relations. 

Definition 5. (Timed causal relations). All triplets (label(ek ), label(el), time(el) time(ek )) such that 

(label(ek ), label(el))   T C (or T DC ) are called timed causal relations (or direct timed causal relations). Let 

T tC and T tDC be the set of all timed causal relations and the set of direct timed causal relations. 

Definition 6. (Diversity measures). The event log L has the following diversity measures: 

• event diversity dive = |A|; 

• event-position diversity dive,p = |Alab,pos|; 

• causal relation diversity divcausal  = |T DC |; 

• timed causal relation diversity divt−causal = |T tDC |. 
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Event  log definitions 

Label set:  A 

Event:  ek = (a, t) 
a ∈ A, t ∈ T with T = N or R 

Trace: σ = e1, ..., em 

Log: L = {σ1, ..., σn} 
Label: label(ek ) = a 
Time: time(ek ) = t 

ID: trace(ek ) 

Position: position(ek ) = k 
 

Relation sets 

Causal relations set: T C = {(label(ek ), label(el))}1≤k<l≤m 

Direct causal relations set:  T DC
 

tC 

σ=e1 ,...,em∈L 

= (label(ek ), label(ek+1)) 1≤k<m 
σ=e1 ,...,em∈L 

Timed causal relations set: T = {(label(ek ), label(el), time(el) − time(ek ))}1≤k<l≤m 

Timed direct causal relations set: T tDC 
σ=e1 ,...,em∈L 

= (label(ek ), label(ek+1), time(ek+1) time(ek )) 1≤k<m 
σ=e1 ,...,em∈L 

Descriptors 

Traces length description: 

|σ|mean,  |σ|std,  |σ|max, |σ|min 

Event diversity:  dive = |A| 
Event-position diversity: dive,p = |Alab,pos| 

Causal relation diversity:  divcausal = |T DC | 

Timed causal relation diversity:  divt−causal  = |T tDC | 
 

 
 
 

Proposition 1.  If A 
= 

Table 1:  Event log notations. 

 

∅ and),|σ| >  1  for  at  least  one  trace  σ,  then  1  ≤ dive  ≤ dive,p  ≤ 
),

σ∈L |σ| and 

 

 
 

 
The diversity measures characterize the log’s complexity: a high diversity means an increased number of 

different elements in terms of labels and causal relations. Also, the distribution of trace lengths is a valuable 

predictor to assess event logs’ complexity (let σ mean, σ std, σ max and σ min be its  mean,  standard 
deviation, maximum and minimum values, respectively). Notations of event logs are summarized in Table 1. 

Example 1. Table 2 shows a short event log related to patient hospitalization pathways. Each row is a 

hospitalization event. Events with the same ID are ordered by increasing time stamp and represent a trace. 

Each trace is a patient’s hospitalization history. Each first event of a patient has a timestamp set to 0. By 

clustering hospitalization by main diagnosis, the set of labels is as follows : 

• Alab = {I500, I44.2, I621, G935, E149, I272}. 

Alternative event clustering is possible by taking into account more detailed information such as the duration 

and secondary treatments during the hospitalization. 

Thus, event-position set is as follows: 

• Alab,pos = {(I500, 1), (I44.2, 2), (I621, 3), (G935, 4), (E149, 2), (I272, 3), (I500, 4), (I44.2, 5)}. 

Basic and timed transitions are: 

T C  =   (I500, I44.2), (I500, I621), (I500, G935), (I44.2, I621), (I44.2, G935), (I621, G935), (I500,  

E149), (I500, I272), (I500, I500), (E149, I272), (E149, I500), (E149, I44.2), (I272, I500), (I272, 

I44.2))} 

4 



Chapter 2.  

48 

 

 

• { 

L 

⊂ P P 
P ∈ 

• ⊂ × ⊂ ∈ ∈ 

 
 
 
 
 
 

ID time-stamp duration main diagnosis DRG 

0 0 8 I500 05M092 
0 30 0 I44.2 05C142 
0 72 1 I621 01M311 
0 103 3 G935 01M131 
1 0 2 I500 05M092 
1 5 0 E149 10M02T 
1 93 2 I272 05M172 
1 145 1 I500 05M092 
1 180 8 I44.2 05C142 

 

Table 2: An example of an event log of patient  pathways. 

 

 

•     T DC  = {(I500, I44.2), (I44.2, I621), (I621, G935), (I500, E149), (E149, I272), (I272, I500))}; 

T tC =   (I500, I44.2, 30), (I500, I621, 72), (I500, G935, 103), (I44.2, I621, 42), (I44.2, G935, 73),  

(I621, G935, 31), (I500, E149, 5), (I500, I272, 93), (I500, I500, 145), (I500, I44.2, 180), (E149, 

I272, 88), (E149, I500, 140), (E149, I44.2, 175), (I272, I500, 52), (I272, I44.2, 87), (I500, I44.2, 

35))}; 

• T tDC = {(I500, I44.2, 30), (I44.2, I621, 42), (I621, G935, 31), (I500, E149, 5), (E149, I272, 88),  

(I272, I500, 52), (I500, I44.2,  35))}. 

Finally, diversity descriptors are: 

• dive = 6; dive,p = 8; divcausal = 6; divt−causal = 7. 

 
4. Grid Process Model Optimization Problem 

This section is dedicated to discover process models that best fit the event  logs given in Section 3.     
For this purpose, first the concepts of grid process models and time grid process models are introduced. 
Subsequently, the fitness measure is introduced to measure how well a process model captures the causal 
relations of an event log. We terminate by a formal definition of the process model optimization problem. 

 
4.1. Grid Process Models 

Definition 7.  (Grid process model). A grid process model of a given log L is a triplet G-PsM = (N, E,    ) 
where: 

• N is a set of nodes partitioned into K disjoint subsets called layers, i.e. N = N1 ∪· · · ∪ Nk, Nk ∩ Nl = ∅; 

E N N is a set of edges such that (x, y) E with x Nk, y Nl  implies k < l, i.e. the process 

model is acyclic with edges going from lower layers to higher layers; 

• L : N → A is the labeling function of the nodes. 

From the above definition, one can also define the position function   (x) = k, if x   Nk .  As a result,    
(x, y)     E implies     (x) <   (y). 

The main difference from the previous process model definition in [10] is the possibility for an event to 
appear at various positions in a trace. For example, an event happening both at the beginning and at the 
end of a patient pathway could now be described in the process model by  two  nodes, one with low and  
the other with a high position. In this case, loops on the same node and backward edges are not allowed 

anymore. An example of a G-PsM and its process model equivalent are given in Figure  1. 

Example 2.  The Figure 1a shows a grid process model G-PsM = (N, E, L) with: 

N = (n1, n2, n3, n4, n5) E = (e1, e2, e3, e4, e5) 

5 
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P: 

(a) Grid  process model. 

 

 
(b) Equivalent  classic  process model. 

 

Figure 1: Example of a grid process model and its classic process model equivalent. 

 

 

L(n1) = A P(n1) = 1 e1 = (n1, n3) 
L(n2) = B P(n2) = 1 e2 = (n1, n4) 
L(n3) = C P(n3) = 2 e3 = (n2, n3) 
L(n4) = A P(n4) = 3 e4 = (n3, n4) 
L(n5) = C   P(n5) = 3    e5  = (n3, n5) 

An equivalent classic process model is presented in Figure 1b, without duplicated label nodes, allowing loops 

and backward transitions. 

 
4.2. Time Grid Process Models 

To the best of our knowledge, in existing process mining approaches, time-related information is added 
after model discovery and remains descriptive. Significantly, we provide a new approach to include time- 
related information within the optimization process of building a process model. 

Definition  8.  (Time grid process  model).   A time grid process  model  of a given log  L is a    four-uplet 

T G-PsM = (N, E, L, T ) where: 

• (N, E, L) is a grid process model with eventually multiple edges between nodes; 

• T : E → T × T associates a time interval [a(x,y), b(x,y)] to each edge (x, y) ∈ E. 

As shown in Figure 2, using this definition, previous unique edges between two nodes in G-PsM are 
replaced by multiple possible edges in T G-PsM , each of them having its own time interval. Definition 8 
ensures that a given causal relation,  with a given time value  between two  events,  will be characterized  
by a unique possible edge with same starting and ending node in the process model. The uniqueness of 
characterization will be useful for graph construction and replayability defined thereafter. 

Example 3. The Figure 2 shows a time grid process model T G-PsM = (N, E, L, T ) with: 

N = (n1, n2, n3, n4)   E = (e1, e2, e3, e4, e5, e6, e7) 
 

L(n1) = A P(n1) = 1    e1  = (n1, n2) T (e1) = [10, 24] 
L(n2) = B P(n2) = 2    e2  = (n1, n2) T (e2) = [30, 35] 
L(n3) = C P(n3) = 2    e3  = (n1, n2) T (e3) = [45, 62] 
L(n4) = A P(n4) = 3    e4  = (n2, n4) T (e4) = [0, 5] 

e5  = (n2, n4) T (e5) = [5, 25] 
e6  = (n3, n4) T (e6) = [2, 50] 
e7 = (n3, n4) T (e7) = [75, 100] 
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𝑒1  ∶ [10,24] 𝑒4   ∶ [0,5] 

 
 

P: 1 2 3 

Figure 2: Example of a time grid process model. 
 

G-PsM TG-PsM 
 

G-PsM = (N, E, L) T G-PsM = (N, E, L, T ) 

N = N1 ∪ · · · ∪ Nk N = N1 ∪ · · · ∪ Nk 

L(x) ∈ A, x ∈ N L(x) ∈ A, x ∈ N 

P(x) = k, x ∈ Nk P(x) = l, x ∈ Nl 

T ((x, y)) = [a(x,y), b(x,y)], (x, y) ⊂ E 

DivN  = |{L(n)}n∈N | DivN = |{L(n)}n∈N | 
DivE  = |{(L(x), P(x), 

  L(y), P(y))}(x,y)⊂E |  

 
Table 3:  Process model related notations. 

 
 

4.3. Process Model Complexity Characterization 

The larger a process model is, the better it represents traces from an event log, but the drawback is that 
the more convoluted it becomes for someone to understand. Building a process model while controlling its 

complexity is crucial. A process model’s complexity is described by its number of nodes N and edges E . 
Process model diversities are defined similarly to event log diversities (Definition 6). 

Definition 9. (Node and edge diversities). For a process  model G-PsM or T G-PsM , the node diver-  

sity is DivN   =  |{L(n)}n∈N |.   For  a time grid process  model  T G-PsM ,  the edge  diversity is DivE         = 

|{(L(x), P(x), L(y), P(y))}(x,y)⊂E |. 

Diversity descriptors characterize the variety of nodes and edges of a process model. A high diversity 
means that only few nodes (or edges) have the same label, whereas a low diversity indicates many similarly 
labeled nodes (or edges).  For  instance, in the G-PsM of Figure 1a, |N | = 5, DivN  = 3 and |E| = 5, and     
in the T G-PsM presented in Figure 2, N = 4, DivN = 3, E = 7 and DivE = 3. This simple example  
highlights the increase of E for T G-PsM compared with that of G-PsM . Notations of the process models 
are summarized in Table 3. 

 
4.4. Replayability 

To evaluate the capacity of a process model to represent a trace, a new replayability score has been 
devised to match the newly defined grid process models. Initially, preliminary definitions are required. 

Definition 10. (Replayability). An event e is said replayed by a process model G-PsM if label(e) = L(x) for 

some node x of G-PsM . A causal relation (ek, el) is said basic replayed by G-PsM if label(ek ) = L(x) and 

label(el) = L(y) for some edge (x, y) of G-PsM . A timed causal relation (ek, el, time(el) − time(ek )) is said 

time-replayed by an T G-PsM if label(ek ) =   (x), label(el) =   (y) and time(el)   time(ek )    [a(x,y), b(x,y)] 
for some edge (x, y) of the T G-PsM . 
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Algorithm 1 Grid and Time Grid Replayability  Games. 
1:  Initialization 

2: z ← 0, δ ← 0, φ ← 0, m ←  0 
3: Find cm  the first replayed event of σ 
4: If no event of σ  replayed: 

5: return z, δ, φ 
6: Else: 

7: Set Nactual  as the node which replayed  cm 

8: z z + 1 

9:  Trace crossing 

10: While m < |σ|: 

11: If cm+1  can be replayed in G-P sM  by a node Nnext  with P(Nactual)  < P(Nnext): 

12:  z ← z + 1, Nactual  ← Nnext  (with the lowest position) 

13: If no edge exists between Nactual  and Nnext  (or if the transition between (cm, cm+1) cannot be time replayed 

(Time grid replayability game)): 

14: φ φ + 1 

15: m m + 1 

16:  Skipped elements analysis 

17: If at least one element of σ has been skipped (not been replayed between replayed elements): 

18:  δ = 1 

19: Conclusion 

20: return z, δ, φ 

 

Remark 1. For any transition in a trace we have, by definition, {time replayability} ⇒ {basic replayability} 
but {basic replayability} *' {time replayability}. 

To calculate the replayability of a trace, an algorithmic procedure is presented, named Grid replayabil- 
ity game (or Time grid replayability game) (Algorithm 1). The grid replayability game starts from cm, 
with m being the index of the first event of σ replayed in G-PsM (line 3). If cm is replayed by several nodes 
of G-PsM , the node with the lowest position is chosen (line 7). The next event cm+1 of σ possibly replayed 
by G-PsM is sought, with a strictly superior node position than the previous node which replayed cm (lines 
11–12). If the transition (cm, cm+1) is not basic-replayed by G-PsM , the transition is said strongly-forced. 
If the transition ((cm, cm+1), tm,m+1) is not time-replayed by T G-PsM , the transition is said time-forced 

(lines 13–14). This process is repeated until the last replayable event is reached (line 10). If at least one 
event of σ has not been replayed while being in between two replayed events, it is said skipped (lines 17–18). 

The strictly ascending condition of Definition 7 ensures that transitions are achieved by increasing po- 
sitions during the replayability game. Thus, some events of σ might not be replayed during the game, 

even if they would have been according to Definition 10. Based on these new replayability games, adapted 
replayability score functions are introduced. 

Definition 11. (Replayability score). Considering the Grid replayability game, the replayability score of a 

sequence σ in a G-PsM or T G-PsM is defined as follows: 

 
 
 

where: 

 z 
R(G-PsM, σ) or R(TG-PsM, σ) = ( 

|σ| 

φ  + 

− α ∗ δ − β ∗ 
|σ| 

) 

• z is the number of events of σ replayed by G-PsM ; 

• δ a binary variable equal to 0 if no event of σ is skipped; 

• φ is the number of (timed) strongly-forced transitions; 

• α, β are weighting factors. 

Proposition 2. For a given trace σ, a process model T G-PsM and a G-PsM obtained with nodes and simple 
edges of T G-PsM : 

R(TG-PsM, σ) ≤ R(G-PsM, σ) (1) 

Proof. Proposition 2 translates the strictest character of the time grid replayability compared to grid re- 
playability, for fixed coefficients. 
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4.5. Problem Formulation for Process Model Discovery 

Let L be an event log, the process model optimization problem consists in determining an optimal grid 
process model G-PsM defined on L, maximizing the replayability and under some process model complexity 
constraints. 

 

(GridOpt) max 
G-PsM=(N,E,L) 

R(G-PsM, L) (2) 

  1  
with R(G-PsM, L) = R(G-PsM, σ) 

|L| 
σ∈L

 

subject to  
E ⊆ N × N (3) 

max(P(x)x∈N ) ≤ pmax (4) 

|N | ≤ UN (5) 

|E| ≤ UE (6) 

where R(G-PsM, σ), R(G-PsM, L) [0, 1], pmax N∗ is the maximum position for the process model 

construction, UN     N∗ and UE     N are the process model node and edge complexity bounds,  respectively. 
The problem of determining an optimal time grid process model, denoted as TimeGridOpt is similar, 

with the following supplementary constraint: 
 

∀e ∈ E, T (e) ∈ TE (e) (7) 

where  TE (e)  =  ([aj , bj ])j∈N∗   is  a  pre-defined  set  of  disjointed  intervals,  with    e     E,    I  =  [a, b]      TE (e), 
a, b   N and a < b. 

The purpose of this constraint is to have accurate but specific values of time intervals for each edge. Thus, 

we first define judicious intervals for each edge, before optimization of the time grid replayability score. For 
example, let x and y be two nodes of a time grid process model T G-PsM . After looking at all possible 
causal transitions (  (x),  (y)) in event log L, we obtain   the distribution of corresponding time values.    
Let m− and m+ be the maximum and minimum values of , respectively. An optimal solution in terms of 
complexity and replayability is to take the single edge with the full interval [m−, m+]. Inconveniently, this 
does not highlight time particularities and specific intervals.  This is why dividing the interval [m−, m+] in 
relevant sub-intervals [xi, yi] i where mini xi m−, maxi yi m+ and i [xi, yi] = would prove more 
advantageous. 

For both problems, an optimal process model has to be found in terms of nodes (with their labels and 
positions) and (time-) edges (basic or with a specific time interval). Complexity being a hard constraint, it 
can be useful to first define an optimal solution without complexity constraints, to illustrate the complexity 
of a potential optimal model. 

Proposition 3. For any log L with pmax = maxσ∈L σ , UN = dive,p and UE = σ L( σ 1), there exists a 
process model G-PsM such that R(G-PsM, L) = 1. 

Proof. All traces are perfectly replayed in a process model with Alab,pos as the set of nodes and arcs con- 

necting nodes of position p to position p + 1 corresponding to direct causal relations from events of position 
p in some trace. 

The Figure 3 shows an example of the process models described previously, with Alab = {A, B, C, D, E, F } 
and |σmax| = 6. 
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Figure 3: Example of a process model described in Proposition 3. 

 

 

4.6. Property of the Replayability Game 

Proposition 4. (Optimized edges configuration property) For any given process model (G-PsM or T G-PsM ) 

and for any trace σ, the nodes reached during the replayability game are independent of the edges of the 
process model. 

Proof. Trivial as, at each step of the replayability game, the closest event of σ with label equal to the label  
of a node of higher position gives the next node. This is independent of arcs. 

 
5. Optimization  and  Process Discovery 

 

This section presents five algorithms : Random Search (RS), Frequent Model (FM), Spring Search (SS), 
Tabu Search (TS) and Tabu Search with Optimal Edges (TSOE). These algorithms are used to solve the 

optimization problems GridOpt and TimeGridOpt (defined through Equation 2). Among them, one heuristic 
(SS) and two meta-heuristics (TS and TSOE) are tested, modifying a current graph solution (or creating a 
neighborhood of new solutions). Transformation of the current solution is done by achieving some moves of 
nodes and edges. Before presenting these methods, the data preparation process is detailed in the following. 

 
5.1. Data Preparation 

To select nodes or edges to add (or delete) during the optimization process, a function fn : A 1, pmax 

N is defined. For each tuple (l, p) with l A and p 1, pmax , a value corresponding to its number of 
appearances within the event log is assigned.  An event’s position is either its real position in its trace if 
|σ|max ≤ pmax, or a rescaled value to ensure all positions to be between 1 and pmax if |σ|max > pmax. 
Similarly, a function fe : T C → N is defined regarding appearance of transitions in event log. An extension 
for T G-PsM is also proposed, considering transitions and time intervals to compute fe values. In the 
following, “promising ” is employed to characterize a node n = (l, p) or an edge e = (x, y) (with T (e) for   
T G-PsM ) with a high value for fn(l, p) or fe( (x), (y)). These functions are useful to select promising 

nodes or edges to add during the optimization process. 
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If an edge from x to y is added to the solution,  the replayability score R(G-PsM ∗ , L) =      1 
 

|L| σ∈L R(G- 

 
 
 
 
 
 

 

Algorithm 2 Tabu Search with Optimized Edges (TSOE) for   GridOpt. 
1: Step 1 – Initialization 

2: Select an initial random unconnected solution:  s∗
0 

3: Create the best connected solution s0  from s∗
0 

4: Compute Grid replayability game for each patient 

5: Identify among possible edges the most frequently used 

6: Add these edges to the final model: s0 

7: Compute replayability for the initial solution: R(s0 , L) 

8: Update the best known solution:  sbest   ← s0 
∗

 

9: Create initial Tabu  list of unconnected solutions :  T L =   [s0 ] 
10:   Step  2  –  Iteration 

11: Generate from current unconnected solution s∗  a neighborhood of unconnected non-tabu solutions :  NH
∗ (s∗ ) 

12: Generate best connected solutions from NH
∗ (s∗ ) :  NH (s

∗ ) 

13: Compute replayability of each element of  NH (s
∗ ) 

14: Select the new solution as the neighbor with the highest value of replayability:  snew 

15: Update current solution :  s ← snew 

16: Update Tabu list:  T L ← T L + [s∗
new ] 

17:  If R(sbest, L) < R(s, L): 

18: sbest s 
19: Step 3 – Repeat step 2 until a stopping criterion is reached 

 

5.2. Spring Search (SS) for GridOpt 

A simple greedy heuristic, called Spring search (iterative jumps) is initially utilized to solve the GridOpt 
problem. During the search, new solutions are proposed by iteratively increasing and decreasing the size of 
a solution, which brings diversity Each iteration consists of four steps: (1) delete all edges of the current 

solution, (2) delete K non-promising nodes, (3) add K new promising nodes, and (4) add UE edges (the edge 
complexity bound), selected from the subset of possible edges (depending on nodes present in the G-PsM ). 
At the end of an iteration, the obtained G-PsM becomes the current  solution. 

 
5.3. Tabu search (TS) for  GridOpt 

Similarly to [10], a Tabu search is implemented to solve GridOpt. Because the strictly ascending condition 
increases the dependence of edges towards nodes, only one move is used to generate neighborhoods. At each 
iteration, a neighborhood is made of non-tabu neighbors which are obtained from the current solution in 4 
steps : (1) delete a non-promising node and its surrounding edges, (2) consider the number of deleted edges 
as a budget X to reassign, (3) add a promising new node, and (4) add X new promising edges respecting the 
strictly ascending condition. Each neighbor is evaluated by computing replayability, and the best neighbor 
is kept as current solution. 

 
5.4. Tabu Search with Optimized Edges (TSOE) for GridOpt 

According to Proposition 4, edges do not intervene in the choice of the next node reached during the 

replayability game. Considering a solution without edges G-PsM ∗ , the replayability R(G-PsM ∗ , σ) of a 
trace σ ∈ L will have all possible transitions from a node x to a node y forced during the replaya),bility game. 

PsM ∗ , σ) will increase, by a coefficient c(x,y) = β 
|L| 

),
σ∈L 

fφ(σ,(x,y)) 
, with fφ(σ, (x, y)) = 1 if transition (x, y) 

|σ| 

has been forced during the replayability game of σ, 0 otherwise. Thus, by computing c(x,y) for every possible 

transition (x, y), keeping top-UE transitions produces the best-edge configuration from G-PsM ∗ , respecting 
constraint (6) of Equation 2. 

From these observations, an adapted version of Tabu Search is defined, consisting in searching only for 
solutions without edges, and then for every solution in evaluating the best edges to add for an optimized 
replayability score. This method’s advantage drastically reduces the search space to graphs without edges. 
Tabu Search with Optimized Edges is further detailed in Algorithm 2. 
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Figure 4: Illustration of KDE clustering. 

 

 

5.5. TSOE for TimeGridOpt 

Before solving TimeGridOpt,  accurate but specific values of time intervals TE (e) for possible edges       

e E need to be defined. First, causal transitions of event logs are analyzed to determine corresponding 
time distributions. Thus, a 1-D clustering method based on Kernel Density Estimation (KDE) is used to 
construct the set of possible edges to add during the process model optimization. KDE is the construction 
of an estimate of the density function from observed data, using a kernel function [12]. Applied to each 
time distribution, the resulting function will be used to define clusters by considering local maxima of the 
function as centers of clusters. For each maximum, an interval [xmax E, xmax + E] is defined, as shown in 
Figure 4. A low value of E gives small and precise clusters; a high value decreases precision, replays more 
transitions and increases the global replayability score. 

Finally, the approach is the same as for TSOE GridOpt, except that edges to add come with the most 
suited time interval as found by 1-D clustering. For an unconnected solution, the algorithm will choose the 

top-UE timed-edges to get the final process model solution. 
 

6. Computational  Experiments 
 

6.1. Log Generation 

The following design of experiments, to test and compare the performances of the previously defined 
algorithms on various event logs, is presented here. Event logs of various sizes were generated to match 
real-life variability in data sets. All experiments were performed on an Intel Core i7 processor (2.8 GHz), 
16 GB RAM, and Windows 10 OS. The algorithms were coded in Python   3.6. 

 
6.1.1. Log  Generation for GridOpt (without  time) 

Event logs are generated from process models, which must be created first. Three parameters are required 
to create a G-PsM : (i) a maximum position pmax, (ii) an event diversity dive, and (iii) an event-position 
diversity dive,p. For  a given combination of these three, a fully connected G-PsM is randomly created  
with all the edges respecting the strictly ascending condition. Then, traces are generated by selecting a 
graph’s node (with higher probability for nodes at lower positions) and following a path in the model until 
a terminal node is reached (a node without any outgoing edge). A number Nnoise  = Z  σ  σ  of noisy  
random elements (not in the graph) is added to traces, at random positions. We arbitrarily set Z = 0.1 
(10% of noise in event logs). Resulting traces make a log. 
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6.1.2. Log Generation for TimeGridOpt (with time) 

Logs are generated in the same way as for GridOpt, except that edges of generated models are now split 
in two categories: 

• Without time pattern (each transition resulting from this type of edge will have a time between events 
respecting uniform law U (a, b)); 

With time patterns (a set (µi, s2) i∈N∗ of Gaussian distributions is defined, each transition following 

one of these laws, randomly selected). 

The goal of the optimization is now to highlight temporal patterns in the discovered model with multiple 
timed edges. The following distributions are used for the log generation: 

1. No time pattern U (0, 400); 
2. Simple time pattern ({N (200, s2)}; 
3. Double time pattern ({N (100, s2), N (300, s2)}; 
4. Triple time pattern ({N (100, s2), N (200, s2), 

N (300, s2)}); 

with s the standard deviation. The allocation of edges to patterns (1-4) is uniform. For double or triple time 

patterns, the choice among distributions is equiprobable. The value of s is set to 25, to test the robustness 
of the method for time with variability while keeping patterns identifiable. The edge constraint UE is set to 
80 (4 × UN ) to allow the model to add multiple edges. Other parameters are set as for previous design of 
experiments. For KDE clustering, E = 0.05 × max(time-stamp) to have a precise time interval for edges. 

6.2. Design of Experiments 

For each of 15 combinations of (dive,p, dive, pmax) used to create logs, 10 random G-PsM are created. 

From each G-PsM , a log of 1,000 traces is generated. 5 methods are then applied to solve the problem: 
Random search (RS), simple Frequency model (FM) obtained by only taking most frequent nodes and edges, 
Spring search (SS), Tabu search (TS) and Tabu Search with Optimized Edges (TSOE). Figure 5 summarizes 
the design of experiments at hand. For the search algorithms, stopping criteria are the maximum number 
of iterations (x = 250) or the number of iterations without improvement (x = 25). The neighborhood’s  
size for TS and TSOE is empirically set to 15, based on previous tests showing small variability in the best 
obtained solution’s replayability.  Similarly, the Tabu list’s size is set to 15.  The size constraints (number   
of nodes, number of edges and maximal position) are constant throughout the entire experimental design 
to always get an interpretative and comprehensive model. Constant parameters and constraint values are 
summarized in Table 4. Configurations of the design of experiments are listed in the left part of Table 5. 
For TimeGridOpt, configurations 2, 4 and 15 are  tested. 

 
6.3. GridOpt Results 

The Figure 6 shows the evolution of replayability during the optimization process for each method, 
specifically applied to configurations 2 and 15. Graphs used to generate event logs are also tested on noised 
data to compare results of different methods with the initial model used for trace generation, without size 
limitations (“ROOT” in the figure). Median replayability among 10 event logs for each configuration is 
presented versus the number of iterations (maximum value for the number of iterations of each method is 
set to the minimum stopping criterion among 10 replications). ROOT and FM models are obtained by non- 
iterative methods, their means are displayed by horizontal lines on the same figure for comparison purposes. 
For RS, an improving solution is rarely obtained, and the stopping criterion is more quickly reached compared 
to other iterative methods. The margin for improvement during search is small for complex data sets as 
visible by comparison of Figure 6b and Figure 6a. Furthermore, the gap between ROOT model and search 
solution strongly increases from Figure 6a to Figure 6b. 

Event log description for GridOpt, design of experiments and resulting replayability of the best mined 
models are given in Table 5. Computation times are presented in Table 6. Neighborhood searches (TS and 
TSOE) systematically outperform other methods (including the heuristic SS and the frequency model FM). 
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Figure 5: Schematic representation of the design of experiments. 

 

Replayability parameters 
α 0.1 

β 0.1 

Search parameters 

K (SS) 2 

Neighborhood’s size (TS and TSOE) 15 

Size of Tabu list 15 

Max. number of iterations 250 

Max. number of iterations without improvement 25 

Constraints 
Number of nodes UN 20 
Number of edges UE 40  (2×UN ) 

Maximal position pmax min(10, |σ|max) 
 

 
Table 4: Search parameters and constraints used for design of  experiments. 

 

 

TSOE outperforms TS on 9 out of 15 data configurations, especially when dive = 5. Otherwise, TSOE and 
TS perform equally. TSOE scores ranges from 0.26 to 0.90. Lower values (< 0.30) are obtained for complex 
data configurations (dive,p = 300 and dive = 100), due to the model size constraints. The unconstrained 
model used for event log generation (ROOT, where  N  = dive,p) systematically scores at 0.90     0.01. 

Visual representations of the best models mined by TSOE are presented in Figure 7. Visualization of a 
process model is possible via a tablet application developed by the company HEVA for that purpose. Each 
graph is read from left to right, increasing positions. Circles represent nodes of the model, and flux from 
circles represents edges. The size of nodes and edges are proportional to the number of traces replayed by 
them during the replayability game. The first qualitative observation is the repetition of events with the 
same label (Figure 7a), with Label 1 or Label 4. The strong decrease in replayability score from Figure 7a 
to Figure 7b is visible in the decrease in node and edge size, as fewer traces are well represented. If we 
focus on edges, Figure 8 highlights this strong decrease. Within the optimization for edges, the leeway in 
replayability is reduced because of the decrease in the number of patients going through edge pathways (172 
vs 38 patients in the example of Figure 8). For this reason, the effect of edge optimization in TSOE is less 
visible in more complex data sets as Figure 7b compared to Figure 7a. 

 
6.4. TimeGridOpt Results 

Results are presented in Table 7. For each data configuration, the mean number of incoherent edges 
(edges which do not correspond to any defined pattern through design of experiments, by not   containing 
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Data RS FM SS TS TSOE ROOT 

 dive,p dive pmax AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD 

1 25 5 5 0.33 0.08 0.87 0.00 0.86 0.00 0.87 0.00 0.90 0.00 0.91 0.00 

2 25 5 25 0.15 0.09 0.77 0.02 0.74 0.02 0.81 0.02 0.84 0.02 0.90 0.01 

3 100 5 25 0.24 0.04 0.70 0.01 0.70 0.02 0.75 0.01 0.77 0.01 0.90 0.01 

4 100 5 50 0.14 0.08 0.66 0.01 0.65 0.02 0.72 0.01 0.74 0.01 0.89 0.01 

5 100 50 5 0.19 0.04 0.34 0.01 0.35 0.02 0.44 0.01 0.44 0.02 0.90 0.01 

6 100 50 25 0.15 0.04 0.34 0.03 0.33 0.03 0.42 0.02 0.42 0.02 0.90 0.01 

7 100 50 50 0.11 0.02 0.34 0.04 0.33 0.03 0.41 0.02 0.42 0.02 0.89 0.01 

8 100 100 5 0.13 0.02 0.23 0.04 0.25 0.03 0.36 0.03 0.36 0.02 0.90 0.01 

9 100 100 25 0.13 0.04 0.29 0.03 0.27 0.04 0.37 0.02 0.38 0.02 0.90 0.01 

10 100 100 50 0.10 0.03 0.30 0.02 0.29 0.03 0.38 0.03 0.38 0.02 0.89 0.01 

11 300 50 25 0.15 0.02 0.26 0.02 0.26 0.01 0.31 0.01 0.31 0.02 0.89 0.01 

12 300 50 50 0.13 0.02 0.24 0.01 0.24 0.02 0.30 0.01 0.31 0.01 0.89 0.01 

13 300 100 5 0.13 0.02 0.20 0.01 0.21 0.01 0.26 0.01 0.26 0.01 0.89 0.01 

14 300 100 25 0.11 0.01 0.21 0.02 0.21 0.02 0.27 0.02 0.28 0.02 0.89 0.01 

15 300 100 50 0.10 0.02 0.21 0.02 0.21 0.02 0.27 0.02 0.29 0.02 0.89 0.01 

 
Table 5:  The replayability score of the best models mined by different methods:  average and standard deviation. 

 

 

Data RS SS TS TSOE 

 AVG STD AVG STD AVG STD AVG STD 

1 21 9 39 9 622 151 1479 392 
2 15 1 33 6 731 155 1825 419 
3 22 7 40 11 665 134 1591 619 
4 19 5 38 6 873 234 1930 598 
5 34 12 47 16 878 363 1828 362 
6 18 5 39 12 711 191 1463 321 
7 18 5 33 7 726 162 1541 407 
8 15 1 40 12 679 184 1182 335 
9 15 <1 33 10 678 162 1513 398 

10 15 <1 35 8 689 150 1416 454 
11 19 5 38 8 639 99 1353 411 
12 18 2 38 8 745 182 1404 334 
13 15 <1 37 6 785 213 1354 347 
14 16 1 43 8 656 132 1406 253 
15 16 <1 36 7 674 173 1497 257 

 
Table 6:  Computation time (in seconds) of each method:  average and standard deviation. 

 

 

Data Replayability Time Incoherent edges 
Config. AVG STD AVG STD AVG 

2 0.81 0.02 9820 3048 5.6% 

4 0.72 0.01 7965 2547 7.0% 

15 0.28 0.02 10999 3688 6.0% 

 
Table 7:  Best models mined by TSOE for TimeGridOpt :  replayability, time (in seconds) and percentage of incoherent edges. 
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Figure 6:  Replayability versus the number of iterations:  6 different methods applied to three logs for the GridOpt  problem;        

log of configuration 2 (Fig.  6a) and configuration 15 (Fig.     6b). 
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(a) Configuration 2 

 

(b) Configuration 15 

 
Figure 7: Examples of the best G-P sM models mined by the TSOE  algorithm. 
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(a) Configuration 2 

 

(b) Configuration 15 

 
Figure 8:  Focus on the edges for G-P sM  models. 
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time values 100, 200 or 300) is also given. The replayability of the best mined models with TSOE for 
TimeGridOpt is slightly inferior to TSOE for GridOpt on the same event log. The number of incoherent 
edges, i.e. the edges not respecting time patterns, is low (5.6%, 7.0% and 6.0%) and thus is encouraging 
for the methodology presented. These incoherent edges characterize traces with transitions generated from 
no time pattern edges (25% of transitions following (0, 400) ) or noisy transitions obtained after adding 
noise to the event log.     Visual representations of the best models are shown in Figure 9 for configuration 

2. The general shape of the process model obtained by solving TimeGridOpt is similar to previous G-PsM 

graphs (Figure 9a). The time-focused representation of T G-PsM highlights the type of edges obtained after 
the optimization, corresponding to the amount of timed edges it contains. According to the simulated event 
log, the time pattern edges could be of 3 types: simple (one interval centered in 200), double (2 intervals 
centered in 100 and 300) or triple (centered in 100, 200 and 300), as shown in Figure 9b. 

 

7. Real-life Case Study 
 

7.1. Diabetes Mellitus 

Diabetes Mellitus (DM) is a group of metabolic disorders, resulting in chronic hyperglycemia due to 
unregulated insulin secretion and/or action. Common forms of DM are type-1 and type-2. Type-2 diabetes 
is the most common form (90-95% of patients). It is mainly characterized by insulin resistance and relates 
to the lifestyle, physical activity, dietary habits and heredity. Type-1 diabetes is less frequent (5-10%) and  

is due to destruction of β cells of the pancreas [4]. Data Mining methods have been widely applied to DM 
data and supervised learning prevails (85% of studies). Moreover, clinical data sets were the most used 
[3]. Our method, unsupervised Process Mining, adds a new angle and diversity to existing approaches in 
DM research. This real-life case study shows how the newly developed approach helps to analyze patient 
pathways before the appearance of four identified complications. 

 
7.2. Data and Methodology 

Data originates from the French National Health Insurance (CNAM), where a group of 50,000 patients 
suffering type-1 or type-2 diabetes in 2008 was constructed. Within this population, 5,714 patients developed 
at least one of the following complications until 2016: stroke, amputation, infarctus or TCKD (Terminal 
Chronic Kidney Disease). For each complication and for each patient, a 2-year period of medical history 
was analyzed. A time grid process model was built for each complication over these 2-year periods. TSOE 

algorithm was used with the following parameters :  models’ size is  N  = 20,  E  = 4   N , and otherwise   
as in Table 4. Events of different categories were available: 

• Hospitalizations  (diabetes,  cardiovascular, surgery...); 

• Complications (stroke, amputation, infarctus, TCKD); 

• Other medical events (dialysis , insulin, emergency without hospitalization). 

Other follow-up exams, much more frequent in patient pathways (around 70% of the events), were also 
available: general practitioner visits, glycated hemoglobin tests (HBA1C), glycemia tests, creatinine tests, 
etc. Discussions with medical experts led to the non-consideration of these exams as key nodes for the 
process model. Instead of studying their sequence and successions in the pathway, they were simply and 
usefully quantified within the period between two nodes (i.e. on an edge). The quantification of such events 
was performed on the final mined model: for each patient crossing an edge during the replayability game, 
a list of frequent exams is computed, and median values for each frequent exam are printed on the edges. 
An unconnected grid process model with best time grid process model’s nodes was created first. Then, a 

number of edges |E|, equal to the DivE , are used to connect the grid process model using optimized edges. 
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(a) Configuration 2 

 

(b) Focus on the edges for T G-P sM models. 

 
Figure 9:  Examples of the best T G-P sM  models mined by  the TSOE    algorithm 
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Figure 10: Replayability versus iterations for the four complication event logs. 
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Table 8: Diabetes event log descriptors and replayability score. 

 

 

7.3. Results 

Descriptors and replayability performances are presented in Table 8. The evolution of the optimization 
for each event log is presented in Figure 10. Event log analyses using the descriptors show pathway differences 
between stroke, infarctus, amputation and TKCD. Indeed, the first two complications are characterized by 
shorter traces ( σ q1 ,m,q3 : (1, 3, 4) and (2, 3, 5) vs. (3, 5, 8) and (4, 6, 9)), that is to say short and unstructured 
pathways compared to the other two. This difference between complications is also highlighted by the best 
final replayability scores: amputation and TCKD have lower scores (RTG : 0.75 and 0.70) compared with 
those of stroke and infarctus (0.87 and 0.86) because longer and more complex pathways are less easily 
replayed in a graph than shorter ones. These observations are illustrated by Figure 11. An example of 
frequent events’ information can be seen in Figure 11b where a pattern of diabetes hospitalization before 
stroke is highlighted. For 206 patients concerned, time between events was 242 days on average. As an 
example of frequent exams, the median number of general practitioner visits is displayed (“MG : 5”). The 
grid structure, which allows duplicate labels in a process model, is particularly suitable in this case study. 
As shown in Figure 11a, a high number of “Other hospitalizations excluding surgery” and “Cardiology 
hospitalizations” are interesting patterns revealed by the grid process model. Time pathway analysis gives 
further opportunities for understanding patient pathways. As an example, the process model relating to the 
complication “amputation” (Figure 11a) shows globally unique short time pathways. On the opposite, the 
process model relating to the complication “stroke” (Figure 11b) presents diverse time pathways, with not 
only short duration transition. 
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Complication |L| dive dive,p |σ|q ,m,q RG RTG 

Amputation 695 15 232 3/5/8 0.76 0.75 

Stroke 2152 15 222 1/3/4 0.89 0.87 

Infarctus 2913 15 253 2/3/5 0.88 0.86 

TCKD 421 13 225 4/6/9 0.72 0.70 
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8. Conclusion  and  Future Research 
 

An extended methodology to create suitable process models for healthcare applications has been pre- 
sented. Its Scientific contributions are multiple. New process models considering a grid structure and time 
patterns were mathematically defined. We formulated a set of descriptors to characterize the structure of 
such a process model and event log complexity. The establishment of a new property for grid process mod- 
els leads to a novel search algorithm to mine optimized process models. The search incorporates the grid 
structure and includes time patterns upon construction of the process model. Computational experiments 
validate the overall performance of this approach. The interest of neighborhood-based searches to solve 
the problem was quantitatively shown: Tabu Search with Optimized Edges is more efficient for a small 
event diversity. A qualitative observation was made regarding the grid structure, representing with more 
fidelity the linearity of patient pathways over time. This improves the visualization of repeated events. The 
advantage of considering time within optimization was also spotlighted. In addition, the applicability of the 
method and the interest in patient pathways analysis is demonstrated by a case study. The grid structure, 
the time patterns and the display of certain frequent events on edges provide interpretative highlights for 
medical staff and decision makers. 

Three opportunities for future work come to mind. Firstly, a focus on optimization performances for 
complex data sets will be made, by considering less strict constraints (nodes and edges). During the exper- 
iments presented in this work, constraints were specifically set to obtain an overall comprehensible model 
capable of being simply visually interpreted. However, increasing the complexity of the process model can 
be achieved if interactive tools permit the exploration of the final model wherein key elements are able to 
be clearly discerned. Secondly, studying the relation between event log descriptors, graph constraints and 
replayability of the best models minded is of important interest as well. Any results rendered will be useful 
for the calibration of constraints, particularly for the third research axis. Eventually, future research should 
focus on creating a methodology to perform supervised learning with traces as input data, whereas current 
state-of-the-art classification methods only take “flattened data” as input (vectors of features). A process 
model optimized for classification purposes will produce an explainable predictive model. 
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(a) Amputation 

 

(b) Stroke (with an example of frequent events display) 

 
Figure 11: Example of time grid process models resulting from the case study. 
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2.4 Conclusion 

This chapter presented a new process mining setting, including event log complexity mea- 

sures, process models, replayability game, replayability score and optimization method. 

The method is able to perform process discovery from event logs, with the advantage of 

mining temporal characteristics during the optimization process. A preliminary version of 

the presented work contributes to a second process mining case study on sepsis, using the 

Hospital Episode Statistics (HES) database [165]. 

Some limitations of the proposed method should be considered. As presented in the 

first case study, some medical events such as lab tests are very frequent. First discussions 

with medical experts motivated the suppression of such frequent events from labeling. The 

frequent elements were reintroduced on the final obtained process model, by including dis- 

tribution parameters on edges. This visualization is useful to discover patterns and analyze 

pathways. However, the reintroduced information is not directly used in the optimization 

process, such distinctive patterns are not identified by the resulting process model.  For    

the purpose of performing prediction, this may lead to unconsidered information. 

Another limitation of  this  work  is  the  choice  of  labels  for  an  event.  The  method 

takes a labeled event  log as input data.   In practice,  these labels are manually defined      

by using expert knowledge. In many cases, only partial information is used, such as the 

main diagnosis code,  at a certain level of hierarchy.   But when studying macro events      

like hospitalization, the internal patient pathway is often summarized with many different 

codes, representing diagnostics, medical procedures, drugs or medical devices. As the 

preprocessing of such data without medical knowledge is challenging, the next chapter 

addresses this problem. 
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3.1 Motivation 

When deploying process mining in practical studies related to patient pathways, the la- 

beling of medical events was identified as a challenging preprocessing step.  Generally,   

one type of activity occurring during the event is selected as the label used to describe    

each event  (i.e.   the code related to the main diagnosis for a hospital stay).   However,   

when working on patient pathways, macro medical events are frequently described using 

multiple activities. One the one hand, the selection of a sole activity to describe macro 

medical events may decrease the precision of the labels and lead to less pertinent results. 

On the other hand, considering all of the activities will create labels that are too specific as 

hospital stays are rarely exactly the same all activities considered. Another challenge in 

labeling of medical events is that activities are mainly characterized by medical codes from 

various coding systems.  These coding systems are often organized in hierarchical  

structures and the selection of a convenient aggregation level is complicated and depen- 

dent of the case study. In practice, the use of expert knowledge to manually define the  

labels using activities is the most trustworthy methodology. The studied pathology, the 

population and, more generally, the context of the study guides the experts in choosing the 

relevant labels. However, when expert knowledge is not available, a preprocessing step for 

automatic labeling of event logs can be a valuable contribution. Such a method could also be 

useful as a knowledge discovery tool. But a key condition for the use of such methods by 
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non-experts is the explainability of the resulting labels, which is required to facilitate the 

discussions with clinical teams. An advantage of using such a data-oriented preprocessing 

step is the absence of prior knowledge, minimizing the risk of including bias. 

 
3.2 Summary 

This chapter introduces a methodology developed to account for the previously described 

complexity of events in medical event logs, and automatically create relevant labels directly 

from the data. The core of the method is the sparse representation of stays with multiple 

activity codes with hierarchical structure, and the use of deep autoencoding in order to 

learn a useful representation of stays. As deep autoencoders learn a representation of stays 

in the latent space which maximize the reconstruction of data, representation of stays in  

the latent space is a compact representation of stays from the initial space. Based on this 

method, accurate labels are created by clustering similar events in latent space. Moreover, 

the explanation of created labels is provided by decoding the corresponding events. Several 

deep autoencoding architectures, as well as direct clustering using sparse data, were tested 

on synthetic events. Results show the ability of the method to find hidden clusters, as well 

as to accurately explain created labels, in particular when using VAE. In order to validate 

the method on real data, a case study is presented, where the pathways of patients having 

an incisional hernia after a laparotomy operation were analyzed. Both manual (using prior 

knowledge on the pathology) and automatic labeling of the event logs were performed.   

The process mining method presented in Chapter 2 was used to perform process discovery 

using both manually and automatically labeled event logs. The analysis of resulting process 

models shows strong similarities between the automatic labels and the manually defined 

ones. The results presented in this chapter are available online, through an interactive 

dashboard which was created to present the results and facilitate discussions: 

• Link:    https://artemis-emse-laparo.hevaweb.com/ 

• Login: laparotomy 

• Password: P38D8P35f6 

https://artemis-emse-laparo.hevaweb.com/


  Hugo De Oliveira 

71 

 

 

 

3.3 Automatic and Explainable Labeling of Medical Event 

Logs 

H. De Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel and X. Xie, “Auto- 

matic and Explainable Labeling of Medical Event Logs with Autoencoding”, IEEE Journal 

of Biomedical and Health Informatics (J-BHI), 2020, https://doi.org/10.1109/JBHI. 

2020.3021790. 

https://doi.org/10.1109/JBHI.2020.3021790
https://doi.org/10.1109/JBHI.2020.3021790


Chapter 3.  

72 

 

 

 
1 

 

 

Automatic and Explainable Labeling of Medical 

Event  Logs  with Autoencoding 
Hugo De Oliveira, Vincent Augusto, Baptiste Jouaneton, Ludovic Lamarsalle, 

Martin Prodel and Xiaolan   Xie 

 

 

Abstract—Process mining is a suitable method for knowledge 

extraction from patient pathways. Structured in event logs, 

medical events are complex, often described using various med- 

ical codes. An efficient labeling of these events before applying 

process mining analysis is challenging. This paper presents an 

innovative methodology to handle the complexity of events in 

medical event logs. Based on autoencoding, accurate labels are 

created by clustering similar events in latent space. Moreover, 

the explanation of created labels is provided by the decoding of 

its corresponding events. Tested on synthetic events, the method 

is able to find hidden clusters on sparse binary data, as well as 

accurately explain created labels. A case study on real healthcare 

data is performed. Results confirm the suitability of the method to 

extract knowledge from complex event logs representing patient 

pathways. 

Index Terms—process mining; event log; healthcare data; 

patient pathways; autoencoding; 

 
I. INTRODUCTION 

Data analytic regroups an extensive number of methods to 

investigate data produced in various systems such as industry, 

software engineering and healthcare. Knowledge extraction 

from such data is a lever to improve performances, to predict   

or simply to describe the reality of facts. Among  different  

types of data, event logs are challenging to analyze because     

of the presence of time, the high variability of events, and the 

complex relations between events. Thus, the use of widespread 

data mining algorithm may not be fully straightforward for 

some applications. A wise preprocessing step to capture mean- 

ingful information may be necessary. Describing processes, 

these data are present in the manufacture industry, in software 

engineering and in healthcare [1]. To analyze event logs, a data-

driven approach named process mining has been proposed [2]. 

Between data mining and process modeling, event logs are 

impartially used to extra   [3]. 

The French national health insurance database (SNIIRAM)   

is a non-clinical claim database. Containing healthcare reim- 

bursements of almost all French citizens, the amount of data     

is colossal. 66 million inhabitants were part of this database in 

2015 [4]. Among all reimbursement information contained in 

the SNIIRAM, patients’ hospitalizations are provided. How- 

ever,   no  precise  medical  information  such  as  test      results, 
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imaging reports, or vital signs are available.  Nevertheless,  

such a database is useful to map patient pathways [5]–[8], 

perform medical data clustering [9] and prediction tasks [10], 

[11]. Regarding healthcare processes, the complexity is multi- 

fold. Illustrations are, but not limited to, the presence of free 

text, the granularity of  events  analyzed,  and  the  occurrence 

of multiple event simultaneously, leading to multiple codes 

describing a given event. These codes, representing medical 

activities of different types, could be numerous and often in- 

herit of hierarchical structures [6]. Even if the hierarchy could 

be useful to simplify codes and reduce the overall cardinality, 

the choice of the accurate level in order to produce meaningful 

events is not obvious, depends on the pathology or the health 

process studied and often requires a clinical expertise. This 

aspect of complexity is one of the main challenge regarding 

non-clinical claim database, such as the     SNIIRAM. 

Therefore, the main contribution of the present paper is a  

new methodology to analyze the complexity of events and 

produce meaningful labels. Using autoencoding and clustering, 

the proposed method creates artificial labels from initial data. 

These labels are assigned to events, transforming  the  raw  

event log by reducing the overall variability of events. The 

method provides transparency for practitioners by giving an 

interpretation for each created artificial label. In practice, the 

contribution consists of a preprocessing methodology to treat 

this particular complexity of events. As a result, available 

process mining tools1 can be used starting from event logs 

obtained  via  the  proposed methodology. 

This paper is organized as follows. An overview of related 

works is given in Section II. Preliminary notations are pre- 

sented in Section III. Section IV introduces the problem ad- 

dressed in this paper. The proposed methodology is described  

in Section V. To  validate the method, a design of experiments  

is presented in Section VI, followed by a case study based on 

real-life healthcare data in Section VII.  Finally,  conclusions 

and perspectives are given in Section    VIII. 

 
II. LITERATURE REVIEW 

Healthcare data analysis constitutes a large field to test and 

apply a wide spectrum of analytic methods. Among them, 

machine learning and more recently deep learning methods  

have been largely deployed. Electronic Health Records (EHR) 

have permitted the development of new models and methods, 

boosting  the  field  publication  activity  [12],  [13].  Among  

the tasks addressed  by  deep  learning,  supervised  learning  

and  concept  embedding  emerge  for  a  majority  of  studies in 

1Such as ProM, Disco, PM4Py or bupaR. 
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healthcare [14]. In spite of the need to develop high performing 

predictive models, explainability has been highlighted as a key 

issue for future model developments [14], [15]. Valuable for 

practitioners and experts of the medical field, the explanation  

of predictive results has already been addressed by deep  

learning  studies  [16], [17]. 

In addition to supervised learning and concept embedding, 

process mining is also a promising analytic method. By per- 

forming process discovery on event log data, process mining 

algorithms produce graphical and interpretative representations 

of occurring processes. The field is active and recent pub- 

lications are numerous [1], particularly in healthcare [18]. 

Initiatives of the research community to improve practices and 

knowledge sharing illustrate the field activity.2 Recent topics 

addressed are, but not limited to, privacy [19], clinical guide- 

line [20], and data cleaning [21]. Regarding process discovery, 

an optimal procedure to construct process models from raw  

data bases has been proposed by Prodel et. al. in 2018 [6]. 

Applied to healthcare data event logs, the proposed method   

has been adapted to take into account temporal information 

during  the  optimization  process [8]. 

Patients’ pathways analysis based on real-life  healthcare  

data is valuable to represent and understand how patients’ care 

occurs in real-life. Even if deep representation has been ap- 

plied on clinical pathways [22], process mining use graphical 

process models as a support for representation. Thus, it    makes 

 

information. By compressing the data, a transformation of the 

input  representation  is performed. 

Thus, before formally introducing the problem and the 

proposed methodology, preliminary notations are presented in 

the following. 

 
III. PRELIMINARIES 

A formal description of the data involved is provided in the 

following, including events, traces and event    logs. 

Definition 1: Event. Each event denoted e is a couple (c, t, a) 

where: 

• c is the related case ID of the event, with the id function 

id(e) = c returning the case ID of event e; 

• t T  with  T  =  N  or  R  corresponds  to  the  event 

time also called time-stamp, with the event time function 

time(e) = t returning the time-stamp of event e; 

• a is a nonempty set called activity set, each element ai 

a being an  activity. 

Definition 2: Trace. A trace is a sequence of events denoted 

as σ = e1, e2, . . . , em with m N∗ such that time(ek) < 

time(ek+1) and e, e/ σ, id(e) = id(e/). The size of the   

trace  σ  is defined as the number of events in  σ. 

Definition 3: Event log. An event log is a set of traces 

denoted as L = {σ1, σ2, . . . , σn} with n ∈ N∗ . The size of 

the event log |L| is defined as the nu),mber of traces in L. Its 

 
 

data can be complex to analyze, due to the variety of differ-    

ent medical codes used in claims databases (e.g. diagnoses, 

procedures and  drugs). As  a  result,  the  labeling of  events  is 

a challenging step in data processing. A commune practice is  

the definition of labels by hand, based on expert knowledge   

[8]. The detection of hidden healthcare sub-processes has been 

proposed, using Hidden Markov Models (HMM) [23]. The 

presented method allows a reduction of complexity by the 

enrichment of the log with HMM-derived states, reducing 

complexity and saving experts time. A practical solution 

proposed by Prodel et al. in 2018 [6] is the creation of labels 

during the optimization, using the hierarchy of events from one 

type of codes, such as main diagnosis. However, when multiple 

codes from multiple coding systems characterize the events of   

a process, the selection of the right aggregation level and the 

combination of codes is not, to the best of our knowledge, a 

treated problem. 

Therefore, the main contribution of this paper is the proposal 

of a general methodology to treat complex events such as 

multiple medical activities, in order to apply process mining. 

Following the definition of Lenz and Reichert [24], the pro- 

posed method identifies the activities of the medical treatment 

process by analyzing the coded events of the organizational 

processes. The core of this methodology is based on recent 

work in representation learning. A widely used method in 

representation learning is autoencoding [25]. The general idea 

behind autoencoding is the learning of a structure which can 

encode and decode information while minimizing the loss of 

 
2http://pods4h.com/ 

According to the previous definitions, an event log is a  

group of traces, each trace being a succession of events 

characterized by activities occurring at a given time-stamp, 

composing  an  activity set. 

Definition 4: Log activity set. Let L be an event log. The 

log activity set of L is the nonempty set A defined   as: 

•   A = {ai|∃σ ∈ L, ∃e = (c, t, a) ∈ σ, ai  ∈ a} 
•   ∀σ ∈ L, ∀e = (c, t, a) ∈ σ, ∀ai  ∈ a, ∃!Aj  ⊂ A|ai  ∈ Aj . 

Thus, the log activity set is composed of activities encoun- 

tered in L, with every single activity of event log L belonging 

to a unique subset j of . 

Proposition 1: 

A = Aj and Aj = ∅ (1) 

j j 

Proposition 2: 

card(A) = card(Aj ) (2) 

j 

Definition 5: Activity vector. Let e = (c, t, a)  be  an 

event,  the  activity  vector  x of  e is  defined  such  that  x 

EX    = 0, 1  d,  EX   being  the  activity  vector space, with 

d = card( ). A mapping function vect() is also introduced, 

defined as: 

vect : A → EX 

a 1→ vect(a) = x 

with its inverse vect−1 : EX . 

The previously defined functions allow a mapping between 

an  activity  set  and  its  corresponding  activity  vector.      The 

the method suitable to discover patients’ pathways from raw 

data when the focus lies on interpretation. However, medical 

∈ 

http://pods4h.com/


Chapter 3.  

74 

 

 

A 

  1 50 Z511 

L 
L 

⊂ A 

[ ] 

× 

{   } 

A A 
A { } A 

A { } A { } 
A A ∪ A ∪ A 

L 

L 

L 

« 
A 

L 

L 

A 

L 

 

 
3 

 
 

 

       case id time-stamp medical activities  

{Z511; ZZNL053} 
{Z511} 

{Z5101; 9261771} 
{Z511; 9261110} 
{Z511; 9261110} 
{Z511; 9261110} 

{ ; 9261771; ZZNL053}  

(a) Activity set representation. 
 

  case id   time-stamp   Z511   Z5101   ZZNL053   9261771     9261110  

0 0 1 0 1 0 0 

0 10 1 0 0 0 0 

0 20 0 1 0 1 0 

1 0 1 0 0 0 1 

1 5 1 0 0 0 1 

1 20 1 0 0 0 1 

       1 50 1 0 1 1 0  

(b) Activity vector representation. 

TABLE I: Example of an event log of patient pathways. 

 

activity vector x of an event is the equivalent representation of 

an activity set using 1-of-k coding from all possible activities 

from to the activity vector space EX . Therefore, a given 

event e could be defined as e = (c, t, a) or e = (c, t, x) 

knowing vect and vect−1 without any meaning loss regarding 

the log activity set. 

Definition 6: Activity matrix. The activity matrix of an event 

log L is defined as MX  = (xi)i∈  1,len(L)   with dim(MX ) = 

len(L)   d. 

The activity matrix MX of an event log L gives a binary 

representation of activity sets, which is a common representa- 

tion  in  machine learning. 

Example 1: Let us define an event log L = σ1 with one 

trace σ1 = e1, e2 having two events such that e1 = (c1, t1, a1) 

and e2 = (c2, t2, a2) with: 

• A  =   A1  ∪ A2   with  A1   =   {A1, B1}  and  A2    = 

{A2, B2, C2}; 

• case ids c1 = c2 = c; 

• time-stamps t1 = 0, t2 = 10; 

• activities a1 = {A1, B2}, a2 = {A1, B1, A2, C2}. 

According to the previous definitions: 

• d = card(A1) + card(A2) = 5; 

•  x1 = (1, 0, 0, 1, 0) and x2 = (1, 1, 1, 0, 1). 

Example 2: 

Table I presents a short event log related to patient path-  

ways analysis using data as found in  claims database. Each 

row is a hospitalization  event.  Events  with  the  same  case  

ID are ordered by increasing time  stamp  and  represent  a  

trace, which is a patient’s hospitalization history. Medical 

activities are of three different categories: diagnosis, medical 

procedures  and  drugs,  coded  using  standard  notations  ICD- 

10  (International  Classification  of  Diseases  10th       revision), 

CCAM  (Classification  Commune  des  Actes  Médicaux)  and 

UCD (Unite  ́Commune de Dispensation), respectively. Accord- 

ing to previous definitions, =  diag med.proc. drugs, 

with diag  =   Z511; Z5101  , med.proc.  =   ZZNL053    and 

drugs = 261771; 9261110 . Moreover, d = card( diag ) + 

card( med.proc.) + card( drugs) = 5. Representation using 

activity set and its equivalent using activity vector are pre- 

sented in Table  Ia and Table  Ib,   respectively. 

Thus, event log notations as well as activity vector and 

matrix formalization have been introduced. The following 

definitions  introduce  the  problem setting. 

 
IV. PROBLEM DEFINITION 

Definition 7: Label function and set. Given an event log L,    

a label function λ is a function such that: 

λ : A → L (3) 

with being  the  label set. 

The label function maps activities of an event log L to    ,       

a set of possible labels for each activity vector. 

Definition 8: Explaining function. Given an event log L and 

its label set L, an explaining function η on L is a function: 

η : L → A (4) 

The explaining function allows a mapping of a label l to 

interpretative elements a from the log activity set : a          . 

Definition 9: Activity clustering problem. Lets L be an event 

log with its log activity set A and its activity matrix MX , with 

dim(MX ) = len(L) × d. The activity clustering problem on 

L is defined as the search of the triple (L, λ, η) such that: 

• L is a label set, L = ∅; 

• Kmin ≤ card(L) ≤ Kmax, with Kmin, Kmax ∈ N∗ ; 

• Kmax  « d; 

• λ is a label function; 

• η is  an  explaining function. 

The main objective here is to find an accurate triple ( , λ, η) 

for the considered event log L. This problem can be seen as a 

clustering problem, with being the set of cluster labels and 

λ the clustering function. The particularity here is for the input 

data MX to be sparse and of high dimensionality d in terms 

of  features.  The label set  should be finite,  its cardinality 

(number of elements) being reasonable. A high cardinality of 

will induce difficulties in process mining readability, also 

encouraging overfitting regarding . This consideration leads 

to the proposed upper bound condition Kmax d. But a small 

cardinality for the label set will lead to a lack of information 

and medical meaning, motivating the lower bound Kmin. 

Moreover, as explainability is an essential constraint when 

dealing with medical pathways analysis, elements of should 

keep a medical meaning, justifying the search of the explain 

function η. Given these considerations, it is assumed in this 

paper that there exist some relevant clusters hidden in medical 

activities of event log L. This assumption suggests that some 

combinations of elements of  which could characterize well 

a sufficient number of events e could be    found. 

In the following, a methodology based on autoencoding is 

proposed to find a relevant label set and a label function from    

a given event  log. 

 
V. PROPOSED METHODOLOGY 

A. Overview 

To solve the  activity  clustering  problem  for  an  event  log 

L and find an accurate triple ( , λ,  η),  an  autoencoding  

method  is  proposed.  The  idea  is  to  transform  space      data 

0 0 
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from EX to a latent space EZ of reduced dimensionality, 

where similar elements are close to each other. This trans- 

formation is done using an autoencoding architecture, with 

an  encoder  f : EX EZ   and  a  decoder  g : EZ EX . 

In the latent space, because the dimensionality is reduced, 

applying clustering methods is meaningful. Latent clustering 

is proposed to assign for each element z a label through a 

function  h : EZ   → L.  Thus,  cluster  labels  defined through 

3) Variational autoencoder: A variational autoencoder  

(VAE) is a particular autoencoder where the learned variables 

are parameters of a distribution. The encoder f is an inference 

network q(x z) and the decoder g a generative network p(z x). 

The reparameterization trick makes the training of the network 

possible using gradient descent optimization. The loss function 

here  is  the  inverse  of  the  expected  lower  bound       ELBO 
defined  as  ELBO  =  Eq(z|x)   log 

p(x,z)  
.  In  practice,    the 

clustering in latent space will constitute the  label set defined 
in  Definition 7: single  sample estimate 

q(z|x) 

log p(x|z) + log p(z) − log q(z|x) with 

z    sampled from the inference network is optimized [26]. 
 

vect(a) f (x) h(z) 

λ : A − − → EX  − −→ EZ −→ L (5) 
C.  Latent  space clustering 

To construct the explaining function η, the function h−1 : 

EZ first returns for each cluster label l, the set of 

corresponding vectors in latent space Zl. Then, each activity 

z Zl  can be decoded from EZ  to EX  using the decoding 

function g learned during the autoencoder training phase. This 

results in a set of activity vectors Xl, from which an average 

vector  X̄l  is  computed.  Finally,  X̄l  is  interpreted  as  a  set  of 

activities  using  vect−1 function: 

Once an autoencoder is trained using activity matrix, a 

representation of  every  activity  vector  in  latent  space  EZ  

can  be  obtained.  In  EZ ,  observations  are  characterized  by  

a reasonable number of continuous features. As a result, 

applying clustering in this space is meaningful. K-means 

algorithm  is  used  to  learn  the  function  h   :  EZ and 

create K clusters of similar observations in latent space. The 

parameter K corresponds to the final number of labels in L : 
 

h−1 η : L 
 
(l) E 

 
g(Zl ) E 

 
vect−1

 

 
(X̄l ) A (6) 

K = card( ), respecting Kmin K Kmax (Definition 9). 
To  find  such  an  accurate  value  of  K,  one  possible criterion 

− − → Z  − −→ X − − − −→ 
could be to maximize the mean silhouette score [27], defined 

Consequently, the proposed method is composed of three 

steps: (1) autoencoder training, (2)  latent  space  clustering,  

and  (3)  clusters’  related  activities  decoding.  These  steps are 

as: 

S =   
1 \ bz − az  

 

 
(7) 

presented in more detail in the following     sections. 

 

B. Autoencoder training 

 

with 

len(L) max(az , bz ) 
z∈MZ 

 
To perform clustering on sparse, binary, high-dimensional 

activity vectors, the data is transformed into a new space where 

variables are continuous and the dimensionality is lower. This 

transformation is performed using an autoencoder, trained on  

an activity matrix. In this paper, three methods for autoencoder 

training  are investigated. 

1) Autoencoder: An autoencoder  (AE)  is  composed  of  

two functions f and g, named the encoding and decoding 

functions, respectively. The encoder transforms a vector  x  

from the input space into a new vector z from the latent space, 

its dimensionality being drastically reduced. The decoder takes 

the vector z from the latent space and decode it back to the 

input space, resulting in a new vector x/. The training of a 

classic autoencoder is done by minimizing the reconstruction 

error, usually the binary cross entropy loss function. The 

dimensionality reduction allows a concentration of information 

while keeping the useful information in latent space for the 

reconstruction of input data. In this paper, encoder and decoder 

are constructed using symmetric feed-forward, fully connected 

neural networks. 

2) Denoising autoencoder:  A  denoising  autoencoder 

(DAE) is constructed using the same architecture as for an AE. 

A noisy vector x̃ is created from x, which is encoded and then 

decoded. The loss function remains unchanged, while the goal 

of training is to be robust against artificially added noise and to 

keep useful information to decode data without noise. 

• az : the mean distance between z and all other points of  

the  same cluster; 

• bz : the mean distance between z and all other points of  

the  nearest  next cluster. 

 

D.  Clusters’  activities decoding 

Once the latent space clustering has constructed a function   

h : EZ , the label function  λ :  is fully defined. A 

label is assigned to each activity set of event log L, which can 

be used in the final process model as a node label. To construct 

the  explaining  function  η : ,  a  methodology  based 

on the decoding of each cluster’s activities is proposed. The 

hypothesis formulated here is that for each cluster defined in 

latent space EZ , averaging the output of its activities decoding 

gives an overview of the cluster’s meaning. In practice, the 

vect−1 function needs a threshold to convert an activity vector 

into decoded activities. The analysis of activity  vectors  can 

lead to a judicious choice for the threshold, as presented in 

Remark  1,  Section VI. 

To summarize this section, the presented methodology al- 

lows for the analysis of activity sets from event logs and  

defines a set of labels that can be used for process mining.   

Each event  of  the  event  log  has  a  label  defined  through  

the label function, λ, and every label is interpreted by the 

explaining function η. A summary of preliminary notations is 

proposed  in  Table II. 
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TABLE  II:  Notations summary. 

 

VI. DESIGN OF EXPERIMENTS 

In this section, a design of experiment on synthetic data is 

presented. The objectives of such an experiment are multiple: 

(1) to verify the accuracy of the methodology in identifying 

hidden patterns (clusters) in event logs; (2) to demonstrate the 

veracity of the decoder in explaining clusters’ labels; (3) to 

compare performances of autoencoding methods with direct 

clustering on sparse data; and (4) to benchmark autoencoding 
methods  with  one another. 

𝑁 
 
 
 
 
 
 
 
 
 
 

𝑀 

 

Fig. 1: Example of generated data. Here, κ = 5, α = 0.05, β 

= 2 and γ = 0.1, leading to S̃ = 0.9 with each white pixel 

being a value of 1 and black pixels being a value of  0. 

 

events was generated. These noisy events were composed of 

activities among all possible activities in the constructed data 

set, with no particular pattern related to a given hidden label k. 

As a result, the total number of traces (i.e. the number of  rows) 

is  N  = Nnoisy + 
),κ 

Nk. The parameters that have been 

A. Data description 

The input data used in this paper are event logs, composed   

of events for which accurate labels are searched, according to 

the problem defined in Definition 9. Thus, labels hidden in the 

data were represented using groups of activities, among which 

vectors will be generated. Such a construction was motivated  

by data experts observations regarding non-clinical  claims  

data: similar hospitalizations are often described by codes from 

a same “set”, which can be approximated using clinicians 

knowledge. As an example, a stay for a given operation can be 

fill in the database using one code representing the operation, 

another for medical imaging procedures, some codes related to 

particular diagnosis related to complications of the operation   

or to the medical condition of the patient. Thus, there exist 

similarities between two stays for the same operation, because 

some codes are issued from a same “set”, but they are rarely 

identical. 

Considering these remarks, synthetic data were generated 

representing an activity matrix as defined in Definition 6,  

where each row represented an activity vector  and  each  

column a 1-of-k representation of activities. The number of 

different labels hidden in the data (i.e. the number of clusters   

to  find)  is  referred  to  as  κ.  For  each  label  k         1, κ    , 

Nk  vectors  were  generated  such  that Nk   = (µN , 
µN  ), µ =   2500 .  The  number  of  characteristic activities 

chosen in the design of experiments lead to an approximated 

sparsity S̃ between 0.9 and 0.99. An example of synthetic data 

generated is presented in Figure    1. 

 
B. Experiment  description 

The autoencoder methods AE, DAE, and VAE, presented in 

Section V-B, were implemented and compared in terms of per- 

formances. Neural networks used are feed-forward networks, 

composed of four fully connected layers of size 10    dlatent, 

5     dlatent   and  dlatent,  the  latter  being  the  dimensionality 

of  the  latent  space  defined  as  dlatent   =  8.  For  DAE,  noise 

was defined as randomly selecting elements in vectors and 

changing their values (from 0 to 1 or 0 to 1). 1% of noise is 

added in every vector. For VAE, dlatent  couple of parameters 

of Gaussian distributions were learned as latent variables. The 

inverse single sample Monte Carlo estimate of the ELBO was 

used as the loss function to minimize during training. For 

each parameter combination of the data, autoencoder training 

was done using a symmetric architecture between the encoder 

and the decoder. Dropout and L-2 regularization were used 

for each layer to prevent the training from overfitting. The 

chosen optimizer for training was Adam, with mini-batch of 

size 32. The total number of epochs was set to 1000. Of the 

overall data, 80% was used for training, while 20% was kept to evaluate validation error for early stopping (with a patience    of 
N κ for 

each label k is referred to as M C ∈ N∗ , constructed such 

that  M C    =   N (µC , )  with  µC    =  α × β × µN .    The 

25 iterations). After autoencoder training, K-mean clustering   

in  latent  space  was  applied  using  all  training  and validation 

number  of  all  different  activities  involved  is  referred  to  as data, K being fixed by maximizing mean silhouette score for 

M . For each activity vector of a given label k, a number    

M a = α µN N∗ of activities was randomly chosen to 

construct it. The number M a corresponds to the number of 

activities randomly chosen among characteristic activities. For 

these activities, the corresponding attribute value was set to 1, 

keeping 0 otherwise. An overlapping ratio γ is also introduced, 

representing the quantity of activities of a label shared with 

the nearest one. Moreover, a number Nnoisy  = 250 of    noisy 

with Kmin = 2 and Kmax = 15. 

Performances were evaluated regarding clustering on  the  

one hand, and explainability on the second hand. To evaluate 

clustering performances,  an  automatic  procedure  constructed 

a confusion matrix between hidden labels  and  found  clus-  

ters, maximizing the accuracy (the sum of the diagonal) by 

permuting columns only (found clusters) to align proposed 

clusters with potential corresponding ones in hidden ones.   The 

name 
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notation 

ai 
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log activity set 
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accuracy of resulting confusion matrix was then computed, 

defined as the ability of a method to  accurately  assign  the 

right label to each event. To evaluate  the  ability  of  the  

method to explain found clusters, the explaining F -score Fη is 

introduced. Let k 1, κ = Ktrue be the label of the cluster 

hidden in data, and c : k c(k)  Kpred  being  a  function 

returning the corresponding cluster label according to previ- 

ously described confusion matrix  optimization.  The  average 

of  decoded  elements  from  the  cluster  c(k) is  computed, and 

its  activity  set  a
pred   

is  compared  to  characteristic   activities 

of the corresponding label atrue. To quantitatively analyze the 

decoding performances, the explaining F -score is defined such 
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Fig. 2: Schematic representation of the design of    experiments. 

plaining recall and 
pred a
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apred 

the explaining 
 

η 
pred  card(a

pred 
) sparse high-dimensional space (except regarding experiments 

  
classification metrics. A high explaining recall means a high 

ability of the explaining function to find corresponding activi- 

ties with hidden activities of the identified labels. Furthermore, 

a high explaining precision corresponds to a decoding that 

keeps interesting activities without being too general. Ideally, 

each discovered label corresponds to  a  hidden  one.  This  is 

not necessarily the case, as the number of discovered and  

hidden clusters could be different. Fewer predicted than hidden 

clusters will impact the explaining recall, and more predicted 

than true clusters will impact explaining     precision. 

Remark 1: As mentioned in  Section  V-D,  the  threshold  

will have significant impact in the previously defined metrics. 

In the design of experiments conducted here, an automatic 

approach  was  used.  For  a  cluster  l,  a  list  of  all      decoded 

values from the average decoding vector X̄l  was constructed. 

All elements of this list  were  ordered  in  descending  order. 

By differentiation of this curve another list of values was 

obtained. The minimum value of  the  resulting  curve  was  

used to automatically define a judicious threshold for keeping 

activities in the explaining set of the related cluster. 

For every combination of parameters, 10 data sets were 

constructed. Columns (activities) were shuffled,  right  before 

the shuffling of rows (events). The proposed method was 

applied using the previously described autoencoders (AE, DAE 

and VAE) as well as a direct K-mean clustering without 

autoencoding step, tested as a baseline (referred to as BASIC). 

Performances were analyzed through mean and standard devi- 

ation of clustering and explaining metrics. All algorithms and 

experiments were conducted using Python 3.7 and   Tensorflow 

1.14. A schematic description of experiments is presented in 

Figure 2. 

 
C.  Results 

Results3 are summarized in Table III. A total of 24 ex- 

periments of increasing difficulty were conducted. For each 

combination  of  parameters,  the  accuracy  and  the  Fη  score 

of the tested methods are presented. Results show that the 

autoencoding   methods   outperform   the   direct   clustering in 

3Detailed results regarding the design of experiments of Section VI, as  

well as the case study described in Section VII can be found as supplementary 

materials on the following website: https://artemis-emse-laparo.hevaweb.com/ 

autoencoding plays an  important  role  in  data  transforma-  

tion for the proposed methodology. Furthermore, the results 

highlight that VAE always outperforms the other methods 

regarding both accuracy and Fη . Event though the standard de- 

viation increases for difficult experiments, VAE shows a lower 

variation compared to the other methods. As a conclusion, 

results motivate the choice of VAE as part of the proposed 

method to obtain accurate clusters and explain them. 

 
VII. CASE STUDY 

After proving the accuracy of the method on synthetic data, 

this section is dedicated to demonstrate the relevance of the 

method on real healthcare data. In that  purpose,  a  medical  

case study is presented, were process mining was deployed to 

extract knowledge about patients’ hospital    pathways. 

 
A. Overview 

A laparotomy is an abdominal surgery consisting of a large 

incision of the abdomen, sometime necessary to investigate 

abdominal pain. Incisional hernia (IH) is one of the possible 

complications following laparotomy. These complication con- 

sists in a protrusion of  the  tissues  of  the  abdomen  through 

the abdominal muscle. The repair on an IH is a common 

surgery, which can lead to chronic pain and decreased quality  

of life. Colorectal surgeries, bariatric surgeries and abdominal 

aortic aneurysm are laparotomy surgeries that may lead to IH 

[7]. In this  case  study,  we  focused  on  patients  developing  

an IH after a laparotomy operation. The  objective  was  to  

apply the previously defined methodology to label raw medical 

event logs before applying process mining. A process mining 

study using manual labeling was also performed, to illustrate  

the relevance of the methodology to automatically define 

interesting labels. 

 
B. Methods 

The data4 were extracted from the SNIIRAM database. All 

anonimized patients with a first laparotomy operation in  2010, 
 

4Access to an extraction of the SNIIRAM database was provided by the 

French CNIL under the agreement number DR-2019-147. 
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where  DAE  performances  are  inferior). Therefore, 
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κ 

 
Exp. 

α 

 

 
β 

 

 
γ 

 
BASIC 

AVG     STD 

ACCURACY 

AE DAE 

AVG      STD     AVG     STD 

 
VAE 

AVG     STD 

 
BASIC 

AVG     STD 

Fη 

AE DAE 

AVG      STD     AVG     STD 

 
VAE 

AVG     STD 

1 5 0.05 2 0.00 0.55 0.06 0.66 0.16 0.71 0.05 0.90 0.01 0.71 0.13 0.80 0.27 0.95 0.11 1.00 0.00 

2 5 0.05 2 0.10 0.55 0.09 0.66 0.16 0.71 0.08 0.89 0.01 0.68 0.17 0.82 0.32 0.95 0.14 1.00 0.00 

3 5 0.05 2 0.25 0.56 0.07 0.68 0.16 0.72 0.04 0.89 0.03 0.71 0.17 0.82 0.25 0.92 0.12 0.97 0.09 

4 5 0.05 5 0.00 0.38 0.06 0.59 0.16 0.61 0.18 0.85 0.03 0.37 0.14 0.73 0.27 0.77 0.31 1.00 0.00 

5 5 0.05 5 0.10 0.37 0.04 0.68 0.14 0.57 0.18 0.86 0.03 0.37 0.11 0.83 0.26 0.67 0.37 1.00 0.00 

6 5 0.05 5 0.25 0.43 0.06 0.59 0.19 0.63 0.15 0.85 0.01 0.47 0.13 0.67 0.35 0.80 0.29 1.00 0.00 

7 5 0.10 2 0.00 0.51 0.07 0.69 0.13 0.70 0.07 0.88 0.01 0.65 0.13 0.86 0.23 0.91 0.15 1.00 0.00 

8 5 0.10 2 0.10 0.52 0.07 0.63 0.16 0.70 0.08 0.89 0.01 0.63 0.15 0.80 0.27 0.93 0.16 1.00 0.00 

9 5 0.10 2 0.25 0.54 0.09 0.68 0.16 0.70 0.12 0.88 0.01 0.69 0.13 0.84 0.25 0.90 0.20 0.94 0.12 

10 5 0.10 5 0.00 0.39 0.07 0.57 0.16 0.64 0.15 0.82 0.02 0.40 0.08 0.68 0.26 0.77 0.25 1.00 0.00 

11 5 0.10 5 0.10 0.36 0.05 0.60 0.18 0.69 0.13 0.83 0.01 0.36 0.07 0.72 0.25 0.90 0.25 0.97 0.10 

12 5 0.10 5 0.25 0.45 0.09 0.64 0.17 0.63 0.17 0.84 0.02 0.41 0.16 0.79 0.27 0.80 0.28 1.00 0.00 

13 10 0.05 2 0.00 0.50 0.06 0.61 0.18 0.62 0.15 0.87 0.04 0.62 0.10 0.72 0.29 0.84 0.24 0.98 0.06 

14 10 0.05 2 0.10 0.54 0.06 0.62 0.22 0.66 0.14 0.88 0.02 0.71 0.09 0.73 0.37 0.88 0.25 0.97 0.10 

15 10 0.05 2 0.25 0.53 0.14 0.61 0.22 0.38 0.23 0.86 0.02 0.72 0.20 0.76 0.35 0.44 0.37 0.94 0.11 

16 10 0.05 5 0.00 0.22 0.05 0.45 0.24 0.70 0.04 0.82 0.04 0.22 0.10 0.48 0.37 0.93 0.09 0.95 0.06 

17 10 0.05 5 0.10 0.23 0.07 0.39 0.21 0.52 0.23 0.83 0.02 0.24 0.16 0.36 0.33 0.61 0.35 0.96 0.05 

18 10 0.05 5 0.25 0.22 0.04 0.31 0.20 0.42 0.23 0.83 0.02 0.17 0.08 0.24 0.30 0.41 0.38 0.93 0.05 

19 10 0.10 2 0.00 0.46 0.08 0.58 0.19 0.66 0.04 0.86 0.03 0.58 0.11 0.65 0.26 0.89 0.13 1.00 0.00 

20 10 0.10 2 0.10 0.50 0.05 0.58 0.17 0.61 0.17 0.86 0.02 0.72 0.08 0.75 0.30 0.81 0.27 0.97 0.10 

21 10 0.10 2 0.25 0.51 0.11 0.53 0.22 0.44 0.22 0.86 0.02 0.69 0.21 0.68 0.36 0.52 0.38 0.94 0.12 

22 10 0.10 5 0.00 0.20 0.02 0.32 0.19 0.53 0.19 0.82 0.02 0.16 0.05 0.31 0.27 0.65 0.33 0.95 0.05 

23 10 0.10 5 0.10 0.21 0.03 0.32 0.18 0.49 0.24 0.82 0.02 0.17 0.07 0.30 0.24 0.61 0.41 0.92 0.06 

24 10 0.10 5 0.25 0.24 0.06 0.33 0.17 0.50 0.20 0.80 0.04 0.21 0.10 0.28 0.31 0.56 0.31 0.89 0.09 

 

TABLE III: Clustering and explainability performance, measured by accuracy and Fη , respectively. For all parameters 

combinations, average and standard deviation over 10 replications are presented. Best values are highlighted in bold. 

 
 

 

followed by an IH within 5 years after the operation were 

selected. This resulted in a total number of 7, 906 patients 

included in the study, for which all hospitalization information 

was extracted. Each patient’s hospitalization was transformed 

into a trace of his ordered medical activities. Thus, the activity 

set was structured as   follows: 

  Cluster label Activity label Set (level)  

2 Postoperative venting of the anterior abdominal wall     MP (lvl.   4) 

  Ventral hernia MD (lvl. 2)  

6 Diagnostic acts on the  circulatory system MP (lvl. 2) 

Diagnostic acts on the  digestive system MP (lvl. 2) 
 

  7 Therapeutic acts on the  digestive system MP (lvl. 2)  

10 Endoscopy of the alimentary canal MP (lvl. 3) 
 

 

12 Radiography of the digestive system MP (lvl. 3) 
 

 

 

 
where: 

A = AMD 

1 
AAD 

1 
AMP 1 

AD

 

1 
ATAD (8) 

13 Encounter for attention to  artificial openings MD (lvl. 2) 

  Therapeutic acts on  the colon MP (lvl. 3)  

14 Therapeutic acts on digestive system  MP (lvl. 2) 

Therapeutic acts on  the anus MP (lvl. 3) 

Therapeutic acts on the  abdominal wall  MP (lvl. 3) 

• MD   is  the  set  of  main  diagnoses,  the  reasons  of   the 
hospitalization  (MD,  using  ICD-10  coding system); 

• AD is the set of additional diagnoses (AD, using ICD-10 

coding system); 

• MP is the set of medical procedures (MP, using French 

CCAM  coding system); 

• D is the set of delivered drugs (D, using French UCD 

coding system linked to ATC - Anatomical Therapeutic 

Chemical  - classes); 

• TAD   is the set of drugs under temporary authorization   for 

delivery in French hospitals (using French LPP - Liste des 

Produits et Préstations - coding system). 

Moreover, for each activity code, hierarchical knowledge  

(codes of upper levels in the hierarchy) was added as part of   

the corresponding activity set. This procedure enables relations 

between activity codes of a same group during autoencoding.   

It also enriches the explainability of clusters, by providing 

hierarchical knowledge and setting the level of precision in 

coding depending on clusters, as shown in the following  

results. 

Stays related to dialyses or chemotherapy, which are known 

to appears very frequently, have been filtered. Codes appearing 

less than 50 times were also filtered, resulting in keeping  

95.0% of codes while decreasing the size of the log activity 

 

 

 

TABLE IV: Explanation of clusters appearing on process  

model: relevant decoded activities with corresponding activity 

set and level in the   hierarchy. 

 

set by 85.7%. The final event log constructed for the study 

contained, for 7906 traces (patients), 57533 events (stays) and 

2228 unique activity codes. The previously defined method- 

ology was conducted on the resulting activity matrix (of size 

57533 2228), using VAE as autoencoder. The number of 

clusters used was K = 15, which qualitatively appears as      

a wise trade-off between explainability of clusters and final 

process model readability. The process mining framework 

used was the one proposed in [8], designed for application   

to medical event logs. The maximum number of nodes, edges 

and positions for process model optimization was fixed to 15, 

25 and 5, respectively. 

 
C. Results 

Results obtained by automatic labeling (Figure 3a) were 

compared with a process model of the same dimensionality, 

constructed with the same process mining procedure but    start- 
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(a) Automatic labeling. (b) Manual labeling. 

Fig. 3: Comparison of process models obtained using automatic labeling (left) vs manual labeling (right). 

 

ing from an event log with manually defined labels according  

to authors’ prior knowledge about the pathology (Figure 3b). 

The process models read from  left  to  right,  the  size  of  

nodes and edges being, for each process model, proportional   

to the number of patients represented. Explanation results 

regarding clusters obtained and visualized in Figure 3a are 

detailed in Table IV. According to Figure 3, similarities are 

observed between the process models. Most frequent medical 

procedure codes related to laparotomy  are  subcategories  of  

the “Therapeutic acts on the digestive system” code in the 

hierarchy. Thus, the related cluster (label 7) appears at the 

beginning of the pathways. Label 2, which contains codes 

related to IH, appears in the following of the pathway, as well 

as label 14 (combining codes related to laparotomy and IH). 

Also, stays related to diagnostic procedures (labels 6 and 12) 

and more precisely to an endoscopy of the alimentary canal 

(label 10) occupy a significant place in the process analyzed. 

These stays were not considered during manual labeling but 

were pointed out by the automatic labeling procedure based on 

raw data. They may be related to patient’s medical control or 

investigation regarding suspicion of complication after opera- 

tion. This example illustrates that other interesting information 

can be extracted from raw data with minimal initial input from 

the user. However, by comparing the replayability score (which 

gives a quantitative fitness measure of the resulting process 

models), a gap was observed  between  automatic  (42, 7%)  

and manual (77.4%) labeling. The main explanation may be 

provided by the first laparotomy node (representing 3, 802 vs 

7, 906 patients, respectively). In practice, 549 different medical 

procedure codes, from different chapters of  the  hierarchy,  

were selected by medical experts  to  identify  laparotomy  in  

the database. Even if most of the codes are gathered in label     

7, remaining laparotomy stays were grouped in other less 

frequent clusters, which do not appear in the final process  

model  because  of  the  size  constraint  in  optimization.  Thus, 

even if a quantitative replayability gap remains between the   

two presented methods, the qualitative interpretation resulting 

from the pathway analysis remains similar, as most of the 

interesting events were pointed out. Moreover, the final process 

model and the explanation of clusters furnish  an  interesting 

base for discussion with medical    experts. 

VIII. CONCLUSION 

In  this  paper,  a  methodology  to  handle  the  complexity  

of event logs regarding activities was presented. Based on 

autoencoding, artificial  labels  to  characterize  these  events  

are created, which can be used to apply process mining. 

Explainability of each label is possible through decoding,  

which allows the practical application of this method in fields 

like healthcare where transparency is essential. A design of 

experiments was presented, designed to mimic non-clinical 

claims databases regarding authors’ knowledge. The ability of 

the method to both create relevant clusters and explain them 

accurately was demonstrated. In particular, the Variational 

Auto-Encoder shows better performances than others tested 

autoencoders, motivating the use of such learning methods for 

further applications. Finally, a case study has been presented, 

illustrating the potential of the methodology when applied on 

real healthcare data. The presented method sounds promising  

as a preprocessing  solution  for  process  mining,  to  handle  

the complexity of medical activities in non-clinical claims 

databases and of other similar    databases. 

Further work will focus on the deployment of the method     

in new case study, to experience the method and generalize its 

utilization. Particularly, a focus on providing interactive tools   

to explore the results and facilitate discussions with clinical 

experts will be made. As the complexity  of  medical  event  

logs depends on the database, other complexities could be 

considered in further studies. As an example, the integration    

of free text with structured medical information to create per- 

tinent medical labels could be interesting to consider in future 
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works. As noted by Helm et al [28], a lack of sufficient coding 

in existing case studies remains. Therefore, addressing such 

complexities in the method will be interesting  for  practical  

uses on case studies with insufficiently coded data. Also, the 

present methodology is a preprocessing step, applied before 

deploying a process discovery algorithm (in our  example,  

based on optimization). An interesting subject could be the 

fusion of both steps, by integrating the labeling step directly 

during the optimization procedure of creating the final process 

model. Also, as the K-mean algorithm was used to perform 

clustering in the latent space, future work will focus on testing 

other clustering algorithms. On a larger scope, future works 

will focus on the use of the proposed methodology to perform 

supervised learning on  complex  event  logs.  The proposal  of  

a transparent classification algorithm is of interest,  particu- 

larly for patients pathways data. Furthermore, the bridging of 

process mining and deep learning is an interesting research 

track. The use of recent advancements in deep learning for 

process analysis and prediction seems promising, in particular  

if process mining is used as an interface between model 

learning  and  human understanding. 
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3.4 Conclusion 

In this chapter, a preprocessing method for the labeling of complex event logs is presented. 

In the context of complex macro-medical events, this method is able to learn a useful 

representation of stays including all available codes and relative hierarchical information. 

The latent representation of stays is useful to perform clustering, and shows satisfying 

performances in finding hidden clusters represented by sparse vectors. A case study on 

laparotomy was presented, validating the use of the method in a real case study. An 

interactive tool was also developed as a proof of concept, which is available online.  Such  

an interactive tool can be useful throughout all phases of case study, in order to discuss 

primary results with medical experts. The proposed preprocessing method as well as the 

proposed interactive tool are not designed to perform full end-to-end studies but to enrich 

discussions with medical experts by presenting data-driven results. 

A limitation regarding the integration of this preprocessing method with the previously 

defined process mining method should be discussed. In Chapter 2, the process mining 

approach uses an event log with predefined labels and performs process discovery using an 

optimization process. Automatic labeling as a preprocessing step can be well integrated  

into the method. However, future work could study the integration of automatic labeling 

directly during the optimization process, as performed by Prodel et al. when choosing the 

right hierarchical level during optimization [160]. Furthermore, future work should focus 

on deploying the method for future process mining studies using health data to test the 

robustness of this methodology. 

It can be concluded that the presented work improves event representation and infor- 

mation processing for process mining. As performing prediction is the main objective of 

this thesis, the next chapter introduces an optimization-based method for classification 

which is constructed using the formalism defined in Chapter 2. 
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4.1 Motivation 

The main objective of the work presented in this chapter is the design of a predictive model for 

patient pathway data in the form of event logs. When data is organized in event logs,  

process mining provides a set of tools useful to model this input data. This is particularly the 

case when considering explainability as a necessity for predictive models, as the result- ing 

process model could serve as a support to explain predictions. In Chapter 2, grid and time 

grid process models were introduced to model patient pathways and incorporate time during 

process discovery optimization. In Chapter 3, a method for the labeling of complex medical 

events with multiple activities was presented. As a result, the previous chapters leverage 

challenges in time modeling and complex medical labeling. These contributions were first 

demonstrated in the context of process discovery. The present chapter employs the previous 

contributions in the context of of predictive modeling of event logs, more precisely the 

classification of traces.  The motivation here is to extract pathway-related information  

which may influence the occurrence of a particular outcome. Such patterns are the 

occurrence of certain events, the transition from one event to another, or a specific time 

period occurring between two events. Using the process models introduced in Chap- 
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ter 2, such distinctive patterns are highlighted in the formalism and in the optimization 

process. 

 
4.2 Summary 

A new problem is presented in the following work, which is the problem of supervised 

classification of timed event logs of two classes: positive and negative population. In 

healthcare, this problem is recurrent in the literature, to detect patients with a given risk,   

to identify long LOS patients, or to predict readmission. Moreover, emphasis is put on the 

explainability of such predictions.  In order to predict and explain the results of learning    

at the same time,  the main idea is to determine a process model that agrees well with      

the positive traces and poorly with the negative ones.  To  do so,  event  log classification     

is introduced as an optimization problem for the determination of a process model that 

maximizes its replayability for the positive population and minimizes its replayability for 

the negative population. Based on the process discovery objective function introduced in 

Chapter 2, a new objective function is presented, adapted for binary classification. The  

same optimization process using a tabu search is used to solve this problem. An evaluation 

of the proposed method is performed on unbalanced synthetic data of various complexity. 

Performances are compared to different machine learning methods applied to features ex- 

tracted from the event log. Results show the ability of the proposed method to accurately 

classify unbalanced data, outperforming other machine learning methods combined with an 

oversampling strategy and hyperparameters tuning. Moreover, qualitative results were 

analyzed, using the resulting process models which produce a graphic representation of 

distinctive patterns extracted from the positive traces. 

The work presented was first presented as a poster at the 2019 Data Science Summer 

School  (DS3).  This poster is presented in Appendix  C. 
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4.3 An Optimization-based Process Mining Approach for Ex- 

plainable Classification of Timed Event Logs 

H. De Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel and X. Xie, “An 

optimization-based process mining approach for explainable classification of timed event 

logs”, 2020 IEEE 16th International Conference on Automation Science and Engineering 

(CASE),  pp.  43-48,  2020, https://doi.org/10.1109/CASE48305.2020.9216841. 
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An optimization-based process mining approach for explainable 

classification of timed event  logs 

Hugo De Oliveira1,2, Vincent Augusto1, Baptiste Jouaneton2, Ludovic Lamarsalle2, 

Martin  Prodel2  and  Xiaolan Xie1,3
 

 

Abstract— This paper addresses the problem of supervised 

classification of time event logs of two classes: positive and 

negative population. The key idea of this paper to explain 

classification is to determine some process model  that  fits  

well the positive event logs and poorly the negative  ones.  

More specifically, we introduce formal definitions of event logs, 

process models and a replayability score that measures the 

fitness of a process model  for  a  given  event  log.  We  then  

set the event log classification  as  an  optimization  problem 

for the determination of a process model that maximizes its 

replayability for the positive population and minimizes its 

replayability for the negative one. A tabu search algorithm is 

then proposed to solve this problem. The proposed algorithm is 

compared with three state-of-the-art classification algorithms on 

test cases of various complexity. It is shown to provide superior 

performances and a graphic representation of the process model 

of the positive event logs. 

I. INTRODUCTION 

Data is a powerful resource. Different structures of data  

can be found, within a large spectrum of complexity. In the 

field of supervised learning, machine learning algorithms for 

classification have been widely used. The paradigm for state- 

of-the-art classification algorithms is matrix-shaped input  

data: each observation (row) is a vector of features (column). 

Once trained, classifier’s predictions for new observations are 

based on feature similarity with training     observations. 

However, when data is structured in event logs, each 

observation is an ordered list of events and no  longer  a  

single vector of features. Distinctive characteristics (patterns) 

can be of different types, as for example a special event’s 

occurrence, an event preceding another or a typical time 

between two events. Data engineering exists in order to 

transform an event log into a feature matrix (“flattening” 

process). This data preprocessing step is challenging because 

potential distinctive patterns of the event log data need to be 

kept for the classifier. Furthermore, it might lead to high 

dimension and sparse matrices, especially when considering 

time  between events. 

Even if predictive performance is the predominant crite- 

rion for model approval, human understanding is a key lever 

for  acceptance  and  practical  application  of  decisions.  This 

1H. De Oliveira, V. Augusto and X. Xie are with Mines Saint- É tienne,  

Univ  Clermont  Auvergne,  CNRS,  UMR  6158  LIMOS,  Centre CIS,  F  -  
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3X. Xie is also with the Antai College of Economics and Management, 
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is the case in healthcare, where the identification of patients 

with pathways being suspicious of developing future medical 

complications is valuable. It offers the opportunity to identify 

at-risk patients and to respond with  personalized  medical  

care and prevention. However, ensuring a high predictive 

performance is challenging, as patients’ pathways are com- 

plex: high number of different medical events, variability of 

pathways’ length, variability of time between events... The 

imbalance between groups of patients with and without a 

given complication is also a recurrent problem. Even if some 

preprocessing methods such as over/under-sampling exist in 

the literature, performances can be substantially     impacted. 

To tackle these scientific challenges, we propose in this 

paper an explainable method for classification of time event 

logs of two classes: positive and negative population. The 

main idea to predict and explain is to construct a process 

model that fits well the positive event logs and poorly the 

negative ones. The proposed framework which relies on time 

grid process models [1], has the following characteristics: (1) 

designed for event log data; (2) robust to imbalanced   classes; 

(3) explainable through the obtained process model, which 

represents the knowledge extracted from the event log of the 

positive class. 

This paper is organized as follows. Section II presents a 

brief literature review related to classification using event 

logs. Important definitions and notations are presented in 

Section III. In Section IV, the problem settings and the 

proposed  methodology  is  introduced.  Section  V  presents   

a design of experiments on simulated data to assess the 

proposed methodology performances. Finally, a conclusion 

and future perspectives are given in Section     VI. 

 
II. LITERATURE REVIEW 

Collecting real-life process data results in time-dependent 

event logs. Many fields are concerned such as healthcare, 

manufacturing industry, software engineering or telecommu- 

nication [2]. The use of unsupervised methods on event logs  

is helpful to extract knowledge from data. For that purpose, 

process mining has become state-of-the-art. The primary 

objective of Process Mining is to do process discovery, i.e.     

to represent a summarized model of the event log [3]. It has 

been used in healthcare to map care processes and clinical 

pathways [4]. For example, Prodel et al. [5] used  linear  

integer programming to discover patients’ pathways from 

hospital data. In  2018,  authors  presented  a  meta-heuristic  

to  perform  optimal  discovery  of  clinical  pathways  [6]. An 
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enhancement has been proposed by De Oliveira et al. [1] to 

introduce time in optimal process    models. 

The use of process mining frameworks to perform predic- 

tions has been already presented in the literature. Examples  

are numerous, as for example the prediction of the time  

before the occurrence of an event in a process, or the 

probability of a given task to be performed [7].  Each  of  

these tasks could be performed using different  methods. In  

the case of next activity prediction, Ferilli et al. presented    

two methods based on the WoMan framework [8]. The 

implementation of a predictive model in each node of a 

process model to predict future steps taking into account 

patients’ characteristics has also been proposed in [9]. 

Binary classification applied on event logs data has been 

addressed  in  the  literature.  If  time  is  neglected  and  only  

a succession of events is analyzed,  the  classification  of  

event log data problem is similar to sequence classification. 

For that, three types of studies can be identified [10]: (1) 

featured-based classification (extracting features from an  

event  log  to  create  a  matrix  input  for  a  classifier  model); 

(2) distance-based classification (using a similarity measure 

between sequences); (3) model-based classification. The two 

first types of approaches are used in bioinformatics for DNA 

(deoxyribonucleic acid) alignment, and based on models 

defined by [11], [12] in particular. Improvements of these 

methods are explored in the literature [13]. The third type 

gathers statistical models as Hidden Markov Models [14], 

[15]. 

For supervised prediction on event log data, a data pre- 

processing phase is generally needed: applying existing pre- 

diction algorithms on event logs is not straightforward, as    

the event log needs to be transformed into a feature matrix. 

This transformation is done automatically using features 

extraction or using experts’ knowledge. Healthcare is a field 

of interest, as patients’ pathways are defined by succession of 

medical events, time between events being a key indicator    

of care. State-of-the-art machine learning approaches have 

been widely used for prediction in healthcare. Case studies 

found in the literature are of various type [16], as prediction  

of diseases [17], mortality [18], prevention tests [19] and 

readmission [20], [21]. Medical features are generally se- 

lected by experts, but the longitudinal structure of patients’ 

pathway is either lost during feature extraction or leads to        

a sparse representation of data [22].  Moreover,  algorithms 

like Decision Tree or Logistic Regression are preferred by 

practitioners  due  to  their explainability. 

As a result, to the best of our knowledge, no classification 

algorithm has been designed for event log data, with a 

particular focus on learning explainability. This focus carries 

potential applications, such as healthcare and particularly 

patient’s pathway constitutes the initial motivation of the 

development of such a methodology. The explainability of 

predictions for medical experts and decision makers is es- 

sential, especially when time is a possibly distinctive   feature. 

III. PRELIMINARIES ON EVENT LOGS AND PROCESS 

MODELS 

A. Event log 

Definition 1: (Event). An event denoted e is defined as a 

couple (a, t) where a A is an element of a finite set A of 

labels corresponding to the event class of e, and t    T  with    

T = N or R is the event time or time-stamp. An event e is  

also defined by the labeling function label(e) = a and the 

timing  function  time(e) = t. 

Definition 2: (Trace). A trace is a sequence of events σ = 

e1, e2, . . . , em with m N∗  such  that  ek  A T  and time(ek) 

<  time(ek+1). 
Definition 3:  (Event log). An event log is a set of traces     

L = σ1, σ2, . . . , σn with n N∗ . An event log contains all 

input data of this paper. It is assumed that each label appears  

at least once in the event log L, i.e.    a     A :   σ      L, e       σ 
e = (a, t). 

Definition 4: (Event diversity).  The  event  diversity  dive 

is defined as dive = A . This descriptor gives information 

about the variability of the event log in terms of labels. 

B. Process models 

Definition 5: (Time grid process model). A time grid 

process model of a given log L is a four-uplet T G-PsM =  

(N, E, L, T ) where: 

• N is a set of nodes partitioned into K disjoint subsets 

called layers, i.e. N = N1 ∪ · · · ∪ Nk, Nk ∩ Nl = ∅; 

• E N N is a set of edges such that (x, y) E with 

x    Nk, y    Nl  implies k < l, i.e. the process model    

is acyclic with edges going from lower layers to higher 

layers; 

• L : N → A is the labeling function of the  nodes. 

• : E T T  associates a time interval [a(x,y),  b(x,y)] 
to each edge (x, y)   E. 

Interesting properties of such a process model are as 

follows. A same label can  appear  at  different  positions  in 

the model. Constraints for edges link lower positions to  

strictly higher ones. This produces oriented process models, 

with no backward  edge  and  possibly  a  same  label  found  

in lower an higher positions. Moreover, multiple edges can   

be found between two nodes, each edge having a different  

time characteristic. This time characteristic on edges serves    

to consider time during the optimization     process. 

In the following, all process models are supposed  to  be 

time grid process models, as defined in Definition 5. 

C. Replayability 

Definition 6: (Replayability). The replayability function is 

denoted R, and returns the replayability     score: 

R(TG-PsM, σ) ∈ [0, 1] (1) 

which is the representativeness of the trace σ by the process 

model T G-PsM . By extension, the replayability score dis- 

tribution of an event log L is the set of replayability score 

values for each trace in    L: 

R(TG-PsM, L) = (R(TG-PsM, σ))σ∈L (2) 
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The replayability is used in [5], [6], [1] to evaluate the 

ability of a process model to represent a given trace. The  

result of the procedure is a replayability score between 0  and 

 
Number of traces 

 
 

𝓡𝑡𝑟𝑎𝑖𝑛  = 𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝐿𝑡𝑟𝑎𝑖𝑛) 

1, where 1 corresponds to  the  best  possible  representation 

of a trace by a process model. The following elements are 

positively taken into account in the replayability: (1) nodes 

matching trace’s events; (2) edges matching event  transitions; 

(3) time characteristic of edges matching time-stamp  of  

event logs; (4) no central event of the trace skipped. As the 

replayability score measures the ability of a process  model to 0 

represent a given trace, the analysis of the replayability   score 

𝓡𝑡𝑟𝑎𝑖𝑛  = 𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝐿𝑡𝑟𝑎𝑖𝑛) 

 
 
 

 
Replayability 

θ 1 

distribution points out the representativeness of a process 

model regarding the entire event log. Further details about    

the replayability for time grid process models are given in   

[1]. 

IV. PROCESS MODEL-BASED CLASSIFICATION OF EVENT 

LOGS DATA 

The proposed approach is an optimization-based method,   

at the crossroad between machine learning, process mining 

and operational research. In this section, we formally define 

the problem settings and describe the methodology, with a 

particular focus on the optimization process    involved. 

A.  Problem setting 

The problem here consists of having two  labeled  event 

logs L0  and L1, and learn patterns from this data in order       

to predict for new, unlabeled traces. In other words, the 

problem addressed here is a binary classification problem, 

with data involved being event log of traces (and not sets      

of labeled vectors described by features as in classic binary 

classification). 

Lets define a binary classed event    log: 

Ltrain  = (Ltrain, Ltrain) (3) 

Fig. 1: Replayability graph of a process model T G-PsM on 

training data (Ltrain, Ltrain) with threshold θ for classifica- 

tion. 

 
 

2)  Predict:  for  a  new  trace  σ,  compute  its replayability 

(T G-PsM, σ) and return the corresponding pre- 

dicted class by comparing it to a given threshold θ. 

The choice of the threshold θ is a widespread issue for 

binary classifiers, to predict in practice for every individuals. 

To find the best split between the two replayability distribu- 

tions, the threshold which minimizes the gini impurity is 

chosen. One can infer that the construction of the process 

model (the training of T G-PsM ) is the key to improve 

classification performances. The main idea here is to build a 

process model which produces distinct distributions for both 

training classes on the replayability graph. A Tabu search is 

used, motivated by previous work [6], [1]. Before detailing  

the search algorithm, two objective functions are described. 

C. Objective functions for process model    optimization 

Two objective functions are presented, each involving a 

different measure of process model quality. The average 

replayability  function  is  denoted as: 
0 1 

where traces from Ltrain  are of class k  for k ∈ {0, 1}.    For 
  1  

R(TG-PsM, L) = R(TG-PsM, σ) (6) 

a given process model T G-PsM ,   let |L|  
σ

 

 train  train 1) RepOpt:  The first objective function consists in  search- 

 

and 

R0 = R(TG-PsM, L0 ) (4) 
ing a final solution which maximizes the mean replayability  

of  the  event  log  Ltrain  (positive class): 
train train 

R1 = R(TG-PsM, L1 ) (5) 

be the replayabilities of traces of Ltrain and Ltrain, respec- R(TG-PsM, Ltrain) (RepOpt) 
train 

0 1 One can notice that elements  of L0 stay unused during 
tively. Resulting replayability distributions can be visualized 

on a single plot, as shown in Figure 1. Supposing that the       

T G-PsM better represents traces from the  positive  class  

than traces from the negative one, replayability scores from 

the optimization process. This objective function was used     

in process discovery for unsupervised process mining [1]. 

2) DiffOpt:   Instead  of  maximizing  the  replayability   of 
the traces of the positive class, we maximize the difference 

train 
1 will  be  generally  higher  than  replayability    scores between the means of the two classes. The idea is to  construct 

from train. The process of training a T G-PsM consists 

in creating such a process    model. 

B. Process  model-based classification 

a graph that best replays traces of Ltrain and that replays 

badly traces of Ltrain. 

train train 
  

The process model-based classification algorithm is com- 

posed  of  2 steps: 

1) Train: construct a T G-PsM from Ltrain to get re- 

playability distributions Rtrain  and Rtrain; 

R(TG-PsM, L1 ) − R(TG-PsM, L0 ) (DiffOpt) 

Expectations with this objective function is the evacuation 

of shared patterns between positive and negative classes,  

while keeping those specific to the positive    one. 
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The two previously defined objective functions (RepOpt) 

and (DiffOpt) constitute the core of the local search proce- 

dure used to create optimal process models. This procedure    

is  detailed thereafter. 

D.  Tabu  search for process model   optimization 

The proposed methodology to fit a process model T G- 

PsM  on  train  data  Ltrain  is  an  optimization  process based 

A trace σ  is created by starting from the lower position     

of the graph, and by adding to the trace an event with the  

same label as a randomly selected node of the next increasing 

position. The time-stamp of the new event is added to the 

previous time-stamp; it is a time value randomly selected for 

L0 and L1 following respectively   (0, 400) and   (200, 25). 

At each step the process can be stopped with a probability 
p   =  P(ncurrent ) ,  where  ncurrent   is  the  current  node  of 

on  a  local  search.  Starting  from  a  random  solution  (i.e.  a 
pm 

G, corresponding to  the  last  addition  to  σ. Such  event log 
process model), a neighborhood of solutions is created. Each 

neighbor is a slightly modified version of the current process 

model (2 possible moves: add a new promising node or 

randomly delete a node).  Each  neighbor  is  then  evaluated 

by computing the objective function (RepOpt) or (DiffOpt). 

The best neighbor is kept as the current solution and added    

to a fixed sized first-in-first-out list of tabu solutions. Tabu 

solutions cannot be selected when creating a neighborhood. 

This process is iterated until a stopping criterion is reached (a 

total maximum number of iterations or a maximum number  

of iterations without any improvement). Resulting process 

model is the best evaluated solution encountered during the 

entire search. 

Required parameters for the optimization  procedure  are  

the constraints (the maximum number of nodes UN , the 

maximum number of edges UE and the maximum position in 

the process model pmax) and search parameters (the neigh- 

borhood size, the tabu list size, and the stopping criteria).   

The set of time intervals for edges is also an input parameter. 

Pertinent time intervals are constructed using Kernel Density 

Estimation,  previously  proposed  in [1]. 

V. NUMERICAL EXPERIMENT 

The classification methodology is validated through the 

following design of experiments. Event logs (L0, L1) = 

(Ltrain, Ltest, Ltrain, Ltest)  are  build  with  different hidden 

construction process ensures the presence  of  a  pattern  in  

G1, in terms of labels, transitions and time. The probability   

of stopping the construction process ensures a variability in 

traces’ lengths. The higher cpat is, the smaller G1  and  the 

more specific the process model will be. Event logs dimen- 

sions are noted N  =  Ltrain   and P  =  Ltrain . The design     

of experiments consists in testing different configurations for 

dive, pm  and cpat. A summary of parameters for the design    

of experiment is presented in Table     I. 
 

TABLE I: Search parameters and constraints used for design 

of experiments. 

0 0 1 1 

patterns, the objective being to learn from training event logs 

and accurately predict for test    ones. 

A. Data generation 

Two graphs G0 and G1 are constructed, constituted of  

nodes arranged in layers having a maximum number of 

identical  positions  equal  to  pm.  For  each  position      p ,  the  corresponding  layer  is  composed  of  n  = div 

 
 
 
 

B. Evaluation  metrics 

ROC (Receiver Operating Characteristic) curve is the true 

positive rate (tpr) in function of false positive rate (fpr).   This 
[1, pm] 

e 
curve is obtained by varying the threshold for prediction (θ 

different nodes. Then, a proportion of shared patterns is 

removed, by deleting cpat  N  randomly chosen nodes from   

G1  and corresponding edges. An illustration for G0  and G1  

is shown on the left of Figure    2. 

for process model classifier). The AUC (Area Under the 

Curve) is chosen as the performance measure, justified by    

the  presence  of  imbalanced classes. 
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Qualitative results 

𝑷𝒓𝒐𝒄𝒆𝒔𝒔 𝒎𝒐𝒅𝒆𝒍𝒔 
 
 
 

Quantitative results 

𝑨𝑼𝑪 

C. Benchmark  of  binary classifiers 

The process model-based classifier is compared with three 

state-of-the-art machine learning algorithms for binary clas- 

sification: Decision Tree (DT), Random Forest (RF) and feed-

forward Multi-layer Perceptron (MLP). These methods expect 

matrix-shaped input data, so a “flattening” prepro- cessing is 

applied to the event log: features are created by combining  

every  possible  event’s  labels  with corresponding 
Fig.  2:  Schematic  representation  of  the  design  of    experi- 

ments. 
time-stamps encountered in the event log. For each trace 

having a given event at a given time stamp, the  corresponding 
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𝑹𝒆𝒑𝑶𝒑𝒕 

(𝑫𝒊𝒇𝒇𝑶𝒑𝒕) 

DT, RF, MLP 
+ 

Hyperparameters 

tuning 

Data parameters Value 

Number of traces 

Diversity of events 

Maximum length of generated traces 

Event pattern coefficient 

Time transition patterns 

N = 1800 and P = 200 

dive ∈ [10, 50, 100] 

pm ∈ [10, 25, 50] 

cpat ∈ [0.90, 0.75] 

G0: U (0, 400) 

G1: N (200, 25) 

Graph parameters Value 

Maximum number of nodes 

Maximum number of edges 

Maximum number of positions 

UN = 0.2 × dive × pmax 

UE  = 2 × UN 

pmax = |σ|max 

Tabu search parameters Value 

Neighborhood size 

Size of Tabu  list 

Max. number of iterations 

Max. number of iterations 

without improvement 

15 

10 

500 

15 
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Data 
cpat  dive pm 

DT RF MLP (RepOpt)  (DiffOpt) 
AVG  STD AVG  STD AVG  STD  AVG  STD AVG   STD 

0.90  10 10    0.96  0.01   0.96  0.01   0.99  0.01   0.99  0.01   1.00  0.00 

25    0.95  0.01   0.95  0.01   1.00  0.00   0.99  0.02   0.99  0.02 

50    0.96  0.01   0.96  0.01   1.00  0.00   0.99  0.02   0.98  0.01 

50    0.85  0.06   0.86  0.06   0.93  0.04   0.94  0.04   0.91  0.06 

50 10    0.88  0.03   0.88  0.03   0.86  0.06   0.90  0.03   0.95  0.02 

25    0.87  0.04   0.85  0.06   0.87  0.05   0.91  0.04   0.94  0.01 

50    0.88  0.03   0.86  0.06   0.85  0.08   0.87  0.03   0.94  0.02 

1 

1 0 

1 

0 

1 

N U 

 

 

 
 

feature value is set to  1,  0  otherwise.  The  advantage  of  

this preprocessing approach is to provide the 3 machine 

learning models with the most accurate data possible. The 

inconvenience is the high dimension and sparsity of  input 

data. Because imbalanced classes are an issue for binary 

classification algorithms, data balancing has been applied 

before fitting DT, RF and MLP. An oversampling of the 

minority class was applied using the SMOTE algorithm [23]. 

Moreover, a high-dimension grid of hyperparameters was 

defined, and a random search on it was performed. A 3-fold 

cross-validation was used on the  training  set  to  determine 

the best hyperparameter combination for each data set. The 

previously described design of experiment is summarized in 

Figure 2. Calculations were done in python 3.6, using 

scikit-learn library for DT,  RF and MLP   methods. 

D. Results 

1) Quantitative results: For each descriptor combination, 

median and standard deviation of AUC on test sets for 10 

replications are presented in Table II. The best average AUC 

score is highlighted in   bold. 

Our method with objective function (DiffOpt) globally 

outperforms DT, RF and MLP in most settings. The gap 

between proposed methods and state-of-the-art algorithms 

increases with the increase of dive for cpat = 0.90. When 

patterns in event logs of the positive class are less specific  

(cpat = 0.75), the general performances decreases and 

variability  increases.  (DiffOpt)  seems  robust  regarding  the 
increase  in  diversity  of  events  (div  )  and  the  increase   in 

positions. Circles represent nodes of the model, and  flux  

from circles represent edges. Node size and edge size are 

proportional to the number of traces from Ltrain replayed 

during the replayability game. Each obtained process model 

graphically highlights distinctive patterns, mined during the 

training optimization. Thus, for simulated event  log  with  

high pattern coefficient (cpat = 0.9) and narrow dimensions 

(dive  = 10 and  pmax  = 10),  the  resulting  process  model   

is simple (Figure 3). However,  its power to distinct traces      

is strong, as highlighted by AUC performances  (AUC  =  

1.00 ± 0.00). 
 

Fig. 3: Example of process model obtained using (DiffOpt), 

with  cpat  = 0.9,  dive  = 10 and  pmax  = 10. 

 

To illustrate the prediction method, an example is pre- 

sented  in  the following. 

Example 1:       An event log containing 2 traces σA  and σB 

is presented in Figure  4. We  want to predict if these traces  

are of class 0 or 1, according to  the  process  model  of  

Figure 3. After training on Ltrain and Ltrain, the  process 

model T G-PsM maximizes (DiffOpt). Thus, the mean re- 

playability of traces of Ltrain  (0.98) is much higher than   the 
mean replayability of traces of Ltrain (0.32). The threshold 

e 
traces’  size  (pm).  Other  methods  are  negatively    impacted minimizing the gini impurity  on 

0 

the two training replayability 

by the increase in diversity and trace size which results in 

reduced  AUC performances. 

TABLE II: Benchmark of AUC for 5 methods: average and 

standard deviation. 

distributions is θ = 0.40. By computing the replayabilities of 

both traces, it appears that σA is well replayed (0.80), while 

σB replayability is pretty low (0.25). After a comparison to  

the threshold θ, class 1 and class 0 are attributed to σA and 

σB, respectively. 
 

𝓡ഥ (𝑇𝐺-𝑃𝑠𝑀, 𝐿𝑡𝑟𝑎𝑖𝑛) = 0.32 

𝓡ഥ 𝑇𝐺-𝑃𝑠𝑀, 𝐿𝑡𝑟𝑎𝑖𝑛     = 0.98 

 
Predictions (𝜃  =  0.40) 

 

 

 

 

 

 

 

 
 

100 10 0.77 0.10 0.78 0.06 0.86 0.03 0.87 0.05 0.93 0.02 

 25 0.65 0.06 0.64 0.07 0.80 0.11 0.81 0.04 0.92 0.02 

 50 0.64 0.07 0.63 0.06 0.84 0.05 0.72 0.05 0.86 0.07 

 

2) Qualitative and explainable results: The interpretabil- 

ity  is  a  crucial  motivation  in  this  study.  Two  examples   

of process models obtained after training (using (DiffOpt) 

objective function) are displayed in Figures 3 and 5. Process 

models are read from left to right, following increasing    node 

𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝜎𝐴)  = 0.80 > 𝜃  → 1 

𝓡(𝑇𝐺-𝑃𝑠𝑀, 𝜎𝐵) = 0.25 < 𝜃 →   0 

Fig. 4: Event log of σA  and σB  (left) and predictions (right). 

 

A more complex pattern extraction  is  presented  in  Fig- 

ure  5,  with  cpat  =  0.75,  dive  =  10  and  pmax  =  50.  

The process model is characterized by two central events 

(“label 6” and “label 9”), surrounded  by  other  spread  out 

and less specific ones. As  the  process  model  definition  

carry time characteristics on edges, potential distinctive time 

patterns  are  also  extracted.  Time-transitions  for  the  class  

1 followed (200, 25) (and (0, 400) for class 0). Thus, 

examples of time interval retained by the model (for example 

[88, 264] and [96, 289] in Figures 5), validate the ability of 

the method to display hidden time    patterns. 

id time-stamp event 

A 0 label_5 

A 12 label_4 

A 25 label_0 

A 28 label_5 

A 31 label_8 

B 0 label_8 

B 15 label_9 

B 42 label_0 

B 51 label_4 

 

50 10 0.95 0.02 0.95 0.02 0.97 0.02 0.98 0.01 1.00 0.00 

 25 

50 

0.95 

0.95 

0.02 

0.03 

0.95 

0.95 

0.02 

0.03 

0.97 

0.98 

0.01 

0.02 

0.97 

0.97 

0.01 

0.01 

0.99 

0.99 

0.00 

0.00 

100 10 0.95 0.01 0.95 0.01 0.96 0.01 0.98 0.01 0.99 0.00 

 25 

50 

0.92 

0.90 

0.05 

0.07 

0.92 

0.90 

0.05 

0.07 

0.97 

0.97 

0.01 

0.02 

0.98 

0.97 

0.02 

0.01 

0.99 

0.99 

0.00 

0.00 

0.75  10 10 0.88 0.05 0.88 0.05 0.94 0.03 0.95 0.05 0.97 0.02 

 25 0.89 0.04 0.90 0.04 0.95 0.04 0.95 0.06 0.96 0.02 
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Fig. 5: Example of process model obtained using (DiffOpt), 

with  cpat  = 0.75,  dive  = 10 and  pmax  = 50. 

 

VI. CONCLUSION 

In this article, a new method for binary classification on 

timed event logs is proposed. Numerical experiments on syn- 

thetic data are presented, the robustness of the method being 

tested on event logs of increasing complexity. Quantitative 

results demonstrate the ability of the (DiffOpt)  method  to 

give outstanding performances in terms of AUC. Compar- 

isons with state-of-the-art machine learning  methods  show 

the competitiveness of the proposed binary classifier when 

directly applied on imbalanced event logs with no use of 

over/under-sampling on training data. As process models 

carry distinctive patterns discovered during the training pro- 

cess, displaying them graphically illustrate future predictions. 

Limitations and opportunities for future work are the 

following. Multi-class classification is not directly treated in 

this paper, but one can switch from binary to multi-class 

classification through “one-versus-all” settings. The current 

model cannot be updated with new traces batch. It must be 

entirely rebuilt. However, starting a new optimization process 

with already  trained  model  as  the  initial  solution could be 

a good strategy. The simulated event logs used here were 

designed to mimic patterns which will be interesting to found 

in clinical pathways extracted from claim databases. As the 

presented methodology is promising on synthetic data,   future 

work will focus on practical healthcare case studies. 
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4.4 Conclusion 

The present chapter introduces a methodology to perform explainable classification of 

timed event logs. This optimization-based approach is constructed using the formalism 

previously defined in Chapter 2. The results show promising classification performances on 

unbalanced synthetic data. 

One limitation of the method is its ability to use only the occurrence and not the   

absence of a characteristic pattern for prediction. If the absence of a given pattern of the 

pathway is related to the occurrence of a given complication, the process model cannot 

identify it. Future deployment of this method should focus on this limitation, for example 

by using two optimization processes, one for each class, and looking at both distributions 

and both process models in order to predict and explain, respectively. 

Also, future work will focus on the deployment of this method in the context of a real- 

data case study, constituting an opportunity to also deploy the automatic preprocessing 

methodology introduced in Chapter 3.  As initial use case,  the method has been tested      

on a case study related to sepsis. Sepsis relapse was predicted by considering patient 

pathways before the first sepsis hospitalization. The replayability score was added as a 

patient feature together with other patient centered characteristics such age gender, age     

or identified comorbidities. Using a decision tree algorithm to predict relapse, results show 

that adding the replayability score improved the model performances, with the replayability 

being the first feature used to split the population when constructing the decision tree. 

These results were presented as a poster at the 2019 Conference of the  European  Working  

Group  on  Operations  Research  Applied  to  Healthcare  Services  (ORAHS).  This  poster  is 

presented in Appendix D. Finally, as described in Section 2.4, frequent medical events were 

not correctly embedded in the previously defined model, which should also be addressed. 

In the next chapter, another predictive method is presented, which considers the previously 

introduced challenges of patient pathways in order to perform explainable predictions. 
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5.1 Motivation 

In Chapter 4, a predictive methodology to perform explainable classification of timed event 

logs was presented. Based on the formalism introduced in Chapter 2, the methodology uses 

process models to perform prediction by comparing replayability scores and explains the 

results by showing the resulting process model after optimization. The complexity of 

medical events, mainly represented by multiple activities, was addressed in Chapter 3 by 

introducing a preprocessing step for event logs. However, some challenges still remain. One of 

them is the modeling of very frequent events in pathways. When focusing on hospital- 

ization events, the latter are medically meaningful and in general not really frequent. As a 

result, process mining suits well to model such pathways. But when considering the entire 

patient pathway, some events occur very frequently. The modeling of such frequent events for 

process mining was already addressed in the case study of Chapter 2, but in a rather 

descriptive way by adding distributions of frequent elements on edges. Even if these fre- 

quent events have a lesser impact on the state of health of a patient, the information from 

these events may be useful to consider while constructing predictive models. Examples of 

such events in non-clinical claims data are general practitioner visits, specialist visits, 
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or biological tests. Addressing the challenges of frequent events, this chapter presents a 

method to model, predict and explain from patient pathways data.  This   methodology: 

(1) starts from raw event logs; (2) models time and codes’ hierarchy; (3) predicts from 

individual patient pathways; and (4) globally explains the results. This chapter focuses on 

identifying predictive factors which can be both frequent and infrequent. 

 
5.2 Summary 

In this last chapter, an end-to-end method to perform binary classification while identifying 

predictive factors using non-clinical claims database is presented. The first contribution is 

an adapted data processing method. By transforming an event log into a collection of im- 

ages, the information in time, ordering of events, activities and their hierarchical structure  

is conserved. This allows for the extraction of relevant patterns by a classification method. 

The second contribution is the proposition of VPAE (Variational and Predictive AutoEn- 

coder). Based on a VAE architecture, VPAE is trained to reconstruct positive elements from 

the data, while reconstructing a zero matrix for the negative elements. The classification is 

done for a given individual by encoding and decoding its representation and computing a 

score based on the decoding (the higher the score, the higher the probability of the patient 

to be of the positive class). A comprehensive image representing the extracted patterns is 

obtained by averaging the encoded-decoded representation of the positive population, pro- 

viding a global explanation of the learning. To validate the performances of the method, 

experiments were conducted on synthetic event log data were a more or less notable pat- 

tern was hidden. Results validate the competitiveness of VPAE compared to state-of-the-art 

classifiers when the hidden pattern is notable. A case study on health data is also pre- 

sented. Using data extracted from the SNIIRAM, the short-term mortality risk after the 

implementation of an Implantable Cardioverter-Defibrillator was predicted. The method 

provides accurate and explainable predictions, as predictive factors are highlighted. These 

factors were identified as infrequent events related to hospitalizations, but also as frequent 

events occurring throughout the medical history of patients. 
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5.3 Explaining Predictive Factors in Patient Pathways using 

Non-Clinical Claims Data 

H. De Oliveira, M. Prodel, C. Leboucher, L. Lamarsalle, V.  Augusto  and  X.  Xie,  “Ex- 

plaining Predictive Factors in Patient Pathways using Non-Clinical Claims Data”, (to be 

submitted). 
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Explaining Predictive Factors in Patient Pathways 

using  Non-Clinical  Claims Data 
Hugo De Oliveira, Martin Prodel, Claire Leboucher, Ludovic Lamarsalle, Vincent Augusto 

and  Xiaolan Xie 

 

 

Abstract—Event logs extracted from non-clinical claims 

databases are challenging, mainly because of the need to properly 

model time and medical codes with hierarchical structures. This 

paper presents an end-to-end methodology to predict and identify 

predictive factors in patient pathways using such event logs. The 

first contribution is an adapted data processing method able to 

properly model time and medical codes in order to make the 

extraction of relevant patterns possible. The second contribution 

is the introduction of VPAE (Variational and Predictive Auto- 

Encoder), a method which relies on a VAE architecture to 

perform binary classification using processed event logs. The 

method is trained so as to produce a comprehensive image 

representing the extracted patterns, in order to provide a global 

explanation of the learning. A design of experiments validates the 

competitiveness of VPAE compared to state-of-the-art classifiers 

when a notable pattern is hidden on synthetic event log data. 

Finally, a case study is presented, in which the short-term mor- 

tality after the implementation of an Implantable Cardioverter- 

Defibrillator is predicted. 

Index Terms—EHR, non-clinical claims data, patient pathways, 

explainability, variational auto-encoder 

 
I. INTRODUCTION 

A. Context 

Electronic Health Record (EHR) systems have been firstly 

created to improve care delivery. Their number strongly in- 

creased in  the  past  few  years,  and  so  did  the  secondary  

use of these databases. Among EHR databases, non-clinical 

claims databases are promising but challenging. The French 

national health insurance database (SNIIRAM) is one of these. 

It contains healthcare reimbursements of almost all French 

citizens since 2006. The amount of data is colossal: in 2015, 66 

million inhabitants were part of it [1]. The main interest of this 

database is its exhaustiveness as all patients’ hospitalizations, 

medical visits and drug prescriptions are recorded. Despite the 

inherent complexity of the data (an extensive number of tables, 

centered on reimbursement and with complex relations) and 

even if precise medical information is not present (such as test 

results, imaging reports, or vital signs) the available structured 

databases  are resourceful. 

In this paper, we focus on the problem of predicting and 

identifying predictive factors regarding a particular future 

outcome. Examples of such binary classification tasks in 

healthcare  include,  but  is  not  limited  to,  the  prediction    of 

H. De Oliveira, V. Augusto and X. Xie are with Mines Saint-É tienne, Univ 

Clermont Auvergne, CNRS, UMR 6158 LIMOS, Centre CIS, F - 42023 Saint- 

É tienne France. 
H. De Oliveira, C. Leboucher, M. Prodel and L. Lamarsalle are with HEVA, 

186 avenue Thiers, F-69465, Lyon, France. 

X. Xie is also with the Antai College of Economics and Management, 

Shanghai Jiao Tong University, China. 

relapse, the occurrence of a surgery,  and the mortality within    

a period of time. This  problem  has  been  largely  tackled  in 

the literature, where the application of deep learning methods 

skyrocketed [2]. 

 
However, some challenges remains, particularly regarding 

trust: (i) trust in the administrations which use personal health 

data, but also (ii) trust in the algorithms when it comes to 

predictions. For the first aspect, the use of data with a very low 

risk of patient identification is valuable. A particularity of the 

present study is to focus only on pathways data, without any 

other patient-centered information such age, gender, ethnicity  

or  localization.  For  the  second  aspect  of  trust,  regarding  

the algorithm, the production of interpretive predictions is a   

key challenge for actual and future work [2]–[4]. Naturally, 

quantitative performances are a necessary condition for the 

validation of deep learning-based predictive tools. But the 

explanation of the predictions is essential (i) to simplify the 

practical  deployment  of  such  a  novelty  at  a  national   level, 

(ii) to help the comprehension of hidden patterns discovered    

by a model, and (iii) to enable knowledge discovery regarding 

patient pathways. Such promising discoveries could be the 

causalities between a medical event and a selected outcome,   

the early detection of drug side effects, or the highlight of 

compliance  failures. 

 
Another challenge is the data describing patient pathways  

and medical events in such databases. Regarding patient path- 

way information which can be extracted from non-clinical 

claims databases, medical events are often provided using 

standard medical codes. These codes give inputs regarding 

events such as hospitalizations or medical visits, with precise 

information related to diagnostics, medical procedures, devices 

or drugs. Mainly taken from widely used classification sys- 

tems, such as the International Classification of Disease (ICD) 

for diagnoses or the Anatomical Therapeutic Chemical (ATC) 

classification system for drugs, these codes are organized in a 

hierarchical structure, with different levels of aggregation. In 

practice, the selection of the right aggregation level depends    

on the pathology studied and often necessitate experts’ input. 

The modeling of  time  in  predictive  models  is  also  crucial. 

If a given medical event may influence future outcomes, the 

time between these events (for example long- or short-term 

before inclusion) but also the  repetition  during  the  history  

(for example a single event or the multiple repetition of such 

event in time) may influence the prediction. As a result, in this 

paper we focus in particular on codes and time when modeling 

medical  event logs. 
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B. Scientific contributions 

Regarding these previous considerations, the present paper 

introduces an end-to-end methodology to predict and identify 

predictive factors in patient pathways using non-clinical claims 

data. A particular focus is given    on: 

1) dealing with the hierarchical structure of    codes; 

2) modeling time to make the extraction of relevant patterns 

possible; 

3) providing a graphical explanation of what has been 

learned  by  the model. 

Thus, the first contribution  of  this  paper  is  a  methodology  

to model and transform such complex event logs. This trans- 

formation keeps the pathway information in terms of events, 

transitions, time but also the hierarchy information carried in 

medical codes. 

The second contribution is the introduction of VPAE (Vari- 

ational and Predictive Auto-Encoder). VPAE is method which 

relies on a VAE architecture to perform binary classification 

from processed event logs. The modification in the loss func- 

tion when training the model allows the production of a global 

explanation of the learning process, through a comprehensive 

image  representing  the  extracted patterns. 

The rest of this paper is organized as follows. Related works 

are presented in Section II. Notations on event logs and the 

adapted modeling methodology are introduced in Section III 

After having formally defined the problem, VPAE is introduced 

in Section IV, along with computational experiments to test      

it on various simulated event logs. A case study using the 

SNIIRAM database is presented in Section V. Finally, dis- 

cussion and conclusion are presented in Section VI and VII, 

respectively. 

 
II. RELATED WORK 

EHR data are valuable resource to understand the natural 

history of disease, quantify the effect of an intervention, 

construct evidence-based guidelines or detect adverse events 

[5]. Even if the performances of deep recurrent models have 

been tempered by Min et al. [6] in the context of readmission 

risk prediction after a hospitalization for COPD, recent studies 

mainly rely on deep learning methods. Widely  applied  on  

EHR data, the main idea of deep learning is to switch from 

expert-defined to data-driven feature creation  [4].  Doctor 

AI [7] has been presented in 2016 to perform differential 

diagnosis from EHR data. Miotto et al. [3] presented Deep 

Patient in 2016, an unsupervised method to encode patient 

representation from EHR. To predict the probability of disease 

appearance, a Random Forest algorithm was trained over 

encoded patients, giving better performances than the original 

representation or other dimension reduction methods. A global 

study focused on scalablility was performed by Rajkomar et al. 

[8], were various targets and models were used. Representation 

learning for medical concept is also a current research topic. 

Medical concept embedding, such as Med2Vec [9], GRAM 

[10], and more recently Cui2vec [11] are notable examples. 

In order to perform patient clustering, Landi et al. used a 

convolutional auto-encoder to learn a latent representation of 

patients [12]. 

Studies deploying predictive tasks using extractions of the 

SNIIRAM database are  not  numerous.  In  2018,  Janssoone  

et al. compared multiple models to predict medication non- 

adherence using this database [13]. Recently, Kabeshova et al. 

presented ZiMM ED [14], a predictive model for the long-term 

prediction of adverse events. To the best of our knowledge, no 

other paper presented prediction methods on this database. 

The interpretation of predictions becomes an interesting 

research topic in recent years. In 2017, Suresh et al. [15] 

compared performances of Long-short term memory (LSTM) 

and convolutional neural networks (CNN) for the prediction    

of clinical intervention using the MIMIC-III database. A 

specific focus was done on interpretability, by using feature- 

level occlusion for LSTM and  filter/activation  visualization  

for CNN to explain predictions. In 2018, RETAIN was pre- 

sented by Choi et al. [16]. This two-level neural model is 

designed for an interpretation purpose, while keeping compa- 

rable performances. Interpretations are provided for a given 

patient, by giving importance of each element of its history.   

Not focused on deep learning methods, some model-agnostic 

explainable frameworks have been introduced to explain black- 

box models. LIME [17] and SHAP [18] are examples of such 

models. The first one uses linear models to approximate local 

behaviors. The second one uses Shapley values for both global 

and local interpretability. A limitation of such frameworks is  

the need to run multiple evaluation of the model to provide 

interpretations, which in practice can be time consuming. 

Moreover, a recent comment by Rudin in 2019 [19] arbitrates 

for the use of intrinsically interpretative models for high stakes 

instead of trying to explain black box     models. 

Finally, the explanation of temporal patterns remains an 

interesting research track. The representation introduced by 

Wang et al. in 2013 is one example [20]. The two-dimensional 

representation proposed has been successfully used to mine 

signatures from patient pathways. Another support for tem- 

poral visualization of event logs is process mining. As an 

example, Prodel et al. [21] proposed an algorithm for  raw  

event logs processing. Applied on a case study using patient 

pathways, a particular focus on integrating the hierarchy of 

codes during the optimization process was presented. In order  

to properly model time, an improvement of the previously 

mentionned work has been recently proposed     [22]. 

As a result, most recent studies used complex embedding   

and deep architectures to process health data. These methods 

have been accurate and successful in predictive tasks. How- 

ever, the challenge of explaining predictive results while using 

complex event logs remains. Event if the consideration of time 

has been treated in the literature, such representation in the 

context of explainability is still a lead. Moreover, a focus on 

modeling widely used medical codes in this context seems an 

actual challenge. Taken all these consideration  into  account, 

and in addition to explain the predictions for a given patient, 

providing a general visualization of patterns influencing  a  

given outcome could be valuable for the    field. 

III. COMPLEX MEDICAL EVENT LOGS MODELING 

In the following, Definitions 1-3 describe the notations 

related  to  event  log  data,  the  input  data  type  used  through 
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this paper. 

Definition 1 (Event): Each event denoted e is a couple   (a, t) 

where: 

• a is a nonempty set called activity set, each element ai 

a being an activity; 

• t T  with T  = N or R corresponds to the   event time 

also called time-stamp. 

𝜎 𝑥 

 
𝑚𝑎𝑡( . ) A0 

A1 

B0 
Hierarchy 

B1 
A B 

A 

B 

Definition 2 (Trace): A trace is a sequence of events  denoted A0 A1 B0 B1 0  1  2  3  4  5  6  7    8 

σ = e1, . . . , em with m ∈ N∗ such that ∀k ∈ [1, m − 1], tk < 
Activity codes 0 1 

tk+1. 

Definition 3 (Event log): An event log is a set of traces 

denoted as L = σ1, . . . , σn  with n N∗ . The size of the 

event log  L  is defined as the number of traces in   L. 

Definitions 4 and 5 present a matrix representation of the  

data which is adapted to machine learning methods beside raw 

event logs. 

Definition 4 (Trace matrix): Let σ be a trace, the trace 

matrix x = (xi,j ) of σ is a 2-dimensional array  with: 

• dim(x) = l w where l is the label dimension and w is 

the time window dimension; 

Fig. 1: A complete data example: from a raw trace to its matrix 

representation. 

 

displayed in Figure 1. Black (resp. white) squares correspond 

to a  value  of  1  (resp.  0).  dim(x)  =  l w,  with  l  =  6  

and w = 9 (time window is daily). A broader time window 

(e.g. weekly) would have decreased the precision of x by 

regrouping activities in only 2 columns. Moreover, not using 

the hierarchical structure of codes would lead to l = 4 by 

deleting higher chapter rows (A and B). 

, ∀j ∈  1, w  , xi,j  ∈ {0, 1}. 

The conversion function mat(.) converts a trace σ into a trace 

matrix x. 

The  trace  matrix  is  similar  to  the  Temporal  Event Matrix 

 

IV. VPAE: VARIATIONAL AND 

AUTO-ENCODER 

A. Problem definition 

 

PREDICTIVE 

Representation (TEMR) introduced by Wang et al. [20], with  

the notion of time windows to modify the time scale for long- 

time follow-up studies. It gives a representation of a trace  

where each row is an activity label  and  each  column  is  a  

time window. Thus, for a trace  σ and  its  trace  matrix  x,  if 

xi,j = 1 then  the  activity  i occurred  at  least  once  during  

the time window j. Each row vector corresponds to a 1-of-        

k coding of a given activity, ordered and regrouped in time 

windows (columns). The function mat(.) converts  a  trace  

from an event log to a sparse matrix representation. Different 

choices in conversion will influence the parameters l and w,   

as detailed in the   following. 

Definition 5 (Event log array): By extension of Definition 4, 

the event log array X of an event log L = σk is defined as 

X = mat(L) = (xk   ), where   k 1,  L  , xk  = mat(σk) is 

the trace matrix of trace σk. Moreover, dim(X) = L l   w. 

The two key elements of the transformation defined by 

the mat(.) function are the selection of activity labels, and 

the the granularity of the time window.    As the presented 

work focuses on medical activities which are often represented 

using medical codes from universal coding systems, a medical 

activity is inherently completed by its hierarchical knowledge. 

To incorporate the hierarchy information in  the  modeling,  

these levels can be integrated as a given row of  x.  Thus,  

adding more than one level of the hierarchy to describe an 

activity will increase the generalization in the coding, but will 

also increase the dimension l. Example 1 depicts a complete 

example  of  the  data-related concepts. 

Example 1: 

Let σ be the trace illustrated in Figure 1. The possible 

activities are A0, A1, B0, B1  , where A0, A1 and   B0,   

B1 inherit from chapter A and B, respectively (like ICD-   

10  chapters  for  example).  The  matrix  x  = mat(σ) is  also 

The problem addressed in this paper is the binary classi- 

fication of traces. Let L = (L0, L1) be a set of two event 

logs, where traces from Lc are of class c with c 0, 1 . The 

class 1 is referred to as the positive class in the following. 

We intend to create a binary classifier with good predictive 

performances over new traces. A major attention is given to the 

explainability of the predictive model. For that, we highlight 

the differentiating patterns among the two classes, as found 

during the learning process. The problem consists in finding 

two functions: 

• a predictive function λ  : σ s, which attributes a   score 

λ(σ) of being of class 1 to each trace σ; 

• an explanation function η, which provides a key global 

explanation about the differentiating patterns learned dur- 

ing  the  construction  of λ. 

The following section proposes a methodology to construct 

both  λ and η. 

To build the predictive function λ and the explanation func- 

tion η, we introduce VPAE (Variational and Predictive Auto- 

Encoder). VPAE is a Variational Auto-Encoder to which we 

incorporate prior knowledge from known classes for training 

event log. 

 
B. Variational Auto-Encoder 

A widely used method in representation learning is autoen- 

coding [23]. Autoencoders generally consists of 2 parts: an 

encoder and a decoder. In this paper, the encoder f : x z 

vectorizes a trace matrix x in a latent space of a smaller 

dimension. The decoder g : z   x/  reconstructs x as x/  from   

this vector. Autoencoders are designed to only learn useful 

properties of a data set, thanks to a constrained reconstruction 

process. The restriction comes from the reduced latent space 

∈ 
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dimension, which forces the network to prioritize information 

during the training process. A Variational Auto-Encoder  (VAE) 

poorly decoded, and a majority of zeros constitutes the output. 

The predictive function λ can be defined as follows: 

is  an  autoencoder  where  the  learnt  variables  are  parameters mat(.) f (.) g(.) sum(.) 

of a distribution. Introduced by Kingma et. al. in 2014, the 

method shows high performances regarding data generations 

[24]. The encoder f is an inference network q(x z) and the 

decoder g a generative network p(z x). The training process 

consists  in  maximizing  the  expected  lower  bound      ELBO 

λ : σ − − → x − → z − → x/ − − → s (2) 

with s = sum(x/) =  i,j x
/
i,j  being the sum of all elements  

of x/. The encoding of x results in the parameters of Gaussian 

distributions. z is a vector of the mean values. Then, z is 

defined  as  ELBO  =   E q(z|x) 
log 

p(x,z)   
.   In   practice, the 

q(z|x) 

decoded in x/, and s is finally computed. The higher s is, the 
more likely for a trace to be of the positive class. This score 

single sample estimate log p(x z)+log p(z) log q(z x) with z 

sampled from the inference network is optimized. A previous 

work on autoencoders shows that the choice of such method 

applied on non-clinical claims data was relevant comparing to 

other  autoencoders [25]. 

 
C. Class-dependent  lower bound 

The autoencoder architecture used in this paper is a VAE 

with a modification when computing the lower bound. Let 

C(.) be a function which returns, for a trace matrix x of class 

k, its class C(x) = k. Then, the class-dependent lower bound 

CD-ELBO is defined  as: 

function is used to compute binary classification metrics such  

as the area under the receiver operating characteristic curve 

(AUC). 

2) Explanation function: Using training data, the VPAE 

architecture allows for the deduction of global explanation 

patterns from  the  predictive  model.  From  traces  of  Ltrain  

an event log array Xtrain is created, which is encoded and 

decoded. From the decoded event log array X
ltrain  an average 

trace  matrix  x̄
l train   is  computed.  The  visualization  of  this 

average trace matrix highlights and explains the characteristic 

patterns  of  the  positive  class.  The  explanation  function  η is 

then  defined  as follows: 

CD-ELBO = L x∗, g(f (x))   + log p(z) − log q(z|x)   (1) 

where L(., .) is the sigmoid cross-entropy function, and: 

 
η : Ltrain 

 
mat(.) 

− − → 

 
 

train 
1 

 
g(f (.)) 

− − → 

 
ltrain 
1 

 
mean(.) 

− − −→ 

 
x̄

l train 

(3) 

 

x∗ = 
0x,   if C(x) = 0 

x, if C(x) = 1 

with the mean function mean(.) returning the average 

element-wise trace matrix of an event log     array. 

where 0x  is a zero matrix of the same dimensions. 

Thus, the term log p(x|z), which represents the reconstruc- 

tion  error  in  practice,  is  replaced  by  L(x∗, g(f (x)))  here. 

 

E. Tests  on  synthetic  event logs 

The proposed method is tested on synthetic event logs. It 

requires two logs, one for each class of patients, (L  , L  )   = 
For a given training trace matrix x, the reconstruction target 
depends on its class C(x). If x is of the positive class, the loss 

function remains the same as in a regular VAE implementation. 

Otherwise, x is not compared with its encoded and decoded 

version  x/  = g(f (x)),  but  only  with  a  zero  matrix.  Training 

the VAE in such a way ensures that it only considers patterns 

related to the positive class for the reconstruction. In contrast, 

other patterns, which can only be used for the reconstruction 

of negative class elements, are deleted. This idea is the core 

of the proposed prediction methodology, which is detailed in 

the following. 

 
D. Predictive  and  explanation functions 

1) Predictive function: The decoding performance of a new 

trace determines its predicted class: if the decoding is accurate, 

then the input trace is considered to contain patterns of the 

positive class. If not, no patterns are kept during the decoding, 

and the trace is likely not to have any pattern of the positive 

class. This architecture enables to deduce a predictive function  

λ and  an  explanation  function η. 

Once the VAE is trained, the class prediction  of  a  new  

trace σ requires to encode and decode its trace matrix x. If   

most  of  the  trace  matrix  is  well  decoded,  with  a significant 

number of elements x/
i,j being activated, the trace has a strong 

probability of belonging to the positive class. Otherwise, as    
for elements of class 0 during the training, the trace matrix is 

0 1 

(Ltrain, Ltest, Ltrain, Ltest). The construction of these two 

event logs is done such that different hidden patterns are 

created depending on their class. Parameters to generate event 

logs are (dive, pm, cpat), which are the number of differ- 

ent events, the maximal trace length and the coefficient of 

patterns, respectively. The higher cpat is, the more specific 

and homogeneous traces of L1 are. The objective is to learn 

from training event logs and accurately predict for test ones. 

During the entire experiment, the latent dimension dlatent is 

empirically set to 50. The training of the network is done 

by maximizing the CD-ELBO defined in Equation 1. A 

validation set (20% of the training set) is isolated at the 

beginning of the optimization. The ADAM [26] algorithm 

with batch normalization (each batch being of size 128) 

is used to minimize the opposite of the CD-ELBO. The 

maximal number of epochs is set to 5000. An early stopping 

criterion is applied, with a waiting patience of 50 iterations 

without improvement of the validation loss function. The 

proposed method is compared to three state-of-the-art binary 

classification algorithms: Decision Tree (DT), Random Forest 

(RF), and Feed-forward Neural Network (NN). For DT and 

RF, trace matrices are flattened before being used for training 

and testing. Hyperparameters are optimized using 50 iterations 

of the Efficient Global Optimization (EGO) algorithm [27], 

maximizing the 5-fold cross validation AUC. The coding is in 

python 3.7 with the scikit-learn 0.21 library for 

X X 
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(a) Train event logs (Ltrain, Ltrain) 
0 1 

Fig. 2: AUC score on the test data of 4 methods (mean and 
95%  confidence  interval),  for  18  (div  , p  , c )  combina- 

tions. 
e     m    pat 

 
 

DT and RF. The EGO algorithm is coded using bayes-opt. 

For NN, the same architecture and training parameters as the 

encoder part of  the  VPAE are  used.  The  only  modification 

is the last layer, being a 1-dimensional output with a sigmoid 

activation function for the binary prediction. All deep   learning 

 

 

 

 

 
(b) Test event logs (Ltest, Ltest) 

0 1 

frameworks  are  implemented  using  tensorflow 1.14. 

1) Quantitative results: The classification performance is 

measured  with  the  AUC   on  both  test  logs  (Ltest, Ltest)       . 

Fig. 3: 2-dimensional t-SNE projection of L0 

space. 

and L1 in latent 

0 1 

For each combination of the experiment parameters, and for 

each method, the mean AUC score and 95% confidence 

interval over 10 generated event logs are computed. Results 

are presented in Figure 2. Our VPAE method shows interesting 

performances in accurately classifying event log data with 

strong characteristic pattern for the positive class (cpat = 0.9). 

VPAE globally outperforms DT and reaches competitive per- 

formances compared to RF, which in practice is as a black 

box model. By comparing VPAE to NN, performances are 

competitive for the clear pattern (cpat = 0.9). That is not 

longer the case for cpat = 0.75 and dive = 50, where the 

outperforming of NN overall compared methods is clear. NN 

seems to be an upper bound regarding VPAE in terms of 

performance, as it is a black-box model of similar dimension 

without an explainable constraint (decoding) in training. The 

constraint on representation learning in VPAE, which permits 

the global explanation via the decoding, is affecting predictive 

performances in the case of complex hidden patterns. This 

experiment on synthetic data highlights a trade-off in complex 

cases between prediction performances and explanation. 

To summarize, the proposed method reaches interesting 

classification performances when a notable pattern is hidden in 

synthetic event log data. Notable patterns are the ones which 

can be explicitly presented to the user, humanely understood, 

and carrying a sufficient predictive   power. 

2) Qualitative results: The explanation process is exempli- 

fied using one of the experiments (cpat  = 0.9, dive  = 10,   

pm   =  10).  After  training  on  (Ltrain, Ltrain),  the  VPAE is 

 
training and testing traces of both classes. The representation   

of training traces (3a) shows that a separation appears in latent 

space: the training is successful. By representing testing traces 

(3b), the same separation is highlighted, which confirms a 

generalization  in  pattern learning. 

The difference between a trace x and its encoded/decoded 

version x/ is interesting as presented in Figure 4 for test traces. 

For unobserved data, the generalization allows an accurate 

reconstruction of positive class elements (4b), whereas no 

particular information  is  reconstructed  for  elements  of  class 

0 (4a). These remarks are at the core of the explainability 

process. After encoding and decoding all the positive training 

traces, the average trace matrix is computed. A visualization    

of main patterns retained by the VPAE is done, as shown in 

Figure 5: hidden patterns appear in terms of activities (rows) 

and  their  temporal  appearance (columns). 

 
V. CASE STUDY 

A. Overview  and context 

Among all deaths due to cardiovascular diseases,  no  less 

than 60% are caused by sudden cardiac death (SCD) [29].  

About 3/4 of SCDs  are  related  to  ventricular  tachycardia.  

The treatment consists in a cardiopulmonary resuscitation, 

combined with an electric impulse provided  by  an  auto-  

mated external defibrillator. For high-risk patients, Implantable 

Cardioverter-Defibrillators (ICDs) are used to prevent    cardiac 0 1 

able to properly reconstruct a trace of the positive class, while 

dismissing other traces (close to zero matrix). As a result,  

traces are encoded differently depending on their structure.  

This can be visualized by looking at training traces distribution 

in  latent  space  for  both  classes.  For  that  purpose,      t-SNE 

[28] is used to visualize the distribution of traces in latent 

space. Figure 3 presents a 2-dimensional t-SNE projection of 

arrest. Once implanted, the ICD sends electric impulses to 

stimulate the heart in response to a potentially lethal ventric- 

ular arrhythmia. Three types of ICD exist, depending on the 

number of leads connecting the generator to the heart (single- 

lead: single chamber; two-lead: dual chamber; and three-lead: 

biventricular). An ICD replacement is usually necessary after 

several years. Possible replacement causes are a    complication, 

DT RF NN        VPAE 
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(a) Example of a trace of class 0 (left): absence of patterns after decoding  (right). 

 
 

(b) Example of a trace of class 1 (left): strong similarities after decoding (right). 

Fig. 4: Examples of test traces before and after being encoded/decoded. 
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Fig. 5: Pattern explanation: visualization of x̄
l train. 

 

a malfunction or the naturally limited durability of the device. 

The replacement is qualified as short-term if it occurs 6 to 8 

years after the implantation, depending on the type of ICD. 

The problem addressed here is the identification of patients 

with a risk of post-implantation mortality within the  short-  

term replacement period. Moreover, the goal is to identify 

predictive factors in medical event logs extracted from the 

SNIIRAM database1, considering time and hierarchy structure  

in medical codes, and  without  patient-centered  information.  

In this context, this case study serves as a proof of concept      

for automatic predictive factor discovery and at-risk patient 

identification. 

 
B. The Data 

The study included all adult patients who had an ICD 

implantation between 2008/01/01 and  2011/02/282.  Among  

the 19,408 patients selected, 730 (3.8%) were excluded due      

to insufficient follow-up. Thus, 18,678 patients were included  

in the study (5,448, 5,216 and 8,014 patients having a single- 

,  two-  or  three-lead  ICD,  respectively).  The  follow-up      of 

 
1CEREES number: TPS 347167, CNIL authorization number: DR-2019- 

122. 
2Medical procedure codes (French CCAM): DELA004, DELF013, 

DELF016, DELF900, DELF014, DELF020, DELA007. 

patients was done until 2018/12/31 to identify potential de- 

ceases. According to medical experts’ recommendations, a 

replacement was considered  short-term  if  it  occurs  within  

the 8, 7, 6 years after implantation for a single-, two- or three-

lead ICD, respectively. Among the population, 7,551 patients 

deceased during the short-term replacement period (40.4%). For 

each patient, 2 years of medical history prior to  the ICD 

implantation were collected. Patient pathways during this 

period were made into  an  event  log,  which  constituted the 

input data for the prediction. Patient-centered information, such 

as age, gender, living localization, were not used in order to 

focus on the analysis of patient pathways for prediction. Based 

on the medical history prior to the ICD implantation,    the 

prediction was made at the implantation discharge. 

After extracting and processing the data, an event log of all 

patient’s medical history was created with 959,931 events and 

more than 4,876,336 activities. The extraction regrouped the 

different medical events occurring over the course of the two 

years. Regarding hospitalizations, the reason for admittance 

(main diagnosis), associated diagnosis (comorbidities) and per- 

formed health care services (medical procedures and devices) 

were included. Other care episodes regrouped activities as 

consultations, biological tests and other  medical  procedures  

not performed as inpatient care. Each activity was identified    

by a medical code, mostly organized hierarchically: (1) ICD-  

10: diagnoses and comorbidities (2 levels of hierarchy); (2) 

CCAM: medical procedures (3 levels of hierarchy); (3) med- 

ical devices (3 levels of hierarchy); (4)  biological  tests  (1  

level in the hierarchy); (5) consultations (the code related to    

the type of consultation). The population was split in train 

(80%) and test (20%) sets, respecting the ratio of the two 

prediction classes. The activities and the related hierarchy  

levels were filtered to discard infrequent elements in the train 

event log (threshold: 500 occurrences). The filtering evacuated 

non-representative  codes,  while  keeping  widely    represented 

a
c
ti
v
it
ie

s
 





  Hugo De Oliveira 

1

0

2 

102 

 

 

 

TABLE  I:  AUC  evaluated  on  train  and  test  data  for  the   4 

compared  methods. 

  DT RF NN VPAE  

TRAIN 0.74 0.71 0.83 0.88 

TEST 0.64 0.69 0.71 0.70 

 

ones and higher levels in the hierarchy. It resulted in l = 928 

different labels. Next, a transformation of all traces into trace 

matrices was performed (see Example 1 of Section III). A 

time window of 15 days was used, leading to a time window 

dimension w = 49. 

 
C. Results 

To compare the  prediction  performance,  the  same  setting 

as the design of experiments (Section IV-E) was used. The 

method was compared to DT, RF and NN. The only change 

was the latent dimension for VPAE which was increased to 

100, due to the dimensions of input data. This change also 

impacted NN by increasing the size of its layers.  Perfor- 

mances were evaluated in predicting mortality in the  short- 

term replacement period. Parameters of DT and RF were finely 

tuned using global optimization and routine deep learning 

procedures. Early stopping, dropout and regularization were 

used to tune NN and VPAE. Results regarding AUC are 

presented in Table I. For the  train  set,  VPAE reached  0.88 

and outperformed DT (0.74), RF (0.71)  and  NN (0.83). For 

test sets, the difference between NN and VPAE was  small. 

Both methods outperformed DT, and results were similar with 

RF. For all methods, a gap between train and test performances 

was observed, highlighting a general overfitting. Consequently, 

we assume that, due to the variability of patient pathways, all 

methods would require more training data reduce overfitting. 

Figure 6 shows a 2-dimensional t-SNE projection of en- coded 

patients with and without short-term mortality. A hor- 

izontal separation between both classes is visible for the 

training data (6a). This separation also appears  for  the  test 

data (6b), even if less explicitly. However, as suggested by the 

slight shading of Figure 6b and the performances on test data, 

some patterns which are useful for prediction are learned. 

Figure 7 shows the encoding and decoding of  test  traces 

from both classes, selected among the best predicted  results. 

For the sake of readability, only the first 400 activities are 

displayed. The badly reconstructed trace of class 0 (7a) 

demonstrates the accurate prediction of the negative class. The 

faithful reconstruction of a positive class is also observed (7b), 

highlighting the desired behavior. Only a partial vision of the 

matrix is reconstructed here, sufficient to predict and highlight 

discriminant  features. 

Regarding explainability, Figure 8 presents a subset of the 

average trace matrix. Here, two patterns emerge from the 

average trace matrix: (1) continuous horizontal lines over the 

2 years; and (2) particular events occurring in  the  last  15  

days before implantation. This implies that both some long- 

term and recurrent medical events, but also punctual and last- 

week events, have an influence on the prediction target. To 

verify these assumptions, relative risks (RRs) are computed 

among the entire population (train and test). Firstly, a    top-100 

 
 
 

 
(a) Train data. 

 

(b) Test data. 

Fig. 6: 2-dimensional t-SNE projection of both patient classes  

in  latent space. 

 

 
of the most decoded activities is computed, regarding patient 

pathways strictly before the last time window. Then, for each 

of the most decoded activities, patients are split in two groups: 

those with the reoccurring activity (activated in more than 24 

time windows, i.e. more than 50% of the time) versus others. 

Finally, RRs are computed regarding these groups. The same 

process is applied for the last time window (15 days) before 

implantation. Therefore, activities are filtered in Figure 8. 

This filtering allows for visualizing most decoded activities 

(top-100) for recurrent or last-week events while improving 

readability. Among them, activities with a significant RR are 

highlighted. For these impacting activities, RRs are displayed 

in Figure 9, with a 95% confidence interval. Regarding re- 

current events during the past 2 years (9a), results shows that 

recurrent biological tests, frequent general practitioner visits 

and repeated respiratory disease device prescriptions have a 

significant impact on the prediction target (RR > 1). For 

blood tests, the impact is even higher as the RRs rise to 

almost 2. Regarding the last time window (9b), it is found 

that comorbidities related to the genitourinary system, atrial 

fibrillation and flutter, or disease of the respiratory system 

increase the risk. 

As a result, the presented case study illustrates the ability      

of the method to identify predictive factors from event logs 

extracted from a non-clinical claims database. Starting from 

anonimyzed event logs, without patient-centered information, 

the method is able to model the data to keep hierarchical code 

structure and meaningful temporal information. Prediction 

performances are competitive with a similar black-box model, 

and some predictive factors are identified, with an interesting 

difference  between  infrequent  short-term  events  and frequent 
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(a) Trace matrix of a class 0   patient. 

 

(b) Trace matrix of a class 1   patient. 

Fig. 7: Example of test patient’s traces before and after being encoded/decoded. 

 

Fig. 8: Pattern explanation: most decoded activities after filtering (train set). Activities with a significant RR are highlighted           

in orange. 
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(a) Frequent events in medical history. (b) Last time window (15 days). 

Fig. 9: Relative risks regarding the prediction     target. 

 

long-term ones. A verification of the implication of  such  

factors with the observed outcome was also presented, to 

validate the ability of the method to discover such factors. 

 
 

VI. DISCUSSION 

 
The main strength of the presented method is the ability   

to predict and explain by extracting knowledge from raw 

medical event logs, dealing with the inherent complexity of 

such data and without a priori information. However, some 

methodological limitations should be discussed. Choices like 

the label dimension l and the time window dimension w may 

impact general performances. These parameters have been set 

experimentally, limited by computing hardware in the data 

security environment provided to conduct the study. As long 

as the dimensions of the autoencoder increases, more precision 

may improve performances, and such assumption need to be 

experimentally validated. The simplicity of the architectural 

structure of the encoder and the decoder also need to be 

noticed. The use of convolution and transpose convolution 

layers have been set aside, as the property of the images used 

to model patient pathways are not following the same property 

as real images (a given organization of pixels in one region of 

the image has not the same meaning if it appears in another 

region of the image). But the use of recurrent neural network 

architectures to encode the data seems to be promising. The 

limitation will be the decoder, which needs to sequentially 

reproduce the image under the constraints embedded in the 

loss function, and may be a challenge to  rise. 

VII. CONCLUSION AND FUTURE WORK 

 
In this paper, a method to model and transform complex 

medical event logs is presented, with a focus on time and 

hierarchy codes modeling. The VPAE method is introduced, 

performing explainable binary classification on such patient 

pathways modeling. Numerical experiments on synthetic data 

validate the competitiveness of the method compared to state- 

of-the-art classifiers if an  identifiable  pattern  is  present  in  

the input  data.  A  case  study  on  real  data  extracted  from  

the SNIIRAM database is detailed. The short-term mortality 

after the implementation of an ICD is predicted, reaching 

performances which are close to the values observed in the 

literature. Moreover, the ability of the method to provide 

explainable  predictions  is illustrated. 

In terms of future applications, other medical case studies  

will be conducted.  This  will  challenge  the  adaptability  of  

the method but also prove  the value of the  methodology as  

part of the deployment of prevention policies. In fact, the 

explainability in this context will produce knowledge directly 

from evidence-based patient pathway analysis. This can be 

beneficial to generalize guidelines from identified predictive 

factors, in order to for perform early at-risk patient detection.  

At a national scale, such methodology could motivate the 

deployment of targeted prevention policies. Also in more 

exploratory studies, weak signals could be detected by fol- 

lowing this approach.  These  could  lead  to  the  formulation  

of a hypothesis to test and loop on the data using  more  

humanly comprehensive indicators, like descriptive statistics 

and  relative risks. 
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d’Épidémiologie  et  de  Santé  Publique,  vol.  65,  pp.  S149–S167,  Oct. 

2017. 
[2] B. Shickel, P. J. Tighe, A. Bihorac, and P. Rashidi, “Deep EHR: A 

Survey of Recent Advances in Deep Learning Techniques for Electronic 

Health Record (EHR) Analysis,” IEEE Journal of Biomedical and 

Health Informatics, vol. 22, pp. 1589–1604, Sept.  2018. 

[3] R. Miotto, L. Li, B. A. Kidd, and J. T. Dudley, “Deep Patient: An 

Unsupervised Representation to Predict the Future of Patients from the 

Electronic Health Records,” Scientific Reports, vol. 6, p. 26094, May 

2016. 

[4] C. Xiao, E. Choi, and J. Sun, “Opportunities and challenges in de- 

veloping deep learning models using electronic health records data: a 

systematic review,” J Am Med Inform Assoc, vol. 25, pp. 1419–1428, 

Oct. 2018. 

[5] P. Yadav, M. Steinbach, V. Kumar, and G. Simon, “Mining Electronic 

Health Records (EHRs): A Survey,”  ACM  Comput.  Surv.,  vol.  50,  

pp. 85:1–85:40, Jan. 2018. 

[6] X. Min, B. Yu, and F. Wang, “Predictive Modeling of the Hospital 

Readmission Risk from Patients’ Claims Data Using Machine Learning: 

A Case Study on COPD,” Scientific Reports, vol. 9, p. 2362, Feb. 2019. 

[7] E. Choi, M. T. Bahadori, A. Schuetz, W. F. Stewart, and J.  Sun, 

“Doctor AI: Predicting Clinical Events via Recurrent Neural Networks,” 

in Machine Learning for Healthcare Conference, pp. 301–318, Dec. 

2016. 

[8] A. Rajkomar, E. Oren, K. Chen, A. M. Dai, N. Hajaj, M. Hardt, P. J. 

Liu,  X.  Liu,  J.  Marcus,  M.  Sun,  P.   Sundberg,  H.  Yee,  K.   Zhang, 

Y.   Zhang,  G.  Flores,  G.  E.  Duggan,  J.  Irvine,  Q.  Le,  K.     Litsch, 

A. Mossin, J. Tansuwan, D. Wang, J. Wexler, J. Wilson, D. Ludwig, 

S. L. Volchenboum, K. Chou, M. Pearson, S. Madabushi, N. H.    Shah, 

A. J. Butte, M. D. Howell, C. Cui, G. S. Corrado, and J. Dean, “Scalable 

and accurate deep learning with electronic health records,” npj Digital 

Medicine, vol. 1, pp. 1–10, May  2018. 

[9] E. Choi, M. T. Bahadori, E. Searles, C. Coffey, M. Thompson, J.   Bost, 

J. Tejedor-Sojo, and J. Sun, “Multi-layer Representation Learning for 

Medical Concepts,” in Proceedings of the 22nd ACM SIGKDD Inter- 

national Conference on Knowledge Discovery and Data Mining, (San 

Francisco California USA), pp. 1495–1504, ACM, Aug. 2016. 

[10] E. Choi, M. T. Bahadori, L. Song, W. F. Stewart, and J. Sun, “GRAM: 

Graph-based Attention Model for Healthcare Representation Learning,” 

in Proceedings of the 23rd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, (Halifax NS Canada), pp. 787– 

795, ACM, Aug. 2017. 

[11] A. L. Beam, B. Kompa, A. Schmaltz, I. Fried, G. Weber, N. Palmer, 

X. Shi, T. Cai, and I. S. Kohane, “Clinical Concept Embeddings 

Learned from Massive Sources of Multimodal Medical Data,” Pac Symp 

Biocomput, vol. 25, pp. 295–306, 2020. 

[12] I.   Landi,   B.   S.   Glicksberg,   H.-C.   Lee,   S.   Cherng,   G.   Landi, 

M. Danieletto, J. T. Dudley, C. Furlanello, and R. Miotto, “Deep 

representation learning of electronic health records to unlock patient 

stratification at scale,” npj Digit. Med., vol. 3, p. 96, Dec.  2020. 

A. Kabesho 
deep learning model for long term and blurry relapses with non-clinical 

claims data,” arXiv:1911.05346 [cs, stat], Mar. 2020. 

[15] H. Suresh, N. Hunt, A. Johnson, L. A. Celi, P. Szolovits, and M. Ghas- 

semi, “Clinical Intervention Prediction and Understanding with Deep 

Neural Networks,” in Machine Learning for Healthcare Conference, 

pp. 322–337, Nov. 2017. 

[16] E. Choi, M. T. Bahadori, J. Sun, J. Kulas, A. Schuetz, and W. Stewart, 

“RETAIN: An Interpretable Predictive Model for Healthcare using 

Reverse Time Attention Mechanism,” in Advances in Neural Information 

Processing  Systems  29  (D.  D.  Lee,  M.  Sugiyama,  U.  V.   Luxburg, 

I. Guyon, and R. Garnett, eds.), pp. 3504–3512, Curran Associates, Inc., 

2016. 

[17] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”: 

Explaining the Predictions of Any Classifier,” in Proceedings of the 22nd 

ACM SIGKDD International Conference on Knowledge Discovery and 

Data Mining, KDD ’16, (San Francisco, California, USA), pp. 1135– 

1144, Association for Computing Machinery, Aug. 2016. 

[18] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting 

Model Predictions,” in Advances in Neural Information Processing 

Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer- 

gus, S. Vishwanathan, and R. Garnett, eds.), pp. 4765–4774, Curran 

Associates, Inc., 2017. 

[19] C. Rudin, “Stop explaining black box machine learning models for high 

stakes decisions and use interpretable models instead,” Nature Machine 

Intelligence, vol. 1, pp. 206–215, May  2019. 

[20] F. Wang, N. Lee, J.  Hu,  J.  Sun,  S.  Ebadollahi,  and  A.  F.  Laine,  

“A Framework for Mining Signatures from Event Sequences and Its 

Applications in Healthcare Data,” IEEE Transactions on Pattern Analysis 

and Machine Intelligence, vol. 35, pp. 272–285, Feb.  2013. 

[21] M. Prodel, V. Augusto, B. Jouaneton, L. Lamarsalle, and X. Xie, 

“Optimal Process Mining for Large and Complex Event Logs,” IEEE 

Transactions on Automation Science and Engineering, vol. 15, pp. 1309– 

1325, July 2018. 

[22] H. De Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel, 

and X. Xie, “Optimal process mining of timed event logs,” Information 

Sciences, vol. 528, pp. 58–78, Aug.  2020. 

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, 

Massachusetts: MIT Press, Nov. 2016. 

[24] D.  P.  Kingma  and  M.  Welling,  “Auto-Encoding  Variational Bayes,” 

arXiv:1312.6114 [cs, stat], May 2014. 

[25] H. De Oliveira, V. Augusto, B. Jouaneton, L. Lamarsalle, M. Prodel, 

and X. Xie, “Automatic and explainable labeling of medical event logs 

with autoencoding.” Submitted to the IEEE Journal of Biomedical and 

Health Informatics, 2020. 

[26] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 

arXiv:1412.6980 [cs], Jan. 2017. 

[27] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient Global Optimiza- 

tion of Expensive Black-Box Functions,” Journal of Global Optimiza- 

tion, vol. 13, pp. 455–492, Dec.  1998. 

[28] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal 

of Machine Learning Research, vol. 9, pp. 2579–2625,  2008. 

[29] A. S. Adabag, R. V. Luepker, V. L. Roger, and B. J. Gersh, “Sudden car- 

diac death: epidemiology and risk factors,” Nature Reviews Cardiology, 
vol. 7, pp. 216–225, Apr.  2010. 



106 

Chapter 5.  
 

 

𝑥 
𝑧 

× 

∗| | 

𝑳 

𝑳 
𝑳 

∈ 

p m 

U N 

∈ [ ] 

1 

 

11 

 

APPENDIX 

An overview of the VPAE architecture is detailed in Fig- 

ure 10. The encoder (Figure 10b) consists of a 3-layer neural 

network. After flattening the trace matrix x, the dimension is 

gradually reduced to twice the latent dimension 2 dlatent. 

One set is used as the mean values for a learned distribution, 

the other one for standard deviations. Based on the learned 

number of different activities in the final event log. Then, a 

proportion of shared patterns is removed by deleting cpat N 

randomly chosen nodes from  G1  and  corresponding  edges. 

An illustration for G0 and G1 is shown in the left  part  of 

Figure 11. 
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distribution, a vector z is generated in latent space. This 

element serves as input for the decoder (Figure 10c), to 

compute x/  in the initial space of dimension l × w. 
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Fig. 11: Schematic representation of the design of  experiments. 

 
A trace σ is created by crossing the graph  from  left  to  

right. Starting from the lowest position of the graph (left), a 

random node is selected, being the actual node. The label a 

(a) VPAE architecture description with a focus on successive shapes. 
of this node is added to the trace as the activity of its first 

event e1 = (a1, 0). Then, a new node of the next position is 

reached, by using possible edges starting for the actual  node 

and going to the next layer. The new event e2 = (a2, t)  is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Encoder details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(c) Decoder details. 

added to the trace, the time-stamp t of this new event being 

computed by adding a random value. This value is randomly 

selected for L0 and L1 following (0, 100) and (µ, 10), 

respectively, where µ [0, 100] is selected once for each 

edge of G1. By crossing the graph layer by layer, the trace   

is created. At each step, the process of adding events to the 

trace can be stopped with a probability p = 
P(ncurrent ) , where 

ncurrent is the current node of G, corresponding to the last 

addition to σ. The probability of stopping the construction 

process ensures variability in trace lengths. Such an event log 

construction process ensures the presence of a pattern in G1, in 

terms of labels, transitions and time. On the contrary, elements 

generated from G0 follow no particular  pattern.  The  higher 

cpat is, the smaller G1 and the more specific the process model 

will be. The design of experiments consists in testing different 

configurations  for  cpat,  dive   and  pm.  For  each combination, 

10 different couples (G0, G1) are produced, leading to 10 

event logs L = (L0, L1). The number of traces simulated      

is 1000 for the positive class and 2000 for the class 0.   The 

Fig. 10: VPAE architecture  overview. 

 

The proposed VPAE method is tested on synthetic event logs 
(L0, L1) = (Ltrain, Ltest, Ltrain, Ltest). The construction of 

unbalancing of the data illustrates what is found in healthcare 

case studies when a particular complication is predicted, which 

generally concerns a sub-group of the population. From these 
traces, 80% are used for training (Ltrain, Ltrain), while 20% 

0 0 1 1 0 1 
these event logs is done such that different hidden   patterns are are  isolated  as  a  test  set  (Ltest,  Ltest).  The  transformation of 

0 1 

created depending on their class. Details about this construc- 

tion are presented in the    following. 

 
A. Data generation 

Two graphs G0 and G1  are  constructed,  one  related  to  

each class. The graphs consist of nodes arranged in layers 

having a maximum number of  identical  positions  equal  to  

pm.  For  each  position  p     1, pm  ,  the  corresponding  layer 

is composed of n = diva different nodes. Each of these nodes 

carries an activity label, the event diversity dive  being the   total 

traces into trace matrices using the previously defined mat(.) 

function is done with l being the total number of labels 

identified in the event log Ltrain (dive being an upper bound). 

The time window dimension w is set in order to have time 

windows of size 15. A summary of parameters for the design   

of experiments is presented in Table     II. 

 
B. Hyperparameters  tuning 

In order to set the hyperparameters of DT and RF, a global 

optimization algorithm is used. Efficient Global    Optimization 
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min_samples_leaf [2, n] 
class_weight [None, balanced] 
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[ ]  
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TABLE II: Parameters of the event logs constructed for 

experiments. 

 
(EGO)  [27]  is  used  to  search  for  optimal  parameters. Here, 

5 random iterations are applied, followed by 45 steps of 

optimization. Table III presents the hyperparameter grids used 

to search for such optimal parameters. The number patient is 

n = |Ltrain| + |Ltrain|, and the number of features  obtained 

C. Results 
 

Exp. DT RF NN VPAE 

cpat     pm     dive     AVG CI AVG CI AVG CI AVG CI 

0.90 10 10 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

  25 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

  50 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

 25 10 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

  25 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 

  50 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00 

 50 10 0.99 0.00 1.00 0.00 1.00 0.00 0.99 0.00 

  25 0.98 0.02 0.99 0.01 1.00 0.00 0.99 0.01 

  50 0.98 0.01 0.99 0.00 1.00 0.00 0.98 0.01 

0.75 10 10 0.98 0.01 0.99 0.00 1.00 0.00 0.99 0.00 

  25 0.98 0.01 0.99 0.01 0.99 0.00 0.99 0.00 

  50 0.98 0.01 0.99 0.00 1.00 0.00 0.99 0.00 

 25 10 0.96 0.02 0.98 0.01 0.99 0.01 0.98 0.01 

  25 0.94 0.02 0.97 0.01 0.98 0.00 0.98 0.00 

  50 0.93 0.03 0.97 0.01 0.98 0.00 0.96 0.01 

 50 10 0.89 0.02 0.93 0.03 0.97 0.01 0.91 0.02 

  25 0.89 0.03 0.92 0.03 0.97 0.01 0.93 0.01 

  50 0.88 0.02 0.89 0.03 0.98 0.00 0.90 0.01 

after flattening is c = l w. The same setting is used to 

optimize hyperparameters of DT, RF and NN in the case study 

presented in Section V. 

TABLE III: Hyperparameters description for Decision  Tree  

and  Random Forest. 

   model parameter values  

TABLE IV: AUC  score on the test data of 4 methods (mean  

and 95% confidence interval), for 18 (cpat, dive, pm) combi- 

nations. 

DT  max_depth 

max_features 

2, n 
[1, c] 

 

RF class_weight 

max_depth 

10, 100 
[2, n] 

  max_features 1, c 
min_samples_leaf 2, n 

class_weight [None, balanced] 

Parameters Values 

Number of traces class  0: 2000 

and  class  1: 1000 

Event pattern coef. cpat ∈ [0.90, 0.75] 

Diversity of events dive ∈ [10, 25, 50] 

Max  length of traces pm ∈ [10, 25, 50] 

Time transition patterns G0: U (0, 100) 

and G1: N (µ, 10) with µ ∈ [0, 100] 



108 

Chapter 5.  
 

 

 

5.4 Conclusion 

This last chapter introduced an end-to-end methodology to perform binary classification 

using patient pathway information. A representation of patient pathways which model 

time, infrequent and frequent medical events, with the hierarchy of coding systems is also 

described. A method which relies on autoencoding to perform binary classification while 

producing a global explanation of predictive factors is also introduced. The short-term 

mortality risk after the implementation of an Implantable Cardioverter-Defibrillator was 

predicted using data extracted from the SNIIRAM. Predictive factors were highlighted, the 

VPAE method being competitive with other methods tested. Both frequent and infrequent 

factors, at various levels of the hierarchy of codes, were identified. 

However, the proposed method can be improved by considering some limitations. For 

instance, the performance gap between neural network and VPAE is a point of attention. 

When patterns are complex and difficult to identify, the proposed methodology has diffi- 

culties to provide competitive performances. To leverage this challenge, the use of different 

architectures for the encoder and the decoder should be considered in future research to 

improve data processing while keeping the explainability of the image representation. The 

ability of the method to use only the occurrence and not the absence of a characteristic 

pattern for prediction is also an issue for the presented method. The VPAE method identifies 

elements whose occurrence is related to the positive class. An architecture which consists in  

two auto encoders for both positive and negative class will also identify elements for which 

the absence is a predictive factor, potentially improving prediction performances. While this 

work is focused on patient pathways, the VPAE method also has the potential to be used to 

encode patient characteristics or other medical information (e.g.  image, vital signs, free  

text, etc.) which could be further processed using deep learning architectures. The 

explainability of such results should also be considered in future research. 



 

 

 
 
 
 
 
 
 

 
 
 

 

Summary 

This work proposes multiple contributions for improving predictive modeling of patient 

pathways, with a focus on the particularities of non-clinical claims data, such as time, 

complex macro medical events and frequent events. To this end, contribution to the process 

mining field were introduced (Chapter 2 and 3).  In addition,  two  predictive methods   

were proposed: one process mining-based (Chapter 4), and another deep learning-based 

method (Chapter 5).  For  both predictive models developed in this work, explainability  

was considered as a necessity. The reader can referred to the schematic representation of 

Figure 3 presented in the introduction for an overview of these contributions. 

In more details, the literature review presented in Chapter 1 provides an overview of 

current health data applications. A discussion of the challenges regarding the use of health 

data was presented, highlighting the need for more trust between all stakeholders (particu- 

larly regarding the future of medical practices, data protections and equality). Regarding 

predictive modeling, a review of the subject was presented, with a focus on longitudinal 

health data, and detailing different predictive algorithms and various targets of these al- 

gorithms. A trend was observed that automated feature construction by means of deep 

learning has been used in the majority of recent studies on predictive modeling of health 

data.  XAI was presented,  with a focus on its application to health data.  The field of  

process mining was presented, and the use of pathway modeling for application in health- 

care was discussed. Finally, the preliminary results of predictive modeling with machine 

learning methods, applied to the PMSI data base, were introduced. These preliminary re- 

sults have motivated the use of medical history data such as patient pathways to improve 

predictions. 

For the purpose of improving pathway modeling, a new process mining framework was 

proposed in Chapter 2. The proposed methodology is a general contribution to process 

mining which includes descriptors, two new process models adapted to time modeling, along 

with a process discovery algorithm. Based on a tabu search, this optimization procedure 

identifies a process model which maximizes its fitness, the mean replayability score, for    

an event log. The performance of the process discovery algorithm was tested on synthetic 

data, validating the ability of the algorithm to mine representative processes compared to 

other heuristics. The process mining framework was used in a real case study on diabetes, 

working with manually labeled event logs extracted from non-clinical claims data of the 

French national health insurance. By using the proposed framework, patient pathways 

before four identified diabetes complications were visualized. 
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Since manually labeling event logs extracted from non-clinical claims data is a complex 

preprocessing task, an automatic labeling procedure based on clustering was proposed in 

Chapter 3.  Deep autoencoding architectures are used to learn an adapted representation   

of medical events. By using k-mean clustering in the latent space, labels are automatically 

created. Moreover, the previously trained decoder serves to characterize these labels, pro- 

viding medically meaningful explanation. Several deep autoencoding architectures, along 

with direct clustering on a sparse representation, were applied to synthetic data and com- 

pared.  The performances of the autoencoders were evaluated in terms of their accuracy    

in finding hidden clusters, but also regarding their ability to provide meaningful explana- 

tions. Results showed that autoencoding methods generally outperformed direct clustering, 

with VAE outperforming all other autoencoding methods. The proposed method was de- 

ployed as a preprocessing task, prior to the discovery of processes from an extraction of the 

SNIIRAM database. In this study, pathways of patients having a laparotomy operation 

followed by an incisional hernia were analyzed, using both a manual and an automatic 

labeling procedure. The qualitative analysis of the obtained process models showed great 

similarities between the two labeling methods, making the automatic labeling contribution 

valuable for practical deployments. Moreover, an interactive dashboard was deployed in 

order to visualize the results. It was concluded that this method, coupled with an interac- 

tive tool such as the proposed dashboard, could facilitate the exchange with medical expert 

in future case studies. 

The initial motivation for developing both the process discovery framework of Chap- 

ter 2 and the preprocessing method of Chapter 3 was to improve the modeling of patient 

pathways. Considering both the modeling of time and the complexity of medical events, 

Chapter 4 proposed a predictive modeling method based on process mining. The framework 

of Chapter 2 has been adapted in order to perform binary classification, directly from event 

logs.  Using the same optimization procedure, a novel objective function was introduced   

to mine a process model which represents positive traces well while poorly representing 

negative ones. Classification is performed by computing the replayability of the new trace 

regarding the previously obtained process model, and by comparing the replayability score 

with an adapted classification threshold. The performances of this process mining-based 

approach were evaluated on synthetic event logs of variable complexities. The event logs 

were generated with an imbalanced configuration where the traces of the positive class 

were in a minority.  Common algorithms such as decision tree, random forest or multi-  

layer perceptron were also tested. Since these algorithms are not able to directly process 

traces, sparse features were created in a preprocessing step, representing events, transi- 

tions and time, along with an oversampling procedure. Results showed that the proposed 

methodology performed well in classifying new traces, particularly when using the newly 

introduced objective function (DiffOpt). Moreover, the process model which is used to 

classify contributes to the global explainability of the proposed methodology. Distinctive 

elements such as events, transitions and characteristic time are extracted and visualized    

on the process model. 

Chapter 5 introduced a second predictive methodology adapted to non-clinical claims 

data, which is based on deep learning. This method was created to capture predictive 

frequent outpatient events such as consultations, laboratory tests or drug deliveries. A 2-

dimensional representation of patient pathways is proposed, modeling events, time and 

hierarchy of codes. In addition, VPAE, a new predictive algorithm based on a modification 

of the VAE architecture, is introduced. The training of VPAE is performed by accurately 

reconstructing patient’s representations of the positive class, while reconstructing a zero 
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matrix for patients of the negative class. Global explainability of the results is achieved by 

decoding and averaging elements of the positive class, resulting in an image which displays 

the  characteristic  patterns  over  the  time.   A  design  of  experiments  on  simulated  data 

was conducted, and performances of the proposed methodology were compared to decision 

tree, random forest and a deep feed-forward neural networks (NN) architecture. The results 

showed competitive performances of VPAE, outperforming decision tree, being competitive 

with random forest, but also with NN when the pattern clearly  appears  in  the  data. 

However, the performance gap between VPAE and NN increased with the complexity of the 

data, illustrating that the reconstruction constraint in the VPAE loss function is restrictive 

regarding classification. A case study was presented, where the short-term mortality after 

the implementation of a cardioverter defibrillator was predicted. Results showed a good 

performance of the proposed methodology for the prediction of short-term mortality. The 

predictive factors identified by the model were frequent medical events during the history 

(such as general practitioner visits or biological test), but also punctual hospitalizations 

shortly before implantation (related to the genitourinary or to the respiratory system).     

The computation of relative risks of these events regarding the studied outcome validates 

the significance of identified factors. 

 
Future work 

To summarize, the work presented in this thesis results in two predictive models: one based 

on process mining (Chapter 4), and another based on deep learning (Chapter 5). In the 

following, discussions and leads for future researches are  presented. 

The process mining-based predictive model is based on the process mining framework 

presented in Chapter 2. As a result, this method is adapted to pathways with punctual 

medical events such as hospitalization. The deployment of this method in a real case study, 

for example with data extracted from the PMSI, is part of future work. Thus, the 

preprocessing method proposed in Chapter 3 will be tested in a predictive context. But 

when automatically defining event labels for prediction, event logs of positive and negative 

class need to be considered differently. As a result, a modification of the loss function may be 

necessary in order to create labels adapted to the positive class. The use of the class- 

dependent lower bound defined in Chapter 5 could be implemented and tested. Another 

lead for research is the extension of the process mining-based method to handle frequent 

events. In the case study of Chapter 2, frequent events were described in edges only after the 

optimization. In order to incorporate this knowledge during the optimization, the re- 

playability game needs to consider frequent events as real events. But the strictly ascending 

condition imposed on grid process models for the sake of readability is problematic when 

considering frequent events: with frequent events, the length of traces will increase, leading to 

a lower replayability for similar size constraints. A new formalization of process models which 

allows loops for example, could facilitate the use of frequent events for predictions. The deep  

learning-based predictive model, presented in Chapter 5, is capable of han- dling frequent 

outpatient medical events (as found in the SNIIRAM database). Research on deploying 

other layers for the VPAE’s architecture (particularly recurrent layers both for encoding and 

decoding) could improve performances. Another valuable perspective would be to improve the 

interactivity of VPAE’s explainability results, particularly for future  case 

study applications. 

One discussion concerns the arbitration between the two predictive methods for prac- 

tical deployment. The deep learning-based model is able to deal with both frequent and 
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infrequent events, and the explainability of results by means of an image is an added value. 

When working only with infrequent medical events, the representation of pathways using 

process mining is also advantageous. The interactive process model, along with the visual 

explanation, is valuable for discussion with medical experts. 

A comparison of the two predictive models proposed in this work is also recommended 

as future work. Moreover, the use of other types of deep explainable architectures should 

be investigated (e.g. attention mechanisms) and a benchmark of deep explainable architec- 

tures should be performed in order to validate the performances of both proposed methods. 

In this context, the use of different layers for the VPAE architecture (e.g. particularly re- 

current layers) should also be investigated and could lead to performance improvements. 

In terms of explainability, both predictive methods proposed in this work can generate a 

global explanation of the results.  Patterns which are common to the entire positive class  

are captured and displayed. A clustering analysis amid the positive class observations  

could show potentially independent sub-patterns. As a result, partial subgroup explana- 

tion for both methods is an interesting track for future research (e.g. using multiple process 

models for the process mining-based method, or using latent space clustering for the deep 

learning-based method). Moreover, individual explainability (i.e. explaining distinctive 

factors at the scale of a patient) should be investigated for both methods as well. 

The work presented here only focuses on patient pathway data. Individual patient infor- 

mation such as age, gender or geographical code was not used for prediction. Incorporating 

such information into both methods presented here could improve prediction performances. 

However, the risk of identifying a patient based on individual patient information is higher 

compared to using strictly event-based medical information contained in event logs. For 

the process mining-based predictive method, an attempt has been made to incorporate 

patients’ features into the model. Based on HES data, a decision tree was fitted on patient 

features to predict sepsis relapse. Pathway information was used for prediction using the 

process mining-based approach. The replayability score was then considered as a feature: 

for each patient, his replayability score characterizes how similar his pathway is to that 

of patients with sepsis relapse. The use of this feature increased prediction performances 

and was the first used feature when constructing the decision tree (i.e. first split). These 

results were presented as a poster at the 2019 Operations Research Applied to Healthcare 

Services (ORAHS) conference, available in Appendix D. 

As stated in the introduction, non-clinical claims data bases such as PMSI or SNIIRAM 

only include reimbursement data. As a result, some particular health conditions may be 

quite complicated to identify. This is the case when characteristic medical procedures or 

drugs are related to multiple pathologies. Compared to non-clinical claims data, cohort  

data are oftentimes more extensive and more precise due to regular follow-ups. Matching 

between the SNIIRAM and cohort data is possible (e.g. probabilistic or direct using a  

unique anonymous identifier) to identify such patients in the SNIIRAM database. However, 

these patients only constitute a sample of the entire population. In this context, a wise 

modeling and representation learning of this information could be useful to identify other 

patients by similarity, thus improving the inclusion of patients in studies. Lastly, in a more 

general perspective, both of these contributions may serve for other applications involving 

timed event logs. The hierarchical codes found in non-clinical claims data may also be  

found in other fields, such as retail sales where products may be classified in hierarchical 

structures. In a more technical perspective, the recent advances  of  deep  learning  are 

powerful and may be a benefit to the field of process mining. In complex tasks such as 

process discovery where a representation of a process hidden in event logs is searched, deep 
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learning may prove to be efficient. 

It is concluded that the most important perspective for non-clinical claims data is to 

deploy solutions such as the ones presented in this work in practice. This is the only 

approach to properly evaluate their benefits for the health system, in terms of data-driven 

targeted  prevention  policies.   Due  to  the  possibilities  offered  by  explainability,  patterns 

and new knowledge could be extracted from such evidence-based analysis. This could be 

beneficial to generalize guidelines based on identified predictive factors and to detect at-risk 

patients. 
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Figure A.1: Details on the SNIIRAM database. 
 
 
 

 

Figure A.2: Details on the PMSI database (for short-stay wards information). 
 
 
 

 

Figure A.3: Details on the CépiDC database. 
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Appendix B.  

 

The replayability R(PsM, σ) measures the ability of a (time) grid process model PsM    

to characterize a given trace σ.  As detailed in Chapter 2, two weighting parameters exist   

in the formulation: 

• α, which influence the penalization of skipped elements during the replayability game; 

• β, which influence the strongly (or time) forced transitions. 

In order to evaluate the sensitivity of the replayability score obtained regarding these 

parameters, an experiment was conducted, detailed in the following. As for the numerical 

experiments presented in Chapter 2, 10 event logs containing 1, 000 traces were generated 

from  10  graphs  with  parameters  dive,p  =  500,  dive  =  50  and  pmax  =  10.   For  each 

event  log  L,  process  discovery  was  conducted  on  a  grid  of  parameters  α  ∈ [0, 1] and 

β ∈ [0, max({|σ|}σ∈L) − 1]. The TSOE method was used for the optimization. 

Figure B.1 shows the mean and standard deviation of the  final  replayability  score 

obtained over the 10 replications, in function of parameters α and β.  Parameters chosen  

for descriptive and predictive tasks in Chapters 2-4 are highlighted. As observed when 

looking at the mean values, the final replayability score can be strongly impacted by the 

parameter β. On the contrary, α seems to having fewer impact on the final score obtained. 

However, the variability observed over the replications shows that the standard deviation 

can me minimized by wisely selecting α and β. 

 

Replayability (mean) Replayability (standard deviation) 

  
Chapter 
II 

𝛼 = 0.1 
𝛽 = 0.1 

Chapters III & 
IV 

𝛼 = 0.1 
𝛽 = 0.5 

Chapter 
II 

𝛼 = 0.1 
𝛽 = 0.1 

Chapters III & IV 
𝛼 = 0.1 
𝛽 = 0.5 

 
 

Figure B.1:  Evolution of the replayability score obtained in function of α and β values:  

mean (left) and standard deviation (right) over 10 replications. 

From these experiments, choosing α = 0.1 and β = 0.5 is recommended, and was used 

for experiments conducted in Chapters 3 and 4. Qualitative experiments (for example by 

comparing obtained graphs for various values of α and β), are considered as future work on 

the impact of such parameters, both for descriptive and predictive process mining tasks. 

𝛽 𝛽 

𝛼
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Proposed methodology 

Presentation 

The problem addressed here is the training of a binary classifier on event 

log data of two classes 𝑳𝒕𝒓𝒂𝒊𝒏=(𝑳 𝒕𝒓𝒂𝒊𝒏, 𝑳 𝒕𝒓𝒂𝒊𝒏) of class 0 and 1. 

 
Data Science Summer School 

June, 24th-28th 2019 

𝟎 𝟏 

The replayability 𝑹(𝑷𝒔𝑴, 𝝈)∈[𝟎, 𝟏] is a measure which quantifies the 

ability of a process model 𝑷𝒔𝑴 to represent a trace[2]. The idea behind the 

proposed framework is the construction of a process model which well 

represents traces from event log 𝑳 𝒕𝒓𝒂𝒊𝒏 while less representing traces 

from 𝑳 𝒕𝒓𝒂𝒊𝒏. Thus, it extracts discriminative patterns from 𝑳 𝒕𝒓𝒂𝒊𝒏. 

Two optimization functions 𝑹𝒆𝒑𝑶𝒑𝒕 and 𝑫𝒊𝒇𝒇𝑶𝒑𝒕 can be used to 

construct the model, with a metaheuristic to find optimal process model. 

 
The procedure of class prediction of a trace 𝝈 

 
1    Train 𝑷𝒔𝑴 using 𝑹𝒆𝒑𝑶𝒑𝒕 or 𝑫𝒊𝒇𝒇𝑶𝒑𝒕 

on 𝑳𝒕𝒓𝒂𝒊𝒏=(𝑳 𝒕𝒓𝒂𝒊𝒏, 𝑳 𝒕𝒓𝒂𝒊𝒏) to obtain replayability distributions 𝑹 𝒕𝒓𝒂𝒊𝒏= 𝑹(𝑷𝒔𝑴,𝑳 𝒕𝒓𝒂𝒊𝒏) and 𝑹 𝒕𝒓𝒂𝒊𝒏= 𝑹(𝑷𝒔𝑴,𝑳 𝒕𝒓𝒂𝒊𝒏 ) 
𝟎 𝟏 𝟎 𝟎 𝟏 𝟏 

 
Overlapped replayability distributions 

 
𝑹  𝒕𝒓𝒂𝒊𝒏= 𝑹(𝑷𝒔𝑴,𝑳 𝒕𝒓𝒂𝒊𝒏) 

 
Distinct after optimization 

𝟎 𝟎 
 
 

Number 
of traces 

 
 
 
 
 

0 𝑚𝑒𝑎𝑛(𝑅 𝑡𝑟𝑎𝑖𝑛) 𝑚𝑒𝑎𝑛(𝑅 𝑡𝑟𝑎𝑖𝑛) 

 
 
 
 

Replayability 1 0 

 
 
 

𝜃= 𝜃(𝑅 𝑡𝑟𝑎𝑖𝑛, 𝑅 𝑡𝑟𝑎𝑖𝑛) 

 
 
 
 

Replayability 1 
0 1 0                  1 

 

Set a threshold of separation 
𝜽=𝜽(𝑹 𝒕𝒓𝒂𝒊𝒏, 𝑹 𝒕𝒓𝒂𝒊𝒏), e.g. using Gini impurity 

Compute the replayability 
𝒓  = 𝑹(𝑷𝒔𝑴, 𝝈) 

Predict the class of the trace 𝝈 
by comparison between 𝒓   and 𝜽 

𝟎 𝟏 𝝈 𝝈 

 
 

𝑹𝒆𝒑𝑶𝒑𝒕 𝒎𝒂𝒙 𝒎𝒆𝒂𝒏(𝑹  𝒕𝒓𝒂𝒊𝒏) 
𝑷𝒔𝑴 

𝟏 

𝑫𝒊𝒇𝒇𝑶𝒑𝒕 𝒎𝒂𝒙 𝒎𝒆𝒂𝒏(𝑹  𝒕𝒓𝒂𝒊𝒏)−𝒎𝒆𝒂𝒏(𝑹  𝒕𝒓𝒂𝒊𝒏) 
𝑷𝒔𝑴 

𝟏 𝟎 

Qualitative results 

A process model is used to 

discriminate the two classes 

using replayability. As a result, 

discriminative patterns extracted 

during the training procedure 

can be visualized. 

C F F 

The graph here highlights B A E 

the specific patterns of 𝑮 
1 

E 

which are absent of 𝑮  (for 
𝟎 

configuration 𝒄    =0.9, 
𝒑𝒂𝒕 

𝒅𝒊𝒗  =10, and 𝒑𝒐𝒔     =10). 
𝒆 𝒎𝒂𝒙 

 

Circles represent nodes 

of the model, and flux from 

circles represents edges. 

The size of nodes and edges 

are proportional to the number 

of traces represented. 

D 
D E 

G 

Conclusion 

Across this study, we proposed a new binary classification algorithm for event log data, based on process model optimization. Quantitative and qualitative results show the 

competitiveness and the transparency of the method. Future research will focus on the integration of more information into the model to increase prediction performance for 

other types of discriminative patterns. 

 
 

* DT: Decision Tree; **RF: Random Forest; ***MLP: Multi Layer Perceptron; ****AUC: Area Under the Curve;  
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Process model-based 

classification for event log data 

Event log and process model 
definitions 

An    event   log    𝑳={𝝈 ,    𝝈 …,    𝝈  } 
𝟏             𝟐 𝒏 

regroups data in traces, each trace 𝝈 
𝒍 

= 𝒆𝟏 𝒆𝟐…𝒆𝒎 being an ordered list   of 

𝒌 

a label 𝒂∈𝑨 and a time-stamp 𝐭. 

events, each event 𝒆  =(𝒂, 𝒕)  having 

A process model 𝑷𝒔𝑴=(𝑵, 𝑬, 𝑳, 𝑷) 

is defined as a four-tuple with a set of 

nodes 𝑵 and edges 𝑬, a label 

function  𝑳 and a position  function 

𝑷. 𝑳 and 𝑷 map each node 𝒏∈𝑵 

respectively to a label 𝒂∈𝑨 and a 

position 𝒑∈ℕ∗. Each edge links a  

node to another one of strictly 

higher  position. 

Number 
of traces 

2 

𝑹  𝒕𝒓𝒂𝒊𝒏= 𝑹(𝑷𝒔𝑴,𝑳 𝒕𝒓𝒂𝒊𝒏 ) 
𝟏 𝟏 

𝑫𝒊𝒇𝒇𝑶𝒑𝒕 𝑹𝒆𝒑𝑶𝒑𝒕 

 
Introduction 

Event logs are a widespread type of data structure carrying 

information of time and ordering of events. As the complexity 

increases when time-dependent processes are considered, 

human understanding of predictive models is a lever for 

acceptability and practical deployment. We present here a new 

binary classification algorithm, created for event log data. 

Moreover, the proposed algorithm provides transparency by 

producing a process model to explain training results and 

future predictions. Transparency of predictive models is a 

current challenge, particularly in healthcare where deep 

learning has become state of the art [1]. 

 
 

Computational experiment 
Generation of traces with two graphs 𝑮 and 𝑮 

𝟎 𝟏 

After choosing a size configuration (𝒑𝒐𝒔     for the length and 𝒅𝒊𝒗  for 
𝒎𝒂𝒙 𝒆 

the  diversity),  we  create  two  graphs  𝑮   and  𝑮   with  𝒑𝒐𝒔      identical 
𝟎 𝟏 𝒎𝒂𝒙 

layers  composed  of  𝒅𝒊𝒗    different  nodes.  Then,  a  proportion  𝒄     of 
𝒆 𝒑𝒂𝒕 

shared patterns in 𝑮        is deleted. Traces are then created by randomly 
𝟏 

crossing the graphs, forming event logs 𝑳   and 𝑳         (10 per parameters 
𝟎 𝟏 

combination). 

 

𝑮𝟎 𝑮1 

𝒅𝒊𝒗𝒆 

A A A A A A A 

 
B B B B B B 

 
C C C C C C 𝒄 

𝒑𝒂𝒕 

𝒑𝒐𝒔𝒎𝒂𝒙 𝒑𝒐𝒔𝒎𝒂𝒙 

 
(𝒅𝒊𝒗𝒆; 𝒑𝒐𝒔𝒎𝒂𝒙; 𝒄𝒑𝒂𝒕) 

 
Event logs 

80% 𝑳 𝒕𝒓𝒂𝒊𝒏 𝑳 𝒕𝒓𝒂𝒊𝒏 20% 𝑳 𝒕𝒆𝒔𝒕 𝑳 𝒕𝒆𝒔𝒕 
𝟎 𝟏 𝟎              𝟏 

 
 

Training 

DT*, RF**, MLP***
 

with event log flattening    

and hyperparameters tuning Testing 

𝑹𝒆𝒑𝑶𝒑𝒕 and 𝑫𝒊𝒇𝒇𝑶𝒑𝒕    

 
Qualitative results Quantitative results 

Process models AUC****
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Experiment 

For all patients, features are used to train a decision tree for relapse prediction at 

sepsis episode release. For patients with exhaustive medical history (5 or more 

medical events within the 2 years before sepsis episode), the proposed 

methodology of pattern extraction is used to enrich feature data with the 

replayability score (fig.2). 

 

For each configuration, 80% of patients have been randomly selected as a 'train' set, 

the remaining 20% forming a 'test' set where area under the roc curve (AUC**) is 

computed as a performance measure. Decision tree (DT*) is used as a predictive 

algorithm, with maximum depth fixed as 4 for all models. 

 
 
 
 

 

Fig 2. Schematic representation of the experiment 

Results 

Results show that for patients with 

5 or more medical events, the 

addition of replayability within 

features increases performances 

in term of AUC** (from 0.59 to 

0.63). 

 

Moreover, replayability takes an 

important place in decision tree 

construction as the first split  of 

the tree is performed using 

replayability (R > 0.003) (fig 3.). 

 

The result of optimization is a 

process model which shows 

extracted patterns of sepsis 

relapse within the medical history 

of patients. Thus, the visualization 

of such a process model provides 

insights to aid understanding of 

the risks of sepsis relapse. As a 

result, Leukemias, NHL*** or 

Neoplasms appear as particular 

events in medical history which 

are highly correlated with sepsis 

relapse (fig 4.). 

 
 

 

 
Conclusion 

Across this work, a methodology of pattern extraction from event log data (medical history) using process mining is presented. This method has been applied on a study case 

using NHS data to improve sepsis relapse prediction. Moreover, the obtained process model highlights some particular medical events within patients’ history which will impact 

sepsis relapse risk. 

The presented study is a proof of concept. Performances are not sufficient to be used in routine, but as the use of replayability increases performances, the methodology is 

encouraging. Future work will be focused on working with more precise data in order to improve performances and develop a tool to be used in practice, to identify at an early 

stage patients with a risk of sepsis relapse. 
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Fig 1. Illustration of Process Mining results for patients' pathways analysis 

Process mining for predictive analytics: a case study on NHS data to improve care for sepsis  patients 

Context 

Sepsis 

1 year 

Pattern extraction from medical history using process model  optimization 

Training patients R       Replayability (R) Medical     history     of      training      patients      is      structured      in      an      event      log 

of class 0 (no relapse within 1 year) and 1 (relapse within 1 year). 

The replayability is   a   measure,   computed   using   an  algorithmic 
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Features 

Age 

Gender 

Sepsis stay duration 

Comorbidities 

procedure, which quantifies the ability of a process model to represent a trace[2]. 

Number 

of patients The idea behind the proposed method is the construction of a process model which well 

represents patients from (relapse) while less representing traces from 

(no relapse). This optimization function used    during    graph  construction 

0 Replayability 1 

incorporates this idea. Thus, discriminative patterns from pathways of patients having 

relapse are extracted. 
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AUC**: 0.65 

DT* 

AUC**: 0.59 

All patients 
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5 or more medical events 
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Sepsis antecedent 

NO           ? YES       0.75         1,211 

0.76        1,151 

NHL*** 

NHL*** 

Leukemias 

Leukemias 

Neoplasms 

Multiple myeloma 

Fig 3. First 4 conditions of decision tree 

in favor of sepsis relapse, obtained for 

patients with 5 or more medical events 

(features + replayability) 

Fig 4. Resulting process model: 

pattern of sepsis relapse risk 

extracted from patients’ 

medical history 
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Abstract 

 
Initially created for a reimbursement purpose, non-clinical claim databases are exhaustive Electronic 

Health Records (EHRs) which are particularly valuable for evidence-based studies.  The objective of this   

work is to develop predictive methods for patient pathways data, which leverage the complexity of non- 

clinical claims data and produce explainable results. Our first contribution focuses on the modeling of event logs  

extracted from such databases. New process models and an adapted process discovery algorithm are 

introduced, with the objective of accurately model characteristic transitions and time hidden in non-clinical 

claims data.  The second contribution is a preprocessing solution to handle one complexity of such data,  

which is the representation of medical events by multiple codes belonging to different standard coding sys- 

tems, organized in hierarchical structures. The proposed method uses auto-encoders and clustering in an 

adequate latent space to automatically produce relevant and explainable labels. From these contributions, an 

optimization-based predictive method is introduced, which uses a process model to perform binary classifica- tion 

from event logs and highlight distinctive patterns as a global explanation. A second predictive method    is 

also proposed, which uses images to represent patient pathways and a modified Variational Auto-Encoders (VAE) 

to predict. This method globally explains predictions by showing an image of identified predictive factors 

which can be both frequent and infrequent. 
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Abstract 

 
Les bases de données médico-administratives sont des bases de données de santé particulièrement exhaus- 

tives. L’objectif de ce travail réside dans le développement d’algorithmes prédictifs à partir des données de 

parcours patients, considérant la complexité des données médico-administratives et produisant des résultats 

explicables. De nouveaux modèles de processus et un algorithme de process mining adapté sont présentés, 

modélisant les transitions et leurs temporalités. Une solution de prétraitement des journaux d’événements est 

également proposée, permettant une représentation des évènements complexes caractérisés par de multiples 

codes appartenant à différents systèmes de codage, organisés en structures hiérarchiques. Cette méthode de 

clustering par auto-encodage permet de regrouper dans l’espace latent les événements similaires et produit 

automatiquement des labels pertinents pour le process mining, explicables médicalement. Un premier al- 

gorithme de prédiction adapté aux parcours est alors proposé, produisant via une procédure d’optimisation 

un modèle de processus utilisé pour classifier les parcours directement à partir des données de journaux 

d’événements. Ce modèle de processus sert également de support pour expliquer les patterns de parcours 

distinctifs entre deux populations. Une seconde méthode de prédiction est présentée, avec un focus partic- 

ulier sur les événements médicaux récurrents. En utilisant des images pour modéliser les parcours, et une 

architecture d’auto-encodage variationnel modifiée pour l’apprentissage prédictif, cette méthode permet de 

classifier tout en expliquant de manière globale, en visualisant une image des facteurs prédictifs identifiés. 
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