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Introduction

General introduction

In recent years, there has been a new momentum in the field of adsorption science and tech-

nology [5]; in addition to traditional applications such as air and water purification, adsorption

processes are now widely used in the oil and petrochemical sectors as well as in the prepara-

tion of industrial gases. Among important adsorption applications, we can mention gas mask

manufacture by using activated carbon to trap toxic gases, ion exchange methods used to soften

water, adsorption chromatography to purify and separate pigments, etc. The widespread use of

adsorption is linked to the important number of different materials available to design processes

"on demand". Indeed, the huge number of adsorbate/adsorbent combinations makes adsorption

a mature technology for a broad range of applications. The presence of an adsorbate at the

adsorbent surface alters the porous solid properties. Among well-known adsorbates, surfactants

is an important family which allows covering a broad spectrum of properties, applications, etc.

Surfactants, which are amphiphilic molecules combining a hydrophilic head with a hydropho-

bic tail, constitute an important class in Soft Matter. Besides their ability to decrease surface

tension by getting adsorbed at interfaces, surfactants in water exhibit a complex phase diagram,

i.e. at low concentrations they are present as individual monomers in solution and above a

certain concentration, the critical micelle concentration (CMC), surfactants form ordered meso-

scopic assemblies – typically spherical micelles. Owing to their tendency to form micelles and

reduce surface tension, surfactants are at the heart of many applications where they are used as

detergents, dispersants, emulsifiers, etc. [6, 7, 8].

Several models are available to describe adsorption processes – the most popular frame-

works being the Henry and Langmuir models. The Henry model accurately describes the ad-



2 Introduction

sorption of individual molecules at low concentrations, while the Langmuir model covers a

broader concentration range by considering the formation of an adsorbate monolayer at the

solid surface. Despite the broad applicability of these two seminal models, they are not suitable

to capture the complex phenomena involved in surfactant adsorption. Depending on the nature

of the surfactant and solid surface considered, different interaction types are involved in the

adsorption process; attractive or repulsive interaction between the hydrophilic group and the

surface, attractive interaction between the hydrophobic group and the surface, and lateral inter-

actions between the adsorbed surfactants. These interactions lead to cooperative effects which

significantly impact the thermodynamics and dynamics of the adsorbed layer. Such cooperative

effects, which are intrinsically linked to the chemical structure/composition of the adsorbate, are

responsible for the rich adsorption behavior including the formation of ordered or disordered

self-assemblies at the host surface.

As already stated, increasing attention is paid to adsorption technologies with significant

efforts made to improve existing processes. For purification, in particular, it is necessary to

better assess and understand the migration of pollutants into natural or synthetic porous media.

These pollutants can adsorb to the surface of the porous medium following specific underlying

adsorption kinetics [9, 10]. If these adsorbates are in contact long enough with the adsorbent,

a local equilibrium is reached between the amount of adsorbed molecules and the molecules

transported in solution. Understanding molecule transport and adsorption kinetics is therefore

crucially needed to develop and improve processes. To do so, from a technical viewpoint, it

is important to integrate adsorption kinetics into transport models but also to consider differ-

ent phenomena involved (mass transfer, diffusion, and adsorption). In this context, the study

of the interplay between transport and adsorption is considered as one of the most important

scientific issues in the field of adsorption. The porous medium structure is of course another

ingredient that significantly influences the transport behavior of adsorbing molecules as well as

adsorption (since the latter is also sensitive to the geometry/structure of the solid/fluid interface).

Depending on the porous structure, features such as constrictions or low porosity zones induce

strong coupling between fluid transport and molecular adsorption. Therefore, understanding

the interplay between the structural heterogeneity of the porous medium and the adsorption

thermodynamics and kinetics is also considered as an important issue.
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Thesis objectives

The objective of this thesis is two-fold. First, an adsorption model capable to capture the coop-

erative effects involved in surfactant adsorption will be derived. Second, the interplay between

adsorption and transport will be considered using a robust numerical scheme.

As far as the first objective is concerned, we will examine surfactant adsorption by consid-

ering specifically microscopic cooperation effects involved for such complex molecules. Such

effects lead to a non-ideal adsorption behavior (lateral interaction and the formation of meso-

scopic aggregates), which results in complex underlying kinetics. As will be shown, this rich

adsorption kinetics behavior is a key element required to understand and design specific ad-

sorption processes. In particular, such kinetic aspects coupled with transport flow are important

to design efficiently industrial adsorption devices. It is therefore very important to include

such cooperative effects in the definition of adsorption kinetics when dealing with surfactants.

Therefore, in this thesis, a detailed definition of the cooperative effects involved in adsorption is

considered. First, we derive a new adsorption model that considers these cooperative adsorption

effects as well as surface aggregation. This model is based on simple adsorption kinetics with

adsorption and desorption coefficients that are dependent on the surfactant surface concentra-

tion. This ingredient provides an improved description of adsorption for individual monomers

as well as for micelles by accounting for hindered or facilitated adsorption.

As for the second objective, the study of the coupling between transport and adsorption is

considered. Such interplay between adsorption kinetics and transport flow is taken into account

using a numerical method. The latter is considered efficient and robust as it allows in particular

to obtain information on both the adsorption and dynamical properties. Indeed, experimen-

tally, detailed information on adsorbed quantities is not easily accessible since only adsorbate

free concentrations in solution are assessed. Moreover, while conducting an experimental para-

metric study (by considering parameters such as adsorption and desorption coefficients) is not

simple, numerical methods allow the determination of even nanometric quantities. These meth-

ods provide a better understanding of the influence of adsorption on transport. In this thesis,
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we will study the transport of non-adsorbing and adsorbing molecules using the Lattice Boltz-

mann method within the Two Relaxation Time scheme. This technique will be used to solve

the Advection–Diffusion equation. The Lattice Boltzmann method is a powerful technique

for the computational modeling of a wide variety of fluid flow problems including single and

multi-phase flow in complex geometries. As will be discussed in this manuscript, it allows in-

corporating different adsorption kinetics in an effective but robust fashion.

This manuscript is divided into five chapters. The first chapter provides a short literature

review on the fundamental concepts at the heart of this work. We introduce the main elements

to characterize transport – both flow and diffusion – and adsorption in porous media. Then,

we present the main principles of the Lattice Boltzmann scheme. In Chapter 2, we introduce

the formalism used to conduct the numerical simulations: the Two Relaxation Time Lattice

Boltzmann scheme applied to a two-dimensional geometry. We present the equations that were

specifically implemented to address Stokes flow problems as well as those required to solve

the advection diffusion equation. This framework is then validated by presenting the results

obtained for the transport of passive i.e. non adsorbing tracers. In Chapter 3, we discuss the

cooperative effects involved in surfactant adsorption. After a brief presentation of the existing

models in the literature and their limitations, we present our new model. The assumptions at the

root of the model and its validation against experimental data are discussed. In Chapter 4, we in-

tegrate in the Lattice Boltzmann approach a local description of the adsorption kinetics based on

Henry and Langmuir modeles but also using the cooperative adsorption model developed in the

previous chapter. We also present the validation of the adsorption kinetics implemented under

static conditions (in the absence of fluid flow). Chapter 5 examines the influence of adsorption

on molecular transport by discussing the differences observed when various models/conditions

are considered. We also perform simulations in increasingly complex pore geometries to eval-

uate the impact of the pore structure heterogeneity on the transport of adsorbing molecules.

We note that a significant part of chapter 3 in this manuscript is taken from our submitted article

" Cooperative Effects Dominating the Thermodynamics and Kinetics of Surfactant Adsorption

in Porous Media: From Lateral Interactions to Surface Aggregation ".
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This chapter is devoted to providing the fundamental background for this work: adsorption and

transport of adsorbate particles within porous media. This chapter is divided into three sections

which correspond to its main keywords. The first section is dedicated to a general overview of

transport in porous media. We provide some generalities on porous media and on fluid flows

in the porosity of such heterogeneous environments. Then, the different transport mechanisms

– advection and diffusion – are succinctly presented. Finally, dispersion of particles within a

liquid flowing through a porous medium is described in more details as it is at the heart of the

present thesis. The second section of this chapter focuses on surfactant adsorption. After a brief

introduction to surfactants – characteristics, types and functionalities – we discuss adsorption

of such complex molecules under both static and dynamic conditions. Throughout this thesis,

static and dynamic conditions refer to adsorption in a non-flowing and flowing liquid, respec-

tively. The third section of this chapter introduces the Lattice Boltzmann method (LBM). This

general presentation is short as a more detailed discussion will be provided in Chapter 2. Here,

we only describe the main principles and the different Lattice Boltzmann schemes.

A. Transport in porous media

Transport in a porous medium is relevant to a large body of domains and applications. This

includes the following non-exhaustive list: reservoir engineering with hydrocarbon transport

in rocks formations, geoscience with pollutant transport in soil or radioactive waste storage in

the underground, construction engineering with moisture transport control, hydrogeology with

water circulation in aquifers or contaminants dispersion at the subsurface, etc. Other appli-

cations are relevant to chemistry and physical chemistry such as in catalysis, chromatography,

bio/nanomedicine (drug delivery using encapsulating media to brain), etc. Understanding trans-

port in porous media requires to better describe the link between the descriptors that characterize

porous media and the fluid flow mechanisms within their porosity.
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1. Porous medium and fluid flow

Fluid flow in porous media is of significant importance in many areas of science and engineer-

ing. Therefore, to develop and operate projects in these fields, we need an accurate representa-

tion of the porous media as well as of the fluid flow behavior.

1.1. Porous medium

Many porous media can be found in Nature. There exist natural porous media with both inor-

ganic solids such as rocks, soils, etc. and organic or organic/inorganic compounds such as bones

and kidney. There exist also a large number of man-made porous media which are used as fab-

rics, filters, etc. [11]. In the frame of this thesis, we are interested in studying the transport of

adsorbing particles in rocks that are subjected to a flowing liquid. In short, porous media can be

defined as solid materials containing voids/cavities – the so-called pores [12]. These pores can

be connected or unconnected and of various geometry/sizes (only connected pores allow fluid

flow through the porosity). The International Union of Pure and Applied Chemistry (IUPAC)

has proposed a nomenclature of porous media based on their pore size: microporous solids <

2 nm (e.g. zeolites, active carbons), mesoporous solids 2-50 nm (e.g. oxides such as porous

silica/alumina), and macroporous solids > 50 nm (e.g. sponges) [13].

At minimum, fluid flow through porous media can be defined at the engineering level us-

ing the following descriptors/parameters. (1) porosity φ which corresponds to the fraction of

pore volume to the total – pore and solid – volume. (2) Permeability K which corresponds to

the capacity of the porous medium to transport fluids through its porosity [14] (a more robust

definition will be given below). In practice, transport in porous media often relies on more

or less complex parameters such as pore structure and fluid properties and concepts such as

tortuosity [15].

1.2. Flow in porous media

In porous media, upon adding surfactants or pollutants in a flowing fluid (e.g. water), they tend

to disperse in the solid porosity. Before presenting the different transport/adsorption mech-

anisms, we introduce in this section the main ingredients to understand fluid flow in porous

media.
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The Reynolds number Re compares the inertia forces with the viscous forces. On the one hand,

the viscous forces characterize the fluid resistance to the fluid flow while inducing parallel

streamlines in lamination (i.e. laminar flow for small Re). On the other hand, the inertia forces

cause irregular fluid movements which induce motions that do not correspond to lamination (i.e.

turbulent flow for high Re). The Reynolds number Re is the ratio between these two forces:

Re =
ρ UL

µ
=

UL
ν

(I .1)

where ρ is the fluid density, U the flow velocity, L the characteristic dimension (typically, taken

as the typical pore size when considering fluid flow in porous media). µ and ν are the dynamic

and kinematic viscosities of the fluid, respectively.

In porous media, the flow of an incompressible fluid can be described using Darcy’s law. This

equation states that the fluid flow rate U is proportional and oriented along the pressure gra-

dient ∇∇∇P, U ∼ ∇P. The proportionality coefficient between these two quantities is defined as

the hydraulic conductivity of the porous medium. More in detail, the hydraulic conductivity

corresponds to the ratio of the porous medium permeability K and the fluid dynamic viscosity

µ . Darcy’s law was proposed by Henry Darcy in 1856 following experimental studies of one-

dimensional water flow through compacted sands at low velocity [16]. This equation is valid

for small Reynolds number Re (therefore, typically, in low velocity regimes as is often the case

in porous media due to the restricted lengthscale L imposed by the pore geometry). Darcy’s

equation for a homogeneous fluid writes:

UUU =−K
µ

∇∇∇P (I .2)

where we recall that K is the porous medium permeability and UUU is the fluid flow velocity.

From a very general standpoint, in fluid mechanics, the flow of a fluid is described by means

of Navier-Stokes equations. Various approximations and conditions can be used to simplify

these equations. Let us consider incompressible Newtonian fluids in a laminar regime. In the

stationary state, the fluid velocity does not change over time as long as external factors such

as pressure, temperature, etc. remain constant. In this case, the Stokes equation provides an
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accurate description of fluid flow:

∇∇∇P−µ∆UUU = fff (I .3)

where P is the pressure and fff is the applied force inducing transport.

2. Transport mechanisms

Fluid transport in porous media (e.g. carrier fluids) and mass transport (e.g. pollutants, sur-

factants) through flowing fluids (e.g. water, oil, air) is impacted by different phenomena such

as nonlinear chemical reactions, adsorption, etc. In porous media, Re is usually small so that

the flow remains essentially laminar so that the dispersion/mass transport of particles within the

flowing liquid is governed by the two following mechanisms: advection and diffusion. In what

follows, the two phenomena – advection and diffusion – are presented.

2.1. Advection in porous media

Advection refers to the fluid mass moving through the pores as described in the previous para-

graph. It is affected both by the fluid and porous medium properties. Advection or the flowing

fluid participate to the transport of adsorbing/non-adsorbing particles; adding particles within

the fluid flow induces an advective motion along the flow streamlines which causes a transla-

tion of the concentration field. The advective flux JA simply depends on the fluid mass per unit

volume (i.e. density) ρ and the flow velocity U : JA = ρU .

2.2. Diffusion in porous media

The added particles to the flowing fluid are also transported i.e. scattered within the porous

media through diffusion. Diffusion, which is described using Fick’s first law, corresponds to

the mass transfer that tends to more uniform molecule distributions in space as time passes (e.g.

impurity dispersion in water or air at rest). Depending on the time/length scale considered,

two diffusion types can be observed: (1) Turbulent diffusion at the macroscopic scale which

is caused by random bulk movements and (2) When no external driving forces are involved,

molecular diffusion caused by local fluctuating density gradients occurs. Even when particles
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are uniformly distributed in space, self-diffusion – i.e. Brownian motion – occurs at the mi-

croscopic/molecular scale as particles move randomly and independently of the host solution

due to microscopic effects [17]. In what follows, we focus on molecular diffusion. Molecular

diffusion, which occurs in gases, liquids and solids, corresponds to the process by which the

thermal motion of individual molecules causes a flux of dissolved particles from areas of higher

concentration to areas of lower concentration. This microscopic phenomenon can be described

by Fick’s first law, which relates the diffusive flux JD to the local concentration gradient through

the molecular self-diffusion coefficient Dm, JD =−Dm∇ρ .

The diffusion coefficient of molecules confined in a given porous medium depends on many

parameters such as thermodynamic quantities (concentration, temperature, etc.) but also mate-

rial properties (porosity, pore size, etc.). Particle diffusion in a liquid flowing through a porous

medium involve different complex mechanisms such as surface diffusion, Knudsen diffusion,

stop-and-go diffusion, etc. In the next section, we address the specific problem of transport in-

volving coupled diffusion/advection in porous media. While advection often prevails in porous

media, there is a number of situations – typically when the pore size is very small – where the

advective flux is low so that diffusion is the dominant transport mechanism at long time.

3. Dispersion

Dispersion is the phenomenon that results from the combination of advection and diffusion in

porous media. Understanding such dispersion phenomena in porous media is important since

this behavior is encountered in various domains: contaminant dispersion in groundwater, in-

jected polymer distribution in water in reservoirs, etc. After injection, in the long time limit,

solute particles in a flowing fluid will be dispersed homogeneously. Therefore, understanding

the time dependence of particle distribution provides a mean to better design engineering pro-

cesses (enhanced oil recovery, groundwater remediation, etc.). Before explaining the principles

of particle dispersion in porous media, we first introduce a parameter that provides a quantita-

tive mean to predict the dominant transport regime: the Peclet number Pe. This dimensionless

number is defined as the ratio of diffusive and advective fluxes:

Pe =
JA

JD
=

UL
Dm

. (I .4)
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Diffusion prevails for Pe << 1 while advection prevails for Pe >> 1 (Pe∼ 1 corresponds to a

balance between the advection/diffusion components).

3.1. Dispersion in porous media

Fluid flow through a porous medium can exhibit a rich behavior as a result of the complexity

of the porous structure. Collision with pore edges and changes in fluid pathways lead to the

mixing and re-arrangement of the moving particles. Such dispersion, which manifests itself at

the macroscopic level, results from the simultaneous action of mechanical phenomenon and a

macroscopic phenomenon [18, 19]:

• Mechanical dispersion results from the fact that the fluid is moving at both higher and

lower velocities than the mean velocity [20]. More in detail, like in a Poiseuille flow,

the fluid in the pore center is displaced at a faster rate than the fluid at the pore surface.

Moreover, the flowing fluid follows preferential fluid pathways as its transport through

small pores is slower than through large pores. As a result, since particles do not move

at the same velocity everywhere, the important dispersion is observed along the flow

paths. In turn, such dispersion leads to a broad distribution of solute particles at the flow

edge. This dispersion in the direction of flow is called longitudinal dispersion while the

dispersion normal to the flow direction is referred to as transverse dispersion [20].

• Macroscopic dispersion corresponds to the spreading of solute particles caused by the

heterogeneity at the porous medium scale (i.e. well beyond the pore scale). Such medium

heterogeneity causes variations in the permeability that lead to heterogeneous flows with

significant spatial variations in the advective transport velocity field.

The dispersion theory focuses on the asymptotic and time-dependent spatial distribution of a

passive tracer in a fluid flowing through a porous medium (typically, the fluid flow is induced

by an external pressure gradient). The main objective of this theory is to predict the average

velocity with which the tracers move. Dispersion corresponds to the particle density variations

observed around the average density distribution. Dispersion is related to the physical param-

eters characterizing the transport properties of the system but also the main descriptors related

to the host porous medium. These parameters include the molecular diffusion coefficient of the

tracers, the Stokes velocity field of the flowing fluid, the kinematic and rheological properties
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of the fluid (in situ viscosity, shear effect of the flow), and the geometry of the porous medium

(in particular, its porosity and its characteristic interstitial length).

Considering transport processes involving both advection/diffusion, the mass conservation of

non-reactive species transported by the flow in porous media can be described by the so-called

advection diffusion equation (ADE):

∂c
∂ t

+UUU ·∇∇∇c−∇∇∇ · (Dm∇∇∇c) = 0 (I .5)

where c is the solute concentration in the bulk fluid, UUU the velocity vector and Dm the molec-

ular self-diffusion coefficient. Dispersion always takes time to reach its asymptotic state – the

dispersion coefficient is taken in the asymptotic regime (i.e. for long time t).

Gaussian or normal dispersion. The general solution of the advection-diffusion equation is a

Gaussian function for the solute concentration c(r, t). When transport can be modeled using the

ADE, the dispersion is coined as “normal”. The variance σ2 of the concentration profile c(r, t)

is proportional to time i.e. σ2 ∝ t. Typical examples of such normal dispersion includes CO2

atmospheric dispersion after leakage from transportation facilities or non-reactive pollutant dis-

persion in air.

Non-gaussian dispersion. Non-Gaussian dispersion arises with porous media exhibiting sig-

nificant structural heterogeneity that impacts the fluid velocity field. Structural heterogeneity

generates either stagnant zones where the fluid is delayed or preferential flow zones where the

fluid is accelerated. In this case, the variance σ2 of the concentration profile c(r, t) scales as a

power law of time, i.e. σ2 ∝ ta, in the long time limit (t→ ∞). The following regimes are often

listed in the literature: (1) sub-diffusion for 0 < a < 1, (2) normal or Gaussian dispersion for

a = 1, (3) super-diffusion for 1 < a < 2, and (4) ballistic regime for a > 2.

3.2. Taylor dispersion in a tube

As mentioned earlier, dispersion can take different forms. Under most circumstances, it cor-

responds to the normal dispersion mode with a concentration profile having a Gaussian shape.
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Such a regime, known as Taylor dispersion, corresponds to the expected dispersion for non-

reactive particles (soluble solutes) in a fluid laminar flow (taken in the asymptotic limit). As

already discussed, such dispersion results from the combination of molecular diffusion and ad-

vection phenomena. More in detail, the particles are carried down the porous medium by the

shear flow. Taylor dispersion corresponds to the resulting diffusion of the particle distribution

in the channel in the same direction-shear augmented diffusion, as presented in Fig. 1.

Figure 1: Tracer distribution profile over time in a two parallel plates geometry (Taylor dis-
persion). The geometry is exposed to a fluid flow, with the maximum velocity Umax. Particles
are injected at t = 0. At t1, the tracer distribution follows the shape of the velocity profile,
i.e. the advection regime is reached and for large times (t3, t4 and t5), the tracer distribution is
homogeneously redistributed reflecting the Taylor dispersion regime limit.

The Taylor–Aris solution of ADE is based on the assumption that the time evolution of the

solute concentration correponds to a diffusive-like regime called the dispersive regime. In this

regime, the variance of the solute concentration profile becomes stationary and the problem be-

comes unidirectional (i.e. along the advective flow direction). Taylor showed that longitudinal

dispersion is governed by a diffusion-like equation in the mobile frame along the flow direction:

∂c
∂ t

(x̄,y) = De f f
∂ 2c
∂x2 (I .6)

where x̄ = x−Ut and De f f is the effective dispersion coefficient. De f f is related to the variance

σ2
disp of the mean square displacement:

lim
t→∞

d
dt

σ
2
disp(t)(t) = 2De f f (I .7)

The expression of De f f can be determined by equating the transfer rate of a solute through

a defined cross-section given by ADE – given in Eq. (I .5) – and the diffusive flux described

by Fick’s law – given in Eq. (I .6). As shown in Ref. [21], for Newtonian fluids, the effective

Taylor dispersion coefficient in a channel formed by two parallel plates is:

De f f = Dm +
1

210
U2L2

Dm
= Dm

(
1+

Pe2

210

)
(I .8)
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When considering complex porous media, the major obstacle to the application of Taylor-Aris

lies in the fact that it is limited to fluid movements that are locally unidirectional. In other

words, the local fluid velocity vector is everywhere parallel to the mean fluid velocity vector

as it is the case for Poiseuille flow through a tube. This condition is not necessarily met for

fluid flow through real porous media (where the flow streamlines around individual particles

are curvilinear rather than straight).

B. Surfactant adsorption in porous media

1. Surfactant
1.1. Definition and types

Surfactant is a contracted expression that stands for “surface active agent”. These molecules

possess a hydrophilic head and a hydrophobic tail. The hydrophobic part is usually an 8 to 18

carbon chain which can be aliphatic, aromatic or a mixture of both. These hydrophobic tails

typically stem from natural fat and oil, petroleum fractions, relatively short synthetic polymers,

or relatively high molecular weight synthetic alcohols. The hydrophilic groups, which lead to

the primary classification of surfactants, are anionic, cationic, nonionic or Zwitterionic.

Surfactant types Use examples Characteristics

Anionic hydrophilic groups
Carboxylates (soaps), sulfates,
sulfonates or phosphates

A negatively charged polar
head

Cationic hydrophilic groups Some amine products
A positively charged polar
head in aqueous solution

Nonionic surfactants Food ingredient, alcohol
Do not have a charged head
but contain hydrophilic
groups

Zwitterionic surfactants Betaine
Neutral but are composed of
two ionic parts

Table 1: Classification and properties of surfactants.

Owing to their tendency to orient at surfaces and form micelles, surfactants possess important

functions including the ability to modify interfacial energy and reduce surface tension. The

term interface indicates a boundary between two immiscible phases; the term surface refers to
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an interface where one of the phases involved is a gas. For a system at low concentration, sur-

factants alter the interfacial free energy i.e. the minimum amount of work required to increase

the interface area. Surfactants usually work to reduce the interfacial free energy although there

are rare situations where they can lead to increased interfacial free energies. On the other hand,

these amphiphilic molecules lower the surface tension1 between two liquids, between a gas and

a liquid, or between a liquid and a solid. Surfactants can be considered as adsorbing substances

as they stick together and bond to surfaces/interfaces. Even at low concentrations, they adsorb at

interfaces which significantly changes the amount of work required to expand these interfaces.

Surfactants may act as detergents, wetting agents, emulsifiers, foaming agents, and dispersants.

1.2. Surfactants in solution

Fig. 2 presents the phase diagram of surfactants in solution as their concentration c is varied.

Individual surfactant molecules are called “monomers” while aggregated surfactants molecules
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Figure 2: Concentration c phase diagram of surfactants. The surfactants adopt particular spatial
configurations. At low concentrations, the monomers are solubilized within the solvent, the red
and black parts denote the hydrophilic head and the hydrophobic tail of the surfactant. Above
a certain concentration, the so-called CMC (Critical Micelle Concentration), the monomers
aggregate to form micelles [1].

1Upon measuring the surface tension of a liquid, one probes the interfacial free energy per unit area of the
boundary between the liquid and its vapor pressure.
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are referred to as “micelles”. At low concentrations c, the monomers are dispersed/solubilized

in the solvent (typically water). At a certain concentration, the so-called Critical Micelle Con-

centration (CMC), the monomer concentration remains constant as the addition of surfactants

leads to an increase in micelle concentration or micelle size. Micelles are monomer clus-

ters/aggregates whose size and conformation depend on the nature of the surfactant. In general,

the hydrophilic heads are oriented towards the solvent while the hydrophobic tails stick to each

other inside the micelle. When the concentration is further increased, a second critical concen-

tration is obtained above which the surfactants are no longer organized in spherical micelles

but in other complex aggregated structures. Typically, in some surfactant systems, vesicles can

form. Other critical concentrations are successively achieved where the arrangement of cylin-

drical micelles become hexagonal, etc.

1.3. Surfactant aggregates at interfaces

As mentioned in the previous paragraph, a key feature of surfactants lies in their ability to

adsorb at surfaces and interfaces. Surfactant adsorption at various interfaces is often used to

control wetting and solution penetration, stabilize foam and emulsions, and recover minerals

upon flotation operation. To optimize such application conditions, it is important to relate the

amount of adsorbed surfactant to the surfactant concentration in solution but also to obtain

information on the structure of the surfactant adsorbed layer. In this context, surfactant ad-

sorption can involve various adsorbed layer structures. Typically, the adsorbed monomers at

solid/liquid interfaces organize themselves to form different structures depending on the nature

of the surface: hydrophilic (cylinders, spheres, bilayers, etc.) or hydrophobic (hemicylinders,

hemispheres, monolayers, etc.).

The structure of the adsorbed layer at a surface can be characterized by assuming a multilayer

spreading over the entire surface of the adsorbent (mostly monolayer or bilayer) or by consider-

ing the formation of “local” aggregates. The aggregates can form 2-dimensional objects at the

interface between the solid and the liquid. These aggregates, which are usually called “solloids”

for surface colloids, lead to an increase in the adsorbed density/concentration [22]. These sur-
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face aggregates can be of different types as shown in Fig. 3: “hemimicelles” (local monolayer

in which the surfactant is adsorbed with their headgroup in contact with the surface or with their

tail in contact with the surface), “admicelles” (set of local bilayers with headgroups in contact

with the surface and other headgroups directed towards the solution) and “surface micelles”

(structures similar to micelles in solution but adsorbed at the surface) [2].

Hemimicelle Admicelle Surface micelle 

Figure 3: Types of surface aggregates on a hydrophilic surface, we consider the monolayer
form: the hemi-micelles, the bilayer forms: the admicelles as well as the surface micelles [2].
The grey part represent the adsorbent hydrophilic surface and to illustrate the surfactant: the red
and black parts present respectively, the hydrophilic head and the hydrophobic tail.

2. Adsorption

Adsorption is the phenomenon of accumulation of molecular species at the surface of liquid or

solid phases due to unbalanced or residual forces (i.e. forces acting to hold and attract particles

to be in contact with the surface). Adsorption leads to a change in concentration of the molecules

at the interface compared to the surrounding bulk phase [23]. Depending on the phases in

contact, gas or liquid molecules bind to a solid or liquid interface (the so-called adsorbent).

The adsorbed molecules, which are physically or chemically attached to the interface, form an

atomic or molecular adsorbate film. The adsorption of surfactants at a solid-liquid interface is

strongly influenced by several factors [24]:

• The nature of the structural groups at the surface of the solid. Typically, the presence of

highly charged or uncharged sites at the solid surface will lead to strong differences in

adsorption. Moreover, the structure of the atoms forming the solid surface also affects the

adsorption of molecules from a gas or liquid phase.

• The molecular structure of the adsorbed surfactant (ionic, non-ionic, Zwitterionic, etc.)

and the specificity of the hydrophobic group (long/short, straight/branched, aliphatic/aromatic

chain).
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• The aqueous phase properties: temperature, pH, ionicity, additives, etc.

Altogether, these key factors determine the mechanisms by which adsorption occurs as well as

the resulting surface aggregation (if any).

2.1. Adsorption types

Depending on the forces which hold adsorbate molecules to the surface, adsorption is classified

into two types: physical adsorption and chemical adsorption.

Physical adsorption/Physisorption. Physical adsorption resembles the condensation mecha-

nisms that makes molecules from a gas phase condensate into a liquid phase. It is driven by

physical interactions such as van der Waals forces between the solid adsorbent and the adsorbate

molecules. There is no specificity in physisorption; any gas tends to be adsorbed at any solid

provided the temperature is sufficiently low. Physical adsorption obeys the following rules:

• Reversible. If the pressure is increased, more molecules get adsorbed. Reciprocally, by

decreasing the pressure, molecules can be removed from the solid surface. Low tem-

perature promotes physical adsorption while high temperature decreases the adsorption

rate;

• Exothermic process. Upon adsorption, heat is released by the adsorbate/adsorbent sys-

tem as adsorbed molecules are in a lower (more negative) energy level than the bulk

molecules.

• No activation energy. Physical adsorption/desorption does not require to overcome an

energy barrier.

• Multilayer films can form upon physisorption.

Chemical adsorption/Chemisorption. In chemical adsorption, gases are held to a solid surface

by chemical bonds that are specific to each surface/gas couple. Chemical adsorption usually in-

volves higher interaction energies than those involved in physical adsorption. Furthermore,
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chemical adsorption is typically a slower process than physical adsorption and, like most chem-

ical reactions, usually involves overcoming an activation energy. Chemical adsorption obeys

the following rules:

• Chemical adsorption is irreversible.

• Chemisorption energies are of the same order of magnitude as the energy change in a

chemical reaction.

• Chemisorption can be exothermic or endothermic.

• Due to chemical bond formation, the enthalpy of chemisorption is high

(typically 1 eV versus 0.1 eV for physisorption) [25].

• Chemisorption only results in the formation of mono-molecular layers/films.

2.2. Adsorption isotherms and models

2.2.1. Literature review

A detailed presentation on the adsorption at the liquid-solid boundary can be found in textbooks

and reviews [26, 27, 23]. The development of adsorption is now considered a distinct discipline

from the physical sciences – representing an area of mainly multidisciplinary work between

chemistry, physics, biology and engineering [23]. The most important principle in adsorption

science is the “adsorption isotherm”. It refers to the equilibrium function between the amount

of adsorbed substance and the pressure or concentration in the fluid bulk phase at constant

temperature [23]. Adsorption isotherms provide information on the adsorption mechanism as

well as on the interactions between the adsorbate and the adsorbent molecules. Experimental

adsorption isotherms can be accurately understood using mathematical modeling of adsorption

processes. The hypotheses of these mathematical models are based on experimental observa-

tions. Until 1914, there was no theory for the interpretation of adsorption isotherms [23]. The

Freundlich equation [28] was used as a convenient empirical form but it has no theoretical jus-

tification. According to McBain [29], it was first introduced by van Bemmelen in 1888 and

then employed by Baedeker in 1895 as an empirical equation. New descriptions of adsorption

phenomena were later published. First, the Eucken-Polanyi theory was introduced [30, 31, 32]
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and in 1918 the Langmuir isotherm was derived for the first time [33].

Langmuir’s equation [33], which was first derived from kinetic considerations, treats the adsor-

bent surface with a predefined number of adsorption sites. Each site is capable of adsorbing

a single molecule from a perfect gas. Localized adsorption was considered to be different

from non-localized adsorption; in the latter approach, the adsorbed molecules can move along

the surface. In contrast, in localized adsorption, chemical or physical bonds form at the ad-

sorption sites which are strong enough to prevent the adsorbed molecules from moving on the

surface [23]. The Langmuir model considers the bulk as an ideal gas and neglects the lateral

interaction between adsorbed molecules. The adsorbed molecules form a monolayer phase at

the surface of the adsorbent. In his pioneering work, Langmuir presented the first clear con-

cept of "monomolecular adsorption on energetically homogeneous surfaces" with a significant

physical parameter: the adsorption constant [33, 23]. The Langmuir model does not account

for the heterogeneity of the solid adsorbent and the multilayer nature of adsorption. Langmuir’s

work on gas adsorption has led to various results: the formulation of a general treatment for

the kinetics of surface reactions, the kinetics of surface reactions according to his monolayer

equation and also the use of the adsorption isotherm to interpret the kinetics of various sur-

face reactions [23]. Langmuir’s equation is a useful equation that describes the "ideal localized

monolayer". Despite the assumptions of this model, it is important in the surface science and

adsorption science [34, 23].

In 1938, a new isothermal equation was proposed: the multilayer isothermal equation proposed

by Brunauer et al. [35]. To derive this model, Brunauer and Emmett first published two im-

portant papers in 1935 [36] and 1937 [37]. They proposed for the first time to determine the

amount of monolayer adsorption from point B2 of the experimental isotherm [36, 37]. The

Brunauer–Emmett–Teller (BET) equation was conceived as a follow-up to Langmuir’s model

since its derivation is also based on kinetics studies. The main assumption of the BET equation

is that the first layer is adsorbed according to the Langmuir model. The surface sites are there-

2Point B is the inflection point that occurs near the completion of the first monolayer adsorbed. Once the
monolayer coverage is complete, the change in curvature of the adsorption isotherm is abrupt as opposed to a more
gradual curvature which indicates the beginning of multilayer adsorption [38].
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fore energetically identical with no lateral interactions between the adsorbed molecules. The

adsorbed molecules, which form a given layer, constitute adsorption sites for the molecules of

the next layer. The second hypothesis in this model is that the adsorption energy of the layers

beyond the first layer is assumed to be equal to the energy of gas liquefaction. Initially, this

model was defined for a given number of adsorption layers but it was then extended to tend to-

wards infinity when the equilibrium pressure tends towards the saturating vapor pressure [39].

Different approaches were later proposed to model multilayer adsorption such as the model de-

veloped by Frenkel, Halsey and Hill (FHH theory) [40]. These models have been developed

to correct the BET theory by taking into account lateral interactions and the decreasing energy

of the successive layers according to the distance to the surface [41, 42]. The criticism of the

BET theory focuses on two main points: the starting hypotheses and the field of application.

With regard to the upper layers, if lateral interactions are neglected, it is difficult to consider

the energy condensation of the adsorbate in its liquid form since this would necessarily imply

lateral interactions. The second criticism concerns the use of this theory for the characterization

of real porous solids (the heterogeneity of the structure, having pores of different widths, does

not allow assuming equal energies for adsorption or condensation) [41]. Despite its limitations,

the BET theory is a universal and unavoidable method to understand physical adsorption. It

describes the entire isothermal cycle, including the areas of monomolecular adsorption, poly-

molecular adsorption, and condensation [23].

Other robust theories appeared in the second decade of the twentieth century – namely the

theory of adsorption potential introduced by Eucken and Polanyi [30, 31, 32]. This theory,

known today as Polanyi’s theory, served as the basis for the development of the theoretical

foundations of the Dubinin-Radushkevich model known as the volume-filled micropore theory

(TVFM) [43]. The main features of Polanyi’s theory are the introduction of the adsorption

potential and the characteristic adsorption curve. Using a thermodynamic framework, Polanyi

derived this physical adsorption theory by assuming that molecules close to the surface feel an

attractive potential generated by the adsorbent. The magnitude of this potential depends on the

proximity of the adsorbate molecule to the solid surface. In general, this potential is seen as

corresponding to the van der Waals’ attraction [43, 44]. The characteristic adsorption curve
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relates the adsorption potential to the distance from the solid surface. It is fixed by the structure

of the porous solid and has no specific mathematical form [45, 23]. Since the van Der Walls’

forces are temperature independent, Polanyi supposed that the model parameters are also tem-

perature independent [31, 32, 23]. The model derived by Polanyi led to the identification of the

differential molar work of adsorption A (where the ’A’ stands for adsorption potential). This

was the basis of the work by Dubinin–Radushkevich (DR) who introduced the adsorption po-

tential as the negative work performed by the adsorption system A =−∆G. In this case, A is the

Gibbs free energy involved in the transfer of a molecule from the gas to the adsorbed phase at

temperature T and pressure P [46, 47, 23]. In recent years, much attention has been paid to the

DR adsorption isotherm. It provides a good description of experimental data for adsorption on

heterogeneous surfaces – both for porous and non-porous solids. This adsorption isotherm is

very important for the characterization of industrial adsorbents which often exhibit a complex

porous structure. [48, 49, 23].

2.2.2. Adsorption isotherm models

Several adsorption isotherm models have been developed to describe adsorption – either using

a robust theoretical framework or simply as empirical equations. These models include but are

not limited to the Henry, Freundlich, Langmuir, Brunauer-Emmett-Teller, and Kisliuk models.

The hypotheses at the root of some theoretical models such as the Langmuir and Freundlich

equations often limit their applications. As a result, several empirical models – combining

elements of the Langmuir and Freundlich models – have been proposed. This includes the em-

pirical models by Redlich-Peterson, Sips or Langmuir-Freundlich. In what follows, we review

in a non-exhaustive fashion the most important models used to describe surfactant adsorption

onto surfaces. In the different adsorption isotherms below, adsorption is considered instanta-

neous and the concentration c is defined as the surfactant concentration at equilibrium c = ce.

Henry model. This is the simplest adsorption isotherm. The adsorbed amount is assumed to be

proportional to the bulk concentration of adsorbate molecules:

Γe

Γ∞
= kHce (I .9)
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where Γe is the adsorbed amount (typically in ng/cm2 or mmol/m2). Γ∞ is the maximum

adsorption capacity and kH is the Henry constant for adsorption. With this simple model, the

adsorbed amount increases linearly with the molecules concentration c at equilibrium ce.

Langmuir model. The Langmuir adsorption isotherm writes [33]:

Γe

Γ∞
=

kLce

1+ kLce
(I .10)

where kL is the Langmuir equilibrium constant. In this model, it is assumed that the molecules

are adsorbed on well-defined sites at the adsorbent surface. All sites are identical and each site

can adsorb only one molecule so that adsorption only leads to monomolecular layers. The en-

ergy of each adsorbed molecule is independent of the neighboring sites (no lateral interactions

between neighboring adsorbed molecules). Langmuir was able to express the existence of a dy-

namic equilibrium between the molecules which are attached to the surface and those that leave

the surface. If the concentration is very small, the Langmuir model is equivalent to Henry’s

model (kLce << 1). The Langmuir model often makes it possible to fit the experimental results

because of its mathematical simplicity.

Freundlich model. Mathematically, the Freundlich adsorption isotherm is expressed as [28]:

Γe = k f c
1/n f
e (I .11)

where k f is the adsorption constant and 1/n f a constant related to the strength of the adsorp-

tion process. This model assumes that there is an exponential decay in the energy distribution

of adsorption sites (therefore, corresponding to a heterogeneous surface). With this adsorp-

tion model, multilayer adsorption can be described. In the Freundlich model, the constant n f

is a correction factor which is used to characterize the adsorption process. While adsorption

is favorable for 0.1 < 1/n f < 1 adsorption is unfavorable for 1/n f > 1 (as shown in Fig. 4).

In contrast to the Langmuir adsorption isotherm, which exhibits a plateau (Γ∞), a continuous

increase in the adsorbed quantity is observed in the Freundlich model as the concentration ce

increases. There is therefore no surface saturation for 1/n f > 1 and n f = 1. This is often critical

because there is usually a maximum saturation of the surface for most systems.
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Freundlich isotherm for 1/n

f
 < 1

Freundlich isotherm for 1/n
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Figure 4: Henry, Langmuir and Freundlich adsorption isotherms. For the latter, two values 1/n f
are considered.

Redlich-Peterson. This adsorption model is a hybrid version of the Langmuir and Freundlich

adsorption isotherms [50]. The numerator corresponds to that in the Langmuir isotherm (which

approaches the Henry region at infinite dilution):

Γe =
Ace

1+BcαRP
e

(I .12)

where A and B are the so-called Redlich-Peterson constants while αRP is an exponent between

0 and 1. By combining elements from the Langmuir and Freundlich equations, the adsorption

mechanism described in this model does not follow the ideal monolayer adsorption.

Sips model. Sips et al. identified the problem of a continuous increase in the adsorption rate

with the assumed concentration in the Freundlich equation [51]. They proposed a modified

Freundlich equation with a finite limit at high concentration (adsorption plateau) as described

by the following general expression

Γe =
kscαs

e

1+ ksc
αs
e

(I .13)

where Γ∞ is the Sips maximum adsorption capacity, ks the Sips equilibrium constant, and αs is

the Sips exponent.
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Langmuir-Freundlich Model. The Langmuir-Freundlich isotherm is similar to the Sips model

but involves a heterogeneity parameter to describe adsorption on a heterogeneous solid [52]:

Γe =
Γ∞(kL f ce)

αL f

1+(kL f ce)
αL f (I .14)

where Γ∞ is the Langmuir-Freundlich adsorption capacity, kL f the equilibrium constant for a

heterogeneous solid, and αL f a heterogeneity parameter between 0 and 1.

2.3. Adsorption and surface aggregation

2.3.1. Surfactant adsorption

Significant efforts have been devoted to better understand the nature of surfactant adsorption

on various solid surfaces [24, 2]. Different theoretical models have been proposed to describe

such adsorption at solid-liquid interfaces. The most advanced models are those taking into ac-

count the formation of surface aggregates. This includes the approaches by authors such as Zhu

and Gu, Israelachvili, Levitz, Drach, Rudinzki who have investigated the formation of aggre-

gates on surfaces [2]. In the spirit of the work by Kwok et al. [3], the adsorption of surfactant

molecules from a solution can be represented using the following elementary/reversible reaction

mechanism:

{Monomer}+{Vacant site}� {Adsorbed monomer} (I .15)

Such adsorption phenomenon involves a one-stage process which corresponds to a type I Lang-

muir isotherm (L1). The underlying adsorption rate writes:

∂Γm

∂ t
= kAc(Γ∞

m−Γm)− kDΓm (I .16)

where kA and kD are the adsorption and desorption rate constants for a surfactant monomer. Γm

is the adsorbed amount (or surface concentration) of surfactant monomers while c is the surfac-

tant concentration in the bulk solution. Γ∞
m is the maximum adsorption capacity for monolayer

saturation while (Γ∞
m−Γm) is the concentration of remaining vacant sites. In the low concentra-

tion range, adsorption follows the Henry regime where the adsorbed amount increases linearly

with the concentration c. Then, upon further increasing the concentration c, the adsorption rate

decreases and the adsorbed amount reaches a plateau for high concentrations. The shape of
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the Langmuir isotherm is determined by the adsorption capacity and thermodynamic equilib-

rium of the system [3]. If adsorption is rapid and limited to an adsorbed monolayer, it can

be correctly described using the Langmuir adsorption isotherm as described in Eq. (I .10) with

kL = km = kA/kD and Γ∞ = Γ∞
m.

According to the surfactant and surface types, adsorption can be considered as a two-step pro-

cess involving a change in the orientation of the surfactant molecules at the surface. We present

in Fig. 5 a schematic diagram that illustrates the different steps expected in stepped adsorption

processes. This figure also presents the associated orientation of the surfactant at the surface.

According to the classification proposed by Giles et al. [53], it corresponds to the Type IV

Langmuir adsorption isotherm with the following steps:

• 1st step: Surfactant monomer adsorption in a monolayer

• 2nd step: Monolayer saturation

• 3rd step: Increase in the adsorption with shift of the weakly adsorbed chains

• 4th step: Tilting of the head-groups by a small angle with a limiting concentration: critical

hemimicelle3 concentration (above this value, surface aggregation occurs).

• 5th step: Surfactant monomer condensation from the liquid phase onto an adsorbed monomer

due to van der Waals and hydrophobic bonding forces.

The stepped adsorption isotherm can be modeled using the Langmuir-sigmoid model as pro-

posed by Zhu and Gu [54, 55]. It is a general adsorption isotherm equation based on an equi-

librium hemi-micellization model. The first stages of the model – from Step 1 to Step 3 – can

be described as the adsorption of individual surfactant monomers due to the resulting balance

between hydration of the surfactant molecules and surface attraction forces. Therefore, the pro-

cess described in Eqs. (I .15) (I .16) corresponds to an underlying adsorption ratio km with the

following definition:

km =
Γm

Γzce
(I .17)

3Hemimicelles are aggregates produced at the solid/liquid interface when the surfactant concentration exceeds
a critical value (chmc known as the critical hemimicelle concentration).
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Figure 5: Type IV adsorption isotherm to model the adsorption of surfactant, the adsorbed
amount Γe as a function of the concentration at equilibrium ce. The orientation of surfactant
molecules at the surface is also shown for each stage. The red and black parts denote respec-
tively, the hydrophilic head and the hydrophobic tail and the gray bloc illustrate the adsorbent
surface [3].

where ce is the concentration of free monomers at equilibrium and Γz is the number of vacant

sites. The adsorption isotherm reaches a first plateau as the adsorption surface is saturated with

adsorbed monomers (monolayer saturation, Γ∞
m). For the second stage, adsorption occurs as a

result of surface aggregation forming hemimicelles. Each adsorbed monomer acts as a central

element of a hemimicelle with (n−1) additional monomers where n is the aggregation number

of the hemimicelle (we recall that hemimicelles result from the accumulation of individual

monomers at this stage). This second adsorption mechanism can be described by the following

chemical reaction:

(n−1){Monomer}+{Adsorbed monomer}� {Hemimicelle} (I .18)

with the following adsorption ratio for hemimicellization:

khm =
Γhm

Γmcn−1
e

(I .19)

where Γhm is the amount of adsorbed hemimicelles. The equilibrium adsorbed amount Γe at a
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bulk concentration ce can be determined by writing the following mass balance equations:

Γe = Γm +nΓhm

Γ
∞ = n(Γz +Γm +Γhm)

(I .20)

where we recall that Γ∞ is the maximum adsorption capacity. From the considerations above,

the general adsorption isotherm for this model can be obtained upon combining Eqs. (I .17)

- (I .20):
Γe

Γ∞
=

kmce/n+ kmkhmcn
e

1+ kmce + kmkhmcn
e

(I .21)

As can be noted from this equation, Eq. (I .21) for kmce << 1 and n > 1 allows recovering the

one-step formation of hemimicelle adsorption models [54]:

Γe

Γ∞
=

kmkhmcn
e

1+ kmkhmcn
e

(I .22)

The model proposed by Zhu and Gu is for nonionic surfactants. This model allows one to

describe various adsorption isotherm shapes using appropriate values for Γ∞, km, khm and n:

Langmuir type (Ll), S type (L3) and two-plateau type (L4). The main advantage of this model

is that it provides a simple description for the adsorbed layer which can be composed of aggre-

gates stabilized by the presence of the surface (if n > 1). On the other hand, the Zhu and Gu

model provides no information on the structure of the aggregates as it simply offers a mean to

describe the adsorbed amount in an effective/empirical fashion [56].

2.3.2. Surface aggregation

Besides surfactant adsorption, different models have been proposed to investigate the shape of

the surfactant aggregates/clusters at the solid surface. The “surface micelle isotherm” model,

which was proposed by Israelachvili [57], is an extension of his previous formalism on the cor-

relation between surfactant structure and aggregate shape in bulk solutions. This model, which

is based on simple thermodynamic principles, leads to a 2D non-ideal equation of state 4. This

adsorption isotherm equation, which describes continuous phase transitions between monolay-

ers, allows the determination of various micelle properties (i.e., aggregation number from the

4This equation of state relates state variables to describe the state of matter under a given set of physical
conditions such as pressure, volume, temperature, internal energy, etc.
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adsorption isotherm shape). Using this model, it was shown that the size and shape of 2D ag-

gregates vary with the structure of the surfactant [57].

A more complex model describing surface micelles was proposed by Levitz et al. [2]. These

authors analyzed the particular properties of a “fragmented” adsorption layer [58]. Their model

identifes different trends in the adsorption of non-ionic surfactants on weakly interactive hy-

drophilic solids. A mass action law5 is written by relating the structure of the surface aggre-

gates to the structure of the surfactant molecules. In this model, the aggregates are formed at the

surface before they form in solution due to the favorable interactions of the monomers with the

surface. When the interaction with the surface is weak, the aggregate structure is determined

by the primary structural parameters of the surfactant (surfactant amphipolarity, spatial sepa-

ration between headgroup and apolar tail, and chemical differences between both parts of the

molecule).

Rudzinski and co-workers [59, 60] have also developed models to account for surfactant ag-

gregation onto surfaces. In 1993, these authors presented a first important model; the adsorbed

phase is treated as a mixture of oblate aggregates of various dimensions interacting via excluded

volume interactions. A three-parameter equation for the adsorption isotherm was developed

and, then, successfully applied to fit experimental adsorption isotherms above chmc. In 1994, a

second model was derived to generalize their theoretical approach to adsorption involving two

surface aggregate types coexisting on a solid surface (“admicelles” and “hemimicelles”). This

extended theoretical model can be applied also to monomer—admicelle surface equilibrium. In

these models, the Scaled Particle Theory (SPT) is used for the intermicellar interactions but the

interactions with the surface and within the micelles are kept as simple as possible.

In 2002, Drach et al. investigated the effect of short-range interactions between the adsorbed

surfactant aggregates on the adsorption isotherm [61]. These authors extended the model of

surfactant adsorption based on the SPT by taking into account possible short-range interactions

between the adsorbed surfactant aggregates and accounting for the effects of the surface ener-

5The mass action law simply describes that n monomers are needed to form a micelle
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getic heterogeneity of a polar substrate. In their latest contribution [62], these authors assumed

that the surface layer is a mixture of single dispersed surfactant molecules and aggregates of

various sizes/shapes which are in equilibrium with the surfactant monomers and micelles in the

bulk phase. Surface aggregates having similar shapes to those formed in the bulk solution was

also considered in this modeling approach.

2.4. Adsorption under dynamic – in flow – conditions

2.4.1. Adsorption equilibrium

The general advection-dispersion equation for mass transport in porous media (Eq. I .5) can be

modified to include the effect of adsorption [63]:

∂c
∂ t

+UUU ·∇∇∇c−∇∇∇ · (D∇∇∇c)+
1−φ

φ

∂Γ

∂ t
= 0 (I .23)

where c is the concentration of the adsorbing molecules in the liquid phase, Γ is the quantity of

adsorbed molecules, φ is the average porosity, UUU is the velocity vector, and D is the dispersion

tensor. As discussed in this Chapter, Γ can be related to the concentration c in the liquid phase

under equilibrium and non-equilibrium conditions.

For a diluted surfactant solution, the adsorption process can be approximated by Henry’s law,

i.e. Γe = kce, where the adsorption ratio k is Henry’s constant k = kH [63]. Under such con-

ditions, the adsorption rate simply writes ∂Γe/∂ t = k∂ce/∂ t. Under instantaneous adsorption

Γ = Γe, Eq. (I .23) becomes:

R
∂c
∂ t

+UUU ·∇∇∇c−∇∇∇ · (D∇∇∇c) = 0 (I .24)

where R = 1+ k(1− φ)/φ is called the retardation factor since it delays the appearance of a

breakthrough curve upon transport into a porous medium.

Assuming reversible and instantaneous adsorption Γ∼ Γe, k can be determined from the Lang-

muir adsorption isotherm i.e. k = kL. Considering the Langmuir model given in Eq. (I .10), the

rate of adsorption can be expressed as the time derivative of the equilibrium condition:

∂Γe

∂ t
=

∂Γe

∂ce

∂ce

∂ t
=

Γ∞kL

(1+ kLce)2
∂ce

∂ t (I .25)

This expression of ∂Γe/∂ t can be substituted directly into Eq. (I .23) leading to the same math-
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ematical formula as Eq. (I .24). However, the resulting differential equation will be non-linear

since the retardation factor is a function of the bulk surfactant concentration, i.e.

R = 1+
1−φ

φ

Γ∞kL

(1+ kLce)2 (I .26)

For other non-linear equilibrium adsorption or rate-controlled adsorption processes (i.e. when

Eqs. (I .16) and (I .23) are coupled), a simple expression for R may not be possible. In this case,

the transport equation must be solved numerically.

2.4.2. Adsorption kinetics

In the context of this thesis, we are interested in the modeling of surfactant adsorption un-

der dynamic conditions i.e. under flow conditions. In particular, we aim at considering how

flow/transport couple with adsorption kinetics. In what follows, we present the analytic form of

different adsorption kinetics: Henry, Langmuir and Sips adsorption models.

The underlying kinetics for Henry adsorption isotherm is defined as follows:

∂Γ

∂ t = kAcΓ∞− kDΓ (I .27)

where kA and kD are the adsorption and the desorption rates. The solution resulting from Henry’s

kinetics in Eq. (I .27) is given by:

Γ(t) = Γ∞(1− e−kDt)kc with k = kA
kD

(I .28)

The underlying kinetics for Langmuir adsorption is defined as follows:

∂Γ

∂ t = kAc(Γ∞−Γ)− kDΓ (I .29)

The solution resulting from the Langmuir kinetics in Eq. (I .29) is given by:

Γ(t) = (1− e−kD(1+kc)t)Γ∞kc
1+kc with k = kA

kD
(I .30)

The kinetics for Sips adsorption isotherm is defined as follows:

∂Γ

∂ t = kAcα(Γ∞−Γ)− kDΓ (I .31)
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which leads to the following solution:

Γ(t) = (1− e−kD(1+kcα )t)Γ∞kcα

1+kcα

2.4.3. Dispersion coefficient of an adsorbing molecules

Dispersion in porous media has been extended since Taylor’s pioneering work to include more

challenging situations: complex porous geometries, oscillating flows, chemical reactions, etc.

An important generalization of the problem is to take into account “wall effects” (adsorp-

tion/desorption, surface diffusion, etc.) [64]. In 2012, Levesque et al. studied the situation

where Taylor dispersion under bulk flow is coupled to adsorption/desorption processes taking

place at the walls confining the fluid [65]. As stated by these authors, the theoretical analysis of

the resulting process under such complex conditions has been limited to the two situations.

• The transverse motion is not explicitly considered. This physically corresponds to the

infinitely well-stirred limit of the high diffusion coefficient Dm. A representative example

of this class of problems is the two-state chromatography model introduced by Giddings

and Eyring in 1955. In this model, a fluid particle can be either in the mobile phase (in

the flow) or in the immobile phase (adsorbed at the confining walls) and the change rate

between the two phases is assumed to be constant [66].

• The transverse motion is explicitely considered but for specific adsorption/desorption ki-

netics only. In ref. [67], the dispersion coefficient is calculated when the transfer with the

surface is infinitely fast (local chemical equilibrium). On the other hand, Biswas and Sen

have considered the situation of irreversible adsorption on the surface [68].

Levesque et al. developed a thorough theoretical analysis of Taylor dispersion in the presence

of Henry adsorption/desorption processes. These authors used a stochastic approach in which:

• They derive explicit expressions for the dispersion coefficient using the canonical exam-

ple of Poiseuille flow in planar and cylindrical geometries. Both stationary and oscillating

velocity fields are considered, therefore paving the way to the determination of heteroge-

neous rate constants from the mean velocity and dispersion coefficient.
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• They recover the fact that, in the case of a stationary velocity field, dispersion effects

associated with bulk transport and adsorption/desorption add up.

• They show that the dispersion coefficient can be optimized and discuss possible implica-

tions in the context of molecular sorting.

If surface diffusion is neglected, Levesque et al. obtained the following equation for the effective

diffusion coefficient:

Dads
e f f

Dm
= 1+

KPois
v

Dm
= 1+

1
Dm

α
L2U2

Dm

βL kA
kD

2
+ γL2 kA

kD
+L3

(L+ 2kA
kD

)3
+

U2

kD

2L2 kA
kD

(L+ 2kA
kD

)3

 (I .32)

where α , β and γ are to be substituted by constants 1/210, 102 and 18 in the planar case. L

is the characteristic width of the channel and Dm stands for the molecular diffusion coefficient

in the bulk. All these calculations, which are complex and tedious, were rederived in the frame

of the present thesis. For the sake of simplicity, these detailed calculations are omitted here but

they can be found in the Appendix A.

C. Lattice Boltzmann Method

1. LBM approach and applications to fluid flows

The Lattice Boltzmann method (LBM) is a powerful tool in Computational Fluid Dynamics

(CFD). This numerical scheme was first used to solve Navier-Stokes equation numerically. It is

a discrete method which allows high-performance computing simulations (HPC). The technical

aspects of the LBM method will be described in more details in Chapter 2. Here, we intend

to provide a simple, brief introduction. The origin of LBM approaches lies in the statistical

mechanics description of particle populations. The basic idea of LBM is to formulate a nu-

merical model that uses physical terms based on the understanding of the interactions between

different molecules [69]. We present in Fig. 6 the interest raised in the scientific community

by LBM over the last years. This graph provides evidence for the enormous attention paid to

research and development in this CFD method throughout the years. LBM is considered as

a valuable approach for flow simulations in porous media. It provides a simple tool to model

transport properties in complex geometries since the structure is simply defined in terms of fluid
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Figure 6: Number of publications involving LBM over the years. From Scopus scientific
database until 2020 (adapted and extended from [4]).

or solid nodes [70]. Just a few years after its introduction, LBM has achieved recognition as

a powerful technique to study single-phase/multiphase and multicomponent flows [71, 72, 73]

as well as reactive transport [74, 75] in porous media. Among complex physical systems that

can be considered, it also allows simulating hydrodynamic and magnetohydrodynamic interac-

tions [76, 77, 78, 79, 80, 81].

The Lattice Boltzmann method stems from Ludwig Boltzmann’s kinetic theory of gases in

which gases and fluids are considered as made up of a large number of particles [82, 83]. The

Boltzmann equation (BE), which describes the evolution in time and space of the particle den-

sity distribution f , is defined in the absence of external forces using the following expression:

∂ f
∂ t

+UUU ·∇∇∇ f = Ω, (I .33)

where f is the probability to find a molecule at a position r with a velocity v at a time t. UUU is

the particle velocity vector and Ω is the collision term. The collision term represents the effect

of collisions between particles. Different researches were carried out to define this collision

operator. This started with the work by D. Enskog [84] followed by the extension by Chapman
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in 1990 [85]. Following the work by P. L. Bhatnagar, E. P. Gross and M. Krook in 1954 [86],

the “BGK” collision operator is taken as a relaxation operator of the particles at a given time

towards equilibrium as described by the “Maxwell-Boltzmann distribution”6.

The lattice Boltzmann equation can be studied as a special finite difference scheme for the ki-

netic equation of the discrete-velocity distribution function. Single and multi discrete-velocity

distribution functions were introduced by researchers [87, 88]. Despite the discretization of

the particle velocity, the space and time were treated as continuous. This topic was unveiled

in 1976 by Hardy, Pazzis and Pomeau (HPP). They studied the transport properties of fluids

using a fully discrete particle velocity model: the Lattice gas automata (LGA) method [89].

Its main feature is the use of Boolean variables to describe the particle occupancy. These par-

ticles are positioned on nodes of the lattice and they go through two steps: the collision and

the propagation steps. The main issue with the HPP model was its departure to the Navier-

Stokes equation in the macroscopic limit. This issue was solved in 1986 by Frisch, Hasslacher

and Pomeau (FHP) who recognized the importance of the lattice symmetry (i.e. with a higher

symmetry than the HPP model). These authors used a lattice gas automaton with a hexagonal

lattice [90]. The LGA, which is also referred to as the Lattice gas cellular automata (LGCA),

simulates the macroscopic behavior of a fluid based on its microscopic properties such as sound

velocity and viscosity. A general theory of this method was given by Wolfram in 1986 and

by Frisch et Al. in 1987. LGCA is affected by noise that increases exponentially with the

number of molecules attached to each lattice site. To upgrade LGCA modeling, researchers

have revived Boltzmann equation by introducing the so-called lattice Boltzmann method. In

1988, McNamara and Zanetti replaced the particle occupation variables (Boolean variables) by

single-particle distribution functions (Real variables) while retaining the same collision opera-

tor as in the LGCA model [76]. This solved the noise problem but not the viscosity limit. To

solve the problem with the viscosity, Higuera & Jiménez (1989) introduced a linear collision

operator that changes with viscosity [78]. Over the past two decades, various approaches have

been proposed using a linearized collision operator so that the LBM has become a numerical

method independent of its LGCA foundations. In summary, the LBM theory is rooted in the
6The Maxwell–Boltzmann distribution describes the spatial velocity distribution of gaseous particles at their

thermodynamic equilibrium.
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Chapman-Enskog analysis of the LGA method. The LBM method introduces an important fea-

ture that distinguishes it from other numerical methods: the collision operator (or propagation

process) of the LBM method in phase space (or velocity space) is linear. Its main objective

is to provide a robust numerical tool to describe at the mesoscopic scale the the dynamics of

fluids. It allows modeling important problems in which both macroscopic hydrodynamics and

microscopic physics are important.

The difference between the LBM method and the traditional CFD numerical methods lies in its

algorithm structure. It allows modeling in an easy and robust fashion complex boundaries in a

geometry while offering very efficient method parallelization [91, 92, 93]. The LBM method

avoids the need to solve complicated kinetic equations such as the complete Boltzmann equa-

tion. Since it uses a simplified kinetic model – that is essentially based on the introduction of

the essential microscopic and mesoscopic physical process – it ensures a correct description

of the macroscopic behavior of fluid flows. To solve flow problems, different lattice Boltz-

mann schemes can be used. The simplest scheme corresponds to the BGK model [94] with a

single relaxation time, the multi-relaxation-time (MRT) [95, 96], and the two-relaxation-time

(TRT) [97, 98, 99]. The BGK model is known to be prone to numerical instabilities within

certain limits [100, 101] unlike the MRT and TRT models (which can be rendered more sta-

ble by adjusting the relaxation parameters) [102, 103, 104]. The TRT model, with only two

relaxation parameters, is more convenient than the MRT schemes because it allows retaining

the simplicity of the BGK model [105, 106]. Other alternatives for these schemes exist such as

the General Propagation Lattice Boltzmann Model (GPLB) – which was introduced to improve

the numerical stability of the BGK model by adding two free parameters in the propagation

step [107, 108, 109]. The Lattice Boltzmann method is quite resource-consuming since the dis-

crete probability distribution functions used in this model require more memory for their storage

than the hydrodynamic variables of the Navier-Stokes equations. However, using modern com-

puters, required resources turn out to be no longer a problem as it is largely compensated by

exceptional computational efficiency. The LBM, which is particularly well suited for calcula-

tions on a parallel architecture, has become a powerful computational method for the study of

various complex systems on modern computers. In this study, as will be discussed in Chapter 2,
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we use the LBM-two relaxation time (TRT) model to have a numerical solution of the Stokes

equation and the advection-diffusion equation at the porous network scale.

2. LB-based method for Adsorption

The use of LBM to model surface interaction is far less conventional than its use to model fluid

dynamics phenomena. To model adsorption using the LBM approach, different approaches can

be found. In the work of Guo et al. [110], a computational scheme to model adsorption under

hydrodynamic flows of the adsorbate was proposed. The adsorption isotherm is accounted for

by using the Shan-Chen model – pseudo-potential model – and the adsorption energy with Lat-

tice Boltzmann surface interactions. These authors rely on the adequate gas equation of state

and the corresponding adsorption energy to get various types of adsorption isotherms. In the

recent work by Xu et al. [111, 112], these authors simulate gas adsorption in shale gas. They

studied the two phase separation and account for the adsorption at nanopore walls. These au-

thors were able to reproduce the Langmuir isotherm using a D2Q9 LBM model. To consider

adsorption, they also applied the same approach as in Guo et al. [110]. They were also able to

model other types of adsorption isotherms (and provided evidence of the effect of significant

adsorption in smaller pores). Finally, they were able to study the phase behavior and the liq-

uid/gas densities to measure/predict adsorption isotherms under realistic conditions.

The studies above only account for adsorption in no-flow conditions. To include adsorption

under the transport situations, Ning et al. have introduced a LBM-MRT model coupled with

adsorption to simulate natural gas flows in confined systems (organic nanopores) [113]. These

authors studied the impact of gas slippage and adsorption on the gas flow behavior in shale

formations. To consider adsorption, they applied the pseudo-potential LBM to model the in-

teraction between free and adsorbed gas molecules. Moreover, they used the adsorptive force

introduced by Sukop and Or [114] to model the interactions between the bulk molecules and the

pore surface. Using this approach, it was shown that, in small pores, gas transport is significantly

affected by the transport of adsorbed gas at the surface. Adsorption reduces the velocity in small

pores; the velocity in the bulk-like region is no longer large compared to the boundary velocity.

This effect decreases and becomes insignificant as the pores get large enough. To account for
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transport, Agarwal et al. [115] introduced the LBM model to investigate a fixed bed packed with

adsorbents under different dynamic conditions. These authors presented breakthrough curves in

1D flow on non-porous surfaces. The model was shown to be capable of modeling adsorption

within tube walls. In their approach, the concentration in the system obeys two equilibrium con-

ditions: in the bulk phase and at the surface. This model works in the low concentration regime

when adsorption is linear (Henry adsorption isotherm). However, this model can be extended

to model non-linear adsorption if the desorption rate is made surface concentration dependent.

In the work of Manjhi et al. [116], the LBM scheme d3Q19 was used to simulate 2D unsteady

state breakthrough curves. These authors introduced a first order adsorption-desorption kinet-

ics between the gas and the solid phase. In their model, the mass transport equation is of the

same form as the ADE with a modified dispersion coefficient and velocity profile (these two

quantities vary with the solute adsorption isotherm slope). They used the LBM to solve the

ADE coupled with the adsorption for different velocity profiles. They were able to present the

adsorption breakthrough curves at different times/positions. The algorithm in these studies is

based on imposing an initial dispersion coefficient, which prevents the study of the influence of

adsorption on the other transport regimes. In the recent work of Vanson et al [117], the LBM

scheme was used to couple the adsorption kinetics with the tracer dynamics. In their seminal

work, adsorption occurs on fluid nodes directly in contact with neighboring solid nodes. At each

position/node, an adsorbed quantity and a free quantity are defined to describe the equilibrium

after each adsorption step. The transport behavior is described using the moment propagation

method [118, 119] by introducing propagators for both the bulk and adsorbed phases. This al-

lows computing the dynamical properties of the dispersed solute in the fluid. This method is

interesting but it considers a system in a stationary regime. In contrast, in our approach (de-

scribed in detail in Chapter 2), we will attempt to study transport of adsorbing molecules in

different stages: diffusive regime, advection dominated regime and dispersive regime. The in-

fluence of the adsorption isotherm type on these different regimes will be investigated.



Chapter I : State of the art 39

Chapter Conclusion

The short bibliographical study in this chapter was intended to highlight the basic

concepts used in this thesis: transport in porous media, surfactant adsorption and the

LBM approach. In particular, we have presented the different adsorption models as

well as the structure of the adsorbed layer and of the surfactant aggregates. It has

been concluded that a new adsorption model should be introduced to account for the

complex structure/adsorption of the monomer/aggregates at the pore surface. The

influence of adsorption on the dispersive transport regime was also presented. As will

be discussed in this thesis, this will serve as a robust theoretical validation tool in our

work.
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This chapter, which presents the Lattice Boltzmann method (LBM) that was used in the frame

of this thesis, is divided into two sections. The first section introduces the principles of the

specific numerical scheme used to simulate the adsorption of tracer particles being transported

in a flowing liquid. This numerical formalism, known as the Two Relaxation Time scheme

(TRT), is a powerful technique that combines numerical efficiency and stability. The second

section focuses on its application to the calculation of Stokes flow and tracer dispersion. The

implementation and validation of the method are discussed in detail.

A. Two Relaxation Time scheme

The LBM using the TRT scheme employs two relaxation parameters which characterize the

relaxation of particle distributions towards an equilibrium state. The first relaxation time cor-

responds to a physical time scale while the second relaxation time corresponds to a numerical

parameter that ensures the numerical stability of the method. This approach combines the imple-

mentation simplicity of the BGK method as introduced in Chapter 1 with numerical accuracy

and stability of the Multi Relaxation Times (MRT) scheme. Since its first development, the

LBM-TRT has been applied to fluid flow and dispersion phenomena so that it can be considered

as the ideal framework to address the questions at the heart of this PhD work.

1. Fundamentals and methods

1.1. Lattice Boltzmann

The fluid particles in a Lattice Boltzmann simulation occupy well-defined positions – the so-

called nodes – on a prescribed lattice. Their displacements over time only occur through a

set of velocities that connect adjacent nodes. This implies that an underlying lattice domain

and a velocity space must be first introduced. In this context, it is convenient to introduce the

classification scheme dxQy where “dx” indicates the dimensionality of the system (x = 1, 2 or 3)

while “Qy” denotes the set of velocities to be considered. As an example, Fig. 7 illustrates the

d3Q15 lattice model. It is a 3-dimensional lattice model on a cubic grid. Particles located at a

given node can be transferred to 15 nodes: each of the 6 neighboring nodes that share a surface,
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the 8 neighboring nodes sharing a corner, and the central node itself (i.e., particles at rest).
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Figure 7: 3D Lattice model with 15 nodes: d3Q15.

The numerical space and time in the Lattice Boltzmann approach are discretized using the

following incremental units: ∆x and ∆t. In what follows, unless stated otherwise, we set

∆t = ∆x = 1 (dimensionless Lattice Boltzmann units). The main variable in the LBM is the

particle distribution function fq(r, t) which corresponds to the probability of finding a particle

in a discrete accessible position (node located at the position vector r) with a discrete velocity

vq at a time t. vq represents the velocity set across the lattice that connects each node to its

neighbors. It is defined for q ∈ {0,1, ...,Qm} where Qm = Q− 1; q = 0 corresponds to to the

zero velocity v0 = 0 for molecules that do not leave the node while each non zero velocity vq

(q > 0) has an opposite velocity vq̄ =−vq, q ∈ {1, ...,Qm/2}, q̄ = q+Qm/2.

The particles interact in each node and propagate along the lattice so that two dynamical steps

are performed at each timestep t: collision and propagation. The collision step involves particle

collisions which are modeled using the collision operator Ω. The propagation step involves the

redistribution between the particle distribution at a node r with its different neighboring nodes

r+vq∆t. Such processes, which are presented in more detail below, can be expressed as:

fq(r+vq∆t, t +∆t) = fq(r, t)+Ω[ f (r, t)]q (II .1)

The most important feature in the LBM is the construction of the collision operator Ω. Phys-

ically, it represents the effects of molecular collisions that induce relaxation towards the equi-

librium distribution. When implementing the Lattice Boltzmann model, the propagation and

collision steps are processed individually and boundary conditions are introduced through ad-

ditional features.
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Collision step. In the collision step, at each node position r, the distribution function fq evolves

over a timestep ∆t according to the collision operator Ω. This operator depends on the macro-

scopic properties of the system such as the fluid density as defined in Stokes equation and the

fluid particle concentration as defined in the advection-diffusion equation (the operator Ω also

depends on numerical Lattice Boltzmann parameters). The particle distribution function fq is

updated using the following equation:

f̃q(r, t) = fq(r, t)+Ω[ f (r, t)]q (II .2)

Propagation step. In the propagation step, the distribution function fq is exchanged between

neighboring nodes with respect to the velocity set:

fq(r+vq∆t, t +∆t) = f̃q(r, t) (II .3)

Fig. 8 illustrates for a given node r the main steps involved in Lattice Boltzmann simulations.

The pre-collision stage – shown in Fig. 8(a) – shows an initial distribution fq(r, t). The particle

collision 

pre-collision 

𝑓𝑞(𝐫, 𝑡) 

post-collision 

𝑓 𝑞(𝐫, 𝑡) 

post-propagation 

𝑓𝑞(𝐫, 𝑡 + Δ𝑡) 

(a) (b) (c) 

propagation 

Figure 8: Illustration of the collision and propagation steps at a lattice node r. The black
arrows denote the distribution function at position r with a velocity q: before the collision step
fq(r, t) (a) and after the collision step f̃q(r, t) (b). After the propagation step (c), the red arrows
correspond to the incoming distribution function f̃q(r−vq∆t, t) of the neighboring nodes with
position r− vq∆t. On the other hand, the black arrows correspond to the distribution function
f̃q(r, t) leaving node r.
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distribution then goes through the collision step before redistribution through the propagation

step leading to f̃ (r, t). The post-collision distribution function – see Eq. (II .2) – is illustrated

in Fig. 8(b). The final stage is obtained after the propagation step as depicted in Fig. 8(c): the

particles initially at node r move to the node r+vq∆t (black arrows) while the particles initially

located at the node r−vq∆t are displaced to node r (red arrows).

1.2. Relaxation times

The two relation time method (TRT) is an extended Lattice Boltzmann scheme where the col-

lision operator involves different relaxation rates for the symmetric and anti-symmetric com-

ponents. The symmetric components are defined as f+q = 1
2( fq + fq̄) while the anti-symmetric

components are defined as f−q = 1
2( fq− fq̄) for q ∈ {1, ...,Qm/2} (for q = 0, we have f+0 = f0

and f−0 = 0). In the two relaxation time approach, the update rule as defined in Eq. (I.1)

is performed separately for the symmetric and the anti-symmetric equilibrium components

e±q and with two relaxation parameters: λ+ for all symmetric non-equilibrium components

n+q = f+q − e+q and λ− for all anti-symmetric non-equilibrium components n−q = f−q − e−q . For

the zero velocity, e+0 = e0 and e−0 = 0.

The collision update rule for the LBM-TRT is given by the following equations for q∈{1, ..,Qm/2} [99]:

f̃q(r, t) = fq(r, t)+λ
+n+q +λ

−n−q

f̃q̄(r, t) = fq̄(r, t)+λ
+n+q −λ

−n−q

f̃0(r, t) = f0(r, t) (1+λ
+)−λ

+e0

(II .4)

With the previous definitions and the use of the different components at q̄ (i.e the opposite

direction), the LBM algorithm is simplified since the symmetric components are defined as

f+q = f+q̄ and n+q = n+q̄ and the anti-symmetric components as f−q = − f−q̄ , n−q = −n−q̄ . This

implies that only half of the components have to be calculated/derived, therefore drastically

minimizing the instructions in the LBM code. The LBM-TRT requires the definition of a set of

numerical parameters Λ± and Λ to ensure that the solutions correspond to a stable algorithm.
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These parameters are linked to the relaxation parameters λ± and defined as follows [99]:
Λ = Λ

+
Λ
−

Λ
± =−(1/2+1/λ

±) for −2 < λ
± < 0

(II .5)

To ensure the algorithm stability of the Lattice Boltzmann schemes, Ginzburg et al. [120, 103]

have established that the numerical error is controlled by the particular set of the LBM numer-

ical parameters Λ± - the so-called “magic number Λ”. If we change physical parameters such

as the viscosity (Stokes) or the molecular diffusion (ADE), the numerical errors stay invariant

provided the adequate numerical “free” parameter is chosen. More precisely, for the Stokes

flow problem, the kinematic viscosity is related to Λ+ and the “free” numerical parameter be-

comes Λ−. For the advection-diffusion problem, the molecular diffusion coefficient is defined

using Λ− and the “free” numerical parameter is Λ+. Therefore, once the physical parameters

are defined, the free parameters Λ+ (advection-diffusion) and Λ− (Stokes flow) are used to meet

the prerequisite value of Λ that yields steady state solutions using Eq. (II .5). This is defined as

the optimal TRT subclass [103].

2. Applications to fluid dynamics

In this section, we first introduce the lattice model that was adopted to conduct the Lattice

Boltzmann simulations performed in this work. As the collision operator changes depending

on the equation to be solved, we first present the formalism for Stokes flow before introducing

the formalism for dispersion (advection diffusion equation). Fig. 9 presents the lattice classifi-

cation used to perform all our simulations d2Q9. For this two dimensional model, the particles

𝐯1 

𝐯2 

𝐯3 

𝐯4 𝐯5 = 𝐯1  

𝐯6 = 𝐯2  

𝐯7 = 𝐯3  

𝐯8 = 𝐯4  

𝐯0 

Figure 9: 2D Lattice Boltzmann model with 9 nodes: d2Q9
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are allowed to stream in 9 directions following a velocity set vq where q ∈ {0, ..,Qm}. The

immobile (zero velocity) population corresponds to the index 0. The d2Q9 velocity set has four

“coordinate” velocities vq = (±1,0),(0,±1) and four “diagonal” velocities vq = (±1,±1). To

avoid any possible ambiguity, we use fq(r, t) to denote the solvent particle distribution (Stokes

flow) and gq(r, t) to denote the tracer particle distributions (advection-diffusion).

2.1. Stokes flow

The objective of this section is to present the TRT scheme used to solve the Stokes flow which

relates the momentum j to the pressure gradient ∇∇∇P inducing the flow and the fluid kinematic

viscosity ν . The Stokes equation in the absence of external forces – besides the pressure gradi-

ent inducing the flow – is given by:

∇∇∇j = 0

∇∇∇P = ν∆j
(II .6)

Based on the work by Ginzburg et al. [121], the general form of the equilibrium distribution e±q

used to solve the Stokes flow problem in Lattice Boltzmann is defined as:

e+q (r, t) = v2
s ρ(r, t)t∗q

e−q (r, t) = t∗q(j(r, t).vq)

e+0 (r, t) = ρ(r, t)−
Qm

∑
q=1

e+q (r, t)

e−0 = 0

(II .7)

where vs is the fluid sound velocity and t∗q correspond to isotropic physical weights obeying two

constraints:
Qm

∑
q=1

t∗q vqαvqβ = δαβ and
Qm

∑
q=1

t∗q v2
qαv2

qβ
=

1
3

, ∀α 6= β

with α,β ∈ {1,2} and δαβ = {0 if α 6= β , 1 if α = β}. t∗q take the value t∗q =
{1

3 ; 1
12

}
for the

first (coordinate) and the second (diagonal) neighbor link in the d2Q9 scheme [121]. A proper

derivation of Eq. (II .7), following step by step the approach by Ginzburg et al. [121], is given

in Appendix B.1.
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The calculation of the equilibrium functions requires to compute the fluid density ρ and the

momentum j. They are expressed as [121]:

ρ(r, t) =
Qm

∑
q=0

fq(r, t)

j(r, t) =
Qm

∑
q=1

fq(r, t)vq

(II .8)

(II .9)

while the fluid velocity UUU is given by:

UUU(r, t) =
j(r, t)

ρ
(II .10)

In the Stokes equation given in Eq. (II .6) the pressure is defined as P = v2
s ρ and the kinematic

viscosity as ν = Λ+

3 =−1
3 × (1

2 +
1

λ+ ).

vs is an adjustable positive parameter that must verify the following condition: v2
s < vmax

s
2.

Based on the stability analysis by Ginzburg et al. [122], vmax
s

2 must be set to 1
3 . Here, to satisfy

this criterion, we choose v2
s = 1

5 . The steady-state condition for the Stokes flow simulation

is fulfilled by using Λ = 3/16 [122]. In our case, we choose ν = 1/10, so Λ+ = 3/10 and

Λ− = 10/16.

In order to solve the Stokes equation using the Lattice Boltzmann approach, we consider two

types of boundary conditions. The first condition set corresponds to the inlet/outlet geometry

while the second condition set corresponds to the solid/liquid interface.

Inlet/Outlet condition. To induce fluid flow, we apply a pressure difference between the inlet

and outlet of the lattice geometry. In practice, for the simulations, the pressure difference is

applied by imposing a density difference ∆ρ = ∆P/v2
s with ∆ρ = ρin−ρout within the simplified

mixed anti-bounce back approach. Inspired by the work by Talon et al. [123] and Ginzburg et

al. [124], we have the following distribution function for x = 0 and x = Lx−1:
fq̄(r, t +∆t) =− f̃q(r, t)+2t∗q v2

s ρin +(λ++2)n+q −6t∗q vqyjy(r, t); ∀r = (0,y)

fq̄(r, t +∆t) =− f̃q(r, t)+2t∗q v2
s ρout +(λ++2)n−q −6t∗q vqyjy(r, t); ∀r = (Lx−1,y)

(II .11)
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Solid/fluid interface. The discrete distribution function has to reflect the boundary conditions

to which the fluid flow is subjected (null velocity at the solid/fluid interface). To do so, through-

out this work, the bounce-back boundary condition is applied at each wall boundary node.

The bounce-back rule consists in reordering the incoming density distribution functions from

the fluid node to its former directions (i.e., along the incoming flow directions). In LBM, the

bounce-back rule is fulfilled by adopting the following propagation condition:

fq̄(r, t +∆t) = f̃q(r, t) (II .12)

This rule places the solid-liquid interface midway between the two lattice sites in the fluid and

in the solid for the Stokes simulation (this ensures that a straight velocity profile is obtained

when using a parallel plates geometry).

In practice, the algorithm steps used to conduct Stokes flow simulations can be summarized as

follows:

1. Initialization. The distributions fq(r,0) for a Stokes flow in a lattice geometry of a length

Lx are given by:

f0(r,0) = ρin−
x

Lx−1
∆ρ

fq(r,0) = 0 ; q ∈ {1, ..,Qm}
(II .13)

2. Propagation. The distributions fq(r, t) are propagated (i.e. displaced) in the direction vq

using equation (II .3)

3. Fluid properties computation. ρ(r, t) and j(r, t) are directly obtained from fq(r, t) using

Eqs. (II .9) and (II .10)

4. Collision. The distribution functions are updated through Eq. (II .4) using the equilibrium

components e±q defined in Eq. (II .7) to obtain f̃q(r, t).

5. Iteration. Steps 2 to 4 are repeated until convergence to steady state is obtained.
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2.2. Dispersion

Coupling between advective and diffusive transport – which results in the well-known disper-

sion effect – can be analytically described using the advection-diffusion equation (ADE). With

isotropic diffusion (i.e. same diffusion coefficient in every direction of space), the ADE reads:

∂c(r, t)
∂ t

+UUU .∇c(r, t)−Dm∆c(r, t) = 0 (II .14)

where c is the solute concentration in the fluid, UUU is the flow velocity vector and Dm is the

molecular self-diffusion coefficient. The equilibrium components for the d2Q9 scheme are [99]:

e+q (r, t) = c(r, t)E+
q

e−q (r, t) = c(r, t)E−q

e+0 (r, t) = e0 = c(r, t)E0

e−0 (r, t) = 0

(II .15)

with 

E+
q = t∗q ve +

t∗q
2
(3(UUU .vq)

2−UUU2)

E−q = t∗q(UUU .vq)

E0 =

(
1−

Qm

∑
q=1

E+
q (r, t)

) (II .16)

where the diffusion-scale equilibrium parameter ve is defined as ve =
Dxx+Dyy

2 and the diffusion

coefficients as Dxx = Dyy = Dm/Λ−. The isotropic weights are set to t∗q =
{1

3 ; 1
12

}
and UUU =

{Ux,Uy} is the advective velocity with UUU2 =U2
x +U2

y . As mentioned by Ginzburg et al. [99],

an optimal TRT subclass requires to choose (Λ+,Λ−) such that Λ = 1
4 (in this work, we use

Λ+ = 4 and Λ− = 1/16). A proper derivation of Eq. (II .16) is given in Appendix B.2.

The result for the ADE simulation is the local concentration of the tracer c(r, t) computed at

each time step t from:

c(r, t) =
Qm

∑
q=0

gq(r, t) (II .17)

The velocity vector UUU is obtained from the Stokes simulation results at equilibrium.

Like for the Stokes flow, we need to consider specific boundary conditions to address the prob-
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lem of advection/diffusion. For the ADE simulation, we apply the no-slip boundary condition

at the solid/fluid interfaces by using the bounce-back condition:

gq̄(r, t +∆t) = g̃q(r, t)

The algorithm steps in solving the ADE using Lattice Boltzmann calculations are as follows:

1. Initialization. UUU , gq(r0,0); ∀r0 = (x0,y)

g0(r0,0) = c0

gq(r0,0) = 0 ; q ∈ {1..Qm}
(II .18)

with c0 the initial concentration at position r0.

2. Propagation. The particle distribution gq(r, t) is displaced in the direction vq using Eq. II

.3

3. Local concentration computation. c(r, t) is updated at time step t from gq(r, t) using

Eq. (II .17).

4. Collision. The distribution function gq is updated following the definition in Eq. (II .4)

with respect to the equilibrium components e±q given in Eqs. (II .15) and (II .16).

5. Iteration. Steps 2 to 4 are repeated until convergence towards steady state is reached.

B. Validation

The numerical system is composed of two infinite parallel plates of length Lx and width Ly.

First, we perform the Stokes simulation, to generate the flow in the geometry. Then we carry

out the dispersion simulations.

In this section, we will present the results between the simple parallel plates, for complex regular

geometry, the results are in Appendix B.5.
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1. Stokes flow

1.1. Implementation

In this section, we apply the LBM-TRT approach to solve the Poiseuille flow in a 2D geometry

as shown in Fig. 10. The Poiseuille flow, which is a simple flow problem that can be used to

understand blood flow in arteries, is a seminal aspect in fluid mechanics. The fluid flow, which is

parallel to the channel direction (x-axis in our case), is driven by a pressure difference between

the entrance and the exit of the channel (see Fig. 10). The fluid flow, which is assumed to be

incompressible and laminar, is described in the steady state limit.

Flow 
High   

pressure 

Low  

pressure 

0 𝐿𝑥 
0 

𝐿𝑦 
Solid site 

Bulk site 

Figure 10: Illustration of the Poiseuille flow between two parallel plates of length Lx and distant
by Ly.

Fig. 11 shows the result of Lattice Boltzmann simulations for the Stokes flow at equilibrium in

the geometry given in Fig. 10. The velocity profile corresponding to Poiseuille flow is related

to the maximum velocity Umax and the pressure difference ∆P through the following equation:

Ux(y) =Umax

(
4y
Ly
− 4y2

L2
y

)
(II .19)

with Umax = ∆PL2
y/8Lxµ where µ is the fluid dynamic viscosity. Fig. 12 compares the result

from a LBM-TRT simulation and the analytical solution given in Eq. (II .19)). The numerical

and analytical solutions are in very good agreement. The difference between the analytical ex-

pression and the simulation result, which is maximum at the border of the geometry, is of the

order of 0.1%. Otherwise, in the bulk-like region of the fluid flow, the error is less than 0.001%.
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𝐿𝑥 

𝐿𝑦 

0 

Flow 

𝑈𝑚𝑎𝑥 

Figure 11: Flow between two parallel plates where Lx = 2000∆x and Ly = 41∆x (Stokes simu-
lation using the Lattice Boltzmann approach).
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Figure 12: The velocity profile obtained in a geometry of two parallel plates for a Newtonian
fluid. The symbols and the solid line respectively denote the data obtained from LB simulations
and the analytical solution.

1.2. Numerical resolution/accuracy

With numerical simulations, the employed mesh including its resolution is expected to play an

important role in the determination of accurate solutions. Therefore, we examine in what fol-

lows to what extent the geometric resolution can be reduced without significantly decreasing

the accuracy of the simulations. To test the influence of the number of nodes on the simulation

results, we have performed three simulations with identical parameters but different number of

nodes for a fluid conducting channel of dimensions Ly = 9, 21 and 41. An odd number is used

in order to have the maximum flow rate in the central node. Fig. 13 shows that, for both low and
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high node numbers, the simulation data are in good agreement with the analytical expression of

the Poiseuille flow profile. As already mentioned, the numerical error is larger at the geometry

border than in the channel center. However, even when only 9 nodes are used, the error is lower

than 0.2%. In conclusion, the LBM-TRT proves to be an efficient numerical method for the

simulation of Stokes flow problems. The validity of the code has been verified by comparing

the numerical solution to the exact known solution of a steady-state Poiseuille flow between

parallel plates for different node numbers. This result follows the stability study by Ginzburg
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Figure 13: (a) Velocity profile obtained in a geometry consisting of two parallel plates for a
Newtonian fluid. The symbols and the solid line denote the data obtained from LB simulations
for different number of nodes and the analytical solution, resolutions. (b) Numerical error
between the analytical expression and the simulation results.
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et al. who determined the value required for Λ to guarantee accurate solutions for a minimum

node number.

2. Passive tracer dispersion

In this section, the LBM-TRT is used to solve the advection/diffusion equation in a two di-

mension channel. The numerical accuracy is assessed by comparing our numerical results with

known analytical solutions. As already discussed in Chapter 1, upon isotropic diffusion in a

unidirectional flow (along the x-axis in our case), the transport of passive tracers is described

on a local scale by means of the advection diffusion equation:

∂c(r, t)
∂ t

+U(r)
∂c(r, t)

∂x
= Dm∆c(r, t) (II .20)

with c(r, t) the tracer concentration at time t at a node r(x,y). Dm is the molecular diffusion

coefficient of the passive tracer while ∆ is the Laplace operator. U(r) =Ux(r) is the velocity of

the fluid flow in the x direction as obtained from the Stokes equation. Here, we emphasize that

by “passive” we refer to non-adsorbing tracers.

2.1. Injection

A simple channel geometry consisting of two parallel plates is used to simulate the dispersion

of the passive tracers. This geometry having dimensions Lx×Ly is shown in Fig. 14(a) where

the white sites correspond to bulk-like regions of the system and the black sites denote the solid

sites. In the simulations, our geometry is exposed to a fluid flow that obeys Stokes flow with an

average flow rate U . The Peclet number Pe takes the value Pe =ULy/Dm. At a time t = 0, the

tracer particles are injected with an initial concentration c. The concentration injection can be

performed in several ways: (1) a concentration Dirac peak in time is injected at a lateral position

in the geometry or (2) a concentration is injected continuously for a fixed time period. These

two configurations consist in defining a lateral position x = x0 in the geometry and injecting

the concentration at this position for a determined period of time ∆t0 = n∆t. According to the

value of n we can have a continuous “slug” injection (n > 1) or a Dirac injection (n = 1). Such

situations are illustrated in Fig. 14(b).
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More precisely for a position r0 = (x0,y), we inject tracer particles with the initial concentration

c0, to have c(r0) = c0 over a period ∆t0 = n∆t. For n = 1, Fig. 14(c) shows the concentration

distribution as a function of time which displays the dispersion of the tracer particles.
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𝑛 > 1: Slug injection  
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Figure 14: (a) The two parallel plates geometry with length Lx and a width Ly. (b) Concentration
injection over time: the concentration is injected for a period ∆t0 = n∆t. (c) The concentration
distribution in the geometry for a Dirac injection (n = 1).

2.2. Slug injection

We performed simulations for continuous “slug” injection of the passive tracers with a concen-

tration c0 = 1 at x0 = 0. The injection time varies from t = 0 to t = ∆t0 = 1.5 106∆t and the

channel geometry is defined as Lx = 10000∆x, Ly = 41∆x. Fig. 15 shows the evolution in time

of the concentration at different lateral positions x as obtained in the course of the Lattice Boltz-

mann simulations. More in detail, we plot cl(x, t) = 1/Ly×∑y c(r, t) for various positions in the

channel. As expected, for large x, the tracers reach the maximum concentration c0 at a longer

time (a comparison of the concentration profile cl(x, t) with analytical solution is presented in

Appendix B.4.). As shown in Fig. 16, mass conservation was checked along the simulation by

monitoring in time the sum of all concentrations ∑t cl(x, t) at different lateral positions. The

total mass inside the system (i.e. amount of tracers) is well conserved as it is equal at all times

to the injected mass (within very small numerical errors).
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Figure 15: Evolution in time of the average concentration at different lateral positions x in a
2D channel geometry. For these simulations, the advective flow and diffusion constant are such
that Pe = 9.2.
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Figure 16: Mass conservation for passive tracer transport between two parallel plates with Lx =
10000∆x, Ly = 41∆x. The injection times vary from t = 0 to t = ∆t0 = 1.5 106∆t. the data are
shown for different lateral positions within the channel geometry: x = 1250, x = 2500, x = 3750
and x = 5000.
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2.3. Dirac injection

Dispersion coefficient To further validate the LBM-TRT simulation for dispersion, we com-

pute the effective Taylor dispersion coefficient De f f . For a geometry formed by two parallel

plates, the latter can be expressed as [21]:

De f f

Dm
=

(
1+

Pe2

210

)
(II .21)

The effective dispersion coefficient can be computed from the displacement variance as: lim
t→∞

D(t)/Dm

where D(t)/Dm is given by:
D(t)
Dm

=
1

2Dm

∂σ2
x (t)

∂ t
. (II .22)

The displacement variance σ2
x (t) as a function time is defined as σ2

x (t) =
〈
x(t)2〉−〈x(t)〉2 with

〈x(t)〉= ∑
x,y

Qm

∑
q=0

gq(x,y, t)(x− x0)

and
〈

x(t)2
〉
= ∑

x,y

Qm

∑
q=0

gq(x,y, t)(x− x0)
2

For a given problem, σ2
x (t) depends on the Peclet number Pe: (Pe→ 0) for pure diffusion and

(Pe→ ∞) for pure advection. For finite Peclet numbers (Pe), three regimes can be observed

as explained in what follows. To simulate dispersion using Lattice Boltzmann simulations,

we inject at a time t = 0 the tracer particles with a concentration c0 = 1 at a lateral position

x0 = 200. To probe the differences observed between the different transport regimes, we present

in Fig 17(a) the tracer concentration in the channel at different times t (Pe= 50 was used in these

simulations). These data show the three different regimes that are observed in the course of

these dispersion simulations. At t1, transport evolves from the diffusion regime to the advection

regime. The advection-dominated regime is observed in between t2 and t3. The dispersion

regime is reached for t4 and t5.

Fig. 17(b) shows for different Peclet numbers the normalized displacement variance D(t)/Dm

as a function of time t. At first, the diffusive regime characterized by the first plateau with

D(t) = Dm is observed. Then, a transient regime is observed as the diffusive regime evolves
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towards the advective regime. In the long time limit, the dispersive regime is observed as the

numerical dispersion coefficient reaches a plateau corresponding to the effective dispersion co-

efficient D(t → ∞) = De f f [125]. In this figure, the dashed lines show the analytical values as

derived from Eq. (II .21). Our numerical results were compared with the analytical solution of

the Taylor dispersion coefficient De f f /Dm as given in Eq. (II .21). This comparison is shown

in Table 2 for different Peclet numbers. These values are obtained in the stationary dispersive

regime taken at tdisp) defined as the timescale where ∂ 2σ2
x (t)

∂ t2 < 10−9. Good agreement between

the analytical and numerical values is observed, therefore validating our numerical approach.
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Figure 17: (a) Concentration profile of passive tracers confined between two parallel plates with
Lx = 10000∆x and Ly = 41∆x. The data, which are shown for different times t, were obtained
for a Peclet number Pe = 50. The abscissas are plotted in units of (x− x0)/Ut where x0 is
the lateral injection position and U the mean velocity. (b) Normalized displacement variance
D(t)/Dm as a function of time t for different Peclet numbers Pe. The solid lines denote the
simulation results while the dashed lines correspond to the analytical solution for De f f /Dm.
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Peclet number Numerical value Analytical value Numerical Convergence
Pe lim

t→∞

D(t)
Dm

De f f
Dm

= (1+ Pe2

210) error time (tdisp)(∆t)
14.7 2.0215 2.021 0.024% 1.2×105

29.41 5.1105 5.12 0.14% 1.4×105

50 12.90 12.894 0.122% 1.54×105

100 48.63 48.60 0.0704% 1.74×105

200 191.55 191.42 0.071% 3.45×105

300 429.75 429.44 0.073% 5.41×105

400 763.22 762.64 0.077% 6.98×105

Table 2: Comparison between analytical and numerical effective dispersion coefficients for
different Peclet numbers (parallel plate geometry).

Displacement distributions and propagators

The propagators P(δx, t), which correspond to the displacement distributions, represent the

probability of the tracer to be displaced from a position x0 to a position x = x0 + δx over the

time t. They can be written as follows:

P(x− x0, t) = α ∑
y

∑
q

gq (x,y, t);

with ∑
δx

P(δx, t) = 1 =⇒ α =
1

∑δx ∑y ∑q gq (x0 +δx,y, t)

which yields:

P(x− x0, t) =
1

∑δx ∑y ∑q gq (x0 +δx,y, t)∑
y

∑
q

gq (x,y, t); (II .23)

In what follows, we present the normalized propagator defined using a normalized x-axis to

account for fluid advection along the x direction. This propagator P[(x− x0)/Ut, t] is defined

as:

P
(

x− x0

Ut
, t
)
=

Ut
∑δx ∑y ∑q gq (x0 +δx,y, t)∑

y
gq

( x
Ut

,y, t
)

(II .24)

The derivation of Eq. (II .24) is presented in Appendix B.3.

The normalized propagators P[(x− x0)/Ut, t] obtained for the two plate geometry considered

with Pe = 50 are presented in Fig. 18(b). Note that accordingly the x-axis is normalized/shifted

to display (x− x0)/Ut instead of x. To monitor the dispersion, the normalized propagators are

plotted at different times t. At short time t1 (black curve), the shape of the propagator is quasi-

Gaussian; this indicates that the distance traveled by the tracer by diffusion is greater than the
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distance traveled by advection (diffusive regime). We notice that a non-negligible proportion

of tracers show negative displacements ((x− x0)/Ut < 0); this confirms the key role played by

diffusion at short time which transport tracers in the opposite direction to the advective flow.

For t2 = 104∆t (red curve), the propagator is strongly influenced by the velocity profile; this cor-

responds to the advection-dominated regime (the data obtained at t3 correspond to a timestep

where this transient regime is about to end). Once the Taylor dispersive regime is reached (at

large times such as for t = t4 and t5), the propagators display a nearly perfect Gaussian shape.

These results shed light on the transport mechanisms that give rise to the different regimes dis-

cussed in Fig. 18(a).
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Figure 18: (a) Temporal evolution of the time derivative of the displacement variance for ad-
vection/diffusion flow. These data were obtained for Pe = 50. (b) Normalized propagators
P((x− x0)/Ut, t) at different times t for a Peclet number Pe = 50.

2.4. Numerical resolution/accuracy

Like for Stokes flow, we performed simulations with different node numbers to study the numer-

ical error expected when addressing advection/diffusion problems with the Lattice Boltzmann

approach (we recall that we use the TRT scheme throughout this study). Table 3 shows the
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different node numbers that were used to map a simple channel geometry of a width Ly. As

expected, our results show that the numerical error decreases with increasing the node number.

Even for small node numbers, the numerical error is acceptable. All the values presented in this

table were obtained in the stationary dispersive regime.

Nodes number 9 21 41 81 101 151
Pe 100 100 100 100 100 100

lim
t→∞

D(t)
Dm

47.559 48.4797 48.6022 48.6249 48.6285 48.6303

Error 2.2153% 0.3222% 0.0704% 0.0236% 0.0163% 0.0125%
Convergence time 7.86×105 6.87×105 1.64×105 1.75×105 1.74×105 1.47×105

(tdisp)

Table 3: Impact of node number on the numerical accuracy of dispersion simulations conducting
using the Lattice Boltzmann approach within the two relaxation time scheme.
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Chapter Conclusion

In this chapter, we presented the Lattice Boltzmann Two Relaxation Time scheme.

We highlight its fundamentals and importance as a numerical method as well as the

main steps in the LBM-TRT algorithm: the propagation and the collision steps. We

figured out that to solve different problems the key difference lies in the definition of

the collision operator. Then, we presented the different equations needed to solve the

Stokes equation with the appropriate boundary as well as the one used to solve the

advection diffusion equation, which allows to study the dispersion of a passive tracer.

Furthermore, we validated the implemented equations by performing simulation in

parallel plates geometry. We were able to obtain the appropriate Poiseuille profile

for the Stokes simulations. In addition, we performed the transport of passive tracer

simulation, we proved the mass conservation of the molecules and we visualized

the different transport quantities (normalized propagators and the concentration

distribution) at the diffusive, advective and dispersive regime. This model delivers

values consistent with the effective dispersion coefficients that characterize the

Taylor dispersion regime. Furthermore, the results for different Peclet numbers

were also verified. Finally, we validated the ability of the method to give accurate

results with a minimum number of nodes for both the Stokes and the ADE simulations.
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Surfactant adsorption in porous media remains poorly understood as the microscopic coopera-

tive behavior of these amphiphilic molecules lead to non-conventional adsorption phenomena

with complex underlying kinetics/structural organization. Here, we develop a simple thermody-

namic model which captures this rich behavior by including cooperative effects – i.e. lateral in-

teractions between adsorbed molecules and formation of ordered or disordered self-assemblies.

More in detail, this model relies on a kinetic approach involving adsorption/desorption rates that

are dependent on the surfactant surface concentration to account for facilitated or hindered ad-

sorption at different adsorption stages. Using experimental data for different surfactants/porous

solids, adsorption on both strongly and weakly adsorbing surfaces are found to be accurately

described with model parameters that are readily estimated from experimentally available ad-

sorption isotherms. The validity of our physical approach is confirmed by showing that the in-

ferred adsorption/desorption rates obey the quasi-chemical approximation for lateral adsorbate

interactions. Such cooperative effects are shown to lead to adsorption kinetics that drastically

depart from conventional frameworks (Henry, Langmuir and Sips models).

This chapter is divided into three sections. In the first section, the adsorption of surfactants

will be briefly discussed. The concept of cooperative adsorption effects as well as surface

aggregation will be introduced followed by a short discussion on adsorption models – including

their limitations – available in the literature. The second section is devoted to the development

of a novel adsorption model that accounts for cooperative adsorption and surface aggregation.

We will first present the basic assumptions and hypotheses at the root of this model. Then,

we will provide a rigorous thermodynamic and kinetic derivation before comparing the model

against relevant experimental data taken from the literature. More in detail, two experimental

data sets are considered as they involve two different surfactants and two different mineral

surfaces. In the third section, we will present some physical insights that can be derived from

this cooperative adsorption model. First, we will show that this model is consistent with the

quasi-chemical approximation which allows including lateral interactions in statistical physics

of adsorption. Then, we will study the impact of cooperative effects and surface aggregation on

adsorption kinetics. This third section ends with some conclusions and perspectives.
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A. Surfactant adsorption

1. Adsorption and surface aggregation

The rich thermodynamic behavior of surfactants results from competing molecular interactions

between the different – hydrophobic and hydrophilic – groups which combine with large en-

tropy effects for such molecules [126]. Yet, despite such an intrinsic complexity, the phase

behavior of bulk surfactants is reasonably well understood with available tools and formalisms

to describe phenomena such as self-assembly and phase separation/transition but also non-

intuitive temperature effect on liquid immiscibility, solubility, and micellization [127, 128,

129]. In contrast, the physical behavior of surfactants confined in porous materials or close

to solid surfaces still challenges existing frameworks [130]. Adding free energy contributions

corresponding to the head/surface and tail/surface intermolecular interactions lead to intrigu-

ing effects such as inverse temperature adsorption phenomena but also surface transitions be-

tween disordered and/or ordered mesoscopic assemblies (e.g. bilayers, hemi-micelles, vesi-

cles, elongated micelles) [127, 131, 132, 133]. The situation is even more puzzling as the

type of surfactant adsorption phenomena observed depends specifically on the solid chemistry

(surface affinity/groups with possible amphoretic charges), surfactant molecule (apolar/polar,

cationic/anionic) but also the thermodynamic/solution conditions (concentration, temperature,

presence of an electrolyte, etc.). [3, 134, 135, 136]

As a result of this complexity, most of the experimental literature on surfactant adsorption fo-

cuses on a given family of surfaces or surfactants. In particular, significant research effort has

been devoted to unraveling the structural mechanisms followed upon adsorption at increasing

concentrations [137, 138, 139, 140, 141]. By combining thermodynamic measurements with

structural analysis, some authors proposed advanced scenarios to rationalize step-adsorption

and/or S-shaped adsorption isotherms observed experimentally [142, 143]. As illustrated in

Fig. 19(b), such mechanisms often assume the adsorption of isolated monomers followed by

the formation of a monolayer which eventually transforms into more complex structures (e.g.

bilayer, hemimicelle, vesicle) upon increasing the surfactant concentration. [2] However, while

such combined structural/thermodynamical studies provide an accurate and robust description
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Figure 19: (a) Temperature-concentration (T ,c) phase diagram of bulk surfactant solutions.
The surfactant monomer is pictured as a hydrophilic head (blue sphere) combined with a hy-
drophobic chain (grey segment). A miscibility gap separates the high/low T regions with sol-
vent/surfactant miscibility only observed at low T and c. In the miscibility range, for c smaller
than the so-called critical micelle concentration (CMC), the monomers are solubilized in the
solvent phase. For c > CMC, the monomers coexist with micelles. (b,c) illustrates the orien-
tation of surfactant molecules and possible surface aggregates obtained at a solid surface. (b)
corresponds to the stepped Langmuir adsorption isotherm with the formation of a monomer
adsorbed layer followed by film reorientation and growth. (c) illustrates other ordered or disor-
dered self-assemblies coexisting with isolated adsorbed monomers.

for a broad class of solid/surfactant situations, there is a number of systems that lead to more

complex data departing from such a picture [144, 145]. In particular, data for surfactants in var-

ious silica-based porous materials display complex adsorption mechanisms and kinetics with

underlying mechanisms involving the formation of elongated/distorted micelles or vesicles [as

illustrated in Fig. 19(c)] that cannot be captured using currently available models. Such com-

plex effects arise from the heterogeneity in the solid surface chemistry and disordered morphol-

ogy/topology of the host confining material.

2. Available modeling strategies

From a theoretical viewpoint, statistical physics is a powerful framework to predict the com-

plex behavior of surfactants in bulk solution (including anomalous temperature effects on self-

assembly for instance). In particular, extended lattice gas theory for monomers including a

supra-lattice for the formation of micelles was shown to capture most of the physical phenom-

ena involved in the phase diagram of these complex objects [146]. This method was extended

later by Bock et al. [147] to account for surface adsorption through the use of surface interaction

terms in the lattice gas Hamiltonian [146]. From a thermodynamic viewpoint, several models
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such as those described hereafter have been proposed to describe surfactant adsorption on solid

surfaces. Empirical models have been proposed to describe in an effective fashion S-shaped

adsorption isotherms. This is the essence of the Sips model [148] which corresponds to the

Langmuir model with the pressure raised to an empirical power α . The Toth model falls in

the same category as it consists of accounting empirically for surface heterogeneity through a

stretched Langmuir adsorption isotherm [149]. Other empirical approaches in this field con-

sist of combining different physical models such as Henry, Langmuir, and BET adsorption

isotherms to account for non-conventional surfactant adsorption isotherms [50]. More physical

pictures have been proposed such as the model by Zhu and Gu in which adsorption is seen as a

two-step process with two underlying equilibrium conditions (adsorption of a single monomer

and recombination with already adsorbed monomers to form self-assemblies) [54, 55]. Other

physical models such as those proposed by Tempkin [150] and Reed-Ehrlich [151] rely on the

quasi-chemical approximation to account for lateral interactions within the adsorbed layer. This

approximation is an extension of the Bragg-Williams approximation in which the Langmuir

model is augmented by including a mean-field description of the lateral interactions between

adsorbed molecules [152].

B. A simple model for cooperative adsorption

1. Basic assumptions

In spite of their physical basis, the models described above do not provide a general formalism

for surfactant adsorption as they address different aspects (lateral interaction or self-assembly).

In other words, a reliable thermodynamic description of the behavior of surfactants at sur-

factant/surface interfaces that includes both lateral interactions and transitions from adsorbed

monomers to self-assembled objects is still missing. This task is complex but also crucially

needed as the specific adsorption isotherm shape observed experimentally depends on many

parameters (surfactant type, surface chemistry, presence of electrolytes/other fluid components,

etc.). Here, we intend to fill this gap by providing a generic theoretical picture of surfactant

adsorption through a phenomenological model based on simple thermodynamic ingredients.

More in detail, this physical model is obtained by including physical cooperative effects through
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both lateral interactions between adsorbed molecules and the possibility to form self-assembled

structures at the solid surface using an occupancy parameter that can be larger than unity. It

is important to note here that simply accounting for lateral interactions in adsorption models is

not sufficient to describe the adsorption of mesoscopic objects at the solid surface. Indeed, even

if such lateral interactions are physically needed to account for self-assembly, only a model

including both lateral interactions and an occupancy larger than one can describe the adsorp-

tion/formation of supramolecular structures.

In practice, this model is derived by writing the underlying kinetic equation involving ad-

sorption/desorption rates that are dependent on the surface concentration of surfactant to ac-

count for facilitated or hindered adsorption. Using experimental data for two surfactants on two

mineral surfaces, this simple yet realistic model is shown to capture different surfactant adsorp-

tion types as observed upon varying the surfactant affinity towards the surface. We note that

the present model can be extended to almost any surfactant adsorption/porous surface type as

it has its roots in generic thermodynamic concepts (fluid/surface affinity, occupancy/packing,

fluid/fluid interactions, etc.). The cooperative effects invoked in our model to capture the

complex adsorption phenomena occurring at the surfactant/surface interface are believed to be

physically relevant as they can be rationalized using a simple quasi-chemical adsorption model

(which can be seen as a Langmuir model in which interactions between adjacent adsorbed

molecules are treated in a mean-field approximation). It is also shown that the adsorption kinet-

ics is drastically affected by such cooperative effects, therefore offering an additional mean to

understand the physics of surfactant adsorption (role of lateral interactions and self-assembly).

2. Thermodynamic and kinetic derivation

To derive our model, let us consider the situation depicted in Fig. 20 with a solid surface made

up of adsorption sites denoted s. Each site s can adsorb a single monomer m (blue sphere) or

n = 1/β aggregated monomers m′ (red sphere) where n can be seen as the packing efficiency

of aggregated monomers. β ∈]0,1] is a key ingredient which renders our model versatile as it

allows describing very different physical situations. β = 1/n describes the physical situation

previously considered by Zhu and Gu [54] where a single monomer is used to aggregate with
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n−1 other monomers to form a column on a single solid site s. In contrast, β → 1 corresponds

to very weakly aggregated object where each monomer m′ lies at a solid site s. Therefore, as

will be illustrated in the present chapter, defining β as a variable allows reproducing – at least

in an effective fashion – almost any aggregation type without having to assume a given shape

(micelle, hemi-micelle, vesicle, disordered aggregate, etc.). In particular, the combined use of

a packing efficiency and surface-concentration adsorption constants allow describing both the

adsorption of aggregated monomers forming at the pore surface (below and above CMC) and

the direct adsorption of micelles formed in the bulk solution (above CMC).
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Figure 20: (a) Thermodynamic model of surfactant adsorption onto a solid surface in which the
surface concentration Γ as a function of the bulk concentration c is the sum of a contribution
Γm corresponding to adsorbed individual monomers m and a contribution Γm′ corresponding to
aggregated monomers m′. (b) Adsorption isotherm corresponding to the model shown in (a).
The black line is the total surface concentration Γ while the blue and red lines correspond to Γm
and Γm′ , respectively. For bulk concentration c smaller than the critical surface concentration
cs, only isolated monomers m get adsorbed at the surface – here following a Henry adsorption
isotherm Γm ∼ c but any other adsorption regime can be considered. Beyond c > CMC, Γm
plateaus as the bulk concentration of isolated monomers remains constant. For cs < c < CMC,
both isolated monomers m and monomers in aggregated objects m′ adsorb at the surface.

Having introduced the fundamental ingredients of our model, its constitutive equations for

adsorption equilibrium and kinetics can be derived by writing simple mass balance equations

between the free monomers m0 (green sphere) in solution c = c[m0], the solid surface sites s,

the adsorbed individual monomers m and the adsorbed aggregated monomers m′. While such

conditions can be written formally, rendering our model tractable requires an additional assump-
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tion as follows. We introduce a surface critical concentration cs below which only adsorption of

individual monomers m occurs – this critical concentration can be seen as a minimum concen-

tration to observe the formation of aggregated (self-assembled) structures at the solid surface,

i.e. above cs, both the individual monomers m and the aggregated monomers m′ are adsorbed

to the surface sites s.

Below the surface critical concentration c < cs

The surface phase equilibrium can be expressed as s+m0
 m with an underlying first order

kinetic equilibrium given by:

∂Γm(c, t)
∂ t

= kAc [Γ∞−Γm(c, t)]− kDΓm(c, t) (III .1)

where Γm(c, t) is the surface concentration of individual adsorbed monomers m and Γ∞ is the

surface site concentration in which individual adsorbed monomers m can be adsorbed. The

first and right terms in the above equation account for the adsorption/desorption contributions

over a time ∂ t (kA and kD are the adsorption and desorption rates, respectively). The solution

to this well-known mass balance condition corresponds to the Langmuir kinetic equation (with

k = kA/kD):

Γm(c, t) =
Γ∞ck
1+ ck

[
1− e−(1+k)kDt

]
(III .2)

which converges in the stationary regime (t → ∞) towards the Langmuir model Γm(c,∞) =

Γ∞ck/(1+ ck). In passing, we note that taking the limit Γ∞ >> Γm(c,∞) allows recovering the

Henry regime as usually observed at very low concentrations c: Γm(c, t) = Γ∞ck[1−e−kDt ] with

the long-time limit Γm(c,∞) = Γ∞ck.

Above the surface critical concentration c≥ cs

For c ≥ cs, both the individual monomers m and aggregated monomers m′ get adsorbed in

the surface sites s. As already mentioned, by using the concept of aggregated monomers, we

encompass into the same contribution both the adsorption and recombination of adsorbed sur-

factants into mesoscopic assemblies (for c > cs) and the direct adsorption of micelles formed in

the bulk onto the solid surface (for c > CMC > cs). This is a specificity of our model in which

the use of surface concentration-dependent adsorption/desorption rates allows treating in an ef-
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fective yet physical fashion these complex adsorption phenomena. Here, as a simplification that

allows straightforward comparison with experimental data without changing fundamentally the

physical basis of our model, we assume that the adsorption of individual monomers occurs on

a much shorter timescale than the adsorption of aggregated monomers. This implies that in the

following kinetic equation, Γm(c, t) ∼ Γm(c,∞) ∀t. Moreover, each surface site is assumed to

adsorb n = 1/β aggregated monomers where the packing efficiency n allows accounting for

nearly almost self-assembled object.

With these approximations, surface phase equilibrium for c≥ cs can be expressed as s∗+m0


m′ where the ∗ in s∗ indicates that only the surface sites that remain available for aggre-

gated monomers are considered. The corresponding first order kinetic equation for the ad-

sorption/desorption of the aggregated monomers in such a process can be expressed as:

∂Γm′(c, t)
∂ t

= k′A (Γm′)c× [Γ∞−Γm(c,∞)−βΓm′(c, t)]− k′D (Γm′)Γm′(c, t) (III .3)

where Γm′(c, t) is the surface concentration in aggregated monomers m′ while β accounts for the

fact that the adsorption of a single monomer in aggregated objects only occupies a fraction β of

the surface site (therefore, with these definitions, βΓm′(c, t) is the number of such mesoscopic

i.e. aggregated objects). Moreover, to account for lateral interactions between monomers in

aggregated objects, we make the adsorption and desorption rates k′A and k′D in the above equation

explicitly dependent on the surface concentration Γm′ . At equilibrium (i.e. in the stationary

regime ∂Γm′/∂ t = 0), for a bulk concentration c, this kinetic equation leads to the following

solution:

Γm′(c,∞) = [Γ∞−Γm(c,∞)]× k′(Γm′)c
[1+βck′(Γm′)]

(III .4)

where k′(Γm′) = k′A(Γm′)/k′D(Γm′).

In summary, this model allows introducing a required degree of complexity through col-

lective effects in surfactant adsorption that manifest themselves into two factors. First, while

isolated monomers are assumed to adsorb independently of each other, lateral interactions be-

tween monomers adsorbing into self-assemblies must be included. Second, the formation of
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either ordered (e.g. hemimicelle, vesicle) or distorted (e.g. elongated micelle) mesoscopic as-

semblies is included in an effective fashion through the use of a packing efficiency n. This

generic model relies on a limited yet important set of assumptions: namely, superimposition

of isolated and aggregated monomer adsorption, fast isolated monomer adsorption, description

of self-assemblies through an effective parameter n. However, despite these assumptions, as

illustrated in the remaining of this chapter, this model allows deriving fundamental insights into

the thermodynamics and kinetics of surfactant adsorption from simple experimental data. In

particular, as shown below, a merit of this model is that the adsorption-dependent dynamical

coefficients governing the adsorption kinetics of isolated and aggregated monomers can be esti-

mated from static adsorption data (since the adsorption/desorption rates k′A and k′D depend only

explicitly on Γm′). Moreover, this versatile model can be applied with almost no restriction

regarding the type of surfactants, surfaces, self-assemblies, etc.

3. Parameterization against experimental data

To test our model, we consider two sets of experimental data which are representative of differ-

ent surfactant adsorption behaviors. More in detail, we use the data by Denoyel and coworkers

who considered the adsorption at room temperature of two polar (non-ionic) surfactants onto

silica-based surfaces (TX100 onto silica and TX 165 onto kaolinite clay) [138].

As shown in Fig. 21, for both systems, the adsorption isotherms exhibit two regimes which cor-

respond to monomer adsorption at low concentration c followed by a rapid increase in the sur-

face concentration corresponding to surface self-assembly at concentrations around the CMC.

However, a major difference between the two data sets lies in the monomer adsorption regime

in the low concentration range with a slow – Henry-like – regime for Fig. 21(a) and a rapid

– Langmuir-like – regime for Fig. 21(b) (we note that, in general, a Langmuir model can be

assumed by default as Henry law is simply its asymptotic limit). Since the two surfactants con-

sidered here are similar non-polar molecules with an OH group at their end, the origin of this

difference has to be found in the surface chemistry of the different surfaces. Typically, for the

kaolin sample, as discussed by Denoyel and coworkers [138], the observed strong adsorption

phenomenon is thought to occur on a basal plane – more exactly, the basal plane made up of
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Figure 21: Surfactant adsorption isotherms at T = 298 K showing the surface concentration of
surfactants Γ onto a silica-based surface as a function of the bulk concentration c: (a) TX100
surfactant on quartz silica and (b) TX165 surfactant on kaolin. The black symbols are the
experimental data taken from Denoyel et al. with the black line corresponding to smoothed
interpolation data. For both systems, the blue and red lines show the predictions of our model
for the adsorption of isolated and aggregated monomers, respectively (by construction, the sum
of these two contributions is equal to the experimental data). A Henry law and a Langmuir law
were used to describe the isolated monomer adsorption in (a) and (b), respectively. The vertical
dashed lines indicate the critical surface concentration cs and critical micelle concentration
CMC.

aluminol sites as the surface concentrations were found to be pH independent (adsorption sites

on this basal plane do not form amphoteric charges with pH). [138] In contrast, because the

weak adsorption phenomenon displayed in Fig. 21 for silica is found to be pH-sensitive, it is

assumed to occur on neutral adsorption sites that become charged upon increasing the pH.
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We use the following procedure to apply our model to the experimental data Γexp(c) shown in

Fig. 21.

• First, to define the surface critical concentration cs, the interpolated experimental data are

fitted against a Langmuir adsorption isotherm over a concentration range [0,cmax]. While

the fit is very good for small cmax, the fit does not provide satisfactory results for large

cmax (since a simple Langmuir or Henry adsorption isotherm cannot describe the raw ex-

perimental adsorption data over a large concentration range). At this stage, it is decided

to define cs as the maximum value cmax for which a correlation coefficient of R2 = 0.99

is obtained. While the specific cutoff value used is arbitrary, it should be emphasized

here that slightly different values would lead to very similar predictions (in practice, with

variations in the degree of agreement with experimental data that falls within the experi-

mental error bar). This allows us to have a good approximation to describe the monomer

surface concentration Γm(c,∞) for c < cs.

• Second, having a fitted model for Γm(c,∞), one can estimate the contribution correspond-

ing to the adsorbed aggregated monomers Γm′(c,∞) by subtracting Γm(c,∞) from Γexp(c),

i.e. Γm′(c,∞) = Γexp(c)−Γm(c,∞).

• Third, k′(Γm′) can be readily estimated from Γm′(c,∞) by inverting Eq. (III .4):

k′(Γm′) =
Γm′(c,∞)

c[Γ∞−Γm(c,∞)−βΓm′(c,∞)]
(III .5)

As shown in Fig. 21, for both systems, the model including cooperative effects applies accu-

rately to the experimental data.

Fig. 22 shows k′(Γm′) as a function of Γm′ for the two systems considered here (TX100 on

quartz silica and TX165 on kaolin). It should be noted that the model applied to the isothermal

adsorption data does not allow estimating β . This is a drawback of our model but β can be esti-

mated independently of k′(Γm′) from adsorption kinetics data as shown in the last section of this

chapter Fig. 22 shows that k′(Γm′) increases with increasing Γm′ for a given β , therefore point-

ing to the existence of collective, i.e. cooperative, effects in surfactant adsorption (otherwise

k′(Γm′) would remain constant). Physically, this behavior indicates that cooperative effects lead
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Figure 22: Adsorption constant k′(Γm′) for the aggregated monomers m′ as a function of their
surface concentration Γm′ as extracted from the experimental adsorption data shown in Fig. 21.
The circles are for TX100 adsorption on quartz silica while the squares are for TX165 on kaolin.
For each system, the blue, red, and green data denote data obtained for β = 0.2, β = 0.5 and β =
1.0, respectively. The two horizontal dashed lines in purple indicate the Langmuir adsorption
constants that best match the experimental adsorption isotherms in the high concentration range
c > cs.

to enhanced adsorption with already adsorbed molecules facilitating adsorption of additional

monomers either in the same adsorption sites (when β 6= 1) and/or in neighboring adsorption

sites (β = 1). As expected from Eq. (III .5), upon decreasing β , the fraction of available sites

to adsorb aggregated monomers increases so that k′(Γm′) decreases. This is due to the fact that

k′(Γm′) is an effective adsorption constant so that low β corresponds to systems that tend to

self-assemble easily (therefore not requiring large adsorption constants to pack efficiently at the

solid surface). Fig. 22 also shows for the two systems considered here the Langmuir adsorption

constant kL = kA/kD which was estimated by fitting the concentration range beyond the critical

surface concentration c > cs. More in detail, by restricting the fitting procedure to the region

where the surface concentration increases rapidly with concentration, it is possible to describe

semi-quantitatively the data using a simple Langmuir model. As shown in Fig. 22, except for

large surface concentrations Γm′ , regardless of the system considered, the Langmuir constant kL

overestimates the adsorption constant k′(Γm′) predicted using our model. This result is due to

the fact that the Langmuir model does not describe cooperative adsorption so that a larger ef-

fective constant is needed to capture the increasing adsorption rate upon increasing the surface

concentration.
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C. Cooperative effects in physical adsorption/aggregation

For a given surfactant/surface couple, the parameters involved in the present model are derived

from available experimental data. To assess the physical validity and robustness of our model,

it is important to connect its underlying parameters to existing theoretical frameworks. We can

refer to the quasi-chemical adsorption model (which can be considered as a Langmuir model

in which the interactions between adjacent adsorbed molecules are treated in a mean-field ap-

proximation). Moreover, adsorption kinetics will be studied, as they are significantly affected

by the cooperative effects, which is going to provide an additional means of understanding of

the physics of surfactant adsorption (role of lateral interactions and self-assembly).

1. Consistency with the quasi-chemical approximation

The quasi-chemical approximation allows deriving a simple expression for the surface concen-

tration that accounts for lateral interactions between adsorbed monomers. In the first paragraph,

we provide the main thermodynamic ingredients of this important model and give the exact

derivation of the chemical potential. Then, in the second paragraph, we will use the resulting

expression and compare it to the respective chemical potential obtained using our model, for

the two experimental data sets.

1.1. Formal derivation

Let us consider a solid surface made up of M adsorption sites occupied by N fluid molecules.

For such a surface lattice having a connectivity z0 (z0 = 4 for a simple square lattice as each

site is connected to 4 nearest neighbors), the total number of pairs is z0M/2 since each of the M

sites is paired with z0 sites but each site pair is double counted [(i, j) = ( j, i)]. Each neighboring

site pair can be occupied as follows: (1) both sites are empty, (2) one site is empty while the

other one is occupied, (3) both sites are occupied. Let us denote N00, N01, and N11 the number

of pairs corresponding to these three configurations (the subscripts ‘0’ and ‘1’ therefore refer to

an unoccupied site and an occupied site in the considered pair). N00, N01, and N11 necessarily

obey the following normalization rules: (1) z0N = 2N11+N01 and (2) z0(M−N) = 2N00+N01.
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These two rules can be understood as follows. Each isolated molecule corresponds to one of the

N adsorbed molecules and generates z0N01 pairs but each neighboring molecule pair removes

two pairs of type N01. The same reasoning applies for the second rule but with the unoccupied

sites.

In what follows, the canonical partition functions of an individual adsorbed molecule and of

the whole system made of M sites occupied by N molecules at the temperature T are denoted q

and Q(N,M,T ), respectively. By noting w the energy of a given pair of neighboring adsorbed

molecules, the lateral interaction energy between adsorbed molecules writes N11w = z0Nw/2−

N01w/2. This allows writing the total partition function as:

Q(N,M,T ) = qN
∑
N01

g(N,M,N01)e−N11w/kBT = qNe−z0Nw/2kBT
∑
N01

g(N,M,N01)eN01w/2kBT

(III .6)

where g(N,M,N01) corresponds to the number of ways the N adsorbed molecules can be dis-

tributed among the M solid sites while leading to N01 occupied/unoccupied site pairs. To de-

termine g(N,M,N01), we first consider the number of ways ω(N,M,N01) each site pair can be

assigned to N00, N01, and N11 without considering whether these configurations are actually

possible or not [ω(N,M,N01)≥ g(N,M,N01)]:

ω(N,M,N01) =
[z0M/2]!

[z0N/2−N01/2]![z0(M−N)/2−N01/2]![N01/2]!2 (III .7)

Following the approach by Hill [152], to correct ω(N,M,N01) for impossible configurations

and estimate g(N,M,N01), we write that g(N,M,N01) =C(N,M)ω(N,M,N01) where C(N,M)

is the correction factor that needs to be determined. After noting that ∑N01 g(N,M,N01) =

M!/[N!(M−N)!], C(N,M) can be determined by writing:

∑
N01

g(N,M,N01) =C(N,M)∑
N01

ω(N,M,N01) =
M!

N!(M−N)! (III .8)

Then, we use the maximum term method which consists of approximating the sum over N01 by

its maximum contribution obtained for N∗01. In practice, N∗01 is determined by maximizing ω ,



80 Chapter III : Cooperative surfactant adsorption

i.e. ∂ lnω/∂N01 = 0 for N01 = N∗01. This leads to N∗01 = z0N(M−N)/M with1:

ω(N,M,N∗01) =

[
M!

N!(M−N)!

]z0

(III .9)

and, therefore, the following expression:

C(N,M) =

[
M!

N!(M−N)!

]1−z0

(III .10)

By introducing t(N,M,N01) = g(N,M,N01)eN01w/2kBT = C(N,M)ω(N,M,N01)eN01w/2kBT , the

partition function in Eq. (III .6) can be expressed as:

Q(N,M,T ) = qNe−z0Nw/2kBT
∑
N01

t(N,M,N01)∼ qNe−z0Nw/2kBT t(N,M,N∗01) (III .11)

where the last expression is obtained by replacing the sum over N01 by its maximum contri-

bution (maximum term method); i.e. ∂ ln t(N,M,N01)/∂N01 = 0 for N01 = N∗01. From the

expression of t(N,M,N01), this last optimization condition leads to

∂ ln t(N,M,N01)/∂N01 = ∂ lnω(N,M,N01)/∂N01 +w/2kBT = 0. After a little algebra2, it is

possible to show that ∂ lnω/∂N01 = 1/2ln[(θ −α)(1−θ −α)/α2] where θ = N/M is the oc-

cupancy rate and α =N01/z0M. Using this expression in the condition ∂ ln t(N,M,N01)/∂N01 =

0 leads to:
(θ −α)(1−θ −α)

α2 = e−w/kBT
(III .12)

The last expression is a second degree equation in α which admits as solutions:

α =
N∗01
z0M

=
2θ(1−θ)

γ +1 (III .13)

with γ = [1− 4θ(1− θ)(1− exp(−w/kBT ))]1/2 (among the two solutions admitted by this

quadratic equation, only the one leading to the correct solution α = θ(1− θ) for w = 0 i.e.

γ = 1 is kept).

1Using Stirling formula, lnN! ∼ N lnN − N, we obtain ∂ lnN!/∂N = lnN. Applying this formula to
∂ lnω/∂N01 = 0 for N01 = N∗01, we obtain ∂ lnω/∂N01 = 1/2ln[z0N/2−N∗01/2]+1/2ln[z0(M−N)/2−N∗01/2]−
ln[N∗01/2] = 0 which can be recast as [z0N−N∗01][z0(M−N)−N∗01] = N∗01

2 and, hence, N∗01 = z0N(M−N)/M.
2Let us start from the expression derived in footnote 1: ∂ lnω/∂N01 = 1/2ln[z0N/2−N01/2]+1/2ln[z0(M−

N)/2 − N01/2] − ln[N01/2] which can be recast as ∂ lnω/∂N01 = 1/2ln[(z0N/2 − N01/2)(z0(M − N)/2 −
N01/2)/(N01/2)2]. We then factorize the numerator and denominator by z2

0M2 and introduce the variables θ and
α .
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Going back to the approximate partition function given in Eq. (III .11), it can be recast as:

lnQ(N,M,T ) = N ln[qe−z0w/2kBT ]+ ln t(N,M,N∗01) (III .14)

which leads to the following chemical potential expression:

− µ

kBT
=

(
∂ lnQ
∂N

)
M,T

= ln[qe−z0w/2kBT ]+

(
∂ ln t
∂N

)
N∗01,M,T

+

(
∂ ln t
∂N∗01

)
N,M,T

(
∂N∗01
∂N

)
M,T

= ln[qe−z0w/2kBT ]+

(
∂ ln t
∂N

)
N∗01,M,T

(III .15)

where the last expression is obtained by noting that ∂ ln t/∂N∗01 = 0 since N∗01 is the value

that maximizes t at given N,M,T conditions. Using the definition t(N,M,N01) = C(N,M)×

ω(N,M,N01)eN01w/2kBT , we arrive at: ∂ ln t/∂N = ∂ lnC(N,M)/∂N + ∂ lnω(N,M,N∗01)/∂N

which leads to:(
∂ ln t
∂N

)
N∗01,M,T

=−(1− z0)[lnN− ln(M−N)]

− z0

2

[
ln
(

z0N
2
−

N∗01
2

)
− ln

(
z0(M−N)

2
−

N∗01
2

)] (III .16)

where the first term corresponds to the derivation of C(N,M) given in Eq. (III .10) while the last

two terms corresponds to the derivation of ω(N,M,N∗01) given in Eq. (III .7). Using θ = N/M

and α = N∗01/z0M, Eq. (III .16) can be recast as:

(
∂ ln t
∂N

)
N∗01,M,T

= ln

[(
θ

1−θ

)z0−1(1−θ −α

θ −α

)z0/2
]

(III .17)

Inserting this expression into Eq. (III .15) yields the following expression:

µ

kBT
=− ln[qe−z0w/2kBT ]+ ln

[(
1−θ

θ

)z0−1(
θ −α

1−θ −α

)z0/2
]

(III .18)

Using the relation between α and γ (see above) and introducing the energy of a single adsorbed

molecule ε0 so that q = exp[−ε0/kBT ], the latter equation can be recast as:

µ

kBT
=

(z0w+2ε0)

2kBT
+ ln

[
(γ−1+2θ)(1−θ)

(γ +1−2θ)θ

]z0/2

+ ln
[

θ

1−θ

]
(III .19)

which is the formula we will use for our comparison in the next paragraph.
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1.2. Comparison

Phase equilibrium between the adsorbed monomers and the free monomers in solution at a

temperature T implies that the chemical potential is equal in the two phases, i.e. µ = µb (the

subscript b refers to the bulk solution). Using the quasi-chemical approximation, the chemical

potential of the adsorbed phase from Eq. (III .19) becomes:

µ = µ0 + kBT ln
[

θ

1−θ

]
+ z0

kBT
2

ln
[
(γ−1+2θ)(1−θ)

θ(γ +1−2θ

]
In this expression, the reference chemical potential µ0 = [z0w/2 + ε0]/kBT corresponds to

the energy of an adsorbed monomer at full saturation (which includes an energy contribution

with the surface ∼ ε0 and an energy contribution with all neighboring adsorbed monomers

∼ z0w/2), with w is the interaction with a single neighbor. we recall that θ ∈ [0,1] is the

site average occupancy, z0 is the number of neighboring sites (z0 = 4 for a surface) and γ =

[1−4θ(1−θ)(1−η)]1/2 (with η = exp[−w/kBT ]).

By noting that θ = βΓm′/(Γ
∞−Γm) and 1−θ = (Γ∞−Γm−βΓm′)/(Γ

∞−Γm), the previous

expression leads to the following expression for ∆µ = µ−µ0:

∆µ

kBT
= ln

[
βΓm′

Γ∞−Γm−βΓm′

]
+

z0

2
ln
[

Γ∞−Γm−βΓm′

βΓm′

]
+

z0

2
ln
[
(γ−1)(Γ∞−Γm)+2βΓm′

(γ +1)(Γ∞−Γm)−2βΓm′

] (III .20)

Taking the bulk concentration c = c0 as the concentration at the reference point µ0 and as-

suming that the concentration remains low enough, we can write ∆µ for the bulk phase as

∆µb = kBT lnc/c0. By inverting Eq. (III .5), we obtain c = 1/k′(Γm′)×Γm′/[Γ
∞−Γm−βΓm′]

which leads to the following expression upon insertion in ∆µb:

∆µb

kBT
= ln

[
βΓm′

Γ∞−Γm−βΓm′

]
− ln

[
c0× k′(Γm′)

β

]
(III .21)

To verify that our model of cooperative adsorption is consistent with a description of in-

teracting adsorbed species using the quasi-chemical approximation, we can check whether our

model verifies the chemical potential equality as defined in the quasi-chemical approximation.
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To do so, by noting that the first term on the right hand side, µ? = kBT ln[βΓm′/(Γ
∞−Γm−

βΓm′)] is identical in Eqs. (III .20) and (III .21) we can assess the model by comparing ∆µ−µ?

and ∆µb−µ?.
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Figure 23: Comparison between the chemical potential shift for bulk and adsorbed surfactants
as predicted within the quasi-chemical approximation using the data derived from our model.
The circles and squares refer to the data for TX100 on quartz silica and TX165 on kaolin,
respectively. The dashed line is a guide to the eye which indicates chemical potential equality
between the bulk and adsorbed phases.

As shown in Fig. 23, when using the values for k′ in Fig. 22, good agreement is obtained be-

tween the two chemical potentials for both TX100 on quartz silica and TX165 on kaolin. When

establishing such a comparison, η = exp[−w/kBT ] and c0 were used as adjustable parameters

but we note that they are the only fitting variables – we found η ∼ 3.3 for TX100 on silica

and η ∼ 4.0 for TX165 on kaolinite. More importantly, it was verified a posteriori that these

values for η , which lead to w ∼ −1.2kBT for TX100 on silica and w ∼ −1.4kBT for TX165

on kaolinite, are physically relevant as discussed in what follows. First, as expected for coop-

erative effects leading to facilitated adsorption, w is negative so that it corresponds to attractive

lateral interactions between neighbors. Second, w is of the order of kBT as required to observe

cooperative adsorption (indeed, for lower i.e. less negative lateral interactions, thermal motion

and therefore desorption would prevail). Third, the stronger attractive interaction w for TX165

is consistent with the fact that this molecule is similar to TX100 but with a longer alkyl chain

– 16 versus 9-10 carbon groups. In practice, the two data sets used are for different surfaces –
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which could affect the comparison made here – but we recall that η is related to the interaction

between two adsorbed molecules and can, therefore, be considered mostly dependent on their

molecular nature/chemistry.

2. Surfactant adsorption kinetics

As will be shown here, the present model has strong implications in terms of surfactant adsorp-

tion/desorption kinetics on surfaces. In particular, changes in the adsorption/desorption rates

induce drastic variations in the characteristic time corresponding to the transient regime leading

to thermodynamic equilibrium. While this feature is not specific to our model (since underlying

kinetics in the Langmuir and Henry models also depend on the adsorption/desorption constant

rates), the introduced concept of Γm′-dependence of kA and kD leads to rich and complex ki-

netics. In this respect, it should be emphasized that only such a level of complexity allows

capturing the intriguing adsorption kinetics observed experimentally for surfactant adsorption.

In particular, all typical non-Langmuirian adsorption dynamics observed in transient adsorp-

tion experiments but also in breakthrough curves, which resist available modeling frameworks,

point to the existence of cooperative adsorption effects and, more generally, complex collective

phenomena [3].

To illustrate the influence of cooperative effects on adsorption kinetics, the dynamical equation

given in Eq. (III .3) was solved numerically for different bulk concentrations c. For TX100 ad-

sorption on silica, this leads to the time-evolution shown in Fig. 24 and for TX165 on kaolinite,

the results are shown in Fig. 25. Many choices can be made for k′A(Γm′) and k′D(Γm′) because

static adsorption data only provide information on k′(Γm′) = k′A(Γm′)/k′D(Γm′). Two illustrative

situations were considered.

(1) k′A ∼ ν0k′(Γm′) and k′D ∼ ν0

(2) k′A ∼ ν0/c and k′D ∼ ν0/k′(Γm′)c

where ν0 is a characteristic constant in s−1 that sets the typical time scale (since it is used as

a constant throughout this study, it does not affect the discussion below). We emphasize that
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the two cases considered here are asymptotic limits as both k′A and k′D should depend on k′

and hence Γm′ in general. For each situation, we also consider the effect of the aggregation

parameter β which is varied between β = 0.2 and 1 (n = 1/β is the number of aggregated

monomer that can be packed into a single adsorption site). Fig. 24 and Fig. 25 also show for

each situation the kinetics obtained using the Langmuir kinetic model with (1) kL
A ∼ ν0kL and

kL
D ∼ ν0 and (2) kL

A ∼ ν0/c and kL
D ∼ ν0/kLc where kL is the Langmuir adsorption constant that

best matches the experimental adsorption isotherm in the high concentration range c > cs (see

Fig. 22 and its caption).
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Figure 24: Adsorption kinetics as determined by solving numerically Eq. (III .3) showing Γm′

as a function of time t for TX100 on silica for two bulk concentrations: (a) c = 250 µmol/kg
and (b) c = 450 µmol/kg. The color lines denote the data obtained using the cooperative model
with β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green) while the black lines correspond to
kinetics predicted using the Langmuir kinetic model with an adsorption/desorption constant kL

that best matches the experimental adsorption isotherm (see text). In each case, the dashed lines
correspond to the case kA ∼ ν0k and kD ∼ ν0 while the solid lines correspond to kA ∼ ν0/c
and kD ∼ ν0/kc. Note that our model predicts that the color dashed lines (i.e. kA ∼ k and kD
constant) are superimposed.
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Figure 25: Adsorption kinetics showing Γm′ as a function of time t for TX165 surfactant on
kaolinite clay for two bulk concentrations: (a) c = 300 µmol/kg and (b) c = 600 µmol/kg.
The color lines denote the data obtained using the cooperative model with β = 0.2 (blue),
β = 0.5 (red), and β = 1.0 (green) while the black lines correspond to kinetics predicted using
the Langmuir kinetic model with an adsorption/desorption constant kL that best matches the
experimental adsorption isotherm (see text). In each case, the dashed lines correspond to the
case kA ∼ ν0k and kD ∼ ν0 while the solid lines correspond to kA ∼ ν0/c and kD ∼ ν0/kc.
Note that our model predicts that the color dashed lines (i.e. kA ∼ k and kD constant) are
superimposed.
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Examining in details the two situations considered here allow gaining insights into the role

of cooperative effects on surfactant adsorption/desorption kinetics in porous media. In particu-

lar, this illustrates how application of the present model to experimental adsorption kinetics data

could be used to probe adsorption and desorption properties including the aggregation constantβ .

• Case [k′A ∼ k′ while k′D ∼ constant]. With these assumptions, inserting the expression for k′

given in Eq. (III .10) into the kinetics described by Eq. (III .3) shows that the adsorption rate k′A

is constant (i.e., independent of β ). Therefore, in that case, both k′A and k′D are constant so that

the adsorption kinetics is independent of the aggregation parameter β for all concentrations c

(see color dashed lines in Fig. 24 and Fig. 25). Moreover, comparison with the ideal Langmuir

model for this case indicates that our cooperative model predicts a much slower kinetics as

k′ . kL for all c (as shown in Fig. 22). Indeed, at constant desorption rate, the kinetics becomes

faster with increasing the adsorption rate.

• Case [k′A ∼ constant while k′D ∼ 1/k′]. With these assumptions, β significantly affects the

observed adsorption kinetics. As can be inferred from Eq. (III .10), k′ increases with β so that

k′D ∼ 1/k′ decreases. As can be directly illustrated using a simple Langmuir kinetic equation,

the adsorption kinetics becomes slower with decreasing the desorption constant kD while main-

taining kA constant. This interpretation is consistent with the data shown in Fig. 22 for k′D∼ 1/k′

and kA constant where it is observed that the adsorption kinetics becomes slower with increasing

β . Finally, for a given concentration with kD ∼ 1/k′ and kA constant, we observe that the simple

Langmuir kinetics is significantly slower than that observed with cooperative effects. This re-

sult is consistent with our previous explanation on the role of the desorption rate at constant kA

since kL > k′ for all c leads to kL
D < k′D and therefore a slower kinetics for the Langmuir model.
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Chapter Conclusion

In conclusion, we developed a simple physical model of the thermodynamics and kinet-

ics of surfactant adsorption onto surfaces that accounts for cooperative effects inherent to

such complex objects. By cooperative effects, we refer here to strong lateral interactions

between adsorbed surfactants but also intramolecular and intermolecular interactions re-

sponsible for their propensity to form mesoscopic (supramolecular) structures. With this

model, important collective driving forces that cannot be ignored for such self-assembling

molecules are taken into account to describe the non-conventional static and dynamic ad-

sorption behavior observed experimentally when surfactant solutions are set in contact

with solid surfaces. In practice, this model involves a simple kinetic formalism involv-

ing adsorption/desorption rates that vary with the surfactant surface concentration. Such

formalism can be extended to any class of objects that is expected to involve adsorption

cooperative effects such as ionic liquids [153], long chain molecules (e.g. normal alka-

nes) [154], etc. Moreover, while all cases treated here involved a surface concentration cs

lower than the CMC, our model also deals without any further development to non-wetting

situations where surface aggregation occurs beyond its bulk counterpart.

Once applied to available experimental data, this framework provides a valuable tool to

infer key quantities that govern the microscopic behavior of any adsorbed surfactant onto

various solid surfaces including surface self-assembly into ordered or disordered. More

generally, this robust and versatile model, which is found to be consistent with rigorous

microscopic treatments such as the quasi-chemical approximation in statistical physics of

surface adsorption, can be extended in principle to surfactant adsorption but also transport

in porous materials. Beyond immediate practical implications, the results reported here

about the non-standard surfactant adsorption thermodynamics and kinetics in porous ma-

terials also raises new challenging questions. In particular, owing to cooperative effects in

surfactant adsorption, strong departure from the adsorption/dynamics interplay observed

for more classical fluids is to be expected in agreement with experimental observations in

breakthrough or injection experiments. The present work offers a well-grounded thermo-

dynamic basis to address such questions.
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In this chapter, we report on a novel method based on the Lattice Boltzmann approach which

extends the description of adsorption phenomena to dynamical conditions. By dynamical con-

ditions, it is meant here that we explicitly account for both adsorption and transport kinetics.

Other Lattice Boltzmann-based methods including adsorption, probe dispersion and diffusion

constants under stationary conditions. Despite the effectiveness of this approach, the develop-

ment of such a simple tool that includes kinetic aspects is important as it allows treating real

engineering conditions such as molecule injection (e.g. surfactants) at a given time and for

a given period of time in a flowing liquid in models representing mineral rocks or materials.

In particular, this allows assessing the coupled dynamics of advection/diffusion/adsorption in

pores not only in static conditions but also under dynamical conditions. The development of

such an approach is important as it provides a simple mean to determine the impact of adsorp-

tion kinetics on molecule flow and dispersion (and vice-versa). Moreover, the use of a Lattice

Boltzmann-based approach is important in this context as it allows considering porous media of

any morphology and topology. Finally, owing to its versatility, the present approach provides

a mean to consider different adsorption regimes (e.g. Henry, Langmuir, adsorption with coop-

erative effects, etc.) with more or less complex underlying kinetics that is specific to a class

of adsorbate objects and/or porous solids. For these reasons, the method derived in this Chap-

ter complements already available approaches – either based on a theoretical (i.e. statistical

physics) or a numerical (i.e. Lattice Boltzmann) ground – which were reported in pioneering

works (see for instance Refs. [115, 116, 65, 155, 117]).

In brief, the extended Lattice Boltzmann method reported here relies on the formal treatment of

the advection/diffusion phenomenon which is augmented to include adsorption. For this reason,

the approach derived in this chapter is formally equivalent to solving the diffusion/advection/

adsorption equation but using a Lattice Boltzmann technique. In practice, the advection/diffusion

part is solved using an already available Lattice Boltzmann technique used at IFPEN which con-

sists of performing a collision step followed by a propagation step of the molecules within the

flowing liquid (see validation in Chapter 2). Adsorption is included within this formalism by

adding a third intermediate step – between the collision and propagation steps – which consists

of updating the free tracer and adsorbed tracer concentrations using a given adsorption kinetics
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equation. As with other Lattice Boltzmann methods, the Stokes flow is pre-calculated and as-

sumed to remain unaffected as adsorption proceeds. As already stated, the use of this generic

and versatile approach allows considering any adsorption mechanisms from well known regimes

such as Henry, Langmuir or Sips adsorption isotherms to more complex behaviors such as those

described in Chapter 3 of this thesis.

The remainder of this Chapter is organized as follows. In Section 1, we report the extended

Lattice Boltzmann method that accounts for adsorption thermodynamics and kinetics. After

providing the key ingredients and steps of this extended approach, we write formally the result-

ing equations to be solved numerically for different adsorption regimes: Langmuir adsorption

(which includes Henry adsorption regime as it corresponds to an asymptotic limit of the Lang-

muir model) and the cooperative model that was derived in Chapter 3. In this first section, we

also provide details about the simulation set-up and procedure as well as a flow chart to illus-

trate how the simulation is conducted. In section 2, we validate our approach by considering the

adsorption kinetics under no flow conditions for different regimes: Henry, Langmuir, and co-

operative adsorption. For different concentrations, using a simple slit pore geometry, we show

that our method provides an exact description of the known solution to these problems (as the-

oretical treatments are available for such simple adsorption examples in ideal pore geometries).

In section 3, we extend this validation part by considering more complex situations where ad-

sorption equilibration proceeds from a starting injection configuration within the flowing liquid

(a slice of adsorbate molecules is injected for a given time period). It is shown that the solution

obtained using our method matches the exact solution proposed by Levesque et al. [65].
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A. Extended Lattice Boltzmann method

1. Kinetics implementation

1.1. Problem statement

Let us consider a discretized porous material made up of solid sites coexisting with porous sites

that are accessible to carrying fluid molecules and tracer molecules (Fig. 26). All fluid sites

adjacent to a solid site adsorb tracer molecules. In what follows, two populations will be con-

sidered: free and adsorbed tracers with the corresponding concentrations – c(r, t) and ca(r, t) –

at a time t and position r. The concentration of adsorbed tracer molecules in porous sites not in

contact with the solid phase is assumed to be zero (physically, this approximation is justified by

the fact that the mesoscopic lattice spacing used in Lattice Boltzmann extends far beyond the

typical range of intermolecular forces responsible for adsorption). For the sake of simplicity,

throughout this Chapter, a simple slit pore geometry is considered but the method derived here

can be extended to any pore geometry (as will be done in Chapter 5 where realistic micromodels

from IFPEN will be used). Moreover, as already mentioned, all Lattice Boltzmann simulations

reported in this thesis are performed for 2D systems to ensure that the computational burden re-

mains reasonable. In practice, this means that the porous system shown in Fig. 26 corresponds

to a slice of a slit pore (no infinite extension in the y direction).

The porous system depicted in Fig. 26(a) is subjected to a liquid stationary, laminar flow – the

so-called carrying fluid – which is assumed to be entirely described through its Stokes velocity

field U(r). The latter is pre-calculated using regular Lattice Boltzmann simulations which do

not account for the presence and, a fortiori, for adsorption of the tracer molecules. In practice,

the resulting Stokes flow is assumed to remain constant/independent upon subsequent injection,

diffusion, and adsorption of the tracer molecules. As shown in Fig. 26(b), at a given time t = 0,

the free tracer molecules are injected for a given time ∆t0 which can be varied from a single

to several time steps ∆t0 = n∆t (with n an integer defined strictly positive and ∆t the Lattice

Boltzmann integration timestep). As shown in Fig. 26(c), different spatial distributions can be

injected during the injection time ∆t0: either as a homogeneous distribution c(r) = c0, ∀r or as

a heterogeneous distribution such as a concentration slice c(r0) = c0 with r0 = (x0,y) such that
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x0 is a given lateral position within the slit pore.

0 𝐿𝑥 
0 

𝐿𝑦 
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Adsorbing site 
Bulk non-adsorbing site 

∆𝑡0 
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𝑈 × 𝑡 

𝑢max   

(a) 

(b) (c) 

∆𝑡 

𝑡 

Figure 26: Schematic representation of the simulation set up used in our Lattice Boltzmann
calculations. (a) A slit pore having a length Lx and a width Ly is used as a simple reference
system to validate our Lattice Boltzmann method. The geometry mesh is shown where each
site is either a fluid site (white) or a solid site (black). Fluid sites directly in contact with a
solid site adsorb tracer molecules (grey). (b) The molecule concentration within the geometry
is monitored as a function of time. Starting from a concentration peak injected at a given time
t = 0 in a slice located in x, the density broadens as molecular diffusion disperses the tracers
within the pore. Moreover, under laminar flow condition, in addition to such diffusion-induced
broadening, the concentration distribution takes the shape of a Poiseuille profile in the long time
limit. In this long time regime, Taylor dispersion is observed as the dispersion of the molecules
leads to a molecule distribution with a Gaussian shape. (c) Different initial conditions are
considered for the Lattice Boltzmann simulations. At a time t0 (taken as the time origin t0 = 0),
a concentration step c = c0 is injected for a time period ∆t0.

As described in more detail below, the coupled dynamics resulting from advection, dif-

fusion, and adsorption can be determined by following the evolution in time of the free and

adsorbed tracer distributions. On the one hand, the variance σ2
x (t) of the free tracer distribu-

tion c(r, t) along the direction x provides a direct measurement of the dispersion coefficient

D(t)∼ dσ2
x (t)/2dt. On the other hand, the evolution in time of the adsorbed tracer distribution

ca(r, t) allows determining the resulting adsorption kinetics c(r, t) ∼ f (t). In practice, while

our Lattice Boltzmann calculations are performed using local volume concentrations c(r, t) and

ca(r, t), most of our results in Chapters 4 and 5 will report adsorbed quantities expressed as

surface concentrations Γ(r, t). Considering that Γ(r, t) = ca(r, t)∆x where ∆x is the lattice spac-

ing used in the Lattice Boltzmann calculations, the two quantities are strictly equivalent. In
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particular, when expressed in Lattice Boltzmann units ∆x = 1, the surface and bulk concentra-

tions in adsorbed tracers follow the same evolution Γ(r, t) ∼ ca(r, t) (for the sake of clarity, in

what follows, the different evolution equations are reported using bulk concentrations c(r, t)

and ca(r, t)).

1.2. Algorithm and flow chart

Fig. 27 shows a flow chart presenting the algorithm corresponding to our extended Lattice Boltz-

mann approach. Once the pore geometry has been defined, the Stokes flow of the carrying fluid

is calculated using an independent Lattice Boltzmann calculation. The presentation of this first

step will be skipped here as it corresponds to conventional Lattice Boltzmann simulations for

Stokes flow that have been discussed in Chapter 2. Once the Stokes field has been determined,

the tracer molecules are injected at a time t = 0 according to a well-defined time and space dis-

tribution as shown in Fig. 26(c). For a given Stokes flow, starting from such initial conditions,

the dispersion and adsorption kinetics of the free and adsorbed tracer molecules are computed

by incrementing the time t in a discretized manner t→ t +∆t. Each time increment ∆t involves

three intermediate steps corresponding to molecule redistribution – including free and adsorbed

tracers – due to collision, adsorption, and propagation. On the one hand, the collision and prop-

agation steps, which are identical to those used in conventional Lattice Boltzmann calculations,

only apply to the free tracer distribution c(r, t). On the other hand, the adsorption step applies

to both the free and adsorbed tracer molecules as it corresponds to a kinetic equation that re-

distributes molecules between c(r, t) and ca(r, t). In practice, as described hereafter for each

step, these different intermediate steps apply to the free molecule sub-distribution gq(r, t) which

corresponds to the density of free tracer molecules having a velocity along the direction q at a

position r and time t (vq). To avoid any ambiguity, such distributions are denoted using the

letter g as the letter f was already used in Chapter 2 to denote the molecule distribution of the

carrying fluid.

Let us introduce the different free tracer molecule distributions g̃q(r, t), ˜̃gq(r, t), and gq(r, t +1)

obtained after the the collision, adsorption, and propagation steps, respectively. Because these
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different functions are normalized, the concentrations in free tracer molecules after the colli-

sion, adsorption, and propagation steps are readily obtained as c̃(r, t) = ∑q g̃q(r, t), ˜̃c(r, t) =

∑q ˜̃gq(r, t), and c(r, t + 1) = ∑q gq(r, t + 1). For reasons that will become clearer when in-

troducing the different intermediate steps below, we do not need to introduce the molecule

distributions for the adsorbed tracer molecules (for these molecules, we only consider the total

concentration ca which is directly linked to c because of overall density conservation). More-

over, while the q-components gq(r, t) of the distribution g(r, t) are redistributed during the

collision/propagation steps (as physically expected), their fraction x̃q(r, t) = g̃q(r, t)/c̃(r, t) =

g̃q(r, t)/∑q g̃q(r, t) remain unaffected during the adsorption step (x̃q(r, t) = ˜̃xq(r, t)). This ap-

proximation consists of assuming that the velocity distribution among the different velocity

components q are not changed during the adsorption step despite the change in the total number

of free tracers within the time step ∆t, i.e. ∆c(r, t) =−∆ca(r, t) (where the symbol ∆ indicates

that the difference is taken between the collision step ˜ and the adsorption step ˜̃ ). This ap-

proximation can be also introduced by invoking that, regardless of their velocity, all molecules

get adsorbed with the same adsorption rate. Reciprocally, this also implies that all desorbing

molecules are reintroduced in the free tracer population according to a velocity distribution that

verifies the current q-component distribution.

•Collision. At a given time step t, the components gq(r, t) at each site r are redistributed among

the site populations to mimic molecule collisions:

g̃q(r, t) = Ω[g(r, t)]q (IV .1)

where g(r, t) denotes the set of q-components gq(r, t) and Ω[g(r, t)]q the collision operator

which transfers momentum between the different q-components. The same equation/operator

is used in the Lattice Boltzmann calculations for advection/diffusion phenomena without ad-

sorption. For the sake of brevity, further details will not be provided here as they can be found

in Chapter 2 where we introduced such conventional calculations. At the end of this collision

step, the local free tracer molecule concentration is readily obtained as c̃(r, t) = ∑q g̃q(r, t).

• Adsorption. The treatment used for the adsorption step depends on the exact adsorption
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mechanism and underlying kinetics considered. The different regimes considered in this thesis

– Henry, Langmuir, and cooperative adsorption – will be described specifically in the following

section. Here, for the sake of clarity, we consider the Henry adsorption isotherm as a simple yet

representative example to introduce the key ingredients used in the adsorption step (the use of

this simple formalism remains general enough to be extended later to other regimes). The ad-

sorption step simply follows the first order kinetic equation which leads to the Henry adsorption

isotherm. Starting from the free and adsorbed tracer molecule concentrations obtained after the

collision step – c̃(r, t) and c̃a(r, t) – the adsorption kinetics can be written as:

˜̃ca(r, t) = pAc̃(r, t)+ [1− pD]c̃a(r, t)

˜̃c(r, t) = c̃(r, t)− pAc̃(r, t)+ pDc̃a(r, t)

(IV .2)

(IV .3)

where pA and pD are the adsorption and desorption rates in Lattice Boltzmann units. Physical

values for pA and pD can be obtained from the comparison with the physical kinetic equation,

i.e. ∂Γ(r, t)/∂ t = kAc(r, t)− kDΓ(r, t) (with the surface concentration readily obtained from

the adsorbed tracer concentration, i.e. Γ(r, t) = ca(r, t)∆x). Considering that kA is in m.s−1 and

kD in s−1, such a comparison shows that pA = kA∆t/∆x and pD = kD∆t. As mentioned earlier,

the distribution ratio ˜̃xq between the different q-components is assumed to be unaffected during

the adsorption step. Using the concentration definition, i.e. ˜̃c(r, t) = ∑q ˜̃gq(r, t), we choose

to redistribute the variation (∆c(r, t) = ˜̃c(r, t)− c̃(r, t)) between the different ˜̃gq components in

a homogeneous and proportional manner, which implies ˜̃gq(r, t) = g̃q(r, t)− x̃q(r, t)( ˜̃c(r, t)−

c̃(r, t)). The latter gives that the molecule distributions ˜̃gq(r, t) after the adsorption step obey

the following evolution equations:

˜̃gq(r, t) = g̃q(r, t)− x̃q(r, t)
[

pAc̃(r, t)− pDc̃a(r, t)
]

(IV .4)

where x̃q(r, t) = g̃q(r, t)/c̃(r, t) is the fraction of molecules having a velocity vq at time t and

position r.

• Propagation. At a given time step t, after the collision/adsorption intermediate steps de-

scribed above, the distribution components gq(r, t) at each site r are redistributed among the

neighboring sites. The change induced by this propagation intermediate step in the free tracer
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distribution between t and t +∆t can be expressed as:

gq(r+vq∆t, t +∆t) = ˜̃gq(r, t) (IV .5)

This simple propagation scheme consists of displacing the molecule distribution gq(r, t) using

the velocity set {vq}. More in detail, the molecules still located at node r at time t after the

collision and the adsorption steps are transferred to node r+ vq∆t at the end of each iteration.

For more details, the reader is referred to the description of the propagation intermediate step in

Chapter 2.

1.3. Adsorption mechanisms and kinetics

Adsorption kinetics is known to significantly impact the transport of molecules in porous me-

dia. Here, in an attempt to shed light on the interplay of adsorption and transport of tracer

molecules, we employ the Lattice Boltzmann approach introduced above to consider different

adsorption models. More in detail, we consider the Henry regime, the Langmuir regime and

the cooperative model which was developed in the frame of this thesis (Chapter 3). While the

Henry adsorption isotherm is effective in the low concentration range, the Langmuir adsorption

isotherm accounts for site saturation as the surface concentration of adsorbed tracer molecules

increases. The cooperative model, introduced in Chapter 3, allows accounting for adsorbate

molecule interactions as well as for possible cooperative effects on adsorption thermodynamics

and kinetics. In what follows, considering that the Henry regime was addressed in the previous

section, we only treat the Langmuir and cooperative models (moreover, we recall that the Henry

regime is the asymptotic limit of the Langmuir model in the low concentration range).

Surface saturation. The Langmuir adsorption model is a simple non-linear equation which

accounts for surface saturation upon adsorption; the adsorbed tracer molecule concentration

ca(r, t) cannot exceed the value c∞
a . Adsorption increases rapidly with concentration in the

low concentration range and then reaches a plateau asymptotically as the surface sites become

saturated with already adsorbed molecules. Implementing the Langmuir model in our Lattice

Boltzmann approach simply requires to modify Eqs. (IV .2) and (IV .3) to account for surface
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saturation:

˜̃ca(r, t) =pAc̃(r, t)
[

1− c̃a(r, t)
c∞

a

]
+(1− pD)c̃a(r, t)

˜̃c(r, t) =c̃(r, t)− pAc̃(r, t)
[

1− c̃a(r, t)
c∞

a

]
+ pDc̃a(r, t)

(IV .6)

(IV .7)

where c(r, t) and ca(r, t) denote the free and adsorbed tracer concentrations. The symbols

˜ and ˜̃ indicate quantities obtained after the intermediate collision and adsorption steps, re-

spectively. Like for the Henry regime, the adsorption parameters pA, pD and c∞
a can be de-

rived by formally writing the analogy with the Langmuir adsorption kinetics ∂Γ(r, t)/∂ t =

[1−Γ(r, t)/Γ∞]kAc(r, t)− kDΓ(r, t) (where the maximum surface concentration is defined as

Γ∞ = c∞
a × ∆x). This leads to the same definition for pA and pD as with the Henry model:

pA = kA×∆t/∆x and pD = kD×∆t. Moreover, due to mass balance condition, the free tracer

distribution q-components ˜̃gq(r, t) after the adsorption intermediate step are defined by modify-

ing Eq. (IV .4) as follows:

˜̃gq(r, t) =g̃q(r, t)− x̃q(r, t)
(

pAc̃(r, t)
[

1− c̃a(r, t)
c∞

a

]
− pDc̃a(r, t)

)
(IV .8)

Cooperative adsorption. To implement our cooperative adsorption model into the Lattice

Boltzmann approach introduced above, we distinguish two adsorbed concentrations: the con-

centration of adsorbed isolated monomers ca,m(r, t) and the concentration of adsorbed aggre-

gated monomers ca,m′(r, t). As introduced in Chapter 3, only isolated monomers get adsorbed

below the surface concentration cs. On the other hand, above cs, both isolated and aggre-

gated monomers get adsorbed at the solid surface. The total surface concentration of adsorbed

monomers is simply the sum of the two concentrations: ca(r, t) = ca,m(r, t)+ ca,m′(r, t). For

c < cs, the situation is simple as only isolated monomers get adsorbed so that the interplay of

adsorption kinetics and molecule transport can be described using the Lattice Boltzmann ap-

proach above (using either the Henry or Langmuir regime depending on the type of adsorption

isotherm observed). In contrast, for c(r, t) ≥ cs, both the adsorption of individual and aggre-

gated monomers must be considered.
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As in Chapter 3, with the aim to keep things as simple as possible, we assume that the ad-

sorption of isolated monomers is an instantaneous process: ca,m(r, t) = ca,m(r,∞) ∀t. Within

this approximation, we use the normalized adsorption kinetics given by (See Chapter 3, for the

original expression): ∂Γm′(r, t)/∂ t = [1− (βΓm′(r, t)+Γm(r,∞))/Γ∞]k′Ac(r, t)− k′DΓm′(r, t)

where the adsorption and desorption rates k′A and k′D depend on the adsorbed amount Γm′(r, t) =

ca,m′(r, t)∆x. As for the parameter β , we recall that it denotes the packing fraction of the ag-

gregated monomers within the adsorbing sites. In practice, assuming β = 1 and constant ad-

sorption/desorption rates k′A and k′D allows recovering the Langmuir adsorption model. This

cooperative model can be implemented in our Lattice Boltzmann approach by modifying the

kinetic evolution described in Eqs. (IV .2) and (IV .3) as follows:

˜̃ca,m′(r, t) = p′Ac̃(r, t)
[

1−
β c̃a,m′(r, t)+ ca,m(r,∞)

c∞
a

]
+(1− p′D)c̃a,m′(r, t)

˜̃c(r, t) = c̃(r, t)− p′Ac̃(r, t)
[

1−
β c̃a,m′(r, t)+ ca,m(r,∞)

c∞
a

]
+ p′Dc̃a,m′(r, t)

(IV .9)

(IV .10)

where c∞
a = Γ∞∆x, p′A = k′A∆t/∆x and p′D = k′D×∆t. Finally, at the end of the adsorption inter-

mediate step, the total adsorbed amount is simply obtained as ˜̃ca(r, t) = ca,m(r,∞)+ ˜̃ca,m′(r, t)

with the underlying tracer sub-distributions given by:

˜̃gq(r, t) = g̃q(r, t)− x̃q(r, t)
(

p′Ac̃(r, t)
[

1−
β c̃a,m′(r, t)+ ca,m(r,∞)

c∞
a

]
− p′Dc̃a,m′(r, t)

)
(IV .11)

B. Adsorption kinetics under no flow conditions

In this section, we present the results from our Lattice Boltzmann approach for different adsorp-

tion models (Henry, Langmuir, and cooperative model). We consider here static conditions, i.e.

under no flow condition, as we first aim at validating the correct adsorption kinetics implemen-

tation for each model. More in detail, we use the Lattice Boltzmann approach as introduced

above to check that it correctly generates the different adsorption isotherms Γ(c,∞) as well as

the underlying adsorption kinetics Γ(c, t). In practice, for such simulations performed in the

absence of any liquid flow, each fluid node is filled at a time t = 0 with a concentration c0 (i.e.
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c(r, t = 0) = c0; ∀r). The evolution of the surface concentration Γ as a function time t is then

monitored together with the asymptotic value of Γ(c,∞) at infinite time as a function of the

remaining free tracer concentration c. At first, the influence of the initial concentration c0 on

the adsorption behavior is considered. The numerical adsorption kinetics is then compared with

the analytical solution of the kinetics equation. Adsorption is only considered at an adsorbing

site located far from the pore entrance/exit to avoid numerical instabilities. Typically, for the

slit pore considered here having a length Lx = 1000∆x (site number parallel to the pore wall),

the adsorbed amount in the slice located at x = 200 is monitored.

1. Henry adsorption

As mentioned earlier, the Henry regime accurately describes adsorption in the low concentra-

tion range. This model simply predicts a linear relationship between the adsorbed amount Γ and

the concentration of free tracer c as shown in Fig. 28. In this figure, we present the numerical

results obtained for an Henry adsorption isotherm with pA = 0.0005 and pD = 0.05 (kH = 0.01).

Starting from different initial concentrations c0, our Lattice Boltzmann approach converges to-

wards a final solution that perfectly matches the theoretical prediction corresponding to the solid

black line. For each initial concentration c0, the dashed line indicates the time evolution of the

adsorbed amount which eventually reaches the equilibrium value. Such time evolution indicates

that the adsorption kinetics follows nearly a vertical line (i.e. at constant bulk concentration c)

even if a small inflection towards the adsorption isotherm is observed when reaching equilib-

rium. This result can be explained by the fact that the adsorption/desorption ratio kH = 0.01

chosen here is very low; therefore, the bulk concentration in such static simulations - does not

change much since the adsorbed concentration corresponds to a very small contribution of the

overall bulk concentration, ca ∼ kHc. Yet, close inspection of the time evolution of the bulk

concentration c (i.e. open circles) reveals an interesting behavior. Starting from the initial con-

centration c0 at t = 0, the bulk concentration c slightly decreases in the first time steps due to

rapid adsorption in the adsorbing sites. However, after a number of iterations (i.e. timesteps),

the bulk concentration c increases as chemical adsorption/desorption equilibrium is reached

(where, as expected, the final bulk concentration is only slightly smaller than the initial value



104 Chapter IV : Lattice Boltzmann-based method for adsorption

20 40 60 80 100
c

0.0

0.2

0.4

0.6

0.8

1.0

Γ

 c
0
 = 10

 c
0
 = 20

 c
0
 = 40

 c
0
 = 60

 c
0
 = 80

0 20 40 60
t

39.6

39.8

40.0

c

t

t

t

t
t

Figure 28: Henry adsorption isotherm Γ(c) for kH = pA/pD = 0.01 with pA = 0.0005 and
pD = 0.05. The adsorbed amount corresponds to the surface concentration Γ given as a function
of the bulk concentration c. The black solid line is the theoretical prediction Γ = kHc while the
open circles are the results from the Lattice Boltzmann calculations. Each color corresponds
to a given initial concentration c0 as indicated in the graph. For each color, the dashed line
presents the time evolution of the adsorbed amount Γ(t).

c0 due to the large reservoir size in the considered pore geometry). Overall, the results above

indicate that the Henry adsorption isotherm as implemented in our LBM-adsorption scheme

allows reproducing the thermodynamic equilibrium described using this canonical model.

Let us now consider more specifically the adsorption kinetics as predicted using the Lattice

Boltzmann approach including adsorption/desorption. Again, we consider the case where ad-

sorption corresponds to a Henry adsorption isotherm with kH = 0.01 (pA = 0.0005, pD = 0.05).

Also, as a benchmark case, we still consider the simple situation where the solvent is at rest

(i.e. no flow condition). Fig. 29 compares the adsorption kinetics obtained using the Lattice

Boltzmann calculations with the known analytical solution corresponding to Eq. (IV .12) (the

initial concentration is c0 = 10). More in detail, theoretically, the adsorption kinetics for such

Henry regime – which corresponds to the dashed line in Fig. 29 – is given by:

Γ(t) = (1− e−PDt)kHc0 (IV .12)

As shown in Fig. 29, the Lattice Boltzmann approach including adsorption describes within
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numerical errors the theoretical prediction for such a simple adsorption regime. This result fur-

ther validates our model by showing that it provides an accurate and reliable description of the

Henry adsorption kinetics.
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Figure 29: Comparison between the adsorption kinetics Γ(t) predicted using Lattice Boltzmann
simulations and the analytical expression for the Henry adsorption regime. These data are
obtained for an adsorption isotherm corresponding to the Henry regime with kH = 0.01 (pA =
0.0005 and pD = 0.05). The initial concentration is c0 = 10. The open symbols correspond to
the numerical solution using the Lattice Boltzmann model while the dashed line indicates the
analytical expression for Henry kinetics as described in Eq. (IV .12).

2. Langmuir adsorption

In the previous section, we demonstrated the ability of our Lattice Boltzmann/adsorption method

to accurately describe the thermodynamics and kinetics of the Henry adsorption regime. We

now turn to a more complicated regime which corresponds to the Langmuir adsorption model.

By accounting for surface saturation occurring upon adsorption, the Langmuir model is suitable

to describe isothermal adsorption over a broader concentration range. In particular, despite its

very simple underlying formalism, this model is known to capture experimental data for a very

large set of adsorbate/adsorbent couples.
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To validate our Lattice Boltzmann approach when combined with a Langmuir adsorption

isotherm, we first check its ability to generate the associated Langmuir adsorption isotherm:

Γ = Γ∞kLc/[1+ kLc]. Fig.30 shows the adsorbed amount Γ as a function of the bulk concentra-

tion c as predicted using our Lattice Boltzmann calculations (such data are obtained for a maxi-

mum surface concentration Γ∞ = 1 and adsorption/desorption rates pA = 0.005 and pD = 0.05).

For different different initial concentration, the Lattice Boltzmann calculations reach an equi-
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Figure 30: Langmuir adsorption isotherm Γ(c) for kL = pA/pD = 0.01 with pA = 0.0005 and
pD = 0.05 (the maximum surface concentration is Γ∞ = 1). The adsorbed amount is expressed
as the surface concentration Γ(c) as a function of the bulk concentration c. The black solid line
denotes the theoretical Langmuir isotherm with Γ = Γ∞kLc/[1+ kLc] while the open circles are
the results from the Lattice Boltzmann calculations. Each color corresponds to a given initial
concentration c0 as indicated in the graph. For each color, the dashed line presents the time
evolution of the adsorbed amount Γ(t).

librium value which corresponds exactly to the analytical solution (displayed as the black solid

line in the figure). Moreover, for each initial concentration c0, the corresponding colored dashed

lines shows the time evolution. While this time evolution suggests a nearly vertical variation

(i.e. at constant bulk concentration), a more careful analysis reveals that the bulk concentra-

tion does evolve as adsorption occurs. Such a small change in the bulk concentration is due

to the small Langmuir adsorption rate considered here which leads to small adsorbed amounts

(and hence small changes in the bulk concentration). More in detail, as with the Henry regime

considered above, the bulk concentration first decreases in the very short time range due to
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very rapid adsorption. Then, after a few timesteps, the overall concentration in the reservoir in-

creases as adsorption/desorption equilibrium is attained (with a final bulk concentration slightly

smaller than the initial bulk concentration c0 due to adsorption). Overall, the data shown in

Fig.30 establishes the ability of our Lattice Boltzmann model for adsorption to mimic Lang-

muir adsorption in porous media.

In a second step, we also investigated the Langmuir adsorption kinetics as obtained from the

equations implemented in the lattice Boltzmann method. Under no flow conditions, we studied

the Langmuir adsorption kinetics for the same adsorption system as in the previous paragraph

– i.e. with kL = 0.01 corresponding to pA = 0.0005 and pD = 0.05 and with Γ∞ = 1. Fig. 31

compares the predictions from the Langmuir kinetic equation given in Eq. (IV .13) and the

results obtained using our Lattice Boltzmann calculations (all these data were obtained for an

initial concentration c0 = 100). As a reminder, we recall that the Langmuir kinetic equations

10
-1

10
0

10
1

10
2

t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Γ(
t)

Figure 31: Comparison between the adsorption kinetics predicted using the lattice Boltzmann
simulations and the analytical expression for the Langmuir adsorption isotherm. For such sim-
ulations under no flow conditions, the initial concentration is set to c0 = 100 and the Langmuir
adsorption isotherm is defined using the following constants: kL = 0.01 with pA = 0.0005,
pD = 0.05 (the maximum surface concentration is Γ∞ = 1). The dashed line indicates the ana-
lytical solution for the Langmuir kinetics as given in Eq. (IV .13). The open symbols correspond
to the numerical solution using the lattice Boltzmann model including adsorption.
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writes:

Γ(t) =
(

1− e−pDt(1+kLc0))
)

Γ∞kLc0

1+ kLc0
(IV .13)

As illustrated in Fig. 31, the simulation data perfectly match the theoretical prediction. This

result demonstrates the ability of our Lattice Boltzmann approach to capture/describe the ther-

modynamics and kinetics of Langmuir adsorption in porous media.

3. Cooperative Langmuir adsorption

To validate the efficiency and robustness of the implemented lattice Boltzmann approach when

combined with the cooperative model introduced in Chapter 3, we first introduce the data set

against which our analysis will rely. We refer to the data reported in Chapter 3 for the adsorp-

tion of the TX100 surfactants in porous silica. To make our validation as complete as possible,

the following packing fractions β will be considered: β = 0.2, 0.5, and 1.

We proceed by first testing the ability of our Lattice Boltzmann approach to generate the

adsorption isotherms obtained using the cooperative adsorption model. As with the Henry and

Langmuir regimes above, this test is performed for a system taken under no flow conditions.

The specificity of the cooperative adsorption model lies in its ability to describe collective ef-

fects induced by lateral surface interactions and surface aggregation. As already discussed, in

our model, such cooperative effects only manifest themselves for bulk concentrations above

the so-called critical surface concentration cs (below this value, our model simply assumes that

isolated monomer adsorption follows a Henry or Langmuir adsorption isotherm). As a first val-

idation test, we aim at verifying the ability of the Lattice Boltzmann approach for adsorption to

accurately predict the total adsorbed amount Γ(c) = Γm(c)+Γ′m(c) in equilibrium with a bulk

concentration c. Fig. 32 shows the adsorbed amount Γ(c) as a function of the bulk concentra-

tion c. Both the results obtained using our Lattice Boltzmann approach and the predictions of

our thermodynamic model are shown. In this figure, the colored dashed lines indicate the time

evolution of the adsorbed amount Γ(c, t). For different initial concentrations varying between

c0 = 50 to c0 = 700, the results of the Lattice Boltzmann calculations are in perfect agreement

with the theoretical predictions. As discussed above for the Henry and Langmuir regimes, the

time evolution seems to follow a nearly vertical line – i.e. at constant bulk concentration – due
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to the very large reservoir size with respect to the number of adsorbing sites. Indeed, typically,

with the cooperative model, using the data shown in Fig. 22 in Chapter 3, the adsorption constant

k′ < 0.02 so that the the overall adsorbed amount represents a very small fraction of the total

bulk concentration. The blue, red and green colors in Fig. 32 correspond to different aggregation

numbers/packing fractions β . The influence of this important parameter was tested for the same

initial concentration. More in detail, two examples were considered: c0 = 100 and c0 = 200

which are respectively below and above the critical surface concentration cs ∼ 115. The results

in Fig. 32 show that, regardless of the aggregation number considered, the Lattice Boltzmann

model accurately predicts the adsorbed amount derived using the cooperative adsorption model.
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Figure 32: Cooperative adsorption model for the adsorption of TX100 onto silica (see details
in Chapter3). The adsorbed amount is expressed as the surface concentration Γ as a function
of the bulk concentration c. The black solid line denotes the theoretical adsorption isotherm as
predicted using the cooperative model while the open circles correspond to the results obtained
using the Lattice Boltzmann calculations. The colors denote the results of the cooperative model
with different aggregation constant β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green). The
black circles denote the experimental data. Each dotted line indicates the time evolution of the
adsorbed amount Γ(t) for a specific aggregation constant β and an initial concentration c0. cs
is the surface aggregation concentration while CMC is the critical micelle concentration.

To study the kinetics of the cooperative model using the Lattice Boltzmann model, we follow

the time evolution of the amount of adsorbed aggregated monomers Γm′ (in fact, this is the
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only relevant choice that can be made since the adsorption kinetics for individual adsorbed

monomers is assumed to be instantaneous in the cooperative adsorption model). Using the

same data set discussed in the previous paragraph, an initial concentration c0 larger than the

critical surface concentration cs is considered (typically, c0 = 250). As discussed in Chapter 3,

the cooperative adsorption model is a simple – versatile and adjustable – model since various

adsorption kinetics can be described depending on the value used for p′A and p′D (and hence

k′). In the frame of this cooperative adsorption model, we validate in what follows the kinetics

described by the Lattice Boltzmann approach by selecting the two following situations – as in

Chapter 3: (1) a constant adsorption rate p′A ∼ ν1 [Fig. 33(a)] and a constant desorption rate

p′D ∼ ν0 [Fig. 33(b)]. The dashed lines in Fig. 33 present the analytical kinetics as predicted

using the cooperative adsorption model while the solid lines correspond to the data obtained

using the Lattice Boltzmann calculations. Such a comparison indicates that the results from the

analytical kinetic equation are correctly reproduced by the Lattice Boltzmann model.
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Figure 33: Comparison between the adsorption kinetics predicted using the lattice Boltzmann
simulations and the analytical expression of the cooperative adsorption model for TX100 on
silica for an initial concentration c0 = 250. The dashed lines denote the adsorption kinetics
as determined by solving numerically Eq. (III .3). More in detail, these data show Γm′ as a
function of time t. The open symbols correspond to the numerical results obtained using the
lattice Boltzmann model. For each dataset, the colors denote the results from the cooperative
model with different aggregation constants: β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green).
Panel (a) corresponds to data with p′A ∼ ν1 and p′D ∼ ν1/k′ while panel (b) corresponds to data
with p′A ∼ ν0k′ and p′D ∼ ν0.
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C. Adsorption kinetics under flow conditions

As introduced in the first section of this Chapter, our Lattice Boltzmann approach enables us to

study the transport of adsorbing molecules under dynamical conditions. More in detail, in the

presence of a flowing liquid characterized by a given Stokes flow, the LBM-TRT simulations

using the adsorption scheme above allows investigating the adsorption kinetics under flow con-

ditions. The interplay between molecule adsorption and their advective/diffusive transport can

be described analytically using the classical advection-diffusion-adsorption equation which we

copy here again for the sake of clarity (see Chapter 1 for details):

∂c(r, t)
∂ t

+UUU ·∇c(r, t)−∇ · [Dm∇c(r, t)]+
∂ca(r, t)

∂ t
= 0 (IV .14)

where c(r, t) and ca(r, t) are the free and adsorbed tracer concentrations, respectively. UUU is the

Stokes flow velocity while Dm is the molecular self-diffusion coefficient of the free tracers.

In what follows, the latter equation will be used under simple, specific adsorption conditions –

namely, Henry regime – to validate the ability of our Lattice Boltzmann approach for adsorption

to describe adsorption under flow conditions. As in the rest of this Chapter, a simple slit pore

geometry is used with a length Lx = 10000∆x and a width Ly = 41∆x. Moreover, the Lattice

Boltzmann simulations are also performed by monitoring the evolution of the free and adsorbed

tracer concentrations after injecting a pulse. More in detail, within the flowing fluid, we inject

for a given time ∆t0 = ∆t an initial concentration c0 in all sites located at an arbitrary lateral po-

sition x0 (i.e. c(r0, t) = c0; ∀r0 = (x0,y)). After such injection, we monitor the dispersion of this

concentration pulse in the pore geometry while imposing adsorbing conditions corresponding

to the Henry regime. Such a simple adsorption model was chosen as it will provide reference

data when studying more complex adsorption kinetics.

1. Dispersion coefficient of adsorbing molecules

Adding adsorbing surface conditions to the problem of tracer dispersion in a flowing fluid dras-

tically affects the Taylor dispersion regime. In particular, the resulting – effective – dispersion

coefficient is influenced by the adsorption kinetics. Several studies have reported observations
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on the dispersive regime in the transport of adsorbing tracer molecules [110, 113, 115, 117].

Some of these works provide details on the impact of adsorption in a slit pore geometry on the

Taylor regime [117]. However, these studies did not consider the transient phase where adsorp-

tion kinetics is coupled with (advective) transport effects before reaching the dispersive limit.

In a first step, the validity of our Lattice Boltzmann approach for adsorption will be verified

for an analytically known situation. More precisely, in what follows, we consider the dispersion

of tracer molecules in a slit pore geometry where adsorption proceeds through a simple Henry

model. Formally, this problem was addressed in detail using a statistical physics approach by

Levesque et al. [65]. Using a stochastic treatment, these authors were able to derive an analytical

expression for the effective dispersion coefficient for such an ideal yet complex problem. More

in detail, in the long time limit, for a Henry adsorption isotherm with adsorption/desorption

constants pA, pD (corresponding to a Henry constant kH = pA/pD), the effective dispersion

coefficient is given by:

Dads
e f f

Dm
= 1+

1
Dm

(
1

210
L2

yU2

Dm

102LykH
2 +18L2

ykH +L3
y

(Ly +
2pA
pD

)3
+

U2

pD

2L2
ykH

(Ly +2kH)3

)
(IV .15)

where Dm is the molecular diffusion coefficient, Ly the characteristic channel, and U the flow

velocity. We recall that this equation was outlined in Chapter 1 with all details given in Ap-

pendix A.

Fig. 34 compares the results from our Lattice Boltzmann approach with the theoretical

predictions obtained using Eq.(IV .15). The data are compared for different Peclet numbers

Pe =ULy/Dm but also for various Henry constants kH . While the solid lines correspond to the

predictions using the analytical expression by Levesque et al., the symbols denote our simu-

lation results. As can be seen in Fig. 34, the Lattice Boltzmann simulations yield numerical

predictions that are in very good agreement with the analytical solution for the effective disper-

sion coefficient Dads
e f f /Dm. More in detail, while the agreement is excellent for all Pe numbers

when kH is small, we notice a small departure between the two data sets at high Pe numbers

when kH is large (with the Lattice Boltzmann calculations slightly underestimating the effective

dispersion coefficient). This difference can be assigned to different effects. First, Levesque et
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Figure 34: Normalized dispersion coefficient for adsorbing molecules carried in a slit pore
geometry by a liquid flow (obeying a simple Poiseuille flow). The data are presented as a
function of the Peclet number which characterizes the diffusion/advection rate. Adsorption is
described using a simple Henry law with different Henry constants kH . The symbols correspond
to the results from the Lattice Boltzmann calculations using the adsorption scheme proposed in
this thesis. The data show Dads

e f f /Dm = D(t→∞)/Dm with D(t) corresponds to the derivative of
the displacement variance with respect to time. The lines correspond to the analytical expression
for Dads

e f f /Dm as derived by Levesque et al. (see Eq (IV .15) in the text). Different kH are
considered but, in all cases, a fixed desorption rate pD = 0.01 is used. The red, black, green and
blue symbols denote data obtained for kH = 0.1, 1, 5 and 10, respectively.

al. considered a different situation as these authors account only for a system in the asymp-

totic dispersive regime (i.e. no transient regime is given as only the stationary regime is taken

into account). Second, we note that the Lattice Boltzmann approach used here is also prone

to numerical errors. To investigate such possible numerical errors, the influence of the mesh

resolution used in the Lattice Boltzmann calculations on the accuracy of the predictions was

checked. In particular, the same simulation was conducted with different node numbers to de-

scribe the slit pore width Ly – typically, different node numbers from 9 to 151 was considered.

Fig. 35 shows the difference obtained between the dispersion coefficient obtained by means of

Lattice Boltzmann calculations and the analytical expression given in Eq. (IV .15) (Pe = 100

and kH = 1 were used). This comparison shows that the difference decreases with increasing

the node number. In all cases, such differences remain within a few % at most. Typically, the

difference is less that 1% provided the node number > 20.
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Figure 35: Difference in % between the analytical expression and the simulation results for the
dispersion coefficient as a function of the node number. These results are for tracer molecules
that adsorb according to a simple Henry model while being dispersed in a flowing liquid. The
flow and adsorption characteristics are such that Pe = 100 and kH = 1 (pA = pD = 0.05).

2. Transport in adsorption/desorption conditions

As mentioned in the previous section, available studies accounting for surface adsorption in the

presence of a flowing fluid considered the dispersive limit – especially the influence of such

adsorption conditions on the resulting Taylor dispersion coefficient. Here, we intend to use the

Lattice Boltzmann scheme proposed in this thesis to investigate the interplay between the ad-

sorption kinetics and the advective/dispersive transport. While such a study will be presented

in depth in Chapter 5, we wish to conclude this section by illustrating how the interplay be-

tween adsorption and transport can be investigated using our approach. As shown in Fig. 36,

the transient regime where adsorption kinetics and advective/diffusive transport are coupled

can be investigated by probing the variance of the tracer molecules displacement as a func-

tion of time after injection at a given time t = 0 and location x = x0. While the adsorption

kinetics is found to drastically affect the dispersion coefficients at every timestep, the typical

evolution shown in Fig. 36 remains identical to the non-adsorbing situation. The different tran-

sition regimes between molecular diffusion, advection dominated flow, and dispersion are still



116 Chapter IV : Lattice Boltzmann-based method for adsorption

𝜎2 

𝑈 × 𝑡 

𝑢max   

𝑡 = 0 

10
2

10
3

10
4

10
5

10
6

t

0

5

10

15

20

25

30

D
(t

)/
D

m

Figure 36: Temporal evolution of the time derivative of the displacement variance D(t) for
adsorbing molecules in a slit pore geometry. D(t) is normalized to the molecular diffusion
coefficient Dm of the free tracer molecules. The molecules adsorb according to a simple Henry
adsorption isotherm with kH = 5 (pA = 0.05 and pD = 0.01) while being carried by a flowing
liquid described through its Stokes flow. The system is characterized by its Peclet number Pe =
100 and an initial concentration c0 = 20. The different transport regimes – molecular diffusion,
advection-dominated transport and dispersion – are observed in the short, intermediate, and
long time ranges, respectively.

observed. In the short time range, a first plateau is observed as the molecules get dispersed

through molecular diffusion. In the intermediate time range, a transitory regime is observed

as the dispersion coefficient rapidly increases with time. This transient regime corresponds

to the so-called advection-dominated flow where the flowing liquid involves a heterogeneous

– i.e. position dependent – velocity distribution which increases the dispersion of the tracer

molecules. Finally, in the long time range, a second plateau is observed as the system reaches

the Taylor dispersive regime for the adsorbing tracer molecules. The asymptotic value obtained

at infinite time provides the effective dispersion coefficient Dads
e f f /Dm. In the next chapter, we

will study in detail typical data like those shown in Fig. 36 to gain insights into the role played

by adsorption. More in detail, results for non-adsorbing and adsorbing tracers will be compared



Chapter IV : Lattice Boltzmann-based method for adsorption 117

while considering different adsorption regimes as well as adsorption/desorption rates.

Chapter Conclusion

In this chapter, we introduced our approach to extend the LBM-TRT to consider the

adsorption kinetics. We added an intermediate adsorption step between the collision

and propagation step of the LBM-TRT algorithm. The adsorption occurs at each

fluid site adjacent to a solid surface where two populations are considered: the free

tracer and the adsorbed tracer. At each iteration, the adsorption kinetics is applied to

both the concentration of the free tracer c(r, t) and the concentration of the adsorbed

tracer ca(r, t). This approach has the advantage that it allows the use of different

adsorption kinetics: the Henry as the linear adsorption kinetics, the Langmuir kinetics

to consider the surface saturation and the cooperative model introduced in Chapter 3

to account for the cooperative effects due to the lateral interactions and surface

aggregation. At a second step, we validated this algorithm in the slit pore geometry

at static and dynamic conditions. At static condition, we obtained a good accordance

with theoretical representation of the different adsorption models where we were able

to present the adsorption isotherms Γ(c) as well as the adsorption kinetics Γ(t). Under

dynamic conditions, in the presence of flowing liquid, the accuracy of this method

was demonstrated as we obtained dispersion coefficients in accordance with the

analytical definition proposed in the literature; we also measured the influence of the

resolution on the accuracy of this result. This approach allows us to study the effects

of adsorption on the transient phase. Therefore, we have carried out simulations of

Dirac injection to follow the dispersion of molecules where we have illustrated the

different transport regimes involved: diffusion, advection and dispersion.
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In this chapter, using the Lattice Boltzmann approach for adsorption/transport introduced in the

previous chapter, we study the influence of adsorption kinetics on the transport of surfactants at

the presence flowing liquid. We recall that the ability of this novel Lattice Boltzmann scheme to

reproduce the thermodynamics and kinetics of adsorption under no flow conditions was verified

in the previous chapter. This important validation step showed that this numerical strategy is ef-

ficient as it provides dispersion coefficients in very good agreement with theoretical treatments

(only available in a few well-defined situations). To gain insights into the interplay of adsorp-

tion kinetics and transport, we consider in this chapter the influence of different parameters

such as adsorption/desorption constants, adsorption regimes, flow rate, Peclet number, etc. In

addition to different adsorption regimes, we also investigate the effect of the pore morphology

by considering both simple and complex porous geometries.

The remainder of this chapter is organized as follows. In the first section, we study the

transport of adsorbing molecules confined between two parallel plates. As already mentioned

at the end of the previous chapter, adsorption and transport can be studied by monitoring the

time evolution of the free tracer concentration distribution through its displacement variance

σ2
x (t) along the flow direction x. Such a statistical quantity provides a direct measurement of

D(t) = dσ2
x (t)/2dt. We first focus on the difference between the transport of passive tracer

(non-adsorbing molecules) and adsorbing molecules where adsorption obeys a simple Henry

regime. In particular, we investigate the effect of adsorption on the molecule displacement

but also the influence of the adsorption/desorption ratio kH . We also study the contribution

of the adsorbed tracer distribution ca(r, t) and its influence on D(t) as well as on the normal-

ized propagators. In a second step, we study the influence of site saturation by considering

the Langmuir adsorption isotherm as a more refined model to describe adsorption in a broader

condition set. The results obtained for this model are compared with those obtained for the

Henry regime. Finally, we also perform a similar study using the cooperative model which

was derived in Chapter 3 to capture complex collective adsorption effects and surface aggre-

gation observed in surfactant adsorption. In the second section of this chapter, we study the

transport in a realistic porous medium by considering a micromodel used at IFPEN. This model

provides a simple yet representative microstructure of a complex, real medium with disordered
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pore morphology/topology. Comparing data for such a material with those obtained for the par-

allel plates geometry allows considering the impact of confinement/pore disorder on surfactant

adsorption/transport. More in detail, in this second section, we first present the main character-

istics of this micromodel and the Stokes flow obtained for the flowing liquid using conventional

Lattice Boltzmann calculations. We then compare the transport of the non-adsorbing molecules

(reference) and adsorbing molecules using different adsorption and transport conditions.

A. Adsorption thermodynamics and kinetics

1. Henry adsorption

As shown at the end of Chapter 4, when adding adsorbing conditions at the solid/fluid interface,

the same three transport regimes are observed in the dispersion of molecules in a flowing liq-

uid: molecular diffusion, advection-dominated flow, and Taylor-like dispersion. This result was

established by considering a simple adsorption mechanism where the molecules adsorb accord-

ing to a Henry law. Yet, as will be shown below, even with such simple adsorbing conditions,

marked quantitative differences are observed between adsorbing and non-adsorbing molecules.

In what follows, the different input parameters will be varied to study in detail the impact of

adsorbing surfaces and adsorption kinetics on the transport and the distribution of free and ad-

sorbed tracer molecules.

1.1. Influence of adsorption on transport

In this section, we first compare the dispersion of non-adsorbing molecules with the dispersion

of adsorbing molecules in a carrying fluid flowing through the porosity formed by two parallel

plates. Fig. 37 compares the results obtained for these two systems characterized by Peclet

number Pe = 100. The adsorbing conditions are imposed using a Henry model with kH = 1

where pA = pD = 0.001 and an initial concentration c0 = 10. In agreement with our previous

conclusion (see Chapter 4), the results for adsorbing/non-adsorbing molecules display different

transport regimes corresponding to the short, intermediate, and long time regions: diffusion,

advection, and dispersion. Quantitatively, from this comparison, we conclude that the adsorp-
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tion of molecules increases the effective dispersion coefficient measured in the long time limit.

This result can be explained by the increase in the spreading of the free molecules as some

of them get adsorbed and then desorbed due to adsorption. More precisely, upon adsorption

at the liquid/solid interface, a significant number of molecules are held back for a short yet

non-negligible time – the characteristic adsorption residence time – while other molecules are

carried away through the flowing liquid. As a result, on average, the variance of displacement

of the entire set of tracer molecules increases upon adsorption conditions.

To shed more light into the effect of adsorption on the dispersion of adsorbing molecules,

Fig. 38 shows the time evolution of two important transport quantities: the normalized propa-

gator and the concentration distribution of the free tracer molecules. More in detail, Fig. 38(a)

shows the time evolution of the free tracer concentration distribution in the slit pore geometry.

These results are presented using a normalized x-axis (x− x0)/Ut where x0 is the lateral po-

sition for the initial concentration injection at t = 0 and U is the mean velocity of the flowing

fluid. Both the data for non-adsorbing molecules (top figure) and adsorbing molecules (bottom

figure) are shown. In the latter case, adsorption corresponds to a Henry regime with an adsorp-

tion/desorption ratio kH = 1 (pA = pD = 0.001) and an initial concentration c0 = 10 injected

at the lateral position x0 = 200. The comparison between the time evolution for these two sys-

tems reveals that the main difference occurs in the advective regime – i.e. in the intermediate

time range. For the adsorbing molecules, at t3 = 3× 104, the concentration in free molecules

is smaller than its counterpart observed for the non-adsorbing molecules (in the latter case, the

concentration is both larger and more homogeneous). This result is due to adsorption as part

of the free molecules are adsorbed so that they do not contribute to the free tracer concentra-

tion profile (the Lattice Boltzmann approach obeys mass conservation). In the long time limit

– t4 and t7 – the adsorbing and non-adsorbing systems reach the dispersive regime where the

concentration distribution is homogeneous. Close inspection of the data reveals that the disper-

sion of the molecules is more important for the system subjected to adsorption. As a result, in

agreement with the data shown in Fig. 37, the dispersion coefficient D(t→ ∞) is larger for the

adsorbing system than for the non-adsorbing.

Fig. 38(b) compares the normalized propagators P[(x− x0)/Ut, t] for the adsorbing and non-
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Figure 37: (a) Using a slit pore geometry, the displacement of adsorbing molecules within a
carrying fluid is assessed by monitoring the concentration profile at different times. In this
figure, the adsorbing conditions correspond to a Henry regime with the parameters described in
the main text. These molecules are carried along the pore direction by a flowing liquid described
through its Stokes flow (corresponding for this simple pore geometry to a Poiseuille velocity
profile with a maximum velocity Umax). The different colors denote different times tn which
increase from left to right as the carrying fluid is transported along this direction). (b) Temporal
evolution of the time derivative of the displacement variance D(t). D(t) is normalized to the
molecular diffusion coefficient Dm of the free tracer molecules. The dashed line denotes the
non-adsorbing molecules while the solid black line corresponds to the data for molecules that
adsorb according to the Henry adsorption isotherm with kH = 1 (pA = pD = 0.001). The system
is characterized by a Peclet number Pe = 100 and an initial concentration c0 = 10. The vertical
dotted lines denote the different times tn for which the corresponding concentration profile is
shown in the top figure.

adsorbing systems. For t1, the most significant difference between the two data sets is observed

for (x− x0)/Ut = 0. This result is dues to the fact that most molecules are still near the injec-

tion slice x0, and this is where adsorption is the most important. More in detail, for t1, most

molecules initially injected at x0 have remained close to the injection point so that the local

concentration c(r, t) is high. In turn, according to Henry’s law, such a large local concentration

leads to a large adsorbed concentration ca(r, t). At t = t3 (advective regime), the molecules
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are now distributed more homogeneously in the pore space due to advection. As a result, in

sites located far from the injection point x0, the adsorbed tracer concentration ca(r, t) increases

compared to the value obtained at earlier times. According to Henry’s law, such a concentra-

tion increase leads to an increase in the adsorbed concentration so that the effect of adsorption

becomes more pronounced. At t = t1, the system reaches the end of the diffusion-dominated

regime to enter the advection-dominated regime. In this transient regime, the dashed and solid

lines corresponding to the adsorbing and non-adsorbing tracer concentrations nearly overlap.

This result indicates that there is no significant adsorption effect in the short time interval corre-

sponding to the transition zone. However, at large times, at t = t3, as molecules travel over long

distances and explore the whole porosity/interface, a larger number of molecules get affected

by adsorption so that more pronounced differences are observed between adsorbing and non-

adsorbing conditions. At even larger times – i.e. t4 – transport becomes dispersive since both

the non-adsorbing and adsorbing tracer molecules get displaced according to propagators with

a shape different but close to Gaussian. For t = t7, the shape of the propagators for both sys-

tems is perfectly Gaussian as expected for molecules in the dispersion regime. As an important

consistency check, we also notice that the position of the peak center in the Gaussian profile for

the passive i.e. non-adsorbing tracer is located at (x− x0)/Ut = 1. While this corresponds to

an expected result for Taylor dispersion, the peak center for the adsorbing particles is located

at a position < 1 using such units. This result confirms that adsorption decreases the particle

displacement velocity of the free molecules.
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Figure 38: (a) Concentration profile observed at different times tn along the advective and dis-
persive regimes. The top data are for non-adsorbing tracer molecules dispersion while the
bottom data are for adsorbing tracer molecules (adsorption corresponds to a Henry regime with
kH = 1 as described in the main text). The abscissas are plotted in units of (x−x0)/Ut where x0
is the lateral injection position and U the mean velocity. These results are obtained for systems
characterized by Peclet number Pe= 100 with an initial tracer concentration per site c0 = 10. (b)
Normalized propagator P((x−x0)/Ut, t) observed at different times tn – similar to those shown
in panel (a). The dashed lines denote the results for non-adsorbing tracer while the solid lines
corresponds to the results for the adsorbing tracer. The same flow and adsorption conditions as
in (a) were considered.
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1.2. Influence of adsorption/desorption coefficient

In this section, we investigate the influence of the adsorption/desorption ratio on the transport

of molecules which are subjected to adsorbing conditions. The flowing i.e. carrying fluid is

characterized by its Peclet number set to Pe = 100. We use a Henry’s law with a constant initial

concentration c0 = 10 while varying the adsorption/desorption coefficient kH via the adsorption

rate parameter pA (i.e. at constant pD). More in detail, a constant desorption rate pD = 0.001 is

used and we select kH = 10, 40, 100 (which correspond to pA = 0.01, 0.04, 0.1, respectively).

We first present in Fig. 39 the normalized time derivative of the displacement variance as a func-

tion of time D(t)/Dm. Upon increasing kH , a maximum appears in D(t)/Dm at a time which

roughly corresponds to the time domain prior to the dispersive regime (D(t)/Dm is constant

in the latter). However, regardless of the adsorption/desorption ratio, the three main transport

regimes are still observed: diffusion, advection, and dispersion. The maximum observed in the

time evolution of D(t)/Dm is specific to the use of adsorbing conditions as it is not observed

when non-adsorbing conditions are used (this is confirmed by the fact that its amplitude in-

creases with increasing kH). This adsorption-specific effect can be explained by the fact that

adsorption is a much faster process than desorption (i.e. the adsorption rate is larger than the

desorption one). As a result, the adsorption process leads to adsorbed amounts that are larger

than the value reached in the long time limit (equilibrium). In turn, such an overestimated ad-

sorbed amount leads to a large value of D(t)/Dm since a large number of molecules stick to

the surface while most of the free molecules are carried away with the flowing liquid. Then,

as the time increases, this transient situation disappears since the adsorbed amount reaches the

equilibrium state/value with a large number of molecules desorbing from the surface. In this

asymptotic (long-time) limit, D(t)/Dm decreases and eventually reaches the plateau value that

characterizes the dispersive regime.

Fig. 40 shows the normalized propagators P[(x− x0)/Ut, t] for the different systems consid-

ered above taken at different times tn. At t = t2, the system is at the onset of the advective regime

where the concentration has been displaced by a small amount x only. Therefore, in this short

time regime, the influence of the adsorption ratio kH is not pronounced as most of the molecules

are still located near the injection position x0. In the advection dominated regime, i.e. for t = t3,
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Figure 39: Temporal evolution of the time derivative of the displacement variance D(t). D(t)
is normalized to the molecular diffusion coefficient Dm of the free i.e. non-adsorbing tracer.
Molecules adsorb to the pore surface according to a Henry adsorption model with different
adsorption/desorption rates kH (varied by changing pA while keeping pD equal to 0.001). The
solid, dashed and dotted-dashed lines denote kH = 10, 40 and 100, respectively. The dashed
horizontal lines denote the analytical values of Dads

e f f /Dm while the vertical dotted lines denote
different times tn. The system is characterized by Pe = 100 and an initial concentration c0 = 10.

t = t4 and t = t5, the different data sets exhibit more pronounced differences when varying kH as

most molecules get adsorbed at the pore surfaces (therefore, as expected, kH significantly affects

the tracer dispersion). The propagators display a plateau in the region x∼ x0 which reflects the

significant concentration of molecules that get adsorbed near the injection point (so that they are

not dispersed as much as the rest of the tracer molecules which are carried along the flow). For

t = t4, the propagators obtained with kH = 10 start to approach a quasi-Gaussian shape, which

suggests that the end of the advection-dominated regime is reached. However, for the adsorbing

systems with kH = 40 and kH = 100, D(t)/Dm is maximum at t = t4 with a pronounced adsorp-

tion effect on the normalized propagators. In this case, the advection-dominated regime ends at

a larger time – typically about t ∼ t5. For t = t6, the data for kH = 10 correspond to a propagator

that has a nearly Gaussian shape. In contrast, owing to more significant adsorption effects, the

data for kH = 40 and 100 correspond to an asymmetric propagator which is not Gaussian in

shape. For t = t7, all propagators become closer to ideal Gaussian distributions but the differ-
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ences observed between the different data reflect the effect of the adsorption/desorption ratio

kH . The Gaussian curve is shifted to the left along the x-axis with a shift that increases upon in-

creasing the adsorption/desorption ratio. This result indicates that adsorption drastically delays

the dispersion of the tracer. As already mentioned, this is due to the fact that molecules get ad-

sorbed in an intermittent fashion (adsorption/desorption) with adsorption sequences/times that

do not contribute to the dispersion of the tracer within the porosity. In other words, adsorption

processes decrease the overall particle displacement velocity with a velocity decrease propor-

tional to the adsorption/desorption ratio kH .
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Figure 40: Normalized Propagator P((x− x0)/Ut, t) observed at different times tn – as shown
in Fig. 39. These data illustrate the dispersion for molecules that adsorb according to a Henry
adsorption isotherm with different constants kH (obtained by varying pA while keeping pD =
0.001). The solid, dashed and dotted-dashed lines denote kH = 10, 40 and 100, respectively.
The system considered here is characterized by Pe = 100 and initial concentration c0 = 10.

To better understand the effect of the adsorption/desorption ratio on the time evolution of

the free tracer, we show in Fig. 41 the tracer concentration distributions for different adsorb-

ing conditions. When kH = 10, the data obtained at t = t2 indicate that the tracer molecules

are distributed according to the Poiseuille velocity profile. These data are characteristic of the

advection-dominated regime. However, for t = t4, one can observe that adsorption hinders

the transport of the free tracer molecules with non-negligible tracer redistribution. At larger
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Figure 41: Tracer concentration profile observed at different times tn along the advective and
dispersive regimes. The results are for the dispersion of molecules that adsorb according to an
Henry adsorption isotherm with different kH (as obtained by varying pA while keeping pD =
0.001). The panels (a), (b) and (c) present the dispersion for kH = 10, kH = 40 and kH = 100,
respectively. The abscissas are plotted in unit of (x− x0)/Ut where x0 is the lateral injection
position and U is the mean flow velocity. The systems considered here are characterized by a
Peclet number Pe = 100 with an initial concentration c0 = 10. The concentration profile for the
adsorbed tracer molecules is presented using a black-and-white toned scale at the interface of
the parallel plates geometry for the different systems.
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times, i.e. for t = t5, t = t6 and t = t7, the tracer concentration distribution becomes more

homogeneous, which characterizes the beginning of the dispersion regime. Comparing the dif-

ferent columns in Fig. 41 allows probing the effect of the adsorption/desorption ratio kH . In the

advection-dominated regime (t4 and t5), two pore regions with large concentrations compared

to the average concentration are observed. These two marked concentration regions correspond

to molecules that are carried by the Stokes flow and molecules adsorbed at the surface near the

injection slice x0, respectively (note that x0 corresponds the abscissa 0 in the figure). We note

that this effect is more pronounced as kH increases as the impact of adsorption is more impor-

tant. At larger times, t = t6, t = t7 and t = t8, the contrast between the two regions fades out

and the concentration in free molecules becomes more homogeneous within the geometry (the

dispersion regime is reached).

Influence of the adsorbed tracers

In the previous section, transport quantities such as the dispersion coefficient were assessed by

accounting for the free tracer concentration only, i.e. c(r, t). In this paragraph, we consider

the total concentration c(r, t)+ ca(r, t) as this is expected to lead to different time evolution for

the dispersion coefficient D(t)/Dm and the corresponding normalized propagator. We define

Dtotal(t) (resp. D f ree(t)) as the time derivative of the displacement variance when considering

the free and adsorbed molecules (resp. only the free molecules). Similarly, Ptotal (resp. Pf ree)

are the normalized propagators when considering the total molecule concentration (resp. only

the free molecule concentration).

Fig. 42 presents the results obtained for the dispersion of molecules adsorbing according

to the Henry adsorption model with kH = 40 (the stokes flow is characterized by Pe = 100).

Fig. 42(a) compares Dtotal(t)/Dm and D f ree(t)/Dm. These results show that both data sets

present the three transport regimes: diffusion, advection, and dispersion. The main difference

between the two curves is observed in the advection-dominated regime. At the onset of this

regime, for t = t1 and t = t2, Dtotal(t)> D f ree(t), which reflects the importance of the adsorbed

molecule contribution on the total displacement/dispersion in the short time regime (such ad-

sorbed molecules which are mostly located near x ∼ x0 contribute significantly to the overall
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Figure 42: (a) Temporal evolution of the time derivative of the displacement variance D(t).
D(t) is normalized to the molecular diffusion coefficient Dm of the free tracers. The system cor-
responds to the data for molecules that adsorb according to a Henry adsorption isotherm with
kH = 40 (pA = 0.04, pD = 0.001). The solid line corresponds to D f ree(t)/Dm, the system when
accounting only for the free tracer concentration c(r, t). The dashed line denotes Dtotal(t)/Dm,
the system when considering the total concentration c(r, t)+ ca(r, t). The simulation set con-
sidered here is characterized by a Peclet number Pe = 100 with an initial concentration c0 = 10.
(b) Normalized propagators at different times tn - shown in panel (a). The solid lines denote the
normalized propagator Pf ree for the free tracer concentration while the dotted lines correspond
to the normalized propagator Ptotal for the adsorbed and free tracer concentrations.
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dispersion because of their small variance). However, at the end of the advective regime, for

t = t3 and t = t4, the adsorbed molecules are transported in the channel by the flowing liquid but

to a smaller extent – as a result, the overall molecule displacement is less important than when

only considering the non-adsorbed i.e. free molecules – Dtotal(t) < D f ree(t). In the dispersive

regime, for t = t5 and t = t6, the contribution of ca(r, t) does not change the effective dispersion

coefficient since we get Dtotal(t → ∞) ∼ D f ree(t → ∞). This result proves that the molecules

are displaced in a homogeneous manner and the adsorption at this level has no influence since

the different molecule contributions have reached equilibrium.

Fig. 42(b) presents the time evolution of the normalized propagators Pf ree((x− x0)/Ut, t)

and Ptotal((x− x0)/Ut, t). In the advective regime, for t ∈ [t1, t4], we notice the presence of two

peaks in Ptotal((x−x0)/Ut, t). This result confirms the existence of two regions. The first region

corresponds to the adsorbed molecules at the pore surface near the injection point x ∼ x0. The

second region corresponds to the free molecules carried along the Stokes flow. At larger times,

the influence of the adsorbed molecules is less pronounced as the normalized propagators Pf ree

and Ptotal nearly overlap. We performed the same comparison for kH = 1; the results show that

ca(r, t) does not impact the different transport quantities (see Appendix C.1.). In conclusion,

the contribution ca(r, t) is important when using large adsorption/desorption ratios only.

Adsorbing molecules dispersion

The results in Fig. 39 show a non-linear variation of D(t→ ∞)/Dm as a function of the adsorp-

tion/desorption ratio kH . In order to understand this behavior, i.e. the influence of the adsorp-

tion/desorption ratio on the dispersion coefficient for Henry adsorbing molecules D(t→∞), we

study the evolution of the analytical expression for Dads
e f f /Dm as a function of kH . We recall the

analytic expression of Dads
e f f /Dm which was introduced in Eq. (I .32) in Chapter 1:

Dads
e f f

Dm
= 1+

KPois
v

Dm
= 1+

1
210

L2
yU2

D2
m

102Lyk2
H +18L2

ykH +L3
y

(Ly +2kH)3 +
U2

DmkD

2L2
ykH

(Ly +2kH)3
(V .1)

where Ly is the pore width, U is the average velocity of the flowing fluid, and Dm is the bulk

molecular diffusion coefficient. It is straightforward to show that the derivative of Eq. (V .1)
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with respect to kH leads to:

∂

∂kH

Dads
e f f

Dm
=

2L2
yU2 (35Dm(Ly−4kH)+LykD

(
L2

y +11LykH−17k2
H
))

35D3
mkD(Ly +2kH)4 (V .2)

As expected, the latter quantity is a function of the characteristic length Ly. We plot in Fig. 43

Eq. (V .2) as a function of kH for two systems characterized by Ly = 41∆x and Ly = 10∆x.

For Ly = 41∆x (the pore width used throughout our study), the derivative is strictly positive

for 0 < kH < 30 which indicates that the dispersion coefficient increases with the adsorption

desorption ratio kH . On the other hand, for kH > 30, the derivative is negative as the dispersion

coefficient decreases with kH (this corresponds to the data obtained for kH = 40 and kH = 100

which indeed show the decrease of Dads
e f f with kH). The same trend is observed for Ly = 10∆x

but the range of kH where the derivative is positive is smaller 0 < kH < 7. This result can be

explained by the dependence of the roots of the derivative with the width of the channel (one

is always negative and the second is positive but decreases with the width of the channel; for

rigorous derivation see Appendix C.2.). This indicates that increasing the adsorption/desorption

ratio kH yields lower dispersion coefficient as adsorption is too strong to allow significant re-

distribution between adsorbed and free molecules.
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Figure 43: Effect of the adsorption/desorption ratio kH on the dispersion coefficient Dads
e f f /Dm

(note that to highlight this effect, we plot the derivative of the dispersion coefficient with re-
spect to kH). The systems considered here correspond to the slit pore geometry with different
characteristic lengths Ly (defined as the width between the two parallel plates). The data are
for systems with a mean velocity U and a molecular diffusion coefficient Dm. The red and blue
colors denote data obtained for Ly = 41∆x and Ly = 10∆x, respectively.

1.3. Slug injection

We perform simulations for continuous “slug” injection of the molecules adsorbing according

to the Henry law with an initial concentration c0 = 1 (injected at x0 = 1). The injection time

varies from ∆t0 = 2× 106 (see Fig. 26(c) in Chapter 4). Fig. 44 compares the simulation re-

sults for adsorbing and non-adsorbing molecules dispersed within a carrying fluid characterized

by Pe = 10. We present in Fig. 44(a) the distribution of free molecules in the slit pore ge-

ometry (the adsorption data are obtained for the Henry model with kH = 5 corresponding to

pa = 0.05 and pd = 0.01). For the adsorbing molecules, the spreading of the concentration is

delayed compared to the concentration for the passive tracer (i.e. non-adsorbing molecules);

this result indicates that the molecules get dispersed through the geometry over a longer time

due to adsorption at the pore surface. This result highlights the fact that adsorption decreases

the characteristic displacement/motion in confinement. Fig. 44(b) shows the evolution in time

of the free molecule concentration profile cl(x, t) at different lateral positions x (as obtained in

the course of the Lattice Boltzmann simulations). We recall that cl(x, t) = 1/Ly×∑y c(r, t) is

the normalized concentration at a lateral position x within the pore. These data correspond to
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molecules adsorbing according to Henry’s law with kH = 1 and kH = 5. The different systems

reach the same values as the concentration of the adsorbed tracers is very small compared to

the concentration of the free tracers. When comparing the difference between the adsorbing

and non-adsorbing systems, we observe that the distribution of the adsorbing molecules display

a slower time evolution. This result confirms that adsorption decreases molecular dispersion

within the pore by inducing non-negligible residence times at the pore surface. This is con-

firmed by the results for the adsorbing systems with kH = 1 and kH = 5 which indicate that

increasing the adsorption/desorption coefficient leads to slower dispersion.
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Figure 44: (a) Concentration profile observed at t = 2×106 for tracer molecules transported in
a slit pore geometry. The top data are for non-adsorbing molecules (passive tracer) while the
bottom data are for adsorbing molecules (the adsorption corresponds to a Henry regime with
kH = 5). (b) Time evolution of the normalized concentration cl(x, t) at different lateral positions
in the two parallel plates geometry for non-adsorbing and adsorbing molecules. The solid lines
correspond to results obtained for non-adsorbing molecules. The dashed lines present the results
for a Henry adsorption isotherm with kH = 1 (pA = pD = 0.01) while the dashed-dotted lines
correspond to kH = 5 (pA = 0.05, pD = 0.01). The blue and black colors indicate the results
obtained at a lateral position x = 250 and x = 500, respectively.
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2. Langmuir adsorption

In this section, we investigate the influence of site saturation on the transport of adsorbing

tracers. We perform numerical simulations to model the dispersion of molecules adsorbing

according to the Langmuir adsorption model. Different adsorption/desorption ratios kL and

initial concentrations c0 are considered. The results will be compared with the data obtained in

the previous section where Henry adsorption was considered. As will be shown in the following

paragraphs, the value of c0 is an important parameter so that a section is dedicated to determine

its impact.

2.1. Influence of the adsorption/desorption ratio

In order to understand the influence of the adsorption/desorption ratio, we perform the Dirac

injection at the lateral position x0 = 200 in the parallel plate geometry for a system charac-

terized by Pe = 25. We consider different adsorbing ratios k ∈ {0.1,0.5,1,5,10}. For each

k, we perform Langmuir simulations for different initial concentration c0 ∈ {10,20,30}. We

also present the corresponding results for the Henry adsorbing system. However, for the Henry

adsorption simulations, varying the initial concentration was found to have no influence on the

displacement variance (or, equivalently, the corresponding normalized propagators). Therefore,

for the Henry adsorption conditions, we present the results for only one initial concentration

c0 = 10. Fig. 45 shows the time evolution of D(t)/Dm for the different systems. The dispersion

of the molecules following the Langmuir model displays the three typical transport regimes:

diffusion, advection and dispersion regimes. On the other hand, the comparison of the dif-

ferent data reveals various important differences. First, for small adsorption/desorption ratios

k ∈ {0.1,0.5}, the results for the Langmuir model – for the different initial concentrations c0

– overlap with those obtained for the Henry model. As established in the previous section, in

this k-range, the molecules adsorbing according to Henry’s law display the same time evolu-

tion for D(t)/Dm as that obtained for the non-adsorbing molecules. Thus, we conclude that

the Langmuir adsorption model for small k has no significant influence on D(t)/Dm. Second,

for large k, the difference between the Langmuir and Henry models becomes more important.

Moreover, the influence of c0 becomes more pronounced. Hence, the influence of c0 increases

upon increasing the adsorption/desorption ratio k. Third, for k = 10, the dispersive regime for
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Figure 45: Temporal evolution of the time derivative of the displacement variance D(t). D(t) is
normalized to the molecular diffusion coefficient Dm for the free tracer molecules. We consider
the dispersion of molecules that obey different adsorption models. The black, blue and red
colors denote Langmuir adsorption isotherm for different initial concentrations (c0 = 10, c0 =
20, c0 = 30). The violet color denotes Henry adsorption isotherm for c0 = 10. The lines (dotted,
dashed, solid, dashed-dotted, double-dashed-dotted and dashed-double-dotted) denote different
values of k = kL = kH (0.1, 0.5, 1, 5 and 10, respectively). The system is characterized by
Pe = 25.

c0 = 30 corresponds to a larger dispersion coefficient than the one obtained at lower concentra-

tions – with the latter corresponding to the dispersive coefficient obtained for the Henry model.

Thus, the effective dispersion coefficient for the Langmuir model is concentration-dependent

and not equal to the value obtained for Henry’s model. In order to investigate the influence of

the initial concentration c0 on the effect of k, we normalize D(t) with respect to its value in the

infinite time limit D(t→ ∞). We present its temporal evolution in Fig. 46 for the data obtained

with k = 0.5 and k = 1 . These results indicate that the difference between the Henry model

and the different Langmuir adsorption models is more pronounced for k = 1 than for k = 0.5 –

therefore, suggesting that the effect of the initial concentration c0 on the Langmuir adsorption

is more pronounced when using a higher adsorption/desorption ratio k.
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Figure 46: Temporal evolution of the time derivative of the displacement variance D(t). D(t)
is normalized to the effective dispersion coefficient D(t → ∞). We consider the dispersion of
molecules that follow different adsorption models. The solid and dashed lines represent data
obtained for adsorption/desorption ratios k = 1 and k = 0.5. The black, blue and red colors
denote Langmuir adsorption configuration for c0 = 10, c0 = 20 and c0 = 30, respectively. The
violet curves are for Henry adsorption configuration for c0 = 10. The flowing liquid considered
here is characterized by Pe = 25.

2.2. Influence of initial concentration c0

In this paragraph, we assess the influence of the initial concentration c0 on the dispersion of

molecules adsorbing according to the Langmuir adsorption model (with kL = 10). We vary c0

from 10 to 1000 to study its influence on the temporal evolution of D(t)/Dm, the concentration

of free molecules distribution, and the associated propagator. The considered systems are char-

acterized by a Peclet number Pe = 25. Fig. 47 presents the time evolution of D(t)/Dm. For low

concentrations, i.e. c0 ∈ [10,100], the typical transport regimes are observed. At short times,

the diffusion-dominated regime is observed followed by the advection-dominated regime. At

long times, the dispersion regime is reached. Upon increasing the initial concentration, i.e. for

c0 = 75 and c0 = 100, the advective regime extends over a longer time so that the time required

to reach dispersion becomes longer. This effect is due to the influence of the adsorbed molecules

on the displacement of the free molecules. The time required to re-distribute the adsorbed con-

centration increases and so does the advective regime. For systems obtained for larger initial

concentration, i.e. for c0 > 200, the temporal evolution of D(t)/Dm is different. We notice that
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Figure 47: Temporal evolution of the time derivative of the displacement variance D(t). D(t) is
normalized to the molecular diffusion coefficient Dm of the free tracer molecules. We consider
the dispersion of molecules that obey different adsorption models with an adsorption/desorption
ratio k = 10. The dotted, dashed and solid lines correspond to the dispersion of non-adsorbing
molecules, molecules following the Henry law and molecules following the Langmuir model,
respectively. The black color corresponds to data for systems with an initial concentration
c0 = 10. The systems considered here are characterized by Pe = 25.

the advective regime is divided into two stages which are separated by an additional stationary

regime. The latter regime corresponds to the Taylor dispersion regime (the limit of the passive

tracer transport). The reason for the appearance of this plateau is as follows. In this time range,

the impact of adsorption kinetics on the dispersion of free molecules at the solid interface is

considerable. However, this influence is negligible for the free molecules in the bulk. More in

detail, in this time range, the free molecules concentration is important since c0 is large. On the

other hand, Γ∞ = 1 so that the variance on the adsorbed molecules concentration, i.e. ∆ca(r, t),

is too small to impact the overall variance. Therefore, in this time range, the displacement vari-

ance is not affected by adsorption equilibrium at the surface. In other words, the free molecules

get dispersed in the channel as if kL = 0 (i.e. as in the normal Taylor dispersion regime). At

larger times, the free molecules gets dispersed in the channel and their concentration becomes

comparable to that for the adsorbed molecules. As a result, the adsorption effect is important

and D(t)/Dm increases until reaching the asymptotic dispersion regime that is characteristic of



140 Chapter V : Adsorption and pore morphology effects

this system obeying the Langmuir adsorption model.

In order to validate the above explanation, we present in Fig. 48 the time evolution of the dif-

ferent transport quantities for the dispersion of molecules (adsorbing according to the Langmuir

adsorption model for initial concentrations c0 ∈{10,30,500}). We study the time evolution dur-

ing both the advective and dispersive regimes. Fig. 48(a) shows the temporal evolution of the

free molecule concentration along the normalized x-axis (x− x0)/Ut. At t = t1 and t = t2, the

results for the small initial concentrations c0 show a concentration distribution that is affected

by the velocity profile. These results provide evidence for the adsorption effect since the dis-

persion of the free molecules is delayed due to surface adsorption. However, for c0 = 500, we

observe at t = t1 a homogeneous distribution for the free molecules which is influenced only by

the velocity profile (no adsorption effect at the surface is noticed). For t = t2, the concentration

becomes more homogeneous, which corroborates the plateau observed in the time evolution

in D(t)Dm (as already explained, this plateau corresponds to the Taylor dispersion regime as

the adsorbed molecules do not impact significantly the overall concentration distribution). For

t = t4, in the case of low initial concentrations, the dispersion regime is reached as the molecule

concentration is redistributed homogeneously. However, for large initial concentration c0, we

notice that the free molecules concentration starts to spread over smaller (x− x0)/Ut positions.

The latter corresponds to a less concentrated region, which characterizes the contribution of

the adsorbed molecules on the free molecule distribution after equilibrium. This effect is less

pronounced for t = t5 where the distribution becomes more homogeneous, therefore reflecting

the beginning of the dispersive regime for our adsorbing system (c0 = 500).

To shed more light into the impact of the initial concentration c0, Fig. 48(b) shows the normal-

ized propagators P((x−x0)/Ut, t) obtained at different times along the advective and dispersive

regimes. Inspection of the different curves for the different systems confirms our previous expla-

nation. For t = t1, we observe the advective regime for the different systems as confirmed by the

non-Gaussian form of the propagators. For t = t2, the propagators have a quasi-Gaussian shape,

therefore confirming that the onset of the dispersion regime is reached. For larger times, i.e.

t = t3, we see that for c0 = 10 and c0 = 30 the Gaussian propagator is shifted due to adsorption.

However, for c0 = 500, the center of the Gaussian curve is located at 1, which corresponds to the
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Figure 48: (a) Concentration profile observed at different times tn along the advective and dis-
persive regimes. The top, middle and bottom data are for c0 = 10, 30 and 500, respectively.
The abscissas are plotted in units of (x− x0)/Ut. The results correspond to the dispersion of
molecules obeying a Langmuir adsorption isotherm with kL = 10. The systems considered here
are characterized by Peclet number Pe = 25. (b) Normalized propagator P((x− x0)/Ut, t) ob-
served at different times tn. The solid, dashed and dotted lines correspond to data obtained for
the Langmuir adsorption model with an initial concentrations c0 = 10, 30 and 500, respectively.
The same configuration and adsorbing conditions as in (a) are used.
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Gaussian curve of the normalized propagator in the Taylor dispersive regime. At large times,

the propagators for the small initial concentration are Gaussian unlike for c0 = 500 (where a tail

appears). These results indicate that increasing the initial concentration changes the different

transport regimes. In particular, for some concentration ranges, a additional stationary regime

is observed.

3. Cooperative Langmuir adsorption

In this section, after considering Henry and Langmuir adsorbing models above, we study the

impact of cooperative adsorption on the transport of adsorbing molecules. With this goal, we

will use the model validated in Chapter 3 that describes the adsorption of surfactants on silica.

More in detail, we recall that the adsorbing system is described as follows. The adsorption of

individual monomers is defined by a Henry adsorption model with an adsorption desorption

ratio kH which is valid until the concentration reaches the critical micellar concentration CMC.

Above the so-called critical surface concentration cs, aggregated monomers adsorb at the pore

surface by using a surface concentration-dependent adsorption/desorption ratio k′(Γm′). First,

we perform numerical simulations using a simple set-up where the adsorbing molecules are

injected using a Dirac injection peak. The results will be compared to the same dispersion data

obtained when adsorption is described using Henry’s law. Then, in order to better understand the

impact of cooperative adsorption, we perform continuous injection simulations. The latter allow

us to determine the evolution of the individual adsorbed monomers Γm as well as the evolution

of the aggregated adsorbed monomers Γm′ . In the last paragraph of this section, we perform

the same simulations for adsorbing molecules according to the Henry, Langmuir and Henry-

Langmuir models. The Henry-Langmuir model provides a representation of the adsorption

of the individual monomers as well as of the aggregated monomers. Individual monomers

adsorb according to the Henry model for a concentration below cs while the adsorption of the

aggregated monomers is represented by the Langmuir model (c > cs). These results will be

compared with the cooperative model in order to identify differences between these models.

3.1. Dirac versus slug injection

In this paragraph, we consider Dirac injection in the two parallel plates geometry for an initial

concentration c0 = 1000 (injection is performed at the lateral position x0 = 200). The system
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is characterized by Peclet number Pe = 100. The adsorbing configuration is as follows: we use

adsorption/desorption ratios (kH , k′) – this indicates that the adsorption of individual monomers

is characterized by a Henry constant kH while the adsorption of aggregated monomers is charac-

terized by the concentration dependent adsorption/desorption ratio k′. We compare the results

obtained for the dispersion of molecules adsorbing according to the Henry adsorption model

(with the same adsorption/desorption ratio kH). Fig. 49 shows the time evolution of D(t)/Dm.

These data show that the two curves perfectly overlap as no difference is noticeable between

the two systems (i.e. no adsorption impact). Such a behavior can be explained as follows. Af-

ter injection, a rapid decrease of the bulk concentration is observed so that the initial injected

concentration, c(r,0), disperses in the geometry to reach a free molecule concentration smaller

than cs (where the cooperative model is strictly equivalent to the Henry model). This is due to

the fact that the adsorption/desorption ratios used in these simulations are too small (kH ∼ 10−3,

k′ ∼ 10−3). We performed the same comparison with larger adsorption rates (Fig. 49) but again
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Figure 49: Temporal evolution of the time derivative of the displacement variance D(t). D(t)
is normalized to the molecular diffusion coefficient Dm for the free tracer molecules. The dot-
ted, solid and dashed lines denote the dispersion data for non-adsorbing molecules, molecules
obeying the Henry-Cooperative Langmuir adsorption model and molecules obeying the Henry
adsorption model. The blue and red colors denote the adsorption configuration with a nominal
set (kH , k′) and (kH1 = 103 kH , k′1 = 103 k′), respectively. The green and yellow colors denote
systems with kH and kH1 = 103 kH , respectively. The systems considered are characterized by
Peclet number Pe = 100 with an initial concentration c0 = 1000.
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the two data sets overlap. In conclusion, for a system with a Dirac injection, the initial injected

concentrations decrease rapidly to a value lower than the critical surface concentration cs.

In order to circumvent this issue, we perform a continuous injection with an initial concen-

tration c0 = 1000 at x = x0 = 1. We carry out the injection over a period of time ∆t0 = 106 (see

Fig. 26(c) in Chapter 4). Fig. 50 shows the evolution at t = 2× 106 of the different adsorbed

quantities: the total adsorbed quantity Γ, the individual adsorbed monomers Γm and the aggre-

gated adsorbed monomers Γm′ . We also plot the surface concentration profile. These results

allow validating the accuracy of the model; for small surface concentrations csur f < cs, only

adsorption of individual monomers occurs so that we reach Γm ∼ kHcsur f . As expected, such
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Figure 50: (a) Concentration profile for the free i.e. non-adsorbed molecules in a pore corre-
sponding to a two parallel plates geometry. The molecules adsorb to the pore surface according
to a Henry-Cooperative Langmuir adsorption isotherm. The date are take at a time t = 2×105.
(b) Adsorbed amount distribution for the Henry-Cooperative Langmuir adsorbing system taken
at a time t = 2×105. The black solid, dashed and dashed-dotted lines denote the total adsorbed
amount Γ, the adsorbed amount of aggregated monomers Γm′ and the adsorbed amount of in-
dividual monomers Γm, respectively. The pink solid line indicates the surface concentration
distribution. The system considered is characterized by Peclet number Pe = 100 and initial
concentration c0 = 1000.
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adsorption saturates – i.e. becomes constant – for concentrations above CMC (Γm ∼ kHCMC).

For csur f > cs, the adsorption of aggregated monomers occurs. Upon increasing the surface con-

centration, csur f close to 800, Γm′ starts to reach a plateau (as the adsorbing surface becomes

saturated with both adsorbed individual and aggregated monomers).

3.2. Comparison with other adsorption models

In this paragraph, we study the difference between the various adsorption models when using a

continuous injection situation. Our geometry is exposed to a fluid flow that obeys Stokes flow

with an average flow rate U . The Peclet number takes Pe = 100, we inject an initial concentra-

tion c0 = 1000 at a lateral position x0 = 1 over a time period ∆t0 = 106∆t. We consider the fol-

lowing adsorption models: an ideal Henry model, a Langmuir model, a Henry-Langmuir model

and the cooperative adsorption model. For the Henry model, we use the adsorption/desorption

ratio kH which characterizes the adsorption of individual monomers in the cooperative model.

For the Langmuir model, we use the value kL that best fits the aggregated monomer adsorption

from TX100 adsorption on silica (presented in Fig. 21(a) in Chapter 3). For the Henry-Langmuir

model, we associate the ideal Henry with the ideal Langmuir with adsorption-desorption ratios

noted as (kH ,kL). With this combined model, the adsorption of individual monomers is de-

scribed using a Henry constant kH while that of aggregated monomers is described using a

Langmuir model with constant kL. Finally, we use the cooperative model using the adsorp-

tion/desorption ratios (kH ,k′). We present the comparison of Γ(x) for the different adsorption

models in Fig. 51. For the Henry adsorption model, obviously, Γ(x) is a linear function of the

surface concentration csur f (x). For the Langmuir model, Γ increases with increasing concen-

tration but reaches asymptotically the maximum adsorption capacity of the model. When using

the combined models, i.e. Henry-cooperative Langmuir model and the Henry-Langmuir model,

we found that for a concentration below the critical surface concentration cs, it is similar to the

Henry model since, only the adsorption of individual monomers is considered. On the other

hand, at higher concentrations, we get different patterns/results. When using the Langmuir

model, Γ(x) increases significantly, which is not realistic. However, for the cooperative model,

thanks to the variation in the adsorption/desorption ratio k′ with concentration, Γ(x) varies grad-
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ually with the concentration and then reaches a plateau (surface saturation).
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Figure 51: Concentration distribution along the x-axis for different adsorption conditions. The
black color denotes the concentration distribution for the adsorbed tracers. The dotted, dashed-
dotted, dashed, and solid black lines denote the adsorbed amount Γ(x) for the Henry, Langmuir,
Henry-Langmuir and Henry-Cooperative Langmuir adsorption models, respectively. The pink
solid line corresponds to the surface concentration distribution along the x-axis. The systems
considered are characterized by Peclet number Pe = 100 and initial concentration c0 = 1000.

In this paragraph, we study the time evolution of the free and adsorbed concentrations in

the slit pore geometry for the cooperative adsorption model. Fig. 52(a), which shows the free

concentration distributions, indicates that the concentration in the channel increases for t ≤ ∆t0

(where ∆t0 is the end of the injecting step). Then at longer times, i.e. t = 2×106 and t = 4×106,

the free molecules are more homogeneously distributed within the pore geometry with smaller

local concentrations. Due to the small adsorption/desorption ratios (kH ,k′) considered here,

the influence of adsorption on the free concentration distribution is negligible. We also looked

at the distribution of adsorbed molecules Γ(x) along the x-axis as well as the normalized con-

centration cl(x, t) for these adsorbing conditions. We also compare these results with those

obtained with the Henry-Langmuir model in Fig.52(b). The two data sets perfectly overlap –

see data for cl(x, t) – at the different times, therefore confirming that the difference between

the two models is insignificant when examining the free molecule concentration (particularly

in the case of small adsorption/desorption ratios). Nonetheless, the comparison of Γ(x, t) re-
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Figure 52: (a) Concentration distribution for the free tracer dispersion in a pore correspond-
ing to a two parallel plates geometry and for molecules adsorbing according to the Henry-
Cooperative Langmuir adsorption isotherm at different times. (b) Concentration distribution
along the x-axis. The concentration of the adsorbing tracers Γ corresponds to the solid lines
for the Henry-Cooperative Langmuir adsorption isotherm while the dashed lines correspond
to the same system but for a Henry-Langmuir adsorption isotherm. The green, red, blue and
black colors denote the following times: t = 5× 104, t = 105, t = 2× 105, and t = 4× 105.
The normalized concentration distributions at a lateral position are shown as violet solid lines.
The system corresponds to a flowing liquid in which continuous injection at x0 = 1 of an initial
concentration c0 = 1000 is performed over a time period ∆t0 = 105∆t (Pe = 100).

veals remarkable differences which can be seen when considering the adsorption of aggregated

monomers. In addition, one notices that Γ(x) reaches its maximum value for the two systems at

times shorter than ∆t0, i.e. t = 5×104 and t = 105. This result is due to the fact that, before the

end of the injection stage, the surface concentration is important near the channel inlet so that

the maximum adsorption capacity is reached. However, at longer times, the free tracer concen-

tration is more dispersed/homogeneous (lower local concentration at the pore surface) so that

the adsorbed quantity decreases.
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B. Transport in porous media: impact of pore geometry

As outlined in the introduction, one of the main objectives of this work is to investigate the

influence of structural heterogeneity of porous media on transport and the associated impact on

adsorption in this type of containment. To this end, in this section we examine the influence of

complex pore geometries on the displacement and the concentration field of the molecules. We

consider a 2D porous medium based on a realistic porous structure developed at IFPEN. The

results will be compared and contrasted to those obtained with a parallel plates geometry. This

section will be divided into 4 parts. First, we will characterize the porous medium; secondly,

simulations will be carried out to generate Stokes flow in the structure. Afterwards, we will

study the transport of non-adsorbing molecules and finally we will consider the transport of

adsorbing molecules. As far as adsorption is concerned, we will examine Henry and Langmuir’s

models. Since we use the Dirac injection configuration, we will not examine the cooperative

adsorption model. Indeed, as indicated in the previous section, for this configuration, the bulk

concentrations are very low, which characterizes the individual monomers that follow Henry’s

adsorption model. Therefore, the study of the cooperative model will give the same outcome as

Henry adsorption model.

1. Porous medium: 2D micromodel

1.1. Micromodel manufacturing

A micromodel is an idealized, two-dimensional representation of a porous medium: a network

of connected pores, through which fluids flow and solutes spread. Micromodels used at IFPEN

are manufactured using a chemical etching technique called "wet etching". They consist of a

first transparent glass plate, on which is engraved a set of intersecting channels forming a net-

work, and a second transparent glass plate installed on the engraved face of the first glass plate.

The glass has more affinity with water, thus it is considered as water wet. The micromodel is

based on a 2D slice of rock obtained by X-ray tomography. In order to obtain better percolation,

the X-ray image was slightly modified.
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1.2. Micromodel for LBM simulation

We use the 2D porous geometry shown in Fig. 53.a. Each pixel from the micromodel image is

considered as one lattice, i.e. 1 pixel = ∆x. The micromodel has dimensions Lx = 4000∆x and

Ly = 2300∆x, and its porosity is φ = 49.47%, the porosity per slice varies between 35% and

65% as illustrated in Fig. 53.b.
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Figure 53: (a) Micromodel image with width Lx and length Ly, the color black presents the solid
and the white stands for the pore volume. (b) Porosity distribution across lateral positions x in
the geometry of the micromodel, i.e. the fraction of pore volume relative to total volume – pore
and solid – for each x, where x is in Lattice Boltzmann length unit (∆x).

2. Stokes Simulation results

We used the Lattice Boltzmann method to solve the steady-state Stokes equation for water flow

in the micromodel. In the 2D porous medium, fluid velocities are small (i.e., Re << 1), justify-

ing the use of the Stokes equation to obtain the velocity field at the pore scale. Along the y = 0

and y = Ly boundaries of the 2D domain, no-slip boundary conditions were imposed. A fixed

pressure difference was applied between the inlet (x = 0) and the outlet (x = Lx) in accordance

with the definition provided in Eq. (II .6) in chapter 2. We present the resulting velocity field
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Figure 54: Velocity field obtained by solving Stokes equation using LBM-TRT in the micro-
model (Lx = 4000 and Ly = 2300).

in Fig. 54. The flow goes from the left inlet to the right outlet, and it shows a complex pattern.

Various variations in the velocity field due to the heterogeneity of the porous medium can be

observed, leading to some preferential paths.

3. Transport of passive tracer

In this paragraph, we simulate passive tracer (non-adsorbing molecules) transport in the micro-

model. We consider the simulation process illustrated in Fig. 26.c in chapter 4. Our geometry is

exposed to a fluid flow that obeys Stokes flow with an average flow rate U .We impose an initial

concentration c0 at each fluid site placed at the lateral injection position x0. As illustrated in

Fig. 55, for a bulk position r0 = (x0,y), we apply c(r0) = c0 within ∆t0 = ∆t (Dirac injection).

For our system, we apply initial concentration c0 = 10 at lateral injection position x0 = 200.

This system is characterized by Peclet number Pe = 100.

In Fig. 56, we present the normalized evolution of the derivative of the displacement vari-

ance over time, defined as D(t)/Dm = 1
2Dm

∂σ2
x (t)

∂ t , with σ2
x being the variance of the displacement

distribution in the x-direction. It shows different regimes: at the beginning, a diffusive regime,

where the values of D(t)/Dm are almost constant, D(t)∼Dm. Then, we have a transient regime:

the advection-dominated regime where D(t)/Dm increases significantly. In the interval [t3, t5],

we have a plateau-like pattern with oscillating values. For higher time intervals, D(t)/Dm in-
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Figure 55: Initialization (t = 0) of the tracer concentration in the micromodel geometry.

creases. This behavior can be attributed to the influence of the no-slip boundary condition

applied at y = 0 an y = Ly and to the heterogeneity of the porous medium that affect the velocity

field. Consequently, the transport becomes very complex in this situation. The sinusoidal be-

havior and the following increase in D(t)/Dm should therefore be further analyzed. It is actually

attributed to the insufficient size of the micromodel in comparison to its heterogeneity and the

boundary effects. An in-depth discussion to explain these effects is presented in Appendix D.
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Figure 56: Temporal evolution of the time derivative of the displacement variance
D(t) = dσ2

x (t)/2dt in the micromodel geometry for the transport of the passive tracer. D(t)
is normalized by the molecular diffusion coefficient Dm of the free tracer molecules. The sys-
tem is characterized by Pe = 100.
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In order to better understand the transport in the 2D porous medium, we study the normalized

propagators P((x−x0)/Ut, t) as well as the concentration distributions at different time intervals

in the geometry. The propagators are presented in Fig. 57. For each propagator, we plot the

corresponding concentration distribution. The concentration distribution shows the spreading

of the molecules in the geometry over time. The different panels denote the diffusion, the

advection and the dispersive regime, respectively. The tracer molecules passe through the pores

of the micromodel and they disperse gradually. The distribution is affected by the heterogeneity

of the structure. Moreover, the dispersed front is delayed along the y-axis boundary, which
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Figure 57: Normalized propagators P((x− x0)/Ut, t) for different time intervals as well as
the respective concentration distributions for the passive tracer transport in the micromodel
(Pe = 100). The solid lines stand for the simulation results and the dashed lines represent the
corresponding Gaussian fit.
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is due the no-slip boundary condition applied to the Stokes flow. The normalized propagator

P((x−x0)/Ut, t) varies between two limiting behaviors in the short and long time range: in the

short term (t1), molecular diffusion predominates over advection. At long term (t4), molecules

have sampled a representative part of the velocity field, resulting in effective dispersion. In both

cases, the shape of the propagators is similar to a Gaussian curve. We fit these propagators

using the Gaussian equation, which is shown with the dashed lines. These propagators have

a maximum moving on the x-axis with a mean velocity. For the diffusion dominated regime

(t1), the mean velocity is close to zero. For a pure diffusive regime the mean velocity equals

zero, however we don’t have access to these data since the pure diffusive regime ends after an

extremely short time interval. Considering the dispersive regime (t4), the data are well adjusted

with the Gaussian equation, and the mean velocity is U = 1. At intermediate time intervals

(t2) in the so-called advective regime, displacements due to the velocity are dominant and the

propagator is different from the Gaussian curve. We justify the noisy form of the propagators

particularly at large time intervals by the influence of the heterogeneity of the porous medium.

4. Transport of adsorbing molecules

In this paragraph, we consider the transport of adsorbing molecules. To this goal, we use the

Henry and the Langmuir adsorption model. We first study the influence of the adsorption des-

orption ratio on the transport of molecules following the Henry adsorption model and then we

investigate the difference between these results and those obtained with the Langmuir model.

4.1. Henry adsorption

In a first step, we simulate the transport of molecules following Henry’s adsorption model with

different values of the adsorption parameter kH . We perform the same Dirac injection config-

uration as the one used for the transport of the passive tracer (non-adsorbing molecules). An

initial concentration c0 = 10 is injected at the lateral position x0 = 200. The Peclet number is

Pe = 100. Simulations with the following value of kH are performed: kH ∈ {0.1,1,5,10}. More

in detail, a constant adsorption rate pA = 0.05 is used and the desorption rates correspond to

pD = 0.5, 0.05, 0.01, 0.005 respectively). The results are compared to those obtained for the

passive tracer and to those obtained in the parallel plates geometry.
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We present in Fig. 58, the evolution of D(t)/Dm of the transport of adsorbing molecules

following Henry’s model. The result shows that the temporal evolution of D(t)/Dm for these

adsorbing molecules is similar to the one of the non-adsorbing molecules. For a short period,

diffusion dominates, characterized by the initial plateau. Then D(t)/Dm increases, which indi-

cates the advective regime. For longer time intervals, a slight stabilization of D(t)/Dm might be

observed. For kH = 0.1, we obtain the same result as for the non-adsorbing molecules, which

is justified by the fact that the adsorbed quantity is too small to influence the behavior of the

molecules in the bulk. It can be noticed that D(t)/Dm decreases with increasing the values of

kH .
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Figure 58: Temporal evolution of the time derivative of the displacement variance D(t) in the
micromodel geometry for the transport of molecules following the Henry adsorption model
(Pe = 100). D(t) is normalized to the molecular diffusion coefficient Dm of the free tracer
molecules. The dotted line denotes the non-adsorbing molecules and the solid lines denote the
molecules following the Henry adsorption model. The black, red, green and violet colors denote
respectively kH = 0.1; kH = 1; kH = 5 and kH = 10.

This result is justified by the study we made in the two parallel plates geometry where

we also investigated the evolution of Dads
e f f /Dm = lim

t→∞
D(t)/Dm as a function of kH (see sec-

tion.. A.1.2. and Fig. 43). The study showed that the result depends on the channel width. By

decreasing the distance between the two parallel plates, the range of kH where ∂

∂kH

Dads
e f f

Dm
< 0 be-

comes larger. In this range Dads
e f f /Dm decreases as function of kH . For the structure of the micro-
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model, the characteristic channel width of the pores ranges from 2∆x to 20∆x with a mean value

of 10∆x. Using the exact value of U and Dm (U = 2.915 10−4∆x/∆t; Dm = 3.125 10−3∆x2/∆t),

the result gives a strictly negative derivative and therefore D(t)/Dm decreases as a function of

kH . By comparing the result of the micromodel with the result of the parallel plates, a sec-

ond effect can be detected contributing to the decrease of D(t)/Dm with increasing kH in the

porous structure. Indeed, adsorption on solid surfaces perpendicular to the flow might hin-

der the transport and the spreading of the molecules and thus reduce the displacement variance

σ2
x . This is not the case for parallel plates where there are no surfaces to adsorb in this direction.

We present in Fig. 59, the temporal evolution of the total concentration distribution, i.e.

c(r, t)+ ca(r, t) in the micromodel geometry for different adsorption rates: kH ∈ {0.1,1,10}.

We recall that c(r, t) is the free tracer concentration distribution and ca(r, t) is the adsorbed

tracer distribution. For kH = 0.1, the transport is only slightly different from the transport of

non-adsorbing molecules. However, a strong influence of the adsorption on the transport can be

seen for kH = 5 and particularly for kH = 10. Several differences can be observed:

• First of all, we find that stronger adsorbing molecules lead to a slower mean displacement of

the molecules compared to weaker adsorbing molecules. Therefore, the increase in the value of

kH yields a lower propagation rate.

• Then, the comparison of the concentration distribution of the free molecules of the passive

tracer with that of the adsorbing molecules shows that adsorption leads to a narrower distribu-

tion. Furthermore, this distribution becomes narrower with the increase of kH . This is consistent

with the evolution of D(t)/Dm, where the plateaus become lower for higher kH .

• Third, we note that increasing kH increases the amount of adsorbed molecules. To better vi-

sualize the difference in the amount of adsorbed molecules at the fluid-solid interface, we show

in Fig. 60, a zoom on the concentration distribution. For kH = 0.1, the adsorbed quantity is

too small to be correctly visualized. For kH = 1, it is of the same range as the concentration

of the free molecules. Here, the adsorbed quantity can be seen lining the solid/liquid interface.

For kH = 10, with regard to the scale of concentration, we can see that the concentration of the

adsorbed molecules is higher than the concentration of the molecules in the bulk. This result is

due to the definition of Henry’s model, which leads to an adsorbed quantity equal to kHc(r, t)
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without maximal surface saturation, and thus ca(r, t) is not limited by a maximum adsorption

value.
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Figure 59: Concentration distribution of free and adsorbed molecules in the micromodel geom-
etry for different time intervals (t3; t4 and t5) with Pe = 100 for different adsorption desorption
ratio kH = 0.1, 1 and 10 in comparison to the non-adsorbing molecules.
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Figure 60: Zoom on the concentration of free and adsorbed molecules in the geometry of the
micromodel for t5, for different adsorption-desorption ratios kH = 0.1, 1 and 10 (Pe= 100). The
adsorbed concentrations are located at the solid/fluid interface. They are clearly identifiable for
kH = 1 and kH = 10, however for kH = 0.1, the adsorbed quantity is very small and therefore
difficult to visualize.
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We present in Fig. 61, the normalized propagators of the transport of molecules follow-

ing the Henry adsorption model for kH = 10 and compare the results with the simulation of

non-adsorbing molecules transport. In this paragraph, we refer to the propagators for the free

molecules in the bulk by Pf ree (presented with the colored solid lines) and by Ptotal , the propa-

gators for all molecules (free and adsorbed), presented by the colored dashed-dotted lines. For

small time t1, the shape of the propagators Pf ree is relatively close to the Gaussian curve, which
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Figure 61: Normalized propagators P((x−x0)/Ut, t) at different times as well as the respective
concentration distribution for the Henry adsorbing molecules (kH = 10) and for Pe = 100.
The colored dotted line denotes the non-adsorbing molecules result and the colored solid line
denotes the result for the Henry adsorbing model when considering the free tracers Pf ree and the
colored dashed-dotted line is for the Henry adsorbing model when considering all the molecules
(free and adsorbed) Ptotal . The black color denote the Gaussian fit of the propagators (non-
adsorbing molecules and adsorbing molecules) at the dispersive regime.
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characterizes the end of the diffusion dominated regime. However, the shape of Ptotal is differ-

ent. For the intermediate time t2, Pf ree and Ptotal are both different from the Gaussian curve. For

t4, Pf ree and Ptotal have a quasi-Gaussian profile and the curves overlap. This can be explained

by the fact that all molecules have sampled a representative volume of the porous medium and

almost all molecules have been adsorbed and desorbed on the surfaces. By comparing the prop-

agators of the non-adsorbing molecules with the propagators of the adsorbing molecules, the

latter give curves of the same form, i.e. having a Gaussian profile, which characterizes the

dispersion regime for the adsorbing molecules. In addition, this propagator has a delay on the

x-axis which proves that adsorption delays the transport of the molecules.

4.2. Langmuir adsorption

In this paragraph we consider the transport of adsorbing molecules following the Langmuir

model. We concluded in the first section of this chapter that in order to have a difference

between the transport of the Langmuir and Henry adsorbing molecules, a high adsorption-

desorption ratio should be considered. Therefore, we study the transport of the Langmuir ad-

sorbing molecules with two adsorption-desorption ratios: kL = 0.1 and kL = 10. More in detail,

we use a constant adsorption rate pA = 0.05 and the desorption rates correspond to pD = 0.5

and pD = 0.005, respectively. We perform the same simulation as in the previous paragraph

using the Dirac injection where we inject an initial concentration c0 = 10 at the lateral position

x0 = 200.

We present in Fig. 62, the normalized derivative of the displacement variance over time

D(t)/Dm for different adsorption desorption ratio for the Henry and Langmuir adsorption mod-

els and compare the results with the non-adsorbing molecules results. As can be seen, for

k = 0.1, the results for the transport of the molecules following the Langmuir and Henry adsorp-

tion models are very similar and the curves of D(t)/Dm overlap the curve of the non-adsorbing

molecules. It demonstrates that for a low adsorption/desorption ratio, the effect of adsorption

is very small and does not affect transport in the bulk. However, for k = 10, D(t)/Dm of the

molecules following the Langmuir adsorption model is higher than D(t)/Dm obtained with the
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Figure 62: Time evolution of the time derivative of the displacement variance D(t) for Pe = 100
in the micromodel. D(t) is normalized to the molecular diffusion coefficient Dm of the free
tracer molecules. The dashed lines denote the non-adsorbing molecules, while the dotted and
the solid lines present respectively the Langmuir adsorbing molecules, and the Henry adsorbing
molecules. The colors black and violet denote respectively (k = 0.1 and k = 10).

Henry model. This reflects that the molecules obeying the Langmuir adsorption model are

more dispersed than those obeying the Henry adsorption model. This result is due to the the

surface saturation feature of the Langmuir adsorption model (Γ∞ = 1). Therefore, the concen-

tration of the adsorbed tracer ca(r, t) = ∆xΓ(r, t) is limited whereas Henry adsorption model

does not present a maximum surface saturation, and we have ca(r, t) proportional to kHc(r, t).

For kH = 10, this leads to a higher concentration of the free molecules following Langmuir ad-

sorption model compared to those following Henry adsorption model and consequently higher

value of D(t)/Dm.

In order to better understand the transport of the molecules following the Langmuir adsorp-

tion model, we present in Fig. 63, the normalized propagators P((x− x0)/Ut, t) at different

time intervals and the corresponding total concentration distribution (ca(r, t) + c(r, t)) in the

micromodel geometry. We present the propagators using the free tracer concentration c(r, t),

namely Pf ree and compare the results to those obtained with the Henry’s adsorption model for
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Figure 63: Normalized propagators P((x− x0)/Ut, t) for the free tracer concentration c(r, t) at
different times as well as the respective concentration distribution for the Langmuir adsorbing
molecules (k = 10) and for Peclet number Pe = 100. The colored solid and dotted lines denote
the molecules following respectively the Henry and the Langmuir adsorption models. The black
color denotes the Gaussian fit at the diffusive and dispersive regimes.

kH = 10. The results show the typical transport regimes. At small and large time intervals, we

have a nearly Gaussian profile, which characterizes the diffusive and dispersive regimes. For

the dispersive regime, t6, we present in the black color the Gaussian fit of the propagators to

confirm the results. For intermediate time intervals, we have a non-Gaussian profile, which

characterizes the advective regime. When we compare the propagator profiles obtained with

the Henry and Langmuir models, the main difference lies in the advective and the dispersive

regimes. For the advection-dominated regime, at t2, we notice that the curve of the propagator
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obtained with the Langmuir adsorption model is larger and the peak is lower. This reflects that

the molecules in the bulk, following the Langmuir adsorption model, have higher concentration

compared to those obtained following the Henry adsorption model. In the dispersive regime, the

propagator corresponding to the Langmuir model has a lower peak. We also note that the mean

displacement velocity is higher, i.e. the displacement of molecules for the Langmuir model

are dispersed at a faster rate compared to the molecules following the Henry adsorption model.

This is caused by the difference in the maximum adsorbed quantity. The Langmuir model has

a limit of Γ∞, while the Henry model gives an adsorbed concentration that is proportional to

kHc(r, t). The initial concentration injected at t0 is the same for both systems as well as the ad-

sorption ratio kH = kL = 10. However, the Langmuir model has a maximum surface saturation

defined by Γ∞ = 1. The Langmuir adsorption leads to lower adsorbed quantity and thus higher

bulk molecules compared to the result of the Henry model. Accordingly, the displacement of

molecules in bulk for the Langmuir model is widespread.

To better visualize the difference between the two adsorption models, we present in Fig. 64

the evolution over time of the total concentration distribution (ca(r, t)+c(r, t)) in the dispersive

regime (in the time interval [t3, t5]). The comparative study shows that molecules in the bulk

are more dispersed using Langmuir’s model than by using Henry’s model. Moreover, it can
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Figure 64: Concentration fields in the porous geometry at different time slots (t3; t4 and t5) for
Pe = 100.
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be observed that the concentration of the adsorbed tracer, at the solid/fluid interface, is higher

in the Henry adsorption model than in the Langmuir model. This result is consistent with the

comparison we have carried out for normalized propagators.
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Chapter Conclusion

In this chapter, we have studied the influence of adsorption kinetics on tracer

transport. The results of the parallel plate geometry showed that when the adsorption-

desorption ratio is low, the adsorption has an insignificant effect on the transport.

However, when using a higher value, it modifies the transport behavior. For the

Henry’s adsorption mechanism, a high value of the adsorption-desorption ratio kH ,

causes a larger displacement and leads to over-adsorption (a peak on the curve

of D(t)/Dm). For the Langmuir model, the results showed the importance of the

initial concentration value. A high initial concentration value modifies the transport

regimes, where the advection regime occurs in two steps which are separated by an

additional stationary regime: Taylor dispersion regime. Considering the results of

the micromodel geometry, they showed that the transport in this porous structure

is strongly affected by the heterogeneity of the structure, it highlights a sinusoidal

dispersive regime. Regarding the adsorption simulations, the adsorption reduces the

displacement variance since the latter is hindered by the adsorption in the small pores.

The displacement variance decreases with increasing the values of the adsorption

desorption ratio. This result goes along with the analytical studies available, where

the range in which ∂

∂kH

D(t→∞)
Dm

is negative, becomes larger when considering smaller

channel width. For our case, the characteristic channel width of the pores in the

micromodel has a mean value of 10∆x, which leads to strictly negative derivative

and therefore D(t)/Dm decreases as a function of kH . For the Langmuir adsorption

model, where a maximum surface saturation is defined, the transport leads to a more

important molecule spreading compared to the transport of molecules following the

Henry adsorption model.





General conclusion

Surfactant adsorption is a complex process involving different phenomena that resist existing

frameworks. In particular, typical surfactant adsorption isotherms – like for other complex

fluids – display features that cannot be described using simple thermodynamic models (e. g.

Henry, Langmuir). Therefore, novel adsorption modeling that captures surfactant adsorption

processes, including monomer adsorption and surface aggregation, from liquid solutions must

be established. From a practical viewpoint, surfactant adsorption processes in industry are

mostly used in in-flow applications. Understanding the interplay between surfactant transport

and adsorption is therefore of utmost importance. In order to address these important issues,

the present manuscript reports different elements. First, we derive a simple phenomenological

adsorption model which accounts for adsorption cooperative effects (from lateral interactions

between adsorbed monomers to surface self-assembly into ordered or disordered mesoscopic

objects). Second, we perform numerical simulations that provide key insights into the coupling

between transport and adsorption kinetics of molecules in different pore geometries.

The Henry and Langmuir adsorption models are robust equations to describe a broad class

of adsorbate/adsorbent systems. However, the adsorption of surfactants in a porous material

leads to complex adsorption behavior such as the formation of micelles or vesicles. These

effects are augmented by the heterogeneity of the surface which combines with cooperative

effects that are inherent to such complex molecules. These rich phenomena are not captured

using most available thermodynamic models. It is possible to model this complex adsorption

behavior using effective approaches such as the stepped adsorption isotherm or the S-shaped ad-

sorption isotherm. Yet, these simple models portray the adsorption of individual monomers that

have accumulated to form a monolayer that eventually transforms into a more complex struc-

ture at the pore surface. As a result, they do not properly take into account the self-assembly

165
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and lateral interactions that are inherent to surfactant adsorption. Although other models exist,

they address each of these aspects individually. Within this thesis, we propose a cooperative

adsorption model; it consists of a thermodynamic model that captures the collective behavior

leading to complex kinetics and structural (re)arrangement upon surfactant adsorption. It takes

into account both the lateral interactions between adsorbed surfactants and possible transitions

between individual adsorbed monomers and self-assembled objects (i.e. ordered and disordered

self-assemblies). Our model is therefore generic as it allows describing surfactant adsorption

based on simple thermodynamic ingredients. More in detail, our model is based on two main

ingredients. First, we use an occupancy parameter greater than one, which allows taking into

account self-assembled objects. Second, both the adsorption and desorption coefficients depend

on surface concentrations to account for the role of lateral interactions as a function of surface

concentration. This allows accounting for either hindered or facilitated adsorption. The validity

of this versatile model – which can be easily extended to any other complex fluids – is checked

against available experimental data. Using this general approach, additional important informa-

tion can be gained such as regarding the adsorption kinetics. In turn, such key insights allow

better understanding the physics of surfactant adsorption. In particular, the exact dependence of

adsorption and desorption rates on surface concentration allow unraveling the rich and complex

kinetics observed in experimental results.

As for the second objective of this work, we investigate the interplay between surfactant ad-

sorption kinetics and transport using the Lattice Boltzmann method within the Two Relaxation

Time approach. This method ensures that accurate results are obtained for molecule transport

in simple and complex pore geometries. We first demonstrate the numerical accuracy of this

numerical framework by testing the influence of the number of nodes on the precision of the

results for the transport of passive i.e. non adsorbing tracers. Then, to investigate the inter-

play between advection, diffusion and adsorption, we extend this numerical Lattice Boltzmann

method to include tracer adsorption at the pore surface. In practice, this is achieved by adding a

third step in the numerical algorithm; this additional step corresponds to a simple mass balance

equation between the free and adsorbed tracer concentrations – with a detailed balance condi-

tion that is specific to the selected adsorption model. In our work, we specifically considered
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the Henry and Langmuir adsorption isotherms but also the cooperative model developed in this

thesis. The kinetics implementation is shown to verify ideal solutions such as those described

using the Henry and Langmuir models (as it correctly predicts the adsorption isotherm Γ(c) and

its underlying adsorption kinetics Γ(t)). As an important extension, other simulations are car-

ried out to study adsorption under dynamic conditions – i.e. under a flowing fluid. We evaluate

the impact of adsorption on the free tracer propagators distribution by studying the displacement

variance σ2
x (t) along the flow direction x. The latter measurement provides a direct estimate of

the effective dispersion coefficient D(t → ∞) with D(t) ∼ dσ2
x (t)/2dt. In practice, we inves-

tigate the effect of the adsorption/desorption ratio k as well as that of the initial concentration c0.

In the pore geometry, the dispersion of adsorbing molecules that obey the Henry adsorption

model follows the same evolution for D(t)/Dm as that for the non-adsorbing tracers. More in

detail, the three following regimes are observed: diffusion, advection-dominated, and disper-

sion. Interestingly, the transport of adsorbing molecules leads to a dispersive regime with an

effective dispersion coefficient that is larger than that for the non-adsorbing molecules. This

is due to adsorption conditions at the surface of the parallel plate geometry which leads to an

increase in the displacement variance σ2
x (t) in the x-direction (the flow direction). This result is

in agreement with available analytical expressions – which can be derived for the Henry model

– for the dependence of the dispersion coefficient on the adsorption/desorption ratio kH . More-

over, kH is found to significantly affect the observed transport regimes since large kH yields

an over-adsorption effect near the lateral injection position. The corresponding large adsorbed

amount remains trapped at the surface over long residence times. In practice, this leads to the

appearance of an additional step during the advection-dominated regime: the increase in the

displacement variance D(t)/Dm reaches a maximum before decreasing to its asymptotic value

as adsorbed and free molecules get redistributed. To study the influence of surface saturation,

we model the transport of molecules following the Langmuir adsorption model. The results

show that the initial concentration c0 has an important effect on the transport regimes. More-

over, we also found that this dependence on initial concentration is more pronounced as the

adsorption/desorption ratio k increases. This effect arises during the advection regime, which

extends over longer times with an increase in the value of the effective dispersion coefficient.
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Using large c0 > 200, the advection regime consists of two stages which are connected by a

stationary regime. During the first stage, the distribution of free molecules is not affected by ad-

sorption as we reach an intermediate stationary regime for D(t)/Dm; this regime corresponds to

the Taylor dispersion regime. Then during the second stage, D(t)/Dm increases until it reaches

the dispersion regime with a value characteristic of the transport of the molecules adsorbing

according to the Langmuir adsorption model. This effect is due to the strong contrast between

the concentration of the adsorbed and free molecules. Overall, the number of free molecules

is large compared to the number of adsorbed molecules (as the latter is limited to the value

imposed by the maximum surface concentration Γ∞ = 1). This adsorbed concentration does not

affect the dispersion of the free molecules. However, at longer times, due to advection, the con-

centration of free molecules decreases so that the impact of adsorption kinetics becomes more

important. The adsorbed molecules get redistributed by exchanging/desorbing with the free

tracers until the dispersive regime for the transport of adsorbing molecules is attained. Using

the cooperative adsorption model developed in this thesis, we also studied the influence of such

a collective behavior at concentrations larger than the critical surface concentration cs. Even

for a large initial concentration c0, with such cooperative adsorption, the bulk concentration

decreases quickly after injection so that the surface concentration is always in the Henry regime

(where only monomer adsorption occurs). To circumvent this issue, we perform simulations

with continuous concentration injection. By monitoring the evolution of the different adsorbed

amounts (isolated versus aggregated monomers) – Γm(x, t) and Γm′(x, t) –, we checked the ac-

curacy/validity of of the kinetics implementation of the cooperative adsorption model in the

LBM-TRT algorithm.

In the last part of this thesis, we performed Lattice Boltzmann simulations in a 2D porous

medium to study the influence of structure heterogeneity on surfactant transport and adsorption.

For such disordered materials, the Stokes flow simulation generates a complex velocity field

exhibiting preferential paths. As for the surfactant transport, we first studied the dispersion of

non-adsorbing tracers. The corresponding results do not reach a stationary regime even in the

long time limit as a sinusoidal function is obtained for D(t)/Dm. Despite this variation, the

propagator in this long time limit is close to Gaussian so that the dispersive regime can be char-

acterized. As for the adsorption simulations, the transport of adsorbing molecules according to
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the Henry and Langmuir adsorption models were performed. The normalized dispersion coef-

ficient D(t)/Dm for the two models resembles that obtained when considering transport for the

passive i.e. non-adsorbing tracers. However, in contrast to adsorption in a simple parallel plate

geometry, adsorption in realistic porous media leads to a decrease in D(t)/Dm compared to its

counterpart for the passive tracers. This result can be explained by the fact that adsorption in

porous media also occurs in the x-direction (in contrast to the slit pore geometry where flowing

molecules never encounter the pore surface in this direction). Such “additional” adsorption re-

duces the dispersion of the molecules in this flowing direction. As a result, we obtain smaller

displacements variance σ2
x (i.e. smaller D(t)/Dm). In addition, increasing the adsorption des-

orption ratio, leads to smaller D(t)/Dm. This result goes along with the analytical study of the

evolution of ∂

∂kH

D(t→∞)
Dm

. For our case, since the characteristic channel width of the pores is too

small, we have ∂

∂kH

D(t→∞)
Dm

< 0 and therefore D(t)/Dm decreases as a function of kH . When

comparing results obtained with the Henry and Langmuir adsorption models, no difference is

observed for low adsorption coefficients. Moreover, the results are very close to those obtained

for non-adsorbing tracers. On the other hand, for large adsorption coefficients, the molecules

following the Langmuir adsorption model are more dispersed than the molecules following the

Henry adsorption model (when comparing data taken at the same time step). This result high-

lights the key-role played by surface saturation at the pore surface.

The absence of the stationary regime for the dispersion simulation in the porous geometry

should be further investigated. This result can be caused by the complex pattern of the Stokes

flow. To address this issue, we also considered porous systems with a more homogeneous

geometry. As shown in the appendix, an oscillatory behavior exists but is slightly attenuated

compared to the results for the realistic micromodel geometry. However, D(t)/Dm is still in-

creasing with time. Our proposition is to remove the no-slip boundary condition implemented

along the y− axis limits so that periodic boundary conditions can be used. In so doing, the

Stokes flow pattern would become homogeneous. As a second option, simulations could be

performed for larger geometries to avoid finite size effects including such heterogeneity effects.





Appendices

171





Appendices 173

A. Dispersion coefficient calculus for adsorbing molecules

In the article by Levesque et al. they develop a theoretical analysis of Taylor dispersion under

adsorption conditions.They use a stochastic approach to derive the dispersion coefficient for

Poiseuille flow in simple geometries: planar and cylindrical.

In this paragraph, we follow the exact approach to derive the dispersion coefficient. As cited in

the article [65], they define the longitudinal dynamics of Brownian particle in a flow of velocity

using following Langevin equation:

ẋ(t) = v(y(t), t)+1b(y(t))ηb(t)+1s(y(t))ηs(t) (3)

where r = (x,y) is the position of the particle, y(t) is the position at the transverse direction.

1b(y(t)) is the indicator function of bulk b and it takes into account the bulk diffusion which is

characterized by the diffusion coefficient Dm. 1s(y(t)) is the indicator function of surface s and

it is associated with surface diffusion related to the diffusion coefficient Ds.

They also introduce the independent Gaussian white noise related to the bulk ηb and to the

surface ηs using the correlation functions:

〈ηb(t)〉= 〈ηs(t)〉= 0,

〈ηb(t)ηb(t ′)〉= 2Dmδ (t− t ′),

〈ηs(t)ηs(t ′)〉= 2Dsδ (t− t ′).

(4)

The system considered corresponds to an adsorbing system with kA and kD as the adsorption

and the desorption rates. We introduce P the propagators at equilibrium of the free molecules

and Γ the propagator of the adsorbed molecules at equilibrium (i.e. on the surface). The particle

at t = 0 starts from x = 0 and the transverse diffusion equation is given as follows:

∂tP(y, t|y′,0) = Dm∇
2P(y, t|y′,0) ∀y ∈ b

∂tΓ(y, t|y′,0) =−kDΓ(y, t|y′,0)+ kAP(y, t|y′,0)

= Dm∂nP(y, t|y′,0)
∀y ∈ s

(5)

(6)

where ∂n stands for the normal derivative. The process y(t) is considered stationary and it is

described by the stationary distribution Pstat(y) that is homogeneous in each phase (bulk or the
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surface). The transition probability between y and y′ is defined as P(y, t|y′, t ′)≡ P(y, t− t ′|y′,0).

In this paragraph, we aim to compute the variance of x(t) to infer the dispersion coefficient with

adsorption at stationary state.

In the case of a stationary velocity field v(y, t)≡ v(y), the large time limit of the variance of the

displacement M(t) = 〈x2(t)〉−〈x(t)〉2 is given by:

lim
t→∞

M(t) = 2Kt (7)

where K is the dispersion coefficient.

Calculus of the dispersion coefficient K

In this paragraph, in order to compute K, we first determine the displacement variance M(t). To

this goal, we define the first and the second moment of x(t) where we use the cross section in

the bulk b as the spatial integration domain so:

〈x(t)〉=
∫

b
dy x(t)Pstat(y)

〈x2(t)〉=
∫ t

0
dt ′
∫ t

0
dt ′′〈ẋ(y(t ′), t ′), ẋ(y(t ′), t ′′)〉

(8)

Calculus of 〈x(t)〉 using eq (3)

〈x(t)〉=
∫

b
dy x(t)Pstat(y)

=
∫

b

∫ t

0
dy ẋ(t ′)dt ′Pstat(y)

=
∫ t

0
dt ′
∫

b
dy v(y(t ′), t ′)Pstat(y)

+
∫ t

0
dt ′
∫

b
dy 1b(y(t ′))ηb(t ′)Pstat(y)

+
∫ t

0
dt ′
∫

b
dy 1s(y(t ′))ηs(t ′)Pstat(y)

=
∫ t

0
dt ′
∫

b
dy v(y(t ′), t ′)Pstat(y)+

∫ t

0
dt ′〈ηb(t ′)〉+

∫ t

0
dt ′〈ηs(t ′)〉

〈x(t)〉=
∫ t

0
dt ′
∫

b
dy v(y(t ′), t ′)Pstat(y)

(9)
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Calculus of 〈x2(t)〉

〈x2(t)〉=
∫ t

0
dt ′
∫ t

0
dt ′′〈ẋ(y(t ′), t ′)ẋ(y(t ′′), t ′′)〉

=
∫ t

0
dt ′
∫ t

0
dt ′′〈v(y(t ′), t ′)v(y(t ′′), t ′′)〉+

∫ t

0
dt ′
∫ t

0
dt ′′〈ηb(t ′)ηb(t ′′)〉

+2
∫ t

0
dt ′
∫ t

0
dt ′′〈ηs(t ′)ηs(t ′′)〉+2

∫ t

0
dt ′
∫ t

0
dt ′′〈ηb(t ′)ηs(t ′′)〉

+
∫ t

0
dt ′
∫ t

0
dt ′′〈v(y(t ′), t ′)ηb(t ′′)〉+

∫ t

0
dt ′
∫ t

0
dt ′′〈v(y(t ′), t ′)ηs(t ′′)〉

+
∫ t

0
dt ′
∫ t

0
dt ′′〈ηb(t ′)v(y(t ′′), t ′′)〉+

∫ t

0
dt ′
∫ t

0
dt ′′〈ηs(t ′)v(y(t ′′), t ′′)〉

〈x2(t)〉=
∫ t

0
dt ′
∫ t

0
dt ′′〈v(y(t ′), t ′)v(y(t ′′), t ′′)〉+2Dm〈Tb(t)〉+2Ds〈Ts(t)〉

where Tb(t) (resp. Ts(t)) is the cumulative time spent in the bulk (resp. on the surface) up to

time t.

We define I as I = 〈x2(t)〉−2Dm〈Tb(t)〉−2Ds〈Ts(t)〉

I =〈x2(t)〉−2Dm〈Tb(t)〉−2Ds〈Ts(t)〉

=
∫ t

0
dt ′
∫ t

0
dt ′′〈v(y(t ′), t ′)v(y(t ′′), t ′′)〉

=
∫ t

0
dt ′′

∫ t ′′

0
dt ′〈v(y(t ′′), t ′′)v(y(t ′), t ′)〉︸ ︷︷ ︸

I1

+
∫ t

0
dt ′′

∫ t

t ′′
dt ′〈v(y(t ′′), t ′′)v(y(t ′), t ′)〉︸ ︷︷ ︸

I2

(10)

In order to determine I2, we will be using the Fubini’s theorem

I2 =
∫ t

0
dt ′′

∫ t

t ′′
dt ′
∫

b
dy1

∫
b

dy2 v(y2, t ′′)v(y1, t ′)Pstat(y2)×Pstat(y1, t ′|y2, t ′′)

for 
t ′′ ≤ t ′ ≤ t

0≤ t ′′ ≤ t
=⇒


0≤ t ′′ ≤ t ′

0≤ t ′ ≤ t

we get:

I2 =
∫ t

0
dt ′
∫ t ′

0
dt ′′

∫
b

dy1

∫
b

dy2 v(y2, t ′′)v(y1, t ′)Pstat(y2)×Pstat(y1, t ′|y2, t ′′)
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we set t ′′ = t ′− τ

I2 =−
∫ t

0
dt ′
∫ 0

t ′
dτ

∫
b

dy1

∫
b

dy2 v(y2, t ′− τ)v(y1, t ′)Pstat(y2)×Pstat(y1, t ′|y2, t ′− τ)

=
∫ t

0
dt ′
∫ t ′

0
dτ

∫
b

dy1

∫
b

dy2 v(y2, t ′− τ)v(y1, t ′)Pstat(y2)×Pstat(y1,τ|y2,0)

since the transition probability Pstat(y1, t ′|y2, t ′− τ) = Pstat(y1,τ|y2,0)
0≤ τ ≤ t ′

0≤ t ′ ≤ t
=⇒


τ ≤ t ′ ≤ t

0≤ τ ≤ t

I2 =
∫ t

0
dτ

∫ t

τ

dt ′
∫

b
dy1

∫
b

dy2 v(y2, t ′− τ)v(y1, t ′)Pstat(y2)×Pstat(y1,τ|y2,0)

Calculus of I1

I1 =
∫ t

0
dt ′′

∫ t ′′

0
dt ′〈v(y1, t ′)v(y2, t ′′)〉

=
∫ t

0
dt ′′

∫ t ′′

0
dt ′
∫

b
dy1

∫
b

dy2 v(y1, t ′)v(y2, t ′′)Pstat(y1)×Pstat(y2, t ′′|y1, t ′)

we set t ′ = t ′′− τ

I1 =−
∫ t

0
dt ′′

∫ 0

t ′′
dτ

∫
b

dy1

∫
b

dy2 v(y1, t ′′− τ)v(y2, t ′′)Pstat(y1)×Pstat(y2, t ′′|y1, t ′′− τ)

since the transition probability Pstat(y2, t ′′|y1, t ′′− τ) = Pstat(y2,τ|y1,0)

I1 =
∫ t

0
dt ′′

∫ t ′′

0
dτ

∫
b

dy1

∫
b

dy2 v(y1, t ′′− τ)v(y2, t ′′)Pstat(y1)×Pstat(y2,τ|y1,0)
0≤ τ ≤ t ′′

0≤ t ′′ ≤ t
=⇒


τ ≤ t ′′ ≤ t

0≤ τ ≤ t

I1 =
∫ t

0
dτ

∫ t

τ

dt ′′
∫

b
dy1

∫
b

dy2 v(y1, t ′′− τ)v(y2, t ′′)Pstat(y1)×Pstat(y2,τ|y1,0)

since y1 and y2 are dummy variables they can be exchanged and then we get :

I1 =
∫ t

0
dτ

∫ t

τ

dt ′′
∫

b
dy2

∫
b

dy1 v(y2, t ′′− τ)v(y1, t ′′)Pstat(y2)×Pstat(y1,τ|y2,0)

so then I1 = I2 and Eq. (10) becomes

I = 2
∫ t

0
dτ

∫ t

τ

dt ′
∫

b
dy1

∫
b

dy2v(y2, t ′− τ)v(y1, t ′)Pstat(y2)×Pstat(y1,τ|y2,0) (11)

on the other hand

〈x(t)〉2 =
(∫ t

0
dt ′
∫

b
dyPstat(y)× v(y, t ′)

)2

=
∫ t

0
dt ′
∫ t

0
dt ′
∫

b
dy1

∫
b

dy2v(y2, t ′′)v(y1, t ′)Pstat(y2)Pstat(y1))
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And following the calculus of I we get

〈x(t)〉2 = 2
∫ t

0
dτ

∫ t

τ

dt ′
∫

b
dy1

∫
b

dy2v(y2, t ′− τ)v(y1, t ′)Pstat(y2)×Pstat(y1) (12)

So using eqs. (11) and (12), we get

〈x2(t)〉−〈x(t)〉2−2Dm〈Tb(t)〉−2Ds〈Ts(t)〉= f (t)

f (t) = 2
∫ t

0
dτ

∫ t

τ

dt ′
∫

b
dy1

∫
b

dy2v(y2, t ′− τ)v(y1, t ′)

×Pstat(y2)× (Pstat(y1,τ|y2,0)−Pstat(y1)

(13)

So as defined in Eq. (7), the large time limit of the variance of the displacement M(t) = 〈x2(t)〉−

〈x(t)〉2, helps to get the dispersion coefficient K, and through Eq (13), it becomes:

K = Pstat(b)Dm +Pstat(s)Ds +Kv

where Pstat(b) and Pstat(s) are the stationary probability to be in the bulk or to be adsorbed on

the surface. We introduce kv as the velocity-dependent part.

Kv =
∫

b
dy1

∫
b

dy2v(y1)v(y2)×Pstat(y2)h(y1|y2)

with h(y1|y2) =
∫

∞

0
[P(y1, t|y2,0)−Pstat(y1)]dt.

(14)

Calculus of the stationary probability limit Pstat(α)

Let N = Ns +Nb with N denote the number of all particles in the system. Nb (resp. Ns) corre-

sponds to the number of particle in the bulk (resp. adsorbed on surface).

The bulk volume corresponds to V = L3 and the total adsorption surface is S = 2L2.

Pstat(b) =
Nv

NL

Pstat(s) =
Ns

2N

As the system considered is in equilibrium state, we have:

Ns

S
=

kA

kD

Nv

V
⇒ Ns = 2

kA

kD

Nv

L
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Which gives

Nv = N
kDL

L(kDL+2kA)

⇒ Pstat(b) =
Nv

NL
=

kD

kDL+2kA

Ns = N−Nv = N
(

1− kDL
kDL+2kA

)
= N

2kA

kDL+2kA

⇒ Pstat(s) =
Ns

2N
=

kA

kDL+2kA

Calculus of h(y1|y2)

In order to determine h(y1|y2) (pseudo-Green’s function), Levesque et Al. propose the use of

the first Laplace an to transform Eq. (5) and Eq. (6). Once the Laplace transform is performed,

they pass to the small Laplace variable limit.

After determination of the pseudo-green function, Eq. (14) gives a generic expression of the

Taylor dispersion coefficient in the presence of adsorption and desorption conditions. In the

case of a planar system, i.e. two parallel plates having a poiseuille flow with the velocity

field v(y) = 6v̄ y
L(1−

y
L), where v̄ represents the velocity averaged over a cross-section L and

y ∈ [0,L]). We obtain the following expression:

hplan(y1|y2) =
1
2y2

1 +
kA
kD

y1 +
1
2y2

2− y2(L+ kA
kD
)

Dm(L+ 2kA
kD

)

+

1
3L3 + 2DmkA

k2
D

+ kAL2

kD
+

Lk2
A

k2
D

Dm(L+ 2kA
kD

)2

(15)

And thus, kv the velocity-dependent part of the dispersion coefficients takes:

KPois
v = α

L2v̄2

Dm

βL kA
kD

2
+ γL2 kA

kD
+L3

(L+ 2kA
kD

)3
+

v̄2

kD

2L2 kA
kD

(L+ 2kA
kD

)3

with α = 1/210, β = 102 and γ = 18.
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B. LBM results in 2D geometry

1. Stokes TRT equations

The equations we used are from the article of Ginzburg[121]. She introduces the equilibrium

components e±q used to solve the Navier-Stokes equations and presents the required approxima-

tions to solve the Stokes problem. The initial form of the equilibrium components equations is

as follows: 

e+q (r, t) = D̄(s(r, t))Eq(r, t)

e−q (r, t) = t∗q(j(r, t).vq)

e+0 (r, t) = e0 = s(r, t)−
Qm

∑
q=1

e+q (r, t)

e−0 = 0

(16)

with s(r, t)= ρ(r, t), and D̄(s(r, t))=P(ρ(r, t))= v2
s ρ(r, t). Eq is defined by Eq = t∗q

[
1+(1/v2

s )E
(u)
q (UUU)

]
.

For the Stokes problem, the non-linear term E(u)
q (UUU) = 0, then we obtain the following equa-

tions: 

e+q (r, t) = v2
s ρ(r, t)t∗q

e−q (r, t) = t∗q(j(r, t).vq)

e+0 (r, t) = ρ(r, t)−
Qm

∑
q=1

e+q (r, t)

e−0 = 0

(17)

2. ADE TRT equations

To derive the equilibrium components for the ADE equation, we used the definitions introduced

in the work of Ginzburg[99]. 

E+
q = E(m)

q +g(u)E(u)
q (UUU);

E−q = t(a)q (UUU .vq)

E0 =

(
1−

Qm

∑
q=1

E+
q (r, t)

) (18)

to derive E+
q , we have to determine E(m)

q , g(u) and E(u)
q . For our case, we cancel the numer-
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ical diffusion, so we have g(u) = 1. Then to determine E(m)
q , we have [99]:

E(m)
q = t(m)

q ve +E(a)
q

with E(a)
q =

Dxx−Dyy

4
Pxx

q +
Dxy

4
Pxy

q

with Pxx
q and Pxy

q defined using the velocity vector vq by Pxx
q = v2

qx− v2
qy and Pxy

q = vqxvqy. Dxx,

Dyy and Dxy are the diagonal (x and y axis) and off-diagonal (xy) diffusion coefficients. We

have an isotropic diffusion, therefore Dxy = 0 and the diffusion coefficients are Dxx = Dyy. This

gives:
E(a)

q = 0

E(m)
q = t(m)

q ve.

Since we have isotropic diffusion, to determine E(u)
q , we use E(u)

q (UUU) = E∗q(UUU) [99] defined as:

E∗q(UUU) =
t∗q
2
(3(UUU .vq)

2−UUU2)

with UUU = {Ux,Uy} is the advective velocity and UUU2 =U2
x +U2

y . t∗q are the isotropic weights.

The weights families t(m)
q and t(a)q become t(m)

q = t(a)q = t∗q =
{1

3 ; 1
12

}
[99]. Then we get the

following equations: 

E+
q = t∗q ve +

t∗q
2
(3(UUU .vq)

2−UUU2)

E−q = t∗q(UUU .vq)

E0 =

(
1−

Qm

∑
q=1

E+
q (r, t)

) (19)

3. Normalized propagator computation

The propagators distribution is defined for δx = x− x0 by:

P(δx, t) =
1

∑δx′∑y ∑q gq (δx′,y, t)∑
y

∑
q

gq (δx,y, t); (20)

In order to compute the normalized propagators P(x− x0/Ut, t), we substitute δx by (x− x0)/Ut,

so we have the following expression:

P
(

x− x0

Ut
, t
)
=

1

∑δx′∑y ∑q gq

(
δx′
Ut ,y, t

)
︸ ︷︷ ︸

(1)

∑
y

gq

(
x− x0

Ut
,y, t
)

(21)
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The term (1) is defined as:

1

∑δx′∑y ∑q gq

(
δx′
Ut ,y, t

) =
Ut

∑δx′∑y ∑q gq (δx′,y, t)

Therefore Eq.(21) becomes:

P
(

x− x0

Ut
, t
)
=

Ut
∑δx′∑y ∑q gq (δx′,y, t)∑

y
gq

(
x− x0

Ut
,y, t
)

(22)

4. Results in parallel plates geometry

Comparison with analytical tracer concentration profile

For initial and boundary conditions that insure a slug injection, we have the analytical solu-

tion proposed by Van Genuchten and Alves for 1D system at a lateral position x, defined by

cl,analyt(x, t) [156]:

cl,analyt(x, t) =


c0A(x, t) 0 < t < t0

c0A(x, t)− c0A(x, t− t0) t > t0
(23)

where

A(x, t) =
1
2

er f c

[
x−Ut

2(Dt)
1
2

]
+

1
2

exp(
x
D
)er f c

[
x+Ut

2(Dt)
1
2

]

with c0 being the initial concentration, D is the coefficient of diffusion, and U is the average

velocity from the Stokes simulations.

In Fig. 65, we compared the evolution of the concentration in time at a position x, obtained by

simulation cl(x, t) = 1
Ly

∑y c(r, t) with the analytical solution cl,analyt(x, t) in Eq. (23) at different

positions in the channel. We can deduce from the comparison at different abscissa that the

analytical and simulation curves overlap for abscissa close to the channel entrance. But we

see a slight difference for large x. This difference can be related to the difference between the

system studied by the analytical solution and by our LBM simulations: the analytical solution

is defined for a 1D system and our simulations represent a 2D system. Furthermore, such a

difference might be attributed to the accumulation of numerical errors in the simulation.
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Figure 65: Comparing analytical solution with simulation results of the evolution of the con-
centration in time for the the parallel plates geometry for Pe = 9.2. Straight lines denote the
simulation results and the dashed lines present the analytical solution

5. Results in complex regular 2D geometry

In order to consider more complex geometries, we created crenelations and sinusoids on the

parallel plates and used them as our geometries.

5.1. Stokes flow

Fig. 66 presents the results of the Stokes flow simulation in different geometries. As we can

see, near the restriction of the geometry, we have a variation of the average velocity. It presents

the shear effect caused by the shape of the geometries: the no-slip boundary condition dictates

that the velocity of the fluid at the boundary is zero. Furthermore, the flow rate is constant

throughout the geometry so the velocity is greater in the restrictions and lower in the wider

sections.
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Figure 66: flow in the x-direction in periodic geometries: sinusoids, crenelatations with Lx =
2000 and Ly = 41

The flow shows that the sinusoids and crenelations have a relatively small effect on most of the

flow but cause a strong deceleration of the fluid near to the boundary since we have the no slip

boundary condition. A complex interaction exists between fluid flow and convective particles

transfer. Therefore, the changes we see here will affect the transport of the tracer simulations.

5.2. Passive tracer dispersion

In this section, we performed tracer dispersion simulation for a crenelated geometry. Propaga-

tors at different times are plotted in Fig. 67 (passive tracer was injected for this simulation at

x0 = 150). For small times t, the shape of the propagator is quasi-Gaussian but for higher times

the distribution of the propagators is not Gaussian. We therefore, conclude that the changes in

the geometry affects the dispersion of the tracer, since it becomes non-Gaussian in the crenelated

geometry.
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Figure 67: Propagators P((x− x0)/Ut, t) at time t in the crenelated geometry
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C. LBM transport of adsorbing molecules in parallel plates
geometry

1. Influence of the adsorbed tracer for Henry kH = 1
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Figure 68: LBM simulation results of the transport of Henry adsorbing molecules with ad-
sorption desorption coefficient kH = 1 and pD = 0.001; the solid and dashed lines denote re-
spectively. The simulations are for Pe = 100 and initial concentration per site c0 = 10. (a)
Normalized evolution of the derivative of the displacement variance over time. The dashed
lines denote the analytical values of Dads

e f f /Dm. (b) Normalized propagators at the different time
slots.
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2. Evolution of the dispersion coefficient

The derivative of the dispersion coefficient for adsorbing molecules:

∂

∂kH

Dads
e f f

Dm
=

2L2
yU2 (35Dm(Ly−4kH)+LykD

(
L2

y +11LykH−17k2
H
))

35D2
mkD(Ly +2kH)4 (24)

The roots of Eq. (24) are as follows:

k1 =

√
7
√

2800D2
m−100DmL2kD +27L4k2

D−140Dm +11L2kD

34LkD

k2 =
−
√

7
√

2800D2
m−100DmL2kD +27L4k2

D−140Dm +11L2kD

34LkD
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D. LBM transport of passive tracer in realistic media

1. Concentration distribution in micromodel geometry

In order to better understand the increasing value of D(t)/Dm for a large time intervals shown

in Fig. 56, we present in Fig. 69, the temporal evolution of the concentration distribution in

the micromdel for larger time intervals. We observe that the tracer passes gradually through

𝑡3 𝑡4 𝑡5 0 

max 

Figure 69: Concentration of the molecules distribution in the micromdel geometry at different
time slots (t3; t4 and t5) under a flowing fluid with peclet number Pe = 100.

the porous medium and that it disperses adequately. However, in contrast to the dispersion in

the parallel plates geometry, in the heterogeneous micro-structure, the dispersion front is more

heterogeneous. More important, we notice that the transport along the boundaries y = 0 and

y = Ly is delayed and this influences the displacement of the front. The reason for this is due

to the porous structure and the resulting heterogeneity in the flow field in combination with the

no-slip boundary condition. To control this behavior, we should consider a larger structure or a

periodic boundary condition instead of the no-slip boundary condition, so that the macroscopic

flow along the x-direction becomes more homogeneous in this geometry.

2. Transport of passive tracer in regular geometry

In this paragraph, we perform the transport simulation of passive tracer in a regular geometry

shown in Fig.70. It is a regular stacking of 2D spheres with Lx = 4000 and Ly = 2300, the

porosity of this geometry is 46%

The result in Fig.71, presents the temporal evolution of the normalized derivative over time

D(t)/Dm. It shows a more homogeneous result than the result in the micromodel, but the

increasing value behavior for D(t) is still present. The sinusoidal form of the curve is less

apparent than in the micromodel simulation. One difference is at the beginning and the end of

the advective regime, for the regular geometry, we get a decrease of D(t) and it is smaller than
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Figure 70: Regular Geometry image with width Lx and length Ly, the color black presents the
solid and the white stands for the pore volume.
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Figure 71: Normalized evolution of the derivative of the displacement variance over time D(t)
Dm

=

1
2Dm

∂σ2
x (t)

∂ t in the micromdel geometry for the transport of the passive tracer under flowing fluid
for Pe = 100.

the molecular diffusion coefficient Dm. So the change of the geometry allowed to reduce the

sinusoidal behavior but not the increasing value of D(t).

In Fig. 72, we present temporal evolution for the normalized propagators in the geome-

try. The results are in accordance with the existence for the advective regime, between t1 and

t4, where the form of the propagators is altered due to advection as well as for the dispersive

regime, for t5 and t6, we have the form of the geometry that changes the propagators but it as
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Figure 72: Normalized propagators in the regular geometry for the transport of the passive
tracer for Pe = 100.

nearly a Gaussian shape. For small time intervals, we don’t get the Gaussian shape of the prop-

agators, which can be explained that it modified due to the spheres in the geometry.

𝑡1 𝑡2 𝑡3 0 

max 

𝑡4 𝑡5 𝑡6 0 

max 

Figure 73: Concentration of the molecules distribution in the regular geometry at different time
slots under a flowing fluid with Peclet number Pe = 100.

The concentration distribution is presented in Fig. 73. It shows that for large time interval,

at t6, the concentration distribution have a wavy form, that we assume is caused by the form

of the geometry. Therefore, we concluded that using a more homogeneous geometry, does not

change the non uniform behavior of the concentration distribution and thus the main reason
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behind this effect is the no-slip boundary condition combined with the geometry heterogeneity

and one option to solve this is to use periodic boundary condition at the y-axis boundary.
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Thesis abstract
Surfactant adsorption is receiving increasing attention with numerous physical chemistry applications
relevant to both science and engineering fields. This work is devoted to the complex interplay between
surfactant adsorption and transport in porous materials. The strong lateral interactions and propensity
to form self-assembled mesoscopic objects on adsorbing surfaces lead to a rich phase diagram with
complex underlying mechanisms and kinetics. First, to address such difficult issues, a new adsorption
formalism for surfactant adsorption is derived. This model is based on adsorption/desorption ratio that
are surface concentration-dependent to account for hindered or facilitated adsorption. Additionally, it in-
cludes a packing parameter to characterize the aggregated objects so that any mesoscopic self-assemblies
– ordered or disordered – can be taken into account in an effective fashion. Second, we investigate
the strong impact of adsorption on the mobility of particles during transport processes using a robust
numerical scheme: Lattice Boltzmann simulation within the two relaxation time framework. We per-
form such numerical simulations to elucidate the non-trivial coupling between surfactant adsorption and
transport as a function of pore structure/geometry. By modeling the transport of both non-adsorbing and
adsorbing surfactants in simple and complex pore structures, we highlight the particular effect of the ad-
sorption/desorption ratio k as well as that of the initial concentration c0 (for different adsorption models
Henry, Langmuir, etc.). The results for the parallel plate geometry show that when small k and c0 lead to
small or negligible adsorption impact on transport. However, for larger values, adsorption significantly
alters transport as it drastically increases the dispersion of the adsorbing particles within the confining
geometry. The results for more complex/realistic porous geometries indicate that transport is signifi-
cantly affected by the structure heterogeneity. Adsorption effects lead to a decrease in the displacement
variance due to small pore size (i.e. smaller dispersion coefficient) which yields a lower displacement
velocity.

Keywords: Surfactant and soft matter, Cooperative interactions, Transport, Adsorption,

Résumé de thèse
L’adsorption de tensioactifs fait l’objet d’une attention croissante avec de nombreuses applications physico-
chimiques relevant à la fois des domaines de la science et de l’ingénierie. Ce travail est consacré
à l’interaction complexe entre l’adsorption et le transport de molécules tensioactives dans des matéri-
aux poreux. Les fortes interactions latérales et la propension à former des objets mésoscopiques auto-
assemblés sur des surfaces adsorbantes conduisent à un riche diagramme de phase avec des mécanismes
et une cinétique sous-jacents complexes. Pour répondre à ces questions difficiles, un nouveau mod-
èle d’adsorption des agents de surface est proposé. Ce modèle repose sur des coefficients cinétiques
d’adsorption/désorption qui dépendent de la concentration de surface pour tenir compte de l’adsorption
entravée ou facilitée. De plus, ce modèle comprend un paramètre d’occupation de surface pour carac-
tériser les objets agrégés de manière à ce que tout auto-assemblage mésoscopique – ordonné ou dé-
sordonné – puisse être pris en compte (au moins de manière effective). Dans un deuxième temps,
nous étudions le fort impact de l’adsorption sur la mobilité des particules pendant les processus de
transport en utilisant un schéma numérique robuste : les simulations de type Lattice Boltzmann com-
binée à une méthode dite ‘deux temps de relaxation’. Nous réalisons ces simulations numériques pour
étudier le couplage non trivial entre l’adsorption et le transport des tensioactifs en fonction de la struc-
ture/géométrie des pores. En modélisant le transport de tensioactifs adsorbants et non adsorbants dans
des structures présentant des pores simples ou complexes, nous mettons en évidence l’effet particulier
du rapport d’adsorption/désorption k ainsi que celui de la concentration initiale c0 (pour différents mod-
èles d’adsorption Henry, Langmuir, etc.). Les résultats pour la géométrie porale de type plans parallèles
montrent que des petites valeurs de k et c0 conduisent à un impact faible ou négligeable de l’adsorption
sur le transport. Cependant, pour des valeurs plus élevées, l’adsorption modifie sensiblement le transport
car elle augmente considérablement la dispersion des particules adsorbantes dans la géométrie de con-
finement. Les résultats pour des géométries poreuses plus complexes/réalistes indiquent que le transport
est significativement affecté par l’hétérogénéité de la structure. De plus, les effets d’adsorption entraî-
nent une diminution de la variance du déplacement en raison de la petite taille des pores (c’est-à-dire un
coefficient de dispersion plus faible), ce qui conduit à un champ de vitesse de déplacement plus faible.

Mots clés: Surfactant et matière molle, Interaction Cooprative, Transport, Adsorption.
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