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Introduction

A worldwide campaign for better energy efficiency has been gaining an ever-increasing mo-
mentum over the last decades, motivated by the need to tackle the negative impact of
human activities on the entirety of the ecosystem. With transportation being one of the
major sources of emissions, the way goods and people move will change drastically over
the upcoming years by a combination of policy and technico-economical reasons, leaning
towards more environmentally friendly vehicles.

Providing better fuel economy with lower emissions compared to conventional vehicles,
hybrid electric vehicles (HEVs) are one of the most promising solutions. Optimal design
of electrified powertrains is the key to unlock their full potential. The design task focuses
on developing products of high quality satisfying various specifications and requirements at
the lowest cost possible. Meanwhile, the optimization process will help the designer gain
a competitive edge by selecting the solution leading to the lowest fuel consumption values.
The main aim of this thesis is to develop fast and reliable design optimization methodologies.

Given the huge leap in computing power, modeling seems like the most convenient option
to compare between different solutions and evaluate their fuel economy. However, hybrid
vehicles are complex systems whose fuel saving potential depends on multiple factors such
as their architecture and the sizing of their components.

Thus, designing HEVs is a transverse and multidisciplinary approach that poses several
challenges: on one hand, a thorough understanding of the functioning of the components is
required in order to integrate the main phenomena impacting its results. This calls for pro-
fessionals from various fields with different skill-sets, tools and models. On the other hand, a
global vision over the system for extended periods of time such as homologation cycles while
considering the interactions between the components of the drive-train is needed as well
to assess its performance. In fact, optimizing the powertrain components separately does
not guarantee that once assembled, they will form an optimal system due to their strong
interactions. However, system supervision throughout the conception phase is difficult when
considering a company’s structure, where multiple teams, each dedicated to the study of a
specific component of the system or a particular physical behaviour, have limited exchanges.

In addition to this, the system’s fuel consumption depends on its control: various possi-
bilities can be selected to deliver the required torque to the wheels during the driving cycle,
due to the presence of multiple mechanical energy sources and a reversible storage capacity.
This increases the complexity of the system and adds thousands of decision variables to the
global optimization problem. It then becomes impossible to find a solution in reasonable
delays by just applying an all-at-once approach.

Hence, this thesis work centers primarily around reducing the complexity of the opti-
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mization study, evaluating the system’s performance and proposing efficient systemic design
methodologies for the optimal sizing of hybrid powertrains. These approaches should also
be adapted to an industrial setting. In order to present the work that was carried out to
achieve these objectives, this manuscript is divided into four chapters.

Chapter 1 expands on the scope of the research project by detailing its background, ob-
jectives and challenges. Afterwards, the thesis work is confronted to other relevant projects.
Strategies that were undertaken to overcome the barriers specific to the optimization of
complex systems are dissected. Different possibilities are then investigated to reduce the re-
quired calculation time when searching for a system-optimal solution without compromising
global accuracy: optimal control methods, cycle reduction techniques and decomposition-
based strategies. Frameworks aimed at solving Plant/Controller optimization problems, to
which the HEV case study belongs to, are explored as well.

Chapter 2 then starts by presenting the general formulation of this class of problems
before implementing the most interesting leads found previously. These are then assessed
over the hybrid railway power substation test-case first, as it provides a reference solution
and is much easier and faster to evaluate compared to the HEV case study. This enables
a thorough preliminary analysis of the implemented methods, allow for the improvement of
the most efficient strategies as well as lead to the development of novel alternative design
strategies.

The hybrid powertrain optimization problem is detailed afterwards in Chapter 3. The
application scope and an overview of the system model are given before presenting the op-
timization variables considered in this project. After selecting a suitable level of system
granularity, the component models are disclosed. The methods adopted to generate the re-
quired data quickly while maintaining a high level of model accuracy are presented as well.
Next, the command and design constraints are listed before formulating the optimal design
problem.

Finally, the most promising design approaches developed in the previous chapters are
compared in Chapter 4. A compact vehicle equipped with a parallel hybrid powertrain is
selected, even though the proposed design strategies can be applied for other hybrid archi-
tectures and systems. The comparison between the various approaches considers different
criteria such as computation time and cost reduction. Once an optimal approach is iden-
tified, the robustness of the optimal solution as well as the impact of additionnal design
constraints are discussed.
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Introduction
This chapter introduces the environmental, economic and scientific context of the research
project along with its objectives. The main challenges of systemic design such as the im-
portance of considering the other components, the different physical phenomena, the design
cycle and the compromise on time/precision when modelling the system are also discussed.

The research work is positioned afterwards using the research lab as reference first, before
comparing it to other relevant projects, nationally and internationally, related to the theme
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of systemic design. Since the hybrid powertrain’s fuel efficiency depends on its use, the main
possibilities offered for the integration of driving cycles, either through power management
or cycle reduction, are presented.

The fourth part is then specifically dedicated to the exploration of the coupling between
design and controller optimizations, and how the previous techniques can be incorporated
during system optimization. Finally, the last section investigates other decomposition meth-
ods, applied for a wider range of problems, that are aimed at reducing the complexity of
systemic design problems and assesses their suitability for hybrid powertrain optimization.

1.1 Context of the research project

1.1.1 Air pollution consequences

Human activities are the major cause of air pollution. To support an ever-growing popu-
lation, projected to reach 8 billion in 2024 [1], increased energy production, mobility and
supporting industries are needed. This results in higher levels of harmful emissions in the
atmosphere, especially in large urban areas [2].

Even though there is much to be learned about the health consequences of air pollution,
experts have unanimously linked them to numerous neurological, cardiovascular and respi-
ratory diseases, as well as cancer and birth defects [3, 4, 5]. Toxic air pollutants, and gas
emissions in general, also damage Fauna, Flora and bodies of water. The last decade has
been marked with growing concerns over the adverse environmental and ecological effects
these emissions have, such as acid rain, haze, depletion of the ozone layer and global climate
change (GCC) [3, 6, 7].

Different indicators can be observed to grasp the magnitude of climate change around
the world [8], urging an immediate global response. The clearest of which is the continuous
temperature rise on Earth’s surface, as shown in Figure 1.1.

Figure 1.1: History of the global surface temperature since 1880 [9]
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Thus, it can be understood that Earth’s surface temperature has increased by 1.5 degrees
over the 20th century. This might seem as negligible, but these small temperature variations
can lead to disastrous changes in the environment, since it preserved stable temperatures
during the planet’s recent history.

In fact, the consequences of climate change are already perceptible: mass extinctions
of thousands of plant and animal species, longer drought periods, a huge increase in the
number of tropical storms and forest fires, and the rise of sea levels, as depicted in Figure
1.2. The damage caused by climate change will only increase and become more severe, as the
Intergovernmental Panel on Climate Change has alerted [2]. In order to avoid irreversible
damage to the ecosystem and insurmountable threats to human survival, environmental
agencies worldwide warn that the mean global temperature rise should be maintained well
under 2 degrees over the next century [10].

Figure 1.2: Evolution of the global mean sea level ([8], data retrieved from [11])

1.1.2 Greenhouse gas emissions

GCC is mainly driven by higher concentrations of greenhouse gases. These gases absorb and
emit the sun’s radiant energy, reflected by Earth’s surface, within the infrared range. This
is referred to as the greenhouse effect.

The 5 main greenhouse gases are: water vapor (H2O), carbon dioxide (CO2), methane
(CH4), nitrous oxyde (N2O) and hydrofluorocarbons (HFC). Water vapor is the most abun-
dant, fluctuating between 0.4% and 4% of the atmospheric volume, while all the other gases
combined take up only 0.1% [12]. It has been proven that human activities only directly
impact the concentration of the latter. However, when studying greenhouse gases, it is much
wiser to discuss their global warming potential (GWP, [12]) rather than only focus on their
volume proportions.

The GWP index compiles the lifetime of the gases in the atmosphere, the amount of
energy absorbed and emitted per kilogram and their concentrations to determine how they
contribute to GCC. The GWP of the main greenhouse gases has been estimated in the short
term, designated as a period under 20 years, and the long term, spanning over a century, as
shown in Figure 1.3 .
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Figure 1.3: Global warming potential of greenhouse gases (Data retrieved from [9])

Despite its low radiative properties compared to other greenhouse gases, with 1 kg of
CH4 absorbing and emitting radiant energy as much as 28 kg of CO2 for example, CO2
contributes the most to climate change because of its much higher levels in the atmosphere.
In 2018 for example, global CO2 emissions have reached 37.4 Gt [12].

In order to achieve different temperature rise targets, Representative Concentration Path-
ways (RCP) are studied to set limits of emissions for different greenhouse gases [10, 12]. This
introduces a "Carbon Budget", that shows the maximum amount of CO2 emissions to keep
temperature from rising above a certain target. Figure 1.4 presents the carbon budget to
stay below the 2 degrees target, as part of the RCP2.6 pathway.

Figure 1.4: Carbon Budget for RCP2.6 [12]

This leads in turn to the study of how different sectors worldwide contribute to the
release of carbon dioxide, in order to conceive a global plan of action. Emissions from
different human activities are illustrated in Figure 1.5. The main emitters are energy pro-
duction (mostly coal-fired power), transport (passenger vehicles and heavy-duty trucks) and
industrial activities.

1.1.3 Decarbonization and policy
To follow the RCP2.6 pathway, aggressive decarbonization policies need to be taken and
enforced to drastically reduce emissions from the main emitting sectors in the upcoming
years. Governments worldwide should cut overall emissions in half by 2050 if they want to
keep on track.
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Figure 1.5: Worldwide CO2 emissions by sector in 2016 [2]

As of now, global efforts have been made towards this goal: coal and oil fired power plants
are being gradually substituted with cleaner energy. Processes to generate heat either in
residential areas or industrial factories are being progressively electrified [13]. Furthermore,
the way goods and people move will change drastically over the upcoming years by a com-
bination of policy and technico-economical reasons.

In the EU for example, mandatory emission reduction targets for new cars are set [14, 15].
Original Equipment Manufacturers (OEMs) who are not aligning with these targets are
fined important penalty payments. As of 2019, the penalty is 95 e per gCO2/km target
exceedance.

Between 2015 and 2019, the new european car fleet had to meet a target of 130 gCO2/km.
Data compiled of the average emissions in 2018, showed the average emissions of new pas-
senger cars circulating to be of 120 gCO2/km [16], indicating the effectiveness of the imple-
mented policy. From 2020 onwards, the average CO2 emissions of the EU’s new car fleet
needs to remain under 95 g/km. From 2025 on, a 15 % emissions reduction target from the
2021 starting points is set, before imposing a further 37.5 % reduction from 2030 on.

As of September 2018, the EU also put into force a new testing protocol: the WLTP,
which stands for the Worldwide Harmonised Light Vehicle Test Procedure, to measure these
emissions, replacing the New European Driving Cycle (NEDC) process. The main goal of
the WLTP is to reduce the gap between test results and realistic vehicle usage, found with
the NEDC procedure [17, 18]. This is observed directly on the driving cycles used to assess
vehicle performance for each of these processes, presented in Figure 1.6 . The World Har-
monized Light Vehicles Test cycles (WLTC), ranked according to the automobile’s power-
to-mass ratio, are characterized by longer distances and duration, higher maximum and
average speeds, more dynamic phases and stronger accelerations/decelerations when com-
pared to NEDC test cycles.

Another goal of the WLTP is to harmonize test procedures on a global level for better
comparison between vehicle emissions using a common benchmark [19]. Besides lab testing,
the WLTP adds another component for vehicle homologation, the Real Driving Emissions
test (RDE), to measure emissions and pollutant particles under real on-road conditions
[20]. Different incentives have been put into place as well to encourage the emergence and
investment in innovative technologies [15]. These include eco-innovation and super credits,
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Figure 1.6: NEDC and WLTC 3-b driving cycles

and the possibility for car manufacturers to group together, referred to as manufacturer
pools, working jointly to develop cheaper and more fuel efficient cars, eventually leading to
less carbon emissions.

1.1.4 Automotive strategies

Improving the vehicle’s characteristics such as the drag coefficient for enhanced aerodynam-
ics, the rolling resistance of tyres in addition to more efficient aftertreatment systems have
helped OEMs reach earlier emission targets. However, in order to meet stricter limits in
the future, the automotive industry needed to shift towards more profound changes such as
powertrain electrification.

Electrification of the powertrain refers to both electric vehicles (EVs) and hybrid electric
vehicles (HEVs). EVs are equipped with one or multiple electric motors as the sole source of
mechanical power in the powertrain and an electric energy storage, mainly electrochemical
batteries or fuel cell systems. HEVs on the other hand combine several energy sources, one
of which is thermal and the other one electric [21]. Thus, hybrid powertrains usually include
an internal combustion engine (ICE) and an electric motor (EM), as shown for instance in
Figure 1.7.

Figure 1.7: Example of a parallel hybrid powertrain

With an estimated global fleet of 1.5 billion cars and around 30 million new commercial
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vehicle sales every year [22], the automotive market has been witnessing a steady rise of
the share of EVs and HEVs [23, 24], as shown in Figure 1.8. In fact, most automakers are
now focusing on electrification: all new Volvo cars are now equipped with an electric motor
[25], Honda announced two thirds of their global sale will be from electrified vehicles in
2030 [26] while hybrid cars accounted for 52% of Toyota’s 2019 sales, the world’s largest car
manufacturer [27]. Recent figures also show that HEVs in general are the most appealing
choice for millenials, fueling the projections for a more important increase in greener vehicles
[28]. All these reasons have led to renewed interest in the study of powertrain hybridization.

Figure 1.8: Global EV/HEV share and forecast (Data retrieved from [24])

1.1.5 Hybrid families
HEVs are categorized following their degree of hybridization, directly linked to their electri-
cal power output [21, 29]. Micro-hybrids (µHEVS) are the closest to conventional vehicles,
with an additional small electric motor that does not require extra battery capacity (12
V). The electric motor is mainly used for engine Stop-Start (STT), to help cut the engine’s
pumping losses at vehicle stops (direct CO2 emissions reduction of 3∼5% due to fuel con-
sumption) and increase the lifetime of starters. They can also be used as alternators, known
as Starter-Generators.

On the other hand, with an increased battery capacity (48 V), embedded power electron-
ics and a higher-rated electric motor (10∼30 kW), mild hybrids (MHEVs) allow for more
flexibility. The electric motor assists the engine in Boost mode in order to use the latter
more efficiently or provide all of the required mechanical power in ZEV (Zero Emissions
Vehicle) mode, albeit for a limited range. The battery can be recharged afterwards either
by retrieving part of the vehicle’s kinetic energy (Regen mode) or by converting the ICE’s
mechanical output power with the electric machine (Generation mode). In this way, MHEVs
enable lower fuel consumption, hence lower carbon emissions (direct CO2 emissions reduc-
tion of 15∼20% due to fuel consumption). They also allow for engine downsizing to achieve
even better fuel consumption gains. The different possible operation modes are presented
in Figure 1.9.

Full Hybrids (FHEVs) and Plug-in hybrids (PHEVs) are equipped with a larger energy
storage system and a more powerful EM. This allows to extend the range of use of ZEV and
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Figure 1.9: Different operation modes of a parallel hybrid powertrain (blue: power flow
from the wheels, red: power flow from the thermal power source, green: power flow from
the electrical power source)

Regen modes considerably (longer distances over 60 km and at higher speeds), leading to
greater direct CO2 emissions reduction (>30%). The difference between PHEVs and FHEVs
is that PHEVs are fitted with bigger batteries that can be recharged directly from the grid,
leading to higher levels of fuel economy. The main types of HEVs are summarized in Figure
1.10.

Figure 1.10: HEV classification and examples

Thus, OEMs have a large portfolio of vehicle hybridization solutions to choose from.
However, to meet future emission targets, they need to further exploit the concept of hy-
bridization. This can only be achieved by the complex task of improving the overall efficiency
of the hybrid powertrain.

1.2 Importance of systemic design and work positioning

1.2.1 Scientific issues

The research work is focused on the optimal design of parallel hybrid powertrains, presented
in Figure 1.7. The design task centers around developing a product meeting a specific set
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of standards and requirements at the lowest cost possible. Improving the overall efficiency
of the hybrid powertrain in terms of fuel consumption, and thus carbon emissions, will also
be paramount in this project.

From an industrial point of view, in the early stages of conception, design teams were
small with a single supervisor having a global vision of the project and being able to take
the most important decisions. With the increasing complexity of designed systems, it was
necessary to develop systems’ studies, also known as systemics [30, 31, 32].

If systemics has experienced a significant leap forward since the 1990s, it is still difficult
to implement into a company structure, where there are different teams using distinct tools
and models, each dedicated to the study of a specific component of the system or a particular
physical behaviour of the latter. This type of organization leads to limited exchanges during
the design process, reducing the efficiency of the designed system.

In fact, optimizing each component separately while neglecting the different system in-
teractions leads to suboptimal solutions. A simple case to illustrate this would be to consider
two devices in series with a shared parameter, as shown in Figure 1.11 (the injected current
for example in the case of two transformers connected in series).

Figure 1.11: System of two components in series

The performance of each of these components is shown in Figure 1.12 as a function of
this common variable. The system’s efficiency, defined as the product of the yields of both
components, is presented as well. It can be concluded that in order to achieve the best per-
formance from a system’s point of view, a different value for the variable x must be selected
other than those needed for the optimal performance of either components individually.

Figure 1.12: Efficiency curves as a function of the selected variable (optima defined by red
lines)

This is all the more true for the studied system, given the number of components in a
hybrid powertrain. Higher fuel economy and cost reduction are expected when considering
more components during the optimization process, as depicted in Figure 1.13.
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Figure 1.13: Evolution of expected gains as a function of the design process complexity

More importantly, a large number of optimization variables needs to be considered at
once. In fact, the presence of two mechanical power sources, the engine and the electric
machine, that exploit different resources and the use of reversible energy storage (the bat-
tery) raises the difficulty of determining how these components should operate in the most
efficient way possible.

Thus, the power split, as shown in Figure 1.14, and other powertrain control parameters
such as the selected gear, must be optimized for each time step in order to minimize fuel
consumption throughout the drive-cycle. Integrating driving cycles, such as the Artemis
Urban , which is displayed in Figure 1.15 and is discretized to 1000 time steps, means thou-
sands of additionnal control variables need to be considered.

Figure 1.14: Power management problem in HEVs

On the other hand, solving the control/design optimization problems sequentially mostly
leads to suboptimal results, as this has been confirmed mathematically [33] and using vari-
ous numerical and experimental demonstrations [34, 35, 36, 37, 38]. Finding and imposing
physical design variables before moving on to optimizing the control reduces design flexibil-
ity as well. In some cases, a design that meets system objectives and requirements may not
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be found using this approach [39].

In this sense, both problems are coupled and integrated approaches, where the synergy
between physical and control design decisions is exploited, should be applied. This allows
for the selection of the powertrain with the best fuel saving potential instead of just compar-
ing powertrains based on fuel economy values over a fixed, often suboptimal, control strategy.

Figure 1.15: Artemis Urban driving cycle

Additionally, the presence of different discipline transients of varying orders of magni-
tude, listed in Figure 1.16, leads to the use of separate models and computer tools. This
raises the challenge on how to couple them afterwards while keeping the design methodology
straightforward.

Figure 1.16: Transients of various physical phenomena

There is also a wide range of models to choose from, classified according to different
criteria such as model orientation (inverse or direct), portability (communication with other
models/tools) and more importantly the degree of finesse/granularity. While a more accu-
rate representation is always preferred, finer models are more expensive in terms of computa-
tional resources and calculation time. Figure 1.17 presents some of the different possibilities
explored to simulate the electromagnetic behaviour of the electric machine.
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Figure 1.17: Possible models to simulate the electromagnetic behaviour of the EM

Furthermore, the performance of each component is estimated on mission profiles and/or
road cycles of several minutes, thus requiring thousands of simulations of the hybrid drive
model. Using a 2D finite element (FE) model for the electric machine and analytic models
for the rest of the powertrain components means the system model requires nearly 1 min for
each evaluation at a specific operation point/time step. If for instance, the cycle presented
in Figure 1.15 is selected for hybrid powertrain optimization, a fuel consumption value can
only be obtained after 16 hours of calculations.

Optimization algorithms are based on a large number of system evaluations to assess the
behaviour of the utility function. This number increases exponentially with the number of
variables considered, leading to the impossibility of finding an optimal solution in a reason-
able time or even difficulties converging when thousands of variables are considered at once.
This is referred to as the curse of dimensionality [40].

It is therefore necessary to develop new design methodologies to reduce the complexity
of the optimization problem by decomposing the studied system, other than apply an all-
at-once approach where control and design variables are considered simultaneously.

1.2.2 Lab positioning of the research project

Hybrid powertrain optimization falls within the scope of several research projects led by
L2EP to improve the efficiency of energy conversion systems. In fact, systemic design
projects were launched more than two decades ago at the research lab, mainly focusing
on the optimization of electric machines as components in larger systems. Three axes were
developed and are summarized in Figure 1.18 (adapted for the HEV application).

The multi-component axis seeks to establish high-performance methods to take into ac-
count the various interactions within the system, while respecting the constraints of the
industrial environment. The work carried out by [41] and [42] on railway traction applica-
tion aims to reduce system specifications to the component level (Target Cascading). [43]
and [44] applied other methods to decompose an optimization problem into several coupled
subproblems that are easier to solve (Collaborative Optimization and Benders Decomposi-
tion methods).

Other techniques have been proposed to couple the different physics (multi-disciplinary
axis), based on the relaxation of the consistency between the different disciplines. [45] com-
pares the main possible approaches in order to improve the autonomy of electric vehicles.
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Figure 1.18: Decomposition axes for complex systems

Moreover, a significant part of the L2EP’s work on systemic issues focuses on the multi-
ple possibilities offered to improve the design models (multi-granularity axis): for example,
the investigation of much faster substitution models, such as the Kriging models adopted
by [46] for railway applications.

Another possibility is to reduce the operation cycle to a few representative points, in
order to use finer models while achieving significant gains in calculation times. For [47], it
has been possible to accelerate the optimization of electric machines for the production of
green energy using the barycenter method.

Finally, there are also space mapping techniques that aim to use two models of the same
component, such as a coarse model for optimization and a finer model for output correction
for example. Several variants based on the same principle were used in the laboratory, no-
tably by [48] and [49] for transformer optimization.

However, for the HEV sizing problem, more sophisticated approaches need to be im-
plemented, as the optimization problem is much more complex. The added complexity is
due to the necessity of optimizing the powertrain’s command, which has not arised in the
previous applications.

1.2.3 National positioning of the research project

Of course, considering the system interactions during the design process has been imple-
mented in other projects by different research centers in France. Important volumes of
work focused on implementing Plant/Controller optimization approaches to a wide variety
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of problems. These methodologies allow the decomposition of the main problem into coupled
sizing and control optimization problems.

[50] applied a simplified rule-based strategy to assess the fuel consumption of different
hybrid vehicle designs, using the latter as the minimization criterion for the sizing problem.
The use of suboptimal command strategies however does not guarantee a system optimum.

A different iterative approach was used by [51] to solve the eco-sizing problem of a fly-
back converter destined for residential applications. [52] on the other hand, implemented the
bi-level strategy, to design a micro-grid approach where the command optimization problem
is nested within the sizing problem. This approach also enabled the optimization of a wave
generator farm [53].

The bi-level approach has been widely used for hybrid vehicle optimization as well: [54]
and [55] applied it to optimize the design of an electric machine inside an HEV, while [29]
implemented it to select the best hybrid powertrain architecture for a specific cycle. [54]
and [29] used dynamic programming while [55] relied on Pontryagin’s Minimum Principle
to find the optimal command at each time step of the design cycle.

Other possibilities for Plant/Controller optimization have not been investigated thor-
oughly however. These require a more in-depth study on how to still achieve system opti-
mality while keeping the methodology fast and robust.

1.2.4 Global positioning of the research project

Numerous ongoing research projects worldwide are related to systemic design in electrical
engineering. Laboratories around the globe have developed software for the sizing of renew-
able energy installations such as HOMER [56], RAPSim [57] and PVsyst [58]. The efficiency
of the installation in each case is evaluated for different configurations using a power man-
agement strategy, not requiring an a priori knowledge of the selected design cycle.

Greater diversity has been found as well for the optimization of hybrid vehicles: [59]
relied on the iterative scheme to develop an analytical target cascading approach; [60, 61]
managed to apply the simultaneous approach by adjusting parameters of a simplified rule-
based strategy and design parameters using genetic algorithms; [62, 63, 64, 65, 66, 67, 68, 69]
implemented the bi-level scheme using dynamic programming to optimize power manage-
ment and various algorithms for the sizing problem (Sequential Quadratic Programming,
genetic algorithms, Particle Swarm Optimization and DIviding RECtangles).

As such, numerous possibilities can be explored to solve the studied problem, with the
bi-level framework being the most popular strategy. A comparison between the different
optimization strategies, conducted on a common benchmark, is also necessary to evaluate
their advantages and disadvantages. This will help with the task of selecting which method
fits best within the scope of the project.

Multidisciplinary design optimization as well as cycle reduction techniques can also be
coupled with Plant/Controller optimization frameworks for example in a bid to reduce the
problem’s complexity even further.
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1.3 Integration of design cycles

1.3.1 Power management

In a conventional vehicle for example, pressing the accelerator pedal corresponds directly
to a fuel injection demand, supplied to the combustion engine, providing mechanical torque
afterwards. Intuitively, the driver regulates the speed of the vehicle by pressing or releasing
the accelerator pedal.

If the driver acts in a similar manner for a hybrid vehicle, management laws need to
be developed to improve the powertrain’s performance. In fact, for each operation point,
which can be represented by a torque demand and a given vehicle speed, different "discrete"
hybrid modes are possible (as presented in Figure 1.9). These modes are then translated
into an infinite number of possibilities when using the vehicle, depending on the selected
power split between the engine and the electric motor.

This choice is then oriented in order to achieve the best possible savings in fuel con-
sumption, the major aim of hybridization, while considering the battery storage constraints.
These are referred to as real-time power management strategies or online control strategies,
implemented within the vehicle’s hybrid control unit (HCU).

There is an abundant literature for the diverse strategies that have been developped on
the matter. Rule-based strategies are the first ones to be studied and remain the easiest to
deploy [21, 50, 70]. They generally rely on the levels of the battery charge and requested
power/torque as inputs to switch between the different hybrid modes, as shown for instance
in Figure 1.19. These strategies are still the most widely used methods in today’s hybrid
car fleet.

Figure 1.19: Rule-based strategy proposed by [21]: T t is the requested torque, v the vehicle’s
speed and u the power-split ratio between the EM and ICE. The map on the right is for
when the battery’s state of charge is high, and the map on the left is for when it is low

Fuzzy logic controllers [71, 72, 73, 74] have also been suggested as well as the use of
trained Neural Networks [75, 76]. These methods have shown they are only as efficient when
the driving cycle remains close to the learning base used for their development.

Other techniques such as convex optimization [77] have managed to improve fuel effi-
ciency through simplification of the powertrain model. The most efficient strategies however
remain those derived from optimal control theory such as λ-Control [78, 79], Equivalent
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Consumption Minimization Strategy (ECMS, [80]), Loss Minimization Strategy (LMS, [81]),
Stochastic Dynamic Programming (SDP, [82]) and model predictive control [72, 83].

Thus, the above-mentioned strategies allow the ECU to find adequate commands quickly
without the need to know for certain the future behaviour of the vehicle. On the other hand,
it is clear that the absolute minimum of fuel consumption can only be achieved by knowing
the speed cycle in advance. For instance, if the driver is aggressively decelerating in the near
future, the potential electrical energy to be recovered through regenerative braking can be
injected much earlier into the electric motor to reduce the load on the combustion engine,
leading to better fuel efficiency.

These are referred to as optimal control strategies in the sense that the minimum fuel
consumption provided, subject to the assumptions made, is the absolute minimum taking
into account a maximum number of parameters, including some that are difficult to know
in reality such as the evolution of the vehicle speed in this case.

In the context of this research project, the comparison between the different powertrains
should be based on this value. This limits the impact of the control strategy’s bias and
prevent controller conditioning, leading to suboptimal solutions for the global optimization
problem. For this reason, the focus is mainly shifted towards optimal control strategies in
this work.

1.3.2 Optimal control strategies

The purpose of optimal control strategies is to determine the system control that minimizes
the fuel consumption over the whole driving cycle, which is known in advance. The battery’s
state of charge (SoC) at the end of the driving cycle needs to be close to its initial value,
as it is a requirement in hybrid vehicle homologation, referred to as the charge-sustaining
condition. This defines the optimal control problem whose solution takes much longer to
find as when compared to real-time strategies. For this reason, calculations generally need
to be executed offline, which explains why optimal control methods are referred to as offline
strategies.

Several authors relied on meta-heuristic methods to solve the optimal control problem:
[84] used the simulated annealing method while [85] applied a particle swarm algorithm to
coordinate the powertrain control strategy. [86] on the other hand turned to Marco Dorigo’s
method (ant colonies) to deduce the optimal command.

The main drawback of these strategies is the excessive number of model evaluations,
which increases exponentially with the number of variables involved. Since the latter in-
creases with the number of time steps considered, application of these strategies is only
limited to short cycles.

Deterministic optimization algorithms have also been tested on numerous occasions. For
instance, [54] used sequential quadratic programming (SQP) on short driving cycles. This
limitation is due to non-convergence problems for longer driving cycles (over 200 time steps),
especially in the absence of convexity or problem linearization options.

If the current homologation procedure is considered, the control needs to be optimized
over the WLTC 3-b cycle (Figure 1.6). This cycle lasts 30 minutes and is discretized to the
second, leading to thousands of control variables. Different techniques that are not limited
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to a reduced number of variables should then be explored. [60] optimized parameters of
a rule-based strategy for example with genetic algorithms, as shown in Figure 1.20, as a
solution.

Figure 1.20: Rule-based strategy proposed by [60]

The most commonly used approaches for optimal power management however remain
those deriving from the Calculus of Variations as in Pontryagin’s Minimum Principle (PMP,
[29, 55, 87, 88, 89]) and those based on solving the Hamilton-Jacobi-Bellman equation (HJB,
[40]) like dynamic programming (DP, [90, 91, 92]).

PMP solves a dual problem with the same solution as the initial problem. The dual
problem is simplified by introducing a Lagrange multiplier. Optimal command is found
afterwards at each time step through a much simpler minimization problem.

Along with its simple implementation, PMP’s main advantage is that the total calcu-
lation time is only linear with the number of steps. One of the main drawbacks of PMP
however is the minimization process, often leading to local optima, as well as the difficulty of
taking other constraints into account, such as the limitations of the powertrain components.

Meanwhile, DP’s process can be easily explained through Bellman’s principal, illustrated
in Figure 1.21: if the optimal trajectory from point A to point B minimizing a certain cost
function passes through a third point C, then the portion of the path from C to B is optimal
as well considering the same cost function.

Figure 1.21: Example illustrating Bellman’s principle

In simple terms, DP comes down to decomposing the original control optimization prob-
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lem throughout the entire cycle into easier-to-solve subproblems, where the command is
only optimized from a given state at a given time step until the end of the driving cycle,
and storing the solution every time so that each subproblem is only solved once. However,
building an end to end solution in reasonable times using this procedure is only feasible by
discretizing the number of possible state values at each time step and passing through these
later on.

When an adequate discretization is selected, a solution is always provided. Moreover,
the required time only evolves, similarly to PMP, in a linear fashion with respect to the
number of time steps considered. Nevertheless, improving the solution naturally requires a
higher number of discrete values, as this leads to a greater number of paths to explore. This
in turn results in exponentially higher calculation times, the main disadvantage of DP.

Both PMP and DP have been frequently compared in literature, achieving close perfor-
mance in terms of fuel consumption and computation time [83, 87]. As such, they should
be confronted later on with each other for the studied application. These strategies are
explored in greater detail in Chapter 2.

1.3.3 Cycle reduction

Once a control strategy is selected, how the machine is used at each time step is imposed.
Optimizing the design over the entire rolling cycle means taking into account hundreds (or
even thousands) of operation points for each considered component (as shown in Figure
1.22). Hence, a direct sizing approach using cycle performance as criteria will not find an
optimal solution in a reasonable time.

Figure 1.22: Example of EM’s efficiency mapping and its operation points over WLTC 3-b

One of the possibilities would be to substitute the machine performance over the cycle to
simply evaluating its performance over a reduced number of representative points. In order
to achieve acceptable accuracy, various methods have been proposed in the literature and
applied to numerous fields including the automotive industry such as the sizing of renewable
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energy farms, data mining, railway applications, etc.

The single point method is the most widely used in the industry and is based on expert
rules to determine a unique critical point to be optimized during the conception process.

On the other hand, [93] proposed the Random Sampling method where a reduced num-
ber of points is randomly selected from the initial pool of operation points using a statistical
law. This method can be used to halve the initial number of points without a significant loss
in precision [94]. However, its use for an even further reduction (less than a dozen points of
interest) remains to be explored.

The histogram method has also been used. It is based on the statistical distribution of
operational points into different intervals. The centre of each interval is then considered
for the calculation of losses over the cycle, as illustrated in Figure 1.23 for the example of
electric machine design. [47] used this method for the sizing of micro wind turbines. It
is clear nevertheless that this method is only suited to other applications with correlated
outputs (correlation between torque and speed in the case of the studied application).

Figure 1.23: Application of the histogram method. The center of each interval is highlighted.

Meanwhile, [45, 95, 96] relied on the barycenters method to find the optimal design of
an electric machine for electric vehicles. The method relies, in a similar manner as the
histogram method, in dividing the torque-speed characteristic of the machine into several
zones. The operation points within each area are then reduced to their barycenters, as pre-
sented in Figure 1.24.

Different alternatives have been suggested afterwards to estimate the machine’s cycle
losses, from the values calculated at the selected barycenters. In [45], the losses are weighted
to the number of operation points in each interval while [95] proposed a different formula for
each type of machine losses, based on the hypothesis of torque/current and speed/voltage
correlations.
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Figure 1.24: Application of the barycenters method. The barycenters are highlighted.

Another method worth exploring, mainly used in data science to reduce the size of in-
formation to be analyzed, is Clustering [97]. It refers to a statistical operation that divides
a group of variables into a limited number of "clusters" or segments. In contrast with the
barycenter or histogram method, these clusters are not defined in advance. This approach
seeks to assemble objects sharing similar characteristics, with the intention of achieving inter-
nal homogeneity (similarity within the same cluster) and external heterogeneity (distinction
between different clusters), as seen in Figure 1.25.

Figure 1.25: Application of the Clustering technique. The centroïds of each cluster are
highlighted.
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Several algorithms are called upon to achieve this division, such as the k-means or k-
medoïd method. The centres of these clusters, called centroïds, represent the points of
interest to be retained for the rest of the study. For electric machine sizing, the two variants
presented to estimate the machine’s performance through the barycenters method can be
adapted for Clustering as well.

As such, these techniques differ in their implementation and their adaptability to the
conception problem. Another important criteria to consider in hybrid powertrain design is
the number of interest points required to achieve acceptable accuracy, which directly impacts
the overall calculation time of the optimization process. Since literature on the comparison
between these methods is scarce, an assessment over the common benchmark of the hybrid
powertrain application is required.

1.4 Plant/Controller optimization
It is necessary to remember that when road cycles are taken into account during the sizing
of the powertrain, the problem addressed has a double complexity: powertrain design opti-
mization is based on fuel consumption, which is in turn strongly impacted by the powertrain
control strategy, as explained in the previous section.

Thus, the hybrid powertrain optimization problem, as studied in this work, belongs to
the Plant/Controller optimization class of problems. This type of optimization problems
can be solved using different schemes: sequentially, iteratively, using a bi-level approach or
simultaneously.

The sequential approach is where the design is optimized first for a certain control strat-
egy, before optimizing the command afterwards, as depicted in Figure 1.26. It is the simplest
to implement amongst the four studied approaches and the most intuitive, explaining its
wide use in the industry. Still, it does not guarantee system optimality, as demonstrated by
[33].

Figure 1.26: Sequential approach applied for hybrid powertrain optimization.

The iterative approach on the other hand improves the solution of the sequential method
by reoptimizing the design following significant changes in the controller’s command, before
reiterating again until convergence. System optimality is afforded in this manner for certain
cases [98]. Application on the studied problem is shown in Figure 1.27.

Meanwhile, the bi-level approach, also referred to as nested approach, finds the optimal
control for each proposed design by the top level algorithm, as presented in Figure 1.28.
The objective is to select the powertrain with the best possible fuel gains at the end of the
optimization loop. In this way, the required optimality conditions can still be ensured [33].
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Figure 1.27: Iterative approach applied for hybrid powertrain optimization.

Thus, both the iterative and bi-level approaches allow for the partitioning of the orig-
inal problem into design and control optimization problems. By doing so, optimal control
strategies, presented in the previous section, can be used to efficiently solve the controller
optimization problem and greatly reduce the complexity of the complete problem.

Figure 1.28: Bi-level approach applied for hybrid powertrain optimization.

However, if the nested approach is exploited extensively, implementations of the iterative
scheme are quite rare. The latter should be analyzed further as different alternatives can
be explored. One of the proposed options relies on the coupling with cycle reduction tech-
niques, presented in section 1.3.3, as shown in figure 1.29. This can lead to faster iterations
and the ability to use higher fidelity models.

Figure 1.29: Iterative approach alternative applied for hybrid powertrain optimization.

Finally, the simultaneous approach solves the global optimization problem directly by
finding the optimal control and design variables simultaneously. While this method always
guarantees a system optimum as it considers all of the variables at once, it requires a much
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higher number of resources to be allocated and has limited applications [45]. [54] finds non-
convergence problems when using the simultaneous approach for a large number of decision
variables. This forces him to only apply it on short missions.

The simultaneous scheme can also be applied in different ways. For example, [60, 61] have
both considered the design and parameters of a rule-base strategy at once when optimizing
hybrid powertrains. This allows to reduce the number of total variables and overcome the
main disadvantage of the original approach. This alternative, shown in Figure 1.30, would
lead to near-optimal results when coupled with highly efficient rule-based strategies.

Figure 1.30: Left : Simultaneous approach for hybrid powertrain optimization - Right:
Studied alternative based on the simultaneous approach

Choosing the most appropriate strategy depends on the type of application and requires
additional analysis. A thorough comparison between these approaches and alternatives is
required on the studied application. Detailed implementations of each one of these frame-
works are presented in Chapter 2. A complete study, assessing their performance afterwards
based on computation time, reliability, robustness and accuracy, will follow afterwards.

1.5 Multidisciplinary Design Optimization

1.5.1 Decomposition-based strategies

Systemic design of the hybrid powertrain can also rely on the methods developed in Multi-
disciplinary Design Optimization (MDO). As the name suggests, this field uses optimization
methods to solve design problems incorporating several disciplines.

MDO aims at structurally reducing the complexity and calculation time of the optimiza-
tion. Thus, the main subject of MDO is the description of the problem itself. Once the
problem is reformulated using an MDO approach, it is solved using one or multiple solvers
based on different optimization algorithms.

A distinction is made between monolithic strategies requiring a single optimization block,
and distributed strategies with several optimizers exchanging variables and constraints be-
tween them. These are explored in sections 1.5.2 and 1.5.3 respectively.

1.5.2 Monolithic optimization

Four possible approaches can be cited for monolithic optimization: MultiDisciplinary Feasi-
ble (MDF), Individual Discipline Feasible (IDF), Simultaneous Analysis and Design (SAND)
and All-At-Once (AAO).
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The MDF approach is the most intuitive of these, linking the different disciplines until
convergence at each model evaluation. The IDF strategy on the other hand aims to reduce
computation time by integrating new variables and constraints into the optimization to en-
sure model consistency and eliminate internal loops.

Figure 1.31 illustrates the difference between both implementations, applied to solve the
following problem based on a model with two coupled disciplines:

min
x

f(x ,y) (1.1a)

subject to g(x ,y)≤0 (1.1b)
h(x ,y)=0 (1.1c)
y1 =y1(x ,y2) (1.1d)
y2 =y2(x ,y1) (1.1e)

where x refers to the optimization variables while y represents the outputs of the coupled
discipline models. f , g and h are the objective function, inequality and equality constraints
respectively. When applying the IDF method, y’ is added with additionnal constraints
aimed at reducing the gap between these values and y .

Figure 1.31: Top: MDF process, bottom: IDF process

[99] compares the different methods that are cited on a railway application and finally
finds that the MDF strategy is the most robust (with a higher convergence rate) for a runtime
close to the IDF strategy. [45] reaches similar conclusions and finds negligible differences
as well in execution time between these two strategies. MDF is implemented and assessed
on the hybrid powertrain application when considering the interaction between the different
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energy domains involved in the adopted models.

On the other hand, the SAND approach seeks to bring back the consistency equations
(physical equations describing the disciplinary model) as constraints managed by the chosen
optimizer. Meanwhile, the AAO approach goes even further than SAND by breaking down
any iterative procedure within the same behavioural model. All the implicit unknowns of
the problem become optimization variables for the main optimizer. Both these approaches
are therefore not possible when black box models are used, as it is often the case in this work.

1.5.3 Distributed optimization
Distributed or multi-level optimization techniques seek to break down an optimization prob-
lem into subproblems that are easier to solve with multiple solvers that can be launched in
parallel. Several of these strategies have been developed over the last few decades. The ones
most commonly found are Analytical Target Cascading (ATC), Collaborative Optimization
(CO) and Bi-Level Integrated System Synthesis (BLISS).

ATC starts from the system specifications to deduce the subsystem requirements and
the requirements of their components as well. The optimization is carried out separately
afterwards. In addition to the shared variables yU, the system imposes target values RU to
be achieved by the subsystems (descending phase). These later return the feedback outputs
RL and new values yL (ascending phase). This process is presented in Figure 1.32.

Figure 1.32: ATC process

The following optimization problem is launched first on the top level to deduce the targets
for the subsystems:

min
xsys,yss,Rss,εR,εy

‖Rsys −T sys‖+ εR + εy (1.2a)

subject to Rsys = f (x sys,Rss) (1.2b)∑
j∈Nss

‖Rss,j −Rss,j
L‖ ≤ εR (1.2c)

∑
j∈Nss

‖yss,j − yss,j
L‖ ≤ εy (1.2d)

gsys(x ,y) ≤ 0 (1.2e)
hsys(x ,y) = 0 (1.2f)
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where x sys refers to the local system design variables, while T sys and Rsys represent cor-
respondingly the system’s target and response. Rss and yss are the subsystems response
and shared variables respectively whilst εR and εy are added tolerances to be minimized.
gsys and hsys are the system’s inequality and equality constraints whereas N ss refers to the
number of subsystems.

Subsystem level optimization problems afterwards seeks to minimize the gap between
the target values and their responses. They also impose the new constraints on the variables
shared at the higher levels. For instance, optimization problem for subsystem j is expressed
as:

min
xss,j,yss,j,ycom,Rcom,εR,εy

‖Rss,j −Rss,j
U‖+ ‖yss,j − yss,j

U‖+ εR + εy (1.3a)

subject to Rss,j = f (x ss,j,yss,j,Rcom) (1.3b)∑
k∈Ncom,j

‖Rcom,k −Rcom,k
L‖ ≤ εR (1.3c)

∑
k∈Ncom,j

‖ycom,k − ycom,k
L‖ ≤ εy (1.3d)

gss,j(x ss,j,yss,j,Rcom) ≤ 0 (1.3e)
hss,j(x ss,j,yss,j,Rcom) = 0 (1.3f)

where x ss,j refers to the local subsystem design variables, while Rcom and ycom are the
components response and shared variables respectively. gss,j and hss,j are the subsystem’s
inequality and equality constraints whereas N com,j refers to the number of components of
the considered subsystem.

Finally, the optimization problems on the component level can be defined and solved.
The optimization problem for component k for example is formulated as:

min
xcom,k,ycom,k

‖Rcom,k −Rcom,k
U‖+ ‖ycom,k − ycom,k

U‖ (1.4a)

subject to Rcom,k = f (x com,k,ycom,k) (1.4b)
gcom,k(x com,k,ycom,k) ≤ 0 (1.4c)
hcom,k(x com,k,ycom,k) = 0 (1.4d)

where x com,k refers to the component design variables while gcom,k and hcom,k are the
selected component’s equality and inequality constraints.

In this way, an iteration of the ATC is completed and this process is repeated as long
as unacceptable deviations are found (iterative framework). This decomposition therefore
seeks to take advantage of the hierarchical structure of companies, where each team have
their own tools and methods to solve their corresponding subproblem, justifying the indus-
trial interest in such approaches.

This method should then be used when there is a need to optimize multiple physical
components with strong interactions [100]. Since the design endeavour in this work focuses
primarily on the electric machine component, this approach will not be explored any further.
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CO on the other hand proposes a principle that can be used for a wider range of op-
timization problems, based on the decomposition of the optimization problem into several
subproblems with a reduced number of variables making them easier to solve. This structure
promotes disciplinary autonomy while maintaining interdisciplinary compatibility (nested
framework).

The aim is to optimize the objective function of the main problem by acting on the global
design variables and the coupling variables between each discipline. At the level of each dis-
cipline, a different optimization problem is solved, by varying the local design variables while
interdisciplinary constraints ensure overall consistency between the different subproblems.

The basic implementation of CO is shown in Figure 1.33, with F being the global cost
function, G the consistency constraints, z the optimization variables of the initial problem,
that is split into multiple subproblems. z* are the imposed values at the subproblem level
of the variables z , (whose deviation from z must remain small) and y the shared variables
between the different subproblems. g i and h i respectively define the constraints of inequal-
ity and equality specific to each subproblem.

Figure 1.33: CO process

In this way, CO can be implemented for example afterwards to decompose the driving
cycle into smaller portions, with a reduced number of variables. This allows for the appli-
cation of meta-heuristic and deterministic optimization whose use is only limited on short
missions, as explained previously.

One of the major drawbacks of CO however is the need to add the consistency con-
straints, which allow the coordination between the different subproblems. These can lead to
slow convergence or even non-convergence issues. Some authors have thought of easing these
constraints to facilitate convergence [101, 102], while others have adapted the CO approach
to propose new strategies such as BLISS [103].

The BLISS method adopts the same bi-level structure as CO, and tries to better estimate
the local variables for each subproblem based on a multidisciplinary analysis conducted by
the optimizer at the system level. More advanced versions were later proposed, such as
the BLISS2000 strategy, mainly used in aerospace engineering, which relies on substitution
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models to speed up calculations.

Finally, it needs to be noted that while several dynamic systems have been designed us-
ing MDO approaches, the established MDO formulations, including those that are presented
here, are largely based on static system analysis, and do not address the temporality of some
variables explicitly.

If they can be adapted for different systemic design problems with a large number of
variables, Plant/Controller optimization frameworks, that have been specifically developed
to solve design problems where system performance is directly linked to the way it is used,
need to be prioritized in this work.

It is also worth mentioning that Plant/Controller design approaches can be included
in the definition of MDO as well, as they integrate the link between the design and con-
trol disciplines. This has prompted various authors to attribute them to a new branch of
MDO referred to as Multidisciplinary Dynamic System Design Optimization (MDSDO) [39].

Conclusion
Electrification of the powertrain is part of a worldwide campaign for more energy efficiency
that has been gaining an ever-increasing momentum over the last decades, driven by the
need to reduce the negative impact of human activities on its ecosystem. However, meeting
more stringent emission limits means car manufacturers need to optimize their powertrains
for better fuel economy.

The design of hybrid powertrains is a complex task which calls for experts from various
fields. On one hand, the presence of two different mechanical energy sources, the engine
and the electric machine, raises the difficulty of choosing the best power split between both,
amongst other control parameters. This is then translated to thousands of additionnal con-
trol decisions to be considered.

If meta-heuristic and deterministic optimization can only be applied on short missions,
DP and PMP, based on optimal control theory, are developped specifically for control op-
timization over long drive-cycles. These strategies are analyzed, improved and confronted
further in Chapter 2. CO is explored as well, to overcome the limitations of optimization
algorithms by decomposing long driving cycles into more manageable portions.

On the other hand, the fuel saving potential of hybrid powertrains greatly depends on
both their use and the sizing of their components interdependently. As such, a sequential
approach can not guarantee a system optimum and only integrated frameworks need to be
considered.

Plant/Controller optimization frameworks are explored in this case. The direct simulta-
neous approach is limited by the large number of variables present, which explains the need
to find other alternatives of this scheme. One proposition requiring deeper analysis is to
reduce the number of control variables by imposing a rule-based strategy whose parameters
are optimized.

Meanwhile, the bi-level and iterative approaches reduce the complexity of the optimiza-
tion problem using interdisciplinary partitioning while attempting to guarantee system op-
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timality. If the bi-level approach was used extensively in literature, insufficient research
surrounds the application of the iterative scheme, requiring further studies. This scheme
can be improved as well by adopting cycle reduction techniques to enable faster iterations.
These methods are presented afterwards in greater detail once the global optimization prob-
lem is properly formulated.

Furthermore, since meeting project deadlines leaves only a small window for system
optimization, different monolithic and multilevel decomposition methods have been inves-
tigated as well to reduce the calculation time without compromising global accuracy. The
MDF strategy for instance is applied afterwards to couple between the different disciplines
impacting the performance of the hybrid powertrain.
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Introduction
This chapter presents both the discrete and continuous formulations of the optimal energy
problem, as well as the formulation of the Plant/Controller optimization problems, to which
the systemic design of the hybrid powertrain problem belongs. The different optimization
variables and constraints are considered and the criteria for the optimal solution is intro-
duced.
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In order to compare the strategies introduced in Chapter 1, a simpler and fast benchmark
which provided a reference solution is required before applying the most promising methods
on the HEV case study. Thus, the hybrid railway power substation problem (HRPS) is pre-
sented afterwards, using the same formalism established for control and design optimization
problems.

The direct use of optimization algorithms to solve the optimal control problem, as well as
the implementation of Collaborative Optimization to reduce the calculation burden are inves-
tigated. Optimal control laws, including Dynamic Programming and Pontryagin’s Minimum
Principle, are also detailed in the third section of the chapter. The latter are developped
specifically to handle the large number of command variables when solving the optimal con-
trol problem. These control methods are then applied and assessed for the HRPS power
management before being implemented for system optimization using Plant/Controller de-
composition frameworks.

In this regard, three design optimization approaches are explored and tested later on:
the simultaneous, bi-level and iterative frameworks. These methods are compared on the
HRPS problem in terms of precision and calculation time. The optimal solution’s proximity
to the reference solution is evaluated as well as its distance from the initial point to allow
for deeper analysis of their convergence.

The last section of this chapter presents other possible approaches for systemic design
optimization. These strategies are also based on the studied Plant/Controller frameworks
and can be used as alternatives to improve their performance when applied for more complex
systems using heavy models, such as the hybrid powertrain.

2.1 Optimal control and design problems formulation
The objective of the hybrid powertrain power management problem is to minimize the fuel
consumption of a vehicle over a specific driving cycle by optimizing its command variables.
Since the hybrid powertrain is a dynamic system, state variables are introduced as well.
This defines an optimal control problem, which is expressed as:

minimize
u

∫ tf

t0

L(x (t),u(t), t)dt (2.1a)

subject to x ′(t) = f (d ,x (t),u(t), t) (2.1b)
x (t0) = x0 (2.1c)
x (tf) = x f (2.1d)
g(x (t),u(t), t) ≤ 0 (2.1e)
h(x (t),u(t), t) = 0 (2.1f)
x (t) ∈ [xmin(t),xmax(t)] (2.1g)
u(t) ∈ [umin(t),umax(t)] (2.1h)

where u and x refer to the command and state variables respectively. The controller’s cost
is calculated as an integral of the cost functional L between the initial time step t0 and the
final time step t f.

f is the evolution function of the state variables while g and h are respectively the in-
equality and equality command constraints. x0 and x f are the state variable values at t0
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and t f respectively. All the introduced variables are limited by their lower and upper bounds.

However, in order to solve the problem numerically, the design cycle is discretized fol-
lowing a time step ∆t . ∆t is selected considering the system dynamics impacting the cost
function the most, such as the mechanical transient when considering the HEV application
for instance as opposed to the thermal or electronic transient.

The discretized optimization problem is then expressed as:

minimize
u

tf−∆t∑
t0

L(x (t),u(t), t)∆t (2.2a)

subject to x (t+ ∆t) = f (x (t),u(t), t)∆t+ x (t) (2.2b)
x (t0) = x0 (2.2c)
x (tf) = x f (2.2d)
g(x (t),u(t), t) ≤ 0 (2.2e)
h(x (t),u(t), t) = 0 (2.2f)
x (t) ∈ [xmin(t),xmax(t)] (2.2g)
u(t) ∈ [umin(t),umax(t)] (2.2h)

The main aim of hybrid powertrain optimization is to find the design parameters that
minimize both the cost of the hybrid powertrain along with its fuel consumption, while con-
sidering the fact that its fuel efficiency is impacted by its use.

As such, the studied optimization problem belongs to the Plant/Controller optimization
class of problems, whose general formulation is expressed as:

minimize
d ,u

J(d ,u) = αInv(d) + β

tf−∆t∑
t0

L(d ,x (t),u(t), t)∆t (2.3a)

subject to x (t+ ∆t) = f (d ,x (t),u(t), t)∆t+ x (t) (2.3b)
x (t0) = x0(d) (2.3c)
x (tf) = x f(d) (2.3d)
g(d ,x (t),u(t), t) ≤ 0 (2.3e)
h(d ,x (t),u(t), t) = 0 (2.3f)
k(d) ≤ 0 (2.3g)
l(d) = 0 (2.3h)
x (t) ∈ [xmin(d , t),xmax(d , t)] (2.3i)
u(t) ∈ [umin(d , t),umax(d , t)] (2.3j)
d ∈ [dmin,dmax] (2.3k)

where J represents the total cost function to minimize. Optimization variables are split into
the design variables d and command variables u . J is expressed as the sum of both the
plant’s cost Inv , directly linked to the design parameters, and the controller’s cost defined
earlier. α and β are the weights added to both terms of the cost function and are adjusted
in regards to the objective of the optimization. α takes a zero value for example when
the controller cost is the only one that is considered. k and l refer correspondingly to the
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inequality and equality design constraints.

In the absence of constraints, d* and u* define a local minimum s* if:

J(s) ≥ J(s* ) ∀s ∈ N (s* ) (2.4)

where N (s* ) is a neighborhood of s* and a subdomain of the cost function’s feasible domain
of definition D . A necessary condition to verify in this case is:

∇J(s* ) = 0 (2.5)

This condition is sufficient if J is a convex function. On the other hand, s* is a global
minimum if expression 2.6 is valid:

J(s) ≥ J(s* ) ∀s ∈ D (2.6)

As such, a global optimum is a local optimum as well. Meanwhile, when a local optimum
is found, global optimality is only guaranteed if the problem is convex. When consider-
ing constrained optimization problems however, the following equations, known as Karush-
Kuhn-Tucker (KKT) conditions and based on the method of Lagrange multipliers, must be
satisfied [104]:

∇J(s* ) +

m∑
i=1

λi∇ineqi(s* ) +

n∑
j=1

µj∇eqj(s* ) = 0 (2.7a)

λi = 0 and ineqi(s* ) < 0 d i = 1, ..,m (2.7b)
or λi > 0 and ineqi(s* ) = 0 i = 1, ..,m (2.7c)

where ineq and eq refer to all the inequality and equality constraints while λ and µ are
added Lagrange multipliers.

Gradient-based algorithms such as Sequentially Quadratic Programming (SQP) stop if a
local optimum is found. This is determined by evaluating the above KKT conditions. While
the latter only define first-order necessary optimality conditions, additional tests based on
the hessian values, can be used to prove that a local minimum is obtained [105]. Various
techniques are employed afterwards, such as multi-start in which numerous initial solution
guesses spread out in the search space are used for algorithm initialization, to help find the
global optimum.

Meta-heuristic algorithms on the other hand rely on different stopping criteria such as
function and optimization variables relative difference between successive iterations or a
maximum number of algorithm iterations [106].

Aside from its optimality, a solution’s robustness needs to be assessed as well, since the
optimization problem is solved in a deterministic way while the industrial processes applied
when manufacturing introduce various parameter uncertainties. This is explored in greater
detail on Chapter 4.

2.2 Hybrid railway power substation application
The hybrid railway power substation (HRPS) optimization problem, based on the work in
[44], is used afterwards to compare between several control strategies and system-wide op-
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timization approaches.

These facilities can satisfy parts of their electrical energy consumption through the use of
renewable energies, combined with energy storage devices to tackle the related intermittency
issues. The studied HRPS for example, shown in Figure 2.1, is equipped with wind turbines
and solar panels as well as batteries.

Figure 2.1: HRPS design problem [44].

To maximize the efficiency of the facility, the size of its components (solar panels, wind
turbines, storage capacity,...) have to be properly designed while considering their usage
over a long period of time. The use of the storage devices also has an important impact on
the energy bill, especially when the daily evolution of electricity prices and seasonal changes
are considered. The time step for this study is equal to 10 minutes.

The HRPS optimization problem, is then expressed as:

minimize
Emax,Pmax,SPV,SW,Eini,Psto,Pgrid

Inv(Emax,Pmax,SPV,SW) +

tf−∆t∑
t0

Cgrid(Pgrid(t), t)∆t

(2.8a)

subject to Pgrid(t) = Psto(t) + Pload(t)− SPVPirr(t)− SWPwind(t)
(2.8b)

Esto(t+ ∆t) = Psto(t)∆t+ Esto(t) (2.8c)
Esto(t0) = Eini (2.8d)
Esto(tf) = Eini (2.8e)
Esto(t) ∈ [0,Emax] (2.8f)

Emax ∈ R+,Pmax ∈ R+,SPV ∈ R+,SW ∈ R+ (2.8g)
Psto(t) ∈ [−Pmax, Pmax],Pgrid(t) ∈ R (2.8h)

with Emax representing the energy storage capacity in J, Pmax the maximum input/output
power to the batteries in W, SPV the surface of the solar panels in m2, SW the swept surface
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of the wind turbines in m2 and E ini the energy initially stored in the batteries in J.

P load is the consumed power, while Pgrid, Psto, PPV and PW represent the power
flow from the grid, the batteries, the installed solar panels and wind turbines respectively
in W. C grid refers to the energy cost function. Pwind is the available wind power in W/m2

while P irr is the solar irradiance in W/m2. E sto is the energy stored in the batteries in J.

In this case study, the HRPS investment cost is linear, as expressed in 2.9:

Inv(Emax,Pmax,SPV,SW) = CE
stoEmax + CP

stoPmax + CPVSPV + CWSW (2.9)

where CE
sto, CP

sto, CPV and CW are the fixed costs related to Emax, Pmax, SPV and SW
respectively.

As for the energy cost, a piece-wise linear pricing system is adopted, which depends on
the direction of the power flow from the grid. By decomposing Pgrid into power received
from the grid Pgrid

+ and power sent to the grid Pgrid
-, the energy cost can be expressed

as:

Cgrid(P grid(t), t) = C+
grid(t)P grid

+(t) + C-
grid(t)P grid

-(t) (2.10)

The cost components applied above satisfy the following:

C+
grid(t) > C-

grid(t) (2.11)

This then means that, if an optimal solution is found, logically either Pgrid
-(t) or

Pgrid
+(t) are equal to zero at time step t. This is crucial as the power flow needs to

remain in one direction per time step.

Thus, the total cost function is linearized. Since the constraints are linear as well, the
complete HRPS problem is linearized. An all-at-once linear programming (LP) optimization
algorithm such as dual-simplex is used to accurately find the global optimum of the HRPS
problem.

On the other hand, it is clear that the HRPS problem falls in the same category as
hybrid powertrain optimization of the Plant/Controller class of problems. The optimization
problem is reformulated as in 2.3, with d , u and x referring to (Emax, Pmax, SPV, SW,
E ini), Psto and E sto respectively:

min
d ,u

J(d ,u) = Inv(d) +

tf−∆t∑
t0

Cgrid(u(t) + Pload(t)− d3Pirr(t)− d4Pwind(t), t)∆t

(2.12a)

s.t. x(t+ ∆t) = u(t)∆t+ x(t) (2.12b)
x(t0) = d5 (2.12c)
x(tf) = d5 (2.12d)
d5 − d1 ≤ 0 (2.12e)
x(t) ∈ [0, d1] (2.12f)
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u(t) ∈ [−d2, d2] (2.12g)

d ∈ R+
5 (2.12h)

with:

Inv(d) = CE
stod1 + CP

stod2 + CPVd3 + CWd4 (2.13)

If the design variables are imposed, the HRPS optimal control problem can be defined
as well:

min
u

tf−∆t∑
t0

Cgrid(u(t) + Pload(t)− d3Pirr(t)− d4Pwind(t), t)∆t (2.14a)

s.t. x(t+ ∆t) = u(t)∆t+ x(t) (2.14b)
x(t0) = Eini (2.14c)
x(tf) = Eini (2.14d)
x(t) ∈ [0, Emax] (2.14e)
u(t) ∈ [−Pmax, Pmax] (2.14f)

The HRPS application is investigated before hybrid powertrain optimization for vari-
ous reasons: on one hand, this case study introduces, similarly to the HEV optimization
problem, a large number of variables. on the other hand, its system model is much faster
to evaluate and, as explained earlier, the global optimum is easily found through problem
linearization. This solution is used as a reference to draw a first comparison between the
control and sizing strategies presented in the following sections.

2.3 Optimal control strategies
Controller optimization is addressed first before discussing system-wide optimization. Thus,
this section mainly focuses on the optimal control methods introduced in Chapter 1 that
can be used to solve problem 2.2: direct optimization, CO, PMP and DP. Comparison over
a common benchmark, the HRPS case study, is established afterwards to select the most
adequate methods to implement when studying the hybrid powertrain application.

2.3.1 Direct Optimization
Different methods exist to solve the optimal control problem, with direct optimization, either
by implementing meta-heuristic or non-linear programming (NLP) algorithms, still being a
viable option. The SQP methods, seen as more accurate and efficient when compared to
other non-linear programming methods over large optimization problems [107], are applied
afterwards.

The SQP methods solve a sequence of optimization subproblems at different solution
guesses. The optimization subproblems are based on a quadratic approximation of the La-
grangian function and linearization of the problem’s inequality constraints allowing them
to be solved using quadratic programming algorithms. Once they are solved, the current
solution guess is updated. If a local optimum is not found (first-order optimality condi-
tions) and the stopping thresholds described in the previous section are not crossed, a new
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solution guess is proposed using a line search procedure and the previous process is repeated.

On the other hand, it should still be expected that a large number of optimization
variables impacts the convergence of the algorithm and lead to prohibitive calculation times.
This eventually restricts their use on short design cycles of a few hundred time steps only.
For longer cycles, it is imperative to implement more adequate methods.

2.3.2 Collaborative Optimization
Decomposition techniques such as CO can be applied in a bid to reduce the number of
variables handled by direct optimization solvers: the optimization problem between time
steps t0 and t f is split into N optimal control problems calculating J i over shorter design
cycles. The cycle corresponding to Ji is limited by time steps t i and t i+1, with tN equal to t f.

The equivalent optimal control problem, representing the top optimization problem, is
expressed as:

minimize
x1,...,xN

N−1∑
i=0

J i(x i,x i+1) (2.15a)

xN = x f (2.15b)
x i ∈ [xmin(ti),xmax(ti)] (2.15c)

While J i is calculated by solving the following subproblem:

J i(x i,x i+1) = min
u

ti+1∑
ti

L(x (t),u(t), t)∆t (2.16a)

subject to x (t+ ∆t) = f (x (t),u(t), t)∆t+ x (t) (2.16b)
x (ti) = x i (2.16c)

x (ti+1) = x i+1 (2.16d)

g(x (t),u(t), t) ≤ 0 (2.16e)
h(x (t),u(t), t) = 0 (2.16f)
x (t) ∈ [xmin(t),xmax(t)] (2.16g)
u(t) ∈ [umin(t),umax(t)] (2.16h)

This decomposition should consider the limitations of the solvers for both problems. The
use of NLP algorithms for example leads to convergence difficulties for a large number of
variables at the top problem and subproblem levels. Even though it provides solutions for
much longer cycles compared to the direct use of optimization algorithms, the use of CO
is still restricted to cycles of thousands of variables and motivates the study of algorithms
based on optimal control theory instead, such as Pontryagin’s Minimum Principle (PMP)
and Dynamic Programming (DP).

2.3.3 Pontryagin’s Minimum Principle
The main idea behind the PMP approach is to solve the dual problem of the optimal con-
trol problem. This is achieved by introducing the augmented Lagrangian for the evolution
constraint using a co-state value λ. For the continuous formulation, it is defined as:
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J̄(x ,u ,λ) =

∫ tf

t0

L(x (t),u(t), t)dt+

∫ tf

t0

λ(t)(f (x (t),u(t), t)− x ′(t))dt (2.17a)

=

∫ tf

t0

L(x (t),u(t), t)dt+

∫ tf

t0

λ(t)f (x (t),u(t), t)dt−
∫ tf

t0

λ(t)x ′(t)dt (2.17b)

=

∫ tf

t0

(L(x (t),u(t), t) + λ(t)f (x (t),u(t), t))dt−
∫ tf

t0

λ(t)x ′(t)dt (2.17c)

The hamiltonian H is introduced:

J̄(x ,u ,λ) =

∫ tf

t0

H(x (t),u(t),λ(t), t)dt−
∫ tf

t0

λ(t)x ′(t)dt (2.18)

Integration by parts is applied afterwards, resulting in:

J̄(x ,u ,λ) =

∫ tf

t0

H(x (t),u(t),λ(t), t) + λ′(t)x (t)dt− λ(tf)x (tf) + λ(t0)x (t0) (2.19)

Finally, partial derivation of equation 2.19 with respect to u leads to:

∂J̄

∂u
(x ,u ,λ) =

∫ tf

t0

∂H

∂u
(x (t),u(t),λ(t), t)dt (2.20)

It has been demonstrated that if (x*, u*, λ*) is a stationary point of the augmented
Lagrangian, then it is also a stationary point for the optimal control problem under the
evolution constraint of the state variables x [88]. It is then concluded from 2.17 that the
solution to the optimal power management problem needs to verify the following constraint:

∫ tf

t0

∂H

∂u
(x *(t),u*(t),λ*(t), t)dt = 0 (2.21)

When applying the same reasoning detailed earlier using specific control functions before
projecting Equation 2.21 [108], the following condition is found:

∂H

∂u
(x *(t),u*(t),λ*(t), t) = 0 (2.22)

The above condition is generalized when H is not differentiable with respect to u :

u*(t) = argmin
u

H(x *(t),u ,λ*(t), t) (2.23)

And thus optimal command can be found as a solution to a simpler minimization prob-
lem at each time step. The constraints over the initial and final values are validated by
selecting the appropriate values for λ. The PMP approach is summarized in Figure 2.2.

Furthermore, partial derivation of equation 2.18 with respect to x leads to:
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Figure 2.2: PMP process

∂J̄

∂x
(x ,u ,λ) =

∫ tf

t0

∂H

∂x
(x (t),u(t),λ(t), t) + λ′(t)dt (2.24)

This imposes the following condition on the evolution of λ:

λ′(t) = −∂H
∂x

(x *(t),u*(t),λ*(t), t) (2.25)

If H is independent of x , for instance in applications where the cost functional and the
evolution function do not depend on the state variables such as those presented in this work,
then λ has a fixed value throughout the design cycle. Finding λ in this case can be based
on a simpler process such as dichotomy.

One of the main deficiencies of PMP however remains the fact that the different con-
straints on the control variables are not carefully considered, since they require the addition
of other co-state values to be determined as well, further complexifying the process. As
such, the optimal control must be found inside the admissible region of u and not on its
boundaries [109] to achieve control optimality.

2.3.4 Dynamic Programming
The DP algorithm adopts a distinct approach by introducing the cost-to-go function V .
V (x ,t) represents the minimum cost required to get from state value x at time step t to
reach the imposed value x f at the last time step. V (x ,t) is also, according to Bellman’s
principle, a solution to the following problem:
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V (x , t) = min
u i

V (x (t+ ∆t), t+ ∆t) + L(x ,ui, t)∆t (2.26a)

subject to x (t+ ∆t) = f (x ,u i, t)∆t+ x (t) (2.26b)
g(x ,u i, t) ≤ 0 (2.26c)
h(x ,u i, t) = 0 (2.26d)
x (t+ ∆t) ∈ [xmin(t+ ∆t),xmax(t+ ∆t)] (2.26e)
u i ∈ [umin(t),umax(t)] (2.26f)

Using a backwards approach, this problem can be solved either using an optimization
algorithm or by assessing different values for the command limited by its lower and upper
bounds. This is repeated for different discrete values of the state variables.

The discretization, called mesh, defines the grid Dx, representing the set of discrete
values for the state variables at each time step. The discretization should allow for x0 and
x f to belong to the grid at their respective time steps.

The values previously found for the cost-to-go function and optimal commands are stored
in matrices of the same size as the mesh. In this way, their values at time step t+∆t can
be exploited at time step t without the need to recalculate them.

Thus, the dynamic programming algorithm can be summed up as followed:

Algorithm 1: Dynamic Programming algorithm
V (x f, t f) = 0;
V (x 6= x f, t f) = +∞;
for t = t f-∆t to t0 by -∆t do

for x i ∈ Dx(t) do
Find V (x i, t) by solving 2.26;
Store V (x i, t);
Store optimal command u i at t ;

end
end

The optimal cost and command for the complete cycle using the selected mesh are stored
at the grid point defined by (x0,t0).

The mesh should be defined adequately when applying DP. On one hand, a finer mesh
improves the quality of the solution. On the other hand, smaller discretization steps lead to
longer calculation times and require important storage capacity.

Since the cost-to-go and optimal command values are only stored at grid points defined
by (x (t+∆t),t+∆t) when solving problem 2.26 at time step t+∆t, a common approxima-
tion is to interpolate their values if x (t+∆t) 6∈ Dx(t+∆t) when solving the same problem
at time step t .

A more accurate and faster approach would be to select only command values allowing
for passage throughout the grid points. A separate function b can be added for example such
as to find the "cheapest" command to reach different state variable values at two successive
time steps.
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The DP algorithm is improved in the following way:

Algorithm 2: Improved dynamic programming algorithm
V (x f, t f) = 0;
V (x 6= x f, t f) = +∞;
for t = tf-∆t to t0 by -∆t do

for xi ∈ Dx(t) do
V (xi, t) = +∞;
for xi+1 ∈ Dx(t+∆t) do

ui = b(xi,xi+1,t);
if ui ∈ [umin(t), umax(t)], g(xi,ui,t) ≤ 0, h(xi,ui,t) = 0 and
V (xi,t)>V (xi+1,t+∆t)+L(xi,ui,t)∆t then

V (x i,t)=V (x i+1,t+∆t)+L(x i,u i,t)∆t ;
Store ui as best command;

end
end
Store V (xi, t);
Store best command as optimal command from (xi, t);

end
end

If L is independent with respect to the state variables and the values for b are only
impacted by ∆x , it is recommended to use a uniform mesh and store the possible values for
L in an array at each time step to be used afterwards for faster calculation times.

On the other hand, better solutions require a finer meshing, which increases the number
of possible paths to explore. However, the time complexity is quadratic to the mesh. One
of the solutions that are proposed in this work to drastically reduce calculation time is the
application of an adaptive meshing process, displayed in Figures 2.3 and 2.4.

Figure 2.3: First part of an iteration of the adaptive meshing process. The black dots
represent the grid points and the green line the optimal solution with the current mesh

This process starts with an initial solution found using a coarse mesh, presented as an
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evolution of the state variables. The DP process is reconducted afterwards, while this time
limiting the range of the state variables around the previously found values, modifying the
shape of the grid. This allows for the use of finer meshing by limiting the number of grid
points present in the updated grid, as shown in Figure 2.4.

Figure 2.4: Second part of an iteration of the adaptive meshing process. The green line
represents the previous solution, the orange line the new grid limits and the black dots the
updated grid points

This process is then reiterated for either a fixed number of loops or based on a specific
criterion such as the relative evolution of the optimal cost. The Dynamic Programming with
Adaptive Meshing (DPAM) algorithm is summarized in the following way:

Algorithm 3: DPAM algorithm
for l = 1 to num loops do

Update Dx;
Launch Algorithm 2;

end

2.3.5 Link between PMP and DP
DP’s Hamilton-Jacobi-Bellman (HJB) equation is expressed as:

V (x (t), t) = min
u(t)

V (x (t+ ∆t), t+ ∆t) + L(x (t),u(t), t)∆t (2.27)

The value of x (t+∆t) can be replaced using the evolution equation:

V (x (t), t) = min
u(t)

V (f (x (t),u(t), t)∆t+ x (t), t+ ∆t) + L(x (t),u(t), t)∆t (2.28)

Replacing the cost-to-go function in the right side with its first Taylor polynomial leads
to:
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V (x (t), t) = min
u(t)

V (x (t), t) +
∂V

∂x
(x (t), t)f (x (t),u(t), t)∆t+

∂V

∂t
(x (t), t)∆t+ L(x (t),u(t), t)∆t

(2.29)

The equation is then simplified as:

min
u(t)

∂V

∂x
(x (t), t)f (x (t),u(t), t) +

∂V

∂t
(x (t), t) + L(x (t),u(t), t) = 0 (2.30)

Since V is independent of the command value, the equation is further simplified as:

∂V

∂t
(x (t), t) + min

u(t)

∂V

∂x
(x (t), t)f (x (t),u(t), t) + L(x (t),u(t), t) = 0 (2.31)

Finally, finding the optimal command value at time step t comes down to minimizing a
term similar to the PMP’s hamiltonian defined as:

H(x (t),u(t),λ(t), t) = L(x (t),u(t), t) + λ(t)f (x (t),u(t), t) (2.32)

with the value of the co-state value λ expressed as:

λ(t) =
∂V

∂x
(x (t), t) (2.33)

In this way, it is proven that both DP’s and PMP’s processes converge, although these
control strategies are applied differently. Similar results should then be expected when
implementing both these methods for control optimization, and any deviations that are
observed should be investigated and justified.

2.3.6 Comparison and analysis
The different studied methods are compared afterwards over the HRPS control optimization
problem and LP is used in this case to provide a reference solution. NLP is tested at first
by applying the SQP version included in Matlab’s Optimization Toolbox [110].

Two different variants of CO are assessed afterwards, by decomposing the design cycle
into either one day or half-day long cycles and are referred to as CO1 and CO2 respectively.
The optimizers for both the top-level problem and for the subproblems use the SQP algo-
rithm as well. Independent optimizations on the subproblem level are executed in parallel
for faster iterations.

Furthermore, DP and DPAM are both investigated. The use of the improved versions
for both algorithms requires the definition of function b described earlier. For the HRPS
problem, this function is simply defined as:

b(xi, xi+1, t) =
xi+1 − xi

∆t
(2.34)

The selected time step for the optimization problem is set at 10 minutes. In this case, a
design cycle spanning one day can be discretized into 144 time steps. Comparison is done
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afterwards on cycles of increasing length with 1 day increments. An order of magnitude
similar to a typical drive-cycle is reached for a 5-day design cycle. The different methods are
compared in terms of computation time CT in seconds and relative deviation to the opti-
mal cost D found with LP. The results are summarized in Table 2.1 and shown in Figure 2.5.

Figure 2.5: Comparison of control methods to solve the HRPS command optimization prob-
lem

NLP CO1 CO2 DP DPAM PMP
TS CT D CT D CT D CT D CT D CT D

1 day 12.4 3.62e-3 13.8 3.62e-3 3.44e3 3.24e-2 5.12 7.74e-4 6.80 5.79e-8 3.14 8.09e-1
2 days 76.9 8.63e-3 1.26e3 1.20e-4 1.14e3 1.00e-1 7.48 1.02e-3 11.1 1.32e-8 5.64 3.13e-1
3 days 1.25e4 2.41e-3 9.69e2 3.78e-3 6.34e3 5.93e-2 11.6 9.60e-4 16.6 1.24e-8 8.45 3.11e-1
4 days 6.23e4 7.67e-3 2.15e4 1.50e-3 1.41e3 1.01e-1 15.5 9.85e-4 22.2 4.52e-8 10.2 3.09e-1
5 days 4.20e4 6.00e-3 2.95e4 1.80e-3 2.75e3 6.98e-2 21.3 1.16e-3 27.8 1.98e-8 12.4 3.08e-1

Table 2.1: Control strategy comparison
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NLP finds good results but comes with high computation times, growing exponentially
with the number of variables. Non convergence issues are expected for a larger number of
variables.

CO1 is a more adequate method, having the same level of precision while being faster
than NLP. The first variant finds the best compromise of both alternatives between fast op-
timizations on the subproblem level and the number of variables at the top level optimizer.
Nevertheless, CO still finds difficulty providing solutions at reasonable times as well.

Providing gradient information of the cost and constraint functions allows for better
convergence for both NLP and CO methods. However, this information is only available
when adopting analytical models, and thus it cannot be generalized to other cases such as
the studied hybrid powertrain optimization.

Meanwhile, PMP is the fastest but leads to poor results, as a necessary condition for
finding the optimal control using this method is not met on this application. In fact, the
hamiltonian is expressed as:

H(x(t), u(t), t) = Cgrid(u(t) + Pload(t)− d3Pirr(t)− d4Pwind(t)) + λ(t)u(t) (2.35)

As mentioned earlier, since H is independent with respect to x , λ is a constant. Hence,
the hamiltonian is a piece-wise linear function with respect to u . Depending on the value
of λ, the optimal control value is often either found at the upper or lower bounds. This is
referred to as "Bang-Bang" command [111]. As explained before, optimal command being
found at the boundaries only leads to sub-optimal solutions when using PMP.

Finally, DP and DPAM manage to find command values with small cost deviations and
low calculation times. Their computation time is linear with the length of the cycle while
their precision remains steady. Similar conclusions are observed for longer design cycles
spanning over two weeks. Moreover, DPAM manages to find the optimal solution with
much greater accuracy at comparable times to DP. For these reasons, DPAM is selected as
the HRPS control strategy when implementing systemic design approaches.

2.4 Systemic design approaches
In the previous chapter, different systemic design approaches are introduced. The coupling
between the optimization of the design and control problems allowed for the exploration of
the main Plant/Controller frameworks, classified as the simultaneous, bi-level, iterative and
sequential approaches.

The sequential approach is not considered in this research project since, while following
a similar scheme to the iterative approach, it cannot, unlike the latter, lead to a system
optimum. The remaining approaches are detailed further and compared on the HRPS ap-
plication later on.

2.4.1 Simultaneous approach
The simultaneous framework, representing the most direct approach, consists in solving the
optimization problem 2.3 directly either by using non-linear programming algorithms such
as SQP or meta-heuristic methods like genetic algorithms.



2.4. Systemic design approaches 59

However, this leads to a large number of optimization variables to consider at once
mainly because of the command variables involved, limiting their use to system optimization
problems over small design cycles.

2.4.2 Bi-level approach
As shown in Figure 2.6, when adopting the bi-level approach, also called nested approach,
at each iteration of a top level problem, an optimization subproblem is solved to calculate
the optimal controller cost C (d) for the selected design variables d .

The top problem defined in 2.36 focuses on finding only the optimal design variables,
leading to less convergence issues as opposed to the previously defined simultaneous ap-
proach.

Figure 2.6: Bi-level framework

minimize
d

αInv(d) + C(d) (2.36a)

subject to k(d) ≤ 0 (2.36b)
l(d) = 0 (2.36c)
d ∈ [dmin,dmax] (2.36d)

Meanwhile, C (d) is calculated by solving an optimal control problem defined by 2.37,
similar to the one expressed in 2.2. This results in slower iterations at the top level as
compared to function evaluations when using the simultaneous approach.

C(d) = min
u

β

tf−∆t∑
t0

L(d ,x (t),u(t), t)∆t (2.37a)

subject to x (t+ ∆t) = f (d ,x (t),u(t), t)∆t+ x (t) (2.37b)
x (t0) = x0(d) (2.37c)
x (tf) = x f(d) (2.37d)
g(d ,x (t),u(t), t) ≤ 0 (2.37e)
h(d ,x (t),u(t), t) = 0 (2.37f)
x (t) ∈ [xmin(d , t),xmax(d , t)] (2.37g)
u(t) ∈ [umin(d , t),umax(d , t)] (2.37h)
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Another advantage of using this framework is the possibility to implement different and
more adequate optimizers for the design and control problems. Thus, faster calculation
times and convergence of the solution can be achieved while preserving the robustness of
the approach.

2.4.3 Iterative approach
The iterative scheme goes further than the bi-level approach by completely separating both
the design and control optimization blocks, as seen in Figure 2.7.

Figure 2.7: Iterative framework

At first, the design variables d* are initialized to values d ini. The iterative framework
then starts by solving the control optimization problem, expressed as:

u* = argmin
u

β

tf−∆t∑
t0

L(d* ,x (t),u(t), t)∆t (2.38a)

subject to x (t+ ∆t) = f (d* ,x (t),u(t), t)∆t+ x (t) (2.38b)
x (t0) = x0(d* ) (2.38c)
x (tf) = x f(d* ) (2.38d)
g(d* ,x (t),u(t), t) ≤ 0 (2.38e)
h(d* ,x (t),u(t), t) = 0 (2.38f)
x (t) ∈ [xmin(d* , t),xmax(d* , t)] (2.38g)
u* (t) ∈ [umin(d* , t),umax(d* , t)] (2.38h)

Once the optimal command variables are found, the control strategy is fixed and the
design variables are updated when solving the following design optimization problem:
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d* = argmin
d

J(d) = αInv(d) + β

tf−∆t∑
t0

L(d ,x (t),u* (t), t)∆t (2.39a)

subject to x (t+ ∆t) = f (d ,x (t),u* (t), t)∆t+ x (t) (2.39b)
x (t0) = x0(d) (2.39c)
x (tf) = x f(d) (2.39d)
g(d ,x (t),u* (t), t) ≤ 0 (2.39e)
h(d ,x (t),u* (t), t) = 0 (2.39f)
k(d) ≤ 0 (2.39g)
l(d) = 0 (2.39h)
x (t) ∈ [xmin(d , t),xmax(d , t)] (2.39i)
u* (t) ∈ [umin(d , t),umax(d , t)] (2.39j)
d ∈ [dmin,dmax] (2.39k)

This describes the first iteration of the iterative scheme, which is repeated as long as cost
improvements are found when updating both the design and control variables or for a maxi-
mum number of iterations N iter. It is imperative to include the controller cost when solving
the design problem in order to ensure the consistency and convergence of this approach.

Finally, this scheme, as it is also the case for the bi-level framework, allows for the
implementation of optimal control strategies to solve the separate control problem. This
can then greatly improve the time required by this approach and ensure its convergence.

2.4.4 Comparison and analysis
In order to compare the proposed system design approaches, the HRPS design problem is
studied over a cycle length of two weeks. The total number of decision variables in this case
is equal to 2021. This allows to achieve the same level of complexity as the HEV optimiza-
tion problem over the WLTC 3-b cycle (1800 time steps). The grid costs are recalculated
as to achieve an order of magnitude for the energy cost similar to a life cycle exploitation of
the HRPS, estimated at 20 years.

DPAM and LP are both applied alternatively for power management when implementing
the bi-level and iterative frameworks. This helps assess the impact of the power management
strategy on the convergence of the approaches and optimal solutions.

The design variables are optimized using SQP. The design variables are also normalized
based on imposed upper and lower bounds to improve the convergence speed of the algo-
rithm. A pool of 100 design configurations, generated from Sobol’s Quasirandom Sequence
[112] to fill the search space in a highly uniform manner, is used afterwards to initialize the
algorithm for each approach. This allows for a better assessment of the convergence when
analyzing the different approaches.

Moreover, the design optimization constraints for the iterative approach are simplified
by only considering the maximum and minimum values of the imposed command variables.
For example, Pmax simply needs to verify the following conditions:

Pmax > max(u) (2.40a)
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Pmax > −min(u) (2.40b)

Table 2.2 compiles the best results that are found, with SM, BL and IT referring to
the simultaneous, bi-level and iterative approaches respectively. CT refers to the calculation
time in seconds while D refers to the deviation with the optimal cost provided by LP.

SM BL + LP BL + DPAM IT + LP IT + DPAM
CT D CT D CT D CT D CT D
Non convergence 32.6 5.68e-9 1.94e4 8.53e-10 8.39 1.13e-3 1.30e3 1.39-3

Table 2.2: Systemic design strategies comparison

As expected, the simultaneous approach fails to converge due to the large number of
optimization variables considered. The bi-level and iterative approaches on the other hand
have managed to find solutions at small cost deviations and reasonable calculation times.
Thus, only the bi-level and iterative approaches are analyzed further.

Bi-level approach analysis

The bi-level approach requires longer calculation times when DPAM is used compared to
LP. The power management strategy however did not impact the accuracy of this approach,
as precise results are found in both cases. This is justified by DPAM’s small cost deviations
of around 10-8 when confronted to LP.

The distance between the proposed solution at each optimization calculation and its ini-
tial design (DistI) is evaluated, as well as the distance between said solution and the HRPS
reference solution found through problem linearization (DistR).

These indicators are analyzed to verify if this approach is viable. While smaller values
for DistR are sought after, meaning the solutions found by the approach converge towards
the global optimum values, smaller values for DistI on the other hand mean the approach
is unable to look at other configurations in the feasible domain outside the initial point’s
neighborhood to improve the total cost.

Similar tendencies, observed in Table 2.3, are found when implementing either LP or
DPAM for power management of the bi-level approach.

Table 2.3: Bi-level approaches convergence analysis, focusing on the number of solutions
whose distance from the initial point (DistI) or reference (DistR) is under a specified value
for the different design variables

BL + LP BL + DPAM
DistI Emax Pmax SPV SW E ini Emax Pmax SPV SW E ini
61 100 100 100 100 100 100 100 100 100 100
60.1 20 8 10 9 15 30 23 20 21 66
60.01 1 0 1 0 1 12 14 14 13 51
61e-3 0 0 1 0 1 10 14 14 13 46
61e-4 0 0 1 0 1 8 10 12 10 42
61e-5 0 0 1 0 1 4 5 8 4 39
61e-6 0 0 1 0 1 4 4 4 3 35
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DistR
61 100 100 100 100 100 100 100 100 100 100
60.1 98 98 100 100 61 38 84 88 82 18
60.01 98 98 100 100 24 15 83 85 81 7
61e-3 97 97 100 100 19 10 83 85 81 6
61e-4 92 97 100 100 16 8 83 85 81 6
61e-5 88 97 100 100 13 6 82 83 81 6
61e-6 79 95 100 100 10 5 81 83 78 4

Table 2.3: Bi-level approaches convergence analysis, focusing on the number of solutions
whose distance from the initial point (DistI) or reference (DistR) is under a specified value
for the different design variables - continued

It is deduced that both applications of the bi-level approach have good convergence rates
for the different variables. However, the convergence of BL+LP is better. BL+DPAM’s con-
vergence can be improved by enhancing the accuracy of DPAM, requiring finer meshing.

For the first variant, by not considering parameter E ini as it has a negligible impact in
this problem, a high convergence rate of 79% is achieved. Furthermore, only a limited num-
ber of proposed solutions remain in the same neighborhood as the algorithm’s initialization,
which goes to prove the robustness of the bi-level approach.

Iterative approach analysis

The previous convergence analysis is conducted on the iterative approach as well. Table 2.4
compiles the results that are found:

IT + LP IT + DPAM
DistI Emax Pmax SPV SW E ini Emax Pmax SPV SW E ini
61 100 100 100 100 100 100 100 100 100 100
60.1 40 100 10 9 42 46 100 10 9 36
60.01 32 100 1 0 3 37 100 1 0 6
61e-3 32 100 1 0 2 32 100 1 0 4
61e-4 32 100 1 0 1 30 98 1 0 1
61e-5 32 96 0 0 1 30 98 1 0 1
61e-6 32 95 0 0 1 30 98 1 0 1

DistR
61 100 100 100 100 100 100 100 100 100 100
60.1 27 9 100 100 25 27 9 100 100 22
60.01 2 0 100 100 16 2 0 100 100 12
61e-3 0 0 100 100 12 0 0 100 100 9
61e-4 0 0 100 100 12 0 0 100 100 9
61e-5 0 0 100 100 12 0 0 100 100 9
61e-6 0 0 100 100 12 0 0 100 100 9

Table 2.4: Iterative approaches convergence analysis, focusing on the number of solutions
whose distance from the initial point (DistI) or reference (DistR) is under a specified value
for the different design variables
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If similar conclusions to the bi-level strategy are made for the iterative approach when
considering SPV and SW, the same cannot be said when observing Emax and Pmax. This can
be explained in part by analyzing the impact of command constraints on design optimization.

Optimization of the command determines the values for E sto and Psto that are con-
strained between the upper and lower bounds, delimited by Emax and Pmax. The design
optimization conducted afterwards will then logically seek to lower the values of Emax and
Pmax as much as possible with respect to their constraints due to their impact on the cost
for a fixed command.

These constraints are in turn directly linked to the values of E sto and Psto found pre-
viously. This is repeated at each iteration, resulting in only smaller values for these design
variables. It can be concluded that while the approach still converges for this application,
the search direction is imposed for these variables as opposed to SPV and SW. Relaxing the
command constraints during controller optimization can help solve this issue.

A new iterative approach, referred to as IT Imp, is implemented in this regard. This ap-
proach is based on the same scheme as the iterative framework without imposing command
constraint 2.38.e. This is applied for all iterations except the last one to ensure that the
obtained solution is consistent.

Table 2.5 presents the results of this approach, and compares them to the first application
of the iterative approach.

IT + LP IT + DPAM IT Imp + LP IT Imp + DPAM
CT D CT D CT D CT D
8.39 1.13e-3 1.30e3 1.39-3 3.58 2.563e-16 1.97e3 6.24e-4

Table 2.5: Comparison between the different iterative strategies

The iterative approach with relaxed command constraints finds better solutions com-
pared to the initial implementation of the iterative scheme. The precision found for the
solution is similar to that of the bi-level approach. Indicators DistI and DistR are recalcu-
lated as well. The different results are shown in Table 2.6.

Table 2.6: Iterative approach with relaxed command constraints approaches convergence
analysis, focusing on the number of solutions whose distance from the initial point (DistI)
or reference (DistR) is under a specified value for the different design variables

IT Imp + LP IT Imp + DPAM
DistI Emax Pmax SPV SW E ini Emax Pmax SPV SW E ini
61 100 100 100 100 100 100 100 100 100 100
60.1 16 9 10 9 100 11 9 10 9 64
60.01 1 0 1 0 100 0 0 1 0 50
61e-3 0 0 1 0 100 0 0 1 0 32
61e-4 0 0 1 0 100 0 0 1 0 7
61e-5 0 0 1 0 100 0 0 1 0 2
61e-6 0 0 1 0 100 0 0 1 0 1
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DistR
61 100 100 100 100 100 100 100 100 100 100
60.1 22 100 100 100 10 3 100 100 100 11
60.01 12 100 100 100 2 3 100 100 100 2
61e-3 12 100 100 100 1 3 100 100 100 1
61e-4 12 100 100 100 1 3 100 100 100 1
61e-5 12 100 100 100 1 3 100 100 100 1
61e-6 12 100 100 100 1 3 100 100 100 1

Table 2.6: Iterative approach with relaxed command constraints approaches convergence
analysis, focusing on the number of solutions whose distance from the initial point (DistI)
or reference (DistR) is under a specified value for the different design variables - continued

It can be observed that the convergence for the design variables has greatly improved.
However, the convergence rate for all values towards the global optimum is still not as high
as when applying the bi-level approach. When measured for all design variables except for
E ini, it is estimated at 12% as opposed to 79% when using the bi-level strategy. It is deduced
that the iterative framework, while it can lead to the global optimum, is still more sensitive
to its design variable initialization compared to the bi-level approach.

2.5 Alternative design approaches

Other systemic design approaches can be proposed as well that do not fall within the men-
tioned Plant/Controller schemes. During this research project, three different alternatives
are proposed and are adapted for the HEV design problem.

The main idea behind each one of these strategies is to overcome the unreasonable delays
and convergence difficulties that occur when implementing the system optimization frame-
works explored earlier and using heavy black box models. To achieve this, these strategies
focus on altering the design optimization problem while applying the guidelines of the se-
lected systemic design scheme, as explained afterwards.

While these methods are aimed at improving the calculation time and robustness of the
Plant/Controller frameworks, they can lead to suboptimal solutions to the main optimiza-
tion problem expressed in 2.3. Under certain conditions however, these methods can still
guarantee a global optimum.

2.5.1 Approach based on the simultaneous scheme: A1

The main limitation when applying the simultaneous approach is the presence of a large
number of variables. Different alternatives can be proposed to overcome this challenge.

One option, referred to as A1 in this work, is to reduce the number of command variables
by introducing a control strategy R which is adjusted using a smaller number of parameters
p.

The optimization problem solved in this case is expressed as:
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minimize
d ,p

J(d ,R(p)) = αInv(d) + β

tf−∆t∑
t0

L(d ,x (t),R(p, t), t)∆t (2.41a)

subject to x (t+ ∆t) = f (d ,x (t),R(p, t), t)∆t+ x (t) (2.41b)
x (t0) = x0(d) (2.41c)
x (tf) = x f(d) (2.41d)
g(d ,x (t),R(p, t), t) ≤ 0 (2.41e)
h(d ,x (t),R(p, t), t) = 0 (2.41f)
k(d) ≤ 0 (2.41g)
l(d) = 0 (2.41h)
x (t) ∈ [xmin(d , t),xmax(d , t)] (2.41i)
R(p, t) ∈ [umin(d , t),umax(d , t)] (2.41j)
d ∈ [dmin,dmax] (2.41k)

Global optimality is guaranteed if the control strategy R always leads to the optimal
cost of the controller for a specific set of parameters p when updating the design variables.
A high performance rule-based strategy can be expected to lead to similar results as well
when implemented.

2.5.2 Approach based on the bi-level scheme: A2

Likewise, several options can be explored to improve the use of the bi-level scheme. One
of these possibilities, addressed as A2, consists in adopting substitution models at the top
level to enable faster iterations.

Since both the total cost and constraints functions for design optimization generally
require long calculation times, they can be replaced with polynomial models for example.
The top problem of the bi-level approach is then simplified in this way:

minimize
d

J s(d) (2.42a)

subject to ks(d) ≤ 0 (2.42b)
ls(d) = 0 (2.42c)
d ∈ [dmin,dmax] (2.42d)

where J s is the simplified cost function, and gs and hs are the functions replacing g and h
respectively.

The use of substitution models also increases the optimization’s robustness in the sense
that they do not fail for some design configurations, which can be the case when adopting
more complex models. For instance, issues related to mesh generation can be encountered
for some machine designs when using FE models. In contrast, a significant loss in precision
is to be expected as well as running the risk of producing physically incoherent outputs.

2.5.3 Approach based on the iterative scheme: A3

Finally, A3 is another alternative proposed for the iterative scheme. It is based on the sub-
stitution of the utility function J in the design optimization problem 2.39 with an equivalent
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function J e.

This variant will then deliver the same solution as the first iterative approach when the
following condition is valid for all system controls:

argmin
d

J(d) = argmin
d

Je(d) (2.43)

This strategy is used to improve the optimization’s calculation time by adopting faster
functions, improve the robustness of the original approach when providing easier to evaluate
functions and/or increase the model’s precision. This is possible in our case by coupling cycle
reduction techniques and the direct use of FE models for hybrid powertrain optimization,
as it is detailed further in Chapter 4.

Conclusion
Solving the hybrid powertrain optimization problem using the Plant/Controller optimization
formulations allows for the investigation of multiple possibilities to find a system-optimal
solution. The most promising frameworks, the bi-level and iterative schemes, decompose
the coupled system design and controller optimizations. More adequate algorithms are im-
plemented to solve each of these problems.

If different techniques are explored for controller optimization, such as direct optimization
and CO, the most commonly applied approaches remain those deriving from the Calculus
of Variations as in PMP and those based on solving HJB equation like DP. Proposed im-
provements such as DPAM help reduce calculation times while improving the solution to
the optimization problem.

The HRPS problem, belonging to the same class of problems as drive-cycle HEV opti-
mization, is then studied. Since this problem is based on piece-wise linear models, faster
computation times are obtained and a reference solution is easily provided through linear
optimization. This explains why it is better suited as an early benchmark to compare the
different proposed control strategies and systemic design frameworks before selecting the
most promising approaches for the main research project.

For power management optimization, NLP and CO manage to find precise solutions,
but their long calculation times and non convergence issues encountered for long design cy-
cle restrict their use on only small cycles. PMP is also found to be inadequate for HRPS
controller optimization as the optimal command is at the specified boundaries, and while
NLP and CO are not considered for the remainder of this study, PMP still needs to be
further investigated on other applications. On the other hand, DP and DPAM prove to be
efficient strategies with the latter providing the best results in reasonable calculation times.
DPAM was selected for HRPS power management and will be applied as an efficient hybrid
powertrain optimal control strategy afterwards as well.

Systemic design approaches are implemented afterwards. The simultaneous approach is
applied at first but it does not converge towards an optimal solution due to the presence of
a large number of variables. Meanwhile, the bi-level approach provides precise results when
adopting both LP and DPAM for power management and has a high convergence rate but
requires long calculation times. In contrast, the iterative approach is 10 times faster but
leads to sub-optimal results and lower convergence rates. This is mainly due to the impact
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of the command constraints which, when relaxed, lead to greater accuracy and improved
performance. Both these frameworks are compared further on the HEV optimization prob-
lem. Other alternative strategies (A1, A2 and A3), based on these frameworks and seeking
to overcome their main limitations, will be implemented and applied as well.
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Hybrid Electric Vehicle application
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Introduction
In this chapter, the hybrid powertrain optimization problem is explained in greater detail.
At first, the application scope as well as an overview of the system model are given before
presenting the design, command and state variables afterwards.

A second part is dedicated to the presentation of the powertrain’s components models
which consider the impact of the different optimization variables, with special emphasis
given to the EM model as the main adjustable element of the optimization applications.
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The command and design constraints are enumerated later on, allowing for the hybrid
powertrain design optimization problem, as well as the hybrid vehicle power management
problem, to be defined.

3.1 System presentation
In this work, a C-segment vehicle equipped with a parallel hybrid powertrain is considered.
This means it incorporates an ICE and an EM, both of which can provide, either simul-
taneously or separately, the required torque to the wheels. The different modes presented
in Chapter 1 are possible in this case: Regenerative braking (Regen), ZEV, conventional,
Boost and Generation. The different components of the powertrain are shown in Figure 3.1.

Figure 3.1: Studied powertrain

The engine, a 1.2-liter gasoline ICE, is equipped with a starter. When the vehicle is in
motion, the clutch between the ICE and EM allows for the ICE to be turned off while the
EM ensures the traction or regenerative braking. Fuel consumption in low efficiency areas
and unnecessary pumping losses during braking as well as standstill are eliminated.

The EM block on the other hand, referring to both the machine and its inverter, is always
connected to the transmission shaft via a gear set and is powered by a 48 V Lithium battery.
For this work, a permanent magnet synchronous machine (PMSM), commonly applied for
electric mobility [113, 114, 115, 116], is considered. This machine is shown in Figure 3.2.

The hybrid powertrain optimization problem shall consider either a specific driving cycle
or a set of drive-cycles to evaluate the vehicle’s performance, discretized at time step ∆t . In
this research project, the machine, its inverter as well as its gear connection are optimized.
Thus, design variables d are introduced and will refer to parameters linked to these power-
train components. The design of the other HEV elements remains the same and is conserved
during the optimization process.
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Figure 3.2: Example of studied PMSM

The system block, shown in Figure 3.3, enables the calculation of the instantaneous fuel
consumption L, expressed in g/s. It considers, in addition to the driving cycle speed v ,
expressed in m/s, the impact of the battery’s state of charge, the engine’s starter command
and the gear switching. By adopting the same term definitions as in Chapter 2, x has three
components: the state of charge of the battery (SoC), the selected gear and the state of the
engine.

Figure 3.3: System block.

u , the command variable, is directly linked to the variations of x and as a result also
has three components (u1: ∆SoC/∆t, u2: gear switch, u3: starter command). Thus, the
evolution function F only depends on the command variable and corresponds to the identity
function Id , while considering the discrete/continuous nature of each variable. x is then
directly deduced from u :

x1(t+ ∆t) = u1(t)∆t+ x1(t) (3.1a)
x2(t+ ∆t) = u2(t) + x2(t) (3.1b)
x3(t+ ∆t) = u3(t) + x3(t) (3.1c)

The system model assumes isothermal conditions for all powertrain components and
data is provided by Valeo’s simulation platform. A global overview of the system block is
presented in Figure 3.4. This figure summarizes how the different component blocks interact.
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Figure 3.4: System block A0 level
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The powertrain provides the required torque at the wheels Tw, expressed in N.m, at
each instant, to negate the driving resistances applied to the vehicle when it is moving and
to achieve the required speed v . Tw is given by the vehicle model, which considers the
vehicle parameters and its speed. The wheel speed ωw in rpm is also an output of this
model as shown in Figure 3.4.

The speed transmission model links the rotation speeds of the EM and ICE to ωw, re-
ferred to as ωEM and ωICE in rpm. This model is impacted by the selected gear and hence
x , as well as the design parameters.

The EM model considers the machine parameters as well as the provided electrical power
PE in W and the value for ωEM, to deliver the mechanical torque TEM in N.m.

The balance between the power provided by the powertrain and the power required at
the wheels needs to be satisfied at every instant. Along these lines, a torque transmission
model is used to calculate the torque to be delivered by the ICE from the values of TEM(t),
Tw(t), and as it is the case with the speed transmission model, based on d and x as well.

The fuel consumption is then evaluated using both the torque provided by the engine
and its speed as inputs. The ICE block is displayed in Figure 3.8 with the cost functional L
referring directly to the fuel consumption value. This value is also impacted by the engine’s
state as well as gear shifting, since the latter leads to non negligible mechanical losses to be
considered.

On another note, the electrical power balance needs to be addressed as well. This is
expressed by the following equation:

PBatt(t) = PE(t) + P St(t) + ConsAux(t) (3.2)

where PBatt is the battery’s output power in W, retrieved from the battery’s model block.

Meanwhile, ConsAux represents the consumption of the different vehicle auxiliaries such
as the lights, wipers and engine control unit throughout the cycle in W. This value is directly
deduced from the auxiliaries model, as presented in Figure 3.4.

PSt on the other hand refers to the electric consumption in W of the starter used for
restarting the engine when it is turned off and is a direct output of the starter block.

The previously mentioned variables are subject to multiple constraints, related to the
limitations of their respective powertrain components, as well as the powertrain require-
ments for this application. Once these constraints as well as the cost function are defined,
the design optimization problem is determined.

3.2 Vehicle representation
For the vehicle model, a backward approach is adopted: the target speed, imposed by the
driving cycle, is always achieved and no speed regulation or driver model is considered.

On the other hand, the mechanical energy released by the two powertrain motors is not
fully converted into kinetic energy that can be used by the vehicle to move. In fact, some
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of this energy is drained by different driving resistances when it is in motion.

These forces are split into: FA the aerodynamic drag, FR the rolling resistance, FP the
vehicle’s weight and FC the contact force with the road surface. These forces, expressed in
N, are shown in Figure 3.5.

Figure 3.5: External driving resistances

When brakes are applied, the braking force FB is considered as well. Projection on the
longitudinal axis leads to the following dynamic equation:

Mv′(t) = FT(t)− FP(t)sin(Θ(t))− FR(t)− FA(t)− FB(t) (3.3)

where M is the mass of the vehicle in kg and Θ the slope angle in rad. FP is expressed as:

FP(t) = Mg (3.4)

where g is the acceleration of gravity, equal to 9.81 m/s2 in this work.

Meanwhile, FR makes it possible to quantify the losses linked to the vehicle’s contact
with the ground. This force, referred to as the rolling resistance, is essentially due to the
deformation of the tyres in contact with the road surface [117] and is generally expressed as:

FR(t) = MgCR +MgkRv(t) (3.5)

where CR and kR are the rolling characteristics of the selected tyres, with kR in s/m.
This expression is only valid when the vehicle is in motion without any tyre slip. FR is
equal to zero when the car is at full stop.

The aerodynamic drag is considered as well. This force, which is the primary reason
for fuel consumption at high speeds, is impacted by the vehicle’s frontal surface and global
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shape, as well as the latitude and weather conditions amongst other factors [118]. In the
context of this project however, FA is defined as:

FA(t) = 0.5ρAirSCxvr
2 (3.6)

where ρAir is the air density, equal in this application to 1.2 kg/m3, S is the projected
frontal surface in m2 and C x the drag coefficient. vr is the relative speed of the wind in the
opposite direction of vehicle motion in m/s. It should be noted that several authors tend to
combine both the rolling resistance and aerodynamic drag into one term referred to as the
global friction force [29, 54].

This model holds true in on-road conditions as well as during laboratory tests. In fact,
numerous measures are applied to ensure similar findings between the two settings, like the
addition of roller benches connected to air blowing systems [119, 120]. Thus, the same model
can be used for both RDE assessment as well as laboratory evaluation of the consumption
over specific driving cycles.

In case of indoor test settings, vr is equal to v and the slope Θ is equal to zero. When
brakes are not applied and no slip is considered, the traction force is then equal to:

FT(t) = M
v(t+ ∆t)− v(t)

∆t
+MgCR +MgkRv(t) + 0.5ρSCxv

2(t) (3.7)

Based on this, the torque to be provided to the wheels is equal to:

Tw(t) = rFT(t) (3.8)

where r is the wheel radius in m. The wheel rotation speed is deduced as well:

ωw(t) =
60

2Π

v(t)

r
(3.9)

3.3 Powertrain components

3.3.1 Battery

The battery adopts a simplified circuit model using an internal resistance IR connected in
series with an open circuit voltage OCV , as displayed in Figure 3.6. The battery is also
characterized with a finite capacity CBatt in A.s and current limit Imax in A for both charge
and discharge. This leads to the following requirement on the command values:

−100Imax∆t

CBatt
≤ u1(t) ≤ 100Imax∆t

CBatt
(3.10)

To limit premature battery ageing, the usage of the battery is restricted between 30 %
and 70 % of its total charge, which implies the following condition on the state of charge:

30 ≤ x1(t) ≤ 70 (3.11)
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Figure 3.6: Battery circuit model. I and V are the battery’s current and voltage respectively

In this range, IR and OCV values vary by less than 5% as seen in Figure 3.7. They
are assumed to be independent of the SoC afterwards. Their mean values over this range,
referred to as MIR and MOCV in Ω and V respectively, are selected to simplify the battery
model for control applications later on.

Figure 3.7: Battery parameters evolution with respect to its SoC. The black lines delimit
the recommended operation region and the red line highlights the mean value

The faradaic yield, which considers the losses related to the occurrence of secondary reac-
tions, inducing leakage currents at the electrodes that do not participate in electrochemical
storage, is neglected, since the battery is based on Li-ion technology [121].

The battery’s output current is then expressed as:

I(t) = −CBatt
u1(t)

100
(3.12)

Finally, the battery’s output power is calculated as:

PBatt(t) = V (t)I(t) = (MOCV −MIR I(t))I(t) (3.13)

PBatt is split afterwards between the EM, the engine’s starter and the vehicle auxiliaries.

3.3.2 Auxiliaries
The auxiliary power consumption, linked to the use of fans, windshield wipers and window
lifters amongst other vehicle equipment, is considered. A constant consumption value Cons
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in W, drawn from the vehicle’s 12 V on-board network, is used to approximate this power
supply.

In order to comply with the charge sustaining constraint, the auxiliary power supply
is compensated by the 48 V network. This network is powered by the 48 V battery and
is connected to the on-board network using a DC-to-DC converter with constant efficiency
ηDC. The auxiliary consumption is then calculated using the following equation:

ConsAux(t) =
Cons

ηDC
(3.14)

3.3.3 Electric machine

The electric machine is at the core of the optimization application. Thus, more emphasis
is given to this component as this subsection details the selected machine architecture,
then presents the design variables considered before explaining how the different inputs and
models are integrated inside the EM block.

Permanent Magnet synchronous machine

Synchronous machines (SM) are a type of alternative current (AC) machines whose shaft
movement is synchronised with the frequency of the supply current. These machines, like any
other rotating electric motor, consist of a rotating part called a rotor and a fixed part named
stator. The rotor can be located inside the stator, as it is the case in this study, or externally.

The stator consists of an outer frame and a core with windings inserted in slots, that
serve as multiphase AC electromagnet. This gives the stator the ability to generate a rotat-
ing magnetic field which follows the oscillations of the supply currents.

The most common designs use three-phase windings. Six-phase windings, consisting of
two offset three-phase windings at 30-degrees phase shift, are also used and are considered in
this study since they allow for better vibro-acoustic performance and higher power rating.
SM can also be equipped with distributed or concentrated windings, with Delta or Wye
connections [122].

Meanwhile, the rotor can adopt different solutions to produce a constant magnetic field.
In the case of PMSMs, permanent magnets, which are materials with high coercive force,
are used. Different possibilities are offered for the rotor design in this case and are presented
in Figure 3.8.

For this research project, the machine adopts a V-shape inserted magnet configuration
(VI-PMSM), as seen in Figure 3.8. This rotor design is suggested as the most efficient and
with the highest torque density when compared to other PMSM rotor types [123].

The working of the PMSM is then simply based on the interaction of the rotating mag-
netic field generated by the stator with the magnetic field of the rotor. This then creates an
electromagnetic torque on the rotor’s axis and the rotor poles rotate in synchronicity with
the stator’s magnetic field.
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Figure 3.8: Main permanent-magnet excited rotor types [123]. SM: Surface mounted - SI:
Surface inserted - I: Inserted - VI: V inserted - RI: Radially inserted

Inverter

Since the studied machine is connected to a battery, the use of an inverter is required. This
device converts the direct current (DC) power supply to an alternating current (AC) power
supply of variable magnitude and frequency.

In order to do so, the inverter of the studied hybrid powertrain uses 6 MOS field effect
transistors (MOSFET) (12 when using a six-phase configuration), connected to form a three-
phase full bridge converter architecture, as shown in Figure 3.9. This inverter, coupled with
the power supply and a control system [124], produces currents of the desired characteristics
pulsating through the different phase windings.

Figure 3.9: Three-phase full bridge inverter

If the output waveforms of ideal inverters should be sinusoidal, the waveform of practical
inverters are non-sinusoidal and contain undesirable distortions, also known as harmonics.
This is directly linked to the applied switching strategy. In this work, two switching strategies
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are used: Pulse Width Modulation (PWM) and Full Wave (FW). The PWM strategy is
selected for less output harmonic content while the FW strategy allows for less switching
losses and higher current magnitudes.

EM losses

In order to evaluate the mechanical torque of the machine for a certain electrical power
input, the machine losses LossesEM need to be defined. In this study, they are expressed as:

LossesEM = LossesMech + LossesJoule + LossesIron + LossesInverter (3.15)

with LossesMech, LossesJoule, LossesIron and LossesInverter referring to the mechanical, Joule,
iron and inverter losses respectively in W.

Since the selected machine is water-cooled at the external surface of the stator, and
due to the shape of the rotor, the machine’s mechanical losses are mainly due to friction
occurring at the bearings. LossesMech is then equal to:

LossesMech = T dωEM +KfωEM
2 (3.16)

where T d and K f are experimentally deduced coefficients expressed in W/rpm and W/rpm2

respectively.

The stator winding is supposed to be a balanced and direct system. Under the first
order harmonic approximation, the currents injected in a three-phase machine for example
are expressed as:

ia(t) = Isin(2Πft+ φ) (3.17a)

ib(t) = Isin(2Πft+ φ+
2Π

3
) (3.17b)

ic(t) = Isin(2Πft+ φ− 2Π

3
) (3.17c)

where I is the current magnitude in A and φ the current phase in rad. The Joule losses are
calculated as a a sum of the DC and AC Joule losses. The former, also known as copper
losses, can be expressed as:

LossesDC = kDistNphRs
I2

2
(3.18)

where Rs is the winding phase resistance in Ω and N ph the number of winding phases. kDist
is an added coefficient to consider the impact of current harmonics on the Joule losses, which
depends on the inverter strategy.

Meanwhile, AC Joule losses occur when using large section conductors with dimensions
that are larger than the skin depth and when the EM operates at high frequency [125, 126].
In this work, the following model is proposed:

LossesAC = (AAC(Hcon, Lcon)ωEM
2 +BAC(Hcon, Lcon)ωEM)LossesJoule (3.19)
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where H con and Lcon are the height and width of the conductor respectively in mm. AAC
and BAC are response surfaces based on simulation results obtained for various values of
H con and Lcon. Deviations of less than 5% are achieved using this model as compared to
the results of high fidelity models.

Iron losses are considered as well and are linked to the active parts of the machine being
subjected to changing magnetic fields. This induces microscopic and macroscopic currents
leading to energy losses in the ferromagnetic materials [127]. These losses are decomposed
into hysteresis losses LossesHys, eddy currents losses LossesEC and excess losses LossesExc.

Different methods are found in literature to calculate these terms such as analytic formu-
las [128, 129], hysteresis [130, 131] and loss surface models [132]. They generally require the
knowledge of the magnetic flux density distribution in the iron core of the designed machine,
which then leads to the use of Finite Element (FE) software to guarantee precise results.

Meanwhile, analytic models are used to describe the inverter losses. These are due to the
non ideal MOSFET characteristics and are decomposed into conduction losses and switching
losses during the turn-on/turn-off period [133, 134]. The inverter losses are then deduced
using the following expression for a Wye machine winding configuration:

LossesInverter = NMOS((RDS-on +RD-bound)
I2

2
+ fSwkSwMOCV I) (3.20)

where NMOS is the number of MOSFETs in the inverter, f Sw is the switching frequency
in kHz while RDS-on, RD-bound and kSw are the selected MOSFET device characteristics
referring to the on-resistance in Ω, the bounding resistance in Ω and the switching losses
coefficient respectively.

In case of a Delta connection, LossesInverter is calculated using the following expression:

LossesInverter = NMOS((RDS-on +RD-bound)
3I2

2
+ fSwkSwMOCV

√
3I) (3.21)

Thus, it can be understood that the machine losses not only depend on the power supply
and operation point of the machine, but also on its different design parameters, which are
adjusted during the optimization process. This requires, as well as for the assessment of
other machine outputs, the use of high granularity models to achieve an acceptable level of
accuracy.

Parametric model

In this study, we have defined 27 machine parameters to give the highest degree of design
flexibility. The parametric model is based on the study of various VI-PMSM projects and
computer aided designs (CAD). The number of pole pairs p and the number of slots per
pole N slot can be modified as well as other geometrical design parameters shown in Figure
3.10.

The selected model uses distributed winding and considers 4 additionnal winding pa-
rameters that can be adjusted: the number of series and parallel conductors, referred to
as N series and N parallel respectively, the nature of the winding connection WndCon and the
number of winding phases N ph. Furthermore, an additional inverter degree of freedom is
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considered for the studied optimization problem: SpeedFWM. The latter refers to the ma-
chine’s rotational speed as of which the inverter switches from a PWM to a FW strategy.

Figure 3.10: Machine design parameters

The materials used for the different machine parts are imposed. Copper is adopted as a
winding conductor, while steel sheets are applied for the stator and rotor cores [135], and
high performance NdFeB magnets are used to generate the rotor field.

Finite Element model

The electromagnetic phenomena occurring inside the EM is described using Maxwell’s equa-
tions [136], expressed as:

∇ · ~E =
ρ

ε
(3.22a)

∇ · ~B = 0 (3.22b)

∇× ~E = −∂
~B

∂t
(3.22c)

∇× ~B = µ( ~J + ε
∂ ~E

∂t
) (3.22d)
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where E is the electric field in V/m, B the magnetic flux density in Wb/m2, ρ the electric
charge density in C/m3, J the electric current density in A/m3 and ε and µ the permittivity
in F/m and permeability in H/m of the material respectively.

FE simulation software, such as JMAG [137], solves these equations, by subdividing the
PMSM components into smaller and simpler parts called finite elements, as shown in Figure
3.11. This space discretization, referred to as mesh, allows for the exact geometry of the
machine to be considered when using the FE simulation software.

Figure 3.11: Mesh of a stator pole

Another advantage is that the FE software offers flexible and deep study parameters as
well as the fact it considers the electrical circuit of the machine and the various material
properties including magnetic saturation [138], leading to better results compared to other
available solutions, such as reluctance networks and analytical models [54].

However, one of the main drawbacks when using FE software is the computation time,
generally requiring several minutes for one operation point. In the case of radial flux ma-
chines such as the studied PMSM design, this can be greatly reduced through the use of 2D
FE calculations on sections of the machine such as one pole or a pair of poles, as seen in
Figures 3.12 and 3.13. With additionnal adjustments, these can provide similar results to
3D FE calculations of the whole machine.

A parametric FE model is then established. In the case of an on-load analysis, as dis-
played in Figure 3.14, the machine geometry, electrical circuit properties as well as the rest
of the study parameters are defined in Matlab using the previously introduced parametric
model and based on the values of d , I, φ and ωEM. This is then sent to JMAG via a .VBS
script. Once the FE calculations have converged, the results are stored as .CSV outputs and
are processed by Matlab afterwards. The requested quantities are then available as outputs
of the model. The described model is also used for no-load and short circuit scenarios, pro-
viding the short-circuit current in the latter case for example.

The model’s results are validated by selecting an existing Valeo machine, and compar-
ing the parametric FE model’s results to those of the more detailed 3D computer aided
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Figure 3.12: Contour plot of the magnetic flux density on a PMSM pole generated with a
2D simulation on JMAG, during on-load operation

Figure 3.13: Flux lines on a PMSM pole generated with a 2D simulation on JMAG, during
on-load operation

Figure 3.14: On load calculation using the FE model. Ripple refers to the torque ripple
calculated at the studied operation point

design (CAD) FE calculations and the experimental bench test results. Acceptable devia-
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tions of less than 2% with the bench test results have been found, as detailed in Appendix A.

However, besides a desirable level of precision, the model implemented to determine
the machine’s performance should require reasonably short calculation times. Even with
the additionnal adjustments, the proposed 2D section model still requires one minute to
analyze a machine’s single operation point, as opposed to one hour initially for a complete
3D model1. Thus, other possibilities should be explored to develop a more suitable model
that can be used for the optimization study.

Circuit model

The PMSM operation at different rotational speeds can be assessed using Park’s represen-
tation, which converts the a-b-c variables expressed in Equation 3.17 into d-q-o (direct-
quadrature-homopolar) variables as follows [139]:

QdQq
Qo

 =
2

3

cos(Θr) cos(Θr − 2Π
3 ) cos(Θr + 2Π

3 )
sin(Θr) sin(Θr − 2Π

3 ) sin(Θr + 2Π
3 )

1
2

1
2

1
2

QaQb
Qc

 (3.23)

where Q can refer to the injected current i in A for example, as well as the phase-neutral
voltage v in V and the flux-linkage ψ in Wb while Θr is the angular displacement of the
rotor’s d-axis, which is aligned with the stator’s a-phase.

Through this transformation, the different AC wave forms are simplified into DC signals.
Furthermore, when studying a balanced three-phase system, the homopolar component is
equal to zero and the main outputs of the machine at steady state are expressed as [139]:

ω = p
2Π

60
ωEM = 2Πf (3.24)

vd = Rsid − ωψq (3.25)

vq = Rsiq + ωψd (3.26)

V =
√
vd2 + vq2 (3.27)

I =
√
id2 + iq2 (3.28)

TEl =
Nph

2
p(ψdiq − ψqid) (3.29)

1Comparison on the same work station equipped with an i7-6820HQ processor at 2.7 GHz and 31.8 GB
of RAM, and using the Windows 10 Pro operating system
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where ω is the magnetic field speed in rad/s, V the phase-neutral voltage amplitude in V
and TEl the electromagnetic torque in N.m.

The above equations are valid for a 3-phase Wye connection machine configuration, and
can be easily adjusted and extended for other studied configurations as well. The circuit
model, shown in Figure 3.15, is then deduced and can be used to describe the machine.

Figure 3.15: Steady state circuit model of the electric machine

In this work, for a fixed machine design, the flux linkage component values ψd and ψq
are dependant on the values of id and iq. The expressions for different machine losses are
applied and LossesIron can be expressed as:

LossesHys = kHysω (3.30a)

LossesEC = kECω
2 (3.30b)

LossesExc = 0 (3.30c)

where kHys and kEC are the hysteresis losses coefficient in W.s/rad and the eddy current
losses coefficient in W.s2/rad2 respectively, and are supposed to vary, similarly to the flux
linkage components, only with respect to both the direct and quadrature values of the in-
jected currents.

Response surfaces are used for these functions, based on the results from the previously
introduced parametric FE model. Simulations are launched at a selected rotation speed for
different values of (id, iq), as seen in Figure 3.16 to determine the loss coefficient and flux
linkage models. Based on the stated assumptions, these values can be used as well for other
revolution speeds.

If more values for id and iq are considered when establishing the response surfaces, the
accuracy of the circuit model will be improved. However, the required time increases even
if parallel computing has helped accelerate this process. The number of required values to
select for (id,iq) to achieve acceptable accuracy and complete the circuit model depends on
the value of Imax and the machine geometry.

Afterwards, the model will allow for the quick assessment of LossesEM, V as well as TEl
for different values of (I, φ, ωEM). TEM is then deduced by the following equations:

TEM = TEl , ωEM = 0 (3.31a)
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TEM = TEl −
LossesMech

2Π
60 ωEM

− LossesIron
2Π
60 ωEM

, ωEM > 0 (3.31b)

Figure 3.16: Calculation of values (ψd,j, ψq,j, kHys,j, kEC,j) for values (id,j, iq,j) at imposed
speed ω0

Losses mapping model

Once the circuit model is established for a set of design variables d , a losses mapping model
is calculated: first of all, the rotation speed range of the EM is discretized into discrete values
ωi. Afterwards, the maximum torque provided by the machine in motor mode TEM,max in
N.m is calculated for each value of ωi as followed:

TEM,max(d , ωi) = max
φ

TEM(Imax, φ,d , ωi) (3.32a)

subject to V (Imax, φ,d , ωi) ≤ V max(d) (3.32b)

φ ∈ [
Π

2
,Π] (3.32c)

where Vmax is the maximum voltage threshold which depends on the power supply, winding
configuration and inverter switching strategy. The different values for the torque and voltage
are expressed using the circuit model. The minimum torque values of the machine TEM,min
in generator mode in N.m are also calculated by solving the following optimization problem
for:

TEM,min(d , ωi) = min
φ

TEM(Imax, φ,d , ωi) (3.33a)

subject to V (Imax, φ,d , ωi) ≤ V max(d) (3.33b)

φ ∈ [Π,
3Π

2
] (3.33c)

As a result, the envelope of the operation region is defined, as shown in Figure 3.17
and the machine’s mechanical torque range is known. The latter is discretized into discrete
values T j for each value of ωi.
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Figure 3.17: Example of EM operation envelope. The maximum torque region can be
identified, as well as the maximum power region. The torque peak in the maximum power
region corresponds to a change in the inverter’s switching strategy (SpeedFWM = 5000 rpm)

The optimal machine control for different values of (ωi,T j) inside the machine operation
range needs to be calculated afterwards. This is defined as values for the current supply
that minimize the machine’s losses at each operation point, which is expressed as:

min
I,φ

LossesEM(I, φ, ωi,d) (3.34a)

subject to V (I, φ, ωi,d) ≤ V max(d) (3.34b)
TEM(I, φ, ωi,d) = T j (3.34c)
I ∈ [0, Imax] (3.34d)

φ ∈ [
Π

2
,

3Π

2
] (3.34e)

The losses mapping of the selected machine, delimited by its envelope is then defined, as
seen in Figure 3.18. Hence, this model allows for the quick and direct assessment of the ma-
chine’s optimal losses at any operation point defined by TEM and ωEM without additionnal
time required to determine the optimal command, and are used for the hybrid powertrain’s
power management.

Furthermore, this losses model is better suited than the more commonly used efficiency
mapping model, since it accurately assesses the machine’s electrical power consumption at
low power values, especially when TEM = 0 or ωEM = 0, compared to the latter.

The electrical power consumption PE of the electric machine component, which consists
of the PMSM and the inverter, is expressed as:

PE = LossesEM(TEM, ωEM,d) +
2Π

60
TEMωEM (3.35)

For imposed values of ωEM and d , PE is a bijective function of TEM, as it is strictly
monotonous with respect to the latter. As a result, for any set of values (ωEM,d , PE), TEM



88 Chapter 3. Hybrid Electric Vehicle application

Figure 3.18: Example of EM losses mapping

can be deduced in return as well.

TEM, along with ωEM, need to verify the following command constraints, deduced from
the same model:

ωEM(d ,x (t),u(t))− ωEM,max(d) ≤0 (3.36a)
TEM(d ,x (t),u(t))− TEM,max(d , ωEM(d ,x (t),u(t))) ≤0 (3.36b)
TEM,min(d , ωEM(d ,x (t),u(t)))− TEM(d ,x (t),u(t)) ≤0 (3.36c)

3.3.4 Transmission
Having previously determined the required traction torque at the wheels, a model of the
drive train is used to estimate the torque to be provided by both motors of the adopted
hybrid architecture. This type of process is called "inverse" vehicle modelling, since from
the desired effect, in this case the vehicle’s target speed throughout the cycle, the source is
defined, which is the torque to be supplied. The following reasoning is only valid in the case
of positive power flow from the power converters to the wheels.

As shown in Figure 3.1, a gear connection is used to connect the EM to the engine
shaft. The ratio of this torque coupler RGC is a design variable that is considered during
the optimization process. The torque delivered to the drive shaft is equal to:

TGC(t) = ηGCRGC(TEM(t)− ΓEM
ωEM(t+ ∆t)− ωEM(t)

∆t
) (3.37)

with ηGC the efficiency of the torque coupler and ΓEM the inertia of the electric machine in
kg.m2. ΓEM is negligible in this study, the previous equation is then simplified as:

TGC(t) = ηGCRGCTEM(t) (3.38)
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The relation between both rotation speeds of the EM and ICE is also deduced:

ωEM(t) = RGCωICE(t) (3.39)

ΓICE is introduced, which not only encompasses the engine’s specific inertia, but that of
the starter as well, in kg.m2. The torque at the input of the gearbox, when the clutch is
connected, is then expressed as:

T IGB(t) = T ICE(t) + TGC(t)− ΓICE
ωICE(t+ ∆t)− ωICE(t)

∆t
(3.40)

When the clutch is disconnected however, the input torque of the gearbox is simply
defined as:

T IGB(t) = TGC(t) (3.41)

In this work, a 5-gear ratio dual-clutch transmission (DCT) gearbox equips the power-
train. This gearbox allows for better efficiency and faster switching between the different
gears. The gearbox’s ratio RGB and inertia ΓGB naturally depends on the gear number while
its efficiency ηGB depends on the selected gear, as well as the rotational speed and torque
delivered through the drive shaft. The output torque is then equal to:

TGB(t) = RGB(x2(t))ηGB(ωGB(t), TGB(t), x2(t))(T IGB(t)− ΓGB
ωICE(t+ ∆t)− ωICE(t)

∆t
)

(3.42)

with the secondary shaft speed ωGB defined as:

ωICE(t) = RGB(x2(t))ωGB(t) (3.43)

If DCT allows for fast gear shifting, the latter is not instantaneous and leads to energy
loss in the two clutches of the gearbox. This is considered afterwards on the ICE and EM
models to assess its impact on fuel and electrical energy consumption. Gear switching is
also limited to one upshift or downshift per time step. This is translated to the following
condition on u :

−1 ≤ u2(t) ≤ 1 (3.44)

By considering the transmission inertia ΓT in kg.m2 and the differential’s gear ratio RD
afterwards, the torque delivered to the vehicle’s wheels is equal to:

TD(t) = RD(TGB(t)− ΓT
ωGB(t+ ∆t)− ωGB(t)

∆t
) (3.45)

Finally, the relation between the torque required by the wheels and that delivered by
the powertrain, as well as the speed relation between the wheels and powertrain shaft, are
deduced:
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Tw(t) = TD(t)− Γw
ωw(t+ ∆t)− ωw(t)

∆t
(3.46a)

ωGB(t) = RDωw(t) (3.46b)

where Γw is the combined inertia of the four wheels. The speed transmission model is
directly expressed in this case as followed:

ωICE(t) = RDRGB(x2(t))ωw(t) (3.47a)
ωEM(t) = RDRGB(x2(t))RGCωw(t) (3.47b)

The torque transmission model is deduced as well by replacing the different torque related
terms with their respective expressions in equation 3.46. A relation between TEM, T ICE
and Tw is then found. Special attention is given when negative power flow is considered,
as the different efficiencies values should be replaced with their inverse values.

3.3.5 Internal combustion engine

After determining both the torque and speed of the ICE, the instantaneous fuel consump-
tion L is calculated using a torque/speed dependent consumption mapping, shown in Figure
3.19. This consumption model is adopted instead of the widely used efficiency mapping
model since it assesses the losses of the engine at low power values more accurately.

On the other hand, it is important to mention that, when at low speed, the ICE only
runs at a specific idle speed ωIdle in order to operate smoothly. The ICE model also sets
the maximum speed as well as the upper torque limit that can be delivered, depending on
its rotation speed.

As such, the following expressions must be verified when the engine is on at every time
step:

ωICE(d ,x (t),u(t))− ωICE,max ≤0 (3.48a)
T ICE(d ,x (t),u(t))− T ICE,max(ωICE(d ,x (t),u(t))) ≤0 (3.48b)

Energy loss during gear shifting is considered as well when calculating the fuel con-
sumption of the engine. As explained earlier, gear shifting is not instantaneous and since
the engine is characterized by slower dynamics compared to the EM, the engine’s output
power is higher than the requested power, leading to considerable losses. This is studied in
Appendix B and the following expression is found for the fuel consumption in this case:

L(d ,x (t),u(t)) =
Lreq(d ,x (t),u(t))

∆t
(| RGB(x2(t))

RGB(x2(t+ ∆t))
− 1| tgs

2
+ ∆t) (3.49)

where Lreq is the engine’s fuel consumption at the required operation point in g/s and tgs
is the required time for the shift procedure in s.
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Figure 3.19: ICE consumption mapping with iso-consumption and peak torque lines. Data
retrieved from [74]

3.3.6 Starter
When restarted, it is assumed that the ICE needs to be cranked to its idle speed before oper-
ation under its own power. The ICE’s inertia ΓICE, is used to calculate the starter’s electrical
energy consumption during the ICE’s restart after being turned off as well, expressed as:

P St(t) =
1

ηDCηSt
(
1

2
ΓICEωIdle

2)(1− x3(t))u3(t)
1 + u3(t)

2
(3.50)

where ηSt is the efficiency of the starter. ηDC is considered here as well since the starter is
powered through the on-board 12 V network.

3.4 Optimization constraints
The command constraints, linked to both the command and state variables, have been pre-
sented earlier when discussing the component models and are expressed in Equations 3.10,
3.11, 3.36 and 3.48. Aside from these conditions, design considerations are also introduced
in this study.

The design constraints are related to the electric machine as it is the sole component
whose design is modified in this application. These are deduced by analyzing the machine
specifications, illustrated in Figure 3.20, while considering the company’s standards as well
as additionnal design restrictions to guarantee a coherent design.

The different design considerations are detailed afterwards and are classified into:

• Geometric constraints

• Performance constraints

• Process constraints
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Figure 3.20: Example of machine requirements

• Mechanical constraints

• Thermal constraints

• Demagnetization constraints

• Torque ripple constraints

• Inverter constraints

3.4.1 Geometric constraints
The geometric constraints need to be verified for each machine design and ensures the ma-
chine’s mechanical integrity and the ability of the parametric model to provide a consistent
machine geometry. These constraints are expressed in the form of analytical equations
kGeom, which are enumerated and illustrated in Appendix C. For a design to be valid, the
following needs to be satisfied:

− kGeom(d)≤0 (3.51)

It is also worth mentioning that the air gap value GapAir is fixed afterwards. Thus,
only the rotor’s external radius RoutRot is considered while the value of the stator’s internal
radius RinSta is deduced from the latter.

3.4.2 Performance constraints
The performance constraints are related to the peak torque Tmax in N.m and peak power
Pmax in W that the machine should be able to produce in motor mode. For a given machine
design, these values are deduced from the losses mapping model envelope as follows:

Tmax(d)= max
ωEM∈[0,ωEM,max]

TEM,max(d , ωEM) (3.52a)

Pmax(d)= max
ωEM∈[0,ωEM,max]

2Π

60
TEM,max(d , ωEM)ωEM (3.52b)

Their required values Pmax,req and Tmax,req are given in the machine specifications, as
seen for example in Figure 3.20. Performance constraints are expressed as:

Tmax,req − Tmax(d)≤0 (3.53a)
Pmax,req − Pmax(d)≤0 (3.53b)
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3.4.3 Process constraints
The only process considerations taken into account in this work are those related to the
packaging requirements of the machine, mentioned in Figure 3.20. The latter introduce
limitations on the machine’s external diameter DExt in mm and its total length LTot in mm
expressed as:

DExt(d)=2RoutSta (3.54a)
LTot(d) =Length+ LWinding(d) (3.54b)

where RoutSta is the external stator radius in mm and Length is the stack length in mm.
LWinding refers to the end-windings length in mm, which depends on the winding technology
as well as multiple machine parameters.

This then leads to the following conditions to be satisfied during the optimization process:

DExt(d)−Dmax≤0 (3.55a)
LTot(d)− Lmax ≤0 (3.55b)

where Dmax and Lmax define the maximum envelope of the machine volume in mm.

3.4.4 Mechanical constraints
During the design process, the mechanical integrity of the machine rotor under stress needs
to be evaluated as well, specially at high speeds. In this work, mechanical simulations are
launched at overspeed in steady state conditions for the proposed designs, as seen in Figure
3.21. The overspeed value is defined as:

ωoverspeed=1.2ωEm,max (3.56a)

Figure 3.21: Mechanical simulation of rotor core at overspeed in JMAG. Left: Levels of
Stress- Right: Deformation of rotor amplified at 100 times

The maximum value of the von Mises stress, referred to as kVMS in MPa is calculated
and should be lower than the steel sheet’s elastic limit LimEl, above which any deformation
is irreversible [140]. Also the rotor’s deformation in the radial direction kD in mm should
be lower than the airgap value, in order to avoid contact with the stator.

Thus, the mechanical constraints are defined as:
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kVMS(d)− LimEl≤0 (3.57a)
kD(d)−GapAir ≤0 (3.57b)

3.4.5 Thermal constraints
Furthermore, the cooling efficiency of the machine needs to be assessed at demanding sce-
narios. For this study, a short-circuit at high speed is selected. Figure 3.22 shows the
proposed thermal model of the machine. Thermal resistances are deduced from previous
test campaign results and adjusted for each machine design while losses are adjusted using
the FE model [141].

Figure 3.22: Thermal model of the EM. Rth1 and Rth2 are thermal resistances in K/W while
TCooling, TCopper and T Iron are the cooling water, winding and stator core temperatures
respectively in °C

As the losses values depend on the copper and iron temperatures, the MDF strategy
presented in Chapter 1, is applied to accelerate the convergence of the thermal model.

The aim of the thermal study is to ensure that the winding temperature TCopper does not
exceed the melting temperature of the conductor coating TCoating, leading to the following
formulation for the thermal constraint:

TCopper(d)− TCoating<0 (3.58)

3.4.6 Demagnetization constraints
The short-circuit scenario at high speed is also used to evaluate its impact on the magnet’s
characteristics. In this case, the stator’s magnetic field is exactly opposite to the rotor’s
field, leading to the magnet’s partial demagnetization.

JMAG allows for the possibility to reuse the demagnetized magnets. The proposed
criteria for the validity of a machine design is to verify if there is no significant performance
loss in this case. This means the peak torque using the demagnetized magnets satisfies the
following condition:
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0.95Tmax − TDem,max(d)≤0 (3.59)

3.4.7 Torque ripple constraints

During the design process, the torque ripple Ripple of the machine needs to be monitored.
It is defined as undesirable variations in the machine’s output torque during its revolution
and is a result of many factors such as mechanical imbalances and flux harmonics.

In the case of PMSMs and the perimeter of this work, it is mainly due to the interaction
between the magnetic field of the rotor magnets and the stator slots, also known as cogging
torque, and can be estimated using the FE model.

The torque ripple should remain at acceptable levels, especially when providing its peak
torque, in order to ensure driver comfort, prevent premature wear of the drivetrain compo-
nents and reduce acoustic noise. This then translates to the following condition:

Ripple(d)−Ripplemax≤0 (3.60)

where Ripplemax is the maximum torque ripple value.

3.4.8 Inverter constraints

When selecting either the PWM or FW strategy, the limitations of the embedded electronics
need to be considered. In fact, the PWM strategy requires at least 10 switches per electrical
period compared to the FW mode which only requires a single commutation instead. This
then defines f PWM,max and f FW,max which refer to the maximum commutation frequency
that should be achieved by the inverter components in PWM and FW modes respectively
in Hz and are expressed as:

fPWM,max(d)=10p
SpeedFWM

60
(3.61a)

fFW,max(d) =p
ωEM,max

60
(3.61b)

Since the inverter components have a maximum switching frequency f max, the following
inverter conditions are introduced:

fPWM,max(d)− fmax≤0 (3.62a)
fFW,max(d)− fmax ≤0 (3.62b)

Thus, the various design constraints are defined. Afterwards, depending on the degree
of precision desired, an a posteriori approach can be adopted as well: the constraints that
require long computation times, such as the demagnetization and mechanical constraints,
are simplified for faster optimization iterations, using analytical formulations instead, and
are reverified once a solution is found.
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3.5 Problem definition

Different objectives can be studied when optimizing the hybrid powertrain such as the
minimization of various types of emissions, improving the vehicle’s fuel economy over a
specific drive-cycle or reducing the powertrain’s total cost. In this work, both of the latter
objectives are considered and the hybrid powertrain optimization problem is formulated as:

minimize
d ,u

J(d ,u) = αInv(d) + β

tf−∆t∑
t0

L(d ,x (t),u(t), t)∆t (3.63a)

subject to x (t+ ∆t) = f (x (t),u(t), t)∆t+ x (t) (3.63b)
x1(t0) = x0 (3.63c)
x1(tf ) = xf (3.63d)
g(d ,x (t),u(t), t) ≤ 0 (3.63e)
k(d) ≤ 0 (3.63f)
x (t) ∈ [xmin(t),xmax(t)] (3.63g)
u(t) ∈ [umin(t),umax(t)] (3.63h)
d ∈ [dmin,dmax] (3.63i)

where L is the instantaneous fuel consumption in g/s which is calculated using the system
model described earlier and Inv is the powertrain cost in e . Since the EM is the only
powertrain component being modified while the rest of the drivetrain remains static during
the optimization process, only the cost of the EM is considered as a function of its peak
power and the following expression is proposed [142, 143, 144]:

Inv(d)=1000 + 0.02Pmax(d) (3.64)

This proposition is valid for the selected machine topology and application power range,
as well as the fact that the active part materials are imposed. Detailed functions separating
the material and manufacturing costs could have been applied here as well. The values for
α and β are selected to bring both terms of the cost function together. For this work, α
is equal to 1 and the following expression is proposed for β, which considers the penalty
payment for CO2 emissions target exceedance:

β=
Pen Convlgasoline-gCO2

ρgasoline Distcycle
(3.65)

where Pen is the emissions target exceedance penalty value, equal to 95 e /(gCO2/km)
in Europe since 2019 while Conv lgasoline-gCO2 converts liters of gasoline consumption into
grams of CO2 emissions. ρgasoline is the gasoline’s density in g/l and Distcycle is the selected
drive-cycle’s distance in km.

The different design variables, shown in Figure 3.10, are enumerated afterwards in Table
3.1, as well as the command and state variables.

The charge sustaining condition, also called iso-SoC condition, is considered in this ap-
plication as well and is expressed in Equation 3.66. It is an important criterion for HEV
homologation, as it imposes that the energy used during the driving cycle only comes from
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Type Component Name Values

Design variables d
Machine

p {3;4;5;6}
N slot {3;6}
Length [30 mm, 110 mm]
RoutSta [55 mm, 80.5 mm]
Hs0 [0.5 mm, 2 mm]
Hs1 [0 mm, 2 mm]
Hs2 [6 mm, 8 mm]
Bs0 [0.1 mm, 10 mm]
Bs1 [3 mm, 6 mm]
Bs2 [0.65 mm, 6 mm]

RinRot [10 mm, 40 mm]
RoutRot [40 mm, 80 mm]

R1 [0 mm, 10 mm]
R2 [0 mm, 10 mm]
Gap [0 mm, 5 mm]
Rib [5 mm, 15 mm]

Bridge [0.1 mm, 6 mm]
B1 [0.1 mm, 10 mm]
B2 [0.1 mm, 30 mm]
B3 [1 mm, 7 mm]
M1 [0 mm, 4 mm]
M2 [2 mm, 5 mm]
O1 [0.2 mm, 5 mm]

OuvMag [0, Π]
MagTh [2 mm, 7 mm]
MagWd [6 mm, 20 mm]
Wndcon {Delta; Wye}
N ph {3;6}
N series {3;4;5}
N parallel {1;2}

Inverter SpeedFWM [2000 rpm, 10000 rpm]
Gear connection RGC [1, 3.5]

Command variables u
Battery Battery’s charge/discharge [−100Imax∆t

CBatt
, 100Imax∆t

CBatt
]

Transmission Gear shift {-1;0;1}
Starter Engine stop/start {0;1}

State variables x
Battery State of charge [30 %, 70 %]

Transmission Selected gear {1;2;3;4;5}
ICE Engine state {-1;0;1}

Table 3.1: Optimization variables

the fuel tank. This in turn means that the energy stored in the battery at t0 should be
found by the end of the driving cycle at t f.

x0=xf (3.66)

Meanwhile, the inequality command constraints mainly refer to the use of the EM and
ICE, as presented in Table 3.2. As it can be noticed from the problem’s definition, no equal-
ity command constraints are considered as they are implicitly satisfied within the system
model. The various design constraints, linked to the electric machine and explored in the
previous section, are enumerated here as well in Table 3.3.
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Component Number Nature Reference
EM 3 black-box 3.36
ICE 2 black-box 3.48

Table 3.2: Command constraints

Discipline Number Nature Reference
Geometric 25 analytic 3.51
Performance 2 black-box 3.53

Process 2 analytic 3.55
Mechanical 2 black-box 3.57
Thermal 1 black-box 3.58

Demagnetization 1 black-box 3.59
Torque ripple 1 black-box 3.60

Inverter 2 analytic 3.62

Table 3.3: Command constraints

Hence, the optimization problem adopts the same formulation as in Chapter 2. Thus,
the different systemic design approaches studied previously can be applied here as well to
find the optimal hybrid powertrain design. Using the same term definitions, the HEV power
management problem is deduced as well:

minimize
u

J(u) =

tf−∆t∑
t0

L(d ,x (t),u(t), t)∆t (3.67a)

subject to x (t+ ∆t) = f (x (t),u(t), t)∆t+ x (t) (3.67b)
x1(t0) = x0 (3.67c)
x1(tf ) = xf (3.67d)
g(x (t),u(t), t) ≤ 0 (3.67e)
x (t) ∈ [xmin(t),xmax(t)] (3.67f)
u(t) ∈ [umin(t),umax(t)] (3.67g)

Conclusion

An extended hybrid vehicle model is presented, which considers the impact of the battery’s
SoC variation, gear shifting and engine stop/restart with an iso-granularity representation
for all the powertrain components.

In order to quickly and accurately estimate the EM’s performance, a losses mapping
model, based on parallel finite element simulations and Park’s PMSM representation, is
used. When modifying the machine parameters, this model can be recalculated in a few
minutes and guarantee deviations of less than 2 % when confronted to prototype tests is
found.

Different command and design constraints are enumerated afterwards, which consider
the powertrain limitations and the machine requirements. Finally, the complete hybrid
powertrain optimization problem as well as the power management problem are defined.
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The next step, as it was the case for the HRPS application, is to be able to compare
between different powertrains using efficient control strategies, before implementing systemic
design strategies.
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Introduction
In this chapter, different hybrid powertrain systemic design strategies are implemented,
applied and compared. At first, the bi-level approach BL, the iterative approach IT and
alternative systemic design approaches A1, A2 and A3, introduced in Chapter 2, are adapted
for the hybrid powertrain application. However, before proceeding to their application, it
is crucial to be able to compare between several vehicle powertrains based on an efficient
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control strategy.

Thus, different control methods are assessed: DPAM, PMP and a new rule-based strat-
egy. They are compared in terms of fuel consumption and calculation times. The optimal
command is analyzed further, as well as the impact of powertrain characteristics on fuel
efficiency and hybrid mode selection.

The third section focuses on cycle reduction techniques, introduced in Chapter 1. These
methods are investigated further and compared to quickly evaluate the machine performance
over the drive-cycle and accelerate the design optimization process.

Afterwards, the selected hybrid vehicle case study is presented. The vehicle parameters,
required for the vehicle model presented in the previous chapter, are listed, as well as the
different requirements that the optimal machine design has to satisfy.

The fifth part of this chapter is devoted to the screening study that was carried out to
identify the impact of the decision variables over the optimization process. This will then
allow for the selection of the most influential parameters to relieve the calculation burden
of the optimization algorithms and accelerate their convergence.

The assessment of the different optimization approaches considers key metrics such as
the number of evaluations, the final cost of the powertrain and deviation from the initial
design, as well as the impact of the number of decision variables and design constraints.

Finally, the robustness of the optimal solution is evaluated. This is deemed necessary
since the HEV design problem is solved without considering its inherent uncertainties and
it is conducted based on both local and global sensitivity analysis studies.

4.1 Systemic design approaches

Hybrid powertrain design optimization is conducted by applying the various strategies de-
fined in Chapter 2: the bi-level approach BL and the iterative approach IT as well as
alternative approaches A1, A2 and A3, based on the simultaneous, bi-level and iterative
schemes respectively.

When using the BL approach, the design parameters are optimized with the SQP al-
gorithm, described in Section 2.3. To consider the impact of the new parameters over the
performance of the machine, a new losses mapping model is recalculated for the design ge-
ometry, as explained in Section 3.3.

The power management problem is then solved using an optimal control strategy, allow-
ing for the calculation of the optimal powertrain cost, as shown in Figure 4.1. Selection of
the most adequate control strategy is detailed in Section 4.2.

Approach IT starts by solving the power management problem of the initial powertrain
design using an optimal command strategy, and then imposes these operation points to op-
timize the design variables of the powertrain using SQP.

During the design optimization process, the total energy used during the driving cycle,
which is directly linked to the vehicle’s fuel consumption can be expressed as:
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Figure 4.1: BL approach

Etot=Eu + EL,EM + EL,Pow (4.1)

where Eu is the useful energy in J, and EL,EM and EL,Pow are the total energy losses of
the EM and the rest of the powertrain components respectively during the driving cycle in J.

Since all of the vehicle’s energy comes from the fuel tank when imposing the charge
sustaining condition, the total energy used during the driving cycle can also be expressed
as:

Etot = HV gasolineη̄ICE

tf−∆t∑
t0

L(d ,x (t),u(t), t)∆t (4.2)

where HV gasoline is the heat value of gasoline in J/g and η̄ICE is the mean efficiency of the
engine.

When adopting the previously mentioned approach, fixing the operation points during
design optimization means Eu is constant when varying the design parameters, as well as
EL,Pow, since the characteristics and operation of the other powertrain components are not
modified. This means that minimizing E tot is equivalent to minimizing EL,EM in this case.
The design cost function to minimize becomes equivalent to:

J(d) = αInv(d) +
β

HV gasolineη̄ICE
EL,EM (4.3)

Once an optimal design is found, the optimal command is recalculated and the total cost
of the powertrain is evaluated. The described process is then repeated as long as the total
cost difference remains greater than a selected tolerance ε. The iterative approach and the
powertrain design optimization process are shown in Figure 4.2.
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Figure 4.2: Above: IT approach - Below: Design optimization block of IT approach

Figure 4.3: Design optimization block of A3 approach
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Design strategy A3, presented in Figure 4.3, follows a similar scheme to the iterative
approach IT . The only difference lies within the design cost calculation. This approach will
rely on cycle reduction techniques and the machine circuit model to estimate the machine
losses, as explained in Section 4.3. This alternative approach to evaluate the design cost
is expected to increase the calculation speed of the model compared to the iterative approach.

Meanwhile, systemic design strategy A1 relies on the SQP algorithm to adjust both the
design variables and parameters of a rule-based strategy. This command strategy should
allow for the calculation of the powertrain’s fuel consumption as well as estimate the final
state of charge of the battery. The charge sustaining is not guaranteed to be fulfilled using
this strategy. This then requires adding the following condition to the other optimization
constraints that are considered:

|x1(tf)− xf|≤5% (4.4)

The process for this approach is shown in Figure 4.4. After the approach converges, the
total cost of the provided solution is recalculated using the same optimal control strategy
as approaches BL and IT to establish a common reference.

Figure 4.4: A1 approach

Finally, the proposed A2 method approximates the design cost function as well as the
design constraints functions which require long calculation times using polynomial regression
over the design search space. The following second order polynomial model is used:

y=b0 +

k∑
i=1

bidi +

k∑
i=1

k∑
j=1

bijdidj (4.6)

where y refers to the highly time-consuming models, whether for constraint or cost calcula-
tion, and k represents the number of considered design variables. b are the model coefficients.
The process of calculating these coefficients is explained afterwards in Section 4.5. Once a
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solution is found, the powertrain cost is recalculated and constraints are validated based on
the models presented in Section 3.3.

4.2 HEV power management
The previous systemic design approaches rely on efficient control strategies to solve the HEV
power management problem and compare the proposed powertrains. Thus, different control
methods are investigated afterwards and assessed in terms of fuel economy and computation
times.

4.2.1 Optimal control strategies

DPAM and PMP, explored in Chapter 2, are applied for hybrid vehicle control as well. These
two strategies are extended in this study to consider the three components of the command
and state variables.

This is done in the case of DPAM by accessing the SoC mesh at each instant for different
combinations of gears and engine states. This has led to the creation of 10 parallel and
connected SoC meshes in this application.

PMP also allows for the calculation of the optimal gear shift and stop/start command
of the starter by calculating and minimizing the hamiltonian for all possible values of u .

In addition to DPAM and PMP, a rule-based strategy (RBS) is also developed. Its im-
plementation is based on the main guidelines for exploiting the advantages of hybridization
[21]: the battery’s state of charge is balanced by controlling the charge and discharge phases.
Meanwhile, the engine is used at its highest efficiency at higher power request values and
should be turned off the longest time possible to avoid fuel waste.

Hybrid modes are then selected as follows: Regenerative braking is used in order to
store otherwise wasted energy, exploiting the electrical machine’s reversibility. Full electric
mode is applied at low-medium loads to be used for longer periods of time, leading to longer
shutdown of the ICE. Boost mode is selected at higher loads, either to assist the engine or
optimize its use. Finally, Generation mode is chosen when the battery is being depleted be-
low its lower limit or when the ICE is running efficiently, providing enough electrical energy
for future EM use.

The selection of these hybrid modes is summed up in the state machine shown in Figure
4.5, where transitions between them are made if certain conditions are fulfilled. The latter
are linked to the values of ωICE, the battery’s SoC and the requested torque and power at
the clutch T IGB and P IGB at each instant.

Parameters SoC inf, SoC sup, T s and P s, are introduced as threshold values. They depend
on the powertrain components and the driving cycle and are optimized to minimize the fuel
consumption and reduce the gap between the initial SoC of the battery and its final value
as much as possible.

Additionally, the ICE is automatically turned off when not used to cut pumping losses
and simplify the strategy while gear selection is made based on the powertrain’s overall
efficiency, which means the selected gear should minimize the total powertrain losses. This
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Figure 4.5: Hybrid mode selection. Green: parameters to be optimized

is seen as the best compromise and has offered better fuel gains when compared to directly
minimizing the fuel consumption by gear selection for example, which leads the EM to
operate at lower efficiency, resulting in much faster battery depletion and more frequent
necessity to recharge it after at a higher fuel cost.

4.2.2 Application and comparison

To compare between the proposed strategies in terms of accuracy, fuel consumption gains
and calculation time, the following application is set up: a C-segment vehicle weighing ap-
proximately 1 t and equipped with a 1.2-liter gasoline ICE (81 kW, ωidle equal to 750 rpm),
a 13 kW EM, a 48 V battery (C batt: 15 A.h, Imax: 300 A, usable energy: 600 W.h) and a
5 DCT transmission, is selected.

Three driving cycles of varying time horizons and characteristics are then tested: the
Urban Driving Cycle’s (ECE-15) medium speed portion, the NEDC and WLTC 3-b cycles.
∆t is equal to 1 s. The road is considered flat and dry and the battery is initially charged
at 50% of its total capacity. No auxiliary consumption is considered for this application.

Table 4.1 sums up the results. FC refers to the fuel consumption in l/100 km, FS is the
final value of the SoC in relative value and TS is the time required by each method in s.

The performances of the proposed strategies are close in terms of fuel consumption.
However, the most efficient strategy remains DPAM, as it was the case for the HRPS ap-
plication studied in Chapter 2. All the constraints, especially the iso-SoC condition, are
satisfied for all the methods, with DPAM by concept ranking as the most precise as well.
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Method Cycle FC FS TS
DPAM

ECE-15
1.88 50.0 63

PMP 1.93 50.1 73
RBS 1.99 49.8 36

DPAM
NEDC

2.92 50.0 1382
PMP 2.96 50.0 600
RBS 2.96 49.6 373

DPAM
WLTC 3-b

3.52 50.0 2320
PMP 3.59 50.0 962
RBS 3.63 49.7 617

Table 4.1: Comparison of HEV optimal control methods

Thus, DPAM is used to solve the optimal control problem when implementing the studied
powertrain systemic design strategies.

On the other hand, RBS requires much less computation time than DPAM or PMP.
This makes RBS a more adequate solution for fast optimal powertrain sizing. The overall
calculation time is marginally reduced if the optimization algorithm recalculates the optimal
control with each iteration. When using RBS, the biggest portion of the calculation time
is spent on optimizing the strategy parameters. In Table 4.1, TS represents the total time
required to find the most adequate parameters for RBS.

Table 4.2 presents the optimal values found for each one of the 3 driving cycles. The sym-
bol “≤” indicates that lower threshold values lead to similar results. Another optimization
aimed at finding the optimal parameters for efficient power management of all three driving
cycles combined is also conducted. These parameters, labeled general in the table below,
minimize fuel consumption for the three driving cycles simultaneously. RBS’s performance
with these general parameters is close to DPAM’s optimized results, with less than 5 %
deviation found for each cycle separately.

Parameters ECE-15 NEDC WLTC 3-b General
P s 3700 W 1300 W 1700 W 3700 W
T s ≤ 40 N.m ≤ 31 N.m ≤ 35 N.m 30.5 N.m

SoC inf ≤ 44 % 31 % ≤ 37 % 34 %
SoC sup ≤ 45 % 33 % ≤ 38 % 40 %

Table 4.2: Comparison of HEV optimal control methods

This strategy is extended to other applications such as efficient real time control. More
importantly, it is incorporated within systemic design strategy A1.

4.2.3 Analysis of optimal command

Figure 4.6 sums up the different outputs of the optimal command by DPAM, the most ef-
ficient strategy implemented, on the WLTC 3-b driving cycle. For better clarity, only the
last portion of the cycle (extra-high speed section) is shown. The hybrid mode selection is
also shown in the same figure.

The choice of a specific hybrid mode is justified based on the requested power values, lead-
ing to similar reasoning behind the establishment of the state machine for RBS is found. At
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Figure 4.6: Optimal control results. Black: full stop, blue: ZEV mode - Red: Boost mode -
Green: Regenerative Braking - Magenta: Generation mode
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negative power request, the reversibility of the EM is exploited and the battery is recharged
(regenerative braking). The restored energy is maximized by switching between high effi-
ciency region or maximum power region through gear selection. This is represented over the
EM’s efficiency mapping in Figure 4.7.

Figure 4.7: Optimal use of EM. Black: full stop - Blue: ZEV mode - Red: Boost mode -
Green: Regenerative Braking - Magenta: Generation mode

Full electric mode (ZEV) is mainly selected when the power request is low, as displayed
in Figure 4.6. This corresponds to the high efficiency operation region for the electrical
machine as well. Using ZEV allows for longer engine shutdown which leads to higher gains
in fuel consumption. ZEV is also used for takeoff from standstill or the vehicle’s complete
stop, due to the engine’s limitations at low speed.

Generation is used at high power request when the ICE is at its high efficiency region.
This enables battery recharging at a lower fuel cost, allowing for extended use of ZEV and
Boost in the future afterwards when the engine is much less efficient. Generation is also
selected when the battery’s SoC reaches the minimum imposed value (30 %). For higher
loads, Boost mode is selected to use the ICE more efficiently, as seen in Figure 4.8.

The SoC evolution is a consequence of the use of electrical energy: the battery is dis-
charged when the EM is used during ZEV and torque assist phases and during the ICE’s
restart, while it is recharged by generation and regenerative braking. DPAM satisfies the
iso-SoC condition, with the final value of SoC equal to its initial value set at 50 %.

The gear selection allows for higher efficiency use of the powertrain, even if it is limited
by only one upshift or downshift per time step. 266 gear switches are recorded during the
30-minute driving cycle, which comes to 1 gear switch each 7 seconds.

4.2.4 Comparison with simulation platform

Command calculated using DPAM and the proposed vehicle backward model has been com-
pared with the results provided by Valeo’s simulation platform. This platform is based on
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Figure 4.8: Optimal use of ICE. Red: Boost mode - Magenta: Generation mode

a forward vehicle model of the powertrain implemented on Amesim [145], controlled by a
driver model and uses an equivalent consumption minimization strategy (ECMS) for power
management.

This strategy is based on the PMP paradigm and uses a prediction horizon of 50 s at
every time step to determine a value for λ. The cycle on the other hand is discretized to 0.02
s to take into account various dynamic phenomena that has been simplified in this study
such as gear shifting and determine the best values for the command parameters.

Similar command is found for short cycles, as seen on Figure 4.9, and close consumption
values are found for different driving cycles, validating the proposed powertrain model.

4.2.5 Application on different powertrains
3 EMs and 3 ICEs with varying characteristics (peak power, peak torque, inertia, mass and
efficiency mappings) have been selected to equip the same hybrid vehicle as before. Fuel
consumption values are then calculated using DPAM and are summed up in Table 4.3.

EM
ICE A B C

43 kW 50 kW 63 kW
I 10 kW 3.14 3.09 3.89
II 13 kW 3.04 3.00 3.74
III 16 kW 3.24 3.21 3.95

Table 4.3: Comparison of fuel consumption values in l/100 km of different powertrains

It can be seen that configuration B-II has the lowest fuel consumption value and is thus
the most adequate between the studied propositions for this application. Besides fuel gains,
powertrain characteristics have an important impact over optimal command. Figure ??
shows the optimal hybrid mode distribution between the studied powertrain configurations.
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Figure 4.9: power management results. Above: simulation platform results - Below: pro-
posed model results

Figure 4.10: Optimal hybrid mode allocation between the studied powertrain, listed as in
Table 4.3. Black: full stop, blue: ZEV mode - Red: Boost mode - Green: regenerative
braking - Magenta: generation mode

It is concluded that the command greatly varies from one powertrain configuration to
the other. For this reason, it is crucial to integrate the optimization of the control strategy
when optimizing the design of the hybrid powertrain.

4.3 HEV cycle reduction

Once the optimal command of an HEV is defined, the optimal operation points of the
different powertrain components can be determined. Cycle reduction techniques, presented
in Chapter 1, are investigated afterwards to greatly reduce the number of the EM’s operation
points that are considered. This allows for faster assessment of the machine performance
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over the driving cycle and can be used in conjunction with the proposed design approach
A3.

4.3.1 Studied cycle reduction techniques
Four cycle reduction methods are implemented: Random sampling, histogram, barycenter
and clustering methods. These methods vary first of all in the way they define the points
of interest based on the thousands of operation points found for the EM during a specific
driving cycle, as seen in Figure 4.11.

Figure 4.11: Application of different cycle reduction techniques

The random sampling method arbitrarily selects a reduced number of operation points,
while the histogram and barycenter techniques divide the operation range of the machine
into multiple regions before selecting their centers or barycenters respectively. In contrast,
the clustering method uses the k-means approach to form homogeneous groups of operation
points called clusters, from which the barycenter is selected afterwards.

Two variants are explored afterwards to evaluate the machine losses over the driving
cycle using the selected interest points. The first variant introduces an equivalency factor
between the losses calculated over the interest points and the total losses over the operations
points in the corresponding segment, which is expressed as:

keq,i=

∑Npt,i
j=1 TEM,(i,j)ωEM,(i,j)

TEM,iωEM,i
(4.6)
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where N pt,i is the number of points in group i, TEM,(i,j) and ωEM,(i,j) are the torque in N.m
and rotation speed values in rpm respectively for operation point j in segment i, while TEM,i
and ωEM,i are the torque in N.m and rotation speed in rpm respectively of interest point i.

Meanwhile, the second variant is based on employing different expressions for the differ-
ent types of machine losses enumerated in Section 3.3, as they evolve differently with respect
to the torque and rotational speed values.

The following expressions are given instead:

EneJoule,cycle =

Npt∑
i=1

Npt,i

∑Npt,i
j=1 TEM,(i,j)

2

(
∑Npt,i
j=1 TEM,(i,j))2

LossesJoule,i∆t (4.7a)

EneIron-Hys,cycle =

Npt∑
i=1

Npt,iLossesIron-Hys,i∆t (4.7b)

EneIron-EC,cycle =

Npt∑
i=1

Npt,i

∑Npt,i
j=1 ωEM,(i,j)

2

(
∑Npt,i
j=1 ωEM,(i,j))2

LossesIron-EC,i∆t (4.7c)

EneMech,cycle =

Npt∑
i=1

Npt,iLossesMech,i∆t (4.7d)

EneInverter-Cond,cycle =
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(
∑Npt,i
j=1 TEM,(i,j))2

LossesInverter-Cond,i∆t (4.7e)

EneInverter-Comm,cycle=

Npt∑
i=1

Npt,iLossesInverter-Comm,i∆t (4.7f)

The machine’s total losses over the cycle are then estimated as the sum of the previously
calculated values for each type of losses.

For the random sampling technique however, as no divisions are defined when applying
said method, the following expression is proposed to estimate the cycle losses:

Enecycle=

Npt∑
i=1

keq,iLossespt,i∆t (4.8)

with:

keq,i=
Npt,tot

Npt
(4.9)

where N pt is the number of interest points and N pt,tot is the total number of operation
points. Lossespt,i are the machine losses calculated at the interest point i in W.

4.3.2 Comparison and analysis
The studied techniques with both alternatives for loss calculation are applied afterwards
to estimate the losses of an electric machine over the WLTC 3-b driving cycle, while only
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selecting 10 points of interest. Table 4.4 summarizes the results of the comparison, where
deviations between the output values for each type of machine losses found when using cycle
reduction methods and the real total cycle losses are presented in relative values.

Joule (%) Iron (Hys) (%) Iron (EC) (%) Mech (%) Comm (%) Cond (%) Total losses (%)
Random sampling 20.72 5.61 23.13 11.73 11.63 15.81 17.93
Histogram (var. 1) 13.23 12.02 5.46 8.44 3.53 8.00 7.61
Histogram (var. 2) 13.23 9.14 2.11 4.92 3.53 8.00 5.06
Barycenters (var. 1) 17.07 0.64 7.77 3.94 10.63 13.60 9.56
Barycenters (var. 2) 17.07 2.08 0.28 0.27 10.63 13.60 6.02
Clustering (var. 1) 14.42 0.04 1.45 1.19 4.89 9.28 5.29
Clustering (var. 2) 14.43 1.04 0.45 0.00 4.92 9.30 4.34

Table 4.4: Deviation between the proposed cycle reduction techniques and real cycle losses

It can be understood that the second variant for each technique leads to better results.
Furthermore, when considering the total machine losses, it can be deduced that the cluster-
ing method is the most accurate amongst the studied methods.

This can be enhanced by considering more interest points, as shown in Table 4.5. How-
ever, the required calculation time when implementing the selected method will also increase
proportionally.

Number of clusters 5 10 15 20
Deviation (%) 6.15 4.34 3.95 3.33

Table 4.5: Evolution of clustering methods accuracy with respect to the number of interest
points selected

4.3.3 Mirroring technique

A novel technique is proposed to improve the precision of the studied methods without
increasing the number of interest points. This method, named Mirroring and shown in
Figure 4.12, assumes that close loss values are found for two machine operation points of
opposite electromagnetic torque values defined by (ωEM, TEl) and (ωEM, -TEl).

Figure 4.12: Mirroring technique principle applied using the clustering method

The technique then "mirrors" the operation points in motor mode into the generator
operation range of the EM, before applying any of the previously mentioned cycle reduction
methods.

This approach allows for a much more accurate division of one of the machine modes
without modifying the total number of interest points selected. Table 4.6 presents the results
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when applying this method using the second variant of the clustering technique for the same
application described before.

Joule + AC Iron (Hysteresis) Iron (EC) Mechanical Commutation Conduction Total losses
Original (%) 14.43 1.04 0.45 0.00 4.92 9.30 4.34

With Mirroring (%) 3.90 0.34 0.43 0.00 0.66 1.44 0.86

Table 4.6: Comparison between the proposed cycle reduction techniques. Deviations are
calculated in relative value compared to cycle loss values

It can be seen that the accuracy of the technique has greatly improved in this case, with
a general deviation in total losses of less than 1 %. This method is then selected for use
with approach A3.

4.4 HEV case study
The powertrain design optimization applications conducted afterwards consider a similar
setting to the one introduced in the previous chapter: a parallel hybrid compact car, whose
characteristics as well as the features of the different powertrain components are presented
in Table 4.7.

Component Notation Value

Vehicle

M 1470 kg
CR 4.57 10-3

kR 1.79 10-4 s/m
SC x 0.6044 m2

r 0.2032 m
Γr 3.76 kg.m2

Battery

CBatt 54000 A.s
Imax 310
x 0 50 %
x f 50 %

MOCV 45.31 V
MIR 0.0118 Ω

Auxiliairies Cons 0 W
ηDC 90 %

Machine GapAir 0.5 mm
TCooling 75 °C

Transmission

RGB {3.45;1.86;1.11;0.76;0.57}
ΓGB 0.05 kg.m2

RD 4.29
ΓT 0 kg.m2

Engine

ΓICE 0.259 kg.m2

ωICE,max 6250 rpm
ωIdle 750 rpm

P ICE,max 81 kW
Starter ηSt 70 %

Table 4.7: Studied vehicle characteristics
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The problem expressed in Chapter 3 is then solved, with the vehicle’s fuel consumption
evaluated over the WLTC 3-b cycle, with ∆t equal to 1 s. This cycle is selected as it has
been designed to be more representative of the real and modern driving conditions com-
pared to previous homologation procedure, becoming the reference cycle for measuring CO2
emissions. This measurement takes place in laboratory conditions on a flat and dry road.

The various constraints enumerated in the previous chapter are considered afterwards.
Based on a given set of machine and project requirements, key values necessary to validate
the machine design are deduced. These parameters are listed in Table 4.8.

Parameter Value
Pmax,req 25 kW
Tmax,req 70 N.m
ωEM,max 21000 rpm
Dmax 161 mm
Lmax 119 mm
LimEL 365 MPa
TCoating 250 °C
Ripplemax 15 %

f max 10 kHz

Table 4.8: Required values for the definition of EM design constraints

The large number of design variables present in the original optimization problem how-
ever should be reevaluated, as this will lead to longer optimizations as well as convergence
difficulties afterwards. Different options should be assessed to restrain the number of vari-
ables considered and allow for an optimal machine design to be found in reasonable delays.

4.5 Screening study

The presence of 32 design variables has prompted the launch of screening experiments, in
a bid to reduce the number of decision variables during optimization. This study is one of
the main stages of the design of experiments (DoE), a widely used tool in engineering that
maximises learning about a system or a process while using minimum resources [146, 147].

Screening designs are used to scout the search space when little is known about the
mathematical models used for the optimization application. It is possible afterwards to de-
duce the impact of each studied parameter, but interactions between the latter are hard to
interpret.

For this study, a reduced number of experiments are selected using Sobol’s Quasirandom
Sequence to achieve uniform distribution over the search space [112]. Possible configurations
are limited by the ranges defined in Table 3.1. An initial pool sample of 346 designs, over
10 times the total number of design variables, is chosen to achieve acceptable accuracy.

The cost function is calculated using DPAM, while the various constraints adopt the
models described previously. The impact of each factor is evaluated using Pearson’s corre-
lation coefficient [148], expressed as:
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Idi,yj=
|
∑n
k=1(di,k − d̄i)(yj,k − ȳj)|√∑n

k=1(di,k − d̄i)2
√∑n

k=1(yj,k − ȳj)2
(4.10)

where d i,k refers to the value of design variable d i in experiment k, while d̄i corresponds to
its mean value over the pool sample, defined by its size n. Similarly, y j,k refers to the value
of output y j for evaluation k while ȳj refers to its mean value.

Figures 4.13, 4.14, 4.15 and 4.16 show the screening results found for the main outputs of
the models used in this work that are crucial for the optimization process: fuel consumption
J fuelnomenclature[Z]TmaxFuel consumption over driving cycle [l] over the WLTC 3-b cycle,
the machine’s peak power Pmax, its peak torque Tmax and the stator winding’s maximum
temperature attained in a short-circuit scenario at high speed TCopper.

The effect of the various parameters on the studied outputs can also be mostly deduced
using the current understanding of the operation of the electrical machine. The screening
helps confirm these initial hypothesis as well as select the most "vital" parameters.

Since constrained optimizations are conducted afterwards, this selection should be based
on the impact of these factors on all of the outputs displayed above and not only the cost
function by itself. Figure 4.17 shows the global impact of each design parameter. The
global impact is a weighted sum of effects where the impact on fuel consumption is given a
weight of 3, while all the other outputs discussed earlier are attributed a uniform weight of 1.

Figure 4.13: Normalized Pearson coefficients for J fuel deduced from conducted screening
experiments
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Figure 4.14: Normalized Pearson coefficients for Pmax deduced from conducted screening
experiments

Figure 4.15: Normalized Pearson coefficients for Tmax deduced from conducted screening
experiments



120 Chapter 4. Hybrid Electric Vehicle optimization

Figure 4.16: Normalized Pearson coefficients for TempCopper deduced from conducted screen-
ing experiments

Figure 4.17: Normalized global impact of the design parameters deduced from conducted
screening experiments
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Aside from identifying the most influential design variables, the screening experiments are
also used to calculate coefficients b of the analytical models used for approach A2, expressed
in Equation 4.6. The resulting models lead to very low values of RMSD (Root-mean-square
deviation), which is seen as a good measure for their "goodness-of-fit".

4.6 Optimization results

The proposed systemic design strategies are assessed over the parallel hybrid powertrain
optimization problem. The solutions found by each approach are compared afterwards to
an existing design referred to as REF. The machine in question satisfies the various re-
quirements of the design application and was optimized for maximum efficiency at a single
operation point: peak torque at 1000 rpm.

4.6.1 Optimization over 4 design variables

A first comparison is conducted based on the optimization of 4 continuous parameters.
These are selected following the conclusions of the screening study (d1: MagWd, d2: O1,
d3: Bridge, d4: Hs2 ). The other design parameters are fixed and are equal to those of
the reference design, which also serves to initialize the chosen optimization variables when
using the different approaches. Since approach A2 allows for much faster model evaluations,
Sobol’s Quasirandom Sequence is used again to generate 100 additionnal initial guesses for
the optimization algorithm to help it achieve better results.

The selection of the continuous parameters over the discrete parameters has been made
to simplify the search process, as discrete variables only have two or three possible val-
ues. This then limits the use of mixed variable optimization algorithms such as Branch and
Bound. Their recommended values, determined based on the previous screening process,
have also been found to correspond to the initial design’s values.

The average distance between the optimal parameters and their reference distAvg and
the maximum distance to reference distMax are evaluated as well and calculated using the
following expressions:

distAvg =
1

N

N∑
i=1

|di,ref − di
∗|

di,max − di,min
(4.11a)

distMax=max
i

|di,ref − di
∗|

di,max − di,min
(4.11b)

where N is the number of optimization variables while d i,min and d i,max refer respectively
to the lower and upper bounds for optimization variable d i. d i,ref and d i* correspond re-
spectively to its reference and optimal values.

Table 4.9 compiles the optimization results. The total cost difference between the op-
timal designs and the reference machine in e is estimated, as well as the number of cost
function evaluations and total calculation time in s.

The solutions provided by each approach satisfy the imposed constraints. High values of
both distAvg and distMax demonstrate the ability of the different approaches to search for
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Approach BL IT A1 A2 A3
distAvg 0.1187 0.0906 0.0744 0.3191 0.1225
distMax 0.3243 0.2747 0.2053 0.8814 0.3333
Total cost reduction 370 e 377 e 340 e 122 e 253 e
EM cost reduction 81 e 87 e 63 e 40 e 60 e
CO2 emissions reduction 3.04 gCO2/km 3.05 gCO2/km 2.92 gCO2/km 0.86 gCO2/km 2.03 gCO2/km
Number of cost function evaluations 29 252 19 5900 331
Calculation time 24273 s 125019 s 5341 s 822 s 128536 s

Table 4.9: Comparison of systemic design approaches based on 4 optimization variables

the optimal solution outside the immediate vicinity of the initial design.

In terms of total cost reduction, approaches BL, IT and A1 have led to close perfor-
mance. The best solution for this first application, labeled OD1, is the one proposed by
approach IT . However, important disparity is found between these three approaches in
terms of calculation times.

A1 finds an optimal solution 25 times faster than the iterative approach, since a much
higher number of total function evaluations is needed for approach IT , as a result of multi-
ple outer loop iterations when using the latter. This then leads to important computation
times, and makes it even slower than the BL approach, which requires the longest function
evaluation times between the implemented strategies. This can be improved for example by
relaxing tolerances of the iterative loop, set at 0.1 e for this application. Thus, it can be
concluded that A1 represents the best compromise in this initial comparison.

The remaining approaches also manage to reduce costs, but fail to reach the same level
of gains as the previously mentioned strategies. This means that the necessary conditions
stated in Chapter 2 to achieve system optimality have not been met. It is understood that
to achieve higher cost reduction, the accuracy of the adopted models needs to be improved
as well when using either approaches.

On one hand, for approach A2, improving the model’s precision could rely on increasing
the number of sample experiments. Approach A3 on the other hand, which is based on cycle
reduction techniques, should consider additionnal clusters in order to find similar solutions to
those found by the iterative approach. On a different note, computation times for approaches
IT , A1 and A3 can be easily divided by 5 folds when launching even more FE simulations
in parallel. This has not been possible during this study as a consequence of hardware and
software license limitations.

4.6.2 Optimization over 10 design variables

A second comparison is launched afterwards for an increased number of optimization vari-
ables, identified based on the findings in Table 4.3 as well: machine design parameters
MagWd, O1, Bridge, Hs2, Length, Hs1, B3, MagTh, Gap and gear connection ratio RGC.
Table 4.10 summarizes the comparison results.

As expected, adding more optimization variables leads to better cost reductions when us-
ing the various systemic design approaches, while significantly increasing calculation times.
This justifies once more the importance of limiting the number of decision variables to obtain
optimization results in reasonable delays.

The bi-level approach has led to better cost reduction compared to approaches IT and
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Approach BL IT A1 A2 A3
distAvg 0.0940 0.0952 0.0505 0.1863 0.0550
distMax 0.6438 0.5861 0.3601 1 0.3784
Total cost reduction 806 e 661 e 597 e 151 e 424 e
EM cost reduction 87 e 85 e 86 e 71 e 71 e
CO2 emissions reduction 7.57 gCO2/km 6.06 gCO2/km 5.38 gCO2/km 0.84 gCO2/km 3.72 gCO2/km
Number of cost function evaluations 164 681 365 8600 459
Calculation time 137268 s 336087 s 102617 s 891 s 177841 s

Table 4.10: Comparison of systemic design approaches based on 10 optimization variables

A1 for this application. This can be explained in part by comparing values of distMax. Sim-
ilar conclusions to those found in Chapter 2 are outlined: approaches IT and A1 are more
sensitive to the selected design initialization. Increasing the number of initial guesses will
improve the quality of their solutions. OD2, the solution found by approach BL leads to the
best total cost reduction.

In terms of computation time, similar findings to those of the previous application are
observed in here as well, with approach A2 logically remaining the fastest approach. The
previous recommendations made for bothA2 andA3 to improve the quality of their proposed
solution and approaches IT , A1 and A3 to drastically reduce their calculation times are also
valid for this application.

4.6.3 Design optimization without considering performance con-
straints

A study is conducted afterwards to evaluate the impact of design constraints and their role
in altering the optimization’s results. If most of the design conditions considered in the pre-
vious applications, such as the cooling efficiency and mechanical integrity of the machine,
need to be satisfied since they impact the product’s quality, its lifespan and are necessary to
comply with the company’s standards, others are seen as not critical when designing an EM.

One of these conditions are the performance constraints, linked to the machine’s peak
power Pmax and peak torque Tmax. These requirements are system design guidelines that
should allow for near-optimal use of the powertrain, as opposed for pure EV applications
in contrast, where these quantities have direct impact on the vehicle’s specifications such as
acceleration and torque at standstill.

Approach BL is used afterwards to find a new solution OD3 for the previous application
without considering the aforementioned performance constraints. The results are compiled
in Table 4.11.

distAvg 0.1095
distMax 0.6672
Total cost reduction 846 e
EM cost reduction 163 e
CO2 emissions reduction 7.18 gCO2/km
Number of evaluations 88
Calculation time 73656 s

Table 4.11: Powertrain optimization results over 10 variables without considering design
constraints
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As expected, the overall cost is improved, leading to a further 40 e cost reduction.
The systemic design process is much faster as well, converging nearly twice as fast when
compared to the previous application. The proposed approach is used to challenge design
guidelines and can be applied further as a pre-design tool as well.

4.7 Comparison of optimal designs
The 2D pole geometries of REF, OD1, OD2 and OD3 are displayed in Figure 4.18 while
their efficiency mappings are shown in Figure 4.19. Their characteristics are listed in Table
4.12.

Figure 4.18: 2D pole geometry of the proposed designs. From top left to bottom right: REF
- OD1 - OD2 - OD3

Characteristics REF OD1 OD2 OD3
Peak power 29.37 kW 25.29 kW 25.02 kW 21.19 kW
Peak torque 88.86 N.m 79.19 N.m 72.52 N.m 56.30 N.m

Maximum speed 21000 rpm 21000 rpm 21000 rpm 21000 rpm
Torque ripple 9.12 % 8.07 % 13.29 % 14.39 %

Peak copper temperature 235 °C 152 °C 170 °C 138 °C
Total length 110.23 mm 115 mm 109 mm 111 mm

External diameter 155 mm 161 mm 161 mm 161 mm

Table 4.12: Characteristics of the proposed designs

The main difference between REF and OD1 lies in the enhanced efficiency in the high
speed and maximum power regions. This then enables much lower electrical energy con-
sumption, which improves the vehicle’s fuel efficiency.

Meanwhile, at similar peak power, OD2’s design provides more efficient traction through-
out all of the machine’s operation range, which then leads to lower fuel consumption com-
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Figure 4.19: Efficiency mappings of the proposed designs. From top left to bottom right:
REF - OD1 - OD2 - OD3

pared to OD1. The gear connection ratio was also optimized to allow better use of the
powertrain.

Finally, OD3’s efficiency is close to that of OD2. However, the total cost reduction is
largely attributed to a lower machine cost, since the machine’s peak power has greatly de-
creased. This means the initial design requirements led to the unnecessary oversizing of the
EM for this type of application. A powertrain equipped with a 21 kW machine is able to
achieve to similar levels of fuel economy as another drivetrain using 25 kW machine.

Lower peak temperatures observed for all three optimal designs compared to the reference
machine are also a direct consequence of their improved efficiency, as this translates to lower
losses in a short-circuit scenario.

4.8 Sensitivity analysis

In the previous sections, the optimization problem is solved in a deterministic way. However,
when industrial processes are involved, the different design variables add in a certain degree
of uncertainty into their values. It is then recommended to assess the robustness of the op-
timal solution that is provided. For the scope of this study, a solution is considered robust if
the cost reduction does not degrade by over 5 % when integrating said uncertainties, while
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all the design requirements are satisfied.

A local sensitivity analysis can for example be conducted where the impact of adding
small perturbations to the nominal variables over the quality of the solution is quantified
[149, 150]. Mathematically, this sensitivity index, referred to as SI , is equal to the partial
derivative of the total cost function with respect to these variables. The term local means
all derivatives are taken at the optimal solution. The optimization requirements need to be
fulfilled as well when considering these design variations.

In this work, the values of SI are calculated using finite differences, as detailed in the
following expression:

SI i=J(d* i,u* )− J(d* ,u* ) (4.12)

where d* i is a configuration which differs from optimal set d* by design variable d i, whose
value is displaced by step ∆i. The step values is deduced from the study of manufacturing
tolerances for the different geometric parameters, and are listed in Table 4.13.

∆Length ∆Hs1 ∆Hs2 ∆Gap ∆Bridge ∆B3 ∆O1 ∆MagTh ∆MagWd ∆RGC

0.50 mm 0.2 mm 0.2 mm 0.1 mm 0.1 mm 0.1 mm 0.1 mm 0.05 mm 0.05 mm 0.01

Table 4.13: Step values for the selected design variables

The values for SI i with regards to the selected optimization variables are summarized in
Table 4.14.

SI Length SIHs1 SIHs2 SIGap SIBridge SIB3 SIO1 SIMagTh SIMagWd SIRGC

0.90 e 0.85 e 0.25 e 1.12 e 3.36 e 1.36 e 4.76 e 4.21 e 1.71 e 1.48 e

Table 4.14: Values of sensitivity index SI

Low values for indexes SI have been found. The maximum deviation calculated rep-
resents less than 1 % of the total cost reduction. In addition to this, the different designs
satisfy the imposed design constraints. Thus, it can be concluded that the solution is not
sensitive to local variations into the values of the chosen design parameters.

However, this method is a one-at-a-time (OAT) technique, which means the effect of
only one parameter on the cost function is analyzed at a time, while the other parameters
are fixed. This then leads to the exploration of a small restrained portion of the design
space, in addition to the fact that the interactions between variables on the cost function
and constraints are neglected as well.

Another sensitivity analysis method which can be used is based of multiple simulations
in the optimal solution neighborhood, delimited by the tolerances listed earlier [149]. For the
scope of this study, 100 configurations are selected and assessed using Sobol’s Quasirandom
sequence.

It has been found that the studied configurations have all respected the imposed con-
straints. Thus, the proposed optimal solution remains feasible even while including un-
certainties and has managed to respect the machine requirements as well. A maximum
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deviation of around 20 e is found as well. This value is equal to 2.5 % of the total cost
reduction and the optimal solution is considered robust.

Conclusion
In this chapter, three optimal control strategies have been tested: DPAM, PMP and RBS.
Fuel gains and computation time are used as the main criteria for comparison. Similarly to
the HRPS case study, DPAM provides the minimum values for fuel consumption in here as
well, while the proposed RBS is much faster. RBS is applied for the quick assessment of fuel
consumption for coupled systemic design strategies and is directly incorporated in approach
A1 afterwards.

Cycle reduction techniques are assessed afterwards, with the losses pondering variant
of the clustering method ranking as the most precise. When coupled with the mirroring
method, a deviation of less than 1 % is achieved. This method allows for faster design
optimization of the electric machine over drive-cycle and enables the direct use of the circuit
model or even the FE model to improve the precision of the results.

Once the hybrid powertrain optimization application has been defined, it was necessary
to launch a screening study to identify the most vital factors. Approaches BL, IT , A1,
A2 and A3, are then implemented to optimize these variables and improve the cost of the
hybrid powertrain.

Important cost reduction is then achieved, which translates in part into improved fuel
efficiency. This also cements the importance of systemic design in exploiting the hybrid
powertrain to its fullest and leading to much better fuel economy as compared to focusing
on the optimization of a single component, which is the case of the reference machine.

These cost gains logically increase with the number of the decision variables considered.
However, the required calculation times rise exponentially as well, limiting the maximum
number of design parameters that can be considered. These applications were also an op-
portunity to assess the performance of each method separately and confront them to the
analysis initiated in Chapter 2.

Approach BL still manages to lead to the best cost reduction values among the studied
strategies. However, since the optimal command is recalculated for each new proposed ma-
chine, the required calculation time remains high as well.

Design optimization method IT , based on the iterative scheme, proves to be another ef-
ficient strategy. It manages to find close values of the total cost when confronted to BL. The
gap between both solutions increases however with the number of decision variables, since
it is more impacted with the algorithm’s initialization, as it has been found previously for
the HRPS application. Nevertheless, in contrast with the findings of Chapter 2, IT requires
the most calculation time since design cost calculation is based on heavy-model evaluations.
Significant computation time reduction can be expected when relaxing the outer loop toler-
ances, which will reduce the number of function calls, as well as accelerating the design cost
evaluations by increasing the number of parallel FE simulations.

Systemic design strategy A1, based on the co-optimization of the design and RBS pa-
rameters, manages to offer the best compromise between accuracy and calculation time.
However, it is also sensitive to the initial guess of the decision variables and better results
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can be found when combined with a multi-start technique.

Meanwhile, approach A2 ranks as the fastest approach since it uses analytical models to
estimate the powertrain’s total cost and evaluate the design constraints. For this reason as
well, lower cost reduction values are found compared to the results of other approaches. One
perspective is to improve the accuracy of these models, which can be achieved by increasing
the sample pool of the screening experiments. This approach can also be used as means to
propose better initializations for the other strategies.

The fifth approach, referred to as A3 and proposed as an alternative to the iterative
design strategy, is based on estimating the machine losses by applying cycle reduction tech-
niques. This approach is faster however compared to IT , with much quicker iterations
expected once more FE evaluations are launched in parallel. On the other hand, it does not
reach the same level of cost reduction. This can be improved when adopting a more precise
model, based on an increased number of interest points for example.

A study aimed at challenging system guidelines over the performance requirements of
the machine is carried out afterwards. Optimization based on the BL approach without
considering these constraints is launched and further cost reduction is obtained. Thus, it
can be understood that this approach can be used to accurately define the machine specifi-
cations as well for future applications, which will allow for better use of the powertrain.

Finally, local and global sensitivity analysis studies were conducted to evaluate the ro-
bustness of the most efficient design "a posteriori". The solution is then seen as robust since
integrating the various industrial uncertainties does not degrade its quality.



Conclusion

During this thesis work, we were interested in the optimal design of complex systems over
drive-cycle. We have demonstrated that focusing on isolated components, without an out-
look on all physical behaviors and their usage does not lead to a system optimum. A global
vision of the system is required to find the best solution possible. However, this remains dif-
ficult to achieve in a classic company structure with limited exchanges between the various
teams involved in the project. The main objective was then to propose design methodologies
which consider, the components, the system, the control and the environment while meeting
project deadlines and requirements.

Hybrid powertrains are seen as a great fit for the premise of this work, as strong coupling
exists between their different components, their use and the power management strategy.
There is also a growing need for more energy efficient propulsion systems as a response to
the current environmental and health concerns. Thus, systemic design approaches that are
developed are assessed over the case of a C-segment vehicle equipped with a parallel hybrid
powertrain. However, the proposed methodologies can be easily adapted for other applica-
tions as well.

In Chapter 1, we have presented the state of the art in the optimization of complex sys-
tems. The most popular strategies fall mainly into two categories: multidisciplinary design
optimization methods and Plant/Controller frameworks used in conjunction with optimal
control strategies. The balance tipped more in favor of the second option due to the use
of time consuming and strongly non-linear black-box models and the presence of a large
number of decision variables.

The use of optimal control strategies afterwards instead of online power management
methods is made to remove any bias related to the quality of the control strategy when
comparing different possible solutions. Thus, non-linear programming (NLP), Collabora-
tive Optimization (CO), Dynamic Programming (DP) and Pontryagin’s Minimum Principle
(PMP) are investigated afterwards to solve the optimal control problem. The most adequate
control strategy can then be applied for systemic design optimization by adopting either the
nested approach BL where an external design optimization process calculates the best pos-
sible cost at each iteration by solving the optimal control problem, or approach IT where
the design and command problem are solved iteratively. These frameworks are expected to
achieve better results compared to using an all-at-once approach such as SM, especially for
long design cycles.

Chapter 2 presents the hybrid railway power substation (HRPS) benchmark which is
chosen as a first benchmark to compare the previous methods for both power management
and design optimization. The HRPS model is much faster to analyse, and the related op-
timization problem can be linearized afterwards providing a global optimum as a reference
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solution for different cycle lengths as opposed to the hybrid vehicle case study.

When solving the optimal control problem, NLP and CO were only adequate for short
cycles of a few hundred time steps. PMP ranked as the fastest but failed to find satisfying
results. This is due to the fact that optimal command is found at its boundaries, which then
restricts its use in this case. Finally, DP provided optimal results in reasonable calculation
times. DPAM, an improved version of this method based on the adaptive meshing process,
manages to find precise results in faster calculation times and is integrated in both BL and
IT .

The HRPS design problem is tackled afterwards. As expected, the simultaneous ap-
proach SM fails to find an optimal solution when thousands of optimization variables are
involved. Meanwhile, BL leads to precise results and has a high convergence rate but re-
quires long calculation times. In contrast, IT is 10 times faster but leads to sub-optimal
results and lower convergence rates. Relaxing the command constraints leads to similar
results as those found by BL. Approaches BL and IT are then used for hybrid powertrain
optimization.

Chapter 3 starts by describing the hybrid vehicle model. An iso-granularity representa-
tion at fixed temperature is selected for all the various components. The decision variables
are also listed, with the electric machine being the core component to be modified during
the following optimization applications. The machine model was based on the combined
use of FE simulations and Park’s representation to accurately consider the machine’s design
variations, achieving less than 2 % deviation with bench-test results, and generate compo-
nent data for system simulation in a couple of minutes.

The powertrain limitations as well as the requirements and specifications of the product
are translated into command and design constraints, evaluated by analytic and simulation-
based functions. The hybrid powertrain optimization problem is defined afterwards, with
the cost function incorporating both the design cost and fuel consumption calculated over
the Worldwide harmonized Light vehicles Test Cycles (WLTC).

Chapter 4 then focuses on the comparison of the most promising strategies. Three opti-
mal control strategies have been tested: DPAM, PMP and an optimal rule-based strategy
(RBS). Fuel gains and computation time are used as the main criteria for comparison. The
performances of the three proposed strategies are close. Similarly to the HRPS case study,
DPAM provides the minimum values for fuel consumption. The proposed RBS is much faster
and is instantaneous once the strategy parameters are imposed. The optimal command is
analyzed further and it is concluded that it follows all the hybrid vehicle use recommenda-
tions, allowing efficient exploitation of the powertrain. Simulation platform results confirm
these findings as well.

Different cycle reduction techniques are compared afterwards. They are developed to
quickly assess the machine cycle losses using only a dozen of interest points. The clustering
technique is the most precise, with the loss pondering variant incorporating the new Mir-
roring method achieving small deviations of less than 1 % with the real loss values.

Once the hybrid powertrain design optimization application is defined, a screening study
allowed for the identification of the most influent decision variables in a bid to greatly im-
prove the convergence of the systemic design approaches. A machine design optimized over
a singular operation point is used for both algorithm initialization and as a reference design.
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Five systemic design approaches are applied: the previously mentioned BL and IT , as
well as alternative approaches A1, A2 and A3. A1 is based on the simultaneous optimization
of the design and RBS parameters to overcome the difficulties encountered by SM. A2 uses
meta-models to evaluate the cost and constraint functions while A3 is another variant to
IT applying cycle reduction techniques for faster design cost evaluations.

BL, IT and A1 lead to close cost reduction values when considering a small number of
design variables. However, BL finds better solutions for increased parameters, as IT and
A1 are more sensitive to design initialization. A multi-start strategy can then be used to
achieve better results. Meanwhile, design approaches A2 and A3 led to lower cost reduction,
which can be improved by enhancing the accuracy of their models.

In terms of computation time, A2 logically ranked as the fastest. BL, IT and A3,
followed by A1, required long computation times which increased substantially with the
number of variables. In the case of A1 and both alternatives of the iterative scheme, their
respective calculation time can be greatly reduced by stronger parallelization.

Besides leading to significant cost reduction, the solution found by the bi-level design
strategy is deemed robust as a result of the sensitivity studies conducted afterwards. Finally,
BL is also used to challenge the performance requirements used generally as design guidelines
in the company environment and propose a more efficient powertrain over the WLTC 3-b
cycle at a much lower cost.





Perspectives

This work can open up to multiple research perspectives and can serve as an entry point for
future developments at various fronts.

From an application point of view, the proposed design strategies can easily be extended
to the sizing of other components of the hybrid powertrain. However, this will require using
models for the engine, the battery and the transmission that consider the impact of their
design parameters.

The implemented approaches should also allow for the comparison between various hy-
brid architectures with different component technologies. Integrating these parameters as
discrete variables during the optimization process will help define the most adequate trac-
tion solution for a specific application, although additional design constraints are required
when considering other powertrain architectures.

In this study, an iso-granularity representation based mostly on interpolation models es-
tablished at fixed temperature is selected. The use of higher fidelity models considering the
dynamic thermal behaviour’s impact on performance over the cycle will certainly improve
the accuracy of system simulation and the validity of the solution when manufactured. The
expected increase in calculation time can be limited by applying the Individual Discipline
Feasible (IDF) framework in this case.

Robust optimization which propagates the various uncertainties resulting from manufac-
turing processes during the decision-making process will lead to a robust solution when the
design methodology converges. This is seen as a more rigorous approach as opposed to the
adopted "a posteriori" approach where the robustness of the solution is only verified but a
more robust solution may exist.

Regarding the optimization process, the total cost can be developed further to better
estimate the cost of the powertrain. The materials price and manufacturing costs can be
added separately for example to achieve this feat.

In addition to this, fuel economy can be evaluated over other cycles such as homologation
cycles from other countries. The impact of the selected cycle over the final solution can then
be studied.

Finally, other optimization targets can be set as well such as particle emissions reduction,
minimization of fuel consumption over separate drive-cycles and component ageing. A mono-
objective optimization approach such as the one undertaken in this work can be applied as
well by adding different weights for each objective. A multi-objective optimization approach
can also be suggested to give better insight to decision makers.
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Appendix A

Validation of FE parametric model

After selecting an existing machine and identifying the machine parameters d, the paramet-
ric FE model’s accuracy is assessed based on the experimental results of said machine and
the 3D FE CAD calculations of the same machine.

The different results are summarized in the following tables, with deviations determined
between the bench-test values and calculations of the parametric FE model. BT refers to
the bench test results, while CAD and PM are correspondingly the 3D CAD model and
parametric FE model results and the compared quantities are the mainly used outputs in
the optimization study.

The no load results are compiled in Table A.1. They mainly focus on the root mean
square (rms) value of the back EMF voltage (EMF) and its first harmonic (EMF-h1) at
different magnet temperatures and rotational speeds.

BT (Vrms) CAD (Vrms) PM (Vrms) Deviation (%)
EMf at 25 °C/1000 rpm 9.72 9.71 9.77 -0.51
EMF-h1 at 25 °C/1000 rpm 9.70 9.76 9.68 -0.20
EMf at 80 °C/1000 rpm 9.38 9.38 9.40 -0.21
EMF-h1 at 80 °C/1000 rpm 9.33 9.33 9.33 0.00
EMf at 110 °C/1000 rpm 9.21 9.18 9.08 1.41
EMF-h1 at 100 °C/1000 rpm 9.16 9.13 9.00 1.75

Table A.1: Comparison results for no load scenarios

Table A.2 on the other hand shows the obtained rms value of the steady state short-circuit
current for the three cases at high speed (6000 rpm).

BT (Arms) CAD (Arms) PM (Arms) Deviation (%)
220.7 227.1 224.1 -1.50

Table A.2: Comparison results on a short-circuit scenario

Finally, Table A.3 compares the average mechanical torque values obtained at multiple
operation points of the machine, in both generator and motor modes. The current phase is
calculated as to minimize the losses in the machine.
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BT (N.m) CAD (N.m) PM (N.m) Deviation (%)
Motor mode at 355 Arms/0 rpm 95.0 94.9 95.0 0.00
Motor mode at 234 Arms/1000 rpm 70.0 68.8 68.8 1.65
Motor mode at 195 Arms/2000 rpm 60.0 59.0 58.9 1.83
Motor mode at 217 Arms/3000 rpm 60.0 60.6 61.1 -1.80
Generator mode at 193 Arms/3000 rpm -60.0 -58.6 -58.3 -2.83
Motor mode at 164 Arms/5000 rpm 40.0 40.2 40.0 -0.01
Generator mode at 131 Arms/6000 rpm -30.0 -30.1 -30.0 0.12

Table A.3: Comparison results for on-load scenarios

The different results presented in the three tables show acceptable deviations, of around
2%, for the measured quantities.



Appendix B

Energy losses during gear-shifting

Gear shifting is not instantaneous and since the engine suffers from slower dynamics com-
pared to the EM, its output power is not constant during the transition period. In the case
of an upshift for example, the engine switches between constant speed and constant torque,
as shown in Figure B.1.

Figure B.1: Upshift procedure using a DCT with the iso-power line. Data retrieved from
[74]

Let tgs be the time required for completing a gear shift in s, ωreq the rotational speed of
the engine in rpm and Treq and Preq the torque in N.m and power in W to be provided by
the engine respectively during the selected time step. R1 and R2 refer correspondingly to
the ratios of the current and selected gears.

By assuming the torque delivered by the engine varies linearly during gear shifting, the
following expression can be given to the produced torque’s evolution:

T ICE(t) =
T req

R2
(R2 + (R1 −R2)

2t

tgs
), t ∈ [0,

tgs
2

] (B.1a)
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T ICE(t) =
R1

R2
T req , t ∈ [

tgs
2
,∆t] (B.1b)

The engine’s rotational speed on the other hand can also be expressed as:

ωICE(t) = ωreq , t ∈ [0,
tgs
2

] (B.2a)

ωICE(t) =
ωreq

R1
(R1 + (R2 −R1)

2t− tgs
tgs

), t ∈ [
tgs
2
, tgs] (B.2b)

ωICE(t) =
R2

R1
ωreq , t ∈ [tgs,∆t] (B.2c)

The power delivered by the engine can then be deduced:

P ICE(t) =
P req

R2
(R2 + (R1 −R2)

2t

tgs
), t ∈ [0,

tgs
2

] (B.3a)

P ICE(t) =
P req

R2
(R1 + (R2 −R1)

2t− tgs
tgs

), t ∈ [
tgs
2
, tgs] (B.3b)

P ICE(t) = P req, t ∈ [tgs,∆t] (B.3c)

Thus, the average power delivered by the ICE during the selected time step can be
calculated using the following equation:

P ICE(t) =
P req

∆t
(
tgs
2

+ (
R1

R2
− 1)

tgs
4

+
R1

R2

tgs
2

+ (1− R1

R2
)
tgs
4

+ ∆t− tgs) (B.4a)

=
P req

∆t
((
R1

R2
− 1)

tgs
2

+ ∆t) (B.4b)

Finally, and based on the assumption that the engine’s consumption varies linearly close
to its operation point with respect to the delivered power, a simple expression for the fuel
consumption during gear shifting is proposed:

L =
Lreq

∆t
((
R1

R2
− 1)

tgs
2

+ ∆t) (B.5a)

where Lreq is the engine’s fuel consumption at the operating point (ωreq,Treq). Using similar
reasoning, the following expression is deduced when downshifting:

L =
Lreq

∆t
((1− R1

R2
)
tgs
2

+ ∆t) (B.6a)

And a generalized expression, valid for both downshifting and upshifting can be given:

L =
Lreq

∆t
(|R1

R2
− 1| tgs

2
+ ∆t) (B.7a)
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Machine geometric constraints

Using the same designations for the design variables as in the parametric model definition,
kGeom is expressed as:

kGeom,1(d) =Nph −N slot + 1 (C.1a)
kGeom,2(d) =yst3 − yst2 (C.1b)
kGeom,3(d) =Hs0 +Hs1 +Hs2 + 0.5−RoutSta +RinSta (C.1c)

kGeom,4(d) =Bs0− 0.9RinSta
Π

pN slot
(C.1d)

kGeom,5(d) =Bs1− 0.9(RinSta +Hs0 +Hs1)
Π

pN slot
(C.1e)

kGeom,6(d) =
Bs0

RinSta
− Bs1

RinSta +Hs0 +Hs1
(C.1f)

kGeom,7(d) =B1−MagTh (C.1g)
kGeom,8(d) =B3−MagTh (C.1h)
kGeom,9(d) =R2 −R1 (C.1i)

kGeom,10(d)=RoutRot −
√
xrt102 + yrt102 − 2R2 +R1 (C.1j)

kGeom,11(d)=RinRot −
√
xrt12 + yrt12 (C.1k)

kGeom,12(d)=RinRot −
√
xrt22 + yrt22 (C.1l)

kGeom,13(d)=− xrt2 (C.1m)

kGeom,14(d)=RinRot −
√
xrt42 + yrt42 (C.1n)

kGeom,15(d)=RinRot −
√
xrt52 + yrt52 (C.1o)

kGeom,16(d)=RinRot −
√
xrt62 + yrt62 (C.1p)

kGeom,17(d)=(yrt9 − yrt3)(xrt7 − xrt3)− (xrt9 − xrt3)(yrt7 − yrt3) (C.1q)
kGeom,18(d)=(yrt9 − yrt7)(xrt6 − xrt7)− (xrt9 − xrt7)(yrt6 − yrt7) (C.1r)

kGeom,19(d)=atan(
yrt2

xrt2
)− Π

2p
(C.1s)

kGeom,20(d)=atan(
yrt4

xrt4
)− Π

2p
(C.1t)

kGeom,21(d)=atan(
yrt5

xrt5
)− Π

2p
(C.1u)
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kGeom,22(d)=atan(
yrt6

xrt6
)− Π

2p
(C.1v)

kGeom,23(d)=atan(
yrt7

xrt7
)− Π

2p
(C.1w)

kGeom,24(d)=atan(
yrt9

xrt9
)− Π

2p
(C.1x)

kGeom,25(d)=Exc−RoutRot (C.1y)

with:

xst1 =RinSta −
(RinSta

3Π
Nslot

− 0.5Bs0)2

2RinSta
(C.2a)

yst1 =
√
RinSta2 − xst12 (C.2b)

xst2 =xst1 +Hs0cos(
Π

2pN slot
) (C.2c)

yst2 =yst1 +Hs0cos(
Π

2pN slot
) (C.2d)

Rprime1=
√
xst22 + yst22 +Hs1 (C.2e)

xst3 =Rprime1−
(Rprime1Π

2pNslot
− 0.5Bs1)2

2Rprime1
(C.2f)

yst3 =
√
Rprime12 − xst32 (C.2g)

Exc =Gap
RoutRot − 0.5Gap

RoutRot − (RoutRot −Gap)cos( Π
2p )

(C.2h)

Kexc =RoutRot −Gap (C.2i)
T =MagTh +M1 +M2 (C.2j)
Ri =RoutRot − Exc−Bridge (C.2k)

xi =
0.5O1 + Tsin(OuvMag)

Ri
(C.2l)

xrt1 =Exc+Ricos(asin(xi))− Tcos(OuvMag) (C.2m)
yrt1 =0.5O1 (C.2n)
xrt2 =xrt1 −B2 (C.2o)
yrt2 =yrt1 (C.2p)
xrt3 =xrt1 + Tcos(OuvMag) (C.2q)
yrt3 =yrt1 + Tsin(OuvMag) (C.2r)
xrt4 =xrt1 −B3sin(OuvMag) (C.2s)
yrt4 =yrt1 −B3cos(OuvMag) (C.2t)
xrt5 =xrt1 − (MagTh + 2MagInsulation)sin(OuvMag) (C.2u)
yrt5 =yrt1 + (MagTh + 2MagInsulation)cos(OuvMag) (C.2v)
xrt6 =xrt5 + (MagTh + 2MagInsulation +M1)cos(OuvMag) (C.2w)
yrt6 =yrt5 + (MagTh + 2MagInsulation +M1)sin(OuvMag) (C.2x)
xrt7 =xrt6 + (MagTh + 2MagInsulation −B1)sin(OuvMag) (C.2y)
yrt7 =yrt6 − (MagTh + 2MagInsulation −B1)cos(OuvMag) (C.2z)
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aRot =1 + tan(
Π

2p
)2 (C.2aa)

bRot =− 2Exc (C.2ab)

cRot =(0.5Rib sin(
Π

2p
)− Exc)2 + (0.5Rib cos(

Π

2p
))2 −Ri2 (C.2ac)

xrt8 =(−bRot +
√
bRot2 − 4aRotcRot)/(2aRot) (C.2ad)

yrt8 =xrt8tan(
Π

2p
) (C.2ae)

xrt9 =xrt8 + 0.5Rib sin(
Π

2p
) (C.2af)

yrt9 =yrt8 − 0.5Rib cos(
Π

2p
) (C.2ag)

xrt10 =Exc+ (RoutRot − Exc)cos(atan(
Kexc sin( Π

2p )

Kexc cos( Π
2p )− Exc

)) (C.2ah)

yrt10 =(RoutRot − Exc)sin(atan(
Kexc sin( Π

2p )

Kexc cos( Π
2p )− Exc

)) (C.2ai)

with Mag Insulation the thickness of the magnet’s insulating paper in mm.

Figure C.1: Above: Rotor geometric constraints - Below: Stator geometric constraints
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Extended french abstract

Les travaux de thèse menés s’intéressent à la conception optimale des systèmes complexes
sur cycles. En effet, il a été démontré que se concentrer sur l’optimisation isolée des com-
posants, sans tenir compte de leur utilisation et de leur environnement, ne conduit pas à un
système optimal. Une vision globale du système est donc requise afin de trouver la meilleure
solution possible. Cependant, ceci reste difficile à réaliser dans une structure d’entreprise
classique avec des échanges limités entre les différentes équipes impliquées dans le même
projet. L’objectif principal de la thèse était alors de proposer des méthodologies de concep-
tion qui prennent en compte les composants, le système, le contrôle et l’environnement tout
en respectant les délais et les exigences du projet.

L’optimisation des chaînes de traction hybrides est choisie comme l’application principale
de ce projet de recherche, car il existe un fort couplage entre les différents composants de la
chaîne, leur utilisation et la stratégie de gestion de l’énergie. Il existe également un besoin
croissant pour des systèmes de propulsion plus efficaces et moins polluants, en réponse aux
préoccupations actuelles en matière d’environnement et de santé. Ainsi, les approches de
conception systémique développées sont évaluées sur le cas d’un véhicule compact équipé
d’une chaîne de traction hybride parallèle. Cependant, les méthodologies proposées peuvent
être facilement implémentées et réadaptées pour d’autres applicatifs.

Dans le chapitre 1, un état de l’art sur les approches d’optimisation des systèmes com-
plexes est réalisé. Les stratégies les plus populaires se répartissent principalement en deux
catégories : les méthodes d’optimisation multidisciplinaire (MDF) et les stratégies basées
sur l’étude du couplage entre le système et sa commande (Plant/Controller optimization
frameworks). La balance a davantage penché en faveur de la seconde option en raison de
l’utilisation de modèles de boîte noire lourds et fortement non linéaires ainsi que la présence
d’un grand nombre de variables de décision.

L’utilisation des stratégies de contrôle optimale par la suite au lieu des méthodes de
gestion de l’énergie en temps réel a pour but d’éliminer tout biais lié à la qualité de la
stratégie de contrôle lors de la comparaison des différentes solutions possibles. Ainsi, la
programmation non linéaire (NLP), l’optimisation collaborative (CO), la programmation
dynamique (DP) et le principe du minimum de Pontryagin (PMP) sont étudiés pour op-
timiser la répartition d’énergie du système. La stratégie de contrôle la plus adéquate est
ensuite incorporée pour la conception optimale du système en se basant sur deux schémas
possibles : l’approche imbriquée BL où un algorithme externe optimisant les variables de
conception évalue le meilleur coût possible pour chaque design en déterminant sa commande
optimale, ou l’approche itérative IT où le problème de conception et de commande sont
résolus successivement. Ces cadres devraient permettre d’obtenir de meilleurs résultats que
l’utilisation d’une approche simultanée telle que SM, en particulier pour des cycles longs.
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Le chapitre 2 présente le benchmark des sous-stations électriques ferroviaires hybrides
(HRPS) qui est choisi comme premier cas d’étude afin de comparer les méthodes de gestion
de l’énergie ainsi que d’optimisation systémique citées précédemment. Ce cas d’étude est
beaucoup plus rapide à traiter vu qu’il est basé sur des modèles analytiques. Le problème
d’optimisation de commande et de conception associés peuvent être linéarisés afin de déter-
miner l’optimum global sur différents cycles, ce qui n’est pas envisageable pour l’applicatif
du véhicule hybride. Cet optimum peut donc servir de référence pour mieux comparer les
méthodes d’optimisation non-linéaires implémentées.

On constate donc que NLP et CO n’étaient adéquats que sur des cycles courts de quelques
centaines de pas de temps. La stratégie PMP est la plus rapide mais n’arrive pas à trouver
des résultats satisfaisants. Ceci est dû au non-respect des conditions strictes de convexité
pour ce cas d’étude, nécessaires à son application. Enfin, DP a fourni de très bons résultats
dans des temps de calcul raisonnables. DPAM, une version améliorée de DP basée sur un
processus de maillage adaptatif, parvient à trouver des résultats aussi précis dans des délais
encore plus rapides et est donc implémentée pour optimiser la commande dans BL et IT .

La conception optimale de l’HRPS est abordée par la suite. Comme prévu, l’approche
simultanée SM ne permet pas de trouver une solution optimale lorsque des milliers de vari-
ables d’optimisation sont considérées à la fois. En revanche, BL donne des résultats très
proches de la solution de référence et présente un taux de convergence élevé mais nécessite de
longs temps de calcul. En revanche, IT est 10 fois plus rapide mais conduit à des résultats
sous-optimaux et à des taux de convergence plus faibles. La relaxation des contraintes de
commande conduit à des résultats similaires à ceux trouvés par BL. Les approches BL et
IT sont alors aussi utilisées pour l’optimisation de la chaîne hybride.

Le chapitre 3 commence par décrire le modèle du véhicule hybride. Une représentation à
iso-granularités et à température fixe est choisie pour les différents composants de la chaîne
de traction. Les variables de décision sont également énumérées. La machine électrique
est définie comme le composant central à modifier au cours des applications d’optimisation.
Le modèle de la machine a été basé sur l’utilisation combinée de simulations éléments finis
et du modèle de Park de la machine synchrone afin de prendre en compte avec précision
l’impact des paramètres de design. On arrive ainsi à obtenir un écart de moins de 2 % avec
les résultats sur bancs d’essais, et de générer la cartographie de pertes de la machine, utilisée
par la suite pour simuler la chaîne hybride, en quelques minutes seulement.

Les limitations de la chaîne de traction hybride ainsi que le cahier de charges de la ma-
chine sont traduits en contraintes de commande et de conception, évaluées par des fonctions
analytiques et par simulations éléments finis. La fonction coût intègre à la fois le coût de la
machine et la consommation de carburant calculés sur le cycle WLTC 3-b. Ainsi, le prob-
lème d’optimisation est entièrement défini.

Le chapitre 4 se concentre au début sur la comparaison des stratégies les plus promet-
teuses. Trois stratégies de contrôle optimales sont testées : DPAM, PMP et une nouvelle
stratégie à base de règles (RBS). Les gains en consommation de carburant et le temps de
calcul sont utilisés comme principaux critères pour cette comparaison. Les performances
des trois stratégies proposées sont proches. Comme c’était le cas sur l’applicatif de l’HRPS,
la DPAM fournit encore une fois les meilleures valeurs de consommation. Par ailleurs, RBS
est beaucoup plus rapide et est instantanée une fois que les paramètres de la stratégie sont
optimisés. La commande optimale proposée est analysée plus en détail après et on conclut
qu’elle suit toutes les recommandations d’utilisation des véhicules hybrides, permettant ainsi
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une exploitation efficace de la chaîne de traction hybride. Les résultats de la plateforme de
simulation Amesim développée du côté de Valeo confirment également ces conclusions.

Différentes techniques de réduction de cycle sont ensuite comparées. Elles sont dévelop-
pées pour évaluer rapidement les pertes sur cycle de la machine en s’appuyant seulement
sur une dizaine de points d’intérêt. La technique du Clustering à pondération des pertes est
la plus précise. En la couplant avec la nouvelle méthode du Mirroring, on obtient des écarts
plus faibles de moins d’1 % pour une estimation des pertes totales sur cycle basée sur 10
clusters seulement.

Une fois qu’un cas d’étude de conception optimale de la chaîne de traction hybride est
défini, une étude de screening est menée afin d’identifier les variables de décision les plus
influentes à optimiser. Cette démarche améliore considérablement la convergence des ap-
proches de conception systémique en réduisant le nombre de variables d’optimisation. Le
design optimal trouvée par la suite à partir des approches est comparée à une machine de
référence proposée par l’entreprise. Cette dernière a été optimisée sur un point unique de
fonctionnement en adoptant l’approche de design classique. La machine de référence est
aussi utilisée pour initialiser l’algorithme d’optimisation.

Cinq approches de conception systémique sont appliquées : les approches BL et IT
mentionnées précédemment, ainsi que trois nouvelles approches alternatives : A1, A2 et A3.
A1 est basée sur l’optimisation simultanée des variables de design et des paramètres de la
stratégie RBS, ce qui permet de réduire la complexité d’optimisation de la commande. A2
s’appuie sur l’utilisation des méta-modèles pour évaluer les fonctions coût et de contraintes
tandis que A3 est une nouvelle variante de la stratégie IT , basé sur l’exploitation des tech-
niques de réduction de cycle pour évaluer plus rapidement la fonction coût.

D’une part, BL, IT et A1 conduisent à des réductions de coût assez proches lorsqu’on
optimise un nombre réduit de variables de conception. Cependant, BL trouve de meilleures
solutions pour un nombre de paramètres plus important. Ceci s’explique du fait que les
approches IT et A1 sont plus sensibles à leurs initialisations. Une stratégie multi-start,
ou multi-tirs, peut résoudre ceci et conduira à de meilleurs résultats. D’autre part, les ap-
proches de conception A2 et A3 ont mené à une réduction moindre des coûts. Accroître la
précision de leurs modèles permettra de trouver de meilleures solutions.

En termes de délais, A2 est naturellement l’approche la plus rapide. BL, IT et A3, suivi
de A1, nécessitent de longs temps de calcul, qui ont tendance à augmenter exponentiellement
avec le nombre de variables considérées. Les temps de calcul des approches A1 et des deux
alternatives du schéma itératif pourront être considérablement réduits en lançant plus de
simulations en parallèle.

En plus de conduire à une réduction significative des coûts, la solution trouvée par
l’approche imbriquée BL est jugée robuste aussi d’après les conclusions des études de sen-
sibilité qui sont menées. Enfin, BL est également exploitée pour remettre en question les
exigences de performance imposées, généralement vues plutôt comme des lignes directrices
de conception dans un contexte projet. On trouve ainsi une meilleure efficacité énergé-
tique à moindre coût quand ces contraintes ne sont pas considérées au cours du processus
d’optimisation.
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Systemic design of hybrid and electric powertrains
Abstract Designing hybrid powertrains is a complex task, which calls for experts from various
fields. In addition to this, finding the optimal solution requires a system overview. This can be,
depending on the granularity of the models at the component level, highly time-consuming. This
is even more true when the system’s performance is determined by its control, as it is the case of
the hybrid powertrain. In fact, various possibilities can be selected to deliver the required torque
to the wheels during the driving cycle. Hence, the main obstacle is to achieve optimality while
keeping the methodology fast and robust.

In this work, novel approaches to exploit the full potential of hybridization are proposed and
compared. The first strategy is a bi-level approach consisting of two nested optimization blocks:
an external design optimization process that calculates the best fuel consumption value at each
iteration, found through control optimization using an improved version of dynamic program-
ming. Two different systemic design strategies based on the iterative scheme are proposed as well.
The first approach is based on model reduction while the second approach relies on precise cycle
reduction techniques. The latter enables the use of high precision models without penalizing
the calculation time. A co-optimization approach is implemented afterwards which adjusts both
the design variables and parameters of a new efficient rule-based strategy. This allows for faster
optimization as opposed to an all-at-once approach. Finally, a meta-model based technique is
explored.

Keywords: plant/controller optimization, optimal design of complex systems, hybrid electric
vehicle, optimal control, cycle reduction, model reduction, electric machines, powertrain simula-
tion, electric propulsion, parallel hybrid powertrain

Conception de chaînes de traction hybrides et électriques par
optimisation sur cycles routiers
Résumé La conception des chaînes de traction hybrides est une tâche complexe, qui fait ap-
pel à des experts de différents domaines s’appuyant sur des compétences et des outils distincts.
En plus de cela, la recherche d’une solution optimale nécessite un retour système. Cela peut
être, selon la granularité des modèles de composants, très coûteux en temps de calcul. Ceci est
d’autant plus vrai lorsque la performance du système est déterminée par sa commande, comme
c’est le cas du véhicule hybride. En fait, différentes possibilités peuvent être sélectionnées pour
fournir le couple requis aux roues pendant le cycle de conduite. Ainsi, le principal obstacle est
d’atteindre l’optimalité tout en conservant une méthodologie rapide et robuste.

Dans ces travaux de thèse, de nouvelles approches visant à exploiter le potentiel complet de
l’hybridation sont proposées et comparées. La première stratégie est une approche bi-niveaux
composée de deux blocs d’optimisation imbriqués: un processus d’optimisation des paramètres
de design externe qui calcule la meilleure valeur de consommation de carburant à chaque itéra-
tion en se basant sur une version améliorée de la programmation dynamique pour l’optimisation
de la commande. Deux stratégies de conception systémique différentes basées sur le schéma
itératif sont également proposées. La première approche est basée sur la réduction de modèle
tandis que la seconde se repose sur des techniques précises de réduction de cycle. Cette dernière
permet l’utilisation de modèles de haute précision sans pénaliser le temps de calcul. Une ap-
proche simultanée est ensuite mise en œuvre, qui optimise à la fois les variables de conception et
les paramètres d’une nouvelle stratégie efficace à base de règles. Cette dernière permettra une
optimisation plus rapide par rapport à l’optimisation directe de toutes les variables de décision.
Enfin, une technique basée sur l’utilisation des méta-modèles est explorée.

Mots-clés: conception optimale de systèmes complexes, véhicule hybride, contrôle optimal, ré-
duction de cycles, réduction de modèles, machines électriques, simulation de la chaîne de traction,
propulsion électrique, chaîne de traction hybride parallèle
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