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Résumé

Le mélange de scalaire actif, qui implique une rétroaction du champ scalaire sur les champs

de vitesses, a attiré beaucoup moins d’attention dans la littérature que le mélange du scalaire

passif où le champ scalaire se laisse transporter cinématiquement par le champ de vitesse.

Dans cette thèse, nous nous intéressons à quelques questions ouvertes au sujet du mélange de

scalaire actif. En particulier, on observe une accélération de la transition vers la turbulence

pour : un jet léger, et un jet plus visqueux, par rapport au fluide hôte. Nous abordons deux

types d’écoulements :

I. Jet rond à masse volumique variable : Nous avons conçu et réalisé une expérience

permettant la mesure simultanée des champs de vitesses et scalaire dans le champ très proche

d’un jet rond à masse volumique variable. Nous utilisons la Vélocimétrie par Images de

Particules Stéréoscopique, couplée à la Fluorescence Induite par Laser Planaire. La première

question consiste à connaitre l’influence des variations de masse volumique sur les toutes

premières structures qui apparaissent après l’injection. La seconde question concerne le

transfert d’énergie dans l’écoulement. Nous utilisons une approche statistique en deux-points,

et analysons les transferts d’énergie et de variance du scalaire dans l’espace des échelles. Enfin,

le mélange est quantifié par une approche de statistiques conditionnées à la périphérie du jet,

au voisinage de l’Interface Turbulent/Non-Turbulent. Cette méthode révèle des informations

qui sont inaccessibles par des moyennes dans un repère de coordonnées cylindriques classique.

II. Jet plan temporel à viscosité et diffusivité massique variables : Nous utilisons

des données de Simulations Numériques Directes, produites par le Dr. M. Gauding au sein de

notre groupe. Le but de ces simulations est d’étudier l’influence de la variation de viscosité et

de la diffusivité de masse sur les taux de dissipation de l’énergie cinétique et du scalaire. Pour

traiter cette question, nous utilisons une approche de statistiques conditionnées à l’Interface

Turbulent/Non-Turbulent. Dans cette région de l’écoulement, nous évaluons le bilan en un

point de l’amplitude du vecteur gradient du scalaire, ainsi que le bilan en deux points de

la fonction de structure d’ordre deux du scalaire. Nous montrons que les inhomogénéités

initiales du scalaire actif ont un effet intense et persistant sur le mélange dans le voisinage de

l’Interface Turbulent/Non-Turbulent, et ceci même tard, dans le régime auto-similaire du jet.



Abstract

Active scalar mixing, which modifies the velocity field through variations of either density or

viscosity, received much less attention than passive scalars. This thesis aims at unravelling

some open questions pertaining to active scalar mixing. Whilst some results point to the

facts that mixing occurs faster for i) light jets than for heavy jets, and ii) more viscous

fluid released in a less viscous environment. This simple example reveals the necessity of a

systematic study of the problem. We focus on two aspects of these very vast questions.

I. Variable density round jet. We designed an experimental set-up, which allows mea-

suring both velocity and scalar fields, using simultaneous Stereo Particle Image Velocimetry

and Planar Laser Induced Fluorescence. The first question concerns mixing immediately

after injection. Therefore, the very near field of the jet was particularly sought. One-point

statistics were used to evaluate the large-scale effect of momentum and density variations on

the initiation of turbulence. Also, two-point turbulent statistics for velocity and scalar have

been appraised. Through this approach, the effects on transition were assessed through scales

of turbulent motion. Mixing was also evaluated at the edge of the flow, in the vicinity of

the Turbulent/Non-Turbulent Interface. We found additional specificity to variable density

mixing, that is inaccessible by averaging on a cylindrical frame of reference.

II. Temporally evolving turbulent jet flow with variable viscosity and mass diffu-

sivity. The data consists in Direct Numerical Simulation performed in our group by Dr. M.

Gauding. The purpose of these simulations is to study the kinetic energy and scalar dissipa-

tion rates in flows with variable momentum and mass diffusivities. We focused on conditional

averaging in the vicinity of Turbulent/Non-Turbulent Interface. This data is confronted to

one-and-two point transport equations for the momentum and scalar. It is shown that initial

gradients of both viscosity and mass diffusivity have an intense and persistent impact on both

kinetic energy and scalar dissipation rates, in the vicinity of the Turbulent/Non-Turbulent

Interface, albeit a rapidly trend of the jet core towards self-preservation.



List of Symbols

Annotations

(.)a At the axis or at the center-plane

(.)I Conditionned on the distance to the Turbulent/Non-Turbulent Interface

(.)j Jet inlet

(.)c Co-flow

(.)crit Critical value

(.)e Entrainment

(.)m Momentum

(.)p Particle

(.)s Sound

(.)r Radial

(.)x Axial

(.)V Volume average

()∗ Reference scale

〈.〉 Statistical average

(.)′ Reynolds fluctuation

(̃.) Infinitesimal perturbation

(̂.) Perturbation spectral amplitude

(.)+ and (.)− At physical space location

∆(.) Increment between the quantity at point (.)+ and point (.)−

Σ(.) Sum of the quantity at points (.)+ and (.)−

Differential operators

∂t ≡ ∂
∂t

derivative with respect to time

∂i ≡ ∂
∂xi

derivative with respect to spatial direction xi

∂2
ik ≡ ∂2

∂xi∂xk
second derivative with respect to spatial directions xi and xk

index not repeated when i = k.

dφ ≡ d
dφ

total derivative with respect to the mass fraction φ

i



Dimensional quantities

D [L] Diameter

u [L][T ]−1 Velocity

ρ [M ][L]−3 Density

µ [M ][L]−1[T ]−1 Dynamic viscosity

D [L]2[T ]−1 Mass diffusivity

δ [L] Characteristic thickness

Q [M ][T ]−3 Mass flow rate

r [L] Distance in homogeneous component in scale space

X [L] Distance in inhomogeneous component in scale space

α, β, k [L]−1 Wave numbers

c [T ]−1 Wave phase speed

λ [L] Monochromatic light wavelength

ψ [M ]2[L] Diffusivity of both momentum and chemical species

ε [L]2[T ]−3 Kinetic energy pseudo dissipation rate

χ [L]2[T ]−3 Scalar dissipation rate

L [L] Integral length-scale

ii



Dimensionless quantities

Re =
ρjDjuj
µj

Reynolds number

Ar =
gρj(ρc−ρj)D3

j

µ2j
Archimedes number

Fr =
√
gL
uj

Froude number

At =
ρc−ρj
ρc+ρj

Atwood number

Pe =
Djuj
D Peclet number

Ma =
uj
a0

Mach number

R Thermo-physical property ratio

I Turbulence intensity

γe Entrainment coefficient

M Mie parameter

φ Mass fraction

ϕ Pseudo mass fraction

σ Fluorescence quantum yield

iii



List of Figures

1.1 A water turbulent jet at Re = 10000. Gray intensity corresponds to jet mass

fraction. Reproduced from Dimotakis et al. (1983). . . . . . . . . . . . . . . 6

1.2 Axial variation of inverse of mean axial velocity (a) and turbulence intensity

(b), for different Reynolds numbers. Figure reproduced from Mi et al. (2013). 9

1.3 Axial variation of the mean axial velocity (a) and axial turbulence intensity

(b), for different couples (Re,Ar). Figure reproduced from Amielh et al. (1996). 12

1.4 Axial variation of the mean scalar (a) and scalar turbulence intensity (b), for

different Archimedes numbers. Figure reproduced from Pitts (1991a). . . . . 13

1.5 Axis decay of the mean streamwise velocity (a) and streamwise turbulence

intensity (b). See text for dimensionless numbers. Figure reproduced from

Talbot (2009). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.6 Distribution of the scalar concentration of a very dilute contaminant. The

arrow indicates increasing time (data from our group). . . . . . . . . . . . . 18

1.7 Small part of a turbulent free shear flow. The TNTI is represented by the blue

line (data from our group). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Conditional and conventional statistics of mean streamwise velocity and scalar

(a) and dissipation rates (b). The conditional statistics are plotted in the TNTI

frame (lower x-axis), and the conventional statistics are plotted in the Cartesian

cross-stream coordinate (upper x-axis). All the statistics are normalized by

the core value (data from our group). . . . . . . . . . . . . . . . . . . . . . . 21

1.9 Typical scalar field in the very-near field of a turbulent round jet (data from

our measurements, see Chapter 3). The red lines correspond to the TNTI. . 27

iv



2.1 Scheme of the interaction of the different fields in the incompressible binary

mixing case, corresponding to the set of equations (2.1)-(2.5) . . . . . . . . . 30

3.1 Sketch of the experimental set-up. . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Sketch of the gas routing, heating and seeding systems. . . . . . . . . . . . . 52

3.3 Retained parameter space in the (Re,Ar) plane, represented by a blue dashed

rectangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Radial variation of the mean axial velocity at x/Dj = 0.5, for all measured

cases (black), and Laufer’s fully developed pipe flow profile (red). . . . . . . 57

3.5 Laser Induced Fluorescence two levels model. . . . . . . . . . . . . . . . . . . 59

3.6 Cuvette image (left); laminar jet image (center); aligned intensity profiles (right). 63

3.7 Shot-to-shot variations of laser global energy (a) and a typical turbulent jet

image (b). The red and green squares are the potential core and background

references, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.8 Intensity response with and without corrections in the background and in the

potential core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.9 Response to Laser intensity (a) Anisole concentration (b) and camera gain (c). 66

3.10 Typical instantaneous fields at (Re,Ar) = (12000, 0). Velocity vectors are

coarse-grained for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Radial variation of normalized mean axial velocity (a)-(c), radial velocity

(d)-(f) and mass fraction (g)-(i), for different downstream positions x/Dj. . . 70

4.2 Radial variation of normalized turbulence intensity of axial velocity (a)-(c),

radial velocity (d)-(f) and mass fraction (g)-(i), for different downstream

positions x/Dj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Axial variation of the normalized mean axis velocity for some values of (Re,Ar)

(a) and for all measured cases at x/Dj = 5 (b). . . . . . . . . . . . . . . . . . 74

4.4 Axial variation of axial velocity turbulence intensity for some values of (Re,Ar)

(a) and for all measured cases at x/Dj = 5 (b). . . . . . . . . . . . . . . . . . 75

4.5 Axial variation of the mean scalar field for some values of (Re,Ar) (a) and for

all measured cases at x/Dj = 5 (b). . . . . . . . . . . . . . . . . . . . . . . . 76

v



4.6 Axial variation of the scalar turbulence intensity for some values of (Re,Ar)

(a) and for all measured cases at x/Dj = 5 (b). . . . . . . . . . . . . . . . . . 77

4.7 Validity test of expansion (4.1) (a) and pseudo mass fraction turbulence

intensity (b), at x/Dj = 5 for all measured cases. . . . . . . . . . . . . . . . 78

4.8 Radial variation of the turbulence intensity of axial velocity (a)-(b), radial

velocity (c)-(d) and scalar (e)-(f), at different downstream positions x/Dj. . 80

4.9 Axial velocity turbulence intensity for the case (Re,Ar) = (12000, 0). The

colored segments are the regions where structure functions are computed. The

blue line is at the axis and the red line is shifted at a radial position 2r/Dj = 1. 86

4.10 Structure function along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Reynolds numbers in the passive scalar case

(Ar = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Structure functions along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Reynolds numbers at Ar = 10000. . . . . . . . 88

4.12 Structure functions along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Archimedes numbers at Re = 12000. . . . . . 89

4.13 Structure functions in the passive scalar case (Ar = 0) in the shear region

for the temporal terms (a)-(b), nonlinear inter-scale transport (c)-(d) and

inhomogeneous transport (e)-(f), and for various Reynolds numbers. . . . . . 92

4.14 Structure functions with Ar = 10000 in the shear region for the temporal terms

(a)-(b), nonlinear inter-scale transport (c)-(d) and inhomogeneous transport

(e)-(f), and for various Reynolds numbers. . . . . . . . . . . . . . . . . . . . 94

4.15 Structure functions with Re = 12000 in the shear region for the temporal terms

(a)-(b), nonlinear inter-scale transport (c)-(d) and inhomogeneous transport

(e)-(f), and for various Archimedes numbers. . . . . . . . . . . . . . . . . . . 96

4.16 Typical raw PLIF measurement after shot-to-shot correction (a) and same

image with a stricter filter and the additional step of interpolating on the PIV

mesh (b). Here (Re,Ar) = (12000, 0). The two figures share the same color map. 99

vi



4.17 Conditionally average normalized scalar mean (a) and scalar turbulence in-

tensity (b), at x/Dj = 5 in the passive scalar case (Ar = 0), and for different

Reynolds numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.18 Conditionally averaged normalized scalar mean (a) and scalar turbulence

intensity (b), at x/Dj = 5 in the case Ar = 10000, and for different Reynolds

numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.19 Conditionally averaged normalized scalar mean (a) and scalar turbulence

intensity (b), at x/Dj = 5 in the case Re = 12000, and for different Archimedes

numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 A view of the flow simulation, with the computational domain. The iso-surface

represents the Q-criterion at a value of 0.7, and the colors are the scalar values

at the surface. The gray surface is the TNTI. Figure realised by Dr M. Gauding.108

5.2 Initial profiles of velocity and scalar (a) diffusivity (b), for different diffusivity

ratios Rψ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Scalar probability density function over the whole computational domain (a)

and conditional average of the scalar normalized by the center-plane value (b),

for different diffusivity ratios Rψ. . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Temporal center-plane conventional evolution of mean streamwise velocity (a)

and mean scalar (b), for different diffusivity ratios Rψ. . . . . . . . . . . . . 111

5.5 Temporal evolution at the center-plane turbulent kinetic energy (a) and scalar

variance (b), for different diffusivity ratios Rψ. . . . . . . . . . . . . . . . . . 112

5.6 Temporal center-plane conventional evolution of mean diffusivity (a) and

diffusivity turbulence intensity (b), for different diffusivity ratios Rψ. . . . . 113

5.7 Temporal center-plane conventional evolution of velocity gradient norm (a)

and scalar gradient norm (b), for different diffusivity ratios Rψ. The dashed

lines correspond to the time-step considered in Figure 5.8. . . . . . . . . . . 114

5.8 Spatial conventional average of the velocity gradient norm (a) and scalar

gradient norm (b), at t = 25, for different diffusivity ratios Rψ. See Figure 5.7

(b) for legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

vii



5.9 Temporal center-plane conventional evolution of kinetic energy pseudo dissipa-

tion rate (a) and scalar dissipation rate (b), for different scalar ratios R. The

dashed line represents the considered time-step in Figure 5.10. . . . . . . . . 116

5.10 Spatial conventional average of kinetic energy pseudo dissipation rate (a) and

scalar dissipation rate (b), at t = 25. . . . . . . . . . . . . . . . . . . . . . . 116

5.11 Conditional average of mean diffusivity (a) and diffusivity turbulence intensity

(b), at t = 25. Both quantities are suitably normalized. . . . . . . . . . . . . 118

5.12 Conditional average of the velocity gradient norm (a) scalar gradient norm (b),

at t = 25, for different diffusivity ratios Rψ. . . . . . . . . . . . . . . . . . . 119

5.13 Conditional average of pseudo kinetic energy dissipation rate (a) and scalar

dissipation rate (b) at t = 25, and for different diffusivity ratios Rψ. . . . . . 120

6.1 Kelvin-Helmholtz instability sketch. Figure from Davidson (2004). . . . . . . 137

6.2 Axisymmetric instability of a cylindrical vorticity sheet, from Wille (1963). . 142

6.3 Base velocity (a) and pseudo mass fraction (b), for various density ratios Rρ. 146

6.4 Sinuous and varicose instability modes dependence on the real perturbation

wave number, for different number of collocation points. Here, Rρ = 1. We

also reproduced data from Figure 2(a) of Ravier et al. (2006). . . . . . . . . 147

6.5 Eigen-vectors associated with the sinuous mode (a) and the varicose mode (b),

for k = 0.5 and Rρ = 1, for different number of collocation points. . . . . . . 148

6.6 Maximum growth rate of the two most unstable modes with Rρ. We also

reproduced Figure 3(a) from Ravier et al. (2006). . . . . . . . . . . . . . . . 148

6.7 Full spectrum of the generalized Taylor-Goldstein equation, for k = 1, Rρ = 0.3

and Fr = 0, for various Peclet numbers. . . . . . . . . . . . . . . . . . . . . . 149

6.8 Eigen-vectors associated with the sinuous mode of cross-wise velocity v̂ (a)

and pseudo mass fraction ϕ̂ (b), in the case k = 1, Rρ = 0.3 and Fr = 0, for

various Peclet numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.9 Stability diagram of the variable density diffusive Bickley jet. . . . . . . . . . 151

viii



List of Tables

3.1 Definition of various dimensionless numbers pertaining to the jet experiment.

The non-isothermal Craya-Curtet number definition is provided by Equation

(1.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Archimedes number variations of some relevant dimensionless quantities. . . . 54

3.3 Co-flow velocity (m/s) variation with both Reynolds and Archimedes numbers. 54

3.4 Comparison of some properties at 50◦C of seeding substances for PLIF. . . . . 61

4.1 List of the terms that we compute for variable density Kolmogorov and Yaglom

equations, Equation (2.39) and Equation (2.33), respectively . . . . . . . . . . 84

ix



General Introduction

Fluids and their motion surround us, ranging from the atmosphere down to inside our cells.

In very specific configurations, flows can be very organised and are referred to as laminar.

Laminar flows are an exception amongst all flows that take place in our daily life. They are

characterized by very slow motion and generally occur close to solid boundaries, whereas the

vast majority of flows are not very slow and potentially take place far from solid boundaries.

The quantitative criterion that discriminates laminar from non-laminar flows is the

Reynolds number, Re. This number compares momentum to friction, so that, laminar flows

are dominated by friction and present low Reynolds numbers. When the Reynolds number is

large, the fluid motion is more difficult to predict, and the dynamics are more dependent on

the specific flow configuration. These very different dynamics are referred to as regimes, and

dimensionless numbers like the Reynolds number are used to distinguish these regimes.

The Navier-Stokes equations, which result from the application of Newton’s second law

to a fluid, govern fluid motion. Phenomenological observations translate into mathematics,

as the Reynolds number appears explicitly in the equations when suitably normalized. Flow

configurations correspond to specific initial and boundary conditions. Theoretically, the

motion of a continuous medium is governed by an infinity of degrees of freedom, as each

infinitesimal parcel of medium contributes individually to the solution.

The Navier-Stokes equations are nonlinear. Except in some rare cases, fluid flows are not

composed of a combination of simple elementary solutions. Each specific non-laminar flow

is unique. The surprising consequence of nonlinearity when combined to a large number of

degrees of freedom is deterministic chaos. This particularity leads to an even more counter-

intuitive property. In addition to the uniqueness of each non-laminar flow configuration, each

realization of a specific flow is unique.
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When supplementary physical mechanisms contribute to the dynamics of a flow, ad-

ditional dimensionless numbers are to be used. Fluid mechanics deals with the study and

classification of regimes, regarding all the dimensionless numbers that govern a specific flow.

Turbulence

When the Reynolds number is large, flows are chaotic and occur over a wide range of temporal

and spatial scales. Said differently, large Reynolds number flows are composed of a continuous

distribution of energy containing structures of different sizes, which interact nonlinearly and

collectively. The ratio of the size of the largest to smallest structure is a function of the

Reynolds number. These concepts are to be seen only statistically, as chaos prohibits any

local and instantaneous prediction after some time.

Turbulence is the branch of fluid mechanics that studies very large Reynolds number flows.

The chaotic nature of such flows enforces any approach to be statistical, as it is fundamentally

impossible to make any deterministic prediction. Most of the theory of turbulence is due to A.

Kolmogorov in a series of papers in 1941, and is therefore called K41 theory in the literature.

K41 is asymptotically valid for Re → +∞. Experiments have shown that some predictions

of K41 are recovered in this limit, and others are not because of implicit hypotheses in

the Kolmogorov theory. At high Reynolds numbers, the departure due to these implicit

hypotheses is referred to as internal intermittency. When the Reynolds number is not large

enough, the departure from K41 is referred to as finite Reynolds number effects.

Active scalar turbulent flows

Farther from fundamental aspects, turbulent flows are very efficient when it comes to

homogenize a temperature or a chemical species field faster than diffusion alone. This feature

is referred to as turbulent mixing, and temperature or chemical species are scalar fields, which

can either be passive or active. A passive scalar is transported by the velocity field, with

negligible feedback, whereas an active scalar has a substantial contribution to the dynamics.
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For example, any living human being emits 100 Watts of heat. If a person is still, the

temperature field close to its skin is larger by a few degrees than the ambient air. If this

temperature difference is large enough, a plume rises. In this case, the temperature field is

active, because the acceleration that buoyancy force causes on the fluid is non-negligible,

compared to the overall momentum in the flow. Now if this person is walking, the wake

behind the body is mostly caused by the walking speed relative to ambient air. Buoyancy

force is negligible and the temperature field in this case is passive.

Stating if a scalar field is passive or active is a matter of dimensionless numbers. Regarding

the human skin heat release taught experiment, we compared the characteristic momentum

to buoyancy force, which is the Froude number.

The K41 theory hypotheses lead to strong mathematical simplifications, but the predic-

tions of this theory were found to be valid in a hypothetical context. Similarly, turbulent

mixing theory is designed for large Reynolds numbers and mostly for passive scalars. In

real turbulent mixing, the Reynolds number is not necessarily large, and the scalar generally

contributes to the dynamics.

As a turbulent flow with an active scalar evolves, mixing leads to a homogenization of

the scalar which becomes passive. The effect of active scalars on turbulent mixing is therefore

necessarily transitional, and stronger on a low to moderate Reynolds number flow. Studying

these flows intrinsically involves finite Reynolds number effects.

Active scalar fields contribute to the dynamics through density and/or viscosity variations.

The coupling that these two thermo-physical properties offer is different. For example in jets,

when compared to the passive scalar case, an active scalar jet can either transit faster or

slower to a fully turbulent regime.

Jets are generally injected in a quiescent fluid, creating two distinct regions. Inside the

jet, the flow is fully turbulent, whereas the flow is laminar in the outer flow. These two

regions are separated by a thin layer that is referred to as the Turbulent/Non-Turbulent

Interface. This interface is the place where momentum and mass exchanges occur.
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Overview of this work

We assess some aspects of active scalar turbulent flows. Apart from the introduction and

conclusion, the manuscript is organized as follows. A comparison of active and passive

scalar jets, and a Turbulent/Non-Turbulent Interface literature review are presented, in

Chapter 1. We focus on two types of flows. A variable density jet, during its transition

to turbulence, and a variable viscosity and mass diffusivity jet late in its development. In

Chapter 2, the governing equations for incompressible flows with multiple active scalars are

shown. The variable density and variable viscosity and mass diffusivity cases are then derived

and discussed. Each of these specific problems receives some argued simplifications.

The variable density jet case was studied using experimental measurements, from a setup

that we designed and built. In Chapter 3, we expose the details of the experiment. This

setup allows to measure simultaneously the three components of velocity, together with the

scalar field in the very near-field of a variable density round jet. Experimental data is studied

using one-point, two-point, and Turbulent/Non-Turbulent Interface statistics. In Chapter

4, we detail the processing techniques together with the results of these three approaches.

The variable viscosity and mass diffusivity jet is assessed using Direct Numerical Simulations

of temporally evolving plane jet, performed by Dr M.Gauding in our group. Chapter 5 is

dedicated to the comparison between the fully turbulent core and the flow in the vicinity of

the Turbulent/Non-Turbulent Interface.

In this thesis, two main questions are addressed. First, it is known that active scalars

alter the transition to turbulence, by enhancing or diminishing the growth of fluctuations

right after injection. The variable density jet aims at evaluating the effect of density deficit

combined to momentum variations on the growth of turbulence. Second, turbulence is

believed to smooth active scalar effects quickly, so that the scalar becomes passive early after

injection. The variable viscosity and mass diffusivity jet aims at evaluating the decoupling of

the scalar field from the velocity field, in the large time dynamics of the flow.
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Chapter 1

Literature review and motivation

In this chapter, we expose the literature review for our study. First, we describe the effect of

momentum variations at the injection of a passive scalar jet. Then, we assess the effect of

density and viscosity variations on turbulent statistics of round jets. Second, we discuss the

state of the art in momentum and mass exchanges in shear flows, through the Turbulent/Non-

Turbulent Interface. Finally, we conclude this chapter by the overall motivation of this

thesis.

1.1 Active scalar turbulent jets

In this section, we first make a short introduction to the phenomenology of passive scalar

jets. Then, we provide a literature review on the more general problem of jets with variable

thermo-physical properties, that we will refer to as active scalar jets.

1.1.1 Passive scalar jets, Reynolds number effects

Figure 1.1 shows a passive scalar field, in a jet flowing through a circular orifice. Passive

scalar jets are governed by momentum and viscosity. Different flow regimes are governed

by the Reynolds number. The jet development can be separated into multiple regions in

the rescaled stream-wise direction x/Dj, where x is the distance to the orifice and Dj is the

diameter of the orifice, respectively.
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Figure 1.1: A water turbulent jet at Re = 10000. Gray intensity corresponds to jet mass

fraction. Reproduced from Dimotakis et al. (1983).

In the very near field, (x/Dj)1 ≤ 1, the jet is still very similar to the one just before the

injection and consists in an annular shear layer. This shear layer destabilises and grows until

it contaminates the center of the jet. On average, this is represented by a cone that is called

the potential core, where the velocity statistics are very similar to the injected flow field.

If the Reynolds number is larger than a critical value Recrit, the flow dynamics changes

dramatically in the far-field at a distance (x/Dj) ≥ (x/Dj)2 downstream (illustrated in Figure

1.1). The mean velocity in this regime is self-similar1, which means that a single length scale

a radial profile are enough to describe the average dynamics. A separation of variables applies

as follows

〈u〉(x, r) = 〈u〉a(x) h

(
r

δ(x)

)
, (1.1)

1This feature is shared by many free shear flows (Pope, 2000, Chapter 5)
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where 〈u〉a is the streamwise mean velocity at the axis, δ(x) is the characteristic length-scale,

and h is the radial self-similar profile. This simple hypothesis allows a transformation of the

governing set of partial differential equations to ordinary differential equations. Adding the

hypothesis that momentum flux is conserved along the streamwise direction (Chen & Rodi,

1980; Burattini et al., 2005), the mean streamwise velocity, the jet velocity half-width and

the mean passive scalar write as

〈u〉a
uj

= AU

(
x− xU
Dj

)−1

; δ1/2 = Aδ

(
x− xδ
Dj

)
; 〈φ〉a = Aφ

(
x− xφ
Dj

)−1

, (1.2)

where uj is the injection velocity, xU , xδ and xφ are the virtual origins for the velocity, jet

half-velocity width and scalar, respectively. These quantities are not necessarily equal. The

constants AU , Aδ and Aφ, together with the virtual origins, depend on the specific injection

conditions of the jet. Scaling laws (1.2) suggest that at the injection, the average streamwise

velocity and scalar fraction diverge, whereas the jet half-velocity radius vanishes. This is

why this approach is referred to as the point-source approximation, and is only valid in the

far-field.

According to George (1989), the profile h(r/δ(x)) is common to all classical jets that

share the same boundary conditions. Therefore, the equivalence class of these mean profiles

contains very few elements. Nevertheless, according to this author, the decay rate should

be a function of the details of the injection conditions. In other words, Equation (1.2) is

particular for a certain class of round jets, but the function h(r/δ(x)) is common to all free

round jets.

Between the potential core and the self-similar regime, the dynamics follow a transition

between the two asymptotic states described above. There is little hope to find any general

laws that govern this region of the flow, as it is highly unsteady and extremely dependent

on the injection and boundary conditions. The above description is very generic, and the

actual dynamics of particular jet flows can be very different from the above cartoon, even if

Re ≥ Recrit. Except the Reynolds number, five parameters can modify the dynamics of the

jet, especially in the transition region, that is the most sensitive. These are as follows,
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1. The geometry of the orifice. Two jet flows have extensively been studied in the

literature, the round jet issuing from a circular orifice, and the plane jet issuing from a

rectangle with a very large aspect ratio. Other geometries have also been considered

(Aleyasin et al., 2017). Moreover, the pipe thickness has been shown to have an effect

on the transition of round jets (Aihara et al., 1974).

2. The geometry of the discharging environment. Confined jets, that issue close

to solid boundaries, and free jets that issue far from solid boundaries have different

dynamics (Becker et al., 1963). Confinement generally has the effect of damping mean

velocities and therefore enhancing turbulence intensities (Risso & Fabre, 1997).

3. The inlet velocity distribution. The geometry of the pipe before the injection is

a key parameter. A jet issuing with a laminar Poiseuille will transit differently to

turbulence than a fully developed Laufer’s profile. In some experiments, a particular

geometry is manufactured precisely to generate a laminarized top-hat velocity profile

at the injection with a large Reynolds number (Antonia & Zhao, 2001; Xu & Antonia,

2002; Voivenel et al., 2017). The whole routing of the injected fluid is to be considered,

as any bending in the pipe can create very persistent Dean vorticies that can survive

for tens of jet diameters in the pipe (Jimenez-Gonzalez & Brancher, 2017).

4. The surrounding velocity distribution. The presence of a slight co-flow, counter-

flow or cross-flow can highly alter the jet dynamics. If the surrounding fluid is flowing in

the same direction of the jet, the structures that appear in the beginning of the transition

region are advected together with the co-flow, and the transition can take place over

larger downstream distances (Antonia & Bilger, 1973). In the co-flowing configuration,

the external boundary layer on the injection pipe also plays a role Matsumoto et al.

(1973). The counter and cross-flow configurations give rise to different dynamics that

are out of the scope of our study (Yoda & Fiedler, 1996; Kelso et al., 1996).

5. The displacement of the inlet nozzle. Studies shown that a vibration of the nozzle

can influence the transition and induce a very rich phenomenology, like vortex pairing

(Broze & Hussain, 1994; Shaabani-Ardali et al., 2019).
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All these effects influence the value of the critical Reynolds number Recrit, the distance

that separates the different regimes (x/Dj)1 and (x/Dj)2, the self-similarity prefactors and

the virtual origins (Equation (1.2)). Mi et al. (2013) performed an extensive study of the

Reynolds number effect on the dynamical fields in a top-hat free round jet. The definition

of their Reynolds number is Re = ρjujDj/µj, where ρj and µj are the density and dynamic

viscosity of the injected fluid, respectively. These authors studied the low-order statistics of

both large scales and small scales of turbulence. Friehe et al. (1971) derived self-preserving

scaling for the dissipation rate. These authors method is applicable to any second order

quantity. Following this assumption, Mi et al. (2013) also derived scaling laws analogous to

Equation (1.2), for the streamwise turbulence intensity, length scales of turbulent motion.

They found two distinct regimes separated by Recrit = 104, so that the statistics become

independent of the Reynolds number above this value.

Figure 1.2 shows the decay of the streamwise mean velocity and turbulence intensity

at this axis, for given Reynolds numbers. It is clear that there is a slight effect of the

Reynolds number on the decay of the mean streamwise in Fig 1.2(a). The authors reported

a dependence of the self-similarity prefactor AU = 0.028 Re1/2 + 3.54 for Re ≤ 104 and

AU = 5.85 for Re> 104. This correlation indicates that the higher the Reynolds number, the

farther the transition to turbulence. Regarding the streamwise turbulence intensity, a plateau

of 23% is reached quite fast at 10Dj, almost independently of the Reynolds number.
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Figure 1.2: Axial variation of inverse of mean axial velocity (a) and turbulence intensity (b),

for different Reynolds numbers. Figure reproduced from Mi et al. (2013).

9



Unfortunately, Mi et al. (2013) did not report passive scalar measurements, in the same

spirit of their extensive study on the dynamic field. A frequent lack in the literature is

a detailed coupled measurement of both the scalar and the dynamic fields. This feature

is even more important for variable thermo-physical properties flows, because the scalar

actively modifies to the flow dynamics. This lack is generally due to the technical difficulty

of measuring the dynamic and the scalar fields simultaneously. We will discuss in detail this

aspect in Chapter 3.

1.1.2 Active scalar jets, Archimedes number and viscosity ratio

effects

Variable density jets

A variable density jet is a jet that has a different density than the hosting fluid. This density

difference causes an additional forcing on momentum through two contributions. Buoyancy,

which is an algebraic quantity, and changing the local inertia of the fluid, which is generally

referred to as inertial flows. Buoyancy is always a vertical force, together the fact that it

can be negative or positive, gives rise for very rich nonlinear dynamics (Mashayek & Peltier,

2012a,b). We will only focus on vertically oriented jets where the buoyancy is co-linear

with momentum. If buoyancy is in the same (resp opposite) direction, the jet is said to

be positively (negatively) buoyant. The phenomenology of these two configurations is very

different and we will focus on positively buoyant jets.

An additional dimensionless number is required to classify the different dynamics of

variable density jets, compared to constant density jets which are referred to as pure jets.

Multiple choices for this dimensionless number can be made. In the literature, the Froude

number (buoyancy/momentum) is employed to compare momentum to buoyancy. We will

use the Archimedes number defined as Ar = gρj(ρc − ρj)D3
j/µ

2
j , where subscritps j and c

refer to the jet injection and co-flow conditions, respectively.

Variable density turbulent jets are to be seen as the competition of momentum and

buoyancy, with the two limiting cases of the pure jet (momentum only) and pure plume

(buoyancy only). Pure plumes are also self-similar if the initial Archimedes number is above a
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critical value, following different scaling laws than Equation (1.2) (Chen & Rodi, 1980, Table

1). Buoyant jets self-similar dynamics is always separated into three regions. Right after

the self-similar regime is reached ((x/Dj)2 in Figure 1.1), the jet is momentum dominated,

and very far downstream the jet is buoyancy dominated. In between, an intermediate region

between the pure jet and pure plume occurs. Papantoniou & List (1988) (in their Figure 9)

demonstrated the separation between these regimes. The characteristic length that separates

the pure jet from the pure plume regimes is the momentum length (x/Dj)m, which expression

for a round buoyant jet is

(x/Dj)m =
(π

4

)1/4 1√
Fr
, (1.3)

where Fr =
g|ρc−ρj |Dj

ρju2j
is the Froude number. This characteristic length scale measures the

length of the inertial self-preserving regime. The pure jet regime is referred to as inertial

regime, and the pure plume regime is the buoyant regime. In this study, we will focus on the

inertial regime, close enough from the injection.

As explained in Section 1.1.1, pure turbulent jets are very sensitive to external sources

of change in the transition region to turbulence. It is intuitive that density effects add even

more sensitivity to turbulent jets in this transition region. To the list of five factors that

govern the dynamics of pure jets, one has to add density related factors

1. The inlet density distribution and, closely linked, the physical mechanism

responsible for density variations. If density variations are due to temperature

differences and a heat flux is flowing through the pipe, the thermal boundary layer inside

the pipe can alter the dynamics. If density variations are due to the different chemical

species, say perfect gases, then the distribution in a hermetic pipe is homogeneous and

the gradient at the edge of the jet is very sharp. The density gradient relative intensity

and orientation compared to the velocity gradient at the injection affects the transition.

2. The surrounding density distribution. The injection density ratio together with

the density distribution in the surrounding fluid play an important role. Such a situation

is encountered in volcanic eruptions, where the atmospheric density stratification cannot

be neglected. The case of negative buoyancy will not be discussed in this study. See

Hunt & Burridge (2015) for a recent review on this topic.

11



The classification of buoyant turbulent jets are to be done on a two dimensional regime

diagram in the (Re,Ar) plane. The combination of the five effects on the jet transient

dynamics, together with the two density effects should be taken into account. The regime

diagram depends on all the seven parameters (5 for momentum and 2 for density variations).

Buoyancy variations are indeed negligible in the inertial regime, nevertheless, density

variations still have a large impact on the momentum transfer.Figure 1.3 shows the decay

of the dynamical quantities, subject to both Reynolds and Archimedes numbers variations.

The flow is a buoyant round jet in a co-flow of velocity uc, in the inertial and intermediate

regimes. It is clear in Figure 1.3 that the trends are the same as for Figure 1.2, so that

increasing Reynolds numbers pushed the self-similar regime farther downstream, for both

the dynamical quantities. Nevertheless, the magnitude of this variation is much larger in

Amielh et al. (1996) experiment, and this can only be due to density variations. We observe,

in Figure 1.3, a very large effect on the downstream evolution of the dynamical quantities

at the axis, especially for the lightest case. These measurements suggest that the transition

to turbulence is faster when the injected fluid is lighter, and slower when the jet is heavier.

This effect is widely observed in the literature (Keagy & Weller, 1949; Way & Libby, 1971;

Chen & Rodi, 1980; Pitts, 1991a; Panchapakesan & Lumley, 1993b; Chassaing et al., 1994;

Djeridane et al., 1996; ?; Amielh et al., 1996; Djeridane et al., 1996).
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Figure 1.3: Axial variation of the mean axial velocity (a) and axial turbulence intensity (b),

for different couples (Re,Ar). Figure reproduced from Amielh et al. (1996).
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Variable density jets have been shown to never be identically self-similar in the inertial

regime (Chen & Rodi, 1980). Nevertheless, there is empirical evidence (?) that a particular

scaling is suitable to re-scale the mean streamwise velocity decay (Amielh et al., 1996, Figure

3(a)). Figure 1.3(b) shows that the streamwise turbulence intensity reaches the usual plateau

of 25% but at different downstream distances. Notice that the turbulence intensity is taken

as
√
〈u′2i 〉/〈u〉a. This definition does not take into account the density variations. There are,

a priori, multiple possible definitions for turbulent statistics. This aspect will be discussed in

Section 2.2.3.

The density variations are non-linearly coupled with the dynamical field of the flow.

Considering the velocity field alone is therefore insufficient to describe the effect of density

variations on the flow. Figure 1.4 shows the decay of the scalar statistics at the axis for

six different turbulent round jets from Pitts (1991a). All six jets share the same Reynolds

number Re = 3950 (except the heaviest one, for which Re = 7890). The Ar = −240 case is a

pure jet. The trend is the same as for the dynamic fields (Figure 1.3), so that the transition

is faster for the active scalar field when the jet is lighter (Ar > 0), and slower when the jet is

heavier (Ar < 0). The turbulence intensity of the scalar also reaches a plateau at a typical

value of
√
〈φ′2〉a/〈φ〉a ∼ 25%, at a distance that can vary a lot depending on the density

ratio, Figure 1.4(b), similarly to the turbulent turbulence intensity, Figure 1.3(b).
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Figure 1.4: Axial variation of the mean scalar (a) and scalar turbulence intensity (b), for

different Archimedes numbers. Figure reproduced from Pitts (1991a).
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Confinement effects in co-flowing variable density jets

It is difficult to perform laboratory controlled experiments with free jets. It is preferable to

use confined jets. It has been shown that a slight co-flow can isolate a confined jet from the

solid boundary effect. Craya & Curtet (1955) derived a theoretical criterion for a confined

jet with co-flow to evolve like free jets. The criterion is quantified through a dimensionless

number named the Craya-Curtet number. The corresponding criterion has been refined by

Becker et al. (1963), who extensively performed experimental measurements to evaluate the

effect of Craya-Curtet number on the statistics of co-flowing pure jets. These authors showed

that the flow dynamics are indeed a unique function of the Ct number.

Density variations have been taken into account by Steward & Guruz (1977), who

generalized the Craya & Curtet (1955) criterion to variable density jets. The so-called

non-isothermal Craya-Curtet number, noted Ctni, is a parameter that gives a criterion to

compare between confined and free buoyant jets. The analytical expression of Ctni is

Ctni =
uk

(u2
d − 1

2
u2
k)

1/2
, (1.4)

with

uk =
ρjujD

2
j + ρcuc(D

2
c −D2

j )

ρ0D2
c

,

u2
d =

ρju
2
jD

2
j + ρcu

2
c(D

2
c −D2

j )

ρ0D2
c

− 1

2

ρc
ρ0

u2
c ,

ρ0 =
ρjujD

2
j + ρcuc(D

2
c −D2

j )

ujD2
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j )

,

where subscript c indicates the co-flow. Steward & Guruz (1977) found that Ctni = 0.7 is the

suitable value to reproduce free buoyant jet dynamics in a co-flowing confined configuration.

This value for Ctni has been successfully employed by many authors (Steward & Guruz, 1977;

Pitts, 1991a,b; Amielh et al., 1996). Equation (1.4), knowing the confinement diameter and

density Dc and ρc, the jet velocity and density uj and ρj, allows to compute the suitable

co-flow velocity uc for the jet to behave like a free jet. We, as explained in Chapter 3, will also

use the particular value Ctni = 0.7 and employ it as a design criterion for our experimental

setup. The determination of the dimensional variables from the dimensionless numbers is

explained in Appendix A.

14



Variable viscosity jets

Variable viscosity jets have marginally been studied in the literature, when compared to the

variable density jets. This is mainly due to the fact that viscosity is considered to be confined

to the small-scales. The variations of this property were long believed to be insignificant in

the turbulent cascade. Some studies have proved this argument to be wrong, as the viscosity

changes can highly alter the transition of free shear flows. The first variable viscosity study

was performed by Campbell & Turner (1985, 1986b,a). These authors studied the mixing in

magmatic chambers. Here, we only focus on velocity statistics. Talbot (2009) showed the

effect of viscosity variations on the near field statistics of a co-flowing round jet, issuing with

a fully developed turbulent pipe flow velocity profile.
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Figure 1.5: Axis decay of the mean streamwise velocity (a) and streamwise turbulence

intensity (b). See text for dimensionless numbers. Figure reproduced from Talbot (2009).

Figure 1.5 shows the axis evolution of the velocity statistics of Talbot (2009). The

cases are an Air-Air jet, with Re = 5400, and a Propane-Oxidizer (30%O2 + 70%Ne) jet,

with Re = 1.54 104, Ar = −3.5 104 and the dynamic viscosity ratio is Rµ = 0.28. First,

the Reynolds number of the Propane-Oxidizer jet is large. Second, the Archimedes number

is large and negative. As seen in the above sub-sections, both variations should delay the

transition. Nevertheless, it is clear in Figure 1.5 that the transition is much faster in the

Propane-Oxidizer jet, than in the Air-Air jet, in both the average and turbulence intensity of

the streamwise velocity at the axis. This is a clear effect of dynamic viscosity variations. This
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inverse trend has also been observed by Voivenel (2016) in a top-hat velocity profile round

jet. This suggests that the variable viscosity trend is robust to injection conditions changes.

Mini conclusion

In this section, we reviewed some effects of density and viscosity variations on the turbulent

statistics of round jets. We exposed that a lower density or a higher viscosity leads to faster

growth of the turbulent statistics after injection. Surprisingly, the combination of a lighter

and more viscous jet has been shown to delay the growth of these statistics, which is the

opposite trend to each part thermo-physical property alone.

Turbulent statistics at the axis are a robust indication of the transition of the flow, but

a finer study is desired to quantify the active scalar contribution to the dynamics of such

flows. To do so, we use the statistics conditioned on the very thin interface that separates

the jet flow from its surroundings. The next section covers a recent literature review on this

topic, with a focus on active scalar flows.
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1.2 Turbulent/Non-Turbulent Interface

When a fluid is injected into another quiescent irrotational fluid, the flow is separated into

two instinct regions. The injected fluid is turbulent, and is characterized by a distribution

of eddies of various length and velocity scales. As this fluid spreads, vorticity contaminates

the outer fluid. The rotational and irrotational regions are separated by a very thin layer,

through which the vorticity jumps from zero outside to a large amount inside. This surface

that separates the two regions is the so-called Turbulent/Non-Turbulent Interface (TNTI).

The first study on the TNTI was performed by Corrsin & Kistler (1955), who performed

hot-wire measurements in a boundary layer, a plane wake and a round jet. This work is the

foundation of the TNTI knowledge. The recent improvement of experimental techniques and

direct numerical simulations allows to study the TNTI in detail, and the last two decades

have been extremely active in the topic. In this section, we review some results on the TNTI,

and point the role of active scalars in its dynamics.

1.2.1 Turbulent/Non-Turbulent Interface detection methods

The most natural quantity to use to locate the TNTI is the magnitude of the vorticity vector

‖ωk‖ (or enstrophy ω2). Indeed, it is a quantity that is inherent to hydrodynamic turbulence,

and is directly related to the small scales as it is a function of the velocity gradients only.

Nevertheless, the vorticity magnitude is not the only necessary scalar field for a flow to be

turbulent. For this reason, many fields have been employed in the literature as criteria for

discriminating the turbulent from the non-turbulent regions, and locate the TNTI.

The requirement for the choice of the criterion field is rather linked to the particular

purpose of the study than to the crude definition of a turbulent flow. Using particle tracking

velocimetry, Holzner et al. (2007) considered the turbulent kinetic energy as a threshold in

the configuration of a particle that is drawn from the laminar region towards the turbulent

core through the mass entrainment mechanism. In the regard of turbulent mixing, the scalar

field is generally employed as a criterion field. One should keep in mind that the scalar

gradients are not necessarily sharp precisely where the TNTI is located, and this is due to the

diffusivity of the scalar. To justify the use of the scalar field as a criterion, Westerweel et al.
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(2005) applied this approach on a highly non-diffusive scalar (Sc� 1). As we are interested

in turbulent mixing, we will focus on the scalar field criterion, even is our Schmidt number is

not very high. We will justify the use of this method hereinafter.

Consider a blob of tracers, say a small sphere of pure ink, is plunged into a large volume

of clear water in turbulent motion. Figure 1.6 represents a typical transitional distribution of

such a scalar mixing. Initially, the scalar distribution consists in two Dirac distributions2

P(φ) = 1
2
δ(0)+ 1

2
δ(1), representing pure water δ(0) and pure ink δ(1). Because ink is extremely

minoritary compared to clear water, the high peak δ(1) disappears very fast, whereas the low

peak δ(0) is very persistent. As ink is diluted by the turbulent motion of water, the higher

concentration become fewer and fewer occurring in the flow, until they eventually disappear.

The distribution then evolves by converging towards an increasing probability of very dilute

ink. The asymptotic fully mixed state of this system is a single Dirac function on the dilute

and homogeneous scalar value3, say φhom, P = δ(φhom) (not represented on the figure).
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Figure 1.6: Distribution of the scalar concentration of a very dilute contaminant. The arrow

indicates increasing time (data from our group).

2We use the symbol δ for the Dirac operator only on this page.
3This homogeneous scalar value is equal to the ratio of initial volume of the blob and the total volume.

18



In a turbulent jet injected into a quiescent reservoir, the scalar φ represents the dilution

of the jet into the surrounding fluid. If the distribution of this scalar is evaluated over the

whole cross-sectional plane at fixed downstream positions, the distribution evolves similarly

with the downstream distance as the toy picture of Figure 1.6 through time. The jet spreads,

and the scalar decays, globally following the decay rate depicted in Figure 1.4. Small scalar

values therefore represent the radial edge of the jet, an choosing a suitable threshold value

φ0 allows to locate with good accuracy the TNTI. The requirement for a suitable TNTI

detection method is the sensitivity of the interface position to φ0. Prasad & Sreenivasan

(1989) suggested to use the local minimum of the distribution in the neighborhood of the

small scalar values (Figure 1.6), which ensures that this method is suitable. In this approach,

the threshold value is a function of the actual distribution of the scalar field, so that φ0

depends on the downstream position and on the flow configuration.

Figure 1.7 shows a small part of a shear flow, where the color-map represents the scalar

fraction. The application of the Prasad & Sreenivasan (1989) method leads to the blue line

on the Figure, which seems to accurately distinguish between the inner and outer regions of

the flow. The threshold value for this particular frame is φ0 = 0.08.

Figure 1.7: Small part of a turbulent free shear flow. The TNTI is represented by the blue

line (data from our group).

Special care is to be taken regarding the diffusive effects of the scalar on the accuracy of

the TNTI estimation. In order to establish conditions for which the scalar criterion is suitable,

Gampert et al. (2014) performed a quantitative comparison of the interface position with both
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the vorticity and scalar fields as criteria. These authors found that the two interfaces located

in a temporally evolving mixing layer converge one towards another in the limit of vanishing

threshold values. This is an indication that the scalar field can be used as a criterion for flows

with Sc ≥ 1, which generalizes the Westerweel et al. (2005) approach to smaller Schmidt

numbers. Nevertheless, this result has been evaluated with a passive scalar in a particular

flow configuration. As we will be interested in active scalar mixing in a different flow, special

care will be taken to ensure that the scalar criterion and threshold value are correctly chosen.

1.2.2 Turbulent statistics in the TNTI frame of reference

As explained in the previous section, the statistics show a bump through the thickness of

the TNTI. In order to reveal this feature of free shear flows, Bisset et al. (2002) elaborated

a procedure that can be described as follows. First, we choose a criterion and a suitable

threshold value φ0 as described in the previous section. Then, the threshold is applied to the

scalar field, which leads to a scalar φ0 iso-surface. The corresponding step is represented by

the blue line in Figure 1.7. Next, this iso-surface is converted to a single valued function by

taking only the out-most values in the cross-TNTI direction. This new surface is a single

valued function of the two other coordinates of the flow location, zI(x, y). This is represented

by the red line in Figure 1.7. The following step is to perform a change of frame of reference

from (x, y, z) to (x, y, z − zI), the frame that is attached to the TNTI in the cross-wise

direction. In the following, we will call this direction the cross-TNTI direction. We are left

with a local frame of reference that is attached to the TNTI and the crosswise coordinate is

positive towards the inner region, and negative towards the irrotational flow. Finally, the last

step consists in averaging over the x and y directions at fixed cross-TNTI distance z − zI .
This method offers the possibility to evaluate statistical quantities through the thickness of

the TNTI. We will refer at this kind of statistics as conditional statistics, as opposed to the

averages along Cartesian lines of the laboratory frame that are referred to as conventional

statistics.
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Figure 1.8: Conditional and conventional statistics of mean streamwise velocity and scalar

(a) and dissipation rates (b). The conditional statistics are plotted in the TNTI frame (lower

x-axis), and the conventional statistics are plotted in the Cartesian cross-stream coordinate

(upper x-axis). All the statistics are normalized by the core value (data from our group).

Figure 1.8 shows the conventional and conditional statistics of (a) streamwise velocity

and scalar fraction (b) kinetic energy and scalar dissipation rates. The conditional statistics

are represented in the local instantaneous TNTI frame (solid lines), whereas the conventional

statistics are plotted in the frame of the cross-stream direction (dashed lines).

The considered flow here is a temporally evolving plane turbulent jet, transporting a

passive scalar. These statistics are normalized by the fully turbulent center-plane value,

so they converge to 1 deep in the core. There clearly is a strong variation between the

non-turbulent region where the turbulent statistics almost vanish, and the turbulent core

where the statistics reach a fully turbulent value.

Regarding the mean quantities conditional statistics (Figure 1.8(a) solid lines), the

streamwise velocity does not show a sharp increase compared to the scalar fraction. Moreover,

the scalar fraction presents a small overshoot in the inner neighborhood of the TNTI. This is

an indication of the accumulation of the scalar fraction just inside the TNTI. The responsible

mechanism for this accumulation of passive scalar is related to the intense velocity gradients

at the vicinity of the TNTI, which generate large passive scalar gradients in this region.
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The kinetic energy and scalar dissipation rates behave very differently through TNTI

(Figure 1.8(b) solid lines). The former endures a sharp increase and reaches its fully turbulent

value very close in the turbulent region, whereas the latter shows a very large peak, that is

an order of magnitude larger than the fully turbulent value, then quickly decays to this value.

The kinetic energy dissipation rate behavior is related to the absence of turbulent fluctuations

outside the TNTI, whereas the velocity gradients are intense and relatively homogeneous in

the core. On the other hand, the scalar dissipation rate peak is directly related to the intense

generation of passive scalar gradients at the edge of the TNTI. The local sharp increase

of the kinetic energy dissipation rate indicates that the velocity gradients undergo a large

variation, in other words, the shear is very large through the TNTI. The passive scalar is

totally enslaved to this shear increase, and the scalar gradients are therefore very large very

locally, which leads to a peak in the scalar dissipation rate. The dependence of the scalar

field to the velocity gradient field will be assessed in Chapter 5.

In Figure 1.8, we also represent the conventional statistics of the considered quantities,

in the frame of the average TNTI (upper x-axis, dashed lines). It is important to notice that

the conventional averaging approach is unable to reveal the local statistical behavior of the

scalar quantities. The mean scalar fraction and scalar dissipation rate are underestimated

by a factor of 2 and 6 at the TNTI, respectively. The correct estimation of the scalar

dissipation rate is of very high relevance in the turbulent mixing modeling perspective, and a

mis-estimation of a factor 6 on this quantity is, of course, not desired. This large difference

between conditional and conventional statistics has been observed by many authors (Bisset

et al., 2002; Westerweel et al., 2009; Hunger et al., 2016).

This ineffectiveness of the conventional statistics to capture the local behavior of the

statistics at the edge of the jet is related to the arbitrary choice of the frame of coordinates

within the average is performed. The flow does not know or feel the Cartesian coordinates,

this frame is just the most efficient way that we found to solve the governing equations with

these particular boundary conditions. The natural frame of coordinates of the flow is related

to the local velocity and velocity gradients eigen-frame, which is globally better captured

by the conditional statistics approach. In this regard, Elsinga & da Silva (2019) studied

in the alignment of the velocity and passive scalar gradients, in the vicinity of the TNTI.

22



These authors show that there is a strong dependence of the scalar gradient magnitude on

the orientation of the velocity gradient eigen-frame, so that the gradient is mostly aligned

with the most compressive strain direction. This particular alignment plays the role of a

source term for the scalar gradient magnitude.

1.2.3 Effects of active scalars on entrainment in jet flows

Entrainment is the process by which a jet flow encompasses the surrounding fluid towards

the core. It is also the way a jet expands, as the surrounding fluid is entrained, the mass

content of a very thin disk increases along the downstream direction. Using a statistical

approach, Morton et al. (1956) pioneered the field of mass entrainment through a simple

hypothesis. These authors supposed that, in the self-similar regime, the radial entrainment

velocity ue is linearly proportional to a mean streamwise jet velocity ue(x) = γe 〈u〉x(x). This

closure entails the prefactors AU , Aδ and Aφ in Equations (1.2). Ricou & Spalding (1961)

developed a direct measurement technique for the entrainment coefficient. This technique

consists in adjusting the flow injected radially in a porous wall chamber to recover free jet

statistics. The net mass flow rate injected through the wall at each downstream position

is therefore the entrained mass flow rate. This technique was applied to variable density

jets, and the authors showed that a correction similar to Thring & Newby (1953) should be

included, proportionally to (ρj/ρc)
1/2. A light jet entrains more than a heavy jet.

The Morton et al. (1956) closure is very handy, as it requires the determination of a single

constant to adjust all the mean quantities streamwise evolution. Unfortunately, the precise

value of the entrainment coefficient has been found to be very sensitive to the particular

configuration of the considered flow, as a consequence of the strong dependence of the decay

of the self-similar solutions (as discussed in Section 1.1 (George, 1989)). Generally, this

coefficient is γe ∼ 0.08− 0.13.

Entrainment in the Morton et al. (1956) sens is a statistical average of all the mass fluxes

that cross the edge of the jet. Other authors focused on the case where the net average of

these mass fluxes was directed towards the outer region, this is called detrainment. Cotel &

Breidenthal (1997) evaluated the detrainment of a fountain crossing a stable density interface.

The authors identified many regimes, varying the density ratios and the height of the density
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interface compared to the jet diameter (Cotel & Breidenthal, 1997, Figure 4). In particular,

one of the regimes consisted on the regular ejection of heavy jet fluid into the stratified

fluid, which is detrainment. The authors identify the physical mechanism that causes this

effect as the baroclinic torque, which appears as a forcing term in the vorticity transport

equation. Adjusting the height of the interface for a certain density ratio permits a resonating

interaction that forces vorticity away from the core of the fountain.

The above models consider a conical jet, with uniform velocity in it for a point-source

jet. This picture is very simplified and valid only in a statistical sens, far enough downstream.

At a lower level description, the jet exchanges mass with the surrounding fluid through

the TNTI. Many recent studies considered mass fluxes through the TNTI in classical free

shear flows and boundary layers (Mistry et al., 2019, and references therein). Local normal

velocity to the TNTI has a wide probability density function, that is skewed towards the

negative values. Local mass exchanges are therefore an equilibrium between entrainment and

detrainment, where the entrainment is generally dominant. This is in adequacy with the

observed statistical entrainment (Morton et al., 1956). Recently, local mass exchanges at the

TNTI of classical shear flows has been proven to depend on the local curvature of the TNTI

(Wolf et al., 2012, 2013) and on the orientation relative to flow direction (Watanabe et al.,

2014). The local dynamics of the TNTI are closely linked to the vortex stretching mechanism,

that maintains very fine scales at the edge of the flow.

As the topic is still new, very few studies focus on the TNTI mass exchanges in active

scalar turbulence. Regarding Boussinesq stably stratified turbulence, Watanabe et al. (2016b,

2017, 2018) studied mixing layers and Watanabe et al. (2016a) looked at a turbulent wake.

Jahanbakhshi et al. (2015); Jahanbakhshi & Madnia (2016) performed a direct numerical

simulation of a compressible shear layer and van Reeuwijk et al. (2018) studied an inclined

gravity current.

Stably stratified turbulence and gravity currents have very distinct phenomenology

compared to the problem of active scalar mixing, we will therefore focus on the compressible

shear layer from Jahanbakhshi & Madnia (2016), even so our considerations are incompressible.

These authors wrote an enstrophy transport equation and identified two groups of terms. The

inviscid group contains a strain, baroclinic torque and a dilatation term. The viscous group
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contains diffusion, dissipation rate, and shear/density-gradient terms. One of the results of

this study is the variation of the average entrained mass flux at the TNTI with the Mach

number. The authors found that, as the Mach number increases, the global entrainment

mass decreases, and that the contribution from the viscous group decreases whereas the

contribution of the inviscid group increases. This is an indication that at large March number,

the main source of enstrophy at the TNTI are strain and variable density driven, instead of

viscosity or variable viscosity driven.

An analogy with the incompressible variable density mixing is delicate, but one could

expect that the strain and baroclinic terms should be important regarding the average

entrainment. We recall that Cotel & Breidenthal (1997) linked the detrainment effect they

observed to the baroclinic torque. Strain and the baroclinic torque therefore seem to be an

important feature of variable density entrainment.

Voivenel (2016) performed experimental measurements of entrainment characteristics in

a variable viscosity and density jet. The flow configuration is a laminarized top-hat velocity

profile of Propane-Nitrogen jet. The corresponding dimensionless numbers (Re,Ar ,Rµ) are

(2.4 104,−5.7 106, 0.45). The conditions are very similar to Talbot (2009), except the fluids

and the injection velocity profile. The main result of Voivenel (2016) is that entrainment is

enhanced in this variable viscosity density configuration, even in the very near field of the jet.

The average statistics show a much faster transition compared to a Nitrogen-Nitrogen jet.

The entrainment coefficient is evaluated through the statistical approach (Ricou & Spalding,

1961), and at locally at the TNTI. Both approaches reveal that some regions of the flow are

dominated by detrainment instead of entrainment.

The vicinity of the TNTI is considered to be the least favorable location in a turbulent

shear flow for the turbulence classical theory to be valid. As this theory rests on conventionally

averaged statistics, and the TNTI is the most inhomogeneous region of this type of flows,

one could expect that the failure of conventional statistics to capture the kinetic energy and

scalar dissipation rates.
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Mini conclusion

In this section, we reviewed the literature concerning the Turbulent/Non-Turbulent Interface

(TNTI) phenomenology. Averaging along Cartesian lines and planes is convenient in the

post-processing point of view, but imposing the laboratory frame of reference to the statistics

is artificial. The natural frame of reference of the flow is local, and consists in the eigen-frame

of the velocity gradient tensor. In addition, momentum and mass exchanges occur at the edge

of free shear flows. Using the magnitude of the enstrophy to locate the edge of the flow is not

biased, as the flow dictates the location where we should observe it. Evaluating statistics

in the neighborhood of the TNTI is therefore more representative of momentum and mass

exchanges than conventional averaging. The effect of density and viscosity variations has not

been addressed directly in incompressible flows. Our aim is to use this approach to study

mixing at the vicinity of the TNTI, as we will do for a variable density jet in Chapter 4, and

for a variable viscosity and mass diffusivity jet in Chapter 5.
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1.3 Motivation and methodology of the thesis

The main observed effect of active scalars on the dynamics of jets is the dissymmetry of the

transition to turbulence. This feature depends on the density or viscosity ratios between the

jet and the surrounding fluid. Decreasing the density or increasing the viscosity of the jet

accelerates the transition. On the contrary, increasing the density or lowering the viscosity

decelerates the transition. The dynamics of such flows is not trivial, and a separate study is

required to each specific flow configuration in terms of geometry and of the scalar feedback

mechanism.

Figure 1.9 shows a typical scalar field, in the near-field of a round jet. We will focus

on two regions of these flows, using specific methodologies, 1) the fully developed turbulent

core, where we will evaluate one-point and two-point statistics, to quantify the transition

and energy transfers inside the jet and 2) the Turbulent/Non-Turbulent Interface, where we

evaluate momentum and mass exchanges with the surrounding fluid. In this thesis, we assess

the effect of active scalars on the dynamics in two particular flows, a variable density jet and

a variable viscosity and mass diffusivity jet.
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Figure 1.9: Typical scalar field in the very-near field of a turbulent round jet (data from our

measurements, see Chapter 3). The red lines correspond to the TNTI.

27





Chapter 2

Analytical formalism

In this chapter, we introduce the theoretical grounds for studying the flows of interest. Then,

we show the two isothermal particular problems that we will treat, non-Boussinesq variable

density flows, and variable viscosity and mass diffusivity flows. This chapter is limited to the

derivation of local and instantaneous equations, as each flow configuration has a dedicated

chapter. We also derive equations for the second-order velocity and scalar structure functions

in the framework of the fully turbulent two-point approach.

2.1 Governing equations for flows with active scalars

First, we will introduce the general set of equations for our study. We briefly discuss the

significance of these equations and the physical problem that they model. The following

equations are derived from the application of fundamental invariance principles of mass,

momentum and energy, in the context of continuum mechanics. In addition, we use the

low-Mach number approximation. To further simplify, we consider a Newton-Stokes fluid and

neglect the second viscosity1, with Fourier-Fick diffusion laws for heat and mass, respectively.

We do not consider any chemical reaction, or heat release. The problem concerns the mixing

of two different chemical species, initially at different temperatures. The corresponding

equations read (Chassaing et al., 2002),

1See Buresti (2015) for a recent justification of this hypothesis.
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Mass conservation

∂tρ+ ∂k(ρuk) = 0, (2.1)

where ρ and uj are the density and the velocity component in direction xj , respectively. The

Einstein summation convention is applied over repeated indices.

Momentum conservation

∂t(ρui) + ∂k(ρukui) = −∂ip+ ∂k

(
µ

(
∂kui + ∂iuk −

2

3
∂nunδik

))
+ ρgi, (2.2)

where p, µ and gi represent the dynamic pressure, the dynamic viscosity and the component

gravity vector in the xi direction, respectively.

Internal energy conservation

∂t(ρT ) + ∂k(ρukT ) = ∂k(κ ∂kT ), (2.3)

where T and κ represent the temperature and the thermal diffusivity, respectively. The heat

capacity is supposed to be constant.

Chemical species conservation

∂t(ρφ) + ∂k(ρukφ) = ∂k(ρD∂kφ), (2.4)

where φ and D are the mass fraction and the binary mass diffusivity, respectively.

State equations

ρ = f1(T, φ); µ = f2(T, φ); κ = f3(T, φ); D = f4(T, φ), (2.5)

where fi are state equations. Equations (2.1)-(2.4) result from the application of fundamental

physical conservation laws of mass, momentum, internal energy and chemical species, respec-

tively. This set contains 6 equations over 10 scalar fields. In order to close the problem, it is

necessary to add 4 equations (2.5). The equations of state represent the link between the mass

fraction and temperature (φ, T ) together with the thermo-physical properties (µ, ρ,D, κ).
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Figure 2.1: Scheme of the interaction of the different fields in the incompressible binary

mixing case, corresponding to the set of equations (2.1)-(2.5)

It is necessary to distinguish passive from active scalar fields. Passive scalars are

kinematically transported by the velocity field, without any contribution to the dynamics,

whereas active scalars act through a feedback mechanism on the dynamical field. Figure 2.1

is a schematic view of the fields involved in the set of equations (2.1)-(2.5). The highest row

represents the conservation equations of chemical species and internal energy, (2.4) and (2.3),

respectively. The bottom row represents the generalized Navier-Stokes equation (2.2). The

middle row is the thermo-physical properties. The arrows separating the scalar fields from

the thermo-physical properties are the state equations (2.5), whereas the arrows from the

thermo-physical properties to the dynamic fields represent the coupling of the thermo-physical

properties with the Navier-Stokes equations.

The scalar fields that can be qualified of active or passive are the first raw. The

dynamic viscosity µ and density ρ are the only thermo-physical properties that can act on

the momentum equation. These quantities are coupling variables that allow the scalar fields

φ and T to have a feedback mechanism on the dynamics. The mass and heat diffusivities, D
and κ respectively, cannot do be a feedback mechanism, as they do not appear explicitly in

the generalized Navier-Stokes equation (2.2). This precise distinction between the physically

invariant scalar fields and the thermo-physical properties is necessary when treating particular

situations encountered in active scalar flows. Precise examples will be given in Chapter 4 for

variable density flows, and in Chapter 5 for variable viscosity/diffusion flows.
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When writing the transport equations for multi-species flows, some subtle hypotheses

have to be made. In particular, each substance obeys a distinct Navier-Stokes equation.

Multiple methods have been developed for the combination into a single Navier-Stokes

equation. In this thesis, we restrict ourselves to a mass-weighted velocities. For a detailed

discussion of these considerations, see (Williams, 2018, Appendix C), and Guillén-González

et al. (2007) for an alternative formulation.

In Figure 2.1, two sub-problems emerge, isothermal binary chemical species flows, and

non-isothermal single species flows. These two problems seem to be very analogous, but the

diffusive terms of the energy conservation equation (2.3) and the chemical species conservation

equation (2.4) are different. This subtle dissimilarity has large consequences when studying

particular flows (Livescu, 2020). The state equations (2.5) depend on which scalar is active

and on the fluids involved. We will consider only isothermal mixing.

2.2 Non-Boussinesq variable density flows

We write the particular case of the set (2.1)-(2.5) for isothermal, constant viscosity and mass

diffusivity, leaving the density variable. The corresponding dimensionless equations read

∂tρ+ ∂k(ρuk) = 0, (2.6)

∂t(ρui) + ∂k(ρukui) = −∂ip+
1

Re

(
∂2
kui +

1

3
∂2
ikuk

)
+ Fr 2giρ, (2.7)

∂t(ρφ) + ∂k(ρukφ) =
1

Pe
∂k(ρ∂kφ), (2.8)

ρ = f1(φ;Rρ), (2.9)

where Re = ρ2U
∗L∗/µ, Fr =

√
gL∗/U∗, Pe = ρ2U

∗L∗/D, Rρ = ρ1/ρ2, gi ρ1 and ρ2, U
∗

and L∗ are the Reynolds number, the Froude number, the Peclet number, the density ratio,

the projection of the gravitational acceleration orientation vector in i direction, reference

densities, and the reference velocity and length scale, respectively. The equations are made

dimensionless by multiplying the dimensional set by L∗/(ρ2U
∗2). In equations (2.6)-(2.9),

the density ρ is a unique function of the mass fraction φ, through the state equation (2.9).

The density ratio Rρ is a control parameter for this equation so that the density is constant
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when Rρ = 1. The viscous term in equation (2.7) compared to (2.2) by consideration that

the dynamic viscosity is constant.

2.2.1 Large density variations and acoustic waves

In Equations (2.6)-(2.9), the flow is incompressible. Nevertheless, the velocity field is not

necessarily divergence free. In order to clarify this point, we discuss what compressiblity

is, and what are the conditions the velocity field to be divergence free. The Navier-Stokes

equations are non-local. The quantity that allows any variation of the velocity fields to impact

distant regions within a flow is pressure. Lighthill (1952, 1954) introduced the so-called

hydro-acoustic analogy. In these papers, M. J. Lighthill derived a D’Alembert equation for

pressure fluctuations, starting from the fully compressible Navier-Stokes system (Chassaing

et al., 2002). This equation is called the Lighthill equation, and reads

[
1

c2
s

∂2
t − ∂2

k

]
p′ = ∂2

ik(ρuiuk − τik), (2.10)

where p′, cs, ρ and τik are the pressure fluctuation, the speed of sound, a background reference

density and the shear stresses, respectively. Equation (2.10) is a wave equation over the

pressure fluctuation, that is forced by the dynamic fields. This equation demonstrates how

turbulent motion generates noise, in a compressible flow.

The derivation of equation (2.10) consists in the combination of the mass and momentum

conservation equations, together with the assumptions that the density turbulence intensity

is small and that the pressure and density fluctuations are linked through p′ = c2
s ρ
′. This last

assumption gives a physical mechanism to small pressure fluctuations to behave as waves.

In any flow, a displacement at instant t1 of a fluid parcel located at x1 generates acoustic

waves that propagate at the speed of sound cs in all directions. If we consider a distant fluid

parcel located at x2 that is also in motion, it is reached by the waves at a characteristic

time t2 = ||x2 − x1||/cs + t1. In compressible flows, the displacement of the x2 parcel is

non-negligible within the time t2 − t1. The incompressiblity hypothesis consists in neglecting

the displacement of all fluid parcels within the domain compared to the speed of sound, so that

the flow is frozen in time as acoustic waves propagate. The consequence is an instantaneous

adaptation of the whole pressure field to any displacement within the flow.
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Mathematically, starting from the general compressible Navier-Stokes equations Chas-

saing et al. (2002), it is possible to make an asymptotic expansion into the Mach number for

all variables of the equations. The leading order in this parameter decouples the pressure

into two components, the thermodynamic pressure, and the dynamic pressure, respectively.

The corresponding set of equations is the same as for (2.6)-(2.9), with an additional

equation that ensures that the thermodynamic pressure is homogeneous in space (i.e. its

gradient is zero). The pressure that is present in the variable density Navier-Stokes equation

(2.7) is the dynamic pressure. When the low-Mach number assumption applies, we split the

pressure into two components, the thermodynamic pressure, which is a passive scalar field,

and the dynamic pressure field, which is an active scalar field. The dynamic pressure is active

through the variable density Poisson equation (i.e. ∂i (2.7)), that reads

∂2
i p = −∂2

ik(ρukui) +
1

Re
∂i

(
∂2
kui +

1

3
∂2
ikuk

)
+ Fr 2gi∂iρ. (2.11)

If the fluid accelerates in some region of the flow, the pressure drop is transmitted to

the whole domain instantaneously, through equation (2.11), but the induced displacement

will be affected by the surrounding density variations. Density here affects the response of

the fluid to dynamic pressure variations, only. This precise configuration of variable density

incompressible flows is called dynamic incompressiblity (Chassaing et al., 2002).

Compressibility is quantified through the isentropic compressibility coefficient, which is

defined by

βs =

(
∂ρ

∂p

)

S

=
1

c2
s

, (2.12)

where ρ and p denote thermodynamic variables2. The mathematical formulation of this

hypothesis is to assume that sound is infinitely fast, i.e. βs = 0. In the Lighthill equation

(2.10), the assumption of proportionality p′ = c2
s ρ
′ requires the speed of sound to be finite. It

is not possible to derive a Lighthill equation in the dynamic incompressiblity context.

The continuity equation (2.6) is not modified by the incompressiblity hypothesis, and

the velocity field is not divergence free. Nevertheless, we will derive, in the next section,

sufficient conditions for the velocity field to be divergence free in this configuration.

2We do not use a different notation because we will not invoke these variables elsewhere. In the rest of the

document, this notation is used for dynamical fields.
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2.2.2 Pseudo mass fraction and state equation

The temporal terms of equations (2.7) and (2.8) are quadratic, whereas the advection terms

are cubic. In order to reduce the non-linearity of the problem, one can replace the state

equation (2.9) into the chemical species conservation equation (2.8). By use of continuity we

find

f1(φ;Rρ)(∂tφ+ uk∂kφ) =
1

Pe
∂k(f1(φ;Rρ)∂kφ), (2.13)

then, by employing the chain rule on the primitive function of the state equation ϕ(φ,Rρ) =
∫
f1dφ =

∫
ρdφ⇒ ρ∂kφ = ∂kϕ. The chemical species transport equation (2.8) reduces to

∂tϕ+ uk∂kϕ =
1

Pe
∂2
kϕ. (2.14)

The variable ϕ obeys a usual advection-diffusion equation, which is linear. The non-linearity

of the problem, when formulated with ϕ, is therefore reduced. Informations on the mass

fraction as well as on the density fields are contained in ϕ. In addition, we notice that

lim
Rρ→1

ϕ =

∫
lim
Rρ→1

fdφ =

∫
dφ = φ+ C, (2.15)

where C is an integration constant than has to be zero so the passive scalar lower bound is

zero. Because the passive scalar case can be recovered by adjusting the control parameter

Rρ, we call ϕ the pseudo mass fraction.

The pseudo mass fraction is therefore a natural field to consider in the set (2.6)-(2.9).

Notice that we did not specify the analytical expression of the state equation (2.9) to make

this simplification. Introducing ϕ in the whole set of equations leads to

∂kuk =
1

Pe
dφ

(
1

dφϕ

)
∂2
kϕ, (2.16)

dφϕ(∂tui + uk∂kui) = −∂ip+
1

Re

(
∂2
kui +

1

3
∂2
ikuk

)
+ Fr 2gidφϕ, (2.17)

∂tϕ+ uk∂kϕ =
1

Pe
∂2
kϕ, (2.18)

where dφ ≡ d/dφ and dφϕ = ρ by definition. The set of equations (2.16)-(2.18) is closed,

provided the analytical expression of the state equation.
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Equation (2.16) shows the sufficient conditions for the velocity field to be divergence free

in this context. Either the density is constant dφ(1/dφϕ) = 0, or mass diffusivity is neglected

Pe → +∞. We recall that this property is specific to the mass-weighted velocity (Williams,

2018, Appendix C).

The set (2.16)-(2.18) can be further simplified. If the density variations are small, one

can apply the Boussinesq approximation. This approximation consists in considering the

density constant in all terms, except the buoyancy term. This simplification is valid only

for buoyancy-driven flows, as it requires the Froude number to be non-negligible. If mass

diffusivity and buoyancy are neglected (Fr → +∞ and Pe → +∞), the set (2.16)-(2.18)

is analogous to the passive scalar Navier-Stokes equations, with the difference that the

left-hand-side of the momentum conservation equation (2.17) is multiplied by dφϕ.

The specific form of the state equation is a key to the dynamics of the flow, as it controls

the coupling between the pseudo mass fraction and the velocity field. If the thermodynamical

properties of a fluid are constant, the volume occupied by a substance is an extensive property.

Therefore, mixing N species of respective volume Vi and mass mi the share the same pressure

and temperature leads to a final mixture of volume V =
∑N

i=1 Vi and mass m =
∑N

i=1 mi.

Defining the densities as ρi = mi/Vi, one finds

m

ρ
=

N∑

i=1

mi

ρi
, (2.19)

then dividing by m, introducing the mass fractions φi = mi/m and inverting

ρ =

(
N∑

i=1

φi
ρi

)−1

. (2.20)

For a binary mixture, one finds the dimensionless form

ρ =
1

1 + aφ
, (2.21)

where ρ is normalized by ρ2 and a = (ρ2−ρ1)/ρ1 = 1/Rρ−1. This equation has been derived

for perfect gases by Chassaing (1979), and has extensively been used in variable density

mixing literature (Shih et al., 1987; Panchapakesan & Lumley, 1993b; Sandoval, 1995; Cook

& Dimotakis, 2001; Livescu & Ristorcelli, 2007).
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The underlying hypothesis to derive the state equation (2.21) is the additivity of volumes

of the mixed species. For perfect gases, this is the Amagat law of the additivity of partial

volumes (Winterbone & Turan, 2015). This law is the equivalent of the Dalton law for the

additivity of partial pressures. This is valid for ideal non-reacting fluids, that initially share

the same pressure and temperature. For example, in fast combustion processes, heat release

causes a local expansion of the mixture. The volume of the burned gases is larger than the

sum of the fuel and oxidizer initial volumes.

We will consider this state equation in our study, which is representative of a large

variety of non-reacting mixing processes. Using (2.21), the pseudo mass fraction is obtained

by integration

ϕ =
1

a
ln(1 + aφ). (2.22)

Introducing this function in the set (2.16)-(2.18) leads to the set that we will consider in

our study of non-Boussinesq variable density jet flows in Chapter 4

∂kuk = − a

Pe
∂2
kϕ,

e−a ϕ(∂tui + uk∂kui) = −∂ip+
1

Re

(
∂2
kui +

1

3
∂2
ikuk

)
+ Fr 2gie

−a ϕ,

∂tϕ+ uk∂kϕ =
1

Pe
∂2
kϕ.

(2.23)

(2.24)

(2.25)

In literature, it is common to use the change of variables θ = ln ρ for this type of flows

(Sandoval, 1995; Livescu & Ristorcelli, 2007; Rao et al., 2017; Viciconte, 2019). The apparent

equivalence of θ and ϕ is due to the particular analytical expression of the state equation

(2.21), so by considering the logarithm of this equation

ln ρ = − ln(1 + aφ)⇒ θ = −aϕ. (2.26)

Even if θ and ϕ are linearly linked, the mathematical behavior of these fields is different.

The pseudo mass fraction allows a control of the variable density effects through the explicit

parameter a (or Rρ) in the set (2.23)-(2.25). This difference is of primary importance when

comparing passive and active scalar dynamics. As Rρ → 1, θ vanishes, whereas ϕ → φ.

Moreover, if the flow is largely diluted, the pseudo mass fraction dynamically converges

towards mass fraction, limt→∞ ϕ→ φ. Pseudo mass fraction ϕ is valid for any state equation,

and θ is valid only for the particular case of equation (2.21).
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2.2.3 Statistical filtering

The statistical approach of variable density flows is not straightforward. The filtering of

the equations is not unequivocal, as multiple choices are possible to define a decomposition.

In classical Navier-Stokes equations, the only nonlinearity is the quadratic advection term.

When applying the classical Reynolds decomposition ui = 〈ui〉 + u′i, the nonlinear term

generates 6 additional terms in the mean momentum transport equation, which are the

unclosed Reynolds stresses 〈u′ku′i〉.
In the variable density case, the temporal term is quadratic and the convective term is

cubic. A systematic use of the Reynolds decomposition on the all the fields leads to a large

number of additional terms. To this extent, A. Favre developed a mass weighted averaging

that reduces drastically the number of unknown correlations in the variable density closure

problem. This method is suitable for modeling and is widely used in engineering. The

drawback of the Favre decomposition is the difficulty to physically interpret the generated

terms and to make an analogy with the constant density case. A comparison of the Reynolds

and Favre approaches can be found in (Chassaing et al., 2002, chapter 5).

In addition to the choice of the statistical decomposition of the flow field, many choices

can also be made for the kinetic energy. There is, a priori, no physically favored choice for

this definition. Each particular choice generates a different analytical form for the viscous

dissipation rate. Zhao & Aluie (2018) showed that for some definitions of the turbulent kinetic

energy, the viscous dissipation rate is not negligible at large scales, when the density ratio

is large enough. This feature is in contradiction with the inviscid criterion, that postulates

that when the Reynolds number is large enough, large to intermediate scales are inertial. In

particular, these authors showed that the Favre average respects the inviscid criterion.

The Reynolds decomposition quickly generates many terms, even for low-order equations.

Nevertheless, this method has the advantage of strictly generalizing the constant density

equations with additional terms. In the perspective of a quantitative evaluation of the

influence of density variations, we choose to use the Reynolds decomposition.
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2.2.4 Variable density scale-by-scale budget equations

One of the classical turbulence approaches consists in evaluating the non-local energy transfer

through two-point statistics. In this context, we focus on two points that are separated

by a distance r within a turbulent flow, noted as (.)+ and (.)− respectively. The first

transport equations of this type were derived by Kármán & Howard (1938) for the two-point

velocity correlation 〈u+
i u
−
i 〉, and Kolmogorov (1941a,b) for the velocity increment second-order

moment 〈(∆ui)2〉, where ∆(.) = (.)+ − (.)−. The passive scalar equivalent of the Kolmogorov

equation has been derived by Yaglom (1949), for 〈(∆φ)2〉. We will focus the mathematical

aspects of the second-order increment equations, without going into the theoretical aspects

of the Kolmogorov theory on the velocity and passive scalar higher-order increments (see

Nelkin (1994); Frisch (1995); Sreenivasan & Antonia (1997); Warhaft (2000); Danaila et al.

(2012a); Dubrulle (2019) for those aspects).

Kolmogorov and Yaglom original equations present the very handy property of being

scalar equations, containing only a few terms which have a clear physical interpretation. The

simplicity of these equations originates from the hypothesis that, when the Reynolds number

is large enough, the flow is statistically homogeneous and isotropic. This property motivates

the coordinate transformation

Xk =
1

2
(x+

k + x−k ) , rk = x+
k − x−k , (2.27)

and ∂Xk ≡ +∂+
k + ∂−k , ∂rk ≡

1

2
(∂+
k − ∂−k ), (2.28)

where rk is the vector ranging from point (.)− towards point (.)+, and Xk is the position of

the mid-point of this segment. In statistically Homogeneous and Isotropic Turbulence (HIT),

the differential operators ∂rk〈.〉 and ∂Xk〈.〉 respectively reduce to ∂r and 0, when applied to

statistical quantities. Here, r is the the separation distance between the two points.

Invoking HIT reduces the increment dependencies from 7 variables (r+
k , X

−
k , t) to only

2 variables (r, t). In addition, if statistical stationnarity is invoked, the structure function

depends to the separation distance alone.
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Unfortunately, the hypothetical context where the HIT approximation is valid requires

Reynolds numbers that are large. In most turbulent flows, the classical Kolmogorov and

Yaglom equations are not valid in their homogeneous and isotropic form. Many generalizations

of these equations, that account for inhomogeneity and/or anisotropy have been developed

(Hill, 2002; Danaila et al., 2004; Gomes-Fernandes et al., 2015). These equations are frequently

referred to in the literature as generalized Kármán-Howarth-Monin equations. To avoid

confusion, we will speak of generalized Kolmogorov equations for momentum related budgets,

and of generalized Yaglom equations for scalar related budgets.

Analytically, the cost of the departure from HIT can be important, regarding the number

of terms in the scale-by-scale budget equations, or regarding their physical interpretation.

The difficulty in generalizing the Kolmogorov and Yaglom equations is to exploit as much

as possible the statistical symmetries of specific canonical flows (horizontally a channel flow

(Danaila et al., 2001), spherically in rotating turbulence (Campagne et al., 2014), axisymmetry

of a round jet (Danaila et al., 2012b) or decay in streamwise direction of grid turbulence

(Danaila et al., 1999), for example).

Active scalar flows received very little attention in the two-point framework. In addition

to finite Reynolds number effects, active scalars add a source of inhomogeneity and anisotropy.

Kolmogorov equation has been generalized to take into account compressibility (Galtier

& Banerjee, 2011), magnetohydrodynamics (Politano & Pouquet, 1998), and regarding

incompressible mixing, viscosity variations (Danaila et al., 2017), and large density variations

by (Lai et al., 2018). The latter authors used a combined Favre-fluctuation/Reynolds-averaging

technique to define their momentum increment.

To our knowledge, no variable density generalization of the Yaglom equation has been

published in the literature. In this section, we aim at deriving such an equation, and expose

the derivation of a new variable density Kolmogorov equation. We will use either the pseudo

mass fraction or the density, depending on the calculation step. Next, we briefly describe

the analytical derivation of the generalized Kolmogorov and Yaglom equations, for variable

density flows.
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Variable density Yaglom equation

We will formulate the problem using local and instantaneous fields, without any statistical

filtering. The derivation of this equation is straightforward, thanks to the change of variables

introducing the pseudo mass fraction into the dynamic equations. The scalar budget (2.25)

is simply an advection-diffusion equation. We start by writing this equation at two positions

(.)+ and (.)−

Step 0 ∂tϕ
+ + u+

k ∂
+
k ϕ

+ =
1

Pe
∂2+
k ϕ+, (2.29)

∂tϕ
− + u−k ∂

−
k ϕ
− =

1

Pe
∂2−
k ϕ−, (2.30)

We substract one equation from the other in order to use the definition of the increment.

Then we multiply by 2∆ϕ. Also, we split the right-hand-side into a diffusive and a dissipative

term. We find

Step 1 ∂t(∆ϕ)2 +[u+
k ∂

+
k +u−∂−k ](∆ϕ)2 =

1

Pe

(
[∂2+
k +∂2−

k ](∆ϕ)2−(χ+
ϕ +χ−ϕ )

)
, (2.31)

where χ+
ϕ = 2(∂+

k ϕ
+)2 is the pseudo mass fraction dissipation rate at point (.)+. In order to

exploit statistical symmetries, we want to include as many terms as possible inside derivatives.

Also, we make use of the continuity equation, in the pseudo mass fraction form Equation

(2.23). This introduces variable density terms in the equation, as follows

Step 2 ∂t(∆ϕ)2 + ∂+
k [u+

k (∆ϕ)2] + ∂−k [u−k (∆ϕ)2] =
1

Pe

(
[∂2+
k + ∂2−

k ](∆ϕ)2 − (χ+
ϕ + χ−ϕ )

)

− a

Pe
(∆ϕ)2[∂2+

k + ∂2−
k ]∆ϕ, (2.32)

Introducing the scale-space transformation, we find

Step 3

∂t(∆ϕ)2+∂rk [(∆uk)(∆ϕ)2] + ∂Xk

[u+
k + u−k

2
(∆ϕ)2

]
=

1

Pe

(
2[∂2

rk
+

1

4
∂2
Xk

]((∆ϕ)2 − a(∆ϕ)3)
)
− 1

Pe
(1− 3a∆ϕ)(χ+

ϕ + χ−ϕ ), (2.33)

Equation (2.33) is the variable density Yaglom equation. Density variations introduce

additional terms, which are colored in blue. When a→ 0, the classical Yaglom equation for

a passive scalar is recovered, because the pseudo mass fraction tends to the passive mass

fraction ϕ→ φ and the blue terms vanish.
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Variable density Kolmogorov equation

We write the variable density Navier-Stokes equation (2.7) normalized by density, at two

distinct and independent spatial locations in the flow. These two points are considered at the

same instant. Analytically, the independence of the two frames writes ∂+
j (.)− = ∂−j (.)+ = 0.

We also make use of continuity (2.6), in order to get the density in or out the temporal and

convective terms, simultaneously. The variable density Navier-Stokes equations, written at

two separate points (.)+ and (.)−, read

Step 0 ∂tu
+
i + u+

k ∂
+
k u

+
i = − 1

ρ+
∂+
i p

+ +
1

Re

( 1

ρ+
∂2+
k u+

i +
1

3

1

ρ+
∂2+
ik u

+
k

)
+ Fr 2gi (2.34)

∂tu
−
i + u−k ∂

−
k u
−
i = − 1

ρ−
∂−i p

− +
1

Re

( 1

ρ−
∂2−
k u−i +

1

3

1

ρ−
∂2−
ik u

−
k

)
+ Fr 2gi, (2.35)

We substract Equation (2.35) from Equation (2.34), and use the definition of increments

Step 1 ∂t∆ui + [u+
k ∂

+
k + u−k ∂

−
k ]∆ui = −

[ 1

ρ+
∂+
i +

1

ρ−
∂−i

]
∆p+

1

Re

[ 1

ρ+
∂2+
k +

1

ρ−
∂2−
k

]
∆ui

1

3Re

[ 1

ρ+
∂2+
ik +

1

ρ−
∂2−
ik

]
∆uk,

(2.36)

We multiply this equation by the average density (Σρ)/2 = (ρ+ + ρ−)/2. After rearranging,

we find

Step 2
1

2
Σρ ∂t∆ui+

1

2
Σρ[u+

k ∂
+
k + u−k ∂

−
k ]∆ui =

−1

2
[∂+
i + ∂−i ]∆p− 1

2

[
ρ−

ρ+
∂+
i +

ρ+

ρ−
∂−i

]
∆p

1

2Re

(
[∂2+
k + ∂2−

k ]∆ui +

[
ρ−

ρ+
∂2+
k +

ρ+

ρ−
∂2−
k

]
∆ui

)

+
1

6Re

(
[∂2+
ik + ∂2−

ik ] +

[
ρ−

ρ+
∂2+
ik +

ρ+

ρ−
∂2−
ik

])
∆uk, (2.37)

We colored this equation so that, the black terms are present in the classical equation

derivation, and the blue ones are the terms that are due to density variations. At this stage,

if density is set to a constant, all blue terms equate their constant density counterpart 3, and

the we recover the constant density case at this step of calculation.

3The last blue term equates zero if the density is constant, as it is only due to the velocity non zero

divergence.
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As a next step, we multiply the equation by 2∆ui, and apply the continuity at each

point. Notice that ρ−u+
k ∂

+
k ∆ui 6= ∂+

k ρ
−u+

k ∆ui. We also make use of the independence of the

frames of reference. The temporal and convective terms are

Step 2*
1

2
Σρ ∂t(∆ui)

2+
1

2
Σρ [u+

k ∂
+
k + u−k ∂

−
k ](∆ui)

2 =

1

2
∂t[Σρ (∆ui)

2] +
1

2
∂+
k [Σρ u+

k (∆ui)
2] +

1

2
∂−k [Σρ u−k (∆ui)

2]

− 1

2
(∆ui)

2[ρ−∂+
k u

+
k + ρ+∂−k u

−
k ], (2.38)

In order to use the coordinate transformation and the statistical symmetries described in

the previous section, as many terms as possible have to be inside derivatives. Applying the

scale-space coordinate transformation, we find

Step 3

1

2
∂t[Σρ (∆ui)

2] +
1

2
∂rk [Σρ∆uk(∆ui)

2] +
1

4
∂Xk [Σρ Σuk (∆ui)

2] =

−∆ui[∂
+
i + ∂−i ]∆p−∆ui

[
ρ−

ρ+
∂+
i +

ρ+

ρ−
∂−i

]
∆p

1

2Re

(
2[∂2

rk
+

1

4
∂2
Xk

](∆ui)
2 − (ε+ + ε−) + 2∆ui

[
ρ−

ρ+
∂2+
k +

ρ+

ρ−
∂2−
k

]
∆ui

)

−1

2
(∆ui)

2[ρ−∂+
k u

+
k + ρ+∂−k u

−
k ]

+
1

3Re
∆ui

(
[∂2+
ik + ∂2−

ik ] +

[
ρ−

ρ+
∂2+
ik +

ρ+

ρ−
∂2−
ik

])
∆uk, (2.39)

where ε+ = 2(∂+
k u

+
i )2 is the kinetic energy dissipation rate, at point (.)+. Equation (2.39) is

a generalization of inhomogeneous and anisotropic Kolmogorov equation to variable density

flows. The derivation of Equation (2.39) contains subtle nuances compared to the constant

density equation derivation, that we clarify hereinafter.

The variable density Navier-Stokes equation (2.7) is a transport equation for a local

momentum ρui, and is a consequence of conservation of momentum applied to an infinitesimal

fluid parcel. In Step 0, this equation is divided by the density, which changes the physical

quantity that is described by the equation. Equations (2.34)-(2.35) describe the evolution of

an infinitesimal fluid parcel by evaluating its change in volume. This mathematical difference

has implications on the physical interpretation of the subsequent calculation steps.
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Step 1 consists in using the definition of the increment, which involves a non-local

velocity ∆ui. Step 2 dimensionally results in a momentum quantity, but using the average

density leads to a hybrid momentum increment between the points (.)+ and (.)−. This

quantity, when distributed, is ρ+∂tu
+
i − ρ−∂tu−i − ρ+∂tu

−
i + ρ−∂tu

+
i . The motivation to take

such a definition of the increment instead of simply using ∆(ρui) is related to the shape of

the variable density Navier-Stokes equation. The right-hand-side concerns the momentum

transport by the velocity, whereas the left-hand-side pressure and viscous terms contain the

velocity alone. This feature does not appear in the classical Navier-Stokes equations, as all

the terms concern only velocity. If the momentum increment is chosen as ∆(ρui), we have

to make a choice in Step 3 on whether we multiply the whole equation by ∆(ρui) or ∆ui.

The former is useful for the right-hand-side and makes the treatment of the left-hand-side

difficult, and vice-sersa for the latter. Introducing the hybrid momentum Σρ∆ui/2 is the best

compromise that found between these two choices, to define a kinetic energy Σρ (∆ui)
2/2.

Notice that, starting from Step 1, buoyancy does not appear explicitly in the velocity

increment budget. Equation (2.39) is therefore not suitable for buoyancy driven flows, because

the Froude number does not explicitly appear in it4 In that case, if Boussinesq approximation

is not applicable, it is necessary to start from the variable density Navier-Stokes equation,

and consider a kinetic energy of the form (∆(ρui))
2.

Strictly speaking, Equations (2.39) and (2.33) are not generalized Kolmogorov and

Yaglom equations. This reference is only made after the application of statistical homogeneity

and isotropy, and an integration in scale-space over a sphere. This integration leads to the

so-called −4/3 law for both Kolmogorov and Yaglom equations (Frisch, 1995), which we do

not consider here. As explained in the previous section, shear flows have been observed to

break the HIT approximation at low to moderate Reynolds numbers. Density variations

in Equation (2.39) are an additional source of inhomogeneity and anisotropy, so the HIT

approximation is even more restrictive than in the constant density case. For this reason, we

do not apply this hypothesis. In Chapter 4, we will evaluate some terms of both variable

density Kolmogorov and Yaglom equations, using our round jet experimental measurements.

4even if density variations are taken into account in the additional terms.
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2.3 Variable viscosity and mass diffusivity flows

In order to span a wide range of active scalar turbulent flows, we complete our study of

variable density flows by an investigation of variable viscosity and mass diffusivity flows. We

write the set of equations (2.1)-(2.5) for isothermal, constant density ρ∗ and variable kinematic

viscosity ν = µ/ρ∗ and diffusion coefficient D. Dimensionless forms of these equations are

∂kuk = 0, (2.40)

∂tui + uk∂kui = −∂ip+
1

Re
∂k(ν(∂kui + ∂iuk)), (2.41)

∂tφ+ uk∂kφ =
1

Pe
∂k(D∂kφ), (2.42)

ν = f2(φ,Rν) ; D = f4(φ,RD), (2.43)

where Re = U∗L∗/ν∗ and Pe = U∗L∗/D∗ are the Reynolds and Peclet numbers, respectively.

The dimensional Navier-Stokes equation (2.2) is multiplied by L∗/(ρ∗U∗2). The density being

constant, it is included as such in the expression of the kinematic viscosity and pressure,

respectively. The kinematic viscosity (respectively mass diffusivity) is then normalized by a

reference viscosity ν∗ (respectively mass diffusivity D∗), which subsequently appears in the

Reynolds number (respectively Peclet number).

When density is constant in the general set of equations (2.1)-(2.5), the internal energy

(equation (2.3)) and chemical species (equation (2.4)) conservation equations become analo-

gous, as their respective diffusive terms become identical. The set (2.40)-(2.43) is therefore

suitable to represent non-isothermal single species mixing, if the state equations (2.43) are

chosen accordingly. For consistency with the rest of the study, we will keep using the mass

fraction φ as an active scalar in this part.

2.3.1 State equations and retained problem

The state equations (2.43) strongly influence the dynamics of variable viscosity/diffusion

flows. As for variable density flows (Equation (2.9)), these equations allow to control the

coupling between the active scalar and the dynamic fields through the control parameters Rν

and RD. These parameters allow to recover the constant viscosity and mass diffusivity for

Rν = 1 and RD = 1, respectively.
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The influence of the kinematic viscosity on the flow strongly constrasts with that of

mass diffusivity. The viscosity allows an interaction of the scalar φ with the diffusive term of

the Navier-Stokes equation (2.41), whereas mass diffusivity modifies the governing equation

of the scalar itself through an anomalous diffusion. In the case RD 6= 1 and Rν = 1, the

scalar remains passive, independently of the form of the state equation D = f4(φ,RD).

Many state equations for viscosity have been developed in the literature for very different

situations, depending on the type of the chemical substances involved, and on whether the

viscosity changes by mixing or temperature variations (Reid et al., 1987). The wide variety

of laws that have been developed are either fully empirical, semi-analytical or analytical. For

ideal gases, semi-analytical and analytical predictions can be made using the Chapman &

Enskog method (Chapman et al., 1990), whereas for liquids, all state equations are empirical.

In particular, the Wilke formula (Wilke, 1950) is a semi-analytic law that is valid for the

mixing of N perfect gases, taking into account their respective mass fractions. This relation

reads

µ =
N∑

i=1

ciµi∑N
j=1 ckζik

, (2.44)

where

ζik =
(1 + (µi/µk)

1/2(Mk/Mi)
1/4)2

(8(1 +Mi/Mk))1/2
(2.45)

and νi, ci and Mi are the kinematic viscosity, molar fraction and molar mass of species i,

respectively. The Wilke law (2.44) offers a very good precision over a large thermodynamic

variables values.

In a single species, when temperature increases, the dynamic viscosity of liquids decreases

whereas the dynamic viscosity of gases increases. Special care is be to be taken depending on

the chemical species considered. For perfect gases, the usual method is the Sutherland law

(Sutherland, 1893), whereas for liquids, a Nahme-type temperature is generally considered

(Nahme, 1940). The Nahme-type relationship reads

µ = µ0e
−β (T−T∗)

T∗ , (2.46)

where superscript (.)∗ denotes reference quantities and β is a positive dimensionless number

that depends on the liquid chemical composition.
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Mass diffusivity can also vary a lot from one species to the other. When the species

are dilute, the diffusion coefficient is independent of the mass fraction φ. On the contrary,

if the species are very concentrated, anomalous diffusion can be observed, especially in

non-ideal fluids and liquids (Cussler, 2009). Various laws exist for predicting mass diffusivities

of mixtures. In particular, Vignes (1966) empirically suggested that the binary diffusion

coefficient varies exponentially with the mass fraction of non-ideal solutions, with very good

experimental agreement. This relation reads

D = Dφ1D1−φ
2 ⇒ D

D2

= Rφ
D where RD =

D1

D2

. (2.47)

The choice of these state equations (2.43) remains an open degree of freedom for the

problem (2.40)-(2.43), that could consistently affect the dynamics of the flow. As we saw in

section 1.3.3, Wall & Wilson (1996, 1997) showed that the state equation can have a strong

effect on the linear stability properties plane Couette and flat-plate Boundary layers. This

result suggests that there can be a persistent effect of this parameter on the fully nonlinear

dynamics of shear flows.

Regarding anomalous diffusion, Straughan (2007) investigated convection with a tem-

perature dependent heat conductivity. This author found that the linear stability, together

with the weakly nonlinear dynamics of such a flow is very affected by the nonlinearity of the

considered state equation for heat conductivity.

In order to reduce the complexity of the problem, we make the choice of equating both

state equations, with a Vignes like relation (2.47). The final set of equations that we will

consider in Chapter 5 is as follows

∂kuk = 0,

∂tui + uk∂kui = −∂ip+
1

Re
∂k(ψ(∂kui + ∂iuk)),

∂tφ+ uk∂kφ =
1

Pe
∂k(ψ∂kφ),

ψ = Rφ−1
ψ ,

(2.48)

(2.49)

(2.50)

(2.51)

where, for the sake of lightness, ψ represents both the kinematic viscosity and mass diffusivity

and Rψ is the control parameter for the magnitude of ψ variations.
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2.3.2 Scalar gradient magnitude transport equation

In active scalar flows, the velocity field is affected by the scalar through a feedback mechanism.

The velocity and scalar gradients therefore interact nonlinearly. At the vicinity of the TNTI,

this interaction is particularly intense, as we exposed in Section 1.2.2. To this regard, we

derive a transport equation for the magnitude of the scalar gradient vector g2 = g2
n, with

variable mass diffusivity. We start by applying the gradient scalar transport equation with

variable diffusivity (2.51)

∂tgn + uk∂kgn + gk∂nuk =
1

Pe

[
ψ∂2

kgn + ∂nψ∂kgk + ∂n(gk∂kψ)
]

(2.52)

We then perform a scalar product of this equation with 2gn and find

∂tg
2 + uk∂kg

2 + 2gngk∂nuk =
2

Pe

(
ψgn∂

2
kgn + gn∂nψ∂kgk + gn∂n(gk∂kψ)

)
(2.53)

Then, we split the usual diffusive term using the classical diffusion-dissipation form, and

make use of the chain rule on the diffusivity gradients, through ∂kψ = df
dφ
gk = logR ψ gk. We

find after rearranging

∂tg
2

︸︷︷︸
temporal

+ uk∂kg
2

︸ ︷︷ ︸
advection

+ 2gngk∂nuk︸ ︷︷ ︸
strain

=
1

Pe

[
ψ∂2

kg
2

︸ ︷︷ ︸
diffusion

− 2ψ(∂kgn)2

︸ ︷︷ ︸
dissipation

]

+
2

Pe
logRψ

[
g2∂kgk︸ ︷︷ ︸
accretion

+ gk∂kg
2

︸ ︷︷ ︸
drift

+ logR(g2)2

︸ ︷︷ ︸
variable diffusivity dissipation

]
(2.54)

In Equation (2.54), the temporal term represents the local variation of the gradient

magnitude through time, whereas the advection term is a transport of this quantity by the

velocity field. The strain term is the production by which the velocity gradients stretch

the scalar locally, and amplify the scalar gradients. This term is responsible for the large

magnitude of the scalar gradients at the vicinity of the TNTI. The right-hand-side of Equation

(2.54) contains terms that are related only to the diffusivity gradients, on the second line of

this equation. We interpret these terms as follows from left to right, an accretion, because

this term depends on the divergence of the scalar gradient, a drift, because the scalar gradient

transports itself, a variable diffusivity dissipation. We will evaluate these terms in Chapter 5,

in the vicinity of the TNTI in a variable diffusivity jet.
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2.4 Conclusion

The purpose of this chapter was to settle theoretical grounds for the flow configurations of

interest. We described a general set of equations that is valid for the incompressible turbulent

mixing of two active scalars, namely the temperature and mass fraction in a binary substance.

These two active scalars can be coupled with the dynamics through four thermo-physical

properties, under certain conditions that we exposed. We limited ourselves in this study to

flows with a single active scalar, choosing mass fraction. Then, we derived two particular

problems, namely the non-Boussinesq variable density case, and the variable viscosity and

mass diffusivity case.

In the non-Boussinesq variable density case, we discussed the relevance of acoustic waves

and their role when large density variations occur in an incompressible flow. Then, we

derived a natural change of variables for the case of binary chemical species mixing, and

found a simplification for the isochoric configuration. We discussed the statistical averaging

of this type of flows, with the particularity that many arbitrary choices can be made for the

definition of statistical quantities. Finally, we chose a specific form for two-point statistics,

and derived generalizations for the Kolmogorov and Yaglom equations, for flows with large

density variations.

In the variable viscosity and mass diffusivity case, we discussed the wide variety of state

equations that have been developed in the literature for both viscosity and mass diffusivity.

We made a particular choice of equating both these quantities in order to reduce the degrees

of freedom of the problem. Finally, we focused on the scalar gradients, deriving a transport

equation for the magnitude of the mass fraction gradient vector.
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Chapter 3

Experimental measurements in a

variable density round jet

In this chapter, we describe the flow configuration that we experimentally investigated in this

thesis. Then, the complete experimental design is exposed, showing the constraints and their

consequences on the retained setup. The experimental techniques consist in simultaneous

measurements of velocity and scalar fields, in the very-near field of the variable density round

jet. We elaborate a shot-to-shot calibration procedure for the scalar measurements. Finally,

we decribe a validation of these techniques, for different considered parameters.

3.1 Design of the experiment

3.1.1 Objectives and constraints

Fluid constraints

The aim is to measure the velocity and scalar fields in an isothermal variable density round

turbulent jet, surrounded by a co-flow, for which equations (2.23)-(2.25) are valid. We choose

to mix two different chemical substances injected at the same temperature. The constrains

on these substances are

1. Densities as different as possible and dynamic viscosities and mass diffusivities as close

as possible.
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2. Optical measurement techniques are used, therefore the refractive indices of the two

substances have to be very nearly equal. For the same reason, non reactivity to optical

illumination, especially with ultra-violet light is required.

3. Neither toxic nor greenhouse gases should be involved.

4. Low prize and availability in large amounts.

In order to satisfy the requirement of chemical non-reactivity, we focused on rare gases

together with Air. We found that Helium is a good candidate, with a Helium to Air density

ratio of Rρ = 1/7. Another possibility was Xenon, with a density ratio of Rρ = 5, but Xenon

is very hard to be produced, and is therefore ∼ 4000 times more expensive than Helium.

The dynamic viscosity ratio between Helium and Air is Rµ = 0.93. Because Air is not a

pure substance, we ensured that there is no differential diffusion of Helium into the different

components of Air. To do so, we used the Champman-Enskog formula for binary mixing of

perfect gases (Reid et al., 1987). We found that the ratio of the binary diffusion coefficients

of Helium with Oxygen and Helium with Nitrogen is RD = DHe−O2/DHe−N2 = 1.06.

The refractive index of Helium and Air are both close up to 10−4 to 1, which guarantees

the use of optical measurement techniques through a medium composed of a mixture of these

species. The toxicity of Helium is nonexistent when inhaled in small amounts. All these

arguments motivate our choice of employing Helium-Air mixtures injected into Air to perform

our experiments.

Flow constraints

As shown in Chapter 1, a large number of parameters may influence the dynamics of a round

jet. Moreover, most studies in the literature focus on a limited number of points in their flow

parameters. The flow constraints to be achieved are

1. The have a large variability in the Reynolds and Archimedes numbers.

2. To control density variations as precisely as possible.

3. To respect dynamic incompressiblity Ma ≤ 0.2.

4. To avoid confinement effect, by adjusting the co-flow velocity.

5. Getting a good compromise between large and small scales, for the velocity measure-

ments.
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3.1.2 Experimental device

The experimental set-up is sketched in Figure 3.1. The injector is a pipe of Dj = 10 mm inner

diameter and 12 mm outer diameter, which ensures no effect from the nozzle lip boundary

layer. The pipe is 120 Dj long so the velocity profile is a Laufer’s profile in all flow conditions

(Laufer, 1954). The jet pipe is set in a 800 mm duct, where co-flowing air is injected from

below through 18 pipes of 2 inches diameter. Co-flow turbulent fluctuations are damped

upstream the jet nozzle, using iron fillings together with multiple grids.

Figure 3.1: Sketch of the experimental set-up.

The jet is composed of pure air, pure helium, seeded air for velocity measurements and

seeded air for mass fraction measurements. Each of these fluids are separately controlled

through Bronkorst mass flow meters. The Helium mass flow rates span a very wide range, so

we used separate mass flow meters for the Boussinesq and non-Boussinesq regimes, respectively.

The jet content was homogenized in a small cylindrical mixing box. The co-flow mass flow

rate was controlled though a static pressure measurement with a Kimo Instruments CP114

manometer. The flow was regulated by six mass flow meters.
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For the different air components of the jet, we used the air supply network of our

laboratory facility. The jet Helium was derived from bottles. We used a turbine to inject the

experiment room air into the co-flow. The heat losses inside the co-flow routing were so large,

that the turbine Joule effect warmed up the co-flow up to 43◦ at the largest co-flow mass

flow rates. The facility air was generally at a temperature of 17◦. To avoid this temperature

difference, both the jet and the co-flow were heated up at a fixed temperature of 50◦C for all

experimental measurements. The seeded air for mass concentration measurements is highly

flammable (see section 3.2.2). For safety reasons, we choose to warm the pure air part of

the jet before it enters the mixing box, with a suitable temperature threshold at the box

entrance. All jet and co-flow pipes are insulated to avoid thermal losses. Figure 3.2 sketches

the gases routing, together with the location of heating and seeding systems.
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Figure 3.2: Sketch of the gas routing, heating and seeding systems.
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3.1.3 Flow conditions

Table 3.1 summarises the definitions of the dimensionless numbers involved in our study.

The Reynolds number controls momentum, whereas the Archimedes number controls density

variations. The confinement effects are avoided by adjusting the co-flow velocity. In the

literature, it is well known that a confined variable density jet behaves like a free jet when

Ctni ∈ [0.67, 0.8] (Pitts, 1986; Amielh et al., 1996). We choose the value of Ctni = 0.7.

Re Ar At Fr Rρ a Ma

ρj(uj−uc)Dj
µj

gρjD
3
j (ρc−ρj)
µ2j

ρc−ρj
ρc+ρj

gDj(ρc−ρj)
ρj(uj−uc)2

ρj
ρc

ρc−ρj
ρj

uj
a0

Table 3.1: Definition of various dimensionless numbers pertaining to the jet experiment. The

non-isothermal Craya-Curtet number definition is provided by Equation (1.4).
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Figure 3.3: Retained parameter space in the (Re,Ar) plane, represented by a blue dashed

rectangle.

The determination of the dimensional quantities (uj , uc, ρj) for a particular triplet of the

dimensionless numbers (Re,Ar ,Ctni) requires the resolution of a nonlinear set of equations.

We used a Newton-Raphson method to solve this problem (see Appendix A for details on the

resolution).
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The major constraints for the design of our experimental facility are the mass flow rate

of the co-flow, limited to Qc = 300 g/s, and the jet injection Mach number Ma ≤ 0.2. The

dynamic incompressiblity condition is limited by the co-flowing Air, because the speed of

sound in air is lower than in Helium-Air mixtures. Figure 3.3 illustrates iso-lines of Mach

number Ma = 0.2 and co-flow mass flow rate Qc = 300 g/s in a (Re,Ar) diagram, with

Ctni = 0.7. We chose the dashed blue rectangle for our measurement campaigns. The

measurement conditions span from Re = 4000 to 24000, with a step of 4000, and from

Ar = 0 to 20000 with a step of 5000. The choice of the Archimedes number for variable

density effects allows to evaluate all density effects with the single knowledge of this number.

We consider the case Ar = 5000 as a Boussinesq regime, and higher value of this number

as non-Boussinesq regime. Tables 3.2 and 3.3 summarise all the flow conditions that we

considered.

Ar At Rρ a ϕj

0 0 1 0 1

5000 0.08 0.851 0.175 0.9215

10000 0.175 0.702 0.4245 0.8335

15000 0.288 0.553 0.808 0.7329

20000 0.425 0.404 1.475 0.6144

Table 3.2: Archimedes number variations of some relevant dimensionless quantities.

Ar
Re 4000 8000 12000 16000 20000 24000

0 0.0590 0.1181 0.1771 0.2361 0.2951 0.3542

5000 0.0639 0.1279 0.1918 0.2558 0.3197 0.3836

10000 0.0703 0.1407 0.2110 0.2813 0.3516 0.4220

15000 0.0791 0.1582 0.2374 0.3165 0.3956 0.4747

20000 0.0924 0.1847 0.2771 0.3694 0.4618 0.5542

Table 3.3: Co-flow velocity (m/s) variation with both Reynolds and Archimedes numbers.
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3.2 Experimental techniques

With the appearance of lasers in the 1960’s, and the development of computational capabilities

in the late 1990’s, new measurement techniques emerged in fluid mechanics. Regarding our

experiment, we are interested in simultaneous measurements of both velocity and scalar fields.

These fields are non-linearly coupled in two-ways. The velocity fields was measured using

Stereoscopic-Particle Image Velocimetry (stereo-PIV), and the scalar field was measured by

a Planar Laser Induced Fluorescence (PLIF) technique. This section closely followed the

Handbook Tropea & Yarin (2007).

3.2.1 Stereoscopic-Particle Image Velocimetry

3.2.1.1 General principle of PIV

This technique consists of the pattern tracking formed by a large number of particles diven

into a fluid flow. We need these particles to follow as accurately as possible the trajectory

of the fluid that surrounds them. Assuming a spherical shape for the particles and Stokes

regime for the flow in their neighborhood, it is possible to predict the time response of the

particles to acceleration caused by the fluid motion. The characteristic response time-scale

of the particle can than be compared to the smallest fluid time-scale, through the Stokes

number, as follows

St =
1

18

D2
p(ρp − ρ)

µ τη
(3.1)

where τη, µ, ρ, Dp and ρp refer to the Kolmogorov time-scale, the dynamic viscosity and

density of the fluid, and the particle diameter and density, respectively. A small Stokes

number guarantees a very short response time of the particle. For PIV, the usual values for

the Stokes number should be St < 0.1.

The particles can either be liquid or solid. For gas flows, it is customary to employ liquid

droplets, when possible. Assuming that ρp ∼ 103 kg/m3, µ ∼ 10−5 Pa.s and τη ∼ 10−5 s, one

finds that the diameter has to be of the order Dp ∼ 10−6 m. In practice, we generate droplets

of diameter Dp ∼ 5 µm, using an atomizer. Numerous atomized designs have been developed

in the literature.
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The light scattered form spherical objects depends on numerous parameters, including

the ratio of refractive indices of the gas and the object, the angle between the observer and

the incident light, and the Mie parameter M , which is defined as

M =
πDp

λ
(3.2)

where λ is the wavelength of the monochromatic incident light. The scattered light intensity

is a strong function of the Mie parameter M . Particles of the order of the micron in diameter

scatter very little light. In order to observe the droplets in PIV for gaseous flows, it is

necessary to illuminate them using an intense and brief light source. The development of

lasers unlocked this problem. The droplets are generally illuminated using a thin laser sheet,

and observed using a Charge Couple Device (CCD) camera.

PIV uses two images of the distribution of particles within a light sheet that illuminates

a flow. These two images are separated by a controllable time interval. Then, both images

are split on a grid, where each node of the grid is analysed on an interrogation window of a

few pixels wide. An algorithm evaluates the most probable displacement of each node within,

in order to map the pattern from the first frame onto the second. Finally, evaluating the

velocity on a node consists in dividing the most probable displacement by the time interval

between the two images.

3.2.1.2 Application to our experimental device

Particle Image Velocimetry, as described above, allows measuring two components of the

velocity vector, as projected on the laser sheet. This technique is referred to as 2-dimensional

2-component PIV (2D2C). Stereoscopic-Particle Image Velocimetry (2D3C) consists in

measuring the velocity on the laser sheet simultaneously at two angles of view. This

measurement is possible using the Scheimpflug principle. In the stereo-PIV configuration,

the 2D2C procedure is applied on each camera individually. The projection plane of the

resulting vector fields is different. Therefore, it is possible to build the three dimensional

velocity vector by a projection.

In our experiment, we used two LaVision Imager Pro X cameras, each of them is

positioned apart from the Laser sheet at an angle of 45◦. Two object lenses of type Nikkor
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105f/2.8 were used, which allowed to observe a field of view of 60x60 mm2. The field of view

of each camera projected onto the laser sheet results in a trapezium, that we centered at

the injection nozzle. We used Di-Etylhexyl-Sebacate (DEHS) oil as seeding for both jet and

co-flow. This substance is commonly used in non-reactive gaseous flows, as it forms a very

large amount of droplets of Dp ∼ 5 µm. We used an in-house atomizer of the Laskin type

(Echols & Young, 1963). The Laser pulses were generated using a Quantel Twin CFR200

laser, emitting at a wavelength of 532 nm and with an average energy of 150 mJ/shot. The

Laser sheet was created using successively a cylindrical lens with focal length −40mm, then a

spherical lens with focal length of 500 mm. We made sure that the Laser sheet is the thinnest

at the measurement field of view.

As shown in Figure 3.4, we checked that the injection velocity profile is weakly dependent

on the Reynolds and Archimedes numbers. We also plot the classical Laufer’s fully developed

turbulent pipe flow profile. The agreement is good, considering that we start measuring at

x/Dj = 0.51. We consider that the pipe is long enough to neglect the establishment length

effects.
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Figure 3.4: Radial variation of the mean axial velocity at x/Dj = 0.5, for all measured cases

(black), and Laufer’s fully developed pipe flow profile (red).

1Comparing with (Amielh et al., 1996, Figure 7.a), we would need to measure at x/Dj = 0.2 to have a

better collapse.
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3.2.1.3 Stereo-PIV calibration procedure

The acquisition and processing of the data was performed using LaVision Davis 6. The

calibration procedure for stereo-PIV consists in using a pre-designed LaVision 3D-target, that

is placed parallel to the laser sheet. This target contains multiple planes and the markers on

each side are asymmetric. Davis is implemented to distinguish each side of the Laser sheet

through a few reference images. Then we computed, for each camera individually, a mapping

of the field of view onto the measurement plane.

When superimposing the two trapezoids on the measurement field, small misalignments

are very likely to appear. Reference flow images are used to correct these misalignments of the

two cameras through a self-calibration. This step is necessary for the precise re-projection of

the separate 2D2C measurements onto 2D3C fields. Self-calibration was performed after the

measurements, to ensure the faithfulness of the calibration to the measurement conditions.

The time delay between the two laser pulses depends on the injection velocity of the jet

uj and on the size of the interrogation window that we use for processing. In our case, we

mainly used 24× 24 square interrogation windows, and adapted the time delay between the

532nm laser shots to have an average displacement of 4 pixels at the injection.
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3.2.2 Planar Laser Induced Fluorescence

3.2.2.1 General principle of PLIF

Fluorescence consists in the absorption of a photon by a chemical substance, which is quickly

followed by the emission of a photon at a different wavelength. Planar Laser Induced

Fluorescence is fluorescence stimulated by a laser sheet. The classical scenario for PLIF is a

two levels model, which is sketched in Figure 3.5.

B12

1

2

E12
fluorescence

B21 Q21

P2

Figure 3.5: Laser Induced Fluorescence two levels model.

Level 1 is a non-excited state, and level 2 is electronically excited. If the incident

photon has the right energy E12, the 1→ 2 transition has a certain probability of occurrence,

represented by the Einstein coefficient B12. In the excited state, the molecule can be altered,

through ionization or photo-dissociation. Both these events are summed up and represented

by probability P2. The 1→ 2 transition is evaluated by a pure electronic excitation in this

model.

The backwards transition 2→ 1 occurs with a probability B21, and is accompanied by

an energy transfer to vibrational energy levels of the molecule, which explains the Stokes shift

of the emitted photon compared to the absorbed one. A wide shift is particularly desirable

for optical measurements. Fluorescence can generally be inhibited by quenching, that is a

loss of energy through the collision with another molecule and is represented by Q21 in figure

3.5. The collision molecule can be a different chemical species.
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In the limit of low laser intensity, pre-dissociation can be neglected. The fluorescence

intensity is then modeled by

SLIF = cB12E12f(P, T )N(P, T )σ (3.3)

where c, f(P, T ), N(P, T ) and σ are a setup-dependent constant, the Boltzmann distribution

function for the population of level 1, the number density of the molecules in the measurement

region and the quantum yield, respectively. After some hypotheses, it is reasonable to evaluate

the quantum yield as σ = B21

B21+Q21
.

Equation (3.3) shows that the fluorescence response to weak laser light is linear. If the

laser light is intense, pre-dissociation cannot be neglected anymore, and the fluorescence

response is non-linear and reaches a plateau. The laser energy limit between the linear regime

and the plateau depends on many parameters and is to be determined experimentally. In

order to maximize the precision of the concentration field measurement, it is preferable to

maintain all measurements within the linear regime of the PLIF.

The choice of the target molecule is very case-specific, and requires a lot of attention.

Each molecule has its advantages and disadvantages in terms of quantum yield, quenching

with some present molecules in the flow, thermo-physical properties, spectra of absorption

and emission and toxicity.

The advantage of PLIF is its large cross section for many chemical substances, which

yields to large signal-to-noise ratios (SNR). Nevertheless, PLIF does not allow for precise

quantitative measurements, even in non-reacting flows. In many cases, it is necessary to

apply multiple successive corrections to the external variations of the signal.

3.2.2.2 Application to our experimental device, choice of the seeding

In order to select a suitable seeding substance for our PLIF, we compared different seeding

candidates at 50◦C, and summarize the results in table 3.4.
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Table 3.4: Comparison of some properties at 50◦C of seeding substances for PLIF.
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From Table 3.4, we notice that multiple substances are suitable candidates for seeding

our PLIF. As we are interested in variable density flows, it is preferable to modify the jet

density as slightly as possible. The most common substance for non-reacting gaseous flows is

Acetone (Lozano et al., 1992). Acetone and 3-pentanone have very small quantum yields.

Obtaining reasonable SNR with these substances requires large seeding mass flow rates. The

use of Acetone and 3-pentanone in our experiment highly alters the density of the jet, so

these should be avoided in our case. Contrariwise, the quantum yield of Anisole and Toluene

are two orders of magnitude larger. Very low mass flow rates of these substances are required

to obtain very satisfactory SNR. Toluene fluorescence is very sensitive to quenching with

oxygen. This feature might alter the fluorescence signal in our experiment because we use

Helium/Air mixtures injected into co-flowing Air. The oxygen mass fraction slightly varies

between the jet core and the co-flow. Anisole also quenches with oxygen, but to a much

smaller extent. We consequently chose Anisole in our experiment.

The drawback of Anisole is its narrow spectral overlap. Careful optical filtering should

be done to isolate the fluorescence signal from the laser radiation. Pasquier-Guilbert (2004)

developed a liquid optical filter, composed of a volume of 5% toluene and 95% iso-octane.

This liquid filter is a very sharp low-pass filter with a cutoff scale of 270 nm. This method

allows to absorb the laser radiation and collect only the fluorescence signal. Moreover, this

optical filter is also suitable to absorb the Mie scatter UV light from the DEHS droplets that

we simultaneously used for stereo-PIV measurements.

The PLIF signal was collected using a Princeton Instruments PIMAX4 EM intensified

CCD camera, with a Sodern UV 100f/28 objective . The images are 1024× 1024 matrices

encoded in 16 bits. On this camera, the maximum intensification gain is 10000. The behavior

of the sensor can be non-linear at high gains, and the SNR decreases when increasing the

value of the gain. We will discuss this aspect in section 3.2.2.4. The Anisole molecules were

illuminated using a Quantel QSmart 850 laser, emitting at 266nm with a maximum energy

of 100mJ. The UV beam was merged with the PIV 532nm beam using a dichroic lens. The

adjustment of the cylindrical and spherical lenses for the generation of the bi-chromatic

sheet was conditioned by the parallelism of the UV sheet, because the PLIF signal requires a

homogeneous illumination of Anisole.
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3.2.2.3 Shot-to-shot correction

PLIF intensity is strongly dependent on the laser energy variations. We developed a method

to correct both laser inhomogeneities in the intensity profile and global energy differences from

one shot to another. We used the ex-situ method developed by Voivenel (2016) and adapted

it to our experimental conditions. The method consists in splitting the UV laser sheet into a

Rhodamine B cuvette that is observed by another Princeton Instruments PIMAX4 camera.

Rhodamine is diluted into ethanol at a very low mass concentration. This substance has the

property of being fluorescent to 266nm excitation but photolyses after some exposition time.

The cuvette is fed by a re-circulation loop, to renew the Rhodamine inside it constantly.
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Figure 3.6: Cuvette image (left); laminar jet image (center); aligned intensity profiles (right).

Fig 3.6(left) shows a cuvette fluorescence images. The vertical inhomogeneities are

uniquely due to the laser sheet spatial inhomogeneities. We use, at each laser shot individually,
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a cuvette reference image to correct the raw PLIF images. In order to center the cuvette

image on the flow image, we use 100 images of a laminar jet, issuing at Re= 200 (figure

3.6(center)). We wrote a Matlab code that establishes the correspondence between the cuvette

and the laminar jet images. The algorithm consists in a research of the best alignment of

the cuvette image onto the laminar jet image in order to superimpose the intensity profiles

(figure 3.6(right)). The best alignment is detected by a least-mean-squared method. When

the images are centered, it is straightforward to horizontally normalize the turbulent jet PLIF

images.
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Figure 3.7: Shot-to-shot variations of laser global energy (a) and a typical turbulent jet image

(b). The red and green squares are the potential core and background references, respectively.

Figure 3.7(a) shows the evolution of the laser total energy over 100 shots. This variation

is random and internal to the laser. In order to correct this uncertainty, we apply another

correction to the raw images. We observe that the laser energy oscillates around a steady state

intensity level. We use the PLIF images directly, by measuring the intensity of a small square

inside the potential core (red square in figure 3.7(b). In this region, the jet concentration is

always identically 1, so we can take it as a measure of the Anisole full response to the laser

intensity. We also consider a background measurement through as square in the black region

of the PLIF images (green square in figure 3.7(b)).
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Figure 3.8: Intensity response with and without corrections in the background and in the

potential core.

In figure 3.7, we select the green square in the dark to evaluate the background, and the

red square to evaluate the potential core. We plot a histogram of the intensity distribution

in these squares over 100 frames, with and without the shot-to-shot correction. The results

are plotted in figure 3.8. We see a clear improvement of the distribution in the potential

core. The histogram is tighter around its mean value after the shot-to-shot correction, as

the standard deviation is reduced from 5.5% to 3%. This improvement is very local, and we

emphasize that this correction renders the measurements statistically more accurate.

3.2.2.4 Calibration procedure

Anisole quenches with O2. In measurement conditions where the jet contains the largest

mass fraction of Helium (Re,Ar) = (4000, 20000)), the oxygen mass fraction varies through

the flow. Under these conditions, quenching in the jet core is less intense than in the freshly

mixed fluid at the edge of the jet. A dependence of the fluorescence signal to the oxygen

concentration would render the signal nonlinear to Helium concentration, and requires an

additional calibration step. Pasquier-Guilbert (2004) measured the dependence of Anisole

fluorescence signal intensity on oxygen concentration (their Figure 3.43). Using their data,

we find that for the highest Helium concentration in our experiment, oxygen variations are
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small enough. Therefore, this effect can be neglected.

The measured PLIF signal depends on the optical devices used to collect light. The

intensified CCD cameras are sensitive to many parameters, including the amount of light

they receive and the gain used for the intensification. In order to calibrate all sources of error

in our measurements, it is necessary to check the linearity of both fluorescence and CCD

sensor. To do so, we vary three parameters, laser energy, Anisole concentration and camera

gain. Linearity is required to perform the shot-to-shot correction, as most of the arithmetics

are simply based on cross-multiplications. We process by spanning the parameters regularly

using 100 images of a laminar jet.
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Figure 3.9: Response to Laser intensity (a) Anisole concentration (b) and camera gain (c).
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Figure 3.9(a) shows the result of the PLIF linearity calibration to laser energy. In this

case, the gain is fixed at 2000 and the Anisole concentration at 0.02%. We clearly see a

linear dependency of the response to the laser energy. We limited our measurement to 10

mJ/shot, because larger energy caused photo-dissociation on Anisole. Figure 3.9(b) represents

the sensitivity measurement to Anisole mass fraction. In this case, the laser energy is 10

mJ/shot and the gain is 2000. Above 0.03%, the Beer-Lambert effect is non-negligible over

the light-path of the UV laser sheet. At very small Anisole mass fractions, no fluorescence

signal is observed below a concentration of 0.01%. The PLIF signal linearly depends on the

Anisole mass fraction between these limiting values. Figure 3.9(c) shows a weakly nonlinear

dependence of the PLIF response to the gain. In this case, the Anisole concentration is 0.02%

and the laser intensity is 10 mJ/shot.

We chose the parameters 10 mJ/shot for the laser intensity, 0.02% of Anisole mass

concentration and a gain of 2000. During the experiment, we adjusted these parameters

to reach the largest possible fluorescence intensity in the potential core of the jet, without

exceeding 32000 in pixel intensity, because the CCD response is nonlinear above this value.

When the measurement conditions are reached for a linear response, and all corrections

have been applied, the next step consists in converting the PLIF images into concentration

fields. The potential core intensity is allocated to φ = 1, and we select the lower-left corner as a

reference for the background φ = 0. Both the background and the potential core raw camera

responses have wide probability distributions. The corrections tighten the distributions

around precise values that we used for the conversion into a concentration field (figure 3.8).

The final step consisted in interpolating the concentration fields on the PIV grid.
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3.3 Conclusion

In this chapter, we described the design of the experimental facility that allowed us to measure

the velocity and scalar fields in the very near field of a variable density round jet. The velocity

fields were measured using Stereoscopic Particle Image Velocimetry, whereas the for the

scalar field, Planar Laser Induced Fluorescence was used. We described the calibration and

the different correction steps to our techniques. In Figure 3.10, we show a typical resulting

instantaneous velocity and scalar fields. For clarity, we represent a reduced amount of velocity

vectors.
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Figure 3.10: Typical instantaneous fields at (Re,Ar) = (12000, 0). Velocity vectors are

coarse-grained for clarity.
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Chapter 4

Variable density turbulent spatially

evolving round jet

In this chapter, we expose the experimental results obtained in our variable density round jet,

starting with a validation of mean and second-order statistics, with respect to the literature.

Then, we use the one-point statistics approach to explore the (Re,Ar) plane. Motivated by

these observations, we focus then on the two-point statistics approach, and evaluate some

terms in the variable density Kolmogorov and Yaglom equations that we derived in Section

2.2.4. Finally, we compute conditional statistics for different cases.

4.1 Validation of the measurements

In this section, we present some mean and second-order statistics that are usually presented

in the literature. We focus on three cases, (Re,Ar) = (4000, 0), (24000, 0) and (4000, 20000)

for which we evaluate momentum and density variations effects.

Figure 4.1 represents the radial variation of the mean velocity and mass fraction fields,

at different downstream positions, for the three reference cases. These fields are normalized

by their mean value at the axis, whereas the radial distance is normalized by the jet injection

radius Dj/2.

69



(Re,Ar) = (4000, 0) (Re,Ar) = (24000, 0) (Re,Ar) = (4000, 20000)
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Figure 4.1: Radial variation of normalized mean axial velocity (a)-(c), radial velocity (d)-(f) and mass

fraction (g)-(i), for different downstream positions x/Dj.
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In all cases, the scalar mean profiles are sharper than the mean axial velocity at the

position x/Dj = 0.5. This is due to the injection conditions. We recall that the pipe is

thermally insulated, and that the jet fluid is very well mixed before entering the pipe. The

scalar injection profile is therefore a top-hat. On the contrary, the mean velocity follows a

Laufer’s fully developed turbulent pipe flow, as shown in Figure 3.4.

Regarding the mean fields, the transitions occurs as follows. The position of inflectional

points of the axial velocity and scalar profiles indicate the spreading of the jet. If these

inflectional points depart from the radial position 2r/Dj = 1, the jet widens on average. Also,

the mean radial velocity component is negative outside the jet, which is linked to entrainment.

By conservation of mass as the jet spreads, the mean radial velocity inside the core is positive.

The low Reynolds number jet (Re,Ar) = (4000, 0) spreads at x/Dj = 5, as the mean

radial velocity is positive inside the core at that position. Also, the inflectional points of

the mean axial velocity and scalar are at radial position 2r/Dj = 1.2. The left and center

columns of Figure 4.1 depict the effect of increasing the Reynolds number on a passive scalar

jet. The large Reynolds number jet (Re,Ar) = (24000, 0) does not spread yet at x/Dj = 5.

This point is located exactly at 2r/Dj = 1 for the mean axial velocity and scalar profiles.

Also, the mean radial velocity is very small, inside the jet. Nevertheless, the mean axial

velocity and scalar gradients in the radial direction are smoothed. These quantities do not

contaminate the axis of the jet, at x/Dj = 5.

The left and right columns of Figure 4.1 show the effect of lowering the density of the

jet, when the Reynolds number is kept constant at Re = 4000. Density variations cause a

stronger spreading of the jet. The mean radial velocity magnitude inside the jet is very large,

and the inflectional point of the mean axial velocity and scalar profiles already depart from

2r/Dj = 1 at x/Dj = 4.

Regarding the second-order statistics, the transition takes place as follows. Fluctuations

emerge at the mean flow gradients, because of turbulent production. These fluctuations

gain in intensity and spread towards the core and the outer-flow. As the fluctuating field

contaminates the axis, the peak of turbulence intensity around the shear decays. After

transition, the fluctuations profile resembles a Gaussian.
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Figure 4.2 represents the radial variation of the turbulence intensity of the axial velocity,

radial velocity and scalar, at different downstream positions x/Dj, for the three reference

cases. For the low Reynolds number case (Re,Ar) = (4000, 0), the axial velocity and scalar

turbulence intensities are the largest at 2r/Dj = 1, right after the injection. This location

corresponds to the largest mean axial velocity and scalar profiles, which are the inflectional

points in Figures 4.1(a) and (g) respectively. Farther downstream, the peak magnitude

increases, and the fluctuations contaminate the axis of the jet, for both axial velocity and

scalar. The radial velocity shows the same behavior, but is delayed as compared to the axial

velocity. This is due to the orientation of the shear, which is mostly radial right after the

injection.

The turbulence intensities of the axial and radial velocities, together with the scalar

follow the same trends with Reynolds and Archimedes numbers variations as their mean

counterparts, in Figure 4.1. Increasing the Reynolds number reduces the magnitude of the

turbulent fluctuations, whereas increasing the Archimedes number enhances the turbulent

fluctuations.

The radial profiles of the mean and second-order velocity and scalar statistics, shown

in Figures 4.1, and 4.2 are in agreement with the trends that are observed in the literature,

for both scalar and velocity statistics (Pitts, 1991a,b; Panchapakesan & Lumley, 1993a,b;

Amielh et al., 1996; Djeridane et al., 1996; Darisse et al., 2015). We consider this agreement

with literature as a validation of our experimental measurements.
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(Re,Ar) = (4000, 0) (Re,Ar) = (24000, 0) (Re,Ar) = (4000, 20000)
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Figure 4.2: Radial variation of normalized turbulence intensity of axial velocity (a)-(c), radial velocity

(d)-(f) and mass fraction (g)-(i), for different downstream positions x/Dj.
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4.2 One-point statistics

The round jet experiment one-point statistics depend on four parameters, namely the Reynolds

and Archimedes numbers and the streamwise and radial distances, Re, Ar , x/Dj and 2r/Dj

respectively. For clarity, the dependence of statistics on Reynolds and Archimedes numbers

will be represented only in localized regions of the flow. First, the axial dependence of

low-order statistics is shown. Next, we exopose the radial dependence of these statistics and

finally, we discuss our observations with the turbulent mixing literature.

4.2.1 Axial dependence of the conventionally averaged fields

Velocity fields

Figure 4.3(a) shows the mean axial velocity along the axis. We see that in increase of the

Reynolds number lengthens the mean potential core, whereas an increase in the Archimedes

number shortens this region. This observation is in agreement with the results of Pitts

(1991a) for density, and Pitts (1991b) for momentum, respectively. The self-similar decay in

the case (Re,Ar) = (4000, 20000) is already reached at x/Dj = 4 (equation (1.2)). Amielh

et al. (1996) observed the same feature in their pure Helium jet ((Re,Ar) = (7000, 76000)).
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To unravel the competition between momentum and density variations in the transition

region of the jet, we represent in Figure 4.3(b) the normalized axis velocity at x/Dj = 5,

for all measured cases. We notice a dissymmetry of the diagram. In the Boussinesq regime

(Ar < 5000), the mean axis velocity is more sensitive to Reynolds number variations than to

Archimedes number variations, when Re ≥ 16000. Whereas in the non-Boussinesq regime

(Ar ≥ 5000), this feature is verified for Re ≤ 12000. For all Ar , this quantity is independent

of the Reynolds number when Re ≥ 16000.

Next, Figure 4.4(a) shows the turbulence intensity of the axial velocity along the axis.

This quantity is known to reach a plateau after some distance downstream, but the value

of this plateau is subject to debate in the literature. As discussed by Amielh et al. (1996),

this quantity is very sensitive to the injection conditions and to confinement effects. We

consider the recent measurement value of 23% from Mi et al. (2013), which we represent by a

dashed line in Figure 4.4(a). Similar to the mean axial velocity, a higher Reynolds number

lengthens the potential core, and a higher Archimedes number shortens this region. In the

case (Re,Ar) = (4000, 20000), the plateau is already reached at x/Dj = 5. The injection

turbulence intensity is slightly different from one case to another. We find that overall, the

quantity
√
〈u′2〉a/〈u〉a at x/Dj = 0.5 is always between 3% and 6% (figure not shown).
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Figure 4.4: Axial variation of axial velocity turbulence intensity for some values of (Re,Ar)

(a) and for all measured cases at x/Dj = 5 (b).
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Figure 4.4(b) represents the axial turbulence intensity at the axis, at x/Dj = 5 and for

all measured cases. We find that, similarly to the mean axis velocity (Figure 4.3(b)), the axial

turbulence intensity shows two distinct regimes, separated by Re = 12000 in the Boussinesq

regime and Re = 8000 in the non-Boussinesq regime, respectively.

Scalar fields

Figure 4.5(a) depicts the mean scalar variation along the axis, for our three reference cases. We

observe the same trend as for velocity fields, so that an increase in the Reynolds number delays

the transition, whereas an increase in Archimedes number rushes the transition. The self-

similar scaling (x/Dj)
−1 is already reached at x/Dj = 3.5 in the case (Re,Ar) = (4000, 20000).

The decay of the mean scalar occurs earlier than for the mean axial velocity for this case

(Figure 4.3(a)). The faster decay of the scalar is in agreement with the results of Djeridane et al.

(1996), in the same measurement campaign as Amielh et al. (1996) ((Re,Ar) = (7000, 76000)).
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Figure 4.5: Axial variation of the mean scalar field for some values of (Re,Ar) (a) and for all

measured cases at x/Dj = 5 (b).

Figure 4.5(b) shows the dependence of the mean scalar at the axis at the position

x/Dj = 5, for all measured cases. We distinguish two regions. In the Boussinesq regime

(Ar < 5000), the mean axis scalar is weakly dependent on the Reynolds number. In the

non-Boussinesq regime (Ar ≥ 5000), this quantity is independent of the Reynolds number

when Re ≥ 16000, as the iso-values become parallel to the Reynolds number axis.
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Figure 4.6(a) shows the scalar turbulence intensity variation along the axis, for our three

particular cases. This quantity is known for reaching a plateau after some distance. Similarly

to the velocity turbulence intensity, there is no agreement in the literature on the magnitude

of this plateau (see Mi et al. (2001) for exhaustive recent discussion). We choose the reference

value of 23% from Pitts (1991a) as a reference for the establishment of the second-order

plateau, which is represented by the dashed line in Figure 4.6(a). We see that, the plateau is

already reached in the variable density case (Re,Ar) = (4000, 20000), whereas the two other

cases are still in the transitional regime.
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Figure 4.6: Axial variation of the scalar turbulence intensity for some values of (Re,Ar) (a)

and for all measured cases at x/Dj = 5 (b).

Figure 4.6(b) shows the axis turbulence intensity of the scalar at x/Dj = 5 for all

measured cases. We observe a strong nonlinear dependence of this quantity on the Reynolds

and Archimedes numbers, so that we distinguish three regimes. First, the Boussinesq regime,

left to the blue dashed line, is characterized by a gradual transition when increasing the

Reynolds numbers from a regime where density variations do not influence the length of the

potential core, to a regime that is independent of the Reynolds number above Re = 20000.

Graphically, the iso-values of scalar turbulence intensity are horizontal at small Reynolds

numbers, and gradually become vertical at large Reynolds numbers.
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Second, in the non-Boussinesq regime, right to the blue dashed line, we see two very

distinct regimes that are separated by the red dashed line. Between the blue and red dashed

lines, we find a regime that is independent of the density variations, and above the red dashed

line, a regime that is independent of the Reynolds number. The red dashed line is defined

by Recrit = 24000 − 4
3
(Ar − 5000). The transition through this line, from a Archimedes

number independent to a Reynolds number independent regime is abrupt, as compared to

the Boussinesq regime transition. We also notice a local maximum to the scalar turbulence

intensity at the axis for the two points (Re,Ar) = (4000, 10000) and (Re,Ar) = (4000, 15000),

where the asymptotic value of 23% is reached already at x/Dj = 5.

The pseudo mass fraction ϕ is naturally suited for the scalar scale-by-scale study (see

Section 2.2.4). Performing a Taylor expansion of the state Equation (2.22), the pseudo mass

fraction second-order moment is

〈ϕ′2〉 = 〈ρ〉2〈φ′2〉+ o(〈φ′4〉). (4.1)

This result is asymptotically true when φ′ is small in the region where the average is

performed. Figure 4.7(a), shows a test of the asymptotic expansion (4.1) at x/Dj = 5, for all

measured cases. We discuss this figure hereinafter.
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Figure 4.7: Validity test of expansion (4.1) (a) and pseudo mass fraction turbulence intensity

(b), at x/Dj = 5 for all measured cases.
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We find that at this position, the first order approximation of Equation (4.1) is valid

only in the Boussinesq regime. Along the Ar = 0 axis, the expansion is identically verified,

because 〈ρ〉 = 1 and ϕ = φ locally and instantaneously. As we depart from this axis, the

approximation is less and less valid. This departure is caused by factors. The departure

through vertical iso-lines, when Re ≥ 8000, is due to the nonlinearity of the state equation

(2.22), that gives more and more weight to the mass fraction fluctuations. In addition, when

Re < 8000, the departure is enhanced by the accelerated transition to turbulence of the mass

fraction field.

The nonlinear dependence of 〈ϕ′2〉 on the Reynolds and Archimedes numbers motivates us

to evaluate this quantity as a distinct field, for later comparison with the two-point statistics.

Figure 4.7(b) shows the turbulence intensity of the pseudo mass fraction at x/Dj = 5 for all

measured cases. This quantity does not endure an abrupt transitions like the mass fraction

variance 〈φ′2〉a (Figure 4.6(b)). This diagram suggests that the pseudo mass fraction is more

robust to density changes, as the injection density inhomogeneity is taken into account in its

mathematical definition through the state Equation (2.22).

4.2.2 Radial variation of the conventionally averaged fields

We found, in the (Re,Ar) plane, multiple regimes regarding the scalar mixing. In this part,

we focus on two lines within this parameter space, which are defined by Ar = 10000 and

Re = 12000, to evaluate the effect of these regimes on the radial profiles of the second-order

statistics.

In Figure 4.8, the turbulence intensity of the velocity components and the scalar at

different downstream positions x/Dj, along the two lines in the (Re,Ar) plane that we

described. The axis bifurcation is also recovered in the radial profiles. In the left column of

Figure 4.8, we see that the axial velocity turbulence intensity decreases from a large magnitude

to two distinct curves, depending on the Reynolds number. If Re ≤ 12000, the turbulence

intensity profile reaches the axis value of 14%, whereas this curve is slightly smaller to 12.5%

when Re ≥ 16000. We also notice this effect on the radial velocity turbulence intensity.

This result is in agreement with the independence of the velocity turbulence intensity when

Re ≥ 20000 in Figure 4.4(b).
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and scalar (e)-(f), at different downstream positions x/Dj.
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Still on the left column of Figure 4.8, the scalar turbulence intensity behaves differently

than the velocity turbulence intensity. We find that above Re ≥ 16000, all the profiles

collapse to a single curve, and therefore become independent of the Reynolds number. This

result is in agreement with the two non-Boussinesq regimes that we found, as shown in Figure

4.6(b). The turbulence intensity peaks of all three turbulence intensities considered here is

unaffected by the Reynolds number variations.

Let us now focus on the Archimedes number variation effects on the radial turbulence

intensities profiles. The right column in Figure 4.8 represents these profiles at different

downstream positions x/Dj , for Re = 12000. We find that the velocity turbulence intensities

stagger around three curves, depending on the Archimedes number. The weak dependence on

this number that we found on the axis value of this quantity in Figure 4.4(b) is also present

for the corresponding radial profiles. On the contrary, the scalar turbulence intensity does

not follow the same trend. Increasing the Archimedes number increases the peak value of the

scalar turbulence intensity, and shifts the profile towards the core of the jet. Therefore, the

scalar turbulence intensity is more sensitive to density variations than the velocity turbulence

intensity radial profile.
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4.2.3 Discussion

In this section, we collected many results regarding one-point statistics of the near field or

our variable density round jet. The main results from this part can be summarized as follows

1. The mean axial velocity at x/Dj = 5 is independent of the Reynolds number above

Re ≥ 20000. Except the mean axial velocity, all the other statistics at x/Dj are

independent of the Reynolds number when Re ≥ 16000.

2. The scalar turbulence intensity has two non-Boussinesq regimes (Ar ≥ 5000), separated

by the curve Recrit = 24000− 4
3
(Ar − 5000). When the Reynolds is below this critical

value, the near field mixing along the axis depends only on the momentum, whereas

when the Reynolds number is above this line, mixing in this region depends only on

density variations. This effect is also observed on radial profiles of the scalar turbulence

intensity in the Reynolds-independent regime. In the Archimedes-independent regime,

the radial profiles variation is not as conclusive.

Regarding the literature on mixing, Dimotakis (2000) states that mixing is most efficient

when the Reynolds number is larger than a value comprised between 10000 and 20000, and

refers to this feature as the mixing transition. This author observes this transition in many

different flows, including jets (Dimotakis et al., 1983). In the variable density configuration,

most of the attention has been dedicated to the Rayleigh-Taylor Instability, stably stratified

flows and Langmuir circulation (Dimotakis, 2005). To our knowledge, no study considered

the mixing transition in non-Boussinesq variable density jets.

The mixing transition is recognizable by the very weak dependence of statistics on

Reynolds number variations. We found that except the mean velocity at the axis, all the

statistics become independent of the Reynolds number above Recrit = 16000 independently

of the Archimedes number. The different regimes that we observe in the (Re,Ar) plane are

not necessarily related to the mixing transition. In order to confirm that our observations are

indeed related to this feature, we need to access the smallest scales of the flow and observe

that the scalar variance cascades faster towards the Batchelor length-scale. Unfortunately

cannot perform such measurements with the current experimental setup in our round jet.
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Our results suggest an enhancement of the transition to turbulence, especially in the non-

Boussinesq regime. The scalar second-order moment is independent of density variations at

x/Dj = 5, when the Reynolds number is below the critical curve Recrit = 24000− 4
3
(Ar−5000).

On the other hand, this quantity is independent of the Reynolds number above this curve.

We conclude that the scalar variance, and therefore the mixing, undergoes a bifurcation when

crossing this critical line in the (Re,Ar) plane. Crossing this line from below, the mixing

bifurcates from a density robust regime towards a momentum robust regime. We recall that

in our configuration, the flow is inertial, as the momentum length (x/Dj)m is always larger

than 24. Our observation is not a buoyancy effect. Also, we limited our measurements to

a downstream distance of x/Dj = 5. The results that we obtain concern the initiation of

mixing, rather than homogenisation at the molecular level, following the crude definition of

mixing (Dimotakis, 2000).

Nevertheless, we aim at giving as much information as possible about mixing. In the

next section, we assess the problem of two-point statistics in the very near field of our variable

density round jet experiment.
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4.3 Two-point statistics

One-point statistics are useful for validation and as a large-scale study of turbulence. In

a more elaborate approach, we assess the variable density jet in scale space. To do so, we

will evaluate some terms of the variable density Kolmogorov and Yaglom equations, that we

derived in Section 2.2.4. First, we describe the numerical method we used to compute the

two-point statistics. Second, we evaluate structure functions along the axis of the jet. Then,

we compute these quantities in the shear region, along a line that is parallel to the axis and

shifted in the radial direction. Finally, we discuss our observations and compare them to the

one-point statistics results.

4.3.1 Structure functions post-processing method

Two-point statistics that we evaluate in this section are the temporal, inter-scale and

inhomogeneous transport terms for both the variable density Kolmogorov and Yaglom

equations. Table 4.1 summarises the these quantities. By virtue of the statistical axisymmetry

of the flow, these quantities are functions of the five coordinates (rr, rx, Xr, Xx, t), where r

and X indicate the scale and space coordinates, whereas subscritps (.)r and (.)x indicate

the radial and streamwise directions, respectively. Hereinafter, we discuss these terms, and

describe the numerical method we used for their evaluation.

Temporal Inter-scale transport Inhomogeneous transport

Yaglom 〈(∆ϕ′)2〉 〈∆u′(∆ϕ′)2〉 〈Σu′ (∆ϕ′)2〉/2
Kolmogorov 〈Σρ (∆u′i)

2〉/2 〈Σρ∆u′(∆u′i)
2〉/2 〈Σρ Σu′(∆u′i)

2〉/4

Table 4.1: List of the terms that we compute for variable density Kolmogorov and Yaglom

equations, Equation (2.39) and Equation (2.33), respectively

In literature, inter-scale transport terms are generally split into a transport by the mean

velocity field ∆〈uj〉〈(∆u′i)2〉, and a transport due to the velocity fluctuations 〈∆u′j(∆u′i)2〉
(Gomes-Fernandes et al., 2015; Lai et al., 2018). The former is referred to as linear inter-scale

transport, and is seen as a production term. The latter term is referred to as nonlinear
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inter-scale transport. The same decomposition can also be applied to the inhomogeneous

transport terms. In this thesis, we focus on nonlinear transport terms, as the increments in

Table 4.1 are all computed using fluctuations.

Pseudo mass fraction ϕ causes a strong analytical simplification (Equation (2.25)). The

computation of the variable density Yaglom equation terms is straightforward, and similar to

the terms in the constant density case (Danaila et al., 1999). The measurement techniques

we used are stereo-PIV for the velocity field, simultaneously coupled with PLIF for the scalar

field (see Chapter 3). The shot-to-shot correction of the laser energy heterogeneity is not

perfect, and a slight mistake in this correction can highly alter the resulting scalar structure

functions. In particular, the laser energy inhomogeneity mostly influences the large scales

of the scalar field. This feature motivated us to evaluate the scalar increments using the

fluctuation of the pseudo mass fraction ϕ′.

On the other hand, the variable density Navier-Stokes equations (2.7) have a higher

order of nonlinearity than in the constant density case. This feature leads to third-order and

fourth-order structure functions, in the temporal and non-local transport terms of the variable

density Kolmogorov equation (2.39), respectively. Numerically, the evaluation of higher-order

statistical quantities is more difficult, especially for odd orders. We made sure that the

statistics are converged, within the available amount of data we measured. We evaluate the

kinetic energy increment using the local instantaneous density, and the velocity fluctuations

Σρ(∆u′i)
2/2. The Reynolds decomposition of density leads to a larger number of terms, which

are related to different physical mechanisms of energy transfer. This decomposition was

studied by Dupuy et al. (2018), in the one-point statistics context. These considerations are

not taken into account in the following two-point results.

Figure 4.9 sketches the regions where structure functions are computed. These regions

are defined by x/Dj ∈ [3, 5], at two different radial locations. The blue segment is at the

axis 2r/Dj = 0, and the red segment is shifted from the axis at a position 2r/Dj = 1. The

computation of the two-point quantities is performed using a convolution along these segments,

by an increment filter of variable width. The width of this filter is the scale coordinate rx/Dj .

As the spatial resolution of our measurements does not reach the Kolmogorov length-scale,

we are limited to moderate to large scales.
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Figure 4.9: Axial velocity turbulence intensity for the case (Re,Ar) = (12000, 0). The colored

segments are the regions where structure functions are computed. The blue line is at the axis

and the red line is shifted at a radial position 2r/Dj = 1.

In Section 4.2, we found that scalar turbulence intensity at the axis undergoes a regime

transition by crossing the line Recrit = 24000 − 4
3
(Ar − 5000). In the following, we focus

on three regions in this plane, (Re,Ar) = (4000 − 24000, 0) for Reynolds number effects

on a passive scalar jet, (Re,Ar) = (4000− 24000, 10000), for Reynolds number effects on a

variable density jet, and (Re,Ar) = (12000, 0− 20000) for the density variations effects on

a turbulent jet. The critical line is crossed at the point (Re,Ar)crit = (12000, 10000). For

normalization, we use the notation (.)3 and (.)5 to indicate the quantity taken at x/Dj = 3

and x/Dj = 5, respectively. As we studied large-scales through one-point statistics, we will

normalize the temporal terms by their respective large-scale limits. Non-local terms do not

have a preferable normalization, as we do not have access to dissipation rates. We choose

to normalize these quantities by their one-point limit at the point x/Dj = 3. Regarding

scales, we noramlize distances by the jet diameter Dj. The scale dependence will therefore

be discussed in the laboratory frame.
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4.3.2 Structure functions along the axis

In this part, we focus on the temporal terms. Figure 4.10(a) shows the second-order kinetic

energy structure function in the passive scalar case, along the axis, and for different Reynolds

numbers. As we normalize using large-scale quantities, all these structure functions converge

to unity when rx/Dj is large. When Re ≥ 16000, these structure functions collapse, over all

accessible ranges of scales. At lower Reynolds numbers, we find a monotonous staggering.

Turbulence observed here is reminiscent from the fully developed pipe flow, together with the

inhomogeneity due to the decay at the end of the potential core of the jet.
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Figure 4.10: Structure function along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Reynolds numbers in the passive scalar case (Ar = 0).

Pseudo mass fraction ϕ is identically equal to the mass fraction φ only when density is

constant. In the general case, using the same postulates as the Kolmogorov-Obukhov-Corrsin

theory (Warhaft, 2000), we can show that

〈(∆ϕ′)2〉 ∼ 〈χϕ〉〈ε〉−1/3r2/3, (4.2)

if the Peclet number is high enough, over a restricted range of scales. We recall that

〈χϕ〉 = 2D∗〈(∂kϕ′)2〉 is the pseudo mass fraction dissipation rate, defined in Section 2.2.4. For

dimensional arguments, we included D∗, which is a reference mass diffusivity. The dissipative

range scaling r2 is valid for any quantity, because it results from a Taylor expansion at the

small separation distances.
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Figure 4.10(b) represents the axis pseudo mass fraction second-order structure function

in the passive scalar case, along the axis and for different Reynolds numbers. We observe

the beginning of a dissipative range scaling r2
x, and no inertial range. Pseudo mass fraction

is homogeneous inside the pipe. As the potential core elongates with increasing Reynolds

number, pseudo mass fraction fluctuations grow farther in the flow. The staggering of these

structure functions is an inhomogeneity effect, that extends the one-point discrepancy in

scale-space (Figure 4.6(a)).

Now, we evaluate the effect of Reynolds number on a variable density jet. Figure 4.11(a)

represents the kinetic energy second-order structure function along the axis at Ar = 10000,

and for various Reynolds numbers. When Re ≥ 20000, these structure functions collapse,

and show an inertial scaling range r
2/3
x , which was not observed in the passive scalar case

(Figure 4.10(a)). The cases Re ∈ [12000, 16000] collapse to a different curve, and the lower

Reynolds number cases stagger.
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Figure 4.11: Structure functions along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Reynolds numbers at Ar = 10000.

Figure 4.11(b) shows the pseudo mass faction second-order structure functions along the

axis, at Ar = 10000 and for various Reynolds numbers. With increasing Reynolds number,

this quantity decreases until Re = 12000, and then collapses on a single curve for all larger

Reynolds numbers. This single curve presents an inertial range scaling r
2/3
x /Dj. We notice a

pronounced overshoot of the structure functions when Re ≤ 8000, which is related to the

decay of the mean pseudo mass fraction at the axis.
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Then, we study the effect of density variations at constant Reynolds number. Figure

4.12(a) shows the kinetic energy increment along the axis for Re = 12000, and for various

Archimedes numbers. These structure functions monotonously decrease with increasing

Archimedes number. When Ar ≥ 5000, all represented kinetic energy structure functions

show a r
2/3
x inertial scaling, over a wider range of scales as Ar is larger. Globally, the kinetic

energy increment is robust to density variations along the axis at this position downstream.
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Figure 4.12: Structure functions along the axis of kinetic energy (a) and second-order pseudo

mass fraction (b), for different Archimedes numbers at Re = 12000.

Figure 4.12(b) shows the pseudo mass fraction second-order increment along the axis, at

Re = 12000 and for various Archimedes numbers. As the this dimensionless number increases

from zero, these structure functions globally decrease until Ar = 10000. Then, we see a

collapse of when Ar ≥ 15000 on a larger common curve. In all cases, pseudo mass fraction

increments present a dissipative range scaling r2
x. With increasing Archimedes number, we

notice a widening of an inertial range scaling r
2/3
x .
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Mini conclusion

In this part, we evaluated the kinetic energy and pseudo mass fraction second-order structure

functions, along the axis of the jet. The purpose is to study the initiation of the jet decay in

scale-space. To do so, we browse the (Re,Ar) plane by crossing the different regimes we found

in one-point statistics in Section 4.2. We conclude that the pseudo mass fraction is more

sensitive than kinetic energy, regarding momentum and density variations, in scale-space

along the axis. These aspects will be assessed further in the subsequent discussion. Next, we

present the same quantities evaluated in the shear region, along a segment that is parallel to

the axis of the jet.
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4.3.3 Structure functions in the shear region

Here, we compute all the terms listed in Table 4.1. Figure 4.13 shows these structure functions

in the passive case, in the shear region and for various Reynolds numbers. When Re ≥ 12000,

the kinetic energy structure functions collapse with good accuracy on the same curve, as

shown in Figure 4.13(a). This common curve does not show an inertial range scaling r
2/3
x . For

lower Reynolds numbers we observe a staggering of these two-point statistics. Figure 4.13(b)

depicts the pseudo mass fraction increments, which are almost insensitive to Reynolds number

variations, in the passive scalar case in the shear. This common curve shows a dissipative

range scaling r2
x, and an inertial range scaling over a restricted range of scales r

2/3
x .

Nonlinear inter-scale transport of kinetic energy, shown in Figure 4.13(c), changes with

the Reynolds number. We see that this quantity is negative until rx/Dj ≥ 1. This indicates a

forward cascade (Danaila et al., 2012b; Alexakis & Biferale, 2018). These structure functions

reach a minimum, which shifts towards smaller scales as the Reynolds number increases.

When Re ≥ 12000, these structure functions become independent to Reynolds number

variations, up to the experimental precision. The pseudo mass fraction inter-scale transport

is very robust to Reynolds number variations, as shown in Figure 4.13(d).

Figure 4.13(e) shows the inhomogeneous transport of kinetic energy. This quantity is

representative of the transport of energy in physical space, and is therefore directly related

to the decay at the potential core. The inhomogeneous transport structure function for

kinetic energy is here positive for all Reynolds numbers. This indicates that the decay of the

flow is accompanied by a strong generation of fluctuations that are transported downstream.

When Re ≤ 12000, increasing the Reynolds number decreases this transport, whereas when

Re ≥ 16000 increases this quantity. We do not observe a collapse of these quantities, as

the statistical quality of these structure functions is better for smaller scales. Figure 4.14(f)

represents the inhomogeneous transport of the scalar, which is negative at small scales. This

indicates a propagation of the pseudo mass fraction fluctuations upstream of the jet. The

larger scales values are more difficult to interpret, as these scales suffer from lower statistical

quality than small-scales.
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Figure 4.13: Structure functions in the passive scalar case (Ar = 0) in the shear region for the temporal

terms (a)-(b), nonlinear inter-scale transport (c)-(d) and inhomogeneous transport (e)-(f), and for

various Reynolds numbers.
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Next, we evaluate the Reynolds number effect on a variable density jet. Figure 4.14

shows all two-point statistics exposed in Table 4.1, in the case Ar = 10000, in the shear region

and for various Reynolds numbers. The kinetic energy second-order increment, depicted in

Figure 4.14(a), collapses on a single curve when Re ≥ 8000, up to experimental accuracy.

An inertial range scaling r
2/3
x can be observed in this common structure function. Pseudo

mass fraction, shown in Figure 4.14(b) decreases when the Reynolds number increases, and

collapses when Re ≥ 12000. This trend is similar to our observation at the axis in the variable

density case (Figure 4.11).

Figure 4.14(c) shows the nonlinear inter-scale transport in the shear for various Archimedes

numbers. Here, we observe a forward cascade in all cases. When Re ≥ 8000, all these structure

functions collapse, up to statistical accuracy. The case Re = 4000 shows a similar profile,

but with a weaker magnitude. The scales at which the minimum is reached is common to

all these structure functions. The pseudo mass fraction counter-part, represented in Figure

4.14(d), shows two distinct regimes. When Re ≥ 12000, all the nonlinear inter-scale transport

terms collapse on a single curve, that is therefore independent of the Reynolds number. But,

when Re ≤ 8000, the scale at which this structure function starts to decrease is smaller. This

is an indication that the forward cascade transfers energy starting from a different scale.

Inhomogeneous transport of kinetic energy in the variable density case is represented

in Figure 4.14(e), for various Reynolds numbers. All these structure functions are positive,

which indicates that the fluctuations are nonlinearly transported downstream. The case

Re = 8000 shows larger structure function. The Yaglom equation counterpart of this term is

represented in Figure 4.14(f). When Re ≤ 8000, these structure functions are very close to

zero at small scales, and grow to positive values at larger scales. This indicates a transport

of fluctuations towards the downstream direction. On the contrary, when Re ≥ 12000, the

inhomogeneous transport reaches large negative values. Pseudo mass fraction variance is

transported upstream.
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Figure 4.14: Structure functions with Ar = 10000 in the shear region for the temporal terms (a)-(b),

nonlinear inter-scale transport (c)-(d) and inhomogeneous transport (e)-(f), and for various Reynolds

numbers.
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Next, we focus on the effect of density variations at fixed Reynolds number, on the scale-

space fluxes of kinetic energy and pseudo mass fraction. Figure 4.15 represents the two-point

statistics presented in Table 4.1, in the shear at Re = 12000 and for various Archimedes

numbers. The kinetic energy increment, shown in Figure 4.15(a) follows a weak dependence

on the Archimedes number. When Ar ≥ 5000, these structure functions collapse over all

ranges of scales, without showing an inertial range scaling r
2/3
x . The pseudo mass fraction

counterpart of this quantity is represented in Figure 4.15(b). When Ar ∈ [5000, 10000],

this structure function collapses on a single curve. Whereas, when Ar ≥ 15000, we notice a

departure at the largest scale. The magnitude of this variation is small, but in agreement

with the density variation effect on the same structure function at the axis (Figure 4.11(b)).

Figure 4.15(c) represents the nonlinear inter-scale transport of kinetic energy in the

shear, for various Archimedes numbers. These structure functions are independent of density

variations, and indicate a forward cascade of energy. The pseudo mass fraction inter-scale

transport is depicted in Figure 4.15(d). The scale at which the cascade transfers pseudo mass

fraction towards smaller scales depends on density variations. In the non-Boussinesq regime,

this flux is zero until an intermediate scale, whereas in the Boussinesq regime, this quantity

is non-zero at smaller scales.

Inhomogeneous transport of kinetic energy strongly depends on density variations.

Figure 4.15(e) shows this flux, for different Archimedes numbers. We find a transport towards

downstream direction that is monotonously proportional to the Archimedes number. The

pseudo mass fraction inhomogeneous transport, shown in Figure 4.15(f), presents two distinct

regimes. In the Boussinesq case (Ar ≤ 5000), this quantity is close to zero and then grows.

In non-Boussinesq regimes (Ar ≥ 10000), all these quantities collapse on a single negative

curve, which indicates a propagation of fluctuations towards the upstream direction.
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Figure 4.15: Structure functions with Re = 12000 in the shear region for the temporal terms (a)-(b),

nonlinear inter-scale transport (c)-(d) and inhomogeneous transport (e)-(f), and for various Archimedes

numbers.
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4.3.4 Discussion

In this part, we evaluated some two-point statistics of both variable density Kolmogorov and

Yaglom equations. These quantities were computed in two regions, at the axis to evaluate

decay, and at the shear to quantify the fully developed regime. The results of this part can

be summarized as follows

• Along the axis

1. In the passive scalar case, kinetic energy and pseudo mass fraction variance do not

show a high turbulence level, as the flow is mostly reminiscent from the pipe flow

including the beginning of the decay at the end of the second-order potential core.

2. In the variable density case, kinetic energy is fully developed at Re ≥ 20000. The

pseudo mass fraction shows a dissimmetric dependence on the Reynolds number.

Increasing Re, this quantity first decreases until Re = 12000, and then collapses

for all cases Re > 12000. This dissymmetry occurs when crossing the critical

point (Re,Ar)crit = (12000, 10000). Turbulence is globally more developed than

the passive scalar case.

3. Density variations only have a weak influence on kinetic energy increment. The

pseudo mass fraction second-order structure functions shows a jump when crossing

the critical point (Re,Ar)crit = (12000, 10000). Above this line, these structure

functions are invariant to density variations.

• In the shear

1. In the passive scalar case, the flow is more turbulent than at the axis. The kinetic

energy follows a direct cascade, and grows in the downstream direction. The

magnitude of this transport is proportional to the Reynolds number. The pseudo

mass fraction is more robust to Reynolds number variations, both in the increment

and inter-scale transport. The inhomogeneous transport of this quantity shows a

propagation of the fluctuations of this quantity towards the upstream direction.

2. In the variable density case, the flow is globally closer to a fully developed

turbulence regime. We found a more pronounced inertial range scaling r
2/3
x in
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this case. Kinetic energy is transported through scales at larger rates, as the

magnitude of the inter-scale transport is larger than in the passive scalar case.

Also, fluctuations propagate downstream. Pseudo mass fraction is more turbulent

than kinetic energy. The inertial range scaling of this quantity is found to be larger,

and almost independent of the Reynolds number. Inter-scale transport occurs at

larger scales, when the critical line is crossed from below. The inhomogeneous

transport of this quantity is almost null and then grows to positive values for small

Reynolds numbers. But, when the critical line is crossed, large negative values

of inhomogeneous transport are found, which indicates a strong propagation of

pseudo mass fraction fluctuations upstream of the jet.

3. Kinetic energy and its inter-scale transport are robust to density changes. The

inhomogeneous transfer of this quantity monotonously increases with increasing

Archimedes number. Regarding pseudo-mass fraction, the second-order increment

of this quantity shows a weak dissymmetric dependence on density variations.

Nonlinear inter-scale and inhomogeneous transports differ between the Boussinesq

and non-Boussinesq regimes, in magnitude and in the scales at which these

quantities vary.

We conclude from this part that large density variations incorporate an additional

length scale in the pseudo mass fraction cascade, when crossing the critical line from below.

Consequently, pseudo mass fraction fluctuations are not transported to smaller scales at a

higher rate, but their spatial propagation is more intense. These fluctuations spread faster

within the flow, when the critical line is crossed from below.
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4.4 TNTI statistics

In this section, entrainment of scalar in a round jet with variable density is studied. To do so,

we evaluate conditional statistics through the thickness of the TNTI, as discussed in Section

1.2. First, the method that we used to compute the conditional statistics is described. Then,

the mean and second-order moments of the mass fraction are exposed, for different values of

(Re,Ar). Finally, we discuss our observations with the one and two-point statistics results.

4.4.1 TNTI detection method for spatially developing flows

The velocity measurement spatial resolution is low compared to the scalar measurements

alone. The evaluation of conditional statistics using our PIV data is not possible, as the

intense gradients at the vicinity of the TNTI are sub-grid to our measurements. Going

back to the PLIF calibration procedure, presented in Section 3.2.2.4, we focus on the last

calibration steps. Figure 4.16(a) and (b) illustrate the same scalar field with and without

interpolation on the PIV grid, respectively. We discuss this figure hereinafter.
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Figure 4.16: Typical raw PLIF measurement after shot-to-shot correction (a) and same image

with a stricter filter and the additional step of interpolating on the PIV mesh (b). Here

(Re,Ar) = (12000, 0). The two figures share the same color map.
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To improve the evaluation of scalar gradients, we apply two changes in the PLIF

calibration. First, we do not interpolate the PLIF measurements on the PIV grid. This

leads to higher resolution scalar fields, but forbids us from using combined velocity-scalar

correlations. Second , we reduce the width of the filter that we used for smoothing the

PLIF images. When interpolating, we could afford to use a strict filtering on the scalar field

because the final resolution is lower. The scalar gradients in Figure 4.16(a) are clearly better

evaluated than in Figure 4.16(b). We made sure that the signal distribution is not very

altered by the more compliant filter.

The flow is spatially developing. For comparability with the one-point statistics results,

we aim at computing the conditional statistics at x/Dj = 5. Doing so, we avoid the potential

core contribution that would include a systematic bias in the statistics. The conditional

statistics were computed in the interval x/Dj ∈ [4.9, 5.1], to improve convergence. We

make the hypothesis that the flow streamwise inhomogeneity is small, over such a short

axial distance interval. The mean conditional mean scalar 〈φ〉I is normalized by the mean

scalar at the axis 〈φ〉a taken at x/Dj = 5, and the turbulence intensity of this quantity

Iφ,I =
√
〈φ′2〉I/〈φ〉I is normalized by its value at the axis Iφ,a =

√
〈φ′2〉a/〈φ〉a. Also, we

average the left and right TNTI statistics to improve the convergence even more.

The small values of mass fraction are not well enough resolved in our measurements

for the Prasad & Sreenivasan (1989) method to be applied. Instead, we choose a threshold

φ0 = 0.08 to detect the interface. We find that the classical Bisset et al. (2002) averaging

technique, along fixed distances from the TNTI, is suitable for our study. The TNTI thickness

is of the order of the Kolmogorov or the Taylor micro scales. This question is still open in the

literature (da Silva et al., 2014). In both cases, our spatial resolution for scalar measurements

is still not high enough to reach any of these scales. Therefore, large gradients are not

resolved. We use the TNTI statistics as an indication of the mixing, and not as a quantitative

evaluation of the stresses involved in the vicinity of the TNTI.

We proceeded by performing a sensitivity study to the different parameters of our

method. We found that the size of the filtering kernel, the length of the x/Dj interval for

TNTI statistics and their normalization, and the value of the threshold to detect the TNTI

only weakly influence the conditional statistics, in the neighborhood of the value we chose.
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4.4.2 Conditional statistics of the scalar fields

In this part, we evaluate the variation of the scalar conditional statistics along different lines

in the (Re,Ar) plane, at the streamwise position x/Dj = 5. The purpose is to cross the

critical line that we found in the one-point statistics (Figure 4.6(b)). Figure 4.17(a) shows the

scalar conditional mean in the passive scalar case (Ar = 0) at x/Dj = 5, for various Reynolds

numbers. For all Reynolds numbers, we find an abrupt mean scalar increase within a shallow

region at the vicinity of the TNTI. Then, these quantities endure a smoother monotonous

increase, asymptotically towards 1. In the case (Re,Ar) = (4000, 0), the conditional mean

scalar shows an overshoot inside the TNTI. This effect is also present at higher Reynolds

numbers, but at a much smaller magnitude. The observed overshoot is in agreement with

the literature (Figure 1.8(a)), and will be discussed hereinafter.
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Figure 4.17: Conditionally average normalized scalar mean (a) and scalar turbulence intensity

(b), at x/Dj = 5 in the passive scalar case (Ar = 0), and for different Reynolds numbers.

Figure 4.17(b) illustrates the conditional scalar turbulence intensity, represented in the

same conditions as Figure 4.17(a). Compared to the axis value of the scalar turbulence

intensity, this quantity overshoots at a depth of 2(r − rI)/Dj = 0.25− 0.35. The magnitude

of this peak is proportional to the Reynolds number. The fluctuations that are generated

at the edge of the jet by production mechanisms are transported towards the core, until

these fluctuations contaminate totally the jet. The lower peak for the lower Reynolds number
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indicate a more established scalar turbulence intensity profile, whereas a large peak, like

for Re = 20000, large fluctuations indicate that the jet is less developed. We notice that

at Re = 24000, we see a small peak at 2(r − rI)/Dj = 0.17. This peak remains from the

initial sharp scalar gradient at the injection. Except the small injection peak, we observe

that the conditional scalar turbulence intensity is independent of the Reynolds number when

Re ≥ 20000. These observations are in agreement with the fact that larger Reynolds numbers

delay the transition.

Now, we focus on the momentum effect on a variable density case. Figure 4.18(a)

represents the conditionally averaged mean scalar at x/Dj = 5 and for Ar = 10000, for

various Reynolds numbers. In all cases, this quantity undergoes a steep increase through

the TNTI, and then a gradual increase towards the core value of 1. When Re ≥ 12000,

all the profiles collapse, independently of the Reynolds number. The increase in the cases

Re ≤ 8000 occurs at a higher value after the TNTI. The fast increase of the conditionally

averaged mean scalar at the vicinity of the TNTI is probably not fully captured by our

measurements, and so is the case for the overshoot of the scalar inside the TNTI for the cases

(Re,Ar) = (12000, 10000). Nevertheless, the linear variation is precisely evaluated, and we

observe an invariance of this profile to the Reynolds number when Re ≥ 12000.
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Figure 4.18: Conditionally averaged normalized scalar mean (a) and scalar turbulence intensity

(b), at x/Dj = 5 in the case Ar = 10000, and for different Reynolds numbers.
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Figure 4.18(b) represents the scalar turbulence intensity in a conditional averaging

approach, in the same conditions as Figure 4.18(a). The behavior of this quantity is similar

to the conditionally averaged mean scalar, with a difference for the case Re = 12000. The

cases Re ≥ 16000 collapse on the same profile, and show a peak that is four times larger than

the axis value of this quantity, at 2(r − rI)/Dj = 0.35. When Re ≤ 12000, we find lower

values of the conditioned scalar turbulence intensity, at the same position. The particular

case Re = 12000 reaches a peak of the same order of the case Re = 8000, but then converges

towards the same curve as the higher Reynolds number cases. Opposite to the passive scalar

case, we do not observe a strong peak at (Re,Ar) = (24000, 10000) (comparing to Figure

4.17(b)).

Now, we focus on the effect of density variations on the scalar conditional statistics.

Figure 4.19(a) shows the conditionally averaged mean scalar at x/Dj = 5 in the case

Re = 12000, for various Archimedes numbers. No overshoot is observed, in any considered

case. The conditionally averaged mean scalar only shows a weak variability to the Archimedes

number, in this configuration. Through the thickness of the TNTI, we notice that the profiles

collapse in the Boussinesq regime (Ar ≤ 5000).
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Figure 4.19: Conditionally averaged normalized scalar mean (a) and scalar turbulence intensity

(b), at x/Dj = 5 in the case Re = 12000, and for different Archimedes numbers.
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Figure 4.19(b) depicts the variation or the conditioned scalar turbulence intensity, in the

same conditions as Figure 4.19(a). In the passive scalar case (Ar = 0), this quantity reaches

a peak of 4.8 at 2(r − rI)/Dj = 0.25, and in the case Ar = 5000 a peak of 4 is reached at

the same position. For higher Archimedes numbers, the peak is of the order of 2− 3, and

the fluctuations are overall better distributed inside the jet. This result indicates that the

transport of fluctuations towards the core is enhanced, when the jet is in the non-Boussinesq

regime.

4.4.3 Discussion

The conventional statistics approach does not capture the local flow dynamics at the vicinity

of the jet edge. In this section, we compared the conditional scalar statistics, normalized by

their respective axis values. The main results from this section can be summarized as follows

1. The trends that we found in one-point statistics are recovered, so that in increase

in the Reynolds number delays the growth of fluctuations, whereas in an increase in

Archimedes number enhances this growth.

2. In the TNTI frame of reference, the influence of the Reynolds and Archimedes numbers

manifests through the propagation of the fluctuations that are created at the vicinity

of the TNTI towards the core. When the transition is delayed, the scalar turbulence

intensity is very large in a shallow region inside the TNTI, when compared to its core

value. In a jet that is closer to the full establishment of turbulence, the fluctuations are

better distributed through the thickness of the jet, which corresponds to the conventional

Gaussian profile that is well known in the literature.

3. Crossing the different flow regimes for the scalar turbulence intensity in the (Re,Ar)

plane, we find the point (12000, 10000) indeed separates different regimes. But, the

conditional profiles show a stronger variability to the flow parameters than the con-

ventionally averaged radial profiles. The Reynolds number variation at Ar = 10000 is

similar to the conventional radial profile, shown in Figure 4.8(e). On the other hand,

the Archimedes number variation at Re = 12000 is more conclusive in the conditional

frame, than the conventional radial profile, shown in Figure 4.8(f).
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4.5 Conclusion

In this chapter, we studied a variable density round jet. Data were aquired using experiemental

measurements, as exposed in Chapter 3. Three approaches were used to assess this problem,

one-point statistics, two-point statistics and TNTI statistics. We summarize the main results

of each approach in the following, focusing on scalar mixing. In the following we summarize

the results of these different approaches.

1. One-point statistics allowed us to validate the measurements, comparing with round

jets literature. In these flows, increasing the injected momentum delays the growth of

fluctuations, whereas lowering the density of the jet has the opposite effect. We explore

the combination of these two competing effects, using the Reynolds and Archimedes

numbers, to control the injected momentum and density deficit, respectively. We span

both Boussinesq and non-Boussinesq regimes. At a fixed downstream position of x/Dj =

5, we found that the turbulence intensity of the scalar shows multiple regimes, depending

on the dimensionless numbers. In particular, this quantity endures a bifurcation in the

non-Boussinesq regime, separated by the critical line Recrit = 24000− 4
3
(Ar − 5000). In

the Reynolds number is below this value, the scalar turbulence intensity at the axis is

very robust to changes in injected density deficit, whereas when the Reynolds number

is above this line, this quantity is very robust to injected momentum changes (Figure

4.6(b)).

To further study these regimes, we evaluated statistics following the two lines defined by

Ar = 10000 and Re = 12000 in the parameter space. We focused first on the conventionally

averaged radial profile of scalar turbulence intensity. Crossing the critical line by increasing

the Reynolds number with Ar = 10000, this quantity shows a similar bifurcation as at the

axis. On the contrary, crossing the critical line by increasing the Archimedes number with

Re = 12000 is not as conclusive.

2. In the two-point statistics framework, we evaluated some terms of the variable density

Kolmogorov and Yaglom equations. Kinetic energy follows a direct cascade and is

transported towards the downstream direction, in all cases considered. Regarding
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pseudo mass fraction variance, the scales at which inter-scale transport occurs depend

on momentum in the variable density case, and on density variations in the fully

developed turbulent regime. Inhomogeneous transport shows a propagation of pseudo

mass fraction fluctuations in the shear region towards the upstream direction. This

propagation upstream takes place only when the flow conditions are above the critical

line.

3. The conventional mean approach is not suitable at the edge of free shear flows, as

it considers turbulent and non-turbulent flow under the same average (Section 1.2).

To this matter, we evaluated conditional statistics of the mean scalar and scalar

turbulence intensity, along reference lines in the (Re,Ar) plane. We found that the

general dependence on the Reynolds and Archimedes numbers is in agreement with the

one-point statistics observations. Nevertheless, the conditionally averaged profiles of

the scalar turbulence intensity show a very large peak, compared to the axis value of

this quantity. This peak has a large variability depending on the dimensionless numbers

of this study. The conditional averaging unravels scalar dynamics that are smoothed

by the conventional averaging approach. We found that mixing in the very near field of

variable density round jets mostly occurs in a very shallow region, inside the TNTI.

We conclude from this chapter that momentum and density variations on a turbulent

round jet not only change the growth of fluctuations, but also heavily affect the direction

of their propagation in scale-space. We found that these fluctuations can propagate by

nonlinear inhomogeneous transport towards the upstream direction. Also, the scale at which

the forward cascade occurs is very affected. At the vicinity of the TNTI, mixing in this region

strongly depends on the Reynolds and Archimedes numbers, and endures different regimes in

the non-Boussinesq configuration, that were not observed previously in the literature.
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Chapter 5

Variable viscosity and mass diffusivity

temporally evolving plane jet

In this chapter, we study a temporally evolving turbulent plane jet, with variable viscosity

and mass diffusivity. This work is a followup to Brahami et al. (2017), which we include in

the discussion hereinafter. First, we briefly describe the simulation setup and the processing

method. Then, we evaluate statistics both conventionally and conditionally, focusing on the

kinetic energy and scalar dissipation rates. Finally, we include a publication to be submitted,

summarizing our most striking results.

5.1 Simulations and post-processing method

Direct numerical simulation (DNS) of a temporally evolving turbulent plane jet was performed

by Dr M. Gauding in our group, as described by Gauding et al. (2015) and Hunger et al.

(2016). The DNS solves the dimensionless Navier-Stokes equations with variable viscosity

and mass diffusivity, equations (2.48)-(2.51), that we repeat here for the sake of clarity,

∂juj = 0, ψ = Rφ−1
ψ ,

∂tui + uj∂jui = −∂ip+
1

Re
∂j(ψ(∂jui + ∂iuj)),

∂tφ+ uj∂jφ =
1

Pe
∂j(ψ∂jφ),
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where ψ is both the momentum and mass diffusivities, andRψ is a control parameter. To avoid

cumbersome terminology, we will refer to ψ as the diffusivity, and to Rψ as the diffusivity ratio.

The parameter Rψ is the ratio between the outer and inner diffusivities. These simulations

were carried out on the supercomputer JUQUEEN at research center Juelich (Germany). In

the following, details of the DNS setup are summarized. The computational domain is shown

in Figure 5.1. The boundary conditions in stream-wise Ox and span-wise Oy directions are

periodic, while free-slip boundary conditions are used in the cross-wise Oz direction. The

flow is statistically homogeneous in xOy planes. Conventional statistics are performed over

these planes and depend only on time t and the cross-wise coordinate z. The size of the

domain is large compared to the integral scales of the jet, thus avoiding confinement effects.

The grid width is smaller or equal to the smallest Kolmogorov length scale of the flow. The

box grid size is 2048× 1024× 1024, in the (x, y, z) directions, respectively.

x

y
z

Figure 5.1: A view of the flow simulation, with the computational domain. The iso-surface

represents the Q-criterion at a value of 0.7, and the colors are the scalar values at the surface.

The gray surface is the TNTI. Figure realised by Dr M. Gauding.
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To simplify the definition of the dimensionless numbers, we keep the jet initial conditions

unchanged from one case to another, and we modify the external flow conditions. We choose

the jet initial center-plane diffusivity ψ0,a, velocity u0,a and momentum thickness δ0 and

outer diffusivity ψ0,out as reference quantities. Subscripts 0, a and out indicate the initial,

center-plane and outer flow conditions, respectively. The jet width δ0 is defined as the

distance between the points at which the mean streamwise velocity decreases to 50% of its

center-line value. As stated in Section 2.3.1, the Schmidt number equals unity, locally and

instantaneously, so that the Reynolds and Peclet numbers are Re = Pe = u0,aδ0/ψ0,a = 2000.

The temporal variable in the subsequent simulation is normalized by the characteristic time

δ0/u0,a.

The flow is initialized using hyperbolic tangent profiles that are symmetrized with respect

to the center-plane for both velocity and scalar, as shown in Figure 5.2. In the following, we

normalize the cross-wise direction z by the instantaneous half-velocity width of the jet δ1/2.

We made sure that the forcing is weak enough to avoid by-pass transition. In practical gas

flows, Rψ rarely exceeds 10, consequently, we consider cases where Rψ = 0.25, 0.5, 1, 2, 4 (see

Figure 5.2 (b)).
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Figure 5.2: Initial profiles of velocity and scalar (a) diffusivity (b), for different diffusivity

ratios Rψ.

As introduced in Section 1.2.1, the classical Prasad & Sreenivasan (1989) method for

locating the TNTI was developed for passive scalar flows. It is first necessary to check that

the method is not sensitive to diffusivity variations. In our case, variable viscosity and
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mass diffusivity are additional parameters to the interface detection. Figure 5.3 (a) shows

the scalar probability density function over the whole computational domain at the same

physical time and for different diffusivity ratios Rψ. We found that this technique is robust

to the diffusivity variations. In particular, the inflectional point of the normalized conditional

average of the scalar 〈φ|z−zI〉/〈φ〉a is always located at the TNTI, as shown in Figure 5.3 (b).

We recall that the symbol 〈(.)|z− zI〉 denotes conditional averaging, and is only a function of

the distance to the TNTI (z − zI). The dependence of this quantity on Rψ will be discussed

in Section 5.3. The typical threshold values found are comprised between 0.07 and 0.13.
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Figure 5.3: Scalar probability density function over the whole computational domain (a)

and conditional average of the scalar normalized by the center-plane value (b), for different

diffusivity ratios Rψ.
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5.2 Conventional statistics

Turbulent temporal plane jets show, after a long enough time after injection, a self-preserving

behavior. In this regime, conventionally averaged mean fields are self-similar in time and decay

following analytically predictable laws. This feature has been observed in both spatially and

temporally evolving turbulent jets (Sadeghi et al., 2018). Figure 5.4 represents the temporal

evolution of the mean streamwise velocity and scalar at the center-plane. These quantities

are invariant until t = 5, which corresponds to the potential core. Then, a self-preserving

decay is very weakly dependent on the diffusivity ratio Rψ .
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Figure 5.4: Temporal center-plane conventional evolution of mean streamwise velocity (a)

and mean scalar (b), for different diffusivity ratios Rψ.

Turbulent kinetic energy (TKE) 〈k〉a = 〈u′2i 〉/2 is represented in Figure 5.5 (a). The

early evolution of this quantity is affected by diffusivity variations, causing a staggering

proportionally to the diffusivity ratio Rψ. This period of the flow lifespan is characterized by

Kelvin-Helmholtz instabilities. The young vorticies grow fast and reach nonlinear saturation,

so the TKE reaches a peak. If the jet is less diffusive than the outer flow (i.e. Rψ < 1), the

peak is smaller and occurs later, whereas if the jet is more diffusive (i.e. Rψ > 1), the peak

is larger and occurs sooner, compared to the passive scalar case (Rψ = 1). This feature is

well known in the context of variable viscosity alone (Govindarajan & Sahu, 2014; Harang

et al., 2014; Taguelmimt et al., 2016) and is explained by the respective orientation of the

shear and viscosity gradients. In our study, we notice that mass diffusivity variations do not

alter the variable viscosity effect on the dynamics of TKE, when ν = D.
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Figure 5.5: Temporal evolution at the center-plane turbulent kinetic energy (a) and scalar

variance (b), for different diffusivity ratios Rψ.

The scalar variance 〈φ′2〉a does not exhibit the same effect as TKE, as shown in Figure

5.5 (b). We find a dissymmetry, so that for Rψ < 1 the maximum value is weaker and occurs

later. Jets with Rψ ≥ 1 behave almost indistinguishably as the passive scalar case. We

explain this effect by the early smoothing of the scalar gradient, in the cases Rψ > 1. The

interface diffuses better because of local diffusivity at this location is large enough to weaken

the scalar fluctuations.

The later time evolution of both TKE and scalar variance is independent of the initial

diffusivity inhomogeneities, and respectively follow a unique temporal power law for all cases.

The independence of the mean streamwise velocity and scalar, together with their respective

second-order moments at the center-plane of the jet (i.e. Figures 5.4 and 5.5) shows that the

self-preserving decay is independent of the diffusivity ratio. The jet core adapts to diffusivity

variations, at least as found through low-order statistics. Nevertheless, diffusivity variations

are as large as a factor of 4 in the extreme cases we consider. As we focus on mixing, the

kinetic energy pseudo dissipation and scalar dissipation rates are of interest. These quantities

read

ε = 2ψA2
ij and χ = 2ψg2, (5.1)

where A2
ij = (∂jui)

2 and g2 = (∂jφ)2, respectively. Strictly speaking, these quantities are the

squares of the Frobenius norms of the velocity gradient tensor and scalar gradient vector,
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respectively. For clarity, we still refer to these quantities as norms, because they appear in

this form in the dissipation rates analytical expressions. Next, we focus on the diffusivity

field ψ.

Figure 5.6(a) shows the temporal evolution of the conventional mean of diffusivity at

the center-plane. Notice that this plot uses logarithmic scales. This quantity departs from

its initial value of 1 when the mean scalar decays, starting from t = 5 (Figure 5.4(b)). The

departure from the center-plane value is symmetric and inversely proportional to Rψ, in the

logarithmic frame of reference. On the other hand, Figure 5.6 (b) represents the diffusivity

turbulence intensity 〈Iψ〉a =
√
〈ψ′2〉a/〈ψ〉a at the center-plane. At early times, this quantity

presents a dis-symmetric dependence on diffusivity ratio, so that the Rψ = 4 and Rψ = 0.25

cases respectively reach a maximum at 40% and 35%. This discrepancy vanishes quickly, and

the diffusivity turbulence intensity converges towards two common decay curves, starting

from t = 8. Hereinafter, we give an explanation for the collapse of this quantity on two

curves.
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Figure 5.6: Temporal center-plane conventional evolution of mean diffusivity (a) and diffusivity

turbulence intensity (b), for different diffusivity ratios Rψ.

The diffusivity turbulence intensity asymptotic variation at large times can be estimated

using the averaged state equation (2.51). A Taylor expansion for the scalar fluctuation leads

to

〈ψ〉 = f(〈φ〉) + o(〈φ′2〉) and 〈ψ′2〉 =
(
dφf
∣∣∣
φ=〈φ〉

)2

〈φ′2〉+ o(〈φ′4〉), (5.2)
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where f(φ ;Rψ) is the state equation. The only necessary condition for this relation to be valid

is that the scalar turbulence intensity is small enough over the region where the averaging

is performed. We find that the mean scalar, and scalar variance decay following temporal

power laws. When applied to our case, we find the large time asymptotic expressions

〈ψ〉a ∼
1

Rψ

(1 + logRψ t
−n) and 〈Iψ〉a =

√
〈ψ′2〉a
〈ψ〉a

∼
√

(logRψ)2 t−m/2, (5.3)

where n and m are the decay exponents of the mean and second-order scalar, respectively.

From these simulations, we find n = 1/2 and m = 1, which is in agreement with the self-

preservation predictions (Sadeghi et al., 2018). At later times, we observe indeed that Iψ,a
decay depends only on | logRψ|. The diffusivity field asymtotically decorrelates from the

dynamic field, and the effects of variable diffusivity that we see are mostly due to mean

diffusivity gradients.

Next, we evaluate the gradient magnitude of the velocity and scalar fields, represented

in Figures 5.7 (a) and (b), respectively. These quantities exhibit a large dependence on the

diffusivity variations, even in the self-preserving regime. In the first stage, the gradients grow

until t = 10, reaching a peak value that is proportional to Rψ. Then, the flow decays from

that peak, with a temporal exponent that is independent of Rψ. This trend is similar to

TKE and scalar variance, with the difference that the decay curves stagger.
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Figure 5.7: Temporal center-plane conventional evolution of velocity gradient norm (a) and

scalar gradient norm (b), for different diffusivity ratios Rψ. The dashed lines correspond to

the time-step considered in Figure 5.8.
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The spatial profile of the velocity and scalar gradients at t = 25, are shown in Figures

5.8 (a) and (b) respectively. The overall dependence of these fields is similar to the center-

plane temporal evolution (Figure 5.7), so that the gradient magnitude is proportional

to the diffusivity ratio Rψ. We explain this feature as follows. The local low values of

viscosity (respectively mass diffusivity) permit the turbulent cascade to transfer kinetic

energy (respectively scalar variance) towards smaller scales, and consequently the velocity

gradients (respectively scalar gradients) are locally larger. Also, the scalar gradient shows a

peak around z/δ1/2 ∼ 1.
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Figure 5.8: Spatial conventional average of the velocity gradient norm (a) and scalar gradient

norm (b), at t = 25, for different diffusivity ratios Rψ. See Figure 5.7 (b) for legend.

Figures 5.9 (a) and (b) represent the center-plane temporal evolution of the kinetic

energy pseudo dissipation rate 〈ε〉a = 2〈ψA2
ij〉a and scalar dissipation 〈χ〉a = 2〈ψg2〉a rate,

respectively. These quantities show the same dependence as the second-order velocity and

scalar one-point statistics (Figure 5.5). It is well known that the flow adapts to the viscosity

variations Lee et al. (2008); Kumar et al. (2011); Gréa et al. (2014); Gauding et al. (2018). We

find that, in the self-preserving regime, the scalar gradient field also adapts to the diffusivity

variations.
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Figure 5.9: Temporal center-plane conventional evolution of kinetic energy pseudo dissipation

rate (a) and scalar dissipation rate (b), for different scalar ratiosR. The dashed line represents

the considered time-step in Figure 5.10.

Figures 5.10 (a) and (b) depict the conventionally averaged spatial profile of the kinetic

energy pseudo dissipation and scalar dissipation rates at time t = 25, respectively. At this

time, the flow is fully developed and all the low-order statistics are in the self-preserving

regime in the core. From Figures 5.9 and 5.7, it is clear that, when conventionally averaged,

the flow adapts completely to the active scalar variations, within numerical accuracy.
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Figure 5.10: Spatial conventional average of kinetic energy pseudo dissipation rate (a) and

scalar dissipation rate (b), at t = 25.
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Mini conclusion

Until this section, we introduced the temporally evolving turbulent jet, with variable viscosity

and mass diffusivity. We discussed the particular choice of unity Schmidt number and the

state equation for both diffusivities. Then, we exposed conventional statistics of the flow,

and demonstrated that a self-preserving regime is reached early in the simulations.

As we are interested in the mixing properties of this flow, we focused on the kinetic

energy pseudo dissipation and scalar dissipation rates. We conclude from this part that we

can write

〈ε〉(t, z/δ1/2) ∼ 〈ε〉a(t)︸ ︷︷ ︸
temporal

hε(z/δ1/2)︸ ︷︷ ︸
spatial

, (5.4)

〈χ〉(t, z/δ1/2) ∼ 〈χ〉a(t)︸ ︷︷ ︸
temporal

hχ(z/δ1/2)︸ ︷︷ ︸
spatial

, (5.5)

where 〈ε〉a = 2〈ψ〉a〈A2
ij〉a and 〈χ〉a = 2〈ψ〉a〈g2〉a are the center-plane temporal evolution of

the dissipation rates, and the terms denoted as spatial are the cross-wise profiles normalized by

the center-plane value of these quantities. We found that in self-preserving regime and when

Equations (5.4)-(5.5) are written in a conventional averaging sens, that temporal variations

of the dissipation rates are independent of the diffusivity ratio Rψ. We also find that the

spatial profiles hε and hχ are very near to a single curve, within numerical accuracy.

The conventional averaging approach is unnatural, as we use the Cartesian coordinates

for their computational convenience. Next, we focus on the same quantities that we computed

in the last section, but averaged in a conditional manner, in the vicinity of the TNTI. This

location is important in a shear flow, because it is the region where most momentum and

mass exchanges with the outer-flow occur.
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5.3 Conditional statistics

Conventional averaging is an artificial point of view to the turbulent statistics. The natural

frame of reference that is felt by a flow is the local velocity gradient tensor eigen-frame. In

order to use a less artificial frame of reference, we consider conditional statistics through the

thickness of the TNTI in the self-preserving regime found earlier, i.e. for t ≥ 8.

Figure 5.11(a) shows the normalized conditional mean active scalar 〈ψ|z − zI〉/〈ψ〉a in

the self-similar regime. This quantity shows an dissymmetry at the vicinity of the TNTI,

with respect to the scalar ratio Rψ. The conventional center-plane value 〈ψ〉a is reached

monotonously, through a shallow region inside the TNTI. The jet is therefore mainly composed

of a statistically homogeneous core with an abrupt active scalar gradient in the vicinity of

the TNTI. The thickness of the transition layer between outer and inner flow is inversely

proportional to the diffusivity ratio Rψ. There is a sustained mean diffusivity gradient very

locally at the vicinity of the TNTI. This feature is not revealed by the conventional averaging

approach.
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Figure 5.11: Conditional average of mean diffusivity (a) and diffusivity turbulence intensity

(b), at t = 25. Both quantities are suitably normalized.

The diffusivity turbulence intensity, represented in Figure 5.6(b), shows an early dis-

symmetry that vanishes at t ≥ 8. Figure 5.11(b) depicts the same quantity conditionally
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averaged, at t = 25. We find that the early center-plane dissymmetry persists for a longer

time in the vicinity of the TNTI. Also, the diffusivity turbulence intensities at this time step

at the center-plane are 11% and 5% for the cases | logRψ| = 4 and | logRψ| = 2, respectively.

The local diffusivity turbulence intensity at the vicinity of the TNTI is of the same magnitude,

but the increase of these quantities is sharper for large | logRψ|. The dissymmetry that we

observe at the vicinity of the TNTI eventually decays after some time, when the diffusivity

of the jet is close enough to the diffusivity of the outer flow. This trend is not revealed by

the conventional averaging approach.

Figures 5.12(a) and (b) respectively represent the conditional average of the gradient

norm of both velocity and scalar in the self-preserving regime. The velocity gradients show a

sharp increase through the TNTI. The core value is reached, similarly to the mean diffusivity,

monotonously and in a shallow region inside the TNTI. The thickness and magnitude of the

jump between the outer flow and the jet core are inversely proportional to the scalar ratio

Rψ. The scalar gradient presents a peak at the vicinity of the TNTI. The magnitude and

thickness of this peak region is inversely proportional to the scalar ratio Rψ. In the case

Rψ = 4, the peak is one order of magnitude larger than the core value.
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Figure 5.12: Conditional average of the velocity gradient norm (a) scalar gradient norm (b),

at t = 25, for different diffusivity ratios Rψ.
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Figures 5.13 (a) and (b) show the conditional average of the kinetic energy pseudo

dissipation and scalar dissipation rates, in the self-preserving regime, respectively. The kinetic

energy pseudo dissipation rate 〈ε〉I presents a jump at the vicinity of the TNTI, and then

slowly increases towards its core value. The diffusivity variations have only a weak effect

on this quantity, as we find a staggering of these conditional statistics depending on the

diffusivity ratio Rψ. On the contrary, the scalar dissipation is very sensitive to the diffusivity

ratio Rψ. This quantity shows a very large overshoot at the edge of the TNTI. This effect is

known in passive scalar flows (Westerweel et al., 2009; Taveira & da Silva, 2013). We find

that the peak thickness inversely proportional to Rψ, whereas the magnitude is proportional

to this parameter. Compared to the passive scalar peak (Rψ = 1), the peak is twice larger

when Rψ = 4, even in the self-preserving regime.
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Figure 5.13: Conditional average of pseudo kinetic energy dissipation rate (a) and scalar

dissipation rate (b) at t = 25, and for different diffusivity ratios Rψ.

The turbulence intensity of the diffusivity is of the order of 10% at the vicinity of the

TNTI, as shown in Figure 5.11(b). The staggering of the conditional scalar dissipation

rate is due to the local generation of diffusivity fluctuations, and also to the persistent

mean diffusivity gradient, at the vicinity of the TNTI. The turbulent field, does not adapt

fast enough to the diffusivity variations at the edge of the flow, even when the diffusivity

fluctuations are not very intense. This result is opposite to the fully developed core scalar

dissipation rate, and cannot be revealed with a conventional averaging approach.
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Mini conclusion

In this section, we computed conditional statistics of diffusivity, velocity and scalar gradients

and dissipation rates. The main results of this section can be summarized as follows

1. The early conventional statistics dissymmetries with respect to the diffusivity ratio Rψ

are found to be persistent at the vicinity of the TNTI.

2. This discrepancy causes a large variability of the mean scalar gradient g2 = (∂kφ)2

depending on the diffusivity ratio Rψ.

3. The modified scalar gradient norm causes a staggering of the conditional scalar dissipa-

tion, which peak can have twice its value in the passive scalar case, even late in the

self-preserving regime.

Next, we discuss the results of both the conventional and conditional statistics sections,

compared to the literature on variable diffusivty flows.
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5.4 Discussion

This study is a followup to set of simulations that we performed. In these first DNSs, we

computed a similar flow, with variable viscosity and constant mass diffusivity. The results

are summarized in Brahami et al. (2017), which is in Appendix C. We found that the

conventionally averaged center-plane scalar dissipation rate staggers in such a flows, even in

the self-preserving regime. We interpreted this feature as a lack of a physical mechanism that

allows the scalar field to adapt to diffusivity variations. Consequently, we decided to perform

a new run of simulations, with both viscosity and mass diffusivity variations.

Taylor’s postulate consists in the hypothesis that at large enough Reynolds numbers,

the constant Cε = u′3/(L〈ε〉), is universal (Taylor, 1935). In this context, the kinetic energy

dissipation rate 〈ε〉 is the viscous pseudo dissipation 〈2ψA2
ij〉, L is the integral length-scale

and u′ a characteristic velocity at that scale. In other words, Taylor’s postulate states that the

kinetic energy dissipation rate at small and large scales are proportional in value by a factor

Cε, when the Reynolds number is sufficiently high. The scalar counterpart of this postuale is

the hypothesis of the universality of Cχ = φ′2u′/(L〈χ〉) at very large Peclet number. Similarly,

φ′ is a characteristic scalar concentration at the integral length-scale.

In literature, Donzis et al. (2005) compiled experimental and numerical data on the

dependence of Cε and Cχ, in HIT with a passive scalar. These authors showed that a plateau

is reached for both quantities, at large enough Reynolds numbers. In the variable diffusivity

context, Lee et al. (2008), Kumar et al. (2011) and Gréa et al. (2014) evaluated the effect

of diffusivity variations on the numerical value of viscous dissipation rates in HIT, without

evaluating the dependence of Cε and Cχ on the Reynolds number. Strictly speaking, none of

these authors confirmed Taylor’s postulate in a variable diffusivity flow. Nevertheless, the

common result from these studies is the independence of the small-scale dissipation rates to

initial diffusivity inhomogeneities. The velocity and scalar gradient fields adapt quickly to

viscosity and mass diffusivity variations, respectively.

In our study, we approached the problem in a similar way to Lee et al. (2008), Kumar

et al. (2011) and Gréa et al. (2014). We consider a single injection Reynolds number Re0, and

evaluate the value of the kinetic energy pseudo dissipation and scalar dissipation rates, with
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the only focus on the dependence of this value to diffusivity inhomogeneities. The constant

diffusivity values 〈ε〉 and 〈χ〉 at Rψ = 1, are finite Reynolds number quantities, and are far

from the asymptotic value that might be reached if Taylor’s postulate was valid in a jet. The

active scalar cases (Rψ 6= 1), the Taylor-based Reynolds number departs from the passive

scalar value. Including a diffusivity variation is another way of changing the jet Reynolds

number, dynamically as mixing occurs.

These results are introductory to the evaluation of the scalar gradient norm budget, in a

conditional averaging approach. Next, we present a paper, that is to be submitted in the

near future.
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5.5 Paper
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G.I. Taylor postulated that the mean energy dissipation rate may be insensitive to viscosity
variations and that it depends only upon the large-scale properties, in particular on the energy
injected in the flow. The counterpart of Taylor’s postulate for turbulent mixing hinges on the
assumption that the mean dissipation rate of the scalar variance is independent of the local value of
molecular properties (mass diffusivity, or thermal conductivity). Whilst different forms of Taylor’s
postulate have been assessed for time decaying homogeneous isotropic turbulence, its validity for: i)
flows with both variable viscosity and mass diffusivity, and ii) time decaying shear flows, has never
been investigated. It is the gap that this study aims filling.

We prospect the classical turbulent mixing paradigm for the case of inhomogeneous fluid media,
with variable viscosity and mass diffusivity, for the particular case of Schmidt=1. We use DNS of a
temporally evolving jet, that mixes with a different fluid, R times more viscous and diffusive. The
ratio R varies between 0.25 and 4.

Of specific interest is the dependence of scalar dissipation, and the norm of the scalar gradient,
on the ratio R and of large-scale properties of the jet (initial Reynolds number). The validity of the
classical paradigm would entail that scalar dissipation be spatially uniform, despite strong variations
in both viscosity and mass diffusivity.

(1) In the jet core, it is found that fluctuating scalar gradients do adapt to the imposed diffusivity
variations, rendering scalar dissipation nearly insensitive to these fluctuations. (2) However, when
statistics are conditioned on the distance to the so called Turbulent/Non-Turbulent Interface, we find
an intense and persistent effect of the diffusivity variations on the conditional scalar dissipation, on
the scalar gradient magnitude in physical space. The orientation of these additional fluxes depends
on the viscosity and diffusivity gradients alignment with shear. Therefore, the classical mixing
paradigm is not tenable at the T/NT interface, as mixing progressively includes new, unmixed yet,
fluid.

PACS numbers:

A scalar transported in a turbulent flow can be either
passive (when it does not influence at all the velocity
field, it is therefore a tracer), or active. Active scalars
are created by: i) strong gradients of temperature in
the same fluid; ii) mixing fluids with different chemical
composition (often inducing vastly contrasting physical
properties). Sometimes, both cases i) and ii) occur. We
consider here an isothermal temporal plane jet, mixing
two fluids with vastly different mass and momentum dif-
fusivities, for the particular case of unity Schmidt num-
ber (the kinematic viscosity and the mass diffusivity are
equal).

An active scalar influences the velocity field through
variations of either density, or viscosity. The variable-
density case has been extensively studied in the litera-
ture [8, for a recent review]. Variable-viscosity turbulent
flows received much less attention. Some such studies
have been carried out numerically in statistically ho-
mogeneous and isotropic turbulence (HIT) [4–7], tem-
porally evolving shear layer [11] and experimentally in
round jets [2, 13]. All of them dealt with temporally
decaying flows and pointed out the quick independence
of the mean energy dissipation rate with respect to vis-
cosity fluctuations.

The scalar counterpart of this problem remains un-

treated. As stated by Lee et al. [7] in their HIT, it is
not clear whether or not the scalar dissipation rate is in-
dependent of mass diffusivity variations. Nevertheless,
viscosity variations can either enhance or diminish the
energy transfer, both locally in physical space [11] and
non-locally, in scale space [4].

Most traditional theories on turbulence are formu-
lated for sufficiently large Reynolds numbers. Under
these conditions, small scales are supposed to exhibit
universal properties and should be locally isotropic.
However, real flows face what we can generally call ’Fi-
nite Reynolds number’ effects, including impact of ini-
tial and boundary conditions, very specific of each flow.
In particular, free shear flows consist on a turbulent re-
gion, surrounded by an irrotational fluid. These two re-
gions are separated by a thin layer, the Turbulent/Non-
Turbulent Interface (TNTI), where mass and momen-
tum exchanges occur [10]. Most studies regarding the
TNTI focus on passive scalar flows. To the authors
knowledge, no study considers active scalar effects on
the scalar dissipation rate, with both variable viscos-
ity and mass diffusivity in a free incompressible shear
flow. In this letter, we analyse this type of flows in a
temporally evolving jet.

We perform Direct numerical simulation (DNS) of
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a temporally evolving turbulent plane jet as described
by Gampert et al. [3]. The DNS solves the follow-
ing non-dimensional incompressible Navier-Stokes equa-
tions with variable viscosity and mass diffusivity

∂juj = 0, (1)

∂tui + uj∂jui = −∂ip+
1

Re0
∂j [ψ (∂jui + ∂iuj)] , (2)

∂tφ+ uj∂jφ =
1

Pe0
∂j [ψ∂jφ] , (3)

ψ = f(φ;R) = Rφ−1, (4)

Here, φ is the scalar, and ψ is either the momentum and
mass diffusivities, which couples the scalar to the ve-
locity field. To avoid cumbersome terminology, we will
refer to ψ as diffusivity, andR = ψ0,c/ψ0,out is the diffu-
sivity ratio that we use as an external control parameter.
Subscripts 0, c and out indicate the initial, center-plane
and outer flow conditions, respectively. In practical gas
flows, R rarely exceeds 5, consequently, we consider the
cases R = 0.25, 0.5, 1, 2, 4. The streamwise velocity and
scalar are initialized using hyperbolic tangent profiles,
symmetrized with respect to the center-plane. From one
case to the other, we keep the jet initial conditions un-
changed and modify the outer flow conditions, through
R only. We choose the jet initial center-plane diffusivity
ψc,0, velocity uc,0 and momentum thickness h0 as refer-
ence quantities. The initial Reynolds and Peclet num-
bers are Re0 = Pe0 = uc,0h0/ψ0,c = 2000. The com-
putational domain has periodic boundary conditions in
stream-wise Ox and span-wise Oy directions, while free-
slip boundary conditions are used in the cross-wise Oz
direction. The size of the domain is large compared
to the largest integral scales of the jet to avoid con-
finement effects and the grid size was chosen in order
to resolve the smallest Kolmogorov length scale in each
flow. Large-scale quantities are used for normalization,
because the definition of small scale quantities is deli-
cate when diffusivities vary.

Turbulent temporal plan jets show, after a long
enough time after injection, a self-preservation behavior
[12]. In our simulations, the mean streamwise velocity
and scalar, together with their respective second-order
moments, are in agreement with the self-preservation
predictions. Moreover, these fields are independent of
the initial diffusivity distribution, after a time as short
as t = 8 for the mean fields, and t = 12 for the variance
fields, respectively.

Figure 1 shows the time evolution of the scalar dissi-
pation rate 〈χ〉c = 2〈ψg2〉c spatially averaged over the
center-plane. Here, g2 = (∂jφ)2 is the square of scalar
gradient vector magnitude. This quantity becomes inde-
pendent of R in the self-preserving regime, which proves
that scalar gradients adapt to diffusivity variations in
the fully turbulent core. At t = 25, the magnitude of
〈ψ′2〉c is of the order of 10%, and decays quickly [15].
The quantity 〈g2〉c dynamically compensates diffusivity
variations. This result is also valid for the spatial distri-

bution of these fields, averaged over cross-stream planes
(figures not shown).
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FIG. 1: Temporal evolution of the scalar dissipation spatially
averaged over the center-plane, for different scalar ratios R.

The conditioned fields are averaged along the homo-
geneous directions at crosswise distance to the TNTI [1],
and denoted 〈.〉I . In order to detect the TNTI, we use
the technique suggested by Prasad & Sreenivasan [9].
This method consists in using the lower local minimum
of the scalar distribution over the whole computational
domain. Choosing this local minimum as a threshold
value guarantees that this scalar iso-surface is at the
edge of the flow. Conditional averaging consists in per-
forming a mean over a surface that is shifted from the
TNTI by a distance (z−zI) where zI is the TNTI cross-
wise position. In this study, we consider conditional
averaging in the cross-stream direction.

It is known in the literature that in passive scalar
flows, the conditionally averaged scalar dissipation rate
endures a large overshoot in passive scalar flows [14].
Figure 2 depicts the conditionally averaged scalar dissi-
pation rate. Noticeable is a strong dependence of this
overshoot on the diffusivity ratio R, even in the self-
preserving regime. The peak is thinner, more intense,
and shifts towards to the TNTI, as R increases.
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FIG. 2: Conditional average of the scalar dissipation rate at
t = 25 (dashed line in FIG.1), for different scalar ratios R.

The conditionned diffusivity turbulence intensity√
〈ψ′2〉I/〈ψ〉I at t = 25 is the order of 15% at worst.
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Figure 3 depicts the conditioned mean diffusivity, nor-
malized by its core value. A dissymmetric dependence
on the diffusivity ratio R is revealed, suggesting that
the scalar is very nearly homogeneous inside the jet.
This strongly contrasts with enhances scalar gradients
present at the TNTI. The jet is therefore composed of
a statistically homogeneous turbulent core, surrounded
by intense and persistent gradients at the vicinity of
the TNTI. This result demonstrates that the scalar at
the TNTI remains active for a very long time, even if
it is readily mixed inside the jet core, as soon as self-
preservation is achieved.
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FIG. 3: Conditional average of the diffusivity at t = 25
(dashed line in FIG.1), for different scalar ratios R.

In order to give a physical explanation to the scalar
dissipation rate dissymmetry, we evaluate the one-point
budget of the scalar gradient g2 = g2k, generalized for
variable diffusivity. We make an extensive use of the
chain rule on the state equation (4), and obtain

∂tg
2 = −uj∂jg2︸ ︷︷ ︸

A

− 2gkgj∂kuj︸ ︷︷ ︸
P

+
1

Pe0

[
ψ∂2j g

2

︸ ︷︷ ︸
D1

− 2ψ(∂jgk)2︸ ︷︷ ︸
D2

]

+
2

Pe0
logR ψ

[
g2∂jgj︸ ︷︷ ︸
Acc

+ gj∂jg
2

︸ ︷︷ ︸
Dr

+ logR(g2)2︸ ︷︷ ︸
VDiss

]
(5)

In Eq. (5), terms on the first line of the right-hand-
side represent, from left to right, advection, produc-
tion, diffusion and dissipation, respectively. On the sec-
ond line are the variable diffusivity terms. We name
these terms from left to right accretion, drift and vari-
able diffusivity dissipation, respectively. We normal-
ized all these terms by the large scale quantity Nc =
〈g2〉c〈u〉c/h1/2.

Figure 4 presents the sum the advection, production,
diffusion and dissipation terms, conditionally averged.
We find that the constant diffusivity terms mostly vary
in the vicinity of the TNTI. We notice that the scalar
gradients are generated outside the TNTI, and de-
stroyed inside. In the core, the decay of this quantity is
homogeneous, which is in agreement with our observa-
tions.

Regarding the diffusivity gradient terms, Fig. 5 the
sum of the accretion and drift terms. These quantities
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FIG. 4: Conditional average of constant diffusivity terms in
Equation (5) at t = 25, for different diffusivity ratios R.

are null inside the jet. In the vicinity of the TNTI, we
find that these terms peak at an order of 40% of the con-
stant diffusivity terms. The diffusivity gradient terms
highly contribute to the dynamics of the scalar gradient.
The accretion and drift terms are multiplied by logR,
and are expected to change sign whether the jet is more
or less diffusive than the outer-flow. Depending on the
orientation of the mean diffusivity gradient, the diffusiv-
ity gradient terms are either aligned or opposed to the
constant diffusivity terms. This variable alignement is a
direct source for the conditional scalar dissipation rate
dissymmetry. This behavior can be explained by the
fact that the accretion and drift terms are multiplied
by logR. The variable diffusivity dissipation VDiss is
found to be two orders of magnitude smaller than the
accretion and drift terms, but remains always positive,
as it depends on (logR)2(g2)2.
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FIG. 5: Conditional average of Acc+Dr in equation (5) at
t = 25, for different scalar ratios R.

When diffusivity is locally smaller, the local Kol-
mogorov and Batchelor length scales are smaller, and
the kinetic energy together with the scalar variance
cascade towards smaller scales. This effect generates
sharper structures, and therefore locally larger velocity
and scalar gradients.

In conclusion, we analysed a variable viscosity and
mass diffusivity temporal turbulent jet. The core scalar
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dissipation is unaffected by the diffusivity variations in
the self-preserving regime, which confirms the scalar
counterpart of Taylor’s postulate in the fully developed
region. Nevertheless, when conditionally averaged on
the distance to the Turbulent/Non-Turbulent Interface
(TNTI), we find an intense and persistent effect of the
mean diffusivity gradient on the scalar dissipation, even
in the self-preserving regime. This result demonstrates
that the scalar at the TNTI remains active for a very
long duration, even if it is passive inside the jet core as
soon at self-preservation is reached.

To find a physical explanation to this discrepancy, we
further investigate the two-point transport equation of
the scalar second-order strauture function, for the par-
ticular case of variable diffusivity case. We further as-
sess this budget conditioned on the TNTI. We find that
the diffusivity gradient related terms contribute to the
one-point budget only in a very shallow region in the
vicinity of the TNTI. Depending on the respective ori-
entation of the initial diffusivity gradient with respect
to the shear, these terms are either source or sink terms.
We find a non-local counterpart to the diffusivity gradi-
ents that are also asymmetric with the diffusivity profile
at the initial time.
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5.6 Conclusion

In this chapter, we studied a temporally evolving turbulent plane jet, with variable viscosity

and mass diffusivity. We focused on the kinetic energy pseudo dissipation and scalar dissipation

rates. These quantities are directly linked to mixing, and especially to turbulence closure

modeling. We assessed this problem using two statistical approaches. First, conventional

statistics consist in averaging over planes at fixed cross-wise direction. Second, conditional

statistics focus on averaging by conditioning on the distance to the so-called Turbulent/Non-

Turbulent Interface (TNTI). The behavior of this flow was studied with respect to the initial

viscosity and mass diffusivity distribution, which we refer to as diffusivity, for simplicity. The

results can be summarized as follows.

1. Using the conventional statistics approach, we found that the flow is self-preserving

after some time. The mean and second-order one-point statistics of velocity and scalar

were found to follow temporal power laws at the center-plane of the jet. Then, we

computed the diffusivity statistics temporal evolution at the center-plane, and found

an early dissimmetric behavior on the turbulence intensity of this quantity. This

discrepancy is smoothed as the self-preserving regime is reached. Then, we evaluated

the kinetic energy pseudo dissipation and scalar dissipation rates in a conventional

manner temporally at the center-plane. We found that these quantities quickly become

independent of the initial diffusivity inhomogeneities, and they respectively collapse

towards the same self-preserving decay curves. The spatial profiles of these dissipation

rates in the cross-wise direction were also found to collapse, within the numerical

accuracy.

2. The statistics are then computed in a conditional manner, in the self-preserving regime.

We found that all the statistics vary by large magnitudes over a very shallow region

inside the TNTI. The jet therefore consists of a very homogeneous turbulence core,

surrounded by sharp gradients at the vicinity of the TNTI. Also, the thickness of the

region over which the statistics vary from the outer flow to the fully developed core

depends on the initial diffusivity inhomogeneity. The gradients are found to be thinner

and more intense when the jet is initially more viscous than the surrounding fluid.
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Moreover, we found that the conditional mean and second-order moment of diffusivity

remains dissimmetric, even in the self-preserving regime. The early dissymmetry that

was observed to vanish in the conventional center-plane average persist for a much

longer time, at the vicinity of the TNTI. The conditional scalar dissipation rates are

equal in value in the fully turbulent core of the jet, but can largely differ at the vicinity

of the TNTI.

Finally, we presented a paper that is to be submitted in the near future. In this paper,

we evaluated the one-point budget of the scalar gradient vector norm, in a conditional manner.

We found that the variable diffusivity terms contribute differently to this budget, depending

on the local orientation of the diffusivity gradient with respect to shear. We conclude from

this part that the scalar can remain active intensely and persistently at the vicinity of the

TNTI. This feature manifests through scalar gradients at the edge of the flow, which cause a

strong dependence of scalar dissipation rate on the initial diffusivity distribution.
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General conclusion and perspectives

In turbulent mixing, temperature and chemical concentration can actively contribute to the

flow dynamics, through density and/or viscosity variations. In free jets, a noticeable effect of

active scalars is the enhancement of the growth of turbulence after the injection in two cases.

When the jet fluid is lighter, or more viscous.

The aim of this thesis was to explore two different types of active scalar jets. First,

a spatially evolving variable density round jet, and second, a temporally evolving variable

viscosity and mass diffusivity plane jet. We started, in Chapter 2, by setting the theoretical

ground for incompressible flows, in general. A discussion of active scalar flows was presented,

considering the role of temperature and chemical species concentration. We highlighted the

subtle differences between these two fields, and the mechanism by which they couple to the

velocity fields. In the following, we summarize the results obtained for each of the active

scalar flows studied in thesis, separately.

Variable density round jet

In Chapter 2, we chose chemical species as an active scalar. Considering isochoric mixing,

a natural change of variable is derived to take large density variations into account in the

chemical species conservation equation. We refer to this new field as pseudo mass fraction.

We derived generalized scale-by-scale Kolmogorov and Yaglom equations, in this type of

flows. These budgets are written in such form that the constant density case is recovered,

as a control parameter tends to zero. In particular, the Yaglom equation is written using

pseudo mass fraction, and the Kolmogorov equation is written for a specific form for the

kinetic energy.
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We designed an experiment that allows to simultaneously measure the velocity and scalar

fields, in the very near field of the jet. The details of the experimental measurements are

given in Chapter 3. Momentum and density variations were adjusted through the Reynolds

and Archimedes numbers, respectively. In Chapter 4, we assessed the combined effect

of momentum and density deficit on the one-point, two-point and TNTI statistics of the

very-near field of the jet. The main results of this part are summarized in the following.

1. Focusing on low-order statistics at fixed downstream position in the very near field, we

found that most velocity and scalar quantities depend nonlinearly on momentum and

density variations. In particular in the non-Boussinesq regime, the scalar turbulence

intensity at the axis follows two very distinct regimes, separated by the critical line

Recrit = 24000 − 4
3
(Ar − 5000). Below this line, the axis scalar turbulence intensity

is insensitive to changes in Archimedes numbers. Whereas above the critical line,

this quantity at the axis is independent of the Reynolds number. These regimes also

manifest in the conventionally and conditionally averaged radial statistics of the scalar

turbulence intensity.

2. Based on our finding, we computed the two-point statistics at fixed Archimedes number,

for different Reynolds numbers, and at fixed Reynolds number for different Archimedes

numbers. In both cases, the critical line is crossed. We found that large density variations

incorporate an additional length scale in the pseudo mass fraction cascade, when crossing

the critical line from below. Consequently, pseudo mass fraction fluctuations are not

transported to smaller scales at a higher rate, but their spatial propagation is more

intense. These fluctuations spread faster within the flow, when the critical line is crossed

from below.

We conclude from the variable density jet study that the combined effect of momentum and

density variations on the initiation of mixing is non trivial. In the non-Boussinesq regime

(Ar > 5000), the critical line defined by Recrit = 24000− 4
3
(Ar − 5000) delimits two regimes

that show different dynamics in scalar turbulence intensity. We identified these regimes in

conventional axial and radial averages, TNTI conditional averages, and in scale-space through

nonlinear inter-scale and inhomogeneous transports of pseudo mass fraction.
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Variable viscosity and mass diffusivity plane jet

In Chapter 2, we derived a variable viscosity and mass diffusivity set of equations. The wide

variety of state equations for these quantities is discussed, and we make a justified choice.

This flow was assessed by Direct Numerical Simulations (DNS) of temporally evolving plane

turbulent jets, in Chapter 5. Here, we chose to equate viscosity and mass diffusivity, and refer

to this quantity as the diffusivity. These simulations were performed by Dr M.Gauding in our

research group. The focus was put on kinetic energy and scalar dissipation rates. Statistics

were evaluated in two different manners. First, conventional statistics, where we averaged

over cross-wise planes. Second, conditional statistics where the average is performed in the

vicinity of the TNTI. Here, we summarize the results of this part.

1. We found, by conventional averaging at the center-plane, that the jet reaches a self-

preserving regime kinetic energy and scalar dissipation rates collapse in this regime

at the center-plane, independently of initial diffusivity inhomogeneities. In the self-

preserving regime, we found that the conventionally averaged spatial profiles of these

quantities also collapse, within reasonable accuracy.

2. The conditionally averaged kinetic energy and scalar dissipation rates do not collapse

in the self-preserving regime, for different initial diffusivity distributions. To assess

this discrepancy, we focused on the diffusivity and velocity and scalar gradient norms,

conditioned on the TNTI. These quantities were found to remain affected to diffusivity

variations, even in the self-preserving regime. Depending on whether the outer-flow is

more or less diffusive than the jet, gradients of diffusivity and scalar show an intense

peak in the vicinity of the TNTI.

We conclude from this part, that gradient fields, in the vicinity of the TNTI, do not adapt

fast enough to diffusivity variations. We add physical insights to this effect by deriving the

scalar gradient norm transport equation, and evaluating its different terms in a conditional

manner. These results are attached in a paper that is soon to be submitted.
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General conclusion

It is well known that active scalar flows show a dissymmetric response compared to passive

scalar flows. This dissymmetry depends on whether the injected fluid is more or less dense

and/or viscous than the host fluid. It is also believed that these discrepancies are quickly

smoothed by the turbulent flow.

In a variable density jet, we found that combinations of momentum and density variations

lead to new dynamics, compared to momentum or density variations taken separately. These

nonlinear variations manifest through conventional axial and radial averages, TNTI conditional

averages, and in scale-space through nonlinear inter-scale and inhomogeneous transports of

pseudo mass fraction.

In the variable viscosity and mass diffusivity case, we found a localized active scalar

effect that is intense and persistent, in the self-preserving regime. This effect manifests at the

vicinity of the TNTI through statistics of kinetic energy and scalar dissipation rates, velocity

and scalar gradient norms, and viscosity and mass diffusivity together with their gradients.

We conclude from this thesis two main results. First, a dissymmetry is a simplistic view

of active scalar flows, because momentum also has to be considered as a free parameter.

Second, active scalar effects persist at the edge of a free shear flow, even at late times when

the scalar is almost passive inside the core.

Perspectives

In the variable density jet experiment, we did not have access to the smallest scales of the

flow. This is due to the limited scale separation that PIV offers. A potential solution would

be to combine the same configuration that we retained with an additional stereo-PIV set of

cameras. This new pair of cameras would be zoomed in a smaller region of the flow, in order

to have a better estimate of smaller scales. Doing so, we could apply the same method that

we used in the temporally evolving jet DNS, on the variable density experiment. Also, in our

study, we measured very close to the injection. In order to match our measurements with

literature, we need to measure up to twenty jet diameters downstream. Realizing this new

experimental setup would allow us to measure precisely the Taylor based Reynolds number.
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In the DNS, we made multiple arbitrary choices. We equated the viscosity and mass

diffusivity, and chose a specific form of the state equation. This choice led to unity Schmidt

number, locally and instantaneously over the computational domain. Nonlinearity of the

state equation is a key ingredient for active scalar flows. As a perspective, we could consider a

wider set of simulations, with the same state equation but with a prescribed Schmidt number.

This choice would lead to difficulties in locating the TNTI, and requires the development of a

new method. Another approach would be to choose a different state equation, and study

the effect of state equation on the TNTI statistics. In our study, we considered a single

Reynolds number, which is relatively small. As a perspective, a more systematic study, as a

function of the Reynolds and Schmidt numbers would lead to an analogous problem to what

we performed in the variable density jet experiment.

The more general case, which is the combination of density and viscosity variations. In

the single active scalar case, such a flow depends on the Reynolds number, the Archimedes

number, the viscosity ratio, the Peclet number and the Froude number. In this thesis, we

assessed only particular sets of this general problem. The main experimental difficulty is to

find chemical substances that combine all the correct thermo-physical properties to fit in such

a parameter space. On the other hand, performing DNS is too expensive. The perspective

procedure consists in combining experiments and DNS to cover wide regions in small regions

of the parameter space, like fixing the Schmidt and Froude numbers.

Finally, as an additional study, linear stability analysis could be considered to predict the

very first structures that appear after the injection of the jet. This approach could provide a

link to the forcing mechanism that occurs at the largest scales at the end of the potential

core of the jet. Regarding active scalar flows, many studies considered this method. In the

following, we provide a perspective in the shape of a small chapter about linear stability

analysis in active scalar flows.
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A perspective: Linear stability

analysis of active scalar jets

This study is motivated by the observation that, in Figure 1.9, two annular vorticies can be

observed near the potential core. Therefore, we considered LSA as an eventual prediction

for the early coherent structures jets with active scalars. In this section, we first briefly

present LSA. Second, a small literature review on variable density jets is presented. Finally,

we describe some results concerning the stability of variable density jets, and discuss their

consequences as a perspective to this thesis.

LSA and its relationship to turbulence

The large variety of empirical observations of the transition from laminar to non-laminar

states sets a very fertile ground for hydrodynamic stability. To do so, we start from a fixed

point of the dynamical system that is called a base flow Ui. LSA consists in testing the

robustness of this fixed point to infinitely small perturbations. If the perturbations grow, the

flow is linearly unstable. On the contrary, if the perturbations decay and the flow goes back

the fixed point, it is said to be linearly stable.

The LSA literature is almost as old as the Navier-Stokes equations themselves. We do

not aim at performing a review of such a literature. We will focus on recent developments

on the stability of round jets. But, we recall that there are two mechanisms in the LSA

formalism that are responsible for the transfer of energy from the base flow to the perturbed

field. The Orr mechanism, that generates the so-called Kelvin-Helmholtz vorticies in shear

layers, and the lift-up mechanism, that is responsible for streaks in a boundary layer.
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Figure 6.1 sketches Kelvin-Helmholtz vorticies. This instability is believed to be the

main mechanism that generates the first large structures in free shear flows. The structures

break down through secondary instabilities farther downstream an feed a turbulent cascade,

when the Reynolds number is large enough. Such a mechanism is represented in the textbook

of Green (2012).

Figure 6.1: Kelvin-Helmholtz instability sketch. Figure from Davidson (2004).

In the turbulence formalism, after performing a Reynolds decomposition on a fully

turbulent signal ui = 〈ui〉 + u′i, one can derive a transport equation for the kinetic energy

of the velocity fluctuating field (TKE) noted kt = 〈u′2i 〉/2. Analogously, in the stability

frame, we perform a perturbation of the base flow, ui = Ui + ũi. We can derive a transport

equation for the perturbation kinetic energy (PKE) notes kp = ũ2
i /2. Considering, for the

TKE, a statistically homogeneous shear flow on a cubic volume of size V , and for the PKE a

deterministic periodic flow over the same volume, one can spatially integrate the equations.

The volume averaged TKE ktV and PKE kpV dimensionless transport equations read,

TKE,
d ktV
dt

= −2

∫

V

〈u′ku′i〉∂k〈ui〉dv −
∫

V

2

Re
〈(∂ku′i)2〉dv, (6.6)

PKE,
d kpV
dt

= −2

∫

V

ũkũi∂kUidv −
∫

V

2

Re
(∂kũi)

2dv. (6.7)

The apparent similarity of Equations (6.6) and (6.7) is only due to the resemblance between the

Reynolds decomposition and the perturbation around a base flow, even so the mathematical

and physical significance of the fully turbulent and linear stability approaches are diametrically

opposed. The former is statistical, fully non-linear, two-way coupled between the mean and

fluctuating fields, unstationnary and focuses on the large time chaotic dynamics, whereas

the latter is deterministic, linear, one-way coupled between the base and perturbed fields,
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stationary and valid on the very short times only.

In order to illustrate the LSA described in the previous section, we briefly proceed to

the derivation of the classical Orr-Sommerfeld equation in Cartesian coordinates. We will list

the hypotheses during the derivation, in order to discuss the implications of each of them

regarding the LSA we will perform in active scalar shear flows.

H1, Suppose the existence a fixed point of the Navier-Stokes equations in the form of a

parallel base flow (U(y), 0, 0). When the flow is indeed parallel, this type of laminar solutions

can always be built by adjusting the pressure gradient in the streamwise direction.

H2, Linearize around the base flow through a very small perturbation, so that u =

(U(y) + ũ, ṽ, w̃), where (ũ, ṽ, w̃)� U . The quadratic perturbation terms are neglected.

H3, We suppose that the perturbations are periodic, in the form of normal modes

ũ = û(y)ei(αx+βz−αct). This hypothesis allows to perform a Fourier-Laplace transform, which

converts the linear differential operators ∂t, ∂x and ∂z into multiplications by −ic, iα and iβ,

respectively. The result is a set of ordinary differential equations in the cross-wise direction

only d/dy.

H4 Next, we make use of the Squire theorem (Squire, 1933), that states that there is

a preferential direction in which the system is most unstable. This theorem reduces the

problem to a 2-D flow in the least stable direction k =
√
α2 + β2.

H5 The usual procedure at this stage is to eliminate the pressure and to reduce all the

system to a single equation on the crosswise velocity perturbation v̂. This last step results in

the Orr-Sommerfeld equation Orr (1907a,b); Sommerfeld (1908)

(
(U − c)

[
d2

dy2
− k2

]
− d2U

dy2

)
v̂ =

1

ikRe

[
d2

dy2
− k2

]2

v̂. (6.8)

H6 The usual approach to solve this equation consists in considering that k ∈ R and

c ∈ C : c = cr + i ci. The sign of ci controls the exponential growth of the periodic

perturbations through time. For a given velocity profile U(y) and boundary conditions, we

perturb the system at a certain real wave length k and test the sign of ci, so that ci > 0

implies that the system is linearly unstable, and ci < 0 the system is linearly stable. Solving

the Orr-Sommerfeld equation leads to a dispersion relation ci(k; Re) that represents the

stability of the base flow.
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This approach has proven to fail in many situations. This is due to the oversimplifications

of the above listed hypotheses. We will discuss briefly the reasons of this failure, by listing

the hypotheses, starting from the last one

• H6, The true problem is spatio-temporal (k, c) ∈ C2. This feature leads to the concept

of convective and absolute instabilities (Huerre & Monkewitz, 1990).

• H5, The combination of the equations hides part of the problem. The Orr-Sommerfeld

equation is one-way coupled to the equation that governs û, which is referred to as the

Squire equation Squire (1933). This equation is responsible for the lift-up effect, that is

inherently three dimensional.

• H4, Rayleigh (1878) claimed that at a macroscopic scale, only the most unstable mode

is observable because the growth is exponential. Nevertheless, when the purpose is to

find patterns in the unstable flow, it is necessary to compute the whole spectrum. In

boundary layers, the perturbation has to be studied in the (α, β) plane, because the

most unstable mode can be oblique.

• H3, The normal mode hypothesis, which is referred to as the modal approach, has

two consequences. First, if a system is found to be linearly stable, the perturbations

can reach a large amplitude before decaying to the base state, which could trigger

a non-linear transition in finite time. In order to correct this, non-modal stability

was developed Schmid (2007). Second, the perturbations are supposed to be spatially

periodic, this is called local stability analysis. In order to allow the perturbations to

grow locally, the global stability analysis was developed Theofilis (2011).

• H2, In many flows, the validity of the linearization is narrow. For example, in boundary

layers, the transition is nonlinear above a perturbation intensity of 0.8%. In order to

capture these effects, a weakly-nonlinear stability analysis is necessary Wu (2019).

• H1, A jet spreads with the streamwise coordinate as δ ∼ x. The base flow is slowly

varying in the streamwise direction. In order to take this variation into account, weakly

non-parallel Crighton & Gaster (1976) and fully non-parallel Shtern & Hussain (2003)

methods were developed.
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Relationship to turbulence

Recently, a new kind of LSA has been developed, since the work of Barkley (2006). This

author proposed to use a turbulent mean flow velocity profile as a base state for LSA of a

cylinder wake. The Reynolds number of this wake flow was just above the critical value for

the von-Kármán street to appear. Using this approach, this author was able to predict some

features of the nonlinear regime, using a LSA approach.

The question of the comparability of LSA and turbulent flows has important implications,

both fundamentally and for applications. This topic receives a lot of attention since a few

years. Beneddine et al. (2016) give a general criterion for the validity of such a comparison.

One of the results of this study is the error is a strong function of the turbulence intensity in

the flow, when performing LSA using a statistical averaged profile. More precisely, if in some

flow coherent structures are present, the departure of the predictions depend on the intensity

of the fluctuations around these coherent structures.

Particular cases where LSA of statistical fields give strikingly good results exist. Com-

bining this approach with the global stability analysis theory Chomaz et al. (1991); Theofilis

(2011) gave rise to a large amount of work. In confined flows, with persists coherent motion,

this method has been proven to be very efficient. For example, Paredes et al. (2016) compared

predictions from global stability analysis, with Proper Orthogonal Decomposition of PIV

data inside a combustor. The LSA was performed using a closure model for the Reynolds

stresses, and the purpose was to evaluate the dynamics of the persistent coherent structure

that is present inside the combustor. The eigen-vectors of the globally unstable modes were

found to collapse almost perfectly with the PIV measurements, and the turn-over time of the

coherent structure was estimated with an error of only 17%.

The purpose is a of this discussion is to give a perspective to comparisons between LSA

predictions and experimental measurements of our round jet. Such an approach is out of the

scope of the present thesis, but as shown in Figure 1.9, we clearly distinguish large vortical

structures on some frames of our PIV measurements, at our lowest Reynolds numbers. In

this perspective, we perform a small study of a variable density jet. Next, we review some

literature on this topic.
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Review of the LSA of variable density jets

The literature on free shear flows LSA is very rich. Here, we present a brief review of round

jets with passive scalar and variable density jets, focusing on the points that are related to

our study.

Passive scalar round jets

This problem is treated in cylindrical coordinates (r, θ, x), where the base flow is parallel along

the axial direction, and inhomogeneous in the radial direction (0, 0, U(r)). The perturbations

take the form ũ(r, θ, x, t) = û(r)ei(kx+mθ−kct), where k and m are the axial and azimuthal

wave numbers, respectively. It is worth noticing that there is no equivalent to the Squire

theorem in cylindrical coordinates, because of the form of the differential operators in this

frame of coordinates. The perturbations are necessarily two-dimensional. Depending on the

shape of the base velocity profile, the most unstable spatial mode can either be axisymmetric

(m = 0), or helical (m = 1). The main parameter that influences the azimuthal wave number

of the most unstable mode is the momentum thickness of the injection velocity profile. The

procedure to evaluate the effect of the momentum thickness was introduced by Michalke

(1964),

U(r) =
1

2

(
1 + tanh

[
Dj

8δm

(
1

r
− r
)])

, where, δm =

∫ ∞

0

[
1− U(r)

Uk

]
U(r)

Uk
dr, (6.9)

δm is the momentum thickness. When the momentum thickness is small, the dominant

mode is axisymmetric, whereas when the momentum thickness is large the dominant mode is

helical. Figure 6.2 shows the destabilization of a very this vorticity sheet. Jimenez-Gonzalez

et al. (2015) showed that the critical value δm,crit for the transition between axisymmetric

and helical modes is a function of the jet Reynolds number. These authors provide the

empirical correlation δm,crit/Dj = 1/(720/(Re− 33.8) + 19.12). For a fixed inlet geometry, the

momentum thickness depends on the development of the boundary layer in the nozzle, which

in turn is affected by the injection Reynolds number. To take this effect into account, Garnaud

et al. (2013a,b) include the inner laminar boundary layer in their numerical computational

domain, whereas Kyle & Sreenivasan (1993); Hallberg et al. (2006) measure the momentum

thickness for different Reynolds numbers or nozzle length in their experiments.
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Figure 6.2: Axisymmetric instability of a cylindrical vorticity sheet, from Wille (1963).

Abid et al. (1993) showed that, in the modal approach, it is possible to make an asymptotic

expansion of the cylindrical problem in the limit of vanishing momentum thickness δm/Dj → 0.

These authors demonstrated that in this limit, the cylindrical problem can be approximated

by the Cartesian problem with an error of the order O(δm/Dj). This result allows us to

restrict our study to plane jets. The advantage of this simplification is the use of the Squire

theorem and the use of Orszag (1971) method in Cartesian coordinates1.

In Cartesian coordinates, the equivalent of the cylindrical vorticity sheet is the pair of

parallel vorticity sheets. Applying the Squire theorem, the azimuthal mode (m = 1) does not

have a plane jet counterpart in the modal approach. On the contrary, the analogues of the

axisymmetric (m = 0) mode in Cartesian frame are the varicose and sinuous modes. These

modes are characterized by the symmetry of their respective vertical velocity eigen-functions.

The varicose mode velocity is odd, which represents a symmetric oscillation of the vorticity

sheets. On the contrary, the sinuous mode velocity is even, and represents an oscillation of

the flow in a snake like movement. Many recent studies focus on non-modal (Boronin et al.,

2013; Garnaud et al., 2013a; Jimenez-Gonzalez et al., 2015; Jimenez-Gonzalez & Brancher,

2017; Montagnani & Auteri, 2019) and non-parallel (Shtern & Hussain, 2003; Mullyadzhanov

et al., 2019) effects on the linear stability of jets.

1The cylindrical formulation of the Orszag algorithm requires a lot more caution (Jimenez-Gonzalez et al.,

2015, Appendix B).
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Variable density jets

Light jets issuing into a quiescent fluid can show a self-sustained oscillation close to the

injection, when the density ratio is low enough (Monkewitz & Sohn, 1986). This oscillation

is linked to a convective/absolute transition. Many experimental investigations determined

a critical value of the density ratio for this transition to occur. The experimental results

showed a large scattering from an author to another. Hallberg et al. (2006) showed that this

problem depends on the jet Reynolds number, the momentum thickness δm of the velocity

profile, and on the density ratio Rρ = ρj/ρc, giving a general law for the oscillation frequency

that was able to collapse all the available experimental data.

Hallberg et al. (2007) suggest that a very weak co-flow can dramatically change the

absolute instability appearance. Srinivasan et al. (2010) confirmed, through LSA, that small

co-flow velocities can highly alter the absolute instability. In addition, these authors showed

that the density gradient thickness is also a parameter to this problem, when the base profiles

are not top-hat like.

For an inviscid parallel pair of vorticity sheets with density jumps, Yu & Monkewitz

(1990) gave an analytical dispersion relation that comprises both jets and wakes. This result

was generalized by Juniper (2006) to the case of a confined geometry and for two-phase jets.

Ravier et al. (2006) studied variable density Bickley jets, using a classical Taylor-Goldstein

equation. These authors, as most of the variable density jets literature, focused on the

prediction of the convective/absolute transition, as a function of the density ratio and for

different velocity base profiles. They performed both a temporal and spatial approaches,

using a shooting method to follow the modes in spectral space. We will use some of these

authors results as validation for our linear stability study.

More recently, some studies consider the global stabiltiy analysis of compressible jets

(Lesshafft et al., 2019; Pickering et al., 2020). The purpose of these studies is to identify the

dominant linear amplification mechanism as a function of the Reynolds and Mach numbers.

This approach is out of the scope of our work.
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Study of a variable density jet

In this section, we derive a new variable density LSA equation. We expose a preliminary

study on the stability analysis of variable density jets, together with the relationship with

experimental measurements.

Generalized Taylor-Goldstein equation

We employ the set (2.23)-(2.25) in the local modal linear stability framework. We linearize

this set of equations around a base state as follows (u, v, w, p) = (U+ũ, ṽ, w̃, P+ p̃) and for the

pseudo mass fraction ϕ = Φ + ϕ̃, and apply the procedure described for the Orr-Sommerfeld

equation. In order to simplify, we consider an inviscid fluid (Re → +∞). We find

[
A1 + a

(
A2 +

1

Pe
A3

)]
v̂ + a

[
1

Pe2A4 + Fr 2(A5 +A6)

]
ϕ̂ = c(B1 + aB2)v̂, (6.10)

A7v̂ +

[
A8 +

1

Pe
A9

]
ϕ̂ = cB3ϕ̂, (6.11)

with

A1 = α
(
U
[ d2

dy2
− (α2 + β2)

]
− d2U

dy2

)
; A2 = α

(
dΦ

dy

dU

dy
− U dΦ

dy

d

dy

)
;

A3 = i
d4Φ

dy4
+ i

d3Φ

dy3

(
3
d

dy
− adΦ

dy

)
+ i

d2Φ

dy2

(
5
d2

dy2
− 2a

dΦ

dy

d

dy
− (α2 + β2)

)

+ i
dΦ

dy

(
2
d

dy
− adΦ

dy

)[ d2

dy2
− (α2 + β2)

]
; A4 = i

(
d

dy
− adΦ

dy

)[ d2

dy2
− (α2 + β2)

]2

;

A5 = −(αgx + βgz)

(
a
dΦ

dy
+

d

dy

)
; A6 = i(α2 + β2)gy; A7 = −idΦ

dy
; A8 = Uα ;

A9 = i
[ d2

dy2
− (α2 + β2)

]
; B1 = α

[ d2

dy2
− (α2 + β2)

]
; B2 = −αdΦ

dy

d

dy
; B3 = α,

where gi is the projection of the gravity direction on axis xi. The set of equations (6.10)-(6.11)

is a generalization of the non-Boussinesq Taylor-Goldstein equation (Drazin & Reid, 2004).

Notice that the linear differential operators Ai and Bi do not always commute with the

base flow so that AiΦ means the application of the operator to Φ, whereas ΦAi indicates a

multiplication. To avoid misleading notation, all operators have been suitably applied to the

base flow.
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This generalized Taylor-Goldstein equation is valid for binary mixing of diffusive and

buoyant chemical species, with arbitrarily oriented gravity and three dimensional pertur-

bations. The derivation of Equations (6.10)-(6.11) follows the same procedure as for the

Orr-Sommerfeld equation, with an explicit accounting of the time derivative of the pseudo

mass fraction perturbation in Equation (6.10). Because we started with the set of equations

(2.23)-(2.25), the state equation (2.21) is implicitly used through the term e−aϕ. Next, we

discuss the relationship between our generalized equation and its particular cases.

In comparison with the usual Rayleigh equation, all the additional terms are due to

density variations. If a→ 0, the only terms that remain are A1 and B1 in equation (6.10),

and the pseudo mass fraction becomes a passive scalar, i.e. the system is one-way coupled

and equation (6.11) can be removed. When the density is variable a 6= 0, some sub-cases can

be identified, depending on the magnitude of the dimensionless numbers of the problem.

When molecular diffusion is neglected, Pe → +∞, and the operators A3, A4 and A9 are

dropped, and the velocity perturbations are divergence free. In addition, if buoyancy is also

neglected, Fr → 0, and A5 and A6 are dropped. Notice that density variations still have an

impact on the stability of the flow through A2 and B2, even in a non-diffusive non-buoyant

flow. These particular operators can only be removed if the density variations are very small

in a buoyant flow, and by applying the Boussinesq approximation. The non-diffusive and

non-buoyant case has been studied in the literature for plane jets (Monkewitz & Sohn, 1986;

Yu & Monkewitz, 1990; Raynal et al., 1996; Ravier et al., 2006, among many others).

When buoyancy is considered Fr 6= 0, the orientation of the gravity vector gi plays a

role on the dynamics. If the gravity is oriented in the crosswise direction y, A5 drops. This

case has extensively been studied in the literature through the Rayleigh-Taylor instability

when (Φ′ < 0) (Kull, 1991; Boffetta & Mazzino, 2020), and through the stably stratified flows

(Φ′ > 0) (Mashayek & Peltier, 2012a,b). If the gravity vector is oriented in the (x, z) plane

A6 drops, and the perturbations are two-dimensional in general.

If molecular diffusion is taken into account Pe ∈ R, the velocity field is not divergence

free. This effect has been taken into account in the Rayleigh-Taylor configuration, but

received much fewer attention for shear flows (Duff et al. (1962), for shear layers, Nichols

et al. (2007), for round jets).
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Considered flow configuration

We consider a temporally evolving variable density Bickley jet. The velocity and pseudo mass

fraction base profiles are,

U(y) =
1

1 + sinh2(y)
, and Φ(y) = −1

a
log
(

1− a

1 + a
U(y)

)
, (6.12)

respectively. When a = 0, the pseudo mass fraction converges to a passive scalar, and it is set

to be equal to the velocity profile. Figures 6.3(a) and (b) represent the base velocity profile

that we consider, together with some pseudo mass fraction profiles for various values of Rρ,

respectively.
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Figure 6.3: Base velocity (a) and pseudo mass fraction (b), for various density ratios Rρ.

In our study, we will consider the effect of variable density coupled with mass diffusivity,

on an inertial plane jet, with cross-wise perturbations only.
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Resolution method and validation

In order to resolve the generalized Taylor-Goldstein equation (6.10)-(6.11), we make use of a

spectral collocation method to discretize the differential operators, as developed by Orszag

(1971). This method consists in projecting the equations with Tchebychev polynomials as

test functions, and solving using Gauss-Lobatto quadrature to evaluate the projection. The

algorithm that we developed is very similar to (Schmid & Henningson, 2001, Appendix A).

The procedure consists in the choice of a mapping function between spectral space and

physical space. We choose y = tan(πs/2)/2, where s ∈ [−1, 1] is in spectral space. For

validation of our code, we compare our results to Ravier et al. (2006). Figure 6.4 shows

the variation of the two most unstable modes in a constant density Bickley jet, namely the

sinuous and varicose modes.
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Figure 6.4: Sinuous and varicose instability modes dependence on the real perturbation wave

number, for different number of collocation points. Here, Rρ = 1. We also reproduced data

from Figure 2(a) of Ravier et al. (2006).

We find that the two most unstable modes, namely the varicose and sinuous modes, are

well evaluated when N = 100, as shown in Figure 6.4. We see a slight lack of convergence

around k = 0.5 for the varicose mode. In order to ensure the quality of the resolution, Figure

6.5 (a) and (b) represent the associated eigen-vectors to the sinuous and varicose modes,
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respectively, at k = 0.5. The sinuous v̂ velocity eigen-mode is even, whereas the varicose v̂

velocity eigen-mode is odd. We confirm this feature in Figures 6.5, and validate that these

functions are well converged when N = 100.
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Figure 6.5: Eigen-vectors associated with the sinuous mode (a) and the varicose mode (b),

for k = 0.5 and Rρ = 1, for different number of collocation points.

To show the validity of the density variations part of equations (6.10)-(6.11), we reproduce,

in Figure 6.6, the density ratio dependence of the two most unstable eigen-modes in this flow.

We find a good agreement between the results and the literature, which validates our code.
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Figure 6.6: Maximum growth rate of the two most unstable modes with Rρ. We also

reproduced Figure 3(a) from Ravier et al. (2006).
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Stability analysis of a diffusive variable density jet

Let us now consider the case of finite Peclet number. As a preliminary approach, we evaluate

the full spectrum of the generalized Taylor-Goldstein equation in the inertial case Fr = 0.

Figure 6.7 shows such a spectrum for k = 1 and Rρ = 0.3, for various Peclet numbers. This

spectrum is associated with the most unstable sinuous mode at Rρ = 0.3. The case Pe ∼ 109

is in consistent with the non-diffusive predictions (Figure 6.6). In this case, the sinuous and

varicose modes are depicted by the blue dots that are above the neutral axes, respectively at

kci = 0.1308 and kci = 0.0404.
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Figure 6.7: Full spectrum of the generalized Taylor-Goldstein equation, for k = 1, Rρ = 0.3

and Fr = 0, for various Peclet numbers.

When the Peclet number is lowered to Pe ∼ 600, a large amount of unstable modes

rise from the neutral curve. The sinuous and varicose modes become more unstable, as

represented by the red dots in their upper neighborhood. This tendency increases as the

Peclet number is lowered even more to Pe ∼ 320. We notice an increase in the imaginary

part of the sinuous and varicose modes. This effect is stronger on the varicose mode.
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The sinuous mode remains the most unstable mode, for the three Peclet numbers we show.

We focus now on the eigen-functions associated with this mode. The corresponding cross-wise

velocity eigen-function v̂ is depicted in Figure 6.8(a). This function presents a monotonous

decrease in magnitude with decreasing Peclet number. On the other hand, the pseudo-mass

fraction eigen-function ϕ̂, associated with the same mode is shown in Figure 6.8(b). We find

that this eigen-function is odd, in all cases. The sign of this function is to be interpreted as

a sinuous mode, as this quantity is not a vector like the velocity. When Pe ∼ 109, pseudo

mass fraction is passive, even if density variations influence the velocity through pure inertial

terms (A2 in Equation (6.10)). In this case, ϕ̂ is kinematically transported by v̂, through

Equation (6.11), showing sharp gradients at the edge of the jet. For lower Peclet numbers,

the pseudo mass fraction gradients are globally smoother, at the edge and inside the core.
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Figure 6.8: Eigen-vectors associated with the sinuous mode of cross-wise velocity v̂ (a) and

pseudo mass fraction ϕ̂ (b), in the case k = 1, Rρ = 0.3 and Fr = 0, for various Peclet

numbers.

The purpose of this discussion is to illustrate the effect of finite diffusivity on the LSA

of a variable density jet. In a more systematic way, we now focus on a large variation of

density ratio and Peclet number, by performing a LSA in a (Rρ,Pe) plane. Figure 6.9 shows

such a stability diagram, where we represented the most unstable growth rate max(kci),

normalized by the maximum growth rate at the same density ratio but in the non-diffusive

case max(kci, non-diffusive), in a logarithmic scale.
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Figure 6.9: Stability diagram of the variable density diffusive Bickley jet.

On this diagram, the horizontal line defined by Pe = 105, the quantity depicted equals

unity, and corresponds to the blue line in Figure 6.6. We see two very distinct regimes,

separated by a line in the middle of the diagram. Above this line, diffusivity does not

contribute at all the stability of the problem, which is completely determined by the non-

diffusive response. Below this line, mass diffusivity dominates the instability. Also, the shape

of the separation line indicates that diffusivity does not influence the instability asymptotically

at the density tends to unity Rρ → 1. In this limit, pseudo mass fraction is fewer and fewer

coupled to the dynamics, and the inertial contribution of density variations vanish as well

(though A2 in Equation (6.10)).

The clear separation of these two regimes does not imply that the flow dynamics is

totally independent of mass diffusivity after the very short time where LSA is valid. The

very first Kelvin-Helmholtz vorticies can get damped by diffusivity, even above the line in

the diagram 6.9.
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Conclusion and perspectives

In this part, we made a small review linear stability analysis of active scalar flows. Then,

we derived a new equation to take mass diffusivity variations in a non-Boussinesq variable

density jet into account. This equation, and the algorithm that we wrote to solve it, were

validated by reproducing some results from literature for a non-diffusive jet. We showed the

consistency of our method by a highly non-diffusive case. Finally, we evaluated the effect of

mass diffusivity on a variable density Bickley jet, and found two distinct regimes in a density

ratio-Peclet number stability diagram.

In a more general context, active scalar LSA can be assessed directly using the full

incompressible set (2.1)-(2.5). Performing a linearization, and then combining the resulting

equation leads to a generalization of both the Orr-Sommerfeld and Taylor-Goldstein equations,

that would contain all active scalar effects in one eigen-value problem. To our knowledge, no

study in the literature assessed the stability of an incompressible flow in this point of view.

Nevertheless, viscosity variations were taken into account using the thermal Orr-Sommerfeld

equation (Wazzan et al., 1968; Wall & Wilson, 1996; Govindarajan, 2004; Govindarajan &

Sahu, 2014). This problem has mainly been considered in confined flows, as it directly related

to oil industry applications.

Regarding our jet, Figure 1.9 illustrates a typical scalar field measurement. This particular

image was chosen on purpose to illustrate that turbulence that occurs at 3Dj downstream

can be fed by young vorticies at the injection. This picture is a bit simplistic, as the jet issues

from a fully turbulent pipe regime, and turbulent fluctuations already exist in the flow. We

do not observe vortices in all measurement images. But, at lower Reynolds numbers, we saw

more sustained and persistent vorticies, that could be predictable by LSA. The base velocity

profile is a laminar Hagen-Poiseuille flow, and pseudo mass fraction is a top-hat like profile.

Recently, a lot of work is dedicated to global stability analysis of compressible round

jets (Lesshafft et al., 2019; Pickering et al., 2020). Finally, a long term perspective to this

thesis is to adapt these stability approaches to incompressible jets with variable density

and/or viscosity, together with mass and heat diffusivities. The generalized Taylor-Goldstein

equation (6.10)-(6.11) is a small step in this direction.
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Appendix A

Computation of flow conditions

The aim is to find the jet inlet velocity, co-flow velocity and jet density (uj, ρj, uc), that

correspond to the dimensionless numbers (Re,Ar ,Ctni) that we choose. Then, to find the

mass flow distribution over the six mass flow meters that control the seeding and jet density.

To do so, we solve the nonlinear set of equations

Re =
ρj(uj − uc)Dj

µj
(A.1)

Ar =
gρj(ρc − ρj)D3

j

µ2
j

(A.2)

Ctni =
uk

(u2
d − 1

2
u2
k)

1/2
(A.3)

uk =
ρjujD

2
j + ρcuc(D

2
c −D2

j )

ρ0D2
c

(A.4)

u2
d =

ρju
2
jD

2
j + ρcu

2
c(D

2
c −D2

j )

ρ0D2
c

− 1

2

ρc
ρ0

u2
c (A.5)

ρ0 =
ρjujD

2
j + ρcuc(D

2
c −D2

j )

ujD2
j + uc(D2

c −D2
j )

(A.6)

The jet and co-flow diameters Dj = 10 mm and Dc = 800 mm respectively. The co-flow

is composed of air at T = 50◦C, therefore ρc = 1.09. The jet is composed of a Helium-Air

mixture. The dynamic viscosity ratio pure Helium and pure air is Rµ ∼ 0.93. We evaluated

the viscosity of this mixture when the jet contains the largest Helium mass fraction, using a

Wilke law (Wilke, 1950). We found that this quantity is always very close to the viscosity of

air at T = 50◦C, which we will consider in our study µj = 1.796.10−5 Pa.s.
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The Archimedes number depends only on the jet target density. We exploit this feature

by solving the jet density ρj directly. Then, the problem (Re,Ctni) is numerically solved

by fixing Ctni = 0.7 and the desired Reynolds number. This resolution was performed by

the Matlab function fsolve through a Newton-Raphson method. This algorithm requires a

first guess, and the convergence is not guaranteed because the problem is not parabolic. We

make sure that the solution is correct, by recomputing the dimensionaless quantities with the

solution. If the algorithm does not converge, we manually try a different guess, exploiting the

information that the jet velocity is one order of magnitude larger than the co-flow velocity.

We typically use a guess of 1 m/s for uj and 0.1 m/s for uc.

Once the velocities are computed, it is necessary to adjust the six flow meters for the

optical diagnostics, namely for the jet, pure air, pure Helium, DEHS air for PIV, Anisole

air for PLIF, and for the co-flow, pure air and DEHS air for PIV. Both jet and co-flow are

heated up to T = 50◦, to ensure a precise control of the density variations. In the jet, the

heating system is placed on the pure air inflow, because this fluid has the largest mass flow

rate in most of the flow conditions. Also Anisole is highly flammable, so it was injected far

from the jet pure air. The method that we employed is fixing first an air/Helium ratio in the

jet. The air mass flow rate is then distributed between the three sources, heating, DEHS,

Anisole. We adjusted manually these three mass flow rates to have enough DEHS droplets

for PIV, enough mass flow rate for the heating system not to blow up and enough Anisole for

the PLIF to emit enough signal.

It is important to notice that Anisole is 4 times heavier than Air, so the Archimedes

number decreases when more Anisole is injected in the jet. The mass flow rate of Anisole

depends strongly on the temperature of the seeding device, through its vapor pressure. As

Anisole evaporates, this seeding device cools down. We corrected the injected mass flow

rate of Anisole in real time with a temperature measurement within the seeding device, and

computed the vapor pressure with an Antoine equation from Dreisbach & Spencer (1949).

More generally, we coded a LabView algorithm that computes the Reynolds and

Archimedes numbers in real time, using the measured temperatures and mass flow rates.
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Appendix B

List of conferences

Here, we enumerate the attended conferences, symposia and graduate schools during this

thesis.

1. Pacific Symposium on Flow Visualisation and Image Processing-11, 1-3 December 2017,

Kumamoto, Japan. We wrote a conference paper attached in Appendix C. This paper

is based on our first variable viscosity DNS, realised by DR M. Gauding.

2. John Von-Neumann Institute for Computing Symposium 2018, 22-23 February 2018,

Jülich, Germany. Realized a poster about variable viscosity flows, based on Brahami

et al. (2017).

3. LxLaser-19, 16-19 July 2018, Lisbon, Portugal, gave a presentation on entrainment in

variable viscosity flows, based on the experimental measurements of Voivenel (2016) in

our group.

4. GDR Turbulence, 16-18 October 2018, Nice, France.

5. New Challenges in Turbulence Research V, 7-12 April 2019, Ecole de Physique des

Houches, Les Houches, France.

6. European Turbulence Conference- 17, 3-6 September 2019, Turin, Italy. We gave

a presentation on two-point statistics in variable density round jets, based on our

measurements.
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Appendix C

Publications

In this appendix, we attach two papers. First, a conference paper on a variable viscosity

temporally evolving jet. Second, an accepted paper on a temporally evolving jet flame.
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The 11th Pacific Symposium on Flow Visualization and Image Processing
1-3 December 2017, Kumamoto, JAPAN

CONDITIONAL AND CONVENTIONAL STATISTICS

OF VARIABLE VISCOSITY JET FLOWS

Y. Brahami1, M. Gauding1, E. Varea1, and L. Danaila1

1CORIA UMR 6614, University of Rouen, St Etienne du Rouvray, France

Abstract
This study aims to evaluate the effect of variable

viscosity a planar temporal jet, computed with direct
numerical simulation (DNS). Classical turbulence
quantities are treated using both conventional and
conditioned statistics. This study shows that the
conventional statistics are mostly unable to divulge the
effects of variable viscosity, whereas the conditioned
statistics are more suited to reveal these subtle effects.

Introduction
Theoretical developments in hydrodynamic

turbulence assume constant thermo-physical
properties for the studied fluid. In realistic situations,
this consideration is rarely reached. Mixing two fluids
may involve density and/or viscosity differences. The
case of variable density turbulent flows has been
studied extensively in the literature Chassaing et al.
[2002]. In contrary, the case of variable viscosity flows
did not rise so much interest. Because turbulence
mixes the fluids very strongly, it has been assumed
that the asymptotic case where the scalar field is
close to homogeneity is reached fast, hence variable
viscosity has a negligible effect on the fully turbulent
fields. In industrial applications, the encountered
flows rarely have enough time to reach this fully
established state, and most of the relevant phenomena
occur during the transition phase. On the purpose
of understanding the mixing processes including the
transition phase, it is of great interest to evaluate the
effect of variable viscosity.

The first study of the effects of viscosity is due to
Campbell and Turner [1986]. They studied the case
of the injection of a fluid into a more viscous fluid.
The purpose was to evaluate the effect of different
viscosities on the mixing of magmas. It has been
noticed in Cabra et al. [2005], Voivenel et al. [2017]
that the morphology of a variable viscosity flow can
be very different from that of a constant viscosity
flow. The influence of viscosity stratification in channel
flows has been studied in the frame of linear stability
analysis by Govindarajan [2004], Govindarajan and
Sahu [2014]. Variable viscosity effects compete with
the destabilization due to the shear, and it can have
a stabilizing or even more destabilizing effect on the

flow.
When a shear flow develops inside a laminar flow,

two regions distinguish by their turbulence intensity.
These two regions are separated by a thin layer
that is called the turbulent/non-turbulent interface
(T/NT or interface). The improvement of DNS in
the past decades has permitted to access very precise
information about the phenomena that occur at the
T/NT. As reviewed in detail by da Silva et al. [2014],
the detection of the interface is arbitrary and based on
a threshold criterion, generally on the vorticity or the
scalar fields. Studies have shown that the evolution
of one point turbulent quantities through the T/NTI
are of high relevance to explain mass entrainment
and the development of turbulence, [Phillips, 1955,
Westerweel et al., 2009, Taveira and da Silva, 2013].
This method has been applied to a wide variety of
turbulent flows, as shear layers and boundary layers,
but always with constant viscosity. As shown by Bisset
et al. [2002], conditioned statistics approach reveals
a particular evolution of the statistics through the
interface. This evolution is not unrevealed by the
conventional averaging. The thickness of the T/NT in
jets is of the order of the Taylor length-scale λ, da Silva
et al. [2014].

This study aims to highlight the influence of
varying viscosity on turbulence by using conventional
and conditioned statistics. This article is structured
as follows. First, we introduce the DNS that we
used. Second, a detailed post-processing technique is
described, and the considered cases presented. Then,
one point turbulent quantities are examined, focusing
on the scalar fields. The conventional and conditional
approaches are applied to the scalar concentration and
scalar dissipation, then compared. Finally, concluding
remarks are exposed.

Post-processing technique
DNS details

Direct numerical simulation (DNS) of a temporally
evolving turbulent plane jet flow was performed as
described by Gampert et al. [2014], Gauding et al.
[2015] and Hunger et al. [2016]. The DNS solves
the non-dimensional incrompressbile Navier-Stokes
equations and was carried out on the supercomputer
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JUQUEEN at research center Juelich (Germany)
with a hybrid MPI/OpenMP parallelization. The
high resolution of the DNS captures local gradients
of the viscosity and velocity fields and allows to
detect the turbulent/non-turbulent interface with
high accuracy. In the following, details of the
DNS algorithm are summarized. The non-linear
term of the momentum equation is formulated in
skew-symmertic form to reduce aliasing errors. Spatial
derivatives are computed by a sixth-order implicit
finite difference scheme Lele [1992]. Temporal
integration is performed by a low storage, fourth
order Runge-Kutta scheme and the Poisson equation
is solved in spectral space by employing a Helmholtz
equation. The computational domain has periodic
boundary conditions in stream-wise Ox and span-wise
Oy directions, while free-slip boundary conditions are
used in the cross-wise Oz direction. The flow is
statistically homogeneous in xOy planes. Conventional
statistics are averaged over these planes and depend
only on time t and the cross-wise coordinate z. The
non-dimensional size of the domain is Lx = 6π, Ly =
6π and Lz = 12.5, discretized by 2816×2816×1500 grid
points. The size of the domain is large compared to the
integral scales of the jet to reduce confinement effects.
A uniform equidistant mesh is used for the inner part of
the domain, while the outer part is slightly coarsened
towards the cross-wise boundaries. The DNS is well
resolved, since the grid width is smaller or equal the
Kolmogorov length scale. Initially the interfacial layer
at the edge of the jet is well resolved by 14 grid
points. The Navier-Stokes equations are solved in
non-dimensional form, and read:

∂uj
∂xj

= 0 (1)

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re0

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]

(2)

∂φ

∂t
+ uj

∂φ

∂xj
=

1

Sc Re0

∂2φ

∂x2j
(3)

ν = eφlog(Rν) (4)

For non-dimensionalization the initial centerline
velocity uc,0 and the initial jet thickness δ0 are used.
For the dissipative term, the initial centerline viscosity
ν1 is chosen as a reference. The initial Reynolds
number is defined as Re0 = uc,0δ0/ν1 and equals
2200. The jet width δ is defined as the distance
between the points at which the mean streamwise
velocity decreases to 50% of its centerline value. The
parameter Rν = ν2/ν1 is the initial viscosity ratio
between the jet (subscript 1) and the host (subscript
1) viscosities. The third parameter to be specified is
the Schmidt number defined as Sc = ν1/D1, where
D1 is a diffusion coefficient. We set D1 equal to ν1
which results in a unity Schmidt number. Additional,
an equation that links the local viscosity to the mixture

fraction is necessary to close the system. This choice
depends on the thermodynamic of the fluids. The
choice of equation (4) is suitable for isothermal perfect
gases. In real isothermal gas flows, Rν rarely exceeds
10, consequently, we consider cases where Rν =
0, 25; 0, 5; 1; 2; 4. The velocity and viscosity initial
profiles are build using hyperbolic tangents that are
symmetrized with respect to the mid-plane.

Post-processing
The considered fields are evaluated by conventional

and conditioned statistics. The conventional approach
consists in averaging the fields, that depends on
(x, y, z), over the xOy planes at each time step. This is
done by averaging all the values of the field on a fixed
z. We then obtain an averaged field, noted < . >, that
is a function of the crosswise coordinate z only.

The conditioned approach consists on computing
the fields over a region that surrounds the T/NT. In
figure .1, we show a schematic view of the procedure
detailed hereinafter. This systematic approach was
suggested by Bisset et al. [2002]. First, a threshold
is chosen to locate the interface (blue line in Fig. 1).
Then, the field is evaluated over a certain distance
through the thickness of the interface, in and out of
the turbulent region (red region in Fig. 1). We obtain
a field that is a function of the separation distance from
the interface (x, y, z − zI). The new coordinates are a
set of surfaces that have the same shape as the T/NTI,
but at translated crosswise coordinates. Finally, an
averaging over this new set of curvilinear coordinates
is performed on each interface shaped surface, by fixing
z−zI . The result is an average field, noted < .|z−zI >,
that is a function of the crosswise separation distance
to the interface position z − zI only.

Figure 1: Schematic view of the conditional averaging.

The localization of the interface has been done
by different thresholds, on different fields. In a flow
with constant thermo-physical properties, the vorticity
or the scalar fields are mostly used. The study
from Gampert et al. [2014] shows that the interface
position is not very sensitive to the field considered,
except for low Schmidt numbers. The choice of unity
Schmidt number is valid, and in this case the two
approaches converge towards the same T/NT position.
In order to compare the results, the interface position
should not be very sensitive on the threshold value.
The technique suggested by Prasad and Sreenivasan
[1989] evaluates a threshold using a histogram of the
field distribution. This histogram generally shows a
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plateau, and choosing a threshold value close to this
plateau ensures the interface position to be almost
independent of the threshold value. In our case,
variable viscosity is an additional parameter to the
interface detection. The interface position has to be
independent of the viscosity ratio. To do so, we
compared different methods to detect the T/NT. This
comparison has been done by comparing the high order
moments of the pdf of the interface position. We
checked that the scalar Prasad and Sreenivasan [1989]
technique is suitable for this problem.

Results
Turbulent plan jets show, far enough form

the injection, a self-similar behavior. In this
regime, turbulence is self-preserving and the turbulent
quantities decay following precise exponents. In this
section, we check the time evolution of conventional
one point statistics at the mid-plan of the jet. Then,
we take a closer look at the scalar quantities, with
both conventional and conditioned approaches. We
show through figures 2 and 3 the time evolution at
the mid-plan (noted with a subscript c) of classical
turbulence quantities, for different viscosity ratios.
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Figure 2: Temporal evolution of mid-plan conventional
averages of (a) turbulent kinetic energy and (b)
dissipation. The legend represent Rν values.

We show on Fig. 2 (a) and (b) that for turbulent
kinetic energy and dissipation at the mid-plan the very
early and late times are not affected by the viscosity

ratio. But in the transition phase where the flow is
destabilized and the energy is withdrawn from the
mean velocity field, we see that the higher the viscosity
ratio, the more turbulent the flow is. Compared to the
constant viscosity case, we see that if Rν < 1, the peak
is lower and happens later in time, and if Rν > 1 the
peak is higher and is reached earlier. Rν is defined
as the ratio of outer to the inner viscosities. This
means that the injection of a less viscous fluid into
a more viscous one has a different behavior than the
opposite case. This phenomenon has been observed
by in a spatial round jet experiment. Viscosity
variation can either have a stabilizing of destabilizing
effect on the initial flow. In the far field, the curves
collapse and we do not see any effect of the viscosity
anymore. This asserts the argument that viscosity does
not have any effect on the decay, which is Taylor’s
postulate Taylor [1935]. The turbulent field smooths
the viscosity variations so strongly that no effect is seen
inside the fully turbulent core in the far field.
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Figure 3: Temporal evolution of mid-plan conventional
averages of (a) scalar concentration (mean +
fluctuation) and (b) scalar dissipation. The legend is
shared with Fig. 2.

The mid-plan scalar concentration and scalar
dissipation are shown if Fig. 3 (a) and (b), respectively.
The decay of the mid-plan scalar concentration shows
no dependence on the viscosity ratio for all times.
The scalar dissipation shows the same dependency as
the dynamic quantities. Figure. 2 (a),(b) concern
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the evolution second order moments of the fluctuating
fields, and Figure. 3 (a) and (b) the evolution of the
mean scalar and scalar dissipation full fields (mean +
average). The independence of the mid-plan scalar
concentration is an indication that viscosity variations
do not affect the mean fields. The scalar dissipation,
Fig.3, is a quantity that depends on ∇φ, which is a
small scale quantity. This lack of influence on mean
fields and strong influence on gradients shows that
viscosity is indeed affecting only the small scales of the
flow. This result is in agreement with the well known
Kolmogorov similarity hypotheses Kolmogorov [1941],
and more precisely: Taylor’s postulate Taylor [1935].
The scalar dissipation is an important quantity in
mixing modeling, and a precise estimation is necessary
to ensure the efficiency of the models predictions.

In order to assert the influence of variable viscosity
on the conventional scalar field statistics, we show the
conventional statistics of < φ > and < χ > in Fig.4:

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4
(a)

z

〈φ
〉

0.25
0.5
1
2
4

−6 −4 −2 0 2 4 6
0

1

2

·10−3

(b)

z

〈χ
〉

Figure 4: Crosswise profiles of conventional (a) mean
scalar concentration and (b) mean scalar dissipation.
All the curves are plotted at t = 25. The legend
represents Rν values.

We see from Fig.4(a) that viscosity variations
do not have any effect on the scalar concentration
conventional mean, across the jet. This result was
shown in Fig.3(a) at the mid-plan for all times.
Moreover, all the information about the jet edge is
smoothed by the conventional approach. On this
figure, the plotted variables are not normalized. It

is not possible to exhibit the exchanges between the
turbulent core and the laminar region by this approach.
The scalar dissipation crosswise profile, Fig.4(b), is
strongly affected by viscosity variations. In particular,
we see that close to the edge of the jet, peaks of this
quantity appear. These peak regions are monotonically
depending on Rν , so that high values of Rν engender
higher peaks. We see the same dependence for the
scalar dissipation in the turbulent core. Compared to
the constant viscosity flow, the scalar dissipation in
the core is larger if Rν > 1, and smaller if Rν < 1.
This is an indication that the mixing is indeed affected
by viscosity variations. This information is crucial for
the understanding of mass exchange processes between
the turbulent core and the laminar region. In order
to unravel the local behavior of mass transfer at the
T/NT, Fig.5 illustrates the conditional average of φ
and χ:
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Figure 5: Condition average of: (a) the scalar
concentration and (b) the scalar dissipation at t = 25.
The legend is shared with Fig.4.

The quantities shown in Fig.5 are conditional
averages normalized by the conventional average of
the same field at the mid-plan. The variation is
plotted against a crosswise separation distance to the
T/NT normalized by the mid-plan average Taylor
length-scale λc. The conditioned scalar concentration
is plotted on Fig.5(a). We see a very abrupt jump
from 0 in the laminar region (corresponding to the
negative values of the x-axis) to a value close to 1
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inside the core. This asymptotic value of 1 is reached at
different speeds depending on the viscosity ratio. This
result is commonly known in the literature for constant
viscosity, Bisset et al. [2002]. Very close inside core,
we see an overshoot of the scalar concentration, that
is stronger with decreasing Rν . In particular, for the
case Rν = 0.25, the overshoot is so strong that the
local conditional average of φ is larger than the mean
mid-plan value. The interface thickness is also changed
by Rν . This effect is due to the fact that, for different
Rν , the Taylor length-scale is not the same at equal
time. Because the transition to turbulence is different,
the Taylor-bases Reynolds numbers have different
values for each case, if compared at the same physical
time. This does not contradict the self-similarity on
the decay. The Taylor-based Reynolds number follows
the same power law for all cases in the fare-field, but
shifted in time.

The scalar dissipation is plotted on Fig.5(b). This
quantity varies from a value close to 0 in the laminar
region, to a value close to 1 in the core. Through
the T/NTI, the scalar dissipation sustains a very large
bump. The amplitude of this bump is strongly affected
by Rν . Compared to the constant viscosity case,
where the maximum value is 8× 〈χ〉c, we see that for
Rν = 4 this value is of the order of 11 × 〈χ〉c and
that for Rν = 0.25 the maximum is 6 × 〈χ〉c. The
scalar dissipation is a central quantity is many mixing
models, and an error on its estimation could lead
to wrong predictions. More importantly, the scalar
dissipation is very often used in turbulent reactive flows
models. In this phenomenon, the chemical reactions
occur at very localized regions, very similarly to mass
exchanges in non-reactive turbulence. As we saw,
the conditional average shows a miss-evaluation of the
scalar dissipation at the T/NTI that can be of the
order of 2 if variable viscosity effects are not taken
into account.

Conclusion
In this paper, we studied the influence of viscosity

variations of a temporal plan jet, computed with
DNS. Conventional statistical averaging has been used
to evaluate the turbulent kinetic energy, dissipation,
scalar concentration and scalar dissipation variations.
In addition, the conditional statistics of the scalar
concentration and scalar dissipation are computed. We
show that self-similarity of the decaying turbulence is
not broken for this kind of flows. The conventional
averages of mean scalar concentration is not affected
by viscosity variations, but the scalar dissipation is.
This is an indication that the viscosity variations
mostly affect the small scales of the flow. The
conditional statistics of the scalar dissipation reveal
a strong dependence on viscosity variations, especially
crossing the T/NT. This tendency is detectable using
the conventional approach, but highly underestimated.
Scalar dissipation is a central quantity in many mixing

models, and its precise estimation is required to
guarantee good predictions for these models.
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Cépadues Editions, 2002.

C.B. da Silva, J.C.R. Hunt, I. Eames, and
J. Westerweel. Interfacial layers between regions
of different turbulence intensity. Annual Review of
Fluid Mechanics, 46:567–590, 2014.

M. Gampert, J. Boschung, F. Hennig, M. Gauding, and
N. Peters. The vorticity versus the scalar criterion
for the detection of the turbulent/non-turbulent
interface. Journal of Fluid Mechanics, 750:578–596,
2014. doi: 10.1017/jfm.2014.280.

M. Gauding, J.H. Goebbert, C. Hasse, and N. Peters.
Line segments in homogeneous scalar turbulence.
Physics of Fluids, 27(9):095102, 2015.

R. Govindarajan. Effect of miscibility on the linear
instability of two-fluid channel flow. Int. J.
Multiphase Flow, 30:1177–1192, 2004.

R. Govindarajan and K.C. Sahu. Instabilities in
viscosity-stratified flow. Ann. Rev. Fluid Mech., 46:
331–353, 2014.

F Hunger, M Gauding, and C Hasse. On the impact of
the turbulent/non-turbulent interface on differential
diffusion in a turbulent jet flow. Journal of Fluid
Mechanics, 802, 2016.

A.N. Kolmogorov. The local structure of turbulence in
incompressible viscous fluid for very large reynolds
numbers. In Dokl. Akad. Nauk SSSR, volume 30,
pages 299–303, 1941.

S.K. Lele. Compact finite difference schemes with
spectral-like resolution. Journal of computational
physics, 103(1):16–42, 1992.

O. M. Phillips. The irrotational motion outside a free
turbulent boundary. Mathematical Proceedings of
the Cambridge Philosophical Society, 51(1):220–229,
1955. doi: 10.1017/S0305004100030073.

5



The 11th Pacific Symposium on Flow Visualization and Image Processing
1-3 December 2017, Kumamoto, JAPAN

R.R. Prasad and K.R. Sreenivasan. Scalar interfaces
in digital images of turbulent flows. Experiments in
Fluids, 7(4):259–264, 1989.

R.R. Taveira and C.B. da Silva. Kinetic energy budgets
near the turbulent/nonturbulent interface in jets.
Physics of Fluids, 25(1):015114, 2013.

G.I. Taylor. Statistical theory of turbulence. In
Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences,
volume 151, pages 421–444. The Royal Society, 1935.

L. Voivenel, E. Varea, L. Danaila, B. Renou, and
M. Cazalens. Variable viscosity jets: Entrainment
and mixing process. In Whither Turbulence and Big
Data in the 21st Century?, pages 147–162. Springer,
2017.

J. Westerweel, C. Fukushima, J.M. Pedersen, and
J.C.R. Hunt. Momentum and scalar transport at the
turbulent/non-turbulent interface of a jet. Journal
of Fluid Mechanics, 631:199–230, 2009.

6



On the combined effect of internal and external intermittency in turbulent
non-premixed jet flames

M. Gaudinga,∗, M. Bodeb, D. Denkerb, Y. Brahamia, L. Danailaa, E. Vareaa

aCORIA – CNRS UMR 6614, Saint Etienne du Rouvray, France
bInstitute for Combustion Technology, RWTH Aachen University, Germany

Abstract

This paper analyzes the combined effect of internal intermittency and external intermittency on the dynamics of
small-scale turbulent mixing in a turbulent non-premixed jet flame. The phenomenon of external intermittency in
turbulent jet flames originates from a very thin layer, known as turbulent/non-turbulent interface, that separates the
inner turbulent core from the outer irrotational surrounding fluid. The impact of external intermittency on turbulence is
evaluated across the jet flame by the self-similarity scaling of higher-order structure functions of the mixture fraction.
It is shown that the scaling of structure functions exhibits a growing departure from the prediction of classical scaling
laws toward the edge of the flame. Empirical evidence is provided that this departure is primarily due to external
intermittency and the associated break down of self-similarity. External intermittency creates local gradients that are
significantly more intense compared to those created by internal intermittency alone. As chemical reactions usually
take place in thin layers in the vicinity of the turbulent/non-turbulent interface, an accurate statistical description of
these intense events is necessary to predict the turbulence-chemistry interaction. The study is based on data from a
highly-resolved direct numerical simulation of a temporally evolving planar jet flame.
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1. Introduction

Turbulent non-premixed flames are characterized by
strong spatio-temporal fluctuations over a wide range
of different length and time scales [1]. In many appli-
cations of turbulent non-premixed flames, chemistry is
relatively fast and the turbulent mixing between fuel and
oxidizer is the rate determining process. Reliable predic-
tions of turbulence are therefore necessary to develop a
fundamental understanding of the turbulence-chemistry
coupling and to improve the accuracy of models. An im-
portant example is the flamelet model, which relies on an
accurate prediction of the small-scale turbulent mixing
statistics [2]. In non-premixed flames, the mixing state
can be uniquely quantified by the mixture fraction Z ,
defined as the local mass fraction of the fuel stream in a
given fuel-oxidizer mixture

Z =
Ûmfuel

Ûmfuel + Ûmoxidizer
. (1)

Profound predictions of small-scale turbulence have been
provided by Kolmogorov’s similarity theory [3, 4] and
its extension for turbulent mixing by Obukhov [5] and
Corrsin [6] (henceforth referred to as KOC). The cen-
tral element of the KOC theory is the increment of the
mixture fraction, defined as ∆Z = Z(x + r) − Z(x),
which describes mixture fraction fluctuations between
two points separated by the distance r . The statistical
moments of ∆Z are known as structure functions. The
KOC theory postulates that the entire distribution func-
tion of ∆Z depends only on the molecular diffusivity D,
the mean energy dissipation rate 〈ε〉, and the mean scalar
dissipation rate 〈χ〉. As only three scaling parameters
are necessary, this was understood as a claim for small-
scale universality. While the KOC theory has been con-
firmed to be generally valid for low-order statistics of
many turbulent flows, there are numerous experimen-
tal and numerical studies that have reported substantial
deviations for higher-order statistics [7]. These devia-
tions occur even when the condition of sufficiently high
Reynolds number is met, and originate from very strong
fluctuations of the energy dissipation and the scalar dis-
sipation. These strong fluctuations, known as internal
intermittency, are non-universal and thus invalidate the
KOC self-similarity hypotheses [8]. Internal intermit-
tency is created by the non-linear dynamics of the vortex
stretching mechanism and occurs predominantly at the
smallest scales of any turbulent flow.

For turbulent reactive flows, the situation is more deli-
cate, and there are objections that the KOC theory may
not hold for these flows. Firstly, the KOC postulates were
formulated for fully developed turbulence in flow regions

independent of boundary or initial conditions. Secondly,
spatio-temporal variations of the fluid’s thermo-physical
properties were assumed to be negligible. However, tur-
bulent jet flames are exposed to the phenomenon of
external intermittency [9]. External intermittency, oc-
curs predominantly at the edge of the jet flame and is
linked to the turbulent/non-turbulent interface (TNTI).
The TNTI is a thin, highly contorted layer that separates
the inner turbulent core from the outer irrotational sur-
rounding fluid. Different from internal intermittency,
external intermittency has its origin in the larger scales
and is caused by the alternation between fully developed
turbulent fluid and irrotational outer fluid at the outer
boundary of the jet flame. Kuznetsov et al. [10] demon-
strated that external intermittency can affect the statistics
and universality of small-scale turbulence. Moreover,
Mi and Antonia [11] found that statistics of scalar fields
are more sensitive to external intermittency than velocity
statistics. Consequently, the application of turbulence
models developed for homegenoeus isotropic turbulence
is limited for non-premixed jet flames.

The TNTI plays an important role for the dynamics
of turbulent non-premixed flames because it is the place
where the fuel stream and the oxidizer stream meet. For
most technical relevant flames, the TNTI is located in
the vicinity of stoichiometric mixture, where most chem-
ical reactions occur [12]. Turbulent fluctuations at the
TNTI enhance local mixing, which increases the heat
release, but strong turbulent fluctuations may also trig-
ger local extinction when radicals are transported out
of the reaction zone and heat loss exceeds heat release
[13]. Classical turbulence theories underestimate these
very intense bursts of the mixture fraction field and it is
not fully understood how turbulence at the TNTI differs
from fully developed turbulence in the core of the jet.
Analyzing and predicting these strong fluctuations of the
mixture fraction field is essential for modeling turbulent
non-premixed flames.

The objective of the present study is to assess the
impact of external intermittency on small-scale motion
in a turbulent non-premixed jet flame. The analysis is
based on structure functions of the mixture fraction field.
Structure functions are non-local statistical quantities,
which can provide scale-sensitive information about the
dynamics of turbulence. Specifically, Chien et al. [14]
observed that the scaling of structure functions can unveil
the signature of large-scale fluctuations.

The paper is structured as follows. In section 2, we
present the direct numerical simulation data on which the
analysis is based. In section 3, we introduce the method-
ology to detect the TNTI and define an intermittency
factor that quantifies external intermittency. In section 4,
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we study structure functions of the mixture fraction in
the dissipative and inertial range. The structure func-
tions are evaluated at different crosswise positions and
their dependence on the external intermittency factor is
analyzed. Concluding remarks are given in section 5.

2. Data set description

The analysis is performed by means of direct numer-
ical simulation data of a turbulent temporally evolv-
ing planar non-premixed jet flame [15]. The oxidizer
stream is air, consisting of oxygen YO2 ,2 = 0.232 and
nitrogen YN2 ,2 = 0.768. The fuel stream is methane
(YCH4 ,1 = 0.07), which is highly diluted by nitrogen
in a way that the stoichiometric mixture fraction Zst
equals 0.45. The DNS was carried out with the high-
fidelity in-house code CIAO, which solves the unsteady
Navier-Stokes equations in a low Mach number approxi-
mation with a fourth-order explicit spatial discretization
and semi-implicit Crank-Nicholson scheme for time in-
tegration [17]. Species and temperature equations are
discretized with a fifth-order WENO scheme and tempo-
rally advanced by the symmetric operator split of Strang
[16]. The combustion process was considered by finite
rate chemistry employing a reaction mechanism with 30
species and 102 reactions. The kinematic viscosity ν and
the molecular diffusivity D depend on temperature and
the local composition. The Schmidt number Sc = ν/D
is approximately constant and close to 0.7.

The three-dimensional DNS domain was discretized
by a rectangular structured mesh with 768 × 512 × 768
points in order to resolve small-scale turbulence and
the inner-structure of the flame sufficiently. The Kol-
mogorov length-scale equals approximately half the grid
size, which is considered to be sufficient to accurately
compute statistics of small-scale quantities [18]. The
grid is uniform and equidistant in regions where flame
structures appear, and gradually stretched toward the
boundaries in the crosswise direction. The size of the
computational domain equals 8.2H0 × 5.5H0 × 10.2H0,
where H0 denotes the initial jet width. The initial veloc-
ity field in the jet core was initialized with an instanta-
neous realization of a turbulent channel flow in order to
facilitate a physical transition. The jet Reynolds number,
defined with H0, the initial mean velocity difference ∆U1
between the center-line and the co-flow, and the kine-
matic viscosity of the fuel νfuel, equals 4,500. Velocity
and scalar fields are periodic in the stream-wise and span-
wise directions (denoted by x1 and x2). Non-periodic
(outlet) boundary conditions are used in the crosswise
direction (denoted by x3).
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Figure 1: Probability density function logω2. The vertical line in-
dicates the threshold logω2

0 , which is used to distinguish between
turbulent and non-turbulent regions.

As the setup is statistically homogeneous in (x1, x2)
planes, it allows a statistical analysis at different cross-
wise positions x3/h1/2, with h1/2 being the half-width,
defined as the distance between the centerplane and the
position at which the mean velocity decreased to 50%
of its center value. The following analysis is based on
one time-step, at which the jet is decaying and chemistry
interacts with fully developed turbulence.

3. External fluctuations in turbulent flames

External intermittency can be quantified by an inter-
mittency function I(x) that is defined by a threshold
criterion of the enstrophy ω2 as

I(x) = H(ω2 − ω2
0) , (2)

where H is the Heaviside function. Following Townsend
[19], the intermittency factor γ is then defined as the
probability that the flow at a certain crosswise position x3
is turbulent, i.e.

γ(x3) = 〈I(x)〉 , (3)

where the angular brackets denote an ensemble-average,
which is approximated by averages over (x1, x2)-planes.
Specifically, the definition of γ based on the enstrophy is
able to account for engulfment pockets with high heat re-
lease, where turbulence is locally damped by an increase
of kinematic viscosity [20]. Other threshold criteria,
such as the mixture fraction field, have been used as a
surrogate to define the intermittency factor. However, an
intermittency factor defined in such a way is not suitable
for flows with heat release [21].

The intermittency factor γ is linked to the posi-
tion of the TNTI and its definition requires a specific
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Figure 2: Variation of the intermittency factor γ with the crosswise
direction x3/h1/2. The dashed lines indicate different crosswise posi-
tions x3/h1/2 that are used for the analysis.

threshold ω2
0 to distinguish between turbulent and non-

turbulent fluid. Following Silva et al. [22], the thresh-
old ω2

0 is defined as the local minimum of the global
probability density function (pdf) of logω2, shown in
Fig. 1. As a signature of the TNTI, this pdf has a bimodal
shape, where the peak at low ω2 corresponds to the irro-
tational region, and the peak at high ω2 corresponds to
the turbulent region. As the two peaks are considerably
separated, the position of the TNTI is largely insensitive
to the specific choice for ω2

0.
Figure 2 shows the intermittency factor γ across the

jet flame. At the center, there is a fully turbulent core
region, which extends up to x3/h1/2 ≈ 0.5, where γ is
nearly constant and close to unity. A steep decrease of γ
is observed at the edge of the flame, which originates
from an alternating flow structure at the TNTI. In the
irrotational co-flow, the intermittency factor tends to zero.
The TNTI defined by the threshold ω2

0 is visualized for
a snapshot of the flame in Fig. 3. It can be observed
that a threshold criteria is suitable to distinguish between
the turbulent and non-turbulent fluid. Moreover, Fig. 3
shows that the zone of stoichiometric mixture with Zst =
0.45 is frequently located in the vicinity of the TNTI.

4. Structure function analysis

The analysis in this paper is built upon the longitudinal
structure functions, defined as the moments of the mix-
ture fraction increment ∆Z in stream-wise direction e1

〈∆Zn〉(r; x3) = 〈(Z(x + re1) − Z(x))n〉 . (4)

In turbulent flows exposed to external intermittency,
there are three different possibilities for the distribution
of the ending points x and x+re1 of∆Z . More precisely,

Figure 3: Two-dimensional snapshot of the enstrophy field, with the
colormap increasing in the sequence gray-blue-back. Additionally, the
position of the turbulent/non-turbulent interface (red solid line) and
the position of the stoichiometric mixture fraction Zst = 0.45 (yellow
solid line) are shown.

both points can be either located within the fully turbu-
lent or within the non-turbulent regime, or one point is in
the turbulent and the other point is in the non-turbulent
regime. Kuznetsov et al. [10] predicted the correspond-
ing probabilities as γtt = γ− 1

2 Dγγ , γnn = 1−γ− 1
2 Dγγ ,

and γnt = Dγγ, where

Dγγ = 〈(I(x + re1) − I(x))2〉 (5)

Of special interest is the probability γtt/γ that quanti-
fies the likelihood that one ending point of the structure
functions is in a turbulent regime given that the other
ending point also lies in a turbulent regime. The prob-
ability γtt/γ is shown in Fig. 4 for different crosswise
positions x3/h1/2 between 0 and 1.57. In the proximity
of the centerplane, γtt/γ is close to unity and nearly
independent of the separation distance r , which reflects
the fact that the core region of the jet is fully turbulent.
Toward the edge of the jet (i.e. for x3/h1/2 > 0.9), γtt/γ
equals unity only for r → 0, and drops quickly at larger
separation distances when turbulent fluid is mixed with
non-turbulent fluid.

4.1. Structure functions in the dissipative range

The KOC theory predicts that the structure functions
of the mixture fraction are universal functions and scale
in the dissipative range as

〈∆Z2n〉
〈χ〉nτnη

= Cn

(
r
η

)2n

, (6)

where Cn is an order-dependent pre-factor. The Kol-
mogorov time-scale and the Kolmogorov length-scale
are defined as τη = (〈ν〉/〈ε〉)1/2 and η = (〈ν〉3/〈ε〉)1/4,
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Figure 4: Probability γt t /γ that both endpoints of structure functions
at different crosswise positions x3/h1/2 (as indicated in the legend)
are located in turbulent fluid.

respectively. The instantaneous energy dissipation rate
is defined as ε = 2νS2

i j , where Si j = (∂ui/∂xj +
∂u j/∂xi)/2 is the strain rate tensor and ui the fluctu-
ating velocity field. The instantaneous scalar dissipation
rate is defined as χ = 2D(∂Z/∂xi)2. Repeated indices
imply summation.

Figure 5(a) presents the mixture fraction structure
functions normalized according to Eq. (6) for the sec-
ond and fourth order at different crosswise positions x3.
There is good support for the KOC scaling for the second-
order 〈∆Z2〉, which means that an adequate collapse of
the structure functions at different x3 can be observed
after normalization with 〈χ〉 and τη . This finding is
surprising and clearly highlights the validity of the KOC
scaling for second-order structure functions, despite heat
release, finite Reynolds number effects, and external in-
termittency. Interestingly enough, the KOC scaling is
not limited to the smallest scales but extends up to the
intermediate scales.

Next, we inspect the scaling of the fourth-order struc-
ture functions 〈∆Z4〉. Figure 5(a) reveals a staggered,
clearly non-universal arrangement after normalization
with the KOC scales. Hence, we can conclude that the
KOC scales are not a consistent choice for normaliza-
tion of higher-order structure functions. This observa-
tion agrees with the standard paradigm that higher-order
statistics are non-universal and highly sensitive to inter-
mittency [7, 23].

As higher-order statistics are not in agreement with
the KOC scaling, a correction of Eq. (6) is necessary. A
generalization of the KOC scaling for higher orders can
be obtained by expanding 〈∆Zn〉 as

〈∆Z2n〉 = 〈
(
∂Z
∂x1

)2n

〉r2n + O(r2n+2) , (7)
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Figure 5: Normalized second and fourth-order structure functions
〈∆Z2n 〉 of the mixture fraction field for different crosswise positions
x3/h1/2 (as indicated by the legend). The structure functions are
normalized with the KOC scales 〈χ〉 and τη (a) and the generalized
scales 〈χn 〉 and τη (b) according to Eq. (9).

where the series is truncated after the first non-negative
term. To proceed, the assumptions of local isotropy and
decorrelation between the molecular diffusivity and the
gradient of the mixture fraction are made. A justification
of these assumptions is given in the next paragraph. In
that case, the moments of χ can be written as

〈χn〉 ∝ 〈D〉n〈
(
∂Z
∂x1

)2n

〉 . (8)

Combining Eqs. (7) and (8) yields the dissipative range
scaling of structure functions

〈∆Z2n〉
〈χn〉τnη

= Ĉn

(
r
η

)2n

, (9)

where Ĉn is an order-dependent prefactor. Equation (9)
is an exact generalization of the KOC scaling theory for
higher-order structure functions that does not require a
high Reynolds number. Moreover, Eq. (9) signifies that
〈χn〉 is the relevant scaling parameter instead of 〈χ〉n.
As the exponent and the averaging operator do not com-
mute, Eqs. (6) and (9) are generally different. Higher-
order scales have been introduced before by Boschung
et al. [24] for the scaling of velocity structure functions.
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Schumacher et al. [25] showed that the existence of
higher-order scaling parameters is a direct consequence
from anomalous scaling.

A test of the new scaling relation proposed by Eq. (9)
is shown in Fig. 5(b). Compared to the classical KOC
scales, a normalization with 〈χn〉 improves clearly the
collapse of the fourth-order structure functions in the
dissipative range. This implies that we have found a gen-
eralized solution for the structure functions of the mix-
ture fraction that accounts for both internal and external
intermittency effects. The collapse of the structure func-
tions in the dissipative range also justifies the assumption
of small-scale isotropy and the statistical independence
of D with the mixture fraction gradients made by Eq. (8).

In summary, the classical KOC scales are not a consis-
tent choice for the normalization of higher-order struc-
ture functions. This can be further demonstrated by
expressing Eq. (9) as

〈∆Z2n〉
〈χ〉nτnη

∝ 〈χ
n〉

〈χ〉n
(

r
η

)2n

, (10)

where the non-dimensional moments

F2n,χ =
〈χn〉
〈χ〉n (11)

represent the non-universality of small-scale turbulence.
If F2n,χ were constant, the classical KOC scales would
be valid similarity scales for any order n. In Fig. 6, we
present the flatness factor F4,χ as a function of the inter-
mittency factor γ. It can be seen that F4,χ increases from
a centerplane value close to 6 to a value close to 20 when
the intermittency factor γ equals to 0.2. This increase
of F4,χ originates from a combined effect of strong gra-
dients over the thickness of TNTI, and the alternating
flow structure of turbulent and non-turbulent fluid. The
dependence of F4,χ on γ violates the standard paradigm
of turbulence that small scale quantities decouple from
the larger scales, but instead signifies that external fluctu-
ations can have a striking impact on the small-scales. We
note that internal intermittency can be ruled out as the
reason for the increase of F4,χ because the Taylor-scale
based Reynolds number Reλ (see Fig. 6) decays toward
the edge of the flame [23].

To further study the role of external intermittency, we
define the conditional moments

Ft
2n,χ =

〈I χn〉
〈I χ〉n , (12)

that considers only the fully turbulent portion of the flow
located inside the turbulent envelope. Figure 6 shows that
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Figure 6: Variation of the flatness factors F4,Z and F4, χ of the mix-
ture fraction and the mixture fraction gradients, respectively, with
the intermittency factor γ and the crosswise position x3/h1/2. The
dashed lines corresponds to the conditioned flatness factor F t

4,Z and
F t

4, χ , computed for solely turbulent regions with I (x) = 1. Addition-
ally, the Taylor-scale Reynolds number Reλ and the length-scale LZ

are shown. The black dotted line represents the flatness factor of a
Gaussian distribution.

unlike F4,χ, the conditional flatness factor Ft
4,χ, is sig-

nificantly less sensitive to variations of the intermittency
factor γ. Physically, this indicates that strong turbulent
transport leads to a rapid homogenization of turbulent
regions. In summary, the analysis of F4,χ and Ft

4,χ pro-
vides conclusive evidence for the coupling between exter-
nal intermittency and small-scale turbulence. This also
means that external intermittency plays an important role
for the break-down of self-similarity of the fourth-order
structure functions in the dissipative range.

While F2n,χ represents the small-scale limit of struc-
ture functions, it is of interest to define analogously the
non-dimensional moments of the mixture fraction fluctu-
ations

F2n,Z =
〈z2n〉
〈z2〉n and Ft

2n,Z =
〈Iz2n〉
〈Iz2〉n , (13)

with z = Z − 〈Z〉, to evaluate the large-scale limit of
structure functions. Figure 6 shows that F4,Z grows sim-
ilarly to F4,χ from the core to the edge of the jet. The
conditional flatness factor Ft

4,Z is likewise virtually inde-
pendent of γ and close to the flatness of a Gaussian dis-
tribution over the entire range. This observation further
supports the assertion of rapid mixing and homogeniza-
tion of turbulent regions as postulated by Jahanbakhshi
and Madnia [20] and Corrsin and Kistler [26].

As external intermittency is entangled with other large-
scale effects, such as anisotropy, inhomogeneity, or finite
Reynolds number effects, it is necessary to quantify the
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impact of the large scales on small-scale turbulent mix-
ing. To this end, we follow Thiesset et al. [27] and define
the length-scale

LZ =
〈χ〉3/4
〈ε〉1/4Γ3/2

Z

, (14)

where ΓZ is the mean mixture fraction gradient. For
length-scales smaller than LZ , statistical properties of
turbulence are expected to be independent of large-scale
effects. Figure 6 shows that LZ is nearly constant for
0.4 < γ < 0.9. This means that there is a relatively
broad region in crosswise direction, which is subject to
a strong variation of the intermittency factor γ, but a
comparably much smaller variation of large-scale effects.
Similarly, Mi and Antonia [11] found for a turbulent jet
that variations of the intermittency factor have a much
stronger impact on the scaling of structure functions than
local variations of the Reynolds number or the mean
shear.

4.2. Structure functions in the inertial range

In this section, we present empirical evidence for the
link between external intermittency and the inertial-range
scaling exponents of structure functions. Provided that
an inertial subrange exists, we expect that the pth-order
mixture fraction structure function can be expressed as

Sp = 〈|∆Z |p〉 ∝ rζp , (15)

where ζp is the inertial-range scaling exponent. Absolute
values of the increments in Eq. (15) permit even and odd
moments. The KOC theory predicts for sufficiency large
Reynolds numbers from dimensional grounds ζp = p/3.
However, numerous experimental and numerical studies
have provided conclusive evidence for anomalous scal-
ing of structure functions [28], which refers to a discrep-
ancy from that linear law, i.e. ζp < p/3 for p > 2. For
homogeneous isotropic turbulence, this discrepancy has
been explained by internal intermittency, which breaks
the similarity scaling of turbulence [7]. However, at fi-
nite Reynolds numbers and in flows exposed to external
intermittency, an increased deviation from the KOC pre-
diction is expected. Therefore, the dependence of the
scaling exponents on the crosswise position x3 and the
external intermittency factor γ is of interest.

As the Reynolds number of the considered jet flame
is relatively low, a well developed inertial-range does
not exist. For this reason, we determine the scaling
exponents ζp by the so-called extended self-similarity
(ESS) framework [29]. Instead of evaluating the scaling
directly via Eq. (15), a relative scaling exponent, ζp/ζ2

2 3 4 5 6
1

1.5
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3

(a)

p

ζ p
/ζ

2

0.00
0.23
0.45
0.68
0.90
1.12
1.35
1.57

0.4 0.6 0.8 1
1

1.5

2

2.5

3
(b)

γ(x3)
ζ p
/ζ

2

p = 3
p = 4
p = 5
p = 6

Figure 7: Scaling exponents ζp of the structure functions SZ
p of the

mixture fraction field up to the sixth-order for different crosswise
positions x3/h1/2 (a). The back solid line indicates the analytical
KOC scaling. The dash-dotted line corresponds to the log-normal
model, see Eq. (17), with ρ = 0.5 and µ = 0.25. Dependence of ζp
on the intermittency factor γ (b). The dashed lines correspond to a
least-square fit.

is obtained by plotting the pth-order structure function
against the second-order structure function. Specifically,
the relative scaling exponents equal

ζp

ζ2
=

d log Sp(r; x3)
d log S2(r; x3) . (16)

The ESS approach increases the width of the so-called
restricted scaling range and enables us to obtain reliable
scaling exponents even at moderate Reynolds numbers.
In general, the scaling exponents of structure functions
exhibit a small dependence on the Reynolds number,
unless the Reynolds number is very large [30]. By defin-
ing the scaling exponents in Eq. (16) relative to S2, this
Reynolds number dependence is masked. Here, we take
advantage of this feature, since local variations of the
Reynolds number across the jet flame do not affect the
relative scaling exponents.

The relative scaling exponents ζp/ζ2 obtained by this
approach are shown in Fig. 7(a) up to the sixth-order
for different crosswise positions. For comparison, we
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display the KOC prediction and the log-normal model,
originally developed by Atta [31], i.e.

ζp =
p
3
− µp [(10 − 6ρ)p − 12] /72 . (17)

Antonia et al. [28] showed that Eq. (17) is able to predict
the scaling exponents of scalar structure functions in
homogeneous isotropic turbulence with good accuracy
for p < 8, when ρ = 0.5 and µ = 0.25.

Figure 7(a) shows that the relative scaling exponents at
the centerplane of the flame depart increasingly from the
KOC prediction with increasing order, but are consistent
with the prediction from the log-normal model. In other
words, the relative centerplane scaling exponents reflect
the effect of internal intermittency but are virtually not
influenced by large-scale effects. With increasing dis-
tance from the centerplane, the relative scaling exponents
decrease below the prediction of the log-normal model,
which signifies a growing level of intermittency com-
pared to homogeneous isotropic turbulence. To link this
increase to external intermittency, we show in Fig. 7(b)
the relative scaling exponents as a function of the exter-
nal intermittency factor γ. As anticipated, the relative
scaling exponents decrease with decreasing γ. From
these observations we may conclude that external fluctu-
ations amplify the break-down of small-scale similarity,
which manifests itself in a pronounced departure from
the KOC prediction.

5. Conclusion

In this paper, the impact of external intermittency on
turbulent small-scale mixing in a non-premixed jet flame
was studied. It was demonstrated that external intermit-
tency has a similarity-breaking effect on higher-order
structure functions. The similarity-breaking effect be-
comes more pronounced toward the edge of the flame,
and has its origin in a combination of strong mixture
fraction gradients over the thickness of the TNTI and the
alternating flow structure of turbulent and non-turbulent
fluid.

External intermittency has strong implications for tur-
bulent combustion, as classical scaling theories underes-
timate intense fluctuations at the edge of the jet flame.
We found that external intermittency creates fluctuations
that are significantly more intense compared to those
created by internal intermittency alone. As chemical
reactions in most hydrogen and hydrocarbon flames usu-
ally take place in the proximity of the TNTI, an accurate
statistical description of these intense events is necessary
to predict the turbulence-chemistry interaction.

The analysis of the non-premixed jet flame revealed
that the KOC theory is suitable to predict second order
statistics in the entire flame. However, the KOC the-
ory is not an appropriate choice for the prediction of
strong fluctuations, represented by higher-order statistics.
Therefore, a correction of the KOC theory was proposed
that accounts for these fluctuations. The new scaling
incorporates the higher-order moments of the scalar dis-
sipation and is an exact generalization of the classical
KOC theory to flows that are exposed to both internal
and external intermittency. The proposed scaling does
not require a large Reynolds number.

The consequences for combustion models are twofold.
Firstly, the flatness factor F4,χ is a function of the in-
termittency factor γ, which quantifies the impact of the
large, non-universal scales on the small-scales. Secondly,
following Mellado et al. [12], the moments of the scalar
dissipation can be predicted by a zonal approach that
distinguishes between turbulent and non-turbulent layers.
Hereby, the independence of the conditional flatness fac-
tors Ft

4,χ and Ft
4,Z from the intermittency factor γ can

be exploited to simplify mixing models. Specifically, a
mixing model that is built with the conditional flatness
factors may reveal a reduced dependence on the large,
non-universal scales.
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