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Résumé et mots clés

Les boucles de rétroaction positives et négatives sont les deux motifs principaux et essentiels
de régulation génétique, respectivement responsables de la différenciation cellulaire ainsi que de
l’homéostasie et des oscillations biologiques. Elles sont couramment modélisées par des systèmes
d’équations différentielles ordinaires non-linéaires dont la dynamique reproduit fidèlement leurs
comportements biologiques: la bistabilité pour la boucle positive, et la convergence globale vers
une orbite périodique ou un unique point d’équilibre pour la boucle négative. Cette thèse propose
plusieurs stratégies mathématiques pour contrôler ces deux motifs avec deux objectifs principaux: la
stabilisation globale de points d’équilibre instables et la déstabilisation de points d’équilibre stables
pour l’émergence d’oscillations soutenues. Ces deux objectifs semblent intéressants et prometteurs
d’un point de vue biologique, notamment pour la mise en place de nouvelles thérapies: pour la
boucle négative, ils pourraient permettre une compréhension plus aboutie de certaines maladies
liées à la dérégulation de l’homéostasie ou d’horloges biologiques, tandis que pour la boucle posi-
tive, ces stratégies pourraient aider à concevoir des processus de dédifférenciation cellulaire. Pour
répondre à ces attentes, les différentes lois de contrôle sont adaptées petit à petit afin de respecter
plusieurs contraintes expérimentales, dont la nature qualitative et incertaine des données biologiques
fournies par les appareils de mesures. Pour cela, plusieurs stratégies de contrôle sont présentées
dans ce manuscrit: des contrôles linéaires, des contrôles saturés, des contrôles incertains constants
par morceaux, ainsi que des modifications intrinsèques des réseaux. Par conséquent, les systèmes
dynamiques étudiés sont non-linéaires et de grande dimension, et certains présentent même des dis-
continuités dans leur champ de vecteurs pouvant générer des comportements particuliers comme les
modes glissants, et pour lesquels la théorie classique sur les systèmes dynamiques monotones et la
théorie du contrôle ne s’appliquent pas. Pour cette raison, de nouvelles méthodologies qualitatives,
se basant sur la construction de régions répulsives et invariantes, sont présentées et permettent
d’établir des résultats de convergence globale et de stabilité au sens de Lyapunov. Ces résultats
théoriques sont appuyés par quelques exemples biologiques, dont le Repressilator, le Toggle Switch,
la boucle p53-Mdm2 et l’horloge circadienne.

Mots clés: systèmes non-linéaires, boucles de rétroaction, réseaux de régulation génétique, théorie
du contrôle, contrôle qualitatif, mesures discrètes, équations différentielles ordinaires.
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Abstract and keywords

Positive and negative genetic feedback loops are two main and essential gene regulatory motifs,
respectively responsible for cell differentiation, and the emergence of both homeostasis and biolog-
ical oscillations. They are accurately modeled by highly non-linear ordinary differential equations
whose dynamics properly capture their biological behaviors: bistability for the positive loop, and
global convergence towards either a periodic orbit or a unique steady state for the negative loop.
This manuscript proposes different mathematical strategies for the control of both loops with two
main objectives: the global stabilization of unstable steady states and the destabilization of stable
steady states for the emergence of sustained oscillations. From a biological point of view, both
objectives seem promising regarding disease treatments and conception of new therapies: for the
negative loop, such a control objective may allow to better understand and cure diseases induced
by a dyshomeostasis or a disrupted clock, while for the positive loop, these strategies may help in
grasping and conceiving cell dedifferentiation processes. With these biological applications in mind,
the control strategies have been successively improved in order to comply with biological implemen-
tations and to take into account more and more biological constraints, including qualitative and
uncertain information provided by biological measurement techniques. To reflect this progression,
different strategies are introduced in this manuscript: affine control laws, saturated control laws,
qualitative and uncertain switched control laws, as well as intrinsic synthetic modifications of net-
works. This results in the analysis of non-linear and high-dimensional dynamical systems, as well as
systems with discontinuous right-hand sides for which non-classical behaviors such as sliding modes
may emerge, and classical theories on control and monotone dynamical systems do not apply. In
order to prove global convergence and Lyapunov stability for these non-trivial systems, original,
general, and qualitative methodologies based on the construction of successive repelling and in-
variant regions are developed. These results are supported and illustrated with a few biological
examples such as the Toggle Switch, the Repressilator, the p53-Mdm2 loop or the circadian clock.

Keywords: non-linear systems, feedback loops, gene regulatory networks, control theory, qualitative
control, discrete measurements, ordinary differential equations.

2



Acknowledgments
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ainsi qu’à Frédéric Dayan et toute l’équipe d’ExactCure pour m’accueillir et m’offrir la chance de
travailler avec eux. Special thanks also to Stephen Coombes and the whole teaching staff members
of the MMB MSc of the University of Nottingham, who inspired me and made me want to explore
further this amazing field of mathematics and biology. Merci aussi à Valérie François, Martine
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Lúıs, Victor, Léna, Luis, Sophie. Merci pour tous ces moments passés ensemble autour d’un café
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aide dans les moments les plus difficiles. Merci aussi à Mousse, qui m’a donné de bonnes histoires
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Chapter 1

Motivations and organization of
the manuscript

Despite the complexity of gene regulatory networks, two recurrent and small patterns have been
identified as essential for several vital functions: the positive and negative genetic feedback loops.
While the first motif is largely responsible for cell decision making and cell differentiation, the
second is important for both homeostasis and biological clocks. These key roles also explain their
implication in many diseases and disorders, such as dyshomeostasis or arrhythmic clocks for the
negative loop, and abnormal cell proliferation for the positive loop. These realities provide evidence
that a deep understanding and ways of controlling both motifs is promising for the improvement
of insight into diseases and pharmacological treatments. In this context, this manuscript uses
the theory of dynamical systems in order to design different biologically relevant strategies for
controlling mathematical models of both a positive and a negative genetic feedback loop.

In order to provide a meaningful biological context to this mathematical work, chapter 2 presents
the structure and the roles of genetic feedback loops, as well as precise motivations for their control.
Moreover, this chapter introduces the concrete techniques and constraints that emerge from real
biological experiments, that will be carefully considered in the mathematical framework throughout
the whole manuscript.

The dynamical models for the canonical form of both the positive and negative feedback loop are
introduced in chapter 3. These systems are shown to accurately reproduce the behaviors observed
in biology. The bistability of the positive dynamical system with two stable and an unstable steady
states appropriately imitate a cell differentiation process, while the unique steady state of the
negative dynamical model replicates properly homeostasis in case of local stability, and biological
clocks with the emergence of periodic orbits in case of local instability.

From chapters 4 to 8, this manuscript proposes different mathematical strategies for the global
stabilization of the unstable steady state of both loops. From a biological point of view, this
objective may allow to better understand and cure diseases induced by a dyshomeostasis in a
disrupted negative loop that display undesired sustained oscillations, while for the positive loop,
this goal may help in grasping and conceiving cell dedifferentiation processes. With these biological
applications in mind, the control strategies are successively improved in the different chapters in
order to comply with biological implementations and take into account more and more biological
constraints.

A first naive classical affine control strategy is presented in chapter 4 and is shown to be able to
stabilize the unstable steady state of both the negative and positive feedback loop in their canonical
form. For biological purpose, this control is designed as simple as possible in order to reduce the
use of devices and the complexity of the biological set-up. For this reason, the control law only
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depends on the measurement of a unique gene and only acts on its own expression. Due to the
complexity of this controlled dynamical system, a new methodology, based on the construction of
successive hyperrectangles of the state space that act as Lyapunov function level-sets, is proposed
in order to prove global convergence and global stability results. Despite its apparent simplicity,
this affine control law is shown to globally stabilize the feedback loop system.

However, this affine control strategy usually well adapted for engineering control problems may be
hard to implement in biology. Indeed, this control law may take either high positive or negative
values, hard to interpret from a biological point of view, especially if the control inputs are doses of
inducer molecules for example. This situation is avoided in chapter 5 by saturating the control law.
With appropriate conditions on the up and bottom saturated values, the unstable steady state of
both loops is shown to be globally asymptotically stable. Interestingly, this non-trivial problem is
easily solved thanks to the methodology developed in chapter 4.

Both the classical control strategy developed in chapter 4 and the saturated control strategy pre-
sented in chapter 5 depend on precise knowledge of the system state. However, biological measure-
ment techniques do not provide a precise and quantitative knowledge of the system. Instead, only
partial and qualitative information are available. For this reason, in chapter 6 the control law is
chosen piecewise constant and dependent on specific regions of the state space. Under appropriate
conditions on the control inputs, global convergence towards the unstable steady state is achieved
for both loops through successive repulsive regions of the state space and a final sliding mode.
Moreover, the asymptotic stability property is shown, which guarantees robustness of the resulting
system. These results are adapted for the control of the synthetic Toggle Switch.

This piecewise constant strategy is further improved in chapter 7, in which biological device in-
accuracies are taken into account, leading to the hypothesis of uncertain measurements. In the
mathematical framework, this hypothesis generates regions in which the control law is undefined.
Under appropriate conditions on the control inputs, successive repelling regions of the state space
are determined in order to prove the global convergence of the system towards an adjustable zone
around the unstable steady state. These results are illustrated with the Toggle Switch, the synthetic
Repressilator, and the p53-Mdm2 genetic feedback loop.

In order to simplify further biological experiments, chapter 8 shows that the synthetic design of a
simple self-inhibition of one gene in both the positive and negative loop is able to globally stabilize
the unstable steady state of the network. Compared to the different control strategies developed
in the previous chapters, this synthetic modification of the circuit prevents the use of any input
and measurement devices, reducing greatly the complexity of the biological set-up. Once again,
the global results are proved thanks to the methodology developed in chapter 4, supporting the
idea that this methodology is well adapted for many different control problems. Furthermore, in
order to take into account inherent biological uncertainties for the positive feedback loop, the cell
undifferentiated state is later considered as a region of the state space around the unstable steady
state and is shown to be globally attractive with the same simple synthetic modification of the loop.
Some conditions are given such that all the possible steady states of the circuit are confined in the
undifferentiated region and the global results are proved with the theory of monotone dynamical
systems.

Finally, the control strategies developed in this manuscript for the global stabilization of the unstable
steady state of a negative feedback loop, are extended in chapter 9 for the reverse objective: generate
sustained oscillations in a disrupted clock that shows arrhythmic behavior. In this chapter, the
unique steady state of the canonical form of a genetic negative feedback loop is supposed to be
stable, reproducing accurately the damped oscillations observed in a damaged oscillator. A simple
synthetic modification of the network is proved to generate sustained oscillations and allow to
recover a functional clock. The desired periodic trajectories are obtained by destabilizing the
steady state x̄− of the model and monotone properties are applied for global results. In a limit
case, this modification of the loop is shown to be equivalent to an external piecewise constant control
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law, supporting the conjecture that simple qualitative control strategies may be able to guarantee
sustained oscillations. From the perspective of a biological implementation, this result is promising
as these types of control are well adapted to experimental constraints. To support this theoretical
work, the methods are applied to the disrupted circadian clock observed in human cancer cells.
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Chapter 2

Biological context

2.1 Gene regulatory networks
A gene is a functional unit composed of bases of DNA (Deoxyribonucleic Acid) that encodes any type
of information determining the phenotype of a living organism (see figure 2.1.1). This information
is transmitted to the organism through a process called “gene expression”, mainly composed of two
steps: transcription and translation [6].

The transcription step describes the process by which the sequence of DNA composing a gene is
copied into mRNA (messenger Ribonucleic Acid) by a specific enzyme called RNA polymerase that
binds to the starting point of the DNA branch, called promoter, and slides along the gene up to a
terminal point called the untranslated region, in order to scan and produce a copy of the information.
The mRNA is then decoded by a macromolecule called Ribosome that synthesizes a long chain of
amino acids forming a protein: this step is the translation (see figure 2.1.1). In a naive way, it will be
considered that one gene codes for one protein through this gene expression machinery. In fact, the
reality may be much more complex: a single gene often codes for different proteins depending on the
splicing process during which some parts of mRNA are removed before translation. However, this

Figure 2.1.1: Illustration of gene expression (picture modified from [1]).
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Figure 2.1.2: Left: illustration of the two types of transcription factors (TF), namely repressor and
activator (picture modified from [2]). Right: corresponding schematic representations that will be
used in the rest of the manuscript.

phenomenon goes far beyond the scope of this manuscript. More information about gene expression
can be found in [6].

Proteins are essential for living organisms as they perform most cellular functions. These macro-
molecules are indeed involved in transport and storage (such as Hemoglobin that carries oxygen
throughout the whole organism), in structures (such as Actin that forms microfilaments for cell
shape), in body defense (such as Antibodies that bind and neutralize specific pathogens), in chem-
ical reactions (such as enzymes that bind to substrates to convert them into different molecules of
interest) and in communication (such as hormones that transmit signals between organs), to name
but a few. This manuscript will focus on a specific group of proteins involved in gene expression
regulation, called transcription factors (TF).

Transcription factors are proteins able to control the rate of transcription of a specific gene in order
to ensure that it is expressed at the right place, at the right time and in the right amount within the
organism. They are often divided in two groups: the activators that boost the transcription of one
gene, and repressors that instead decrease the transcription of one gene. Usually, the transcription
factor induces the regulation by binding to a specific region of the gene under control, called binding
site or promoter (see figure 2.1.2). Once bound, an activator is able to increase the likelihood of
transcription of the gene by taping itself to RNA polymerase with strong protein-protein interactions
and thus helping its recruitement. Conversely, the repressors either prevent physically the RNA
polymerase to bind to the promoter of the gene and transcribe it into mRNA (called DNA-binding
repression), or prevent the translation of mRNA into protein by binding to the mRNA directly
(called RNA-binding repression) (see [6] for more details).

A transcription factor is not always specific to a unique gene. It may even be sometimes both
activator or inhibitor, depending on the cellular context and on the other transcription factors
or proteins that may bind to the same binding site, called associated co-factors [6]. It follows
that a unique gene is most of the time controlled by multiple simultaneous transcription factors
leading to a combinatorial regulation of transcription, and determining whether the gene is up or
down-regulated is a hard task.

Usually, all these interactions between genes, mRNA and proteins at the level of a reaction, of a
cell, of an organ or of a whole organism, form a large network called “gene regulatory network”.
These networks are composed of nodes and edges, where nodes represent proteins or genes and
the edges summarize regulatory relationships between these nodes and may either be direct or
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Figure 2.1.3: Illustration of complex gene regulatory networks composed of recurrent building
blocks, essential and responsible for different biological functions.

indirect, activations or repressions [9] (see figure 2.1.3). Studying gene regulatory networks allow
to explain and understand how the genotype shapes physiological and phenotypic observations.
However, when considering that the number of human genes has been estimated between 20000
and 25000, and the number of transcription factors is approximately 2600, it is easy to imagine
how large and how complex these regulatory networks may become. To circumvent this problem,
it has been observed that these complex networks display abundant recurrent and repetitive motifs
composed of a small number of genes highly interconnected, called building blocks (see figure 2.1.3).
Indeed, several types of motifs were found to happen more often in gene regulatory networks than
in randomly generated networks that share the same topological properties [90]. These different
recurrent patterns often play central roles in biological functions, and this manuscript will focus on
one particular essential motif called “feedback loops”.

2.2 Genetic feedback loops
Genetic feedback loops have the topology of a ring: the expression of each gene in the network is
regulated by one previous gene and regulates the expression of a following gene, so that the genes in
the network are coupled successively and form a directed cycle (see figure 2.2.1). Two main groups
of feedback loops exist depending on the number of repressions within the network. If the number
of repressions is even, the loop is called “positive feedback loop”. In this case, one gene indirectly
activates its own expression via the activations and the even number of repressions within the cycle.
Conversely, if the number of repressions is odd, the loop is called “negative feedback loop” and in
this case a gene indirectly represses its own expression [114] (see figure 2.2.1).

Negative feedback loops have been shown to be essential for two different mechanisms: homeosta-
sis and biological oscillations. Homeostasis is a vital function that allows to maintain relatively
constant the biological internal operating conditions despite environmental or molecular fluctua-
tions. A lot of common and popular features are under the control of homeostatic mechanisms in
the human body, such as the body temperature, blood pressure, blood sugar level [106], or ATP
(Adenosine triphosphate) that plays a central role in providing energy for many processes in living
cells [68]... Negative loops are also responsible for the emergence of self-sustained oscillations and
endogenous biological clocks that coordinate periodically different biological functions [40]. From
the macro-scale to the micro-scale, oscillatory behaviors can be observed everywhere. For example,
the circadian clock allows organisms to anticipate and adapt to environmental changes by generating
24-hours self-sustained oscillations coupled to day-night cycles in a wide variety of genes, molecules
and internal parameters such as the sleep-wake cycle or the body temperature [7, 104]. Similarly,
the cell cycle is composed of different phases during which a single cell goes through the duplication
of its genetic material in order to divide and seems synchronized with the circadian clock with a
period of 24 hours [6, 46]. As a last example, the female menstrual cycle is also a complicated
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Figure 2.2.1: All possible feedback loops composed of three genes. The two on the left are negative
loops with 1 or 3 inhibitions, and the two on the right are positive loops with 0 or 2 inhibitions.

oscillator that controls the reproductive system through different hormones that vary with a period
of approximately 28 days [106]. All these phenomena can emerge through an underlying genetic
regulation composed of negative loops. Interestingly, some systems highlight both the homeostatic
and oscillatory behaviour, depending on internal conditions. This is the case for the regulation of
a protein called p53. This protein has been discovered in 1979 and it is now clear that it plays
an essential role in living organisms: p53 is indeed involved in tumor suppression, apoptosis, DNA
repair and acts as a transcription factor that regulates a huge amount of genetic pathways (see for
example [73] for a complete review). In healthy organisms and unstressed conditions, this protein is
kept at low levels thanks to tight homeostatic control mechanisms [21]. In various stress conditions
however, such as the presence of malignant cells or in case of DNA damage, it has been observed
that the concentration of p53 starts to oscillate [78, 85, 23]. These sustained oscillations have been
interpreted as essential for DNA repair or tumor suppression [122]. These two main dynamical be-
haviors have been partly explained through a negative regulation of p53 by another protein called
Mdm2.

While negative feedback loops tend to reduce the effect of a small disturbance, positive feedback
loops have an inverse effect and exacerbate perturbations. For this reason, they have been shown
to be responsible for multi-stability, leading to differentiation processes or cell decision making
[114]. Cell differentiation allows undifferentiated cells, called stem cells, to differentiate into any
specialized cells with specific functions and is a life-long process, from development stages to repair
phases (see the left sketch in figure 2.3.1). This multi-stability property also allows drastically
different fates and decisions from one cell to another, even in the case of daughter cells in similar
genetic and molecular environments [6]. A famous and essential example of cell decision making is
apoptosis, a process during which an old or damaged cell dies. It has been interestingly observed
that sister cells do not always respond similarly to various apoptosis signals: some of them indeed
go through the apoptotic phases and die while others do not react. This difference in decision is
partly explained by an auto-activation of a family of enzymes called Caspases that become activated
when cell death is programmed [6].

2.3 Importance of understanding and controlling these loops
As highlighted in the previous sections, gene regulatory feedback loops govern a large amount of
vital biological functions. For this reason, a better understanding of their underlying mechanisms
as well as new strategies for the control of their dynamics would lead to an improvement regarding
insight into diseases and pharmacological treatments [110].

Disrupted negative feedback loops have now been identified in many diseases. For example, an
homeostasis disruption, called a dyshomeostasis, may result in the emergence of undesirable sus-
tained oscillations with sometimes dramatic consequences for the organism. For instance, due to
its important role in apoptosis, the protein p53 introduced in the previous section has been shown
to be tightly regulated in healthy organisms in order to prevent extreme expression levels. Indeed,
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Figure 2.3.1: Left: a stem cell is able to differentiate into different specialized cells through the
process of cell differentiation (picture modified from [3]). Right: the dedifferentiation process is
when a specialized cell is able to dedifferentiate into a stem cell (picture modified from [3]).

inappropriate activity of p53 with too high or too low concentrations can lead to various diseases,
such as neurodegenerative disorders characterized by a neuronal loss like Alzheimer [113], or early
embryonic lethality [21]. These types of disruptions are not restricted to the genetic scale: at the
neuron scale for example, periodic firing patterns with under- and over-stimulation are known to
be involved in various kinds of cerebral damage [65, 51]. Due to the underlying role of genetic net-
works, it seems likely that homeostatic behaviors at any scale may often hide a genetic homeostatic
control. For example, in [53], it has been shown that the coenzyme PLP (Pyridoxal phosphate: a
catalyst derived from a vitamin) is tightly regulated through a genetic cascade in order to guarantee
homeostasis of neurotransmitters. In case of extreme PLP activities, the consequent dyshomeostasis
of neurotransmitters (such as serotonin or dopamine) has been shown to provoke epileptic attacks.

The reverse scenario, namely the disruption of a biological oscillator, seems also involved in many
disorders. For example, it has been observed that many diseases such as cancers [76] or neurodegen-
erative disorders [91] are susceptible to cause a disruption of the circadian clock. Alternatively, the
synthetic generation of circadian rhythms in disrupted organisms has been proved to be effective for
the slowdown of disease progression [76]. For these reasons, the circadian clock is now considered as
a promising tool for therapeutic progress, and especially for cancer treatments. All these examples
support the high interest of finding new strategies for the control of biological negative feedback
loops.

Similarly, the control of biological positive feedback loops opens up vast biotechnological appli-
cations and opportunities. For example, it has been shown recently that cell differentiation is a
reversible process [24]: scientists have indeed been able to turn a differentiated cell back into an
undifferentiated stem cell. However, this phenomenon called “dedifferentiation” is not yet well
understood (see the right sketch in figure 2.3.1). Being able to control and understand dedifferenti-
ation processes may allow to produce and store a large amount of stem cells. These non-specialized
cells are helpful in many domains. For example, cancers are often induced by an abnormal cell
growth and division that invade and spread widely throughout the organism, and the control and
understanding of differentiation processes may reveal how and why such diseases start and develop.
Furthermore, these cells are more and more used in cancer treatments as they are able to replace
any damaged cell. Indeed, chemotherapy or radiotherapy that are responsible for the destruction
of cancer cells do not make the distinction with healthy cells. In order to restore a normal amount
of healthy cells, patients with typical diseases such as Leukemia for example, can receive stem cell
transplants. Finally, the control of positive feedback loops can also be useful for programmed cell
differentiation in order to force a cell to differentiate into any particular cell type. This may be
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interesting in the context of tissue regeneration for example, where a great amount of specialized
cells is needed.

2.4 Biological design and control tools
Synthetic biology has made significant progress over the past few years and has offered multiple
tools for the design and the control of genetic motifs [103].

The idea of synthetic biology emerged at the end of the 20th century, but the first synthetic circuits
were really engineered at the beginning of the 21st century. This recent multidisciplinary field
derived from genetics, biophysics but also computer and control engineering, in order to create, re-
design, control and program fully artificial biological systems. Most of the time, some DNA building
blocks or sequences are stitched and assembled artificially together thanks to different enzymes that
are able to both cleave and facilitate the joining of DNA strands, and these new modules are then
inserted in living organisms for different purposes. Thanks to synthetic modification of DNA, a
lot of transcriptional and translational parameters may be tuned: for example, by changing the
promoter of a gene, its transcription rate may be modified, whereas its degradation rate may be
impacted by a modification of its stop codon.

A famous and extensively used application of synthetic biology concerns gene expression measure-
ment. Indeed, understanding and studying a genetic motif often induces the investigation of genetic
expression changes. In 2008, the three chemists Osamu Shimomura, Roger Tsien and Martin Chalfie
received the Nobel Prize for their study on bioluminescent jellyfish. He discovered a protein called
GFP (green fluorescent protein) that exhibits green fluorescence after exposure to blue light. Nowa-
days, this protein or other similar fluorescent proteins such as YFP, RFP, CFP (for respectively
Yellow, Red and Cyan fluorescent protein) are widely used as reporter genes for the measurement of
gene expression. One way to do this in practice is to fuse the coding sequence of the reporter gene
downstream or upstream of the coding sequence of the gene of interest. In this way, both genes are
expressed to the same extent (see figure 2.4.1): a chimeric protein is produced and recapitulates the
expression level of the gene of interest. The expression of the reporter gene can be quantified thanks
to fluorescence microscopy. As the light is proportional to the abundance of protein expression, the
intensity of fluorescence leads to a partial estimation of the temporal and spatial gene expression
level within the cell. In this way, gene expression can be evaluated by quantifying levels of the gene
product, which usually consists in the corresponding coding proteins.

Synthetic biology is also a useful tool for the design of simplified and minimal genetic circuits that
reproduce the characteristics of bigger and more complex real biological networks. For both the

Figure 2.4.1: Synthetic modification of a gene for the measurement of its expression through a
fluorescent protein.
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Figure 2.4.2: Left: the three genes that compose the Repressilator. Right: oscillations produced by
the Repressilator (figure from [40]).

negative and positive genetic feedback loops, two breakthrough synthetic circuits were designed at
the beginning of the 21st century in order to understand and illustrate the possible behaviors of
these loops, and are still extensively used nowadays.

The first synthetic genetic negative feedback loop, called the Repressilator, was designed by Michael
Elowitz and Stanislas Leibler in 2000 [40], and was implemented in the organism Escherichia Coli.
The aim of this work was to generate a synthetic gene regulatory network mimicking a biological
oscillator. Three genes were assembled in a negative feedback loop as illustrated in the left sketch
of figure 2.4.2. The first protein LacI expressed by the first gene lacI represses the expression of the
second gene tetR. Its protein product TetR is in turn responsible for the inhibition of a third gene
cI. Lastly, the third resulting protein CI represses the first gene lacI. Thanks to a green fluorescence
protein, sustained oscillations were measured (see figure 2.4.2). Similarly, Attila Becskei and Luis
Serrano investigated at the same period the role of autoregulation in gene networks by designing
a synthetic negative feedback system, and demonstrated its ability to provide stability [18]. Since
then, other synthetic oscillators have been designed, and the major ones can be found in the review
by [103].

The same year, Timothy Gardner, Charles Cantor and James Collins synthetically constructed the
first genetic positive feedback loop, also known as Toggle Switch, in the organism Escherichia Coli
[54]. This motif was composed of two genes lacI and tetR that mutually repressed each other
through the proteins LacI and TetR for which they code. The circuit was designed in order to
measure the expression of both genes: the red fluorescent protein RFP was added to lacI and the
green fluorescent protein GFP was added to tetR, so that LacI could be measured with levels of red
fluorescence and TetR with levels of green fluorescence (see the left sketch in figure 2.4.3). During
the experiments, it was observed that this small motif is able to reproduce a cell differentiation
process, emerging from the underlying genetic positive feedback loop. Indeed, from an initial orange
fluorescent state for which both tetR and lacI are expressed, each cell was able to differentiate either
into a red fluorescent state for which lacI is expressed and tetR is off, or into a green fluorescent
state for which tetR is expressed and lacI is off (see the right picture in figure 2.4.3).

Figure 2.4.3: Left: the genetic circuit composing the Toggle Switch. Right: differentiation process
produced by the Toggle Switch (figure from [80]).
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Figure 2.4.4: Left: the genetic circuit composing the Toggle Switch with synthetic modification
that allows IPTG and aTc to control genes interactions. Right: dedifferentiation process produced
by the introduction of aTc and IPTG on the Toggle Switch (figure from [80]). The fluorescence of
a single cell is tracked for 15 hours. It is possible to observe that both tetR and lacI are expressed.

Besides the synthetic design of motifs, a lot of external control methods have been created in order to
perturb the natural behavior of a genetic network. For example, the introduction of specific inducer
molecules has been proved to be effective in interfering with some genes and proteins of interest
[87, 49, 50, 69]. With these techniques, a recent successful dedifferentiation process control strategy
has been implemented in [80] for the genetic circuit of the Toggle Switch. In this experiment, the
goal was to maintain cell lines near the undifferentiated orange fluorescent state. For this purpose,
the motif was modified in order to perturb the original circuit with the introduction of two inducer
molecules, namely aTc and IPTG. In this new network, aTc inhibits the inhibition of TetR on
lacI, while IPTG inhibits the inhibition of LacI on tetR (see the left sketch in figure 2.4.4). It was
observed that even if a cell starts in a green or red fluorescent differentiated state, the introduction
of the two inducer molecules is able to block the cell in an undifferentiated state where both tetR
and lacI are expressed (see figure 2.4.4). For a fine tuning of inducer molecule inputs, microfluidic
devices have been used. These devices are composed of chambers in which cells can grow, and two
syringes that contain the two inducer molecules. In principle, the inducer molecules are introduced
dynamically and precisely in really small amounts by varying the difference in hydrostatic pressure
between the two syringes, and this allows to switch the growth medium. Similarly, the modification
of environmental conditions such as the temperature or the osmotic pressure within a cell [120] may
allow control of gene expression.

A more recent technique based on light pulses, called optogenetics, has been emerging [89, 116, 88,
27]. Traditionally, this technique has been used in the brain to control neuronal activity, but is
more and more developed for other types of cells. This approach has the advantage of being less
invasive and more targeted. Indeed, in order to control a target gene expression, its promoter is
appropriately modified to make it responsive to a specific wavelength. This type of control acts
as an on-off switch: the system is controlled when the light is turned on, and uncontrolled when
the light is turned off. As a concrete example, optogenetic processes are often convenient when
the expression of the target gene is under the control of a transcription factor that first needs
to be phosphorylated or methylated in order to bind to the promoter of the gene and activate
its transcription (phosphorylation is the attachment of a phosphoryl group to a molecule, and
methylation the attachment of a methyl group). As done in [27] or [88], optogenetics may control
this phosphorylation or methylation process, and then indirectly control transcription (see figure
2.4.5). Similarly, other studies such as [116] or [89] use light pulses in order to induce or block
interactions between two different molecules. Finally, compared to inducer molecule techniques
that are only able to control cell populations, optogenetics has always the advantage to be adapted
for the control of a biological system both at the population and the single cell level.
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Figure 2.4.5: Example of an optogenetics process when the expression of a gene is under the control
of a transcription factor TF that first needs to be phosphorylated or methylated in order to activate
transcription. Under green light, the TF gets phosphorylated and is able to transcribe the gene of
interest, and under red light, the transcription is blocked by dephosphorylation of the TF.

2.5 Conclusion
All these synthetic techniques often lead to tedious, time-consuming, numerous and expensive
biological trials partly due to the high precision and quality devices required. For example, most of
the experiments presented in the previous sections used cloning of genes or segments of DNA. For
this purpose, several techniques exist and need more or less expensive materials: one way to do this
in practice is to clone genes with PCR (polymerase chain reaction) techniques for which the systems
cost a few thousands of dollars, insert these copies into plasmids (circular pieces of DNA), and insert
these plasmids into bacteria [6]. All the processes can cost a few hundreds of dollars and take a
few hours. Similarly, the devices that are used for the monitoring of gene expression in single cells,
such as fluorescence microscopes introduced in section 2.4, of flow cytometer instruments (with this
technique, the cells pass through a laser, are given a positive or a negative charge depending on their
fluorescence, and are then sorted by an electric field) can cost a few thousands of dollars [6]. For all
these reasons, the use of mathematical modeling and the theory of dynamical systems and control
may provide a good insight in order to help designing the first draft of a control strategy. For this
purpose, the mathematical modeling of genetic feedback loops is introduced in next chapter.
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Chapter 3

Mathematical modeling of genetic
feedback loops

3.1 The deterministic and ordinary framework
Depending on the objectives and hypothesis, different modeling approaches exist in order to de-
scribe and analyze gene regulatory networks. In this manuscript, the models used are limited to
deterministic and ordinary differential systems for which dynamical and convergence results may
be analytically proved.

If the number of molecules in the biological system is considered to be small, such as transcription
factors or mRNA for example that often appear in scarce and low copy numbers, then determin-
istic and continuous approaches are not sufficient to reproduce and describe the biological system
dynamics. Indeed, in this case, as soon as two molecules need to interact, a time-delay and a meet-
ing probability must be taken into account. These hypotheses may lead to the construction and
analysis of random dynamical systems such as stochastic differential equations (also called master
equation for chemical reactions), or continuous time discrete-state Markov processes, where states
of the system and its evolution are described in probabilistic term. It is important to keep in mind
that these types of systems exist, especially for extending and validating the results found, but this
framework has not been treated in this manuscript. Instead, it has been considered that the biologi-
cal components are in high concentration and well mixed, so that deterministic models can be used.
This hypothesis is well adapted for the biological examples that will be used in the manuscript and
allows to state analytical results that may be extended later in the case of stochastic systems.

Similarly, it may be assumed that molecules are not homogeneous within the biological system
of interest and these inhomogeneity phenomena may happen at different scales. For example, the
transcription of a gene into mRNA takes place inside the nucleus of a cell, but the mRNA must leave
the nucleus and reach the ribosomes in the cytoplasm for the translation. As a second example,
spatial properties are essential during development phases where some genes are intentionally on
or off depending on the location in the embryo for the development of particular organs. More
generally, as soon as a molecule diffuses within a cell or an organ, diffusive terms must be included
in the model and an ordinary differential equation approach is not sufficient. In this case, spatial
components must be taken into account, leading to the analysis of partial differential equations,
such as reaction-diffusion equations that have been extensively used in biology to explain pattern
formation with the theory of Turing in particular. Again, this manuscript will only focus on small
genetic feedback loops for which spatial dependence do not have to be considered.

A lot more details about non deterministic and non ordinary differential equation models for gene
regulatory networks can be found in the complete review by [36].
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3.2 Non-linear ordinary differential systems
3.2.1 Modeling transcription and translation
For the modeling of gene regulatory networks, the different biological steps explained in chapter 2
for gene expression are mathematically described (more details can be found in chapter 2 of [26]
and for a textbook on non-linear systems see [75]). For the transcription, the binding of n similar
transcription factors to the free promoter of the gene of interest is described by the following
chemical reaction:

nTF + Pfree
k1


k2
Pbound

where TF is the concentration of transcription factor, Pfree is the concentration of free promoter
of the gene of interest and Pbound is the concentration of the complex formed by the promoter of
the gene and the n transcription factors that bind to it to enhance or repress the transcription
of the gene. The two parameters k1 and k2 are rate constants, and may be seen as the number
of reactions per unit of time. The ordinary differential equation (ODE) for this type of chemical
reaction is derived by the law of mass action:{

Ṗfree = k2Pbound − k1TF
nPfree

Ṗbound = k1TF
nPfree − k2Pbound = −Ṗfree.

This formalism may be seen as the limit of an infinite number of molecules in stochastic models.
For example, the production of Pbound is conditioned by the likelihood that n transcription factors
and a free promoter meet, inducing the term TFnPfree in the ODE.

DNA molecules are often present in fixed numbers in biological systems, and can be considered
constant in the ODE. The DNA molecules are the sum of the free promoters and the bound ones,
leading to Pfree +Pbound = Ptotal where Ptotal is constant. This hypothesis of conservation of mass
is easily verified in the ODE as Ṗfree + Ṗbound = 0.

It is important to consider that the gene expression machinery has several timescales. Indeed, the
time for the binding and unbinding of transcription factors to DNA is of the order of magnitude of
1 second, whereas for the transcription and translation process, the order of magnitude is 1 minute
[9]. In this context, the Quasi Steady State Approximation (QSSA) is used in the previous ODE,
and considers that the bound and unbound promoter concentration reaches a steady state almost
instantaneously (see for example [107] for the application of QSSA methodology):{

Ṗfree = 0
Ṗbound = 0.

With the conservation of mass Pfree = Ptotal − Pbound, the concentration of Pfree and Pbound
becomes: 

Pfree = Ptotal
θn

θn + TFn

Pbound = Ptotal
TFn

θn + TFn

where θ = (k2/k1)1/n. Now that the model for the transcription factor binding has been stated, the
transcription process can be derived. It will be considered that mRNA degrades with time, and is
both produced from the transcription of a gene with and without transcription factors, leading to
the following chemical reactions:
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
Pfree −→

α1
MRNA

Pbound −→
α2

MRNA

MRNA −→
γm
∅

where MRNA is the concentration of mRNA. Again, with the law of mass action, and by considering
that all processes are independent, the concentration of mRNA obeys the following differential
equation:

ṀRNA = α1Pfree + α2Pbound − γmMRNA.

With the expression for Pfree and Pbound, the equation becomes:

ṀRNA = Ptotal

[
α1

θn

θn + TFn
+ α2

TFn

θn + TFn

]
− γmMRNA.

Two cases can be distinguished depending on the nature of the transcription factor. If the tran-
scription of the gene is increased by an activator, the production of mRNA is mainly due to bound
promoters, and in this case α1 � α2, leading to:

ṀRNA = Ptotal

[
α1

(
1− TFn

θn + TFn

)
+ α2

TFn

θn + TFn

]
− γmMRNA

= Ptotalα1 + (α2 − α1) TFn

θn + TFn
− γmMRNA

= β1 + β2
TFn

θn + TFn
− γmMRNA

where β1 = Ptotalα1 and β2 = α2 − α1.

Conversely, if the transcription of the gene is decreased by a repressor, the production of mRNA is
mainly due to free promoters, and in this case α2 � α1, leading to:

ṀRNA = Ptotal

[
α1

θn

θn + TFn
+ α2

(
1− θn

θn + TFn

)]
− γmMRNA

= Ptotalα2 + (α1 − α2) θn

θn + TFn
− γmMRNA

= β1 + β2
θn

θn + TFn
− γmMRNA

where β1 = Ptotalα2 and β2 = α1 − α2.

The last translation step for the production of the corresponding protein is modeled by assuming
that each protein is produced by mRNA and can degrade, leading to:

MRNA −→
ρ1

P

P −→
γp
∅

where P is the concentration of the protein. With the law of mass action, P evolves according the
following differential equation:

Ṗ = ρ1MRNA − γpP.

Again, different timescales emerge during these processes: the degradation of mRNA is of the order
of magnitude of 1 minute whereas for the degradation of a protein, the order of magnitude is 1 hour
[9], leading to γp � γm. The differential system can be rewritten:
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
dMRNA

γpdt
= β1

γp
+ β2

γp
f(TF )− γm

γp
MRNA

dP
γpdt

= ρ1

γp
MRNA − P

where f(TF ) is either TFn/(θn + TFn) or θn/(θn + TFn). With the change of timescale τ = γpt,
and ε = γp/γm � 1, the differential equation becomes:

ε
dMRNA

dτ = β1

γm
+ β2

γm
f(TF )−MRNA

dP
dτ = ρ1

γp
MRNA − P.

The system is then separated into a fast variableMRNA and a slow variable P , as ṀRNA evolves very
rapidly compared to Ṗ . Under appropriate conditions that will not be discussed here, the theorem
of Tikhonov can be applied (see for example [75] for more details): basically, it states that the fast
variableMRNA reaches a quasi steady stateM∗RNA solution of (β1/γm)+(β2/γm)f(TF )−M∗RNA = 0,
and the new differential system reduced to the unique variable P has essentially the same dynamical
behavior as the complete system.

By substituting MRNA = M∗RNA = (β1/γm) + (β2/γm) f(TF ) in the equation for P , the system
becomes:

Ṗ = κ0 + κf(TF )− γpP

where κ0 = ρ1β1/γm can be interpreted as a basal rate, and κ = ρ1β2/γm. With this equation, the
dynamical behavior of a protein is directly related to the concentration of its transcription factor.
To summarize, if the transcription factor is an activator, then

Ṗ = κ0 + κh+(TF, θ, n)− γpP

while if the transcription factor is a repressor:

Ṗ = κ0 + κh−(TF, θ, n)− γpP

where h+(TF, θ, n) = TFn/(θn + TFn) ∈ [0, 1[ and h−(TF, θ, n) = θn/(θn + TFn) ∈ ]0, 1]. For
n = 1, these functions are known as Michaelis-Menten functions, historically introduced to describe
the kinetics of enzyme catalysis. For n ≥ 2, they are sigmoid functions known as Hill functions,
and are a generalization of Michaelis-Menten dynamics for cooperative bindings, extensively used
to model activation and repression. Their inflection point is reached at θ ((n− 1)/(n+ 1))1/n and
the half expression is reached at θ. For n large, as it is often the case for gene regulatory networks,
the inflection point and the half expression are reached approximately at θ and the maximum
slope is proportional to n. Hence, θ can be interpreted as a threshold below (resp. above) which
the regulation of the transcription factor is low (resp. strong), and n can be interpreted as the
effectiveness of this regulation. These functions and their properties are illustrated in figure 3.2.1.

3.2.2 ODE model for genetic feedback loops in dimension N
As explained in chapter 2, genetic feedback loops have the topology of a ring and are classified in
two families: positive loops with an even number of inhibitions, and negative loops with an odd
number of inhibitions. In the rest of the manuscript, a loop with no inhibition will be considered as
the canonical form of positive feedback loops and a loop with only one inhibition will be considered
as the canonical form of negative feedback loops. Each loop is supposed to be composed of N
proteins that act as transcription factors for the coding genes within the network. The variable xi
∀ i ∈ {1, ..., N} represents the concentration of the protein i. From what has been explained in
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Figure 3.2.1: Effect of increasing n on Hill functions with θ = 2 and n ∈ {2, 3, 5, 7, 10, 20, 40, 100}.
The red curve is the Michaelis-Menten function with n = 1.

section 3.2.1, the dynamical equation for the concentration of each protein is directly linked to the
concentration of its transcription factor through a Hill function. From the topological property of
genetic loops, each protein i is regulated by only one protein in order to form a ring structure. It
follows that the system is modeled by the following non-linear ordinary differential equation:{

ẋ1(x1, xN ) = κ01 + κ1h∗(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N}
(3.2.1)

where h∗(xN , θN , nN ) = h+(xN , θN , nN ) for the canonical positive loop, and h∗(xN , θN , nN ) =
h−(xN , θN , nN ) for the canonical negative loop. Each protein is produced with a basal rate κ0i,
degraded with a rate γi, and experiences regulation with intensity κi. For biological consistency,
all these parameters are considered positive. More precisely, κi > 0, γi > 0 and θi > 0 for both
loops. Moreover, for the negative loop κ0i ≥ 0. For the positive loop however, it will be assumed
that κ0i ≥ 0 ∀ i ∈ {1, ..., N} and that there is at least one j ∈ {1, ..., N} such that κ0j > 0.
This condition for the positive loop will be detailed later in this section, but seems reasonable as
transcription and translation are leaky processes such that always a few proteins are expressed even
in absence of activators or presence of repressors. Furthermore, the integer n appears to be large
in most genetic regulations as discussed in the previous section. For this reason, it will be assumed
that ni ≥ 2. Finally, ∀ i ∈ {2, ..., N}, the production of protein i is activated by protein i− 1, and
for the positive loop, the production of protein 1 is activated by protein N , while inhibited for the
negative loop.

Remark 3.2.1. For the sake of simplicity, it will always be understood that i − 1 = N for i = 1
throughout the whole manuscript.
For example, the notation “ ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {1, ..., N}” will
also include ẋ1(x1, xN ) = κ01 + κ1h+(xN , θN , nN )− γ1x1.

The structure of these networks is conveniently summarized in a directed graph where nodes rep-
resent proteins and edges represent their regulation. The graph of these two canonical loops are
illustrated in figure 3.2.2.

As already indicated, system (3.2.1) is considered as the canonical form of genetic feedback loops.
Indeed it is possible to show that any loop composed of an odd number of inhibitions is fully
equivalent to the canonical negative loop and any loop composed of an even number of inhibitions
is fully equivalent to the positive loop, through a simple change of variable of type yi = −xi for
appropriately chosen indices i ∈ {1, ..., N} [83]. For example, with the change of variable y2 = −x2,
the following three dimensional negative loop composed of three inhibitions
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Figure 3.2.2: Graph for the positive (left) and negative (right) canonical genetic feedback loop.


ẋ1(x1, x3) = κ01 + κ1h−(x3, θ3, n3)− γ1x1,

ẋ2(x2, x1) = κ02 + κ2h−(x1, θ1, n1)− γ2x2,

ẋ3(x3, x2) = κ03 + κ3h−(x2, θ2, n2)− γ3x3,

becomes 
ẋ1(x1, x3) = κ01 + κ1h−(x3, θ3, n3)− γ1x1,

ẏ2(y2, x1) = −κ02 − κ2h−(x1, θ1, n1)− γ2y2,

ẋ3(x3, y2) = κ03 + κ3h−(−y2, θ2, n2)− γ3x3,

for which x3 inhibits x1, x1 activates y2 and y2 activates x3, as for the canonical negative loop
(3.2.1) in dimension 3.

It follows that all the results presented in this manuscript will be given for the two canonical circuits,
but perfectly apply to this more general class of systems (see figure 3.2.3).

The vector field of system (3.2.1) can be qualitatively determined with the properties of the null-
clines:

Definition 3.2.1. 
H∗1 (x) = κ01 + κ1h∗(x, θN , nN )

γ1
,

Hi(x) = κ0i + κih+(x, θi−1, ni−1)
γi

∀ i ∈ {2, ..., N} .

Figure 3.2.3: Graph for general positive (left) and negative (right) feedback loops.
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Figure 3.2.4: Illustration of the nullclines H+
1 and H−1 and the boundedness proposition 3.2.2. The

nullclines Hi ∀ i ∈ {1, ..., N} are similar to H+
1 .

Remark 3.2.2. For the sake of simplicity, when a function or a parameter is introduced for both
the negative and the positive loop, it will be labeled with ∗ (for example H∗1 ). In this case, in order
to refer specifically to one of the two loops, ∗ will be replaced either by + for the positive loop (for
example H+

1 (x)) or by − for the negative loop (for example H−1 (x)).

From the structure of the system it is straightforward to see that:

Proposition 3.2.1.{
ẋ1(x1, xN ) = 0 ⇐⇒ x1 = H∗1 (xN ),
ẋ1(xi, xi−1) = 0 ⇐⇒ xi = Hi(xi−1) ∀ i ∈ {2, ..., N} .

From the shape of these nullclines, it is possible to prove that system (3.2.1) is a priori bounded:

Proposition 3.2.2. For any initial condition in the positive orthant x0 ∈ RN+ , the trajectory of
system (3.2.1) will converge towards an invariant region A∗: ∃ 0 ≤ T < +∞ such that ∀ t ≥ T ,
x(t) ∈ A∗, where:{

A+ = {x|xi ∈ [κ0i/γi, (κ0i + κi)/γi[ ∀ i ∈ {1, ..., N}} ,
A− = {x|x1 ∈ ]κ01/γ1, (κ01 + κ1)/γ1], xi ∈ [κ0i/γi, (κ0i + κi)/γi[ ∀ i ∈ {2, ..., N}} .

Proof. From the definition of the vector field :{
ẋ1(x1, xN ) ≥ 0 ⇐⇒ x1 ≤ H∗1 (xN ),
ẋi(xi, xi−1) ≥ 0 ⇐⇒ xi ≤ Hi(xi−1) ∀ i ∈ {2, ..., N} ,

and {
ẋ1(x1, xN ) ≤ 0 ⇐⇒ x1 ≥ H∗1 (xN ),
ẋi(xi, xi−1) ≤ 0 ⇐⇒ xi ≥ Hi(xi−1) ∀ i ∈ {2, ..., N} .

From the shape of the nullclines, κ01/γ1 ≤ H+
1 (x) < (κ01+κ1)/γ1, κ01/γ1 < H−1 (x) ≤ (κ01+κ1)/γ1

and κ0i/γi ≤ Hi(x) < (κ0i + κi)/γi ∀ i ∈ {2, ..., N}. Then it follows that ∀ i ∈ {2, ..., N}:
ẋi(xi, xi−1) < 0 ∀ xi−1 ≥ 0 and ∀ xi ≥ (κ0i + κi)/γi, and ẋi(xi, xi−1) > 0 ∀ xi−1 ≥ 0 and
∀ xi < κ0i/γi. Moreover, for the positive loop, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0 and ∀ x1 ≥ (κ01 + κ1)/γ1,
and ẋ1(x1, xN ) > 0 ∀ xN ≥ 0 and ∀ x1 < κ01/γ1. For the negative loop, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0
and ∀ x1 > (κ01 + κ1)/γ1, and ẋ1(x1, xN ) > 0 ∀ xN ≥ 0 and ∀ x1 ≤ κ01/γ1.

This boundedness property, illustrated in figure 3.2.4, guarantees that the differential system stays
positive, as expected for a biological system where the variables represent concentrations. All the
results that will be presented throughout this manuscript will concern the invariant positive orthant
RN+ .
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Due to the non-linearities of system (3.2.1), analytical solutions cannot be determined explicitly.
However, qualitative information such as the number of steady states, their local stability, the
existence and the number of periodic orbits or even global convergence of trajectories, may be
discussed and is presented in next the sections.

3.2.3 Steady states
Determining the exact number of steady states for a dynamical system in general may become a
hard task. This is the case for positive feedback loops that are known to display multistability (see
for example [10], [115], [14] or [32] among others).

For system (3.2.1) however, the number of steady states for both the negative and positive loops
can be determined with the composition of nullclines:
Definition 3.2.2. ∀ i ∈ {1, ..., N}, S∗i (x) = Hi ◦Hi−1 ◦ ... ◦H∗1 ◦HN ◦HN−1 ◦ ... ◦Hi+2 ◦Hi+1(x).
Proposition 3.2.3. x̃∗ = (x̃∗1, ..., x̃∗N ) is a steady state of system (3.2.1) if and only if x̃∗1 is a fixed
point of S∗1 (x) and x̃∗i = Hi(x̃∗i−1) ∀ i ∈ {2, ..., N}.
Proof. First, let us assume that x̃∗ is a steady state of system (3.2.1). Then ẋi(x̃∗i , x̃∗i−1) = 0
∀ i ∈ {1, ..., N} and proposition 3.2.1 holds, leading to x̃∗i = Hi(x̃∗i−1) ∀ i ∈ {2, ..., N}. By induction
it is easy to see that x̃∗1 = S∗1 (x̃∗1). Conversely, let us assume that x̃∗1 = S∗1 (x̃∗1) and x̃∗i = Hi(x̃∗i−1)
∀ i ∈ {2, ..., N}. Then by induction x̃∗1 = H∗1 (x̃∗N ). It follows that proposition 3.2.1 holds and
ẋi(x̃∗i , x̃∗i−1) = 0 ∀ i ∈ {1, ..., N}. Finally x̃∗ is a steady state of system (3.2.1).

From this proposition, the number of steady states of system (3.2.1) is directly linked to the number
of fixed points of the function S∗1 (x). As the number of fixed points of a function is directly related
to its shape, a shape-indicator of S∗1 (x), called “Schwarzian derivative”, is calculated [5]. The
definition of the Schwarzian derivative of a function can be found in appendix A.1.
Proposition 3.2.4. The nullcline functions Hi(x) ∀ i ∈ {2, ..., N} and H∗1 (x) have a negative
Schwarzian derivative.
Proof. ∀ i ∈ {2, ..., N}:

S(Hi(x)) = S
(
κ0i + κih+(x, θi−1, ni−1)

γi

)
= S

(
κ0i

γi
+ κi
γi

xni−1

xni−1 + θi−1
ni−1

)
Then from property A.1.2 found in appendix A.1:

S(Hi(x)) = S
(

xni−1

xni−1 + θi−1
ni−1

)
= S

(
1− θi−1

ni−1

xni−1 + θi−1
ni−1

)
= S

(
1

xni−1 + θi−1
ni−1

)
= S(f ◦ g(x)),

where g(x) = xni−1 + θi−1
ni−1 and f(x) = 1/x. It is easy to calculate: S(g(x)) = −(n2

i−1 − 1)/2x2

and S(f(x)) = 0. Hence, from property A.1.1 found in appendix A.1, S(Hi(x)) = S(g(x)) =
−(n2

i−1 − 1)/2x2 < 0 as ni−1 > 1. Finally, ∀ i ∈ {2, ..., N} S(Hi(x)) < 0.
Similarly, with the same steps:

S(H∗1 (x)) = S
(
κ01 + κ1h∗(x, θN , nN )

γ1

)
= S

(
1

xnN + θN
nN

)
.
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Hence, S(H∗1 (x)) = −(n2
N − 1)/2x2 < 0.

This proposition induces the following result:

Proposition 3.2.5. S∗1 (x) has a negative Schwarzian derivative.

Proof. By definition, S∗1 (x) = H∗1 ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x). From property A.1.1 in appendix
A.1, if all the functions in this composition have a negative Schwarzian derivative, then the com-
posed function S∗1 (x) also has a negative Schwarzian derivative. Finally, from proposition 3.2.4, as
S(Hi(x)) < 0 ∀ i ∈ {2, ..., N} and S(H∗1 (x)) < 0, then S(S∗1 (x)) < 0.

This proposition allows to prove that S∗1 (x) is a sigmoid function:

Proposition 3.2.6. S∗1 (x) is a sigmoid function.

Proof. The function S+
1 (x) (resp. S−1 (x)) is strictly monotonically increasing (resp. decreasing) as it

is a composition of N strictly monotonically increasing functions (resp. N−1 strictly monotonically
increasing functions and one srictly monotonically decreasing function). Then S+

1
′(x) > 0 and

S−1
′(x) < 0 ∀ x ∈ ]0,+∞[, S∗1

′(0) = 0 from the properties of Hill functions, and S∗1 (x) is bounded.
As S∗1 (x) has a negative Schwarzian derivative from proposition 3.2.5, it follows that there exists
a > 0 such that S+

1
′(x) (resp. S−1

′(x)) is strictly increasing (resp. decreasing) ∀ x ∈ ]0, a[ and
S+

1
′(x) (resp. S−1

′(x)) is strictly decreasing (resp. increasing) ∀ x ∈ ]a,+∞[ (see [5] for the details).
This is exactly the definition of a sigmoid function.

This sigmoidal shape is essential in order to determine the number of steady states of system (3.2.1):

Proposition 3.2.7. The negative feedback loop has a unique steady state that will be called x̄− in
the rest of the manuscript. The positive feedback loop cannot have more than three steady states.
In this case, they will be called x̄+

inf , x̄+
sup and x̄+ in the rest of the manuscript, such that x̄+

1inf <

x̄+
1 < x̄+

1sup.

Proof. As S−1 (x) is a monotonically decreasing function, then it can intersect only once the linear
function y = x. Hence, from proposition 3.2.3, the negative loop version of system (3.2.1) has a
unique steady state.
For the positive loop, as S+

1 (x) is a monotonically increasing sigmoid function from proposition
3.2.6, then by definition it cannot have more than three fixed points. It follows from proposition
3.2.3 that the positive loop version of system (3.2.1) has at most three stready states.

Importantly, due to the boundedness proposition 3.2.2 and the positive conditions on the param-
eters, the possible steady states of system (3.2.1) do not lie at the borders of the invariant region
A∗:

Proposition 3.2.8. If x̃ is a steady state of system (3.2.1), then ∀ i ∈ {1, ..., N}, x̃i ∈ ]κ0i/γi, (κ0i+
κi)/γi[.

The proof of this proposition can be found in appendix A.2. This result will be useful throughout
the whole manuscript.

3.2.4 Local Stability
In order to determine the local stability of a steady state x̃ of system (3.2.1), its Jacobian matrix
is evaluated at the steady state:

Definition 3.2.3. The Jacobian matrix of system (3.2.1) evaluated at x̃ is:
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J∗(x̃) =



−γ1 0 · · · · · · · · · 0 J∗1
J∗2 −γ2 0 · · · · · · · · · 0
0 J∗3 −γ3 0 · · · · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · · · · · · · 0 J∗N −γN


where J∗1 = κ1h∗′(x̃N , θN , nN ), such that J+

1 > 0 and J−1 < 0, and J∗i = κih+′(x̃i−1, θi−1, ni−1) > 0
∀ i ∈ {2, ..., N}.

In order to investigate the properties of the eigenvalues of J∗(x̃), its associated characteristic poly-
nomial is calculated:

Proposition 3.2.9. The characteristic polynomial associated to J∗(x̃) is:

P ∗(X) =
N∏
i=1

(X + γi)−
N∏
i=1

J∗i .

The proof of this proposition can be found in appendix A.3.

From the structure of P ∗(X), the stability of the steady states of system (3.2.1) can be investigated:

Proposition 3.2.10. For the negative feedback loop in dimension 2, the unique steady state x̄− is
locally stable, no matter the parameters. However, for N ≥ 3, x̄− may either be locally stable or
unstable depending on the parameters. In this case, if S−′(x̄−) > −1, then x̄− is locally stable.
For the positive loop, when the three steady states x̄+, x̄+

sup and x̄+
inf exist such that x̄+

1inf < x̄+
1 <

x̄+
1sup, then x̄+

sup and x̄+
inf are locally stable and x̄+ is locally unstable.

Proof. With the definition and properties of the steady states, the characteristic polynomial P ∗(X)
of the Jacobian J∗ evaluated at a steady state x̃ of system (3.2.1) can further be expressed as:

P ∗(X) =
N∏
i=1

(X + γi)− κ1h∗′(x̃N , θN , nN )×
N∏
i=2

κih+′(x̃i−1, θi−1, ni−1),

=
N∏
i=1

(X + γi)−
(

N∏
i=1

γi

)
κ1

γ1
h∗′(x̃N , θN , nN )×

N∏
i=2

κi
γi

h+′(x̃i−1, θi−1, ni−1).

Moreover, from the expression S∗1 (x) = H∗1 ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x), it is easy to calculate its
derivative:

S∗1
′(x) = H∗1

′(HN ◦ ... ◦H2(x))×H ′N (HN−1 ◦ ... ◦H2(x))× ...×H ′2(x).

From proposition 3.2.3 and definition 3.2.1, the previous expression evaluated on x̃1 becomes:

S∗1
′(x̃1) = H∗1

′(x̃N )×H ′N (x̃N−1)× ...×H ′2(x̃1)

= κ1

γ1
h∗′(x̃N , θN , nN )×

N∏
i=2

κi
γi

h+′(x̃i−1, θi−1, ni−1).

Hence, the characteristic polynomial P ∗(X) of the Jacobian J∗ evaluated at the steady state x̃
becomes:

P ∗(X) =
N∏
i=1

(X + γi)− S∗1
′(x̃1)

N∏
i=1

γi.
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For the negative loop in dimension 2, the trace of the Jacobian is negative: tr (J−(x̃)) = −γ1 − γ2.
Moreover, the determinant is positive: det (J−(x̃)) = γ1γ2 − J−1 J

−
2 > 0. It follows that the

unique steady state x̄− is locally stable. For the negative loop in dimension greater than 2, a little
information can be deduced from the shape of the characteristic polynomial in the general case [93].
Assume that S−1

′(x̄−1 ) > −1 (as a reminder S−1
′(x) < 0). Assume further that x̄− is locally unstable.

It is straightforward to see that as P−(X) is equal to the simple polynomial
∏N
i=1(X+γi) to which

the positive constant −S−1
′(x̄−1 )

∏N
i=1 γi is added. As

∏N
i=1(X + γi) has only real negative roots,

then P−(X) cannot have real positive roots. Hence, if x̄− is locally unstable, then there exists a
pair of complex conjugate eigenvalues a + ib and a − ib with positive real part a. By definition,
P−(a+ ib) = 0:

P−(a+ ib) =
N∏
j=1

(a+ γj + ib)− S−1
′(x̄−1 )

N∏
j=1

γj = 0,

⇐⇒ S−1
′(x̄−1 ) =

∏N
j=1(a+ γj + ib)∏N

j=1 γj
,

=⇒ |S−1
′(x̄−1 )| =

∏N
j=1 |(a+ γj + ib)|∏N

j=1 γj
,

=⇒ −S−1
′(x̄−1 ) =

∏N
j=1

√
(a+ γj)2 + b2∏N
j=1 γj

,

=⇒ −S−1
′(x̄−1 ) > 1,

=⇒ S−1
′(x̄−1 ) < −1.

Hence, there is a contradiction. It follows that if S−1
′(x̄−1 ) > −1, x̄− is locally stable.

For the positive loop, assume that the function S+
1 (x) has three fixed points x̄+

1inf , x̄+
1sup and x̄+

1

such that x̄+
1inf < x̄+

1 < x̄+
1sup. Then, from the properties of sigmoid functions, S+

1
′(x̄+

1inf ) < 1,
S+

1
′(x̄+

1sup) < 1 and S+
1
′(x̄+

1 ) > 1 (see figure 3.2.5). If x̄+
inf , x̄+

sup and x̄+ are defined as in proposition
3.2.3, they are the three steady states of system (3.2.1).

For the middle steady state x̄+, as P+(X = 0) =
[
1− S+

1
′(x̃1)

]∏N
i=1 γi < 0, and lim

X→+∞
P (X) =

+∞, then P (X) has at least one root with positive real part. Hence, x̄+ is locally unstable. For
the two other steady states, assume that they are locally unstable. As P+(X) is a polynomial with
only positive coefficients, it cannot have real positive eigenvalues. Hence, as done for the negative
loop, there must exists a pair of complex conjugate eigenvalues a+ ib and a− ib with positive real
part a. With the same calculations as for the negative loop, this induces:

|S+
1
′(x̃1)| =

∏N
j=1 |(a+ γj + ib)|∏N

j=1 γj
,

=⇒ S+
1
′(x̃1) > 1,

where x̃ is either x̄+
inf or x̄+

sup. Hence, there is a contradiction. It follows that x̄+
inf and x̄+

sup are
locally stable.

Some global results can also be determined for both loops.

3.2.5 Monotone dynamical systems
A dynamical system defined in an ordered metric space is called monotone if its flow Φt(x) preserves
a partial order denoted ≤ [67]. In other words, if two initial conditions x and y are such that x ≤ y,
then Φt(x) ≤ Φt(y) for any t ≥ 0.
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Figure 3.2.5: Illustration of the fixed points of S+
1 (x).

Within the class of ordinary differential equations, cooperative systems are known to generate a
monotone flow. More precisely, if the following ordinary differential equation

ẋ = f(x)

is such that dfi/dxj(x) ≥ 0 for any i 6= j, then the system is cooperative. Due to order preserving,
these systems have nice and really convenient global properties regarding convergence and stability,
for which chaotic and irregular behaviors are ruled out. In particular, convergence towards the set
of steady states becomes generic, meaning that “almost” all trajectories converge towards the set of
steady states. More precisely, it has been shown under appropriate conditions that, if a cooperative
system has a unique steady state, then this steady state is globally asymptotically stable [71, 34, 72].
Moreover, with good conditions, these systems cannot have attracting periodic orbits (see [109] for
exhaustive results about cooperative systems and [108] or [111] for a comprehensive review about
monotone systems).

The theory of monotone dynamical systems has been largely applied to biological problems. For
example, population dynamics and biological interaction networks are usually well explained with
cooperative systems. In particular, it is straightforward to see that the positive feedback loop (3.2.1)
is a cooperative dynamical system as well. It follows that, if the dynamical system of the positive
loop has a unique steady state, then this steady state is globally asymptotically stable. Moreover,
if the dynamical system has three steady states x̄+, x̄+

inf and x̄+
sup, almost all the trajectories

will converge towards one of the two locally stable steady states x̄+
inf and x̄+

sup. This bistable
system properly models cell differentiation processes and cell decision making that emerge in biology
from genetic positive feedback loops, as introduced in chapter 2. From an undifferentiated state,
represented by the unstable steady state x̄+, a cell may differentiate into one type or another type
by converging either towards the first stable steady state x̄+

inf or the second stable steady state
x̄+
sup.

More recently, the theory of monotone, and in particular cooperative systems, has been extended
to systems with inputs and outputs, also called monotone control systems (see [111]). With this
new framework, a non-monotone system may be decomposed into several interconnected monotone
input systems [111, 11]. Under appropriate conditions, these feedback systems are able to recover
many of the global convergence properties of classical monotone systems, such as global asymptotic
stability of steady states [12], or multi-stability [13].

The dynamical system of negative feedback loops (3.2.1) is not a cooperative dynamical system.
However, it is possible to show that if N is odd, it is part of the class of competitive dynamical
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systems that satisfy dfi/dxj(x) ≤ 0 for any i 6= j. It is easy to understand that competitive systems
are cooperative systems by time reversal. However, they do not satisfy the strong global results
about generic convergence towards steady states. It follows that for negative feedback loops, other
arguments and model classes are needed for global dynamical properties.

3.2.6 Monotone cyclic feedback systems
Monotone cyclic feedback systems are defined as:

ẋi = fi(xi, xi−1), ∀ i ∈ {1, ..., N} ,

with

δi
∂fi(xi, xi−1)

∂xi−1
≥ 0 ∀ i ∈ {1, ..., N} ,

where δi ∈ {+1,−1}. Basically, the system is said to be monotone as each variable monotonically
influences and interacts with one of the other variable in the system. As for the general type of
genetic feedback loops, these systems divide in two groups depending on the value of ∆ =

∏N
i=1 δi.

If ∆ = +1, the system is a positive feedback loop and is part of the class of cooperative dynamical
systems, as introduced in the previous section. If ∆ = −1, the system is a negative feedback loop
with a unique steady state. The canonical genetic negative feedback loop presented in (3.2.1) is then
a monotone cyclic feedback system with ∆ = −1. In dimension 2, the examination of the Jacobian
matrix and the use of classic theorems such as Poincare-Bendixson and Bendixson-Dulac, prove the
global stability of the steady state and appropriate conditions on the parameters can be determined
for the emergence of damped oscillations. In dimension greater than 2 the dynamics is much more
complex but a couple of results exist thanks to the theory of monotone cyclic feedback systems. In
particular, the theorem of Poincare-Bendixson that exists for planar systems has been extended:
basically, a trajectory of a monotone cyclic feedback system with ∆ = −1 may either converge
towards a steady state or a periodic orbit. Any chaotic, homoclinic or heteroclinic orbits are ruled
out [83]. Depending on the relation between parameters, more specific global results may be proved:
global stability of the steady state under sufficient conditions [8, 105, 121], and emergence of periodic
solutions [66, 57, 86]. These two main dynamics properly capture the observed biological behaviors
of negative feedback loops, as introduced in chapter 2: homeostasis and sustained oscillations.

3.2.7 Numerical illustrations
Figures 3.2.6 and 3.2.7 respectively simulate the canonical model (3.2.1) for the negative loop in
dimension 3 and the positive loop in dimension 2. As expected from analytical results, the negative
loop displays two distinct behaviors depending on the parameters: either homeostasis through a
global convergence towards its unique steady state x̄− (see the left plot in figure 3.2.6), or sustained
oscillations through the emergence of a globally stable periodic orbit (see the right plot in figure
3.2.6). Similarly, the positive loop displays either a unique globally asymptotically stable steady
state (see the left plot of figure 3.2.7), or a decision and differentiation process through the emergence
of bistability (see the right plot of figure 3.2.7).

3.3 Piecewise affine differential systems
In order to tackle analytical problems or in case of a lack of detailed information about reaction
mechanisms, gene regulatory non-linear ODE models may be simplified and approximated. For
this purpose, Leon Glass was the first to introduce in the 1970s the so-called Piecewise Linear
(PWL) differential systems, or Glass systems, that approximate non-linear regulations such as Hill
functions, by piecewise linear functions [56]. This approximation turns up when the steepness
parameter n of a Hill function is considered large enough, leading to a discontinuous step function,
also called Heaviside function (see figure 3.3.1):
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Figure 3.2.6: Simulation of system (3.2.1) for a canonical negative loop in dimension 3. For both
plots, the blue line is a trajectory of system (3.2.1) with initial condition (14, 16, 17), and the unique
steady state x̄− = (12, 12, 12) is depicted by a red star. Left: the parameters are κ0i = 2, κi = 8,
γi = 0.5, θi = 12 and ni = 3, ∀ i ∈ {1, 2, 3}. The trajectory converges towards x̄−. Right: the
parameters are κ0i = 2, κi = 8, γi = 0.5, θi = 12 and ni = 7, ∀ i ∈ {1, 2, 3}. The trajectory
converges towards a periodic orbit highlighted by a green line.
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Figure 3.2.7: Simulation of system (3.2.1) for a canonical positive loop in dimension 2. For both
plots, the dashed green (resp. magenta) line is the x2-nullcline (resp. x1-nullcline). The blue lines
are trajectories of system (3.2.1) with different initial conditions depicted by black dots. Left: the
parameters are κ0i = 2, κi = 20, γi = 1, θi = 8 and ni = 2, ∀ i ∈ {1, 2}. The unique stable steady
state x̄+

sup = (18.98, 18.98) is represented by a blue star and all the trajectories converge towards
it. Right: the parameters are κ0i = 2, κi = 20, γi = 1, θi = 8 and ni = 5, ∀ i ∈ {1, 2}. The two
stable steady states x̄+

inf = (2.02, 2.02) and x̄+
sup = (21.87, 21.87) are represented by blue stars and

x̄+ = (6.1, 6.1) is represented by the red star. The trajectories converge towards one of the two
stable steady states.

lim
n→+∞

h∗(x, θ, n) = s∗(x, θ),

where
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Figure 3.3.1: Decreasing (left) and increasing (right) step functions.

{
s+(x, θ) = 0 if x < θ,

s+(x, θ) = 1 if x > θ,

and {
s−(x, θ) = 1 if x < θ,

s−(x, θ) = 0 if x > θ.

In this framework, the interaction between two proteins becomes an on-off process regulated by the
constant threshold θ. The biological feedback loop model (3.2.1) becomes:{

ẋ1(x1, xN ) = κ01 + κ1s∗(xN , θN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κis+(xi−1, θi−1)− γixi ∀ i ∈ {2, ..., N} .

These simplifications are reasonable as many gene interactions behave like a switch. Although these
types of models have historically emerged for describing physical processes, such as classical me-
chanics problems for example, they are nowadays widely applied for various biological applications.
In neuroscience for example, dynamical systems with autonomous state jumps are extensively used
to model neuron dynamics [22].

For the analysis of PWL systems, the state space is traditionally divided into so called “regular”
and “switching” domains. Indeed, as step functions are not defined at threshold points, neither is
the vector field uniquely defined in the state space. Hence, regular domains consist in regions of the
state space where the vector field is uniquely defined: for example xi < θi ∀ i ∈ {1, ..., N}. In regular
domains, the differential system is equivalent to a linear system for which analytical solutions can
explicitly be calculated. Conversely, switching domains consist in any region where at least one
variable is at a threshold point. In this case, the vector field is not defined and classical theory of
dynamical systems is not sufficient to determine the qualitative behavior of trajectories. For this
purpose, the theory of Filippov has been developed and allows to appropriately define solutions of
the PWL differential system [47]. Basically, this theory considers all the possible directions for the
trajectories on the switching domain by defining the vector field on the switching domain as the
closed convex hull of all possible vector fields. For example, if xj = θj and all the other variables
are such that xi 6= θi for i 6= j, then the extended vector field is defined as:

ẋ ∈ H(x)

where
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Figure 3.3.2: For all the sketches, the red arrows are vector fields on both sides of a switching
domain x2 = θ and the blue arrows are trajectories. Left: illustration of a transparent wall that
trajectories can cross. Middle: illustration of a white wall that repels all the trajectories. Right:
illustration of a black wall that attracts all the trajectories, leading to sliding mode solutions.

H(x) = c̄o





ẋ1(x1, xN )
...

κ0j + κj − γjθj
...

ẋN (xN , xN−1)

 ,



ẋ1(x1, xN )
...

κ0j − γjθj
...

ẋN (xN , xN−1)




is the closed convex hull of the set of vector fields. Intuitively, if the vector field on both sides
of the switching domain points in the same direction transversely to the switching domain, then
the trajectories just cross the switching domain: this type of switching domain is called a trans-
parent wall (see the left sketch in figure 3.3.2). Conversely, if the vector field on both sides of the
switching domain points in opposite direction transversely to the switching domain, two cases are
distinguished. First, if the vector fields point away from the switching domain, the trajectories
cannot reach the switching domain from the adjacent regular domains, and a trajectory starting on
the switching domain can reach both adjacent regular domains: this type of switching domain is
called a white wall (see the middle sketch in figure 3.3.2). Second, if the vector fields point towards
the switching domain, the trajectories can reach the switching domain but a trajectory starting on
the switching domain cannot reach any adjacent regular domains: this type of switching domain is
called a black wall, and the trajectories emerging from black walls are called “sliding modes” (see
the right sketch in figure 3.3.2). These transitions between regular domains are often represented
in a transition graph from which qualitative information about dynamics can be deduced.

Most of the time, these systems preserve the main features of the dynamics of their non-linear
ordinary version [29], and allow analytical work such as existence of periodic orbits [58, 43, 44],
sometimes leading to global results [37]. For example, under good hypotheses on the parameters,
such as γi = γ ∀ i ∈ {1, ..., N}, uniqueness of periodic orbits for negative loops has been proved
[98, 99]. Similarly, under good conditions, the existence of periodic orbits has been shown in [39]
for PWL gene regulatory networks with delays. Even if in many cases it has been observed that
the qualitative behavior of the non-linear and PWL solutions are similar, some differences may
sometimes emerge: for example, when the Hill steepness coefficient n is not large enough in non-
linear models, the qualitative trajectories between the two models may differ, sometimes leading to
oscillations for the non-linear model and a stable equilibrium for its PWL counterpart [97, 102].

Figure 3.3.3 simulates the PWL version of the canonical model (3.2.1) for the negative loop in
dimension 3 and the positive loop in dimension 2. The PWL models are still able to reproduce
sustained oscillations for the negative loop and bistability for the positive loop. It is possible to
observe that the trajectories are solutions of a linear system in each regular domain, and that the
vector field switches in each switching domain.
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Figure 3.3.3: Left: simulation of the PWL version of system (3.2.1) for a canonical negative loop
in dimension 3. The parameters are κ0i = 2, κi = 8, γi = 0.5 and θi = 12 ∀ i ∈ {1, 2, 3}. The
trajectory with initial condition x0 = (14, 16, 17) represented by a blue line converges towards a
periodic orbit highlighted by a green line. Right: simulation of the PWL version of system (3.2.1) for
a canonical positive loop in dimension 2. The dashed green (resp. magenta) line is the x2-nullcline
(resp. x1-nullcline). The blue lines are trajectories of system (3.2.1) with different initial conditions
depicted by black dots. The parameters are κ0i = 2, κi = 20, γi = 1 and θi = 8 ∀ i ∈ {1, 2}.
The two stable steady states x̄+

inf = (2, 2) and x̄+
sup = (22, 22) are represented by blue stars and

x̄+ = (8, 8) is represented by the red star. The trajectories converge towards one of the two stable
steady states.

3.4 Boolean systems
It is possible to go even further in the simplification of non-linear ordinary differential equations
for gene regulatory networks. As a strong hypothesis, a gene may be considered to have two states:
one active (1) and one inactive (0). In this case, the system can be described in purely logical terms
where interactions between proteins are modeled by Boolean functions. In this boolean framework,
the state of the system (x1, ..., xN ) is a vector of boolean entries xi ∈ {0, 1} ∀ i ∈ {1, ..., N}. From
these states, a successor map can be written as a transition rule with mainly three logical operators:
∨ (“or”), ∧ (“and”), and ¬ (“not”) [114, 74].

With iteration maps, several variables may change state at the same time. For example, with two
variables x1 and x2 and the successor map F (x1, x2) = (¬x2,¬x1), the successor of the state (00)
is (11). This is called “synchronous” dynamics. However, most of the time in biology this evolution
is not realistic as there may exist different time-scales or delays in the real biological system, and it
is highly unlikely that several variables change at the same time precisely. To deal with this reality,
a lot of models consider “asynchronous” dynamics, for which only one variable is allowed to change
state at each iteration. In this case, a state can have several successors. With the same example,
the successor of (00) is either (01) or (10). By studying the graph of transitions between states,
some dynamical properties such as steady states or periodic orbits may emerge.

These types of models have been widely used and give a first simple and qualitative insight into
genetic dynamics.

To illustrate that qualitative dynamics of ODE systems may be partially recovered by boolean
networks, the boolean model of the canonical negative feedback loop in dimension 3 is investigated.
The successor map is simply: F (x1, x2, x3) = (¬x3, x1, x2). The synchronous and asynchronous
truth tables can be constructed:
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Figure 3.4.1: Transition graph of the synchronous (left) and asynchronous (right) analysis of the
boolean model for the canonical negative loop in dimension 3. The periodic orbit is highlighted in
red.

Figure 3.4.2: Transition graph of the synchronous (left) and asynchronous (right) analysis of the
boolean model for the canonical positive loop in dimension 2. The bistability is highlighted in red.

000 → 100 000 → 100
001 → 000 001 → 000
010 → 101 010 → {110, 001, 011}
011 → 001 011 → 001
100 → 110 100 → 110
101 → 010 101 → {001, 111, 100}
110 → 111 110 → 111
111 → 011 111 → 011

The transition graphs obtained for both the synchronous and asynchronous analysis are presented
in figure 3.4.1. As expected, the asynchronous dynamics allows to be obtained a globally attractive
periodic orbit, giving a good qualitative insight on the negative feedback loop dynamics.
The same analysis can be made for the boolean model of the canonical positive feedback loop in
dimension 2. The successor map is: F (x1, x2) = (x2, x1). Again, the synchronous and asynchronous
truth tables can be constructed:

00 → 00 00 → 00
01 → 10 01 → {00, 11}
10 → 01 10 → {00, 11}
11 → 11 11 → 11

The transition graphs obtained for both the synchronous and asynchronous analysis are presented
in figure 3.4.2. As expected, the asynchronous dynamics allows bistability with two locally stable
states (00) and (11) that respectively represent a state where both proteins are not expressed, and
a state where both proteins are fully expressed.
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More generally, many qualitative properties can be deduced from generic Boolean models by looking
at the interaction graph between variables [30]. For example, two strong general results were
conjectured by René Thomas in the 1990s (see [114] for more details):

• if the system is bistable, then its interaction graph must contain at least a positive loop,

• if the system has a stable periodic orbit, then its interaction graph must contain at least a
negative loop.

These results have been rigorously proved for dynamical systems [60]. As usual the interaction graph
is the easiest information to obtain, these general results give useful information about dynamical
features: for example, if there is no negative loop between genes in an interaction graph, then the
system cannot exhibit sustained oscillations.

3.5 Conclusion
As explained in chapter 2, both positive and negative biological feedback loops play an essential
role in several biological functions and diseases. In this context, the next chapters present different
biologically relevant strategies for the control of these two motifs.

In order to stay as close as possible to the real biological context, the genetic dynamical model is
kept as exhaustive and general as possible throughout the whole manuscript, leading to the analysis
of the highly non-linear differential system (3.2.1).

The positive feedback system (3.2.1) is supposed to model a cell differentiation process in the rest
of the manuscript, as observed in biology. For this reason, it is assumed that the parameters of
the positive feedback system (3.2.1) generate three steady states x̄+

sup, x̄+
inf and x̄+. The different

control strategies have been designed in order to mimic a biological dedifferentiation process, highly
promising for pharmacological treatments. From the mathematical point of view, this dedifferen-
tiation process is achieved if the control strategy is able to globally stabilize the undifferentiated
state x̄+.

From chapters 4 to 8, the negative feedback system (3.2.1) is supposed to model a disrupted
homeostatic circuit that displays a dyshomeostasis, as discussed in chapter 2. For this reason, it is
assumed that the parameters of the negative feedback system (3.2.1) generate at least a locally stable
periodic orbit leading to undesired sustained oscillations. The different control strategies have been
designed in order to suppress undesired periodic behaviors and recover stable biological conditions.
From the mathematical point of view, this process is achieved if the control strategy is able to
globally stabilize the homeostatic state x̄−. Conversely, in chapter 9, the negative feedback system
(3.2.1) is supposed to model a disrupted biological clock, that displays unhealthy and abnormal
arrhythmic behavior. For this purpose it will be assumed that the parameters of the negative
system (3.2.1) generate a global asymptotic convergence towards the homeostatic state x̄−. Two
different control strategies have been designed in order to generate sustained oscillations and recover
a functional biological clock.
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Chapter 4

Classical control strategy

4.1 Introduction
Control theory is a branch of mathematics that aims at designing appropriate control strategies in
order to force a dynamical system to follow a desired output objective.

Historically, classical control theory has been developed for the control of continuous time linear
systems or non linear systems linearized around a state of interest. For these types of problems,
a lot of theoretical results have been produced and are still widely used nowadays, especially for
industrial applications [35]. Usually, linear control systems in the time domain in the form of ODEs
can be characterized in the frequency domain through Laplace transforms in order to simplify
their manipulations [35]. For industrial control systems, classical control mechanisms such as P
(Proportional), PI (Proportional Integral) or PID (Proportional Integral Derivative) controllers are
still extensively used. Basically, these controllers calculate in real time the error e(t) between the
measured output of the controlled system and the desired tracked objective. From this continuous
time error signal, the correction applied by the controller on the system may be proportional to
three control terms: the past values of the error signal estimated via an integral calculation (I), the
present value of the error signal (P), and the potential future values of the error signal estimated
via the computation of its derivative (D). Due to good theoretical properties, such as zero steady
state error or moderate overshoots, PID controllers are extensively designed in industrial control
problems (for more details about classical control theory, see [35]). However, the three coefficients
needed for the derivative, proportional and integral terms, also called gains, may be complex to
tune, limiting their use in biology. Instead, many practical applications in synthetic biology have
been developing PI controllers capable of producing precise and robust output levels even in case of
model uncertainties and external perturbations [80, 87, 116, 50, 49, 88, 48, 63, 64]. Unfortunately,
these analytical results are only valid for either linear systems which are not biologically realistic,
or tangent linear approximations of non-linear systems leading to only local validity of the control
properties. In this chapter, a new methodology will be developed in order to obtain a robust
classical control strategy with global results.

Control problems can be divided in two families: open and closed loop systems. In open loop
control systems, the control strategy is applied without having any knowledge and feedback about
the output and the time dynamics of the controlled system. Conversely, a closed loop controller
uses feedback and outputs provided by sensors and measurement tools. If open loop controllers may
be well adapted for engineering systems with perfectly known models that always work in normal
conditions, they often fail in biological systems due to uncertain models and inherent intracellular
fluctuations. Closed loop systems however are able to guarantee performance results even in case
of uncertainties and external perturbations. For this purpose, only closed loop control strategies
will be designed in this manuscript.
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Similarly, MIMO (multi-input multi-output) and SISO (single-input single output) controlled sys-
tems can be distinguished. As their names indicate, MIMO systems may have several inputs and
outputs whereas SISO systems is only composed of a unique input and a unique output. In the
biological context of this manuscript, only SISO systems will be treated in order to minimize the
number of measurement and control tools needed. These constraints aim at simplifying a potential
biological application.

In this context, a simple affine control law is designed in this chapter in order to stabilize a negative
feedback loop that displays a dyshomeostasis, and a positive feedback loop for the design of a
dedifferentiation process. The control strategy only depends on the measurement of a unique
gene and only acts on a unique genetic interaction. From a biological point of view, this simple
control guarantees a minimal biological set-up and helps reducing the complexity of measurement
and control devices. A new methodology is presented in order to prove that this simple control
law stabilizes the unstable steady state x̄∗ of the uncontrolled system. The proof is based on the
construction of successive repelling nested hyperrectangles that act as Lyapunov function level-sets.

The control strategy is introduced in section 4.2 and the new methodology about global convergence
and stability is presented in section 4.3. In section 4.4, the controlled system is shown to be
composed of sigmoid functions, a key property in order to apply the results from section 4.3.
Finally, section 4.5 shows that the affine control strategy leads to global stabilization of the steady
state, and this result is illustrated with numerical simulations in section 4.6.

The content of this chapter concerning the negative feedback loop can be found in the article
published for the conference CDC (see the section “List of publications” in page 5).

4.2 The controlled model
The selected control consists of a classical affine law:

u(x1) = −α(x1 − x̄∗1) + 1, (4.2.1)

with α > 0, that only depends on the measurement of the first gene x1 and acts on its production
as the following:{

ẋ1(x1, xN ) = κ01 + u(x1)κ1h∗(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} .
(4.2.2)

This law depends on the estimation error (x1 − x̄∗1) and can take both positive and negative values
(see figure 4.2.1). The constant +1 has been fixed in order to preserve x̄∗ as a steady state:

Proposition 4.2.1. The steady state x̄∗ of system (3.2.1) is also a steady state of system (4.2.2)
under control (4.2.1). Moreover, for the negative loop, this steady state is unique.

Proof. As u(x̄∗1) = 1, it is easy to check that the steady state x̄∗ of system (3.2.1) is a steady state
of system (4.2.2) under control (4.2.1). For the uniqueness, it is possible to write the equations of
the steady states as done previously for the uncontrolled system:

x̄∗1 = κ01 + κ1h∗(x̄∗N , θN , nN )(1 + αx̄∗1)
γ1 + ακ1h∗(x̄∗N , θN , nN ) = H∗1α(x̄∗N ),

x̄∗i =
κ0i + κih+(x̄∗i−1, θi−1, ni−1)

γi
= Hi(x̄∗i−1) ∀ i ∈ {2, ..., N} .

(4.2.3)

Hence, it is possible to show that x̃ = (x̃1, ..., x̃N ) is a steady state of system (4.2.2) under control
(4.2.1) if and only if x̃1 is a fixed point of the function S∗1α(x) = H∗1α ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x)
and x̃i = Hi(x̃i−1) ∀ i ∈ {2, ..., N}. After performing some calculation, it is possible to show that:
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Figure 4.2.1: (Left: negative loop, Right: positive loop). Graph of the uncontrolled system (3.2.1)
in black. For system (4.2.2) under control (4.2.1), the graph is the same with the additional red link.
In this case, the influence of xN on x1 is not fixed: it can either activate or inhibit its production.

H∗1α
′(x) = κ1

∂h∗(x, θN , nN )
∂x

α(γ1x̄
∗
1 − κ01) + γ1

(γ1 + ακ1h∗(x, θN , nN ))2 .

From proposition 3.2.8, x̄∗1 > κ01/γ1, inducing γ1x̄
∗
1−κ01 > 0. Moreover, from the properties of Hill

functions, ∂h+(x, θN , nN )/∂x ≥ 0 and ∂h−(x, θN , nN )/∂x ≤ 0. Hence, H+
1α
′(x) ≥ 0, H−1α

′(x) ≤ 0
(it is equal to zero only for x = 0), inducing that H−1α(x) is strictly monotonically decreasing and
H+

1α(x) is strictly monotonically increasing. As a consequence, S−1α(x) is strictly monotonically
decreasing as it is the composition of N − 1 strictly monotonically increasing functions and one
strictly monotonically decreasing function. As already explained in section 3.2.3 of chapter 3, the
function S−1α(x) can intersect only once the linear function y = x for the negative loop. Finally,
x̄− is the unique steady state of system (4.2.2) for the negative loop. For the positive loop, S+

1α(x)
is strictly monotonically increasing as it is the composition of N strictly monotonically increasing
functions. Hence, the function S+

1α(x) can intersect more than once the linear function y = x, and
x̄+ may not be the unique steady state of system (4.2.2) for the positive loop.

Under good conditions, it may be possible to show that this affine control law is able to locally
stabilize x̄∗ with classical control theory [35]. However, the goal here is more challenging, and
consists in finding conditions on α such that x̄∗ becomes globally asymptotically stable (GAS).

The next section presents a new methodology and gives sufficient conditions on system (4.2.2) such
that the steady state x̄∗ becomes GAS.

4.3 A new methodology for global results
This methodology is similar to the one developed in [8] or in [12] for SISO monotone dynamical
systems. However, system (4.2.2) under control (4.2.1) does not have the appropriate conditions
and structure in order to apply the results presented in these two previous studies. Indeed in [8],
the first equation must be of the form ẋ1 = hN (xN ) − k1(x1), where the degradation k1(x) is a
positive continuous strictly increasing function that only depends on x1 and the production hN (x)
is a positive continuous monotonic function that depends on xN only. However, the first equation
in system (4.2.2) under control (4.2.1) is ẋ1 = κ01 + (−α(x1 − x̄∗1) + 1)κ1h∗(xN , θN , nN ) − γ1x1.
After rearrangements, it is possible to observe that the production function has the same features
as in [8], but the degradation function depends on both x1 and xN . For this reason, similar
results as the one presented in [8] are developed for system (4.2.2) under control (4.2.1). The
new methodology consists in building consecutive repelling hyperrectangles of the state space.
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The condition on system (4.2.2) ensures that these hyperrectangles shrink in all directions around
x̄∗, so that the dynamics is trapped and cannot do anything else than converging towards x̄∗.
Basically, this technique is similar to the construction of Lyapunov function level-sets. In the end,
the determination of the global stability of x̄∗ will be directly related to the number of fixed points
of two specific functions: S+

1α for the positive loop, and a function called F−1α for the negative loop,
defined just below:

Definition 4.3.1. ∀ i ∈ {1, ..., N}, S∗iα(x) = Hi ◦Hi−1 ◦ ...◦H∗1α ◦HN ◦HN−1 ◦ ...◦Hi+2 ◦Hi+1(x),
where i− 1 = N for i = 1. Then, ∀ i ∈ {1, ..., N} the function F ∗iα(x) is defined as the composition
of S∗iα(x) with itself: F ∗iα(x) = S∗iα ◦ S∗iα(x). As a reminder, the functions Hi(x) ∀ i ∈ {2, ..., N}
are defined in definition 3.2.1 and H∗1α(x) is defined in (4.2.3).

Some properties about functions F ∗iα(x) are given:

Proposition 4.3.1. x̄∗i is a fixed point of S∗iα(x) and F ∗iα(x) ∀ i ∈ {1, ..., N}. Moreover, S+
iα(x) are

strictly monotonically increasing functions, S−iα(x) are strictly monotonically decreasing functions,
and F ∗iα(x) are strictly monotonically increasing functions.

Proof. As x̄∗1 = H∗1α(x̄∗N ) and x̄∗i = Hi(x̄∗i−1) ∀ i ∈ {2, ..., N}, it is straightforward to see that x̄∗i is a
fixed point of S∗iα(x) ∀ i ∈ {1, ..., N}. As F ∗iα(x) is the composition of S∗iα(x) with itself, x̄∗i is also a
fixed point of F ∗iα(x). Moreover, S+

iα(x) is strictly monotonically increasing as is the composition of
N strictly monotonically increasing functions, and S−iα(x) is strictly monotonically decreasing as is
the composition of N −1 strictly monotonically increasing functions and one strictly monotonically
decreasing function. For both loops, F ∗iα(x) is a strictly monotonically increasing function as it is
the composition of S∗iα(x) with itself.

Proposition 4.3.2. If there exists j ∈ {1, ..., N} such that S∗jα(x) (resp. F ∗jα(x)) has a unique
fixed point, then ∀ i ∈ {1, ..., N} S∗iα(x) (resp. F ∗iα(x)) has a unique fixed point as well, and this
fixed point is x̄∗i .

This proposition is proved by composing carefully nullclines in a special order. The details of this
proof can be found in appendix B.1.

Bounds of the state space are now successively defined:

Definition 4.3.2.

• x−1
1max = H−1α(0) and x+1

1max = H+
1α(+∞),

• x∗1imax = Hi(x∗1i−1max) ∀ i ∈ {2, ..., N},

• x−1
1min = H−1α(x−1

Nmax) and x+1
1min = H+

1α(0) = κ01/γ1,

• x∗1imin = Hi(x∗1i−1min) ∀ i ∈ {2, ..., N},

where H−1α(0) =
(
κ01 + κ1(1 + αx̄−1 )

)
/(γ1 + ακ1) and

H+
1α(+∞) =

(
κ01 + κ1(1 + αx̄+

1 )
)
/(γ1 + ακ1). Then by induction ∀ j > 1, j ∈ N:

• x−j1max = H−1α(x−(j−1)
Nmin ) and x+j

1max = H+
1α(x+(j−1)

Nmax ),

• x∗jimax = Hi(x∗ji−1max) ∀ i ∈ {2, ..., N},

• x−j1min = H−1α(x−jNmax) and x+j
1min = H+

1α(x+(j−1)
Nmin ),

• x∗jimin = Hi(x∗ji−1min) ∀ i ∈ {2, ..., N}.

These bounds are illustrated in figure 4.3.1 for the negative loop and figure 4.3.2 for the positive
loop.

With the functions introduced in definition 4.3.1, it is easy to prove that the previous bounds can
also be defined as:
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Figure 4.3.1: These four schemes are an illustration of the construction of bounds introduced in
definition 4.3.2, the hyperrectangles introduced in definition 4.3.4, and both propositions 4.3.7 and
4.3.8 for the negative loop. Top figures: they initiate the definitions and propositions. The orange
rectangles represent R−0 . The numbers from 1 to 8 on both figures explain the inductions for
the construction of the bounds. After step 8, R−1 is constructed and is represented by the blue
rectangles. It is possible to observe that the vector field at the borders of R−1 points inward,
illustrating proposition 4.3.7. Moreover, by induction, the black arrows show that any trajectory
starting in R−0 arrives in finite time in R−1 , illustrating proposition 4.3.8. Bottom figures: they
illustrate the inductive steps of the definitions and propositions. The numbers from 1 to 8 explain
the inductions for the construction of the bounds defining R−j (represented by orange rectangles),
and the numbers from 9 to 16 explain the inductions for the construction of the bounds defining
R−j+1 (represented by blue rectangles). Again, it is possible to observe that the vector field at the
borders of R−j and R−j+1 points inward, illustrating proposition 4.3.7. Moreover, by induction, the
black arrows show that any trajectory starting in R−j arrives in finite time in R−j+1, illustrating
proposition 4.3.8.

Proposition 4.3.3. ∀ j ∈ N∗, and ∀ i ∈ {1, ..., N}: x−(j+1)
imax = F−iα(x−jimax), x−(j+1)

imin = F−iα(x−jimin),
x

+(j+1)
imax = S+

iα(x+j
imax), and x+(j+1)

imin = S+
iα(x+j

imin).

The proof of this proposition is detailed in appendix B.2 and uses the successive construction of
the bounds.

For the sake of simplicity, the following notation will be used in the rest of this chapter:

Definition 4.3.3. ∀ i ∈ {1, ..., N}, Z∗iα(x) is such that Z+
iα(x) = S+

iα(x) and Z−iα(x) = F−iα(x).

The next proposition gives convergence results about sequences defined through function Z∗iα:

Proposition 4.3.4. If Z∗1α(x) has a unique fixed point, then ∀ i ∈ {1, ..., N}, the sequence defined
by x∗(j+1)

imax = Z∗iα(x∗jimax) with initial term x∗1imax (resp. x∗(j+1)
imin = Z∗iα(x∗jimin) with initial term x∗1imin)
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Figure 4.3.2: These four schemes are an illustration of the construction of bounds introduced in
definition 4.3.2, the hyperrectangles introduced in definition 4.3.4, and both propositions 4.3.7 and
4.3.8 for the positive loop. Top figures: they initiate the definitions and propositions. The orange
rectangles represent R+

0 . The numbers from 1 to 4 on both figures explain the inductions for
the construction of the bounds. After step 4, R+

1 is constructed and is represented by the blue
rectangles. It is possible to observe that the vector field at the borders of R+

1 points inward,
illustrating proposition 4.3.8. Moreover, by induction, the black arrows show that any trajectory
starting in R+

0 arrives in finite time in R+
1 , illustrating proposition 4.3.8. Bottom figures: they

illustrate the inductive steps of the definitions and propositions. The numbers from 1 to 4 explain
the inductions for the construction of the bounds defining R+

j (represented by orange rectangles),
and the numbers from 5 to 8 explain the inductions for the construction of the bounds defining
R+
j+1 (represented by blue rectangles). Again, it is possible to observe that the vector field at the

borders of R+
j and R+

j+1 points inward, illustrating proposition 4.3.7. Moreover, by induction, the
black arrows show that any trajectory starting in R+

j arrives in finite time in R+
j+1, illustrating

proposition 4.3.8.

is strictly monotonically decreasing (resp. increasing) and converges towards x̄i. As a consequence,
∀ i ∈ {1, ..., N}, x∗jimin < x̄i < x∗jimax ∀ j ∈ N∗.

This proposition is easily proved by using the monotonic properties of Z∗iα(x) ∀ i ∈ {1, ..., N} as
detailed in appendix B.3 and is illustrated in figure 4.3.3. These sequences of boundaries shape the
repelling hyperrectangles mentioned for the methodology:

Definition 4.3.4. The first hyperrectangle R∗0 = {x|xi ≥ 0 ∀ i ∈ {1, ..., N}} is the positive orthant.
Then ∀ j ∈ N∗, R∗j =

{
x|x∗jimin ≤ xi ≤ x

∗j
imax ∀ i ∈ {1, ..., N}

}
.

These hyperrectangles are illustrated in figure 4.3.1 for the negative loop and 4.3.2 for the positive
loop. They have four principal interesting properties detailed in the four next propositions.
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Figure 4.3.3: Illustration of iterations for both sequences: x∗(j+1)
imax = Z∗iα(x∗jimax) (in red) with initial

term x∗1imax and x
∗(j+1)
imin = Z∗iα(x∗jimin) (in green) with initial term x∗1imin, if Z∗1α(x) has a unique

fixed point. The two sequences converge towards x̄∗i , with x∗jimax decreasing and x∗jimin increasing.

Proposition 4.3.5. If Z∗1α(x) has a unique fixed point, then ∀ j ∈ N, x̄∗ ∈ R∗j .

Proof. As R∗0 is the positive orthant, the result for j = 0 is straightforward. Moreover, from
proposition 4.3.4, ∀ j ∈ N∗, x∗jimin < x̄∗i < x∗jimax ∀ i ∈ {1, ..., N}. Hence, ∀ j ∈ N∗, x̄∗ ∈ R∗j from
definition 4.3.4.

Proposition 4.3.6. If Z∗1α(x) has a unique fixed point, then all these hyperrectangles are nested:
∀ j ∈ N, R∗j+1 ⊂ R∗j and R∗j+1 6= R∗j .

Proof. First it is straightforward that ∀ j ∈ N∗, R∗j ⊂ R∗0. Now, consider j ∈ N∗. Let x ∈
R∗j+1. Then by definition, x∗(j+1)

imin ≤ xi ≤ x
∗(j+1)
imax ∀ i ∈ {1, ..., N}. Hence, from proposition 4.3.4,

x∗jimin < x
∗(j+1)
imin ≤ xi ≤ x

∗(j+1)
imax < x∗jimax ∀ i ∈ {1, ..., N}. Finally, x ∈ R∗j . Then R∗j+1 ⊂ R∗j .

It is straightforward to see that R∗j+1 6= R∗j as the sequences (x∗jimin)j and (x∗jimax)j are strictly
monotonic.

Proposition 4.3.7. If Z∗1α(x) has a unique fixed point, then ∀ j ∈ N, R∗j is invariant.

This invariant property means that as soon as a trajectory starts in a hyperrectangle, it cannot
leave it. In order to prove it, it is shown that the vector field in each border of a hyperrectangle
points inwards. The details of the proof can be found in appendix B.4.

This proposition is illustrated in figures 4.3.1 and 4.3.2. The next proposition states that the
hyperrectangles are successively repelling:

Proposition 4.3.8. If Z∗1α(x) has a unique fixed point, then ∀ j ∈ N, for all initial conditions
x0 = x(t = 0) ∈ R∗j , ∃ 0 ≤ T ∗j < +∞ such that x(t) ∈ R∗j+1 ∀ t ≥ T ∗j .

This proposition simply means that if a trajectory is in hyperrectangle Rj , it will eventually reach
the hyperrectangle Rj+1 in a finite time. In order to prove it, it is possible to successively show
that ∀ i ∈ {1, ..., N}, the xi-vector field in Rj points towards Rj+1. The details of this proof can
be found in appendix B.5.
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This proposition is also illustrated in figures 4.3.1 and 4.3.2. From the construction of the hyper-
rectangles, the next proposition is straightforward:

Proposition 4.3.9. If Z∗1α(x) has a unique fixed point, then for any ε > 0 and its associated ball
B∗ε = {x| ||x− x̄∗||∞ ≤ ε}, it is possible to find p∗ε ∈ N∗ such that R∗j ⊂ B∗ε ∀ j ≥ p∗ε .

This proposition simply means that, given a ball around x̄∗, it is always possible to find its biggest
embedded hyperrectangle. Besides, the infinite norm can be replaced by any other norm.

Proof. From proposition 4.3.4, the sequence (x∗jimax)j (resp. (x∗jimin)j) is strictly monotonically
decreasing (resp. increasing) and converges towards x̄∗i ∀ i ∈ {1, ..., N}. Hence, ∀ i ∈ {1, ..., N}
∃ p∗iεmax ∈ N∗ (resp. p∗iεmin ∈ N∗) such that |x∗jimax − x̄∗i | ≤ ε ∀ j ≥ p∗iεmax (resp. |x∗jimin − x̄∗i | ≤ ε
∀ j ≥ p∗iεmin). Now p∗ε is defined as p∗ε = maxi∈{1,...,N}

{
p∗iεmax, p

∗i
εmin

}
. By definition, ∀ j ≥ p∗ε ,

∀ i ∈ {1, ..., N}, |x∗jimax − x̄∗i | ≤ ε and |x∗jimin − x̄∗i | ≤ ε which implies by proposition 4.3.4 that
x∗jimax − x̄∗i ≤ ε and x̄∗i − x

∗j
imin ≤ ε.

Let us check the result. Let x ∈ R∗p∗ε , then by definition of hyperrectangles, ∀ i ∈ {1, ..., N}:
x
∗p∗ε
imin ≤ xi ≤ x

∗p∗ε
imax. So from the definition of p∗ε : x̄∗i − ε ≤ x

∗p∗ε
imin ≤ xi ≤ x

∗p∗ε
imax ≤ x̄∗i + ε. Finally,

as expected, −ε ≤ xi − x̄∗i ≤ ε ∀ i ∈ {1, ..., N}. Hence, x ∈ B∗ε . From proposition 4.3.6, R∗j ⊂ B∗ε
∀ j ≥ p∗ε .

Finally, thanks to all the previous definitions and propositions, the main theorem of this section is
presented and proved:

Theorem 4.3.1. If the function Z∗1α(x) has a unique fixed point, then x̄∗ is a GAS steady state of
system (4.2.2) under control (4.2.1).

Proof. First, the global convergence is proved:

Let ε > 0 and the associated ball B∗ε = {x| ||x− x̄∗||∞ ≤ ε}. From proposition 4.3.9, ∃ p∗ε ∈ N∗
such that R∗j ⊂ B∗ε ∀ j ≥ p∗ε . Let x0 = x(t = 0) ∈ R+

N an initial condition different from x̄∗. From
definition 4.3.4, ∃ j∗0 ∈ N such that x0 ∈ R∗j ∀ j ≤ j∗0 , j ∈ N, and x0 /∈ R∗j ∀ j > j∗0 . According
to proposition 4.3.8, ∃ 0 ≤ T ∗j∗0

< +∞ such that x(t) ∈ R∗j∗0 +1 ∀ t ≥ T ∗j0
. By induction, let

T ∗ε =
∑p∗ε−1
k=j∗0

T ∗k where T ∗k are defined in proposition 4.3.8. Then, ∀ t ≥ T ∗ε , x(t) ∈ R∗p∗ε . Then from
proposition 4.3.9, ∀ t ≥ T ∗ε , x(t) ∈ B∗ε . In conclusion, it has been shown that ∀ x0 = x(t = 0) ∈ R+

N

and ∀ ε > 0, ∃ 0 ≤ T ∗ε < +∞ such that ∀ t ≥ T ∗ε , x(t) ∈ B∗ε . This is the definition of global
convergence.

Now, the Lyapunov stability is proved:

Let δ > 0 and the associated ball B∗δ = {x| ||x− x̄∗||∞ ≤ δ}. From proposition 4.3.9, ∃ p∗δ ∈ N∗ such
that R∗j ⊂ B∗δ ∀ j ≥ p∗δ . From proposition 4.3.7, R∗p∗

δ
is invariant. Then, ∀ x0 = x(t = 0) ∈ R∗p∗

δ
,

x(t) ∈ R∗p∗
δ
∀ t ≥ 0. Finally, as R∗p∗

δ
⊂ B∗δ , x(t) ∈ B∗δ ∀ t ≥ 0. This is the definition of Lyapunov

stability.

Then, the system converges globally towards the Lyapunov stable steady state x̄∗. Finally, x̄∗ is
globally asymptotically stable.

In conclusion, it has been shown in this section that if the function Z∗1α(x) has a unique fixed point,
then the steady state x̄∗ of system (4.2.2) is GAS. In next section, the conditions on α will be given
in order to ensure that Z∗1α(x) has a unique fixed point.

4.4 Schwarzian derivatives
As the number of fixed points of a function is directly related to its shape, the shape-indicator of
Z∗1α(x), called “Schwarzian derivative” as introduced in chapter 3 [5], is calculated.

Proposition 4.4.1. Z∗1α(x) has a negative Schwarzian derivative.
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The details of the proof are given in appendix B.6.

The sign of the Schwarzian derivative of a function gives relevant information about the shape of
this function:

Proposition 4.4.2. Z∗1α(x) is a sigmoid function.

Proof. It is easy to show that Z∗1α
′(x) > 0 ∀ x ∈ ]0,+∞[, Z∗1α

′(0) = 0 from the properties of Hill
functions, and Z∗1α(x) is bounded. From proposition 4.4.1, it follows that there exists a > 0 such
that Z∗1α

′(x) is strictly increasing ∀ x ∈ ]0, a[ and Z∗1α
′(x) is strictly decreasing ∀ x ∈ ]a,+∞[ (see

[5] for the details). This is exactly the definition of a sigmoid function.

This sigmoidal shape is essential in order to determine the number of fixed points of Z∗1α(x):

Proposition 4.4.3. Z∗1α(x) cannot have more than three fixed points, and among them is x̄∗1. For
the negative loop, if there are three fixed points, x̄−1 is the middle one. Moreover, x̄−1 is the unique
fixed point of Z−1α(x) if and only if Z−1α

′(x̄−1 ) < 1.

Proof. As Z∗1α(x) is a sigmoid function as explained in proposition 4.4.1, it cannot have more than
three fixed points, and x̄∗1 is always one of its fixed point from proposition 4.3.1.
For the negative loop, let us assume that Z−1α(x) has three fixed points. Let us call one of the
two other fixed point x̃−1 6= x̄−1 . By definition, x̃−1 is such that F−1α(x̃−1 ) = x̃−1 . This implies that
S−1α ◦ S

−
1α(x̃−1 ) = x̃−1 . Hence, F−1α

(
S−1α(x̃−1 )

)
= S−1α ◦ S

−
1α
(
S−1α(x̃−1 )

)
= S−1α(x̃−1 ). Then S−1α(x̃−1 ) is

a fixed point of F−1α(x). Moreover, S−1α(x̃−1 ) 6= x̃−1 as x̄−1 is the unique fixed point of S−1α(x) and
x̃−1 6= x̄−1 by hypothesis. Finally, S−1α(x̃−1 ) is the third fixed point of F−1α(x). Let us assume that
x̃−1 > x̄−1 . Then as S−1α(x) is a strictly monotonically decreasing function, S−1α(x̃−1 ) < S−1α(x̄−1 ) =
x̄−1 by definition. On the opposite, let us assume that x̃−1 < x̄−1 . Then as S−1α(x) is a strictly
monotonically decreasing function, S−1α(x̃−1 ) > S−1α(x̄−1 ) = x̄−1 by definition. Finally, if F−1α(x) has
three fixed points, then x̄−1 is the middle point.
Let us call these two other fixed points x̃−1sup > x̄−1 and x̃−1inf < x̄−1 . As a consequence, if Z−1α(x)
is a sigmoid function and has three fixed points, then Z−1α

′(x̃−1inf ) < 1, Z−1α
′(x̃−1sup) < 1 and

Z−1α
′(x̄−1 ) > 1. On the contrary, if Z−1α(x) has a unique fixed point x̄−1 , then Z−1α

′(x̄−1 ) < 1.

This proposition is illustrated in figure 4.4.1.

The conclusion of this section is the following: if there exist conditions on α such that Z∗1α(x) has a
unique fixed point, then theorem 4.3.1 guarantees x̄∗ to be GAS. In particular, for the negative loop,
this section brought a convenient condition: if there exist conditions on α such that Z−1α

′(x̄−1 ) < 1,
then proposition 4.4.3 ensures Z−1α(x) to have a unique fixed point, and theorem 4.3.1 guarantees
x̄− to be GAS. Next section investigates these conditions on α.

4.5 Conditions on α

This section proves that there exist conditions on α such that the steady state x̄∗ of system (4.2.2)
under control (4.2.1) becomes GAS. However, the condition for the negative loop is explicit, whereas
for the positive loop the condition is implicit.

The explicit condition for the negative loop is detailed in the following lemma:

Lemma 4.5.1. If α >
(
−γ1

(
S−1
′(x̄−1 ) + 1

))
/
(
κ1h−(x̄−N , θN , nN )

)
= α−0 , then Z−1α

′(x̄−1 ) < 1.
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Figure 4.4.1: For both plots, the thick black line is the sigmoid function Z−1α(x). The intersections
with y = x (represented by the dashed black line) are illustrated. Left: Z−1α(x) has three fixed points,
leading to Z−1α

′(x̄−1 ) > 1. Right: Z−1α(x) has a unique fixed point x̄−1 , leading to Z−1α
′(x̄−1 ) < 1.

Proof. The derivative Z−1α
′(x̄−1 ) is calculated:

Z−1α
′(x̄−1 ) = F−1α

′(x̄−1 ) = (S−1α ◦ S
−
1α)′(x̄−1 ),

= S−1α
′(S−1α(x̄−1 ))S−1α

′(x̄−1 ).

Moreover, from proposition 4.3.1, S−1α(x̄−1 ) = x̄−1 . Hence:

F−1α
′(x̄−1 ) =

(
S−1α
′(x̄−1 )

)2
.

As S−1α
′(x) ≤ 0 ∀ x ≥ 0, then F−1α

′(x̄−1 ) = Z−1α
′(x̄−1 ) < 1 ⇐⇒ S−1α

′(x̄−1 ) > −1.
Hence, the derivative S−1α

′(x̄−1 ) is investigated:

S−1α
′(x̄−1 ) = H−1α

′(HN ◦ ... ◦H2(x̄−1 ))HN
′(HN−1 ◦ ... ◦H2(x̄−1 ))...H3

′(H2(x̄−1 ))H2
′(x̄−1 ),

= H−1α
′(x̄−N )HN

′(x̄−N−1)...H3
′(x̄−2 )H2

′(x̄−1 ).

In this last equation, everything is fixed, except the term H−1α
′(x̄−N ) that depends on α.

The function S−1α
′(x̄−1 ) can be written:

S−1α
′(x̄−1 ) = κ1

∂h−(x̄−N , θN , nN )
∂x

α(γ1x̄
−
1 − κ01) + γ1

(γ1 + ακ1h−(x̄−N , θN , nN ))2HN
′(x̄−N−1)...H3

′(x̄−2 )H2
′(x̄−1 )

= γ1
α(γ1x̄

−
1 − κ01) + γ1

(γ1 + ακ1h−(x̄−N , θN , nN ))2
κ1

γ1

∂h−(x̄−N , θN , nN )
∂x

HN
′(x̄−N−1)...H3

′(x̄−2 )H2
′(x̄−1 ).

From the definition of H−1 (x) given in proposition 3.2.1 of chapter 3:

H−1
′(x̄−N ) = κ1

γ1

∂h−(x̄N , θN , nN )
∂x

.

Hence:

S−1α
′(x̄−1 ) = γ1

α(γ1x̄
−
1 − κ01) + γ1

(γ1 + ακ1h−(x̄−N , θN , nN ))2H
−
1
′(x̄−N )HN

′(x̄−N−1)...H3
′(x̄−2 )H2

′(x̄−1 )

= γ1
α(γ1x̄

−
1 − κ01) + γ1

(γ1 + ακ1h−(x̄−N , θN , nN ))2S
−
1
′(x̄−1 ),
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where S−1 (x) is introduced in definition 3.2.2. From the definition of steady states of the uncontrolled
system, κ01 +κ1h−(x̄−N , θN , nN )−γ1x̄

−
1 = 0 which is equivalent to γ1x̄

−
1 −κ01 = κ1h−(x̄−N , θN , nN ).

This relation is used in the previous equation:

S−1α
′(x̄−1 ) = γ1

ακ1h−(x̄−N , θN , nN ) + γ1

(γ1 + ακ1h−(x̄−N , θN , nN ))2S
−
1
′(x̄1)

= γ1

γ1 + ακ1h−(x̄−N , θN , nN )
S−1
′(x̄1).

Now the derivative of S−1α
′(x̄−1 ) with respect to α is calculated:

∂S−1α
′(x̄−1 )
∂α

= −γ1S
−
1
′(x̄−1 ) κ1h−(x̄−N , θN , nN )

(γ1 + ακ1h−(x̄−N , θN , nN ))2 .

It is important to notice that for α = 0, S−1α(x) = S−1 (x), where S−1 (x) is the function defined for
the uncontrolled loops in definition 3.2.2 of chapter 3. By hypothesis it is considered that the unique
steady state x̄− of the canonical negative loop 3.2.1 is unstable. Hence, the condition Z−1α

′(x̄−1 ) < 1
cannot hold for α = 0. Indeed, if Z−1α

′(x̄−1 ) < 1 was true for α = 0, then by applying proposition
4.4.3 and theorem 4.3.1, the steady state x̄− of the canonical negative loop (3.2.1) would be GAS.
It follows that Z−1α

′(x̄−1 ) > 1 for α = 0.

Hence, for the negative loop, as Z−1α
′(x̄−1 ) =

(
S−1α
′(x̄−1 )

)2
and S−1α

′(x̄−1 ) < 0, if follows that

S−1α
′(x̄−1 ) < −1 for α = 0. Hence S−1

′(x̄−1 ) < −1, as already discussed in proposition 3.2.10 of
chapter 3. Finally, for α ≥ 0, as S−1

′(x̄−1 ) ≤ 0, then ∂S−1α
′(x̄−1 )/∂α ≥ 0. Then, the derivative

S−1α
′(x̄−1 ) is an increasing function of α. Moreover, it is easy to show that lim

α→+∞
S−1α
′(x̄−1 ) = 0, and

it has been explained previously that when α = 0, S−1α
′(x̄−1 ) = S−1

′(x̄−1 ) < −1. Finally, the function
S−1α
′(x̄−1 ) is an increasing function of α that is strictly smaller than −1 when α = 0 and that tends

to 0 when α tends to infinity. Then, there exists a value of α called α−0 such that ∀ α > α−0 ,
S−1α
′(x̄−1 ) > −1. This α−0 is determined by solving S−1α

′(x̄−1 ) = −1:

S−1α
′(x̄−1 ) = −1 ⇐⇒ α =

−γ1

(
S−1
′(x̄−1 ) + 1

)
κ1h−(x̄−N , θN , nN )

.

Again, by hypothesis S−1
′(x̄−1 ) < −1, hence S−1

′(x̄−1 ) + 1 < 0.

Finally α−0 = −γ1

(
S−1
′(x̄−1 ) + 1

)
/
(
κ1h−(x̄−N , θN , nN )

)
> 0. The proof is now completed for the

negative loop: when α > α−0 , F−1α
′(x̄−1 ) = Z−1α

′(x̄−1 ) < 1.

For the positive loop, the implicit condition on α is given by the following lemma:

Lemma 4.5.2. ∃ α+
0 such that ∀ α > α+

0 , Z+
1α(x) has a unique fixed point.

Proof. The influence of α on the function Z+
1α(x) = S+

1α(x) is investigated:

∂S+
1α

∂α
(x) = ∂H+

1α
∂α

(HN ◦ ... ◦H2(x))

where

∂H+
1α

∂α
(x) = κ1h+(x, θN , nN )[x̄+

1 γ1 − κ01 − κ1h+(x, θN , nN )](
γ1 + ακ1h+(x, θN , nN )

)2
= κ2

1h+(x, θN , nN )[h+(x̄+
N , θN , nN )− h+(x, θN , nN )](

γ1 + ακ1h+(x, θN , nN )
)2
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where the property −κ01 + γ1x̄
+
1 = κ1h+(x̄+

N , θN , nN ) was used.

Hence

∂S+
1α

∂α
(x) ≥ 0 ⇐⇒ h+(x̄+

N , θN , nN )− h+ (HN ◦ ... ◦H2(x), θN , nN ) ≥ 0

⇐⇒ x̄+
N ≥ HN ◦ ... ◦H2(x)

⇐⇒ HN ◦ ... ◦H2(x̄+
1 ) ≥ HN ◦ ...H2(x)

⇐⇒ x̄+
1 ≥ x.

Hence, ∀ x < x̄+
1 , S+

1α(x) increases with α and ∀ x > x̄+
1 , S+

1α(x) decreases with α. Moreover,
S+

1α(x) is a monotonically increasing function and it is easy to check that:

lim
α→+∞

S+
1α(x) = x̄+

1 .

Hence, ∃ α+
0inf such that ∀ α > α+

0inf , S+
1α(x) > x ∀ x < x̄+

1 . Moreover, ∃ α+
0sup such that ∀

α > α+
0sup, S

+
1α(x) < x ∀ x > x̄+

1 . Then ∀ α > α+
0 = max

{
α+

0inf , α
+
0sup

}
, Z+

1α(x) has a unique fixed
point.

The condition for the positive loop cannot be explicit as for the negative loop because the condition
Z+

1α
′(x̄+

1 ) < 1 is not sufficient to prove the uniqueness of the fixed point. Indeed, when Z+
1α(x) has

three fixed points, x̄+
1 may not be the central point. However, in order to find numerically the value

α+
0 for a given model, it is important to notice that only three cases can happen: first, for α = α+

0 ,
Z+

1α(x) is tangent to y = x at x = x+
0 < x̄+

1 ; second, for α = α+
0 , Z+

1α(x) is tangent to y = x at
x = x+

0 > x̄+
1 ; third, for α = α+

0 , Z+
1α(x) is tangent to y = x at x̄+

1 . More precisely, α+
0 satisfies one

of the three following conditions:

• For α = α+
0 , ∃ x+

0 < x̄+
1 such that Z+

1α(x+
0 ) = x+

0 and Z+
1α
′(x+

0 ) = 1,

• For α = α+
0 , ∃ x+

0 > x̄+
1 such that Z+

1α(x+
0 ) = x+

0 and Z+
1α
′(x+

0 ) = 1,

• For α = α+
0 , Z+

1α
′(x̄+

1 ) = 1.

Lemmas 4.5.1 and 4.5.2 allow the statement of the main result:

Theorem 4.5.1. If α > α∗0, then x̄∗ is a GAS steady state of system (4.2.2) under control (4.2.1).

Proof. For the negative loop, if α > α−0 , then with lemma 4.5.1, Z−1α
′(x̄−1 ) < 1. It follows from

proposition 4.4.3 that Z−1α(x) has a unique fixed point. Theorem 4.3.1 ends the proof.
For the positive loop, if α > α+

0 , then with lemma 4.5.2, Z+
1α(x) has a unique fixed point and

theorem 4.3.1 applies.

4.6 Numerical illustrations
Figures 4.6.1 and 4.6.2 present a simulation for respectively a negative feedback loop of dimension
3 and a positive feedback loop of dimension 2. As explained in section 3.5 of chapter 3, without
control, the feedback loops were constructed in order to show undesired sustained oscillations for
the negative loop and bistability for the positive loop. With the affine control meeting the condition
α∗ > α∗0, the simulations show global convergence towards x̄∗, as analytically proved.

Moreover, figure 4.6.3 illustrates the influence of α on the function F−1α(x) for the negative loop.
First, it is possible to observe that the shape of the function F−1α(x) is indeed sigmoidal. As explained
in the previous section, it is possible to observe in figure 4.6.3 that the function F−1α(x) is such that
F−1α

′(x̄−1 ) > 1 when α = 0 (without control in other words) and presents three fixed points. As
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Figure 4.6.1: Simulation for a negative feedback loop in dimension 3: for both plots, the parameters
are: κ0i = 2, κi = 100, γi = 1, θi = 56.39 and ni = 5, ∀ i ∈ {1, 2, 3}, leading to x̄− = (58.7, 57, 53.4).
The initial condition for the simulation is x0 = (14, 16, 17). With these parameters, α−0 = 0.17, and
α is fixed to α = 0.22. Left: trajectories in the state space. The steady state is represented by the
red star. The blue line is a simulation of the uncontrolled system (3.2.1) with initial condition x0
and converges towards a periodic orbit. The red line is a simulation of system (4.2.2) under control
(4.2.1) with same initial condition x0 and converges towards x̄−. Right: same trajectory against
time. The blue (resp. red) lines are without (resp. with) control.
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Figure 4.6.2: Simulation for a positive feedback loop: for both plots, the parameters are: κ0i = 2,
κi = 20, γi = 1, θi = 8 and ni = 5, ∀ i ∈ {1, 2}. With these parameters, α+

0 = 13.66, and α is
fixed to α = 14.66. The two stable steady states x̄+

inf = (2.02, 2.02) and x̄+
sup = (21.87, 21.87) of

the uncontrolled system are represented by blue stars and x̄+ = (6.1, 6.1) is represented by the red
star. The dashed green (resp. magenta) line is the x2-nullcline (resp. x1-nullcline). The blue lines
are trajectories of the uncontrolled system (3.2.1) with different initial conditions depicted by black
dots and converge towards one of the two stable steady states. The red lines are trajectories of
system (4.2.2) under control (4.2.1) with same initial conditions and converge towards x̄+.

proved, when α = α−0 , the function F−1α(x) becomes tangent to y = x with F−1α
′(x̄−1 ) = 1, and for

any α > α−0 , F−1α(x) has a unique fixed point, which guarantees global convergence.

Figure 4.7.1 illustrates the influence of α on the function S+
1α(x) for the positive loop. Again, it is

possible to observe that the shape of the function S+
1α(x) is sigmoidal. Moreover, as analytically
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Figure 4.6.3: Both plots present the function Z−1α(x) for the negative loop in dimension 3 for
different values of α. The parameters of the three dimensional system are the same as in figure
4.6.1. Left: the green line is F−1 (x) of the uncontrolled loop (3.2.1), hence F−1α(x) with α = 0. It
is possible to observe that as x̄− is unstable, the function has three fixed points and F−1

′(x̄−1 ) > 1.
The red line is F−1α(x) of system (4.2.2) under control (4.2.1) with α = α−0 . As proved, F−1α−0

(x) is

tangent to y = x and then F−1α−0
′(x̄−1 ) = 1. Right: the red line is still F−1α−0

(x). The thin black lines
are F−1α(x) for different increasing values of α > 0. It is possible to observe that for α > α−0 , the
functions loose their three fixed points, and F−1α

′(x̄−1 ) < 1, leading to global convergence towards
x̄−.

proved, the function S+
1α(x) has three fixed points for α < α+

0 , in particular for α = 0, meaning
that the controlled system shows bistability for values of α not large enough. For α > α+

0 , S+
1α(x)

has a unique fixed point, which guarantees global convergence. This figure also confirms that the
condition S+

1α
′(x̄+

1 ) = 1 is not sufficient in order to have a unique fixed point for the positive loop.

4.7 Conclusion
In this chapter it has been shown that an affine control is able to globally stabilize both a negative
feedback loop that presents undesired oscillations and a positive feedback loop that presents bista-
bility. Indeed, for a control parameter α chosen large enough, the unstable steady state of both
loops becomes GAS. Due to the non-linearities of this controlled system, a new methodology has
been developed in order to obtain global results. A nested sequence of repelling hyperrectangles
has been constructed and has been shown to act as Lyapunov function level-sets. The affine con-
trol law presented in this chapter is only dependent on the first variable x1 and only acts on its
expression. It is interesting to note that this simple control law is able to stabilize a whole system
in any dimension N . Moreover, from a biological point of view, this control law minimizes the
experimental set-up complexity. On the one hand, only the first gene must be measured: this is
convenient as measurements in biology are usually tedious. On the other hand, the control only
impacts the interaction between the last gene and the first gene. Again, this suggests that only one
control device is enough, simplifying the experiment.

A couple of remarks can be given regarding a possible biological implementation. Firstly, as men-
tioned, the control may take arbitrarily large positive and negative values. This is illustrated in
figure 4.7.2 with the two numerical examples presented in section 4.6. From a biological point of
view, this means that the control device must be able to either influence the production of the first
molecule x1 (when u(x1) > 0) or degrade it (when u(x1) < 0). In the first case, the biological
tools mentioned in the introduction may allow the application of this control. However, for a neg-
ative control, the biological implementation does not seem straightforward. This situation may be
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Figure 4.7.1: Both plots present the function Z+
1α(x) for the positive loop in dimension 2 for different

values of α. The parameters of the two dimensional system are the same as in figure 4.6.2. Left:
the green line is S+

1 (x) of the uncontrolled loop (3.2.1), hence S+
1α(x) with α = 0. It is possible to

observe that as the uncontrolled system is bistable, the function has three fixed points. The dashed
magenta line is S+

1α(x) of system (4.2.2) under control (4.2.1) with α = α0 such that S+
1α0

′(x̄+
1 ) = 1.

Contrary to the negative loop, it is possible to observe that this condition is not sufficient in order
to have uniqueness of the fixed point. Indeed, for any α such that α0 < α < α+

0 , S+
1α(x) has still

three fixed points and x̄+
1 is not the middle one. The red line is S+

1α+
0

(x). As proved, S+
1α+

0
(x) has a

unique fixed point. Right: the red line is still S+
1α+

0
(x). The thin black lines are S+

1α(x) for different
increasing values of α > 0. It is possible to observe that for α > α+

0 , the functions loose their three
fixed points leading to global convergence towards x̄+.

avoided if the control parameter α can be chosen small enough. In this case, the control law stays
positive in the invariant bounded region of the state space. If this is not possible, the control law
may be saturated: the tools developed in this chapter for the global convergence can be adapted in
this new context. This is the subject of next chapter.
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Figure 4.7.2: Both plots illustrate the evolution with time of the control law u(x1). Left: control
dynamics for the negative loop where the parameters and the initial condition are the same as in
figure 4.6.1. For this initial condition, the control law stays positive for all time, but can be large
for early times. Left: control dynamics for the positive loop where the parameters are the same as
in figure 4.6.2 and the initial condition is x0 = (10, 14). For this initial condition, the control law
starts below zero, and increases to reach u(x1) = 1.
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Chapter 5

Saturated control strategy

5.1 Introduction
As introduced at the end of the previous chapter, the classical control strategy u(x1) = −α(x1 −
x̄∗1) + 1 may not be adapted for biological circuits and biological control means. First, the control
can reach high values for x1 small. Indeed, u(0) = αx̄∗1 + 1, and due to the results explained in the
previous chapter, the classical control strategy leads to a global stabilization of x̄∗ if the control
parameter α can be chosen large enough. In this case, αx̄∗1 + 1 may become large as well. In the
case of inducer molecule inputs, these high values may be harmful for the controlled circuit and
may damage its components. Second, for arbitrarily large values of x1 the classical control strategy
becomes negative. Indeed, for any x1 ≥ x̄∗1 + 1/α, u(x1) ≤ 0. However, as previously explained,
in order to globally stabilize x̄∗, α must be chosen large enough. It follows that 1/α may become
small. In this case, the control strategy becomes negative for values of x1 arbitrarily close to x̄∗1.
From a biological point of view, these negative values may be complicated to interpret, especially
if the control inputs correspond to concentrations of molecules. To answer these two problems, this
chapter will focus on the saturation of a classical control law that prevents the input from reaching
too high or too small values.

The saturated control system is presented in section 5.2 and is shown to globally converge towards
the unstable steady state x̄∗ under appropriate conditions on the bounds of saturation in section
5.3. This result is obtained by defining two repellent regions in direction x1 and by applying the
methodology and the theorems proved in the previous chapter.

5.2 The controlled model
The control law u(x1) = −α(x1− x̄∗1) + 1 is saturated by two positive constants: umax greater than
1, and umin smaller than 1, leading to the following new controlled system:{

ẋ1(x1, xN ) = κ01 + u(x1)κ1h∗(xN , θN , nN )− γ1x1

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(5.2.1)

where 
u(x1) = umax ∀ 0 ≤ x1 ≤ x∗1min where 1 ≤ umax ≤ 1 + αx̄∗1,

u(x1) = −α(x1 − x̄∗1) + 1 ∀ x∗1min ≤ x1 ≤ x∗1max,
u(x1) = umin ∀ x1 ≥ x∗1max where 0 ≤ umin ≤ 1 ,

(5.2.2)

with x∗1min = x̄∗1 − (umax − 1)/α < x̄∗1 and x∗1max = x̄∗1 + (1− umin)/α > x̄∗1. These conditions on
x∗1min and x∗1max guarantee the continuity of the control law (see figure 5.3.1 for an illustration).

55



0 2 4 6 81 3 5 7 9

0

2

−1

1

3

−0.5

0.5

1.5

2.5

3.5

Figure 5.3.1: The blue line is the classical affine control strategy (4.2.1) presented in chapter 4.
The saturated control strategy (5.2.2) in red prevents too high and negative inputs.

The condition on umax guarantees that the control law is up-saturated while the one on umin
guarantees that it is down-saturated.

Proposition 5.2.1. x̄∗ is still a steady state of system (5.2.1) under control (5.2.2).

This is easily proved as discussed in the proof of proposition 4.2.1 in the previous chapter.

5.3 Global asymptotic stability
In order to obtain global convergence results, the following assumption will be assumed in the rest
of the section:

Assumption 5.3.1. 
α

(
x̄∗1 −

κ01

γ1

)
+ 1 ≤ umax ≤ 1 + αx̄∗1,

0 ≤ umin ≤
α(γ1x̄

∗
1 − κ01) + γ1

ακ1 + γ1
.

From this assumption, it is possible to check that the control inputs satisfy the constraints given
in (5.2.2):

Proposition 5.3.1. Under assumption 5.3.1, 1 ≤ α(x̄∗1 − κ01/γ1) + 1 ≤ umax ≤ 1 + αx̄∗1 and
0 ≤ umin ≤ (α(γ1x̄

∗
1 − κ01) + γ1) / (ακ1 + γ1) ≤ 1.

In other words, this proposition confirms that umax and umin given in assumption 5.3.1 are well
defined.

Proof. First, it is straightforward to see that 1 + α(x̄∗1 − κ01/γ1) > 1 as from proposition 3.2.8,
x̄∗1 > κ01/γ1. Moreover, 1 + α(x̄∗1 − κ01/γ1) = 1 + αx̄∗1 − ακ01/γ1 ≤ 1 + αx̄∗1. For umin, the
properties of the uncontrolled system (3.2.1) lead to γ1x̄

∗
1 − κ01 = κ1h∗(x̄∗N , θN , nN ). It follows

that:

α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1
= ακ1h∗(x̄∗NθN , nN ) + γ1

ακ1 + γ1
.
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As 0 ≤ h∗(x̄∗N , θN , nN ) ≤ 1, then ακ1h∗(x̄∗N , θN , nN ) + γ1 ≤ ακ1 + γ1.
Finally, 0 ≤ (α(γ1x̄

∗
1 − κ01) + γ1) / (ακ1 + γ1) ≤ 1.

With these conditions on umin and umax, two regions of the state space become repellent.

Lemma 5.3.1. Under assumption 5.3.1, the region of the state space defined by x1 > x∗1max is
repellent.

Proof. In order to prove this lemma, it will be shown that ẋ1(x1, xN ) < 0 for any x1 > x∗1max.
First, in the region x1 > x∗1max, the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 + uminκ1h∗(xN , θN , nN )− γ1x1.
With the condition umin ≤ (α(γ1x̄

∗
1 − κ01) + γ1) / (ακ1 + γ1) the x1-vector field becomes:

ẋ1(x1, xN ) ≤ κ01 + α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1
κ1h∗(xN , θN , nN )− γ1x1.

By evaluating this expression at the border x1 = x∗1max = x̄∗1 + ((1− umin) /α), the vector field
becomes:

ẋ1(x∗1max, xN ) ≤ κ01 + α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1
κ1h∗(xN , θN , nN )− γ1

(
x̄∗1 + 1− umin

α

)
= α(γ1x̄

∗
1 − κ01) + γ1

ακ1 + γ1
κ1h∗(xN , θN , nN ) + κ01 − γ1x̄

∗
1 −

γ1

α
+ γ1

umin
α

.

With the condition on umin, this expression becomes:

ẋ1(x∗1max, xN ) ≤ α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1
κ1h∗(xN , θN , nN ) + κ01 − γ1x̄

∗
1 −

γ1

α
+ γ1

α

α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1

= α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1
κ1h∗(xN , θN , nN )− κ1

α(γ1x̄
∗
1 − κ01) + γ1

ακ1 + γ1

= κ1
α(γ1x̄

∗
1 − κ01) + γ1

ακ1 + γ1
[h∗(xN , θN , nN )− 1] .

From the properties of the uncontrolled system (3.2.1), as γ1x̄
∗
1 − κ01 = κ1h∗(x̄∗N , θN , nN ) and

h∗(xN , θN , nN ) ≤ 1, γ1x̄
∗
1 − κ01 ≥ 0. Hence, ẋ1(x∗1max, xN ) ≤ 0 for any xN ≥ 0. Then, because

of the linear degradation term −γ1x1 in the vector field, ẋ1(x1, xN ) < ẋ1(x∗1max, xN ) ≤ 0 for any
x1 > x∗1max. Finally, ẋ1(x1, xN ) < 0 for any x1 > x∗1max and xN ≥ 0. This induces that the region
of the state space defined by x1 > x∗1max is repellent.

Lemma 5.3.2. Under assumption 5.3.1, the region of the state space defined by x1 < x∗1min is
repellent.

Proof. In order to prove this lemma, it will be shown that ẋ1(x1, xN ) > 0 for any x1 < x∗1min.
First, in the region x1 < x∗1min, the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 + umaxκ1h∗(xN , θN , nN )− γ1x1. With the condition umax ≥ α (x̄∗1 − κ01/γ1) + 1
the x1-vector field becomes:

ẋ1(x1, xN ) ≥ κ01 +
(
α

(
x̄∗1 −

κ01

γ1

)
+ 1
)
κ1h∗(xN , θN , nN )− γ1x1.

By evaluating this expression at the border x1 = x∗1min = x̄∗1 − ((umax − 1) /α), the vector field
becomes:

ẋ1(x∗1min, xN ) ≥ κ01 +
(
α

(
x̄∗1 −

κ01

γ1

)
+ 1
)
κ1h∗(xN , θN , nN )− γ1

(
x̄∗1 −

umax − 1
α

)
= κ01 +

(
α

(
x̄∗1 −

κ01

γ1

)
+ 1
)
κ1h∗(xN , θN , nN )− γ1x̄

∗
1 −

γ1

α
+ umax

γ1

α
.
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With the condition on umax, this expression becomes:

ẋ1(x∗1min, xN )

≥ κ01 +
(
α

(
x̄∗1 −

κ01

γ1

)
+ 1
)
κ1h∗(xN , θN , nN )− γ1x̄

∗
1 −

γ1

α
+ γ1

α

[
α

(
x̄∗1 −

κ01

γ1

)
+ 1
]

=
(
α

(
x̄∗1 −

κ01

γ1

)
+ 1
)
κ1h∗(xN , θN , nN ).

As γ1x̄
∗
1−κ01 ≥ 0 then ẋ1(x∗1min, xN ) ≥ 0 for any xN ≥ 0. Then, because of the linear degradation

term −γ1x1 in the vector field, ẋ1(x1, xN ) > ẋ1(x∗1min, xN ) ≥ 0 for any x1 < x∗1min. Finally,
ẋ1(x1, xN ) > 0 for any x1 < x∗1min and xN ≥ 0. This induces that the region of the state space
defined by x1 < x∗1min is repellent.

These two lemmas allow to state a global convergence and stability theorem for the saturated
control strategy:

Theorem 5.3.1. Under assumption 5.3.1 and if α > α∗0 as stated in theorem 4.5.1, then the steady
state x̄∗ of system (5.2.1) under control (5.2.2) is globally asymptotically stable.

Thanks to the methodology developed in the previous chapter, the proof of this theorem is straight-
forward:

Proof. Under assumption 5.3.1, lemmas 5.3.1 and 5.3.2 allow to deduce that system (5.2.1) under
control (5.2.2) globally converges towards the region of the state space defined by x∗1min ≤ x1 ≤
x∗1max. In this region and with the definition of the saturated control law (5.2.2), the dynamical
system is now equivalent to system (5.2.1) under control u(x1) = −α(x1 − x̄∗1) + 1. Then, as α
satisfies the constraints given in theorem 4.5.1, x̄∗ is globally asymptotically stable.

This saturated control problem does not seem straightforward at a first glance. However, with the
methodology developed in the previous chapter, it is sufficient to find conditions on umin and umax
in order to force the system to converge and stay in a region of the state space within which the
control law is a classical linear control strategy. In this case, the results proved in the previous
chapter apply.

This result is convenient because it guarantees that the control strategy stays positive. This is im-
portant for the biological interpretation of the control law. Moreover, in some cases, the saturating
constant umax allows to reduce the maximal strength of the input. This may be important when
the control input is external to the controlled system and may be harmful at high dosage.

The results presented in this chapter are illustrated in figure 5.3.2 for the negative loop, and 5.3.3
for the positive loop. For both examples, it is possible to observe that the control law saturates
when the classical control strategy reaches high or negative values, but the global convergence is
still guaranteed.

5.4 Conclusion
In this small chapter, it has been shown that the saturation of an affine control strategy that globally
stabilizes the unstable steady state x̄∗ of both a positive and a negative feedback loop, is also able
to globally stabilize the systems. This result is not straightforward: indeed, the saturation of the
affine control strategy is expected to locally stabilize x̄∗, but not necessarily induce global results.
Interestingly, this global result has been shown really easily by using the methodology and the
theorems that have been developed in the previous chapter for the classical affine control strategy.
This confirms that this qualitative methodology is general enough so that it can be extended for non
trivial and non classical control strategies. Moreover, from a biological point of view, this saturated
control strategy allows the input to stay bounded, preventing extreme values. This property is
really important for a biological application.
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Figure 5.3.2: Simulation for a negative loop: the parameters are κ0i = 2, κi = 100, γi = 1,
θi = 56.39 and ni = 5, ∀ i ∈ {1, 2, 3}, leading to x̄− = (58.7, 57, 53.4). The initial condition for the
simulation is x0 = (70, 16, 17). With these parameters, α−0 = 0.17, and α is fixed to α = 0.22. Left:
trajectories in the state space. The steady state is represented by the red star. The blue line is a
simulation of the uncontrolled negative loop (3.2.1) with initial condition x0 and converges towards
a periodic orbit. The green line is a simulation of system (5.2.1) under affine control (4.2.1), and
the red line under control (5.2.2) with umin = 0.58 and umax = 13.49 and same initial condition x0:
there is converge towards x̄−. Right: control laws against time for the trajectories depicted on the
left figure, with the corresponding colors. It is possible to observe that for the classical control law,
the control is negative for initial times, and for the saturated control strategy, the input saturates
at umin for initial times.
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Figure 5.3.3: Simulation for a positive loop: the parameters are κ0i = 2, κi = 20, γi = 1, θi = 8 and
ni = 5, ∀ i ∈ {1, 2}. With these parameters, α+

0 = 13.66, and α is fixed to α = 14.66. Left: The
two stable steady states x̄+

inf = (2.02, 2.02) and x̄+
sup = (21.87, 21.87) of the uncontrolled system

are represented by blue stars and x̄+ = (6.1, 6.1) is represented by the red star. The dashed green
(resp. magenta) line is the x2-nullcline (resp. x1-nullcline). The blue lines are simulations of the
uncontrolled positive loop (3.2.1) and converge towards one of the two stable steady states. The
green lines are simulations of system (5.2.1) under affine control (4.2.1), and the red lines under
control (5.2.2) with umin = 0.19 and umax = 61.12. The different initial conditions are depicted by
black dots. Right: control laws against time for the trajectory with initial condition x0 = (10, 14)
depicted on the left figure, with the corresponding colors. It is possible to observe that for the
classical control law, the control is negative for initial times, and for the saturated control strategy,
the input saturates at umin for initial times.
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One drawback to this result is its sharp dependence on precise measurements. Indeed, this saturated
control technique depends on the precise knowledge of the variable x1 in the central region x∗1min ≤
x1 ≤ x∗1max. However, most of the time the measurements available in biology are of qualitative
nature leading to partially known systems. To deal with this constraint, it will be considered in
next chapter that the state of the system is partially known, leading to piecewise linear control
laws.

60



Chapter 6

Piecewise constant control strategy

6.1 Introduction
For classical control methods such as the affine control law designed in chapter 4, or the saturated
control designed in chapter 5, the variable of interest is continuously measured, and the control law
depends dynamically and precisely on this measurement. In biotechnology however, quantitative
measurements are mostly inaccessible: indeed, genes expressions are often evaluated by quantifying
the levels of the genes products as explained in chapter 2. The intensity of fluorescence leads to
a discrete estimation of the temporal and spatial gene expression level within the cell. Moreover,
biological control techniques, such as the one reviewed in chapter 2, often lead to constant inputs
[62]. These biological realities prevent the implementation of classical control strategies that depend
on precise knowledge of the state, and naturally encourage qualitative control depending on regions
of the state space only and producing constant control inputs. This class of control strategy has
been already applied for different biological systems such as piecewise affine (PWA) gene regula-
tory networks. In [28] for example, the authors designed a qualitative control in order to globally
stabilize the different steady states of a two-dimensional PWA genetic positive feedback loop. This
system was also controlled in [80] in order to stabilize its unstable steady state, and real biologi-
cal implementations were performed by a bang-bang controller in order to support the analytical
results. A similar idea is presented in [38], where the production rate of a two-dimensional PWA
genetic feedback loop is controlled in order to create a periodic orbit. More theoretically, a general
framework has been developed in [45] and [42] in order to control PWA gene regulatory networks.
In practice, the outputs of classical controllers such as PI are converted into constant inputs with
Pulse Width Modulation (PWM) techniques that transform a continuous-time signal into pulses of
duration proportional to the amplitude of the signal [87, 49, 48, 63, 64].

These biological realities lead to the analysis of hybrid systems for which classical results about
dynamics and control do not apply. For this purpose, new theory and new methods have been
developed [81]. As explained in chapter 3, for hybrid systems with discontinuous right-hand sides
in particular, the solutions can be defined with the theory of Filippov and differential inclusions [47],
leading to specific dynamics such as sliding modes. The same limits occur when treating stability
problems [101]. For example, the construction of smooth Lyapunov functions is a hard task for
these types of systems [16]. Yet, few methods have been developed to answer stability questions
for particular cases [25].

Aside from these previous studies, little is found in the literature for the biological control of
complete gene regulatory networks. In this context, this chapter presents a piecewise constant
control strategy which considers the new synthetic control approaches as well as the main biological
constraints just presented, in order to recover the stable biological conditions of a disrupted negative
feedback loop that exhibits undesired sustained oscillations, and design a dedifferentiation process
for a positive feedback loop.
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The piecewise constant control strategy leads to the analysis of a hybrid system with autonomous
switch of its dynamics (section 6.2). As already presented in chapters 4 and 5, the control law is
designed as simply as possible: it only depends on the position of the system relative to its steady
state of interest and acts on the expression of a unique gene. In section 6.3, the construction of
successive repelling regions allows one to determine the qualitative dynamics of both the positive and
negative controlled loops. In section 6.4, the asymptotic stability is demonstrated by constructing
specific nested balls and provides robust properties to the resulting system. A slight modification
of this PWL control strategy is introduced in section 6.5 and illustrated with a calibration of the
Toggle Switch presented in chapter 2. Finally, section 6.6 introduces a trade-off between the possible
strength of inputs and the speed of convergence of solutions.

The content of section 6.5 can be found in the article published for the conference DYCOPS (see
the section “List of publications” on page 5).

6.2 The controlled model
As explained in the introduction, the piecewise constant structure of the designed control law
u(x1) is motivated by the quantized nature of the available biological measurements. To recover
homeostatic conditions for the negative loop and dedifferentiation for the positive loop, the control
strategy must lead to a global convergence towards the unstable steady state x̄∗ of the system.

The controlled feedback loop is defined by:{
ẋ1(x1, xN ) = κ01 + u(x1)κ1h∗(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(6.2.1)

where {
u(x1) = umin ≤ 1 when x1 ≥ x̄∗1,
u(x1) = umax ≥ 1 when x1 ≤ x̄∗1.

(6.2.2)

In a more compact form, this dynamical system can be denoted ẋ = F (u(x1), x).

In order to keep the biological experiments as simple as possible, the control law u(x1) is arbitrarily
dependent on the measurement of the first gene x1 and acts on its own expression only. A control
dependent on the measurements of any of the other N − 1 genes, as well as the control of their
expression, are possible extensions of this work. Here, the control u(x1) appears outside the Hill
function: in biology, this strategy may be applied by introducing inside the network a new molecule
able to directly interact with the promoter of the first gene, either an inducer or a repressor. In
section 6.5, another strategy will be presented, in which the control u(x1) appears inside the Hill
function. In this case, the control must be interpreted differently in biology.

The two constants umin and umax describe respectively a reduction and an amplification of the
natural influence of component N on component 1 of the loop, and are adapted to the input
types generated by biological control means. Moreover, the measurements of x1 are considered
qualitative, leading to partial knowledge of the system. The gene can either be detected highly
expressed (x1 ≥ x̄∗1) or weakly expressed (x1 ≤ x̄∗1). As soon as x1 is inside the uncertain domain
x̄∗1 (also called a switching domain), the control law is undetermined and may either take the value
umin or umax. Therefore, system (6.2.1) under the qualitative control law (6.2.2) is a differential
system with discontinuous right-hand side and its solutions are appropriately defined in the sense
of Filippov as the solutions of the following differential inclusion [47]:

ẋ ∈ H(x)
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such that H(x) = F (umin, x) when x1 ≥ x̄∗1, H(x) = F (umax, x) when x1 ≤ x̄∗1 and

H(x) = c̄o{F (umin, x), F (umax, x)}

on the switching domain, where c̄o is the closed convex hull of the set of values of the vector field.
These types of solutions often lead to the emergence of sliding modes along the switching domains,
as discussed in chapter 3.

Remark 6.2.1. This new controlled system is also a priori bounded: for the negative loop, x1 ∈
]κ01/γ1,max

(
(κ01 + uminκ1)/γ1, x̄

−
1
)
] and x1 ∈ [κ01/γ1,max

(
(κ01 + uminκ1)/γ1, x̄

+
1
)

[ for the pos-
itive loop. For i ∈ {2, ..., N}, xi ∈ [κ0i/γi, (κ0i + κi)/γi[.

6.3 Global convergence
In this section it will be shown that, under appropriate conditions on the two constant inputs
umin and umax, the global stability of x̄∗ is achieved. This will be proved by identifying specific
dynamical transitions between zones of the state space.

6.3.1 Global convergence for the negative loop
For the negative loop, the space is partitioned as follows:

Definition 6.3.1. The N-dimensional space is partitioned in 3N zones. Each zone is called
(a1a2...aN−1aN ) such that ∀ i ∈ {1, ..., N}:

• ai = 0 if xi < x̄−i ,

• ai = 1 if xi = x̄−i ,

• ai = 2 if xi > x̄−i .

An illustration of the partitioning in dimension 3 is presented in figure 6.3.1.

Remark 6.3.1. The term region will further refer to a union of zones. For example the region
a1 = 2 is the union of 3N−1 zones: (2a2...aN−1aN ) where ai ∈ {0, 1, 2} ∀ i ∈ {2, ..., N}.

Definition 6.3.2. A region of the state space is repellent if:

• for each trajectory starting in this region, there is a time T > 0 after which the trajectory
leaves the region,

• no trajectory enters this region.

Practically, if the vector field ẋi in a region (a1...aN ) keeps a non-zero constant sign in the whole
region, including at the borders, the region is repellent in direction i. When the region is upper
(resp. lower) bounded in direction i, if ẋi > 0 (resp. ẋi < 0), the trajectories will leave the region
through the upper (resp. lower) bound defining ai.

The following conditions on umin and umax allow the statement of four lemmas that successively
define repelling regions of the state space:

Assumption 6.3.1. {
umin ≤ (γ1x̄

−
1 − κ01)/κ1,

umax = 1.

Lemma 6.3.1. Under assumption 6.3.1, the region defined by a1 = 2 is repellent.
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Figure 6.3.1: Partitioning of the state space in dimension 3 according to definition 6.3.1, and
graph of transitions. The space is split in different zones of different dimensions, all represented
as nodes in this figure: any zone with ai ∈ {0, 2} ∀ i ∈ {1, 2, 3} is 3-dimensional; any zone with
ai = 1 for a unique i ∈ {1, 2, 3} is 2-dimensional; any zone with ai = 1 for exactly two indexes
i ∈ {1, 2, 3} is 1-dimensional; and (111) is 0-dimensional. The arrows represent transitions between
zones. As explained, some transitions represented here by the black arrows do not play any role
in the construction of the proof of theorem 6.3.1. The repellent regions are represented with
different colors: lemma 6.3.1 is illustrated with orange arrows leaving orange region. Lemma 6.3.2
is successively illustrated with blue arrows leaving blue region and brown arrows leaving brown
region. Afterwards, lemma 6.3.3 is illustrated with pink arrows leaving pink region, followed by
lemma 6.3.4 successively illustrated with green arrows leaving green region and purple arrows leaving
purple region. In the end, the trajectories converge towards the steady state represented by the red
zone (111).

Proof. In the region x1 > x̄−1 the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 + uminκ1h−(xN , θN , nN ) − γ1x1. By evaluating this expression on the wall
x1 = x̄−1 and using the condition on umin, the following inequality comes up: ẋ1(x̄−1 , xN ) ≤
(κ01 − γ1x̄

−
1 )
(
1− h−(xN , θN , nN )

)
. The properties of the uncontrolled system explained in propo-

sition 3.2.8 give x̄−1 ∈ ]κ01/γ1, (κ01 + κ1) /γ1] and the decreasing Hill function meets the condition
h−(xN , θN , nN ) ∈ ]0, 1]. This implies ẋ1(x̄−1 , xN ) ≤ 0. Moreover, for xN fixed and x1 > x̄−1 , the
linear degradation term −γ1x1 in the x1-vector field expression gives: ẋ1(x1, xN ) < ẋ1(x̄−1 , xN ) ≤ 0.
Hence, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0 and ∀ x1 > x̄−1 . Finally, as a1 = 2 is lower-bounded by x1 = x̄−1 ,
the region is repellent.

This first lemma is illustrated in the left plot of figure 6.3.2 by the three blue arrows.

Lemma 6.3.2. For any i ∈ {1, ..., N − 1}, if the region defined by ai = 2 is repellent, then the
region ai+1 = 2 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄−i+1 and using the definition of the steady state x̄−i+1 =

(
κ0i+1 + κi+1h+(x̄−i , θi, ni)

)
/γi+1,

the equality becomes: ẋi+1(x̄−i+1, xi) = κi+1
(
h+(xi, θi, ni)− h+(x̄−i , θi, ni)

)
. From the hypothesis,

ai = 2 is repellent, which is equivalent to xi ≤ x̄−i . The strictly monotonic property of the
increasing Hill function implies h+(xi, θi, ni) ≤ h+(x̄−i , θi, ni). Then ẋi+1(x̄−i+1, xi) ≤ 0 ∀ xi ≤ x̄−i .
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Figure 6.3.2: Left: Transitions properties in the (x1, xN ) plane. The dashed blue line is the x1-
nullcline for the region a1 = 2. The half-plain half-dashed red line is the x1-nullcline for the region
a1 = 0. The dashed style corresponds to nullclines situated in another region, and the plain style for
nullclines situated in their proper region. The arrows represent the vector field in the x1-direction.
Lemma 6.3.1 is illustrated by blue arrows, and lemma 6.3.3 by red arrows. Right: Transition
properties in the (xi, xi+1) plane. The black line is the xi+1-nullcline. The arrows represent the
vector field in the xi+1-direction. Lemma 6.3.2 is illustrated by blue arrows, and lemma 6.3.4 by
red arrows.

Moreover, for xi fixed and xi+1 > x̄−i+1, the linear degradation term −γi+1xi+1 in the xi+1-vector
field expression gives: ẋi+1(xi+1, xi) < ẋi+1(x̄−i+1, xi) ≤ 0. Hence, ẋi+1(xi+1, xi) < 0 ∀ xi ≤ x̄−i
and ∀ xi+1 > x̄−i+1. Finally, as ai+1 = 2 is lower-bounded by xi+1 = x̄−i+1, if ai = 2 is repellent,
then the region ai+1 = 2 is repellent as well.

The two blue arrows in the right plot of figure 6.3.2 illustrate this second lemma.

Lemma 6.3.3. Under assumption 6.3.1, within the region ai ∈ {0, 1} ∀ i ∈ {1, ..., N}, the region
defined by a1 = 0 is repellent.

Proof. In the region x1 < x̄−1 the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 + κ1h−(xN , θN , nN ) − γ1x1. By evaluating this expression on the wall x1 =
x̄−1 and using the definition of the steady state x̄−1 =

(
κ01 + κ1h−(x̄−N , θN , nN )

)
/γ1, the equality

becomes: ẋ1(x̄−1 , xN ) = κ1
(
h−(xN , θN , nN )− h−(x̄−N , θN , nN )

)
. From the hypothesis, aN ∈ {0, 1},

which is equivalent to xN ≤ x̄−N . The strictly monotonic property of the decreasing Hill function
implies h−(xN , θN , nN ) ≥ h−(x̄−N , θN , nN ). Then ẋ1(x̄−1 , xN ) ≥ 0 ∀ xN ≤ x̄−N . Moreover, for
xN fixed and x1 < x̄−1 , the linear degradation term −γ1x1 in the x1-vector field expression gives:
ẋ1(x1, xN ) > ẋ1(x̄−1 , xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀ xN ≤ x̄−N and ∀ x1 < x̄−1 . Finally, as a1 = 0
is upper-bounded by x1 = x̄−1 , a1 = 0 is repellent within the region aN ∈ {0, 1}.

The two red arrows in the left plot of figure 6.3.2 illustrate this third lemma.

Lemma 6.3.4. For any i ∈ {1, ..., N − 1}, if the regions defined by ai = 0 and ai = 2 are repellent,
then the region ai+1 = 0 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄−i+1 and using the definition of the steady state x̄−i+1, the equality becomes: ẋi+1(x̄−i+1, xi) =
κi+1

(
h+(xi, θi, ni)− h+(x̄−i , θi, ni)

)
. From the hypothesis, ai = 2 and ai = 0 are repellent, which is

equivalent to xi = x̄−i . Then ẋi+1(x̄−i+1, x̄
−
i ) = 0. Moreover, for xi+1 < x̄−i+1, the linear degradation

term −γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, x̄
−
i ) > ẋi+1(x̄−i+1, x̄

−
i ) = 0.

Hence, ẋi+1(xi+1, x̄
−
i ) > 0 ∀ xi+1 < x̄−i+1. Finally, as ai+1 = 0 is upper-bounded by xi+1 = x̄−i+1,

ai+1 = 0 is repellent within the region ai = 1.

This final lemma is illustrated by the red arrow in the right plot of figure 6.3.2. These four lemmas
finally allow the statement of the main result of this section for the negative loop:
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Figure 6.3.3: Left: Simulation of system (3.2.1) without control in dimension 3. The locally unstable
steady state x̄− = (12, 12, 12), represented by a red star, leads to the emergence of a periodic orbit.
Right: Simulation of system (6.2.1) in dimension 3 with control umin = 0.4 and umax = 1. There
is convergence towards the globally attractive steady state x̄− through a sliding mode on the plane
x1 = x̄−1 . For both figures, κ0i = 2, κi = 8, γi = 0.5, θi = 12, ni = 7 for i ∈ {1, 2, 3}, and the initial
condition is x0 = (14, 16, 17).

Theorem 6.3.1. If assumption 6.3.1 holds, system (6.2.1) under control law (6.2.2) converges
globally towards the zone (a1...aN ) = (1...1) where ai = 1 ∀ i ∈ {1, ..., N}.

Proof. As a base case, lemma 6.3.1 states that any trajectory is contained in the region a1 6= 2. By
a mathematical induction, lemma 6.3.2 states that any trajectory is contained in the region ai 6= 2
∀ i ∈ {1, ..., N}. As a new base case lemma 6.3.3 states that any trajectory stands in the region
a1 = 1 and ai 6= 2 ∀ i ∈ {2, ..., N}. Finally, by a second mathematical induction, lemma 6.3.4 states
that the trajectories are further constrained in the zone ai = 1 ∀ i ∈ {1, ..., N}. In other words,
all the trajectories converge towards the steady state x̄− through a sliding mode in the subspace
x1 = x̄−1 , ending the proof of global convergence.

This type of demonstration has been already exploited for similar systems [119, 96, 19, 20, 43]. In
this paper however, the analysis intentionally considers a restricted number of transitions (colored
arrows in figure 6.3.1) in comparison with classical proofs that analyze all potential transitions (sup-
plementary black arrows in figure 6.3.1). While the traditional method gives more material about
trajectories, this reduced approach greatly facilitates the understanding of the global dynamics in
any dimension N .

Remark 6.3.2. The condition umax = 1 in assumption 6.3.1 is equivalent to the uncontrolled
system (3.2.1) in the half-space x1 ≤ x̄1. Theorem 6.3.1 means that the system is only controlled
in the half-space x1 ≥ x̄1. The condition umax = 1 can be reduced to umax ≥ 1. By introducing
new zones, a proof based on the same ideas lead to the same global convergence result. However,
as controlling biological systems is a complicated task, the result with umax = 1 limits the control
complexity and is more convenient for real implementation.

A simulation of global convergence in dimension 3 is illustrated in figure 6.3.3.

6.3.2 Global convergence for the positive loop
For the positive loop, the space is partitioned as follows:

Definition 6.3.3. The N-dimensional space is partitioned in 4N zones. Again, each zone is called
(a1a2...aN−1aN ) such that ∀ i ∈ {1, ..., N}:

• ai = 0 if xi < x̄+
i − νi,

• ai = 1 if x̄+
i − νi ≤ xi < x̄+

i ,
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Figure 6.3.4: Partitioning of the state space in dimension 2 according to definition 6.3.3, and graph
of transitions. The space is split in different zones of different dimensions, all represented as nodes
in this figure: any zone with ai ∈ {0, 1, 3} ∀ i ∈ {1, 2} is 2-dimensional; any zone with ai = 2 for
a unique i ∈ {1, 2} is 1-dimensional and (22) is 0-dimensional. The arrows represent transitions
between zones. As explained, some transitions represented here by the plain black arrows do
not play any role in the construction of the proof of theorem 6.3.2. Moreover, some transitions,
represented by dashed black arrows, are undetermined. The repellent regions are represented with
different colors: lemma 6.3.5 is illustrated with orange arrows leaving orange region. Lemma 6.3.6 is
illustrated with blue arrows leaving blue region. Afterwards, lemma 6.3.7 is illustrated with brown
arrows leaving brown region, followed by lemma 6.3.8 illustrated with pink arrows leaving pink
region. Next, lemma 6.3.9 is illustrated with green arrows leaving green region, followed by lemma
6.3.10 illustrated with purple arrows leaving purple region. In the end, the trajectories converge
towards the steady state represented by the red zone (22).

• ai = 2 if xi = x̄+
i ,

• ai = 3 if xi > x̄+
i ,

where:

• ν1 = x̄+
1 − κ01/γ1,

• νi = x̄+
i −

(
κ0i + κih+(x̄+

i−1 − νi−1, θi−1, ni−1)
)
/γi ∀ i ∈ {2, ..., N}.

An illustration of the partitioning in dimension 2 is presented in figure 6.3.4.

The following conditions on umin and umax allow the statement of six lemmas that successively
define repelling regions of the state space:

Assumption 6.3.2. 
umin ≤

γ1x̄
+
1 − κ01

κ1
,

umax ≥
γ1x̄

+
1 − κ01

κ1h+(x̄+
N − νN , θN , nN )

The condition on umin given in assumption 6.3.2 gives the first observation:

Lemma 6.3.5. Under assumption 6.3.2, the region defined by a1 = 3 is repellent.
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Figure 6.3.5: Left: Transitions properties in the (x1, xN ) plane. The dashed dark blue line is the
x1-nullcline for the region a1 = 3. The half-plain half-dashed light blue line is the x1-nullcline
for the regions a1 = 0 and a1 = 1. The dashed style corresponds to nullclines situated in another
region, and the plain style for nullclines situated in their proper region. The arrows represent vector
field in x1-direction. Lemma 6.3.5 is illustrated by dark blue arrows, lemma 6.3.7 by red arrows
and lemma 6.3.9 by light blue arrows. Right: Transitions properties in the (xi, xi+1) plane. The
black line is the xi+1-nullcline. The arrows represent vector field in xi+1-direction. Lemma 6.3.6 is
illustrated by dark blue arrows, lemma 6.3.8 by red arrows, and lemma 6.3.10 by light blue arrows.

Proof. In the region x1 > x̄+
1 the x1-vector field is defined as:

ẋ1(x1, xN ) = κ01 + uminκ1h+(xN , θN , nN ) − γ1x1. By evaluating this expression on the wall
x1 = x̄+

1 and using the condition on umin, the following inequality comes up: ẋ1(x̄+
1 , xN ) ≤

(κ01 − γ1x̄
+
1 )
(
1− h+(xN , θN , nN )

)
. The properties of the uncontrolled system explained propo-

sition 3.2.8 gives x̄+
1 ∈ [κ01/γ1, (κ01 + κ1)/γ1[ and the increasing Hill function meets the condition

h+(xN , θN , nN ) ∈ [0, 1[. This induces ẋ1(x̄+
1 , xN ) ≤ 0. Moreover, for xN fixed and x1 > x̄+

1 , the
linear degradation term −γ1x1 in the x1-vector field expression gives: ẋ1(x1, xN ) < ẋ1(x̄+

1 , xN ) ≤ 0.
Hence, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0 and ∀ x1 > x̄+

1 . Finally, as a1 = 3 is lower-bounded by x1 = x̄+
1 ,

the region is repellent.

This first lemma is illustrated in the left plot of figure 6.3.5 by the four dark blue arrows.

Lemma 6.3.6. For any i ∈ {1, ..., N − 1}, if the region defined by ai = 3 is repellent, then the
region ai+1 = 3 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄+

i+1 and using the definition of the steady state x̄+
i+1 =

(
κ0i+1 + κi+1h+(x̄+

i , θi, ni)
)
/γi+1,

the equality becomes: ẋi+1(x̄+
i+1, xi) = κi+1

(
h+(xi, θi, ni)− h+(x̄+

i , θi, ni)
)
. From the hypothesis

ai = 3 is repellent, which is equivalent to xi ≤ x̄+
i . The strictly monotonous property of the

increasing Hill function induces h+(xi, θi, ni) ≤ h+(x̄+
i , θi, ni). Then ẋi+1(x̄+

i+1, xi) ≤ 0 ∀ xi ≤ x̄+
i .

Moreover, for xi fixed and xi+1 > x̄+
i+1, the linear degradation term −γi+1xi+1 in the xi+1-vector

field expression gives: ẋi+1(xi+1, xi) < ẋi+1(x̄+
i+1, xi) ≤ 0. Hence, ẋi+1(xi+1, xi) < 0 ∀ xi ≤ x̄+

i

and ∀ xi+1 > x̄+
i+1. Finally, as ai+1 = 3 is lower-bounded by xi+1 = x̄+

i+1, if ai = 3 is repellent, the
region ai+1 = 3 is repellent as well.

The three dark blue arrows in the right plot of figure 6.3.5 illustrate this second lemma.

Lemma 6.3.7. Under assumption 6.3.2, within the region ai ∈ {0, 1, 2} ∀ i ∈ {1, ..., N}, the region
defined by a1 = 0 is repellent.

Proof. In the region x1 < x̄+
1 − ν1 the x1-vector field is defined as:

ẋ1(x1, xN ) = κ01 + umaxκ1h−(xN , θN , nN ) − γ1x1. By evaluating this expression on the wall
x1 = x̄+

1 − ν1 = κ01/γ1, the equality becomes: ẋ1(x̄+
1 − ν1, xN ) = umaxκ1h+(xN , θN , nN ). The

increasing Hill function meets the condition h+(xN , θN , nN ) ∈ [0, 1[. Then ẋ1(x̄+
1 − ν1, xN ) ≥ 0
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∀ xN ≤ x̄+
N . Moreover, for xN fixed and x1 < x̄+

1 − ν1, the linear degradation term −γ1x1 in
the x1-vector field expression gives: ẋ1(x1, xN ) > ẋ1(x̄+

1 − ν1, xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀
xN ≤ x̄+

N and ∀ x1 < x̄+
1 − ν1. Finally, as a1 = 0 is upper-bounded by x1 = x̄+

1 − ν1, a1 = 0 is
repellent within the region aN ∈ {0, 1, 2}.

The three red arrows in the left plot of figure 6.3.5 illustrate this third lemma.

Lemma 6.3.8. For any i ∈ {1, ..., N − 1}, if the regions defined by ai = 0 and ai = 3 are repellent,
then the region ai+1 = 0 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄+

i+1 − νi+1 and using the definition νi+1, the equality becomes: ẋi+1(x̄+
i+1 − νi+1, xi) =

κ0i+1 + κi+1h+(xi, θi, ni)− γi+1x̄
+
i+1 − γi+1νi+1 = κi+1

(
h+(xi, θi, ni)− h+(x̄+

i − νi, θi, ni)
)
. From

the hypothesis, ai = 0 and ai = 3 are repellent, which is equivalent to x̄+
i − νi ≤ xi ≤ x̄+

i . Then
ẋi+1(x̄+

i+1 − νi+1, xi) ≥ 0 ∀ x̄+
i − νi ≤ xi ≤ x̄+

i . Moreover, for xi+1 < x̄+
i+1 − νi+1, the linear

degradation term −γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, xi) > ẋi+1(x̄+
i+1−

νi+1, xi) ≥ 0. Hence, ẋi+1(xi+1, xi) > 0 ∀ xi+1 < x̄+
i+1 − νi+1 and ∀ x̄+

i − νi ≤ xi ≤ x̄+
i . Finally,

as ai+1 = 0 is upper-bounded by xi+1 = x̄+
i+1 − νi+1, ai+1 = 0 is repellent within the region

ai ∈ {1, 2}.

This lemma is illustrated by the two red arrows in the right plot of figure 6.3.5.

Lemma 6.3.9. Under assumption 6.3.2, within the region ai ∈ {1, 2} ∀ i ∈ {1, ..., N}, the region
defined by a1 = 1 is repellent.

Proof. In the region x̄+
1 − ν1 ≤ x1 < x̄+

1 the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 +umaxκ1h+(xN , θN , nN )−γ1x1. With the conditions given on umax, the equality
becomes:

ẋ1(x1, xN ) ≥ κ01 + γ1x̄
+
1 − κ01

κ1h+(x̄+
N − νN , θN , nN )

κ1h+(xN , θN , nN )− γ1x1

= h+(xN , θN , nN )
h+(x̄+

N − νN , θN , nN )
[
γ1x̄

+
1 − κ01

]
+ [κ01 − γ1x1] .

As κ01/γ1 ≤ x1 < x̄+
1 , hence κ01−γ1x1 ≤ 0 and |κ01−γ1x1| = γ1x1−κ01. Moreover the properties

of the uncontrolled system, explained in proposition 3.2.8, give x̄+
1 ∈ [κ01/γ1, (κ01 + κ1)/γ1[, hence

γ1x̄
+
1 −κ01 ≥ 0. As x̄+

1 −ν1 ≤ x1 < x̄+
1 , |γ1x̄

+
1 −κ01| > |κ01−γ1x1|. On the other hand, aN ∈ {1, 2},

equivalent to x̄+
N − νN ≤ xN ≤ x̄+

N . Then with the strictly monotonic property of the increasing
Hill function, h+(xN , θN , nN ) ≥ h+(x̄+

N − νN , θN , nN ) leading to:
h+(xN , θN , nN )/h+(x̄+

N − νN , θN , nN ) ≥ 1. Then:

h+(xN , θN , nN )
h+(x̄+

N − νN , θN , nN )
|γ1x̄

+
1 − κ01| > |κ01 − γ1x1|

h+(xN , θN , nN )
h+(x̄+

N − νN , θN , nN )
[
γ1x̄

+
1 − κ01

]
> [γ1x1 − κ01]

h+(xN , θN , nN )
h+(x̄+

N − νN , θN , nN )
[
γ1x̄

+
1 − κ01

]
+ [κ01 − γ1x1] > 0.

Therefore, ẋ1(x1, xN ) > 0 ∀ x̄+
N − νN ≤ xN ≤ x̄+

N and ∀ x̄+
1 − ν1 ≤ x1 < x̄+

1 . Finally, as a1 = 1 is
upper-bounded by x1 = x̄+

1 , a1 = 1 is repellent within the region aN ∈ {1, 2}.

This lemma is illustrated by the two light blue arrows in the left plot of figure 6.3.5.

Lemma 6.3.10. For any i ∈ {1, ..., N − 1}, if the regions defined by ai = 0, ai = 1 and ai = 3 are
repellent, then the region ai+1 = 1 is repellent as well.
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Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni)− γi+1xi+1. An evaluation of the vector field on the wall
xi+1 = x̄+

i+1 and using the definition of the steady state x̄+
i+1, the equality becomes: ẋi+1(x̄+

i+1, xi) =
κi+1

(
h+(xi, θi, ni)− h+(x̄+

i , θi, ni)
)
. From the hypothesis ai = 3, ai = 1 and ai = 0 are repel-

lent, which is equivalent to xi = x̄+
i . Then ẋi+1(x̄+

i+1, x̄
+
i ) = 0. Moreover, for xi+1 < x̄+

i+1,
the linear degradation term −γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, x̄

+
i ) >

ẋi+1(x̄+
i+1, x̄

+
i ) = 0. Hence, ẋi+1(xi+1, x̄

+
i ) > 0 ∀ x̄+

i+1 − νi+1 ≤ xi+1 < x̄+
i+1. Finally, as ai+1 = 1 is

upper-bounded by xi+1 = x̄+
i+1, ai+1 = 1 is repellent within the region ai = 2.

These six lemmas finally allow the statement of the main result of this section for the positive loop:

Theorem 6.3.2. If assumption 6.3.2 holds, system (6.2.1) under control law (6.2.2) converges
globally towards the zone (a1...aN ) = (2...2) where ai = 2 ∀ i ∈ {1, ..., N}.

Proof. As a base case, lemma 6.3.5 states that any trajectory is contained in the region a1 6= 3. By
a mathematical induction, lemma 6.3.6 states that any trajectory is contained in the region ai 6= 3
∀ i ∈ {1, ..., N}. As a new base case lemma 6.3.7 states that any trajectory stands in the region
a1 ∈ {1, 2} and ai 6= 3 ∀ i ∈ {2, ..., N}. By a second mathematical induction, lemma 6.3.8 states that
the trajectories are further constrained in the zone ai ∈ {1, 2} ∀ i ∈ {1, ..., N}. As a last base case,
lemma 6.3.9 states that any trajectory stands in the region a1 = 2 and ai ∈ {1, 2} ∀ i ∈ {2, ..., N}.
Finally, by a last mathematical induction, lemma 6.3.10 states that the trajectories are further
constrained in the zone ai = 2 ∀ i ∈ {1, ..., N}. In other words, all the trajectories converge towards
the steady state x̄+ through a sliding mode in the subspace x1 = x̄+

1 , ending the proof of global
convergence.

Figure 6.3.4 gives an illustration of the successive repelling regions in dimension 2 determined by
the six previous lemmas.

A simulation of global convergence in dimension 2 is illustrated in figure 6.3.6. It is possible to
observe that the red trajectories do not slide perfectly on the switching domain x1 = x̄+

1 . This is a
numerical artefact called chattering. However, this artefact illustrates what may happen in reality
if the timescale of evolution of the control is slow compared to the time scale of evolution of the
dynamical system.

Remark 6.3.3. For the positive loop, the state space has to be partitioned in more zones than
for the negative loop, and the condition umax = 1 is not enough for the global convergence. This
is explained by the fact that the succession of the repelling regions for the positive loop must be
initialized twice: indeed the upper and lower repelling regions are defined separately, whereas for
the negative loop, the upper and lower repelling regions are defined together in the same induction
steps thanks to the decreasing nullcline for ẋ1 that switches the boundaries.

6.4 Global stability
In this section, the global stability of the attracting point x̄∗ is investigated for both loops by
constructing balls of specific radius that satisfy the classical definition of Lyapunov stability [75]: a
large ball called B∗δ in which trajectories that start inside a smaller ball must stay, an intermediary
region called B∗ such that B∗ ⊂ B∗δ and B∗ invariant, and a small ball B∗ε of initial conditions such
that B∗ε ⊂ B∗ ⊂ B∗δ . The next definition introduces the largest ball B∗δ of radius δ:

Definition 6.4.1. For any δ > 0 fixed, the ball B∗δ is defined by: B∗δ = {x| ||x(t)− x̄∗||∞ ≤ δ},
where ||x(t)||∞ = max

i
|xi(t)|.

The following definition is essential for the construction of the intermediary invariant region B∗:
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Figure 6.3.6: Comparison of trajectories of system (3.2.1) in dimension 2 with and without control.
The green dashed line is the x2-nullcline and the magenta dashed line the x1-nullcline. The four blue
lines are trajectories without control with initial conditions x0 ∈ {(1, 1), (10, 25), (20, 40), (40, 45)}:
the two locally stable steady states x̄+

inf = (1.66, 5) and x̄+
sup = (31, 52.4) are represented by

blue stars and are attractive without control; the locally unstable steady state x̄+ = (13.2, 23.9)
represented by a red star is repellent without control. The four red lines are trajectories of system
(6.2.1) with control umin = 0.32, and umax = 72.58, and same initial conditions. The two locally
stable steady states become repellent, and all the trajectories converge towards x̄+ through a sliding
mode on the line x1 = x̄+

1 . For both situations, κ01 = 0.3, κ1 = 7, γ1 = 0.2, θ1 = 15, n1 = 4 and
κ02 = 0.5, κ2 = 5, γ2 = 0.1, θ2 = 30, n2 = 3.

Definition 6.4.2. For any y ∈ [0, 1[ and for any i ∈ {2, ..., N}, the function φi(y) is defined as
the inverse function of h+(x, θi−1, ni−1). In the same way, for any y ∈ ]0, 1], the function φ−1 (y) is
defined as the inverse function of h−(x, θN , nN ) and for any y ∈ [0, 1[, the function φ+

1 (y) is defined
as the inverse function of h+(x, θN , nN ).

These inverse functions satisfy the following property:

Property 6.4.1. By definition 6.4.2, for any i ∈ {2, ..., N}, h+(x, θi−1, ni−1) = y implies that
x = φi(y) where φi are monotonically increasing functions that satisfy x̄∗i−1 = φi ((γix̄∗i − κ0i)/κi).
Likewise, h+(x, θN , nN ) = y implies that x = φ+

1 (y) where φ+
1 is a monotonically increasing function

that satisfies x̄+
N = φ+

1
(
(γ1x̄

+
1 − κ01)/κ1

)
. Finally, h−(x, θN , nN ) = y implies that x = φ−1 (y) where

φ−1 is a monotonically decreasing function that satisfies x̄−N = φ−1
(
(γ1x̄

−
1 − κ01)/κ1

)
.

6.4.1 Global stability for the negative loop
For the negative loop, the global stability of x̄− is first proved with the following assumption:

Assumption 6.4.1. 0 < δ < x̄−1 − κ01/γ1, and 0 < δ < min
(
x̄−i − κ0i/γi, (κ0i + κi)/γi − x̄−i

)
∀ i ∈ {2, ..., N}.
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Figure 6.4.1: Left: x1-vector field in the (x1, xN ) plane. The plain black line is the x1-nullcline
in the region x1 < x̄−1 . In the region x1 > x̄−1 the x1-vector field is strictly negative because of
the control umin. The horizontal red and green dashed lines are respectively the upper and lower
boundaries in direction x1 of the region B−. The black vertical dashed line is defined in order
to keep a constant sign of the vector field in the x1-direction at the lower boundary. No vertical
line is necessary in order to keep a constant sign of the vector field in the x1-direction at the
upper boundary as the x1-vector field is already strictly negative there. The vertical red and green
dashed lines are respectively the upper and lower boundaries in direction xN . The region B− is
highlighted in yellow. The yellow arrows represent vector field in x1-direction at the boundaries
of B− and illustrate the invariance of the region in direction x1. Right: xi+1-vector field in the
(xi, xi+1) plane. The plain black line is the xi+1-nullcline. The horizontal red and green dashed
lines are respectively the upper and lower boundaries in direction xi+1 of the region B−. The two
black vertical dashed lines are defined in order to keep a constant sign of the vector field in the
xi+1-direction at the upper and lower boundaries. The vertical red and green dashed lines are
respectively the upper and lower boundaries in direction xi. The region B− is highlighted in yellow.
The yellow arrows represent vector field in direction xi+1 at the boundaries of B− and illustrate
the invariance of the region in direction xi+1.

From proposition 3.2.8, it is possible to choose such a δ > 0, and the ball B− can be defined:

Definition 6.4.3. Under assumption 6.4.1, the region B− is defined with:

• µN = δ and mN = µN ,

• µi = x̄−i − φi+1
((
γi+1(x̄−i+1 −mi+1)− κ0i+1

)
/κi+1

)
and mi = min (δ, µi), ∀ i ∈ {N − 1, ..., 1},

• αN = φ−1
((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
− x̄−N and MN = min (δ, αN ),

• αi = φi+1
((
γi+1(x̄−i+1 +Mi+1)− κ0i+1

)
/κi+1

)
− x̄−i

and Mi = min (δ, αi), ∀ i ∈ {N − 1, ..., 1}.

Then B− =
{
x|x̄−i −mi ≤ xi ≤ x̄−i +Mi ∀ i ∈ {1, ..., N}

}
.

An illustration of these bounds is given in figure 6.4.1.

The following property certifies that µi, αi, mi and Mi are well defined for all i ∈ {1, ..., N}:

Proposition 6.4.1. Under assumption 6.4.1, µi > 0 and αi > 0 ∀ i ∈ {1, ..., N}, and as a
consequence:
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• κ0i/γi < x̄−i −mi < x̄−i and x̄−i < x̄−i +Mi < (κ0i + κi)/γi ∀ i ∈ {2, ..., N},

• κ01/γ1 < x̄−1 −m1 < x̄−1 and x̄−1 < x̄−1 +M1.

The proof of this proposition is detailed in appendix C.1.

The next proposition is a consequence of the construction of the region B−:

Proposition 6.4.2. The region B− is included in the ball B−δ .

Proof. For all i ∈ {1, ..., N}, x̄−i −mi = x̄−i −min (δ, µi), then x̄−i −mi ≥ x̄−i − δ. In the same way,
for all i ∈ {1, ..., N}, x̄−i +Mi = x̄−i + min (δ, αi), then x̄−i +Mi ≤ x̄−i + δ.

The main lemma of this section can now be introduced:

Lemma 6.4.1. Under assumptions 6.4.1 and 6.3.1, for any x(0) ∈ B−, x(t) ∈ B− ∀ t ≥ 0.

In other words, this lemma states that the region B− is invariant. The details of the proof can be
found in appendix C.2 and an illustration is presented in figure 6.4.1. Now, in order to prove the
Lyapunov stability of the attracting point x̄−, the initial conditions ball B−ε is constructed:

Definition 6.4.4. Under the assumption 6.4.1, the constant ε is defined as:

ε = min (min
i
mi,min

i
Mi).

The ball B−ε is defined as: B−ε =
{
x|x̄−i − ε ≤ xi ≤ x̄

−
i + ε ∀ i ∈ {1, ..., N}

}
.

The following lemma states dynamical properties of trajectories starting in the ball B−ε :

Lemma 6.4.2. Under assumptions 6.4.1 and 6.3.1, for all x(0) ∈ B−ε , x(t) ∈ B−δ ∀ t ≥ 0.

Proof. As B−ε ⊂ B− by construction, then for all x(0) ∈ B−ε , x(0) ∈ B− which implies from lemma
6.4.1 that x(t) ∈ B− ∀ t ≥ 0. Now, as B− ⊂ B−δ , then for all x(0) ∈ B−ε , x(t) ∈ B− ∀ t ≥ 0, which
implies that x(t) ∈ B−δ ∀ t ≥ 0.

In order to conclude, the following last remark is essential to relax assumption 6.4.1

Remark 6.4.1. If assumption 6.4.1 is not fulfilled for a δ > 0, then it is sufficient to consider any
ball of radius δ′ > 0 such that B−δ′ ⊂ B

−
δ and such that δ′ fulfills assumption 6.4.1. The region B− is

constructed for B−δ′ , as well as the initial condition ball B−ε . In these conditions, for all x(0) ∈ B−ε ,
x(t) ∈ B−δ′ ∀ t ≥ 0 with lemma 6.4.2, which implies that x(t) ∈ B−δ ∀ t ≥ 0.

The main theorem for the negative loop is now introduced:

Theorem 6.4.1. Under assumption 6.3.1, the equilibrium point x̄− is globally asymptotically stable.

Proof. For any δ > 0, there exists an ε = min (min
i
mi,min

i
Mi) > 0, as stated in definition 6.4.4

and remark 6.4.1, such that every solution x(t) having initial conditions in the ball B−ε (i.e. within
a distance ε of the equilibrium: ||x(0)− x̄−||∞ ≤ ε), remains in the ball B−δ (i.e. within a distance
δ of the equilibrium: ||x(t)− x̄−||∞ ≤ δ) for all t ≥ 0, as stated by lemma 6.4.2 and remark 6.4.1.
Moreover the equilibrium x̄− is globally attractive with theorem 6.3.1. Then it follows that x̄− is
globally asymptotically stable.

An illustration of the different balls and regions in dimension 3 as well as a dynamical simulation
of the system are illustrated in figure 6.4.2. This stability result provides robustness properties to
the resulting controlled system.
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Figure 6.4.2: Left: Simulation of the balls and regions in dimension 3 for δ = 1: the largest ball
B−δ is in yellow, the invariant region B− is in green and the smallest initial conditions ball B−ε is
in dark blue with ε ≈ 0.014. Right: Zoom in the ball B−ε , with a simulation of 8 trajectories of
system (6.2.1) starting at the 8 corners of the cube B−ε , with control umin = 0.4 and umax = 1. As
previously determined, there is convergence towards the globally asymptotically stable steady state
x̄− illustrated by a red star, through a sliding mode on the plane x1 = x̄−1 . Some of the trajectories
leave the ball B−ε but they all stay in the largest ball B−δ (not represented in the figure for more
clarity as it is a lot larger). For both plots, the parameters are the same as in figure 6.3.3.

6.4.2 Global stability for the positive loop
For the positive loop, the global stability of x̄+ is proved with relaxed conditions on umin and umax
compared to the conditions given in assumption 6.3.2:

Assumption 6.4.2. {
umin < 1,
umax > 1.

As for the negative loop, the stability of x̄+ will be first proved with the following assumption:

Assumption 6.4.3. ∀ i ∈ {2, ..., N} 0 < δ < min
(
x̄+
i − κ0i/γi, (κ0i + κi)/γi − x̄+

i

)
. Moreover,

0 < δ < min
(
x̄+

1 − κ01/γ1, (κ01 + uminκ1)/γ1 − x̄+
1
)

if 1 > umin > (γ1x̄
+
1 − κ01)/κ1 and 0 < δ <

x̄+
1 − κ01/γ1 otherwise.

From proposition 3.2.8, it is possible to choose such a δ > 0. The following definition is essential
for the construction of the ball B+:

Definition 6.4.5. If 1 > umin > (γ1x̄
+
1 − κ01)/κ1, then xNmax is defined as the intersection

between the x1-nullcline in the space x1 > x̄1 and the line x1 = x̄1. In this case, xNmax =
φ+

1
(
(γ1x̄

+
1 − κ01)/(uminκ1)

)
. Otherwise, xNmax = +∞. Similarly, xNmin is defined as the in-

tersection between the x1-nullcline in the space x1 < x̄1 and the line x1 = x̄1. In this case,
xNmin = φ+

1
(
(γ1x̄

+
1 − κ01)/(umaxκ1)

)
.

Definition 6.4.6. Under assumption 6.4.3, the region B+ is defined with:

• αN = min
(
δ, xNmax − x̄+

N

)
and MN = αN ,

• αi = φi+1
((
γi+1(x̄+

i+1 +Mi+1)− κ0i+1
)
/κi+1

)
− x̄+

i

and Mi = min (δ, αi), for all i ∈ {N − 1, ..., 1},

• µN = min
(
δ, x̄+

N − xNmin
)

and mN = µN ,

• µi = x̄+
i − φi+1

((
γi+1(x̄+

i+1 −mi+1)− κ0i+1
)
/κi+1

)
and mi = min (δ, µi), for all i ∈ {N − 1, ..., 1},
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Figure 6.4.3: Left: x1-vector field properties in the (x1, xN ) plane. The plain black lines are the
x1-nullclines. The horizontal red and green dashed lines are respectively the upper and lower
boundaries in direction x1 of the region B+. The black vertical dashed lines are xNmax and xNmin
as defined in 6.4.5 (in the case 1 > umin > (γ1x̄

+
1 − κ01)/κ1). They are defined in order to keep a

constant sign of the vector field in the x1-direction at the upper and lower boundary. The vertical
red and green dashed lines are respectively the upper and lower boundaries in direction xN . The
region B+ is highlighted in yellow. The yellow arrows represent vector field in x1-direction at the
boundaries of B+ and illustrate the invariance of the region in direction x1. Right: xi+1-vector field
properties in the (xi, xi+1) plane. The plain black line is the xi+1-nullcline. The horizontal red and
green dashed lines are respectively the upper and lower boundaries in direction xi+1 of the region
B+. The two black vertical dashed lines are defined in order to keep a constant sign of the vector
field in the xi+1-direction at the upper and lower boundaries. The vertical red and green dashed
lines are respectively the upper and lower boundaries in direction xi. The region B+ is highlighted
in yellow. The yellow arrows represent vector field in xi+1-direction at the boundaries of B+ and
illustrate the invariance of the region in direction xi+1.

Then B+ =
{
x|x̄+

i −mi ≤ xi ≤ x̄+
i +Mi ∀ i ∈ {1, ..., N}

}
.

These boundaries are illustrated in figure 6.4.3.

The following property certifies that µi, αi, mi and Mi are well defined for all i ∈ {1, ..., N}:

Proposition 6.4.3. Under assumption 6.4.3, µi > 0 and αi > 0 for all i ∈ {1, ..., N}, and as a
consequence:

• κ0i/γi < x̄+
i −mi < x̄+

i and x̄+
i < x̄+

i +Mi < (κ0i + κi)/γi ∀ i ∈ {2, ..., N},

• κ01/γ1 < x̄+
1 − m1 < x̄+

1 and x̄+
1 < x̄+

1 + M1. Moreover, if 1 > umin > (γ1x̄
+
1 − κ01)/κ1,

x̄+
1 +M1 < (κ01 + uminκ1)/γ1.

The proof of this proposition can be found in appendix C.3.

Exactly as for the negative loop, next proposition is a consequence of the construction of the region
B+:

Proposition 6.4.4. The region B+ is included in the ball B+
δ .

Proof. For all i ∈ {1, ..., N − 1}, x̄+
i −mi = x̄+

i −min (δ, µi), then x̄+
i −mi ≥ x̄+

i − δ. For i = N ,
x̄+
N −mN = x̄+

N − µN = x̄+
N − min (δ, x̄+

N − xNmin), then x̄+
N −mN ≥ x̄+

N − δ. In the same way,
for all i ∈ {1, ..., N − 1}, x̄+

i + Mi = x̄+
i + min (δ, αi), then x̄+

i + Mi ≤ x̄+
i + δ. For i = N ,

x̄+
N +MN = x̄+

N + αN = x̄+
N + min (δ, xNmax − x̄+

N ), then x̄+
N +MN ≥ x̄+

N + δ.
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The main lemma for the positive loop can now be introduced:

Lemma 6.4.3. Under assumptions 6.4.2 and 6.4.3, for any x(0) ∈ B+, x(t) ∈ B+ ∀ t ≥ 0.

In other words, the previous lemma states that the region B+ is invariant. The proof is detailed in
appendix C.4 and an illustration is presented in figure 6.4.3. Now, in order to prove the stability
of the attracting point x̄+, the initial conditions ball B+

ε is constructed:

Definition 6.4.7. Under the assumption 6.4.3, the constant ε is defined as in definition 6.4.4, and
the ball B+

ε is defined as: B+
ε =

{
x|x̄+

i − ε ≤ xi ≤ x̄
+
i + ε ∀ i ∈ {1, ..., N}

}
.

The following lemma states dynamical properties of trajectories starting in the ball B+
ε :

Lemma 6.4.4. Under assumptions 6.4.2 and 6.4.3, for any x(0) ∈ B+
ε , x(t) ∈ B+

δ ∀ t ≥ 0.

Proof. As B+
ε ⊂ B+ by construction, then for all x(0) ∈ B+

ε , x(0) ∈ B+ which implies from lemma
6.4.3 that x(t) ∈ B+ ∀ t ≥ 0. Now, as B+ ⊂ B−δ , then for all x(0) ∈ B+

ε , x(t) ∈ B+ ∀ t ≥ 0, which
implies that x(t) ∈ B+

δ ∀ t ≥ 0.

In order to conclude, the following last remark is essential to relax assumption 6.4.3

Remark 6.4.2. If assumption 6.4.3 is not fulfilled for a δ > 0, then it is sufficient to consider any
ball of radius δ′ > 0 such that B+

δ′ ⊂ B
+
δ and such that δ′ fulfills assumption 6.4.3. The region B+ is

constructed for B+
δ′ , as well as the initial condition ball B+

ε . In these conditions, for all x(0) ∈ B+
ε ,

x(t) ∈ B+
δ′ ∀ t ≥ 0 with lemma 6.4.4, which implies that x(t) ∈ B+

δ ∀ t ≥ 0.

The main theorem for the positive loop is now introduced:

Theorem 6.4.2. Under assumption 6.4.2, the equilibrium point x̄+ is locally stable.

Proof. For any δ > 0, there exists an ε = min (min
i
mi,min

i
Mi) > 0, as stated in definition 6.4.7

and remark 6.4.2, such that every solution x(t) having initial conditions in the ball B+
ε (i.e. within

a distance ε of the equilibrium: ||x(0)− x̄+||∞ ≤ ε), remains in the ball B+
δ (i.e. within a distance δ

of the equilibrium: ||x(t)− x̄+||∞ ≤ δ) for all t ≥ 0, as stated by lemma 6.4.4 and remark 6.4.2.

The conditions on umin and umax given in theorem 6.4.2 are relaxed compared to the one given in
theorem 6.3.2. Indeed, if umin and umax are not small and large enough, x̄+ becomes locally stable
through a sliding mode. However, one or two other stable steady states are still present and stable
as well, preventing global convergence towards x̄+. This situation is illustrated in dimension 2 in
figure 6.4.4.

Finally, the global asymptotic stability can be stated:

Theorem 6.4.3. Under assumption 6.3.2, the equilibrium point x̄+ is globally asymptotically stable.

Proof. Under assumption 6.3.2, theorem 6.4.2 proves the local stability of x̄+, and theorem 6.3.2
proves its global attractivity. Then it follows that x̄+ is globally asymptotically stable.

This result for both loops does not seem straightforward as x̄∗ is neither a steady state of the
system controlled by umax nor of the system controlled by umin. One must keep in mind that these
types of switching systems are not classic continuous dynamical systems and that more complex
dynamical behaviors may happen. The theory of Filippov enables us to show that the convergence
arises through an “artificial” sliding mode along the hyperplane x1 = x̄∗1, due to the opposite sign
of the x1 vector-field on both sides of the switching domain [47, 25].

This theoretical control strategy has a few convenient biological properties. First, the switch be-
tween the two positive constants umin and umax may be biologically applicable with optogenetics
or with the introduction of doses of inducer molecules for example, as long as the following method
is applied: when the first gene x1 is detected highly (resp. weakly) expressed compared to its nor-
mal homeostatic conditions, its inhibition by the last gene xN must be reduced (resp. amplified).
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Figure 6.4.4: Left: Simulation of the balls and regions in dimension 2 for δ = 2: the largest ball
B+
δ is in yellow, the invariant region B+ is in green and the smallest initial conditions ball B+

ε is in
dark blue with ε ≈ 0.3. The red lines are simulations of 4 trajectories of system (6.2.1) starting at
the 4 corners of the cube B+

ε , with control umin = 0.9 and umax = 1.1. Some of the trajectories
leave the ball B+

ε but they all stay in the largest ball B+
δ . Right: with umin = 0.9 and umax = 1.1,

the conditions for the global convergence given in theorem 6.3.2 are not verified. In this case, x̄+ is
locally stable, but two other locally stable steady states, depicted by light blue stars, still exist. The
trajectories illustrated by light blue lines converge towards one of the three steady states depending
on the initial condition. For both plots, the parameters are the same as in figure 6.3.6.

Second, as long as umin and umax meet assumptions 6.3.1 for the negative loop and 6.3.2 for the
positive loop, the global convergence towards the attractive zone is still guaranteed, even if they
fluctuate over time. In other words, in the region x1 ≤ x̄∗1 (resp. x1 ≥ x̄∗1), umax (resp. umin) can
take any value and even fluctuate with time as long as the inequality is met, without changing the
global dynamics of the system, namely the global convergence towards x̄∗. Moreover, the successive
repellent regions and the attractive zone remain unchanged. If the control input is a dose of inducer
molecule for example, it means that this dose must only be bigger (resp. smaller) than the critical
value determined by the inequality in assumptions 6.3.1 and 6.3.2. This allows uncertainties and
fluctuations in the biological control input.

6.5 The PWC control inside Hill functions: an illustration
This section illustrates the idea that the previous results obtained for a qualitative control strategy
that multiply the Hill function in the uncontrolled model can be generalized for a qualitative control
strategy inside the Hill function. Indeed, the tools presented in the previous sections can also be
applied in this new context. For this reason, this section does not prove all the results in any
dimension N for both the positive and negative loop, but illustrates this new strategy with the
Toggle Switch in dimension 2 presented in chapter 2.

As presented in chapter 2, Gardner, Cantor, and Collins synthetically constructed the first Toggle
Switch in the organism Escherichia Coli [54]. This motif was composed of two genes lacI and
tetR that mutually repressed each other through the proteins LacI and TetR for which they code.
This circuit presented two stable states and an unstable state: from an undifferentiated state, cells
eventually converged towards one of the two stable states. The use of both inducer molecules IPTG
and aTc allowed switching from one to the other. Very recently, [80] achieved reversal of the decision
process: the cells were forced to converge towards the unstable steady state. This objective was
achieved by measuring and controlling both genes. The level of expression of lacI and tetR was
estimated with fluorescent microscopy techniques, by measuring levels of two fluorescent proteins:
RFP and GFP. These measurements affected microfluidics devices behaviors: the inhibition of lacI
was dynamically controlled by aTc and tetR by IPTG.
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The control of the unstable steady state of the Toggle Switch has also been analytically investigated
in [48] with an open-loop control strategy based on a PI controller and PWM technique. By a
periodic averaging method, it has been analytically proved that if the introduction period of the
inducer molecules is small compared to the time-scale of the uncontrolled Toggle Switch, then
the controlled system has a stable periodic solution contained in a neighborhood of the unstable
steady state of interest. The same authors designed later in [63] and [64] a closed-loop version of
this controlled problem in which the average model is used to tune the input features such as the
amplitude and the period.

This section will focus on the comparison between this biological control approach developed by
[80] and the qualitative control strategy inside the Hill function. As explained, in the experiment
conducted by [80], both genes lacI and tetR that compose the Toggle Switch were measured and
controlled. From a mathematical point of view, this system is always controllable and it is a lot
more challenging to control and measure only one gene. From a biological point of view, the present
work aims to reduce measurement devices by using a unique fluorescent protein (GFP) and facilitate
control implementation by introducing a unique inducer molecule (aTc).

6.5.1 The controlled Toggle Switch model
Due to the two inhibitions between lacI and tetR, the controlled Toggle Switch model is composed
of two decreasing Hill functions:{

ẋ1(x1, xN ) = κ01 + κ1h−(u(x1)x2, θ2, n2)− γ1x1,

ẋ2(xi, xi−1) = κ02 + κ2h−(x1, θ1, n1)− γ2x2,
(6.5.1)

with {
u(x1) = umin < 1 if x1 ≤ x̄+

1 ,

u(x1) = umax > 1 if x1 ≥ x̄+
1 .

(6.5.2)

This control strategy is adapted to qualitative measurements available for the first gene: if x1 is
weakly expressed (x1 ≤ x̄+

1 ) the control decreases the influence of x2 on x1, and if x1 is highly
expressed (x1 ≥ x̄+

1 ), the control increases the influence of x2 on x1. The control u(x1) appears in
the Hill function because it is considered that the control element is able to facilitate or prevent
the second protein from binding to the promoter of the first gene. This hypothesis was also made
in [80], and models appropriately the influence of aTc on the interaction between TetR and lacI.

Although the results presented in this section are valid for any parameters of (6.5.1), they will be
illustrated with a calibration of the Toggle Switch introduced in [80] in order to allow constructive
comparisons between the two control processes. With the classic hypothesis that mRNA degrades
faster than proteins, their 4-dimensional model can be reduced to (6.5.1) where x1 = LacI and x2 =
TetR. The uncontrolled Toggle Switch in [80] was obtained under reference conditions aTcref =
20ng ·ml−1 and IPTGref = 0.25mM. Thus, the calibration is obtained for a re-scaled system: ẋ1 =
κ01 +κ1h−(u1x2, θ2, n2)−γ1x1 and ẋ2 = κ02 +κ2h−(u2x1, θ1, n1)−γ2x2 where u1 = θηaTc

aTc /(θ
ηaTc
aTc +

aTcηaTc
ref ) ≈ 0.25 and u2 = θηIPTG

IPTG /(θ
ηIPTG
IPTG + IPTGηIPTG

ref ) ≈ 0.12. The parameters γ1, γ2, n1, n2,
θaTc, ηaTc, θIPTG, and ηIPTG were directly taken from their supplementary information, and the
remaining six parameters were computed in order to get the same three steady states. These values
are merged in table 6.5.1.

For the Toggle Switch, the control strategy (6.5.2) can be performed with the inducer molecule
aTc: the control condition umax > 1 (resp. umin < 1) results in increasing above (resp. reducing
below) 20ng · ml−1 the dose of aTc. As explained previously, the network was maintained near
the unstable steady state by measuring and controlling both genes with IPTG and aTc. With the
control technique (6.5.2) only one gene must be measured and controlled (see figure 6.5.1).

The next section states and proves global results about convergence and stability.
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κ01 κ1 θ2 n2 γ1 θaTc ηaTc
1.56 61.7 34.2 2 0.0165 11.65 2
κ02 κ2 θ1 n1 γ2 θIPTG ηIPTG
1.47 17.6 42.1 2 0.0165 0.0906 2

Table 6.5.1: Calibration parameters of the Toggle Switch based on [80] data.

Figure 6.5.1: Left: illustration of the control strategy performed by [80]. Right: illustration of the
aTc control strategy.

6.5.2 Global results
In this section, appropriate conditions on umin and umax are determined in order to make x̄+

globally asymptotically stable. The state space is partitioned in 52 zones called (a1a2):

Definition 6.5.1. For i ∈ {1, 2}:

• ai = 0 if xi < x̄+
i − νi,

• ai = 1 if x̄+
i − νi ≤ xi < x̄+

i ,

• ai = 2 if xi = x̄+
i ,

• ai = 3 if x̄+
i < xi ≤ x̄i + δi,

• ai = 4 if x̄+
i + δi < xi,

where:

• δ1 = (κ01 + κ1)/γ1 − x̄+
1 ,

• ν2 = x̄+
2 −

(
κ02 + κ2h−(x̄+

1 + δ1, θ1, n1)
)
/γ2,

• ν1 = x̄+
1 − κ01/γ1,

• δ2 =
(
κ02 + κ2h−(x̄+

1 − ν1, θ1, n1)
)
/γ2 − x̄+

2 .

It is easy to show that ∀ i ∈ {1, 2}, νi > 0, δi > 0, and νi < x̄+
i . Moreover, the central zone (2, 2)

is the steady state x̄+. An illustration of this partitioning is presented as a graph in figure 6.5.2.

This partitioning allows the statement of a first convergence theorem:

Theorem 6.5.1. With umin ≤ x̄+
2 /(x̄

+
2 + δ2) and umax ≥ x̄+

2 /(x̄
+
2 − ν2), system (6.5.1) under

control (6.5.2) converges globally towards x̄+.

With the properties of Hill functions, it is easy to check that umin < 1 and umax > 1. As done
in the previous sections of this chapter, the proof of this theorem is built by studying successively
repelling regions of the state space.
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Figure 6.5.2: Partitioning of the state space according to definition 6.5.1. The arrows represent
transitions between zones. Some transitions represented by the black arrows do not play any role
in lemma 6.5.1, and dashed black arrows illustrate unknown transitions. The successive repelling
regions are represented with different colors and illustrate the repelling order given in lemma 6.5.1.

Lemma 6.5.1. These specific regions are successively repelling:

1. The region a1 = 4 is repelling.

2. If the region a1 = 4 is repelling, then the region a2 = 0 is repelling as well.

3. If the region a2 = 0 is repelling, then the region a1 = 3 is repelling as well.

4. If the regions a1 = 4 and a1 = 3 are repelling, then the region a2 = 1 is repelling as well.

5. The region a1 = 0 is repelling.

6. If the region a1 = 0 is repelling, then the region a2 = 4 is repelling as well.

7. If the region a2 = 4 is repelling, then the region a1 = 1 is repelling as well.

8. If the regions a1 = 0 and a1 = 1 are repelling, then the region a2 = 3 is repelling as well.

Proof. The proof is only detailed for the first item for the sake of clarity, as the proof for all other
items follows the same idea. These eight items are illustrated in figure 6.5.3. The vector field keeps
a constant sign in each case:

1. In the region a1 = 4 the x1-vector field is ẋ1(x1, x2) = κ01 + κ1h−(umaxx2, θ2, n2) − γ1x1.
With the definition of δ1, this vector field calculated at the boundary x̄+

1 + δ1 becomes:
ẋ1(x̄+

1 +δ1, x2) = κ1[h−(umaxx2, θ2, n2)−1], leading to ẋ1(x̄+
1 +δ1, x2) ≤ 0 with the properties

of Hill functions. For x2 fixed, the linear degradation term −γ1x1 induces that ẋ1(x1, x2) <
ẋ1(x̄+

1 + δ1, x2) ≤ 0 ∀ x1 > x̄+
1 + δ1. Then the x1-vector field is strictly negative in a1 = 4.

As a1 = 4 is lower-bounded by x1 = x̄+
1 + δ1, the region is repellent.

2. Show that ẋ2(x2, x1) > 0 ∀ x1 ≤ x̄+
1 + δ1 and x2 < x̄+

2 − ν2.

3. Show that ẋ1(x1, x2) < 0 ∀ x2 ≥ x̄+
2 − ν2 and x1 > x̄+

1 .
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Figure 6.5.3: Left: Transitions properties in the (x2, x1) plane. The dark lines are the x1-nullclines.
The arrows represent vector field in the x1-direction. Right: Transitions properties in the (x1, x2)
plane. The dark line is the x2-nullclines. The arrows represent vector field in the x2-direction.

4. Show that ẋ2(x2, x1) > 0 ∀ x1 ≤ x̄+
1 and x2 < x̄+

2 .

5. Show that ẋ1(x1, x2) > 0 ∀ x2 ≥ 0 and x1 < x̄+
1 − ν1.

6. Show that ẋ2(x2, x1) < 0 ∀ x1 ≥ x̄+
1 − ν1 and x2 > x̄+

2 + δ2.

7. Show that ẋ1(x1, x2) > 0 ∀ x2 ≤ x̄+
2 + δ2 and x1 < x̄+

1 .

8. Show that ẋ2(x2, x1) < 0 ∀ x1 ≥ x̄+
1 and x2 > x̄+

2 .

This lemma allows the construction of theorem 6.5.1.

Proof. With item 1, the trajectories are restricted to region a1 6= 4. From this result, item 2 restricts
trajectories in region a1 6= 4 and a2 6= 0, followed by item 3 that restricts trajectories in region
a1 6= (3, 4) and a2 6= 0 and finally from item 4, the region shrinks to a1 6= (3, 4) and a2 6= (0, 1). In
parallel, without any conditions, with item 5 trajectories are restricted to region a1 6= (0, 3, 4) and
a2 6= (0, 1). From this result, item 6 restricts trajectories in region a1 6= (0, 3, 4) and a2 6= (0, 1, 4),
followed by item 7 that restricts trajectories in region a1 6= (0, 1, 3, 4) and a2 6= (0, 1, 4) and finally
from item 8, the region shrinks to a1 6= (0, 1, 3, 4) and a2 6= (0, 1, 3, 4). This last region is nothing
else than (a1, a2) = (2, 2), the steady state x̄+.

Finally, the trajectories globally converge towards x̄+ through a sliding mode on the line x1 = x̄+
1 .

A summary of this result is illustrated by a transition graph in figure 6.5.2.

The second main result states the stability of x̄+:

Theorem 6.5.2. With umin < 1 and umax > 1, x̄+ is Lyapunov stable.

The conditions on umin and umax given in theorem 6.5.2 are relaxed compared to the one given in
theorem 6.5.1. Indeed, as discussed in section 6.4.2, if umin is not small enough, and umax large
enough, x̄+ becomes locally stable through a sliding mode. However, x̄+

inf and x̄+
sup are still present

and stable as well, preventing global convergence towards x̄+.

As done in the previous sections, in order to verify the classic definition of Lyapunov stability,
the proof uses the construction of specific squares and rectangles: for any square of length δ > 0
centered on x̄+ defined by Bδ = {x| ||x(t)− x̄+||∞ ≤ δ}, an invariant rectangle B centered on x̄+

can be constructed such that B ⊂ Bδ. Finally this rectangle B is restricted to a square of initial
conditions of length ε > 0 called Bε = {x| ||x(t)− x̄+||∞ ≤ ε} centered on x̄+.

Initially, the length δ is restricted:
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Figure 6.5.4: Illustration of rectangle constructions for Lyapunov stability: the plain black lines are
the nullclines, the red (resp. green) dashed lines are the upper (resp. lower) boundaries of rectangle
B, that is highlighted in yellow. The yellow arrows represent vector field in the perpendicular
direction of B boundaries.

Assumption 6.5.1. ∀ i ∈ {1, 2} the length δ satisfies: δ < min
(
x̄+
i − κ0i/γi, (κ0i + κi)/γi − x̄+

i

)
.

With boundedness properties of the uncontrolled system (3.2.1) given in proposition 3.2.8, it is
possible to find such a δ > 0. From the corresponding square Bδ, the invariant rectangle B can be
constructed:

Definition 6.5.2. For a fixed δ > 0 under assumption 6.5.1, the region B is defined with:

• α2 = min (δ, x2max) and M2 = α2,

• µ1 = x̄+
1 − φ

−
2
((
γ2(x̄+

2 +M2)− κ02
)
/κ2
)

and m1 = min (δ, µ1),

• µ2 = min (δ, x2min) and m2 = µ2,

• α1 = φ−2
((
γ2(x̄+

2 −m2)− κ02
)
/κ2
)
− x̄+

1 and M1 = min (δ, α1),

where x2max = x̄+
2 /umin is the intersection between the x1-nullcline in the space x1 < x̄+

1 and the
line x1 = x̄+

1 , x2min = x̄+
2 /umax is the intersection between the x1-nullcline in the space x1 > x̄+

1
and the line x1 = x̄+

1 , and φ−2 is the inverse function of h−(x1, θ1, n1).
Then B =

{
x|x̄+

i −mi ≤ xi ≤ x̄+
i +Mi ∀ i ∈ {1, 2}

}
.

This definition is illustrated in figure 6.5.4.

It is easy to check that ∀ i ∈ {1, 2} x̄+
i < x̄+

i + Mi < (κ0i + κi)/γi, κ0i/γi < x̄+
i −mi < x̄+

i , and
B ⊂ Bδ. It is possible to prove that the rectangle B is invariant:

Lemma 6.5.2. For any initial condition x(0) ∈ B, x(t) ∈ B for any t ≥ 0.

To prove this lemma, it is shown that the vector field in the perpendicular direction of each of the
four boundaries of rectangle B points inward.

Proof. For the sake of clarity, the proof is detailed in only one boundary of the rectangle, and is
illustrated in figure 6.5.4. The proof for the three remaining boundaries follow the same ideas:
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• At the boundary x2 = x̄+
2 +M2 and x̄+

1 −m1 ≤ x1 ≤ x̄+
1 +M1: the x2-vector field at the point

(x̄+
2 +M2, x̄

+
1 − µ1) is: ẋ2(x̄+

2 +M2, x̄
+
1 − µ1) = κ02 + κ2h−(x̄+

1 − µ1, θ1, n1)− γ2(x̄+
2 +M2).

With the definition of µ1, and φ−2 , the vector field becomes ẋ2(x̄+
2 + M2, x̄

+
1 − µ1) = 0. For

x2 = x̄+
2 + M2 fixed and ∀ x1 ≥ x̄+

1 − µ1, the decreasing property of the Hill function gives
ẋ2(x̄+

2 + M2, x1) ≤ ẋ2(x̄+
2 + M2, x̄

+
1 − µ1) = 0. In particular, as m1 = min (δ, µ1) then

x̄+
1 + M1 ≥ x̄+

1 −m1 ≥ x̄+
1 − µ1. Finally ẋ2(x̄+

2 + M2, x1) ≤ 0 ∀ x1 ∈ [x̄+
1 −m1, x̄

+
1 + M1].

This inequality means that any trajectory starting in B cannot leave the rectangle through
the boundary x2 = x̄+

2 +M2.

• Show that ẋ2(x̄+
2 − m2, x1) ≥ 0 ∀ x1 ∈ [x̄+

1 − m1, x̄
+
1 + M1]. Any trajectory starting in B

cannot leave the rectangle through the boundary x2 = x̄+
2 −m2.

• Show that ẋ1(x̄+
1 + M1, x2) ≤ 0 ∀ x2 ∈ [x̄+

2 − m2, x̄
+
2 + M2]. Any trajectory starting in B

cannot leave the rectangle through the boundary x1 = x̄+
1 +M1.

• Show that ẋ1(x̄+
1 − m1, x2) ≥ 0 ∀ x2 ∈ [x̄+

2 − m2, x̄
+
2 + M2]. Any trajectory starting in B

cannot leave the rectangle through the boundary x1 = x̄+
1 −m1.

The length ε of the last square Bε is now introduced:

Definition 6.5.3. For a fixed δ > 0 under assumption 6.5.1, ε = min (min
i
mi,min

i
Mi).

Basically, the square Bε is the restriction of rectangle B to its biggest embedded square.

Remark 6.5.1. If assumption 6.5.1 is not fulfilled for a δ > 0, then as explained in the previous
section, it is sufficient to consider any square of length δ′ > 0 such that Bδ′ ⊂ Bδ and such that δ′
fulfills assumption 6.5.1.

All these lemmas, definitions and remarks allow the construction of the final proof for theorem 6.5.2

Proof. For any δ > 0, there exists an ε > 0, as stated in definition 6.5.3 and remark 6.5.1, such
that every solution x(t) having initial conditions in the square Bε remains in the rectangle B as
stated by lemma 6.5.2. As B ⊂ Bδ, the trajectories stay in Bδ for all t ≥ 0. Finally x̄+ is Lyapunov
stable.

As a conclusion, under appropriate conditions on umin and umax, the last main result of this section
can be presented:

Theorem 6.5.3. With umin ≤ x̄+
2 /(x̄

+
2 + δ2) and umax ≥ x̄+

2 /(x̄
+
2 − ν2), the steady state x̄+ of

system (6.5.1) under control (6.5.2) is globally asymptotically stable.

This last theorem is a simple corollary of theorem 6.5.1 and theorem 6.5.2.

A simulation of this control strategy applied to the calibration of the system used in [80] is presented
in figure 6.5.5. The multiplication by umax = 3 of the reference control u1 = 0.25 is equivalent to
reducing the aTc dose to 6.5ng ·ml−1. Similarly, the multiplication by umin = 0.27 of the reference
control u1 = 0.25 is equivalent to increasing the aTc dose to 42.9ng · ml−1. It can be observed
that the switch between aTc = 6.5ng ·ml−1 and aTc = 42.9ng ·ml−1 leads to a stabilization of x̄+,
as analytically predicted. This control strategy may lead to a simplification of the experimental
set-ups as it only needs one measurement system for lacI and one inducer molecule aTc. Moreover,
the global results are still valid if umin and umax vary, as long as they satisfy the conditions stated
in theorem 6.5.3. In other words, if the low dose of aTc is smaller than 6.5ng ·ml−1 (it can even
be 0) and the upper dose greater than 42.9ng ·ml−1, the convergence is guaranteed. This property
allows fluctuations in the doses of aTc.
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Figure 6.5.5: The parameters are the ones in table 6.5.1, the pink (resp. green) dashed line is
the x1 (resp. x2) nullcline of the uncontrolled system (3.2.1) with two inhibitions, the blue stars
are the stable steady states, the red star the unstable steady state, the blue lines are simulations
of the uncontrolled system with six initial conditions depicted with black dots. The red lines are
simulations of system (6.5.1) under control (6.5.2) with a switch between aTc = 6.5ng ·ml−1 and
aTc = 42.9ng ·ml−1.

6.6 A trade-off between speed of convergence and strength
of inputs

The conditions given in assumptions 6.3.1 and 6.3.2 on the control parameters umin and umax can
easily be relaxed. Indeed, these conditions were defined in order to reduce the number of successive
repulsive regions and simplify the proof of global convergence and stability theorems. However, it is
possible to observe that these simplified proofs follow the same ideas as the methodology presented
in chapter 4. Indeed, the construction of repellent regions can also be seen as the construction
of repellent hyperrectangles. The only difference is that only a few successive hyperrectangles
have been constructed due to the high constraints given on umax and umin. It follows from these
constraints and the number of hyperrectangles constructed that the convergence towards x̄∗ is
really fast, at least for the variable x1. In this section, the methodology presented in chapter 4 is
generalized to the positive feedback loop with a PWC control strategy inside a Hill function. It will
be explained that it is possible to find a maximal value of umin and a minimal value of umax such
that successive hyperrectangles can be constructed leading to a global asymptotic stability of x̄+.
However, as the number of hyperrectangles increases, the time of convergence may increase as well.
It follows that a trade-off exists between the strength of the inputs umax and umin and the time of
convergence towards x̄+. Obviously the same results can be extended to a PWC control strategy
multiplying a Hill function, and to the negative feedback loop.

The definitions and results will apply to the following controlled system:{
ẋ1(x1, xN ) = κ01 + κ1h+(u(x1)xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(6.6.1)
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where u(x1) is defined as in (6.2.2):{
u(x1) = umin ≤ 1 when x1 ≥ x̄+

1 ,

u(x1) = umax ≥ 1 when x1 ≤ x̄+
1 .

(6.6.2)

The nullclines and the functions S+
i (x) presented in definition 3.2.2 of chapter 3 can be generalized:

Definition 6.6.1. The nullclines of system (6.6.1) under control (6.6.2) becomes:{
ẋ1 = 0 ⇐⇒ x1 = H+

1u(x1, xN ),
ẋi = 0 ⇐⇒ xi = Hi(xi−1) ∀ i ∈ {2, ..., N} ,

where Hi(x) are introduced in definition 3.2.1 of chapter 3, and:
H+

1u(x1, xN ) = κ01 + κ1h+(umaxxN , θN , nN )
γ1

= H+
1max(xN ) ∀ x1 ≤ x̄+

1 ,

H+
1u(x1, xN ) = κ01 + κ1h+(uminxN , θN , nN )

γ1
= H+

1min(xN ) ∀ x1 ≥ x̄+
1 .

From these nullclines, their composition can be defined as done in chapter 4: ∀ i ∈ {1, ..., N}, if
x < x̄+

i , S+
imax(x) = Hi ◦ Hi−1 ◦ ... ◦ H+

1max ◦ HN ◦ HN−1 ◦ ... ◦ Hi+2 ◦ Hi+1(x), and if x > x̄+
i ,

S+
imin(x) = Hi ◦Hi−1 ◦ ... ◦H+

1min ◦HN ◦HN−1 ◦ ... ◦Hi+2 ◦Hi+1(x).

From these definitions it is possible to deduce the following property:

Proposition 6.6.1. If x < x̄+
i , ∂S+

imax(x)/∂umax ≥ 0 and lim
umax→+∞

S+
imax(x) > lim

x→+∞
S+
i (x) >

x̄+
i ∀ i ∈ {1, ..., N}. Similarly, if x > x̄+

i , −∂S+
imin(x)/∂umin ≤ 0 and lim

umin→0
S+
imin(x) <

lim
x→0

S+
i (x) < x̄+

i ∀ i ∈ {1, ..., N}.

This property simply means that it is possible to find umin small enough and umax big enough
such that the functions S+

imin(x) and S+
imax(x) are respectively below and above the linear function

y = x, leading to the following lemma:

Lemma 6.6.1. ∃ u+
min < 1 and u+

max > 1 such that ∀ umin < u+
min, S+

imin(x) < x ∀ x > x̄+
i and

∀ umax > u+
max, S+

imax(x) > x ∀ x < x̄+
i .

This lemma is illustrated in figure 6.6.1. From this lemma, the following assumption will be assumed
in the rest of the section:

Assumption 6.6.1. The control parameters umax and umin of (6.6.2) are chosen such that umin <
u+
min and umax > u+

max.

As done in chapter 4, bounds of the state space can be defined for the construction of hyperrect-
angles:

Definition 6.6.2. Under assumption 6.6.1:

• x+1
1max = (κ01 + κ1)/γ1,

• x+1
imax = Hi(x+1

i−1max) ∀ i ∈ {2, ..., N},

• x+1
1min = κ01/γ1,

• x+1
imin = Hi(x+1

i−1min) ∀ i ∈ {2, ..., N},

Then by induction ∀ j > 1, j ∈ N:

• x+j
1max = max

{
H+

1min(x+(j−1)
Nmax ), x̄+

1

}
,
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Figure 6.6.1: Illustration of lemma 6.6.1: for umin = u+
min and umax = u+

max, the functions
S+
imin(x) and S+

imax(x) become tangent to y = x in their domain of definition. When umin < u+
min

and umax > u+
max, S+

imin(x) becomes smaller than y = x and S+
imax(x) bigger than y = x.

• x+j
imax = Hi(x+j

i−1max) ∀ i ∈ {2, ..., N},

• x+j
1min = min

{
H+

1max(x+(j−1)
Nmin ), x̄+

1

}
,

• x+j
imin = Hi(x+j

i−1min) ∀ i ∈ {2, ..., N}.

The construction of these bounds is illustrated in figure 6.6.2. From definition 6.6.1, they can also
be defined by the following sequences:

Figure 6.6.2: These two sketches are an illustration of the construction of bounds introduced in
definition 6.6.2, the hyperrectangles introduced in definition 6.6.4, and proposition 6.6.3 under
assumption 6.6.1. The numbers from 1 to 4 explain the inductions for the construction of the
bounds defining R+

j (represented by orange rectangles), and the numbers from 5 to 8 explain
the inductions for the construction of the bounds defining R+

j+1 (represented by blue rectangles).
Again, it is possible to observe that the vector field at the borders of R+

j and R+
j+1 points inward.

Moreover, by induction, the black arrows show that any trajectory starting in R+
j arrives in R+

j+1.
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Figure 6.6.3: Left: illustration of iterations for both sequences (x+j
imax)j (in red) and (x+j

imin)j (in
green). Under assumption 6.6.1, the two sequences converge towards x̄+

i , with (x+j
imax)j decreasing

and (x+j
imin)j increasing. Right: illustration of iterations for both sequences (x+j

imax)j (in red)
and (x+j

imin)j (in green) for system (6.5.1) under control (6.5.2) where umax and umin satisfy the
conditions given in theorem 6.5.1. The two sequences converge towards x̄+

i in only one iteration.
It follows that the number of hyperrectangles (including the positive orthant and the steady state
x̄+) is 3.

Proposition 6.6.2. Under assumption 6.6.1 and for any i ∈ {1, ..., N}, the sequence (x+j
imax)j is

defined as x+j
imax = max

{
S+
imin(x+(j−1)

imax ), x̄+
i

}
with initial term x+1

imax, and the sequence (x+j
imin)j is

defined as x+j
imin = min

{
S+
imax(x+(j−1)

imin ), x̄+
i

}
with initial term x+1

imin.

From this new proposition and lemma 6.6.1, the convergence of bounds can be stated:

Lemma 6.6.2. If assumption 6.6.1 holds, then for any i ∈ {1, ..., N}:

• ∃ jimax such that ∀ j < jimax, the sequence (x+j
imax)j is monotonically decreasing, and ∀ j ≥

jimax, x+j
imax = x̄+

i .

• ∃ jimin such that ∀ j < jimin, the sequence (x+j
imin)j is monotonically increasing, and ∀ j ≥

jimin, x+j
imin = x̄+

i .

The convergence of these sequences is illustrated in the left sketch of figure 6.6.3.

From this lemma it is possible to define the minimum index j such that all the sequences become
constant:

Definition 6.6.3. Under assumption 6.6.1, j0 = max
i∈{1,...,N}

{jimax, jimin}.

This integer j0 represents the number of different successive hyperrectangles that can be constructed,
including the steady state x̄+ itself:

Definition 6.6.4. Under assumption 6.6.1, the first hyperrectangle is the positive orthant: R+
0 =

{x|xi ≥ 0 ∀ i ∈ {1, ..., N}}. Then ∀ 1 ≤ j ≤ j0, R+
j =

{
x|x+j

imin ≤ xi ≤ x
+j
imax ∀ i ∈ {1, ..., N}

}
.

From the definition of j0, it is straightforward to see that the last hyperrectangle R+
j0

is the steady
state x̄+. As already explained in chapter 4, these hyperrectangles have several good properties:
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Proposition 6.6.3. Under assumption 6.6.1, the hyperrectangles constructed in definition 6.6.4
verify the following properties:

1. ∀ 0 ≤ j ≤ j0, x̄+ ∈ R+
j ,

2. all these hyperrectangles are nested: ∀ 0 ≤ j ≤ j0 − 1, R+
j+1 ⊂ R

+
j and R+

j+1 6= R
+
j ,

3. ∀ 0 ≤ j ≤ j0, R+
j is invariant,

4. the hyperrectangles are successively repellent: ∀ 0 ≤ j ≤ j0 − 2 and for all initial condition
x0 = x(t = 0) ∈ R+

j , ∃ 0 ≤ T+
j < +∞ such that x(t) ∈ R+

j+1 ∀ t ≥ T+
j . Moreover, for any

x0 = x(t = 0) ∈ R+
j0−1, lim

t→+∞
x(t) ∈ R+

j0
.

This last proposition allows to state the final theorem:

Theorem 6.6.1. Under assumption 6.6.1, system (6.6.1) under control (6.6.2) globally converges
towards x̄+.

This theorem allows to relax the constraints of umin and umax given in the previous sections. This
reduction of constraints on the inputs leads to the construction of a larger number of hyperrectangles
for the convergence of the proof. This may induce a larger time of convergence.

For the example given in section 6.5 with the Toggle Switch, the constraints imposed on umin and
umax in theorem 6.5.1 for the global convergence lead to the construction of only 3 hyperrectangles
with the technique presented above. This is illustrated in the right sketch of figure 6.6.3.

For small values of umin and large values of umax, the speed of convergence towards x̄+ may be
increased (see figure 6.7.1 for an illustration). However, from a biological point of view, the two
constant inputs umax and umin may represent the concentration of inducer molecules or the strength
of light intensity for example, and extreme inputs may induce damages to cells or biological circuits
as already explained in chapter 5. It follows that reducing the strength of these inputs may also
be an objective. Hence, in some cases, there may exist a trade-off between a desired speed of
convergence and a safe amount of inputs for the biological system.

6.7 Conclusion
In this chapter, the control strategy has been designed in order to take into account two main
biotechnological constraints. First, the qualitative nature of the measurements: in contrast with
classical control theory, measures in biology are incomplete. Second, the qualitative nature of the
inputs: either optogenetics or classical introduction of chemicals often lead to discrete inputs. From
these two constraints, a qualitative control strategy has been shown to lead to a global convergence
towards the unstable steady state of the system. The asymptotic stability of the steady state has
also been proved, providing robustness properties to the control strategy. Despite the hybrid nature
of the system and the sliding modes generated by the control law, qualitative methodologies have
been developed to deal with this challenging problem.

Importantly this new control strategy suggests that the biological implementations presented in
[80], for which two inducer molecules and two fluorescent proteins are needed for the control of the
Toggle Switch, may be reduced to a unique measurement and a unique control for an equivalent
result.

However, due to the nature of the control suggested, as soon as x̄∗1 is not perfectly determined, the
global convergence towards x̄∗ cannot be guaranteed any more. It is more realistic to assume that
estimations in biotechnology are not perfectly accurate. The aim of next chapter is to introduce a
qualitative control strategy effective in the case of noisy measurements.
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Figure 6.7.1: Influence of umin and umax on the time of convergence of system (6.5.1) under control
(6.5.2) towards x̄+. The parameters are calibrated to the experiments presented in [80] and are the
same as in figure 6.5.5. For these parameters, u+

min and u+
max can be determined: u+

min ≈ 0.77 and
u+
max ≈ 1.18. The straight lines are the trajectories of system (6.5.1) under control (6.5.2) with

initial condition x0 = (1500, 50) and with five different pairs of inputs (umin, umax): (0.76, 1.19)
(dark blue), (0.57, 1.64) (green), (0.38, 2.09) (light blue), (0.19, 2.55) (red), (0, 3) (magenta).
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Chapter 7

Piecewise constant control strategy
with uncertain measurements

7.1 Introduction
The control approach presented in the previous chapter requires a precise measurement of the
boundary x1 = x̄∗1, which is not biologically realistic due to uncertainties in the measurements. In
addition to the qualitative nature of the measurements presented in the previous chapter, inherent
cells specificities and heterogeneities as well as limited sensitivity of measurement devices often
induce noisy information. Uncertain control laws have been already applied for control strategies
of biochemical processes. In [82] for example, this type of control law has been designed in order to
stabilize a working set point of a bioreactor and prevent washout. In this context, the aim of this
chapter is to present a qualitative control strategy effective in the case of noisy measurements, and
that considers the new synthetic control approaches and the main biological constraints presented
in the previous chapter.

The unpredictable piecewise constant control strategy leads to the analysis of a hybrid system with
autonomous switching of its dynamics (section 7.2). As for the previous chapter, the construction
of successive repelling regions allows one to determine the qualitative dynamics of this system. It is
shown that, under appropriate conditions on the control inputs, the trajectories globally converge
towards a small zone around x̄∗ (section 7.3). Finally, this control strategy is illustrated with the
synthetic Repressilator (section 7.4), the p53-Mdm2 negative feedback loop (section 7.5) and the
Toggle Switch (section 7.6).

The parts of this chapter about the negative feedback loop have been published in the journal
Automatica and the content in section 7.6 has been published for the conference DYCOPS (see the
section “List of publications” in page 5).

7.2 The controlled model
The new controlled biological feedback loop is described with the following system:{

ẋ1(x1, xN ) = κ01 + u(x1)κ1h∗(xN , θN , nN )− γ1x1

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(7.2.1)

where 
u(x1) = umin ≤ 1 ∀ x1 ≥ x̄∗1 + δ1,

u(x1) = umax ≥ 1 ∀ x1 ≤ x̄∗1 − δ1,
u(x1) ∈ {umin, umax} ∀ x1 ∈ ]x̄∗1 − δ1, x̄∗1 + δ1[.

(7.2.2)
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Figure 7.2.1: The control takes the value umin when x1 ≥ x̄∗1 + δ1, umax when x1 ≤ x̄∗1 − δ1, and is
undetermined when x̄∗1 − δ1 < x1 < x̄∗1 + δ1.

In a more compact form, this dynamical system can be denoted ẋ = F (u(x1), x).

The measurements of x1 are considered qualitative and uncertain, leading to partial knowledge
of the system. The gene can either be detected highly expressed (x1 ≥ x̄∗1) or weakly expressed
(x1 ≤ x̄∗1) and for a given measured x1, the real system may be anywhere in the range [x1−δ1, x1+δ1]
where 2δ1 ≥ 0 models fluctuations, precision and sensitivity of the measurement device [82]. As
soon as x1 is inside the uncertain domain ]x̄∗1 − δ1, x̄

∗
1 + δ1[ (also called switching domain), the

control law is undetermined and may either take the value umin or umax (see figure 7.2.1 for an
illustration). Therefore, system (7.2.1) under the unpredictable control law (7.2.2) is a differential
system with discontinuous right-hand side and its solutions are defined in the sense of Filippov as
the solutions of the following differential inclusion [47]:

ẋ ∈ H(x)

such that H(x) = F (umin, x) when x1 ≥ x̄∗1 + δ1, H(x) = F (umax, x) when x1 ≤ x̄∗1 − δ1 and

H(x) = c̄o{F (umin, x), F (umax, x)}

on the switching domain, where c̄o is the closed convex hull of the set of values of the vector field.

7.3 Global convergence
In this section it will be shown that, under appropriate conditions on the two constant inputs umin
and umax, the biological feedback loop will converge inside a small region around x̄∗. As done in
the previous chapter, this will be proved by identifying specific dynamical transitions between zones
of the state space. However, the uncertain control must be carefully treated.

7.3.1 Global convergence for the negative loop
For the negative loop, the space is partitioned as follows:

Definition 7.3.1. The N-dimensional space is partitioned in 3N zones called (a1a2...aN−1aN ) such
that ∀ i ∈ {1, ..., N}:

• ai = 0 if xi < x̄−i − νi,

• ai = 1 if x̄−i − νi ≤ xi ≤ x̄
−
i + δi,

• ai = 2 if xi > x̄−i + δi,

where ∀ i ∈ {2, ..., N}:

• ν1 = δ1,
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Figure 7.3.1: Partitioning of the state space in dimension 3 according to definition 7.3.1, and graph
of transitions. The space is split in different zones of dimension 3 all represented as nodes in
this figure. The arrows represent transitions between zones. Some transitions represented here
by the plain black arrows do not play any role in the construction of the proof of theorem 7.3.1.
Moreover, because of the condition on umax, some transitions (represented by dashed black lines)
are undetermined. The successive repelling regions stated in theorem 7.3.1 are represented with
different colors. In the end, the trajectories converge towards the red zone (111).

• δi =
(
κ0i + κih+(x̄−i−1 + δi−1, θi−1, ni−1)

)
/γi − x̄−i ,

• νi = x̄−i −
(
κ0i + κih+(x̄−i−1 − νi−1, θi−1, ni−1)

)
/γi.

An illustration of the partitioning in dimension 3 is presented in figure 7.3.1.

The following conditions on umin and umax allow the statement of four lemmas that successively
define repelling regions of the state space:

Assumption 7.3.1. With δ1 ≤ x̄−1 − κ01/γ1:
umin ≤

γ1(x̄−1 + δ1)− κ01

κ1
,

umax ≥
γ1(x̄−1 − δ1)− κ01

κ1h−(x̄−N + δN , θN , nN )
.

Lemma 7.3.1. Under assumption 7.3.1, the region defined by a1 = 2 is repellent.

Proof. It is shown that the region a1 = 2 is repellent in direction 1, namely ẋ1 < 0 in the whole
region.
For x1 > x̄−1 + δ1 the x1-vector field is defined as:
ẋ1(x1, xN ) = κ01 + uminκ1h−(xN , θN , nN ) − γ1x1. By evaluating this expression at the boundary
x1 = x̄−1 + δ1 and using assumption 7.3.1 on umin, the following inequality comes up: ẋ1(x̄−1 +
δ1, xN ) ≤

[
κ01 − γ1(x̄−1 + δ1)

] (
1− h−(xN , θN , nN )

)
. The bounded properties of system (7.2.1)

with u(x1) = 1 explained in proposition 3.2.8 give x̄−1 ∈ ]κ01/γ1, κ01 + κ1/γ1] and by definition
h−(xN , θN , nN ) ∈ ]0, 1]. This implies ẋ1(x̄−1 + δ1, xN ) ≤ 0. Moreover, for xN fixed and x1 >
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Figure 7.3.2: Left: Transitions properties in the (x1, xN ) plane. The dashed blue line is the x1-
nullcline for the region a1 = 2. The half-plain half-dashed red line is the x1-nullcline for the region
a1 = 0. The dashed style corresponds to nullclines situated in another region, and the plain style for
nullclines situated in their proper region. There are no nullclines in the region a1 = 1 as the control
is undetermined. The arrows represent vector field in x1-direction. Lemma 7.3.1 is illustrated by
blue arrows, and lemma 7.3.3 by red arrows. Right: Transitions properties in the (xi, xi+1) plane.
The black line is the xi+1-nullcline. The arrows represent vector field in xi+1-direction. Lemma
7.3.2 is illustrated by blue arrows, and lemma 7.3.4 by red arrows.

x̄−1 + δ1, the linear degradation term −γ1x1 in the x1-vector field expression gives: ẋ1(x1, xN ) <
ẋ1(x̄−1 + δ1, xN ) ≤ 0. Hence, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0 and ∀ x1 > x̄−1 + δ1. Finally, as a1 = 2 is
lower-bounded by x1 = x̄−1 + δ1, the region is repellent in direction 1.

This first lemma is illustrated in the left plot of figure 7.3.2 by the three blue arrows.

Lemma 7.3.2. For any i ∈ {1, ..., N − 1}, the region defined by ai ∈ {0, 1} ∪ ai+1 = 2 is repellent.

Proof. It is shown that for any i ∈ {1, ..., N − 1}, the region ai ∈ {0, 1} ∪ ai+1 = 2 is repellent in
direction i+ 1, namely ẋi+1 < 0 in the whole region.
By evaluating the xi+1-vector field at the boundary xi+1 = x̄−i+1 + δi+1 and using the definition of
δi+1, the following inequality comes up:
ẋi+1(x̄−i+1 + δi+1, xi) = κi+1

(
h+(xi, θi, ni)− h+(x̄−i + δi, θi, ni)

)
. Moreover, in the relevant region,

xi ≤ x̄−i + δi leading to ẋi+1(x̄−i+1 + δi+1, xi) ≤ 0 ∀ xi ≤ x̄−i + δi. For any xi+1 > x̄−i+1 +
δi+1 and xi fixed, the linear degradation term −γi+1xi+1 in the xi+1-vector field expression gives:
ẋi+1(xi+1, xi) < ẋi+1(x̄−i+1 + δi+1, xi) ≤ 0. Hence, ẋi+1(xi+1, xi) < 0 ∀ xi ≤ x̄−i + δi and ∀
xi+1 > x̄−i+1 + δi+1. Finally, as ai ∈ {0, 1} ∪ ai+1 = 2 is lower-bounded by xi+1 = x̄−i+1 + δi+1, the
region is repellent in direction i+ 1.

The two blue arrows in the right plot of figure 7.3.2 illustrate this second lemma.

Lemma 7.3.3. Under assumption 7.3.1, the region defined by aN ∈ {0, 1} ∪ a1 = 0 is repellent.

Proof. It is shown that the region aN ∈ {0, 1} ∪ a1 = 0 is repellent in direction 1, namely ẋ1 > 0 in
the whole region.
For x1 < x̄−1 −δ1 the x1-vector field is defined as: ẋ1(x1, xN ) = κ01 +umaxκ1h−(xN , θN , nN )−γ1x1.
By evaluating this expression at the boundary x1 = x̄−1 − δ1 and using assumption 7.3.1 on umax,
the following inequality comes up: ẋ1(x̄−1 − δ1, xN ) ≥

(
γ1(x̄−1 − δ1)− κ01

) [ h−(xN , θN , nN )
h−(x̄−N + δN , θN , nN )

− 1
]
.

Moreover, in the relevant region, xN ≤ x̄−N + δN , and assumption 7.3.1 gives γ1(x̄−1 − δ1) ≥ κ01,
leading to ẋ1(x̄−1 − δ1, xN ) ≥ 0 ∀ xN ≤ x̄−N + δN . For any x1 < x̄−1 − δ1 and xN fixed, the linear
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degradation term −γ1x1 in the x1-vector field expression gives: ẋ1(x1, xN ) > ẋ1(x̄−1 − δ1, xN ) ≥ 0.
Hence, ẋ1(x1, xN ) > 0 ∀ xN ≤ x̄−N + δN and ∀ x1 < x̄−1 − δ1. Finally, as a1 = 0 is upper-bounded
by x1 = x̄−1 − δ1, the region is repellent in direction 1.

The two red arrows in the left plot of figure 7.3.2 illustrate this third lemma.

Lemma 7.3.4. For any i ∈ {1, ..., N − 1}, the region defined by ai ∈ {1, 2} ∪ ai+1 = 0 is repellent.

Proof. It is shown that for any i ∈ {1, ..., N − 1}, the region ai ∈ {1, 2} ∪ ai+1 = 0 is repellent in
direction i+ 1, namely ẋi+1 > 0 in the whole region.
The argumentation follows the same structure as the proof of lemma 7.3.2 by reversing all the
inequalities and replacing all +δ by −ν, giving: ẋi+1(xi+1, xi) > 0 ∀ xi ≥ x̄−i − νi and ∀ xi+1 <
x̄−i+1− νi+1. Finally, as ai+1 = 0 is upper-bounded by xi+1 = x̄−i+1− νi+1, the region is repellent in
direction i+ 1.

This final lemma is illustrated by the two red arrows in the right plot of figure 7.3.2. These four
lemmas finally allow the statement of the main result of this section for the negative loop:

Theorem 7.3.1. If assumption 7.3.1 holds, system (7.2.1) under unpredictable control law (7.2.2)
converges globally towards the zone (a1...aN ) = (1...1) where ai = 1 ∀ i ∈ {1, ..., N}.

Proof. As a base case, lemma 7.3.1 states that any trajectory ends up in the region a1 ∈ {0, 1}
(illustrated by the orange arrows in figure 7.3.1). Through an immediate mathematical induction,
lemma 7.3.2 states that any trajectory is further contained in the region ai ∈ {0, 1} ∀ i ∈ {1, ..., N}
(illustrated by the blue arrows, followed by the brown arrows in figure 7.3.1). As a new base case
lemma 7.3.3 states that any trajectory stands in the region ai ∈ {0, 1} ∪ a1 = 1 ∀ i ∈ {2, ..., N}
(illustrated by the pink arrows in figure 7.3.1). Finally, by a second immediate mathematical
induction, lemma 7.3.4 states that any trajectory ends up in the zone ai = 1 ∀ i ∈ {1, ..., N}
(illustrated by the green arrows, followed by the purple arrow in figure 7.3.1). In other words, the
system is trapped in the zone ai = 1 ∀ i ∈ {1, ..., N}, ending the proof of global convergence for the
negative loop.

Due to the unpredictable control law in the switching domain and the borders of the defined zones,
some transitions are not unidirectional: in this case, the border of the two adjacent zones may be
crossed in both directions (dashed black arrows in figure 7.3.1). This means that some cycles may
emerge between zones (see for example the cycle 102 → 112 → 012 → 002 → 102 in figure 7.3.1).
However, these cycles are not periodic trajectories (for the latter example, the variable x3 decreases
until the trajectory leaves the brown region).

A simulation of global convergence towards the uncertain region around x̄− in dimension 3 is
illustrated in figure 7.3.3.

Remark 7.3.1. With the condition δ1 > x̄−1 − κ01/γ1, the result is the same and the proof is
straightforward. In this case, the value given to umax has no influence on the invariant zone.
Indeed, the region a1 = 0 is naturally repellent as explained in proposition 3.2.2. In other words,
umax = 1 is enough to guarantee convergence towards (1...1). This control strategy simplifies the
biological set-up as umax = 1 is equivalent to no control, inducing that the system must only be
controlled in the half space x1 ≥ x̄−1 .

7.3.2 Global convergence for the positive loop
The results presented here for the positive feedback loop are really similar to the one presented
in the previous chapter with perfect measurements. Basically all the results are the same, with
adapted notations and regions.

The partitioning of the state space is equivalent to the one presented in the previous chapter:
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Figure 7.3.3: Simulation of system (7.2.1) in dimension 3 with control umin = 0.21, umax = 1.38
and δ1 = 0.2. The trajectory for each variable is depicted with different colors (x1: red, x2: blue,
x3: green) and the initial condition is x0 = (14, 16, 17). The parameters are fixed to κ0i = 2,
κi = 8, γi = 0.5, θi = 12, ni = 7 for i ∈ {1, 2, 3}. As predicted, the trajectories converge towards
the globally attractive zone defined with δ2 = 0.46, ν2 = 0.47, δ3 = 1.05 and ν3 = 1.1 represented
by colored bands.

Definition 7.3.2. The N-dimensional space is partitioned in 4N zones. Each zone is called a =
a1a2...aN−1aN such that ∀ i ∈ {1, ..., N}:

• ai = 0 if xi < x̄+
i − ηi,

• ai = 1 if x̄+
i − ηi ≤ xi < x̄+

i − νi,

• ai = 2 if x̄+
i − νi ≤ xi ≤ x̄

+
i + δi,

• ai = 3 if xi > x̄+
i + δi,

where:

• η1 = x̄+
1 − κ01/γ1,

• ηi = x̄+
i −

(
κ0i + κih+(x̄+

i−1 − ηi−1, θi−1, ni−1)
)
/γi ∀ i ∈ {2, ..., N},

• ν1 = δ1,

• νi = x̄+
i −

(
κ0i + κih+(x̄+

i−1 − νi−1, θi−1, ni−1)
)
/γi ∀ i ∈ {2, ..., N},

• δi =
(
κ0i + κih+(x̄+

i−1 + δi−1, θi−1, ni−1)
)
/γi − x̄+

i ∀ i ∈ {2, ..., N},

An illustration of the partitioning in dimension 2 is presented in figure 7.3.4.

The following conditions on umin and umax allow the statement of six lemmas that successively
define repelling regions of the state space:
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Figure 7.3.4: Partitioning of the state space in dimension 2 according to definition 7.3.2, and graph
of transitions. The space is split in different zones of dimension 2 all represented as nodes in
this figure. The arrows represent transitions between zones. Some transitions represented here
by the plain black arrows do not play any role in the construction of the proof of theorem 7.3.2.
Moreover, because of the condition on umax, some transitions (represented by dashed black lines)
are undetermined. The successive repelling regions stated in theorem 7.3.2 are represented with
different colors. In the end, the trajectories converge towards the red zone (22).

Assumption 7.3.2. With δ1 ≤ x̄+
1 − κ01/γ1:
umin ≤

γ1(x̄+
1 + δ1)− κ01

κ1
,

umax ≥
γ1(x̄+

1 − δ1)− κ01

κ1h+(x̄+
N − ηN , θN , nN )

.

Lemma 7.3.5. Under assumption 7.3.2, the region defined by a1 = 3 is repellent.

Proof. In the region x1 > x̄+
1 + δ1 the x1-vector field is defined as:

ẋ1(x1, xN ) = κ01 + uminκ1h+(xN , θN , nN )− γ1x1. By evaluating this expression on the wall x1 =
x̄+

1 + δ1 and using the condition on umin, the following inequality comes up: ẋ1(x̄+
1 + δ1, xN ) ≤(

γ1(x̄+
1 + δ1)− κ01

) (
h+(xN , θN , nN )− 1

)
. The properties of the system explained in proposition

3.2.8 give x̄+
1 ∈ [κ01/γ1, (κ01 + κ1)/γ1[ leading to

(
γ1(x̄+

1 + δ1)− κ01
)
≥ 0 and the increasing Hill

function meets the condition h+(xN , θN , nN ) ∈ [0, 1[. This induces ẋ1(x̄+
1 , xN ) ≤ 0. Moreover, for

xN fixed and x1 > x̄+
1 + δ1, the linear degradation term −γ1x1 in the x1-vector field expression

gives: ẋ1(x1, xN ) < ẋ1(x̄+
1 + δ1, xN ) ≤ 0. Hence, ẋ1(x1, xN ) < 0 ∀ xN ≥ 0 and ∀ x1 ≥ x̄+

1 + δ1.
Finally, as a1 = 3 is lower-bounded by x1 = x̄+

1 + δ1, the region is repellent.

This first lemma is illustrated by the four dark blue arrows in the left plot of figure 7.3.5.

Lemma 7.3.6. For any i ∈ {1, ..., N − 1}, if the region defined by ai = 3 is repellent, then the
region ai+1 = 3 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄+

i+1 + δi and using the definition of x̄+
i+1 + δi+1 =

(
κ0i+1 + κi+1h+(x̄+

i + δi, θi, ni)
)
/γi+1,
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Figure 7.3.5: Left: Transitions properties in the (x1, xN ) plane. The dashed dark blue line is the
x1-nullcline for the region a1 = 3. The half-plain half-dashed light blue line is the x1-nullcline
for the regions a1 = 0 and a1 = 1. The dashed style corresponds to nullclines situated in another
region, and the plain style for nullclines situated in their proper region. The arrows represent vector
field in x1-direction. Lemma 7.3.7 is illustrated by red arrows, lemma 7.3.9 by light blue arrows
and lemma 7.3.5 by dark blue arrows. Right: Transitions properties in the (xi, xi+1) plane. The
black line is the xi+1-nullcline. The arrows represent vector field in xi+1-direction. Lemma 7.3.8 is
illustrated by red arrows, lemma 7.3.10 by light blue arrows and lemma 7.3.6 by dark blue arrows.

the equality becomes: ẋi+1(x̄+
i+1 + δi+1, xi) = κi+1

(
h+(xi, θi, ni)− h+(x̄+

i + δi, θi, ni)
)
. From the

hypothesis ai = 3 is repellent, which is equivalent to xi ≤ x̄+
i +δi. The strictly monotonous property

of the increasing Hill function induces h+(xi, θi, ni) ≤ h+(x̄+
i , θi, ni). Then ẋi+1(x̄+

i+1 +δi+1, xi) ≤ 0
∀ xi ≤ x̄+

i + δi. Moreover, for xi fixed and xi+1 > x̄+
i+1 + δi+1, the linear degradation term

−γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, xi) < ẋi+1(x̄+
i+1 + δi+1, xi) ≤ 0.

Hence, ẋi+1(xi+1, xi) < 0 ∀ xi ≤ x̄+
i + δi+1 and ∀ xi+1 > x̄+

i+1 + δi+1. Finally, as ai+1 = 3 is
lower-bounded by xi+1 = x̄+

i+1 + δi+1, if ai = 3 is repellent the region ai+1 = 3 is repellent as
well.

The three dark blue arrows in the right plot of figure 7.3.5 illustrate this second lemma.

Lemma 7.3.7. The region defined by a1 = 0 is repellent.

Proof. In the region x1 < x̄+
1 − η1 the x1-vector field is defined as:

ẋ1(x1, xN ) = κ01 + umaxκ1h+(xN , θN , nN ) − γ1x1. By evaluating this expression on the wall
x1 = x̄+

1 − η1 = κ01/γ1 the equality becomes: ẋ1(x̄+
1 − η1, xN ) = umaxκ1h+(xN , θN , nN ). As the

increasing Hill function meets the condition h+(xN , θN , nN ) ∈ [0, 1[, then ẋ1(x̄+
1 − η1, xN ) ≥ 0.

Moreover, for xN fixed and x1 < x̄+
1 − η1, the linear degradation term −γ1x1 in the x1-vector

field expression gives: ẋ1(x1, xN ) > ẋ1(x̄+
1 − η1, xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀ xN ≥ 0 and ∀

x1 < x̄+
1 − η1. Finally, as a1 = 0 is upper-bounded by x1 = x̄+

1 − η1, the region is repellent.

An illustration of this lemma is presented in the left plot of figure 7.3.5 by the four red arrows.

Lemma 7.3.8. For any i ∈ {1, ..., N − 1}, if the region defined by ai = 0 is repellent, then the
region ai+1 = 0 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄+

i+1 − ηi+1 and using the definition ηi+1, the equality becomes: ẋi+1(x̄+
i+1 − ηi+1, xi) =

κ0i+1 + κi+1h+(xi, θi, ni)− γi+1x̄
+
i+1 + γi+1ηi+1 = κi+1

(
h+(xi, θi, ni)− h+(x̄+

i − ηi, θi, ni)
)
. From

the hypothesis, ai = 0 is repellent, which is equivalent to xi ≥ x̄+
i − ηi. The strictly monotonous

property of the increasing Hill function induces h+(xi, θi, ni) ≥ h+(x̄+
i −ηi, θi, ni). Then ẋi+1(x̄+

i+1−
ηi+1, xi) ≥ 0 ∀ xi ≥ x̄+

i − ηi. Moreover, for xi+1 < x̄+
i+1 − ηi+1, the linear degradation term

−γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, xi) > ẋi+1(x̄+
i+1 − ηi+1, xi) ≥ 0.
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Hence, ẋi+1(xi+1, xi) > 0 ∀ xi+1 < x̄+
i+1 − ηi+1 and ∀ xi ≥ x̄+

i − ηi. Finally, as ai+1 = 0 is
upper-bounded by xi+1 = x̄+

i+1 − ηi+1, ai+1 = 0 is repellent within the region ai ∈ {1, 2, 3}.

This lemma is illustrated in the right plot of figure 7.3.5 by the three red arrows.

Lemma 7.3.9. Within the region ai ∈ {1, 2, 3} ∀ i ∈ {1, ..., N}, the region defined by a1 = 1 is
repellent.

Proof. In the region x̄+
1 − η1 ≤ x1 < x̄+

1 − δ1 the x1-vector field is defined as: ẋ1(x1, xN ) =
κ01 + umaxκ1h+(xN , θN , nN ) − γ1x1. With the conditions given on umax, and evaluating the
expression on the wall x1 = x̄+

1 − δ1 the equality becomes:

ẋ1(x̄+
1 − δ1, xN ) ≥ κ01 + γ1(x̄+

1 − δ1)− κ01

κ1h+(x̄+
N − ηN , θN , nN )

κ1h+(xN , θN , nN )− γ1(x̄+
1 − δ1)

=
(

h+(xN , θN , nN )
h+(x̄+

N − ηN , θN , nN )
− 1
)[

γ1(x̄+
1 − δ1)− κ01

]
.

The definition of these bounds give κ01/γ1 = x̄+
1 − η1 ≥ x̄+

1 − δ1, hence
[
γ1(x̄+

1 − δ1)− κ01
]
≥ 0.

On the other hand, aN ∈ {1, 2, 3} is equivalent to xN ≥ x̄+
N − ηN . Then with the strictly

monotonous property of the increasing Hill function: h+(xN , θN , nN ) ≥ h+(x̄+
N − ηN , θN , nN ) lead-

ing to h+(xN , θN , nN )/h+(x̄+
N − ηN , θN , nN ) ≥ 1. Therefore, ẋ1(x̄+

1 − δ1, xN ) ≥ 0 ∀ xN ≥ x̄+
N −ηN .

Moreover, for x̄+
1 − η1 ≤ x1 < x̄+

1 − δ1, the linear degradation term −γ1x1 in the x1-vector field ex-
pression gives: ẋ1(x1, xN ) > ẋ1(x̄+

1 − δ1, xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀ x̄+
1 − η1 ≤ x1 < x̄+

1 − δ1
and ∀ xN ≥ x̄+

N − ηN . Finally, as a1 = 1 is upper-bounded by x1 = x̄+
1 − δ1, a1 = 1 is repellent

within the region aN ∈ {1, 2, 3}.

This lemma is illustrated by three light blue arrows in the left plot of figure 7.3.5.

Lemma 7.3.10. For any i ∈ {1, ..., N − 1}, if the regions defined by ai = 0 and ai = 1 are repellent,
then the region ai+1 = 1 is repellent as well.

Proof. In the whole space, the xi+1-vector field is defined as:
ẋi+1(xi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1xi+1. By evaluating this expression on the wall
xi+1 = x̄+

i+1−νi+1, and using the definition of x̄+
i+1−νi+1 =

(
κ0i+1 + κi+1h+(x̄+

i − νi, θi, ni)
)
/γi+1,

the equality becomes: ẋi+1(x̄+
i+1 − νi+1, xi) = κ0i+1 + κi+1h+(xi, θi, ni) − γi+1(x̄+

i+1 − νi+1) =
κi+1(h+(xi, θi, ni) − h+(x̄+

i − νi, θi, ni)). As ai ∈ {2, 3}, xi ≥ x̄+
i − νi. Then with the strictly

monotonous property of the increasing Hill function: h+(xi, θi, ni) ≥ h+(x̄+
i − νi, θi, ni) leading to

ẋi+1(x̄+
i+1 − νi+1, xi) ≥ 0 ∀ xi ≥ x̄+

i − νi. Moreover, for xi+1 < x̄+
i+1 − νi+1, the linear degradation

term −γi+1xi+1 in the xi+1-vector field expression gives: ẋi+1(xi+1, xi) > ẋi+1(x̄+
i+1−νi+1, xi) ≥ 0.

Hence, ẋi+1(xi+1, xi) > 0 ∀ xi+1 < x̄+
i+1 − νi+1 and ∀ xi ≥ x̄+

i − νi. Finally, as ai+1 = 1 is upper-
bounded by xi+1 = x̄+

i+1 − νi+1, ai+1 = 1 is repellent within the region ai ∈ {2, 3}.

This final lemma is illustrated by the two light blue arrows in the right plot of figure 7.3.5. These
six lemmas finally allow the statement of the theorem for the positive loop:

Theorem 7.3.2. If assumption 7.3.2 holds, system (7.2.1) under unpredictable control law (7.2.2)
converges globally towards the zone (a1...aN ) = (2...2) where ai = 2 ∀ i ∈ {1, ..., N}.

Proof. As a base case, lemma 7.3.5 states that any trajectory is contained in the region a1 6= 3
(illustrated by the orange arrows in figure 7.3.4). By mathematical induction, lemma 7.3.6 states
that any trajectory is contained in the region ai 6= 3 ∀ i ∈ {1, ..., N} (illustrated by the blue arrows
in figure 7.3.4). As a new base case lemma 7.3.7 states that any trajectory stands in the region
a1 ∈ {1, 2} and ai 6= 3 ∀ i ∈ {2, ..., N} (illustrated by the brown arrows in figure 7.3.4). By a
second mathematical induction, lemma 7.3.8 states that the trajectories are further constrained
in the zone ai ∈ {1, 2} ∀ i ∈ {1, ..., N} (illustrated by the pink arrows in figure 7.3.4). As a last
base case, lemma 7.3.9 states that any trajectory stands in the region a1 = 2 and ai ∈ {1, 2}
∀ i ∈ {2, ..., N} (illustrated by the green arrows in figure 7.3.4). Finally, by a last mathematical
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Figure 7.3.6: Trajectories of system (7.2.1) under control (7.2.2) in dimension 2 with an uncertainty
range of δ1 = 1 and with parameters κ01 = 0.3, κ1 = 7, γ1 = 0.2, θ1 = 15, n1 = 4 and κ02 = 0.5,
κ2 = 5, γ2 = 0.1, θ2 = 30, n2 = 3. The two locally stable steady states x̄+

inf = (1.66, 5) and
x̄+
sup = (31, 52.4) are represented by blue stars and the locally unstable steady state x̄+ = (13.2, 23.9)

is represented by a red star. The green dashed line is the x2-nullcline and the magenta dashed
line the x1-nullcline of the uncontrolled system. The four red lines are trajectories with control
umin = 0.16, and umax = 71.4 with initial conditions x0 ∈ {(1, 1), (10, 25), (20, 40), (40, 45)}. All
the trajectories converge towards the uncertain region around x̄+ depicted by the black square and
defined by ν2 ≈ δ2 ≈ 3.52.

induction, lemma 7.3.10 states that the trajectories are further constrained in the zone ai = 2
∀ i ∈ {1, ..., N} (illustrated by the purple arrow in figure 7.3.4). In other words, all the trajectories
converge towards the attractive region (2, ..., 2) surrounding the steady state x̄+, ending the proof
of global convergence for the positive loop.

As for the negative loop, some transitions are not unidirectional (dashed black arrows in figure
7.3.4), and some transitions are not used for the proof of theorem 7.3.2 (black arrows in figure
7.3.4). A simulation of global convergence towards the uncertain region around x̄+ in dimension
2 is illustrated in figure 7.3.6. In this plot, it is possible to observe that the trajectories converge
towards the up-right corner of the uncertain region. This is due to the fact that in this simulation,
umax is really large compared to 1. It follows that the stochastic control law inside the uncertain
region is more or less equal to umax.

Remark 7.3.2. As for the negative loop, if assumption 7.3.2 does not hold, namely δ1 > x̄+
1 −

κ01/γ1, the result is the same and the proof is straightforward. In this case, the value given to umax
has no influence on the invariant zone. Indeed, the regions a1 = 0 and a1 = 1 are merged, and this
region is naturally repellent as explained in proposition 3.2.2. In other words, umax = 1 is enough
to guarantee convergence towards (2...2).

For both loops, this adapted piecewise constant control strategy can be biologically interpreted and
implemented as the one presented in chapter 6. In case of uncertain measurements, this control
approach guarantees convergence towards a region around x̄∗. This small domain is satisfactory
as strict convergence is not likely to occur in biology due to inherent and devices uncertainties.
Theoretically, the boundaries of this convergence area may be tuned as close as desired from x̄∗
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by restricting the zone of fluctuation 2δ1: indeed as δ1 converges towards zero, the region shrinks
around x̄∗. In the case of perfect measurements, namely δ1 = 0, the results of chapter 6 are recovered
and x̄∗ becomes a globally asymptotically stable steady state of this ideal system. However, the
convergence result is no longer accurate if the measure is not continuous in time or if there is a
delay between the controller and the measure. In this case, the boundaries of the convergence
region would be fuzzier and a detailed study of this situation might be an interesting extension of
the work.

7.4 A synthetic example: the Repressilator
As introduced in chapter 2, the Repressilator was synthetically designed by Michael Elowitz and
Stanislas Leibler in 2000 [40]. The aim of this work was to generate a synthetic gene regulatory
network mimicking a biological oscillator. Three genes were assembled in a negative feedback loop
as illustrated in the left sketch of figure 7.4.1.

The first protein LacI expressed by the first gene lacI represses the expression of the second gene
tetR. Its protein product TetR is in turn responsible for the inhibition of a third gene cI. Lastly,
the third resulting protein CI represses the first gene lacI. This circuit was finally implemented in
Escherichia Coli. Thanks to a Green Fluorescence Protein, sustained oscillations were measured.
As already explained in chapter 3, this loop is equivalent to the canonical negative loop (3.2.1)
provided a change of variable. In order to illustrate the control strategies presented in chapter 6
and 7, the data provided by [40] is fitted using a least squares method performed with Scilab with
the classical cost function: J(p) =

m∑
i=1

(x1(ti, p)− yi)2, where m is the number of time points, yi is

the fluorescence measurement at time ti provided by the data, and x1(ti, p) is the evaluation of the
first variable of model (3.2.1) with the vector of parameters p. For the sake of simplicity, the model
is supposed to be symmetric: the parameters κ0i, κi, θi, ni and γi are supposed to be equal for
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Figure 7.4.1: Left: The three components of the Repressilator negative feedback loop. Right: The
red star-plain line represents Repressilator data from [40]. The black plain line is a simulation of
the uncontrolled system (3.2.1) with three inhibitions, with parameters determined using a least
squares routine in Scilab with a symmetrical hypothesis: κ0i = 0.003, κi = 1.6, γi = 0.02, θi = 24.6,
ni = 9 for i ∈ {1, 2, 3}, leading to x̄− = (22, 22.7, 27.6). The green plain line is the system controlled
with umin = 0.2 and umax = 1 without uncertainties. The trajectory converges towards the globally
attractive steady state x̄−.
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Figure 7.4.2: A trajectory of the Repressilator with control umin = 0.2, umax = 1.5 and uncertainties
δ1 = 0.06. The other parameters are the same as in figure 7.4.1, with initial conditions x0 =
(17.7, 37.6, 73.5). The trajectory converges towards the attractive zone defined with δ2 = ν2 = 0.2
and δ3 = ν3 = 1.5 and represented by colored bands.

any i ∈ {1, 2, 3}. In the end, the vector of parameters p contains 5 unknowns: p = (κ0, κ, θ, n, γ).
The calibration is effectuated on the first two oscillations presented in [40] for which the undesired
increasing trend of fluorescence (possibly due to an increase of the cell population during time) is
removed by considering yi = yi − 0.07ti. The result of this calibration is shown in the right plot of
figure 7.4.1.

The two control strategies are checked with this fitted model. As expected, the first strategy without
uncertainties in the measurement induces a global convergence towards the unstable steady state
x̄−. This result is illustrated in the right plot of figure 7.4.1. The PWC strategy with uncertain
measurements satisfactorily results in the convergence of the three variables towards the expected
attractive region. This result is illustrated in figure 7.4.2. These control strategies may allow control
of the natural behavior of the synthetic Repressilator and stop its oscillations when needed.

7.5 A biological example: the p53-Mdm2 negative loop
As explained in chapter 2, the protein p53 is involved in tumor suppression, apoptosis, and DNA
repair. In healthy organisms and unstressed conditions, this protein is kept at low levels thanks
to tight homeostatic control mechanisms [21]. In various stress conditions however, such as the
presence of malignant cells or in case of DNA damages, it has been observed that the concentration
of p53 starts to oscillate [85]. These sustained oscillations have been interpreted as essential for
DNA repair or tumor suppression.

These two main dynamical behaviors have been partly explained through a negative regulation of
p53 by another protein called Mdm2. Several models have been built in order to recover these
different observations (see for example [55] for a review), and some of them, such as in [4] and [92],
also incorporate DNA damage. Among these possible models, one is similar to the uncontrolled
model (3.2.1) presented in section 3.2.2 of chapter 3 with x1 representing the concentration of p53,
x2 representing the concentration of a precursor of Mdm2, such as Mdm2 mRNA (messenger RNA),
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Figure 7.5.1: Left: The three components of the p53-Mdm2 negative feedback loop. Right: The
black star-plain line represents the p53-Mdm2 data from [55]. The green plain line is a simulation of
the uncontrolled system (3.2.1) with parameters determined using a least squares routine in Scilab
with a symmetrical hypothesis: κ0i = 0.001, κi = 0.95, γi = 0.65, θi = 0.49 and ni = 10 for
i ∈ {1, 2, 3}.

and x3 representing the concentration of the protein Mdm2. The protein p53 is known to enhance
the production of Mdm2 mRNA, itself enhancing the production of the protein Mdm2, and this
latter inhibits the production of p53 as explained previously (see the left sketch in figure 7.5.1).

Importantly, it has also been recently observed that, due to its important role in apoptosis, in-
appropriate activity of p53 with too high or too low concentrations can lead to various diseases,
such as neurodegenerative disorders characterized by a neuronal loss like Alzheimer [113], or early
embryonic lethality [21]. In this context, the control strategy explained in the previous section may
be a useful tool in order to force a disrupted p53-Mdm2 loop that exhibits extreme undesirable
values of p53 to recover healthy homeostatic conditions.

In order to illustrate the control strategy presented in section 7.3, the oscillating p53 data points
provided by [55] are fitted using a least squares method performed with Scilab with the classical cost
function: J(p) =

m∑
i=1

(x1(ti, p)− yi)2, where m is the number of time points, yi is the fluorescence

measurement at time ti provided by the data, and x1(ti, p) is the evaluation of the first variable of
model (7.2.1) with the vector of parameters p. For the sake of simplicity, the model is supposed to
be symmetric: the parameters κ0i, κi, θi, ni and γi are supposed to be equal for any i ∈ {1, 2, 3}.
In the end, the vector of parameters p contains 5 unknowns: p = (κ0, κ, θ, n, γ). A last constraint
consists in imposing n as an integer. The result of this calibration is shown in figure 7.5.1.

The four left plots of figure 7.5.2 present a simulation of this uncontrolled fitted model with sustained
oscillations. With a measurement error arbitrarily fixed to δ1 = 0.001, it is possible to observe in
the four right plots of figure 7.5.2 that the control strategy presented in this chapter induces a
global convergence towards the analytic attractive region (111) around the unstable steady state,
preventing unsafe extreme concentrations of p53. The convergence of the attractive zone towards
x̄− when δ1 → 0, as discussed in the previous section, is illustrated in figure 7.5.3. This graph can
be used in order to estimate the measurement precision needed for a desired convergence result.

However, it is possible to observe that an over-sized time step for the numerical resolution of the
ODE produces a thicker convergence band than the one predicted for the first variable (see the top
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Figure 7.5.2: For all plots, the parameters are the same as in figure 7.5.1. The trajectory for
each variable is depicted with different colors (x1: green, x2: blue, x3: red) and the black color is
dedicated to the control law u(x1). The four left plots represent a simulation of the uncontrolled
system (3.2.1) with initial conditions x0 = (0.5, 0.4, 0.47): the three variables oscillate around the
steady state x̄− = (0.45, 0.46, 0.53) and the control is fixed to 1. The four right plots represent a
simulation of system (7.2.1) with same initial conditions x0, under control law (7.2.2) with δ1 =
0.001, umin = 0.2 and umax = 2.1. As predicted, the trajectories converge towards the globally
attractive zone defined with δ2 ≈ ν2 ≈ 0.007 and δ3 ≈ ν3 ≈ 0.05 represented by colored bands. As
x1 ≥ x̄−1 +δ1 initially, the control stays constant to umin for a very short period of time. As soon as
x1 arrives in the unpredictable zone, the control starts switching stochastically between umin and
umax with the same probability.
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Figure 7.5.3: Convergence of the attractive zone when δ1 decreases from x̄−1 − κ01/γ1 to 0. The
parameters are the same as in figure 7.5.1. For each variable (x1: green, x2: blue, x3: red), the
upper bound x̄−i +δi (resp. lower bound x̄−i −νi) is depicted with inverted (resp. upright) triangles.
As explained, the convergence region shrinks around x̄− (represented by dashed lines) as δ1 tends
to zero.

third plot of figure 7.5.2). This illustrates the fact that if the controller is limited in speed or if
the measurements are slow compared to the time evolution of the system, the convergence result is
no longer accurate. In this case, the boundaries of the convergence region would be fuzzier and a
detailed study of this situation might be an interesting extension of the work.

As a remark, simulations need a probability distribution for the control in the region a1 = 1 as it may
take any of the two values umin and umax. As no a priori probability is evident about fluctuations in
the measures, the numerical results are presented here with a classical discrete uniform distribution:
the probability p(.) that the control takes the value umin is the same as the probability that the
control takes the value umax: p(umin) = p(umax) = 0.5. Another choice would have been to consider
a spatially dependent control law where the probability depends on the distances to the boundaries
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x̄−1 − δ1 and x̄−1 + δ1. For a fixed x1 in the uncertain zone, the probability p(.|x1) that the control
takes the value umin becomes p(umin|x1) = (1/(2δ1)) (x1− x̄−1 ) + 1/2, and the probability that the
control takes the value umax is defined as p(umax|x1) = 1− p(umin|x1). Another really easy choice
would have been to fix the control either to umin or umax in the whole switching domain. This
hypothesis would have led to the convergence of each variable towards one of the two boundaries
of the convergence region. However, this error measurement model is not really likely to happen.
Obviously, this probability distribution choice is only needed for a simulation purpose and does not
affect the zone of convergence determined analytically.

Finally, this strategy allows recovery of healthy homeostatic conditions, preventing unsafe extreme
concentrations of p53.

7.6 The PWC control with uncertainties inside Hill func-
tions: an illustration

Similarly to what was done in section 6.5 of chapter 6, the same results can be easily obtained
when the uncertain and qualitative control law acts inside the Hill function. In this section, this
new result is only illustrated in dimension two with the Toggle Switch.

7.6.1 The controlled Toggle Switch model
From what was presented in section 6.5 of chapter 6, the introduction of imperfect measurements
lead to the following controlled problem:{

ẋ1(x1, xN ) = κ01 + κ1h−(u(x1)x2, θ2, n2)− γ1x1,

ẋ2(xi, xi−1) = κ02 + κ2h−(x1, θ1, n1)− γ2x2,
(7.6.1)

with 
u(x1) = umin < 1 if x1 ≤ x̄+

1 − δ1,
u(x1) = umax > 1 if x1 ≥ x̄+

1 + δ1,

u(x1) ∈ {umin, umax} if x1 ∈ ]x̄+
1 − δ1, x̄

+
1 + δ1[.

(7.6.2)

In the uncertain region, the control is undetermined and may take either umin or umax without any
specific transition law or probability distribution.

7.6.2 Global results
Initially it is assumed that δ1 is small enough for simplicity:

Assumption 7.6.1. δ1 satisfies: 0 < δ1 < min
(
x̄+

1 − κ01/γ1, (κ01 + κ1)/γ1 − x̄+
1
)
.

Similarly to what was done in section 6.5 of chapter 6, under assumption 7.6.1 the space is parti-
tioned in 52 zones (a1a2):

Definition 7.6.1. For i ∈ {1, 2}:

• ai = 0 if xi < x̄+
i − ηi,

• ai = 1 if x̄i − ηi ≤ xi < x̄i − νi,

• ai = 2 if x̄i − νi ≤ xi ≤ x̄i + δi,

• ai = 3 if x̄i + δi < xi ≤ x̄i + βi,

• ai = 4 if x̄i + βi < xi,
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Figure 7.6.1: Transition properties with uncertain measurements. Left: Transitions properties in
the (x2, x1) plane. The dark lines are the x1-nullclines. The arrows represent vector field in the
x1-direction. Right: Transitions properties in the (x1, x2) plane. The dark line is the x2-nullclines.
The arrows represent vector field in the x2-direction.

where

• β1 = (κ01 + κ1)/γ1 − x̄+
1 ,

• η2 = x̄+
2 −

(
κ02 + κ2h−(x̄+

1 + β1, θ1, n1)
)
/γ2,

• η1 = x̄+
1 − κ01/γ1,

• β2 =
(
κ02 + κ2h−(x̄+

1 − η1, θ1, n1)
)
/γ2 − x̄+

2 .

• ν1 = δ1,

• ν2 = x̄+
2 −

(
κ02 + κ2h−(x̄+

1 + δ1, θ1, n1)
)
γ2,

• δ2 =
(
κ02 + κ2h−(x̄+

1 − ν1, θ1, n1)
)
/γ2 − x̄+

2 .

It is easy to check that κ01/γ1 = x̄+
1 − η1 < x̄+

1 − ν1 < x̄+
1 < x̄1 + δ1 < x̄+

1 + β1 = (κ01 + κ1)/γ1
and κ02/γ2 < x̄+

2 − η2 < x̄+
2 − ν2 < x̄+

2 < x̄2 + δ2 < x̄+
2 + β2 < (κ02 + κ2)/γ2.

This new partitioning allows the statement of a global convergence theorem:

Theorem 7.6.1. With umin ≤ x̄+
2 /(x̄

+
2 + β2) and umax ≥ x̄+

2 /(x̄
+
2 − η2), system (7.6.1) under

control law (7.6.2) converges globally towards the zone (22).

The proof of this theorem follows exactly the same ideas as the one constructed for theorem 6.5.1
in section 6.5 of chapter 6. Lemma 6.5.1 is fully valid for this new system and is illustrated in
figure 7.6.1. Its proof is slightly modified by adapting the evaluation of the vector fields in the
new regions. If δ1 does not fulfill assumption 7.6.1, results of theorem 7.6.1 are still valid: if
δ1 ≥ (κ01 + κ1)/γ1 − x̄+

1 (resp. δ1 ≥ x̄+
1 − κ01/γ1), from the natural bounds of the uncontrolled

system (3.2.1) presented in proposition 3.2.2, it is sufficient to define δ1 = β1 (resp. ν1 = η1). In
this case, the regions a1 = 3 and a2 = 1 (resp. a1 = 1 and a2 = 3) do not exist, and the proof
follows the same steps by skipping those about missing regions. The transition graph summarizing
the construction of the proof is exactly the same as the one illustrated in figure 6.5.2 in the previous
chapter.

A simulation of this control strategy under uncertain measurements applied to the calibration of the
system used in [80] is presented in figure 7.6.2. It can be observed that with an uncertainty range of
arbitrary length 2δ1 = 2×100, the switch between aTc = 6.5ng ·ml−1 and aTc = 42.9ng ·ml−1 leads
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Figure 7.6.2: The parameters are the one in table 6.5.1, the pink (resp. green) dashed line is the x1
(resp. x2) nullcline of the uncontrolled system (3.2.1), the blue stars are the stable steady states,
the red star the unstable steady state, the blue lines are simulations of the uncontrolled system
with six initial conditions depicted with black dots. The red lines are simulations of system (7.6.1)
under control (7.6.2) with a switch between aTc = 6.5ng · ml−1 and aTc = 42.9ng · ml−1, and an
uncertain range of δ1 = 100. The black square is the convergence region.

to a stabilization of the zone
{
x1 ∈ [x̄+

1 − 100, x̄+
1 + 100], x2 ∈ [x̄+

2 − 39, x̄+
2 + 52.6]

}
, as analytically

predicted. Simulations need a probability distribution for the control in the region a1 = 2 as it
may take any of the two values umin and umax. Again, as no a priori probability is evident about
fluctuations in the measurements, the numerical results are presented here with a classic discrete
uniform distribution where the probability for umin and umax is the same.

This control strategy is able to guarantee a zone of convergence around x̄+ when measurements
are not perfect. This result is satisfactory as a strict convergence towards x̄+ would not have any
importance if the measurement device was not able to detect it. Moreover, when the uncertainty
range decreases, the convergence zone (22) shrinks around x̄+.

Unfortunately, this control strategy has the disadvantage of switching relatively quickly between
umin and umax, meaning that in the biological context, the introduction and the removal of aTc
must be fast as well. However, removing an inducer molecule from a biological system is not an
easy task. To address this issue, optogenetic techniques might be a good alternative to implement
this control strategy in the context of the Toggle Switch presented in [80]. Indeed, lacI is repressed
by an homodimer of TetR and biologists have tools to create photosensitive homodimers that are
able to dissociate after being exposed to light [31]. Moreover, optogenetics is able to mimic this
on-off type approach and is known to be fast, non-invasive, and well targeted.

7.7 Conclusion
In this chapter, the control strategy was designed in order to take into account three main biotech-
nological constraints. Besides the qualitative nature of the measurements and the discrete nature
of the inputs introduced in the previous chapter, uncertainties often arise from measurements due
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to inherent stochastic properties of biological systems. From these three constraints, an uncertain
qualitative control strategy was shown to lead to a global convergence of the dynamical system
towards a small zone around the unstable steady state, by determining a sequence of successive
repelling regions.

With these types of control strategies however, as soon as the inputs are removed, the system
recovers its original behavior. A more viable strategy may be to modify intrinsically the genetic
motif by either changing, removing or adding promoters within specific genes. These strategies
are almost achievable nowadays thanks to the tools provided by synthetic biology as discussed in
chapter 2. This idea motivates the next chapter.
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Chapter 8

Design of synthetic modifications

8.1 Introduction
This chapter tries to address the following problem: is it possible to globally stabilize the unstable
state of a biological loop by only modifying intrinsically the genetic circuit ? It will be shown that
the addition of a simple synthetic self-inhibition of one gene in the loop is indeed able to solve the
problem. Compared to the strategies presented in the previous chapters, this strategy avoids the
use of any input and measurements devices. Only the synthetic redesign of the cells is needed,
which may lead to a simplification of the biological set-up.

The synthetic addition of the self-inhibition is presented in section 8.2 and is shown to globally
stabilize the unstable steady state x̄∗ of the system under tight conditions in section 8.3. For the
positive loop, these conditions are relaxed in section 8.4 when biological uncertainties are taken into
account. In this case, the undifferentiated state is defined as a small region around x̄+. Thanks
to monotone properties of the network, it is shown that the undifferentiated region is globally
attractive as soon as all the possible steady states of the synthetic circuit are confined into it.

The content of this chapter about cooperative properties of positive feedback loops has been pub-
lished for the conference FOSBE (see the section “List of publications” in page 5).

8.2 The controlled model
In the previous chapters, it has been shown that a piecewise constant control law is able to make
the unstable steady state x̄∗ of the uncontrolled system (3.2.1) globally asymptotically stable. For
biological purpose, this control law was only dependent on qualitative measurements of the first
gene x1 and acted on its own expression: when the first gene was weakly expressed (x1 < x̄∗1), the
input enhanced its production, and in the opposite sense when the first gene was highly expressed
(x1 > x̄∗1), the input inhibited its production. Inspired by these results, it seems possible to modify
intrinsically the genetic motif by adding a self-inhibition of the first gene x1 in order to stabilize
the unstable steady state. This hypothesis leads to the following new differential system:{

ẋ1(x1, xN ) = κ01 + u(x1)κ1h∗(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(8.2.1)

where

u(x1) = αh−(x1, θ, n) (8.2.2)

models the synthetic modification of the loop. Besides the natural influence of the gene xN on x1
(an activation for the positive loop and an inhibition for the negative loop), the expression of the
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Figure 8.2.1: The black arrows illustrate the classical positive feedback loop on the left and the
classical negative loop on the right. The supplementary red repression illustrates the synthetic
modified circuit.

first gene is also inhibited by its own production through the decreasing sigmoid function h−(x, θ, n)
where n ≥ 2 and θ > 0. The two sigmoid functions h∗(xN , θN , nN ) and h−(x1, θ, n) are multiplied
as it is considered that the transcription of the first gene is restricted as soon as the repressor x1
is present. Practically, this is often the case in biology when the repressor binds to the DNA and
prevents the binding of RNA Polymerase as discussed in chapter 2. The parameter α > 0 is playing
the same role as κ1: it allows tuning of the sensitivity of the interaction between xN and x1. The
graph of this new circuit is presented for both loops in figure 8.2.1.

The nullclines of this modified system are detailed in the next proposition:

Proposition 8.2.1.{
ẋ1(x1, xN ) = 0 ⇐⇒ x1 = H∗1n(xN ),
ẋ1(xi, xi−1) = 0 ⇐⇒ xi = Hi(xi−1) ∀ i ∈ {2, ..., N} ,

where Hi(x) are given in definition 3.2.1 ∀ i ∈ {2, ..., N} and are strictly monotonically increasing
functions. H−1n(x) is a strictly monotonically decreasing function, and H+

1n(x) is strictly monoton-
ically increasing.
As explained previously in other chapters, it follows that x̃ = (x̃1, x̃2, ..., x̃N ) is a steady state of
system (8.2.1) ⇐⇒ x̃ = (x̃1, H2(x̃1), H3(x̃2), ...,HN (x̃N−1)) where x̃1 is a fixed point of S∗1n(x) =
H∗1n ◦HN ◦HN−1 ◦ ... ◦H2(x).

Proof. For i ∈ {2, ..., N} the result is straightforward as the xi-nullclines are the same as for the
uncontrolled system (3.2.1). For i = 1, the x1-nullcline gives the condition h∗(xN , θN , nN ) = Hn(x1)
where:

Hn(x1) = (γ1x1 − κ01) (θn + xn1 )
κ1αθn

.

The conditions on x1 such that Hn(x1) ∈ [0, 1] are investigated. First, Hn(x1) ≥ 0⇔ x1 ≥ κ01/γ1,
and Hn(κ01/γ1) = 0. Furthermore:

∂Hn

∂x1
= γ1 (θn + xn1 ) + nxn−1

1 (γ1x1 − κ01)
κ1αθn

.

As lim
x1→+∞

Hn(x1) = +∞, for x1 ≥ κ01/γ1, ∂Hn/∂x1 > 0. Then, Hn(x1) is strictly increasing

and positive for x1 ≥ κ01/γ1. Finally, there exists x1sup > κ01/γ1 such that Hn(x1sup) = 1. The
x1-nullcline is then defined as x1 = H∗1n(xN ) = H−1

n (h∗(xN , θN , nN )) for xN ≥ 0. As Hn is a
strictly increasing function on κ01/γ1 ≤ x1 ≤ x1sup, then H+

1n is a strictly increasing function such
that H+

1n(0) = κ01/γ1 and lim
xN→+∞

H+
1n(xN ) = x1sup for the positive loop, and a strictly decreasing
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function such that H−1n(0) = x1sup and lim
xN→+∞

H−1n(xN ) = κ01/γ1 for the negative loop. Finally,
ẋ1(x1, xN ) = 0 ⇐⇒ x1 = H∗1n(xN ).

Importantly, this modified system is still a priori bounded:

Proposition 8.2.2. System (8.2.1) under synthetic modification (8.2.2) satisfies:
xi ∈ [κ0i/γi, (κ0i + κi)/γi[ ∀ i ∈ {2, ..., N}, and x1 ∈ [κ01/γ1, x1sup[ for the positive loop and
x1 ∈ ]κ01/γ1, x1sup] for the negative loop.

Proof. For i ∈ {2, ..., N} the result is straightforward as the xi-nullclines are the same as in system
(3.2.1).
From proposition 8.2.1, it is possible to check that the sign of the x1-vector field is separated by
the curve x1 = H∗1n(xN ). For xN ≥ 0 fixed, the x1-vector field can be calculated at a precise point:

ẋ1(H∗1n(xN ), xN ) = κ01 + u(H∗1n(xN ))κ1h∗(xN , θN , nN )− γ1H
∗
1n(xN )

= κ1αθ
n

θn +H∗1n(xN )n

[
h∗(xN , θN , nN )− (γ1H

∗
1n(xN )− κ01) (θn +H∗1n(xN )n)

κ1αθn

]
= κ1αθ

n

θn +H∗1n(xN )n
[
h∗(xN , θN , nN )−Hn

(
H−1
n (h∗(xN , θN , nN ))

)]
= 0.

Hence, for xN fixed and x1 > H∗1n(xN ) (resp. <), as h−(x1, θ, n) < h−(H∗1n(xN ), θ, n) (resp. >)
and −γ1x1 < −γ1H

∗
1n(xN ) (resp. >), it follows that ẋ1(x1, xN ) < ẋ1(H∗1n(xN ), xN ) = 0 (resp.

ẋ1(x1, xN ) > ẋ1(H∗1n(xN ), xN ) = 0). Finally, ẋ1(x1, xN ) > 0 (resp. < 0) ⇐⇒ x1 < H∗1n(xN )
(resp. >). In conclusion, the trajectories are bounded between the lower bound and the upper
bound of H∗1n, namely x1 ∈ [κ01/γ1, x1sup[ for the positive loop and x1 ∈ ]κ01/γ1, x1sup] for the
negative loop.

As done in chapter 4, the composition of the nullclines define functions with interesting properties:

Definition 8.2.1. S∗1n(x) = H∗1n ◦HN ◦HN−1 ◦ ... ◦H2(x) and F ∗1n(x) = S∗1n ◦ S∗1n(x). Moreover,
for the sake of simplicity, the function Z∗1n is defined such that Z+

1n = S+
1n and Z−1n = F−1n.

In the next section, the conditions on n, θ, and α are given such that x̄∗ becomes globally asymp-
totically stable.

8.3 Global asymptotic stability
Obviously, in order to stabilize the unstable steady state x̄∗ of system (3.2.1), x̄∗ must at least
be a steady state of system (8.2.1) under synthetic modification (8.2.2). This is verified with the
following constraint:

Assumption 8.3.1.
α = 1

h−(x̄∗1, θ, n)
.

This assumption leads to the following lemma:

Lemma 8.3.1. Under assumption 8.3.1 and if θ < x̄∗1, it is possible to find ñ∗ ≥ 2 such that
∀ n ≥ ñ∗, Z∗1n has a unique fixed point.

The proof of this lemma is detailed in appendix D.1.

From this lemma, the methodology that has been presented in chapter 4 can be applied, and leads
to the global stabilization of x̄∗:
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Theorem 8.3.1. Under assumption 8.3.1 and if θ < x̄∗1, it is possible to find ñ∗ ≥ 2 such that
∀ n ≥ ñ∗, x̄∗ is globally asymptotically stable.

Proof. From lemma 8.3.1, if θ < x̄∗1, it is possible to find ñ∗ ≥ 2 such that ∀ n ≥ ñ∗, Z∗1n has a
unique fixed point. By applying theorem 4.3.1 from chapter 4, it is possible to conclude that x̄∗ is
globally asymptotically stable.

This result highlights the importance of the methodology presented in chapter 4. Indeed, for three
different types of control, namely a classical control, a saturated control, and a control with a Hill
function, the same method can be applied in order to prove the global attractivity of a steady state.

For the positive loop, theorem 8.3.1 can also be proved with the theory of monotone dynamical
systems.

Proposition 8.3.1. System (8.2.1) with synthetic modification (8.2.2) is cooperative and irreducible
on RN+ .

Proof. For cooperativity, it is easy to check that ∀ i ∈ {1, ..., N}, ∂ẋi(xi, xi−1)/∂xj ≥ 0 ∀ j ∈
{1, ..., N}, j 6= i. Moreover, the Jacobian of system (8.2.1) with synthetic modification (8.2.2) is
irreducible on RN+ .

Cooperative systems are part of monotone dynamical systems and generate order preserving flows,
as explained in chapter 3. From this property, many results about asymptotic behavior and stability
have been stated [109]. Proposition 8.3.1 can be used in order to rewrite the proof of theorem 8.3.1
for the positive loop:

Proof. First, from proposition 8.3.1, system (8.2.1) with synthetic modification (8.2.2) is cooperative
on RN+ . Second, from proposition 8.2.2, every forward semi-orbit has compact closure in RN+ . Third,
from lemma 8.3.1, if θ < x̄+

1 and n ≥ ñ+, then S+
1n has x̄+

1 as a unique fixed point. Moreover, as
the fixed points of S+

1n are in a one-to-one correspondence with the steady states of system (8.2.1)
with synthetic modification (8.2.2), then x̄+ is the unique steady state. Finally, all the conditions
of theorem C stated in [72] are met: x̄+ is globally asymptotically stable.

The theorem C stated in [72] is really convenient to prove global convergence and stability for
cooperative systems. However, the controlled negative loop is not a cooperative system, and the
methodology developed in chapter 4 is really interesting in this case.

Theorem 8.3.1 finally proves that it is possible to determine θ and n such that x̄∗ becomes the
unique globally asymptotically stable steady state of system (8.2.1) with synthetic modification
(8.2.2). This result is illustrated for the negative loop in dimension 3 in figure 8.3.1 and for the
positive loop in dimension 2 in figure 8.3.2. For the positive loop, the parameters were calibrated
to the real Toggle Switch experiment presented in [80] as done in chapter 6. As predicted, all the
trajectories converge towards x̄∗. However, from assumption 8.3.1, α must be tightly fixed once
θ and n are chosen. In the next section, biological uncertainties are taken into account for the
positive loop in order to relax this constraint.

8.4 Global convergence towards an undifferentiated region
for the positive loop

As already explained in chapter 7, for biological reasons, it seems irrelevant to consider the undif-
ferentiated state as the precise steady state x̄+ of the uncontrolled system (3.2.1). Indeed, due to
inherent stochasticity in cells, biological quantities are not likely to asymptotically converge towards
steady states in a mathematical sense. Moreover, only partial knowledge of the system is available
due to qualitative measurements in biology. For all these reasons, the undifferentiated state is more
likely to be a small region around the unstable steady state x̄+. As a consequence, in this section,
the synthetic feedback will be determined in order to obtain global convergence towards a small
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Figure 8.3.1: Simulation for the negative loop in dimension 3. For both figures, κ0i = 2, κi = 8,
γi = 0.5, θi = 12, ni = 7 for i ∈ {1, 2, 3}, leading to x̄− = (12, 12, 12), and the initial condition is
x0 = (14, 16, 17). The control parameters are θ = 2, n = 20, and α ≈ 3.65×1015. Left: the blue line
is the trajectory of the uncontrolled system (3.2.1). The red line is the trajectory of system (8.2.1)
with synthetic modification (8.2.2), and x̄− is represented by a red star. Right: same simulation
with the trajectories plotted against time. The blue (resp. red) lines are the uncontrolled (resp.
controlled) trajectories.
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Figure 8.3.2: Simulation for the positive loop in dimension 2 with two inhibitions. The parameters
are calibrated so that the three steady states of the uncontrolled system (3.2.1) are the same as in
[80] for the Toggle Switch: κ01 ≈ 1.56, κ02 ≈ 1.47, κ1 ≈ 61.7, κ2 ≈ 17.6, n1 = n2 = 2, θ1 ≈ 362.7,
θ2 ≈ 134.9, γ1 = γ2 = 0.0165 leading to x̄+ = (741, 295.2). The green (resp. pink) dashed lines are
the x2 (resp x1) nullclines. The blue stars are x̄+

inf and x̄+
sup and the red star is x̄+. The six initial

conditions are depicted with black dots. The blue lines are the trajectories of the uncontrolled
system (3.2.1). The red lines are the trajectories of system (8.2.1) under synthetic modification
(8.2.2) with θ = 700, n = 3, and α ≈ 2.19.

undifferentiated region instead of x̄+. This undifferentiated region is supposed to be an hypercube
of side length δ > 0 called Bδ = {x| ||x− x̄+||∞ < δ}. Obviously, the two stable steady states
x̄+
inf and x̄+

sup of the canonical positive loop (3.2.1) must be outside Bδ. Thus, δ must satisfy the
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Figure 8.4.1: Illustration of definitions 8.4.1 and 8.4.2, and propositions 8.4.1 and 8.4.2.

following condition:

Assumption 8.4.1. δ < mini∈{1,...,N}
{
x̄+
i − x̄

+
infi

, x̄+
supi
− x̄+

i

}
.

In what follows, the three auto-inhibition parameters θ, n, and α will be determined in order to
contain all the possible steady states x̃ of the positive loop (8.2.1) with synthetic modification
(8.2.2) inside the undifferentiated region Bδ (there are possibly more than three steady states).
Under these conditions, it will be shown that the cooperative properties of the positive loop (8.2.1)
synthetically modified by (8.2.2) induce global convergence towards Bδ.

Definition 8.4.1. ∀ i ∈ {2, ..., N}, Pi is the composition of (i − 1) nullcline functions such that
Pi(x) = Hi ◦Hi−1 ◦ ... ◦H3 ◦H2(x). Their inverse functions are called P−1

i (x).

These functions are positive and strictly increasing. Their bounds are called Pi(0) = Pimin > 0 and
limx→+∞ Pi(x) = Pimax. Moreover, if x̃ is a steady state of the positive loop (8.2.1) with synthetic
modification (8.2.2), then x̃i = Pi(x̃1). Similarly, as the xi-nullclines are the same for the canonical
positive loop (3.2.1) and (8.2.1) modified by (8.2.2) ∀ i ∈ {2, ..., N}, then Pi(x̄+

inf1
) = x̄+

infi
,

Pi(x̄+
sup1

) = x̄+
supi

and Pi(x̄+
1 ) = x̄+

i (see figure 8.4.1). These functions allow the construction of
bounds of the state space, included in Bδ:

Definition 8.4.2. Under assumption 8.4.1, ∀ i ∈ {2, ..., N}, mi = x̄+
1 − P

−1
i (x̄+

i − δ) and Mi =
P−1
i (x̄+

i + δ) − x̄+
1 . From this, we define m = mini∈{2,...,N} {mi}, M = mini∈{2,...,N} {Mi}, and

ε = min {m,M, δ}.

It is possible to check that these parameters satisfy:

Proposition 8.4.1. Under assumption 8.4.1, ∀ i ∈ {2, ..., N}, mi > 0, Mi > 0, x̄+
1 −mi > x̄+

inf1
,

and x̄+
1 +Mi < x̄+

sup1
. Moreover, x̄+

1 − ε > x̄+
inf1

and x̄+
1 + ε < x̄+

sup1
.

Proof. Let i ∈ {2, ..., N}. As δ > 0, x̄+
i − δ < x̄+

i . Moreover, from definition 8.4.2 and assumption
8.4.1, Pimin < x̄+

infi
< x̄+

i − δ < x̄+
i . As P−1

i is strictly increasing, then the inequality becomes:
0 < x̄+

inf1
< P−1

i (x̄+
i − δ) < x̄+

1 , where P−1
i (Pimin) = 0, P−1

i (x̄+
infi

) = x̄+
inf1

, and P−1
i (x̄+

i ) = x̄+
1

from definition 8.4.1. Then, x̄+
1 − P

−1
i (x̄+

i − δ) = mi > 0 and x̄+
1 −mi = P−1

i (x̄+
i − δ) > x̄+

inf1
.

Finally, as x̄+
1 −mi > x̄+

inf1
∀ i ∈ {2, ..., N}, then x̄+

1 −mini∈{2,...,N} {mi} > x̄+
inf1

, that implies that
x̄+

1 −m > x̄+
inf1

. This induces that x̄+
1 −min {m,M, δ} > x̄+

inf1
, or in other words x̄+

1 − ε > x̄+
inf1

.
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The same is done for Mi: as δ > 0, x̄+
i + δ > x̄+

i . Moreover, from definition 8.4.2 and assumption
8.4.1, x̄+

i < x̄+
i + δ < x̄+

supi
< Pimax. As P−1

i is strictly increasing, then the inequality becomes:
x̄+

1 < P−1
i (x̄i + δ) < x̄+

sup1
, where P−1

i (x̄+
supi

) = x̄+
sup1

, and P−1
i (x̄+

i ) = x̄+
1 from definition 8.4.1.

Then, P−1
i (x̄+

i +δ)−x̄+
1 = Mi > 0 and x̄+

1 +Mi = P−1
i (x̄+

i +δ) < x̄+
sup1

. Finally, as x̄+
1 +Mi < x̄+

sup1

∀ i ∈ {2, ..., N}, then x̄+
1 + mini∈{2,...,N} {Mi} < x̄+

sup1
, that implies that x̄+

1 + M < x̄+
sup1

. This
induces that x̄+

1 + min {m,M, δ} < x̄+
sup1

, or in other words x̄+
1 + ε < x̄+

sup1
.

The next proposition gives conditions on the position of the possible steady states x̃ of the positive
loop (8.2.1) under synthetic modification (8.2.2).

Proposition 8.4.2. Under assumption 8.4.1, if a steady state x̃ of the positive loop (8.2.1) with
the synthetic modification (8.2.2) is such that x̄+

inf1
< x̄+

1 − ε < x̃1 < x̄+
1 + ε < x̄+

sup1
, then

x̄+
i − δ < x̃i < x̄+

i + δ ∀ i ∈ {1, ..., N}.

Proof. For i = 1, from definition 8.4.2 and the conditions of proposition 8.4.2, the result is straight-
forward x̄+

1 − δ < x̄+
1 − ε < x̃1 < x̄+

1 + ε < x̄+
1 + δ. For i ∈ {2, ..., N}, if x̃ is such that

x̄+
inf1

< x̄+
1 − ε < x̃1 < x̄+

1 + ε < x̄+
sup1

, then as Pi is positive and strictly increasing, the inequality
becomes: x̄+

infi
< Pi(x̄+

1 − ε) < x̃i < Pi(x̄+
1 + ε) < x̄+

supi
where Pi(x̄+

inf1
) = x̄+

infi
, Pi(x̃1) = x̃i,

and Pi(x̄+
sup1

) = x̄+
supi

. Moreover, from definition 8.4.2, x̄+
1 + ε ≤ x̄+

1 + Mi = P−1
i (x̄+

i + δ), then
Pi(x̄+

1 + ε) ≤ Pi
(
P−1
i (x̄+

i + δ)
)

= x̄+
i + δ. In the same way, from definition 8.4.2, x̄+

1 − ε ≥
x̄+

1 − mi = P−1
i (x̄+

i − δ), then Pi(x̄+
1 − ε) ≥ Pi

(
P−1
i (x̄+

i − δ)
)

= x̄+
i − δ. Hence, the inequality

becomes x̄+
infi

< x̄+
i − δ ≤ Pi(x̄

+
1 − ε) < x̃i < Pi(x̄+

1 + ε) ≤ x̄+
i + δ < x̄+

supi
∀ i ∈ {2, ..., N}.

These propositions are illustrated in figure 8.4.1 and allow the statement of the following lemma:

Lemma 8.4.1. Under assumption 8.4.1, if x̄+
1 − ε < θ < x̄+

1 + ε, it is possible to find ñ ≥ 2 and
α̃ > 1 such that ∀ n ≥ ñ and ∀ α ≥ α̃, all the steady states x̃ of the positive loop (8.2.1) synthetically
modified by (8.2.2) satisfy x̄+

i − δ < x̃i < x̄+
i + δ ∀ i ∈ {1, ..., N}.

Proof. The equation for the steady states x̃ of system (8.2.1) modified by (8.2.2) can reduce to
G(x̃1) = Hn(x̃1) where G(x) = h+(HN ◦HN−1 ◦ ... ◦H3 ◦H2(x), θN , nN ) and Hn(x) is defined in
the proof of proposition 8.2.1. As Hn(θ) = 2 (γ1θ − κ01) /(ακ1), then Hn(θ) does not depend on
n. Moreover, ∂Hn/∂n = ((γ1x− κ01)xn ln (x/θ)) /(ακ1θ

n). For x ≥ κ01/γ1, where the intersection
between Hn and G can occur, (γ1x− κ01)/κ1 ≥ 0. Then, ∂Hn/∂n ≥ 0 ⇔ x ≥ θ. Hence, for
x ≥ κ01/γ1 and x < θ, increasing n decreases Hn and for x > θ, increasing n increases Hn.
It is possible to show that for x > θ, limn→+∞Hn(x) = +∞. However, for κ01/γ1 < x < θ,
limn→+∞Hn(x) = (γ1x− κ01)/(ακ1). Hence, if α = 1, the conditions for the steady states of the
uncontrolled system (3.2.1) are recovered: this means that for κ01/γ1 < x < θ and n→ +∞, there is
an intersection between Hn and G at the point x̄+

inf1
. This must be prevented for a dedifferentiation

objective. Hence, α > 1 is fixed so that the limit function (γ1x− κ01)/(ακ1) becomes smaller than
G(x) for κ01/γ1 < x ≤ x̄+

1 − ε. Besides, if x̄+
1 − ε < θ < x̄+

1 + ε, then from proposition 3.2.8
and proposition 8.4.1, κ01/γ1 ≤ x̄+

inf1
< x̄+

1 − ε < θ. Once α is fixed as explained previously, it
is possible to find ñ such that Hn(x) < G(x) for κ01/γ1 < x ≤ x̄+

1 − ε and Hn(x) > G(x) for
x ≥ x̄+

1 + ε (for an illustration, see figure 8.4.2). It follows that the intersection between Hn and
G can only occur for x ∈ ]x̄+

1 − ε, x̄
+
1 + ε[. Hence, if x̄+

1 − ε < θ < x̄+
1 + ε, then any steady state x̃

of system (8.2.1) with synthetic modification (8.2.2) verifies x̄+
1 − ε < x̃1 < x̄+

1 + ε. Finally, from
proposition 8.4.2, x̄+

i − δ < x̃i < x̄+
i + δ ∀ i ∈ {1, ..., N}.

This lemma gives conditions on θ, n, and α such that all the steady states x̃ of the positive loop
(8.2.1) modified by (8.2.2) are confined inside the undifferentiated region. From this result, the
main theorem about global convergence is introduced:

Theorem 8.4.1. Under assumption 8.4.1, if x̄+
1 − ε < θ < x̄+

1 + ε, it is possible to find ñ ≥ 2 and
α̃ > 1 such that ∀ n ≥ ñ and ∀ α ≥ α̃ the undifferentiated region Bδ is globally attractive.
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Figure 8.4.2: Illustration of the proof of lemma 8.4.1 with N = 2. The parameters are the same as
in figure 8.3.2 with δ = 100 leading to ε = δ = 100. The controlled parameters are fixed to: θ ≈ 691
and α = 2 > α̃. It is possible to determine ñ = 4. The black line is G. The blue dashed lines are
different plots of Hn with different values of n ∈ {2, 3, 4, 5}. The plain green line is Hn with n = ñ.

Proof. First, from proposition 3.2.2, RN+ is positively invariant. Furthermore, from proposition
8.3.1, the positive loop (8.2.1) modified by (8.2.2) is cooperative and irreducible in RN+ . It follows
from the results in [109] or [34] that the flow is strongly monotone and there exist maximal and
minimal steady states called respectively xM and xm such that any trajectory x(t) of system
(8.2.1) with synthetic modification (8.2.2) will be trapped between these two extreme steady states:
limt→+∞ xi(t) ∈ [xmi, xMi] ∀ i ∈ {1, ..., N}. On the other hand, from lemma 8.4.1, if x̄+

1 − ε <
θ < x̄+

1 + ε, it is possible to find ñ and α̃ such that ∀ n ≥ ñ and ∀ α ≥ α̃, all the steady states x̃
of system (8.2.1) verify x̄+

i − δ < x̃i < x̄+
i + δ ∀ i ∈ {1, ..., N}. Hence, the extreme steady states

xM and xm verify x̄+
i − δ < xmi < x̄+

i + δ and x̄+
i − δ < xMi < x̄+

i + δ ∀ i ∈ {1, ..., N}. Finally,
any trajectory x(t) of system (8.2.1) with synthetic modification (8.2.2) will be trapped inside the
undifferentiated region: limt→+∞ xi(t) ∈ [x̄+

i − δ, x̄
+
i + δ] ∀ i ∈ {1, ..., N}.

This theorem is illustrated in figure 8.4.3 for the Toggle Switch experimented in [80]. As analytically
proved, it is possible to find conditions on n, θ, and α such that the undifferentiated region Bδ
becomes globally attractive. With these constraints, it is possible to observe that the new steady
state x̃ of system (8.2.1) with synthetic modification (8.2.2) is contained in Bδ and all the trajectories
converge to it. With different parameters in the canonical loop (3.2.1), it might be possible to have
multiple steady states all contained in the region Bδ. It would mean that the trajectories might
not all converge towards the same steady state inside Bδ. However, they would all converge inside
the undifferentiated region, as expected. Compared to the result presented in section 8.3, the
constraints on the parameters are relaxed: θ can be chosen anywhere in a range, and n and α
must be big enough. These constraints seem more realistic for biological applications. Moreover,
as long as the parameters meet the right conditions, the result is valid even if they fluctuate in
time. Importantly, this result is also valid if the undifferentiated region is not an hypercube: if
the region has any shape around x̄+, it is always possible to define an hypercube included in the
undifferentiated region that is globally attractive, with the same techniques as explained before.

This type of study could have been reproduced for the negative loop as well. Indeed, the same
results can be achieved by limiting the fixed points of the function F−1n(x) in a narrow region

115



0 2 000 4 0001 000 3 000

0

1 000

200

400

600

800

1 200

Figure 8.4.3: Simulation of the positive loop (8.2.1) under synthetic modification (8.2.2) with N = 2.
The parameters are the same as in figure 8.4.2. With n = 4, system (8.2.1) modified by (8.2.2) has
a unique steady state x̃ ≈ (660.2, 336.4) represented by the light blue star. The undifferentiated
region Bδ is highlighted by the black square and contains x̃. The green (resp. pink) dashed line is
the x2 (resp x1) nullcline of the modified system. The dark blue stars are x̄+

inf and x̄+
sup and the

red star is x̄+. The six initial conditions are depicted with black dots. The light blue lines are the
trajectories of system (8.2.1) synthetically modified by (8.2.2).

around x̄−1 , and by assuming that θ is in this narrow region ]x̄−1 − ε, x̄
−
1 + ε[. By doing so, it is

possible to construct a finite number of hyperrectangles as constructed in chapter 4, and show that
the trajectories globally converge inside a small region around x̄−. However, the influence of n and
α on F−1n(x) can be challenging to determine when assumption 8.3.1 is not fulfilled.

8.5 Conclusion
In this chapter, it was shown that a simple synthetic modification of a biological feedback loop in
any dimension N was able to globally stabilize the unstable state x̄∗ of the system. First, for both
the positive and negative loop, the parameters of the new synthetic self-inhibition were tightly fixed
on order to ensure that x̄∗1 was the unique fixed point of the function Z∗1n(x) in order to apply the
results presented in chapter 4. Moreover, thanks to the cooperative properties of the positive loop,
these global results could be recovered with classical theorems of monotone dynamical systems. In a
more relevant biological context, the undifferentiated state of the positive loop was then considered
as a full region of the state space. The previous conditions on the self-inhibition parameters were
relaxed in order to confine all the possible steady states of the positive loop in the undifferentiated
region. Global convergence towards this region was finally proved thanks to cooperative properties.

From a biological point of view, this strategy may be a good alternative to classical biological
control techniques as presented in [80]. Indeed, the intrinsic modification of the genetic motif
avoids the use of measurements and control devices, that often lead to tedious experiments and
generate uncertainties. Moreover, this synthetic modification is probably more adapted to inherent
specificity and heterogeneity of each cell, and is hopefully more viable in the long-term thanks to
replication machinery and cell division.
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On the other hand, this persistence property may be a drawback if the natural behavior of the
biological loop (oscillations for the negative loop and bistability for the positive loop) needs to
be recovered for any reason. In this case, it may be interesting to study the synthetic modified
circuit coupled with a classical biological control means, such as optogenetics for example, which
is able to switch on or off the modified self-inhibition. This idea will probably lead to the study of
hybrid systems, coupling piecewise constant control laws and synthetic modifications modeled by
Hill functions, and seems an interesting extension of this work.

For the negative feedback loop, this type of study can also be applied for the reverse problem:
recover sustained oscillations in a disrupted negative feedback loop that shows either homeostatic
conditions or perturbed oscillations. The parameters of the synthetic modification may be tuned
in order to fix the amplitude and the period of the clock. Chapter 9 focuses on this idea and on its
application in the context of circadian rhythm disorders.
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Chapter 9

A new problematic: the emergence
of oscillations

9.1 Introduction
Many endogenous biological clocks have been brought to light recently such as the cell cycle and the
circadian clock. This latter is essential for an organism to anticipate and adapt its behavior and its
physiology to environmental perturbations. Importantly, it has been observed that many diseases
such as cancers [76] or neurodegenerative disorders [91] can cause a disruption of the circadian
clock. Alternatively, the synthetic generation of circadian rhythms in disrupted organisms has
been proved to be effective for the slowdown of disease progression [76]. For these reasons, the
circadian clock is now considered as a promising tool for therapeutic progress, and especially for
cancer treatments. In this context, finding new strategies for the control of biological clocks seems
of really high interest.

In this chapter, two different biologically relevant control strategies are designed in order to gen-
erate sustained oscillations in a disrupted clock that shows arrhythmic behavior. In section 9.2,
the role and the disruptions of the circadian clock are summarized and give a concrete biological
motivation for this work, and a reduced model of this biological oscillator is presented in section
9.2.1. A simple synthetic modification of the network is shown to generate sustained oscillations in
section 9.3. The local results obtained with the analysis of the corresponding Routh table and the
monotone properties of the controlled system allow one to show the emergence of global periodic
orbits. In section 9.4, this modified system is proved to converge towards a switching system with
discontinuous right-hand side, strengthening the conjecture that periodic orbits may emerge with
a simple piecewise constant control strategy. To support this hypothesis, this qualitative control
method is illustrated in section 9.5 with the disrupted circadian clock observed in human melanoma
cells.

The content of this chapter has been submitted for the conference IFAC world congress 2020 (see
the section “List of publications” in page 5).

9.2 A biological motivation: the circadian clock
Circadian rhythms are present in many organisms such as plants, molds, insects and mammals.
From the macro-scale (human sleep-wake cycles, body temperature) to the micro-scale (genes,
metabolism), these 24-hour self-sustained oscillations are observed everywhere and have been shown
to be essential for the anticipation and adaption to environmental changes. In mammals, natural
dark-light cycles generate circadian rhythms in a region of the brain called the Suprachiasmatic

118



10040 60 8030 50 70 90

1

0.4

0.6

0.8

1.2

1.4

Figure 9.2.1: Left: directed graph of the reduced mammalian circadian clock model presented in
[94]. With three inhibitions, this motif is fully equivalent to the canonical network (3.2.1). Right:
calibration of model (9.2.1). The black star-plain line is the Per2 non-cycling data measured in
melanoma cells provided by [76]. The blue curve is a simulation of the model where the parameters
are calibrated with symmetrical hypothesis: κ0i = 0.18, κi = 5, θi = 0.38, ni = 4, and γi = 0.36
∀ i ∈ {1, 2, 3}. The initial condition at t0 = 24.4 is x0 = (0.81, 1.12, 1.015).

nucleus, and these oscillations are maintained in the whole organism by a group of genes referred
as “clock genes” (see [7] for a review).

It is well known that several diseases, such as sleep disorders ([79]), cancers ([52, 84, 76]) and
neurodegenerative diseases ([91]), lead to the disruption of circadian oscillations. Conversely, it has
been shown more recently that an altered rhythmicity may have several harmful consequences at the
metabolic ([112, 76]) and central nervous system level ([91, 17]). These two observations highlight
the promising role of circadian rhythms in therapeutic research, especially for cancer treatments
([52]). In [76] for example, the authors have developed a new strategy based on the circadian clock
to inhibit a tumor growth. Their experiments were based on the observation that clock genes (such
as cry1 or per2 ) show arrhythmic expression in human B16 melanoma cells, while they normally
exhibit 24-hour oscillations in healthy cells. By enhancing these disrupted genes with different
control strategies, such as heat shocks or Dexamethasone introductions, they have been able to
restore their rhythmicity, which in turn induced a strong reduction of cancer cell proliferation.

This striking example emphasizes the importance of developing strategies for the control of dis-
rupted biophysical clocks. For this purpose, next section presents a canonical model for biological
oscillators.

9.2.1 A reduced circadian clock model
Quite a few models have been developed in order to explain and reproduce the oscillatory behavior
of circadian clock genes. However, the huge number of elements and interactions involved in the
network make their mathematical analyses difficult [77]. For this reason, an effort has been made
to find reduced models composed of a minimal number of genes and interactions that accurately
reproduce the 24-hour oscillations observed biologically (see for example [33] for mammals, or [100]
for plants). In [94], a simple negative feedback loop composed of the three clock proteins Cry1, Per2
and Rev-erb-α, is shown to be essential for the emergence of periodic orbits in mammals (see the left
sketch of figure 9.2.1). With three inhibitions, this network is equivalent to the canonical negative
structure presented in section 3.2.2 of chapter 3 and can then be modeled by a generalization of
system (3.2.1):
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
ẋ1 = κ01 + κ1h−(x3, θ3, n3)− γ1x1,

ẋ2 = κ02 + κ2h−(x1, θ1, n1)− γ2x2,

ẋ3 = κ03 + κ3h−(x2, θ2, n2)− γ3x3,

(9.2.1)

where x1 = Cry1, x2 = Per2 and x3 = Rev-erb-α.

The parameters of model (9.2.1) are calibrated to the Per2 arrhythmic data points measured in
B16 melanoma cells during the experiments conducted in [76]. For the sake of simplicity, the model
is considered symmetric: the parameters κ0i, κi, θi, ni and γi are supposed to be equal for any
i ∈ {1, 2, 3}. The classical cost function J(p) =

m∑
i=1

(x2(ti, p)− yi)2 is minimized using a least

squares routine, where m is the number of time points, yi is the fluorescence measurement of Per2
at time ti provided by the data, and x2(ti, p) is the evaluation of the second variable of system
(9.2.1) with the vector of parameters p. The calibration must also assume that ni are integers. The
result is shown in the right sketch of figure 9.2.1: as observed biologically, the oscillations of protein
Per2 are damped and converge towards a steady state. This calibration confirms that model (9.2.1)
is able to capture the dynamics of a disrupted circadian clock.

In what follows, the analytical results will be illustrated with this calibrated model.

9.3 A synthetic modification of the loop
In the context of a disrupted clock as explained in section 3.5 of chapter 3, x̄− is considered stable
in the rest of this chapter such that the uncontrolled negative loop (3.2.1) generates undesired
homeostasis. In sections 9.3 and 9.4, two biologically adapted control laws are designed in order
to recover a functional biological clock that shows sustained oscillations. These strategies will be
illustrated with the circadian clock in section 9.5.

In order to obtain sustained oscillations, the desired control law must at least destabilize the steady
state x̄−. The first selected control leads to the following system:{

ẋ1(x1, xN ) = κ01 + u(xN )κ1h−(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N}
(9.3.1)

where

u(xN ) = umin + (umax − umin)h−(xN , θ, n), (9.3.2)
and

θ =
(

1− umin
umax − 1

)1/n
x̄−N , umin < 1, umax > 1. (9.3.3)

For convenience, system (9.3.1) will also be denoted ẋ = F (u(xN ), x). For purposes of biological
application and in order to facilitate the biological setups, the control law is kept as simple as
possible: it only acts on the production of the first protein x1 and only depends on the concentration
of xN . Moreover, u(xN ) stays positive and bounded as biologically required. Finally, this control
can be interpreted as a synthetic modification of the genetic network. Indeed, the genetic regulation
resulting from the multiplication of u(xN ) = umin + (umax − umin)h−(xN , θ, n) with the original
decreasing interaction function κ1h−(xN , θN , nN ) may be produced by multiple and close identical
binding sites specific to the transcription factor xN . These homotypic clusters are often present in
cis-regulatory elements [41] and lead to a really rich regulation that may allow the implementation
of control (9.3.2).

For the emergence of oscillations, the steady states of this new synthetic system are identified and
analyzed.
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Proposition 9.3.1. The steady state x̄− of the uncontrolled system (3.2.1) is also the unique steady
state of system (9.3.1) under control law (9.3.2).

Proof. From the condition (9.3.3) on θ, it is straightforward to check that u(x̄−) = 1. Therefore,
x̄− is a steady state of system (9.3.1) under control law (9.3.2). For the uniqueness, it is possible
to look at the nullclines of the system:{

ẋ1 = 0 ⇐⇒ x1 =
(
κ01 + κ1u(xN )h−(xN , θN , nN )

)
/γ1 = H1u(xN ),

ẋi = 0 ⇐⇒ xi = Hi(xi−1) ∀ i ∈ {2, ..., N} ,

where Hi(x) have been introduced in definition 3.2.1. It follows that a steady state x̃ = (x̃1, ..., x̃N )
satisfies x̃1 = H1u ◦HN ◦HN−1 ◦ ... ◦H2(x̃1) = H(x̃1). From the properties of Hill functions, Hi

are monotonically increasing functions ∀ i ∈ {2, ..., N}.
Moreover, H ′1u(xN ) = (κ1/γ1)

[
u′(xN )h−(xN , θN , nN ) + u(xN )h−′(xN , θN , nN )

]
. As u′(xN ) ≤ 0

and h−′(xN , θN , nN ) ≤ 0, H1u is a monotonically decreasing function. It follows that H is a
monotonically decreasing function, and the steady state of system (9.3.1) under control law (9.3.2)
is unique.

Remark 9.3.1. From the properties of the nullclines, it is easy to check that system (9.3.1) under
control (9.3.2) is a priori bounded: x1 ∈ ]κ01/γ1, (κ01 +umaxκ1)/γ1] and xi ∈ [κ0i/γi, (κ0i+κi)/γi[
∀ i ∈ {2, ..., N}.

The local stability of x̄− is investigated with the Jacobian matrix:

Definition 9.3.1. As already explained in section 3.2.4 of chapter 3, the Jacobian matrix of the
uncontrolled system (3.2.1) evaluated at x̄− is:

J−(x̄−) =



−γ1 0 · · · · · · · · · 0 J−1
J−2 −γ2 0 · · · · · · · · · 0
0 J−3 −γ3 0 · · · · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · · · · · · · 0 J−N −γN


where J−1 = κ1h−′(x̄−N , θN , nN ) < 0 and J−i = κih+′(x̄−i−1, θi−1, ni−1) > 0 ∀ i ∈ {2, ..., N}.

For system (9.3.1) under control (9.3.2), as u(x̄−) = 1, the Jacobian matrix evaluated at x̄− is:

J−u (x̄−) =



−γ1 0 · · · · · · · · · 0 J−1 + J−1u
J−2 −γ2 0 · · · · · · · · · 0
0 J−3 −γ3 0 · · · · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · · · · · · · 0 J−N −γN


where J−1u = κ1u′(x̄−)h−(x̄−N , θN , nN ) < 0.

Proposition 9.3.2. The characteristic polynomial associated with J−(x̄−) is:

P−(X) =
N∏
i=1

(X + γi)−
N∏
i=1

J−i ,
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while the one associated with J−u (x̄−) is:

P−u (X) = P−(X)− J−1u
N∏
i=2

J−i ,

where J−1u
∏N
i=2 J

−
i < 0.

Proof. From the proof of proposition 3.2.9 in chapter 3, it is possible to show that:

P−(X) =
N∏
i=1

(X + γi)−
N∏
i=1

J−i

As J−u (x̄−) has the same structure as J−(x̄−), then:

P−u (X) = det(XIN − J−u (x̄−)) =
N∏
i=1

(X + γi)− (J−1 + J−1u)
N∏
i=2

J−i

=
N∏
i=1

(X + γi)−
N∏
i=1

J−i − J
−
1u

N∏
i=2

J−i

= P−(X)− J−1u
N∏
i=2

J−i .

When the control parameters umin, umax, and n are fixed, the polynomial P−u (X) is shifted up with
respect to P−(X). This observation will greatly simplify the determination of the eigenvalues of
P−u (X): indeed, the addition of the positive term −J−1u

∏N
i=2 J

−
i to P−(X) provokes the propagation

of a perturbation in its Routh table, which is investigated in what follows.

From the hypothesis of a disrupted biological clock, the steady state x̄− of the uncontrolled system
(3.2.1) is supposed to be stable as explained previously. As a consequence, P−(X) has only eigen-
values with negative real part. Moreover, all the coefficients of P−(X) are positive, leading to the
following proposition:

Proposition 9.3.3. All the terms in the first column of the Routh table of P−(X) are strictly
positive.

This proposition is a classical result of control theory for localization of the roots of a characteristic
polynomial. See for example [35] for more details.

From this proposition, a first lemma can be stated:

Lemma 9.3.1. There exists Ã > 0 such that ∀ A > Ã, the first column in the Routh table of the
polynomial R(X) = P−(X) +A changes at least once in sign.

The proof of this lemma can be found in appendix E.1, and this first lemma easily induces a second
lemma:

Lemma 9.3.2. There exists ñ > 0 such that ∀ n > ñ, system (9.3.1) under control (9.3.2) has at
least two complex conjugate eigenvalues with positive real part.

Proof. From proposition 9.3.2, P−u (X) = P−(X)+A where A = −J−1u
∏N
i=2 J

−
i > 0. By developing:

122



A = −κ1u′(x̄−)h−(x̄−N , θN , nN )
N∏
i=2

J−i

= −(umax − umin)h−′(x̄−N , θ, n)κ1h−(x̄−N , θN , nN )
N∏
i=2

J−i

= (umax − umin) nθn(x̄−N )n−1

((x̄−N )n + θn)2C

where C = κ1h−(x̄−N , θN , nN )
∏N
i=2 J

−
i > 0.

From the properties of u(xN ), θ = ((1− umin) / (umax − 1))1/n
x̄−N . Hence:

A = (umax − umin)
n
(

1−umin
umax−1

)
(x̄−N )n(x̄−N )n−1(

(x̄−N )n +
(

1−umin
umax−1

)
(x̄−N )n

)2C

= (umax − umin)
n
(

1−umin
umax−1

)
(

1 +
(

1−umin
umax−1

))2
x̄−N

C

= n
(1− umin)(umax − 1)

umax − umin
C

x̄−N
.

It follows that for any Ã > 0, there exists ñ > 0 such that ∀ n > ñ, A > Ã. Hence, from lemma
9.3.1, there exists ñ > 0 such that ∀ n > ñ the first column in the Routh table of the polynomial
P−u (X) changes at least once of sign. Moreover, as P−u (X) =

∏N
i=1(X + γi)− (J−1 + J−1u)

∏N
i=2 J

−
i

with (J−1 + J−1u)
∏N
i=2 J

−
i < 0, it cannot have real positive eigenvalues. Finally from the Routh-

Hurwitz criterion, P−u (X) has at least two complex conjugate eigenvalues with positive real part as
there is at least a change of sign in the first column of its Routh table.

Importantly, this synthetically modified network is part of monotone dynamical systems as defined
in [83], for which strong global dynamical results can be inferred from these two lemmas.

Lemma 9.3.3. System (9.3.1) under control (9.3.2) is an analytic monotone negative cyclic feed-
back system as defined in [83].

Proof. With the notations of [83], system (9.3.1) under control (9.3.2) can be rewritten:

ẋi = f i(xi, xi−1), i ∈ {1, ..., N} (9.3.4)

where x0 = xN . From the expression of the vector field, it is easy to check that:

δi
∂f i(xi, xi−1)

∂xi−1
≥ 0 i ∈ {1, ..., N} ,

with δ1 = −1, δi = +1 otherwise, and the product ∆ = δ1δ2...δN verifies ∆ = −1. Moreover, the
functions f i are only composed of polynomials and rational functions that do not vanish on R+. It
follows that system (9.3.1) under control (9.3.2) is an analytic monotone negative cyclic feedback
system.

Finally, these three lemmas allow the statement of the main result of this section:

Theorem 9.3.1. There exists ñ > 0 such that ∀ n > ñ, system (9.3.1) under control (9.3.2) has
one orbitally asymptotically stable non trivial periodic orbit.
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Proof. The theorem stated below can be found in [83] as “Theorem 4.3” and consists in the core of
this proof:
“Let (9.3.4) be an analytic monotone cyclic feedback system with ∆ = −1 in RN+ which possesses a
compact attractor B ⊂ RN+. Suppose that B contains a single equilibrium x∗ and that the Jacobian
Df(x∗) satisfies ∆ det(−Df(x∗)) < 0 and has at least two eigenvalues with positive real part. Then
(9.3.4) has at least one, but no more than a finite number of nontrivial periodic orbits. Moreover,
at least one of these is orbitally asymptotically stable”.
This theorem can be applied to system (9.3.1) under control (9.3.2). First, from lemma 9.3.3, this
system is an analytic monotone cyclic feedback system with ∆ = −1 in RN+. Moreover, from
remark 9.3.1, this modified system possesses a compact attractor:
B = {x|x1 ∈ ]κ01/γ1, (κ01 + umaxκ1)/γ1], xi ∈ [κ0i/γi, (κ0i + κi)/γi[ ∀ i ∈ {2, ..., N}} ⊂ RN+.
From proposition 9.3.1, B contains a single equilibrium x̄− and −det(−J−u (x̄−)) = −P−u (0) =
−
∏N
i=1 γi+ (J−1u+J−1 )

∏N
i=2 J

−
i < 0 from proposition 9.3.2. Finally, from lemma 9.3.2, there exists

ñ > 0 such that ∀ n > ñ, system (9.3.1) under control (9.3.2) has at least two complex conjugate
eigenvalues with positive real part. Hence, from “Theorem 4.3” introduced in [83], theorem 9.3.1 is
proved.

This theorem is convenient as it mainly needs local results on the eigenvalues to deduce global
dynamics. Due to the properties of the characteristic polynomial P−u (X), the local existence of
periodic orbits could have been inferred easily through the emergence of a Hopf bifurcation, but
the monotone properties of the modified system greatly improve this result and justify the global
emergence of periodic orbits. However, theorem 9.3.1 does not state whether the limit cycle is
unique or not. This may be proved with the results presented in [99] by replacing Hill functions in
system (9.3.1) with appropriate saturated functions, and assuming restrictions on the parameters,
such as γi = γ ∀ i ∈ {1, ..., N}.

From a biological point of view, this result suggests that an appropriate synthetic modification of the
first gene promoter may be a good strategy in order to induce oscillations in a disrupted biological
clock. However, due to the tight constraints on the control parameters such as θ, this strategy may
be difficult to implement in practice. For this purpose, an extension and a generalization of this
result, more adapted for a biological application, is presented in next section.

9.4 A PWC control strategy
In order to comply with experimental measurements and inputs constraints, the switching properties
of Hill functions are exploited:

Proposition 9.4.1. For n→ +∞, control law (9.3.2) tends to the following PWC control strategy:{
u(xN ) = umax ∀ xN < x̄N ,

u(xN ) = umin ∀ xN > x̄N .
(9.4.1)

Proof. Control law (9.3.2) verifies:

u(xN ) = umin + (umax − umin) θn

θn + xnN
.

By replacing the expression of θ, the control becomes:

u(xN ) = umin + (umax − umin)

(
1−umin
umax−1

)
(x̄−N )n(

1−umin
umax−1

)
(x̄−N )n + xnN

= umin + (umax − umin) 1

1 +
(
umax−1
1−umin

)(
xN
x̄−
N

)n .
124



0 2 41 3 50.5 1.5 2.5 3.5 4.5

2

1

0.4

0.6

0.8

1.2

1.4

1.6

1.8

Figure 9.4.1: The black lines represent the smooth control law (9.3.2) with umin = 0.5, umax = 2,
and different values of n = {1, 2, 3, 5, 7, 10, 20, 40, 100}. This control tends to the PWC control
(9.4.1) depicted in red when n→ +∞.

If follows that ∀ xN < x̄−N lim
n→+∞

u(xN ) = umax, ∀ xN > x̄−N lim
n→+∞

u(xN ) = umin and for xN = x̄−N ,
u(xN ) = 1.

This property is illustrated in figure 9.4.1. System (9.3.1) under control law (9.4.1) is part of dif-
ferential systems with discontinuous right-hand side for which solutions are defined as the solutions
of the following differential inclusion [47]:

ẋ ∈ H(x)

such that H(x) = F (umax, x) when xN < x̄−N , H(x) = F (umin, x) when xN > x̄−N , and on the
switching domain xN = x̄−N , H(x) = c̄o{F (umin, x), F (umax, x)}, where c̄o is the closed convex
hull of the set of vector field. The properties of these types of systems are different from classical
smooth dynamical systems as explained in the previous sections and must be analyzed carefully
with adapted tools and theory.

Theorem 9.3.1 proves that the trajectories of system (9.3.1) under control (9.3.2) oscillate even
when the control parameter n is arbitrarily large. Hence, with n → +∞, it sounds reasonable to
infer that control (9.4.1) induces oscillations as well, leading to the following conjecture:

Conjecture 9.4.1. With umax > 1 and umin < 1, the trajectories of system (9.3.1) under control
law (9.4.1) converge towards a periodic orbit.

From a biological point of view, this PWC control strategy seems promising and adapted to dif-
ferent biological constraints as explained in chapters 6 and 7. Indeed, the measurements of xN are
considered to be of qualitative nature: xN can either be detected as weakly expressed (xN ≤ x̄N ) or
highly expressed (xN ≥ x̄N ). Moreover, the two inputs umin and umax are relevant for the nature
of the synthetic control means available in biology that often lead to constant inputs.

9.5 Application to the circadian clock
This PWC strategy is illustrated with the calibrated circadian clock model presented in section
9.2.1. Without control the trajectories globally converge towards x̄−, which is consistent with
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Figure 9.4.2: For all plots, the parameters are the same as in figure 9.2.1 and the initial condition
is x0 = (0.9, 0.91, 0.89). Without control (depicted by plain lines), the three clock genes x1 = Cry1
(in green), x2 = Per2 (in blue), and x3 = Rev-erb-α (in red) of system (9.2.1) show a constant non-
cycling expression as expected in the context of a disrupted clock: the system globally converges
towards its unique steady state x̄− = (0.91, 0.91, 0.91). With control, the trajectories are depicted
by dashed lines. Four left plots: simulation of system (9.2.1) under control (9.3.2) with n = 20,
umax = 2 and umin = 0.5. Four right plots: simulation of system (9.2.1) under control (9.4.1)
with umax = 2 and umin = 0.5. As expected from conjecture 9.4.1, the three clock genes start to
oscillate around their steady state, and the control u(xN ) switches between umax and umin as soon
as x3 = Rev-erb-α crosses its steady state value x̄−3 = 0.91.

arrhythmic behaviors observed in B16 melanoma cells. With either the Hill control law (9.3.2)
or the simple PWC control strategy (9.4.1), oscillations emerge as proved in theorem 9.3.1 and
suspected in conjecture 9.4.1. When n is large enough, the trajectories of system (9.2.1) under
control (9.3.2) (four left plots of figure 9.4.2) are numerically very similar to the ones emerging
under control (9.4.1) (four right plots of figure 9.4.2), corresponding to the following simple control
method: if the gene Rev-erb-α is detected highly expressed (resp. weakly expressed), its inhibition
on Cry1 must be decreased (resp. increased).

The influence of umin and umax on the characteristics of the oscillations, namely the amplitude and
the period, is an interesting open problem. Intuitively, as the parameter umax increases (resp. umin
decreases), the x1-nullcline is shifted up (resp. down): this may induce an increase in the maximum
value (resp. a decrease in the minimum value) of the x1-oscillations, and an increase of the period.
This prediction is illustrated in figure 9.5.1. It is interesting to note that couples of umin and umax
can be determined in order to generate 24-hour oscillations, as desired for circadian rhythms.

9.6 Conclusion
In the context of a disrupted biological clock, a simple synthetic modification of a negative feedback
loop has been formulated for the emergence of sustained oscillations. From the local instability of
the steady state, the existence of global limit cycles has been inferred with monotone properties.
In a limit case, this synthetic strategy has been shown to be equivalent to a PWC control strategy,
resulting in a differential system with discontinuous right-hand side. It has been conjectured that
this qualitative method, nicely adapted to biological constraints, is indeed able to generate sustained
oscillations in the N -dimensional disrupted negative feedback loop. This method has been shown
to be efficient in melanoma mammalian cells that exhibit arrhythmic clock genes expression.

The control strategies presented in this chapter were designed in order to stabilize specifically the
unstable steady state of the differential system, inducing tight constraints on the control parameters.
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Figure 9.5.1: Influence of the control parameters umin and umax on the amplitude and the period
of the oscillations in model (9.2.1) with control (9.4.1). For all plots, the parameters are the same
as in figure 9.2.1. On the two upper plots and the first bottom plot, it is possible to observe that
an increase of umax (resp. umin) increases (resp. decreases) the amplitude of the three variables.
On the bottom right figure, it is possible to observe that an increase of umax (resp. umin) increases
(resp. decreases) the period of the oscillations. The influence of umin seems really limited compared
to umax probably due to the fact that umax can be chosen in an unbounded range while umin ∈ [0, 1[.
Couples of umin and umax can be obtained such that the period of the oscillations reaches 24 hours
(the 24 hours level curve is depicted by the dark line).

It is important to note that these constraints may be relaxed by considering the stabilization of
other points, which may not be necessarily the steady state.

Another extension of this work may be to rigorously show that theorem 9.3.1, proved for the
synthetically modified system, applies to the differential system with discontinuous right-hand side.
Moreover, it may be interesting to demonstrate that the periodic orbit is unique, and to find
an explicit relation between the control parameters and the properties of the orbit, namely its
amplitude and its period. Due to the key roles of biological clocks in therapy, it may be really useful
to find a simple control strategy capable of independently tuning these two oscillatory properties.

Finally, this study may also apply to different types of biological clocks, such as the cell cycle for
example. Just as the circadian clock, this oscillator has been shown to be highly perturbed in the
case of various diseases (for example in many cancers) and conversely, its disruption often induces
severe damage: its control may be really promising from a therapeutic perspective.
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Chapter 10

Conclusions and perspectives

In this manuscript, different strategies have been designed for the control of two key gene regulatory
motifs, namely the negative and the positive feedback loops.

From chapter 4 to chapter 8, the main objective has consisted in globally stabilizing the unstable
steady state of both loops. From a biological point of view, this purpose sounds promising regarding
disease treatments and conception of new therapies: concerning the negative loop, such a control
objective may allow us to better understand and cure diseases induced by a dyshomeostasis, while
for the positive loop, these strategies may help in grasping and conceiving cell dedifferentiation
processes.

With this underlying biological aspiration in mind, the control strategies have been successively
improved in order to take into account more and more biological constraints and comply with
biological implementations. To reflect this progression in the manuscript, different strategies from
classical industrial to original switched control have been introduced.

First, a classical affine control strategy has been presented in chapter 4. An original and qualitative
methodology based on the construction of successive repelling and invariant hyperrectangles has
been developed for the proof of global results. In order to prevent extreme positive or negative
values possibly attained by the controller, the affine law has been saturated in chapter 5. This
saturation is essential from a biological perspective due to the nature of the inputs such as inducer
molecules, that may be harmful in high dosage and cannot take negative values by definition. This
non-trivial control problem has also been solved with the methodology developed in chapter 4,
supporting the idea that this qualitative methodology is general enough to be applied for a large
number of biological loop control problems. Finally, the partial and uncertain nature of biological
measurements have been additionally considered in chapters 6 and 7 with the simplification of the
saturated law by a partially undetermined switch-like control strategy. This qualitative feedback
only depends on discrete levels of gene expression, well adapted to measurement tools outputs such
as fluorescence microscopy, and only allows constant inputs such as doses of molecules or light
intensity. The qualitative dynamics of these resulting hybrid systems have been determined by
highlighting successive repelling regions of the state space.

These control strategies have induced different non-trivial highly non-linear dynamical systems in
high dimension, with sometimes non-continuous and switched vector field. For this reason, quali-
tative methodologies based on the construction of successive repelling regions have been developed
in chapters 4, 5, 6 and 7 in order to determine the dynamics of the resulting controlled systems. It
turns out that this qualitative nature of the analytical techniques precisely opens new perspectives.

First, all the results presented for the canonical form of biological loops (3.2.1) may easily be
extended for similar systems for which the interactions differ from Hill functions:
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{
ẋ1(x1, xN ) = κ01 + κ1f1(xN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κifi(xi−1)− γixi ∀ i ∈ {2, ..., N} .

These interaction functions fi may be of any type as long as they are bounded and monotonic.
If these two properties are satisfied, the majority of the qualitative methodologies developed in
this manuscript for the analysis of the systems dynamics hold. In particular, Michaelis-Menten or
Heaviside functions (introduced in chapter 3) may be used.

More generally, the qualitative methods for dynamics analysis may easily be applied in the following
more general context: {

ẋ1 = f1(x1, xN ),
ẋi = fi(xi, xi−1) ∀ i ∈ {2, ..., N} ,

(10.0.1)

such that the nullclines of the system satisfy:{
x1 = F1(xN ),
xi = Fi(xi−1) ∀ i ∈ {2, ..., N} ,

where the nullcline functions Fi are positive, strictly monotonic, bounded and partition the space
in two distinct regions in which the vector field has opposite sign. The function Z(x) is defined as
Z(x) = F (x) = F1 ◦ FN ◦ FN−1 ◦ ... ◦ F3 ◦ F2(x) if the number of strictly monotonically decreasing
functions among Fi(x) is even, and Z(x) = F (x) ◦ F (x) if the number of strictly monotonically
decreasing functions among Fi(x) is odd. Then, if Z(x) has a unique fixed point, system (10.0.1)
has a unique globally asymptotically stable steady state. The proof can be constructed in the same
way as in chapter 4, with nested balls that are invariant and successively repellent. Obviously, this
is a sufficient condition only. If Z(x) does not have a unique fixed point, the global convergence may
still happen. However, if system (10.0.1) does not present global convergence, then Z(x) has more
than a unique fixed point. Interestingly, this methodology obtains similar results to cooperative
dynamical systems, introduced in chapter 3. Indeed, for these monotone systems, it has been proved
under appropriate boundedness properties that if the system has a unique steady state, then it is
globally asymptotically stable [72]. In chapter 4, the same theorem has been established for the
following non-cooperative dynamical system with monotonic nullclines:{

ẋ1(x1, xN ) = κ01 + (1− α(x1 − x̄+
1 ))κ1h+(xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} .

Similarly, the qualitative methodologies may be applied to more general networks that may not be
loops. In general, these systems may be of the form:

ẋi = fi(x1, x2, ..., xN ) ∀ i ∈ {1, ..., N} . (10.0.2)

If for example the nullcline functions can be written in the form:

xi = Fi(x1, x2, ..., xi−1, xi+1, ..., xN ) ∀ i ∈ {1, ..., N} , (10.0.3)

where the functions Fi are monotonic with respect to all the variables, then successive repelling
regions may be constructed (see figure 10.0.1 for an example in dimension 3 of a generalized positive
circuit). As an illustration, the following system in dimension 3 satisfies these properties:

ẋ1 = κ01 + κ1h+(x3, θ3, n3)− γ1x1,

ẋ2 = κ02 + κ2h+(x1, θ1, n1)− γ2x2,

ẋ3 = κ03 + κ3h+(x1, θ1, n1)h+(x2, θ2, n2)− γ3x3.

(10.0.4)
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Figure 10.0.1: Nullcline surfaces F1(x2, x3) (left), F2(x1, x3) (middle) and F3(x1, x2) (right) for the
generalized system (10.0.2) in dimension 3 for which nullclines satisfy (10.0.3). From the monotonic
and boundedness properties of the three surfaces, it is possible to define decreasing sequences (in
black) and increasing sequences (in white) for the construction of repulsive regions.

This system does not have a positive ring pattern as the production of the last protein x3 is activated
by both the first and the second genes (see the left sketch in figure 10.0.2). However, this system
has monotonically increasing nullclines and hence successive repelling regions may be constructed.
As for the canonical positive loop, system (10.0.4) can have several steady states, and a control
strategy may be designed for the stabilization of one of its unstable steady state x̄+. In the right
sketch of figure 10.0.2, the following controlled system

ẋ1 = κ01 + u(x1)κ1h+(x3, θ3, n3)− γ1x1,

ẋ2 = κ02 + κ2h+(x1, θ1, n1)− γ2x2,

ẋ3 = κ03 + κ3h+(x1, θ1, n1)h+(x2, θ2, n2)− γ3x3,

(10.0.5)

under affine control law
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Figure 10.0.2: Left: Interaction network of the generalized motif (10.0.4). Right: Simulation of
system (10.0.4) (blue lines) and system (10.0.5) under control (10.0.6) (red lines) with κ0i = 3,
κi = 7, ni = 10, θi = 5, γi = 1 ∀ i ∈ {1, 2, 3} and α = 50. Without control, system (10.0.4) has
three steady states, two stable x̄+

inf = (3.04, 3.04, 3) and x̄+
sup = (9.99, 9.99, 9.98) depicted by blue

stars and one unstable x̄+ = (4.65, 5.28, 4.44) depicted by the red star. With control (10.0.6), the
trajectories globally converge towards x̄+.
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u(x1) = 1− α(x1 − x̄+
1 ), (10.0.6)

converges globally towards the unstable steady state if α is large enough. For the proof of global
convergence, it may be shown that the unstable steady state x̄+ becomes the unique steady state
under appropriate conditions on the control inputs. Hence, it may be possible to construct regions
whose bounds are defined by monotonic sequences that converge towards x̄+. However, in this case,
the monotonic sequences are defined through the multi-variable function:

(x1, x2, x3)→ (F1(x3), F2(x1), F3(x1, x2)) ,

where Fi are the nullclines. In this case, their convergence properties may be harder to determine.

These generalizations also allow one to include different biological control types. Indeed, this
manuscript has only focused on strategies for the control of production rates, but it is easy to imagine
that other parameters may be controlled as discussed in chapter 2. For example, some techniques
have been developed for the control of protein degradation rates [117]. All these techniques often
use a portion of a protein called a degron, that is involved in the regulation of protein degradation
rates, and control it whether by heat shocks, inducer molecules or even optogenetics. The results
developed in this manuscript may be easily generalized in this new context. As an illustration, the
degradation rate of the first protein in a negative loop of dimension 3 may be controlled by a PWC
control strategy for the global stabilization of its unique steady state x̄−, leading to the following
system: 

ẋ1 = κ01 + κ1h−(x3, θ3, n3)− u(x1)γ1x1,

ẋ2 = κ02 + κ2h+(x1, θ1, n1)− γ2x2,

ẋ3 = κ03 + κ3h+(x2, θ2, n2)− γ3x3,

(10.0.7)

under control {
u(x1) = umax when x1 ≥ x̄−1 ,
u(x1) = umin when x1 ≤ x̄−1 .

(10.0.8)

With the qualitative techniques developed, it is easy to demonstrate that if umax is large enough
and umin small enough, then the system globally converges towards x̄−1 . This result is illustrated
in figure 10.0.3.

Importantly, the qualitative nature of the methodologies developed also allows one to include a
form of stochastic variations in the dynamical system. In chapter 7, the uncertainties emerging
from measurement techniques in biology have been taken into account by defining zones in the
state space in which the control input is uncertain. Similarly, it seems reasonable to consider that
the dynamical system modeling the behavior of the biological loop is not perfectly known and may
even vary with time, due to inherent stochasticities found in biological systems. To take this into
account, one classical method may be to study stochastic differential equations. However, it may
also be interesting to consider that some of the parameters that describe the ordinary differential
system are partially known and may even vary with time, by defining ranges of uncertainties for
each of them. This assumption may lead to the following framework:{

ẋ1(x1, xN ) = κ01(t) + κ1(t)h∗ (xN , θN (t), nN (t))− γ1(t)x1,

ẋi(xi, xi−1) = κ0i(t) + κi(t)h+ (xi−1, θi−1(t), ni−1(t))− γi(t)xi ∀ i ∈ {2, ..., N} ,

such that pi(t) ∈ [p̄i − εpi , p̄i + εpi ] ∀ i ∈ {1, ..., N} where pi stands for any parameter in the
loop: κ0i, κi, θi, ni or γi. Basically, each parameter pi is considered to vary in a range of length
2εpi . These types of uncertain models have been already used for biological systems [61] and may
be studied with the theory of interval analysis [70]. This new framework may also validate the
methodologies that have been developed and the results that have been stated in this manuscript
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Figure 10.0.3: Simulation of an uncontrolled negative loop (in blue) and system (10.0.7) under
control (10.0.8) (in red) with parameters: κ0i = 0.001, κi = 0.95, ni = 10, γi = 0.65, θi = 0.49
∀ i ∈ {1, 2, 3}, umax = 2 and umin = 0.3. As expected, the controlled system converges towards
the unique steady state x̄− = (0.45, 0.46, 0.53).

in the more general and realistic case of stochastic systems. To illustrate this claim with a simple
example, some results are presented below for a bistable canonical positive feedback loop for which
parameters κi are considered uncertain:{

ẋ1(x1, xN ) = κ01 + κ1(t)h+ (xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κi(t)h+ (xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} .

In this case, the nullclines are now varying with time:{
x1 = H1(xN , t),
xi = Hi(xi−1, t) ∀ i ∈ {2, ..., N} .

For the full set of parameters {κ1, ..., κN} in their uncertainty ranges, it is possible to define a
family of nullclines contained between an upper and lower envelope. Indeed, the variation of a
parameter κi in its uncertainty range has the effect of shifting up or down the nullcline. It follows
that the functions Si defined as the compositions of nullclines (see chapter 3) also form a family of
curves contained between an upper and lower envelope (see the left plot in figure 10.0.4). It seems
reasonable to consider that for any set of parameters, the dynamical behavior of the positive loop
stays bistable. From this hypothesis, the uncertainties εκi are considered small enough so that the
set of functions Si have three fixed points. The set of these fixed points define two differentiated
and one undifferentiated region (see the left plot in figure 10.0.4). Each of these three regions of
steady states is centered around its mean steady state: x̄+, x̄+

inf or x̄+
sup, defined for the mean

parameters set {κ̄1, ..., κ̄N}. Let us assume that the control objective is to globally stabilize this
stochastic system around its mean unstable steady state x̄+. In this case, it is easy to generalize the
qualitative methodologies developed in the manuscript. For example, with a PWC control strategy,
the system becomes:{

ẋ1(x1, xN ) = κ01 + u(x1)κ1(t)h+ (xN , θN , nN )− γ1x1,

ẋi(xi, xi−1) = κ0i + κi(t)h+ (xi−1, θi−1, ni−1)− γixi ∀ i ∈ {2, ..., N} ,
(10.0.9)
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Figure 10.0.4: Left: The plain blue line is the function S1, composed of nullcline functions with
κi = κ̄i ∀ i ∈ {1, ..., N}. Both dashed blue lines represent upper and lower envelope for the whole
set of parameters (κ1(t), ..., κN (t)). From these envelopes, the two differentiated regions (depicted
by light blue regions) and the undifferentiated region (depicted by the yellow region) can be defined
by seeking upper and lower fixed points. Right: y = x is depicted by the black line. With a control
parameter umax large enough, the lower envelop becomes greater than y = x in the region x1 ≤ x̄+

1
(red curve), while with umin small enough, the upper envelop becomes smaller than y = x in the
region x1 ≥ x̄+

1 (red curve).

with {
u(x1) = umax when x1 ≤ x̄+

1 ,

u(x1) = umin when x1 ≥ x̄+
1 .

(10.0.10)

The input umax must be defined large enough so that the lower envelop of the function S1 becomes
greater than y = x for x1 ≤ x̄+

1 , and the input umin must be defined small enough so that the upper
envelop of S1 becomes smaller than y = x for x1 ≥ x̄+

1 (see the right plot of figure 10.0.4). In this
case, sequences of repulsive regions can be determined, and it is possible to show that the system
globally converges towards x̄+ even “in the worst case scenario” in which some parameters κi would
stay close to their upper or lower bounds. This convergence result is illustrated in figure 10.0.5 for
a positive loop of dimension 3. For the simulation, the parameters κi(t) have been generated by a
uniform distribution, with a change speed 1000 times slower than the controller speed. However,
the choice of this probabilistic distribution does not change the convergence results.

Besides external control strategies, this manuscript has also presented a few examples of intrinsic
motif modifications in chapter 8 for the global stabilization of both positive and negative loops.
These strategies that consist in the internal redesign of biological networks are really promising
for synthetic biology. The association of different motifs may allow construction of genetic net-
works with really specific behaviors. In [15] for example, a positive and a negative feedback loop
are coupled and are shown to be able to generate damped oscillations, sustained oscillations and
bistability, and these results have been analytically studied in [95]. It has also been stated in [118]
that the addition of an auto-activation in a negative feedback loop induces more robust oscillations
for which the amplitude is almost decorrelated from the frequency. Finally, in [59], two negative
feedback loops have been coupled for the emergence of complex behaviors such as birithmicity and
chaos. These examples provide evidence that intrinsically modifying or coupling simple motifs may
be a nice solution for their control.

Finally, either internal or external control strategies for biological loops may be also motivated by
other convergence objectives than global stabilization of unstable steady states. As a first simple
example, control strategies may be designed for the global stabilization of one of the two stable
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Figure 10.0.5: Simulation of system (10.0.9) under control (10.0.10) with parameters: κ0i = 1,
κ̄i = 10, ni = 3, θi = 5.2, γi = 1, εκi = 1 ∀ i ∈ {1, 2, 3}, umax = 10 and umin = 0.4. The plain
blue lines represent the trajectories for the three variables without control (top left plot for x1, top
right plot for x2 and bottom plot for x3) and converge towards one of the two differentiated regions
highlighted by light blue bands. The dashed blue lines in the middle of the differentiated regions
are the steady states x̄+

inf and x̄+
sup of the mean dynamical system with κi = κ̄i ∀ i ∈ {1, 2, 3}.

Under control (10.0.10), the trajectories depicted by plain red lines converge towards the mean
unstable steady state x̄+ = (3.79, 3.79, 3.79) represented by the dashed red line in the middle of the
undifferentiated yellow region.

steady states of positive feedback loops in order to force a cell to differentiate into one particular
type. This may be interesting in the context of tissue regeneration for example, where a great
amount of specialized cells is needed. In chapter 9, the interesting problem of creating sustained
oscillations in disrupted negative loops has been introduced. Due to their importance, and especially
their role in many diseases and disorders, being able to control the main characteristics of biological
clocks is of really high interest. The results presented in chapter 9 may be strengthened in order
to be able to fine tune both the period and the amplitude of the oscillations.

In summary, the qualitative nature of analytic methodologies developed in this manuscript seems
really convenient for many biological networks and various controlled problems. Obviously, for
complicated systems, analytical results may be hard to obtain “by hand”. However, the detection
of the successive invariant or repellent regions may be easily done by a computer. A nice extension
of this work would consist in building a general framework with automated rules and computer
assistance.

Unfortunately, the theoretical results presented in this manuscript have not been tested with con-
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crete biological experiments. This practical step may be essential in order to validate the strategies
developed. Moreover, this experimental feedback may give relevant information about limitations
and improvements, and may allow the additon of new constraints to the control law that have not
been considered previously or that have even not been thought of before. Thankfully, some success-
ful previous experiments strengthen our belief that the mathematical control strategies developed
in this manuscript may work in real conditions. The most striking example is probably the control
method applied to the Toggle Switch done by [80]. As explained in chapters 6 and 7, the model
that has been used in this manuscript is really similar to the model used for the calibration of
their control strategy, and the bang-bang controller applied in their experiment works as the PWC
strategy developed in chapters 6 and 7. Obviously, controlling genetic systems in general remains
a hard task that brings a lot of theoretical problems. In this manuscript, non-linear, qualitative
or uncertain constraints have been considered, and inherent stochasticities seem manageable as
explained in this conclusion. However, still a lot of improvements in control strategies are needed in
order to cope with additional implementation constraints such as growing aspects, communication
in cells or even mutations that may arise in genetic systems, to name but a few.
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Appendix A

Supplementary material of chapter
3

A.1 Schwarzian derivative
Schwarzian derivative is a shape-indicator that allows to characterize sigmoid functions:

Definition A.1.1. The Schwarzian derivative of a function f(x), denoted by S (f(x)), is equal to:
S (f(x)) = −∞ if f ′(x) = 0

S (f(x)) = f (3)(x)
f ′(x) −

3
2

(
f ′′(x)
f ′(x)

)2
if f ′(x) 6= 0.

Important properties of Schwarzian derivatives are presented below:

Property A.1.1. Let f(x) and g(x) two functions, and f ◦g(x) well defined. Assume that f ′(x) 6= 0
∀ x ∈ ]0,+∞[, then: S (f ◦ g(x)) = S (f(g(x))) g′(x)2 + S (g(x)). It follows from this result that
if f(x) and g(x) have a negative Schwarzian derivative, then the composition S (f ◦ g(x)) has a
negative Schwarzian derivative as well.

Property A.1.2. Let f(x) a function, and two constants a ∈ R, b ∈ R∗, then S (f(x) + a) =
S (f(x)) and S (bf(x)) = S (f(x)).

The details of these properties can be found in [5]. Basically, a function with a negative Schwarzian
derivative is a sigmoid function under a few supplementary appropriate conditions.

A.2 Proof of proposition 3.2.8
Proof. From proposition 3.2.2, the steady state x̃ is also a priori contained in A∗. With a little bit
more of work, it is possible to conclude that the steady state x̃ is strictly contained in A∗.
Let us start with the first coordinate x̃1 for the negative loop: suppose that x̃1 = (κ01+κ1)/γ1, then
as x̃1 = (κ01 + κ1h−(x̃N , θN , nN ))/γ1 and κ1 > 0 by hypothesis, we must have x̃N = 0. Then, by
induction it is possible to show that κ0i = 0 for i ∈ {N, ..., 2} and x̃i = 0 for i ∈ {N, ..., 1}. Finally,
as x̃1 = 0, we must have κ01 = 0 and κ1 = 0 as well, which is not possible. Hence x̃1 = (κ01 +κ1)/γ1
is not possible.
Concerning the lower bound for x̃i when i 6= 1, assume that there exists j ∈ {2, ..., N} such that
x̃j = κ0j/γj . As x̃j = (κ0j + κjh+(x̃j−1, θj−1, nj−1))/γj and κj > 0 by hypothesis, this induces
that x̃j−1 = 0. Then, by induction it is possible to show that κ0i = 0 for i ∈ {j − 1, ..., 2} and
x̃i = 0 for i ∈ {j − 1, ..., 1}. Finally, as x̃1 = 0 and h−(x̃N , θN , nN ) > 0, we must have κ01 = 0 and
κ1 = 0, that is not possible. Hence, it does not exist i ∈ {2, ..., N} such that x̃i = κ0i/γi.
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For the positive loop, assume that there exists j ∈ {1, ..., N} such that x̃j = κ0j/γj . As x̃j =
(κ0j + κjh+(x̃j−1, θj−1, nj−1))/γj and κj > 0 by hypothesis, this induces that x̃j−1 = 0. Then, by
induction it is possible to show that κ0i = 0 for i ∈ {j − 1, ..., 2} and x̃i = 0 for i ∈ {j − 1, ..., 1}.
Finally, as x̃1 = 0 then κ01 = 0 and x̃N = 0. With the same steps, by induction it is possible to
show that κ0i = 0 for i ∈ {N, ..., j + 1} and x̃i = 0 for i ∈ {N, ..., j}. Hence, as x̃j = 0 and by
hypothesis x̃j = κ0j/γj , then κ0j = 0. Finally, in order to have the existence of j ∈ {1, ..., N} such
that x̃j = κ0j/γj , we must have κ0i = 0 ∀ i ∈ {1, ..., N}. However, from the conditions on the
parameters given at the beginning of section 3.2.2, there exists at least one i ∈ {1, ..., N} such that
κ0i 6= 0. Hence, it does not exist i ∈ {1, ..., N} such that x̃i = κ0i/γi.

A.3 Proof of proposition 3.2.9
Proof. From the structure of J∗(x̃) it is possible to show that if N is even

P ∗(X) = det(XIN − J∗(x̃)) = −
N∏
i=1

(−J∗i ) +
N∏
i=1

(X + γi)

= (−1)N+1
N∏
i=1

J∗i +
N∏
i=1

(X + γi)

=
N∏
i=1

(X + γi)−
N∏
i=1

J∗i

while if N is odd

P ∗(X) = det(XIN − J∗(x̃)) =
N∏
i=1

(−J∗i ) +
N∏
i=1

(X + γi)

= (−1)N
N∏
i=1

J∗i +
N∏
i=1

(X + γi)

=
N∏
i=1

(X + γi)−
N∏
i=1

J∗i .
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Appendix B

Supplementary material of chapter
4

B.1 Proof of proposition 4.3.2
Proof. Let us start with S∗jα(x): it is easy to show that S∗jα(x) and S∗(j+1)α(x) have the same
number of fixed points for any j ∈ {1, ..., N}. To show that, suppose first that x̃ is a fixed point of
S∗jα(x), then:

x̃ = (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) (x̃).
It is possible to compose on both sides by Hj+1 and shift the parenthesis, leading to:

Hj+1(x̃) = (Hj+1 ◦Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) (Hj+1(x̃))

or in other words S∗(j+1)α (Hj+1(x̃)) = Hj+1(x̃). Then Hj+1(x̃) is a fixed point of S∗(j+1)α(x).

For the equivalence, suppose that x̃ is a fixed point of S∗(j+1)α(x), then:

x̃ = (Hj+1 ◦Hj ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+3 ◦Hj+2) (x̃).
It is possible to compose on both sides by Hj ◦ Hj−1 ◦ ... ◦ H∗1α ◦ HN ◦ ... ◦ Hj+2 and shift the
parenthesis, leading to:

(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) (x̃) = (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) ◦
(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) (x̃),

or in other words:

S∗jα (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃)) = Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃).

Then Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃) is a fixed point of S∗jα(x).

Finally, S∗jα(x) and S∗(j+1)α(x) have the same number of fixed points for any j ∈ {1, ..., N}. Hence,
by induction all the functions S∗iα(x) have the same number of fixed points ∀ i ∈ {1, ..., N}. Finally,
if there exists j ∈ {1, ..., N} such that S∗jα(x) has a unique fixed point, then ∀ i ∈ {1, ..., N} S∗iα(x)
has a unique fixed point as well. From proposition 4.3.1, this fixed point is x̄∗i ∀ i ∈ {1, ..., N}.

For F ∗jα(x), the same thing can be done: it is easy to show that F ∗jα(x) and F ∗(j+1)α(x) have the
same number of fixed points for any j ∈ {1, ..., N}. To show that, suppose first that x̃ is a fixed
point of F ∗jα(x), then:

x̃ = (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) ◦
(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) (x̃).
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It is possible to compose on both sides by Hj+1 and shift the parenthesis, leading to:

Hj+1(x̃) = (Hj+1 ◦Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) ◦
(Hj+1 ◦Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) ◦ (Hj+1(x̃)) ,

or in other words S∗(j+1)α ◦ S
∗
(j+1)α (Hj+1(x̃)) = Hj+1(x̃). Then Hj+1(x̃) is a fixed point of

F ∗(j+1)α(x).

For the equivalence, suppose that x̃ is a fixed point of F ∗(j+1)α(x), then:

x̃ = (Hj+1 ◦Hj ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+3 ◦Hj+2) ◦
(Hj+1 ◦Hj ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+3 ◦Hj+2) (x̃).

It is possible to compose on both sides by Hj ◦ Hj−1 ◦ ... ◦ H∗1α ◦ HN ◦ ... ◦ Hj+2 and shift the
parenthesis, leading to:

(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) (x̃) = (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) ◦
(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2 ◦Hj+1) ◦
(Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2) (x̃),

or in other words:

S∗jα ◦ S∗jα (Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃)) = Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃).

Then Hj ◦Hj−1 ◦ ... ◦H∗1α ◦HN ◦ ... ◦Hj+2(x̃) is a fixed point of F ∗jα(x).

Finally, F ∗jα(x) and F ∗(j+1)α(x) have the same number of fixed points for any j ∈ {1, ..., N}. Hence,
by induction all the functions F ∗iα(x) have the same number of fixed points ∀ i ∈ {1, ..., N}. Finally,
if there exists j ∈ {1, ..., N} such that F ∗jα(x) has a unique fixed point, then ∀ i ∈ {1, ..., N} F ∗iα(x)
has a unique fixed point as well. From proposition 4.3.1, this fixed point is x̄∗i ∀ i ∈ {1, ..., N}.

B.2 Proof of proposition 4.3.3
Proof. The negative loop is first investigated:

For i = 1 and j ∈ N∗, x−(j+1)
1max = H−1α(x−jNmin) by definition. Hence by induction:

x
−(j+1)
1max = H−1α ◦HN ◦ ... ◦H2(x−j1min),

and by definition x−j1min = H−1α(x−jNmax), hence by induction:

x
−(j+1)
1max = H−1α ◦HN ◦ ... ◦H2 ◦H−1α(x−jNmax)

= H−1α ◦HN ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦H2(x−j1max).

Hence, x−(j+1)
1max = S−1α ◦ S

−
1α(x−j1max) = F−1α(x−j1max).

For i ∈ {2, ..., N} and j ∈ N∗, x−(j+1)
imax = Hi(x−(j+1)

i−1max) then by induction:

x
−(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2(x−(j+1)

1max ),

and by definition x
−(j+1)
1max = H−1α(x−jNmin). Hence, by induction:
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x
−(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α(x−jNmin)

= Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1(x−jimin).

With a new induction:

x
−(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1(x−jimin)

= Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1 ◦Hi ◦Hi−1 ◦ ... ◦H2(x−j1min),

and by definition x−j1min = H−1α(x−jNmax). Then by induction:

x
−(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1 ◦Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α(x−jNmax)

= Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1 ◦Hi ◦Hi−1 ◦ ... ◦H2 ◦H−1α ◦HN ◦ ... ◦Hi+1(x−jimax).

Hence, x−(j+1)
imax = S−iα ◦ S

−
iα(x−jimax) = F−iα(x−jimax) ∀ i ∈ {1, ..., N}.

The same steps can be followed to prove x−(j+1)
imin = F−iα(x−jimin) ∀ i ∈ {1, ..., N} by switching all the

ximax and ximin in the proof.

For the positive loop, the proof is easier:

For i = 1 and j ∈ N∗, x+(j+1)
1max = H+

1α(x+j
Nmax) by definition. Hence by induction:

x
+(j+1)
1max = H+

1α ◦HN ◦ ... ◦H2(x+j
1max).

Hence, x+(j+1)
1max = S+

1α(x+j
1max).

For i ∈ {2, ..., N} and j ∈ N∗, x+(j+1)
imax = Hi(x+(j+1)

i−1max) then by induction:

x
+(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2(x+(j+1)

1max ),

and by definition x
+(j+1)
1max = H+

1α(x+j
Nmax). Hence, by induction:

x
+(j+1)
imax = Hi ◦Hi−1 ◦ ... ◦H2 ◦H+

1α(x+j
Nmax)

= Hi ◦Hi−1 ◦ ... ◦H2 ◦H+
1α ◦HN ◦ ... ◦Hi+1(x+j

imax).

Hence, x+(j+1)
imax = S+

iα(x+j
imax) ∀ i ∈ {1, ..., N}.

The same steps can be followed to prove x+(j+1)
imin = F+

iα(x+j
imin) ∀ i ∈ {1, ..., N} by switching all the

ximax and ximin in the proof.

B.3 Proof of proposition 4.3.4
Proof. It is firstly proved that x∗11max = (κ01 + κ1(1 + αx̄∗1))/(γ1 + ακ1) is strictly greater than x̄∗1.
Indeed x∗11max− x̄∗1 = (κ01 + κ1(1 + αx̄∗1)) / (γ1 + ακ1)− x̄∗1 = (κ01 + κ1 − γ1x̄

∗
1) / (γ1 + ακ1). From

proposition 3.2.8, x̄∗1 < (κ01 + κ1)/γ1, then x∗11max > x̄∗1.

Suppose now that x∗1pmax > x̄∗p with p ∈ {1, ..., N − 1}.

Then x∗1p+1max = Hp+1(x∗1pmax) > Hp+1(x̄∗p) as Hp+1(x) is a strictly monotonically increasing func-
tion. Moreover Hp+1(x̄∗p) = x̄∗p+1. Hence x∗1p+1max > x̄∗p+1. Finally by induction, ∀ i ∈ {1, ..., N},
all the initial terms x∗1imax are such that x∗1imax > x̄∗i .
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Secondly, for the negative loop x−1
1min = H−1α(x−1

Nmax). As just proved x−1
Nmax > x̄−N . Hence, as

H−1α(x) is a strictly monotonically decreasing function, H−1α(x−1
Nmax) < H−1α(x̄−N ) = x̄−1 by definition.

Then x−1
1min < x̄−1 . For the positive loop, x+1

1min = κ01/γ1. From proposition 3.2.8, x̄+
1 > κ01/γ1,

then x+1
1min < x̄+

1 . Hence, x∗11min < x̄∗1.

Suppose now that x∗1pmin < x̄∗p with p ∈ {1, ..., N − 1}.

Then x∗1p+1min = Hp+1(x∗1pmin) < Hp+1(x̄∗p) as Hp+1(x) is a strictly monotonically increasing func-
tion. Moreover Hp+1(x̄∗p) = x̄∗p+1. Hence x∗1p+1min < x̄∗p+1. Finally by induction, ∀ i ∈ {1, ..., N},
all the initial terms x∗1imin are such that x∗1imin < x̄∗i .

Now, for i ∈ {1, ..., N}, if Z∗iα(x) has a unique fixed point, this fixed point is x̄∗i from proposition
4.3.2. Moreover, Z∗iα(x) is a strictly monotonically increasing function, Z∗iα(0) > 0 and x∗1imax >

x̄∗i . Hence, the sequence x∗(j+1)
imax = Z∗iα(x∗jimax) with initial term x∗1imax is strictly monotonically

decreasing and converges towards x̄∗i . As a consequence, ∀ i ∈ {1, ..., N}, x∗jimax > x̄∗i ∀ j ∈ N∗.
Similarly, as x∗1imin < x̄∗i , then the sequence x∗(j+1)

imin = Z∗iα(x∗jimin) with initial term x∗1imin is strictly
monotonically increasing and converges towards x̄∗i . As a consequence, ∀ i ∈ {1, ..., N}, x∗jimin < x̄∗i
∀ j ∈ N∗.

B.4 Proof of proposition 4.3.7
Proof. Firstly, the case j = 0 is investigated. The x1-vector field at the border x1 = 0 is equal
to: ẋ1(x1 = 0, xN ) = κ01 + κ1h∗(xN , θN , nN )(1 + αx̄∗1) ≥ 0. For i ∈ {2, ..., N}, the xi-vector field
at the border xi = 0 is equal to ẋi(xi = 0, xi−1) = κ0i + κih∗(xi−1, θi−1, ni−1) ≥ 0. Hence, R∗0 is
invariant.

Secondly, let j ∈ N∗. In order to prove invariance, we must show that ∀ i ∈ {1, ..., N}:

• ẋi(x∗jimax, xi−1) ≤ 0 ∀ xi−1 ∈ [x∗ji−1min, x
∗j
i−1max],

• ẋi(x∗jimin, xi−1) ≥ 0 ∀ xi−1 ∈ [x∗ji−1min, x
∗j
i−1max].

Let us start with i = 1. For the negative loop, the x1-vector field is evaluated when x1 = x−j1max:
ẋ1(x−j1max, xN ) = ẋ1

(
H−1α(x−(j−1)

Nmin ), xN
)

from definition 4.3.2. Then:

ẋ1(x−j1max, xN ) = ẋ1

(
κ01 + κ1h−(x−(j−1)

Nmin , θN , nN )(1 + αx̄−1 )
γ1 + ακ1h−(x−(j−1)

Nmin , θN , nN )
, xN

)

= κ01 − γ1
κ01 + κ1h−(x−(j−1)

Nmin , θN , nN )(1 + αx̄−1 )
γ1 + ακ1h−(x−(j−1)

Nmin , θN , nN )

+
(
−α

(
κ01 + κ1h−(x−(j−1)

Nmin , θN , nN )(1 + αx̄−1 )
γ1 + ακ1h−(x−(j−1)

Nmin , θN , nN )
− x̄−1

)
+ 1
)
κ1h−(xN , θN , nN )

= −κ1h−(x−(j−1)
Nmin , θN , nN )

[
γ1 + α(γ1x̄

−
1 − κ01)

γ1 + ακ1h−(x−(j−1)
Nmin , θN , nN )

]

+ κ1h−(xN , θN , nN )
[

1− α
(
κ01 + κ1h−(x−(j−1)

Nmin , θN , nN )− γ1x̄
−
1

γ1 + ακ1h−(x−(j−1)
Nmin , θN , nN )

)]

= −κ1h−(x−(j−1)
Nmin , θN , nN )

[
γ1 + α(γ1x̄

−
1 − κ01)

γ1 + ακ1h−(x−(j−1)
Nmin , θN , nN )

]

+ κ1h−(xN , θN , nN )
[

γ1 + α(γ1x̄
−
1 − κ01)

γ1 + ακ1h−(x−(j−1)
Nmin , θN , nN )

]
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= κ1

[
γ1 + α(γ1x̄

−
1 − κ01)

γ1 + ακ1h−(x−(j−1)
Nmin , θN , nN )

](
h−(xN , θN , nN )− h−(x−(j−1)

Nmin , θN , nN )
)
.

Here, x−(j−1)
Nmin = 0 for j = 1 by convention, from the expression of x−1

1max in definition 4.3.2. Then,
ẋ1(x−j1max, x

−(j−1)
Nmin ) = 0. Moreover, as γ1x̄

−
1 −κ01 > 0 from proposition 3.2.8 and as h−(xN , θN , nN )

is a strictly monotonically decreasing function, ẋ1(x−j1max, xN ) ≤ 0 ∀ xN ≥ x
−(j−1)
Nmin . From proposi-

tion 4.3.4, x−(j−1)
Nmin < x−jNmin < x−jNmax. Then, ẋ1(x−j1max, xN ) < 0 ∀ xN ∈ [x−jNmin, x

−j
Nmax].

Now the x1-vector field is evaluated at a precise point of the lower bound of R−j :
ẋ1(x−j1min, x

−j
Nmax) = ẋ1(H−1α(x−jNmax), x−jNmax) from definition 4.3.2. Then ẋ1(x−j1min, x

−j
Nmax) = 0

because from section 4.2, ẋ1(x1, xN ) = 0 ⇐⇒ x1 = H−1α(xN ).
Let xN ≤ x−jNmax. From the proof of proposition 4.3.4, x−j1min < x̄−1 . Then, the control term
−α(x−j1min − x̄−1 ) + 1 > 0. Hence, κ01 + (−α(x−j1min − x̄−1 ) + 1)κ1h−(xN , θN , nN ) − γ1x

−j
1min ≥

κ01 + (−α(x−j1min − x̄
−
1 ) + 1)κ1h−(x−jNmax, θN , nN )− γ1x

−j
1min = 0.

Then, ẋ1(x−j1min, xN ) ≥ ẋ1(x−j1min, x
−j
Nmax) = 0 ∀ xN ≤ x−jNmax. From proposition 4.3.4, x−jNmin <

x−jNmax. Then, ẋ1(x−j1min, xN ) ≥ 0 ∀ xN ∈ [x−jNmin, x
−j
Nmax].

The same thing can be done easily for the positive loop.
The x1-vector field is evaluated when x1 = x+j

1max: ẋ1(x+j
1max, xN ) = ẋ1

(
H+

1α(x+(j−1)
Nmax ), xN

)
from

definition 4.3.2. Then:

ẋ1(x+j
1max, xN ) = ẋ1

(
κ01 + κ1h+(x+(j−1)

Nmax , θN , nN )(1 + αx̄+
1 )

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

, xN

)

= κ01 − γ1
κ01 + κ1h+(x+(j−1)

Nmax , θN , nN )(1 + αx̄+
1 )

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

+
(
−α

(
κ01 + κ1h+(x+(j−1)

Nmax , θN , nN )(1 + αx̄+
1 )

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

− x̄+
1

)
+ 1
)
κ1h+(xN , θN , nN )

= −κ1h+(x+(j−1)
Nmax , θN , nN )

[
γ1 + α(γ1x̄

+
1 − κ01)

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

]

+ κ1h+(xN , θN , nN )
[

1− α
(
κ01 + κ1h+(x+(j−1)

Nmax , θN , nN )− γ1x̄
+
1

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

)]

= −κ1h+(x+(j−1)
Nmax , θN , nN )

[
γ1 + α(γ1x̄

+
1 − κ01)

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

]

+ κ1h+(xN , θN , nN )
[

γ1 + α(γ1x̄
+
1 − κ01)

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

]

= κ1

[
γ1 + α(γ1x̄

+
1 − κ01)

γ1 + ακ1h+(x+(j−1)
Nmax , θN , nN )

](
h+(xN , θN , nN )− h+(x+(j−1)

Nmax , θN , nN )
)
.

Here, x+(j−1)
Nmax = +∞ for j = 1 by convention, from the expression of x+1

1max in definition 4.3.2. Then,
ẋ1(x+j

1max, x
+(j−1)
Nmax ) = 0. Moreover, as γ1x̄

+
1 −κ01 > 0 from proposition 3.2.8 and as h+(xN , θN , nN )

is a strictly monotonically increasing function, ẋ1(x+j
1max, xN ) ≤ 0 ∀ xN ≤ x

+(j−1)
Nmax . From proposi-

tion 4.3.4 x+(j−1)
Nmax > x+j

Nmax > x+j
Nmin. Then, ẋ1(x+j

1max, xN ) < 0 ∀ xN ∈ [x+j
Nmin, x

+j
Nmax].

The x1-vector field is evaluated when x1 = x+j
1min: ẋ1(x+j

1min, xN ) = ẋ1

(
H+

1α(x+(j−1)
Nmin ), xN

)
from

definition 4.3.2. Then by the same calculation as previously:
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ẋ1(x+j
1min, xN ) = κ1

[
γ1 + α(γ1x̄

+
1 − κ01)

γ1 + ακ1h+(x+(j−1)
Nmin , θN , nN )

](
h+(xN , θN , nN )− h+(x+(j−1)

Nmin , θN , nN )
)
.

Here, x+(j−1)
Nmin = 0 for j = 1 by convention, from the expression of x+1

1min in definition 4.3.2. Then,
ẋ1(x+j

1min, x
+(j−1)
Nmin ) = 0. Moreover, as γ1x̄

+
1 −κ01 > 0 from proposition 3.2.8 and as h+(xN , θN , nN )

is a strictly monotonically increasing function, ẋ1(x+j
1min, xN ) ≥ 0 ∀ xN ≥ x+(j−1)

Nmin . From proposition
4.3.4 x+(j−1)

Nmin < x+j
Nmin < x+j

Nmax. Then, ẋ1(x+j
1min, xN ) > 0 ∀ xN ∈ [x+j

Nmin, x
+j
Nmax].

We finally conclude that ẋ1(x∗j1max, xN ) ≤ 0 ∀ xN ∈ [x∗jNmin, x
∗j
Nmax], and ẋ1(x∗j1min, xN ) ≥ 0

∀ xN ∈ [x∗jNmin, x
∗j
Nmax].

The vector field in the other directions can now be investigated:

Assume that i ∈ {2, ..., N}. The xi-vector field is evaluated at a precise point of the upper bound
of R∗j : ẋi(x

∗j
imax, x

∗j
i−1max) = ẋ1(Hi(x∗ji−1max), x∗ji−1max) from definition 4.3.2.

Then ẋi(x∗jimax, x
∗j
i−1max) = 0 because from section 4.2, ẋi(xi, xi−1) = 0 ⇐⇒ xi = Hi(xi−1). Let

xi−1 ≤ x∗ji−1max, then κ0i + κih+(xi−1, θi−1, ni−1) − γix∗jimax ≤ κ0i + κih+(x∗ji−1max, θi−1, ni−1) −
γix
∗j
imax = 0. Hence, ẋi(x∗jimax, xi−1) ≤ ẋi(x∗jimax, x

∗j
i−1max) = 0 ∀ xi−1 ≤ x∗ji−1max. From proposition

4.3.4 x∗ji−1min < x∗ji−1max. Then, ẋi(x∗jimax, xi−1) ≤ 0 ∀ xi−1 ∈ [x∗ji−1min, x
∗j
i−1max].

Finally, the xi-vector field is evaluated at a precise point of the lower bound of R∗j :
ẋi(x∗j1min, x

∗j
i−1min) = ẋ1(Hi(x∗ji−1min), x∗ji−1min) from definition 4.3.2. Then ẋi(x∗jimin, x

∗j
i−1min) = 0.

Let xi−1 ≥ x∗ji−1min, then κ0i+κih+(xi−1, θi−1, ni−1)−γix∗jimin ≥ κ0i+κih+(x∗ji−1min, θi−1, ni−1)−
γix
∗j
imin = 0.

Hence, ẋi(x∗jimin, xi−1) ≥ ẋi(x∗jimin, x
∗j
i−1min) = 0 ∀ xi−1 ≥ x∗ji−1min. From proposition 4.3.4

x∗ji−1min < x∗ji−1max. Then, ẋi(x∗jimin, xi−1) ≥ 0 ∀ xi−1 ∈ [x∗ji−1min, x
∗j
i−1max].

B.5 Proof of proposition 4.3.8
Proof. It is first obvious to observe that, from proposition 4.3.7, ∀ j ∈ N, for all initial condition
x0 = x(t = 0) ∈ R∗j , x(t) ∈ R∗j ∀ t ≥ 0.

Let x0 ∈ R∗j with j ∈ N.

Base case 1 for the negative loop: From the proof of proposition 4.3.7, ẋ1(x−(j+1)
1max , x−jNmin) = 0

and ∀ xN ≥ x−jNmin, ẋ1(x−(j+1)
1max , xN ) ≤ 0 (where x−jNmin = 0 if j = 0). Assume now that xN ≥ x−jNmin

is fixed, and x1 > x
−(j+1)
1max : from the degradation term−(ακ1h−(xN , θN , nN )+γ1)x1 in the x1-vector

field, ẋ1(x1, xN ) < ẋ1(x−(j+1)
1max , xN ) ≤ 0. Hence, ẋ1(x1, xN ) < 0 ∀ xN ≥ x−jNmin and ∀ x1 > x

−(j+1)
1max .

As x0 ∈ R−j , then x−jNmin ≤ xN (t) ≤ x−jNmax ∀ t ≥ 0. In other words, ∃ 0 ≤ t−1max < +∞ such that
x1(t) ≤ x−(j+1)

1max ∀ t ≥ t−1max.

Base case 1 for the positive loop: From the proof of proposition 4.3.7, ẋ1(x+(j+1)
1max , x+j

Nmax) = 0
and ∀ xN ≤ x+j

Nmax, ẋ1(x+(j+1)
1max , xN ) ≤ 0 (where x+j

Nmax = +∞ if j = 0). Assume now that
xN ≤ x+j

Nmax is fixed, and x1 > x
+(j+1)
1max : from the degradation term −(ακ1h+(xN , θN , nN ) + γ1)x1

in the x1-vector field, ẋ1(x1, xN ) < ẋ1(x+(j+1)
1max , xN ) ≤ 0. Hence, ẋ1(x1, xN ) < 0 ∀ xN ≤ x+j

Nmax

and ∀ x1 > x
+(j+1)
1max . As x0 ∈ R+

j , then x+j
Nmin ≤ xN (t) ≤ x+j

Nmax ∀ t ≥ 0. In other words,
∃ 0 ≤ t+1max < +∞ such that x1(t) ≤ x+(j+1)

1max ∀ t ≥ t+1max.
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Induction hypothesis 1: Let 1 ≤ i− 1 < N , it is assumed that ∃ 0 ≤ T ∗i−1max < +∞ such that
for all 1 ≤ p ≤ i− 1, xp(t) ≤ x∗(j+1)

pmax ∀ t ≥ T ∗i−1max.

Induction step 1: From the proof of proposition 4.3.7, ẋi(x∗(j+1)
imax , x

∗(j+1)
i−1max) = 0 and ∀ xi−1 ≤

x
∗(j+1)
i−1max, ẋi(x∗(j+1)

imax , xi−1) ≤ 0. Assume now that xi−1 ≤ x
∗(j+1)
i−1max is fixed, and xi > x

∗(j+1)
imax : from

the degradation term −γixi in the xi-vector field, ẋi(xi, xi−1) < ẋi(x∗(j+1)
imax , xi−1) ≤ 0. Hence,

ẋi(xi, xi−1) < 0 ∀ xi−1 ≤ x
∗(j+1)
i−1max and ∀ xi > x

∗(j+1)
imax . Moreover, from “Induction hypothesis 1”,

xi−1(t) ≤ x
∗(j+1)
i−1max ∀ t ≥ T ∗i−1max. Hence, ∀ t ≥ T ∗i−1max, ẋi(xi, xi−1(t)) < 0 ∀ xi > x

∗(j+1)
imax . In

other words, ∃ 0 ≤ t∗imax < +∞ such that xi(t) ≤ x
∗(j+1)
imax ∀ t ≥ T ∗i−1max + t∗imax. The new time

T ∗imax = T ∗i−1max + t∗imax is such that: for all 1 ≤ p ≤ i, xp(t) ≤ x∗(j+1)
pmax ∀ t ≥ T ∗imax.

Conclusion 1: By induction, ∃ 0 ≤ T ∗Nmax < +∞ such that for all 1 ≤ p ≤ N , xp(t) ≤ x
∗(j+1)
pmax

∀ t ≥ T ∗Nmax.

Base case 2 for the negative loop: From the proof of proposition 4.3.7, ẋ1(x−(j+1)
1min , x

−(j+1)
Nmax ) =

0 and ∀ xN ≤ x
−(j+1)
Nmax , ẋ1(x−(j+1)

1min , xN ) ≥ 0. Assume now that xN ≤ x
−(j+1)
Nmax is fixed, and

x1 < x
−(j+1)
1min : from the degradation term −(ακ1h−(xN , θN , nN ) + γ1)x1 in the x1-vector field,

ẋ1(x1, xN ) > ẋ1(x−(j+1)
1min , xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀ xN ≤ x

−(j+1)
Nmax and ∀ x1 < x

−(j+1)
1min .

Moreover, from “Conclusion 1”, xN (t) ≤ x−(j+1)
Nmax ∀ t ≥ T

−
Nmax.

Hence, ∀ t ≥ T−Nmax, ẋ1(x1, xN (t)) > 0 ∀ x1 < x
−(j+1)
1min . In other words, ∃ 0 ≤ t−1min < +∞ such

that x1(t) ≥ x
−(j+1)
1min ∀ t ≥ T−Nmax + t−1min. The new time T−1min = T−Nmax + t−1min is such that:

x
−(j+1)
1min ≤ x1(t) ≤ x−(j+1)

1max and for all 1 < p ≤ N , xp(t) ≤ x−(j+1)
pmax ∀ t ≥ T−1min.

Base case 2 for the positive loop: From the proof of proposition 4.3.7, ẋ1(x+(j+1)
1min , x+j

Nmin) = 0
and ∀ xN ≥ x+j

Nmin, ẋ1(x+(j+1)
1min , xN ) ≥ 0 (where x+j

Nmin = 0 if j = 0). Assume now that xN ≥ x+j
Nmin

is fixed, and x1 < x
+(j+1)
1min : from the degradation term −(ακ1h+(xN , θN , nN )+γ1)x1 in the x1-vector

field, ẋ1(x1, xN ) > ẋ1(x+(j+1)
1min , xN ) ≥ 0. Hence, ẋ1(x1, xN ) > 0 ∀ xN ≥ x+j

Nmin and ∀ x1 < x
+(j+1)
1min .

As x0 ∈ R+
j , then x+j

Nmin ≤ xN (t) ≤ x+j
Nmax ∀ t ≥ 0. In other words, ∃ 0 ≤ t+1min < +∞ such that

x1(t) ≥ x
+(j+1)
1min ∀ t ≥ t+1min. Moreover, from “Conclusion 1”, ∃ 0 ≤ T+

Nmax < +∞ such that for
all 1 ≤ p ≤ N , xp(t) ≤ x

+(j+1)
pmax ∀ t ≥ T+

Nmax. The new time T+
1min = T+

Nmax + t+1min is such that:
x

+(j+1)
1min ≤ x1(t) ≤ x+(j+1)

1max and for all 1 < p ≤ N , xp(t) ≤ x+(j+1)
pmax ∀ t ≥ T+

1min.

Induction hypothesis 2: Let 1 ≤ i − 1 < N , it is assumed that ∃ 0 ≤ T ∗i−1min < +∞ such
that for all 1 ≤ p ≤ i − 1, x∗(j+1)

pmin ≤ xp(t) ≤ x
∗(j+1)
pmax and for all i − 1 < p ≤ N , xp(t) ≤ x

∗(j+1)
pmax

∀ t ≥ T ∗i−1min.

Induction step 2: From the proof of proposition 4.3.7, ẋi(x∗(j+1)
imin , x

∗(j+1)
i−1min) = 0 and ∀ xi−1 ≥

x
∗(j+1)
i−1min, ẋi(x∗(j+1)

imin , xi−1) ≥ 0. Assume now that xi−1 ≥ x
∗(j+1)
i−1min is fixed, and xi < x

∗(j+1)
imin : from

the degradation term −γixi in the xi-vector field, ẋi(xi, xi−1) > ẋi(x∗(j+1)
imin , xi−1) ≥ 0. Hence,

ẋi(xi, xi−1) > 0 ∀ xi−1 ≥ x
∗(j+1)
i−1min and ∀ xi < x

∗(j+1)
imin . Moreover, from “Induction hypothesis 2”,

xi−1(t) ≥ x
∗(j+1)
i−1min ∀ t ≥ T ∗i−1min. Hence, ∀ t ≥ T ∗i−1min, ẋi(xi, xi−1(t)) > 0 ∀ xi < x

∗(j+1)
imin . In

other words, ∃ 0 ≤ t∗imin < +∞ such that xi(t) ≥ x
∗(j+1)
imin ∀ t ≥ T ∗i−1min + t∗imin. The new time

T ∗imin = T ∗i−1min + t∗imin is such that: for all 1 ≤ p ≤ i, x∗(j+1)
pmin ≤ xp(t) ≤ x

∗(j+1)
pmax and for all

i < p ≤ N , xp(t) ≤ x∗(j+1)
pmax ∀ t ≥ T ∗imin.

Conclusion 2: By induction, ∃ 0 ≤ T ∗Nmin < +∞ such that for all 1 ≤ p ≤ N , x∗(j+1)
pmin ≤ xp(t) ≤

x
∗(j+1)
pmax ∀ t ≥ T ∗Nmin. Let T ∗j = T ∗Nmin, then proposition 4.3.8 is proved ∀ j ∈ N.
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B.6 Proof of proposition 4.4.1
Proof. By definition, Z+

1α(x) = S+
1α(x) where S+

1α(x) = H+
1α ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x). From

property A.1.1 in appendix A.1, if all the functions in this composition have a negative Schwarzian
derivative, then the composed function Z+

1α(x) will also have a negative Schwarzian derivative.
From the previous calculations given in the proof of proposition 3.2.4, S(Hi(x)) < 0 ∀ i ∈ {2, ..., N}
and:

S(H+
1α(x)) = S

(
κ01 + κ1h+(x, θN , nN )(1 + αx̄+

1 )
γ1 + ακ1h+(x, θN , nN )

)
= S(f ◦ g(x)),

where f(x) =
(
κ01 + κ1x(1 + αx̄+

1 )
)
/ (γ1 + ακ1x) and g(x) = h+(x, θN , nN ). By the calculations

in the proof of proposition 3.2.4:

S (g(x)) = −n
2
N − 1
2x2 < 0.

In order to calculate the Schwarzian derivative of f(x), the three first derivatives of f(x) are
necessary:

f ′(x) =
κ1
[
γ1 + α

(
γx̄+

1 − κ01
)]

(γ1 + ακ1x)2 ,

f ′′(x) =
−2κ2

1α
[
γ1 + α

(
γx̄+

1 − κ01
)]

(γ1 + ακ1x)3 ,

f (3)(x) =
6κ3

1α
2 [γ1 + α

(
γx̄+

1 − κ01
)]

(γ1 + ακ1x)4 .

After simplifications, S(f(x)) = 0. Hence, with property A.1.1 in appendix A.1, S(H+
1α(x)) =

S(g(x)) = −
(
n2
N − 1

)
/2x2 < 0. Hence, S(S+

1α(x)) = S(H+
1α ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x)) < 0. It

follows that Z+
1α(x) has a negative Schwarzian derivative.

For Z−1α(x), as Z−1α(x) = S−1α ◦S
−
1α(x) where S−1α(x) = H−1α ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x), if S−1α(x)

has a negative Schwarzian derivative, then the composed function Z−1α(x) will also have a negative
Schwarzian derivative. Again, S(Hi(x)) < 0 ∀ i ∈ {2, ..., N} and:

S(H−1α(x)) = S
(
κ01 + κ1h−(x, θN , nN )(1 + αx̄−1 )

γ1 + ακ1h−(x, θN , nN )

)
= S(f ◦ g(x)),

where f(x) =
(
κ01 + κ1x(1 + αx̄−1 )

)
/ (γ1 + ακ1x) and g(x) = h−(x, θN , nN ) =. Again:

S (g(x)) = −n
2
N − 1
2x2 < 0,

and as previously, S(f(x)) = 0. Hence, with property A.1.1 in appendix A.1, S(H−1α(x)) = S(g(x)) =
−
(
n2
N − 1

)
/2x2 < 0. Hence, S(S−1α(x)) = S(H−1α ◦HN ◦HN−1 ◦ ... ◦H3 ◦H2(x)) < 0. Finally, as

Z−1α(x) = S−1α ◦ S
−
1α(x), from property A.1.1 in appendix A.1, Z−1α(x) has a negative Schwarzian

derivative.
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Appendix C

Supplementary material of chapter
6

C.1 Proof of proposition 6.4.1
Proof. The proof is built with two mathematical inductions:

As a first base case, µN = δ > 0 and mN = µN with definition 6.4.3. Then x̄−N − µN < x̄−N and
under assumption 6.4.1, x̄−N −mN = x̄−N − δ > κ0N/γN . Finally κ0N/γN < x̄−N −mN < x̄−N .

Assume that the property µj+1 > 0 and κ0j+1/γj+1 < x̄−j+1 −mj+1 < x̄−j+1 holds for one natural
number j + 1 ∈ {2, ..., N}. Then from proposition 3.2.8, κ0j+1/γj+1 < x̄−j+1 − mj+1 < x̄−j+1 <
(κ0j+1 + κj+1)/γj+1 implies that:
0 <

(
γj+1(x̄−j+1 −mj+1)− κ0j+1

)
/κj+1 <

(
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1 < 1. From property 6.4.1, the

use of the monotonically increasing function φj+1 in the inequality gives:
φj+1(0) < φj+1

((
γj+1(x̄−j+1 −mj+1)− κ0j+1

)
/κj+1

)
< φj+1

((
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1

)
. With

φj+1(0) = 0 and φj+1
((
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1

)
= x̄−j , this implies:

0 < φj+1
((
γj+1(x̄−j+1 −mj+1)− κ0j+1

)
/κj+1

)
< x̄−j .

Then, x̄−j − φj+1
((
γj+1(x̄−j+1 −mj+1)− κ0j+1

)
/κj+1

)
> 0. Finally, from the definition 6.4.3,

µj > 0. As a consequence, x̄−j − µj < x̄−j and under assumption 6.4.1, κ0j/γj < x̄−j − δ < x̄−j . As
mj = min (δ, µj), the desired inequality κ0j/γj < x̄−j −mj < x̄−j holds.

Then, if the property holds for one natural number j + 1 ∈ {2, ..., N}, it also holds for j. By a
mathematical induction, µi > 0 and κ0i/γi < x̄−i −mi < x̄−i for all i ∈ {N, ..., 1}.

As a second base case, κ01/γ1 < x̄−1 − m1 < x̄−1 . Then from proposition 3.2.8, κ01/γ1 <
x̄−1 −m1 ≤ x̄−1 ≤ (κ01 + κ1)/γ1 implies that 0 <

(
γ1(x̄−1 −m1)− κ01

)
/κ1 <

(
γ1x̄
−
1 − κ01

)
/κ1 ≤

1. From property 6.4.1, the use of the monotonically decreasing function φ−1 in the inequality
gives: φ−1

((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
> φ−1

((
γ1x̄
−
1 − κ01

)
/κ1
)
≥ φ−1 (1). With φ−1 (1) = 0 and

φ−1
((
γ1x̄
−
1 − κ01

)
/κ1
)

= x̄−N , this implies:
φ−1
((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
> x̄−N ≥ 0. Then, φ−1

((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
− x̄−N > 0. Finally,

from the definition 6.4.3, αN > 0. As a consequence, x̄−N + αN > x̄−N and under assumption 6.4.1,
x̄−N < x̄−N + δ < (κ0N + κN )/γN . As MN = min (δ, αN ), the desired inequality x̄−N < x̄−N + MN <
(κ0N + κN )/γN holds.

Assume that the property αj+1 > 0 and x̄−j+1 < x̄−j+1 + Mj+1 < (κ0j+1 + κj+1)/γj+1 holds
for one natural number j + 1 ∈ {3, ..., N}. Then from proposition 3.2.8, κ0j+1/γj+1 ≤ x̄−j+1 <

x̄−j+1 +Mj+1 < (κ0j+1 + κj+1)/γj+1 implies that:
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0 ≤
(
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1 <

(
γj+1(x̄−j+1 +Mj+1)− κ0j+1

)
/κj+1 < 1. From property 6.4.1,

the use of the monotonically increasing function φj+1 in the inequality gives:
φj+1(0) ≤ φj+1

((
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1

)
< φj+1

((
γj+1(x̄−j+1 +Mj+1)− κ0j+1

)
/κj+1

)
. With

φj+1(0) = 0 and φj+1
((
γj+1x̄

−
j+1 − κ0j+1

)
/κj+1

)
= x̄−j , this implies:

0 ≤ x̄−j < φj+1
((
γj+1(x̄−j+1 +Mj+1)− κ0j+1

)
/κj+1

)
.

Then, φj+1
((
γj+1(x̄−j+1 +Mj+1)− κ0j+1

)
/κj+1

)
− x̄−j > 0. Finally, from definition 6.4.3, αj > 0.

As a consequence, x̄−j + αj > x̄−j and under assumption 6.4.1, x̄−j < x̄−j + δ < (κ0j + κj)/γj . As
Mj = min (δ, αj), the desired inequality x̄−j < x̄−j +Mj < (κ0j + κj)/γj holds.

Then, if the property holds for one natural number j + 1 ∈ {3, ..., N}, it also holds for j. By a
mathematical induction, αi > 0 and x̄−i < x̄−i +Mi < (κ0i + κi)/γi for all i ∈ {N, ..., 2}.

For i = 1, the same steps are followed. The inequality κ02/γ2 ≤ x̄−2 < x̄−2 + M2 < (κ02 + κ2)/γ2
implies that 0 ≤

(
γ2x̄
−
2 − κ02

)
/κ2 <

(
γ2(x̄−2 +M2)− κ02

)
/κ2 < 1. From property 6.4.1, the use of

the monotonically increasing function φ2 in the inequality gives: φ2(0) ≤ φ2
((
γ2x̄
−
2 − κ02

)
/κ2
)
<

φ2
((
γ2(x̄−2 +M2)− κ02

)
/κ2
)
. With φ2(0) = 0 and φ2

((
γ2x̄
−
2 − κ02

)
/κ2
)

= x̄−1 , this implies:
0 ≤ x̄−1 < φ2

((
γ2(x̄−2 +M2)− κ02

)
/κ2
)
. Then, φ2

((
γ2(x̄−2 +M2)− κ02

)
/κ2
)
− x̄−1 > 0. Finally,

from the definition 6.4.3, α1 > 0. As a consequence, x̄−1 + α1 > x̄−1 and under assumption 6.4.1,
x̄−1 < x̄−1 + δ. As M1 = min (δ, α1), the desired inequality x̄−1 < x̄−1 +M1 holds.

C.2 Proof of lemma 6.4.1
Proof. To prove this lemma, it is shown that the boundaries of the region B− are repellent, i.e.:

• ẋi(x̄−i −mi, xi−1) ≥ 0 ∀ xi−1 ∈ [x̄−i−1 −mi−1, x̄
−
i−1 +Mi−1] ∀ i ∈ {1, ..., N},

• ẋi(x̄−i +Mi, xi−1) ≤ 0 ∀ xi−1 ∈ [x̄−i−1 −mi−1, x̄
−
i−1 +Mi−1] ∀ i ∈ {1, ..., N}.

First, for all i ∈ {2, ..., N}, ẋi(xi, xi−1) = κ0i+κih+(xi−1, θi−1, ni−1)−γixi. Then, when evaluating
this expression at the point (x̄−i −mi, x̄

−
i−1 − µi−1), which is well defined as proved by proposition

6.4.1, the xi-vector field becomes: ẋi(x̄−i −mi, x̄
−
i−1−µi−1) = κ0i +κih+(x̄−i−1−µi−1, θi−1, ni−1)−

γi(x̄−i −mi). With the definition of µi−1 = x̄−i−1 − φi
((
γi(x̄−i −mi)− κ0i

)
/κi
)
, the xi-vector field

further becomes: ẋi(x̄−i −mi, x̄
−
i−1−µi−1) = κ0i+κih+ (φi ((γi(x̄−i −mi)− κ0i

)
/κi
)
, θi−1, ni−1

)
−

γi(x̄−i −mi). From property 6.4.1 and proposition 6.4.1:
ẋi(x̄−i −mi, x̄

−
i−1−µi−1) = κ0i+κi

((
γi(x̄−i −mi)− κ0i

)
/κi
)
−γi(x̄−i −mi). Then ẋi(x̄−i −mi, x̄

−
i−1−

µi−1) = 0. Now, the strictly monotonic property of the increasing Hill function implies that
for all xi−1 ≥ x̄−i−1 − µi−1, h+(xi−1, θi−1, ni−1) ≥ h+(x̄−i−1 − µi−1, θi−1, ni−1) ≥ 0. In the xi-
vector field, for xi fixed, this property induces ẋi(x̄−i −mi, xi−1) ≥ ẋi(x̄−i −mi, x̄

−
i−1 − µi−1) = 0

for all xi−1 ≥ x̄−i−1 − µi−1. In particular, as x̄−i−1 − mi−1 ≥ x̄−i−1 − µi−1, then for all xi−1 ∈
[x̄−i−1 −mi−1, x̄

−
i−1 + Mi−1], the xi-vector field is positive: ẋi(x̄−i −mi, xi−1) ≥ 0. This inequality

means that a trajectory that starts in the region B− cannot leave the region through the boundary
xi = x̄−i −mi.

Second, for all i ∈ {2, ..., N}, ẋi(xi, xi−1) = κ0i + κih+(xi−1, θi−1, ni−1) − γixi. Then, when
evaluating this expression at the point (x̄−i + Mi, x̄

−
i−1 + αi−1), which is well defined as proved by

the proposition 6.4.1, the xi-vector field becomes: ẋi(x̄−i + Mi, x̄
−
i−1 + αi−1) = κ0i + κih+(x̄−i−1 +

αi−1, θi−1, ni−1)− γi(x̄−i +Mi). With the definition of αi−1 = φi
((
γi(x̄−i +Mi)− κ0i

)
/κi
)
− x̄−i−1,

the xi-vector field further becomes:
ẋi(x̄−i +Mi, x̄

−
i−1+αi−1) = κ0i+κih+ (φi ((γi(x̄−i +Mi)− κ0i

)
/κi
)
, θi−1, ni−1

)
−γi(x̄−i +Mi). From

property 6.4.1 and proposition 6.4.1: ẋi(x̄−i +Mi, x̄
−
i−1+αi−1) = κ0i+κi

((
γi(x̄−i +Mi)− κ0i

)
/κi
)
−

γi(x̄−i + Mi). Then ẋi(x̄−i + Mi, x̄
−
i−1 + αi−1) = 0. Now, the strictly monotonic property of the
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increasing Hill function implies that for all 0 ≤ xi−1 ≤ x̄−i−1 + αi−1, 0 ≤ h+(xi−1, θi−1, ni−1) ≤
h+(x̄−i−1 + αi−1, θi−1, ni−1). In the xi-vector field, for xi fixed, this property induces ẋi(x̄−i +
Mi, xi−1) ≤ ẋi(x̄−i + Mi, x̄

−
i−1 + αi−1) = 0 for all 0 ≤ xi−1 ≤ x̄−i−1 + αi−1. In particular, as

x̄−i−1 + Mi−1 ≤ x̄−i−1 + αi−1, then for all xi−1 ∈ [x̄−i−1 −mi−1, x̄
−
i−1 + Mi−1] the xi-vector field is

negative: ẋi(x̄−i +Mi, xi−1) ≤ 0. This inequality means that a trajectory that starts in the region
B− cannot leave the region through the boundary xi = x̄−i +Mi.

Third, when x1 = x̄−1 + M1 > x̄−1 , the x1-vector field is defined as: ẋ1(x̄−1 + M1, xN ) = κ01 +
uminκ1h−(xN , θN , nN ) − γ1(x̄−1 + M1). With the condition on umin given in assumption 6.3.1,
namely umin ≤ (γ1x̄

−
1 − κ01)/κ1, then:

ẋ1(x̄−1 +M1, xN ) ≤ κ01 +
((
γ1x̄
−
1 − κ01

)
/κ1
)
κ1h−(xN , θN , nN )− γ1(x̄−1 +M1), leading to ẋ1(x̄−1 +

M1, xN ) ≤ (γ1x̄
−
1 − κ01)

(
h−(xN , θN , nN )− 1

)
− γ1M1. From proposition 3.2.8, γ1x̄

−
1 − κ01 > 0,

moreover h−(xN , θN , nN ) − 1 ≤ 0, and −γ1M1 < 0. Then, the x1-vector field is strictly negative:
ẋ1(x̄−1 +M1, xN ) < 0 for all xN ≥ 0. In particular, for all xN ∈ [x̄−N −mN , x̄

−
N +MN ], the x1-vector

field is strictly negative: ẋ1(x̄−1 +M1, xN ) < 0. This inequality means that a trajectory that starts
in the region B− cannot leave the region through the boundary x1 = x̄−1 +M1.

Fourth, when x1 = x̄−1 − m1 < x̄−1 , the x1-vector field is defined as: ẋ1(x̄−1 − m1, xN ) = κ01 +
κ1h−(xN , θN , nN ) − γ1(x̄−1 − m1). Then, when evaluating this expression at the point (x̄−1 −
m1, x̄

−
N +αN ), which is well defined as proved by the proposition 6.4.1, the x1-vector field becomes:

ẋi(x̄−1 − m1, x̄
−
N + αN ) = κ01 + κ1h−(x̄−N + αN , θN , nN ) − γ1(x̄−1 − m1). With the definition of

αN = φ−1
((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
− x̄−N , the x1-vector field further becomes: ẋ1(x̄−1 −m1, x̄

−
N +

αN ) = κ01 +κ1h−
(
φ−1
((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
, θN , nN

)
−γ1(x̄−1 −m1). From property 6.4.1 and

proposition 6.4.1, ẋ1(x̄−1 −m1, x̄
−
N +αN ) = κ01 +κ1

((
γ1(x̄−1 −m1)− κ01

)
/κ1
)
−γ1(x̄−1 −m1). Then

ẋ1(x̄−1 −m1, x̄
−
N + αN ) = 0. Now, the strictly monotonic property of the decreasing Hill function

implies that for all 0 ≤ xN ≤ x̄−N + αN , h−(xN , θN , nN ) ≥ h−(x̄−N + αN , θN , nN ) > 0. In the x1-
vector field, for x1 fixed, this property induces ẋ1(x̄−1 −m1, xN ) ≥ ẋ1(x̄−1 −m1, x̄

−
N +αN ) = 0 for all

0 ≤ xN ≤ x̄−N +αN . In particular, as x̄−N +MN ≤ x̄−N +αN , then for all xN ∈ [x̄−N −mN , x̄
−
N +MN ]

the x1-vector field is positive: ẋ1(x̄−1 −m1, xN ) ≥ 0. This inequality means that a trajectory that
starts in the region B− cannot leave the region through the boundary x1 = x̄−1 −m1.

Finally, if x(0) ∈ B− then x(t) ∈ B− ∀ t ≥ 0. The region B− is invariant.

C.3 Proof of proposition 6.4.3
Proof. The proof is built with two mathematical inductions:

As a first base case, µN = min
(
δ, x̄+

N − xNmin
)
> 0 and mN = µN with definition 6.4.6. From

definition 6.4.5, x̄+
N − µN < x̄+

N . Moreover, under assumption 6.4.3, x̄+
N − µN ≥ x̄

+
N − δ > κ0N/γN .

Finally κ0N/γN < x̄+
N −mN < x̄+

N .

Assume that the property µj+1 > 0 and κ0j+1/γj+1 < x̄+
j+1 −mj+1 < x̄+

j+1 holds for one natural
number j + 1 ∈ {2, ..., N}. Then from proposition 3.2.8, κ0j+1/γj+1 < x̄+

j+1 − mj+1 < x̄+
j+1 <

(κ0j+1 + κj+1)/γj+1 implies that:
0 <

(
γj+1(x̄+

j+1 −mj+1)− κ0j+1
)
/κj+1 <

(
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1 < 1. From property 6.4.1, the

use of the monotonically increasing function φj+1 in the inequality gives:
φj+1(0) < φj+1

((
γj+1(x̄+

j+1 −mj+1)− κ0j+1
)
/κj+1

)
< φj+1

((
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1

)
. With

φj+1(0) = 0 and φj+1
((
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1

)
= x̄+

j , this implies:
0 < φj+1

((
γj+1(x̄+

j+1 −mj+1)− κ0j+1
)
/κj+1

)
< x̄+

j .
Then, x̄+

j − φj+1
((
γj+1(x̄+

j+1 −mj+1)− κ0j+1
)
/κj+1

)
> 0. Finally, from definition 6.4.6, µj > 0.

As a consequence, x̄+
j − µj < x̄+

j and under assumption 6.4.3, κ0j/γj < x̄+
j − δ < x̄+

j . As mj =
min (δ, µj), the desired inequality κ0j/γj < x̄+

j −mj < x̄+
j holds.
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Then, if the property holds for one natural number j + 1 ∈ {2, ..., N}, it also holds for j. By a
mathematical induction, µi > 0 and κ0i/γi < x̄+

i −mi < x̄+
i for all i ∈ {N, ..., 1}.

As a second base case, αN = min
(
δ, xNmax − x̄+

N

)
> 0 and MN = αN with definition 6.4.6.

From definition 6.4.5, x̄+
N + αN > x̄+

N . Moreover, under assumption 6.4.3, x̄+
N + αN ≤ x̄+

N + δ <
(κ0N + κN )/γN . Finally x̄+

N < x̄+
N +MN < (κ0N + κN )/γN .

Assume that the property αj+1 > 0 and x̄+
j+1 < x̄+

j+1 + Mj+1 < (κ0j+1 + κj+1)/γj+1 holds
for one natural number j + 1 ∈ {3, ..., N}. Then from proposition 3.2.8, κ0j+1/γj+1 ≤ x̄+

j+1 <

x̄+
j+1 +Mj+1 < (κ0j+1 + κj+1)/γj+1 implies that:

0 ≤
(
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1 <

(
γj+1(x̄+

j+1 +Mj+1)− κ0j+1
)
/κj+1 < 1. From property 6.4.1,

the use of the monotonically increasing function φj+1 in the inequality gives:
φj+1(0) ≤ φj+1

((
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1

)
< φj+1

((
γj+1(x̄+

j+1 +Mj+1)− κ0j+1
)
/κj+1

)
. With

φj+1(0) = 0 and φj+1
((
γj+1x̄

+
j+1 − κ0j+1

)
/κj+1

)
= x̄+

j , this implies:
0 ≤ x̄+

j < φj+1
((
γj+1(x̄+

j+1 +Mj+1)− κ0j+1
)
/κj+1

)
.

Then, φj+1
((
γj+1(x̄+

j+1 +Mj+1)− κ0j+1
)
/κj+1

)
− x̄+

j > 0. Finally, from the definition 6.4.6,
αj > 0. As a consequence, x̄+

j +αj > x̄+
j and under assumption 6.4.3, x̄+

j < x̄+
j +δ < (κ0j +κj)/γj .

As Mj = min (δ, αj), the desired inequality x̄+
j < x̄+

j +Mj < (κ0j + κj)/γj holds.

Then, if the property holds for one natural number j + 1 ∈ {3, ..., N}, it also holds for j. By a
mathematical induction, αi > 0 and x̄+

i < x̄+
i +Mi < (κ0i + κi)/γi for all i ∈ {N, ..., 2}.

For i = 1, the same steps are followed. The inequality κ02/γ2 ≤ x̄+
2 < x̄+

2 + M2 < (κ02 + κ2)/γ2
implies that 0 ≤

(
γ2x̄

+
2 − κ02

)
/κ2 <

(
γ2(x̄+

2 +M2)− κ02
)
/κ2 < 1. From property 6.4.1, the use of

the monotonically increasing function φ2 in the inequality gives: φ2(0) ≤ φ2
((
γ2x̄

+
2 − κ02

)
/κ2
)
<

φ2
((
γ2(x̄+

2 +M2)− κ02
)
/κ2
)
. With φ2(0) = 0 and φ2

((
γ2x̄

+
2 − κ02

)
/κ2
)

= x̄+
1 , this implies:

0 ≤ x̄+
1 < φ2

((
γ2(x̄+

2 +M2)− κ02
)
/κ2
)
. Then, φ2

((
γ2(x̄+

2 +M2)− κ02
)
/κ2
)
− x̄+

1 > 0. Finally,
from the definition 6.4.6, α1 > 0. As a consequence, x̄+

1 + α1 > x̄+
1 and under assumption 6.4.3,

x̄+
1 < x̄+

1 + δ. As M1 = min (δ, α1), then x̄+
1 < x̄+

1 + M1 holds. Moreover, if 1 > umin >
(γ1x̄

+
1 −κ01)/κ1, then from assumption 6.4.3, x̄+

1 < x̄+
1 + δ < (κ01 +uminκ1)/γ1, and it follows that

x̄+
1 < x̄+

1 +M1 < (κ01 + uminκ1)/γ1.

C.4 Proof of lemma 6.4.3
Proof. The proof of this lemma is really similar to the equivalent proof for the negative loop in
appendix C.2. It is shown that the boundaries of the region B+ are repellent, i.e.:

• ẋi(x̄+
i −mi, xi−1) ≥ 0 ∀ xi−1 ∈ [x̄+

i−1 −mi−1, x̄
+
i−1 +Mi−1] ∀ i ∈ {1, ..., N},

• ẋi(x̄+
i +Mi, xi−1) ≤ 0 ∀ xi−1 ∈ [x̄+

i−1 −mi−1, x̄
+
i−1 +Mi−1] ∀ i ∈ {1, ..., N}.

In order to prove that ẋi(x̄+
i −mi, xi−1) ≥ 0 ∀ xi−1 ∈ [x̄+

i−1 −mi−1, x̄
+
i−1 +Mi−1] ∀ i ∈ {2, ..., N},

and ẋi(x̄+
i + Mi, xi−1) ≤ 0 ∀ xi−1 ∈ [x̄+

i−1 − mi−1, x̄
+
i−1 + Mi−1] ∀ i ∈ {2, ..., N}, then the same

steps explained for the negative loop in the proof of lemma 6.4.1 can be reproduced by replacing
all x̄− by x̄+.

When x1 = x̄+
1 +M1 > x̄+

1 , the x1-vector field is defined as:
ẋ1(x̄+

1 + M1, xN ) = κ01 + uminκ1h+(xN , θN , nN ) − γ1(x̄+
1 + M1). Then, when evaluating this

expression at the point (x̄+
1 + M1, xNmax), the x1-vector field becomes: ẋ1(x̄+

1 + M1, xNmax) =
κ01 + uminκ1h+(xNmax, θN , nN )− γ1(x̄+

1 +M1). Two cases appear now depending on the value of
umin.
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First case, if 1 > umin > (γ1x̄
+
1 − κ01)/κ1 then xNmax = φ+

1
(
(γ1x̄

+
1 − κ01)/(uminκ1)

)
. In this

case, the x1-vector field further becomes:
ẋ1(x̄+

1 +M1, xNmax) = κ01 +uminκ1h+(φ+
1
(
(γ1x̄

+
1 − κ01)/(uminκ1)

)
, θN , nN )−γ1(x̄+

1 +M1). From
property 6.4.1 and proposition 6.4.3, ẋ1(x̄+

1 +M1, xNmax) = κ01+uminκ1
(
(γ1x̄

+
1 − κ01)/(uminκ1)

)
−

γ1(x̄+
1 +M1). Then, ẋ1(x̄+

1 +M1, xNmax) = −γ1M1 < 0. Now, the strictly monotonic property of the
increasing Hill function implies that for all xN ≤ xNmax, h+(xN , θN , nN ) ≤ h+(xNmax, θN , nN ) ≤ 0.
In the x1-vector field, for x1 fixed, this property induces ẋ1(x̄+

1 +M1, xN ) ≤ ẋ1(x̄+
1 +M1, xNmax) < 0

for all xN ≤ xNmax. In particular, as x̄+
N +MN ≤ xNmax, then for all xN ∈ [x̄+

N −mN , x̄
+
N +MN ]

the x1-vector field is negative: ẋ1(x̄+
1 +M1, xN ) ≤ 0. This inequality means that a trajectory that

starts in the region B+ cannot leave the region through the boundary x1 = x̄+
1 + M1 in the first

case.

Second case, umin ≤ (γ1x̄
+
1 − κ01)/κ1. In this case, the x1-vector field becomes: ẋ1(x1, xN ) =

κ01 + uminκ1h+(xN , θN , nN ) − γ1(x̄+
1 + M1). By evaluating this expression on the wall x1 =

x̄+
1 and using the condition on umin, the following inequality comes up: ẋ1(x̄+

1 , xN ) ≤ (κ01 −
γ1x̄1)

(
1− h+(xN , θN , nN )

)
. The properties of the system explained in proposition 3.2.8 gives x̄+

1 ∈
[κ01/γ1, (κ01 + κ1) /γ1[ and the increasing Hill function meets the condition h+(xN , θN , nN ) ∈ [0, 1[.
This induces ẋ1(x̄+

1 , xN ) ≤ 0. Moreover, for xN fixed and x1 > x̄+
1 , the linear degradation term

−γ1x1 in the x1-vector field expression gives: ẋ1(x1, xN ) < ẋ1(x̄+
1 , xN ) ≤ 0. Hence, ẋ1(x1, xN ) < 0

∀ xN ≥ 0 and ∀ x1 > x̄+
1 . In particular, for all xN ∈ [x̄+

N −mN , x̄
+
N + MN ] the x1-vector field is

negative: ẋ1(x̄+
1 + M1, xN ) ≤ 0. This inequality means that a trajectory that starts in the region

B+ cannot leave the region through the boundary x1 = x̄+
1 +M1 in the second case.

When x1 = x̄+
1 −m1 < x̄+

1 , the x1-vector field is defined as:
ẋ1(x̄+

1 − m1, xN ) = κ01 + umaxκ1h+(xN , θN , nN ) − γ1(x̄+
1 − m1). Then, when evaluating this

expression at the point (x̄+
1 − m1, xNmin), the x1-vector field becomes: ẋ1(x̄+

1 − m1, xNmin) =
κ01 + umaxκ1h+(xNmin, θN , nN )− γ1(x̄+

1 −m1).
With the definition of xNmin = φ+

1
(
(γ1x̄

+
1 − κ01)/(umaxκ1)

)
, the x1-vector field further becomes

ẋ1(x̄+
1 −m1, xNmin) = κ01 +umaxκ1h+(φ+

1
(
(γ1x̄

+
1 − κ01)/(umaxκ1)

)
, θN , nN )−γ1(x̄+

1 −m1). From
property 6.4.1 and proposition 6.4.3, ẋ1(x̄+

1 −m1, xNmin) = κ01+umaxκ1
(
(γ1x̄

+
1 − κ01)/(umaxκ1)

)
−

γ1(x̄+
1 −m1). Then, ẋ1(x̄+

1 −m1, xNmin) = γ1m1 > 0. Now, the strictly monotonic property of the
increasing Hill function implies that for all xN ≥ xNmin, h+(xN , θN , nN ) ≥ h+(xNmin, θN , nN ) ≥ 0.
In the x1-vector field, for x1 fixed, this property induces ẋ1(x̄+

1 −m1, xN ) ≥ ẋ1(x̄+
1 −m1, xNmin) > 0

for all xN ≥ xNmin. In particular, as x̄+
N −mN ≥ xNmin, then for all xN ∈ [x̄+

N −mN , x̄
+
N +MN ]

the x1-vector field is positive: ẋ1(x̄+
1 −m1, xN ) ≥ 0. This inequality means that a trajectory that

starts in the region B+ cannot leave the region through the boundary x1 = x̄+
1 −m1.

Finally, if x(0) ∈ B+ then x(t) ∈ B+ ∀ t ≥ 0. The region B+ is invariant.
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Appendix D

Supplementary material of chapter
8

D.1 Proof of lemma 8.3.1
Proof. For the proof if this lemma, the influence of n on the function Z∗1n is investigated.

First, as a reminder, from the proof of proposition 8.2.1, Hn(x) ≥ 0 ⇐⇒ x ≥ κ01/γ1 and
Hn(κ01/γ1) = 0. Moreover, for x ≥ κ01/γ1, Hn is strictly increasing. From assumption 8.3.1,
α = 1/h−(x̄∗1, θ, n) = (θn+(x̄∗1)n)/θn, leading to Hn(x̄∗1) = (γ1x̄

∗
1−κ01)/κ1 = h∗(x̄∗N , θN , nN ). This

implies that Hn(x̄∗1) and Hn(κ01/γ1) neither depend on θ nor n. The influence of the parameter n
on Hn is investigated:

∂Hn

∂n
(x) = (γ1x− κ01)

κ1

[
θn(x̄∗1)n ln( θ

x̄∗1
) + xnθn ln(xθ ) + xn(x̄∗1)n ln( xx̄∗1 )

(θn + (x̄∗1)n)2

]
.

Again, the study of this dependence is important for x ≥ κ01/γ1, leading to (γ1x− κ01) /κ1 ≥ 0.
With these conditions, ∂Hn/∂n ≥ 0 ⇔ [θn(x̄∗1)n ln(θ/x̄∗1) + xnθn ln(x/θ) + xn(x̄∗1)n ln(x/x̄∗1)] ≥
0⇔ h(x) ≥ θn(x̄∗1)n ln(x̄∗1/θ), where h(x) = xnθn ln(x/θ) + xn(x̄∗1)n ln(x/x̄∗1). This new function h
can be studied:

∂h

∂x
= xn−1

[
nθn ln(x

θ
) + (x̄∗1)nn ln( x

x̄∗1
) + θn + (x̄∗1)n

]
.

From this expression it is possible to deduce that:

∂h

∂x
≥ 0⇔ nθn ln(x

θ
) + n(x̄∗1)n ln( x

x̄∗1
) + θn + (x̄∗1)n ≥ 0

⇔ x ≥ exp
(
θn ln(θ) + (x̄∗1)n ln(x̄∗1)

θn + (x̄∗1)n − 1
n

)
= X1

The function h also satisfies: h(0) = 0, lim
x→+∞

h(x) = +∞ and h(x̄∗1) = θn(x̄∗1)n ln(x̄∗1/θ). The
function h is decreasing and negative until x = X1 and then starts increasing for x > X1, and
eventually becomes positive .

Now, the hypothesis θ < x̄∗1 on lemma 8.3.1 gives: h(x̄∗1) = θn(x̄∗1)n ln(x̄∗1/θ) > 0, leading to h(x) ≥
θn(x̄∗1)n ln(x̄∗1/θ)⇔ x ≥ x̄∗1. Hence, for x ≥ κ01/γ1, from the previous equivalence ∂Hn/∂n ≥ 0⇔
h(x) ≥ θn(x̄∗1)n ln(x̄∗1/θ), it is possible to conclude that ∂Hn/∂n > 0 ⇔ x > x̄∗1. Consequently, for
κ01/γ1 < x < x̄∗1, ∂Hn/∂n < 0.

In the end, with θ < x̄∗1, an increase of parameter n decreases the function Hn for κ01/γ1 < x <
x̄∗1 and increases Hn for x > x̄∗1. Moreover, it is possible to check that for κ01/γ1 < x < x̄∗1,

151



104 6 8 125 7 9 11 13

0

1

0.2

0.4

0.6

0.8

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

10

4

6

8

12

5

7

9

11

13

Figure D.1.1: Left: influence of n on the function Hn(x). As explained in the proof, when n
increases, the function decreases if x < x̄∗1 and increases if x > x̄∗1. Right: influence of n on the
function H−1

n (x). The variation is deduced from that of Hn(x).

Hn(x) −→
n→+∞

0 and for x > x̄∗1, Hn(x) −→
n→+∞

+∞. An illustration of this is shown in the left plot
of figure D.1.1.

Now from this result on Hn, the influence of n on its inverse H−1
n and on H∗1n can be investigated.

For more clarity, the notations Hn(x, n) and H−1
n (x, n) will be used. By definition of the inverse

function: H−1
n (Hn(x, n), n) = G(x, n) = x. Hence:

∂G

∂n
(x, n) = 0.

At the same time, the definition of partial derivatives for a function with several variables can be
applied:

∂G

∂n
(x, n) = ∂H−1

n

∂x
(Hn(x, n), n)× ∂Hn

∂n
(x, n) + ∂H−1

n

∂n
(Hn(x, n), n) = 0.

It follows that:

∂H−1
n

∂n
(Hn(x, n), n) = −∂H

−1
n

∂x
(Hn(x, n), n)× ∂Hn

∂n
(x, n) .

As H−1
n and Hn are increasing functions, ∂H−1

n /∂x (H(x, n), n) ≥ 0.

For any κ01/γ1 < x < x̄∗1, Hn(x, n) < Hn(x̄∗1, n) = h∗(x̄∗N , θN , nN ), and ∂Hn/∂n (x, n) < 0 from
the previous calculations. Hence ∀ y < h∗(x̄∗N , θN , nN ), ∂H−1

n /∂n (y, n) > 0.

Similarly, for any x > x̄∗1, Hn(x, n) > Hn(x̄∗1, n) = h∗(x̄∗N , θN , nN ), and ∂Hn/∂n (x, n) > 0 from
the previous calculations. Hence ∀ y > h∗(x̄∗N , θN , nN ), ∂H−1

n /∂n (y, n) < 0.

It follows that H−1
n (x) increases with n when x < h∗(x̄∗N , θN , nN ) and H−1

n (x) decreases with n
when x > h∗(x̄∗N , θN , nN ). Moreover, from the limits of Hn when n tends to infinity, it is possible to
conclude that for x > 0 and x 6= h∗(x̄∗N , θN , nN ), H−1

n (x) −→
n→+∞

x̄∗1, andH−1
n (h∗(x̄∗N , θN , nN )) = x̄∗1.

An illustration of this is shown in the right plot of figure D.1.1.

These results about the influence of n on H−1
n are essential in order to determine the influence

of n on the nullcline H∗1n. Indeed, ∂H∗1n/∂n(x) = ∂H−1
n /∂n(h∗(x, θN , nN )). Two cases appear

depending on the loop:
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Figure D.1.2: The three plots concern the negative feedback loop. The functions of the uncontrolled
system are depicted in blue, and for system (8.2.1) with synthetic modification (8.2.2) the functions
are depicted in red. Left: influence of n on the x1-nullcline H−1n. Middle: influence of n on the
composition of nullclines S−1n. Right: influence of n on F−1n. For n large enough, x̄−1 is the unique
fixed point.

• For the positive loop, for any x < x̄+
N , h+(x, θN , nN ) < h+(x̄+

N , θN , nN ).
Hence, ∂H−1

n /∂n
(
h+(x, θN , nN ), n

)
> 0. Finally, for any x < x̄+

N , ∂H+
1n/∂n(x) > 0. Simi-

larly, for any x > x̄+
N , h+(x, θN , nN ) > h+(x̄+

N , θN , nN ).
Hence, ∂H−1

n /∂n
(
h+(x, θN , nN ), n

)
< 0. Finally, for any x > x̄+

N , ∂H+
1n/∂n(x) < 0. It follows

that H+
1n(x) increases with n when x < x̄+

N and H+
1n(x) decreases with n when x > x̄+

N . The
x1-nullcline converges towards to fixed point x̄+

1 when n increases.

• For the negative loop, for any x < x̄−N , h−(x, θN , nN ) > h−(x̄−N , θN , nN ).
Hence, ∂H−1

n /∂n
(
h−(x, θN , nN ), n

)
< 0. Finally, for any x < x̄−N , ∂H−1n/∂n(x) < 0. Simi-

larly, for any x > x̄−N , h−(x, θN , nN ) < h−(x̄−N , θN , nN ).
Hence, ∂H−1

n /∂n
(
h−(x, θN , nN ), n

)
> 0. Finally, for any x > x̄−N , ∂H−1n/∂n(x) > 0. It follows

that H−1n(x) decreases with n when x < x̄−N and H−1n(x) increases with n when x > x̄+
N . The

x1-nullcline converges towards to fixed point x̄−1 when n increases.

An illustration of these results for the negative loop are shown in the left plot of figure D.1.2. For
the positive loop, the illustrations are exactly the same with increasing functions.

It is straightforward to see that ∂S∗1n/∂n(x) = ∂H∗1n/∂n (HN ◦ ... ◦H2(x)) from the definition of
S∗1n. From the dependence of H∗1n on n, the influence of n on S∗1n is easily induced for both loops:

• For the positive loop, for any x < x̄+
1 , HN ◦ ... ◦H2(x) < HN ◦ ... ◦H2(x̄+

1 ) = x̄+
N .

Hence, ∂H+
1n/∂n (HN ◦ ... ◦H2(x)) > 0. Finally, for any x < x̄+

1 , ∂S+
1n/∂n(x) > 0. Similarly,

for any x > x̄+
1 , HN ◦ ... ◦H2(x) > HN ◦ ... ◦H2(x̄+

1 ) = x̄+
N .

Hence, ∂H+
1n/∂n (HN ◦ ... ◦H2(x)) < 0. Finally, for any x > x̄+

1 , ∂S+
1n/∂n(x) < 0. It follows

that S+
1n(x) increases with n when x < x̄+

1 and S+
1n(x) decreases with n when x > x̄+

1 . The
increasing function S+

1n converges towards the fixed point x̄+
1 when n increases.

• For the negative loop, for any x < x̄−1 , HN ◦ ... ◦H2(x) < HN ◦ ... ◦H2(x̄−1 ) = x̄−N .
Hence, ∂H−1n/∂n (HN ◦ ... ◦H2(x)) < 0. Finally, for any x < x̄−1 , ∂S−1n/∂n(x) < 0. Similarly,
for any x > x̄−1 , HN ◦ ... ◦H2(x) > HN ◦ ... ◦H2(x̄−1 ) = x̄−N .
Hence, ∂H−1n/∂n (HN ◦ ... ◦H2(x)) > 0. Finally, for any x > x̄−1 , ∂S−1n/∂n(x) > 0. It follows
that S−1n(x) decreases with n when x < x̄−1 and S−1n(x) increases with n when x > x̄−1 . The
decreasing function S−1n converges towards the fixed point x̄−1 when n increases.

An illustration of these results for the negative loop are shown in the middle plot of figure D.1.2.
For the positive loop, the illustrations are the same with increasing functions.
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At this point, it is possible to conclude that if assumption 8.3.1 holds and with the condition θ < x̄+
1 ,

then there exists ñ+ such that for any n > ñ+, the function S+
1n verifies: S+

1n(x) > x for any x < x̄+
1 ,

S+
1n(x) < x for any x > x̄+

1 , and S+
1n(x̄+

1 ) = x̄+
1 . Hence, lemma 8.3.1 is proved for the positive loop.

For the negative loop, the influence of n on F−1n must be investigated. The notation F−1n(x, n) =
S−1n

(
S−1n(x, n), n

)
will be used for more clarity. The definition of partial derivatives for functions

with several variables is used:

∂F−1n
∂n

(x, n) = ∂S−1n
∂x

(
S−1n(x, n), n

)
× ∂S−1n

∂n
(x, n) + ∂S−1n

∂n

(
S−1n(x, n), n

)
.

As a reminder, for any x ≥ 0, S−1n is a decreasing function, hence: ∂S−1n/∂x
(
S−1n(x, n), n

)
< 0

for any x > 0. Now, assume that x < x̄−1 , then from the definition of S−1n, S−1n(x) > x̄−1 . From
the previous results, it follows that ∂S−1n/∂n (x, n) < 0 and ∂S−1n/∂n

(
S−1n(x, n), n

)
> 0. Hence,

∂F−1n/∂n(x, n) =(-)×(-)+(+). Finally, for any x < x̄−1 , ∂F−1n/∂n(x, n) > 0. Similarly, assume that
x > x̄−1 , then from the definition of S−1n, S−1n(x) < x̄−1 . From the previous results, it follows that
∂S−1n/∂n (x, n) > 0 and ∂S−1n/∂n

(
S−1n(x, n), n

)
< 0. Hence, ∂F−1n/∂n(x, n) =(-)×(+)+(-). Finally,

for any x > x̄−1 , ∂F−1n/∂n(x, n) < 0. It follows that F−1n(x) increases with n when x < x̄−1 and
F−1n(x) decreases with n when x > x̄−1 . In conclusion, the increasing function F−1n converges towards
the fixed point x̄−1 when n increases.

An illustration of this result is presented in the right plot of figure D.1.2. Finally, it is possible to
conclude that if assumption 8.3.1 holds and with the condition θ < x̄−1 , then there exists ñ− such
that for any n > ñ−, the function F−1n satisfies: F−1n(x) > x for any x < x̄−1 , F−1n(x) < x for any
x > x̄−1 , and F−1n(x̄−1 ) = x̄−1 . Hence, lemma 8.3.1 is proved for the negative loop.

154



Appendix E

Supplementary material of chapter
9

E.1 Proof of lemma 9.3.1
Proof. Four cases will be treated separately:

• Case 1A: P−(X) has even degree 2n and n is even,

• Case 1B: P−(X) has even degree 2n and n is odd,

• Case 2A: P−(X) has odd degree 2n+ 1 and n is odd,

• Case 2B: P−(X) has odd degree 2n+ 1 and n is even.

It is first assumed that P−(X) has even degree 2n. The polynomial P−(X) is developed:

P−(X) = a1,1X
2n + a2,1X

2n−1 + a1,2X
2n−2 + a2,2X

2n−3 + ...+ a1,nX
2 + a2,nX + a1,n+1.

Its associated Routh table is:

a1,1 a1,2 a1,3 · · · · · · · · · a1,n−1 a1,n a1,n+1
a2,1 a2,2 a2,3 · · · · · · · · · a2,n−1 a2,n 0
a3,1 a3,2 a3,3 · · · · · · · · · a3,n−1 a3,n 0
a4,1 a4,2 a4,3 · · · · · · · · · a4,n−1 0
a5,1 a5,2 a5,3 · · · · · · a5,n−2 a5,n−1 0
a6,1 a6,2 a6,3 · · · a6,n−3 a6,n−2 0
...

...
a2n,1 0
a2n+1,1 0

Similarly, the polynomial R(X) = P−(X) +A, with A ≥ 0 can be developed:

R(X) = a1,1X
2n + a2,1X

2n−1 + a1,2X
2n−2 + a2,2X

2n−3 + ...+ a1,nX
2 + a2,nX + a1,n+1 +A.

With ai,j = (−1/ai−1,1) [ai−2,1ai−1,j+1−ai−1,1ai−2,j+1] ∀ i ∈ {3, ..., 2n+ 1} and ∀ j ∈ {1, ..., n+ 1},
its associated Routh table can be inferred from that of P−(X):
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a1,1 a1,2 a1,3 · · · · · · · · · a1,n−1 a1,n a1,n+1 +A
a2,1 a2,2 a2,3 · · · · · · · · · a2,n−1 a2,n 0
a3,1 a3,2 a3,3 · · · · · · · · · a3,n−1 ã3,n 0
a4,1 a4,2 a4,3 · · · · · · · · · ã4,n−1 0
a5,1 a5,2 a5,3 · · · · · · ã5,n−2 ã5,n−1 0
a6,1 a6,2 a6,3 · · · ã6,n−3 ã6,n−2 0
...

...
ã2n,1 0
ã2n+1,1 0

where the terms in bold are those that are perturbed from the addition of A, and are therefore
different from the equivalent term in the Routh table of P−(X). It is possible to observe that from
the row i = 3, the perturbation shifts left at each new row. It means that n rows are needed before
the perturbation reaches the first term in the first column, which is ãn+2,1.

Moreover, it is possible to show by induction the following property:

“H1: if i ≤ n + 2, any term in the i-th row of the Routh table of R(X) can be expressed as:
ãi,j = ai,j − αi,jA if i is even, and ãi,j = ai,j + αi,jA if i is odd, with αi,j ≥ 0. When αi,j = 0, the
term is not perturbed.”

Indeed, as a base case, ã3,n = (−1/a2,1) [a1,10− a2,1(a1,n+1 +A)] = (−1/a2,1) [a1,10− a2,1a1,n+1] +
A = a3,n + α3,nA, with α3,n = 1 > 0. All the other terms in the row i = 3 are not perturbed. It
is assumed that H1 is true until row 3 < i ≤ n + 2. Then any term in this row verifies: ãi,j =
(−1/ai−1,1) [ai−2,1ãi−1,j+1 − ai−1,1ãi−2,j+1] (the terms a∗,1 are not perturbed because i ≤ n + 2).
Then, from H1, two cases appear:

• if i is even: ãi,j = (−1/ai−1,1) [ai−2,1(ai−1,j+1 + αi−1,j+1A) − ai−1,1(ai−2,j+1 − αi−2,j+1A)],
and then by developing ãi,j = ai,j−(1/ai−1,1) [ai−2,1αi−1,j+1+ai−1,1αi−2,j+1]A = ai,j−αi,jA.
From proposition 9.3.3, αi,j ≥ 0.

• if i is odd: ãi,j = (−1/ai−1,1) [ai−2,1(ai−1,j+1−αi−1,j+1A)−ai−1,1(ai−2,j+1+αi−2,j+1A)], and
then by developing ãi,j = ai,j + (1/ai−1,1) [ai−2,1αi−1,j+1 + ai−1,1αi−2,j+1]A = ai,j + αi,jA.
From proposition 9.3.3, αi,j ≥ 0.

By induction, H1 is proved.

Now, it is possible to distinguish the two cases 1A and 1B. First, it is assumed that n is
even. In this case, the line i = n + 2 for which the perturbation reaches the first column is even.
It follows from H1 that ãn+2,1 = an+2,1 − αn+2,1A. In this case, it is straightforward to see that
there exists Ã > 0 such that ∀ A > Ã, ãn+2,1 < 0. Hence, there is a change of sign in the first
column of the Routh table of R(X), and lemma 9.3.1 is proved in case 1A.

If n is odd, the line i = n+ 2 for which the perturbation reaches the first column is odd. It follows
from H1 that ãn+2,1 = an+2,1 + αn+2,1A. Hence, ãn+2,1 will never change sign, no matter the
value of A. In this case, the bottom term ãn+3,1 in the first column is investigated: ãn+3,1 =
(−1/ãn+2,1) [an+1,1ãn+2,2 − ãn+2,1ãn+1,2].
From H1, ãn+3,1 = (−1/(an+2,1 + αn+2,1A)) [an+1,1(an+2,2+αn+2,2A)−(an+2,1+αn+2,1A)(an+1,2−
αn+1,2A)]. By developing and using [an+1,1an+2,2 − an+2,1an+1,2] = −an+3,1an+2,1 < 0, the
perturbed term becomes: ãn+3,1 = (−1/(an+2,1 + αn+2,1A)) ×

[
A2c1 +Ac2 + c3

]
, where c1 =

αn+2,1αn+1,2 > 0, c3 = −an+3,1an+2,1 < 0 from proposition 9.3.3, and c2 = an+1,1αn+2,2 +
an+2,1αn+1,2−αn+2,1an+1,2. Then, there exists Ã > 0 such that ∀ 0 < A < Ã, A2c1 +Ac2 + c3 < 0,
Ã2c1 + Ãc2 + c3 = 0 and ∀ A > Ã > 0, A2c1 + Ac2 + c3 > 0. As (−1/(an+2,1 + αn+2,1A)) < 0,
∀ A > Ã, ãn+3,1 < 0. Finally, there is a change of sign in the first column of the Routh table of
R(X), and lemma 9.3.1 is proved in case 1B.
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It is now assumed that P−(X) has odd degree 2n + 1. The polynomial P−(X) is developed:

P−(X) = a1,1X
2n+1 + a2,1X

2n + a1,2X
2n−1 + a2,2X

2n−2 + ...+ a2,nX
2 + a1,n+1X + a2,n+1.

Its associated Routh table is:

a1,1 a1,2 a1,3 · · · · · · · · · · · · a1,n a1,n+1
a2,1 a2,2 a2,3 · · · · · · · · · · · · a2,n a2,n+1
a3,1 a3,2 a3,3 · · · · · · · · · · · · a3,n 0
a4,1 a4,2 a4,3 · · · · · · · · · a4,n−1 a4,n 0
a5,1 a5,2 a5,3 · · · · · · a5,n−2 a5,n−1 0
a6,1 a6,2 a6,3 · · · a6,n−3 a6,n−2 a6,n−1 0
...

...
a2n,1 0
a2n+1,1 0

The polynomial R(X) = P−(X) +A, with A ≥ 0 can be developed:

R(X) = a1,1X
2n+1 + a2,1X

2n + a1,2X
2n−1 + a2,2X

2n−2 + ...+ a2,nX
2 + a1,n+1X + a2,n+1 +A,

and its associated Routh table can be inferred from that of P−(X), as done previously:

a1,1 a1,2 a1,3 · · · · · · · · · · · · a1,n a1,n+1
a2,1 a2,2 a2,3 · · · · · · · · · · · · a2,n a2,n+1 +A
a3,1 a3,2 a3,3 · · · · · · · · · · · · ã3,n 0
a4,1 a4,2 a4,3 · · · · · · · · · ã4,n−1 ã4,n 0
a5,1 a5,2 a5,3 · · · · · · ã5,n−2 ã5,n−1 0
a6,1 a6,2 a6,3 · · · ã6,n−3 ã6,n−2 ã6,n−1 0
...

...
ã2n,1 0
ã2n+1,1 0

As for the case when P−(X) has degree 2n, it is possible to observe that from the row i = 3, the
perturbation shifts left at each new row. Once again, the first term perturbed in the first column
is ãn+2,1.

It is also possible to show by induction the following property:

“H2: if i ≤ n + 2, any term in the row i of the Routh table of R(X) can be expressed as:
ãi,j = ai,j − αi,jA if i is odd, and ãi,j = ai,j + αi,jA if i is even, with αi,j ≥ 0.”

Indeed, as a base case, ã3,n = (−1/a2,1) [a1,1(a2,n+1 + A) − a2,1a1,n+1] = (−1/a2,1) [a1,1a2,n+1 −
a2,1a1,n+1] − (a1,1/a2,1)A = a3,n − α3,nA, with α3,n > 0. All the other terms in the row i = 3
are not perturbed. It is assumed that H2 is true until row 3 < i ≤ n + 2. Then any term in this
row verifies: ãi,j = (−1/ai−1,1) [ai−2,1ãi−1,j+1 − ai−1,1ãi−2,j+1] (the terms a∗,1 are not perturbed
because i ≤ n+ 2). Then, from H2, two cases appear:

• if i is even: ãi,j = (−1/ai−1,1) [ai−2,1(ai−1,j+1 − αi−1,j+1A) − ai−1,1(ai−2,j+1 + αi−2,j+1A)],
and then by developing ãi,j = ai,j + αi,jA. From proposition 9.3.3, αi,j ≥ 0.

• if i is odd: ãi,j = (−1/ai−1,1) [ai−2,1(ai−1,j+1 + αi−1,j+1A) − ai−1,1(ai−2,j+1 − αi−2,j+1A)],
and then by developing ãi,j = ai,j − αi,jA. From proposition 9.3.3, αi,j ≥ 0.
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By induction, H2 is proved.

Now, it is possible to distinguish the two cases 2A and 2B. First, it is assumed that n is
odd. In this case, the line i = n+ 2 for which the perturbation reaches the first column is odd. It
follows from H2 that ãn+2,1 = an+2,1−αn+2,1A. In this case, it is straightforward to see that there
exists Ã > 0 such that ∀ A > Ã, ãn+2,1 < 0. Hence, there is a change of sign in the first column of
the Routh table of R(X), and lemma 9.3.1 is proved in case 2A.

If n is even, the line i = n + 2 for which the perturbation reaches the first column is even. It
follows from H2 that ãn+2,1 = an+2,1 + αn+2,1A. Hence, ãn+2,1 will never change sign, no matter
the value of A. In this case, the bottom term ãn+3,1 in the first column is investigated: ãn+3,1 =
(−1/ãn+2,1) [an+1,1ãn+2,2 − ãn+2,1ãn+1,2].
From H2, ãn+3,1 = (−1/(an+2,1 + αn+2,1A)) [an+1,1(an+2,2+αn+2,2A)−(an+2,1+αn+2,1A)(an+1,2−
αn+1,2A)]. We recover the same situation as case 1B. Hence, lemma 9.3.1 is proved in case 2B.
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[35] B. d’Andréa Novel and M. De Lara. Control theory for engineers. Springer, 2013.

[36] H. De Jong. Modeling and simulation of genetic regulatory systems: a literature review.
Journal of computational biology, 9(1):67–103, 2002.

160



[37] R. Edwards. Analysis of continuous-time switching networks. Physica D: Nonlinear Phenom-
ena, 146(1-4):165–199, 2000.

[38] R. Edwards, S. Kim, and P. Van Den Driessche. Control design for sustained oscillation in a
two-gene regulatory network. Journal of mathematical biology, 62(4):453–478, 2011.

[39] R. Edwards, P. Van Den Driessche, and L. Wang. Periodicity in piecewise-linear switching
networks with delay. Journal of mathematical biology, 55(2):271–298, 2007.

[40] M. B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators.
Nature, 403:335–338, 2000.

[41] D. Ezer, N. R. Zabet, and B. Adryan. Homotypic clusters of transcription factor binding sites:
a model system for understanding the physical mechanics of gene expression. Computational
and structural biotechnology journal, 10(17):63–69, 2014.
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