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Abstract

This dissertation presents an experimental study of heat transport in various types of materials
that greatly differ in their structure, size and thermal properties. The motivations behind this
study are multiple. The technological stakes related to the increased mastery of thermal man-
agement of current and future technologies are considerable, given the important correlation
between the overall performance of a device and the efficient management of thermal gradients
that develop within it. In particular, the performance of applications such as thermoelectric
generators or phase-change memories are greatly enhanced when their architecture is based
on materials with low thermal conductivities. From a fundamental point of view, the study of
low dimensional materials, structured at scales comparable to the characteristic lengths defin-
ing heat transport, such as the mean free path of phonons or their wavelength, is of crucial
importance in order to understand the mechanisms responsible for atypical thermal proper-
ties that are reported for low-dimensional and/or nanostructred materials. The experimental
investigation of heat transport is carried out by means of electro-thermal methods, whose
principles and foundations are particularly detailed. In particular, the 3ω method has been
implemented to measure the thermal conductivity of bulk materials, thin films down to 17 nm
thick, as well as thermal boundary resistances present in multilayer systems. We were able to
demonstrate a reduction of more than a factor of 3 in the thermal conductivity of a crystalline
germanium matrix with crystalline spherical nano-inclusions having an average diameter of
16 nm compared to its non-nanostructured counterpart. The reduction of the thermal con-
ductivity of this nano-structured material is attributed to phonon scattering by the spherical
nano-inclusions whose concentration plays an important role in reducing the mean free path of
heat carriers in this heterogeneous material. A reduction in thermal conductivity by a factor
of 5 is also observed in another germanium-based nanostructured material, GeTe, after the
introduction of carbon – a reduction that can be explained by the presence of nano-sized grains
surrounded by amorphous carbon. The versatility of the 3ω method has allowed us to quantify
the contribution of thermal boundary resistances for systems such as Pt/Al2O3/germanium,
Pt/Al2O3/sapphire or Pt/SiN/Si. Our findings indicate that the thermal boundary resistance
at the Al2O3/germanium interface can contribute substantially to the overall thermal resis-
tance of a multilayer system, which may be detrimental if applications based on structures
with this type of interface are considered. Finally, anisotropic thermal properties of a sapphire
substrate have been experimentally investigated using the 2ω method.
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Version en langue française

Les travaux effectués lors de cette thèse portent sur l’étude expérimentale des propriétés
de transport de chaleur dans divers types de matériaux, de l’échelle macroscopique jusqu’à
l’échelle du nanomètre. Les motivations ayant donné naissance à cette étude sont multiples.
Les enjeux technologiques liés à la maîtrise accrue de la gestion thermique des technologies
actuelles et de demain prennent une ampleur considérable, étant donné la corrélation im-
portante qui existe entre les performances globales d’un dispositif et la gestion efficace des
gradients thermiques apparaissant en son sein. En particulier, les performances des applica-
tions telles que les générateurs thermoélectriques ou bien les mémoires à changement de phase
sont grandement améliorées lorsque leur architecture est basée sur des matériaux possédant des
faibles conductivité thermiques. D’un point de vue fondamental, l’étude de matériaux de basse
dimension, structurés à des échelles comparables aux longueurs caractéristiques définissant le
transport de chaleur, comme le libre parcours moyen des phonons ou leur longueur d’onde, est
d’une importance cruciale afin de comprendre les mécanismes responsable des propriétés ther-
miques atypiques observées dans des matériaux de basse dimension et/ou structurés à l’échelle
nanométrique. Cette étude est menée à l’aide de méthodes dites électro-thermiques qui sont
décrites de manière approfondie, en particulier concernant la modélisation des données expéri-
mentales. En particulier, la méthode 3ω a été implémentée afin de mesurer la conductivité
thermique de matériaux massifs, de couches minces d’épaisseur descendant jusqu’à 17 nm,
ainsi que des résistances thermiques d’interfaces présentes dans des systèmes multicouches.
Nous avons pu mettre en évidence la réduction de plus d’un facteur 3 de la conductivité
thermique d’une matrice cristalline de germanium possédant des nano-inclusions sphériques
cristallines d’un diamètre moyen de 16 nm, comparée à son homologue non nanostructuré.
La réduction de la conductivité thermique de ce matériau nano-structuré est attribuée à des
processus de diffusion des phonons par les nano-inclusions sphériques dont la concentration
joue un rôle important quant à la réduction du libre parcours moyen des porteurs de chaleur
dans ce matériau hétérogène. Une réduction de la conductivité thermique d’un facteur 5 est
également observé dans le chalcogène GeTe après introduction de carbone – réduction pou-
vant être expliquée par la présence de grains de tailles nanométriques entourés de carbone
amorphe. Le caractère polyvalent de la méthode 3ω nous a permis de quantifier la contribu-
tion des résistances thermiques d’interfaces pour des systèmes de type Pt/Al2O3/germanium,
Pt/Al2O3/sapphire ou bien Pt/SiN/Si. Nos conclusions indiquent que la résistance thermique
à l’interface Al2O3/germanium peut contribuer de manière substantielle à la résistance ther-
mique globale d’un système multicouche, pouvant être préjudiciable si des applications basées
sur des structures comportant ce type d’interface sont envisagées. Enfin, les propriétés ther-
miques anisotropes d’un substrat de saphir ont été étudiées, en utilisant la méthode 2ω.
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Introduction

Introduction

The ever-increasing power density required in today’s microelectronic devices is one of the
main catalyst behind the continued miniaturization of novel electronic equipments. The im-
plementation of low-dimensional materials in next-generation devices is alas accompanied with
great challenges to face – one of which is the efficient management of heat in size-constrained
structures, an essential matter for achieving long-term reliability and preventing rapid failure
of downscaled devices. From the efficient dissipation of heat away from hot spots for achieving
increased working performances in computers, smartphones, or data centers, to the localiza-
tion of heat within a small volume for controlling a material’s phase in such application as
non-volatile phase change memories, a large variety of applications rely upon the thermal
properties of their constituting materials. This breadth of applications consequently entails
the need for the discovery, growth and characterization of materials that span an extended
range of thermal properties.

As a result, the critical, industry-driven need for an accurate knowledge of the thermal
properties of low-dimensional materials has been paralleled by the development of increasingly
sensitive thermal characterization techniques within the last three decades – in tandem with
the ceaseless development of clean room fabrication methods and high-precision measurement
apparatus. Tuning the thermal properties of a material is thus of consequent technological
interest, and requires a crisp understanding of the mechanisms responsible for heat conduction
in nanoscale materials. From a thermal characterisation standpoint, the size reduction of
structures implemented in nowadays’ devices poses additional challenges. Indeed, creating
both a heat source and a thermometer in size-constrained structures is challenging from a
technological point of view. Additionally, the interpretation of experimental data becomes
more complex when the size of the probed material is commensurate to that of the heat source,
thermometer, or to characteristic lengths defining heat transport. Besides, for multilayer
systems, the contribution of interfacial thermal resistances often becomes commensurate to
the thermal resistance of the layer that is studied, leading to little information about the
source of the thermal resistance that is measured in such systems.

The present thesis is devoted to the experimental investigation of heat transport in nano-
materials, in particular, thin films that are structured at the nanometer scale such that their
thermal properties are strongly modified. An important emphasis is put on the measurement
technique that have been used – the 3ω method. The detailed analysis of the electro-thermal
technique guided us for the design of sensitive experiments, conducted for determining the
thermal conductivity of materials that diverge greatly in terms of size, structure, and thermal
properties.

Chapter 1 is a general introduction to heat transport in solids, gradually decreasing from
macroscopic heat transport in bulk materials to phonon transport across interfaces. This
introductory chapter allows to define several fundamental quantities that we use throughout
the thesis. We put emphasis on the microscopic description of thermal conductivity, and review
several nanostructures where heat transport has been experimentally reported to be impacted
by nanostructuration.
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Chapter 2 introduces the 3ω method, a popular method for measuring the thermal con-
ductivity of bulk materials and thin films, and its implementation in a laboratory environment,
along with some of the constraints we have faced in doing so.

In Chapter 3, we provide a detailed derivation of the thermal model that is used in
subsequent chapters to extract thermal parameters from experimental data. We review and
detail some popular techniques that are used to infer thermal properties of substrates, thin
films and thermal boundary resistances, along with the conditions to satisfy in order to use
simple or not-so-simple thermal models.

Chapter 4 retraces several assumptions that are usually made in the literature, and that
we have made in Chapter 3, concerning the thermal model that is used in order to infer thermal
properties from 3ω experiments. In particular, using Finite Element Modelling, we quantify the
effect of heat conduction within the heater according to its geometry and thermal properties.
An analytical 3D model for 3ω experiments is proposed for multilayer structures, from which
we derive an additional criteria for using the so-called ”slope method” for determining the
thermal conductivity of a substrate with minimal error.

Chapter 5 is dedicated to the so-called 2ω method, a more recent technique introduced
by Ramu and Bowers1 for measuring anisotropic thermal properties of bulk samples. We use
the derivation of the thermal model for the 3ω geometry and adapt it to the 2ω geometry,
and provide an analytical solution for the temperature oscillation sensed in a 2ω geometry, for
multilayer systems. We show by analytical means that this method is insensitive to the thermal
boundary resistance at the heater/substrate interface. Based on the multilayer solution derived
in the 2ω geometry, we propose a frequency-dependent heat spreader method, adapted from
Refs. 2,3, for measuring the thermal conductivity of thin films using the 2ω method.

Chapter 6 presents all the thermal conductivity measurements that have been performed
during this thesis. The materials that have been studied vary in terms of their size, structure,
and thermal properties. Among other materials, we have used the 3ω method to measure the
thermal conductivity of amorphous aluminium-oxide thin films ranging from 17 nm to 120 nm
in thickness, along with the thermal boundary resistances of the systems Pt/Al2O3/sapphire
and Pt/Al2O3/germanium. Additionally, the thermal conductivity of two germanium-based
nanostructured materials, a germanium matrix with Ge3Mn5 nano-inclusions, and a GeTe
alloy doped with carbon, was investigated as the internal structure and innovative nano-
structuration of both materials can be seen as models for studying phonon scattering in the
presence of boundaries, doping, spherical inclusions and grains. Eventually, we show an exam-
ple of thermal anisotropy measurement using the 2ω method, on a sapphire substrate.

2



Introduction

Version en langue française

La densité de puissance toujours croissante requise dans les dispositifs microélectroniques
actuels est l’un des principaux catalyseurs responsable de la miniaturisation continue des
nouveaux équipements électroniques. L’implémentation de matériaux de faible dimension
dans les dispositifs à l’état de l’art s’accompagne de grands défis technologiques à relever –
la gestion efficace de la chaleur dans les nanostructures en étant un exemple considérable.
En effet, une maîtrise rigoureuse de la dissipation de chaleur dans les nanostructures est un
élément essentiel permettant d’atteindre une fiabilité à long terme et éviter une défaillance
rapide des dispositifs. La conductivité thermique des matériaux de faible dimension, tels que
les couches minces, lorsqu’elles sont implémentées dans un dispositif, est l’un des paramètres
clés qui dictera à terme l’efficacité et les performances du dispositif.

De la dissipation efficace de la chaleur loin des points chauds pour obtenir des performances
accrues dans les ordinateurs, les smartphones ou bien les centres de données, à la localisation
de la chaleur dans un volume réduit de taille nanométrique pour contrôler la phase d’un
matériau dans des applications telles que les mémoires à changement de phase, une grande
variété d’applications repose sur les propriétés thermiques de leurs matériaux constitutifs. Cet
éventail d’applications implique donc la nécessité de découvrir, de fabriquer et de caractériser
des matériaux couvrant un large éventail de propriétés thermiques.

Par conséquent, le besoin critique, dicté par l’industrie, de posséder une connaissance
précise des propriétés thermiques des matériaux de faible dimension a été concomitant avec le
développement de techniques de caractérisation thermique de plus en plus sensibles au cours
des trois dernières décennies – parallèlement au développement incessant des méthodes de
fabrication de salle blanche, et d’appareils de mesure de haute précision. La possibilité d’ajuster
les propriétés thermiques d’un matériau présente donc un intérêt technologique conséquent, et
nécessite une compréhension fine des mécanismes responsables de la conduction de la chaleur
dans les matériaux à l’échelle nanométrique. Du point de vue de la mesure thermique, la
réduction de la taille des structures implémentées dans les dispositifs actuels donne naissance
à des défis supplémentaires. En effet, imposer une source de chaleur et mesurer les gradients
thermiques qui en découlent sur des matériaux de taille réduite est un défi d’un point de vue
technologique. En outre, l’interprétation des données expérimentales devient plus complexe
lorsque la taille du matériau sondé est commensurable à celle de la source de chaleur, du
thermomètre ou aux longueurs caractéristiques des porteurs de chaleur. De plus, pour les
systèmes multicouches, la contribution des résistances thermiques d’interface devient souvent
du même ordre de grandeur que la résistance thermique de la couche étudiée, ce qui conduit à
une certaine ambiguïté quant à l’origine des sources de résistance thermique dans ces systèmes
hétérogènes.

La présente thèse est consacrée à l’étude expérimentale du transport de chaleur dans les
nanomatériaux, avec un accent important sur la technique de mesure qui a été utilisée – la
méthode 3ω. L’analyse détaillée de la technique électro-thermique nous a guidé pour la concep-
tion d’expériences sensibles, menées pour déterminer la conductivité thermique de matériaux
qui divergent fortement en termes de taille, de structure et de propriétés thermiques.

Le Chapitre 1 est une introduction générale au transport de chaleur dans les solides, en
commençant par le transport de chaleur macroscopique dans les matériaux massifs pour aller
graduellement vers le transport phononique à travers les interfaces. Ce chapitre d’introduction
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permet de définir plusieurs grandeurs fondamentales que nous utilisons tout au long de la thèse.
Nous mettons l’accent sur la description microscopique de la conductivité thermique, et passons
en revue plusieurs types de structures qui présentent des réductions en terme de conductivité
thermique de part leur structuration à l’échelle nanométrique.

Le Chapitre 2 présente la méthode 3ω, une méthode très répandue permettant de mesurer
la conductivité thermique de matériaux massifs et de couches minces, et sa mise en œuvre dans
un environnement de laboratoire, ainsi que certaines des contraintes auxquelles nous avons dû
faire face.

Dans le Chapitre 3, nous fournissons une dérivation détaillée du modèle thermique qui
est utilisé dans les chapitres suivants pour extraire les paramètres thermiques à partir des
données expérimentales. Nous passons en revue et expliquons certaines techniques populaires
qui sont utilisées pour déduire les propriétés thermiques des substrats, des couches minces et
des résistances thermiques d’interface, ainsi que les conditions à satisfaire pour utiliser des
modèles thermiques simples ou plus complexes.

Le Chapitre 4 retrace plusieurs hypothèses qui sont généralement faites dans la littérature,
et que nous avons faites dans le Chapitre 3, concernant le modèle thermique qui est utilisé
afin de déduire les propriétés thermiques à partir des données expérimentales obtenues lors
des mesures 3ω. En particulier, nous quantifions, à l’aide de la modélisation par éléments finis,
l’effet de la conduction de la chaleur dans l’élément chauffant, en fonction de sa géométrie et de
ses propriétés thermiques. Un modèle analytique en 3D pour des expériences de 3ω est proposé
pour les structures multicouches, à partir duquel nous dérivons un critère supplémentaire pour
utiliser la méthode dite ”de la pente” (plus communément ”slope method” dans la litérature)
pour déterminer la conductivité thermique d’un substrat avec une erreur minimale.

Le Chapitre 5 est consacré à la méthode dite 2ω, une technique plus récente introduite par
Ramu et Bowers1 permettant de mesurer les propriétés thermiques anisotropes d’échantillons
massifs. Nous utilisons la dérivation du modèle thermique pour la géométrie 3ω et l’adaptons
à la géométrie 2ω, et fournissons une solution analytique pour l’oscillation de température
mesurée dans une géométrie 2ω, pour les systèmes multicouches. Nous montrons par des
moyens analytiques que cette méthode est insensible à la résistance thermique à l’interface
chauffage/substrat. Sur la base de la solution multicouche dérivée dans la géométrie 2ω,
nous proposons une ”frequency-dependent heat spreader method”, adaptée des Refs. 2,3, pour
mesurer la conductivité thermique des couches minces à l’aide de la méthode 2ω.

Le Chapitre 6 présente toutes les mesures de conductivité thermique qui ont été effectuées
au cours de cette thèse. Les matériaux qui ont été étudiés varient en termes de taille, de
structure et de propriétés thermiques. Parmi d’autres matériaux, nous avons utilisé la méthode
3ω pour mesurer la conductivité thermique de couches minces d’oxyde d’aluminium amorphe
d’une épaisseur allant de 17 nm à 120 nm, ainsi que les résistances thermiques d’interface
des systèmes Pt/Al2O3/saphir et Pt/Al2O3/germanium. En outre, la conductivité thermique
de deux matériaux nanostructurés à base de germanium, une matrice de germanium avec
des nano-inclusions de Ge3Mn5, et un alliage de GeTe dopé au carbone, a été étudiée car
la structure interne et la nanostructuration innovante de ces deux matériaux peuvent être
considérées comme des modèles pour l’étude de la diffusion des phonons en présence de bords,
de dopage, d’inclusions sphériques et de grains. Enfin, nous présentons un exemple de mesure
d’anisotropie thermique par la méthode des 2ω, sur un substrat de saphir.
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1.1 Historical introduction

Joseph Fourier (1768-1830) 

Among other eighteenth century scientists who worked on the
study of the rather broad concept of heat such as Joseph Black,
Antoine Lavoisier or Pierre Simon Laplace ; Benjamin Franklin
was a pioneer when he designed an experiment intended to
comparatively measure how efficient different metals were for
conducting heat.4 Ingen-Housz, encouraged by Franklin, coated
several wires of different metals with wax, and then proceeded
to tighten them between blocks of wood maintained at differ-
ent temperatures. The difference in melting propagation speed
among different metals allowed him to qualitatively compare
metals in terms of their relative ability to ”conduct” heat. There
was, however, no distinction made between the ability of a material to store heat to its ability
to conduct heat.
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Chapter 1: Heat conduction in solids

The first measurement of a material’s thermal conductivity was made by Joseph Fourier.
His success in establishing a rigorous analytical theory of heat propagation in medium in his
masterpiece Théorie analytique de la chaleur 5 from 1822 allowed him to estimate the thermal
conductivity of steel, by performing two experiments on macroscopic samples having different
geometries, in steady-state or time-dependent configurations, which astutely alleviated the
need of accurately measuring the amount of heat lost by radiation.

It is interesting to note that one of his main motive was the understanding of diurnal
temperature variations, that is, temperature variations at Earth’s surface that occur within
a day that result from the relative position of the sun. In particular, he was intrigued by
the fact that temperature variations from Earth’s surface only propagate within a few meters
inside Earth’s crust – such a small distance when compared to Earth’s radius. However,
the temperature variations within Earth’s crust induced by seasonal temperature variations,
propagate to around 60 meters deep. This suggested that for a medium which is periodically
heated, the depth at which the resulting temperature oscillation becomes negligible is inversely
proportional to the heating frequency – a phenomenon that his theory successfully explained,
and that we can turn in our favour to measure the thermal conductivity of small samples, as
we will explain in Chapter 2.

Interestingly, Fourier’s theory did not rely upon any assumed ”nature” of heat, i.e. if it was
a ”motion” or a ”fluid”, since there was no consensus about the definition of heat at that time.
It was only almost a century later through the emergence of a new kind of science that an ac-
ceptable definition and understanding of how heat propagates in solids was proposed. For some
reason, scientists at the end of the nineteenth century started to have an obsession with putting
particles in boxes and see what would result after performing some calculations. Luckily, it lead
to the birth of quantum mechanics, started by Planck, and to Debye’s quantum description of
lattice vibrations.

Peter Debye (1884-1966) 

In 1912, Debye’s theory6 of specific heat in dielectric crystals –
successful at low temperature, as opposed to Einstein’s model
– assumed the crystal energy to be distributed among collective
mode of vibrations of the atoms, which were later called phonons.
They are quasi-particles that extend throughout the entire crys-
tal and carry a finite amount of energy, which are responsible for
propagating heat. The quantum description of a crystal, which
represents a milestone in solid state physics, paved the way to
several physicists, starting with Peierls7, to gain a deeper un-
derstanding of the mechanisms responsible for the temperature
dependence of thermal conductivity in both crystals and amor-
phous materials. The wave-particle picture of phonons, obeying
well-defined statistical rules, allowed for the elaboration of a ro-
bust framework for describing the various scattering processes

existing between phonons and their environment, as will be described in more detail in this
chapter.

Importantly, several length-scales emerged from the understanding that heat-carriers could
be seen as wave and/or particles. The phonon mean free path and dominant phonon wave-
length appeared to be important parameters to play with8 if one is interested in tuning the
thermal properties of a material, at appropriate temperature and phonon frequency ranges.
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These quantities serve as guidelines for defining the dominant phonon scattering processes
that occur within a crystal and, importantly, can be used to better define the heat transport
regime in which an experiment is conducted, based on the sample’s dimensions. For example,
in the context of phonon heat transport, one can say that a material has low dimensions when
the phonon mean free path or phonon dominant wavelength is comparable to the size of the ma-
terial. In this case, the heat transport regime is referred to as ballistic, as opposed to diffusive.

Rudolf Peierls (1907-1995) 

Such an improved understanding of heat conduction at the very
fundamental level is of course satisfying from a theoretical stand-
point, but appears to be extremely valuable for the efficient
design of applications that strongly rely on their thermal per-
formances. For example, in such applications as thermoelectric-
ity or phase-change memory devices, better performances are
obtained for thermally insulating materials. Reducing the size
of a material, or engineering it by intentionally adding further
phonon scattering centers, are the directions that have proven
effective in degrading a material’s ability to conduct heat, and
is still the approach that is widely used up to this day.9,10

On the other hand, the incorporation of efficient heat spread-
ers in novel electronic devices is of consequent technological im-
portance for systems producing large heating power that needs to be evacuated efficiently,
such as for high-power electronics and optoelectronics applications. The accurate description
of phonon scattering processes appears to be critical in the comprehension of ultra-high thermal
conductivity materials, such as diamond, graphene, graphite, boron nitride or boron arsenide
to name a few.

For these reasons, the nanoscale heat transfer community has grown rapidly for the last
couple of decades, leading to an abundant quantity of novel research publications, along with
several celebrated textbooks and other PhD dissertations, covering a breadth of nanoscale-heat-
transfer-related topics – from which this introductory chapter is based upon. In particular, we
used Refs. 11–15 as primary sources, which the reader is referred to for more details.

In this first chapter, we shall only discuss particular topics that are, from near or from afar,
related to the measurement and to the understanding of the thermal conductivity of materials
that were studied in this work. We will first present a macroscopic picture of heat transfer in
solids, which primarily serves as an introduction to fundamental quantities such as heat flux,
temperature gradient and thermal conductivity. Besides, it provides the basis upon which
our measurement methodology relies on. Then, we will provide a microscopic description of
thermal conductivity, with an emphasis on the scattering processes that dictate the tempera-
ture dependence of thermal conductivity. We will then move on to define thermal boundary
resistances, which are relevant from both experimental and fundamental perspectives.
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Chapter 1: Heat conduction in solids

1.2 The macroscopic picture : Fourier’s law and the heat diffusion
equation

1.2.1 Fourier’s law

Heat is thermal energy in transit due to a spatial temperature difference.14 There are three
basic heat transfer processes that can occur whenever a temperature gradient exists within
a medium or between media. The first mode is referred to as conduction when heat transfer
occurs across a solid or fluid subjected to a temperature difference. Secondly, if the temperature
of a surface is different from that of a surrounding moving fluid, heat transfer will occur by
a process referred to as convection. Lastly, whenever there exists a temperature difference
between two surfaces, heat transfer can also occur without any media between the surfaces
(i.e. in vacuum), through radiation. In this case, energy is emitted by the surface in the form
of electromagnetic waves.

We shall only focus on heat transfer by conduction in this section, as we are solely in-
terested in thermal properties of solids, without moving fluid and where thermal radiation is
unimportant.

It is important to underline that Fourier’s law is empirical. Himself and earlier scientists
observed that the heat flux resulting from thermal conduction is proportional to the magni-
tude of the temperature gradient, through an intrinsic property of the material, its thermal
conductivity k. Because temperature tends to go from hot to cold regions, a minus sign is
added to relate the heat flux ϕ to the temperature gradient ∇⃗T :

ϕ⃗ = −k∇⃗T (1.1)

The heat flux ϕ has units of W/m2, the thermal conductivity k has units of W/(m.K) and the
gradient operator is defined as usual, such that

∇⃗T (x, y, z) ≡ ∂T

∂x
n⃗x + ∂T

∂y
n⃗y + ∂T

∂z
n⃗z

where {n⃗x, n⃗y, n⃗z} are the unit vectors in Cartesian coordinates. Eq.(1.1) relates the heat flux
across a surface to the temperature gradient perpendicular to that surface. It seems rather
difficult from this equation alone to infer the temperature distribution within a medium, since
both the temperature and heat fluxes are unknown. The law of conservation of energy is used,
which provides the second ingredient along with Fourier’s law, allowing for the derivation of
what is known as the heat diffusion equation.

1.2.2 The heat diffusion equation

We consider a medium whose temperature distribution T (x, y, z) is unknown, and that we
wish to express.14 As we are seeking for a differential equation, we first define an infinitely
small differential volume dxdydz, as shown in Figure 1.1. The conduction heat rate (in W)
across each surface at the x, y and z coordinates of the infinitely small volume, are expressed
as qx, qy and qz. At opposite surfaces, first order Taylor expansion leads to the expression of
the conduction heat rates at distances x + dx, y + dy and z + dz :

qx+dx = qx + ∂qx

∂x
dx qy+dy = qy + ∂qy

∂y
dy qz+dz = qz + ∂qz

∂z
dz (1.2)
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Chapter 1: Heat conduction in solids

Figure 1.1: Infinitesimal volume dxdydz, into which thermal energy enters and leaves by conduction,
is stored, and generated. Conservation of energy requires that Ėin + Ėg − Ėout = Ėst. Adapted from
Ref. 14.

Importantly, the medium can store energy and there may be as well energy produced or
consumed by the medium. As we are dealing with heat rates expressed in Watt we shall also
express the rate of energy that is stored, produced or consumed using the same units. The
rate of energy generated within the volume dxdydz can be therefore written as

Ėg = qV dxdydz (1.3)

where the upper dot refers to a time derivative, and qV , which has units of W/m3, represents
a volumetric power source. For example, it can be the volumetric power that is produced by
Joule heating within a metal. The rate of energy that is stored within the medium, neglecting
latent energy effects, is given by

Ėst = ∂U

∂t
dxdydz = ∂U

∂T

∂T

∂t
dxdydz = ρCp

∂T

∂t
dxdydz (1.4)

where we use the definition of the specific heat Cp with units of J/(g.K), that is, the amount of
energy needed to increase the temperature of a material by one degree. For homogeneity, it is
multiplied by the material’s density ρ, which has units of g/m3. Eventually, the conservation
of energy requires that the energy rates entering, leaving, that is produced, and stored to be
balanced. This is written as

Ėin + Ėg − Ėout = Ėst (1.5)

The energy entering and leaving the volume, Ėin and Ėout, respectively, does so by conduction
across the surfaces, for which we have expressed the conduction heat rates entering the medium
as qx, qy and qz and that leaving the medium as qx+dx, qy+dy and qz+dz, as shown in Figure
1.1. Therefore, using the above expression for the energy rates, Eq.(1.5) can be written as

qx + qy + qz + qV dxdydz − qx+dx − qy+dy − qz+dz = ρCp
∂T

∂t
dxdydz (1.6)

and upon substituting the conduction rates using Eq.(1.2), leads to

− ∂qx

∂x
dx − ∂qy

∂y
dy − ∂qz

∂z
dz + qV dxdydz = ρCp

∂T

∂t
dxdydz (1.7)
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The heat fluxes (in W/m2) across differential surfaces are obtained using Fourier’s law (Eq.(1.1))
:

qx

dydz
= −kx

∂T

∂x

qy

dxdz
= −ky

∂T

∂y

qz

dxdy
= −kz

∂T

∂z
(1.8)

Plugging Eq.(1.8) into Eq.(1.7) leads to the general form of the heat diffusion equation in
Cartesian coordinates, it reduces to

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
+ qV = ρCp

∂T

∂t

and if the thermal conductivity is constant along each coordinate

kx
∂2T

∂x2 + ky
∂2T

∂y2 + kz
∂2T

∂z2 + qV = ρCp
∂T

∂t
(1.9)

In this thesis, temperature measurements will be compared to the solution of the heat
equation as it is expressed above in order to infer the thermal conductivity of several structures.
The derivation presented above can be found in many heat-transfer textbooks, such as Ref. 14
and is displayed here for better understanding how the heat diffusion equation is derived. The
energy balance along with the phenomenological Fourier’s law are the two main ingredients.

We put emphasis on this particular aspect since recent frequency-dependent thermal con-
ductivity measurements failed to be correctly explained using Fourier’s law and the classical
heat equation, for heat sources whose sizes become commensurate to the heat-carrier mean
free paths.16–18 Besides, the thermal conductivity of films measured using time-dependent
thermoreflectance (TDTR) have been shown to be dependent on the frequency driving the
experiment, for alloys.19,20 These results have led to several theoretical works intended to
provide new tools that allow to model and explain experimental data obtained in the afore-
mentioned conditions. These tools take the form of modified heat transport equations, to go
beyond the heat diffusion equation that assumes the temperature gradient to « nondiffusive
»21, « Enhanced Fourier Law »22 or « hydrodynamic »23,24 transport models are some exam-
ples of so-called « non-Fourier » heat conduction models. Most of these models rely on the
fundamental equation describing transport phenomenon, which is the Boltzmann transport
equation. The Boltzmann equation requires knowledge of the statistical distribution of the
particles making up the system we wish to study. The knowledge of this statistical distribution
implies a rigorous mathematical and physical definition of the nature of heat carriers, which
has not been rigorously discussed thus far. We will do so in a moment, but before that, a clas-
sical description of atomic displacement within a crystal has the merits of providing insightful
and physically intuitive results.

1.3 Thermal conductivity : the microscopic picture

In solids, heat is carried by electrons and lattice vibrations. In metals, it is primarily carried
by electrons whereas in insulators and semi-conductors (depending on the doping level), lattice
vibrations are the main carriers. In this section we shall only discuss heat transport by lattice
vibrations, as most of the work conducted in this thesis is based on semi-conductors and
insulators.
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(a)

(b)

(c)

optical

acoustic

Figure 1.2: (a) 1D diatomic chain with neighbouring atoms having similar masses, and the equation
of motion relating atomic displacement and bonding strength, for interaction between first neighbours
where the ”spring” is assumed massless. (b) Same but for neighbouring atoms with dissimilar masses.
(c) The solution of the equation of motion leads to the dispersion relation ω = f(k), plotted here
for a diatomic chain with atoms of different masses, for two M1/M2 ratios. In inset is a schematic
representation of the atomic displacement for both acoustic and optical phonons, in the limit k ≪
π/2a. The simple mass-spring model gives useful insights into the mechanisms responsible for heat
conduction in solids. There is no need to plot the frequency dependence for larger k-values, because it
would represent oscillations whose wavelengths are smaller than the interatomic spacing, which is not
reasonable physically. Therefore, all the informations are contained within the so-called first Brillouin
zone (for each crystallographic direction)

1.3.1 The simple mass-spring model

In crystalline solids, atoms are arranged periodically and hold together through chemical
bonds. The periodicity of crystalline solids make the study of heat (and electronic) transport
very convenient, since it is only needed to study a small portion of the crystal, the unit cell,
that repeats itself throughout the entire lattice, to infer macroscopic transport properties. The
periodic arrangement of atoms that are bonded together is often pictured as a spring-mass
system11, such as in Figure 1.2(a), where atoms have the same mass M and are connected by
springs of strength K.

Using classical mechanics (Newton’s second law), the general solution for the atom dis-
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placement un is of the form of a travelling wave : un ∝ ei(kxn−ωt) where k is the wavevector
of the travelling wave, xn is the equilibrium position of atom n such that xn = na in Figure
1.2(a), ω refers to the circular frequency of vibration and t is time. Upon applying proper
periodic (Born-Von Karman) boundary conditions, such that the displacement at the end of
the atomic chain matches that at the beginning, the oscillation frequency of such a system is
given by

ω(k) =
√

4K

M

∣∣∣∣sin(1
2

ka

)∣∣∣∣ (1.10)

The solid green line in Figure 1.2(c) represents the oscillation frequency of the travelling wave as
a function of wavevector – the dispersion relation. This simple model (Figure 1.2(a)) captures
relatively well the dispersion relation that is measured experimentally, using for instance X-
ray, neutron, Brillouin, or Raman scattering. However, it fails to reproduce the upper branch,
represented in blue in Figure 1.2(c), that is measured experimentally.

In a slightly improved model where two neighbouring atoms within a unit cell have different
masses M1 and M2, as shown in Figure 1.2(b), the solution of the equation of motion holds
for frequencies such that

ω2
±(k) = K

( 1
M1

+ 1
M2

)
± K

√( 1
M1

+ 1
M2

)2
− 4 sin2(ka)

M1M2
(1.11)

The dispersion relation of this improved model possesses two solutions (blue and green in
1.2(c)), in better agreement with experiments.

The dispersion relation is determined using a relatively simple mass-spring system, but
is filled with useful informations concerning heat propagation in crystalline solids. In Figure
1.2(c), we make the distinction between the acoustic branch, representing a mode of vibration
where two ions within the cell move in phase with one another, and the optical branch, de-
scribing a motion in which neighbouring ions are out-of-phase. The name « acoustic » stems
from the fact that for small wavevectors, i.e. long wavelength modes, the dispersion relation
is of the form ω = vsk, which is a characteristic dispersion relation for sound (elastic) waves.
The label « optical » for the other branch at higher frequency is explained by the fact that
the motion of two neighbouring ions can create an oscillating dipole which can interact with
electromagnetic radiations in this frequency range. For the general case in three dimensions,
if there are p atoms in a unit cell, for each k value there will be 3p normal modes. Three of
the 3p branches are acoustic. One branch representing a travelling wave whose oscillations are
parallel to the direction of propagation, referred to as longitudinal while the other two rep-
resent a travelling wave whose oscillations are perpendicular to the direction of propagation,
referred to as transverse. The other 3(p − 1) branches are optical branches.11 An important
quantity that is derived from the dispersion relation is the group velocity of the propagating
wave, which we can guess will be strongly related to the efficiency of a crystal to conduct heat.
From the form of the solution for the atomic displacement (un ∝ ei(kxn−ωt)), the group velocity
is obtained as ∂ω/∂k. Upon calculating this quantity, as displayed in Figure 1.2(c), it becomes
evident that the group velocity in the optical branch is negligible, and thus does not contribute
significantly to the thermal conductivity. On the other hand, lattice vibrations of the acoustic
branch have large group velocity at small k values (long wavelengths), and are therefore the
main contributors to heat conduction. In the continuum limit of long wavelengths, the phonon

12
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group velocity is that of the speed of sound vs, and is readily obtained :

ωacoustic,k→0 =

a

√
K

M

 |k| ⇔ vs = ∂ω

∂k
=

a

√
K

M


Therefore, large atomic mass and weak chemical bonds lead to small speed of sounds, and
therefore lower thermal conductivity. Besides, Eq.(1.11) suggests that the frequency gap be-
tween the acoustic and optical branches increases for large difference in atomic masses, as
is displayed in Figure 1.2(c). Such a frequency gap would prevent certain lattice vibrations
whose frequencies are within this gap to propagate within the crystal. Using this so-called
phononic bandgap for manipulating both heat and sound propagation in solids has attracted
a regain of interest within the last decade.25

However insightful it might be, the spring-mass system has its limitations. For example,
it fails to correctly predict the temperature dependence of heat capacity at low temperature,
even for increased complexity of the model, such as taking more than the first neighbour
in the calculation of the ions’ displacement, or solving the problem for a three-dimensional
lattice. We must turn to a quantum theory of lattice dynamics to properly explain the observed
phenomena that are governed by the lattice vibrations. The fundamental difference with the
classical theory is that it requires the energy of the normal modes (the vibrational modes) to
take discrete values. In other words, the normal modes are quantized. The quantization of the
lattice vibrational energy is called a phonon. A phonon can only have a discrete set of values
such that the energy of a particular mode is

E
k⃗s

=
(

n + 1
2

)
~ωs(k⃗) (1.12)

where n is the excitation number of the normal mode and takes integer values (n = 0, 1, 2, . . . ),
~ is the reduced Planck constant and ωs(k⃗) is the frequency of a mode of wavevector k⃗ with
polarization s. The total energy is simply the sum over each individual mode : Etotal =

∑
k⃗s

(n+
1
2)~ωs(k⃗). Importantly, the expected number of phonons of wavevector k and polarization s

which are present in thermal equilibrium at temperature T follows Bose-Einstein statistics,
such that

n
k⃗s

= 1(
e~ωs(k⃗)/kBT − 1

) (1.13)

where kB is the Boltzmann constant.

1.3.2 The Boltzmann equation

Up to this point, lattice vibrations have been conceptually introduced using the spring-mass
model, and refined by introducing the quantum nature of these vibrations. Each phonon with
wavevector k⃗ describes the motion of atoms throughout the entire crystal. With this picture
in mind, it seems difficult for instance to see how a defect, a dislocation, or a nanoinclusion
at a specific position within the crystal will affect the lattice vibration. A particle description
of the lattice vibration would prove useful in this case. Such a picture is drawn by not only
considering one phonon which extends throughout the entire crystal, but rather by taking
a superposition of several phonons, whose wavevectors are in the vicinity of k⃗, which then
describes a wave packet that has the property of being localized on a much smaller scale than
the entire crystal.11 For this reason, one can see phonons as particles with little spatial extent,
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Chapter 1: Heat conduction in solids

which can be useful in the representation of heat transport, and makes the introduction of
characteristic lengths such as the phonon mean free path, somewhat easier.

We now have all the ingredients to establish an expression for the thermal conductivity,
based on a microscopic description of a crystal, where phonons are treated as quasi-particles.
A convenient way of doing so is by using the Boltzmann transport equation, which describes a
thermodynamic system that is not in a state of equilibrium. For a statistical distribution func-
tion n = f(r⃗, k⃗, t), describing a large ensemble of particles varying with position r⃗, wavevector
k⃗ and time t, the Boltzmann equation is written as

∂n

∂t

∣∣∣∣
col

= ∂n

∂r⃗
· v⃗ + ∂n

∂k⃗
· F⃗

~
+ ∂n

∂t
(1.14)

The right hand side of Eq.(1.14) describes phonon displacement and external forces applied to
them, while the left hand side is a so-called collision term that restores equilibrium.13 We may
notice that the right hand side is simply the total derivative of the distribution function :

dn

dt
= ∂n

∂r⃗
· dr⃗

dt
+ ∂n

∂k⃗
· dk⃗

dt
+ ∂n

∂t

= ∂n

∂r⃗
· v⃗ + ∂n

∂k⃗
· F⃗

~
+ ∂n

∂t

where we used F⃗ = ∂p⃗/∂t = ~∂k⃗/∂t, p⃗ = ~k⃗ being the particle momentum. In such case that
no external force is applied to the system, it reduces to

∂n

∂t

∣∣∣∣
col

= ∂n

∂r⃗
· v⃗ + ∂n

∂t
(1.15)

The collision term is alas very difficult to describe and often, the relaxation time approximation
is used. The relaxation time approximation (RTA) consists in writing the collision term as

∂n

∂t

∣∣∣∣
col

= −n − n0

τ(k⃗)
(1.16)

where n0 is the equilibrium distribution of the system following Bose-Einstein statistics, as
introduced previously :

n0(ω, T ) = 1(
e~ω/kBT − 1

) (1.17)

and τ is the relaxation time. The relaxation time is the time taken by the system driven
out of equilibrium to relax back to equilibrium. It does so because of scattering. Once the
distribution function is known, the heat flux is obtained as follow :

ϕ⃗ = 1
V

∑
k⃗,s

n(k⃗, s)~ω(k⃗, s)v⃗(k⃗, s) (1.18)

In order to use Fourier’s law to obtain an expression for the thermal conductivity, we use
its fundamental assumption, which is local thermodynamic equilibrium. We can then write
∂n/∂r⃗ = ∂n0/∂r⃗, which, under the RTA in addition to the condition that there is no external
force applied to the system, leads to the following relation for the distribution function :

n = n0 − τ
∂n0
∂r⃗

· v⃗ = n0 − τ
∂n0
∂T

∂T

∂r⃗
· v⃗ (1.19)
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Chapter 1: Heat conduction in solids

Describing heat transport in one dimension for simplicity (the temperature gradient is parallel
to the x direction), substituting Eq.(1.19) into Eq.(1.18) leads to the expression1 for the heat
flux :

ϕ⃗ = − 1
V

∑
k⃗,s

vx(k⃗, s)τ(k⃗, s)∂n0
∂T

∂T

∂x
~ω(k⃗, s)v⃗(k⃗, s) (1.20)

We compare this equation to Fourier’s law :

ϕx = −k
dT

dx
(1.21)

= − 1
V

∑
k⃗,s

v2
x(k⃗, s)τ(k⃗, s)∂n0

∂T
~ω(k⃗, s)∂T

∂x
(1.22)

Assuming an isotropic solid, the frequency ω(k⃗) and relaxation time τ(k⃗) are functions of k

only such that we can write ω(k⃗) = ω(k) and τ(k⃗) = τ(k). Similarly, for an isotropic solid,
the value of v2

x averaged over all directions is v2/3. It leads to the following expression for the
thermal conductivity :

k = 1
3

1
V

∑
k,s

v2(k, s)τ(k, s)∂n0
∂T

~ω(k, s) (1.23)

Upon substituting the discrete summation over k by an integral, we rewrite the above expres-
sion as26 :

k = 1
3

1
V

∑
s

∫ kmax

0
v2(k, s)τ(k, s)Cph(k, s)D(k, s)dk (1.24)

where D(k, s) is the density of phonons in branch s, and Cph(k, s) = ∂n0
∂T ~ω(k, s) is the spe-

cific heat per normal mode for frequency ω. It is written more explicitly by computing the
temperature derivative :

Cph(k, s) = ∂n0
∂T

~ω(k, s) = kBx2ex(ex − 1)−2 where x = ~ω/kBT (1.25)

In the Debye model, ω = vk and

D(k, s)dk = 4πk2dk

(2π/L)3 = 4πk2

(2π/L)3
dω

(dω/dk)
= V

2π2
ω2

v3 dω (1.26)

leading to
k = 1

6π2

∑
s

∫ ωmax,s

0

τ(ω, s)
v(ω, s)

Cph(ω, s)ω2dω (1.27)

The highest phonon frequency ωmax,s is the maximum frequency for the phonon branch s.
It is found under the assumption that a phonon cannot have a wavelength smaller than the
interatomic spacing and thus there is a minimum wavelength allowed for a phonon, or inversely,
a maximum frequency. Following Debye model, it is given by ωmax = ωD = (6π2v3

sρ)1/3, where
vs is the speed of sound and ρ is the atomic density. Above this frequency, all phonons begin
to be excited. Equivalently, above the Debye temperature defined as θD = ~ωD/kB, all the
phonons are excited.

We notice from Eq.(1.24) that if both τ and v are assumed to be wave-vector-independent,
we obtain a relation for the thermal conductivity of the form

k ∝ 1
3

Cpv2τ = 1
3

CpvΛ (1.28)
1The n0 term in Eq. (1.19) drops out because there is no heat current if the phonon distribution function

is not perturbed, i.e. isotropic.
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which is the kinetic formula, where Λ = vτ is the phonon mean free path, i.e. the average
distance travelled by a phonon between two collisions. We will shortly see that the relaxation
time is far from being k-independent, or frequency-independent, but the simple form of the
kinetic formula provides some insights on the quantities that define the thermal conductivity
of a material, and importantly the quantities that we can play with in order to tune it.

In order to tune the thermal conductivity of a material, one can try to tune the material’s
heat capacity, phonon group velocity and relaxation time (or equivalently the phonon mean free
path). The heat capacity is mostly material-dependent and can be modified only by drastically
reducing the sample size (2D materials and nanowires) such that the phonon density of states
is modified. The maximum value for the phonon group velocity is given by the speed of sound,
and is related to the mass and bonding strength of the atoms constituting the material, as
explained before. Similarly, it can be reduced by strongly reducing the size of the system
(for example, a quantum dot27 or a nanowire28). Therefore, it is rather difficult to reduce a
material’s thermal conductivity using these two quantities because tuning the phonon group
velocity or heat capacity of a material requires to reduce its dimensions to the smallest scale.

The phonon mean free path, however, will strongly depend upon the scattering processes
that the heat carriers are subjected to. While reducing the dimensions of a material can indeed
reduce the phonon mean free path, there are other ways to reduce the ability of a material to
conduct heat. Reducing the thermal conductivity by adding new scattering centers within a
material have been the main direction toward which research has focused on within the last
two decades. There are many types of scattering processes experienced by phonons, which we
describe now.

1.3.3 Scattering processes

General scattering processes in bulk materials

Phonon scattering is the reason for the finite thermal conductivity of solids.7 There are many
scattering processes that take place in a crystal, which we can first try to list solely based on
our knowledge of what a crystal is made of. In the general case, there are electrons, other
phonons, impurities, dislocations, boundaries and isotopes. There can also be, depending on
the material, scattering between phonons and magnons29, grain boundaries30,31, interfaces
(for superlattices32) and other quasiparticles.33 Therefore it seems that there is a large variety
of scattering processes which, we assume, can lead to a degradation of the lattice thermal
conductivity. Theses processes are schematically presented in Figure 1.3.

The implicit assumption behind this reasoning is that scattering between two phonons
effectively poses thermal resistance to thermal energy flow. This is the case for scattering
processes that are called Umklapp (U) processes, for which the energy is conserved, but the
crystal momentum is conserved only if a reciprocal lattice vector is added7, as explained in
Figure 1.4(c).2 U processes redistribute phonon frequencies and, most importantly, change the
direction of propagations of phonons and thus create thermal resistance. The other type of
processes are called Normal (N) processes, which conserve both energy and crystal momentum
(see Figure 1.4(b)). Although they do not contribute directly to the thermal resistance, they

2The reason for adding a reciprocal lattice vector relies on the same argument that we used before to
define a maximum phonon frequency : the phonon wavelength cannot be smaller that the interatomic distance,
and therefore any wavevector that goes beyond the first Brillouin zone should be replaced by an equivalent
wavevector which fits within the first Brillouin zone.
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Principal scattering processes experienced by phonons

isotope4-phonon process

U process

N process

grain boundary

defect

sam
ple boundary

electron

surface roughness
3-phonon process

Figure 1.3: Schematic representation of the general scattering processes experienced by phonons. The
relaxation time for each process is closely related to the phonon frequency and temperature, as explained
in the text.

are essential in spreading out the influence of other processes – that are resistive – to the entire
phonon spectrum.34

General trend

Before detailing how each scattering process scales with frequency and temperature, we discuss
the general trend of the temperature dependence of the thermal conductivity of germanium,
as presented in Figure 1.4(a), which is taken from Ref. 34. We observe three regimes for the
temperature dependence of thermal conductivity. From sub-Kelvin temperatures up to ≈ 20 K,
the thermal conductivity increases until it reaches a plateau, and then decreases indefinitely.
When speaking of high and low temperatures as we will do in the following, the implicit
reference temperature is the Debye temperature θD, above which all phonons are excited, and
below which some are frozen out, as mentioned previously.11

For the high-temperature limit, we can assume that the more phonons there are, the more
probable is a collision between phonons and consequently the smaller the thermal conductivity
is, assuming U processes. At high temperature, i.e. T ≫ θD, the total number of phonons is
approximated as ns(k⃗) = 1/(exp(θD/T ) − 1) ≈ T/θD = kBT/~ωs(k⃗) and thus the relaxation
time is expected to decrease linearly with temperature since the phonon population increases
linearly with temperature. This reasoning holds because at high temperature, the heat capacity
is temperature-independent following Dulong and Petit law. This is what is generally observed
experimentally. The thermal conductivity is inversely proportional to temperature, k ∝ T −a,
where a usually lies between 1 and 2, as shown in Figure 1.4(a).

As temperature decreases, the thermal conductivity does not go to infinity but reaches
a peak before decreasing. The peak in the thermal conductivity of germanium, at about 20
K in Figure 1.4(a), is strongly dependent on the isotopic concentration of the material. The
isotopic concentration does not seem to greatly affect the temperature at which the peak
appears, but it does reduce the thermal conductivity amplitude at the peak position. In this
temperature region, phonon scattering by isotopes, defects and dislocations reduce the phonon
mean free path and are thus responsible for decreasing the thermal conductivity. As the size
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(a)

1st BZ

(b) (c)

Normal process Umklapp process

1st BZ

Figure 1.4: (a) Thermal conductivity of germanium, taken from Ref. 34, for different isotopic con-
centrations. Percentages in parentheses represent sample purity, M and S refer to samples measured
using different setups. (b) Normal (N) and (c) Umklapp (U) processes. The pale red area represents
the first Brillouin zone for a two-dimensional square lattice. Both processes conserve energy, however
U processes do not conserve crystal momentum without the addition of a reciprocal lattice vector G.
Such processes are called ”three-phonon” processes because of the number of phonon involved in the
scattering event.
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of such scatterers are of the order of the atomic scale, we can assume from Rayleigh’s theory
that theses processes will be strongly frequency-dependent when the phonons’ wavelengths are
greater than the interatomic distance.

At temperatures below the peak position, anharmonic processes are no longer the main
source of thermal resistance and thus do not define the phonon mean free path anymore. The
phonon mean free path is set by temperature-independent parameters, such as the spatial
distribution of imperfections or the sample’s size.

To understand this last statement, it might be useful to think of a crystal as a black-
body which has a spectral distribution of phonons, obeying Bose-Einstein statistics. Wien’s
displacement law states that at any temperature, the maximum phonon wavelength increases
as temperature decreases such that λmaxT = constant. Therefore, one can define at each
temperature a so-called dominant phonon wavelength, readily obtained by calculating the
wavelength for which the phonon spectral density is maximum35 – exactly as in Wien’s law
for photons. The dominant phonon wavelength is then expressed as

λdom = hv

2.82kBT

where v refers to the phonon group velocity. Therefore, at low temperature, most phonons
have long wavelengths and thus start being immune to small defects, impurities, isotopes and
the like. Consequently, the important length scale that will eventually sets an upper limit to
the phonon mean free path at low temperature is the geometry of the sample, which is fixed.36

The T 3 dependence of the thermal conductivity that is observed as temperature decreases
below the peak in Figure 1.4(a) stems from the T 3 temperature dependence of the specific
heat for 3D systems, as derived in the Debye model. For systems of lower dimensions, the
temperature dependence changes, with Cp ∝ T for 1D systems and Cp ∝ T 2 for 2D systems.

Relaxation times

The relaxation times due to the aforementioned scattering processes have been calculated by
several 20th century physicists, pioneers in the field of heat conduction in solids. Chrono-
logically, Casimir36 in 1938, following Peierls’s work7 of 1929, derived an expression for the
relaxation time due to boundary scattering, τb. Klemens37 provided an expression for the
relaxation time due to U processes, τu, in 1951, which was suggested by Peierls7. Herring38

calculated the relaxation time for N processes, τn in 1954. In 1955, Klemens derived an ex-
pression of the relaxation time due to phonon scattering by static imperfections, which in
his seminal work39 separated into three components : points imperfections τi, defects τd and
grain boundaries τgb (which are considered as an array of dislocations lying in the plane of the
boundary). Four-phonons (4p) processes, which were first considered by Pomeranchuk40, were
studied as well by Ecsedy and Klemens.41 The temperature and frequency dependence of the
relaxation times for these scattering events are listed below :

τ−1
u,low T = Bue−θD/bT T 3ω2

τ−1
u,high T = B′

uω2T

τ−1
n = Bnω2T 3

τ−1
i = Biω

4

τ−1
d = Bdω

τ−1
gb = Bgb/Lg

τ−1
b = vj/Ls

τ−1
4p = B4pω2T 2
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Bj are constants related to the material’s intrinsic properties, but often need to be adjusted
by fitting the temperature dependence of the thermal conductivity to experimental data. ω

refers to phonon frequency, T is the temperature, and v is the phonon group velocity. In the
expression of the relaxation time due to boundary, Ls is the characteristic length of the sample
(such as the diameter for nanowires, thickness for thin films, etc.), and j is a so-called shape
factor. For grain boundary scattering, Lg is the grain size. We note that Slack and Galginatis42

found better agreement with their experimental data using a relaxation time for U processes
of the form τ−1

u = Bue−θD/3T Tω2, and suggested that in general τ−1
u = Bue−θD/3T (T/θD)βωα,

with α ≤ 2 and for T > θD, β = 1.
In 1994, Klemens refined his calculation considering phonon scattering by grain bound-

aries.31 He included a disorder layer between grains, leading to a frequency dependence of
the relaxation time, such that τ−1

gb ∝ Bgbω
2/Lg. However, a more recent work by Wang et al.

found that a relaxation time for phonon-grain boundaries scattering of the form τ−1
gb ∝ Bgbω/Lg

better described their experimental data.43

To eventually calculate the thermal conductivity using all these scattering rates, Callaway44

considered all the resistive scattering processes to be independent and thus additive, allowing
to use the Mathiessen rule for expressing the total relaxation time as

1
τ

=
∑

j

1
τj

(1.29)

Holland26 then a few years later in 1963 made the distinction between longitudinal (l) and
transverse (t) modes for calculating the relaxation times, which was not taken into account by
Klemens and Callaway. They are expressed as :

low T

τ−1
n,l = Bn,lω

2T 3

τ−1
n,t = Bn,tωT 4

high T

τ−1
n,l = B′

n,lω
2T

τ−1
n,t = B′

n,tωT
τ−1

u,t = Bt,uω2/ sinh(θD/T )

Even though these rather compact expressions for scattering rates are usually based on sev-
eral assumptions concerning the phonon dispersion, density of states and phonon energies12,
they are very good indicators for describing the temperature dependence of thermal conductiv-
ity34,45, and are actually used for determining the thermal conductivity of materials by solving
the Boltzmann equation under the RTA, using a Monte Carlo method for example, provided
that all the constant pre-factors Bj are known/fitted from other measurements.46 Moreover,
using these scattering rates can prove useful in estimating which processes are important ac-
cording to the phonon frequencies and the sample’s temperature.

The form of the relaxation times surely inform us that introducing phonon scattering
centers at different length scales (adding impurities, grains boundaries or simply reducing the
sample size) can eventually reduce the thermal conductivity of the material, depending on
the material’s temperature and phonon frequency. This has been an extensive research focus
within the last three decades47 for achieving high performances in thermoelectric applications
for instance. The performances of thermoelectric materials are increased if they possess low
thermal conductivity, high electrical conductivity, and are capable of efficiently converting a
temperature gradient into an voltage difference. Indeed, the thermoelectric performance at
an operating temperature T is given by the figure of merit ZT = σS2/(kel + klat), where σ

is the electrical conductivity, S is the Seebeck coefficient while kel + klat refers to the sum
of the electronic and lattice contribution to the thermal conductivity. Since the electronic
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200 nm

Straight/serpentine nanowires 1D phononic crystal Nanomesh 2D phononic crystal

Figure 1.5: Some examples of material nanostructuration intended to reduce the lattice contribution to
the thermal conductivity, for 1D and 2D systems. Images are reprinted with permission from Refs. 48–
51. Importantly, the constrictions/holes are designed in such a way that their size match the material’s
phonon mean free path or wavelength. For this reason, the efficiency of thermal conductivity reduction
strongly depends on temperature.

contribution to the thermal conductivity is related to its electrical conductivity through the
Wiedemann-Franz law, kel/(Tσ) = L = constant, where L is the Lorenz number, the overall
gain in one of the two parameters is counterbalanced by a reduction of the other one, and thus
the figure of merit remains relatively unchanged by only playing with the electrical properties
of a system. An effective approach to increase the figure of merit is thus to reduce the lattice
contribution to the thermal conductivity, through for instance, nanostructuration.

1.3.4 Phonon scattering in nanostructured materials

1D and 2D nanostructures

State-of-the-art nanofabrication methods have opened up new possibilities for creating struc-
tures whose length scales are close to the characteristic lengths governing heat conduction.
Phonon transport can be tuned for example, by simply playing with the geometry of the
structure, as shown in Figure 1.5.

One of the most prominent example is the nanowire, whose thermal conductivity is dras-
tically reduced because of enhanced phonon-boundary scattering. Even at room temperature,
the thermal conductivity of silicon nanowires have been measured to be significantly lower than
their bulk counterpart, because their diameter is below the bulk phonon mean free path.52–55

In this case, the new phonon mean free path is simply the characteristic length of the nanowire,
i.e. its diameter, as proposed by Casimir. We note that in these structures, the thermal trans-
port is also dependent on the surface roughness35,56, as well as the crystalline quality of their
outer layer57 (in most cases, there is a thin amorphous layer around the nanowire due to
oxidation). Notable thermal conductivity reduction in nanowires only due to size effects have
been reported for narrow52, rough58, modulated59, scalloped-shaped60 or serpentine-shaped
nanowires.48 Using the diameter of a nanowire in addition to a combined engineering of crystal
phase and isotope disorder has been reported to strongly reduce the thermal conductivity as
well.61

For membranes, the thermal conductivity is partly reduced by the thickness of the mem-
brane, though the thickness of the membrane alone does not define the phonon mean free path,
as it is the case for NWs.62 Moreover, it can be further reduced by including new phonon scat-
tering centers, which take the form of holes. Fabricating structures that can effectively reduce
phonon transport has been made possible primarily because of relentless efforts made in the
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Sb NPs in PbTe ErAs NPs in InGaAs ErAs NPs in InGaAlAs-FeSi2 NDs in Si 

Nanostructuration using embedded Nanoparticles (NPs)/nanodots (NDs)

Figure 1.6: Several example of structures whose thermal conductivities have been reduced because
of the incorporation of nanoparticle/nanodots within the host material. TEM images reprinted with
permission from Refs. 70–73.

field of nano-fabrication. For instance, the realization of holes whose sizes are commensurate
to the phonon mean free path or wavelength has been made possible because of the develop-
ment of electron beam lithography. Such structures as nanomeshes50 or holey silicon63 have
been reported to significantly reduce the lattice thermal conductivity at room temperature
and below. At lower temperature (around 4K), the dominant phonon wavelength starts to
become ”large” enough such that structures of comparable sizes can be effectively built using
modern fabrication techniques. Structures built with such characteristics are often referred to
as phononic crystals, and have been extensively studied lately.64–68

3D structures

Increasing phonon scattering in 3D structures, i.e. structures where all the dimensions are
taken to be greater than the phonon mean free path, seems challenging since growing 3D struc-
tures with nanoscale cavities is, technologically speaking, an arduous task. There have been
nonetheless theoretical predictions of reduced thermal conductivity in such hypothetical struc-
tures.69 A common substitute to growing materials with nanoscale air gaps is the incorporation
of nanodots (NDs)70, nanoparticles (NPs)71–75 or nanoinclusions3 (NIs)76 using materials dif-
ferent from the host, within the 3D structure (alloy or single crystal), as shown in Figure 1.6.
Such phonon scatterers differ from grains primarily because of their reduced size, but are still
larger than impurities and point defects. The general idea is that while grains would effectively
scatter long wavelength phonons and point defects that of short-wavelength phonons, nanopar-
ticles provide an additional scattering mechanism for the mid-to-long-wavelength phonons.72

Pushing further this reasoning, it seems reasonable to assume that the broader the size dis-
tribution of nano-inclusions within a material, the more effective the scattering will be since
nano-inclusions of different sizes will scatter with a larger portion of the phonon spectrum.
The relaxation time τni due to scattering by a distribution of nano-inclusions is expressed,
according to kinetic theory as77

τ−1
ni = vσsct(χ)η (1.30)

where v is the phonon group velocity, η represents the particle concentration and σsct(χ) is the
scattering cross-section, which depends on the so-called size parameter χ. The size parameter

3The difference between NDs, NPs and NIs might simply be a matter of vocabulary.
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Figure 1.7: Scattering efficiency for several Gamma distributions of the nanoparticle size, with fixed
diameter and increasing standard deviations, reprinted with permission from Ref. 77. According to this
calculation, a more efficient phonon scattering is obtained for a broader size distribution of nanoparti-
cles.

is a dimensionless parameter that relates the phonon wavevector k to the radius of the scatterer
rni = dni/2 via χ = krni. In the limit χ → 0, we have σsct ∝ r6

ni/λ4, λ referring to the phonon
wavelength, a result first derived by Rayleigh in his study of light scattering with particles
whose sizes are much smaller than the wavelength of electromagnetic radiations. This is in
accordance with the relaxation time due to impurity scattering, which scale as τ−1

i ∝ ω4.
Kim and Majumdar77 provided an approximate analytical solution to estimate the phonon

scattering cross section of polydispersed spherical nanoparticles, allowing to estimate how effi-
cient a particle distribution is for impeding thermal flow. In particular, the standard deviation
of the distribution function seems to be one important parameter driving the phonon scattering
efficiency. This is in agreement with the reasoning that a broad NIs size distribution (i.e. with
a large standard deviation) would scatter a broader part of the phonon frequency spectrum,
thus reducing thermal conductivity more efficiently. The scattering efficiency for several size
distributions with several standard deviations are plotted as a function of the size parameter
in Figure 1.7(a), which is taken from Ref. 77. This result indeed suggests that a broad size
distribution of nanoparticles scatters phonons more efficiently. We notice in Figure 1.7(a) that
the scattering cross-section presents an oscillatory behavior as a function of size parameter,
however this would be averaged out when integrating over the entire phonon spectrum.

Zhang and Minnich have recently suggested, using advanced computational methods, that
a broad NPs size distribution was not the most efficient way of reducing phonon transport,
but rather discrete peaks at well-chosen nanoparticle radii.78 However, reports of thermal con-
ductivity measurements in materials with a controlled NPs size distribution are not abundant,
primarily because of the difficulty of growing such structures. Even though the continuous
or discrete nature of the NP size distribution that would lead to the most efficient reduction
in thermal conductivity differ in Kim and Zhang’s approaches, both predictions suggest that
phonon scattering is enhanced for embedded NPs of different sizes.

Lastly, a design that is somewhere between 2D and 3D structures is that of superlattices.
A superlattice is a periodic structure of layers of two or more materials, whose thicknesses
are of the order of a few tens of nanometers or less. Superlattices show a significant thermal
conductivity reduction in the cross-plane direction (see Figure 1.8) primarily because planar
interfaces in these structures act as new phonon scattering centers which, when put in series,
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100 nm GaAs

ErAs NPs in InGaAs
forming a superlattice

Ge NDs (dark)
between Si layers

Ga2O3/(Al0.1Ga0.9)2O3 AlAs/GaAs

Superlattices showing reduced cross-plane thermal conductivities

Figure 1.8: Several superlattices structures with reported significant cross-plane thermal conductivity
reduction (the cross-plane direction represents the vertical axis in theses TEM images). Reprinted with
permission from Refs. 72,80–82.

greatly reduce the effective thermal conductivity of the superlattice.32 Additionally, large mass
difference in two intercalated layers, or weakened interactions across the interface between
layers result in reduced thermal conductivity.79 For superlattices with very thin interlayer
spacing, phonon transport within each layer is essentially ballistic and the thermal bound-
ary resistance between each layer becomes the principal source of thermal resistance.32 An
essential parameter for these structures is thus the inter-spacing distance between the layers,
compared to the phonon mean free path. A vast majority of literature studies have essentially
been focused on the thermal characterization and theoretical study of Si/Ge, Si/SiGe super-
lattices32,83–87, superlattices with quantum dots between each two layers (Quantum Dots Su-
perlattices, QDSL)80,88,89, or even nanowire Si/SiGe superlattices90,91 but other compositions
are very promising in providing materials with enhanced thermoelectric properties.81,82,92–98

Some examples of these structures are shown in Figure 1.8. Besides, theoretical efforts have
been made to quantify how the interface quality99 and crystallinity100,101 may impact thermal
flow across theses structures.

On the thermal perspective, the impact of interfaces is not solely relevant for increasing
a superlattice ability to impede thermal flow. The thermal weight of thermal boundary re-
sistances (TBRs) can be substantial in many measurement configurations that are performed
on multilayer systems. This is the case in a majority of popular thermal conductivity mea-
surement techniques such as time-domain thermoreflectance102, where a metallic layer whose
reflectivity is probed to monitor the sample’s temperature is deposited on top of the sample of
interest, thus creating an interface. Similarly, as will be discussed in the next chapter, the 3ω

measurement technique is very sensitive to thermal boundary resistances, which can be detri-
mental to the accuracy of the measurement. For this reason, we will introduce in the following
section the general concept of thermal boundary resistance, and some common models that
are used to evaluate it.

1.4 Thermal boundary resistance

Any interface made of two dissimilar materials, or of the same material with different crystallo-
graphic orientation, will hamper a thermal flux that is applied across it – even if the interface
is smooth at the atomic level. The thermal boundary resistance Rint between two materials
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Figure 1.9: (a) Macroscopic picture of the concept of thermal boundary resistance. The TBR causes a
temperature jump at the interface. (b) General idea behind the acoustic mismatch model (AMM), it
is analogous to Snell-Descartes’s law for sound waves. An incident phonon (blue) can be transmitted
(red) or reflected (orange), according to the acoustic mismatch between both materials. (c) General
idea behind the diffuse mismatch model (DMM), the probability for a phonon to transmit across the
interface depends on the phonon density of states of the other material. In this example, the incident
phonon from material 2 cannot cross the interface because the density of states in material 1 is null
at this particular frequency, and is thus reflected back. More generally, in this model, the material
with the lower phonon maximum frequency, or similarly, the lower Debye temperature, will dictate the
temperature dependence of the TBR. In particular, above the Debye temperature of the material with
lower Debye temperature, the TBR should remain constant when temperature increases.

relates the temperature discontinuity ∆T measured at the interface to the heat flux ϕ that is
applied across it, as shown in Figure 1.9(a) :

Rint = ∆T

ϕ
(1.31)

where Rint has units of m2.K.W−1. It was first reported experimentally by Kapitza in 1941103,
between liquid helium and copper. Historically, the first models that have been used to estimate
the TBR amplitude are the acoustic mismatch model (AMM), diffuse mismatch model (DMM)
and the phonon radiation limit (RL).104,105 The important parameters required to describe
the net heat flux of carriers crossing an interface are the flux of energy carriers irradiating the
surface, and how well they transmit across the interface.

We shall therefore return to the microscopic picture of the heat flux, which describes the
thermal energy that is carried by phonons, but this time accounting for the fact that they
can be transmitted or reflected at the interface. This is achieved by adding a transmission
coefficient, α1→2, describing the probability of an energy carrier to transmit across the interface.
Taking into account phonons incident from all directions in the upper half-plane above the
interface, the heat flux from material 1 of the interface to material 2 is written as104

ϕ1→2 = 1
2
∑

s

∫ π/2

0

∫ ωmax

0
~ωvs(ω)n(ωs, T )D(ω)α1→2(θ, ωs) cos(θ) sin(θ)dθdω (1.32)

where the integral over azimuthal angle φ contributed 2π, and θ is the angle between the inci-
dent phonon wavevector and the normal to the interface. Material 1 is defined by convention
as the material with the lowest maximum frequency ωmax (i.e. lowest Debye temperature).
For small temperature difference ∆T = (T2 − T1) → 0, we can replace

Rint = T2 − T1
ϕ1→2(T2) − ϕ1→2(T1)

(1.33)
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using its derivative :
1

Rint
= ∂ϕ1→2

∂T
(1.34)

and thus, since only the occupation number is temperature dependent, we write

1
Rint

= 1
2
∑

s

∫ π/2

0

∫ ωmax

0
~ωvs(ω)∂n(ωs, T )

∂T
D(ω)α1→2(θ, ωs) cos(θ) sin(θ)dθdω (1.35)

The most important and difficult parameter to determine in the above formulation of TBR is
the transmission coefficient. The AMM, DMM and RL are the three general models that pro-
vide a relatively easy way of calculating the transmission coefficient, under several assumptions
which will be introduced.

1.4.1 Acoustic Mismatch Model

The AMM was formulated by Little in 1959.106 In this model, the transmission coefficient is
derived using an acoustic analogous to Snell-Descartes’s law for the refraction of light. Phonons
are assumed to be deflected at the interface, and the transmission probability depends on their
angle of incidence along with the acoustic mismatch between the two media, as shown in Figure
1.9(b). Above a critical angle, phonons are reflected and conversely, they are transmitted below
the same critical angle, θ1,crit = sin−1(v1/v2), assuming v2 > v1. The transmission coefficient
is given by

α1→2 =
4ρ2vp,2

ρ1vp,1

cos(θp,2)
cos(θp,1)(

ρ2vp,2
ρ1vp,1

+ cos(θp,2)
cos(θp,1)

)2 (1.36)

where the angles are related through sin(θ1)
v1

= sin(θ2)
v2

, i.e. the acoustic version of Snell-
Descartes’s law. In this model, the transmission coefficient is derived by solving the continuum
elasticity equations and the interface is assumed to be a smooth plane ; any granularity or
imperfections at the interface are thus discarded. For this reason, this model is only relevant in
the case where phonons do not see any irregularities at the interface. A case that approaches
this limit and where the AMM model is successful is at low temperature (T < 30 K), where
most phonons have low energy and thus long wavelength.104

1.4.2 Diffuse Mismatch Model

Diffuse Mismatch Model for phonons

The second model, named Diffuse Mismatch Model or DMM, has been introduced by Swartz
and Pohl104, and the complete specularity (i.e. zero scattering) that is assumed in the AMM,
is replaced by the opposite extreme : all phonons are diffusively scattered at the interface.
In the process of scattering, phonons lose memory of their direction (thus wavevector k⃗),
polarization s, and material of origin such that there is now way to tell if a phonon leaving
the interface is due to reflection from the same side or transmission from the other side.32,104

However, the transmitted phonon keeps the same frequency ω as that of the incident phonon.
The probability for a phonon with frequency ω from one side to cross the interface depends
on the phonon density of states at the same frequency ω of the material on the other side of
the interface. For a phonon coming from material 1, the more phonon states at a particular
frequency ω there is in material 2, the more likely the phonon will cross the boundary (”forward
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scatter”) instead of being reflected back into material 1. This also implies that, since a phonon
from one material can only transmit energy to another phonon of the other material with the
same frequency, the material with the lowest allowed maximum frequency (or lowest Debye
temperature) will eventually dictate the temperature dependence of the TBR, as shown in
Figure 1.9(c). In particular, above the Debye temperature of the material with the lowest
Debye temperature, the TBR should be constant when temperature increases.107

In this model, the probability of phonon reflection from one side must equal the probability
of transmission from the other side :

α1→2(ω) = 1 − α2→1(ω) (1.37)

This models suggests that the TBR depends on the density of states D(ω) of both materials,
and their dispersion relation ω = f(k) – quantities calculated using the material’s bulk prop-
erties. However, it does not depend on the phonons’ angle of incidence. The transmission
coefficient is obtained using the detailed balance principle, such that the number of phonons
leaving one side of the interface must equal the number of phonons transmitting from the
other side of the interface when both sides are at the same temperature104 :∑

s

∫ 2π

0

∫ π/2

0
v1,sn1,s(ω, T )D1(ω)α1→2(ω)dϕ cos(θ)dθ (1.38)

=
∑

s

∫ 2π

0

∫ π/2

0
v2,sn2,s(ω, T )D2(ω)α2→1(ω)dϕ cos(θ)dθ (1.39)

Along with Eq.(1.37) and upon integrating over spherical coordinates, it leads to

α1→2(ω) =
∑

s v2,sn2,s(ω, T )D2(ω)∑
s v1,sn1,s(ω, T )D1(ω) +

∑
s v2,sn2,s(ω, T )D2(ω)

(1.40)

Using the Debye model for the density of states and dispersion relation, it is further reduced
to

α1→2(ω) = α1→2 =
∑

s v−2
2,s∑

s v−2
1,s +

∑
s v−2

2,s

(1.41)

where the vi,s refer to the materials’ phonon group velocities, for the three phonon polarizations
(two transverse, one longitudinal). The TBR is inferred by plugging the transmission coefficient
into Eq.(1.35). It leads to

1
Rint

= 1
2
∑

s

∫ π/2

0

∫ ωmax,1

0
~ωvs

∂n(ωs, T )
∂T

D(ω)
∑

s v−2
2,s∑

s v−2
1,s +

∑
s v−2

2,s

cos(θ) sin(θ)dθdω (1.42)

= 1
8π2

∑
s

∫ ωmax,1

0
~ω3v−2

s,1
∂n(ωs, T )

∂T

∑
s v−2

2,s∑
s v−2

1,s +
∑

s v−2
2,s

dω (1.43)

where the Debye density of states is used from the first to second line. In general, the DMM
is often seen as more appropriate than the AMM at high temperature. The reason is that at
high temperature, most phonons have short wavelength and therefore are more prone to see
the atomic imperfections of the interface, and therefore more likely to be scattered, which is
the underlying assumption of the DMM.

Diffuse Mismatch Model for electrons

So far, only the thermal resistance due to phonons has been considered. Electrons participate
as well in the overall heat transport across interfaces, if at least one of both materials is
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metallic, or semi-conducting with sufficient doping. Gundrum et al.108 have used exactly the
same assumptions used in the DMM for estimating the thermal boundary resistance due to
electrons, for metal-metal interfaces. The transmission coefficient for phonons is replaced by
a transmission coefficient for electrons, by taking the Fermi-Dirac distribution rather than the
Bose-Einstein one, and replacing the phonon group velocity by the Fermi velocity of electrons.
The thermal boundary resistance only due to electrons is written as

1
Rint

=
Ze−,1Ze−,2

4(Ze−,1 + Ze−,2)
(1.44)

where Ze−,i is given by the product of electronic heat capacity per unit volume Ce− =
(π2/3)D(EF)k2

b T = γT and Fermi velocity vF : Ze−,i = γvFT . This simple models led to
quite good agreement with experimental measurements for metal-metal interfaces.108,109

1.4.3 Phonon radiation limit

Even though the general trend is respected in terms of how resistive an interface will be
regarding the materials’ acoustic mismatch and weighted density of states, the AMM and DMM
usually overestimate the TBR when compared to experimental results. One could wonder what
is the lowest resistance that can be achieved, given an interface made of dissimilar materials.
Snyder110 has introduced the phonon radiation limit in which all phonons from the side with
the lower density of states are assumed to be transmitted104, granted that the density of states
of the other material is not zero. Phonons from the other material also transmit into the
material with lower density of states such that the principle of detailed balance is maintained.
The TBR is then obtained by setting the transmission of the lower density of states material
(at a particular frequency) to 1 :

1
Rint

= 1
2
∑

s

∫ π/2

0

∫ ωmax,1

0
~ωvs,2

∂n(ωs, T )
∂T

D(ω) cos(θ) sin(θ)dθdω (1.45)

= 1
8π2

∑
s

∫ ωmax,1

0
~ω3v−2

s,2
∂n(ωs, T )

∂T
dω (1.46)

where the Debye density of states is used from the first to second line. We underline that this
limit is not physically justified as opposed to the other two models, but provides a lower bound
for TBR.

1.4.4 Other approaches

The three aforementioned models/limit often use approximations in order to provide an easy
way of estimating TBR between materials, using informations that can be found in literature,
such as the material’s Debye temperature or sound velocity. This kind of approach is limited,
primarily because the dispersion relation and density of states are often simply taken to be
that derived in the Debye model, which does not accurately describe phonons at the edge
of the first Brillouin zone (whose group velocity are lower than that predicted in the Debye
approximation). Some improvements have led to somewhat better agreement with experiments
; for example, the Debye dispersion relation has been replaced by a more accurate sine-type
dispersion relation111, or using a truncated Debye model.112 Another approach consists in
using the AMM or DMM with dispersion relation and density of states that have been measured
experimentally.113
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Eventually, more realistic approaches that do not rely on these models are computational
approaches, such as lattice dynamics and molecular dynamics (MD).100,107,114–116
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Figure 1.10: Measured TBRs as a function
of temperature, adapted from Ref. 117. The
scale on the right represents the thickness of
a film with thermal conductivity kf=1 W/m.K
whose computed thermal resistance would lead
to the same TBR as that on the left scale.

These approaches allow to more rigorously explain
the factors governing TBR, beyond the dispersion
relation and acoustic mismatch, such as the in-
terfacial bonding strength and stiffness, crystallo-
graphic orientation, interfacial roughness, or hy-
drostatic pressure.105 For a recent review of com-
putational advances in nanoscale thermal trans-
port across interfaces, the reader is referred to
Ref. 107. These models usually provide correct
qualitative results, but with a restricted quantita-
tive accuracy. Instead of calculating TBR values
using the models presented hereinabove, we pro-
vide experimental reports of thermal boundary re-
sistances for several combinations of materials in
Figure 1.10, which is adapted from Ref. 117. As
we will discuss in the following chapters, the ther-
mal weight of TBRs, in comparison to the ther-
mal weight of thin films, can become the dom-
inant source of uncertainty when measuring the
thermal conductivity of a thin film in a multi-
layer system. Thermal boundary resistances span
about three orders of magnitude, from around
10−10 to 10−7 m2.K/W at room temperature. In
comparison, a thin film with thermal conductivity

kf = 1 W/m.K and thickness df = 10 nm has a thermal resistance Rf = df/kf = 10−8m2.K/W,
which is the same order of magnitude. This simple comparison underlines the difficulty of mea-
suring the thermal conductivity of supported films which are very thin, thermally conductive,
or both.

In the next chapters, we will describe the measurement technique – the 3ω method – that
have been implemented and used for determining the thermal conductivity of films and sub-
strates, which differ in terms of size and thermal properties, and where TBRs can greatly affect
the accuracy of the measurement. The technique is used to measure the thermal conductivity
of films that have been nanostructured, such that we expect a reduced thermal conductivity
because of the scattering events experienced by phonons, as introduced in Section 1.3.3 of this
chapter.
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2.1 The 3ω method

2.1.1 Introduction

The ever-decreasing size of structures implemented in next-generation electronic devices has
led to the development of measurement techniques which are adapted to such reduced sizes.
For thermal measurements, the heat source and temperature sensor are scaled to match the
size of the sample of interest. For example, in pump-probe experiments such as opto-thermal
Raman spectroscopy118 or time-domain thermoreflectance102, the spot size of lasers used to
provide the heat flux and read the temperature response are of the order of a few micrometers.1

In electro-thermal measurement techniques, the heating element and temperature sensor are
thin films which are hundred of nanometer thick and a few µm large. The heat flux is created
by Joule heating while the temperature is monitored by reading the temperature-dependent
resistance of the metallic thin film.

The 3ω method is an electro-thermal method which can be used to measure the thermal
conductivity of bulk substrates, thin films, membranes, nanowires and under certain conditions,
thermal boundary resistances. It has been popularized by Cahill in 1990119, who extended the

1In time-domain thermoreflectance, the pump laser is heating a metallic film deposited on top of the sample,
which in turn serves as a heat source for the sample underneath. The laser does not directly heat the sample.
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Figure 2.1: Principal geometries that have been used to measure the thermal conductivity of films and
other structures using the 3ω method.

measurement method proposed by Birge and Nagel that was aimed to measure the specific
heat of liquids.120 The 3ω method is widely used in the heat-transfer community, primarily
because it is (historically) among the first methods to be essentially immune to errors due
to black-body radiation since the effective heated area is small (with an order of magnitude
of ≈ 100 µm), and does not suffer from long thermalisation times. Besides, it is an electro-
thermal method, which is well mastered and relatively easy to set up, and since it is also a
frequency-dependent technique, it can take advantage of lock-in amplifier technology to read
the system’s frequency response with great accuracy.

The 3ω method has been used to measure the thermal properties of a large variety of mate-
rials with different geometries, for different purposes, as can be seen in Figure 2.1. Whatever
the geometry of the structure to be studied, the method relies on the frequency-dependent
thermal response of a self-heated single metallic element which serves both as a heater and a
thermometer. Thermal properties of the surroundings of the heater/thermometer, or of the
heater/thermometer itself, are inferred by monitoring its thermal response as a function of
driving frequency. It was first used by Cahill to measure the thermal conductivity of thick,
electrically insulating substrates119 (Figure 2.1(a)) and later, amorphous thin films121 (Fig-
ure 2.1(b)). The thermal conductivity of an anisotropic multi-wall carbon nanotube strands
has been measured several years later122, which took advantage of a more accurate thermal
model for 3ω experiments123 conducted in a multilayer-on-substrate configuration (Figure 2.1
(b)). Then, the thermal conductivity of suspended filaments/nanotubes124 (Figure 2.1(c)) and
nanowires54,125 (Figure 2.1(e)) have been measured by suspending the structure such that the
thermal flux leaks into the nanowire rather than directly into the substrate. Similarly, the
thermal conductivity of suspended membranes and polymers have been measured using the
geometry of Figure 2.1(f).126–129

Lefèvre and Volz130 provided a thermal model for using the 3ω method when the heater/thermometer
is placed at the tip of a AFM probe (Figure 2.1(d)), providing a better spatial resolution for
temperature measurements. The thermal conductivity of liquids was then measured by Choi
et al.131, by placing a small amount of liquid on top of the heater/thermometer (Figure 2.1(g))
and measuring its thermal contribution – a method also used for measuring the thermal con-
ductivity of other types of systems (gas132, biological tissues133 or other films with applied
pressure134).
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Additionally, the technique has been used for purposes other than measuring the thermal
conductivity of materials. For example, it has recently been used for tracking moving phase
boundaries135 or determining the extent of a freezing region surrounding a cryoprobe.136

In this work, we will use the geometry of Figure 2.1(a) and (b) for measuring the thermal
conductivity of thin films and substrates when using the 3ω method, which is the simplest
geometry we can think of, and the easiest to achieve in terms of fabrication. However, the
simplicity in fabrication does not translate into simplicity in data modelling. We will focus
this chapter and the two following ones in explaining the principle of the 3ω method, how it
has been implemented during this thesis, and the thermal model used to determine important
thermal properties in a supported multilayer system.

2.1.2 Principle

The 3ω method consists in measuring the thermal impedance created by a specimen of interest,
when submitted to a periodic heat flux. The periodic heat flux is created by applying an alter-
native current of frequency 1ωe across a metallic line microfabricated on top of the specimen,
as depicted in Figure 2.2(a). Joule heating occurring at 2ωe induces a temperature oscillation
at the same frequency, which, coupled with the metallic line’s temperature coefficient of resis-
tance (TCR), leads to a periodic change of the metallic line resistance at 2ωe. Consequently,
a voltage at frequency 3ωe that is proportional to the temperature oscillation ∆T2ωe develops
across the metallic line, as displayed in Figure 2.3. It is from this temperature oscillation that
we infer thermal properties of the system beneath the metallic line.

2b

transducer

substrate/multilayer

(a) (b)

Figure 2.2: (a) Schematic of the metallic transducer on a substrate/multilayer with important geometry
parameters (length lh and width 2b). (b) Illustration of the principle of the 3ω method : V3ωe

is read
to infer the temperature oscillations sensed by the transducer which in turn gives informations about
the thermal properties of the system.

We remind that in this geometry, the metallic line serves both as a heater and temperature
sensor : it will be hence often referred to as a transducer in this manuscript. Prior to discussing
the mathematics involved in the determination of thermal properties of materials using the 3ω

method, it is important to grasp a few important key points related to the method.
Firstly, the 3ω method relies upon the measurement of a temperature oscillation that is a

consequence of the finite thermal impedance of a material submitted to a periodic heat flux.
Importantly, the temperature oscillation is sensed at the same position where the heat flux is
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Figure 2.3: Schematic representation of the time-varying quantities of interest during a 3ω experiment.
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produced. If the material is thermally insulating (such as amorphous materials, polymers, etc.),
heat won’t propagate easily through the material, and therefore the temperature oscillation
sensed by the transducer will be large, thus relatively easy to measure. Conversely, a material
with large thermal conductivity (such as metals, semi-conductors, etc.) will easily spread
heat coming from the transducer. For the same applied power, the temperature oscillation
measured across the transducer will therefore be very small and difficult to measure. Using the
geometry depicted in Figure 2.2, it is then easier to measure a thermally insulating material.

Secondly, the wording thermal « impedance » suggests that the temperature oscillation
is complex and therefore has a magnitude and phase. We must recall that the temperature
oscillation is a consequence of an oscillating heat source, which also has an amplitude and
phase. When the heat wave coming from the periodic joule heating flows across the system of
interest, its amplitude and phase will change according to the system’s thermal properties (see
Figure 2.3). Consequently, there is a difference in amplitude and phase between the heat source
excitation and the temperature response. That way we can define two orthogonal components,
the real part of the complex temperature oscillation which is in phase with the heat, and the
imaginary part, out of phase with the heat. This aspect is important since it is directly related
to quantities we have access to experimentally, i.e., oscillating voltage that have in-phase and
out-of-phase components.

Lastly, we only have access to the temperature oscillation at one position (on top of the
specimen), averaged across the transducer’s dimensions, to infer thermal informations of the
underlying material(s). Since we accurately know the power P that is supplied, the measured
temperature oscillation ∆T2ωe can be translated into an effective thermal impedance Zeff,
since ∆T2ωe = Zeff × P . It is effective since it is the impedance of the complete thermal
circuit (heater, film, substrate, thermal boundary resistances, etc.). For this reason, it does
not seem straightforward to infer the thermal properties of a complex system made of many
layers with different thermal properties, since we only measure the temperature at one position,
which reflects the effective thermal impedance of the system. For a film-on-substrate system,
how is it possible to separate the thermal contribution of the substrate to the total thermal
impedance, which we can reasonably assume will be large, from that of the film deposited
onto the substrate, which we can assume will be small ? Similarly, since we are dealing
with small samples, typically several hundred of microns thick for most substrates, will the
experiment be sensitive to the thermal contact between the sample and the sample holder
? These questions have several answers, which rely upon the core of the 3ω method : it
is a frequency-dependent technique and it is therefore possible to tune the depth at which
the temperature gradient extends within the material of interest by varying the heat source
excitation frequency (remember Fourier and the temperature propagation within Earth’s crust
from Chapter 1). In practice, this is achieved by varying the frequency of the current flowing
through the transducer. The relationship between frequency and heating depth brings the
need to define the notion of thermal penetration depth.

2.1.3 Thermal penetration depth

The thermal penetration depth is a simple, yet important notion in frequency-dependent ther-
mal measurements that needs to be conceptually understood. To do so, we start from the
simple case of heat conduction in one dimension, with no internal heat generation. The heat
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equation is written as

ρCp
∂T (y, t)

∂t
= ky

∂2T (y, t)
∂y2

If the heat source is periodic with a characteristic frequency ω, it is reasonable to assume
that temperature oscillates at frequency ω as well, and therefore we write T (y, t) = T (y)eiωt.
Applying boundary conditions such that T (y)y→∞ = 0 and introducing the heat source as
a boundary heat flux ϕ such that −ky∂T (y)/∂y|y=0 = ϕ, the temperature oscillation as a
function of coordinate y is of the form2

T (y) = ϕ

qky
e−qy (2.1)

where we have defined

q ≡
√

iρCpω

ky

This definition of q will be used henceforward. We underline that ω represents the frequency at
which the temperature is oscillating. Therefore, when the temperature oscillation comes from
Joule heating at electrical frequency ωe = 2πf , the heating frequency is written ω = 2 × ωe =
2 × 2π × f . From Eq. (2.1), we understand that temperature is decaying exponentially as a
function of position, over a characteristic length |1/q|. This length will be henceforth referred
to as the thermal penetration depth (TPD), since it represents the characteristic length over
which the temperature amplitude decays towards zero.

Thermal penetration depth (TPD) = λtpd =
∣∣∣∣1q
∣∣∣∣ =

√
ky

ρCpω
= [m] (2.2)

In this example in one dimension, it represents the length at which the temperature am-
plitude has dampened by 1/e ≈ 37% from its initial value. Indeed

T (y = |1/q|)
T (y = 0)

= exp(−1) = 1/e

This is derived for the case of heat conduction in one dimension so that the familiar exponential
decay and characteristic length appear clearly. The result is similar in essence for higher
dimensions3, as shown in two dimensions in Figure 2.4, for a heat source of finite width
dissipating heat inside a material underneath. The TPD is inversely proportional to the heating
frequency, meaning that the length over which the material of interest is heated decreases as the
heater frequency increases. This is of major importance, because we can devise experiments
to probe in depth a material by changing the heat source oscillation frequency – thereby
being immune to end effects due to the finite size of samples, which can be important in DC
measurements. This is the starting point for many frequency-dependent thermal measurement
schemes. As we will discuss later, it also entails limitations for the heating frequency range to
use when performing an experiment.

2dropping the time dependent part
3The exact solution for an infinitely narrow line dissipating inside a material in two dimensions is written

using a modified Bessel function of the second kind.137 The temperature decreases over the same characteristic
length as defined in the text, however it represents the length at which the temperature amplitude dampens by
K0(1) ≈ 42% from its initial value.
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Figure 2.4: Calculated amplitude of the temperature oscillation at 2ωe in two dimensions in a germa-
nium substrate, for several excitation frequencies. The heat source is a boundary heat source, mimicking
a heater of negligible thickness deposited onto the substrate. Increasing the frequency makes the ther-
mal penetration depth smaller and thus playing with the excitation frequency allows to probe in depth
a material of interest. The size of the plots is 200 × 200 µm2. There always is a DC component of the
temperature, which is superposed to the temperature oscillation at 2ωe. It has been removed in these
plots for clarity.

Consequently, the 3ω method consists in heating the sample using the transducer, and mea-
suring the temperature response of this transducer as a function of its excitation frequency
in order to probe the material in depth. Fitting the thermal response of the calibrated trans-
ducer using an adapted heat conduction model allows to infer several thermal properties of
the system under study.

As we will see in the following section, the measurement of the temperature oscillation ∆T2ωe

is straightforward using experimental quantities that are very well controlled or measured. To
infer thermal properties from this temperature oscillation is, however, more demanding.

2.1.4 Measuring the temperature oscillation

In this section, we wish to express the temperature oscillation, related to the thermal impedance
of the system of interest which contains useful thermal informations, in terms of the quantities
that are driving our electro-thermal experiment, i.e. the voltage, current and power produced
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by Joule heating. A sinusoidal current

I1ω = I1 cos(ωet) (2.3)

is flowing through the metallic transducer, whose electrical resistance variation with tempera-
ture is written as

Re = Re,0(1 + β∆Ttot) (2.4)

where
β = 1

Re,0

dRe

dT
(2.5)

is its temperature coefficient of resistance (TCR). Because β∆Ttot ≪ 1, to leading order,
Joule heating can be approximated as138,139

P = Re,0 × I2
1ω

The temperature variation resulting from the metallic line dissipating power through Joule
heating is

∆Ttot = P × Zth

= Re,0 (I1 cos(ωet))2 × Zth

= Re,0Zth
I2

1
2

(1 + cos(2ωet))

= ∆T︸︷︷︸
∆TDC

+ ∆T cos(2ωet + ϕ)︸ ︷︷ ︸
∆T2ωe

(2.6)

where Zth represents the thermal impedance of the specimen under study. Importantly, it can
be complex and frequency dependent and cause a phase lag ϕ between the periodic heating
and the temperature response (see Figure 2.3). In some cases, it is not frequency dependent ;
it is then referred to as a thermal resistance. The voltage across the transducer reads

V = Re × I1ω

= Re,0(1 + β∆Ttot) × I1 cos(ωet)

= Re,0I1[1 + β (∆T + ∆T cos(2ωet + ϕ))] cos(ωet)

= Re,0I1 cos(ωet) + Re,0I1β∆T cos(ωet + ϕ) + Re,0I1β∆T cos(ωet) cos(2ωet + ϕ)

=
[
Re,0I1 cos(ωet) + 3

2
Re,0I1β∆T cos(ωet + ϕ)

]
︸ ︷︷ ︸

V1ωe

+
[1

2
Re,0I1β∆T

]
cos(3ωet + ϕ)︸ ︷︷ ︸

V3ωe

(2.7)

For simplicity, we will now write harmonics of the voltage V1ωe and V3ωe as V1ω and V3ω.
Since we use a lock-in amplifier to measure V3ω, we express important quantities in terms of
root-mean-square (rms) values, as read by the lock-in :

∆T = 2V3ω,rms
Re,0I1ω,rmsβ

We have kept the peak value of the temperature oscillation, since in the data reduction process
that is described later on, we use the peak value of the dissipated power to fit the measured
temperature oscillation data to a thermal model. The temperature oscillation has in-phase
(with the heating) and out-of-phase components, which can be readily determined using the
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in-phase and out-of-phase components of V3ω. The temperature oscillation in-phase with the
heating is therefore readily inferred from quantities that can be accurately measured : the
ac current, the transducer resistance and its temperature coefficient of resistance. It can be
useful to re-write Eq.(2.7), using the expression of ∆T in Eq. (2.6) :

V =
[
Re,0I1 + 3

2
Re,0I1β

(
Re,0Zth

I2
1
2

)]
cos(ωet) +

[
1
2

Re,0I1β

(
Re,0Zth

I2
1
2

)]
cos(3ωet)

=
[
Re,0I1 + 3

4
R2

e,0I3
1 βZth

]
cos(ωet) +

[1
4

R2
e,0I3

1 βZth

]
cos(3ωet) (2.8)

This expression exhibits an explicit relation between the third harmonic of the voltage and the
current’s third power. Checking the relation V3ω ∝ I3

1 has been very useful throughout all the
experiments carried out in this work, since it acts as a probe for many of the inconveniences
that can be present during an experiment, such as electrical leakage through the sample that
can be due to faulty electrical insulation.

From Eq. (2.7) or (2.8), we notice that both the first and third harmonics of the voltage
contain informations about the temperature oscillation amplitude sensed by the transducer.
V1ω has two components, one which is orders of magnitude larger than the other. It is uncom-
mon to infer the temperature oscillation from the first harmonic of the voltage since it is an
arduous task to separate its small contribution from that of the much larger ohmic voltage.
Similarly, V3ω is buried within the large ohmic background voltage V1ω that lessen the accuracy
of the voltage reading. It scales as

V1ω

V3ω
≈ 2

β∆T

The temperature oscillation amplitude usually lies within the range of 0.1-3 K whereas the
TCR of metallic films has an order of magnitude of 10−3 K−1, leading to a ratio V1ω/V3ω as
large as 104. From this consideration, we can either rely upon the dynamic reserve of our
lock-in amplifier to read the small third harmonic of the voltage124,138, or try to attenuate V1ω

while keeping V3ω intact with the help of a nullifying bridge. Most of literature studies have
chosen the second option, and we do so as well in this work, for reasons that will be explained
hereafter. This requires a specific instrumentation and calibration, which we will describe and
discuss in the following section, along with the sample mounting.

2.2 Instrumentation and sample mounting

The instrumentation required to perform a 3ω measurement is relatively simple, when com-
pared to other thermal measurement technique setups such as those used for Raman spec-
troscopy or time-domain thermoreflectance. The most important item is the lock-in amplifier
which, in our setup, both provides the oscillating current and reads the 3ω voltage. As in any
thermal measurement scheme, the heating power provided to the system and the resulting tem-
perature response are two quantities that must be accurately quantified to infer the system’s
relevant thermal characteristics. In a 3ω experiment, it translates to the transducer resis-
tance, the oscillating current and the temperature coefficient of resistance of the transducer –
quantities that are relatively easy to measure or calculate.

To measure the transducer’s TCR, we apply a current across its outer pads and measure
the resulting voltage between its inner pads (as in the geometry of Figure 2.2(a)), using a
four-probe geometry, as a function of temperature. In this work we used a device developed
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at Institut Néel (named MMR3) that allows to measure up to three resistances simultaneously
using very low currents, with high resolution and very low noise (see Figure 2.5). All the
calibrations have been carried out for each transducer, using a current ranging from ∼ 5-30
µA. When possible, calibrations of different transducers were performed simultaneously.

Figure 2.5: Detailed schematic of the MMR3 device used to measure the resistance of the trans-
ducers. An alternative current passes through the resistance and the resulting voltage is read in a
4-wire configuration. Its accuracy on the measured resistance is 0.05%. Source : http://neel-2007-
2019.neel.cnrs.fr/spip.php?rubrique840

After the calibration of the transducer, the second step of the experiment consists in
measuring V3ω as a function of the excitation frequency.

2.2.1 Lock-in amplifier and differential bridge

As discussed above and underlined in Figure 2.3, though it can be omitted124,138, it is preferred
to remove the large V1ω in order to measure V3ω with better precision. This permits to be well
above the detection limit of the lock-in amplifier. The limits of a digital lock-in amplifier are
mainly dictated by its dynamic reserve, which is related to the performance of its main Analog
to Digital Converter (ADC).140 In this work, the lock-in ADC has a resolution of 16 bits,
meaning that it can encode an analog input to one in 65536 different levels (216=65536). For
example, if the voltage at the lock-in input is 1V (10 mA flowing through a 100 Ω resistance)
and the full scale sensitivity is accordingly set to 1V, then the discrete digitization of the
signal from the ADC will impose a resolution of 1V/216 = 15.26 µV , which could become a
significant portion of the thermal V3ω signal, especially for thermally conductive samples that
produce weak V3ω signals. Another benefit of removing V1ω is to perform measurements at a
higher current to produce larger heating power – leading to temperature oscillations that are
well above the minimum temperature change that can be sensed by the thermometer. Indeed,
since the lock-in amplifier has a finite maximum voltage input Vmax, it imposes a limit upon
the maximum current that can flow through the circuit : a current too high will produce
an ohmic voltage V1ω through the metallic line that could overload the lock-in amplifier (i.e.
V1ω > Vmax).

To remove the large V1ω background voltage, there has been mainly two different ap-
proaches in the literature. The first one has been introduced by Cahill in his original paper
presenting the 3ω method119, who used a differential bridge. The second one is to use a
Wheatstone bridge.
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Figure 2.6: Simplified schematic of the setup used for a 3ω experiment as described in the text. Part
of the circuit (within the blue-dashed circle) is immersed inside a cryostat and put under vacuum
(≈10−5 mbar). The circuit is controlled from a computer such that the programmable resistance is
automatically changed to match that of the transducer when the experiment is run as a function of
temperature. Everything is controlled using a home-made LabView program (see Appendix E).

In this work, we use a differential bridge as depicted in Figure 2.6. We use lock-in 1
(AMETEK 7230) output voltage to source the circuit. A variable resistance (IET PRS-B-
7.001), denoted Rvariable in Figure 2.6, is placed in series and set to match the transducer’s
resistance Re,0. It is further used to read the current flowing through the circuit, using lock-in
2.

The differential bridge is built from three INA103 instrumentation amplifiers, with the
purpose of considerably lessening the ohmic 1ω voltage. In the first stage of the bridge, the
same voltage drops across both the transducer and the variable resistance, the latter assumed
to have negligible temperature coefficient of resistance. Consequently, the output voltage in
the second stage of the bridge contains the small V3ω immune from the large ohmic background.
Amplification has been chosen so as to increase the signal for easier detection while keeping
it low enough for the second stage of the bridge and the lock-in input not to overload.4 The
resulting signal is read using lock-in 1, which can inherently read up to two different harmonics
of the voltage using two distinct demodulators.

The use of lock-in 1 output voltage to provide an oscillating current has the disadvantage of
not knowing directly the current that is flowing through the circuit. A stable current source, or
a voltage-to-current converter could be used instead, which would remove the need of a second
lock-in to measure the current. During this thesis, we have tried both approaches. However,
the home-made voltage-to-current converter that was available suffered from a restricted band-
width (f−3db ≈14 kHz), which prevented its use for accurate 3ω measurements at frequencies
above 10 kHz. We have then used the commercially available current source Keithley 6221
which worked great but suffered from harmonic distortion at relatively low frequencies, in com-

4In practice, we have found that the second stage of the bridge is important because operational amplifiers
have in general a higher input voltage range than lock-in amplifiers and therefore we can apply higher current
in the circuit without overloading the lock-in amplifier.
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Figure 2.7: Measurement of the third harmonic of the voltage, V3ω, as a function of electrical frequency
using the lock-in output voltage as a current source (orange diamonds), and using a Keithley 6221
current source (filled blue circles). At high frequency, using the lock-in voltage output as a current
source seems to provide more reliable results. Indeed, the experiment was carried out on a thick
sapphire substrate where we expect a linear relation V3ω = f(ln(ω), until at least 50 kHz.

parison to its specifications. The use of this external current source also required to externally
lock its reference frequency to the lock-in amplifier, which, we assume, caused some measured
phase jumps at around 3f = 10 kHz. A similar behavior was reported in Ref. 141, using the
same current source. The measured amplitude of the third harmonic of the voltage was less
prone to such errors, but we found that it still did not behave as expected when using this
current source, at higher frequency.

In Figure 2.7, we plot the measured third harmonic of the voltage as a function of electrical
frequency, using as a current source, either lock-in 1 output voltage (first measurement, orange
diamonds), or the Keithley 6221 current source (second measurement, blue filled circles). When
using the voltage output of lock-in 1, the current is calculated using lock-in 2 and the known
resistance Rvariable, as explained above and depicted in Figure 2.6. When using the Keithley
6221 current source, we set the current to be equal to the current that has been calculated
using lock-in 2 in the first measurement, such that the amplitude of V3ω is similar in both
measurements. Two conclusions can be drawn from these measurements. First, in both setups,
the measured V3ω are indeed very similar. This means that the current read from lock-in 2 is
in excellent agreement with the current provided by the Keithley 6221 current source. Second,
the frequency behavior of V3ω = f(ln(ω)) is better for the setup using the lock-in output as a
current source, for the following reason. The measurement was performed on a thick sapphire
substrate, where we expect V3ω = f(ln(ω)) to be linear, on the frequency range that is studied.
From around f = 10 kHz, such a linear behavior is no longer observed, which we attribute
to problems coming from the current source itself, or the phase-locking between the current
source and the lock-in amplifier. Importantly, the frequency at which the voltage diverges
from its linear behavior does not seem to be reproducible from sample to sample. Therefore,
measurements were preferably performed using the setup shown in Figure 2.6, if the highest
frequency that is reached during the experiment is above 10 kHz.
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2.2.1.1 Operational amplifier bandwidth

When using an operational amplifier while performing a frequency dependent experiment, the
very first step is to ensure that the amplifier bandwidth is large enough to cover the frequency
range that will be spanned during the experiment. In particular, since we are interested in
measuring the third harmonic (3f) of the voltage, the bandwidth should be at least three
times larger than the frequency range spanned at 1f during the measurement. In practice, it
is better if the frequency cutoff of the amplifier, commonly referred to as f -3dB in the literature,
is several orders of magnitude higher than the highest frequency we want to reach during the
experiment. This is because the cut-off frequency represents the frequency at which the output
signal of the amplifier is already attenuated by

√
2 from its nominal value. Therefore we want

to be very far from this frequency.
Figure 2.8 displays the gain-frequency and noise-frequency characteristics, often referred to

as Bode diagrams, of the operational amplifiers used to build the differential bridge. A stable,
constant gain is achieved when the gain is the lowest, but comes with a higher noise. Hence
a compromise should be made, according to the experimental needs. In this work, we used
two amplifiers with a gain of 2.5 as shown in Figure 2.6, leading to a total gain of 2.52 = 6.25.
This corresponds, for each amplifier, to a gain in decibel of 20 × log(2.5) ≈ 8 dB. According to
the instrument’s Bode diagram depicted in Figure 2.8(a), it sets the cutoff frequency between
2-4 MHz, hence the electrical frequency 1f should be lower than 0.6-1.3 MHz when reading the
third harmonic 3f up to 2-4 MHz. This is more than enough for all the measurements carried
out in this thesis. What is not displayed, and often not provided on the amplifier datasheet, is
the phase-frequency characteristic of the amplifier. It is as well strongly frequency dependent,
as any filter, and therefore should be checked carefully. Such characteristics are very general
and apply to any amplifier. In particular, it is to be evaluated when using amplifiers to build a
home-made voltage-to-current converter that would be as well restricted by a finite bandwidth.

f-3dB
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Figure 2.8: (a) Bode diagram of the operational amplifier (model INA103 from Burr-Brown) used to
build the differential bridge. The blue line has been drawn by hand to estimate the frequency re-
sponse of the amplifier for the gain we use. From this estimation, a gain of G = 2.5, correspond-
ing to 8 dB, is estimated to have a frequency cutoff between 2 and 4 MHz. (b) Noise voltage
versus frequency for different gains of the amplifier. A lower gain leads to higher noise. Source :
https://www.ti.com/lit/ds/symlink/ina103.pdf
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Then, strictly speaking about the instrumentation, the upper frequency limit will eventually
be dictated by the lock-in frequency bandwidth. In this work, the upper frequency of the lock-
in amplifier is 250 kHz. Since it is used both for sourcing the circuit and reading the voltage,
it can be used to provide an AC current until frequency 1f = 250/3 ≈ 83 kHz in order to read
the voltage at 3f = 250 kHz.

2.2.1.2 Harmonic distortion

The inherent total harmonic distortion of the instruments, referred to as either THD or
THD+N (Total Harmonic Distortion + Noise) is another specification that should be quanti-
fied prior to performing a 3ω experiment. It is defined as5

THD=

√∑∞
n=2 V 2

n,rms

V1,rms

where Vn represents the voltage signal at harmonic n and V1,rms refers to the rms voltage
signal at the fundamental frequency. It should therefore be as small as possible, to prevent
any harmonics that are non-thermal to propagate inside the experiment. A parasitic voltage
at 3f in the first stage of the differential bridge – if its amplitude is equal in both amplifiers
– would be removed in the second stage of the bridge. However, a parasitic voltage at 3f

produced in the second stage of the bridge would be superposed to the thermal V3ω signal
and enters the measurement with no attenuation. For the three amplifiers building the bridge,
THD+N < 0.003% for f < 20 kHz.

As mentioned previously, the lock-in amplifier both provides the oscillating current and
reads the voltage. Therefore the two specifications that are relevant are distortion from its
output voltage (the lock-in internal oscillator) and distortion that is produced when the voltage
is read by the lock-in amplifier. The output voltage used to drive the experiment is digitally
synthesised using the lock-in Digital to Analog Converter (DAC), and therefore is not a pure
sinusoid but rather a stepped approximation to one.140 It is then filtered to reduce the harmonic
distortion to a level of THD=-80 dB at 1kHz and 100 mVrms, which represents 0.01% of the
signal.142 Let us examine how distortion influences the accuracy of the measurement. If the
current is not a pure sinusoid, but contains spurious harmonics, we may write it as

I = I1 cos(2πft) +
n∑

i=2
Ii cos(i × 2πft)

= I1f +
n∑

i=2
Iif

where the summation is performed over the harmonics of the current. This current flows
through the following resistances, present in the circuit shown in Figure 2.6 :

Rtransducer = Re,0 + Re,0β∆T2f = Re,0 + R2f

Rvariable = Re,0

leading to the following voltage across the transducer :

Vtransducer = Re,0I1f + R2f I1f + (Re,0 + R2f )
n∑

i=2
Iif

5for THD+N, the noise is taken into account in the numerator and is therefore always higher than the THD.
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Only specific harmonics would lead to additional voltages at 3f . I1f mixes with R2f which
produces the main component V3f (in addition to the large ohmic V1f ). I3f mixes with Re,0,
and I5f mixes with R2f producing two harmonics (the sum and the difference) of the voltage,
V3f and V7f . All other harmonics of the current would not contribute to V3f . The resulting
voltage at 3f read across the transducer is therefore :

V3f,transducer = 1
2

Re,0I1β∆T2f + Re,0I3f + 1
2

Re,0I5β∆T2f (2.9)

The voltage across the variable resistance, set to match the resistance of the transducer is
simply :

V3f,var. = RvariableI3f = Re,0I3f

Therefore, after the differential bridge which subtracts both voltages, it reads

V3f,aft.brdge = 1
2

Re,0I1β∆T2f + 1
2

Re,0I5β∆T2f

Therefore, when using a differential bridge, only the contribution from I5f enters the experi-
ment and affects the reading at V3f . The error scales as I1f /I5f , which can be estimated using
the harmonic distortion, not total, but rather ”per harmonic”. Using the THD figure provided
by the lock-in manufacturer, it is therefore not straightforward to accurately estimate the rela-
tive contribution of I5f to V3ω, since it comprises all harmonics. To quantify the contribution
from I5f , we may use a spectrum analyser to measure V5f produced by the lock-in output
(which would translate to I5f since we use the lock-in output voltage as a current source).
Such an instrument would remove the first harmonic of the voltage using a notch filter and
therefore allocate the maximum of its dynamic reserve to read all other harmonics. We do not
possess such instrument and instead, use our lock-in built-in harmonic detection to measure
its own distortion. This has the disadvantage of adding error coming from its DAC which
also add distortion, and not allocating the instrument maximum dynamic reserve, but is a
reasonable conservative estimate. We apply a voltage V1f in its input, and read the resulting
voltage at the fifth harmonic, V5f . From this simple experiment, we find that the harmonic
distortion at 5f varies from 0.0017% at 1f=20 kHz up to 0.007% at 1f=50 kHz, for an applied
voltage of 1 V1f,rms. Figure 2.9 displays the measured distortion of the lock-in output, per
harmonic, for several harmonics and frequencies. Therefore

V3f = 1
2

Re,0I1β∆T2f + 1
2

Re,0I5β∆T2f with I5
I1

< 7.10−5

and the contribution from I5f can be safely neglected.
We note that if the cancellation bridge is omitted, we see from Eq. (2.9) that the relative

error coming from I3f scales as

V3f,distortion
V3f,thermal

= Re,0I3f

(1/2)Re,0I1f β∆T
= I3f

I1f

2
β∆T

(2.10)

Because of small values of β and ∆T , typically ≈ 10−3 K−1 and ∆T ≈ 0.1 − 3K, an extremely
low harmonic distortion is needed in order for the contribution of I5 to V3f to be negligible. For
example, for ultra-low distortion generators with THD< −100 dB, in this case I3f /I1f = 10−5

and the distortion would account for about 1% of the signal, using β∆T = 2.10−3. For lower
β∆T values, the contribution would increase. This, in addition to the removal of V1f , suggests
that a nullifying bridge is recommended to perform an accurate measurement.
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Figure 2.9: Harmonic distortion per harmonic of the lock-in amplifier measured by plugging its output
voltage to its input and reading the contribution from different harmonics using its own demodulator.
The applied voltage is 1Vrms. This measurement agrees well with the specified THD of −80 dB.

Lastly, as we have explained in the previous part, the lock-in ADC produces distortion
as well, with THD = -90 dB at 1 kHz, which represents 0.0032% of the signal (which was
somehow taken into account when measuring its own distortion). When compared to other
sources of uncertainty present in a typical experiment, the distortion from all instruments is
relatively small and therefore is neglected in this work.

2.2.1.3 Stray capacitances and inductances

The aforementioned limitations are only given from instruments datasheets. In practice, we
have found that high frequency discrepancies, appearing before instrumentation limits, are
mainly due to the presence of stray capacitances (C) and/or inductances (L) in the electrical
circuit. A simple model of the differential bridge, containing capacitances and inductances is
presented in Figure 2.10a. The electrical impedances Ze,1 and Ze,2 which take into account
these capacitances and inductances are written as :

Ze,1 = iωL1 + R1
1 + iωR1C1

and Ze,2 = iωL2 + R2
1 + iωR2C2

(2.11)

The current I flowing through the circuit is related to the total electrical impedance of the
circuit. Following the notation of Figure 2.10a :

I = Vin
Ze,1 + Ze,2 +

∑
Rleads

(2.12)

where the resistances coming from the electrical leads (including electrical contact resistances)
are taken into account in ∑Rleads. Vin is the voltage used to source the circuit, typically 5Vrms
using the lock-in amplifier’s output voltage.

In order to estimate capacitances and inductances present in the circuit, we have performed
voltage measurements as a function of electrical frequency at two different locations in the
circuit, denoted VA and VB in Figure 2.10a. We chose these two locations to read the voltage
because VA is the voltage read across a known resistance to infer the current flowing through the
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circuit and VB is the voltage read at the end of the differential bridge during a 3ω experiment,
thus providing V3ω. Fitting the amplitude and phase of the recorded voltages permits, at least
qualitatively, to confirm the electrical circuit proposed in Figure 2.10a. Since the impedance
is complex, the amplitude |Vi| and phase ϕi of the AC voltage are written as :

|VA| = |I × Ze,1| |VB| = |I × (Ze,2 − Ze,1)| (2.13)

ϕA = arg (I × Ze,1) ϕB = arg (I × (Ze,2 − Ze,1)) (2.14)

The measurements of the first harmonic of the voltage and their best fit using Equations (2.11)-
(2.14) are displayed in Figure 2.10b. Every filter of the lock-in amplifier is turned off and the
lock-in input coupling is set to ”DC”. R1 is the variable electrical resistance and therefore
can be tuned at will : we used three different values of R1 to produce reliable measurements
(R1 = R2, R1 > R2 and R1 < R2). R2 is the electrical resistance of a transducer from a
real sample that is mounted inside our probe. This allows to quantify the capacitances and
inductances that are present during a real experiment using exactly the same conditions and
wiring. The resistance of the transducer is measured to be R2 = 130 Ω. The agreement
between the simple model displayed in Figure 2.10a and the measurements depicted in Figure
2.10b is qualitatively satisfying. However, we could not reliably fit all the measured values
(amplitude and phase from VA and VB) with the same pair of C1 and C2. In principle the same
pair of C1 and C2 should fit every measurement if the proposed model was the good one. In
our case, the values of capacitances that best fit our data need to be adjusted between 1 to
4 nF. Inductances were changed from a few nH to tens of µH with no effect, therefore we set
L1=L2=0. We concluded that the frequency behavior of the impedance was mostly caused by
stray capacitances rather than inductances.

The agreement between data and the model is not perfect, especially for ϕB, however it
is expected since the proposed circuit is relatively simple. A more detailed model should be
used for a better description, taking the frequency response of the three individual amplifiers
into account, for example. We will not venture into doing so in this work, since the global
picture seems to be well captured using this simple model. Besides, as measurements were
performed using a real sample which produces frequency-dependent signals, the results shown
in Figure 2.10b do not distinguish thermal signals (from the transducer’s heat capacity for
example) from purely electrical signals (parasitic capacitances). To remove this ambiguity,
similar measurements were carried out, replacing the transducer (with resistance R1) with
a stable, known resistance, with negligible temperature coefficient of resistance. The results
were similar, comforting us with the parasitic origin of the measured frequency behavior.

One important result from these measurements is the frequency response of the current
flowing across the circuit. Amplitude and phase deviate from their ”ideal” behavior around
30-40 kHz, which is not something desirable for our study. As a consequence, we have moni-
tored in this work the frequency response of the current, using lock-in 2 as depicted in Figure
2.6. The fitting of thermal properties is carried out in a frequency window where the current
is stable with frequency.

Before moving on to the heat transfer model that is used to infer thermal properties in 3ω

measurements, we describe the environment into which all the samples measured in this work
have been mounted.
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Figure 2.10: (a) Proposed electrical circuit accounting for stray inductances and capacitances. VA and
VB are measured using lock-in amplifiers. (b) Solid circles are the amplitude and phase response of
the first harmonic of the voltage, measured as depicted in the electrical circuit above. Solid lines are
the expected voltage computed using Eq. (2.11) and Eq. (2.12). The overall agreement is qualitatively
good with the proposed model for capacitances present in the circuit, using the measured value for the
transducer thermometer R2 = 130 Ω, C1 and C2 between 1 to 4 nF and L1 = L2 = 0.
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2.2.2 Sample mounting

The 3ω method can be used in quite a large temperature window. It will be constrained
mostly by the TCR of the transducer used to perform the experiment. When using a metal-
lic transducer such as gold, aluminium or platinum, the TCR will decrease towards zero at
temperature around 10-30 K and hence the 3ω method won’t be applicable anymore. At
very high temperature, the TCR won’t vanish but will be increasingly smaller because of the
larger resistance at high temperature. Another consideration to take into account at higher
temperature (say, > 500◦C) is the possible diffusion of the metallic transducer material into
the layer underneath that could hinder the measurement.143 Lastly, the radiation will play
a role at extremely elevated temperatures (> 750◦C), especially for low diffusivity materials
that radiate out most of the flux coming from the transducer – though it can be accurately
quantified.119 Most of the results of this thesis were performed in the temperature range of
90-320 K where liquid nitrogen have been used to cool down the system.

The setup used in this thesis is summed up in Figure 2.11. Samples were mounted onto a
sample holder that is shown in Figure 2.11(b). We used silver paint or resist on their backside
to make sure they were well attached. Silver paint is preferred for better thermal coupling (it
has a large thermal conductivity), but when removing the samples, a large amount of small
silver particles spread on the sample holder – eventually leading to shortcuts between the
sample holder’s electrical pads. We then used mechanical clips, pressing samples from the top
to make them hold tightly.

To connect the transducer pads to the sample holder, we did not use micro-bonding since
it was shown (thanks to the previous PhD student Yanqing Liu) to break thin electrically
insulating layers deposited on top of the samples (e.g. Al2O3 deposited by Atomic Layer
Deposition). Instead, we used a softer approach, spreading a small amount of electrically
conductive silver paint on the pads, and then depositing aluminium wires (with diameter
≈ 25 µm) onto it. After annealing at ≈ 100◦C, the silver paint dried and the contacts were
working. Other useful ingredients were shake-free hands and patience.

Once the circular sample holder is screwed to the main body of the probe (Figure 2.11(a-b)),
the sample stage is then covered using a copper shield, preventing from radiations as depicted
in Figure 2.11 (d). The temperature of the probe is regulated using a resistive heater and a
commercially available Cernox© thermometer, using a PID controller (MGC3 from Institut
Néel). The thermal contact between the probe and the sample holder is ensured using four
gold screws (Figure 2.11(b)) that maintain the body of the probe to the sample holder through
four copper contacts (Figure 2.11(a)). As depicted in Figure 2.11(e), a stainless steel cover is
attached to the body of the probe and then sealed using an indium wire and thermal grease.
The probe is then put under vacuum using a turbo pumb, until it reaches ≈ 10−5 mbar. All the
leads are passing through the length of the probe, and then connected to 6-pins Jaeger sockets.
The connections between the probe and the instruments (lock-in and operational amplifiers)
were made using home-made adaptors (from Jaeger to BNC jacks), and commercially available
BNC cables.
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Radiation shield
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Figure 2.11: Pictures of the instrumentation used for the sample mounting. The probe is shaped as a
long cylindrical tube to fit inside a cryostat. Samples are attached on a circular sample holder as seen
on (b) that can be removed from the probe. Gold pads, highlighted in red in (b) are used to electrically
connect the transducers from the sample to the probe. Wires then go along the length of the tube and
come out in Jaeger sockets. 4 × 4 pads are present, to measure four samples (I+, I−, V +, V −). The
probe’s temperature is regulated using a Cernox thermometer (2-320 K) and a resistive heater, using
a PID controller. (d) After screwing the copper shield to the sample holder, a stainless steel cover is
screwed and sealed using an indium wire (e-f). The probe is then put under vacuum using a turbo
pump.
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3 Heat transfer model for 3ω
experiments

3.1 Transducer on substrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 What is sensed by the transducer . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Extracting the substrate’s thermal conductivity . . . . . . . . . . . . . . 57

3.1.3 Slope method : range of applicability . . . . . . . . . . . . . . . . . . . . 59

3.2 Transducer on a multilayer system . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Extracting a thin film’s thermal conductivity . . . . . . . . . . . . . . . 67

3.2.2 Measuring the contribution of thermal boundary resistances . . . . . . . 72

Once all the troubles related to the measurement of the temperature oscillation have been
worked out and the measurement performed, the next natural step is to compare experimental
data to a thermal model, allowing to extract thermal informations about the system of interest.
Thermal models of increased accuracy and complexity have been derived in the last two decades
for the general 3ω geometry, for a semi-infinite substrate119, a film-on-substrate system144, and
a multilayer system.123,145,146 Heat conduction within the heater is neglected in these models
– it has been considered later analytically in Refs. 147,148.

The purpose of this chapter is to provide a step by step derivation of the temperature rise
sensed by a transducer deposited on top of system of interest when heated periodically. We
will start from the simple case of a bare substrate and then move on to the more general case of
a multilayer system. From these models, we will explain how to extract thermal informations
about the system, from the thermal conductivity of the substrate to that of the films, and
thermal boundary resistances that are inherently present between layers. Additionally, the
”slope method” and ”differential method” for determining the substrate and film’s thermal
conductivities are described, and the conditions for their use are detailed following the work
of Borca-Tasciuc et al..123
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Figure 3.1: (a) Schematic of the system that is studied (b) and its approximation. One important
assumption concerns the heat flux, taken to be constant along the heater width which might not be
the case for a heater with finite thickness and non-zero thermal conductivity. The shape of the flux in
the real system (a) is sketched by hand, following calculations provided in Ref. 147. Note that it can
be recovered using FEM as well.

3.1 Transducer on substrate

Solving the heat equation

In two dimensions, temperature inside an anisotropic material with no internal heat generation
evolves with respect to time and position following the heat diffusion equation :

ρCp
∂T (x, y, t)

∂t
= kx

∂2T (x, y, t)
∂x2 + ky

∂2T (x, y, t)
∂y2 (3.1)

where ρ is the material density in g.m−3, Cp the specific heat in J.g−1.K−1, T the temperature
in K, and kx and ky are the in-plane and cross-plane components of the thermal conductivity
in W.m−1.K−1, respectively. The geometry of the problem is shown in Figure 3.1. Dividing
Eq. (3.1) by ky we get

ρCp

ky

∂T (x, y, t)
∂t

= kxy
∂2T (x, y, t)

∂x2 + ∂2T (x, y, t)
∂y2 (3.2)

where we have defined kx
ky

= kxy, often referred to as the thermal anisotropy ratio or simply
thermal anisotropy. Applying an oscillating current at angular frequency ωe leads to Joule
heating at frequency ω = 2×ωe. Because the response in the thermal domain is linear138, this
periodic Joule heating at frequency ω induces temperature oscillation at the same frequency.
Therefore, we write

T (x, y, t) = T (x, y)eiωt (3.3)

Plotting Eq.(3.3) in Eq.(3.2) leads to

ρCp

ky
iωT (x, y)eiωt = kxy

∂2

∂x2 T (x, y)eiωt + ∂2

∂y2 T (x, y)eiωt
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dividing by eiωt and rearranging

kxy
∂2

∂x2 T (x, y) + ∂2

∂y2 T (x, y) − ρCp

ky
iωT (x, y) = 0

We have reduced the initial three variables (x, y, t) partial differential equation to a two vari-
ables (x, y) partial differential equation. To further simplify this equation, we take its Fourier
Transform (FT) with respect to x137:

• integrating by parts, the first term becomes∫ ∞

−∞
kxy

∂2

∂x2 T (x, y)e−iλxdx =
[
kxy

∂T (x, y)
∂x

e−iλx
]∞

−∞
+ iλ

∫ ∞

−∞
kxy

∂T (x, y)
∂x

e−iλxdx

The first term of the right hand side vanishes as ∂xT (x, y)x→±∞ = 0. We are left with

iλ

∫ ∞

−∞
kxy

∂T (x, y)
∂x

e−iλxdx = kxyiλ

{[
T (x, y)e−iλx

]∞
−∞

+ iλ

∫ ∞

−∞
T (x, y)e−iλxdx

}
= kxy(iλ)2

∫ ∞

−∞
T (x, y)e−iλxdx

= kxy(iλ)2T̂ (λ, y)

where the notation T̂ (λ, y) denotes the Fourier transform with respect to x of the function
T (x, y) in λ-space.

• the second term contains a derivative with respect to y, we put it outside the integral,
leading to ∫ ∞

−∞

∂2

∂y2 T (x, y)e−iλxdx = ∂2

∂y2 T̂ (λ, y)

• similarly, the third term is

iω
ρCp

ky

∫ ∞

−∞
T (x, y)e−iλxdx = iω

ρCp

ky
T̂ (λ, y)

At this point, we emphasize that the Fourier Transform in the x direction is carried out from
−∞ to ∞, and we assumed T (x, y)x→∞ = 0. This means that the problem is considered
infinite along the x direction. It is a reasonable assumption, since the heat source is usually
tens of microns large, whereas samples usually are about a centimeter large. Most importantly,
the thermal penetration depth, as will be discussed later on, is at most a few millimeters. End
effects in the x direction are thus neglected and the problem can be modeled as infinite along
the x direction, as shown in Figure 3.1(b).

The new equation to solve is

∂2

∂y2 T̂ (λ, y) −
(

kxyλ2 + iω
ρCp

ky

)
︸ ︷︷ ︸

γ2

T̂ (λ, y) = 0 (3.4)

The equation is now an ordinary, homogeneous, linear differential equation. The general
solution is of the form :

T̂ (λ, y) = C1eγy + C2e−γy (3.5a)

γ =
√

kxyλ2 + iω
ρCp

ky
(3.5b)
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To determine C1 and C2, we need two boundary conditions. The boundary condition at y = 0
is a prescribed heat flux1 :

−ky
∂T (x, y)

∂y

∣∣∣∣
y=0

= ϕ(x, y = 0)

At the bottom of the substrate y = ds, the boundary condition is written as (for adiabatic or
isothermal boundary conditions) :

adiabatic b.c. : ∂T (x, y)
∂y

∣∣∣∣
y=ds

= 0

isothermal b.c. : T (x, y)|y=ds = 0

We remind here that we are dealing with the oscillating part of the temperature. Hence, the
isothermal boundary condition (Dirichlet boundary condition, b.c.) set to zero means that
there is no more oscillation at y = ds, but of course the sample’s temperature is not zero.
Adiabatic boundary condition (Neumann boundary condition) refers to a perfectly insulated
surface (the substrate’s bottom), across which the heat flux is zero. Taking the Fourier Trans-
form of the boundary condition at y = 0 leads to

−ky
∂T̂ (λ, y)

∂y

∣∣∣∣∣
y=0

= ϕ̂(λ, 0)

where ϕ̂(λ, 0) is the FT of ϕ(x, 0). At y = ds, it gives

adiabatic b.c. : ∂T̂ (λ, y)
∂y

∣∣∣∣∣
y=ds

= 0

isothermal b.c. : T̂ (λ, y)
∣∣∣
y=ds

= 0

The first boundary condition leads to

−kyC1γ eγy|y=0 + kyC2γ eγy|y=0 = ϕ̂(λ, 0)

γky

(
1 − C1

C2

)
= ϕ̂(λ, 0)

C2

while the second one gives

adiabatic b.c. : C1γeλds − C2γe−λds = 0 ⇔ C1
C2

= +e−2γds

isothermal b.c. : C1eλds + C2e−λds = 0 ⇔ C1
C2

= −e−2γds

Hence, we deduce

adiabatic b.c. : T̂ (λ, y) = ϕ̂(λ)
γky

(
e−γy + e−2γdseγy

) (
1 − e−2γds

)−1

isothermal b.c. : T̂ (λ, y) = ϕ̂(λ)
γky

(
e−γy − e−2γdseγy

) (
1 + e−2γds

)−1

1From now on, we will discard the time dependence of the heat flux for ease of reading, and set ϕ(x, y =
0, t) ≡ ϕ(x, y = 0)
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We still have to express the quantity ϕ̂(λ, 0), the Fourier Transform of the heat flux ϕ(x, 0).
Assuming a sharp heat flux from the heater of width 2b, as displayed in Figure 3.1(b), we write

ϕ(x, 0) =

ϕ0 if − b < x < b

0 otherwise

which is the definition of a Heaviside function (or rectangular function). In other words, we
assume that the heat flux is evenly entering over the width of the transducer, and that it is
abruptly sharp at its edges. The Fourier Transform is then

ϕ̂(λ, 0) = 0 +
∫ b

−b
ϕ0e−iλxdx + 0 =

[
ϕ0e−iλx

−iλ

]b

−b

= 2ϕ0 sin(λb)
λ

(3.6)

In order to recover our function T (x, y), we take the inverse Fourier Transform of T̂ (λ, y) :

T (x, y) = 1
2π

∫ ∞

−∞
T̂ (λ, y)eiλxdλ

= 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

(
1 ± e−2γ(ds−y)

)
(1 ∓ e−2γds)

e−γyeiλxdλ

Omitting the time-dependent part (eiωt), this is the general solution for the temperature
distribution in two dimensions inside a material of thickness ds, with constant heat flux ϕ0

applied at y = 0 over the width −b < x < b. Signs depend upon the boundary condition at
the bottom of the material (+ and − for adiabatic, − and + for isothermal).

3.1.1 What is sensed by the transducer

The transducer, both providing heat to the system and measuring the temperature oscillation,
is deposited on top of the material of interest. Hence, we are interested in what is happening
at y = 0, following the geometry shown in Figure 3.1 :

T (x, y = 0) = 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

(
1 ± e−2γds

)
(1 ∓ e−2γds)

eiλxdλ

= 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

tanha(γds)eiλxdλ

with a =

−1 adiabatic b.c.
1 isothermal b.c.

For a semi-infinite substrate, i.e. letting ds → ∞, it reduces to

T (x, y = 0) = 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

eiλxdλ

T (x, y = 0) = P

πlhbky

∫ ∞

0

sin(λb)
λγ

cos(λx)dλ (3.7)

where we used the definition of the heat flux ϕ0 produced by Joule heating :

ϕ0 = P

2b × lh
=
[
W.m−2

]
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⟨T (x, 0)⟩avg

T (x, 0)

Figure 3.2: Temperature oscillation amplitude at y = 0, as a function of lateral coordinate x, plotted for
different frequencies using 2b = 5µm. Solid lines represent the amplitude of the temperature oscillation
computed using Eq. (3.7) whereas dashed, constant lines represent the spatially averaged temperature
oscillation computed using Eq. (3.9). We remind that the present model assumes a constant heat flux
at the heater/substrate interface along the heater width.

lh refers to the length of the transducer2, 2b its width and P = Re,0I2
1 /2 = Re,0I2

1,rms is the
electrical power. We underline that the heater’s length lh only enters the calculation when
coupled to the dissipated power P , as can be noticed above. Since the thermal model is two
dimensional, the effect of the heater’s length on the temperature oscillation should not enter
the calculation, this 2D model actually assumes that the heater is infinitely long. Therefore, it
makes more sense to display the power per unit length, which we write Pl, with units of W/m.

By plotting Eq. (3.7) as a function of lateral coordinate x, as depicted in Figure 3.2, we
observe the effect of the transducer width on the temperature profile at y = 0. Experimen-
tally, we only have access to the spatially averaged value of the temperature oscillation when
measuring the transducer’s resistance oscillation. In the present two dimensional model, we
assume the transducer to have no thickness, i.e. we neglect heat conduction within it. This
is implicitly assumed since the heat source only appears as a heat flux boundary condition.

2Importantly, the length that is considered to calculate the power per unit length Pl should be the same
length that is used to measure the resistance of the heater/thermometer. Therefore in a 4-wire configura-
tion, if the resistance is read across the inner voltage leads of the thermometer, the power per unit length is
then calculated by considering the distance between the inner voltage leads rather than the full length of the
heater/thermometer.
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Therefore, we express the spatial average of the temperature only over its width :

⟨T (x, 0)⟩avg = 1
2b

∫ b

−b
{T (x, 0)} dx

= 1
2b

∫ b

−b

{
1

2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

tanha(γds)eiλxdλ

}
dx

= 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

tanha(γds)
1
2b

∫ b

−b
eiλxdxdλ

= 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λγky

tanha(γds)
1
2b

2 sin(λb)
λ

dλ

= ϕ0
πky

∫ ∞

−∞

sin2(λb)
γλ2b

tanha(γds)dλ

= 2ϕ0
πky

∫ ∞

0

sin2(λb)
γλ2b

tanha(γds)dλ

The temperature rise sensed by the transducer dissipating inside a material of thickness ds
with cross plane thermal conductivity ky and anisotropy kxy is then

⟨T ⟩ = Pl

πky

∫ ∞

0

sin2(λb)
(λb)2

tanha
(√

kxyλ2 + iω
ρCp

ky
ds
)

√
kxyλ2 + iω

ρCp

ky

dλ (3.8)

with

a =

−1 adiabatic b.c.
1 isothermal b.c.

where we remind that b.c. stands for the boundary condition at the bottom of the substrate
(at the sample holder/sample interface). For a semi-infinite substrate, i.e. letting ds → ∞, it
reduces to

⟨T ⟩ = Pl

πky

∫ ∞

0

sin2(λb)
(λb)2

1√
kxyλ2 + iω

ρCp

ky

dλ (3.9)

which, upon setting kxy = 1, corresponds to the solution derived by Cahill.119

3.1.2 Extracting the substrate’s thermal conductivity

Even though numerical integration softwares allow to evaluate a large variety of integrals of in-
creased complexity, the derived expression for the temperature oscillation amplitude (Eq.(3.9))
is not the most widely used in the literature. A more attractive form of Eq.(3.9) is used most
of the time out of simplicity and to avoid numerical integration. Besides, it gives a clear pic-
ture on how to extract the thermal conductivity of the substrate that is studied. Let us write
Eq.(3.9) in a more appealing form. Starting off with Eq.(3.9) where, for ease of reading, we
use the previous definition q2 = iωρCp/ky :

⟨T ⟩ = Pl

πky

∫ ∞

0

sin2(λb)
(λb)2

1√
kxyλ2 + q2

dλ

using substitution, setting ξ2 = kxyλ2 ⇔ dξ =
√

kxydλ leads to :

⟨T ⟩ = Pl

πky

1√
kxy

∫ ∞

0

sin2 (ξb/
√

kxy
)(

ξb/
√

kxy
)2 1√

ξ2 + q2 dξ
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If we are in the limit where |1/q| ≫ b/
√

kxy, meaning that the thermal penetration depth is
much larger than the transducer half-width (to anisotropy ratio), the integral is dominated
by values such that 0 < ξ <

√
kxy/b. It follows that ξb/

√
kxy ≪ 1 and therefore we approxi-

mate the integral using sin
(
ξb/
√

kxy
)

/(ξb/
√

kxy) = 1, as suggested by Cahill.119 The integral
reduces to

⟨T ⟩ = Pl

πky

1√
kxy

∫ √
kxy/b

0

1√
ξ2 + q2 dξ

Again, using substitution, setting η = ξ/q ⇔ dη = dξ/q,

⟨T ⟩ = Pl

πky

1√
kxy

∫ √
kxy/bq

0

1√
1 + η2 dη

= Pl

πky

1√
kxy

[
ln
(√

η2 + 1 + η

)]√
kxy
bq

0

= Pl

πky

1√
kxy

ln

√kxy

bq
+

√√√√(√kxy

bq

)2

+ 1


≈ Pl

πky

1√
kxy

ln
(

2
√

kxy

bq

)

In the last step, we used the fact that we are in the limit where
√

kxy/b|q| ≫ 1. Hence, making
explicit the frequency dependence of the temperature oscillation :

⟨T ⟩ = Pl

π
√

kxky

[
ln
(

λtpd
b

)
+ 1

2
ln (kxy) − i

π

4
+ η

]
(3.10a)

= Pl

π
√

kxky

[
−1

2
ln(ω) + 1

2
ln
(

ky

ρCp

)
+ ln

(√
kxy

b

)
− i

π

4
+ η

]
(3.10b)

where η is a numerical constant. When comparing Eq. (3.9) to its approximation Eq. (3.10),
η is numerically evaluated to η ≈ 0.923. Duquesne et al. further showed in 2010 that Eq. (3.9)
can be written as a Meijer-G function, and explicitly derived η by examining the limit where
the thermal penetration depth is much larger than the transducer half-width.149 In this limit,
they found η = 3/2 − γ ≈ 0.923 where γ is the Euler-Mascheroni constant.

Eq.(3.10) is extensively used to extract the thermal conductivity of a material which is
considered semi-infinite, such as a thick substrate. It is now much more intuitive as how
to derive the thermal conductivity of a material, using Eq.(3.10). Indeed, measuring the
temperature oscillation as a function of excitation frequency and taking its slope with respect
to ln(ω), it is straightforward to infer

√
kxky. This way of extracting a material’s thermal

conductivity is often referred to as the ”slope method” in the literature. The slope method will
often be discussed in this manuscript, and therefore we emphasize that it consists in taking the
derivative (slope) of ⟨T ⟩ = f(ln(ω)) to extract the thermal conductivity of a material, rather
than fitting the amplitude of ⟨T ⟩ at each frequency, which implies to input more (possibly
unknown) parameters (samples’s heat capacity, thermometer width, etc.). Proceeding in this
way leads to √

kxky = −Pl

2π

1
∂⟨T ⟩

∂(ln(ω))

(3.11)
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We note that when using the slope method, we are sensitive to
√

kxky, a geometric average of
the in-plane and out-of-plane components of the thermal conductivity, not only the cross-plane
thermal conductivity ky, as shown by several authors.123,150,151

We remind the reader that we assumed a perfect contact between the transducer and the
substrate, i.e. we have neglected the thermal boundary resistance between both materials. As
we will see later, the thermal boundary resistance only adds a frequency independent term to
the temperature oscillation, therefore making the slope method still applicable.

Examining Eq.(3.11), we understand that it is not a prerequisite to know the specific heat
of the material, nor the transducer width, to extract its thermal conductivity using the slope
method. The explanation for this is uniquely related to the geometry of the transducer, seen
as an infinite line with finite width, which imply cylindrical symmetry around the ”infinite”
axis. As remarked in Ref. 152, the general solution for the temperature field in a cylinder is
a function of the logarithm of the ratio between its inner and outer radii, while for the 3ω

geometry, it is a function of the logarithm of the ratio between the thermal penetration depth
and heater half-width, as can be seen from Eq. (3.10a). This logarithmic dependency in turn
allows to separate the contribution from frequency and diffusivity, as shown in Eq.(3.10b),
hence making the ”slope method” possible. If the heat source were to be spherical, it would
probably not be possible to use a similar ”slope method”, and therefore the specific heat would
have to be known in order to extract the material’s thermal conductivity. For this reason, the
3ω method is a very robust technique to measure the thermal conductivity of thick materials
(say, > 300 µm). Indeed, the length of the transducer and the power supplied – which are the
only quantities needed to extract the material’s thermal conductivity – are readily measured
and determined with great accuracy.

3.1.3 Slope method : range of applicability

However powerful the slope method is, care has to be taken when it is used in order to satisfy
the approximations made when the approximate solution of the temperature oscillation was
derived. In the previous derivation, we have stated that the heater half-width to anisotropy
ratio should be much smaller than the TPD : b/(kxy)1/2 ≪ λtpd = |1/q|. The other condition
is that, since the approximation is only valid for semi-infinite substrates, which is not true in
nature, we must specify some conditions on whether or not the substrate can be considered
semi-infinite. Qualitatively, this condition can be met if the TPD is much smaller than the
substrate thickness : λtpd = |1/q| ≪ ds. This gives two qualitative limits in order for the slope
method to be used reasonably. Borca-Tasciuc et al. thoroughly discussed that matter123 and
provided quantitative criteria to make the slope method applicable by comparing the slope
(with respect to logarithm frequency) of Eq. (3.8) to that of Eq. (3.10).

Normalized by (−Pl/(2π
√

kxky)), the slope of the real part of Eq. (3.10) versus ln(ω) has
the constant value of 1 :

1
(−Pl/(2π

√
kxky))

∂ Re{⟨T ⟩approx}
∂(ln(ω))

= 1 (3.12)

whereas the slope of Eq. (3.8) has to be computed. For adiabatic boundary conditions at the
bottom of the substrate, it is given by :

1
(−Pl/(2π

√
kxky))

∂⟨T ⟩exact
∂(ln(ω))

=
∫ ∞

0

z2

tanh(βSBS)B3
S

(
1 + 4βSBS

e2βSBS − e−2βSBS

) sin2(λ)
λ2 dλ

(3.13)
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where z = qb/
√

kxy, βS =
√

kxy(ds/b) and BS =
√

λ2 + z2. The two quantities z and βs are
parameters that allow to examine the two limits introduced previously. Indeed, a small value
of z reflects a large TPD when compared to the heater half-width (to substrate anisotropy
ratio) whereas a large value of zβS = qds represents the limit where the substrate’s thickness
is large compared to the TPD (ds > λtpd). Therefore, as the authors of Ref. 123 discussed, it
is interesting to plot the computed slope as a function of these two quantities, z and zβs = qds,
and examine the limits where it matches the slope of the approximate solution. This is shown
in Figure 3.3(a-b). Colored curves are the real part of Eq. (3.13) for different values of βS and
will be equal to 1 if they match the approximation Eq. (3.12). We further plot the relative
error that is made when taking the slope of the approximate solution instead of that of the
exact one. It is defined as :

error (%) = 100 ×

∣∣∣Re
{

∂⟨T ⟩approx
∂(ln(ω))

}
− Re

{
∂⟨T ⟩exact
∂(ln(ω))

}∣∣∣
Re
{

∂⟨T ⟩exact
∂(ln(ω))

}
and is plotted in Figure 3.3(c-d).

We observe from these plots that, for any βS , it is not possible to have a relative error
of less than 1% if z > 0.2 and |q|ds < 5 when using the slope method.3 We also observe in
Figure 3.3(c) that for βs = 10 (the blue curve), there is no range that would lead to an error
smaller than 1%. Actually, there is no range of applicability of the slope method for βS < 25
that would lead to less than 1% error.123 Therefore, when using the slope method, the thermal
penetration depth λtpd should be restricted to values satisfying

λtpd >
5b√
kxy

and λtpd <
ds
5

in order for the error on the substrate’s thermal conductivity to be less than a percent. Making
explicit the electrical frequency dependence :

25αs

4πd2
s

< f <
αskxy

100πb2 (3.14)

where αs stands for the substrate’s diffusivity. These conditions allow to choose the appropriate
frequency range depending on the material diffusivity and to adjust the transducer width, if
necessary, prior to performing an experiment. Note that taking the slope of the amplitude of
the temperature versus logarithm of frequency instead of its real part is possible and leads to
the same conditions to be respected for achieving less than 1% error on the substrate’s thermal
conductivity (i.e. Eq.(3.14)). This is verified by comparing the slope of the amplitude of the
approximate solution as a function of logarithm of frequency, to the slope of the amplitude of
the exact solution as a function of logarithm of frequency.

As an example, we have plotted in Figure 3.3(e), both the exact and approximate real
part of the temperature oscillation derived previously (Eqs. (3.8) and (3.10)). It might appear
more clearly as where the slope method is applicable by looking at this graph as the two
curves are plotted over an intentionally very large frequency range, which contains the two
limits (λtpd < 2b and λtpd > ds) where both expressions differ greatly. In the light red
areas, the conditions stated above are not met and therefore the slope method cannot be
used with great accuracy. For this example, we used a germanium substrate with diffusivity

3Numerically, qds / 4.7 is sufficient but we will keep the value of 5 as it gives a good rule of thumb.
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αs = 3.02 × 10−5 m2.s−1, thickness ds = 500 µm, anisotropy kxy = 1 and transducer width
2b = 2 µm. This led to the following conditions in terms of electrical frequency

240 Hz < f < 96.2 kHz

as can be seen in Figure 3.3(e-f). Furthermore, we see from Figure 3.3(f) that there exists
a frequency window (300 Hz < f < 9263 Hz) where the error coming from using the slope
method caps to no more than 0.1%.

As bulk materials are not the most attractive playground for studying atypical properties
of heat conduction, the next step in this chapter is to provide a rigorous thermal model which
can be used for systems made of several layers. Specific attention will be given for the case of
a film-on-substrate system.
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Eq. (3.10)
Eq. (3.8)

Figure 3.3: Range of applicability of the slope method for extracting a substrate’s thermal conductivity.
(a-b) The normalized slope (Eq.(3.12)) of the approximate solution is plotted as a constant equal to 1 as
a solid black line, whereas colored curves represent the slope (Eq.(3.13)) of the exact solution, for several
values of βs =

√
kxyds/b. The slope of the approximate solution can be safely used when it matches

that of the exact solution. (c-d) Relative error (in %) on the substrate’s thermal conductivity made
when using the slope method, as a function of two non-dimensional parameters |q|ds and |q|b/(kxy)1/2.
The error is smaller than 1% if both |q|ds > 5 and |q|b/(kxy)1/2 < 0.2. (e) Comparison of the two
expressions of the temperature oscillation derived in the main text (exact and approximate solution).
It is clear that in both high and low frequency limits, the slope of the two curves are dissimilar, and
therefore the slope of the approximate solution cannot be used to determine the substrate’s thermal
conductivity, as can be seen from the relative error plotted on the bottom panel (f).
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3.2 Transducer on a multilayer system

Most systems of interest for thermal characterization are shrinking in size. A plethora of mate-
rials and complex structures such as thin films, superlattices, forest of nanowires or quantum
dots are now a step closer to being integrated into functional devices. They are, in most
cases, deposited onto substrates and therefore measurements are performed on a system made
of several materials whose thermal properties can be dissimilar. It is rather cumbersome to
derive a general expression for the temperature rise sensed by the transducer for a system
consisting of many layers using the aforementioned method. Consequently, a detailed model
of the two-dimensional heat flow for a multilayer system will be presented hereafter, using a
different approach from that of the first part.
The ”thermal quadrupole” method, extending the notion of electrical quadrupole, was initially
proposed by Carslaw and Jaeger137 and later improved by Degiovanni (published in french in
1988153 and in english in 2000154). It is also often referred to as the Feldman algorithm, who
used the same formalism for the specific case of a heat source periodically heating a stratified
medium.155

In Figure 3.4 is displayed the geometry of the system, consisting of multiple parallel slabs, with
the heater/thermometer on top. The general idea is to express temperature and flux from the
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1
ϕ−
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2

+
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R23

R(n−1)n
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+
−

+
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ϕ+
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2
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3 , T −
3

d1

d2

dn

k1x , k1y , ρ1, Cp1

k2x , k2y , ρ2, Cp2

knx , kny , ρn, Cpn

x

y

2b

ϕ+
(n−1), T +

(n−1)
ϕ−

n , T −
n

Figure 3.4: Schematic representation of a multilayer system with a metallic layer (grey) deposited
on top of the first layer. Each layer has a set of thermal properties, and there is a thermal boundary
resistance between every consecutive layer. Each layer has a top and bottom (with respect to y) labelled
as + and −, following the notation of Eq. (3.20). Note that the metallic layer (the transducer) is not
considered in this model as well. The heat flux is considered to be a boundary condition at y = 0 and
between −b < x < b.

top (+) of one slab as a function of temperature and flux at the bottom (−) of the same
slab. Temperature and flux at the bottom of a slab will be related to temperature and flux at
the top of the next slab, and so on, until the last slab is reached and an adequate boundary
condition is applied. These temperature and flux will be expressed as a matrix product, as
shown below, and can therefore be readily extended to a system of n layers.
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Starting off with the Fourier transformed heat equation Eq.(3.4), derived in the previous
section, which we re-write below :

∂2

∂y2 T̂ (λ, y) − γ2T̂ (λ, y) = 0

γ =
√

kxyλ2 + iω
ρCp

ky

and its solution
T̂ (λ, y) = C1eγy + C2e−γy

The following steps are followed from Ref. 137 (p.109-111). Temperature and flux are written
as :

T̂ (λ, y) = C1eγy + C2e−γy (3.16)

ϕ̂(λ, y) = −ky
∂T̂ (λ, y)

∂y
= −kyγ

(
C1eγy − C2e−γy) (3.17)

We evaluate T̂ (λ, 0) and ϕ̂(λ, 0) in order to infer C1 and C2 :

T̂ (λ, 0) = C1 + C2

ϕ̂(λ, 0) = −ky
∂T̂ (λ, y)

∂y

∣∣∣∣∣
y=0

= −kyγ(C1 − C2)

From these two relations, C1 and C2 can be written as :

C1 = 1
2

(
T̂ (λ, 0) − ϕ̂(λ, 0)

kyγ

)
(3.18)

C2 = 1
2

(
T̂ (λ, 0) + ϕ̂(λ, 0)

kyγ

)
(3.19)

We now express temperature and flux at y = d, where d refers to the thickness of a layer, as
a function of the temperature and flux at y = 0. Writing Eqs.(3.16)-(3.17) at y = d using
Eqs.(3.18)-(3.19) :

T̂ (λ, d) = T̂ (λ, 0)
(

eγd + e−γd

2

)
+ ϕ̂(λ, 0) 1

kyγ

(
e−γd − eγd

2

)

ϕ̂(λ, d) = T̂ (λ, 0)
(

(−kyγ)
(

eγd − e−γd

2

))
+ ϕ̂(λ, 0)

(
e−γd + eγd

2

)

In matrix form, expressing exponential identities as hyperbolic sines and cosines :
(

T̂ (λ, d)
ϕ̂(λ, d)

)
=

 cosh(γd) −1
kyγ sinh(γd)

−kyγ sinh(γd) cosh(γd)

(T̂ (λ, 0)
ϕ̂(λ, 0)

)

Since we are interested in the temperature at y = 0, we express T̂ (λ, 0) as a function of T̂ (λ, d)
: (

T̂ (λ, 0)
ϕ̂(λ, 0)

)
=

 cosh(γd) 1
kyγ sinh(γd)

kyγ sinh(γd) cosh(γd)

(T̂ (λ, d)
ϕ̂(λ, d)

)
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Thermal boundary resistance between two consecutive layers is readily added to the model.
Temperature and flux at any interface between two layers are expressed as :

T +
j − T −

j+1 = Rj,j+1ϕ+
j

ϕ+
j = ϕ−

j+1
(3.20)

where Rj,j+1 is the thermal boundary resistance between layer j and j + 1 (see Figure 3.4). In
matrix form : T +

j

ϕ+
j

 =
(

1 Rj,j+1

0 1

)T −
j+1

ϕ−
j+1


For example, temperature T̂ (λ, 0) and flux ϕ̂(λ, 0) for a substrate of thickness ds, with a
thermal resistance R01 between the transducer and the substrate is written as :(

T̂ (λ, 0)
ϕ̂(λ, 0)

)
=
(

1 R01

0 1

) cosh(γds) 1
kyγ sinh(γds)

kyγ sinh(γd) cosh(γds)

(T̂ (λ, ds)
ϕ̂(λ, ds)

)
(3.21)

T̂ (λ, ds) or ϕ̂(λ, ds) is then set to zero according to the boundary condition that is applied
at the bottom of the last layer (isothermal or adiabatic, respectively). The most important
feature of this method is that it can be extended to n layers. Repeating Eq.(3.21), it follows
that : (

T̂ (λ, 0)
ϕ̂(λ, 0)

)
=
(

1 R01

0 1

) cosh(γ1d1) 1
k1y γ1

sinh(γ1d1)

k1y γ1 sinh(γ1d1) cosh(γ1d1)

×

(
1 R12

0 1

) cosh(γ2d2) 1
k2y γ2

sinh(γ2d2)

k2y γ2 sinh(γ2d2) cosh(γ2d2)

× · · · ×

(
1 R(n−1)n

0 1

) cosh(γndn) 1
kny γn

sinh(γndn)

kny γn sinh(γndn) cosh(γndn)

(T̂ (λ, dn)
ϕ̂(λ, dn)

)

=
(

A B

C D

)(
T̂ (λ, dn)
ϕ̂(λ, dn)

)

Once the matrix product involving thermal boundary resistances and hyperbolic coefficients is
computed (arbitrarily labelled as (A, B, C, D) above), we need to express T̂ (λ, 0) as a function
of ϕ̂(λ, 0). We then express T (x, 0) taking the inverse Fourier transform of T̂ (λ, 0), as we did
in the previous section. For the general case :(

T̂ (λ, 0)
ϕ̂(λ, 0)

)
=
(

A B

C D

)(
T̂ (λ, dn)
ϕ̂(λ, dn)

)

Adiabatic boundary condition at the bottom layer (ϕ̂(λ, dn) = 0) leads to(
T̂ (λ, 0)
ϕ̂(λ, 0)

)
=
(

A B

C D

)(
T̂ (λ, dn)

0

)
which is equivalent to the system of coupled equations

T̂ (λ, 0) = AT̂ (λ, dn)

ϕ̂(λ, 0) = CT̂ (λ, dn)
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which is readily solved, leading to

T̂ (λ, 0) = A

C
ϕ̂(λ, 0) (3.22)

Similarly, for isothermal boundary conditions at the bottom layer (T̂ (λ, dn) = 0), we obtain

T̂ (λ, 0) = B

D
ϕ̂(λ, 0)

The Fourier Transform of the heat flux has been computed in the previous section (Eq. (3.6)),
it is expressed as ϕ̂(λ, 0) = 2ϕ0 sin(λb)/λ.

Taking the inverse Fourier transform of T̂ (λ, 0) to recover T (x, 0), then averaging over
−b < x < b (we define r as either A/C or B/D depending on the boundary condition) :

⟨T (x, 0)⟩avg = 1
2b

∫ b

−b

{ 1
2π

∫ ∞

−∞

2ϕ0 sin(λb)
λ

reiλxdλ

}
dx

leading to

isothermal b.c. : ⟨T ⟩ = Pl

π

∫ ∞

0

B

D

sin2(λb)
(λb)2 dλ (3.23a)

adiabatic b.c. : ⟨T ⟩ = Pl

π

∫ ∞

0

A

C

sin2(λb)
(λb)2 dλ (3.23b)

where A, B, C and D are computed from(
A B

C D

)
=

n∏
j=1

(
1 R(j−1)j

0 1

) cosh(γjdj) 1
kjy γj

sinh(γjdj)

kjy γj sinh(γjdj) cosh(γjdj)

 (3.23c)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(3.23d)

where the product in Eq. (3.23c) starts from the first layer (j = 1) beneath the transducer,
following the notation of Figure 3.4.

We compare this result to the one derived in the previous section for the case of a heater
on substrate, without thermal boundary resistance between the transducer and the substrate
(R01 = 0), with adiabatic boundary condition applied at the substrate’s bottom. Looking for
the coefficients in Eq. (3.23c) using n = 1, we have A = cosh(γds) and C = kyγ sinh(γds).
This leads to :

⟨T ⟩ = Pl

π

∫ ∞

0

cosh(γds)
kyγ sinh(γds)

sin2(λb)
(λb)2 dλ

= Pl

πky

∫ ∞

0

1
γ tanh(γds)

sin2(λb)
(λb)2 dλ

where γ =
√

kxyλ2 + iω
ρCp

ky

which is consistent with our previous result (Eq. (3.8)). In a similar manner, the temperature
oscillation sensed by the transducer can be evaluated for any system of n layers : we look for
the coefficients using Eq. (3.23c) and then numerically integrate (3.23a) or (3.23b). This result
is equivalent to that derived in Ref. 123, with thermal boundary resistances between layers
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included.

The general formalism to infer temperature oscillations sensed by a transducer on a com-
plex structure is now established, and we wish to express a general expression for the specific
case of a thin film deposited onto a substrate. This is straightforward using Eq. (3.23), and
it will lead to another widely used expression for inferring the thermal conductivity of a thin
film.

3.2.1 Extracting a thin film’s thermal conductivity

In the following, subscripts ”f”, ”s” and ”tr” under relevant parameters will refer to film,
substrate and transducer, respectively. Subscripts in italic refer to coordinates. For example,
ksy refers to the cross-plane component of the substrate’s thermal conductivity.

The rigorous method to derive the expression of the temperature oscillation sensed by the
transducer for a film-on-substrate system is to compute Eq. (3.23) using n = 2. This leads to

⟨T ⟩ = Pl

π

∫ ∞

0

sin2(λb)
(λb)2

1
kfy γf tanh(γfdf)

(
1 + tanh(γsds)γsksy (Rf/s + tanh(γfdf)

kfy γf
)
)

(
1 + tanh(γsds)γsksy (Rf/s + coth(γfdf)

kfy γf
)
)dλ

+ Pl

2b
Rtr/f (3.24a)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(3.24b)

This expression is rather complicated and does not seem very intuitive. In particular, it is
not straightforward to estimate how the film will affect the temperature oscillation across the
heater/thermometer, depending on its thickness or thermal conductivity – though a sensitivity
analysis can prove effective ! (see Appendix B)

In this section, we will see that treating the film as a simple thermal boundary resistance
between the heater and the substrate gives interesting results. Solving Eq. (3.23) for n = 1 with
a thermal boundary resistance Rint at the heater/substrate interface, we have A = cosh(γds)+
Rintksy γ sinh(γds) and C = ksy γ sinh(γds), leading to

⟨T ⟩ = P

πl

∫ ∞

0

(cosh(γds) + Rintksy γ sinh(γds))
ksy γ sinh(γds)

sin2(λb)
(λb)2 dλ

= Pl

π

∫ ∞

0

1
ksy γ tanh(γds)

sin2(λb)
(λb)2 dλ + PlRint

π

∫ ∞

0

sin2(λb)
(λb)2 dλ

= Pl

π

∫ ∞

0

1
ksy γ tanh(γds)

sin2(λb)
(λb)2 dλ + PlRint

π

π

2b

⟨T ⟩ = Pl

πksy

∫ ∞

0

1
γ tanh(γds)

sin2(λb)
(λb)2 dλ + Pl

2b
× Rint (3.25)

We notice from Eq. (3.25) that the contribution of thermal boundary resistance between
the heater and the substrate only adds a frequency-independent term to the total temperature
oscillation. Besides, we recognize the previously defined expression of the heat flux ϕ0 = Pl/(2b)
and the integrated form of Fourier’s law relating temperature difference to heat flux and
thermal resistance : ⟨T ⟩ = ϕ0 ×Rint. Albeit we defined Rint as the thermal boundary resistance
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3.0×107

heat ux
[W/m²]

isothermsheater/thermometer

thin lm

substrate

Figure 3.5: Heat flux distribution for a film-on-substrate system, calculated using FEM (see Ap-
pendix D). From this plot, we understand that the heat flux is majorly one-directional below the
heater/thermometer, since the heater half-width is very large in comparison to the film thickness. The
same conclusion can be drawn by looking at the isotherms, displayed as green dashed lines, which are
almost parallel across the thickness of the film. Besides, heat flow in the x direction inside the film is
very small due to the small thermal conductivity of the film in comparison to that of the substrate (a
ratio of 1/25 was taken in this case).

between the heater and substrate, this notation is widely used in the literature123,145,156–165

to approximate a thin film thermal resistance deposited on top of its substrate, using Rint =
Rfilm = df/kf, with units of m2.K.W−1. In this case, the thin film is seen as a ”heat capacity-
less” material166, and is hence modelled as a simple thermal resistance in series with the
heater. It looks very attractive, since we can relatively easily subtract the significant thermal
contribution of the substrate (first part of the right-hand side of Eq.(3.25)) from the total
temperature oscillation by performing two experiments, one with the film and another one
without the film (a reference sample), and hence deduce the thermal contribution of the film
only, allowing to infer its thermal conductivity. The resulting temperature difference would
lead to :

⟨T ⟩film = ⟨T ⟩substrate + film − ⟨T ⟩substrate = Pl

2b

df
kfy ,1D

(3.26)

which is a very convenient formula that contains well-known quantities. Extracting a film’s
thermal conductivity in this way is often referred to as the ”differential 3ω method” in the liter-
ature. Naturally, it comes along with certain conditions to be satisfied. Looking at Eq. (3.26),
the film’s anisotropy and heat capacity do not appear, which provides some hints on the
conditions to satisfy in order to use this simple model.

First, the absence of anisotropy in Eq.(3.26) means that when using this approximation,
we assume the heat flux from the transducer to be completely one-directional (1D) through
the film thickness (cross-plane direction, y in Figure 3.5), therefore neglecting heat spreading
perpendicularly to the film thickness (in-plane direction) – hence ”1D” added to the subscript
kfy ,1D. For the heat flux to be 1D across the film thickness, the heater width should be much
larger than the film thickness (2b ≫ df), such that any thermal spreading in the in-plane
direction can be neglected when compared to that of the cross-plane. This is exemplified in
Figure 3.5.

Second, when thermal circuits are modelled in terms of thermal impedances, in a similar
way to the modelling of electrical circuits, the heat capacity has the electrical equivalent of a
self capacitance.167 It means that the temperature response of any material with a given heat
capacity changes as a function of excitation frequency, which is precisely what we have shown
in the previous part. This is in contradiction with Eq. (3.26) which is frequency-independent,
leading to another condition for this approximation to be used : the frequency must be low
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Ztot = Z3 + 1
1

Z1
+ 1

Z2

= Z3 + Z1
1 + Z1/Z2

= Z3 +
df

kfy

1 + df
kfy

iωρfCpfdf

df
kfy

iωρfCpfdf ≪ 1 ⇔
∣∣∣∣ 1qf

∣∣∣∣ ≫ df

≈ Z3 + df
kfy

if

Z1

Z3

Z2df ρfCpf

Figure 3.6: Simplified thermal circuit of a film-on-substrate system, emphasizing on the film’s heat
capacity and the conditions to satisfy in order to neglect it in the thermal model. When the thermal
penetration depth becomes much larger than the thickness of the film, the film is considered as a
thermal resistance in series with the heater and its heat capacity can be neglected. The temperature
rise is readily obtained by multiplying the thermal impedance with the heat flux Pl/2b.

enough such that the frequency response due to the heat capacity of the film can be neglected
– hence the expression ”heat capacity-less”. It might be easier to understand in terms of
thermal penetration depth : the thermal penetration depth should be much larger than the
film thickness (|1/qf| ≫ df) such that we can consider it as a simple thermal resistance in series
with the heater. This condition can be understood using a thermal circuit description of the
film-on-substrate system, as depicted in Figure 3.6.

The remaining condition to fulfil in order to use Eq. (3.26) is that the thermal conductivity
contrast between the substrate and the film should be large enough (kf/ks ≪ 1), such that
the resulting temperature difference can be measured with sufficient accuracy. Indeed, if both
the film and substrate have equal thermal conductivities, the system (substrate+film) could
be seen as a simple thicker substrate and therefore there would be no temperature difference
to be measured. This last condition always hold. Indeed, the 3ω method is not well suited for
films whose thermal conductivity is close to that of the substrate onto which they are deposited.

More quantitative criteria of the above arguments have been derived by Borca-Tasciuc et
al.123, who compared the simplified expression Eq. (3.25) to the exact one Eq. (3.24). In order
to easily compare both exact and approximate (1D) expressions, we follow their notation, and
we write

⟨T ⟩film, [approx] = ⟨T ⟩(substrate + film),[approx] − ⟨T ⟩substrate,[exact]

= Pl

2b

df
kfy ,1D

and

⟨T ⟩film, [exact] = ⟨T ⟩(substrate + film),[exact] − ⟨T ⟩substrate,[exact]

= Pl

2b

df
kfy ,exact

Re

{∫ ∞

0

2
π

sin2(λ)
λ2 K(λ, βf, zf, zs, kf, ks)dλ

}
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where, for a semi-infinite substrate,

K(λ, βf, zf, zs, kf, ks) =
tanh

(
βf
√

λ2 + z2
f

)(
1 −

kfxkfy
k2

s

(
λ2 + z2

f
λ2 + z2

s

))

βf
√

λ2 + z2
f

1 +

√
kfxkfy

ks

(
λ2 + z2

f
λ2 + z2

s

)1/2

tanh
(
βf
√

λ2 + z2
f

)
(3.27)

with
βf =

√
kfxy

(
df
b

)
and zi = qi

b√
kixy

In the limit where f → 0 (and therefore zi → 0), the thermal penetration depth is much
larger than the film thickness and heater half-width : λtpd ≫ b ≫ df . In this case, the
thermal penetration depth, as a length-scale, is disregarded from the analysis. This has the
benefit of simplifying the analysis, and to focus only on parameters unrelated to the frequency
driving the experiment.4 Thus, we can simplify the expression for K(λ, βf, zf, zs, kf, ks), which
in turn allows to quantify the error coming from using the approximate solution Eq. (3.26)
as a function of two important parameters, as what was done for the slope method. Letting
zi → 0 in Eq.(3.27) :

K(λ, βf, kf, ks) =
tanh (βfλ)

(
1 −

kfxkfy
k2

s

)

βfλ

1 +

√
kfxkfy

ks
tanh (βfλ)


and therefore

⟨T ⟩film, [exact] = Pl

2b

df
kfy ,exact

Re


∫ ∞

0

2
π

sin2(λ)
λ3

tanh (βfλ)
(

1 −
kfxkfy

k2
s

)
βf
(
1 +

√
kfxkfy /ks tanh (βfλ)

)dλ

 (3.28)

which corresponds to Equation (17) in Ref. 123. We can now quantify the relative error on
the cross-plane component of the film thermal conductivity kfy , made when using Eq. (3.26)
instead of Eq. (3.28), as a function of the thermal conductivity contrast between the substrate
and the film, and as a function of the film thickness to heater half-width ratio. The relative
error is defined as

error(%) = 100 ×

∣∣∣kfy ,exact − kfy ,1D
∣∣∣

kfy ,exact
= f


√

kfxkfy

ks
,
√

kfxy

(
df
b

) (3.29)

Its magnitude is plotted in Figure 3.7 as a function of both the thermal conductivity contrast
between the substrate and the film, and as a function of the film thickness to heater half-
width ratio. From Figure 3.7, it can be read that Eq. (3.26) can be used under the following
conditions, with the corresponding error :

4Of course, one should try to stay in an appropriate frequency range such that the thermal penetration
depth is still less than the substrate’s thickness – though one can extend the frequency range to lower frequencies
if the film’s thermal conductivity is inferred from a ”differential 3ω method”.
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Figure 3.7: Relative error on the film’s thermal conductivity if the simple 1D model (Eq. (3.26)) is
used instead of the exact expression (Eq. (3.24)). The error is plotted as a function of two important
parameters : the film thickness to heater half-width ratio and the thermal conductivity contrast between
the film and the substrate.

<1% error if
√

kfxy df/b < 0.038 and
√

kfxkfy /ks < 0.1

<5% error if
√

kfxy df/b < 0.184 and
√

kfxkfy /ks < 0.23 (3.30)

<10% error if
√

kfxy df/b < 0.370 and
√

kfxkfy /ks < 0.32

These conditions allow to adapt the transducer’s dimensions and/or the type of substrate that
is used in order to use the very convenient formula Eq. (3.26) for determining the cross-plane
component of the film’s thermal conductivity, kfy . Furthermore, we point out that since a
smaller transducer width is more sensitive to anisotropic heat flux inside the film, it is possible
to perform several experiments using transducer of different widths (one very broad, another
one very narrow when compared to the thickness of the film) to infer the thermal anisotropy
of the film.123,146

We underline that when using the ”differential 3ω method”, i.e. removing the thermal
contribution of the substrate using a reference sample without a film, the contribution of TBR
is neglected. Indeed, the (substrate+film+transducer) system will not have the same interfaces
as the reference (substrate+transducer) system and therefore the contribution of TBR is not
removed. Therefore, it should be used only if the contribution of TBR is negligible when
compared to the thermal resistance of the film. If that is not the case, another strategy is
preferred, as we will discuss now.

71



Chapter 3: Heat transfer model for 3ω experiments

3.2.2 Measuring the contribution of thermal boundary resistances

We began our discussion by stating that the thermal resistance of a film could be seen
as a thermal boundary resistance in series with the heater/thermometer. This is indeed
true provided that certain conditions are respected, as we have explained above. In the
following, we shall take into account ”true” thermal boundary resistances in the thermal
model, which are always present in film-on-substrate systems : one at the heater/film in-
terface, the other one at the film/substrate interface, as shown in Figure 3.8(a). Therefore,
provided that the aforementioned conditions are met such that the film can be considered 1D,
the total temperature rise sensed by the transducer can be written as

⟨T ⟩total = Pl

πksy

∫ ∞

0

tanha
(√

ksxy λ2 + iω
(ρsCps )

ksy
ds

)
√

ksxy λ2 + iω
(ρsCps )

ksy

sin2(bλ)
(bλ)2 dλ

︸ ︷︷ ︸
substrate

+ Pl

2b
× Rth︸ ︷︷ ︸

film + interfaces

(3.31a)

where

Rth = Rfilm + Rtransducer/film + Rfilm/substrate

= df
kfy

+ Rtr/f + Rf/s (3.31b)

where a = ±1 in Eq.(3.31) for isothermal or adiabatic boundary condition at the bottom of
the substrate. Using Eqs.(3.31a)-(3.31b), it is possible to separate the thermal contribution of
the film from that of the interfaces. Indeed, with the cost of performing multiple experiments
using films of increasing thicknesses, plotting the thermal resistance Rth as a function of
the film’s thickness df permits to extract the cross-plane component of the intrinsic thermal
conductivity of the film kfy and the sum of thermal boundary resistances (Rtr/f + Rf/s), as
explained in Figure 3.8(a)-(c). As thermal boundary resistances usually lie within the range
of 10−9 − 10−7 m2.K.W−1 (see Figure 1.10), it is important to measure their contribution (or
estimate them if a measurement is not possible). Indeed, for a 50 nm thick film with thermal
conductivity kf = 1 W.m−1.K−1, its thermal resistance is Rfilm = df/kf = 5.10−8 m2.K.W−1,
the same order of magnitude as TBRs, which, if discarded, could lead to very large errors on
the determination of the film’s thermal conductivity.

To summarize, for extracting the thermal conductivity of the substrate, film and the sum
of thermal boundary resistances, one may follow the steps described in Figure 3.8(a)-(c). We
primarily fit the measured temperature oscillation ⟨T ⟩total to Eq. (3.31a) to obtain

√
ksxksy

and Rth.
√

ksxksy can be uniquely determined using the frequency dependence of ⟨T ⟩total and
therefore, once it is known, Rth is the remaining free parameter. We then fit each Rth for each
thin film thickness according to Eq. (3.31b). From the slope of Rth = f(df), we extract the
intrinsic thermal conductivity of the film. Rinterfaces is inferred from its intercept.

This method is valid as long as the film’s intrinsic thermal conductivity is not thickness-
dependent in the thickness-range where measurements are carried out. This holds true for
most amorphous materials which have MFPs of the order of the nanometer168, but caution
must be taken for crystalline materials with long MFP, whose thermal conductivities might
be thickness-dependent, in particular at low temperature.
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+

(3.31a)

(3.31b)

Figure 3.8: Method for extracting the intrinsic thermal conductivity of the film : measuring the thermal
resistance of films of increasing thicknesses allows to separate the contribution of interfaces from the
contribution of the film alone. This method implies that the film can be treated as a simple thermal
resistance in series with the transducer, and therefore fulfil the conditions stated in Eq.(3.30).

The other implicit assumption of Eq. (3.31b) is that TBRs are constant through all films
thicknesses, i.e. the TBR for a film with thickness d1 is the same as that of thickness d2.
This assumption can be wrong for very thin films which have different surface properties (as
compared to the same, thicker, material), depending on the deposition technique. For example,
the stoichiometry of a film deposited by Atomic Layer Deposition depends on the number of
cycles that is needed to grow the film, and thus on the thickness of the film.169 During the first
cycles of the deposition process, the stoichiometry of the film changes and therefore its surface
(thus interface) might change as well, making the use of Eq. (3.31b) not valid. Therefore,
one would need to characterize films thick enough such that their surface structure is the
same among all films. This sets a restriction on the thinnest films that can be measured with
sufficient accuracy.

We point out that, when fitting Eq. (3.31a), we must input the substrate’s heat capacity
(ρsCps) and thermal conductivity anisotropy ksxy in the thermal model. The heat capacity can
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usually be found in the literature as opposed to anisotropy. It is therefore preferred to perform
experiments onto isotropic substrates. However, from the way we extract the film’s thermal
conductivity, an error made on either the substrate’s heat capacity or anisotropy would not
lead to an error on the film’s thermal conductivity. This can be seen more clearly by expressing
Eq. (3.31a) in the case of a semi-infinite substrate when the thermal penetration depth is much
larger than the transducer half-width, λtpd ≫ b. In this case, it is written as (using Eq. (3.10))

⟨T ⟩ = Pl

π
√

ksxksy

[
−1

2
ln(ω) + 1

2
ln
(

ksy ksxy

ρsCpsb
2

)
− i

π

4
+ η

]
+ Pl

2b

[
df
kfy

+ Rinterfaces

]
(3.32)

Therefore, if the value of the substrate’s heat capacity (or anisotropy) used for the fitting is
wrong, it would lead to an extra constant term in Eq. (3.32). Since we used its slope with
respect to df (Figure 3.8(c)), this extra constant term would vanish. However, since we use
the intercept to extract the sum of thermal boundary resistances, an erroneous estimation of
the substrate’s anisotropy or heat capacity would lead to inaccurate results on the TBR.

Let us examine the effect of the substrate anisotropy on the determined TBR. Re-writing
Eq. (3.32) to make the contribution from anisotropy ksxy more explicit leads to :

⟨T ⟩ = Pl

πksy

√
ksxy

−1
2

ln(ω) + 1
2

ln

ksy

√
ksxy

ρsCpsb
2

+ 1
4

ln
(
ksxy

)
− i

π

4
+ η


+ Pl

2b

[
df
kfy

+ Rinterfaces

]

Using the ”slope method”, we infer the quantity ksy

√
ksxy , as explained in Section 3.1.2. Assum-

ing that we know precisely the substrate’s heat capacity, the remaining unknown quantities are
ksxy , kfy and Rinterfaces. Re-arranging to distinguish between known and unknown quantities :

⟨T ⟩ = Pl

πksy

√
ksxy

−1
2

ln(ω) + 1
2

ln

ksy

√
ksxy

ρsCpsb
2

− i
π

4
+ η


+ Pl

2b

 df
kfy

+ Rinterfaces + b

2πksy

ln
(
ksxy

)√
ksxy


︸ ︷︷ ︸

Rth′

Hence, using the method depicted in Figure 3.8(c), that is, plotting Rth′ as a function of df, we
would not only extract the sum of thermal boundary resistances from the intercept, but also a
small contribution from the substrate’s anisotropy, which scales as ∝ b ln

(
ksxy

)
/(ksy (ksxy )0.5).

If the substrate is isotropic, i.e. ksxy = 1, this correction vanishes. As an example, for
a transducer half-width of b = 2.5 µm, substrate’s cross-plane thermal conductivity ksy =
52 W.m−1.K−1 and anisotropy ksxy = 1.1, this quantity would be ≈ 7.10−10 m2.K.W−1, which
is one to two orders of magnitude smaller than typical values for Rinterfaces. In most cases
it can be neglected, but caution should be taken for large transducer and/or small substrate
thermal conductivity, especially if the substrate’s thermal anisotropy is not known.
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In general, the 2D solution of the temperature oscillation that have been presented in the
previous chapter will suffice, and the general solution Eq. (3.23), or the simpler Eq. (3.31)
can be used, depending on the geometry and thermal properties of the system. However, in
some cases, a more detailed derivation of the thermal model is needed in order to accurately
determine the thermal properties of a system. Indeed, the general solution of the temperature
oscillation (Eq. (3.23)) sensed by the heater/thermometer, used to determine the thermal
properties of the system of interest, have been derived using several assumptions. The first
one is, as was shown in Figure 3.1 of Chapter 3, that the heat flux is homogeneous and
constant along the width of the heater. This comes from the important approximation that
heat conduction within the heater is completely neglected (its thickness is assumed to be zero),
which considerably simplifies the thermal model. Besides, the heat that is stored within the
transducer is neglected as well, and thus the heater’s specific heat is not included in the thermal
model. Another assumption is that the model assumes the heater length to be infinitely long
in the z direction, allowing to treat the problem in 2D, thus neglecting heat transport in
the direction parallel to the heater length. This considerably simplifies the thermal model as
well. Eventually, we assumed that the heater dissipates heat only through conduction in the
underlying materials, thereby completely neglecting losses by radiation (or convection).

In this chapter, we will therefore discuss these assumptions and their consequences in the
determination of thermal properties. We remind the reader that most of these concerns have
been discussed in the literature. Cahill discussed the heat loss due to radiation in its seminal
paper presenting the 3ω method.119 A decade later, Borca-Tasciuc et al.123 provided a correc-
tion factor to take into account the transducer’s heat capacity, while other authors147,148,170–172

have studied the effect of the transducer’s thermal conductivity on the measured temperature
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rise. In chronological order, Jacquot et al. conducted a 3D FEM analysis to study the temper-
ature oscillation that is measured in the 3ω geometry, including heat conduction within the
heater line, and its finite length.170 Battaglia et al.173 then provided an analytical solution of
the 3D problem, including the finite length of the heater line, without considering heat conduc-
tion within it. Gurrum et al.147 and Wang et al.148 then provided a semi-analytical solution of
the temperature rise measured in 3ω experiments, taking into account heat conduction within
the heater, in 2D.

We will first briefly discuss the effect of radiation on the measured temperature rise during
a 3ω experiment, as derived by Cahill.119 Then, the thermal properties of the heater will
be included (using FEM or using a simple thermal circuit approach), and their effect on the
temperature rise will be discussed. Eventually, an analytical 3D model of the temperature
distribution in a multilayer system will be presented, allowing to quantify analytically end
effects due to the finite length of the heater/thermometer, which can alter the measurement,
in particular when using the slope method for determining the thermal conductivity of a
material.

4.1 Heat lost by radiation

If the experiment is carried out under vacuum (< 10−5 mbar), as it is the case in this work, the
remaining path for heat to be lost is through radiation. The error from blackbody radiation has
been quantified by Cahill in his original paper119 and will be presented here for completeness.
The general idea is to quantify the amount of heat that is lost through radiation starting from
Stefan-Boltzmann law :

P = σϵT 4 (4.1)

where σ = 5.67 × 10−8 W.m−2.T−4 is the Stefan-Boltzmann constant and ϵ is the emissivity
of the sample surface. Then, subtract the calculated heat loss from the amount of heat
that is produced by joule heating, and then recalculate the temperature oscillation with the
correct amount of heat that is actually entering the system through conduction. The resulting
temperature oscillation for a semi-infinite isotropic substrate reads119 :

⟨T ⟩ = Pl

π

∫ ∞

0

1(
ks

√
λ2 + iω

(ρCp)s

ks
+ 2ϵσT 3

avg

) sin2(λb)
(λb)2 dλ (4.2)

where Tavg is the average temperature of the heater and surroundings. Qualitatively, for
large heater widths, the surface of the heater is large and thus heat lost by radiation is more
important. Similarly, for large thermal penetration depth, the heated area is larger and we
can therefore expect radiation to be important as well. For thermally insulating materials, the
heat flux from the heater is more easily radiated out to the environment, and therefore error
from radiation is more important for such materials. The error from radiation is thus expected
to scale roughly as ∼ ϵT 3bλtpd/ks.119,166 We plot the temperature oscillation as a function of
frequency for a poorly (ks = 0.1 W/m.K) or conductive (ks = 50 W/m.K) substrate with
emissivity ϵ = 1, for several temperatures in Figure 4.1. The effect of radiative heat loss is
indeed more pronounced at low frequency (large thermal penetration depth) and at very high
temperature, in particular for thermally insulating materials. However, at room temperature
and below, it is completely negligible. Since in this work, thermal conductivity measurements
are carried out at temperatures below 320 K, the effect of radiation can be safely neglected,

76



Chapter 4: Limits of the thermal model

0 K

300 K

1000 K

0.1 1 10 100 1000 104
0

2

4

6

8

f(Hz)

Δ
T
(K
)

0.1 1 10 100 1000 104
0.005

0.010

0.015

0.020

0.025

f(Hz)

Δ
T
(K
)

heat lost by radiation

Effect of radiation on the measured temperature oscillation

Figure 4.1: Effect of radiative heat loss on the temperature oscillation as a function of oscillation
frequency. The radiative heat loss becomes important only at extremely high temperature, in particular
for materials with very low thermal conductivity. The parameters used were ϵ = 1, b = 15 µm,
(ρCp)s = 106 J/(K.m3) and Pl = 0.625 W/m.

since the error is below 0.006% at the lowest frequency at 320 K, using ks = 50 W/m.K, ϵ = 1,
b = 15 µm and Pl = 0.625 W/m.

4.2 Including thermal properties of the transducer

4.2.1 Accounting for the transducer’s heat capacity

In this part, the effect of the transducer’s heat capacity is described using a thermal circuit
approach. Although already discussed earlier, thermal boundary resistance between the trans-
ducer and the first layer is added to the model for completeness.

 transducer

thermal circuit sample schematic

top layer

Z2

Z1

Z3

bottom layer

(a)

R01 =8.35.10-8 m².K/W, dtr =0, kf=1.75 W/(m.K)

R01 =8.35.10-8 m².K/W, dtr=100 nm, kf=1.75 W/(m.K)

R01 =1.10-9 m².K/W, dtr =0, kf =1.54 W/(m.K)

500 1000 5000 1×104 5×104

2.4

2.6

2.8

3.0

3.2

3.4

3.6

f(Hz)

(b) lm-on-substrate system

Figure 4.2: (a) Thermal circuit describing the effect of the transducer’s heat capacity on the total
thermal resistance. The complex impedance Z3 is derived as described in the main text. (b) Effect of
transducer’s heat capacity and thermal boundary resistance on the measured temperature oscillation
for a film-on-substrate system. Neglecting the heat capacity of the transducer can lead to large errors
(12% in this example) on the calculated film thermal conductivity if the heater/top layer TBR is not
accurately known.

Figure 4.2(a) is a representation of the ”transducer on a multilayer system” in terms of
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thermal impedances labelled as Z1, Z2 and Z3. For homogeneity and to provide an easier
comparison to what is customary in electrical circuits, Z1, Z2 and Z3 are scaled with unit area
and therefore have units of m2.K.W−1. We can easily switch to thermal impedance in K.W−1

by dividing these quantities with the transducer area (2b × l).
The transducer is the heat source, and is the equivalent of a power source in an electrical
circuit. The thermal impedance due to the transducer self-capacitance is Z1 = 1/(iωCtr)
where Ctr = (ρtrCptr) × dtr. Keeping a similar notation to that of Eq. (3.23), the thermal
impedance due to the thermal boundary resistance between the transducer and the first layer
is simply Z2 = R01. Then, the total impedance from the layers underneath the transducer is
the temperature rise divided by the heat flux, Z3 = ⟨T ⟩/(Pl/2b). From Figure 4.2(a), we can
derive the total thermal impedance of the system. Z2 and Z3 are together in series while Z1

is in parallel ; the total impedance Ztot is then :

1
Ztot

= 1
Z1

+ 1
Z2 + Z3

Ztot = Z2 + Z3

1 + Z2+Z3
Z1

= R01 + ⟨T ⟩/(Pl/2b)
1 + (⟨T ⟩/(Pl/2b) + R01)(iωρtrCptrdtr)

Multiplying the total impedance Ztot with the heat flux (Pl/2b) to express the temperature
rise, the new temperature rise ⟨T ⟩tr accounting for the transducer’s heat capacity and thermal
boundary resistance is :

⟨T ⟩tr = (Pl/2b)R01 + ⟨T ⟩
1 + (⟨T ⟩2b/Pl + R01)(iωρtrCptrdtr)

(4.3)

a similar result to the one found in Refs. 123,174. Setting dtr = 0, we recover our previous
result, i.e. Eq.(3.25). As expected from the thermal circuit shown in Figure 4.2, the heater’s
heat capacity acts as a low-pass filter and its effect is therefore more pronounced at high
frequency. When ω = 1/(⟨T ⟩2b/Pl + R01)(ρtrCptrdtr) = 1, the temperature oscillation is
halved. Since ⟨T ⟩ is as well frequency dependent, a neat expression for a frequency cut-off
is not straightforward to derive. This correction will obviously affect thermal conductivity
that have been extracted using the slope method. A similar procedure to that carried out in
Chapter 3.1.3 can be performed to describe the effects of the transducer’s heat capacity and
thermal boundary resistance on the validity of the slope method. This is discussed in detail
in Ref. 123 for the case of a semi-infinite substrate, and the error is related to the quantity
(ρtrCptr/ρsCps)(dtr/b). The effect of the heater’s heat capacity is to reduce the maximum |q|b
value for which the approximate slope method is applicable.

Overall, the correction from the heater’s heat capacity, Eq. (4.3), is relatively easy to use
once ⟨T ⟩ is derived. The specific heat of metals can easily be found in the literature and there-
fore its effect on the temperature rise can be readily evaluated. This is important in many
practical situations. For example, for a film-on-substrate system, one might want to confine
the thermal penetration depth within the film (λtpd ≪ df) to remove the contribution from
both the substrate and the thermal boundary resistance between the film and the substrate
in order to infer various thermal properties of the film alone (its heat capacity for instance).
In this case, the frequency must be relatively high, which results in a frequency-dependent
combined thermal response of both the film and the heater, leading to non-negligible errors
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if the thermal mass of the heater is not taken into account. This is exemplified in Figure
4.2(b). The three curves represent the frequency response of the temperature oscillation for
a film-on-substrate configuration. The film is chosen to be thick enough (1.2 µm) with low
diffusivity such that the thermal wave completely enters the film at high frequency (λtpd ≪ df,
this is seen when the slope is becoming steeper). The substrate has thermal properties of ger-
manium. The blue curve represents the ”TBR only” corrected temperature oscillation sensed
by the transducer, i.e. Eq. (4.3) with dtr = 0 whereas the yellow one takes into account the
heater’s heat capacity, using ρtr = 21.45 g.m−3, Cptr = 0.125 J.g−1.K−1 representing platinum
with thickness dtr = 100 nm. The correction is increasingly important at high frequency and
can lead to a wrong estimation of the measured film’s thermal conductivity. This is high-
lighted by the green curve, which gives a very similar response of the temperature oscillation
with respect to frequency, but for wrong values of both the film’s thermal conductivity and
thermal boundary resistance at the heater/film interface. In other words, one can wrongly
fit experimental data if the thermal mass of the heater is not accounted for, because several
combinations of film’s thermal conductivity/TBR/heater specific heat can produce the same
frequency response of the temperature oscillation (the green and yellow curves in Figure 4.2(b)
are almost similar while they represent different combinations of thermal properties). There-
fore, it is recommended to use the correction Eq. (4.3) whenever one wants to confine the
thermal penetration depth within a film of interest, as for example in Ref. 175, 176 or as we
will do in Chapter 6.2.2.2.

4.2.2 Heat conduction within the transducer

An important assumption that is almost always assumed to be true in 3ω experiments is that
heat conduction within the heater is negligible. This assumption makes the thermal model
considerably simpler, but caution must be taken to ensure that it is indeed the case. For a very
thick heater deposited onto a sample, a temperature gradient might start to develop within
the heater itself, making the assumption of constant heat flux at the top surface of the sample
erroneous. Besides, if the heater has a large thermal conductivity and is deposited on top of
film with very low thermal conductivity, a non-negligible portion of the heat flux would spread
laterally (i.e. in the in-plane direction), within the heater. In this case, the model developed
in the previous chapter – which does not take into account heat conduction within the heater
– would overestimate the heat flux that is provided to the system, thereby overestimating the
calculated temperature rise. This is exemplified in Figure 4.3, where we use FEM to calculate
the heat flux distribution within a film-on-substrate system, for two different values of the
heater’s thermal conductivity (see Appendix D).

Dames166 provided a simple criterion that must be respected in order for heat conduction
within the heater to be safely disregarded. The thermal resistance in the cross-plane direction
of the heater should be higher than the cross-plane thermal resistance across the film, such that
heat is flowing primarily through the film. This leads to the condition (dtrdf/b2)(ktr/kf) ≪ 1
that should be respected for determining the thermal conductivity kf of a film with thickness
df, using a transducer with thickness dtr, half-width b and thermal conductivity ktr.

Gurrum et al.147 and Wang et al.148 provided a semi-analytical solution for the temperature
oscillation sensed in a 3ω experiment, taking into account heat conduction within the heater,
in 2D. Their results show that the effect of heat conduction within the heater only adds a
frequency-independent offset to the measured temperature oscillation, for λtpd > b (which
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(b)
lateral heat spreading

negligible lateral heat spreading
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transducer
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Analytical model : the heat ux is
modelled as a boundary condition 

(d)

FEM

Temperature rise
     at the transducer/lm interface

(K)Heat flux
at the transducer/lm interface
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Figure 4.3: Calculated heat flux within the transducer and the film, for different thermal conductivities
of the transducer, ktr. For these simulations, we used dtr = 100 nm and df = 500 nm. (a) For a
heater with low thermal conductivity on top of a film with low thermal conductivity, heat spreading
within the heater is negligible. In this case the assumption of constant, perpendicular heat flux at
the heater/film boundary is well respected. (b) In the opposite case of a very conductive heater on
top of an insulating film, heat spreads laterally within the transducer. (c) Calculated cross-plane
component of the heat flux, ϕy, taken at the transducer/film interface, for both configurations, as a
function of lateral coordinate x. The heat flux that is assumed in the 2D model, which does not take
into account the finite thickness and thermal conductivity of the transducer, is shown for comparison
as a dashed line. The heat flux is always somewhat overestimated if the thermal conductivity of the
heater is neglected. (d) Temperature oscillation as a function of lateral coordinate x. Because of its
large thermal conductivity, the heater redistributes the heat within itself, leading to a smaller average
temperature at the film/heater interface.
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was shown as well by Jacquot et al.170, using FEM). It is therefore unimportant if the slope
method is used, but should be evaluated for any other data reduction procedure that rely on
the fitting of the temperature amplitude. Gurrum et al. suggested that for this same regime
(λtpd > b), and for a fixed b/λtpd,tr = 10−4, representing a heater with high thermal diffusivity,
or when the experiment is conducted at low frequency, the quantity (ktr/kf)(dtr/b) becomes
important. The lower this quantity is, the lower is the contribution from the transducer’s
thermal properties to the temperature oscillation amplitude.

Both Dames and Gurrum’s arguments suggest that the non-dimensional quantities (ktr/kf)
and (dtr/b) should be as small as possible in order for heat conduction within the heater to be
negligible.

In this section, we will conduct a 2D FEM analysis to derive the temperature and flux distri-
butions in several film-on-substrate systems, where the heater/thermometer of finite thickness
dtr and thermal conductivity ktr is included. We refer the reader to Appendix D for a more
detailed description of the FEM implementation of the 3ω method.

The following analysis is based on the arguments presented above. We will focus on the
relative error between the temperature oscillation, calculated using the 2D model which does
not take into account heat conduction within the heater (i.e. Eq. (3.24) with the correction
from the heater’s heat capacity, Eq. (4.3)), and the temperature oscillation that we obtain using
our FEM implementation of the 3ω method, which includes the heater’s thermal properties
and finite thickness. The temperature oscillation is obtained for several scenarios, where the
half-width b, thermal conductivity ktr, and thickness dtr of the heater are changed.

For example, the temperature oscillation obtained by FEM and that obtained using the
analytical expression, Eq. (3.24), is plotted in Figure 4.4 as a function of frequency, for different
widths of the heater – every other parameter held constant. In these simulations, the substrate
has thermal properties of germanium (ks = 52 W/(m.K)), the film is 100 nm thick with
kf = 1.7 W/(m.K) representing amorphous alumina, and the heater is 100 nm thick as well,
with ktr = 30 W/(m.K) or 120 W/(m.K). We clearly see that the error decreases for larger b,
and smaller ktr. The relatively low thermal conductivity of platinum (about 25-60 W/(m.K)
for thin films in the range of 30-100 nm), in comparison to other metals such as gold (kgold ≈
150−200 W/(m.K) for thin films), makes it a good candidate for 3ω measurements if a narrow
heater is desired.

The thickness of the heater should be the smallest possible, under the restriction that
it is still thick enough such that its temperature coefficient of resistance is appreciable, and
therefore can be used as a resistive thermometer. In Figure 4.5, the temperature oscillation is
computed for several thicknesses of the heater, with the same parameters as described above,
using b = 2.5 µm. The error is below 0.4 % on the whole frequency range for dtr = 100 nm,
which is the nominal thickness of the thermometers used in this work. The error increases
almost linearly with heater thickness. We notice in Figure 4.5(a) that at high frequency, the
2D model taking into account the heater’s heat capacity matches the FEM model, since the
heater’s heat capacity dominates the thermal signal, as explained in the previous section.

The thermal conductivity of the heater, as already introduced in Figure 4.3, will redis-
tribute the heat along the width of the thermometer and will therefore slightly change the
shape of the heat flux, leading to a slight decrease of the temperature oscillation - an effect
that is more important as the thermal conductivity of the heater increases, all other parameter
held constant. This can be seen in Figure 4.6 where we have plotted the temperature oscilla-
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Figure 4.4: Effect of the heater on the measured temperature rise, for several values of the heater half-
width, b, and two values of the heater thermal conductivity, ktr. (a) and (d) Temperature oscillation
calculated using FEM, taking into account the heater properties, and temperature oscillation calculated
using the 2D model, for several b, as a function of electrical frequency. (b) and (e) Relative error between
the FEM model and the analytical expression. (c) and (f) Relative error as a function of heater half-
width, at a particular electrical frequency, f = 2.5 kHz.
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Figure 4.5: Effect of the heater on the measured temperature rise, for several values of the heater thick-
ness, dtr. (a) Temperature oscillation calculated using FEM, taking into account the heater properties,
and temperature oscillation calculated using our 2D model, for several dtr, as a function of electrical
frequency. (b) Relative error between the FEM model and the analytical expression. (c) Relative error
as a function of heater thickness, at a particular electrical frequency, f = 2.5 kHz.
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Figure 4.6: Effect of the heater on the measured temperature rise, for several values of the heater
thermal conductivity, ktr. (a) Temperature oscillation calculated using FEM, taking into account
the heater properties, and temperature oscillation calculated using our 2D model, for several ktr, as
a function of electrical frequency. (b) Relative error between the FEM model and the analytical
expression. (c) Relative error as a function of heater thermal conductivity, at a particular electrical
frequency, f = 2.5 kHz.

tion calculated using the constant-heat-flux approximation, and using the FEM model using
the aforementioned parameters for the substrate and film, with b = 2.5 µm and dtr = 100 nm.
The relative error between the two models slightly increases for thermally conductive heaters,
but remains below 1 % at moderate frequency, even for the most conductive heaters.

We emphasize that these calculations are performed while all the parameters – except
one – are held constant. The exact relative error between the two models will depend on
the combination of all the thermal and geometric properties of the film, substrate and heater.
However, the general trend proposed by Dames166 and Gurrum147 is well captured using
some specific values of the heater properties in these calculations. Importantly, for all the
measurements carried out in this work, we have used a platinum heater with nominal thickness
dtr = 100 nm and thermal conductivity lying in between 40 and 60 W/(m.K), calculated using
the electrical resistivity of the film and Wiedemann-Franz law. It might be lower since the
Wiedemann-Franz law is reported not to hold for very thin films177,178, thus we took the value
of ktr = 30 W/m.K as a lower bound. The error on the temperature amplitude is calculated
to be small, below 0.5%, for most of the measurements carried out using a platinum heater of
thickness 100 nm and half-width b = 2.5µm with an insulating layer with thermal properties of
amorphous alumina. Therefore, if not explicitly stated, the measurements have been compared
to an analytical 2D expression rather than using a computationally intensive FEM model.

4.3 Finite length of the transducer : 3D end effects

The remaining assumption of the thermal model is related to the geometry of the heat source,
which is assumed to be infinitely long. It is obviously never the case in a real experiment,
but making this assumption leads to very little error on the calculated temperature rise if the
transducer is carefully designed, and the experiment conducted within an adequate frequency
range. To quantify the error introduced by the finite length of the transducer, we need to
introduce the z direction to our initial 2D problem, and then solve the heat equation in 3D.
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Figure 4.7: (a) System of interest sketched in 3D and (b) the model used to approximate it and calculate
the temperature oscillation across the inner leads of the thermometer. As in the 2D model, the heat flux
is approximated as a boundary condition, but this time the surface boundary condition is extended in
the z direction as well. The thermal conductivity of the system can be anisotropic in all three directions
of the cartesian coordinate system (x, y, z).

4.3.1 A 3D model for multilayer systems

The solution of the temperature distribution in 3D is obtained in a very similar way to that
that we have used to derive the 2D solution, and is thus deferred to Appendix A. To the
best of our knowledge, a 3D model for multilayer systems has not been derived previously,
and the quantitative analysis that we will provide regarding the applicability of the slope
method was performed only using FEM.170 As we use the method of Fourier Transforms to
solve the problem, the sample onto which the heater/thermometer is deposited is assumed to
be infinitely large in the x and z directions, but with a finite thickness ds in the y direction,
as shown in Figure 4.7(b). This implies that the finite length of the sample is not taken into
account in this study. As we have discussed earlier, this simplification is easily met in real
experiments, since samples are about 1 × 1 cm2, whereas the length of the transducer is at
most a few millimeters, and the thermal penetration depth as well. Therefore, we shall only
discuss end effects due to the finite length of the heat source, rather than the finite size (width
and length) of the sample.

The geometry of the problem in 3D is displayed in Figure 4.7. l represents the full length
of the heater whereas lh is the quantity that is usually taken to be the length of the heater in a
”four-pad” configuration, i.e. the length between the two voltage leads. The general solution
of the temperature oscillation for a transducer of finite length l, measured across its inner leads
separated by a distance lh, and assuming a uniform heat source over the width and length of
the transducer, as shown in Figure 4.7(b), is given as :
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isothermal b.c. : ⟨T ⟩3D = Pl

π2

∫ ∞

−∞

∫ ∞

−∞

B

D

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))
lhζ2 dλdζ (4.4a)

adiabatic b.c. : ⟨T ⟩3D = Pl

π2

∫ ∞

−∞

∫ ∞

−∞

A

C

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))
lhζ2 dλdζ (4.4b)

where A, B, C and D are computed from

(
A B

C D

)
=

n∏
j=1

(
1 R(j−1)j

0 1

) cosh(ξjdj) 1
kjy ξj

sinh(ξjdj)

kjy ξj sinh(ξjdj) cosh(ξjdj)

 (4.4c)

ξj =
√

kjxy λ2 + kjzy ζ2 + iω
(ρjCpj)

kjy

(4.4d)

where kjzy = kjz /kjy is the thermal anisotropy in the zy plane. Every other variable have been
introduced previously in this manuscript. Importantly, the finite length of the transducer l

can be taken to be different from that of the distance between the two inner leads lh. This
allows to study any difference that could arise when using a two-pad configuration rather than
a four-pad configuration.

In general, a ”four-wire sensing” geometry is used for determining the electrical resistance
of a material, eliminating the contribution from leads and contact resistances by using separate
pairs of current-carrying and voltage-sensing leads. In a 3ω experiment, this benefits as well
in the accurate determination of the transducer’s resistance, but most importantly, it plays a
role in the thermal model. As we have discussed in Chapter 3.1.1, the temperature along the
width of the thermometer is not constant, and we take the spatial average of this temperature
variation to compare it to the measurement. The argument is the same for the temperature
profile along the length of the transducer. It might not be homogeneous and therefore its
spatial average (over its length) can be different from the constant value that is otherwise
assumed in the 2D model.

Physically, we expect end effects to be less relevant in several scenarios. One scenario is that
the length is indeed very long in comparison to the width (l ≫ 2b) such that the proportion
of end effects that alter the temperature rise are not significant when compared to the total
average temperature. The second scenario is when the experiment is designed in such a way
that we are only measuring a portion of the heater that is far from the edges of the heating
element, thereby less sensitive to end effects. The second scenario represents the well-known
four-pad configuration, as displayed in Figure 4.7, where the temperature measurement is
performed between the inner (voltage) leads of the thermometer. We emphasize that it is not
simply because the experiment is designed in a four-pad geometry that it will be insensitive
to end effects of the heater, but rather than the inner leads are ”far enough” away from the
ends of the heating line. The third scenario, which is of particular interest when performing a
3ω experiment, is when the thermal penetration depth λtpd is smaller than the length of the
heater line. In this case, we expect the temperature oscillation to be unaffected by the finite
length of the line, as it can be assumed very large in comparison to the heated area.

To illustrate the effect of the finite length of the heater on the measured temperature rise,
we calculate the temperature oscillation amplitude for a substrate-only system, by evaluating
Eq. (4.4) using n = 1 layer, with no thermal boundary resistance at the heater/substrate
interface. This leads to
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Figure 4.8: Temperature oscillation calculated using a 3D (filled cicrles) or 2D (full line) model. In the
3D model, the temperature measurement is performed across the inner voltage leads separated by a
distance lh, which can be different from the full length of the heating line l, as shown in inset. (a) For
a substrate of finite thickness ds and (b) for a semi-infinite substrate.

⟨T ⟩3D = 4Pl

π2lhksy

∫ ∞

0

∫ ∞

0

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))
ζ2ξ tanh(ξds)

dλdζ (4.5a)

ξ =
√

ksxy λ2 + kszy ζ2 + iω
(ρsCps)

ksy

(4.5b)

where an adiabatic boundary condition is imposed at the bottom of the substrate, which has
finite thickness ds. In Figure 4.8(a) is plotted the calculated temperature oscillation of a heater
dissipating inside a germanium substrate, for different placements of the inner voltage leads.
We do not distinguish between the 2D and 3D models at high frequency. More specifically, the
effect of the finite length of the heater on the temperature rise is only relevant in the scenario
where λtpd ∼ l. In this case, the length of the heater cannot be assumed infinite, since the
thermal penetration depth has the same order of magnitude. However, we remember that the
finite thickness of the substrate is also modifying the linear relation ⟨T ⟩ = f(ln(ω)) at low
frequency (i.e. λtpd ∼ ds), and thus in Figure 4.8(a) we do not distinguish the effect of the
heater’s finite length on the measured temperature oscillation, from that of the substrate’s
finite thickness.

To circumvent this issue, we have plotted the temperature oscillation in the case of a semi-
infinite substrate in Figure 4.8(b). Therefore the low-frequency flattening that is observed
in this plot is only due to the effect of the finite length of the heater. One can avoid low-
frequency discrepancies by simply placing the two inner leads far enough away from the ends
of the heating line, or fitting the measurement at frequencies high enough such that the effect
of the heater’s finite length is simply discarded. It is clear from Figure 4.8 that a 2-pad
configuration is not recommended, as it would require to confine the thermal penetration
depth deeply inside the substrate in order to avoid 3D end effects. Experimentally, this can
be difficult to reach, since the electrical frequency needed to confine the thermal penetration
”deeply” enough inside the substrate becomes very high, especially at low temperature.

4.3.2 Additional criteria for using the slope method

In a similar way to what have been done by Borca-Tasciuc et al.123, who provided several
criteria for using the slope method with an error of less than 1%, as a function of the heater
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half-width to thermal penetration depth ratio, (b/(λtpd
√

ksxy )), and substrate’s thickness to
thermal penetration depth ratio, (ds/λtpd), (see also Chapter 3.1.2), we would like to provide
a similar criterion that would allow one to use the slope method with less than 1% error, as a
function of the heater’s length to thermal penetration depth ratio, (l/λtpd).

It was indeed suggested by Jacquot et al.170 that the error depends on the quantity l/λtpd,
and suggested a ratio of l/λtpd ≈ 4.7 when using a 4-pad configuration, or l/λtpd ≈ 15
for a 2-pad configuration. However, these suggested values were not specific to the error
made when using the slope method, but rather they represent the relative difference between
the temperature oscillation amplitude calculated using Cahill’s formula (Eq.(3.10)), and the
temperature oscillation calculated using their 3D FEM model. Besides, their 4-pad geometry
only treats the specific case where l/lh = 2.

In the following, we provide a criterion for using the slope method with 1% of accu-
racy, in the case of a semi-infinite substrate. This criterion indeed depends upon the ra-
tio (l/(λtpd

√
kszy )) as well as the ratio (lh/l), i.e. the placement of the voltage leads. The

normalized slope is defined as

normalized slope = ∂Re{⟨T ⟩3D}/∂ ln(ω)(
−Pl/2πksy

√
ksxy

) (4.6)

and should be equal to 1 when the slope of the 3D model matches that of the approximate
solution Eq.(3.10). The derivation of the normalized slope is deferred to Appendix A. For a
semi-infinite substrate and when the thermal penetration depth is much larger than the heater
half-width to anisotropy ratio (λtpd > 5b/

√
ksxy ), the normalized slope, as defined in Eq. (4.6),

is given by

normalized slope =
∫ ∞

0

∫ ∞

0

4iq2
√

ksxy

πlh
(
ksxy λ2 + kszy ζ2 + iq2)3/2

sin(ζ(l/2)) sin(ζ(lh/2))
ζ2 dλdζ (4.7)

where q =
√

ρsCpsω/ksy , and we remind that |1/q| = λtpd is the thermal penetration depth.
We plot the normalized slope as a function of q in Figure 4.9(a), for different values of

the full length of the heater l, and several l/lh ratios . From this plot, we observe that the
normalized slope of the 3D model is close to that of the approximate solution for large q, i.e.
small thermal penetration depth, which is the expected behavior. Besides, the higher the (l/lh)
ratio, the smaller the q value required for both 3D model and approximate solution to match
– a behavior expected as well since, in this case, the ends of the heating line at z = ±l/2
are farther away from the smaller probed region (z = ±lh/2) and therefore the experiment
becomes insensitive to ends effects.

In Figure 4.9(b), we plot the relative error made when taking the slope of the approximate
solution Eq. (3.10), instead of the slope of the 3D model, for determining the thermal conduc-
tivity of a substrate when using the slope method. The relative error is plotted as a function
of the heater length to thermal penetration depth ratio (to zy anisotropy ratio).

For a given l/lh ratio, but for different l values, corresponding to symbols having the
same color with different shapes in Figure 4.9, the error is similar for any l, when plotted
versus the quantity (l/(λtpd

√
kszy )). This strongly suggests that the error is only a function

of (l/(λtpd
√

kszy )), as suggested by Jacquot et al.170 (where we have added the anisotropy
factor). In order to use the conventional slope method within 1% of accuracy, i.e. determining
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Figure 4.9: (a) Normalized slope computed using Eq.(4.7), as a function of q, for three different values
of the length of the heater line (l = 1, 3 and 10 mm), for different values of the length between the
voltage leads lh. (b) Error made when using the approximate solution Eq. (3.10), instead of the 3D
model for computing the thermal conductivity of a substrate using the slope method, as a function of
heater length to thermal penetration depth ratio (multiplied by zy anisotropy). For a given l/lh ratio,
but for different lh values, corresponding to symbols having the same color with different shapes in (b),
the error overlap when plotted versus the quantity (l/(λtpd

√
kszy

)).
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the thermal conductivity of the substrate by taking the slope of ⟨T ⟩ = f(ln(ω)), this analysis
suggests to satisfy the following conditions :

l/
(
λtpd

√
kszy

)
> 73 if lh = l

l/
(
λtpd

√
kszy

)
> 14.2 if lh = l/2

l/
(
λtpd

√
kszy

)
> 11.6 if lh = l/4

If only the amplitude of the temperature oscillation is important, as opposed to the
slope versus logarithm of frequency, the following conditions should be respected for the
heater/thermometer to be assumed infinitely long in the z direction and thus use a simpler
2D model :

l/
(
λtpd

√
kszy

)
> 17.6 if lh = l

l/
(
λtpd

√
kszy

)
> 2.6 if lh = l/2

l/
(
λtpd

√
kszy

)
> 2.3 if lh = l/4

In addition to these criteria, the conditions λtpd < 5ds and λtpd > 5b/
√

ksxy should be re-
spected as well, following the discussion of Chapter 3.1.3.

Our results, more specifically the condition to satisfy in order to use the slope method
with less than 1% of accuracy, are more strict than those suggested by Jacquot et al.. This is
expected since, as mentioned before, we quantify the error made on the slope of ⟨T ⟩ = f(ln(ω))
rather than the amplitude of ⟨T ⟩. This is exemplified in Figure 4.10(a), where we use Eq.(4.5)
to calculate the temperature oscillation for two semi-infinite substrates, glass and silicon, using
the same parameters used by Jacquot et al. We numerically find that the relative error on
the temperature amplitude is less than 1% for l/λtpd = 2.6 for both substrates in a 4-pad
configuration using lh = l/2, as shown in Figure 4.10(b), which is somewhat less than their
suggested values of 4.7 (though the error approaches 1% at l/λtpd = 4.7 as can bee seen in
Figure 4.10). In a 2-pad configuration (l = lh), the relative error on the temperature amplitude
is less than 1% for l/λtpd = 17.6, in reasonable agreement with their suggested value of 15.
We note that the error on the amplitude of the temperature oscillation is exactly the same for
the two substrates, which have a large contrast in terms of thermal conductivities, for similar
l/(λtpd

√
kzy) and l/lh ratios. A similar conclusion is drawn for the error on the slope of the

temperature oscillation versus logarithm of frequency.
The present study and the resulting conditions to be satisfied in order to use the slope

method with less than 1% error are useful when designing the transducer’s dimensions prior
to start its fabrication. Importantly, these conditions provide guidelines to follow in the data
treatment if the slope method is used to determine the substrate’s thermal conductivity.

4.3.3 Example of application : highly conductive substrate

As a practical example, we provide experimental data from measurements carried out on a
sapphire substrate at 100 K. For crystalline materials, when temperature decreases, the thermal
conductivity k increases while the heat capacity Cp decreases, following Debye’s model of heat
capacity. Since the thermal penetration depth is defined as λtpd =

√
k/(ρCpω), it increases
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Figure 4.10: Temperature oscillation versus frequency in 2D and 3D, using several placements of the
voltage leads, for glass and silicon. Note the difference in the frequency range that is spanned for both
materials. Comparison of (b) the relative error between the calculated amplitude of the 3D model and
the 2D model, and (c) the relative error of the slope of ⟨T ⟩ versus ln(ω) for the 2D and 3D models.
This is the same comparison that was done by Jacquot et al.170 using silicon and glass. We emphasize
in this figure that the amplitude of the temperature oscillation can be very similar between the 2D and
3D models for low ratio of l/λtpd (less than 1% error for l/λtpd=2.3, 2.6 or 17.6 if lh/l=1/4, 1/2 or 1).
However, the slope versus ln(ω) of the 2D and 3D models are similar for higher l/λtpd ratios (less than
1% error for l/λtpd=11.6, 14.2 or 73 if lh/l=1/4, 1/2 or 1). For simplicity we have set kszy

= 1.
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Figure 4.11: Temperature oscillation versus frequency measured on a sapphire substrate at 100 K, with
2D (Eq.(3.23a) and Eq.(3.23b)) and 3D calculations (Eq. (4.5)) using different boundary conditions
(b.c) at the substrate/sample holder interface. At low frequency, the finite thickness of the substrate
alone cannot explain the discrepancy between the measurement and the 2D model. In this case, one
should use a 3D model to take into account the heater’s finite length to better fit experimental data at
low frequency.

substantially when temperature decreases because of the temperature dependence of k and Cp.
For example, at 100 K, sapphire has a thermal conductivity of around 350 W.m−1.K−1 and
ρCp = 4.73 × 105J.g−1.m−3, leading to λtpd ≈ 1.4 mm at f = 30 Hz, which can be of the
same order of magnitude as the length of the thermometer, or even higher. In Figure 4.11,
we plot the measured temperature rise as a function of electrical frequency, and compare it to
the 2D and 3D models, for different boundary conditions at the bottom of the substrate. At
low frequency, and given the relatively small heater length (l = 700 µm and lh = 500 µm),
the 3D model is more appropriate. Importantly, the finite thickness of the substrate (about
700 µm) cannot on its own explain the low-frequency behavior of the measured temperature
oscillation. The 2D model using adiabatic boundary condition at the bottom of the substrate
is very different from the measurement at low frequency and is thus disregarded in this case.
The 2D model using isothermal boundary condition is equivalent to a perfect heat sink beneath
the substrate, i.e. a sample holder with very high thermal conductivity. Even though this is
the case in this situation, where the sample holder made of copper has a very large thermal
conductivity at 100 K (>500 W.m−1.K−1), the 2D model does not fit well at low frequency,
suggesting that 3D end effects are indeed responsible for the low-frequency behavior of the
temperature oscillation.
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5.1 The 2ω method : principle and implementation

The previous chapters have been focused on the 3ω method and its range of applicability, ac-
cording to the simplicity of the model one wants to use to infer a material’s thermal properties.
The method has been shown to be powerful for easily determining the thermal conductivity
of thick substrates, while the thermal conductivity of thin films and the amplitudes of TBRs
can be obtained as well by performing several experiments along with careful data analysis.
In this section, we will present a measurement technique that is very close to the original 3ω

method, the only difference being that the heater and thermometer are distinct lines. It was
proposed by Ramu and Bowers1 and is referred to as the 2ω method. Its major advantages are
an enhanced sensitivity to thermal anisotropy, reduced sensitivity to thermal boundary resis-
tances, and under certain conditions enhanced sensitivity to thermally conductive films (when
compared to the 3ω method). Besides, the measurement setup does not require a differential
bridge, an therefore can be easier to implement.

Exactly as in the 3ω method, an ac current at electrical angular frequency ωe = 2πf passes
through a metallic line which serves as a heater, dissipating heat via Joule heating, leading to
a temperature oscillation at 2ωe. This temperature oscillation propagates through the sample,
and is measured using a nearby sensor, as shown in Figure 5.2. A DC current IDC passes
through the thermometer of electrical resistance :

Re,th = Re,0,th(1 + β∆Ttot)
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to sense the temperature oscillation at 2ωe, such that a voltage V2ωe proportional to the
temperature oscillation is read across the thermometer :

V = Re,0,th(1 + β(∆TDC + ∆T2ωe)) × IDC

= Re,0,thIDC + Re,0,thIDCβ∆TDC + Re,0,thIDCβ∆T2ωe

= VDC + V2ωe

and thus
∆T2ωe = V2ωe

Re,0,thIDCβ
with β = 1

Re,0,th

dRe,th
dT

(5.1)

The in-phase and out-of-phase components of the temperature oscillation are read using the
in-phase and out-of-phase components of the voltage, as read by the lock-in amplifier. The
voltage across the thermometer has a DC component and a component at 2ωe, the latter
being proportional to the temperature oscillation generated by the heater, whose amplitude
and phase are related to the material’s thermal properties. The DC component is several
orders of magnitude larger than the 2ωe component, typically VDC/V2ωe = (β∆T2ωe)−1, and
thus should be attenuated or removed for achieving better sensitivity. This is readily achieved
by using a high-pass filter, which is implemented in most commercial lock-in amplifiers as the
”input coupling mode”. When set to ”AC”, any voltage below a few tens of mHz is removed
by a series-capacitor, thereby removing the DC voltage. The general setup needed to perform
the measurement is shown in Figure 5.1. The ac current source can be a true current source,

Lock-in 1 Lo
ck

-i
n 

2 

lock-in 1 input coupling to AC
(removes DC voltage)

f (Hz)~mHz

high pass

lock-in 1 frequency locked 
to ac current source frequency

(o
pt

io
na

l)

heater
(dissipates at       )

thermometer
(reads temperature at        )

V

sample 
(top view)

Figure 5.1: General setup for measuring the temperature oscillation generated by the heater, using a
nearby temperature sensor.

the voltage output from lock-in 1 followed by a voltage-to-current (V-to-I) converter, or only
the voltage output of lock-in 1, under the condition that the resulting current is properly
read/calculated. For the DC current source, there is a DC voltage source on the back-panel of
most lock-in amplifiers, which can be used to provide a DC current (with a V-to-I converter
or large ballast resistor in series). Lock-in 2 in Figure 5.1 is optional as the resistance of the
heater can be measured separately before the experiment, instead of measuring it during the
experiment. Overall, it depends on the instruments that are available, see for instance Refs.
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1 and 179 for some examples of different setups. The temperature coefficient of resistance of
the thermometer is measured as usual by measuring the resistance of the metallic element in a
four-probe configuration as a function of temperature, under vacuum. The next step consists
in comparing the measured temperature oscillation to a thermal model, which we describe
now.

5.2 Heat transfer model for the 2ω method

In the scenario where the heater and thermometer are two distinct lines separated by a distance
dht, as illustrated in Figure 5.2, the temperature oscillation measured by the thermometer can
be derived in a straightforward manner, using the previously determined results obtained for
the 3ω geometry. Going back to Eq. (3.23) for the general case of a multilayer system heated
with a metallic line of width 2b1, the only difference with the foregoing derivation is that since
we are measuring the temperature oscillation at a distance dht from the heater, we perform the
temperature spatial averaging from −b2 + dht to b2 + dht, where b2 refers to the thermometer
half-width.1 The temperature oscillation measured across the thermometer is then

x

y

dht

d1

d2

dn

k1x , k1y , ρ1, Cp1

k2x , k2y , ρ2, Cp2

knx , kny , ρn, Cpn

R23

R12

R(n−1)n

b1 b2

R01

Figure 5.2: Schematic representation of a multilayer system with two metallic lines deposited on top
of the first layer, separated by a distance dht. One is used as a heater while the other one is used as a
temperature sensor. This configuration can be used to be more sensitive to in-plane heat conduction,
and less sensitive to thermal boundary resistances.

⟨T (x, 0)⟩2 lines = 1
2b2

∫ dht+b2

dht−b2

{ 1
2π

∫ ∞

−∞

2Pl sin(λb1)
(2b1)λ

reiλxdλ

}
dx

where r is a ratio which depends on the boundary condition at the bottom surface. It leads to

isothermal b.c : ⟨T ⟩2 lines = Pl

2b1b2π

∫ ∞

−∞

sin(λb1) sin(λb2)
λ2

B

D
eiλdhtdλ (5.2a)

adiabatic b.c : ⟨T ⟩2 lines = Pl

2b1b2π

∫ ∞

−∞

sin(λb1) sin(λb2)
λ2

A

C
eiλdhtdλ (5.2b)

1We could also take the Fourier transform of the heat flux from dht − b1 to dht + b1 and then perform the
spatial averaging from −b2 to b2
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where A, B, C and D are computed from(
A B

C D

)
=

n∏
j=1

(
1 R(j−1)j

0 1

) cosh(γjdj) 1
kjyγj

sinh(γjdj)
kjyγj sinh(γjdj) cosh(γjdj)

 (5.2c)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(5.2d)

In 3D, for a heater of finite length l, dissipating heat power per unit length Pl, the tem-
perature oscillation that is measured across the inner leads of the thermometer, which are
separated by a distance lh is given as :

isothermal b.c : ⟨T ⟩2 lines, 3D = Pl

π2

∫ ∞

−∞

∫ ∞

−∞

B

D

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))eiλdht

lhζ2 dλdζ

(5.3a)

adiabatic b.c : ⟨T ⟩2 lines, 3D = Pl

π2

∫ ∞

−∞

∫ ∞

−∞

A

C

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))eiλdht

lhζ2 dλdζ

(5.3b)

where A, B, C and D are computed from

(
A B

C D

)
=

n∏
j=1

(
1 R(j−1)j

0 1

) cosh(ξjdj) 1
kjy ξj

sinh(ξjdj)

kjy ξj sinh(ξjdj) cosh(ξjdj)

 (5.3c)

ξj =
√

kjxy λ2 + kjzy ζ2 + iω
(ρjCpj )

kjy

(5.3d)

5.2.1 Temperature oscillation for a semi-infinite substrate

For a semi-infinite substrate without films and TBRs, in the case where the heater and ther-
mometer have identical widths (b1 = b2 ≡ b), application of Eq. (5.2) with d1 = ds → ∞ leads
to

⟨T ⟩2 lines, semi-inf = Pl

2πky

∫ ∞

−∞

sin2(λb)
(λb)2

eiλdht√
kxyλ2 + iω

(ρCp)
ky

dλ

Taking advantage of the parity of the integrand combined with the symmetry of the integration
interval, it further reduces to

⟨T ⟩2 lines, semi-inf = Pl

πky

∫ ∞

0

sin2(λb)
(λb)2

cos(λdht)√
kxyλ2 + iω

(ρCp)
ky

dλ (5.4)

This is to be compared to Eq. (5.5), provided by Ramu and Bowers1, who derived the tem-
perature oscillation sensed by the thermometer for a similar geometry to that of Figure 5.2,
in the case of a semi-infinite substrate. They used the result of the temperature oscillation
sensed by an infinitely narrow heater line, convolved it across the width of the heater, and
then performed the spatial average over the thermometer width. This lead to150

⟨T ⟩Ramu = Pl

π
√

kxky(2b1)(2b2)

∫ x=b1

x=−b1

∫ τ=b2

τ=−b2
K0

(√
iωρCp

kx
(dht + τ − x)

)
dτdx (5.5)
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They astutely used cylindrical coordinates because of the geometry of the problem, therefore
their analytical solution is expressed using a Bessel function (K0 is the zeroth-order modified
Bessel function of the second kind), which is a general solution of the heat equation in cylindri-
cal coordinates for a narrow heater strip.137 Both solutions are based on the same assumptions
and therefore are equivalent, as shown in Figure (5.3), where we plot Ramu and Bower’s ex-
pression and the expression we have derived. Eq. (5.2) have several assets. First, it inherently

(5.2)
(5.5)(Ref. 1)

Figure 5.3: Calculated temperature oscillation as a function of electrical frequency for a geometry where
the heater and thermometer are two distinct metallic lines. Dashed lines are the solutions from Ref.
1 whereas solid lines are Eq. (5.2). The three lines refer to the absolute value (green), real (purple)
and imaginary (orange) parts of the temperature oscillation. Parameters used for the simulation are
Pl = 27 W/m, ρCp = 1.65 MJ/m3.K, kxy = 1, ky = 52 W/m.K, d = 20 µm, b1 = b2 = 2.5µm.

takes into account the thickness of the specimen studied, and therefore low frequency discrep-
ancies that are measured due to the finite thickness of the substrate can be quantified. Then,
and most importantly, its generalization to n layers provides a useful tool to study multilayer
systems, without the need of implementing a Finite Element Method scheme, which can be
computationally intensive.

Approximations of the solution for a semi-infinite substrate

The main drawback is the integral form of the solution, leading to little physical intuition
about which parameters are important. It is possible to express Eq. (5.4) in another form
using Parseval’s theorem (sometimes called the Parseval–Plancherel identity). This theorem
allows to compute the indefinite integral of a product of two functions as the integral of the
product of their Fourier transforms. It is therefore useful when the Fourier Transforms of the
functions to integrate are known, and in particular if their integral leads to a simple form (in
the best scenario, it would lead to a closed-form expression rather than an integral expression).

To simplify Eq. (5.4), we use Parseval’s theorem and we choose the two functions to be
transformed :

f(λ) = sin2(λb)
(λb)2 and g(λ) = cos(λdht)√

kxyλ2 + q2
y

(5.6)
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The Fourier transform f̂(k) of f(λ) is the triangle function :

f̂(k) =


π
b

(
1 − |k|

2b

)
, −2b < k < 2b

0 otherwise

and the Fourier transform ĝ(k) of g(λ) is

ĝ(k) = 1√
kxy

(K0(qx|dht − k|) + K0(qx|dht + k|)) (5.7)

Using Parserval’s theorem, the integral can therefore be expressed as∫ ∞

−∞

sin2(λb)
(λb)2

cos(λdht)√
kxyλ2 + q2

y

dλ

= 1
2π

∫ 2b

−2b

π

b

(
1 − |k|

2b

) 1√
kxy

(K0(qx|dht − k|) + K0(qx|dht + k|)) dk

where the new limits of integration are set according to the definition of f̂(k). In the 2ω

geometry, as displayed in Figure 5.2, the inequality dht > (b1 + b2) always holds (in this
example dht > 2b since b1 = b2). Indeed, the distance between the heater and thermometer
is always larger than their width, otherwise they would overlap. We can therefore remove the
absolute value in the argument of the Bessel functions since k < 2b and therefore d ± k > 0.
Furthermore, using the parity of the integrand, the temperature oscillation sensed by the
thermometer can eventually be written as

⟨T ⟩2 lines, semi-inf = Pl

2πb
√

kxky

∫ 2b

0

(
1 − k

2b

)
(K0(qx(dht − k)) + K0(qx(dht + k))) dk (5.8)

Note that Eq. (5.8) can be solved, leading to a combination of Struve and Bessel functions.
Here we will examine specific cases that are of interest during an experiment, leading to
solutions that are easy to manipulate, starting from Eq.(5.8). In the scenario where the
heater-to-thermometer distance is much larger than their width, i.e. dht ≫ 2b, since the
integration variable has the maximum value of k = 2b, this implies k ≪ dht, and we can set
K0(qx(dht ± k)) ≈ K0(qxdht). This leads to

⟨T ⟩dht≫2b = Pl

π
√

kxky
K0 (qxdht) (5.9)

We notice that this simply corresponds to the temperature oscillation
Pl

π
√

kxky
K0 (qxr)

measured at a distance r = dht, for an infinitely long and narrow heater, as derived by Carslaw
and Jaeger.137 In this configuration (as depicted in Figure 5.2), we notice that the characteristic
length is the thermal penetration depth ”in-plane”, λtpd,x = |1/qx|. We put emphasis on ”in-
plane” since the thermal penetration depth was expressed using the cross-plane component of
the thermal conductivity ky hitherto. For large qxdht, i.e. when the thermal penetration depth
in plane is much smaller than the heater-to-thermometer distance, the Bessel function can be
written as137

K0(qxdht)
qxdht≫1

≈
√

π

2qxdht
e−qxdht
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leading to

⟨T ⟩dht≫λtpd,x≫2b = Pl√
2π
√

kxky

√
1

qxdht
e−qxdht (5.10)

In the opposite case where the thermal penetration depth is much larger than the heater-to-
thermometer distance, i.e. qxdht ≪ 1 we have137 a result that resembles that of the original
3ω method :

⟨T ⟩λtpd,x≫dht≫2b = Pl

π
√

kxky

(
− ln

(1
2

qxdht

)
+ γ

)
(5.11)

where γ is the Euler-Mascheroni constant. It is indeed close to the expression derived for the 3ω

geometry, since the thermal penetration depth is much larger than the heater-to-thermometer
distance, and hence we can approximate the heater and thermometer as one single element
in this limit. However, it does not offer many advantages when compared to the original
3ω method using a single line for both heating and sensing, since taking the slope of the
temperature oscillation with respect to logarithm frequency also gives access to the quantity√

kxky.
The major advantage of using two separate lines relies on the very weak (or zero) sensi-

tivity of the temperature oscillation measured across the thermometer to interfacial thermal
resistances, as will be shown shortly. When combined with a classical 3ω method, it permits
the measurement of the in-plane component of the thermal conductivity of the material that
is studied. If the material is isotropic, then the method can be used to measure the volumetric
heat capacity of the substrate, since every other parameters in the thermal model are known.

The sensitivity of the method to the in-plane component of the thermal conductivity can
be enhanced for very large heater-to-thermometer distance, with the counterpart of a smaller
temperature oscillation to measure.150 To prove these statements, we will first perform a
sensitivity analysis on our model Eq. (5.9) of the measured temperature oscillation for a
semi-infinite substrate, and then calculate the contribution of the heater/substrate thermal
boundary resistance to the temperature oscillation that is measured by the thermometer.

5.3 Sensitivity analysis

A sensitivity analysis is a powerful tool to quantify how important one specific parameter of a
model is, and how does it change quantitatively the output of the model, when the parameter
is changed by a small amount. In particular, it is useful to use this tool when an intuitive
evaluation of the model is difficult. We will use this tool in the following for determining how
important each parameter of the model is, in a 2ω configuration. The sensitivity Sy

xi
of model

y to parameter xi is defined as :
Sy

xi
=
(

∂y

∂xi

)(
xi

y

)
For more informations about how this formula is derived, the reader is referred to Appendix
B. It reflects how a relative change of a parameter xi will affect the model y. For example, a
value of Sy

xi
= −1 means that a 5 % increase in xi will result in a 5 % decrease in y. In our

situation, the model that we want to study is the temperature oscillation that is measured by
the thermometer (⟨T ⟩) while the parameters can be the width of the metallic line, the specific
heat of the substrate, the thermal boundary resistance at one interface, or any other parameter
that enters into the thermal model.
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 f = 30 Hz

dht=2b

(a) (b)

Figure 5.4: Sensitivity of the real part of the temperature oscillation across the thermometer ⟨T ⟩
(calculated using Eq. (5.8)) to the thermometer half-width b, as a function of different parameters. (a)
As a function of kx and dht using b = 1 µm, ρCp = 1.65 MJ.m−3.K−1 and f = 30 Hz. (b) As a function
of |qx| and dht using b = 1 µm. In graph (b), dht is allowed to vary until 60 µm because higher values
(at high |qx|) physically describes infinitely small value of the temperature oscillation (under reasonable
heating power), leading to sensitivity with less physical meaning.

5.3.1 Sensitivity to the heater and thermometer widths

Firstly, we plot the sensitivity of the temperature oscillation to the heater and thermometer
width, S

⟨T ⟩
b , using the temperature oscillation derived for a semi-infinite substrate model,

Eq. (5.8), as a function of both the heater-to-thermometer distance dht and the in-plane
thermal conductivity kx, for a fixed b = 1 µm. This could give us some hints about whether
Eq. (5.8) is sensitive to b, and lead to directions to follow for eventually finding the conditions
to satisfy in order to use its simpler form, Eq. (5.9). Figure 5.4(a) reveals that the measured
temperature oscillation is weakly sensitive (S⟨T ⟩

b < 0.05 at 30 Hz and dht = 4b) to the heater
and thermometer widths (which in this case, are taken to be equal). This is expected from the
derived approximation Eq. (5.9), which does not depend upon b at all for dht ≫ 2b. We also
observe that it is inversely proportional to kx. It actually depends on a combination of dht and
qx values, as can be seen in Figure 5.4(b), where we fixed b = 1µm and spanned |qx| from 103

to 106, corresponding to thermal penetration depth decreasing from 1 mm to 2 µm, typical
values spanned during an experiment. At higher |qx|dht, which translates to large heater-to-
thermometer ratio compared to thermal penetration depth (dht ≫ λtpd,x), the temperature
oscillation measured across the thermometer becomes infinitely small (as can be seen at high
frequency in Figure 5.3) and physically impossible to measure. Consequently, even though the
sensitivity to b increases in this regime, it would not be possible experimentally to measure
such small temperature variations resulting from small changes in b, using reasonable heating
power per unit length. Overall, Figure 5.4 tells us that the precise knowledge of the heater
or thermometer width are not as important as it is for the traditional 3ω method. Figure 5.4
also tells us that combinations of dht and qx lead to almost no dependence of the temperature
oscillation to b, suggesting that Eq. (5.9) can be used instead of Eq. (5.8) for these dht and qx.

To further support this suggestion, we calculate the relative error, defined as

error (%) = 100 × |⟨T ⟩exact − ⟨T ⟩approx|
⟨T ⟩exact

(5.12)
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where ⟨T ⟩exact refers to Eq. (5.8) while ⟨T ⟩approx to Eq. (5.9). The error is plotted in Figure
5.5(a) as a function of dht and electrical frequency f , for fixed values kx = 100 W.m−1.K−1,
ρCp = 1.65 MJ.m−3.K−1 and b = 1 µm. In this scenario, the error is the largest for small dht
but also depends on the frequency. If dht > 4b, the error is less than 1% over the frequency
range spanned (10-5000 Hz). Therefore the condition dht ≫ 2b is easily achievable.

In Figure 5.5(b) is plotted the error as a function of qx and dht, using, b = 1 µm. This
highlights that the error is dependent on |qx|, not only kx, which we expected according to
our previous sensitivity calculation. Once again, large relative error for large |qx| are to be
put into perspective, since the temperature oscillations are very small and large relative errors
are still small enough to be beyond the resolution of our instrumentation. This is shown in
Figure 5.5(c), where the relative error is infinitely large, but corresponds to a temperature
difference of less than 1 mK (Figure 5.5(d)), in the conservative case of kx = 1 W.m−1.K−1

and Pl = 22.5 W.m−1. Moreover, for large kx, high value of |qx| translates to very large value of
the electrical frequency that are not reached during an experiment. For example, |qx| = 2.105

translates to f = 200 kHz for kx = 100 W.m−1.K−1.
Therefore, for low kx (≈1 W.m−1.K−1), in order to use Eq. (5.9), we suggest to have

dht > 10b. Eq. (5.8) is preferred otherwise. For larger kx, the criteria is less severe. For example
Eq. (5.9) matches with Eq. (5.8) with less than 1% error for dht = 4b and kx = 100 W.m−1.K−1.

5.3.2 Sensitivity to other parameters

In the following, we will express the sensitivity of the measured temperature oscillation to
several parameters of interest, other than the heater and thermometers half-widths. To do so,
we use the definition of the sensitivity coefficient, as we did above, and apply it to Eq. (5.9) :

S
⟨T ⟩
kx

= kx

⟨T ⟩
∂⟨T ⟩
∂kx

=
(

−1
2

+ 1
2

K1(qxdht)
K0(qxdht)

qxdht

)
(5.13)

S
⟨T ⟩
ky

= ky

⟨T ⟩
∂⟨T ⟩
∂ky

= −1
2

(5.14)

S
⟨T ⟩
(ρCp) = (ρCp)

⟨T ⟩
∂⟨T ⟩

∂(ρCp)
=
(

−1
2

K1(qxdht)
K0(qxdht)

qxdht

)
(5.15)

S
⟨T ⟩
dht

= dht
⟨T ⟩

∂⟨T ⟩
∂dht

=
(

−K1(qxdht)
K0(qxdht)

qxdht

)
(5.16)

The measured temperature oscillation’s sensitivity to ky does not depend upon any param-
eters, meaning that whatever the configuration (frequency, heater-to-thermometer distance,
substrate’s heat capacity,...), the relative change of the temperature oscillation with respect
to a change in ky is constant. Therefore there is no knob to play with in order to be more
sensitive to ky. This can be useful if our goal is precisely to be insensitive to ky and sensi-
tive to another parameter, such as kx. Since the sensitivity to ky is constant with respect
to every other parameter, we can try to find a combination of parameters (frequency range,
heater-to-thermometer distance) that would be very sensitive to kx while weakly sensitive to
ky.

In Figure 5.6 are plotted the sensitivity of the temperature oscillation to the parameters
defined in Eqs. (5.13)-(5.16), as a function of electrical frequency (Figure 5.6(a)-(b)), and
heater-to-thermometer distance (Figure 5.6(c)-(d)). Even though the heater-to-thermometer
distance is not a quantity that we want to measure, S

⟨T ⟩
dht

is displayed to underline that dht is

101



Chapter 5: Using separate lines for heating and sensing : the 2ω method

10 50 100 500 1000 5000
2.×10-6

5.×10-6

1.×10-5

2.×10-5

5.×10-5

0.0067

0.018

0.049

0.13

0.36

1.00

2.71

1000 5000 5×104 5×1052.×10-6

5.×10-6

1.×10-5

2.×10-5

5.×10-5

kx=100 (W/m.K)

error (%) error (%)(a) (b)

error (%) temperature difference (mK)
(c) (d)

kx=1 (W/m.K) kx=1 (W/m.K)

0.0067
0.018
0.049
0.13
0.36
1.00
2.71
7.38
20.08

Figure 5.5: Relative error of the real part of the measured temperature oscillation when Eq. (5.9) is
used instead of Eq. (5.8), plotted as a function of different parameters. (a) As a function of f and dht
using kx = 100 W.m−1.K−1, ρCp = 1.65 MJ.m−3.K−1, b = 1 µm. (b) As a function of |qx| and dht,
using, b = 1 µm. (c) As a function of f and dht using kx = 1 W.m−1.K−1, ρCp = 1.65 MJ.m−3.K−1,
b = 1 µm. For this value of kx, the relative error is extremely high (the white areas reflect error above
500%), but it is to be compared to the actual temperature difference between Eq. (5.9) and Eq. (5.8).
(d) The temperature difference (in mK) between Eq. (5.9) and Eq. (5.8) is plotted to show that a very
high relative error arises only for extremely small temperature difference, below 1 mK, which we do not
detect experimentally.

a parameter that needs to be carefully measured, since the temperature oscillation is strongly
dependent upon this parameter, especially for low kx at high frequency, as can be seen in
Figure 5.6(a)-(b). It is increasingly important as its value increases (Figure 5.6(c)-(d)). Thus,
the first conclusion is that the heater-to-thermometer distance must be accurately known for
the experiment to be sensitive to other parameters with minimal error.

Sensitivity to kx is relatively weak when compared to that of ky in a typical frequency
range spanned during an experiment, as can be seen in Figure 5.6(a)-(b) for dht = 10 µm.
The sensitivity to kx can be increased to be far greater than that to ky, when the heater-
to-thermometer distance is very large and the frequency relatively high, as shown in Figure
5.6(c)-(d). This of course comes with a detrimental lower temperature oscillation to measure,
as discussed in the foregoing sensitivity analysis, and mentioned by Ramu and Bowers.1

We notice in Figure 5.6(a)-(b) that the sensitivity to the in-plane component of the thermal
conductivity, kx, is negative and then becomes positive as frequency increases. When plotted
versus the quantity λtpd,x/dht, it appears that the sensitivity to kx is positive when λtpd,x > dht.
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In the case of a large thermal penetration depth in comparison to the heater-to-thermometer
distance, the experiment can be seen in a similar way as the 3ω method : the heater and
thermometer are close enough, in comparison to λtpd,x, such that it is seen as a single element,
hence any increase in the thermal conductivity of the material decreases the temperature
oscillation sensed by the thermometer, and therefore both S

⟨T ⟩
kx

and S
⟨T ⟩
ky

are negative. In
the opposite case of λtpd,x < dht, an increase in the cross-plane component of the thermal
conductivity, ky, still leads to a lower temperature oscillation sensed by the thermometer, but
an increase of kx would in turn increase the temperature sensed across the thermometer. This
is because lateral heat spreading would only benefit to a nearby thermometer that is also
placed in the lateral direction, as it is the case in this geometry. Obviously, since we are in
the limit λtpd,x < dht, the temperature oscillation sensed by the thermometer would be the
smallest, and thus difficult to measure.

One possible way to be more sensitive to kx than ky would be to first estimate the amplitude
of the temperature oscillation according to our knowledge of the substrate’s thermal properties
to simulate ⟨T ⟩ such that it is possible to measure it with sufficient accuracy, choose the largest
dht possible, and perform a measurement at a frequency high enough such that S

⟨T ⟩
kx

> S
⟨T ⟩
ky

.
The experiment can be performed again for several dht, and fitted using Eq.(5.10).

In practice, since the temperature oscillation is sensitive to both kx and ky, the best way
to determine kx is by using a combination of 2ω and 3ω experiments, as suggested in Ref.
1. A standard 3ω experiment would yield a measurement of

√
kxky using the slope method,

while the present 2ω method (using two distinct lines for heating and sensing) would be used
subsequently to fit a pair of (kx, ky) under the condition that the quantity

√
kxky must equal

what has been measured using the 3ω method. Since the frequency behavior of the tempera-
ture oscillation is different in both methods, kx can be uniquely determined using these two
separate experiments.1

It was proposed and evidenced experimentally by Borca-Tasciuc et al.123 that the 3ω

method alone could be used to probe anisotropic heat conduction using transducers of different
widths. The argument is that a large heater dissipates heat mostly in the cross-plane direction
if the material is very thin compared to the heater width, while in the opposite case of a narrow
heater, the heat flux also spreads laterally in the in-plane direction, leading to the measured
temperature oscillation being sensitive to both the in-plane and cross-plane components of the
thermal conductivity of the material (this can be seen in Figure 3.7). One would therefore
question if using two separate lines for heating and sensing is better to probe anisotropic
thermal properties than using two heater/thermometer of different width in a 3ω configuration.
The best asset in using distinct lines for heating and sensing relies on the insensitivity of the
measured temperature oscillation to the thermal boundary resistance (TBR) between the
thermometer and the substrate, or more generally, to the TBR between the heater and the
first layer of the multilayer system. Measurements of TBRs are subtle and their amplitude
depend on various parameters, such as the nature of the deposition of the materials building
the interface, the surface roughness, the contrast in the phonon density of states, speed of
sound, and mass density between both materials, to name a few105, as introduced in he first
chapter of this manuscript. Its contribution to the overall thermal resistance in a standard
3ω experiment can be significant and alter the accuracy of extracted thermal properties if its
amplitude is poorly known, especially for films with low thermal resistances in comparison to
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Figure 5.6: Sensitivity S
⟨T ⟩
i of the temperature oscillation to parameter i, for several parame-

ters combinations, for a semi-infinite substrate. As a function of electrical frequency using : (a)
kx = 100 W.m−1.K−1 and dht = 10 µm, (b) kx = 20 W.m−1.K−1 and dht = 10 µm. As a func-
tion of heater to thermometer distance dht using : (a) kx = 100 W.m−1.K−1 and f = 5000 Hz, (b)
kx = 20 W.m−1.K−1 and f = 5000 Hz.

TBRs. This is also true when using transducers of different width, since the TBR is always
in series with the heater/thermometer. We will show in the next part that the contribution
of the heater/first layer’s TBR to the temperature oscillation is null when using separate lines
for heating and sensing.

5.3.3 Insensitivity to thermal boundary resistance between the thermometer and
the first layer

The effect of TBR on the measured temperature oscillation across the thermometer in a 2ω

experiment was studied by Ramu and Bowers150 using FEM, where the interface was modelled
as a thin layer with thermal properties of silicon dioxide. They showed that the temperature
oscillation across the thermometer was almost completely insensitive to such an interface, for
substrates with thermal conductivities varying between 1 and 10 W.m−1.K−1. In this part, we
analytically show that this is always true when using separate lines for heating and sensing,
whatever the thermal properties of the substrate.

To do so, we use Eq. (5.2), for a substrate with thermal boundary resistance R01 at the
heater/substrate and thermometer/substrate interfaces, as depicted in Figure 5.2. For simplic-
ity, the heater and the thermometer have the same width, b1 = b2 ≡ b, the result being similar
if their width is different. From Eq. (5.2), the temperature measured across the thermometer
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is expressed as

⟨T ⟩2 lines = Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

A

C
eiλdhtdλ

Using A = cosh(γsds)+R01ksy γs sinh(γsds) and C = ksy γs sinh(γsds), where γs =
√

ksxy λ2 + i(ρCs)/ksy ,
it leads to :

⟨T ⟩2 lines, TBR = Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

(
cosh(γsds) + R01ksy γs sinh(γsds)

ksy γs sinh(γsds)

)
eiλdhtdλ

= Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

cosh(γsds)
ksy γs sinh(γsds)

eiλdhtdλ

+ Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

R01ksy γs sinh(γsds)
ksy γs sinh(γsds)

eiλdhtdλ

= Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

eiλdht

ksy γs tanh(γsds)
dλ + PlR01

2π

∫ ∞

−∞

sin2(λb)
(λb)2 eiλdhtdλ (5.17)

The first term of the right hand side in Eq. (5.17) represents the contribution of the substrate
(with thickness ds) to the temperature oscillation across the thermometer, which, in the limit
ds → ∞, corresponds to Eq.(5.4). Hence the contribution of the TBR to the temperature
oscillation is quantified by analysing the second term of the right hand side in Eq. (5.17). In
particular, we need to evaluate the quantity∫ ∞

−∞

sin2(λb)
(λb)2 eiλdhtdλ

which, using the symmetry of the integration interval and the parity of the integrand, is
equivalent to ∫ ∞

−∞

sin2(λb)
(λb)2 cos(λdht)dλ (5.18)

We compute this integral using, again, Parseval’s theorem, and we choose the two following
functions

f(λ) = sin2(λb)
(λb)2 and g(λ) = cos(λdht) (5.19)

that will be Fourier Transformed in order to evaluate the integral Eq. (5.18). The Fourier
transform f̂(k) of f(λ) is the triangle function180, defined as :

f̂(k) =


π
b

(
1 − |k|

2b

)
, −2b < k < 2b

0 otherwise

The Fourier Transform ĝ(k) of g(λ) is180

ĝ(k) = π (δ(k + dht) + δ(k − dht)) (5.20)

where δ(k) is the Dirac delta function. These two functions are plotted in Figure 5.7. From
this graph, the condition for their product to be non-zero is more evident, which is dht < 2b.
Using Parserval’s theorem, for dht < 2b, the integral can therefore be expressed as∫ ∞

−∞

sin2(λb)
(λb)2 cos(λdht)dλ

= 1
2π

∫ 2b

−2b

π2

b

(
1 − |k|

2b

)
(δ(k + dht) + δ(k − dht)) dk
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Figure 5.7: Representations of f̂(k) and ĝ(k) as a function of k. It appears more clearly that their
product is zero as long as dht > 2b.

leading to ∫ ∞

−∞

sin2(λb)
(λb)2 cos(λdht)dλ =


π
b

(
1 − |dht|

2b

)
dht < 2b

0 dht ≥ 2b

The condition dht > 2b is always implicitly satisfied when using two distinct lines, since it
means that the heater and thermometer do not overlap. If different widths for the heater (b1)
and thermometer (b2) are used, the condition for the integral to be zero is dht > (b1 + b2),
which is also always satisfied. Therefore the contribution of the heater/substrate’s TBR to the
measured temperature oscillation is null when using distinct lines for heating and sensing.

We note that when setting dht = 0, which describes the standard 3ω configuration, the con-
tribution of the TBR to the temperature oscillation is ∆T = Pl/(2b)×R01, which corresponds
to the result derived in Chapter 3.

The insensitivity of the temperature oscillation to the TBR can be expected because the
interface is, by definition, a plane with no thickness, and since the heater and thermometer
are on this same plane, the thermometer does not feel any cross-plane component, ϕy, of the
total heat flux, ϕ, coming from the heater that would lead to a temperature rise. Indeed,
the temperature drop across an interface is maximum when the heat flux is perpendicular to
the interface while it is null if it is parallel to it. The former case represents the standard
3ω geometry while the latter describes the aforementioned 2ω geometry. There is nonetheless
a temperature rise across the thermometer/substrate interface which is due to the DC heat
flux ϕy coming from the (usually small) thermometer Joule heating, arising from the current
flowing through the thermometer for sensing the temperature. However, since a DC current is
used to sense the temperature response at 2ω, the temperature drop due to this TBR is DC
as well and thus barely affects the reading at 2ω.

5.3.4 Sensitivity to the film/substrate’s thermal boundary resistance

For a film-on-substrate system, there will be an additional thermal boundary resistance be-
tween the film and substrate (Rf/s), which will undoubtedly affect the temperature oscillation
measured across the thermometer, since it is not placed on the same plane onto which the
heater is deposited. However, we can surmise that its effect will be, in most cases, weaker
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3d representation cut view

Figure 5.8: Schematic representation of a 2ω experiment, with emphasis on characteristic dimensions
that play a role on the sensitivity of the temperature oscillation to the film/substrate TBR, Rf/s.
Isotherms are displayed in orange color. Only the heat flux component that is normal to the interface,
ϕy, will produce a temperature jump at the interface, and therefore we expect S

⟨T ⟩
Rf/s

∝ ϕy.

than that in the 3ω geometry, since the cross-plane component ϕy of the total heat flux ϕ

crossing the interface in a 2ω geometry is less than that in a 3ω geometry, and the resulting
temperature rise consequently smaller as well. To study the sensitivity of the temperature
oscillation to the film/substrate’s TBR, we use the result of the temperature oscillation mea-
sured across the thermometer for a system of two layers, including TBRs, following Eq. (5.2).
The average temperature that is sensed by the thermometer is written as :

⟨T ⟩ = Pl

π

∫ ∞

0

sin2(λb)
(λb)2

cos(λdht)
kfy γf tanh(γfdf)

(
1 + tanh(γsds)γsksy (Rf/s + tanh(γfdf)

kfy γf
)
)

(
1 + tanh(γsds)γsksy (Rf/s + coth(γfdf)

kfy γf
)
)dλ (5.21a)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(5.21b)

We can first roughly estimate how does Rf/s affect the temperature rise measured across the
thermometer, as a function of characteristic dimensions of the system, such as the heater-
to-thermometer distance, dht, and the film thickness, df. In order to capture how these
characteristic dimensions affect the sensitivity of the temperature oscillation to Rf/s, we pro-
vide a very simple analysis in the limiting case of vanishing width for both the heater and
thermometer (b → 0), as shown in Figure 5.8. This simple analysis suggests that S

⟨T ⟩
Rf/s

∝

ϕ sin(arctan(df/dht)). As can be seen in Figure 5.9, where S
⟨T ⟩
Rf/s

is calculated using the defini-
tion of the sensitivity coefficient, applied to Eq. (5.21), it captures relatively well the proposed
behavior of the sensitivity as a function of df/dht for two kf/ks ratios. Solid lines represent fit-
ting of the calculated sensitivity using an equation of the form S

⟨T ⟩
Rf/s

= A sin(arctan(Bdf/dht)),
letting A and B as free parameters. The thermal conductivity contrast between the film and
the substrate, in addition to the relative amplitude of Rf/s as compared to the the film’s ther-
mal resistance, surely matter as well in the determination of the sensitivity of the temperature
oscillation. Yet, a simple but important conclusion that can be drawn from Figures 5.8 and 5.9,
is that the sensitivity to the film/substrate’s TBR can be tuned, and therefore be chosen to
be small, by playing with the heater-to-thermometer distance. Besides, since in the standard
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Figure 5.9: Calculated sensitivity of the temperature oscillation to Rf/s, for several ratios df/dht, using
df = 1 µm, Rf/s = 10−8m2.K.W−1. To calculate several df/dht ratios, df is set to 1 µm while dht is
allowed to vary.

3ω configuration, the experiment is sensitive to the sum of TBRs, i.e. Rtr/f+Rf/s, while the
2ω method can be arranged to be sensitive to Rf/s, Rtr/f could be inferred from a combination
of 2ω and 3ω measurements.

Frequency-dependent heat spreader method

We can go further in the sensitivity analysis, and study the effect of the amplitude of Rf/s, on
the sensitivity of the temperature oscillation to several parameters of interest. Up to this point,
it would be reasonable to suppose that an increase in TBRs always leads to the degradation
of the sensitivity of the experiment to the thermal conductivity of the film, since the TBR
would eventually dominate the total thermal resistance of the system. However, motivated by
the work of Asheghi et al.2 and later Jang et al.3, we know that a large thermal resistance
below the film can be helpful in the determination of its thermal conductivity, in the geometry
presented in Figure 5.8, if the substrate underneath efficiently dissipates heat (i.e. ks → ∞).

This is shown in Figure 5.10(a), where the calculated sensitivity of the temperature oscilla-
tion to the in-plane and out-of-plane components of the thermal conductivity of the film and
the substrate are plotted as a function of the film/substrate’s thermal boundary resistance
Rf/s. The sensitivity to kfx is enhanced when the substrate approaches a perfectly isothermal
behavior (ks → ∞), and if the film’s thermal resistance is low in comparison to Rf/s, such
that heat leaks preferably in the in-plane direction rather than in the cross-plane direction. In
this case, it leads to an enhanced sensitivity of the temperature oscillation measured using a
nearby temperature sensor. In Figure 5.10(b), a similar sensitivity plot is shown, but for the
3ω geometry, i.e. using dht = 0. In this case, the sensitivity of the temperature oscillation to
kfx is negative and decreases as the film/substrate’s TBR decreases, since the heat flux spreads
along the in-plane direction of the film, thereby reducing the temperature oscillation that is
read across the thermometer.

In practice, a large TBR between the film and substrate is difficult to control, and it is
replaced by an insulating thin film, whose thermal resistance Rfilm = df/kfy can be tuned by
choosing its thickness if its thermal conductivity is well known.2,3,166 One potential advantage
of using this frequency-dependent heat-spreader method, as opposed to the heat spreader
method in DC mode, is shown in Figure 5.11. The sensitivity of the temperature oscillation
to the in-plane component of the thermal conductivity kfx is enhanced at higher frequency,
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Figure 5.10: Calculated sensitivity of the measured temperature oscillation to the in-plane and out-of-
plane components of the thermal conductivity of the film and the substrate, as a function of Rf/s, in
a (a) 2ω or (b) 3ω geometry. As the thermal conductivity of the substrate increases, the sensitivity
to the in-plane component of the thermal conductivity of the film can dominate over the sensitivity to
other parameters. The heater-to-thermometer distance is set to 10 µm, and the frequency to 10 Hz.
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Figure 5.11: Calculated sensitivity of the measured temperature oscillation to the in-plane and out-of-
plane components of the thermal conductivity of the film and the substrate, as a function of Rf/s. The
sensitivity to the in-plane component of the thermal conductivity can be enhanced by increasing the
excitation frequency. The heater-to-thermometer distance is set to 10 µm.
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Figure 5.12: (a) Temperature oscillation versus position x (semi-log plot), for two frequencies and two
kfx

values. Changing the in-plane component of the thermal conductivity of the film by 20 % does not
change substantially the shape of the temperature decay, or the amplitude of the temperature oscillation
at one particular frequency. (b) When plotted versus frequency, the temperature oscillation (at one
specific position of the thermometer) gives substantially different results if the in-plane component of the
thermal conductivity of the film is changed by 20%. In these simulation, we used Rf/s = 10−6 m2.K/W,
df = 100 nm, b = 0.5 µm, Pl = 22.5 W/m, (ρCp)s = (ρCp)f = 1.65 MJ.m−3.K−1 and ksx = ksy =
150 W/(m.K).

since the thermal penetration depth is lower and thus the thermal weight of the substrate
becomes, relatively, less important. Therefore, in addition to measuring the temperature
oscillation as a function of thermometer position and fitting for the spatial temperature decay,
one can also perform the measurement at one position at several frequencies for a potentially
higher sensitivity to the in-plane component of the thermal conductivity of the film. This
is exemplified in Figure 5.12(a), where the temperature oscillation is plotted as a function of
lateral coordinate x at several frequencies and two kfx values. We observe that for a 20% change
in kfx (from 100 to 80 W/(m.K)), the shape of the temperature decay, i.e. the temperature
plotted versus x, or the amplitude of the temperature oscillation at one specific lateral position,
do not change drastically. However, when plotted versus frequency, the temperature oscillation
shows an appreciable difference for the two kfx values, in particular the slope of ∆T = f(ω),
as can be seen in Figure 5.12(b). Therefore, fitting the temperature as a function of position
and frequency could potentially improve the accuracy of the experiment in determining kfx .

This last example of application of the 2ω method closes this chapter. The 2ω method
possesses several advantages as compared to the original 3ω method, such as its insensitivity to
the heater/first layer’s thermal boundary resistance, and can be adapted such that the thermal
conductivity of thin conductive films can be measured with potentially greater accuracy, by
using a frequency-dependent heat spreader method, taking advantage of the original heat
spreader method combined with the 2ω measurement technique. The calculated temperature
oscillation for a multilayer system in the 2ω geometry can be useful in designing experiments,
without the need of using a FEM model – though it might be needed for complex asymmetric
3D geometries, and if the heater’s thermal conductivity becomes important.3,166
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The last chapter of this manuscript is devoted to the application of the 3ω method for mea-
suring the thermal conductivity of thin films, which differ in their structure (crystalline versus
amorphous), nanostructuration and thus thermal properties. We then use the 2ω method1 for
measuring the thermal anisotropy of a thick sapphire substrate. In order to perform the mea-
surements efficiently, a non negligible amount of time was dedicated to the automatisation of
the measurement setup using the LabView programming software, which is shown in Appendix
E. Similarly, data modelling was an important part of the thesis project. In the following, the
comparison between the measurements and thermal models have been performed using the
programming language Mathematica.
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6.1 Amorphous thin films

The motivation behind studying thermal properties of amorphous thin films is three-fold. First,
amorphous thin films often serve as coating layers in transistor technology or as low electron
leakage dielectrics for magnetic read/write heads, and their ability to spread heat is often
coterminous with the efficiency of the device. Second, as the periodic atomic arrangement
present in crystalline materials is lost in amorphous structures, the mechanisms responsible
for their ability to store and conduct heat are not easily described, and still pose fundamental
questions.181–183 Third, since in this work we use amorphous dielectric thin films for electrically
insulating conductive layers that we wish to measure (for preventing shortcuts between the
heater and the film of interest), we need to accurately measure their thermal properties.

6.1.1 Amorphous Al2O3 on germanium and sapphire

Atomic Layer Deposition-grown (ALD) metal oxide thin films such as Al2O3 have a wide range
of applications, from dielectric coating layer in transistor technology184 to assisting layer in
lithography processing.185,186 The diversity of applications comes from their low temperature
deposition, conformal coating, large breakdown electric field and sub-nanometer level thickness
accuracy.187,188 Incorporation of high-k dielectric films to replace silicon dioxide in metal-oxide-
semiconductor structures gave further relevance to ALD-oxide films in the last decade, while,
in addition, the scope of research has been widened for non-silicon based devices in order
to further improve devices performances. This consequently led to studies of a variety of
stacked systems, among which Ge/ALD-Al2O3 structures were investigated because of the
intrinsically high charge carrier mobility of germanium.169,189,190 Ge/Al2O3 interfaces, which
did not draw great attention in terms of thermal characterization, are highly relevant in the
context of Ge nanowires (NWs) growth using techniques such as Au-assisted vapor liquid
solid process191, or template-assisted NW growth using nanoporous alumina.192 Furthermore,
ALD-Al2O3 thin films are often employed as insulating layers to prevent electrical leakage in
electro-thermal measurements176,193, as it is the case in this work, where amorphous Al2O3 thin
films deposited using ALD have been used as electrically insulating layers for all the samples
to be measured that were electrically conductive. Consequently, accurate characterization of
ALD-Al2O3 thin films’ thermal conductivity and thermal interfacial resistances are compulsory
for the efficient design of novel multilayered structures and for data extraction in thermal
measurements involving ALD-Al2O3 thin films. The following results are based on our work
that have been published in Ref. 194.

6.1.1.1 Sample preparation

Amorphous Al2O3 thin films were deposited onto two different crystalline substrates (sapphire
and germanium) by ALD using a Cambridge Nanotech Savannah S100 ALD system. Prior to
deposition, each substrate was cleaned using acetone, rinsed using ethanol and then subjected
to a soft O2 plasma for a hundred seconds to remove any residual contamination that could
alter the interface quality. Then, each sample was subjected to the same ALD deposition
conditions : a four cycles process alternating between flow of precursor (Trimethylaluminum,
TMA) and H2O, using N2 as a purge gas. Growth temperature was stabilized to 150◦C and
the number of cycles were 145, 350, 500, 750 and 1000, leading to thicknesses of the Al2O3

thin films of 17.0, 41.0, 60.1, 89.7 and 119.4 nm, respectively. X-ray reflectivity (XRR) has
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been used to measure all the films thicknesses. Typical XRR curves are displayed in Figure 6.1.
Using Rutherford backscattering spectrometry (RBS) along with XRR, the films density was
measured to be 2.77 ± 0.14 g.cm−3, in good agreement with other ALD-Al2O3 films grown
at a similar temperature.187 The following steps have been followed for the fabrication of the
heater/thermometer, which are summarized in Figure 6.2 :

• 1. Surface cleaning using acetone and rinsing using ethanol and then distilled water.

• 2. UV-resist deposition on the sample’s surface, spin coating at a speed of 6000 rpm and
acceleration of 4000 rpm/s, followed by baking it at 115◦C for 1 min.

• 3. Laser lithography for patterning the design of the heater/thermometer on the resist.

• 4. Development using a 1:1 ratio of Microposit developer:distilled water for 1 min. The
resist is positive such that the exposed area is then removed by the developer.

• 5. Exposition to a soft O2 plasma for a hundred seconds to remove any excess of resist
that was not removed during the previous step.

• 6. Platinum sputtering on the sample using magnetron sputtering, with a nominal
thickness of 100 nm.

• 7. Resist removal via lift-off process, using acetone. The sample is then directly rinsed
using ethanol.

We note that no adhesion layer has been used prior to the metallic sputtering. The trans-
ducers are about 5 µm wide and span 500 µm between the two voltage leads ; dimensions
that have been measured using scanning electron microscopy for each sample. Representative
SEM images of several thermometers are shown in Figure 6.3. The uncertainty on the length
between the inner voltage leads is calculated using their minimum and maximum length, as
shown on the top panel of Figure 6.3. In practice, the width of the thermometers are some-
what smaller than their nominal value of 5 µm, therefore it is an important step to accurately
measure their width, especially if they are small, as is the case here. We note the presence of
silver paste on the four pads in Figure 6.3, which is used for connecting the transducer pads
to the sample holder pads, using aluminium wires.

6.1.1.2 Thermal conductivity measurements

Transducer calibration

The calibration of the transducers is performed in a four-probe configuration and under vacuum
(<10−5 mbar), as explained in Section 2.2. Each transducer’s resistance has been measured
separately, for each film thickness deposited on two different substrates. We could not reli-
ably measure the thinnest (17 nm) film deposited on germanium, since we have observed a
short-circuit between the transducer and the substrate. Therefore, for the alumina films de-
posited on the germanium substrate, only four transducers have been calibrated, as shown in
Figure 6.4. In general, for a given thickness of the transducer, the temperature coefficient of
resistance remains unchanged, as can be seen in inset of Figure 6.4 where the four transducers
share the same TCR. Experimentally, we have found that the simultaneous measurement of
the transducers’ resistance versus temperature always leads to better agreement between the
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df=17.0 nm

df=41.0 nm

df=60.1 nm

df=89.7 nm

df=119.4 nm

Figure 6.1: Measured beam intensity on the detector as a function of grazing incidence of the X-ray
beam, for five thicknesses of the ALD-Al2O3 thin films. The period of oscillation of the curves is related
to the thickness of the layer. We thankfully acknowledge Eric Mossang from Institut Néel for having
carried out the measurements.
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Figure 6.2: Illustration of the steps that we followed for fabricating the transducers on all the experi-
ments carried out in this work. More details are available in the main text.

calculated TCRs of the different transducers. For transducers deposited during the same run,
with the same thickness, a discrepancy between their measured TCR is probably caused by
the measurement itself.

3ω measurements

A representation of the film-on-substrate systems that are studied is provided in Figure 6.5.
Given the expected high thermal conductivity ratio between the thin film and its substrate
(ks ≫ kf) (germanium or sapphire) in addition to the high contrast between the heater half-
width (2.5 µm) and film thickness (≈17-120 nm), a one dimensional model is relevant to
describe the thermal resistance of the film on top of its substrate123, as detailed in Section
3.2.1. The measured thermal conductivity of the ALD-Al2O3 thin films are therefore cross-
plane (parallel to growth direction, y-axis in Figure 6.5). The temperature oscillation at 2ωe

sensed by the transducer is then written as123:

∆T2ωe = Pl

πksy

∫ ∞

0

1√
ksxy λ2 + iω

ρsCps
ksy

tanh
(√

ksxy λ2 + iω
ρsCps

ksy
ds

) sin2(bλ)
(bλ)2 dλ+Pl

2b
Rth (6.1)

We remind that Pl refers to the electrical power per unit length produced by Joule heating,
b is the heater half-width and ω is the angular modulation of the thermal frequency, i.e.
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Figure 6.3: SEM pictures of the platinum transducers designed using laser lithography. Top panels :
the full thermometer is shown, and the distance between the inner voltage leads is measured, we can
see some silver paste on the pads. Bottom panels : the width 2b of the thermometer is measured.
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Figure 6.4: Measured electrical resistance Re as a function of temperature for the four transducers
deposited on the germanium+Al2O3 systems, i.e. germanium substrates with either 41.0, 60.1, 89.7
or 119.4 nm thick Al2O3 thin films. Filled circles represent data whereas solid lines are second order
polynomial fits. In inset is displayed the temperature coefficient of resistance β = (1/Re,0)dRe/dT ,
calculated from the best fit to the data.
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2b~5µm

germanium or sapphire

substrate

ALD-Al2O3

~100 nm

=17-119 nm

>500 µm

Pt transducer

Figure 6.5: Schematic representation of the system measured in this work, either onto a sapphire or
germanium substrate. On the left is displayed a simplified thermal circuit in terms of thermal resistances
in series with the heat source. The two TBRs RPt/Al2O3 and RAl2O3/substrate are highlighted in blue
and red.

ω = 2 × ωe = 4 × πf where f is the electrical frequency. ksy , ρs, Cps , ksxy and ds stand
for the substrate’s cross-plane component of the thermal conductivity, density, heat capacity,
thermal anisotropy and thickness, respectively. Rth is the thermal contribution of the film
and interfaces156, as can be understood from Figure 6.5, and discussed in Section 3.2.1. It is
written as :

Rth = df
keff

= Rint + df
ki

(6.2)

where df refers to the film thickness, keff its effective thermal conductivity, Rint to the sum of
TBRs (heater/film + film/substrate) and ki stands for the intrinsic thermal conductivity of the
film, i.e. independent of its thickness. The latter assumption is expected to hold true given the
small mean free path of the heat carriers in amorphous solids (≈ 1 nm)168 in comparison to the
films thicknesses (17 − 119 nm), and have been experimentally verified195,196 for ALD-Al2O3

films with smaller thicknesses than that used in the present work. The simple form of Eq. (6.2)
also implicitly assumes a constant value of Rint among films of increasing thickness. XRR
measurements of the alumina films indicate that their top surface rms roughness vary little
as a function of film thickness (< 0.15 nm rms), consistent with an other report quantifying
the surface roughness of ALD-deposited films as a function of their thickness.197 Furthermore,
since our films are at least 17nm thick, their stoichiometry is expected to be similar among all
films169, and therefore we assume that Rint is a constant for all samples (for a given substrate).
Possible changes in the stoichiometric composition of the films that could potentially lead to
dissimilar surfaces for films of increasing thicknesses are reported to appear during the first
cycles (≈ 60) of the deposition process.169 Since the present films are least 17 nm thick (145
cycles), we assume that the films top surfaces do not exhibit large structural and stoichiometric
changes as a function of their thickness.

For extracting the thermal conductivity of the film, substrate and the sum of TBRs, we
primarily fit the amplitude1 of the measured ∆T2ω to the amplitude of Eq. (6.1) to obtain
ks and Rth. In Eq. (6.1), every parameter is known/measured (heater width, power per unit
length, film and sample thickness), except for the substrates’ heat capacities and thermal
anisotropy. The heat capacity of both substrates have been measured separately using a

1We have found that fitting the amplitude of the temperature oscillation rather than the real part leads to
better results since phase errors are minimized by reading the amplitude of the temperature oscillation (rather
than the in-phase component of the temperature oscillation).
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commercially available Physical Property Measurement System from Quantum Design, and
are plotted in Figure 6.6 for both substrates. Concerning the thermal anisotropy, for the
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Figure 6.6: Specific heat of the two substrates (sapphire and germanium) onto which the amorphous
alumina layers were grown. We emphasize that they have not been measured using the 3ω method, but
using a commercially available Physical Property Measurement System from Quantum Design. The
substrate’s specific heat is used in the modelling of the temperature oscillation to subsequently infer
the thermal conductivity of the film.

germanium substrate, we use ksxy = ksx/ksy = 1 for the fitting of Eq. (6.1), which we assume
is a safe assumption given its crystal structure. For the sapphire substrate, it might not be
the case and we use 1 < ksxy < 1.3, from a separate measurement (see Section 6.3). The error
introduced from the substrate’s thermal anisotropy is included in the Monte Carlo uncertainty
analysis that is described in detail in Appendix C.

Once Rth has been fitted for each thickness of the films, we plot Rth = f(df) as expressed
in Eq. (6.2). From the slope of Eq. (6.2), we extract the intrinsic thermal conductivity of the
Al2O3 film. Rint is inferred from the intercept extrapolated to zero thickness.

In practice, the step we systematically conduct after the transducer calibration is to plot
the measured third harmonic of the voltage V3ω as a function of the current’s third power.
Indeed, we expect a linear relationship of the form V3ω ∝ I3, because V3ω ∝ ReI∆T with
∆T ∝ I2 (see Eq.(2.8)). Such measurements are shown in Figure 6.7. The linearity between
the V3ω voltage and the current’s third power ensures the thermal signature of the measured
voltage, for several frequencies. In general, if this linear behavior is not observed, there might
be a problem somewhere in the electrical setup, or there might be a short-circuit between
the transducer and the substrate (i.e. the insulating layer is damaged or too thin). The
temperature oscillation is then measured as a function of electrical frequency for each sample.
In Figure 6.8, we show such a measurement performed at 300 K, for four different samples,
consisting of four thicknesses of the Al2O3 films, deposited onto different sapphire substrates
(the fifth sample (41 nm) is not shown for clarity). We notice that the curves are almost all
parallel. Remembering the discussion about the slope method (Eq.(3.11)), the slope of the
temperature oscillation, when plotted versus ln(ω), is directly proportional to the thermal
conductivity of the substrate. Therefore, for films deposited on substrates made of the same
material, sapphire in this case, all the curves should be parallel. The offset comes from the
different thermal resistance of each film – the thicker the film is, the greater is its thermal
resistance and therefore the higher is the temperature oscillation, for a given applied power Pl.
This is what is observed in Figure 6.8, where the sapphire+film system gives a higher ∆T for
the thickest (119.4 nm) film. From the ∆T = f(frequency) curves, as shown in Figure 6.8, we
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Figure 6.7: Measured 3ω voltage as a function of the third power of the electrical current for several
frequencies at 300 K. Dashed lines are linear fits to the data.
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Figure 6.8: Measured ∆T2ωe versus electrical frequency for four thicknesses of the Al2O3 films deposited
onto the sapphire substrate at 300 K (41.0 nm not shown for clarity). Filled circles are data and solid
lines are the best fit to Eq. (6.1). Peak power dissipated lies between 11 and 12 mW for the four
transducers.
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Figure 6.9: Measured thermal resistances of the films as a function of their thickness, for several
temperatures. Solid lines are linear fits to the data. Thermal boundary resistances are inferred from
the intercepts of the fits extrapolated to zero thickness whereas the intrinsic thermal conductivity of
the films is derived from their slope.

extract ks and Rth. We then plot Rth = f(df) to extract the intrinsic thermal conductivity of
the Al2O3 films, and the sum of thermal boundary resistances, RPt/Al2O3 + RAl2O3/substrate, as
shown in Figure 6.9 for the germanium and sapphire substrates at several temperatures.

6.1.1.3 Results and discussion

Intrinsic thermal conductivity of ALD-Al2O3 thin films

The intrinsic thermal conductivity of the ALD-Al2O3 thin films is plotted versus temperature
in Figure 6.10. The values extracted from either substrate are consistent with each other,
within the accuracy of the measurements, represented as tinted bands. The error on the
measured thermal conductivity of the films and thermal boundary resistances is calculated
using a Monte Carlo method, which is described in detail in Appendix C.

Tinted bands in Figure 6.10 and 6.11 represent 68% confidence intervals (CI) derived using
the Monte Carlo method, representing values falling within one standard deviation of the
mean for a normal distribution. No substrate dependence of the films’ thermal conductivity
is observed in the temperature range explored, within experimental accuracy – in agreement
with other reports.196,199 The thermal conductivity of the amorphous Al2O3 films ranges from
0.80 W.m−1.K−1 at 100 K to 1.73 W.m−1.K−1 at 300 K (see Table 6.1). The value at 300 K
is as well in very good agreement with other values reported for Al2O3 films grown in similar
conditions. Indeed, literature values lie between 1.3-2.4 W.m−1.K−1, depending on the growth
technique and conditions.121,195,198,199,201–204

Since the thermal conductivity of amorphous ALD-Al2O3 is known to be significantly
density dependent195, we compare the thermal conductivity of the present measurements to
reported values of ALD-Al2O3 films with known density. For measured densities2 of 2.72

2Atomic densities of 8.02 × 1028 and 9.29 × 1028 atoms.m−3 were converted in units of g.cm−3 assuming a
Al:O ratio of 2:3.
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Figure 6.10: Temperature dependence of the intrinsic thermal conductivity of ALD-Al2O3 thin films,
deposited onto two different substrates. Other data from ALD-Al2O3 films with measured density are
displayed in comparison, taken from Refs. 195,196,198,199, while kmin is calculated from Ref. 200. Data
reported using TDTR are shown as squares, whereas other shapes are from 3ω experiments.

g.cm−3 and 3.15 g.cm−3, DeCoster et al. reported, at room temperature, thermal conductivi-
ties of 1.35 ± 0.21 W.m−1.K−1 and 1.87 ± 0.26 W.m−1.K−1, respectively, using time-domain
thermoreflectance.196 Lee et al. reported 1.99 ± 0.16 W.m−1.K−1 for films with density of
3.3±0.1 g.cm−3 using a similar 3ω method.199 Scott et al.198 reported 1.50 ± 0.09 W.m−1.K−1

for density of 3.33 ± 0.06 g.cm−3, while Gorham et al. reported values from 1.23 to 1.67
W.m−1.K−1 for densities ranging from 2.67 to 3.12 g.cm−3 (Ref. 195). Our reported averaged
value of 1.73 ± 0.08 W.m−1.K−1 for a measured density of 2.77 ± 0.14 g.cm−3 corroborates
reasonably well in terms of density to these reported values. This is in agreement with pre-
viously established density dependent thermal conductivity models, such as the lower limit
for thermal conductivity200 and the related differential effective medium approximation195,205,
which serve as reference models to describe the thermal conductivity of amorphous films as a
function of their atomic density.

We may notice that, for films with similar densities, our reported value for the thermal
conductivity is somewhat higher than other reports, as can be seen from Figure 6.10. For
measurements on very thin films (<10 nm), ALD-Al2O3 films could be inhomogeneous across
the film thickness, due to unstable Al:O ratio during the first cycles of the deposition, before
reaching a ratio of 2:3 for large cycle numbers.169 In this scenario, a measurement performed on
very thin films would be more sensitive to the inhomogeneity of the films, and could therefore
lead to lower thermal conductivity. This could explain the difference between our data and
that reported by Scott et al.198, where the films were between 1 to 10 nm thick with lower
thermal conductivity than our films, while having higher density. However, this would not
explain our relative difference with data from Gorham et al.195, since they used films with
thicknesses comparable to ours. Thus, additional quantitative structural characterizations of
the ALD films might prove useful in explaining the relative difference observed in terms of
thermal conductivity.
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substrate T kAl2O3 TBR ks,avg
(K) (W.m−1.K−1) (10−8 m2.K.W−1) (W.m−1.K−1)

germanium
100 0.82 [0.77,0.84] 6.1 [5.6,6.4] 148
200 1.34 [1.29,1.40] 3.8 [3.5,4.0] 77
300 1.71 [1.66,1.83] 3.7 [3.6,4.0] 52

sapphire
100 0.77 [0.76,0.80] 4.1 [4.0,4.3] 335
200 1.39 [1.34,1.41] 2.5 [2.3,2.5] 65
300 1.75 [1.68,1.81] 2.1 [2.0,2.3] 34

Table 6.1: Summary of the measured quantities in this work. kAl2O3 refers to the intrinsic thermal
conductivity of the film, inferred using Eq. (6.2). The thermal conductivity of the substrate ks,avg
is calculated from the mean of the four (five for sapphire) samples measured to deduce the thermal
conductivity of the film. TBR refers to the sum of thermal boundary resistances in series in the system
(Pt/Al2O3 + Al2O3/substrate). Values in brackets are 68% CI.

Thermal boundary resistances

We see in Figure 6.9 the significance of TBRs, weighting up to two third of the measured total
thermal resistance, in the case of the thinnest film (17.0 nm) grown on sapphire, at 300 K.
Even for the thickest film (119.4 nm), the contribution from TBRs weights up to 35% of the
total thermal resistance, for films deposited onto germanium. These considerations support
the need to perform multiple measurements on several film thicknesses for accurate thermal
characterization when using the 3ω method146, even for films having relatively low thermal
conductivity. This statement is by all means related to the rather large TBRs measured in
this work, when compared to the film thermal resistance.

Figure 6.11 displays the total TBR measured from Al2O3 films deposited onto germanium
and sapphire substrates. The behavior with temperature is similar for both substrates, and
in qualitative agreement with theoretical models predicting an increased TBR between two
dissimilar materials as temperature decreases.104 We clearly observe that the sum of TBRs
is larger when the Al2O3 film is deposited onto germanium, compared to the same film de-
posited onto sapphire. Notwithstanding accurate prediction of TBR is an arduous task in this
temperature range105, we can still discuss important key experimental points that could war-
rant the relatively large TBR measured in this work. Indeed, at 300 K we measure 2.1×10−8

and 3.7×10−8 m2.K.W−1 for TBR extracted from Al2O3 films deposited onto sapphire and
germanium, respectively. These values are comparable with others extracted from 3ω exper-
iments83,165,199,206,207, but generally lie in the higher end of most TBR reported values.107

Using a similar 3ω method, Lee et al.199, reported that the sum of TBRs is larger from
ALD-Al2O3 deposited onto silicon (≈ 2 × 10−8m2.K.W−1) than that deposited onto sapphire
(≈ 2×10−9m2.K.W−1), though the amplitude is smaller in their study and they used gold as a
transducer using a Ti adhesion layer. The large discrepancy – almost a factor of ten – between
the reported value for the Au-Ti/ALD-Al2O3/sapphire interface compared to our Pt/ALD-
Al2O3/sapphire interface suggests that Pt/ALD-Al2O3 be the prevalent TBR in this case, as
will be discussed later. Besides, in sandwiched structures such as ours containing ALD-Al2O3

films, other authors have reported TBRs that are at least two times smaller than our results,
using TDTR. Indeed, for Al/Al2O3/Si, Monachon et al. measured 5.2±0.5×10−9 m2.K.W−1,
while Scott et al. reported 6.92 ± 0.50 × 10−9 m2.K.W−1, where the Al layer serving as their
opto-thermal transducer was DC sputtered or electron-beam evaporated, respectively.198,203
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Figure 6.11: Temperature dependence of the sum of thermal boundary resistances measured in two
different systems, colored bands represent 68% confidence intervals. TBRs from sapphire have lower
error bars due to the fact that five thicknesses were used to extract them, as opposed to the four
samples used for the germanium substrate. Other TBRs with related materials are taken from Refs.
198,199,203,207,211. Data reported using TDTR are shown as squares, whereas other shapes are from
3ω experiments.

The variation between these results and our measurements leads us to discuss two particular
points. First, the relative difference between TBRs measured from the sapphire and germanium
substrates, and second, the overall large sum of TBRs measured for both substrates. For the
first aspect, one possible reason is the presence of a native oxide layer on the substrate, that
has not been removed prior to the films deposition. On the germanium substrate, this native
oxide could substantially impede thermal transfer across the interface, hence increasing the
measured TBR.208 It has been shown in Refs. 169,209 that, even after removing the native
oxide from the germanium substrate prior to ALD, a germanium oxide would eventually reform
at the interface during the deposition process, with thickness ≈ 0.2 − 0.5 nm. This would
partly explain the difference observed between both substrates, in addition to the greater
contrast that exists in terms of mass density and speed of sound between the germanium/ALD-
Al2O3 interface compared to the sapphire/ALD-Al2O3 interface. This would lead to a higher
TBR for the germanium/ALD-Al2O3 interface, as predicted by the Diffuse Mismatch Model
(DMM).100,104,210

Since our measurement provide the sum of TBRs of two interfaces, we turn to a qualitative
discussion, rather than a quantitative one, to explain the contrast observed in terms of TBRs
for the same films deposited on different substrates. To have an estimation of how the contrast
in thermal properties between two materials might lead to significant change on their thermal
boundary resistance, we use a gray approximation of the DMM32 and estimate the thermal
boundary resistance as

TBR ≈
(

Civi

4
Cjvj

Civi + Cjvj

)−1

(6.3)

where Ci and vi stand for the volumetric heat capacity (in J.m−3.K−1) and phonon group
velocity (in m.s−1) of material i, respectively – an approach that have been used in Ref.
198. For the ALD-Al2O3 films and sapphire substrate, we assume v = 8800 m.s−1 for their
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longitudinal speed of sound212, while for the germanium substrate we use v = 6240 m.s−1(Ref.
213). For the volumetric heat capacity, we use our measured value of the heat capacity for
the sapphire and germanium substrates, combined with the mass density taken from the
literature.214 For the ALD-Al2O3 films, we use the measured heat capacity of the sapphire
substrate, combined with the films density that has been measured using RBS. These lead to
volumetric heat capacity of Csapphire = 3.05 MJ.m−3.K−1, Cgermanium = 1.72 MJ.m−3.K−1 and
CALD-Al2O3 = 2.15 MJ.m−3.K−1.

Using the aforementioned thermal and structural properties, we arrive at

RALD-Al2O3/germanium = 1.6 × RALD-Al2O3/sapphire (6.4)

which is in reasonable agreement with what is observed experimentally in this work. Using
GeO2 instead of Ge, with volumetric heat capacity and longitudinal speed of sound taken from
Ref. 168, we obtain RALD-Al2O3/GeO2≈ 3× RALD-Al2O3/sapphire. We emphasize that this calcu-
lation is only qualitative, but agrees relatively well with the trend that is observed here. Thus,
the higher TBRs for the germanium substrate can be understood using the aforementioned
arguments.

For the second aspect – the relatively high TBR measured for both substrates – we remind
that the platinum transducer was DC-sputtered, without any adhesion layer. A recent work
from Suk et al.215 suggests that DC magnetron sputtered films have more imperfections at the
film/substrate interface – when compared to other metal deposition techniques such as e-gun
evaporation – due to its energetic deposition process, hence increasing the TBR. Most impor-
tantly, the use of a metallic adhesion layer is reported to enhance thermal interfacial conduc-
tance. Indeed, Li et al.207 have reported a 70% reduction of the TBR between amorphous ALD-
Al2O3 and gold after introducing a nickel layer, thereby reducing it from 4.8 × 10−8m2.K.W−1

to 1.4 × 10−8m2.K.W−1, while Jeong et al. succeeded in reducing metal/sapphire TBR by a
factor from 2 to 4 by inserting a thin metallic adhesion layer216, a result reproduced by Blank
et al..217 These arguments go in favor of a higher TBR for DC-sputtered films, in particular
when no adhesion layer is used.

The 3ω measurements, performed in this frequency range, cannot discriminate the contri-
bution from the Pt/ALD-Al2O3 interface to that of the ALD-Al2O3/substrate interface, as
we have mentioned before. We can nonetheless estimate an upper/lower bound for each con-
tribution. Hopkins et al. reported TBR of 8.6 × 10−9m2.K.W−1 for a Pt/sapphire interface,
using TDTR.211 We can reasonably take this value to serve as a lower bound for our Pt/ALD-
Al2O3 interface, since the contrast in density is higher in the case of Pt/ALD-Al2O3 than for
the Pt/sapphire interface – all other parameters assumed to remain constant. Therefore the
thermal contribution of the Pt/ALD-Al2O3 TBR would account for at least 40 % of the total
Pt/ALD-Al2O3/sapphire TBR, while for the germanium substrate, its contribution would be
23 %.

To have a lower bound of the contribution of the ALD-Al2O3/germanium TBR only,
we take the limit where the Pt/ALD-Al2O3 TBR accounts for 100% of the total Pt/ALD-
Al2O3/sapphire TBR, i.e. the contribution from the ALD-Al2O3/sapphire TBR is considered
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to be negligible. In this case, RPt/ALD-Al2O3 = 2.1 × 10−8m2.K/W, and thus

RALD-Al2O3/germanium, lower bound

=
(
RPt/ALD-Al2O3 + RALD-Al2O3/germanium

)
− RPt/ALD-Al2O3

= 3.7 × 10−8 − 2.1 × 10−8

= 1.6 × 10−8m2.K/W

at 300 K.
While further experiments using other metals as transducers or using a metallic adhesion

layer would help to give further insight into the contribution of each interface to the total
resistance measured, altogether, the arguments presented above qualitatively justify our find-
ings in terms of relative amplitude of the measured TBRs, for both substrates. Importantly,
the Pt/ALD-Al2O3/germanium TBR has been measured and can be used in subsequent 3ω

experiments where a germanium film is capped with an ALD-Al2O3 layer with a platinum
heater.

6.1.2 SiN on silicon

The second example of thermal conductivity measurement of amorphous thin films deposited
on a thick substrate that we have performed in this work is that of silicon nitride thin films
grown on silicon. The samples have been provided by the company ST Microelectronics and
CEA-LETI, with whom we have collaborated (Pierre Noe and Marie-Claire Cyrille), and thus
the detailed growth of the films will not be described. Amorphous Si3N4 thin films are widely
used as passivation layers, masking layers to prevent oxidation or diffusion in underlying
materials in patterned areas, and as final protection layers to finished devices because of their
hardness and radiation resistance.218 As for alumina films, their thermal properties is crucial
as they are used in multilayer systems whose sizes become commensurate to the phonon mean
free path, and their thermal weight becomes close to that of thermal boundary resistances.

The thermal conductivity measurements are very much the same as those described in
the previous section. We first calibrate the transducers, perform a V3ω = f(I3) swipe, and
then perform ∆T2ωe = f(frequency) measurements, and fit it to the same thermal model (i.e.
Eq. (6.1)). We use the same thermal model because the films are 30 and 120 nm thick, while
the thermometer is chosen to be 20 µm large. Besides, we expect a large contrast between the
thermal conductivity of SiN films (between 1-5 W/(m.K)219) and the silicon substrate (about
140 W/(m.K), depending on doping level). These two arguments allow us to treat the thin film
as a thermal resistance in series with the heater with negligible error (see Figure 3.7), and thus
we fit the measured temperature oscillation as a function of frequency using Eq. (6.1). The
silicon substrate’s specific heat and density have been taken from literature.214 Four different
kind of SiN films with different Si/N ratios have been measured, each with two thicknesses of
30 and 120 nm. Therefore, eight measurements have been performed, from which the intrinsic
thermal conductivity of the films and the sum of thermal boundary resistances are extracted.

In Figure 6.12, we have plotted for each kind of SiN film, referred to as batch numbers,
the measured temperature oscillation normalized to the power provided by the transducer,
as a function of electrical frequency. The effective thermal conductivity of the films is the
thermal conductivity obtained if the thermal contribution of thermal boundary resistances is
not removed from the total thermal contribution of the system film + TBRs, as expressed
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Figure 6.12: Measured temperature oscillations normalized to heating power, as a function of electrical
frequency for four different samples of SiN films deposited onto silicon substrates. For each kind of SiN
film, we use two thicknesses two remove the contribution of TBRs.

in Eq. (6.2). Therefore, for the thinnest films, their effective thermal conductivity is lower
because the contribution of TBRs becomes larger. It is important to understand that the films
themselves are not less conductive because of their reduced size, as it is sometimes the case as
we have discussed in Chapter 1. It is only by neglecting the contribution from TBRs that they
appear to be less conductive. Performing measurements on films of increasing thicknesses,
as we have done for the alumina films and the present SiN films, removes this ambiguity.
Plotting the effective thermal conductivity as a function of film thickness is an approach that
is sometimes used in the literature156, instead of plotting the thermal resistance of the film
as a function of film thickness. We prefer the latter approach because, in our opinion, it
is less ambiguous that thermal boundary resistances are responsible for the observed reduced
effective thermal conductivity if the thermal resistance is plotted as a function of film thickness.
The thermal resistance of each film is plotted versus film thickness in Figure 6.13, for the four
samples. The thermal conductivity of the Si3N4 films vary from 0.9 to 1.5 W/m.K, while the
silicon substrate’s thermal conductivity is measured to be 138±5 W/m.K for all samples at 300
K. The TBRs vary from 1.8 to 2.2 ×10−8 m2.K/W for all samples at 300 K, which is in good
agreement with literature.156 However, it is evident that since we only have measured two
thicknesses of each sample, and the films are very thin such that their thermal resistances are
comparable to the extracted TBR, more samples should be measured for a better estimation
of the TBR.
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Figure 6.13: Measured thermal resistances for the four different SiN samples grown on silicon, with two
thicknesses of the film for each sample. Data are represented as filled circles, whereas solid lines are
linear fits. Each TBR is calculated to be around ∼ 2 × 10−8 m2.K/W.

6.2 Nanostructured germanium-based crystalline thin films

6.2.1 Effect of nano-inclusions : GeMn

As we have introduced in the first chapter, it is difficult to think of a device whose efficiency
and durability are not limited by its thermal performances. Some devices will work well if heat
is efficiently dissipated to the environment, whereas others, such as thermoelectric devices, will
work more efficiently if their building blocks are poor heat conductors. Remembering that the
efficiency of thermoelectric devices is given by their figure of merit ZT = σS2/(kel + klat),
where σ is the electrical conductivity, S is the Seebeck coefficient while kel + klat refers to the
sum of the electronic and lattice contribution to the thermal conductivity, materials referred
to as ”phonon-glass electron-crystal” (PGEC)74,220,221 are expected to be the most promising
candidates for building efficient thermoelectric devices. PGECs refer to materials which are
both good electrical conductors and poor heat conductors. It is in this context that crys-
talline semi-conductors with embedded crystalline nano-inclusions are model materials, since
nano-inclusions, depending on their sizes and distribution, are expected to increase phonon
scattering and thus reduce the lattice thermal conductivity, whereas the crystalline nature of
the material would in principle let the electrical properties unaffected.

In this work, we have studied the thermal properties of an innovative nano-inclusions
embedded semi-conductor, which consists of a crystalline germanium matrix with embedded
crystalline spherical Ge3Mn5 nano-inclusions. We will present the fabrication process of this
state-of-the art material, and then turn to the thermal conductivity measurements that have
been achieved during this thesis.

6.2.1.1 Fabrication of a nanostructured germanium matrix with embedded spherical
Ge3Mn5 nano-inclusions

The growth of the GeMn films have been performed in the research group SINAPS/INAC at
CEA Grenoble, by Mustapha Boukhari and Dimitri Tainoff. The fabrication process of these
films can be divided into several steps, which we describe now. First, the Ge(001) substrate
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Figure 6.14: (a) Transverse and (b) plane view TEM micrographs of a Ge0.89Mn0.11 film on a Ge(001)
substrate, which, at this step, consists of auto-organized GeMn nano-columns in a crystalline germanium
matrix. Reprinted with permission from Ref. 223.

Annealing

250 °C 300 °C20 °C

Figure 6.15: A post-growth annealing of the columnar GeMn film leads to the formation of Ge3Mn5
nano-clusters within the germanium matrix. Reprinted with permission from Ref. 223.

is etched to remove the oxidation layer that is present on its top surface. The films are then
grown by Molecular Beam Epitaxy (MBE) in ultra-high vacuum on a ∼ 40 nm buffer Ge layer,
deposited on the Ge substrate. Germanium and manganese are co-deposited using standard
Ge and Mn effusion cells, at a growth temperature around 100 ◦C to minimize phase separation
owing to the solubility of Mn in Ge.222 The film thickness is well controlled because of the
slow growth rate of 1.3 nm/min. The co-deposition leads to the formation of auto-organized
nano-columns, which correspond to the segregation of Mn-rich phase induced by a spinodal
decomposition. TEM micrographs of the nano-columns are shown in Figure 6.14.

To obtain GeMn spherical nano-inclusions in the germanium matrix rather than nano-
columns, the film is annealed after growth at high temperature (450-500 ◦C) for about 15
min, leading to the formation of randomly distributed Ge3Mn5 nano-inclusions in a Mn doped
crystalline germanium matrix. TEM micrographs showing the transition from columnar to
nano-clusters in the film are shown in Figure 6.15.

The stoichiometry and crystallinity of the germanium matrix and nano-inclusions have
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Figure 6.16: TEM images of the nanostructured GeMn films, taken by Eric Prestat from INAC. (a)
showing the nano-inclusions distribution across the film and (b) showing the crystalline structure of
both the hosting germanium matrix and Ge3Mn5 nano-inclusions.

been studied by means of HRTEM and XRD, which can be found in Refs. 224,225. The
resulting film that consists of Ge3Mn5 nano-inclusions within a germanium matrix is shown
in Figure 6.16.

The most interesting feature of the growth process is that the size distribution of the
Ge3Mn5 nano-inclusions can be tuned by controlling the amount of manganese that is intro-
duced during the growth and the annealing temperature. This is shown in Figure 6.17, where
Mn concentrations of 8, 10, 12 and 14%, annealed at the same temperature, lead to different
size distributions of the Ge3Mn5 nano-inclusions. In the bottom panel of Figure 6.17, the
size distribution of the nano-inclusions within each germanium matrix is calculated using a
image-processing counting software based on the samples’ TEM micrographs.

Following the idea introduced in the first chapter, the nano-inclusion size distribution
is an important parameter to play with in order to tune phonon transport and efficiently
scatter a broad portion of the entire phonon spectrum. The well-controlled nano-inclusions
size distribution of this innovative material as well as the perfect crystallinity of the germanium
matrix make it a model material to study phonon transport. To quantify the effect embedded
phonon scattering centers may have on phonon transport, we have measured the thermal
conductivity of one nanostructured GeMn sample with 8 %Mn, as a function of temperature,
using the 3ω method.

6.2.1.2 Thermal conductivity measurements

In the following, the germanium matrix with embedded spherical Ge3Mn5 nano-inclusions
will be referred to as ”GeMn” for simplicity. The thermal conductivity of the GeMn film
has been measured using the 3ω method. The measurement of this sample has been very
tedious and took a lot of time for several reasons. The surface quality of several samples have
been shown to be flawed because of the migration of manganese during the annealing step of
the growth process, leading to a very rough surface with Ge3Mn5 bubbles appearing at the
film’s surface, as shown in Figure 6.18. Several samples were therefore unusable because the
deposited thermometers were electrically connected to the layer, even with a 60 nm Al2O3

insulating layer deposited on their surface. After these observations, we were able to grow
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Figure 6.17: Top panels : cross sectional TEM images of the nanostructured GeMn films showing the
nano-inclusions size distribution for different %Mn introduced during the growth process. Bottom panel
: Gaussian fits of the measured size distributions of the Ge3Mn5 nano-inclusions, for different %Mn.
The size distributions have been obtained using an image-processing counting software.
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Figure 6.18: (a)-(b) SEM pictures of the surface of unusable GeMn samples, where we see Ge3Mn5
clusters that have migrated towards the surface. (c) optical and (d) SEM pictures of a thermometer
which is (unfortunately) deposited on top of a Ge3Mn5 cluster, making it electrically connected to the
substrate and therefore unusable.

several GeMn samples, which were capped in situ with a 80 nm germanium layer prior to
the annealing step. This extra thin germanium layer was successful in making the surface
smoother, allowing for the deposition of electrically insulated thermometers.

The other difficulty that we have faced, which is not related to the sample’s surface qual-
ity, is the relatively high thermal conductivity of the film, which was difficult to estimate
beforehand. As we have emphasized throughout this manuscript, the contribution of ther-
mal boundary resistances is far from being negligible, in particular for thermally conduc-
tive films. The total thermal boundary resistances of the system Pt/ALD-Al2O3 + ALD-
Al2O3/Ge have been measured in the first section of this chapter in order to estimate its
contribution for the thermal conductivity measurements of the GeMn samples. The ini-
tial samples that were grown and ready to measure were 240 nm thick, and by estimating
their thermal conductivity to about 20 W/m.K, leads to a thermal resistance of the film of
RGeMn = dGeMn/kGeMn = 240 × 10−9/20 = 1.2 × 10−8m2.K/W. In comparison, an estimation
of the thermal weight of the Pt/ALD-Al2O3 + ALD-Al2O3/Ge TBRs, in addition to the 60
nm protecting Al2O3 layer is, based on our previous measurement :

RPt/ALD-Al2O3 + RALD-Al2O3/Ge + dAl2O3/kAl2O3

= 3.7 × 10−8 + 60 × 10−9/1.73

= 7.2 × 10−8m2.K/W

at 300 K and therefore the thermal contribution of the film would only account for 14% of
the total thermal resistance. Therefore, thicker films have been grown, with thicknesses of
380 and 720 nm. A schematic of the multilayer system that has been measured is presented
in Figure 6.19. Three samples have been used to infer the thermal conductivity of the film.
One sample consisting of a germanium substrate with a 60 nm Al2O3 layer deposited on top
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Figure 6.19: Schematic of the multilayer system studied, with an equivalent thermal circuit showing
the thermal contribution of the films and interfaces to the total thermal resistance that is measured.
The thermal circuit is shown for pedagogical purposes, we did not consider the GeMn film as a simple
1D thermal resistance in the data modelling.

(referred to as a reference sample in the following), and the other two with a GeMn thin film
(380 and 720 nm) grown on a similar germanium substrate, covered with the same 60 nm
Al2O3 layer that was deposited during the same ALD run. The platinum deposition has been
performed during the same run for the three samples as well, with the purpose of creating the
same interfaces between the film/insulating layer/thermometer for the three samples, to the
best of our capability.

After the transducers’ calibration and the usual V3ω = f(I3) measurements, the tempera-
ture oscillation is measured as a function of frequency at several temperatures for the three
samples.

Data reduction procedure

The data treatment that we have performed for inferring the thermal conductivity of the
GeMn layer is somewhat different from what we did in the past sections. In this particular
case, following the recommendations of the jury who are gratefully acknowledged, we have
considered the germanium capping layer as an extra layer in the thermal model instead of a
simple thermal resistance in series with the heater. The reason for this is that the thermal
conductivity of the Ge capping layer is not small and as such it can spread heat laterally,
invalidating the approximation of the layer as a simple 1D thermal resistance since it would
actually lower the temperature oscillation read across the thermometer. Besides, there exists
an uncertainty on both the thickness and thermal conductivity of the germanium capping layer
that should be accounted for in the fitting of the measurement to a thermal model.

The uncertainty on the thickness of the capping layer comes from the following reason.
Several nominal thicknesses of the germanium capping layer have been deposited as trials, and
a thickness of 80 nm was found to be a good compromise to keep a thin capping layer while
preventing the surface to be affected by the migration of manganese during the annealing
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Figure 6.20: Effect of the germanium capping layer on the smoothness of the surface of the sample.
Using a 30 nm thick germanium capping layer (left panel), we still observe the migration of Mn at
the surface. A 80 nm thick capping germanium layer (right panel, the Ge chunk only serves here as a
contrast reference) ensures a smoother surface, allowing for the deposition of a thermometer (after the
subsequent deposition of an electrically insulating Al2O3 layer).

step, as explained in the beginning of this section. A 30 nm thick capping layer was not
successful in making the surface of the GeMn layer smoother, as can be observed in Figure 6.20
where Mn islands can still be distinguished. This means that the thickness of the germanium
capping layer is somewhat different from its nominal value since at 30 nm it still contains Mn.
Therefore we expect the germanium layer to be around 50 nm thick if not less. Additional
TEM characterization are necessary to estimate the true thickness of the germanium layer that
is free from manganese. It also raises the question as if we should consider the germanium
capping layer to be part of the GeMn film since its thickness is of the order of the inter-inclusion
distance, or if it should be considered as an extra layer with different thermal properties from
that of the GeMn layer. In the following, we consider the film as an extra layer with thermal
properties taken from literature.

The thermal conductivity of the thin capping germanium layer is unknown but it is rea-
sonable to assume that it is smaller than that of bulk germanium (kbulk Ge ≈ 52 W/m.K) due
to its reduced thickness that is reducing the Ge phonon mean free path. This is confirmed by
the measurements of Alvarez-Quintana and co-workers, suggesting that it lies between 15 and
35 W/m.K for these thicknesses.226

In order to take into account the effect of this layer on the determination of the thermal
conductivity of the GeMn layer, we fit the measured frequency-dependence of the temperature
oscillation using

⟨T ⟩ = ⟨T ⟩Ge substrate+GeMn+capping Ge + Pl

2b
RTBRs+Al2O3 (6.5)

where

⟨T ⟩Ge substrate+GeMn+capping Ge = Pl

π

∫ ∞

0

A

C

sin2(λb)
(λb)2 dλ (6.6)
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with A and C are computed from(
A B

C D

)
=

n∏
j=1

 cosh(γjdj) 1
kjy γj

sinh(γjdj)

kjy γj sinh(γjdj) cosh(γjdj)

 (6.7a)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(6.7b)

for n = 3 layers, following the thermal model derived in Ref. 123 and introduced in Chapter
3. The 3 layers considered here are the germanium substrate, the GeMn layer and the Ge
capping layer. The contribution of thermal boundary resistances and of the 60 nm Al2O3

layer are accounted for in the second term of the right hand side of Eq.(6.5). The contribution
of TBRs at the heater/film and film/substrate interfaces as well as the contribution of the
alumina layer are taken from our separate measurement of the reference sample consisting
of a 60 nm thick alumina film deposited onto a germanium substrate, from which we infer
RTBRs+Al2O3 = RPt/Al2O3 + RAl2O3 + RAl2O3/Ge (see Figure 6.21) and plug it into Eq.(6.5).
Note that considering the contribution of TBRs and of the alumina film as one simple thermal
resistance instead of considering the alumina film separately leads to an error of less than 1
mK on the resulting temperature oscillation, which is of the order of several hundred of mK.

We underline that when we proceed in this way, we assume the thermal boundary resis-
tances at the GeMn/capping Ge and GeMn/buffer Ge interfaces to be negligible in comparison
to the other thermal resistances : RGeMn/Ge ≈ RGe/Ge ≈ 0. This should be well respected
since the GeMn is mostly a germanium matrix.

The thermometers used for carrying out the measurements are about 5.5 µm large, and the
distance between the two inner voltage pads is 500 µm – lengths that have been measured using
SEM for each thermometer. The heat capacity of the GeMn sample is calculated using the
weighted average of the heat capacity of Ge and Mn, which we have measured for germanium,
and taken from literature227 for manganese. The thermal anisotropy of the film is set to 1,
which is an assumption based on TEM micrographs showing the homogenous repartition of
the nano-inclusions. In any case, the temperature oscillation is not very sensitive to the film’s
thermal anisotropy since the heater is still relatively large compared to the thickness of the
GeMn films.

As a preliminary verification procedure, we compare the thermal resistance measured on
the reference sample – consisting of a germanium substrate on which a 60 nm thick layer of
Al2O3 was deposited during the same run in which the alumina layers used to electrically insu-
late the GeMn samples were deposited – to the thermal conductivity and TBRs measurements
obtained in Section 6.1.1 for the same structure, i.e. a 60 nm thick alumina layer deposited
on a germanium substrate. This is what is displayed in Figure 6.21, where the thermal resis-
tance measured for the reference sample (i.e. RTBRs+Al2O3) falls well within the uncertainty
window that we have obtained in our previous measurement, illustrating the repeatability of
the measurement.

The temperature oscillation normalized to heating power is plotted as a function of fre-
quency for the three samples along with their best fit to Eq.(6.5) in Figure 6.22, at 300 K
(for only one value of the thickness and thermal conductivity of the germanium capping layer
in this particular example). We note a remarkable consistency between the three samples,
with a fitted value for the germanium substrates of 52.9 W/m.K with a deviation of no more
than 0.2 W/m.K, at 300 K. Note that the fitting is performed up to 3300 Hz. At 100 K, we
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6.1.1

Figure 6.21: Comparison between the thermal resistance from the 60 nm thick Al2O3 layer and TBRs
measured in Section 6.1.1 and the reference sample of this experiment. The reference sample consists
of a germanium substrate on which a 60 nm thick layer of Al2O3 was deposited during the same run
in which the alumina layers used to electrically insulate the GeMn samples were deposited. The fact
that the two measurements coincide well underlines the repeatability of the experiment.

observe more discrepancies between the fitted values of the germanium substrate, as can be
observed from Figure 6.23 with values ranging from 158 to 164 W/m.K, which is nonetheless
very satisfying. At low frequency, we observe a combination of the effects of the finite length of
the heater and of the thermal contact between the sample and sample holder on the measured
temperature oscillation, making the fitting less accurate. At high frequency, for the temper-
ature oscillation measured for the substrate with alumina only (in blue), the discrepancy is
attributed to capacitive effects in the electrical circuit.

In order to quantify the contribution of the germanium capping layer on the measured
temperature oscillation, in the fitting procedure, the thermal conductivity of the germanium
capping layer is taken to be either 15 or 35 W/m.K, using thicknesses of 50 or 80 nm as lower
and upper bounds, and constant from 100 to 300 K.226

Since we have measured two thicknesses of the GeMn film (380 and 720 nm), we fit the data
for the two thicknesses of the films separately, leading to eight different results for the thermal
conductivity of the film according to the thermal conductivity of the germanium capping layer
used for the fitting (15 or 35 W/m.K) as well as its thickness (50 or 80 nm). The spread of
thermal conductivity values obtained from the fitting of the different measurements leads to
a range into which the thermal conductivity of the GeMn layer should fall into. The resulting
thermal conductivity of the GeMn layers that is measured using the fitting procedure just
described is shown in Figure 6.24.

The effect of the germanium capping layer is relatively weak at room temperature, where
the thermal conductivity of the GeMn layer changes between 14 and 16 W/m.K for the 720
nm thick GeMn layer according to the thermal properties and thickness of the germanium
capping layer. Similarly, it varies from 14 to 17 W/m.K for the 380 nm thick GeMn layer.
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Figure 6.22: Temperature oscillation normalized by heating power versus frequency for the three sam-
ples at 300K. The greater thermal resistance of both GeMn samples, in comparison to the same system
without the film, allows to infer their thermal conductivity.
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Figure 6.23: Temperature oscillation normalized by heating power versus frequency for the three sam-
ples at 100K. The discrepancies at high frequency comes from capacitive coupling effects in the electrical
circuit. At low frequency, the discrepancy between the 2D model and the data comes from both the
effect of the sample holder/sample contact, and the finite length of the thermometer. In principle, one
can try to better fit data using a 3D model as introduced in Chapter 4.3. Here, we simply fit data from
around 200 Hz such that the low-frequency effects are disregarded.
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Figure 6.24: Thermal conductivity of the GeMn layer as function of temperature, obtained by changing
the value of the thermal conductivity of the germanium capping layer as well as its thickness in the
fitting process. The purpose is to quantify how does the germanium capping layer influence the value
that we extract for the thermal conductivity of the GeMn film. At room temperature, it does not
influence much the extracted thermal conductivity of the GeMn film but it does at 100 K. The thermal
conductivity of the three germanium substrates are displayed as well and superpose reasonably well.
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It also underlines the repeatability of the experiment since we obtain similar results for two
different samples with different thicknesses. We do not expect the thermal conductivity of the
GeMn films to be thickness-dependent since we assume the phonon mean free path in GeMn
to be less than the phonon mean free path in bulk germanium, which is between 170 and 230
nm at room temperature228,229 and thus smaller than the thickness of the films (380 and 720
nm).

There is however a more pronounced change at lower temperature (100 K), where the
thermal conductivity of the GeMn layer varies between 22 and 28 W/m.K according to the
thickness of the GeMn layer as well as the thickness and thermal conductivity of the germanium
capping layer that we use for the fitting. We will take the upper and lower bonds of the fitted
thermal conductivity as the uncertainty of the measurement in the following part, however we
underline that the thickness of the GeMn films as well as that of the capping layer have to be
measured using TEM in order to have a more rigorous estimation of the uncertainty of the
thermal conductivity of the nanostructured film.

6.2.1.3 Results and discussion

The intrinsic thermal conductivity of the GeMn film, consisting of a Mn-doped crystalline
germanium matrix, with embedded spherical nano-inclusions of Ge3Mn5 is shown in Figure
6.24. The three thermal conductivities of the three different germanium substrates are shown
in comparison, and overlap quite well, with some deviation below 130 K of less than 10%. Most
importantly, we observe a slight increase of the thermal conductivity of the nanostructured
GeMn sample when temperature decreases, from around 14 W/m.K at 300 K to 28 W/m.K
at 100 K. Solely based on the uncertainty of the thickness and thermal conductivity of the
germanium capping layer, we estimate the uncertainty on the GeMn thermal conductivity to
be around 30% at 100 K and lower as temperature increases.

To discuss the reduction by a factor of ∼3.5 of the thermal conductivity at room temper-
ature, and most importantly its temperature dependence, we compare our results using two
approaches.

Modified Effective Medium Approximation

The first approach is the modified Effective Medium Approximation (mEMA) developed by
Minnich and Chen228, which introduces an effective thermal conductivity for a host matrix
with spherical nano-inclusions, following the work of Nan et al.230 The mEMA is well adapted
in situations where the characteristic length of the inclusion is on the order of or smaller than
the phonon mean free path (MFP), which is the case for our system, as the mean inclusion
diameter is of the order of 15 nm while the phonon mean free path in germanium is about
170 to 230 nm.228,229 In the mEMA, it is assumed that the effective thermal conductivity is
a function of the bulk MFP and a characteristic length that accounts for the nano-inclusion
density – taken to be the interface density Φ, i.e. the surface area of a spherical nano-inclusion
per unit volume of composite ; it is defined as228 :

Φ = η4πr2
ni (6.8)
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where rni is the nano-inclusion radius and η the number of nano-inclusions per unit volume
(with unit of m−3). The volume fraction of nano-particles φ (in %) is

φ = η
4
3

πr3
ni (6.9)

and thus Φ = 3φ
rni

. Since the effective area of collision for a phonon incident to a spherical
inclusion is πr2

ni, it will encounter ηπr2
niL inclusions while travelling a distance L. The phonon

mean free path Λcoll is thus written as

Λcoll = L

ηπr2
niL

= 1
ηπr2

ni
= 4

Φ
= 4rni

3φ
(6.10)

The effective mean free path of the host material (Ge) is derived using Matthiessen’s rule :

1
Λeff,Ge

= 1
Λbulk,Ge

+ 1
Λcoll

= 1
Λbulk,Ge

+ Φ
4

(6.11)

In a ”Casimir spirit”, the phonon mean free path in the particle phase (Ge3Mn5) is set to be
the characteristic length of the particle, i.e. its diameter. The effective mean free path in the
inclusion’s phase is thus

1
Λeff,Ge3Mn5

= 1
Λbulk,Ge3Mn5

+ 1
2rni

(6.12)

The thermal conductivity k of both the host and particle phases can then be estimated in a
first approximation using kinetic theory :

k = 1
3

∫
Cp(ω)v(ω)Λ(ω)dω ≈ 1

3
CpvΛ (6.13)

The mEMA then leads to the following expression for the effective thermal conductivity of the
germanium matrix with spherical Ge3Mn5 nano-inclusions228,230 :

keff = 1
3

Cp,GevGe
1

(1/ΛGe) + Φ/4
× kGe3Mn5(1 + 2δ) + 2kGe + 2(Φrni/3)[kGe3Mn5(1 − δ) − kGe]

kGe3Mn5(1 + 2δ) + 2kGe − (Φrni/3)[kGe3Mn5(1 − δ) − kGe]
(6.14)

where δ = RTBRkGe/rni, RTBR being the thermal boundary resistance between the particle
and the host material.

We need several thermal properties from both the host and inclusions phases in order to
estimate the effective thermal conductivity of the medium. The heat capacity that is measured
experimentally takes into account the contribution of acoustic and optical phonons, for all wave-
vectors. However, optical phonons do not contribute much to the thermal conductivity since
their group velocity is very small. Besides, at room temperature, most phonons are populated
at the edge of the Brillouin zone where the phonon group velocity is significantly smaller than
the sound velocity.32 One should thus only account for the acoustic phonons’ contribution
to the thermal conductivity in the kinetic theory, and similarly, the phonon group velocity
should be calculated from approximate dispersion relations (sine-type for instance), as well as
the phonon specific heat.32 For Ge, it leads to a reduction of the phonon group velocity by a
factor of ∼ 4, compared to Debye’s velocity. Therefore, we will use values from Ref. 228 for
computing the thermal conductivity of the germanium host matrix in the kinetic model. They
are reproduced in Table 6.2. For the Ge3Mn5 phase, it is less trivial since little literature exists
for the phonon group velocity and mean free path. However, it is noticed that the effective
thermal conductivity of the Ge3Mn5 phase is only modified from its bulk value by adding
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Material Cp (MJ.m−3.K−1) v (m.s−1) Λ (nm)
Ge 0.87 1042 171

Table 6.2: Parameters taken to estimate the thermal conductivity, using the kinetic formula, for the
germanium host (Ge). Taken from Ref. 228.

an additional mean free path that is equal to the particle diameter. Therefore it becomes
relevant only when the phonon mean free path is larger than the nano-inclusion size. Here,
the thermal conductivity of the Ge3Mn5 phase is taken to be that derived in Ref. 231 using
molecular dynamics, i.e. kGe3Mn5 ≈ 3.7 W/m.K. For thermal conductivities of this order of
magnitude, the mean free path can be roughly estimated to be of the order of tens of nm. For
instance, the calculated mean free path of GeTe, whose thermal conductivity is of the same
order of magnitude as that of Ge3Mn5, is calculated to be about 16 nm.232 Consequently,
our calculation will take a fixed value for the thermal conductivity of the particle phase,
kGe3Mn5 = 3.7 W/m.K. In other words, we assume that the thermal conductivity of the particle
phase is not drastically reduced because of its diameter. However the interface density, which
takes into account the nano-inclusion volumetric fraction and diameter, is accounted for in the
calculation of the effective thermal conductivity of the germanium host matrix.

The effective thermal conductivity of the medium is then very dependent on the volume
fraction of nano-inclusions. It has been estimated using TEM micrographs but is still difficult
to quantify accurately. It was estimated to be around 12 % by Yanqing Liu, the previous PhD
student in our group.233 Using this estimation leads to an effective thermal conductivity of
15 W/m.K at 300 K. Changing the thermal boundary resistance from 10−9 to 10−8 m2.K/W
does not substantially affect the result. Evidently, given the difference in terms of thermal
conductivity between the host matrix and nano-particles, the greater the volume fraction of
nano-particles, the more reduced the thermal conductivity. This approach gives very good
results in terms of the thermal conductivity reduction that is observed in the GeMn sample, at
room temperature, and suggests that the reduction in the thermal conductivity of the effective
media is mostly due to the low thermal conductivity of the nano-inclusions, their volumetric
fraction along with the interface density.

We will now turn to a more general approach for calculating the thermal conductivity of
the material as a function of temperature, which makes no assumption about the thermal
conductivity of the phase material, but considers the scattering cross section of the nano-
inclusion size distribution, and other relevant scattering mechanisms, as we have introduced
in Chapter 1.

Modelling using Boltzmann transport equation

We now use the frequency and temperature dependence of the phonon scattering rates to
compute the thermal conductivity of the GeMn films, as a function of temperature. Several
expression of increased complexity exist for expressing the thermal conductivity of a material
as a function of phonon relaxation time, temperature and frequency.26,34,45 Here we will use
the model and fitting constants provided by Morelli et al.45 in order to compute the thermal
conductivity of germanium as a function of temperature, which is one of the most advanced
model to describe the lattice thermal conductivity in germanium. Note that their work follows
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the formulation of the thermal conductivity of Asen-Palmers and co-workers, based on the
Debye-Callaway formalism.34,44

In this model, the thermal conductivity is expressed as the sum of the contribution of the
longitudinal (L) and transverse (T ) components of the thermal conductivity :

k = kL + 2kT (6.15)

where
kL = kL1 + kL2 (6.16)

The partial conductivities kL1 and kL2 are expressed as :

kL1 = 1
3

CLT 3
∫ θL/T

0

τL
C (x)x4ex

(ex − 1)2 dx (6.17)

kL2 = 1
3

CLT 3

[∫ θL/T
0

τL
C (x)x4ex

τN (x)(ex − 1)2 dx

]2

∫ θL/T
0

τL
C (x)x4ex

τL
N (x)τL

R(x)(ex − 1)2 dx

(6.18)

for longitudinal phonons, and

kT 1 = 1
3

CT T 3
∫ θT /T

0

τT
C (x)x4ex

(ex − 1)2 dx (6.19)

kT 2 = 1
3

CT T 3

[∫ θT /T
0

τT
C (x)x4ex

τN (x)(ex − 1)2 dx

]2

∫ θT /T
0

τT
C (x)x4ex

τT
N (x)τT

R (x)(ex − 1)2 dx

(6.20)

for transverse phonons, where

CL,T = k4
B

2π2~3vL(T )
and x = ~ω

kBT
(6.21)

A Debye model for the phonon density of states is implied, as explained in Chapter 1. The
inverse relaxation times are separated into a resistive (τR) and a normal (τN ) term. The
resistive term includes the relaxation times for specific scattering processes using Matthiessen’s
rule :

[τL
R ]−1 = [τL

b ]−1 + [τL
u ]−1 + [τL

i ]−1 + [τL
ni]−1 (6.22)

and
[τT

R ]−1 = [τT
b ]−1 + [τT

u ]−1 + [τT
i ]−1 + [τT

ni]−1 (6.23)

for the longitudinal and transverse phonon branches, respectively.45 The expressions for the
relaxation times considered for computing the thermal conductivity are listed in Table 6.3,
adapted from Ref. 45.

In Table 6.3, we use θL = 333 K, θT = 150 K, vT = 3540 m.s−1 and vL = 4920 m.s−1,
representing the Debye temperature and phonon group velocity in germanium for both phonon
polarizations. Every constant and expression in Table 6.3 is taken from Ref. 45 except for the
constant term (A) for impurity scattering that we took from Ref. 34.

Using the expression of the thermal conductivity Eqs.(6.15)-(6.23) as well as the form
of the scattering rates and constants as expressed in Table 6.3, we calculate the thermal
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Scattering Phonon Inverse relaxation Relevant
process branch time (s−1) constant

Boundary L [τL
b ]−1 = vL/Le Relevant length (m)

T [τT
b ]−1 = vT /Le Relevant length (m)

Impurity L [τL
i ]−1 = Ax4(kB/~)4T 4 A = 1.1 × 10−44(s−1)

T [τT
i ]−1 = Ax4(kB/~)4T 4 A = 1.1 × 10−44(s−1)

Umklapp L [τL
u ]−1 = BL

U (kB/~)2x2T 3e−θL/3T BL
U = 1.3 × 10−19(s−1K−3)

T [τT
u ]−1 = BT

U (kB/~)2x2T 3e−θT /3T BT
U = 1.6 × 10−19(s−1K−3)

Normal L [τL
n ]−1 = BL

N (kB/~)2x2T 5 BL
N = 1.9 × 10−23(s−1K−5)

T [τT
n ]−1 = BT

N (kB/~)xT 5 BT
N = 3.7 × 10−12(s−1K−5)

Nano-inclusion L [τL
ni]−1 = σ(χ)ηvL -

T [τT
ni]−1 = σ(χ)ηvT -

Table 6.3: Form of the scattering processes as well as the associated constants used for calculating the
thermal conductivity of germanium from 100 to 300 K. We use θL = 333 K, θT = 150 K, vT = 3540
m.s−1 and vL = 4920 m.s−1, for the Debye temperature and phonon group velocity of germanium,
taken from Ref. 45.

conductivity of bulk germanium, by setting the length Le in the boundary scattering term
to be the thickness of the germanium substrate, i.e. we set Le = 500 µm. Importantly, the
nano-inclusion scattering term is set to zero ([τT

ni]−1 = 0). The resulting thermal conductivity
is plotted in Figure 6.26 as a dashed black line, and fits relatively well with the measured
thermal conductivity of the three germanium substrates on the temperature range of 100-300
K. Therefore, we will keep the form of the scattering rates as well as their associated constants
in the following.

Before calculating the effect of the nano-inclusions, we first quantify the effect of the
reduced thickness of the GeMn layer in order to verify that the decreased thermal conductivity
of the film is not only due to phonon boundary scattering. This is shown in Figure 6.26, where
we plot the thermal conductivity of germanium as a function of temperature using Eqs.(6.15)-
(6.23) with the parameters of Table 6.3 and setting Le = 380 nm (blue solid line) and Le = 720
nm (dark yellow solid line). From this calculation, we can conclude that the thickness of the
layer does reduce the thermal conductivity of germanium, but does not explain the drastic
reduction of the thermal conductivity that is observed in our GeMn films.

To try to explain this reduction, we then calculate the thermal conductivity of the GeMn
sample, using the same parameters used for fitting the temperature dependence of the sub-
strate’s thermal conductivity and adding the nano-inclusions scattering term [τT

ni]−1 (as well
as the boundary constant term Le which is set to to be the thickness of the GeMn film3).

The inverse relaxation time for phonon scattering with nano-inclusions is proportional to
the nano-inclusions concentration η, phonon group velocity vL,T and most importantly the
scattering cross-section σ(χ). As we have introduced in the first chapter, an expression for the
scattering cross-section due to nano-inclusions has been proposed by Kim and Majumdar77,
which introduces the size distribution of the nano-inclusions. The form of the scattering cross-
section depends on the size parameter χ that relates the phonon wavevector k to the radius
of the nano-inclusion rni via χ = krni. In the limit χ → 0, we have σ ∝ r6

ni/λ4, representing
3Setting the thickness of the GeMn film to 380 nm or 720 nm does not change drastically the thermal

conductivity of the GeMn film, when the nano-inclusion scattering term is added. Therefore we use Le= 720
nm.
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Figure 6.25: Measured size distribution of Ge3Mn5 nano-inclusions in the Ge matrix (orange histograms)
and Gamma distribution that best fit the data (solid black line). The fitted gamma distribution has
the following parameters : αg = 8.92 and βg = 0.93 nm (see Eq.(6.25)). In inset are TEM images of the
material, showing the distribution of nano-inclusions, as well as one Ge3Mn5 nano-inclusion. Images
taken by Eric Prestat.

the Rayleigh scattering regime. In the opposite case where χ ≫ 1, we have σ = 2πr2
ni which is

the so-called geometric limit. In the temperature range explored (100-300 K), the dominant
phonon wavelength is of the order of the nanometer while the nano-inclusion radius is of the
order of 10 nm. Therefore we expect to be in the geometric limit since χ ≫ 1, and the
scattering cross section for a particular nano-inclusion size is set to 2πr2. The total scattering
cross-section σsct, accounting for the size distribution of nano-inclusions is written as77 :

σsct =
∫ ∞

0
2πr2f(r)dr (6.24)

where f(r) is the size distribution of nano-inclusions. We have fitted the size distribution
estimated from TEM micrographs233, using a gamma function, which takes into account only
positive numbers such that the size of the nano-inclusions cannot be negative. The gamma
distribution is expressed as :

g(r, αg, βg) = rαg−1e−r/βg

β
αg
g Γ (αg)

(6.25)

where Γ (αg) is the gamma function evaluated at αg. The mean value of a gamma distribution
is given by αgβg while the variance is αgβ2

g . Fitting the measured size distribution of Ge3Mn5

nano-inclusions in the germanium matrix to a gamma function leads to αg = 8.92 and βg = 0.93
nm, leading to a mean nano-particle radius of 8.3 nm with standard deviation of 2.77 nm. The
measured and fitted size distribution are shown in Figure 6.25.

By using the measured value233 of the nano-inclusion concentration η = 3.91 × 1022 m−3,
the inverse scattering time can be calculated and the thermal conductivity of the GeMn film
computed. The calculated thermal conductivity, computed using Eqs.(6.15)-(6.23), and using
the scattering rates as expressed in Table 6.3, is plotted as a function of temperature in Figure
6.26. The green curve takes into account phonon scattering with polydispersed nano-inclusions,
whose scattering cross section is computed using Eq.(6.24) using the fitted parameter of the
nano-inclusions’ size distribution. Using this model, the thermal conductivity of the film is
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reduced by a factor of more than 4 at room temperature to reach 12 W/m.K, which is close
to our finding of around 15 W/m.K at room temperature. However, the thermal conductivity
computed using the form of the relaxation rates presented in Table 6.3 does not reproduce well
the amplitude of the measured thermal conductivity at lower temperature. We underline that
the computed thermal conductivity is heavily dependent on the nano-inclusions concentration
η. A large uncertainty on the nano-inclusions concentration translates to a large uncertainty
on the calculated thermal conductivity.

In an attempt to estimate the length scale that is defining heat transport in this nanos-
tructured material on the explored temperature range of 100-300 K, we adjust the boundary
scattering rate τ−1

b = v/Le by changing the constant Le such that the calculated thermal
conductivity matches experimental data, while setting the nano-inclusion scattering term to
zero. By definition, Le is a characteristic length scale that is closely related to the phonon
mean free path. In Figure 6.26, the purple line represents the computed thermal conductivity
of a germanium film using a characteristic length of Le = 100 nm, which is the length that best
fits our experimental findings. Note that adjusting this boundary scattering term to fit the
measured thermal conductivity is only performed here to provide an estimation of the phonon
mean free path. However, physically, the length of 100 nm represents neither the thickness of
the film nor the average inter-inclusion distance, which is of the order of 30 nm for this sample,
and thus should only be understood as an effective length. In other words, using this model, a
720 nm thick nanostructured GeMn film is as efficient in reducing heat transport as a 100 nm
thick germanium thin film free of nano-inclusions. The almost flat temperature dependence of
the thermal conductivity of the nanostructured GeMn film also tells us that nano-inclusions
are the dominant phonon scattering centers and dominates over scattering processes such as
umklapp and impurity scattering. These experimental findings are one additional evidence of
reduced thermal conductivity using nanostructuration in a fully crystalline material.

Before moving on to the next part, we underline that other approaches have been developed
to describe more rigorously heat transport in porous media, with inclusions of different sizes,
which can be aligned or randomly distributed. For instance, Jean et al.234 used phonon
Monte Carlo Ray Tracing to estimate the phonon mean free path in porous germanium and
silicon. Our collaborators from LEMTA (Nancy), supervised by D. Lacroix, have calculated
the thermal conductivity of the GeMn sample using a Monte Carlo method, using the porosity
and distribution of our sample while considering the nano-inclusions to be filled with air. For
a 1 µm thick film, it leads to a thermal conductivity of around 10 W/m.K. We can reasonably
take this value as a lower bound for the thermal conductivity of the GeMn material, since
the thermal conductivity of the nano-inclusions is expected to be much larger than that of air.
This is in good agreement with our measurement of k ≈ 15 W/m.K.

By analysing the temperature dependence of the simulated thermal conductivity of the
GeMn film plotted in Figure 6.26, it is evident that measuring the thermal conductivity of the
film at lower temperature would be an important step towards the understanding of scattering
processes governing phonon transport in this model material. Indeed, we would expect phonon-
scattering to follow a Rayleigh-like description, since the dominant phonon wavelength would
eventually become larger than the nano-inclusion size at sub-Kelvin temperatures. Besides,
samples with different nano-inclusion size-distributions would prove useful in quantifying the
effect of size-distribution on phonon transport – which is a perspective of this work.
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Figure 6.26: Temperature dependence of the measured thermal conductivity for bulk germanium and
the nanostructured GeMn film (filled circles), along with calculation using Boltzmann transport equa-
tion under the relaxation time approximation, following the model of Ref. 45 (lines). The dashed and
solid lines have been computed using Eqs.(6.15)-(6.23) and the parameters displayed in Table 6.3. The
thermal conductivity of the GeMn film corresponds to the mean of the 8 values that have been derived
when changing the thickness and thermal conductivity of the germanium capping layer (that are dis-
played in Figure 6.24), as explained in the main text. The upper and lower bounds correspond to the
highest and lowest thermal conductivity of the film.
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6.2.2 Effect of grains and doping : GeTe and GeTeC

We now turn to a different kind of material, still germanium-based, but which consists of an
alloy of germanium and telluride. GeTe is a very popular chalcogenide phase change material
(PCM), primarily because of its is ability to quickly and reversibly switch between its amor-
phous and crystalline states. The large contrast of the material’s electrical conductivity in
both phases allows for a high contrast between logical states, a primary criteria for enhanced
performances in phase change memories applications.235–237 Because of its inherently low ther-
mal conductivity and great electrical conductivity, it is also a very promising material for
thermoelectric applications.238,239 For the two applications, a reduced thermal conductivity is
desired for enhanced device performance. In phase change memory applications, switching be-
tween the crystalline and amorphous phase of the material requires to pass a current through a
metallic layer placed below the material, which will locally heat the material via Joule heating
and induce a phase transition. Thus for low thermally conductive materials, heat confinement
is much more effective, which allows to use a lower programming current in the metallic heater
– hence leading to a better efficiency of the device.

We have performed thermal conductivity measurements on different kind of GeTe-based
materials, which have been grown with the intent of reducing the materials’ thermal conduc-
tivity. We underline that this was part of a collaborating project with Valentina Giordano
from Institut Lumière Matière (Lyon), and Pierre Noé from CEA-LETI (Grenoble). In the
following, we will introduce how the material is grown, and present our thermal conductivity
measurements, performed using the 3ω method.

6.2.2.1 Growth of chalcogenide thin films : GeTe and C-doped GeTe

GeTe and C-doped GeTe thin films were grown in CEA-LETI by Pierre Noe and Rebecca
Chahine. GeTe thin films with thicknesses of 500 nm and 1000 nm were grown by DC mag-
netron sputtering from GeTe mono-targets on Si(001) substrates with a 10 nm SiN or SiO2

capping layer, under argon atmosphere with a pressure of 0.005 mbar, at room temperature.
They were then capped using a 10 nm SiN or SiO2 layer. A subsequent thermal annealing
post growth induces crystallization of the GeTe films.

The C-doped samples have been prepared by co-sputtering of GeTe and C targets, by DC
magnetron sputtering as well on Si(001) substrates with a 10 nm capping SiN layer. In this
work, two different C-doped GeTe samples have been measured, with 9 % and 16 % of carbon
atomic content (%at.). For the sample with 9%at., two thicknesses of the films (100 nm and
1000 nm) have been grown, with a 10 nm SiN capping layer in order to prevent oxidation.
Only one thickness (1000 nm) has been grown for the 16 % C-doped GeTe sample. Similarly,
they have been annealed post growth to induce crystallization.

6.2.2.2 Thermal conductivity measurements

The thermal conductivity of GeTe and C-doped GeTe thin films have been measured using
the 3ω method as well. Since the thickest films are 1 µm thick, the thermometers used
for conducting the 3ω measurements have been chosen to be 30 µm large, such that a 1D
heat transfer model can be used – for all but the amorphous film – to model the thin films
as simple thermal resistances in series with the heater/thermometer. Besides, the thermal
conductivity of all films is expected to be much lower (ranging from 0.2 to ∼8 W/m.K according
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Figure 6.27: Schematic of the sample geometry. The thickness of the film of interest, GeTe or C-doped
GeTe, is either 100, 500 or 1000 nm, as explained in the text. Note that there are thermal boundary
resistances between each consecutive layer.
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Figure 6.28: Measured electrical resistance as a function of temperature for four transducers that have
been deposited on four different samples (two thicknesses of GeTe and two thicknesses of C-doped
GeTe with 9% carbon atomic content). The lines represent the best fit to the data using an order two
polynomial.

to literature data240–242), than that of the silicon substrate (about 140 W/m.K). The platinum
heater/thermometers have a nominal thickness of 100 nm, and the distance between the inner
voltage leads is 2 mm. All samples have been coated with an electrically insulating 60 nm Al2O3

layer deposited by ALD, since the 10 nm SiN capping layer was not successful in electrically
insulating the film from the platinum transducer. The width of the thermometers have been
measured using an optical microscope. A schematic of the system is depicted in Figure 6.27.

Each transducer deposited on each sample have been calibrated in a temperature range
between 295 and 305 K. An example of calibration of the thermometers for four different
samples is shown in Figure 6.28, from which we obtain a temperature coefficient of resistance
of around 2.1 × 10−3 K−1 at 300 K.

We will start by describing the 3ω measurement performed on the amorphous C-doped
GeTe sample, which is a very good example of application of the 3ω method for relatively
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Figure 6.29: Temperature oscillation versus frequency measured for the 1 µm thick, C-GeTe sample with
9%at. carbon content, at 300K. Filled circle are experimental data while the solid line is the best fit to
Eq.(6.26). We can extract the film’s specific heat at high frequency, when the thermal wave completely
dampens within the film, making the experiment insensitive to the substrate’s thermal properties. It
can be understood using the analogy with electrical circuits where at high frequency, we are sensitive
to capacitive effects. We have verified the effect of the heater’s thermal conductivity using a 2D FEM
model (open red circles), as described in Appendix D.

thick, thermally insulating materials. It is the only sample where we have used the complete
expression for the temperature oscillation for a system consisting of two layers, and succeeded
in measuring the volumetric specific heat of the film. The film is so thermally resistive that the
thermal penetration depth λtpd, i.e. the length over which the temperature oscillation extends,
can be tuned to be of the order or less than the film’s thickness, by performing the experiment
at high frequency, since λtpd ∝

√
k/ω. In this case, the experiment becomes insensitive to

the thermal contribution of the substrate, and is only sensitive to the thermal properties of
the film and the metallic heater (thermal conductivity and volumetric specific heat). This is
exemplified in the inset of Figure 6.29.

The temperature oscillation has been measured until about 30 kHz, and we observe in
Figure 6.29 a sharp decrease in the frequency dependence of the temperature oscillation. Re-
membering that the slope of temperature oscillation versus frequency is inversely proportional
to the thermal conductivity, the transition around 2000 Hz in Figure 6.29 where the slope
becomes steeper corresponds to the heat wave going from a material with high thermal con-
ductivity (the silicon substrate) to a material with very low thermal conductivity (the amor-
phous C-doped GeTe). It is evident that in the situation where λtpd < df, the film cannot
be described as a simple thermal resistance in series with the heater, where the effect of the
film’s heat capacity is neglected. Besides, if λtpd < df, the thermal properties of the heater can
affect the experiment as well. Therefore, we have fitted the temperature oscillation using the
complete solution for a film-on-substrate system, using the correction for the transducer’s spe-
cific heat, as provided in Chapter 4.2. The modelling was also verified using a 2D FEM model,
where the thermal conductivity of the heater is taken into account as well. To summarize, the
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measured temperature oscillation was fitted using :

∆T = ⟨T ⟩
1 + (⟨T ⟩2b/Pl)(iωρtrCptrdtr)

(6.26)

where

⟨T ⟩ = Pl

π

∫ ∞

0

sin2(λb)
(λb)2

1
kfy γf tanh(γfdf)

(
1 + tanh(γsds)γsksy ( tanh(γfdf)

kfy γf
)
)

(
1 + tanh(γsds)γsksy ( coth(γfdf)

kfy γf
)
)dλ + Pl

2b
RAl2O3

(6.27a)

γj =
√

kjxy λ2 + iω
(ρCp)j

kjy

(6.27b)

where the thermal resistance of the alumina film RAl2O3 = dAl2O3/kAl2O3 is computed using
our previous thermal conductivity measurements (see 6.1.1). The density and specific heat of
silicon and platinum have been taken from Ref. 214, and the thermal anisotropy of the film is
set to 1, which we assume to be a safe assumption due to its amorphous nature. The thermal
conductivity of the 1 µm thick amorphous C-doped GeTe is measured to be k = 0.19 ± 0.01
W/m.K, and its volumetric specific heat ρCp = 2 ± 0.2 MJ/m3.K, which is in very good
agreement with other experimental literature data.242,243 The very low thermal conductivity
of amorphous GeTe is attributed non propagating or quasistationary phonons, whose mean
free path are of the order of 0.1-1 nm.244 Note that we did not include TBRs, since, in this
particular case, the thermal resistance of the film

RC-doped am. GeTe = (dC-doped am. GeTe)/(kC-doped am. GeTe)

= 10−6/0.19 = 5.26 × 10−6m2.K.W−1

is a hundred times higher than TBRs we have previously measured (∼ 2 − 5 × 10−8m2.K/W
at 300 K). Using the same arguments, the thermal resistance of the 10 nm SiN films are not
included.

Even though this measurement is a very good example to show how to use the 3ω method
in this configuration (film-on-substrate) to infer the volumetric specific heat of the film, the
thermal conductivity of the amorphous C-GeTe film is not of prime interest in this study, since
the effect of carbon doping on the thermal conductivity is hidden by the amorphous nature of
the GeTe alloy, which is a very poor conductor – regardless of the introduction of carbon.

We now turn to the measurement of the crystalline phases of the GeTe and C-doped GeTe.
The temperature oscillation, normalized to heating power is plotted versus frequency in Figure
6.30 for all the samples that have been measured. As already mentioned, since the films are
thin in comparison to the heater width (df ≪ b) and the thermal conductivity contrast between
the films and the silicon substrate is very large (ks ≫ kf), we consider the films as thermal
resistances in series with the heater. Therefore, the temperature oscillation versus frequency
is fitted using :

∆T = Pl

πksy

∫ ∞

0

1√
ksxy λ2 + iω

ρsCps
ksy

tanh
(√

ksxy λ2 + iω
ρsCps

ksy
ds

) sin2(bλ)
(bλ)2 dλ + Pl

2b
Rth (6.28)

The thermal conductivity of the substrate can be uniquely determined from the slope of the
temperature oscillation versus logarithm of frequency, the density and specific heat of the

149



Chapter 6: Thermal conductivity measurements

● ●● Experimental data
Best t

GeTe, 500 nm
GeTe, 1000 nm

9%at. C doped GeTe, 1000 nm

16%at. C doped GeTe, 1000 nm

9%at. C doped GeTe, 100 nm

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ●●● ●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

50 100 500 1000

5

10

15

20

f(Hz)

Δ
T/

P
(K
/W
)

Reference (no GeTe)

●

Figure 6.30: Temperature oscillation versus frequency for all the GeTe and C-doped GeTe samples
measured in this work, in their crystalline phase. A higher temperature oscillation, normalized to heat-
ing power, translates to a higher thermal resistance of the film, and thus a lower thermal conductivity.
Each thermometer is 30 µm large and the distance between the voltage leads is 2 mm. Note that every
fitting gives a thermal conductivity of the silicon substrate of 138 ±3 W/m.K.

silicon substrate are taken from literature214, while the thermal anisotropy of silicon is set to
1. The only remaining fitting parameter in Eq.(6.28) is then Rth, which is expressed as

Rth = df
keff

= R(TBRs + SiN + Al2O3) + df
kiy

(6.29)

to take into account the contribution of thermal boundary resistances. We remind that df refers
to the thickness of the film of interest (GeTe or C-GeTe), keff its effective thermal conductivity,
and ki stands for the intrinsic thermal conductivity of the film of interest (GeTe or C-GeTe),
i.e. independent of the thickness of the film. In this case, RTBRs + SiN + Al2O3 refers to the
sum of TBRs between layers, but also includes the contribution from the 10 nm SiN and 60
nm Al2O3 films to the total thermal resistance.

In terms of thermal resistances of the coating layers, Ri, with thickness di and thermal con-
ductivity ki, and thermal boundary resistances between the films, Ri/j , following the notation
of Eq.(6.29), we have (see Figure 6.27) :

R(TBRs + SiN + Al2O3) (6.30)
= RPt/Al2O3 + RAl2O3 + RAl2O3/SiN + RSiN + RSiN/GeTe + RGeTe/SiN + RSiN + RSiN/Si

= RPt/Al2O3 + dAl2O3

kAl2O3

+ RAl2O3/SiN + dSiN
kSiN

+ RSiN/GeTe + RGeTe/SiN + dSiN
kSiN

+ RSiN/Si

Note that it is possible to merge all TBRs and the contribution of the coating layers into
one single thermal resistance since the driving frequency that we use to conduct the experiment
(less than 3.3 kHz in this case), is low enough such that the thermal penetration depth is always
much larger than the GeTe films’ thicknesses, and therefore we cannot separate the thermal
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Figure 6.31: Measured thermal resistance versus film thickness for the different GeTe and C-GeTe
samples. Filled circles are data while dashed lines are linear fits to the data. The fitting is performed
using only two thicknesses of each sample. A reference sample has been measured, without any GeTe
film (hence a ”thickness” of 0 nm). Note that the thermal resistance is evaluated using Eq.(6.28) and
Eq.(6.29), and therefore the intercept at zero thickness includes the contribution from TBRs and the
SiN and Al2O3 layers.

contribution from one particular TBR to that of the thermal resistance of one single coating
layer (see the example in Appendix B).

In addition, we have measured the thermal resistance of a reference sample, consisting of
the same silicon substrate that have been used to grow all the samples, with the same SiN
layers, coated with a 60 nm thick Al2O3 layer – without any GeTe layer. The purpose of
such a measurement is to estimate the thermal resistance of the coating layers and some of
the TBRs. Indeed, for the reference sample, the total thermal resistance Rth is, removing the
contribution of the substrate :

Rth = RPt/Al2O3 + RAl2O3 + RAl2O3/SiN + RSiN + RSiN/Si

= RPt/Al2O3 + dAl2O3

kAl2O3

+ RAl2O3/SiN + dSiN
kSiN

+ RSiN/Si

Therefore, by comparing the above expression to Eq.(6.30) there is an additional TBR of
amplitude 2×RGeTe/SiN on the samples with GeTe, that is absent in the reference sample. For
this reason, we did not use the reference sample as a way of extracting the thermal conductivity
using a ”differential” 3ω method, as the amplitude of RGeTe/SiN is unknown, and might not be
negligible. But we did use this measurement to compare it to our previous findings, since we
have measured multilayer systems that are relatively close to this reference sample.

The measured thermal resistances of all films are plotted in Figure 6.31 as a function
of their thickness. We have measured two film thicknesses for the 9%at. C-doped GeTe
(100 and 1000 nm) and undoped GeTe samples (500 and 1000 nm). We estimate both the
thermal conductivity of the films and the contribution from R(TBRs + SiN + Al2O3) by plotting
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Sample k R(TBRs + SiN + Al2O3) R(TBRs + SiN) Comments
(W/m.K) (10−8m2.K/W) (10−8m2.K/W)

GeTe 5.5±1.5 12.4 ±4.0 8.9 ±4.0 unusually high TBRs

C-GeTe (9% at.) 1.44 ± 0.15 7.6 ±2.4 4.1 ±2.4 TBRs comparable to

our previous measurements

C-GeTe (16% at.) 0.95± 0.08 - - k calculated using the

other two TBR measurements

Ref. sample - 5.2 ± 0.4 1.7 ± 0.4 no GeTe/SiN or

(Si+SiN+Al2O3) C-GeTe/SiN interface

Table 6.4: Summary of the extracted thermal properties of the GeTe and C-doped GeTe samples. The
error bars are estimated by assuming a ±10 nm error on the films’ thicknesses, and a ±1 µm error on
the thermometer width.

Rth = f(df) according to Eq.(6.29). We underline (again) that this method assumes that the
thermal conductivity of the films are independent of their thickness, i.e. the phonon mean
free path is assumed to be smaller than the thickness of the films. A recent theoretical study
by Ghosh et al. estimates the phonon mean free path in GeTe to be of the order of ∼15
nm.232 Since all films are thicker than 100 nm, we therefore do not expect to be sensitive to
phonon boundary scattering effects, and thus assume the thermal conductivity of all films to
be independent of their thickness.

The 16%at. C-doped GeTe sample has been measured for only one thickness of the film
(1000 nm) and therefore we use the estimation of R(TBRs + SiN + Al2O3), derived from the GeTe
and 9%at. C-doped GeTe measurements, to infer its thermal conductivity.

6.2.2.3 Results and discussion

Table 6.4 provides a summary of the thermal properties of all samples, extracted using the 3ω

method. The thermal resistance R(TBRs + SiN) is calculated by removing the thermal contribu-
tion of the 60 nm thick Al2O3 film, using our previous measurement of the alumina film (see
Section 6.1.1). Therefore,

R(TBRs + SiN) = R(TBRs + SiN + Al2O3) − RAl2O3 (6.31)

= RPt/Al2O3 + RAl2O3/SiN + dSiN
kSiN

+ RSiN/GeTe + RGeTe/SiN + dSiN
kSiN

+ RSiN/Si

The first important remark concerns the amplitude of TBRs that have been extracted for the
two GeTe and 9%at. C-GeTe samples. Even though it is difficult to quantitatively estimate
the amplitude of TBRs in a straightforward manner, we can nonetheless observe that there
is more than a factor of 2 between the measurements performed on both GeTe and C-GeTe
samples. It is difficult to explain why the C-GeTe sample would have a substantially lower
TBR than a crystalline GeTe. Besides, the large TBRs measured for the GeTe samples are
among the largest we have measured in this work, at 300 K. If we remove the contribution from
the Pt/Al2O3, Al2O3/SiN and Si/SiN TBRs using our measurement of the reference sample,
we still arrive at 2 × RGeTe/SiN ≈ 7.2 × 10−8m2.K/W, which, referring to Figure 1.10 from
Chapter 1 is in the high end of reported TBRs. We emphasize that such high TBRs have been
reported is some experiments241,243, however the nature of the interfaces was dissimilar (SiO2
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instead of SiN, Au as a transducer compared to our Pt one). It is suggested that an additional
experiment should be carried out using a third film with a different thickness in order to further
support these findings, since the unusually large TBR observed from our measurement using
two thicknesses of the GeTe leads to attributing a large thermal conductivity to the GeTe film.
It would be nonetheless of technological interest to have large TBRs in GeTe based interfaces,
for enhanced performances in interface phase change memory devices.236

The measured thermal conductivity of 5.5±1.5 W/m.K for the crystalline GeTe film is in
accordance with several reports showing a room temperature thermal conductivity between 5.9
and 8 W/m.K.240,245 However, other studies have reported a lower room temperature thermal
conductivity of around 3 W/m.K for crystalline GeTe.241–243

Since the electronic contribution ke to the total thermal conductivity ktot = ke + klat can
be different among different samples according to their electrical resistivity, we estimate its
contribution using Wiedemann-Franz law. The Wiedemann-Franz law relates the electronic
contribution to the thermal conductivity to the electrical resistivity and temperature through
the equation : ke = LT/ρe. L = 2.44 × 10−8 W.Ω.K−2 refers to the Lorenz number, ρe (with
units of Ω.m) is the electrical resistivity while T refers to the absolute temperature, in K. From
electrical resistivity measurements carried out by our collaborators Pierre Noe and Valentina
Giordano, we estimate ke = (2.44 × 10−8 × 300)/(4.82 × 10−6) = 1.5 W/m.K. The lattice
contribution to the thermal conductivity is therefore klat = 4 W/m.K.

In comparison, Fallica et al. reported ke = 0.73 W/m.K using their measured electrical
resistivity of ρe = 1.1×10−3 Ω.cm, leading to klat = 2.35 W/m.K. Additionally, first principle
calculations suggest klat to lie within 2.14 - 3.2 W/m.K.232,246 There is no clear understanding
for the higher thermal conductivity observed in our crystalline GeTe film – though the Ge
vacancy content can play a role in the lattice contribution to the thermal conductivity, which
can be different among films according to their growth process.236 Besides, the unusually large
TBR observed from our measurement using two thicknesses of the GeTe film also requires
greater attention, as it leads to attributing a large thermal conductivity to the GeTe film.

We note however that the thermal conductivity of both C-doped GeTe films decreases upon
increased doping content, a behavior also observed in N-doped GeTe241, where introducing
nitrogen was shown to reduce the thermal conductivity of the film by about 40%, when com-
pared to undoped GeTe. The measured electrical resistivity of the GeTe films is increased as
well upon carbon doping, which could be explained by the reduced carrier density that is also
decreased upon carbon doping.

However, the mechanisms responsible for the observed reduction in the thermal conduc-
tivity for C-doped GeTe samples are not straightforward to decipher. A simple additional
scattering process resulting from mass-difference scattering due to the introduction of carbon
might not be the only contributing factor to the observed reduced thermal conductivity of the
C-GeTe film. Indeed, in Figure 6.32, a TEM micrograph of the 9% at. C-doped GeTe sam-
ple, taken by Nicolas Bernier from CEA-LETI, shows crystalline GeTe grains with amorphous
carbon at the grain boundaries. The C-GeTe sample is therefore a nanocomposite made of
nano-crystalline grains and amorphous carbon.

It is plausible that the thermal conductivity reduction stems from the crystalline grain size
itself (10 to 20 nm in diameter), which, similarly to the GeMn nano-inclusions of the previous
section, could effectively scatter mid-wavelength phonons. Besides, it seems reasonable to
assume that the amorphous layer at the grain boundaries impedes thermal transfer across the
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Figure 6.32: Left : TEM image of the 9% at. C-doped GeTe sample. Right : Electron Energy Loss
Spectroscopy image of the same region presented in the left panel. Red color indicates carbon, which is
observed to concentrate at grain boundaries. TEM images taken by Nicolas Bernier from CEA-LETI,
Audrey Jannaud prepared the ultrathin layer for TEM observations.

grains, due to the changes of vibrational features at the crystalline/amorphous interface.100

Moreover, the possibility of a higher vacancy content in C-doped GeTe would increase impurity
(Rayleigh-like) scattering and further reduce the thermal conductivity as well.239

To deconvolve the contribution of the aforementioned possible origins of the observed
thermal conductivity reduction, several additional experiments are envisaged. The first one
is the measurement of a GeTe sample with nano-grains only, i.e. without introducing carbon,
such that the effect of the nano-grains alone can be more rigorously quantified. The second one
is the measurement of these samples on a larger temperature range, as we have suggested for the
GeMn sample, since certain scattering processes are expected to be prevalent according to the
temperature range and relevant dominant phonon wavelength (see Chapter 1.3.3). Indeed, it
would be of great interest to determine the relevant length scales that ultimately dictate phonon
heat transport in this heterogeneous material and to compare it with the nanostructured GeMn
presented in the previous section, as they both have grain (or nano-inclusions) sizes of the order
of 10 to 20 nm.

6.3 Anisotropic thermal conductivity of a sapphire substrate

The last section of this chapter is devoted to an example of application of the 2ω method1,
that have been implemented during this thesis, to estimate the thermal anisotropy ratio of a
thick (700 µm) sapphire substrate. Besides, the method is used to provide an estimation of
the Pt/sapphire thermal boundary resistance.

6.3.1 Sample preparation

The sapphire sample has been purchased from a company (Dupond), and is randomly oriented,
i.e. it is not a c-axis (0001) oriented sapphire substrate (see Figure 6.33). This has been verified
using X-ray diffraction, performed by Jerome Debray and Olivier Leynaud from Institut Néel,
who are gratefully acknowledged. Since the surface of the sample – where the heater and
thermometers are deposited – is not perpendicular to the c-axis of the sample, we can expect
to be sensitive to anisotropic thermal properties of the sapphire sample. Indeed, it has been
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Figure 6.33: Primary planes of a sapphire crystal. Our sample is randomly oriented, i.e. it does
not follow the C, A or R planes as described above, as verified using X-ray diffraction. The
cut plane of our sample is more tilted than the R-plane shown here. Image reproduced from
https://www.sapphire.lt/sapphire/.

reported that any anisotropy in the crystallographic orientation leads to an anisotropy in the
material’s thermal conductivity.1,151

The experiment has been initially designed to be used with a very sensitive thermometer,
based on NbN thermometry. This material shows remarkable properties, in particular, its
temperature coefficient of resistance can reach about 8×10−3 K−1 at room temperature247,248,
in comparison to the platinum film that we have used in all our experiments, showing a TCR
of about 2 × 10−3 K−1, at room temperature. The only disadvantage of this material is its
inherent high electrical resistivity (∼ 4 to 27 mΩ.cm), which makes it difficult to implement
in frequency-dependent experiments such as this one, where parasitic capacitive effects greatly
affect the measurement. Typically, we need ReCω ≪ 1 for parasitic capacitive effects to be
unimportant. Re refers to the electrical resistance (in Ω) of the heater or thermometer and C

refers to the parasitic capacitance (in F) in the electrical circuit (see for instance Eq.(2.11)).
In an attempt to reduce the electrical resistance of the NbN heater and thermometer,

we have reduced their length while keeping their width relatively large. Unfortunately, the
electrical resistances of the NbN heater and thermometers were still of the order of a dozen of
kΩ, and the 2ω measurements suffered from capacitive effects in the electrical circuit, making
us unable to extract reliable thermal properties using this material as a heater/thermometer.
However, we had prepared heater and thermometers made of platinum, with the same design,
in order to compare our hypothetical results, extracted from the different materials making
up the heater/thermometers (i.e. Pt or NbN). In the following, we will therefore present 2ω

measurements that have been made using Pt heater and thermometers, which are relatively
small in length because of the aforementioned reasons. The distance between the voltage
sensing leads is 250 µm, while the full length of the strip is 350 µm. We put emphasis on the
geometry of the heater and thermometers because, as we have discussed in Chapter 4.3, a small
heater or thermometer is not ideal because of 3D end effects. It is therefore not the optimal
design for conducting 2ω or 3ω measurements. Yet, it provides interesting data regarding the
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Figure 6.34: (a), (b) and (c) : SEM images (top view) of the platinum heater and thermometers used
to conduct the 2ω experiments. (d) Schematic (cut view) of the experiment : one line is used as a
heater while we subsequently measure the frequency-dependent temperature oscillation using the other
three thermometers.

effects of pads on 2ω and 3ω measurements.
The thermometers have been fabricated using DC magnetron sputtering, in a similar man-

ner to all previous depositions. Note that they have been deposited directly on the sapphire
substrate (no adhesion layer, nor oxide removal). In Figure 6.34, we provide SEM pictures
of the four platinum lines, used as heater and thermometers, that have been used to conduct
2ω experiments. One line serves as the heater while the other three are used as temperature
sensors. Note that the parts connecting the lines to the pads were made intentionally large
in order to reduce the electrical resistance. The width of each line is 11 µm, and the three
distances between the different pairs are 26, 53 and 78 µm, as shown in Figure 6.34(c). We
also observe on each pad, the silver paste that we use to connect the sensors to the sample
holder using aluminium wires.

6.3.2 2ω measurements

As introduced in Chapter 5, a 2ω experiment consists in producing an oscillating heat source
using a resistive heater, and measuring the resulting temperature oscillation as a function
of frequency, using a nearby temperature sensor. After the calibration of each thermometer,
as shown in Figure 6.35, we have conducted several experiments, using each line as a heater
while the other three are used as temperature sensors. This leads in total to twelve possible
measurements, which are shown in Figure 6.36(a). As the heater-to-thermometer distance dht
is relatively large, the heat power per unit length provided by the heater that we used was
large as well : Pl = 125 W/m, compared to typically 20 W/m for our previous 3ω experiments.
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Figure 6.35: Electrical resistance of the four platinum lines measured as a function of temperature. Each
color represents a different platinum line. Data are fitted to a linear model of the form R = aT + b.

The electrical setup that we have used is the one presented in Figure 5.1 of Chapter 5.
Regarding the DC current passing through the thermometers, we have found that IDC =
100 µA is a good compromise for reading the temperature oscillation with sufficient accuracy
without substantial self-heating (it leads to a dissipated power per unit length of about 12
mW/m). The AC current is provided by a commercial Keithley 6221 current source, while the
DC current comes from the DC voltage source of the lock-in amplifier’s rear panel (model 7230
from Ametek), which goes through a home-made voltage-to-current converter. The voltage
at 2ω is read across the thermometer using the aforementioned lock-in amplifier, which is
locked to the ac current source. For each 2ω measurement, we have performed a standard
3ω sweep as well, as shown in Figure 6.36(b). We observe that the temperature oscillation is
higher than our previous measurements (it reaches about 6 K here compared to about 2 K in
our previous 3ω measurements), since the power per unit length is higher. In Figure 6.36(a),
the agreement between different measurements performed using different heater/thermometer
pairs, but where the heater-to-thermometer distance dht is the same, is satisfying. Typically,
in the frequency range where l > 10λtpd (roughly f > 700 Hz), there is a 3 % discrepancy
between different measurements performed with the same dht, for dht = 53 and 78 µm. For
dht = 26 µm, two measurements give lower temperature oscillations, 10% lower than the other
four.

An important feature that is observed in Figure 6.36, is the discrepancy between the
measurements at low frequency. However, we are confident that the origin of such discrepancies
is the length and shape of the pads used for connecting the thermometers to the sample order
using silver paste, which are different for each metallic line, as can be seen in Figure 6.34.
As we have discussed in Chapter 4.3, if the thermal penetration depth is commensurate to
the length of the heater, the temperature oscillation departs from its ideal behavior (i.e. a
straight line when plotted as a function of ln(ω)). This is what we observe for both 2ω and
3ω experiments at low frequency. Notice in the inset of Figure 6.36(b) how the temperature
oscillation measured at low frequency is lower if the pads are very close to the heating line
(blue filled circles), while it is relatively unaffected if the pads are more distant from the central
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Figure 6.36: (a) Temperature oscillation measured as a function of frequency, in a 2ω configuration.
Since there are four different lines, 12 measurements have been performed accounting for every possi-
ble heater/thermometer pairs. (b) Temperature oscillation measured as a function of frequency in a
standard 3ω configuration, the color of the data match with the color of the transducer with which the
measurement was performed (as shown in inset). The measurements have been performed at 300 K.
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line (green filled circles). A simple explanation is that the large platinum pads act as heat
sinks and therefore reduce the temperature oscillation that is measured by the thermometer.

It could be tempting to try to fit these measurements to the 3D model presented in Chapter
5 (Eq.(5.3b)), however we must underline that the 3D model assumes the heating line to be a
perfect rectangle with a finite length and width. The geometry that we have here is different,
since the full length of each line is not clearly defined, i.e. they are not perfect rectangles.
The distance between the inner voltage leads is, however, well defined, as shown in Figure
6.34(b). We will therefore compare experimental results to a thermal model in an appropriate
frequency range, where end effects due to the shape of the heater and thermometers pads
become unimportant.

6.3.3 Results and discussion

The procedure to infer the thermal anisotropy ratio of the sapphire substrate, kxy = kx/ky,
consists of two steps, as proposed in Ref. 1. In the first step, we conduct a standard 3ω

measurement, which gives a measure of the quantity :√
kxky = −Pl

2π

1
∂Re{⟨T ⟩}
∂(ln(ω))

(6.32)

using the ”slope method” as explained in Chapter 3.1.2. The above expression is correct,
provided that we are in the appropriate frequency range, such that the effect of the finite
thickness of the substrate and the finite length of the heater do not affect the value of the slope
of the temperature oscillation versus logarithm of frequency. Our calculation from Chapter 4.3
(Figure 4.9 in particular) suggests that for the length of our thermometer and the placement of
the voltage leads (l/lh = ((350×10−6)/(250×10−6) = 7/5), the slope method is valid to within
1.5% for λtpd > 10. Using ky ≈ 34 W/m.K based on our previous measurement of the sapphire
substrate (see Table 6.1), it translates to a minimum frequency of f = 720 Hz. Once

√
kxky

is known, we can then perform 2ω measurements and subsequently fit for a single parameter,
kx. Indeed, in a 2ω configuration, since we are insensitive to thermal boundary resistances,
only the volumetric specific heat of the substrate needs to be provided in the thermal model.
For ease of reading, we re-write below the temperature oscillation sensed by the thermometer,
which is located a distance dht away from the heater, if the substrate is considered semi-infinite
:

⟨T ⟩2 lines = Pl

πky

∫ ∞

0

sin2(λb)
(λb)2

cos(λdht)√
kxyλ2 + iω

ρCp

ky

dλ

= Pl

2πb
√

kxky

∫ 2b

0

(
1 − k

2b

)(
K0

(√
iω

ρCp

kx
(dht − k)

)
+ K0

(√
iω

ρCp

kx
(dht + k)

))
dk

(6.33)

where K0 is the zeroth-order modified Bessel function of the second kind. Note that in
Eq.(6.33), the form of the expression in the second line is easier to use since it is directly
a function of

√
kxky and kx, rather than ky and kxy. Since we measure

√
kxky in the previous

step, we can then simply solve for kx because every other parameter is known or has been
measured.

From the 3ω measurements, as shown in Figure 6.36(b), taking the slope of the temperature
oscillation between 720 Hz and 3300 Hz, measured using the four different transducers, we
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obtain four values for
√

kxky ranging from 33.7 to 35 W/m.K – in very good agreement with
our previous results (Table 6.1) that we obtained using longer transducers (700 µm long).
We will take the average value of the four measurements, (

√
kxky)avg = 34.5 W/m.K, to fit

the measured temperature oscillations versus frequency obtained in a 2ω geometry (Figure
6.36(a)), in order to find kx using Eq.(6.33).

In Figure 6.37, we plot as a function of frequency, the measured amplitude of the temper-
ature oscillation, along with the components of the temperature oscillation that are in-phase
and out-of-phase with the heating4, for the twelve possible different measurements. We remind
that these correspond to the magnitude, real and imaginary parts of Eq.(6.33). Black solid
lines in Figure 6.37 represent the best fit of the data to Eq.(6.33).
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Figure 6.37: Temperature oscillation versus frequency measured while heating with one metallic line (red
color in inset), and measuring with the three other lines (green color in inset). For each measurement,
we record the amplitude of the temperature oscillation (blue filled circles) as well as the component of
the temperature oscillation that is in-phase (orange filled circles) and out-of-phase (green filled circles)
with the heating. Solid black lines are the best fit of the data to the magnitude, real and imaginary
parts of Eq.(6.33).

During the fitting process, we impose that the amplitude, in-phase and out-of-phase com-
ponents of the temperature oscillation for each measurement (out of the twelve possible ones)
must fit the amplitude, real and imaginary part of Eq.(6.33) using one and only one value of
kx. Each measurement is fitted that way, and we obtain twelve kx values that best fit the

4These are measured using the R, X and Y outputs of the lock-in amplifier.
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Chapter 6: Thermal conductivity measurements

twelve different measurements.
The kx values obtained using the method just described vary between 35 and 39.3 W/m.K.

We note however that two measurements coming from the same heater-thermometer pair (26
µm apart), give kx ≈ 31 W/m.K. It is the only heater-thermometer pair that leads to kx <√

kxky ↔ kxy < 1. For the ten other measurements, using
√

kxky = 34.5 and 35 < kx < 39.3
leads to a thermal anisotropy of

1.0 < kxy < 1.3

for the sapphire substrate. It is difficult to compare this finding with literature data because
our sample is randomly oriented, but it seems reasonable to assume, for the very same reason,
that the thermal conductivity of the sapphire substrate is indeed anisotropic.

Since we have measured the thermal conductivity of the sapphire substrate in both in-
plane and out-of-plane directions, and we know its specific heat, we can go back to our 3ω

measurement in order to fit for the last unknown of the system : the thermal boundary
resistance at the platinum/sapphire interface, Rplatinum/sapphire. Indeed, in a 3ω geometry, the
temperature oscillation as a function of frequency has the form :

∆T = Pl

πky

∫ ∞

0

1√
kxyλ2 + iω

ρsCps
ky

tanh
(√

kxyλ2 + iω
ρsCps

ky
ds

) sin2(bλ)
(bλ)2 dλ+Pl

2b
Rplatinum/sapphire

(6.34)
and the only unknown is thus Rplatinum/sapphire. Using the measured anisotropy 1.0 < kxy < 1.3,
and quite arbitrarily assigning an uncertainty of ±5% to the substrate’s specific heat, fitting
our 3ω measurements using Eq.(6.34), we finally obtain

5 × 10−9m2.K.W−1 < Rplatinum/sapphire < 2 × 10−8m2.K.W−1

This estimation is in good agreement with the reported Pt/sapphire TBR of 8.7 ± 0.8 × 10−9

m2.K.W−1 measured by Hopkins.249

Overall, the 2ω setup that have been implemented works well and the measurements on
an anisotropic sapphire substrate provide additional informations that cannot be obtain with
the 3ω method alone. Experimentally, we have found that the in-phase and out-of-phase
components of the temperature oscillations measured in a 2ω configuration are in very good
agreement with the thermal model, up to ≈10 kHz in this case. This is much better than all
our 3ω measurements, where the out-of-phase component of the temperature oscillation often
departs from its ideal behavior when plotted versus frequency. This undesired effect has been
reported as well in literature.119 Besides, the setup does not need a differential bridge and is
thus considerably simpler to implement.

We notice however that the uncertainty on the measured thermal anisotropy and, conse-
quently, on the platinum/sapphire TBR are quite large. Fitting twelve measurements to a
thermal model to infer one single parameter with minimum dispersion is difficult to achieve
but is statistically more relevant. To improve the accuracy of the measurement, the first step
would obviously be to increase the length of the heating lines such that 3D end effects are
easily avoided – as in a standard 3ω measurement. Reducing the width of the sensing lines
would prove useful as well, as it would be equivalent to reducing the uncertainty on dht. Ther-
mometers with better temperature coefficient of resistance would undoubtedly improve the
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accuracy of the measurement as well, allowing to measure small temperature oscillation for
thermometers that are far away from the heater, and thus more sensitive to in-plane conduc-
tion.

As a perspective of this work, measuring the thermal anisotropy of sapphire substrates
with other orientations will be an important step in order to comparatively quantify the effect
of crystallographic orientation on the thermal conductivity of bulk materials, and would allow
to rigorously determine the accuracy of the 2ω method for measuring anisotropic thermal
properties.
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Conclusion

Conclusion

Improvement in the overall performances of nanoscale systems is inevitably correlated with
the ability of these systems to efficiently manage the temperature gradients that develop at the
smallest scales. Such a reduction in the characteristic sizes of nanoscale devices significantly
changes the way heat dissipates within these systems, as well as the techniques needed to
measure temperature gradients that develop across short distances. In applications such as
thermoelectricity or phase change memories, a reduction in the ability of materials to conduct
heat is necessary to significantly improve device working performances. The nano-structuration
of materials at scales corresponding to the characteristic length scales defining heat transport,
such as the phonon mean free path or phonon dominant wavelength, is an effective means of
reducing the phononic contribution to the thermal conductivity.

In this thesis, from a thermal measurement standpoint, a particular effort has been made to
describe the measurement method that have been used, the 3ω method, as well as the thermal
models used, whose step-by-step derivation might allow a clearer understanding of the models
that can be found in the literature, for example by using analogies with electrical circuits. A
detailed description of how experimental data are modeled to derive various thermal properties
is also provided, for several multilayer systems.

An additional criterion for using the slope method to determine the thermal conductiv-
ity of bulk materials with minimal error is proposed, based on a 3D analytical model for
multilayer systems. This criterion takes into account the placement of the voltage leads of
the thermometer, its length, the thermal penetration depth as well as the anisotropy of the
studied material. In addition, this 3D thermal model for multilayer systems is useful when
dimensional constraints require the measurement to be performed using small thermometers
(<300 µm long), where the effects of the finite size of the thermometer affect the accuracy of
the measurement. Heat conduction within the thermometer, which is often neglected in most
thermal models in order to simplify data processing, has been studied using a FEM method
that was implemented during this thesis work. In particular, we have quantified for several
types of thermometers the effect of their thermal properties as well as their geometry on the
temperature oscillations that are measured in 3ω experiments.

In addition, the 2ω method for measuring the thermal anisotropy of bulk samples, which
is less popular than the 3ω method and therefore less documented, has been analysed in detail
and an analytical thermal model for multilayer systems has been presented. An important
advantage of this technique is its insensitivity to the thermal boundary resistance between
the heating element and the substrate, which has been explained by analytical means. This
method, combined with the 3ω method, can be used to extract the anisotropic thermal proper-
ties of bulk substrates and also estimate the thermal boundary resistance between the heating
element and the substrate – if the system consists of a heater and thermometer directly de-
posited on the substrate. The implementation of this technique has allowed us to estimate the
thermal anisotropy of a sapphire substrate (750 µm thick), as well as the thermal boundary
resistance at the platinum/sapphire interface. The multilayer model that we have proposed
to model the temperature oscillations in situations where the heating element and the ther-
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mometer are separated by a finite distance, has allowed us to study a particular multilayer
configuration, used in so-called ”heat spreader” measurements, in order to adapt it to 2ω mea-
surements. Like the ”heat spreader” method, we suggest that the 2ω method can be adapted
to measure the thermal conductivity of materials with relatively large thermal conductivities,
with a potentially better sensitivity, when compared to the original ”heat spreader” method,
which is not a frequency-dependent measurement.

Several experimental results have been obtained throughout the study using the 3ω method.
A reduction of more than a factor 3 of the thermal conductivity of a single-crystalline ger-
manium matrix with embedded poly-dispersed spherical crystalline Ge3Mn5 nano-inclusions,
having an average diameter of 16 nm has been reported experimentally. This thermal con-
ductivity reduction from 52 W/m.K in bulk germanium to 15 W/m.K in this nano-structured
germanium material is attributed to enhanced phonon scattering by the poly-dispersed spher-
ical nano-inclusions which dominates over other scattering mechanisms. Such a reduction
of the phononic transport properties observed in this nano-structured material is not suffi-
cient to consider thermoelectric applications based on this material, but provides additional
key elements necessary to understand heat transport in nano-structures from a fundamen-
tal perspective. The measurement of the thermal properties of this state-of-the-art material
was possible thanks to complementary measurements of thermal boundary resistances that
were shown to be the dominant source of thermal resistance in our multilayer system, and
as such could not be neglected. We were able to accurately quantify thermal boundary resis-
tance across Pt/Al2O3/germanium and Pt/Al2O3/sapphire systems, which have highlighted
the impact that these interfacial thermal resistances may have on potential devices based on
Ge/Al2O3 architectures.

In the same way, the chalcogenide GeTe, popular for phase-change memory applications,
was studied in its amorphous and crystalline phases, and for different carbon doping levels.
The thermal properties of this alloy, which are of crucial importance to reduce programming
currents in phase-change memory devices, are significantly impacted by the introduction of
carbon. In that case, we report a thermal conductivity of the order of 1 W/m.K, a reduction of
more than a factor of 5 when compared to undoped GeTe. The clear origin of the mechanisms
responsible for the reduction of the thermal conductivity of carbon-doped GeTe requires further
experiments that would help to better quantify the impact of grain size, and the presence
of carbon, on the thermal properties of this heterogeneous material. Nevertheless, the clear
impact of the introduction of carbon in this alloy on its phononic properties is very encouraging,
also for thermoelectricity applications, given the nano-crystalline nature of the grains which
moderately affect electronic transport properties.

From a broader perspective, the work carried out during this thesis has allowed us to
better understand the various difficulties that can be encountered during thermal conductivity
measurements carried out using electro-thermal methods. Beyond the potential applications
that could result from the reduced thermal conductivity of some of the measured materials, the
variety of materials that have been studied, which differ in their thermal properties (conductive
or thermally insulating) and thickness (from bulk substrates to nanometric layers, including
interfaces), has allowed an in-depth analysis of the 3ω method and its range of applicability.

From the work that has been presented in this manuscript, it seems natural that several
additional measurements would prove useful in providing further insights on the microscopic
mechanisms responsible for the reduction of thermal conductivity, especially for germanium-
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based nano-structures materials, GeMn and GeTe. For GeMn, measuring the thermal conduc-
tivity of this nano-structured material for different size distributions of nano-inclusions will
provide further hints on the importance of the inclusion size, dispersion, and inter-inclusion
distance on the thermal conductivity. Measurements at lower temperatures would also allow to
quantify the effect of inclusions on phononic transport, when the phonon dominant wavelength
starts to be comparable to the size of the inclusions – although this would require reaching
temperatures below one Kelvin, in which case a new type of thermometer would have to be
developed and implemented. For the GeTe material, measurements of the thermal conduc-
tivity of the material with nano-sized grains, but without the introduction of carbon, would
allow us to quantify more precisely the origin of the thermal reduction in this nano-structured
material. Measuring the thermal conductivity of this material as a function of temperature is
also a perspective of this work.
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Version en langue française

L’amélioration des performances globales des systèmes dimensionnés à l’échelle nanométrique
est inévitablement corrélée à la capacité de ces systèmes à gérer de manière efficiente les gra-
dients de températures qui se développent aux plus petites échelles. Une telle réduction des
tailles caractéristiques de ces nano-systèmes change de manière conséquente la façon dont la
chaleur se dissipe au sein de ces systèmes, ainsi que les techniques à utiliser afin de mesurer ces
dissipations de chaleur. Dans des applications telles que la thermoélectricité ou bien les mé-
moires à changement de phase, une réduction de la capacité des matériaux à conduire la chaleur
est nécessaire pour améliorer les performances de ces applications. La nano-structuration des
matériaux à des échelles correspondant aux grandeurs caractéristiques définissant le transport
de chaleur, comme le libre parcours moyen des phonons ou leur longueur d’onde dominante,
est un moyen efficace permettant la réduction de la conductivité thermique de ces matériaux.

Du point de vue de la mesure thermique, un effort particulier a été mené pour décrire
la méthode de mesure qui a été utilisée, la méthode 3ω, ainsi que les modèles thermiques
utilisés, dont la dérivation étape par étape peut permettre une compréhension plus claire des
modèles utilisés dans la littérature, par exemple en utilisant des analogies avec les circuits
électriques. Une description détaillée décrivant la manière dont les données expérimentales
sont modélisées afin d’en tirer diverses propriétés thermiques, est également fournie. Un critère
additionnel permettant d’utiliser la ”slope method” pour déterminer la conductivité thermique
d’un matériau massif avec une erreur minimale, est proposé, basé sur un modèle analytique en
3D pour un système multicouche. Ce critère prend en compte le placement des lignes de tension
du thermomètre utilisé, la longueur du thermomètre, la longueur de pénétration thermique
ainsi que l’anisotropie du matériau étudié. De plus, ce modèle thermique 3D pour des systèmes
multicouches peut s’avérer utile lorsque des contraintes dimensionnelles imposent d’effectuer
la mesure en utilisant des petits thermomètres (<300 µm de long), où les effets de la taille finie
du thermomètre peuvent affecter la précision des mesures. La conduction de chaleur dans le
thermomètre, qui est souvent négligé dans la plupart des modèles thermiques afin de simplifier
le traitement de données, est étudié à l’aide d’une méthode FEM qui a été implémentée au
cours de ces travaux de thèse. En particulier, nous avons quantifié, pour plusieurs types
de thermomètres, l’effet de leurs propriétés thermiques ainsi que de leur géométrie sur les
oscillations de température qui sont mesurées lors des expériences 3ω.

En outre, la méthode dite 2ω permettant de mesurer l’anisotropie thermique d’échantillons
massifs, qui est moins populaire que la méthode 3ω et donc moins documentée, est analysée
en détail et un modèle thermique analytique permettant l’analyse de système multicouches
est présenté. Un avantage important de cette technique est son insensibilité à la résistance
d’interface entre l’élément chauffant et le substrat, que nous expliquons par des moyens an-
alytiques. Cette méthode, combinée à la méthode 3ω, peut être utilisée afin d’extraire les
propriétés thermiques anisotropes de substrats massifs et également estimer la résistance
d’interface entre l’élément chauffant et le substrat. L’implémentation de cette technique nous
a permis d’estimer l’anisotropie d’un substrat de saphir massif (750 µm d’épais), ainsi que la
résistance d’interface platine/saphir. De plus, le modèle multicouche que nous avons proposé
pour modéliser les oscillations de température lorsque l’élément chauffant et le thermomètre
sont séparés d’une distance finie nous a permis d’étudier un système multicouche particulier,
utilisée lors de mesures dites ”heat spreader”, afin de l’adapter à des mesures 2ω. A l’instar

166



de la méthode ”heat spreader”, nous suggérons que cette méthode peut être adaptée afin de
mesurer la conductivité thermique de matériaux conduisant plus fortement la chaleur, avec
une potentielle meilleure sensibilité comparée à la méthode ”heat spreader” originale, qui elle
n’est pas une mesure fréquentielle.

Les travaux effectués lors de cette thèse ont montré expérimentalement une réduction de
plus d’un facteur 3 de la conductivité thermique d’une matrice cristalline de germanium pos-
sédant des inclusions cristallines sphériques de Ge3Mn5 poly-dispersées, ayant pour diamètre
moyen 16 nm. Cette réduction de la conductivité thermique passant de 52 W/m.K dans le
germanium massif, à 14 W/m.K dans ce matériau nano-structuré, est expliquée par un pro-
cessus de diffusion des phonons par ces inclusions sphériques, qui s’ajoute aux processus de
diffusion présents dans les matériaux massifs. Une telle réduction des propriétés de transport
phononique observé dans ce matériau nano-structuré n’est pas suffisante pour envisager des
applications en thermoélectricité basées sur ce matériau, mais apporte des éléments clés néces-
saires à la compréhension du transport de chaleur dans les nano-structures, d’un point de vue
fondamental. La mesure des propriétés thermiques de ce matériau à l’état de l’art a été possible
grâce à des mesures complémentaires de résistances thermiques d’interfaces qui ne pouvaient
être négligées, et que nous avons pu quantifier pour des systèmes Pt/Al2O3/germanium et
Pt/Al2O3/saphir. Ces mesures ont également pu mettre en avant l’impact que ces résistances
thermiques d’interface pouvaient avoir, sur des potentiels dispositifs qui seraient basées sur
des architectures de type Ge/Al2O3.

De la même manière, un matériau chalcogène, GeTe, populaire dans les applications de type
mémoire à changement de phase, a été étudié en fonction de ses phases amorphe et cristalline,
et pour différent pourcentages de dopage à base de carbone. Les propriétés thermiques de cet
alliage, qui sont d’une importance cruciale afin de réduire les courant de programmation dans
des dispositifs de mémoire à changement de phase, sont impactées de manière significative
par l’introduction de carbone, où nous mesurons une conductivité thermique de l’ordre de
1 W/m.K, soit une réduction de plus d’un facteur 5 comparé au GeTe non dopé. L’origine
claire des mécanismes responsables de la réduction de la conductivité thermique du GeTe
dopé au carbone nécessite des expériences complémentaires qui aideraient à mieux quantifier
l’impact de la taille des grains, et de la présence de carbone, sur les propriétés thermique
de ce matériau hétérogène. Néanmoins, l’impact clair de l’introduction de carbone dans cet
alliage sur ses propriétés phononiques est très encourageant, également pour des applications en
thermoélectricité, étant donné le caractère nano-cristallin des grains qui impactent de manière
modérée le transport électronique.

De manière générale, le travail effectué pendant cette thèse nous a permis de mieux ap-
préhender les diverses difficultés que l’on peut rencontrer lors des mesures de conductivité
thermiques effectuées grâce à des méthodes électro-thermiques. Au delà des potentielles ap-
plications qui pourraient découler, ou pas, des conductivités thermiques réduites de certains
matériaux mesurés, la variété des matériaux qui ont été étudiés, qui diffèrent de par leurs
propriétés thermiques (conducteur ou isolant thermique) et leur épaisseur (du substrat massif
jusqu’aux couches nanométriques, en passant par les interfaces), a permis une analyse appro-
fondie de la méthode 3ω et de ses domaines d’applicabilité.

A partir des travaux présentés dans ce manuscrit, il semble naturel que plusieurs mesures
additionnelles apporteraient davantage d’informations quant aux mécanismes microscopiques
responsables de la réduction de la conductivité thermiques, en particulier pour les matériaux
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à base de germanium, GeMn et GeTe. Pour le matériau GeMn, il est évident que mesurer la
conductivité thermique de ce matériau nano-structuré pour différentes distributions de taille
d’inclusions fournirait des éléments essentiels nous renseignant sur l’importance de la taille
des inclusions, de leur dispersion, et de la distance inter-inclusions, sur la conduction ther-
mique. Effectuer des mesures à plus basse température (<100 K) permettrait également de
quantifier l’effet des inclusions sur le transport phononique, lorsque la longueur d’onde dom-
inante des phonons commence à être comparable à la taille des inclusions – bien que cela
nécessiterait d’atteindre des températures inférieures au Kelvin, au quel cas un nouveau type
de thermomètre devrait être développé. Pour le matériau GeTe, des mesures de conductivité
thermique du matériau présentant des grains de taille nanométrique, mais sans introduction
de carbone, nous permettrait de quantifier de manière plus précise l’origine de la réduction
thermique dans ce matériau nano-structuré. Mesurer la conductivité thermique de ce matériau
en fonction de la température est également une perspective de ce travail.

168



Appendices

169





A Derivation of the temperature
oscillation in 3D for multilayer

systems

A.1 3D solution of the temperature oscillation for the 3ω geometry

In 3 dimensions, the heat equation has the form :

ρCp
∂T (x, y, z, t)

∂t
= kx

∂2T (x, y, z, t)
∂x2 + ky

∂2T (x, y, z, t)
∂y2 + kz

∂2T (x, y, z, t)
∂z2 (A.1)

Dividing Eq. (A.1) by ky we get

ρCp

ky

∂T (x, y, z, t)
∂t

= kxy
∂2T (x, y, z, t)

∂x2 + ∂2T (x, y, z, t)
∂y2 + kzy

∂2T (x, y, z, t)
∂z2 (A.2)

Upon writing
T (x, y, z, t) = T (x, y, z)eiωt (A.3)

Plugging Eq.(A.3) in Eq.(A.2), dividing by eiωt and then rearranging, it leads to

ρCp

ky
iωT (x, y, z) = kxy

∂2

∂x2 T (x, y, z) + ∂2

∂y2 T (x, y, z) + kzy
∂2

∂z2 T (x, y, z) (A.4)

We perform two successive Fourier Transforms (FT) of Eq.(A.4). The first FT is performed
with respect to x, in λ-space. It leads to

ρCp

ky
iωT̂ (λ, y, z) = −kxyλ2T̂ (λ, y, z) + ∂2

∂y2 T̂ (λ, y, z) + kzy
∂2

∂z2 T̂ (λ, y, z)

The second one is subsequently performed with respect to z, in ζ-space, leading to

ρCp

ky
iωT̂ (λ, y, ζ) = −kxyλ2T̂ (λ, y, ζ) + ∂2

∂y2 T̂ (λ, y, ζ) − kzyζ2T̂ (λ, y, ζ)

The new equation to solve has now the form :

∂2

∂y2 T̂ (λ, y, ζ) −
(

kxyλ2 + kzyζ2 + ρCp

ky
iω

)
︸ ︷︷ ︸

ξ2

T̂ (λ, y, ζ) = 0

whose solution has the form
T̂ (λ, y, ζ) = C1eξy + C2e−ξy
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Appendix A: Derivation of the temperature oscillation in 3D for multilayer systems

From this step, one can follow the quadrupole method as explained in Chapter 3. The difference
stems from the heat flux which is now assumed as a surface boundary condition, over the surface
of the heater/thermometer. It is defined as

ϕ(x, y = 0, z) =

ϕ0 if − b < x < b and − l/2 < z < l/2

0 otherwise

Its FT is then

ϕ̂(λ, 0, ζ) = ϕ0

∫ l/2

−l/2
eiζzdz

∫ b

−b
eiλxdx = 4ϕ0 sin(λb)

λ

sin(ζ(l/2))
ζ

As in the 2D case, after completing the quadrupole method, the temperature oscillation at the
top surface y = 0 is obtained as

T̂ (λ, 0, ζ) = A

C
ϕ̂(λ, 0, ζ)

for adiabatic boundary condition at the bottom surface, or

T̂ (λ, 0, ζ) = B

D
ϕ̂(λ, 0, ζ)

for isothermal boundary conditions. In the 3D case, the coefficients only differ by replacing γ

of the 2D case by ξ, which is defined above. The coefficientA, B, C and D are computed by
evaluating the following matrix product :(

A B

C D

)
=

n∏
j=1

(
1 R(j−1)j

0 1

) cosh(ξjdj) 1
kjy ξj

sinh(ξjdj)

kjy ξj sinh(ξjdj) cosh(ξjdj)

 (A.5a)

ξj =
√

kjxy λ2 + kjzy ζ2 + iω
(ρjCpj)

kjy

(A.5b)

To retrieve the temperature oscillation in real space, we take its inverse FT twice, and perform
a spatial averaging over both the width 2b and the distance between the voltage leads of the
thermometer, lh. Note that the length lh where the spatial averaging is performed can be
different from the full length of the heater l. It leads to :

⟨T (x, 0, z)⟩avg = 1
2b

1
lh

∫ b

−b

∫ lh/2

−lh/2

{ 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
4ϕ0

sin(λb)
λ

sin(ζ(l/2))
ζ

reiλxeiζzdλ

}
dxdz

where r is the ratio A/C or B/D, depending on the boundary condition at the bottom surface.
This can be reduced to

⟨T (x, 0, z)⟩avg = 1
2b

1
lh

∫ b

−b

∫ lh/2

−lh/2

{ 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
4ϕ0

sin(λb)
λ

sin(ζ(l/2))
ζ

reiλxeiζzdλdζ

}
dxdz

= 1
2b

1
lh

{ 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
4ϕ0

sin(λb)
λ

sin(ζ(l/2))
ζ

rdλdζ

}∫ b

−b

∫ lh/2

−lh/2
eiλxeiζzdxdz

= 1
2b

1
lh

{ 1
(2π)2

∫ ∞

−∞

∫ ∞

−∞

4P

2bl

sin(λb)
λ

sin(ζ(l/2))
ζ

rdλdζ

} 4 sin(λb)
λ

sin(ζ(lh/2))
ζ

= Pl

π2

∫ ∞

−∞

∫ ∞

−∞

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))
ζ2lh

rdλdζ
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A.2 Normalized slope accounting for the heater’s finite length

For a substrate-only system of thickness ds, with adiabatic boundary conditions applied at the
bottom, the complex temperature oscillation read across the thermometer is given by

⟨T ⟩3D = 4Pl

π2lhksy

∫ ∞

0

∫ ∞

0

sin2(λb)
(λb)2

sin(ζ(l/2)) sin(ζ(lh/2))
ζ2ξ tanh(ξds)

dλdζ (A.6a)

ξ =
√

ksxy λ2 + kszy ζ2 + iω
(ρsCps)

ksy

(A.6b)

The normalized slope (NS), defined as

NS = ∂Re{⟨T ⟩3D}/∂ ln(ω)(
−Pl/2πksy

√
ksxy

) (A.7)

which, applied to Eq. (A.6), leads to

NS =
∫ ∞

0

∫ ∞

0

4iq2
√

ksxy

πlhξ3 tanh (dsξ)

1 +
4ds
√

ksxy ξ

e2dsξ − e−2dsξ

 sin(ζ(l/2)) sin(ζ(lh/2))
ζ2

sin2(λb)
(λb)2 dλdζ

(A.8)
where q =

√
ρsCpsω/ksy . For a semi-infinite substrate, ds → ∞, it simplifies to

NS =
∫ ∞

0

∫ ∞

0

4iq2
√

ksxy

πlhξ3
sin(ζ(l/2)) sin(ζ(lh/2))

ζ2
sin2(λb)

(λb)2 dλdζ (A.9)

Motivated by the assumption that the slope of the temperature oscillation versus logarithm
of frequency should only depends on the heater half-width at high frequency where λtpd ≈ b,
in the opposite regime λtpd ≫ b, the normalized slope does not depend on b, and the above
expression can be well approximated by

NS
λtpd≫b

=
∫ ∞

0

∫ ∞

0

4iq2
√

ksxy

πlhξ3
sin(ζ(l/2)) sin(ζ(lh/2))

ζ2 dλdζ (A.10)
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B Sensitivity analysis

Several times in this manuscript, we have performed what is called a ”sensitivity analysis”,
which is becoming prominent in the heat-transfer community, in particular for experimentalists
who ask themselves ”Which parameter should I adjust to make my experiment more sensitive
to this particular quantity?” or ”Should I know this particular quantity very accurately when
fitting my data to my model, or a rough estimate is sufficient ?”. A sensitivity analysis aims
to describe how much model output values are affected by changes in model input values.250

We refer the reader to Ref. 251 for an exhaustive description of all the tools that are available
for conducting a sensitivity analysis.

Since many models used in this thesis for describing the temperature oscillation in 2ω and
3ω experiments are analytic, a convenient way of performing a sensitivity analysis is by means
of partial differentiation.

For a function y = f(x1, ..., xi, ...xn), that does not vary too rapidly as a function of
parameter xi, keeping all parameters – except for xi – constant, Taylor expansion of y around
xi,0 is written (to leading order) as

y(x1, ..., xi, ...xn) ≈ y(x1, ..., xi,0, ...xn) + (xi − xi,0) ∂y

∂xi

∣∣∣∣
xi=xi,0

The change ∆y = y(x1, ..., xi, ...xn) − y(x1, ..., xi,0, ...xn) resulting from a small change ∆xi =
(xi − xi,0) is therefore written as

∆y = ∆xi
∂y

∂xi

∣∣∣∣
x=xi,0

which has the same units as y. The relative change of y resulting from a change ∆xi is written
(in %) as

∆y

y
= ∆xi

y

∂y

∂xi

∣∣∣∣
x=xi,0

= ∆xi

xi

xi

y

∂y

∂xi

∣∣∣∣
x=xi,0

which we write as
∆y

y
= ∆xi

xi
× Sy

xi
(B.1)

Therefore, assuming no correlation between input parameters and for small perturbations of
parameter xi, the sensitivity Sy

xi
of model y = f(x1, ..., xi, ..., xn) to parameter xi is defined

as250

Sy
xi

=
(

∂y

∂xi

)(
xi

y

)
(B.2)
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Figure B.1: Absolute value of the sensitivity of the temperature oscillation to several parameters, for a
film-on-substrate system. The parameters used are as follow : b = 2.5 µm, ks = 35 W/(m.K), (ρCp)s =
3.03 MJ/(m3.K), kAl2O3 = 1.7 W/(m.K), (ρCp)Al2O3 = 2.17 MJ/(m3.K), Rtr/f = Rf/s = 10−8 m2.K/W.
The dashed vertical line indicates the usual maximum frequency that is reached during a 3ω experiment.

The sensitivity of y to parameter xi is evaluated around its typical value xi,0, while all other
parameters are held constant. It is clear from Eq. (B.1) that it is the relative change of y that
is proportional to the relative change of xi through the defined sensitivity Sy

xi
. Therefore, a

sensitivity of Sy
xi

= −5 means that a 1% increase in xi results in a 5% decrease in y.
A sensitivity analysis is therefore useful for comparing the relative contribution of each

input parameter to the resulting output. To better understand how useful it is in practice, we
provide an example of its use, adapted from our work published in Ref. 194.

The expression of the temperature oscillation amplitude for a film-on-substrate system
in a 3ω geometry, including thermal boundary resistances, is derived by solving the 2D heat
equation using Fourier Transforms and subsequent spatial averaging over the transducer width,
as explained in Chapter 3. It leads to :

∆T2ω = Pl

2π

∫ ∞

−∞

sin2(λb)
(λb)2

1
kfγf tanh(γfdf)

(
1 + tanh(γsds)γsks(Rf/s + tanh(γfdf)

kfγf
)
)

(
1 + tanh(γsds)γsks(Rf/s + coth(γfdf)

kfγf
)
) dλ

+ Pl

2b
Rtr/f (B.3a)

γi =
√

kxy,iλ2 + i2ωe
ρiCpi

ki
(B.3b)

It looks rather difficult, and not straightforward to deduce how a change in one parameter
will affect the temperature oscillation. Therefore, a sensitivity analysis of this particular ex-
pression seems adequate. The absolute value of the sensitivity to the Temperature Oscillation
(TO), S∆T2ω

p , is plotted in Figure B.1, for two different thicknesses of the film, and for various
parameters (p) of interest. The substrate has thermal properties of sapphire, and the film
represents amorphous Al2O3.

As explained above, the sensitivity analysis is useful for comparing the relative contribu-
tion of each parameter to the temperature oscillation, at a particular frequency. Plotting its
absolute value provides a quick way of doing such a comparison. Moreover, we find it partic-
ularly useful for pedagogical purposes. For example, in Figure B.1, the absolute value of the
sensitivity is plotted over an intentionally extremely wide frequency range, to illustrate that
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Figure B.2: Real part of the sensitivity of the temperature oscillation to several parameters, for a
film-on-substrate system. The parameters used are as follow : b = 2.5 µm, ks = 35 W/(m.K), (ρCp)s =
3.03 MJ/(m3.K), kAl2O3 = 1.7 W/(m.K), (ρCp)Al2O3 = 2.17 MJ/(m3.K), Rtr/f = Rf/s = 10−8 m2.K/W.
The dashed vertical bar indicates the usual maximum frequency that is reached during a 3ω experiment.

we cannot distinguish between the film/substrate and transducer/film thermal boundary resis-
tances, Rf/s and Rtr/f, on the usual frequency range that is spanned during a 3ω experiment,
if the film is too thin. By increasing the film’s thickness from 17 to 120 nm, the minimum fre-
quency to reach in order to separate the contribution from Rf/s to that of Rtr/f is still beyond
the maximum frequency we reach in our experiments – though it provides some hints on how
to do it.

Figure B.1 also tells us that the thermal conductivity of the substrate, ks, is a very impor-
tant parameter in this experiment, and if it is not the quantity that we are mainly interested
about, then it should be measured carefully such that the other parameters, which we are
interested in measuring (typically the thermal conductivity of the film, kAl2O3), are accurately
extracted from fitting the measured temperature oscillation to the data. The sensitivity to ks
goes to zero when frequency increases, illustrating the concept of thermal penetration depth.
The comparison of the sensitivity to kAl2O3 for two thicknesses is a clear indication that it is
easier to measure a thick film than a thin one, as the sensitivity for the thicker film is always
larger than that of the thin film, over the entire frequency range. Eventually, we also under-
stand that the film’s heat capacity, (ρCp)Al2O3 , is not important in the usual frequency range,
as the sensitivity of the TO to the film’s heat capacity is zero.

Now, if we plot the real part (since it is complex in this particular case) of the sensitivity of
the TO to the parameters, as opposed to its absolute value, we obtain additional informations
about the way changes in parameters influence the TO. This is plotted in Figure B.2. From this
plot, looking at the sign of the sensitivity, we directly understand if a change in a parameter will
decrease or increase the temperature oscillation. For example, by increasing the substrate or
film’s thermal conductivity, we decrease the temperature oscillation sensed by the thermometer.
Similarly, to obtain a higher temperature oscillation, reducing the width of the thermometer
can prove useful.
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It is clear from this example that the sensitivity analysis is a very powerful tool for both
designing an experiment, and for the comparing data to a model after the measurement is
performed.
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C Uncertainty analysis

In the process of measuring a variable, we must remember that we are only seeing a particular
state of this variable through a (hopefully!) tiny window, whose size reflects the finite precision
of our measuring apparatus. The measurement is subsequently compared to a model which,
supposedly, is the best description of the underlying processes experienced by the variable.
It is therefore as important to determine an unknown’s variable quantity through a carefully
designed experiment that it is to provide the range into which the unknown variable is believed
to fall within if the experiment is conducted a large number of times.

In Chapter 6.1.1, the so-called Monte Carlo method has been used to compute the uncer-
tainty of the parameters that were obtained by comparing experimental data to a model. There
are several pros and cons for using this method, which we will discuss hereafter. The pros and
cons of the method are best described when compared to the other alternative that exists to
perform an uncertainty analysis, which is the conventional method of ”partial derivatives”.

C.1 The method of partial derivatives

In this method, a function
y = f(x1, ..., xi, ...xn)

is Taylor expanded, and its standard deviation is given by

σ(y) u

√√√√ N∑
i=1

(
∂f

∂xi

)2
σ(xi)2 + 2

N−1∑
i=1

N∑
j=i+1

∂f

∂xi

∂f

∂xj
σ(xixj)

where higher-order derivative terms are usually neglected. The standard deviation of each
input parameter xi is written as σ(xi), and the second term under the square root reflects the
correlation (if any) between input parameters. From this standard deviation σ(y), one can
infer intervals within which there is a probability P that the mean of repeated measurement
values will fall within the interval y ± αP σ, where αP is defined as the coverage factor, which
depends upon the probability P . It is best practice to specify so-called Confidence Intervals
(CIs) that relate αP to the probability P , as a percentage of data that will fall within the
interval y ± αP σ, if measurements are repeated a large number of times.

Any % CI can be computed, but only a few are customary in the scientific community. The
CI, often regarded as the ”uncertainty” of the measurement, corresponds to a specific value
of αP . For example, there is about 68% confidence that y lies between y ± 1σ (CI of 68%),
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Appendix C: Uncertainty analysis

whereas there is a 95% confidence that y lies within y ± 2σ (CI of 95%). These specific αP

values and percentages arise from the Normal distribution, for which values less than one (two)
standard deviation away from the mean account for 68.27% (95.45%) of the dataset building
the distribution.1

By construction, this method only allows to compute the uncertainty of a model whose
input parameters are ”small” (the Taylor expansion is truncated at first order), and symmet-
rically distributed around their mean. Besides, the standard deviation obtained using the
above-mentioned method is related to a specified CI, only if the resulting error on y is nor-
mally distributed. However, it is perfectly plausible for the resulting error distribution of y

to be non-gaussian, even if all of its parameters (x1, ...xn) have a gaussian distribution, if
the model is non-linear.252 Therefore, it is usually preferred not to use the method of partial
derivatives when the error of the input parameters are large and their probability distribution
asymmetric.

C.2 The Monte Carlo method

The Monte Carlo method finds it relevance in cases where these two conditions are not met,
since it works for both small and large uncertainty, with any shape of the distribution function.
Besides, the computation of partial derivative is not necessary and the correlation between
input parameters is automatically taken into account. However, this comes with a higher
computational cost. The method is promptly described by Anderson253, and we will simply
quote him in the following :

The method is based on repeated calculations of a result, each time having each
input datum changed by a random selection from its error probability distribution.
The element of randomness or chance results in the name of the technique. The
accumulated answers define a distribution which can be used as an uncertainty
distribution. Note that, unlike regression analysis, the ‘best value’ of the result is
not in question. It is given by using the best or mean values of the input data. It
is only the uncertainty of the result which is needed.

A schematic explanation of the method that we have implemented for this work is provided
in Figure C.1. In this example, we apply the Monte-Carlo method to obtain the uncertainty
distribution of the thermal conductivity of the substrate and the thermal resistance of the
films and interfaces, when fitting the measured temperature oscillation (dependent variable)
as a function of excitation frequency (independent variable). Input parameters have all been
measured. The model corresponds to the temperature oscillation sensed in a 3ω experiment as
a function of the transducer’s excitation frequency, for a film-on-substrate system, including
thermal boundary resistances. The unknown fitting parameters are the cross-plane component
of the substrate’s thermal conductivity, ksy , and the thermal resistance of the film and inter-
faces, Rth. The method is described in Ref. 254 p.807, and we followed the thorough tutorial
given in Ref. 152. We also highly recommend the very detailed tutorial on Will Clarkson’s
personal webpage.255

In the following, we describe the steps that we followed to conduct our uncertainty analysis,
as sketched in Figure C.1.

1∫ σ

−σ
(1/

√
2πσ2)e−x2/(2σ)2

dx ≈ 0.68, or 0.95 for integration between ±2σ.
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• Step (1) : the best fit parameters kfit
sy

and Rfit
th are obtained by fitting the model using our

best guess/measured value of each input parameter (P, b, l, ρ, Cp, ksxy ), in the standard
way (least squares). We use Mathematica’s NonlinearModelFitting function, using a
”LevenbergMarquardt” method to perform the fitting, which works well and rapidly.

• – Step (2)(a) : we build a new set of data using kfit
sy

and Rfit
th, and perturbed values

of the input parameters. These perturbed values of the input parameters are ran-
domly drawn from the probability distribution function of each parameter. We use
Mathematica’s RandomVariate[_Distribution] to perform random draws (’_Distri-
bution’ can be any distribution with finite standard deviation). The probability
distribution function can have a large standard deviation and be non Gaussian.
For example, if the measured values of the input parameters are as follow : (P =
20 mW, b = 5 µm, l = 500 µm, ρ = 5.323 g.cm−3, Cp = 0.32 J.g−1.K−1, ksxy = 1),
a random draw might lead to (Pi = 19.5 mW, bi = 5.15 µm, li = 494 µm, ρi =
5.326 g.cm−3, Cp,i = 0.31 J.g−1.K−1, ksxy ,i = 1.02).
Using these perturbed value (Pi, bi, li, ρi, Cp,i, ksxy ,i), and kfit

sy
and Rfit

th, we build a
new {f, ⟨T ⟩} dataset, using the same number of points of the independent variable
(in this example, the frequency f).

– Step (2)(b) : similarly, we perturb each point of this new set, according to the
probability distribution function of the temperature oscillation ⟨T ⟩. For example,
the perturbed value of the previous step (2)(a) might lead to ⟨T ⟩ = 0.95 K (at
a particular frequency), and a random draw – from the temperature oscillation’s
probability distribution function – might give ⟨T ⟩i = 0.98 K. A new set is built this
way : {f, ⟨T ⟩}i.

– Step (2)(c) : we perform a fitting of the synthetic dataset {f, ⟨T ⟩}i, using our best
guess/measured value of each input parameter (P, b, l, ρ, Cp, ksxy ), to obtain a new
set of fitted parameters {ksy ,i, Rth,i}.

• Step (3) : after repeating Step (2) N times (which should be as large as possible), we
have a distribution of {ksy ,i=1, ..., ksy ,i=N} and {Rth,i=1, ..., Rth,i=N}, from which we can
extract statistical indicators, such as confidence intervals.

The method is relatively easy to implement, using pre-built functions available in many
free (python for example) or paid (Mathematica that is used in this work, Matlab, etc.) soft-
wares/programming languages.

After Step (3), we possess a distribution of ksy ’s, from which we extract the confidence
interval of the substrate’s thermal conductivity, presented along its best-fit value. Additionally,
and importantly, we have built the distribution of Rth’s, that will be used subsequently in
order to extract the thermal conductivity of the film. After performing several experiments
on systems with films of increasing thicknesses (see Section 3.2.1), the new model to fit is the
following :

Rth = df

ki
+ Rint (C.1)

where Rth is measured and its probability distribution function has been built. In this model,
df is the independent variable while ki and Rint are sought-parameters. By following exactly
the same steps as described above, we infer the best-fit parameters, along with their probabil-
ity distribution function, of the sought-parameters.
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There is an important assumption which is made when using this method in order to infer
statistical indicators about the best fit parameters. Since it is impossible to know the ’truth-
value’, ktruth

sy
and Rtruth

th , of the unknown parameters – it would require error-free measurements
acquired using infinite-precision apparatus –, we assume that the shape of the probability
distribution ksy ,i − kfit

sy
in our synthetic experiment is nearly the same as the shape of the

’true’ probability distribution ksy ,i − ktruth
sy

(and similarly for the probability distribution of
Rth,i−Rfit

th).254 It is equivalent to say that ”the way in which random errors enter the experiment
and data analysis does not vary rapidly as a function of ktruth

sy
, so that kfit

sy
can serve as a

reasonable surrogate.” Therefore we use and kfit
sy

and Rfit
th for producing each synthetic dataset

in Step (2)(a), instead of using ktruth
sy

and Rtruth
th (which would be impossible).

This way of obtaining an uncertainty estimation of the fitted parameters is particularly
useful in this example, because we do not believe the anisotropy ratio of the thermal conductiv-
ity, ksxy , to follow a normal distribution, in the case where the substrate is made of sapphire.
This assumption stems from the specific crystal orientation of the material, in addition to
separate experiments that we carried out, which were specifically designed to measure the
thermal anisotropy ratio of sapphire. These two aspects suggest that the anisotropy is always
greater than 1, but is very unlikely to be lower than 1. If we assume the anisotropy to be likely
within the range of 1 < ksxy < 1.3, with an expected value of 1.05, an asymmetric probability
distribution function is needed, thus discarding the normal distribution. Importantly, varying
the anisotropy in the proposed range of 1 < ksxy < 1.3 is not considered a ”small perturbation”
(it is about 30% !), and therefore violates the fundamental assumptions of the method of par-
tial derivatives. Among various asymmetric distribution functions, the Lognormal or Pareto
distribution functions can be used in such a scenario.
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The model has the following form, with unkown tting parameters, and known input parameters :

Build new dataset
using perturbed values of the 
input parameters, randomly
drawn from their distribution.

Get         and             by tting the experimental
dataset                        to the model, using the
measured/best guess values of the input
parameters,                                      .

 

Extract statistical parameters by repeating 
Step (2) N times

random draw from distribution

random draw from
distribution

repeat N
 ti m

es

Step (3)

Step (2)

Step (1)

(a)

(b) Build 'synthetic' dataset                      by perturbing the values
of the dependent variable           built in the previous step (a), 
using a random draw from its probability distribution function : 

Get new              and              by tting 
the 'synthetic' dataset                        ,
using                                        as input 
parameters, in the same manner as
Step (1).

(c)

New 'synthetic' dataset #i
Fit to new 'synthetic' dataset #i

Original experiment

Figure C.1: Explanation of the general Monte Carlo method used for determining the uncertainty of
the fitted parameters ksy

and Rth, when fitting the measured temperature oscillation as a function of
frequency in a 3ω experiment.
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D Finite Element Method
implementation of the 3ω

method

If possible, we always try to compare our measurements to analytical descriptions of the
physics and geometry that best represent our model, for extracting unknown parameters. Be-
sides its satisfying and appealing form, an analytical description of a model allows a fast and
computer-efficient analysis of experimental data. However, when the geometry and/or the
physics underlying a process is complex, its analytical description can be cumbersome and
other tools exist to make our life easier. The finite element method (FEM) is a widespread
numerical technique useful for solving partial differential equations that describe a process,
especially for complex geometries. There is a large amount of documentation about the FEM
method that can be found in the literature, such as Refs. 256,257, to which the reader is
referred to for a detailed explanation of the technique.

In a finite element analysis, the geometry of the problem is divided into smaller, simpler
parts that are called finite elements, built in the process of meshing. Each finite-sized element
has its own set of locally approximate equations, which are subsequently recombined into
a global system of equations, whose solution is numerically inferred. Once the geometry,
governing equations of the underlying physics, and boundary conditions of the problem are
set, it is therefore possible to numerically extract a quantity of interest and compare it to
experimental data.

In this work, we have used Mathematica’s FEM framework to run all FEM analysis, which
we will describe hereafter. A detailed tutorial on how to use Mathematica to run a FEM
analysis can be found in Ref. 258, which we followed to implement the heat transfer FEM
analysis for the 3ω geometry.

Similarly to the work of Ramu and Bowers150, who implemented a frequency-domain FEM
formulation of the 3ω method problem, we chose to directly work in the frequency domain
rather than in the time domain for solving the heat equation. We made this choice because,
even though the transient informations about the temperature rise in a 3ω experiment are
rich of informations about the thermal properties of the system, they are never used : experi-
mentally we are only measuring the ”steady-periodic” behavior of the temperature oscillation
when measuring the third harmonic of the voltage, as shown in Figure D.1.

We are therefore only interested in the frequency response of the temperature across the
transducer, when a periodically oscillating heat source is produced within it. Therefore, be-
cause the response in the thermal domain is linear138, periodic Joule heating at frequency ω
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Appendix D: FEM implementation of the 3ω method

t
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0
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Figure D.1: Sketch of the temperature behavior as a function of time, with the transient and steady-
periodic states. When using the 3ω method, we are interested in the steady-periodic behavior of the
temperature, which is the part that we model using FEM. The transient is discarded.

induces temperature oscillation at the same frequency, and we write

T (x, y, z, t) = T (x, y, z)eiωt

which, when plugged into the time-dependent heat equation with volumetric heat source Q0

(in W.m−3),

ρCp
∂T (x, y, z, t)

∂t
= kx

∂2T (x, y, z, t)
∂x2 + ky

∂2T (x, y, z, t)
∂y2 + kz

∂2T (x, y, z, t)
∂z2 + Q0

leads to the heat equation in the frequency-domain

kx
∂2

∂x2 T (x, y, z) + ky
∂2

∂y2 T (x, y, z) + kz
∂2

∂z2 T (x, y, z) + Q0 − ρCpiωT (x, y, z) = 0 (D.1)

that is numerically solved. Since the temperature oscillation is complex, it has a real and
imaginary part (oscillations that are in-phase and out-of-phase with the periodic heating,
respectively), leading to the notation T (x, y, z) = T (x, y, z)Re + iT (x, y, z)Im. When plugged
into Eq.(D.1), and upon separating the real and imaginary parts of the temperature oscillation,
it leads to the following system of coupled equations

kx
∂2

∂x2 T (x, y, z)Re + ky
∂2

∂y2 T (x, y, z)Re + kz
∂2

∂z2 T (x, y, z)Re = −Q0 − ρCpωT (x, y, z)Im (D.2a)

kx
∂2

∂x2 T (x, y, z)Im + ky
∂2

∂y2 T (x, y, z)Im + kz
∂2

∂z2 T (x, y, z)Im = ρCpωT (x, y, z)Re (D.2b)

which is equivalent to Eqs. (22a) and (22b) in Ref. 150. In Mathematica, we numerically
solve Eq.(D.1), which is implicitly separated into a real and imaginary part. We can then
manipulate the numerically-determined quantity T (x, y, z) = T (x, y, z)Re + iT (x, y, z)Im, and
compare it to existing models of the temperature rise for the 3ω geometry.

The FEM can handle both 2D and 3D geometries, though the latter requires greater
computational resources. As the geometry is symmetric about the y-axis (in 2D), we only
model half of the domain for computational efficiency. Since the quantity that we eventually
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0.8 0.9 1.0 1.1

lm

substrate

Figure D.2: (a) Zoomed-in view of the meshing performed for a film-on-substrate system, with a
finite-sized heater/thermometer with volumetric heat generation. On the red boundaries, zero-flux
(Neumann) boundary conditions are applied. (b) Resulting density plot of the real part of the tempera-
ture oscillation at frequency ω = 2ωe, with isotherms displayed as dashed lines. The heating frequency
is 20 Hz. The heater has thermal properties of platinum, the film that of amorphous alumina, and the
substrate represents germanium.

compare with our experimental data is the temperature across the heater/thermometer, the
meshing is particularly refined in this area, as can be seen in Figure D.2(a). In real systems,
the width of the domain is very large in comparison to both the heater width and to the
thermal penetration depth. In practice, we increase the width (x-axis in Figure D.2) of the
geometry until the temperature oscillation does not vary more than about 0.1% of its previously
determined value. The depth (y-axis in Figure D.2) of the larger domain, which is the substrate
in all cases, is adapted to the sample that is modelled, but is not truncated. The reason is that
the finite thickness of the substrate plays an important role when measuring the temperature
oscillation at low frequency. However, the meshing is adapted, as can be seen in Figure D.2(a).
Each layer has its own set of thermal properties that are tuned at will, and importantly, the
volumetric heat source

Q0 = P

2bldtr

is only non-zero within the heater. The result will then depend on the boundary conditions
applied on the outer surfaces of the domain. We either specify the temperature at a bound-
ary/surface, or the flux across it. We apply adiabatic (Neumann) boundary conditions over
all outer surfaces of the domain, representing a perfectly thermally insulated sample, except
at the bottom of the sample, where we apply either isothermal or adiabatic boundary condi-
tions to compare the resulting temperature with analytical models that treat both boundary
conditions. A thermally insulated boundary has no heat flux across it, it is written as :

n⃗ · (k∇T (x, y, z)) = 0 (D.3)

where n⃗ is the normal vector (perpendicular to the given surface/boundary). An isothermal
boundary condition at the bottom of the substrate consists in specifying its temperature :

T (x, y, z)|bottom = T0 (D.4)

We remind that we are only studying the oscillating part of the temperature oscillation, not
the actual DC temperature of the sample. An isothermal boundary condition with T0 = 0
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Figure D.3: Visualization of the 3D meshing of a substrate, with a heater/thermometer on top. Only
one fourth of the symmetric domain is built for computational efficiency.

represents a heat sink that is perfectly coupled the substrate. It does not mean that the actual
absolute temperature is 0 K.

A 2D density plot, as displayed in Figure D.2(b), is useful for pedagogical purposes, but,
as mentioned above, the only quantity that we can actually compare to experimental mea-
surements is the temperature oscillation across the heater/thermometer, which we calculate
as the spatial average of the temperature oscillation across both the width and thickness of
the thermometer :

⟨T ⟩2D = 1
dtr

1
b

∫ b

0

∫ dtr

0
T (x, y)dxdy (D.5)

The double integration is performed numerically, and the real and imaginary part of the
temperature oscillation obtained in this way are then compared to analytical models.

A 3D model of the 3ω geometry has been built as well, for comparing the analytical
expression of the temperature oscillation that we have obtained analytically in 3D. Similarly to
the 2D model, we increase the length of the model until convergence is reached. A 3D meshing
of the substrate-only system is shown in Figure D.3. Because the domain and temperature
response are symmetric around both x and z axis, only one fourth of the domain is built.
The complex temperature oscillation numerically obtained is then averaged across the width,
length and thickness of the thermometer :

⟨T ⟩3D = 1
(l/2)

1
dtr

1
b

∫ (l/2)

0

∫ b

0

∫ dtr

0
T (x, y, z)dxdydz (D.6)

Note that the averaging can be performed as well between the inner voltage leads (lh) instead
of the full length of the heater/thermometer l.
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E LabView program for
automatic 3ω experiments run

as a function of temperature

A non-negligible part of this thesis was spent setting-up the experiment, and making it run
automatically. A program has been written using LabView, allowing to automatically record
diverse informations (voltage, phase, temperature, etc.), adjust the differential bridge at each
temperature to run 3ω experiments, and estimate the temperature oscillation amplitude using
MATLAB within one interface. The front panel of the program is shown below.
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