
HAL Id: tel-03188067
https://theses.hal.science/tel-03188067

Submitted on 1 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Layer-specific multiscale mechanical modeling of arterial
structures with evolving fiber configurations

Mohsen Nakhaei

To cite this version:
Mohsen Nakhaei. Layer-specific multiscale mechanical modeling of arterial structures with evolving
fiber configurations. Other. Université de Lyon, 2020. English. �NNT : 2020LYSEM014�. �tel-
03188067�

https://theses.hal.science/tel-03188067
https://hal.archives-ouvertes.fr


N◦d'ordre NNT : 2020LYSEM014

THÈSE DE DOCTORAT DE L'UNIVERSITÉ DE LYON

opérée au sein de

École des Mines de Saint-Étienne

École Doctorale N◦ 488

(Sciences, Ingénierie, Santé)

Spécialité de Doctorat: Mécanique et Ingénierie

par

Mohsen Nakhaei

Sujet de thèse :

LAYER-SPECIFIC MULTISCALE

MECHANICAL MODELING OF

ARTERIAL STRUCTURES WITH

EVOLVING FIBER

CONFIGURATIONS

Soutenue le 10/07/20 devant le jury composé de

Rapporteurs : Prof. Christian Hellmich Technische Universität Wien

Dr. Daniel George (HDR) University of Strasbourg

Examinateurs : Prof. Katherine Yanhang Zhang Boston University

Prof. Giuseppe Vairo University of Rome Tor Vergata

Prof. Pierre Badel University of Lyon

Co-directeur : Dr. Claire Morin

Directeur : Prof. Stéphane Avril



ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier PR Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

CAMEIRAO Ana MA(MDC) Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA(MDC) Génie industriel Fayol

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

BERGER-DOUCE Sandrine PR1 Sciences de gestion FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

DUTERTRE Jean-Max MA(MDC) CMP

EL MRABET Nadia MA(MDC) CMP

FAUCHEU Jenny MA(MDC) Sciences et génie des matériaux SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Sciences de la Terre SPIN

GAVET Yann MA(MDC) Sciences des Images et des Formes SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA(MDC) Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NAVARRO Laurent CR CIS

NEUBERT Gilles FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 Génie des Procédés SPIN

O CONNOR Rodney Philip MA(MDC) Microélectronique CMP

PICARD Gauthier MA(MDC) Informatique FAYOL

PINOLI Jean Charles PR0 Sciences des Images et des Formes SPIN

POURCHEZ Jérémy MR Génie des Procédés CIS

ROUSSY Agnès MA(MDC) Microélectronique CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

SANAUR Sébastien MA(MDC) Microélectronique CMP

SERRIS Eric IRD FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR0 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy,  Maître de recherche

SCIENCES DE LA TERRE B. Guy,  Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT  D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant 

INFORMATIQUE O. Boissier, Professeur 

SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur 

GENIE INDUSTRIEL N. Absi, Maitre de recherche

MICROELECTRONIQUE Ph. Lalevée, Professeur 

M
is

e 
à 

jo
u

r 
:  

3
0

/0
8

/2
0

1
8



Acknowledgements

First of all, I would like to express my great gratitude to my advisors, Prof.

Stéphane Avril and Dr. Claire Morin, for their continuous support and guidance

during my Ph.D. They gave me the great opportunities to work on various

interesting topics such as large deformation continuum micromechanics and

nonlinear �nite element methods. Their insightful comments were very inspiring

and challenging, which enriched this thesis.

I also gratefully acknowledge the opportunity of working at Multi-Scale Tissue

Biomechanics Lab at Boston University. I would like to express my great

appreciation to Prof. Katherine Yanhang Zhang for giving me the opportunity

to obtain a deeper perspective of experimental tests and become familiar with

developing di�erent constitutive modelings.

I am also grateful to the rest of the wonderful committee members, Prof.

Christian Hellmich, Dr. Daniel Georg, Prof. Pierre Badel, and Prof. Giuseppe

Vairo, for their insightful comments and suggestions to this thesis work. I have

been greatly inspired by the discussion with them.

I would like to thank my lab mates at École des Mines de Saint-Étienne and

also at Boston University, too many to list here, who have been excellent sources

of inspiration and knowledge.

And lastly, I would like to thank my family for all of their supports, without

their unconditional love, encouragement, and spiritual support, this would not

have been possible.

Thank you all.



Contents

List of Figures 10

List of Tables 12

General Introduction 9

1 Introduction - State of the art 13

1.1 Introduction to arterial structure and mechanics . . . . . . . . . . . 14

1.1.1 Multiscale Structure of arteries . . . . . . . . . . . . . . . . 14

1.1.2 Macroscopic approach to the mechanics of arteries . . . . . 15

1.1.3 Structure-mechanics relations . . . . . . . . . . . . . . . . . 16

1.2 The tunica adventitia . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.1 Role of the �brous networks in the adventitia morphology . 17

1.2.2 Load-induced morphological changes . . . . . . . . . . . . . 17

1.3 The tunica media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 The media morphology . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Load-induced morphological changes . . . . . . . . . . . . . 18

1.4 The tunica intima . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 The elementary constituents . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Collagen �bers . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Elastin �bers . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.3 Smooth muscle cells . . . . . . . . . . . . . . . . . . . . . . 22

1.5.4 Other constituents . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 State of the art on arterial constitutive models . . . . . . . . . . . 23

1.6.1 Hyperelastic models . . . . . . . . . . . . . . . . . . . . . . 24

1.6.2 Multi-scale approaches . . . . . . . . . . . . . . . . . . . . . 25

1.7 Limits of the existing models and overview of the thesis . . . . . . 26

2



CONTENTS 3

2 Theoretical framework: continuum micromechanics 29

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Representative volume element and assumptions of scale separation 31

2.3 Momentum balance and kinematic compatibility . . . . . . . . . . 32

2.3.1 Hashin boundary condition in large strain continuum

micromechanics - strain rate average rule . . . . . . . . . . 32

2.3.2 Momentum balance and stress average rule - Hill's lemma . 33

2.4 Thermodynamic foundation of the microscopic hypo-elastic

constitutive relation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Mori-Tanaka estimation of strain rate and spin concentration

tensors from auxiliary Eshelby problems . . . . . . . . . . . . . . . 36

2.5.1 Eshelby problem as a �rst estimate of the concentration

tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Mori-Tanaka estimate for �ber-reinforced composites . . . . 40

2.6 Algorithmic treatment of �ber kinematics . . . . . . . . . . . . . . 41

2.6.1 Motivation for time discretization . . . . . . . . . . . . . . . 41

2.6.2 Concentration equations . . . . . . . . . . . . . . . . . . . . 42

2.6.3 Local constitutive relations . . . . . . . . . . . . . . . . . . 42

2.6.4 Fiber reorientation and stress average rule . . . . . . . . . . 43

2.7 Extension to stress-driven load cases . . . . . . . . . . . . . . . . . 45

2.8 Extension to multi-scale approach for hierarchical structure of

heterogeneous materials . . . . . . . . . . . . . . . . . . . . . . . . 47

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Multi-scale modelling of the arterial adventitia 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Micromechanical representation of the adventitia . . . . . . . . . . 53

3.2.1 Modelling the adventitia at the scale of a few hundreds of

micrometers . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.2 Modelling the collagen bundles of adventitia at the scale of

a few micrometers . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Determination of the parameters of the model . . . . . . . . . . . . 57

3.3.1 Mechanical properties of elementary constituents . . . . . . 57

3.3.2 Volume fraction of elementary constituents . . . . . . . . . 58

3.3.3 Orientation of the di�erent �ber networks . . . . . . . . . . 60

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



CONTENTS 4

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Tensile test on the arterial adventitia . . . . . . . . . . . . . 62

3.4.2 Tensile test on artery . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.2 Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Sensitivity analysis on load increment size . . . . . . . . . . 67

3.5.4 Sensitivity analysis on the collagen orientation and fraction

at both scales . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.5 Contribution of the matrix sti�ness . . . . . . . . . . . . . . 70

3.5.6 Contribution of elastin in the mechanical response . . . . . 71

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Multi-scale modelling of the arterial media 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Micromechanical representation of media . . . . . . . . . . . . . . . 74

4.2.1 At the scale of a few hundreds of micrometers . . . . . . . 74

4.2.2 At the scale of a few micrometers . . . . . . . . . . . . . . . 75

4.3 Determination of the parameters of the model . . . . . . . . . . . . 76

4.3.1 Mechanical properties of elementary constituents . . . . . . 76

4.3.2 Volume fraction of elementary constituents . . . . . . . . . 77

4.3.3 Orientation of the di�erent �ber networks . . . . . . . . . . 79

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Tensile test on the arterial media . . . . . . . . . . . . . . . 81

4.4.2 Tensile test on artery . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Layer-speci�c structural model of artery: �nite element

implementation 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Position of the problem . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Numerical strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Temporal discretization . . . . . . . . . . . . . . . . . . . . 94

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



CONTENTS 5

5.3.3 Simplifying assumptions for solving the problem . . . . . . 94

5.3.4 Finite element discretization . . . . . . . . . . . . . . . . . . 95

5.3.5 Algorithm for constitutive model implementing . . . . . . . 96

5.4 FEM solver validation test cases . . . . . . . . . . . . . . . . . . . 97

5.4.1 Validation with a commercial FEM code: Linear elasticity . 97

5.4.2 Validation for a thin-wall cylinder by comparison with an

equivalent problem on a RVE . . . . . . . . . . . . . . . . . 99

5.5 Application to the arterial in�ation . . . . . . . . . . . . . . . . . . 102

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

General Conclusion 115

A Eshelby auxiliary tensor 116

B Image processing 119

Bibliography 138

Abstract

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



List of Figures

1.1 The hierarchical structure of arteries. (A) macroscopic artery of

a mouse, taken from [74]; (B) the three layers of arterial wall,

the adventitia tunica (A), the tunica media (M) and the intima

tunica (I) from [112], by means of an electron micrograph; (C)

the adventitia is made of an arrangement of collagen bundles (red)

and elastin �bers (green) taken from [16], by means of multiphoton

microscope; (D) the media is made of an arrangement of lamellae

sheets and interlamellar space [100]; (E) the collagen bundles are

made of an arrangement of collagen �brils, as taken from [139], by

means of electron microscopy; (F1) & (F2) respectively show the

collagen and elastin �bers in the structure of lamellae sheets; (G)

the structure of interlamellar space contains elastin, collagen �bers

and SMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Non linear mechanical response under a uniaxial tensile test of a

rabbit carotid artery. Collagen �bers are initially crimped (I), then

start decrimping (II), and are stretched at large stresses (III). . . . 16

1.3 The structure of rat aorta media [139]. (a) The transverse section

of media, magni�cation ×1, 500. (b) Close view of elastic lamellae,

magni�cation ×11, 000. . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Internal elastic lamina of rat aorta, magni�cation ×3, 000 [139]. . . 20

1.5 Elastin �bers of rat aortic adventitia, magni�cation ×5, 500 [139]. . 22

2.1 Microstructure of the most outer layer (called adventitia) of a

rabbit carotid artery, imaged under a multiphoton microscope [82]. 31

2.2 Representative volume element of the arterial adventitia layer. . . . 31

2.3 Inhomogeneity and Eshelby inclusion problems. . . . . . . . . . . 37

6



LIST OF FIGURES 7

2.4 Representative Volume Element of heterogeneous materials

subjected to homogeneous strain rate as the velocity vector at the

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 De�nition of the two Euler angles θ and φ. . . . . . . . . . . . . . 44

2.6 Numerical algorithm of homogenization scheme. . . . . . . . . . . . 45

2.7 Representation of the di�erent RVEs in a multi-scale

homogenization scheme. . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Representative Volume Elements for heterogeneous materials

exhibiting a hierarchical microstructure. . . . . . . . . . . . . . . . 48

2.9 Numerical algorithm for the multi-scale homogenization scheme. . . 50

3.1 Multiphoton microscopic imaging of �bers in the adventitia [82].

(A) collagen bundles; (B) elastin �bers. . . . . . . . . . . . . . . . 54

3.2 Elastin �ber and �broblast (F) in aortic adventitia of rat,

magni�cation ×1, 700 [140]. . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Orientation of a �ber in the arterial wall. θ represents the �ber

inclination with respect to the axial direction of artery, and φ its

direction in the radial-circumferential plane. . . . . . . . . . . . . . 55

3.4 Micromechanical RVEs representing the adventitia. (A) RVE

representing the adventitia tissue scale; (B) RVE representing the

collagen bundles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Cross section of a collagen bundle of a mouse adventitia [137]. . . . 58

3.6 Representative straight form and crimped form of collagen bundle

and corresponding angles. . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Macroscopic mechanical response of adventitia, (a) human

coronary artery according to [63] and (b) human thoracic aorta

according to [147] . The free parameter θb−ad and R2 are reported

for each tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 (a) Macroscopic mechanical response of adventitia at high stress.

(b) Evolution of �ber angles under uniaxial tension in the

adventitia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 Evolution of �bril angle under uniaxial tension . . . . . . . . . . . 64

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF FIGURES 8

3.10 Comparison of the mechanical response of the model with the

experiment carried out by [82] for whole carotid artery sample,

taking into account the media as a linear elastic material with

di�erent Young's moduli Emed, 0.1, 0.5 and 1 MPa. . . . . . . . . 65

3.11 Comparison of the �ber kinematics with the experiments carried

out by [82] for whole carotid artery sample. . . . . . . . . . . . . . 66

3.12 Increment size of load step in simulation of uniaxial tension on

arterial adventitia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.13 The impact of global orientation of collagen bundles on the

mechanical response (a) and �ber kinematics (b) of arterial adventitia 69

3.14 The impact of orientation of collagen �brils on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia . . . . . 69

3.15 The impact of collagen bundles volume fraction on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia . . . . . 70

3.16 The impact of collagen �brils volume fraction on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia . . . . . 70

3.17 The impact of the matrix sti�ness on the mechanical response (a)

and �ber kinematics (b) of arterial adventitia . . . . . . . . . . . . 71

3.18 The impact of the elastin fraction on macroscopic mechanical

response of adventitia. . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Multiphoton microscopic imaging of �bers in the media. (A)

collagen �bers; (B) elastin �bers [82]. . . . . . . . . . . . . . . . . . 75

4.2 Scanning electron micrographs of a tangentially cut surface of the

media in the rat aorta. The elastin �brils and smooth muscle

cells (M) covered the surface of the elastic lamellae, magni�cation

×3, 500 [140]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Micromechanical RVEs representing the media. (A) RVE

representing the tissue scale; (B) RVE representing the

interlamellar space; (C) RVE representing the lamellae. . . . . . . . 77

4.4 Orientation of a �ber in the arterial wall. θ represents the �ber

inclination with respect to the axial direction of artery, and φ its

direction in the radial-circumferential plane. . . . . . . . . . . . . . 79

4.5 Macroscopic mechanical response of the media human coronary

artery according to [63], (a) θc−med = 85◦. (b) θc−med = 85◦&70◦. . 82

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF FIGURES 9

4.6 Evolution of �ber angles under uniaxial tension in the media. . . . 82

4.7 Comparison of the modeled mechanical response and �ber

kinematics with the experiments [82] for di�erent carotid artery

samples. φc−med = 50◦ for all samples. . . . . . . . . . . . . . . . . 84

4.8 Primary micromechanical RVEs representing the media. (A)

RVE representing the tissue scale; (B) RVE representing the

interlamellar space; (C) RVE representing the lamellae; (D) RVE

representing the elastic lamellae. . . . . . . . . . . . . . . . . . . . 85

4.9 Primary model macroscopic mechanical response of the media

human coronary artery according to [63]. . . . . . . . . . . . . . . . 86

4.10 The impact of di�erent parameters of the media model on the

circumferential mechanical response (a) out of axial-circumferential

plane inclination angle of medial collagen φc−med (b) in

axial-circumferential plane inclination angle of the medial collagen

θc−med (c) fraction of collagen in the media fc−med (d) fraction of

elastin in the media fel−med (e) fraction of lamellae in the media

flam (f) di�erent proportions of collagen fraction in the medial

lamellae. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1 (a) The geometry of the problem. (b) Crosssection of cylinder. . . 93

5.2 Imposed boundary condition on the geometry accounting for

symmetry conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 (a) Radial displacement, (b) radial stress, (c) circumferential stress,

and (d) axial stress of the nodes across the thickness of the cylinder

as computed by our implemented FEM and by Abaqus for a linear

elastic material. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Axial stress of the nodes across the thickness of the cylinder as

computed by linearized Abaqus code and developed FEM solver

for a linear elastic material. . . . . . . . . . . . . . . . . . . . . . . 99

5.5 The adventitia RVE is remotely subjected to traction forces at its

remote boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 The inner radius-pressure curve observed in mesh convergence

study of a cylinder having a thickness of H =0.01mm. . . . . . . . 101

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF FIGURES 10

5.7 Comparing the inner radius-pressure curve from FEM and

analytical solution of a thin wall cylinder with di�erent wall

thicknesses (H =0.01mm, H =0.025mm, and H =0.05mm),

considering �ve elements across the thicknesses. . . . . . . . . . . . 102

5.8 Schematic of in�ation test for an artery. . . . . . . . . . . . . . . . 103

5.9 In�ation of an artery regarded as a thick-walled cylinder made of

adventitia, elastic lamellae and interlamelar space. The initial inner

radius of Ri = 0.17 mm, and an outer radius of Ro = 0.22 mm. . . 104

5.10 Comparing FE model with in�ation experiment on the mouse renal

artery[35]. FEM model (A) : θb−adv = 39◦ and φc−med = 50◦.

FEM model (B): θb−adv = 40◦ and φc−med = 33◦. FEM model (C):

θf−b = 43◦, fc−la = fc−in = 5% and ff−b = 15%. . . . . . . . . . . 106

5.11 Comparing FE model with in�ation experiment on the mouse renal

artery[35]. FEM model (D) : θb−adv = 40◦, φc−med = 32◦, θf−b =

43◦, and fc−la = fc−in = ff−b = 15%. . . . . . . . . . . . . . . . . 107

5.12 (a) Radial displacement, (b) radial stress, (c) circumferential stress,

and (d) axial stress at the center of the elements across the

thickness of the artery. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.13 Fiber reorientation at the center of elements across the thickness of

the artery at three internal pressures. (a) The orientation of �bers

in the axial-circumferential plane. (b) The orientation of �bers in

the radial-circumferential plane. . . . . . . . . . . . . . . . . . . . . 109

5.14 Fibril reorientation at the center of elements across the thickness

of the artery at three internal pressures. . . . . . . . . . . . . . . . 110

A.1 Ellipsoidal inclusion with principal axess of a, b, and c. . . . . . . 117

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



List of Tables

1.1 Overview of the range of values for the Young's modulus of collagen

�bril and �ber found in the literature . . . . . . . . . . . . . . . . 21

1.2 Overview of the range of values for the Young's modulus of elastin

�ber found in the literature . . . . . . . . . . . . . . . . . . . . . . 22

2.1 Numerical algorithm for the constitutive model under imposed

stress conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Mechanical parameters of the adventitita micromechanical model. . 58

3.2 Collagen �bril volume fraction within a collagen bundle . . . . . . 58

3.3 Reported values for the volume fraction of collagen bundles in the

adventitia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Reported values for the volume fraction of elastin �bers in the

adventitia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 The waviness and corresponding local angle of collagen bundles . . 61

3.6 The summary of arterial adventitia model parameters and

constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Review of the volume fraction of elastin �bers in the media . . . . 78

4.2 Review of the volume fraction of collagen �bers type I and III in

the media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Review of the volume fraction of SMCs in the media . . . . . . . . 79

4.4 Summary of the medial model parameters and constants. . . . . . 81

4.5 Obtained model parameters after calibration for each carotid artery

sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 Numerical algorithm for �nite element implementation. . . . . . . 97

11



LIST OF TABLES 12

5.2 Summary of the model parameters and constants. . . . . . . . . . 105

B.1 The collagen and elastin �bers orientation and volume fraction from

image analysis of adventitia stacks' images. . . . . . . . . . . . . . 120

B.2 The collagen and elastin �bers orientation and volume fraction from

image analysis of media stacks' images. . . . . . . . . . . . . . . . . 120

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



Nomenclature

Variable or symbol Description

circ circumferential direction

rad radial direction

RVE representative volume element

SMC smooth muscle cell

A fourth-order strain rate concentration tensor

A∞ fourth-order eigenstrain rate-to-spin concentration tensor

in the Eshelby inhomogeneity problem

ai half length of the principal axes of the ellipsoidal inclusion

C fourth-order hypo-elastic sti�ness tensor

C0 fourth-order hypo-elastic sti�ness tensor of the matrix of

the Eshelby problem

CI fourth-order hypo-elastic sti�ness tensor of the inclusion

of the Eshelby problem

Chom homogenized fourth-order hypo-elastic sti�ness tensor

Ceqr fourth-order equivalent "sti�ness" tensor of phase r

accounting for the objective rate

D dissipation of the system

D1 intrinsic dissipation of the system

D2 thermal dissipation of the system

d second-order microscopic Eulerian strain rate tensor

D second-order macroscopic Eulerian strain rate tensor

D0 applied second-order macroscopic Eulerian strain rate

tensor in the Eshelby problem



LIST OF TABLES 2

Variable or symbol Description

d characteristic length of the heterogeneities

d2 characteristic length of the heterogeneities of the lower

scale representative volume element

dr second-order microscopic averaged Eulerian strain rate in

phase r

dM second-order microscopic averaged Eulerian strain rate in

the matrix phase

dt time increment

E Young's modulus

er, eθ, eφ spherical base vectors

f volume fraction

f second-order microscopic deformation gradient

F second-order macroscopic deformation gradient

G Gibbs thermodynamic potential

I fourth-order identity tensor

I second-order identity tensor

J volumetric part of the second-order identity tensor

K deviatoric part of the second-order identity tensor

k bulk modulus

l characteristic length of the representative volume element

l2 characteristic length of a lower scale representative

volume element

L characteristic length of the arterial structure or of the

applied loading

LEsh fourth-order eigenstrain rate-to-velocity gradient

concentration tensor in the Eshelby problem

M denotes the matrix phase

N number of inclusion phases

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF TABLES 3

Variable or symbol Description

n outward-pointing unit normal vector

ni orthonormal basis of vectors de�ning the inclusion

orientation in the Eshelby problem

P �ber straightness

Pext power of external traction forces

P int power of internal forces

PI fourth-order Hill tensor

q outward heat �ux vector

R fourth-order strain rate-to-spin concentration tensor

Rr fourth-order strain rate-to-spin concentration tensor of

phase r

REsh fourth-order eigenstrain rate-to-spin concentration tensor

in the Eshelby problem

R∞ fourth-order eigenstrain rate-to-spin concentration tensor

in the Eshelby inhomogeneity problem

s entropy per unit mass (also called speci�c entropy)

SEsh fourth-order eigenstrain rate-to-strain rate concentration

tensor in the Eshelby problem

T absolute temperature

t traction forces

t time

v microscopic velocity �eld

x microscopic location vector

δij Kronecker delta

∂Ω boudary surface of the RVE

η microscopic second-order eigenstrain rate tensor

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF TABLES 4

Variable or symbol Description

θ The co-latitudinal angle between inclusion and the global

coordinate system

µ shear modulus

ν Poisson's ratio

ν0 Poisson's ratio of the matrix of the Eshelby problem

ρ mass density

σ microscopic second-order Cauchy stress tensor

Σ macroscopic second-order Cauchy stress tensor

φ The longitudinal angle between inclusion and the global

coordinate system

ψ Helmholtz free energy per unit mass

Ω second-order, skew symmetric, spin tensor

ω second-order, skew symmetric, microscopic velocity

gradient

Ω volume of the RVE

ΩI volume of the ellipsoidal inclusion

ωi aspect ratios of the ellipsoidal inclusion

cos cosine function

D(.)/Dt = ˙(.) material derivative of quantity (.)

div divergence operator

grad gradient operator

tan tangent function

tan−1 arc tangent function (inverse of the tangent function)

tr trace operator

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF TABLES 5

Variable or symbol Description

T transpose operator

: double contracted product

. simple contracted product

4 objective rate

|.| norm of quantity

⊗ dyadic product

< . > spatial average operator over the RVE

Superscripts Description

low ... of the lower scale RVE

up ... of the upper scale RVE

Subscripts Description

b− ad ... of the collagen bundle phase in the adventitia RVE

c− in ... of the collagen phase in the interlamellar space RVE

c− la ... of the collagen phase in the lamellae RVE

el − ad ... of the elastin phase in the adventitia RVE

el − in ... of the elastin phase in the interlamellar space RVE

el − la ... of the elastin phase in the lamellae RVE

f − b ... of the �brils in the collagen bundle RVE

M ... of matrix phase

m− ad ... of the matrix phase in the adventitia RVE

m− b ... of the matrix phase in the collagen bundle RVE

m− in ... of the matrix phase in the interlamellar space RVE

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



LIST OF TABLES 6

Subscripts Description

m− la ... of the matrix phase in the lamellae RVE

M, I ... of the matrix phase of the lower scale RVE attached to the

phase I of the upper scale RVE

r ... of phase r

r, I ... of phase r of the lower scale RVE attached to the phase I of

the upper scale RVE

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



General Introduction

Arteries are part of the cardiovascular system which are responsible for circulating

blood as a �uid which contains the oxygen and nutrients all over the body. The

mechanics of arteries is an important topic as the artery is subjected to stresses

occurring over a cyclic load (heartbeat), and it is a complex multiphase material

containing active elements involved in large deformation. At present, there is still

a pressing need to understand better how the mechanical properties of the artery

are related to its structure, which can undergo millions of cycled distensions and

still maintain a functional blood circulation. Therefore, there has been important

e�orts in mechanics to provide better insights regarding arterial structure-function

relationships, the pathophysiology, and treatment of arterial diseases [64].

The mechanical properties of arteries originate from physical mechanisms

(such as �ber rearrangement and elasticity) and mechanobiological e�ects (such

as cell mechanosensing mediating tissue remodeling), which occur within the

microstructure, and these aspects are signi�cantly altered in cardiovascular

diseases [67]. The signi�cant role of the microstructure morphology and

composition on arterial response motivated us to develop a detailed multi-scale

model of the arterial wall. In this study, we developed a model, which accounts for

the universal patterns across di�erent scales in the two mechanically signi�cant

layers of arteries, namely the adventitia and the media, and introduce the

di�erent constituents making up the tissue at these di�erent scales as phases

into representative volume elements (RVE). Each phase volume fraction and

morphology, as well as its ability to undergo load-driven rotations, were identi�ed

from literature and post-processing of multiphoton microscopic images [82]. The

framework of �nite strain continuum micromechanics [95] was employed in an

incremental approach to compute the stress, strain, and phase reorientations, at

each load increment. Within the adventitia, two scales were modeled to account
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for both the �bril decrimping (through the progressive �bril reorientation at

the lowest scale) and bundle realignment (at the macroscopic scale). Within

the media, a stack of lamellae and interlamellar space was modeled, and the

progressive reorientation of the collagen and elastin �bers were accounted for, all

reorientation mechanisms being the source of the nonlinear response of the tissue.

We organized this thesis as follows:

• Chapter 1 presents background on arterial mechanics and structure as well

as an introduction of the constitutive models. We described the structure

of di�erent layers of an artery at di�erent scales, namely: tissue level

(macroscopic), �ber level (microstructure), and �bril level (nanostructure).

The main focus was on structure-mechanics relation and load-induced

microstructural changes as well as the elementary constituents. The chapter

ends with an introduction to the constitutive models of arterial tissue and

an overview of the thesis.

• Chapter 2 describes the theory of continuum micromechanics under large

deformation. The thermodynamic formulation of the local hypoelastic

constitutive relation was developed, and the homogenization techniques

were explained. We construct algorithms for applying di�erent homogeneous

boundary conditions, namely strain rate and stress-driven load on the

boundary of RVE. Then, the method was extended to a multi-scale approach

for the hierarchical structure of heterogeneous materials.

• Chapter 3 explains the application of the developed framework to model

the arterial adventitia layer. The physical parameters of the model were

determined through image processing and literature review. Then, we

validated the model for the adventitia layer against the experimental data of

the individual layer. A sensitivity analysis was performed to all parameters

of the model which exhibit variations in the literature, and we studied their

impact on mechanical response and microstructure evolution. Next, the

ability of the model to capture the mechanical response of the whole artery

as well as �ber evolution were investigated considering the arterial media

layer as isotropic linear elastic.

• The extension of the model to the arterial media layer is described in

Chapter 4. The physical parameters of the model were measured using
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image processing, and some were determined from the literature. The

experimental data of the media layer was employed to validate the arterial

media layer individually. Then, we performed a sensitivity analysis to study

the impact of the parameters on the model. Finally, we combined the

two micromechanical model of the arterial media and adventitia layers to

perform a uniaxial simulation of the whole artery and validate the model

against the experimental results both in terms of mechanical response and

microstructure evolution.

• The �nite element implementation of the model and its application to the

structural model of arteries are presented in Chapter 5. An updated

Lagrangian �nite element formulation was employed due to the incremental

nature of the developed multi-scale constitutive model. First, we validated

the �nite element solver for a thin wall cylinder. Then, an internal pressure

simulation was performed on the artery to study the mechanical response

and microstructure evolution over time.
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Introduction Générale

Au sein du système cardiovasculaire, les artères sont responsables de la circulation

du sang, qui apporte l'oxygène et les nutriments dans tout le corps. Il est de ce

fait primordial de maintenir l'intégrité mécanique des artères, et pour cela de

caractériser la réponse mécanique des artères lorsque celle-ci est soumise aux

contraintes liées au �ux sanguin généré par les battements du c÷ur. Pour

résister à ces fortes sollicitations, le tissu artériel est un matériau complexe,

hétérogène, pouvant supporter de grandes déformations. À l'heure actuelle, il

est toujours important de mieux comprendre comment les propriétés mécaniques

de l'artère sont liées à sa microstructure, qui peut supporter des millions de

sollicitations cycliques tout en maintenant une circulation sanguine fonctionnelle.

Des e�orts importants ont été déployés dans le domaine de la mécanique pour

mieux comprendre les relations entre la structure et la fonction des artères, la

physiopathologie et le traitement des maladies artérielles [64].

Les propriétés mécaniques des artères proviennent de mécanismes physiques

(tels que le réarrangement et l'élasticité des �bres) et d'e�ets mécanobiologiques

(tels que le remodelage des tissus par les cellules mécanosensibles), qui se

produisent au sein de la microstructure, et ces aspects sont sensiblement modi�és

dans les maladies cardiovasculaires [67]. Le rôle signi�catif de la morphologie et

de la composition de la microstructure sur la réponse artérielle nous a motivé

à développer un modèle multi-échelle détaillé de la paroi artérielle. Dans

cette étude, nous avons élaboré un modèle qui tient compte de la morphologie

tissulaire à di�érentes échelles dans les deux couches mécaniquement importantes

des artères, à savoir l'adventice et la média. Les di�érents constituants qui

composent le tissu à ces di�érentes échelles sont introduits en tant que phases

dans des volumes élémentaires représentatifs (VER). Les fractions volumiques et

la morphologie de chaque phase ont été identi�ées à partir de la littérature et du
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post-traitement d'images microscopiques multiphotoniques [82]. Le cadre de la

micromécanique des milieux continus en transformations �nies [95] a été utilisé

dans une approche incrémentale pour calculer la contrainte, la déformation et

les réorientations de phase, à chaque incrément de charge. En ce qui concerne

l'adventice, deux échelles ont été modélisées pour tenir compte à la fois de la

mise sous tension progressive des �brilles (grâce à une réorientation progressive

des �brilles à l'échelle la plus basse) et du réalignement des faisceaux de �bres (à

l'échelle mésoscopique). En ce qui concerne la média, un empilement de lamelles et

d'espace interlamellaire a été modélisé, et la réorientation progressive des �bres de

collagène et d'élastine a été prise en compte, tous les mécanismes de réorientation

étant à l'origine de la réponse non linéaire du tissu. Nous avons organisé cette

thèse de la manière suivante :

• Le chapitre 1 présente le contexte de la mécanique et de la structure

artérielle ainsi qu'une introduction des modèles constitutifs. Nous avons

décrit la structure des di�érentes couches d'une artère à di�érentes échelles,

à savoir : le niveau du tissu (macroscopique), le niveau des �bres

(microstructure) et le niveau des �brilles (nanostructure). L'accent a été

mis sur la relation structure-mécanique et les changements microstructuraux

induits par la charge, ainsi que sur les constituants élémentaires. Le chapitre

se termine par une introduction aux modèles de comportement du tissu

artériel et un aperçu de la thèse.

• Le chapitre 2 décrit la théorie de la micromécanique du milieu continu dans

le cadre des grandes transformations. La formulation thermodynamique

de la relation de comportement hypoélastique locale est présentée, et

les techniques d'homogénéisation sont expliquées. Nous construisons des

algorithmes pour appliquer di�érentes conditions aux limites homogènes, à

savoir la vitesse de déformation et la charge induite par la contrainte sur

les bords du volume élémentaire représentatif. Ensuite, la méthode a été

étendue à une approche multi-échelle pour prendre en compte la structure

hiérarchique des matériaux hétérogènes.

• Le chapitre 3 présente la modélisation de la couche d'adventice artérielle

dans le cadre développé. Les paramètres physiques du modèle ont été

déterminés par le traitement d'images et la revue de la littérature. Ensuite,
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nous avons validé le modèle pour la couche adventitielle par rapport aux

données expérimentales récoltées par des tests sur adventice seule. Une

analyse de sensibilité a été e�ectuée pour tous les paramètres du modèle qui

présentent des variations dans la littérature, et nous avons étudié leur impact

sur la réponse mécanique et l'évolution de la microstructure. Ensuite, la

capacité du modèle à capturer la réponse mécanique de l'artère entière ainsi

que l'évolution des �bres ont été étudiées en considérant la média comme

isotrope linéaire élastique.

• L'extension du modèle à la média est décrite au chapitre 4. Là

encore, les paramètres physiques du modèle ont été mesurés à l'aide du

traitement d'images, et certains ont été déterminés à partir de la littérature.

Les données expérimentales de la média ont été utilisées pour valider

individuellement la réponse mécanique de cette couche du tissu. Ensuite,

nous avons e�ectué une analyse de sensibilité pour étudier l'impact des

paramètres sur le modèle. En�n, nous avons combiné les deux modèles

micromécaniques de la média et de l'adventice pour e�ectuer une simulation

uniaxiale de l'artère entière et valider le modèle par rapport aux résultats

expérimentaux tant en termes de réponse mécanique que d'évolution de la

microstructure.

• La mise en ÷uvre du modèle par éléments �nis et son application à un

modèle de structure des artères sont présentées au chapitre 5. Une

formulation éléments �nis lagrangienne actualisée a été utilisée en raison

de la nature incrémentale du modèle constitutif multi-échelle développé.

Tout d'abord, nous avons validé le solveur éléments �nis pour un cylindre à

paroi mince. Ensuite, une simulation de la pression interne a été réalisée sur

l'artère pour étudier la réponse mécanique et l'évolution de la microstructure

dans le temps.
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1.1 Introduction to arterial structure and mechanics

The pathogenesis of many arterial diseases implies dysfunction and loss of the

organization of the complex microstructure and components [120, 77, 102, 72, 83].

As prominent examples, structural changes due to aging, atherosclerosis, and

aneurysm result in change of arterial mechanical properties [89, 120].

1.1.1 Multiscale Structure of arteries

Arterial tissues exhibit a vast diversity and variability among organs and species

[149]. Still, the fundamental hierarchical organization of elastic arterial tissues

has remained largely unchanged across most arterial tissues [145, 33], and can be

described by means of the following morphological patterns:

• The macrostructure, with a characteristic length of 100 µm to 1 mm,

features the three concentric layers of elastic arteries, namely the intima,

the media, and the adventitia [145], see Fig. 1.1(B).

• Zooming out pieces of any of these three layers reveals that all layers host

various biological cells: �broblasts in the adventitia (with a characteristic

length of 20-30 µm), smooth muscle cells (SMC) in the media (with a

characteristic length of 50 µm) [112, 18], and endothelial cells in the intima

(with a characteristic length of 50 µm).

• The entire domain outside these cells is called the extracellular matrix.

The extracellular matrix is made of structural macromolecules, among

which collagen and elastin are arranged hierarchically in networks of �brils

and �bers. The extracellular matrix appears as a composite with a

characterisitic size of 50-200 µm, see Fig. 1.1(C). Within this extracellular

space at this scale, di�erent families of �bers (mainly collagen and elastin

�bers) can be distinguished. Note that in the adventitia layer the collagen

�bers are arranged in the form of collagen bundles (see Fig. 1.1(C) in red).

• Finally, the elementary constituents can be distinguished, namely the

collagen �brils, the elastin, and the ground substance.

The precise organization of each layer will be detailed in subsequent sections.
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Figure 1.1: The hierarchical structure of arteries. (A) macroscopic artery of a

mouse, taken from [74]; (B) the three layers of arterial wall, the adventitia tunica

(A), the tunica media (M) and the intima tunica (I) from [112], by means of an

electron micrograph; (C) the adventitia is made of an arrangement of collagen

bundles (red) and elastin �bers (green) taken from [16], by means of multiphoton

microscope; (D) the media is made of an arrangement of lamellae sheets and

interlamellar space [100]; (E) the collagen bundles are made of an arrangement

of collagen �brils, as taken from [139], by means of electron microscopy; (F1) &

(F2) respectively show the collagen and elastin �bers in the structure of lamellae

sheets; (G) the structure of interlamellar space contains elastin, collagen �bers

and SMC.

1.1.2 Macroscopic approach to the mechanics of arteries

Historically, di�erent test benches have been developed to characterize the

mechanical properties of arteries; they include uniaxial tensile tests on arterial

strips [82, 63, 116, 144, 21, 10, 30, 154], planar biaxial tensile tests [38, 75, 160],
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bulge-in�ation tests [115, 86, 15], and tension-in�ation tests [123, 46]. They all

reveal a highly non linear mechanical response of arterial tissue, as exempli�ed

in Fig. 1.2, [6, 29]. More precisely, at low applied stresses, the arterial tissue

can be easily stretched, resulting in a very low stretch-stress slope. When

the applied stress is increased, the tissue progressively sti�ens, resulting in an

increasing stretch-stress slope, whose microstructural origin is discussed in next

section. Another interesting feature of the mechanical behavior of arteries is its

anisotropy, although no clear conclusion could be drawn from the di�erent papers

[14, 82, 81, 22, 100]: it appears that the global anisotropy of arteries depends on

the tissue location and on the species.

I II III

Figure 1.2: Non linear mechanical response under a uniaxial tensile test of a rabbit

carotid artery. Collagen �bers are initially crimped (I), then start decrimping (II),

and are stretched at large stresses (III).

1.1.3 Structure-mechanics relations

This highly non linear mechanical behavior follows from progressive changes in

the arterial morphology: �bers in the tissue are crimped in the unloaded state; by

applying a mechanical load, �bers become progressively stretched (see Fig. 1.2).

It is widely accepted that the elastin �ber network bears the load when the

latter is small [129, 149]. At larger loads, the progressive recruitment of collagen

bundles in the adventitia allows them to bear the load and prevent the arteries

from overdistension. Changes in the arterial morphology induce variations in the

arterial sti�ness [54].
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1.2 The tunica adventitia

This paragraph focuses on the description of the extracellular matrix of the tunica

adventitia from a mechanical point of view.

1.2.1 Role of the �brous networks in the adventitia morphology

Two main constituents are known to play an important role in adventitia

mechanics, namely the collagen bundles and the elastin �bers, which can be

tracked by means of multiphoton microscopy, see Fig. 1.1(C) [16, 162, 123, 82].

The latter technique indeed reveals the local orientations of collagen and elastin

�bers. First, several studies showed the very limited radial inclination of the �ber

networks within the adventitia [114, 123]. We therefore choose to neglect it also

in the sequel. Second, while elastin �bers are mainly oriented in the longitudinal

direction, the orientation of collagen bundles in the unloaded con�guration is more

complex to determine due to crimping. Several contributions state that collagen

bundles are preferentially aligned along the longitudinal directions [138, 20, 26],

while others opt for a diagonal orientation (in the longitudinal-circumferential

plane) [19].

1.2.2 Load-induced morphological changes

The adventitia is characterized by important load-induced morphological changes.

The latter have been the topic of several studies, see e.g. [123, 19, 22]. They

underline the impressive rearrangement capabilities of the collagen bundles:

while highly crimped and apparently disorganised in the unloaded con�guration

[100, 114, 28], the collagen bundles are progressively recruited, i.e. they unfold,

straighten, and progressively align towards the load direction [50, 12]. These

features can be observed in uniaxial tension [82], biaxial tension [22, 81], and

bulge-in�ation tests [15], although the biaxial character of the applied load limits

the reorientation e�ects [14]. These two reorientation processes of collagen bundles

can also be quanti�ed [17, 123, 22, 160, 82, 81]; two theories are mainly debated:

(i) the reorientation of collagen bundles follows an a�ne kinematics, i.e. the

apparent rotation of the �bers follows from the stretching of the tissue, while the

�bers are �rmly embedded in the matrix; (ii) the reorientation kinematics is larger

than the a�ne kinematics and �bers have the ability to shear the surrounding
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matrix to rotate. While the �rst theory is a good approximation for restricted

deformation (such as the physiological deformation) [22, 82, 81], the non-a�ne

kinematics cannot be neglected for larger deformation ranges [82]. Conversely,

elastin �bers exhibit only limited load-induced orientation changes [17, 19, 82].

Finally, the preferential longitudinal orientation of the adventitial �ber networks

explains the observed anisotropy of the adventitial tissue, namely: the adventitia

is sti�er in the longitudinal direction than in the circumferential one [63, 147].

1.3 The tunica media

1.3.1 The media morphology

The tunica media is made of an arrangement of several medial lamellar units,

see Fig. 1.1(D) [24, 100]. Each lamellar unit consists in a row of overlapping

SMCs surrounded on the lower and upper sides by two concentric elastic lamellae

(see Fig. 1.3(a)). More precisely, the elastic lamellae are made of a dense

network of circumferentially-oriented elastic �bers [32, 133] (see Fig. 1.3(b)).

They have large, round fenestrations, which serve as anchorages for SMCs [28].

Circumferentially-oriented, wavy collagen bundles run parallel to the elastic

lamellae [24, 100, 133, 117, 57]. Between these elastic lamellae, the interlamellar

space is made of SMCs. SMCs have an elongated shape, about 100-200µm of

length and 5-10µm width [66], which display a radial tilting of about 20◦ and

are mainly circumferentially oriented [18, 100]. Along the SMC, type III collagen

�brils contribute to the SMC cohesion and anchorage on the lamellae [24]. Thick

radial elastin struts provide cohesion by bridging the lamellae layers together

[28, 133, 79]. Finally, thin elastin radial �bers connect the SMC to both lamellae

[110, 28].

1.3.2 Load-induced morphological changes

Several studies showed that lamellae of the media tend to be crimped in the

unloaded con�guration, while the load application leads to their progressive

uncrimping, see e.g. [153, 157]. The SMCs also undergo a load-induced

reorientation [18]. Still, reorientations occurring in the media are less pronounced

than the ones occurring in the adventitia [22]. Besides, the preferred

circumferential orientation of the medial �ber networks explains why the media is
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(a) (b)

Figure 1.3: The structure of rat aorta media [139]. (a) The transverse section of

media, magni�cation ×1, 500. (b) Close view of elastic lamellae, magni�cation

×11, 000.

sti�er in the circumferential direction than in the longitudinal one [100, 63, 147].

1.4 The tunica intima

The tunica intima is the inner layer of the arterial wall. The surface close to

the lumen is covered by endothelial cells. From a mechanical point of view, the

endothelial cells are sensitive to shear stresses applied by the blood �ow on the

arterial wall. The endothelial cells respond to this mechanical signal through the

reorganization of their actin �lament structure [101]. When subjected to high

shear stresses, the endothelial cells are stretched along the blood �ow direction,

and the actin �laments are observed around the cell nucleus [101]. Furthermore,

the endothelial cells active Nitric oxide (NO) pathway as an endothelium-derived

relaxing factor which a�ects on SMCs [71].

A dense elastin layer, called the internal elastic lamina (see Fig. 1.4), separates

the endothelial cells and the tunica media. Scanning electron microscopy and

transmission electron microscopy studies revealed that elastin �bers are mostly

longitudinally oriented in internal elastic lamina, while, in the media, the elastin

�bers are mostly circumferentially oriented to resist the circumferential stress

generated by blood pulsation [32].
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Figure 1.4: Internal elastic lamina of rat aorta, magni�cation ×3, 000 [139].

1.5 The elementary constituents

1.5.1 Collagen �bers

Collagen is one of the main elementary and most abundant constituent of

biological tissues such as bone, tendon, lung, skin, or arteries. Its main function

is to provide structural stability to the tissues [141, 156]. There are more than 28

types of collagen, among which �bril-forming collagens such as types I and III play

a major role in the structural mechanics of human tissues [141, 48]. Many studies

focused on characterizing the mechanical properties of type I collagen molecules

or of arrangements within �brils or larger structures of this protein, see Table 1.1

for more details. When tested at the molecular scale or in the �brillar dried state,

collagen exhibits a Young's modulus in the range of a few GPa. At the �brillar

scale, in the wet state, the Young's modulus falls to a few hundreds of MPa.
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Young's modulus E [MPa] Specimen & experiment Reference

2 - 200
Achilles tendon �brils under atomic force microscopy

di�erent aqueous and ethanol environments
[48]

62 Turkey tendon under tensile test [127]

100 The Achilles tendon of rats under tensile test. [10]

100 - 800
Bovine Achilles tendon �brils under atomic force microscopy

hydrated collagen �brils
[141]

350 - 650
hydrated collagen �brils of Rat tail tendon

tensile test
[73]

410 - 1310
hydrated collagen �brils of Dermis of sea cucumber

tensile test
[126]

430
hydrated collagen �brils in a bovine Achilles tendon

tensile test
[121]

1000 - 3900
hydrated collagen �brils of Bovine Achilles tendon

bending experiment by atomic force microscopy
[155]

1700 - 2700
air-dried collagen �brils of Rat tail tendon

tensile test
[73]

2000 - 7000
Bovine Achilles tendon �brils under atomic force microscopy

an-hydrated collagen �brils
[141]

3750 - 11500
hydrated collagen �brils of Rat tail tendon

atomic force microscopy
[150]

Table 1.1: Overview of the range of values for the Young's modulus of collagen

�bril and �ber found in the literature

The mechanical properties of type III collagen are di�erent from the ones

of type I collagen. According to our knowledge, the only investigation reporting

mechanical properties for type III collagen �brils relates to human placenta tissue.

More precisely, atomic force microscopy on collagen �brils type I and type III from

human placenta was performed by [2] in the hydrated state in a phosphate bu�ered

saline solution. They reported Young's modulus for type I collagen �brils ranging

from 600 kPa to 1.5 MPa and for type III collagen �brils ranging from 100 kPa

to 300 kPa [2].

1.5.2 Elastin �bers

Another main elementary component of arterial tissue is elastin (see Fig. 1.5),

which provides its elasticity to arterial tissue; elastin also ensures that arteries

can undergo several million deformation cycles without appreciable fatigue [51].

Regarding the mechanical characterization of elastin, the elastic modulus of intact

puri�ed elastic �bers from aortas was reported to be 0.3 MPa [10, 55], while the

water-swollen, single elastin �ber taken from a bovine ligamentum nuchae [1]
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has a Young's modulus up to 1.2 MPa. According to Gundiah et al. (2007),

the di�erence in Young's moduli could be explained by the method for elastin

extraction [51], the autoclaving method, as used in Aaron and Gosline (1981),

providing higher sti�ness values than alkali-treated elastin, as proposed by Burton

(1954), see Table 1.2 for more details.

Figure 1.5: Elastin �bers of rat aortic adventitia, magni�cation ×5, 500 [139].

Elastin �ber E [MPa] Specimen & experiment Reference

0.24 - 0.7 elastin �bers of rat skin [104]

0.3 Puri�ed aorta [10]

0.4 - 1.2
5-8 µm diameter, water-swollen

Bovine ligamentum
[1]

0.6 ligamentum nuchae [6]

Table 1.2: Overview of the range of values for the Young's modulus of elastin

�ber found in the literature

1.5.3 Smooth muscle cells

The smooth muscle cells are active constituents of the arterial tissue: they can

contract or relax in response to mechanical and/or chemical stimuli, which leads

to corresponding changes in the arterial diameter. Thus, the mechanical behavior

of the smooth muscle cells change depending on the environment [98, 65]. In

the relaxed con�guration, SMCs have a long and thin shape, which provides

a large surface, and an ellipsoidal nucleus, representing about 5% of the total

SMC volume. Contraction implies an important shortening of the SMC which is

recovered upon relaxation [100]. This active property arises from the presence of
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a dense network of actin-myosin �laments in their cytoplasm. Thanks to their

properties, smooth muscle cells are responsible for regulating the rapid stress

development in the artery as well as for sustaining the imposed stress [113, 111].

SMCs are oriented circumferentially with an inclination of about 20◦ in the radial

direction [100]. The tensile sti�ness of smooth muscle cells harvested from rat

thoracic aortas ranges from 10 kPa in the relaxed condition to 100 kPa in the

contracted state [98]. In other study the Young's modulus of young and old

monkeys were measured by [161] as 4 kPa for young samples and 25 kPa for old

samples.

1.5.4 Other constituents

These previously described main constituents are embedded in a soft ground

substance, containing water, other cells, and proteins such as proteoglycans

and glycosaminoglycans. Some mechanical properties of arteries such as

viscoelasticity, permeability, and homeostasis have been shown to be related to

these molecules [151].

1.6 State of the art on arterial constitutive models

The art of describing the physical behavior of materials through mathematical

formulation according to the physical concepts and experimental observation

is called constitutive modeling. A powerful constitutive model plays an

important role in the predictivity of structural models. Computational models

of biological tissue along with the experimental work accelerated our analysis

about di�erent organs to improve and speed up the clinical approaches. Recently,

the development of numerical simulations increased dramatically to simulate

di�erent pathologies in order to explain, investigate, and predict the behavior

of a pathology. These numerical models assist clinical trials in a rapid

and low-cost way, which would reduce the required for expensive experiments

[119, 146, 78, 69, 42]. However, these experiments remain an essential key to

validate the model's assumptions. Finally, the validated model can be used

to address questions that cannot be solved experimentally at this moment or

treat the pathology in a patient-speci�c manner. Additionally, these models may

enable the investigation in a clinical setting when a physician decides whether
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or not a drug or a surgical procedure should be administered to a patient [60].

The main focus here is to develop arterial constitutive models, which are able to

predict the elastic mechanical behavior of the tissue, although arterial tissue also

exhibits inelastic behavior such as viscoelasticity, damage as well as remodeling

and growth.

1.6.1 Hyperelastic models

Over the last decades, researchers have developed diverse models employing the

framework of hyperelasticity to predict the mechanical behavior of arteries and to

relate tissue structure to its mechanical functions [61, 131, 19, 18, 16]. These

models are computationally e�cient and precisely reproduce the macroscopic

mechanical responses. However, most models remain phenomenological and do

not address physical mechanisms and mechanobiological e�ects occurring within

the microstructure of arteries or link these to the observed macroscopic mechanical

responses [45, 62, 84].

Hyperelastic material models are based upon a potential function called strain

energy density ψ that physically represents the mechanical energy stored in the

body per unit volume of mass. In order to satisfy the objectivity requirement

the strain energy density is written as a function of the right Cauchy-green

deformation tensor ψ(CCC), (wherebyCCC = FFF TFFF and FFF is the deformation gradient).

The thermodynamical requirements for a hyperelastic material where free energy

is equal to strain energy yield the relationship between stress and strain.

Moreover, the hyperelastic materials exhibit zero dissipation under deformation,

where the dissipation can be derived through Clausisus-Duhem expression [118]

as,

D = πππ :
1

2

∂CCC

∂t
− ∂ψ

∂t
(CCC(t)) = 0 (1.1)

with πππ, the Piola-Kirchho� stress tensor reads as, πππ = 2∂ψ(CCC)
∂CCC . In order to use the

hyperelastic models for �brous soft tissues, in which the �bers are embedded in a

soft ground substance; the strain energy density function is usually decomposed

into two parts, the contribution of the matrix and the contributions of the �bers.

Where the matrix strain energy represents the isotropic behavior ψiso and �bers

strain energy is associated with anisotropic response ψani. The �bers in the

tissue introduced by planar discrete �ber families (n=2) with direction e1
0 and e2

0
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in the reference con�guration. Thus, in general, the strain energy function for the

hyperelastic model of the arterial wall with two collagen families can be written

as follows,

ψ(CCC, e1
0, e

2
0) = ψiso(CCC) + ψani(CCC, e

1
0, e

2
0). (1.2)

Based on invariant theory, a polynomial invariant basis is de�ned for the isotropic

part ψiso(CCC) as Iiso = {I1, I2, I3} and for anisotropic part ψani(CCC, e1
0, e

2
0) the

invariant basis is Iani = {I1, I2, I3, I4, I5, I6, I7, I8}, which leads to an isotropic

function for the strain energy density. Usually for sake of simplicity and in order

to reduce the material parameters one can write the strain energy density in terms

of some of its invariant basis [61], as:

ψ(CCC, e1
0, e

2
0) = ψiso(I1) + ψani(I4, I6), (1.3)

where,

I1 = tr CCC

I2 =
1

2

[
(tr CCC)2 + tr (CCC)2

]
I3 = det CCC

I4 = CCC : e1
0 ⊗ e1

0

I5 = CCC2 : e1
0 ⊗ e1

0

I6 = CCC : e2
0 ⊗ e2

0

I7 = CCC2 : e2
0 ⊗ e2

0

I8 = (e1
0 · e2

0)e2
0 ·CCC2e2

0

(1.4)

Then the corresponding second Piola-Kirchho� stress tensor is,

πππ = 2fM
∂ψiso(I1)

∂CCC
+ 2ff

∂ψani(I4, I6)

∂CCC

= 2fM

[
∂ψiso
∂I1

∂I1

∂CCC

]
+ 2ff

[
∂ψani
∂I4

∂I4

∂CCC
+
∂ψani
∂I5

∂I5

∂CCC

]
,

(1.5)

where fM is the volume fraction of matrix and ff is the volume fraction of collagen

�bers.

1.6.2 Multi-scale approaches

In order to include more structural features into the hyperelastic constitutive

models a multi-scale approach was developed by [87, 148] to represent collagen
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�bers in the soft tissue. For example in [87], the mechanical response of crimped

collagen �bers was described by an equivalent tangent �ber modulus Ef (λ4, λ6)

where λ4 = (I4)
1
2 and λ6 = (I6)

1
2 are �ber stretches, accounting for collagen

�ber geometrical crimp (micro-scale) and introducing a worm-like chain model

molecular response at the (nano-scale). Thus the strain energy density of �bers

in Eq. (1.2) is expressed as follows [90, 91, 8]:

ψani(CCC, e
1
0, e

2
0) = ψani(I4, I6) =

∫ 1+ 1
2

[(λ4−1)+(λ6−1)]

1

∫ 1+(ξ−1)

1
Ef (η)dηdξ. (1.6)

1.7 Limits of the existing models and overview of the

thesis

In most hyperelastic models, the contribution of elastin �bers is assumed as

isotropic and combined with the matrix [61, 131, 19, 16, 90, 91, 8] although

experiments have shown the anisotropic contribution of elastin �bers in the

mechanical response of the tissue [90]. Furthermore, one can only compute the

macroscopic stress and deformation through hyperelastic constitutive models in

which the �bers are continuously embedded in their surrounding matrix and

the �bers follow the macroscopic deformation (a�ne deformation). However,

experimental observations reveal that by increasing the mechanical load �bers

are capable to generate shear stresses to rotate faster than the matrix (non-a�ne

deformation) [82]. This exponential strain energy density function [44] was

recently extended to exclude the e�ect of collagen �bers under compression

[85] and can reproduce the experimental results with accuracy but the material

parameters do not have a direct relationship with microstructural features such

as collagen �ber waviness, intramuscular cross-link, and presence of other �bers

and molecules [90]. Furthermore, the development of multiscale models allow to

include the undulation of collagen �bers and taking into account the anisotropy

of collagen �brils in di�erent scales [99]. Recently, beyond developing the

continuum models, discrete network models have also been implemented to

describe microstructural details of the soft tissue [152, 92] to include truly

microstructural constituents and physical phenomena to bridge with the tissue

biology in the constitutive models.

As we discussed in this chapter, the mechanical properties of arteries come

from the physical and mechanobiological mechanisms, which occur within the

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



1.7. LIMITS OF THE EXISTING MODELS AND OVERVIEW OF THE
THESIS 27

microstructure, and these aspects are signi�cantly altered in cardiovascular

diseases [67]. Arterial tissue is a complex multiphase material containing active

components such as cells and structural macromolecules. These components

undergo a load-induced progressive morphological rearrangement such that tissue

exhibits highly nonlinear anisotropic behavior with the ability to sustain large

reversible strains. The signi�cant role of the microstructure morphology and

composition on arterial response motivated us to develop a detailed multiscale

model of the arterial wall, which could provide new insights into the arterial

structure-function relationships. To this aim, we propose a model in the

framework of continuum micromechanics under large strains, taking into account

universal patterns (representative volume element) of the hierarchical organization

of arteries at di�erent scales to relate microstructural mechanisms to their

macroscopic mechanical consequences. This aim was reached by achieving the

following steps:

• Developing layer-speci�c representative volume element (RVE):

The stacks of images from Krasny experiments [82] were used to reconstruct

the RVEs for adventitia and media layers. Image analysis was performed on

these images to determine the required physical quantities such as volume

fractions and orientation of each constituent. However, the literature was

also reviewed to obtain some other physical quantities to build up the

three main layers of arterial structure; namely, adventitia, lamellae and

interlamellar space. Within the adventitia, two scales were considered

so as to account for both the �bril decrimping (through the progressive

�bril reorientation at the lowest scale) and bundle realignment (at the

macroscopic scale). Within the media, a stack of lamellae and interlamellar

space was considered.

• Multi-scale modeling of the hierarchical structure of artery: The

RVEs considered as a �ber-reinforced soft composite, where the hypoelastic

constitutive laws were taken into account to model the constituents within

the RVEs. Due to the large deformation, an extension of Eshelby's

matrix-inclusion problem was used to compute analytical expressions for

the strain rate and spin concentration tensors. These concentration tensors

were used in a multi-scale approach to compute averaged strain rate and

averaged spin tensors over the phases through the hierarchical structure of
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the artery from the applied macroscopic strain rate. The computed averaged

strain rate at each phase provides access to the microscopic stress, while the

averaged spin tensor determines the load-induced phase rotation.

• Integrating the homogenized models in a structural model of

the artery: In order to account for the interaction of these RVEs,

we implemented the micromechanical framework in a �nite element

formulation. We considered an arterial segment with a simpli�ed geometry

of a hollow cylinder. The multi-scale constitutive model was considered in

a home-made �nite element code to account for adventitia, lamellae and

interlamellar space across the thickness of the arterial wall.
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Résumé

La plupart des matériaux rencontrés dans notre vie, allant des matériaux

manufacturés aux matériaux naturels, peuvent être considérés comme homogènes

à une échelle dite macroscopique, mais ont une microstructure hétérogène. Ils sont

constitués de di�érents constituants présentant généralement une microstructure

complexe, voir par exemple la microstructure de la couche la plus externe du

tissu artériel présentée Fig. 2.1. Il est important de noter que la disposition

des constituants composant la microstructure joue un rôle important dans la

compréhension et la prédiction du comportement macroscopique des matériaux

hétérogènes. A cet égard, la micromécanique des milieux continus est un cadre

possible pour prendre en compte la morphologie de la microstructure a�n de

développer un modèle mathématique permettant de prédire le comportement

global de tels matériaux [59, 132, 158, 159, 125]. Ce chapitre présente les outils

théoriques de micromécanique des milieux continus, étendus au cadre des grandes

transformations. L'approche est basée sur une loi de comportement hypoélastique,

et sur le calcul de la vorticité de chaque phase qui induit une rotation progressive.

2.1 Introduction

Most of the materials encountered in our life, ranging from manufactured to

natural materials, can be considered as homogeneous at a so-called macroscopic

scale, but have a heterogeneous microstructure. They are built up by di�erent

constituents usually exhibiting a complex microstructure, see for instance the

microstructure of the most outer layer of arterial tissue shown on Fig. 2.1.

It is important to notice that the arrangement of the constituents making

up the microstructure play a signi�cant role in understanding and controlling

the macroscopic behavior of heterogeneous materials. In this respect, continuum

micromechanics is a possible framework to take into account the microstructure

morphology to develop a mathematical model that predicts the overall behavior

of such materials [59, 132, 158, 159, 125].
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50µm

Figure 2.1: Microstructure of the most outer layer (called adventitia) of a rabbit

carotid artery, imaged under a multiphoton microscope [82].

2.2 Representative volume element and assumptions of

scale separation

In continuum micromechanics, the �rst step consists in identifying the patterns

of the material's microstructure that govern the mechanical response of the

material. The complexity of many material's microstructures prevents from

accounting for each and every detail: as a remedy, a statistical approach is

preferred and sub-volumes with known physical quantities are identi�ed and

called material phases. These phases are characterized by their shape, volume

fraction, orientation, and homogeneous mechanical properties. The arrangement

of the di�erent phases makes up a representative volume element (RVE). For

instance, Fig. 2.2 shows a possible representative volume element representing

the microstructure of the arterial adventitial layer shown on Fig. 2.1.

Elastin �ber
Collagen �ber

Matrix

Figure 2.2: Representative volume element of the arterial adventitia layer.

Furthermore, the RVE must satisfy the condition of scale separation, reading
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as:

d� l� L (2.1)

• The characteristic length of the heterogeneities (d) must be small enough

as compared to the characteristic length of the RVE (l), that is d� l. This

ensures that the homogenized response remains independent of the precise

geometry of the RVE, i.e. the RVE is really representative.

• The characteristic length of the RVE must also be small enough in

comparison to the characteristic length of the structure (L) and of the

loading to which the structure is subjected that is l � L, such that the

macroscopic �elds remain continuous.

Once the di�erent RVEs have been de�ned under the requirement of scale

separation, the geometrical and physical characteristics of their phases must be

identi�ed. These characteristics include the phase geometrical shape (and possibly

its orientation), as well as its volume fraction and its constitutive relation, these

characteristics being in most cases of statistical nature.

2.3 Momentum balance and kinematic compatibility

2.3.1 Hashin boundary condition in large strain continuum

micromechanics - strain rate average rule

After the description of the RVE morphology, adequate boundary conditions need

to be de�ned on the RVE. Since the detailed boundary conditions existing on the

RVE are not known, and the average conditions which exist (and will be later

detailed, see Eqs. (2.4) and (2.8)) lead to an ill-posed problem, homogeneous

boundary conditions on the RVE have to be employed [58, 53]: a homogeneous

strain rate is assigned on the current boundary ∂Ω of the RVE (with volume Ω),

in terms of a velocity �eld v(x) as follows:

v(x) = DDD · x ∀x ∈ ∂Ω, (2.2)

wherebyDDD is the macroscopic strain rate tensor, and x is the microscopic position

vector in the current con�guration. In addition, compatibility inside the RVE
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yields the microscopic strain rate �eld ddd(x) as:

ddd(x) =
1

2

(
grad v(x) + [grad v(x)]T

)
∀x ∈ Ω, (2.3)

Thus, the kinematically compatible microscopic strain rates ddd(x) inside the RVE,

subjected to the homogeneous strain rate DDD, ful�ll the Hashin strain rate average

rule:

DDD =
1

|Ω|

∫
Ω
ddd(x)dV = 〈ddd〉,

=
1

2|Ω|

∫
∂Ω

[
v(x)⊗ n(x) + v(x)⊗ n(x)

]
dS,

(2.4)

whereby we made use of the Green-Ostrogradski theorem to evaluate the rate of

deformation at the boundary, 〈·〉 denotes the spatial average operator, n(x) is the

unit normal outward-pointing vector at point x of the boundary of RVE, and ⊗
is the dyadic product.

2.3.2 Momentum balance and stress average rule - Hill's lemma

The rate of deformation existing on the boundary of the RVE results in the

existence of traction forces t(x) on the boundary of RVE which must be in

equilibrium, such that:∫
∂Ω

t(x)dS =

∫
∂Ω
σσσ(x) · n(x)dS = 0 (2.5)

whereby use of Cauchy's theorem, t(x) = σσσ(x) · n(x), has been made. Once

again, applying the Green-Ostrogradski theorem to Eq. (2.5) leads to the expected

equilibrium equation at each point of the RVE, reading as:

div σσσ(x) = 0 ∀x ∈ Ω. (2.6)

Then, one can compute the external power of traction force Pext on the RVE, by

applying Cauchy's theorem and accounting for the Hashin's boundary condition,

leading to:

Pext =

∫
∂Ω

t(x) · v(x)dS =

∫
∂Ω

[σσσ(x) · n(x)] · [DDD · x]dS =

(∫
Ω
σσσ(x)dV

)
: DDD.

(2.7)
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The position-independent volume integral of microscopic Cauchy stresses in the

external power induces the existence of a macroscopic Cauchy stress de�ned by:

ΣΣΣ =
1

|Ω|

∫
Ω
σσσ(x)dV = 〈σσσ〉, (2.8)

in the form of a stress average rule. The external power on the RVE is therefore

a function of the macroscopic stress and strain rate,

Pext = ΣΣΣ : DDD, (2.9)

Furthermore, substituting the stress average rule (2.8) into the principle of virtual

power [47] leads to:

Pext = −P int =
1

|Ω|

∫
Ω
σσσ(x) : ddd(x)dV = 〈σσσ : ddd〉, (2.10)

where P int is the power of internal forces. Equations (2.9) and (2.10) reveal the

Hill's lemma: the average power generated by the microscopic stresses on the

microscopic strain rates is equal to the power generated by the macroscopic stress

on the macroscopic strain rate reading as,

ΣΣΣ : DDD = 〈σσσ〉 : 〈ddd〉 =
1

|Ω|

∫
Ω
σσσ(x) : ddd(x)dV = 〈σσσ : ddd〉. (2.11)

2.4 Thermodynamic foundation of the microscopic

hypo-elastic constitutive relation

The constitutive relations have to satisfy both �rst and second principles of

thermodynamics, which can be combined into the Clausius-Duhem inequality

[118], expressing the system's dissipation D, as:

D = σσσ : ddd− ρ
(
Dψ

Dt
+ s

DT

Dt

)
−
q

T
· grad T ≥ 0, (2.12)

whereby σσσ and ddd are respectively the Cauchy stress and strain rate tensors, ρ

is the mass density, T is the absolute temperature, and s is the (microscopic)

entropy per unit mass. Furthermore, the (microscopic) Helmholtz free energy

per unit mass, ψ, is chosen here as the thermodynamic potential, and q is the

outward heat �ux vector at the boundary of the structure. The operator D(·)
Dt is the

material derivative of quantity (·). For an elastic (i.e. reversible) transformation,

the dissipation remains equal to zero, D = 0. The dissipation (2.12) is usually
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split into two parts, the intrinsic dissipation D1, and the thermal dissipation D2,

de�ned as:

D1 = σσσ : ddd− ρ
(
Dψ

Dt
+ s

DT

Dt

)
,

D2 = −
q

T
· grad T.

(2.13)

It is usually assumed that each dissipation should be positive, and

consequently, for a reversible transformation, one has D1 = 0. As proposed by

Rajagopal [108, 109], we choose to work with the Gibbs thermodynamic potential

G instead of the Helmholtz free energy ψ [96]. The relation between the two

potentials results from a partial Legendre transformation on the variable σσσ, as

de�ned by:

ψ(ddd, T ) =
∂G(σσσ, T )

∂σσσ
: σσσ − G(σσσ, T ). (2.14)

As a consequence, the intrinsic dissipation reads as:

D1 = σσσ : ddd− σσσ :

(
ρ
∂2G(σσσ, T )

∂σσσ∂σσσ

)
:
Dσσσ

Dt
− ρDG(σσσ, T )

DT

DT

Dt
+ ρs

DT

Dt
= 0. (2.15)

This latter expression of the intrinsic dissipation shows that temperature T and

the Cauchy stress σσσ are natural arguments of the Gibbs thermodynamic potential.

As a consequence, one gets the following state laws:

s = −∂G(σσσ, T )

∂T
,

ddd = ρ
∂2G(σσσ, T )

∂σσσ∂σσσ
:
Dσσσ

Dt
.

(2.16)

To ensure the objectivity of the second state law (i.e. the strain rate should

not depend on the motion of the observer), one adds a gyroscopic term [96, 109],

de�ned as:

σσσ : ρ
∂2G(σσσ, T )

∂σσσ∂σσσ
: (−σσσ ·ΩΩΩ + σσσ ·ΩΩΩ) = 0, (2.17)

where ΩΩΩ is the spin skew-symmetric tensor (ΩΩΩ−1 = ΩΩΩT and tr(ΩΩΩ) = 0). This

yields a thermodynamically reversible and objective hypo-elastic constitutive law

in the form of:

ddd = ρ
∂2G(σσσ, T )

∂σσσ∂σσσ
:

(
Dσσσ

Dt
+ ΩΩΩ · σσσ − σσσ ·ΩΩΩ

)
. (2.18)
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Choosing ΩΩΩ as the skew-symmetric part of the microscopic velocity gradient, i.e.

ΩΩΩ = ωωω =
1

2

(
grad v(x)− [grad v(x)]T

)
, (2.19)

where grad is the Eulerian gradient and T the transpose operator. Then, a Gibbs

potential in the form of G = σσσ : C−1 : σσσ, gives the microscopic constitutive law in

a hypo-elastic formulation as follows:

σσσ∇(x) = C(x) : ddd(x), (2.20)

where σσσ∇(x) is the (microscopic) stress rate in its objective form, C(x) is the

hypoelastic sti�ness tensor, and ddd(x) is the strain rate. The choice of ΩΩΩ = ωωω,

yields the objective stress rate as the Jaumann one, reading as:

σσσ∇(x) = σ̇̇σ̇σ(x) + σσσ(x) ·ωωω(x)−ωωω(x) · σσσ(x), (2.21)

where σ̇̇σ̇σ(x) = Dσσσ(x)
Dt is the time derivative of the microscopic Cauchy stress.

As a summary, the homogenization problem is governed by the following

set of equations: local equilibrium (2.6), strain rate compatibility (2.3), local

constitutive behavior (2.20), and strain and stress rate average rules (2.4) and

(2.8). All these equations are linear; as a consequence, there exists a linear relation

between the microscopic strain rate and spin, and the prescribed boundary

condition, reading as:

ddd(x) = A(x) : DDD(x)

ωωω(x) = R(x) : DDD(x),
(2.22)

where A(x) is the fourth-order strain rate concentration tensor and R(x) is the

fourth-order spin concentration tensor. The next section is devoted to estimating

expressions for these concentration tensors.

2.5 Mori-Tanaka estimation of strain rate and spin

concentration tensors from auxiliary Eshelby

problems

Di�erent approaches have been proposed to estimate the concentration relations.

One set of methods relies on the use of the variational principles, which allow to

bound the e�ective properties [53, 59]. Depending on the assumptions taken on

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



2.5. MORI-TANAKA ESTIMATION OF STRAIN RATE AND SPIN
CONCENTRATION TENSORS FROM AUXILIARY ESHELBY PROBLEMS

37

the morphology of the RVE, the bounds are more or less restrictive. The other

approach consists in the use of a mean �eld approach. The framework in which

our model is developed is based on the latter approach, which is detailed in the

following sections.

2.5.1 Eshelby problem as a �rst estimate of the concentration

tensors

In the framework of homogenization, concentration tensors allow to determine

the microscopic �elds in the phases as functions of the applied macroscopic �elds.

As a �rst simple case, an Eshelby matrix-inclusion type problem [31] is used to

estimate the concentration tensors. However, we consider not only the strain rate

but also the rotation of the inclusion or spin, which provides the basis for a large

strain micromechanics theory.

The Eshelby inclusion problem considers an in�nite material with sti�ness C0,

in which a small ellipsoidal volume ΩI is subjected to a uniform �eld of eigenstrain

rate ηηη, while the rest of the material is free from any eigenstrain rate and no

loading is applied on the material, see Fig. 2.3(A). Due to the linearity of the

problem and to the shape of the inclusion, Eshelby showed that this eigenstrain

rate induces a uniform velocity gradient �eld in the inclusion as:

gradv(x) = LEsh : ηηη ∀x ∈ ΩI , (2.23)

where LEsh is the Eshelby strain rate-to-velocity gradient tensor, depending on the

sti�ness of the matrix C0, and on the shape and the orientation of the ellipsoidal

inclusion.

C0

C0

ΩIn3

n2n1

ηηη

(A) Inhomogeneity problem

C0

CI

ΩI
n3

n2n1

remote boundary:

v(x) = DDD0 · x

(B) Eshelby inclusion problem

Figure 2.3: Inhomogeneity and Eshelby inclusion problems.

The orientation of the ellipsoidal inclusion is de�ned by an orthonormal basis

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



2.5. MORI-TANAKA ESTIMATION OF STRAIN RATE AND SPIN
CONCENTRATION TENSORS FROM AUXILIARY ESHELBY PROBLEMS

38

ni ( i = 1, 2, 3), which coincides with the principal axes of the ellipsoidal inclusion.

The aspect ratios representing the shape of the inclusion are ω1 = a3
a1
, ω2 = a3

a2
,

and ω3 = a1
a2
, where 2ai (i = 1, 2, 3) are the lengths of the principal axes of the

ellipsoidal inclusion, such that: a1 ≤ a2 ≤ a3.

In the present work, we focus on in�nitely long cylindrical inclusions (see

Fig. 2.4), i.e. a3 → ∞, and a2 = a1. In this case, the non zero components of

LEsh are expressed, in the ni basis, in terms of the Poisson's ratio of the isotropic

matrix ν0 [9, 96] as:

LEsh1111 = LEsh2222 =
4ν0 − 5

8(ν0 − 1)

LEsh1122 = LEsh2211 = − 4ν0 − 5

8(ν0 − 1)

LEsh1212 = LEsh1221 = LEsh2112 = LEsh2112 =
4ν0 − 3

8(ν0 − 1)

LEsh1133 = LEsh2233 =
−ν0

2(ν0 − 1)

LEsh3113 = LEsh3223 = LEsh3131 = LEsh3232 =
1

2
.

(2.24)

We will also consider lamellar structures, and introduce inclusions in the form

of oblate spheroids i.e. a3 → ∞ and a2 → ∞. In this case, the non zero LEsh

components for an in�nitely thin plate embedded in an isotropic matrix with

Poisson's ratio ν0, read, in the ni basis, as:

LEsh1111 = 1

LEsh2112 = LEsh2211 =
1− 2ν0

2(1− ν0)

LEsh3113 = LEsh3311 = 1

LEsh1212 = − 1− 2ν0

2(1− ν0)

LEsh1313 =
ν0

1− ν0
.

(2.25)

More details on derivations of the Eshelby strain rate-to-velocity gradient tensor

are provided in the Appendix A.

From the uniform velocity gradient in the inclusion expressed by Eq. (2.23),

one can compute the uniform strain rate tensor and the spin tensor within the

inclusion respectively as:

ddd(x) =
1

2

(
gradv(x) + [gradv(x)]T

)
∀x ∈ ΩI , (2.26)
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ωωω(x) =
1

2

(
gradv(x)− [gradv(x)]T

)
∀x ∈ ΩI , (2.27)

these are linearly related to the eigenstrain rate ηηη in the domain ΩI , through the

Eshelby strain rate-to-velocity gradient tensor,

ddd(x) =
1

2

(
LEsh +

[
LEsh

]T)
: ηηη = SEsh : ηηη ∀x ∈ ΩI , (2.28)

ωωω(x) =
1

2

(
LEsh −

[
LEsh

]T)
: ηηη = REsh : ηηη ∀x ∈ ΩI , (2.29)

where SEsh = 1
2

(
LEsh +

[
LEsh

]T)
and REsh = 1

2

(
LEsh −

[
LEsh

]T)
are

respectively fourth-order Eshelby concentration tensor for strain rate and spin

in the Eshelby inhomogeneity problem, see Fig. 2.3(A).

This �rst Eshelby problem can then be extended to the following problem: an

ellipsoidal inclusion, with sti�ness CI and occupying the volume ΩI , is surrounded

by an in�nite matrix with sti�ness C0; the material is subjected to a macroscopic

strain rate DDD0, at its remote boundary, see Fig. 2.3(B).

The superposition principle is used and this second problem is decomposed as

the sum of two problems: �rst a homogeneous in�nite material, with sti�ness C0,

is subjected to the boundary conditions v(x) = DDD0 · x ; the second subproblem is

the previously described inhomogeneity Eshelby problem, whereby the eigenstrain

�eld ηηη is expressed in terms of the sti�ness tensors as:

ηηη = −C−1
0 : [I + (CI − C0) : PI ]−1 : (CI − C0) : DDD0, (2.30)

where PI = SEsh : C0
−1 is the Hill tensor, and I is the fourth-order identity

tensor, with components Iijkl = 1
2 (δikδjl + δilδjk), δij being the Kronecker delta,

i.e. δij = 1, if i = j, and zero otherwise.

Substitution of Eq. (2.30) into Eqs. (2.28) and (2.29) gives the linear relation

between the prescribed strain rate at the boundary of RVE and the uniform strain

rate in the inclusion, reading as:

dddI = [I + (CI − C0) : PI ]−1 : DDD0 = A∞ : DDD0, (2.31)

ωωωI = −REsh : C−1
0 : [I + (CI − C0) : PI ]−1 : (CI − C0) : DDD0 = R∞ : DDD0, (2.32)

where A∞ and R∞ are respectively the expressions of the concentration tensors

for strain rate and spin in the Eshelby problem. While the strain rate and spin
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are uniform in the inclusion, the strain rate and spin are not uniform outside the

inclusion. The strain rate becomes equal to the prescribed strain rate far from

the inclusion but close to the inclusion, strong variations in strain rate and spin

are encountered.

2.5.2 Mori-Tanaka estimate for �ber-reinforced composites

In this section, we consider heterogeneous materials, whose microstructure can

be described by N inclusion phases embedded in a surrounding matrix M , and

subjected to a uniform strain rateDDD at the boundary of the RVE (see Fig. 2.4). In

this case, the strain rate and spin �elds are not anymore uniform in the inclusions

due to their mutual interactions. As a remedy, a mean �eld approach is used,

and the previously described Eshelby problem is taken as an auxiliary problem to

evaluate the mean value of the strain rate and spin �elds within the inclusion. In

this auxiliary problem, the auxiliary matrix has the same mechanical properties as

the matrix of the considered material, and the inhomogeneity has the same shape

and mechanical properties as the inclusion for which the mechanical response

needs to be determined. Equations (2.31) and (2.32) respectively provide the

mean strain rate and mean spin in the inclusion. This result is substituted into

the strain rate average rule Eq. (2.4) and leads to:

DDD =
N∑
r=1

frdddr + fMdddM , (2.33)

with fr and fM respectively as the volume fractions of inclusion phase r and

of matrix. This reveals a relation between the prescribed strain rate DDD at the

First type �ber
Second type �ber

Inclusion

Matrix

e1

e2e3

∀x ∈ ∂Ω

v(x) = DDD · x

Figure 2.4: Representative Volume Element of heterogeneous materials subjected

to homogeneous strain rate as the velocity vector at the boundary.

boundary of the RVE (Fig. 2.4) and the prescribed strain rate at the remote

boundary of the auxiliary Eshelby problem, DDD0 (Fig. 2.3): the auxiliary applied
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strain rate is equal to the mean strain rate in the matrix phase of the considered

problem, and its expression reads as:

DDD0 = dddM =

{
N∑
r=1

fr [I + (Cr − C0) : Pr]−1 + fM I

}−1

: DDD. (2.34)

As a consequence, the mean strain rate and spin in each inclusion phase are

expressed as follows:

dddr = [I + (Cr − C0) : Pr]−1 :

{
N∑
r=1

fr [I + (Cr − C0) : Pr]−1 + fM I

}−1

: DDD

= Ar : DDD,

(2.35)

ωωωr = R∞ : C0
−1 : [I + (Cr − C0) : Pr]−1 : (Cr − C0)

:

{
N∑
r=1

fr [I + (Cr − C0) : Pr]−1 + fM I

}−1

: DDD = Rr : DDD.
(2.36)

From Eqs. (2.35) and (2.36), the fourth-order strain rate and spin concentration

tensors, Ar, AM , and Rr respectively, can be identi�ed as:

Ar = A∞r :

{
N∑
i=1

fiA∞i + fM I

}−1

∀r ∈ {1, 2, 3, ..., N}, (2.37)

AM =

{
N∑
i=1

fiA∞i + fM I

}−1

, (2.38)

Rr = R∞r :

{
N∑
i=1

fiA∞i + fM I

}−1

∀r ∈ {1, 2, 3, ..., N}, (2.39)

where A∞r and R∞r are respectively the strain rate and spin concentration tensors

of the auxiliary Eshelby problem, de�ned by Eqs. (2.31) and (2.32). This

homogenization scheme is called the Mori-Tanaka scheme [94, 5].

2.6 Algorithmic treatment of �ber kinematics

2.6.1 Motivation for time discretization

The homogenization scheme under large deformation is highly nonlinear due to

the conformational changes of the microstructure. Therefore, an incremental
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approach is implemented to solve the governing equations: the load history is

divided into a �nite number of steps and an in�nitesimal part of the load is applied

at each increment. Thus, the deformation and evolution of the microstructure

can be approximated to be linear at each increment. Then one can solve the

linearized equations and keep track of all the increments to get the solution of

the nonlinear problem. We use an updated Lagrangian description [3], which

requires the knowledge of the updated con�guration at each increment: the

current con�guration is used as a reference con�guration to compute the �elds

at the next increment.

Due to the complex dependence of the concentration tensors on the inclusion

orientations, a forward Euler scheme is employed for time discretization, i.e. for

a quantity a, one has:

ȧt =
at+dt − at

dt
(2.40)

where ȧ is the time derivative of the quantity a, with at the value of the quantity

at time t and at+dt the value of the quantity after a small time increment dt. At

the initial time, the orientation θt=0
r and φt=0

r of the inclusions r = {1, 2, 3, ..., N}
are known, as well as the microscopic stress σσσt=0

r and deformation gradient fff t=0
r in

all phases, which are respectively equal to zero and to identity. We now discretize

each subset of equations, assuming that the state at time t is known, and we try

to determine the mechanical state at time t+ dt.

2.6.2 Concentration equations

The Eqs. (2.35) and (2.36) are evaluated at time instant t, and allow to evaluate

the local strain rate dddtr and local spin tensor ωωωtr as functions of the strain rate

concentration tensor Atr and spin concentration tensor Rtr at time t, (i.e. de�ned

as Atr = A(θtr, φ
t
r) and Rtr = R(θtr, φ

t
r)), and of the applied strain rate at time t,

DDDt, as:

dddtr = Atr : DDDt ∀r ∈ {1, 2, 3, ..., N,M},

ωωωtr = Rtr : DDDt ∀r ∈ {1, 2, 3, ..., N}.
(2.41)

2.6.3 Local constitutive relations

From equations (2.20) and (2.21), we obtain the local constitutive relation of each

phase r in terms of the material derivative of the microscopic Cauchy stress at
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time t as follows: (
Dσσσr
Dt

)t
= σ̇σσtr = Ctr : dddtr − σσσtr ·ωωωtr +ωωωtr · σσσtr, (2.42)

i.e. for each phase:

σ̇σσtr = Ctr : dddtr − σσσtr ·ωωωtr +ωωωtr · σσσtr, ∀r ∈ {1, 2, 3, ..., N}.

σ̇σσtM = CtM : dddtM .
(2.43)

Accounting for Eq. (2.41), one can compute the local constitutive equation in

terms of the prescribed strain rate at the boundary, as follows:

σ̇σσtr = Ctr : Atr : DDDt − σσσtr · (Rtr : DDDt) + (Rtr : DDDt) · σσσtr
σ̇σσtM = CtM : AtM : DDDt.

(2.44)

It is interesting to write (2.44) using the index notation, which gives,

σ̇rij =
[
CrijklA

r
lkmn − σrikRrkjmn +Rrikmnσ

r
kj

]
Dnm = Cr

eq

ijmnDnm,

σ̇Mij =
[
CMijklA

M
lkmn

]
Dnm = CM

eq

ijmnDnm,
(2.45)

whereby all the variables are evaluated at time t and fourth-order equivalent

"sti�ness" tensors Ceqr for phase inclusion r and CeqM for matrix phase are de�ned,

using the index notation, as:

Cr
eq

ijmn = CrijklA
r
lkmn − σrikRrkjmn +Rrikmnσ

r
kj ,

CM
eq

ijmn = CMijklA
M
lkmn.

(2.46)

for the current stress state at time t. Finally, since the material derivative

is equivalent to a partial derivative with respect to time in the Lagrangian

formulation (�xed reference frame) D(·)
Dt = ∂(·)

∂t , using a forward Euler scheme

for the time derivative of the Cauchy stress σ̇t = σt+dt−σt
dt , one can compute the

updated microscopic Cauchy stress in the form of,

σσσt+dtr = σσσtr + Ceq
t

r : DDDtdt, ∀r ∈ {1, 2, 3, ..., N}.

σσσt+dtM = σσσtM + Ceq
t

M : DDDtdt.
(2.47)

2.6.4 Fiber reorientation and stress average rule

Since the inclusions are not necessarily aligned with the global base frame, the

previously introduced base frame ni is replaced by a spherical base frame (er, eθ,
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eφ), and a global Cartesian base frame (e1, e2, e3) is introduced and attached to

the matrix. The relation between the two base frames reads as:

acart =


sinθcosφ cosθcosφ −sinφ
sinθsinφ cosθsinφ cosφ

cosθ −sinθ 0

 · asph, (2.48)

where acart and asph represent the same vector expressed respectively in the

cartesian and spherical coordinate system, θ is the co-latitudinal angle with

0 ≤ θ ≤ π and φ is the longitudinal angle with 0 ≤ φ < 2π (see Fig. 2.5).

Furthermore, in the presence of inclusions in the material which can reorient

er

eθ
eφ

e3

e2

e1

θ

(A)First Eulerian angle θ

er

eθ
eφ

e3

e2

e1

φ

(B)Second Eulerian angle φ

Figure 2.5: De�nition of the two Euler angles θ and φ.

with the applied load, the evolution of the orientation vectors er, eθ, and eφ

corresponding to each inclusion is determined by the microstructural spin ωωω and

microstructural strain rate ddd tensors of each inclusion via,

ėi = (ddd+ωωω) · ei, i = {r, θ , φ}, (2.49)

where ėi is the time derivative of the base vector ei. According to the updated

Lagrange formulation, the base vectors attached to each inclusion are updated as

follows:

et+dtr =
[
(dddtr +ωωωtr)dt+ III

]
· etr ∀r ∈ {1, 2, 3, ..., N}, (2.50)

where III is the second-order identity tensor. The update of the inclusion base

vectors allows the update of the Euler angles de�ning the inclusion inclination,

θt+dtr and φt+dtr , as well as of the concentration tensors, At+dtr (θt+dtr , φt+dtr ) and

Rt+dtr (θt+dtr , φt+dtr ) through Eqs. (2.37) and (2.39).

Finally, combining the stress average rule (2.8) with the expression of the local

mean stress in each inclusion (2.47), one gets the updated macroscopic Cauchy
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stress ΣΣΣt+dt in the form,

ΣΣΣt+dt =

N∑
r=1

frσσσ
t+dt
r + fMσσσ

t+dt
M

=

N∑
r=1

frσσσ
t
r +

(
N∑
r=1

frCeq
t

r : DDDt

)
dt+ fMσσσ

t
M +

(
fMCeq

t

M : DDDt
)
dt,

= ΣΣΣt +
(
Cthom : DDDt

)
dt, ∀r ∈ {1, 2, 3, ..., N},

(2.51)

whereby the homogenized "sti�ness" tensor Cthom is de�ned as:

Cthom =
N∑
r=1

frCeq
t

r + fMCeq
t

M , ∀r ∈ {1, 2, 3, ..., N}. (2.52)

A summary of the numerical scheme is presented in Fig. 2.6.

v(x) = DDDt · x

Dt

dtM = AtM : Dt

dtr = Atr : Dt

Σt+dt = 〈σσσt+dt〉

ωtr = Rtr(θt, φt) : Dt

θt+dt, φt+dt

morphology evolution

σt+dtM

σt+dtr

Homogeneous
BC

Spin
evolution

Homogenized behavior

Cthom

C
o
n
ce
n
tr
a
ti
o
n

H
o
m
o
g
en
is
a
ti
o
n

local constitutive behavior

σσσ∇
t

M = CtM : dddtM

σσσ∇
t

r = Ctr : dddtr

Figure 2.6: Numerical algorithm of homogenization scheme.

2.7 Extension to stress-driven load cases

One can consider a most complex case where traction forces are applied on the

boundary of the RVE. The knowledge of the material conformation at the initial

time is used in equation (2.52) to compute the homogenized sti�ness. Then, the

homogenized sti�ness allows to calculate the strain rate in a forward Euler scheme

as follows, knowing the macroscopic stress at all times,

DDDt = Cthom
−1

:

(
ΣΣΣt+dt −ΣΣΣt

dt

)
(2.53)
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Then, the previously described numerical scheme is adopted and allows to

evaluate the macroscopic stress increment generated by this strain rate. Finally,

this macroscopic increment of Cauchy stress is compared with the prescribed one.

If there is a di�erence between the two values the calculation is repeated with

the new homogenized sti�ness in order to determine the correct strain rate. On

the other hand, if the di�erence between the two macroscopic Cauchy stresses is

negligible, we compute the macroscopic deformation gradient as follows,

FFF t+dt =
(
DDDtdt+ III

)
·FFF t, (2.54)

where III is the second-order identity tensor and the macroscopic deformation

gradient at initial instant is assumed to be the identity matrix (FFF t=0 = III). This

completes the computational scheme for applied traction forces on the boundary

over a small time increment dt. A summary of the numerical scheme for imposed

stress conditions is illustrated in Table 2.1.

1. Prescribed macroscopic Cauchy stress ΣΣΣt and ΣΣΣt+dt at time t and t+ dt

2. Initialize the homogenized behavior of the material Cthom at time t according to Eq. (2.52)

3. Perform an iteration loop to applying the Cauchy stress ∆ΣΣΣ = ΣΣΣt+dt −ΣΣΣt

a) Compute macroscopic strain rate DDDt at time t from the linear approximation Eq. (2.53)

b) For all constituents perform down-scaling, local constitutive behavior and up-scaling

(i) Compute microscopic strain rate dddt and spin ωωωt at time t from Eq. (2.41)

(ii) Compute Cauchy microscopic stress σσσt+dt from Eq. (2.47)

(iii) For all �bers compute updated orientation angles θt+dt, φt+dt from from Eq. (2.50)

(iv) Compute updated homogenized behavior of the material Cthom from Eq. (2.52)

(v) Compute macroscopic Cauchy stress Σ̂ΣΣ
t+dt

from Eq. (2.51)

c) Compare macroscopic Cauchy stresses (computed and prescribed) and compute the residual:

RRR = ΣΣΣt+dt − Σ̂ΣΣ
t+dt

d) Check the tolerance: ||RRR|| ≤ tol, exit the algorithm, otherwise go back to step 3 and apply the residual RRR

instead of ∆ΣΣΣ

4. Update the homogenized behavior of the material Ct+dthom

5. Compute the macroscopic deformation gradient FFF t+dt from Eq. (2.54)

Table 2.1: Numerical algorithm for the constitutive model under imposed stress

conditions
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2.8 Extension to multi-scale approach for hierarchical

structure of heterogeneous materials

Many materials and biological tissues, like bone or artery, exhibit a hierarchical

microstructure, i.e. a close look at one phase may reveal its heterogeneous

internal structure which impacts its mechanical behavior. It is then possible

to model this hierarchical structure in a multi-scale approach by considering a

lower scale RVE, which takes into account the heterogeneity of that phase (see

Fig. 2.7). This lower RVE has a characteristic length l2, with l2 ≤ d. Again,

the RVE representing the phase must follow the scale separation rule, that is

d2 � l2, with d2 as the characteristic length of the lower scale heterogeneities, to

build up the multi-scale homogenization scheme (see Fig. 2.7).

  

  L

l

d
l2

d2

Figure 2.7: Representation of the di�erent RVEs in a multi-scale homogenization

scheme.

In the present study, a multi-scale approach is introduced by considering a

lower scale RVE to model the heterogeneous structure of the material phase (see

Fig. 2.8). The material properties of the heterogeneous inclusion in the upper scale

is estimated by homogenization over the RVE of the lower scale. The orientation

of heterogeneities in the lower RVE is taken into account by two Euler angles θlow

and φlow, de�ning an orthonormal spherical basis (elowr , elowθ , elowφ ) with respect to

the inclusion basis in the upper RVE, (eupr , eupθ , eupφ ). Accordingly, the upper base
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frame, attached to the inclusion in the upper scale RVE, is de�ned with respect

to the global base frame (e1, e2, e3) by the two Euler angles θup and φup. The

two local bases are linked by the following base change relation:

alow =


sinθlowcosφlow sinθlowsinφlow cosθlow

cosθlowcosφlow cosθlowsinφlow −sinθlow

−sinφlow cosφlow 0

 · aup, (2.55)

with alow and aup being the expressions of the same vector respectively in the lower

and upper scale spherical coordinate systems, while another Eq. (2.55) related the

coordinate systems (eupr , eupθ , eupφ ) and (e1, e2, e3).

e1

e2e3

e
up
θ

e
up
φ

eupr

eupr
e
up
φ

e
up
θ
elowr

elowφ

elowθ

θlow

upper scale RVE

lower scale RVE

Figure 2.8: Representative Volume Elements for heterogeneous materials

exhibiting a hierarchical microstructure.

The method to obtain the macroscopic e�ective constitutive relation is

described hereafter, and follows the three previously described steps, i.e. (i)

concentration of the applied loading into the di�erent phases, (ii) use of the

phase-speci�c constitutive relations, and (iii) use of the average rules to obtain

the conjugated macroscopic quantities. In more details, for strain rate-driven load

cases, it reads as:

Strain rate concentration The macroscopic strain rate DDD is localized in each

inclusion of the upper scale RVE:

dddupr = Aupr : DDD,

ωωωupr = Rupr : DDD, ∀r ∈ {1, ..., Nup},
(2.56)

with Nup as the number of phases in the upper scale RVE. Then, the local strain

rate dddupI of the inclusion I on which a zoom is made is applied as a homogeneous

boundary condition on the lower scale RVE. One can compute the local strain

rate and spin tensors of the N low
I phases in the lower scale RVE according to the
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same Eqs. (2.35) and (2.36), i.e.:

dddlowr,I = Alowr,I : dddupI ,

ωωωlowr,I = Rlowr,I : dddupI , ∀r ∈ {1, 2, 3, ...N low
I },

(2.57)

where dddlowr,I is the strain rate in the lower scale phase r, ωωωlowr,I is the spin tensor

of the inclusions of phase r of the lower scale RVE, and Alowr,I and Rlowr,I are the

respective concentration tensors in phase r of the lower scale RVE attached to

inclusion I of the upper scale RVE.

Load-driven inclusion reorientation The evolution of the orientation vectors

elowr , elowθ , and elowφ corresponding to the inclusion phase r in the lower scale RVE

is determined by the microstructural spin ωωωlowr,I and microstructural strain rate

dddlowr,I tensors of the inclusion in the lower scale via,

ėlowi =
(
dddlowr,I +ωωωlowr,I

)
elowi , i ∈ {r, θ, φ} (2.58)

where ėlowi is the standard time derivative of elowi . Similarly, for the upper

scale RVE, the evolution of the base vectors attached to the upper scale RVE

is determined by the following equation:

ėupi =
(
dddupI +ωωωupI

)
eupi , i ∈ {r, θ, φ} (2.59)

E�ective mechanical properties The homogenized mechanical properties are

�rst computed for the lower scale RVE, according to Eq. (2.52). This e�ective

"sti�ness" tensor corresponds to the e�ective properties of inclusion I of the upper

scale RVE. Accordingly, its expression reads as:

CI =

N low
I∑
r=1

f lowr,I Ceq
low

r,I + f lowM,IC
eqlow

M,I , ∀r ∈ {1, 2, 3, ..., N low
I }. (2.60)

where f lowr,I and f lowM,I are respectively the volume fractions of phase r and of the

matrix in the lower scale RVE, Alowr,I and AlowM,I are the strain rate concentration

tensors into the phase r and the matrix phase in the lower scale RVE, and Clowr,I
and ClowM,I are the fourth-order sti�ness tensors of the phase r and of the matrix

in the lower scale RVE, all of them being attached to the phase I of the upper

RVE. Ceq
low

r,I and Ceq
low

M,I follow from Eq. (2.46), incorporating into this equation the

concentration tensors Alowr,I , AlowM,I , and Rlowr,I , as well as the local stress tensor σσσlowr,I .

CI is the homogenized sti�ness tensor over the lower scale RVE, which allows to
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compute the e�ective (homogenized) Cauchy stress tensor over the lower scale

RVE. A summary of the numerical scheme is illustrated in Fig. 2.9.

v(x, t) = DDDt · x

Dt

dup
t

M = Aup
t

M : Dt

dup
t

I = Aup
t

I : Dt

Σt+dt = 〈σσσupt+dt 〉

ωup
t

I = Rup
t

I (θup
t

I , φup
t

I ) : Dt

θup
t+dt
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t+dt

Upper scale

morphology evolution

σup
t+dt

M

σup
t+dt

I = 〈σσσlowt+dt 〉
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t
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t
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t

r,I ) : dddup
t

I

θlow
t+dt

, φlow
t+dt

Lower scale

morphology evolution
σσσlow

t+dt

r,I

σσσlow
t+dt

r,M

dlow
t

r,I = Alowtr,I : dddup
t

I

dlow
t

M,I = AlowtM,I : dddup
t

I

Homogeneous
BC

Spin
evolution

Homogenized behavior

Cthom

C
o
n
ce
n
tr
a
ti
o
n

H
o
m
o
g
en
is
a
ti
o
n

Upper scale
local constitutive behavior

σσσup
∇t

M = Cup
t

M : dddup
t

M

σσσup
∇t

I = CtI : dddup
t

I

Lower scale

local constitutive behavior

σσσlow
∇t

r,I = Clowtr,I : dddlow
t

r,I

σσσlow
∇t

M,I = ClowtM,I : dddlow
t

M,I

C
o
n
ce
n
tr
a
ti
o
n

Spin
evolution

H
o
m
o
g
en
is
a
ti
o
n

Figure 2.9: Numerical algorithm for the multi-scale homogenization scheme.

2.9 Conclusion

In this chapter, we developed the framework of �nite strain continuum

micromechanics. As the RVEs undergo large morphological changes, a

Mori-Tanaka scheme extended to inclusion reorientation is adopted to compute

analytical expressions for the strain rate and spin concentration tensors. Based

on homogenization theory, these concentration tensors are then used to compute

the averaged strain rate and spin tensor in each phase of RVE from the applied

macroscopic strain rate on the boundary.

The phases in the RVE are represented as in�nitely long cylinders embedded in

a matrix, where Mori-Tanaka scheme de�nes the interaction between di�erent

phases in which a local hypoelastic constitutive model is de�ned. The computed

spin tensor for each phase determines the load-induced rotation of the phase.

This approach will ensure the non-a�ne deformation of the phases in the RVE.
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Furthermore, the method is extended to a multi-scale homogenization scheme to

be capable of modeling the hierarchical structure of artery.
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Résumé

A�n de développer un modèle de comportement de l'artère motivé par la

microstructure, l'approche micromécanique multi-échelle qui a été expliquée au

chapitre 2 a d'abord été appliquée à l'adventice, qui est la couche externe de

l'artère. Ce chapitre présente les étapes nécessaires pour construire le modèle

de l'adventice avec des volumes élémentaires représentatifs spéci�ques à plusieurs

échelles élaborés à partir d'observations microstructurales du tissu. Ensuite, la

simulation de la traction uniaxiale a été réalisée sur le modèle d'adventice pour

étudier le rôle des changements de morphologie des réseaux de �bres de collagène

et d'élastine et la contribution de ces réseaux à la réponse mécanique. En�n,

ces résultats ont été comparés aux résultats expérimentaux et aux observations

a�n d'évaluer la capacité du modèle micromécanique à prédire les observations

expérimentales.

3.1 Introduction

In order to develop a microstructurally motivated constitutive model for the

artery, the multi-scale micromechanical approach which was explained in Chapter

2 was �rst applied to the arterial adventitia layer. This chapter presents the

steps required to construct the arterial adventitia model with speci�c multi-scale

RVEs from the multiphoton image stacks of the tissue. Then, the uniaxial tensile

simulation was performed on the adventitia model to investigate the role of

the collagen and elastin �ber networks morphology changes and contribution of

these networks in the mechanical response. Finally, these results were compared

against the experimental results and observations to evaluate the capacity of the

micromechanical model to predict the experimental evidences.

3.2 Micromechanical representation of the adventitia

3.2.1 Modelling the adventitia at the scale of a few hundreds of

micrometers

As detailed in Chapter 1 and illustrated in Fig. 3.1, the microstructure of the

adventitia is very complex and cannot be resolved in full details. As a remedy, we
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here use the previously introduced theoretical framework to propose a multi-scale

model of the adventitia.

Figure 3.1: Multiphoton microscopic imaging of �bers in the adventitia [82]. (A)

collagen bundles; (B) elastin �bers.

The starting point is the de�nition of a RVE, with a characteristic length

l, ful�lling the scale separation requirements, see Eq. (2.1) in Chapter 2. The

mechanical properties of the adventitia result in a �rst approximation from the

interplay of the collagen and elastin �ber networks embedded in a soft ground

substance matrix. Analysis of microscopy images reveals that collagen bundles

have a diameter ranging between 5-10 µm [139], while the adventitial elastin �bers

have a diameter of 1-6 µm [49] (see Fig. 3.2). As regards to the characteristic

size of the RVE, confocal microscopic stacks of images reveal that l = 100 µm

is a convenient choice for having a su�ciently large number of �bers so as to be

representative of the adventitia microstructure.

Given these characteristic length scales, the description of the RVE needs

to be reduced to mechanically relevant details. Based on the �ber morphology,

we choose to model both �ber networks as in�nitely-long cylindrical inclusions,

with orientation characterized by the two Eulerian angles θ and φ, i.e. by the

classical spherical coordinates as de�ned by Fig. 3.3 and Eq. (2.48) in Chapter

2. The remaining space of the RVE is �lled by the ground substance matrix. In

the sequel, the collagen bundle phase is labeled by subscript "b − ad", while the
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Figure 3.2: Elastin �ber and �broblast (F) in aortic adventitia of rat,

magni�cation ×1, 700 [140].

elastin phase is labeled by subscript ”el−ad”, and the matrix phase by ”m−ad”.

Accordingly, the respective volume fractions of each of these phases read as fb−ad,

fel−ad, and fm−ad, with their sum being equal to 1.

𝜃

𝜑

𝑐𝑖𝑟𝑐
𝑟𝑎𝑑

𝑎𝑥𝑖𝑎𝑙

e2
e1

e3

Figure 3.3: Orientation of a �ber in the arterial wall. θ represents the �ber

inclination with respect to the axial direction of artery, and φ its direction in the

radial-circumferential plane.

The morphology of the adventitia layer motivates the choice of a Mori-Tanaka

scheme to account for all interactions between the di�erent phases.
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3.2.2 Modelling the collagen bundles of adventitia at the scale

of a few micrometers

The collagen bundles modeling needs to be further re�ned, since collagen bundles

are made, at a lower scale, of a staggered arrangement of collagen �brils. As

reviewed in Chapter 1, the recruitment process of collagen �bers has a signi�cant

impact on the mechanical response of arteries and therefore needs to be accounted

for. Following the multi-scale homogenization procedure described in Section 2.8

of Chapter 2, we introduce a lower scale RVE, with a characteristic length of 5-10

µm, i.e. satisfying the scale separation conditions, and hosting heterogeneities in

the form of in�nitely long cylindrical inclusions representing the collagen �brils,

which have a characteristic size of 30�100 nm [139]. The remaining volume of the

RVE is made of a ground substance matrix. The �brils and matrix are respectively

labeled by subscripts "f − b" and "m− b", and their respective volume fractions

read as ff−b and fm−b = 1−ff−b. We assume an helicoidal crimping: the collagen

�bers are isotropically distributed in the transverse plane, i.e., φ ∈ [0− 2π].

Once again, a Mori-Tanaka scheme is chosen to account for �bers-matrix

interactions. The resulting multi-scale micromechanical model representing the

arterial adventitia layer is illustrated in Fig. 3.4.

Figure 3.4: Micromechanical RVEs representing the adventitia. (A) RVE

representing the adventitia tissue scale; (B) RVE representing the collagen

bundles.
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3.3 Determination of the parameters of the model

The proposed multi-scale approach for the mechanical modeling of the arterial

adventitia introduces several physical and morphological parameters whose

determination is discussed in the present section. It is important to note that,

among all parameters, the vast majority are actually universal parameters, since

their values will remain �xed, based on experimental observations. First, as

reviewed in Chapter 1, all adventitial �ber networks have a negligible transmural

angle, and therefore all φ angles are set to π
2 .

3.3.1 Mechanical properties of elementary constituents

Our adventitia model introduces three distinct elementary constituents namely:

(i) type I collagen �bers, (ii) elastin �bers, and (iii) ground substance matrix.

We assign to these three constituents a hypoelastic constitutive behavior, as

introduced in the Section 2.4 of Chapter 2. Despite the vast literature discussing

the possible anisotropy of these constituents, we assume isotropic linear elastic

properties for all constituents, i.e. the sti�ness tensor of phase r, Cr, is de�ned

as :

Cr = 3krJ + 2µrK, (3.1)

whereby kr and µr are respectively the bulk and shear moduli of phase r, which

can be expressed as functions of the Young's modulus Er and of the Poisson's

ratio νr by kr = Er
3(1−2νr)

and µr = Er
2(1+νr)

. Furthermore, J is the volumetric part

of the fourth-order identity tensor I with components Jijkl = 1
3δijδkl, and K is its

deviatoric part, K = I− J. The components of the fourth-order identity tensor I

read as Iijkl = 1
2(δikδjl + δilδjk). δij stands for the Kronecker delta.

The literature review of Section 1.5 in Chapter 1 was guided our choice for

the isotropic properties of collagen �bers, elastin �bers, and ground substance,

which are summarized in Table 3.1. For all constituents, the Poisson's ratio is

taken equal to 0.34 [143, 25].
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Constituent Young's modulus [MPa] Specimen & experiment Reference

Collagen �bril type I 250 Tensile test on abovine Achilles tendon collagen type I [48, 141]

Elastin �ber 1 Tensile test on a water-swollen bovine ligamentum [1]

Ground substance 0.1 Resistance of single cell to elastic deformation [4, 130, 106, 11]

Table 3.1: Mechanical parameters of the adventitita micromechanical model.

3.3.2 Volume fraction of elementary constituents

Amount of collagen �brils in the collagen bundles

Di�erent studies report cross-sectional views of collagen bundles, imaged by means

of transmission electron microscopy, see Fig. 3.5. Automatic segmentation of these

microscopy images (using the Otsu method [103] to determine the thresholding

grey value) allows to access the volume fraction of these �brils, for di�erent tissues,

which we report in Table 3.2.

Figure 3.5: Cross section of a collagen bundle of a mouse adventitia [137].

Specimen Imaging method Volume fraction Reference

Mouse blood vessel adventitia electron microscopy 63% [93]

Mouse thoracic aorta adventitia electron microscopy 51% [137]

Rat inferior vena cava adventitia two-photon �uorescent microscopy 31% [52]

Rat aorta adventitia transmission electron microscope 30% [7]

Table 3.2: Collagen �bril volume fraction within a collagen bundle

This literature survey motivates our choice of a volume fraction of collagen

�brils of 30 %. An analysis is performed to understand the e�ect of a variation

of this volume fraction on the overall result, see section 3.5 of this chapter.
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Amount of collagen bundles in the adventitia

The stacks of adventitia images of rabbit carotid arteries taken by Witold Krasny

[82] were analyzed with ImageJ to separate the two recorded channels: second

harmonic generation (collagen bundles signals) and auto�uorescence (elastin �bers

signals). Then, the Otsu thresholding technique [103] is performed to extract

binary images. Since the fraction of collagen is not uniform through the thickness

of the arterial adventitia, the fraction is computed from taking the average through

the image stacks of each sample. Finally, we set the fraction of collagen bundles

to 30%, corresponding to the average of the fractions computed for the nine tested

samples, which is in agreement with other studies [16, 17].

Specimen Imaging method Volume fraction Reference

Porcine coronary adventitia multiphoton microscopy 33% [17]

Porcine coronary adventitia multiphoton microscopy 33% [16]

Rabbit carotid adventitia multiphoton microscopy 30% ± 10% Image processing from [82]

Table 3.3: Reported values for the volume fraction of collagen bundles in the

adventitia

Amount of elastin �bers in the adventitia

In the literature, the amount of elastin �bers has been evaluated in di�erent tissue

samples by a commercial image analysis software such as SIGMA SCAN PRO 5

[129] or ImageJ [43]. We also processed the di�erent stacks of images resulting

from uniaxial tensile tests on rabbit carotid arteries performed by Witold Krasny

[82]. The microscopic images of the adventitia tissue were analyzed with ImageJ

and the Otsu thresholding technique [103] performed on the auto�uorescence

channel allows to access the elastin volume fraction. All values are reported

in Table 3.4. The last line of Table 3.4 corresponds to our own evaluation of the

elastin fraction. We noticed a great variation in the elastin fraction among the

di�erent samples. Given the higher values reported in the literature, we �nally

decided to adopt a volume fraction of 20%. The sensitivity of the model with

respect to this parameter will be discussed later.
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Specimen Imaging method Volume fraction Reference

Porcine coronary adventitia multiphoton microscopy 25.7% [137]

Porcine coronary adventitia multiphoton microscopy 22% [17]

Rabbit carotid adventitia multiphoton microscopy 15% ± 10% Image processing from [82]

Porcine thoracic adventitia light microscopy 5% [129]

Table 3.4: Reported values for the volume fraction of elastin �bers in the

adventitia

3.3.3 Orientation of the di�erent �ber networks

Orientation of the collagen �brils in the collagen bundles

The �ber waviness (or its inverse, the �ber straightness) is an often-reported

parameter for collagen bundles. It is de�ned as the ratio of the total length of the

collagen bundle on the end-to-end distance of the crimped collage bundle. The

�ber straightness P is directly related to the orientation of the crimps, through

the following relation: cos(θ) = P , whereby θ is the angle between the main

bundle axis and the local crimp orientation, see Fig. 3.6. Table 3.5 reports the

values collected from the literature on di�erent tissue samples. We here adopt

the average value of all values reported in Table 3.5. Once again, a sensitivity

analysis on this parameter will be performed in a later section.

axial

circ

θglob
θloc θ

straight form

crimped form

Figure 3.6: Representative straight form and crimped form of collagen bundle

and corresponding angles.
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Specimen Straightness Corresponding θ Reference

Porcine coronary adventitia 0.85 31◦ [160]

Porcine coronary adventitia 0.85 31◦ [22]

Porcine coronary adventitia 0.82 35◦ [19]

Porcine coronary adventitia 0.81 36◦ [19]

Rabbit carotid adventitia 0.8 37◦ [123]

Rabbit carotid adventitia 0.72 44◦ [114]

Table 3.5: The waviness and corresponding local angle of collagen bundles

Orientation of the collagen bundles

The orientation of �bers was analyzed using orientationJ, a series of ImageJ

plugins for directional image analysis [107, 114], which was employed previously

to compute the global orientation and waviness of collagen bundles in the

axial-circumferential plane. Through this method, they extracted a global

orientation at around 45◦ for the collagen bundles of the adventitia layer in the

relax condition [114]. However, since this parameter is di�cult to estimate from

our images, and since the results are very sensitive to this parameter, we decided

to determine this parameter by curve �tting.

Orientation of the elastin �bers

Microscopic observations [17, 19, 82] show that the elastin �bers are mainly

oriented along the axial direction, i.e. θel−ad = 0.

The summary of model parameters and constants is presented in Table 3.6.

Parameters Collagen Elastin Matrix

mechanical constant
Eb = 250 MPa Eel = 1 MPa Em = 0.01 MPa

νb = 0.34 νe = 0.34 νm = 0.34

volume fraction
upper scale fb−ad = 30% fel−ad = 20% fm−ad = 1−

∑
i fi

lower scale ff−b = 30% NA NA

orientation

upper scale
θb−ad = Free parameter θel−ad = 0◦ NA

φb−ad = 90◦ φel−ad = 90◦ NA

lower scale
θf−b = 35◦ NA NA

φb−ad = 90◦ NA NA

Table 3.6: The summary of arterial adventitia model parameters and constants
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3.4 Results

In this section, we validate the micromechanical model by comparing our model

predictions with the macroscopic mechanical response obtained experimentally

on each layer of human coronary arteries according to experiments from [63]

and of human thoracic aorta according to [147]. This validation was performed

individually for the adventitia layer. The parameters of the model were chosen

based on Section 3.3.2 and summarized in Table 3.6. The only free parameter

of the model, the global angle of collagen bundles in the adventitia θb−ad,

was calibrated by minimizing the gap between experimental and computational

stress-strain curves using a genetic algorithm. Furthermore, as a �rst estimate,

a linear elastic representation of the media was considered along with the

adventitia micromechanical model in order to evaluate the model by comparing

the mechanical response and kinematics of the �bers with experiments performed

by [82] on rabbit carotid artery.

3.4.1 Tensile test on the arterial adventitia

Uniaxial tensions were simulated based on the micromechanical model of the

adventitia in order to compare the predicted mechanical response with the

experimental results according to [63] (see Fig. 3.7(a)) and also according to [147]

(see Fig. 3.7(b)) individually in the circumferential and longitudinal directions. A

genetic algorithm was employed to �t the circumferential and longitudinal results

simultaneously with the experiment by adjusting θb−ad as a free parameter. An

orientation of θb−ad = 38.5◦ for human coronary artery and θb−ad = 40◦ for

human thoracic aorta was obtained, which leads to a good agreement between

model predictions and experimental results. Those values of θb−ad are also in

good agreement with the measurements reported by [124] being 40◦ for human

abdominal aortas.

Furthermore, the evolution of �ber angles were predicted by the model during

uniaxial tension, individually in circumferential and longitudinal directions (see

Fig. 3.8(b)). They are in good agreement with experimental observations, namely

the bundles tend to align with the direction of tension at large stretches. Note

that �ber alignment is not completely circumferential or longitudinal at the end of

the simulation, as also observed by Witold Krasny during his experiments [82, 81].
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(a) θb−ad = 39◦

R2 = 0.84

(b) θb−ad = 40◦

R2 = 0.62

Figure 3.7: Macroscopic mechanical response of adventitia, (a) human coronary

artery according to [63] and (b) human thoracic aorta according to [147] . The

free parameter θb−ad and R2 are reported for each tissue.

We compared the bundle rotations with the a�ne kinematic model, where the θ

angle evolution is given by the following equation:

θ = tan−1

(
λcirc
λlong

tan Θ

)
(3.2)

whereby λcirc and λlong respectively stand for the measured circumferential and

longitudinal stretches and Θ is the initial bundle orientation.

(a) (b)

Figure 3.8: (a) Macroscopic mechanical response of adventitia at high stress. (b)

Evolution of �ber angles under uniaxial tension in the adventitia.

The comparison between the bundle kinematics predicted by our model and

the a�ne kinematics shows that the a�ne kinematics is a good approximation

of the bundle kinematics for a restricted range of stretch, but underpredicts the

bundle rotation as compared to our model; similar observations were also made
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Figure 3.9: Evolution of �bril angle under uniaxial tension

when comparing experimentally-observed bundle rotation to the a�ne kinematics.

The model is also able to predict the �bril decrimping, where �brils tend to align

with the bundle direction, as shown on Fig. 3.9 (although the predicted decrimping

remains very limited here). It is interesting to notice that the decrimping does

not occur from the beginning of the load application, which is in agreement with

experimental observations [82, 22]. In the present model, the non linearity of

the mechanical response arises from the combined reorientation of the collagen

bundles and �brils, while the elastin �bers exhibit very limited reorientations

(again in good agreement with experiments).

3.4.2 Tensile test on artery

Finally, the global response of the arterial wall was computed by averaging across

the whole thickness, pooling together the adventitia and the media in order to

compare the results of the model with the experiment performed on a carotid

artery strip [82]. The arterial structure is strati�ed. Therefore, when loading the

structure in directions parallel to the layers, the average response is equal to the

Voigt bound, and reads as:

DDDartery = DDDadv = DDDmed (3.3)

σσσartery = fadv σσσadv + fmed σσσmed (3.4)

As a �rst estimate the mechanical response of the media layer considered as

a linear elastic with Young's modulus of Emed. Parameters of the adventitial

micromechanical model are chosen identical to the previous validation case.

Nevertheless, the only free parameter of the model, i.e. the global orientation
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of collagen bundles θb−ad, was chosen as a free parameter and determined by

calibrating the modeled response against experiments using a genetic algorithms.

Choosing θb−ad = 68◦ for sample preconditioned longitudinally and θb−ad = 31◦

for sample preconditioned circumferentially lead to the best �tting withR2 = 0.67.

These values of θb−ad were also in good agreement with the morphology of the

tissue. Fiber tracking was performed on few stacks of images recorded by Witold

Krasny [82], and it was interesting to notice that the preconditionning of the

sample induces a preferred global orientation of the collagen bundles: on these

processed stacks, a global orientation of 60◦ ±10◦ was obtained in the longitudinal
direction, whereas the circumferential sample exhibited a global orientation of 35◦

±10◦. This justi�es the use of two di�erent values for the two loading directions.

Interestingly also, the global orientation was found to be further away from the

45◦ angle as compared to the tests performed on the adventitia alone on porcine

arteries. The mechanical responses of the arterial model, taking into account the

media as a linear elastic with di�erent Young's modulus (Emed) of 0.1, 0.5 and 1

MPa are illustrated in Fig. 3.10.

Figure 3.10: Comparison of the mechanical response of the model with the

experiment carried out by [82] for whole carotid artery sample, taking into account

the media as a linear elastic material with di�erent Young's moduli Emed, 0.1, 0.5

and 1 MPa.

Accounting for the media as a linear material is a good �rst approximation,

since it allows to retrieve the correct initial slope of the curve (which would be
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much smaller if no media would have been accounted for). However, developing

a multiscale model for the media would permit to gain in non linearity and

anisotropy of the global mechanical response of the tissue, as will be shown in

the next chapter.

Figure 3.11: Comparison of the �ber kinematics with the experiments carried out

by [82] for whole carotid artery sample.

Our model also allows to compare the predictions of the reorientation of the

collagen bundles to the experimentally measured ones: Very good agreement is

reached, as shown on Fig. 3.11.

3.5 Discussion

The multiscale micromechanical approach has been used to model the nonlinear

and anisotropic mechanical responses of adventitia including directly phenomena

occurring at the microscopic scale such as collagen �ber recruitment and non-a�ne

�ber rotations. The objective was to propose a model for the adventitia layer built

on the minimum of microstructural information, which is necessary to obtain

reliable predictions of macroscopic mechanical behavior. To this aim, the main

orientation of collagen and elastin �bers was obtained from image analysis of the

adventitia images and considered in our representative volume element. Note that

modeling the main �ber orientation instead of the �ber networks was also used in

the well-established soft tissue models [45, 62, 61, 63].
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3.5.1 Non-linearity

The use of hypoelasticity in the framework of micromechanical modeling permits

to account for the large deformation of the tissue and the microstructural

evaluation (non-a�ne �ber rotations). While, hypoelasticity has been previously

used to model soft tissue biomechanics [36, 37]. In our model, the constituents of

the model (elastin �ber, collagen �bril, and soft ground matrix) were modeled as

linear elastic material (hypoelastic modulus and the hypoelastic Poisson's ratio)

and the only source of non-linearity is due to the �ber reorientation. The �bers

at upper scale RVE reoriented toward the load direction (�ber decrimping, see

Fig. 3.8 (b)), where the two regimes of �ber reorientation were observed; (i)

a�ne �ber rotation at low stresses, where the �bers have the same deformation

as matrix, (ii) non-a�ne �ber rotation at higher stresses, where the �bers can

generate shear stresses to rotate more than the matrix, which is in good agreement

with experimental observations [82, 81]. Furthermore, the �brils in the lower scale

RVE tend to align with the �ber direction (�bril decrimping, see Fig. 3.9), where

the decrimping does not happen right after the load application in agreement with

the experimental observations [82, 22].

3.5.2 Anisotropy

In the model, at the lower scale, the matrix phase and collagen �brils are isotropic

materials, while the homogenized RVE (collagen bundle at upper scale) behaves

anisotropically. Therefore, at the upper scale, the collagen bundles are anisotropic,

while the matrix is isotropic and �nally the homogenized response of the adventitia

behaves anisotropically. The shape and the orientation of the �bers and �brils

phase within the RVEs dictate the anisotropy behavior of the model. This

hierarchical structure and preferred orientation of constituents have been often

seen in the biological tissues, where the micromechanical framework has been

applied before to model this anisotropic behavior in bone [40, 41, 39].

3.5.3 Sensitivity analysis on load increment size

The developed multiscale model is highly non linear, which requires the

development of an incremental algorithm, as developed in Chapter 2. Besides, the

implicit dependence of the di�erent concentration operators on the orientations
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of the inclusions were solved with an explicit scheme for the discretization of the

equations. We therefore propose a sensitivity analysis to verify the convergence of

the results for di�erent increment sizes. The results are reported in Fig. 3.12, in

which the variation of mechanical response was not signi�cant. Hence, increments

of 0.2 kPa were chosen to perform the simulations.

Figure 3.12: Increment size of load step in simulation of uniaxial tension on

arterial adventitia

3.5.4 Sensitivity analysis on the collagen orientation and fraction

at both scales

We extended our sensitivity analysis to all parameters of the models whose values

exhibited variations in the literature, namely: the volume fractions of collagen

�brils and bundles and their orientations. For each parameter, we here show its

impact on the response while maintaining all other parameters constant and equal

to the value indicated above in Table 3.6.

The most in�uential parameter is the orientation of the collagen bundles: the

variation of only 4◦ in the bundle orientation produces in fact the similar scattering

in the mechanical response as the variation of 15◦ in the �bril orientation (compare

Fig. 3.13(a) and Fig. 3.14(a)). Increasing the angle between collagen bundles and

direction of the load (i.e. in circumferential tension 90−θb−ad) leads to increasing
the time it takes to sti�en the material, since it takes more time for the �ber to

reorient and to align with the load direction. As seen in Fig. 3.13(b), by increasing

the angle between collagen bundles and direction of the load, the �ber is aligned

with the direction of the load at higher stretches. While by increasing the angle

between collagen �brils and collagen bundles, collagen �brils reorient less (see
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Fig. 3.14(b)).

(a) (b)

Figure 3.13: The impact of global orientation of collagen bundles on the

mechanical response (a) and �ber kinematics (b) of arterial adventitia

(a) (b)

Figure 3.14: The impact of orientation of collagen �brils on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia

The precise volume fraction of collagen bundles does in�uence the results,

whereas the fraction of �brils does not (compare Fig. 3.15 and Fig. 3.16).

Increasing the volume fraction of collagen bundles leads to decreasing the time

needed to sti�en the material. In this condition, we have less volume fraction

of ground substance and more interaction between bundles which leads to faster

reorientation with the load direction.
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(a) (b)

Figure 3.15: The impact of collagen bundles volume fraction on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia

(a) (b)

Figure 3.16: The impact of collagen �brils volume fraction on the mechanical

response (a) and �ber kinematics (b) of arterial adventitia

Parameters at the lower scale RVE have less impact on the mechanical

response and �ber kinematics of arterial adventitia than parameters in the upper

sclae. This sensitivity analysis together with the di�culty to determine it by

post-processing of image stacks con�rm our choice of determining the bundle

inclination through a �tting process based on a genetic algorithm.

3.5.5 Contribution of the matrix sti�ness

We here test how the matrix sti�ness a�ects the mechanical response of the

adventitia. To this aim, the matrix Young's modulus at both scales was varied

in the range [1-100] kPa, and the e�ect is shown in the Fig. 3.17. The matrix

sti�ness in�uences the di�erent slopes of the mechanical response: at low stresses,

when collagen is still crimped and disoriented, as expected, the sti�er the matrix,
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the sti�er the response; at large stresses however, the tendency is reverse: the

sti�est the matrix, the longer it takes to sti�en the material: this is due to a more

limited contrast between the sti�ness of the rotating inclusions and the one of the

matrix.

(a) (b)

Figure 3.17: The impact of the matrix sti�ness on the mechanical response (a)

and �ber kinematics (b) of arterial adventitia

3.5.6 Contribution of elastin in the mechanical response

A similar sensitivity analysis was performed for the contribution of elastin. The

results, plotted in the Fig. 3.18, show that the elastin fraction has a limited impact

on the initial slope of the mechanical response, but it changes the stretch at which

the collagen recruitment starts, and therefore the time necessary for slope changes.

Figure 3.18: The impact of the elastin fraction on macroscopic mechanical

response of adventitia.
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3.6 Conclusion

The micromechanical modeling was employed in a multi-scale approach to address

the non-a�ne deformation of �bers at large deformation as well as taking

into account the anisotropy of collagen and elastin �bers. To the best of

our knowledge, the developed constitutive model is the �rst to address the

nonlinearity of the adventitia tissue through the collagen bundle reorientation

and the anisotropy through the preferred orientation of the �bers as it has

been observed experimentally [22, 82]. The modeling of these microstructural

phenomena and access to the microstructural deformation and stresses is crucial

for the constitutive model to be capable of accounting for the growth and

remodeling, damage and modeling of other pathologies.

The model built on the minimum microstructural information, which can

directly be measured from images and predictions of the macroscopic and the

microscopic mechanical behavior of adventitia. It is interesting to note that our

model well captures the macroscopic mechanical response of the adventitia, with

only one �tted parameter, all the others being taken from the microstructural

analysis. As the results demonstrate, the model predicts the contribution of

collagen and elastin to mechanical load as well as the evolution of micromechanical

parameters such as microstructural stresses and microstructural evolution.

In order to have a better understanding of the contribution of the arterial

media layer into nonlinearity and anisotropy of the mechanical response of the

artery, it is required to build a detailed, microstructural model. This is the aim

of the next chapter.
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Résumé

Dans ce chapitre, nous étendons le modèle micromécanique à la média, qui est

la couche intermédiaire dans le tissue artériel. Le modèle cherche à prendre en

compte la contribution non linéaire et anisotrope de cette couche dans la réponse

mécanique de l'artère. De la même façon que pour le développement du modèle

micromécanique de la couche adventice, ce chapitre est consacré à la discussion

des étapes nécessaires à la construction du modèle micromécanique de la média
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avec des volumes élémentaires représentatifs spéci�ques, construits à partir des

piles d'images multiphotoniques du tissu. La validation de notre modèle repose

sur la simulation d'un essai de traction uniaxiale et sur la comparaison avec les

données expérimentales correspondantes.

4.1 Introduction

In this chapter, we extend the micromechanical model to the arterial media

layer, to take into account the nonlinear and anisotropic contribution of this

layer in the mechanical response of the artery. Similarly to the development

of the micromechanical model of the adventitia layer, this chapter is devoted to

discussing the steps required to construct the micromechanical model of the media

with speci�c RVEs built from the multiphoton image stacks of the tissue. The

validation of our model relies on the simulation of a uniaxial tension test and on

the comparison with the corresponding experimental data.

4.2 Micromechanical representation of media

The media layer is made of lamellar units, each unit being made of lamellae,

consisting of oblate spheroids containing dense networks of elastin and collagen

(see Fig. 4.1), as well as of interlamellar space in between where smooth muscle

cells are living (see Fig. 4.2). The mechanical properties of these layers arise from

the interplay of their constituents. We here employ the previously introduced

theoretical framework (see chapter 2) to propose a micromechanical model of the

media, which whose microstructure was described in details in chapter 1.

4.2.1 At the scale of a few hundreds of micrometers

The modeling of the media layer at the scale of a few hundreds of micrometers

consists in de�ning an RVE containing a pile of in�nitely long oblate

spheroids representing the elastic lamellae and of in�nitely long oblate spheroids

representing the interlamellar space (see the left RVE of Fig. 4.3). Multiphoton

microscopic stacks of images reveal that a characteristic size of the RVE of l = 100

µm is a convenient choice for having a su�ciently large number of lamellae to be

representative of the media microstructure. Under uniaxial tension, as the load is
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Figure 4.1: Multiphoton microscopic imaging of �bers in the media. (A) collagen

�bers; (B) elastin �bers [82].

parallel to the lamellae and interlamellar space, the average response of the RVE

is computed from the Voigt bound Eq. (3.3).

4.2.2 At the scale of a few micrometers

Modeling the elastic lamellae

The elastic lamellae are made of dense networks of elastin �bers, and a few percent

of collagen �bers type I and III. In the elastic lamellae micromechanical model,

these �bers are modeled as in�nitely long cylinders embedded in a soft ground

substance, which is a suitable candidate for the Mori-Tanaka homogenization

scheme (see Fig. 4.3 (C)) [94]. The collagen �ber phase is labeled by the subscript

"c − la", while the elastin phase is labeled by the subscript ”el − la”, and the

matrix phase by ”m − la”. Accordingly, the respective volume fractions of each

of these phases read as fc−la, fel−la, and fm−la, with their sum being equal to 1.

Modeling the interlamellar space

The interlamellar space contains SMCs, elastin, and collagen �bers type I and

III. Similarly, in the interlamellar space micromechanical model, the collagen and

elastin �bers are modeled as in�nitely long cylinders embedded in a soft ground
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Figure 4.2: Scanning electron micrographs of a tangentially cut surface of the

media in the rat aorta. The elastin �brils and smooth muscle cells (M) covered

the surface of the elastic lamellae, magni�cation ×3, 500 [140].

substance containing the SMCs, which is a suitable candidate for the Mori-Tanaka

homogenization scheme (see Fig. 4.3 (B)) [94]. The collagen �ber phase is labeled

by the subscript "c − in", while the elastin phase is labeled by the subscript

”el− in”, and the matrix phase by ”m− in”. Accordingly, the respective volume

fractions of each of these phases read as fc−in, fel−in, and fm−in, with their sum

being equal to 1.

4.3 Determination of the parameters of the model

4.3.1 Mechanical properties of elementary constituents

The micromechanical models for both lamellae and interlamellar space introduce

three distinct elementary constituents, namely: (i) type I and type III collagen

�bers, (ii) elastin �bers, and (iii) ground substance matrix. The mechanical

parameters for the elementary constituents of the media layer, i.e., of elastin

and collagen �bers as well as of the ground substance are the same as those of

the adventitia layer model, which are summarized in Table 3.1. In particular,

for sake of simplicity, we choose to consider the same mechanical properties for

all collagen �bers (i.e. type I and type III). Regarding the mechanical properties

of the interlamellar space matrix, the mechanical properties of SMCs have been
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Figure 4.3: Micromechanical RVEs representing the media. (A) RVE representing

the tissue scale; (B) RVE representing the interlamellar space; (C) RVE

representing the lamellae.

reviewed in Chapter 1, and a Young's modulus of 50 kPa was chosen for the

ground substance of the interlamellar space.

4.3.2 Volume fraction of elementary constituents

Amount of elastin �bers in the media

The multiphoton stacks of medial tissue from rabbit carotid arteries taken by

Witold Krasny [82] were analyzed using the same procedure as for the adventitia,

namely: �rst, ImageJ allows to separate the two channels of the second harmonic

generation (collagen signal) and auto�uorescence (displaying mainly the elastin

�bers, but also few collagen �bers). Then, the Otsu thresholding technique [103]

allows to access the �ber fraction by means of conversion to binary images. As

a result the elastin �bers volume fraction amounts to 25% as estimated by the

average over the nine samples. This is in good agreement with an medial elastin

volume fraction of 29% as measured in rat aorta by [100]. Our estimated value

is also in good agreement with the amount of elastin measured in small animals

arteries, as reported in Table 4.1. Bigger species, like porcs, sheeps, or even

humans, have a larger amount of elastin. Besides, [100] stated that approximately
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71% of the total medial elastin belongs to the lamellae. Thus, if we split the total

volume fraction of medial elastin between 50% lamellae and 50% interlamellar

space such that 71% of elastin is present in the lamellae, we can compute an

elastin volume fraction in the lamellae of around 35% and in the interlamellar

space of around 15%.

Specimen Imaging method Volume fraction Reference

Human abdominal aorta photomicrograph 40% to 60% [136]

Sheep carotid photomicrograph 40% to 50% [27]

Rat subrenal aorta photomicrograph 35% to 45% [80]

Porcine aorta photomicrograph 30% to 50% [135]

Wistar rats aorta photomicrograph 20% to 25% [56]

Table 4.1: Review of the volume fraction of elastin �bers in the media

Amount of collagen �bers in the media

The volume fraction of medial collagen �bers is also evaluated using the second

harmonic generation channel through ImageJ followed by the Otsu thresholding

technique [103]. As a result, the fraction of collagen �ber in the media amounts

to around 25% as given by the average over the nine samples tested by Witold

Krasny [82], which falls well in the range of all other measures reported in the

literature, as summarized in Table 4.2.

It has been observed experimentally that the collagen �bers are distributed

between the lamellae and the interlamellar space [100], but the exact proportions

are not reported. For simplicity, we split the total volume fraction of medial

collagen between 50% in the lamellae and 50% in the interlamellar space, such

that the fraction of collagen �ber in the lamellae and interlamellar space becomes

equal to 25%.

Specimen Imaging method Volume fraction Reference

Sheep carotid photomicrograph 40% to 50% [27]

Wistar rats aorta photomicrograph 20% to 25% [56]

Porcine aorta photomicrograph 15% to 22% [135]

Human abdominal aorta photomicrograph 12% to 20% [136]

Table 4.2: Review of the volume fraction of collagen �bers type I and III in the

media
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Amount of SMCs in the media

Although this fraction is not needed in our model, we here report values for

the volume fraction of SMCs in the media, for a future extension of the model,

explicitely accounting for the SMCs. The volume fraction of SMCs has been

assessed by a stereological method on histological sections of the medial porcine

abdominal aorta by [134]. They reported a volume fraction of around 65% for

the SMCs. Other studies, as summarized in Table 4.3, report smaller fractions of

SMC for other species and arteries.

Specimen Imaging method Volume fraction Reference

Porcine abdominal aorta photomicrograph 65% [134]

Rat subrenal aorta photomicrograph 50% to 55% [80]

Human abdominal aorta photomicrograph 40% to 45% [136]

Table 4.3: Review of the volume fraction of SMCs in the media

4.3.3 Orientation of the di�erent �ber networks

In the medial model, we also chose to model both �ber networks (collagen and

media) as in�nitely-long cylindrical inclusions, with orientation characterized by

the two Eulerian angles θ and φ, i.e. by the classical spherical coordinates as

de�ned by Fig. 4.4 and Eq. (2.48) in Chapter 2.

𝜃

𝜑

𝑐𝑖𝑟𝑐
𝑟𝑎𝑑

𝑎𝑥𝑖𝑎𝑙

e2
e1

e3

Figure 4.4: Orientation of a �ber in the arterial wall. θ represents the �ber

inclination with respect to the axial direction of artery, and φ its direction in the

radial-circumferential plane.
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Orientation of the elastin �bers

Di�erent contributions [100, 18, 157] showed that the elastin �bers in the media

are mainly oriented along the circumferential direction both in the lamellae and

the interlamellar space, i.e. θel−med = 90◦. A small fraction of elastin (5%) was

assigned a longitudinal orientation, θel−med = 0◦ to represent the interconnection

of the elastin network. This circumferential orientation was also found when

analyzing the multiphoton stacks of Witold Krasny [82]. Besides, some portion of

the elastin �bers are tilted in the radial-circumferential plane, with an orientation

parallel to the tilting of the SMC, i.e. φel−in = φel−la = 70◦ [100], while some

elastin �bers networks display no radial tilting, i.e. φel−in = φel−la = 90◦. The

existence of truss �bers in the interlamellar space motivates us for the introduction

of a small portion (5%) of elastin �bers with a purely radial orientation, i.e.

φel−in = 0 [100].

Orientation of the collagen �bers

The orientation of collagen �bers was analyzed using OrientationJ, a series of

ImageJ plugins for directional image analysis [107, 114]. We extracted a main

orientation for medial collagen �bers θc−med = 85◦, which is in good agreement

with the results of [100, 22]. According to the literature [100], these collagen �bers

have an inclination in the radial-circumferential plane but no study reported this

angle. Thus, the inclination of collagen �bers in the radial-circumferential plane

of the media φc−med is chosen as a free parameter. We consider that the collagen

�bers have the same initial orientation in the lamellar and interlamellar space.

A summary of model parameters and constants is given in table 4.4.
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Parameters Collagen Ground substance

mechanical constant
Ec = 250 MPa Em−la = 0.01 & Em−in = 0.05 MPa

νb = 0.34 νm = 0.34

volume fraction
Lamellae fc−la = 25% fm−la = 1−

∑
i fi

Interlamellar space fc−in = 25% fm−in = 1−
∑
i fi

orientation

Lamellae
θc−med = 85◦ NA

φc−med = Free parameter NA

Interlamellar space
θc−med = 85◦ NA

φc−med = Free parameter NA

Parameters Elastin 1 Elastin 2 Elastin 3

mechanical constant
Eel1 = 1 MPa Eel2 = 1 MPa Eel3 = 1 MPa

νel1 = 0.34 νel2 = 0.34 νel3 = 0.34

volume fraction
Lamellae NA fel2−la = 30% fel3−la = 5%

Interlamellar space fel1−in = 5% fel2−in = 5% fel3−in = 5%

orientation

Lamellae
NA θel2−med = 90◦ θel3−med = 0◦

NA φel2−la = 70◦ φel3−la = 90◦

Interlamellar space
θel1−med = 90◦ θel2−med = 90◦ θel3−med = 0◦

φel1−in = 0◦ φel2−in = 70◦ φel3−in = 90◦

Table 4.4: Summary of the medial model parameters and constants.

4.4 Results

4.4.1 Tensile test on the arterial media

Uniaxial tensions were simulated with the micromechanical model of the media to

compare the predicted mechanical response with the experimental results reported

for human coronary arteries [63] in the circumferential and longitudinal directions.

A genetic algorithm was employed to determine the collagen inclination φc−med

so as to �t simultaneously the circumferential and longitudinal curves. Finally, an

orientation of φc−med = 53◦ for human coronary artery leads to the best agreement

between model predictions and experimental results (see Fig. 4.5 (a)). Although

the model could predict correctly the mechanical response of the media in the

circumferential direction, the prediction of the mechanical response in longitudinal

direction remains linear. As the microstructure of the specimen is not reported

for the human coronary artery, further investigation was performed on the model

to have a better estimation of the mechanical response in both circumferential

and longitudinal directions. This investigation shows that the collagen dispersion

toward longitudinal direction provides a nonlinear mechanical response in the

longitudinal direction. Finally, the collagen �ber dispersion with equal volume
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fraction (12.5%) in θc−med = 85◦ and θc−med = 70◦ leads to a better prediction

of the mechanical response of the human coronary artery (see Fig. 4.5 (b)). Note

that even for a sample of the rabbit carotid artery was observed dispersion and

inclination of collagen �bers around the main orientation (θc−med = 80◦).

(a) θc−med = 85◦

R2 = 0.71

(b) θc−med = 85◦&70◦

R2 = 0.95

Figure 4.5: Macroscopic mechanical response of the media human coronary

artery according to [63], (a) θc−med = 85◦. (b) θc−med = 85◦&70◦.

Furthermore, the evolution of �ber angles was predicted by the model during

uniaxial tension, both in the circumferential and longitudinal directions (see

Fig. 4.6). The results are in good qualitative agreement with the experimental

ones reported by Krasny [82] and Chow [22]: the medial �ber networks undergo

a very limited reorientation.

Figure 4.6: Evolution of �ber angles under uniaxial tension in the media.

4.4.2 Tensile test on artery

Finally, the global response of the arterial wall was computed by averaging across

the whole thickness, pooling together the adventitia and the media to compare the
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results of the model with the experiment performed on the whole carotid artery

[82]. The overall stress of the artery is obtained from Eq. (3.3) by assuming the

same strain rate in the adventitia and media layers (according to the arrangement

of the layers with respect to the load directions).

The constants of the micromechanical model of the media and adventitia are

the ones reported for the previous validations. Nevertheless, the free parameter

of the adventitia model, i.e. the global orientation of collagen bundles θb−ad and

the free parameter of the media model φc−med were determined by �tting the

predicted response to the experimental response using a genetic algorithm. The

inclination of collagen �bers in the radial-circumferential plane of the media for

all the carotid artery samples is obtained as φc−med = 50◦. The global orientation

of adventitial collagen bundles θb−ad, obtained after calibration, is reported in

Table 4.5 for each carotid artery sample. The results also show the e�ect of

preconditioning, which also observed from experimental tests [82] as discussed in

Chapter 3. Good agreements are found between the modeled response and the

experiments, both in terms of macroscopic stress-stretch behavior and in terms

of rotations of microstructural components. Results are shown in Fig. 4.7.

Sample Preconditioning θb−ad R2

Sample 1
circ 30

0.82

long 67.5

Sample 2
circ 37

0.87

long 66

Sample 3
circ 31.5

0.75

long 71

Sample 4
circ 29.5

0.78

long 68.5

Table 4.5: Obtained model parameters after calibration for each carotid artery

sample.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Comparison of the modeled mechanical response and �ber kinematics

with the experiments [82] for di�erent carotid artery samples. φc−med = 50◦ for

all samples.
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4.5 Discussion

The micromechanical approach was extended to model as well the medial layer

of artery. For the sake of simplicity two RVEs represent the media layer

namely: elastic lamellae and interlamellar space. The minimum microstructural

information, which is necessary to achieve reliable predictions of macroscopic

mechanical behavior was taken into account to establish the RVEs. Then, the

media layer was modeled as a lamellar structure of these two units, which has been

observed experimentally [100]. The RVE of elastic lamellae consists of elastin and

collagen �bers and interlamellar space's RVE consists of elastin and collagen �bers,

and smooth muscle cells (SMCs). In the RVE of interlamellar space, SMCs was

represented as a soft ground substance, since modeling the SMCs as inclusion (see

primary media's RVEs in Fig. 4.8) have shown not to have an important impact on

the mechanical response of the medial layer due to its low sti�ness compared to the

other constituents. Furthermore, in the primary micromechanical media's RVEs,

lamellae modeled with two scales; at the upper scale, elastic lamellae and collagen

�bers embedded in a soft matrix, and the lower scale was represented the dense

networks of elastin �bers in the elastic lamellae (see Fig. 4.8). These arrangements

had almost doubled the parameters but could not improve the prediction of the

model (see Fig. 4.9, R2 = 0.88).

Figure 4.8: Primary micromechanical RVEs representing the media. (A) RVE

representing the tissue scale; (B) RVE representing the interlamellar space; (C)

RVE representing the lamellae; (D) RVE representing the elastic lamellae.
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R2 = 0.88

Figure 4.9: Primary model macroscopic mechanical response of the media human

coronary artery according to [63].

The results show that the model is capable of capturing the macroscale

mechanical response and the microscale �ber kinematics for the medial layer. The

�bers in the medial layer under load do not reorient largely as in the adventitial

layer (compare Fig. 4.6 to Fig. 3.8 (b) from Chapter 3 for the adventitial �ber

reorientations), which is also in good agreement with experimental observations

[82, 22]. This �bers' interaction has been correctly predicted by the Mori-Tanaka

assumption [94], although Mori-Tanaka scheme only considers the modeling

of �ber-matrix interaction, in which �bers can only feel each other through

the matrix rather than the direct interaction between the network of �bers.

Furthermore, considering all these interactions in a complex biological tissue

through the implementation of �nite element is computationally expensive [76].

Although for the sake of simplicity we consider one family of collagen �bers,

results show the �ber dispersion can improve the prediction of the mechanical

behavior of the medial layer (compare Fig. 4.5(a) and Fig. 4.5(b)). Note that

we did not have access to the microstructural information of the tested medial

samples on the human coronary artery by [63], and microstructural information

was obtained from the rabbit carotid artery images. The mechanical responses of

the whole artery obtained from the Voigt bound estimation Eq. (3.3), this is only

valid when the load direction is parallel to the direction of the layers. In order

to apply more complex load conditions such as an in�ation test on the artery,

the implementation of the �nite element method is necessary to account for the

interaction of these RVEs.

Among the parameters introduced in the medial model, the di�erent volume

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



4.5. DISCUSSION 87

fractions vary in wide ranges, depending on the species or on the considered organ.

We therefore chose to perform a sensitivity analysis, so as to understand how these

volume fractions impact the overall medial mechanical response. In this sensitivity

analysis, we also include the inclination parameter which was determined by a

genetic algorithm. For each parameter, we here show its impact on the uniaxial

circumferential response of the media, while maintaining all other parameters

constant and equal to the value indicated above in Table 4.4.

The investigation reveals that the most in�uential parameter is the orientation

of the collagen �bers φc−med: increasing the angle between the �bers and the load

directions (i.e. in circumferential tension 90−φc−med) leads to increasing the time

it takes to sti�en the material, since it takes more time for the �ber to reorient

and to align with the load direction (see Fig. 4.10(a)). In contrast to φc−med, the

angle θc−med does not have an impact on the results as collagen �bers are aligned

almost circumferentially and therefore are already aligned with the load direction

(see Fig. 4.10(b)).

(a) (b)

(c) (d)
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(e) (f)

Figure 4.10: The impact of di�erent parameters of the media model on

the circumferential mechanical response (a) out of axial-circumferential plane

inclination angle of medial collagen φc−med (b) in axial-circumferential plane

inclination angle of the medial collagen θc−med (c) fraction of collagen in the media

fc−med (d) fraction of elastin in the media fel−med (e) fraction of lamellae in the

media flam (f) di�erent proportions of collagen fraction in the medial lamellae.

Increasing the volume fraction of collagen and elastin �bers lead to decreasing

the time it takes to sti�en the material. In this condition, we have less volume

fraction of ground substance and more interaction between bundles which leads

to faster reorientation with the load direction (see Fig. 4.10(c) & (d)). The other

parameter whose value exhibited variations in the literature is the proportion of

the lamellae and interlamellar space in the media. As lamellae contains higher

fraction of elastin �bers which make it sti�er as compared to the interlamellar

space, these elastin �bers as well resist against reorientation of collagen �bers.

Increasing the fraction of lamellae leads to decreasing the time it takes to sti�en

the material as well as decreasing the non-linear behavior of the material (see

Fig. 4.10(e)). Further investigations show increasing or decreasing the volume

fraction of collagen �bers in the lamellae dose not impact the mechanical responses

of the model (see Fig. 4.10(f)).

4.6 Conclusion

In this chapter, the micromechanical approach was extended to model the

medial layer. The developed hypoelastic constitutive model in the framework

of continuum micromechanics correctly predicted the nonlinear and anisotropic

mechanical responses of arteries at the elastic regime. The multiscale layer-speci�c

Mohsen Nakhaei Thèse en Mécanique et Ingénierie



4.6. CONCLUSION 89

model includes directly phenomena occurring at the microscopic scale, such as

�bers interaction through the matrix, collagen �ber recruitment, and non-a�ne

�ber rotations, and takes into account universal patterns of the hierarchical

organization of arteries at di�erent scales.

The results illustrate the capability of the model to capture the macroscopic

mechanical response of the tissue as well as micromechanical evolution. We hope

that this microstructure-based model will bring improvements in the prediction of

damage and strength of arterial tissue, since failure of the di�erent constituents

can be predicted and upscaled to predict the rupture of the tissue.
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en couches, à savoir : lamelles, espace interlamellaire et adventice. En raison de la

nature incrémentale du modèle constitutif matériel, une formulation lagrangienne

actualisée des éléments �nis a été utilisée pour prendre en compte les RVE

aux points intégraux de chaque élément et mettre à jour la morphologie de la

microstructure à chaque incrément. Après validation du modèle par rapport aux

solutions semi-analytiques, le modèle d'éléments �nis est utilisé pour simuler un

test d'in�ation artérielle. La pression interne en fonction du rayon interne a été

calculée pendant la simulation et les résultats ont été comparés aux résultats

expérimentaux de l'artère rénale de la souris [35]. De plus, la distribution des

contraintes et l'orientation des �bres ont été étudiées sur la paroi artérielle.

5.1 Introduction

In this chapter, a home-made �nite element code was written by taking into

account the multi-scale arterial constitutive model for the layer-speci�c structure

of the artery; namely: lamellae, interlamellar space, and adventitia. Due to the

incremental nature of the material constitutive model, an updated Lagrangian

�nite element formulation was employed to take in to account the RVEs at integral

points of each element and update the morphology of the microstructure at each

increment. After validating the model against the semi-analytical solutions, the

�nite element model is used to simulate an arterial in�ation test. The internal

pressure versus inner radius was calculated during the simulation and the results

were compared with the experimental results of the mouse renal artery [35].

Furthermore, the distribution of stress and �ber orientations were investigated

across the arterial wall.

5.2 Position of the problem

We consider an arterial segment with a simpli�ed geometry of a hollow cylinder

with length L , internal radius Ri, and thickness H, and made of two concentric

layers, namely the adventitia as the outer layer and the media as the inner one

(see Fig. 5.1). The intima is not modeled due to its negligible role in the arterial

mechanics. This initial con�guration is considered as the unloaded con�guration

and the reference for stresses and strains is chosen on this con�guration. The

arterial segment is subjected to a pressure �eld Pim on the inner surface ∂Ωi,
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while the outer surface ∂Ωo is let free of traction forces. Finally, a zero velocity

is imposed on the two crosssectional surfaces ∂Ωend. The hypoelastic constitutive

models developed in chapters 3 and 4 are chosen for modeling the response of the

adventitial and medial layers respectively. This problem can be summarized by

the following set of equations:

div (ΣΣΣ(X, t)) = 0 ∀X ∈ Ω, (5.1)

ΣΣΣ(X, t) · n(X, t) = Pim(X, t) n(X, t) ∀X ∈ ∂Ωi, (5.2)

ΣΣΣ(X, t) · n(X, t) = 0 ∀X ∈ ∂Ωo, (5.3)

V (X, t) · ez = V (X, t) · eθ = 0 ∀X ∈ ∂Ωend, (5.4)

Σ̇ΣΣ(X, t) = C(X, t) : DDD(X, t) ∀X ∈ Ω, (5.5)

whereby ΣΣΣ, DDD, V , X and n are respectively the macroscopic Cauchy stress

tensor, the macroscopic Eulerian strain rate, the macroscopic velocity vector, the

macroscopic location vector, and the outer unit normal vector, all of them being

evaluated at time t and location X; Ω, ∂Ωi, ∂Ωo, and ∂Ωend are respectively the

cylinder volume, inner and outer surfaces, and crosssectional surfaces. Finally,

the macroscopic �eld of hypoelastic sti�ness is de�ned as:

C(X, t) =


Cadv if X ∈ Ωadv

Clam if X ∈ Ωlam

Cin if X ∈ Ωin

with subscripts adv, lam, and in denoting respectively the adventitia, the lamellar

space, and the interlamellar space.
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Ω∂Ωend
∂Ωend

lumen
∂Ωi

Pim
∂Ωo

(b)(a)

Adventitia

Elastic lamellae
Interlamelar space

eθ

ez
er

Figure 5.1: (a) The geometry of the problem. (b) Crosssection of cylinder.

5.3 Numerical strategy

5.3.1 Weak formulation

The in�ation problem is solved by a numerical scheme, which requires rewriting

the previously described problem in a weak formulation. To this aim, the

equilibrium equation (5.1) is multiplied by a virtual velocity �eld Ṽ and integrated

over the arterial volume Ω. Then the divergence theorem is used, and the di�erent

boundary conditions need to be accounted for. In more details, one gets:∫
Ω

ΣΣΣ : D̃̃D̃D dΩ =

∫
∂Ω

(ΣΣΣ · n) · Ṽ dS,

=

∫
∂Ωi

(ΣΣΣ · n) · Ṽ dS +

∫
∂Ωo

(ΣΣΣ · n) · Ṽ dS +

∫
∂Ωend

(ΣΣΣ · n) · Ṽ dS.

(5.6)

The second integral of the right-hand side is zero according to the boundary

condition (5.3). The virtual velocity �eld Ṽ belongs to the set of continuous and

continuously di�erentiable �eld on Ω, which are kinematically admissible with

the problem de�ned by Eqs. (5.1) to (5.5). Accordingly, the third equation of the

right-hand side is also equal to zero. Therefore, Eq. (5.6) simpli�es as:∫
Ω

ΣΣΣ : D̃̃D̃D dΩ =

∫
∂Ωi

(Pim n) · Ṽ dS,

Ṽ (X, t) · ez = Ṽ (X, t) · eθ = 0 ∀X ∈ ∂Ωend.

(5.7)
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5.3.2 Temporal discretization

Due to the non-linear nature of the problem (resulting from the hypoelastic

constitutive formulation), a temporal discretization is introduced; all variables

are evaluated at a series of time instants t represented by a constant time interval

dt. As in the previous chapters, an explicit forward Euler scheme is used, i.e. any

time derivative is evaluated as follows:

ȧt =
at+dt − at

dt

def
= ∆at. (5.8)

Leading, for the Cauchy stress �eld, to:

ΣΣΣt+dt = ΣΣΣt + Σ̇̇Σ̇Σdt = ΣΣΣt + Ct : DDDtdt, (5.9)

where equation (5.5) has been accounted for.

Considering that all mechanical con�gurations are known up to time t, one

aims at computing the mechanical equilibrium at time t + dt. Incorporating

Eq. (5.9) into Eq. (5.7), written for the con�guration at time t+ dt, leads to:∫
Ωt+dt

DDDt : Ct : D̃̃D̃D dΩ =

∫
∂Ωi,t+dt

(
P timn

t+dt
)
· Ṽ dS

+

∫
∂Ωi,t+dt

(
∆P timn

t+dt
)
· Ṽ dS −

∫
Ωt+dt

ΣΣΣt : D̃̃D̃D dΩ,

Ṽ (X, t+ dt) · ez = Ṽ (X, t+ dt) · eθ = 0 ∀X ∈ ∂Ωend,

(5.10)

whereby the pressure �eld Pim has been discretized according to Eq. (5.8).

5.3.3 Simplifying assumptions for solving the problem

The weak formulation Eq. (5.10) is written on the con�guration at time t + dt,

which remains unknown, and on which there is no certainty that the stress at

time t is in equilibrium with the internal pressure at time t (i.e. that the �rst and

last terms on the right-hand side cancel). Also, the sti�ness of the tissue and the

hidden concentration tensors are evolving with the load application. To overcome

these di�culties, extra assumptions need to be made: (i) the sti�ness remains

constant during the load increment, (ii) the geometry change during the interval

dt is small enough to assume that the stress �eld and the applied pressure at

time t are in equilibrium on the con�guration at time t+ dt, and (iii) the update

of the tissue sti�ness does not induce a further imbalance. In other words, we

assume that the loading is discretized in su�ciently small steps, and therefore,
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the geometry change between two successive con�gurations can be neglected and

iterations between local enforcement of the constitutive relation and the global

equilibrium can be neglected. As a result, the equilibrium reduces to:

∫
Ωt
DDDt : Ct : D̃̃D̃D dΩ =

∫
∂Ωi,t

(
∆P timn

t
)
· Ṽ dS,

Ṽ (X, t) · ez = Ṽ (X, t) · eθ = 0 ∀X ∈ ∂Ωend.

(5.11)

5.3.4 Finite element discretization

In order to solve the spatial integral over the volume of the geometry at each time

increment, a �nite element approach is used. As it is shown in Fig. 5.1, both the

geometry and the loading applied on the artery display a cylindrical symmetry.

This reduces the problem to an axisymmetric problem. The study is restricted

to the surface corresponding to the intersection of the hollow cylinder with the

plane (er, ez) de�ned in cylindrical coordinate system by a constant θ angle (see

Fig. 5.2). The equilibrium equation (5.1) in cylindrical coordinates, reads as:

∂Σrr

∂r
+
∂Σrz

∂z
+

Σrr − Σθθ

r
= 0

∂Σrz

∂r
+
∂Σzz

∂z
+

Σrz

r
= 0,

(5.12)

and the boundary conditions reduce to:

ΣΣΣ · n = P im on ∂Ωi,

ΣΣΣ · n = 0 on ∂Ωo,

Ṽ (X, t) · ez = 0 ∀X ∈ ∂Ωend.

(5.13)
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Ω

∂Ωend

∂Ωend

∂ΩiPim ∂Ωo

Ro

Ri

eθ
er

ez

Figure 5.2: Imposed boundary condition on the geometry accounting for

symmetry conditions.

5.3.5 Algorithm for constitutive model implementing

The homogenization method discussed in detail in Chapter 2 was employed to

compute homogenized sti�ness of material through Eq. (2.52) for each time

increment. Due to the incremental nature of the hypoelastic local constitutive

model, the �nite element formulation was simpli�ed in an incremental form,

where the deformation and evolution of the microstructure can be approximated

to be linear at each increment. The homogenized fourth order sti�ness matrix

C at each time increment was used to compute the element sti�ness matrix.

Furthermore, the computed spin tensor at each increment was utilized to update

the microstructure evolution θ and φ. A summary of the numerical scheme for

the �nite element implementation is illustrated in Table 5.1.
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1. Given macroscopic incremental pressure ∆P tim

2. Initialize ΣΣΣt, FFF t, and the homogenized behavior of the material Cthom at time t from Eq. (2.52)

3.Perform an iteration loop to compute deformation gradient FFF t+dt and Cauchy stress ΣΣΣt+dt

a) For every element i = 1 to n

b) Compute the coordinates of nodes

c) Initialize the sti�ness matrices KKK and KKKe and right hand sides b and be to zero

(i) Loop over the Gauss points

(ii) Compute the Gauss weights wi

(iii) Compute the shape functions

(iv) Compute the Jacobian

(v) Evaluate the derivatives of the shape functions

with respect to the global coordinates

(vi) Compute the sti�ness matrix KKKe

and right hand side be for the element

d) Assemble into the global stifness matrix KKK and right hand side b and solve for

KKKV = b

e) Compute deformation gradient FFF t+dt and Cauchy stress ΣΣΣt+dt

4. Update the homogenized behavior of the material Ct+dthom

5. Update the microstructure morphology θ and φ using spin tensor ωωω

6. Update the geometry based on deformation gradient

Table 5.1: Numerical algorithm for �nite element implementation.

5.4 FEM solver validation test cases

5.4.1 Validation with a commercial FEM code: Linear elasticity

As a �rst step, we considered a linear elastic material with a Young's modulus

E = 1 MPa and a Poisson's ratio ν = 0.34 for the arterial wall. The cylinder has

an inner radius Ri = 0.275 mm and a thickness H = 0.1 mm. 20 quadrilateral

elements are taken into account through the thickness of the cylinder. An internal

pressure Pim = 225 mmHg is imposed on the inner surface of the cylinder. The

results of the implemented FEM model are compared with the same model in

an FEM commercial software (Abaqus). As seen on Fig. 5.3, both the �nal

displacement �eld and the �nal stress �eld are correctly predicted by our �nite

element implementation. A maximum error of 3% has been observed with respect

to the Abaqus results. The biggest error in the prediction occurs for the normal
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axial stress, which is predicted uniform through the wall thickness by our model,

although it is not the case in the non-linear Abaqus code [128]. It seems that the

above-mentioned error caused by our linearization approach as this uniform axial

stress through the wall thickness is also observed when we solve the problem with

the linearized Abaqus code [128] (see Fig. 5.4).

(a) (b)

(c) (d)

Figure 5.3: (a) Radial displacement, (b) radial stress, (c) circumferential stress,

and (d) axial stress of the nodes across the thickness of the cylinder as computed

by our implemented FEM and by Abaqus for a linear elastic material.
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Figure 5.4: Axial stress of the nodes across the thickness of the cylinder as

computed by linearized Abaqus code and developed FEM solver for a linear elastic

material.

5.4.2 Validation for a thin-wall cylinder by comparison with an

equivalent problem on a RVE

As a second validation test case, we consider a thin-wall cylinder (with average

radius Ra = 0.28mm and thickness H = 0.01mm) subjected to an inner pressure

Pim on the inner surface, while all other surfaces are considered as traction free.

The cylinder is made up of the adventitial material as described in chapter 3 (see

Fig. 5.5).

The analytical expression of the stress �eld of such a problem reads as:

ΣΣΣ =


Σrr 0 0

0 Σθθ 0

0 0 0

 , (5.14)

with,

Σθθ =
PimRa
H

Σrr = −Pim
2
.

(5.15)

The stress is computed from Eq. (5.15) based on the pressure and the current

geometry of the body (Ra and H are respectively deformed average radius and

deformed thickness) at each increment. The stress is imposed as a homogeneous

boundary condition on the RVE, and the algorithm described in Chapter 2 (see

page 46) allows to compute the subsequent deformation �eld, which, in turn,

allows to update the geometrical parameters Ra and H used in the next loading
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t = ΣΣΣ · n

Figure 5.5: The adventitia RVE is remotely subjected to traction forces at its

remote boundary.

step. Then, assuming a uniform stress �eld in the thin wall cylinder, we compared

the response of an RVE with the FEM implementation.

Thus, an in�ation simulation was performed using the �nite element solver,

then the computed inner radius-pressure curve was compared with the analytical

solution. The FE simulation was performed with di�erent numbers of elements (2,

5 and 10 elements) across the thickness of the cylinder, with four integration points

per element. The constitutive relation being computed at the integration point,

one RVE is assigned to each integration point. The results show that a convergence

is reached with 5 elements across the thickness (see Fig. 5.6). Furthermore, the

results show an excellent agreement between the �nite element and analytical

solutions ( 0.5% error with respect to the analytical solution).
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Ra

Figure 5.6: The inner radius-pressure curve observed in mesh convergence study

of a cylinder having a thickness of H =0.01mm.

Similar simulations are performed with di�erent thicknesses of cylinder wall

(H =0.025mm and H =0.05mm) for the further validation of the �nite element

implementation. As we expected the FEM and analytical results perfectly agree

for a thin wall cylinder for which the analytical solution is valid (see Fig. 5.7).

However, by increasing the thickness, we do not obtain a uniform stress across

the cylinder wall as it was assumed for the analytical solution, thus there is an

increasing discrepancy between the analytical and FE results. The error is 0.9%

for the cylinder with a thickness of H =0.025mm and is 1.3% for the cylinder

with a thickness of H =0.05mm.
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Ra

Figure 5.7: Comparing the inner radius-pressure curve from FEM and analytical

solution of a thin wall cylinder with di�erent wall thicknesses (H =0.01mm,

H =0.025mm, and H =0.05mm), considering �ve elements across the thicknesses.

5.5 Application to the arterial in�ation

Since the in�ation test is the closest test to the physiological conditions [68, 88,

157], we here simulate the experiments performed on mice samples by Gilles Faury

[35]. More precisely, the experiments were performed as follows: a segment of the

mouse renal artery was quickly excised and placed in a physiological bu�er. Then,

the artery was cleaned of connective tissue and fat before being mounted onto a

pressure arteriograph, where the proximal and distal ends of the arterial segment

were grasped with extra-�ne-point no. 5 microforceps and held in position on the

microcannula with a Lexan pinch clamp [35, 34] (see Fig. 5.8). The experiments

were performed at 37◦C in a bath �lled with physiological bu�er. The setup

was placed under an inverted microscope connected to a computerized system
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Pim

rori

Figure 5.8: Schematic of in�ation test for an artery.

allowing the continuous recording of the artery diameters. Then, the pressure

was increased from 0 to 175 mmHg by steps of 25 mmHg, following a 5 minutes

equilibration period per step (see Fig. 5.8).

Accordingly, the arterial wall is modeled as a thick wall cylinder, with axially

constrained ends (see Fig. 5.9). The mechanical loading and boundary conditions

to the in�ation problem read as follows: an increasing internal pressure Pim is

applied incrementally from 0 to 175 mmHg on the inner surface of the cylinder,

while the outer surface is let traction free. Furthermore, a symmetry condition

along the axial direction is considered at the two crosssections. The experiments

reported an initial inner radius of Ri = 0.17 mm, and an outer radius of Ro = 0.22

mm, the wall thickness is divided into two equally thick sub-layers, the media

and adventitia. The adventitia layer is modeled by employing the developed

multi-scale model of Chapter 3. The media layer is divided into four equally thick

sublayers, being alternatively an elastic lamellae and some interlamellar space (see

Fig. 5.9). The mechanical properties of each of these layers are assigned according

to Chapter 4.

The response of the FE model in terms of internal pressure versus inner radius

evolution is compared to the experimental in�ation results, as shown on Fig. 5.10

and the collagen �ber and �bril evolutions are also reported.

Two di�erent simulations have been performed: the �rst one was run with the

sets of parameters identical to the ones reported in Chapter 3 and 4 (see Table 5.2),

i.e. with the free parameters being equal to: θb−adv = 39◦ and φc−med = 50◦; for

the second one, the free parameters were adjusted so as to �t the experimental

response; the best parameters read as: θb−adv = 40◦ and φc−med = 33◦. Fig. 5.10

reports the results of these two simulations (respectively labelled model A and
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Pim

Ro

Ri

eθ er

ez

Figure 5.9: In�ation of an artery regarded as a thick-walled cylinder made of

adventitia, elastic lamellae and interlamelar space. The initial inner radius of

Ri = 0.17 mm, and an outer radius of Ro = 0.22 mm.

model B). One notices that they fail at correctly reproducing the experimental

curve. This may be due to a di�erent microstructural composition or morphology.

To investigate this aspect, several simulations were performed to capture the

mechanical properties of the mouse renal artery. These investigations illustrate

that there are two ways to achieve better prediction of the mouse renal artery's

mechanical response: (i) reducing the volume fraction of the collagen �bers, and

(ii) increasing the level of hydration of the collagen �bers.

First, a simulation (labelled as FEM model C) was performed where the

fraction of collagen �bers was reduced in both layers: media and adventitia

layers, fc−la = fc−in = 5% and ff−b = 15%. Furthermore, the degree of

adventitial collagen �bril crimping was increased and set as θf−b = 43◦. The

results illustrated that the FEM model (C) provides a better estimation of the

mechanical response of the mouse renal artery (see Fig. 5.10, model C: R2 = 0.71).

The alternative solution to obtain a better prediction of the mechanical

response of the unknown microstructure mouse renal artery is increasing the level

of hydration of collagen �bers, in particular in the media layer. According to the
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Parameters Collagen Elastin Ground substance

mechanical constant
Eb = 250 MPa Eel = 1 MPa Em = 0.01 MPa

νb = 0.34 νe = 0.34 νm = 0.34

volume fraction
upper scale fb−ad = 30% fel−ad = 20% fm−ad = 1−

∑
i fi

lower scale ff−b = 30% NA NA

orientation

upper scale
θb−ad = Free parameter θel−ad = 0◦ NA

φb−ad = 90◦ φel−ad = 90◦ NA

lower scale
θf−b = 35◦ NA NA

φb−ad = 90◦ NA NA

Parameters Collagen Ground substance

mechanical constant
Ec = 250 MPa Em−la = 0.01 & Em−in = 0.05 MPa

νb = 0.34 νm = 0.34

volume fraction
Lamellae fc−la = 25% fm−la = 1−

∑
i fi

Interlamellar space fc−in = 25% fm−in = 1−
∑
i fi

orientation

Lamellae
θc−med = 85◦ NA

φc−med = Free parameter NA

Interlamellar space
θc−med = 85◦ NA

φc−med = Free parameter NA

Parameters Elastin 1 Elastin 2 Elastin 3

mechanical constant
Eel1 = 1 MPa Eel2 = 1 MPa Eel3 = 1 MPa

νel1 = 0.34 νel2 = 0.34 νel3 = 0.34

volume fraction
Lamellae NA fel2−la = 30% fel3−la = 5%

Interlamellar space fel1−in = 5% fel2−in = 5% fel3−in = 5%

orientation

Lamellae
NA θel2−med = 90◦ θel3−med = 0◦

NA φel2−la = 70◦ φel3−la = 90◦

Interlamellar space
θel1−med = 90◦ θel2−med = 90◦ θel3−med = 0◦

φel1−in = 0◦ φel2−in = 70◦ φel3−in = 90◦

Table 5.2: Summary of the model parameters and constants.
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Figure 5.10: Comparing FE model with in�ation experiment on the mouse renal

artery[35]. FEM model (A) : θb−adv = 39◦ and φc−med = 50◦. FEM model (B):

θb−adv = 40◦ and φc−med = 33◦. FEM model (C): θf−b = 43◦, fc−la = fc−in = 5%

and ff−b = 15%.

literature, the media layer contains collagen type III �bers, which have a lower

elastic modulus as compared to the �bers made of collagen type I. Asgari et al.

[2] showed that the elastic modulus of a tissue decreases exponentially as the ratio

of Col-III:Col-I increases. For the sake of simplicity, we previously considered the

same mechanical properties for the collagen �bers in the adventitia and media

layers (E = 250MPa). In the lower scale RVE of the adventitia model, the

collagen �brils have a Young's modulus of E=250 MPa, which leads to a modulus

of the collagen �bers of E = 50 MPa after homogenization (which accounts for

their hydration degree). Consequently, we decided to assign the hydrated medial

collagen �bers the lattest value for their Young's modulus. Accordingly, the model

is able to better capture the mechanical response of the mouse renal artery, when

this change is added to the previously detailed modi�cations in the parameters

(see Fig. 5.11, model D: R2 = 0.76).

The value of stress and displacement at the center of the 30 quadrilateral

elements across the thickness of the artery were illustrated at three pressures

during the in�ation test; namely, 0 mmHg, 90 mmHg, and 175 mmHg (see

Fig. 5.12). From the inner radius Ri = 0.17mm, the �rst 15 elements represent

the media layer, and the other 15 elements belong to the adventitia layer. The

media layer is divided into four equally thick sublayers, being alternatively an
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R2 = 0.76

Figure 5.11: Comparing FE model with in�ation experiment on the mouse renal

artery[35]. FEM model (D) : θb−adv = 40◦, φc−med = 32◦, θf−b = 43◦, and

fc−la = fc−in = ff−b = 15%.

elastic lamellae and an interlamellar space, where each of these sublayers contains

three elements.

The displacement �eld across the thickness is displayed on Fig. 5.11, at

two values of the pressure �eld, namely 90 mmHg and 175 mmHg. One can

distinguish di�erent slopes on these curves, corresponding to the di�erent layers

of the tissue, which have di�erent homogenized sti�nesses. The displacement

across the thickness is shown on the Fig. 5.12 (a) for the pressure of 90 mmHg

and 175 mmHg, where the two slopes belonging to the media and adventitia layers

are distinguishable. Fig. 5.12 (b), Fig. 5.12 (c), and Fig. 5.12 (d) show respectively

the stresses along radial, circumferential and axial directions at the center of the

30 elements across the thickness of the artery. The stresses increase by increasing

the pressure. The level of stress along circumferential and radial direction decrease

across the thickness from the inner radius to the outer radius. The �uctuations

in the media layer are due to the presence of the lamellae and interlamellar space.

The level of axial stress at the interface between the adventitia and the media

was the lowest as the �bers at this place experienced less rotation compared to

the other places in the media (see Fig. 5.13(b)).

The collagen �ber orientation across the thickness of the artery are shown on

the Fig. 5.13 for the three pressures. Note that θ◦ represents the orientation of

�bers in the axial-circumferential plane and φ◦ represents the orientation of �bers
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(a) (b)

(c) (d)

Figure 5.12: (a) Radial displacement, (b) radial stress, (c) circumferential stress,

and (d) axial stress at the center of the elements across the thickness of the artery.
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(a) (b)

Figure 5.13: Fiber reorientation at the center of elements across the

thickness of the artery at three internal pressures. (a) The orientation of

�bers in the axial-circumferential plane. (b) The orientation of �bers in the

radial-circumferential plane.

in the radial-circumferential plane of the artery. At the initial instant, collagen

�bers are oriented at 40◦ in the adventitia and 85◦ in the media layer with respect

to the axial direction in the axial-circumferential plane ( see Fig. 5.13(a)). This

angle increases in the adventitia layer by increasing the internal pressure of the

artery, such that at the interface of adventita and media, where the adventitia

experiences the higher radial and circumferential stresses, we have the largest

reorientation. However, in the media layer, the orientation of �bers in the

radial-circumferential plane almost remain �xed (85◦) ( see Fig. 5.13(a)), but

the �bers experienced a large rotation in the radial-circumferential plane from

32◦ to 90◦ (see Fig. 5.13(b)).

The collagen �brils are oriented initially with an angle of 43◦ with respect

to the collagen bundle orientation (θf−adv) in the adventitia. The results

demonstrate that increasing the internal pressure also induces an evolution of

the �brils orientation. Fig. 5.14 shows that the �brils were reoriented toward

the direction of the collagen bundles by increasing the internal pressure, i.e.

they undergo decrimping. The region with maximum circumferential stress

corresponds also to the region where the �brils experienced the largest decrimping.
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Figure 5.14: Fibril reorientation at the center of elements across the thickness of

the artery at three internal pressures.

5.6 Discussion

The multiscale micromechanical model was implemented in the �nite element

formulation to simulate the in�ation of an artery. For the sake of simplicity and

in order to reduce the computational costs, several simpli�cation assumptions

have been made to solve the problem. The arterial geometry was simpli�ed to

a hollow cylinder and the initial con�guration was considered as stress-free and

strain-free. Due to the hypoelastic formulation of the problem, it is assumed that

the sti�ness remains constant during the load increment for in�nitely small time

steps dt. It is also assumed that the deformation during the time interval dt is

small such that the stress �eld and the applied pressure at time t are in equilibrium

on the con�guration at time t + dt, and that the update of the sti�ness tensor

does not induce a further imbalance.

After validating the home-made �nite element solver, the multi-scale

constitutive model described and validated in Chapter 3 and Chapter 4 for

the human coronary artery was implemented in the �nite element solver. The

variation of pressure-radius was calculated during the internal pressure simulation

and compared with the experimental results of the mouse renal artery [35]. The

result for the pressure-radius variation exhibited the same trend as the experiment,

although the response for the human coronary artery, i.e. with the free parameters

being set to θb−adv = 39◦ and φc−med = 50◦ was sti�er as compared to the mouse
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renal artery. Since we did not have access to microstructural images for these

tests, we decided to vary the free parameters (i.e. we chose θb−adv = 40◦ and

φc−med = 32◦) as well as the volume fraction and hydration of the collagen

�bers. It was shown to provide a good estimation of the mechanical response

of the artery. Furthermore, the stress distribution through the arterial wall

revealed good accordance with �ber orientation, which has also been observed

experimentally [157, 82]. The results show the capability of the model to capture

the microstructural evolution as well as the macroscopic mechanical response of

the artery over time from �ber evolving con�gurations to structural modeling.

5.7 Conclusion

In conclusion, we have shown that the hypoelastic formulation in the framework of

continuum micromechanics is capable of accurately predicts the microscale �ber

kinematics and macroscopic mechanical response of the artery over time from

�ber evolving con�guration to structural modeling. This model could provide

new insights into structural constitutive modeling of arteries to incorporate

the patient-speci�c features from microstructure up-to arterial geometry of the

patient, since the model permits the investigation of di�erent parameters such as

�bers orientation and fraction on the macroscopic response of an artery, as well

as damage occurring at the �ber level. As a perspective towards patient-speci�c

simulation, the present model can be integrated inside �nite element commercial

software to solve the complex geometry of the artery in 3D and without the

simpli�cations which have been made in this study.
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As we discussed, the physical mechanisms and microstructural evolution that

occur within the microstructure of the artery dictate its mechanical properties. To

investigate these microstructural mechanisms and their macroscopic mechanical

consequences, we proposed a hypoelastic constitutive model in the framework of

continuum micromechanics, taking into account universal patterns (representative

volume element) of the hierarchical organization of arteries at di�erent scales.

• For the sake of simplicity, the minimum of microstructural information,

which is essential to obtain reliable predictions of macroscopic mechanical

behavior of the artery. The main orientation of collagen and elastin �bers,

as well as their volume fractions, were obtained from image analysis of

the arterial images and considered in our representative volume element

(RVE). The representation of the �ber network in the form of the principal

orientation of �bers was also used in some well-established constitutive

models [45, 62, 61, 63].

• To the best of our knowledge, the developed constitutive model is the �rst to

address the nonlinearity of the arterial tissue through the collagen bundle

reorientation and the anisotropy through the preferred orientation of the

�bers as it has been observed experimentally [22, 82]. In our model, elastin

�ber, collagen �bril, and soft ground matrix were modeled as hypoelastic

material (hypoelastic modulus and the hypoelastic Poisson's ratio) and

the only source of non-linearity is due to microstructural evaluation.

Hypoelastic formulation accounts for the large rotation and deformation

such that at higher stresses the �bers can generate shear stresses to rotate

more than the matrix (non-a�ne deformation). The �bers at upper scale

RVE reoriented toward the load direction ( �ber decrimping) and the �brils
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in the lower scale RVE tend to be aligned with the �ber direction (�bril

decrimping), while the �bril decrimping does not occur right after applying

the load. All these microstructural phenomena are in good agreement with

experimental observations [82, 22].

• In the model, the matrix phase and �bers are isotropic material, while the

homogenized RVE behaves anisotropically. The anisotropy behavior of the

model comes from the shape and the orientation of the �bers within the

RVEs. The latter has been also applied in the framework of continuum

micromechanics to model the anisotropic behavior of bone [40, 41, 39].

• The �ber interaction has been correctly predicted by the Mori-Tanaka

assumption [94]. In the media layer, the higher fraction of �bers limits

their rotation compared to the rotation of �bers in the adventitia layer.

This observation is in good agreement with the experimental measurements

[82, 22]. Although Mori-Tanaka scheme only considers the modeling of

�ber-matrix interaction, in which �bers can only interact between each

other through the matrix rather than the direct interaction between the

network of �bers. However, considering all these interactions in a complex

biological tissue through the implementation of the �nite element method

is computationally expensive [76].

• The multiscale micromechanical model was implemented in the �nite

element formulation to simulate the in�ation of an artery. For the sake of

simplicity and for reducing the computational costs, several simpli�cation

assumptions have been made to solve the problem. The results show the

capability of the model to capture the microstructural evolution as well

as the macroscopic mechanical response of the artery over time from �ber

evolving con�gurations to structural modeling. An agreement was observed

between the simulation and experiment both for �bers reorientations and

macroscopic mechanical response of the artery.

The modeling of these microstructural phenomena and access to the

microstructural deformation and stresses is crucial for the constitutive model to

be capable of accounting for the growth and remodeling, damage and modeling

of other pathologies. The proposed model has also some limitations:
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• The complexity of tissue microstructures cannot be modelled in every

detail. Thus, constituents with known physical quantities (shape, volume

fraction and Young's modulus) are identi�ed. These physical quantities

introduced as physical parameters in the model for each constituent

such as shape, volume fraction, orientation, and homogeneous mechanical

properties. Determining these parameters is a challenging part of building

the constitutive model, although most of them were shown to be constant

from sample to sample.

• Although �bers are oriented randomly in all directions in the tissue, the

model considers only the main orientation family �bers. The model also

can account for a probability distribution function of �ber orientation

as it was tested during the implementation. However, for a statistically

valid sampling size, we needed a large number of �bers which made the

computational cost very high.

• The biological components are known as complex heterogeneous and

nonlinear materials, for instance, proteins are even modeled as a polymer

chain [70]. However, in the proposed model, the elementary constituents

were modeled as isotropic linear elastic at lower scale RVEs. For the sake of

simplicity and in order to account for the microstructural phenomena and to

illustrate its e�ect on the macroscopic mechanical response, the constituents

were assumed as isotropic linear elastic. However, some experimental

observation supports this assumption. For instance, �brils have been shown

to behave almost linearly at the lower scale in their deformation range

[141, 70].

Future work will permit to extend the proposed arterial constitutive model in

contributing to:

• Growth and remodeling: as this micromechanical framework has become a

reliable tool to model hard tissues (bone) [40, 41, 97, 143], it is expected

that it can also become a basic tool to study the contribution of di�erent

microstructural components in the mechanical behavior of the artery. This

will be bene�cial in predicting the evolution of the tissue mechanical

response overtime during pathologies inducing remodeling and damage of
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the extracellular matrix [122, 105, 142]. This will imply coupling the current

version of the model with biological considerations in the near future.

• Accounting for further microstructural mechanisms: The model is capable to

include the pre-strain in the microstructure at the �ber network level. Due

to the existence of the pre-strain in the artery [13, 23], this could improve the

model to have a better prediction of arterial structure mechanical response.

This can also be extended to incorporate the microstructural damage at the

�ber network level.

• Patient-speci�c simulation: the constitutive model could be integrated into

the �nite element commercial software to incorporate the patient-speci�c

features from the microstructure up-to arterial geometry of the patient.
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A | Eshelby auxiliary tensor

The Eshelby auxiliary tensor L is de�ned as L(x) =
∫

ΩI
G(x, x′)dV (x′), where

G(x, x′) is the elastic Green's function. The elastic Green's function is the velocity

�eld v(x), solution of the momentum balance in which the elastic constitutive

function and compatibility equation have been incorporated, i.e. the solution

of Cmijkluk,li + bj = 0, when the body force b is a delta function, i.e. bj(x) =

δ(x− x′)δkj , and Cm is the sti�ness of an in�nite homogeneous matrix [31]. The

components of the Eshelby auxiliary tensor for the ellipsoid with a basis frame

aligned with the axes of the ellipsoid (see Fig. A.1) are equal to:

L1111 = Qa2Iaa +RIa

L2222 = Qb2Ibb +RIb

L3333 = Qc2Icc +RIc

L2112 = L2211 = Qb2Iab +RIa

L3113 = L3311 = Qc2Iac +RIa

L1212 = Qb2Iab −RIa

L1313 = Qc2Iac −RIa

L1122 = L1221 = Qa2Iab +RIb

L2121 = Qa2Iab −RIa

L3223 = L3322 = Qc2Iab +RIb

L2323 = Qc2Ibc −RIb

L3131 = L1331 = Qa2Iac +RIc

L3131 = Qa2Iac −RIc

L2233 = Qb2Ibc −RIc

L3232 = L2332 = Qb2Ibc +RIc

(A.1)
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Figure A.1: Ellipsoidal inclusion with principal axess of a, b, and c.

where a, b, and c are the principal axes of the ellipsoid, and Q = 3
8π(1−νm)

and R = 1−2νm

8π(1−νm) . ν
m is the Poisson's ratio of the matrix. The Eshelby auxiliary

tensor depends on the shape and orientation of the inclusion as well as the sti�ness

of the surrounding medium. An in�nitely long cylinder �ber is assumed as an

ellipsoid with a circular transverse section, i.e. a = b = 1 when the longest axis

approaches in�nity, c → ∞. Thus, the I terms which are de�ned in terms of

standard elliptic integrals [96] can be modi�ed as follows,

Ia =
4πb

a+ b

Ib =
4πa

a+ b

Ic = 0

Iab =
4π

3(a+ b)2

c2Iac =
1

3
Ia

Iaa =
4π

3a2
− Iab

Ibb =
4π

3b2
− Iab

c2Icc = 0

(A.2)

An oblate spheroid is assumed as an ellipsoid when the two principal axes
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approach in�nity, i.e. c & b→∞. Then, the I terms can be modi�ed as follows,

Ia =
4π

a

Ib = 0

Ic = 0

Iab = 0

c2Iac =
1

3
Ia

Iaa =
4π

3a

Ibb = 0

c2Icc = 0

(A.3)

The fourth-order Eshelby concentration tensors for strain rate and spin were

introduced in the Eqs. (2.26) and (2.27) are respectively equal to [31]:

Sijmn =
1

2
(Liklj + Ljkli),

Rijmn =
1

2
(Liklj − Ljkli),

(A.4)
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B | Image processing

The stacks of images from Krasny experiments [82] were analyzed to determine the

volume fractions and orientation of collagen and elastin �bers in the adventitia and

media layers. In total, we analyzed 12 stacks of images, coming from four samples

tested in the longitudinal, circumferential and diagonal directions respectively. In

each case, the initial con�guration which is reported is analyzed after few cycles

of preconditioning in the load direction. These images were analyzed with ImageJ

through the Otsu thresholding technique [103] to compute the volume fractions of

elastin and collagen. The orientation of �bers was analyzed using orientationJ, a

series of ImageJ plugins for directional image analysis [107, 114], as well as the 2D

fast Fourier transformation method proposed by [82]. The results are shown for

the adventitia in Table C.1 and for media in Table C.2. Note that the orientation

values are reported in these tables are the main orientations that were obtained

from 2D fast Fourier transformation.
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Measurement
Sample 1 Sample 2

circ long diag circ long diag

Collagen volume fraction [%] 24 ± 5 23±8 30± 5 - 4 ±3 18 ± 7

Elastin volume fraction [%] 4±2 2±1 9±2 - 2±1 11±5

Colllagen �ber orientation [◦] 15 93 65 80 0&95 60

Elastin �ber orientation [◦] 7 0&90 8 32&17 20 20

Measurement
Sample 3 Sample 4

circ long diag circ long diag

Collagen volume fraction [%] 5 ± 3 21 ± 10 7 ± 3 - 12 ±5 9±5

Elastin volume fraction [%] 14± 5 16 ± 5 5 ±4 - 3±2 7±5

Colllagen �ber orientation [◦] 16 75 5 - 74 11

Elastin �ber orientation [◦] 16 80 0 - 11 86

Table B.1: The collagen and elastin �bers orientation and volume fraction from

image analysis of adventitia stacks' images.

Measurement
Sample 1 Sample 2

circ long diag circ long diag

Collagen volume fraction [%] 19±5 18±5 20±5 19±5 - -

Elastin volume fraction [%] 22±10 21 ±10 25±5 18±3 - -

Colllagen �ber orientation [◦] 88 85 87 90 - 81

Elastin �ber orientation [◦] 96 80 83 89 - 87

Measurement
Sample 3 Sample 4

circ long diag circ long diag

Collagen volume fraction [%] 30±5 27±5 33±10 - 25±5 20±5

Elastin volume fraction [%] 26±5 21±5 31±5 - 17±5 17±5

Colllagen �ber orientation [◦] 96 94 94 - 87 97

Elastin �ber orientation [◦] 88 94 93 - 58 94

Table B.2: The collagen and elastin �bers orientation and volume fraction from

image analysis of media stacks' images.
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Modélisation mécanique multi-échelle des tuniques de la paroi artérielle à

partir de l'évolution des réseaux de fibres organiques

Résumé:

Les tissus artériels sont constitués de réseaux de collagène et d'élastine diversement organisés et

présentent un comportement anisotrope hautement non linéaire avec la capacité de supporter de

grandes déformations réversibles. Ces dernières s'accompagnent d'un réarrangement morphologique

progressif de la microstructure induit par le chargement. Dans cette thèse, le rôle important de

la microstructure sur la réponse artérielle macroscopique nous a motivé à développer un modèle

multi-échelle détaillé de la paroi artérielle. Le modèle tient compte des motifs universels à di�érentes

échelles dans les deux couches mécaniquement importantes des artères, à savoir l'adventice et la media.

Le cadre de la micromécanique des milieux continus a été utilisé dans une approche incrémentale

pour calculer la contrainte, la déformation et les réorientations de �bres. Les extensions du problème

d'inclusion de la matrice d'Eshelby permettent d'obtenir des expressions analytiques pour les tenseurs

de concentration, qui relient le tenseur de vitesse de déformation macroscopique à la vitesse de

déformation et les tenseurs de spin moyennés sur les phases, à la vitesse de déformation appliquée

macroscopiquement. Dans le modèle, la vitesse de déformation donne accès à la contrainte moyenne

dans chaque phase, et le tenseur de spin permet de déterminer la rotation de la �bre induite par la

charge. Le modèle adventitiel proposé tient compte à la fois de la déformation et du réalignement

du collagène. La media est constituée d'un empilement de lamelles et d'un espace interlamellaire; les

lamelles et l'espace interlamellaire sont tous deux homogénéisés à partir de VER. De plus, le modèle

de comportement multi-échelle a été implémenté dans une formulation éléments �nis, a�n de réaliser

des calculs de structure sur l'artère. Le modèle a été validé par rapport à di�érents ensembles de

données expérimentales sur des échantillons artériels de di�érentes espèces (lapin, humain, souris).

Les résultats montrent que le modèle est capable d'estimer la contribution de chaque composant dans

la réponse macroscopique du tissu pour di�érents chargements et peut prédire avec précision à la fois

la réponse macroscopique et la cinématique microscopique des �bres. Nous pensons qu'un tel modèle

pourrait aider à prédire l'évolution de la réponse mécanique du tissu au �l du temps, par exemple lors

d'un remodelage ou d'une lésion.

Mots-clefs : Micromécanique du continu, Homogénéisation, Elasticité à grande déformation,

Tissus mous, Modélisation constitutive, Méthode des éléments �nis non linéaires.



LAYER-SPECIFIC MULTISCALE MECHANICAL MODELING OF ARTERIAL

STRUCTURES WITH EVOLVING FIBER CONFIGURATIONS

Abstract:

Arterial tissues are made of variously organized collagen and elastin networks and exhibit a highly

nonlinear anisotropic behavior with the ability to sustain large reversible strains and to undergo a

load-induced progressive morphological rearrangement of the microstructure. In the present study

motivated by these speci�cities of arterial mechanics, we developed a detailed multi-scale model of

the arterial wall. The model accounts for the universal patterns across di�erent scales in the two

mechanically signi�cant layers of arteries, namely the adventitia and the media. The framework of

�nite strain continuum micromechanics was employed in an incremental approach to compute stress,

strain, and �ber reorientations. The extensions of Eshelby's matrix-inclusion problem allowed for

deriving analytical expressions for the concentration tensors. These concentration tensors relate the

macroscopic strain rate tensor to the strain rate and spin tensors averaged over the constituents of

the microstructure, to the macroscopically applied strain rate. In the model, the strain rate is related

to the averaged stress in each constituent, and the spin tensor is related to the load-induced �ber

rotation. The proposed adventitial model accounts for both collagen decrimping and realignment. The

media is modeled as a stack of lamellae and interlamellar space; both lamellae and interlamellar space

being homogenized with relevant representative volume element (RVE). Furthermore, the multi-scale

constitutive model was implemented in a �nite element formulation to solve the structural model of

the artery. The model was validated against di�erent experimental data sets on arterial samples from

di�erent species (rabbit, human, mouse). The results show that the model is able to estimate the

contribution of each component into the macroscopic response of the tissue for di�erent loading and

can predict both the macroscopic response and microscopic �ber kinematics accurately. We submit

that such model would help in predicting the evolution of the mechanical tissue response overtime

during, for instance, remodeling and growth or damage.

Keywords: Continuum micromechanics, Homogenization, Large strain elasticity, Soft tissue,

Constitutive modeling, Nonlinear �nite element method.
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