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Résumé

Au cours de la dernière décennie, la popularité incomparable des réseaux sociaux
numériques s’est traduite par l’omniprésence des spammeurs sur ces plateformes.
Cette présence a commencé par se manifester sous la forme de messages de publicité
et d’arnaques traditionnels simples à identi�er. Pourtant, elle s’est métamorphosée
durant les dernières années, et couvre dorénavant de larges tentatives de manipula-
tion qui sont assez importantes et beaucoup plus préoccupantes. Cet abus ciblé et
largement automatisé des réseaux sociaux numériques réduit la crédibilité et l’utilité
des informations di�usées sur ces plateformes.

Le problème de détection du spam social a été traditionnellement modélisé
comme un problème de classi�cation supervisée où l’objectif est de classer les
comptes sociaux individuellement. Ce choix est problématique pour deux raisons.
Tout d’abord, la nature dynamique du spam social rend les performances des sys-
tèmes supervisés di�ciles à maintenir. En outre, la modélisation basée sur les car-
actéristiques (features) des comptes sociaux individuels ne prend pas en compte le
contexte collusoire dans lequel les attaques sur les réseaux sociaux sont menées.

Pour maximiser leur e�cacité et la visibilité de leur contenu, les spammeurs
actent d’une manière qu’on peut décrire comme “synchronisée”. Ainsi, même lorsque
les spammeurs changent de caractéristiques, ils continuent à agir de manière collu-
soire, créant des liens entre les comptes complices. Ceci constitue un signal non
supervisé qui est relativement facile à maintenir et di�cile à contourner. Il est donc
avantageux de trouver une mesure de similarité adaptée qui soit capable de capturer
ce comportement collusoire.

Dans ce travail, nous proposons d’exprimer le problème de détection de spam so-
cial en termes probabilistes en utilisant le cadre des modèles graphiques non dirigés.
Au lieu du paradigme de détection individuelle qui est couramment utilisé dans la
littérature, nous cherchons à modéliser la tâche de classi�cation comme une tâche
d’inférence sur la probabilité jointe d’un graphe de variables. Dans ce contexte, les
comptes sont représentés comme des variables aléatoires et la dépendance entre ces
variables est représentée par un graphe. Cette expression probabiliste permet de
modéliser l’incertitude inhérente aux systèmes de classi�cation. Le graphe permet
aussi d’exploiter la dépendance qui découle de la similitude induite par le comporte-
ment collusoire des spammeurs.

Nous proposons deux modèles graphiques: le Champs Aléatoire de Markov où
l’inférence est e�ectuée par l’algorithme de Propagation des Convictions à Boucle,
et le Champs Aléatoire Conditionnel, où on choisit d’utiliser l’algorithme du Tree
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Reweighted Message Passing pour l’inférence et une fonction de perte qui minimise
le risque empirique. Les deux modèles, évalués sur Twitter, montrent une augmen-
tation des performances de classi�cation par rapport aux classi�eurs supervisés de
la littérature. Le Champ Aléatoire Conditionnel o�re de meilleures performances de
classi�cation par rapport au Champs Aléatoire de Markov. Il est aussi plus robuste
face aux changements dans la distribution des caractéristiques des spammeurs.



Abstract

Over the last decade, the growing popularity of Online Social Networks has attracted
a pervasive presence of social spammers. While this presence has started with spam
advertising and common scams, the recent years have seen this escalate to the far
more concerning mass manipulation attempts. This targeted and largely automated
abuse of social platforms is risking the credibility and usefulness of the information
disseminated on these platforms.

The social spam detection problem has been traditionally modeled as a super-
vised problem where the goal is to classify individual social accounts. This common
choice is problematic for two reasons. First, the dynamic and adversarial nature of
social spam makes the performance achieved by features-based supervised systems
hard to maintain. Second, features-based modeling of individual social accounts dis-
cards the collusive context in which social attacks are increasingly undertaken.

Acting synchronously allows spammers to gain greater exposure and e�ciently
disseminate their content. Thus, even when spammers change their characteristics,
they continue to act collusively, inevitably creating links between collusive spam-
ming accounts. This constitutes an unsupervised signal that is relatively easy to
maintain and hard to evade. It is therefore bene�cial to �nd a suitable similarity
measure that captures this collusive behavior.

Accordingly, we propose in this work to cast the social spam detection problem
in probabilistic terms using the undirected graphical models framework. Instead of
the individual detection paradigm that is commonly used in the literature, we aim
to model the classi�cation task as one of joint inference. In this context, accounts
are represented as random variables and the dependency between these variables
is encoded in a graphical structure. This probabilistic setting allows to model the
uncertainty that is inherent to classi�cation systems while simultaneously leveraging
the dependency that �ows from the similarity induced by the spammers collusive
behavior.

We propose two graphical models: the Markov Random Field with inference per-
formed via Loopy Belief Propagation, and the Conditional Random Field with a set-
ting that is more adapted to the classi�cation problem, namely by adopting the Tree
Reweighted message passing algorithm for inference and a loss that minimizes the
empirical risk. Both models, evaluated on Twitter, demonstrate an increase in classi-
�cation performance compared to state-of-the-art supervised classi�ers. Compared
to the Markov Random Field, the proposed Conditional Random Field framework of-
fers a better classi�cation performance and a higher robustness to changes in spam-
mers input distribution.
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1.1 Research Context and Motivation

Spam is the “de facto” companion of new web technologies. Its presence is noticeable
on a plethora of web services including search engines, email providers and online
reviews platforms. Among these technologies, Online Social Networks (OSNs) rep-
resent an especially attractive target for online spammers. These platforms, with
their growing number of users (2.45 billion and 330 million monthly active users on
Facebook [1] and Twitter [2] respectively1), o�er a wide and accessible global market
for spam. The clickthrough rate of spam URLs on OSNs is reported to be an order of
magnitude larger [3] than that on spam emails [4], making the economic incentive
on OSNs signi�cantly higher than on traditional media. These platforms also allow
for a rich social setting and representation that is lacking from other platforms (e.g.
email).

OSNs have a dual identity. They are both social networks and news dissemina-
tion platforms. The �rst facet requires a strong notion of trust, while the second an
assumption of credibility and trustworthiness. The presence of illicit spambots on
social networks undermines both assumptions. Through unwanted advertisement,
unsolicited communication, bulk content generation, arti�cial popularity in�ation,
and bot-induced opinion manipulation, spam accounts on social networks interfere
with the intended experience of the social platform on many levels. And although

1The numbers of monthly active users are those reported in the third quarter of 2019 for Facebook
and the �rst quarter of 2019 for Twitter.
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spam is traditionally discussed as a security risk, a greater risk can be formulated in
terms of credibility and usability.

On the most basic level, the existence of bots degrades the experience of the so-
cial network user, replacing a human-to-human communication with an experience
where pro�t-oriented accounts pollute the online sphere with insigni�cant, context-
less or harmful content. On a larger scale, the presence of massive manipulation has
been noted in online discussions surrounding political (e.g. the American and French
presidential elections [5, 6, 7] and the Syrian war [8]) and economical (e.g. stock
market in�ation [9]) topics. This severely undermines the credibility and trustwor-
thiness of data issued from OSNs, and therefore decreases its usability for analytics
and decision making. Bots massively manipulate OSNs’ audience by masquerading
as real users. Manipulation often takes the form of direct voicing of opinions. Since it
can equally have the goal of obstructing access to genuine information on OSNs, bots
are also known to �ood discussions with irrelevant content, thus e�ectively blocking
users from the content they are seeking.

Detecting spam and abuse on OSNs is therefore vital for the proper functioning
of these platforms. Manual reporting and veri�cation remain a core pillar of OSNs’
defense mechanisms. Online platforms deploy armies of thousands of human an-
notators to track and control the spread of illicit content. These tools, however, do
not scale. With hundreds of millions of messages generated daily on OSNs, auto-
matic detection is the only viable way to detect and quarantine abusive accounts and
content.

In the research literature, the social spam detection problem has been tradition-
ally cast as a supervised classi�cation problem. This approach relies on building sta-
tistical classi�ers of social accounts (or messages) based on features extracted from
their pro�le, content, behavior and social network. Many early studies have shown
that supervised classi�ers were indeed able to yield high classi�cation performance
[10, 11, 12]. Later works [13, 14] have shown, however, that the supervised learning
paradigm falls short in keeping up with the complex and ever-changing social spam
characteristics. The dynamic and adversarial nature of social spam renders these
classi�cation systems obsolete.

This phenomenon is coined as spam evolution in the literature [14]. This is the
process through which spammers change their characteristics and behavior either in
response to the deployed detection systems or to the changing nature of their envi-
ronment. As part of the population drifts away from the known pattern of spammers,
the recall of machine learning systems is usually asymmetrically impacted [15]. We
use this asymmetrical deterioration in performance to motivate a change in the per-
ception of supervised systems. Instead of detection, they can be seen as tools for
discovering spammers in the wild.

Spammers modus operandi o�ers another exploitable loophole against evolution.
For an e�ective content dissemination, spammers usually act collusively. A high col-
lusion is generally an indicator of coordinated abusive behavior. This direction has
led to the development of unsupervised detection systems [16, 17, 18] that bypass
the need to construct and maintain ground-truth datasets. Simply put, the unsuper-
vised approach is a graph-based approach that treats the problem as a search of dense
sub-graphs [16] or as a clustering problem [17]. By modeling the problem as a com-
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munity detection problem, it o�ers a severe contrast with the majority of supervised
works that model detection as a classi�cation of individual accounts.

But while unsupervised systems are adept at detecting large clusters of abu-
sive users2, it has been shown that manipulation on online social networks can be
achieved through a limited number of coordinated accounts3 [9, 19].

1.2 Research Questions

This work relies on a main central assumption: “While spam accounts may partially
evade supervised detection systems, they must act collusively, thus maintaining a
connection between them”. Unlike statistical features, which are typically easier to
evade, we conjecture that changing graph-related characteristics is more expensive
in the sense that acting individually would defy the purpose of reaching a larger
audience or in�ating content popularity. The graph forms then the constant factor
in an otherwise changing equation.

The question therefore boils down to the following:

• Finding a �tting similarity that would uncover connections between spam ac-
counts. It should also minimize connections between those accounts and the
legitimate population.

• Modeling the task of detection in probabilistic terms. The model should take
into account that predictions of the supervised models are biased and that,
when an account is a spammer, connected accounts are likely to be spammers
too.

In this work, we propose to meet these two requirements by bringing together the
notion of similarity and the notion of prior predictions under a probabilistic graphical
model framework. In their simplest forms, Markov Random Fields (MRF) can often
be discussed with a straightforward understanding of Loopy Belief Propagation. A
more advanced formulation would require a more advanced discussion of learning,
inference and adequate loss functions.

1.3 Research Objectives and Contributions

We organize hereafter the main research objectives of this work.

1. Evaluating and characterizing the e�ect of spam evolution on the classi�cation
performance of state-of-the-art supervised systems.

2. Proposing a de�nition of similarity that e�ectively captures spammers col-
lusion and ensures a high degree of class homophily between users deemed
similar.

2The average clusters detected by Facebook’s SynchroTrap [17] contains 1730 users with the thresh-
old being set at 200 users.

3An example of this is the botnet analyzed in [8]. The described botnet contained 130 Twitter social
bots and was extensively used for political propaganda.
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3. Proposing an undirected graphical models framework that exploits the pro-
posed notions of belief and similarity.

4. Assessing the e�ectiveness of undirected graphical models in mitigating the
e�ects of spam evolution on the performance of supervised classi�ers.

The work in this manuscript is communicated in the following articles.

Articles in Peer Reviewed Journals

Nour El-Mawass, Paul Honeine, and Laurent Vercouter, “SimilCatch: Enhanced so-
cial spammers detection on Twitter using Markov Random Fields,” Information Pro-
cessing & Management, vol. 57, no. 6, 2020.

Nour El-Mawass, Paul Honeine, and Laurent Vercouter, “Characterizing and Detect-
ing Social Spam and Abuse on Twitter: A Survey,” ACMComputing Surveys. In prepa-
ration .

Nour El-Mawass, Paul Honeine, and Laurent Vercouter, “Conditional Random Field
for Detecting Sybils on Online Social Networks,” Computers & Security, Elsevier. In
preparation

Articles in Peer Reviewed International Conferences

Nour El-Mawass, Paul Honeine, and Laurent Vercouter, “Supervised Classi�cation
of Social Spammers using a Similarity-based Markov Random Field Approach,” in
Proceedings of the 5th Multidisciplinary International Social Networks Conference -
MISNC’18. ACM Press, 2018.

Articles in Peer Reviewed National Conferences

Nour El-Mawass, Paul Honeine, and Laurent Vercouter, “Champ Aléatoire de Markov
pour la Détection Supervisée des Comptes Malicieux sur Twitter,” in 20ème Con-
férence d’Apprentissage automatique (CAp), Rouen, France, Jun. 2018.

1.4 Thesis Outline

In this introductory chapter, we have discussed social spam and brie�y reviewed its
impact on OSNs usability and credibility. We also motivated automated detection
of social spam, underlining that static detection systems are routinely becoming ob-
solete. We have introduced the notion of discovery of spammers via sub-optimal
supervised classi�ers. We conjectured that a strong similarity measure between ac-
counts can o�er a robust constant against the continuous change in spammers sta-
tistical features. We also alluded to the role that undirected graphical models can
play in maintaining the robustness of detection systems against spam evasion. The
remaining of this manuscript is organized in the following chapters:

Chapter 2 - A Taxonomy and Overview of Social Spam organizes the exist-
ing literature on social spam detection into a well-de�ned taxonomy classifying spam
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accounts and content and presents the methods used in the literature to collect and
label ground-truth datasets. It also overviews and compares the main methodologies
of the social spam detection literature.

Chapter 3 - Supervised Detection of Social Spammers on Twitter presents
an extensive overview of the features used in the literature to model social accounts
for the classi�cation task. It also illustrates the heterogeneous nature of ground-
truth social spam datasets on Twitter by comparing the suspension rates of existing
spam datasets. Features evaluation is then undertaken on a Twitter ground-truth
dataset that we collect and annotate speci�cally for this task. We evaluate and com-
pare several of the main state-of-the-art supervised classi�cation models in the setup
established by the features and the collected dataset. We use the results of the clas-
si�cation to discuss spam evolution and evasion and its asymmetric impact on the
performance of supervised classi�ers.

Chapter 4 - Enhanced Social Spammers Detection on Twitter using
Markov Random Fields introduces an enriched formulation of the classi�cation
problem, its input and expected output. This formulation takes into account prior
predictions of other state-of-the-art systems and exploits similarity between social
accounts. We also propose a classi�cation framework based on the Markov Ran-
dom Fields (MRF) formulation and apply loopy belief propagation to infer poste-
rior predictions on social accounts classes. The proposed model is evaluated on the
previously introduced Twitter dataset. Results show a signi�cant increase in recall
compared to the baseline established by state-of-the-art supervised classi�ers.

Chapter 5 - Conditional Modeling of Spammers Detection with Condi-
tional Random Fields introduces the Conditional Random Fields (CRF) framework
that replaces the MRF framework as a solution to the social spammers detection prob-
lem. We discuss learning and inference in undirected graphical models and propose
to use an alternative inference algorithm and loss function to the ones used in Chap-
ter 4. The chapter also presents and discusses the experimental results of applying
the CRF model to the Twitter dataset.

Chapter 6 - Conclusion concludes the thesis, summarizing its main results and
implications and discussing future perspectives.
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2.1 Introduction

The last decade has seen the mass adoption of online social networks and, with it,
the emergence of social spam. Social spam is a general term used to describe spam
and abusive behavior on OSNs. It has the distinct nature of being ambiguous, where
ambiguity covers two facets of social spam: de�nition and identi�cation. The two
concepts are related but not mutually interchangeable. De�nition refers to the act of
enumerating the characteristics that describe a spam account or an abusive behavior,
while identi�cation is closely tied to the process of building ground-truth datasets.
Clearly de�ning the spam concept cannot guarantee an easy ground-truth collection.
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Similarly, having access to a ground-truth set of accounts1 does not imply that one
has a clear de�nition of the concept de�ned in his ground-truth set.

Throughout this chapter, we will endeavor to summarize and classify the litera-
ture on social spam detection on OSNs. The above discussion on de�nition vs. iden-
ti�cation will motivate the �rst two sections of this chapter, while the last section
will focus on the problem of building and evaluating social spam detection systems
with or without a ground-truth dataset.

Compared to other OSNs, Twitter has an accessible Application Programming
Interface (API) and a relatively tolerant policy towards moderate data collection and
analysis. This explains why the number of publications targeting spam on this par-
ticular platform is signi�cantly higher than those focusing on other similar platforms
(e.g. Facebook [20, 17, 16] and YouTube [21]). The discussion in this chapter is gen-
eral to spam on online social networks since the taxonomy and techniques apply to
various OSNs. The bulk of the discussed work understandably focuses on Twitter
since it is both the preferred testbed for spam research and the OSN we have chosen
to evaluate our systems in the next chapters.

Chapter Organization and Overview. This chapter reviews three main as-
pects of social spam research. We namely organize the existing literature into a
well-de�ned taxonomy classifying spam accounts and content, and discuss meth-
ods used by spammers to camou�age themselves (Section 2.2). We then present the
methods used in the literature to collect data from online social networks and to
construct ground-truth datasets and discuss the advantages and limitations of each
method (Section 2.3). We �nally overview the main methodologies of the social spam
detection literature (Section 2.4).

2.2 A Taxonomy of Social Spam and Spammers

The �rst work on social spammers is that of Yardi et al. [22]. This work, which ana-
lyzes spam accounts posting to a trending music topic, paints a picture of simplistic
accounts that are easily identi�able by a handful of statistical patterns. The works
[10, 11, 23] that immediately follow o�er a more detailed view of these accounts.
With the exception of the work of Benevenuto et al. [10], these works continue to
assume that a limited set of statistical characteristics (in the order of 5 to 7 features)
is su�cient to di�erentiate between spam accounts and legitimate accounts.

Contemporary spamming accounts are remarkably advanced and complex. This
is largely explained by the platform’s underground market adopting a spam-as-a-
service economy. The specialized set of services and tools allows end users to focus
on their abusive content rather than the spam production chain and message dissem-
ination technicalities. A distinction between spam accounts, abusive behavior and
spam content thus emerges.

In the following, we introduce general notions of online social networks (Sec-
tion 2.2.1) and describe social spam revenue models (section 2.2.2). We then give a

1An example of this is having access to a set of accounts suspended by Twitter. The identi�cation of
the ground-truth data does not imply that the concept of a suspended account is neatly de�ned.
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classi�cation of spam accounts (section 2.2.3), and detail the manifestations of abu-
sive behavior they exhibit (section 2.2.4). This includes discussing the spam produc-
tion pipeline as well as abusive content posting and dissemination. The diagram in
Figure 2.1 presents a general taxonomy of abusive accounts, behavior and content
on OSNs.

2.2.1 General Notions of Online Social Networks

Online Social Networks such as Facebook and Twitter are online platforms that allow
their users to create and share content and to form social ties with other users. Both
Facebook (created in 2004) and Twitter (created in 2006) are massively popular, with
the number of monthly active users of Twitter (resp. Facebook) equal to 330 million
(resp. 2.45 billion). The number of pieces of content shared daily on these platforms
is equal to 500 million on Twitter and 4.75 billion on Facebook [24, 25]. Twitter’s
2019 third quarter revenue is 823.7 million USD [26], 85% of which is advertisement-
generated [27] and the company is valued at 24 billion USD (as of December 2019
[28]). Today, Twitter’s population growth, its revenue model, stock value and po-
tential investments are all strongly threatened by abusive activities and platform
mistreatment [29]. In 2017, Twitter has reported a year-over-year 10-fold increase
[30] in daily action taken towards abusive accounts. Over the last two years, the plat-
form’s pursuit of malicious and abusive activities has been distinctly more consistent
and aggressive2. The massive problem of spam and bots on the platform, however,
remains to be solved [32].

2.2.1.1 Users Content

Content on OSNs is organized into messages (posts on Facebook and tweets on Twit-
ter). These messages may contain text (including URL(s)) and media items (images
or videos). Unlike Facebook’s free form content, Twitter has a more restricted mi-
croblogging model that limits tweets to 140 characters (doubled to 280 in 2017). An-
other fundamental di�erence between the two platforms is that accounts on Twitter
are public by default, making generated content accessible to all users and search
engines. This is in severe contrast with Facebook’s access levels that generally di�er
depending on the relationship between two accounts. The di�erence may stem from
Twitter being viewed �rst as a blogging service with a free information �ow and
second as a social network [33], while Facebook is mainly a social network. Both
characteristics, together with the API of Twitter, heavily bias the bulk of existing
social spam contributions towards Twitter.

2.2.1.2 Social Ties between Users

Social connections between users can be either unidirectional or bidirectional (mu-
tual) depending on the platform. Facebook has a bidirectional friendship relation-

2According to a 2018 Twitter’s blog [31], the platform reported a year-over-year increase of 214% of
accounts removed for violating spam policies. The number of spam reports also dropped from an average
of 25, 000 per day in March, to 17, 000 per day in May. In Q1 2018, more than 142, 000 API applications
(responsible for more than 130 million low-quality and spammy tweets) were suspended.
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ship: if user u is a friend of user v, v is also a friend of u. Following on Twitter, how-
ever, is not necessarily bidirectional: A user u can follow user v without v following
u back. In this scenario, u is a “follower” of v and v is a “friend” (or alternatively a
“followee”) of u.

2.2.1.3 Interaction between Users

Interaction between users can take one of these forms:

• A reply from one user to a post by another user.

• A private message seen only by the sender and receiver.

• A re-posting of a user’s content by another user. This is known as a “share”
on Facebook and a “Retweet” on Twitter.

• A direct post from one user to another. This is illustrated by wall posts on
Facebook and direct mentions on Twitter.

• An endorsement from a user to another user content. This is done via likes on
Facebook and Twitter (previously known as favoriting on Twitter).

A user mentions another user (not necessarily a friend), by including the mentioned
user screen name preceded by the “@” symbol in the tweet (e.g. @cristiano). The
same convention also appears in a reply tweet with the di�erence that a reply con-
tains a link to the original tweet to which it is related.

2.2.1.4 Special Operators

In addition to the mention symbol cited above, both platforms use special opera-
tors to aggregate and tie related texts and to o�er a uni�ed and compact format of
messages. These include:

• Hashtags: A hashtag is a special text entity preceded by the “#” symbol
(e.g. #michael_jackson). Including a hashtag in a tweet means linking it to all
the tweets that contain the same hashtag. This allows communities to grow
around hashtags, and allows access via search for all tweets containing the
relevant hashtag. When a given hashtag becomes popular in a certain region,
it becomes a “trend”, and appears on the Twitter main page of users in that
region3.

• URL shorteners: This practice is common to both platforms and allows a com-
pact presentation of URLs. This is especially useful on Twitter where the tweet
size is limited. It is important to note that spammers often rely on additional
URL shorteners to obfuscate their �nal landing pages and several layers of URL
shorteners are commonly used to that goal [34].

3The same applies for any sequence of words that happens to gain popularity, regardless of whether
these words are preceded by the hashtag symbol (e.g. Barack Obama).
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2.2.2 Social Spam Revenue Models

Twitter’s underground economy has two basic types of revenue models: spamver-
tising and spam-as-a-service.

The basic spamvertising revenue model is based, like advertisement using email
spam, on maximizing click-through rates and diverting social users attentions to
advertised products or services.

The second revenue model is based on selling underground tools including both
content dissemination tools (e.g. accounts – optionally with a harvested base of fol-
lowers – and custom applications) and credibility boosting tools (fake followers and
fake likes/retweets) to interested social users. Current evidence shows that popular-
ity in�ation techniques are impacting both genuine and Sybil users [35], although it
remains unclear how much of the fake increase in popularity is explicitly solicited
by celebrity accounts. Note that although credibilities of both the pro�le and its
content can be increased by the credibility boosting schemes (i.e., followers and
likes/retweets), the impact of more followers is an increase in an account’s over-
all credibility, while more interaction with content via retweets and likes results in
an increased popularity for the content in question.

2.2.3 Spammers and Sybils on OSNs

While many works pro�le abusive accounts under the generic “spammer” descrip-
tion, a careful review of the literature will show that this term does not hold a unique
de�nition. A speci�c work’s de�nition of an abusive account, depends on the data
collection and labeling techniques used to construct the ground-truth dataset. These
will be discussed in details in Section 2.3. It is therefore possible to classify accounts
by the types of abusive behavior they engage in or the abusive content they pro-
duce. Since these will be discussed amply in the following sections, we propose here
a classi�cation that depends on only two criteria: the account’s origin and its level
of automation.

2.2.3.1 Account’s Origin

The account origin refers to the original ownership of the account at the time it
was created. We distinguish here mainly between compromised accounts and Sybil
accounts. Compromised accounts [36, 37] are initially legitimate accounts that have
been compromised by spammers either partially4 or completely5. Compromise can
be temporary or permanent [38, 39]. Sybil accounts on the other hand are generally
de�ned as fake accounts created solely for the goal of abusing the platform. They

4Partial compromise of an account is achieved when the holder of the account allows malicious ap-
plications to gain permissions to act on his behalf (e.g. by posting tweets or following other users). The
original account holder maintains access to the account and application permissions can be revoked at
any time.

5Complete compromise of an account is done through credentials stealing. After obtaining an ac-
count credentials, it is possible to change these credentials, thus blocking the original account owner
from accessing his account and allowing the stealing party to gain full ownership of the account.
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are often created in mass and have varying customizing degrees. There is further a
distinction between:

• market accounts, namely accounts that are available for trading and that can
be rented simultaneously to di�erent unrelated spam campaigns.

• custom accounts, which are uniquely used by the spam campaign that operates
them.

2.2.3.2 Account’s Automation

Given that spammers need to target a large audience, sharing spam manually is time
and e�ort consuming and is therefore ill-adapted to the spammers’ goal. There exists
spam that is generated through human-operated accounts, but this is usually done
individually and on a small scale. Similarly, a great proportion of Twitter’s content
(e.g. digests and news feeds) is in fact generated using automated means. Since the
infrastructure and API used to achieve automation are provided by the platform itself,
automation cannot be strictly considered as an abusive behavior. This being said,
spam on Twitter heavily uses automation for content generation and dissemination,
making the two concepts (i.e., spam and automation) strongly correlated.

There are three levels of automation [40, 41, 14]: fully automated accounts or
bots, human-operated accounts, and hybrid accounts where content and actions are
governed by a combination of manual and automated mechanisms. These hybrid
accounts are known in the literature as “cyberbots”. These di�erent shades of au-
tomation are shared across both legitimate and abusive accounts. In fact, bots on
Twitter are not necessarily spammers6, nor spammers are necessarily bots. It is safe
to conjecture that spammers are mostly composed of bots accounts but the variety
of automated activity on Twitter prevents us from considering every bot to be an
abusive account.

2.2.4 A Taxonomy of Abusive Behavior on OSNs

Abusive behavior on OSNs is any behavior that an account or a collection of ac-
counts exhibits in violation of the OSN’s rules and regulations. In Section 2.2.2, we
have presented two revenue models for social spam: spamvertising and spam-as-
a-service. The utility of spam, however, is not measured solely by the revenue it
returns. While some spam messages, such as those advertising products or services
or directing users to external URLs, have clear economic incentives and an evident
revenue model similar to that of email spam, other types of spam, such as opinion
manipulation spam, may seem to lack direct economic pro�t at the �rst sight. The
real economic pro�t, however, is achieved by the infrastructure facilitating this type
of spam. This infrastructure abstracts away the complexity of spam generation by
making available the set of tools, applications and accounts necessary to abuse the
OSN and manipulate its users. The utility of opinion manipulation, e.g. in a political

6News bots, such as those discussed in [42], or bots that act as continuously updating digests for
special themes, are examples of benign bots.
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context, cannot be directly measured in monetary terms. It follows that abusive be-
havior does not neatly map to the two previously discussed revenue models, but can
be classi�ed into two categories: engaging in the spam-as-a-service market, namely
through arti�cial credibility in�ation behavior, and posting abusive content.

2.2.4.1 Spam-as-a-service on OSNs

The spam-as-a-service economy relies on tools provided by the OSN underground
market to abstract the spam generation chain and support end users with the prod-
ucts and services they need to establish credibility, and massively manage content,
accounts and interactions. The main products of the underground are fake followers
and fake interaction in the form of likes and retweets.

• Followers selling: This is one of the leading monetized activities of the
spam underground. Followers selling is an established business with di�erent
traders and product options. Followers are sold in packages where a prede-
�ned price is given to every bundle of followers depending on the number of
sold accounts, their overall activity (silent followers are less pricey than fol-
lowers engaging in automated tweeting/retweeting activity), their language or
nationality, or whether they are real (compromised accounts of actual users)
or fake (Sybil accounts often created in mass and using automated means to
generate content and activity).

• Retweet/like selling: Similar to followers selling, the retweet/like selling ser-
vice is used to boost the perceived popularity and credibility of a content. De-
pending on the bought option, a tweet is simultaneously liked (or retweeted)
by a set of market accounts.

These services are used both inside the underground to boost spammers credibil-
ity and in�ate their popularity and by interested customers that otherwise have no
relationship to or knowledge of the underground logistics. In-depth and longitudinal
studies of the followers selling business are presented in [43, 44, 45].

Note that the service discussed so far is a “premium” (paid) version of the free ser-
vice o�ered to other accounts. The free service consists in o�ering normal accounts
a bundle of followers and retweets to their messages in exchange for the malicious
application being granted the permission to use the account for following other users
and retweeting their content (see an authorization page of such an app in Figure 2.2).
By giving these apps the permission they require, unknowing users become compro-
mised and become themselves “market accounts”, i.e., part of the traded accounts in
the underground economy.

Since procuring an audience for their messages is crucial to ensure an adequate
outreach for their content, harvesting followers has been a persisting concern for
spammers. In addition to disseminating their own spam content, accounts with high
followers count can be used to publish paid messages or can be sold to interested buy-
ers. Followers collection techniques can also be used to procure a “normal” appear-
ance to Sybil underground accounts. Besides buying followers through followers-
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selling services as discussed above, spammers can also exploit “follow churn”, a well-
known technique for collecting followers, which we introduce below.

• Aggressive following/unfollowing (follow churn): A technique based on
the human tendency to reciprocate in social relations, aggressive following
is practiced by spammers in hope of getting the followed accounts to follow
them back. This following behavior is performed randomly, inorganically and
in bulk. Accounts that do not follow spammers back are unfollowed (usually
after a short grace period) and even reciprocating accounts can be later un-
followed to allow spammers to repeat their scheme on new accounts7. This
following/unfollowing behavior is in direct violation of Twitter’s rules8 and
may result in the suspension of the o�ender account9.
Some spammers advertise that they will “follow back” any account that fol-
lows them (either in the screen name or the about me sections). Although used
mainly by spammers, this technique can also be used by aggressive promot-
ers and normal users [46], as empirical research on spammers connections
has also shown that a substantial fraction of spammers’ followers is formed
by “social butter�ies” [47]. These are legitimate accounts that reciprocate the
follow relationship with any account that follows them without checking its
background. They are on average more popular and in�uential than normal
Twitter accounts, and sometimes belong to celebrities and public �gures [48].

2.2.4.2 Abusive Content on OSNs

In the following, we present a general classi�cation of abusive content encountered
on OSNs:

• Spamvertising: Spamvertising, loosely de�ned as the process of referring to
spammers-related websites in emails, blogs and social media, is a general um-
brella of many spam activities. The de�nition can be extended to cover tweets
advertising products and services on social networks, and includes the follow-
ing examples:

– Tweets advertising followers selling and retweeting services.
– Commercial products and services advertisement (e.g. perfumes, phar-

maceutical products, properties, etc. . . ).
– Links to online news websites, forums and shops.

7Twitter limits the number of pro�les an account can follow to 5000 users. This threshold can
only be bypassed when a suitable (undisclosed) number of followers is gathered to balance the followers
to followees ratio. To continue following accounts, spammers therefore need to “make space” to their
new targets. See Twitter troubleshooting: why can’t I follow more accounts? https://support.
twitter.com/articles/66885

8Twitter terms of service explicitly bans “aggressive following (accounts who follow or unfol-
low Twitter accounts in a bulk, aggressive, or indiscriminate manner)”. See Twitter’s rules: https:
//support.twitter.com/articles/18311

9Following rules and best practices: https://support.twitter.com/articles/
68916

https://support.twitter.com/articles/66885
https://support.twitter.com/articles/66885
https://support.twitter.com/articles/18311
https://support.twitter.com/articles/18311
https://support.twitter.com/articles/68916
https://support.twitter.com/articles/68916
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– Referrals, i.e., requests to follow someone’s account (such as an aspiring
singer) on other social media such as YouTube and Instagram.

• Opinion manipulation: The orchestrated use of accounts, tweets and
retweets to manipulate the public perception of a political or social subject
has been documented in many works [9, 7, 49]. This tool is particularly useful
when a party wants to dominate the public opinion in situations of political
unrest, and controversial social issues [50, 51]. This type of spam is exception-
ally di�cult to spot as the content is generally context-relevant. A directly
related topic is “fake news” that gained a lot of attention in recent literature
[52, 53, 54].

• Phishing andmalware: Perhaps the most known type of email spam, phish-
ing is equally existing on social media and has the ability to cause great se-
curity risks. A phishing message contains a malicious URL that redirects to
a phishing website or a malware-downloading page. Phishing and malware
messages are usually detected in the literature using URL blacklisting services
(e.g. Google Safe Browsing10.).

• Scams: Like phishing, scam on social media is a shout-back to popular
advance-fee scams on email (e.g. the famous Nigerian prince scam). The suc-
cessful execution of a social scam requires the establishment of a communi-
cation channel between the scammer and the victim. This can be done using
one of the following options available either in the abusive tweet or the scam-
mer account: 1) a link to the scammer’s website, 2) a contact option: an email,
phone number, bank account, or 3) direct contact via mentions or private mes-
sages.

• Content pollution: This includes generating quotes, proverbs and normal
texts or randomly retweeting genuine content. It is usually a mean to gener-
ate legitimate content for underground accounts to obfuscate their real nature.
Content pollution can be equally used for opinion manipulation. Instead of en-
gaging in propaganda, accounts can sometimes submerge genuine discussion
with irrelevant content. By preventing normal users from accessing relevant
content in a trending topic, it acts in a similar way to a DoS attack11.

2.2.4.3 Spam Dissemination Channels

Spam dissemination channels are platform’s conventions through which users of the
online social network can be exposed to spam. Each dissemination channel targets a
di�erent part of the users base and has a di�erent reaching power. The main channels
used to propagate abusive content can be summarized as follows:

• Search spam: Search spam targets users that are searching for common or
popular terms. Spam tweets containing the query terms are shown in the

10Google Safe Browsing API: https://safebrowsing.google.com/
11In computer networks, a DoS (Denial of Service) attack is an attack where the perpetrator attempts

to block users’ access to a service or resource by making it unavailable.

https://safebrowsing.google.com/
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search results. Spam tweets of this type often have a text or a URL that are
unrelated to the search terms. A subtype of search spam is collective attention
spam [55] (e.g. hijacking trending topics on Twitter, where spammers hijack
trending topics by including the topic hashtag in their tweets, see an example
in Figure 2.3).

• Mention spam: This includes spam messages that target a particular Twit-
ter account (and eventually anyone visiting this account’s personal page) by
including the screen name of the account (preceded by the “@” symbol) in
the tweet text (e.g. @justinbieber). This type of spam is particularly directed
at popular Twitter accounts to pro�t from the high visibility ensured by these
accounts’ audience, but mention spam can also target normal or random users.

• Direct Messages (DM) spam: In direct messages spam, a spammer sends
an unsolicited private message to the target accounts containing an undesired
or potentially malicious content. Direct messages spam is hard to detect and
measure by researchers with normal-level access, since it consists of private
information shared only between the sender and the receiver, and that is only
directly accessible to the OSN provider. Figure 2.4 shows an example of DM
spam.

• Followers-targeted spam: This comprises spam messages that are published
on the spammer’s own page and can only be seen by his followers or page vis-
itors. For this technique to be e�ective, the spammer in question should have
harvested a large base of real followers using one of the followers acquiring
methods described above.

2.3 Data Collection and Labeling on Twitter

Data collection consists in collecting messages and users pro�les by connecting to
the OSN’s Application Programming Interface (API). Compared to other OSNs (e.g.
Facebook), Twitter has the unique position of providing an accessible API. Twitter
pro�les are also public by default12, meaning that their tweets can be seen by anyone
on Twitter and consequently public pro�les are also accessible to developers via the
API. Sharing research datasets collected from Twitter has been severely regulated and
restricted in the last few years [56], with direct e�ects on research reproducibility,
but the ease of collection ensures that research based on Twitter’s data continues to
thrive.

An overview of the social spam data collection on Twitter is shown in the taxon-
omy in Figure 2.5. In the following, we will start by laying the foundations of data
collection on Twitter. While the discussion is closely tied to the Twitter ecosystem,
the general concepts are applicable to data collection on OSNs in general. We then
discuss approaches used in the literature to label the collected dataset. Note that
this distinction between collection and labeling is arti�cial. While these two steps
are usually considered separate in the data mining pipeline, the constraints of the

12According to a comprehensive study [47], private pro�les form 8% of the Twitter’s population.
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social spam domain often dictate that they merge into a single step. Thus, many
of the labeling techniques discussed below can also be considered as data collection
techniques.

2.3.1 Data Collection Methods on Twitter

The distinction between collection methods is fundamentally a distinction in ac-
counts sampling. We �rst introduce technical aspects related to the Twitter API
before discussing accounts sampling approaches.

2.3.1.1 Twitter’s Developers APIs

Twitter provides an API that allows programmatic access to the data and automatic
actions on behalf of the accounts. The communication is done via get and post re-
quests and responses.

Format of the received response: The received information is a list of json-
encoded objects with a rich information structure that includes not only the tweet
or pro�le associated information available via the user interface, but also informa-
tion that is only accessible by connecting to the API (e.g. users identi�ers and until
recently the device or application used to post a tweet). Both users and tweets have
unique non-reusable and unchangeable numerical identi�ers that are assigned to
them upon creation. The identi�ers are generated in an ascending order so that an
identi�er with a larger value indicates a more recently created account or tweet. In
the following, we will describe the two main developers’ APIs: the streaming API
and the search API.

The streaming API: The streaming API13 delivers two types of real-time data
streams: the sampled stream and the �ltered stream. The sampled stream, as its
name indicates, delivers a real-time stream representing a 1% sample of Twitter’s
global stream. The �ltered stream, on the other hand, delivers a sample of tweets (up
to a maximum of 1% of the total stream) corresponding to a developer-de�ned query
(a set of tracked keywords or followed users). The current free-access level to the
streaming API replaces the more comprehensive access levels previously provided
by Twitter (such as the elevated gardenhose access representing 10% of the total
stream, and the complete �rehose access representing 100% of the total stream).
Enterprise-level access is nowadays managed by Gnip14, Twitter’s partner company
that o�ers multiple options for a customized elevated access to Twitter’s data.

The Search API: The search API15 is the rate-limited16 REST API allowing devel-
opers to customize their queries by “conducting singular searches and reading user

13Twitter’s Streaming API: https://dev.twitter.com/streaming/overview.
14Gnip Twitter Access: https://gnip.com/sources/twitter/.
15Twitter’s Rest API: https://dev.twitter.com/rest/public.
16Rate limiting on Twitter: https://dev.twitter.com/rest/public/

rate-limiting.

https://dev.twitter.com/streaming/overview
https://gnip.com/sources/twitter/
https://dev.twitter.com/rest/public
https://dev.twitter.com/rest/public/rate-limiting
https://dev.twitter.com/rest/public/rate-limiting
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pro�le information”. It also allows applications with the right set of permissions
to execute actions on behalf of the user, e.g. following other users and managing
content (tweeting, deleting), as well as interacting with other users (sending direct
messages, retweeting and liking other users’ tweets). Depending on the type of the
queried resource, the number of API calls allowed per a �fteen minutes window
varies between 15 and 1500 queries17. Whitelisted access, now discontinued, con-
sists in elevating the rate-limit of one or several whitelisted IP address to 20, 000
API calls per hour, therefore allowing the collection of datasets that are considerably
larger and more comprehensive than datasets obtained through normal-level access.

2.3.1.2 Accounts Sampling Approaches

There exist di�erent methods to collect data on OSNs. We will explain and compare
each of these methods and discuss their advantages and limitations. The main data
collection methods encountered in the literature are:

• Brute force accounts collection.

• Direct graph sampling.

• Random sampling of active users.

• Honeypot traps.

Brute force accounts collection: Brute force data collection requires a special
elevated access to Twitter’s infrastructure and dozens of whitelisted IP addresses
working over a considerable collection period. The process described in the liter-
ature [47] consists of individually checking and collecting the account information
of every numerical identi�er starting from the lowest to the highest known identi-
�er. Analysis and �ndings based on the dataset yielded by brute force access are of
unmatched in�uence and signi�cance, but are impossible to replicate as neither the
collected dataset nor the collection method are available for researchers.

Direct graph sampling: This collection method starts from an initial seed of ran-
domly chosen accounts and expands the list of collected accounts by following the
social networks (followers or followees) of these users up to a given degree [22] of-
ten using a Breadth-�rst approach. The characteristics and representativeness of the
collected nodes are discussed in [57].

Random sampling of active users: This is a fast and simple collection method
that can quickly amass a large volume of users [58]. It consists in sampling accounts
that are tweeting in Twitter’s public timeline [23, 11] (now discontinued), in trending
hashtags [22], or via the streaming API [59]. Although the goal is to randomly sample
users, the method actually samples tweets posted during a given observation period,
and later associates each tweet with a user ID. It follows that only users active during

17Limits of each query: https://dev.twitter.com/rest/public/rate-limits.

https://dev.twitter.com/rest/public/rate-limits
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the observation period are sampled. The representativeness of the obtained datasets
is also questionable since by sampling tweets (as opposed to accounts), the method
oversamples frequent posters [59].

Honeypot traps: By creating honeypot accounts that mimic normal OSN users
and integrate into the social network, researchers can trap spammers by luring them
into following or interacting with these accounts. Since the honeypot method can
be jointly considered as a collection and labeling method, we will discuss it in details
in the next section.

2.3.2 Data Labeling of Twitter’s Spam Datasets

Labeling refers to the act of assigning a class or label to a data instance in order to
build a labeled dataset. In the current case, this means assigning either a spammer
or a legitimate label to the labeled account. The labeled dataset is then used either to
analyze spam on Twitter or to build and evaluate spam detection systems. Labeling
is usually a human-intensive job that requires an expert human annotator and is
therefore time-consuming and hard to scale. This explains why even when massive
datasets are available, manually labeled datasets are modestly sized. It also explains
why it is easier and more common to recur to heuristics that automatically label
instances.

Ground-truth data used in social spam research is usually built via various label-
ing methods that are based on di�erent empirical assumptions. This creates hetero-
geneously labeled datasets that are hard to compare against each other and are often
limited to only a part of the studied problem. In the following, we will discuss the
merits and de�ciencies of each of these labeling approaches. We will namely discuss
manual labeling as well as heuristics for acquiring legitimate and malicious labels.
Note that heuristics-based labeling yields only one class of users, and thus needs to
be complemented with labeled instances from the other class.

2.3.2.1 Manual Labeling

Unlike other labeling methods that use heuristics, curated blacklists, or internal sig-
nals from the Twitter’s platform, manual labeling solely relies on the judgment of
the human expert charged with annotating the collected data. Manual labeling is
time and resource-consuming, and tends to produce datasets that are considerably
smaller than datasets annotated through other labeling methods. And although the
annotation process is completely controlled by the researchers undertaking the anal-
ysis, the resulting labels cannot be expected to form a universal ground-truth, since
no spam de�nition is universal. Moreover, even when a de�nition is speci�cally cre-
ated for the sake of the annotation process, it is common for human annotators to
disagree on some of the labeled entities. Like other applications requiring human in-
put, several works have framed the task of labeling accounts or messages on Twitter
as a series of message labeling tasks [10, 60, 61, 62]. These tasks can be thus framed
as “microtasks” and adapted for crowdworkers on crowdsourcing platforms such as
Amazon Mechanical Turk.
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2.3.2.2 Heuristics for Acquiring Malicious Labels

While heuristics discussed below o�er a powerful way to scale the labeling process,
they all have limitations. A particularly problematic aspect is the skewed represen-
tation of the spammers population as every heuristic focuses on one aspect of spam.
Even more problematic is the assumption that a given heuristic is both su�cient and
necessary for a tweet or an account to be a spam or a spammer. In other terms, ev-
erything not detected by the heuristic is considered legitimate. This assumption can
potentially misguide any further analysis or results based on the obtained labels.

Honeypot traps: The honeypot approach consists of creating social honeypots,
namely arti�cial accounts that often mimic the average user of the studied social
network [11, 63, 64], and using them to attract and trap spammers. Compared to
other collection methods, social honeypots have the advantage of continuously and
autonomously collecting up-to-date evidence on content polluters from the social
network [64]. Although elegant and simple, this collection/labeling method is prob-
lematic for the following reasons:

1. Observation duration: This approach requires a long duration (spanning
months) of possibly inactive observation before a satisfactory users database
is built.

2. Sampling bias: The resulting spammers dataset is biased toward spammers
that actively follow other users. Randomly following other users in the hope
of a follow back is only one of many techniques the spammers use to harvest
followers.

3. Need for human veri�cation: Since honeypot accounts appear legitimate, be-
nign users may follow them for non-malicious reasons18 such as the desire of
being followed back, or a genuine desire to connect with the account [11]. The
resulting dataset, therefore, cannot be used before being veri�ed by a human
to �lter out legitimate accounts.

Labeling based on URLs blacklists: Approaches using URL blacklisting services
to label spam on Twitter adopt the classic de�nition of spam de�ned as tweets con-
taining blacklisted URLs [34, 67, 68, 69]. The safety of the URL is assessed through
services such as Google Safe Browsing19 and phishTank20. The tweeting account is
considered a spammer if more than a threshold of its content (e.g. 10%) is �agged by
these safe browsing services. This often o�ers a very skewed view of the spammers

18There are instances where benign users either follow [65] or interact with arti�cial accounts with
genuine interest [66]. In the social experiment described in [66], authors set up a bot with no network
of trust, no pro�le information, and no intention of reproducing a human-like behavior and let it interact
with users. The experiment results show that, using simple automated techniques, the bot is able to
become very relevant to the network, i.e., both top popular and in�uential.

19Google’s Safe Browsing API: https://developers.google.com/safe-browsing/
?hl=en.

20The PhishTank website: https://www.phishtank.com/.

https://developers.google.com/safe-browsing/?hl=en
https://developers.google.com/safe-browsing/?hl=en
https://www.phishtank.com/
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scenery on Twitter. Even when only targeting spamvertising, this method yields a
non-representative fraction of spamvertisers as communication can be established
directly with the advertising account or via a phone number or email mentioned in
the tweet text.

The main drawbacks of datasets collected and labeled using this de�nition are
the following:

1. A limited de�nition of spam: As mentioned above, a blacklisted URL is
not a necessary condition for spam. Tweets containing URLs form a limited
fraction of spam tweets. Messages advertising followers selling services for
example usually do not contain URLs. In addition, URLs contained in spamver-
tising tweets often redirect towards online stores (e.g. amazon.com) that are
not �agged by blacklisting services, which means that these spam messages,
although they contain URLs, are also not detected by this labeling approach.

2. Blacklists update delays: Given the delay between the time a URL is used on
social media and the time it �rst appears on blacklists, it is possible that part of
malicious tweets is not �agged by blacklists. To maximize the accuracy of the
labeling method, blacklists should be checked repeatedly after a URL appears
on social media before assigning a label.

Labeling based on suspended accounts: This approach de�nes spammers as
accounts that are suspended by Twitter. In other terms, the de�nition is based on
reverse engineering the platform’s de�nition of malicious behavior after-the-fact. It
has been used to study and uncover characteristics of the suspended population [70].
Although it provides a gold truth, it has several limitations, the least of them is the
lack of a clear human-interpretable de�nition of what suspension means. More im-
portantly, suspension on Twitter, particularly through massive purges, is a business
act that involves weighting utility and minimizing false positives. This results in con-
siderable delays and an ambiguous mapping between the suspended and spammer
concepts:

• Considerable delays: While we do not have information on the internal mecha-
nisms of Twitter’s detection systems, suspension is only the tip of the iceberg.
Twitter purges of spammers are infrequent and wide-spaced, as they impact
the size of the population and have been known to signi�cantly decrease the
number of followers of celebrity pro�les21. Consequently, unless suspension
is done manually, a considerable delay is often noted between the time an ac-
count goes “rogue” and the time it gets suspended [70].

• Not all malicious accounts are suspended: Again due to business reasons, non-
suspended accounts are not necessarily legitimate even if they have been active
for a long time. The dynamics of suspension on Twitter can ultimately be

21The most recent large-scale bot purge on Twitter was conducted in July 2018 [71], and had a notice-
able impact on the number of followers of many celebrities [72]. The purge lead to the removal of more
than 9 million previously identi�ed and locked accounts.
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discussed in a game-theoretic context where suspension is a signaling act that
can be exploited by spammers. Thus, it may be speculated that not suspending
some accounts, particularly the less damaging ones, can be of greater utility
in the larger spam evolution picture if it means less information leaked on the
internal detection system22.

• Suspended accounts are not necessarily spammers: Suspended accounts can be
legitimate accounts suspended for non-spam related reasons. The distinction is
not possible without manually reviewing the content and pro�les of suspended
accounts. Manual reviewing is needed because Twitter does not make public
the reasons for suspension nor does it encourage or endorse the results of
research based on suspended accounts [32].

To study the gap between malicious accounts and suspended accounts, we
checked the current status of spamming accounts in three social spam datasets,
namely, the honeypot dataset [63], the 1k-10k dataset [13] and the hashtag-hijackers
dataset [73]. A considerable part of the malicious accounts present in these datasets
still exists on the OSN. The details are discussed in Section 3.3.

Labeling based on reported accounts: Labeling based on reported accounts is
similar to labeling based on suspended accounts, except that it uses identi�ers of
accounts that are reported by the Twitter community using tweets directed toward
the o�cial @spam account. Since some accounts can be maliciously or erroneously
reported, the collected usernames should be manually veri�ed before inclusion in
the labeled dataset.

Dictionary-based labeling: Dictionary-based labeling often targets specialized
spam (e.g. pharmaceutical spam), and may use spam dictionaries compiled from
other domains (e.g. email) to detect and label spam content on OSN (usually through
direct searching and matching of the dictionary keywords over the OSN messages). A
recent example is the Pr0n dataset [74] that collects accounts marketing adult dating
sites on Twitter. The collection algorithm starts from a seed of known spammers
and crawls their ego networks looking for accounts displaying similar phrases and
patterns.

2.3.2.3 Heuristics for Acquiring Legitimate Labels

Labeling based on reliable accounts: In the same spirit of labeling based on
suspended and reported accounts, reliable accounts (e.g. accounts o�cially veri�ed
by Twitter, celebrities) can be used as examples of legitimate behavior on Twitter.
The yielded dataset, however, cannot be considered as a representative sample of
legitimate accounts, since the collected accounts have characteristics that are widely
di�erent from normal accounts.

22Alternatives to suspending accounts include “reducing the visibility of suspicious accounts in Tweet
and account metrics” as reported by an 2018 Twitter’s blog post [31].
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Random sampling of accounts: Based on empirical studies and reports estimat-
ing the spam on OSN to form a minor percentage of the total content23, some works
conveniently propose to directly label randomly sampled accounts as legitimate ac-
counts. This method is often used in conjunction with other collection and labeling
methods to balance datasets that are mainly representative of spam. The assumption
when using this labeling method is that the error induced by the labeling process is
acceptable for the purposes of the undertaken analysis or application.

2.4 Detecting and controlling Spam on OSNs

The literature covered so far mainly tackles empirical analysis of social spam
datasets. We next cover works geared towards solving the social spam problem.
The vast majority of these works implicitly assume that the problem boils down to
detection of abusive accounts and behavior. Another much less explored approach
attempts to alleviate the problem by imposing design choices that ultimately decrease
the perceived utility of abuse on the OSN platform (or alternatively increase the cost
of engaging in collusive behavior). This approach thus adopts prevention rather than
detection. The most notable example is CollusionRank [48], a trust-based PageRank-
like social ranking system that assigns in�uence scores to users, penalizing those
that link to spammers. The main aim of this system is to deter “social capitalists” (or
in�uencers), from engaging in non-discriminant link farming (follow churn) that the
study found to be an important catalyst for boosting the credibility of spam accounts
on Twitter.

In the following, we focus on the spam detection approach. We propose to clas-
sify related work according to three criteria: detection objective, detection granular-
ity and methodology.

Detection Objective. We indirectly referred to the detection objective in the
social spam taxonomy we proposed in Section 2.2. We de�ne the objective of the
detection as the particular instance of the social platform the detection system wishes
to identify or to label as abusive. There are three distinct instances found in the
literature: the social account, the social post (e.g. a tweet), and the URL. The �rst
instance refers to a single pro�le on the platform, while a post represents the atomic
unit of content. A URL is also an instance of content, but unlike the �rst two, it is
not an atomic component of the platform. It can be found in text-based components,
such as posts and about-me sections.

Detection Granularity. For all of these distinct instances, the problem can
equally be de�ned in terms of detection granularity. In this regard, detection can
target individual instances or a community of instances. The latter can be referred
to as collective detection. Let us take the example of accounts detection: in the in-
dividual detection case, the system assigns a label to each individual account. In
collective detection, on the other hand, a unique label is assigned to each community
of accounts. The mapping from accounts to communities is either prede�ned in in-

23Early estimates are around 4% [10] while more recent research places the numbers between 9% and
15% [75].
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put (e.g. in supervised systems) or is part of the output of the detection system (e.g.
in most of the unsupervised systems).

DetectionMethodology. The remaining of this section will focus on discussing
works grouped by methodology. By far the most used one is the supervised classi-
�cation paradigm. Other discussed methodologies include graph-based detection,
detection by loopy belief propagation and unsupervised classi�cation.

2.4.1 Supervised Detection of Spam on OSNs

Supervised detection is understandably the dominant approach in the social spam
detection literature. Based on the supervised classi�cation paradigm, this approach
models the objective of the detection system (e.g. accounts, messages or URLs) as
a features vector and trains a supervised classi�cation model on pairs of instances
and labels. This de�nition is simple and computationally tractable. As features are
generally de�ned per-instance, the computational cost of computing features is pro-
portional to the number of classi�ed instances.

Starting from 2010, many works focused on characterizing and identifying spam-
mers using supervised learning tools and models [10, 11, 12, 63]. Table 2.1 provides
an extensive list of the works published in the supervised literature. These works
are classi�ed according to the two main criteria we outlined in section 2.4, namely
the detection objective and the detection granularity. The majority of the cited pa-
pers consider the spam detection problem to be an account classi�cation problem,
with a speci�c focus on individual detection of general spam accounts. Di�erent
formulations can be obtained by considering speci�c types of abusive accounts, e.g.
fake followers [76, 77], or attempting to distinguish robotic from human accounts
[41, 40, 62, 78, 79].

It is also possible to de�ne the task as one of community classi�cation (using
community-based features) [80] or by performing classi�cation on content. Classi-
�cation on content can be done on the tweet level [81, 82, 83] or on the URL level
[69, 84, 85, 34, 86].

Detecting URLs, as opposed to detecting accounts and messages, allows to tie
the social spam detection problem to the existing search and URL spam problem by
exploiting the features of the landing webpages of URLs found on the OSN.

The main contributions of these works can be formulated in terms of “features
engineering”. The proposed (and sometimes overlapping) sets of features are ex-
tracted from users’ pro�les, content, behavior and social network to characterize
and identify spammers. We discuss these features in more details in Chapter 3.

2.4.2 Graph-based Detection of Social Spam

In contrast to the previously discussed approaches, which constitute the bulk of the
community contributions, a more recent paradigm is centered around the graphical
representation of the problem by exploiting a major loophole in the spam strategy.
The guiding assumption of this paradigm is that, in order to be e�ective, malicious at-
tacks need to be at least loosely coordinated or synchronized. This results in Sybil ac-
counts being linked, either through the social graph structure or through some form
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Table 2.1: Supervised spam detection approaches on Twitter: a classi�cation by de-
tection objective and detection granularity

Detection
objective

Detection
granularity Works

Accounts
Individual

General [10, 11, 87, 23, 63, 64, 12, 13, 88, 20, 89, 90, 62, 91]
Bots [40, 41, 62, 78, 79]
Fake followers [76, 77]

Collective [80]

Messages Individual [10, 92, 55, 93, 81, 82, 83]
Collective [94, 86]

URLs Individual [34, 85, 86]
Collective [69, 84]

Co-detection
(accounts and messages) Collective [95]

of similarity. This assumption is used to construct what can be called, depending on
the application, a social [96, 97], interaction [18, 16] or similarity graph [17, 98].

Early works (e.g. SybilLimit [96], SybilInfer [99] and SybilGuard [97]) share
the assumption that Sybil accounts form one community concentrated around a
trusted node and leverage community detection algorithms, mainly through ran-
dom walking to detect Sybil communities [100]. Intra-community links are con-
sidered strong-trust links, while inter-communities links are considered attack links.
These works are unanimously evaluated on the who-connects-to-whom graph (who-
follows-whom on Twitter), which is commonly referred to as the social graph. They
are built with the assumption of strong-trust between connected nodes, which holds
better on peer-to-peer networks than on OSNs [48, 101].

In more recent contributions, the social graph is replaced by an interaction graph
(e.g. Facebook users liking pages in CopyCatch [16], and YouTube users commenting
on videos in Leas [18]). When interaction is measured on many levels, the interac-
tion graph can be transformed into a similarity graph (e.g. in Facebook’s Synchro-
Trap [17]). Detection is executed either by means of graph clustering (or cutting) (e.g.
SynchroTrap [17] and Leas [18]), or is modeled as a search for abnormally dense sub-
graphs (e.g. CopyCatch [16]). Note that both graph construction and graph search
are computationally costly with the number of operations exponential in the number
of users.

Some of the mentioned graph-based works are completely unsupervised [16, 17],
while some, especially works based on graph cutting, assume the presence of at least
one label to help associate the identi�ed clusters (e.g. SybilInfer) [99]. There are also
works that focus on localized clustering around known seeds of Sybil accounts to
execute e�cient detection (e.g. Leas [18]).
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2.4.3 Unsupervised Detection of Social Spam

Most of the unsupervised detection approaches are graph-based approaches that ei-
ther aim at clustering accounts or at identifying dense interaction subgraphs. The
assumption is that spam accounts are connected in a way that is captured by the un-
derlying social or interaction graph. These graphs form the basis of the approaches
discussed above. There exists however, other unsupervised approaches that are based
on individual modeling of accounts. These include Compa [37, 36], a system that
identi�es compromised accounts by the way of anomaly detection. Compa mod-
els each user as a statistical pro�le and �ags anomalous messages as messages sent
while the account is compromised. Another notable example is the work of Cresci
et al. on DNA �ngerprinting [102]. This approach assumes that collusive spammers
have similar activity dynamics and proposes a DNA-like alphabet to model account’s
activity. Spammers are then detected by clustering similar DNA pro�les.

2.4.4 Belief Propagation for Online Abuse Detection

Loopy Belief Propagation has been predominantly de�ned in the context of con-
nected social accounts, where either labels are known for a part of the accounts or a
belief can be de�ned for some or all of them. It has been mostly de�ned in association
with a Markov Random Field although there exists exceptions where the algorithm
is used without an undirected graphical model context (e.g. Polonium [103]).

This approach relies on propagating beliefs over a graph of accounts with the
assumption of similarity between connected accounts. Early applications in the con-
text of anomaly detection on online platforms include Netprobe [104] and FraudEa-
gle [105, 106], which target fraudulent accounts on online markets (e.g. Amazon
and eBay) and review fraud, respectively. A notable example in the domain of mal-
ware detection is Semantic Norton’s Polonium system [103] which implements belief
propagation over a large-scale bipartite graph of machines and �les. Machines are
assigned a proprietary reputation belief and the belief propagation helps identify
malware �les.

Despite some similarities with the problem of online social spam detection, the
context and formulation of the aforementioned models are quite di�erent, making it
impossible to transfer them directly to the setting of social spam detection. Applica-
tions of Markov Random Field (MRF) to spam detection have followed the traditional
model of earlier graph-based approaches discussed in Section 2.4.2 (e.g. SybilGuard
[97] and SybilLimit [96]) by basing the users graph on the social structure of the net-
work (the who-follows-whom graph). SybilBelief [107] is a system that propagates
known labels of users over the social structure using an MRF model. The system is
tested on synthetic and real-world social graphs including the social graph of Face-
book. SybilFrame [108] is based on a similar idea but uses a probabilistic represen-
tation of users based on their perceived labels. The proposed system is evaluated
on synthetic data and the social structure of Twitter. SybilBelief and SybilGuard are
direct extensions of the established graph-based detection community, which tradi-
tionally bases detection on the social structure network with the assumption that
links between users are based on a relationship of trust.
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Figure 2.1: A taxonomy of social spam on OSNs.
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Figure 2.2: The authorization page of a free followers boosting application on Twitter
showing the permissions the application gets when granted access to the account.

Figure 2.3: An example of trend-hijacking spam on Twitter.
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Figure 2.4: An example of direct messages spam on Twitter.

Figure 2.5: A taxonomy of social spam datasets on Twitter.
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3.1 Introduction

The supervised classi�cation framework o�ers a straightforward way to model the
components of the social spam detection problem. The solution design is typically
restricted to mapping the detection objective (usually a single social account) to an
appropriate set of statistical features. The problem can therefore be reduced to a task
of features engineering where the goal is to propose and �nd the set of features that
minimizes the empirical classi�cation risk, for a given loss function. The loss func-
tion can itself be de�ned in several ways but the classi�cation performance is usually

43
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expressed in terms of traditional machine learning metrics (e.g. recall, precision, F1-
measure). Evaluation in a supervised learning framework can therefore seem like a
well-de�ned task. In practice, the performance of a classi�er is closely tied to how
the target is de�ned. The de�nition can vary signi�cantly between di�erent systems
and studies. This is most clearly captured by how di�erent a spammers population
in a ground-truth dataset can diverge from Twitter’s suspension mechanism as we
will show in the rest of this chapter.

We have discussed in Chapter 2 a taxonomy of existing works that classi�es a
contribution according to two criteria: the detection objective (i.e., whether the de-
tection system aims at detecting accounts, messages or URLs), and the detection
granularity (contrasting individual detection of instances, such as one account, vs.
community detection, e.g. detecting a community of accounts). Most of the literature
contributions fall into the “individual account” detection category. The remaining
chapters of the manuscript will model the classi�cation task using this same detec-
tion objective. It is therefore important to thoroughly discuss the foundational con-
tributions related to this modeling choice. Accordingly, this chapter has three goals.
The �rst is to extensively review the features proposed in the literature to model
individual social accounts. The second is to concretely discuss labeling and ground-
truth dataset formation by comparing existing datasets. The third and �nal goal is
to evaluate sets of features on a recent real-world Twitter dataset. This evaluation
is undertaken to highlight the practical challenges of replicating state-of-the-art su-
pervised detection systems and to motivate the need for a change in the mainstream
supervised detection methodology.

In the studied case of spam accounts detection on OSNs, the supervised classi�-
cation pipeline described above can be explicitly expressed as follows:

1. A social account is modeled as a numerical features vector xi belonging to an
input domain X .

2. A supervised classi�cation model is trained on pairs of features vectors xi
and their corresponding labels yi. The classi�cation task is usually binary and
the label yi is de�ned as a positive instance when the account is a spammer.
Formally, yi ∈ L, where L = {0, 1}. A spammer label is denoted by 1 while a
legitimate label is denoted by 0.

3. The classi�cation function f(x) obtained by training the above-mentioned
Machine Learning model maps the input domain X to the output domain L.

Figure 3.1 shows a simpli�ed supervised classi�cation pipeline applied to spam ac-
counts detection on OSNs. The three main components as outlined above are: ac-
count featurization into a vector xi, assigning a label yi to the account (labeling),
and training a classi�cation model to obtain a classi�cation function f(x).

Chapter structure. The remaining of this chapter is structured as follows. Sec-
tion 3.2 presents an extensive overview of the features used in the literature to model
social accounts for the classi�cation task. Section 3.3 illustrates the heterogeneous
nature of labeling in Twitter’s social spam research and empirically shows that Twit-
ter’s suspension mechanism is incomplete and su�ers from delays. Section 3.4 details
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Figure 3.1: A simpli�ed partial overview of the supervised classi�cation pipeline as
applied to spam accounts detection on OSNs.

training Machine Learning models on the sets of features derived from those dis-
cussed in Section 3.2. In doing so, the full training pipeline is exposed and practical
challenges are discussed. The features evaluation is undertaken on a Twitter ground-
truth dataset that we collect and annotate speci�cally for this task. We heavily base
our discussion of data collection and labeling on the corresponding background sec-
tion (Section 2.3). We evaluate and compare several of the main supervised classi�-
cation models in the setup established by the features and the collected dataset. We
use the results of the classi�cation to discuss spam evolution and evasion and its im-
pact on supervised classi�ers. We also highlight speci�c conclusions that motivate
the contributions we propose in the following chapters.

3.2 Modeling Accounts as Numerical Features on Twitter

In this section, we extensively review and classify features proposed in the literature
to model social accounts. Since the focus is on individual accounts classi�cation, we
do not discuss features that can be extracted from a collection of accounts [80], nor
features extracted from individual URLs [69, 85, 34, 86]. We also limit our discussion
of features extracted from messages to those that can be directly exploited in ac-
counts classi�cation. We do not therefore discuss features that are de�ned for tweet
level classi�cation [81, 82, 83].

Figure 3.2 summarizes the areas over which features can be extracted to model a
social account. These include:

• Pro�le attributes.

• Social Network attributes.

• Content attributes.

• Automation attributes.

• Behavioral attributes.
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Figure 3.2: Di�erent types of features extracted from a social account.

3.2.1 General Pro�le Attributes

We mean by general pro�le attributes the features that can be obtained by simply
looking at the user pro�le, without applying any aggregations or temporal computa-
tion over the account activity or content. These features include the account’s name,
screen name and description, its age (or creation date), its total number of tweets
and liked tweets as well as the number of lists containing the account. Since some of
these characteristics are hard to analyze and interpret in their raw format, they are
often used to compute simple statistics, such as the length of the name, screen name
and description.

3.2.2 Social Network Features

Using features related to the social network of a pro�le is a legacy of the earlier
work on social spam detection. The assumption was that spam accounts were pe-
ripheral accounts that had weak social ties and insigni�cant ego networks1. While
this assumption was supported by empirical evidence [10, 11, 23], followers acquir-
ing techniques that we discussed in chapter 2 quickly ensured that spambots follow-
ship improved signi�cantly, and that simplistic features computed on an account’s
ego network were not e�ective at distinguishing genuine users from malicious ones
[91]. These features include simple counts of the number of followers and friends of
an account, as well as di�erent ratios computing the relationship between these two
counts:

• friends
followers

• friends
followers2

1An ego network consists of a focal node, called ego, and all the nodes that connect to it (alter), along
with all the edges that connect alter nodes.
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Table 3.1: Advanced features computed over an account’s ego network.

Similarity

1. Std. of followers IDs
2. Std. of friends IDs

Centrality & embeddedness

3. Clustering coe�cient
4. Betweenness centrality
5. Reciprocity (bidirectional links ratio)

Quality & engagement

6. Avg. number of followers of neighbors
7. Avg. number of tweets of neighbors
8. Followings to median neighbors’ followers
9. Number of followees of the user’s followers
10. Number of tweets of the user’s followees

• friends
friends+followers

Later work [13, 91] proposed new more complex features computed over a user’s
ego network (see the list of features in Table 3.1). The �rst two features shown in
the table are proposed to measure a possible collusion between the accounts in the
ego network. The assumption is that when these accounts have close numerical IDs,
this implies that they have been created simultaneously and thus similar IDs can
indicate a certain degree of collusion. Features 3 − 5 measure the centrality of the
studied account (betweenness) and how well embedded it is in its ego network using
the clustering coe�cient and reciprocity. The remaining features (6−10) attempt to
quantify how real the account’s neighbors appear to be. This is done by measuring
their content and followship/friendship bases.

The authors hypothesize that each of these more complex features is more di�-
cult to evade than the simplistic earlier features. The argument is that unlike buying
followers, it is both harder and costlier to fabricate the proposed features (e.g. fab-
ricate a higher betweenness). While this reasoning stands true for betweenness, it
has become increasingly easy and cheap for fake followers to have high followers
themselves (via mutual following), or to have active pro�les (via automated posting
scripts). A more recent investigation [76] of the power of these features in detecting
fake followers has shown that the features as an ensemble are still very e�cient. The
problem however, as this same study notes, is that these features are very costly to
compute as they require either processing over the whole ego network of each ac-
count (betweenness centrality), or aggregating numbers from each of its followers
(average number of followers of neighbors). To these drawbacks, we add acquiring
all neighbors (followers and friends of an account), and acquiring the connections
that may exist between these accounts, which is required for constructing the full
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Table 3.2: Features capturing the social and content-posting behavior of a social ac-
count.

Social Interaction (incoming and outgoing)

Following rate (out)
Befriending rate (in)
Mentions rate (out)
Reply rate (out)
Nb. of times the user was mentioned (in)
Nb. of times the user was mentioned per time period (in)
Nb. of times the user was replied to (in)
Nb. of times the user replied to someone (out)

Content

Reply ratio: proportion of replies
Retweets ratio
Original tweets ratio
Tweeting frequency
Distribution of tweets in temporal bins
Min, max, medium and mean of:

The time between tweets
Nb. of tweets posted per day/week

ego network of an account. The acquisition of this data is practically impossible, as
this requires an inordinate amount of API calls for each account2.

3.2.3 Automation-related Features

Since automation and spam accounts are strongly correlated, features quantifying
the automation of an account are valuable in detecting spam accounts. Automation
can be measured based on temporal posting behavior, content similarity, or the de-
vices used to post content. We discuss the two �rst types in the following sections.
Devices-related features measure how much of the content of an account is produced
on the API interface rather than using the web interface or a mobile application (e.g.
measuring the API tweets ratio, API URL ratio and API tweets similarity). This con-
cept has admittedly not aged well, as the number of applications on Twitter is huge
[32] and most of the automated content is posted through third party applications
rather than using the o�cial API portal.

3.2.4 Behavioral Features

Behavioral attributes of an account, listed in Table 3.2, are features that focus on
measuring characteristics of the account activity. They can be broadly divided into

2Rates of API calls on the social graph of an account (e.g. the GET followers/ids request) are restricted
to 15 calls per a 15 minutes time window.
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features that measure the account’s interaction with other accounts and features
that quantify the account’s posting behavior. The latter are not to be confused with
content-related features, which we discuss in the next section.

Interaction features can be further divided into incoming features associated with
the cases where other accounts initiate an action towards the studied account (by
mentioning, replying or following), and outgoing features where the account itself
initiates the action.

Content posting features attempt to pro�le the account’s posting activity both
temporally (tweeting frequency, inter-tweets time, temporal distribution) and based
on the post type. While most of these features are expressed in terms of ratios, de-
scriptive statistics can also be used for further di�erentiation between accounts.

3.2.5 Content-related Features

Content features are those features computed on the ensemble of tweets posted by an
account. They can be roughly partitioned into the following categories. See Table 3.3
for a full list of features.

• Content-level features are features representing global statistics of the tweets,
usually counts or frequencies of occurrence of special text elements or platform
operators. These include for example the ratio and raw number of URLs.

• Aggregated tweet-level features are features issued from aggregated statistics
of attributes computed individually on each tweet. While the global features
o�er a rough picture of the tweets pattern, these tweet-level features (e.g. num-
ber of words per tweet) o�er a closer look on how individual tweets are created.

• Replication features are features measuring content variability. These are use-
ful in detecting spam accounts, especially simplistic ones, as these tend to repli-
cate the same content. Enhanced replications measures (using compression or
similarity measures) can also help bypass the arti�cial variability introduced
by spammers to avoid that their tweets be �agged as exact replicates.

3.3 Empirical Evaluation of Twitter’s Suspension
Mechanisms

Twitter has an extensive and detailed set of rules that outline what the platform con-
siders as abuse [109]. It does not, however, disclose the internal workings of the mon-
itoring, detection and suspension systems. We do know that reporting constitutes
an important part of the defense ecosystem, and that the platform has been recently
alleviating its dependency on manual reporting and review [109]. Unlike the glimpse
o�ered by the article on Facebook’s so-called immune system [110], however, we do
not have any inside information on the detection algorithms used by Twitter.

The only visible part of Twitter’s defense mechanisms is suspension, a strong
signal that constitutes, as we have previously underlined, a business decision that
may induce real world implications to the company’s public image and economical
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Table 3.3: Features computed on an account’s content (collection of tweets).

Content-level
URL ratio: Proportion of tweets containing a URL
Mention ratio
Hashtag ratio
Nb. URLs
Nb. Hashtags
Nb. Tweets with @ (reply/mention)
Nb. Mentions
Nb. URLs per day
Nb. hashtags per day
Nb. mentions per day
Ratio of tweets containing words from a popular list of spam words
fraction of tweets with a blacklisted URL

Aggregation of tweet-level attributes
Min, max, medium and mean of (computed over each tweet):

Nb. of hashtags per number of words
Nb. of URLs per words
Nb. of mentions per words
Nb. of words
Nb. of characters
Nb. of URLs
Nb. of hashtags
Nb. of users mentioned
Nb. of times the tweet has been retweeted
Nb. of times the tweet has been favorited
Nb. of numeric characters

Replication
Avg. similarity over all pairs of tweets
ZIP compression ratio of tweets
Nb. of replicates

worth. We have previously stated in Section 2.3 that the suspension process is in-
complete, su�ers from delays and does not neatly map to a pre-de�ned de�nition of
abuse or spam. In this section, we support these claims by measuring and compar-
ing the suspension rates of accounts in 7 di�erent Twitter datasets. The discussion in
this section focuses only on the heterogeneous nature of ground-truth datasets with
respect to the de�nition of the objective, i.e., the social spamming account. Another
heterogeneity factor stems from the di�erent formats of these datasets, which will
hinder replication as we will discuss further in Section 3.4.

3.3.1 Compared Datasets

The compared datasets (presented in Table 3.4 below) cover the major collection and
labeling methods (as discussed in Section 2.3) and span a decade of research between
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2009 and 2018. They o�er an excellent benchmark for measuring and exploring sus-
pension on Twitter.

3.3.1.1 Checking for users suspension

All of the seven datasets contain numerical identi�ers (IDs) of Twitter accounts. We
have checked the state of each account by connecting to the users lookup interface of
Twitter’s API. The returned response o�ers coarse information indicating whether
the page associated with an account ID exists. For the IDs that do not have an as-
sociated page, we have conducted a second round of veri�cation to determine if the
account has been suspended by Twitter or simply deleted. This is done by individ-
ually crawling each of the non-reachable users identi�ers. The results are shown in
Table 3.4 under deletion and suspension percentages respectively.

3.3.1.2 Accounts labeling

Although the datasets are very di�erent in terms of how accounts are collected and
labeled, and how abusive behavior is de�ned, we can nonetheless divide the accounts
into three large categories: spam accounts (showcased in red in Table 3.4), legitimate
and human accounts (showcased in green) and randomly sampled accounts (show-
cased in blue).

Each of these datasets has been built in the context of spam detection on Twitter.
There exist two broad approaches to balance the spam population and sample non-
spamming accounts. The �rst is random sampling of the platform’s accounts and
the second is collecting genuine or alternatively “human” accounts. Note that this
distinction is not clearly made in the respective literature as random accounts are
generally used interchangeably with legitimate accounts. We make this distinction
here as it allows to better compare the di�erence between manually annotated legit-
imate accounts and the general Twitter population. This further allows to examine
the common assumption that spammers form a negligible percentage of the general
population.

Spam accounts. The spam accounts are obtained either by identifying blacklisted
URLs (the 1k-10k dataset), by honeypots (the honeypot dataset), by manual review
of suspicious hashtag-hijacking content (the hashtag-hijackers dataset), by searching
for common catch phrases used by Tinder-marketing bots (the pr0n dataset), by buy-
ing accounts from fake followers services (the Cresci-2015 dataset), or by a combi-
nation of manual review and search for a�liate marketing accounts (the Cresci-2017
dataset).

Randomly sampled accounts. Three datasets contain a random sample of the
Twitter’s sphere, the earliest one being the honeypot dataset that was collected in
the period between 2009 and 2010. The 1k-10k dataset also o�ers a random sample
of accounts. The authors choose to collect the dataset by means of Breadth-First
graph search, which o�ers a less random sample than the one o�ered in the honeypot
dataset. We have also conducted a sampling of the population by sampling tweets
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from the Twitter streaming API in April 2018, and constructed a dataset containing
118, 093 distinct accounts (the streaming API sample dataset).

Legitimate accounts. Compared to random accounts, properly legitimate ac-
counts are generally obtained with a process that requires a more pronounced human
involvement. This translates in practice to the accounts being manually labeled as
genuine (e.g. in the case of the hastag-hijackers and Cresci’s E13 datasets) or alter-
natively being veri�ed by a human after a community collection process. In the case
of the TFP dataset (Cresci-2015), the users were collected via an academic initiative
called the fake project, which aimed at collecting genuine accounts. The genuine
accounts in Cresci-2017 were obtained by randomly contacting accounts on Twitter,
and keeping accounts that were able to answer a question (a sort of a social Turing
test).

3.3.2 Discussion

The obtained suspension rates are shown in Table 3.4. Datasets are sorted in an as-
cending order according to their collection rates. The table also shows suspension
and deletion rates of each dataset and states the dates in which the suspension check-
ing was done. Since the used datasets do not o�er a true distribution of spammers
(resp. legitimate users), it is not useful to compute and compare aggregated average
suspension rates over the di�erent datasets. The numbers can serve to show that
Twitter’s suspension system does indeed suspend more spammers on average than
users labeled as genuine. Similarly, users labeled as genuine are less likely on average
to be suspended than randomly selected users.

Percentage of spammers in the general population. The suspension rates in
random samples in Table 3.4 range between 5% and 9.5%. This seems to back the
estimates discussed in Section 2.3.2.3. It should be noted that, due to suspension delay
and incompleteness, the reported suspension rates represent lower bounds on the
true spammers ratio in the general population. Suspension delay and incompleteness
are discussed below.

Suspension delays. To assess the time delay of the suspension mechanism, we
evaluate the suspension rates on the randomly sampled “Streaming API” dataset on
two di�erent dates. The �rst assessment is conducted in July 2018 (4 months after the
dataset is collected) and the second is conducted in April 2020, two years later. The
di�erence between the rates reported in Table 3.5 con�rms the delay in the suspen-
sion process (more than 4, 000 additional accounts were suspended and more than
12, 000 additional accounts were deleted).

Suspended vs spam accounts. There is an extreme variation in the suspension
rates of spam populations reported in Table 3.4.
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Table 3.5: Evolution of suspension rates in the “Streaming API sample” dataset be-
tween July 2018 and April 2020.

Date checked Percentage
deleted

Percentage
suspended

7/2018 3.2% 1.5%
4/2020 13.4% 5.2%

• Some categories of spammers seem to be easily identi�ed by Twitter’s suspen-
sion system (with rates in the range of 94%-99% for the pr0n bots, the tradi-
tional spambots 2 dataset and the fake followers from the FSF and INT datasets).

• Spammers in other datasets seem to be more di�cult to identify. The spam-
mers in the two legacy honeypot and 1k-10k datasets in particular, have sur-
prisingly low rates of 22% and 12.7% despite being identi�ed a decade ago.

An interesting observation is that fake followers from di�erent campaigns
bought at the same time period equally di�er in terms of suspension rates. The vast
majority of accounts in the FSF and INT campaigns have been suspended. But only
15% of the accounts bought from the TWT campaign have been suspended.

3.3.3 Conclusion

The discussion above shows that there is no direct correspondence between Twit-
ter’s suspension requirements and the de�nition of spam accounts in the di�erent
discussed works. The discussion also con�rms that Twitter’s suspension process is
incomplete, i.e., that it does not suspend all accounts that violate the platforms rules
of service. Moreover, the suspension rate varies signi�cantly from one dataset to an-
other. Simplistic accounts and fake followers seem to be easily and consistently de-
tected by Twitter’s suspension mechanisms while more complex accounts are harder
to detect.

3.4 Detecting Spammers on Twitter: A Case Study

The goal of this section is to evaluate sets of features proposed in the literature and
re�ect on the implications of the results and classi�ers performance.

An ideal evaluation would require exact replication of the detection systems de-
scribed in the literature. This would require extracting the same features used in
the proposed systems, and an access to the dataset on which the Machine Learning
(ML) models were trained. Exact replication would require, moreover, not only the
ML model used to train the classi�er (e.g. Decision Trees, Naive Bayes, . . . ), but also
the exact experimental parameters used for training (e.g. the train/test data split,
the initial training conditions). While papers usually describe the ML model they
use, sharing experimental parameters is regretfully not a common practice. As for
datasets, when a dataset is shared, it often has a restricted format that hinders its use
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for replicating the corresponding classi�cation system. This point will be discussed
in more details in Section 3.4.1 where we also describe a custom dataset that we col-
lect and label speci�cally for the task of evaluating supervised detection systems.
Given that the only reliably divulged component of these systems is the set of fea-
tures on which they are based, we only use sets of features to replicate and evaluate
these systems. Note that works such as [77, 14] that similarly evaluated state-of-the-
art systems relied only on the described sets of features to replicate the systems for
the same reasons we discussed above.

Evaluating the performance and e�ciency of a set of statistical features requires
an experimental setting where a ground-truth dataset is de�ned and a classi�cation
model as well as a loss function are chosen to train the classi�cation model. Like
many domains where the input distribution is not stationary (e.g. credit card fraud,
email spam), it is valid to have questions on the performance of state-of-the-art social
spam classi�ers when experimental settings change. Note that evidence of a drift in
the input distribution has been noted as early as 2011 [13], while recent reports have
also underlined the underperformance of some state-of-the-art classi�ers on recent
datasets, coining the phenomenon as a “paradigm change” [14].

3.4.1 Collection and Labeling of a Ground-truth Spam Dataset

A number of datasets containing annotated Twitter accounts has been introduced
over the years (e.g. in [10, 13, 14] and on the bot repository3). With the exception of a
couple of early datasets [13, 10], the shared �les corresponding to these datasets often
consist of users identi�ers and eventually some of their messages identi�ers (see an
example from the bot repository in Table 3.6). This can be traced back to Twitter’s
terms of service, which state that researchers are not allowed to share users’ content
of their datasets externally4. This restriction means that replicating any work based
on these datasets would require crawling the pages associated with the numerical
identi�ers. Since Twitter executes regular purges of suspicious accounts, content
and pro�les of suspended and deleted accounts in the aforementioned datasets is
often inaccessible5. This makes results replication and exploitation of the labeled
users infeasible.

Exceptions to the above sharing format include:

• The dataset of Benevenuto et al. [10], that provides a features matrix where
each user is assigned a numerical vector associated with the features de�ned
in the original work [10], but does not provide users’ identi�ers.

• The dataset by Yang et al., used in [13, 91, 112] where some users messages are
provided in a text form.

3The Bot Repository https://botometer.iuni.iu.edu/bot-repository/
datasets.html.

4Twitter’s policy on research use cases https://twittercommunity.com/t/
policy-update-clarification-research-use-cases/87566

5See [111] for unique insights on the volatile nature of manipulative content on Twitter in the context
of Brexit online discussions.

https://botometer.iuni.iu.edu/bot-repository/datasets.html
https://botometer.iuni.iu.edu/bot-repository/datasets.html
https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
https://twittercommunity.com/t/policy-update-clarification-research-use-cases/87566
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Table 3.6: A snippet from the vendor-purchased-2019 dataset on the bot repository.
This illustrates the format of publicly available Twitter datasets.

user_id label
736629545512632320 bot
764765673172176897 bot
830692986459738114 bot
872525677484007427 bot
795374336823721988 bot

Table 3.7: Characteristics of the ground-truth dataset

Group Designation Class Users Tweets

Veri�ed Users Legitimate 500 100 108
Human Users Legitimate 130 56 663
Trends Hijackers Spammer 51 22 586
Promotional Spambots Spammer 86 31 404
Total 767 210 761

• The dataset by Cresci et al. [14], that provides users features and text messages.

While these datasets di�er from the bulk of existing datasets in that the origi-
nal work itself can be replicated in [14, 10], an important drawback to note is that
features issued from other works cannot be usually computed or evaluated on these
datasets.

Since our goal is to replicate previously proposed features and compare and con-
trast their performance on the same dataset, we had to recur to custom collection and
labeling of a ground-truth Twitter dataset6. The dataset contains 767 users7 divided
over four categories of users: veri�ed accounts, normal users, hashtag hijackers and
promoters. The �rst two categories belong to legitimate accounts and form 83% of
the dataset, while the other two categories form the remaining 17% and exhibit an
abusive behavior that violates Twitter terms of service8. Table 3.7 summarizes the
general characteristics of the ground-truth dataset. For each of these users, Twitter’s
Rest API 9 was used to crawl users pro�les and tweets. These were subsequently used
to extract relevant content and behavioral features.

We explain hereafter the techniques used to collect and label Twitter accounts.
Note that to obtain some users (e.g. users in the Veri�ed category as well as some
human users and promotional spambots), we needed to �rst collect a large dataset of
random accounts and tweets. For this, we used the Developer Streaming API 9 in the

6The dataset (users ids, features and users graph) is available via https://nourmawass.
wordpress.com/datasets/.

7The number of users in our dataset is comparable to other datasets obtained via manual labeling e.g.
759 users in RTbust [60], 62 and 529 accounts in [61] and 1065 accounts in [10].

8Twitter terms of service https://twitter.com/en/tos
9Twitter developers API https://developer.twitter.com/en/docs

https://nourmawass.wordpress.com/datasets/
https://nourmawass.wordpress.com/datasets/
https://twitter.com/en/tos
https://developer.twitter.com/en/docs
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Figure 3.3: A screenshot of a compromised veri�ed account posting a tweet contain-
ing a phishing link.

period between 5 and 21 October 2017 and obtained a random sample of 20M tweets
from 12M active users. For the remaining accounts in the ground-truth dataset, the
collection targeted trending hashtags, the content of which was collected via the
Search API.

Veri�ed Accounts. Given the complex nature of accounts automation on Twitter,
we found it important that the dataset comprised automated users on both ends of the
spectrum, that is, automated pro�les from both legitimate and abusive users. Veri�ed
users often belong to companies, celebrities or public �gures, and are often operated
by dedicated or generic content management applications10. They exhibit a behavior
typical of what has come to be known in the literature as a “cyborg” account. These
accounts may therefore have di�erent features from those of normal human-based
accounts and it is important to include them in the dataset to prevent the classi�er
from learning that every automated behavior is abusive.

these users are easy to identify (their pro�les are marked with a blue tick mark
and their crawled pro�les include a “veri�ed” �ag). We randomly selected 500 users
among 43k veri�ed users appearing in the dataset and we included these 500 users
in the ground-truth dataset.

Human users. The remaining 134 legitimate users in the ground-truth dataset
were normal human-operated accounts. These users were identi�ed by manually
investigating a sample of active accounts from the initial dataset. This required a
careful examination of the account in question, its tweets, pro�le and behavioral
characteristics, and has therefore a small throughput. Manual labeling is di�erent
from mainstream labeling techniques described in the literature in that it is time
consuming and requires an annotator that is familiar with current spam techniques
and tricks11.

Promoters. The blacklisted links heuristic is a well-known heuristic that is com-
monly used to identify spammers in email and social media [86, 69]. It consists of

10Examples of generic content management applications include TweetDeck and dlvr.
11Previous work that uses manual labeling such as [10] relies on crowdsourced annotation of individual

hashtag tweets. While we think that this method could have yielded trustworthy annotation back when
spam was less complicated and more straightforward, recent empirical evidence [113, 14] suggests that
non-initiated human annotators fail to identify the new generation of spam on social media.
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identifying users that post links to malicious webpages by verifying links appearing
on social media against a continuously updated database of malicious webpages such
as Google Safe Browsing12 and Phishtank13.

We applied this heuristic to the crawled dataset. For this, we �rst started by
extracting all 3.8M links in the 20M crawled tweets. We subsequently wrote a pro-
gram that follows the redirection chain of each link and returns the �nal landing
webpage14. We then used Google Safe Browsing API to identify suspicious URLs.
Only 156 URLs were identi�ed as being phishing or malware URLs. We extracted all
users IDs that posted any of these malicious URLs and then proceeded to the man-
ual veri�cation of the resulting accounts. Surprisingly, a signi�cant number of these
accounts were actually legitimate accounts that were temporarily compromised15 by
a malicious posting mechanism16. Consequently, we could not rely on this labeling
heuristic alone to obtain malicious accounts as it yielded a high false negative rate.
Alternatively, for the users that were found to be genuinely malicious, we extracted
the text associated with the blacklisted URLs. We then searched Twitter for users
that posted the same text, and were able to identify several communities of spam-
mers. We obtained 86 users in total, most of them engaged in promotional and site
referral activity.

Trends hijackers. Trend hijacking is a type of collective-attention spam [55] that
is particularly ubiquitous on social media. It consists of poisoning trending topics
(which typically o�er high visibility and attract a large audience) with unrelated
posts, often to promote a particular product or service (see Figure 2.3 for an example)
or to manipulate public opinion [6, 7].

We obtained 47 trends hijackers by reading the tweets of a trending sport-related
hashtag and manually identifying suspect tweets. This was followed by a manual
investigation consisting of reading the recent tweets of suspect pro�les and cross-
examining di�erent pro�les for similar patterns and content. This process is similar
to the one described in [114, 73].

3.4.2 Evaluation of State-of-the-art Detection Features

3.4.2.1 Statistical Account Features

As our goal is to base users prior predictions on established methods from the litera-
ture, we limited the analysis to these methods and did not endeavor to propose new
features to model social accounts.

12Google Safe Browsing API: https://developers.google.com/safe-browsing/
13The Phishtank database https://www.phishtank.com/
14To detect dynamic redirection, we used the selenium Python package to open each URL in a browser

window.
15Compromise is fairly common on social media. We used a variation of the Compa system described

in [37] for identifying and excluding compromised accounts among identi�ed suspicious accounts. Compa
builds statistical pro�les for users and identi�es compromise by comparing recent posts with the previ-
ously built pro�le.

16In one instance of these compromise campaigns, the “Rayban sale” scam, one veri�ed account was
found to retweet the same malicious URL dozens of times before the malicious behavior stops and the
account restarts its normal behavior (see Figure 3.3).

https://developers.google.com/safe-browsing/
https://www.phishtank.com/
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We select 28 features from di�erent previous works [10, 11, 12, 63] and compute
their values for accounts in the dataset. A list of these features along with their
description is presented in Table 3.8. This set captures a wide range of information
including aspects related to the accounts behavior, social network, content and social
pro�le. We also speci�cally reproduce the works in [10] and [11] (denoted hereafter
as Benevenuto and Stringhini respectively) which represent subsets of the larger set of
features. These were chosen based on self-reported performance, wide acceptance
in the community, and reproducibility. The latter is de�ned by the possibility of
reproducing the model with accessible account information and without the need
for internal information such as IP addresses or the social graph17.

A main assumption of the proposed solution is that suboptimal systems (particu-
larly supervised classi�ers issued from the literature) can be used to reliably discover
seeds of spam accounts.

The studies we have used to establish the prior predictions baseline o�er a com-
prehensive set that is still used to evaluate supervised features-based systems. For
example, Cresci et al. [77] evaluate features-based detection using features from
Stringhini et al. [11] and Yang et al. [13] for the task of detecting fake followers on
Twitter. The authors state that features proposed in other studies can be “assimi-
lated” to features proposed in these two papers. In other words, these features sets
can be used to represent other proposed features sets.

In the accounts featurization phase of the work, we have extracted a large list
of 145 attributes from each account. See the full list of attributes in Appendix A.
These attributes cover most of the features proposed in the supervised literature, as
well as features we have proposed ourselves in an earlier work [73]. Importantly,
these attributes are extracted from the API data. This means that the extracted list
is even more representative of accounts than some of the more recent literature that
aims at detecting automated Sybils on Twitter. The work in [78] for instance is based
solely on attributes extracted from the Document Object Model (DOM) content of the
retrieved Twitter accounts in the browser. It does not exploit API-based features and
therefore o�ers a more limited representation of a social account. For these reasons,
the features used to represent Twitter’s accounts in this chapter, despite being based
on earlier literature, are more relevant to the accounts classi�cation task than those
that were proposed or used in more recent literature.

Figure 3.4 shows cumulative distribution functions (CDFs) of the top 9 individu-
ally relevant features selected by the mutual information method. The curves distin-
guish three types of users: veri�ed, humans and spammers. They con�rm that ver-
i�ed users are indeed di�erent from humans and sometimes exhibit behavior closer
to spammers. Some of the cumulative distributions associated with spammers have
more than one in�ection point. This suggests that the spammers population has a
dual distribution with respect to these features (e.g. proportion of retweets, ratio of
tweets containing URLs). This empirical observation generally supports the propo-
sition that spammers are not a homogeneous population. The distribution of some

17While it is certainly possible to use Twitter’s Rest API to obtain a user’s social graph, the imposed
API rate limit makes it prohibitive and impractical to require this information in a large-scale model.
Models using such information (e.g. [13]) are hard to reproduce with a normal-level API access.
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Figure 3.4: The CDF plots of the top 9 relevant features in the ground-truth dataset
as selected by the mutual information method.

Figure 3.5: Distribution plots of features showcasing a dual spammer behavior.

of these features are shown in Figure 3.5. These distributions show that spammers’
behavior can closely mimic that of veri�ed or human users.

3.4.2.2 Choosing Machine Learning Classi�cation Models

We train and evaluate the described set of features using the following discriminative
models: Support Vector Machines (SVM) [115], Logistic Regression (LR) [116] and
Random Forests (RF) [117]. We do not to use generative learning models (e.g. Naive
Bayes) to avoid learning a joint distribution p(x, y) over the input and output spaces.
This is done because the collection of Twitter ground-truth datasets introduces a
selection bias and the resulting dataset does not o�er a true distribution p(x) over
the input space. We only want therefore to learn the conditional probability p(y|x).
Note that, although deep neural networks can also be used as a local supervised
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Table 3.9: The classi�cation confusion matrix.

Actual
Positive Negative

Pr
ed

ic
te
d Positive True Positive

TP
False Positive

FP

Negative False Negative
FN

True Negative
TN

classi�er, the limited size of the available datasets does not allow an e�ective deep
implementation.

3.4.2.3 Evaluation on the Ground-truth Dataset

We use the scikit-learn library [118] in Python to train the SVM, Logistic Regression
(LR) and Random Forests (RF) classi�ers. The SVM classi�er uses the RBF kernel,
and its parameters C and γ are obtained using a grid search. For LR, we compare
results with L1 and L2 regularization. We evaluate and compare the classi�ers over
the three previously discussed sets of features, namely our selected set of state-of-
the-art features and the sets of features proposed in Benevenuto and Stringhini. All
features are normalized before training.

Given the unbalanced nature of the classi�cation problem and the ground-truth
dataset, we only consider precision, recall and the F1-measure for performance eval-
uation, as focusing on accuracy is misleading. These measures are de�ned with re-
spect to the confusion matrix (Table 3.9) as follows:

• Precision = TP/(TP + FP ).

• Recall = TP/(TP + FN).

• F1-measure = 2× Precision× Recall/(Precision + Recall).

Table 3.10 shows the average classi�cation results for a 5-fold cross validation re-
peated 100 times. Although the compared models are better than either a random or
a majority classi�er18, the classi�cation results are clearly not in the range expected
of a production-level system. In all instances, the reported performance measures
are signi�cantly lower than those reported in the original papers. Stringhini et al.
[11] report a precision of 97% and a recall of 97.4%, while Benevenuto et al. [10]
report a recall of 70% and a precision of 90.5%. For Stringhini features, there is also
a particularly pronounced gap between precision and recall.

Note that since both training and evaluation were undertaken on the same
dataset, the deterioration in performance cannot be explained by the di�erence be-
tween the original data distribution (e.g. in Benevenuto) and that in our dataset.

18Since this is an unbalanced classi�cation problem, it is interesting to compare the supervised clas-
si�ers performance to the performance of a random classi�er. Since 80% of the population is comprised
of legitimate accounts, we de�ne a random classi�er that assigns labels randomly with a probability of
80% for the legitimate label. This results in a precision and recall of 0.2 and an F1 of 0.05, which is
outperformed by the supervised classi�ers in Table 3.10.
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Table 3.10: Average classi�cation performance of supervised classi�ers on the
ground-truth dataset.

Our features Benevenuto features Stringhini features

SVM
Precision 0.454 0.686 0.777
Recall 0.457 0.262 0.121
F1 0.455 0.347 0.208

LR L1
Precision 0.593 0.755 0.796
Recall 0.582 0.705 0.109
F1 0.586 0.729 0.184

LR L2
Precision 0.527 0.671 0.872
Recall 0.5 0.576 0.068
F1 0.512 0.619 0.124

RF
Precision 0.532 0.807 0.842
Recall 0.492 0.763 0.188
F1 0.509 0.784 0.295

It can be instead argued that the deterioration in performance is due to a substan-
tial part of spammers changing their behavior and characteristics, thus a�ecting the
predictive power of the features proposed in the literature and driving the perfor-
mance down. This is most pronounced when evaluating the Stringhini features [11].

From prediction to probability. The series of plots in Figures 3.6, 3.7 and 3.8
represent the distribution of the probability of the spam class as predicted by the
classi�ers trained over the whole labeled dataset. For all classi�ers except the ran-
dom forest (an ensemble classi�er), the distribution of the probability predicted by
the classi�er has a bimodal distribution. The positions of the modes and the form of
the distribution vary depending on the classi�er and the features set. The important
observation remains that one mode is positioned above the 0.5 threshold (p > 0.5)
and the other positioned below the threshold. This seems to support the hypothesis
that some spammers are still detectable (distribution centered in the positive predic-
tion area) while others have evolved.

The features also seem to play an important role in the form of the distribution.
The distribution corresponding to the Stringhini set of features (Figure 3.8), for ex-
ample, has its minor mode in the positive prediction region, while the opposite can
be said for the distribution corresponding to our selected set of features, where the
major mode resides in the positive prediction region.

Conclusion. Training classi�ers over di�erent sets of features results in a per-
formance that is considerably lower than was originally reported in state-of-the-art
systems. Moreover, the classi�cation performance varies signi�cantly from a fea-
tures set to another but is more consistent across di�erent classi�ers on the same
features set.
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The major hypothesis explaining these results is that spammers have changed
their characteristics, in what is usually coined as spam evolution. The probability
predicted by each trained classi�er follows a distinct bimodal distribution which can
be interpreted with a rough categorization of spammers into two sub-populations.
Following this logic, the detected spam accounts are those that still follow patterns
identi�ed by previous works, and are thus detectable by previously proposed fea-
tures. The opposite is true for spammers that have been misclassi�ed by the trained
classi�ers.

The results validate the need to explore alternative approaches to traditional su-
pervised classi�cation. In particular, it can be conjectured that these classi�ers can
be used for reliable discovery of seed spam accounts, where seeding is de�ned as the
stage where a collection of accounts is used to initialize a detection system. More-
over, using the prediction probability instead of the binary predicted class can serve
as a belief in a probabilistic framework. The probability distributions do indeed in-
dicate that legitimate accounts are concentrated around p = 0 whereas spammers
have a wider prediction range. These propositions will be more amply discussed in
the next chapter.

3.5 Conclusion

Supervised learning is a powerful paradigm that has been extensively exploited to
create defense systems against social spam. Features engineering represents a central
part of what de�nes supervised detection systems. The de�nition of the detection
objective represents another important part.

In this chapter, we focused on features-based supervised classi�ers and consid-
ered the spam account as the detection objective. We denoted the reviewed super-
vised systems as features-based to clearly distinguish them from systems based on
probabilistic graphical models, which we propose in the next chapters. These pro-
posed systems combine both accounts features and a graph over accounts.

We presented an extensive overview of the features used in the literature to
model social accounts (Section 3.2) and compared the spam de�nitions that di�er-
ent datasets used and the impact of the ground-truth data collection on accounts
suspension on Twitter (Section 3.3). These discussions underlined the heterogeneity
of supervised features-based detection systems in terms of accounts modelling and
spam de�nition. The discussion also highlighted the challenges in replicating and
cross-comparing di�erent studies.

In the absence of an acceptable benchmark, we collected and labeled a ground-
truth Twitter dataset, using features from di�erent state-of-the-art systems to model
accounts (Section 3.4). The analysis we performed on the classi�cation results has
two main outcomes:

• Features used in the literature to model accounts cannot be used to reliably
identify spammers in a population of social accounts. This may suggest an
evolution of spam accounts, possibly with the goal of evading detection, that
lead to a deterioration in the discrimination capacity of the evaluated features.
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• The class probability predicted by the trained classi�ers o�ers a better signal
than the binary predicted class. The probability distribution of the spam class
is notably multimodal, which may suggest an uneven evolution in the charac-
teristics of spam accounts.

We used these two observations to motivate a shift in the usage of features-based
classi�ers. Instead of detection, we propose to use them in the following chapters in
a seeding and discovery phase. We argue in the next chapter that the class proba-
bility predicted by these classi�ers can be e�ectively exploited in the context of a
probabilistic model.
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Figure 3.6: Distribution of probabilities computed by multiple classi�cation models
on the accounts represented by our set of features.

Figure 3.7: Distribution of probabilities computed by multiple classi�cation models
on the accounts represented by Benevenuto’s set of features.
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Figure 3.8: Distribution of probabilities computed by multiple classi�cation models
on the accounts represented by Stringhini’s set of features.
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4.1 Introduction

We have established in the previous chapters that the volume and velocity of content
generation on OSNs, make it imperative to recur to �ltering spam via automated
ways. We have also established that most of the contributions in the social spam
community adopt the supervised detection paradigm. This is due to the relative
simplicity and accessibility of the model.

69
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In the conclusion of the last chapter, we have touched upon concept drift, a topic
that is very relevant to real world machine learning applications in general and to
spam detection in particular. By evaluating state-of-the-art detection features on
a recent Twitter dataset, we have empirically demonstrated a disintegration in the
performance of these previously successful systems, a result that is both expected
and supported by other independent studies, old and recent [91, 14].

What is particular in these results, however, is that the classi�cation does not
degrade equally with respect to all performance measures. Rather than a random
concept drift (like the users of a shopping site changing their preferences and thus
a�ecting the results of a recommendation algorithm), we have here a directed change
that �ts a spam evasion pattern. It has been remarked that when Machine Learning
is applied in adversarial settings such as spam detection, concept drift is biased to-
wards evading detection [15], a process that can asymmetrically impact classi�cation
recall more than precision. The results we obtained in Chapter 3 support this claim.
They show that the evaluated features are still capable of reliably capturing a part of
the spammers population (with high precision), while they seem ine�cient in dis-
tinguishing other spammers from the rest of the legitimate Twitter population.

We have suggested in the previous chapter that these qualities allow to exploit
these systems for discovery of spammers in the wild. We also suggested that dis-
covery can be used for seeding, a concept that has been successfully exploited in
unsupervised systems (e.g. in Leas, YouTube’s unsupervised detection system where
seeds are used to start localized graph clustering [18]).

In this chapter, we build on the conclusions of the last chapter and expand the dis-
covery and seeding direction to a full-�edged implementation of a social spammers
detection on Twitter. The system we propose exploits two main assumptions:

• Discovery and seeding: when the target population (spammers) shifts, super-
vised classi�ers can be used for discovery instead of detection. Discovery
means to reliably uncover accounts that can be exploited as seeds in further
detection systems.

• Users similarity: Accounts similarity implies class homophily. When two ac-
counts are judged similar by an adapted de�nition of similarity, they are more
likely to have the same class (i.e., be both spammers or both legitimate).

The �rst assumption requires a notion of prior belief that can be modeled with
the prediction probability of a supervised classi�er. The second assumption requires
a notion of similarity graph that would allow belief propagation.

This combined belief/similarity framework is a good candidate to a probabilis-
tic graphical model. We use here the Markov Random Field (MRF), an undirected
graphical model that models joint probability over dependent random variables. The
accounts are modeled as random variables, similarity is modeled as edges. Node po-
tentials model prior belief and edge potentials model homophily1 between connected
accounts.

1Homophily is a term originally coined by the social scientist Paul Lazarsfeld to refer to a tendency of
similar individuals to connect together. In Complex Networks, homophily refers to the theory that nodes
with similar attributes are more likely to be connected than those that have dissimilar attributes.
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The classi�cation problem can then be cast as an inference over dependent vari-
ables, and learning would correspond to �nding the MRF parameters that minimise
the classi�cation loss. In this chapter, we use the conventional loopy belief propa-
gation as the inference algorithm and identify the MRF parameters with grid search.
We leave the discussion of advanced inference and learning as well as alternative
graphical models and loss measures to the next chapter.

In the same spirit of the evaluation undertaken in the previous chapter, we pay
special attention to the particularities of implementation on Twitter, and evaluate
the proposed system on the dataset previously described. It is important to note,
however, that the proposed concept is platform-agnostic and can be re-formulated
and adapted to any online social network.

Chapter structure. The remaining of this chapter is structured as follows. An
informal introduction to probabilistic reasoning and probabilistic graphical models
is provided in Section 4.2.1. Section 4.2.2 introduces an enriched formulation of the
classi�cation problem, its input and expected output. This formulation takes into ac-
count predictions of other state-of-the-art systems and exploits similarity between
social accounts. Section 4.3 introduces the proposed system and explains its main
components. We discuss in Section 4.4 how similarity between accounts is de�ned
and the practical construction of similarity graphs. We also introduce the Markov
Random Fields formulation and how belief propagation can be applied in the con-
text of the proposed solution. Section 4.5 presents the experimental evaluation and
compares the results with the baseline obtained in the previous chapter. We discuss
the results and their implications in the conclusion.

Contributions. The main contributions of this chapter are summarized as fol-
lows:

• Undirected graphical models can be used to model the problem of social spam
detection.

• The Markov Random Fields formalism allows a hybrid social spam detection
model that exploits both users features and their similarity.

• A robust measure of similarity between users can be de�ned in terms of com-
mon content published by these users.

• The results validate that biased and inaccurate prior predictions on users
classes can be e�ectively used in the context of probabilistic graphical models,
as demonstrated by the signi�cant increase in recall obtained by the proposed
approach.

4.2 Probabilistic Modeling of Spam Classi�cation

4.2.1 An Informal Introduction to Probabilistic Graphical Models

In Chapter 3, we discussed training classi�ers to classify an individual account. This
is a common setting in machine learning problems, where we often want to classify a
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(a) (b)

Figure 4.1: A toy example showing how having a connection between two accounts
alters beliefs about their class probabilities.

single instance of data, e.g. a single image. An example of individual account classi�-
cation is illustrated in Figure 4.1a. The classi�er assigns a spammer class to accountA
and a legitimate class to account B. The prediction probabilities p(A = spammer)
and p(B = spammer) are referred to simply in the �gure asP (A) andP (B) respec-
tively. They quantify the classi�er’s uncertainty. Now let us tackle the case where
A and B are connected (Figure4.1b). Suppose for example that they exhibit similar
behavior, share the same content or have common friends. Having this connection
pointed out, account A looks less of a spammer since A is connected to account B,
an account we believe is legitimate. On the other hand, our belief of B being le-
gitimate is undermined by its connection to account A, an account we believe is a
spammer. This example illustrates probabilistic reasoning. We intuitively think of
these accounts as dependent, and knowing something about the class of one account
should impact our belief on the class of the other. The simplest way to represent this
"conditional" dependency is the Bayesian theorem stating the probability of B given
A: P (B | A) = P (B ∩A)/P (A).

The supervised framework discussed above treats each account independently
and cannot be leveraged to update our belief of the classes of these accounts. The
most we can take from such a classi�er is the probability of each individual predic-
tion. Instead, the framework needed to model the above problem is one where the
inference is performed jointly over connected accounts. This requirement can be
best captured by the framework of Probabilistic Graphical Models (PGMs). PGMs
are statistical models that allow the representation of a joint probability distribution
over a graph of dependent random variables.

Probabilistic Graphical Models encompass a family of models. These models are
most often classi�ed depending on whether the edges in the graphical model are
directed or undirected. Directed Graphical Models (DGMs), usually referred to as
Bayesian Networks (BN), are graphical models where edges are directed, indicating a
cause and e�ect relationship between connected random variables (e.g. the di�culty
of the course impacts the grade but not the opposite). Undirected Graphical Models
(UGMs) or Markov Random Fields (MRFs) are the graphical branch that deals with
undirected edges, encoding a symmetrical relationship between connected variables.
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Since we usually think of relationships between accounts (especially the similarity
relationship) as symmetrical, it follows that Markov Random Fields are a better �t to
the modeled problem.

4.2.2 Formal De�nition of the Spam Classi�cation Task

Setting and Input. Assume we have a set of social accounts U , where each user
u ∈ U has an associated vector of numerical characteristics xu ∈ X and a set of
messages M(u) that represents the content posted by this user. For each user u, we
would like to assign a class yu in L = {0, 1} where 0 denotes a legitimate account
and 1 denotes a malicious account. We also have access to an inaccurate oracle that
predicts, for each account u, the probability p(yu = 1) that u is malicious based on
xu.

Domain knowledge indicates that if users have content in common, they are
likely to share the same class, i.e., be both legitimate or both malicious.
Goal. We would like to know if, given the biased individual predictions o�ered by
the oracle, it is possible to reach a better individual prediction for each user by taking
into consideration its similarities to other users. The similarity is formulated here in
terms of content and the leading assumption is that the similarity can be used to
calibrate the bias in the oracle’s predictions.
Formal De�nition. We formulate the problem of assigning a class to each user u as
a classic classi�cation problem where the goal is to �nd a mapping from the user’s
representation xu to the set of labels L.

To take into account the similarity between accounts, we rely on the Markov
Random Field formalism, which allows us to de�ne dependencies between predic-
tions of similar users. The model represents the class of each user u as a random
variable Zu and the relations between these variables as a graph G(V,E), where
V = {Zu}u∈Users is the set of users predictions and E is the set of edges linking
similar users.

The dependency between users is simpli�ed by assuming the Markov property,
de�ned by a node being independent of all other nodes given its neighbors. On the
de�ned undirected graph, the local Markov property is formally stated as: P (Zu |
ZV \u) = P (Zu | ZN (u)), where N (u) is the neighborhood of u.

4.3 Proposed MRF Solution

The problem we formulated above and the general system we propose to improve the
classi�cation performance are both platform-agnostic. The details of the solution’s
implementation below are speci�c to Twitter but the solution can be adapted to any
social network platform in which a similar problem can be de�ned (e.g. Facebook,
Instagram, etc...).

We propose here to represent the di�erent components of the problem with the
Markov Random Field formalism. Section 4.3.1 introduces a high-level overview of
the components of the proposed solution. Section 4.3.2 discusses the details of the
MRF components, namely, the mapping between the elements of the classi�cation
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task and the MRF model and inference based on Loopy Belief Propagation. The sim-
ilarity graph construction is another important component of the proposed system.
It is a subject that deserves a separate discussion that we leave to Section 4.4.

4.3.1 General Solution Design

The formal de�nition of the problem includes three main elements: Predictions of
features-based classi�ers and a graph of similarity as input, and classes of accounts
as output. We incorporate these elements into the system as follows:

• Accounts classes are MRF nodes representing random variables.

• Similarity is used to create edges between accounts, thus introducing variables
dependency, a concept that is lacking from the traditional supervised classi�-
cation models.

• Predictions of the supervised classi�ers are turned into prior beliefs over the
model variables and updated through belief propagation. This ensures that the
de�nition of each account as a vector of statistical features is still exploited by
the current system’s solution.

The data �ow of the proposed system, illustrated in Figure 4.2, can be summarized
as follows:

1. Data Crawling: Accounts and content information is �rst crawled from the
online social platform.

2. Features Extraction: Distinguishing behavioral, social and content-based
characteristics are extracted from accounts content and pro�les, and a numer-
ical features vector is assigned to each account.

3. Priors Computing: A prior probability is assigned to each account given its
numerical features vector (in Section 4.5, we obtain priors via state-of-the-art
supervised classi�ers but other sources can also be used to assign a prior belief
to the class prediction).

4. Graph Construction: To construct the users similarity graph, a bipartite
graph of users and messages is created to identify accounts that have iden-
tical or very similar content (Section 4.4).

5. Posteriors computing: Joint optimization of labels is �nally applied using
Loopy Belief Propagation over the constructed Markov Random Field (de�ned
in Section 4.3.2). Once the propagation converges, the most probable con-
�guration of labels is inferred from the resulting posterior probabilities (Sec-
tion 4.5.2).

We focus in the following on formally de�ning the Markov Random Field model,
how to incorporate prior predictions and how to exploit similarity for belief propa-
gation.
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Figure 4.2: General architecture of the proposed system.

4.3.2 Markov Random Field for Social Spammers Detection

An MRF (G,Ψ) is a probabilistic graphical model that allows joint inference over
dependent random variables. It consists of a graph G(V,E), where:

• V = {Zu}u∈Users is the set of random variables corresponding to users.

• E = {(u, v)} is the set of edges denoting a dependency between two random
variables Zu and Zv .

A set Ψ of potential functions govern the relationships between random vari-
ables. Potentials are factors de�ned over cliques of nodes. We use here the pairwise
MRF model, which allows de�ning two types of potentials: edge (or pairwise) poten-
tials and node (or unary) potentials.

4.3.2.1 MRF Potentials

Edge potentials are de�ned over edges inE. They ensure that the model responds to
the smoothness criteria between connected variables in V , and generally direct the
model towards predicting the same class for connected nodes. Unary potentials, on
the other hand, are de�ned over individual nodes. They make it possible to take into
consideration the features vector of each account by penalizing discrepancy between
an observation vector xu and the predicted class Zu of user u. see Figure 4.3 for
a graphical representation of potentials on a graph of users. We construct these
potentials as follows:

(i) A unary potential φu is a local function that quanti�es how favorable a class
is for node Zu given its features vector xu. Although an MRF potential is not a
probability and can take any value in the set of real numbers, we de�ne the unary
potential here as a function that, for each user u ∈ U and class in L, associates a
probability:

φu : U × L→ [0, 1]. (4.1)
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Figure 4.3: A graph of users illustrating node potentials de�ned over users and edge
potentials de�ned over edges.

The unary potential is thus de�ned as a vector of two probabilities, the value of
which is the system’s prior belief about the class. This probability can be obtained
from multiple sources including a supervised classi�cation model trained on users
features. This allows to indirectly incorporate the features information into the pro-
posed MRF model as follows:

φu(Zu) =

{
1− pu if Zu = 0

pu if Zu = 1
(4.2)

where pu = p(yu = 1 | xu).
(ii) An edge connects two nodes, Zu and Zv , if the corresponding users u and

v are connected in the constructed similarity graph. Each edge is associated with
a pairwise potential φu,v(Zu, Zv). In the current context, the edge potential is a
function that represents compatibility between labels. Formally, edge potentials are
de�ned as functions that for every realization of a pair of labels (in L), associates a
real-valued factor quantifying its likelihood. Note that, in this implementation, the
edge potential is the same for all edges and is not conditional on the observations.
For the pairwise potential

φu,v : L× L→ R+, (4.3)
We de�ne the edge potentials as follows:

φu,v(Zu, Zv) = exp(f(Zu, Zv)) (4.4)

Edge potentials are de�ned using a matrix of 4 parameters associated with the con-
nection strength between classes of users, as de�ned in the following edge potential
matrix:

φu,v(Zu, Zv) = exp

Zv = 0 Zv = 1( )
w0 w2 Zu = 0
w1 w3 Zu = 1

(4.5)
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Figure 4.4: The edge potential matrix in (a) a symmetric special case, (b) an asym-
metric case where inter-spammers and inter-legitimate connections are assigned dif-
ferent strengths.

where w0, w1, w2, w3 ∈ R and Zu (resp. v) = 1 if u (resp. v) is a spammer.
We setw1 = w2 since they both designate a connection between a spammer and a

legitimate user. The connection between two legitimate users and two spammers are
governed by w0 and w3 respectively. There are two distinct cases that are generally
used to model edge potentials:

• In a symmetric MRF, the edge potential is the same for edges connecting spam-
mers (w3) and edges connecting legitimate users (w0). A common setting is to
set ew1 = ew2 = ε = 0.1 and ew0 = ew3 = 1 − ε = 0.9 (see the associated
matrix in Figure 4.4a).

• An asymmetric MRF provides a �exible relation between parameters (see Fig-
ure 4.4b). We set w0 = w and w3 = α.w, where α is a positive tunable
parameter. As we demonstrate in Section 4.5, this gives our model a greater
expressiveness and allows it to more accurately capture the empirical relation-
ships in the dataset. Since the model is over-parametrized, we set ew1 = 1.

4.3.2.2 Computing Marginal Probabilities by Loopy Belief Propagation

Our goal is to obtain posterior class probabilities over nodes, given the node and edge
potentials of the de�ned MRF. The joint probability is de�ned as

P (Z) =
P̃ (Z)∑

Z′∈LN P̃ (Z ′)
, (4.6)

where
P̃ (Z) =

∏
u∈V

φu(Zu)
∏

(u,v)∈E

φu,v(Zu, Zv).

An exact inference, that is computation of the marginal probabilities over the random
variables, requires summing the joint probability (4.6) over all possible labels per-
mutations and is intractable for large graphs. Additionally, since the graph contains
loops, e�cient inference algorithms designed for trees and chains are not applicable.

The Loopy Belief Propagation (LBP) algorithm [119] is an iterative message-
passing algorithm that is frequently used to solve the inference problem on MRFs
with general graph structure (e.g. in Computer Vision applications [120]). For graphs
containing loops, LBP provides an approximate solution to the inference problem.
LBP is considered linear in the number of edges. Its computational complexity is
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O(d |E|), where d is the number of iterations required until convergence and |E| is
the number of edges. The outline of the algorithm is provided in Algorithm 1. Al-
though the algorithm does not o�er convergence guarantees, it converges in practice
after few iterations [119]. Convergence is reached when beliefs converge, namely the
inter-iteration di�erence is below a set threshold.

Algorithm 1: Loopy Belief Propagation algorithm
Input: MRF (G,Ψ), E
Ψ : φu(Zu), φu,v(Zu, Zv).
E = {(u, v), (v, u)} for (u, v) ∈ E.
Output: Posterior marginal probabilities, p(Zu) for u ∈ V

1 /* Initialization */
2 mu→v(Zv) = 1 for (u, v) ∈ E /* Messages uniformly initialized

*/
3 bu(Zu) = 1 /* Beliefs of all nodes initialized to 1 */
4 repeat
5 /* Update messages */
6 for (u, v) ∈ E do
7 mu→v(Zv) =

∑
Zu

(
φu(Zu)φu,v(Zu, Zv)

∏
i∈Ne(u)\vmi→u(Zu)

)
end

8 /* Compute node beliefs */
9 for u ∈ V do
10 bu(Zu) ∝ φu(Zu)

∏
v∈Ne(u)\vmv→u(Zu)

end
until convergence;

4.4 Constructing a Users-similarity Graph

To better understand how similarity impacts accounts classi�cation and how it can
be integrated into the design of the solution, let us imagine the following scenario:
two accounts A and B are known to be similar (the exact de�nition of similarity is
not relevant in this particular context). A is �agged by a certain mechanism (also
irrelevant for the purpose of this example) as a spammer. Let us also consider that
p(A) (resp. p(B)) represents the probability ofA (resp. B) being a spammer, and that
we have a prior distribution of the probability (for example a uniform distribution of
α%, corresponding to the percentage of spamming accounts on the OSN). Knowing
A’s label, it is normal to assume that the posterior probability that B is a spammer
would increase. This is because the similarity betweenA andB creates a dependency
between the two variables that makes p(B/A) di�erent from p(B).
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4.4.1 Representing Similarity on OSNs

4.4.1.1 Similarity on Social Graphs

On online social networks, the concept of similarity between accounts has been tradi-
tionally captured by the who-connects-to-whom network in bidirectional networks
(e.g. the friendship network on Facebook) or the who-follows-whom networks in
unidirectional networks (e.g. on Twitter) [108, 107]. These networks, commonly
known as the “social graphs” can be used as similarity graphs by assuming “strong
trust” between connected accounts. The “strong trust” assumption is the assump-
tion that friendship between two accounts means that there is a bidirectional en-
dorsement between these two accounts. This assumption was mainly used in the
literature in conjunction with the assumption that Sybils and legitimate accounts
form distinct dense clusters. Edges are thus concentrated inside these clusters while
few “attack edges” branch from one cluster to the other (see Figure 4.5).

Recent empirical analysis, however, suggests that the strong trust assumption
is violated on unidirectional social networks. This is especially the case for Twit-
ter [48]. On Twitter, following cannot be considered a two-sided endorsement, and
thus if a spammer follows a legitimate account, his account should not become more
trustworthy as the “strong trust” assumption implies. Additionally, even when the
relationship is reciprocated (A follows B and B follows A), this can be due to the
high reciprocity of the human interaction behavior as we have mentioned in Chap-
ter 2. This is also complicated by accounts of celebrities and companies as well as
social butter�ies (also previously discussed in Chapter 2) sometimes adopting this
behavior as their default behavior (i.e., following back all their followers). All of
these observations explain how it is feasible for spammers to integrate the legitimate
graph and why the notion of “strong trust” is seriously �awed on OSN (as opposed
to e.g. peer-to-peer networks where connection between accounts encodes higher
levels of endorsement [96]). A similar situation has also been reported on RenRen,
the Chinese OSN [101].

4.4.1.2 Similarity on Interaction Graphs

Recent unsupervised detection systems on Facebook (CopyCatch [16] and Synchro-
Trap [17]) and YouTube (LEAS [18]) have used interaction graphs instead of social
graphs (see an illustration of these interaction graphs in Figure 4.6). We propose a
similar idea for Twitter where we base similarity on a bipartite content-users graph.
The assumption here is that complicit spammers need to share the same content for
better coverage of their targeted audience. Shared content is also a more signi�cant
complicity signal than an unsolicited following link on Twitter.

In choosing this de�nition of similarity, we rely on the assumption that accounts
that have common content tend to belong to the same class of users (see Figure 3.3
for a tweet that was shared across many pro�les on Twitter). Speci�cally, spammers
belonging to the same or similar spam campaigns tend to have similar content. We
start by de�ning a bipartite users-to-messages graph and then collapse this bipartite
graph into a users-similarity graph. We describe some special considerations to take
into account when applying this general mechanism to Twitter. We show that the
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Figure 4.5: Works based on the strong trust assumption, model the Sybils detection
problem as two dense clusters of legitimate and Sybil accounts and assume that edges
between these two clusters are attack edges.

Figure 4.6: Bipartite interaction graphs on YouTube (accounts commenting on
videos) and Facebook (accounts liking pages). Dense bipartite clusters may indicate
malicious activity.

proposed similarity measure successfully captures the concept of class homophily
between social accounts.

4.4.2 Proposed Content-based Similarity

We explain in this section the graph construction mechanism that we propose to use
as a way to capture similarity between social accounts. The previous sections have
demonstrated the di�erence between the two major approaches of building accounts
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Figure 4.7: Construction of the bipartite users-messages graph on a toy example.

graphs on online social networks. We have discussed the merits of the interaction-
based graphs and we propose here to build interaction on a bipartite users- messages
graph. The goal is to measure collusive behavior using posted content. This is a
strong signal that cannot be generally interpreted as transient similarity but is often
due to accounts acting together.

4.4.2.1 Bipartite Users-Messages Graph

To construct the bipartite users-to-messages graph, we start by processing the text
messages published by each account and create an edge between accounts and the
processed text of their messages. The process is illustrated in Figure 4.7.

Text pre-processing. Adding spurious characters, obfuscating �nal urls and vary-
ing the user mentioned in messages are all techniques that abusers are known to use
to avoid their messages being detected as exact duplicates. Text pre-processing is
therefore a vital part of the users-messages graph construction pipeline. In this in-
stance, it consists of lowercasing and tokenizing texts and removing punctuation.
Urls and users mentions are replaced by place holders (i.e., <url> and <mention>
respectively). We do not replace hashtags by place holders since they can often be
used as an integral part of the message text (due to the limitation on the number of
characters per tweet). The described processing is done once for each message by
each user in the dataset, and the complexity of this step is linear in the number of
messages.

Short texts containing less than three non place holders tokens (e.g. “Hi
<mention>”) are discarded to avoid creating false connections between users. The
remaining exact replicates are merged and the set of resulting unique messagesM
forms the messages in the bipartite users-messages graph.

4.4.2.2 Users Similarity Graph

The users graph is generated by collapsing the messages in the bipartite graph. This
is done by creating an edge between every pair of users that are connected to the
same message as detailed in Algorithm 2. Table 4.1 explains the notation used in
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Table 4.1: Notations used for bipartite and similarity graphs.

Symbol Description
U set of users
M set of processed messages
u, v users in U
m a message inM
nm number of users that posted message m
EUM set of bipartite user-message edges
(u,m) a user-message edge in the bipartite graph
EU set of user-user edges in the users similarity graph
G(U,EU ) users similarity graph
G(U ∪M, EUM ) bipartite users-messages graph

the algorithm. This is a time-consuming process since the complexity of generating
all users pairs is quadratic in the number of edges between each message and its
associated users. The number of users pairs is speci�cally equal to:

1

2

∑
m∈M

nm(nm − 1), (4.7)

whereM is the set of processed messages and nm =| {(u,m) ∈ EUM for u ∈ U} |
is the number of edges in the bipartite graph that link to message m.

Note that despite its high computational load, the generation of a users-similarity
graph is a prerequisite of many unsupervised detection models [18, 17]. It can be par-
tially parallelized by assigning pairs generation of each message to a di�erent pro-
cess. A discussion of the parallelized implementation of a similarity graph on Face-
book (based on login information and IP addresses) is provided in [17]. A threshold
can be implemented in order to prevent the generation of pairs for highly popular
content (messages in our case) [18, 17]. These messages are usually associated with
legitimate content and the number of users linked to them would yield a signi�-
cant computational load. Since the number of users associated with messages in our
dataset is reasonable (most popular message is shared by 24 users, see Table 4.3), we
did not have to implement a similar measure.

4.4.2.3 Twitter-Speci�c Considerations

The main assumption regarding the resulting bipartite graph described above is that
created edges encode homophily: a malicious account creates spam messages, while
a legitimate account creates legitimate messages. While applying the general graph
construction mechanism described above to Twitter, however, we became aware of
two special cases in which an edge between a user and a message can be used to
falsify credibility.

1. Content copying: A malicious account can engage in legitimate content copy-
ing. This leads to legitimate content (endorsed by links from legitimate ac-
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Algorithm 2: Users pairs generation from the bipartite users-messages
graph
Input: The set of processed messagesM and the set of bipartite edges EUM

Output: EU = (u, v, w) the set of weighted edges in the users similarity graph
where u, v ∈ U and w is an integer weight.

1 D ← new hash map
2 form ∈M do
3 Um ← array of {u ∈ U | (u,m) ∈ EUM}
4 for i = 1 to |Um|−1 do
5 for j = i+ 1 to |Um| do
6 u← Um[i], v ← Um[j]
7 s← min(u, v)
8 d← max(u, v)
9 if (s, d) ∈ D then
10 D[(s, d)]← D[(s, d)] + 1

11 else
12 D[(s, d)]← 1

end
end

end
13 EU ← {u, v,D[(u, v)]} for (u, v) ∈ D

counts) being linked to malicious accounts, thus boosting the credibility of
these accounts.

2. Compromising legitimate accounts: This has the opposite e�ect of content
copying. When a spammer gains control of a legitimate account, any malicious
or spam content the spammer publishes using this account will be endorsed
by the previously established legitimacy of the compromised account.

Both problems can be solved using the notion of application on Twitter. An ap-
plication, also known as the tweet source, is a term used to coin the software that
published the tweet. Each application has a unique text identi�er. We introduce the
following changes on the algorithm described above:

1. Content copying: we identify a unique message by both its processed text
and the source that published it. Thus, even if two messages share the same
text, they are considered as di�erent entities if they were not published by the
same source. This restriction is reasonable since most legitimate accounts use
the web interface or Twitter’s mobile applications (e.g. Twitter for Android
and Twitter for iPhone), while automated accounts use content management
applications (e.g. dlvr.it and bu�er) or custom scripts. Moreover, malicious
campaigns often work in bursts to accomplish maximum visibility, and thus
the shared content is usually published by the same application.

2. Exploiting compromised accounts: we introduce the notion of applications
pro�les. These are computed by extracting the application used to post each
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Figure 4.8: A toy example showing the computation of similarity based on applica-
tions pro�le.

tweet and computing, for each account, the normalized proportion of tweets
posted by each application. Since temporarily compromised accounts are of-
ten quickly restored, we expect that a compromised account that has a mali-
cious message in common with a malicious account, will nonetheless have a
signi�cantly di�erent application pro�le compared to this latter. To quantify
this di�erence, we compute the cosine similarity between application pro�les.
For two users u and v, this is de�ned as the normalized inner product of the
normalized applications vectors Au and Av (as illustrated in Figure 4.8). The
similarity is de�ned as:

Sim(u, v) = cos(Au, Av) =
ATuAv

‖Au‖ ‖Av‖
, (4.8)

where ‖·‖ is the Euclidean norm.

4.4.2.4 Implementation

We implemented the revised version of the graph construction algorithm by de�ning
messages as a tuple that contains both the processed text and the source application
(Table 4.2 lists the top 10 applications generating 87% of the messages in the ground-
truth dataset). We then �ltered edges in the resulting users graph according to the
pairwise similarity of applications pro�les. We removed edges that have a content
weight of one (one common tweet) or an application similarity rate of less than 0.9.
This choice is taken so that an edge represents real complicity between users. It also
decreases the probability of linking two users based on text that is falsely identi�ed
as similar.

The resulting similarity graph is a sparse graph with 157 nodes and 549 edges.
The connected nodes represent 20% of the number of accounts in the ground-truth
dataset. Edges represent 4.5% of the number of edges in a fully connected graph
with 157 nodes.

The similarity graph in Figure 4.9 illustrates the labels homophily captured by the
similarity measure. It shows that linked users generally belong to the same class. Le-
gitimate users and spammers also tend to form their own respective clusters. Among
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Figure 4.9: The similarity graph of connected users in the ground-truth dataset. Le-
gitimate users are represented in green while spammers are shown in red.

Table 4.2: Most used applications in the groundtruth dataset (in terms of the number
of unique messages).

Application No. messages % Application type
Twitter for iPhone 71,755 39.1 Twitter a�liated
Twitter Web Client 27,397 14.9 Twitter a�liated
Twitter for Android 17,866 9.7 Twitter a�liated

TweetDeck 11,198 6.1 Content management
(Twitter a�liated)

Done For You Tra�c 7,963 4.3 Content management
dlvr.it 7,079 3.9 Content management
IFTTT 6,343 3.5 Content management
Hootsuite 4,994 2.7 Content management
Google 3,572 1.9 Content Referral
Facebook 2,204 1.2 Content Referral

the 30 identi�ed clusters, only 2 contain spammers and legitimate nodes simultane-
ously. This validates that the proposed similarity measure does indeed result in users
of the same class being linked together. The high modularity (0.873) and average
clustering coe�cient (0.795) of the graph also demonstrate that users tend to cluster
in communities of mutually similar users that are quite distinct and disassociated
from the rest of the graph. Moreover, the graph clearly shows that the assumption
that spammers form one connected community, which forms the basis of many pre-
vious works, does not hold.
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Table 4.3: Processed texts and applications of the top �ve tweets in the dataset (in
terms of number of users sharing the tweet).

Processed text message Application No. users

“<url>the daunting risks of laparoscopic obesity surgery” Done For Your Tra�c 24
(translation) "<mention>: to al nasr fans [sports team], I
was honored this evening to be one of the world
championship players..."

Twitter for iPhone 7

“<url>15 reasons to join a�liate programs” Done For Your Tra�c 7
“<url>8 ways to improve your a�liate marketing strategies” Done For Your Tra�c 7
“<url>�nding the perfect product at clickbank” Done For Your Tra�c 7

4.4.2.5 Computational Complexity of Graph Construction

We have discussed in Section 4.4 the computational complexity of generating users
edges from a list of users associated with a post. In practice, there are two facets
associated with the computational load of generating the graph:

• Quantifying the computational load of creating a similarity graph.

• Fixing a threshold to the number of users associated with a post (a unit of
content).

Computational load of generating a similarity graph. We start by answering
the �rst part: assessing the time required to build a similarity graph. For that, we
need two information:

• An empirical distribution of the number of users per post (text/unit of content).

• An empirical estimation of the time required to expand a list of users as a
function of the number of users in the list.

Recall that expanding a list of users refers to creating an edge between all pairs
of users. The computational complexity of this procedure is O(n2), where n is the
number of users in the list. To assess the expansion time, we conducted a simulation
on an Intel i7 machine with a 2.5 GHz clock and 16 GB of RAM and measured the
time required to list all edges associated with a given number of users. We used a
user ID format comparable to that of Twitter to mimic realistic memory usage. The
results are shown in Figure 4.10 and con�rm that the time increases quadratically in
the number of users. Figure 4.11 shows the evolution of the logarithmic time as a
function of the number of edges. It further con�rms that the time is proportional to
the squared number of users. The processing time reaches one minute around 10000
users (or 108 edges). This means that it becomes 10 minutes for 31k users and 100
minutes for 100k users. Note that for expanding less than 1000 users, the processing
time of less than 1 second is negligible.

To assess the time required to build the similarity graph, we also need to assess
the empirical distribution of the number of users to expand per post. For that, we
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Figure 4.10: Time required to expand a list of users into edges.

Figure 4.11: Time required to generate users edges.

consider the real case scenario where our system is used to detect spammers in trend-
ing topics. Trending topics are typically related to current and controversial topics
and events and are characterized by a large audience. This makes them a particularly
interesting target for spammers and opinion manipulators. We consider a dataset of
trending topics we previously collected. The dataset covers trending topics in King-
dom of Saudi Arabia in the period between 19/3/2015 and 1/4/2015, and contains
1,124,926 unique tweets.

We construct the bipartite users-content graph and plot the distribution of users
per text (processed post) for each trending topic as shown for example in Figure 4.12.
All the distributions for the studied trending topics represent a similar pattern where
every post (unit of content) is predominantly shared by a small number of users. This
means that the associated users edges should be obtained in milliseconds. Only a few
texts are shared by thousands of users. Speci�cally, a typical trending topic does not
have more than 5 messages counting more than one thousand users. The most shared
text in the studied dataset has been shared by 14k users and associated edges should
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Figure 4.12: Histogram of the distribution of identical texts in a trending topic.

therefore be produced in around one minute.
Note that the construction of the graph is completely parallelizable in that every

list of users (associated with a given post) can be assigned to a di�erent machine
core or mapper (in a MapReduce framework). The total time is therefore bounded
by the time required to process the largest list of users. Even when the processing is
serialized, the total time is dominated by the same value as the distribution is usually
biased towards less popular posts.

Choosing a threshold. The question of where the threshold should be placed de-
pends on the application and the available processing power. A threshold is the num-
ber of users beyond which a list of users is not expanded (not transformed into edges).
We empirically assessed the upper bounds of content-based aggregation of users in
trending topics and deduced that they can be processed in reasonable time. By inter-
polating the plot obtained in Figure 4.11, we can safely consider that a threshold of
around 30k users is a reasonable restriction. Posts with this degree of popularity are
usually initiated by celebrity pro�les, and we can safely consider that a (text, appli-
cation) tuple having 30k accounts is an indication of an organic legitimate sharing
activity.

4.5 Experimental Evaluation and Discussion

We evaluate in this section the performance of the proposed MRF-based model over
the ground-truth Twitter dataset. We compare these results to the baseline perfor-
mance yielded by state-of-the-art supervised classi�ers and discuss their signi�cance
and implications.

As we previously discussed in this chapter’s introduction, one of the leading mo-
tivations of the system design is to establish the usability of supervised classi�ers
as tools for discovery and seeding. This allows to leverage the large supervised lit-
erature that characterizes spammers based on their behavioral, content and social
network attributes. This is done by alleviating the main drawback of supervised
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approaches – their degrading performance, by taking advantage of the high con�-
dence of their spammers predictions. We show that, even with beliefs produced by a
weak supervised classi�er, the MRF model can leverage the prior predictions of the
supervised classi�ers and output improved predictions.

4.5.1 Experimental Setting

We use the same sets of features on which we evaluated the supervised classi�ers in
Chapter 3 to produce prior predictions and as a baseline to which the MRF-based pre-
dictions are compared. We use the 157 accounts belonging to the graph constructed
in 4.4.2.4 to evaluate the MRF model with the prior probabilities predicted by the
supervised classi�ers. The remaining 610 accounts form the training dataset for the
supervised classi�ers (80% of the ground-truth dataset).

Generating Prior Predictions. We use the same sets of features reported in Ta-
ble 3.8 in Chapter 3 (namely our selected set of state-of-the-art features and the sets of
features proposed in Benevenuto and Stringhini), and train the same Machine Learn-
ing models (namely Support Vector Machines (SVM) [115], Logistic Regression (LR)
[116] and Random Forests (RF) [117]). For each user u, with features vector denoted
xu, the classi�cation model predicts a class yu with a probability2 p(yu | xu). This
probability quanti�es the classi�er con�dence of its prediction and is the prior used
to initialize beliefs before belief propagation. Figure 4.13 illustrates the beliefs com-
puted by each of the supervised models for a cluster of abusive users.

MRF Implementation. We implemented MRF using the UGM library [121] in
Matlab. For inference, we used the library’s implementation of Loopy Belief Prop-
agation (LBP). To �nd the best MRF parameters, we implemented grid search over
these parameters.

Loopy Belief Propagation. Starting from the priors computed on each node, we
applied LBP over the graph and updated classes beliefs according to the de�ned edge
potentials. The MRF predictions are associated with posteriors obtained on LBP con-
vergence.

Figure 4.14 illustrates how the predictions of a weak local classi�er can be ex-
ploited to enhance the detection performance. It shows belief propagation on a clus-
ter of 3 spammers. Edge potentials are computed for α = 2 and w = 0.6 (see the
next paragraph for more details on the choice of α andw). Because it is linked to two
spammers, user 3 is correctly classi�ed by MRF as a spammer. Moreover, users 1 and
2, being both linked and initially believed to be spammers, reinforce the prediction
of each other, thus the probability of predicting the spammer class increases.

2In our implementation, we used the predict_proba function of the scikit-learn Python package to
compute the probability each supervised model assigns to its prediction.
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Figure 4.13: Prior beliefs computed by the supervised classi�ers over a cluster of
spammers. Nodes predicted as legitimate users are represented in green, while red
represents nodes predicted as spammers.

4.5.2 MRF Classi�cation Results

We discuss in this section the classi�cation results obtained by optimizing the MRF
parameters on the Twitter dataset and compare the results to the baselines estab-
lished by the supervised classi�ers in the previous chapter. Classi�cation results of
the MRF models are reported in Table 4.4. For each set of features, we compare the
classi�cation performance obtained by applying features-based classi�ers, symmet-
rical MRF and asymmetrical MRF as de�ned in Section 4.3.

It is clear that the asymmetric formulation of MRF manages to outperform both
the baseline performance and that of the symmetric formulation of MRF. And while
this result is notable, it is also worth noting that the symmetric formulation of MRF,
which is, to the best of our knowledge, the only formulation used in related appli-
cations (e.g. in applications on Amazon [106] and eBay [104]), does not in general
improve upon the baseline performance. With the exception of the case where pri-
ors are obtained by training Logistic Regression on Stringhini features, the symmet-
ric MRF formulation consistently yields an F1-measure that is inferior to the base-
line. This justi�es the need to optimize the graphical model’s parameters empirically
rather than based on a prede�ned symmetric assumption.

Performance of the Asymmetric MRF. The average gain in performance (re-
call and precision) achieved by the asymmetric MRF classi�cation compared to the
baseline local classi�ers is shown in Figure 4.15 for α ranging between 2 and 3.5. In
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Figure 4.14: Loopy Belief Propagation illustrated on a cluster of 3 spammers. Input
priors and potentials are shown on the left. The central frame shows the �rst and last
iterations of belief propagation. The output frame shows posterior probabilities com-
puted from the �nal values of messages. The algorithm in this instance converges
after 4 iterations.

Table 4.4: Classi�cation performance, evaluated over the test dataset, of the baseline
supervised classi�ers, the symmetric MRF classi�er (ew0 = ew3 = 0.9 and ew1 =
ew2 = 0.1) and the asymmetric MRF classi�er (w = 0.6, α = 2.5).

All features Benevenuto features Stringhini features

Sup. Sym.
MRF

Asym.
MRF Sup. Sym.

MRF
Asym.
MRF Sup. Sym.

MRF
Asym.
MRF

SVM

Precision 0.891 0.917 0.919 0.939 0.955 0.930 0.941 1.000 0.966
Recall 0.598 0.571 0.883 0.756 0.273 0.857 0.195 0.143 0.364
F1 0.715 0.704 0.901 0.838 0.424 0.892 0.323 0.250 0.528
Accuracy 0.752 0.764 0.904 0.847 0.637 0.898 0.573 0.250 0.682

LR L1

Precision 0.865 0.860 0.890 0.961 1.000 0.924 1.000 1.000 1.000
Recall 0.549 0.558 0.844 0.598 0.545 0.792 0.159 0.325 0.506
F1 0.672 0.677 0.867 0.737 0.706 0.853 0.274 0.490 0.672
Accuracy 0.720 0.739 0.873 0.777 0.777 0.866 0.561 0.669 0.758

LR L2

Precision 0.956 0.900 0.933 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.524 0.468 0.727 0.317 0.182 0.714 0.159 0.325 0.481
F1 0.677 0.615 0.818 0.481 0.308 0.833 0.274 0.490 0.649
Accuracy 0.739 0.713 0.841 0.643 0.599 0.860 0.561 0.669 0.745

RF

Precision 0.955 0.924 0.902 1.000 0.933 0.928 0.960 1.000 0.925
Recall 0.780 0.792 0.961 0.585 0.727 0.831 0.585 0.532 0.805
F1 0.859 0.853 0.931 0.738 0.818 0.877 0.727 0.695 0.861
Accuracy 0.866 0.866 0.930 0.783 0.841 0.885 0.771 0.771 0.873

this plot, gain is de�ned as the absolute change between the MRF performance and
the performance of the local classi�er on which it is based (prior predictions). The
evolution of performance is computed as a function of edge potentials (w1 = w and
w2 = α×w). The �gure clearly shows that MRF classi�cation consistently increases
the recall while maintaining precision around its baseline level.

Figure 4.16 shows the performance gain for α = 3.5. Note that the best perfor-
mance is obtained by settingw between 0.4 and 0.7. This yields a positive increase in
recall (20 to 27% on average) while maintaining original precision (average decrease
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Figure 4.15: Performance gain of the MRF classi�cation as a function of edge poten-
tials for α ranging from 2 to 3.5.

Figure 4.16: Average absolute gain in performance as a function of edge potentials
for α = 3.5. Upper and lower limits correspond to the maximum and minimum gain
at each value of w.

of 1.6 to 3%).

Asymmetric MRF Parameters. The reported values of α andw are in agreement
with the empirical characteristics of the dataset for several reasons:

• Since legitimate users are more likely to connect to legitimate users and spam-
mers are more likely to connect to spammers, it is to be expected thatw0 (resp.
w3) should be higher than w1. The strength of connection between legitimate
users (resp. spammers) should be bigger than that of a spammer to legitimate
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user connection. In the dataset, users having the same class are more likely
to be connected than users of di�erent classes (only 4 edges in the similarity
graph are inter-classes edges).

• The asymmetric formulation allows w3 and w0 to have di�erent values. The
grid search discussed above shows that performance is enhanced by setting
w3 higher than w0. Recall that w0 is assigned to a legitimate to legitimate
connection and thatw3 is assigned to a spammer to spammer connection. This
can be explained by spammers being more densely connected than legitimate
users. Another reason is that classi�ers are always more con�dent about their
spam labels (see the precision of the spam class in Table 4.4) making a spam
label prediction more trustworthy than a legitimate label prediction.

4.5.3 Discussion and Generalization Insights

We present in this section the generalization insights gained from the results of the
model above and discuss practical implementation issues that are faced in a large-
scale implementation.

4.5.3.1 Modularity vs. Homophily

For the MRF to work, edges should generally indicate a relationship of homophily:
connected nodes have the same class. This assumption is vital to ensure that belief
can be propagated on the users similarity graph. As discussed in Section 4.4, the
graph construction mechanism is tuned so that the number of edges connecting ac-
counts from opposite classes is minimized. Although the resulting graph is modular,
modularity in itself is not seeked: if two spam (resp. legitimate) clusters become con-
nected through an edge, the model will become even more certain about its posterior
predictions. In this case, an edge o�ers additional information.

The opposite case is problematic. If a legitimate account or cluster of accounts be-
come connected to a spam cluster, belief will be propagated between the two clusters,
leading to a decreased certainty in both the spam and legitimate class predictions. It
is therefore important for the graph construction mechanism to result in homophilic
edges and for the similarity measure to connect accounts having the same class.

A practical obstacle that would be faced in the case of a large-scale implementa-
tion is represented by “quotes apps”. These are applications that generate automated
sayings and posts and are generally subscribed for by both legitimate and spam ac-
counts. The latter bene�t from these applications in keeping their accounts active
and posting. Tweets posted by these applications on behalf of subscribing accounts
will inevitably result in edges created between spam and legitimate users. A simple
solution would be to �lter posts generated by these applications. This is feasible as
these applications have a large throughput and are usually easy to identify when
aggregating content from a large collection of users.
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4.5.3.2 E�ect of baseline recall and precision

All compared baseline classi�ers have a relatively high precision and can therefore
be reliably used to detect seeds of spam accounts. Table 4.4 shows that, even when
baseline recall is lower than 50% (Stringhini features), beliefs can be e�ectively prop-
agated, and the MRF model can increase the recall while maintaining precision. This
can be explained by two reasons. The �rst is that the edge potentials matrix fa-
vors spammer-spammer edges. When a spammer is identi�ed, connections are more
likely to be predicted by the model as spammers. The second reason is that accounts
features are not randomly distributed among users. Connected users are more likely
to have similar features and therefore to have similar prior predictions. In other
terms, when seeds are discovered, they are more likely to be clustered together than
to be randomly distributed among spammers clusters. Thus, even when the base-
line recall is low, the concentration of seeds in particular clusters ensures that other
spammers in those clusters will be correctly identi�ed.

4.5.3.3 Role of the edge potentials matrix

MRF is a generative model. The potentials can be used to quantify the likelihood of
incidence of a particular edge con�guration. Higher values of w would therefore in-
dicate that a spammer-spammer edge is much more likely than other con�gurations.
This blocks belief propagation across the graph as inference becomes dominated by
the edge potential. Figure 4.15 shows a general trend of decreasing precision whenw
reaches higher values. This can be explained by the edge potential becoming signi�-
cantly higher than the node potentials3. Thus, the model becomes mostly equivalent
to an MRF with no observations on the nodes and assumes that most edges are sta-
tistically associated with spammers. This is similar to the case where a traditional
classi�er assumes that all or the majority of classi�ed instances belong to a certain
class, resulting in a perfect recall and a low precision.

Spam clusters are typically denser and are therefore associated with more edges.
This makes asymmetric edge potentials matrices better at capturing the distribution
of edges in the users graph. However, Lower values ofw should be preferred to avoid
the scenario discussed above.

4.6 Conclusion

A main point to underline in this chapter’s results is that similarity, when used in a
probabilistic framework, can improve the performance of a weak local classi�er.

The similarity we proposed in this chapter is issued from a behavioral dynamic
that is hard to change without spam losing its utility. Therefore, similarity represents
a facet of the solution that is stable and robust to changing spammers characteris-
tics. The results showed that, when classi�cation precision is high, it is possible to
improve recall for a wide range of baseline recall values. We have assumed that the
trained features-based classi�ers act as surrogates for classi�ers for which perfor-
mance has deteriorated due to spam evolution. The implication of this in the context

3For w = 1 and α = 3.5: φu ∈ [0, 1], φu,v(1, 1) ≈ 33, φu � φu,v(1, 1).



4.6. CONCLUSION 95

of the above results is that the performance of a features-based classi�er can be im-
proved (for relatively low levels of recall) or restored (for relatively high levels of
recall) in the presence of spam evolution.

These results represent an important step towards the goal of leveraging accounts
dependency for exploiting scarce, inaccurate and biased predictions from variable
sources (including biased statistical classi�ers) and towards building detection sys-
tems that are more robust to features variations.

The empirical evaluation of the proposed model on the ground-truth Twitter
dataset showed that the symmetrical MRF formulation, which is routinely used in
various applications, did not improve the classi�cation performance compared to
baseline features-based classi�ers. The asymmetric formulation, on the other hand,
succeeded at improving classi�cation by assigning higher weights to spammers con-
nections. This begs the question of whether an alternative and more expressive
graphical model can be better suited to the task of social spam detection in the pres-
ence of weak prior beliefs. We discuss improvements to the current model in the
next chapter.
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5.1 Introduction

In the previous chapter, we have shown that Undirected Graphical Models (UGMs),
particularly the Markov Random Field, o�er a way to model uncertainty (biased pri-
ors) and dependency (similar users) in the context of social spammers detection. This
chapter reiterates on the same research problem and experimental setting, with two
main di�erences:

97



98 CHAPTER 5. SPAMMERS DETECTION WITH CRF

• The conditional random �eld (CRF), which is a discriminant graphical model,
replaces the Markov Random Field (MRF) as a non-discriminant generative
model.

• Parameters are optimized in an adapted learning framework that uses LBGFS
for objective optimization, the tree reweighted (TRW) message passing algo-
rithm for approximate inference and an Empirical Risk Minimization (ERM)
objective loss function.

Before motivating these two changes, we start by broadly summarizing the com-
ponents of the classi�cation system proposed in the previous chapter, namely the
potentials functions, the inference algorithm and the optimization (learning) method.

• Potentials:

– Edge potential: A 2× 2 matrix that associates a parameter to each of the
four possible edge states.

– Node potential: A non-parametric function that is exactly equal to the
prior prediction computed on each account.

• Inference: The widely used LBP algorithm that approximates a marginal joint
probability of the variables. The algorithm uses the edge potentials matrix as
its propagation/update matrix, and the node potential as its initial con�gura-
tion of states.

• Optimization: A 2-dimensional grid search of the best parameters of the edge
potential. No optimization with respect to node potentials.

We will now explain how each of the proposed changes �lls a gap in the above
model.

5.1.1 CRF vs. MRF

MRF is a generative model typically used for learning a distribution over the states
of nodes (output or labels in ML literature). It is often introduced in the context of
a physical system such as the Ising model1. The machine learning literature, on the
other hand, has used the conditional form of MRF, the conditional random �eld (CRF)
in applications such as natural language processing [122] and computer vision [123].

Unlike MRF, CRF is a discriminative model that learns the output distribution
conditioned on the input. This is especially important in the domain of social spam
detection where correctly sampling the joint input/output distribution p(x, y) is
practically impossible due to the selection bias caused by collection and labeling
methods [124]. This may imply that the CRF model is more robust to data bias and
that its results can be more readily generalizable. Moreover, this formulation is more

1The Ising model has been used in statistical mechanics to model atomic spins that can take one of
two states (+1 and −1). Spins graphs are usually modeled as lattices where each spin interacts with its
direct neighbors. Extending this lattice model to a CRF framework has been useful in domains such as
image processing.
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Figure 5.1: An example of two graphs having the same labels and di�erent observa-
tions.

in line with the standard de�nition of a prediction problem where the goal is to learn
the conditional distribution p(y/x) for input x and output y. The CRF model is also
capable of incorporating observations on nodes and edges. In particular, it makes it
possible to model the bias in the prediction priors observed on each node by making
both nodes and edges potentials dependent on prior beliefs.

Consider for example the two graphs in Figure 5.1. Both graphs have identical la-
bels but di�erent observations (in this case, di�erent prediction priors computed over
nodes). In the setting summarized above, learning would often map to optimizing the
parameters of the edge potential matrix with respect to the negative log-likelihood
of the joint con�guration of labels. The parameters therefore depend solely on the la-
bels distribution in the training dataset. In the case of Figure 5.1, this means that both
examples would result in the same MRF model despite the di�erence of observations
on the nodes. This discussion shows that the MRF model has a limited representative
power that hinders the full exploitation of statistical features (or observations) on the
de�ned random variables.

To the best of our knowledge, the MRF model is the only probabilistic graphical
model that has been explored in the context of fraud, spam or abuse detection on
online platforms including online social networks (e.g. Polonium [103] for malware
detection, SpEagle for opinion fraud [106]). We are not aware of any contribution
that proposes to use the CRF.

5.1.2 Learning UGM parameters

Elements of the setting summarized above and used in the previous chapter are com-
mon to many web-related applications. A drastic simpli�cation would be to omit the
MRF notation, and build the whole model around an update matrix and the Loopy
Belief Propagation algorithm. This is applicable for both labels and beliefs propaga-
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tion. Another more popular setting [106] that we used in Section 5.1.1 as one of two
possible design choices, is to:

• De�ne an MRF.

• Set prior predictions as node priors.

• Propose one symmetric update matrix (that is usually skewed toward favoring
the identical states on the extremities of an edge).

• Evaluate the performance of the model by computing posterior predictions
using the above update matrix and the LBP algorithm.

In the previous chapter, we proposed to upgrade this architecture by allowing a
free form update matrix and by evaluating a wide range of values on the parameters
grid. Since the grid search was constrained, it was possible to avoid some of the
pitfalls of the LBP algorithm that are associated with high coupling parameters. This
advantage is lost when LBP is used as a part of an internal inference routine inside
a gradient-based optimization algorithm.

In this framework, which has been used in previous works in neighboring do-
mains [106], the MRF inference problem is predominantly solved with the Loopy
Belief Propagation (LBP) algorithm, which iteratively computes posterior prediction
probabilities for the de�ned variables. The parameters of this matrix are often set in
an empirical way to favorize models that link identical classes.

Unfortunately, when learning the graphical model parameters from data, as we
did in the previous chapter, using LBP for approximate inference can become prob-
lematic. In particular, this is true when edge weights are high in pairwise models
[125]. This leads to the underestimation of the partition function, which in turn re-
sults overestimated marginal probabilities. To surmount this problem, we use tree
reweighted message passing algorithm (TRW) for inference [126]. We also substitute
the often-used negative log-likelihood loss function (NLL), with the clique loss (CL)
[127]. By adopting empirical risk minimization rather than maximum likelihood es-
timation, the loss function is more aligned with the goal of minimizing classi�cation
errors.

Chapter Structure. The remaining of this chapter is structured as follows. Sec-
tion 5.2 introduces the CRF framework that replaces the MRF framework as a solu-
tion to the social spammers detection problem. We discuss learning and inference
in undirected graphical models in Section 5.3. Section 5.4 presents and discusses the
experimental results of applying the CRF model to the Twitter dataset. We conclude
the chapter in Section 5.5.

5.2 A CRF framework for Social Spammers Detection

In this section, we reiterate the problem of social spammers detection and introduce
the notation and potentials associated with a CRF-based solution.
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5.2.1 Problem Formulation

Setting. We reuse here the same problem setting we formulated in Chapter 4. We
de�ne namely:

• A set of users U .

• For each user u ∈ U :

– A numerical features vectors xu ∈ X for each u ∈ U .
– A set of messages M(u) posted by the user u.
– A random variable Zu designating the class of user u (Zu ∈ L and L =
{0, 1}).

– A prediction p(zu = 1) of a user’s class based on its features vector xu.

We also have the same assumption stating that users having content in common are
more likely to have the same class and de�ne the same content-based similarity over
users.
Goal. The goal is to build a classi�er that, for each user u, predicts a class Zu ∈ L.
The classi�er should enhance the prior predictions by incorporating dependencies
between users as captured by the de�ned graph of similarity.

5.2.2 Proposed solution

Instead of the MRF proposed in chapter 4, we propose in this chapter to use the pair-
wise CRF. Unlike MRF, which can be viewed as a generalization of Naive Bayes, CRF
can be viewed as a generalization of logistic regression. The contrast between the
two models is therefore fundamentally one of modeling the joint input distribution
versus modeling the output distribution conditioned on the input. For input x and
output y this translates to MRF modeling p(x, y) and CRF modeling p(y/x).

The general architecture of the overall system is similar to the one we previously
proposed. The system’s data �ow can be seen in Figure 5.2 and has the main three
parts introduced for the MRF solution, mainly: priors generation, graph construction
and computing CRF predictions. Since the �rst two have been discussed in chapter 4,
we focus here on the last part. We discuss hereafter the forms of the CRF model
potentials.

In the following, we de�ne node and edge potentials of the CRF model. Local be-
liefs o�er a valuable indication of whether the account is a spammer, while similarity
o�ers a way to propagate beliefs on the network of users. Having the right balance
between node and edge potentials helps to e�ectively exploit these two aspects of
the problems.

5.2.2.1 Node Potentials

Node potentials are factors, positive numbers that quantify the potential of a node
of being in a given state. Here states are de�ned by the classes the user can belong
to, namely legitimate and spammer. In the CRF model, node potentials φu(zv,y;θ)
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Figure 5.2: General architecture of the proposed system.

Table 5.1: The edge potential matrix φ(u,v)(zu, zv).

zv
Legitimate Spammer

zu
Legitimate eθ4 eθ6

Spammer eθ5 eθ7

can depend of both the state zv of node v and the local features describing the node
y. They incorporate prior beliefs on nodes classes and are chosen to drive the UGM
prediction to match the prior belief on a node. In this case, the expression of the node
potential is given in equation 5.1:

φu(zv,y;θ) =

{
exp(θ0.y0 + θ2.y1) if zv = 0 (legitimate user)
exp(θ1.y0 + θ3.y1) if zv = 1 (spammer)

(5.1)

where zv is the state (class) of node v andy = [y0, y1] is the features vector de�ned by
y0 = 1 and y1 = p(user v is a spammer) is the prior belief that a user is a spammer.

In general, the aim of a node potential is to ensure that the class predicted for
each node is in line with the observations (features) associated with the node.

5.2.2.2 Edge Potentials

An edge (or pairwise) potential is de�ned on each edge in the graph E. The edge
potential φ(u,v) is de�ned as a matrix of parameters (exp(θi) for θi ∈ R) which as-
sociates a positive real number to the possible combinations of (zu, zv) (see the edge
potential matrix in Table 5.1). Negative values of θi result in smaller potentials and
are associated with a repulsive edge. Positive values of θi are associated with attrac-
tive edges.

In models where edges connote a notion of similarity between nodes, it is gen-
erally desirable for the edges to be attractive between nodes having the same state
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and repulsive between nodes of opposing states. This ensures smoothness between
connected nodes. In the current context, edge potentials are chosen such that the
value of the potential between identical classes (e.g. between two spammers or be-
tween two legitimate accounts) are stronger than the potential value between di�er-
ent classes (one spammer and one legitimate account). Note that since edges in the
current application stand for only one similarity concept, only one edge potential
matrix is de�ned.

5.3 Inference and learning in Conditional Random Fields

In this section, we discuss learning and inference in probabilistic graphical models,
with a special focus on conditional random �elds. We start by introducing common
notation and restrict the discussion to the universally used pairwise log-linear model
(Section 5.3.1). We then introduce the conditional random �eld model and underline
the notation changes needed to apply general learning and inference to the CRF
model. We follow this by discussing parameters learning (Section 5.3.2), and motivate
our choices for inference methods (Section 5.3.4) and loss functions (Section 5.3.3).

5.3.1 De�nition of Undirected Graphical Models

Undirected graphical models (UGM) is a general name for a family of models that in-
clude Markov Random �elds (MRF) and their conditional variation, the conditional
random �elds (CRF). They are often referred to simply as Markov random �elds, and
the notation, as we will see afterwards, makes it possible to discuss learning and
inference in all undirected models using the Markov Random Fields model. These
undirected models are used as a compact and powerful tool to model dependencies
between random variables under Markov assumptions [128]. The Markov Assump-
tion is the property of a model where a (future) state of a given process depends
only on the (present) state of this process. This is, for instance, the case in a hidden
Markov model. Note the use of temporal terms to denote a temporal or sequential
relationship between states in a hidden Markov model. In MRF, this property is ex-
tended to a randomly connected graph where the dependency between two nodes is
not sequential. A notable example of this in the is the Ising model, where the MRF
is de�ned over a two-dimensional lattice with a periodically repeated structure.

De�nition. An MRF (G,Ψ) is de�ned by a set of variables V , a graph G(V,E)
coding dependencies between these variables, and a set of potential functions Ψ.
The notion of a clique2 is of a central importance in the MRF framework. An MRF is
said to be factorized over the cliques of a graphG if the joint probability distribution
p(Z = z) can be written as the product of potentials Ψ de�ned over cliques in the
graph G as follows:

p(Z) ∝
∏

C∈cl(G)

ΨC(Z), (5.2)

2A clique C ⊂ G(V,E) of a graph G is a fully-connected subset of its vertex set V , i.e., (u, v) ∈ E
for all u, v ∈ C .
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where cl(G) is the set of cliques ofG. Note that as per the de�nition above, potentials
(or factors) need to be positive but they are not necessarily probability distributions
over the input space.

Pairwisemodels. The simplest and most used form of MRF is the pairwise model,
where factorization is limited to cliques of the second order. In our case, V =
{Zu}u∈Users is the set of random variables corresponding to users, and E = {(u, v)}
is the set of edges in the users graph. Potentials can be thus de�ned over nodes (called
unary potentials and denoted φu) and edges (called pairwise potentials and denoted
φu,v). The probability of a con�guration Z over all random variables in a pairwise
model is de�ned as:

p(Z) =
1

Ξ

∏
u∈V

φu(Zu)
∏

(u,v)∈E

φu,v(Zu, Zv), (5.3)

where Zu and Zv are the random variables denoting the classes of users u and v
respectively, and Ξ is the partition function3, de�ned as:

Ξ =
∑
z∈Z

p(z),

where Z , the space of all possible con�gurations, is the domain of z, the output
vector.

Log-linear models. Since the factors above are positive functions, a factorized
MRF can be represented as an exponential family. This representation facilitates the
expression of learning and inference in the upcoming sections.

Let θ be the vector of CRF parameters de�ning the node and edge potentials
φu and φu,v , and consider that potentials φu and φu,v are de�ned in terms of log-
potentials as linear functions of the parameters θ. The joint probability de�ned in
(5.3) can be written as:

p(z;θ) =
1

Ξ(θ)
exp (θ · f(z)), (5.4)

where f(z) is the vector of su�cient statistics de�ned as:

f(Z) = {I[Zc = zc] | ∀c, zc} ∪ {I[Zu = zu] | ∀u, zu}. (5.5)

And θ · f(z) is the inner product de�ning the potentials as linear functions of the
parameters θ.

LetA(θ) be the log-partition function, which will appear repeatedly in the learn-
ing and inference sections. The log-partition function is de�ned as:

A(θ) = log Ξ(θ) = log
∑
z∈Z

expθ · f(z). (5.6)

3The partition function is denoted asZ in the Machine Learning literature. We instead use the physics
notation Ξ in this work to avoid confusion withZ the vector of random variables associated with posterior
predictions.
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The probability can be written as:

p(z;θ) =
exp (θ · f(z))

expA(θ)
= exp (θ · f(z)−A(θ)). (5.7)

Conditional Random Field. In this chapter, we focus on the conditional variant
of MRF, the Conditional Random Field (CRF) [122] where the potentials are condi-
tioned on the input features (not to be confused with su�cient statistics f de�ned
above). Unlike MRF, CRF is a discriminant model that learns the distribution of la-
bels given the input features rather than learning the general labels distribution. The
probability of a con�guration z given y, namely the vector of input features, is de-
�ned as:

P (z | y;θ) =
1

Ξ(y,θ)

∏
u∈V

φu(zu,y;θ)
∏

(u,v)∈E

φu,v(zu, zv,y;θ). (5.8)

For simplicity, we use the general graphical models notation in the rest of this
section. The corresponding CRF notation can be simply obtained by considering that
θ, the free parameters vector, is a function of y and of free parameters.

5.3.2 Parameters Learning in Undirected Graphical Models

Learning the parameters θ of undirected graphical models is de�ned as �nding the
model’s parameters that minimize an objective loss functionL(θ). The minimization
is usually performed via unconstrained di�erentiable optimization algorithms such
as LBGFS. These algorithms are variants of gradient-descent and involve repeated
computation of the gradient of the loss function. As we show in the next section,
computing the gradient of the loss typically requires estimation of marginal proba-
bilities, which is done by performing inference at each iteration. We thus start by
discussing loss functions commonly used in the context of learning in probabilistic
graphical models and then discuss approximate inference methods that have been
proposed in the literature to estimate marginal probabilities.

5.3.3 Loss functions

A loss function is a way to quantify how well a model �ts the data. The goal of learn-
ing is to �nd the model’s parameters values that minimize the de�ned loss. While loss
has been traditionally de�ned in terms of Maximum Likelihood Estimation (MLE), it
is increasingly common to have Empirical Risk Minimization (ERM) guide the choice
of the loss function. We discuss these two concepts below.

5.3.3.1 MLE and the Log-Likeliohood Loss

The negative log-likelihood (NLL) loss, based on the concept of Maximum Likelihood
Estimation is the most widely known loss. In Bayesian terms, the minimization of
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NLL is equivalent to �nding a MAP estimation of the model parameters. For a graph-
ical model with a joint variables con�guration z and a parameters vector θ, NLL is
de�ned as follows:

NLL(θ, z) = − log p(z;θ) = A(θ)− θ · f(z). (5.9)

It follows that the derivative of the loss is:
dL

dθ
= f(z)− µ(θ), (5.10)

where µ, the mean-parameters is de�ned as:

µ(θ) =
dA(θ)

dθ
=
∑
z

p(z;θ)f(z). (5.11)

Equation 5.11 shows that computing the gradient requires computing the marginal
probabilities p(z;θ), which is generally intractable in graphical models. The log-
likelihood loss is thus often replaced by a (surrogate) likelihood that uses approxi-
mate probabilities computed by approximate inference methods discussed in Section
5.3.4).

5.3.3.2 ERM and the Clique Loss

In most machine learning applications (such as image processing, computer vision
and object tracking), the model used to represent the data is often mis-speci�ed,
meaning that it is a simpli�cation of the observed phenomenon. Since maximum
likelihood learning is adapted for well-speci�ed models, it is increasingly replaced
by empirical risk minimization [129, 130]. This is simply motivated by the obser-
vation that, in classi�cation problems, we are more interested in minimizing the
number of classi�cation errors (empirical risk minimization) than maximizing the
joint probability (maximum likelihood estimation). And thus, it is reasonable for the
loss to be tied to the marginal distribution of each variable rather than the full joint
distribution. The loss is de�ned as follows:

R(θ) =
∑
ẑu

L(θ, ẑu), (5.12)

where the sum is done over ẑu the instances of variables in the training data.
In this work, we use a loss de�ned on cliques instead of the univariate loss used

in 5.12. This has the advantage of being consistent since univariate loss can produce
inaccurate joint probabilities despite correctly predicting marginal probabilities. Let
c denote a clique of the graph G(V,E). Then, the Clique Loss is de�ned over all the
cliques (edges in the case of pairwise models) as:

L(θ, z) = −
∑
c

logµ(zc;θ), (5.13)

whereµ(zc;θ) is de�ned similarly toµ(z;θ) by using indicator functions on cliques:

µ(zc;θ) =
∑
Z

p(X,θ)I[z′c = zc] = p(zc;θ). (5.14)
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5.3.4 Inference

We have shown in the last section that learning requires the estimation of marginal
distributions. This is known as inference in the context of graphical models. From 5.7,
it follows that computing marginals requires computing the partition function. This
is intractable because it consists of summing the joint probability over all possible
labels permutations.

While e�cient inference algorithms have been designed for trees and chains,
they are not applicable to general graphs with cycles. The approach to compute
approximate marginals is to express the log-partition function using the exact vari-
ational principle, thus recasting the computation problem as an optimization prob-
lem that can be then approximated. We start by de�ning the exact variational prin-
ciple before introducing these two algorithms for approximate marginal inference
in general undirected graphical models: Loopy belief propagation (LBP) and tree-
reweighted message passing (TRW). Both are message passing algorithms that pro-
duce approximate marginals.

5.3.4.1 Exact Variational Principle

According to the exact variational principle, the partition function can be de�ned as
the minimum of the true (Gibbs) free energy over the marginal polytope [131, 132].
The log-partition function can be represented as:

A(θ) = max
µ∈M

θ · µ+H(µ), (5.15)

where:

– M is the marginal polytope de�ned as the set of realizable mean parameters,
namely

M = {µ′ : ∃θ,µ′ = µ(θ)}

– and H(µ) is the entropy de�ned as:

H(µ) = −
∑
z

p(z;θ(µ)) log p(z;θ(µ)).

Unfortunately, in general graphs, computing the entropy is intractable and the
marginal polytope is di�cult to characterize [127]. The approximate marginal infer-
ence algorithms that we will discuss below can be seen as minimizing a relaxation
of the exact variational principle.

5.3.4.2 Loopy Belief Propagation

Belief propagation (BP) [133] is a sum-product message passing algorithm that is
widely applied to marginal inference in graphical models. For MAP marginal infer-
ence (�nding the con�guration that minimizes the energy), the max-product BP is
used to obtain beliefs on marginal distributions [134].
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The loopy belief propagation (LBP) algorithm [119] provides an extended vari-
ant of the standard BP that can be used for approximate inference in graphs with
a general structure, including graphs with cycles (e.g. in Computer Vision applica-
tions [120]). While the uniqueness of the LBP solution is only guaranteed for trees
and single-cycle graphs, the algorithm may have multiple �xed points in general.
As a consequence, LBP has no convergence guarantees over graphs with cycles. In
practice, however, it is known to give good results and often converges within few
iterations.

In terms of computational complexity, the LBP algorithm is considered linear
in the number of edges. Its computational complexity is O(d |E|), where d is the
number of iterations required until convergence and |E| is the number of edges.

5.3.4.3 Bethe free energy minimization

The LBP algorithm has tight connections with the Bethe free energy minimization
principle in statistical physics [135]. It turns out that the �xed points obtained from
the LBP algorithm are the local minima of the Bethe free energy, which is de�ned in
the context of variational inference to approximate the partition function. The Bethe
approximation introduces two changes to the exact variational equation (5.15): the
true entropy is replaced by the Bethe entropy, and the marginal polytope is relaxed
to the local pseudo-marginal polytope (where only pairwise consistency is required
in the marginal vector) [136].

In some cases, Bethe approximation has been shown to be inaccurate [125].
This happens when coupling (namely, the strength of edge potentials weights) is
high in pairwise models. In our case, this probably happens because the con�g-
uration (xu = xv = 1) tends to be associated with high values of θ, especially
when the learning algorithm explores higher values of the parameter. As a conse-
quence, the underestimation of the partition function results in inaccurate estimation
of marginals (with the probabilities of certain con�gurations becoming larger than
1).

5.3.4.4 Tree-Reweighted Message Passing

Due to the drawbacks associated with LBP and Bethe approximation, which we en-
countered consistently during the parameters learning of the CRF model in our par-
ticular experimental setting (see Section 5.4), we will use the tree-reweighted mes-
sage passing (TRW) algorithm for marginal inference instead of LBP.

Tree-reweighted message passing (TRW) was �rst de�ned in [137] as a max-
product message passing algorithm for energy minimization. The sequential-TRW
(S-TRW) was then proposed in [126] as a provably convergent algorithm. On certain
problems, TRW has been shown to yield lower energy than both belief propaga-
tion and graph-cuts [126, 138]. TRW is based on the idea of maximizing a convex
lower bound on the energy by solving the MAP problem on a convex combination
of trees derived from the original general graph. The optimization on trees is per-
formed using the BP algorithm which is convergent on trees. A distribution ρ that
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conserves the energy over the original graph is de�ned over the trees collection and
a reparametrization of messages is performed according to ρ.

In the variational perspective, TRW replaces the local polytopeM with a super-
set L ⊃ M. The associated variational equation approximates an upper bound to
the log-partition function:

Ã(θ) = max
µ∈L

θ · µ+ H̃(µ), (5.16)

where H̃(µ) is the so-called TRW entropy [137].

5.4 Experimental Evaluation on Twitter

We present in this section the results of applying the proposed CRF model to the
Twitter dataset introduced in chapter 3. We also reuse the same experimental setting
described in chapter 4 for:

• Graph construction.

• Prior predictions generation.

We discuss parameters choice and the e�ciency of the optimization algorithm
used to learn CRF parameters.

5.4.1 Graphical Models Implementation

CRF is implemented on top of the JGMT package [127] and inference is performed
via the TRW algorithm. JGMT, a package originally conceived for image processing
applications, is written in Matlab with the core functionalities written in C++. Unlike
other existing CRF libraries which only allow chain models, JGMT allows the de�ni-
tion of models with a general graph structure and implements the TRW algorithm4.

For CRF parameters learning, we use the MinFunc optimization package [139] in
Matlab with the default L-BFGS function and de�ne the objective loss as the Clique
Loss in JGMT. Since the loss is not convex, we launch the optimization 100 times
starting from random initial parameters sampled from the normal distribution. This
is done for each possible combination of experimental settings (features set and clas-
si�cation model).

5.4.2 Results and Discussion

Table 5.2 compares the classi�cation performance of baseline supervised classi�ers,
the MRF models (with both the symmetric and asymmetric con�gurations introduced
in chapter 4) and the CRF model. The performance is measured in terms of recall,
precision and the F1-measure.

4We used the UGM library [121] in Matlab for our MRF-based model (chapter 3). Although it also
supports CRF, UGM uses LBP for inference and does not implement TRW.
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Table 5.2: Classi�cation performance of local supervised classi�ers, the symmetric
and asymmetric MRF models and the CRF-based model.

All features Benevenuto features Stringhini features

Sup. Sym.
MRF

Asym.
MRF CRF Sup. Sym.

MRF
Asym.
MRF CRF Sup. Sym.

MRF
Asym.
MRF CRF

SVM

Precision 0.891 0.917 0.919 0.909 0.939 0.955 0.930 0.945 0.941 1.000 0.966 0.980
Recall 0.598 0.571 0.883 0.909 0.756 0.273 0.857 0.896 0.195 0.143 0.364 0.636
F1 0.715 0.704 0.901 0.909 0.838 0.424 0.892 0.920 0.323 0.250 0.528 0.772
Accuracy 0.752 0.764 0.904 0.911 0.847 0.637 0.898 0.924 0.573 0.580 0.682 0.815

LR L1

Precision 0.865 0.86 0.890 0.924 0.961 1.000 0.924 0.969 1.000 1.000 1.000 1.000
Recall 0.549 0.558 0.844 0.948 0.598 0.545 0.792 0.805 0.159 0.325 0.506 0.623
F1 0.672 0.677 0.867 0.936 0.737 0.706 0.853 0.879 0.274 0.490 0.672 0.768
Accuracy 0.720 0.739 0.873 0.936 0.777 0.777 0.866 0.892 0.561 0.669 0.758 0.815

LR L2

Precision 0.956 0.900 0.933 0.958 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.524 0.468 0.727 0.883 0.317 0.182 0.714 0.779 0.159 0.325 0.481 0.558
F1 0.677 0.615 0.818 0.919 0.481 0.308 0.833 0.876 0.274 0.490 0.649 0.717
Accuracy 0.739 0.713 0.841 0.924 0.643 0.599 0.86 0.892 0.561 0.669 0.745 0.783

RF

Precision 0.955 0.924 0.902 0.939 1.000 0.933 0.928 0.923 0.960 1.000 0.925 0.972
Recall 0.780 0.792 0.961 1.000 0.585 0.727 0.831 0.935 0.585 0.532 0.805 0.896
F1 0.859 0.853 0.931 0.969 0.738 0.818 0.877 0.929 0.727 0.695 0.861 0.932
Accuracy 0.866 0.866 0.930 0.968 0.783 0.841 0.885 0.930 0.771 0.771 0.873 0.936

Figure 5.3: The evolution of loss as a function of the iterations of the optimization
algorithm (average over 100 runs).

Compared to the baseline beliefs, CRF consistently improves recall by a range
of 11%-46% with an average of 31% while simultaneously maintaining the original
precision achieved by local classi�ers. The CRF also consistently outperforms both
MRF models.



5.4. EXPERIMENTAL EVALUATION ON TWITTER 111

Figure 5.4: The F1-measure as a function of loss for the 100 runs of the learning
algorithm.

5.4.2.1 E�ciency

The algorithm used to learn CRF parameters converges on average in 1.5 seconds.
Figure 5.3 shows the evolution of the loss as a function of iterations of the learning
algorithm.

5.4.2.2 Objective Loss

Figure 5.4 shows the relationship between the Clique Loss and the F1-measure which
we use as a proxy for the classi�cation performance. Each point in the plot corre-
sponds to a local optimum the algorithm has converged to for one of the 100 runs.
The F1-measure is computed on the predictions associated with the parameters the
algorithm has converged to. For small losses (L < 2), there is a high correlation
between the loss and the F1-measure with a correlation coe�cient of −0.82 on av-
erage).

5.4.2.3 CRF parameters

We compare here the parameters learned for CRF and MRF models.

Node potentials. The parameters of the node potentials determine how the graph-
ical model exploits the information conveyed by the prior belief on each node (user).
The CRF formulation of node potentials results in �atter curves compared to the ex-
ponential curve of the MRF model as shown in Figure 5.5. The CRF curve has an
attenuating e�ect over prior belief. This e�ect is most pronounced on the extreme
values of the belief.

• Case 1: p(x = 1) → 0 (legitimate label predicted with high con�dence). The
potentials ratio curve assigns a non-zero potential for the state x = 1 even



112 CHAPTER 5. SPAMMERS DETECTION WITH CRF

Figure 5.5: The ratio φu(x = 1)/φu(x = 0) of the node potential for the two possible
states as a function of the node belief y1 = p(x = 1) for beliefs computed using the
di�erent possible con�gurations of supervised classi�cation models.

when the belief p(x) computed by the local node classi�er is zero. This has the
e�ect of allowing the model to predict that a node is a spammer even when
the local classi�er is very con�dent of the legitimate prediction.

• Case 2: p(x = 1) → 1 (spammer label predicted with high con�dence). The
potentials ratio curve for MRF also follows a steep curve when the prior belief
approaches 1. CRF attenuates this e�ect, allowing the model to predict a user
as legitimate even when the local classi�er is very con�dent that a user is a
spammer.

5.5 Conclusion

In this chapter, we proposed to use the Conditional Random Field to tackle the prob-
lem of detecting spammers on Online Social Networks. Like MRF, the proposed
framework allowed including elements from both the supervised and the graph-
based detection paradigms. But unlike MRF, the CRF framework enabled conditional
learning of the output distribution based on the input features. In this case, node po-
tentials were expressed as functions of prediction priors. This resulted in a model
that is more expressive and more robust than traditional non-conditional probabilis-
tic models.

We also discussed learning and inference in undirected graphical models and mo-
tivated our choice for the TRW algorithm as an inference algorithm and the clique
loss as an ERM loss. We showed the e�ectiveness of the proposed model by evaluat-
ing it on the Twitter dataset. In addition to o�ering more robustness, results showed
that the CRF model has better classi�cation performance than the MRF model pro-
posed in the previous chapter.
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Conclusion

For online social networks such as Facebook and Twitter, controlling social spam is
of the upmost importance. Failing to do so would negatively impact users experience
and safety. More importantly, it would mean that these platforms will continue to
allow mass manipulation, political propaganda and interference with the free infor-
mation �ow.

The supervised detection paradigm has dominated the social spam detection
scene for a long time. This is quite understandable since a supervised pipeline is
elegantly simple. Its simplicity makes it the �rst design choice in a lot of machine
learning applications. But like any system deployed in a dynamic environment, the
performance of a supervised detection system is not constant. On a shopping web-
site, variation in buying trends may engender a variation in classi�cation perfor-
mance. In the case of social spam detection, this is rendered even more complex by
the adversary nature of the target.

This work aimed at proposing a solution to the problem of the degrading per-
formance of supervised classi�ers in the face of the dynamic task of detecting social
spammers. Departing from the assumption that the modus operandi of social spam-
mers makes their content inherently linked, we proposed to model the problem using
a probabilistic graphical framework. This allows to model the detection task as a joint
classi�cation over connected social accounts. In this probabilistic framework, statis-
tical features of the accounts are used to generate prior predictions probabilities. And
belief can then be propagated and updated over connected users. We showed that,
using an adequate similarity measure, it is possible to reach posterior beliefs that
are closer to the observed labels than what is previously predicted by features-based
classi�ers.

This work represented a step towards the goal of leveraging accounts depen-
dency for exploiting scarce, inaccurate and biased predictions from variable sources
(including weak statistical classi�ers) and towards building detection systems that
are more robust to features variations.

Let us now systematically examine the research objectives laid out in the intro-
duction of the manuscript.

113
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Contribution 1: Evaluating and characterizing the e�ect of spam evolution
on the classi�cation performance of state-of-the-art supervised systems.

In Chapter 3, we have evaluated a large range of statistical detection features pro-
posed in the literature on a dataset of labeled Twitter accounts. These features were
issued from state-of-the-art systems that reported excellent detection performance in
their original papers. The results of evaluating these systems on a recent population
of spammers using multiple machine learning supervised classi�ers, showed a clear
deterioration in the classi�cation performance of these features. This shows that
these state-of-the-art features are insu�cient to characterize the current population
of spam accounts on Twitter, and that they are thus not a generalizable detection
tool.

The classi�cation task at hand was severely unbalanced with estimates placing
legitimate users between 85% and 95% of the total Twitter population. In such set-
tings, a random classi�er assigning labels according to the labels distribution can
achieve high accuracy. The classi�cation results obtained in Chapter 3 con�rmed
that features-based classi�ers outperform a random classi�er or a majority classi�er.
These classi�ers were thus weak but better than a random baseline.

Results also suggest that the deterioration in performance was not random and
that some spammers are more a�ected than others. By further studying the distribu-
tion of prediction probabilities of features-based classi�ers, we found that legitimate
users were generally assigned a very low probability of being spammers, while the
prediction probabilities of spammers had a wider distribution.

These observations led us to postulate that, by exploiting the con�dent predic-
tions of these classi�ers, they can be used for discovering spammers. We proposed in
particular to use prediction probabilities as an input for a probabilistic model instead
of binary predictions.

Contribution 2: Proposing a de�nition of similarity that e�ectively captures
spammers collusion and ensures a high degree of class homophily.

Unsupervised approaches are built on the assumption that an abnormally high
level of collusion is an indicator of an abusive behavior. Various platforms such as
Facebook and YouTube have proposed graph construction mechanisms that allow
detection of collusive behavior. We are not aware of a similar work on Twitter. Prior
graph-based approaches on Twitter have been based on the social graph and an as-
sumption of connections of trust. More in line with an assumption of behavioral col-
lusion, we propose a novel de�nition of similarity based on a bipartite user-content
interaction graph instead of the commonly used social graph.

Unlike unsupervised systems, we performed no thresholding on dense connec-
tions and are thus able to apply our system on smaller users clusters (both spammers
clusters and legitimate clusters). By evaluating the proposed graph construction al-
gorithm on the collected Twitter dataset, we also con�rmed that content-based sim-
ilarity implies indeed a high degree of class homophily.

Building a similarity graph is typically computationally intensive. It is exponen-
tial in the number of nodes. By emulating realistic Twitter settings, we have shown
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that the proposed graph construction algorithm can be run reasonably fast on cloud
commodity hardware.

Contribution 3: Proposing an undirected graphical models framework that
exploits the proposed notions of belief and similarity.

We proposed in Chapter 4 a spam detection system based on probabilistic graphi-
cal models. The classi�cation task, usually framed over individual accounts, became
a joint optimization over connected accounts. Prediction probabilities of features-
based classi�ers were represented as node priors, and class homophily was modeled
using edge potentials.

The proposed approach is a hybrid approach that allowed to include traditional
features-based classi�ers in a graphical formulation.

Contribution 4: Assessing the e�ectiveness of undirected graphical models
inmitigating the e�ects of spam evolution on the performance of supervised
classi�ers.

MRF and CRF models both allowed including elements from the supervised and
the graph-based detection paradigms. MRF o�ered a generative model that is more
prone to generalizing the edge distribution of the training samples. CRF enabled
conditional learning of the output distribution based on the input features. When
evaluated on the Twitter dataset, CRF slightly outperformed MRF. Moreover, it has
the advantage of being more expressive and more robust to input distribution vari-
ation than traditional MRF models. It is therefore expected to generalize better than
the MRF model.

Results showed that traditional account-based supervised models, despite being
inaccurate and lacking graceful degradation, can be e�ectively exploited in the con-
text of the proposed probabilistic framework. Compared to individual prior pre-
dictions, the probabilistic formulation led to a signi�cant increase in recall while
maintaining high precision. This validates that features-based classi�ers, while not
outperforming in a classi�cation task, can be utilized for discovery of spam accounts
with high probability and that uncovered spam accounts can e�ectively be used to
seed classi�cation systems by acting as prior predictions for belief propagation. The
notion of a weak local classi�er is therefore e�ectively exploitable in the context of
probabilistic graphical inference.

Perspectives and Future Work

We have shown in this thesis that some characteristics of spammers behavior on
OSNs (namely their collusive posting pattern) can be exploited as a stable compo-
nent of a defense system. This characteristic, when integrated with weak statisti-
cal classi�ers in a probabilistic framework, allows to increase the performance of a
spammers detection system.

The observed gap between the baseline of the used classi�ers and the hybrid
system we proposed can serve as an indicator for spam evasion. An increasing gap
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can thus indicate active evasion. Characterizing and monitoring evasion in real time
is an interesting and useful research direction, one that we are not aware has been
previously pursued.

In the same active monitoring spirit, an equally useful next step is to consider
proactive defense systems. Proactivity refers to two aspects:

• Forecasting the change in spammers behavior and characteristics through sim-
ulations. The evasion monitoring discussed above would o�er up to date input
for a forecasting system.

• Rendering the static classi�cation component of the system dynamic by peri-
odically retraining the classi�ers using the output of the proposed system.

This work has a limited experimental setting. Generalizing the implications of
the obtained results to a full-�edged in-the-wild application would require a larger
dataset and further validation.



Appendix A

Features extracted from Twitter
accounts

This appendix presents the 145 attributes extracted from each account.

1. active_tweeting_frequency_per_day

2. adjusted_nb_of_uses_of_hashtag

3. adjusted_nb_of_uses_of_mention

4. adjusted_nb_of_uses_of_sources

5. adjusted_nb_of_uses_of_url

6. age

7. avg_intertweet_times

8. avg_intertweet_times_seconds

9. content_duration_days

10. date_newest_tweet

11. date_oldest_tweet

12. default_pro�le

13. default_pro�le_image

14. diversity_index_of_hashtags

15. diversity_index_of_mentions

16. diversity_index_of_sources

17. diversity_index_of_urls
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18. favourites_count

19. followees_per_followers_sq

20. followers_count

21. followers_count_minus_2002

22. followers_per_followees

23. friends_count

24. friends_count_minus_2002

25. hashtags_used_on_average

26. lang

27. len_description

28. len_screen_name

29. max_intertweet_times

30. max_intertweet_times_seconds

31. max_nb_characters_per_tweet

32. max_nb_favourites_per_tweet

33. max_nb_hashtags_per_tweet

34. max_nb_hashtags_per_word_in_the_tweet

35. max_nb_mentions_per_tweet

36. max_nb_mentions_per_word_in_the_tweet

37. max_nb_retweets_per_tweet

38. max_nb_symbols_per_tweet

39. max_nb_symbols_per_word_in_the_tweet

40. max_nb_urls_per_tweet

41. max_nb_urls_per_word_in_the_tweet

42. max_nb_words_per_tweet

43. mean_nb_characters_per_tweet

44. mean_nb_favourites_per_tweet

45. mean_nb_hashtags_per_tweet
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46. mean_nb_hashtags_per_word_in_the_tweet

47. mean_nb_mentions_per_tweet

48. mean_nb_mentions_per_word_in_the_tweet

49. mean_nb_retweets_per_tweet

50. mean_nb_symbols_per_tweet

51. mean_nb_symbols_per_word_in_the_tweet

52. mean_nb_urls_per_tweet

53. mean_nb_urls_per_word_in_the_tweet

54. mean_nb_words_per_tweet

55. median_nb_characters_per_tweet

56. median_nb_favourites_per_tweet

57. median_nb_hashtags_per_tweet

58. median_nb_hashtags_per_word_in_the_tweet

59. median_nb_mentions_per_tweet

60. median_nb_mentions_per_word_in_the_tweet

61. median_nb_retweets_per_tweet

62. median_nb_symbols_per_tweet

63. median_nb_symbols_per_word_in_the_tweet

64. median_nb_urls_per_tweet

65. median_nb_urls_per_word_in_the_tweet

66. median_nb_words_per_tweet

67. mentions_used_on_average

68. min_intertweet_times

69. min_intertweet_times_seconds

70. min_nb_characters_per_tweet

71. min_nb_favourites_per_tweet

72. min_nb_hashtags_per_tweet

73. min_nb_hashtags_per_word_in_the_tweet
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74. min_nb_mentions_per_tweet

75. min_nb_mentions_per_word_in_the_tweet

76. min_nb_retweets_per_tweet

77. min_nb_symbols_per_tweet

78. min_nb_symbols_per_word_in_the_tweet

79. min_nb_urls_per_tweet

80. min_nb_urls_per_word_in_the_tweet

81. min_nb_words_per_tweet

82. nb_collected_tweets

83. nb_followees_per_day

84. nb_followers_per_day

85. nb_hashtags

86. nb_hashtags_per_day

87. nb_lists

88. nb_mentions

89. nb_mentions_per_day

90. nb_unique_hashtags

91. nb_unique_mentions

92. nb_unique_sources

93. nb_unique_urls

94. nb_urls

95. nb_urls_per_day

96. numerals_in_screen_name

97. numerals_ratio_in_screen_name

98. portion_of_tweets_with_hashtags

99. portion_of_tweets_with_medias

100. portion_of_tweets_with_mentions

101. portion_of_tweets_with_symbols



121

102. portion_of_tweets_with_urls

103. proportion_original

104. proportion_replies

105. proportion_retweets

106. replicates

107. replicates_top_20

108. reputation

109. similarity

110. similarity_top_20

111. sources_used_on_average

112. spam_in_screen_name

113. statuses_count

114. std_intertweet_times

115. std_intertweet_times_seconds

116. std_nb_characters_per_tweet

117. std_nb_favourites_per_tweet

118. std_nb_hashtags_per_tweet

119. std_nb_hashtags_per_word_in_the_tweet

120. std_nb_mentions_per_tweet

121. std_nb_mentions_per_word_in_the_tweet

122. std_nb_retweets_per_tweet

123. std_nb_symbols_per_tweet

124. std_nb_symbols_per_word_in_the_tweet

125. std_nb_urls_per_tweet

126. std_nb_urls_per_word_in_the_tweet

127. std_nb_words_per_tweet

128. temporal_bin_0

129. temporal_bin_1
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130. temporal_bin_2

131. temporal_bin_3

132. temporal_bin_4

133. temporal_bin_5

134. temporal_bin_6

135. temporal_bin_7

136. time_since_newest_tweet_days

137. time_since_newest_tweet_months

138. time_zone

139. tweeting_frequency_per_day

140. tweets_with_at_top_20

141. tweets_with_hashtags_top_20

142. tweets_with_urls_top_20

143. urls_used_on_average

144. user_id

145. utc_o�set
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