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Résumé

Soit σ l’automorphisme par transpose-inverse de GLn, qui définit un produit semi-direct
GLn o<σ>. Soit X̃→ X un revêtement double de surfaces de Riemann, qui est exactement la
partie non ramifiée d’un revêtement ramifié de surfaces de Riemann compactes. L’élément
non trivial de Gal(X̃/X) sera noté τ. A chaque point ramifié enlevé, on associe une GLn(C)-
classe de conjugaison contenue dans la composante connexe GLn(C).σ, et on exige que la
famille C des classes de conjugaison soient générique. La variété de GLn(C) o<σ>-caractère
que l’on a étudié est l’espace de module des pairs (L,Φ) formés d’un système local L sur
X̃ et d’un isomorphisme Φ : L ∼→ τ∗L∨, dont les monodromies autour des points ramifiés
sont déterminées par C. On calcule le E-polynôme de cette variété de caractère. A ce fin, on
utilise un théorème de Katz, ce qui nous ramème au comptage des points sur corps finis. La
formule de comptage fait intervenir les caractères irréductibles de GLn(q) o<σ>, et donc la
table des Q̄`-caractères de ce groupe est déterminée au fur et à mesure. Le polynôme qui en
résulte s’exprime comme un produit scalaire de certaines fonctions symétriques associées
au produit de couronne (Z/2Z)N oSN, avec N = [n/2].

Mots-Clefs: Variété de Caractère; Polynôme de Hodge Mixte; Groupe Fini de Type de Lie;
Fonctions Symétrique.
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Abstract

Let σ be the transpose-inverse automorphism of GLn so that we have a semi-direct product
GLn o<σ>. Let X̃ → X be a double covering of Riemann surfaces, which is exactly the
unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering
transformation is denoted by τ. To each puncture (removed ramification point), we prescribe
a GLn(C)-conjugacy class contained in the connected component GLn(C).σ. And we require
the collection C of these conjugacy classes to be generic. Our GLn(C)o<σ>-character variety
is the moduli of the pairs (L,Φ), where L is a local system on X̃ and Φ : L ∼→ τ∗L∨ is an
isomorphism, whose monodromy at the punctures are determined by C. We compute the
E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the
problem to point-counting over finite fields. The counting formula involves the irreducible
characters of GLn(q)o<σ>, and so the Q̄`-character table of GLn(q)o<σ>is determined along
the way. The resulting polynomial is expressed as the inner product of certain symmetric
functions associated to the wreath product (Z/2Z)N oSN, with N = [n/2].

Key words: Character Varieties; Mixed Hodge Polynomials; Finite Groups of Lie Type;
Symmetric Functions.
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Chapter I

Introduction

I.1 Character Varieties

Motivation

Given a connected complex reductive algebraic group G and a Riemann surface X, one
defines the associated representation variety as the affine variety

Hom(π1(X),G)

consisting of the G-representations of π1(X). Then G acts on it by conjugation on the target.
The corresponding GIT quotient is called the character variety. It is a topological invariant
of X. We will call G the structure group of the character variety. By Riemann-Hilbert
correspondance, the character variety is complex analytically isomorphic to the moduli space
of flat connections of principal G-bundles on X. And is further diffeomorphic to the moduli
space of semi-stable Higgs G-bundles on X, by the non abelian Hodge correspondance. We
regard these objects as the torsors under the constant group scheme G × X endowed with a
Higgs field or a connection.

One can equally consider torsors under a non constant group scheme on X, possibly
equipped with flat connections or Higgs fields. Indeed, this is what has been considered
in [LN], where torsors under unitary group schemes with Higgs fields are considered, but
on a curve defined over a finite field. There has since been growing interest in this kind
of quasi-split objects, for example, [PR], [Ze1], [Ze2], [HK]. Representation theory suggests
that, when we work in the complex setting, the corresponding character varieties should
have a structure group of the form G o Γ, where Γ is the Galois group of a finite Galois
covering of X such that the non constant group scheme lifts to a constant one.

On the other hand, motivated by the study of some exotic Stockes data, Boalch and
Yamakawa have considered the moduli space of twisted Stockes representations. When
the Stokes data are trivial, we are left with torsors under a non-constant local system of
groups on X. Such local systems of groups are parametrised by group homomorphisms

11



12 CHAPTER I. INTRODUCTION

ψ0 : π1(X) → Aut G, with torsors parametrised by the group cohomology H1(π1(X),G). Let
us fix such a ψ0. If we further assume that ψ0 factors through a finite quotient, denoted by
ψ : Γ→ Aut G, then the torsors can be identified with homomorphisms π1(X)→ Go Γ, with
the semi-direct product defined by ψ.

Galois Invariant Connections

The finite quotient Γ determines a finite Galois cover X̃ → X, and the homomorphisms
ρ : π1(X) → G o Γ can be restricted to the usual representations ρ̃ : π1(X̃) → G via the
following commutative diagram

1 π1(X̃) π1(X) Γ 1

1 G G o Γ Γ 1

ρ̃ ρ =

.

We will call ρ̃ the underlying G-representation of ρ. The representation variety that we are
interested in is exactly the moduli space of those homomorphisms π1(X) → G o Γ that
make (the right hand side of) the above diagram commute, and its elements are called
G o Γ-representations. The conjugation of G on G o Γ induces an action on this variety and
the corresponding GIT quotient is called the G o Γ-character variety. Instead of the usual
G-character varieties associated to a topological space, we have the slogan

G o Γ-character varieties are associated to a Γ-Galois cover X̃/X.

There can be non isomorphic coverings with isomorphic Galois group Γ.
In fact, in the above diagram, the usual representation ρ̃ is Galois invariant. This is

best understood in terms of flat connections. Suppose (E,∇) is a principal G-bundle on X̃
equipped with a flat connection, then with the homomorphism ψ : Γ→ Aut G, each element
of σ ∈ Γ defines a twist of (E,∇), denoted by (σ∗Eσ,∇σ), where the underlying bundle is
obtained by first pulling back E by σ and then twisting the fibres by ψ(σ), i.e. the right action
of G on the fibres is twisted by this group automorphism. Fixing ψ, we say that (E,∇) is
Γ-invariant if for each σ ∈ Γ, there is an isomorphism

(I.1) Φσ : (E,∇)→ (σ∗Eσ,∇σ).

These isomorphisms must satisfy some cocycle conditions. Let us denote by Φ∗ this family
of isomorphisms. Our first result basically says

Theorem 1. There is a one to one correspondence

{Γ-invariant flat connections on X̃} ←→ {G o Γ-representations of π1(X)}

((E,∇),Φ∗)←→ ρ

And the underlying G-representation of ρ corresponds to (E,∇).
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The proof is divided into Theorem III.1.2.1, Lemma III.3.1.1 and Proposition III.3.1.3.

Some Technical Issues

Since our character varieties are defined as the GIT quotient of some affine varieties, the
closed orbits and stable orbits are of particular importance. As in the case of usual character
varieties, they consist exactly of semi-simple representations and irreducible representations.
The semi-simple and irreducible G o Γ-representations are defined in exactly the same way
as the case of usual G-representations. More precisely, a representation ρ : π1(X)→ G o Γ is
semi-simple if the Zariski closure of its image is a completely reducible subgroup of G o Γ

and is irreducible if the Zariski closure of its image is an irreducible subgroup of G o Γ. We
recall the relevant notions for non-connected groups in §1.

Observe that the underlying G-representation of an irreducible G o Γ-representation is
always semi-simple but may not be irreducible. We would like to restrict ourselves to
those character varieties such that the subset {ρ | ρ̃ is irreducible} is non-empty. This gives
rise to a classification problem. To see this, suppse that X̃ → X is a double covering and
ψ : Γ � Z/2Z→ Aut G sends the nontrivial elementσ to the transpose inverse automorphism
of G = GLn(C). Let E be a stable vector bundle on X̃ and Φσ : E → σ∗Eσ an isomorphism.
Then the composition

(I.2) (σ∗Φσ)σ ◦Φσ

where the superscript σ means the induced isomorphism on the contragradient vector bun-
dle, is an automorphism of E and is thus a homothety. It either equals to +1 or −1 due to
σ-invariance. Both cases are studied in [Ze2]. Note that for a fixed E, different choices of the
isomorphism Φσ give the same value of (σ∗Φσ)σ ◦ Φσ, and it only depends on E. Therefore
the signs ±1 classify different σ-invariant stable vector bundles. This is a particular case
of the classification of irreducible (resp. stable) Γ-invariant G-representations (resp. flat
connections) in terms of the group cohomology H2(Γ,ZG), where ZG is the centre of G. For
example in the context above, the non trivial element of Γ acts as x 7→ x−1 on ZG, and the
sign +1 corresponds to the trivial cohomology class of H2(Γ,ZG) and −1 corresponds to the
other class. This classification results have already been obtained by Schaffhauser in [Sch].

The irreducibility of G o Γ-representations is translated into the stability condition for Γ-
invariant flat connections on X̃. We thus morally recover the stability condition of Γ-bundles
as defined by Seshadri [Ses] and the stability condition of anti-invariant bundles as defined
by Zelaci [Ze2]. More precisely, we will show

Proposition 2. (See Proposition III.3.2.2) Under the correspondence in Theorem 1, a G o Γ-
representation is irreducible if and only if the corresponding Γ-invariant connection is stable.

Let G = GLn(C), Γ = Z/2Z, and the non-trivial element act as σ, the transpose inverse
automorphism of G. By studying some certain irreducible subgroups of GLn(C) o<σ>, we
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find a similar result of [Ze2, §4.1] and [Ra, Proposition 4.5], which asserts (See Proposition
II.5.4.1, Proposition III.2.1.7, Remark III.2.1.8 and Remark III.3.1.2)

Proposition 3. If (E,∇),Φ∗) is a stable Γ-invariant flat connection on X̃, then its underlying flat
connection (E,∇) is semi-simple with pairwise non-isomorphic factors, each one being Γ-invariant
with respect to the restrction of Φ∗.

An Important Example

Perhaps the most important examples of such character varieties are the GLn(C) o<σ>-
character varieties of the fundamental groups of Riemann surfaces, where σ is an order 2
non trivial exterior automorphism of GLn(C). Such character varieties are associated to an
unramified double cover X̃ → X of Riemann surfaces. And if σ is the transpose inverse
automorphism, then we expect that they correspond to the moduli spaces of torsors of
unitary group scheme equipped with Higgs fields. Suppose X̃→ X is exactly the unramified
part of a ramified double cover X̃′ → X′, then by restricting the monodromy around the
punctures (removed ramification points) to some G-conjugacy classes of G.σ, or equivalently
σ-conjugacy classes of G, denoted by (C j) j, the character variety can be written as

(I.3) {(Ai,Bi)i × (X j) j ∈ G2g
×

∏
j

C j |

g∏
i=1

(Ai,Bi)
∏

j

X j = 1},

where g is the genus of X. Note that there are necessarily an even number of ramification
points so that the product falls into the identity component. Let us remark that

If all of the conjugacy classes C j are the conjugacy class of σ (in which case C j is
isomorphic to the symmetric space), this can be regarded as the GLn(C) o<σ>-character
variety associated to the ramified covering X̃′ → X′, i.e. it parametrises Galois invariant
local systems on X̃′.

This is explained in §III.5.2.3.
The natural symplectic structure of these varieties can be deduced from the quasi-

Hamiltonian reduction procedure, but in the twisted setting as in [BY]. The dimension
of these character varieties with generic conjugacy classes can also be easily obtained by re-
garding the variety as fusion from small building blocks. In the above example, since the
center of GLn(C) o<σ>has dimension 0, the dimension of the character variety is

(I.4) (2g − 2)n2 +
∑

j

dim C j.

The notion of generic conjugacy classes is defined in §III.4.2, and is a natural generalisation
of the tame case of [B, Corollary 9.7, Corollary 9.8]. Any G o Γ-representation with generic
conjugacy classes is necessarily irreducible.
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E-Polynomials and Related Works

The above variety looks very much the same as the usual character varieties, and its
cohomology, or more specifically the E-polynomial, can be calculated following the method
developped in [HLR], which involves point-counting over finite fields.

The E-polynomial is a specialisation of the mixed Hodge polynomial and can be spe-
cialised to the Euler characteristic. For character varieties, the Poincaré polynomial only
overlaps with E-polynomial at the level of Euler characteristic. The early investigation of
the E-polynomials of MdR(X,G), the moduli space of flat connections on Riemann surfaces X
with G a connected reductive group, was motivated by Mirror symmetry and the speculation
was that the stringy E-polynomial of MdR(X,G) should agree with that of MdR(X,G∨), where
G∨ is the dual group. Then it was expected that the character variety version of this is also
true.

The computation of the usual GLn(C)-character varieties shows that the E-polynomial
satisfies qdE(q−1) = E(q), where d is the dimension of the character variety. This had led to the
discovery of an interesting symmetry in the weight filtration of the cohomology, called the
curious Hard Lefschetz, which has only recently been proved by A. Mellit. This symmetry
resembles the Hard Lefschetz theorem, but holds for the character variety which is affine.
Then it was observed that this symmetry behaves like the relative Hard Lefschetz for the
perverse filtration on the Higgs bundles side. It is now known as the P=W conjecture, which
claims the identification via non abelian Hodge correspondence of perverse filtration for
Higgs moduli and weight filtration for character varieties, in a suitable sense. The curious
Hard Lefschetz is also a main ingradient in formulating a conjectural formula of the mixed
Hodge polynomial of the character varieties. The resulting combinatorial formula involves
the Macdonald polynomials.

Both the P=W conjecture and the conjectural mixed Hodge polynomial have been verified
in small ranks with the help of explicit knowledge of the cohomology ring the moduli spaces.
In our case, there is no existing knowledge of the cohomology ring and we cannot give any
conjecture with supporting evidence. We will instead focus on the computation of the
E-polynomials.

Point-Counting

The computation relies on a theorem of Katz, which translates the computation of E-
polynomials to point-counting over finite fields. The theorem basically says the following.
One first finds a finitely generated ring R contained in C, and an R-model of the character
variety. By base change to finite field Fq, we can count the number of solutions of (V.0.0.0.1)
in finite fields. If this gives a polynomial in q, then this is also the E-polynomial.
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The point-counting formula in our case is the following,

∑
χ∈Irr(G)σ

(
|G|
χ(1)

)2g−2 2k∏
i=1

|Ci|χ̃(Ci)
χ(1)

,(I.5)

where G = GLn(q), Ci ⊂ GLn(q).σ, and Irr(G)σ is the set of σ-stable irreducible characters of
GLn(q) and χ̃ is an extension of such a character to GLn(q)o<σ>. We will explain the relevant
notions in the next part of this introduction.

Our final formula for the E-polynomial is expressed as the inner product of two symmetric
functions. This theorem is only proved for n odd with mild restrictions on the "eigenvalues"
of Ci’s, and we expect that the formula for n even is slightly different.

Theorem 4. Assume that n = 2N + 1 for some N ∈ Z>0 and that Ci has no "eigenvalue" equal to
√
−1 for all i. Let d be the dimension of the character variety and let β j be the type (encoding the

multiplicities of "eigenvalues") of the semi-simple conjugacy class C j. Then,

(I.6) |ChC(Fq)| = q
1
2 d−k(N+1)

〈
O(x, q)1O(x, q)0

Õ(x, q)
,

2k∏
j=1

hβ∗j (x j)
〉
.

where O(x, q)0, O(x, q)1 and Õ(x, q) are certain symmetric functions in the variables {x j}1≤ j≤2k, and
hβ∗j (x j) are the complete symmetric functions.

The symmetric functionsO(x, q)+,O(x, q)− and Õ(x, q) only depend on the genus g and the
number of punctures in the Riemann surface (that is, only depend on on the topology of the
Riemann surface). Note that each infinite variable x j should be understood as a pair (x(0)

j , x
(1)
j )

of infinite variables since the underlying symmetry is the wreath product (Z/2Z)n oSn.

I.2 Character Table of GLn(q) o<σ>

Irreducible Characters of GLn(q)

Suppose G = GLn(k). Given a Frobenius of G, the associated finite group G(q) is GLn(q)
or GL−n (q) according to whether the action of F on the Dynkin diagram is trivial or not. The
Q̄`-character table of GLn(q) is well known since the work of Green [Gr]. Instead of the
combinatorial point of view of Green, we present below a parametrisation of the irreducible
characters due to Lusztig and Srinivasan, which is convenient for the problem of extending
characters to GLn(q).<σ>.

For each F-stable Levi subgroup L, we denote by Irrreg(LF) the set of regular linear char-
acters of LF (See [LS, §3.1]), and denote by Irr(WL)F the set of F-stable irreducible characters
of the Weyl group WL = WL(T), T ⊂ L being an F-stable maximal torus. We take θ ∈ Irrreg(LF)
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and ϕ ∈ Irr(WL)F. For each ϕ, we denote by ϕ̃ an extension of ϕ to WL o<F>. We put

(I.7) RG
ϕθ = εGεL|WL|

−1
∑

w∈WL

ϕ̃(wF)RG
Tw
θ,

where ε = (−1)rk and rk is the Fq-rank of the algebraic group concerned, and RG
Tθ is the

Deligne-Lusztig induction of (T, θ).

Theorem 5. (Lusztig, Srinivasan, [LS, Theorem 3.2]) Let G = GL±n (q). For some choice of ϕ̃, the
virtual character RG

ϕθ is an irreducible character of GF. Moreover, all irreducible characters of GF are
of the form RG

ϕθ for a triple (L, ϕ, θ). The characters associated to the triples (L, ϕ, θ) and (L′, ϕ′, θ′)
and distinct if and only if one of the following conditions is satisfied

• (L, θ) and (L′, θ′) are not GF-conjuguate;

• (L, θ) = (L′, θ′) and ϕ , ϕ′.

Therefore, the calculation of the values of the irreducible characters of GLn(q) is reduced
to the calculation of the values of Deligne-Lusztig characters, i.e. virtual characters of the
form RG

Tθ.

Clifford Theory

Let σ be an automorphism of order 2 of GLn. It defines a semi-direct product GLn(q) o
Z/2Z. This group will be denoted by GLn(q)o<σ>(or simply GLn(q).<σ>) in order to specify
the action of 1 ∈ Z/2Z. We will assume that σ is an exterior automorphism. Regarded as
element of this non-connected group, σ = (Id, 1) satisfies σ2 = 1 and σgσ−1 = σ(g), for all
g ∈ GLn(q).

The representations of GLn(q) o<σ> are related to the representations of GLn(q) by the
Clifford theory in the following way. Let H be a finite group and let N be a normal subgroup
of H such that H/N ' Z/rZ with r prime, and let let χ be an irreducible character of H. We
denote by χN the restriction of χ to N. Then

• Either χN is irreducible;

• Or χN =
⊕r

i θi, where θi ∈ Irr(N) are some distinct irreducible characters.

Moreover, the θi’s form an orbit under the action of H/N on Irr(N). Conversely, χN ∈ Irr(N)
extends to an irreducible character of H if and only if it is invariant under the action of H/N
by conjugaction. If χ is such an extension, we obtain all other extensions by multiplying χ
by a character of H/N.

Denote by Irr(GLn(q))σ the set of σ-stable irreducible characters, i.e. those satisfying
χ = χ ◦ σ. The irreducible characters of GLn(q) o<σ>are either an extension of a character
χ ∈ Irr(GLn(q))σ or an extension of χ⊕ σχwith χ a non σ-stable character of GLn(q). Note that
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the extension of χ⊕ σχ for χ non σ-stable vanishes on the component GLn(q).σ, whereas two
extensions of χ ∈ Irr(GLn(q))σ differ by a sign on GLn(q).σ. Their values on GLn(q) are then
given by the character table of GLn(q). Once we fix an extension χ̃ for all χ ∈ Irr(GLn(q))σ,
it remains for us to calculate the restriction of χ̃ on GLn(q).σ. If no confusion arises, we will
also say that χ̃|GLn(q).σ is an extension of χ to GLn(q).σ.

The conjugacy classes of GLn(q).<σ> consist of the conjugacy classes of GLn(q) that are
stable under σ, of the unions of pairs of conjugacy classes of the form (C, σ(C)), with C ⊂
GLn(q) non σ-stable, and of the conjugacy classes contained in GLn(q).σ. From the equality

#σ-stable classes +
1
2

#non σ-stable classes + #classes in GLn(q).σ

=#classes of GLn(q).<σ>

=#irreducible characters of GLn(q).<σ>

=2#σ-stable characters +
1
2

#non σ-stable characters

(I.8)

and from the fact that #σ-stable classes = #σ-stable characters, we deduce that

(I.9) #classes contained in GLn(q).σ = #σ-stable characters.

So the table that we are going to calculate is a square table, its lines and columns being
indexed by the σ-stable irreducible characters of GLn(q) and the conjugacy classes in GLn(q).σ
respectively. However, there is no natural bijection between the classes and the characters.

Deligne-Lusztig Induction for GLn(q) o<σ>

Let σ be as above and let ρ : GLn(q)→ V be a σ-stable irreducible representation. Defining
an extension of ρ, say ρ̃, is to define an action of σ on V in such a way that ρ̃(σ)2 = Id and
that ρ̃(σ)ρ(g)ρ̃(σ)−1 = ρ(σ(g)) for all g ∈ GLn(q). Except in some particular cases, we do
not know how to do it. However, when σ is quasi-central, we have a natural action of σ on
the Deligne-Lusztig varieties Xw associated to w ∈ Wσ, the subgroup of σ-fixed elements of
W = WG(T0), with T0 being a σ-stable and F-stable maximal torus of G. This allows us to
define the extensions of the Deligne-Lusztig characters RG

Tw
1 to GLn(q).<σ>. By expressing a

unipotent character of GLn(q) as a linear combination of these Deligne-Lusztig characters, we
can obtain an extension of this unipotent character. More concretely, if we take an F-stable
and σ-stable Borel subgroup B0 ⊂ G, the variety Xw consists of the Borel subgroups B such
that (B,F(B)) are conjugate to (B0, ẇB0ẇ−1) by G, where ẇ is a representative of w ∈ Wσ in G
which can be chosen to be σ-stable. The action of σ on Xw is just B 7→ σ(B), which induces an
action on the cohomology. The character RG

Tw
1 thus extends into the function

gσ 7→ Tr(gσ|H∗c(Xw, Q̄`)),
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denoted by RG.σ
Tw.σ

1. This is a particular case of the Deligne-Lusztig induction for non-
connected reductive groups developed by Digne and Michel [DM94]. More generally, given
an F-stable and σ-stable Levi factor of a σ-stable parabolic subgroup, we have the maps RG.σ

L.σ ,
that sends LF-invariant functions on LF.σ to GF-invariant functions on GF.σ.

Each irreducible character χ of GF is induced from an irreducible character χL of LF,
where L is an F-stable Levi subgroup as in the setting of Theorem 5. If L is moreover an
σ-stable factor of some σ-stable parabolic subgroup, and χL is a σ-stable character of LF, then
χ is also σ-stable. Suppose that we know how to calculate χ̃L, an extension of χL to LF.σ, then
the character formula will allow us to calculate the values of RG.σ

L.σ χ̃L, which coincides with
the values of an extension of χ on GF.σ.

Quadratic-Unipotent Characters

However, there exist some σ-stable characters of GF that can not be obtained by the above
procedure. Let us look at some examples for n = 2, 3 and 4. We take as σ the automorphism
g 7→ Jn

tg−1J−1
n with g ∈ GLn(k), where

(I.10) J2 =

(
1

−1

)
, J3 =


1

1
1

 , J4 =


1

1
−1

−1

 .
If G = GL2(k), and T is the maximal torus consisting of diagonal matrices, 1 the trivial
character of F∗q, η the order 2 irreducible character of F∗q, and if we denote by θ the character
(1, η) of TF � F∗q × F

∗
q, then one can verify that RG

Tθ is an σ-stable irreducible character while
θ ∈ Irr(TF) is not σ-stable.

Besides, a priori, the map RG.σ
L.σ is not defined for LF.<σ>, but for the normaliser NG.<σ>(L,P)

(the set of elements that simultaneously normalise L and P). If L is a σ-stable Levi factor
of a σ-stable parabolic subgroup P, then NG.<σ>(L,P) = L.<σ>, otherwise, the two groups
are not the same, as the following examples show. In fact, what really matters is whether
NG.<σ>(L,P) meets the connected component G.σ.

If G = GL4(k) and L = CG(t) with t = diag(1,−1,−1, 1), then L � GL2(k) × GL2(k) and
θ := (Id ◦det, η ◦ det) is a σ-stable irreducible character of LF and thus induces a σ-stable
irreducible character of GL4(q). However, L is not a σ-stable Levi factor of a σ-stable parabolic
subgroup, because otherwise Lσ � SL2(k) × SL2(k) would be a Levi subgroup of Gσ � Sp4(k).
In this case, NG.<σ>(L,P) = L ∪ Lnσ, where n ∈ NG(L) permutes the two components of L. So
we are back to the previous example, i.e. θ is not nσ-stable.

Now we take L = GL3(k)× k∗ and a character with semi-simple part (Id, η) with respect to
this direct sum. In this case, L itself is not σ-stable. In fact, it is not conjugate to any σ-stable
Levi subgroup. So NG.<σ>(L,P) ⊂ G, no matter which parabolic subgroup is P.

The above examples are typical. Let L = G1 × G2 be a Levi subgroup of G, where
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G1 � GLm(k) and G2 � GLn−m(k). Let χ1(resp. χ2) a unipotent irreducible character of
GF

1(resp. GF
2). The character χL := χ1⊗χ2η (or χ1η⊗χ2) always induces a σ-stable irreducible

character of GF, where we regard η as a central character of GF
1 or GF

2 . But L does not fit
into Deligne-Lusztig theory for non-connected groups: either L is not conjugate to any σ-
stable Levi factor of σ-stable parabolic subgroups, or χL is not a σ-stable character of LF.
The irreducible characters of GLn(q) of the form χL as above are called quadratic-unipotent.
They are parametrised by the 2-partitions of n. Their extensions to GLn(q).<σ>have been
computed by J.-L.Waldspurger by using character sheaves for non-connected groups. The
main result is as follows.

Let (µ+, µ−) be a 2-partition of n, to which is associated the data (ϕ+, ϕ−, h1, h2), where
ϕ+(resp. ϕ−) is an irreducible character, determined by the 2-quotient of µ+(resp. µ−), of
the Weyl groupW+(resp. W−) of type CN+(resp. CN−), while h1 and h2 are two non negative
integers related to the 2-cores of µ+ and µ−. We have n = 2N+ + 2N− + h1(h1 + 1) + h2

2.

Theorem 6 (Waldspurger). The extension of the quadratic-unipotent character of GLn(q) associated
to (µ+, µ−) is given up to a sign by

(I.11) RG.σ
ϕ =

1
|W+|

1
|W−|

∑
w+∈W+
w−∈W−

ϕ+(w+)ϕ−(w−)RG.σ
Lw.σ

φw.

In the above expression, Lw is a σ-stable and F-stable Levi factor, isomorphic to the
product GLh1(h1+1)+h2

2
(k)× Tw+ × Tw− with w± ∈W±, of a σ-stable parabolic subgroup, and φw

is some kind of "tensor product" of φ(h1, h2), 1̃ and η̃, where φ(h1, h2) is a cuspidal function
on GLh1(h1+1)+h2

2
(k).σ which is supported on an isolated conjugacy class; 1̃(resp. η̃) is the

extension of the linear character 1(resp. η) of TF
w+

(resp. TF
w−). If µ− is the empty partition and

µ+ has trivial 2-core or the 2-core (1) according to the parity of n, then Lw becomes a σ-stable
maximal torus andW+ is isomorphic to Wσ

G, the σ-fixed subgroup of the Weyl group of G.

Parametrisation of σ-Stable Characters of GLn(q)

A general σ-stable irreducible character is the product of a quadratic-unipotent com-
ponent and a component that looks like induced from an σ-stable Levi factor of a σ-stable
parabolic subgroup. See Proposition IV.1.2.2 and Proposition IV.1.2.3 for the details.

Suppose thatχ is a σ-stable irreducible character corresponding to (M, θ, ϕ) as in Theorem
5. We write θ = (αi)i with respect to the the decomposition of MF into a product of some
GLni(q

ri)’s, where αi are some characters of F∗qri and we have omitted the determinant map
from the notation. It is easy to see that the action of σ sends χ to the character associated
to (σ(M), σ∗θ, σ∗ϕ). According to the parametrisation of the irreducible characters of GLn(q),
there exists some

g ∈ NGF(σ(M),M) = {x ∈ GF
| xσ(M)x−1 = M}
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such that σ∗θ = ad∗ gθ. Note that the value of αi only depends on the determinant of the
corresponding factor. The action of σ inverts the determinant while the conjugation by g
does not change the determinant. We can then conclude that for each αi, its inverse α−1

i is
also a factor of θ. The factors satisfying α−1

i = αi form the quadratic-unipotent part.
Fix a σ-stable maximal torus T contained in a σ-stable Borel subgroup B ⊂ G and identify

the simple roots with the Dynkin diagram of G. If I is a σ-stable subdiagram of the Dynkin
diagram of G, then it defines a σ-stable Levi factor LI of some σ-stable standard parabolic
subgroup containing B. It has at most one σ-stable component, denote by L0, and so LI �

L0×L1 so that σ non-trivially permutes the factors of L1. All σ-stable standard Levi subgroup
corresponds to such an I. We associate a quadratic-unipotent character χ0 to LF

0 , and a pair of
characters, with semi-simple parts αi and α−1

i respectively, to each pair of components of L1

that are exchanged by σ. By defining the unipotent parts of the character in a way compatible
with the action of σ, we obtain a σ-stable character of LF

1 , denoted by χ1. Then RG
L (χ0⊗χ1) is a

σ-stable irreducible character of GF (for suitable αi’s), and all σ-stable irreducible characters
of GLn(q) are obtained this way. We will calculate the extension of χL = χ0 ⊗ χ1 to LF.σ,
and then apply the map RG.σ

L.σ . Note that if we regard χ as induced from (M, θ, ϕ) following
Theorem 5, then M is not necessarily σ-stable.

Extensions of σ-Stable Characters

The extension of the quadratic -unipotent part determined, the problem is reduced to the
following.

Problem. Put L1 = G0 × G0, G0 = GLm(k), and let σ0 be an automorphism of G0 of order 2.
Denote by F0 the Frobenius of GLm(k) that sends each entry to its q-th power. Define an
automorphism σ of L1 by

(I.12) (g, h) 7−→ (σ0(h), σ0(g)),

and a Frobenius F by

• Linear Case: (g, h) 7−→ (F0(g),F0(h)),

• Unitary Case: (g, h) 7−→ (F0(h),F0(g)).

The problem is to decompose the extension of a σ-stable irreducible character of LF
1 to LF

1 .<σ>

as a linear combination of Deligne-Lusztig characters.

Let us first look at the linear case. We have LF
1 = GF0

0 ×GF0
0 . Let χ be a unipotent character

of GF0
0 . Then χ � χ ∈ Irr(LF

1) is σ-stable. In order to calculate its extension, we separate σ into
two automorphisms, one sending (g, h) to (σ0(g), σ0(h)), the other one, denoted by τ, sending
(g, h) to (h, g). Denote by χ̃ an extension of χ to GF0

0 <σ0>. Consider the τ-stable character χ̃� χ̃
of GF0

0 <σ0>×GF0
0 <σ0>. Its extension to (GF0

0 <σ0>×GF0
0 <σ0>) o<τ> restricts to an irreducible
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character χ̄ of LF
1 .<σ>, regarded as a subgroup of (GF0

0 <σ0>×GF0
0 <σ0>) o<τ>. This gives an

extension of χ ⊗ χ. Some linear algebra calculation shows that χ̄((g, h)σ) = χ(gσ0(h)). The
latter is the value of a character of GLn(q).

The unitary case is a little more complicated and relies on the result of the linear case. In
this case, LF

1 � G
F2

0
0 , and the action of σ on G

F2
0

0 is given by g 7→ σ0F0(g), which can be thought
of as another Frobenius endomorphism. That is where the Shintani descent intervenes,
which relates the functions on G

F2
0

0 .σ0F0 to the functions on Gσ0F0
0 .F2

0. Note that (σ0F0)2 = F2
0

acts trivially on Gσ0F0
0 . We know how to calculate the characters of Gσ0F0

0 � GL−m(q), which
extends trivially to Gσ0F0

0 .F2
0. Thus, we obtain the extension of a character to LF

1 .σ. The result
is as follows.

Let θ1 be a σ-stable regular linear character of LF
1 and let ϕ ∈ Irr(Wσ

L1
)F. Note that a σ-

stable linear character extends trivially to LF
1 .σ, and that Wσ

L1
is in fact a product of symmetric

groups.

Theorem 7. Let χL1 be a σ-stable irreducible character of LF
1 defined by (θ,ϕ). For some choice of ϕ̃,

the extension of χL1 to LF
1 .σ is given up to a sign by

(I.13) RL1.σ
ϕ θ̃1 = |Wσ

L1
|
−1

∑
w∈Wσ

L1

ϕ̃(wF)RL1.σ
Tw.σ

θ̃1.

Combined with the preceding theorem, it gives the theorem below.
According to the parametrisation of σ-stable characters, each χ ∈ Irr(GLn(q))σ is of the

form RG
L (χ0 ⊗ χ1), where L � L0 × L1 is a σ-stable and F-stable Levi factor of some σ-stable

parabolic subgroup,χ0 is a quadratic-unipotent character of LF
0 andχ1 is aσ-stable irreducible

character of LF
1 whose semi-simple part and unipotent part are defined by θ1 ∈ Irrreg(LF

1) and
ϕ ∈ Irr(Wσ

L1
) respectively. In the following theorem, we use the notations of Theorem 6.

Theorem 8. For some choice of ϕ̃, the extension of χ is up to a sign given by

(I.14) χ̃|GF.σ = |Wσ
L1
×W+ ×W−|

−1
∑

(w,w+,w−)∈Wσ
L1
×W+×W−

ϕ̃(wF)ϕ+(w+)ϕ−(w−)RG.σ
(Tw×Lw).σ(θ̃1�̃φw).

Green Functions

We remark that in RL0.σ
Lw.σ

φw appears the generalised Green functions associated to the
centraliser of a semi-simple element in LF

0 .σ, which is in general a product of GL±m(q), Sp2m(q),
SO2m+1(q) and SO±2m(q), where the negative sign means that the Frobenius is twisted by a
graph automorphism of order 2. In [L85, V], Lusztig gives an algorithm of calculating the
generalised Green functions of classical groups. The paper of Shoji [Sh83] is also good
reference for Green functions. The values of the (generalised) Green functions have been
computed by various people, and we will not make explicit theirs values except in the
examples.



Chapter II

Preliminaries on Representations and
Algebraic Groups

II.1 Notations and Generalities

We introduce the notations, terminology and some basic results that will be used later.
In this section, we work over an algebraically closed field k of arbitrary characteristic. The

positive characteristic version of these results is essential to the problem of counting points
of character varieties over finite fields. Whenever we work with some reductive group G,
we will assume

Assumption. char k - |G/G◦|.

This implies that all unipotent elements of G are contained in G◦ and that all quasi-semi-
simple elements are semi-simple.

Throughout the thesis, we will denote by i a square root of (−1).

II.1.1 Generalities on Algebraic Groups

II.1.1.1 Let G be an arbitrary linear algebraic group, which is not necessarily connected.
A closed subgroup H of G is a Levi factor of G if G is the semi-direct product of H and Ru(G).
For any linear algebraic group in characteristic 0, Levi factor exists, and any two Levi factors
are conjugate under Ru(G). See [Ri88] 1.2.4.

A closed subgroup P ⊂ G is parabolic if G/P is complete. By [Spr] Lemma 6.2.4, P is
parabolic in G if and only if P◦ is parabolic in G◦. A closed subgroup of G is called a Levi
subgroup if it is a Levi factor of some parabolic subgroup.

An algebraic group G is reductive if G◦ is reductive. Levi factors are necessarily reductive.
For g ∈ G, we will often denote CG(g) by Hg.
We denote by X•(G) the set of cocharacters of G and by X•(G) the set of characters of G.

Note that X•(G) = X•(G◦).

23
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II.1.1.2 Let G be a reductive group acting on an algebraic variety X. Let λ ∈ X•(G◦) and let
x be a closed point of X. The G-action induces an action ofGm via λ. Denote by λx : Gm → X,
t 7→ λ(t).x the orbit morphism. We say the limit limt→0 λ(t).x exists, if the morphism λx

extends to Ga → X, and the limit is defined as the image of 0 ∈ Ga, denoted by λ(0).x.
Since G is reductive, there is a unique closed orbit contained in the closure of each orbit.

We assume from now on that G is reductive.

Theorem II.1.1.1 (Hilbert-Mumford Theorem). Let x ∈ X be a closed point and letO be the unique
closed orbit in G.x, Then there exist λ ∈ X•(G) and a closed point y ∈ O such that limt→0 .x = y.

II.1.1.3 Let λ be a cocharacter of G◦. For the G◦-conjugation action on G, we put

Pλ = {g ∈ G | lim
t→0

λ(t).g exists}

Lλ = {g ∈ G | lim
t→0

λ(t).g = g}

Uλ = {g ∈ G | lim
t→0

λ(t).g = 1}

(II.1.1.3.1)

Then Pλ is a parabolic subgroup of G, Lλ is a Levi factor of Pλ and Uλ is the unipotent radical
of Pλ. Beware that for non-connected G, not all parabolic subgroups are of the form Pλ.

The identity component P◦λ can also be defined as the unique closed subgroup of G◦whose
Lie algebra is generated by weight subspaces in g := Lie(G) with non negative weights with
respect to the adjoint action of Gm on g. Thus Uλ = U◦λ is associated to those subspaces with
positive weights and L◦λ = CG◦(Imλ).

We see that Pλ ⊂ NG(P◦λ) and Lλ ⊂ NG(L◦λ,P
◦

λ) := NG(L◦λ) ∩NG(P◦λ).

Proposition II.1.1.2. ([DM94, Proposition 1.5]) Let P◦ ⊂ G◦ be a parabolic subgroup, L◦ a Levi
factor of P◦ and U the unipotent radical of P◦. Then we have the Levi decomposition

NG(P◦) = U oNG(L◦,P◦).

Note that all Levi factors of NG(P◦) are necessarily of the form NG(L◦,P◦) for some Levi
factor L◦ of P◦.

Proposition II.1.1.3 ([Ri88] Proposition 2.4). Let P◦ ⊂ G◦ be a parabolic subgroup and let L be a
Levi factor of P := NG(P◦). Then there exists λ ∈ X•(G◦) such that P = Pλ, L = Lλ, and Ru(P) = Uλ.

Given a parabolic subgroup P◦ ⊂ G◦, NG(P◦) is the largest parabolic subgroup of G that
has P◦ as its identity component and if P◦ = P◦λ for some cocharacter λ, then Pλ is the union of
a subset of connected components of NG(P◦). Note that P◦ itself is also a parabolic subgroup
of G.

II.1.1.4 For any parabolic subgroup of the form Pλ, there is a homomorphism of algebraic
groups Pλ → Lλ, p 7→ λ(0).p, which is none other than the projection with respect to the Levi
decomposition Pλ = Uλ o Lλ.
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II.1.1.5 In general, for an arbitrary parabolic subgroup P◦ of G◦, P := NG(P◦) does not
necessarily meet all connected components of G. Let us determine the connected components
of G that meet P.

Let G1 be a connected component of G and denote by P the G◦-conjugacy class of P◦.
Observe that the conjugation of G1 on G◦ induces a well-defined bijection from the set of
G◦-conjugacy classes of parabolic subgroups of G◦ into itself. Then P meets G1 if and only
if some element of G1 normalises P◦, if and only if G1 leaves P stable. The set of conjugacy
classes of parabolic subgroups of G◦ are in bijection with the set of subsets of vertices of the
Dynkin diagram of G◦. Therefore, P meets G1 if and only if the subset of the Dynkin diagram
corresponding to P is stable under the induced action by G1.

II.1.2 Irreducible and Completely Reducible Subgroups

The definitions are natural generalisation of the case of connected groups.

II.1.2.1 Let us recall the notions of complete reducibility and irreducibility of algebraic
subgroups. For the moment, G can be any reductive algebraic group.

Definition II.1.2.1. A closed subgroup H of G is G-completely reducible if for any parabolic
subgroup P ⊂ G containing H, there is a Levi factor of P containing H. A closed subgroup H
of G is G-irreducible if it is not contained in any subgroup of of the form NG(P◦) with P◦ ⊂ G◦

being a proper parabolic subgroup.

In particular, an irreducible subgroup is completely reducible. Clearly, if G = G◦, then
the above definition coincides with the definitions for connected reductive groups.

Lemma II.1.2.2. We have

(i) A closed subgroup of G◦ is irreducible in G◦ if and only if it is irreducible in G;

(ii) A closed subgroup of G◦ is completely reducible in G◦ if and only if it is completely reducible
in G;

(ii) If H is a completely reducible subgroup of G, then H ∩ G◦ is a completely reducible subgroup
of G◦.

Proof. The first assertion is obvious. The rest is [BMR, Lemma 6.12]. �

II.1.2.2 The following result is well-known.

Theorem II.1.2.3. In characteristic 0, a closed subgroup of G is reductive if and only if it is G-
completely reducible.

This follows from the following results. See [Ri88] 1.2.4(c) and [Ri88] Proposition 2.6.
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Proposition II.1.2.4 (Mostow). Let H be a reductive subgroup of G over an algebraically closed
field of characteristic 0. Then H is contained in the Levi factor of some parabolic subgroup of G.

Proposition II.1.2.5. Let H be a closed subgroup of G and let M be a Levi factor of it. Then there
exists λ ∈ X•(G◦) such that H ⊂ Pλ, M ⊂ Lλ and Ru(H) ⊂ Uλ.

II.1.2.3 Given an n-tuple of elements of G, say x, denote by H(x) the closed algebraic
subgroup of G such that H(x)(k) is the Zariski closure of x. We will write StabG◦(x) instead of
CG◦(x). Obviously StabG◦(x) = StabG◦(H(x)).

Theorem II.1.2.6. Let G be a reductive group and let x = (x1, . . . , xn) ∈ Gn, the direct product of n
copies of G. Then the orbit G◦.x is closed if and only if H(x) is completely reducible.

Proof. Note that the orbit G.x is closed if and only if G◦.x is closed. In characteristic 0, by
Theorem II.1.2.3, we can apply [Ri88] Theorem 3.6, and in positive characteristic, this a
combination of [BMR, §6.3] and [Ma, Proposition 8.3]. �

We will need the following.

Proposition II.1.2.7 ([Ri77] Theorem A). Let X be an affine algebraic variety with a G-action. If
the G-orbit of x ∈ X is closed, then StabG(x) is a reductive group.

Recall that for an G-action on an algebraic variety X, an orbit G.x, x ∈ X, is called stable,
if it is closed and StabG(x)/ZX is finite, where ZX := ∩x∈X StabG(x) is the kernel of the action.

Theorem II.1.2.8. The G◦-orbit of x ∈ Gn is stable if and only if H(x) is an irreducible subgroup of
G and StabZG◦ (x)◦ = Z◦G.

For G = G◦, this is [Ri88, Theorem 4.1 and Proposition 16.7]. Let us suppose G , G◦.
The proof will be essentially the same as the case G = G◦ but one needs to be careful when
Z◦G , Z◦G◦ . For example, if G◦ = GLn(k) and a connected component of G acts on ZG◦ = k∗ by
x 7→ x−1 so that ZG = {±1}, then the irreducibility of the subgroup H(x) of G with x ⊂ G◦ does
not imply that G◦.x ⊂ Gn is stable.

Proof. Let us first show that the irreducibility of H(x) with the technical assumption implies
the stability of its orbit. We prove by contradiction. Suppose that the orbit G◦.x is not closed.
By the Hilbert-Mumford Theorem there exists λ ∈ X•(G) and x′ in the unique closed orbit
contained in the closure of G◦.x, such that limt→0 λ(t).x = x′. In particular, the image of x must
be contained in Pλ in order for the limit to exist. Since x , x′, λ < X•(Z◦G◦) and P◦λ is a proper
parabolic subgroup of G◦. This contradicts the irreducibility of H(x). Suppose now that the
orbit G◦.x is closed but not stable. So Stab◦G◦(x) strictly contains Z◦G. By Proposition II.1.2.7,
there exists λ ∈ X•(Stab◦G◦(x)) such that λ < X•(Z◦G). By the hypothesis in the statement of
the theorem, we have in fact λ < X•(Z◦G◦). Again, we have a proper parabolic subgroup
containing H(x), contradicting the irreducibility.
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To prove the other direction, suppose that H(x) is contained in some proper parabolic
subgroup P ⊂ G. By Proposition II.1.1.3, there exists λ ∈ X•(G) such that P = Pλ. Let
x′ = limt→0 λ(t).x and so H(x′) ⊂ Lλ. Thus λ ∈ X•(StabG◦(x′)) and x′ is not a stable point. If
G◦.x is not closed, then by definition x is not stable. If G◦.x is closed, then x′ is conjugate to
x, therefore x is not stable. �

II.2 Finite Classical Groups

II.2.1 Partitions and Symbols

II.2.1.1 We denote by Pn the set of all partitions of the integer n ≥ 0 and by P the union
∪nPn. A partition is written as λ = (λ1 ≥ λ2 ≥ · · · ), a decreasing sequence of positive
integers, or as λ = (1m1 , 2m2 , . . .) where mi is the multiplicity of i that appears in λ. Each
λi is called a part of λ. We denote by |λ| the size of λ and l(λ) the length of λ. For any
e-tuples of partitions λ = (λ(1), . . . , λ(e)) ∈ Pe (direct product of e copies), its size is defined
by |λ| :=

∑
i |λ

(i)
| and its length is defined by l(λ) :=

∑
i l(λ(i)). Denote by Pn(e) the set of all

e-partitions of n, i.e. those λwith |λ| = n. In the cases that concern us, e = 2.

II.2.1.2 A partition λ = (1m1 , 2m2 , . . .) is called symplectic if mi is even for any odd i. To
each symplectic partition λ one associates an index κ(λ) = #{i pair|mi > 0}. We denote
by Psp

n ⊂ Pn the subset of symplectic partitions. A partition λ = (1m1 , 2m2 , . . .) is called
orthogonal if mi is even for any even i. To each orthogonal partition λ one associates an index
κ(λ) = #{i impair|mi > 0}. We denote by Port

n ⊂ Pn the subset of orthogonal partitions. The
orthogonal partitions with κ = 0 are called degenerate.

II.2.1.3 Given a partition λ, we take r ≥ l(λ), and we put δr = (r − 1, r − 2, . . . , 1, 0). Let
(2y1 > · · · > 2yl0) and (2y′1 + 1 > · · · > 2y′l1 + 1) be the even parts and the odd parts of λ + δr,
where the sum is made term by term and λ is regarded as an decreasing sequence of integers
(λi)i with λi = 0 for i > l(λ).. Denote by λ(0) the partition defined by λ(0)

k = yk − l0 + k and
denote by λ(1) the partition defined by λ(1)

k = y′k − l1 + k. Then (λ(0), λ(1))r is a 2-partition that
depends on r. Changing the value of r will permutes λ(0) and λ(1). The 2-quotient of λ is then
the unordered pair of partitions (λ(0), λ(1)).

Denote by λ′ the partition that has as its parts the numbers 2s + t, 0 ≤ s ≤ lt − 1, t = 0, 1.
We have l(λ′) = l(λ). The 2-core of λ is the partition defined by (λ′k − l(λ) + k)1≤k≤l(λ). It is
independent of r and is necessarily of the form (d, d − 1, . . . , 2, 1), for some d ∈ Z>0. 1 Fixing
r, the above constructions give a bijection between the partitions of n with the same 2-core
and the 2-partitions of (n − r)/2.

II.2.1.4 We refer to [L84a] for the notion of symbols.

1 d
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Fix an even positive interger N. A symbol of symplectic type is the equivalence class of
ordered pairs (A,B) with A a finite subset of {0, 1, 2, . . .} and B a finite subset of {1, 2, 3, . . .}
satisfying the following conditions

(a) For any integer i, the set {i, i + 1} is contained neither in A nor in B;

(b) |A| + |B| is odd;

(c)
∑

a∈A a +
∑

b∈B b = 1
2 N + 1

2 (|A| + |B|)(|A| + |B| − 1);

under the equivalence that identifies (A,B) and ({0} ∪ (A + 2), {1} ∪ (B + 2)). The set of these
symbols is denoted by Ψs

N.
Fix a positive integer N > 2. A symbol of orthogonal type is the equivalence class of the

unordered pairs (A,B) of finite subsets of {0, 1, 2, . . .} satisfying the following conditions

(a) For any integer i, {i, i + 1} is contained neither in A nor in B;

(c)
∑

a∈A a +
∑

b∈B b = 1
2 N + 1

2 ((|A| + |B| − 1)2
− 1);

under the equivalence that identifies (A,B) and ({0} ∪ (A + 2), {0} ∪ (B + 2)). The set of these
symbols is denote by Ψo

N. A symbol of orthogonal type is called degenerate if it is of the form
(A,A). The subset of non degenerate symbols is denoted by Ψ

′o
N.

Two symbols are similar if they admit representatives (A,B) and (A′,B′) such that A∪B =

A′ ∪ B′ and A ∩ B = A′ ∩ B′.

II.2.1.5 To each symplectic partition is associated a symbol of symplectic type in the
following manner. Let λ be such a partition and let r be an integer such that 2r ≥ l(λ).
Denote by (2y1 > · · · > 2yr) and (2y′1 + 1 > · · · > 2y′r + 1) the even parts and the odd
parts of λ + δ2r. One can verify that there are indeed r even parts and r odd parts. Put
A = {0} ∪ {y′k + r + 2 − k | 1 ≤ k ≤ r} and put B = {yk + r + 1 − k | 1 ≤ k ≤ r}. Then (A,B) is a
symplectic symbol, whose similarity class is independent of r.

To each orthogonal partition is associated a symbol of orthogonal type in the following
manner. Let λ be such a partition and let r be an integer such that r ≥ l(λ). Denote by
(2y1 > · · · > 2y[r/2]) and (2y′1 + 1 > · · · > 2y′[(r+1)/2] + 1) the even parts and the odd parts of
λ + δr. One can verify that there are indeed [r/2] even parts and [(r + 1)/2] odd parts. Put
A = {0} ∪ {y′k + [(r + 1)/2]− k | 1 ≤ k ≤ [(r + 1)/2]} and B = {yk + [r/2]− k | 1 ≤ k ≤ [r/2]}. Then
(A,B) is a symbol of orthogonal type, whose similarity class is independent of r.

II.2.2 Weyl Groups

Some basic facts about Weyl groups of type Bm, Cm and Dm.
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II.2.2.1 Denote by w0 the permutation (1,−1)(2,−2) · · · (m,−m) of the set

I = {1, . . . ,m,−m, . . . ,−1}.

The set of permutations of I that are invariant under w0 is identified with (Z/2Z)m o Sm.
This is the Weyl group of type Bm and Cm, which will be denoted by WC

m. We will identify
Z/2Zwith µ2, the roots of unity of order 2, and denote its elements by signs ±1. An element
ofWC

m written as

w = ((ε1, . . . , εm), τ) ∈ (Z/2Z)m oSm,(II.2.2.1.1)

where ((1, . . . , 1, εi, 1, . . . , 1), 1), εi = −1 is the permutation (i,−i), and ((1, . . . , 1), τ) is the
permutation

i 7→ τ(i), −i 7→ τ(−i) = −τ(i).

II.2.2.2 The permutation τ is decomposed into cycles τ = cI1 · · · cIl , where the disjoint
subsets Ir ⊂ {1, . . . ,m} form a partition of {1, . . . ,m} and cIr is a circular permutation of the
indices in Ir. The permutation τ determines a partition (τ1, . . . , τl) of m, also denoted by τ,
with τr = |Ir|, where l = l(τ) is the length of the partition.

For all 1 ≤ r ≤ l, put ε̄r =
∏

k∈Ir
εk and εr = (εk)k∈Ir . Define the permutations

(II.2.2.2.1) τ(0) =
∏
ε̄r=1

cIr , τ(1) =
∏
ε̄r=−1

cIr ,

so that τ = τ(0)τ(1). Also denote by τ(0) = (τ(0)
r ) and τ(1) = (τ(1)

r ) the associated partitions. We
then have a 2-partition (τ(0), τ(1)), which determines the conjugacy class of w. We sometimes
call it a signed partition of n. The conjugacy classes and irreducible characters of WC

m are
both parametrised by by the 2-partitions of size n. Write l0 = l(τ(0)), and l1 = l(τ(1)).

II.2.2.3 The Weyl group of type Dm, denoted byWD
m, is the subgroup ofWC

m consisting of
the elements ((ε1, . . . , εm), τ) such that

∏
εi = 1. The parametrisation of the conjugacy classes

ofWD
m is given as follows. (See [Ca, Proposition 25]) Let τ be a signed partition. If each part

of τ is even and the ε̄r’s are all equal to 1, then the conjugacy class ofWC
m corresponding to τ

splits into two classes ofWD
m. Otherwise, this conjugacy class restricts to one single class of

WD
m..

The element ((1, . . . , 1,−1), 1) belongs to WC
m \W

D
m. It can be realised as an element of

O2m(k) \ SO2m(k). Its conjugation action on SO2m(k) permutes the two simple roots em−1 − em

and em−1 + em, and thus induces a non-trivial graph automorphism.
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II.2.3 Unipotent Classes and Centralisers

The parametrisation of unipotent conjugacy classes of finite classical groups is well
known. We refer to ([LiSe, Chapter 3, Chapter 7]) for a more complete survey. In this
paragraph, G will be one of the groups GLn(k), Spn(k), SOn(k) and On(k). If the Frobenius F
is split, we denote by GLn(q), Spn(q), SOn(q) and On(q) the associated finite groups, and if
F induces a graph automorphism of order 2, we denote by GL−n (q), SO−n (k) and O−n (k) (only
when n is even for the orthogonal groups) the associated finite groups. We will use the
notations SOε

n(k) and Oε
n(k) for all n, understanding that ε can be − only if n is even and that

+ corresponds to the split groups.

II.2.3.1 The unipotent classes of GLn(k) are parametrised by Pn, with the sizes of Jordan
blocks given by the corresponding partition. The unipotent classes of Spn(k) are parametrised
by Psp

n . These are represented by the Jordan matrices in GLn(k) that belong to Spn(k). The
unipotent classes of On(k) are parametrised by Port

n . These are represented by the Jordan
matrices in GLn(k) that belong to On(k).

II.2.3.2 Let u be a unipotent matrix in G, associated to the partition λ = (1m1 , 2m2 , . . .).
In general, we have CG(u) = VR, where V is the unipotent radical of CG(u), whence an
affine space, and R is a reductive group given as follows. For any symplectic or orthogonal
partition λ, let κ be the κ(λ) defined in §II.2.1.2.

If G = GLn(k), then
R �

∏
{i|mi>0}

GLmi .

In particular, CG(u) is connected.
If G = Spn(k), then

R �
∏
i odd

Spmi
×

∏
i even

Omi .

So CG(u)/CG(u)◦ � (Z/2Z)κ.
If G = On(k), then

R �
∏
i odd

Omi ×

∏
i even

Spmi
.

So CG(u)/CG(u)◦ � (Z/2Z)κ.
In the case G = On(k), an element z ∈ CG(u) belongs to SOn(k) if and only if its equivalence

class z̄ = (e1, . . . , eκ) ∈ CG(u)/CG(u)◦ satisfies
∏

ei = 1, where ei = ±1. So CSO(u) � (Z/2Z)κ−1

if κ > 0. It follows that if the G-conjugacy class of u contains an F-stable element, then it
contains one single GF-class if G = GLεn(k), 2κ GF-classes if G = Spn(k), and 2κ−1 GF-classes
if G = SOε

n(k) as long as κ > 0. The G-conjugacy class of u does not contain any element of
GF only when G = O−n (q) and κ(λ) = 0. If G = O+

n (q) and κ(λ) = 0, the G-conjugacy class
contains one single GF-class, which splits into two classes for the conjugation by SOn(q).
These two classes are called degenerate. Fixing u, which corresponds to the partition λ, let
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ue be an element representing the GF-class associated to e := (e1, . . . , eκ) ∈ CG(u)/CG(u)◦. We
have CG(ue)F = VFRF, where VF � Fdim V

q , and RF is given as follows.
If G = GLεn(q), then

RF �
∏

GLεmi
(q).

If G = Spn(q), then
RF �

∏
i edd

Spmi
(q) ×

∏
i even

Oei
mi

(q).

If G = Oε
n(q), then

RF �
∏
i odd

Oei
mi

(q) ×
∏

i even

Spmi
(q),

subject to the condition that if all of the mi’s are even, then
∏

ei = ε.
In the above formulas, we have renumbered the ei’s by the parts of λ, i.e. i is the part of

λ corresponding to ei.

II.2.3.3 We take u andλ as above. We have dim Spn(k) = n(n+1)/2, dim SOn(k) = n(n−1)/2,
and the following formulas.

dim CGL(u) =
∑

i

im2
i + 2

∑
i< j

imim j(II.2.3.3.1)

dim CSp(u) =
1
2

∑
i

im2
i +

∑
i< j

imim j +
1
2

∑
i odd

mi(II.2.3.3.2)

dim CSO(u) =
1
2

∑
i

im2
i +

∑
i< j

imim j −
1
2

∑
i odd

mi(II.2.3.3.3)

For the unipotent radicals, we have,

dim V(u) =
∑

i

(i − 1)m2
i + 2

∑
i< j

imim j, if G = GLn(k),(II.2.3.3.4)

dim V(u) =
1
2

∑
i

(i − 1)m2
i +

∑
i< j

imim j +
1
2

∑
i even

mi, if G = Spn(k),(II.2.3.3.5)

dim V(u) =
1
2

∑
i

(i − 1)m2
i +

∑
i< j

imim j +
1
2

∑
i even

mi, if G = SOn(k).(II.2.3.3.6)

The cardinality of finite classical groups is as follows.

|GLn(q)| = qn(n−1)/2
n∏

i=1

(qi
− 1),(II.2.3.3.7)

|GL−n (q)| = qn(n−1)/2
n∏

i=1

(qi
− (−1)i),(II.2.3.3.8)
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| Sp2m(q)| = qm2
m∏

i=1

(q2i
− 1),(II.2.3.3.9)

| SO2m+1(q)| = qm2
m∏

i=1

(q2i
− 1),(II.2.3.3.10)

| SO2m(q)| = qm(m−1)(qm
− 1)

m−1∏
i=1

(q2i
− 1),(II.2.3.3.11)

| SO−2m(q)| = qm(m−1)(qm + 1)
m−1∏
i=1

(q2i
− 1).(II.2.3.3.12)

II.2.3.4 The unipotent classes of Spn(k) are in bijection with the symplectic partitions,
and so in bijection with the similarity classes of de Ψs

n([L84a, 12.4(c)]). The unipotent
classes of On(k) are in bijection with the orthogonal partitions, and so in bijection with the
similarity classes of Ψo

n(k). Note that a degenerate partition alone forms a similarity class.
([L84a, 13.4(c)]). The symbols in the sinilarity class associated to the symplectic partition λ
are in bijection with (Z/2Z)κ, and so in bijection with the GF-conjugacy classes contained
in the G-class corresponding to λ. The symbols in the similarity class associated to the
non degenerate orthogonal partition λ are in bijection with (Z/2Z)κ−1, and so in bijection
with the GF-conjugacy classes contained in the G-class corresponding to λ. The similarity
class associated to a degenerate orthogonal partition λ consists of a single element, which
corresponds to the two degenerate classes of SOn(q), or the one conjugacy class of On(q),
corresponding toλ. For SO−n (q), there is no GF-conjugacy class corresponding to a degenerate
partition, so the degenerate symbols do not correspond to any conjugacy classes.

II.3 Non-Connected Algebraic Groups

II.3.1 Quasi-Semi-Simple Elements

We say that a not necessarily connected algebraic group G is reductive if G◦ is reductive.
In this section we denote by G such a group. If G is defined over Fq, we denote by F the
Frobenius endomorphism.

II.3.1.1 An automorphism of G◦ is quasi-semi-simple if it leaves stable a pair consisting of
a maximal torus and a Borel subgroup containing it. An element of G is quasi-semi-simple
if it induces by conjugation a quasi-semi-simple automorphism. Let (T◦, B◦) be a pair
consisting of a maximal torus and a Borel subgroup containing it. Put B = NG(B◦) and T =

NG(B◦)∩NG(T◦) to be the normalisers. We will write NG(B◦,T◦) instead of NG(B◦)∩NG(T◦).
Note that the identity component of T is T◦, so there is no confusion with the notation. By
definition, an element of G is quasi-semi-simple if and only if it belongs to T for some B◦ and
T◦.
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Proposition II.3.1.1 ([Spa] II 1.15). An element g ∈ G is quasi-semi-simple if and only if the
G◦-conjugacy class of g is closed in G.

Every semi-simple element is quasi-semi-simple ([St, Theorem 7.5]). Every element of
G normalises some Borel subgroup of G◦. In each connected component of G, quasi-semi-
simple element exists, because all Borel subgroups and all maximal torus of G◦ are conjugate
under G◦. For a given pair (T◦,B◦), the group T = NG(T◦,B◦) meets all connected components
of G. Let s ∈ G be a quasi-semi-simple element, every s-stable (for the conjugation) Borel
subgroup contains some s-stable maximal torus. Every s-stable parabolic subgroup of G◦

contains some s-stable Levi factor ([DM94, Proposition 1.11] ). However, an s-stable Levi
subgroup of G◦ is not necessarily an Levi factor of some s-stable parabolic subgroup.

Let G1 , G◦ be a connected component of G, and let s ∈ G1 be a quasi-semi-simple
element. Fix an s-stable maximal torus T0 contained in some s-stable Borel subgroup of G◦.
The quasi-semi-simple G◦-conjugacy classes in G1 are described as follows.

Proposition II.3.1.2. ([DM15][Proposition 7.1]) Every quasi-semi-simple G◦-conjugacy class in G1

has a representative in CT0(s)◦.s. Two elements ts and t′s with t, t′ ∈ CT0(s)◦, represent the same class
if and only if t and t′, when passing to the quotient T0/[T0, s], belong to the same Ws-orbit, where
[T0, s] is the commutator, which is preserved by Ws := {w ∈WG◦(T0) | sws−1 = w}.

Note that T0/[T0, s] � (Ts
0)◦/[T0, s] ∩ (Ts

0)◦.

Lemma II.3.1.3. ([DM18, Lemma 1.2 (iii)]) With T = T0 and s as above, we have,

(i) T = [T, s] · (Ts)◦;

(ii) [T, s] ∩ (Ts)◦ is finite.

In particular, dim T = dim(Ts)◦ + dim[T, s].

II.3.1.2 Let L◦ be a Levi factor of some parabolic subgroup P◦ ⊂ G◦. Put P = NG(P◦)
and L = NG(P◦,L◦) to be the normalisers. According to [Spr, Lemma 6.2.4], P is a parabolic
subgroup of G, in the sens that G/P is proper. Suppose that the Levi decomposition of P◦ is
given by P◦ = U o L◦, where U is the unipotent radical of P◦, then P = U o L. (See [DM94,
Proposition 1.5]) In particular, L is a Levi factor of P.

II.3.1.3 If s ∈ G is a quasi-semi-simple element, then the centraliser H = CG(s)◦ is reductive.
([Spa, §1.17]) If the pair (T◦, B◦) consists of an s-stable maximal torus and an s-stable Borel
subgroup of G◦ containing it, then CB◦(s)◦ is a Borel subgroup of H containing the maximal
torus CT◦(s)◦ ([DM94, Théorème 1.8(iii)]). More generally, we have

Proposition II.3.1.4. For s and H as above, we have

(i) If (L◦, P◦) is a pair consisting of an s-stable Levi subgroup and an s-stable parabolic subgroup
containing it as a Levi factor, then CP◦(s)◦ is a parabolic subgroup of H, with CL◦(s)◦ as a Levi
factor.
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(ii) If L′ is the Levi factor of a parabolic subgroup P′ ⊂ H, then there exists an s-stable parabolic
subgroup P ⊂ G◦ such that CP(s)◦ = P′, and an s-stable Levi factor L of P such that CL(s)◦ = L′.

Remark II.3.1.5. The groups P and L in this proposition are not necessarily unique in general.
See however Proposition II.3.2.1.

Proof. The first part is [DM94, Proposition 1.11]. Given L′ and P′, there exists a cocharacter of
H, say λ, such that L′ = L′λ and P′ = P′λ, where L′λ and P′λ are the Levi subgroup and parabolic
subgroup associated to λ. Regarded as a cocharacter of G◦, it defines a Levi subgroup and a
parabolic subgroup Lλ ⊂ Pλ of G◦. They are s-stable since the image of λ commutes with s.
It is clear that L′λ = Lλ ∩H and P′λ = Pλ ∩H. �

If we require that the L as in (ii) is minimal with respect to inclusion, then it is unique.

Proposition II.3.1.6. Given L′ as in the preceding proposition, we write L = CG◦(Z◦L′). It is an
s-stable Levi factor of some s-stable parabolic subgroup of G◦, such that L′ = CL(s)◦. If M ⊂ G◦ is an
s-stable Levi factor of some s-stable parabolic subgroup, such that L′ ⊂M, then L ⊂M.

The proof is completely analogous to [L03, §2.1] where the assertion is proved for s
semi-simple.

Proof. We can find a cocharacter χ : k∗ → Z◦L′ such that L = CG◦(χ(k∗)). As in the preceding
proposition, we see that L is an s-stable Levi factor of some s-stable parabolic subgroup.
Since L′ = CH(Z◦L′), we have CL(s)◦ = L′.

Note that M′ := (M ∩ H)◦ = CM(s)◦ is a Levi subgroup of H, and that L′ is a Levi
subgroup of H contained in M′. Since (Z◦M ∩ H)◦ ⊂ ZM′ , whence (Z◦M ∩ H)◦ ⊂ Z◦L′ , whence
CG(Z◦L′) ⊂ CG((Z◦M ∩H)◦). According to ([L03] §1.10), CG((Z◦M ∩H)◦)◦ = M, so L ⊂M. �

Remark II.3.1.7. In particular, if T′ ⊂ CG(s)◦ is a maximal torus, then T := CG◦(T′) is the
unique maximal torus of G◦ containing T′. It is s-stable and contained in an s-stable Borel
subgroup, and we have CT(s)◦ = T′.

Remark II.3.1.8. Let M be an s-stable Levi factor of some s-stable parabolic subgroup Q ⊂ G◦

such that CM(s)◦ = L′. Suppose moreover that the equality (Z◦M ∩ H)◦ = Z◦L′ holds, i.e. the
s-fixed part of the centre of M coincides with the centre of the s-fixed part of M. Then we
still have M = L by [L03, §1.10]. We will see in Proposition II.3.1.12 that this equality can be
satisfied only if s is a quasi-isolated element of NG(Q) ∩NG(M).

Remark II.3.1.9. It follows from the definition of L that if an element of G normalises L′, then
it normalises L.

II.3.1.4 A quasi-semi-simple automorphism σ of G is quasi-central if it satisfies the follow-
ing condition.

There exists no quasi-semi-simple automorphism of the form σ′ = σ ◦ ad g with
g ∈ G◦ such that dim CG(σ)◦ < dim CG(σ′)◦.
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A quasi-semi-simple element is quasi-central if it induces by conjugation a quasi-central
automorphism.

A quasi-semi-simple element σ ∈ G is quasi-central if and only if there exists a σ-stable
maximal torus T contained in aσ-stable Borel subgroup of G◦ such that everyσ-stable element
of NG◦(T)/T has a representative in CG(σ)◦([DM94, Théorème 1.15]). Considering the natural
map NCG(σ)◦(CT(σ)◦)→ NG◦(T), this simply means that WG◦(T)σ = WCG(σ)◦(CT(σ)◦).

Proposition II.3.1.10. ([DM94, Proposition 1.16]) Let s ∈ G be a quasi-semi-simple element nor-
malising a maximal torus T and a Borel subgroup of G◦ containing it. Then there exists t ∈ T such
that ts is quasi-central.

Proposition II.3.1.11. ([DM94, Proposition 1.23]) If σ ∈ G is quasi-central, and L ⊂ G◦ is a
σ-stable Levi factor of a σ-stable parabolic subgroup of G◦, then L = CG◦(Z◦L′), where L′ = CL(σ)◦. In
particular, for any such L, Z◦L′ = CZ◦L(σ)◦.

II.3.1.5 Let g = gsgu be the Jordan decomposition of an element of G. Write L′(g) = CG(gs)◦

and L(g) = CG◦(Z◦L′). We say that g is isolated in G if L(g) = G◦. The conjugacy class of an
isolated element will be called isolated. The isolated elements can be characterised as follows.

Proposition II.3.1.12. [L03, §2.2] Let g ∈ G, and put L′ = L′(g) and L = L(g). Then the following
assertions are equivalent.

(i) L = G◦;

(ii) Z◦L′ = CZG◦ (g)◦;

(iii) There is no gs-stable proper parabolic subgroup Q ⊂ G◦ with gs-stable Levi factor M such that
L′ ⊂M.

Our definition of isolated element agrees with the definitions in the literatures, due to
the following result, which is not obvious.

Proposition II.3.1.13. ([L03, IV. Proposition 18.2]) Let s ∈ G be a semi-simple element and u ∈ G
a unipotent such that su = us. Then su is isolated in G (for the definition in [L03, §2]) if and only if
s is isolated in G.

Therefore, the definition of isolated element for semi-simple elements coincides with
[DM18, Definition 3.1], where one fixes maximal torus T, a Borel subgroup B ⊂ G◦ containing
it and a quasi-central element σ ∈ NG(T,B), and says that tσ ∈ T.σ is isolated if CG(tσ)◦ is not
contained in a σ-stable Levi factor M of a σ-stable proper parabolic subgroup Q of G◦. Note
that in this definition, M necessarily contains T because CM(tσ)◦ contains CT(tσ)◦. Let us also
recall that, an element tσ is quasi-isolated if CG(tσ) is not contained in a σ-stable Levi factor of
a σ-stable proper parabolic subgroup of G◦.
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II.3.2 Parabolic Subgroups and Levi Subgroups

II.3.2.1 Recall that in the setting of Proposition II.3.1.4, one does not have a bijection in
general.

Proposition II.3.2.1. ([DM94, Corollaire 1.25]) Let σ be a quasi-central automorphism of G◦.

(1) The map P 7→ (Pσ)◦ defines a bijection between the σ-stable parabolic subgroups of G◦ and the
parabolic subgroups of (Gσ)◦.

(2) Then map L 7→ (Lσ)◦ defines a bijection between the σ-stable Levi factors of σ-stable parabolic
subgroups of G◦ and the Levi subgroups of (Gσ)◦.

Considering the fact that WG◦(T)σ = W(Gσ)◦((Tσ)◦), the bijection is obtained at the level of
Weyl groups.

II.3.2.2 The following propositions will be useful.

Proposition II.3.2.2. ([DM94, Proposition 1.6]) Let σ be a quasi-semi-simple element of G and let
(L◦,P◦) be a pair consisting of a Levi subgroup of G◦ and a parabolic subgroup that contains it as
a Levi factor. If the G◦-conjugacy class of (L◦,P◦) is σ-stable, then there exists x ∈ G◦ such that
(xL◦x−1, xP◦x−1) is σ-stable.

Now suppose that G is defined over Fq.

Proposition II.3.2.3. ([DM94, Proposition 1.38]) Let σ be an F-stable quasi-central element of G
and let (L◦,P◦) be a pair consisting of an F-stable Levi factor and a parabolic subgroup containing it
as a Levi factor. If the G◦F-conjugacy class of (L◦,P◦) is σ-stable, then there exists x ∈ G◦F such that
(xL◦x−1, xP◦x−1) is σ-stable.

Let L◦ be a Levi factor of some parabolic subgroup P◦ of G◦, put L = NG(L◦,P◦). Let G1 be
a connected component of G. It acts by conjugation on the G◦-conjugacy classes of the pairs
(L◦,P◦). Then L meets G1 if and only if the class of (L◦,P◦) is stable for this action. According
to the above propositions, there is a conjugate of (L◦,P◦) that is σ-stable. This means that L
contains σ and so (Lσ)◦ is a Levi subgroup of (Gσ)◦.

Proposition II.3.2.4. ([DM94, Proposition 1.40]) Assume that σ ∈ G is quasi-central, F-stable,
and G/G◦ is generated by the component of σ. Then the GF-conjugacy classes of the F-stable groups
L = NG(L◦,P◦) meeting the connected component G◦.σ are in bijection with the ((Gσ)◦)F-conjugacy
classes of the F-stable Levi subgroups of (Gσ)◦ in the following manner. Each L has has a GF-conjugate
L1 containing σ, and the bijection associates the ((Gσ)◦)F-class of ((L1)σ)◦ to the GF-class of L.

This gives in particular the classification of the GF-conjugacy classes of the F-stable groups
of the form T = NG(T◦,B◦).
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II.4 Generalised Deligne-Lusztig Induction

II.4.1 Induction for Connected Groups

We recall some generalities on the Deligne-Lusztig induction for the connected reductive
groups. In this section we assume G to be connected. If X is a variety over k, we denote
by Hi

c(X) the i-th cohomology group with compact support with coefficient in Q̄`, and we
denote by H∗c(X) =

⊕
(−1)iHi

c(X) the virtual vector space. For a finite group H, denote by
C(H) the set of the invariant Q̄`-valued functions on H

II.4.1.1 Let L be an F-stable Levi factor of some parabolic subgroup P ⊂ G not necessarily
F-stable. The Levi decomposition writes P = LU. Put L−1

G (U) = {x ∈ G|x−1F(x) ∈ U}. Then
GF acts on L−1

G (U) by left multiplication and LF acts by right multiplication. This induces a
GF
× (LF)op-module structure on Hi

c(L−1
G (U)) for any i. Let θ ∈ C(LF). The Deligne-Lusztig

induction of θ, denoted by RG
Lθ, is the invariant function on GF defined by

(II.4.1.1.1) RG
Lθ(g) = |LF

|
−1

∑
l∈LF

θ(l−1) Tr((g, l)|H∗c(L
−1(U)), for all g ∈ GF.

It does not depend on the choice of P if q , 2 (cf. [DM20, §9.2]). The functions of the form
RG

Lθ with L being a maximal torus are called Deligne-Lusztig characters.

II.4.1.2 The Green function is defined on the subset of unipotent elements in the following
manner.

QG
L (−,−) : GF

u × LF
u −→ Z

(u, v) 7−→ Tr((u, v)|H∗c(L
−1
G (U))).

(II.4.1.2.1)

The calculation of the Deligne-Lusztig induction is reduced to the calculation of the Green
functions. If g = su is the Jordan decomposition of g ∈ GF, we have the character formula
([DM91, Proposition 12.2]),

(II.4.1.2.2) RG
Lθ(g) = |LF

|
−1
|CG(s)◦F|−1

∑
{h∈GF|s∈hL}

∑
{v∈ChL(s)◦Fu }

QCG(s)◦

ChL(s)◦(u, v
−1) hθ(sv),

where hL = h−1Lh and hθ(sv) = θ(hsvh−1). The Green functions are usually normalised in
such a way that the factor |LF

|
−1 is removed from the above formula.

II.4.1.3 We will need the following simple lemmas. Let σ be an automorphism of G that
commutes with F. If L ⊂ G is an F-stable Levi subgroup, then we also denote by σ the
isomorphism LF

→ σ(L)F and the isomorphism WL(T)→Wσ(L)(σ(T)) for an F-stable maximal
torus T.
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Lemma II.4.1.1. Let M ⊂ G be an F-stable Levi subgroup and let θ be a character of MF. Then the
character (RG

Mθ) ◦ σ−1 is equal to RG
σ(M)σ∗θ.

Proof. Let Q be a parabolic subgroup containing M such that Q = MUQ. Then σ(L−1(UQ)) =

L
−1(σ(UQ)) as F commutes with σ, and so

Tr((σ(g), σ(l))|H∗c(L
−1(σ(UQ))) = Tr((g, l)|H∗c(L

−1(UQ))

for any g ∈ GF and l ∈MF. The assertion then follows from the definition of RG
Mθ. �

Lemma II.4.1.2. Assume that χ ∈ Irr(GLn(q)) is of the form RG
ϕθ for a triple (M, ϕ, θ) as in Theorem

5. Then , the character χ ◦ σ−1 is of the form RG
σ∗ϕσ∗θ for a triple (σ(M), σ∗ϕ, σ∗θ).

Proof. Since F commutes with σ, we can define Tσ(w) to be σ(Tw) and so by the definition of
RG
ϕθ, the lemma follows from the equality RG

σ(Tw)σ∗θ(g) = RG
Tw
θ(σ−1(g)). �

II.4.2 Induction for the Non Connected Groups

We will assume that G/G◦ is cyclic, and fix σ ∈ G quasi-central and F-stable such that
G = G◦.<σ>.

II.4.2.1 Given an F-stable Levi factor L◦ of some parabolic subgroup P◦ not necessarily
F-stable that is decomposed as P◦ = L◦U, we put L and P to be the normalisers defined
in §II.3.1.1. Put L−1

G (U) = {x ∈ G|x−1F(x) ∈ U} and L−1
G◦(U) = {x ∈ G◦|x−1F(x) ∈ U}. Then

GF
× (LF)op acts on L−1

G (U), and H∗c(L−1
G (U)) is thus a GF

× (LF)op-module. For θ ∈ C(LF), the
(generalised) Deligne-Lusztig induction of θ is defined by,

(II.4.2.1.1) RG
Lθ(g) = |LF

|
−1

∑
l∈LF

θ(l−1) Tr((g, l)|H∗c(L
−1
G (U)), ∀ g ∈ GF.

It does not depend on the choice of P◦ if q , 2. 2 According to Proposition II.3.2.4, the
generalised Deligne-Lusztig induction are parametrised by the pairs (L◦,P◦) consisting of
an F-stable and σ-stable Levi factor of some σ-stable parabolic subgroup. Since only those L
that meets G.σ interest us, we can assume that L = L◦.<σ>. The restriction of RG

L to L◦F.σ is
a map C(L◦F.σ) → C(G◦F.σ), that we denote by RG◦.σ

L◦.σ . To simplify the terminology, we may
also call them Deligne-Lusztig inductions.

II.4.2.2 The following lemma shows that the induction thus defined is compatible with
that defined for connected groups.

2 As is pointed out to be by F. Digne, for G = G◦.<σ>and σ non trivial, this is reduced to the case of connected
groups.
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Lemma II.4.2.1. We keep the notations as above. Denote by Res the usual restriction of functions.
If GF = LF.G◦F, then,

(II.4.2.2.1) ResGF

G◦F ◦R
G
L = RG◦

L◦ ◦ ResLF

L◦F .

Proof. See [DM94, Corollaire 2.4 (i)]. �

II.4.2.3 The Green function is defined by

QG
L (−,−) : GF

u × LF
u −→ Z

(u, v) 7−→

0 if uv < G◦

Tr((u, v)|H∗c(L−1
G◦(U))) otherwise.

(II.4.2.3.1)

Note that L−1
G◦(U) is the usual Deligne-Lusztig variety.

Proposition II.4.2.2. (Character Formula, [DM94, Proposition 2.6]) Let L be the normaliser of the
pair (L◦ ⊂ P◦) as above, and let θ be a character of LF. Then for any g ∈ GF with Jordan decomposition
g = su,

(II.4.2.3.2) RG
Lθ(g) = |LF

|
−1
|CG(s)◦F|−1

∑
{h∈GF|s∈hL}

∑
{v∈ChL(s)F

u}

QCG(s)◦

ChL(s)◦(u, v
−1) hθ(sv).

This formula will only be used in the following form.

Proposition II.4.2.3. ([DM94, Proposition 2.10]) We keep the notations as above, except that θ is
now a σ-stable character of L◦F. Denote by θ̃ an extension of θ to L◦F.σ, and let su be the Jordan
decomposition of gσ, g ∈ G◦F. Then,

(II.4.2.3.3) RG◦.σ
L◦.σ θ̃(gσ) = |L◦F|−1

|CG(s)◦F|−1
∑

{h∈G◦F|s∈hL}

∑
{v∈ChL(s)F

u}

QCG(s)◦

ChL(s)◦(u, v
−1)h

θ̃(sv).

The Green functions are usually normalised in such a way that the above two formulas
should be multiplied by |ChL(s)◦F|.

II.4.3 Uniform Functions

II.4.3.1 The irreducible characters of GF for connected G can be expressed as linear
combinations of the Deligne-Lusztig inductions of cuspidal functions on various LF. For
G = GLεn(Fq), we have Theorem 5 in Introduction. It shows that in this particular case
one only needs the functions RG

Tθ induced from F-stable tori, and the transition matrix is
given by the characters of the Weyl group of G. In general, the transition matrix could be
more complicated and the functions induced from the characters of tori are not sufficient.
The invariant functions on GF that are linear combinations of the RG

Tθ’s are called uniform
functions.
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Recall that for each w ∈ WG, the Weyl group of G, and some ẇ ∈ G representing w, one
can find g ∈ G such that g−1F(g) = ẇ, then Tw := gTg−1 is an F-stable maximal torus such
that TF

w � TFw with Fw := ad ẇ ◦ F. Then w 7→ Tw defines a bijection between the F-conjugacy
classes of WG and the GF-conjugacy classes of F-stable maximal tori.

II.4.3.2 Now assume that G is non connected. Let T ⊂ G◦ be an F-stable and σ-stable
maximal torus contained in a σ-stable Borel subgroup. If θ ∈ Irr(TF) extends into θ̃ ∈

Irr(TF.<σ>), then RG◦.σ
T.σ θ̃ belongs to C(G◦F.σ), the set of Q̄`-valued functions on G◦F.σ that are

invariant under G◦F. A function in C(G◦F.σ) is called uniform if it is a linear combination of
functions of the form RG◦.σ

T.σ θ̃.

II.4.3.3 Let χ̃ be an irreducible character of GF. It is called unipotent if χ := ResGF

G◦F χ̃

contains a unipotent character as a direct summand. In this case, ResGF

G◦F χ is a sum of
unipotent characters, as its summands are GF-conjugate. Denote by

E(G◦F.σ, (1)) = {χ̃|G◦F.σ | χ̃ is a unipotent character}.

An element of C(G◦F.σ) is called unipotent if it is a linear combination of some elements of
E(GF.σ, (1)), and we denote by C(G◦F.σ, (1)) this subspace. It is clear that the characters RG◦.σ

Tw.σ
1

are unipotent functions, and they are parametrised by the F-conjugacy classes of Wσ. An
element of C(G◦F.σ) is called uniform-unipotent if it is a linear combination of the functions
RG◦.σ

Tw.σ
1.

II.4.3.4 A natural question is to identify those elements of E(G◦F.σ, (1)) that are uniform.
We have,

Theorem II.4.3.1. ([DM94, Théorème 5.2]) Put G = GLεn(k). For any ϕ ∈ Irr(Wσ
G)F, define

(II.4.3.4.1) RG.σ
ϕ 1 := |Wσ

G|
−1

∑
w∈Wσ

G

ϕ̃(wF)RG.σ
Tw.σ

1.

Then, RG.σ
ϕ 1 is an extension of RG

π(ϕ)1, where we defined the injection π : Irr(Wσ
G) → Irr(WG)

by identifying Irr(Wσ
G) with the set of principal series unipotent representations of GL−n (Fq) and

identifying Irr(WG) to the set of the unipotent representations of GL−n (Fq).

This gives all uniform-unipotent functions on GLεn(Fq).σ. It follows that an element of
E(G◦F.σ, (1)) is either uniform or orthogonal to the space of uniform(-unipotent) functions.

II.4.3.5 ([DM15, Proposition 6.4]) The characteristic functions of quasi-semi-simple classes
are uniform. Consequently, all non uniform characters vanish on the quasi-semi-simple
classes.
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II.5 The Group GLn(k) o Z/2Z

In the following, we write G = GLn(k).

II.5.1 Automorphisms of GLn(k)

II.5.1.1 Let Jn be the matrix

(Jn)i j = δi,n+1− j

=


1

...

1

(II.5.1.1.1)

Put t0 = diag(a1, . . . , an) with ai = 1 if i ≤ [(n + 1)/2] and ai = −1 otherwise. Put J′n = t0Jn.
Define matrices

(II.5.1.1.2) J =

J′n if n is even

Jn if n is odd
, J′ =

Jn if n is even

J′n if n is odd

The automorphism σ ∈ Aut(GLn(k)) that sends g to Jtg−1J−1 will be called the standard
automorphism. We will denote by σ′ the automorphism defined by replacing J with J′

in the definition of σ. They are quasi-semi-simple automorphisms because the maximal
torus consisting of the diagonal matrices and the Borel subgroup consisting of the upper
triangular matrices are stable under the action of σ or σ′. Moreover, σ is a quasi-central
involution regardless of the parity of n, while σ′ is not an involution if n is odd and is not
quasi-central if n is even.

II.5.1.2 The classification of the involutions and the quasi-central automorphisms is well
known.([LiSe, Lemma 2.9], [DM94, Proposition 1.22]).

The conjugacy classes of the involutions are described as follows.

- If n = 2m + 1, the exterior involutions (exterior automorphisms of order 2) are all
G-conjugate and their centralisers are of type Bm.

- If n = 2m > 2, there are two G-conjugacy classes of exterior involutions, with centralis-
ers of type Cn/2 and Dn/2 respectively. If n = 2, the connected centralisers are SL2(k)
and k∗ respectively.

The conjugacy classes of quasi-central automorphisms are described as follows.

- If n = 2m + 1, there are two classes of exterior quasi-central automorphisms, with
centralisers of type Bm and of type Cm respectively.

- If n = 2m, there is one single class of exterior quasi-central automorphisms, with
centraliser of type Cm.
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Explicitly,

(II.5.1.2.1) if n = 2m,

(Gσ)◦ = Sp2m(k)

(Gσ′)◦ = SO2m(k)
, if n = 2m + 1,

(Gσ)◦ = SO2m+1(k)

(Gσ′)◦ = Sp2m(k)
.

Put t = diag(a1, . . . , am, am+1, . . . , a2m), or diag(a1, . . . , am, 1, am+1, . . . , a2m) if n is odd, with ai = i

for i ≤ m and ai = −i for i > m, we have

(II.5.1.2.2)

(Gtσ)◦ = SO2m(k) si n = 2m,

(Gtσ)◦ = Sp2m(k) si n = 2m + 1.

We say that an automorphism is of symplectic type or orthogonal type according to the
type of its centraliser. We may write

(II.5.1.2.3) σo =

σ′ if n is even

σ if n is odd
, σs =

σ if n is even

σ′ si n is odd
.

We define an automorphism τ ∈ Aut(G) as sending g to tg−1.

II.5.1.3 We will encounter another type of quasi-central automorphism. Let ι0 be an
involution of G, not necessarily an exterior automorphism. Define an automorphism ι of
G × G by (g, h) 7→ (ι0(h), ι0(g)). It is easy to see from the definition that ι is quasi-central and
(G × G)ι � G.

II.5.2 The Group Ḡ

II.5.2.1 A choice of an involution in Aut G defines a semi-direct product Ḡ := G o Z/2Z.
Suppose that σ0 is such an involution, we will write Go<σ0>= GoZ/2Z to specify the action
of 1 ∈ Z/2Z on G, in other words, σ represents the element (e, 1) ∈ G oZ/2Z, although σ0 is
not acturally an element of the group.

Proposition II.5.2.1. For G = GLn(k), there are three isomorphic classes of the semi-direct product
GoZ/2Zwhen n is even, corresponding to the inner involutions, the symplectic type outer involutions
and the orthogonal type outer involutions. When n is odd, there is one isomorphic class corresponding
to inner automorphisms, and only one isomorphic class corresponding to outer automorphisms.

Proof. Let us first consider when the semi-direct products defined by two involutions σ1 and
σ2 are isomorphic. Suppose there is an isomorphism

(II.5.2.1.1) ψ : G o<σ1>−→ G o<σ2>.

Let xσ2 be the image of σ1. It is necessary that (xσ2)2 = 1 and for all g ∈ G,

(II.5.2.1.2) ψ(σ1(g)) = ψ(σ1gσ−1
1 ) = xσ2(ψ(g))x−1.
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Comparing the two ends of this equation, we see thatσ1 andσ2 must lie in the same connected
component of Aut G.

If they are both inner automorphisms, then they must define isomorphic semi-direct
product. In fact, the resulting semi-direct product is the direct product. To see this, let
σ2 be the trivial automorphism. We can always compose ψ with an automorphism of G
(extending to G ×<σ2>) such that ψ|G = Id, then the above equation reads σ1(g) = xgx−1

for some x satisfying x2 = 1. That is, σ1 = ad x for x2 = 1, but these are exactly the inner
involutions.

If σ1 and σ2 are both outer automorphisms, then we need some explicit information
about the group G. But let us first note that if σ1 and σ2 are G-conjugate, then they define
isomorphic semi-direct product. Suppose σ1 = σ and σ2 = yσy−1 for some outer involution
σ and y ∈ G. Then we put x = σ(y)y−1. Again, assume ψ|G = Id, and so (xσ2)2 = 1 and
σ1(g) = xσ2(g)x−1 for all g ∈ G, as required.

We now restrict ourselves to G = GLn(k). We have already said that GLn(k) has two
distinct conjugacy classes of outer involutions when n is even. Suppose σ1 is of symplectic
type and σ2 is of orthogonal type and that there is an isomorphism ψ between the two semi-
direct products. Then in the group Go<σ2>, σ2

2 = 1 by definition, and (xσ2)2 = 1 as the image
of σ2

1. But xσ2 is of symplectic type as its action on G is the same as σ1, assumingψ|G = Id. We
deduce that, modulo k∗, xσ2 is conjugate to tσ2, where t is as in (II.5.1.2.2). Since (tσ2)2 = −1,
and for any z ∈ k∗ (ztσ2)2 = (tσ2)2, we have (xσ2)2 = −1, which is a contradiction. �

We will write sḠ or oḠ to indicate whether σ0 = σs or σo, and write Ḡ when there is no
need to distinguish them. Note however, that the above classification also works for SLn(k).
But in PGLn(k), since there is no difference between 1 and −1, the two isomorphism classes
degenerate, and they are actually isomorphic to Aut(G). If no confusion arises, we can also
denote by Ḡ the direct product G ×Z/2Z.

By definition, σ is a quasi-central element in G.σ.

II.5.2.2 Let H be an abstract group and let τ be an automorphism of finite order of H. By
a τ-conjugacy class of H, we mean an orbit in H under the action h : x 7→ hxτ(h−1), x, h ∈ H.
By a τ-class function on H, we mean a function that is constant on the τ-conjugacy classes.
We denote by C(H.τ) the set of τ-class functions.

On the other hand, the conjugacy classes of H o<τ>contained in H.τ are identified with
the H-conjugacy classes in H.τ, as τ(h)τ = h−1(hτ)h, which are in turn identified with the
τ-conjugacy classes of H. This justifies the notation C(H.τ).

II.5.2.3 The character tables of sḠF and of oḠF are related in the following manner.
The GF-conjugacy classes in sḠF

\ GF are in bijection with the σ-conjugacy classes in GF,
which are in bijection with the t0σ′-conjugacy classes in GF (See §II.5.1.1 for t0), which are in
bijection with the GF-conjugacy classes in oḠF

\GF. More specifically, for g ∈ GF, the GF-class
of gσ ∈ sḠF corresponds to the GF-class of gt0σ′ ∈

oḠF.
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Since σ and σ′ differ by an inner automorphism, the set of σ-stable characters coincides
with that of σ′-stable characters. However, the extension of a σ-stable character to ḠF behaves
differently for sḠF and oḠF. Let ρ : GF

→ GL(V) be a σ-stable representation of GF. To find
an extension ρ̃ ∈ Irr(sḠF) of ρ is to define ρ̃(σ) in such a way that ρ̃(σ)2 = ρ(σ2) = Id and
ρ̃(σ)ρ(g)ρ̃(σ)−1 = ρ(σ(g)) for all g ∈ GF. Suppose that we have defined such an extension, and
we would like to define ρ̃′ ∈ Irr(oḠF) by ρ̃′(t0σ′) = ρ̃(σ). For oḠF, if ρ(−1) , Id, the equality
ρ̃(σ)2 = Id would be violated. Consequently, we define instead ρ̃′(t0σ′) = ρ̃(σ)

√
ρ(−1), where

ρ(−1) has as value ± Id. Replacing
√
ρ(−1) by −

√
ρ(−1) defines another extension of ρ to oḠF.

We denote by χ̃ and χ̃′ the characters of ρ̃ et ρ̃′ respectively. Then, for all g ∈ GF,

(II.5.2.3.1) χ̃′(gt0σ
′) = χ̃(gσ)

√
ρ(−1),

regarding ρ(−1) as a scalar.

Convention II.5.2.2. Because of the above discussion, we will also denote by σ the element
t0σ′ ∈

oḠF. We will later parametrise the conjugacy classes in oḠF
\ GF with respect to σ

(Proposition II.3.1.2).

Remark II.5.2.3. We have ρ(−1) = − Id only if η has odd "multiplicity" in the semi-simple
part of ρ and q ≡ 3 mod 4. In particular, if χ̃ is a uniform function on GF.σ, then ρ(−1)
always equals to Id.

Question II.5.2.4. If q ≡ 1 mod 4, then the character table of sḠF and that of oḠF coincide
under the bijections of characters and conjugacy classes described above. Are these groups
isomorphic? Working with finite groups, there might be isomorphisms that are not deduced
from the underlying algebraic groups.

II.5.3 Quasi-Semi-Simple Elements

II.5.3.1 We have said in §II.3.1 that all semi-simple elements are quasi-semi-simple. For
Ḡ, we have

Lemma II.5.3.1. An element of Ḡ is quasi-semi-simple if and only if it is semi-simple.

More generally, if G is a reductive algebraic group and G/G◦ is semi-simple, then all quasi-
semi-simple elements are semi-simple. (See [DM94, Remarque 2.7]) In positive characteristic,
this is to require that char k - |G/G◦|. We give a short proof below.

Proof. It suffices to show that each quasi-semi-simple element sσ ∈ G.σ is semi-simple. We
see that sσ is semi-simple if and only if (sσ)2 = sσ(s)σ2 is semi-simple, as we have assumed
char k to be odd. Let (T,B) be a pair consisting of a maximal torus and a Borel subgroup
containing it, both normalised by σ. Then every quasi-semi-simple element is conjugate to
an element of (Tσ)◦σ (Proposition II.3.1.2), and its square, lies in T, and so is semi-simple. �
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Remark II.5.3.2. That sσ is semi-simple does not imply that s is so. Let us fix T and B as
above, and write B = TU, where U is the unipotent radical of B. If we take u ∈ U, then
uσ(u−1) is a unipotent element, whereas uσu−1 is semi-simple.

Remark II.5.3.3. There is no unipotent element in G.σ because an odd power of sσ lies in
G.σ.

II.5.3.2 Isolated Elements Define the diagonal matrix

(II.5.3.2.1) t( j) = diag(

j︷︸︸︷
i, . . . , i, 1, . . . , 1,

j︷     ︸︸     ︷
−i, . . . ,−i) ∈ GLn(k)

The elements t( j)σ, 0 ≤ j ≤ [n/2], are the representatives of the isolated elements (§II.3.1.5),
except when n is even and j = 1, in which case t( j)σ is quasi-isolated ([DM18, Proposition
4.2]). We have,

If n is even, CG(t( j)σ) � O2 j(k) × Spn−2 j(k);

If n is odd, CG(t( j)σ) � Sp2 j(k) ×On−2 j(k).
(II.5.3.2.2)

In particular, when n is even, t( j)σ is quasi-central only if j = 0, and when n = 2m + 1, t( j)σ
is quasi-central only if j = m. Note that our choice of σ for odd n is different from that of
[DM18].

II.5.3.3 Semisimple Conjugacy Classes of GLn(k) o Z/2Z Since we assume char k , 2,
quasi-semi-simple elements are semi-simple.

At the level of the parametrisation of semi-simple G-conjugacy classes contained in G.σ,
there will be no difference between sḠ and oḠ, so we write Ḡ = G ∪ G.σ and σ can be either
σo or σs in this part. Let T be the diagonal matrices(a σ-stable maximal torus) of G and let
W be the Weyl group defined by T, which admits an action of σ induced from G. Denote by
Wσ the subgroup of σ-fixed points. The Borel subgroup of upper triangular matrices is also
stable under σ.

Denote by (Tσ)◦ the connected centraliser of σ in T. It consists of matrices of the form

(II.5.3.3.1) diag(a1, . . . , am, a−1
m , . . . , a

−1
1 ), ai ∈ k∗

if n = 2m, and with an extra 1 in the middle if n is odd.
Denote by [T, σ] the commutator. It consists of

(II.5.3.3.2) diag(b1, . . . , bm, bm, . . . , b1), bi ∈ k∗,

if n = 2m, and with an extra 1 in the middle if n is odd.
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So S := (Tσ)◦ ∩ [T, σ] consists of

(II.5.3.3.3) diag(e1, . . . , em, em, . . . , e1), ei ∈ {±1}.

and modified accordingly for n odd.
By Proposition II.3.1.2, the semisimple conjugacy classes in G.σ are parametrised by the

Wσ-orbits on the quotient (Tσ)◦/S. The two automorphisms σs and σo have the same action
on T and on W, so we see that there is indeed no difference between them. Note that Wσ

is isomorphic to (Z/2Z)m o Gm so that in some basis {ε1, . . . , εm, ε−m, . . . , ε−1} diagonalising
T, Wσ acts by interchanging εi and ε−i(the Z/2Z factors) and symmetrically permuting the
vectors ε1, . . . , εm and ε−m, . . . , ε−1(the symmetric group).

In other words, the semisimple classes have representatives

(II.5.3.3.4) diag(a1, . . . , am, a−1
m , . . . , a

−1
1 )σ,

and the following operations will leave it in the same conjugacy class:

- Interchanging ai and a−1
i ;

- Changing any pair (ai, a−1
i ) to (−ai,−a−1

i );

- Symmetrically permuting the ai’s and a−1
i ’s.

For any z ∈ k∗, denote by z̄ the set {z,−z, z−1,−z−1
}, or rather, the orbit in k∗ under the action

ofZ/2Z×Z/2Z, with two generators of the group sending z to−z and z−1 respectively. Then
the set {ā1, . . . , ām} is considered as the set of eigenvalues of the above semi-simple element.

If C is any semisimple conjugacy class contained in G.σ. Then C̃ = {(xσ)2
|xσ ∈ C} is a

σ-stable conjugacy class in G. However, not all σ-stable semi-simple conjugacy classes of G
are of this form.

II.5.4 Irreducible Subgroups of GLn o<σ>

II.5.4.1 Maximal Parabolic Subgroups of G o Z/2Z We are only interested in those
parabolic subgroups that meet both connected components of Ḡ = GoZ/2Z. If GoZ/2Z �

G ×Z/2Z, then a maximal parabolic subgroup is just the union of two copies of a maximal
parabolic subgroup of G, one copy in each connected component.

Now let G o Z/2Z be defined by some graph automorphism σ. For G = GLn(k), there
will be no difference between sḠ and oḠ for the present problem, so we will not specify
the conjugacy class of σ0. We conclude from §II.1.1.5 that if T is the maximal torus of the
diagonal matrices and B is the Borel subgroup of the upper triangular matrices, then every
maximal standard parabolic subgroup P of G containing B such that NḠ(P) meets G.σ0 is of
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the following form, 
A ∗ ∗

0
∗

0
∗

0 0 0 B


,

where A and B are square matrices of the same size. Normalisers of such P’s (= P ∪ Pσ0)
are the representatives of the G-conjugacy classes of maximal parabolic subgroups of Ḡ that
meet G.σ0.

II.5.4.2 Irreducible Subgroups of GLn o<σ> Let H0 ⊂ GLn be a topologically finitely gen-
erated closed subgroup. i.e. H0 = H(x) for some finite tuple x of closed points of GLn

and let H ⊂ GLn o<σ>be a closed subgroup generated by H0 and an semi-simple element
x0σ ∈ GLn .σ such that H0 = H ∩GLn. This condition is equivalent to

- x0σ ∈ NGLn .σ(H0);

- (x0σ)2
∈ H0.

Proposition II.5.4.1. If H is irreducible, then the natural representation kn of GLn is a direct
sum of pairwise non isomorphic irreducible H0-representations, say

⊕
j V j, and the centraliser

CGLn(H) is isomorphic to
∏

j µ2, where for each j, the elements of µ2 = {± Id} are regarded as scalar
endomorphisms of V j.

Proof. The second statement follows from the proof of the first.
Let us first note that the centre of GLn o<σ> is {± Id}, so irreducibility is equivalent to

having finite centraliser in GLn by Theorem II.1.2.8. (The group H is topologically generated
by finitely many, say m, elements. Then consider the conjugation action of G◦ on Gm,
G = GLn o<σ>.) Since H is irreducible, H0 is completely reducible in GLn by Lemma II.1.2.2,
and so kn can be written as a direct sum of irreducible H0-representations, say

(II.5.4.2.1) kn �
⊕

j

V
⊕r j

j ,

where V j is not isomorphic to V j′ whenever j , j′. We see that

(II.5.4.2.2) CGLn(H0) �
∏

j

GLr j ,

where each entry of GLr j(k) is identified with a scalar endomorphism of V j.
Let us now prove that r j = 1 for all j. In order for an element of CGLn(H0) to centralise

H, it suffices for it to commute with x0σ. Since x0σ normalises H0, it normalises CGLn(H0).
Also, (x0σ)2

∈ H0, so x0σ defines an order 2 automorphism of CGLn(H0) as an algebraic group.
Choose a x0σ-stable maximal torus of CGLn(H0) and consider its root system with respect
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to this maximal torus. If its action permutes two root subgroups of CGLn(H0), say Uα and
Uβ, α , β. Then CGLn(H) would have positive dimension, which is a contradiction. So x0σ

fixes all roots of CGLn(H0). But then it would be an inner semi-simple automorphism of the
derived subgroup of CGLn(H0), thus fix a maximal torus of it. We deduce that the derived
subgroup of CGLn(H0) must have rank 0, i.e. CGLn(H0) is a torus. This means that r j = 1 for
all j.

The semi-simplicity of x0σ is only needed in the following arguments. Now denote by
S the torus CGLn(H0). Let M = CGLn(S). It is a x0σ-stable Levi subgroup. (In fact this Levi
subgroup corresponds to the above decomposition of kn into irreducible representations.)
So M contains a x0σ-stable maximal torus T, which necessarily contains its centre S. Since
the action of x0σ on T � (Gm)n is a combination of inversing and permuting factors, so is its
action on S. The only possibility for x0σ to have finite centraliser in S is that all factors of S
are inversed while the permutation is trivial. Hence CGLn(H) �

∏
j µ2. �



Chapter III

Character Varieties with
Non-Connected Structure Groups

III.1 G o Γ-Character Varieties

Let k be an algebraically closed field.

III.1.1 (Γ, ψ)-Invariant Representations

We define and study the (Γ, ψ)-invariant k-representations of finitely generated discrete
groups.

III.1.1.1 Let Π be a finitely generated discrete group and let p : Π̃ → Π be a finitely
generated normal subgroup with finite index, i.e. we have the short exact sequence

1 −→ Π̃
p
−→ Π −→ Γ −→ 1.

We choose once and for all a section γ∗ : Γ→ Π. Write γσ = γ∗(σ) for σ ∈ Γ. In general, it can
only be a map of sets, but we can always require that γ1 = 1.

Let G be a connected reductive group over k. Denote by ZG the centre of G and denote
by Gad = G/ZG the corresponding group of adjoint type. Denote by Aut G the group of
automorphisms of G, its identity component being Gad. Denote by A(G) the component
group (Aut G)/Gad. When the centre of G has dimension ≤ 1, it is a finite group. Let
ψ : Γ→ Aut G be a group homomorphism.

Denote by Rep(Π̃,G) := Hom(Π̃,G) the space of G-representations of Π̃. The conjugation
by G on the target induces an action on Rep(Π̃,G). Denote by Ch(Π̃,G) the resulting GIT
quotient, called the G-character variety of Π̃.

Definition III.1.1.1. For any ρ̃ ∈ Rep(Π̃,G), we say ρ̃ is (Γ, ψ)-invariant if there exists some

49
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cochain h∗ = (hσ)σ∈Γ ∈ C1(Γ,G) such that for any σ ∈ Γ,

(III.1.1.1.1) hσρ̃h−1
σ = σρ̃ := ψ(σ) ◦ ρ̃ ◦ Cσ,

where Cσ is the isomorphism

Π̃ −→ Π̃

α 7−→ γ−1
σ αγσ,

(III.1.1.1.2)

and hσ conjugates on the target of ρ̃. In this case, we say that (ρ̃, h∗) is a (Γ, ψ)-invariant pair.
If no confusion arises, we simply say Γ-invariant instead of (Γ, ψ)-invariant.

We will simplify the notations in what follows by writing ψ(σ) as ψσ and by writing
hσρ̃h−1

σ as hσρ̃. However, when we evaluate the representation at a particular element, say α,
we will use the usual notation hσρ̃(α)h−1

σ .

Remark III.1.1.2. Note that ρ̃ 7→ σρ̃ does not define a group action of Γ on Rep(Π̃,G) because
γτγσ is not necessarily equal to γτσ, for any σ, τ ∈ Γ. But since ρ̃(γτγσγ−1

τσ ) ∈ G, we do have a
G-action of Γ on Ch(Π̃,G).

III.1.1.2 We list below some basic properties.

(i) If (ρ̃, h∗) is a (Γ, ψ)-invariant pair, then (xρ̃, (ψσ(x)hσx−1)) is also a (Γ, ψ)-invariant pair.

(ii) If (ρ̃, h∗) is a (Γ, ψ)-invariant pair, then (ρ̃, h∗z) is also (Γ, ψ)-invariant for any z ∈ StabG(ρ̃).

(iii) Let (ρ̃, h∗) be a (Γ, ψ)-invariant pair. Let ψ′ : Γ → Aut G be another homomorphism.
Suppose for all σ ∈ Γ, ψ′σψ−1

σ = ad xσ, for some xσ ∈ G. Then ρ̃ can be completed into a
(Γ, ψ′)-invariant pair by defining h′σ = xσhσ.

(iv) If (ρ̃, h∗) is a (Γ, ψ)-invariant pair for a choice of γ∗, then for another γ′∗, the pair
(ρ̃, (ψσ(ρ̃(δ−1

σ ))hσ)σ) is (Γ, ψ)-invariant, with δσ = γ−1
σ γ

′
σ.

In the case of (iii), we say that ψ and ψ′ are similar. So if ψ and ψ′ are similar, then ρ̃ is
(Γ, ψ)-invariant if and only if it is (Γ, ψ′)-invariant. Similarity classes are parametrised by the
set of homomorphisms of discrete groups

Hom(Γ,A(G)).

Each such homomorphism can be lifted to a homomorphism to Aut G, since the latter is
the semi-direct product of A(G) and the inner automorphisms. We will denote by [ψ] the
similarity class of ψ.
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III.1.1.3 Let G o Γ be the semi-direct product defined by the given ψ. There is a natural
section s : Γ→ G o Γ, which is a group homomorphism, satisfying

ψσ(g) = sσgs−1
σ , for any g ∈ G and σ ∈ Γ,

where we write sσ = s(σ) for any σ ∈ Γ.

Definition III.1.1.3. We say a homomorphism of groups Π→ GoΓ is a GoΓ-representation
of Π if the right square of the following diagram commutes

1 Π̃ Π Γ 1

1 G G o Γ Γ 1

ρ̃ ρ Id

p

where ρ̃ is just the restriction of ρ. We say that ρ̃ is the underlying G-representation of ρ.

We will show that the (Γ, ψ)-invariant pairs correspond exactly to G o Γ-representations.

Lemma III.1.1.4. If ρ̃ is the underlying G-representation of some Go Γ-representation ρ, then there
exists some cochain h∗ such that (ρ̃, h∗) is (Γ, ψ)-invariant.

Proof. We calculate, for any α ∈ Π̃,

σρ̃(α) = ψσ ◦ ρ ◦ p ◦ Cσ(α)

= ψσ ◦ ρ(γ−1
σ αγσ)

= (ψσρ(γ−1
σ )) · ρ̃(α)

(III.1.1.3.1)

By the definition of G o Γ and the commutativity of the diagram, the conjugation action of
ρ(γσ) on G differs from ψσ by an inner automorphism, so we can define hσ ∈ G to be any
element that induces this automorphism. �

III.1.1.4 The above lemme also gives a way to extend a (Γ, ψ)-invariant ρ̃ to a G o Γ-
representation. Indeed, if σρ̃ = hσρ̃, comparing this equation with the above calculation
suggests

(III.1.1.4.1) ρ(γσ) := h−1
σ sσ,

since the conjugation by sσ is just ψσ. Any element in Π can be uniquely written as ηγσ for
some σ ∈ Γ and η ∈ Π̃. We then define

(III.1.1.4.2) ρ(ηγσ) := ρ̃(η)ρ(γσ).

In particular, ρ|Π̃ = ρ̃.
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Lemma III.1.1.5. Let (ρ̃, h∗) be a (Γ, ψ)-invariant pair and put gσ1σ2 := ρ̃(γσ1γσ2γ
−1
σ ). Then the

formulae (III.1.1.4.1) and (III.1.1.4.2) define a homomorphism of groups Π→ Go Γ if and only if for
any σ1, σ2 ∈ Γ, the equality

(III.1.1.4.3) gσ1σ2 = h−1
σ1
ψσ1(h−1

σ2
)hσ1σ2

holds and h1 = 1.

Proof. Since γ1 = 1 and s1 = 1, the equality (III.1.1.4.1) implies that h1 must be 1. Put σ = σ1σ2.
The claimed condition is equivalent to

(III.1.1.4.4) ρ(γσ1γσ2γ
−1
σ ) = ρ(γσ1)ρ(γσ2)ρ(γσ)−1.

Note that γσ1γσ2γ
−1
σ ∈ Π̃. Therefore it is a necessary condition. We will show that this

equality implies ρ(η1γσ1η2γσ2) = ρ(η1γσ1)ρ(η2γσ2), for any σ1, σ2 ∈ Γ, and any η1, η2 ∈ Π̃.
First we have, for any η ∈ Π̃ and any σ ∈ Γ,

ρ(γσ)ρ̃(η)ρ(γ−1
σ )

=h−1
σ ψσ(ρ̃(η))hσ

=h−1
σ
σρ̃(γση)hσ

=h−1
σ hσρ̃(γση)h−1

σ hσ
=ρ̃(γση).

(III.1.1.4.5)

where γση := γσηγ−1
σ .

We then calculate, writing σ = σ1σ2,

ρ(η1γσ1η2γσ2)

=ρ(η1(γσ1η2)γσ1γσ2)

=ρ(η1(γσ1η2)γσ1γσ2γ
−1
σ γσ)

=ρ̃(η1)ρ̃(γσ1η2)ρ̃(γσ1γσ2γ
−1
σ )ρ(γσ)

=ρ̃(η1)ρ(γσ1)ρ̃(η2)ρ(γ−1
σ1

)ρ(γσ1)ρ(γσ2)ρ(γσ)−1ρ(γσ)

=ρ̃(η1)ρ(γσ1)ρ̃(η2)ρ(γσ2)

=ρ(η1γσ1)ρ(η2γσ2).

(III.1.1.4.6)

�

Lemma III.1.1.6. Let (ρ̃, h∗) be a (Γ, ψ)-invariant pair. Then gσ1σ2 is equal to h−1
σ1
ψσ1(h−1

σ2
)hσ up to

StabG(ρ̃)

Proof. Let us compute ∗ := σ1(σ2(ψ−1
σ ◦ ρ̃ ◦ C−1

σ )). Note that the equality ψσ ◦ ρ̃ ◦ Cσ = hσρ̃
implies ψ−1

σ ◦ ρ̃ ◦ C−1
σ = ψ−1

σ (h−1
σ )ρ̃.

On the one hand, using the equality τρ̃ = ψτ ◦ ρ̃◦Cτ for τ equal to σ1, σ2 ∈ Γ, and σ = σ1σ2,
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we have,

(III.1.1.4.7) ∗ = ρ̃ ◦ C−1
σ ◦ Cσ2 ◦ Cσ1 .

Since gσ1σ2 = ρ̃(γσ1γσ2γ
−1
σ ), the above equation gives ∗ = g−1

σ1σ2
ρ̃.

On the other hand, using the equality τρ̃ = hτρ̃ for τ equal to σ1, σ2 ∈ Γ and the equality
at the beginning of the proof, we have,

(III.1.1.4.8) ∗ = h−1
σ ψσ1(hσ2)hσ1 ρ̃.

whence the lemma. �

Thus being Γ-invariant almost gives the equality in Lemma III.1.1.5.

III.1.1.5 Remarks on Fundamental Groups Let p : X̃ → X be an unbranched covering of
topological manifolds with Galois group Γ (the group of covering transformations Aut(X̃/X)).
Choose base points x̃ ∈ X̃ and x = p(x̃). Our convention is that by a juxtaposition βα of paths
we mean the path starting from α and ending along β, so that we have the short exact
sequence

(III.1.1.5.1) 1 −→ π1(X̃, x̃) −→ π1(X, x) −→ Γop
−→ 1.

We may omit the base point in the notation of π1 if no confusion arises. Then the general
arguments apply to Π̃ = π1(X̃) and Π = π1(X). We choose once and for all a section (a map
of sets) γ∗ = (γσ)σ∈Γ of the natural projection π1(X)→ Γop as in the general setting.

Let λσ be the unique lift of γσ starting from x̃. For any σ ∈ Γ, let σ also denote the
isomorphism π1(X̃, x̃)→ π1(X̃, σ(x̃)) and denote by Cλσ the isomorphism

π1(X̃, σ(x̃)) −→ π1(X̃, x̃)

α 7−→ λ−1
σ αλσ,

(III.1.1.5.2)

For any α ∈ π1(X̃, x̃), Cλσ ◦ σ(α) = λ−1
σ α

σλσ is the unique lift of γ−1
σ αγσ ∈ π1(X) in π1(X̃),

therefore Cλσ ◦ σ can be identified with the conjugation by γ−1
σ . Now (Γ, ψ)-invariant G-

representation should be defined by

(III.1.1.5.3) hσρ̃h−1
σ = σρ̃ := ψ−1

σ ◦ ρ̃ ◦ Cλσ ◦ σ,

This reason why we have ψ(σ)−1 instead of ψ(σ) is as follows.
Let ψop : Γop

→ Aut G be the composition of ψ and Γop
→ Γ, x 7→ x−1. It defines a

semi-direct product as in the short exact sequence

(III.1.1.5.4) 1 −→ G −→ G oψop Γop
−→ Γop

−→ 1

which comes with a homomorphism s : Γop
→ Goψop Γop being a section of the quotient map,
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satisfying

(III.1.1.5.5) ψσ−1(g) = ψ
op
σ (g) = sσgs−1

σ ,

where we write s(σ) as sσ.

III.1.2 G o Γ-Character Varieties

Let us define the the character varieties that we will study.

III.1.2.1 We put

(III.1.2.1.1) Rep
Γ
(Π̃,G) := {(ρ̃, (hσ)) ∈ Rep(Π̃,G) ×

∏
σ∈Γ

G | σρ̃ = hσρ̃, for all σ ∈ Γ}.

Note that if (ρ̃, (hσ)) ∈ Rep
Γ
(Π̃,G), then every element of (ρ̃, (hσ. StabG(ρ̃))) lies in Rep

Γ
(Π̃,G).

The cochain (hσ)σ∈Γ will be written as h∗.
Consider the morphism

Rep
Γ
(Π̃,G) −→

∏
σ,τ∈Γ

G

(ρ̃, (hσ)) 7−→ kστ = h−1
στψσ(hτ)hσgστ.

(III.1.2.1.2)

Note that with γ∗ fixed, gστ only depends on ρ̃. Denote by RepΓ(Π̃,G) the inverse image
of (1)σ,τ. The equality of Lemma III.1.1.5 implies that, for (ρ̃, (hσ)) ∈ RepΓ(Π̃,G), (hσ)σ∈Γ is
determined by those hσ’s associated with the generators of Γ.

III.1.2.2 Denote by RepΓ(Π,G) the variety of G o Γ-representations of Π. Recall that these
are the homomorphisms ρ making the following diagram commute

1 Π̃ Π Γ 1

1 G G o Γ Γ 1

ρ̃ ρ Id

p

As in the case of classical character varieties, this variety can be described in terms of the
images of the generators (and relations) of Π with the additional constraint on the connected
components they belong to.

III.1.2.3 The variety RepΓ(Π̃,G) of (Γ, ψ)-invariant pairs admits an action of G:

x : (ρ̃, h∗) 7→ (xρ̃, (ψσ(x)hσx−1)), for any x ∈ G.
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Denote by ChΓ(Π̃,G) the GIT quotient RepΓ(Π̃,G)//G.
The variety RepΓ(Π,G) admits the conjugation action of G. Denote by ChΓ(Π,G) =

RepΓ(Π,G)//G the GIT quotient. This is the character variety with structure group G o Γ.

Theorem III.1.2.1. There is an isomorphism of algebraic varieties

(III.1.2.3.1) ChΓ(Π̃,G) � ChΓ(Π,G)

Proof. By Lemma III.1.1.4 and Lemma III.1.1.5, the restriction of ρ to Π̃ defines a morphism
RepΓ(Π,G) → RepΓ(Π̃,G). More concretely, the map sends ρ to (ρ̃, h∗) with ρ̃ := ρ ◦ p and
hσ := sσρ(γσ)−1. Again by Lemma III.1.1.5, there is a well-defined morphism RepΓ(Π̃,G) →
RepΓ(Π,G). The two morphisms are obviously inverse to each other thus give an isomor-
phism. It can easily be checked that this isomorphism is G-equivariant, so we have an
isomorphism bwtween the quotients. �

Remark III.1.2.2. In case Π̃ = π1(X̃) and Π = π1(X) are fundamental groups of some
topological spaces, we write Rep(X̃,G), RepΓ(X,G). etc.

III.2 Irreducibility and Semi-Simplicity

III.2.1 Irreducible and Semi-Simple G o Γ-Representations

We will follow the notations in §1. Write Ḡ = G o Γ.

III.2.1.1 For ρ : Π→ Ḡ, let x be a tuple of elements of Ḡ which are images of a finite set of
generators of Π. We put H(ρ) := H(x).

Definition III.2.1.1. We say that ρ is semi-simple if H(ρ) is a completely reducible subgroup
of Ḡ. We say that ρ is irreducible if H(ρ) is an irreducible subgroup of Ḡ.

In particular, an irreducible Ḡ-representation is semi-simple. We have the following basic
property.

Proposition III.2.1.2. If ρ is a semi-simple Ḡ-representation of Π, then its underlying representation
ρ̃ is semi-simple.

In particular, the underlying G-representation of an irreducible Ḡ-representation is semi-
simple. However, ρ̃ is not necessarily irreducible in general.

Proof. This follows from Lemma II.1.2.2. �
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III.2.1.2 We will need the following notions later.

Definition III.2.1.3. Let ρ̃ : Π̃ → G be a representation. We say that ρ̃ is strongly irreducible
if ρ̃ is irreducible and StabG(ρ̃) = ZG. We say that a (Γ, ψ)-invariant pair (ρ̃, h∗) is strongly
irreducible if ρ̃ is strongly irreducible.

Definition III.2.1.4. Let ρ : Π→ Ḡ be a Ḡ-representation. We say that ρ is strongly irreducible
if ρ is irreducible and StabG(ρ) = ZḠ.

Irreducible GLn(k)-representations are strongly irreducible.

III.2.1.3 We are now ready to state the results on the orbits of semi-simple and irreducible
Ḡ-representations.

Theorem III.2.1.5. The G-orbit of ρ ∈ RepΓ(Π,G) is closed if and only if ρ is a semi-simple
Ḡ-representation of Π.

Proof. By Theorem II.1.2.6, the assertion holds whenever Π is a free group with n generators.
Since our representation variety can be realised as a closed (See Proposition II.3.1.1) G-
invariant subvariety of Ḡn for some n, we are done. �

Therefore, the character variety ChΓ(Π,G) is the coarse moduli space of semi-simple
Ḡ-representations.

Theorem III.2.1.6. The G-orbit of ρ ∈ RepΓ(Π,G) is stable if and only if ρ is an irreducible
Ḡ-representation of Π.

Proof. As in the proof of the previous theorem, we are reduced to the case where RepΓ(Π,G)
is replaced by a direct product of finitely many Ḡ. Note that the technical assumption in
Theorem II.1.2.8 is always satisfied for the images of ρ as Imρmeets all components of G. �

III.2.1.4 For Π/Π̃ � Z/2Z, we translate Proposition II.5.4.1 into the following.

Proposition III.2.1.7. If ρ : Π → GLn(k) o<σ> is an irreducible GLn(k) o<σ>-representation,
then its underlying GLn(k)-representation ρ̃ is a direct sum of pairwise non isomorphic irreducible
representations.

With the assumptions in the proposition, we have the following remark.

Remark III.2.1.8. If γ ∈ Π \ Π̃ and hσ := ρ(γ) is semi-simple, then it satisfies the assump-
tions on x0σ in Proposition II.5.4.1. According to the proof of that proposition, if Im ρ̃ is
decomposed into a direct sum of (pairwise non isomorphic)irreducible representations Vi,
then the conjugation by hσ leaves each factor stable. Considering hσ as an automorphism
of the group

∏
i GL(Vi), we may say that ρ is a direct sum of pairwise non isomorphic

GL(Vi) o<hσ>-representations.
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III.2.1.5 Openness

Proposition III.2.1.9. The set of irreducible representations in RepΓ(Π,G) or ChΓ(Π,G) is Zariski
open.

Proof. This is a direct consequence of Theorem III.2.1.6, since the locus of stable points is
open. �

Lemma III.2.1.10. Let ρ be a Ḡ-representation with underlying G-representation ρ̃. If ρ̃ is strongly
irreducible, then ρ is strongly irreducible.

Proof. Since the image of ρmeets all connected components of Ḡ, if ρ̃ satisfies StabG(ρ̃) = ZG,
then StabG(ρ) = ZḠ. �

We will assume that the set {ρ | ρ̃ is strongly irreducible} is non-empty.

Remark III.2.1.11. By Proposition II.5.4.1, if a GLn o<σ>-representation is strongly irre-
ducible, then the underlying GLn-representation is necessarily (strongly) irreducible.

Proposition III.2.1.12. The set of irreducible Ḡ-representations in RepΓ(Π,G) or ChΓ(Π,G) with
strongly irreducible underlying G-representations is Zariski open.

Proof. Theorem III.1.2.1 gives an isomorphism RepΓ(Π,G) � RepΓ(Π̃,G), which can be pro-
jected to Rep(Π̃,G). Then the subset in question is just the inverse image of the subset of
strongly irreducibles in Rep(Π̃,G), which is open. �

III.2.2 Classification Problem

Eventually, we would like to have a representation variety such that the subset {ρ |
ρ̃ is irreducible} is non-empty. For this reason, we need to study the condition under which
an irreducible (Γ, ψ)-invariant G-representation can be extended to some GoΓ-representation.
To simplify the situation, we require instead that

{ρ ∈ RepΓ(Π,G) | ρ̃ is strongly irreducible}

is non-empty.
Our reference for group cohomology is [Ser, Chapitre I, §5]. If we were to work in the

setting of §III.1.1.5, we could equivalently work with the right action of Γ on ZG with σ ∈ Γ

acting by ψσ−1 , but the differential map on cochains should be changed accordingly.

III.2.2.1 Denote by Chs.irr(Π̃,G) ⊂ Ch(Π̃,G) the open subvariety of strongly irreducible
representations.

Lemma III.2.2.1. Let ρ̃ be a strongly irreducible G-representation of Π̃ and denote by [ρ̃] its G-orbit.
Then there exists some cochain h∗ such that (ρ̃, h∗) is a Γ-invariant pair if and only if [ρ̃] is a point of
Chs.irr(Π̃,G) fixed by Γ.
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Proof. Obvious. �

Remark III.2.2.2. The fixed points locus Chs.irr(Π̃,G)Γ only depends on [ψ].

III.2.2.2 By Lemma III.1.1.5 and Lemma III.1.1.6, if ZG = 1, then any strongly irreducible
(Γ, ψ)-invariant pair (ρ̃, h∗) defines a representation ρ : Π→ G o Γ, and if ZG , 1, invariance
under (Γ, ψ) is not sufficient. Note that for an arbitrary (Γ, ψ)-invariant pair (ρ̃, h∗), h∗ is not
uniquely determined by ρ̃, as each of its factors can be multiplied by StabG(ρ̃) on the right.
Therefore, the correct question is whether h∗ can be chosen to define an extension ρ.

We define for any strongly irreducible (ρ̃, h∗) a cochain (kστ)σ,τ∈Γ ∈ C2(Γ,ZG) by

(III.2.2.2.1) kστ := h−1
στψσ(hτ)hσgστ.

Remark III.2.2.3. Working with Γop, we should define kστ = h−1
στψ

−1
τ (hσ)hτgστ instead.

Proposition III.2.2.4. Choose a section γ∗ : Γ→ Π and a homomorphism ψ : Γ→ Aut G, let (kστ)
be the cochain associated to a given strongly irreducible (Γ, ψ)-invariant pair (ρ̃, h∗) defined as above.
Then,

(i) The cochain (kστ) is a cocycle;

(ii) The cohomology class of (kστ) does not depend on h∗;

(iii) The cohomology class of (kστ) does not depend on the choice of γ∗;

(iv) Fixing ρ̃, the cochain h∗ can be modified (by StabG(ρ̃)) to satisfy the condition in Lemma
III.1.1.5 if and only if (kστ) is a coboundary.

We will denote by cψ(ρ̃) := [kστ] the cohomology class of (kστ), which only depends on ψ
and ρ̃. The cohomology group H2(Γ,ZG) only depends on the similarity classe of ψ in the
sense of §III.1.1.2.

Proof. Let us show that (kστ) is a cocycle. The differential d : C2(Γ,A) → C3(Γ,A) for the left
action of Γ on some abelian group A, written additively, is

dϕ(x, y, z) = x · ϕ(y, z) − ϕ(xy, z) + ϕ(x, yz) − ϕ(x, y),

for any ϕ ∈ C2(Γ,A), and any x, y, z ∈ Γ.
Since kστ is central, its factors can be permuted in a order-preserving way, i.e.

(III.2.2.2.2) h−1
στψσ(hτ)hσgστ = ψσ(hτ)hσgστh−1

στ = hσgστh−1
στψσ(hτ) = gστh−1

στψσ(hτ)hσ,

In the following calculation we will put a bracket on each central element.

(dk)στµ =[ψσ(kτµ)][k−1
στ,µ][kσ,τµ][k−1

στ ]

=[ψσ(h−1
τµψτ(hµ)hτgτµ)]
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[g−1
στ,µh−1

στψστ(h
−1
µ )hστµ]

[h−1
στµψσ(hτµ)hσgσ,τµ]

[g−1
στh−1

σ ψσ(h−1
τ )hστ]

=[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[g−1
στ,µh−1

στψστ(h
−1
µ )ψσ(hτµ)hσgσ,τµ]

[g−1
στh−1

σ ψσ(h−1
τ )hστ]

=[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[gσ,τµg−1
στ,µh−1

στψστ(h
−1
µ )ψσ(hτµ)hσ]

[h−1
σ ψσ(h−1

τ )hστg−1
στ ]

=[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[gσ,τµg−1
στ,µh−1

στψστ(h
−1
µ )ψσ(hτµ)ψσ(h−1

τ )hστg−1
στ ]

=[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[hστg−1
στ gσ,τµg−1

στ,µh−1
στψστ(h

−1
µ )ψσ(hτµ)ψσ(h−1

τ )].

We calculate

hστg−1
στ gσ,τµg−1

στ,µh−1
στ

=hστρ̃((γστγ−1
τ γ

−1
σ )(γσγτµγ−1

στµ)(γστµγ−1
µ γ

−1
στ ))h−1

στ

=hστρ̃(γστγ−1
τ γτµγ

−1
µ γ

−1
στ )h−1

στ

=ψστ ◦ ρ̃(γ−1
τ γτµγ

−1
µ )

=ψσ(hτρ̃(γτµγ−1
µ γ

−1
τ )h−1

τ )

=ψσ(hτgτµh−1
τ ).

(III.2.2.2.3)

We then continue to calculate

(dk)στµ =[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[ψσ(hτgτµh−1
τ )ψστ(h−1

µ )ψσ(hτµ)ψσ(h−1
τ )]

=[ψσ(h−1
τµ)ψστ(hµ)ψσ(hτ)ψσ(gτµ)]

[ψσ(gτµ)ψσ(h−1
τ )ψστ(h−1

µ )ψσ(hτµ)]

=1.

(III.2.2.2.4)

We have shown that (kστ) is a cocycle.
Now if (hσ) is replaced by (hσxσ)σ∈Γ for xσ ∈ ZG, then kστ is multiplied by x−1

στψσ(xτ)xσ
which is exactly (dx∗)στ where the differential written additively is

(III.2.2.2.5) dϕ(x, y) = x · ϕ(y) − ϕ(xy) + ϕ(x),
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for any ϕ ∈ C1(Γ,ZG) and any x, y ∈ Γ. Therefore [kστ] does not depend on h∗. We also
deduce from this that (hσ) can be modified to satisfy the desired equality if and only if (kστ)
is a coboundary.

Finally, let us show that [kστ] is independent of the choice of γ∗. Let γ′∗ be another
section. If (ρ̃, h∗) is (Γ, ψ)-invariant for γ∗, then (ρ̃, (ψσ(ρ̃(δ−1

σ ))hσ)σ) is (Γ, ψ)-invariant for γ′∗,
where δσ = γ−1

σ γ
′
σ ∈ Π̃. Let h′σ = ψσ(ρ̃(δ−1

σ ))hσ, for any σ ∈ Γ, and let h′∗ = (h′σ)σ∈Γ. We will
calculate (k′στ) with h′∗ thus defined. By the argument above, any other h′′∗ such that (ρ̃, h′′∗ ) is
(Γ, ψ)-invariant will give the same cohomology class. Let g′στ := ρ̃(γ′τγ′σγ

′
−1
στ ).

We calculate

k′στ =h
′
−1
στ ψσ(h′τ)h

′

σg′στ
=h−1

στψστ(ρ̃(δστ))ψσ(ψτ(ρ̃(δ−1
τ )))ψσ(hτ)ψσ(ρ̃(δ−1

σ ))hσg′στ
=h−1

στhστρ̃(γ′στγ
−1
στ )h−1

στψσ(ψτ(ρ̃(δ−1
τ )))ψσ(hτ)ψσ(ρ̃(δ−1

σ ))hσg′στ
=ρ̃(γ′στγ

−1
στ )h−1

στhστρ̃(γστγ
′
−1
τ γτγ

−1
στ )h−1

στψσ(hτ)ψσ(ρ̃(δ−1
σ ))hσg′στ

=ρ̃(γ′στγ
′
−1
τ γτγ

−1
στ )h−1

στψσ(hτ)ψσ(ρ̃(δ−1
σ ))hσg′στ

=ρ̃(γ′στγ
′
−1
τ γτγ

−1
στ )h−1

στψσ(hτ)hσρ̃(γσγ
′
−1
σ )g′στ

=ρ̃(γ′στγ
′
−1
τ γτγ

−1
στ )kστg−1

στ ρ̃(γσγ
′
−1
σ )g′στ

=kστρ̃((γ′στγ
′
−1
τ γτγ

−1
στ )(γστγ−1

τ γ
−1
σ )(γσγ

′
−1
σ )(γ′σγ

′

τγ
′
−1
στ ))

=kστ

(III.2.2.2.6)

�

Remark III.2.2.5. Since k′στ = kστ, (ρ̃, h∗) defines an extension ρ if and only if (ρ̃, h′∗) defines
an extension ρ′. In fact, we have ρ = ρ′. This can be seen from the following. On the one
hand, ρ(γσ) = h−1

σ sσ. On the other hand,

ρ′(γ′σ) =h
′
−1
σ sσ

=h−1
σ ψσ(ρ̃(δσ))sσ

=h−1
σ sσρ̃(δσ)

=ρ(γσ)ρ̃(γ−1
σ γ

′

σ)

=ρ(γ′σ),

(III.2.2.2.7)

So the correspondence between (ρ̃, h∗) and ρ is independent of the choice of γ∗.

III.2.2.3 If ρ̃ gives rise to some non trivial cohomology class cψ(ρ̃) ∈ H2(Γ,ZG) for the
chosenψ, then there is still a chance to extend it into a Goψ′ Γ-representation for someψ′ � ψ
(conjugate under G) but [ψ′] = [ψ]. As in (III.1.1.2 (iii)), we can take another homomorphism
ψ′ : Γ → Aut G with ψ′σψ−1

σ = ad xσ, for each σ ∈ Γ, so that h′σ = cσxσhσ defines a (Γ, ψ′)-
invariant pair, where cσ is an arbitrary element of ZG. Let (kστ) be the cochain defined by h∗
and ψ.
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Proposition III.2.2.6. There exists some ψ′ similar to ψ such that the (Γ, ψ′)-invariant pair (ρ̃, h′∗)
defines a homomorphism ρ : Π→ G oψ′ Γ if and only if [kστ]−1 lies in the image of the natural map
δ : H1

ψ(Γ,Gad)→ H2(Γ,ZG).

Remark III.2.2.7. While H1
ψ(Γ,Gad) depends on the choice of ψ, H2(Γ,ZG) only depend on

the similarity class of ψ, as similar homomorphisms give the same action of Γ on ZG. Thus in
the statement of the proposition, we have omittedψ form H2(Γ,ZG). The image of δ depends
on ψ.

Proof. Given ψ′ : Γ → Aut G, (xσ)σ∈Γ and (h′σ)σ∈Γ defined above, we define a cohomology
class [k′στ] with respect to ψ′ by

(III.2.2.3.1) k′στ := h
′
−1
στ ψ

′

σ(h′τ)h
′

σgστ.

The exixtence of the desired ρ is equivalent to [k′στ] = 1. To clarify this condition, let us first
note that since both ψ and ψ′ are group homomorphisms, we have

ψ′σψ
′

τ = ψ′στ

xσψσxτψτ = xστψστ
xσψσ(xτ) = xστ

(III.2.2.3.2)

as automorphisms, where we have abbreviated ad xσ by xσ. Therefore there exists some
dστ ∈ ZG such that

(III.2.2.3.3) dστ = x−1
στxσψσ(xτ).

Now we compute

k′στ = h
′
−1
στ ψ

′

σ(h′τ)h
′

σgστ
= h−1

στx−1
στc−1

στxσψσ(cτxτhτ)x−1
σ cσxσhσgστ

= dστkστ dc∗,

(III.2.2.3.4)

where c∗ = (cσ)σ∈Γ. We see that [k′στ] = 1 if and only if [kστ] = [dστ]−1. If we denote by (x̄σ) the
image of (xσ) in C1(Γ,Gad) under the natural map induced by G→ Gad, then by the definition
of δ, [dστ] = δ([x̄σ]). �

We will see some examples in §III.5.

III.3 Flat Connections

In this section we work over C. We fix a Galois covering of complex manifolds X̃ → X
and apply the previous results to Π̃ = π1(X̃) and Π = π1(X), but with Γop � Π̃/Π as in
§III.1.1.5.
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III.3.1 (Γ, ψ)-Invariant Flat Connections

Fix a homomorphism ψ : Γ → Aut G. Let us begin by explaining the relation with
(Γ, ψ)-Invariant Representations.

III.3.1.1 Twisted Principal G-Bundles Given a principal G-bundles E with a flat connec-
tion ∇ on X̃, for any σ ∈ Γ, we can define another principal bundle by

(III.3.1.1.1) E
σ := E ×G F,

where F := G.s−1
σ is the connected component of G o Γop corresponding to σ−1. It is a left

and right G-space with the multiplication actions. The quotient E ×G,ψσ F is defined by the
relation

(pg, x) ∼ (p, gx),

for any p ∈ E, x ∈ F and g ∈ G. The flat connection ∇σ is defined accordingly. We have,
E
στ � (Eσ)τ.

We say that a flat connection (E,∇) is (Γ, ψ)-invariant if for each σ ∈ Γ, there is an
isomorphism of flat connections

(III.3.1.1.2) Φσ : (E,∇) ∼−→ (σ∗Eσ, σ∗∇σ).

If ρ̃ : π1(X̃) → G corresponds to (E,∇) under the Riemann-Hilbert correspondence, then
(E,∇) is (Γ, ψ)-invariant if and only if ρ̃ is (Γ, ψ)-invariant.

III.3.1.2 As before, let x̃ denote the base point of the complex manifold X̃. We choose a
base point e of the homogeneous spaceEx̃. It determines a base point es−1

σ ∈ E
σ
x̃ . If f : Ex̃ → Ex̃

is a morphism of homogeneous spaces that sends e to eg, g ∈ G, then the induced morphism
f σ : Eσx̃ → E

σ
x̃ sends es−1

σ to egs−1
σ .

Lemma III.3.1.1. Suppose that (E,∇) corresponds to ρ̃, both being (Γ, ψ)-invariant. There is a
natural bijection between the set of families of isomorphisms (Φσ)σ∈Γ such that ((E,∇),Φ∗) is a (Γ, ψ)-
invariant pair and the set of cochains (hσ)σ∈Γ such that (ρ̃, h∗) is a (Γ, ψ)-invariant pair. The bijection
is given as follows.

With the chosen base points in the fibres Ex̃ and Eσx̃ , for each σ ∈ Γ, the morphism of homogeneous
G-spaces Ex̃ → E

σ
x̃ , e 7→ es−1

σ hσ corresponds to the following morphism

(III.3.1.2.1) Ex̃
Φσ,x̃
−→ E

σ
σ(x̃)

(Eσ
λσ

)−1

−→ E
σ
x̃ ,

where Φσ,x̃ is the restriction of Φσ on the fibres, and Eσ
λσ

is the isomorphism associated to the path λσ
(§III.1.1.5).
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Proof. For any η ∈ π1(X̃, x̃), we have a commutative diagram

(III.3.1.2.2)

Ex̃
Φσ,x̃
−−−−−→ E

σ
σ(x̃)

(Eσ
λσ

)−1

−−−−−→ E
σ
x̃

ρ̃(η)
y yEσσ(η)

yes−1
σ 7→e(ρ̃◦Cλσ◦σ(η))s−1

σ

Ex̃ −−−−−→
Φσ,x̃

E
σ
σ(x̃) −−−−−→(Eσ

λσ
)−1
E
σ
x̃ .

Indeed, with the choice of a base point inEx̃, the isomorphismEη induced along η is identified
with ρ̃(η); the left square commutes because Φσ is an isomorphism of flat connections and
(σ∗Eσ)η = Eσ

σ(η); conjugation byEσ
λσ

gives the isomorphismEσCλσ◦σ(η), which is the isomorphism
of homogeneous spaces induced from ECλσ◦σ(η).

Since (Eσ
λσ

)−1
◦ Φσ,x̃ is a morphism of homogeneous space, it is uniquely determined by

(Eσ
λσ

)−1
◦Φσ,x̃(e), which can be written as es−1

σ hσ for a unique hσ ∈ G. Then

((Eσλσ)
−1
◦Φσ,x̃)−1(es−1

σ ) = eh−1
σ ,

which is sent to eρ̃(η)h−1
σ by Eη. Further,

(Eσλσ)
−1
◦Φσ,x̃(eρ̃(η)h−1

σ ) = es−1
σ hσρ̃(η)h−1

σ .

Compared with EσCλσ◦σ(η), we have

(III.3.1.2.3) e(ρ̃ ◦ Cλσ ◦ σ(η))s−1
σ = es−1

σ ρ̃
σ(η) = es−1

σ hσρ̃(η)h−1
σ .

We see that such (hσ)σ∈Γ define a (Γ, ψ)-invariant pair (ρ̃, h∗).
Reversing the arguments, the hσ’s give a family of isomorphisms Φσ,x̃ that are compatible

with the isomorphisms Eη and (σ∗Eσ)η, therefore define the desired isomorphisms of flat
principle G-bundles. �

Remark III.3.1.2. By Lemma III.3.1.1, we can identify ρ̃with (E,∇) and identify (hσsσ)−1 with
an isomorphism Φ : E → σ∗Eσ. Therefore in the setting of Remark III.2.1.8, the flat connection
(E,∇) can be decomposed into a direct sum of pairwise non isomorphic irreducibles, and Φ

induces an isomorphism on each such factor. This should be compared with [Ze2, §4.1] and
[Ra, Proposition 4.5].

III.3.1.3 For any σ, τ ∈ Γ, the isomorphism Φσ : E → σ∗Eσ induces an isomorphism
τ∗Φσ : τ∗E → τ∗σ∗Eσ, and thus an isomorphism (τ∗Φσ)τ : τ∗Eτ → (στ)∗Eστ. Combined with
Φτ : E → τ∗Φτ, this gives an isomorphism E → (στ)∗Eστ.

Proposition III.3.1.3. Let (ρ̃, h∗) be the (Γ, ψ)-invariant pair corresponding to ((E,∇),Φ∗). Then
for any σ, τ ∈ Γ,

(III.3.1.3.1) (τ∗Φσ)τ ◦Φτ = Φστ
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if and only if kστ = h−1
στψ

−1
τ (hσ)hτgστ = 1.

Proof. We first note that there is a commutative diagram for any σ, τ:

(III.3.1.3.2)

Ex̃
Φσ,x̃
−−−−−→ (σ∗Eσ)x̃

Eλτ

y y(σ∗Eσ)λτ

Eτ(x̃) −−−−−→
Φσ,τ(x̃)

(σ∗Eσ)τ(x̃),

so Φσ,τ(x̃) = Eσσλτ
◦Φσ,x̃ ◦ Eλ−1

τ
, which gives

(III.3.1.3.3) (τ∗Φσ)τx̃ = Eστσλτ ◦ (Φσ,x̃)τ ◦ Eτ
λ−1
τ
.

Using Lemma III.3.1.1, we calculate

(Φστ)−1
x̃ ◦ (τ∗Φσ)τx̃ ◦Φτ,x̃

=(Φστ)−1
x̃ ◦ E

στ
σλτ
◦ (Φσ,x̃)τ ◦ Eτ

λ−1
τ
◦Φτ,x̃

=(Φστ)−1
x̃ ◦ E

στ
σλτ
◦ (Φσ,x̃)τ ◦ s−1

τ hτ

=(Φστ)−1
x̃ ◦ E

στ
σλτ
◦ E

στ
λσ
◦ E

στ
λ−1
σ
◦ (Φσ,x̃)τ ◦ s−1

τ hτ

=(Φστ)−1
x̃ ◦ E

στ
σλτ
◦ E

στ
λσ
◦ s−1

σ s−1
τ ψ

−1
τ (hσ)hτ

=(Φστ)−1
x̃ ◦ E

στ
λστ
◦ E

στ
λ−1
στ
◦ E

στ
σλτ
◦ E

στ
λσ
◦ s−1

σ s−1
τ ψ

−1
τ (hσ)hτ

=h−1
στsστ ◦ Eστλ−1

στ
◦ E

στ
σλτ
◦ E

στ
λσ
◦ s−1

σ s−1
τ ψ

−1
τ (hσ)hτ

=h−1
στ ◦ ψ

−1
στ (ρ̃(γ−1

στγτγσ)) ◦ ψ−1
τ (hσ) ◦ hτ

=h−1
στ ◦ hστρ̃(γτγσγ−1

στ )h−1
στ ◦ ψ

−1
τ (hσ) ◦ hτ

=gστ ◦ h−1
στ ◦ ψ

−1
τ (hσ) ◦ hτ,

(III.3.1.3.4)

whence the proposition. �

Remark III.3.1.4. We will always assume Φ1 = Id in accordance with the assumption h1 = 1,
so that the proposition gives an alternative condition for a (Γ, ψ)-invariant pair to descend
to X.

With this proposition, we can say the Ḡ-representation ρ corresponding to the pair
((E,∇),Φ∗) with Φ∗ satisfying the cocycle conditions.

III.3.2 Stability Condition

III.3.2.1 Let P be a proper parabolic subgroup of G and let E be a principal G-bundle.
Recall that a reduction of E to P is a principal P-bundle P and an isomorphism E � P ×P G,
where P acts on G by left multiplication.
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For σ ∈ Γ, the G-conjugacy class of P is σ-stable if ψσ(P) is G-conjugate to P. If the G-
conjugacy class of P is σ-stable for all σ ∈ Γ, then we say that it is Γ-stable. The G-conjugacy
class of P is σ-stable if and only if NḠ(P) meets G.s−1

σ . In this case, denote by Pσ the connected
component of NḠ(P) contained in G.s−1

σ . IfP is a principal P-bundle for some σ-stable P, then
we can define Pσ as P ×P Pσ.

Definition III.3.2.1. A (Γ, ψ)-invariant pair ((E,∇),Φ∗) is unstable if there is

- a proper parabolic subgroup P ⊂ G whose G-conjugacy class is Γ-stable (for the action
ψ : Γ→ Aut G) and

- a reduction of E to P, specified by an isomorphism E � P ×P G,

such that for all σ ∈ Γ, Φσ has a reduction to P, i.e. such that Φσ is induced from some
isomorphism P → σ∗Pσ.

Recall that if γ∗ : Γ → π1(X) is the fixed section and ρ is a Ḡ-representation, then
ρ(γσ) = h−1

σ sσ.

Proposition III.3.2.2. Let ρ be the Ḡ-representation corresponding to ((E,∇),Φ∗). Then ρ is
irreducible if and only if ((E,∇),Φ∗) is stable.

Proof. A Ḡ-representation ρ is irreducible if and only if Im ρ̃ is not contained in any proper
parabolic subgroup P ⊂ G such that h−1

σ sσ normalise P for all σ ∈ Γ, if and only if (E,∇) admits
no reduction to proper parabolic P such that all h−1

σ sσ normalise P, if and only if (E,∇) admits
no P-reduction (P,∇) such that all Φσ restricts to P → σ∗Pσ. (For any σ, s−1

σ hσ normalise P if
and only if e 7→ es−1

σ hσ defines a morphism of homogeneous spaces Px̃ → P
σ
x̃ , which by the

arguments in the proof of Lemma III.3.1.1 is equivalent to having a morphism of principal
P-bundles P → σ∗Pσ. Then this morphism induces Φσ.) �

III.3.2.2 Example Let ψ : Γ → Aut G be the trivial homomorphism and let G = GLn(C).
In this case, any parabolic subgroup P ⊂ Ḡ is just ∪σ∈ΓP◦.sσ since any sσ normalise P◦. The
image of ρ is generated by ρ(π1(X̃)) and ρ(γσ) = h−1

σ sσ, for all σ ∈ Γ. Therefore Imρ ⊂ P if
and only if ρ(π1(X̃)) ⊂ P◦ and h−1

σ ∈ P◦ for any σ ∈ Γ. We see that Imρ is not contained in
any P if and only if Im ρ̃ is not contained in any P◦ such that hσ ∈ P◦ for any σ ∈ Γ.

Now let L be the local system on X̃ corresponding to ρ̃, equipped with isomorphisms
Φσ : L → σ∗L for all σ ∈ Γ. Let E be a local subsystem of L and let P be the maximal
parabolic subgroup defined as the stabiliser of Ex̃ in GL(Lx̃) � GLn(C). By Lemma III.3.1.1,
hσ ∈ P if and only if Φσ maps Ex̃ to (σ∗E)x̃ which is equivalent to that Φσ maps E to σ∗E. The
irreducibility of ρ is translated into the condition that there is no local subsystem E that is
invariant under Φσ for all σ ∈ Γ.

This morally recovers the stability of Γ-bundles defined by Seshadri: A Γ-vector bundle
V on X̃ is Γ-stable if its underlying vector bundle is semi-stable and for every proper Γ-
subbundle W of V, we have

(III.3.2.2.1) µ(W) < µ(V).
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See [Ses] Chapter II, §1.

III.3.2.3 Example Let G = GLn(C) and Ḡ = G o<σ>be defined by the transpose inverse σ
and consider the condition for a Ḡ-representation ρ to be irreducible. The definition says that
Imρ is not contained in any maximal proper parabolic subgroup of Ḡ. Suppose Imρ ⊂ P for
some parabolic subgroup P ⊂ Ḡ. Up to a conjugation by G, we can assume that P◦ is of the
form given in (II.5.4.1). Then P = P◦∪P◦Js1, where s1 acts on G by σ and (J)i j = δi,n+1− j. Recall
that ρ(γσ) = h−1

σ sσ. The irreducibility means that for any standard σ-stable proper parabolic
P◦ such that hσ ∈ JP◦, Im ρ̃ is not contained in P◦.

On the other hand, Zelaci’s work on vector bundles suggests the following definition of
stable (Γ, ψ)-invariant local system. See [Ze2] Definition 4.1. LetL be a (Γ, ψ)-invariant local
system on X̃. Given the defining isomorphism Φ : L → σ∗L∨, and a local subsystem E ↪→ L,
we put E⊥ to be the kernel of the surjection

(III.3.2.3.1) L
Φ
−→ σ∗L∨ � σ∗E∨.

We say that E is isotropic if E ⊂ E⊥. Note that this definition depends on Φ. In this case, we
say that

(III.3.2.3.2) 0 ⊂ E ⊂ E⊥ ⊂ L

is an isotropic flag. Obviously, giving such a flag is equivalent to giving an isotropic local
subsystem. We then define thatL is stable if it admits no isotropic flag. We will show that if
(L,Φ) corresponds to ρ, then this is equivalent to that ρ is irreducible.

Indeed, an isotropic flag gives a maximal standard σ-stable proper parabolic subgroup
P◦ by taking the stabiliser of the flag

(III.3.2.3.3) 0 ⊂ Ex̃ ⊂ E
⊥

x̃ ⊂ Lx̃.

Moreover, this flag is stable under Jhσ. To see this, we must fix dual basis

{e1, . . . , en} ⊂ Lx̃,

{ε1, . . . , εn} ⊂ L
∨

x̃ ,
(III.3.2.3.4)

so that Ex̃ is spanned by the first r basis vectors, E⊥x̃ is spanned by the first n− r basis vectors,
the endomorphism of J is the permutation ei ↔ en−r+1, and transpose inverse is in the usual
sense of matrices. Denote by ψ : L∨x̃ → Lx̃ the isomorphism defined by the dual basis. Note
that Lemma III.3.1.1 in the current context means that hσ is equal to the map

Lx̃
Φ
−→ L

∨

σ(x̃)

L
λ−1
σ
−→ L

∨

x̃
ψ
−→ Lx̃.
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By definition, the composition

(III.3.2.3.5) E
⊥ ↪→ L

Φ
−→ σ∗L∨ � σ∗E∨

gives 0, which implies that the map

(III.3.2.3.6) E
⊥

x̃ ↪→ Lx̃
Φ
−→ L

∨

σ(x̃)

L
λ−1
σ
−→ L

∨

x̃
ψ
−→ Lx̃

pr
→ Ex̃

is 0, by the commutativity of

(III.3.2.3.7)

L
∨

σ(x̃)

L
λ−1
σ

−−−−−→ L
∨

x̃
ψ

−−−−−→ Lx̃y y ypr

E
∨

σ(x̃)

E
λ−1
σ

−−−−−→ E
∨

x̃
ψ

−−−−−→ Ex̃.

That is, hσ maps E⊥x̃ into the kernel of pr, which is spanned by the vectors {er+1, . . . , en}.
Therefore Jhσ preserves E⊥x̃ . Dually, we have the 0 map

(III.3.2.3.8) E ↪→ L
σ∗

t
Φ

−→ σ∗L∨ � σ∗(E⊥)∨,

but σ∗
t
Φ = Φ. So by the same argument we see that Jh∗ preserves Ex̃. We conclude that the

isotropic flag is automatically preserved by Jhσ, thus h−1
σ ∈ P◦J.

Conversely, given any maximal standard σ-stable proper parabolic subgroup P◦ pre-
served by Jhσ, we obtain a flag 0 ⊂ E ⊂ F ⊂ Lwith F identified with E⊥ by tracing back the
above reasoning.

III.4 Monodromy on Riemann Surfaces

III.4.1 Monodromy in Twisted Conjugacy Classes

Suppose the topological manifolds are Riemann surfaces. We introduce punctures on
the Riemann surfaces and study the local monodromy. Let us first fix some notations.

III.4.1.1 Notations Let p′ : X̃′ → X′ be a possibly ramified Galois covering of compact
Riemann surfaces with Aut(X̃′/X′) � Γ. Denote by h the genus of X′ and g the genus of X̃′.
Let R ⊂ X′ be a finite set of points such that p′ is unramified over X := X′ \ R. Let I be the
index set of the elements of R so that each point of R is written as x j, j ∈ I. Denote by R̃ ⊂ X̃′

the inverse image of R and write X̃ := X̃′ \ R̃. Denote by p the restriction of p′ to X̃. We fixe
the base points x̃ ∈ X̃ and x = p(x̃) ∈ X as before. For each x j ∈ R and some x̃ j ∈ p

′
−1(x j), put

n j = | StabΓ(x̃ j)| with StabΓ(x̃ j) =<σ j>, so σ j ∈ Γ is of order n j. It only depends on x j. Thus p′

is unramified over those x j with n j = 1.
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For each j ∈ I, there is a small neighbourhood V j homeomorphic to C of x j such that each
point in p

′
−1(x j) has a small neighbourhood homeomorphic to C on which the restriction of

p′ is z 7→ zn j . For each j, choose a point y j ∈ V j and a loop l j around x j based at y j, all with
the same orientation. We can choose paths λ j lying in X from x to y j such that γ j := λ−1

j l jλ j,
together with the generators αi, βi associated to the genus, generate π1(X) and satisfy the
relation

(III.4.1.1.1)
h∏

i=1

(αi, βi)
∏
j∈I

γ j = 1.

The choice of the path λ j determines a point ỹ j over y j and thus the connected component
of p

′
−1(V j) containing ỹ j. Let us denote this connected component by U j and denote by x̃ j

the point in U j over x j. All other connected components of p
′
−1(V j) are of the form τ(U j) for

some τ ∈ Γ. For each such component, we fix a τ as above and thus a point τ(ỹ j) in it. The
associated objects will be indicated by a subscript ( j, τ), for example U j,τ = τ(U j), ỹ j,τ = τ(ỹ j),
and in particular, U j,1 = U j. If r j is the lift of l j starting from ỹ j, then

(III.4.1.1.2) l̃ j := σ
nj−1

j r j · · ·
σ jr jr j

is a loop in U j based at ỹ j, where σ jr j is the image of r j under σ j. Let l̃ j,τ = τ(l̃ j). Again, we
can choose paths λ̃ j,τ for x̃ to ỹ j,τ lying in X̃ such that γ̃ j,τ := λ̃−1

j,τ l̃ j,τλ̃ j,τ together with α̃i, β̃i,

1 ≤ i ≤ g, associated to the genus of X̃, generate π1(X̃) and satisfy a similar relation as for
γ j’s. Note that the λ̃ j,1’s are not necessarily the lifts of the λ j’s.

III.4.1.2 Monodromy of ρ : π1(X) → G o Γop Let ρ be as in III.1.2.2. Fix ψ : Γ → Aut G
and write Ḡ = G oψop Γop and denote by ρ̃ the underlying G-representation. Since the end
point of the lift of γ j is σ j(x̃), γ j belongs to the coset in π1(X) corresponding to σ j. With
the specific choices of the γ j’s as above, we say that the monodromy of a Ḡ-representation
ρ at the puncture x j is the element ρ(γ j), which lies in the connected component G.sσ j . In
the Ḡ-character variety, its G-conjugacy class is well-defined, say C j. A different choice of
λ j results in a conjugation of γ j in π1(X), whence a conjugation by Ḡ of ρ(γ j), whence a
conjugation of C j by the group of connected components Γop. However, as we can see below,
even if we fix a particular λ j, we still need to consider the Ḡ-conjugates of C j when we go up
to X̃. So it is natural to consider the Ḡ-conjugacy class of ρ(γ j).

Now we consider what happens on X̃. The lift of γ
n j

j is conjugate to γ̃ j,1, therefore ρ̃(γ̃ j,1)

must lie in the G-conjugacy class C̃ j := C
n j

j := {gn
| g ∈ C j} ⊂ G. Now we take τ to be the

element that takes U j to some U j,τ that does not meet U j. The lift of γ−1
τ γ

n j

j γτ (γτ is given by

the fixed section Γ→ π1(X)) is conjugate to λ̃−1
j,τ l̃ j,τλ̃ j,τ = γ̃ j,τ in π1(X̃), therefore

(III.4.1.2.1) ρ̃(γ̃ j,τ) is conjugate to ρ(γτ)−1ρ(γ j)n jρ(γτ) by Im ρ̃
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which is in the conjugacy class ρ(γ j)−1C̃ jρ(γ j) = s−1
τ hτC̃ jh−1

τ sτ = ψτ(C̃ j) =: C̃ j,τ. Similarly,
ρ(γ−1

τ γ jγτ) ∈ s−1
τ (C j)sτ =: C j,τ which belongs to the connected component G.sτσ jτ−1 . We have

C
n j

j,τ = C̃ j,τ. Note that γ−1
τ γ jγτ is in the coset corresponding to τσ jτ−1.

III.4.1.3 Let us summarize the above discussions as follows.

Definition III.4.1.1. With a loop l j based at y j in a small neighbourhood of the puncture x j, the
local monodromy class of a Ḡ-representation ρ at x j is the Ḡ-conjugacy class C̄ j of ρ(λ−1

j l jλ j)
for some path λ j from x to y j. It does not depend on the choice of λ j. A particular choice of
λ j singles out a G-conjugacy class C j contained in C̄ j, also called the local monodromy class
of ρ at x j.

We also have,

Lemma III.4.1.2. Suppose that we are given a particular path λ j as in the above definition so that
ρ(λ−1

j l jλ j) ∈ C j, and x̃ j is the point over x j which has a small neighbourhood containing the end point

of the lift of λ j. Then the local monodromy class of ρ̃ at x̃ j is C
n j

j . Moreover, for any other point τ(x̃ j)

over x j, τ ∈ Γ, the local monodromy class of ρ̃ at τ(x̃ j) is ψτ(C
n j

j ).

Remark III.4.1.3. Fixing the monodromy classes C̃ j,τ on X̃ does not uniquely determine the
monodromy classes C j, since in general there can be many conjugacy classes C′j such that

(C′j)
n j = C̃ j,1.

Remark III.4.1.4. Suppose that ψ is the trivial homomorphism. A Ḡ-conjugacy class in Ḡ is
just a union of copies of a particular G-conjugacy class in Ḡ, say C j, with one copy in each
connected component corresponding to the elements of some conjugacy class of Γ. On the
other hand, at all points lying over x j, the monodromy classes of ρ̃ are the same, and only
depend on x j, say C̃ j. If C̃ j = {1}, then C j is morally the local type of a Γ-invariant vector
bundle over x j as defined by Balaji and Seshadri. See [BS, Definition 2.2.6].

III.4.2 Generic Conjugacy Classes

In this section. we assume that the image of

Γ
ψ
→ Aut G→ (Aut G)/Gad = A(G)

is contained in a cyclic subgroup. If G is GLn or almost-simple with root system not of type
D4, then this is always satisfied.

III.4.2.1 Fix a maximal torus T contained in a Borel subgroup B of G. In each connected
component G.sσ, σ ∈ Γ, we choose a quasi-central element sσ ∈ NḠ(T,B), so that NḠ(T,B) =

∪σ∈ΓT.sσ. The semi-simple G-conjugacy classes in G.sσ are parametrised by the Wsσ-orbits in

T̃σ := T/[T, sσ] � (Tsσ)◦/(Tsσ)◦ ∩ [T, sσ].
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with t ∈ (Tsσ)◦ representing the class of tsσ. Denote by Tσ the quotient T̃σ/Wsσ . When σ = σ j

for some j ∈ I, we will write s j, T̃ j and T j instead of sσ j , T̃σ j and Tσ j .
LetC = (C j) j∈I be a tuple of G-conjugacy classes of Ḡ, with C j contained in G.sσ j . Denote by

RepΓ,C(X,G) ⊂ RepΓ(X,G) the locally closed subvariety consisting of ρ satisfying ρ(γ j) ∈ C j,
for all j ∈ I. If C are semi-simple classes, RepΓ,C(X,G) is closed in RepΓ(X,G) and these
tuples are parametrised by

∏
j T j. We will define a non-empty subset T◦ ⊂

∏
j T j so that

ρ ∈ RepΓ(X,G) is irreducible whenever ρ ∈ RepΓ,C(X,G), for some tupleCwhose semi-simple
parts correspond to a point of T◦.

III.4.2.2 Let P be a parabolic subgroup containing B and let L be the unique Levi factor
of P containing T. In this case we will simply say that (L,P) contains (T,B). There are only
finitely many such pairs (L,P). Suppose that NḠ(L,P) meets all connected components of
Ḡ. This implies that for any σ ∈ Γ, the G-conjugacy class of (L ⊂ P) is stable under sσ. But
(sσ(L), sσ(P)) also contains (T,B), so it is necessary that (sσ(L), sσ(P)) = (L,P) for any σ ∈ Γ.
Therefore NḠ(L,P) = ∪σ∈ΓL.sσ.

Write L̄ = NḠ(L,P).

Lemma III.4.2.1. Let L and P be as above. If L , G, then dim ZL̄ > dim ZḠ.

Proof. For any σ ∈ Γ, the action of sσ on T are determined by the connected component of
Aut G that the automorphism ad sσ belongs to. By the assumption at the beginning of this
section, there is some σ0 ∈ Γ such that ad sσ0 generates the image of

Γ
ψ
→ Aut G→ A(G).

Therefore ZL̄ = CZL(sσ0) and ZḠ = CZG(sσ0), since ZL and ZG are contained in T.
Now L′ := CL(sσ0)◦ is a Levi subgroup of G′ := CG(sσ0)◦. By Proposition II.3.2.1, if L , G,

then L′ , G′. By Proposition II.3.1.11, Z◦L′ = CZ◦L(sσ0)◦ and Z◦G′ = CZ◦G
(sσ0)◦. Then the lemma

follows from the result for usual Levi subgroups. �

III.4.2.3 For any connected reductive algebraic group H, denote by

DH : H −→ Z◦H/(Z
◦

H ∩ [H,H])

the projection, identifying H/[H,H] � Z◦H/(Z
◦

H∩[H,H]). For H = GLn, this is the determinant.
Each element tσ ∈ Tσ is an Wsσ-orbit. Each element tσ ∈ tσ is a coset in (Tsσ)◦. We fix a

representative in (Tsσ)◦ of each such tσ, also denoted by tσ. The choice of such representative
will not matter. If σ = σ j for some j ∈ I, then we write t j and t j instead of tσ j and tσ j .

Definition III.4.2.2. A tuple of semi-simple conjugacy classes parametrised ty (t j) j∈I is generic
if the following condition is satisfied. For

- any(L,P) containing (T,B) with P , G such that NḠ(L,P) meets all connected compo-
nents of Ḡ, and
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- any tuple (t j) j∈I with t j ∈ t j,

the element

(III.4.2.3.1)
∏
j∈I

∏
τ∈Γ/<σ j>

DL(sτ(t
n j

j s
n j

j )) ∈ Z◦L/(Z
◦

L ∩ [L,L])

is not equal to the identity, where sτ acts on T by conjugation. A tuple of conjugacy classes
C is generic if the tuple of the conjugacy classes of the semi-simple parts of C is generic.

One can verify that DL(sτ(tn js
n j

j )) has constant value for t ∈ [T, s j] so it only depends on
the coset t j.

Remark III.4.2.3. If we denote by DL̄ the homomorphism L̄→ L̄/[L,L], then∏
τ∈Γ/<σ j>

DL(sτ(t
n j

j s
n j

j )) =
∏
τ∈Γ

DL̄(sτ(t js j)),

where sτ acts on NḠ(T,B) by conjugation.

Remark III.4.2.4. The morphism of varieties (Ts j)◦s j → T, ts j → (ts j)n j surjects onto a
connected component of Ts j . Indeed,

(ts j)n j = ts j(t) · · · s
n j−1
j (t)s

n j

j ∈ T

and is obviously fixed by s j.

Put
(Z◦L)Γ = {z ∈ Z◦L | sτ(z) = z, for all τ ∈ Γ}.

We have (Z◦L)Γ = ZL̄ ∩ Z◦L. It has the same dimension as ZL̄.

Lemma III.4.2.5. For any j ∈ I,∏
τ∈Γ/<σ j>

DL ◦ sτ : Ts j −→ (Z◦L)Γ/((Z◦L)Γ
∩ [L,L])

is a surjective group homomorphism.

Proof. Let t ∈ Ts j and σ ∈ Γ. We have

sσ
( ∏
τ∈Γ/<σ j>

DL(sτ(t))
)

=
∏

τ∈Γ/<σ j>

DL(sσsτ(t)).

Note that sσsτ differs from sστ by an element of T, and therefore they have the same action
on T. Also, all elements in a coset τ<σ j>have the same action on Ts j . The right hand side of
the equality is thus equal to

∏
τ∈Γ/<σ j>DL(sτ(t)). So the image is Γ-invariant.
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Let z ∈ (Z◦L)Γ. Then ∏
τ∈Γ/<σ j>

DL(sτ(z)) = z|Γ|/n j .

Since char k - |Γ|, this surjects onto (Z◦L)Γ. �

III.4.2.4 Denote by T̃ ⊂
∏

j T̃ j the closed subvariety defined by

(III.4.2.4.1)
∏
j∈I

∏
τ∈Γ/<σ j>

DG(sτ(t
n j

j s
n j

j )) = 1,

with ti ∈ T̃ j. One can also define T ⊂
∏

j T j by the same equation while choosing for each
orbit t j an element t j in it. This is well-defined.

Proposition III.4.2.6. The subset of generic semi-simple conjugacy classes T◦ ⊂ T is Zariski open
and non-empty.

Thus we can regard T◦ as an open subvariety.

Proof. Let Z ⊂
∏

j T̃ j be the closed subset defined by: (t j) belongs to Z if for some (L,P) ⊃ (T,B)
with P , G,

(III.4.2.4.2)
∏
j∈I

∏
τ∈Γ/<σ j>

DL(sτ(t
n j

j s
n j

j )) = 1.

By Lemme III.4.2.1, Remark III.4.2.4 and Lemma III.4.2.5, we have dim Z < dim T̃.
The finite group W :=

∏
j Ws j acts on

∏
j T̃ j and preserves the closed subsets T̃ and

∪w∈Ww.Z. Define
T̃◦ = T̃ \

⋃
w∈W

w.Z.

It is a W-invariant open subset of T̃, and is non-empty for dimension reason. Then by
definition (t j) ∈ T◦ if and only if all of its fibres are contained in T̃◦ and so T◦ = T̃◦/W is
open. �

III.4.2.5 Generic conjugacy classes of GLn(k) o<σ> By Hurwitz formula, there can only
be an even number of ramification points in a double covering of Riemann surfaces. Let
the punctures be exactly the ramification points. In this case I = {1, . . . , 2k} and let C =

{C1, . . . ,C2k} be a 2k-tuple of semi-simple σ-conjugacy classes. That is, G-conjugacy classes
contained in G.σ. We write n = 2m or n = 2m + 1 according to the parity. In either case, C j is
determined by an m-tuple of eigenvalues A j = {ā j,1, . . . , ā j,m}. (See §II.5.3.3) Put Λ = {1, . . . ,m}.
We write Ã j = {ā2

j,1, . . . , ā
2
j,m}, where for any orbit z̄, z̄2 := {x2

|x ∈ z̄}. We have 1̄2 = {1}, ī2 = {−1}

(i =
√
−1), and for any other orbit z̄2 = {z2, z−2

}. For any j and any subset J j ⊂ Λ, denote by
ÃJ j ⊂ Ã j a tuple of the form (zk)k∈J j , zk ∈ ā2

j,k.
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We write

(III.4.2.5.1) [ÃJi] =
∏
k∈J j

zk.

We see that C is generic if and only if for any 1 ≤ l ≤ m, any J j, j ∈ I, such that |J j| = l, and
any ÃJ j , the following relation holds,

(III.4.2.5.2) [ÃJ1] · · · [ÃJ2k] , 1.

We will say that C is strictly generic if we require further that

(III.4.2.5.3) [ÃJ1] · · · [ÃJ2k] , −1,

for any l and J j as above. This notion will only be used to simplify some calculations in the
point-counting problem.

III.4.2.6 We conclude this section by the following proposition.

Proposition III.4.2.7. Suppose C is a tuple of generic conjugacy classes. Then every element of
RepΓ,C(X,G) is an irreducible Ḡ-representation.

Proof. Fix T ⊂ B and sσ as in §III.4.2.1. Suppose ρ ∈ RepΓ,C(X,G) is not irreducible. Then
there exists some proper parabolic subgroup P ⊂ G such that NḠ(P) meets all connected
components of Ḡ and Imρ ⊂ NḠ(P). Up to a G-conjugation we can assume that P contains
B. Let L be the unique Levi factor of P containing T.

Put c j := ρ(γ j) ∈ P.s j, then c
n j

j ∈ P. Let c̃ j = ρ̃(γ̃ j), then it is P-conjugate to c
n j

j . For

τ representing a coset in Γ/<σ j>, c̃ j,τ := ρ̃(γ̃ j,τ) is P-conjugate to sτ(c
n j

j ) by (III.4.1.2.1). Let

πL : P→ L be the natural projection. Using a presentation of π1(X̃) by the γ̃ j,τ’s, we find

(III.4.2.6.1)
∏
j∈I

∏
τ∈Γ/<σ j>

DL ◦ πL(sτ(c
n j

j )) = 1.

Note that the value of DL only depends on the semi-simple parts. The semi-simple part
c j,s of c j is contained in G.s j because we have assumed char k - |Γ| and all unipotents elements
are thus contained in G. In particular, c j,s ∈ P.s j. It is therefore P-conjugate to an element of
NḠ(T,B) and is further L-conjugate to an element of (Ts j)◦s j by Proposition II.3.1.2. Now, the
above relation contradicts the definition of generic conjugacy classes. �
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III.5 Double Coverings

III.5.1 G o Z/2Z-Character Varieties

These are among the most important examples. We will reproduce some of the general
results above in these particular cases with more explicit computations. All coverings are
assumed to be connected.

III.5.1.1 Let p : X̃ → X be a double covering of Riemann surfaces. Denote by θ the non-
trivial covering transformation of p. Interesting structure groups include connected complex
reductive group of type A, D or E6. Other types are possible but do not have non trivial
graph automorphism. We will denote the structure group by G. Since a homomorphism
ψ : Z/2Z → Aut G is determined by the image of 1 ∈ Z/2Z, we will denote its image by σ
and say the (Γ, ψ)-invariant pair concerned is σ-invariant. Therefore for a G-representation
ρ̃ of π1(X̃), we write ρ̃σ := σ ◦ ρ̃ ◦ Cλ ◦ θ, where λ is the unique lift of γ := γθ. Denote by γ̃
the path θλλ which lifts γ2. Let us look at various σ-invariant local systems on X̃.

We are concerned with two cases.

(i) σ is the trivial automorphism of G, and ρ̃σ = hρ̃ for some h ∈ G. In this case, we simply
say that (ρ̃, h) is an invariant pair.

(ii) σ is a graph automorphism of order 2, and ρ̃σ = hρ̃ for some h ∈ G. We say that (ρ̃, h) is
a σ-invariant pair.

III.5.1.2 If G = GLn(C), of particular interest is the automorphism σo : g 7→ tg−1, g ∈ G.
Let L ∈ Rep(X̃,GLn(C)) be a local system corresponding to some representation ρ̃, then ρ̃σ

corresponds to σ∗L in case (i) and corresponds to σ∗L∨ in case (ii), where L∨ is the dual
local system. Therefore L is invariant if there exists an isomorphism Φ : L → σ∗L and that
L is σo-invariant if there exists isomorphism Φ : L → σ∗L∨. If σ is a non-trivial order 2
inner automorphism, then it is equivalent to having the trivial automorphism, as we have
seen before (§II.5.2.1). We will see later that, when n is even and σ = σs, the symplectic type
automorphism, the corresponding σ-invariant pairs also have a simple description in terms
of local systems.

Suppose that L is an irreducible invariant local system. Given an isomorphism Φ : L →
σ∗L, the composition σ∗Φ ◦ Φ : L → L is necessarily a homothety. The isomorphism Φ can
be modified in such a way that this homothety is the identity, in which case Φ is called a
linearisation (in [Ze2]).

Let L be an irreducible σo-invariant local system. Given an isomorphism Φ : L → σ∗L∨,
the composition σ∗tΦ−1

◦ Φ : L → L is necessarily a homothety, denoted by k ∈ C∗, Since a
homothety is invariant under transpose and pullback by σ, we have k = k−1. We define the
signature of L as the value of k, denoted by εL.
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III.5.1.3 We also have the equivalent description in terms of representations, but for
general reductive groups.

Let (ρ̃, h) be a strongly irreducible σ-invariant pair. Evaluating both sides of ρ̃σ = hρ̃ at γ̃
gives σ(ρ̃(γ̃)) = hρ̃(γ̃)h−1. Let g := ρ̃(γ̃), then

(III.5.1.3.1) σ(g) = hgh−1.

Now (ρ̃σ)σ = g−1ρ̃ = σ(h)hρ̃, by the definition of ρ̃σ and by σ-invariance respectively. It
follows that kg−1 = σ(h)h, for some k ∈ ZG. Consider the action of σ on this equality. On
the one hand, σ(σ(h)h) = hσ(h) which is conjugated to σ(h)h by h−1. On the other hand,
σ(kg−1) = σ(k)σ(g−1) which is conjugated to σ(k)g−1 by h−1, using (III.5.1.3.1). We find that
k = σ(k).

In the case of GLn(C) and σ = σo this means k2 = 1, thus we recover the signature of ρ̃,
denoted by ερ̃, which is the only value of k such that kg−1 = σ(h)h. Indeed, by Proposition
III.3.1.3, we have εL = ερ̃ if L corresponds to ρ̃.

Suppose σ = Id and ρ̃σ = hρ̃. From the calculation above, we deduce that gh2 = k ∈ ZG,
and h can be modified in such a way that gh2 = 1. Such h corresponds to the linearisation Φ

of an invariant pair.

III.5.1.4 The above calculation of signatures agree with our previous classification of
(Γ, ψ)-invariant strongly irreducible representations in terms of group cohomology. For
G = GLn(C), ZG = C∗. The action of σ on C∗ is either trivial or the inversion x 7→ x−1,
depending whether σ is an inner or outer automorphism. Let us calculate H2(Z/2Z,C∗). A
cochain ϕ ∈ C2(Z/2Z,C∗) is represented by

(0, 0) 7→ a; (0, 1) 7→ b;

(1, 0) 7→ c; (1, 1) 7→ d.
(III.5.1.4.1)

The differential d : C2(Z/2Z,C∗)→ C3(Z/2Z,C∗) is given by

(III.5.1.4.2) dϕ(x, y, z) = ϕ(y, z)ϕ(x + y, z)−1ϕ(x, y + z)(ϕ(x, y)−1
· z).

We find that if the action of σ is trivial, then (a, b, c, d) is a cocycle if

(III.5.1.4.3) b = a; c = a; no restriction on d,

and if σ acts by inversion, then (a, b, c, d) is a cocycle if

(III.5.1.4.4) b = a−1; c = a; d2 = a−2.

The differential d : C1(Z/2Z,C∗)→ C2(Z/2Z,C∗) is given by

(III.5.1.4.5) dϕ(x, y) = ϕ(y)ϕ(x + y)−1(ϕ(x) · y),
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Let us represent a cochain ϕ ∈ C1(Z/2Z,C∗) by

(III.5.1.4.6) 0 7→ a; 1 7→ b.

Then if σ acts trivially, then dϕ is

(0, 0) 7→ a; (0, 1) 7→ a;

(1, 0) 7→ a; (1, 1) 7→ b2a−1,
(III.5.1.4.7)

and if σ acts by inversion, then dϕ is

(0, 0) 7→ a; (0, 1) 7→ a−1;

(1, 0) 7→ a; (1, 1) 7→ a−1.
(III.5.1.4.8)

Therefore, if σ acts trivially, then H2(Z/2Z,C∗) is trivial and if σ acts by inversion, then
H2(Z/2Z,C∗) � µ2 is the two-element group. The two cohomology classes, distinguished
by d = ±a−1, correspond to the signatures of σo-invariant pairs. Indeed, the cochain (kστ)
associated with (ρ̃, h) is

k(0,0) = 1; k(0,1) = 1;

k(1,0) = 1; k(1,1) = k = σ(h)hg.
(III.5.1.4.9)

Therefore k = 1 gives the trivial cohomology class whereas k = −1 gives the other cohomology
class.

III.5.1.5 We have seen in Proposition III.2.2.6 that (Γ, ψ)-invariant pairs corresponding to
a non-trivial cohomology class may be regarded as (Γ, ψ′)-invariant pairs corresponding to
the trivial cohomology class for some ψ′ similar but not equal to ψ. In fact, the σo-invariant
GLn(C)-local systems of signature −1 are exactly the σs-invariant local systems of signature
+1.

Let (ρ̃, h) be σ-invariant, then (ρ̃, Jh) is σs-invariant. Suppose σ(h)hg = −1, we calculate

σs(Jh)Jhg

=Jσ(Jh)J−1Jhg

=Jσ(J)σ(h)hg

=1

(III.5.1.5.1)

That is, (ρ̃, Jh) has signature +1 with respect to σs.

III.5.2 Explicit Form of G o Z/2Z-Character Varieties

We are now ready to write down the explicit equations defining G o Z/2Z-character
Varieties.
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III.5.2.1 Unramified Covering of Compact Surfaces Suppose that p : X̃→ X is an unram-
ified double covering of compact Riemann surfaces. Let g and h be the genus of X̃ and of
X respectively. We have g = 2h − 1. Choose generators αi, βi, 1 ≤ i ≤ h, of π1(X) satisfying∏h

i (αi, βi) = 1, where (α, β) is the commutator. As an index 2 subgroup, π1(X̃) is generated
by α̃ j, β̃ j, where

α̃1 = α1, β̃1 = β2
1,

α̃ j = β1α jβ
−1
j , β̃ j = β1β jβ

−1
1 , 2 ≤ j ≤ h

α̃ j = α j+1−h, β̃ j = β j+1−h, h + 1 ≤ j ≤ g.

(III.5.2.1.1)

Then
∏g

j (α̃ j, β̃ j) = 1. With these choices, the character variety is

RepZ/2Z(X,G) �

{(A1,B1, . . . ,Ah,Bh) ∈ (G × G.s1) × (G × G)h−1
|(A1,B1) · · · (Ah,Bh) = 1}.

where s1 is the image of 1 ∈ Z/2Z in Ḡ. Note that (a, bs1) = abψ1(a−1)b−1, for any a, b ∈ G. We
observe that

- If ψ1, for 1 ∈ Z/2Z, is the trivial automorphism, we obtain the usual G-character
variety of π1(X).

In the case G = GLn(C),

- If ψ1, for 1 ∈ Z/2Z, is the exterior automorphism of orthogonal type σo, then G.s1 ⊂
oḠ.

This is the moduli space of σo-invariant local systems of signature +1.

- If n is even and ψ1, for 1 ∈ Z/2Z, is the exterior automorphism of symplectic type σs,
then G.s1 ⊂

sḠ. This is the moduli space of σo-invariant local system of signature −1.

The groups sḠ and oḠ are defined in §II.5.2.1.

III.5.2.2 Unramified Covering of Noncompact Surfaces Now suppose that p′ : X̃′ → X′

be a ramified double covering of compact Riemann surfaces. There must be an even number
of ramification points. We follow the notation of §III.4.1.1. The fundamental group π1(X)
is generated by αi, βi, 1 ≤ i ≤ h, and γ j, j ∈ I, with the only relation

∏
i(αi, βi)

∏
j γ j = 1.

Note that in the particular case of double covering, each αi, βi is the image of some α̃i or β̃i.
Therefore the images of the αi’s and βi’s under ρmust lie in Im ρ̃ ⊂ G. Also note that for each
γ j with n j = 1, γ j is conjugate to γ̃ j,1. (Here 1 ∈<σ>� Z/2Z � Γ, is written multiplicatively.
We could write γ̃ j,0 and γ̃ j,1 instead of γ̃ j,1 and γ̃ j,σ respectively.) For j such that n j = 2, we
simply write γ̃ j := γ̃ j,1.

LetC = (C j) j∈R be a tuple of semisimple G-conjugacy classes in Ḡ such that C j with n j = 1 is
contained in G and C j with n j = 2 is contained in Ḡ\G and there are even number of classes C j

with n j = 2. These classes determine a tuple cf conjugacy classes C̃ := (C̃ j,1, C̃ j,σ)n j=1(C̃ j)n j=2 in
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G, where C̃ j,1 = C j, C̃ j,σ = ψ1(C j) and C̃ j = C2
j . Denote by RepZ/2Z,C(X) the closed subvariety

of Ḡ-representations under which the image of each γ j lies in C j. Then we have

RepZ/2Z,C(X) �

{(Ai,Bi)i × (X j) j ∈ G2h
×

∏
j

C j|

h∏
i=1

(Ai,Bi)
∏
j∈R

X j = 1},

Under the isomorphism given in the proof of Theorem III.1.2.1, it is isomorphic to a
closed subvariety of RepΓ,C̃(X̃,G), with Γ = Z/2Z, where RepΓ,C̃(X̃,G) consists of those
representation ρ̃ : π1(X̃) → G such that ρ̃(γ̃ j,τ) ∈ C̃ j,τ for τ = 1 or σ and ρ̃(γ̃ j) ∈ C̃ j. Since for
a given conjugacy class C̃ ⊂ G, the conjugacy class C ⊂ G.σ such that C2 = C̃ may not be
unique, the closed subvariety RepZ/2Z,C(X) in general is not equal to RepΓ,C̃(X̃,G).

III.5.2.3 Ramified Covering of Compact Surfaces We apply the previous discussions to
ramified coverings. Let J ⊂ I be a subset indexing some ramified points. Write X̃J = X̃∪ j∈J {x̃ j}

and XJ = X ∪ j∈J {x j}. If we put C̃ j = {1}, for any j ∈ J, then RepΓ,C̃(X̃,G) can be regarded as
the variety of (Γ, ψ)-invariant representations with respect to the ramified covering X̃J → XJ,
with monodromy classes at the punctures {x} j, j < J, given by C̃ j, j ∈ I \ J. We are interested
in the case where J = I and R are exactly the ramification points. Now C̃ j = {1} for all j. In
the case of G = GLn(C), we observe that

(a) If ψ1, 1 ∈ Z/2Z, is the trivial automorphism, each C j is identified with a conjugacy
class of involutions in G. These classes are parametrised by partitions of n of length at
most 2, say µ = {µ( j)

} j∈J with µ( j) = (n( j)
1 ,n

( j)
2 ), n( j)

1 + n( j)
2 = n. Then we write RepΓ,C(X,G)

as RepΓ,µ(X,G). The variety RepΓ,C̃(X̃,G) is a finite union of the RepΓ,µ(X,G)’s for µ
running over the partitions above. Following Remark III.4.1.4, we say that a (Γ, ψ)-
invariant representation ρ̃ on the ramified overing X̃′ → X′ has local type µ over R if
the corresponding Ḡ-representation ρ belongs to RepΓ,µ(X,G).

(b) If ψ1, 1 ∈ Z/2Z, is the an exterior automorphism σ of orthogonal type or symplectic
type, then by (II.5.3.3), the map C 7→ C2 gives an injection from the set of semisimple
G-conjugacy classes contained in G.s1 into the set of σ-stable semisimple conjugacy
classes in G, so in particular, C j is the conjugacy class of s1 for all j. In this case, we
have

RepΓ,C̃(X̃,G) � RepΓ,C(X,G).

Remark III.5.2.1. For general reductive group G, the conjugacy class of s1 is isomorphic to
the symmetric space G/Gψ1 .



Chapter IV

The Character Table of GLn(q) o<σ>

In this chapter k denotes the algebraic closure of Fq. We assume that q > n, which is
assumed in the theorem of Waldspurger, and which also ensures that the Deligne-Lusztig
induction does not depend on the parabolic subgroup containing a given Levi subgroup. In
§IV.1 and §IV.2, G will denote GLn(k). In §IV.3, G will denote a connected reductive group
over k and in §IV.4, G will denote a not necessarily connected reductive group over k.

IV.1 Parametrisation of Characters

IV.1.1 F-Stable Levi Subgroups

Recall the parametrisation of the F-stable Levi subgroups of G = GLn(k).

IV.1.1.1 Notations Denote by T ⊂ G the maximal torus consisting of the diagonal matrices
and denote by B ⊂ G the Borel subgroup consisting of the upper triangular matrices. The
Frobenius F of G sends each entry of an matrix to its q-th power. Denote by Φ the root
system defined by T and ∆ ⊂ Φ the set of simple roots determined by B. Denote by
W := WG(T) = NG(T)/T the Weyl group of G. The Frobenius acts trivially on W.

Given a subset I ⊂ ∆, we denote by WI ⊂ W the parabolic subgroup generated by the
simple reflections {sα|α ∈ I}. Denote by PI the parabolic subgroup defined by WI et B, and LI

the unique Levi factor of PI containing T. Denote by ΦI ⊂ Φ the root subsystem assocated
to LI and its Weyl group is WI. A Levi subgroup of the form LI is called a standard Levi
subgroup. Every Levi subgroup is conjugated to a standard Levi subgroup

Proposition IV.1.1.1. The set of the GF-conjugacy classes of the F-stable Levi subgroups of G =

GLn(k) is in bijection with the set of the unordered sequence of pairs of positive integers (r1, d1) · · · (rs, ds),
satisfying

∑
i ridi = n.

Proof. The G-conjugacy classes of the Levi subgroups are in bijection with the equivalence
classes of the subsets I ⊂ ∆. Two subsets I and I′ are equivalent if there is an element w ∈W
such that I′ = wI. It suffices for us to fix I ⊂ ∆ and only consider the GF-conjugacy classes of

79
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LI. The GF-conjugacy classes of the G-conjugates of LI are in bijection with the F-conjugacy
classes of NG(LI)/LI. Note that NG(LI)/LI � NWG(WI) and F acts trivially on WG and so on
NG(LI)/LI.

Let ΓI be a finite set parametrising the positive integers ni, i ∈ ΓI such that LI �
∏

i∈ΓI
GLni .

For any r ∈ Z>0, put ΓI,r := {i ∈ ΓI | ni = r} and put Nr = |ΓI,r|. Then the equivalence classes of
I is specified by the sequence (r,Nr)r>0. We are going to show that the conjugacy classes of
NG(LI)/LI are determined by the partitions of Nr. The desired sequence (r1, d1) · · · (rs, ds) will
then be defined in such a way that (di)i∈{1≤i≤s|ri=r} forms the partition of Nr.

Put S := ZLI . It is a subtorus of T. Denote by Φ(G,S) the subset of the nontrivial weights
of the action of S on g := Lie G. It is in bijection with {(i, j) ∈ Γ2

I | i , j} and so we denote
by αi, j the weight corresponding to (i, j). The weight subspace gαi, j is of dimension nin j.
The subset ΦI = {αi, j ∈ Φ(G,S) | ni = n j} is obviously a root system that is decomposed
into some irreducible factors ΦI,r = {αi, j ∈ Φ(G,S) | ni = n j = r} with r ∈ Z>0, each one of
type ANr−1. The adjoint action of w ∈ NG(LI)/LI sends gαi, j onto gw.αi, j . In fact, the action of
NG(LI)/LI can be lifted to an action of NG(T)/T, thus we see that gi, j is conjugate to gi′, j′ only if
{ni,n j} = {ni′ ,n j′} as sets. Consequently, the action of NG(LI)/LI preserves each ΦI,r. We have
then a homomorphism NG(LI)/LI →

∏
r W(ΦI,r) �

∏
rS(ΓI,r).

For any permutation belonging to
∏

rS(ΓI,r), there obviously exists a permutation matrix
normalising LI that induces it, so this homomorphism is surjective. If w ∈ NG(T) representing
an element of NG(LI)/LI acts trivially on ΦI, then its action on S is trivial, since S is contained in
T and w acts on T by permuting the factors. So w ∈ LI, as LI = CG(S), and the homomorphism
is ths injective. We then have an isomorphism NG(LI)/LI ∼→

∏
rS(ΓI,r).

Let wLI ∈ NG(LI)/LI be a class representing a GF-class of F-stable Levi subgroup. For
each r ∈ Z>0, denote by ΛI,r(w) the set of the orbits in ΓI,r under the action of w and write
ΛI(w) = ∪rΛI,r(w). For each i ∈ ΛI(w), put ri = r if i ∈ ΛI,r(w) and define di to be the cardinality
of i. The di’s, for i ∈ ΛI,r(w), form a partition of |ΓI,r|. The integer s in the statement of the
proposition is equal to |ΛI(w)|. �

If the class of wWI corresponds to (n1, d1) · · · (ns, ds) and L is an F-stable Levi subgroup
corresponding to wWI, then (L,F) is isomorphic to a standard Levi subgroup

(IV.1.1.1.1) LI �
∏

i

GLni(k)di ,

equipped with Fẇ, acting on each factor GLni(k)di in the following manner,

GLni(k)di −→ GLni(k)di

(g1, g2, . . . , gdi) 7−→ (F0(gdi),F0(g1), . . . ,F0(gdi−1)),
(IV.1.1.1.2)

where F0 is the Frobenius of GLni(k) that sends each entry to its q-th power.
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IV.1.2 σ-Stable Characters

Fix T and B as above. We could equally work with any F-stable and σ-stable maximal
torus contained in a σ-stable Borel subgroup.

IV.1.2.1 Quadratic-Unipotent Characters Given a 2-partition (µ1, µ2), we define an irre-
ducible character χ(µ1,µ2) ∈ Irr(GLn(q)) as follows. Put m1 = |µ1| and m2 = |µ2| and so
m1 + m2 = n. Let M ⊂ GLn(k) be a standard Levi subgroup isomorphic to GLm1(k) ×GLm2(k),
i.e.

(IV.1.2.1.1) M =


0GLm1

0 GLm2


.

Denote by WM := WM(T) the Weyl group of M. It is isomorphic toSm1 ×Sm2 . The Frobenius
F acts trivially on WM. With respect to the isomorphism MF � GLm1(q) ×GLm2(q), we define
a linear character θ ∈ Irr(MF) to be (Id ◦det, η ◦ det), where Id is the trivial character of
F∗q and η is the order 2 irreducible character of F∗q. It is regular in the sense of [LS, §3.1].
We define ϕ ∈ Irr(WM) by a 2-partition (µ1, µ2) in such a way that the factor corresponding
to Sm1 is defined by the partition µ1, and the other by µ2. According to Theorem 5, the
triple (M, θ, ϕ) gives an irreducible character of GLn(q), which we denote by χ(µ1,µ2). The
irreducible characters of GLn(q) thus obtained are called quadratic-unipotents.

Lemma IV.1.2.1. For any 2-partition (µ1, µ2), the character χ(µ1,µ2) is σ-stable.

Proof. The operation χ 7→ χ ◦ σ−1 defines an involution of Irr(GLn(q)). Denote by σχ(µ1,µ2)

the image of χ(µ1,µ2) under this involution. If χ is of the form RG
ϕθ for a triple (M, θ, ϕ),

then σχ(µ1,µ2) is of the form RG
σ∗ϕσ∗θ for the triple (σ(M), σ∗θ, σ∗ϕ) according to Lemma II.4.1.2.

Explicitly,

σ(M) �


0GLm2

0 GLm1


,

σ∗θ associates to the factor GLm1 the trivial character of F∗q and η to the other factor, and σ∗ϕ
associates to the factor GLm1 the character ofSm1 corresponding to µ1 and to the other factor
that corresponding to µ2. Then the conjugation by Jn sends (σ(M), σ∗θ, σ∗ϕ) to (M, θ, ϕ), and
so σχ(µ1,µ2) = χ(µ1,µ2) according to Theorem 5 �

IV.1.2.2 Now we construct some more general σ-stable irreducible characters. If I ⊂ ∆ is
a σ-stable subset, then it defines a σ-stable standard Levi subgroup. Every σ-stable standard
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Levi subgroup is of this form. We are going to use the notations of §IV.1.1.1 and of Proposition
IV.1.1.1. Denote by 0 the unique element of ΓI fixeed by σ. For any i ∈ ΓI, denote by i∗ its
image under σ. The standard Levi subgroup LI is decomposed as

∏
i∈ΓI

Li. For any i ∈ ΓI,
write ni = r and so Li � GLr(k) if i ∈ ΓI,r. Schematically, LI is equal to

(IV.1.2.2.1)



Li1
. . .

Lis

GLn0

Li∗s
. . .

Li∗1



.

IV.1.2.3 For any r ∈ Z>0, we write Nr = |ΓI,r|. And WG(LI) := NG(LI)/LI is isomorphic to∏
rSNr . Write N′r = Nr/2 if n0 , r and write N′r = (Nr−1)/2 if n0 = r. Then, WG(LI)σ �

∏
rW

C
N′r

.
Regarded as a block permutation matrix, an element of WC

N′r
typically acts on

∏
{i|ni=r} Li in

the following two ways.

(IV.1.2.3.1)



Li1
. . .

Lit

Li∗t
. . .

Li∗1


,



Li1
. . .

Lit

Li∗t
. . .

Li∗1


,

corresponding to a cycle of positive sign and a cycle of negative sign respectively.
If w is an element of WG(LI)σ, then a block permutation matrix that represents it, denoted

by ẇ, obviously can be chosen to be σ-stable, and so there is some g ∈ (Gσ)◦ such that
g−1F(g) = ẇ. Put MI,w := gLI g−1. It is an F-stable and σ-stable Levi factor of a σ-stable
parabolic subgroup, and there is an isomorphism ad g : LFw

I � MF
I,w. A character of MF

I,w is

σ-stable if and only if it is identified with a σ-stable character of LFw
I by ad g as g is σ-stable.

We are going to construct some σ-stable irreducible characters of LFw
I .

Write Λ = ΛI(w), following the proof the of Proposition IV.1.1.1. The action of σ on ΓI

induces an action on Λ as w commutes with σ, which justifies the notation i∗ for i ∈ Λ. If i,
j ∈ ΓI belong to the same orbit of w, then ni = n j, which justfies the notation ni for i ∈ Λ. Also
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note that ni = ni∗ . For any i ∈ Λ, denote by di the cardinality of the orbit i. Write

(IV.1.2.3.2) Λ1 = {i ∈ Λ|i∗ , i}/ ∼

where the equivalence identifies i to i∗. We will say that i belongs to Λ1 if i , i∗ and the
equivalence class of i belongs to Λ1. Write

(IV.1.2.3.3) Λ2 = {i ∈ Λ|i = i∗} \ {0}.

We can choose an isomorphism

(IV.1.2.3.4) LI �
∏
i∈Λ1

(GLni ×GLni∗ )
di ×

∏
i∈Λ2

(GLni ×GLni∗ )
di/2 ×GLn0

such that Fw and σ act on LI in the following manner.
The action of Fw is given by:

i = 0 : GLn0 −→ GLn0 (IV.1.2.3.5)

A 7−→ F0(A);

i ∈ Λ1 : (GLni ×GLni∗ )
di −→ (GLni ×GLni∗ )

di (IV.1.2.3.6)

(A1,B1,A2,B2 . . . ,Adi ,Bdi) 7−→

(F0(Adi),F0(Bdi),F0(A1),F0(B1) . . . F0(Adi−1),F0(Bdi−1));

i ∈ Λ2 : (GLni ×GLni∗ )
di/2 −→ (GLni ×GLni∗ )

di/2 (IV.1.2.3.7)

(A1,B1,A2,B2 . . . ,Adi/2,Bdi/2) 7−→

(F0(Bdi/2),F0(Adi/2),F0(A1),F0(B1) . . . F0(Adi/2−1),F0(Bdi/2−1)).

where F0 is the Frobenius of GLr(k), for an arbitrary r, that sends each entry to its q-th power
The action of σ is given by:

i = 0 : GLn0 −→ GLn0 (IV.1.2.3.8)

A 7−→ σ0(A);

i , 0 : GLni ×GLni∗ −→ GLni ×GLni∗ (IV.1.2.3.9)

(A,B) 7−→ (σi(B), σi(A))

where σ0 is the standard automorphism of GLn0 (§II.5.1.1) and σi is the automorphism of
GLni that sends g to Jni

t
g−1J−1

ni
no matter what the parity of ni is (§II.5.1.1). We have

(IV.1.2.3.10) LFw
I �

∏
i∈Λ1

(GLni(q
di) ×GLni∗ (q

di)) ×
∏
i∈Λ2

GLni(q
di) ×GLn0(q)
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and σ acts on it in the following manner,

i = 0 : GLn0(q) −→ GLn0(q) (IV.1.2.3.11)

A 7−→ σ0(A);

i ∈ Λ1 : GLni(q
di) ×GLni∗ (q

di) −→ GLni(q
di) ×GLni∗ (q

di) (IV.1.2.3.12)

(A,B) 7−→ (σi(B), σi(A));

i ∈ Λ2 : GLni(q
di) −→ GLni(q

di) (IV.1.2.3.13)

A 7−→ σiF
di/2
0 (A).

Denote by L1 the product of the factors of LI except L0. If no confusion arises, we may
also denote by Fw and σ their restrictions on L1. With respect to the decomposition of LFw

I as
above, a linear character θ1 of LFw

1 can be written as

(IV.1.2.3.14)
∏
i∈Λ1

(αi, αi∗)
∏
i∈Λ2

αi ∈
∏
i∈Λ1

(Irr(F∗
qdi

) × Irr(F∗
qdi

)) ×
∏
i∈Λ2

Irr(F∗
qdi

).

The set Irr(WL1)Fw is in bijection with the irreducible characters of

(IV.1.2.3.15)
∏
i∈Λ1

(Sni ×Sni∗ ) ×
∏
i∈Λ2

Sni .

Such a character can be written as ϕ1 =
∏

i∈Λ1
(ϕi, ϕi∗)

∏
i∈Λ2

ϕi.

IV.1.2.4 Suppose that the factors of θ1 and ϕ1 satisfy

for any i ∈ Λ \ {0}, αi , Id or η, (IV.1.2.4.1)

for any i ∈ Λ1, αi∗ = α−1
i , (IV.1.2.4.2)

for any i ∈ Λ2, αqdi/2 = α−1
i , (IV.1.2.4.3)

for any i ∈ Λ1, ϕi∗ = ϕi. (IV.1.2.4.4)

We choose ϕ̃1, an extension of ϕ1 to WL1 .<Fw>, in such a way that

(IV.1.2.4.5) χ1 = RG
ϕ1
θ1 = |WL1 |

−1
∑

v∈WL1

ϕ̃1(vFw)RL1
Tv
θ1,

is an irreducible character of LFw
1 .

Proposition IV.1.2.2. Let χ0 be a quadratic-unipotent character of LF0
0 . Then, χ1 � χ0 is a σ-stable

irreducible character of LFw
I . Identified with a character of MF

I,w, its induction RG
MI,w

(χ1 � χ0) is a
σ-stable irreducible character of GLn(q).

Proof. By the hypothesis on θ1 and ϕ1, χ1 is σ-stable, and so χ1 � χ0 is σ-stable. It follows
from the definition of RG

MI,w
that if χ1 � χ0 is σ-stable, then RG

MI,w
(χ1 � χ0) is σ-stable. �
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IV.1.2.5 The rest of this section is to prove the following proposition.

Proposition IV.1.2.3. Every σ-stable irreducible character of GLn(q) is of the form given by Propo-
sition IV.1.2.2.

IV.1.2.6 Suppose that χ ∈ Irr(GLn(q)) is an irreducible character defined by the triple
(M, ϕ, θ) following Theorem 5. We will use the notations in the proof of Proposition IV.1.1.1.
There exists a standard Levi subgroup LJ for some subset J ⊂ ∆, w ∈ NWG(WJ), ẇ ∈ G a
representative of w, and g ∈ G such that M = gLJ g−1 and g−1F(g) = ẇ. We can further
assume that ẇ is a block permutation matrix that permutes the factors of LJ. We have an
isomorphism ad g : LFw

J � MF.
If M is an F-stable Levi subgroup corresponding to (n1, d1) · · · (ns, ds) by Proposition

IV.1.1.1, then we have M �
∏

i∈Λ GLni(k)di , and MF �
∏

i∈Λ GLni(q
di), where Λ := ΛJ(w). With

respect to this decomposition, we write θ =
∏

i αi with αi ∈ Hom(F∗
qdi
, Q̄∗`), where we have

abbreviated αi ◦ det as αi. An element m ∈MF can be written as
∏

i li with Fdi
0 (li) = li.

Proposition IV.1.2.4. In order for χ to be σ-stable, it is necessary that for each i ∈ Λ, there exist
i∗ ∈ Λ and 0 ≤ c < di∗ such that ni = ni∗ and α−1

i = α
qc

i∗ .

Proof. Assume that χ is σ-stable. Theorem 5 implies that there exists x ∈ GF such that

ad x(M) = σ(M),(IV.1.2.6.1)

(ad x)∗σ∗θ = θ.(IV.1.2.6.2)

Consider the maps

(IV.1.2.6.3) LJ
ad g
−→ M

ad x
−→
−→
σ

σ(M).

For any l ∈ LJ, the element

(IV.1.2.6.4) (ad g)−1
◦ σ−1

◦ (ad x) ◦ (ad g)(l),

belongs to LJ and is equal to ntl−1n−1 with n := g−1J(tx−1)(tg−1). If l ∈ LFw
J , then l̄ := ntl−1n−1

∈

LFw
J . Regarded as the elements of LJ, l and l̄ can be written as

(IV.1.2.6.5) l =
∏
i∈Λ

(li,F0(li), . . . ,F
di−1
0 (li)), l̄ =

∏
i∈Λ

(l̄i,F0(l̄i), . . . ,F
di−1
0 (l̄i))

with Fdi
0 (li) = li and Fdi

0 (l̄i) = l̄i.
We index the factors of each element l′ ∈ LJ by (i, c), i ∈ Λ and 0 ≤ c < di, so that l′ic = Fc

0(l′i )
if l′ ∈ LFw

J . Since n normalises LJ, it can be written as n = vy with y ∈ LJ and v being a block
permutation matrix that permutes the factors of LJ. By the definition of l̄, for any i, there
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exists i∗ ∈ Λ and ci∗ such that

(IV.1.2.6.6) l̄i = yi∗ci∗F
ci∗

0 (tl−1
i∗ )y−1

i∗ci∗
.

Therefore, v induces a permutation i 7→ i∗ of Λ. (In this proof, we do not require that (i∗)∗ = i.)
We have

(ad g)∗(ad x)∗σ∗θ(l) = (ad g)∗θ(ntl−1n−1)

= (ad g)∗θ(
∏

i

yi∗ci∗F
ci∗

0 (tl−1
i∗ )y−1

i∗ci∗
).(IV.1.2.6.7)

If we write (ad g)∗(θ) =
∏

i αi, with αi ∈ Irr(F∗
qdi

), then for all l ∈ LFw
J ,

(ad g)∗(ad x)∗σ∗θ(l) =
∏

i

αi(F
ci∗

0 (tl−1
i∗ ))

=
∏

i

α
−qci∗

i (li∗).
(IV.1.2.6.8)

On the other hand, from the equality (IV.1.2.6.2) we deduce that for all l ∈ LFw
J ,

(IV.1.2.6.9) (ad g)∗(ad x)∗σ∗θ(l) =
∏

i

αi(li).

We complete the proof by comparing the two equalities. �

Remark IV.1.2.5. It is necessary that (i∗)∗ = i. Suppose (i∗)∗ = j , i, then there exists an
integer d such that α j = α

qd

i , which contradicts the regularity of θ.

Remark IV.1.2.6. If i∗ = i, then it is necessary that di is an even number, and α−1
i = α

qdi/2

i .

Remark IV.1.2.7. There are at most two i ∈ Λ such that α2
i = 1 in order for θ to be regular.

We denote them by ±. It is necessary that d+ = d− = 1. Also denote by ± the corresponding
two elements of Γ.

IV.1.2.7 The previous proposition allows us to define the sets

Λ1 = {i ∈ Λ|i∗ , i}/ ∼(IV.1.2.7.1)

Λ2 = {i ∈ Λ|i = i∗} \ {±},(IV.1.2.7.2)
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in a way similar to (IV.1.2.3.2) and (IV.1.2.3.3). There exists a permutation matrix x such that
LJ′ := xLJx−1 is of the form

Li1
. . .

Lis

L+

L−

Li′s
. . .

Li′1



.

where Li′j � Li j for any j. The Frobenius concerned is Fxwx−1 , which fixes L+ and L− as
d+ = d− = 1. We can further conjugate by a permutation matrix that normalises LJ′ , say y,
in such a way that Fyxwx−1 y−1 acts on LJ′ according to (IV.1.2.3.1), and so the αi’s satisfy the
hypothesis §IV.1.2.4. Denote by θJ′ and ϕJ′ the characters associated to LJ′ that come from θ

and ϕ via ad g, ad x and ad y.
Choose a block permutation matrix v̇ that realises the permutation of ΓJ′ defined by

v := yxwx−1y−1. It can be chosen to be σ-stable. Let h ∈ (Gσ)◦ be such that h−1F(h) = v̇. Then
MJ′,v = hLJ′h−1 is an F-stable Levi subgroup that is GF-conjugate to M. In particular, if we
identify θJ′ and ϕJ′ with the characters associated to MJ′,v by ad h, then χ is equal to the
induction RG

ϕJ′
θJ′ for a triple (MJ′,v, ϕJ′ , θJ′).

Define LI to be the standard Levi subgroup of the form (IV.1.2.2.1) such that n0 = n+ + n−
and that LI coincides with LJ′ away from GLn0 . We see that MI,v = hLIh−1 is a σ-stable and
F-stable Levi factor of a σ-stable parabolic subgroup. Moreover, it contains MJ′,v and σ(MJ′,v).

Note that σχ is defined by the triple (σ(MJ′,v), σ∗ϕJ′ , σ∗θJ′). Since ad h commutes with σ, we
can work with LI and find a permutation matrix that conjugates LJ′ to σ(LJ′) and conjugates
θ to σ∗θ. Indeed, it is effectively a permutation matrix in GLn0 as σ∗θJ′ is already equal to
θJ′ away from GLno by definition. By Theorem 5, in order for χ to be σ-stable, it is necessary
that σ∗ϕJ′ = ϕJ′ away from GLn0 . And it suffices. This completes the proof of Proposition
IV.1.2.3.

IV.1.2.8 The type of a σ-stable irreducible character consists of some non negative integers
n±, and some positive integers ni, di, n′j, and d′j parametrised by the finite sets Λ1 and Λ2,
denoted by

(IV.1.2.8.1) t = n+n−(ni, di)i∈Λ1(n′j, d
′

j) j∈Λ2 ,



88 CHAPTER IV. THE CHARACTER TABLE OF GLN(Q) o<σ>

satisfying

(IV.1.2.8.2) n = n+ + n− +
∑

i

2nidi +
∑

j

2n′jd
′

j.

If t̃ = ñ+ñ−(ñi, d̃i)i∈Λ̃1
(ñ′j, d̃

′

j) j∈Λ̃2
is another sequence of integers, we regard it as the same as

t if and only if there exist some bijections Λ1 � Λ̃1 and Λ2 � Λ̃2 such that the integers are
matched. (In particular, n+ = ñ+ and n− = ñ−.)

We denote by Tχ the set of the types of the σ-stable irreducible characters of GLn(q).
Given t ∈ Tχ, denote by T̄χ(t) the set of the data

(IV.1.2.8.3) t̄ = λ+λ−(λi, α̂i)i∈Λ1(λ′j, α̂
′

j) j∈Λ2

satisfying

- λ± ∈ Pn± , λi ∈ Pni , λ
′

j ∈ Pn′j
, for some integers n+, n−, ni and n′j;

- α̂i ⊂ Irr(F̄∗q) is an F-orbit of order di that is not stable under inversion;

- α̂′j ⊂ Irr(F̄∗q) is an F-orbit of order 2d′j that is stable under inversion;

- α̂i , α̂i′ if i , i′ and α̂i is different from ±1 ∈ Irr(F̄∗q), and similarly for the α̂′j’s.

Denote
T̄χ = ∪t∈TχT̄χ(t).

By Proposition IV.1.2.2 and Proposition IV.1.2.3, the σ-stable irreducible characters are in
bijection with T̄χ.

Given an element of T̄χ as above, put n0 = n+ +n−, then n0
∏

1(ni, di)
∏

j(n′j, d
′

j) determines
a standard Levi subgroup LI of the form (IV.1.2.2.1) and a permutation of the factors of LI.
We can recover the corresponding character by following §IV.1.2.3 and §IV.1.2.4.

IV.2 Parametrisation of Conjugacy Classes

IV.2.1 F-Stable Quasi-Semi-Simples Classes

A G-conjugacy class contains some GF-conjugacy classes if and only if it is F-stable. We
will give the parametrisation of the F-stable quasi-semi-simple conjugacy classes in G.σ.
Recall that in oḠF, we denote by σ the element t0σ′ (cf. Convention II.5.2.2).

IV.2.1.1 We begin with the parametrisation of the quasi-semi-simple G-conjugacy classes.
We take for T the maximal torus consisting of the diagonal matrices, then (Tσ)◦ consists of
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the matrices

diag(a1, a2, . . . , am, a−1
m , . . . , a

−1
2 , a

−1
1 ), if n = 2m,(IV.2.1.1.1)

diag(a1, a2, . . . , am, 1, a−1
m , . . . , a

−1
2 , a

−1
1 ), if n = 2m + 1,(IV.2.1.1.2)

with ai ∈ F̄
∗
q for all i, and the commutator (T, σ) consists of the matrices

diag(b1, b2, . . . , bm, bm, . . . , b2, b1), if n = 2m,(IV.2.1.1.3)

diag(b1, b2, . . . , bm, bm+1, bm, . . . , b2, b1), if n = 2m + 1,(IV.2.1.1.4)

with bi ∈ F̄
∗
q for all i. So the elements of S := [T, σ] ∩ (Tσ)◦ are the matrices

diag(e1, e2, . . . , em, em, . . . , e2, e1), if n = 2m,(IV.2.1.1.5)

diag(e1, e2, . . . , em, 1, em, . . . , e2, e1), if n = 2m + 1,(IV.2.1.1.6)

with ei = ±1 for all i.
We index the entries of a diagonal matrix by the set {1, 2, . . . ,m,−m, . . . ,−2,−1} or the

set {1, 2, . . . ,m, 0,−m, . . . ,−2,−1} according to the parity of n so that every matrix in (Tσ)◦

satisfies a−i = a−1
i for all i.

Notation IV.2.1.1. We will abbreviate an element of (Tσ)◦ as [a1, . . . , am] regardless of the
parity of n.

We have the following proposition.

Proposition IV.2.1.2. ([DM18, Proposition 1.16]) The quasi-semi-simple classes in G.σ are in
bijection with the Wσ-orbits in T/(T, σ) = (Tσ)◦/S.

That is, the class of [a1, . . . , am]σ is invariant under the following operations,

- Permutation of the ai’s;

- ai 7→ a−1
i , for any i;

- ai 7→ −ai, for any i,

and [b1, . . . , bm]σ belongs to the same class if it only differs from [a1, . . . , am]σ by these opera-
tions. For another description of these conjugacy classes, see also [DM15, Example 7.3].

IV.2.1.2 Denote by k̂ the quotient of k∗ by the action of Z/2Z ×Z/2Z:

(1, 0) : a 7→ a−1. (0, 1) : a 7→ −a.(IV.2.1.2.1)

For any a ∈ k, denote by â the set {a,−a, a−1,−a−1
}.
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Remark IV.2.1.3. The conjugacy class of tσ = [a1, . . . , am]σ is determined by the set {â1, . . . , âm}.
We may regard its elements as the eigenvalues of tσ.

The action of F on k induces an action on k̂, given by

â 7→ âq := {aq,−aq, a−q,−a−q
}.

Let α̂ ⊂ k̂ be an orbit of F and take â ∈ α̂. Write d = |α̂|. Denote by e and ε the signs such that
aqd

= eaε, for any a ∈ â. Note that e and ε are independent of the choice of â ∈ α̂ or the choice
of a ∈ â. We say that α̂ is an orbit of type (d, ε, e).

There is some ambiguity with the type thus defined. Let α̂1 be an orbit of type (d1, ε1, e1)
and let α̂2 be an orbit of type (d2, ε2, e2). Obviously if d1 > d2, then α̂1 and α̂2 are distinct orbits.
Suppose d1 = d2 = d. If x satisfies both of the two equations xqd1 = e1xε1 and xqd2 = e2xε2 ,
then e1e2xε1−ε2 = 1. In order for this equaiton to be solvable, either e1 = e2, ε1 = ε2, that is,
α̂1 and α̂2 coincide, or e1 = e2, ε1 = −ε2, which gives x2 = 1, or e1 = −e2, ε1 = −ε2, which
gives x2 = −1. The latter ones are the orbits {1,−1} and {i,−i}, so d = 1, and they are said
to be of type (1) and of type (i) respectively. Except these cases, orbits of different types are
all distinct. In the following, these two orbits are treated separately and so there will be no
confusion among types.

Fix an orbit α̂ of type (d, ε, e) and an element â ∈ α̂. For any sequence of signs ε =

(ε0, . . . , εd−1) and e = (e0, . . . , ed−1) such that
∏

k εk = ε and
∏

k ek = e, a representative of type
(d, ε, e) of α̂ is a sequence α := (a0, a1, . . . , ad−1) ∈ (k∗)d satisfying ai = eia

qεi
i−1, i ∈ Z/dZ.

Remark IV.2.1.4. Fixing the values of ε and of e, there are several choices of ε and e. If we
put ed−1 = e, ek = 1 for 0 ≤ k < d − 1, and similarly for ε, the representative α is of the form
{a, aq, . . . , aqd−1

}.

IV.2.1.3 Let us define some combinatorial data that parametrise the F-stable quasi-semi-
simple conjugacy classes.

We call the type of an F-stable quasi-semi-simple conjugacy class the data consisting
of some non negative integers n+, n−, with the parity of n+ being that of n, some positive
integers ni, di and some signs ei and εi, parametrised by a finite set Λ, denoted by

(IV.2.1.3.1) t = n+n−(ni, di, , εi, ei)i∈Λ,

satisfying

(IV.2.1.3.2)
∑
i∈Λ

2nidi + n+ + n− = n.

If t̃ = ñ+ñ−(ñi, d̃i, , ε̃i, ẽi)i∈Λ̃ is another sequence of integers, we regard it as the same as t if and
only if there exists a bijection Λ ∼↔ Λ̃ such that the integers and the signs are mathched, and
moreover, n+ = ñ+ and n− = ñ−.

We denote byTC,s the set of the types of the F-stable quasi-semi-simple conjugacy classes.
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Given t ∈ TC,s, denote by T̄C,s(t) the set of the data

(IV.2.1.3.3) t̄ = n+n−(ni, α̂i)i∈Λ,

satisfying

- for any i, α̂i is an orbit of type (di, εi, ei) , (1) or (i);

- if i , i′, then α̂i , α̂i′ .

If s̄ = m+m−(mi, β̂i)i∈Λ̃ is another such datum, we regard it the same as t̄ if and only if there
exists a bijection Λ ∼↔ Λ̃ such that the integers and the orbits are mathched, and moreover,
n+ = m+ and n− = m−.

It will sometimes be convenient to distinguish between the i’s with εi = 1 and the i’s with
εi = −1. Put Λ1 ⊂ Λ to be the subset of the i’s such that εi = 1 and put Λ2 = Λ \ Λ1. The
following notations will also be used,

t = n+n−(ni, di, ei)i∈Λ1(n′j, d
′

j, e
′

j) j∈Λ2 ,

t̄ = n+n−(ni, ᾱi)i∈Λ1(n′j, ᾱ
′

j) j∈Λ2 .
(IV.2.1.3.4)

Proposition IV.2.1.5. The F-stable quasi-semi-simple conjugacy classes in G.σ are in bijection with
T̄C,s.

This follows from Lemma IV.2.1.6 and Lemma IV.2.1.7 below.

IV.2.1.4 Define a map

(IV.2.1.4.1) ψ : T̄C,s −→ {F-stable quasi-semi-simple classes in G.σ}

as follows.
Write t̄ = n+n−(ni, α̂i)i∈Λ with α̂i of type (di, εi, ei). Let us define an element of (Tσ)◦ from

t̄ and denote it by t = [a1, . . . , am]. Basically, we are going to regard the elements of α̂i’s as
eigenvalues and the ni’s as their multiplicities.

(i). Take [n+/2] subsets of {1, . . . ,m}, each consisting of a point, which will be called of
type (1), and then (n−/2) subsets, each consisting of a point, which will be called of type (i),
and take for each i ∈ Λ, ni subsets of cardinality di. These subsets, combined with {0} if n is
odd, form a partition of {1, . . . ,m}(∪{0}) and we denote it by (Ir)r.

(ii). Choose for each r an identification Ir � Z/drZ, where dr := di if Ir comes from i.
(iii). For each i ∈ Λ, take a sequence εi = (εk)k∈Z/diZ such that εi =

∏
εk and a sequence

ei = (ek)k∈Z/diZ such that ei =
∏

ek, for example the choice in Remark IV.2.1.4.
(iv). For each i ∈ Λ, take a representative of type (di, εi, ei) of α̂i, denoted by αi.
(v). If Ir comes from i ∈ Λ by the procedure (i), and αi = {a, aq, . . . , aqdi−1

}, define for all
k ∈ Ir, ak := aqk

, under the identification Ir � Z/drZ. If Ir is of type (1)(resp. (i)), we define
the only entry of t corresponding to Ir to be 1(resp. i). (We require that {0} ∈ (Ir)r is of type
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(1).) Thus, we have defined an element t ∈ (Tσ)◦, whence a quasi-semi-simple geometric
conjugacy class in G.σ, denoted by ψ(t̄).

Lemma IV.2.1.6. ψ is well defined.

Proof. The class ψ(t̄) does not depend on the choices of the subsets Ir or the identifica-
tions Ir � Z/drZ due to the conjugation by Wσ. It does not depend on the choices of the
representativesαi, due to the conjugation by Wσ and the multiplication by S.

Let us show that ψ(t̄) is F-stable. Under the identifications Ir � Z/drZ, the permutation
i 7→ i + 1 induces the circular permutation of the elements of Ir. We define a permutation τ of
{1, . . . ,m}(∪{0}) by the cIr ’s. For Ir = {ir} (i.e. those consisting of one single point), put εir = 1,
eir = 1, unless q ≡ 3 mod 4 and Ir is of type (i), in which case we put εir = −1, eir = 1. We
define εIr

= (εk)k∈Ir by εi and εir , and define eIr
= (ek)k∈Ir by ei and eir , thus define w and s. We

have swF(t) = t. Observe that the class of tσ is F-stable if and only if there exists w ∈Wσ and
s ∈ S such that swF(t) = t. �

IV.2.1.5 Now we prove the following.

Lemma IV.2.1.7. ψ is bijective.

Proof. The injectivity follows immediately from the definition of T̄C,s and Remark IV.2.1.3.
Let us show the surjectivity.

Let t = [a1, . . . , am] ∈ (Tσ)◦ be an element of an F-stable conjugacy class. Then there
exists w and s such that swF(t) = t. We can write w = ((ε1, . . . , εm), τ) with τ = cI1 · · · cIl and
s = [e1, . . . , em]. For all r, put ēr =

∏
k∈Ir

ek and put er = (ek)k∈Ir(See §II.2.2.2). Similarly, we
define ε̄r and εr. The action of wF on (Tσ)◦ is given by

(IV.2.1.5.1) [a1, . . . , am] 7−→ [aqε1

τ−1(1)
, . . . , aqεm

τ−1(m)
].

For all r, we can index the elements of Ir by Z/drZ(dr = |Ir|) in such a way that the action
of τ sends i ∈ Ir to i + 1. An element [a1, . . . , am] is fixed by sFw, if in every orbit Ir, we have
ai = eia

qεi
i−1, i ∈ Z/τrZ. In particular, it is necessary that the ai’s satisfy the equation xqτr

= ērxε̄r .
Assume that under the identification I1 � Z/τ1Z, the ai’s, i ∈ Z/d1Z satisfy ai = eia

qεi
i−1. Let

τ1 be the smallest positive integer such that aτ1 ∈ ±a±1
0 . If τ1 = d1, then there is nothing to be

done. Suppose τ1 < d1. Put I′1 = {0, 1, . . . , τ1−1} ⊂ Z/d1Z and put I′′1 = {τ1, τ1 +1, . . . , d1−1} ⊂
Z/d1Z, and let cI′1

be the permutation i 7→ i + 1, τ1 − 1 7→ 0 and cI′′1
the permutation i 7→ i + 1,

d1 − 1 7→ τ1. We define τ′ = cI′1
cI′′1

cI2 · · · cIl . By modifying ε0, e0, ετ1 , eτ1 , ετ1+1, eτ1+1, εd1−1 and
ed1−1 if necessary, we obtain w′ = ((ε′1, . . . , ε

′
m), τ′) and s′ = (e′1, . . . , e

′
m) that satisfy s′w′F(t) = t.

Continue this process if necessary and replace w by w′ until this is no longer possible.
Now, for each r, {ak|k ∈ Ir} form a representative αr of an orbit α̂r ⊂ k̂. Collecting the same
orbits and defining n j to be the multiplicity of the corresponding orbit, we end up with
(n1, ᾱ1) · · · (nl′ , ᾱl′). Separating the orbits of type (1) and (i), this is the image of an element of
T̄C,s, whence surjectivity. �
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IV.2.2 Centralisers and GF-Classes

We will see that the centraliser of a quasi-semi-simple element is in general a product of
a symplectic group, an orthogonal group and some linear groups.

IV.2.2.1 Let C̄ be an F-stable quasi-semi-simple conjugacy class corresponding to t̄ =

n+n−(ni, α̂i)i∈Λ1(n j, α̂ j) j∈Λ2 following Proposition IV.2.1.5, and we denote its type by t =

n+n−(ni, di, ei)i∈Λ1(n′j, d
′

j, e
′

j) j∈Λ2 . Let tσ be a representative of C̄ following §IV.2.1.4. Then
the isomorphism class of CG(tσ) only depends on the type of C̄.

Lemma IV.2.2.1. We have,

CG(tσ) � Spn+
(k) ×On−(k) ×

∏
i∈Λ1

GLni(k) ×
∏
j∈Λ2

GLn′j
(k), if n is even,

CG(tσ) � Spn−(k) ×On+(k) ×
∏
i∈Λ1

GLni(k) ×
∏
j∈Λ2

GLn′j
(k), if n is odd.

The numbers n+ and n− are exchanged only because we have made different choices of
σ for even and odd n.

Proof. If z ∈ G commutes with tσ, then it commutes with tσtσ = tσ(t)σ2, with σ2 = ±1 being
central. Let us calculate CCG(tσ(t))(tσ). That the α̂i’s are pairwise distinct means that for ai ∈ αi,
a j ∈ α j, i , j, we have aqc

i , ±a±1
j , for all c, so a2qc

i , a±2
j , for all c. Besides, the integers n+ and

n− become the multiplicities of 1 and −1 in tσ(t) respectively. Consequently, the centraliser
of tσ(t) is a Levi subgroup L̄0 := CG(tσ(t)):

(IV.2.2.1.1)
∏
i∈Λ1

(GLni ×GLni)
di ×

∏
j∈Λ2

(GLn′j
×GLn′j

)d′j ×GLn+ ×GLn−

with the action of σ given by

σ : GLni ×GLni −→ GLni ×GLni

(g, h) 7−→ (σ0(h), σ0(g)),
(IV.2.2.1.2)

for all i ∈ Λ1, and similarly for j ∈ Λ2, where σ0(g) = Jtg−1J−1, with (J)ab = δa,ni+1−b, for any i
or j.

The action induced from tσ on each GLni ×GLni coincides with that of σ. If n is even,
and Ḡ =

sḠ, the action induced by tσ on GLn+ and GLn− are respectively the automorphisms
associated to Jn or J′n defined in §II.5.1.1. It follows that in Ḡ =

sḠ,

(IV.2.2.1.3) L0 := CG(tσ) = Spn+
(k) ×On−(k) ×

∏
i∈Λ1

GLni(k) ×
∏
j∈Λ2

GLn′j
(k).
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�

IV.2.2.2 Let us introduce a sign η ∈ {±1} that can be −1 only if

- n is even and n− > 0, or

- n is odd and n+ > 0,

or rather, if the orthogonal factor of the centraliser is non trivial.

Proposition IV.2.2.2. The quasi-semi-simple conjugacy classes in GF.σ are parametrised by the data

(IV.2.2.2.1) {(η, t̄)} ⊂ {±1} × T̄C,s.

Proof. Clear. �

To simplify the notation, we will write ηt̄ instead of (η, t̄).
If the centraliser of a semi-simple element has two connected components, then the

corresponding two GF-classes can be distinguished by the homomorphism

(IV.2.2.2.2) GLn(q) o<σ>−→ F∗q/(F
∗

q)2
−→ µ2.

The first map sends g ∈ G(q) to det(g) mod (F∗q)2 and sends σ to 1, and the second map is
the nontrivial homomorphism. The value of η is defined as the image of the corresponding
GF-class under this homomorphism. In fact, the above homomorphism is the only nontrivial
central character of GLn(q).<σ>that is non vanishing on GLn(q).σ, which extends the character
η◦det of GLn(q), withηbeing the order 2 irreducible character ofF∗q. This explains the notation
η.

To see that the above homomorphism can distinguish the two GF-conjugacy classes
contained in the same G-conjugacy class, we argue as follows. Let tσ ∈ GF.σ be such
that CG(tσ) has two connected component. Then according to our concrete description of
CG(tσ), its two connected components are distinguished by the values ±1 of the determinant,
corresponding to the two connected components of the orthogonal factors. Let g ∈ G be
such that g−1F(g) = z ∈ CG(tσ) \ CG(tσ)◦, then gsσg−1 is a representative of another GF-
conjugacy class. Applying the determinant to the equality g−1F(g) = z gives det(g)q−1 = −1,
so that det(g)2

∈ F∗q \ (F∗q)2; applying the above homomorphism to the element gsσg−1 gives
det(s) det(g)2, whence the claim.

IV.2.2.3 We can specify the centraliser of each quasi-semi-simple element of GF.σ. Let
tσ ∈ GF.σ be a quasi-semi-simple element corresponding to

(IV.2.2.3.1) ηd+d−(ni, α̂i)i∈Λ1(n′j, β̂ j) j∈Λ2 .
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If n is even, then its centraliser in GF is

(IV.2.2.3.2) Spn+
(q) ×Oη

n−(q) ×
∏
i∈Λ1

GLni(q
di) ×

∏
j∈Λ2

GL−n′j
(qd′j).

If n is odd, then its centraliser in GF is

(IV.2.2.3.3) Spn−(q) ×On+(q) ×
∏
i∈Λ1

GLni(q
di) ×

∏
j∈Λ2

GL−n′j
(qd′j).

Note that for odd n+, O+
n+

(q) is isomorphic to O−n+
(q).

IV.2.2.4 We refer to §II.2.3.4 for the parametrisation of the unipotent classes of finite
classical groups. Let C be a semi-simple GF-conjugacy class corresponding to

(IV.2.2.4.1) ηd+d−(ni, α̂i)i∈Λ1(n′j, α̂
′

j) j∈Λ2 .

For odd n, the GF-classes which have C as semi-simple parts are parametrised by

(IV.2.2.4.2) Λs
n−Λ

o
n+

(λi)i∈Λ1(λ′j) j∈Λ2 ,

where Λs
n− ∈ Ψs

n− , Λo
n+
∈ Ψo

n+
, λi ∈ Pni , λ

′

j ∈ Pn′j
, with each such datum corresponding to two

classes if Λo
n+

is degenerate.
For even n and η = 1, the GF-classes which have C as semi-simple part are parametrised

by

(IV.2.2.4.3) Λs
n+

Λo
n−(λi)i∈Λ1(λ′j) j∈Λ2 ,

where Λs
n+
∈ Ψs

n+
, Λo

n− ∈ Ψo
n− , λi ∈ Pni , λ

′

j ∈ Pn′j
, with each such datum corresponding to two

classes if Λo
n− is degenerate. If η = −1, the classes are parametrised by the same data except

that Λo
n− ∈ Ψ

′o
n− .

IV.3 Shintani Descent

Now G denote a connected reductive group over k.

IV.3.1 Eigenvalues of the Frobenius

In this part, we collect some results on the eigenvalues of the Frobenius endomorphism
acting on the `-adic cohomology of the Deligne-Lusztig variety Xw. We will write Xw,F if
it is necessary to specify the Frobenius that is involved. Recall that Xw is the subvariety of
the flag variety B consisting of the Borel subgroups B such that (B,F(B)) are conjugate to
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(B0, ẇB0ẇ−1) by G, where ẇ ∈ G is a representative of w ∈ WG and B0 is some fixed F-stable
Borel subgroup.

IV.3.1.1 The Deligne-Lusztig character RG
Tw

1 is realised by the virtual representation⊕
i

(−1)iHi
c(Xw, Q̄`).

Recall that the Lusztig series E(GF, (1)) consists of the irreducible representations that appear
as a direct summand of some RG

Tw
1, or equivalently of a vector space Hi

c(Xw, Q̄`). Denote
by Hi(X̄w, Q̄`) the intersection cohomology of Xw. By [L84b, Corollary 2.8], each element
of E(GF, (1)) is also an irreducible GF-subrepresentation of Hi(X̄w, Q̄`) for some i and w. We
write

Mi(w,F) := Hi(X̄w,F, Q̄`)

Hi(w,F) := EndGF(Mi(w,F))
(IV.3.1.1.1)

If w = 1, Mi(1,F) is just the `-adic cohomology of X1 and its simple factors are the principal
series representations, which are in bijection with the irreducible representations of Hi(1,F). If
F is split, Hi(1,F) � Q̄`[W], and if F is twisted by a graph automorphism σ, Hi(1,F) � Q̄`[Wσ].
In what follows, we fix the Frobenius F and w ∈ W, and write Mi and Hi instead of Mi(w,F)
and Hi(w,F).

IV.3.1.2 Denote by F0 a split Frobenius over Fq, and denote by F the Frobenius defining
the Fq-structure of G. Assume that some power of F0 is a power of F. Let b be the smallest
integer such that Fb

0 is a power of F. In the case that interests us, b = 1 or 2. Note that F and F0

commute. The action of F0 on B induces an isomorphism of Mi as a vector space. Moreover
F0 induces by conjugation an algebra automorphism of Hi, still denoted by F0, which is
unipotent ([L84b, Theorem 2.18]). Let ρ be an irreducible representation of GF that appears
in Mi. Denote by Mi,ρ the isotypic component corresponding to ρ. By [L84b, Proposition
2.20], the action of F0 respects the isotypic decomposition, i.e. F0(Mi,ρ) = Mi,ρ. The algebra
Hi is decomposed into some simple algebras Hi,ρ = EndGF(Mi,ρ).

IV.3.1.3 Now assume that ρ is fixed. Denote by [ρ] the vector space on which GF acts by the
representation ρ. There exists a Q̄`-space V such that Mi,ρ � [ρ]⊗V and that Hi,ρ � EndQ̄` V.
Since Hi,ρ is a simple algebra, we have F0 = φG ⊗ φH with φG ∈ Q̄`[GF] and φH ∈ Hi,ρ, which
are invertible as F0 is. Consider the adjoint representation,

GL(V) −→ GL(Hi,ρ)

φH 7−→ adφH.
(IV.3.1.3.1)



IV.3. SHINTANI DESCENT 97

Since adφH = ad F0, which is unipotent, we see that φH is a unipotent endomorphism up
to a scalar. Modifying φ if necessary, we can assume that φH is unipotent. Choose a basis
{e1, . . . , es} of V in such a way that in this basis φH is triangular. Each Mi,ρ,r = [ρ]⊗ er provides
the representation ρ. By [L84b, Proposition 2.20], the representation ρ : GF

→ GL(Mi,ρ,r) is F0-
stable and extends into a representation of GF.<F0>, denoted by ρ̃,with Fb

0 acting trivially on
GF. The action of F0, regarded as an element of GF.<F0>, on Mi,ρ,r is defined by (λ′ρ)−1q−i/2φ,
where λ′ρ is a root of unity. Another choice of ρ̃ corresponds to a multiple of λ′ρ by a b-th root
of unity. The value of λ′ρ only depends on ρ and a choice of ρ̃, and does not depend on w or
i. In other words, F0 = ρ̃⊗ϕ′, where ϕ′ is a unipotent endomorphism multiplied by λ′ρqi/2ϕ.

IV.3.1.4 If we consider a Frobenius F′0 that is not necessarily split, it may happen that the
action of F′0 does not respect the isotypic components of Mi. However, we can nevertheless
consider those components that are preserved by F′0. In fact, a component Mi,ρ is F′0-stable if
and only if the character θρ ∈ Irr(Hi) associated is F′0-stable. Let Mi,ρ be such a component,
we still have Mi,ρ � [ρ] ⊗ V and ρ extends into a representation of GF.<F′0>.

IV.3.1.5 Now we consider the action of F0 on the `-adic cohomology. By [Sh85, Lemma
1.4], the eigenvalues of F0 on Hi

c(Xw, Q̄`) are λ′ρ times a power of qb/2 which is not necessarily
qib/2. Let µ = λ′ρqkb/2 be such an eigenvalue. Then, the subspace Mi,ρ,µ ⊂ Mi,ρ of eigenvalue
µ is F0-stable and there exists a decomposition Mi,ρ,µ � [ρ]⊗Vµ such that the action of F0 on
Mi,ρ,µ is decomposed as ρ̃ ⊗ ϕµ where ϕµ is λ′ρqk/2 times a unipotent endomorphism of Vµ.
Once again, λ′ρ only depends on ρ and a choice of ρ̃.

IV.3.1.6 There are two particular cases that interest us.

Theorem IV.3.1.1. ([L77, Theorem 3.34]) Let i ∈ Z and w ∈ WG be arbitrary. If (G,F) is of type
An, n ≥ 1, then all of the eigenvalues of F on Hi

c(Xw, Q̄`) are powers of q. If (G,F) is of type 2An,
n ≥ 2, then all of the eigenvalues of F2 on Hi

c(Xw, Q̄`) are powers of (−q).

IV.3.2 Shintani Descent

IV.3.2.1 Let F1 and F2 be two commuting Frobenius endomorphism. Denote byK (GF1 .F2)
the F2-conjugacy classes of GF1 and by K (GF2 .F1) the F1-conjugacy classes of GF2 , and we
denote by C(GF2 .F1) and C(GF1 .F2) the set of functions that are constant on the F1-conjugacy
classes of GF2 and the functions that are constant on the F2-conjugacy classes of GF1 respec-
tively.

Define a map NF1/F2 : K (GF1 ,F2) → K (GF2 .F1) as follows. For g ∈ GF1 , there exists x ∈ G
such that xF2(x−1) = g. Then g′ := x−1F1(x) ∈ GF2 , and its F1-conjugacy class is well defined.
This defines a bijection NF1/F2 : K (GF1 ,F2) ∼→ K (GF2 .F1). We write g′ = NF1/F2(g) by abuse of
notation. Denote by ShF2/F1 : C(GF2 .F1) ∼→ C(GF1 .F2) the induced bijection. It is easy to check
that ShF2/F1 ◦ ShF1/F2 = Id and that ShF/F is an involution that may not be the identity.
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IV.3.3 Action on the Irreducible Characters

IV.3.3.1 Let U be a unipotent character of GF1 that extends to GF1 .<F2>. We denote the
restriction to GF1 .F2 of its extension by EF2(U) ∈ C(GF1 .F2). The Shintani descent sends it
into C(GF2 .F1). On the other hand, the unipotent irreducible characters of GF2 that extends
to GF2 .F1, which we denote by E(GF2 , (1))F1 , have as extensions some elements of C(GF2 .F1).
We will see that the functions ShF1/F2 EF2(U) can be expressed as linear combinations of the
extensions of the elements of E(GF2 , (1))F1 .

IV.3.3.2 Let B be an F1-stable and σ-stable Borel subgroup. Put

(IV.3.3.2.1) H := EndGF1 (IndGF1

BF1
1) � EndGF1 (Q̄`[BF1]) � Q̄`[WF1].

The irreducible characters of H are in bijection with the principal series representations of
GF1 . For ψ ∈ Irr(H), denote by Uψ ∈ Irr(GF1) the corresponding character. By §IV.3.1.4, Uψ

extends to GF1 .<F2> if ψ is F2-stable, in which case ψ itself extends to H.<F2> in such a way
that the action of F2 on IndGF1

BF1
1 is decomposed into F2 = EF2(Uψ)(F2) ⊗ EF2(ψ)(F2), where we

denote by EF2(Uψ) and EF2(ψ) the extensions of Uψ and ψ respectively.

IV.3.3.3 Let ρ ∈ Irr(GF2) be unipotent. The ρ-isotypic component of Hi
c(Xw,F2) is of the form

[ρ] ⊗ V. The action of the split Frobenius F0 on this component can be written as ρ̃(F0) ⊗ ϕ,
where ϕ is λ′ρ times a power of q1/2 and a unipotent endomorphism, according to §IV.3.1.5.
We denote by ΩF2 the isomorphism of the space C(GF2 , (1)) that multiplies ρ by λ′ρ. Denote
by EF0(ρ) the restriction of ρ̃ to GF2 .F0.

IV.3.3.4 Fix the split Frobenius F0 and the order 2 quasi-central automorphism σ. In
what follows, we only consider (F1,F2) = (σ1Fm

0 , σ2F0),where m ∈ Z>0 and σi = 1 or σ.
Take ρ ∈ E(GF2 , (1))σ1 , i.e. a σ1-stable representation, and denote by Eσ1(ρ) an extension
of ρ to GF2 .<σ1>. Since F0 acts as σ−1

2 on GF2 , we can define the extension EF0(ρ)(F0) to
be an extension Eσ2(ρ)(σ−1

2 ), which commutes with Eσ1(ρ)(σ1) because either one of σ1 and
σ2 is 1 or they are equal. This allows us to define an extension EF1(ρ) of ρ to GF2 .F1 by
requiring EF1(ρ)(σ1Fm

0 ) = Eσ1(ρ)(σ1)EF0(ρ)(Fm
0 ). It is well defined. In addition, Eσ1 defines an

isomorphism of vector spaces

Q̄`[E(GF2 , (1))σ1] −→ C(GF2 .σ1, (1))

ρ 7−→ Eσ1(ρ).
(IV.3.3.4.1)

IV.3.3.5 The following theorem makes explicit the transition matrix.

Theorem IV.3.3.1. ([DM94, Théorème 5.6]) We keep the above notations. For any m ∈ Z>0, and
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any ψ ∈ Irr(Wσ1)σ2 we have

Shσ1Fm
0 /σ2F0 Eσ2F0(Uψ) =

∑
ρ∈E(Gσ2F0 ,1)σ1

〈RGσ2F.σ1
ψ ,Eσ1(ρ)〉Gσ2F0 .σ1

λ
′m
ρ Eσ1Fm

0
(ρ)

= Eσ1σ−m
2

(Ωm
σ2F0

E−1
σ1

(RGσ2F0 .σ1
ψ )).

(IV.3.3.5.1)

(See [DM94, Définition 5.1] for the definition of RGσ2F0 .σ1
ψ or more generally in IV.5.2.2.2.)

IV.3.4 Commutation with the Deligne-Lusztig Induction

IV.3.4.1 The following proposition due to Digne shows how the Deligne-Lusztig induction
commutes with Shintani Descent.

Proposition IV.3.4.1. ([Di, Proposition 1.1]) Let G be a connected reductive group defined over Fq,
equipped with the Frobenius endomorphism F and let σ be a quasi-central automorphism of G. Let
L ⊂ P be an F-stable and σ-stable Levi factor of a σ-stable parabolic subgroup. Then

(IV.3.4.1.1) ShσF/F ◦RGσF.σ−1

LσF.σ−1 = RGF.σ
LF.σ
◦ ShσF/F .

IV.4 Character Sheaves

In this section, G denote a not necessarily connected reductive group. By local system,
we mean a local system of Q̄`-vector spaces. If X is a variety over k, we denote byD(X) the
bounded derived category of constructible Q̄`-sheaves on X. For any g ∈ G, denote by gsgu

the Jordan decomposition of g, with gs being semi-simple and gu unipotent.

IV.4.1 Character Sheaves for Groups Not Necessarily Connected

IV.4.1.1 If G1 is a connected component of G, define

Z◦G◦,G1 := CZG◦ (g)◦, for any g ∈ G1.

It does not depend on the choice of g ∈ G1. An isolated stratum of G1 is an orbit of isolated
elements under the action of Z◦

G◦,G1 × G◦ given by

(z, x) : g 7−→ zxgx−1.

(See [L03, I, §1.21 (d), §3.3 (a)])

Example IV.4.1.1. For the group Ḡ defined in §II.5.2.1, we have Z◦G,G.σ = {1}, and so an
isolated stratum of G.σ is an isolated G-conjugacy class.
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Given a stratum S, denote by S(S) the category of local systems on S invariant under the
action of Z◦

G◦,G1 × G◦ given by

(z, x) : g 7−→ znxgx−1,

for some integer n > 0. We refer to [L03, I, §6] for the definition of cuspidal local system (for
G). If E ∈ S(S) is cuspidal, we say that (S,E) is a cuspidal pair (for G).

IV.4.1.2 Let L be a Levi subgroup of G◦ and let S be an isolated stratum of NG(L,P) for a
parabolic subgroup P with Levi factor L. (See [L03, I, §2.2 (a), §3.5]) Define,

Sreg = {g ∈ S | CG(gs)◦ ⊂ L}.

Define
YL.S =

⋃
x∈G◦

xSregx−1,

and
ỸL,S = {(g, xL) ∈ G × G◦/L | x−1gx ∈ Sreg},

equipped with the action by G◦, h : (g, xL) 7→ (hgh−1, hxL), and

ŶL.S = {(g, x) ∈ G × G◦ | x−1gx ∈ Sreg},

equipped with the action by G◦ × L, (h, l) : (g, x) 7→ (hgh−1, hxl−1). Consider the morphisms

S α
←− ŶL,S

β
−→ ỸL,S

π
−→ YL,S,

where α(g, x) = x−1gx, β(g, x) = (g, xL) and π(g, xL) = g. Note that β is a principal L-bundle
and that π is a principalWS-bundle, withWS = W̃S/L, where

W̃S := {n ∈ NG◦(L) | nSn−1 = S}.

It is a finite group. (See [L03, I, §3.13]) If E ∈ S(S) is irreducible and cuspidal for NG(L,P),
put

W̃E := {n ∈ W̃S | ad(n)∗E � E},

andWE = W̃E/L.

IV.4.1.3 Fix E ∈ S(S). There exists a G◦-equivariant local system Ẽ on ỸL,S such that
β∗Ẽ � α∗E. Denote by E = End(π!Ẽ), the endomorphism algebra of π!Ẽ. We have a canonical
decomposition ([L03, II, §7.10 (a); IV, §21.6])

E =
⊕

w∈WE

Ew,
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where the factors Ew := Hom(ad(nw)∗E,E), each one defined by some representative nw of w,
are of dimension 1 and satisfy EwEv = Ewv. Choose base {bw | w ∈ WE} of E with bw ∈ Ew for
any w.

Define
K = IC(ȲL,S, π!Ẽ),

where ȲL,S is the closure of YL,S in G. There exists a canonical isomorphism E � End(K). Let
Λ′ be a finite set parametrising the isomorphism classes of the irreducible representations of
E and for each i ∈ Λ′, we denote by Vi a corresponding representation. Then, we have the
canonical decompositions

π!Ẽ �
⊕
i∈Λ′

Vi ⊗ (π!Ẽ)i, K �
⊕
i∈Λ′

Vi ⊗ Ki,

where
(π!Ẽ)i = HomE(Vi, π!Ẽ), Ki = HomE(Vi,K)

are the simple factors. Moreover, Ki � IC(ȲL,S, (π!Ẽ)i).

IV.4.1.4 Assume that F(L) = L, F(S) = S and F∗E ∼→ E, where F is the Frobenius of G.
We fix an isomorphism φ0 : F∗E ∼→ E. It induces an isomorphism φ̃ : F∗π!Ẽ ∼→ π!Ẽ and an
isomorphismeφ : F∗K ∼→ K. Recall that, given a variety X/k equipped with the Frobenius F, a
complex A ∈ D(X) and an isomorphismφ : F∗A ∼→ A, the characteristic functionχA,φ : XF

→ Q̄`
is defined by

(IV.4.1.4.1) χA,φ(x) =
∑
i∈Z

(−1)i Tr(φ,H i
xA),

whereH i
xA is the stalk at x of the cohomology sheaf in degree i of A.

The characteristic function of a cuspidal local system will be called a cuspidal function.

Theorem IV.4.1.2. ([L03, III, Theorem 16.14, §16.5, §16.13]) Let s and u ∈ GF be a semi-simple
element and a unipotent element such that su = us ∈ ȲL,S. Then,

(IV.4.1.4.2) χK,φ(su) =
∑

h∈G◦F;
h−1sh∈Ss

|LF
h |

|CG(s)◦F||LF|
QLh,CG(s),ch,Fh,φh(u),

where Ss is the set of the semi-simple parts of the elements of S, and QLh,CG(s),ch,Fh,φh is the generalised
Green function (See §IV.4.1.5 below) associated to the data Lh, CG(s), ch, Fh, φh defined by

- Lh := hLh−1
∩ CG(s)◦;

- ch := {v ∈ CG(s) | v unipotent, h−1svh ∈ S};

- Fh, inverse image of E under the embedding ch → S, v 7→ h−1svh;
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- φh : F∗Fh ∼→ Fh, an isomorphism induced from φ0 under the above embedding.

Denote by L1 the connected component of NG(L) containing S. If we define

- Σh := hZ◦
L,L1h−1ch;

- Eh inverse image of E by the embedding Σh → S, v 7→ h−1svh,

- φ′h : F∗Eh ∼→ Eh an isomorphism induced from φ0 under the above embedding,

then the above embedding ch → S factors through the inclusion ch → Σh, Fh is the inverse
image of Eh and φh is induced from φ′h under this inclusion. The point is that, Σh is a finite
union of isolated strata, which has ch as the subset of unipotent elements, so that these data
fit into the following definition of generalised Green functions.

IV.4.1.5 Generalised Green Functions. Given

- G a reductive algebraic group,

- L ⊂ G◦ an F-stable Levi subgroup,

- Σu the set of the unipotent elements of a finite union of isolated strata Σ of NG(L)
satisfying F(Σ) = Σ, F(Σu) = Σu,

- F an L-equivariant local system on Σu, and

- φ1 : F∗F ∼→ F an isomorphism,

we choose a local system E on Σ that restricts to F under the inclusion Σu
→ Σ and an

isomorphism (which always exists) φ′1 : F∗E ∼→ E that induces φ1. Define K = IC(ȲL,Σ, π!Ẽ),
where YL,Σ, ỸL,Σ and π : ỸL,Σ → YL,Σ are defined by the procedure §IV.4.1.2, and denote by
φ : F∗K ∼→ K the isomorphism induced from φ′1.

The generalised Green function associated to G, L, Σu, F and φ1, denoted by QL,G,Σu,F ,φ1 ,
is defined by ([L03, III, §15.12])

GF
u = {unipotent elements of GF

} −→ Q̄`

u 7−→ χK,φ(u).
(IV.4.1.5.1)

It does not depend on the choice of E and φ′1.

IV.4.1.6 The isomorphism φ of §IV.4.1.4 induces an algebra isomorphism ι : E ∼→ E. There
exists a subset Λ ⊂ Λ′ and some isomorphisms ιi : Vi ∼→ Vi, φi : F∗Ki ∼→ Ki, for i ∈ Λ, such
that the isomorphism bwφ : F∗K ∼→ K, with respect to the decomposition K =

⊕
i∈Λ′ Vi ⊗ Ki

is of the form

- bwιi ⊗ φi, if i ∈ Λ;
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- Vi ⊗ F∗Ki → V j ⊗ K j, with j , i, if i < Λ.

(See [L03, IV, §20.3, §21.6]) Consequently,

(IV.4.1.6.1) χK,bwφ =
∑
i∈Λ

Tr(bwιi,Vi)χKi,φi .

IV.4.1.7 Take a representative nw ∈ W̃E of w, and an element gw ∈ G◦ such that g−1
w F(gw) =

nw. Define Lw = gwLg−1
w , Sw = gwSg−1

w and Ew = ad(g−1
w )∗E. Then Lw and Sw are F-stable

and the isomorphism φ0 : F∗E ∼→ E induces an isomorphism φ0,w : F∗Ew ∼→ Ew. These allow
us to define YLw,Sw , ỸLw,Sw , πw : ỸLw,Sw → YLw,Sw , Ẽw, Kw and φw : F∗Kw ∼→ Kw by the same
procedure. It can be checked that (See [L03, IV, §21.6])

(IV.4.1.7.1) χK,bwφ = χKw,φw .

IV.4.1.8 WriteW =WE, denote by W̄ a set of representatives of the effective F-conjugacy
classes ([L03, IV, §20.4]), and write Ww = {v ∈ W | F−1(v)wv−1 = w}. If w is not in some
effective F-conjugacy class and i ∈ Λ, then Tr(bwιi,Vi) = 0 ([L03, §20.4 (a)]). We have for all i,
j ∈ Λ ([L03, IV, §20.4 (c)])

(IV.4.1.8.1)
∑

w∈W̄

|Ww|
−1 Tr(bwιi,Vi) Tr(ι−1

j b−1
w ,V j) = δi j,

where δi j = 1 if i = j and δi j = 0 otherwise. In fact, |W̄| = |Λ| and (Tr(bwιi,Vi))i∈Λ,w∈W̄ is an
invertible square matrix ([L03, §20.4 (e), (f), (g)]).

This, combined with the equalities (IV.4.1.6.1) and (IV.4.1.7.1), gives

(IV.4.1.8.2) χKi,φi =
1
|WE|

∑
w∈WE

w effective

Tr(ι−1
i b−1

w ,Vi)χKw,φw .

IV.5 Extensions of σ-Stable Characters

IV.5.1 Some Elementary Lemmas

When dealing with a Levi subgroup L of GLn, one often regards it as a direct product
of smaller GLn′ ’s and reduces the problem to these direct factors. However, if σ is an
automorphism of L, then L o<σ> is not actually the direct product of groups of the form
GLn′ o<σ′>. We give some lemmas that allow us to apply arguments in the same spirit. Let
H denote a finite group in this part, which could either be a finite group of Lie type or a Weyl
group. Let σ be an automorphism of H, which could be induced from the automorphism of
an algebraic group or the Frobenius. Denote by H.<σ>the semi-direct product of H and the
cyclic group generated by σ, with the generator acting as σ on H.
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Lemma IV.5.1.1. Let H = H1 × · · · × Hs be a product of finite groups and let σ = σ1 × · · · × σs be
the product of some automorphisms of the direct factors. Then H.<σ> is a subgroup of

∏
i Hi.<σi>.

Moreover, if the characters χi ∈ Irr(Hi) extend to χ̃i ∈ Irr(Hi.<σi>), then χ̄ := (�iχ̃i)|H.<σ> is
irreducible and restricts to �iχi ∈ Irr(H).

Proof. We define a map by

H.<σ>−→
∏

i

Hi.<σi>

(h1, . . . , hs)σi
7−→ (h1σ

i
1, . . . , hsσ

i
s),

(IV.5.1.0.1)

which is obviously a homomorphism and is injective. Then the assertion on χ̄ is immediate.
�

We define an exterior tensor product that is "twisted" by σ.

Definition IV.5.1.2. Let H = H1 ×H2 be a product of finite groups and σ = σ1 × σ2 a product
of automorphisms. For i = 1 and 2, let fi be a function on Hi.σi that is invariant under the
conjugation by Hi. The function f1�̃ f2 on H.σ is defined as the restriction of

f1 � f2 (= pr∗1 f1 · pr∗2 f2) ∈ C(H1.<σ1>×H2.<σ2>)

to H.<σ>.

Lemma IV.5.1.3. Let H = K × · · · × K be the direct product of d copies of a finite group K. Let ψ
be an automorphism of K, let ζ ∈ Sd be a circular permutation, and let (n1, . . . ,nd) be a d-tuple of
integers. With these data, we can define an automorphism Ψ of H by

Ψ : H −→ H

(k1, . . . , kd) 7−→ (ψn1(kζ(1)), . . . , ψnd(kζ(d))).
(IV.5.1.0.2)

Denote by H the direct product Ko<ψ>× · · · ×Ko<ψ>, and let ζ act by permuting the components:

ζ : (k1, . . . , kd) 7−→ (kζ(1), . . . , kζ(d)), ki ∈ K o<ψ>,

Let χ be a ψ-stable irreducible character of K and denote by χ̃ an extension of χ to K o<ψ>. Then,

(i) H o<Ψ>is a subgroup of H;

(ii) The character χ̃ ⊗ · · · ⊗ χ̃ of H extends to a character of H o<ζ>. Its restriction χ̄ to H o<Ψ>

is irreducible;

(iii) Write ζ = (i1, . . . , id) as a permutation of {1, . . . , d}, so that ir
ζ
7→ ir+1. For all h = (k1, . . . , kd) ∈

H, we have
χ̄(hΨ) = χ̃(ki1ψ

ni1 k
ni2
i2
ψ · · · kidψ

nid ).
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Proof. For each i ∈ {1, . . . , d} and r ∈ Z>0, put ni(r) =
∑

0≤p≤r−1 nζp(i). Define a map

H.<Ψ>−→ K.<ψ>× · · · × K.<ψ>).<ζ>

(k1, . . . , kd) 7−→ (k1, . . . , kd)

(k1, . . . , kd)Ψr
7−→ (k1ψ

n1(r), . . . , kdψ
nd(r))ζr.

(IV.5.1.0.3)

One can verify that it is an injective group homomorphism. The character χ̄ is irreducible as
its restriction to H is so.

Let us compute the value of χ̄. Let ρ : K → GL(V) be a representation that realises the
character χ. Let ρ̃ denote its extension to K.<ψ>. Then V⊗d is a representation of H, defining
the action of ζ by v1 ⊗ · · · ⊗ vd 7→ vζ(1) ⊗ · · · ⊗ vζ(d). We use an argument of linear algebra. Take
A(1), . . . ,A(d)

∈ GL(V) and let ζ act on V⊗d as above. Then we have

(IV.5.1.0.4) Tr(A(1)
⊗ · · · ⊗ A(d)

◦ ζ|V ⊗ · · · ⊗ V) = Tr(A(i1)
· · ·A(id)

|V).

We conclude the proof by taking ρ̃(kiψni) for A(i). �

IV.5.2 Uniform Extensions

IV.5.2.1 Denote by L the algebraic group defined over Fq

(IV.5.2.1.1) L =
∏
i∈Λ1

(GLni ×GLni)
di ×

∏
i∈Λ2

(GLni ×GLni)
di

for some finite sets Λ1 and Λ2, endowed with the Frobenius F acting on it as Fw in (IV.1.2.3.6)
and (IV.1.2.3.7), and with the automorphism σ acting on it as in (IV.1.2.3.9). Let T ⊂ L be
an F-stable and σ-stable maximal torus and we wirte WL := WL(T). For all i ∈ Λ1 ∪ Λ2,
we write Li := (GLni ×GLni)

di , and denote by Ti the corresponding direct factor of T. Write
Wi := WLi(Ti). Then we have

(IV.5.2.1.2) Wi � (Sni ×Sni)
di , Wσ

i � S
di
ni

for all i ∈ Λ1 ∪Λ2. These are some direct factors of WL and of Wσ
L that are stable under F.

Define an injection

Irr(Wσ
L)F ↪−→ Irr(WL)F

ϕ 7−→ [ϕ]
(IV.5.2.1.3)

in the following manner.
For each i ∈ Λ1, we have the bijections

(IV.5.2.1.4) Irr(Wi)F � Pni × Pni , Irr(Wσ
i )F � Pni .

We define Irr(Wσ
i )F
→ Irr(Wi)F to be sending ϕ to (ϕ,ϕ).



106 CHAPTER IV. THE CHARACTER TABLE OF GLN(Q) o<σ>

For each i ∈ Λ2, we have

(IV.5.2.1.5) Irr(Wi)F � Pni , Irr(Wσ
i )F � Pni .

We define Irr(Wσ
i )F
→ Irr(Wi)F to be sending ϕ to ϕ.

For any ϕ ∈ Irr(Wσ
L)F, we denote by ϕ̃ an extension of ϕ to Wσ

L o<F>and denote by [̃ϕ]
an extension of [ϕ] to WL o<F>, where F is regarded as an automorphism of finite order of
the Weyl group. Eventually, these choices need to be specified.

Denote by Irrσ(LF) the set of the σ-stable linear characters of LF. For any θ in Irrσ(LF), we
denote by θ̃ its trivial extension to LF.<σ>. We also denote by the same letter the restriction
of θ̃ to LF.σ.

IV.5.2.2 Given ϕ ∈ Irr(Wσ
L)F and θ ∈ Irrσ(LF), by Theorem 5, there is a particular choice of

the extension [̃ϕ] such that

(IV.5.2.2.1) χ1 := RL
[ϕ]θ = |WL|

−1
∑

w∈WL

[̃ϕ](wF)RL
Tw
θ.

is a character. Obviously, it is a σ-stable character of LF. Denote by χ̃1 an extension of χ1 to
LF.<σ>.

For any choice of the extension ϕ̃, put

(IV.5.2.2.2) RL.σ
ϕ θ̃ = |Wσ

L |
−1

∑
w∈Wσ

L

ϕ̃(wF)RL.σ
Tw.σ

θ̃.

It is an LF-invariant function on LF.σ.

Theorem IV.5.2.1. For a particular choice of the extension ϕ̃, we have

(IV.5.2.2.3) χ̃1|LF.σ = ±RL.σ
ϕ θ̃.

We will prove this theorem in the following section.

IV.5.3 The Proof

The proof is to reduce the problem to smaller and smaller factors of L, until we can apply
the known results on GL±n′(q), for various n′. The choice of the extension ϕ̃ will also be
reduced to the smaller components until the choices are clear.

IV.5.3.1 Reduction to the Unipotent Characters Let χ1 = RL
[ϕ]1 be an irreducible character

of LF, which is necessarily σ-stable. Denote by χ̃1 ∈ Irr(LF.<σ>) such that χ̃1|LF = RL
[ϕ]1.

Assume that for some choice of ϕ̃,

(IV.5.3.1.1) χ̃1|LF.σ = RL.σ
ϕ 1,
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where we denote by 1 the trivial extension of the trivial character. Since (RL
[ϕ]1) ⊗ θ = RL

[ϕ]θ

and (RL.σ
ϕ )1 ⊗ θ̃ = RL.σ

ϕ θ̃, we have

(IV.5.3.1.2) (χ̃1 ⊗ θ̃)|LF = RL
[ϕ]θ, (χ̃1 ⊗ θ̃)|LF.σ = RL.σ

ϕ θ̃.

So it suffices to prove the theorem for the unipotent characters.

IV.5.3.2 Reduction with Respect to the Action of F and σ We have decomposed L into a
product of the Li’s for i ∈ Λ1 t Λ2, each one being F-stable and σ-stable. Let us show that it
suffices to prove the theorem for the Li’s.

Write F = (Fi)i∈Λ1tΛ2 and σ = (σi)i∈Λ1tΛ2 , where for each i, Fi and σi are respectively
a Frobenius and an automorphism of the corresponding direct factor. The given ϕ can
be written as (ϕi)i∈Λ1tΛ2 , with ϕi ∈ Irr(Wσi

i )Fi , then [ϕ] = ([ϕi])i. Suppose that RLi
[ϕi]

1 are
some irreducible characters, denoted by χi, each one being σ-stable, and they extend to
χ̃i ∈ Irr(LFi

i .<σi>). We will show that if for some choices of the extensions ϕ̃i ∈ Irr(Wσi
i .<Fi>),

the following equality holds
χ̃i|LFi

i .σi
= RLi

ϕi
1,

then there is some choice of ϕ̃ ∈ Irr(Wσ
L .<F>) such that

χ̃1|LF.σ = RL.σ
ϕ 1.

Given the extensions of the factors χ̃i, we can obtain an extension χ̃1 following Lemma
IV.5.1.1. By definition, for any lσ ∈ LF.σ which can be identified with

∏
i liσi ∈

∏
i LFi

i .<σi>,
we have,

(IV.5.3.2.1) χ̃1(lσ) =
∏

i

RLi.σi
ϕi

1(liσi).

On the one hand, ∏
i

RLi.σi
Twi .σi

1(liσi) =
∏

i

Tr(liσi|H∗c(Xwi))

= Tr(
∏

i

liσi|
⊗

i

H∗c(Xwi))

= Tr(lσ|H∗c(Xw)) = RL.σ
Tw.σ

1(lσ).

(IV.5.3.2.2)

where the Twi and Tw are defined with respect to Ti and T.
On the other hand, applying Lemma IV.5.1.1 to the Weyl groups and the Frobenius, we

obtain an extension ϕ̃, such that for any w =
∏

i wi ∈Wσ
L , we have,

(IV.5.3.2.3) ϕ̃(wF) = (
∏

i

ϕ̃i)|Wσ
L .F

(
∏

i

wiFi) =
∏

i

ϕ̃i(wiFi).



108 CHAPTER IV. THE CHARACTER TABLE OF GLN(Q) o<σ>

Consequently, χ̃1|LF.σ = RL.σ
ϕ 1. (One may also check that �iR

Li
[ϕi]

1 = RL
[ϕ]1 with some

similar but simpler arguments.)

IV.5.3.3 The Linear Part, I In this part we fix i ∈ Λ1. Write M = GLni ×GLni , equipped
with the Frobenius

FM : (g, h) 7→ (F0(g),F0(h))

with F0 being the standard Frobenius of GLn and the automorphism

τ(g, h) = (σ0(h), σ0(g))

of the form §II.5.1.3, with σ0 commuting with F0. Then Li = M × · · · ×M is a direct product
of di copies of M equipped with the automorphism σ = τ × · · · × τ consisting of di copies of
τ. We will fix i and write d = di. We may assume that the maximal torus Ti ⊂ Li, which
is Fi-stable and σi-stable, is of the form TM × · · · × TM, where TM ⊂ M is an FM-stable and
τ-stable maximal torus. Note that FM acts trivially on WM := WM(TM). The Frobenius Fi acts
on Li in the following manner

M × · · · ×M −→M × · · · ×M

(m1, . . . ,md) 7−→ (FM(md),FM(m1), . . . ,FM(md−1)).
(IV.5.3.3.1)

We have a natural commutative diagram

(IV.5.3.3.2)

Irr(Wτ
M) −−−−−→ Irr(Wσi

i )Fiy y
Irr(WM) −−−−−→ Irr(Wi)Fi

where the upper horizontal bijective map ϕM 7−→ ϕi = (ϕM, . . . , ϕM) identifies each element
of Irr(Wσi

i )Fi with d identical copies of an element of Irr(Wτ
M). Denote by [ϕM] and [ϕi] the

images of the vertical maps defined as in (IV.5.2.1.3), which are matched under the lower
horizontal map.

Endow M with the Frobenius Fd
M. Suppose that for some choice of ϕ̃M,

(IV.5.3.3.3) RM.τ
ϕM

1 = |Wτ
M|
−1

∑
w∈Wτ

M

ϕ̃M(wFd
M)RM.τ

Tw.τ
1

where Tw is defined with respect to TM, is an extension of the irreducible character RM
[ϕM]1 of

MFd
M . Let us show that

(IV.5.3.3.4) RLi.σi
ϕi

1 = |Wσi
i |
−1

∑
w∈Wσi

i

ϕ̃i(wFi)R
Li.σi
Tw.σ

1
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is an extension of the irreducible character RLi
[ϕi]

1 of LFi
i . In fact, there is a natural isomorphism

MFd
M � LFi

i compatible with the action of τ and σ. We are going to show that RM.τ
ϕ 1 coincides

with RLi.σi
ϕL

1 under this isomorphism and they are an extension of the same character of
MFd

M = LFi
i corresponding to [ϕ] = [ϕL].

Applying Lemma IV.5.1.3 to K = Wτ
M, H = Wσi

i , ψ = FM, and ζ = (d, . . . , 2, 1) ∈ Sd, we
deduce from ϕ̃M an extension ϕ̃i such that for w = (w1, . . . ,wd) ∈ (Wτ

M)d � Wσi
i ,

ϕ̃i(wFi) = ϕ̃M(wdFMwd−1FM . . .w1FM)

= ϕ̃M(wdwd−1 . . .w1Fd
M).

(IV.5.3.3.5)

Write w′1 = wdwd−1 . . .w1. Then, w is F1,i-conjugate to w′ = (w′1, 1, . . . , 1), so for any l ∈ LFi
i , we

have
RLi.σi

Tw.σi
1(lσi) = RLi.σi

Tw′ .σi
1(lσi) = Tr(lσi|H∗c(Xw′))

We can write l = (m,FM(m), . . . ,Fd−1
M (m)) with m satisfying Fd

M(m) = m. Since the two varieties

Xw′ = {B ∈ BLi |(B,Fi(B)) ∈ O(w′)},

Xw′1
= {B ∈ BM|(B,Fd

M(B)) ∈ O(w′1)}

are isomorphic, and the actions of lσi and of mτ on the two varieties are compatible, we have

Tr(lσi|H∗c(Xw′)) = Tr(mτ|H∗c(Xw′1
)) = RM.τ

Tw′1
.τ1(mτ),

Consequently, the value of ϕ̃i(wFi)R
Li.σi
Tw.σi

1 only depends on w′1 ∈ Wτ
M and is equal to

ϕ̃M(w′1Fd
M)RM.τ

Tw′1
.τ1, This, together with the fact that |Wσi

i | = |W
τ
M|

d, shows that RM.τ
ϕ 1 = RLi.σi

ϕL
1.

(Similar arguments show that RM
[ϕ]1 = RLi

[ϕi]
1.)

IV.5.3.4 The Unitary Part, I In this part we require that i ∈ Λ2. We keep the same notations
as above except that Fi acts on Li in the following manner

M × · · · ×M −→M × · · · ×M

(m1, . . . ,md) 7−→ (F′M(md),FM(m1), . . . ,FM(md−1)),
(IV.5.3.4.1)

where
F′M : (g, h) 7→ (F0(h),F0(g)).

Denote by F′′M : M→M the Frobenius

F′MFd−1
M : (g, h) 7→ (Fd

0(h),Fd
0(g)).
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We still have a natural identification

Irr(Wτ
M)F′′M −→ Irr(Wσi

i )Fi

ϕ 7−→ ϕL = (ϕ, . . . , ϕ)
(IV.5.3.4.2)

(F′M acts trivially on Irr(Wτ
M) since σ0 induces an inner automorphism on the Weyl group)

and an isomorphism MF′′M � LFi
i . In a way similar to §IV.5.3.3, from the equality (IV.5.3.3.3),

with Fd
M replaced by F′′M, one deduces the equality (IV.5.3.3.4), with Fi defined in the present

setting.

IV.5.3.5 From now on we write M = G ×G, G = GLεn(q) with ε = ±. Denote by F0 the split
Frobenius of G and by F′0 the Frobenius of G corresponding to ε, and denote by σ0 an order
2 automorphism of G, which commutes with the Frobenius endomorphisms.

IV.5.3.6 The Linear Part, II. It is essential that we allow G to be GL−n (q), which will be
applied to the unitary part later. Define

σ : M−→M F : M−→M

(g, h) 7−→ (σ0(h), σ0(g)) (g, h) 7−→ (F′0(g),F′0(h)).

Let χG be a unipotent irreducible character of GF′0 corresponding to some ϕ ∈ Irr(WG), it
defines a character χM = χG ⊗ χG ∈ Irr(MF) which is invariant under the action of σ and so
extends to MF.<σ>, denoted by χ̃M. Every σ-stable irreducible unipotent character of MF is
of the form χG ⊗ χG. Regarding ϕ as a character of Wσ

M, we show that up to a sign,

χ̃M|MF.σ = RM.σ
ϕ 1 := |Wσ

M|
−1

∑
w∈Wσ

M

ϕ̃(wF)RM.σ
Tw.σ

1,(IV.5.3.6.1)

for some choice of the extension ϕ̃.
We apply Lemma IV.5.1.3 by taking GF′0 for K and obtain

χ̃M((g, h)σ) = χG(gσ0(h))

for any (g, h) ∈MF. By Theorem 5, the irreducible unipotent character of GF′0 can be expressed
as

|WG|
−1

∑
w∈WG

ϕ̃G(wF′0)RG
Tw

1,

for some choice of ϕ̃G. The extension ϕ̃ is then defined by ϕ̃G under the isomorphism
WG � Wσ

M, noticing that the action of F is compatible with the action of F′0 under this
isomorphism. Comparing this expression with RM.σ

ϕ 1, we are reduced to show that for any
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(g, h) ∈MF

(IV.5.3.6.2) RM.σ
TwM .σ

1((g, h)σ) = RG
Tw

1(gσ0(h))

with wM = (w, σ0(w)) ∈ Wσ
M. Observe that (g, h)σ 7→ RG

Tw
1(gσ0(h)) defines a function on MF.σ

invariant under the conjugation by MF.

IV.5.3.7 Let us prove a more general assertion. Let I be an F′0-stable Levi subgroup of
G. Then J := I × σ0(I) is a σ-stable Levi factor of a σ-stable parabolic subgroup of M, which
justifies the functor RM.<σ>

J.<σ> . Let χI be an irreducible character of IF′0 , it defines a character
χJ = χI ⊗ σ0(χI) ∈ Irr(JF) which is invariant under the action of σ and thus extends to JF.<σ>.
Denoted by χ̃J a choice of such extension. The following lemma with I = Tw and χI = 1
proves the above assertion.

Lemma IV.5.3.1. We keep the notations as above and write J̄ = J.<σ>. Assume that for any
(g′, h′) ∈ JF, we have χ̃J((g′, h′)σ) = χI(g′σ0(h′)). Then, for any (g, h) ∈MF, we have

(IV.5.3.7.1) RM.<σ>
J.<σ> χ̃J((g, h)σ) = RG

I χI(gσ0(h)).

Proof. Let (g, h)σ = ζµ be the Jordan decomposition, with ζ semi-simple and µ unipotent,
and we write µ = (u,w) and ζ = (s, t)σ. Beware that neither s nor t is necessarily semi-simple.
Also let gσ0(h) = s̄ū be the Jordan decomposition, with s̄ semi-simple and ū unipotent. The
proof will simply be comparing the following two formulas term by term.

RM.<σ>
J.<σ> χ̃J((g, h)σ) = |JF

|
−1
|CM(ζ)◦F|−1

∑
{x∈MF

|

xζx−1
∈J.σ}

∑
v∈Cx−1 J̄x(ζ)F

u

QCM(ζ)◦

Cx−1 Jx(ζ)◦(µ, v
−1)xχ̃J(ζv)

RG
I χI(gσ0(h)) = |IF′0 |−1

|CG(s̄)◦F
′

0 |
−1

∑
{y∈GF′0 |

ys̄y−1
∈I}

∑
v1∈Cy−1Iy(s̄)

◦F′0
u

QCG(s̄)◦

Cy−1Iy(s̄)◦(ū, v
−1
1 )yχI(s̄v1).

An element (z1, z2) ∈M commutes with (s, t)σ if and only if z2 = tσ0(z1)t−1 and z1 = sσ0(z2)s−1,
if and only if z1 ∈ CG(sσ0(t)) and z2 = tσ0(z1)t−1, whence an isomorphism CM((s, t)σ) �
CG(sσ0(t)). An element of M.<σ>is semi-simple if and only if its square is semi-simple since
the characteristic is odd. The equality ((s, t)σ)2 = (sσ0(t), tσ0(s)) shows that sσ0(t) is semi-
simple. The unipotent part (u,w) commutes with (s, t)σ, so u ∈ CG(sσ0(t)). Considering the
equality

(gσ0(h), hσ0(g)) = ((g, h)σ)2 = ((s, t)σ)2(u,w)2 = (sσ0(t), tσ(s))(u2,w2),

we have gσ0(h) = sσ0(t)u2. This gives the Jordan decomposition of gσ0(h) because u commutes
with sσ0(t) and u2 is unipotent. Therefore, s̄ = sσ0(t), ū = u2 and |CM(ζ)◦F| = |CG(s̄)◦F

′

0 |.
Write x = (x1, x2) ∈ MF. The condition xζx−1

∈ J.σ means that x1sσ0(x−1
2 ) ∈ I and that

x2tσ0(x−1
1 ) ∈ σ0(I), which implies that x1sσ0(t)x−1

1 ∈ I. Fix (x1, x2) satisfying xζx−1
∈ J.σ,
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then every element of (x1, σ0(IF′0)x2) also satisfies it. Let (x1, x2) and (x1, x′2) be two elements
satisfying xζx−1

∈ J.σ, then the conditions x1sσ0(x−1
2 ) ∈ I and x1sσ0(x

′
−1

2 ) ∈ I implies that
x′2x−1

2 ∈ σ0(IF′0). We thus obtain a bijection of sets

{x ∈MF
|xζx−1

∈ J.σ} � {y ∈ GF′0 |ys̄y−1
∈ I} × IF′0 ,

with y corresponding to the factor x1 of x. We will see that the sum over x in the character
formula is invariant under multiplying x2 by an element of σ0(IF′0) on the left, which cancels
a factor |IF′0 | from |JF

| = |IF′0 |2.
The isomorphism CM(ζ)◦ � CG(s̄)◦ restricts to an isomorphism Cx−1 Jx(ζ)◦ � Cy−1Iy(s̄)◦. For

characteristic reason, the unipotent elements of Cx−1 Jx(ζ) are contained in Cx−1 Jx(ζ)◦ by [DM94,
Remarque 2.7] and [DM94, Théorème 1.8 (i)], whence a bijection Cx−1 Jx(ζ)◦Fu � Cy−1Iy(sσ0(t))

◦F′0
u ,

by which v = (v1, v2) is sent to v1.
Now we compare the characters xχ̃J(ζv) et yχI(s̄v1). Write x = (x1, x2) and v = (v1, v2).

Then

(IV.5.3.7.2) xζvx−1 = (x1sσ0(v2)σ0(x2)−1, x2tσ0(v1)σ0(x1)−1)σ.

Taking into account the equality v2 = tσ0(v1)t−1, we have

(IV.5.3.7.3)
(
x1sσ0(v2)σ0(x2)−1

)
σ0

(
x2tσ0(v1)σ0(x1)−1)

)
= x1sσ0(t)v2

1x−1
1 .

By assumption, χ̃J((g′, h′)σ) = χI(g′σ0(h′)), for any (g′, h′) ∈ JF, whence

(IV.5.3.7.4) xχ̃J(ζv) = χI(x1sσ0(t)v2
1x−1

1 ) = x1χ̃I(s̄v2
1),

where we also see that multiplying x2 by an element of σ0(IF0) on the left does not change
the value. Since v 7→ v2 defines a bijection of Cy−1Iy(s̄)◦F

′

0u into itself, it only remains to show
the first of the following equalities of Green functions

(IV.5.3.7.5) QCG(s̄)◦

Cy−1Iy(s̄)◦(u
2, v−2

1 ) = QCG(s̄)◦

Cy−1Iy(s̄)◦(u, v
−1
1 ) = QCM(ζ)◦

Cx−1 Jx(ζ)◦(µ, v
−1),

which follows from the fact that the value of the Green function only depends on the
associated partition and a power prime to p does not change the Jordan blocks of a unipotent
matrix. �

IV.5.3.8 The Unitary Part, II Define

σ : M−→M F : M−→M

(g, h) 7−→ (σ0(h), σ0(g)) (g, h) 7−→ (F0(h),F0(g)).

Now, MF is isomorphic to GF2
0 under the map (g,F0(g)) 7→ g, and Mσ is isomorphic to G under

the map (g, σ0(g)) 7→ g. The Frobenius F acts on Mσ � G by g 7→ σ0F0(g). The automorphism
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σ acts on MF by
(g,F0(g)) 7→ (σ0F0(g), σ0(g)) = (σ0F0(g), σ0F2

0(g)),

or in other words, σ acts on GF2
0 as σ0F0.

Let χM be a unipotent irreducible character of MF, and let χ̃M be an irreducible character
of MF.<σ>that extends χM. We are going to show that up to a sign,

χ̃M|MF.σ = RM.σ
ϕ 1 = |Wσ

M|
−1

∑
w∈Wσ

M

ϕ̃(wF)RM.σ
Tw.σ

1(IV.5.3.8.1)

for some choice of ϕ̃. Under the isomorphism Wσ
M � WG, the Frobenius F acts as σ0 on WG,

and so an F-stable character of Wσ
M is equivalent to a character of WG. We are reduced to

show that if χG
1 is an irreducible unipotent character of GF2

0 corresponding to ϕ ∈ Irr(WG),
then its extension χ̃G to GF2

0 .<σ0F0>is given by the above formula up to a sign.
We need the Shintani descent. Suppose that χG ∈ Irr(GF2

0)σ0F0 is the unipotent character
corresponding to ϕ ∈ Irr(WG)σ0 . We apply Theorem IV.3.3.1 with (σ1Fm

0 , σ2F0) = (F2
0, σ0F0),

i.e. m = 2, σ1 = 1 and σ2 = σ0, and deduce that

χ̃G = Eσ0F0(χG) = Shσ0F0/F2
0
Ω2
σ0F0

RGσ0F0
ϕ 1

= ± Shσ0F0/F2
0

RGσ0F0
ϕ 1 = ± Shσ0F0/F2

0
|WG|

−1
∑

w∈WG

ϕ̃(wσ0F0)RGσ0F0

Tw
1,(IV.5.3.8.2)

since Ω2
σ0F0

= ±1 because RGσ0F0
ϕ 1 is an irreducible unipotent character Gσ0F0 on which Ω2

σ0F0

acts as a scalar, whose value is given by §IV.3.1.6. For example, Ωσ0F0 = 1 on principal
series representations and Ω2

σ0F0
= −1 on cuspidal unipotent characters according to ([L77,

Table I]). The sign (±1) does not matter since the two extensions of χG only differ by a sign.
It remains to show that Shσ0F0/F2

0
RGσ0F0

Tw
1 = RM.σ

TwM .σ
1, where wM is as in (IV.5.3.6.2) and M is

equipped with the Frobenius F. The function RGσ0F0

Tw
1 is invariant under F2

0-conjugation as F2
0

acts trivially on Gσ0F0 , which justifies Shσ0F0/F2
0
◦RGσ0F0

Tw
1.

Proposition IV.3.4.1 gives

(IV.5.3.8.3) ShσF/F ◦RMσF.σ
TwM .σ

1 = RMF.σ
TwM .σ

1.

(One checks that with respect to a fixed F-stable and σ-stable maximal torus T ⊂ M, the
maximal torus TwM of type wM with respect to F is also of type wM with respect to σF, using
the fact that for σ quasi-central, wM has a representative in Mσ.) Since F acts as σ on MσF,
the function RMσF.σ

TwM .σ
1 is invariant under the F-conjugation of MσF, and its Shintani descent

ShσF/F ◦RMσF.σ
TwM .σ

1 belongs to C(MF.σF). There is a natural bijection C(MF.σF) ∼↔ C(GF2
0 .σ0F0).

Let us show that
Shσ0F0/F2

0
◦RGσ0F0

Tw
1 = ShσF/F ◦RMσF.σ

TwM .σ
1,

1 Unipotent characters are F0-stable
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which concludes the proof.
For g ∈ GF2

0 , there exists x ∈ G such that xσ0F0(x)−1 = g, and so

NF2
0/σ0F0

(g) = x−1F2
0(x) ∈ Gσ0F0 .

We also have
(x,F0(x))σF(x−1,F0(x)−1) = (g,F0(g)),

and so
NF/σF((g,F0(g)) = (x−1,F0(x)−1)F(x,F0(x)) = (x−1F2

0(x), 1) ∈MσF.

Therefore,

ShσF/F ◦RMσF.σ
TwM .σ

1((g,F0(g))
1
= RMσF.σ

TwM .σ
1((x−1F2

0(x), 1))

2
= RGσ0F0

Tw
1(x−1F2

0(x))
3
= Shσ0F0/F2

0
◦RGσ0F0

Tw
1(g).

(IV.5.3.8.4)

where the equality 1 is the definition of Shintani descent and we have identified the
functions on MσF.σ to the functions on MσF invariant under the F-conjugation. We have
equality 2 by (§IV.5.3.6.2) with the automorphism σ(g, h) = (σ0(h), σ0(g)) and the Frobenius
σF(g, h) = (σ0F0(g), σ0F0(h)). Equality 3 is again the definition of Shintani descent.

IV.5.4 Extensions of Quadratic-Unipotent Characters

In this section, we focus on L0 � GLn0(k), equipped with the Frobenius F0 which sends
each entry to its q-th power. Let σ0 and σ′0 be the automorphisms defined for GLn0(k) in
the same way σ and σ′ are defined for GLn(k). Now the semi-direct product of GLn0(k) by
σ0 (resp. by σ′0) is denoted by sḠ0 (resp. oḠ0). We may regard σ0 also as an element of oḠ0,
acting as σ0 on GLn0(k) but satisfying σ2

0 = − Id. The point is that, in oḠ0, we need to fix a
quasi-central element to work with, and σ0 is a convenient choice.

IV.5.4.1 Let (µ+, µ−) be a 2-partition of n0 and fix some integers r+ > l(µ+) and r− > l(µ−).
Write n+ = |µ+| and n− = |µ−|. Let (α+, β+)r+ and (α−, β−)r− be the 2-partitions associated to
µ+ and to µ− respectively (See §II.2.1.3), such that the unordered 2-partitions (α+, β+) and
(α−, β−) are the corresponding 2-quotients. Let m+ and m− be some non negative integers
such that (m+, . . . , 2, 1) and (m−, . . . , 2, 1) are the 2-cores of µ+ and of µ− respectively, and
write N± = (n± −m±(m± + 1))/2. There exists a unique pair (h1, h2) ∈N ×Z such that

m+ = sup(h1 + h2,−h1 − h2 − 1)

m− = sup(h1 − h2, h2 − h1 − 1).
(IV.5.4.1.1)

Note that exchanging µ+ and µ− sends (h1, h2) to (h1,−h2). Write

m = m+(m+ + 1)/2 + m−(m− + 1)/2,
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and so n0 = m+2N+ +2N−. We have m = h1(h1 +1)+h2
2. Assume that r− ≡ h2 mod 2 and r+ ≡

h2 + 1 mod 2. Each of the two 2-partitions (α±, β±)r± defines an irreducible representation
of WC

N±
respectively, denoted by ρ+ and ρ−. Then with the fixed r+ and r−, the 2-partitions

(µ+, µ−) are in bijection with the data (h1, h2, ρ+, ρ−), identifying ρ+ and ρ− with the 2-
partitions determining their isomorphism classes.

IV.5.4.2 We also consider the data (h1, h2,w+,w−), with w+ ∈ W
C
N+

and w− ∈ WC
N−

, where
h1, h2, N+ and N− are as above. To simplify, we write W+ = WC

N+
, W− = WC

N−
and w =

(h1, h2,w+,w−) instead. To each w is associated an F0-stable and σ0-stable Levi factor of a
σ0-stable parabolic subgroup, isomorphic to Lw � Tw+ × Tw− ×GLm(k), each factor preserved
by σ0. We write σ0 = σ+ × σ− × σ00 and F0 = F+ × F− × F00 with respect to this decomposition.

IV.5.4.3 To each (h1, h2) ∈ N × Z is associated a unique cuspidal function φ(h1, h2) on
GLm(q).σ00, which is supported on the GLm(k)-conjugacy class of sσ00u, where sσ00 has
Sph1(h1+1)(k) × SOh2

2
(k) as its connected centraliser in GLm(k) and u corresponds to the (sym-

plectic/orthogonal) partitions (2h1, 2h1−2, . . . , 2) and (2|h2|−1, 2|h2|−3, . . . , 1). It is an isolated
conjugacy class. The cuspidal functions are explicitly given as below.

Put

s(h2) =

0, if h2 ≥ 0,

1, if h2 < 0,

and put

δ(h1) =
|h3

2 − h2|

3
, δ(h2) =

h1(2h1 + 1)(h1 + 1)
6

, δ(h1, h2) = δ(h1) + δ(h2).

Write u = (u1,u2) ∈ Sph1(h1+1)(k)×SOh2
2
(k). The Sph1(h1+1)(q)-conjugacy classes in the Sph1(h1+1)(k)

conjugacy class of u1 are parametrised by µh1
2 , and for ε = ± the SOε

h2
2
(q)-conjugacy classes in

the SOh2
2
(k)-conjugacy class of u2 are parametrised by µ|h2|−1

2 , regarded as the subset of µ|h2|

2

consisting of elements (ei)i∈{1,...,|h2|} with
∏

i ei = εη(−1)[|h2|/2], where η is the order 2 character
of F∗q. Note that when we write an element of µ|h2|

2 as (ei), then ei corresponds to the Jordan
block of size 2i − 1.

Denote by % the nontrivial irreducible character of µ2. For Sph1(h1+1)(q), the unique
cuspidal function φ1 supported on the Sph1(h1+1)(k)-conjugacy class of u1 is given by (cf.
[W01, §II.4])

φ1(u1,(ei)) = qδ(h1)/2
∏

i∈{1,...,h1}, i is odd

%(ei),

where u1,(ei) is a representative of the class corresponding to (ei). For SOε
h2

2
(q), the unique

cuspidal function φ2 supported on the SOh2
2
(k)-conjugacy class of u2 is given by (cf. [W01,
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§II.5])
φ2(u2,(e′i )

) = qδ(h2)/2
∏

i∈{1,...,|h2|}, i≡h2 mod 2

%(e′i ),

where u2,(e′i )
is a representative of the class corresponding to (e′i ).

Finally, φ(h1, h2) is expressed as

(IV.5.4.3.1) qδ(h1,h2)/2
∏

1≤i≤h1
i odd

%(ei)
∏

1≤i≤|h2|
i≡h1+h2+1+s(h2) mod 2

%(e′i ).

Note that the component group of the centraliser of sσ00u is isomorphic to µh1
2 × µ

h2
2 and

there are therefore two cuspidal functions on GLm(q).σ00 (unless h2 = 0) that restrict to the
unique cuspidal function on Sph1(h1+1)(q) × SOε

h2
2
(q), under the map u 7→ sσ00u. The two

cuspidal functions, in terms of representations of the component group µh1
2 × µ

|h2|

2 , differ
by (%, . . . , %) ∈ Irr(µ|h2|

2 ). Indeed, φ(h1, h2) and φ(h1,−h2) are two such functions, and the
indicating function s(h2) is responsible for the difference (%, . . . , %).

IV.5.4.4 Let Id be the trivial character of TF+
w+

. It trivially extends to TF+
w+
.<σ+>, and so we

can regard Id as a function on TF+
w+
.σ+. Similarly, composing η with the homomorphism

TF−
w− → F∗q defined by the product of norm maps, we can regard η as an invariant function

on TF−
w− .σ−, whose value at σ− is equal to 1. Then, Id �̃η�̃φ(h1, h2) is an invariant function

on LF
w.σ0, denoted by φw. The induced function RL0.σ0

Lw.σ0
φw on LF0

0 .σ0 is invariant under the

conjugation by LF0
0 .

Remark IV.5.4.1. In the case of oḠ0, the element σ0 satisfies σ2
0 = −1 and so is each of its

component: σ+, σ− and σ00. Then we can still extend η in such a way that its value at σ− is
equal to 1, because the value of η, regarded as a character of TF−

w− is always 1 at −1 ∈ TF−
w− .

Denote by ϕ+ and ϕ− the characters of ρ+ and of ρ− respectively. We have then the
invariant functions on LF0

0 .σ0 defined by

(IV.5.4.4.1) RL0.σ0
ρ :=

1
|W+|

1
|W−|

∑
w+∈W+
w−∈W−

ϕ+(w+)ϕ−(w−)RL0.σ0
Lw.σ0

φw.

IV.5.4.5 We keep the notations above and assume that p , 2 and q > n0. Let χ(µ+,µ−) be a
quadratic-unipotent character, which extends into a character χ̃(µ+,µ−) ∈ Irr(LF0

0 .<σ0>).

Theorem IV.5.4.2. ([W, §17]) Suppose that LF0
0 .<σ0>=

oḠ0 if n0 is even. Then for any (µ+, µ−) ∈
Pn0(2), we have,

(IV.5.4.5.1) χ̃(µ+,µ−)|LF0
0 .σ0

= ±RL0.σ0
ρ .
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Given a quadratic-unipotent character χ0 of GLn0(q), let ρ : GLn0(q) → GL(V) be a
representation that realises it. Then ρ(− Id) = ± IdV, with ρ(− Id) = − IdV exactly when
χ(− Id) = −χ(Id). Define the indicator

γχ =

i if χ(− Id) = −χ(Id);

1 otherwise.

Corollary IV.5.4.3. Suppose that n0 is even and LF0
0 .<σ0>=

sḠ0. Then for any (µ+, µ−) ∈ Pn0(2),
we have,

(IV.5.4.5.2) χ̃(µ+,µ−)|LF0
0 .σ0

= ±γχRL0.σ0
ρ .

Proof. This follows from §II.5.2.3. �

IV.6 The Formula

IV.6.1 Decomposition into Deligne-Lusztig Inductions

IV.6.1.1 By Proposition IV.1.2.2 and Proposition IV.1.2.3, every σ-stable irreducible char-
acter χ of GLn(q) is of the form RG

MI,w
(χ1 �χ0), for an F-stable Levi subgroup MI,w isomorphic

to the σ-stable standard Levi subgroup LI of the form (IV.1.2.2.1) equipped with the Frobe-
nius Fw given by (IV.1.2.3.5), (IV.1.2.3.6) and (IV.1.2.3.7) and with the action of σ given by
(IV.1.2.3.8) and (IV.1.2.3.9). Decomposing LI into L1 × L0 following §IV.1.2.3, then χ1 and χ0

are identified with some σ-stable characters of LFw
1 and LF0

0 respectively, where we also denote
by the same letter the restriction of Fw to L1 and by F0 its restriction to L0. We decompose
σ into (σ1 σ0) with respect to L1 × L0. Recall that χ0 is defined by a 2-partition (µ+, µ−) and
that χ1 is defined by [ϕ1] ∈ Irr(WL1)Fw and θ1 ∈ Irrreg(LFw

1 )σ1 satisfying the assumptions of
§IV.1.2.4, where ϕ1 ∈ Irr(Wσ1

L1
)Fw .

By Lemma II.4.2.1, an extension of χ to GF.σ is obtained by first extending χ1 � χ0 to
MF

I,w.σ and then taking the induction RG.σ
MI,w.σ

. One can equally extend χ1 � χ0, regarded as a
character of LFw

I , to LFw
I .σ. The extension of χ1 to LFw

1 .σ1 is given by Theorem IV.5.2.1 and the
extension of χ0 to LF0

0 .σ0 is given by Theorem IV.5.4.2. Explicitly, we have

χ̃1|LFw
1 .σ1

= |Wσ1
L1
|
−1

∑
w1∈W

σ1
L1

ϕ̃1(w1Fw)RL1.σ1
Tw1 .σ1

θ̃1,

χ̃0|LF0
0 .σ0

=
1
|W+|

1
|W−|

∑
w+∈W+
w−∈W−

ϕ+(w+)ϕ−(w−)RL0.σ0
Lw.σ0

φw,
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and in the second equality there is an extra γχ0
if σ0 is of symplectic type. Now put

γχ :=

γχ0
if σ is of symplectic type,

1 otherwise.

Write Lw1,w = Tw1 × Lw. It is an Fw-stable and σ-stable Levi factor of a σ-stable parabolic
subgroup of LI. Combining the above two formulas gives

χ̃1�̃χ̃0|LFw
I .σ = γχ|W

σ1
L1
×W+ ×W−|

−1
∑

(w1,w+,w−)
∈Wσ1

L1
×W+×W−

ϕ̃1(w1Fw)ϕ+(w+)ϕ−(w−)RLI .σ
Lw1 ,w

(θ̃1�̃φw).

Identifying LFw
I .<σ>� MF

I,w.<σ>and the subgroups MF
w1,w ↔ LFw

w1,w, we deduce

Theorem IV.6.1.1. The extension of χ is given by the following formula:

χ̃|GF.σ = γχ|W
σ1
L1
×W+ ×W−|

−1
∑

(w1,w+,w−)
∈Wσ1

L1
×W+×W−

ϕ̃1(w1Fw)ϕ+(w+)ϕ−(w−)RG.σ
Mw1 ,w

(θ̃1�̃φw).

IV.6.1.2 Recall §IV.1.2.8 that the σ-stable irreducible characters of GLn(q) are parametrised
by T̄χ. Denote by T̄0

χ ⊂ T̄χ the subsets of the elements

λ+λ−
∏
i∈Λ1

(λi, αi)
∏
j∈Λ2

(λ′j, α
′

j)

in which at most one of |λ+| and |λ−| is odd, and λ± is a partition with trivial 2-core or with
2-core (1) according to the parity.

Corollary IV.6.1.2. The σ-stable irreducible characters of GLn(q) that extends to uniform func-
tions on GLn(q).σ are in bijection with T̄0

χ, and the extensions of these characters constitute a base
(identifying two extensions of the same character) of the space of the uniform functions on GLn(q).σ.

Proof. We have seen in Theorem IV.6.1.1 that the extension of a general σ-stable irreducible
character is decomposed into a linear combination of cuspidal functions induced from

MF
w1,w � TF

w1
× TF

w+
× TF

w− ×GLm(q),

for various w1 and w. Cuspidal functions induced from MF
w1,w with m > 1 can not be uniform

(see §II.4.3.2 for the definition of uniform functions). Now the condition m ≤ 1 is equivalent
to the condition that the sum of the 2-cores of λ+ and λ− is either empty or (1). We see that
λ+ and λ− satisfy the assumption in the definition of T̄0

χ, whence the first assertion.
For each t̄ ∈ T̄0

χ, denote by χt̄ the corresponding character, and choose an extension
χ̃t̄ ∈ C(GLn(q).σ). Then, {χ̃t̄ | t̄ ∈ T̄0

χ} is a set consisting of functions orthogonal to each other.
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Theorem IV.6.1.1 gives a transition matrix between the set of (generalised) Deligne-Lusztig
characters and that of the χ̃t̄’s. �

Remark IV.6.1.3. The extension of an irreducible character is then either uniform, ot or-
thogonal to all uniform functions. Since the characteristic function of a quasi-semi-simple
conjugacy class is uniform, the extension of a character corresponding to an element of
T̄χ \ T̄

0
χ vanishes on every quasi-semi-simple element.

IV.6.2 Combinatorial Description of the Character Formula

In order to determine the character table of GLn(q).<σ>, it only remains for us to calculate
the induced functions RG.σ

Mw1 ,w.σ
φw.

IV.6.2.1 Let us recall how this is done for a split connected group G. Fix a split maximal
torus T0 and let WG denote the Weyl group defined by T0. Let us simplify the situation and
assume that Mw1,w = Tτ, τ ∈ WG, is a maximal torus. The character formula (cf. §II.4.1.2)
reads

(IV.6.2.1.1) RG
Tτθ(g) = |TF

τ |
−1
|C◦G(s)F

|
−1

∑
{h∈GF|s∈hTτ}

Q
C◦G(s)
C◦hTτ

(s)(u) hθ(s),

for the Jordan decomposition g = su. Assume that s ∈ TF
τ , and put

(IV.6.2.1.2) A(s, τ) := {h ∈ G | hsh−1
∈ Tτ}.

We have to determine the set

(IV.6.2.1.3) AF(s, τ) := {h ∈ A(s, τ) | F(h) = h}.

Write L = CG(s)◦. Define

B(s, τ) :={The LF-conjugacy classes of the F-stable maximal tori of L

that are GF-conjugate to Tτ.}
(IV.6.2.1.4)

It parametrises a subset of the Green functions of LF. We fix s and τ and write A, AF and B
in what follows. Observe that there is a surjective map AF

→ B which sends h to the class
of h−1Tτh. It factors through ι : AF/LF

→ B. The value of the Green function only depends
on ι(h) while hθ(s) is constant on each right LF-coset of AF. The calculation is eventually
reduced to evaluating hθ(s) on the fiber of ι over an element ν̄ ∈ B. We may regard ν̄ as the
F-conjugacy class of some ν ∈WL(Tτ).

We have A = NG(Tτ).L, that is, the set of the elements nl, n ∈ NG(Tτ) and l ∈ L, since for
each h, there exists l ∈ L such that h−1Tτh = lTτl−1. We deduce from it an isomorphism

(IV.6.2.1.5) AF/LF � (A/L)F � (NG(Tτ)/NL(Tτ))F � (WG(Tτ)/WL(Tτ))F,
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which sends h = nl to the class of n. This does not depend on the choice of the n and l such
that h = nl. We choose some g ∈ G such that Tτ = gT0g−1, and put L0 = g−1Lg. We can
further identify the above set to (WG(T0)/WL0(T0))τ. Write WL0 = WL0(T0). The conjugation
by τ preserves L0 since L is F-stable. Now, a coset wWL0 is τ-stable if and only if

(IV.6.2.1.6) w−1τwτ−1
∈WL0

and ι(wWL0) ∈ ν̄ if and only if

(IV.6.2.1.7) w−1τwτ−1
∈ ν̄,

regarding ν̄ as a τ-conjugacy class of WL0(T0). Indeed, if hLF corresponds to wWL, then the
LF-conjugacy class of h−1Tτh = l−1Tτl is represented by lF(l)−1 = n−1F(n), which is none other
than w−1τwτ−1 under ad g−1. The computation of the w’s is completely combinatorial.

To summarise, once the Green functions have been computed (see the introduction), the
calculation of the character formula goes as follows.

(i) Describe combinatorially the sets AF/LF and B;

(ii) Specify a surjection ι : AF/LF
→ B and calculate the fibres of ι;

(iii) For each ν̄ ∈ B and each hLF
∈ ι−1(ν̄), evaluate the character θ(hsh−1).

The summation in the character formula is decomposed into one summation over B and
then one summation over the fibre of ι. We also see that the summation of the hθ(s)’s over
each fibre of ι is just permuting the "eigenvalues" of s.

IV.6.2.2 We will change our notations in what follows. Let N and m be some non negative
integers such that 2N + m = n. Write G = GLn(k), and let M0 be the σ-stable standard
Levi subgroup of G isomorphic to GLm(k) × (k∗)2N, then NG(M0.σ)/M0 � W

C
N. Let Mw �

GLm(k) × (k∗)2N be an F-stable and σ-stable Levi factor of some σ-stable parabolic subgroup
of G, with w ∈WC

N. The GF-conjugacy class of Mw.<σ>is then parametrised by the conjugacy
class of w, which we denote by τ. Assume that Mw = gM0g−1 for some g ∈ (Gσ)◦ such that
g−1F(g) = ẇ is a representative of w. We will take Mw for Mw1,w and calculate the induced
function.

IV.6.2.3 Let sσ ∈ GF.σ be a semi-simple element. Define

A(sσ, τ, h1, h2) ={h ∈ G | hsσh−1
∈Mw.σ is quasi-isolated with CMw(hsσh−1)

isomorphic to the product of Sph1(h1+1)(k) ×Oh2
2
(k) and a torus}.

Define
AF(sσ, τ, h1, h2) = {h ∈ A(sσ, τ, h1, h2)|F(h) = h}.
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If sσ is not GF-conjugate into Mw.σ, then AF(sσ, τ) is empty, so we can assume that sσ lies in
Mw.σ. We will give a combinatorial description of this set.

Write L′ = CG(sσ)◦. If K′ ⊂ L′ is an F-stable Levi subgroup, put K = CG(Z◦K′). By
Proposition II.3.1.6, it is the smallest F-stable and sσ-stable Levi subgroup of G such that
(K ∩ L′)◦ = K′, which is a Levi factor of an sσ-stable parabolic subgroup, say Q. So NḠ(K) ∩
NḠ(Q) = K.<sσ>. Moreover, from Proposition II.3.1.12 (i), we deduce that sσ is isolated in
K.<sσ>. Define

B(sσ, τ, h1, h2) ={ The L
′F-conjugacy classes of the Levi subgroups K′ ⊂ L′

isomorphic to the product of Sph1(h1+1)(k) ×Oh2
2
(k) and a torus

such that K.<sσ>is GF-conjugate to Mw.<σ>.}

In what follows, we fix sσ, τ, h1 and h2, then A(sσ, τ, h1, h2) and B(sσ, τ, h1, h2) will be denoted
by A and B.

Lemma IV.6.2.1. The map

ι : AF/L
′F
−→ B

hL
′F
7−→ the class of Ch−1Mwh(sσ)◦.

(IV.6.2.3.1)

is well defined and surjective.

Proof. If h ∈ AF, then hsσh−1 normalises Mw and a parabolic subgroup containing it, so sσ
normalises h−1Mwh and a parabolic subgroup containing it. It follows that K′ := C◦

h−1Mwh
(sσ)

is an F-stable Levi subgroup of L′. We then obtain the Levi subgroup K as above. From the
fact that Ch−1Mwh(sσ) = h−1CMw(hsσh−1)h and from the assumption on hsσh−1, we deduce that
sσ ∈ K.<sσ>is isolated with centraliser isomorphic to the product of Sph1(h1+1)(k)×Oh2

2
(k) and

a torus. Since sσ is also isolated in h−1Mw.<σ>h, by Remark II.3.1.8, we have K = h−1Mwh, and
so K.<sσ>= h−1Mw.<σ>h. We see that the L

′F-class of K′ indeed belongs to B. Obviously this
map factors through the quotient AF/L

′F. Given K′ ∈ B with h ∈ GF such that hK.<sσ>h−1 =

Mw.<σ>, the same argument shows that h ∈ AF, whence surjectivity. �

Lemma IV.6.2.2. If h1, h2 ∈ A, then h2 ∈ NG(Mw.σ)h1L′. In particular,

(IV.6.2.3.2) A = NG(Mw.σ).L′.

Moreover, if h1L
′F, h2L

′F
∈ AF/L

′F belong to the same fibre of ι, then h2 ∈ NGF(Mw.σ)h1L′F.

Proof. For h1 and h2 ∈ A, there exists l ∈ L′ such that

h−1
1 Mwh1 ∩ L′ = l(h−1

2 Mwh2 ∩ L′)l−1 = lh−1
2 Mwh2l−1

∩ L′.

By assumption, sσ is isolated in h−1
1 Mw.<σ>h1 and in h−1

2 Mw.<σ>h2, and so Remark II.3.1.8
implies that h−1

1 Mwh1 = lh−1
2 Mwh2l−1. So there exists n ∈ NG(Mw) such that h2 = nh1l. Note
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that nhl belongs to A, for any h ∈ A, n ∈ NG(Mw.σ) and l ∈ L′. If moreover h1 and h2 ∈ AF

belong to the same fibre of ι, we can choose l to be in L
′F. Note that in this case n is necessarily

F-stable.
Let us determine the set NG(Mw.σ). If n normalises Mw.σ, then it normalises Mw.σ.Mw.σ,

so it normalises Mw. Then, nMw.σn−1 = nMwn−1nσ(n−1)σ ∈ Mw.σ, so nσ(n−1) ∈ Mw. We see
that NG(Mw.σ) consists of those components of NG(Mw) that are σ-stable. Besides, if h2 = nh1l
with n ∈ NG(Mw), then

nh1lsσl−1h−1
1 n−1 = nh1sσh−1

1 n−1
∈Mw.σ

implies that nσ(n)−1
∈Mw, i.e. nMw is a σ-stable component of NG(Mw). �

Remark IV.6.2.3. For h = nl ∈ AF = (NG(Mw.σ)L′)F, neither n nor l is necessarily F-stable.

Define M′w = CMw(sσ)◦ = (Mw ∩ L′)◦. It is an F-stable Levi subgroup of L′ isomorphic to
the product of Sph1(h1+1)(k) × SOh2

2
(k) and a torus. Define L′′ = g−1L′g = CG(g−1sσg)◦ with g

as in §IV.6.2.2, and M′0 = g−1M′wg = CM0(g−1sσg)◦.

Corollary IV.6.2.4. We have the bijections

(IV.6.2.3.3) AF/L
′F � (NG(Mw.σ)/NL′(M′w))F � (NG(M0.σ)/NL′′(M′0))Fẇ .

Remark II.3.1.9 implies that NL′′(M′w) is indeed a subgroup of NG(Mw.σ).

Proof. If h ∈ A, then there exists l ∈ L′ and n ∈ NG(Mw.σ) such that h = nl by Lemma IV.6.2.2.
The following map

A/L′ −→ NG(Mw.σ)/NL′(M′w)

hL′ 7−→ nNL′(M′w).
(IV.6.2.3.4)

is well defined and bijective. So AF/LF � (NG(Mw.σ)/NL′(M′w))F. The second bijection is
obvious. �

IV.6.2.4 Let us point out that the identity component of NG(M0.σ) is M0 whereas that of
NL′′(M′0) is M′0, so we cannot directly reduce the problem to a purely combinatorial one as in
§IV.6.2.1.

Lemma IV.6.2.5. Let n ∈ NG(M0.σ) and let ν̄ be an Fẇ-conjugacy class of NL′′(M′0)/M′0. Write
N′′ = NL′′(M′0). Then

(i) The coset nN′′ is Fẇ-stable if and only if

n−1ẇF(n)ẇ−1
∈ N′′;
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(ii) Under the bijection (IV.6.2.3.3), the Fẇ-stable Levi subgroup h−1M′wh ⊂ L′ lies in the class ν̄ if
and only if

n−1ẇF(n)ẇ−1M′0 ∈ ν̄.

Proof. Part (i) is obvious. For part (ii), we write h = nl with n ∈ NG(Mw.σ) and l ∈ L′. The
L
′F-class of the Levi h−1M′wh = l−1M′wl ⊂ L′ is given by lF(l)−1 = n−1F(n) ∈ NL′′(L′w), or rather

n−1
0 ẇF(n0)ẇ−1

∈ NL′′(M′0), with n0 = g−1ng. �

We want to first solve the equations in the above Lemma at the level of Weyl groups.
Denote N̄′′ := N′′.M0. It is the union of the connected components of NG(M0.σ) that meet L′′.

Fact. Each connected component of N̄′′ contains exactly one connected compo-
nent of N′′, because an element of the identity component of N̄′′ must induce
trivial action on the torus component of the identity component of N′′.

We deduce from this fact an isomorphism N′′/M′0 � N̄′′/M0. We can then regard W′′ :=
WL′′(M′0) as a subgroup of WG(M0)σ, with compatible action of Fw.

Lemma IV.6.2.6. We keep the notations in the above Lemma and let v be the equivalence class of n
in WG(L0)σ.

(i) If the coset nN′′ is Fẇ-stable, then

v−1wvw−1
∈W′′;

(ii) Under the bijection (IV.6.2.3.3), if the Fẇ-stable Levi subgroup h−1M′wh ⊂ L′ lies in the class
ν̄, then

v−1wvw−1
∈ ν̄.

Proof. Obvious. �

IV.6.2.5 For each v ∈WG(M0)σ, we choose a representative v̇ ∈ (Gσ)◦. Once we have solved
the equations of Lemma IV.6.2.6, with the choices of the representatives of the elements
of WG(M0)σ, the equations in Lemma IV.6.2.5 are reduced to equations for l ∈ M0, if we
express n as v̇l. However, we do not really need to solve such equations to get the value of
θ̃1�̃φw(hsσh−1), for hL

′F corresponding to nN′′. In other words, for the purpose of computing
the characters, solving the combinatorial equations of Lemma IV.6.2.6 suffices. This is
explained as follows.

First of all, by Lang-Steinberg, if v satisfies Lemma IV.6.2.6 (i), then there exists l ∈ M0

such that v̇l satisfies Lemma IV.6.2.5 (i).
Then we show that the value of the character is independent of such l. Rewrite n = v̇l as lv̇

for some different l ∈M0. Let h ∈ AF be an element corresponding to nN′′. Then g−1hsσh−1g =

ng−1sσgn−1 and so ng−1sσgn−1 is Fw-stable and is isolated in M0.<σ>. We write M0 � GLm(k)×
T1, with T1 � (k∗)2N and decompose the action of σ as (σ00, σ1) accordingly. We also index the
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direct factors of T1 by the set {1, . . . ,N,−N, . . . ,−1}. The action of σ1 is then (ti, t−i) 7→ (t−1
−i , t

−1
i ).

By the definition of AF, hsσh−1 lies in a given isolated stratum specified by (h1, h2), thus
the direct factor of ng−1sσgn−1 corresponding to GLm(q).σ00 necessarily lies in a prescribed
isolated conjugacy class. So we do not need to know the direct factor of l corresponding to
GLm(k). Let t1 be the direct factor of l corresponding to T1. Replacing t1 by some other t2 ∈ T1

amounts to multiplying nsσn−1 by an element of the form (x1, . . . , xN, xN, . . . , x1) within the
factor T1.σ1. It is necessarily Fw-stable. We can check that the value of a σ1-stable linear
character of TFw

1 is always equal to 1 at an Fw-stable element of this form.
Given v ∈ WG(M0)σ, which determines n and thus h, we can compute θ̃1�̃φw(hsσh−1v)

following the procedure below. We first find some t ∈ T1, such that the conjugation of the
factor of ng−1sσgn−1 in T1.σ1 by t is Fw-stable, then combine this with the prescribed isolated
conjugacy class in GLm(q).σ00 to form an element of MFw

0 .σ, finally evaluate the character at
this element.

IV.6.2.6 Finally, we give a formula of the cardinality of the inverse image of the fibre of ι
in AF.

Let h ∈ AF be such that ι(hL′F) ∈ ν̄. By Lemma IV.6.2.2, we need to calculate the cardinality
of the double coset NGF(Mw.σ)hL

′F. An element of hL
′Fh−1 = CG(hsσh−1)◦F normalises Mw.σ =

Mw.hsσh−1 if and only if it normalises Mw, if and only if it normalises CMw(hsσh−1)◦ as hsσh−1

is isolated in Mw.<σ>, so

NGF(Mw.σ) ∩ hL
′Fh−1 = NhL′Fh−1(CMw(hsσh−1)◦).

The identity component of NhL′h−1(CMw(hsσh−1)◦) is CMw(hsσh−1)◦ as this is a Levi subgroup.
The hL

′Fh−1-conjugacy class of CMw(hsσh−1)◦ corresponds to the L
′F-class of Ch−1Mwh(sσ)◦,

which is ν̄. We have

|NGF(Mw.σ)hL
′F
| = |L

′F
||NGF(Mw.σ)||NhL′Fh−1(CMw(hsσh−1)◦)|−1.

Since NG(Mw.σ)/Mw � WG(Mw)σ and (WG(Mw)σ,F) � (WG(M0)σ,Fw), we have

|NGF(Mw.σ)| = |MF
w|zw,

where zw is the cardinality of the centraliser of w in WG(Mw)σ �WC
N. Similarly,

|NhL′Fh−1(CMw(hsσh−1)◦)| = |CMw(hsσh−1)◦F|zν,

where zν is the cardinality of the centraliser of ν in WL′(M′0).
With respect to the decomposition Mw = Tw × GLm(k), we write σ = (σ1, σ00), and the

action of hsσh−1 on Mw is decomposed as (l1σ1, l0σ00) with l1 ∈ Tw and l0 ∈ GLm(k). The
action of F on the orthogonal group factor of CMw(hsσh−1)◦ is compatible with the action of
F on Ch−1Mwh(sσ)◦, which is an F-stable Levi subgroup of L′, and so only depends on the
GF-conjugacy class of sσ and ν̄. Explicitly, if we write CG(sσ)◦ as the direct product of SOn′(k)
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and some symplectic groups and general linear groups, then CG(sσ)◦F is isomorphic to the
direct product of SOη

n′(q) and groups of other types, where η is the value of sσ under the
map (IV.2.2.2.2). We can write the Levi subgroup Ch−1Mwh(sσ)◦ as the direct product of Lso

and some other groups, with Lso � SOh2
2
(k)× Tνso being an F-stable Levi subgroup of SOn′(k),

where νso is the direct factor of ν ∈WL′(M′w) corresponding to SOn′(k) and Tνso is the thereby
determined torus. Let sgn :WC

→ {±1} be the map whose kernel isWD. Then we have

C◦Mw
(hsσh−1)F � C◦Tw

(l1σ1)F
× Sph1(h1+1)(q) × SOη·sgn(νso)

h2
2

(q).

Besides, C◦Tw
(l1σ1)F = C◦Tw

(σ1) =: T
′F
w .

Remark IV.6.2.7. The above calculation shows that if n is odd, then the cardinality of
Ch−1Mwh(sσ)◦F, which a priori depends on ν, in fact only depends on w. In the case of
connected groups, this is trivial as (h−1Mwh)F � MF

w.

Proposition IV.6.2.8. If Ch−1Mwh(sσ)◦ ⊂ L′ lies in the class of ν, then we have

|NF
G(Mw.σ)hL

′F
| = |L

′F
||MF

w||T
′F
w |
−1
| Sph1(h1+1)(q)|−1

| SOη·sgn(νso)
h2

2
(q)|−1zwz−1

ν ,

where η is determined by the GF-class of sσ. In particular, if h1 = 0 and h2 = 0 or 1, and so Mw is a
maximal torus of G, we have

(IV.6.2.6.1) |NF
G(Mw.σ)hL

′F
| = |L

′F
||MF

w||T
′F
w |
−1zτz−1

ν .
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Chapter V

E-polynomial of
GLn(C) o<σ>-Character Varieties

Except in §V.5, we only compute the E-polynomials of the GLn(C)o<σ>-character varieties
for n odd. We will write n = 2N + 1. We expect that the case for n even can be similarly
tackled, but involves Green functions associated to complex reflections groups G(2, 2,m),
m ∈ Z>1 ([Sh02]). This will be done elsewhere.

We will compute the E-polynomial of the character variety over complex numbers

(V.0.0.0.1) ChC = Rep
C
//GLn = {(Ai,Bi) × (X j) ∈ GL2g

n ×

2k∏
j=1

C j |

g∏
i=1

(Ai,Bi)
2k∏
j=1

X j = 1}//GLn,

where C j ⊂ GLn .σ is a GLn-conjugacy class for any j. We assume that the tuple of conjugacy
class C = (C j) is generic (§III.4.2.5) and that for every j, C j has no "eigenvalue" equal to i. The
second assumption is only needed in Lemma V.3.3.3. As is explained in the introduction,
the problem is translated into counting points over finite fields. The first step is to give
an R-model of the character variety, with R ⊂ C being some finitely generated ring. We
then give a point-counting formula in terms of the irreducible characters of GLn(q) o<σ>.
By decomposing the irreducible characters into Deligne-Lusztig characters, this formula
becomes a purely combinatorial one involving Green functions of finite classical groups.
Using the results of Shoji [Sh01], we are able to express the final formula in terms of the inner
product of two symmetric functions, with one of them only depending on the Riemann
surface, and the other one only on the prescribed conjugacy classes at the punctures.

127
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V.1 The Point-Counting Formula

V.1.1 The R-Model

V.1.1.1 Write G = GLn, Ḡ = GLn o<σ>. For each j, the conjugacy class C j is represented by
some N-tuple of complex numbers (cf. Notation IV.2.1.1)

A j = [1, . . . , 1, i, . . . , i, a j
1, . . . , a

j
1, . . . , a

j
m j
, . . . , a j

m j
],

with a j
r < {a

j
s, (a

j
s)−1,−a j

s,−(a j
s)−1
} for any r , s, (a j

r)2 , ±1 for any r. Define an unordered
sequence of positive integers µ j = µ

j
+µ

j
−

(µ j
i ) in such a way that 1 has multiplicity µ j

+, i has

multiplicity µ j
−

and a j
i has multiplicity µ j

i . We have N = µ
j
+ +µ

j
−

+
∑

i µ
j
i . We denote µ j

1 = (µ j
i )

and m j = l(µ j
1), the length of the sequence. We will call µ j the type of C j.

Denote by R0 the subring of C generated by {(a j
i )
±1
| all i, j} (together with i if some

µ
j
−
> 0). For any subtuple B j

⊂ A j and any |B j
|-tuple of signs e j = (e j

a)a∈B j , e j
a ∈ {±1}, we write

[B j]e j =
∏

a∈B j(ae j
a)2. Let S ⊂ R0 be the multiplicative subset generated by

(i) (a j
i1

)2
− (a j

i2
)2 and (a j

i1
)2
− (a j

i2
)−2 for all j and i1 , i2;

(ii) (a j
i )

4
− 1 for all j and i;

(iii) For every integer M, 1 ≤ M ≤ N, the elements 1 − [B1]e1 · · · [B2k]e2k with each [B j]
running over all M-subtuples of A j, and each e j running over all M-tuples of signs.

Define the ring of generic eigenvalues as R = S−1R0. Then the character variety is defined
over R. For any field k and a homomorphism of rings φ : R → k, the homomorphism
φ̄ : R → k ↪→ k̄ defines a 2k-tuple of semisimple conjugacy classes (in GLn(k̄).<σ>) of the
same types, with "eigenvalues" (Remark IV.2.1.3) φ(a j

i ) (resp. 1 and i, which is a choice of the

square root of −1 in k) of multiplicity µ j
i (resp µ j

+ and µ j
−

) in the corresponding conjugacy
class. The 2k-tuple of conjugacy classes thus obtained is denoted by Cφ̄ = (Cφ̄1 , . . . ,C

φ̄
2k). Note

that if q ≡ 3 mod 4 and there is some µ j
−
> 0, then there is no homomorphism φ : R→ Fq.

V.1.1.2 LetA0 be the polynomial ring over R with n2(2g+2k) indeterminates corresponding
to the entries of n×n matrices A1,B1, . . .Ag,Bg,X1, . . .X2k, with det Ai, det Bi, det X j, 1 ≤ i ≤ g,
1 ≤ j ≤ 2k, inverted. Denote by (A,B) the commutator of matrices A and B. Let I0 ⊂ A0 be
the ideal generated by

(i) The entries of (A1,B1) · · · (Ag,Bg)X1σ · · ·X2kσ − Id (Note that X1σX2σ = X1σ(X2) and σ
is defined over Z);

(ii) For all 1 ≤ j ≤ 2k, the entries of

((X jσ(X j))2
− Id)(X jσ(X j) − (a j

1)2 Id)(X jσ(X j) − (a j
1)−2 Id) · · ·

(X jσ(X j) − (a j
m j

)2 Id)(X jσ(X j) − (a j
m j

)−2 Id);
(V.1.1.2.1)
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(iii) For all 1 ≤ j < 2k, the entries of the coefficients of the following polynomial in an
auxiliary variable t:

(V.1.1.2.2) det(t Id−X jσ(X j)) − (t − 1)τ+(t + 1)τ−
m j∏
i

(t − (a j
i )

2)τ
j
i .

Denote A = A0/
√

I0. If we write C2
j := {x2

| x ∈ C j}, then C j ⊂ G.σ is semi-simple if and

only if C2
j is semi-simple and by §IV.2.1.1 the map C j 7→ C2

j is an injection from the semi-
simple classes in G.σ to those in G. Therefore (ii) and (iii) guarantees that the base change
to C recovers the complex representation variety with the correct conjugacy classes. Then
Rep

C
:= SpecA is the R-model of Rep

C
and ChC := SpecAGL(R) is the R-model of ChC, since

taking invariants commutes with flat base change.

V.1.1.3 Let φ : R→ Fq be any ring homomorphism and let φ̄ : R→ F̄q be the extension to

the algebraic closure. Denote by Repφ
Cφ

and Repφ̄
Cφ̄

be the varieties overFq and F̄q respectively

obtained by base change from Rep
C

. And similarly for ChC. The variety Repφ̄
Cφ̄

(F̄q) is defined
by the same equation as V.0.0.0.1, but over F̄q, and then

(V.1.1.3.1) Repφ
Cφ

(Fq) = {(Ai,Bi) × (X j) ∈ GLn(q)2g
×

2k∏
j=1

Cφj (Fq) |
g∏

i=1

(Ai,Bi)
2k∏
j=1

X j = 1}.

Remark V.1.1.1. One should not confuseCφ with the conjugacy classes of finite groups. Here
we really consider varieties over Fq whose base changes to F̄q give Cφ̄. Note that for any j,

we have Cφj (Fq) = Cφ̄j (F̄q)F, which is a union of two conjugacy classes contained in GLn(q).σ.
We denote these two classes by C j,+ and C j,−. The class C j,+ has a representative of the form

(V.1.1.3.2) diag(x1, x2, . . . , xN, 1, x−1
N , . . . , x

−1
2 , x

−1
1 )σ,

with every xi ∈ Fq, while C j,− is represented by

(V.1.1.3.3) diag(x1, x2, . . . , xN, c, x−1
N , . . . , x

−1
2 , x

−1
1 )σ,

with c ∈ F∗q \ (F∗q)2.

Notation V.1.1.2. For a given 2k-tuple Cφ̄ = (Cφ̄j ) of semi-simple conjugacy classes in
GLn(F̄q).σ and a 2k-tuple of signs e = (e j), we will denote by Ce = (C j,e j) the 2k-tuple of
GLn(q)-conjugacy classes contained in it. Denote ē =

∏
j e j and sgnCe = ē. We may write

sgnC = sgnCe if C is a tuple of conjugacy classes of the form Ce.

In the following Proposition, we fix the conjugacy classes and omit the script C.
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Proposition V.1.1.3. We have the following formula.

(V.1.1.3.4) |Chφ(Fq)| =
1

G(Fq)
|Repφ(Fq)|.

Proof. By [Se77, II, Theorem 3], there is a natural bijection

(V.1.1.3.5) Chφ̄(F̄q) ∼←→ (Repφ̄//Gφ̄)(F̄q).

Since Cφ̄ is generic, each element of Repφ̄(F̄q) is an irreducible GLn(F̄q)o<σ>-representation,
by Proposition III.4.2.7. By Proposition II.5.4.1, irreducible representations have finite
stabilisers, thus every GLn(F̄q)-orbit is closed. We then have a natural bijection of sets
(Repφ̄//Gφ̄)(F̄q) ∼→ Repφ̄(F̄q)/G(F̄q). Therefore,

(V.1.1.3.6) Chφ(Fq) � Chφ̄(F̄q)F � (Repφ̄(F̄q)/G(F̄q))F.

Since G is connected, each F-stable G(F̄q)-orbit in Repφ̄(F̄q) must contain some F-stable point.
We will prove that the number of F-stable points in each such orbit is exactly |G(Fq)|.

Let O be an F-stable G(F̄q)-orbit in Repφ̄(F̄q), then OF splits into some G(Fq)-orbits ac-
cording to the stabliliser in G of some F-stable point, say x ∈ OF. By Proposition II.5.4.1, the
stabiliser is a finite abelian group H :=

∏
j µ2. The number of G(Fq)-orbits in OF is equal to

the number of F-conjugacy classes in H.
Since H is abelian, each F-conjugacy class of it is of the form {h0hF(h)−1

| h ∈ H} for some
h0 ∈ H. Again because H is abelian, the map h 7→ hF(h)−1 is a group homomorphism, with
kernel K = {h ∈ H | F(h) = h}. Denote by I the image of this homomorphism. Then the
F-conjugacy classes in H are the cosets h0I, therefore there are |H|/|I| = |K| of them.

That is, the number of G(Fq)-orbits in O is |K|. On the other hand, x has K as stabiliser in
G(Fq), so the cardinality of the G(Fq)-orbit containing x is |G(Fq)|/|K|. If for some g ∈ G(F̄q),
g.x is an F-stable point contained in another G(Fq)-orbit, then its stabiliser in G(Fq) is just
gKg−1. Indeed, we have g−1F(g) ∈ StabG(x) = H, thus for any k ∈ K,

(V.1.1.3.7) F(gkg−1) = F(g)kF(g)−1 = g(g−1F(g))k(F(g)−1g)g−1 = gkg−1.

Thus all G(Fq)-orbits in O have cardinality |G(Fq)|/|K|. We conclude that |O(Fq)| = |G(Fq)|,
which is independent of O. Therefore,

(V.1.1.3.8) |Chφ(Fq)| =
1

|G(Fq)|
|Repφ(Fq)|.

�
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V.1.2 The Counting Formula

V.1.2.1 We denote for the moment by G and Ḡ the corresponding finite groups G(Fq) and
Ḡ(Fq), and by C an arbitrary 2k-tuple of G-conjugacy classes contained in Ḡ \ G. We will
show the following counting formula,

#{(A1,B1, · · · ,Ag,Bg,X1, · · ·,X2k) ∈ G2g
× C1 · · · × C2k|

(A1,B1) · · · (Ag,Bg)X1 · · ·X2k = Id}

= |G|
∑

χ∈Irr(G)σ

( |G|
χ(1)

)2g−2 2k∏
i=1

|Ci|χ̃(Ci)
χ(1)

.

(V.1.2.1.1)

In this expression, Irr(G)σ is the set of σ-stable irreducible characters of G, and we choose
for each χ ∈ Irr(G)σ an extension to Ḡ, denoted by χ̃. The two possible extensions of a
given irreducible character differ by −1 on Ḡ \G, and consequently the value of the counting
formula is independent of these choices due to the product of 2k terms.

V.1.2.2 Let us prepare some notations of finite groups.
Let H be a finite group. Denote by C(H) the vector space of complex class functions

on H. Put Ĥ = Irr(H). Denote by C(Ĥ) the vector space of linear combinations
∑
χ∈Ĥ aχχ

of irreducible characters, which is the same as C(H) but will be equipped with a different
product operation.

The convolution product ∗ in C(H) is defined by

(V.1.2.2.1) ( f1 ∗ f2)(x) =
∑
yz=x

f1(y) f2(z), f1, f2 ∈ C(H).

The dot product · in C(Ĥ) is defined by

(V.1.2.2.2) F1 · F2(χ) = F1(χ)F2(χ), F1,F2 ∈ C(Ĥ),

i.e. the coefficient of χ in the product is the product of coefficients of χ.
The Fourier transform F : C(H)→ C(Ĥ) is defined by

(V.1.2.2.3) F ( f )(χ) =
∑
h∈H

f (h)χ(h)
χ(1)

, f ∈ C(H).

We also have the transform F : C(Ĥ)→ C(H) defined by

(V.1.2.2.4) F(F)(h) =
∑
χ∈Ĥ

F(χ)χ(1)χ(h).
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We have

(V.1.2.2.5) F ◦ F = |H| · IdC(H), F ◦ F = |H| · Id
C(Ĥ) .

They are also compatible with the product operations:

(V.1.2.2.6) F ( f1) · F ( f2) = F ( f1 ∗ f2), F(F1) ∗ F(F2) = |H| · F(F1 · F2).

V.1.2.3 From F ◦ F = |H| · IdC(H) and the definition of the transforms, we deduce that

(V.1.2.3.1) f (1) =
1
|H|

∑
χ∈Ĥ

χ(1)2
F ( f )(χ).

for any class function f .
Now we put H = Ḡ. We define the function ng : Ḡ→ C by

(V.1.2.3.2) ng(x) = #{(A1,B1, · · · ,Ag,Bg) ∈ G2g
|

∏
i

(Ai,Bi) = x}.

We find that ng
∈ C(Ḡ)(identically zero on Ḡ \G) and that ng = n1

∗ · · · ∗ n1. Denote by 1Ci the
characteristic function of the class Ci. Then

#{(A1,B1, · · · ,Ag,Bg,X1, · · · ,X2k) ∈ G2g
× C1 × · · · × C2k|

∏
i

(Ai,Bi)
∏

j

X j = Id}

=(ng
∗ 1C1 ∗ · · · ∗ 1C2k)(1).

(V.1.2.3.3)

By (V.1.2.2.6) and (V.1.2.3.1), we have

(ng
∗ 1C1 ∗ · · · ∗ 1C2k)(1)

=
1

2|G|

∑
χ∈Irr(Ḡ)

χ(1)2(F (n1)(χ))g
2k∏
i=1

|Ci|χ(Ci)
χ(1)

.
(V.1.2.3.4)

It is known ([HLR, Lemma 3.1.3]) that

(V.1.2.3.5) F (n1)(χ) =
( |G|
χ(1)

)2
.

Finally,

1
2|G|

∑
χ∈Irr(Ḡ)

χ(1)2(F (n1)(χ))g
2k∏
i=1

|Ci|χ(Ci)
χ(1)

=|G|
∑

χ∈Irr(G)σ

(
|G|
χ(1)

)2g−2 2k∏
i=1

|Ci|χ̃(Ci)
χ(1)

.

(V.1.2.3.6)
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V.2 Symmetric Functions Associated to Wreath Products

This is a reminder of some results of [Sh01]. Some lemmas are proved that will be used
later. We will freely use the notions and notations in §II.2.1 and §II.2.2. The letter q will
primarily denote an indeterminate, but can appear as a prime power in a finite group of Lie
type.

V.2.1 Ring of Symmetric Functions

V.2.1.1 For k = 0 and 1, let x(k) = (x(k)
1 , x

(k)
2 , · · · ) be an infinite series of variables. Denote

by x = (x(0), x(1)) all of the variables. For any commutative ring with unity R, denote by
SymR[x(0), x(1)] the ring of symmetric functions in two variables (symmetric in each x(k)) with
coefficents in R. We will always assume that Q is contained in R. The usual choice of R
will be the fields Q, Q(q) and Q(q, t), i.e. the functions fields in variables q and t. If the base
field is Q(q, t), then we may write Symq,t[x

(0), x(1)] for the corresponding ring of symmetric
functions, and similarly for Q(q). We will omit the lower script R if there is no confusion
with the base. For any r ≥ 1, put

p(0)
r (x) := pr(x(0)) + pr(x(1)),

p(1)
r (x) := pr(x(0)) − pr(x(1)),

(V.2.1.1.1)

where pr(x(k)) is the usual power sum in x(k). Put p(k)
0 (x) = 1 for both values of k. For a

2-partition λ = (λ(0), λ(1)), with each partition λ(k) written as λ(k)
1 ≥ λ

(k)
2 ≥ · · · , the power sum

in x is defined by

(V.2.1.1.2) pλ(x) :=
∏

i

p(0)

λ(0)
i

(x)
∏

j

p(1)

λ(1)
j

(x).

The Schur function is defined by

(V.2.1.1.3) sλ(x) := sλ(0)(x(0))sλ(1)(x(1)),

the monomial symmetric function is defined by

(V.2.1.1.4) mλ(x) := mλ(0)(x(0))mλ(1)(x(1)),

and the complete symmetric function is defined by

(V.2.1.1.5) hλ(x) := hλ(0)(x(0))hλ(1)(x(1)),

where sλ(k)(x(k)), mλ(k)(x(k)), hλ(k)(x(k)) are the usual Schur functions, monomial symmetric
functions and complete symmetric functions. The usual results on Sym[z] implies that
each class of these functions, with λ running through all 2-partitions, forms a basis of
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Sym[x(0), x(1)].

V.2.1.2 There is a family of symmetric functions q(k)
r (x; q) ∈ Symq[x(0), x(1)], k = 0, 1, r ≥ 0

with the generating series

∞∑
r=0

q(0)
r (x, q)ur =

∏
i

(
1 − qux(1)

i

)
∏

j

(
1 − ux(0)

j

) ,
∞∑

r=0

q(1)
r (x, q)ur =

∏
i

(
1 − qux(0)

i

)
∏

j

(
1 − ux(1)

j

) .(V.2.1.2.1)

For any 2-partition α = (α(0), α(1)), we define

(V.2.1.2.2) qα(x; q) :=
∏

i

q(0)

α(0)
i

(x; q)
∏

j

q(1)

α(1)
j

(x; q).

Then {qα(x; q)}α∈P2 forms a basis of Symq[x(0), x(1)].

V.2.1.3 Given some positive integers m0, m1, and some integers r ≥ s ≥ 0, letΛ0 = (Λ0,Λ1)
be the 2-partition defined by

Λ0 : (m0 − 1)r ≥ · · · ≥ 2r ≥ r ≥ 0,

Λ1 : (m1 − 1)r + s ≥ · · · ≥ 2r + s ≥ r + s ≥ s.
(V.2.1.3.1)

For any 2-partition α, define Λ(α) := α + Λ0, with m0 and m1 larger than the size of α; we
call it the symbol of type (r, s) associated to α. The correct definition of symbols (see for
example [Sh01, §1.2]) is actually an equivalence class of the data described above, which
is independent of the choice of m0 and m1, but it is convenient to work with a particular
representative of the equivalence class. The size of Λ(α) is defined to be the size of α. If α is
fixed, we may simply write Λ = Λ(α).

For any symbol Λ of type (r, s), by choosing a representative, we define the function

(V.2.1.3.2) a(Λ) =
∑
λ,λ′∈Λ

min(λ, λ′) −
∑

µ,µ′∈Λ0

min(µ, µ′),

where the sums run over the entries of the corresponding symbols, and in the first sum we
require that λ , λ′ if they are contained in Λ(k) for some k. (Note that λ = λ′ in some Λ(k) only
if r = 0. We are however only interested in the case r = 2.) The value is independent of the
representative of a symbol and is constant on the similarity classes of symbols. For symbols
of size n of type (2, 1) (resp. (2, 0)), each symbolΛ corresponds to a unipotent conjugacy class
of Sp2n(q) (resp. SO2n+1(q), in which case there are 2 conjugacy classes corresponding to a
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degenerate symbol). If we denote by u an element of this conjugacy class, then a(Λ) is equal
to dimBu, where Bu is the Springer fiber over u. We may write a(α) := a(Λ(α)). We will
fixe once and for all a total order ≺ on Pn(2) in such a way that a(α) ≤ a(β) whenever β ≺ α
and that each similarity class (transferred from symbols) forms an interval. In particular, the
element (∅, (1n)) corresponding to the the identity of the finite classical group, is minimal,
and it is alone in its similarity class.

We have the function defined on the set of partitions: n(λ) :=
∑

i(i − 1)λi, for λ = (λ1 ≥

λ2 ≥ · · · ). This function is the analogue of a(−) for partitions.

V.2.1.4 Denote by A ⊂ Q(q) the subring of functions that are regular at q = 0.

Theorem V.2.1.1 ([Sh01] Theorem 4.4). For any Λ = Λ(α), there exists a unique function
PΛ(x; q) ∈ Symq[x(0), x(1)] satisfying the following properties.

i) PΛ(x; q) can be expressed as

(V.2.1.4.1) PΛ(x; q) =
∑
β

cα,β(q)qβ(x; q),

where cα,β(q) ∈ Q(q) and cα,β(q) = 0 unless β � α or β ∼ α.

ii) PΛ(x; q) can be expressed as

(V.2.1.4.2) PΛ(x; q) = sα(x) +
∑
β

uα,β(q)sβ(x),

where uα,β(q) ∈ qA and uα,β(q) = 0 unless β ≺ α or β / α.

Similarly, for any Λ, there exists a unique function QΛ(x; q) satisfying the following properties.

ii) QΛ(x; q) can be expressed as

(V.2.1.4.3) QΛ(x; q) = qα(x; q) +
∑
β

dα,β(q)qβ(x; q),

where dα,β(q) ∈ Q(q) and dα,β(q) = 0 unless β � α ou β / α.

ii) QΛ(x; t) can be expressed as

(V.2.1.4.4) QΛ(x; q) =
∑
β

wα,β(q)sβ(x),

where wα,β(q) ∈ A and wα,β(q) = 0 unless β ≺ α or β ∼ α. Moreover, wα,β(q) ∈ qA if β , α, and
wα,α(q) ∈ A∗.

The functions PΛ(x; q) and QΛ(x; q) are called Hall-Littlewood functions. Each of these two
families of functions also forms a basis of Symq[x(0), x(1)]. Note that the functions P±

Λ
(x; q)

and Q±
Λ

(x; q) defined for more general complex reflection groups degenerate into PΛ(x; q) and
QΛ(x; q) for Weyl groups of classical groups.
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V.2.2 Transition Matrices

V.2.2.1 For any partition λ = (1m1 , 2m2 , . . .), define zλ =
∏

i imimi!. Write λ as (λ1 ≥ λ2 ≥ · · · )
and define zλ(q) = zλ

∏
i(1−qλi)−1. For any 2-partition λ = (λ(0), λ(1)), define zλ = 2l(λ)zλ(0)zλ(1) .

For k = 0 and 1, we write λ(k) = (λ(k)
1 ≥ λ

(k)
2 ≥ · · · ≥ λ

(k)
l(λ(k))

), and define

zλ(0)(q) =
∏

j

(
1 − qλ

(0)
j

)−1
,

zλ(1)(q) =
∏

j

(
1 + qλ

(1)
j

)−1
,

zλ(q) = zλzλ(0)(q)zλ(1)(q).

(V.2.2.1.1)

Note that zλ(0) = zλ.

V.2.2.2 We have,

pβ(x) =
∑
α∈Pn,2

χαβ sα(x);

sλ(x) =
∑
τ

1
zτ
χλτ pτ(x),

(V.2.2.2.1)

where χαβ is the value of the character of (Z/2Z)moSm (m = |α| = |β|) of class α at an element
of class β.

V.2.2.3 The Kostka-Foulkes polynomials are the entries of the transition matrix

(V.2.2.3.1) sβ(x) =
∑
α

Kβ,α(q)PΛ(α)(x; q),

and the modified Kostka-Foulkes polynomials are defined by K̃β,α(q) = qa(Λ)Kβ,α(q−1), with Λ =

Λ(α).
The Green function is then defined by

(V.2.2.3.2) Q
Λ
β (q) =

∑
γ

χ
γ
βK̃γ,α(q).

V.2.2.4 The transformed Hall-Littlewood function is defined by

(V.2.2.4.1) H̄Λ(α)(x; q) =
∑
β

Kβ,α(q)sβ(x),
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and the modified Hall-Littlewood function is defined by

(V.2.2.4.2) H̃Λ(α)(x; q) =
∑
β

K̃β,α(q)sβ(x).

V.2.3 Orthogonality

V.2.3.1 Plethysm Let K be a base field, which will be Q, Q(q) or Q(q, t) depending on the
circumstance. Let R be a λ-ring containing K, then the ring SymR[z] of symmetric functions
over R has a natural λ-ring structure {pn}n∈Z>0 with pn sending p1(z) to pn(z) and acting
on the coefficients according to the λ-ring structure of R. If we take R = SymK[x(0)], then
SymR[x(1)] � SymK[x(0), x(1)] acquires a natural λ-ring structure, and pn sends p1(x(0)) to
pn(x(0)) and sends p1(x(1)) to pn(x(1)). If K contains the indeterminates q or t, then pn sends
them to the n’th power. By abuse of notation, we will write x(k) = p1(x(k)).

Let A be a λ-ring containg K as a λ-subring. Given any elements f0 and f1 of A,
there is a unique λ-ring homomorphism ϕ f0, f1 : SymK[x(0), x(1)] → A sending x(0) to f0 and
x(1) to f1. For any F ∈ SymK[x(0), x(1)], its image under this map is denoted by F[ f0, f1].
Concretely, by expressing F as a polynomial f (pn(x(0)), pm(x(1)) | n,m ∈ Z>0), one defines
F[ f0, f1] := f (pn( f0), pm( f1) | n,m ∈ Z>0). This is the plethystic substitution for F. For
example, if F = sα(x(0)) is the usual Schur symmetric function in x(0) for some partition α, and
A = SymK[x(0), x(1)], then F[x(1), x(0)] = sα(x(1)).

V.2.3.2 The Hall inner product on SymK[z] is defined by

(V.2.3.2.1) 〈pλ(z), pµ(z)〉 = zλδλ,µ,

for all partitions λ and µ. Define the symmetric function

(V.2.3.2.2) H(z, q) =
∏

i

1
1 − qzi

.

Let {uλ}λ∈P and {vλ}λ∈P be two families of symmetric functions such that for any n ∈ Z>0,
{uλ}λ∈Pn and {vλ}λ∈Pn areK-basis of the subspace of SymK[z] of homogenous degree n. Then
the following conditions are equivalent:

• 〈uλ, vµ〉 = δλ,µ for all λ, µ;

•
∑
λ uλ(x)vλ(y) = H(xy, 1).

It follows that,

(V.2.3.2.3) 〈sλ(z), sµ(z)〉 = δλ,µ.
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Put

(V.2.3.2.4) Ω(x y, q) =
∏

i, j

1 − qxiy j

1 − xiy j
,

then
Ω(x y, q) = H(xy, 1)H(xy, q)−1,

and in particular Ω(x y, 0) = H(xy, 1). We deduce that

(V.2.3.2.5) Ω[(1 − q) x y, 0] = H[(1 − q)xy, 1] = H(xy, 1)H(xy, q)−1 = Ω(x y, q).

V.2.3.3 The Hall inner product on SymK[x(0), x(1)] is defined by

(V.2.3.3.1) 〈pα(x), pβ(x)〉 = zαδα,β,

for any 2-partitions α and β.
The q-inner product on SymK[x(0), x(1)] is defined by

(V.2.3.3.2) 〈pα(x), pβ(x)〉q = zα(q)δα,β,

for all 2-partitions α and β.
Define

Ω(x(0), x(1),y(0),y(1), q) :=
∏

i, j

1 − qx(1)
i y(0)

j

1 − x(0)
i y(0)

j

∏
i, j

1 − qx(0)
i y(1)

j

1 − x(1)
i y(1)

j

=H(x(0) y(0), 1)H(x(1) y(0), q)H(x(1) y(1), 1)H(x(0) y(1), q).

(V.2.3.3.3)

Note that Ω(x(0), x(1),y(0),y(1), 0) = Ω(x(0) y(0), 0)Ω(x(1) y(1), 0). We have

(V.2.3.3.4) Ω(x(0), x(1),y(0),y(1), q) =
∑
α∈P2

zα(q)−1pα(x)pα(y).

In particular,

Ω(x(0), x(1),y(0),y(1), 0) =
∑
α

z−1
α pα(x)pα(y),

Ω(x(0), x(1),y(0),y(1), 0) =
∑
α

sα(x)sα(y),
(V.2.3.3.5)

where the second equality follows from the usual identity for parititions. Thus the Schur
functions are orthonormal with respect to the Hall inner product. We will write

Ω(x(0), x(1),y(0),y(1), q) = Ω̃(x,y, q)
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if no confusion arises.

V.2.3.4 We have

(V.2.3.4.1) 〈PΛ(x; q),QΛ′(x; q)〉q = δΛ,Λ′ ,

where Λ = Λ(α) and Λ′ = Λ(α′), for all 2-partitions α and α′. This follows from:

Theorem V.2.3.1. ([Sh01] Corollary 4.6) We keep the notations above. There exists a block diagonal
matrix bΛ,Λ′(q), with each block corresponding to a similarity class, such that

Ω̃(x,y, q) =
∑
Λ,Λ′

bΛ,Λ′(q)PΛ(x; q)PΛ′(y; q),

Ω̃(x,y, q) =
∑
Λ

PΛ(x; q)QΛ(y; q).
(V.2.3.4.2)

Remark V.2.3.2. If Λ = Λ(α) with α = (∅, (1m)) being the minimal element, then it is alone
in its similarity class, so we can write bΛ(q) = bΛ,Λ′(q). Then

QΛ(x; q) = bΛ(q)PΛ(x; q).

We may also write bα(q) = bΛ(q) for such α.

V.2.3.5 From the definition of the transformed Hall-Littlewood functions and the orthog-
onality of the Schur functions(V.2.3.3.5), we see that

(V.2.3.5.1) Ω̃(x,y, 0) =
∑
Λ

PΛ(x; q)H̄Λ(y; q).

In the following lemma, we write the variables of u(x, q) ∈ SymK[x(0), x(1)] as an array:

(V.2.3.5.2) u(
[
x(0)

x(1)

]
, q).

Then the expression

(V.2.3.5.3) u(
(

a b
c d

) [
x(0)

x(1)

]
, q) = u[a x(0) +b x(1), c x(0) +d x(1), q],

is the plethystic substitution by f0 = a x(0) +b x(1) and f1 = c x(0) +d x(1).

Lemma V.2.3.3. We have:

(a) QΛ(
[
x(0)

x(1)

]
, q) = H̄Λ(

(
1 −q
−q 1

) [
x(0)

x(1)

]
, q)

for any Λ;
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(b) hα∗(
(

1 −q
−q 1

)−1 [
x(0)

x(1)

]
) = (−1)mq−a(α)−mbα(q−1)−1H̃Λ(α)(x; q)

for α = (∅, (1m)).

Proof. To prove (a), we show that the right hand side gives a dual basis of {PΛ(x; q)}. We
calculate, ∑

Λ

PΛ(x; q)H̄Λ[y(0)
−q y(1),y(1)

−q y(0), q]

=Ω(x(0), x(1),y(0)
−q y(1),y(1)

−q y(0), 0)

=Ω(x(0)(y(0)
−q y(1)), 0)Ω(x(1)(y(1)

−q y(0)), 0)

=H(x(0)(y(0)
−q y(1)), 1)H(x(1)(y(1)

−q y(0)), 1)

=H(x(0) y(0), 1)H(x(0) y(1), q)H(x(1) y(1), 1)H(x(1) y(0), q)

=Ω̃(x,y, q).

To prove (b), note that H̃Λ(x; q) = qa(α)H̄Λ(x; q−1) and QΛ(x; q) = bΛ(q)PΛ(x; q) forΛ = Λ(α)
with α = (∅, (1m)). We calculate

(−1)mq−a(α)−mbα(q−1)−1H̃Λ(x; q)

=(−q)−mbα(q−1)−1QΛ(
(

1 −q−1

−q−1 1

)−1 [
x(0)

x(1)

]
, q−1)

=(−q)−mPΛ(
(

1 −q−1

−q−1 1

)−1 [
x(0)

x(1)

]
, q−1)

1
=(−q)−msα(

(
1 −q−1

−q−1 1

)−1 [
x(0)

x(1)

]
)

=(−q)−msα(
−q

1 − q2

(
q 1
1 q

) [
x(0)

x(1)

]
)

2
=(−q)−ms(1m)(

−q
1 − q2 (x(0) +q x(1)))

=s(m)(
x(0) +q x(1)

1 − q2 )

=hm(
x(0) +q x(1)

1 − q2 )

=h((m),∅)(
1

1 − q2

(
1 q
q 1

) [
x(0)

x(1)

]
)

=h((m),∅)(
(

1 −q
−q 1

)−1 [
x(0)

x(1)

]
).

In equality 1 we have used the second statement about PΛ in Theorem V.2.1.1, and in
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equality 2 s(1m) denotes the usual Schur function in one variable. �

V.2.4 More on Green Functions

V.2.4.1 The modified Kostka-Foulkes polynomials are completely determined as the en-
tries of the matrix P in the following matrix equation,

(V.2.4.1.1) PΠtP = Ξ,

where Π, P and Ξ are some square matrices of degree |Pn(2)|. The matrix Ξ is determined by
the inner products of Green functions, which are known. The matrix Π is a block diagonal
matrix with nonsingular blocks. The matrix P is a lower triangular block matrix with each
diagonal block being the scalar qa(α), with α ∈ Pn(2).

V.2.4.2 Let b(q) be the matrix (bΛ,Λ′(q)) defined above. Denote by Gn(q) the cardinality of
Sp2n(q) or SO2n+1(q). Define

Π̃ =
Gn(q)

qn T−1b(q−1)−1T−1,

where T is a diagonal matrix with entries qa(α). By [Sh01, Theorem 5.4], P = K̃(q) and the Π

above satisfy (V.2.4.1.1).

Remark V.2.4.1. [Sh01, Theorem 5.4] states that these matrices satisfy [Sh01, (1.5.2)], which
is equivalent to [Sh01, (1.4.2)] for Coxeter groups, since then the complex conjugate of an
irreducible character coincides with itself.

Fact. Π̃Λ,Λ = 1 if Λ = Λ(α) and α = (∅, (1n)) is the minimal element.

For such α and Λ, we deduce that

(V.2.4.2.1)
1

Gn(q)
= q−2a(α)−nbα(q−1)−1.

For GLn(q), it is known that

(V.2.4.2.2)
1

|GLn(q)|
= q−2n((1)n)−nb(1)n(q−1)−1,

where for any partition λ, bλ(q) is defined by bλ(q)Pλ(x, q) = Qλ(x, q), i.e. the difference
between the two Hall-Littlewood symmetric functions associated to the partition λ.



142 CHAPTER V. E-POLYNOMIAL OF GLN(C) o<σ>-CHARACTER VARIETIES

V.3 Miscellany of Combinatorics

V.3.1 Types

V.3.1.1 Proposition V.1.1.3 and (V.1.2.1.1) have reduced the point-counting problem to the
evaluation of the following formula (cf. Notation V.1.1.2)

(V.3.1.1.1)
∑

e=(e j)∈{±}2k

∑
χ∈Irr(G)σ

( |G|
χ(1)

)2g−2 2k∏
j=1

|C j|χ̃(C j,e j)

χ(1)
.

The sum over Irr(G)σ can be separated into a sum over Tχ, the types of σ-stable irreducible
characters and a sum over the σ-stable irreducible characters of the same type. It turns out
that for a strictly generic (cf. §III.4.2.5) tuple of conjugacy classesC = (Ci), only a small subset
of Tχ can have irreducible characters that are non-vanishing on all of the Ci’s.

Lemma V.3.1.1. Let (C1, . . . ,C2k) be a strictly generic tuple of semi-simple conjugacy classes in
GLn(q).σ. Assume that for each 1 ≤ j ≤ 2k, the class C j has a representative s jσ of the form
(V.1.1.3.2) or of the form (V.1.1.3.3). Let M be a σ-stable and F-stable Levi factor of some σ-stable
parabolic subgroup of GLn(k), and denote by n0(ni, di)i∈Λ1(n′i′ , d

′

i′)i′∈Λ2 the data that determines the
SOn(q)-conjugacy class of (Mσ)◦ (cf. Proposition II.3.2.4). If for all j, there exists h j ∈ GLn(q) such
that h js jσh−1

j ∈M.σ, then di = 1, for all i, and Λ2 = ∅.

Proof. We may assume that every s jσ is of the form (V.1.1.3.2). More general cases only
require minor modifications of the arguments.

Denote by T ⊂ GLn the maximal torus of diagonal matrices. There is some σ-stable stan-
dard Levi subgroup LI, an element g ∈ (Gσ)◦, and ẇ = g−1F(g) such that (M,F) is isomorphic
to (LI,Fw) via ad g. Suppose that such h j’s exist. For any j, g−1h js jσh−1

j g is an element of LI.σ.

By Proposition II.3.1.2, for each j, there exists l j ∈ LI such that l jg−1h js jσh−1
j gl−1

j lies in (Tσ)◦σ,
and moreover, for each j, there exists w j ∈ Wσ (W being the Weyl group of GLn defined by
T) and z j ∈ (Tσ)◦ ∩ [T, σ] such that

l jg−1h js jσh−1
j gl−1

j = w js jw−1
j z jσ.

Now put (See §III.4.2.3 for the map DLI )

(V.3.1.1.2) l := DLI (
2k∏
j=1

(g−1h js jσh−1
j g)2) = DLI (

2k∏
j=1

w js2
j w
−1
j ),

which lies in
k∗ ×

∏
i∈Λ1

(k∗ × k∗)di
∏
i′∈Λ2

(k∗ × k∗)d′i′ .

By the assumption of generic conjugacy classes (III.4.2.5.2) and the right hand side of
(V.3.1.1.2), the direct factors of l must be pairwise distinct. However, the left hand side of
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(V.3.1.1.2) shows that l is an Fw-stable element and the right hand side shows that the direct
factors all belong to Fq, which is a contradiction if any of the numbers di or d′i′ are larger than
1. Finally, if there was some d′i′ = 1, then this factor of l must be equal to −1. This possibility
is ruled out by the assumption (III.4.2.5.3). �

V.3.1.2 Since only those characters that are uniform on GLn .σ can have non trivial value at
a semi-simple class (see Remark IV.6.1.3), the only remaining types for irreducible characters
are, up to a formal sign ε ∈ {±}, of the form

ω = ω+ω−(ωi)1≤i≤l,

where ω+ and ω− are 2-partitions, (ωi) is an unordered sequence of nontrivial partitions,
and l is a non negative integer. The sign ε decides whether the non trivial 2-core (1) is
associated to ω+ (if ε = +) or to ω− (if otherwise). We will write these data in the compact
form εω. We will sometimes denote by ωp the sequence of partitions (ωi) in a type ω, so that
ω = ω+ω−ωp. Then l will be called the length of ωp, denoted by l(ωp). The size of a type is
|ω| := |ω+| + |ω−| +

∑
i |ωi|.

The following data are the types of conjugacy classes that we are interested in:

β = β+β−(βi)1≤i≤l,

where (βi) is an unordered sequence of nontrivial partitions, and β± are symbols correspond-
ing to some irreducible characters ofW|β±| under the Springer correspondence (thus we may
also use some 2-partitions to represent them). Again, we write βp = (βi) and call l(βp) := l the
length of βp. The type of a semi-simple conjugacy class is of the form

β = (∅, (1)m+)(∅, (1m−))((1mi))i

where m+ = |β+|, m− = |β−| and mi = |βi|. Since the conjugacy classes we are interested in
are obtained by base change from the ring R (cf. §V.1.1.1) to Fq, the only possible types of
semi-simple conjugacy classes are of this form. We define its dual type by

β∗ = ((m+),∅)((m−),∅)((mi))i.

There is an obvious bijection from the set of types of characters (without ε) to the set
of types of conjugacy classes as defined above. We will denote the set of either types by
T, and for any ω ∈ T we denote by Λ(ω) = Λ(ω+)Λ(ω−)(ωi) the corresponding types of
conjugacy classes. The subset {ω ∈ T | ω+ = ω− = ∅} will be denoted by T′. Denote by T̃
the set of ordered types, i.e. the data ω+ω−(ωi) with (ωi) being an ordered sequence. There
is an obvious map from T̃ to T, therefore anything that can be defined for elements of T
is naturally defined for elements of T̃. Given α = α+α−(αi)1≤i≤l1 , β = β+β−(βi)1≤i≤l2 ∈ T̃, we
write α ≈ β, if l1 = l2 = l and for each 1 ≤ i ≤ l, we have |αi| = |βi|, and moreover |α+| = |β+|

and |α−| = |β−|.
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Let us define a natural map

(V.3.1.2.1) [ ] : T −→ P2.

Regarding P2 as signed partitions, it sends each part of ωi to a positively signed part with
the same size, and keeps the sign and size of each part of ω+ and ω−. The union of these
signed parts is the image of [ ] and is denoted by [ω].

Denote by T̊ the set of unordered sequences λ+λ−(λi)1≤i≤l, with l being a non negative
integer, where λ+, λ− and λi are partitions, with λ+ and λ− being possibly trivial. We may
also write such a sequence as λ+λ−λp, with λp = (λi). There is a natural map

{ } : {±} × T −→ T̊

εω 7−→ λ+λ−λp = {εω}
(V.3.1.2.2)

where λ± has ω± as the 2-quotient and λε has the 2-core (1), and each ωi gives rise to two
identical partitions λi1 = λi2 = ωi as factors of λp. In reconstructing the partitions λ± from
ω±, we have chosen integers r± following §IV.5.4.1.

If λ is a partition, then we define {λ} := (λi)1≤i≤2 ∈ T̊with λ1 = λ2 = λ. Ifα is a 2-partition,
then we define {α}1 to be the partition with 2-core (1) and 2-quotient α, and define {α}0 to be
the partition with trivial 2-core and 2-quotient α, with the same choice of r± as above.

V.3.2 Symmetric Functions Associated to Types

Let us extend the definitions and statements of various combinatorics to types.

V.3.2.1 Given ω = ω+ω−(ωi) ∈ T, we can define the Schur symmetric function associated
to ω as

(V.3.2.1.1) sω(x(0), x(1)) := sω+(x)sω−(x)
∏

i

sωi(x
(0) + x(1)).

Monomial symmetric functions, complete symmetric functions and power sum symmetric
functions can be similarly defined. Note that for any partition λ, we have

pλ(x(0) + x(1)) = p(λ,∅)(x).

This implies in particular that pω(x(0), x(1)) = p[ω](x).
Define

(V.3.2.1.2) zω(q) := zω+(q)zω−(q)
∏

i

zωi(q),

in particular zω := zω(0) = zω+zω−
∏

i zωi .



V.3. MISCELLANY OF COMBINATORICS 145

Given α, β ∈ T̃, if α ≈ β, define χαβ := χα+

β+
χα−β−

∏
i χ

αi
βi

; otherwise we put χαβ = 0. With these
definitions we have

pβ(x) =
∑
α

χαβ sα(x);

sλ(x) =
∑
τ

1
zτ
χλτ pτ(x).

(V.3.2.1.3)

Remark V.3.2.1. One needs to be careful with the summations in these expressions. For
example in the first equation, α runs over P|β+|

(2) × P|β−|(2) ×
∏

iP|βi|, which is a subset of
T̃. The symmetric functions above should also be regarded as associated to ordered types,
although they are independent of the ordering in the types. This rule will apply to all
transition matrices that involve types.

For any ω ∈ T, define

a(Λ(ω)) = a(Λ(ω+)) + a(Λ(ω−)) +
∑

i

n(ωi).

We may write a(ω) := a(Λ(ω)). For any λ = λ+λ−(λi) ∈ T̊, define

n(λ) = n(λ+) + n(λ−) +
∑

i

n(λi).

Define

(V.3.2.1.4) PΛ(ω)(x, q) := PΛ(ω+)(x, q)PΛ(ω−)(x, q)
∏

i

Pωi(x
(0) + x(1), q),

and similarly for QΛ(ω)(x, q). For any α, β ∈ T̃, define

Kβ,α(q) := Kβ+,α+(q)Kβ−,α−
∏

i

Kβi,αi(q)

if α ≈ β, and put Kβ,α(q) = 0 if otherwise. We then have

(V.3.2.1.5) sβ(x) =
∑
α

Kβ,α(q)PΛ(α)(x; q)

Define K̃β,α(q) = qa(α)Kβ,α(q−1).
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With the obvious definitions, we have the following identities for types:

Q
Λ(α)
β (q) =

∑
γ

χ
γ
βK̃γ,α(q),(V.3.2.1.6)

H̄Λ(α)(x; q) =
∑
β

Kβ,α(q)sβ(x),(V.3.2.1.7)

H̃Λ(α)(x; q) =
∑
β

K̃β,α(q)sβ(x).(V.3.2.1.8)

Lemma V.2.3.3 can also be stated for types. For any partition λ, and a symmetric function
uλ(x) associated to λ, we define the notation

uλ(
(

a b
c d

) [
x(0)

x(1)

]
) := uλ(a x(0) +b x(1) +c x(0) +d x(1)).

In particular

uλ(
[
x(0)

x(1)

]
) = uλ(

(
1 0
0 1

) [
x(0)

x(1)

]
) = uλ(x(0) + x(1))

uλ(
(

1 −q
−q 1

) [
x(0)

x(1)

]
) = uλ[(1 − q)(x(0) + x(1))],

uλ(
(

1 −q
−q 1

)−1 [
x(0)

x(1)

]
) = uλ[

x(0) + x(1)

1 − q
],

which is consistent with the usual notation for symmetric functions associated to partitions.
We will write

(V.3.2.1.9) P =

(
1 −q
−q 1

)−1

, and x =

[
x(0)

x(1)

]
.

For example, if ω = ω+ω−(ωi) is a type, we have,

(V.3.2.1.10) PΛ(P x, q) = PΛ(ω+)(P x, q)PΛ(ω−)(P x, q)
∏

i

Pωi(P x, q).

With these definitions, and the known identities for symmetric functions associated to
partitions, we have:

Corollary V.3.2.2. Denote by

β = (∅, (1)m+)(∅, (1m−))((1mi))i
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the type of a semi-simple conjugacy class, and put

bβ(q) = bβ+(q)bβ−(q)
∏

i

bβi(q).

Then the following identities hold:

(a) QΛ(ω)(x, q) = H̄Λ(ω)(P−1 x, q);

(b) hβ∗(P x) = (−1)|β|q−a(β)−|β|bβ(q−1)−1H̃Λ(β)(x; q).

Proof. This follows from Lemma V.2.3.3. �

V.3.3 Möbius Inversion Function

V.3.3.1 Let m be a positive integer and let I be a set of cardinality x ∈ Z>0 that is larger
than m. Denote by Π the set of the partitions of {1, . . . ,m}. It is a partially ordered set. Two
partitions satisfy P1 ≺ P2 if P2 refines P1. Denote by P0 the partition into m parts, each
consisting of a single element. Then P0 is the maximal element. Each P ∈ Π can be written
as a collection of disjoint union of subsets of {1, . . . ,m}, written as p1 · · · ps. Each pi is called
a part of P and s is called the length of P, denoted by l(P). For any P ∈ Π, denote by (Im)P

the subset of Im consisting of the elements (ir)1≤r≤m such that ir = is whenever r and s are in
the same part of P. Denote by (Im)P,reg the set of the elements (ir) of (Im)P such that ir , is
whenever r and s are not in the same part of P. Obviously,

(Im)P2 =
⋃

P1≺P2

(Im)P1,reg,

for any P2 ∈ Π. A Q̄`-valued function f defined on the set of the subsets of Im is additive if
f (U ∪ V) = f (U) + f (V) for any two disjoint subsets U and V. Given such a function f , we
can define two functions F and F′ on Π by F(P) := f ((Im)P) and F′(P) = f ((Im)P,reg). Then

F(P2) =
∑

P1≺P2

F′(P1).

By the Möbius inversion formula, we have

(V.3.3.1.1) F′(P2) =
∑

P1≺P2

µ(P1,P2)F(P1),

where µ(P1,P2) is the Möbius inversion function for the partially ordered set Π.
Define cP(x) := |(Im)P|, c′P(x) := |(Im)P,reg|. We have cP(x) = (x)l(P) and

c′P(x) = x(x − 1) · · · (x − l(P) + 1).

These are the functions defined by counting elements, which is additive. Inserting these
expressions into the Möbius inversion formula, we have a polynomial identity in x that is
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valid for all large enough x. Specialising this equality at x = −1, we get

(V.3.3.1.2) (−1)mm! =
∑

Π≺Π0

µ(Π,Π0)(−1)l(Π).

V.3.3.2 Let I, m and Π be as above. Let I∗ be a set in bijection with I. For any i ∈ I, let
i∗ denote the element of I∗ corresponding i under the bijection. Write Ī = I t I∗. For any i,
i′ ∈ Ī, we write [i] = [i′] if i′ ∈ {i, i∗}. For any P ∈ Π, denote by (Īm)P the subsets of elements
(ir)1≤r≤m, ir ∈ Ī, such that [ir] = [is] whenever r and s are in the same part of P. Denote by
(Īm)P,reg the set of the elements (ir) of (Īm)P such that [ir] , [is] whenever r and s are not in
the same part of P. We say that an element of Īm is regular if it is regular with respect to the
maximal partition P0. Obviously,

(Īm)P2 =
⋃

P1≺P2

(Īm)P1,reg,

for any P2 ∈ Π.
Now, put Ī = Irr(F∗q) \ {1, η} and Ĩ = (Irr(F∗q) \ {1, η})/∼ with the equivalence relation that

identifies α and α−1. For each equivalence class we choose a representative and denote by I
the set of these representatives, and so for any α ∈ I, α∗ = α−1. Let (ai)1≤i≤m be an m-tuple of
elements of F∗q. Define an additive function on the set of the subsets of Īm by

f (J) :=
∑

(αi)1≤i≤m∈J

∏
1≤i≤m

αi(ai),

for J ⊂ Īm. Then,

(V.3.3.2.1) F′(P0) =
∑

P1≺P0

µ(P1,P0)F(P1),

with F(P) := f ((Īm)P), F′(P) = f ((Īm)P,reg) and P0 defined in §V.3.3.1

V.3.3.3 Let s be a positive integer. Let (ai)1≤i≤s be an s-tuple of elements of F∗q such that∏
1≤i≤s a2ei

i , 1 for any (ei)1≤i≤s ∈ µs
2. The following lemma will be used to compute F(P1) in

(V.3.3.2.1), with s being the size of a part of P1.

Lemma V.3.3.1. We have the identity:∑
α∈I

∑
(ei)1≤i≤s∈µs

2

∏
1≤i≤s

αei(a2
i ) = −2s.

Proof. Observe that ∑
α∈I

∑
(ei)1≤i≤s∈µs

2

α(
∏

1≤i≤s

a2ei
i ) =

∑
α∈I

∑
(ei)1≤i≤s∈µs

2

α−1(
∏

1≤i≤s

a2ei
i ),
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so the desired quantity is equal to

1
2

∑
α∈Ī

∑
(ei)1≤i≤s∈µs

2

α(
∏

1≤i≤s

a2ei
i ).

Since ∑
α∈Ī

α(
∏

1≤i≤s

a2ei
i ) = −2,

we get 2s
· (−2)/2 = −2s. �

V.3.3.4 Let us apply the above computations to the following situation.
Fix a type εα = εα+α−(αi)1≤i≤l of σ-stable irreducible character of GLn(q), with α+ and α−

being some 2-partitions. Put n+ = |α+|, n− = |α−| and n0 = 2n++2n−+1 and ni = |αi|. Then a σ-
stable irreducible character of type εα is induced from some σ-stable and F-stable Levi factor
M of someσ-stable parabolic subgroup, which is isomorphic to GLn0(k)×

∏
i(GLni(k)×GLni(k)),

following the procedure of Proposition IV.1.2.2. In view of Lemma V.3.1.1, we can assume
that M is equal to LI, some standard σ-stable Levi subgroup. Let C = (C1, . . . ,C2k) be a tuple
of semi-simple conjugacy classes in GLn(q).σ with representatives s jσ as in Lemma V.3.1.1.
For each j ∈ {1, . . . 2k}, fix w j ∈Wn+ ×Wn− ×

∏
Sni , regarded as an element of Wσ

M(T), with T
being the maximal torus of diagonal matrices. Let ẇ j ∈ (Mσ)◦ be a representative of w j and
let g j ∈ (Mσ)◦ be such that g−1

j F(g j) = ẇ j. Put Tw j = g jTg−1
j . We assume that for each j, there

exists some h j ∈ GLn(q) such that h js jσh−1
j lies in Tw j .σ ⊂M.σ.

Notation V.3.3.2. Denote by Irrσreg,εα the subset of
∏l

i=1(Irr(F∗q) \ {1, η}) consisting of regular
elements in the sense of §V.3.3.2, where l = l(αp). For all j, each element (θi) of Irrσreg,εα can
be regarded as a character of TF

w j
in the following way. We write

w j = (w j,+,w j.−,w j,i) ∈Wn+ ×Wn− ×
∏
Sni .

To each w j,i is associated two subtori of Tw j , isomorphic to (k∗)ni , equipped with the Frobenius
twisted by the automorphic defined by w j,i. Composed with the norm map, θi and θ−1

i are
regarded as the characters (of the rational points) of these two tori respectively. The factor
w j,+ acts on a factor of Tw j that is isomorphic to (k∗)2n++1. We associate the trivial character to
this torus. Then the order 2 irreducible character η is associated to the remaining factor of
Tw j . The resulting character of TF

w j
is denoted by θ j which is σ-stable, and we denote by θ̃ j

its extension to TF
w j
.<σ>which equals to 1 at σ.

Lemma V.3.3.3. Put (cf. Notation V.1.1.2)

(V.3.3.4.1) ∆ε,sgnC =

−1 if ε = −, and sgnC = −1;

1 otherwise.
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Assume that C j has no "eigenvalue" equal to i for every j. We have:

(V.3.3.4.2)
∑

θ∈Irrσreg,εα

2k∏
j=1

θ̃ j(h js jσh−1
j ) = (−2)ll!∆ε,sgnC.

Remark V.3.3.4. The assumption on the "eigenvalues" morally means that, if we were work-
ing in a connected reductive group, the centraliser of the semi-simple element is a Levi
subgroup.

Proof. Let us begin with evaluating the character θ̃ j(h js jσh−1
j ). We can fix j for the moment

and omit the lower script j, so that θ = θ j, h = h j, s = s j, w = w j and g = g j. Put x = g−1h.
Then xsσx−1

∈ T.σ and it is fixed by Fw. We can then put θ̃0 = θ̃◦ad g, a character of TFw .<σ>,
and evaluate θ̃0 at xsσx−1. That xsσx−1

∈ T.σ implies that x = nl with n ∈ NG(T.σ) and
l ∈ CG(sσ)◦. Write n as v̇t, with t ∈ T and v̇ being a permutation matrix fixed by σ. Explicitly,
if sσ is of the form (V.1.1.3.2) and t = diag(t1, . . . , tn+1, . . . , t2n+1), then

v̇tsσt−1v̇−1 = v̇ diag(t1t2n+1a1, . . . , tntn+2an, t2
n+1, tntn+2a−1

n , . . . , t1t2n+1a−1
1 )v̇−1σ =: s′σ.

If sσ is of the form (V.1.1.3.3), then we only need to replace t2
n+1 by t2

n+1c. Evaluate θ̃0 at xsσx−1

is to evaluate θ0 at s′. We claim that the contributions of the ti’s, for i , n + 1, cancel out. We
only show this in two typical situations.

• Suppose that a is one of the ai’s and t is equal to tit2n+2−i. If Fw acts by (ta, ta−1) 7→
(tqa, tqa−1), then t lies in Fq since s′ is known to be Fw-stable. And if the corresponding
two factors of θ0 are (α, α−1), then it is immediate that t does not contribute to the value
of θ0.

• Suppose that a and t are as above. If Fw acts by (ta, ta−1) 7→ (tqa−1, tqa), then it is
necessary that a4 = 1 and tq−1 = a2 in order for it to be Fw-stable. Since we have
assumed that there is no i among the ai’s, a2 must be 1 and t lies in Fq. The character
η ◦NFq2/Fq sends (ta, ta−1) to η(t2) = 1. Again there is no contribution from t.

Note that in the second case if a2 = −1, then η(t2) = −1. Then the value of θ0 will depend
on the cycles of minus sign in w. The computation will be more complicated. This is the
reason why we have excluded i from the "eigenvalues".

The remaining term t2
n+1 (resp. t2

n+1c), which necessarily lies in Fq, is congruent to

det(s′) = det(g−1hsσ(h)−1g) = det(hsσ(h−1)) = det(h2s) ≡ det(s) = 1 (resp. c), mod (F∗q)2.

So t does not contribute to the value of θ̃0. We conclude that

θ̃0(hsσh−1) = θ0(v̇sv̇−1).
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We then apply the above calculation to each j.

∑
θ∈Irrσreg,α

2k∏
j=1

θ̃ j(h js jσh−1
j ) =

∑
θ∈Irrσreg,α

2k∏
j=1

θ j ◦ ad g(v̇ js jv̇−1
j ).

For each index among {+,−, 1, . . . , l}, we collect the corresponding factor of ad g(v̇ js jv̇−1
j )

and apply the appropriate norm map for all j. Then we end up with an element

m ∈ F∗q × F
∗

q ×
∏
1≤i≤l

(F∗q × F
∗

q).

Assume ε = −, then we can write m = (m+ = 1,m− = sgnC, (mi,m−1
i )1≤i≤l) with respect to this

direct product. If ε = +, then η always gives 1. The above computation is reduced to

∑
(θ1,...,θl)
regular

l∏
i=1

θi(mi)θ−1
i (m−1

i ) =
∑

(θ1,...,θl)
regular

l∏
i=1

θi(m2
i ).

Note that in order for (θ1, . . . , θl) to be regular, its factors must satisfy:

• θi , 1 or η, for any i;

• θi , θ±1
j if i , j.

Using (V.3.3.2.1), Lemma V.3.3.1 and (V.3.3.1.2), we get

∑
(θ1,...,θl)
regular

l∏
i=1

θi(m2
i ) =

∑
Π≺Π0

µ(Π,Π0)(−1)l(Π)2l

=(−2)ll!,

(V.3.3.4.3)

where Π0 and Π are the partitions of the set {1, . . . , l(α1)}. �

V.3.4 A Combinatorial Identity

V.3.4.1 The following lemma is an analogue of [HLR, Lemma 2.3.5].

Lemma V.3.4.1. Fix α, β ∈ T̃. Then

〈sα(x), H̃Λ(β)(x, q)〉 =
∑
τ

z[τ]χατ
zτ

∑
ν

QΛ(β)
ν (q)
zν

,

where the sums run over T̃.

Remark V.3.4.2. The inner product only depends on the corresponding unordered types.
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Proof. We use the base changes

sα(x) =
∑
τ

χατ
pτ(x)

zτ
.

and,

H̃Λ(β)(x, q) =
∑
τ

K̃τ,β(q)sτ(x)

=
∑
τ

∑
ν

χτνK̃τ,β(q)
pν(x)

zν

=
∑
ν

QΛ(β)
ν (q)

pν(x)
zν

.

The result follows by taking inner product, noting that

〈pτ(x), pν(x)〉 = 〈p[τ](x), p[ν](x)〉 = δ[τ],[ν]z[τ].

�

V.4 Computation of the E-Polynomial

V.4.1 The Formula of E-Polynomials

V.4.1.1 The summation over the irreducible characters in the point-counting formula can
be divided into two summations, one over the types of size N, the other over the σ-stable
irreducible characters of the same type, as the following computation shows.

|ChC(Fq)| =
∑

e=(e j)∈{±}2k

∑
χ∈Irr(G)σ

(
|G|
χ(1)

)2g−2 2k∏
j=1

|C j,e j |χ̃(C j,e j)

χ(1)

=
∑

e=(e j)∈{±}2k

∑
|εω|=N

|G|2g−2 ∏2k
j=1 |C j,e j |

χ(1)2g+2k−2

∑
χ∈Irr(G)σεω

2k∏
j=1

χ̃(C j,e j)

=
∑
|εω|=N

|G|2g−2 ∏2k
j=1 |C j,e j |

χ(1)2g+2k−2

∑
e=(e j)∈{±}2k

∑
χ∈Irr(G)σεω

2k∏
j=1

χ̃(C j,e j).

In the second equality, we have used the fact that if two irreducible characters are of the
same type εω, then their underlying irreducible character of GLn(q) correspond to {εω} (cf.
(V.3.1.2.2)) and so have the same degree.

V.4.1.2 Let us first give an expression for the value of an irreducible character. Recall
that the extension of a σ-stable irreducible character, if it is uniform, can be decomposed as
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follows:

(V.4.1.2.1) χ̃|GF.σ = |Wσ1
L1
×W+ ×W−|

−1
∑

w:=(w1,w+,w−)

ϕ̃1(w1F)ϕ+(w+)ϕ−(w−)RG.σ
Tw.σ

(θ̃),

where L1, ϕ and θ are as in §IV.1.2.4. The sum over w only depends on its F-conjugacy class,
which we denote by τ. These classes are parametrised by T̃. We will therefore replace

∑
w(−)

by
∑
τ |τ| · (−).

If (sσ)u is the Jordan decomposition of some element of GLn(q).σ, then the character
formula reads

(V.4.1.2.2) RG.σ
Tw.σ

θ̃(sσu) =
|(Tσw)◦F|

|TF
w| · |CG(sσ)◦F|

∑
h∈GF

hsσh−1
∈Tw.σ

Q
C◦G(sσ)
C◦hTw

(sσ)(u)θ̃(hsσh−1).

If w is of class τ, denote
AF
τ = {h ∈ GF

| hsσh−1
∈ Tw.σ},

and for ν ∈ T̃, denote by AF
τ,ν the subset

{h ∈ AF
τ | Ch−1Twh(sσ)◦ is of class ν}.

Denote by α the type of the σ-stable irreducible character χ and by β the type of the con-
jugacy class of sσu. Note that with the fixed L1, ϕ, sσ and u, we can make these types ordered
ones. Therefore in the following expression we work with ordered types. If Ch−1Twh(sσ)◦ is

of class ν and sσu is of type β, we will write QΛ(β)
ν (q) = QCG(sσ)◦

ChTw
(sσ)◦(u). Combining (V.4.1.2.1)

and (V.4.1.2.2) gives

χ̃(sσu) =
∑
τ

∑
h∈AF

τ

z−1
τ χ

α
τ

|(Tστ)◦F|
|TF
τ | · |CG(sσ)◦F|

QΛ(β)
ν (q)θ̃(hsσh−1)

=
∑
τ

∑
{ν|[ν]=[τ]}

z−1
τ χ

α
τ

|(Tστ)◦F|
|TF
τ | · |CG(sσ)◦F|

QΛ(β)
ν (q)

∑
h∈AF

τ,ν

θ̃(hsσh−1)(V.4.1.2.3)

V.4.1.3 We calculate
∑
χ∈Irr(G)σεω

∏2k
j=1 χ̃(C j,e j) using the above expression. Note that a σ-

stable irreducible character of a given type is completely determined by its semi-simple part.
Rewrite ω = ω+ω−(ωi) as ω = ω+ω−(mλ)λ∈P, where mλ is the multiplicity of a given partition
λ that appears in the sequence (αi), then put

(V.4.1.3.1) N(ω) =
∏
λ

mλ!.

Then we can replace
∑
χ∈Irr(G)σεω by 2−l(ωp)N(ω)−1 ∑

θ∈Irrσreg,εω
. Recall that ωp is the part of ω

consisting of partitions.
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For each j, let s jσ be a representative of C j,e j . We calculate

∑
χ∈Irr(G)σεω

2k∏
j=1

χ̃(C j,e j)

=
1

2l(ωp)N(ω)

∑
τ1,...,τ2k

∑
ν1,...,ν2k

2k∏
j=1

z−1
τ j
χωτ j

|(Tστ j
)◦F|

|TF
τ j
| · |CG(sσ)◦F|

QΛ(β)
ν j

(q)
∑

(h1,...,h2k)∈
AF
τ1 ,ν1
×···×AF

τ2k ,ν2k

∑
θ∈Irrreg,εω

2k∏
j=1

θ̃ j(h js jσh−1
j )

Since ∑
θ∈Irrreg,εω

2k∏
j=1

θ̃ j(h js jσh−1
j ) = (−1)l(ωp)2l(ωp)l(ωp)!∆ε,ē,

is independent of h j and we have already shown that (IV.6.2.6.1)

|AF
τ,ν| =

z[τ]

zν
·
|TF
τ | · |CG(sσ)◦F|
|(Tστ)◦F|

,

we find ∑
χ∈Irr(G)σεω

2k∏
j=1

χ̃(C j)

=∆ε,ē
K(ω)
N((ω)

2k∏
j=1

∑
τ j

z[τ j]χ
ω
τ j

zτ j

∑
ν j

QΛ(β)
ν j

(q)

zν j

=∆ε,ē
K(ω)
N((ω)

2k∏
j=1

〈sω(x), H̃Λ(β j)(x, q)〉,(V.4.1.3.2)

with

(V.4.1.3.3) K(ω) = (−1)l(ωp)l(ωp)!.

We remark that

(V.4.1.3.4)
∑

e=(e j)∈{±}2k

∆ε,ē =

22k if ε = +,

0 if ε = −.

V.4.1.4 Recall the Hook polynomial Hλ(q) defined for any partition λ:

(V.4.1.4.1) Hλ(q) :=
∏
x∈λ

(1 − qh(x)),
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where λ is regarded as a Young diagram and x runs over the boxes in the diagram, and h(x)
is the hook length. If we denote by λ∗ the dual partition of λ, then

(V.4.1.4.2)
∑
x∈λ

h(x) = |λ| + n(λ) + n(λ∗).

For any λ = λ+λ−(λi) ∈ T̊, put Hλ(q) := Hλ+(q)Hλ−(q)
∏

i H2
λi

(q) and λ∗ = λ∗+λ
∗
−

(λ∗i ). Then for
χ ∈ Irrλ(GLn(q)), we have ([Mac, Chapter IV, §6 (6.7)]):

(V.4.1.4.3)
|GLn(q)|
χ(1)

= −q
1
2 n(n−1)−n(λ∗)Hλ(q).

V.4.1.5 Let P be the matrix (V.3.2.1.9). Introduce the following notations

O(x, q)e :=
∑
α∈P2

q(1−g)|{α}e|(H{α}e(q)q−n({α}∗e))2g+2k−2
2k∏
j=1

sα(P x j), e = 0, 1;

Õ(x, q) :=
∑
α∈P

q(1−g)|{α}|(H{α}(q)q−n({α}∗))2g+2k−2
2k∏
j=1

sα(P x j)

=
∑
α∈P

q2(1−g)|α|(Hα(q)2q−2n(α∗))2g+2k−2
2k∏
j=1

sα(P x j)

The summand corresponding to the trivial partition or 2-partition is equal to 1. Applying
the formal expansion

1
1 + x

=
∑
m≥0

(−1)mxm

to 1 + x = Õ(x, q) gives

1
Õ(x, q)

=
∑
m≥0

(−1)m
∑

ωp↔(mλ)λ

m!∏
λ mλ!

q(1−g)|{ωp}|(H{ωp}(q)q−n({ωp}
∗))2g+2k−2

2k∏
j=1

sωp(P x j)

=
∑
ωp

K(ω)
N(ω)

q(1−g)|{ωp}|(H{ωp}(q)q−n({ωp}
∗))2g+2k−2

2k∏
j=1

sωp(P x j)(V.4.1.5.1)

V.4.1.6 The dimension of the character variety is given by:

d :=(2g − 2) dim G +

2k∑
j=1

dim C j

=(2g − 2) dim G +

2k∑
j=1

(dim G − dim CG(s jσ)
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1
=(2g − 2)n2 + 2kn2

−

2k∑
j=1

(2a(β j) + N)

=n2(2g + 2k − 2) − 2kN −
2k∑
j=1

2a(β j).

(cf. I.4) In 1 , we have used the fact that if H is a connected reductive group over C and u is
the identity, then dim H = 2 dimBu + rk H.

V.4.1.7 We can now state the main theorem.

Theorem V.4.1.1. The number of rational points of the character variety over a finite field is given
by:

(V.4.1.7.1) |ChC(Fq)| = q
1
2 d−k(N+1)

〈
O(x, q)1O(x, q)0

Õ(x, q)
,

2k∏
j=1

hβ∗j (x j)
〉
.

Proof. We calculate

|ChC(Fq)|

=
∑

e=(e j)∈{±}2k

∑
|εω|=N

|G|2g−2 ∏2k
j=1 |C j,e j |

χ(1)2g+2k−2

∑
χ∈Irr(G)σεω

2k∏
j=1

χ̃(C j,e j)

1
=22k

∑
ω∈T

K(ω)
N(ω)

|G|2g−2 ∏2k
j=1 |C j,+|

χ(1)2g+2k−2

2k∏
j=1

〈sω(x j), H̃Λ(β j)(x j, q)〉

=22k
∑
ω∈T

K(ω)
N(ω)

(
|G|
χ(1)

)2g+2k−2 2k∏
j=1

|C j,+|

|G|

2k∏
j=1

〈sω(x j), H̃Λ(β j)(x j, q)〉

=22k
∑
ω∈T

K(ω)
N(ω)

(H{ω}(q)q
1
2 n(n−1)−n({ω}∗))2g+2k−2

2k∏
j=1

〈sω(x j),
|C j,+|

|G|
H̃Λ(β j)(x j, q)〉

=22kq
1
2 (n2(2g+2k−2)−2kn)

·

〈∑
ω∈T

K(ω)
N(ω)

q(1−g)|{ω}|(H{ω}(q)q−n({ω}∗))2g+2k−2
2k∏
j=1

sω(x j),
2k∏
j=1

|C j,+|

|G|
H̃Λ(β j)(x j, q)〉

〉
.(V.4.1.7.2)

We have the factor 22k in 1 because the summand for ε = + is independent of e and cancels
out for ε = −, and the sum can be taken over the entire T because if ωwas not of size N then
the inner product would vanish.
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Equations (V.2.4.2.1) and (V.2.4.2.2) show that

(V.4.1.7.3)
|C j,+|

|G|
=

1
2

q−2a(β j)−|β j|bΛ(β j)(q
−1)−1,

where the factor 1/2 comes from the two connected components of the orthogonal group.
Combined with Corollary V.3.2.2, this shows

(V.4.1.7.4)
1
2

q−a(β j)hβ∗j (P x j) = (−1)|β j|
|C j,+|

|G|
H̃Λ(β j)(x j; q).

Note that for any symmetric functions u(x(0), x(1)) and v(x(0), x(1)), we have〈
u(P

[
x(0)

x(1)

]
), v(

[
x(0)

x(1)

]
)
〉

=

〈
u(

[
x(0)

x(1)

]
), v(P

[
x(0)

x(1)

]
)
〉
.

This can be checked on the basis of power sums. We will thus move P to the left hand side
of the inner product.

Rewrite the left hand side of the inner product (V.4.1.7.2) as follows:

∑
ω∈T

K(ω)
N(ω)

q(1−g)|{ω}|(H{ω}(q)q−n({ω}∗))2g+2k−2
2k∏
j=1

sω(P x j)

=

 ∑
ω+∈P

2

q(1−g)|{ω+}1|(H{ω+}1(q)q−n({ω+}
∗

1))2g+2k−2
2k∏
j=1

sω+(P x j)


·

 ∑
ω−∈P2

q(1−g)|{ω−}0(H{ω−}0(q)q−n({ω−}∗0))2g+2k−2
2k∏
j=1

sω−(P x j)


·

∑
ωp

K(ω)
N(ω)

q(1−g)|{ωp}|(H{ωp}(q)q−n({ωp}
∗))2g+2k−2

2k∏
j=1

sωp(P x j)


Note that K(ω) and N(ω) only depend on ωp

We deduce that

(V.4.1.7.5)
∑
ω∈T

K(ω)
N(ω)

q(1−g)|{ω}|(H{ω}(q)q−n({ω}∗))2g+2k−2
2k∏
j=1

sω(P x j) =
O(x, q)1O(x, q)0

Õ(x, q)

Therefore,

(V.4.1.7.6) |ChC(Fq)| = q
1
2 (n2(2g+2k−2)−2kN)−

∑2k
j=1 a(β j)q−k(N+1)

·

〈
O(x, q)1O(x, q)0

Õ(x, q)
,

2k∏
j=1

hβ∗j (x j)
〉
.

�
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Corollary V.4.1.2. The E-polynomial E(q) = |ChC(Fq)| satisfies

(V.4.1.7.7) qdE(q−1) = E(q).

Proof. For a partition λ, we have the equalities:

q−2(1−g)|λ| = q2(1−g)|λ|
· q−4(1−g)|λ|;(V.4.1.7.8)

Hλ(q−1)2 = Hλ(q)2q−2(|λ|+n(λ)+n(λ∗));(V.4.1.7.9)

q2n(λ) = q−2n(λ∗)
· q2(n(λ)+n(λ∗));(V.4.1.7.10)

sλ(
x

1 − q−1
) = sλ(

−q x
1 − q

) = (−q)|λ|sλ∗(
x

1 − q
).(V.4.1.7.11)

We deduce that

q−(1−g)|{ωp}|(H{ωp}(q
−1)qn({ωp}

∗))2g+2k−2
2k∏
j=1

sωp(P(q−1) x j)

=q−2k|ωp|q(1−g)|{ω∗p}|(H{ω∗p}(q)q−n({ωp}))2g+2k−2
2k∏
j=1

sω∗p(P(q) x j).

Since

P(q−1) =
−q

1 − q2

(
q 1
1 q

)
= −q

(
0 1
1 0

)
P(q),

for a 2-partition α, we have the equality:

sα(P(q−1)
[
x(0)

x(1)

]
) = sα(−q

(
0 1
1 0

)
P
[
x(0)

x(1)

]
) = sα∗(−qP

[
x(0)

x(1)

]
) = (−q)|α|sα∗(P

[
x(0)

x(1)

]
).

(If α = (α1, α2), then α∗ = (α∗2, α
∗

1).)
Using {α∗}e = {α}∗e, e = 0, 1, we then deduce that

q−(1−g)|{ω+}1|(H{ω+}1(q−1)qn({ω+}
∗

1))2g+2k−2
2k∏
j=1

sω+(P(q−1) x j)

=q−2k(|ω+|+1)q(1−g)|{ω∗+}1|(H{ω∗+}1(q)q−n({ω+}1))2g+2k−2
2k∏
j=1

sω∗+(P(q) x j),

and

q−(1−g)|{ω−}1|(H{ω−}1(q−1)qn({ω−}∗1))2g+2k−2
2k∏
j=1

sω−(P(q−1) x j)
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=q−2k(|ω−|)q(1−g)|{ω∗
−
}1|(H{ω∗

−
}1(q)q−n({ω−}1))2g+2k−2

2k∏
j=1

sω∗
−
(P(q) x j).

We conclude that inverting q on the left hand side of the inner product (V.4.1.7.2) gives
rise to an extra term q−2k(|ωp|+|ω−|+|ω+|+1), which is balanced by the term q−k(N+1) outside the
inner product.

�

V.5 Examples

In this section we will give some explicit computations in low ranks. In all these cases,
we confirm that the polynomials in q are indeed palindromic. The polynomials for GL2(q)
have even integer coefficients with leading coefficients 2, while the polynomials for GL3(q)
have leading coefficients 1.

V.5.1 G = GL2(q)

V.5.1.1 g = 0, 2k = 4. For any j ∈ {1, 2, 3, 4}, let C j be the conugacy class of diag(a j, a−1
j )σ,

with aq
j = a j and a2

j , 1 or −1, such that C = (C1,C2,C3,C4) is generic. In this case we have

a double covering of P1 by an elliptic curve with all four ramification points removed. The
counting formula reads

|ChC(Fq)| =
∑
χ

(
|G|
χ(1)

)2 ∏
j

C j

|G|

∏
j

χ̃(C j).

With the character table of GL2(q).<σ>, we get

|ChC(Fq)| =
1
2

(
q(q − 1)(q2

− 1)
q + 1

)2
1

(q − 1)4

∑
α

∏
j

(α(a2
j ) + α(a−2

j ))

+ 2 ·
(

q(q − 1)(q2
− 1)

1

)2
1

(q − 1)4

+ 2 ·
(

q(q − 1)(q2
− 1)

q

)2
1

(q − 1)4

= − 16q2 + 2q2(q + 1)2 + 2(q + 1)2

=2q4 + 4q3
− 12q2 + 4q + 2.
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V.5.1.2 g = 0, 2k = 4. We keep C1, C2 and C3 as above but put C4 to be the conjugacy class
of σ. In this case only 3 ramification points are removed. The same counting formula gives

|ChC(Fq)| =
1
2

(
q(q − 1)(q2

− 1)
q + 1

)2
1

(q − 1)3
1

q(q − 1)(q + 1)

∑
α

(q + 1)
3∏

j=1

(α(a2
j ) + α(a−2

j ))

+ 2 ·
(

q(q − 1)(q2
− 1)

1

)2
1

(q − 1)3
1

q(q − 1)(q + 1)

+ 2 ·
(

q(q − 1)(q2
− 1)

q

)2
1

(q − 1)3
1

q(q − 1)(q + 1)
· q

= − 8q2 + 2q(q + 1) + 2(q + 1)

=2q2
− 4q + 2.

However, if we further assume that C3 is also the conjugacy class of σ, that is, we keep
two ramification points in the covering, then there is no generic conjugacy classes such that
the character variety is non-empty.

V.5.1.3 g = 1, 2k = 2. For j ∈ {1, 2}, let C j be the conugacy class of diag(a j, a−1
j )σ, with aq

j = a j

and a2
j , 1 or −1, such that C = (C1,C2) is generic. In this case we have a double covering

of an elliptic curve by a curve of genus 2 with both of the two ramification points removed.
The counting formula gives

|ChC(Fq)| =
∑
χ

|C1||C2|χ̃(C1)χ̃(C2)
χ(1)2

=
1
2

(
q(q − 1)(q + 1)

q + 1

)2 ∑
α

(α(a2
1) + α(a−2

1 ))(α(a2
2) + α(a−2

2 ))

+ 2
(

q(q − 1)(q + 1)
1

)2

+ 2
(

q(q − 1)(q + 1)
q

)2

= − 4q2(q − 1)2 + 2q2(q − 1)2(q + 1)2 + 2(q − 1)2(q + 1)2

=2q6
− 6q4 + 8q3

− 6q2 + 2.

V.5.1.4 g = 1, 2k = 2. We keep C1 unchanged but put C2 to be the conjugacy class of σ. In
this case only 1 ramification points are removed. The same counting formula gives

|ChC(Fq)| =
1
2
·

q(q − 1)2(q + 1)
(q + 1)2

∑
α

(q + 1)(α(a2
1) + α(a−2

1 ))
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+ 2
q(q − 1)2(q + 1)

1

+ 2
q(q − 1)2(q + 1)

q2 · q

= − 2q(q − 1)2 + 2q(q − 1)2(q + 1) + 2(q − 1)2(q + 1)

=2q4
− 2q3

− 2q + 2.

V.5.2 G = GL3(q)

The geometric settings will be parallel to the case of GL2(q).

V.5.2.1 g = 0, 2k = 4. For any j ∈ {1, 2, 3, 4}, let C j,+ be the conugacy class of diag(a j, 1, a−1
j )σ,

with aq
j = a j and a2

j , 1 or−1, such that 1
C = (C1,+,C2,+,C3,+,C4,+) is generic. Let c ∈ F∗q\(F∗q)2

and let C j,− be the conjugacy class of diag(a j, c, a−1
j )σ. Now the counting formula reads

|ChC(Fq)| =
∑

(e j)∈{±}4

∑
χ

(
|G|
χ(1)

)2 ∏
j

C j,e j

|G|

∏
j

χ̃(C j,e j).

With the character table of GL3(q).<σ>, we get:

|ChC(Fq)| =
16
2

(
q3(q − 1)(q2

− 1)(q3
− 1)

(q + 1)(q2 + q + 1)

)2 (
1

2(q − 1)

)4 ∑
α

∏
j

(α(a2
j ) + α(a−2

j ))

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q2 + q + 1

)2 (
1

2(q − 1)

)4

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q(q2 + q + 1)

)2 (
1

2(q − 1)

)4

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
1

)2 (
1

2(q − 1)

)4

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q3

)2 (
1

2(q − 1)

)4

= − 16q6(q − 1)2 + q6(q − 1)2(q + 1)2 + q4(q − 1)2(q + 1)2

+ q6(q − 1)2(q + 1)2(q2 + q + 1)2 + (q − 1)2(q + 1)2(q2 + q + 1)2

=q14 + 2q13 + q12
− 2q11

− 3q10
− 2q9

− 15q8 + 36q7

− 15q6
− 2q5

− 3q4
− 2q3 + q2 + 2q + 1.

The first five lines correspond to the five types of irreducible characters: RG
T (α, 1, α−1),

RG
L (η Id2, Id), RG

L (η St, Id), Id3 and χ2, as listed in Appendix A.0.1.2. The factors 16 arise

1 C j,± or C±j ?
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from the summation over (e j) ∈ {±}4, noting that for any j, |C j,+| = |C j,−|. This summation
also annihilates the sum over the irreducible characters: RG

T (α, η, α−1), RG
L (Id2, η), RG

L (St, η),
η Id3 and ηχ2.

V.5.2.2 g = 0, 2k = 4. We keep C1,±, C2,± and C3,± as above but put C4,± to be the conjugacy
class of σ and diag(1, c, 1)σ. The same counting formula gives

|ChC(Fq)| =
16
2

(
q3(q − 1)(q2

− 1)(q3
− 1)

(q + 1)(q2 + q + 1)

)2 (
1

2(q − 1)

)3 1
2q(q − 1)(q + 1)

·

∑
α

3∏
j=1

(q + 1)(α(a2
j ) + α(a−2

j ))

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q2 + q + 1

)2 (
1

2(q − 1)

)3 1
2q(q − 1)(q + 1)

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q(q2 + q + 1)

)2 (
1

2(q − 1)

)3 1
2q(q − 1)(q + 1)

· q

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
1

)2 (
1

2(q − 1)

)3 1
2q(q − 1)(q + 1)

+ 16
(

q3(q − 1)(q2
− 1)(q3

− 1)
q3

)2 (
1

2(q − 1)

)3 1
2q(q − 1)(q + 1)

· q

= − 8q5(q − 1)2 + q5(q − 1)2(q + 1) + q4(q − 1)2(q + 1)

+ q5(q − 1)2(q + 1)(q2 + q + 1)2 + (q − 1)2(q + 1)(q2 + q + 1)2

=q12 + q11
− 2q9

− q8
− 7q7 + 16q6

− 7q5
− q4
− 2q3 + q + 1.

V.5.2.3 g = 1, 2k = 2. For j ∈ {1, 2}, let C j,± be the conugacy class of diag(a j, 1, a−1
j )σ, with

aq
j = a j and a2

j , 1 or −1, such that C = (C1,+,C2,+) is generic. Let C j,− be the conjugacy class

of diag(a j, c, a−1
j )σ. The counting formula gives

|ChC(Fq)| =
∑

(e j)∈{±}2

∑
χ

|C1,e1 ||C2,e2 |χ̃(C1,e1)χ̃(C2,e2)
χ(1)2

=
4
2

(
q3(q2

− 1)(q3
− 1)

2(q + 1)(q2 + q + 1)

)2 ∑
α

∏
j

(α(a2
j ) + α(a−2

j ))

+ 4
(

q3(q2
− 1)(q3

− 1)
2(q2 + q + 1)

)2

+ 4
(

q3(q2
− 1)(q3

− 1)
2q(q2 + q + 1)

)2

+ 4
(

q3(q2
− 1)(q3

− 1)
2

)2

+ 4
(

q3(q2
− 1)(q3

− 1)
2q3

)2
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= − 4q6(q − 1)4 + q6(q − 1)4(q + 1)2 + q4(q − 1)4(q + 1)2

+ q6(q − 1)4(q + 1)2(q2 + q + 1)2 + (q − 1)4(q + 1)2(q2 + q + 1)2

=q16
− 2q14

− 2q13 + 2q12 + 2q11
− 2q10 + 16q9

− 30q8

+ 16q7
− 2q6 + 2q5 + 2q4

− 2q3
− 2q2 + 1.

V.5.2.4 g = 1, 2k = 2. We keep C1,± unchanged but put C2,± to be the conjugacy classes of σ
and diag(1, c, 1)σ. The same counting formula gives

|ChC(Fq)| =
4
2

q5(q − 1)4(q + 1)(q2 + q + 1)2

4(q + 1)2(q2 + q + 1)2

∑
α

(q + 1)(α(a2
j ) + α(a−2

j ))

+ 4
q5(q − 1)4(q + 1)(q2 + q + 1)2

4(q2 + q + 1)2 + 4
q5(q − 1)4(q + 1)(q2 + q + 1)2

4q2(q2 + q + 1)2 · q

+ 4
q5(q − 1)4(q + 1)(q2 + q + 1)2

4
+ 4

q5(q − 1)4(q + 1)(q2 + q + 1)2

4q6 · q

= − 2q5(q − 1)4 + q5(q − 1)4(q + 1) + q4(q − 1)4(q + 1)

+ q5(q − 1)4(q + 1)(q2 + q + 1)2 + (q − 1)4(q + 1)(q2 + q + 1)2

=q14
− q13

− q12
− q11 + 3q10

− q9 + 5q8
− 10q7

+ 5q6
− q5 + 3q4

− q3
− q2
− q + 1.
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Appendix A

Character Tables in Low Ranks

We give the character tables of GL2 o<σ>and GL3 o<σ>. We assume that q ≡ 1 mod 4
and write i =

√
−1. Denote by µ2 the 2-elements group, identified with {±1}. Let η ∈ Irr(F∗q)

denote the order 2 character. The σ-stable irreducible characters are specified in terms of
(L, ϕ, θ) as in Theorem 5. Denote by T the maximal torus consisting of the diagonal matrices
and denote by w the unique nontrivial element of WG(T), either for GL2(k) or GL3(k), that
is fixed by σ. Denote by Tw a σ-stable and F-stable maximal torus corresponding to the
conjugacy class of w. In the following, we will freely use the formulas in §II.2.3.3.

A.0.1 σ-stable Irreducible Characters

We specify the σ-stable irreducible characters of GL2(q) and GL3(q), and compute the
numbers of these characters and of the quadratic-unipotent characters of GL4(q) and GL5(q).

A.0.1.1 Suppose G = GL2(k). There are q + 3 σ-stable irreducible characters of GL2(q), and
5 of them are quadratic-unipotent, among which one extends into a non-uniform function.

The quadratic-unipotent characters induced from L = G are the following.

Id η Id St η St

The only one quadratic-unipotent character induced from L = T is the following.

RG
T (1, η)

It is the unique σ-stable irreducible character with non-uniform extension.
Other σ-stable irreducible characters are either of the form,

RG
T (α, α−1)

with α ∈ Irr(F∗q) satisfying αq = α, α , 1 or η. There are (q − 3)/2 of them; or of the form,

RG
Tw

(ω)

with ω ∈ Irr(F∗
q2) satisfying ωq = ω−1, ω , 1 or η. There are (q − 1)/2 of them.
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A.0.1.2 Suppose G = GL3(k). There are 2q + 6 σ-stable irreducible characters of GL3(q),
and 10 of them are quadratic-unipotent, among which two have non-uniform extensions.

The quadratic-unipotent characters induced from L = G are the following.

Id η Id χ2 ηχ2 χ3 ηχ3

The characters χ2 and ηχ2 are associated to the sign character of S3. The characters χ3 and
ηχ3 are associated to the degree 2 character ofS3, and these two characters have non-uniform
extensions.

The quadratic-unipotent characters induced from L � GL2(k) × k∗ are the following.

RG
L (Id2, η) RG

L (η Id2, Id) RG
L (St, η) RG

L (η St, Id)

Other σ-stable irreducible characters are either of the form,

RG
T (α, 1, α−1) RG

T (α, η, α−1)

with α ∈ Irr(F∗q) satisfying αq = α, α , 1 or η. There are q − 3 of them; or of the form,

RG
Tw

(ω, 1, ω−1) RG
Tw

(ω, η, ω−1)

with ω ∈ Irr(F∗
q2) satisfying ωq = ω−1, ω , 1 or η. There are q − 1 of them.

A.0.1.3 Suppose G = GL4(k). There are

1
2

(q − 2)(q − 3) + 7(q − 2) + 20

σ-stable irreducible characters of GL4(k), and 20 of them are quadratic-unipotent.
The Levi subgroups L = GL4(k), L = GL3(k) × k∗ and L = GL2(k) × GL2(k) give rise to

(5 + 3 + 2) × 2 quadratic-unipotent characters, knowing that | Irr(S4)| = 5.
The Levi subgroup L � GL2(k) × (k∗ × k∗) gives

|Quad. Unip. of GL2 | × (q − 2) = 5(q − 2)

noticing that q − 2 = (q − 3)/2 + (q − 1)/2 as in the case of G = GL2(k).
The Levi subgroup L � GL2(k) ×GL2(k) gives (q − 2) × 2 with 2 = | Irr(S2)|.
The maximal torus (k∗)2

× (k∗)2 gives 1
2 (q − 2)(q − 3).

A.0.1.4 Suppose G = GL5(k). There are

(q − 2)(q − 3) + 14(q − 2) + 36

σ-stable irreducible characters, and 36 of them are quadratic-unipotent.
The Levi subgroups L = GL5(k), L � GL4(k)×k∗ and L � GL3(k)×GL2(k) give (7+5+3×2)×2

quadratic-unipotent characters, knowing that | Irr(S5)| = 7.
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The Levi subgroup L � GL3(k) × (k∗)2 gives

|Quad. Unip. of GL3 | × (q − 2) = 10(q − 2).

The Levi subgroup L � k∗ × (GL2(k) × GL2(k)) gives 2 × 2 × (q − 2), with one factor
2 = | Irr(S2)| and the other factor 2 = |{1, η}|.

The maximal torus L � k∗ × (k∗)2
× (k∗)2 gives 2 × 1

2 (q − 2)(q − 3).

A.0.2 Conjugacy Classes

We present the conjugacy classes of GL2(q).σ and of GL3(q).σ, and count the isolated
classes of GL4(q).σ and of GL5(q).σ. Denote by su the Jordan decomposition of an element of
the conjugacy class concerned. Note that O1(k) � µ2 and O2(k) � k∗ o<τ>with τ(x) = x−1.

A.0.2.1 Suppose G = GL2(k). There are q + 3 conjugacy classes, and 5 of them are isolated.

- s = (1, 1)σ, CG(s) = SL2(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the GF-classes are specified accordingly as below,

(12) (2)
SL2(k) O1(k)V

C1 C2 C3

where V � A1 is the unipotent radical. If we use the unit element of a root subgroup of
SL2(k) to represent (2), then C2 corresponds to the identity component of the centraliser.
The two components of O1(k)V have as representatives the scalars ± Id.

- s = (i,−i)σ, CG(s) = O2(k).
Denote by C4 the G(q)-class corresponding to the identity component, and C5 the other
class. The two components of O2(k) have as representatives(

1 0
0 1

)
and

(
0 1
1 0

)
respectively, and so induce the Frobenius x 7→ xq and x 7→ x−q respectively. In other
words, the centralisers of C4 and C5 are O+

2 (q) and O−2 (q) respectively.

- s = (a, a−1)σ, CG(s) = k∗.
For any value of a, the corresponding G-class contains a unique G(q)-class. The classes
are as follows.

aq−1 = 1 aq+1 = 1 aq−1 = −1 aq+1 = −1
C6(a) C7(a) C8(a) C9(a)
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The Frobenius on CG(s) � k∗ with s ∈ C6 or C8 is x 7→ xq, while the Frobenius on
CG(s) � k∗ with s ∈ C7 or C9 is x 7→ x−q.

We have

- |C1| = |G(q)|/| SL2(q)| = q − 1;

- |C2| = |C3| = |G(q)|/2|V(q)| = 1
2 (q − 1)2(q + 1);

- |C4| = |G(q)|/|O+
2 (q)| = 1

2 q(q + 1)(q − 1); |C5| = |G(q)|/|O−2 (q)| = 1
2 q(q − 1)2;

- |C6| = |C8| = |G(q)|/(q − 1) = q(q + 1)(q − 1);

- |C7| = |C9| = |G(q)|/(q + 1) = q(q − 1)2.

A.0.2.2 Suppose G = GL3(k). There are 2q + 6 conjugacy classes, and 10 of them are
isolated. Now each semi-simple G-conjugacy class contains two G(q)-conjugacy classes,
distinguished by the sign η (cf. (IV.2.2.2.2)). Depending on the value of η, we will write C+ or
C− to represent the corresponding conjugacy class contained in a given G-conjugacy class.

Notation A.0.2.1. In what follows, we write ε instead of η to avoid clashing with the character
of F∗q.

- s = (1, 1, 1)σ, CG(s) = O3(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the GF-classes are specified accordingly as below,

(13) (3)
O3(k) O1(k).V

C+
1 C−1 C+

2 C−2

where V � A1 is the unipotent radical.

- s = (i, 1,−i)σ, CG(s) � SL2(k) ×O1(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the GF-classes are specified accordingly as below,

(12) (2)
SL2(k) ×O1(k) O1(k) ×O1(k).V
C+

3 C−3 C+
4 C+

5 C−4 C−5

where V � A1 is the unipotent radical. If we use the unit element of a root subgroup
of SL2(k) to represent (2), then the correspondence between the classes C+

4 , C+
5 , C−4 , C−5

and the connected components of CG(s) is given as follows.
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C+
4 C+

5 C−4 C−5
1 0 0
0 1 0
0 0 1



−1 0 0
0 1 0
0 0 −1




1 0 0
0 −1 0
0 0 1



−1 0 0
0 −1 0
0 0 −1


- s = (a, 1, a−1)σ, CG(s) = k∗ × µ2, identified with {diag(x,±1, x−1); x ∈ k∗}.

The conjugacy classes are as follows.

aq−1 = 1 aq+1 = 1 aq−1 = −1 aq+1 = −1
C+

6 (a) C−6 (a) C+
7 (a) C−7 (a) C+

8 (a) C−8 (a) C+
9 (a) C−9 (a)

The Frobenius on CG(s) � k∗ with s ∈ C±6 or C±8 is x 7→ xq, while the Frobenius on
CG(s) � k∗ with s ∈ C±7 or C±9 is x 7→ x−q.

We have

- |C+
1 | = |C

−

1 | = |G(q)|/|O3(q)|;

- |C+
2 | = |C

−

2 | = |G(q)|/2|V(q)|;

- |C+
3 | = |C

−

3 | = |G(q)|/2| SL2(q)|;

- |C+
4 | = |C

−

4 | = |C
+
5 | = |C

−

5 | = |G(q)|/4|V(q)|;

- |C±6 | = |C
±

8 | = |G(q)|/2(q − 1);

- |C±7 | = |C
±

9 | = |G(q)|/2(q + 1).

A.0.2.3 Suppose G = GL4(k). There are 20 isolated conjugacy classes.

- s = (1, 1, 1, 1)σ, CG(s) = Sp4(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(14) (122) (22) (4)
Sp4(k) SL2(k) ×O1(k) O2(k) O1(k)

This gives 7 classes.

- s = (i, 1, 1,−i)σ, CG(s) = SL2(k) ×O2(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(12) (2)
SL2(k) ×O2(k) O1(k) ×O2(k)
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This gives 6 classes.

- s = (i, i,−i,−i)σ, CG(s) = O4(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(14) (13) (22)
O4(k) O1(k) ×O1(k) SL2(k)

This gives 7 classes.

A.0.2.4 Suppose G = GL5(k). There are 36 isolated conjugacy classes.

- s = (1, 1, 1, 1, 1)σ, CG(s) = O5(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(15) (123) (122) (5)
O5(k) O2(k) ×O1(k) O1(k) × SL2(k) O1(k)

This gives 10 classes.

- s = (i, 1, 1, 1,−i)σ, CG(s) = O3(k) × SL2(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(13) (3)
O3(k) O1(k)

×
(12) (2)

SL2(k) O1(k)

This gives (2 + 2) × (1 + 2) = 12 classes.

- s = (i, i, 1,−i,−i)σ, CG(s) = Sp4(k) ×O1(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

O1(k)×
(14) (122) (22) (4)

Sp4(k) SL2(k) ×O1(k) O2(k) O1(k)

This gives 2 × 7 = 14 classes.

A.0.3 The Tables

The calculation of the values of the uniform characters is reduced to the determination
of the sets

A = A(sσ,Tw) = {h ∈ GF
| hsσh−1

∈ Tw.σ}

for various GF-conjugacy classes of F-stable and σ-stable maximal tori Tw contained in some
σ-stable Borel subgroups, and semi-simple GF-conjugacy classes of elements sσ.
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A.0.3.1 The procedure (cf. IV.6.2) for computing A can be summarised as follows.
Suppose sσ is an F-fixed element contained in T.σ, and Tw can be written as gTg◦ for

some g ∈ CG(σ)◦. If h ∈ GF conjugates sσ into Tw.σ, then there exists some l ∈ CG(sσ)◦

such that n := g−1hl lies in NG(T.σ). Recall that NG(T.σ) ⊂ NG(T) consists of the connected
components that are stable under σ. Then g−1hsσh−1g = nsσn−1 is an Fw-fixed element
of T.σ. If sσ is an F-fixed element contained in Tw.σ, then similar arguments show that
g−1hsσh−1g = ng−1sσgn−1 with gng−1 = hl. The conjugation by n can be separated into a
permutation of the "eigenvalues" and a conjugation by an element of T. For each sσ and Tw,
we will first find some t ∈ T such that tsσt−1 (or tg−1sσgt−1 if we start with some sσ ∈ Tw.σ) is
fixed by Fw, then evaluate any character of TF

w.<σ>under the isomorphism TF
w.<σ>� TFw .<σ>.

The value does not depend on the choice of t, and the permutation of the "eigenvalues" is
simple.

We will use the following observation. Let ω ∈ Irr(F∗
q2) be such that ωq = ω−1, and let

a ∈ F∗
q2 be such that aq = a. Then a = bq+1 for some b ∈ F∗

q2 , so

ω(a) = ω(bq+1) = ωq+1(b) = 1.

A.0.3.2 Suppose G = GL2(k). Consider the characters RG
T (1, η), RG

T (α, α−1) and RG
Tw

(ω).
The calculation of the extensions of RG

T (1, η) is a direct application of the theorem of
Waldspurger. Following the notations of (IV.5.4.1), we have (µ+, µ−) = ((1), (1)). The 2-cores
are (1) and (1), and so m+ = m− = 1. We deduce that h1 = 1 and h2 = 0. So the cuspidal
function is supported on the class of su with CG(s)◦ � SL2(k) and u corresponding to the
partition (2). We find δ(h1, h2) = 1. So the values of this character on its support are ±

√
q and

vanish on all other classes.
If sσ = σ and so CG(sσ) = SL2(k), then hσh−1 = det(h).σ (regarding det(h) as a scalar

matrix), which belongs to T.σ or Tw.σ for any h. So A = GF and θ̃(hsσh−1) = θ(σ) = 1 for any
h as θ has trivial value on the scalars.

If sσ = (i,−i)σ and so CG(sσ) = O2(k), then the elements of A are exactly those h ∈ GF

such that (h−1Th ∩ CG(sσ))◦ is a maximal torus of CG(sσ)◦ = SO2(k) which itself is a torus
whose centraliser in G is T or Tw according to whether sσ ∈ C4 or sσ ∈ C5. Consequently,
A(C5,T) = A(C4,Tw) = ∅, while A(C4,T) and A(C5,Tw) are the normalisers of T and Tw

respectively. It is easy to check that

θ̃(hsσh−1) = α(i)α−1(−i) = α(−1)

if sσ ∈ C4. If sσ ∈ C5, then we use the method at the beginning of this section. It suffices
to find some t ∈ T such that tsσt−1 is fixed by Fw. Indeed, we can take t = diag(λ, 1) with
λq = −λ so that (iλ)q = −iλ. We get θ(sσ) = ω(iλ). The value is independent of the choice
of λ. We can also do it directly and explicitly, and obtain the same result. The elements of
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O2(k) \ SO2(k) are of the form (
0 x

x−1 0

)
,

so they do not belong to SL2(k). Let us describe Ts explicitly by choosing g2 ∈ SL2(k) such
that

g−1
2 F(g2) =

(
0 1
−1 0

)
and putting Tw = g2Tg−1

2 . We choose λ ∈ k∗ such that λq = −λ. Put

g1 = g2

(
λ 0
0 1

)
,

such that g−1
1 F(g1) ∈ O2(k). Then the representative sσ ∈ C5 is given by

g1

(
i 0
0 −i

)
σg−1

1 = g2

(
iλ 0
0 −iλ

)
g−1

2 σ ∈ Tw.σ,

and so θ̃(sσ) = ω(iλ). If ω = η, then taking the norm gives λ2 and evaluating η gives −1.
If sσ = (a, a−1)σ, and so CG(sσ) = T or Tw according to whether aq = ±a or aq = ±a−1,

then A is equal to the normaliser of T or Tw or empty according to the GF-class of CG(sσ).
If sσ ∈ C8, the F-stable conjugate of sσ in T.σ is given by diag(aλ, a−1λ)σ with λq = −λ. If
θ = η ◦ det |T, then θ̃((aλ, a−1λ)σ) = η(λ2) = −1. If sσ ∈ C9, the representative of C9(a) is given
by

g
(

aλ 0
0 a−1λ

)
g−1σ ∈ TF

s .σ.

Again, if θ = η ◦ det |Ts , then θ̃((aλ, a−1λ)σ) = η(λ2) = −1.

A.0.3.3 Suppose G = GL3(k). Consider the characters χ3, RG
T (α, 1, α−1), RG

T (ω, 1, ω−1),
RG

T (ηχ3), RG
T (α, η, α−1) and RG

T (ω, η, ω−1).
For χ3, we use the theorem of Waldspurger. We have (µ+, µ−) = ((13),∅). The 2-cores are

(2, 1) and ∅, and so m+ = 2 and m− = 0. We deduce that h1 = 1 and h2 = 1. So the cuspidal
function is supported on the class of su with CG(s)◦ � SL2(k) ×O1(k) and u corresponding to
the partition (2). We find δ(h1, h2) = 1 and so the values of this character are ±

√
q.

If sσ = (1, 1, 1)σ and so CG(sσ) = O3(k), then one has to understand the set AF =

(NG(T.σ).L′)F, with the notations of Lemma IV.6.2.2. If h = nl ∈ AF, then the L
′F-conjugacy

class of h−1Th∩L′ corresponds to the F-class of n−1F(n) ∈ NL′(T∩L′). But NG(T.σ) � WG(T)σ �
S2, so n−1F(n) necessarily belongs to T ∩ L′ = (Tσ)◦, i.e. h−1Th∩ L′ is always L

′F-conjugate to
T ∩ L′ and the only Green function that appears in the formula of RG

Tθ(sσu) is QSO3(k)
(Tσ)◦ (u). We

also have a similar result for Tw. Expressing the elements h = nl as some explicit matrices,
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we find that θ̃(hsσh−1) does not depend on h. It remains to calculate

|NGF(T.σ)L
′F
| =|L

′F
||NGF(T.σ)||NL′F(CT(σ)◦)|−1

=| SO3(q)| · 2(q − 1)3
· 2(q − 1),

(A.0.3.3.1)

For Tw, we have

(A.0.3.3.2) |NGF(Tw.σ)L
′F
| = | SO3(q)| · 2(q − 1)(q2

− 1) · 2(q + 1).

The other G(q)-class contained in the G-class ofσhas as representative (1, λ2, 1)σwithλq = −λ,
so for example the value of RG

T (α, η, α−1)(C2) differs from RG
T (α, 1, α−1)(C2) by a sign.

The main difference between GL3(q) and GL2(q) is the class (i, 1,−i)σ (as opposed to (i,−i)σ
for GL2(k)). We have CG(sσ) � SL2(k) × O1(k) so in particular it contains representatives of
each element of WG(T)σ. Therefore, the sets AF are not empty either for T or for Tw. Suppose
that sσ represents Cε3 and we want to evaluate RG

T (α, η, α−1) at sσ. Let t ∈ T be such that
tsσt−1 is fixed by F. Then tsσt−1 can be written as diag(ix, y,−ix)σ. It is necessary that
xq = x and yq = y. So α(i)α−1(−i) = α(−1). Applying ε gives η(y) = ε(Cε3). Therefore
(α, η, α−1)(hsσh−1) evaluates εα(−1). Now we evaluate RG

T (ω, η, ω−1) at sσ. Again we write
tsσt−1 as diag(ix, y,−ix)σ, but which is Fw-stable. It is necessary that xq = −x and yq = y.
Applying ε gives η(y) = −ε(Cε3) since x2 < (F∗q)2. Therefore (ω, η, ω−1)(hsσh−1) evaluates
−εω(iλ). If sσ ∈ C±8 , then an F-stable element diag(ax, y, a−1x)σ = tsσt−1 satisfies xq = −x.
and yq = y. Therefore (α, η, α−1)(hsσh−1) evaluates −εα(a±2), where the ±2 power is due to
permutation of "eigenvalues". For (ω, η, ω−1) at C±9 the calculation is similar.
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Table
A

.1
–

T
he

C
haracter

Table
ofG

L
2 (q).<

σ
>

(1,1)σ
(i,
−
i)σ

(a,a
−

1)σ

(1
2)

(2)
1

a q
−

1
=

1
a q+

1
=

1
a q
−

1
=
−

1
a q+

1
=
−

1

C
1

C
2

C
3

C
4

C
5

C
6 (a)

C
7 (a)

C
8 (a)

C
9 (a)

R
GT (1,η)

0
−
√

q
√

q
0

0
0

0
0

0

Id
1

1
1

1
1

1
1

1
1

η
Id

1
1

1
1

−
1

1
1

−
1

−
1

St
q

0
0

1
−

1
1

−
1

1
−

1

η
St

q
0

0
1

1
1

−
1

−
1

1

R
GT (α

,α
−

1)
q

+
1

1
1

2α(−
1)

0
α(a 2)

+
α(a
−

2)
0

α(a 2)
+
α(a
−

2)
0

R
GT

w (ω
)

1
−

q
1

1
0

2ω
(iλ

)
0

ω
(a)

+
ω

(a
−

1)
0

ω
(aλ

)
+
ω

(a
−

1λ
)



175

Table
A

.2
–

T
he

C
haracter

Table
ofG

L
3 (q).<

σ
>,(i)

(1,1,1)σ
(i,1,
−
i)σ

(1
3)

(3)
(1

2)
(2)

C
+1

C
−1

C
+2

C
−2

C
+3

C
−3

C
+4

C
+5

C
−4

C
−5

(a,1,a
−

1)σ

a q
−

1
=

1
a q+

1
=

1
a q
−

1
=
−

1
a q+

1
=
−

1

C
+6

C
−6

C
+7

C
−7

C
+8

C
−8

C
+9

C
−9

χ
3

0
0

0
0

0
0

√
q

−
√

q
−
√

q
√

q

0
0

0
0

ηχ
3

0
0

0
0

0
0

√
q

−
√

q
√

q
−
√

q

0
0

0
0



176 APPENDIX A. CHARACTER TABLES IN LOW RANKS

Table
A

.3
–

The
C

haracter
Table

ofG
L

3 (q).<
σ
>,(ii)

C
+1

C
−1

C
+2

C
−2

C
+3

C
−3

C
+4

C
+5

C
−4

C
−5

C
+6

C
−6

C
+7

C
−7

C
+8

C
−8

C
+9

C
−9

Id
1

1
1

1
1

1
1

1
1

1

1
1

1
1

η
Id

1
−

1
1

−
1

1
−

1
1

1
−

1
−

1

ε
ε

ε
ε

χ
2

q
q

0
0

q
q

0
0

0
0

1
−

1
1

−
1

ηχ
2

q
−

q
0

0
q

−
q

0
0

0
0

ε
−
ε

ε
−
ε
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Table
A

.4
–

T
he

C
haracter

Table
ofG

L
3 (q).<

σ
>,(iii)

C
+1

C
−1

C
+2

C
−2

C
+3

C
−3

C
+4

C
+5

C
−4

C
−5

C
+6

C
−6

C
+7

C
−7

C
+8

C
−8

C
+9

C
−9

R
GL (Id

2 ,η)
1

−
1

1
−

1
q

−
q

0
0

0
0

ε
ε

−
ε

−
ε

R
GL (η

Id
,Id)

1
1

1
1

q
q

0
0

0
0

1
1

−
1

−
1

R
GL (St,η)

q
−

q
0

0
1

−
1

1
1

−
1

−
1

ε
−
ε

−
ε

ε

R
GL (η

St,Id)
q

q
0

0
1

1
1

1
1

1

1
−

1
−

1
1
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Table
A

.5
–

The
C

haracter
Table

ofG
L

3 (q).<
σ
>,(iv)

C
+1

C
−1

C
+2

C
−2

C
+3

C
−3

C
+4

C
+5

C
−4

C
−5

C
+6

C
−6

C
+7

C
−7

C
+8

C
−8

C
+9

C
−9

(α
,1,α

−
1)

q
+

1
q

+
1

1
1

(q
+

1)α(−
1)

(q
+

1)α(−
1)

α(−
1)

α(−
1)

α(−
1)

α(−
1)

α(a 2)
+
α(a
−

2)
0

α(a 2)
+
α(a
−

2)
0

(α
,η,α

−
1)

q
+

1
−

q
−

1
1

−
1

(q
+

1)α(−
1)

−
(q

+
1)α(−

1)
α(−

1)
α(−

1)
−
α(−

1)
−
α(−

1)

ε(α(a 2)
+
α(a
−

2))
0

−
ε(α(a 2)

+
α(a
−

2))
0

(ω
,1,ω

−
1)

−
q

+
1

−
q

+
1

1
1

(−
q

+
1)ω

(iλ
)

(−
q

+
1)ω

(iλ
)

ω
(iλ

)
ω

(iλ
)

ω
(iλ

)
ω

(iλ
)

0
ω

(a)
+
ω

(a
−

1)
0

ω
(aλ

)
+
ω

(a
−

1λ
)

(ω
,η,ω

−
1)

−
q

+
1

q
−

1
1

−
1

(q
−

1)ω
(iλ

)
(−

q
+

1)ω
(iλ

)
−
ω

(iλ
)

−
ω

(iλ
)

ω
(iλ

)
ω

(iλ
)

0
ε(ω

(a)
+
ω

(a
−

1))
0

−
ε(ω

(aλ
)
+
ω

(a
−

1λ
))
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