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Résumé

Soit 0 I'automorphisme par transpose-inverse de GL;, qui définit un produit semi-direct
GL, x<0>. Soit X — X un revétement double de surfaces de Riemann, qui est exactement la
partie non ramifiée d"un revétement ramifié de surfaces de Riemann compactes. L’élément
non trivial de Gal(X/X) sera noté 7. A chaque point ramifié enlevé, on associe une GL,(C)-
classe de conjugaison contenue dans la composante connexe GL,(C).o, et on exige que la
famille C des classes de conjugaison soient générique. La variété de GL,(C) ~<<o>caractére
que l'on a étudié est I'espace de module des pairs (L, @) formés d'un systeme local L sur
X et d’un isomorphisme @ : £ = t° LY, dont les monodromies autour des points ramifiés
sont déterminées par C. On calcule le E-polynéme de cette variété de caractere. A ce fin, on
utilise un théoreme de Katz, ce qui nous rameme au comptage des points sur corps finis. La
formule de comptage fait intervenir les caracteres irréductibles de GL,(g) <<o0>, et donc la
table des Q-caracteres de ce groupe est déterminée au fur et & mesure. Le polyndme qui en
résulte s’exprime comme un produit scalaire de certaines fonctions symétriques associées
au produit de couronne (Z/ 2Z)N = Gy, avec N = [1/2].

Mots-Clefs: Variété de Caractere; Polynome de Hodge Mixte; Groupe Fini de Type de Lie;
Fonctions Symétrique.






Abstract

Let 0 be the transpose-inverse automorphism of GL, so that we have a semi-direct product
GL, x<0> Let X — X be a double covering of Riemann surfaces, which is exactly the
unramified part of a ramified covering of compact Riemann surfaces. The non trivial covering
transformation is denoted by 7. To each puncture (removed ramification point), we prescribe
a GL;,(€)-conjugacy class contained in the connected component GL,(C).c. And we require
the collection C of these conjugacy classes to be generic. Our GL,(C) x<o>character variety
is the moduli of the pairs (£, ®), where £ is a local system on X and ® : £ % 7°£Y is an
isomorphism, whose monodromy at the punctures are determined by C. We compute the
E-polynomial of this character variety. To this end, we use a theorem of Katz and translate the
problem to point-counting over finite fields. The counting formula involves the irreducible
characters of GL,(g) <<0>, and so the Q,-character table of GL,(q) x<o>is determined along
the way. The resulting polynomial is expressed as the inner product of certain symmetric
functions associated to the wreath product (Z/ 2Z)N = Gy, with N = [n/2].

Key words: Character Varieties; Mixed Hodge Polynomials; Finite Groups of Lie Type;
Symmetric Functions.
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Chapter I

Introduction

I.1 Character Varieties

Motivation

Given a connected complex reductive algebraic group G and a Riemann surface X, one
defines the associated representation variety as the affine variety

Hom(mt1(X), G)

consisting of the G-representations of 71(X). Then G acts on it by conjugation on the target.
The corresponding GIT quotient is called the character variety. It is a topological invariant
of X. We will call G the structure group of the character variety. By Riemann-Hilbert
correspondance, the character variety is complex analytically isomorphic to the moduli space
of flat connections of principal G-bundles on X. And is further diffeomorphic to the moduli
space of semi-stable Higgs G-bundles on X, by the non abelian Hodge correspondance. We
regard these objects as the torsors under the constant group scheme G x X endowed with a
Higgs field or a connection.

One can equally consider torsors under a non constant group scheme on X, possibly
equipped with flat connections or Higgs fields. Indeed, this is what has been considered
in [LN], where torsors under unitary group schemes with Higgs fields are considered, but
on a curve defined over a finite field. There has since been growing interest in this kind
of quasi-split objects, for example, [PR], [Zel], [Ze2], [HK]. Representation theory suggests
that, when we work in the complex setting, the corresponding character varieties should
have a structure group of the form G = I', where T is the Galois group of a finite Galois
covering of X such that the non constant group scheme lifts to a constant one.

On the other hand, motivated by the study of some exotic Stockes data, Boalch and
Yamakawa have considered the moduli space of twisted Stockes representations. When
the Stokes data are trivial, we are left with torsors under a non-constant local system of
groups on X. Such local systems of groups are parametrised by group homomorphisms

11
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Yo : 11(X) — AutG, with torsors parametrised by the group cohomology HY(m1(X),G). Let
us fix such a ¢p. If we further assume that 1y factors through a finite quotient, denoted by
Y : T — AutG, then the torsors can be identified with homomorphisms m1(X) — G ><T, with
the semi-direct product defined by 1.

Galois Invariant Connections

The finite quotient I' determines a finite Galois cover X — X, and the homomorphisms
p : m(X) = G =T can be restricted to the usual representations p : m1(X) — G via the
following commutative diagram

1 —— m(X) — mi(X) r 1
(O
1 G G=T r 1

We will call p the underlying G-representation of p. The representation variety that we are
interested in is exactly the moduli space of those homomorphisms m1(X) — G =< I that
make (the right hand side of) the above diagram commute, and its elements are called
G > I'-representations. The conjugation of G on G =T induces an action on this variety and
the corresponding GIT quotient is called the G > I'-character variety. Instead of the usual
G-character varieties associated to a topological space, we have the slogan

G = I'-character varieties are associated to a T-Galois cover X/X.

There can be non isomorphic coverings with isomorphic Galois group I'.

In fact, in the above diagram, the usual representation p is Galois invariant. This is
best understood in terms of flat connections. Suppose (€, V) is a principal G-bundle on X
equipped with a flat connection, then with the homomorphism ¢ : I' = Aut G, each element
of 0 € I' defines a twist of (&,V), denoted by (0°E7,V?), where the underlying bundle is
obtained by first pulling back & by 0 and then twisting the fibres by 1(0), i.e. the right action
of G on the fibres is twisted by this group automorphism. Fixing 1), we say that (&, V) is
I'-invariant if for each o € I, there is an isomorphism

(L1) D, : (E,V) = (07, V).

These isomorphisms must satisfy some cocycle conditions. Let us denote by ®. this family
of isomorphisms. Our first result basically says

Theorem 1. There is a one to one correspondence

{T-invariant flat connections on X} «— {G > T-representations of 71(X)}
(& V), D) e p

And the underlying G-representation of p corresponds to (&, V).
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The proof is divided into Theorem [[I.1.2.1, Lemma|[II.3.1.1jand Proposition [[II.3.1.3

Some Technical Issues

Since our character varieties are defined as the GIT quotient of some affine varieties, the
closed orbits and stable orbits are of particular importance. As in the case of usual character
varieties, they consist exactly of semi-simple representations and irreducible representations.
The semi-simple and irreducible G = I'-representations are defined in exactly the same way
as the case of usual G-representations. More precisely, a representation p : 71(X) = G =T'is
semi-simple if the Zariski closure of its image is a completely reducible subgroup of G =< T’
and is irreducible if the Zariski closure of its image is an irreducible subgroup of G <I'. We
recall the relevant notions for non-connected groups in §1.

Observe that the underlying G-representation of an irreducible G = I'-representation is
always semi-simple but may not be irreducible. We would like to restrict ourselves to
those character varieties such that the subset {p | p is irreducible} is non-empty. This gives
rise to a classification problem. To see this, suppse that X — X is a double covering and
Y : T = 7Z/27 — AutG sends the nontrivial element ¢ to the transpose inverse automorphism
of G = GL,(C). Let & be a stable vector bundle on X and @, : & — ¢*&° an isomorphism.
Then the composition

(1.2) (0"Dy)° 0 Dy

where the superscript 0 means the induced isomorphism on the contragradient vector bun-
dle, is an automorphism of & and is thus a homothety. It either equals to +1 or —1 due to
o-invariance. Both cases are studied in [Ze2]. Note that for a fixed &, different choices of the
isomorphism @, give the same value of (¢"®,)° o @, and it only depends on &. Therefore
the signs +1 classify different o-invariant stable vector bundles. This is a particular case
of the classification of irreducible (resp. stable) I-invariant G-representations (resp. flat
connections) in terms of the group cohomology H%(T', Zc), where Zg is the centre of G. For
example in the context above, the non trivial element of I' acts as x — x~! on Z¢g, and the
sign +1 corresponds to the trivial cohomology class of H*(T', Zg) and —1 corresponds to the
other class. This classification results have already been obtained by Schafthauser in [Schl.

The irreducibility of G < I'-representations is translated into the stability condition for I'-
invariant flat connections on X. We thus morally recover the stability condition of I-bundles
as defined by Seshadri [Ses] and the stability condition of anti-invariant bundles as defined
by Zelaci [Ze2]. More precisely, we will show

Proposition 2. (See Proposition |[[1.3.2.2) Under the correspondence in Theorem |1} a G > I-
representation is irreducible if and only if the corresponding I'-invariant connection is stable.

Let G = GL,(C), I = Z/2Z, and the non-trivial element act as o, the transpose inverse
automorphism of G. By studying some certain irreducible subgroups of GL,(C) x<<o>, we
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find a similar result of [Ze2| §4.1] and [Ra) Proposition 4.5], which asserts (See Proposition

[1.5.4.1) Proposition |[I.2.1.7} Remark [I[.2.1.8)and Remark [I1.3.1.2)

Proposition 3. If (E,V), ®,) is a stable T-invariant flat connection on X, then its underlying flat
connection (&E,V) is semi-simple with pairwise non-isomorphic factors, each one being I'-invariant
with respect to the restrction of @..

An Important Example

Perhaps the most important examples of such character varieties are the GL,(C) ~<<o>
character varieties of the fundamental groups of Riemann surfaces, where o is an order 2
non trivial exterior automorphism of GL,(C). Such character varieties are associated to an
unramified double cover X — X of Riemann surfaces. And if ¢ is the transpose inverse
automorphism, then we expect that they correspond to the moduli spaces of torsors of
unitary group scheme equipped with Higgs fields. Suppose X — X is exactly the unramified
part of a ramified double cover X’ — X’, then by restricting the monodromy around the
punctures (removed ramification points) to some G-conjugacy classes of G.o, or equivalently
o-conjugacy classes of G, denoted by (C));, the character variety can be written as

8
(13) (A, Byix (X e G x [ 1 [ [ B [ [ %=1,
j

i=1 i

where g is the genus of X. Note that there are necessarily an even number of ramification
points so that the product falls into the identity component. Let us remark that

If all of the conjugacy classes C; are the conjugacy class of o (in which case C; is
isomorphic to the symmetric space), this can be regarded as the GL,(C) =<o>character
variety associated to the ramified covering X' — X', i.e. it parametrises Galois invariant
local systems on X'.

This is explained in §II1.5.2.3

The natural symplectic structure of these varieties can be deduced from the quasi-
Hamiltonian reduction procedure, but in the twisted setting as in [BY]. The dimension
of these character varieties with generic conjugacy classes can also be easily obtained by re-
garding the variety as fusion from small building blocks. In the above example, since the
center of GL,(C) <<o>has dimension 0, the dimension of the character variety is

(1.4) (2g-2n + ) dimC;.
j

The notion of generic conjugacy classes is defined in §lI1.4.2} and is a natural generalisation
of the tame case of [B] Corollary 9.7, Corollary 9.8]. Any G = I'-representation with generic
conjugacy classes is necessarily irreducible.
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E-Polynomials and Related Works

The above variety looks very much the same as the usual character varieties, and its
cohomology, or more specifically the E-polynomial, can be calculated following the method
developped in [HLR], which involves point-counting over finite fields.

The E-polynomial is a specialisation of the mixed Hodge polynomial and can be spe-
cialised to the Euler characteristic. For character varieties, the Poincaré polynomial only
overlaps with E-polynomial at the level of Euler characteristic. The early investigation of
the E-polynomials of M;r(X, G), the moduli space of flat connections on Riemann surfaces X
with G a connected reductive group, was motivated by Mirror symmetry and the speculation
was that the stringy E-polynomial of M;r(X, G) should agree with that of M;z(X, G"), where
GV is the dual group. Then it was expected that the character variety version of this is also
true.

The computation of the usual GL,(C)-character varieties shows that the E-polynomial
satisfies g¢’E(q™") = E(q), where d is the dimension of the character variety. This had led to the
discovery of an interesting symmetry in the weight filtration of the cohomology, called the
curious Hard Lefschetz, which has only recently been proved by A. Mellit. This symmetry
resembles the Hard Lefschetz theorem, but holds for the character variety which is affine.
Then it was observed that this symmetry behaves like the relative Hard Lefschetz for the
perverse filtration on the Higgs bundles side. It is now known as the P=W conjecture, which
claims the identification via non abelian Hodge correspondence of perverse filtration for
Higgs moduli and weight filtration for character varieties, in a suitable sense. The curious
Hard Lefschetz is also a main ingradient in formulating a conjectural formula of the mixed
Hodge polynomial of the character varieties. The resulting combinatorial formula involves
the Macdonald polynomials.

Both the P=W conjecture and the conjectural mixed Hodge polynomial have been verified
in small ranks with the help of explicit knowledge of the cohomology ring the moduli spaces.
In our case, there is no existing knowledge of the cohomology ring and we cannot give any
conjecture with supporting evidence. We will instead focus on the computation of the
E-polynomials.

Point-Counting

The computation relies on a theorem of Katz, which translates the computation of E-
polynomials to point-counting over finite fields. The theorem basically says the following.
One first finds a finitely generated ring R contained in C, and an R-model of the character
variety. By base change to finite field IF,, we can count the number of solutions of
in finite fields. If this gives a polynomial in g, then this is also the E-polynomial.
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The point-counting formula in our case is the following,

(L5)

- k -
( Iel )Zg 2 77 ICIR(C)
x€lrr(G)° X(l) i=1 X(l)

where G = GL,(9), C; € GL,(g).0, and Irr(G)? is the set of o-stable irreducible characters of
GL,(g) and { is an extension of such a character to GL;,(q) x<o>. We will explain the relevant
notions in the next part of this introduction.

Our final formula for the E-polynomial is expressed as the inner product of two symmetric
functions. This theorem is only proved for n odd with mild restrictions on the "eigenvalues”
of C;’s, and we expect that the formula for n even is slightly different.

Theorem 4. Assume that n = 2N + 1 for some N € Z-o and that C; has no "eigenvalue” equal to
V=1 for all i. Let d be the dimension of the character variety and let B; be the type (encoding the
multiplicities of "eigenvalues”) of the semi-simple conjugacy class C;. Then,

_ takvsn) | 269100 9o >
(L6) | Che(Fy)l = g < S0 Hh 5 (x)

where O(x, q)o, O(x, q)1 and O(x, q) are certain symmetric functions in the variables {Xjh<j<or, and
hﬁ;(x]') are the complete symmetric functions.

The symmetric functions O(x, g)+, O(x, q)- and O(x, g) only depend on the genus g and the
number of punctures in the Riemann surface (that is, only depend on on the topology of the
Riemann surface). Note that each infinite variable x; should be understood as a pair (x; , ©) (1))

of infinite variables since the underlying symmetry is the wreath product (Z/2Z)" < G,,.

1.2 Character Table of GL,(q) <<o>

Irreducible Characters of GL,(q)

Suppose G = GL,(k). Given a Frobenius of G, the associated finite group G(g) is GL,(q)
or GL, (9) according to whether the action of F on the Dynkin diagram is trivial or not. The
Q(-character table of GL,(g) is well known since the work of Green [Gr]. Instead of the
combinatorial point of view of Green, we present below a parametrisation of the irreducible
characters due to Lusztig and Srinivasan, which is convenient for the problem of extending
characters to GL,(g).<o>.

For each F-stable Levi subgroup L, we denote by Irrrgg(LF ) the set of regular linear char-
acters of LF (See [LS, §3.1]), and denote by Irr(Wp)F the set of F-stable irreducible characters
of the Weyl group Wi = W (T), T C L being an F-stable maximal torus. We take 6 € Irryeg(L")
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and @ € Irr(W,)f. For each ¢, we denote by ¢ an extension of ¢ to W, x<F> We put

(L7) RSO = ecer/Wi|™! Z P(wF)RS 0,

weWr

where € = (-1)* and rk is the Fy-rank of the algebraic group concerned, and R%G is the
Deligne-Lusztig induction of (T, 0).

Theorem 5. (Lusztig, Srinivasan, [LS, Theorem 3.2]) Let G = GL;;(q). For some choice of ¢, the
virtual character Rg@ is an irreducible character of GF. Moreover, all irreducible characters of GF are
of the form Rg@ foratriple (L, @, 0). The characters associated to the triples (L, ¢, 0) and (L, ¢, 0")
and distinct if and only if one of the following conditions is satisfied

e (L,0)and (L', 0') are not GF -conjuguate;
o (L,O)=(L',0")and ¢ + ¢’.

Therefore, the calculation of the values of the irreducible characters of GL,(q) is reduced
to the calculation of the values of Deligne-Lusztig characters, i.e. virtual characters of the
form R(T;Q.

Clifford Theory

Let 0 be an automorphism of order 2 of GL,,. It defines a semi-direct product GL,(g) >
Z./27Z. This group will be denoted by GL,,(q) <<o>(or simply GL;(g).<0>) in order to specify
the action of 1 € Z/27. We will assume that o is an exterior automorphism. Regarded as
element of this non-connected group, o = (Id, 1) satisfies 0?2 =1 and oga‘l = 0(g), for all
g € GL,(9).

The representations of GL,(q) = <o> are related to the representations of GL,(gq) by the
Clifford theory in the following way. Let H be a finite group and let N be a normal subgroup
of H such that H/N =~ Z/rZ with r prime, and let let x be an irreducible character of H. We
denote by xn the restriction of xy to N. Then

e Either yy is irreducible;
e Oryn= EB: 0;, where 6; € Irr(N) are some distinct irreducible characters.

Moreover, the 0;’s form an orbit under the action of H/N on Irr(N). Conversely, xn € Irr(N)
extends to an irreducible character of H if and only if it is invariant under the action of H/N
by conjugaction. If x is such an extension, we obtain all other extensions by multiplying x
by a character of H/N.

Denote by Irr(GL,(g))° the set of o-stable irreducible characters, i.e. those satisfying
X = x oo. The irreducible characters of GL,(g) =<o> are either an extension of a character
X € Irr(GL,(9))? or an extension of y ®“ x with y a non o-stable character of GL,(g). Note that
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the extension of y @y for x non o-stable vanishes on the component GL,(g).0, whereas two
extensions of y € Irr(GL,(q))? differ by a sign on GL,(g).0. Their values on GL,(q) are then
given by the character table of GL,(g). Once we fix an extension f for all x € Irr(GL,(g))°,
it remains for us to calculate the restriction of ¥ on GL,(g).0. If no confusion arises, we will
also say that ¥|gL,(g).c is an extension of x to GL,(q).0.

The conjugacy classes of GL,(g).<o> consist of the conjugacy classes of GL,(q) that are
stable under o, of the unions of pairs of conjugacy classes of the form (C, ¢(C)), with C C
GL,(g) non o-stable, and of the conjugacy classes contained in GL,(g).0. From the equality

1
#o-stable classes + E#non o-stable classes + #classes in GL,(g).0

L8) =#classes of GL,(g).<o>
' =#irreducible characters of GL,(g).<o>

1
=2#o-stable characters + E#non o-stable characters

and from the fact that #o0-stable classes = #o0-stable characters, we deduce that
(1.9) #classes contained in GL,(g).0 = #o0-stable characters.

So the table that we are going to calculate is a square table, its lines and columns being
indexed by the o-stable irreducible characters of GL,(q) and the conjugacy classes in GL,(g).0
respectively. However, there is no natural bijection between the classes and the characters.

Deligne-Lusztig Induction for GL,(g) <<o>

Letobeasaboveandletp : GL,,(q) — V be a o-stable irreducible representation. Defining
an extension of p, say p, is to define an action of o on V in such a way that j(c)* = Id and
that p(a)p(g)ﬁ(a)‘1 = p(o(g)) for all g € GL,(gq). Except in some particular cases, we do
not know how to do it. However, when o is quasi-central, we have a natural action of o on
the Deligne-Lusztig varieties X, associated to w € WY, the subgroup of o-fixed elements of
W = W¢(Ty), with T being a o-stable and F-stable maximal torus of G. This allows us to
define the extensions of the Deligne-Lusztig characters R%wl to GL,(9).<0> By expressing a
unipotent character of GL,(g) as a linear combination of these Deligne-Lusztig characters, we
can obtain an extension of this unipotent character. More concretely, if we take an F-stable
and o-stable Borel subgroup By C G, the variety Xy, consists of the Borel subgroups B such
that (B, F(B)) are conjugate to (Bo, WwBow 1) by G, where w is a representative of w € W in G
which can be chosen to be o-stable. The action of 0 on Xy, is just B + ¢(B), which induces an
action on the cohomology. The character R%wl thus extends into the function

g0 = Tr(go|H:(Xw, Qr)),
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denoted by R?Z;fol. This is a particular case of the Deligne-Lusztig induction for non-
connected reductive groups developed by Digne and Michel [DM94]. More generally, given
an F-stable and o-stable Levi factor of a o-stable parabolic subgroup, we have the maps RE(‘; ,
that sends LF-invariant functions on LF.¢ to GF-invariant functions on G .o.

Each irreducible character y of G' is induced from an irreducible character x; of Lf,
where L is an F-stable Levi subgroup as in the setting of Theorem [5| If L is moreover an
o-stable factor of some o-stable parabolic subgroup, and x; is a o-stable character of LF, then
X is also o-stable. Suppose that we know how to calculate {7, an extension of x1, to Lf .o, then
the character formula will allow us to calculate the values of ng X1, which coincides with
the values of an extension of y on GF.o.

Quadratic-Unipotent Characters

However, there exist some o-stable characters of G! that can not be obtained by the above
procedure. Let us look at some examples for n = 2, 3 and 4. We take as o the automorphism
¢ 3,'¢713;! with ¢ € GL,(k), where

1 1
(1.10) d2 = ( 1 ), ds = 1 , da =
1

If G = GLy(k), and T is the maximal torus consisting of diagonal matrices, 1 the trivial
character of IF;, 1) the order 2 irreducible character of IF}, and if we denote by 0 the character
(1,1) of TF = IF, x I, then one can verify that R%G is an o-stable irreducible character while
0 € Irr(TF) is not o-stable.

Besides, a priori, the map ng is not defined for LF.<o>, but for the normaliser N¢ y-(L, P)
(the set of elements that simultaneously normalise L and P). If L is a o-stable Levi factor
of a o-stable parabolic subgroup P, then Ng «4-(L, P) = L.<0>, otherwise, the two groups
are not the same, as the following examples show. In fact, what really matters is whether
Ng.<o>(L, P) meets the connected component G.o.

If G = GL4(k) and L = Cg(t) with t = diag(1l,-1,-1,1), then L = GL;(k) X GLy(k) and
0 := (Id odet, 1 o det) is a o-stable irreducible character of LF and thus induces a o-stable
irreducible character of GL4(g). However, L is not a o-stable Levi factor of a o-stable parabolic
subgroup, because otherwise L = SL, (k) X SL,(k) would be a Levi subgroup of G? = Sp, (k).
In this case, Ng. <4>(L, P) = L U Lno, where n € Ng(L) permutes the two components of L. So
we are back to the previous example, i.e. 0 is not no-stable.

Now we take L = GL3(k) X k" and a character with semi-simple part (Id, ) with respect to
this direct sum. In this case, L itself is not o-stable. In fact, it is not conjugate to any o-stable
Levi subgroup. So N¢ «»~(L, P) C G, no matter which parabolic subgroup is P.

The above examples are typical. Let L = Gj X G; be a Levi subgroup of G, where
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G1 = GLy(k) and Gy = GL,—(k). Let xi(resp. x2) a unipotent irreducible character of
Gf (resp. Gg ). The character x1, := x1 ® x21 (or x11® x2) always induces a o-stable irreducible
character of GF, where we regard 1 as a central character of Gf or Gg . But L does not fit
into Deligne-Lusztig theory for non-connected groups: either L is not conjugate to any o-
stable Levi factor of o-stable parabolic subgroups, or x is not a o-stable character of LF.
The irreducible characters of GL,(g) of the form x;, as above are called quadratic-unipotent.
They are parametrised by the 2-partitions of n. Their extensions to GL,(q).<o>have been
computed by J.-L.Waldspurger by using character sheaves for non-connected groups. The
main result is as follows.

Let (4, u-) be a 2-partition of n, to which is associated the data (¢, ¢, h1, hy), where
@+(resp. ¢-) is an irreducible character, determined by the 2-quotient of u,(resp. u-), of
the Weyl group W, (resp. 2_) of type Cy, (resp. Cy_), while /1 and hy are two non negative
integers related to the 2-cores of u, and p—. Wehaven = 2N, + 2N_ + hy(hy +1) + h%.

Theorem 6 (Waldspurger). The extension of the quadratic-unipotent character of GL,,(q) associated
to (U4, k-) is given up to a sign by
L11) RS7 = 2 Y @) ()RS o

P b T8

w_eW_

In the above expression, Ly, is a o-stable and F-stable Levi factor, isomorphic to the
product GL, ¢, 41 12 (k) X Ty, X Ty with w, € W, of a o-stable parabolic subgroup, and ¢w
is some kind of "tensor product” of ¢(h1,h2), 1 and 7}, where ¢(hy, h2) is a cuspidal function
on GLy, g 41)412 (k).o which is supported on an isolated conjugacy class; 1(resp. ) is the
extension of the linear character 1(resp. 1) of T§,+ (resp. T ). If - is the empty partition and
u+ has trivial 2-core or the 2-core (1) according to the parity of n, then Ly becomes a o-stable
maximal torus and 28, is isomorphic to W, the o-fixed subgroup of the Weyl group of G.

Parametrisation of o-Stable Characters of GL,(q)

A general o-stable irreducible character is the product of a quadratic-unipotent com-
ponent and a component that looks like induced from an o-stable Levi factor of a o-stable
parabolic subgroup. See Proposition and Proposition for the details.

Suppose that x is a o-stable irreducible character corresponding to (M, 0, ¢) as in Theorem
We write 6 = (;); with respect to the the decomposition of M! into a product of some
GL,,(9"")’s, where a; are some characters of IF;,I, and we have omitted the determinant map
from the notation. It is easy to see that the action of o sends x to the character associated
to (6(M), 0.0, 0.¢). According to the parametrisation of the irreducible characters of GL,(q),
there exists some

g € Ngr(o(M), M) = {x € GF | xa(M)x™ = M}
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such that 0.6 = ad’ g0. Note that the value of a; only depends on the determinant of the
corresponding factor. The action of ¢ inverts the determinant while the conjugation by g
does not change the determinant. We can then conclude that for each «;, its inverse ai_l is
also a factor of 0. The factors satisfying ozl.'l = a; form the quadratic-unipotent part.

Fix a o-stable maximal torus T contained in a o-stable Borel subgroup B C G and identify
the simple roots with the Dynkin diagram of G. If I is a o-stable subdiagram of the Dynkin
diagram of G, then it defines a o-stable Levi factor L; of some o-stable standard parabolic
subgroup containing B. It has at most one o-stable component, denote by Ly, and so L; =
Lo X L1 so that 0 non-trivially permutes the factors of L;. All o-stable standard Levi subgroup
corresponds to such an I. We associate a quadratic-unipotent character x to Lg ,and a pair of
characters, with semi-simple parts a; and ozl.‘l respectively, to each pair of components of L;
that are exchanged by 0. By defining the unipotent parts of the character in a way compatible
with the action of ¢, we obtain a o-stable character of Lf , denoted by x1. Then R(L; (xo®x1)isa
o-stable irreducible character of GF (for suitable a;’s), and all o-stable irreducible characters
of GLy(q) are obtained this way. We will calculate the extension of x, = xo ® x1 to Lf.0,
and then apply the map ng . Note that if we regard x as induced from (M, 0, ¢) following
Theorem [5| then M is not necessarily o-stable.

Extensions of 0-Stable Characters

The extension of the quadratic -unipotent part determined, the problem is reduced to the
following.

Problem. Put L1 = Go X Gy, Go = GLy,(k), and let o¢ be an automorphism of Gy of order 2.
Denote by Fy the Frobenius of GL,,(k) that sends each entry to its g-th power. Define an
automorphism o of L1 by

(L12) (8, 1) ¥ (00(h), 00(8)),
and a Frobenius F by

e Linear Case: (g,h) — (Fo(g), Fo(h)),

e Unitary Case: (g,h) —> (Fo(h), Fo(g)).

The problem is to decompose the extension of a o-stable irreducible character of UlT to L‘; .<0>
as a linear combination of Deligne-Lusztig characters.

Let us first look at the linear case. We have L} = Ggo X Ggo. Let x be a unipotent character
of Ggo. Then y® x € Irr(Llf ) is o-stable. In order to calculate its extension, we separate ¢ into
two automorphisms, one sending (g, /1) to (o0(g), oo(h)), the other one, denoted by 7, sending
(g, h) to (h, g). Denote by t an extension of x to Ggo <0o> Consider the t-stable character Y& i
of Gg”<ao>><GgU<ao>. Its extension to (Gg°<ao>><Gg°<ao>) > <T>restricts to an irreducible
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character y of Lf .<0>, regarded as a subgroup of (Gg°<ao>><Gg°<00>) = <71> This gives an
extension of Y ® x. Some linear algebra calculation shows that ¥((g, h)o) = x(goo(h)). The
latter is the value of a character of GL,(g).

The unitary case is a little more comphcated and relies on the result of the linear case. In
this case, L] = G, X ,and the action of 0 on G, X is given by g — 0oFo(g), which can be thought
of as another Frobemus endomorphlsm That is where the Shintani descent intervenes,
which relates the functions on G, i .00Fp to the functions on GJOF 0 F2 Note that (59Fg)? = F2
acts trivially on GSOFO. We know how to calculate the characters of GSOFU = GL,,(9), which
extends trivially to GSOFO .Fé. Thus, we obtain the extension of a character to Lf .0. The result
is as follows.

Let 61 be a g-stable regular linear character of L} and let ¢ € Irr(ng)F . Note that a o-
stable linear character extends trivially to L!.0, and that W/ is in fact a product of symmetric
groups.

Theorem 7. Let x1, be a o-stable irreducible character of L’I defined by (0, ¢). For some choice of @,
the extension of x, to L{ .0 is given up to a sign by

(L13) R0 = Wg I Y @@P)RE 0.

(2
we WL1

Combined with the preceding theorem, it gives the theorem below.

According to the parametrisation of o-stable characters, each x € Irr(GL,(g))° is of the
form RE()(O ® x1), where L = Ly X L1 is a o-stable and F-stable Levi factor of some o-stable
parabolic subgroup, xo is a quadratic-unipotent character of Lg and y1 isa o-stableirreducible
character of Lf whose semi-simple part and unipotent part are defined by 61 € Irrreg(Lf ) and
¢ € Irr(W] ) respectively. In the following theorem, we use the notations of Theorem@

Theorem 8. For some choice of ¢, the extension of x is up to a sign given by

(114) Foro = W], x Wy x WY G@)ps 4 )p-(wIRGE;  (1Bpw).

(w,w+,w_)€W‘L’1 XU, XW_

Green Functions

We remark that in Rﬁ’v'ijqbw appears the generalised Green functions associated to the
centraliser of a semi-simple element in LF o, which is in general a product of GL;,(9), Sp,,,,(9),
SO2u+1(g) and SO (@), where the negative sign means that the Frobenius is twisted by a
graph automorphism of order 2. In [L85, V], Lusztig gives an algorithm of calculating the
generalised Green functions of classical groups. The paper of Shoji [Sh83] is also good
reference for Green functions. The values of the (generalised) Green functions have been
computed by various people, and we will not make explicit theirs values except in the
examples.
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Preliminaries on Representations and
Algebraic Groups

II.1 Notations and Generalities

We introduce the notations, terminology and some basic results that will be used later.

In this section, we work over an algebraically closed field k of arbitrary characteristic. The
positive characteristic version of these results is essential to the problem of counting points
of character varieties over finite fields. Whenever we work with some reductive group G,
we will assume

Assumption. chark 1 |G/G°|.

This implies that all unipotent elements of G are contained in G° and that all quasi-semi-
simple elements are semi-simple.
Throughout the thesis, we will denote by i a square root of (—1).

II.1.1 Generalities on Algebraic Groups

II.1.1.1  Let G be an arbitrary linear algebraic group, which is not necessarily connected.
A closed subgroup H of G is a Levi factor of G if G is the semi-direct product of H and R,(G).
For any linear algebraic group in characteristic 0, Levi factor exists, and any two Levi factors
are conjugate under R, (G). See [Ri88] 1.2.4.

A closed subgroup P C G is parabolic if G/P is complete. By [Spr] Lemma 6.2.4, P is
parabolic in G if and only if P° is parabolic in G°. A closed subgroup of G is called a Levi
subgroup if it is a Levi factor of some parabolic subgroup.

An algebraic group G is reductive if G° is reductive. Levi factors are necessarily reductive.

For g € G, we will often denote C;(g) by HS.

We denote by X,.(G) the set of cocharacters of G and by X*(G) the set of characters of G.
Note that X.(G) = X¢(G°).

23
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IL1.1.2 Let Gbe areductive group acting on an algebraic variety X. Let A € X,(G°) and let
x be a closed point of X. The G-action induces an action of G, via A. Denote by A, : G, — X,
t = A(t).x the orbit morphism. We say the limit lim; o A().x exists, if the morphism A,
extends to G, — X, and the limit is defined as the image of 0 € G,, denoted by A(0).x.

Since G is reductive, there is a unique closed orbit contained in the closure of each orbit.
We assume from now on that G is reductive.

Theorem I1.1.1.1 (Hilbert-Mumford Theorem). Let x € X be a closed point and let O be the unique
closed orbit in G.x, Then there exist A € Xo(G) and a closed point y € O such that lim;_,o .x = y.

I1.1.1.3  Let A be a cocharacter of G°. For the G°-conjugation action on G, we put
Py={geG]| Prr(} A(t).g exists}

(I.1.1.3.1) Ly={geGllimA(t).g =g}
Uy={geG| Prrol/\(t).g =1}

Then P, is a parabolic subgroup of G, L, is a Levi factor of Py and U, is the unipotent radical
of P,. Beware that for non-connected G, not all parabolic subgroups are of the form P,.

The identity component P can also be defined as the unique closed subgroup of G® whose
Lie algebra is generated by weight subspaces in g := Lie(G) with non negative weights with
respect to the adjoint action of G, on g. Thus U, = U] is associated to those subspaces with
positive weights and L = Cg-(Im A).

We see that Py € Ng(P}) and Ly C Ng(L3, P7) := Ng(L3) N Ng(P?).

Proposition I1.1.1.2. ([DM94, Proposition 1.5]) Let P° C G° be a parabolic subgroup, L° a Levi
factor of P° and U the unipotent radical of P°. Then we have the Levi decomposition

Ng(P?) = U= Ng(L°, P°).

Note that all Levi factors of Ng(P°) are necessarily of the form Ng(L°, P°) for some Levi
factor L° of P°.

Proposition I1.1.1.3 ([Ri88] Proposition 2.4). Let P° C G° be a parabolic subgroup and let L be a
Levi factor of P := Ng(P°). Then there exists A € Xo(G®) such that P = Py, L = Ly, and R,(P) = U,.

Given a parabolic subgroup P° C G°, Ng(P°) is the largest parabolic subgroup of G that
has P° as its identity component and if P° = P for some cocharacter A, then P, is the union of
a subset of connected components of Ng(P°). Note that P° itself is also a parabolic subgroup
of G.

IL.1.1.4  For any parabolic subgroup of the form P), there is a homomorphism of algebraic
groups Py, — L), p = A(0).p, which is none other than the projection with respect to the Levi
decomposition Py = Uy = L,.
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IL1.1.5 In general, for an arbitrary parabolic subgroup P° of G°, P := Ng(P°) does not
necessarily meet all connected components of G. Let us determine the connected components
of G that meet P.

Let G! be a connected component of G and denote by P the G°-conjugacy class of P°.
Observe that the conjugation of G! on G° induces a well-defined bijection from the set of
G°-conjugacy classes of parabolic subgroups of G° into itself. Then P meets G! if and only
if some element of G! normalises P°, if and only if G! leaves P stable. The set of conjugacy
classes of parabolic subgroups of G° are in bijection with the set of subsets of vertices of the
Dynkin diagram of G°. Therefore, P meets G! if and only if the subset of the Dynkin diagram
corresponding to % is stable under the induced action by G'.

II.1.2 Irreducible and Completely Reducible Subgroups

The definitions are natural generalisation of the case of connected groups.
I1.1.2.1  Let us recall the notions of complete reducibility and irreducibility of algebraic
subgroups. For the moment, G can be any reductive algebraic group.

Definition I1.1.2.1. A closed subgroup H of G is G-completely reducible if for any parabolic
subgroup P C G containing H, there is a Levi factor of P containing H. A closed subgroup H
of G is G-irreducible if it is not contained in any subgroup of of the form N¢(P°) with P° C G°
being a proper parabolic subgroup.

In particular, an irreducible subgroup is completely reducible. Clearly, if G = G°, then
the above definition coincides with the definitions for connected reductive groups.

Lemma I1.1.2.2. We have
(i) A closed subgroup of G° is irreducible in G° if and only if it is irreducible in G;

(ii) A closed subgroup of G° is completely reducible in G° if and only if it is completely reducible

inG;
(ii) If H is a completely reducible subgroup of G, then H N G° is a completely reducible subgroup
of G°.
Proof. The first assertion is obvious. The rest is [BMR, Lemma 6.12]. O

I1.1.2.2  The following result is well-known.

Theorem I1.1.2.3. In characteristic 0, a closed subgroup of G is reductive if and only if it is G-
completely reducible.

This follows from the following results. See [Ri88] 1.2.4(c) and [Ri88] Proposition 2.6.
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Proposition I1.1.2.4 (Mostow). Let H be a reductive subgroup of G over an algebraically closed
field of characteristic 0. Then H is contained in the Levi factor of some parabolic subgroup of G.

Proposition I1.1.2.5. Let H be a closed subgroup of G and let M be a Levi factor of it. Then there
exists A € Xo(G®) such that HC Py, M C L, and R,(H) Cc U,.

IL.1.2.3  Given an n-tuple of elements of G, say x, denote by H(x) the closed algebraic
subgroup of G such that H(x)(k) is the Zariski closure of x. We will write Stabc-(x) instead of
Cco(x). Obviously Stabg:(x) = Stabg- (H(x)).

Theorem I1.1.2.6. Let G be a reductive group and let x = (x1,...,x,) € G", the direct product of n
copies of G. Then the orbit G° x is closed if and only if H(x) is completely reducible.

Proof. Note that the orbit G.x is closed if and only if G°.x is closed. In characteristic 0, by
Theorem [[I.1.2.3, we can apply [Ri88] Theorem 3.6, and in positive characteristic, this a
combination of [BMR, §6.3] and [Ma, Proposition 8.3]. O

We will need the following.

Proposition 11.1.2.7 ([Ri77] Theorem A). Let X be an affine algebraic variety with a G-action. If
the G-orbit of x € X is closed, then Stabg(x) is a reductive group.

Recall that for an G-action on an algebraic variety X, an orbit G.x, x € X, is called stable,
if it is closed and Stabg(x)/Zx is finite, where Zx := Nyex Stabg(x) is the kernel of the action.

Theorem I1.1.2.8. The G°-orbit of x € G" is stable if and only if H(x) is an irreducible subgroup of
G and Stabz, (x)° = Z{..

For G = G°, this is [Ri88, Theorem 4.1 and Proposition 16.7]. Let us suppose G # G°.
The proof will be essentially the same as the case G = G° but one needs to be careful when
Z, # Z[,. For example, if G° = GL,(k) and a connected component of G acts on Zg- = k* by
x - x~ ! so that Zg = {+1}, then the irreducibility of the subgroup H(x) of G with x ¢ G° does
not imply that G°.x C G" is stable.

Proof. Let us first show that the irreducibility of H(x) with the technical assumption implies
the stability of its orbit. We prove by contradiction. Suppose that the orbit G°.x is not closed.
By the Hilbert-Mumford Theorem there exists A € X,(G) and x” in the unique closed orbit
contained in the closure of G° x, such that lim;_,o A(f).x = x". In particular, the image of x must
be contained in Py in order for the limit to exist. Since x # x’, A ¢ X¢(Z(,) and P is a proper
parabolic subgroup of G°. This contradicts the irreducibility of H(x). Suppose now that the
orbit G°.x is closed but not stable. So Stabg.(x) strictly contains Z¢,. By Proposition [[1.1.2.7]
there exists A € X,(Stab_.(x)) such that A ¢ Xe(ZZ). By the hypothesis in the statement of
the theorem, we have in fact A ¢ X.(Z2,). Again, we have a proper parabolic subgroup
containing H(x), contradicting the irreducibility.
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To prove the other direction, suppose that H(x) is contained in some proper parabolic
subgroup P ¢ G. By Proposition there exists A € X,(G) such that P = P,. Let
x" = limy_,0 A(t).x and so H(x") € Ly. Thus A € X,(Stabg-(x")) and x’ is not a stable point. If
G°.x is not closed, then by definition x is not stable. If G°.x is closed, then x’ is conjugate to
x, therefore x is not stable. O

I.2 Finite Classical Groups

II.2.1 Partitions and Symbols

I12.1.1  We denote by P, the set of all partitions of the integer n > 0 and by % the union
UnPn. A partition is written as A = (A; > A, > ---), a decreasing sequence of positive
integers, or as A = (1™,2™,...) where m; is the multiplicity of i that appears in A. Each
A; is called a part of A. We denote by |A| the size of A and /(1) the length of A. For any
e-tuples of partitions A = (A, ..., 1)) € P (direct product of e copies), its size is defined
by [A] := ¥; |A?] and its length is defined by I(A) := ¥ ;[(A?). Denote by P, (e) the set of all
e-partitions of n, i.e. those A with |A| = n. In the cases that concern us, e = 2.

I1.2.1.2 A partition A = (1"™,2™,...) is called symplectic if m; is even for any odd i. To
each symplectic partition A one associates an index x(A) = #{i pair|m; > 0}. We denote
by P/ C P, the subset of symplectic partitions. A partition A = (1",2"2,...) is called
orthogonal if m; is even for any even i. To each orthogonal partition A one associates an index
k(A) = #{i impair|m; > 0}. We denote by P%* c P, the subset of orthogonal partitions. The
orthogonal partitions with x = 0 are called degenerate.

I1.2.1.3  Given a partition A, we take r > [(A), and we put 6, = (r—1,r-2,...,1,0). Let
Qyr > >2y)and Qy; +1>--- > 2y;l + 1) be the even parts and the odd parts of A + §,,
where the sum is made term by term and A is regarded as an decreasing sequence of integers
(A;); with A; = 0 for i > I(A).. Denote by A?) the partition defined by /\]((0) = Yk — lop + kand
denote by A() the partition defined by A]((l) =y, —h +k Then (A©, AM), is a 2-partition that
depends on r. Changing the value of  will permutes A® and A(V. The 2-quotient of A is then
the unordered pair of partitions (1@, A1),

Denote by A’ the partition that has as its parts the numbers 2s +,0<s<[;—1,t=0,1.
We have I(A') = I(A). The 2-core of A is the partition defined by (A, — I(A) + k)1<k<ir)- It is
independent of r and is necessarily of the form (d,d -1, ...,2,1), for some d € Z>0@ Fixing
r, the above constructions give a bijection between the partitions of n with the same 2-core
and the 2-partitions of (n —r)/2.

I1.2.1.4  We refer to [L84a] for the notion of symbols.
®q
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Fix an even positive interger N. A symbol of symplectic type is the equivalence class of
ordered pairs (A, B) with A a finite subset of {0,1,2,...} and B a finite subset of {1,2,3,...}
satisfying the following conditions

(a) For any integer i, the set {i,i + 1} is contained neither in A nor in B;
(b) |A] + |B|is odd;
(€) Laeaa + Lpepb = 3N + (1Al + BN(Al + Bl - 1);

under the equivalence that identifies (A, B) and ({0} U (A + 2), {1} U (B + 2)). The set of these
symbols is denoted by W,.

Fix a positive integer N > 2. A symbol of orthogonal type is the equivalence class of the
unordered pairs (A, B) of finite subsets of {0,1,2, ...} satisfying the following conditions

(a) For any integer i, {i,i + 1} is contained neither in A nor in B;
(©) Yaead+ Lpepb = 3N + 3((Al + Bl - 1)* = 1);

under the equivalence that identifies (A, B) and ({0} U (A + 2),{0} U (B + 2)). The set of these
symbols is denote by W3,. A symbol of orthogonal type is called degenerate if it is of the form
(A, A). The subset of non degenerate symbols is denoted by ‘I’;f}

Two symbols are similar if they admit representatives (A, B) and (A’, B’) such that AUB =
A'UB and ANB=A"NB.

I1.2.1.5 To each symplectic partition is associated a symbol of symplectic type in the
following manner. Let A be such a partition and let r be an integer such that 2r > (7).
Denote by (2y; > --- > 2y,) and (2y; +1 > --- > 2y; + 1) the even parts and the odd
parts of A + 0z,. One can verify that there are indeed r even parts and r odd parts. Put
A={0tU{y, +r+2-k|1<k<rlandputB={yy+r+1—-k|1<k<r} Then(A,B)isa
symplectic symbol, whose similarity class is independent of r.

To each orthogonal partition is associated a symbol of orthogonal type in the following
manner. Let A be such a partition and let r be an integer such that r > I(1). Denote by
yr > -+ >2yppzy) and 2y +1 > -+ > 2]/{(”1)/2] + 1) the even parts and the odd parts of
A + 6,. One can verify that there are indeed [r/2] even parts and [(r + 1)/2] odd parts. Put
A={0tU{y, +[(r+1)/2] =k |1 <k <[(r+1)/2]} and B = {yx + [r/2] =k | 1 <k < [r/2]}. Then
(A, B) is a symbol of orthogonal type, whose similarity class is independent of r.

I1.2.2 Weyl Groups

Some basic facts about Weyl groups of type B, C;; and Dy,.
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I1.2.2.1  Denote by wy the permutation (1, -1)(2,-2)- - - (m, —m) of the set

The set of permutations of I that are invariant under wy is identified with (Z/2Z)™ ~ G,,.
This is the Weyl group of type B,;, and C,,, which will be denoted by IS. We will identify
7,27 with i, the roots of unity of order 2, and denote its elements by signs +1. An element
of W, written as

(IL2.2.1.1) w=((€1,---,€m),T) € (Z|2Z)" = Sy,
where ((1,...,1,¢;,1,...,1),1), & = -1 is the permutation (i, —i), and ((1,...,1),7) is the
permutation

i—10), —i (=i =-10).

I1.2.2.2 The permutation 7 is decomposed into cycles 7 = cy, ---cj, where the disjoint
subsets I, C {1,...,m} form a partition of {1,...,m} and ¢, is a circular permutation of the
indices in I,. The permutation 7 determines a partition (71, ..., 7;) of m, also denoted by 7,
with 7, = |I,|, where [ = I(7) is the length of the partition.

Forall1 <7 <, puté = [[ig, € and €, = (€x)ke1,- Define the permutations

(I1.2.2.2.1) ©=]]a, V=1]]a,

&=1 &=—1

so that 7 = 107, Also denote by 70 = (150)) and ™ = (79)) the associated partitions. We
then have a 2-partition (t(¥), 7)), which determines the conjugacy class of w. We sometimes
call it a signed partition of 7. The conjugacy classes and irreducible characters of 2, are
both parametrised by by the 2-partitions of size n. Write Iy = I[(t?)), and [; = I((V).

11.2.2.3  The Weyl group of type D,,, denoted by 2%, is the subgroup of WS, consisting of
the elements ((€1, . .., €x), T) such that [ ] €; = 1. The parametrisation of the conjugacy classes
of W) is given as follows. (See [Cal Proposition 25]) Let T be a signed partition. If each part
of 7 is even and the &’s are all equal to 1, then the conjugacy class of ¢, corresponding to T
splits into two classes of WL Otherwise, this conjugacy class restricts to one single class of
WD,

The element ((1,...,1,-1),1) belongs to QBSZ \ WD Tt can be realised as an element of
O21(k) \ SOz (k). Its conjugation action on SOy, (k) permutes the two simple roots e;,—1 — ey,
and e,,—1 + e, and thus induces a non-trivial graph automorphism.



30 CHAPTER II. PRELIMINARIES ON REPRESENTATIONS AND ALGEBRAIC GROUPS

I1.2.3 Unipotent Classes and Centralisers

The parametrisation of unipotent conjugacy classes of finite classical groups is well
known. We refer to ([LiSe, Chapter 3, Chapter 7]) for a more complete survey. In this
paragraph, G will be one of the groups GL;(k), Sp,,(k), SO, (k) and O, (k). If the Frobenius F
is split, we denote by GL,(g), Sp,,(9), SO.(q) and O,(g) the associated finite groups, and if
F induces a graph automorphism of order 2, we denote by GL, (g), SO, (k) and O,, (k) (only
when 7 is even for the orthogonal groups) the associated finite groups. We will use the
notations SO, (k) and O, (k) for all n, understanding that € can be — only if 1 is even and that
+ corresponds to the split groups.

I12.3.1  The unipotent classes of GL,(k) are parametrised by #,, with the sizes of Jordan
blocks given by the corresponding partition. The unipotent classes of Sp,, (k) are parametrised
by P. These are represented by the Jordan matrices in GL,(k) that belong to Sp, (k). The
unipotent classes of O, (k) are parametrised by P%*. These are represented by the Jordan
matrices in GL, (k) that belong to O, (k).

I1.2.3.2 Let u be a unipotent matrix in G, associated to the partition A = (1",2"2,...).
In general, we have Cg(u) = VR, where V is the unipotent radical of Cg(u), whence an
affine space, and R is a reductive group given as follows. For any symplectic or orthogonal
partition A, let x be the x(A) defined in §I1.2.1.2

If G = GL,(k), then

In particular, Cg(u) is connected.
If G = Sp,,(k), then

R = HSPm,-X HOmi.

iodd ieven
So Cg(u)/Cqg(u)° = (Z/2Z)".
If G = O, (k), then

R[] Owx [] P

iodd ieven
So Co(u)/Co(u)® = (Z/2Z)".

In the case G = O,(k), an element z € Cg(u) belongs to SO, (k) if and only if its equivalence
classZ = (e1,...,ex) € Cg(u)/Cg(u)° satisfies [T e; = 1, where ¢; = +1. So Cso(u) = (Z,/22)<!
if ¥ > 0. It follows that if the G-conjugacy class of u contains an F-stable element, then it
contains one single G'-class if G = GL5(k), 2~ Gf-classes if G = Sp,,(k), and 2¢~1 GF-classes
if G = SO, (k) as long as x > 0. The G-conjugacy class of u does not contain any element of
GF only when G = O(g) and x(A) = 0. If G = O;/(g) and k(1) = 0, the G-conjugacy class
contains one single GF-class, which splits into two classes for the conjugation by SO,(g).
These two classes are called degenerate. Fixing u, which corresponds to the partition A, let
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U be an element representing the Gf-class associated to e := (ey, ..., ex) € Cg(u)/Cq(u)°. We
have Cg(ue)f = VFRF, where VF = ]Fd‘mv and RF is given as follows

If G = GL;,(g), then
= [ [ L.

= [[sp.@x [] 0@

If G = Sp, (), then

iedd ieven
If G = O5,(9), then
= [ Oh@x ] sp..@.
iodd ieven

subject to the condition that if all of the m;’s are even, then [] e; = €.
In the above formulas, we have renumbered the e¢;’s by the parts of A, i.e. i is the part of
A corresponding to e;.

I1.2.3.3 Wetakeuand A asabove. We have dim Sp, (k) = n(n+1)/2, dim SO, (k) = n(n—-1)/2,
and the following formulas.

(I12.3.3.1) dim Cqr (1) = Z im? +2 )" imm;
i<j
. 1
(I1.2.3.3.2) dim Csp (1) = > Z zm + Z imim; + 5 Z ™
i<j iodd
(I.2.3.3.3) dim Cso(u) = > Z zm + Z imim; — = Z m;
i<j zodd

For the unipotent radicals, we have,

(I1.2.3.3.4) dim V(u) = Z(z —ym? +2) " immj, if G = GLy(K),
i<j
(11.2.3.3.5) dim V(1) = 3 Z(z — ) + ; imim; + i;‘n m;, if G = Sp, (k),
(11.2.3.3.6) dim V() = Z(z — 1ym? + Z i + Z m;, if G = SOy (k).
i<j ieven

The cardinality of finite classical groups is as follows.

(I12.3.3.7) |GLu(@)] = g2 T ](g" - 1)

(11.2.3.3.8) GLy @) = "2 [ [ - 1)),
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(11.2.3.3.9) 1P, @1 = 4" [ J@* -1,
i=1
(I1.2.3.3.10) 1SOma1(9)| = 4™ H(q% ~1),
i=1
m=1 '
(I1.2.3.3.11) 1502 (q)| = g D(g™ - 1) H(qu ~1,
i=1
m-1 '
(I1.2.3.3.12) 1505, ()] = ¢ V(g™ +1) H(qm ~1).

i=1

I1.2.3.4 The unipotent classes of Sp, (k) are in bijection with the symplectic partitions,
and so in bijection with the similarity classes of de W;([L84a, 12.4(c)]). The unipotent
classes of O, (k) are in bijection with the orthogonal partitions, and so in bijection with the
similarity classes of W (k). Note that a degenerate partition alone forms a similarity class.
([L84a, 13.4(c)]). The symbols in the sinilarity class associated to the symplectic partition A
are in bijection with (Z/27)*, and so in bijection with the GF -conjugacy classes contained
in the G-class corresponding to A. The symbols in the similarity class associated to the
non degenerate orthogonal partition A are in bijection with (Z/2Z)*"!, and so in bijection
with the GF-conjugacy classes contained in the G-class corresponding to A. The similarity
class associated to a degenerate orthogonal partition A consists of a single element, which
corresponds to the two degenerate classes of SO,(g), or the one conjugacy class of O,(g),
corresponding to A. For SO}, (g), there is no G'-conjugacy class corresponding to a degenerate
partition, so the degenerate symbols do not correspond to any conjugacy classes.

II.3 Non-Connected Algebraic Groups

II.3.1 Quasi-Semi-Simple Elements

We say that a not necessarily connected algebraic group G is reductive if G° is reductive.
In this section we denote by G such a group. If G is defined over IF;, we denote by F the
Frobenius endomorphism.

I1.3.1.1  An automorphism of G° is quasi-semi-simple if it leaves stable a pair consisting of
a maximal torus and a Borel subgroup containing it. An element of G is quasi-semi-simple
if it induces by conjugation a quasi-semi-simple automorphism. Let (T°, B°) be a pair
consisting of a maximal torus and a Borel subgroup containing it. Put B = Ng(B°) and T =
Ng(B°) N Ng(T°) to be the normalisers. We will write Ng(B°, T°) instead of Ng(B°) N Ng(T°).
Note that the identity component of T is T°, so there is no confusion with the notation. By
definition, an element of G is quasi-semi-simple if and only if it belongs to T for some B° and
T°.
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Proposition 11.3.1.1 ([Spa] II 1.15). An element ¢ € G is quasi-semi-simple if and only if the
G°-conjugacy class of g is closed in G.

Every semi-simple element is quasi-semi-simple ([St, Theorem 7.5]). Every element of
G normalises some Borel subgroup of G°. In each connected component of G, quasi-semi-
simple element exists, because all Borel subgroups and all maximal torus of G° are conjugate
under G°. For a given pair (I°, B°), the group T = N¢(T°, B°) meets all connected components
of G. Lets € G be a quasi-semi-simple element, every s-stable (for the conjugation) Borel
subgroup contains some s-stable maximal torus. Every s-stable parabolic subgroup of G°
contains some s-stable Levi factor ([DM94, Proposition 1.11] ). However, an s-stable Levi
subgroup of G° is not necessarily an Levi factor of some s-stable parabolic subgroup.

Let G! # G° be a connected component of G, and let s € G! be a quasi-semi-simple
element. Fix an s-stable maximal torus Ty contained in some s-stable Borel subgroup of G°.
The quasi-semi-simple G°-conjugacy classes in G' are described as follows.

Proposition I1.3.1.2. ([DM15][Proposition 7.1]) Every quasi-semi-simple G°-conjugacy class in G*
has a representative in Cr,(s)°.s. Two elements ts and t's with t, t’ € Cr,(s)°, represent the same class
if and only if t and t', when passing to the quotient To/[To,s], belong to the same W*-orbit, where
[To,s] is the commutator, which is preserved by W* := {w € Wg-(Tp) | sws™! = w).

Note that To/[To,s] = (T;)°/[To,s] N (T})°.
Lemma I1.3.1.3. ([DM18, Lemma 1.2 (iii)]) With T = T and s as above, we have,
(i) T =[T,s]-(T*)%;
(ii) [T,s] N (T°)° is finite.

In particular, dim T = dim(T®)° + dim|[T, s].

I1.3.1.2 Let L° be a Levi factor of some parabolic subgroup P° ¢ G°. Put P = Ng(P°)
and L = Ng(P°, L°) to be the normalisers. According to [Spr, Lemma 6.2.4], P is a parabolic
subgroup of G, in the sens that G/P is proper. Suppose that the Levi decomposition of P° is
given by P° = U = L°, where U is the unipotent radical of P°, then P = U < L. (See [DM94,
Proposition 1.5]) In particular, L is a Levi factor of P.

I1.3.1.3  Ifs € Gisaquasi-semi-simple element, then the centraliser H = C(s)° is reductive.
([Spa, §1.17]) If the pair (T°, B°) consists of an s-stable maximal torus and an s-stable Borel
subgroup of G° containing it, then Cg-(s)° is a Borel subgroup of H containing the maximal
torus Cro(s)° ([DM94, Théoreme 1.8(iii)]). More generally, we have

Proposition 11.3.1.4. For s and H as above, we have

(i) If (L°, P°) is a pair consisting of an s-stable Levi subgroup and an s-stable parabolic subgroup
containing it as a Levi factor, then Cp-(s)° is a parabolic subgroup of H, with Cre(s)° as a Levi
factor.
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(ii) If L’ is the Levi factor of a parabolic subgroup P’ C H, then there exists an s-stable parabolic
subgroup P C G° such that Cp(s)° = P’, and an s-stable Levi factor L of P such that Cr(s)° = L'.

Remark I1.3.1.5. The groups P and L in this proposition are not necessarily unique in general.

See however Proposition|[1.3.2.1

Proof. The first part is [DM94, Proposition 1.11]. Given L" and P’, there exists a cocharacter of
H,say A, suchthatL’ = L;\ and P’ = P;\, where L’A and P;L are the Levi subgroup and parabolic
subgroup associated to A. Regarded as a cocharacter of G°, it defines a Levi subgroup and a
parabolic subgroup Ly C P, of G°. They are s-stable since the image of A commutes with s.
Itis clear that L) = Ly N H and P}, = Py N H. |

If we require that the L as in (ii) is minimal with respect to inclusion, then it is unique.

Proposition IL1.3.1.6. Given L’ as in the preceding proposition, we write L = Cg-(Z7,). It is an
s-stable Levi factor of some s-stable parabolic subgroup of G°, such that L' = Cr(s)°. If M C G® isan
s-stable Levi factor of some s-stable parabolic subgroup, such that L’ C M, then L C M.

The proof is completely analogous to [L03, §2.1] where the assertion is proved for s
semi-simple.

Proof. We can find a cocharacter y : k* — Z7, such that L = Cg-(x(k")). As in the preceding
proposition, we see that L is an s-stable Levi factor of some s-stable parabolic subgroup.
Since L’ = Cy(Z7,), we have C(s)° = L.

Note that M’ := (M N H)° = Cpm(s)° is a Levi subgroup of H, and that L” is a Levi
subgroup of H contained in M’. Since (Z3, N H)° € Zyr, whence (Z;, N H)° C Z},, whence
Ca(Z],) € Co((Zy, N H)®). According to ([LO3] §1.10), Cs((Z3, N H)?)° = M, so L c M. O

Remark I1.3.1.7. In particular, if T’ C Cg(s)° is a maximal torus, then T := Cg-(T") is the
unique maximal torus of G° containing T”. It is s-stable and contained in an s-stable Borel
subgroup, and we have Cr(s)° = T".

Remark I1.3.1.8. Let M be an s-stable Levi factor of some s-stable parabolic subgroup Q c G°
such that Cp(s)° = L’. Suppose moreover that the equality (2}, N H)° = Z7, holds, i.e. the
s-fixed part of the centre of M coincides with the centre of the s-fixed part of M. Then we
still have M = L by [L03, §1.10]. We will see in Proposition that this equality can be
satisfied only if s is a quasi-isolated element of Ng(Q) N Ng(M).

Remark I1.3.1.9. It follows from the definition of L that if an element of G normalises L/, then
it normalises L.

IL.3.1.4 A quasi-semi-simple automorphism o of G is quasi-central if it satisties the follow-
ing condition.

There exists no quasi-semi-simple automorphism of the form ¢’ = ¢ o ad g with
g € G° such that dim Cg(0)° < dim Cg(0”)°.
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A quasi-semi-simple element is quasi-central if it induces by conjugation a quasi-central
automorphism.

A quasi-semi-simple element ¢ € G is quasi-central if and only if there exists a o-stable
maximal torus T contained in a o-stable Borel subgroup of G° such that every o-stable element
of Ng+(T)/T has a representative in C;(0)°([DM94, Théoreme 1.15]). Considering the natural
map Nc, (0 (Cr(0)°) = Ng-(T), this simply means that Wg-(T)? = Wc,(4)°(Cr(0)°).

Proposition 11.3.1.10. ([DM94, Proposition 1.16]) Let s € G be a quasi-semi-simple element nor-
malising a maximal torus T and a Borel subgroup of G° containing it. Then there exists t € T such
that ts is quasi-central.

Proposition I1.3.1.11. ([DM94, Proposition 1.23]) If 0 € G is quasi-central, and L C G° is a
o-stable Levi factor of a o-stable parabolic subgroup of G°, then L = Cg-(Z7,), where L" = C1(0)°. In
particular, for any such L, Z?, = sz (0)°.

I1.3.1.5 Letg = gsgu be the Jordan decomposition of an element of G. Write L’(g) = Cg(gs)°
and L(g) = Cg+(Z7,). We say that g is isolated in G if L(g) = G°. The conjugacy class of an
isolated element will be called isolated. The isolated elements can be characterised as follows.

Proposition I1.3.1.12. [L03, §2.2] Let g € G, and put L’ = L’(g) and L = L(g). Then the following
assertions are equivalent.

(i) L =G
(i) Z}, = Cz5.(8)%

(iii) There is no gs-stable proper parabolic subgroup Q C G° with gs-stable Levi factor M such that
L"cM.

Our definition of isolated element agrees with the definitions in the literatures, due to
the following result, which is not obvious.

Proposition 11.3.1.13. ([L03, IV. Proposition 18.2]) Let s € G be a semi-simple element and u € G
a unipotent such that su = us. Then su is isolated in G (for the definition in [L03, §2]) if and only if
s is isolated in G.

Therefore, the definition of isolated element for semi-simple elements coincides with
[DM18, Definition 3.1], where one fixes maximal torus T, a Borel subgroup B C G° containing
it and a quasi-central element o € Ng(T, B), and says that to € T.o is isolated if C5(to)° is not
contained in a o-stable Levi factor M of a o-stable proper parabolic subgroup Q of G°. Note
that in this definition, M necessarily contains T because Cp(to)° contains Cr(tc)°. Let us also
recall that, an element to is quasi-isolated if Cg(to) is not contained in a o-stable Levi factor of
a o-stable proper parabolic subgroup of G°.
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I1.3.2 Parabolic Subgroups and Levi Subgroups

I1.3.2.1  Recall that in the setting of Proposition |[1.3.1.4} one does not have a bijection in
general.

Proposition I1.3.2.1. ([DM94, Corollaire 1.25]) Let ¢ be a quasi-central automorphism of G°.

(1) The map P (P?)° defines a bijection between the o-stable parabolic subgroups of G° and the
parabolic subgroups of (G°)°.

(2) Then map L w— (L°)° defines a bijection between the o-stable Levi factors of o-stable parabolic
subgroups of G° and the Levi subgroups of (G°)°.

Considering the fact that Wg-(T)” = W(ge)((T7)°), the bijection is obtained at the level of
Weyl groups.

I1.3.2.2  The following propositions will be useful.

Proposition 11.3.2.2. ([[DM94, Proposition 1.6]) Let ¢ be a quasi-semi-simple element of G and let
(L°, P°) be a pair consisting of a Levi subgroup of G° and a parabolic subgroup that contains it as
a Levi factor. If the G°-conjugacy class of (L°, P°) is o-stable, then there exists x € G° such that
(xL°x~1, xP°x~1) is o-stable.

Now suppose that G is defined over IF,.

Proposition I1.3.2.3. ([DM94, Proposition 1.38]) Let ¢ be an F-stable quasi-central element of G
and let (L°, P°) be a pair consisting of an F-stable Levi factor and a parabolic subgroup containing it
as a Levi factor. If the G°F-conjugacy class of (L°, P°) is o-stable, then there exists x € G°F such that
(xL°x~1, xP°x~1) is o-stable.

Let L° be a Levi factor of some parabolic subgroup P° of G°, put L = Ng(L°, P°). Let G! be
a connected component of G. It acts by conjugation on the G°-conjugacy classes of the pairs
(L°, P°). Then L meets G! if and only if the class of (L°, P°) is stable for this action. According
to the above propositions, there is a conjugate of (L°, P°) that is o-stable. This means that L
contains o and so (L°)° is a Levi subgroup of (G%)°.

Proposition 11.3.2.4. ([DM94, Proposition 1.40]) Assume that o € G is quasi-central, F-stable,
and G/G® is generated by the component of o. Then the GF-conjugacy classes of the F-stable groups
L = Ng(L°, P°) meeting the connected component G°.c are in bijection with the ((G°)°)f-conjugacy
classes of the F-stable Levi subgroups of (G°)° in the following manner. Each L has has a GF-conjugate
Ly containing o, and the bijection associates the ((G°)°)F-class of (L1)°)° to the GF-class of L.

This gives in particular the classification of the Gf -conjugacy classes of the F-stable groups
of the form T = Ng(T°, B°).
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II.4 Generalised Deligne-Lusztig Induction

II.4.1 Induction for Connected Groups

We recall some generalities on the Deligne-Lusztig induction for the connected reductive
groups. In this section we assume G to be connected. If X is a variety over k, we denote
by H.(X) the i-th cohomology group with compact support with coefficient in Q,, and we
denote by H:(X) = @5(-1)'H.(X) the virtual vector space. For a finite group H, denote by
C(H) the set of the invariant Q;-valued functions on H

I1.4.1.1 Let L be an F-stable Levi factor of some parabolic subgroup P C G not necessarily
F-stable. The Levi decomposition writes P = LU. Put Lal(ll) = {x € Glx"'F(x) € U}. Then
Gl acts on Lal(ll) by left multiplication and Lf acts by right multiplication. This induces a
GF x (LF)°P-module structure on Hé(LEl(U)) for any i. Let 0 € C(LF). The Deligne-Lusztig
induction of 0, denoted by R(L3 0, is the invariant function on GF defined by

(I14.1.1.1) REO() = IL1 Y 007" Tr(g, DIHALT (W), forall g € G,
leLF

It does not depend on the choice of P if g # 2 (c¢f. [DM20, §9.2]). The functions of the form
REQ with L being a maximal torus are called Deligne-Lusztig characters.

I14.1.2  The Green function is defined on the subset of unipotent elements in the following
manner.

Q%(—,-):GEx1Ll — 7z

(I1.4.1.2.1) oo
(u,v) ¥— Tr((u, v)[H (L (U))).

The calculation of the Deligne-Lusztig induction is reduced to the calculation of the Green
functions. If ¢ = su is the Jordan decomposition of ¢ € G, we have the character formula
([DM91], Proposition 12.2]),

(I14.1.2.2) REO(g) = ILCa(e) 1 ) Y ng 2,7 10(s0),

{(heGF|se!'L} {veCy (s)7F)

where "L = h™'Lh and " 0(sv) = O(hsvh™'). The Green functions are usually normalised in
such a way that the factor ILF|~! is removed from the above formula.

I1.4.1.3 We will need the following simple lemmas. Let o be an automorphism of G that
commutes with F. If L € G is an F-stable Levi subgroup, then we also denote by o the
isomorphism Lf — ¢(L)F and the isomorphism W (T) — Wi )(o(T)) for an F-stable maximal
torus T.
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Lemma I1.4.1.1. Let M C G be an F-stable Levi subgroup and let O be a character of ME. Then the
character (R]%IQ) o 07! is equal to RS(M)G*G'

Proof. Let Q be a parabolic subgroup containing M such that Q = MUg. Then G(.l:_l(UQ)) =
L'l(a(UQ)) as F commutes with ¢, and so

Tr((0(8), oD)HA(L™ (0(Ug)) = Tr((g, DIH (L™ (Up))

for any ¢ € G' and I € MF. The assertion then follows from the definition of R](f/l 0. m]

Lemma I1.4.1.2. Assume that x € Irr(GL,(q)) is of the form RS O for a triple (M, @, 0) as in Theorem
E} Then , the character x o 6! is of the form qu)oﬁ for a triple (6(M), 0.¢, 0.0).

Proof. Since F commutes with o, we can define T, ) to be 6(Ty) and so by the definition of
RGO, the lemma follows from the equality RS(T ,0:0(8) = R%ﬂ(o‘l( ). o

II.4.2 Induction for the Non Connected Groups

We will assume that G/G° is cyclic, and fix 0 € G quasi-central and F-stable such that
G = G°.<o>.

I1.4.21 Given an F-stable Levi factor L° of some parabolic subgroup P° not necessarily
F-stable that is decomposed as P° = L°U, we put L and P to be the normalisers defined
in Put LZN(U) = {x € Gx"'F(x) € U} and LZX(U) = {x € G°lx"'F(x) € U}. Then
GF x (L") acts on Lal(ll), and HZ(L(_;l(U)) is thus a GF x (LF)’-module. For 0 € C(LF), the
(generalised) Deligne-Lusztig induction of 0 is defined by,

(I1.4.2.1.1) REO(g) = ILF[™ Z 01" Tr((g, DIHA(LZ (U)), VY geGh.
leLF

It does not depend on the choice of P° if g # 2 According to Proposition m the
generalised Deligne-Lusztig induction are parametrised by the pairs (L°, P°) consisting of
an F-stable and o-stable Levi factor of some o-stable parabolic subgroup. Since only those L
that meets G.o interest us, we can assume that L = L°.<o> The restriction of RE to L°F .o is
a map C(L°F.0) — C(G°F.0), that we denote by RE;’ . To simplify the terminology, we may
also call them Deligne-Lusztig inductions.

I14.2.2 The following lemma shows that the induction thus defined is compatible with
that defined for connected groups.

@Asis pointed out to be by E. Digne, for G = G°.<o>and o non trivial, this is reduced to the case of connected
groups.
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Lemma I1.4.2.1. We keep the notations as above. Denote by Res the usual restriction of functions.
If GF = LF.G°F, then,

(I14.2.2.1) ResC

o F
GoF oRf = Rfo o Rest

[oF *

Proof. See [DM94, Corollaire 2.4 (i)]. O

I1.4.2.3  The Green function is defined by

Q%(-,-):GEx1LE — 7

(I.4.2.3.1) 0 ifuv ¢ G°
(u,v) —
Tr((u, v)|H: (LE}(U))) otherwise.

Note that £Z1(U) is the usual Deligne-Lusztig variety.

Proposition 11.4.2.2. (Character Formula, [DM94, Proposition 2.6]) Let L be the normaliser of the
pair (L° C P°) as above, and let O be a character of L. Then for any ¢ € G with Jordan decomposition
g =su,

(11.4.2.3.2) REO(g) = ILF[1Ca(s)°F | Z Z QCe®” (v 1) "0 (s0).

Chy (5)°
{heGF|seL} {veCy, (s)h)

This formula will only be used in the following form.

Proposition 11.4.2.3. ([DM94, Proposition 2.10]) We keep the notations as above, except that O is
now a o-stable character of L°F. Denote by 0 an extension of 0 to L°F.c, and let su be the Jordan
decomposition of go, g € G°F. Then,

G°.0 _ |y oF-1 oF -1 Ca(s)° N
(I14.2.3.3) RS 90(g0) = ILFI Y Co(s)F| Z Z Qe (0w, 0™ B(s0).
{heGoF|sehL} (veCy,, ()5}

The Green functions are usually normalised in such a way that the above two formulas
should be multiplied by |ChL(S)OF l.

I1.4.3 Uniform Functions

I1.4.3.1 The irreducible characters of G' for connected G can be expressed as linear
combinations of the Deligne-Lusztig inductions of cuspidal functions on various Lf. For
G = GL;(FF;), we have Theorem [5 in Introduction. It shows that in this particular case
one only needs the functions R%Q induced from F-stable tori, and the transition matrix is
given by the characters of the Weyl group of G. In general, the transition matrix could be
more complicated and the functions induced from the characters of tori are not sufficient.
The invariant functions on G’ that are linear combinations of the R?Q’s are called uniform
functions.
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Recall that for each w € W, the Weyl group of G, and some w € G representing w, one
can find ¢ € G such that g"'F(g) = W, then Ty, := ¢Tg™! is an F-stable maximal torus such
that TZFU =~ TFv with Fy, := adwo F. Then w — T, defines a bijection between the F-conjugacy
classes of Wg and the Gf-conjugacy classes of F-stable maximal tori.

I1.4.3.2 Now assume that G is non connected. Let T C G° be an F-stable and o-stable
maximal torus contained in a o-stable Borel subgroup. If 6 € Irr(TF) extends into O €
Irr(TF .<0>), then R%Ué belongs to C(G°F.0), the set of Q;-valued functions on G°f.¢ that are
invariant under G°f. A function in C(G°F.0) is called uniform if it is a linear combination of
functions of the form R%"é.

I1.4.3.3 Let ¥ be an irreducible character of GF. It is called unipotent if x := Resg; X

. . . . P,
contains a unipotent character as a direct summand. In this case, Resgop X is a sum of
unipotent characters, as its summands are G'-conjugate. Denote by

&(G°F.0,(1)) = {¥lger, | ¥ is a unipotent character).

An element of C(G°F.0) is called unipotent if it is a linear combination of some elements of
&(GF .0, (1)), and we denote by C(G°F .o, (1)) this subspace. It is clear that the characters R?:}fj 1
are unipotent functions, and they are parametrised by the F-conjugacy classes of W°. An
element of C(G°F.0) is called uniform-unipotent if it is a linear combination of the functions
RZ 1.

I1.4.3.4 A natural question is to identify those elements of E(G°F.g, (1)) that are uniform.
We have,

Theorem 11.4.3.1. ([DM94, Théoreme 5.2]) Put G = GL,(k). For any ¢ € Irr(Wg)F , define

(I1.4.3.4.1) RG1:= W™ Z PWFRTI 1.

(2
we WG

Then, Rg"jl is an extension of Rg((p)l, where we defined the injection 7 : Irr(WZ) — Irr(We)
by identifying Irr(W() with the set of principal series unipotent representations of GL; (F;) and

identifying Irr(Wg) to the set of the unipotent representations of GL,, (IF,).

This gives all uniform-unipotent functions on GL;,(IF;).0. It follows that an element of
&E(G°F .5, (1)) is either uniform or orthogonal to the space of uniform(-unipotent) functions.

I1.4.3.5 ([DM15, Proposition 6.4]) The characteristic functions of quasi-semi-simple classes
are uniform. Consequently, all non uniform characters vanish on the quasi-semi-simple
classes.
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II.5 The Group GL,(k) < Z/2Z

In the following, we write G = GL (k).

II.5.1 Automorphisms of GL, (k)

I1.5.1.1 Let J,, be the matrix
(Un)ij = Oin+1-j
(I.5.1.1.1)
1

Put ty = diag(ay,...,a,) witha; = 1if i < [(n + 1)/2] and a; = -1 otherwise. Put J;, = toJy.
Define matrices

(I15.1.1.2)

g= d,, ifniseven g = J, ifniseven
19, ifnisodd g, ifnis odd

The automorphism o € Aut(GL,(k)) that sends g to §'¢g~!d~! will be called the standard
automorphism. We will denote by ¢’ the automorphism defined by replacing J with g’
in the definition of 0. They are quasi-semi-simple automorphisms because the maximal
torus consisting of the diagonal matrices and the Borel subgroup consisting of the upper
triangular matrices are stable under the action of ¢ or ¢’. Moreover, ¢ is a quasi-central
involution regardless of the parity of n, while ¢’ is not an involution if # is odd and is not
quasi-central if 7 is even.

I1.5.1.2  The classification of the involutions and the quasi-central automorphisms is well
known.([LiSe, Lemma 2.9], [DM94, Proposition 1.22]).
The conjugacy classes of the involutions are described as follows.

- If n = 2m + 1, the exterior involutions (exterior automorphisms of order 2) are all
G-conjugate and their centralisers are of type B,,.

- If n = 2m > 2, there are two G-conjugacy classes of exterior involutions, with centralis-
ers of type C,/2 and D, respectively. If n = 2, the connected centralisers are SL;(k)
and k* respectively.

The conjugacy classes of quasi-central automorphisms are described as follows.

- If n = 2m + 1, there are two classes of exterior quasi-central automorphisms, with
centralisers of type B,, and of type C,, respectively.

- If n = 2m, there is one single class of exterior quasi-central automorphisms, with
centraliser of type C,.
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Explicitly,

(G7)° = SO2m+1(k)
(G7)° = Spyy, ()

(G)° = Spy,,, (k)

(I1.5.1.2.1) ifn=2m1"
(G”)° = SO2m(k)

, ifn:2m+1,{

Putt = diag(ai,...,am, Gm+1, - .., 02m), or diag(as, ..., am, 1, a1, . .., a2) if nis odd, witha; = i
fori < mand a; = —ifori > m, we have

Gto o _ SO " k . — 2 ,
(I15.1.2.2) {( ) oK) sin=2m

(G')° =Sp,, (k) sin=2m+1.

We say that an automorphism is of symplectic type or orthogonal type according to the
type of its centraliser. We may write

(I1.5.1.2.3)

’

o’ ifniseven o ifniseven
0o = o5 = o .
o’ sinisodd

o ifnisodd

We define an automorphism 7 € Aut(G) as sending ¢ to fg™!.

I1.5.1.3 We will encounter another type of quasi-central automorphism. Let (o be an
involution of G, not necessarily an exterior automorphism. Define an automorphism : of
G X G by (g,h) = (10(h), 10(g))- 1t is easy to see from the definition that ¢ is quasi-central and
(GXG) =G.

I1.5.2 The Group G

I1.5.2.1 A choice of an involution in Aut G defines a semi-direct product G := G = Z/2Z.
Suppose that g is such an involution, we will write G><<oo>= G>Z/2Z to specify the action
of 1 € Z/27Z on G, in other words, ¢ represents the element (¢, 1) € G < Z /27, although oy is
not acturally an element of the group.

Proposition I1.5.2.1. For G = GL,(k), there are three isomorphic classes of the semi-direct product
G>Z [2Z when n is even, corresponding to the inner involutions, the symplectic type outer involutions
and the orthogonal type outer involutions. When n is odd, there is one isomorphic class corresponding
to inner automorphisms, and only one isomorphic class corresponding to outer automorphisms.

Proof. Let us first consider when the semi-direct products defined by two involutions 01 and
02 are isomorphic. Suppose there is an isomorphism

(II.5.2.1.1) P G>x<01>— G =<0>.

Let xo, be the image of 0. It is necessary that (x02)? = 1 and for all g€QG,

(I15.2.1.2) ¥(01(8)) = (01807 ") = xoa(P()x .
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Comparing the two ends of this equation, we see that 01 and 0, must lie in the same connected
component of Aut G.

If they are both inner automorphisms, then they must define isomorphic semi-direct
product. In fact, the resulting semi-direct product is the direct product. To see this, let
02 be the trivial automorphism. We can always compose 1) with an automorphism of G
(extending to G X <g2>) such that y|g = Id, then the above equation reads 01(g) = xgx~!
for some x satisfying x> = 1. That is, 01 = ad x for x* = 1, but these are exactly the inner
involutions.

If 01 and o7 are both outer automorphisms, then we need some explicit information
about the group G. But let us first note that if 01 and 0, are G-conjugate, then they define
isomorphic semi-direct product. Suppose 01 = ¢ and 2 = yoy~! for some outer involution
o and y € G. Then we put x = o(y)y~'. Again, assume | = Id, and so (xo2)> = 1 and
01(g) = x02(g)x ™! for all ¢ € G, as required.

We now restrict ourselves to G = GL,(k). We have already said that GL, (k) has two
distinct conjugacy classes of outer involutions when 7 is even. Suppose 01 is of symplectic
type and o7 is of orthogonal type and that there is an isomorphism ) between the two semi-
direct products. Then in the group G ><02>, 05 = 1 by definition, and (x02)* = 1 as the image
of 02. But xo3 is of symplectic type as its action on G is the same as 01, assuming 1| = Id. We
deduce that, modulo k*, xo, is conjugate to toy, where f is as in . Since (t02)2 =-1,
and for any z € k* (zto2)? = (t02)?, we have (xo2)? = —1, which is a contradiction. m|

We will write G or G to indicate whether gy = 05 or g,, and write G when there is no
need to distinguish them. Note however, that the above classification also works for SL;, (k).
But in PGL,(k), since there is no difference between 1 and -1, the two isomorphism classes
degenerate, and they are actually isomorphic to Aut(G). If no confusion arises, we can also
denote by G the direct product G X Z/2Z.

By definition, o is a quasi-central element in G.o.

I1.5.2.2  Let H be an abstract group and let 7 be an automorphism of finite order of H. By
a T-conjugacy class of H, we mean an orbit in H under the action h : x — hxt(h™!), x, h € H.
By a 7-class function on H, we mean a function that is constant on the 7-conjugacy classes.
We denote by C(H.7) the set of t-class functions.

On the other hand, the conjugacy classes of H x<7>contained in H.7 are identified with
the H-conjugacy classes in H.7, as T(h)t = h~'(ht)h, which are in turn identified with the
t-conjugacy classes of H. This justifies the notation C(H.7).

11.5.2.3  The character tables of ‘G' and of ‘G are related in the following manner.

The GF-conjugacy classes in ‘G' \ G are in bijection with the g-conjugacy classes in G,
which are in bijection with the tyo’-conjugacy classes in Gf (See for to), which are in
bijection with the GF-conjugacy classes in ‘G' \ GF. More specifically, for ¢ € GF, the GF-class
of go € ‘GF corresponds to the GF-class of gtyo’ € ‘GF.



44 CHAPTER II. PRELIMINARIES ON REPRESENTATIONS AND ALGEBRAIC GROUPS

Since 0 and ¢’ differ by an inner automorphism, the set of o-stable characters coincides
with that of ¢’-stable characters. However, the extension of a o-stable character to G behaves
differently for ‘GF and ‘GF. Let p: GF' — GL(V) be a o-stable representation of GF. To find
an extension p € Irr('GF) of p is to define (o) in such a way that p(0)? = p(c?) = Id and
p(0)p(2)p(0)! = p(o(g)) for all ¢ € GF. Suppose that we have defined such an extension, and
we would like to define ¢’ € Irr(‘GF) by p’(too’) = p(o). For G, if p(—1) # 1d, the equality
p(0)? = Id would be violated. Consequently, we define instead p’(to0”) = p(0) +/p(—1), where
p(=1) has as value + Id. Replacing +/p(—1) by — 1/p(~1) defines another extension of p to ‘G".
We denote by § and ¢’ the characters of p et p’ respectively. Then, for all g € GF,

(11.5.2.3.1) X (gtod’) = X(go) Vp(-1),

regarding p(—1) as a scalar.

Convention II.5.2.2. Because of the above discussion, we will also denote by ¢ the element
too’ € ‘GF. We will later parametrise the conjugacy classes in ‘GF \ G with respect to ¢

(Proposition [[I.3.1.2).

Remark I1.5.2.3. We have p(—1) = —Id only if 1 has odd "multiplicity" in the semi-simple
part of p and g = 3 mod 4. In particular, if ¥ is a uniform function on GF.o, then p(-1)
always equals to Id.

Question I1.5.2.4. If g = 1 mod 4, then the character table of ‘G' and that of ‘G' coincide
under the bijections of characters and conjugacy classes described above. Are these groups
isomorphic? Working with finite groups, there might be isomorphisms that are not deduced
from the underlying algebraic groups.

I.5.3 Quasi-Semi-Simple Elements

I1.5.3.1  We have said in §l1.3.1| that all semi-simple elements are quasi-semi-simple. For
G, we have

Lemma IL.5.3.1. An element of G is quasi-semi-simple if and only if it is semi-simple.

More generally, if G is a reductive algebraic group and G/G° is semi-simple, then all quasi-
semi-simple elements are semi-simple. (See [DM94, Remarque 2.7]) In positive characteristic,
this is to require that char k 1 |G/G°|. We give a short proof below.

Proof. It suffices to show that each quasi-semi-simple element so € G.o is semi-simple. We
see that so is semi-simple if and only if (s0)? = so(s)o? is semi-simple, as we have assumed
chark to be odd. Let (T,B) be a pair consisting of a maximal torus and a Borel subgroup
containing it, both normalised by o. Then every quasi-semi-simple element is conjugate to
an element of (T?)°c (Proposition[[.3.1.2), and its square, lies in T, and so is semi-simple. O
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Remark I1.5.3.2. That so is semi-simple does not imply that s is so. Let us fix T and B as
above, and write B = TU, where U is the unipotent radical of B. If we take u € U, then

-1

uo(wisa unipotent element, whereas uou™" is semi-simple.

Remark I1.5.3.3. There is no unipotent element in G.c because an odd power of s¢ lies in
G.o.

IL5.3.2 Isolated Elements Define the diagonal matrix

j i
— —_——
(IL5.3.2.1) 1)) = diag(, ..., i, 1,...,1,—i,..., i) € GLy(¥)

The elements t(j)o, 0 < j < [n/2], are the representatives of the isolated elements (§I1.3.1.5),
except when 7 is even and j = 1, in which case t(j)o is quasi-isolated ([DM18, Proposition
4.2]). We have,

If nis even, Cg(t(j)o) = Oaj(k) X SPn—zj(k)?

(I15.3.2.2)
If 1 is odd, Co(t(j)) = Sp;(K) X Op_2(k).

In particular, when 7 is even, t(j)o is quasi-central only if j = 0, and when n = 2m + 1, t(j)o
is quasi-central only if j = m. Note that our choice of ¢ for odd n is different from that of
[DM18].

I1.5.3.3 Semisimple Conjugacy Classes of GL,(k) < Z /27 Since we assume chark # 2,
quasi-semi-simple elements are semi-simple.

At the level of the parametrisation of semi-simple G-conjugacy classes contained in G.o,
there will be no difference between ‘G and ‘G, so we write G = G U G.o and ¢ can be either
0, or os in this part. Let T be the diagonal matrices(a o-stable maximal torus) of G and let
W be the Weyl group defined by T, which admits an action of ¢ induced from G. Denote by
W¢ the subgroup of o-fixed points. The Borel subgroup of upper triangular matrices is also
stable under o.

Denote by (T9)° the connected centraliser of ¢ in T. It consists of matrices of the form

(I1.5.3.3.1) diag(ai, ..., amay,...,a7"), a; € k'

if n = 2m, and with an extra 1 in the middle if # is odd.
Denote by [T, 0] the commutator. It consists of

(11.5.3.3.2) diag(by, ..., by, b, ..., b1), b €K,

if n = 2m, and with an extra 1 in the middle if # is odd.
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So S :=(T°)° N [T, o] consists of
(I1.5.3.3.3) diag(ey, ..., em, em, ..., €1), € € {£1}.

and modified accordingly for n odd.

By Proposition the semisimple conjugacy classes in G.o are parametrised by the
WP¢-orbits on the quotient (T7)°/S. The two automorphisms o and ¢, have the same action
on T and on W, so we see that there is indeed no difference between them. Note that W°
is isomorphic to (Z/2Z)" < &, so that in some basis {€1,...,€mu, €, ...,€-1} diagonalising
T, W¢ acts by interchanging €; and e€_;(the Z/2Z factors) and symmetrically permuting the
vectors €1, ...,€, and €_y,, ..., €_1(the symmetric group).

In other words, the semisimple classes have representatives

(11.5.3.3.4) diag(ay, ..., am,a,,...,a;4 )0,
g m 1

and the following operations will leave it in the same conjugacy class:
- Interchanging 4; and a; *;
- Changing any pair (ai,uz.‘l) to (—a;, —ai‘l);
- Symmetrically permuting the a4;’s and ai_l’s.

Forany z € k*, denote by z the set {z, —z, z71 —z71} orrather, the orbitin k* under the action
of Z/2Z. X Z,/2Z, with two generators of the group sending z to —z and z ™ respectively. Then
the set {ay,...,au} is considered as the set of eigenvalues of the above semi-simple element.

If C is any semisimple conjugacy class contained in G.o. Then C = {(xo)?|xc € C}is a
o-stable conjugacy class in G. However, not all o-stable semi-simple conjugacy classes of G
are of this form.

I1.5.4 Irreducible Subgroups of GL, ~<<o>

I1.5.4.1 Maximal Parabolic Subgroups of G > Z/2Z We are only interested in those
parabolic subgroups that meet both connected components of G = Gx<Z/2Z. If G=Z./2Z. =
G X Z/2Z, then a maximal parabolic subgroup is just the union of two copies of a maximal
parabolic subgroup of G, one copy in each connected component.

Now let G = Z/2Z be defined by some graph automorphism ¢. For G = GL,(k), there
will be no difference between ‘G and ‘G for the present problem, so we will not specify
the conjugacy class of gp. We conclude from that if T is the maximal torus of the
diagonal matrices and B is the Borel subgroup of the upper triangular matrices, then every
maximal standard parabolic subgroup P of G containing B such that Nz(P) meets G.o is of
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the following form,

A * *
0
* = |,
0
0O 0 O0|B

where A and B are square matrices of the same size. Normalisers of such P’s (= P U Poy)
are the representatives of the G-conjugacy classes of maximal parabolic subgroups of G that
meet G.og.

I1.5.4.2 Irreducible Subgroups of GL, <<o> Let Hy C GL,, be a topologically finitely gen-
erated closed subgroup. ie. Hy = H(x) for some finite tuple x of closed points of GL,
and let H C GL, x<0>be a closed subgroup generated by Hy and an semi-simple element
xo0 € GL, .0 such that Hy = H N GL,,. This condition is equivalent to

- x00 € NgL, .«(Ho);
- (XQG)Z € Hy.

Proposition I1.5.4.1. If H is irreducible, then the natural representation k" of GL, is a direct
sum of pairwise non isomorphic irreducible Ho-representations, say @j V;, and the centraliser
Cau,(H) is isomorphic to [ ] o, where for each j, the elements of i, = {+1d} are regarded as scalar
endomorphisms of V.

Proof. The second statement follows from the proof of the first.

Let us first note that the centre of GL, x<o>is {+1d}, so irreducibility is equivalent to
having finite centraliser in GL,, by Theorem[[L.1.2.8 (The group H is topologically generated
by finitely many, say m, elements. Then consider the conjugation action of G° on G",
G = GL, »<0>) Since H is irreducible, Hy is completely reducible in GL, by Lemma|[[.1.2.2}
and so k" can be written as a direct sum of irreducible Hy-representations, say

(I1.5.4.2.1) =P,
i

where V; is not isomorphic to V;; whenever j # j’. We see that

(I1.5.4.2.2) Car, (Ho) = H GL,,
j

where each entry of GL,,(k) is identified with a scalar endomorphism of V;.

Let us now prove that ; = 1 for all j. In order for an element of CgL,(Hop) to centralise
H, it suffices for it to commute with xpo. Since xpo normalises Hy, it normalises Cgr, (Ho).
Also, (xo0)? € Hy, so xoo defines an order 2 automorphism of Cgr,, (Hop) as an algebraic group.
Choose a xpo-stable maximal torus of Cgr,(Ho) and consider its root system with respect
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to this maximal torus. If its action permutes two root subgroups of Cgr,, (Hop), say U, and
Ug, a # . Then Cgr,(H) would have positive dimension, which is a contradiction. So xo0
tixes all roots of Cgr,,(Hp). But then it would be an inner semi-simple automorphism of the
derived subgroup of Cgr, (Hp), thus fix a maximal torus of it. We deduce that the derived
subgroup of CgL,(Ho) must have rank 0, i.e. Cgr,(Hp) is a torus. This means that r; = 1 for
all j.

The semi-simplicity of xpo is only needed in the following arguments. Now denote by
S the torus Cgr,, (Hp). Let M = CgL,(S). It is a xpo-stable Levi subgroup. (In fact this Levi
subgroup corresponds to the above decomposition of k" into irreducible representations.)
So M contains a xpo-stable maximal torus T, which necessarily contains its centre S. Since
the action of xpo on T = (G;;)" is a combination of inversing and permuting factors, so is its
action on S. The only possibility for xoo to have finite centraliser in S is that all factors of S
are inversed while the permutation is trivial. Hence Cgp,, (H) = [] j H2. O
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Character Varieties with
Non-Connected Structure Groups

II1.1 G < I'-Character Varieties

Let k be an algebraically closed field.

II1.1.1 (T, ¢)-Invariant Representations

We define and study the (I, ¢)-invariant k-representations of finitely generated discrete
groups.

III.1.1.1  Let IT be a finitely generated discrete group and let p : IT — IT be a finitely
generated normal subgroup with finite index, i.e. we have the short exact sequence

1 -5 T—r—1.

We choose once and for all a section y. : I' — I1. Write y, = y.(0) for 0 € I'. In general, it can
only be a map of sets, but we can always require that y; = 1.

Let G be a connected reductive group over k. Denote by Z¢ the centre of G and denote
by Gu = G/Zg the corresponding group of adjoint type. Denote by AutG the group of
automorphisms of G, its identity component being G,;. Denote by A(G) the component
group (AutG)/G,;. When the centre of G has dimension < 1, it is a finite group. Let
Y : T — Aut G be a group homomorphism.

Denote by Rep(I1, G) := Hom(I1, G) the space of G-representations of I'1. The conjugation
by G on the target induces an action on Rep(I1, G). Denote by Ch(IT, G) the resulting GIT
quotient, called the G-character variety of IT.

Definition II1.1.1.1. For any p € Rep(I1, G), we say p is (I, i)-invariant if there exists some

49
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cochain K, = (h,)ger € CH(T, G) such that for anyo €T,
(I11.1.1.1.1) hophy! =% := (o) o po C,,
where C, is the isomorphism

I[1T—1II
(II1.1.1.1.2) »
ar— Y, ays,

and /i, conjugates on the target of p. In this case, we say that (g, h.) is a (I, )-invariant pair.
If no confusion arises, we simply say I'-invariant instead of (I', i))-invariant.

We will simplify the notations in what follows by writing (o) as ¢, and by writing
hophy! as hsp. However, when we evaluate the representation at a particular element, say a,
we will use the usual notation h,p(a)h; .

Remark I11.1.1.2. Note that p — % does not define a group action of I' on Rep(I'l, G) because
Y1V is not necessarily equal to y.,, for any o, T € . But since p(y:7s)72) € G, we do have a
G-action of I on Ch(TT, G).

IIL.1.1.2  We list below some basic properties.
(i) If (p,h.) is a (T, )-invariant pair, then (xp, (4(x)hyx71)) is also a (T, )-invariant pair.
(ii) If (p, h.)isa (T, ¢)-invariant pair, then (p, h.z) is also (I, i)-invariant for any z € Stabg(p).

(iii) Let (p,h.) be a (T, i)-invariant pair. Let ¢’ : I' = AutG be another homomorphism.
Suppose for all o € T, Y/ ¢;! = ad x,,, for some x, € G. Then { can be completed into a
(I', ¢’)-invariant pair by defining 1/, = x;h,.

(iv) If (p,h.) is a (I', ¢)-invariant pair for a choice of y., then for another y;, the pair
(0, Wo(p(651))ho)s) is (T, )-invariant, with 6, = 517

In the case of (iii), we say that ¢ and ¢’ are similar. So if ¢ and ¢’ are similar, then p is
(I', ¢)-invariant if and only if it is (T, ¢")-invariant. Similarity classes are parametrised by the
set of homomorphisms of discrete groups

Hom(T, A(G)).

Each such homomorphism can be lifted to a homomorphism to AutG, since the latter is
the semi-direct product of A(G) and the inner automorphisms. We will denote by [¢] the
similarity class of .
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IIL.1.1.3  Let G = I be the semi-direct product defined by the given 1. There is a natural
section s : I' = G >« TI’, which is a group homomorphism, satisfying

Ys(g) = Sggsgl, foranyge€ Gando €T,

where we write s, = s(0) forany o € T".

Definition II1.1.1.3. We say a homomorphism of groups IT — G =I"is a G =< I'-representation
of ITif the right square of the following diagram commutes

1 I1 b IT r 1
bl |
1 G Gx~T r 1

where p is just the restriction of p. We say that p is the underlying G-representation of p.
We will show that the (I', »)-invariant pairs correspond exactly to G = I'-representations.

Lemma II1.1.1.4. If p is the underlying G-representation of some G < I'-representation p, then there
exists some cochain h. such that (p, h.) is (I, {)-invariant.

Proof. We calculate, for any a € I1,
pla) =ysopopolsla)

(II1.1.1.3.1) =Yg 0 p(y;'ayo)
= Wop(y5 ) - pla)

By the definition of G = I" and the commutativity of the diagram, the conjugation action of
p(ys) on G differs from ¢, by an inner automorphism, so we can define i, € G to be any
element that induces this automorphism. m|

II1.1.14 The above lemme also gives a way to extend a (I, ¢)-invariant p to a G =~ I-
representation. Indeed, if %0 = h,p, comparing this equation with the above calculation
suggests

(I1.1.1.4.1) p(Ve) = h's,,

since the conjugation by s, is just ¢;. Any element in I'T can be uniquely written as 1y, for
some ¢ € I and 7 € T1. We then define

(I11.1.1.4.2) p(ys) = p(MpP(Yo)-

In particular, plg = p.
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Lemma IIL.1.1.5. Let (,h.) be a (T, Y)-invariant pair and put $,6, := P(Vo,VorVs")- Then the

formulae (I.1.1.4.7) and ([11.1.1.4.2) define a homomorphism of groups I1 — G =T if and only if for
any o1, 02 € I, the equality

(I1.1.1.4.3) o102 = Mg Vo, (Do,
holds and hy = 1.

Proof. Sincey; = 1and sy = 1, the equality (I1I.1.1.4.1) implies that #; mustbe 1. Puto = 0105.
The claimed condition is equivalent to

(I1.1.1.4.4) PVoVarVa) = pPa)pe)p(yo) .

Note that y4,0,75! € 1. Therefore it is a necessary condition. We will show that this

equality implies p(11Y6,12V5,) = p(M1Y6,)P(M2Vs,), for any o1, 02 € I', and any 11, 2 € I
First we have, for any 1 € ITand anyo€l,

Pa)PMP(s")
=hy " Yo (p(M)ho
(I11.1.1.4.5) = 1% n)h,
=hg hep( e mhy
=p("°n).
where 771 := yony; L.
We then calculate, writing 0 = 0102,

P(MY a2V 52)
=p(Mm " 112)Vs,Va,)
=" )Ya Ve Vs Vo)

(I11.1.1.4.6) =p()pC 1 N)PVer VoV )P(Vo)
=p()pe)P2) Ve PY 0 )P (Ve )p(va) " p(yo)
=p(Mm)p(ye)p(M2)p(Vs,)
=p(MYo,)P(M2Y )-

O

Lemma IIL.1.1.6. Let (p, h.) be a (T, y)-invariant pair. Then g;, s, is equal to hgllyl)al (h;zl)hg up to
Stabg(p)

Proof. Let us compute * := “1(°2(y;1 o p o C;1)). Note that the equality ¥, o p o C; = hyp
implies Y51 0 po C;' = 45 (h51)p.
On the one hand, using the equality 'p = ¢z 0 po C; for T equal to 01,02 € I', and 0 = 0107,
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we have,
(II1.1.1.4.7) x=poC;loCy0Cy,.

Since §o,0, = P(Vo,Y0,V5'), the above equation gives x = g7l p.
On the other hand, using the equality p = h.p for T equal to 01, 02 € I and the equality
at the beginning of the proof, we have,

(II.1.1.4.8) % = h; "o, (o, o, .

whence the lemma. O

Thus being I'-invariant almost gives the equality in Lemma|[[lI.1.1.5

II1.1.1.5 Remarks on Fundamental Groups Let p : X — X be an unbranched covering of
topological manifolds with Galois group I' (the group of covering transformations Aut(X/X)).
Choose base points ¥ € X and x = p(%). Our convention is that by a juxtaposition fa of paths
we mean the path starting from « and ending along 8, so that we have the short exact
sequence

(II1.1.1.5.1) 1— mX, %) — X, x) —TIT% — 1.

We may omit the base point in the notation of 71 if no confusion arises. Then the general
arguments apply to [T = 11(X) and IT = 711(X). We choose once and for all a section (a map
of sets) y. = (yy)ser of the natural projection 711(X) — I'” as in the general setting.

Let A, be the unique lift of y, starting from %. For any o € I, let 0 also denote the
isomorphism 71 (X, %) — m1(X, 0(¥)) and denote by C, , the isomorphism

(X, 0(®) — (X, %)

(II1.1.1.5.2) )
ar— A al,,

For any a € m1(X, %), Ca, o o(a) = A;'a”A, is the unique lift of y;lay, € m(X) in ny1(X),
therefore C;, o o can be identified with the conjugation by y;!. Now (T, ¢)-invariant G-
representation should be defined by

(I1.1.1.5.3) hophy' =P =19, 0 poCy, o0,

This reason why we have 1(0)~! instead of (c) is as follows.
Let ¢ : T — AutG be the composition of ¢ and T? — T, x > x~!. It defines a
semi-direct product as in the short exact sequence

(I1.1.1.5.4) 1 —>GC—Gxyp P —-T% — 1
¥

which comes with a homomorphism s : I — G >y I'F being a section of the quotient map,
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satisfying

(II.1.1.5.5) Yo-1(8) = ¥ (8) = 5085,

where we write s(0) as ;.

I11.1.2 G =< I'-Character Varieties

Let us define the the character varieties that we will study.

III.1.21  We put

(II1.1.2.1.1) R_epr(f[, G) :=1{(p, (hs)) € Rep(TT, G) x H G| = hyp, forall o € T}.

oel

Note that if (p, (h,)) € R_epr(f[, G), then every element of (g, (hs. Stabg(p))) lies in R_epr(f[, G).
The cochain (h;)ser will be written as ..
Consider the morphism

Repr(ﬁ, G) — H G
(III.1.2.1.2) o,7€ll
(ﬁ/ (ha)) — kor = h;%wa(hf)hagm-

Note that with y. fixed, g, only depends on . Denote by Rep’ (IT, G) the inverse image

of (1)5,;. The equality of Lemma [[IL.1.1.5 implies that, for (g, (h,)) € Rep' (IT, G), (ho)oer is
determined by those h,’s associated with the generators of I'.

II1.1.2.2  Denote by Rep(I1, G) the variety of G = I'-representations of I1. Recall that these
are the homomorphisms p making the following diagram commute

1 IT i IT r 1
bl |
1 G GxT r 1

As in the case of classical character varieties, this variety can be described in terms of the
images of the generators (and relations) of I'T with the additional constraint on the connected
components they belong to.

I11.1.2.3  The variety Rep' (I, G) of (T, ¢)-invariant pairs admits an action of G:

x: (P, 1) = (xp, We(x)hox™Y)), forany x € G.
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Denote by Ch'(IT, G) the GIT quotient Rep' (I, G)//G.
The variety Repp(I1, G) admits the conjugation action of G. Denote by Chr(I1,G) =
Repr(IT, G)//G the GIT quotient. This is the character variety with structure group G =T

Theorem III.1.2.1. There is an isomorphism of algebraic varieties
(I11.1.2.3.1) Ch! (1, G) = Chr(I1, G)

Proof. By Lemma and Lemma the restriction of p to Il defines a morphism
Rep(I1,G) — Rep' (I, G). More concretely, the map sends p to (5, /) with p := p o p and
hy = sop(ys)~'. Again by Lemma m there is a well-defined morphism Repr(ﬁ, G) —
Rep(IT,G). The two morphisms are obviously inverse to each other thus give an isomor-
phism. It can easily be checked that this isomorphism is G-equivariant, so we have an
isomorphism bwtween the quotients. m]

Remark II1.1.2.2. In case [1 = n1(X) and IT = my(X) are fundamental groups of some
topological spaces, we write Rep(X, G), Repr(X, G). etc.

III.2 Irreducibility and Semi-Simplicity

III.2.1 Irreducible and Semi-Simple G < I'-Representations

We will follow the notations in §1. Write G = G = T.
II1.2.1.1  For p : IT — G, let x be a tuple of elements of G which are images of a finite set of
generators of I1. We put H(p) := H(x).

Definition IIL.2.1.1. We say that p is semi-simple if H(p) is a completely reducible subgroup
of G. We say that p is irreducible if H(p) is an irreducible subgroup of G.

In particular, an irreducible G-representation is semi-simple. We have the following basic
property.
Proposition I11.2.1.2. If p is a semi-simple G-representation of I1, then its underlying representation

p is semi-simple.

In particular, the underlying G-representation of an irreducible G-representation is semi-
simple. However, f is not necessarily irreducible in general.

Proof. This follows from Lemmal|ll.1.2.2 m]



56CHAPTERIII. CHARACTER VARIETIES WITH NON-CONNECTED STRUCTURE GROUPS

II1.2.1.2  We will need the following notions later.

Definition I11.2.1.3. Let j : IT — G be a representation. We say that g is strongly irreducible
if p is irreducible and Stabg(p) = Zg. We say that a (I, ’)-invariant pair (p, h.) is strongly
irreducible if p is strongly irreducible.

Definition II1.2.1.4. Let p : [T — G be a G-representation. We say that p is strongly irreducible
if p is irreducible and Stabg(p) = Z¢.

Irreducible GL,, (k)-representations are strongly irreducible.

II1.2.1.3  We are now ready to state the results on the orbits of semi-simple and irreducible
G-representations.

Theorem IIL.2.1.5. The G-orbit of p € Rep(IL, G) is closed if and only if p is a semi-simple
G-representation of T1.

Proof. By Theorem|ll.1.2.6, the assertion holds whenever ITis a free group with n generators.
Since our representation variety can be realised as a closed (See Proposition [[1.3.1.1) G-
invariant subvariety of G" for some 1, we are done. m]

Therefore, the character variety Chr(I1, G) is the coarse moduli space of semi-simple
G-representations.

Theorem IIL.2.1.6. The G-orbit of p € Repy(IL, G) is stable if and only if p is an irreducible
G-representation of TL

Proof. As in the proof of the previous theorem, we are reduced to the case where Rep(I'l, G)
is replaced by a direct product of finitely many G. Note that the technical assumption in
Theorem [I.1.2.8}is always satisfied for the images of p as Im p meets all componentsof G. O

I11.2.1.4 ForII/I1 = Z/2Z, we translate Proposition|[I.5.4.1/into the following.

Proposition II1.2.1.7. If p : IT — GL(k) <<o0> is an irreducible GL, (k) = <o>representation,
then its underlying GL,(k)-representation p is a direct sum of pairwise non isomorphic irreducible
representations.

With the assumptions in the proposition, we have the following remark.

Remark II1.2.1.8. If y € IT\ IT and ho := p(y) is semi-simple, then it satisfies the assump-
tions on xpo in Proposition According to the proof of that proposition, if Im p is
decomposed into a direct sum of (pairwise non isomorphic)irreducible representations V;,
then the conjugation by ho leaves each factor stable. Considering ho as an automorphism
of the group []; GL(V;), we may say that p is a direct sum of pairwise non isomorphic
GL(V;) =<ho>representations.
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II1.2.1.5 Openness

Proposition IIL.2.1.9. The set of irreducible representations in Rep(I1, G) or Chr(I1, G) is Zariski
open.

Proof. This is a direct consequence of Theorem [[11.2.1.6} since the locus of stable points is
open. O

Lemma I11.2.1.10. Let p be a G-representation with underlying G-representation p. If p is strongly
irreducible, then p is strongly irreducible.

Proof. Since the image of p meets all connected components of G, if  satisfies Stabg(p) = Z,
then Stabg(p) = Z¢. ]

We will assume that the set {p | p is strongly irreducible} is non-empty.

Remark II1.2.1.11. By Proposition [I1.5.4.1 if a GL, <<o>representation is strongly irre-
ducible, then the underlying GL,-representation is necessarily (strongly) irreducible.

Proposition I11.2.1.12. The set of irreducible G-representations in Rep(I1, G) or Chr(I1, G) with
strongly irreducible underlying G-representations is Zariski open.

Proof. Theorem [II1.1.2.1|gives an isomorphism Rep(IT, G) = Rep' (I1, G), which can be pro-
jected to Rep(f[, G). Then the subset in question is just the inverse image of the subset of
strongly irreducibles in Rep(I1, G), which is open. m|

I11.2.2 Classification Problem

Eventually, we would like to have a representation variety such that the subset {p |
p is irreducible} is non-empty. For this reason, we need to study the condition under which
anirreducible (I', {)-invariant G-representation can be extended to some G>I'-representation.
To simplify the situation, we require instead that

{p € Repy(I1, G) | p is strongly irreducible}

is non-empty.

Our reference for group cohomology is [Ser, Chapitre I, §5]. If we were to work in the
setting of we could equivalently work with the right action of T on Zg witho € T
acting by -1, but the differential map on cochains should be changed accordingly.

I11.2.2.1 Denote by Ch*"(I1,G) c Ch(I1,G) the open subvariety of strongly irreducible
representations.

Lemma I11.2.2.1. Let f be a strongly irreducible G-representation of [1and denote by [p] its G-orbit.
Then there exists some cochain h, such that (p, h.) is a I'-invariant pair if and only if [p] is a point of
Ch*""(I1, G) fixed by T.
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Proof. Obvious. o
Remark I11.2.2.2. The fixed points locus Ch*""(IT, G)' only depends on [¢/].

II1.2.2.2 By Lemma|lll.1.1.5and Lemma |[[I.1.1.6} if Z; = 1, then any strongly irreducible
(I', ¢)-invariant pair (, h.) defines a representation p : I — G < I, and if Z¢g # 1, invariance

under (I', 1) is not sufficient. Note that for an arbitrary (I', i)-invariant pair (g, h.), h. is not
uniquely determined by p, as each of its factors can be multiplied by Stabg(p) on the right.
Therefore, the correct question is whether /. can be chosen to define an extension p.

We define for any strongly irreducible (g, 1) a cochain (ky¢)ser € C2(T', Zg) by

(I11.2.2.2.1) kor := hyiPo(he)hogor.

Remark II1.2.2.3. Working with I'?, we should define k;; = hg} Y7 L(hy)h, gor instead.

Proposition II1.2.2.4. Choose a section . : T — ITand a homomorphism i : T — AutG, let (k)
be the cochain associated to a given strongly irreducible (I', Y)-invariant pair (p, h.) defined as above.
Then,

(1) The cochain (ks7) is a cocycle;
(ii) The cohomology class of (ksz) does not depend on h.;
(iii) The cohomology class of (ks7) does not depend on the choice of y.;

(iv) Fixing p, the cochain h. can be modified (by Stabg(p)) to satisfy the condition in Lemma
[M1.1.1.5)if and only if (k<) is a coboundary.

We will denote by ¢;(p) := [ks:] the cohomology class of (ks-), which only depends on ¢
and p. The cohomology group H%(T', Z¢) only depends on the similarity classe of i in the

sense of §I11.1.1.2

Proof. Let us show that (ky7) is a cocycle. The differential d: C?(T, A) — C3(T, A) for the left
action of I on some abelian group A, written additively, is

do(x,y,2) = x- @y, 2) — pxy,2) + p(x, yz) — p(x, y),

for any ¢ € C*(T,A),and any x, y,z € T.
Since k. is central, its factors can be permuted in a order-preserving way, i.e.

(I11.2.2.2.2) hote(ho)hogor = Yolho)hegahyt = hogarhyithe(he) = §ochythe(ho)hs,

In the following calculation we will put a bracket on each central element.

(CLOMSNES (UR(D) | Lo | L | Lont3
:[wa(h;‘&wr(hy)h’cgry)]
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(8o ihothor (i hory]
[t o (re)ho 8o,
(8ot hs Yo (1 o]
=[Po(ho)Por () o (o) o (gr)]
(8ot it or (g o (e o o]
[Sorhs Yol Hhor]
npa(h Dot (1) o (he)ho(gey)]
[gmygm,y aﬁl’ar(h 1)¢o(hw) ol
[hy ol Hhorgor]
=[o(ho)Por (o () o (ge)]
(80,0180t ot Wor (Vo (hep) o (i Vige 8o ]
=[Wo (b ) o (1) o (1) o (gep)]
[hGTgmga,wgm,y ar‘PaT( yl)Eba( Ty)‘Pa(h;l)]-

We calculate

mgmga tu8or, ,uh :
=hoep(Vor V7 Vo VYoV eV s VoruVa Vo) Vs
=hoep(VorVz VeuVa Vo ot
=Yo7 © 5(7/;17/1#7;1)
=Y (e p(yauy s v ")
=Yg (egeuhs)).

(I1.2.2.2.3)

We then continue to calculate

(dk)ory =[o(h, )%T(h Yo (h) o (&eu)]
[V ez oy YWo () o ()]
(Il[.2.2.2.4) =[Vo(hey)Por () o (o) o (8]
[o(ge) oz Yor (o (hey)]
=1.
We have shown that (ks) is a cocycle.

Now if (k) is replaced by (hsxs)ser for x, € Zg, then ky; is multiplied by ngllpg(xT)xg
which is exactly (dx.)sr where the differential written additively is

(I1.2.2.2.5) do(x, y) = x - o(y) — p(xy) + p(x),
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for any ¢ € C}(T,Zg) and any x, y € T. Therefore [ky;] does not depend on k.. We also
deduce from this that (/) can be modified to satisfy the desired equality if and only if (k)
is a coboundary.

Finally, let us show that [k,;] is independent of the choice of y.. Let y. be another
section. If (p, h.) is (I', )-invariant for y., then (p, (ng(ﬁ(égl))hg)a) is (I', ¢)-invariant for y;,
where 6, = 1y, € I1. Let b, = ¥, (p(6;1))hs, for any o € T, and let i, = (h,)ser. We will
calculate (k/,) with h; thus defined. By the argument above, any other /;’ such that (g, 1.’) is
(T, p)-invariant will give the same cohomology class. Let g/, := p(y4y,Va:b).

We calculate

Koo =hy o (W), 0
=h 3 ot (P00r)) Yo (We (PO o (he) Yo (P05 ol
=h;} hmp(ymym)hm%(%(p(é Mo (h) o (PO, )8l
=0V oV e Mot hotp(Yor VT VeV et gt Vo B o (P65 ) o gl

5(
(II1.2.2.2.6) p(nm YV e gt e (h) Yo (P(6; )8l
— ( /
ply

a VTyUT)hGTIIDU(h ) Up(ya)/o 1)gGT
Ve VYo kot8ut (VoY )8hr

(f
e OV i VR Vo O e o U G U [ VA VA i)
:kaT

O

Remark I11.2.2.5. Since k, = ko, (p, h.) defines an extension p if and only if (p, h;) defines
an extension p’. In fact, we have p = p’. This can be seen from the following. On the one
hand, p(y,) = hglsg. On the other hand,

p'(6) =hy'ss
=h5 " Yo(p(05))50
(II1.2.2.2.7) =h;"'56p(6)
=p(yo)p(ys V)
=p(Vo),

So the correspondence between (g, h.) and p is independent of the choice of y..

II1.2.2.3 If p gives rise to some non trivial cohomology class ¢y(p) € HAT,Zg) for the
chosen 1, then there is still a chance to extend it into a G > I'-representation for some 9" % ¢
(conjugate under G) but [{'] = [¢]. Asin (iii)), we can take another homomorphism
Y’ : T — AutG with I,bglpgl = adx,, for each 0 € I, so that I, = coxsh, defines a (I, ¢’)-
invariant pair, where ¢, is an arbitrary element of Z¢. Let (ky¢) be the cochain defined by h.

and 1.
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Proposition II1.2.2.6. There exists some V' similar to y such that the (I, {’)-invariant pair (p, h.)
defines a homomorphism p : T1 — G >y T if and only if [ko.]™" lies in the image of the natural map
O: Hllp(F, Gat) = H*(T, Zg).

Remark II1.2.2.7. While Hllp (I', Gaq) depends on the choice of ¢, HXT,Zg) only depend on
the similarity class of 1, as similar homomorphisms give the same action of I'on Z¢. Thus in
the statement of the proposition, we have omitted i) form H*(T', Z¢). The image of 6 depends

on 1.

Proof. Given ¢’ : I = AutG, (x;)ser and (h),)ser defined above, we define a cohomology
class [k ] with respect to 1’ by

(I1.2.2.3.1) Ko = By WL ()N, 8o

The exixtence of the desired p is equivalent to [k/,] = 1. To clarify this condition, let us first
note that since both ¢ and ¢y’ are group homomorphisms, we have

Yoz = Yo
(1I1.2.2.3.2) XoWoXrr = Xoror

XoPo(X7) = Xor

as automorphisms, where we have abbreviated ad x; by x;. Therefore there exists some
dsr € Z¢ such that

(II.2.2.3.3) dor = X7 Xo 1o (7).
Now we compute

Koe = ot W (B ot
(1I1.2.2.3.4) = h;%x;%c;%xgwg(chThT)x;lchghg Sot
= dgckor de,

where ¢, = (c;)ser- We see that [K/.] = 1if and only if [ky:] = [do:]~!. If we denote by (%,) the
image of (x;) in CY(T', G,4) under the natural map induced by G — G4, then by the definition
of 6, [dy:] = 6([Xs]). a

We will see some examples in §II1.5

II1.3 Flat Connections

In this section we work over C. We fix a Galois covering of complex manifolds X — X
and apply the previous results to IT = 71(X) and I1 = 7;(X), but with T%? = TI/IT as in
§I1.1.5
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II1.3.1 (T, ¢)-Invariant Flat Connections

Fix a homomorphism 1) : I' — AutG. Let us begin by explaining the relation with
(I', ¢)-Invariant Representations.

I11.3.1.1 Twisted Principal G-Bundles Given a principal G-bundles & with a flat connec-
tion V on X, for any ¢ € T, we can define another principal bundle by

(II1.3.1.1.1) & =ExcE

where F := G.s;! is the connected component of G = I'? corresponding to o7 1. It is a left
and right G-space with the multiplication actions. The quotient & X¢,y, F is defined by the
relation

(rg,x) ~ (p, 8x),

forany p € & x € F and g € G. The flat connection V? is defined accordingly. We have,
801' o~ (80‘)’1'.

We say that a flat connection (&,V) is (I, ¢)-invariant if for each ¢ € I, there is an
isomorphism of flat connections

(IT1.3.1.1.2) Dy : (E,V) = (6°E, 0" V7).

If p: m1(X) = G corresponds to (§,V) under the Riemann-Hilbert correspondence, then
(&, V) is (I, Y)-invariant if and only if p is (I, p)-invariant.

II1.3.1.2  As before, let ¥ denote the base point of the complex manifold X. We choose a
base point e of the homogeneous space Ez. It determines a base pointes,' € E2. If f : & — &z
is a morphism of homogeneous spaces that sends e to eg, g € G, then the induced morphism
f7: 8% — &7 sends es;! to egs; .

Lemma II1.3.1.1. Suppose that (&, V) corresponds to p, both being (I', )-invariant. There is a
natural bijection between the set of families of isomorphisms (Py)ger such that (&, V), ®.) isa (I, ¢)-
invariant pair and the set of cochains (hy)ger such that (p, h.) is a (I', )-invariant pair. The bijection
is given as follows.

With the chosen base points in the fibres &z and E, for each o € T, the morphism of homogeneous
G-spaces Ez — &2, e = es, 'y corresponds to the following morphism

&)

(I1.3.1.2.1) & el gl
X

(%)

where gz is the restriction of © on the fibres, and & is the isomorphism associated to the path A,

(§II1.1.1.5).
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Proof. For any 1) € 11(X, ¥), we have a commutative diagram

Ex
(II3.1.2.2) pn | |85 |t metpocycotms;!
8~

T e & @ = 2
Indeed, with the choice of a base point in &z, the isomorphism &; induced along nis identified
with p(n); the left square commutes because @, is an isomorphism of flat connections and
(0°8%), = & o conjugationby &7 gives theisomorphism 8‘&/\0 oo’ whichis theisomorphism
of homogeneous spaces induced from Ec,_o(y)-

Since (rSng)_1 o @, ; is a morphism of homogeneous space, it is uniquely determined by

v

(& )~ o @, z(e), which can be written as es, 1, for a unique h, € G. Then
(€)™ 0 D) esy) = e,
which is sent to ep(n)h;! by &,. Further,

(&) 0 Dy r(epmhy’) = esy hap(mhy”.

3 0
Compared with SCM oo(n)’ we have

(II.3.1.2.3) e(poCy, oa(n)s;' = es; p(n) = es; hyp(n)h;t.

We see that such (h,)ser define a (I, )-invariant pair (g, h.).

Reversing the arguments, the h,’s give a family of isomorphisms @, ; that are compatible
with the isomorphisms &, and (6°E?),, therefore define the desired isomorphisms of flat
principle G-bundles. m|

Remark II1.3.1.2. By Lemma we can identify p with (&, V) and identify (h,s,)~! with
anisomorphism @ : & — ¢*&°. Therefore in the setting of Remark[[I1.2.1.8} the flat connection
(&,V) can be decomposed into a direct sum of pairwise non isomorphic irreducibles, and @
induces an isomorphism on each such factor. This should be compared with [Ze2, §4.1] and
[Ra| Proposition 4.5].

II1.3.1.3 For any o, T € I, the isomorphism @, : & — 0¢"&° induces an isomorphism
TP, 1 76 — 1°07EY, and thus an isomorphism (7°®,)* : T°E" — (07)"E’". Combined with
D, : & — TPy, this gives an isomorphism & — (07)*E".

Proposition II1.3.1.3. Let (p, h.) be the (T, )-invariant pair corresponding to ((E,V), D.). Then
foranyo,t €T,

(I11.3.1.3.1) (T'Dy)" 0 D = Dy
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if and only if kg7 = hghb; L(hy)he Qor = 1.
Proof. We first note that there is a commutative diagram for any o, 7:

& — (&)

(I1L3.1.3.2) & | |eemn.

Ewy — (0°E ),

0,7(%)

80 D () = E7) 0 Dy z 0 &1, which gives

(I11.3.1.3.3) (T'De)% = E7F 0 (Dg) 0 ET,.

Using Lemma we calculate

(@or)7! 0 (TDy)f 0 D
=(@or); 0 &} 0 (Pgp)" 0 &l 0 Pus
=(@o0);' 0 &} 0 (Por)" 05, I
=(Pgr);' 0 8T} 08 o &1 0 (Pog)" 0 s h,
=(@gr);' 0 &7 0 & o5, st Y o)y

(I11.3.1.3.4)
=(@gr); 0 &L 0 &L 0 &7 0 &Yl 05, TP (ho)he
s 0 7, 0 B, 0 8 o551 i o
=hy1 0 Yot (Dot VaVe)) 0 ¥ (o) © e
=hge 0 hotp(YeVoVar)lizs © 7' (o) © he
=8t © hgg 0 Y7 (Ig) © i,
whence the proposition. m]

Remark I11.3.1.4. We will always assume ®@; = Id in accordance with the assumption h; =1,
so that the proposition gives an alternative condition for a (I', ip)-invariant pair to descend
to X.

With this proposition, we can say the G-representation p corresponding to the pair
(&, V), @,) with @, satisfying the cocycle conditions.
III.3.2 Stability Condition

II1.3.2.1 Let P be a proper parabolic subgroup of G and let & be a principal G-bundle.
Recall that a reduction of & to P is a principal P-bundle # and an isomorphism & = £ Xp G,
where P acts on G by left multiplication.
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For 0 € I, the G-conjugacy class of P is o-stable if 1;(P) is G-conjugate to P. If the G-
conjugacy class of P is o-stable for all 0 € I', then we say that it is I'-stable. The G-conjugacy
class of P is o-stable if and only if N¢(P) meets G.s;!. In this case, denote by P, the connected
component of N (P) contained in G.s;!. If P is a principal P-bundle for some o-stable P, then
we can define P° as P Xp P,,.

Definition II1.3.2.1. A (T, i)-invariant pair ((&, V), ®.) is unstable if there is

- a proper parabolic subgroup P ¢ G whose G-conjugacy class is I'-stable (for the action
Y : T — AutG) and

- areduction of & to P, specified by an isomorphism & = £ xp G,

such that for all 0 € T, ®, has a reduction to P, i.e. such that @, is induced from some
isomorphism  — o*P°.

Recall that if y. : T — 71(X) is the fixed section and p is a G-representation, then
p()/a) = hglsa-

Proposition I11.3.2.2. Let p be the G-representation corresponding to ((E,V),®.). Then p is
irreducible if and only if (€, V), D.) is stable.

Proof. A G-representation p is irreducible if and only if Im § is not contained in any proper
parabolic subgroup P C G such that i!'s, normalise P for all o € T, if and only if (&, V) admits
no reduction to proper parabolic P such that all i;'s, normalise P, if and only if (€, V) admits
no P-reduction (P, V) such that all @, restricts to P — ¢*#°. (For any o, s;lhg normalise P if
and only if e — es;'h,; defines a morphism of homogeneous spaces Pz — P, which by the
arguments in the proof of Lemma is equivalent to having a morphism of principal
P-bundles P — ¢*#°. Then this morphism induces ®,.) O

I11.3.2.2 Example Let ¢ : I' = AutG be the trivial homomorphism and let G = GL,(C).
In this case, any parabolic subgroup P C G is just UserP°.s, since any s, normalise P°. The
image of p is generated by p(r1(X)) and p(y,) = h;'s,, for all o € T. Therefore Imp C P if
and only if p(m1(X)) c P° and h;! € P° for any o € I. We see that Im p is not contained in
any P if and only if Im p is not contained in any P° such that i, € P° forany o € I".

Now let £ be the local system on X corresponding to p, equipped with isomorphisms
D, : L > 0" Lforall o € I. Let & be a local subsystem of £ and let P be the maximal
parabolic subgroup defined as the stabiliser of &; in GL(Lz) = GL,(C). By Lemma
hs € P if and only if @, maps & to (0°E)z which is equivalent to that @, maps & to 6*E. The
irreducibility of p is translated into the condition that there is no local subsystem & that is
invariant under @, forall o € T

This morally recovers the stability of I-bundles defined by Seshadri: A I'-vector bundle
V on X is T'-stable if its underlying vector bundle is semi-stable and for every proper I-
subbundle W of V, we have

(I11.3.2.2.1) u(W) < u(V).
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See [Ses] Chapter II, §1.

I11.3.2.3 Example Let G = GL,(C) and G = G x<o>be defined by the transpose inverse ¢
and consider the condition for a G-representation p to be irreducible. The definition says that
Im p is not contained in any maximal proper parabolic subgroup of G. Suppose Im p C P for
some parabolic subgroup P C G. Up to a conjugation by G, we can assume that P° is of the
form given in . Then P = P°UP°Js;, where s acts on G by o and (]);j = 0;41-j. Recall
that p(y;) = h;'s,. The irreducibility means that for any standard o-stable proper parabolic
P° such that h, € JP°, Im p is not contained in P°.

On the other hand, Zelaci’s work on vector bundles suggests the following definition of
stable (I', y)-invariant local system. See [Ze2] Definition 4.1. Let £ be a (I', ¢»)-invariant local
system on X. Given the defining isomorphism @ : £ — ¢*£", and a local subsystem & < £,
we put E* to be the kernel of the surjection

(II1.3.2.3.1) L2 5L » 8.

We say that & is isotropic if & ¢ &+. Note that this definition depends on ®. In this case, we
say that

(I11.3.2.3.2) 0c&cé&tcL

is an isotropic flag. Obviously, giving such a flag is equivalent to giving an isotropic local
subsystem. We then define that L is stable if it admits no isotropic flag. We will show that if
(L, @) corresponds to p, then this is equivalent to that p is irreducible.

Indeed, an isotropic flag gives a maximal standard o-stable proper parabolic subgroup
P° by taking the stabiliser of the flag

(I11.3.2.3.3) 0cé& cé&;rcLs
Moreover, this flag is stable under Jh,. To see this, we must fix dual basis

{ell' . -/el’l} c LJ?/

(I11.3.2.3.4)
{61/ cee ren} C ‘£J\~C/’

so that &E; is spanned by the first r basis vectors, &; is spanned by the first n — r basis vectors,
the endomorphism of | is the permutation e; < e,_,.1, and transpose inverse is in the usual
sense of matrices. Denote by ¢ : £ — L; the isomorphism defined by the dual basis. Note
that Lemma in the current context means that 4, is equal to the map

L
D Ag
£t B8y v g
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By definition, the composition
(I1.3.2.3.5) &t LB oL »oE

gives 0, which implies that the map

n D Ly Lz v ¥ pr
(I11.3.2.3.6) E =Ly — L — LI — Ly > &

o(%)

is 0, by the commutativity of

-1
Ly —> i o
(I1.3.2.3.7) l l l’”
O3t v
s &Y Es.

That is, h, maps 8; into the kernel of pr, which is spanned by the vectors {e,.1,...,ex}.
Therefore Jh, preserves E;. Dually, we have the 0 map

N
(I1.3.2.3.8) g LIS 51 > o*(EYY,

but * '@ = ®. So by the same argument we see that Jh. preserves &;. We conclude that the
isotropic flag is automatically preserved by Jh,, thus Wit e pey.

Conversely, given any maximal standard o-stable proper parabolic subgroup P° pre-
served by Jh,, we obtain a flag 0 c & ¢ ¥ ¢ L with ¥ identified with &' by tracing back the
above reasoning.

III.4 Monodromy on Riemann Surfaces

III1.4.1 Monodromy in Twisted Conjugacy Classes

Suppose the topological manifolds are Riemann surfaces. We introduce punctures on
the Riemann surfaces and study the local monodromy. Let us first fix some notations.

II1.4.1.1 Notations Let p’ : X’ — X’ be a possibly ramified Galois covering of compact
Riemann surfaces with Aut(X’/X’) = I'. Denote by h the genus of X’ and g the genus of X'.
Let R C X’ be a finite set of points such that p’ is unramified over X := X’ \ R. Let I be the
index set of the elements of R so that each point of R is written as xj, j € I. Denote by R ¢ X’
the inverse image of R and write X := X’ \ R. Denote by p the restriction of p’ to X. We fixe
the base points ¥ € X and x = p(¥) € X as before. For each x; € R and some %; € p"l(x]'), put
n; = |Stabr(%;)| with Stabr(%;) =<0;> so g; € T'is of order n;. It only depends on x;. Thus p’
is unramified over those x; with n; = 1.
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For each j € I, there is a small neighbourhood Vi homeomorphic to C of Xj such that each
point in p'~!(xj) has a small neighbourhood homeomorphic to C on which the restriction of
p’ is z = z"i. For each j, choose a point y; € V; and a loop [; around x; based at yj, all with
the same orientation. We can choose paths A, lying in X from x to y; such that y; := A]T1Z iAjs
together with the generators a;, §; associated to the genus, generate 71(X) and satisfy the
relation

(I1.4.1.1.1) H(al, ) H yi=1.

jel

The choice of the path A; determines a point §j; over y; and thus the connected component
of p"l(Vj) containing ;. Let us denote this connected component by U; and denote by %;
the point in U; over x;. All other connected components of p"l(Vj) are of the form 7(U;) for
some 7 € I'. For each such component, we fix a 7 as above and thus a point 7(#;) in it. The
associated objects will be indicated by a subscript (j, 7), for example U, = ©(U;), §; = ©(7),
and in particular, U;; = U;. If r; is the lift of /; starting from 7, then

(I11.4.1.1.2) =" rj-rjr

is a loop in U; based at ;, where “/7; is the image of r; under o] Let [; it = T(l ). Again, we
can choose paths Ajr for X to ;. lying in X such that j;, := /\ l «Aj: together with a;, B;,

1 <i < g, associated to the genus of X, generate 71(X) and sat1sfy a similar relation as for
y;’s. Note that the A;;’s are not necessarily the lifts of the A/’s.

II1.4.1.2 Monodromy of p : 711(X) = G =TI Let p be as in[[lL.122] Fix ¢ : T — AutG
and write G = G >y I and denote by p the underlying G-representation. Since the end
point of the lift of y; is (%), y; belongs to the coset in 71(X) corresponding to ;. With
the specific choices of the y;’s as above, we say that the monodromy of a G-representation
p at the puncture x; is the element p(y;), which lies in the connected component G.sq;. In
the G-character variety, its G-conjugacy class is well-defined, say C;. A different choice of
Aj results in a conjugation of y; in 71(X), whence a conjugation by G of p(y;), whence a
conjugation of C i by the group of connected components I'”. However, as we can see below,
even if we fix a particular A;, we still need to consider the G-conjugates of C; when we go up
to X. So it is natural to consider the G-conjugacy class of p(y;).

Now we consider what happens on X. The lift of yj.l] is conjugate to 7;1, therefore p(7;1)

must lie in the G-conjugacy class C; := C;.lj = {¢" | § € Cj} € G. Now we take 7 to be the
element that takes U; to some U, that does not meet U;. The lift of y;1y7j V7 (yr is given by
the fixed section I' — 711(X)) is conjugate to ﬂ]TTll~ ]-,Tﬂ jt = 7Vjrin 111(X), therefore

(II1.4.1.2.1) p(7j) is conjugate to p(y<) ' p(y)"p(y) by Im p
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which is in the conjugacy class p(y;)'Cip(y)) = s;'h:Cih;'s: = ¢2(Cj) =: Cjr. Similarly,
p(rily jve) € st1(C /)8t =: Cj which belongs to the connected component G.sw],r1. We have

C;l]T = Cj. Note that 7'y« is in the coset corresponding to 707",

I11.4.1.3 Let us summarize the above discussions as follows.

Definition I11.4.1.1. Withaloop[;based at y;in a small neighbourhood of the puncture x;, the
local monodromy class of a G-representation p at x; is the G-conjugacy class C; of p(AJTll iAj)
for some path A; from x to y;. It does not depend on the choice of A;. A particular choice of
Aj singles out a G-conjugacy class C; contained in Cj, also called the local monodromy class
of p at x;.

We also have,
Lemma I11.4.1.2. Suppose that we are given a particular path A; as in the above definition so that
p(A].‘ll]-/\]-) € Cj, and %; is the point over x; which has a small neighbourhood containing the end point
of the lift of Aj. Then the local monodromy class of p at X; is C’;j . Moreover, for any other point t(%;)
over x;j, T € I, the local monodromy class of p at T(¥;) is 1,[1T(C’].1j )-

Remark I11.4.1.3. Fixing the monodromy classes Cj; on X does not uniquely determine the
monodromy classes C;, since in general there can be many conjugacy classes C;. such that

()" = Cja.

Remark I11.4.1.4. Suppose that 1 is the trivial homomorphism. A G-conjugacy class in G is
just a union of copies of a particular G-conjugacy class in G, say C;, with one copy in each
connected component corresponding to the elements of some conjugacy class of I'. On the
other hand, at all points lying over x;, the monodromy classes of ( are the same, and only
depend on xj, say C;. If C; = {1}, then C; is morally the local type of a I'-invariant vector
bundle over x; as defined by Balaji and Seshadri. See [BS, Definition 2.2.6].

III.4.2 Generic Conjugacy Classes

In this section. we assume that the image of

I % AutG = (AutG)/G,y = A(G)

is contained in a cyclic subgroup. If G is GL, or almost-simple with root system not of type
Dy, then this is always satisfied.

II1.4.2.1 Fix a maximal torus T contained in a Borel subgroup B of G. In each connected
component G.s;, 0 € I', we choose a quasi-central element s, € Nx(T, B), so that N&(T, B) =
UgerT.ss. The semi-simple G-conjugacy classes in G.s, are parametrised by the W®s-orbits in

Ta =T/[T,ss] = (TSJ)O/(TSU)O N[T,s;].
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with t € (T®7)° representing the class of ts;. Denote by T, the quotient T,/W%. Wheno = ¢ i
for some j € I, we will write s;, T; and T instead of Sg;, To; and T, e

LetC = (Cj)jes be a tuple of G-conjugacy classes of G, with C;j contained in G.s,;. Denote by
Repr (X, G) € Repr(X, G) the locally closed subvariety consisting of p satistying p(y;) € Cj,
for all j € I. If C are semi-simple classes, Repr (X, G) is closed in Repp(X, G) and these
tuples are parametrised by []; T;. We will define a non-empty subset T° c [];T; so that
p € Repr(X, G) is irreducible whenever p € Repr (X, G), for some tuple C whose semi-simple
parts correspond to a point of T°.

II1.4.2.2 Let P be a parabolic subgroup containing B and let L be the unique Levi factor
of P containing T. In this case we will simply say that (L, P) contains (T, B). There are only
finitely many such pairs (L, P). Suppose that Nx(L, P) meets all connected components of
G. This implies that for any o € T, the G-conjugacy class of (L C P) is stable under s,. But
(ss(L),ss(P)) also contains (T, B), so it is necessary that (ss(L), s;(P)) = (L, P) for any o0 € I’
Therefore Nz(L, P) = UgerL.s,.

Write L = Ng(L, P).

Lemma I11.4.2.1. Let L and P be as above. If L # G, then dim Z; > dim Z.

Proof. For any o € I, the action of s; on T are determined by the connected component of
Aut G that the automorphism ad s, belongs to. By the assumption at the beginning of this
section, there is some oy € I' such that ad s, generates the image of

I 4 AutG — A@G).

Therefore Z; = Cz,(s4,) and Zg = Cz.(Ss,), since Zr and Z¢ are contained in T.

Now L’ := Cy(ss,)° is a Levi subgroup of G’ := C(ss,)°. By Proposition[[L.3.2.1}if L # G,
then L # G’. By Proposition Z;, = Cz:(sq,)° and Z¢, = Cz2(Sq,)°. Then the lemma
follows from the result for usual Levi subgroups. m]

II1.4.2.3  For any connected reductive algebraic group H, denote by
Dy : H — Z},/(Z;; N [H,H])

the projection, identifying H/[H, H] = Z},/(Z},N[H, H]). For H = GL, this is the determinant.

Each element t, € T, is an W% -orbit. Each element ¢, € t; is a coset in (T57)°. We fix a
representative in (T°7)° of each such t,, also denoted by t,. The choice of such representative
will not matter. If ¢ = g; for some j € I, then we write ¢; and t; instead of ¢, ; and t, o

Definition I11.4.2.2. A tuple of semi-simple conjugacy classes parametrised ty (t;) c; is generic
if the following condition is satisfied. For

- any(L, P) containing (T, B) with P # G such that Nz(L, P) meets all connected compo-
nents of G, and
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- any tuple (t)je; with ¢; € t;,

the element

(I1.4.2.3.1) 1_[ H Di(s:(t's})) € Z; /(Z; N [L, L])

jel tel/<oj>

is not equal to the identity, where s; acts on T by conjugation. A tuple of conjugacy classes
C is generic if the tuple of the conjugacy classes of the semi-simple parts of C is generic.

One can verify that Dy (s (t" s?j )) has constant value for t € [T, s;] so it only depends on
the coset ¢;.

Remark I11.4.2.3. If we denote by D; the homomorphism L — L/[L, L], then

[1 Dutsett]s?) = [ [ Dutsettss),

t€l/<ao;> el
where s; acts on Nx(T, B) by conjugation.

Remark I11.4.2.4. The morphism of varieties (T%)°s; — T, ts; — (ts;)"/ surjects onto a
connected component of T%/. Indeed,

(1s))" = tsy(t) -5 (s
and is obviously fixed by s;.

Put
(Z)' =1z € Z; |s.(z) =z, forall T € T}.

We have (Z; Y=z n Z;. It has the same dimension as Z;.

Lemma I11.4.2.5. Forany j €1,

[] Drose: ™ — @) /(@) nIL LD

el /<o>
is a surjective group homomorphism.

Proof. Lett € T® and 0 € I'. We have

so( [ Dutse)= [] Drlsos:t).

€l /<o;> (ESWASy>

Note that s;s; differs from s,; by an element of T, and therefore they have the same action
on T. Also, all elements in a coset 7<o;>have the same action on T*. The right hand side of
the equality is thus equal to [] 1, <o;>DL(s:(£)). So the image is I-invariant.
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Letz e (Zz)r. Then
[ Dusczy =2"m.

el /<o;>

Since char k 1 |I'], this surjects onto (ZZ)F. m|
11424 Denoteby T c [] j T; the closed subvariety defined by

(I1.4.2.4.1) H H Do(sc(ts}) =1,

jel tel/<oj>

with t; € T;. One can also define T C [] ; Tj by the same equation while choosing for each
orbit t; an element ¢; in it. This is well-defined.

Proposition 111.4.2.6. The subset of generic semi-simple conjugacy classes T° C T is Zariski open
and non-empty.

Thus we can regard T° as an open subvariety.

Proof. LetZ c [] i T jbe the closed subset defined by: (¢;) belongs to Z if for some (L, P) > (T, B)
with P # G,

(I1.4.2.4.2) H H Dy (s:(t]'s})) = 1.

j€l T€l/<oj>

By Lemme|lI1.4.2.1} Remark [[I.4.2.4/and Lemma lI1.4.2.5, we have dim Z < dim T.

The finite group W := []; W¥ acts on [] jT]- and preserves the closed subsets T and
Upeww.Z. Define

It is a W-invariant open subset of T, and is non-empty for dimension reason. Then by
definition (t;) € T° if and only if all of its fibres are contained in T° and so T° = T°/W is
open. o

I11.4.2.5 Generic conjugacy classes of GL, (k) x<o> By Hurwitz formula, there can only
be an even number of ramification points in a double covering of Riemann surfaces. Let
the punctures be exactly the ramification points. In this case I = {1,...,2k} and let C =
{C1,...,Cxl be a 2k-tuple of semi-simple o-conjugacy classes. That is, G-conjugacy classes
contained in G.o. We write n = 2m or n = 2m + 1 according to the parity. In either case, C; is
determined by an m-tuple of eigenvalues A; = {a;1,...,d;n}. (See §I1.5.3.3) Put A = {1,...,m}.

We write A]- = {d?l, . ,ﬁjz.m}, where for any orbit Z, 22 .= {x%|x € z}. We have 1? = {1}, % = {-1}

(i = V-1), and for any other orbit z* = {z%,z72}. For any j and any subset J; C A, denote by

Aj; c A; atuple of the form (ZKkej;s 2k € ﬁ?‘,k'



I11.4. MONODROMY ON RIEMANN SURFACES 73

We write

(I1.4.2.5.1) [A)] = H Z.
kE]]

We see that C is generic if and only if for any 1 <! < m, any J;, j € I, such that |J;| = [, and
any A Jis the following relation holds,

(I11.4.2.5.2) [Ag]---[Apl#1
We will say that C is strictly generic if we require further that
(I11.4.2.5.3) (Al [Ap] # -1,

for any / and J; as above. This notion will only be used to simplify some calculations in the
point-counting problem.

II1.4.2.6  We conclude this section by the following proposition.

Proposition II1.4.2.7. Suppose C is a tuple of generic conjugacy classes. Then every element of
Repr (X, G) is an irreducible G-representation.

Proof. Fix T C B and s, as in §llL.4.2.1} Suppose p € Repr (X, G) is not irreducible. Then
there exists some proper parabolic subgroup P C G such that Ng(P) meets all connected
components of G and Im p C Ng(P). Up to a G-conjugation we can assume that P contains
B. Let L be the unique Levi factor of P containing T.

Put ¢; := p(y;) € Psj, then c?j € P. Let ¢; = p(y)), then it is P-conjugate to c;.lj. For

T representing a coset in I'/<0;>, ¢;; := p(y;.) is P-conjugate to sT(c};j ) by (IIL4.1.2.1). Let

nr : P — L be the natural projection. Using a presentation of 711(X) by the 7;.’s, we find

(II1.4.2.6.1) H H Dy o mi(se(c})) = 1.

jel tel/<a;>

Note that the value of Dy, only depends on the semi-simple parts. The semi-simple part
cjs of ¢j is contained in G.s; because we have assumed char k 1 |I'| and all unipotents elements
are thus contained in G. In particular, ¢;s € Ps;. It is therefore P-conjugate to an element of
N¢(T, B) and is further L-conjugate to an element of (T®)°s; by Proposition[lL.3.1.2} Now, the
above relation contradicts the definition of generic conjugacy classes. O
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III.5 Double Coverings

II1.5.1 G < Z/2Z-Character Varieties

These are among the most important examples. We will reproduce some of the general
results above in these particular cases with more explicit computations. All coverings are
assumed to be connected.

IIL.5.1.1 Letp: X — X be a double covering of Riemann surfaces. Denote by 6 the non-
trivial covering transformation of p. Interesting structure groups include connected complex
reductive group of type A, D or Es. Other types are possible but do not have non trivial
graph automorphism. We will denote the structure group by G. Since a homomorphism
Y : Z/27Z — AutG is determined by the image of 1 € Z/2Z, we will denote its image by o
and say the (I', )-invariant pair concerned is o-invariant. Therefore for a G-representation
p of 111(X), we write p° := g o p o C; o 6, where A is the unique lift of  := y¢. Denote by 7
the path YAA which lifts . Let us look at various o-invariant local systems on X.
We are concerned with two cases.

(i) ois the trivial automorphism of G, and p° = hp for some h € G. In this case, we simply
say that (p, /1) is an invariant pair.

(ii) oisa graph automorphism of order 2, and p° = hp for some h € G. We say that (g, h) is
a o-invariant pair.

I1.5.1.2 If G = GL,(C), of particular interest is the automorphism a, : ¢ - g7, ¢ € G.
Let £ € Rep(X, GL,(C)) be a local system corresponding to some representation g, then p°
corresponds to ¢* L in case (i) and corresponds to ¢*L" in case (ii), where L is the dual
local system. Therefore £ is invariant if there exists an isomorphism @ : £ — ¢*L and that
L is g,-invariant if there exists isomorphism ® : £ — ¢*£". If ¢ is a non-trivial order 2
inner automorphism, then it is equivalent to having the trivial automorphism, as we have
seen before (§I1.5.2.1). We will see later that, when 7 is even and ¢ = 05, the symplectic type
automorphism, the corresponding o-invariant pairs also have a simple description in terms
of local systems.

Suppose that L is an irreducible invariant local system. Given an isomorphism @ : £ —
0" L, the composition c"® o ® : L — L is necessarily a homothety. The isomorphism ® can
be modified in such a way that this homothety is the identity, in which case @ is called a
linearisation (in [Ze2]).

Let L be an irreducible g,-invariant local system. Given an isomorphism ® : £ — ¢* LY,
the composition 6*/®~! o @ : £ — £ is necessarily a homothety, denoted by k € C*, Since a
homothety is invariant under transpose and pullback by o, we have k = k™. We define the
signature of L as the value of k, denoted by €.



I11.5. DOUBLE COVERINGS 75

IIL.5.1.3 We also have the equivalent description in terms of representations, but for
general reductive groups.
Let (p, h) be a strongly irreducible o-invariant pair. Evaluating both sides of p? = hp at y

gives o(p(7)) = hp(P)h~'. Let g := p(7), then
(I1.5.1.3.1) o(g) = hgh™.

Now (p°)° = ¢7'p = o(h)hp, by the definition of p° and by c-invariance respectively. It
follows that kg™! = o(h)h, for some k € Zg. Consider the action of ¢ on this equality. On
the one hand, o(c(h)h) = ho(h) which is conjugated to a(h)h by h~1. On the other hand,
O(kg_l) = a(k)o(g_l) which is conjugated to a(k)g~! by |/ using . We find that
k = a(k).

In the case of GL,(C) and ¢ = 0, this means k* = 1, thus we recover the signature of p,
denoted by €5, which is the only value of k such that kg~ = g(h)h. Indeed, by Proposition

111.3.1.3) we have €, = €; if L corresponds to p.
p P p
Suppose 0 = Id and p° = hp. From the calculation above, we deduce that gh? = k € Zg,

and & can be modified in such a way that gh? = 1. Such & corresponds to the linearisation ®
of an invariant pair.

II1.5.1.4 The above calculation of signatures agree with our previous classification of

(I', p)-invariant strongly irreducible representations in terms of group cohomology. For

G = GL,(C), Zg = C*. The action of ¢ on C" is either trivial or the inversion x — x71,

depending whether ¢ is an inner or outer automorphism. Let us calculate H*(Z/2Z,C"). A
cochain ¢ € C*(Z/2Z,C") is represented by

(0,00 > a; (0,1) > b;
(1,0)0—>c¢ (1,1)—>d.

(IIL.5.1.4.1)

The differential d: C%(Z/27,C*) — C3(Z/2Z,C") is given by

(IM.5.14.2) de(r,y,2) = p(y, 2P + y,2) " plx, ¥ + 2P, y) ™ - 2).
We find that if the action of ¢ is trivial, then (4, b, c, d) is a cocycle if

(II1.5.1.4.3) b=a, c¢=a norestrictionond,

and if o acts by inversion, then (4, b, ¢, d) is a cocycle if

(I11.5.1.4.4) b=al; c=a d=a"2

The differential d: C}(Z/27,C*) — C*(Z/2Z,C") is given by

(I1.5.1.4.5) do(x, y) = p(m)e(x + 1) (ex) - y),
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Let us represent a cochain ¢ € C1(Z/2Z,C") by
(II1.5.1.4.6) Oa 10
Then if ¢ acts trivially, then de is

0,0)—>a;, (0,1)a;

1.5.1.4.7
( ) (1,0) — a; (1,1) - b?a?,

and if o acts by inversion, then d¢ is

0,00 —~a; (0,1)—al;

(II1.5.1.4.8) 1
1,00—a Q,1D)—>a-.

Therefore, if o acts trivially, then H*(Z/2Z,C") is trivial and if o acts by inversion, then
H?*(Z/2Z,C*) = uy is the two-element group. The two cohomology classes, distinguished
by d = +a~!, correspond to the signatures of g,-invariant pairs. Indeed, the cochain (ks7)
associated with (p, h) is

kooy=1 ko1n=1

(II1.5.1.4.9)
kao =1 kan =k=o(h)hg.

Therefore k = 1 gives the trivial cohomology class whereas k = —1 gives the other cohomology
class.

II1.5.1.5 We have seen in Proposition that (I, ip)-invariant pairs corresponding to
a non-trivial cohomology class may be regarded as (I, {’)-invariant pairs corresponding to
the trivial cohomology class for some ¢’ similar but not equal to ¢. In fact, the g,-invariant
GL,(C)-local systems of signature —1 are exactly the os-invariant local systems of signature
+1.

Let (p, h) be o-invariant, then (p, Jh) is os-invariant. Suppose o(h)hg = —1, we calculate

as(Jh)Jhg
=Jo(Jh)] ™' Jhg
=Ja())o(hhg
=1

(II15.1.5.1)

That is, (p, Jh) has signature +1 with respect to os.

I11.5.2 Explicit Form of G =< Z/2Z-Character Varieties

We are now ready to write down the explicit equations defining G < Z/2Z-character
Varieties.
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II1.5.2.1 Unramified Covering of Compact Surfaces Suppose thatp : X — X is an unram-
ified double covering of compact Riemann surfaces. Let g and & be the genus of X and of
X respectively. We have g = 2h — 1. Choose generators a;, fi, 1 < i < h, of 711(X) satisfying
H?(ai, Bi) = 1, where (a, f) is the commutator. As an index 2 subgroup, m1(X) is generated
by @;, ﬁ j» where

a; =ay, B = ﬁ%/
(I15.2.1.1) aj=praip;’, pi=piBipy’, 2<j<h

aj=aja-p Pj=Pjs-n h+1<j<g.

Then H? (@;, B j) = 1. With these choices, the character variety is

Repz/zz(X, G) =
{(AllBll e /Ahr Bh) € (G X G'Sl) X (G X G)h_1|(All Bl) T (Ah/ Bh) = 1}

where sy is the image of 1 € Z/2Z in G. Note that (a, bs;) = abl,bl(a‘l)b‘l, foranya, b € G. We
observe that

- If ¢y, for 1 € Z/27Z, is the trivial automorphism, we obtain the usual G-character
variety of m1(X).

In the case G = GL,(C),

- If Y, for 1 € Z/2Z, is the exterior automorphism of orthogonal type d,, then G.s; C ‘G.
This is the moduli space of g,-invariant local systems of signature +1.

- If nis even and 1, for 1 € Z/27Z, is the exterior automorphism of symplectic type o,
then G.s; € ‘G. This is the moduli space of o,-invariant local system of signature —1.

The groups °G and ‘G are defined in §11.5.2.1

II1.5.2.2 Unramified Covering of Noncompact Surfaces Now suppose thatp’ : X’ — X’
be a ramified double covering of compact Riemann surfaces. There must be an even number
of ramification points. We follow the notation of The fundamental group m1(X)
is generated by a;, fi, 1 < i < h, and yj, j € I, with the only relation [](a;, i) I1;7; = 1.
Note that in the particular case of double covering, each «;, f; is the image of some &; or f5;.
Therefore the images of the a;’s and ;’s under p must lie in Im p C G. Also note that for each
yjwithn; =1, y;is conjugate to ;1. (Here 1 €<o>= Z/27 =T, is written multiplicatively.
We could write 70 and 7,1 instead of ;1 and J;, respectively.) For j such that n; = 2, we
simply write 7 := ;1.

LetC = (Cj)jer be a tuple of semisimple G-conjugacy classes in G such that C; withn; = 1is
contained in G and C; with n; = 2is contained in G\ G and there are even number of classes C;
with n; = 2. These classes determine a tuple cf conjugacy classes C := (C;1, Cjo)n=1(Cj)n,=2 in
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G, where Cj; = Cj, Cjy = ¢1(Cj) and Cj = C?. Denote by Repy , -(X) the closed subvariety
of G-representations under which the image of each y; lies in C;. Then we have

Repy nz,c(X) =

h
(A, By x (X e G x [T e[ JeauBo [T 5= 1,
j i=1 jeRr

Under the isomorphism given in the proof of Theorem it is isomorphic to a
closed subvariety of Repr’c(f(, G), with I' = Z/27Z, where Repr'c(f(, G) consists of those
representation p : 711(X) — G such that p(j;;) € Cj. for 7 = 1 or o and p(j;) € C;. Since for
a given conjugacy class C C G, the conjugacy class C C G.o such that C> = C may not be
unique, the closed subvariety Rep, »7 ~(X) in general is not equal to Rep' ¢ (X, G).

II1.5.2.3 Ramified Covering of Compact Surfaces We apply the previous discussions to
ramified coverings. Let | C I be a subset indexing some ramified points. Write X; = XUje/{%;}
and Xj = X Ujj {x;}. If we put C]- = {1}, for any j € ], then Repr’c(f(, G) can be regarded as
the variety of (', i)-invariant representations with respect to the ramified covering X; — Xj,
with monodromy classes at the punctures {x};, j ¢ ], given by C j»J € I'\ ]. We are interested
in the case where | = I and R are exactly the ramification points. Now C; = {1} for all j. In
the case of G = GL,(C), we observe that

(@) If Y1, 1 € Z/27Z, is the trivial automorphism, each C; is identified with a conjugacy
class of involutions in G. These classes are parametrised by partitions of n of length at
most 2, say p = {u}je; with u0) = (ngj), n;])), n(l]) + ”(z]) = n. Then we write Repr (X, G)
as Reprly(X, G). The variety Repr'c(f{, G) is a finite union of the Repr/y(X, G)’s for u
running over the partitions above. Following Remark we say that a (T, ¢))-
invariant representation p on the ramified overing X’ — X’ has local type u over R if
the corresponding G-representation p belongs to Rep. u(XG).

(b) If Y1, 1 € Z/27, is the an exterior automorphism o of orthogonal type or symplectic
type, then by , the map C — C? gives an injection from the set of semisimple
G-conjugacy classes contained in G.s; into the set of o-stable semisimple conjugacy
classes in G, so in particular, C; is the conjugacy class of s for all j. In this case, we
have )

Rep"“(X, G) = Rep; (X, G).

Remark III.5.2.1. For general reductive group G, the conjugacy class of s; is isomorphic to
the symmetric space G/GY".



Chapter IV

The Character Table of GL;(g) <<o>

In this chapter k denotes the algebraic closure of IF;. We assume that g > 1, which is
assumed in the theorem of Waldspurger, and which also ensures that the Deligne-Lusztig
induction does not depend on the parabolic subgroup containing a given Levi subgroup. In
and G will denote GL, (k). In G will denote a connected reductive group
over k and in G will denote a not necessarily connected reductive group over k.

IV.1 Parametrisation of Characters

IV.1.1 F-Stable Levi Subgroups

Recall the parametrisation of the F-stable Levi subgroups of G = GL, (k).

IV.1.1.1 Notations Denote by T C G the maximal torus consisting of the diagonal matrices
and denote by B C G the Borel subgroup consisting of the upper triangular matrices. The
Frobenius F of G sends each entry of an matrix to its g-th power. Denote by @ the root
system defined by T and A C ® the set of simple roots determined by B. Denote by
W := Wg(T) = Ng(T)/T the Weyl group of G. The Frobenius acts trivially on W.

Given a subset I C A, we denote by W; C W the parabolic subgroup generated by the
simple reflections {s,|a € I}. Denote by P; the parabolic subgroup defined by W; et B, and L,
the unique Levi factor of P; containing T. Denote by ®; C ® the root subsystem assocated
to L; and its Weyl group is Wi. A Levi subgroup of the form Ly is called a standard Levi
subgroup. Every Levi subgroup is conjugated to a standard Levi subgroup

Proposition IV.1.1.1. The set of the GF-conjugacy classes of the F-stable Levi subgroups of G =
GL,, (k) is in bijection with the set of the unordered sequence of pairs of positive integers (r1,dy) - - - (rs, ds),

satisfying Y., rid; = n.

Proof. The G-conjugacy classes of the Levi subgroups are in bijection with the equivalence
classes of the subsets I C A. Two subsets I and I’ are equivalent if there is an element w € W
such that I’ = wl. It suffices for us to fix I C A and only consider the G -conjugacy classes of

79
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L;. The Gf-conjugacy classes of the G-conjugates of L; are in bijection with the F-conjugacy
classes of Ng(Lj)/L;. Note that Ng(Lr)/L; = Nw, (W) and F acts trivially on W and so on
Ng(Lp)/L;.

Let I'; be a finite set parametrising the positive integers ;, i € I' such that L; = [ [, GL,.
Foranyr € Zo, putI, :={i € I'1 | n; = r} and put N, = [I'1,|. Then the equivalence classes of
I is specified by the sequence (r, N;),~0. We are going to show that the conjugacy classes of
Ng(Ly)/Ly are determined by the partitions of N,. The desired sequence (r1,d1) - - - (15, ds) will
then be defined in such a way that (d;);c(1<i<s|r,=r) forms the partition of N;.

Put S := Zp,. It is a subtorus of T. Denote by ®(G, S) the subset of the nontrivial weights
of the action of S on g := LieG. It is in bijection with {(i, j) € I’? | i # j} and so we denote
by a;; the weight corresponding to (i, j). The weight subspace g,,; is of dimension n;n;.
The subset ®; = {a;; € O(G,S) | n; = nj} is obviously a root system that is decomposed
into some irreducible factors ®;, = {a;; € O(G,S) | n; = n; = r} with r € Z, each one of
type An,-1. The adjoint action of w € N¢(L;)/L; sends Ga;; ONLO Guo.g - In fact, the action of
Ng(L)/Lj can be lifted to an action of Ng(T)/T, thus we see that g; ; is conjugate to gy i only if
{ni,n;j} = {ny,ny} as sets. Consequently, the action of Ng(Lj)/L; preserves each ®;,. We have
then a homomorphism N¢(L;)/L; — [, W(®r,) = [, S(T1,).

For any permutation belonging to [ [, S(I'; ), there obviously exists a permutation matrix
normalising L; that induces it, so this homomorphism is surjective. If w € Ng(T) representing
an element of N;(L;)/Lj acts trivially on @y, then its action on S is trivial, since S is contained in
T and w acts on T by permuting the factors. Sow € L, as L; = C5(S), and the homomorphism
is ths injective. We then have an isomorphism Ng(L;)/L; = ], S(I'1,).

Let wL; € Ng(L;)/L; be a class representing a GF-class of F-stable Levi subgroup. For
each r € Z, denote by Aj,(w) the set of the orbits in I';, under the action of w and write
Ar(w) = UsAp(w). Foreachi € Aj(w), putr; = rifi € Ar,(w) and define d; to be the cardinality
of i. The d;’s, for i € Aj,(w), form a partition of [I'7,|. The integer s in the statement of the
proposition is equal to |[Ar(w)|. m]

If the class of wW| corresponds to (n1,d1) - - (ns,ds) and L is an F-stable Levi subgroup
corresponding to wWj, then (L, F) is isomorphic to a standard Levi subgroup

(IV.1.1.1.1) L= [ [ GLu (0%,

equipped with Fy, acting on each factor GL,, (k)% in the following manner,

GL,,, (k)% — GL,, (k)"

(IV.1.1.1.2)
(gll 82, /gd,') — (FO(gdi)z FO(gl)/ o /FO(gdi—l))/

where F is the Frobenius of GL,, (k) that sends each entry to its g-th power.
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IV.1.2 o-Stable Characters

Fix T and B as above. We could equally work with any F-stable and o-stable maximal
torus contained in a o-stable Borel subgroup.

IV.1.2.1 Quadratic-Unipotent Characters Given a 2-partition (u1, 2), we define an irre-
ducible character x(, ., € Irr(GL4(g)) as follows. Put m; = |y and my = |ua| and so
my +my = n. Let M € GL,(k) be a standard Levi subgroup isomorphic to GL,,, (k) X GL,,, (k),
ie.

GL,, | 0
(IV.1.2.1.1) M=
0 | GLy,

Denote by Wy := Wp(T) the Weyl group of M. It is isomorphic to &, X S,. The Frobenius
F acts trivially on W). With respect to the isomorphism MF = GL,, () X GLy,(g), we define
a linear character 6 € Irr(MF) to be (Id o det,n o det), where Id is the trivial character of
IF; and 7 is the order 2 irreducible character of IF;. It is regular in the sense of [LS, §3.1].
We define ¢ € Irr(Wy) by a 2-partition (u1, i2) in such a way that the factor corresponding
to Sy, is defined by the partition pq, and the other by us. According to Theorem 5, the
triple (M, 6, ¢) gives an irreducible character of GL,(g), which we denote by x(y, u,)- The
irreducible characters of GL,(g) thus obtained are called quadratic-unipotents.

Lemma IV.1.2.1. For any 2-partition (u1, ti2), the character xy, ,.,) is o-stable.

Proof. The operation x +— x o 0! defines an involution of Irr(GL,(g)). Denote by %y, u,)
the image of X (1, 112) under this involution. If x is of the form Rg@ for a triple (M, 0, @),
then %, u,) is of the form RUG*(I,O*Q for the triple (6(M), 0.0, 0.¢) according to Lemma([1.4.1.2
Explicitly,

GLy, | O
oM) = ,
0 | GLy,

0.0 associates to the factor GLy, the trivial character of I and 7 to the other factor, and o.¢
associates to the factor GL,,, the character of S,,, corresponding to 11 and to the other factor
that corresponding to u;. Then the conjugation by J,, sends (6(M), 0.6, 0.9) to (M, 0, ¢), and
8O X (uy,p2) = X(u1,p2) @ccording to Theorem o

IV.1.22 Now we construct some more general o-stable irreducible characters. If I C A is
a o-stable subset, then it defines a o-stable standard Levi subgroup. Every o-stable standard
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Levi subgroup is of this form. We are going to use the notations of §IV.1.1.Tjand of Proposition
Denote by 0 the unique element of I'; fixeed by ¢. For any i € I';, denote by i* its
image under ¢. The standard Levi subgroup L; is decomposed as []er, L;. For any i € I},
write n; = r and so L; = GL,(k) if i € I';,. Schematically, L; is equal to

L;

1

(IV.1.2.2.1) GLy,

L
IV1.2.3 For any r € Z(, we write N, = [['1,]. And Wg(L) := Ng(L;)/L; is isomorphic to
I1, Sn,. Write N, = N, /2ifng # rand write N, = (N,—1)/2if ny = r. Then, Wg(L;)? = HrQBZ(\:],.
Regarded as a block permutation matrix, an element of ‘IB](\:]; typically acts on [ [y, Li in
the following two ways.

L]
G
k% L;

(IV.1.2.3.1) t ,
20
i

corresponding to a cycle of positive sign and a cycle of negative sign respectively.

If w is an element of Wg(L;)?, then a block permutation matrix that represents it, denoted
by w, obviously can be chosen to be o-stable, and so there is some g € (G°)° such that
¢ 'F(g) = w. Put My, := gLig~!. It is an F-stable and o-stable Levi factor of a o-stable
parabolic subgroup, and there is an isomorphism ad g : Lf v o= Mf » A character of Mf, » 18

o-stable if and only if it is identified with a o-stable character of Lf “ by ad g as g is o-stable.
We are going to construct some o-stable irreducible characters of Lf “.

Write A = A(w), following the proof the of Proposition The action of 0 on I}
induces an action on A as w commutes with o, which justifies the notation i* for i € A. If i,
j € I't belong to the same orbit of w, then n; = n;, which justfies the notation n; fori € A. Also
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note that n; = n;-. For any i € A, denote by d; the cardinality of the orbit i. Write
(Iv.1.2.3.2) A ={ie A #i}] ~

where the equivalence identifies i to i*. We will say that i belongs to A; if i # i* and the
equivalence class of i belongs to Aj. Write

(IV.1.2.3.3) Ay ={ie Ali =i} \ {0}.
We can choose an isomorphism

(IV.1.2.3.4) L= H(GLni X GLy,. )% x H(GLni X GL,,,. )% X GLy,

€A i€y

such that F,, and o act on L; in the following manner.
The action of Fy, is given by:

i=0: GL,, — GL,, (IV.1.2.3.5)
Ar— Fo(A),
e (GLy,, X GL,,. )% — (GLy, X GL,,,.)* (IV.1.2.3.6)

(A1,B1, Az, Ba..., Ag, By) —
(Fo(Ag,), Fo(Bg;), Fo(A1), Fo(B1) - . . Fo(Ag,-1), Fo(Ba,-1));
i€y: (GLy, X GL,,..)%/? — (GLy, X GL,,.)%/? (IV.1.2.3.7)
(A1,B1,A2,By...,Au)2,Ba ) —
(Fo(Ba,j2), Fo(Ag,/2), Fo(A1), Fo(B1) . . . Fo(Ag,/2-1), Fo(Ba,j2-1))-

where Fj is the Frobenius of GL,(k), for an arbitrary 7, that sends each entry to its g-th power
The action of ¢ is given by:

i=0: GL,, — GL,, (IV.1.2.3.8)
A +— 0p(A);
i #0:GLy, XGLy. —> GLy, XGLy, (IV.1.2.3.9)

(A, B) = (0i(B), 0i(A))

where 0y is the standard automorphism of GL,, (§I1.5.1.1) and o; is the automorphism of
GL,, that sends g to g, ¢~ '3, ! no matter what the parity of n; is (§I[.5.1.1). We have

(IV.1.2.3.10) Ly = [ [(GLw (@) X GLy, (4%)) x [ | GLu(a™) x GLuy(@)

€A1 i€y
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and o acts on it in the following manner,

i=0: GL,,(q) — GLy,(9) (IV.1.2.3.11)
A +— 0p(A);
i € Ay :GLy, (¢%) X GLy,,. (4) — GLy,,(¢%) X GL,,.. (4%) (IV.1.2.3.12)
(A, B) /> (0i(B), 0i(A));
ieA;: GLy,(g%) — GLy,(g") (IV.1.2.3.13)

Ar— oiF(d)i/z(A).

Denote by L; the product of the factors of L except Lo. If no confusion arises, we may
also denote by F;, and ¢ their restrictions on L;. With respect to the decomposition of Lf “ as
above, a linear character 61 of Lf “ can be written as

(IV.1.2.3.14) H(ai’ @) H a; € H(Irr(IF;di) X Irr(IF;di)) X H Irr(IF;di).

€A1 i€y €A [V

The set Irr(Wy, )= is in bijection with the irreducible characters of

(IV.1.2.3.15) H(enl_ X S,.) X H =

i€\ i€y

Such a character can be written as @1 = [[jen, (@i, @ir) [1ien, i-

IV.1.2.4  Suppose that the factors of 01 and ¢; satisfy

foranyie€ A\ {0}, a;#1d orn, (Iv.1.2.4.1)
foranyie Ay, ar=a;’, (IV.1.2.4.2)
foranyie Ay, i =a7l, (IV.1.2.4.3)
foranyi€ Ay, @i =i (IvV.1.2.4.4)

We choose @1, an extension of ¢ to Wr,.<F;>, in such a way that

(IV.1.2.4.5) X1 =RG,01 = Wi, Y G1(@Fu)RY 01,

ZJGWLl

is an irreducible character of Lf v,

Proposition IV.1.2.2. Let xo be a quadratic-unipotent character of Lgo. Then, x1 R xo is a o-stable
irreducible character of LIF v, Identified with a character of M _, its induction R](\;/II (X1 ® xo) is a
o-stable irreducible character of GL,(g). ’

Proof. By the hypothesis on 0; and ¢4, x1 is o-stable, and so x1 ® xp is o-stable. It follows
from the definition of RE/II that if y1 ® xo is o-stable, then RI(\;/II 7( X1 ® xo) is o-stable. ]
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IV.1.2.5  The rest of this section is to prove the following proposition.

Proposition IV.1.2.3. Every o-stable irreducible character of GL,(q) is of the form given by Propo-
sition[V1.2.2)

IV.1.2.6  Suppose that y € Irr(GL,(g)) is an irreducible character defined by the triple
(M, ¢, 0) following Theorem 5] We will use the notations in the proof of Proposition
There exists a standard Levi subgroup L; for some subset | C A, w € Nw.(Wj), w € G a
representative of w, and ¢ € G such that M = gL;¢"! and ¢7'F(g) = w. We can further
assume that @ is a block permutation matrix that permutes the factors of L;. We have an
isomorphism ad g : Lf“’ = MF.

If M is an F-stable Levi subgroup corresponding to (n1,d;)---(ns,ds) by Proposition

1) then we have M = [];c, GLy,(k)%, and MF = [T;cx GLy, (%), where A := Aj(w). With
respect to this decomposition, we write 0 = []; @; with a; € Hom(FF* i ,Q 7), where we have

abbreviated a; o det as a;. An element m € M can be written as [, [; w1th F i =1.

Proposition IV.1.2.4. In order for x to be o-stable, it is necessary that for each i € A, there exist
i€ Aand 0 < ¢ < dj such that n; = np anda aq

Proof. Assume that y is o-stable. Theorem implies that there exists x € Gf such that

(IV.1.2.6.1) ad x(M) = o(M),
(IV.1.2.6.2) (adx)'0.0 = 6.

Consider the maps

adg ﬂg
(IV.1.2.6.3) L 8 M =3 o).
For any [ € L;, the element
(IV.1.2.6.4) (ad g)'1 oo to(adx)o (ad ),

belongs to L; and is equal to n'I"'n~! with n := g7 1g(tx1)('g™). If [ € LE«, then I := n'I"'n"1 €

LI;"’. Regarded as the elements of L, [ and I can be written as

(IV.1.2.6.5) Z:H(li,Fo(li),. JFEN1)), Z_H(ZZ,FO(Z) N a(h)

ieA ieA

with F/(1)) = [ and Fé(T) = .

We index the factors of each element ! € L; by (i,¢),i € Aand 0 < ¢ < d;, so that Il = F{(I)
ifl' € LI;W. Since n normalises Ly, it can be written as n = vy with y € L; and v being a block
permutation matrix that permutes the factors of L;. By the definition of , for any i, there
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exists i* € A and ¢ such that
(IV.1.2.6.6) Ii = yie, FY (fz;l)yl.:gﬁ.

Therefore, v induces a permutation i - i* of A. (In this proof, we do not require that (i*)* = i.)
We have

(ad g)*(ad x)*0.0(l) = (ad g)*O(n'I"1n 1)

(IV.1.2.6.7) = (ad @ O(] [ yre 5 (LHYzL)-

If we write (ad g)*(0) = [ ]; a;, with a; € Irr(]F'; ..), thenforall ] Ll;w,
(ad g)'(ad x)0.0D) = [ [ utFy (1)

- H a; ().

On the other hand, from the equality (IV.1.2.6.2) we deduce that for all ] € wa,

(IV.1.2.6.8)

(IV.1.2.6.9) (ad g)*(ad x)*0.0(l) = H ;).

We complete the proof by comparing the two equalities. m]

Remark IV.1.2.5. It is necessary that (i*)* = i. Suppose (i*)" = j # i, then there exists an
integer d such that a; = a? , which contradicts the regularity of 6.

d;/2

Remark IV.1.2.6. If i* = i, then it is necessary that d; is an even number, and ai‘l =

Remark IV.1.2.7. There are at most two i € A such that af = 1 in order for O to be regular.
We denote them by +. It is necessary that d, = d_ = 1. Also denote by + the corresponding
two elements of T

IV.1.2.7  The previous proposition allows us to define the sets

(IV.1.2.7.1) A ={ie i #i}/ ~
(IV.1.2.7.2) Ay =lie Ali =i} \ {#},
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in a way similar to (IV.1.2.3.2) and (IV.1.2.3.3). There exists a permutation matrix x such that
Ly := xLjx~! is of the form

L.

S

Ly

1

where Ly = L for any j. The Frobenius concerned is F,,-1, which fixes L, and L_ as
dy = d_ = 1. We can further conjugate by a permutation matrix that normalises Ly, say v,
in such a way that F ;1,1 acts on Ly according to (IV.1.2.3.1), and so the a;’s satisfy the
hypothesis Denote by 0 and ¢ the characters associated to L that come from 0
and ¢ via ad g, ad x and ad y.

Choose a block permutation matrix © that realises the permutation of I'y defined by
v := yxwx~'y~L. Tt can be chosen to be o-stable. Let h € (G°)° be such that h™'F(h) = 0. Then
My, = hLyh™! is an F-stable Levi subgroup that is GF-conjugate to M. In particular, if we
identify 0y and ¢y with the characters associated to My , by adh, then x is equal to the
induction jo, Oy for a triple (My », @y, Oy).

Define L; to be the standard Levi subgroup of the form (IV.1.2.2.1)) such that ng = n, +n_
and that L; coincides with L away from GL,,. We see that M;, = hL;h7! is a o-stable and
F-stable Levi factor of a g-stable parabolic subgroup. Moreover, it contains M , and o(M;j ).

Note that % is defined by the triple (6(Mj ), 0.9y, 0.0 ). Since ad h commutes with o, we
can work with L; and find a permutation matrix that conjugates L to o(L;’) and conjugates
0 to 0.0. Indeed, it is effectively a permutation matrix in GL,, as 0.0} is already equal to
0y away from GL,, by definition. By Theorem 5} in order for x to be o-stable, it is necessary
that 0. = ¢y away from GL,,. And it suffices. This completes the proof of Proposition

IV.1.2.8  The type of a o-stable irreducible character consists of some non negative integers
n., and some positive integers n;, d;, n;., and d;. parametrised by the finite sets A; and Ay,
denoted by

(IV.1.2.8.1) t= Tl+7’l_(1’li, di)ieA1 (Tl}, d;‘)jEAz/
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satisfying

(IV.1.2.8.2) n=ny +n.+ Z 2nid; + Z 2n'd,
1 ]

Ifft= ﬁ+ﬁ_(ﬁi,cfi)i€ A (ﬁ;., J}) jeAs is another sequence of in’cegers,~ we regard it as the same as
t if and only if there exist some bijections A; = A and Ay = A, such that the integers are
matched. (In particular, ny =7, and n_ =7_.)
We denote by T, the set of the types of the o-stable irreducible characters of GL,(g).
Givent € T, denote by T,(t) the set of the data

(IV.1.2.8.3) E= A A (A, idien, (N, &) jen,
satisfying

- A €Pu,, Ai € Py, /\; € Pn}, for some integers n., n_, n; and n;;

-4 C Irr(lF;) is an F-orbit of order d; that is not stable under inversion;

- 07} C Irr(]F;) is an F-orbit of order Zd} that is stable under inversion;

- &; # &y if i # 1’ and @; is different from +1 € Irr(IF;), and similarly for the &;.’s.

Denote

i)( = Ute‘lxi)((t)-

By Proposition [[V.1.2.2)and Proposition|[V.1.2.3 the o-stable irreducible characters are in
bijection with T.

Given an element of ix as above, putng = ny+n_, thenng [[;(n;, d;) [ ] j(n’., d’) determines
a standard Levi subgroup L; of the form (IV.1.2.2.1) and a permutation of the factors of L;.

We can recover the corresponding character by following §IV.1.2.3|and §IV.1.2.4

IV.2 Parametrisation of Conjugacy Classes

IV.2.1 F-Stable Quasi-Semi-Simples Classes

A G-conjugacy class contains some Gf-conjugacy classes if and only if it is F-stable. We
will give the parametrisation of the F-stable quasi-semi-simple conjugacy classes in G.o.
Recall that in ‘GF, we denote by o the element ty0’ (cf. Convention |[1.5.2.2).

IV.21.1  We begin with the parametrisation of the quasi-semi-simple G-conjugacy classes.
We take for T the maximal torus consisting of the diagonal matrices, then (T7)° consists of
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the matrices

(Iv.2.1.1.1) diag(ay, ay, ... ,am,a,;l, .. .,az_l,al_l), ifn=2m,
(IV.2.1.1.2) diag(ar, a2, ..., am Lay,...,a5" a;"),if n =2m+1,

with a; € ]F:I for all i, and the commutator (T, o) consists of the matrices

(IV.2.1.1.3) diag(b1, b, ..., by, b, - .., b, by), if n = 2m,
(IV2114) diag(bl, bz, e, b, bm+1, bm, e, by, bl), ifn=2m+1,

with b; € IF; for all i. So the elements of S := [T, o] N (T°)° are the matrices
(IV.2.1.1.5) diag(ei, ez,...,em em, ..., €2,€1),if n =2m,
(IvV.2.1.1.6) diag(er, ez, ..., em, 1, em,...,e2,€1),if n =2m+1,

with e; = +1 for all i.

We index the entries of a diagonal matrix by the set {1,2,...,m,-m,...,-2,-1} or the
set {1,2,...,m,0,-m,...,=2,-1} according to the parity of n so that every matrix in (T°)°
satisfiesa_; = ai‘l for all 7.

Notation IV.2.1.1. We will abbreviate an element of (T°)° as [ay,...,a,] regardless of the
parity of n.

We have the following proposition.

Proposition IV.2.1.2. ([DM18, Proposition 1.16]) The quasi-semi-simple classes in G.o are in
bijection with the W°-orbits in T/(T, o) = (T°)°/S.

That is, the class of [a4, . ..,a,]o is invariant under the following operations,
- Permutation of the a;’s;

-a; - ai‘l, for any i;

- a; — —a;, for any i,

and [by, ..., by]o belongs to the same class if it only differs from [ay, ..., a,,]o by these opera-
tions. For another description of these conjugacy classes, see also [DM15, Example 7.3].

IV.2.1.2  Denote by k the quotient of k* by the action of Z/2Z x Z./2Z:

(Iv.2.1.2.1) (1,0):a—at. (0,1):a+- —a.

For any a € k, denote by 4 the set {a, —a,a7t, —a1).
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Remark IV.2.1.3. The conjugacy classof to = [ay, ..., ay]o is determined by the set {41, ..., d,}.
We may regard its elements as the eigenvalues of to.

The action of F on k induces an action on k, given by
A a1 :=1{a,—-a,a79,—a™1).

Let & C k be an orbit of F and take 4 € &. Write d = |d|. Denote by e and e the signs such that
a” = ea®, for any a € 4. Note that e and € are independent of the choice of @ € & or the choice
of a € 4. We say that & is an orbit of type (d, €, ¢).

There is some ambiguity with the type thus defined. Let &; be an orbit of type (d1, €1, 1)
and let &, be an orbit of type (d2, €2, €2). Obviously if dy > d,, then &1 and &; are distinct orbits.
Suppose di = dy = d. If x satisfies both of the two equations X" = e1x°1 and X1 = €x%2,
then e;e,x°17¢2 = 1. In order for this equaiton to be solvable, either e; = ey, €1 = €2, that is,
&1 and &; coincide, or e; = ey, € = —€, which gives x2 =1,0re; = —ep, €4 = —€p, which
gives x? = —1. The latter ones are the orbits {1,—1} and {i, -1}, sod = 1, and they are said
to be of type (1) and of type (i) respectively. Except these cases, orbits of different types are
all distinct. In the following, these two orbits are treated separately and so there will be no
confusion among types.

Fix an orbit & of type (d,¢,e) and an element 2 € &. For any sequence of signs € =
(€o,...,€4-1) and e = (e, ...,e4-1) such that [ [; ex = € and ], ex = e, a representative of type
(d,€,e) of & is a sequence a := (ap,ay,...,a44-1) € (k*)? satisfying a; = eia?f’l, ieZ/d”Z.

Remark IV.2.1.4. Fixing the values of € and of ¢, there are several choices of € and e. If we

pute;_; =e, e =1for 0 <k <d-1, and similarly for ¢, the representative « is of the form
d-1

{a,al,...,a7 }.

IV.2.1.3  Let us define some combinatorial data that parametrise the F-stable quasi-semi-
simple conjugacy classes.

We call the type of an F-stable quasi-semi-simple conjugacy class the data consisting
of some non negative integers n,, n_, with the parity of n, being that of n, some positive
integers n;, d; and some signs e; and €;, parametrised by a finite set A, denoted by

(IV.2.1.3.1) t = n+n—(ni/ dilleil ei)iEAl

satisfying

(IV2.1.3.2) Z Dnid; + 1y + 1 = 1.
ieA

Ift = 1, 71_(1;,d;, , €, &);cx is another sequence of integers, we regard it as the same as t if and
only if there exists a bijection A & A such that the integers and the signs are mathched, and
moreover, n, = i, and n_ = fi_.

We denote by T the set of the types of the F-stable quasi-semi-simple conjugacy classes.
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Given t € ¢, denote by Tc,(t) the set of the data
(IV.2.1.3.3) t=nyn_(ni, &jien,
satisfying

- for any i, &; is an orbit of type (d;, €;, ¢;) # (1) or (i);

- ifi #7, then &; # &y.

Ifs=mym_(m;, ﬁi)z’e % is another such datum, we regard it the same as t if and only if there
exists a bijection A & A such that the integers and the orbits are mathched, and moreover,
ny =myand n_ =m_.

It will sometimes be convenient to distinguish between the i’s with €; = 1 and the i’s with
€; = —1. Put A1 C A to be the subset of the i’s such that ¢; = 1 and put A, = A\ A;. The
following notations will also be used,

t =nyn_(n;,d;, eiea, (”;'/ d;"e;‘)fEAZ’
(IV.2.1.3.4) T ~ "
t =nyn_(n;, &)ien, (Tl]-, O‘j)jef\z'

Proposition IV.2.1.5. The F-stable quasi-semi-simple conjugacy classes in G.o are in bijection with
Tes.

This follows from Lemma and Lemma below.

IV.21.4  Define a map
(Iv.2.1.4.1) Y : Tcs — {F-stable quasi-semi-simple classes in G.o}

as follows.

Write t = nyn_(n;, &;)icpn with @; of type (d;, €;, ;). Let us define an element of (T?)° from
t and denote it by t = [a1,...,a,]. Basically, we are going to regard the elements of d;’s as
eigenvalues and the n;’s as their multiplicities.

(i). Take [n,/2] subsets of {1,...,m}, each consisting of a point, which will be called of
type (1), and then (n_/2) subsets, each consisting of a point, which will be called of type (i),
and take for each i € A, n; subsets of cardinality d;. These subsets, combined with {0} if  is
odd, form a partition of {1, ..., m}(U{0}) and we denote it by (I;),.

(ii). Choose for each r an identification I, = Z./d,Z., where d, := d; if I, comes from i.

(iii). For eachi € A, take a sequence €; = (€x)kez/4,z such that €; = [] ¢, and a sequence
e; = (ex)rez/a,z such that ¢; = [] e, for example the choice in Remark[[V.2.1.4

(iv). For each i € A, take a representative of type (d;, €, ¢;) of &;, denoted by «;.

(v). If I, comes from i € A by the procedure (i), and a; = {a,49,... ,aqd’_l }, define for all
kel, a = aqk, under the identification I, = Z/d,Z. 1f I, is of type (1)(resp. (i)), we define
the only entry of t corresponding to I, to be 1(resp. i). (We require that {0} € (I,), is of type
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(1).) Thus, we have defined an element t € (T”)°, whence a quasi-semi-simple geometric
conjugacy class in G.o, denoted by ¥(1).

Lemma IV.2.1.6. v is well defined.

Proof. The class i(t) does not depend on the choices of the subsets I, or the identifica-
tions I, = Z/d,Z due to the conjugation by W°. It does not depend on the choices of the
representativesa;, due to the conjugation by W and the multiplication by S.

Let us show that ¢(1) is F-stable. Under the identifications I, = Z/d,Z, the permutation
i — 1+ 1 induces the circular permutation of the elements of I,. We define a permutation 7 of
{1,...,m}(U{0}) by the c¢;,’s. For I, = {i;} (i.e. those consisting of one single point), pute; =1,
e;, =1, unless g = 3 mod 4 and I, is of type (i), in which case we pute; = —1,¢;, = 1. We
define € = (€x)ker, by €; and €;,, and define e = (eo)ker, by ¢; and ¢; , thus define w and s. We
have swF(t) = t. Observe that the class of fo is F-stable if and only if there exists w € W’ and
s € S such that swF(t) = t. ]

IV21.5 Now we prove the following.
Lemma IV.2.1.7. ¢ is bijective.

Proof. The injectivity follows immediately from the definition of T¢s and Remark
Let us show the surjectivity.

Let t = [a1,...,an] € (T°)° be an element of an F-stable conjugacy class. Then there
exists w and s such that swF(t) = t. We can write w = ((€1,...,€m),7) With T = ¢j, -+ - ¢}, and
s = [e1,...,em]. Forall7, puté = [l ex and put e, = (ex)ker, (See §1.2.2.2). Similarly, we
define €, and ¢,. The action of wF on (T7)° is given by
(IV.2.1.5.1) [a1,...,am] — [af_; - .,aji’f(m)].

For all r, we can index the elements of I, by Z/d,Z(d, = |I;|) in such a way that the action
of tsendsi € I, toi+ 1. An element [ay,...,a,] is fixed by sFy, if in every orbit I,, we have
a; = eiu?fil, i € Z/1,Z. In particular, it is necessary that the a;’s satisfy the equation x7" = &,x%.

Assume that under the identification Iy = Z/11Z, thea;’s,i € Z/d1Z satisty a; = eia?fil. Let
71 be the smallest positive integer such that a,, € J_raa—'l. If 71 = dj, then there is nothing to be
done. Suppose 71 < d;. Putli ={0,1,...,11-1} cZ/d1Z andputli’ ={t1,11+1,...,d1—-1} C
Z./d1Z, and let cr be the permutationi— i+1,7; =1+ 0and cry the permutationi+—i+1,
di — 1 11. We define 7/ = crcrcr, -+ Cy- By modifying €y, eo, €1, €1,, €,41, €141, €4,-1 and
eq,-1 if necessary, we obtain w’ = ((€], ..., €3,),T') and 8" = (¢, ..., e;,) that satisfy s’w'F(t) = t.
Continue this process if necessary and replace w by w’ until this is no longer possible.
Now, for each r, {axlk € I,} form a representative a, of an orbit &, C k. Collecting the same
orbits and defining n; to be the multiplicity of the corresponding orbit, we end up with
(m1,a1) -+~ (np, ar). Separating the orbits of type (1) and (i), this is the image of an element of
T, whence surjectivity. m
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IV.2.2 Centralisers and G'-Classes

We will see that the centraliser of a quasi-semi-simple element is in general a product of
a symplectic group, an orthogonal group and some linear groups.

IV.22.1  Let C be an F-stable quasi-semi-simple conjugacy class corresponding to t
nyn-(ni, &iep,(j, &j)jen, following Proposition |[V.2.1.5, and we denote its type by t
nin_(n;, d;, e;)ien, (n;., d;.,e;.)je,\z. Let to be a representative of_C following §IV.2.1.4l Then
the isomorphism class of Cg(to) only depends on the type of C.

Lemma IV.2.2.1. We have,

Cg(to) = Sp, (K) X Oy_(k) H GLy, (k) x H GLy(K),  if nis even,

iGA] jeAZ
Co(to) = Sp, (k) X O, (k) X H GLy, (k) x H GLy(K), ifn s odd.
i€A1 jEAZ

The numbers 7, and n_ are exchanged only because we have made different choices of
o for even and odd n.

Proof. 1f z € G commutes with fo, then it commutes with toto = to(t)o?, with 0 = +1 being
central. Let us calculate Cc, (1)) (t0). That the &;’s are pairwise distinct means that for a; € a;,
aj € aj, i # j, we have a?C + +a*! forall ¢, so al.zqc # a*2 for all c. Besides, the integers n, and
n_ become the multiplicities of 1 and —1 in to(t) respectively. Consequently, the centraliser

of ta(t) is a Levi subgroup Lo := Cg(ta(t)):

(IV2.2.1.1) H(GLni X GL,,)% x H (GL,» X GLy)" X GL,, X GL,._
i€\ jEAZ : :

with the action of o given by

o:GL,, xGL,, — GL,; Xx GLy,

(1V.2.2.1.2)
(g/ h) — (GO(h)/ 00(8)),

for all i € A1, and similarly for j € Ay, where 0¢(g) = '™ ]!, with (J)ap = 84,41, for any i
or j.

The action induced from to on each GL,, X GL,, coincides with that of ¢. If n is even,
and G = G, the action induced by to on GL,, and GL,_ are respectively the automorphisms
associated to J, or J;, defined in §I1.5.1.1} Tt follows thatin G = G,

(IV.2.2.1.3) Lo := Cg(to) = Sp,,. (k) x Oy_(K) X g GL,, (k) X IE_A[ GLy (k).
1€/\q JEN2
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IV.2.2.2  Let us introduce a sign ) € {+1} that can be -1 only if
- nisevenand n_ > 0, or
- nisodd and n, > 0,

or rather, if the orthogonal factor of the centraliser is non trivial.

Proposition IV.2.2.2. The quasi-semi-simple conjugacy classes in GF.c are parametrised by the data
(IvV.2.2.2.1) {(, D} C {21} x Tcs.

Proof. Clear. m|

To simplify the notation, we will write nt instead of (1, ).
If the centraliser of a semi-simple element has two connected components, then the
corresponding two GF-classes can be distinguished by the homomorphism

(IV.2.2.2.2) GL4(9) »<0>— Fy /(F;)* — 2.

The first map sends g € G(g) to det(g) mod (]F;)2 and sends o to 1, and the second map is
the nontrivial homomorphism. The value of 17 is defined as the image of the corresponding
GF-class under this homomorphism. In fact, the above homomorphism is the only nontrivial
central character of GL;(9).<o>thatis non vanishing on GL,(q).0, which extends the character
nodet of GL,(g), with nbeing the order 2 irreducible character of IF;. This explains the notation
n.

To see that the above homomorphism can distinguish the two Gf-conjugacy classes
contained in the same G-conjugacy class, we argue as follows. Let to € Gf.o be such
that Cg(to) has two connected component. Then according to our concrete description of
Cg(to), its two connected components are distinguished by the values +1 of the determinant,
corresponding to the two connected components of the orthogonal factors. Let ¢ € G be
such that ¢7'F(g) = z € Cg(to) \ Cg(to)°, then gsog™! is a representative of another GF-
conjugacy class. Applying the determinant to the equality ¢ 'F(g) = z gives det()7! = -1,
so that det(g)? € F\ (IF;)2 ; applying the above homomorphism to the element gsog™! gives
det(s) det(g)?, whence the claim.

IV.2.2.3  We can specify the centraliser of each quasi-semi-simple element of Gf.o. Let
to € G.o be a quasi-semi-simple element corresponding to

(IV.2.2.3.1) nd+d_(1’li, LAYZ‘)Z‘EAl (11;-, ﬁj)jEAr
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If n is even, then its centraliser in G is

(IV.2.2.3.2) Sp,,, (@) x O}_(@) x | [ GLa™) x [ [ GL;, (4").
ieA, jehs !

If n is odd, then its centraliser in G is

(IV.2.2.3.3) Sp, (@) x O, @ x [ [ GLu@™) x [ | GL,, )

iGA] j€A2

Note that for odd 1, O}, (g) is isomorphic to O, (g).

IV.22.4  We refer to §l1.2.3.4] for the parametrisation of the unipotent classes of finite
classical groups. Let C be a semi-simple Gf-conjugacy class corresponding to

(IV2.2.4.1) N, )ien, (0, &)jeny
For odd 1, the GF-classes which have C as semi-simple parts are parametrised by
(IV2242) A5 A5, (Adien; (A jen,s

where Aj, e W5 A} €eW) , A ePy, /\;. € P,y, with each such datum corresponding to two
- B ]
classes if Aj is degenerate.
For even 1 and 1 = 1, the Gf-classes which have C as semi-simple part are parametrised

by
(IV.2.2.4.3) A5 A5 (Adien (A jenss

where A,s1+ € \I’,51+, Ay eV A e€Py, /\;. € Pn}, with each such datum corresponding to two
classes if AY is degenerate. If 1 = —1, the classes are parametrised by the same data except
that AY e W,

IV.3 Shintani Descent

Now G denote a connected reductive group over k.

IV.3.1 Eigenvalues of the Frobenius

In this part, we collect some results on the eigenvalues of the Frobenius endomorphism
acting on the ¢-adic cohomology of the Deligne-Lusztig variety X,. We will write X, if
it is necessary to specify the Frobenius that is involved. Recall that X, is the subvariety of
the flag variety B consisting of the Borel subgroups B such that (B, F(B)) are conjugate to
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(Bo, wBow™1) by G, where w € G is a representative of w € W and By is some fixed F-stable
Borel subgroup.

IV3.1.1  The Deligne-Lusztig character RS 1 is realised by the virtual representation
P DH (X, Q).
i

Recall that the Lusztig series &(GF, (1)) consists of the irreducible representations that appear
as a direct summand of some R%} 1, or equivalently of a vector space Hé(Xw, Q). Denote
by H!(X,, Q) the intersection cohomology of X;,,. By [L84b}, Corollary 2.8], each element
of &(GF, (1)) is also an irreducible Gf-subrepresentation of H(X,, Q;) for some i and w. We
write

Mi(w, F) := H'(Xuw,r, Q)

(IV.3.1.1.1)
Hi(w, F) = Ende(Mi(w, F))

If w =1, M;(1,F) is just the {-adic cohomology of X; and its simple factors are the principal
series representations, which are in bijection with the irreducible representations of H;(1, F). If
Fissplit, Hi(1, F) = Q/;[W], and if F is twisted by a graph automorphism o, H;(1, F) = Q,[W"].
In what follows, we fix the Frobenius F and w € W, and write M; and H; instead of M;(w, F)
and H;(w, F).

IV3.1.2  Denote by Fj a split Frobenius over IF;, and denote by F the Frobenius defining
the IF;-structure of G. Assume that some power of Fy is a power of F. Let b be the smallest
integer such that Fg is a power of F. In the case that interests us, b = 1 or 2. Note that F and Fy
commute. The action of Fy on 8 induces an isomorphism of M; as a vector space. Moreover
Fy induces by conjugation an algebra automorphism of H;, still denoted by Fy, which is
unipotent ([L84b| Theorem 2.18]). Let p be an irreducible representation of G' that appears
in M;. Denote by M;, the isotypic component corresponding to p. By [L84b, Proposition
2.20], the action of Fy respects the isotypic decomposition, i.e. Fo(M;,) = M;,. The algebra
H; is decomposed into some simple algebras H; , = Endr(M; ).

IV.3.1.3  Now assume that p is fixed. Denote by [p] the vector space on which GF acts by the
representation p. There exists a Q;-space V such that M;, = [p]® V and that H; , = Endg, V.
Since H; , is a simple algebra, we have Fy = ¢¢ ® ¢ with ¢ € Q;[G'] and ¢y € H; p, which
are invertible as Fj is. Consider the adjoint representation,

GL(V) — GL(H; )

(Iv.3.1.3.1)
¢y +— ad ¢n.
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Since ad ¢y = ad Fo, which is unipotent, we see that ¢y is a unipotent endomorphism up
to a scalar. Modifying ¢ if necessary, we can assume that ¢y is unipotent. Choose a basis
{e1,...,es} of Vin such a way that in this basis ¢y is triangular. Each M; ,, = [p] ® ¢, provides
the representation p. By [L84b} Proposition 2.20], the representation p : GF — GL(M; ) is Fo-
stable and extends into a representation of Gf.<Fy>, denoted by p,with Fg acting trivially on
GF. The action of F, regarded as an element of GF.<Fy>, on M; ,, is defined by (A’p)‘lq‘i/ 2¢,
where A is a root of unity. Another choice of p corresponds to a multiple of A} by a b-th root
of unity. The value of A{, only depends on p and a choice of f, and does not depend on w or
i. In other words, Fp = p® ¢, where ¢’ is a unipotent endomorphism multiplied by /\;,qi/ 2¢.

IV.3.1.4  If we consider a Frobenius F, that is not necessarily split, it may happen that the
action of F;; does not respect the isotypic components of M;. However, we can nevertheless
consider those components that are preserved by F. In fact, a component M; , is Fj-stable if
and only if the character 6, € Irr(H;) associated is Fj-stable. Let M;, be such a component,
we still have M; , = [p] ® V and p extends into a representation of GF.<F>.

IV.3.1.5 Now we consider the action of Fy on the ¢-adic cohomology. By [Sh85, Lemma
1.4], the eigenvalues of Fy on Hé(Xw, Qy) are /\;, times a power of qb/ 2 which is not necessarily
g2, Letu = A;qkb/ 2 be such an eigenvalue. Then, the subspace M;pu C M, of eigenvalue
pt is Fo-stable and there exists a decomposition M, , = [p] ® V, such that the action of Fy on
M, is decomposed as p ® ¢, where ¢, is )\’qu/ Z times a unipotent endomorphism of V,,.
Once again, A}, only depends on p and a choice of p.

IV.3.1.6  There are two particular cases that interest us.

Theorem 1V.3.1.1. ([L77, Theorem 3.34]) Let i € Z and w € Wg be arbitrary. If (G, F) is of type
Ay, n > 1, then all of the eigenvalues of F on H.(Xy, Q) are powers of q. If (G, F) is of type *A,,
n > 2, then all of the eigenvalues of F? on H\(X,,, Q¢) are powers of (—q).

IV.3.2 Shintani Descent

IV.3.21  Let F; and F; be two commuting Frobenius endomorphism. Denote by K(G!1.F,)
the F»-conjugacy classes of Gf' and by K(GF2.F;) the Fi-conjugacy classes of G2, and we
denote by C (G2.Fy) and C(G'1.F;) the set of functions that are constant on the Fi-conjugacy
classes of G2 and the functions that are constant on the F,-conjugacy classes of G! respec-
tively.

Define a map NF, /r, : K(G1, Fy) — K(GF2.Fy) as follows. For ¢ € G'1, there exists x € G
such that xF2(x7!) = g. Then ¢’ := x"'F;(x) € G2, and its F;-conjugacy class is well defined.
This defines a bijection N, /g, : K(GF1, F2) % K(GF2.F;). We write ¢’ = Nf, r,(g) by abuse of
notation. Denote by Shg, r, : C(GF2.F;) = C(G1.F,) the induced bijection. It is easy to check
that Shr,/r, o Shr, /r, = Id and that Shr/r is an involution that may not be the identity.



98 CHAPTER 1V. THE CHARACTER TABLE OF GLN(Q) <<0o>

IV.3.3 Action on the Irreducible Characters

IV.3.3.1  Let U be a unipotent character of G that extends to Gf'.<F,> We denote the
restriction to G'1.F, of its extension by Er,(U) € C(G'.F;). The Shintani descent sends it
into C(G2.F;). On the other hand, the unipotent irreducible characters of G2 that extends
to GF2.F;, which we denote by E(G2, (1))f1, have as extensions some elements of C(GF2.Fy).
We will see that the functions Shr, r, Er,(U) can be expressed as linear combinations of the
extensions of the elements of E(G'?2, (1))1.

IV.3.3.2  Let B be an F;-stable and o-stable Borel subgroup. Put

(IV3.3.2.1) H := Endgr, (Ind$:! 1) = Endgr, (Qe[B"]) = Q[W'].

The irreducible characters of H are in bijection with the principal series representations of
GP. For ¢ € Irr(H), denote by Uy € Irr(Gh) the corresponding character. By Uy
extends to GF1.<F,>if Y is F»-stable, in which case 1 itself extends to H.<F,>in such a way
that the action of F; on Indgfl1 1is decomposed into F; = Ef,(Uy)(F2) ® EF,(Y)(F2), where we
denote by Ef,(Uy) and EF, () the extensions of Uy and  respectively.

IV.3.3.3  Letp € Irr(G'2) be unipotent. The p-isotypic component of H:(Xy,r,) is of the form
[p] ® V. The action of the split Frobenius Fj on this component can be written as p(Fo) ® ¢,
where ¢ is A}, times a power of 7'/ and a unipotent endomorphism, according to
We denote by QF, the isomorphism of the space C(G'2, (1)) that multiplies p by A5, Denote
by Er,(p) the restriction of § to G2.F.

IV.3.3.4  Fix the split Frobenius Fp and the order 2 quasi-central automorphism ¢. In
what follows, we only consider (Fi,F;) = (01F], 02Fp),where m € Z.9 and 0; = 1 or o.
Take p € &(G'2,(1))71, i.e. a op-stable representation, and denote by E,, (p) an extension

! on G2, we can define the extension Er,(p)(Fo) to

of p to GF2.<o1> Since Fy acts as o
be an extension Eg,(p)(0; 1), which commutes with E,, (p)(01) because either one of o; and
0 is 1 or they are equal. This allows us to define an extension Ef,(p) of p to Gf2.F; by
requiring Er, (p)(01F(') = Es,(p)(01)EF,(p)(Fy). It is well defined. In addition, E;, defines an

isomorphism of vector spaces

Q[EG, (1)) — C(G.01, (1))

(IV.3.3.4.1)
p +— Eg, (p).

IV.3.3.5 The following theorem makes explicit the transition matrix.

Theorem 1V.3.3.1. ([DMO94, Théoréme 5.6]1) We keep the above notations. For any m € Z, and
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any ¢ € Irr(W°1)°2 we have

oo F ,
Shgng/UZFO EUZFO(U‘/’) = Z <R$ ’ ‘01/ Edl (p)>GazF0,01 /\PmEalFSI (P)
(IvV.3.3.5.1) pe&(Go2F0, 1)1
= Egpoen(Q

O‘zFO

EGIRG™).

1

~—

(See [DM94, Définition 5.1] for the definition of Riozpo'm or more generally in|[V.5.2.2.2

IV.3.4 Commutation with the Deligne-Lusztig Induction

IV.3.4.1 Thefollowing proposition due to Digne shows how the Deligne-Lusztig induction
commutes with Shintani Descent.

Proposition IV.3.4.1. ([Di, Proposition 1.1]) Let G be a connected reductive group defined over IF,,
equipped with the Frobenius endomorphism F and let o be a quasi-central automorphism of G. Let
L C P be an F-stable and o-stable Levi factor of a o-stable parabolic subgroup. Then

(IV.3.4.1.1) Shor/r oRC 7 = RS o Shypr .

LoF 5-1

IV.4 Character Sheaves

In this section, G denote a not necessarily connected reductive group. By local system,
we mean a local system of Q-vector spaces. If X is a variety over k, we denote by D(X) the
bounded derived category of constructible Q;-sheaves on X. For any ¢ € G, denote by ¢s<u
the Jordan decomposition of g, with gs being semi-simple and g, unipotent.

IV4.1 Character Sheaves for Groups Not Necessarily Connected

IV.4.1.1 If G!isa connected component of G, define
Zgo 1= Cz.(8)°, forany ge G

It does not depend on the choice of g € G!. An isolated stratum of G' is an orbit of isolated

elements under the action of 2% o X G given by

(z,x): g —> zxgx L.
(See [LO3} I, §1.21 (d), §3.3 (a)])

Example I1V.4.1.1. For the group G defined in §I1.5.2.1, we have Z2 . = {1}, and so an
isolated stratum of G.o is an isolated G-conjugacy class.
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Given a stratum S, denote by S(S) the category of local systems on S invariant under the

action of Z°GO/ o1 X G° given by

(z,x): g+— z”xgx_l,
for some integer n > 0. We refer to [LO3| I, §6] for the definition of cuspidal local system (for
G). It & € §(S) is cuspidal, we say that (S, E) is a cuspidal pair (for G).

IV.4.1.2 Let L be a Levi subgroup of G° and let S be an isolated stratum of Ng(L, P) for a
parabolic subgroup P with Levi factor L. (See [L03)} I, §2.2 (a), §3.5]) Define,

Sreg = 1g € S C(g5)° C L.

Define
Yrs = U xsregx_lz

xeG°

and
Y15 =1{(g,xL) € GX G°/L | x'gx € Syeq),

equipped with the action by G°, i : (g, xL) > (hgh™!,hxL), and
Yis=1{(gx) € GXG®|x7'gx € Spegl,

equipped with the action by G° X L, (1, 1) : (g, x) = (hgh™!, hxl~1). Consider the morphisms
S Vi LN Yis — Yis,

where a(g,x) = x'gx, f(g,x) = (g,xL) and 7t(g, xL) = g. Note that § is a principal L-bundle
and that 7t is a principal Ws-bundle, with Ws = Ws/L, where

Wy :={n e Ng(L) | nSn~" = S}.

It is a finite group. (See [LO3, I, §3.13]) If & € S(S) is irreducible and cuspidal for N¢(L, P),
put
We = {ne Ws|adn)& =&},

and Wg = (Wg / L.
IV4.13 Fix & € S(S). There exists a G°-equivariant local system & on Y s such that

5*8 = a"E. Denote by E = End(mE), the endomorphism algebra of E. We have a canonical
decomposition ([LO3, II, §7.10 (a); IV, §21.6])

E= (D Eu,

weWeg
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where the factors E,, := Hom(ad(rn,,)*E, &), each one defined by some representative n,, of w,
are of dimension 1 and satisfy E,E, = E,,. Choose base {b,, | w € Wg} of E with b, € E,, for
any w.
Define
K =IC(YLs, &),

where Y7 s is the closure of Y| s in G. There exists a canonical isomorphism E = End(K). Let
N’ be a finite set parametrising the isomorphism classes of the irreducible representations of
E and for each i € A’, we denote by V; a corresponding representation. Then, we have the
canonical decompositions

77[8 = @ Vi® (7‘(!8)1‘/ K = @ Vi®K;,

ieN ieN

where
(&); = Homg(V;, &), K; = Homg(V;, K)

are the simple factors. Moreover, K; = IC(Yy s, (&),).

IV4.1.4 Assume that F(L) = L, F(S) = S and F'6 = &, where F is the Frobenius of G.
We fix an isomorphism ¢g : FFE = &. It induces an isomorphism cf) : P& = mé and an
isomorphisme ¢ : F*K = K. Recall that, given a variety X/k equipped with the Frobenius F, a
complex A € D(X)and anisomorphism ¢ : F*A = A, the characteristic function x 5.5 : X* — Q;
is defined by

(IV4.1.4.1) Xas() = ) (=1) Tr(9, HLA),
i€eZ
where H.A is the stalk at x of the cohomology sheaf in degree i of A.

The characteristic function of a cuspidal local system will be called a cuspidal function.

Theorem 1V.4.1.2. ([L03, III, Theorem 16.14, §16.5, §16.13]) Let s and u € GF be a semi-simple
element and a unipotent element such that su = us € Yy 5. Then,

ILF]
(IV.4.1.4.2) Xkplsu) = Y o] 2o ),
heGoF; G
h~1sheS,

where Ss is the set of the semi-simple parts of the elements of S, and Qp, c.(s) . 7.6, 1 the generalised
Green function (See §1V.4.1.5|below) associated to the data Ly, Cg(s), ¢, Fn, Py defined by

- Ly, := hLh ' N Cg(s)°;
- ¢, == {v € Cg(s) | v unipotent, h~'svh € S};

- Fn, inverse image of & under the embedding ¢, — S, v h~lsvh;
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- ¢ F'Fy, = F, an isomorphism induced from ¢o under the above embedding.
Denote by L! the connected component of Ng(L) containing S. If we define

- Xy = hZZ/Llh‘l (0

- &, inverse image of & by the embedding X, — S, v — h~svh,
- ¢, : F'& = & an isomorphism induced from ¢ under the above embedding,

then the above embedding ¢, — S factors through the inclusion ¢, — X, F}, is the inverse
image of &, and ¢, is induced from ¢, under this inclusion. The point is that, ¥ is a finite
union of isolated strata, which has ¢, as the subset of unipotent elements, so that these data
fit into the following definition of generalised Green functions.

IV4.1.5 Generalised Green Functions. Given
- G areductive algebraic group,
- L € G° an F-stable Levi subgroup,

- X* the set of the unipotent elements of a finite union of isolated strata X of Ng(L)
satisfying F(X) = X, F(X¥) = X¥,

- ¥ an L-equivariant local system on X*, and
- ¢1: F'f = F anisomorphism,

we choose a local system & on X that restricts to  under the inclusion ¥ — X and an
isomorphism (which always exists) qf)i : FF& = & that induces ¢1. Define K = IC(YLx, ),
where Y 5, ?L,Z and 7 : YL,Z — Y1, » are defined by the procedure and denote by
¢ : FFK = K the isomorphism induced from (1)1

The generalised Green function associated to G, L, X¥, ¥ and ¢, denoted by QL,Gxt,F 1 1
is defined by ([LO03, III, §15.12])

Gi = {unipotent elements of G — @

(IV.4.1.5.1)
U xgo(u).

It does not depend on the choice of & and ¢7.

IV4.1.6  Theisomorphism ¢ of §IV.4.1.4/induces an algebra isomorphism 1 : E = E. There
exists a subset A C A’ and some isomorphisms (; : V; % V;, ¢; : F'K; 3 K;, for i € A, such
that the isomorphism by, : FFK = K, with respect to the decomposition K = @ Vi ® K;
is of the form

ieN

- byli® ¢y, ifi € A;
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- Vi F'K; — V;® K, with j #i,if i ¢ A.
(See [LO3, IV, §20.3, §21.6]) Consequently,

(IV4.1.6.1) XK,bw(P = Z Tr(bZULi/ Vi)XK,’,(j)i'
ieA

IV.4.1.7  Take a representative 1, € Wg of w, and an element g, € G° such that g;'F(gy) =
ny. Define Ly, = ngg;Ul, Sy = ngg;,l and &, = ad(g;,1 *E. Then Ly, and S, are F-stable
and the isomorphism ¢ : F*E = & induces an isomorphism ¢, : F'E, = Ey. These allow
us to define Yiw sv, Yiw g, Ty @ Yiwge = Yiwge, Eu, Ky and ¢y : FKyy = Ky by the same
procedure. It can be checked that (See [L03} IV, §21.6])

(1\7.4171) XK,bw(P = XKw;qbw ‘

IVA4.1.8  Write W = Wg, denote by ‘W a set of representatives of the effective F-conjugacy
classes ([L03, IV, §20.4]), and write W, = {v € W | F-Y(v)wv™! = w}. If w is not in some
effective F-conjugacy class and i € A, then Tr(b,;, V;) = 0 ([LO3} §20.4 (a)]). We have for all i,
j € A ([LO3| 1V, §20.4 (c)])

(IV.4.1.8.1) Z Wl ™ Te(bots, Vi) Tr(i b3, V)) = 6,
weW

where 6;; = 1if i = jand 6;; = 0 otherwise. In fact, |'W| = |A] and (Tr(byt;, Vi))ie wedy 1S an
invertible square matrix ([L03} §20.4 (e), (f), (g)])-
This, combined with the equalities (IV.4.1.6.1) and (IV.4.1.7.7), gives

1 g
(IV.4.1.8.2) Xkoi = e Z Te (s '3, VXK o
&

weW,
w effective

IV.5 Extensions of 0-Stable Characters

IV.5.1 Some Elementary Lemmas

When dealing with a Levi subgroup L of GL,, one often regards it as a direct product
of smaller GL,/’s and reduces the problem to these direct factors. However, if ¢ is an
automorphism of L, then L x<o>is not actually the direct product of groups of the form
GL,y <<0’>. We give some lemmas that allow us to apply arguments in the same spirit. Let
H denote a finite group in this part, which could either be a finite group of Lie type or a Weyl
group. Let 0 be an automorphism of H, which could be induced from the automorphism of
an algebraic group or the Frobenius. Denote by H.<o>the semi-direct product of H and the
cyclic group generated by o, with the generator acting as o on H.
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Lemma IV.5.1.1. Let H = Hy X - -+ X H; be a product of finite groups and let 6 = 01 X -+ X 05 be
the product of some automorphisms of the direct factors. Then H.<o>1is a subgroup of []; Hi.<o;>
Moreover, if the characters x; € Irr(H;) extend to ¥; € Irr(H;.<0;>), then ¥ = (Ri%i)|H<o> IS
irreducible and restricts to ®;x; € Irr(H).

Proof. We define a map by

H<o>— H H;.<o;>
(IV.5.1.0.1) i
(hll cecy hs)oj — (]’llO'Zi, sy hso-é)/

which is obviously a homomorphism and is injective. Then the assertion on { is immediate.
o

We define an exterior tensor product that is "twisted" by o.

Definition IV.5.1.2. Let H = H; X H; be a product of finite groups and o = 01 X 0 a product
of automorphisms. For i = 1 and 2, let f; be a function on H;.0; that is invariant under the
conjugation by H;. The function iR f, on H.o is defined as the restriction of

f1 X f2 (: pr“i f1 . pra f2) € C(H1.<01>XH2.<O‘2>)
to H.<o>.

Lemma IV.5.1.3. Let H = K X --- X K be the direct product of d copies of a finite group K. Let 1
be an automorphism of K, let C € S; be a circular permutation, and let (ny,...,n4) be a d-tuple of
integers. With these data, we can define an automorphism \V of H by

W:H—H

(IV5.1.0.2)
(k1, ... kg) — @ (kewy), - -, P (keay))-

Denote by H the direct product K><ip>X - - x K><ip>, and let C act by permuting the components:
C:(ky, ... kg) V— (keay, - key), ki € Kx<ip>,
Let x be a -stable irreducible character of K and denote by ¥ an extension of x to K x<y>. Then,
(i) H =<W>is a subgroup of H;

(ii) The character ¥ ® - - ® ¥ of H extends to a character of H =<C>. Its restriction g to H x<\W>
is irreducible;

(iii) Write C = (i1, ...,14) as a permutation of {1,...,d}, so that i, 1 iry1. Forallh = (k1,...,k;) €
H, we have
~ P .
TOW) = R 2K ).
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Proof. Foreachie€{1,...,d}and r € Z., put n;(r) = ZOSpSr_l ngr)- Define a map

H.<W>— K<yp>X--- X K.<p>).<C>
(IV.5.1.0.3) k1, ... kg) ¥— (ky,..., kg)
(ki,..., kd)\yr — (k1¢n1(r)’ o ,kle”d(r))Cr.
One can verify that it is an injective group homomorphism. The character ¥ is irreducible as
its restriction to H is so.
Let us compute the value of 7. Let p : K — GL(V) be a representation that realises the
character y. Let p denote its extension to K.<iy> Then V®? is a representation of }, defining

the action of Cby 11 ®-+-® vy = (1) ®- - - ®v¢(g). We use an argument of linear algebra. Take
AD . A@ ¢ GL(V) and let  act on V® as above. Then we have

(IV.5.1.0.4) TrAV ® - @ AD o (V@ - @ V) = Tr(AW ... Al|y),

We conclude the proof by taking (k™) for AD. ]

IV.5.2 Uniform Extensions

IV.5.2.1  Denote by L the algebraic group defined over IF,
(IV5.2.1.1) L= [[(GLy xGLyY" x [ [ (GLy, x GL,,)*
=N i€y

for some finite sets A1 and A, endowed with the Frobenius F acting on it as Fy, in (IV.1.2.3.6)
and (IV.1.2.3.7), and with the automorphism ¢ acting on it as in (IV.1.2.3.9). Let T C L be

an F-stable and o-stable maximal torus and we wirte Wy := Wr(T). For all i € A1 U Ay,
we write L; := (GL,, X GL,,)%, and denote by T; the corresponding direct factor of T. Write
W; := Wr,(T;). Then we have

(IV5.2.1.2) Wi = (S, X Sp), WP =S

for all i € A U A,. These are some direct factors of W, and of Wy that are stable under F.
Define an injection

Irr(Wf)F — Trr(Wp)F

(IV.5.2.1.3)
¢ — [¢]

in the following manner.
For each i € A1, we have the bijections

(IV.5.2.1.4) Irr(W))F 2= Py, X Py, Ir(WYE = P

We define Irr(Wf)F — Irr(W))F to be sending ¢ to (¢, ¢).
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For each i € Ay, we have
(IV.5.2.1.5) Irr(W)F = P, Irr (WO = Py,

We define Irr(W?)F — Irr(W;)" to be sending ¢ to . .
For any ¢ € Irr(W?)F, we denote by @ an extension of ¢ to W¢ x<F>and denote by [¢]
an extension of [¢] to Wy x<F>, where F is regarded as an automorphism of finite order of
the Weyl group. Eventually, these choices need to be specified.
Denote by Irr’ (LF) the set of the o-stable linear characters of LF. For any 0 in Irr?(LF), we
denote by 0 its trivial extension to Lf.<o> We also denote by the same letter the restriction
of Oto Lf.o.

IV522  Given ¢ € Irr(W] )F and 0 € Irr?(LF), by Theorem there is a particular choice of
the extension [¢] such that

(IV.5.2.2.1) X1 1= RE,0 = W™ Z [p]wF)RL 6.

weWp,

is a character. Obviously, it is a o-stable character of LF. Denote by #; an extension of x; to
LF.<o>.
For any choice of the extension ¢, put

(IV.5.2.2.2) RGO = Wy Z PWFRE? 6.

(2
weWy

It is an Lf-invariant function on L .o.

Theorem IV.5.2.1. For a particular choice of the extension @, we have
(1V.5.2.2.3) Tl = £RE00.

We will prove this theorem in the following section.

IV.5.3 The Proof

The proof is to reduce the problem to smaller and smaller factors of L, until we can apply
the known results on GL;,(g), for various n’. The choice of the extension ¢ will also be
reduced to the smaller components until the choices are clear.

IV.5.3.1 Reduction to the Unipotent Characters Let y; = R[L(pll be an irreducible character

of LF, which is necessarily o-stable. Denote by ¢ € Irr(LF.<0>) such that fi|;r = R[chll'
Assume that for some choice of @,

(IV.5.3.1.1) Xl e = R,
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where we denote by 1 the trivial extension of the trivial character. Since (R[L(p]l) ®0= R[L@]G
and (RG7)1® 6 = R;70, we have

(IV.5.3.1.2) (¥1®0)r =RE

[(P]Q' (Xl ® é)|LF.O = Ré{gé.

So it suffices to prove the theorem for the unipotent characters.

IV.5.3.2 Reduction with Respect to the Action of F and ¢ We have decomposed L into a
product of the L;’s for i € A LI Ay, each one being F-stable and o-stable. Let us show that it
suffices to prove the theorem for the L;’s.

Write F = (F)iea,un, and 0 = (0i)iea,un,, Where for each i, F; and o; are respectively
a Frobenius and an automorphism of the corresponding direct factor. The given ¢ can
be written as (¢;)iea,un,, With @; € Irr(Wf")F i, then [p] = ([¢:i])i. Suppose that R[L(;)ill are
some irreducible characters, denoted by yx;, each one being o-stable, and they extend to
Xi€ Irr(Lfi.<c7i>). We will show that if for some choices of the extensions ¢; € Irr(W?i.<Fz->),
the following equality holds

Xi|L,Fi.ai - Réiil’

then there is some choice of ¢ € Irr(W}.<F>) such that
Xilro = Ré‘gl.

Given the extensions of the factors ¢;, we can obtain an extension f; following Lemma
[V.5.1.1, By definition, for any lo € LF.c which can be identified with [];jo; € []; LiF L.<0;>,
we have,

(IV.5.3.2.1) f1(lo) = H RE“1(ljoy).

On the one hand,
[ TRE 1000 = [ ] TetioilH: (X))
(IV5.3.2.2) = Tr([ [ ioil ) He(Xw))
= Tr(lallHZ(Xw)l) = R}7 1(lo).

where the Ty, and T, are defined with respect to T; and T.
On the other hand, applying Lemma [[V.5.1.1| to the Weyl groups and the Frobenius, we
obtain an extension @, such that for any w = [[; w; € Wg, we have,

(IV5.3.2.3) F(wF) = (H <pi)|wg,F(H wiFy) = H Pi(wiF;).
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Consequently, f1lr, = Ré‘”l. (One may also check that IZIiR[L(;)_]l = R[L(pll with some
similar but simpler arguments.)

IV.5.3.3 The Linear Part, I In this part we fix i € Ay. Write M = GL,, xGL,;,, equipped
with the Frobenius

PM : (g/ h) = (FO(g)I FO(h))

with Fy being the standard Frobenius of GL, and the automorphism

T(g/ h) = (GO(h)/ UO(g))

of the form with 0p commuting with Fy. Then L; = M X --- X M is a direct product
of d; copies of M equipped with the automorphism ¢ = 7 X --- X T consisting of d; copies of
7. We will fix i and write d = d;. We may assume that the maximal torus T; C L;, which
is F;-stable and o;-stable, is of the form Ty X - -- X Ty, where Tyy € M is an Fy-stable and
T-stable maximal torus. Note that Fas acts trivially on Wy := Wa(Tar). The Frobenius F; acts
on L; in the following manner

MX-- - XM—>MXx---xXM

(IV5.3.3.1)
(ml/ cee /md) — (FM(md)l FM(ml)l co /FM(md—l))'

We have a natural commutative diagram
Irr(W},) —— Irr(W/")Fi
(IV.5.3.3.2) l l
Irr(Wy) —— Irr(W))Fi

where the upper horizontal bijective map ¢um —— @; = (pum, - . ., @m) identifies each element
of Irr(Wl‘.’i)F # with d identical copies of an element of Irr(Wy,). Denote by [pum] and [¢;] the
images of the vertical maps defined as in (IV.5.2.1.3), which are matched under the lower
horizontal map.

Endow M with the Frobenius P;’IM. Suppose that for some choice of @y,

(IV.5.3.3.3) R]([\J’IMTl = |W](/I|_1 Z (pM(WFi/[)R%.Tfl

T
w€WM

where T, is defined with respect to Ty, is an extension of the irreducible character R][\(;I)M]l of

MF ?i/f. Let us show that

(IV.5.3.3.4) Réii'ail — |W1§Ti|—1 Z (ﬁi(ZUFi)RI%"‘Gil

0.0
.
weW.,!
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is an extension of the irreducible character RL(;) 1of LF’ In fact, there is a natural isomorphism
MFu = LF compatible with the action of 7 and 0. We are going to show that RM 1 coincides
with RiLg’l under this isomorphism and they are an extension of the same character of
MFu = Lf corresponding to [¢] = [¢L].

Applying Lemma [[V.5.1.3/to K = W} , H = Wfi, Y=Fy,andC=(d,...,2,1) € S, we
deduce from @ an extension @; such that for w = (wy,...,wy) € (WX/I)d = Wfi,

@i(wF;) = gpm(wgFpwg—1Fp . .. w1Fum)

(IV.5.3.3.5) 3 .
= (pM(wdwd_1 N ZU1FM).

Write w| = wywg-1 ... w;. Then, wis Fy j-conjugate tow’ = (w},1,...,1),so foranyl € Lfi, we
have
Ryt Moy) = Ry 1(1oy) = Te(lolHy (X))

We can write [ = (m, Fypy(m), ..., F4 M 1(m)) with m satisfying F M(m) = m. Since the two varieties

Xu = (B € BL,|(B, Fi(B)) € Ow')},
Xy = (B € Buml(B, Fj(B)) € O(wy))

are isomorphic, and the actions of lo; and of m7 on the two varieties are compatible, we have

Tr(loilH (X)) = Tr(mtlH (Xuy)) = Ry, 1(m),

Consequently, the value of @;(wF; )RL i1 only depends on w; € W; and is equal to
Pm(wiF )RMT 1, This, together with the fact that A I"l shows that RMTl = RL 0.

(Similar arguments show that ng ]1 = Rﬁ;‘]l.)

IV.5.3.4 The Unitary Part, I In this part we require thati € A>. We keep the same notations
as above except that F; acts on L; in the following manner

MX---XM-—Mx---xXM

(IV5.3.4.1)
(my,...,mg) +—> (Fy,(my), Fy(my), ..., Fpm(mg-q)),

where
Fiy < (g, h) = (Fo(h), Fo(g))-
Denote by F}, : M — M the Frobenius

FiFit (g, 1) = (Fi(h), FA(9)).
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We still have a natural identification
Trr(WE )" M —> Irr(Wf")F i

(IV.5.3.4.2)
Pr—=pL=(p,.., )

(F), acts trivially on Irr(W} ) since og induces an inner automorphism on the Weyl group)

and an isomorphism Mfu = Lf ‘. In a way similar to §[V.5.3.3] from the equality (IV.5.3.3.3),
with PiA replaced by F}, one deduces the equality (IV.5.3.3.4), with F; defined in the present

setting.

IV.5.3.,5  From now on we write M = G X G, G = GL;,(g) with € = +. Denote by F the split
Frobenius of G and by F the Frobenius of G corresponding to €, and denote by oy an order
2 automorphism of G, which commutes with the Frobenius endomorphisms.

IV.5.3.6 The Linear Part, II. It is essential that we allow G to be GL,,(g), which will be
applied to the unitary part later. Define

c:M— M F:-M—M
(&, M (o0(h), 00(8)) (8 Mr— (Fy(8), Fy(h))-

Let xc be a unipotent irreducible character of Gfo corresponding to some ¢ € Irr(Wg), it
defines a character xp = x¢ ® x¢ € Irr(MF) which is invariant under the action of ¢ and so
extends to M!.<o>, denoted by . Every o-stable irreducible unipotent character of MF is
of the form x¢ ® x¢. Regarding ¢ as a character of WY, we show that up to a sign,

(IV.5.3.6.1) Tvlro = RO o= (Wi ™ Y @wP)RYS 1,

(2
weWM

for some choice of the extension ¢.
We apply Lemma|[V.5.1.3|by taking G'o for K and obtain

am((g, o) = xc(goo(h))

forany (g, h) € MF. By Theorem the irreducible unipotent character of Gfo can be expressed
as

Wel™ ) Go(@FRS 1,

weWg

for some choice of @g. The extension ¢ is then defined by ¢ under the isomorphism

We = W}, noticing that the action of F is compatible with the action of Fj under this

isomorphism. Comparing this expression with RI({\)/LGL we are reduced to show that for any
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(g,h) e M
(IV.5.3.6.2) RQ{;; J1((g,M0) = RE 1(g00(h)

with wp = (w, oo(w)) € Wy, Observe that (g, h)o — R?wl(goo(h)) defines a function on M*.o
invariant under the conjugation by M’ .

IV.5.3.7 Let us prove a more general assertion. Let I be an Fj-stable Levi subgroup of
G. Then | := I X 0¢(]) is a o-stable Levi factor of a o-stable parabolic subgroup of M, which
justifies the functor R]]Vi;? Let x; be an irreducible character of I' 0, it defines a character
X7 = X1®oo(xr) € Irr( JF) which is invariant under the action of ¢ and thus extends to J¥.<o>.
Denoted by {; a choice of such extension. The following lemma with I = T, and x; = 1

proves the above assertion.

Lemma IV.5.3.1. We keep the notations as above and write | = J<o> Assume that for any
(&', 1) € JF, we have g;((g’, 1')o) = x1(g’o0(I’)). Then, for any (g, h) € ME, we have
(IV.5.3.7.1) RM=%1((g,h)o) = RY x1(goo(h)).

J.<o>

Proof. Let (g,h)o = Cu be the Jordan decomposition, with C semi-simple and u unipotent,
and we write y = (1, w) and C = (s, t)o. Beware that neither s nor ¢ is necessarily semi-simple.
Also let goo(h) = i1 be the Jordan decomposition, with 5 semi-simple and i unipotent. The
proof will simply be comparing the following two formulas term by term.

M.<o> _|fF-1 oF -1 Cmle)” B
RYGCH((@ o) = oM@ ), Y, Qe (@)
{xeMF| UECXAT\.(QE
x(x~lejo) v

/= —~\oF/ — Ci(9)° - _
R xi(goo) =I5 Ce@ o Y Yy QY @, oo
(veho 1€C, 1y @

ysy~'el)

An element (z1, z2) € M commutes with (s, t)o if and only if z, = too(z1)t ! and z1 = sop(z2)s7t,

if and only if z; € Cg(soo(t)) and zo = tog(z1)t™!, whence an isomorphism Cp((s, t)o) =
Cc(sop(t)). An element of M.<o>is semi-simple if and only if its square is semi-simple since
the characteristic is odd. The equality ((s,t)0)? = (soo(t), too(s)) shows that sog(t) is semi-
simple. The unipotent part (1, w) commutes with (s, t)o, so u € Cg(soo(t)). Considering the
equality

(go0(h), hoo(8)) = ((8,1)0)* = ((s, 1)o)*(u, w)* = (so0(t), to(s))(?, w?),

wehave gog(h) = soo(t)u?. This gives the Jordan decomposition of goo(h) because u commutes
with sog(t) and u? is unipotent. Therefore, § = soo(t), ## = u? and |Cp(C)°F| = ICc(3)°%0).

Write x = (x1,x2) € MF. The condition x{x~! € J.o means that x1500(X5 1) € I and that
xztoo(xfl) € oo(I), which implies that xlsao(t)xI1 € I. Fix (x1,x2) satisfying x(x7t e Jo,
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then every element of (x1, o0(I0)xy) also satisfies it. Let (x1,x2) and (x1,x7) be two elements
satisfying xCx~! € Jo, then the conditions x1800(X; 1y eI and xlsao(x'z‘l) € I implies that
x5 1 € go(I0). We thus obtain a bijection of sets

{x e MFlxCx™ € Jo) = (y e Gholysy ™! e I} x I,

with y corresponding to the factor x; of x. We will see that the sum over x in the character
formula is invariant under multiplying x; by an element of ao(I70) on the left, which cancels
a factor |IF0] from IJF| = IIFo 2.

The isomorphism Cp(C)° = Cg(5)° restricts to an isomorphism C,-17,(0)° = Cy Iy(s')O For
characteristic reason, the unipotent elements of C,-1,(C) are contained in C,1 ],C(C)O by [DM9F4
Remarque 2.7] and [DM94, Théoreme 1.8 (i)], whence a bijection C,-1 ]x(C)u =C qy(sao(t))u ,
by which v = (v, v2) is sent to v;.

Now we compare the characters *{;(Cv) et Yx1(50v1). Write x = (x1,x2) and v = (v, v2).
Then

(IV.5.3.7.2) xCox™t = (x1500(v2)00(x2) "L, X2ta0(v1)0o0(x1) Yo

Taking into account the equality v, = top(v1)t ™!, we have

(IV.5.3.7.3) (x1500(22)00(x2) ™ )oo(x2too(@1)a0(x1) ™)) = x1so0(t)odxy.
By assumption, t;((g’,h")o) = x1(g’oo(h)), for any (g',h’) € JF, whence
(IV.5.3.7.4) X1(Co) = xi(xisoo(Hoix;") = 1 fu(E0}),

where we also see that multiplying x, by an element of go(I) on the left does not change
the value. Since v — v? defines a bijection of Cp Iy(s"),‘f 0 into itself, it only remains to show
the first of the following equalities of Green functions

(IV.5.3.7.5) Qe o207 = QLY w0 = QR 07,
Y

which follows from the fact that the value of the Green function only depends on the
associated partition and a power prime to p does not change the Jordan blocks of a unipotent
matrix. O

IV.5.3.8 The Unitary Part, II Define

oc:M— M F-M—M
(g hy— (00(h), 00(8)) (8, h)— (Fo(h), Fo(g))-

Now, MF is isomorphic to G 0 under the map (g, Fo(g)) — g, and M? isisomorphic to G under
the map (g, 00(g)) = g The Frobenius F acts on M’ = G by g + 0¢Fo(g). The automorphism
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o acts on MF by
(8, Fo(8)) = (00F0(8), 00(8)) = (90F0(8), 00F5(8)),

or in other words, o acts on G 0 as ooFp.
Let xp be a unipotent irreducible character of MF, and let ¥y be an irreducible character
of MF.<o>that extends yy. We are going to show that up to a sign,

(IV.5.3.8.1) Imlvr o = RYH1 = Wy ™! wF)RMal
MF. M @(

weW‘7

for some choice of @. Under the isomorphism Wy, = Wg, the Frobenius F acts as oo on Wg,
and so an F-stable character of Wy, is equivalent to a character of Wg. We are reduced to

show that if x¢ lls an 1rreduc1ble unipotent character of G corresponding to ¢ € Irr(Wg),
then its extension fg to G 0 .<opFp>is given by the above formula up to a sign.
We need the Shintani descent. Suppose that x; € Irr(GFo)70Fo is the unipotent character

corresponding to ¢ € Irr(Wg)°°. We apply Theorem [IV.3.3.1| with (01F}', 02Fp) = (1—%, ooFo),
ie.m=2,01 =1and gy = 0y, and deduce that
~ ook
XG = EGQFQ(XG) ShooFO/Fz QGOFOR(% ’ 01
= % Sh, i RG™ 1 = £Sh, o [Wel ™ ) GlwaoF)RE 1,

weWg

(IV.5.3.8.2)

since QO = *1 because R(CP‘;UOFO 1is an irreducible unipotent character G* on which Q2 .
acts as a scalar, whose value is given by For example, Qsr, = 1 on principal
series representations and Q(ZTOFO = -1 on cuspidal unipotent characters according to ([L77,
Table I]). The sign (+1) does not matter since the two extensions of x¢ only differ by a sign.
It remains to show that Sh,, r, /2 RGGOF‘Jl = RM';; 1, where wy is as in ([V.5.3.6.2) and M is

equipped with the Frobenius F. The function R(T; 901 is invariant under F3-conjugation as F3

acts trivially on G™Fo, which justifies Sh, r , P2 ORGUOFO 1.
Proposition[[V.3.4.1| gives
(IV.5.3.8.3) Shor/r oR]}f;Z‘gl = RJ}’SM“ 1.

(One checks that with respect to a fixed F-stable and o-stable maximal torus T C M, the
maximal torus Ty, of type wy with respect to F is also of type wys with respect to oF, using
the fact that for o quasi-central, wy, has a representative in M°.) Since F acts as 0 on MF,
the function RZ%A 1 is invariant under the F-conjugation of M°F, and its Shintani descent
Shor/e ORM 1 belongs to C(MF.oF). There is a natural bijection C(MF.oF) & C (GF 0 .0oFo).
Let us show that

aoF oF
Shy,p,/r2 ORE," 1 = Shapr OR%)M'_C;L

®Unipotent characters are Fy-stable
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which concludes the proof.
For g € Gh %, there exists x € G such that xagFy(x)™! = g, and so

NE /oo (8) = x"'F3(x) € G™Fo,

We also have
(x, Fo(x))oF(x™", Fo(x)™") = (g, Fo(8)),

and so
Nr/or((8, Fo(9)) = (x71, Fo(x) ")F(x, Fo(x)) = (x 'F5(x),1) € M.
Therefore,
MF o O SMF a0 112
Sharsr oRY 7 1((g, Fo(g)) S RY 9 1((r  Ey(v), 1))
(Iv.5.3.8.4) M M

@ ooF — @ anF

= R7""1(xT'Fy(x)) = Sh, r, B2 oRT""1(g).

where the equality @ is the definition of Shintani descent and we have identified the
functions on MF.g to the functions on M°F invariant under the F-conjugation. We have

equality @ by (§IV.5.3.6.2) with the automorphism (g, ) = (oo(h), 00(g)) and the Frobenius
0F(g,h) = (00F0(g), 00Fo(h)). Equality @ is again the definition of Shintani descent.

IV.5.4 Extensions of Quadratic-Unipotent Characters

In this section, we focus on Lo = GL,,(k), equipped with the Frobenius Fy which sends
each entry to its g-th power. Let 0 and of be the automorphisms defined for GLy,(k) in
the same way ¢ and ¢’ are defined for GL,(k). Now the semi-direct product of GL,, (k) by
0o (resp. by o)) is denoted by ‘Go (resp. ‘Go). We may regard oy also as an element of ‘G,
acting as ap on GL,, (k) but satisfying o5 = —Id. The point is that, in ‘Go, we need to fix a
quasi-central element to work with, and oy is a convenient choice.

IV.5.41  Let (u4, u-) be a 2-partition of 19 and fix some integers r,. > I(u4) and r— > I(u-).
Write ny = |u4]| and n_ = |u_|. Let (a4, B+)r, and (a—, f-),_ be the 2-partitions associated to
i+ and to u_ respectively (See §I1.2.1.3), such that the unordered 2-partitions (a4, ) and
(a—, B-) are the corresponding 2-quotients. Let m, and m_ be some non negative integers
such that (m,,...,2,1) and (m_,...,2,1) are the 2-cores of u, and of p_ respectively, and
write Ny = (ny —my(my + 1))/2. There exists a unique pair (h1,h2) € IN X Z such that

sy = sup(iy + ha, —hy — p — 1
(IV.5.4.1.1) + = suplln + g, =hy =y = 1)
m_ = sup(hy —ha, hy —hy = 1).

Note that exchanging p; and p_ sends (h1, hy) to (h1, —hy). Write

m=my(ms +1)/2+m_(m_+1)/2,
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and sony = m+2N, +2N_. We have m = h1(I +1)+h%. Assumethatr_ =h, mod 2andr, =
hy +1 mod 2. Each of the two 2-partitions (a., f+)r, defines an irreducible representation
of QBI% respectively, denoted by p, and p_. Then with the fixed r; and r_, the 2-partitions
(u*,u”) are in bijection with the data (hy,hy, p+, p-), identifying p, and p_ with the 2-
partitions determining their isomorphism classes.

IV.5.4.2  We also consider the data (hq, hp, w4, w-), with w, € QB§,+ and w_ € QBI(\:]_, where
hi, h, N+ and N_ are as above. To simplify, we write W, = QBZC\L, W_ = QBI(\:]_ and w =
(h1, hp, w4, w-) instead. To each w is associated an Fy-stable and oy-stable Levi factor of a
oo-stable parabolic subgroup, isomorphic to Ly = Ty, X Ty X GL,,(k), each factor preserved
by 09. We write 0g = 04+ X 0- X 09 and Fo = F, X F_ X Fyoo with respect to this decomposition.

IV.5.43 To each (h1,hy) € IN X Z is associated a unique cuspidal function ¢(hy,h2) on
GL,,(9).000, which is supported on the GL,,(k)-conjugacy class of sogou, where sogy has
Spy, i +1)(k) X SOhg (k) as its connected centraliser in GL,,(k) and u corresponds to the (sym-
plectic/orthogonal) partitions (2h1,2h1 -2, ...,2) and (2|h2| -1, 2|hp| =3, ..., 1). Itis an isolated
conjugacy class. The cuspidal functions are explicitly given as below.

Put
0, ifhr, >0,
sty =1 2
1, 1fh2<0,
and put
|3 — hy| iy + Dy + 1
o) = =25, () = MEEDED 4, 1) = () + 012)

Writeu = (uq, up) € Sphl(h1 +1)(k)><SOh§ (k). The Sphl(h1 +1)(q)—conjugacy classesin the Sp,, (I +1)(k)

conjugacy class of u; are parametrised by ygl, and for € = + the SO;,(q)-conjugacy classes in
2

2| -1 |12
2 2

consisting of elements (¢;)ic1,... ) With [ ;e = en(—l)“hZV 2l where n is the order 2 character

glﬂ as (e;), then e; corresponds to the Jordan

the SO}@ (k)-conjugacy class of u are parametrised by u,* , regarded as the subset of u

of ;. Note that when we write an element of y
block of size 2i — 1.

Denote by ¢ the nontrivial irreducible character of yz. For Sp, ¢, ,1)(9), the unique
cuspidal function ¢ supported on the Sp;, (, ,1)(k)-conjugacy class of u; is given by (cf.
[WO01, §II.4])

P1(u1,e) = g°"" H ole:),

i€{1,....hu}, iis odd
where 1, is a representative of the class corresponding to (¢;). For SO;,(q), the unique
2

cuspidal function ¢, supported on the SOhg (k)-conjugacy class of u; is given by (cf. [WO01,
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§IL5])
P2(uiz,(e) = got)/2 H o(e;),
i€{1,...,|ha|}, i=hy mod 2
where u () is a representative of the class corresponding to (¢;).
Finally, ¢p(h1, hy) is expressed as

(IV.5.4.3.1) goln )2 H o(e:) H o(e).
1<i<hy 1<i<|hy|
iodd iEh] +h2+1+5(h2) mod 2

Note that the component group of the centraliser of sogu is isomorphic to ‘ugl X ygz and
there are therefore two cuspidal functions on GL;,(g).000 (unless h, = 0) that restrict to the
unique cuspidal function on Spy, ¢, ,1)(q) X Sth(q) under the map u saoou The two
cuspidal functions, in terms of representations of the component group “2 X y'h2| differ
by (0,...,0) € Irr([uglﬂ). Indeed, ¢(h1,h2) and ¢(hy, —h2) are two such functions, and the
indicating function s(hy) is responsible for the difference (g, ..., 0).

IV.5.4.4 Let Id be the trivial character of Tfuj . It trivially extends to Tg,: .<04+>, and so we
can regard Id as a function on Tfui.a,. Similarly, composing 1 with the homomorphism
Th - IF, defined by the product of norm maps, we can regard 7 as an invariant function
on T! .o_, whose value at o_ is equal to 1. Then, Id RnR¢(hy,hy) is an invariant function
on Lf,,.ao, denoted by ¢w. The induced function RESV'?O ¢Pw on Lgo.ao is invariant under the

conjugation by Lgo.

Remark IV.5.4.1. In the case of Gy, the element o, satisfies 02 = —1 and so is each of its

component: o4, 0— and o0pp. Then we can still extend 1 in such a way that its value at o_ is

2
0

equal to 1, because the value of 1, regarded as a character of T is always1lat-1¢€ Tk

Denote by ¢, and ¢_ the characters of p, and of p_ respectively. We have then the
invariant functions on Lgo.ao defined by

11

Lo.og ._ Lo.0o

(IV5.4.4.1) RY™ = T ;B P+ (W )p-[W)RL .
w-_eW_

IV.5.4.5  We keep the notations above and assume that p # 2 and g > ng. Let x(,, ) be a
quadratic-unipotent character, which extends into a character t(,, ) € Irr(L€°.<ag >).

Theorem IV.5.4.2. ([W, §171) Suppose that Lg°.<oo> = ‘Go if no is even. Then for any (i, u-) €
P, (2), we have,

~ Lo.
(IV.5451) X(#+’H_)|L50.UO = iR‘DU (70.
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Given a quadratic-unipotent character yo of GL;,(g), let p : GL;,(9) — GL(V) be a
representation that realises it. Then p(-1d) = +Idy, with p(-=1d) = —Idy exactly when
x(=1d) = —x(Id). Define the indicator

i ifx(=1d) = —x(d);
|1 otherwise.

Corollary 1V.5.4.3. Suppose that ng is even and Lg“.<ao> = "Go. Then for any (i+, 1) € Pny(2),
we have,

- Lo.
(Iv.5.4.5.2) X(H+’H_)|L50.Gg = inRpo 90
Proof. This follows from §I1.5.2.3 m|

IV.6 The Formula

IV.6.1 Decomposition into Deligne-Lusztig Inductions

IV.6.1.1 By Proposition [[V.1.2.2land Proposition [IV.1.2.3} every o-stable irreducible char-
acter x of GL,(g) is of the form R ()(1 ® Xo), for an F-stable Levi subgroup M, isomorphic
to the o-stable standard Levi subgroup L; of the form (IV.1.2.2.1) equipped with the Frobe-

nius F, given by (IV1.2.3.5), (IV1.2.3.6) and (IV.1.2.3.7) and with the action of ¢ given by
(IV.1.2.3.8) and (IV.1.2.3.9). Decomposing L into L1 X Ly following §IV.1.2.3] then x; and xo

are identified with some o-stable characters of wa and Lgo respectively, where we also denote
by the same letter the restriction of Fy, to L1 and by Fy its restriction to Ly. We decompose
o into (o1 0¢) with respect to L1 X Lg. Recall that x is defined by a 2-partition (u4, u-) and
that x; is defined by [¢1] € Irr(WLl)F ©vand 61 € Irrmg(Lf"’)“1 satisfying the assumptions of
§IV.1.2.4, where ¢; € Irr(WE)FW.

By Lemma |[1.4.2.1, an extension of x to GF.o is obtained by first extending x1 ® x¢ to
MF .0 and then taking the induction RG ¢ . One can equally extend x; ® xo, regarded as a

F F Mz

character of L;*, to L;*.0. The extension of x1to Lt .oy is given by Theorem [[V.5.2.1/and the

extension of x to Lgo.ao is given by Theorem [IV.5.4.2. Explicitly, we have

Rilygo g, = WP Y @r@nFu)RE, O,

wlewl
Ry, = oo Y pu(@)p-@REY b,
R [ Ly

w_eW_
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and in the second equality there is an extra y  if 0p is of symplectic type. Now put

|y, ifoisofsymplectic type,
Vi 1 otherwise.

Write Ly, w = Tw, X Lw. It is an F;,-stable and o-stable Levi factor of a o-stable parabolic
subgroup of L;. Combining the above two formulas gives

TR0y = Y, W) X W X W Y pr(@iFa)pe (@, )e-@ R (01w
(w1, w4,w-) v
eW‘Zi XU, XMW

Identifying L;*.<o>= M <o>and the subgroups M}, ,, & Ly ., we deduce

Theorem IV.6.1.1. The extension of x is given by the following formula:

Foro = Wi x B x W™ Y Gr(@iFu)ps@)p-@ )RS | (G1E¢w).
(wy,w4,w-)
EWZ; XA, X W_

IV.6.1.2  Recall §IV.1.2.8|that the o-stable irreducible characters of GL,(g) are parametrised
by T,. Denote by T9 C T, the subsets of the elements

A [ e [Tx )

€A j€A2

in which at most one of |1,]| and |A_| is odd, and A, is a partition with trivial 2-core or with
2-core (1) according to the parity.

Corollary 1V.6.1.2. The o-stable irreducible characters of GL,(q) that extends to uniform func-
tions on GL,(q).0 are in bijection with O, and the extensions of these characters constitute a base
(identifying two extensions of the same character) of the space of the uniform functions on GL,(q).0.

Proof. We have seen in Theorem [IV.6.1.1|that the extension of a general o-stable irreducible
character is decomposed into a linear combination of cuspidal functions induced from

ME, = ThL XTh X T X GLu(q),

w1 W

for various w1 and w. Cuspidal functions induced from Mszl,w with m > 1 can not be uniform
(see §I1.4.3.2 for the definition of uniform functions). Now the condition m < 1 is equivalent
to the condition that the sum of the 2-cores of A, and A_ is either empty or (1). We see that
A+ and A_ satisfy the assumption in the definition of T?, whence the first assertion.

For each t € Y, denote by x; the corresponding character, and choose an extension
¥ € C(GLy(9).0). Then, {5 |t € ’:Zg)(} is a set consisting of functions orthogonal to each other.
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Theorem [[V.6.1.1| gives a transition matrix between the set of (generalised) Deligne-Lusztig
characters and that of the ji;’s. O

Remark IV.6.1.3. The extension of an irreducible character is then either uniform, ot or-
thogonal to all uniform functions. Since the characteristic function of a quasi-semi-simple
conjugacy class is uniform, the extension of a character corresponding to an element of
T, \ T vanishes on every quasi-semi-simple element.

IV.6.2 Combinatorial Description of the Character Formula

In order to determine the character table of GL,(g).<0>, it only remains for us to calculate
. . G
the induced functions RM;,W.U(PW'

IV.6.2.1  Let us recall how this is done for a split connected group G. Fix a split maximal
torus Ty and let W¢ denote the Weyl group defined by Ty. Let us simplify the situation and
assume that My, w = Tr, T € Wg, is a maximal torus. The character formula (cf. §11.4.1.2)
reads

1ym0 ¢ FI 20
(IV.6.2.1.1) RS 0(g) = ITHICL ()™ Z QCS’ (S) w)"0(s),

{heGF|se"T,}
for the Jordan decomposition g = su. Assume that s € Tf, and put
(1V.6.2.1.2) A(s,7):={he G| hsh™ € Ty).
We have to determine the set
(1V.6.2.1.3) Af(s,7) := {h € A(s, 1) | F(h) =
Write L = Cs(s)°. Define

B(s, 7) :={The Lf-conjugacy classes of the F-stable maximal tori of L
(IV.6.2.1.4) i
that are G" -conjugate to T.}

It parametrises a subset of the Green functions of L. We fix s and 7 and write A, Af and B
in what follows. Observe that there is a surjective map A" — B which sends } to the class
of h™'T h. Tt factors through ¢ : AF/LF — B. The value of the Green function only depends
on (1) while "0(s) is constant on each right LF-coset of Af. The calculation is eventually
reduced to evaluating "6(s) on the fiber of ¢ over an element 7 € B. We may regard 7 as the
F-conjugacy class of some v € Wy (T).

We have A = Ng(T,).L, that is, the set of the elements nl, n € Ng(T;) and [ € L, since for
each h, there exists I € L such that 71Tk = IT,I"1. We deduce from it an isomorphism

(1V.6.2.1.5) AFJLF = (AJL)F = (NG(T)INL(T))F = (We(To)/WL(To)),
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which sends h = nl to the class of n. This does not depend on the choice of the n and I such
that i = nl. We choose some ¢ € G such that T, = gTog"!, and put Ly = ¢"'Lg. We can
turther identify the above set to (W¢(To)/Wr,(To))*. Write Wy, = W, (To). The conjugation
by T preserves L since L is F-stable. Now, a coset wWi, is t-stable if and only if

(1V.6.2.1.6) wltwr™! € Wy,
and ((wWy,) € 7 if and only if
(1V.6.2.1.7) wltwt™ e,

regarding 7 as a t-conjugacy class of Wr,(Ty). Indeed, if hLF corresponds to wWp, then the
Lf-conjugacy class of h™!T:h = [7'T,l is represented by IF(I)~! = n~'F(n), which is none other
l7w7~! under ad ¢~!. The computation of the w’s is completely combinatorial.

To summarise, once the Green functions have been computed (see the introduction), the
calculation of the character formula goes as follows.

than w™

(i) Describe combinatorially the sets AT/Lf and B;
(ii) Specify a surjection ¢ : AF/LF — B and calculate the fibres of ;
(iii) For each 7 € B and each hL! € 171(¥), evaluate the character O(hsh™).

The summation in the character formula is decomposed into one summation over B and
then one summation over the fibre of 1. We also see that the summation of the h@(s)’s over
each fibre of ( is just permuting the "eigenvalues" of s.

IV.6.2.2  We will change our notations in what follows. Let N and m be some non negative
integers such that 2N + m = n. Write G = GL,(k), and let My be the o-stable standard
Levi subgroup of G isomorphic to GLy,(k) x (k*)?N, then Ng(My.0)/Mp = QBZ%. Let M, =
GLyu(k) X (k*)*N be an F-stable and o-stable Levi factor of some o-stable parabolic subgroup
of G, withw € QB](EI. The GF-conjugacy class of My,.<o>is then parametrised by the conjugacy
class of w, which we denote by 7. Assume that M,, = gMyg~! for some g € (G’)° such that
¢7'F(g) = w is a representative of w. We will take M, for My, w and calculate the induced
function.

1V.6.2.3  Letso € Gf.o be a semi-simple element. Define

A(s0, 7,1, hp) ={h € G | hsah™! € My,.0 is quasi-isolated with Cpy, (hsoh™ 1)
isomorphic to the product of Spy, n +1)(k) X Ohg (k) and a torus}.

Define
Al(sa, T, h1,hp) = {h € A(so, T, i, ha)|F(h) = h}.
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If so is not GF -conjugate into My.o, then Af(so,7) is empty, so we can assume that so lies in
My.0. We will give a combinatorial description of this set.

Write L’ = Cg(s0)°. If K* C L’ is an F-stable Levi subgroup, put K = Cg(Z;,). By
Proposition it is the smallest F-stable and so-stable Levi subgroup of G such that
(KN L")® =K', which is a Levi factor of an so-stable parabolic subgroup, say Q. So Nx(K) N
Ne(Q) = K.<so> Moreover, from Proposition (i), we deduce that so is isolated in
K.<sg>. Define

B(so, T, hy, hy) ={ The L'F-conjugacy classes of the Levi subgroups K’ c L’
isomorphic to the product of Sphl(h1 +1)(k) X Oh§ (k) and a torus

such that K.<so>is Gf-conjugate to M,.<0>.}

In what follows, we fix so, T, i1 and hy, then A(so, 7, hy, hp) and B(so, T, h1, hz) will be denoted
by A and B.

Lemma IV.6.2.1. The map

L:AF/L’F—>B

(IV.6.2.3.1) .
hL™ + the class of Cj-1py,j,(50)°.

is well defined and surjective.

Proof. 1f h € AF, then hsoh™ normalises My, and a parabolic subgroup containing it, so so
normalises 1~ 'Mh and a parabolic subgroup containing it. It follows that K" := CZ—] Mwh(so)
is an F-stable Levi subgroup of L’. We then obtain the Levi subgroup K as above. From the
fact that Cy-1yy j(s0) = h™'Cp, (hsoh™')h and from the assumption on hsoh™!, we deduce that
so € K.<sg>is isolated with centraliser isomorphic to the product of Sp, , ,1,(k) X Ohg (k) and
a torus. Since so is also isolated in ™1 M,,.<o>h, by RemarklII.3.1.8, we have K = h~*Myh, and
so K.<so>= h™'M,,.<0o>h. We see that the L F-class of K’ indeed belongs to B. Obviously this
map factors through the quotient A*/L’F. Given K’ € B with h € GF such that hK.<so>h~! =

My,.<0>, the same argument shows that /1 € AF whence surjectivity. m]

Lemma IV.6.2.2. If hy, hy € A, then hy € Ng(My.0)mL'. In particular,
(Iv.6.2.3.2) A = Ng(My.0).L".
Moreover, if hL'F, hL'F e AFJL'F belong to the same fibre of 1, then hy € Ngr (My.0)h L'F.
Proof. For hy and hy € A, there exists | € L’ such that
W *Myhy N L = 10, Myhy N LT = 15 Mol N L.

By assumption, so is isolated in h;le.<a>h1 and in h; IM,,.<0>hy, and so Remark [[1.3.1.8
implies that h;lehl = Ih;'"Myhol ™. So there exists n € Ng(My) such that h, = nhil. Note
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that nhl belongs to A, for any h € A, n € Ng(My.0) and [ € L’. If moreover h; and h; € AF
belong to the same fibre of ¢, we can choose [ to be in L'F. Note that in this case n is necessarily
F-stable.

Let us determine the set Ng(My,.0). If n normalises My,.0, then it normalises My,.0.My,.0,
so it normalises M. Then, nMy.cn~! = nMyn='no(n™"o € My.0, so no(n™') € M,,. We see
that Ng(My.0) consists of those components of Ng(M,,) that are o-stable. Besides, if hy = nh;l
with n € Ng(My,), then

nhllsal_lhfln_1 = nhlscfhfln_1 € My.0o

implies that no(n)~! € My, i.e. nM,, is a o-stable component of Ng(My). O
Remark IV.6.2.3. For h = nl € AF = (Ng(M,.0)L’), neither n nor [ is necessarily F-stable.

Define M;, = Cjy,(s0)° = (M, N L')°. It is an F-stable Levi subgroup of L” isomorphic to
the product of Spy, ¢, ,1)(k) X SOhg(k) and a torus. Define L” = ¢7'L’¢ = Cg(¢ 's09)° with g

as in and Mj) = g7'M},¢ = Cy (87 508)°.

Corollary IV.6.2.4. We have the bijections

(1V.6.2.3.3) AFJL'F = (NG(My.0) INL (M2)F = (Ng(Mo.0) /N (Mp))Fe.
Remark [[.3.1.9]implies that N~ (M;,) is indeed a subgroup of Ng(My.0).

Proof. If h € A, then there exists | € L’ and n € Ng(My,.0) such that i = nl by Lemma [V.6.2.2
The following map
A/L" — Ng(My.0) /N (M},)

(1V.6.2.3.4)
hL’ +— nNp,(M,).

is well defined and bijective. So AF/LF = (Ng(My.0)/Np (M.,))f. The second bijection is
obvious. O

IV.6.2.4 Let us point out that the identity component of Ng(My.0) is My whereas that of
N+ (Mj) is Mj), so we cannot directly reduce the problem to a purely combinatorial one as in

qIV.6.2.1

Lemma IV.6.2.5. Let n € Ng(My.0) and let v be an Fy-conjugacy class of Np»(Mj)/M. Write
N” = Np»(Mj). Then

(i) The coset nN"" is Fy-stable if and only if

n'wEm)yw' e N”;
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(ii) Under the bijection (V.6.2.3.3), the Fy-stable Levi subgroup h™*M/,h C L lies in the class ¥ if
and only if
n_le(n)w_lM{) €.

Proof. Part (i) is obvious. For part (ii), we write h = nl with n € Ng(My.0) and | € L’. The
L'F-class of the Levi "M/ h = I"''"M/ ] c L’ is given by IF()~! = n~'F(n) € Ny»(L,,), or rather
nale(no)w—l € Np»(Mj), with ng = ¢ Ing. m|

We want to first solve the equations in the above Lemma at the level of Weyl groups.
Denote N := N”".Mj. Itis the union of the connected components of Ng(My.o) that meet L”.

Fact. Each connected component of N”” contains exactly one connected compo-
nent of N”, because an element of the identity component of N” must induce
trivial action on the torus component of the identity component of N”’.

We deduce from this fact an isomorphism N” /M| = N”"/My. We can then regard W :=
WL (M) as a subgroup of Wg(Mp)?, with compatible action of Fy,.

Lemma IV.6.2.6. We keep the notations in the above Lemma and let v be the equivalence class of n
in WG(L())G.

(i) If the coset nN"" is Fy-stable, then

v wow™! e W,

(ii) Under the bijection (1V.6.2.3.3), if the Fy-stable Levi subgroup h™*MJ,h C L’ lies in the class
7, then

v wow™! € v

Proof. Obvious. m]

IV.6.2.5 Foreachv € Wg(Mp)?, we choose a representative v € (G?)°. Once we have solved
the equations of Lemma with the choices of the representatives of the elements
of Wg(Mp)?, the equations in Lemma are reduced to equations for [ € My, if we
express n as vl. However, we do not really need to solve such equations to get the value of
01R¢w (hsoh™), for hL'F corresponding to nN”’. In other words, for the purpose of computing
the characters, solving the combinatorial equations of Lemma suffices. This is
explained as follows.

First of all, by Lang-Steinberg, if v satisfies Lemma (i), then there exists I € M
such that 9l satisfies Lemma (i).

Then we show that the value of the character is independent of such I. Rewriten = 9l as [?
for some different! € My. Leth € Af be an element corresponding to nN”’. Then ¢ 'hsoh™!g =
ng~'sogn~'and song~'sogn!is F,-stable and is isolated in My.<o> We write My = GL,,(k)x
Ty, with T; = (k*)?N and decompose the action of ¢ as (0o, 01) accordingly. We also index the
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direct factors of Ty by theset {1,...,N,—-N,...,—1}. The action of 01 is then (¢, t_;) — (t:}, tz.‘l).
By the definition of A, hsoh™! lies in a given isolated stratum specified by (h1, hy), thus
the direct factor of ng~'sogn=! corresponding to GL,,(g).000 necessarily lies in a prescribed
isolated conjugacy class. So we do not need to know the direct factor of / corresponding to
GL, (k). Let t; be the direct factor of  corresponding to T1. Replacing t; by some other t; € T4
amounts to multiplying nson~t by an element of the form (x1,...,xn, XN, ..., x1) within the
factor Tq.01. It is necessarily F,-stable. We can check that the value of a ¢;-stable linear
character of Tf “ is always equal to 1 at an Fy-stable element of this form.

Given v € Wg(Mp)?, which determines n and thus /i, we can compute 6;R¢pw(hsoh™1v)
following the procedure below. We first find some ¢ € Ty, such that the conjugation of the
factor of n g‘lscfgn‘1 in Ty.01 by t is Fy-stable, then combine this with the prescribed isolated
conjugacy class in GL,,(g).000 to form an element of Mgw.a, finally evaluate the character at
this element.

IV.6.2.6  Finally, we give a formula of the cardinality of the inverse image of the fibre of ¢
in AF.

Leth € AF be such that (hL'F) € 7. By Lemma|lV.6.2.2, we need to calculate the cardinality
of the double coset Ngr(My.0)hL'F. An element of hL Fh~! = Cg(hsoh™)°F normalises My,.0 =
My,.hsoh™! if and only if it normalises My, if and only if it normalises Cpy, (hsoh™1)° as hsoh™
is isolated in M,.<0>, so

Ngr(My.0) NV hLFh™ = Ny g1 (Cag, (soh™1)°).

The identity component of Nj;/,-1(Ca,, (hsoh™1)°) is Cag, (hsoh™!)° as this is a Levi subgroup.
The hL'Fh~'-conjugacy class of Ca,(hsoh™')°
which is 7. We have

corresponds to the L*-class of Cr1p, 1 (80)°,

INGe (My.0)hLF| = ILF|INGr (M) [Ny 71 (Coa, (Bsah ™))L
Since Ng(My.0)/My = Wg(My)° and (Wg(My,)?, F) = (Wg(Mo)?, Fy), we have
INGr (My-0)| = IM|2a,
where z,, is the cardinality of the centraliser of w in W¢(My)° = ﬂng. Similarly,
N1 (Caty, (hsoh™)°)| = |C, (hsoh™)F |z,

where z, is the cardinality of the centraliser of v in W, (M)

With respect to the decomposition M,, = Ty X GL,,(k), we write 0 = (01,000), and the
action of hsah™! on M, is decomposed as (l101,lpoo) with I; € Ty, and Iy € GL;,(k). The
action of F on the orthogonal group factor of Cay, (hsah™!)° is compatible with the action of
F on Cy-1py,4(s0)°, which is an F-stable Levi subgroup of L', and so only depends on the
GF-conjugacy class of so and 7. Explicitly, if we write Cg(s0)° as the direct product of SO, (k)
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and some symplectic groups and general linear groups, then Cg(so)°f is isomorphic to the
direct product of SO,() and groups of other types, where 7 is the value of so under the
map ([V22.2.2). We can write the Levi subgroup Cy-1p,4(s0)° as the direct product of Ls,
and some other groups, with L, = SOhg (k) X T, being an F-stable Levi subgroup of SO, (k),
where vy, is the direct factor of v € Wy, (M;,) corresponding to SO,/ (k) and T, is the thereby
determined torus. Let sgn : WE — {+1)} be the map whose kernel is WP . Then we have

Coy (hsoh™)F = C5. (o))" X Spy, ,41)(@) X soZ;g“W(q).

Besides, Cj. (l01)" = C3. (01) =: T.F.

Remark IV.6.2.7. The above calculation shows that if n is odd, then the cardinality of
Ci-1m,1(50)°F, which a priori depends on v, in fact only depends on w. In the case of
connected groups, this is trivial as (h~!M,,h)f = ML,

Proposition IV.6.2.8. If Cj-15 ,(s0)° C L’ lies in the class of v, then we have

NG o)L | = LT IMGITE 1Sy g,y @150, @) 202,

where 1 is determined by the GF-class of so. In particular, if by = 0 and hy = 0 or 1, and so My, is a
maximal torus of G, we have

(1V.6.2.6.1) INE(My.0)hLF| = ILFIMENITS | 2.2,
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Chapter V

E-polynomial of
GL;(C) x<o>Character Varieties

Exceptin we only compute the E-polynomials of the GL,,(C)><o>character varieties
for n odd. We will write n = 2N + 1. We expect that the case for n even can be similarly
tackled, but involves Green functions associated to complex reflections groups G(2,2,m),
m € Z~1 ([Sh02]). This will be done elsewhere.

We will compute the E-polynomial of the character variety over complex numbers

g 2k

2k
(V.0.0.0.1) Chg = Repy//GLy, = {(A;, B) X (X;) € GLIE x H G| H(Al-, B) H X;j = 1}//GL,
j=1 i=1 =1

where C; C GL,, .0 is a GL;-conjugacy class for any j. We assume that the tuple of conjugacy
class C = (C)) is generic (§[I1.4.2.5) and that for every j, C; has no "eigenvalue" equal to i. The
second assumption is only needed in Lemma As is explained in the introduction,
the problem is translated into counting points over finite fields. The first step is to give
an R-model of the character variety, with R C C being some finitely generated ring. We
then give a point-counting formula in terms of the irreducible characters of GL,(g) > <o>.
By decomposing the irreducible characters into Deligne-Lusztig characters, this formula
becomes a purely combinatorial one involving Green functions of finite classical groups.
Using the results of Shoji [Sh01], we are able to express the final formula in terms of the inner
product of two symmetric functions, with one of them only depending on the Riemann
surface, and the other one only on the prescribed conjugacy classes at the punctures.

127
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V.1 The Point-Counting Formula

V.1.1 The R-Model

V.1.1.1  Write G = GL,, G = GL, »<0>. For each j, the conjugacy class C; is represented by
some N-tuple of complex numbers (cf. Notation[[V.2.1.1)

- : . j j j
Al = [1,...,1,1,...,1,111,...,al,...,amj,...,am 1,
with aZ ¢ {ag, (ug)‘l,—ag,—(ag)‘l} for any r # s, (111)2 # *1 for any r. Define an unordered
sequence of positive integers u/ = p’ ! (y? ) in such a way that 1 has multiplicity y}, i has
multiplicity y]_ and a? has multiplicity y{. We have N = [J_i +pl +Y; yf. We denote y{ = (y{ )
and m; = l(y{), the length of the sequence. We will call p/ the type of C;.
Denote by Rg the subring of C generated by {(al]‘)ir1 | alli, j} (together with i if some
y]_ > 0). For any subtuple B/ C A/ and any |B/|-tuple of signs e/ = (efz)aeB,', el € {+1}, we write
[B/ lei =11 ueB]-(aE;)z. Let S C Rg be the multiplicative subset generated by

) (a{.l)2 - (aj.2)2 and (aj.])2 - (agz)—2 for all jand i1 # ia;
(ii) (a))* -1 forall jand i;

(iii) For every integer M, 1 < M < N, the elements 1 — [B'],: - - - [B*],» with each [B/]
running over all M-subtuples of A/, and each e/ running over all M-tuples of signs.

Define the ring of generic eigenvalues as R = S'R(. Then the character variety is defined
over R. For any field k and a homomorphism of rings ¢ : R — k, the homomorphism
¢ : R = k < k defines a 2k-tuple of semisimple conjugacy classes (in GL,(k).<0>) of the
same types, with "eigenvalues" (Remark (p(ug ) (resp. 1 and i, which is a choice of the
square root of —1 in k) of multiplicity ‘u? (resp ‘ui and ‘u]; ) in the corresponding conjugacy
class. The 2k-tuple of conjugacy classes thus obtained is denoted by C? = (C;P, ey C(Zpk). Note
that if = 3 mod 4 and there is some y” > 0, then there is no homomorphism ¢ : R — IF,.

V.1.1.2  LetAybe the polynomial ring over R with n%(2g+2k) indeterminates corresponding
to the entries of n Xn matrices A1, By, ... Ag, Bg, X1, ... Xpr, with det A;, det B;, det X;, 1 <i < g,
1 < j < 2k, inverted. Denote by (A, B) the commutator of matrices A and B. Let Iy C A be
the ideal generated by

(i) The entries of (A1, B1)---(Ag, Bg)X10- - Xor0 — Id (Note that X10X>0 = X10(X2) and o
is defined over Z);

(ii) For all 1 < j < 2k, the entries of

(Xjo(X))? —1d)(X;0(X;) - (@2 1d)(X0(X;) — (@) 21d) - -

(V.1.1.2.1) ‘ .
(Xj0(X)) = (@), P 1A)(Xj0(X;) - (a),) 2 1d);
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(iii) For all 1 < j < 2k, the entries of the coefficients of the following polynomial in an
auxiliary variable t:

(V.1.1.22) det(t1d -Xjo(X,)) - (t = )™ (t + )™ | [t - @),

Denote A = Ay/ VIp. If we write C? := {x? | x € Cjl, then C; C G.o is semi-simple if and
only if CJZ. is semi-simple and by the map C; — CJZ. is an injection from the semi-
simple classes in G.o to those in G. Therefore (ii) and (iii) guarantees that the base change
to C recovers the complex representation variety with the correct conjugacy classes. Then
Rep,. := Spec A is the R-model of Rep, and Chg := Spec AR is the R-model of Ch, since
taking invariants commutes with flat base change.

V.1.1.3  Let¢: R — F, be any ring homomorphism and let ¢ : R — T, be the extension to

¢ ¢
ce co

obtained by base change from Rep,. And sir_nilarly for Che. The variety Repi(z)(ll_:q) is defined
by the same equation as[V.0.0.0.1} but over IF;, and then

the algebraic closure. Denoteby Rep ", and Rep” . be the varieties over IF, and IF, respectively

2k g 2k
(V1131)  Repl,(Fy) = {(A;, B) x (X)) € GLu(g) x | [ 7 I [ [ (4 BY [ [ X =11
j=1 i=1 i=1

Remark V.1.1.1. One should not confuse C? with the conjugacy classes of finite groups. Here
we really consider varieties over F, whose base changes to I, give C?. Note that for any j,
we have C;{)(]Fq) = C;P(qu)F , which is a union of two conjugacy classes contained in GL,(g).0.
We denote these two classes by C; . and C; . The class C; ;. has a representative of the form

(V.1.1.3.2) diag(xy, x2, ..., xn, 1,xy, .., %5 a7,
with every x; € IF;, while C; is represented by
(V1133) diag(xL X2,...,%XN,C, xifll ey xgll xl_l)al

with ¢ € F; \ (IF;)*.

Notation V.1.1.2. For a given 2k-tuple C? = (Cj)) of semi-simple conjugacy classes in
GL,(F,).0 and a 2k-tuple of signs e = (¢j), we will denote by Ce = (Cj¢;) the 2k-tuple of
GLx(g)-conjugacy classes contained in it. Denote & = [];¢; and sgnC. = & We may write
sgnC = sgn C, if C is a tuple of conjugacy classes of the form Ce.

In the following Proposition, we fix the conjugacy classes and omit the script C.
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Proposition V.1.1.3. We have the following formula.

(V.1.1.3.4) | Ch?(FF,)| = ﬁIRep‘b(Fq)l.
q

Proof. By [Se77, 11, Theorem 3], there is a natural bijection
(V.1.1.3.5) Ch?(F,) = (Rep®/G?)(E,).

Since C? is generic, each element of Rep‘z’(ll_:q) is an irreducible GL, (IF;) <o>representation,
by Proposition [[I1.4.2.7, By Proposition [[1.5.4.1] irreducible representations have finite
stabilisers, thus every GLn(IFq) -orbit is closed. We then have a natural bijection of sets

(Rep¢//G¢)(]Fq) oy Rep¢( )/G(]Fq) Therefore,
(V.1.1.3.6) Ch?(F,) = Ch‘P(IFq)F (Rep? () /G(E,))".

Since G is connected, each F-stable G(]Fq)-orbit in Rep‘z’(ll_:q) must contain some F-stable point.
We will prove that the number of F-stable points in each such orbit is exactly |G(IF,)|.

Let O be an F-stable G(IF,)-orbit in Rep‘f’(]Fq), then OF splits into some G(IF;)-orbits ac-
cording to the stabliliser in G of some F-stable point, say x € Of. By Proposition the
stabiliser is a finite abelian group H := []; p. The number of G(IF;)-orbits in Of is equal to
the number of F-conjugacy classes in H.

Since H is abelian, each F-conjugacy class of it is of the form {hohE(h)™ | h € H)} for some
ho € H. Again because H is abelian, the map i +— hF(h)~! is a group homomorphism, with
kernel K = {h € H | F(h) = h}. Denote by I the image of this homomorphism. Then the
F-conjugacy classes in H are the cosets hyl, therefore there are |H|/|I| = |K| of them.

That is, the number of G(IF;)-orbits in O is |K|. On the other hand, x has K as stabiliser in
G(F,), so the cardinality of the G(IF,)-orbit containing x is |G(F,)|/|K|. If for some g € G(IF,),
¢.x is an F-stable point contained in another G(IF;)-orbit, then its stabiliser in G(IF,) is just
gKg¢™1. Indeed, we have g~'F(g) € Stabg(x) = H, thus for any k € K,

(V.1.1.3.7) F(gkg™") = F(QkF(3)™" = g(g ' F(Q)k(F()'9)g~" = gkg™"

Thus all G(IF;)-orbits in O have cardinality |G(IF;)|/|K|. We conclude that |O(IF,)| = |G(IF,)|,
which is independent of O. Therefore,

(V.1.1.3.8) |Ch (q)|— | Rep®(IFy)I.
( q)l
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V.1.2 The Counting Formula

V.1.21  We denote for the moment by G and G the corresponding finite groups G(IF,) and
G(F,), and by C an arbitrary 2k-tuple of G-conjugacy classes contained in G \ G. We will
show the following counting formula,

#{(AllBll' o ,Ag,Bg,Xl,' : '/XZk) € ng X Cl e X C2k|

(A1,B1) -+ (Ag, B) Xy - - - Xop = 1d}
(V12.1.1) e

IGl \28-2 17 ICil¥(C))
=Gl Z (m) H Y@

Xxelrr(G)°® i=1

In this expression, Irr(G)° is the set of o-stable irreducible characters of G, and we choose
for each x € Irr(G)’ an extension to G, denoted by . The two possible extensions of a
given irreducible character differ by —1 on G \ G, and consequently the value of the counting
formula is independent of these choices due to the product of 2k terms.

V.1.2.2  Let us prepare some notations of finite groups.

Let H be a finite group. Denote by C(H) the vector space of complex class functions
on H. Put H = Irr(H). Denote by C(H) the vector space of linear combinations }, vef1 AxX
of irreducible characters, which is the same as C(H) but will be equipped with a different
product operation.

The convolution product * in C(H) is defined by

(V.1.22.1) (h )@ =Y L@, fi f2 € CH).

yz=x
The dot product - in C(H) is defined by
(V1222) Fi - F2(x) = Fi(0F2(0),  F, F2 € C(H),

i.e. the coefficient of x in the product is the product of coefficients of y.
The Fourier transform ¥ : C(H) — C(H) is defined by

f(h)x(h)
x(1)

(V.1.2.2.3) FHXO =), . feCH).

heH

We also have the transform IF : C(H) — C(H) defined by

(V.1.2.2.4) F(F)(n) = ) FO)x()x().
xel
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We have
(V.1.2.2.5) Fo¥ =H|-Idew), F oF=IH|-Idgp,
They are also compatible with the product operations:

(V.1.2.2.6) F(f1)-F(f)=F(fi=f2), FEF)=FF)=|H|-FF - F).

V.1.23 FromFo ¥ = |H|-Id¢@s) and the definition of the transforms, we deduce that

(V123.1) f1) = 7 Y PT(00

xeH

for any class function f.
Now we put H = G. We define the function n8 : G — C by

(V.1.2.3.2) nS(x) = #{(A1, By, -+ , Ag, By) € G| H(Ai, B)) = x.

We find that n8 € C(G)(identically zero on G \ G) and that n¢ = nl+---+nl. Denote by 1, the
characteristic function of the class C;. Then

#{(A1, By, -+, Ag,Bg, Xi,+++, Xop) € G x Cy x -+ x Corl [ J(As, B) [ | X = 1)
(V.1.2.3.3) i j
:(ng % 1C1 $oee ek 1C2k)(1)'

By (V.1.2.2.6) and (V.1.2.3.1), we have

(n8+1c, *---21c,)(1)

V.1.2.34 :
( ) 55 L, x<1>2<¢<n1><x>>gn S |;((g: )
X€lrr(G)

It is known ([HLR, Lemma 3.1.3]) that

Gl
(V.1.2.3.5) F(n")(x) = ( (1))
Finally,
G L, PTG H = 'X(C)

XEIrr(G)

-2 2k -
Jo Y ( Lel )2“ 2T ICil7(C)
xelrr(G)° X(l) i=1 X(l)

(V.1.2.3.6)
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V.2 Symmetric Functions Associated to Wreath Products

This is a reminder of some results of [ShO1]. Some lemmas are proved that will be used
later. We will freely use the notions and notations in §I1.2.1) and §II.2.2l The letter g will
primarily denote an indeterminate, but can appear as a prime power in a finite group of Lie

type.

V.2.1 Ring of Symmetric Functions

V211 Fork=0and1, let x® = (xgk),xék), -++) be an infinite series of variables. Denote
by x = (x9,x(M) all of the variables. For any commutative ring with unity R, denote by
Sym[x?, x(D] the ring of symmetric functions in two variables (symmetric in each xV) with
coefficents in R. We will always assume that Q is contained in R. The usual choice of R
will be the fields Q, Q(g) and Q(g, t), i.e. the functions fields in variables g and t. If the base
tield is Q(g,t), then we may write Squ,t[x(o), xM] for the corresponding ring of symmetric
functions, and similarly for Q(g). We will omit the lower script R if there is no confusion
with the base. For any r > 1, put

P00 = px) + px),

(V2.1.11)
P = p ) = pr ),

where p,(x¥) is the usual power sum in x¥. Put pg{)(x) = 1 for both values of k. For a
2-partition A = (A®, A1), with each partition A® written as A" > A% > ... the power sum
in x is defined by

(V.2.1.1.2) pa(x) = H %)(x) Hp;{)(x).
i i

The Schur function is defined by

(V2.1.1.3) s2(0) := 5,0 (x50 (x1),

the monomial symmetric function is defined by

(V:2.1.14) ma(x) = myo (<)o (<),

and the complete symmetric function is defined by

(V2.1.15) ha(x) = hyo (xXO)h0 (x1),

where 5,6 (x®), m,0(x0), hu(xM) are the usual Schur functions, monomial symmetric
functions and complete symmetric functions. The usual results on Sym[z] implies that
each class of these functions, with A running through all 2-partitions, forms a basis of
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Sym[x(o), xD1.

V.2.1.2  There is a family of symmetric functions g, ®x; q) € Sym,[x x9,xM], k=0,1,7r>0
with the generating series

I (1 - qux(,l))
Dx, u" = ———2,
ZMI X, q)u Hj(l —uxﬁo))
111 - )

Hj (1 - uxi.l)) '

(V.2.1.2.1)

Z g g’ =

For any 2-partition & = (a9, a(V), we define

(V.2.1.2.2) Ga(x;4) = Hq 0 x54) Hq (x9).

Then {74(x; )} 42 forms a basis of Squ[x(o), x],

V.2.1.3  Given some positive integers myg, m, and some integers r > s > 0, let A = (A, A1)
be the 2-partition defined by

Ng:(mog—=1Dr=---22r>r>0,
(V.2.1.3.1)
Ap:(m—1)r+s>---22r+s>r+s>s.

For any 2-partition &, define A(a) := a + A°, with mg and m; larger than the size of a; we
call it the symbol of type (r,s) associated to &. The correct definition of symbols (see for
example [Sh01, §1.2]) is actually an equivalence class of the data described above, which
is independent of the choice of my and m;, but it is convenient to work with a particular
representative of the equivalence class. The size of A(a) is defined to be the size of a. If ¢ is
tixed, we may simply write A = A(a).

For any symbol A of type (,s), by choosing a representative, we define the function

(V.2.1.3.2) a(A) = Z min(A, 1) Z min(y, 1),

ALAEA L e

where the sums run over the entries of the corresponding symbols, and in the first sum we
require that A # A’ if they are contained in A® for some k. (Note that A = A’ in some A® only
if r = 0. We are however only interested in the case r = 2.) The value is independent of the
representative of a symbol and is constant on the similarity classes of symbols. For symbols
of size n of type (2, 1) (resp. (2,0)), each symbol A corresponds to a unipotent conjugacy class
of Sp,,,(q) (resp. SO2;,41(q), in which case there are 2 conjugacy classes corresponding to a
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degenerate symbol). If we denote by u an element of this conjugacy class, then a(A) is equal
to dim B, where 8, is the Springer fiber over u. We may write a(a) := a(A(a)). We will
tixe once and for all a total order < on #,(2) in such a way that a(a) < a(f) whenever < a
and that each similarity class (transferred from symbols) forms an interval. In particular, the
element (@, (1")) corresponding to the the identity of the finite classical group, is minimal,
and it is alone in its similarity class.

We have the function defined on the set of partitions: n(A) := ) ;(i — 1)A;, for A = (A1 >
Az > ---). This function is the analogue of a(—) for partitions.

V.2.1.4  Denote by A C Q(g) the subring of functions that are regular at g = 0.

Theorem V.2.1.1 ([ShO1] Theorem 4.4). For any A = A(a), there exists a unique function
Pa(x;q) € Sym, [x©, xM] satisfying the following properties.

i) PA(x;q) can be expressed as

(V2.14.1) PA(x;q) = Z Cap(D)9p06 ),
B

where ¢, 5(9) € Q(q) and cq p(q) = 0 unless B > aor B ~ a.

ii) Pa(X; q) can be expressed as

(V2.1.42) PAGG) = 5a(X) + ) ttap(g)5p(0),
7

where uy5(q) € qA and 1, g(q) = 0 unless B < a or B + a.
Similarly, for any A, there exists a unique function Qa(x; q) satisfying the following properties.

ii) QA(x;q) can be expressed as

(V2.14.3) QA0S ) = 4a06 ) + ) dap@ap3 ),
F

where dy (9) € Q(q) and da p(q) = 0 unless B > aou f + a.

ii) Qa(x;t) can be expressed as

(V2.1.4.4) QaGG9) = ) Wap(@)sp(x),
B

where wap(q) € A and wag(q) = 0 unless B < a or B ~ a. Moreover, wap(q) € gA if B # a, and
Wa,a(q) € A™.

The functions P(x; q) and Qa(x; q) are called Hall-Littlewood functions. Each of these two
families of functions also forms a basis of Squ[x(o),x(l)]. Note that the functions P (x; q)
and Q5 (x; q) defined for more general complex reflection groups degenerate into Pa(x; ) and
Qa(x; q) for Weyl groups of classical groups.
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V.2.2 Transition Matrices

V.2.2.1  Forany partition A = (1,2, ...), define zy = [];i"m;!. WriteAas (A; > Ay > ---)
and define z,(q) = z, [[;(1 —q)\i)‘l. For any 2-partition A = (AD, A, define z; = ZI(A)Z/\(O)Z/\(D.
For k = 0 and 1, we write A®) = (/\(lk) > /\(Zk) >...> AW ))), and define

1A
20\
zyo(q) = H(l —q7 ) ’
j
V2.2.1.1 my~1
( ) ZAa)(q) — H(1 + qAJ ) ,
j

zA(9) = zaz 0 (9)z 0 (q)-

Note that z;(0) = z;,.

V.2.2.2  We have,

PpO) = ) X salx);

aEPmQ

(V2.22.1) X
sa(x) = Z Z—TXQ pr(x),

where % is the value of the character of (Z/2Z)" < S, (m = |a| = |B]) of class & at an element
of class .

V.2.2.3  The Kostka-Foulkes polynomials are the entries of the transition matrix

(V223.1) 5600 = ) Kp.al@)PA@(69),

and the modified Kostka-Foulkes polynomials are defined by Kg4(q) = ¢"™Kgo(q7"), with A =
Aa).
The Green function is then defined by

(V.2.2.3.2) Q@ =Y XhKya0).
Y

V.2.2.4  The transformed Hall-Littlewood function is defined by

(V.2.2.4.1) Hp@w(xq) = Z Kg a(7)sp(x),
B
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and the modified Hall-Littlewood function is defined by

(V.2.24.2) Anw®9) = ) Rpa(@)spX).
B

V.2.3 Orthogonality

V.2.3.1 Plethysm Let K be a base field, which will be Q, Q(g) or Q(g,t) depending on the
circumstance. Let R be a A-ring containing KK, then the ring Symg[z] of symmetric functions
over R has a natural A-ring structure {p,},ez., with p, sending pi(z) to p,(z) and acting
on the coefficients according to the A-ring structure of R. If we take R = Symy[x(?], then
Symg[xV] = Symy [x©,xV] acquires a natural A-ring structure, and p, sends p1(x?) to
pn(xY) and sends p;(xV) to p,(xV). If K contains the indeterminates g or t, then p, sends
them to the n’th power. By abuse of notation, we will write x* = p; (x®).

Let A be a A-ring containg K as a A-subring. Given any elements fy and f; of A,
there is a unique A-ring homomorphism ¢,  : Symy [x©,xV] - A sending x© to f; and
xD to f1. For any F € Sym]K[x(O),x(l)], its image under this map is denoted by F[fo, f1].
Concretely, by expressing F as a polynomial f(p,(x?), p,,(xV) | n,m € Zs0), one defines
Flfo, il = f(pn(fo), pm(f1) | n,m € Zp). This is the plethystic substitution for F. For
example, if F = s,(x(?) is the usual Schur symmetric function in x) for some partition a, and
A= SymIK[x(O), xD], then F[xM, xO] = 5, (xM).

V.2.3.2  The Hall inner product on Symy[z] is defined by

(V.2.3.2.1) PA(2), pu(2)) = 2204 1,

for all partitions A and u. Define the symmetric function

1
(V.2.3.2.2) H(z,q) = H 0

Let {u)}1ep and {v)}1ep be two families of symmetric functions such that for any n € Z.,
{uptrep, and {v)}1ep, are K-basis of the subspace of Symy[z] of homogenous degree n. Then
the following conditions are equivalent:

o (uy,vy) =0p, forall A, y;
e 2 ua(x)ualy) = H(xy, 1).

It follows that,

(V.2.3.2.3) (81(2),5u(2)) = O -
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Put
(V2.3.2.4) Q(xy, q) = 1= gy
7 1 _ xjyj V4
then

Q(xy, q) = Hixy, DH(xy,9)"",
and in particular Q(xy, 0) = H(xy, 1). We deduce that

(V.2.3.2.5) Q[(1 - g)xy, 0] = HI(1 - g)xy, 1] = H(xy, DH(xy,§) ™" = Q(xy, 9).
V.2.3.3  The Hall inner product on Symy [x(?, x(V] is defined by

(V.2.3.3.1) (Pa(x),pp(X)) = zabap,

for any 2-partitions & and .
The g-inner product on Symy [x?, x(V] is defined by

(V.2.3.3.2) (Pa(), pp(¥))g = 2a(q)0ap,

for all 2-partitions & and .
Define

1- gy Xy

1-q
O 1) O o) .
(V.2.3.3.3) QX y Py 1:[ <0) 0) H (1) (1)

=H(x© (0),1)H(x (0), )H(x(l) (1),1)H(x(0) ) ,4).

Note that Q(x©, xD, y ),yD,0) = QO y(o),O)Q(x(l) y(l),O). We have

(V.2.3.3.4) OO, x,y0,y0,g) = Y 24(0) " palpaly)
acP?

In particular,

smWNWWWm:Za%mmw

23

QK xD,y0,y,0) = }" sa(x)sa(y),

o

(V.2.3.3.5)

where the second equality follows from the usual identity for parititions. Thus the Schur
functions are orthonormal with respect to the Hall inner product. We will write

O, xM,y?,y1, g) = Q(x,y, q)



V.2. SYMMETRIC FUNCTIONS ASSOCIATED TO WREATH PRODUCTS 139
if no confusion arises.

V.2.3.4 We have

(V2.34.1) (PA(; ), Qa (X 9))g = OA,n’
where A = A(a) and A’ = A(a’), for all 2-partitions & and a’. This follows from:

Theorem V.2.3.1. ([ISh01l] Corollary 4.6) We keep the notations above. There exists a block diagonal
matrix by a(q), with each block corresponding to a similarity class, such that

Oy, 9) = ) baa @PACG Q)P (y;9),

(V2.3.4.2) AN

QK y,9) = ) PAGG )QA(Y; 9)-
A

Remark V.2.3.2. If A = A(a) with & = (@,(1™)) being the minimal element, then it is alone
in its similarity class, so we can write ba(q) = bp a’(9). Then

QA(x;9) = ba(q)Pa(x; ).

We may also write b, (g) = ba(g) for such a.

V.2.3.5 From the definition of the transformed Hall-Littlewood functions and the orthog-
onality of the Schur functions(V.2.3.3.5), we see that

(V2.3.5.1) O(x,y,0) = Y PGS HA(Y; 9).
A
In the following lemma, we write the variables of u(x,q) € SymH([x(O), xM] as an array:

X0
(V.2.3.5.2) u([xm] ,9)-

Then the expression

a b\ [x? O 15 xD xO 475D
(V.2.3.5.3) u( R Y ,q) = uflax™ +bx", cx™ +dx\, q],

is the plethystic substitution by fy = ax© +bx) and f; = ¢x©@ +dx1.
Lemma V.2.3.3. We have:
N0 (1 =g \[x©
(a) QA([X(D] /Q) = HA(( _ 1 )[xa)]ﬂ)

q
forany A;
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—5 \ kO 3
(b) hm(( _1q ! ) [im]) = (1)@ b, (7)) Hp e (%; )
for a = (2,(1M)).

Proof. To prove (a), we show that the right hand side gives a dual basis of {PA(x;q)}. We
calculate,

Y Patc DHALY® -y, y —qy,g]
A

QO XD, yO gy v 440 o)

=0y =y ™), 00y —y®),0)
=HO(y® —qy"), DHD (" -y ), 1)

=H(x© y(O), 1HxO y(l)l 7) H(x®D y(l), DHxWY y(O), 7)
=Q(x,y, 9).

To prove (b), note that H(x; ) = q”("‘)I:IA(x; g!) and Qa(x;q) = ba(q)Pa(x; q) for A = A(a)
with a = (@, (1™)). We calculate

(~1)"g~ @b, () AN (K q)

—m 1 1 —q‘l B xO7
=(—q)"balg 1) 1QA(( _q_l 1 ) [X(D]/q 1)

— 1 =g\
oo o ) Ll

m 1\ [XO
o 3 TV

“m —q 1 X(O)
s (1 o)

@

e

- :qqz (O +gxD))
X0 1 xV

(—=g)"sm)(

:S(m)(

1
-1
_ 1 —q) [x©
—h((m>,@)(( g1 ) [X(l) )-

In equality @ we have used the second statement about Pa in Theorem and in
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equality @ s(my denotes the usual Schur function in one variable. O

V.2.4 More on Green Functions

V.24.1 The modified Kostka-Foulkes polynomials are completely determined as the en-
tries of the matrix P in the following matrix equation,

(V.2.4.1.1) PITP = &,

where IT, P and E are some square matrices of degree |#;(2)|. The matrix E is determined by
the inner products of Green functions, which are known. The matrix IT is a block diagonal
matrix with nonsingular blocks. The matrix P is a lower triangular block matrix with each
diagonal block being the scalar q”(“), with a € P, (2).

V.24.2  Let b(g) be the matrix (bp A’(9)) defined above. Denote by G;(g) the cardinality of

Sp,,,(9) or SO2;,41(q). Define

. G
f = Sty gy,
q
where T is a diagonal matrix with entries g¢“®. By [ShOT, Theorem 5.4], P = K(g) and the IT
above satisfy (V.2.4.1.).

Remark V.2.4.1. [Sh01, Theorem 5.4] states that these matrices satisfy [Sh01, (1.5.2)], which
is equivalent to [Sh01, (1.4.2)] for Coxeter groups, since then the complex conjugate of an
irreducible character coincides with itself.

Fact. [Ty o = 1if A = A(@) and a = (9, (1")) is the minimal element.

For such & and A, we deduce that

1
V2421 — =g 2@y (g=1)1
( ) & " (47
For GL,(g), it is known that

1 _2 ny_ I
V.2.42.2 = g 2@np a1y
A GL.@ " ()

where for any partition A, by(q) is defined by by(9)PA(x,q) = Qa(x,q), i.e. the difference
between the two Hall-Littlewood symmetric functions associated to the partition A.
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V.3 Miscellany of Combinatorics

V3.1 Types

V.3.1.1  Proposition[V.I.1.3]and (V.1.2.1.1) have reduced the point-counting problem to the
evaluation of the following formula (cf. Notation|[V.1.1.2)

2k g
IG| \25-2 71 ICilX(Cje;)
V.3.1.1.1 E z Ll | | ‘
( ) = 2k 5 (X(l)) i X(l)
e=(ej)e(£} X€lrr(G) =1

The sum over Irr(G)? can be separated into a sum over T, the types of o-stable irreducible
characters and a sum over the o-stable irreducible characters of the same type. It turns out
that for a strictly generic (cf. tuple of conjugacy classes C = (C;), only a small subset
of T, can have irreducible characters that are non-vanishing on all of the C;’s.

Lemma V.3.1.1. Let (Cy,...,Cyx) be a strictly generic tuple of semi-simple conjugacy classes in
GLy(q).0. Assume that for each 1 < j < 2k, the class C; has a representative sjo of the form
or of the form (V1.1.3.3). Let M be a o-stable and F-stable Levi factor of some o-stable
parabolic subgroup of GL,(k), and denote by no(n;, d;)ien, (nlf,,dlf,)ire,\z the data that determines the

SO, (q)-conjugacy class of (M?)° (cf. Proposition|l1.3.2.4). If for all j, there exists hj € GLy(q) such
that hjsjathl € Mo, thend; = 1, for all i, and A\ = @.

Proof. We may assume that every s;o is of the form (V.1.1.3.2). More general cases only
require minor modifications of the arguments.

Denote by T € GL, the maximal torus of diagonal matrices. There is some o-stable stan-
dard Levi subgroup L;, an element g € (G°)°, and @ = ¢~'F(g) such that (M, F) is isomorphic
to (Ly, Fy) via ad g. Suppose that such ;’s exist. For any j, g7'h;js jathl g is an element of L1.0.
By Proposition|l.3.1.2} for each j, there exists j € Ly such that 1;g™ ks jah]T1 gl}Tl lies in (T7)°0,
and moreover, for each j, there exists w; € W’ (W being the Weyl group of GL,, defined by
T) and z; € (T°)° N [T, o] such that

l]-g_lPL]-s]-crlz]Tlgl]T1 = w]-sjw]flzja.
Now put (See for the map Dr,)
2k 2k
(V3.1.1.2) l:= DL,(H(g—lhjsjo-h;l 2)?) = DL,(H wjstw:"),
j= j=
which lies in
K x H(k* x k)% H (k" x kY%

iEA] 7 ey

By the assumption of generic conjugacy classes (I11.4.2.5.2) and the right hand side of
(V.3.1.1.2), the direct factors of I must be pairwise distinct. However, the left hand side of
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shows that  is an F-stable element and the right hand side shows that the direct
factors all belong to IF;, which is a contradiction if any of the numbers d; or d:" are larger than
1. Finally, if there was some dl’., = 1, then this factor of I must be equal to —1. This possibility
is ruled out by the assumption (I11.4.2.5.3). ]

V.3.1.2  Since only those characters that are uniform on GL,, .0 can have non trivial value at
a semi-simple class (see Remark|[[V.6.1.3), the only remaining types for irreducible characters
are, up to a formal sign € € {+}, of the form

w = wiw—_(w;)1<i<l,

where w; and w- are 2-partitions, (w;) is an unordered sequence of nontrivial partitions,
and [ is a non negative integer. The sign € decides whether the non trivial 2-core (1) is
associated to w4 (if € = +) or to w- (if otherwise). We will write these data in the compact
form ew. We will sometimes denote by w, the sequence of partitions (w;) in a type w, so that
@ = wy@-wy. Then I will be called the length of w,, denoted by /(wy). The size of a type is
lw| == |wi| + lw-]| + X lwil.

The following data are the types of conjugacy classes that we are interested in:

B = B+B-(Bi)r<i,

where (;) is an unordered sequence of nontrivial partitions, and . are symbols correspond-
ing to some irreducible characters of W, | under the Springer correspondence (thus we may
also use some 2-partitions to represent them). Again, we write , = (8;) and call [(8,) := [ the
length of B,. The type of a semi-simple conjugacy class is of the form

B = (2, (1))@, X" )NA™))i

where m, = |B4|, m_ = |p-| and m; = |B;]. Since the conjugacy classes we are interested in
are obtained by base change from the ring R (cf. §V.1.1.1) to IF, the only possible types of
semi-simple conjugacy classes are of this form. We define its dual type by

B = ((my), @)((m-), 2)((m));-

There is an obvious bijection from the set of types of characters (without €) to the set
of types of conjugacy classes as defined above. We will denote the set of either types by
T, and for any w € T we denote by A(w) = A(w+)A(w-)(w;) the corresponding types of
conjugacy classes. The subset {w € T | w+ = w- = @} will be denoted by ¥’. Denote by T
the set of ordered types, i.e. the data w,w_(w;) with (w;) being an ordered sequence. There
is an obvious map from T to ¥, therefore anything that can be defined for elements of T
is naturally defined for elements of T. Given a = aya_(aih<i<y, P = B+P-(Bi)i<i<i, € T, we
write o = f,if [; = I, = I and for each 1 < i < [, we have |o;| = |f;|, and moreover |a,| = |B4]
and |a_| = |B—|.
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Let us define a natural map
(V.3.1.2.1) [1: T — P2

Regarding #? as signed partitions, it sends each part of w; to a positively signed part with
the same size, and keeps the sign and size of each part of w; and w-. The union of these
signed parts is the image of [ ] and is denoted by [w].

Denote by T the set of unordered sequences A;A_(A;)1<i<;, with being a non negative
integer, where A, A_ and A; are partitions, with A, and A_ being possibly trivial. We may
also write such a sequence as A, A-A,, with A, = (A;). There is a natural map

(}:{£g}xT— %

(V.3.1.2.2)
€w — AL AN, = {ew}

where A, has w. as the 2-quotient and A has the 2-core (1), and each w; gives rise to two
identical partitions A;; = A;, = w; as factors of A,. In reconstructing the partitions A. from

w+, we have chosen integers r.. following

If A is a partition, then we define {1} := (A;)1<i<0 € Twith Ay = Ay = A. If @ is a 2-partition,
then we define {a}; to be the partition with 2-core (1) and 2-quotient &, and define {a}( to be
the partition with trivial 2-core and 2-quotient &, with the same choice of r. as above.

V.3.2 Symmetric Functions Associated to Types

Let us extend the definitions and statements of various combinatorics to types.

V.3.21 Given w = wiw-(w;) € T, we can define the Schur symmetric function associated
tow as

(V.3.2.1.1) 5o (x©,xVy .= Sw, (X)50_(X) H swi(x(o) +x1),
i

Monomial symmetric functions, complete symmetric functions and power sum symmetric
functions can be similarly defined. Note that for any partition A, we have

pA(XD +xDy = p( ().

This implies in particular that p,(x©@,xV) = Plo](X).
Define

(V3.2.1.2) 20(9) = Zw, (9)20.(4) H Zor(4),

in particular z, := z,(0) = 2o, Zo_ [ 1; Za;-
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Given q, € 3, if a = f, define Xg = )(g: )(gj I1; ng ; otherwise we put Xg = 0. With these
definitions we have

PpO9 = ) X% 5a(0);
(V.3.2.1.3) N
5109 = Yt pel¥),

T

Remark V.3.2.1. One needs to be careful with the summations in these expressions. For
example in the first equation, a runs over Pyg,|(2) X Pp_|(2) X []; P|ps, which is a subset of
T. The symmetric functions above should also be regarded as associated to ordered types,
although they are independent of the ordering in the types. This rule will apply to all
transition matrices that involve types.

For any w € T, define
a(A@)) = a(A(w.) + a(A@-) + ) n(w).
We may write a(w) := a(A(w)). Forany A = A, A_(A;) € 1, define
n(A) = n(As) + n(A_) + Z n(A;).

Define

(V.3.2.1.4) PA@)%,9) := Paw,) (X PP Aw ) (X, 9) H P, (X0 +x1, ),
i

and similarly for Qa)(x,g). Forany a, € T, define
Kpa@) = Kg o, @Kp_a [ [ Ko @
i
if a ~ B, and put Kz (q) = 0 if otherwise. We then have

(V.3.2.1.5) 550) = ) Kpa(@)Pa@)(9)

Define Kﬁ,a(q) = q”(“)K/B,a(q_l)-
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With the obvious definitions, we have the following identities for types:

(V.3.2.1.6) QGO =Y 4Ky ala),
Vv

(V3.2.1.7) A = Y Kpa@)sp(0),
7

(V.3.2.1.8) Haw(x:q) = Z Kg,a(9)sp(x).
7

Lemma can also be stated for types. For any partition A, and a symmetric function
1, (x) associated to A, we define the notation

a b x(O)
m(( c d )[X(l)]) = 1) (axQ +5xV +cxO +d xD),

In particular

) 1 0 \[x©O]
x x
uA([x(l)]) = Ll/\(( 0 1 ) )= up (X9 +xM)

1 - [ (0)]
uA(( 4 ' ) ;D_) = [(1 - @ +xD)],

-1, ;
1 - x© x© + x@)
M}L(( —q 16] ) xM ) = uA[l——q]

4

which is consistent with the usual notation for symmetric functions associated to partitions.
We will write

g\ ! ©
(V.3.2.1.9) P:( 1 q) , and x:[i ]

For example, if v = w,w-(w;) is a type, we have,

(V.3.2.1.10) PAPX,9) = PAwy) (P X D)PAw ) Px.9) | [ PuiPx,9).

With these definitions, and the known identities for symmetric functions associated to
partitions, we have:

Corollary V.3.2.2. Denote by

B = (2, (1))@, @ )NA™))i
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the type of a semi-simple conjugacy class, and put
bs(@) = by (@b () | | 6. @)
i

Then the following identities hold:
(@) Qa@) (%, 9) = Ha@w)(P1x,9);
(b) hg-(Px) = (=1)lg=EBlpg (g~ Hag)(x; 9).
Proof. This follows from Lemma m]

V.3.3 Mobius Inversion Function

V.3.3.1 Let m be a positive integer and let I be a set of cardinality x € Z.( that is larger
than m. Denote by IT the set of the partitions of {1,...,m}. It is a partially ordered set. Two
partitions satisfy P; < P, if P, refines P1. Denote by Py the partition into m parts, each
consisting of a single element. Then Py is the maximal element. Each P € II can be written
as a collection of disjoint union of subsets of {1,...,m}, written as p; - - - ps. Each p; is called
a part of P and s is called the length of P, denoted by I(P). For any P € I, denote by (I'")p
the subset of I'" consisting of the elements (i;)1<,< such that i, = i; whenever r and s are in
the same part of P. Denote by (I")preg the set of the elements (i;) of (I"")p such that i, # i
whenever r and s are not in the same part of P. Obviously,

")e, = ) (), ey

P]<P2

for any P, € I1. A Q-valued function f defined on the set of the subsets of I'" is additive if
f(UuV)=fU)+ f(V) for any two disjoint subsets U and V. Given such a function f, we
can define two functions F and F’ on ITby F(P) := f((I"")p) and F'(P) = f((I"")preg). Then

F(P2) = ) F(Py).

P1<P2
By the Mobius inversion formula, we have
(V33.1.1) F(Py)= Y p(Py, P)F(Py),
P1 <P2

where p(Pq, P>) is the Mobius inversion function for the partially ordered set IT.
Define cp(x) := [(I™)pl, cj(x) := [(I")pegl. We have cp(x) = (x)'®) and

cp(x) =x(x = 1)--- (x = I(P) + 1).

These are the functions defined by counting elements, which is additive. Inserting these
expressions into the Mobius inversion formula, we have a polynomial identity in x that is
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valid for all large enough x. Specialising this equality at x = -1, we get

(V.3.3.1.2) (=1)"mt =Y u(, Tp)(=1)"™.
TI<ITy

V.3.3.2 Let I, m and Il be as above. Let I" be a set in bijection with I. For any i € I, let
i* denote the element of I* corresponding i under the bijection. Write I = I LU I*. For any i,
i € I, we write [i] = ['] if / € {i,i*}. For any P € I1, denote by (I"")p the subsets of elements
(ir)1<r<m, Br € I, such that [i,] = [i;] whenever r and s are in the same part of P. Denote by
(T’")p,reg the set of the elements (i,) of (I"")p such that [i,] # [is] whenever r and s are not in
the same part of P. We say that an element of [" is regular if it is regular with respect to the
maximal partition Py. Obviously,

(Tm)Pz = U (Im)P1,reg/

P]<P2

for any P, € IT.

Now, put [ = Irr(IF;) \{l,n}and I = (Irr(IF;) \ {1, n})/ ~ with the equivalence relation that
identifies a and a~!. For each equivalence class we choose a representative and denote by I
the set of these representatives, and so for any a € I, a* = a™!. Let (4;)1<i<m be an m-tuple of
elements of IF;. Define an additive function on the set of the subsets of I" by

=3, I et
(ai)1<i<m€] 1<ism

for ] c I"". Then,

(V3.32.1) F(Po)= ) u(Py, Po)F(Py),
P1<Py

with F(P) := f((I")p), F'(P) = f((I")preg) and Py defined in

V.3.3.3  Lets be a positive integer. Let (4;)1<i<s be an s-tuple of elements of IF, such that
[Thi<i<s al.zei # 1 for any (e;)1<i<s € 1. The following lemma will be used to compute F(P7) in

(V.3.3.2.1)), with s being the size of a part of P;.
Lemma V.3.3.1. We have the identity:

Z Z H of"(a?) = -2°

a€l (e,-)lggsey; 1<i<s

Proof. Observe that

Y, Y adam=3, 3, at([a.

ael (6‘;)151‘356;13 1<i<s ael (6,‘)15,‘556[J; 1<i<s
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so the desired quantity is equal to

Y, Y e

ael (e,-)K,-Ssey; 1<i<s

Since

Y o] =-2,

acl  1<i<s

we get 2° - (=2)/2 = -2°. |

V.3.3.4 Letus apply the above computations to the following situation.

Fix a type ea = eaa_(a;)1<i< of o-stable irreducible character of GL,(g), with a4 and a_
being some 2-partitions. Putn, = |a,|, n- = |a_|and ng = 2n, +2n_+1and n; = |a;|. Thenao-
stable irreducible character of type ea is induced from some o-stable and F-stable Levi factor
M of some g-stable parabolic subgroup, which is isomorphic to GL,, (k)X ] ;,(GL, (k) xGLy, (k)),
following the procedure of Proposition In view of Lemma we can assume
that M is equal to L;, some standard o-stable Levi subgroup. Let C = (Cy, ..., Cy) be a tuple
of semi-simple conjugacy classes in GL;(q).0 with representatives s;o as in Lemma
For each j € {1,...2k}, fixw; € W,,, X W,,_ X [ S;,,, regarded as an element of Wi (T), with T
being the maximal torus of diagonal matrices. Let w; € (M”)° be a representative of w; and
let g; € (M?°)° be such that g}?lF(gj) = wj. Put Ty, = g]-ngfl. We assume that for each j, there
exists some ; € GL;(q) such that hjs jah]T1 lies in Ty,;.0 € M.o.

Notation V.3.3.2. Denote by Irr,, ., the subset of Hle(h‘r(]F;) \ {1, n}) consisting of regular
elements in the sense of §V.3.3.2) where I = I(ap). For all j, each element (6;) of Irr,, ., can
be regarded as a character of Ty, in the following way. We write

wj = (w]-,+, wj.—, w]-,i) € %mf X W, X H 65”]..

To each w;; is associated two subtori of Tw/., isomorphic to (k*)", equipped with the Frobenius
twisted by the automorphic defined by w;;. Composed with the norm map, 6; and 6;' are
regarded as the characters (of the rational points) of these two tori respectively. The factor
wj+ acts on a factor of Ty, that is isomorphic to (k*)?"+*1. We associate the trivial character to
this torus. Then the order 2 irreducible character 1) is associated to the remaining factor of
Tw,. The resulting character of Tg,j is denoted by 0; which is o-stable, and we denote by 0;
its extension to Tﬁ,l_.<a> which equals to 1 at 0.

Lemma V.3.3.3. Put (cf. Notation[V.1.1.2)

-1 ife=—-,andsgnC = —1;
(V.3.3.4.1) Ae,sgnC = { / &

1 otherwise.
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Assume that C; has no "eigenvalue” equal to i for every j. We have:

2k
(V3.3.4.2) Y. []0ision) = (-2 sgnc.

0 f—
O€ltryyg en J=1

Remark V.3.3.4. The assumption on the "eigenvalues” morally means that, if we were work-
ing in a connected reductive group, the centraliser of the semi-simple element is a Levi
subgroup.

Proof. Let us begin with evaluating the character 6;(hjs jathl). We can fix j for the moment
and omit the lower script j, so that 0 = 0j, h = hj,s =sj, w = wjand g = gj. Putx = g"'h.
Then xsox~! € T.o and it is fixed by F,,. We can then put 6y = O oad g, a character of T"*.<g>,
and evaluate 0y at xsox~!. That xsox™! € T.o implies that x = nl with n € Ng(T.0) and
I € Cg(so)°. Write n as 9t, with t € T and © being a permutation matrix fixed by o. Explicitly,

if so is of the form (V.1.1.3.2) and t = diag(ty, ..., ty+1, ..., fons1), then
otsot 107! = odiag(titans11, -, butusfn, By g, tutni2y ' - ibaeay )0 o =180,

If 50 is of the form (V.1.1.3.3), then we only need to replace t* | by 2 c. Evaluate 0 at xsox™*
is to evaluate 0 at s’. We claim that the contributions of the t;’s, for i # n + 1, cancel out. We
only show this in two typical situations.

e Suppose that a is one of the 4;’s and t is equal to t;ty,42-;. If Fy, acts by (ta, ta™h) -
(ta,t7a71), then t lies in IF; since s is known to be F;,-stable. And if the corresponding
two factors of 0y are (@, a~ 1), then it is immediate that t does not contribute to the value
of 60.

e Suppose that a and t are as above. If F, acts by (ta, ta™') — (H9a~1,t9a), then it is
2 in order for it to be Fy-stable. Since we have
2 must be 1 and ¢ lies in IF;. The character
no N]qu /F, sends (ta, ta~1) to n(t?) = 1. Again there is no contribution from ¢.

necessary that a* = 1 and #771 = g
assumed that there is no t among the 4;’s, a

Note that in the second case if a> = —1, then 7(t?) = —1. Then the value of 0, will depend
on the cycles of minus sign in w. The computation will be more complicated. This is the
reason why we have excluded i from the "eigenvalues".

The remaining term 2 (resp. {2 c), which necessarily lies in IF,, is congruent to

det(s') = det(g""hsa(h)~'g) = det(hsa(h ")) = det(h’s) = det(s) = 1 (resp. ¢), mod (IF;)*.
So t does not contribute to the value of ;. We conclude that

Oo(hsoh™t) = Bp(vsv1).
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We then apply the above calculation to each ;.

2k 2k
Y. []oimsiorsy="Y []0jcads@sis:).
1

O€lrty,e o J= Oelrry,, o j=1

For each index among {+,—,1,..., 1}, we collect the corresponding factor of ad g(9;s ]-1'2]71)
and apply the appropriate norm map for all j. Then we end up with an element

meIF;x]F;x H(]F;x]F;).

1<i<l

Assume € = —, then we can write m = (m, = 1,m_ = sgnC, (m;, mi_l)lsisl) with respect to this
direct product. If € = +, then 1 always gives 1. The above computation is reduced to

! !
¥ [Tomsrom= T oo
(64,...,0)) i=1 (64,...,0)) i=1
regular regular

Note that in order for (01, ..., 0)) to be regular, its factors must satisfy:
e 0; # 1orn, forany i;
o 0;# 07 ifi#].
Using (V.3.3.2.1), Lemma|[V.3.3.Tand (V.3.3.1.2), we get

l
[T =Y, w112

(V.3.34.3) (01,..,0) i=1 TI<ITy
regular
=(=2)'1!,
where Iy and IT are the partitions of the set {1,...,I(a1)}. O

V.3.4 A Combinatorial Identity

V.3.41 The following lemma is an analogue of [HLR, Lemma 2.3.5].

Lemma V.3.4.1. Fixa, B € X. Then

a AB)
(50, Fngpt g = Y, 120y @ @),

T

where the sums run over X.

Remark V.3.4.2. The inner product only depends on the corresponding unordered types.
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Proof. We use the base changes

s = ¥ B

and,

Hag)(x,q) = Z K p(q)s<(x)

=2 )1k

Z QA(ﬁ Pv (X

The result follows by taking inner product, noting that

(P (%), pr(x)) = P (x), P1(X)) = Opc) [v)2(1]-

V.4 Computation of the E-Polynomial

V4.1 The Formula of E-Polynomials

V.4.1.1 The summation over the irreducible characters in the point-counting formula can
be divided into two summations, one over the types of size N, the other over the o-stable
irreducible characters of the same type, as the following computation shows.

1G] \*$72 & 1Cj, |X(Cje)
| Che(IFy)| = Z Z‘ (m) H—X(l)
i

e=(¢j)e(x)? xelrr(G)
2k
Z H X(C]',e]')

MDY
e=(¢j)e{x)? lew|=N XEr(G)g, j=
Y, ) ch(cj,ep.

Z |G|2g_2 H |C] L’]
2 +2k 2
lew|=N (1) g e:(e]v) }Zk )(EIrr(G)ew =

IGPS 2 1%, ICj|
X(1)2g+2k_2

In the second equality, we have used the fact that if two irreducible characters are of the
same type €w, then their underlying irreducible character of GL,(g) correspond to {ew} (cf.
(V.3.1.2.2)) and so have the same degree.

V.4.1.2  Let us first give an expression for the value of an irreducible character. Recall
that the extension of a o-stable irreducible character, if it is uniform, can be decomposed as
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follows:

(V4121)  For, =W x W x W Y Gr@iF)esws)p- ()RS, (6),

wi=(wy, W+, 10-)

where L, ¢ and 0 are as in The sum over w only depends on its F-conjugacy class,
which we denote by 7. These classes are parametrised by T. We will therefore replace )", (-)
by ZT || - (_)

If (so)u is the Jordan decomposition of some element of GL,(g).0, then the character
formula reads

To) |

(V4.1.2.2) RGY O(sou) = ———22 —
Two |T€v| ICc(s0)°F|

0)
Z QCOSSU Y(hsah™).

heGF Tw
hsoh™1eTy.0

If w is of class 7, denote
AL = {h e GF | hsoh™ € Ty.0},

and for v € T, denote by AF the subset
{he AL | Cj11,,1(s0)° is of class v}.

Denote by «a the type of the o-stable irreducible character y and by f the type of the con-
jugacy class of sou. Note that with the fixed L1, ¢, so and u, we can make these types ordered
ones. Therefore in the following expression we work with ordered types. If Cj-11, ;(s0)° is

of class v and sou is of type , we will write Qi\(ﬁ )(q) = QCG(SU)O (). Combining (V.4.1.2.1

Chr,, (0)°
and (VA122) gives '
oF|
Meow=)" " = a|TF| oo @0hsal™
T heAl
(T9)*"

(V4.1.2.3) =Y, ), =

T {ilvl=[zl}

Q) Y Ohson™

F o
IT'[l : |CG(S ) Fl hEAF
V413  We calculate ) e, ]—[]Zil X(Cj,;) using the above expression. Note that a o-
stable irreducible character of a given type is completely determined by its semi-simple part.
Rewrite w = ww-(w;) as w = wrw-(my)1ep, Wwhere m, is the multiplicity of a given partition
A that appears in the sequence («;), then put

(V4.13.1) N(w) = H L.
A

Then we can replace ). cpr(cye, by 27 @I N(w)™! ZGGIrr‘feg,m' Recall that w), is the part of w
consisting of partitions.
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For each j, let sjo be a representative of Cj,,. We calculate

2k
Y Hz(cj,g»

X EIrr(G)eu -

(T)°"

2k
21@,, Z )3 H anvaAfﬁ)(q’ Y. ) [lomsonh

(hq,... hipp )€ QEIrI'rgg,em j=1

ATl V1 X XATZk V2k

Since

2k
Z H 0;(hsjoh;") = (=1)/@r2@Pl(w,) Ace,
O€lrtyegen j=1
is independent of /; and we have already shown that ([V.6.2.6.1)

AE| = z ITEl - 1CG(s0)*|

Zy (T9)F 7
we find
2k
Y ]_[;z(c]a
Xelr(G), j=
me] Qvfﬂ)w)
Acegiio) N(( ) H Z Z
Tj
(V4.13.2) Ace N(( H<sw< ), Hags)(x.4)),
with
(V.4.1.3.3) K(w) = (-1)@l(@p)!.
We remark that
2% ife =+
(V4.13.4) Z Ao { ue
e=(e;)e(+} ife=-—

V.4.14  Recall the Hook polynomial H,(q) defined for any partition A:

(V.4.1.4.1) Hy(q) := H(1 — g,

xeA
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where A is regarded as a Young diagram and x runs over the boxes in the diagram, and h(x)
is the hook length. If we denote by A* the dual partition of A, then

(Vi4.1.4.2) Z h(x) = || + n(A) + n(A).

xeA

Forany A = AL A_(A)) € 3, put Ha(q) := Hy, (9)HA_(9) Hl-H/Z\l_(q) and A" = ALAZ(A7). Then for
X € Irry (GL,(9)), we have ([Mac, Chapter IV, §6 (6.7)]):

|GL,(q) _

Ty = T OHG),

(VA4.14.3)

V.4.1.5 Let P be the matrix (V.3.2.1.9). Introduce the following notations

2k
00 qle == ) | g1 (Hyg (g)g )2 %2 [T sa(Pxy), =0, 1;
acP? j=1
2k
O(x,q) := Z g ON(EL ()28 +2k=2 H 5a(Pxj)
aepP f_l
_Z q2(1 ~9lel(g (q)z Zn(a))2g+2k ZH 5a(PX))

aeP

The summand corresponding to the trivial partition or 2-partition is equal to 1. Applying

the formal expansion

to 1+ x = O(x, q) gives

2k
=Y (™" q(l g)l{wp}l(H{ }(q)q—n( wp} ))28+2k 2 Sw,(PX))
D(X ) ”;) wnHZ(?‘”A)A H/\m ' N E '
2k
a)) w ({wp}* —
(V4.15.1) N(( )ql Marll(Hy,,, (q)g " IP8+22 [ T s, (Px))
Wp ]21

V.4.1.6  The dimension of the character variety is given by:

2k
d:=(2g - 2)dim G + Z dim C;
j=1
2k
=(2g-2)dimG + Y (dim G - dim Cq(s0)
j=1
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2k
Liog - 212 + 2kn? - Y a(g)) +N)
j=1
2k
=n?(2g + 2k —2) — 2kN — Z 2a(B)).
j=1

(cf. In @, we have used the fact that if H is a connected reductive group over C and u is
the identity, then dimH = 2dim 8, + rk H.
V.4.1.7  We can now state the main theorem.

Theorem V.4.1.1. The number of rational points of the character variety over a finite field is given
by:

_ 1akven) | D610 9)o >
(V4.1.7.1) | Che(F,)l = g < Soca) Hhﬁ( x;)
Proof. We calculate

| Che(IFy)|
e=(¢j)e(+)? lew|=N

o K(w) IGI8~ 21_[ 1 Gl £
2 =3 N(w)  x(1)%8+2k-2 H<S‘”(x]) HAﬁ (x5 9)

IGPS2TT7, ICj|
X(1)2g+2k_2

2k
Y ch(cj,ep

)(EII‘I'(G cw JT

K((x)) |G| 2g+2k -2 2k IC]+|
2kZ 4 N(w) (x(l)) H IG] H<Sw(xf ) Hagg) (xj, )}
K(w |
—n2k (( ))( ) (q)qzn(n 1)-n({w) ))2g+2k -2 H< w(X]) A(ﬁ]-)(xj/ 0)
:22kq§(nz(2g+2k 2)—2kn)
2k 2k
V4172 AN K@) a-giongy, (gya-ntores-2 NS LA
(V4.17.2) N(@w)’ (Hiw)(@)q ™) soli), | |5 Hae) (9 -
wex j=1 j=1

We have the factor 2% in @ because the summand for € = + is independent of e and cancels
out for € = —, and the sum can be taken over the entire ¥ because if w was not of size N then
the inner product would vanish.
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Equations (V.2.4.2.T) and (V.2.4.2.2) show that

|Cj,+| 1 5y s 1=
W — Eq 2a(B;) lﬁ]le(ﬁj)(q 1) 1,

(V4.1.7.3)

where the factor 1/2 comes from the two connected components of the orthogonal group.
Combined with Corollary this shows

1C;.l
Gl

1 s
(V4.1.7.4) S0P hg (Px)) = (=) === Hags,)(x;0)-

Note that for any symmetric functions u(x®,xM) and v(x@, xV), we have

(0) (0) ) 0)
(o) = e o)

This can be checked on the basis of power sums. We will thus move P to the left hand side

of the inner product.
Rewrite the left hand side of the inner product (V.4.1.7.2) as follows:

K(w) 12—"[
(1 I a)l(H (q)q wl2er2k-2TT 5 (px;)
w ]
weT N( ) ]:1
2k
— Z q(l—g)l{w+}1| +}1(17)51 n({w+}]) 2g+2k H PX])J
W EP?
2k
Z q(l—g)l{w—}o(H{wi}o(q)q—n({w—}o))2g+2k H (P X ]
w_eP?
K(a)) 2k
' ZN o1 Higy (g ))2g+2k_2HSaJp(Pxf)]
=1
Note that K(w) and N(w) only depend on w,
We deduce that
2k

K(w) ] * — D(X/ q)l D(X, q)O
V4.1.7.5 “OMll(, mlwy2e+2k=2 f | 5 (Px;) = — 2T
( ) Z N(w)q W @710 g (Px) = =5 =

Therefore,

(VA4.17.6)  |Che(F,) = q%(n2(2g+zk—z)—2kz\1)—z§§1 a(f) K1) <D(x 11)19(;( /1) H Iy x ])>
O(x, q
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Corollary V.4.1.2. The E-polynomial E(q) = | Chc(IF,)| satisfies
(V4.1.7.7) F'E(qY) = E(g).

Proof. For a partition A, we have the equalities:

(V.4.1.7.8) q—2(1—g)|)t| = q2(1—g)Ml .q—4(1—g)IAI.
(V4.1.7.9) HA(q—l)2 HA(q) 2(|Al+n(A)+n(A* ))
(V.4.1.7.10) qzn(/‘) =q —2n(A") | q2(n(/l)+n(ﬂ ));
X _ —gX _ X
(V4.1.7.11) sa(7 q‘l) =sA(72 q) = (=) s (7 — q)'
We deduce that
2k
q—(l—g)|{wp}|(H{wp}(q—l)qn({wp}*))2g+2k—2 H Sa)p (P(q—l) X])
=1
2k
q—zklwp|q(1 lw l(H (q)q—n({wp}))2g+2k—2 H Sa (P(q) Xj)-
=1
Since

-1y _ Y4 q 1 _ 01
P(q )——1_q2(1 q)— ‘7(1 O)P(q),

for a 2-partition &, we have the equality:

x(© (0) x© (0)
Sac(P(q )[ 1) ]) = sa(— CI( (1) é ) |X(1 ]) = Sor(— QP|: (1)]) = (_q)lalstx*(P [);(1)])

(If & = (a1, az), then a* = (a3, a).)
Using {a’}, = {a];, e = 0, 1, we then deduce that

2k

q_(1—8)|{(t)+}1|(I_I{w+}1 (q—l)ql’l({w+}1))28+2k—2 H S, (P(q_l) X])
=1
2k
=q_2k(|“’+|+1)q(1_g)l{w+}ll(H{w1}1(q)q_"({w+}l))2g+2k_2 H Sar (P(q) x].),
j=1
and

2k

g A-lw-hl(gg \ (g71)g"e-1)2e+2k-2 H 5o (P(g71) X))
j=1
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2k
=g HM0 DDl hl(F, . (g)g (@ h))28+2k-2 H 500 (P(q) X)).

=1

We conclude that inverting g on the left hand side of the inner product (V.4.1.7.2) gives
rise to an extra term g~ 2k@pltlo-I+lo++1) wwhich is balanced by the term g7*N*1) outside the
inner product.

O

V.5 Examples

In this section we will give some explicit computations in low ranks. In all these cases,
we confirm that the polynomials in q are indeed palindromic. The polynomials for GL>(g)
have even integer coefficients with leading coefficients 2, while the polynomials for GL3(q)
have leading coefficients 1.

V.5.1 G =GLy(g)
V.51.1 g =0,2k = 4. Forany j € {1,2,3,4}, let C; be the conugacy class of diag(a;, a]fl)o,

with a? =ajand u? # 1 or -1, such that C = (Cy, C, C3,Cy) is generic. In this case we have

a double covering of IP! by an elliptic curve with all four ramification points removed. The
counting formula reads

2
[€] ) ST
Che(F,)| = — — Cj).
| Che(Fy)| };(m) H e Hx( p
With the character table of GL(g).<0>, we get

~ (g -1\
| Che(F,)| =%(L7(”’ 1a )) (q_ll)4zn(a(a§)+a(a;2))
@ ]

g+1

12 — 1)\2
+2'(¢7(ﬂ/ 1)(q 1)) 1

1 (q-1)*
2
+2.(q(q— 1@’ - 1)) L
q (g-1)*

=- l6q2 + 2q2(q + 1)2 +2(g + 1)?
=24* +4¢° — 12% + 4q + 2.
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V.5.1.2 g =0,2k =4. We keep Cy, C; and C3 as above but put C4 to be the conjugacy class
of 0. In this case only 3 ramification points are removed. The same counting formula gives

| Che(Fp) =4 (19 D - 1)) : Y g+1 ﬁ(a(gz) +a(a7?)
T\ T ger ) G e g &1 LI TR
+2(mq—nw2—nf 1 1
1 @—1Pq@q—-Dg+1)

_mq—DWZ—nf 1 1
2 ( q G- qq-Dg+1n
= -85 +2q(q + 1) +2(q + 1)
=20° —4q + 2.

However, if we further assume that Cs is also the conjugacy class of o, that is, we keep
two ramification points in the covering, then there is no generic conjugacy classes such that
the character variety is non-empty.

V.5.1.3 ¢ =1,2k =2. Forj € {1,2}, let C; be the conugacy class of diag(a;, a}Tl)a, with a‘; =a;
and a2 # 1 or -1, such that C = (Cy,C») is generic. In this case we have a double covering
of an elliptic curve by a curve of genus 2 with both of the two ramification points removed.
The counting formula gives

| Che(Ey)| = |C1||Cz|)?((1C)21))z(c2)
X

1(q9@-1@g+1)
2

1 )}:m @) + a(a?)(@(@3) + a(a;?)

+2(q(q— 1i(q+1))
2«w—nw+nf
q
= —49%(q - 1)* + 24%(g - 1*(q + 1)? + 2(q - 1)*(q + 1)?
=2¢° — 6g* + 84° — 647 + 2.

V.514 g =1, 2k =2. We keep C; unchanged but put C; to be the conjugacy class of ¢. In
this case only 1 ramification points are removed. The same counting formula gives

! G-+ 1)

Cho(Fpl =3 - ==

Y @+ D(@@) + al@;?)
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—_1\2
+2q(q 1)1 (g+1)
N zq(q -1D*q+1)
qz
=-29(q -1 +29(q - D*(g+ 1) +2(g - 1)*(g + 1)
=2q* — 2% - 29 + 2.

V.5.2 G =GLs(g)
The geometric settings will be parallel to the case of GLy(g).
V521 ¢=0,2k=4. Forany j € {1,2,3,4}, let C;, be the conugacy class of diag(a;, 1,a}71)a,

with a‘} =ajand a? # lor—1,such thatl?lC = (C1,+,C2,4+,C34,Cy 1) is generic. Letc € lF;; \ (]F;;)2

and let C; - be the conjugacy class of diag(a;, c, aj‘l)o. Now the counting formula reads

ChoE)I= Y Z('G') léjfﬂx<cj,ej>.
]

(epefs}t X

With the character table of GL3(g).<0>, we get:

P -1 - D@ -1\ n L
|ChelFy)l = 2( @+ D@ +q+1) )(2<q 1) H(“(”)”(” )

2

ey
)
no( M _1))2(2@ o)
3 1) -
L1604 1)!1 D@’ 1))2(2(q 1))
: 1) -
o 1(T 1>q @ 1) (z(q 1))

=—164°(q - 1) +q ®q-1*@+ 1) +4* @ -1+ 1)

+0°(q - 1D2@+ 1P +q+ 1+ (- D*@q+ DAg* +q + 1)
:q14 + 2q13 + q12 _ qul _ 3q10 _ qu _ 15q8 + 36q7

~154° —2¢° - 3¢* - 2¢° + ¢* + 29 + 1.

The first five lines correspond to the five types of irreducible characters: R%(a,l,a‘l),
Rf(n Idy, Id), Rf(n St,Id), Ids and x», as listed in Appendix |A.0.1.2, The factors 16 arise

®Cj/i or C]#?
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from the summation over (e;) € ()4, noting that for any j, |C;+| = |C;-|. This summation
also annihilates the sum over the irreducible characters: R?(oc, n, a™, RE(Idz, n), Rf(St, n),
nlIds and nx2.

V.52.2 ¢=0,2k=4. Wekeep Cy ., Cr,« and Cz ;. as above but put C4 + to be the conjugacy
class of 0 and diag(1, ¢, 1)o. The same counting formula gives

7 - DG - 1) —1))( 1 )3 1
eI~ 2( @+D@+q+D ) \24-1) 29@-Dg+1D)
3
Y [a+ D@ + a@:?)
o j=1
M-D@-D@-DY (1 V1
+16(»7 q q q
P+q+1 20-1)) 29(g-1(g+1)
Pa-D@-D@-DV( 1\ 1 .
”6( AE+q+ 1) 20-D) 2G@-1G+D ]
Pa-DE-DE -V 1 Y 1
”6( 1 20-1) 2@-DG+ 1)
PO-D@-D@-DY(_1 V1
”6( 7 G- 24G-DigrD |

=-87@-1*+7(@-1*q+ 1) +q*q-1*q+1)

+°(q - DX+ D@+ 9+ 1>+ (@ - DX+ 1) +q+1)
:q12 + c]“ _ 2(19 _ c]8 _ 76]7 + 16q6

—7q5—q4—2q3+q+1.

V.5.23 ¢ =1,2k =2. For j € {1,2}, let C;+ be the conugacy class of diag(a;, 1, a]Tl)a, with
a? =ajand a]z. # 1 or -1, such that C = (Cy,4+,C5,+) is generic. Let C;_ be the conjugacy class

of diag(aj, c, a}Tl)a. The counting formula gives

IC1eIC2e, (C1e) H(Ca)
Che(Fp)| = )| ) = A
epelr x x

3(‘7 _1)(‘7 _1) 2 )
(2(q+1)q +q+1)) ZH(a(a)+a )

4(43@ - 1)(¢° —1)) +4(q3(q - 1)(4° —1))
2> +q+1) 29(q* +q+1)

302 _ 3 11\2 302 _ 3 _ 1)\2
+4(q(q 12)(q 1)) +4(q(q 21[1)3(67 1))
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=—4°@ -+ @ - D'+ D* +4* (- D*g + 1)

+ q6(q - 1)4(q + 1)2(q2 +q+ 1)2 +(q - 1)4(q + 1)2(q2 +q+ 1)2
:q16 _ 2q14 _ 2[’]13 + 2q12 + qul _ 2[’]10 + 16q9 _ 30q8

+169” —24° +24° + 24 — 24° — 247 + 1.

V.5.24 g¢=1,2k=2. Wekeep Cy. unchanged but put C, . to be the conjugacy classes of o
and diag(1, ¢, 1)o. The same counting formula gives

_49°@ -1+ D@ +9+1)
2 4@+ +q+1)2

W T@-D' D@ +q+1?  P@-D'G+ D@ g+ 1)

4(q> + g+ 1) 49%(4* + 9 + 1)
P@-D*a+ D@ +q+1°  £@- DG+ D +q+17
q
4 440

=-20°@- D'+ - D+ D +g*@q-D*@+1)

+q°(q - DHg+ D@ + 9+ 1>+ (- DHg + 1@ + g9+ 1)

:q14 _ q13 _ q12 _ q11 +3q10 _ q9 +5q8 _ 10q7

| Che(IF)|

Y @+ D(a@) +a(@?)

+4

+50°—g° +3¢* — ¢ —g*> —qg + 1.



164 CHAPTER V. E-POLYNOMIAL OF GLN(C) x<0>~CHARACTER VARIETIES



Appendix A

Character Tables in Low Ranks

We give the character tables of GL; x<o>and GL3 <<¢> We assume thatg =1 mod 4
and write i = V—=1. Denote by u> the 2-elements group, identified with {+1}. Letn € Irr(IF;)
denote the order 2 character. The o-stable irreducible characters are specified in terms of
(L, @, 0) as in Theorem[5} Denote by T the maximal torus consisting of the diagonal matrices
and denote by w the unique nontrivial element of W¢(T), either for GLy(k) or GL3(k), that
is fixed by 0. Denote by T, a o-stable and F-stable maximal torus corresponding to the
conjugacy class of w. In the following, we will freely use the formulas in §I1.2.3.3]

A.0.1 o-stable Irreducible Characters

We specify the o-stable irreducible characters of GLy(g) and GL3(g), and compute the
numbers of these characters and of the quadratic-unipotent characters of GL4(g) and GL5(g).

A.0.1.1  Suppose G = GL,(k). There are g + 3 o-stable irreducible characters of GL;(g), and
5 of them are quadratic-unipotent, among which one extends into a non-uniform function.
The quadratic-unipotent characters induced from L = G are the following.

Id nld St nSt

The only one quadratic-unipotent character induced from L = T is the following.
R?(l, n)

It is the unique o-stable irreducible character with non-uniform extension.
Other o-stable irreducible characters are either of the form,

G(p -1
Ri(a, ™)
with a € Irr(IF)) satistying a7 = a, a # 1 or 1. There are (7 — 3)/2 of them; or of the form,
RS ()

with w € Irr(]F;Z) satisfying w1 = w~!, w # 1 or n. There are (g — 1)/2 of them.
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A.0.1.2  Suppose G = GL3(k). There are 29 + 6 o-stable irreducible characters of GL3(g),
and 10 of them are quadratic-unipotent, among which two have non-uniform extensions.
The quadratic-unipotent characters induced from L = G are the following.

Id nld x2 nx2xs nxs

The characters y, and 7> are associated to the sign character of S3. The characters x3 and
nx3 are associated to the degree 2 character of 3, and these two characters have non-uniform
extensions.

The quadratic-unipotent characters induced from L = GL, (k) X k* are the following.

RS(ld2, ) RS(nldy,1d) RE(St) RE(nSt,1d)

Other o-stable irreducible characters are either of the form,

R(a,1,a7") Rf(a,na™)

with a € Irr(]F;) satisfying a¥ = a, a # 1 or 1. There are q — 3 of them; or of the form,

R%w(a), 1,01 R(T;w (w,1,071)

with w € Irr(IFZZ) satisfying @7 = @™},  # 1 or 1. There are g — 1 of them.
A.0.1.3  Suppose G = GLy(k). There are

2§=2q-3)+7(g -2 +20

o-stable irreducible characters of GL4(k), and 20 of them are quadratic-unipotent.

The Levi subgroups L = GL4(k), L = GL3(k) X k* and L = GLa(k) x GL;(k) give rise to
(5 + 3 + 2) X 2 quadratic-unipotent characters, knowing that | Irr(S4)| = 5.

The Levi subgroup L = GL,(k) X (k* X k) gives

|Quad. Unip. of GLy| X (g —2) =5(9 - 2)

noticing that g —2 = (g — 3)/2 + (g — 1)/2 as in the case of G = GL;(k).
The Levi subgroup L = GL;(k) X GLy(k) gives (g — 2) X 2 with 2 = |Irr(&))].
The maximal torus (k*)? x (k*)? gives %(q -2)(q—3).

A.0.1.4  Suppose G = GLs(k). There are
(g—2)(g—3)+14(g—2) + 36
o-stable irreducible characters, and 36 of them are quadratic-unipotent.

The Levisubgroups L = GLs(k), L = GL4(k)xk* and L = GL3(k)xGLy(k) give (7+5+3x2)x2
quadratic-unipotent characters, knowing that | Irr(Ss)| = 7.
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The Levi subgroup L = GLs(k) x (k*)? gives
|Quad. Unip. of GL3| X (g —2) = 10(g — 2).

The Levi subgroup L = k* X (GLa(k) X GLy(k)) gives 2 X 2 X (g — 2), with one factor
2 = |Irr(Sy)| and the other factor 2 = |{1, 1}
The maximal torus L = k* X (k")? X (k") gives 2 X %(q -2)(g - 3).

A.0.2 Conjugacy Classes

We present the conjugacy classes of GLx(g9).0 and of GL3(g).0, and count the isolated
classes of GL4(g).0 and of GL5(g).0. Denote by su the Jordan decomposition of an element of
the conjugacy class concerned. Note that Oy (k) = u and O (k) = k* <<t>with 7(x) = x~L.

A.0.21 Suppose G = GLy(k). There are g + 3 conjugacy classes, and 5 of them are isolated.

- s =(1,1)0, Cg(s) = SLa(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the G'-classes are specified accordingly as below,

(1%) @)
SLa(k)  O1(R)V
Cq C GCs

where V = Al is the unipotent radical. If we use the unit element of a root subgroup of
SL; (k) to represent (2), then C; corresponds to the identity component of the centraliser.
The two components of O;(k)V have as representatives the scalars + Id.

- s =(i,—-1)o, Cg(s) = Oz(k).
Denote by C4 the G(g)-class corresponding to the identity component, and Cs the other
class. The two components of O, (k) have as representatives

10 01
[o%) (3 o)
respectively, and so induce the Frobenius x — x7 and x +— x7 respectively. In other
words, the centralisers of C4 and Cs are O; () and O; (g) respectively.

- s=(a,a Yo, Cs(s) = k.
For any value of g, the corresponding G-class contains a unique G(q)-class. The classes
are as follows.

A 1=1 g1 =1 g0 1= g1 =11
Ce(a) Cr(a) Cs(a) Co(a)
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The Frobenius on Cg(s) = k* with s € Cg or Cg is x +— x7, while the Frobenius on
Cg(s) = k* withs € Cy or Cgis x > x71.

We have

- Gl = 1G@I/ISL2(g)l = g = 1;

- |Cal = IG5l = IG(@)I/2IV(9)l = 3(q - 1)*(q + 1);

- ICal = 1IG@I/1O5 ()] = 3q(q + 1)(q = 1); IC5| = IG(@)I/1 03 ()] = 39(7 — V>

- 1Cel = ICs = 1G(9)l/(9 = 1) = 9(q + 1)(g = 1);

- |7l = ICol = 1G9/ (g + 1) = q(q — ).
A.0.22 Suppose G = GLz(k). There are 2q + 6 conjugacy classes, and 10 of them are
isolated. Now each semi-simple G-conjugacy class contains two G(g)-conjugacy classes,

distinguished by the sign ) (cf. (IV.2.2.2.2)). Depending on the value of 1, we will write C* or
C™ to represent the corresponding conjugacy class contained in a given G-conjugacy class.

Notation A.0.2.1. In what follows, we write € instead of 17 to avoid clashing with the character
of [F=.
q

- s=(1,1,1)0, Cg(s) = Oz(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the GF-classes are specified accordingly as below,

(1) ®)
0s(k)  0i(k).V
a G G G

where V = Al is the unipotent radical.

- s=(i,1,-1)o, Cg(s) = SLa(k) x Oq (k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
centralisers and the Gf-classes are specified accordingly as below,

(12) ()
SLy(k) x O1(k)  Oq(k) x Oq(k).V
C; C; CZ Cg c, C

where V = Al is the unipotent radical. If we use the unit element of a root subgroup
of SLy(k) to represent (2), then the correspondence between the classes C;, Cg, CZ, Cg
and the connected components of C(s) is given as follows.
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C G Cy Cs
100) (-10 0 1 0 0) (-1 0 0
010 01 0 0 -10 0 -1 0
00 1 0 0-1) o 0 1 0 0 -1

- s=(a,1,a7 Y0, Cs(s) = k' X ua, identified with {diag(x, +1,x71);x € k*}.
The conjugacy classes are as follows.

a1l =1 a7+l =1 a1l =1 a7t = -1
Cia) Cga) Cja Cja Ci@ Cg@ Ci@ Cy)

The Frobenius on Cg(s) = k* with s € C;—' or C;—' is x — x7, while the Frobenius on
Cq(s) = k" withs € C5 or C5 is x > x7.

We have

- CH1 = 1C1 = IG@)/105();

- IC31 =151 = IG@I/2V(@);

- IC31 = 1C51 = IG(@)/21SLa(9));

- CHl = 1C51 = ICE = IC51 = IG@)I/4V(@);
- 2l = ICE| = 1G(@)I/2(q — 1);

- IG = IG5 = IG()l/2(g + ).

A.0.2.3  Suppose G = GL4(k). There are 20 isolated conjugacy classes.

- 5=(1,1,1,1)0, C5(s) = Sp,(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(14 (122) 2 4
Sp,(k)  SLa(k) x Oq(k) Oz(k) Oa(k)

This gives 7 classes.

- s =(i,1,1, =)0, Cs(s) = SLa(k) X Oz(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(1% (2)
SLa(k) X Oz(k)  O1(k) X Oz(k)
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This gives 6 classes.

- s =(i,1,—1,—1)o, Cc(s) = O4(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(1% (13) (2%
Oy(k)  O1(k) x O1(k)  SLa(k)

This gives 7 classes.

A.0.2.4  Suppose G = GLs(k). There are 36 isolated conjugacy classes.

- s=(L1,1,1,1)0, Cs(s) = Os(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(1°) (123) (122) (5)
Os(k)  Oz(k) x O1(k)  Oq(k) X SLa(k)  Oq(k)

This gives 10 classes.

- s=(1,1,1,1,-1)0, Cs(s) = Osz(k) x SLy (k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

) G y 1 @
O3(k) Ou(k)  SLa(k) On(k)

This gives (2 +2) X (1 +2) = 12 classes.

- 5 =(i,i,1,—1,—1)o, Cg(s) = Sp,(k) x O1(k).
The unipotent parts are given by the partitions defined by Jordan blocks. Then the
reductive parts of the centralisers are specified accordingly as below,

(1% (1°2) ) @
Spy(k)  SLa(k) X O1(k)  Oa(k)  On(k)

O1(k)x
This gives 2 X 7 = 14 classes.

A.0.3 The Tables

The calculation of the values of the uniform characters is reduced to the determination
of the sets
A = A(s0,Ty) = {h € GF | hsoh™ € Ty.0)

for various GF -conjugacy classes of F-stable and o-stable maximal tori T, contained in some
o-stable Borel subgroups, and semi-simple Gf-conjugacy classes of elements so.
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A.0.3.1 The procedure (cf. for computing A can be summarised as follows.
Suppose so is an F-fixed element contained in T.0, and Ty, can be written as ¢Tg° for

some ¢ € Cg(0)°. If h € GF conjugates so into T.0, then there exists some | € Cg(s0)°

such that n := ¢7'hl lies in Ng(T.0). Recall that Ng(T.0) C Ng(T) consists of the connected

~1 js an F,-fixed element

components that are stable under 0. Then g 'hsoh™lg = nson
of T.o. If so is an F-fixed element contained in T,.0, then similar arguments show that
¢ 'hsoh™lg = ng~'sogn~! with gng™' = hl. The conjugation by 7 can be separated into a
permutation of the "eigenvalues" and a conjugation by an element of T. For each so and T,
we will first find some ¢ € T such that tsot™! (or tg~!sogt™! if we start with some so € T,.0) is
fixed by F,,, then evaluate any character of T%,.<o>under the isomorphism T%,.<o> = Tfv.<g>.
The value does not depend on the choice of ¢, and the permutation of the "eigenvalues" is
simple.

We will use the following observation. Let w € Irr(IF*,) be such that w7 = w1, and let
ae ]F;2 be such that a9 = a. Then a = b7*! for some b € IF;Z, SO

w() = wb™) = 0T () = 1.

A.0.3.2 Suppose G = GL, (k). Consider the characters R%(l, n), R%(a, a1 and R%w (w).

The calculation of the extensions of R%(l,r]) is a direct application of the theorem of
Waldspurger. Following the notations of (IV.5.4.1), we have (uy, u-) = ((1), (1)). The 2-cores
are (1) and (1), and so m; = m_ = 1. We deduce that iy = 1 and h; = 0. So the cuspidal
function is supported on the class of su with Cg(s)° = SLy(k) and u corresponding to the
partition (2). We find 6(h1, h2) = 1. So the values of this character on its support are + /7 and
vanish on all other classes.

If so = 0 and so Cg(so) = SLy(k), then hoh™! = det(h).o (regarding det(h) as a scalar
matrix), which belongs to T.o or Ty.0 for any h. So A = GF and O(hsoh™) = 6(0) = 1 for any
h as 0 has trivial value on the scalars.

If so = (i, —1)o and so Cg(so) = Oz(k), then the elements of A are exactly those h € GF
such that (#~'Th N Cg(s0))° is a maximal torus of Cg(so)° = SO, (k) which itself is a torus
whose centraliser in G is T or Ty, according to whether so € C4 or so € Cs. Consequently,
A(Cs,T) = A(Cyq,Ty) = @, while A(Cy, T) and A(Cs, Ty) are the normalisers of T and Ty,
respectively. It is easy to check that

O(hsah™') = a(i)a™ (-i) = a(-1)

if so € C4. If so € Cs, then we use the method at the beginning of this section. It suffices
to find some t € T such that tsot™! is fixed by Fy,. Indeed, we can take t = diag(A, 1) with
Al = —A so that (i1)7 = —iA. We get O(so) = w(iA). The value is independent of the choice
of A. We can also do it directly and explicitly, and obtain the same result. The elements of
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0 x
x 1 0/

so they do not belong to SL,(k). Let us describe Ts explicitly by choosing g, € SLy(k) such
that

Os(k) \ SO, (k) are of the form

0 1
g5 F(32) =( 10 )

and putting T, = ¢2T¢51. We choose A € k* such that A9 = —A. Put
p g 8218,

_ A0
a1 =82 01/

such that ¢71F(g1) € Oy (k). Then the representative so € Cs is given b
81 F& P g y

i 0 _ il 0 _
g1(0 _i)agf:gz( 0 _il )gzlaeTw-G,

and so O(so) = w(id). If @ = 1), then taking the norm gives A? and evaluating 1 gives —1.
If sc = (a,a7")0, and so Cg(so) = T or Ty according to whether a7 = +a or a7 = +a7 1,
then A is equal to the normaliser of T or T,, or empty according to the GF-class of Cg(s0).
If so € Cg, the F-stable conjugate of so in T.o is given by diag(aA,a'A)o with A1 = —A. If
0 = nodet|r, then 8((ad,a'A)o) = n(A%) = —1. If so € Cy, the representative of Cy(a) is given

by
ad 0 1 r
g( 0 a4 )g oeT;.0
Again, if 6 = 17 o det|r,, then O((aA,aA)o) = n(A?) = -1.

A.03.3 Suppose G = GLg(k). Consider the characters xs, R%(a, 1, a‘l), R?(a), 1, a)‘l),
RS(nx3), RG(a,n,a7") and RS (w, 1, @7h).

For x3, we use the theorem of Waldspurger. We have (u4, y-) = ((13), @). The 2-cores are
(2,1) and @, and so m, = 2 and m_ = 0. We deduce that i; = 1 and h, = 1. So the cuspidal
function is supported on the class of su with Cg(s)° = SLy(k) X O1(k) and u corresponding to
the partition (2). We find 6(/1, h2) = 1 and so the values of this character are + /3.

If so = (1,1,1)0 and so Cg(so) = Os(k), then one has to understand the set A¥ =
(Ng(T.0).L")F, with the notations of Lemma If h = nl € A, then the L'F-conjugacy
class of "' ThNL’ corresponds to the F-class of n™'F(n) € N1/(TNL’). But Ng(T.0) = Wg(T)® =
Sy, so n‘lF(n) necessarily belongs to TNL" = (T?)°, i.e. h'ThNL is always L'F -conjugate to
T N L" and the only Green function that appears in the formula of R%Q(sau) is Q(STOSE,k)(u). We
also have a similar result for T,. Expressing the elements i = nl as some explicit matrices,
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we find that O(hsoh~!) does not depend on /. It remains to calculate

INGr(T.0)L'F| =L F|INgr(T.0)IN, £ (Cr(0)°) !

(A.0.3.3.1) 5
=|SOs(9)l - 2(q —1)” - 2(q - 1),

For T,,, we have
(A.0.3.3.2) INgr (To.0)LF| = 1S05(g)| - 2(g — 1)(g* — 1) - 2(q + 1).

The other G(g)-class contained in the G-class of 0 has as representative (1, A2, 1owith A7 = —A,
so for example the value of R?(a, n,a~1)(Cy) differs from R%(a, 1,a71)(Cy) by a sign.

The main difference between GL3(g) and GL(g) is the class (i, 1, —1)o (as opposed to (i, —i)o
for GL,(k)). We have Cg(so) = SLy(k) X Oq(k) so in particular it contains representatives of
each element of Wg(T)°. Therefore, the sets A" are not empty either for T or for T,,. Suppose
that so represents Cg and we want to evaluate R(T;(a, n, a 1) at so. Let t € T be such that
tsot™! is fixed by F. Then tsot™! can be written as diag(ix,y, —ix)o. It is necessary that
xT = xand y7 = y. So a(i)a"}(-1) = a(-1). Applying € gives n(y) = €(C5). Therefore
(a,n,a V) (hsoh™') evaluates ea(—1). Now we evaluate R(T;(w, n,@7') at so. Again we write

tsot™! as diag(ix, y, —ix)o, but which is Fy-stable. It is necessary that x7 = —x and 7 = y.
Applying € gives 1(y) = —€(C5) since X% ¢ (IF;)Z. Therefore (w,n, w™')(hsoh™') evaluates
—ew(id). If so € Cf, then an F-stable element diag(ax, y,a 'x)o = tsot™! satisfies x7 = —x.

and y7 = y. Therefore (@, 1, a ') (hsoh™!) evaluates —ea(a*?), where the +2 power is due to
permutation of "eigenvalues". For (w, 1, w™ ) at C;—" the calculation is similar.
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Table A.1 — The Character Table of GL;(g).<o>

1,10 (i, —i)o (a,a Yo
12 ) 1 a1 =1 Al =1 at =1 At =1
G G Cs Cy Cs Ce(a) Cr(a) Cs(a) Co(a)
R$(1, 1) 0 -7 N 0 0 0 0 0 0
Id 1 1 1 1 1 1 1 1 1
nld 1 1 1 1 -1 1 1 -1 -1
St q 0 0 1 -1 1 -1 1 -1
nst q 0 0 1 1 1 -1 -1 1
%%A?QLV g+1 1 1 2a(-1) 0 a(@®) + a(a™?) 0 a(@®) + a(a?) 0
W%e (w) 1-gq 1 1 0 2w(id) 0 w(a) + w(@™) 0 w(@A) + w(@ 1)
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Table A.2 — The Character Table of GL3(g).<0>, (i)

(1,1,1)o (i,1,-i)o
(1% 3 1% @
cr Ccy (4 c (4 C Cy c: C; C;
(a,1,a7 Yo
e | a1l =1 a1l =1 a1t =
s Cy Cy C; Cg Cg Cy Cy
X3 0 0 0 0 0 0 i i -\i N
0 0 0 0
nx3 0 0 0 0 0 0 \q i N i
0 0 0 0
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Table A.3 — The Character Table of GL3(q).<0>, (ii)

cy T c; C; 3 C; Cy c: C; C;
Cs Cy Cy C; Cq Cg Cy Cy
Id 1 1 1 1 1 1 1 1 1 1
1 1 1
nld 1 -1 1 -1 1 -1 1 1 -1 -1
€ € €
X2 q q 0 0 q q 0 0 0 0
1 -1 -1
nx2 q -q 0 0 q -q 0 0 0 0
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Table A.4 — The Character Table of GL3(g).<0>, (iii)

cy T c; C; 3 C; Cy c: C; C;
Cs Cy Cy C; Cq Cg Cy Cy
RE(Idy, 1) 1 -1 1 -1 q -q 0 0 0 0
€ —€ —€
RE(n1d,1d) 1 1 1 1 q q 0 0 0 0
1 -1 -1
RE(St, 1) q -q 0 0 1 -1 1 1 -1 -1
—€ —€ €
RE(nSt,1d) q q 0 0 1 1 1 1 1 1
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Table A.5 — The Character Table of GL3(g).<0>, (iv)

cy Cy c C; 3 (G Cy C: C; Cs
Cct Cq Cy C; Cq Cg Cy Cy
(a,1,a7Y) g+1 g+1 1 1 @+Da=1) | (q+Da=1) a(-1) a(-1) a(-1) a(-1)
a(@®) +a@?) 0 a(@®) +a@?)
(a,n a7 q+1 -1 1 -1 @+Da=1) | =(@+Da=1) | a=1) a(=1) —a(=1) —a(=1)
e(a(@®) + a(a?)) 0 —e(a(@®) + a(@2))
(1,07 —g+1 —q+1 1 1 (g + Dw(d) | (—q+Da(id) w(id) w(id) w(id) w(id)
0 w(@) + w@?) (@) + w(@1A)
(@m0 —g+1 g-1 1 -1 @-Dwd) | (—g+Dwld) | —wid) —w(id) w(id) w(id)
0 e(w(@) + w(@™)) —e(@(@l) + w@' )
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