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Ce sont les sévères artistes Que l'aube attire à ses blancheurs, Les savants, les inventeurs tristes, Les puiseurs d'ombre, les chercheurs, Qui ramassent dans les ténèbres Les faits, les chiffres, les algèbres, Le nombre où tout est contenu, Le doute où nos calculs succombent, Et tous les morceaux noirs qui tombent Du grand fronton de l'inconnu ! Victor Hugo (Les mages) i

Résumé

A u delà de ses mécanismes génétiques, le cancer peut être compris comme une maladie de réseaux qui résulte souvent de l'interaction entre différentes perturbations dans un réseau de régulation cellulaire. La dynamique de ces réseaux et des voies de signalisation associées est complexe et requiert des approches intégrées. Une d'entre elles est la conception de modèles dits mécanistiques qui traduisent mathématiquement la connaissance biologique des réseaux afin de pouvoir simuler le fonctionnement moléculaire des cancers informatiquement. Ces modèles ne traduisent cependant que les mécanismes généraux à l'oeuvre dans certains cancers en particulier.

Cette thèse propose en premier lieu de définir des modèles mécanistiques personnalisés de cancer. Un modèle générique est d'abord défini dans un formalisme logique (ou Booléen), avant d'utiliser les données omiques (mutations, ARN, protéines) de patients ou de lignées cellulaires afin de rendre le modèle spécifique à chacun. Ces modèles personnalisés peuvent ensuite être confrontés aux données cliniques de patients pour vérifier leur validité. Le cas de la réponse clinique aux traitements est exploré en particulier dans ce travail. La représentation explicite des mécanismes moléculaires par ces modèles permet en effet de simuler l'effet de différents traitements suivant leur mode d'action et de vérifier si la sensibilité d'un patient à un traitement est bien prédite par le modèle personnalisé correspondant. Un exemple concernant la réponse aux inhibiteurs de BRAF dans les mélanomes et cancers colorectaux est ainsi proposé.

La confrontation des modèles mécanistiques de cancer, ceux présentés dans cette thèse et d'autres, aux données cliniques incite par ailleurs à évaluer rigoureusement leurs éventuels bénéfices dans la cadre d'une utilisation médicale. La quantification et l'interprétation de la valeur pronostique des biomarqueurs issus de certains modèles méchanistiques est brièvement présentée avant de se focaliser sur le cas particulier des modèles capables v de sélectionner le meilleur traitement pour chaque patient en fonction des ses caractéristiques moléculaires. Un cadre théorique est proposé pour étendre les méthodes d'inférence causale à l'évaluation de tels algorithmes de médecine de précision. Une illustration est fournie à l'aide de données simulées et de xénogreffes dérivées de patients. L'ensemble des méthodes et applications décrites tracent donc un chemin, de la conception de modèles mécanistiques de cancer à leur évaluation grâce à des modèles statistiques émulant des essais cliniques, proposant ainsi un cadre pour la mise en oeuvre de la médecine de précision en oncologie.
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Enfin merci à Honorine pour tout le reste, c'est à dire pour l'essentiel. Si "on ne possède d'un être que ce qu'on change en lui" 1 , ne doute jamais qu'une large portion de ce travail t'appartient. Son auteur quant à lui ne s'appartient déjà plus tout à fait… Preface T he understanding of cancer has progressed dramatically in recent decades, fueled in particular by the contribution of increasingly precise and abundant biological data. These advances have taken cancer modeling from theory to practice: it is now possible to simulate the molecular mechanisms of cancer in great detail. But are cancer models more than objects of scientific investigation? Can they be considered as patient-oriented clinical tools? These questions are at the heart of the present thesis which will focus on specific and limited examples to bring some partial answers to these general questions. The following chapters will thus propose a comprehensive journey, from the design of a cancer model to its clinical application.

In more detail, this thesis is structured in three parts, each subdivided into three chapters. Since the whole thesis is about cancer modeling, the first part aims at defining the type of model to be referred to, and in particular models that will be called mechanistic, as well as the object of the modeling, i.e., the molecular networks involved in cancer. So the first part answers the question: what is a cancer model and what is its purpose? It is thus essentially an introduction, intended to outline the concepts and objects studied afterwards.

The second part will be devoted to the methods developed during this thesis to transform qualitative models of molecular networks, known as logical models, into personalized models that can be interpreted clinically. In short, how can a mathematical representation of biological knowledge be transformed into a tool that contributes to the understanding of the clinical manifestations of cancer? This part therefore focuses on the first part of the journey, which is systems biology, starting from the biological question and seeking to model it while beginning to evaluate the clinical perspectives of such a model. xi Finally, the third and last part will look at how the clinical relevance of all the above-mentioned models can be rigorously evaluated, both in their ability to predict the evolution of the disease and in their ability to recommend the most appropriate treatments for each patient. How to quantify and interpret the value of the clinical information delivered by these models? So this is the last part of the path, where the cancer model is considered to be complete, and the aim is to quantify its clinical relevance, using statistical methods.

As for the form of this thesis, it exists both in PDF format and in an online HTML version (https://jonasbeal.github.io/files/PhdThesis/). The two versions are strictly identical but the second one contains some additional interactive graphs or applications. Both documents have been generated with R from the same source files that also include the data and code required for the provided figures 2 . All materials are available on the dedicated GitHub repository (https://github.com/JonasBeal/PhdThesis). 2 The thesis document, both in its PDF version and its online HTML version, is based on the R package bookdown and inspired by the architecture proposed by Ladislas Nalborczyk in his GitHub repository xii

Scientific content

Except for the first part, essentially introductory and based on scientific literature, the different chapters are based on original scientific work done during this thesis (2017)(2018)(2019)(2020) and mentioned at the beginning of each chapter in a box similar to the this one. The main articles behind this thesis are indicated below with one published article and two pre-prints currently under review: xiii T he notion of modeling is embedded in science, to the point that it has sometimes been used to define the very nature of scientific research.
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What is called a model can, however, correspond to very different realities which need to be defined before addressing the object of this thesis which will consist, if one wants to be mischievous, in analyzing models with other models. This semantic elucidation is all the more necessary as this thesis is interdisciplinary, suspended between systems biology and biostatistics. In order to convince the reader of the need for such a preamble, he is invited to ask a statistician and a biologist how they would define what a model is. 

In your own words

A model is first of all an ambiguous object and a polysemous word. It therefore seems necessary to start with a semantic study. Among the many meanings and synonymous proposed by the dictionary (Figure 1.2), while some definitions are more related to art, several find echoes in scientific practice. It is sometimes a question of the physical representation of an object, often on a reduced scale as in Figure 1.1, and sometimes of a theoretical description intended to facilitate the understanding of the way in which a system works [START_REF] Collins | The Collins English Dictionary[END_REF]. It is even sometimes an ideal to be reached and therefore an ambitious prospect for an introduction.

The narrower perspective of the scientist does not reduce the completeness of the dictionary's description to an unambiguous object [Bailer- [START_REF]Scientists' thoughts on scientific models[END_REF]. In an attempt to approach these multi-faceted objects that are the models, Daniela Bailer-Jones interviewed different scientists and asked them the same question: what is a model? Across the different profiles and fields Figure 1.2: Network visualization of model thesaurus entries. Generated with the 'Visual Thesaurus' ressource of study, the answers vary but some patterns begin to emerge (Figure 1.3). A model must capture the essence of the phenomenon being studied. Because it eludes, voluntarily or not, many details or complexity, it is by nature a simplification of the phenomenon. These limitations may restrict its validity to certain cases or suspend it to the fulfilment of some hypotheses. They are not necessarily predictive, but they must be able to generate new hypotheses, be tested and possibly questioned. Finally, and fundamentally, they must provide insights about the object of study and contribute to its understanding.

These definitions circumscribe the model object, its use and its objectives, but they do not in any way describe its nature. And for good reason, because even if we agree on the described contours, the biodiversity of the models remains overwhelming for taxonomists:

Probing models, phenomenological models, computational models, developmental models, explanatory models, impoverished [START_REF]Scientists' thoughts on scientific models[END_REF]. models, testing models, idealized models, theoretical models, scale models, heuristic models, caricature models, exploratory models, didactic models, fantasy models, minimal models, toy models, imaginary models, mathematical models, mechanistic models, substitute models, iconic models, formal models, analogue models, and instrumental models are but some of the notions that are used to categorize models. [START_REF] Frigg | Models in science[END_REF] 

Physical world and world of ideas

Without claiming to be exhaustive, we can make a first simple dichotomy between physical/material and formal/intellectual models [START_REF] Rosenblueth | The role of models in science[END_REF]. The former consists in replacing the object of study by another object, just as physical but nevertheless simpler or better known. These may be models involving a change of scale such as the simple miniature replica placed in a wind tunnel, or the metal double helix model used by Watson and Crick to visualize DNA. In all these cases the model allows to visualize the object of study (Figure 1.4 A and B), to manipulate it and play with it to better understand or explain a phenomenon, just like the scientist with his orrery (Figure 1.1). In the case of biology, there are mainly model organisms such as drosophila, zebrafish or mice, for example. We then benefit from the relative simplicity of their genomes, a shorter time scale or ethical differences, usually to elucidate mechanisms of interest in humans. Correspondence between the target system and its model can sometimes be more conceptual, such as that ones relying on mechanicalelectrical analogies: a mechanical system (e.g. a spring-mass system) can sometimes be represented by an electric network (e.g. a RLC circuit with a resistor, a capacitor and an inductor).

The model is then no longer simply a mimetic replica but is based on an intellectual equivalence: we are gradually moving into the realm of formal models [START_REF] Rosenblueth | The role of models in science[END_REF]. These are of a more symbolic nature and they represent the original system with a set of logical or mathematical terms, describing the main driving forces or similar structural properties as geometrical models of planetary motions summarized by Kepler in Figure 1.4C. Historically these models have often been expressed by sets of mathematical equations or relationships. Increasingly, these have been implemented by computer. Despite their sometimes less analytical and more numerical nature, many so-called computational models could also belong to this category of formal models. There are then many formalisms, discrete or continuous, deterministic or stochastic, based on differential equations or Boolean algebra [START_REF] Fowler | Mathematical models in the applied sciences[END_REF]. Despite their more abstract nature, they offer similar scientific services: it is possi-ble to play with their parameters, specifications or boundary conditions in order to better understand the phenomenon. One can also imagine these formal models from a different perspective, which starts from the data in a bottom-up approach instead of starting from the phenomenon in a topdown analysis. These models will then often be called statistical models or models of data [START_REF] Frigg | Models in science[END_REF]. This distinction will be further clarified in section 1.2.

To summarize and continue a little longer with the astronomical metaphor, the study of a particularly complex system (the solar system) can be broken down into a variety of different models. Physical and mechanical models such as armillary spheres (1.4A and B) make it possible to touch the object of study. In addition, we can observe the evolution of models which, when confronted with data, have progressed from a geocentric to a heliocentric representation to get closer to the current state of knowledge. Sometimes, models with more formal representations are used to give substance to ideas and hypotheses (1.4C). One of the most conceptual forms is then the mathematical language and one can thus consider that the previously mentioned astronomical models find their culmination in Kepler's equations about orbits, areas and periods that describe the elliptical motion of the planets. We refer to them today as Kepler's laws. The model has become a law and therefore a paragon of mathematical modeling [START_REF] Frederick | Mathematical models and their analysis[END_REF].

Preview about cancer models

As we get closer to the subject of our study, and in order to illustrate these definitions more concretely, we can take an interest in the meaning of the word model in the context of cancer research. For this, we restrict our corpus to scientific articles found when searching for "cancer model" in the PubMed article database. Among these, we look at the occurrences of the word model and the sentences in which it is included. This cancerrelated context of model is represented as a tree in Figure 1.5. Some of the distinctions already mentioned can be found here. The mouse and xenograft models, which will be discussed later in this thesis, represent some of the most common physical models in cancer studies. These are animal models in which the occurrence and mechanisms of cancer, usually induced by the biologist, are studied. On the other hand, prediction, prognostic or risk score models refer to formal models and borrow from statistical language.

Another way to classify cancer models may be to group them into the fol- lowing categories: in vivo, in vitro and in silico. The first two clearly belong to the physical models but one uses whole living organisms (e.g. a human tumor implanted in an immunodeficient mouse) and the other separates the living from its organism in order to place it in a controlled environment (e.g. tumor cells in growth medium in a Petri dish). In the thesis, data from both in vivo and in vitro models will be used. However, unless otherwise stated, a model will always refer to a representation in silico. This third category, however, contains a very wide variety of models [START_REF] Thomas S Deisboeck | In silico cancer modeling: is it ready for prime time?[END_REF], to which we will come back in chapter 3. A final ambiguity about the nature of the formal models used in this thesis needs to be clarified beforehand.

Statistics or mechanistic

A rather frequent metaphor is to compare formal models to black boxes that take in input X predictors, or independent variables, and output response variable(s) Y , also named dependent variables. The models then split into two categories (Figure 1.6) depending on the answer to the question: are you modeling the inside of the box or not? 

The inside of the box

The purpose of this section is to present in a schematic, and therefore somewhat caricatural, manner the two competing formal modeling approaches that will be used in this thesis and that we will call mechanistic modeling and statistical modeling. Assuming the unambiguous nature of the predictors and outputs we can imagine that the natural process consists in defining the result Y from the inputs X according to a function of a completely unknown form (Figure 1.6A).

The first modeling approach, that we will call mechanistic, consists in building the box by imitating what we think is the process of data generation, or in other words, by representing the mechanisms at work (Figure 1.6B). This integration of prior knowledge can take different forms. In this thesis it will often come back to presupposing certain relations between entities according to what is known about their behaviour. X 1 which acts on X 3 may correspond to the action of one biological entity on another, supposedly unidirectional; just as the joint action of X 2 and X 3 may reflect a known synergy in the expression of genes or the action of proteins. Mathematically this is expressed here with a perfectly deterministic 1.2. STATISTICS OR MECHANISTIC model defined a priori. All in all, in a purely mechanistic approach, the nature of the relations between entities should be linked to biological processes and the parameters in the model all have biological definitions in such a way that it could even be considered to measure them directly. For example, the coefficient 2 multiplying X 2 X 3 can correspond to a stoichiometric coefficient or a reaction constant which have a theoretical justification or are accessible by experimentation. In some fields of literature these models are sometimes called mathematical models because they propose a mathematical translation of a phenomenon, which does not start from the data in a bottom-up approach but rather from a top-down theoretical framework. In this thesis we will adhere to the mechanistic model name, which is more transparent and less ambiguous compared to other approaches also based on mathematics, without necessarily the other characteristics described above.

The second approach, often called statistical modeling, or sometimes machine learning depending on the precise context and objective, does not necessarily seek to reproduce the natural process of data generation but to find the function allowing the best prediction of Y from X (Figure 1.6C). Pushed to the limit, they are an "idealized version of the data we gain from immediate observation" [START_REF] Frigg | Models in science[END_REF], thus providing a phenomenological description. The methods and algorithms used are then intended to be sufficiently flexible and to make the fewest possible assumptions about the relationships between variables or the distribution of data. Without listing them exhaustively, the approaches such as simple linear regressions or more complex support vector machines [START_REF] Cortes | Support-vector networks[END_REF] or random forests [Breiman, 2001a], which will sometimes be mentioned in this thesis, fall into this category which contains many others [START_REF] Hastie | The elements of statistical learning: data mining, inference, and prediction[END_REF].

Several discrepancies result from this difference in nature between mechanistic and statistical models, some of which are summarized in the Table 1.1. In a somewhat schematic way, we can say that the mechanistic model first asks the question of how and then looks at the result for the output. Conversely, the statistical model first tries to approach the Y and then possibly analyses what can be deduced from it, regarding the importance of the variables or their relationships in a post hoc approach [START_REF] Ishwaran | Variable importance in binary regression trees and forests[END_REF][START_REF] Manica | Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders[END_REF]. The greater flexibility of statistical methods makes it possible to better accept the heterogeneity of the variables, but this is generally done at the cost of a larger number of parameters and therefore requires more data. Moreover, statistical models can be considered as inductive, since they are able to use already generated Table 1.1: Some pros and cons for mechanistic and statistical modeling. Adapted from [START_REF] Baker | Mechanistic models versus machine learning, a fight worth fighting for the biological community[END_REF].

Mechanistic modeling Statistical modeling Definition

Seeks to establish a mechanistic relationship between inputs and outputs Seeks to establish statistical relationships between inputs and outputs

Pros and cons

Presupposes and investigates causal links between the variables

Looks for patterns and establishes correlations between variables Capable of handling small datasets

Requires large datasets

Once validated, can be used as a predictive tool in new situations possibly difficult to access through experimentation Can only make predictions that relate to patterns within the data supplied Difficult to accurately incorporate information from multiple space and time scales due to constrained specifications Can tackle problems with multiple space and time scales thanks to flexible specifications Evaluated on closeness to data and ability to make sense of it Evaluated based on predictive performance data to identify patterns in it. Conversely, mechanistic models are more deductive and they can theoretically allow to extrapolate beyond the original data or knowledge used to build the model [START_REF] Baker | Mechanistic models versus machine learning, a fight worth fighting for the biological community[END_REF]. Finally, the most relevant way of assessing the value or adequacy of these models may be quite different. A statistical model is measured by its ability to predict output in a validation dataset different from the one used to train its parameters. The mechanistic model will also be evaluated on its capacity to approach the data but also to order it, to give a meaning. If its pure predictive performance is generally inferior, how can the value of understanding be assessed? This question will be one of the threads of the dissertation.

Mechanistic and statistical models are not perfectly exclusive and rather form the two ends of a spectrum. The definitions and classification of some examples is therefore still partly personal and arbitrary. For instance, the example in 1.6B can be transformed into a model with a more ambiguous 1.2. STATISTICS OR MECHANISTIC status:

logit(P [Y = 1]) = β 1 X 1 + β 23 X 2 X 3
This model is deliberately ambiguous. As a logistic model, it is therefore naturally defined as a statistical model. But the definition of the interaction between X 2 and X 3 denotes a mechanistic presupposition. The very choice of a logistic and therefore parametric model could also result from a knowledge of the phenomenon, even if in practice it is often a default choice for a binary output. Finally, the nature of the parameters β 1 and β 23 is likely to change the interpretation of the model. If they are deduced from the data and therefore optimized to fit Y as well as possible, one will think of a statistical model whose specification is nevertheless based on knowledge of the phenomenon. On the other hand, one could imagine that these parameters are taken from the biochemistry literature or other data. The model will then be more mechanistic. The boundary between these models is further blurred by the different possibilities of combining these approaches and making them complementary [START_REF] Baker | Mechanistic models versus machine learning, a fight worth fighting for the biological community[END_REF], Salvucci et al., 2019a].

A tale of prey and predators

The following is a final general illustration of the concepts and procedures introduced with respect to statistical and mechanistic models through a famous and characteristic example: the Lotka-Volterra model of interactions between prey and predators. This model was, like many students, my first encounter with what could be called mathematical biology. The Italian mathematician Vito Volterra states this system for the first time studying the unexpected characteristics of fish populations in the Adriatic Sea after the First World War. Interestingly, Alfred Lotka, an American physicist deduced the exact same system independantly, starting from very generic process of redistribution of matter among the several components derived from law of mass action [START_REF] Knuuttila | Modelling as indirect representation? the lotka-volterra model revisited[END_REF]. A detailed description of their works and historical formulation can be found in original articles [START_REF] Aj Lotka | Principles of physical biology[END_REF][START_REF] Volterra | Fluctuations in the abundance of a species considered mathematically[END_REF] or dedicated reviews [START_REF] Knuuttila | Modelling as indirect representation? the lotka-volterra model revisited[END_REF].

The general objective is to understand the evolution of the populations of a species of prey and its predator, reasonably isolated from outside intervention. Here we will use Canada lynx (Lynx canadensis) and snowshow hare (Lepus americanus) populations for which an illustrative data set exists [START_REF] Gordon | Conservation of wild life in canada[END_REF]. In fact, commercial records listing the quantities of furs sold by trappers to the Canadian Hudson Bay Company may represent a proxy for the populations of these two species as represented in Figure 1.7A. Denoting the population of lynx L(t) and the population of hare H(t) it can be hypothesized that prey, in the absence of predators, would increase in population, while predators on their own would decline in the absence of prey. A prey/predator interaction term can then be added, which will positively impact predators and negatively impact prey. The system can then be formalized with the following differential questions with all coefficients a 1 , a 2 , b 1 , b 2 > 0:

dH dt = a 1 H -a 2 HL dL dt = -b 1 L + b 2 HL
a 1 H represents the growth rate of the hare population (prey), i.e., the population grows in proportion to the population itself according to usual birth modeling. The main losses of hares are due to predation by lynx, as represented with a negative coefficient in the -a 2 HT term. It is therefore assumed that a fixed percentage of prey-predator encounters will result in the death of the prey. Conversely, it is assumed that the growth of the lynx population depends primarily on the availability of food for all lynxes, summarized in the b 2 HL term. In the absence of hares, the lynx population decreases, as denoted by the coefficient -b 1 L. Important features of mechanistic models are illustrated here: the equations are based on a priori knowledge or assumptions about the structure of the problem and the parameters of the model can be interpreted. a 1 , for example, could correspond to the frequency of litters among hares and the number of offspring per litter. This being said, the structure of the model having been defined a priori, it remains to determine its parameters. Two options would theoretically be possible: to propose values based on the interpretation of the parameters and ecological knowledge, or to fit the model to the data in order to find the best parameters. For the sake of simplicity, and because this example has only a pedagogical value in this presentation, we propose to determine them approximately using the following Taylor-based approximation: 

1 y(t) dy dt ≃ 1 y(t) y(t + 1) -y(t -1)
2

By applying this approximation to the two equations of the differential system and plotting the corresponding linear regressions (Figures 1.7B and C), we can obtain an evaluation of the parameters such as a 1 = 0.82, a 2 = 0.0298, b 1 = 0.509, b 2 = 0.0129. By matching the initial conditions to the data, the differential system can then be fully determined and solved numerically (Figures 1.7D). Comparison of data and modeling provides a good illustration of the virtues and weaknesses of a mechanistic model. Firstly, based on explicit and interpretable hypotheses, the model was able to recover the cyclical behaviour and dependencies between the two species: the increase in the lynx population always seems to be preceded by the increase in the hare population. However, the amplitude of the oscillations and their periods are not exactly those observed in the data. This may be related to approximations in the evaluation of parameters, random variation in the data or, of course, simplifications or errors in the structure of the model itself.

Besides, if one tries to carry out a statistical modeling of these data, it is very likely that it is possible to approach the curve of populations evolution much closer, especially for the hares. But should it be expressed simply as a function of time or should a joint modeling be proposed? The nature of the causal link between prey and predators will be extremely difficult to establish without strong hypotheses such as those of the mechanistic model. On the other hand, if populations in later years had to be predicted as accurately as possible, it is likely that a sufficiently well-trained statistical model would perform better. Finally, and this is a fundamental difference, the mechanistic model enables to test cases or hypotheses that go beyond the scope of the data. Quite simply, by playing with the variables or parameters of the model, we can predict the exponential decrease of predators in the absence of prey and the exponential growth of prey in the absence of predator. More generally, it is also possible to study analytically or numerically the bifurcation points of the system in order to determine the families of behaviours according to the relative values of the parameters [START_REF] William | The computational beauty of nature: Computer explorations of fractals, chaos, complex systems, and adaptation[END_REF]. It is not possible to infer these new or hypothetical behaviours directly from the data of the statistical model. This is theoretically possible on the basis of the mechanistic model, provided that it is sufficiently relevant and that its operating hypotheses cover the cases under investigation. Now that the value of mechanistic models has been 1.3. SIMPLICITY IS THE ULTIMATE SOPHISTICATION illustrated in a fairly theoretical example, all that remains is to explore in the next chapters how they can be built and used in the context of cancer.

Simplicity is the ultimate sophistication

Before concluding this modeling introduction, it is important to highlight one of the most important points already introduced in a concise manner by the poet Paul Valéry at the beginning of this chapter. Whatever its nature, a model is always a simplified representation of reality and by extension is always wrong to a certain extent. This is a generally well-accepted fact, but it is crucial to understand the implications for the modeler. This simplification is not a collateral effect but an intrinsic feature of any model:

No substantial part of the universe is so simple that it can be grasped and controlled without abstraction. Abstraction consists in replacing the part of the universe under consideration by a model of similar but simpler structure. Models, formal and intellectual on the one hand, or material on the other, are thus a central necessity of scientific procedure. [START_REF] Rosenblueth | The role of models in science[END_REF] Therefore, a model exists only because we are not able to deal directly with the phenomenon and simplification is a necessity to make it more tractable [START_REF] Potochnik | Idealization and the Aims of Science[END_REF]. This simplification appeared many times in the studies of frictionless planes or theoretically isolated systems, in a totally deliberate strategy. However, this idealization can be viewed in several ways [START_REF] Weisberg | Three kinds of idealization[END_REF]. One of them, called Aristotelian or minimal idealization, is to eliminate all the properties of an object that we think are not relevant to the problem in question. This amounts to lying by omission or making assumptions of insignificance by focusing on key causal factors only [START_REF] Frigg | Models in science[END_REF]. We therefore refer to the a priori idea that we have of the phenomenon. The other idealization, called Galilean, is to deliberately distort the theory to make it tractable as explicited by Galileo himself:

We are trying to investigate what would happen to moveables very diverse in weight, in a medium quite devoid of resistance, so that the whole difference of speed existing between these moveables would have to be referred to inequality of weight alone. This fairly pragmatic approach should make it possible to evolve iteratively, reducing distortions as and when possible. This could involve the addition of other species or human intervention into the Lotka-Volterra system described above. A three-species Lotka-Volterra model can however become chaotic [START_REF] William | The computational beauty of nature: Computer explorations of fractals, chaos, complex systems, and adaptation[END_REF], and therefore extremely difficult to use and interpret, thus underlining the importance of simplifying the model.

We will have the opportunity to come back to the idealizations made in the course of the cancer models but it is already possible to give some orientations. The biologist who seeks to study cancer using cell lines or animal models is clearly part of Galileo's lineage. The mathematical or in silico modeler has a more balanced profile. The design of qualitative mechanistic models based on prior knowledge, which is the core of the second part of the thesis, is more akin to minimal idealization, which seeks to highlight the salient features of a system. The Galilean consistins in studying mathematically tractable systems was also important. To take the example of prey-predator interactions, a differential system with more variables quickly becomes impossible to solve by hand. The development of more and more powerful computers has apparently pushed back the limits of the computationally tractable systems and thus of Galilean idealization. However, this is always necessary, for example in high-dimensional statistical approaches (thousands of variables) where the modelers decide to consider the variables independently while neglecting their interactions.

Because of the complexity of the phenomena, simplification is therefore a necessity. The objective then should not necessarily be to make the model more complex, but to match its level of simplification with its assumptions and objectives. Faced with the temptation of the author of the model, or his reviewer, to always extend and complicate the model, it could be replied with Lewis Carrol words 1 : "That's another thing we've learned from your Nation," said Mein Herr, "map-making. But we've carried it much further 1.3. SIMPLICITY IS THE ULTIMATE SOPHISTICATION than you. What do you consider the largest map that would be really useful?" "About six inches to the mile." "Only six inches!" exclaimed Mein Herr. "We very soon got to six yards to the mile. Then we tried a hundred yards to the mile. And then came the grandest idea of all! We actually made a map of the country, on the scale of a mile to the mile!" "Have you used it much?" I enquired. "It has never been spread out, yet," said Mein Herr: "the farmers objected: they said it would cover the whole country, and shut out the sunlight! So we now use the country itself, as its own map, and I assure you it does nearly as well." Lewis Carroll, Sylvie and Bruno (1893)

Summary

Any scientific model has the vocation to allow the understanding of its object of study by proposing a simplification simpler to handle. A model can be physical or purely intellectual. This thesis will focus on the latter, in particular models that explicitly highlight the mechanisms and relationships between the underlying entities of the system. These models will be called mechanistic and sometimes opposed to statistical models or machine learning models which do not presuppose a priori knowledge on the internal mechanisms of the system.

C h a p t e r 2

Cancer as deregulation of complex machinery

"Does not the entireness of the complex hint at the perfection of the simple?" Edgar Allan Poe (Eureka, 1848) A rmed with all these models, whether statistical or mechanistic, we are going to look at cancer, a particularly complex system that fully justifies their use. Since the first chapter recalled how important prior knowledge of the phenomenon under study is for designing models, whatever their nature, this chapter will briefly summarize some of the most important characteristics of this disease before returning to the models themselves in the next chapter. Without aiming for exhaustiveness, and after an epidemiological and statistical description, we will focus on the most useful information for the modeler, i.e., the underlying biological mechanisms and available data. 

What is cancer?

Cancer can be described as a group of diseases characterized by uncontrolled cell divisions and growth which can spread to surrounding tissues. Descriptions of this disease, especially when associated with solid tumors, have been found as far back as ancient Egyptian documents, at least 1600 BC and we know from the first century A.D. with Aulus Celsus that it is better to remove the tumors and this as soon as possible [Hajdu, 2011a]. Progress will accelerate during the Renaissance with the renewed interest in medicine, and anatomy in particular, which will advance the knowledge of tumor pathology and surgery [Hajdu, 2011b]. The progress of anatomical knowledge has also left brilliant testimonies in the field of painting, which 2.1. WHAT IS CANCER? make the renown of the Renaissance today. The precision of these artists' traits has also allowed some retrospective medical analyses, some of them going so far as to identify the signs of a tumor in some of the subjects of these paintings [START_REF] Bianucci | Earliest evidence of malignant breast cancer in renaissance paintings[END_REF]. Such is the bluish stain on the left breast of the Bathsheba painted by Rembrandt (Figure 2.1) which has been subject to controversial interpretations, sometimes described as an example of "skin discolouration, distortion of symmetry with axillary fullness and peau d'orange" [START_REF] Allen | Rembrandt's bathsheba: the dark shadow of the left breast[END_REF] and sometimes spared by photonic and computationnal analyses [START_REF] Heijblom | Monte carlo simulations shed light on bathsheba's suspect breast[END_REF]. The mechanisms of the disease only began to be elucidated with the appearance of the microscope in the 19th century, which revealed its cellular origin [Hajdu, 2012a]. The classification and description of cancers is then gradually refined and the first non-surgical treatments appear with the discovery of ionising radiation by the Curies [Hajdu, 2012b]. The 20th century is then the century of understanding the causes of cancer [Hajdu and[START_REF] Steven | A note from history: landmarks in history of cancer, part 5[END_REF][START_REF] Steven | A note from history: Landmarks in history of cancer, part 6[END_REF]. Some environmental exposures are characterized as asbestos or tobacco. Finally, the biological mechanisms become clearer with the identification of tumor-causing viruses and especially with the discovery of DNA [START_REF] James | Molecular structure of nucleic acids[END_REF]. The foundations of our current understanding of cancer date back to this period, which marks the beginning of the molecular biology of cancer. It is this branch of biology that contains the bulk of the knowledge that will be used to build our mechanistic models, and it will be later detailed in Section 2.3.

One of the ways to read this brief history of cancer is to see that theoretical and clinical progresses have not followed the same timeframes. The medical and clinical management of cancers initially progressed slowly but surely, and this in the absence of an understanding of the mechanisms of cancer. Conversely, the theoretical progress of the last century has not always led to parallel medical progress, except on certain specific points. The interaction between the two is therefore not always obvious. The transformation of fundamental knowledge into clinical impact is therefore of particular importance. This is what is called translational medicine, the aim of which is to go from laboratory bench to bedside [START_REF] Randall | Translational medicine definition by the european society for translational medicine[END_REF]. It is in this perspective that we will analyze the mechanistic models studied in this thesis. Their objective is to integrate biological knowledge, or at least a synthesis of this knowledge, in order to transform it into a relevant clinical information. 

Cancer from a distance: epidemiology and main figures

Before going down to the molecular level, it is important to detail some figures and trends in the epidemiology of cancer today. Following the description in the previous section, cancer is first and foremost defined as a disease. Considered to be a unique disease, it caused 18.1 million new cancer cases and 9.6 million cancer deaths in 2018 according to the Global Cancer Observatory affiliated to World Health Organization [START_REF] Bray | Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[END_REF]. However, these aggregated data conceal disparities of various kinds. The first one is geographical. Indeed, mortality figures make cancer one of the leading causes of premature death in most countries of the world but its importance relative to other causes of death is even greater in the more developed countries (Figure 2.2). All in all, cancer is the first or second cause of premature death in almost 100 countries worldwide [START_REF] Bray | Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries[END_REF]]. These differences call for careful consideration of the impact of population age structures and health-related covariates.

A second disparity lies in the different types of cancer. If we classify tumors solely according to their location, i.e., the organ affected first, we already obtain very wide differences. First of all, the incidence varies considerably (Figure 2.3A)). Cancers do not occur randomly anywhere in the body and certain environments or cell types appear to be more favourable [Tomasetti and Vogelstein, 2015]. Mortality is also highly variable but is not directly inferred from incidence. Not all types of cancer have the same prognosis (Figure 2.3A and B) and survival rates [START_REF] Liu | An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics[END_REF]. Although breast cancer is much more common than lung cancer, it causes fewer deaths because its prognosis is, on average, much better. The mechanisms at work in the emergence of cancer are therefore not necessarily the same as those that will govern its evolution or its response to treatment. And still on the response to treatment, Figure 2.3B highlights another disparity: not only are the survival prognosis associated with each cancer very different, but the evolution (and generally the improvement) of these prognoses has been very uneven over the last few decades. This means that theoretical and therapeutic advances have not been applied to all types of cancer with the same success. It is one more indication of the diversity of cancer mechanisms in different tissues and biological contexts, which make it impossible to find a panacea, and which, on the contrary, encourage us to carefully consider the particularities of each tumor, both to understand them and to treat them. Under a generic name and in spite of common characteristics, the cancers thus appear as extremely heterogeneous. And to understand the sources of this heterogeneity, it is necessary to consider the disease on a smaller scale.

Basic molecular biology and cancer

If it is not possible and desirable to summarize here the state of knowledge about the biology of cancer, we are going to give a very partial vision focused on the main elements used in this thesis, thus aiming to make it a self-sufficient document. The details necessary for a finer and more general understanding can be found in dedicated textbooks such as [START_REF] Alberts | Molecular biology of the cell. garland science[END_REF] and Weinberg [2013].

Central dogma and core principles

Some of the principles that govern biology can be described at the level of one of its simplest element, the cell. Let us consider for the moment a perfectly healthy cell. It must ensure a certain number of functions necessary for its survival and, sometimes, for its division/reproduction. These functions are encoded to a large extent in its genetic information in the form of DNA, which is stable and shared by the different cells since it is defined at the level of the individual. Most biological functions, however, are not performed by DNA itself which remains in the nucleus of the cell. The DNA is thus transcribed into RNA, another nucleic acid which, in addition to performing some biological functions, becomes the support of 1975-1977 and 2006-2012; data retrieved from [START_REF] Jemal | Annual report to the nation on the status of cancer, 1975-2014, featuring survival[END_REF].

the genetic information in the cell. The RNA is then itself translated into new molecules composed of long chains of amino acid residues and called proteins. They are the ones that execute most of the numerous cellular functions: DNA replication, physical structuring of the cell, molecule transport within the cell etc. A rather simplistic but fruitful way to understand this functioning is to consider it as a progressive transfer of biological information from DNA to proteins, which has sometimes been summarized as the central dogma of the molecular biology (2.4), first stated Francis Crick [START_REF] Crick | Central dogma of molecular biology[END_REF].

However, many changes would be necessary to clarify this scheme and the uni-directional nature was questioned early on. Above all, a large number of regulations interact with and disrupt this master plan. The genes are not always all transcribed, or at least not at constant intensities, interrupt- ing or varying the chain upstream. This modulation in the transcription of genes can be induced by proteins, called transcription factors. After a gene transcription, its expression can still be regulated at various stages. RNAs can also be degraded more or less rapidly. RNAs can be reshaped in their structure during their maturation by a process called splicing, which varies the genetic information they carry. Finally, proteins are subject to all kinds of modifications referred to as post-translational, which can change the chemical nature of certain groups or modify the three-dimensional structure of the whole protein. For instance, some proteins perform their function only if a specific amino acid residue is phosphorylated. In addition, these modifications can be transmitted between proteins, further complicating the flow of information. All these possibilities of regulation play an absolutely essential role in the life of the cell by allowing it to adapt to different contexts, situations and development stages.

From the same genetic material, a cell of the eye and a cell of the heart can thus perform different functions. Similarly, the same cell subjected to different stimuli at different times can provide different responses because these molecular stimuli trigger a regulation of its programme. But all these regulatory mechanisms can be corrupted.

A rogue machinery

With the above knowledge we can now return to the definition of cancer as an uncontrolled division of cells that can lead to the growth of a tumor that eventually spreads to the surrounding tissues. Therefore, this corresponds to normal processes, like cell division and reproduction, that are no longer regulated as they should be and are out of control. Experiments on different model organisms have gradually identified genetic mutations as a major source of these deregulations [START_REF] Peter | The clonal evolution of tumor cell populations[END_REF][START_REF] E Premkumar Reddy | A point mutation is responsible for the acquisition of transforming properties by the t24 human bladder carcinoma oncogene[END_REF]] until cancer was clearly considered as a genetic disease making Renato Dulbecco, Nobel Laureate in Medicine for his work on oncoviruses, say:

If we wish to learn more about cancer, we must now concentrate on the cellular genome. [START_REF] Dulbecco | A turning point in cancer research: sequencing the human genome[END_REF]. However, cancer is not a Mendelian disease for which it would be sufficient to identify the one and only gene responsible for deregulation. Indeed, the cell has many protective mechanisms. For example, if a genetic mutation appears in the DNA, it has a very high chance of being repaired by dedicated mechanisms. And if it is not repaired, other mechanisms will take over to trigger the programmed death of the cell, called apoptosis, before it can proliferate wildly. So a cancer cell is probably a cell that has learned to resist this cell death. Similarly, in order to generate excessive growth, a cell will need to be able to replicate itself many times. However, there are pieces of sequences on chromosomes called telomeres that help to limit the number of times each cell can replicate. A cancer cell will therefore have to manage to bypass this protection. Thus we can schematically define the properties that must be acquired by the cancereous cells in order to truly deviate the machinery. In an influential article, these properties were summarized in six hallmarks (Figure 2.5) which are: resisting cell death, enabling replicative immortality, sustaning proliferative signaling, evading growth suppressors, activating invasion and inducing angiogenesis [START_REF] Hanahan | The hallmarks of cancer[END_REF]. Two new ones were subsequently added in the light of advances in knowledge [START_REF] Hanahan | Hallmarks of cancer: the next generation[END_REF]: deregulating cancer energetics and avoiding immne destruction. The acquisition of these capacities generally requires many genetic mutations and is therefore favoured by an underlying genome instability or tumor-promoting inflammation.

Each of these characteristics, or hallmarks, constitutes a research program in its own right. And for each one there are genetic alterations. These are tissue-specific or not, specific to a hallmark or common to several of them [START_REF] Hanahan | The hallmarks of cancer[END_REF]. In any case, cancer can only result from the combination of different alterations that invalidate several protective mechanisms at the same time. This is often part of a multi-step process of hallmark acquisition that has been experimentally documented in some specific cases [START_REF] William C Hahn | Creation of human tumour cells with defined genetic elements[END_REF] or more recently inferred from genome-wide data for human patients [Tomasetti et al., 2015]. In summary, it appears that in order to study the functioning of cancer cells it is necessary to look at several mechanisms and to be able to consider them not separately but together, in as many different patients as possible. This ambitious programme has been made possible by a technological revolution.

The new era of genomics

From sequencing to multi-omics data

In 2001, the first sequencing of the human genome symbolized the beginning of a new era, that of what will become high-throughput genomics [START_REF] Lander | Nicolas Le Novere. Quantitative and logic modelling of molecular and gene networks[END_REF][START_REF] Venter | The sequence of the human genome[END_REF]. From the end of the 20th century, biological data started to accumulate at an ever-increasing rate [START_REF] Reuter | High-throughput sequencing technologies[END_REF], feeding and accelerating cancer research in particular [START_REF] Michael R Stratton | The cancer genome[END_REF][START_REF] Meyerson | Advances in understanding cancer genomes through second-generation sequencing[END_REF]. The ability to sequence the human genome as a whole, for an ever-increasing number of individuals, has enabled less biased and more systematic studies of the causes of cancer [START_REF] Lander | Initial impact of the sequencing of the human genome[END_REF]. The number of genes associated with cancer increased drastically and some very important genes such as BRAF or PIK3CA have been identified [START_REF] Davies | Mutations of the braf gene in human cancer[END_REF][START_REF] Samuels | High frequency of mutations of the pik3ca gene in human cancers[END_REF]. Progress also extended to the gene expression data. Gene-expression arrays have made an important contribution by providing access to transcriptomic data (RNA), i.e., what has been transcribed from DNA and is therefore one step further in terms of biological information. This information has made it possible to further explore the differences between normal and tumor cells [START_REF] Charles M Perou | Distinctive gene expression patterns in human mammary epithelial cells and breast cancers[END_REF], or even to refine the classification of cancers, which until now has been done mainly according to the tumor site. Breast cancers are thus divided into subtypes with different combinations of molecular markers that facilitate the understanding of clinical behavior [START_REF] Charles M Perou | Molecular portraits of human breast tumours[END_REF]. One step further, we also note the appearance of prognostic gene signatures such as gene expression patterns correlated with the survival of patients [ [START_REF] Van't Veer | Gene expression profiling predicts clinical outcome of breast cancer[END_REF]. This revolution was then extended to other types of data such as proteins (proteomics), reversible modifications of DNA or DNA-associated proteins (epigenomics), metabolites (metabolomics) and others, each representing a perspective that can complement the others to better understand biological mechanisms, particularly in the case of diseases [START_REF] Hasin | Multi-omics approaches to disease[END_REF]. We have thus entered the era of multi-omics data [START_REF] Vucic | Translating cancer 'omics' to improved outcomes[END_REF].

State-of-the art of cancer data

With respect to cancer in particular, this wealth of data is particularly represented by a family of studies conducted by The Cancer Genome Atlas (TCGA) consortium, started in 2008 [Network et al., 2008]. Cohorts of several hundred patients are thus sequenced over the years for different types of cancer [START_REF] Kristin R Swanson | Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion[END_REF], resulting today in a total of 11,000 tumors from 33 of the most prevalent forms of cancer [Ding et al., 2018]. Figure 2.6 provides a partial but striking overview of the depth of data available under this program. We can see the frequencies of alterations of certain groups of genes for a list of cancer types, making it possible to visualize the disparities already anticipated in section 2.2 based on patient survival. There are indeed important differences between the organs but also between the different subtypes associated with the same organ. And this representation only corresponds to one layer of data, that of genetic alterations. It could be used for transcriptomic, epigenomic or proteomic data, thus giving rise to an incredibly complex photography.

However, the diversity of data available for cancer research extends far beyond this, both in terms of technology and type of data. This may be data from model organisms such as mice or even tumors of human origin made more suitable for experimentation. In the latter category, it is crucial to mention the huge amount of data available on cell lines, extracted from human tumors and transformed to be studied in culture. It is then possible to go beyond descriptive data and vary the experimental conditions in order to study the responses of these cells to perturbations and to enrich our knowledge. This provides an opportunity to know the response to more than 100 drugs of about 700 cell lines [Yang et al., 2012]. The richness of these data, coupled with the omic profiling of each cell line, enables to study the determinants of response to treatment with unprecedented scope [START_REF] Iorio | A landscape of pharmacogenomic interactions in cancer[END_REF]. More recently, but following a similar logic, other types of inhibition screenings have been proposed based on a more specific technique called CRISPR-Cas9 [Behan et al., 2019]. The simplicity of the cell lines in relation to the original tumors makes all these studies possible but sometimes hinders the clinical application of the knowledge acquired. For this reason, other types of biological models have been developed, including patient-derived xenografts (PDX) which is an implant of human tumors in mice to ensure the existence of a certain tumor microenvironment [START_REF] Hidalgo | Patient-derived xenograft models: an emerging platform for translational cancer research[END_REF], while maintaining drug screening possibilities [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF]. These two types of data, cell lines and PDX, have been used in this thesis, in addition to TCGA patient data, thus justifying the limitation of this presentation, which could otherwise be extended to other types of biological models. Similarly, other technologies are becoming increasingly important in the generation of cancer data, such as single-cell sequencing [START_REF] Nicholas E Navin | The first five years of single-cell cancer genomics and beyond[END_REF], but will not be used in this work.

Data and beyond: from genetic to network disease

All that remains to be done now is to make sense of all these data, to organize them, because cancer understanding does not flow directly from the abundance of data, and the ability to produce it may have been outpaced by the ability to analyze it [START_REF] Zsofia | Cancer genomics and inherited risk[END_REF]. A striking example is that of the prognostic signatures mentioned above. The many signatures or lists of genes proposed, even for the same cancer type, share relatively few genes, are difficult to interpret and their efficiency is sometimes poorly reproducible [START_REF] Domany | Using high-throughput transcriptomic data for prognosis: a critical overview and perspectives[END_REF]. Even more surprisingly, most signatures composed of randomly selected genes were also found to be associated with patient survival [START_REF] Venet | Most random gene expression signatures are significantly associated with breast cancer outcome[END_REF]. One of the main avenues for improving the interpretability of the data is the integration of the prior knowledge we have of the phenomena, especially in the case of cancer [START_REF] Domany | Using high-throughput transcriptomic data for prognosis: a critical overview and perspectives[END_REF].

This a priori knowledge is in fact already present in Figure 2.6 since genetic alterations have been grouped in several categories called pathways. A pathway is a group of biological entities and associated chemical reactions, working together to control a specific cell function like apoptosis or cell division. The interest of these groupings may be understood based on the description of hallmarks. Indeed, if the "aim" of a cancer cell is to inactivate each of the protective functions, then it is more relevant to think not by gene but by function. Inactivating only one of the genes associated with the function may be sufficient and it is no longer necessary to inactivate the others. Numerous alterations in a large number of genes in various patients result often in the same key impaired pathways, like alterations of cell cycle or angiogenesis for instance [START_REF] Jones | Core signaling pathways in human pancreatic cancers revealed by global genomic analyses[END_REF]. It is therefore possible to improve the stability and interpretability of analyses by moving from the gene scale to the pathway scale [START_REF] Drier | Pathway-based personalized analysis of cancer[END_REF]. More generally, the integration of biological knowledge often leads to improved performance in various cancer-related prediction tasks, either through the selection of variables or by taking into account the structure of the variables [START_REF] Bilal | Improving breast cancer survival analysis through competition-based multidimensional modeling[END_REF][START_REF] Ferranti | The value of prior knowledge in machine learning of complex network systems[END_REF]. Increasingly, the biological variables are not interpreted separately but in relation to each other [START_REF] Barabasi | Network biology: understanding the cell's functional organization[END_REF]. This is reflected in the emergence of more and more resources to summarize and represent signaling pathways and associated networks such as SIGNOR [START_REF] Perfetto | Signor: a database of causal relationships between biological entities[END_REF] or the Atlas of Cancer Signaling Network [START_REF] Kuperstein | Atlas of cancer signalling network: a systems biology resource for integrative analysis of cancer data with google maps[END_REF]. Like other diseases, cancer then goes from a genetic disease to a network disease [START_REF] Del | Diseases as network perturbations[END_REF] and one can study how all kinds of genetic alterations affect the wiring of these networks [START_REF] Pawson | Oncogenic re-wiring of cellular signaling pathways[END_REF], and modify the cellular functions leading to the previously described cancer hallmarks as depicted schematically in Figure 2.7. In short, the richness of the data did not make it less necessary to use prior knowledge in order to make the analyses more interpretable and more robust.

The final step, to obtain one of the most complete and integrated visions of cancer biology, is then to integrate omics knowledge with knowledge about the structure of pathways to try to understand in detail how their combinations can lead to so many cancers that are both similar and different. An example of such a representation is given by mapping the TCGA data about genetic alterations, presented in Figure 2.6, on a representation of the different pathways showing not only their internal organization but also their cross-talk [START_REF] Sanchez-Vega | Oncogenic signaling pathways in the cancer genome atlas[END_REF]. This representation is proposed in Figure 2.8 and is one of the most recent and comprehensive view of the kind of tools and data available to the modeler who wants to dissect more deeply the mechanisms involved in cancer. 

CHAPTER 2. CANCER AS DEREGULATION OF COMPLEX MACHINERY

Summary

Cancer is more than ever seen as a genetic disease. Its appearance in a patient results from the accumulation of various genetic alterations that invalidate the protective mechanisms naturally intended to prevent uncontrolled proliferation. The simultaneous consideration of the numerous biological entities involved and the regulatory networks that link them calls for global systems biology methods. Technological developments also provide access to different types of omics data (genes, RNA, proteins, etc.) that provide complementary information, the joint analysis of which allows us to better understand the complexity of the mechanisms involved. It should be noted that many physical models of cancer (cell lines) extend the field of experimentation and generate data.

T he previous chapter identified the need to organize cancer knowledge and data. The integration of biological knowledge, particularly in the form of networks, is a first step in this direction. The deepening of knowledge, however, requires the ability to manipulate objects even more, to experiment, to dissect their behaviour in an infinite number of situations, such as the astronomer with his orrery or physicians with their old anatomical models (Figure 3.1). Is it then possible to create mechanistic models of cancer in the same way? 

Introducing the diversity of mechanistic models of cancer

Modeling cancer is not a new idea. And the diversity of biological phenomena involved in cancer has given rise to an equally important diversity of models and formalisms, which we seek here to give a brief overview in order to better identify the specific models that we will focus on later. One way to order this diversity is to consider the scales of these models (Figure 3.2). Indeed, cancer can be read at different levels, from the molecular level of DNA and proteins, to the cellular level, to the level of tissues and organisms [START_REF] Alexander | Integrative mathematical oncology[END_REF]. Models have been proposed at all these scales, using different formalisms [START_REF] Bellomo | On the foundations of cancer modelling: selected topics, speculations, and perspectives[END_REF] and answering different questions.

Consistent with the evolution of knowledge and data, the early models were at the macroscopic level. While methods and terminologies may have changed, there are nevertheless traces of these models as early as the Cancer can be approached at different scales, from molecules to organs, using different data (dark blue), but often with the direct or indirect objective of contributing to the study of clinically interpretable phenomena (yellow boxes), in particular by studying the influence of anticancer agents (pale blue). Reprinted from [START_REF] Barbolosi | Computational oncology-mathematical modelling of drug regimens for precision medicine[END_REF].

1950s. We then speak rather of mathematical modeling with a meaning that is intermediate between what we have defined as mechanistic models and statistical models [START_REF] Byrne | Dissecting cancer through mathematics: from the cell to the animal model[END_REF]. First, the initiation of tumorigenesis was theorized with biologically-supported mathematical expressions in order to make sense of cancer incidence statistics [START_REF] Armitage | The age distribution of cancer and a multi-stage theory of carcinogenesis[END_REF]Doll, 1954, Knudson, 1971]. These models, however, remained relatively descriptive in that they did not shed any particular light on the biological mechanisms involved and focused on gross characteristics of tumors. The integration of more advanced knowledge as well as the progressive refinement of mathematical formalisms has nevertheless allowed these models to proliferate while gaining in interpretability, with for instance mechanistic models of metastatic relapse [START_REF] Nicolò | Machine learning and mechanistic modeling for prediction of metastatic relapse in early-stage breast cancer[END_REF]. Always on a macroscopic scale, the study of tumor growth has also been the playground of many mathematicians [START_REF] Araujo | A history of the study of solid tumour growth: the contribution of mathematical modelling[END_REF]McElwain, 2004, Byrne, 2010], even predicting invasion or response to surgical treatments using spatial modeling [START_REF] Kristin R Swanson | Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion[END_REF]. This line of research is still quite active today and provides a mathematical basis for comparison with tumor experimental growth [START_REF] Benzekry | Classical mathematical models for description and prediction of experimental tumor growth[END_REF].

Taking it down a step further, it is also possible to model cancer at the cellular level, for example by looking at the clonal evolution of cancer [START_REF] Philipp M Altrock | The mathematics of cancer: integrating quantitative models[END_REF]. The aim is then to understand the impact of the processes of mutation, selection, expansion and cohabitation of different populations of cells, at specifc rates. The accumulation of a mutation in a population of cells can thus be studied [START_REF] Bozic | Accumulation of driver and passenger mutations during tumor progression[END_REF]. Modeling at the cellular level is well suited to the study of interactions between cells, between cancer cells and their environment or with the immune system. Similar to other kinds of studies of population dynamics, formalisms based on differential equations are quite common [START_REF] Bellomo | On the foundations of cancer modelling: selected topics, speculations, and perspectives[END_REF]; but there are many other methods such partial differential equations or agent-based modeling [START_REF] Letort | Physiboss: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling[END_REF].

Finally, at an even smaller scale, it is possible to model the molecular networks at work in cells [Le Novere, 2015]. The aim is then to simulate mathematically how the different genes and molecules regulate each other, transmit information and, in the case of cancer, end up being deregulated [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF]. These models will be the subject of the thesis and will therefore be defined more precisely and used to detail the concepts and tools of systems biology in the following sections. It can already be noted that while these models can integrate the most fundamental biological mechanisms of living organisms, one of the most burning questions is whether it is possible to link them to the larger scales that are clinically more interesting (tissues, organs etc.). Can these models tell us something about the molecular nature of cancer? About patient survival? Their response to treatment? These questions apply to all of the above models, whatever their scales (Figure 3.2), but are more difficult to answer for models defined at molecular scale that are further from the clinical data of interest. The aim of this thesis is to provide potential answers to these questions. One of the ways of approaching these issues has been to propose multi-scale models, which are nevertheless very complex [Anderson andQuaranta, 2008, Powathil et al., 2015]. We will focus here on the use of models defined almost exclusively at the molecular scale, which is assumed to be prominent, to study what can be inferred on the larger scales.

Before restricting the landscape to the molecular level, it is important to point out that the diversity of mechanistic models also extends to the numerous mathematical formalisms encountered. Altrock et al.

[2015] delivers a relatively exhaustive list of these, focusing on modeling at the scale of cell populations. For example, it includes ordinary or partial differential equations, particularly for modeling cell populations, tumor
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volumes, diffusion or concentration equations for various entities (e.g., oxygen or growth factors). Other formalisms, called agent-based, consider the interactions between discrete entities, often cells, each of which may experience events of interest such as mutations or cell death [START_REF] Wang | Clonal evolution in breast cancer revealed by single nucleus genome sequencing[END_REF]. Different more or less discrete formalizations have also been applied to cancer modeling, such as Boolean logic or fuzzy logic [Le Novere, 2015]. Many hybrid models also combine different approaches, such as partial differential equations for a spatial diffusion reaction coupled with cell population modeling using discrete agents on a lattice [START_REF] Philipp M Altrock | The mathematics of cancer: integrating quantitative models[END_REF].

However, the mechanistic nature of the models does not necessarily force them to be deterministic, i.e., to deliver always the same results from the same initial conditions. Indeed, many mechanistic models are based on stochastic or probabilistic processes, which describe the evolution over time of random variables by defining event or transition probabilities. Several examples can be found in the study of the clonal evolution of cancers through branching processes that model different cell events such as mutations, division and death that result in various evolution of the cell population size [START_REF] Durrett | Branching process models of cancer[END_REF][START_REF] Haeno | Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies[END_REF]. These processes fall into the category of Markov processes, which can be found applied to many other examples such as the modeling of cell positions and their evolutions on a two-dimensional lattice [START_REF] Alexander Ra Anderson | Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment[END_REF]. Note that Markov processes will be used and described in more detail in section 4.2. All in all, the strong presence of stochastic approaches thus illustrates the appropriateness of their formalism for cancer modeling where many events seem intrinsically random (e.g., appearance of a mutation) or sometimes appear as such in the current state of knowledge (e.g., change of cellular status or phenotype). Understanding the very nature of these stochastic events and their influence on global behavior is thus a major objective explored by various modeling approaches [START_REF] Piyush B Gupta | Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells[END_REF][START_REF] Baar | A stochastic model for immunotherapy of cancer[END_REF].

Cell circuitry and the need for cancer systems biology

Most biological systems, and certainly cells, fall into the category of complex systems. These are systems made up of many interacting elements. While these systems can be found in many different scientific fields, the cell as a complex system is characterized by the diversity and multifunctionality of its constituent elements (genes, proteins, small molecules, enzymes), which nevertheless contribute to organized and a priori non-chaotic be-haviour [START_REF] Kitano | Computational systems biology[END_REF]. Thus, the role of a protein such as the p53 tumor suppressor can only be understood by taking into account the interplay between its relationships with transcription factors and biochemical modifications of the molecule itself [START_REF] Kitano | Computational systems biology[END_REF]. In a cell, as in any complex system, the multiplication of components and interactions can make the response or behaviour of the system unexpected or unpredictable. Non-linear responses, such as abrupt changes in the state of a system, called critical transitions, can be observed in response to a moderate change in the signal [START_REF] Trefois | Critical transitions in chronic disease: transferring concepts from ecology to systems medicine[END_REF]. Generally speaking, it is possible to observe emergent behaviours, i.e., behaviours of the system as a whole that were not trivially deducible from the individual behaviours of its components. This has been documented, through experiments and simulations, in the study of cell signalling pathways and the resulting biological decisions [START_REF] Upinder | Emergent properties of networks of biological signaling pathways[END_REF]Iyengar, 1999, Helikar et al., 2008]. These considerations have thus given rise to system-level or holistic approaches that aim to integrate data and knowledge into more comprehensive representations, often called systems biology.

What is true for the cell in general is just as true for cancer in particular. Understanding the intertwining of signaling pathways is necessary to study their contributions to different cancer hallmarks, as shown in Figure 2.7. The concepts described above can thus be transposed to cancer systems biology [START_REF] Jorrit | Cancer: a systems biology disease[END_REF][START_REF] Pamela | Cancer systems biology: a network modeling perspective[END_REF], Barillot et al., 2012]. Indeed, it is often a question of understanding or predicting the impact of perturbations on cellular networks. Understanding how a single genetic mutation disrupts and reprograms networks, or even predicting the responses triggered by a drug on a presumably promising molecular target, makes little sense without integrated approaches. In addition, cancers are characterized by the accumulation of numerous mutations and alterations over time that must be considered concomitantly. These points of view of biologists and modelers reinforce the observation already made in the previous chapter of cancer as a network disease, as a system disease (Figure 2.8).

Finally, to conclude this general presentation, it is important to understand that while small molecular network modeling is not recent, the rise and multiplication of wide range systems biology approaches is very much related to the production of biological data [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF]. The last few decades have seen the emergence of high-throughput data that has made it possible to identify and link hundreds of genes or proteins involved in cancer. Exploring the interaction and back and forth between these mod- els and the data they use or predict is therefore of utmost importance. In addition, the now massive amount of data has also imposed mathematical or computational approaches as a central element in the management of this profusion and more and more modeling approaches are focused on data integration or inference [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF][START_REF] Bouhaddou | A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens[END_REF]. More generally, Figure 3.3 shows that while the number of scientific articles devoted to cancer has increased drastically since the 1950s (panel A), the proportion of these same articles mentioning models, networks or computational approaches has also increased (panel B), illustrating a change in paradigms.

Mechanistic models of molecular signaling

Once the context has been defined, both biologically and methodologically, it is possible to begin the exploration of the models that will constitute the core of this thesis: the mechanistic models of molecular networks and signaling pathways. Before describing and illustrating some of the existing mathematical formalisms, it is possible to describe the common fundamental elements of this family of approaches.

Networks and data

The first step is to identify the relevant biological entities from a question or system of interest (e.g. tumor suppressor genes, signaling cascades of proteins) and then to model their interactions, the regulatory relationships that link them. At this stage the model can generally be represented by a network but this word can cover different realities [Le Novere, 2015]. The simplest network just represents undirected interactions between entities, which therefore only establishes relationships and not causal mechanisms. But modeling requires more precise definitions, in particular concerning the direction of the interaction (is it A that acts on B or the opposite) and its nature (type of chemical reaction, activation/inhibition etc.). This is usually summarized as activity flows (or influence diagrams) with activation and inhibition arrows as in Figure 2.7 or Figure 3.5A. These arrows emphasize the transformation of static networks into dynamic objects that can be manipulated and interpreted mechanistically. This work can be taken further by writing bipartite graphs, known as process descriptions, which explicitly show the different states of each variable (first type of nodes), depending on their phosphorylation state for instance, and the reactions that link them (second type of nodes) as in Figure 3.5B. A more precise description of these different representations and their meanings can be found in Le Novere [2015]. Once the network structure of the model has been defined or inferred by the modeler, it is possible to write the corresponding mathematical formalism and potentially to refine certain parameters. Finally, the model is often confronted with new data to check its consistency with the biological behaviour studied or possibly make new predictions.

However, all these steps are not linear and sequential, but rather iterative and cyclical. This modeling cycle, with back and forth to the data, is not specific to molecular network models, but it is possible to specify it in this case (Figure 3.4). The names of the key players involved in the question of interest are thus first extracted from adapted data or from the literature. A first mathematical translation of the relationships between the entities is then proposed before verifying the compatibility of this model with the observations, whether qualitative or quantitative. If the compatibility is not good, we come back to the definition or the parameterization of the model. If compatibility is correct, the model can be used to make new predictions Figure 3.4: Modeling a biological network: an iterative and cyclical process. Reprinted from [Béal et al., 2020]. A different and simpler version of this cycle is described in [Le Novere, 2015].

or study phenomena that go beyond the initial data set. Ideally, these predictions will be tested afterwards. This cyclic approach with two successive checks is analogous to the use of validation and test data in the evaluation of most learning algorithms. This analogy can sometimes be masked by the qualitative nature of the predictions or by the lack of explicit fitting of the parameters.

Different formalisms for different applications

Beyond these similarities in the construction and representation of models, the precise mathematical formalism that underlies them varies according to the type of question and the data [START_REF] De | Modeling and simulation of genetic regulatory systems: a literature review[END_REF]. For the sake of simplicity, and without exhaustiveness, we propose to divide into quantitative and qualitative formalisms which will be essentially illustrated respectively by ordinary differential equation (ODE) models and logical (or Boolean) models for which a graphical and schematic comparison is proposed in Figure 3.5. One of the most frequent approaches is the use of chemical kinetics equations to construct ODE systems which are a fairly natural translation of the process descritption networks described in the previous section [START_REF] Polynikis | Comparing different ode modelling approaches for gene regulatory networks[END_REF]. For instance, each biological interaction can be treated as a reaction governed by the law of mass action and, under certain hypotheses, as a differential equation (Figure 3.5B); the set of reactions in the system then generates a set of differential equations with coupled variables, in an analogous way to the Lotka Volterra system presented in section 1.2.2. Thus the variables generally represent quantities of molecular species, for example concentrations of RNA or proteins, and the stoichiometric coefficients and reaction rates are used to define the system parameters. Approximations are sometimes made to simplify the equations, for example by assuming that they can be written as Michaelis-Menten's enzymatic
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reactions, which have a simple and well known behaviour. However, the theoretical accuracy of quantitative models has a cost since each differential equation requires parameters, such as reaction constants or initial conditions, to which the system is very sensitive [Le Novere, 2015]. The biochemical interpretation of the parameters sometimes allows to find their value in the literature, or in dedicated databeses [START_REF] Wittig | Sabio-rk-database for biochemical reaction kinetics[END_REF], if the reactions are well characterized, even if possible variations in a given biological or physical context are often unknown. Since knowledge of the values of these parameters is often limited or even non-existent, it may require a very large volume of data (including time series) to fit the many missing parameters which can be difficult if the number of parameters is large [START_REF] Villaverde | Reverse engineering and identification in systems biology: strategies, perspectives and challenges[END_REF]. However, recent work has demonstrated the feasibility and scalability of this type of inference with sufficiently rich data [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF].

At the same time, more qualitative approaches to modeling biological networks have been proposed with discrete variables linked together by rules expressed as logical statements [START_REF] Abou-Jaoudé | Logical modeling and dynamical analysis of cellular networks[END_REF]. These models are both more abstract since variables do not have a direct biological interpretation (e.g. concentration of a species) but are more versatile since they can unify different biological realities under the same formalism (e.g. activation of a gene or phosphorlation of a protein). The discrete nature of the variables can then be seen as an asymptotic case of the sigmoidal (e.g. Hill function) relationships often found in biology [Le Novere, 2015]. The step function thus obtained can keep a natural interpretation in the context of biological phenomena: genes activated or not, protein present or absent etc. Similarly, interactions between species are not quantified but are based on qualitative statements (e.g. A will be active if B and C are active), drastically reducing the number of parameters (Figure 3.5A). If the theoretical interest of this formalism to study biological mechanisms was proposed quite early [START_REF] Kauffman | Homeostasis and differentiation in random genetic control networks[END_REF][START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF], many concrete applications have also been developed over the years, particularly in cancer research [Saez-Rodriguez et al., 2011a, Remy et al., 2015]. This logical formalism will constitute the core of the work presented in Part II, where it will therefore be discussed in greater detail. These two formalisms, which are among the most frequent for modeling biological networks, share many similarities, in particular the propensity to be built according to bottom-up strategies based on knowledge of the elementary parts of the model, i.e., biological entities and reactions. However, they differ in their implementation and objectives, one aiming at the More difficult to link to data; lower precision most accurate representation possible, the other seeking to capture the essence of the system's dynamics in a parsimonious way (Table 3.1). The opposition is not irrevocable, as illustrated by the numerous hybrid formalisms that lie within the spectrum delimited by these two extremes such as fuzzy logic or discrete-time differential equations [START_REF] Bree B Aldridge | Fuzzy logic analysis of kinase pathway crosstalk in tnf/egf/insulin-induced signaling[END_REF], Le Novere, 2015, Calzone et al., 2018]. To conclude, a comparison between the two approaches applied to the same problem is proposed by [START_REF] Calzone | Logical versus kinetic modeling of biological networks: applications in cancer research[END_REF], studying the epithelio-mesenchymal transition (EMT, a biological process involved in cancer), to illustrate in concrete terms their complementarity.

Some examples of complex features

With the help of these models, both qualitative and quantitative, many complex behaviours have been identified. Benefiting from the knowledge accumulated in the study of dynamic systems, a whole zoo of patterns with complex and non-intuitive behaviours such as non-linearities have been highlighted [START_REF] John J Tyson | Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell[END_REF]. The MAPK pathway, coarsely described in Figure 3.5, and often simplified as a rather unidirectional cascade, shows switch or bistability behaviors generated by the complexity of its multiple phosphorylation sites [START_REF] Nick I Markevich | Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades[END_REF]. These models have also been put at the service of understanding cancer and the erroneous decisionmaking by cells resulting from impaired signaling pathways. Thus, Tyson et al. [2011] summarize superbly well the complexity that can be hidden in the dynamics of smallest molecular networks as soon as they contain more than two entites and crossed regulations or feedback loops. Logical models have also made it possible to better dissect some complex phenomena at play in the cell such as emergent behaviours [START_REF] Helikar | Emergent decision-making in biological signal transduction networks[END_REF] or mechanisms behind mutation patterns in cancer [START_REF] Remy | A modeling approach to explain mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis[END_REF].

From mechanistic models to clinical impact?

Mechanistic models have therefore undeniably led to a better understanding of the complex molecular machinery of signalling pathways. But beyond the interest that this understanding represents, do these models also have a clinical utility? In other words, are they of clinical or only scientific value?

A new class of biomarkers

Throughout this thesis, the clinical value of mechanistic models will often be analyzed by analogy to that of biomarkers. Biomarkers are usually defined as measurable indicators of patient status or disease progression, such as prostate-specific antigen (PSA) for prostate cancer screening or BRCA1 mutation for breast cancer risk [START_REF] Henry | Cancer biomarkers[END_REF]. Biomarkers also encompass multivariate signatures that identify more complex patterns with clinical significance. Taking the logic even further, it was therefore proposed that mechanistic models, which also reveal complex molecular behaviours, could be considered as biomarkers, capturing perhaps even dynamic information [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF].

Like oncology biomarkers, the models will be divided into two categories according to their clinical objectives: prognostic models and predictive models [START_REF] Cnam Oldenhuis | Prognostic versus predictive value of biomarkers in oncology[END_REF]. Prognostic biomarkers and models are those that provide information on the evolution of cancer independently of treatment. They are therefore generally confronted with survival or relapse data. The protein Ki-67 for example, encoded by the MKI67 gene, is known to be indicative of the level of proliferation and high levels of expression are thus associated with a poorer prognosis in many cancers [START_REF] Charles | The cancer biomarker problem[END_REF].

Predictive biomarkers and models, on the other hand, give an indication of the effect of a therapeutic strategy. The simplest example, but not the only one, concerns biomarkers that are themselves the target of treatment: treatments based on monoclonal antibodies directed against HER2 receptors in breast cancer are only effective if the HER2 receptor has been detected in the patient [START_REF] Charles | The cancer biomarker problem[END_REF]. Without attempting to be exhaustive, some logical and ODE models, with either prognostic or predictive claims, will be described.

Prognostic models

One of the first mechanistic models of cell signalling to have been explicitly presented as a prognostic biomarker is the one proposed by [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF] and describing c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. A summary of the study is provided in Figure 3.6. The model is an ODE translation of the process description network of Figure 3.6A, further determined and calibrated with molecular biology experimental data obtained using neuroblastoma cell lines. We thus observe the non-linear switch-like dynamics of JNK activation as a function of cellular stress (Figure 3.6B). The precise characteristics of this sigmoidal response can, however, vary from one individual to another as captured by the network output descriptors A, K 50 and H. Fey et al. proposed to perform neuroblastoma patient-specific simulations of the model, using patient gene expressions for ZAK, MKK4, MKK7, JNK and AKT genes to specify the initial conditions of the ODE system. Since JNK activation induces cell death through apoptosis, the patient-specific A, K 50 and H derived from patient-specifc models are then analyzed as prognostic biomarkers (Figure 3.6C). Readers are invited to refer to the original article for details on model calibration or binarization of network descriptors [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF]. The authors also showed that in the absence of positive feedback from JN K * * to P M KK7, an important component of non-linearity, the prognostic value is drastically decreased. All in all, this pipeline from ODE model to survival curves, thus provides a paradigmatic example of the clinical interpretation of mechanistic models of molecular networks that will be reused in later chapters for illustration purposes. Other ODE models following a similar rationale have been proposed by the same group for colorectal cancer [START_REF] Hector | Clinical application of a systems model of apoptosis execution for the prediction of colorectal cancer therapy responses and personalisation of therapy[END_REF][START_REF] Salvucci | A stepwise integrated approach to personalized risk predictions in stage iii colorectal cancer[END_REF] or glioblastoma [START_REF] Murphy | Activation of executioner caspases is a predictor of progression-free survival in glioblastoma patients: a systems medicine approach[END_REF], Salvucci et al., 2019b]. Machine learning approaches have also been proposed to ease the clinical implementation of this kind of prognostic models by dealing with the potential lack of patient data needed to personalize them [Salvucci et al., 2019a]. On the logical modeling side, there are also studies including prognostic value validation. Thus, [START_REF] Faiz M Khan | Unraveling a tumor type-specific regulatory core underlying e2f1-mediated epithelial-mesenchymal transition to predict receptor protein signatures[END_REF] proposed two logical models of epithelio-mesenchymal transition (EMT) in bladder and breast cancers. These models are inferred from prior mechanisms knowledge and data analysis with particular attention to potential feedback loops. Using these models, it is possible to study the behaviour of them for all combinations of model inputs (growth factors and receptor proteins) and derive subsequent signatures for good or bad prognosis. These signatures are later validated with cohorts of patients. In this case, the mechanistic model does not seek to capture a dynamic behavior but to facilitate and make understandable the exploration of combinations of input signals that grow exponentially with the number of inputs considered. Other formalisms, called pathway activity analysis and following the same activity flows principles (Figure 3.5A), have been analysed in the light of their prognostic value. Their greater flexibility enables the direct use of networks of several hundred or thousands of genes, such as those present in the KEGG database [START_REF] Kanehisa | Kegg for integration and interpretation of large-scale molecular data sets[END_REF]. The benefit of mechanistic modeling is then to organize high-dimensional data and to facilitate the a posteriori analysis of the results.

Predictive models

But the explicit representation of biological entities in mechanistic models makes them particularly suitable for the study of well-defined perturbations such as drug effects. Indeed, by assuming that the mechanism of action of a drug is at least partially known, it is possible to integrate this mechanism into the model if it contains the target of the drug (Figure 3.7). One can therefore simulate the effect of one drug or even compare several. These strategies have already been implemented in a qualitative way with logical models used to explain resistance to certain treatments of breast cancer [Zañudo et al., 2017] or even highlight the synergy of certain combinations of treatments in gastric cancer [START_REF] Flobak | Discovery of drug synergies BIBLIOGRAPHY in gastric cancer cells predicted by logical modeling[END_REF]. The value of these models, however, is more scientific than clinical in that they focus on a single cell line or a restricted group of cell lines. The possibility to personalize the predictions or recommendations for different molecular profiles of cell lines or patients is therefore not obvious. Still within the context of logical formalism, [START_REF] Knijnenburg | Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy[END_REF] proposed a broader approach: if their model needs to be trained, it can nevertheless provide an analytical framework for several hundred cell lines, while remaining within the scope of the training data to ensure the validity of predictions.

Conceptually comparable strategies can be found on the side of differential equations where large mechanistic models of cell signalling are also trained to predict the response to different treatments [START_REF] Bouhaddou | A mechanistic pan-cancer pathway model informed by multi-omics data interprets stochastic cell fate responses to drugs and mitogens[END_REF][START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF]. A calibrated model can then predict the response to a combination of treatments not tested in the training data, thereby proving the ability of mechanistic models to extend their predictive value beyond the data [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF]. As with prognostic models, mechanistic approaches other than logical formalisms and ODEs have been proposed and validated [START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF]. What can be learned from these predictive models is that they require significant training data to be able to go beyond qualitative predictions and dissect treat- ment response mechanisms of many cell lines simultaneously. For obvious practical and ethical reasons, the validation of these models is for the moment limited to preclinical data since they require data for many uncertain therapeutic interventions.

Mechanistic models, interventions and causality

To conclude this first part in a broader way, it is interesting to note that the now complete description of mechanistic models of cancer makes it possible to revisit their characteristics from a different point of view and to link them to the statistical approaches that will be the subject of the third part of the dissertation. First of all, it should be remembered that statistical models only highlight associations between biological variables or entities and not causal relationships. On the other hand, by explicitly constraining the structure of relations between variables, mechanistic models become less flexible flexibility but already propose a causal interpretation. Therefore, the notion of causality is intrinsically embedded in the definition of the mechanistic model (section 1.2).

However, if causality is not a by-product when using a statistical or machine learning model, it is possible to access it through specific experimental designs, such as randomized clinical trials, or applying dedicated statistical methods [START_REF] Ma Hernán | Causal inference: What if[END_REF], as described later on in chapter 8. In both cases, the aim is to compare the effect of a treatment, or more generally of an intervention, on two groups that are as similar as possible to each other in order to isolate the specific, causal effect of the intervention on outcome. Schematically, the identification of causal links can be likened to the study of well-defined interventions on patients: it is a question of being able to act in a relevant and specific way on a variable and to measure the consequences. The notion of intervention is thus very present in the literature on causality [START_REF] Eberhardt | Interventions and causal inference[END_REF] and was summarized by [START_REF] Holland | Statistics and causal inference[END_REF] in a concise manner: "no causation without manipulation".

In this respect, without being part of the same statistical framework at all, mechanistic models offer an interesting parallel. As suggested in the previous paragraph, they allow us to test the effect of certain interventions: how does the model behave with or without the addition of a drug to its structure? This ability to study the effect of targeted interventions again contributes, in a slightly different way, to the understanding of the system. The particularity of mechanistic models, once they have been validated, is that they can study the effect of interventions for which no data are available. In any case, a common point between the mechanistic approaches of the second part of the thesis and the statistical approaches of causal inference of the third part is to question the mechanisms and true causes at work throughout the cancer modeling process, from the biological question to clinical validation. It is indeed at this price that one can reach the level of understanding and confidence required for a real world application. This first bridge between mechanistic models of cell signalling and clinical applications concludes this introductory part. The next part will be devoted to the definition of new methods to establish this connection based on logical formalism, before the third part proposes a more statistical evaluation of the prognostic and predictive values of the models presented in the previous parts.

Logical modeling principles and data integration

"Je suis l'halluciné de la forêt des Nombres.

Ils me fixent, avec leurs yeux de leurs problèmes ;

Ils sont, pour éternellement rester : les mêmes.

Primordiaux et définis, Ils tiennent le monde entre leurs infinis ; Ils expliquent le fond et l'essence des choses, Puisqu'à travers les temps planent leurs causes." Émile Verhaeren (Les nombres, in Les Flambeaux noirs, 1891)

A nother way of ordering the diversity of mechanistic models presented above is to consider their relationship to biological data. Those that make little use of these data are essentially theoretical scope models that describe the general functioning of signaling pathways and associated systems [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF]. Other models propose more quantitative models but require much more data, either from databases or experimental data generated for this purpose in order to fit the parameters. In the latter case, the necessary data is usually perturbation data: how does my system react to this or that inhibition or activation? For a single cell line this already corresponds to a large amount of data [START_REF] Razzaq | Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data[END_REF]. And if we want to extend these approaches to many cell lines, the amount of data becomes massive [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF]. For patient-specific models, access to this perturbation data is even more difficult.

Between theoretical models that are not very demanding in terms of data but not very applicable clinically and models with a clinical focus but very demanding in terms of data, an intermediate alternative is missing. Can patient-specific mechanistic models be developed that would provide qualitative clinical interpretation with a small amount of data, accessible even in patients? In this part, composed of three chapters, a middle way will be described to answer positively to this question. This methodology will be based on a historically qualitative mathematical formalism already presented in the previous chapter under the name of logical modeling. Logical modeling in general will be detailed in this chapter before describing an original personalized approach in the next two chapters.

Scientific content

This chapter presents the theoretical bases of logical modeling and the tools used thereafter. The content is taken entirely from the literature and the personal presentation that is made is the one that was used to introduce article [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF] and to organize review Béal et al. [2020].

Logical modeling paradigms for qualitative description

Mathematical models serve as tools to answer a biological question in a formal way, to detect blind spots and thus better understand a system, to organize, into a consensual and compact manner, information dispersed in different articles. In the light of this definition, logical formalism may seem one of the closest to natural language in that it can translate quite directly the statements present in the literature such as "protein A activates protein B" or "the expression of gene C requires the joint presence of factors D and E". Indeed, shortly after the first descriptions of control circuits by [START_REF] Jacob | Genetic regulatory mechanisms in the synthesis of proteins[END_REF], the interest of logical models to describe biological systems was put forward by [START_REF] Kauffman | Homeostasis and differentiation in random genetic control networks[END_REF] and [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF].

Since then, studies have multiplied [START_REF] Thomas | Biological feedback[END_REF], varying the fields of biological applications and also the mathematical and computational implementations [Naldi et al., 2018b]. The two subsections below summarize the characteristics common to most of the logical formalisms, before detailing the implementation chosen in this thesis in section 4.2. A review of the use of data in logic models will finally be proposed in section 4.3.

Regulatory graph and logical rules

A logical model is based on a network called regulatory graph (Figure 4.1), where each node represents a component (e.g. genes, proteins, complexes, phenotypes or processes), and is associated with discrete levels of activity (0, 1, or more when justified). The use of a discrete formalism in molecular network modeling relies on the highly non-linear nature of regulation, and thus on the existence of a regulatory threshold. Assuming that each variable represents a level of expression, it will take the value 0 if the level of expression of the entity is below the regulation threshold, i.e., insufficient to carry out the regulation; and the value 1 if it is above the threshold and regulation is possible. In other words, the control threshold discretizes the state space, here the expression levels. It is therefore possible to distinguish several thresholds for the same variable, corresponding to distinct controls that do not take place at the same expression levels. The variable is then multivalued. This extension greatly enriches the formalism, because it allows to distinguish situations that are qualitatively different and that would be confused with Boolean variables. In the continuation of this thesis, we will consider by default that the activity levels are binary, 0 corresponding to an inactive entity and 1 to an active entity. The edges of this regulatory graph correspond to influences, either positive or negative, which illustrate the possible interactions between two entities (Figure 4.1).

Positive edges can represent the formation of active complexes, mediation of synthesis, catalysis, etc. and they will be later depicted as green arrows (←). Negative edges on the other hand can represent inhibition of synthesis, degradation, inhibiting (de)phosphorylation, etc. and they will be depicted as red turnstiles (⊢).

Then, each node of the regulatory graph has a corresponding Boolean variable associated to it. The variables can take two values: 0 for absent or inactive (OFF), and 1 for present or active (ON). These variables change their value according to a logical rule assigned to them. The state of a variable will thus depend on its logical rule, which is based on logical for what is known about the biology behind these edges. If two input nodes are needed for the activation of the target node, they will be linked by an AND gate; to list different means of activation of a node, an OR gate will be used; and negative influences will rely on NOT gates. The rules corresponding to the toy model in Figure 4.1 could be interpreted literally like this: A is activated to 1 if B is active; B is updated to 1 in the absence of A and the presence/activity of C; C is an input of the model and therefore not regulated. It can be noted that the logical rules cannot be deduced only from the regulatory graph, which is less precise and ambiguous. One could thus imagine that B is activated if C is, OR if A is not, thus changing the behavior of the model.

State transition graph and updates

In a Boolean framework, the variables associated to each node can take two values, either 0 or 1. We define a model state as a vector of all node states. All the possible transitions from any model state to another are dependent on the set of logical rules that define the model. These transitions can be viewed into a graph called a state transition graph (STG), where nodes are model states and edges are the transitions from one model state to another. STG nodes will be later depicted with rounded squares instead of circles in order to emphasize the difference with regulatory graphs. That way, trajectories from an initial condition to all the final states can be determined. In a model with n nodes, the STG can contain up to 2 n model state nodes; thus, if n is too big, the construction and the visualization of the graph become difficult.

Based the simple logical model of Figure 4.1 it is nevertheless possible to represent the STG comprehensively. The idea for this is to start from a state of the system and track the successive states defined by the logical rules and the corresponding updates. The first strategy to construct this STG is to change simultaneously at each time step all the variables that can be changed (Figure 4.2). This method is referred to as a synchronous updating strategy. In the second method, referred to as a asynchronous updating strategy, variables are changed one at a time (Figure 4.3) and therefore each state has as many successors as there are components whose state must be changed according to logical rules (Figure 4.3A). Performing only one transition at a time implies having to choose this transition between the different possible options, which can be done according to pre-established rules or stochastically as explained in section 4.2. The latter asynchronous method will be used exclusively in the work presented thereafter.

We then define attractors of the model as long-term asymptotic behaviors of the system. Two types of attractors are identified: stable states, when the system has reached a model state whose successor in the transition graph is the model state itself; and cyclic attractors, when trajectories in the transition graph lead to a group of model states that are cycling. For both synchronous and asynchronous updating strategies, the toy model shows the existence of two types of attractors: a stable steady state and a limit cycle, depending on the initial value of C. There are two disconnected components of the STG for this example that correspond to the two possible values for the input C. If C is initially equal to 0 (inactive), then there exists only one stable state: A = B = C = 0. All the trajectories in the state transition graph lead to a single final model state. If C is initially equal to 1, then the attractor is a limit cycle. The path in the STG cycles for any initial model state of this connected component. Note that for the asynchronous and synchronous graphs, the precise paths or limit cycles may differ. To conclude, it is important to emphasize and illustrate the characteristics of asynchronous updates in this toy example. In Figure 4.3A, the transition from the initial state (A = C = 0; B = 1) suggests two distinct possibilities, so it is necessary to define additional rules or heuristics to choose between possible transitions. We will come back to this by specifying the logical modeling implementation chosen in this thesis in section 4.2, in which a stochastic exploration of these alternatives is proposed.

Tools for logical modeling

Numerous tools have been developed to build logical models and study the dynamics of the systems under investigation, each with its own specificity. They allow, for example, to represent regulation networks; to edit, modify or infer logical rules; to identify stable states; to reduce models; to visualize graphs of synchronous or asynchronous transitions. Some also allow to integrate temporal data; to discretize expression data; to simulate the model stochastically or to integrate delays; to identify existing models, etc. Among them, we can cite GINsim [Naldi et al., 2018a], BoolNet [START_REF] Müssel | Boolnet?an r package for generation, reconstruction and analysis of boolean networks[END_REF], pyBoolNet [START_REF] Klarner | Pyboolnet: a python package for the generation, analysis and visualization of boolean networks[END_REF], BooleanNet [START_REF] Albert | Boolean network simulations for life scientists[END_REF], CellCollective [START_REF] Helikar | The cell collective: toward an open and collaborative approach to systems biology[END_REF], bioLQM [START_REF] Naldi | Biolqm: a java toolkit for the manipulation and conversion of logical qualitative models of biological networks[END_REF], MaBoSS [START_REF] Stoll | Continuous time boolean modeling for biological signaling: application of gillespie algorithm[END_REF][START_REF] Stoll | Maboss 2.0: an environment for stochastic boolean modeling[END_REF], PINT [START_REF] Paulevé | Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks with IPython Interface[END_REF], CaspoTS [START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF], or CellNOptR [START_REF] Terfve | CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms[END_REF]. The interaction between all these tools, their interoperability and complementarity are highlighted in the form of a notebook Jupyter [Naldi et al., 2018b], and some of them are described in more details in section 4.3.

The MaBoSS framework for logical modeling

In the present study, all simulations have been performed with MaBoSS, a Markovian Boolean Stochastic Simulator whose design is summarized in Figure 4.4 and precisely described by [START_REF] Stoll | Continuous time boolean modeling for biological signaling: application of gillespie algorithm[END_REF] and [START_REF] Stoll | Maboss 2.0: an environment for stochastic boolean modeling[END_REF]. This framework is based on an asynchronous update scheme combined with a continuous time feature obtained with Gillespie algorithm [START_REF] Daniel T Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF], allowing simulations to be continuous in time despite the discrete nature of logical modeling.

Continuous-time Markov processes

The implementation of asynchronous updates proposed by the MaBoSS software is based on continuous time Markov processes applied on a Boolean state space and is therefore part of the large family of stochastic models of cancer outlined in section 3.1. The precise relations of this software with the generic results on Markovian processes, and the associated demonstrations, are available in the original publication by [START_REF] Stoll | Continuous time boolean modeling for biological signaling: application of gillespie algorithm[END_REF] and detailed in particular in the related supplementary document1 . The essence of the formalism, as set out in this article, is outlined below.

Before returning to the simplified example of Figure 4.4, it is possible to describe the general scheme of Markov processes and Gillespie algorithm for simulating logical models. We restrict ourselves here to a Boolean model (binary variables), composed of n variables. The network state of the system is a vector S of binary values such as S i ∈ {0, 1}, with i = 1, ..., n and S i representing the state of the node i. The network state space of all possible network states is called Ω. The evolution of the state of the system can be represented by a stochastic process s : t → s(t) defined on t ∈ I ⊂ R applied on the network state space. For each time t ∈ I ⊂ R, s(t) represents a random variable applied on the network state space. Thus,

P [s(t) = S] ∈ [0, 1], ∀S ∈ Ω and ∑ S∈Ω P [s(t) = S] = 1.
This stochastic process verifies the Markov property which stipulates the absence of memory, i.e., the conditional probability distribution of future states of the process depends only on the present state, not on the sequence of past states. The resulting stochastic process, called Markov process is defined by an initial condition P [s(0) = S], ∀S ∈ Ω and the conditional probabilities

P [s(t) = S|s(t ′ ) = S ′ ], ∀S, S ′ ∈ Ω, ∀t, t ′ ∈ I, t ′ < t.
In this work we will focus on continuous time Markov processes where it has been shown that all conditional probabilities are functions of transition rates [START_REF] Ng Van Kampen | Stochastic processes in physics and chemistry[END_REF]]. Only the case of time independent transition rates (and Markov processes) will be explored below.

ρ (S ′ →S) (t) ∈ [0, ∞[ [
It is then possible to re-state the description of the logical models in this formalism. One of the first representations of the model is the regulatory network with a set of directed arrows linking the n nodes (Figure 4.4A, left column). For each node i, a logical rule L i (S) is defined based only on the nodes j for which there exists an arrow from node j to i, as represented in Figure 4.4A middle column, e.g., L B = (NOT A) AND (C) with L B the logical rule of node B. The notion of asynchronous transition can then be defined as a pair of network states (S, S ′ ) ∈ Ω, written (S → S ′ ) such that:

S ′ j = L B (S) for a given j S ′ i = S i for i ̸ = j
This means that during an asynchronous transition, only one node changes state, among those whose logical rule allows it. In Figure 4.4B, two possible asynchronous transitions from the same initial state are represented. Then, transition rates ρ (S→S ′ ) are non-zero only if S and S ′ differ by only one node. In that case, each Boolean logic L i (S) is replaced by two functions k i 0→1/1→0 (S) ∈ [0, ∞[. The transition rates are defined as follows: if i is the node that differs from S and S ′ , then:

ρ (S→S ′ ) = k i 0→1 (S) if S i = 0 ρ (S→S ′ ) = k i 1→0 (S) if S i = 1
Therefore, the continuous Markov process is completely defined by all these k i and an initial condition. The state transition graph can also be re-defined as a graph in Ω, with an edge between S and S ′ if and only if ρ S→S ′ > 0.

Gillespie algorithm

Although the Markov process is completely defined, the cost of its theoretical resolution increases exponentially with the number of nodes since the transition matrix of the system is of size 2 n × 2 n . Thus, although the exact resolution of these Markov processes from their master equation has been well described [START_REF] Ng Van Kampen | Stochastic processes in physics and chemistry[END_REF], their computational cost quickly becomes too high. As an example, a recent method for the exact resolution of these stochastic processes applied to Boolean models is limited to models of about 20 nodes [START_REF] Koltai | Exact solving and sensitivity analysis of stochastic continuous time boolean models[END_REF]. One solution consists in sampling the probability space by simulating time trajectories in the state transition graph, which is what MaBoSS performs through Gillespie algorithm, also called kinetic Monte-Carlo. The principle of the algorithm is to compute a finite set of individual stochastic trajectories of the Markov process and to use them to infer probabilities for the given Markov process (Figure 4.4D). For the sake of simplicity the remainder of this section will describe the simulation of a single individual stochastic trajectory, first with a focus on the formal description of the algorithm and then with a more qualitative explanation.

A stochastic trajectory Ŝ(t) is a function from a predefined time interval [0, t max ] to Ω. The iterative computation of the trajectory is obtained as follows:

1. From a state S at t 0 , sum the rates of all possible transitions for leaving this state:

ρ total = ∑ S ′ ρ (S→S ′ ) 2. Draw two uniform random numbers u, u ′ ∈ [0, 1] 3.
Compute the transition time δt = -log(u)/ρ total 4. Order the potential target states S ′(j) and their corresponding transition rates ρ (j) = ρ (S→S ′j ) 68 j) , with ρ (0) = 0 6. Define the trajectory Ŝ(t) such as Ŝ(t) = S for t ∈ [t 0 , t 0 + δt[ and Ŝ(t 0 + δt) = S ′ 7. Repeat iteratively from S ′ until t max is reached Thus, Gillespie algorithm provides a stochastic way to choose a specific transition among several possible ones and to infer a corresponding time for this transition. To achieve this, transition rates seen as qualitative activation or inactivation rates, must be specified for each node (Figure 4.4A). They can be set either all to the same value by default, in the absence of any indication, or in various levels reflecting different orders of magnitude: post-translational modifications are quicker than transcriptions for instance. These transition rates are translated as transition probabilities in order to determine the actual transition (Figure 4.4B). Indeed, the probability for each possible transition to be chosen for the next update is the ratio of its transition rate to the sum of rates of all possible transitions. Higher rates correspond to transitions that will take place with greater probability, or in other words more quickly. At each update, the Gillespie algorithm performs the procedure described above and depicted schematically in Figure 4.4C. Two uniform random variables u and u ′ are drawn and used respectively to select the transition among the different possibilities (with u) and to infer the corresponding time (with u ′ ). Based on the described formula, time δt follows an exponential law whose average is equal to the inverse of the sum of all possible transition rates (Figure 4.4C). In the present work, except otherwise stated, all transition states will be initially assigned to 1.

THE MABOSS FRAMEWORK FOR LOGICAL MODELING

Choose the new state S

′ = S ′(k) such that ∑ k-1 j=0 ρ (j) < u ′ ρ total < ∑ k j=0 ρ (

A stochastic exploration of model behaviours

Since MaBoSS computes stochastic trajectories, it is relevant to compute several trajectories in order to get an insight of the average behavior by generating a population of stochastic trajectories over the asynchronous state transition graph (Figure 4.4D). The aggregation of stochastic trajectories can also be interpreted as a description of a heterogeneous population. Thus, in all the examples in next chapters, all simulations have consisted of thousands of computed trajectories. The larger the model, the larger the space of possibilities and the more trajectories are required to explore it. Since several trajectories are simulated, initial values of each node can be defined with a continuous value between 0 and 1 represent-ing the probability for the node to be defined to 1 for each new trajectory. For instance, a node with a 0.6 initial condition will be set to 1 in 60% of simulated trajectories and to 0 in 40% of the cases.

In the present work, we will focus on the asymptotic state of these simulations instead of transient dynamics and we will call node scores the asymptotic agregated score obtained by averaging all trajectories at a given final time point. Indeed, asymptotic states are more closely related to logical model attractors than transient dynamics and are therefore less dependent on updating stochasticity and more biologically meaningful [START_REF] Huang | Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective[END_REF]. Note that the simulation time should be chosen carefully to ensure that the asymptotic state is achieved, and the term final state may be considered as safer. All in all this modeling framework is at the intersection of logical modeling and continuous dynamic modeling. If the definition of time remains rather abstract and difficult to interpret experimentally, the stochastic exploration of trajectories makes it possible to refine the purely binary interpretation of the variables. Finally, it is important to point out that while the following chapters will focus on the MaBoSS tool, it is not exclusive but on the contrary very complementary to the other logical model analysis tools mentioned in section 4.1.3, or even to the methods specific to Markov processes in particular. The choice of the tools will be made according to the biological questions and the associated analyses: estimation of attractors or basins of attraction, exact resolution, study of transient dynamics, etc.

From theoretical models to data models?

To sum up, logical formalism makes it possible to design qualitative models that reflect a priori knowledge of the phenomena being studied. Thus, they allow answering questions for which there is little quantitative information on the precise mechanisms involved in a disease, for instance a lack of data related to the expression of genes, the quantity of key proteins or the speed of certain processes. Logical models can confirm that a network is a good illustration of the underlying biological question. However, the construction of the model from the literature often results in a generic consensus network that cannot explain the differences observed between certain patients with different molecular profiles. In order to propose a patient-specific mechanistic approach, it seems crucial to use the biological data available. How is this possible in a formalism that is by definition quite abstract?

Data integration and semi-quantitative logical modeling

The higher level of abstraction of the logical formalism sometimes makes the necessary back and forth between theoretical modeling and experimental or clinical data less easy. However, many theoretical approaches have been developed over the years to enable this dialogue at all stages, from the construction to the validation of a logical model, as summarized in Figure 4.5. This section summarizes some of these approaches to show how the use of biological data enriches logical models and brings them closer to clinical applications in precision medicine. The purpose of this presentation is also to better contextualize the original approach presented in the following chapter. It should be noted that the methods presented below are all applicable to logical models, and illustrated with such examples where possible. However, some methods are not specific to this formalism and can be applied to other modeling frameworks.

Build the regulatory graph

Faced with a biological question (Figure 4.5, first step), it is crucial to identify the main actors in the process in order to define the outline of the model (Figure 4.5, second step). A first approach relies on the existing scientific literature on the topic: which biological species and which interactions have been identified as relevant to my problem? In a more automatic way, it is possible to extract information from different databases in order to establish an initial list of biological entities and interactions associated with a biological phenomenon or even a gene of interest [START_REF] Kanehisa | Kegg for integration and interpretation of large-scale molecular data sets[END_REF][START_REF] Perfetto | Signor: a database of causal relationships between biological entities[END_REF]. As an example, starting from the study of E2F1 gene as the hub of many regulatory mechanisms, Khan et al. [2017] have reconstructed a dense network of interactions in the vicinity of E2F1, which will be used for the construction of their subsequent model. The main difficulty here is to choose and select the relevant biological information adapted to the context of the model to be created, depending for example on the type of cancer studied or the desired level of precision.

But if the literature can be considered as processed data, it is also possible to use directly experimental data related to the problem under study. Key actors of biological processes identified by statistical analysis, such as differentially expressed genes or the most frequently mutated genes in a patient cohort, are selected and used as a starting point for the construction of the model [START_REF] Remy | A modeling approach to explain mutually exclusive and co-occurring genetic alterations in bladder tumorigenesis[END_REF]. More comprehensive approaches can use differential analysis tools on signaling pathways, rather than individual genes, to choose the relevant processes to include by contrasting different groups of patients based on their grades, metstatic status, resistance to treatments etc. [START_REF] Martignetti | Roma: representation and quantification of module activity from target expression data[END_REF][START_REF] Montagud | Conceptual and computational framework for logical modelling of biological networks deregulated in diseases[END_REF]. Similarly, the study of regulatory networks involving transcription factors may justify the use of ChIP-seq data to identify possible new transcriptional regulations not previously listed [START_REF] Collombet | Logical modeling of lymphoid and myeloid cell specification and transdifferentiation[END_REF].

Once the main actors have been identified, it is necessary to infer the links between them (Figure 4.5, third and fourth step). However, starting from a list of genes and proteins of interest, how can we ensure that the regulatory relationships are complete and relevant? While a careful reading of the literature can provide locally interesting information, the use of omics data is also a resource that can be broken down into different levels of precision. The major interest of these methods, assuming that the data are adequate and sufficiently massive, is to be able to extract information as large as the dataset, potentially on hundreds of entities, and above all specific to the object of study: a cancer subtype or a particular cell line can thus generate their own interaction network [START_REF] Lefebvre | A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers[END_REF]. Inference methods extract biological knowledge hidden in large databases, summarize it and represent it via networks. Many methods construct coexpression networks, which are non-oriented graphs, with different metrics and methods [START_REF] Margolin | ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context[END_REF][START_REF] Vert | A new pairwise kernel for biological network inference with support vector machines[END_REF]. Other approaches seek to infer causal relations between components, allowing the reconstruction of directed graphs where the links between entities are oriented, and sometimes even signed as activating (positive) or inhibiting (negative) regulations. These methods often make use of time series [START_REF] Steven M Hill | Inferring causal molecular networks: empirical assessment through a community-based effort[END_REF] or perturbation data [START_REF] Meinshausen | Methods for causal inference from gene perturbation experiments and validation[END_REF], but also more recently from observational data [START_REF] Verny | Learning causal networks with latent variables from multivariate information in genomic data[END_REF]. The information extracted from the data is then directly readable in the form of activity flows as described in the SBGN standards [START_REF] Le Novère | The Systems Biology Graphical Notation[END_REF], thus providing a representation adapted to the construction of qualitative models and a fortiori of logical models [Le Novere, 2015]. Closer to the objective of defining logical models, certain methods allow the study and inference of co-regulation expressed with logical operators [START_REF] Elati | LICORN: learning cooperative regulation networks from gene expression data[END_REF], thus facilitating the passage from the definition of an interaction network to the construction of a true logical model.

Define the logical rules

Precision must then be taken further by defining the logical rules that complete the network (Figure 4.5, fifth step). The first source of aggregated data to define logical rules is the scientific literature. The modeler looks for the state of knowledge on a given regulatory mechanism and translates it into a local logical rule, according to the desired level of precision. For example, it has been observed that the protein kinase AKT can stabilize the oncogene MDM2 by phosphorylation, which leads to the degradation of p53 by forming a complex with it: this example can be translated by a simple inhibition relationship of AKT on p53 if this level of precision is considered sufficient or else intermediate species such as MDM2 can be used [Cohen et al., 2015]. Then, the effect of inhibition must be defined: can MDM2 alone inhibit p53 or does the presence of other activators outweigh this effect? This kind of considerations allows to define the logical combinations between the different inputs of a network node. In some cases, experimental data can be used to answer such questions: is a single activator sufficient or is the presence of all activators necessary? Which of the activator or inhibitor prevails in the case of simultaneous presence? While this information is often found in the literature, one should generate one's own experimental data to ensure an answer tailored to the study context, using a variety of experimental molecular biology techniques. For example, in order to elucidate the relationship between Foxo1 and Cebpa in a model of differentiation of myeloid and lymphoid cells, [START_REF] Collombet | Logical modeling of lymphoid and myeloid cell specification and transdifferentiation[END_REF] first established the physical relationship between these species by ChIP-seq before determining the nature of this relationship using an ectopic expression experiment of Foxo1 in macrophage cells.

Other, more global approaches have been developed in recent years, driven by the influx of data from high-throughput sequencing techniques. Based on this rich and complex data, it has become possible to infer entire logical models, with precisely defined rules and interactions [START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF]. The algorithms CellNOpt [START_REF] Terfve | CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms[END_REF] and caspo [START_REF] Videla | caspo: a toolbox for automated reasoning on the response of logical signaling networks families[END_REF] provide two examples of these approaches, and more recently the SCNS tool described a graphical interface to infer logical models from single cell data [Woodhouse et al., 2018]. This model-inference goes beyond simpler structure-inference by defining the logical rules, but it is generally based on a predefined topological structure to which time series or perturbation data are added. These data provide access to the response dynamics of a system. By questioning the way the system reacts, these data are therefore richer than a snapshot and thus facilitate the transition from correlation to causality, and thus the inference of logical rules. In practice, the use of proteomic or phospho-proteomic data is often recommended because these data account for the activity of the protein and are in fact the closest to the cellular response [START_REF] Ostrowski | Boolean network identification from perturbation time series data combining dynamics abstraction and logic programming[END_REF][START_REF] Terfve | CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms[END_REF], 2015]. In spite of the richness of this type of data, model inference is sometimes still an under-determined problem that can lead to a large number of models with different logical rules equally compatible with the data. In such situations, it is then a matter of choosing the model on the basis of biological relevance criteria or of accepting to use families of models, or ensemble models, instead of limiting oneself to a single model [START_REF] Videla | caspo: a toolbox for automated reasoning on the response of logical signaling networks families[END_REF]. In all cases, constructing logical rules directly from data specific to the problem can make it possible to obtain logical rules that are also specific to the context or the system under study [START_REF] Saez-Rodriguez | Comparing Signaling Networks between Normal and Transformed Hepatocytes Using Discrete Logical Models[END_REF]. For example, the inference of logical models specific to one or some cancer cell lines is a powerful tool to study their particularities [START_REF] Razzaq | Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data[END_REF].

Validate the model

Finally, the data can be used to validate the biological or clinical relevance of the models (Figure 4.5, sixth step). Compared to a system of differential equations, logical modeling has the particularity of being more abstract and therefore less directly reliable to an experimental reality for its validation. A system of differential equations can be compared to the chemical kinetics of the biological system under study. Compared to continuous formalisms, the dynamics of logic model simulation is more difficult to take into account but it is possible to verify it qualitatively, for example by validating the cyclic nature of activation trajectories for a model simulating the cell cycle [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF] or cellular decisions as a function of the activation signal [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF]. A second, more frequent approach consists in looking at the model's steady states and associating them with physiological conditions [START_REF] Weinstein | A network model to explore the effect of the micro-environment on endothelial cell behavior during angiogenesis[END_REF], Cohen et al., 2015]. A third strategy focuses on the asymptotic state reached during the stochastic simulation of the model(s), a state representing a mixture of the different steady states according to the probability that the model has of reaching them. It is also possible, in some model checking frameworks, to study the ability of models to reach certains states, interpreted as cellular types, from given initial conditions [START_REF] Abou-Jaoudé | Model checking to assess t-helper cell plasticity[END_REF].

In many models, to facilitate the analysis, nodes representing phenotypes have been added as "read-out" of the activity of certain entities. Thus, if a model includes a node named Proliferation, it will then be simpler to draw interpretations from the simulations performed with the model that will be linked to experimental observations of tumor growth or cell proliferation [START_REF] Grieco | Integrative modelling of the influence of mapk network on cancer cell fate decision[END_REF][START_REF] Steven | Combinatorial interventions inhibit tgfβ-driven epithelial-to-mesenchymal transition and support hybrid cellular phenotypes[END_REF]. To validate these models, the activity of phenotypes when forcing some node activity to 0 or 1 is compared with the results of gene mutations reported in experiments carried out on mice or cell lines [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF], Cohen et al., 2015]. Another similar method for validating the relevance of a logical model is based on the analysis of the effects of different therapeutic molecules. The mechanistic nature of logical modeling makes it possible to simulate the effect of these molecules, at least for targeted treatments with known mechanisms of action. It is then possible to simulate the effect of an inhibitory molecule by forcing the activity of its target to 0 and to compare with data [Zañudo et al., 2017, Iorio et al., 2016, Knijnenburg et al., 2016].

Beyond validation, some studies have predicted new therapeutic targets based on logical models, for instance by pointing out weaknesses in the topology of a regulatory system [START_REF] Sahin | Modeling erbb receptor-regulated g1/s transition to find novel targets for de novo trastuzumab resistance[END_REF]. Taking advantage of the versatility of the formalism to study combinations of therapeutic molecules, logical modeling has also proved fruitful in predicting the best therapeutic combinations and their synergies, in the context of gastric cancers for example [START_REF] Flobak | Discovery of drug synergies BIBLIOGRAPHY in gastric cancer cells predicted by logical modeling[END_REF]. Experimental confirmation of the predictions resulting from the modeling is then the ultimate stage in the validation of a logical model, completing the fruitful round trip between models and data.

Summary

Logical models represent a qualitative formalism where biological entities are represented by discrete entities linked together by logical rules. The evolution of the biological system thus modeled can be described as a Markov process, as in the MaBoSS software that stochastically explores the space of possibilities of the model thus defined through a Gillespie algorithm. This approach allows both to avoid the exponential computational cost of exact resolutions and to translate the stochastic diversity of heterogeneous cell populations. Finally, although discrete and theoretical in nature, logical models allow the use of quantitative experimental data, in order to support or validate their biological relevance.

Personalization of logical models: method and prognostic validation

"All happy families are alike; each unhappy family is unhappy in its own way." Leo Tolstoy (Anna Karenina, 1877) N ow that logical modeling has been introduced, it is possible to come back to the question that structures this part and to refine it. Is it possible to use routine omics data to obtain logical models that provide qualitative clinical interpretation? We thus propose a sequential approach, separating the model construction process from the integration of biological data. A generic logical model is first built, based on the literature knowledge, and the data are then used to specify the model. Indeed, the model as defined from the literature is often generic in the sense that it summarizes the state of knowledge on a probably heterogeneous pathology or population. Assuming that this general regulatory scheme provides a relevant framework for the system, it may then be relevant to use more precise omics data to impose biologically sourced constraints on the model: inactivation of a gene in a patient, activation of a protein or a signalling pathway by overexpression or phosphorylation, etc. This ap-proach, called PROFILE (PeRsonalization OF logIcaL ModEls), allows the integration of both discrete (mutations) and continuous data (RNA expression levels, proteins) based on the MaBoSS software, and leads to specific models of a cell line or a patient.

Scientific content

This chapter presents the method developed during the thesis to personalize logical models, i.e., generate patient-specific models from a single generic one. The principles of the method and some analyses on patient data have been comprehensively described in [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF] and briefly summarized in Béal et al. [2020]. Analyses on cell lines are unpublished.

From one generic model to data-specific models with PROFILE method

The PROFILE method is summarized in Figure 5.1 and the different steps are successively described in the following subsections.

Gathering knowledge and data

The first steps are therefore to build a logical model adapted to the biological question (Figure 5.1, upper left) and to collect omics data that will be used to personalize the model (Figure 5.1, upper right). The construction of the model can be based on literature or data (see previous chapter). In the latter case, the data used to build the model will preferably be distinct from those used to personalize the model.

A generic logical model of cancer pathways

In 

Cancer data to feed the models

In order to showcase the method, breast-cancer patient data are gathered from METABRIC studies [START_REF] Curtis | The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups[END_REF][START_REF] Pereira | The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes[END_REF]. 1904 patients have data for both mutations, copy number alterations, RNA expression and clinical status (e.g. survival). This number rises to 2504 patients if we only look at the mutations. Additional analyses were also performed based on the smaller and clinically less complete TCGA breast cancer data [START_REF] Kristin R Swanson | Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion[END_REF]. These are detailed in [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF] but not included in this thesis. A more comprehensive description of these two databases can be found in section A.3.

In addition to these examples proposed in the original article, an application to cell line data is proposed in section 5.2.1 to link to the next chapters. A cohort of 663 cell lines from different types of cancer will be used. The data are from Cell Models Passports [van der [START_REF] Van Der Meer | Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models[END_REF] and are described in more detail in the appendix A.1. In all cases, samples and cell lines will sometimes be referred to as patients for the sake of simplicity.

Adapting patient profiles to a logical model

Before describing precisely the methodologies for using the data to generate patient-specific models, it is important to understand that these data will need to be transformed. This is the transformation of raw omics data into processed profiles that can be used directly in logical modeling.

Functional inference of discrete data

Since the logical formalism is itself discrete, the integration of discrete data is more straightforward, at least at the first glance. The most natural idea, used in many previous works, is to interpret the functional effect of these alterations and to encode it directly in the model. For instance, a deleterious mutation is integrated into the model by setting the corresponding node to 0 and ignoring the logical rule associated to it. For activating mutation, the node is set to 1. The main obstacle is therefore to estimate the functional impact of the alterations in order to translate them as well as possible in the model.

For mutations, based on the variant classification provided by the data, inactivating mutations (nonsense, frame-shift insertions or deletions and mutation in splice or translation start sites) are assumed to correspond to loss of function mutations and therefore the corresponding nodes of the model are forced to 0. Then, missense mutations are matched with On-coKB database [START_REF] Chakravarty | On-coKB: A Precision Oncology Knowledge Base[END_REF]: for each mutation present in the database, an effect is assessed (gain or loss of function assigned to 1 and 0, respectively) with a corresponding confidence based on expert and literature knowledge. Then, mutations targeting oncogenes (resp. tumorsuppressor genes), as defined in the 2020+ driver gene prediction method [START_REF] Tokheim | Evaluating the evaluation of cancer driver genes[END_REF], are assumed to be gain of function mutations (resp. loss of function) and therefore assigned to 1 (resp. 0). To rule potential passenger mutations out, each automatic assignment of a oncogene/tumorsuppressor gene muations requires that the effect of the mutation has been identified as significant by predictive software based on protein structure such as SIFT [START_REF] Kumar | Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[END_REF] or PolyPhen [START_REF] Adzhubei | A method and server for predicting damaging missense mutations[END_REF].

For integration of copy number alterations, we use the discrete estimation of gain and loss of copies from GISTIC algorithm processing [START_REF] Mermel | GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers[END_REF]. The loss of both alleles of a gene (labelled -2) can thus be interpreted as a 0. Conversely, a significant gain of copies (labelled +2) denotes a gene that tends to be more highly expressed although the interpretation is more uncertain.

Normalization of continuous data

The integration of continuous data, such as RNA expression levels, in logical modeling is more difficult. The stochastic framework of MaBoSS provides however some possibilities. The main continuous mechanistic parameters of MaBoSS are the initial conditions of each node (its initial probability of being activated among the set of simulated stochastic trajectories) and the transition rates associated with the nodes (its probability to have its transition performed in an asynchronous update). In order to facilitate the use of continuous data through one of these two possibilities, we propose to transform them so that the values are continuous between 0 and 1, what we will refer to hereafter as normalized data. It is assumed that these continuous data can be good proxies of biological activity, 0 corresponding to a very low level of activity of the biological entity and 1 to a very high level. This assumption will have to be explained and justified each time: high level of expression of an RNA or significant phosphorylation of a protein interpreted as continuous markers of an important biological activity for example.

One of the assumptions of our analysis is that the interpretation of continuous data can only be relative and not absolute. It is indeed difficult to define an absolute threshold of RNA level at which a gene will be considered as activated. This may depend on contexts, technologies or even the way in which the data have been processed. On the other hand, it is possible to estimate that a gene is over-expressed for a patient compared to a cohort of interest. In contrast, the effect of a mutation can be estimated more independently. Thus, the continuous data will be normalized for the whole cohort studied, for each gene individually. In order to retain biological information as much as possible, distribution patterns are identified and normalized in different ways (Figure 5.4). We will illustrate the process by taking the example of the expression data expressed with continuous RNA levels. Beforehand, genes with no variation in expression level or too many missing values are discarded from the analysis. Then, we seek to identify first the genes that have a bimodal distribution. Indeed, these naturally fit into a binary formalism and this bimodality often has an underlying biological explanation. As an example, in the TCGA prostate cancer cohort (used in section 6.3), a gene called ERG has a bimodal distribution when looking at RNA levels in all patients. This distribution is almost entirely explained by an underlying genetic alteration that is the fusion of the ERG gene with the TMPRSS2 gene promoter (Figure 5.2), which is very common in this cancer [START_REF] Scott A Tomlins | Recurrent fusion of tmprss2 and ets transcription factor genes in prostate cancer[END_REF]. In the data we identify bimodal patterns based on three distinct criteria: Hartigan's dip test of unimodality, Bimodality Index (BI) and kurtosis. The dip test measures multi-modality in a sample using the maximum difference between empirical distribution and the best unimodal distribution, i.e., the one that minimizes this maximum difference [START_REF] Hartigan | The Dip Test of Unimodality[END_REF]. Values below 0.05 indicate a significant multi-modality. In PROFILE, this dip statistic is computed using the R package diptest. The Bimodality Index (BI) evaluates the ability to fit two distinct Gaussian components with equal variance [START_REF] Wang | The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data[END_REF]. Once the best 2-Gaussian fit is determined, along with the respective means µ 0 and µ 1 and common variance σ, the standardized distance δ between the two populations is given by

δ = |µ 0 -µ 1 | σ
with µ i the mean of Gaussian component i, and the BI is defined by

BI = [p(1 -p)] 1/2 δ
where p is the proportion of observations in the first component. In PROFILE, BI is computed using the R package mclust. Finally, the kurtosis method corresponds to a descriptor of the shape of the distribution, of its tailedness, or non-Gaussianity. A negative kurtosis distribution, especially, defines platykurtic (flattened) distributions, and potentially bimodal distributions. It has been proposed as a tool to identify small outliers subgroups or major subdivisions [START_REF] Andrew E Teschendorff | Pack: Profile analysis using clustering and kurtosis to find molecular classifiers in cancer[END_REF]. In our case, we focus on negative kurtosis distributions to rule out non-relevant bimodal distributions composed of a major mode and a very small outliers' group or a single outlier. Although Dip test, BI and negative kurtosis criteria emerge as similar tools in the sense that they select genes whose values can be clustered in two distinct groups of comparable size, we choose to combine them in order to correct their respective limits and increase the robustness of our method. For that, we consider that all three conditions (Dip test, Bimodality Index and kurtosis) must be fulfilled in order for a gene to be considered as bimodal. The thresholds of each test are inspired by those advocated in the papers presenting the tools individually. Dip test is a statistical test to which the classical 0.05 threshold has been chosen. In the article describing BI, authors explored a cut-off range between 1.1 and 1.5 and we chose 1.5 for the present work. Regarding kurtosis, the usual cut-off is 0, but since this criterion does not directly target bimodality, this criterion has been relaxed to K < 1. Several examples of the relative differences and complementarities between these criteria can be seen in Figure 5.3.

Non-bimodal genes are further classified as unimodal or zero-inflated distributions, looking at the position of the distribution density peak (Figure 5.4A). Then, based on this three category classification of genes, a pattern-preserving normalization can be performed, as summarized in Figure 5.4B. For a bimodal gene i, a 2-component Gaussian mixture model is fitted using mclust R package resulting in a lower component C i,0 (with mean µ) and an upper component C i,1 . Denoting X i,j the expression value for gene i and sample j, X i,j has a probability to belong to C i,0 or C i,1 such as P [X i,j ∈ C i,0 ] + P [X i,j ∈ C i,1 ] = 1. These probabilities result from posterior inference using Bayes' rule. For bimodal genes, the normalization
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processing is therefore defined as:

X norm i,j = P [X i,j ∈ C i,1 ]
For unimodal distributions, we transform data through a sigmoid function in order to maintain the most common pattern which is unimodal and nearly-symmetric:

X norm i,j = 1 1 + e -λ(X i,j -median(X i ))
Since the slope of the function depends on λ, we adapt it to the dispersion of initial data in order to maintain a significant dispersion in [0, 1] interval: more dispersed unimodal distributions are mapped with a gentle slope, peaked distributions with a steep one. We map the median absolute deviation M AD(X i ) = median(|X imedian(X i )|) on both sides of the median respectively to 0.25 and 0.75 to ensure a minimal dispersion of the mapping. Thus, the proposed mapping results in:

λ = log(3) M AD(X i )
Last, zero-inflated distributions are transformed by linear normalization of the initial distribution:

X norm i,j = X i,j -min(X i ) max(X i -min(X i ))
The transformation is applied to data between 1st and 99th quantiles to be more robust to outliers. Values outside this range are respectively assigned to 0 and 1. All the categoriation of distributions and the subsequent normalizations are summarized in Figure 5.4. With the help of the categories described here, it is also possible to binarize the continuous data quite simply. This binarization is required for some methods of network inference or logical modeling but will not be used in the examples presented below. Readers may refer to [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF] for more details. 

Personalizing logical models with patient data

It is now possible to redefine more precisely the ways of integrating data into a logical model defined with MaBoSS, as sketched at the beginning of the previous section. Personalization is defined here as the specification of a logical model with data from a given patient: each patient has a personalized model tailored to his/her data, so that all personalized models are different specifications of the same logical model, using data from different patients (Figure 5.1). Based on MaBoSS formalism and the processed patient data, there are several possibilities to personalize a generic logical model with patient data. One possibility to have patient-specific models is to force the value of the variables corresponding to the altered
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genes in a given patient, i.e., constraining some model nodes to an inactive (0) or active (1) state (Figure 5.5A). In order to constrain a node to 0 (resp. 1), the initial value of the node is set to 0 (resp. 1) and k 0→1 (resp. k 1→0 ) to 0 to force the node to maintain its initially defined state. For instance, the effect of a TP53 inactivating mutation can be modeled by setting the node p53 in the model and its initial condition to 0 and ignoring the logical rule of p53 variable. Because of the type of data used, this personalization method is referred to as discrete personalization. It has also been called strict node variants in [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF] because this data integration overwrites the logical rules.

Another possible strategy is to modify the initial conditions of the variables of the altered genes according to the results of the normalization (i.e., the probability of initial activation for one node among the thousands of stochastic trajectories). These initial conditions can capture different environmental and genetic conditions. Nevertheless, in the course of the simulation, these variables will be prone to be updated depending on their logical rules. Finally, as MaBoSS uses Gillespie algorithm to explore the STG, data can be mapped to the transition rates of this algorithm. In the simplest case, all transition rates of the model are set to 1, meaning that all possible transitions are equally probable. Alternatively, it is possible to separate the speed of processes by setting the transition rates to different values to account for what is known about the reactions: more probable reactions will have a larger transition rate than less probable reactions [START_REF] Stoll | Continuous time boolean modeling for biological signaling: application of gillespie algorithm[END_REF]. For this, different orders of magnitude for these values can be used. They are set according to the activation status of the node (derived from normalized values) and an amplification factor F , designed to generate a higher relative difference in the transition rates, and are therefore defined for each node i and sample j:

k 0→1 i,j = F 2(X norm i,j -0.5) k 1→0 i,j = 1 k 0→1 i,j
Thus, if a gene has a value of 1 based on its RNA profile, k 0→1 (resp. k 1→0 ) will be 10 2 (resp. 10 -2 ) with an amplification factor of 100. This amplification factor is therefore a hyper-parameter of the method. Very low values of F will have no impact while higher values will make some transitions almost impossible and the method will then approach the discrete personalization described above. Some quantitative illustrations of the influence of F are provided in [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF]. The integration of continuous data through the initial conditions of the nodes and the transition rates are combined to form a second personalization method called continuous personalization and described in Figure 5.5B. This method has also been called soft node variants to emphasize its difference with discrete/strict personalization: it may influence the trajectories in the solution state space leading to a change in probabilities of the resulting stable state but it does not overwrite the logical rules. To illustrate a little more explicitly the impact of continuous personalization, if a given node has a normalized value of 0.8 after data processing (based on proteins levels for instance), it will be initialized as 1 in 80% of the stochastic trajectories, its transition rate k 0→1 will be increased (favoring its activation) and its transition rate k 1→0 will be decreased (hampering its inactivation). These changes increase the probability that this node will remain in an activated state close to the one inferred from the patient's data, while maintaining the validity of its logical rule. Thus, continuous personalization appears as a smoother way to shape logical models' simulations based on patient data.

In summary, different types of data can be used, with different integration methods. Note that it is quite natural to use genetic alterations (mutations, CNA) to specify definitive changes in models (such as those of discrete personalization) since this corresponds to biological reality: a mutation cannot be undone or reversed. Conversely, continuous alterations in expression or phosphorylation are subject to modification and regulation, thus justifying their interpretation in a less strong and definitive way (such as continuous personalization). Finally, it follows from these definitions that there are different strategies for personalizing a logical model since discrete and continuous personalizations can each use different types of data; and moreover, these two strategies can be combined. Except otherwise stated, mutations (resp. RNA or protein) will always be integrated using discrete (resp. continuous) personalization and the joint integration of both types of data will therefore combine both methods. The relative merits of the different personalization strategies will be discussed below.

An integration tool for high-dimensional data?

Once the method has been defined, it is imperative to study its validity and possible limitations. This comes down to answering the question: do personalized models capture a biological reality, and in our case do they discriminate between different types of cancer?

Biological relevance in cell lines

These questions can be addressed using cell line data. Using the logical model of cancer pathways from Fumia and Martins [2013], it is possible to study the 663 cell lines from different types of tumors by integrating their processed omics profiles to the generic logical model to obtain as many personalized models. If we focus on the read-out of Proliferation, one of the easiest to interpret, there are several ways to study its relevance. For each cell line and each personalization strategy (and corresponding data type) we can define a personalized model and derive the asymptotic value the Proliferation node, called Proliferation score. This score is therefore a priori different for all cell lines that present a different molecular profile.

For the whole population of cell lines, this score can be confronted with other markers of proliferation such as the levels of Ki67 [START_REF] Miller | Ki67 is a graded rather than a binary marker of proliferation versus quiescence[END_REF], here replaced as an example by the RNA levels of the corresponding MKI67 gene. Thus, two independent indicators of the proliferative nature of cell lines are compared. The first is the Proliferation score, which is the final, supposedly asymptotic, value of the Proliferation node, for models that have been constrained with the omics profiles of the corresponding cell lines. On the other hand, an independent experimental indicator of proliferation is used, both the level of the MKI67 biomarker (not used in the personalization process).

It can then be observed that the simulated Proliferation indicator, derived from the personalized models, correlates positively with the biomarker, but only when RNA has been used in the personalization (Figure 5.6A). The sign of the correlation is qualitatively correct, but the heterogeneity appears to be very large and most of the variability is not captured by the models. This heterogeneity is also visible by focusing on some types of cancer (Figure 5.6B). Thus this kind of comparison only validates the models' ability to retrieve a RNA biomarker (not used in personalization) when they themselves integrate other RNA data. It is also consistent that scores from models personalized with mutations only have less uniform distributions due to the discrete nature of the data and the many identical profiles: many cell lines are not distinguishable by mutations only.

It is possible to go one step further by comparing these personalized Proliferation scores with the doubling time of the cell lines, i.e., the time it takes for the cell line population to double. A cell line described as proliferative (high Proliferation score) should thus have a low doubling time. This can be observed qualitatively by using a subgroup of cell lines for which this information is available (Figure 5.6C). These correlations are not significant and once again summarize a large heterogeneity. Predicting doubling times is, however, a rather difficult task with poor accuracies, even with the help of more flexible machine learning low [START_REF] Kurilov | Assessment of modelling strategies for drug response prediction in cell lines and xenografts[END_REF].

Validation with patient data

Patient data can as well be used to reproduce analyses of the same type as those previously performed with the MKI67 biomarker, as was done in [START_REF] Béal | Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients[END_REF], but we focus here on the more clinical applications of the personalized mechanistic models. By analogy with the validations proposed for other mechanistic models [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF], it is also possible to evaluate the prognostic value of personalized logical models on ). This is in line with the natural interpretation that could be given since proliferation is by definition a sign of cancer progression while apoptosis, a programmed death of defective cells, is on the contrary a protective mechanism. While these trends are monotonous and clearly significant for the third strategy using both mutations and RNA (p < 10 -12 with Jonckheere-Terpstra test for ordered differences among classes, for both nodes), this is not the case when the two types of data are used separately: mutations (resp. RNA) are not sufficient to personalize Proliferation (resp. Apoptosis) scores in a meaningful way. The personalisation method therefore seems to be able to combine discrete and continuous data in such a way that some of the biological information is preserved.

This comparison to clinical data can be extended to patient survival data in the same cohort. If we focus on the strategy integrating both mutations and RNA, we observe that in a Cox model of survival, Proliferation is significantly associated with a higher risk of event while Apoptosis is associated with a lower risk, which is again consistent (Figure 5.8). In a more schematic and visual way, it is possible to transform these continuous Proliferation and Apoptosis scores into binary indicators (using medians) and observe their impact on survival, as it has been done in previously mentioned studies [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF], Salvucci et al., 2019b]. The shortcomings of such approaches will be discussed from a statistical point of view in Part III. We then observe the same behaviour for the two personalized scores (Figure 5.9A and B). Interestingly, if we combine the indicators to create groups that are expected to be of very bad prognosis (high Proliferationp < 0.0001 Log-rank low Apoptosis) or of very good prognosis (low Proliferation, high Apoptosis), we further discriminate patients and confirm the qualitatively meaningful interpretation of the personalized scores. It should be noted that the clinical validations presented here remain voluntarily simple and quite close to those proposed in similar articles. Discussions and statistical developments will be proposed in Part III.

Perspectives

In summary, this kind of application of personalized models allows the integration of quite heterogeneous and moderately dimensional biological data in a constrained framework that orders the relationships between variables and guides interpretations. Comparison with external biological or clinical data then makes it possible to verify the absence of major contradictions in the definition of the model. However, the interest of these mechanistic approaches in this type of task appears as quite moder-
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ate compared to statistical models. The qualitative aspect is not necessarily compensated here by the integration of knowledge into the structure of the model, especially in examples that use an extremely broad logical model, which has not been specifically designed for the problems to which it is applied. It is then necessary to study the application of these personalized models to more suitable problems, in which the explicitly mechanistic nature of the models can be exploited.

Summary

Mechanistic models built from the literature are necessarily generic and not patient-specific, which hampers their clinical application. The PROFILE method proposes to personalize a generic knowledgebased structure with patient omics data. The restriction to only initial and static patient omics profiles calls for the use of a parsimonious modeling framework such as logical formalism. The method is then based on the application of patient-specific constraints to the generic model without fitting any parameter but interpreting a priori the biological effect of its alterations: nodes maintained forcibly in their states to translate mutations, or transitions between certain favoured states to translate RNA/protein over-or under-expression. Model simulations are thus induced to follow stochastic trajectories closer to the inferred patient states. The biological relevance of the personalized models thus obtained is validated a first time by verifying their capacity to recover certain characteristics of the systems studied such as differences in the proliferation of cell lines or differences in the prognosis of certain patients.

Personalized logical models to study an interpret drug response

"Il serait excellent que tout médecin ait la possibilité d'expérimenter un grand nombre de médicaments sur lui-même. Sa compréhension de leurs effets en serait tout autre." Mikhail Bulgakov (Morphine, 1927) H istorically, all mechanistic models of molecular networks, and logical models in particular, have been widely used to study response to treatments [START_REF] Flobak | Discovery of drug synergies BIBLIOGRAPHY in gastric cancer cells predicted by logical modeling[END_REF][START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF]. Indeed, biological entities, many of which are prospective therapeutic targets, are explicitly represented in the model, making it possible to simulate their inhibition. This is what will be presented in this chapter using the personalized logical models described above. Can they be used to study the response of biological systems to perturbations, in this case the response of cell lines to gene or protein inhibitions? Compared to the numerous statistical models designed to predict the sensitivity of cell lines to treatements, what information do these personalized mechanistic models provide?

Scientific content

This chapter extends the method presented in the previous chapter to investigate drug response with personalized logical models. The first application to cell lines of all cancer types was presented orally at (ISMB2020)[https://www.youtube.com/watch?v= 6EMBycoR0Ow] in Basel but is not published. The example about BRAF in melanomas and colorectal cancers is under review and the corresponding pre-print is available as Béal et al. [2020]. In this joint work, only the construction of the generic logical model and the model-checking procedure were mostly carried out by collaborators and especially by an intern under my joint supervision. These two steps will therefore be described more succinctly. Finally, the work on prostate cancer presented in a third section will be submitted soon. It is also a joint work, in which my participation focused on the application of the PROFILE method.

One step further with drugs

One of the main clinical consequences of the underlying molecular complexity of cancers is the divergent response to treatment, even for a priori similar tumors. In the light of high-throughput sequencing data, the mechanisms governing these responses are somewhat better understood, for patients and especially for model organisms such as cell lines [START_REF] Heiser | Subtype and pathway specific responses to anticancer compounds in breast cancer[END_REF][START_REF] Mathew | Systematic identification of genomic markers of drug sensitivity in cancer cells[END_REF]. But beyond a few simple cases, the diversity of response biomarkers once again calls for holistic approaches to unravel the underlying mechanisms.

Modeling response to cancer treatments

To study these observed differences in drugs response in various cancers, some approaches based on mathematical modeling were developed to explore the complexity of differential drug sensitivities1 . A number of machine learning-based methods for predicting sensitivities have been proposed [START_REF] James C Costello | A community effort to assess and improve drug sensitivity prediction algorithms[END_REF], either without particular constraints or with varying degrees of prior knowledge; but they do not necessarily provide a mechanistic understanding of the response. Some other approaches focused on the description of the processes that might influence the response by integrating knowledge of the signaling pathways and their mechanisms and translated it into a mathematical model [START_REF] Eduati | Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models[END_REF][START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF][START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF]. The first step of this approach implies the construction of a network recapitulating knowledge of the interactions between selected biological entities (driver genes but also key genes of signaling pathways), extracted from the literature or from public pathway databases, or directly inferred from data [START_REF] Verny | Learning causal networks with latent variables from multivariate information in genomic data[END_REF]. This static representation of the mechanisms is then translated into a dynamical mathematical model with the goal to not only understand the observed differences [START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF] but also to predict means to revert unexpected behaviours.

One way to address issues related to patient response to treatments is to fit these mechanistic models to the available data, and to train them on high-throughput cell-line specific perturbation data2 [START_REF] Eduati | Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models[END_REF][START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF][START_REF] Klinger | Network quantification of egfr signaling unveils potential for targeted combination therapy[END_REF]. These mechanistic models are then easier to interpret with regard to the main drivers of drug response. They also enable the in silico simulations of new designs such as combinations of drugs not present in the initial training data [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF]. However, these mechanistic models contain many parameters that need to be fitted or extracted from the literature. Some parsimonious mathematical formalisms have been developed to make up for the absence of either rich perturbation data to train the models or fully quantified kinetic or molecular data to derive the parameters directly from literature. One of these approaches is the logical modeling, which uses discrete variables governed by logical rules. Its explicit syntax facilitates the interpretation of mechanisms and drug response [Zañudo et al., 2017, Iorio et al., 2016] and despite its simplicity, semi-quantitative analyses have already been performed on complex systems including drug response studies [START_REF] Knijnenburg | Logic models to predict continuous outputs based on binary inputs with an application to personalized cancer therapy[END_REF][START_REF] Eduati | Patient-specific logic models of signaling pathways from screenings on cancer biopsies to prioritize personalized combination therapies[END_REF].

An application of personalized logical models

But logical formalism has also shown its relevance regarding drug response in cases where the model is not automatically trained on data but simply constructed from literature or pathway databases and where biological experiments focus on a particular cell line [START_REF] Flobak | Discovery of drug synergies BIBLIOGRAPHY in gastric cancer cells predicted by logical modeling[END_REF]]. The study is then restricted to one cell line only from which some data and parameters have been experimentally inferred. Using the PROFILE method, it is possible to generate personalized logical models associated with different cell lines and then use them to study the response to treatment. Since the models are not trained with perturbation data but simply specified/constrained by interpreting the molecular profiles, it is possible to personalize the logical models with a rather limited amount of data.

The principles are summarized in Figure 6.1. A generic model (Figure 6.1A) is first transformed into as many personalized models as there are cell lines with an omics profile. These persnalized models are then simulated by adding the effect of a given treatment (Figure 6.1B). The treatments that can be studied are generally targeted inhibitors. Generally speaking, one must be able to translate the mechanism of action of the treatment into the logical model. The impact of more systemic treatments such as chemotherapy or radiotherapy is more difficult to study with these methods, in any case with most of the logical models published to date, even if in theory, precise modeling of the pathways associated with these treatments (such as DNA repair) could contribute to this.

It is then possible to analyze the personalized scores for each cell line (asymptotic values of the phenotypic read-outs of the model) with or without the effect of treatment. If the model includes more than two phenotypes of interest, such as the one in Figure 6.1A, one can visualize these behaviors in the PCA space of the personalized scores, as shown schematically in Figure 6.1C. In this case the directions of the original phenotype features (Proliferation, Apoptosis, Quiescence) have been added in the PCAtransformed space in order to facilitate the interpretation of positions and drug-induced displacements. In this mock example, based on personalized models, treatment would promote a shift from proliferative to more apoptotic or quiescent behaviors, in particular in the red and green cell lines, which are a priori more sensitive to the treatment.

A pan-cancer attempt

This versatile analysis framework was first applied during this thesis to a large pan-drug and pan-cancer analysis. On the basis of generic logical models such as those previously presented (see appendix B.1 and B.2), and in view of the abundance of available data (across cancer tissues and drugs such as in GDSC cell line dataset, see appendix B.1), there were no theoretical obstacle to such an analysis. Although the simulations were carried out without any problems, the analysis nevertheless proved extremely difficult to interpret. We will highlight the various problems encountered, propose an illustration and some perspectives that led to the work presented in the following section.

Based on the PROFILE methodology and GDSC data, hundreds of personalized models can be obtained, each corresponding to a cell line. For each of these personalized models, several dozen of potential drugs have a mechanism of action that can be mechanistically translated into the logical model. We thus obtain tens of thousands of "personalized model/drug" pairs that correspond to experimentally evaluated drug sensitivies (cf appendix A.1.2 for details). Firstly, the comparison of simulated and experimental data is not straightforward. As the models are qualitative, it is necessary to carry out the validation in this spirit. The idea is not to predict sensitivity quantitatively, rather to verify their relative relevance. In the first place, do we recover the cell lines that are most sensitive to a given drug? With several hundred cell lines, it is difficult to make this reflection graphically as in Figure 6.1C. More quantitative approaches, such as correlation, would require the definition of a precise sensitivity proxy in personalized models. Should we choose the personalised Proliferation score obtained with drug? Or the drug-induced displacement in the mechanistic model (the drug arrows in Figure 6.1C)? Or is a combination of phenotypes used, if so which one? As for experimental metrics, which ones to choose, and what interpretations do they allow? Whatever the choice, dose-response AUC or IC50 (see details in the appendix A.1.2), a problem arises: can the sensitivities of a cell line to different drugs be compared? Such a comparison would allow the most clinically interesting questions of precision medicine to be asked: for a given molecular profile, can the model predict the best treatment to administer? However, AUCs are comparable for different drugs only if the concentration ranges tested are similar; and IC50s are extrapolated, sometimes well beyond the concentrations tested. Qualitative comparisons for a given drug therefore seem the most meaningful, as long as a relevant proxy in personalized models can be justified.

Aware of these difficulties, if one decides to do a correlation analysis, for each drug, of the personalized correlation scores with experimental sensitivities, one realizes that some experimental responses correlate well with the behaviours of personalized models while others do not. But it is difficult to decide between two different interpretations: does this mean that correctly predicted drugs are well modeled and others are not? Or does it mean that some correlations appear to be better by chance because so many drugs have been modeled? A case study can be illustrated more precisely with the example shown in Figure 6.2. In order to simplify the analysis presented schematically in Figure 6.1C, the 663 cell lines were averaged by cancer type (according to TCGA denominations) and the drug-induced shifts are all represented from the origin in the PCA space. There is evidence that the effect of the drug on personalized models (using only mutations) tends to make them less proliferative and more apoptotic/quiescent (Figure 6.2A). This shift is strongest for those types of cancer that are actually most sensitive to this inhibitor experimentally (i.e., low AUC), such as skin cutaneous melanomas (SKCM) in particular, and colorectal (COAD/READ) or pancreatic (PAAD) cancers to a lesser extent. The ability of personalized models to explain this difference can be understood by a known underlying biological reality: the prevalence of BRAF or RAS mutations in these cancers. The three aforementioned cancers are thus very frequently mutated for one of the two genes (Figure 6.2B). Then, the model translates the fact that these two genes are located just upstream of MAP2K1. It is therefore natural that an inhibition just downstream of these important mutations is particularly effective (Figure 6.2C). In a case such as this, the relevance of the model can be explained and justified a posteriori. This analysis is much more difficult in the vast majority of cases, whether the correlations are apparently good or not. This example highlights a problem of scope. The fact that the method enables to study hundreds of cell lines and dozens of drugs does not mean that it is relevant in each case. The description of pathways in the model is more or less accurate. For example, a node at the model boundaries probably has many regulators missing. Is it then relevant to investigate the response of personalized models to its inhibition? It is therefore necessary to restrict the drugs studied. Similarly, even if the logical model summarizes many important pathways, it is probably unsuitable for certain cell lines or certain types of cancer with different etiologies. However, it is difficult to restrict the scope of the analysis in an unbiased way without having designed a model de novo for a specific purpose.

For all these reasons, it was decided to leave aside this naive, broadspectrum approach in favour of starting from a more specific biological question and constructing the appropriate logical model.

Case study on BRAF in melanoma and colorectal cancers

In order to address the limitations outlined in this exploratory analysis, we propose here a pipeline based on logical modeling and able to go from the formulation of a specific biological question to the validation of a mathematical model on pre-clinical data, in this case a set of cell lines, and the subsequent interpretation of potential resistance mechanisms3 (Figure 6.3).

As before, one of the main points of differentiation with existing mechanistic approaches, is that this framework does not rely on any training of parameters but only on the automatic integration and interpretation of molecular features.

Biological and clinical context

The construction of a mathematical model must be based first and foremost on a precise and specific biological question, at the origin of the design of the model. Here, we choose to explore the different responses to treatments in tumors from diverse cancers that bear the same mutation. A well-studied example of these variations is the BRAF mutation and especially its V600E [START_REF] Poulikos I Poulikakos | Raf inhibitor resistance is mediated by dimerization of aberrantly spliced braf (v600e)[END_REF][START_REF] Sun | Reversible and adaptive resistance to braf (v600e) inhibition in melanoma[END_REF]. These various findings support the need for an integrative mechanistic model able to formalize and explain more systematically the differences in drug sensitivities depending on the molecular context. The purpose of the study we propose here is not to provide a comprehensive molecular description of the response but to verify that the existence and functionality of the suggested feedback loops around the signalling pathway in which BRAF is involved [START_REF] Prahallad | Unresponsiveness of colon cancer to braf (v600e) inhibition through feedback activation of egfr[END_REF] may be a first hint towards these differences. For a more thorough study of these cancers, we refer to other works [START_REF] Eduati | Drug resistance mechanisms in colorectal cancer dissected with cell type-specific dynamic logic models[END_REF][START_REF] Baur | Connecting cancer pathways to tumor engines: A stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models[END_REF][START_REF] Cho | Attractor landscape analysis of colorectal tumorigenesis and its reversion[END_REF].

A logical model centred on BRAF

A logical model summarizing the main molecular interactions at work in colorectal cancers and melanomas is thus built from the literature and completed with databases. As previously mentioned, the objective is to understand whether it is possible to model and explain differences in responses to BRAF inhibition in melanoma and colorectal cancer patients using the same regulatory network. The fact that the two cancers share the same network but differ from the alterations and expression of their genes constitutes our prior hypothesis. The focus of this model is put on two important signaling pathways involved in the mechanisms of resistance to BRAF inhibition which are the ERK1/2 MAPK and PI3K/AKT pathways [START_REF] Ursem | Emerging treatment options for braf-mutant colorectal cancer[END_REF][START_REF] Rossi | Drug resistance of braf-mutant melanoma: Review of up-to-date mechanisms of action and promising targeted agents[END_REF]. The generic network presented in Figure 6.4 recapitulates the known interactions between the biological entities of the network that was first built from the literature, and then verified and completed with potential missing connections using SIGNOR database [START_REF] Perfetto | Signor: a database of causal relationships between biological entities[END_REF]. More details and references about the model can be found in appendix B.3. All in all, the logical model for- malizes the knowledge compiled from different sources and highlights the role of SOX10, FOXD3, CRAF, PI3K, PTEN and of EGFR in resistance to anti-BRAF treatments. In order to facilitate the biological interpretation of the model's behaviors, a phenotypic read-out is defined: it is the Proliferation node which summarizes the proliferative capacity of the model resulting from the activation of the different signaling pathways.

Once the structure of the model was defined, and before moving on to its personalization, its consistency with the literature was checked using a model-checking procedure. Indeed, due to the complexity of the system, properly taking into account the interactions between entities does not automatically guarantee that the model will reproduce certain dynamic behaviours. It is therefore a question of verifying whether the model reproduces certain biological assertions found in the scientific literature. An example of a biological assertion may be the reactivation of the MAPK (mitogen-activated protein kinase) pathway through EGFR signal after BRAF inhibition in colorectal cancer [START_REF] Prahallad | Unresponsiveness of colon cancer to braf (v600e) inhibition through feedback activation of egfr[END_REF]: it is possible to check whether a simulation of this situation with the model gives the same result or not. Because there are many such assertions and because it is useful to verify them as the model is built, automatic model-checking tools have been defined, based on the MaBoSS syntax and inspired by the Python unittest library. More details are provided in Béal et al. [2020] and in a corresponding GitHub repository. The list of biological assertions used to validate the model is detailed in the appendix B.3.

Cell lines data

The omics profiles of colorectal and melanoma cell lines are downloaded from Cell Model Passports portal [van der [START_REF] Van Der Meer | Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models[END_REF]. 64 colorectal cancer (CRC) cell lines and 65 cutaneaous melanoma (CM) cell lines are listed in the database, with at least mutation or RNA-seq data (59 CM and 53 CRC with both mutations and RNA-seq data). These omics profiles are used to generate cell-line-specific logical models as described in PROFILE method (Figure 5.1). The prevalence of mutations and their combination for the two types of cancer can be seen in Figure 6.5A and is consistent with the clinical situation described above with melanomas more frequently BRAF-mutated and colorectal cancers more frequently RAS-mutated.

In order to validate the relevance of personalized models to explain differential sensitivities to drugs, some experimental screening datasets are used. Drug screening data are downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset [Yang et al., 2012] which includes two BRAF inhibitors: PLX-4720 and Dabrafenib. The cell lines are treated with increasing concentration of drugs and the viability of the cell line relative to untreated control is measured. The dose-response relative viability curve is fitted and then used to compute the area under the dose-response curve (AUC) [Vis et al., 2016]. AUC is a value between 0 and 1: values close to 1 mean that the relative viability has not been decreased, and lower values correspond to increased experimental sensitivity to inhibitions (details in appendix A.1.2). The results obtained with the two drugs are very strongly correlated (Pearson correlation of 0.91) and the analyses presented here will therefore focus on only one of them, PLX-4720.

In a complementary way, some results of CRISPR/Cas9 screening are also downloaded from Cell Model Passports. This technology, which is described in more detail in the appendix A.1.3, allows targeted inhibitions of certain genes. Two different datasets from Sanger Institute [Behan et al., 2019] and Broad Institute [START_REF] Meyers | Computational correction of copy number effect improves specificity of crispr-cas9 essentiality screens in cancer cells[END_REF] are available. We use scaled Bayesian factors to assess the effect of CRISPR targeting of genes. These scores are computed based on the fold change distribution of single guide RNAs [START_REF] Hart | Bagel: a computational framework for identifying essential genes from pooled library screens[END_REF]. The highest values indicate that the targeted gene is essential to the cell fitness. The agreement between the two databases is good [START_REF] Dempster | Agreement between two large pancancer crispr-cas9 gene dependency data sets[END_REF] but we choose to focus on the Broad database, which is more balanced in terms of the relative proportions of melanomas and colorectal cancers. Figure 6.5B illustrates both the relative quantities of cell lines for which drug or CRISPR screening data are available (depending on their BRAF status) as well as differences in experimental sensitivity to BRAF inhibition. The greater sensitivity of BRAF-mutated melanomas compared to BRAF-mutated colorectal cancers is well observed for PLX-4720. However, the overlap in the distributions requires a deeper look into the data and a search for more precise explanations of the differences in sensitivity, including within each type of cancer. The finding appears to be similar for CRISPR despite a sample size that is too small; the higher average sensitivity of melanomas even extends to non-mutated BRAF.

Validation of personalized models using CRISPR/Cas9 and drug screening

The validation of personalized logical models using these screening data is done with the following rationale. First, the models are personalized using omics data from the cell lines. Then, two separate simulations are performed for each personalized model: one without the inhibition, the other by creating and activating a BRAF inhibitor to mimic the drug or CRISPR inhibition. A ratio of the Proliferation phenotype obtained with inhibition and without inhibition is obtained and can be written as follows for each personalized logical model:

P rolif eration(t f inal ) with BRAF inhibited P rolif eration(t f inal ) without any inhibition

Since the expected effect of the drug is to decrease proliferation, this ratio is expected to be less than or equal to 1, with the lower values indicating the personalized logical models most sensitive to this targeted inhibition. This ratio is considered as a proxy for drug sensitivity. In the experimental cell line data mentioned above, drug sensitivities are measured with different metrics, each of which is also standardized: AUC is calculated on relative viability for drugs and Bayes factor is computed from fold-changes and then scaled. It is therefore possible to qualitatively compare the drug sensitivity proxy built from the personalized models and the experimental values, all measuring for each cell line the relative variation in proliferation in response to drug inhibition. Since mechanistic models are essentially qualitative, it is difficult to give a precise interpretation of the magnitude of their proliferation variations. Subsequently, the ratio presented above and the experimental values will be compared simply by calculating the linear correlation between these variables, in order to verify whether the ratio is able to reproduce the same trends and to identify the most or least sensitive lines. Predictive approaches would require a better prior calibration of the mechanistic models.

Differential sensitivities to BRAF targeting explained by personalized logical models

Once the logical model consistency has been validated, personalized models are generated for each cell line by integrating their interpreted genomic features directly as model constraints or parameters. Sensitivities to BRAF inhibition inferred from models are then compared to experimentally observed sensitivities (Figure 6.6). In all the following analyses, we focus on three different personalization strategies using: only mutations as discrete personalization (Figure 6.6A, upper row), only RNA as continuous personalization (Figure 6.6A, middle row) or mutations combined with RNA (Figure 6.6A, lower row). These choices reflect first of all the following a priori: mutations are much more drastic and permanent changes than RNA, whose expression levels are more subject to fluctuation and regulation. The objective is also to answer the following questions: What type of data is most likely to explain the differences in responses? Is it relevant to combine them? Figure 6.6 shows an example of the type of analyses possible with personalized models, zooming in more and more on the details from panel A to panel C.

The first approach consists in using only mutations as discrete personalization (Figure 6.6, A, upper row): the mutations identified in the dataset and that are present in the regulatory network are set to 1 for activating mutations and set to 0 for inactivating mutations. In this case, the Proliferation scores from personalized models significantly correlate with both BRAF drug inhibitors (PLX-4720 and Dabrafenib) and both CRISPR datasets (using Pearson correlations). Note that the opposite directions of the correlations for the drug and CRISPR datasets are due to the fact that cell lines sensitive to BRAF inhibition result in low AUCs, and high scaled Bayesian factors, respectively, and, if the models are relevant, to low standardized Proliferation scores. Looking more closely at the corresponding scatter plot for PLX-4720 (Figure 6.6B, upper left), it can be seen that this correlation results from the model's ability to use mutations' information to recover the highest experimental sensitivities of the BRAF-mutated cell lines that form an undifferentiated cluster on the left side. These cell lines are indeed relatively more sensitive than nonmutated BRAF cell lines. However, the integration of mutations alone does not explain the significant differences within this subgroup (AUC between 0.55 and 0.9). A very similar behaviour can be observed when comparing model simulations with CRISPR data (Figure 6.6B, upper right).

Using only RNA data as continuous personalization (Figure 6.6A and B, middle rows) is both less informative and more difficult to interpret. For continuous data such as RNA-sequencing data, we normalize the expression values and set both the initial conditions and the transition rates of the model variables to the corresponding values. Correlations with experimental BRAF inhibitions appear weaker and more uncertain. The key point, however, is that the combination of mutations and RNA, as depicted in Figure 6.6 A and B lower rows, seems to be more relevant. This is partially true in quantitative terms but it is even easier to interpret in the corresponding scatter plots (Figure 6.7). Comparing first the Broad CRISPR scatter plots using mutations only (Figure 6.6B, upper right) and using both mutations and RNA (Figure 6.6B, lower right), we can observe that non-responsive cell lines (scaled Bayesian factor below 0), grouped in the lower right corner and correctly predicted using only mutations stayed in the same area: these strong mutational phenotypes have not been displaced by the addition of RNA data. Other cell lines previously considered to be of intermediate sensitivity by the model (e.g., COLO-678 or SK-MEL-2) were shifted to the right, consistent with the lack of sensitivity observed experimentally. Finally, BRAF-mutated cell lines, previously clustered in one single column on the left using only mutations (with normalized Proliferation scores around 0.5), have been moved in different directions. Many of the most sensitive cell lines (scaled Bayesian factor above 2) have been pushed to the left in accordance with the high sensitivities observed experimentally (e.g., HT-29 or SK-MEL-24). It is even observed that the model corrected the position of the two BRAF mutated cell lines, but whose sensitivity is experimentally low (melanoma cell line HT-144 and colorectal cell line HT-55). Only one cell line (SK-MEL-30) has seen its positioning evolve counter-intuitively as a result of the addition of RNA in the personalization strategy: relatively sensitive to the inhibition of BRAF, it has, however, seen its standardised Proliferation score approach 1. All in all, this contribution of RNA data results in significant correlations even when restricted to BRAF-mutated cell lines only (R = 0.69, p.value = 0.006).

A similar analysis can be made of the impact of adding RNA data to personalization when comparing with the experimental response to PLX-4720 (Figure 6.6B, upper and lower left). Most of the non-sensitive cell lines (upper right corner) have not seen the behaviour of the personalized models change with RNA addition. However, the numerous BRAF-mutated cell lines previously grouped around standardized Proliferation scores of 0.5, are now better differentiated and their sensitivity predicted by personalized models has generally been revised towards lower scores (i.e., higher sensitivity). Similar to the CRISPR data analysis, three sensitive cell lines have been shifted to the right and are misinterpreted by the model. As a result, the correlation restricted to BRAF-mutated cell lines is no longer significant (R=0.26, p.value=0.1).
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Proliferation scores from personalized models CRISPR screening metric (scaled Bayesian factor) Figure 6.7: Multi-omics integration and enhanced value of RNA in addition to mutations. For each cell line, an arrow shows the impact of adding RNA in the customization strategy. This graph is present in an interactive format in the online version of the thesis in order to give easy access to the omic profile corresponding to each point.

An investigative tool

These personalized models are not primarily intended to be predictive tools but rather used to reason and explore the possible mechanisms and specificities of each cell line, for example by studying the molecular alterations at the origin of the observed behaviour (Figure 6.7). To continue on the previous examples, the two melanoma cell lines, HT-144 and SK-MEL-24, share the same mutational profiles but have very different sensitivities to BRAF targeting (Figure 6.6C). This inconsistency is partially corrected by the addition of the RNA data, which allows the model to take into account the difference in CRAF expression between the two cell lines. In fact, CRAF is a crucial node for the network since it is necessary for the reactivation of the MAPK pathway after BRAF inhibition. Therefore, the high sensitivity of SK-MEL-24 may be explained by its low CRAF expression level, which makes the reactivation of the MAPK pathway more difficult for this cell line. Conversely, in HT-144, the high level of CRAF expression allows the signal to flow properly through this pathway even after BRAF inhibition, thus making this cell line more resistant. The importance of CRAF expression is also evident in HT-29, a CRC BRAF mutated cell line with other important mutations (PI3K activation and p53 deletion). However, it remains sensitive to treatment, due to its very low level of CRAF expression.

Another interesting contribution of RNA appears in the melanoma cell line UACC-62, which is particularly sensitive to treatment. The model is able to correctly predict its response once RNA levels are integrated. In this case, the reason for sensitivity seems to be due to the low level of PDPK1, which makes it difficult to activate p70 and thus to trigger the resistance linked to PI3K/AKT pathway activation. Similarly, the CRC resistant cell line, HT55, which carries only the BRAF mutation, expresses high levels of PDPK1, in addition to high levels of CRAF, supporting the idea that the presence of both MAPK and PI3K/AKT pathways may confer resistance to BRAF inhibition treatments. We can also mention a cluster of RAS mutated cell lines, usually NRAS mutated for melanomas (e.g., SK-MEL-2) and KRAS for colorectal cancers (e.g., COLO-678), which are classified by the model as resistant. Interestingly, in these cell lines, a low level of CRAF is not enough to block the signal of the MAPK pathway, which is stronger in the model because of the simulation of the RAS mutation (RAS is set to 1). Only SK-MEL-30 appears to be incorrectly classified and is observed to be more sensitive than the other cell lines with a similar mutation profile. This could be due to the fact that our network is incomplete and not able to account for some alterations responsible for this cell line sensitivity. The problem may also come from the fact that this cell line contains a frameshift mutation of RPS6KB2 (p70 node) not referenced in OncoKB and therefore not included in the simulation.

The versatility of the logical formalism makes it possible to test other node inhibitions as in Figure 6.8, but remains limited by the scope of the model. Since the present model has been designed around BRAF, its regulators have been carefully selected and implemented, which is not necessarily the case for other nodes of the model. Therefore, these personalized models can be used to study how comprehensive the descriptions of the regulation of other nodes or parts of the model are. Thus, model simulations show that response trends to TP53 inhibition are consistently recovered by the model (Figure 6.8B) but the simple regulation of p53 in the model results in coarse-grained patterns, although slightly improved by addition of RNA data. Similar analyses regarding the targeting of PIK3CA (in CRISPR data) simulated, in the model, by the inhibition of PI3K node, can be performed (Figure 6 scope issues raised in the pan-cancer-preliminary analysis.

Comparison of the mechanistic approach with machine learning methods

In order to provide comparison elements unbiased by prior knowledge or by the construction of the model, we performed some simple machine learning algorithms. Random forests are used as an example of a machine learning approach to compare with mechanistic models and are implemented with randomForestSRC R package [Breiman, 2001a]. Random forests can be seen as an aggregation of decision trees, each trained on a different training set formed by uniform sampling with replacement of the original cohort. Prediction performances are computed using out-of-the bag estimates for each individual (i.e, average estimate from trees that did not contain the individual in their bootstrap training sample) and summarized as percentage of variance explained by the random forest. In this case, random forests have been fitted with inputs (mutations and/or RNA data) and outputs (sensitivities to drug or CRISPR BRAF inhibition) similar to those of logical models and the corresponding predictive accuracies are reported in Figure 6.9A. The first insight concerns data processing. The percentages of variance explained by the models are similar (around 70% of explained variance for drug sensitivity prediction) in the following three cases: unprocessed original data (thousands of genes), unprocessed original data for model-related genes only (tens of genes), and processed profiles of cell lines (tens of genes). This supports the choice of a model with a small number of relevant genes, which appear to contain most of the information needed for prediction. Second, the absolute level of performance appears much lower for CRISPR (between 30 and 50%) probably suffering from the lower number of samples, especially in cases where the number of variables is the highest. This tends to reinforce the interest of mechanistic approaches that do not use any training on the data for smaller datasets, less suitable for learning. Finally, while mutations and RNA data seem to provide the same predictive power (especially for drugs), using the two together does not necessarily result in a better performance in this case.

It is also possible to compute the variable importance that assesses the contribution of variables to the overall performance. The solution adopted in this paper to measure it, and called VIMP in the package, consists in introducing random permutations between individuals for the values of a variable and quantifying the variation in performance resulting from this addition of noise. In the case of key variables for prediction, this perturbation will decrease the performance and will result in a high variable importance [START_REF] Ishwaran | Variable importance in binary regression trees and forests[END_REF]. Variable importance in these different random forests are reported in Figure 6.9B and are consistent with the analysis of mechanistic models. The mutational status of BRAF is definitely the most important variable followed by mutations in RAS or TP53. Concerning RNA levels, the most explanatory variables seem to be FOXD3 or PTEN, in line with the definition of the logical model.

Application on prostate cancer study and challenges

Before summarizing the potential and limitations of the PROFILE approaches described in this and the previous chapter, a final example may

APPLICATION ON PROSTATE CANCER STUDY AND CHALLENGES

be mentioned. Indeed, another application of the PROFILE method, quite similar to the examples presented in the previous and this chapter, has been carried out on prostate cancer. Chronologically, this project was one of the first applications of the method. However, as this project was more collaborative than personal, the previous chapters have been illustrated by more exclusively personal work when they were equivalent. We will therefore only briefly mention here the differences and insights specific to this study.

First, a logical model specific to prostate cancer was developed by some collaborators (Pauline Traynard and Arnau Montagud) over a long period of time, resulting in a large and comprehensive model of 146 nodes, which is described in more detail in the appendix B.4 and Figure B.3. Using the TCGA prostate cancer dataset (A.3.3) prognostic validation of the model was first carried out, similarly to Figure 5.7, by comparing individualized scores of some phenotypes in the model (i.e., Proliferation) with clinical markers, in this case Gleason score, a grading system specific to prostate cancer. The qualitative evolution of the personalized Proliferation scores is also qualitatively validated (predicted proliferating tumors are on average of higher grade) but, despite the specificity and magnitude of the model, much of the variability is not explained.

The use of cell line data was also explored using Cell Model Passports data, restricted to the 7 prostate cell lines. The size of the model then allows qualitative predictions to be made on the proliferative, apoptotic and metastatic qualities of the different lines. Except for proliferation, however, experimental validation of the relevance of these predictions is difficult using public data or the literature. But again, after these preliminary validations, the focus of the study was on treatment response with a slightly different rationale than in the previous example. Focusing on a particular cell line (LnCaP) and its corresponding personalized logical model, the idea is to simulate with the models all possible inhibitions or combinations of inhibitions in order to identify possible vulnerabilities or relevant treatment synergies. Experimental validation on the cell line was then carried out for certain genes that could be targeted depending on the existence of the treatments. The efficacy of certain inhibitions highlighted by the simulations, such as that of HSP90, was confirmed experimentally on this particular cell line. Despite the limitations of the approach in this application to prostate cancer, the study demonstrates the feasibility of the method for investigating the complexity of therapeutic responses and guiding experimental validation.

Limitations and perspectives

The emergence of high-throughput data has made it easier to generate models for prognostic or diagnostic predictions in the field of cancer. The numerous lists of genes, biomarkers and predictors proposed have, however, often been difficult to interpret because of their sometimes uncertain clinical impact and little overlap between competing approaches [START_REF] Domany | Using high-throughput transcriptomic data for prognosis: a critical overview and perspectives[END_REF]. Methods that can be interpreted by design, which integrate a priori biological knowledge, therefore appear to be an interesting complement able to reconcile the omics data generated and the knowledge accumulated in the literature.

These benefits come at the cost of having accurate expert description of the problem to provide a relevant basis to the mechanistic models. This is particularly true in this work since the personalized models all derive from the same structure (the initial generic logical model) of which they are partially constrained versions. It is therefore necessary to have a generic model that is both sufficiently accurate and broad enough so that the data integration allows the expression of the singularities of each cell line. If this is not the case, the learning of logical rules or the use of ensemble modeling could be favoured, usually including perturbation time-series data [START_REF] Razzaq | Computational discovery of dynamic cell line specific boolean networks from multiplex time-course data[END_REF]. It should also be noted that, in the logical models presented here, the translation of biological knowledge into a logical rule is not necessarily deterministic and unambiguous. The choices here have been made based on the interpretation of the literature only. And the presence of certain outliers, i.e., cell lines whose behaviour is not explained by the models, may indeed result from the limitations of the model, either in its scope (important genes not integrated), or in its definition (incorrect logical rules). More global or data-driven approaches to define the model would be possible but would require different training/validation steps and different sets of data.

The second key point is the omics data used. For practical reasons, we have focused on mutation and RNA data. The legitimacy of the former is not in doubt, but their interpretation is, on the other hand, a crucial point whose relevance must be systematically verified. The omission or over-interpretation of certain mutations can severely affect the behaviour of personalized models. Validation using sensitivity data provides a good indicator in this respect. However, the question is broader for RNA data: are they relevant data to be used to personalize models, i.e., can they be considered as good proxies for node activity? The protein nature of

LIMITATIONS AND PERSPECTIVES

many nodes in the model would encourage the use of protein level data instead, or even phosphorylation levels if they were available for these data. One perspective could even be to push personalization to the point of defining different types of data or even different personalization strategies for each node according to the knowledge of the mechanisms at work in the corresponding biological entity. A balance should then be found to allow a certain degree of automation in the code and to avoid overfitting. Despite these limitations, the results described above support the importance of combining the integration of different types of data to better explain differences in drug sensitivities. There was no doubt about this position of principle in general [START_REF] Azuaje | Computational models for predicting drug responses in cancer research[END_REF], and in particular in machine learning methods [START_REF] James C Costello | A community effort to assess and improve drug sensitivity prediction algorithms[END_REF], Aben et al., 2016]. The technical implementation of these multi-omic integrations is nevertheless more difficult in mechanistic models where the relationships between the different types of data need to be more explicitly formulated [START_REF] Klinger | Network quantification of egfr signaling unveils potential for targeted combination therapy[END_REF]. The present work therefore reinforces the possibility and value of integrating different types of data in a mechanistic framework to improve relevance and interpretation and illustrates this by highlighting the value of RNA data in addition to mutation data in predicting the response of cell lines to BRAF inhibition. In addition, one piece of data that could be further exploited is that of the specific behaviour of the drugs or inhibitors studied, since for instance some BRAF inhibitors have affinities that vary according to mutations in the BRAF gene itself. The integration of truly precise data on the nature of the drug is nevertheless limited by logical formalism and is more often found in more flexible approaches, e.g., in deep learning [START_REF] Manica | Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders[END_REF].

The application presented in this chapter, focused on BRAF inhibitors, made it possible to verify the good performance of the models through different types of data (drug or CRISPR/Cas9). However, the molecular profiles used to personalize the models were all derived from cell lines, reported in the same database [START_REF] Van Der Meer | Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models[END_REF]. It would be possible to use different types of data such as organoids, patient-derived xenografts (PDX), etc. The critical clinical question will then be: do the mechanisms highlighted for cell lines transfer easily to tumours in vivo? The ability to identify common reasons explaining the response to treatments has been studied by different statistical approaches with the aim of promoting translational medicine [START_REF] Mourragui | Precise: A domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors[END_REF][START_REF] Kim | Genomic data integration by won-parafac identifies interpretable factors for predicting drug-sensitivity in vivo[END_REF]. The ability of personalized mechanistic models to follow this path remains to be explored.

To conclude, we provide a comprehensive pipeline from clinical question to a validated mechanistic model which uses different types of omics data and adapts to dozens of different cell lines. This work, which is based only on the interpretation of data and not on the training of the model, continues some previous work that has already demonstrated the value of mechanistic approaches to answer questions about response to treatment, especially using dynamic data [START_REF] Saez | Personalized signaling models for personalized treatments[END_REF], and sometimes about similar pathways [START_REF] Klinger | Network quantification of egfr signaling unveils potential for targeted combination therapy[END_REF]. In this context, our approach proves the interest of logical formalism to make use of scarce and static data facilitating application to a wide range of issues and datasets in a way that is sometimes complementary to learning-based approaches.

Summary

The explicit representation of biological entities in mechanistic models makes them attractive for studying the impact of treatments: if the mechanism of action of a drug is known, it can be added to the structure and the effect of the induced perturbation on the system can be measured. This approach has been applied to personalized logical models, in particular to decipher differences in sensitivity to BRAF inhibitors in patients with colorectal and melanoma cancers. Based on a generic network of the surrounding pathways common to both cancers, the personalized models were able to capture a significant proportion of these differential sensitivities with untrained personalized models. The best correlations result from the joint use of mutation and RNA data supporting the integration of multi-omic data. Personalized models also offer an opportunity to highlight and explain some of the mechanisms at work in these differences in sensitivities. Finally, a comparison with machine learning approaches requiring training, such as random forests, shows the complementarity of mechanistic apparoches, particularly in the case of small sample sizes.

Part III

Statistical quantification of the clinical impact of models
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Information flows in mechanistic models of cancer

"Et l'effet qui s'en va nous decouvre les causes." Alfred de Musset (Poésies nouvelles, 1843)

T he mechanistic models of cancer presented in the previous section have allowed us to integrate the omics data, to "make them speak" in order to better understand the clinical characteristics of cell lines or patients. But beyond their undeniable intellectual and scientific interest, do they have a direct clinical utility? Given the abundance and complexity of patient data available to physicians, the use of computer tools and mathematical models is inevitable and increasingly frequent. Because of their explicit representation of phenomena, mechanistic models can provide a more easily understood alternative for physicians or patients. Is it therefore desirable and relevant to use these models in support of medical decision making? And how can their clinical validity and impact be rigorously measured? First of all, the purpose of this chapter is to outline some of the limitations of the previously presented evaluations of mechanistic models, together with some recommended statistical tools. These evaluations answered the question: do the models have any clinical utility? We will show that an additional question could be: do mechanistic models have an incremental clinical utility, in comparison to the direct use of the data used to construct or specify them? This chapter is intended as a statistical introduction for systems biologists to some of the problems encountered in model evaluation.

Scientific content

This chapter is relying on literature for the first section and unpublished content for the second. The exploratory analyses presented below have helped to clarify considerations expressed qualitatively in previous chapters and formed the starting point for subsequent chapters on the clinical impact of cancer models.

Evaluation of models as biomarkers

Evaluation framework and general principles

First of all, mechanistic models of cancer should be considered as biomarkers among others, and therefore evaluated as such. This means focusing on the clinical information provided by the model outputs. In the previous examples, these outputs would be for example the H/K 50 /A biomarkers from Fey's model (described in section 3.4.2) or the personalized Proliferation scores from the mechanistic models in the examples in sections 5.2.2 or 6.2.4.1. The prognostic or predictive value of model outputs can then be evaluated according to the methods and recommendations present in the literature on prognostic or predictive biomarkers. Without going into too much detail, guidelines in this area are quite numerous and detailed, both for prognostic biomarkers [START_REF] Mcshane | Reporting recommendations for tumor marker prognostic studies (remark)[END_REF][START_REF] Sauerbrei | Reporting recommendations for tumor marker prognostic studies (remark): an abridged explanation and elaboration[END_REF] and predictive biomarkers [START_REF] Janes | An approach to evaluating and comparing biomarkers for patient treatment selection[END_REF]. Most of the points mentioned in these articles should apply identically for the particular type of biomarker that are the outputs of mechanistic models of cancer. The purpose of this thesis is not to exhaustively list these recommendations for the evaluation of biomarkers, so we will simply highlight the most salient issues identified in the systems biology literature.

EVALUATION OF MODELS AS BIOMARKERS

Some frequent problems and recommended statistical tools

Concerning continuous and prognostic model outputs/biomarkers, they are sometimes confronted with naturally binary data (e.g., event or not). In this case, many methods exist, among which the Area Under the receiver operating Curve (ROC), usually denoted as AUC [START_REF] Søreide | Receiver-operating characteristic curve analysis in diagnostic, prognostic and predictive biomarker research[END_REF]. With a continuous biomarker X and a binary outcome to predict D, the ROC curve plots sensitivity, P (X > c|D = 1), against (1 -specificity) = (1 -P (X ≤ c|D = 0)), for all possible values c. the AUC is then simply computed as the area under this curve. The resulting AUC is computed as the area under this curve and measures the ability of the biomarker to discriminate between the two classes of interest and is a common tool for the evaluation of biomarkers.

However, prognostic validation often requires time-to-envent data such as survival data. Very schematically, if we study patients suffering from cancer and we are interested in the death event from a time t 0 , which we define to be common to all patients, different cases are possible. Some patients have died and we therefore know their status and the time of their death t 1 . Others are still alive at the time t max when the study stops (administrative censorship) or have withdrawn from the study at time t 2 so that their fate is then unknown. These patients are said to be right-censored. These data are extremely frequent and require specific methods such as Cox's proportional risk model [START_REF] David R Cox | Regression models and life-tables[END_REF] or accelerated failure time models. The reasoned use of these dedicated survival models, and the associated assumptions, should be preferred to the forced binarization of survival data, sometimes encountered in an apparent concern for simplification. In general, the validation of prognostic biomarkers using survival data therefore requires specific metrics such as time dependent AUC for censored survival data [START_REF] Patrick | Time-dependent roc curves for censored survival data and a diagnostic marker[END_REF]. This measure, however, requires a more complex definition of sensitivity and specificity to accommodate censored data [START_REF] Patrick | Survival model predictive accuracy and roc curves[END_REF] and to be applicable to real biomarker validation data [START_REF] Buyse | Validation and clinical utility of a 70gene prognostic signature for women with node-negative breast cancer[END_REF]. Despite fairly frequent use [START_REF] Ching | Cox-nnet: an artificial neural network method for prognosis prediction of high-throughput omics data[END_REF], the use of another metric called c-index is not recommended for assessing a model's ability to predict risk over a given time horizon [START_REF] Blanche | The c-index is not proper for the evaluation of-year predicted risks[END_REF]. However, the clinical interpretation of AUC values is not straightforward and the complementarity of other approaches that focus on the usefulness of risk models at the population level rather than the ability to discriminate has been highlighted [START_REF] Margaret S Pepe | Integrating the predictiveness of a marker with its performance as a classifier[END_REF]. The costs and benefits of prognostic models with various AUC values have been studied in an applied context by [START_REF] Mitchell | Breast cancer risk model requirements for counseling, prevention, and screening[END_REF].

Another frequent issue, already encountered in the examples from previous chapters, is the discretization of continuous markers. This is often done in order to classify patients into high and low risk groups for example for prognostic biomarkers. In the first place, although discretization may be required clinically, it is not necessary to evaluate the clinical value of the biomarker beforehand. Secondly, the choice of thresholds is crucial. In particular, in the case of biomarkers derived from mechanistic models, the artificial nature of the markers often makes difficult a binarization based on an a priori interpretation of the values. Choosing the cut-off point in order to maximise the significance or separation of the survival curves, as proposed in [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF] and presented in Figure 3.6, is however not recommended [START_REF] Douglas G Altman | Dangers of using "optimal" cutpoints in the evaluation of prognostic factors[END_REF], among other things because it can be interpreted as uncorrected multiple testing. Such practices may thus contribute to the low clinical reproducibility of the contribution of certain biomarkers [START_REF] Galloway Hilsenbeck | Why do so many prognostic factors fail to pan out?[END_REF]. For this problem in particular, tools have been proposed in the literature on clinical biomarkers, such as the predictivenesse curve [START_REF] Mboup | On evaluating how well a biomarker can predict treatment response with survival data[END_REF]. Similarly but in a more general framework, [START_REF] Janes | An approach to evaluating and comparing biomarkers for patient treatment selection[END_REF] propose the use of risk curves to better evaluate predictive biomarkers beyond the crude computation of statistical interaction between the biomarker and the treatment in randomized clinical trial.

Another potential issue, particularly important in subsequent analyses (see section 7.2.1), is the incremental value of biomarkers. For instance, in the context of prognostic biomarkers, it is of course necessary to present univariable analyses showing the relationship between the marker and the outcome, which is almost systematically done, but also to question the value of this biomarker compared to other prognostic factors already known: does it add information or is it redundant? It is theoretically possible to consider the potential increase in AUC resulting from the addition of the new biomarker to the model. The increase in AUC, however, requires the addition of very strong markers [START_REF] Mitchell | Breast cancer risk model requirements for counseling, prevention, and screening[END_REF], which has prompted the emergence of popular alternative metrics (Net Reclassification Index NRI, integrated discrimination improvement IDI) to evaluate the added predictive ability of a new marker [START_REF] Michael J Pencina | Evaluating the added predictive ability of a new marker: from area under the roc curve to reclassification and beyond[END_REF]. However, these metrics have been criticized as being unsafe since they can improve with the addition of non-informative markers [START_REF] Hilden | A note on the evaluation of novel biomarkers: do not rely on integrated discrimination improvement and net reclassification index[END_REF]Gerds, 2014, Pepe et al., 2014].

PROCESSING OF BIOLOGICAL INFORMATION

All in all, the first step in a good evaluation of mechanistic models would be that the standards recommended for the evaluation of biomarkers can be applied in the same way to mechanistic models that have certain applications or validation based on prognostic or predictive values. As these topics are well covered in the relevant literature, we will subsequently focus on a specific vision of incremental value of biomarkers that is more specific to mechanistic models.

Processing of biological information

Mechanistic models, and their outputs in particular, have so far been considered and evaluated as biomarkers. A comprehensive appreciation requires that they be seen as information processing tools in relation to the biological data they use. In this section, we will focus on a toy example to introduce some concepts. We will thus speak in general terms of the clinical value of this model, understood in the sense of a prognostic or predictive value depending on the application. The next section (7.3) will extend the same analyses to published models. The purpose of these two sections is to question the way in which mechanistic models process information. These qualitative questions have been written essentially for those who design mechanistic models. For the sake of technical simplification, the statistical tools chosen for illustration are therefore simpler than those presented in the previous section.

Information in, information out

Indeed, the mechanistic models presented in this thesis (Figures 3.6,5.9 and 6.6) can be schematically represented by Figure 7.1: inputs X (often omics data) are processed through a mechanistic model (here the grey box) to result in an output Y . These models can thus be assimilated to a mathematical transformation, often non-linear, of X in Y . Thus, when validating the biological or clinical relevance of Y , either by calculating a correlation with the ground truth or by using it to stratify survival curves, only the univariate value of Y is checked. This is an important step and a prerequisite for a well-constructed model. On the other hand, it is not sufficient information to understand how the model works. Indeed, the inputs X can themselves be prognostic biomarkers, and this from the outset and before being transformed into Y: e.g., if the mechanistic model uses different inputs, each of which has a prognostic value, the fact that the output also has a prognostic value does not necessarily indicate the relevance of the model in its ability to make sense of the information. In short, measuring only the output value of the model does not necessarily reveal the model's ability to make sense of the data it uses. Put more figuratively, it is important to know whether the model turns lead into gold by giving a clinical interpretation (Y ) based on information that was devoid of it (X), or whether it simply turns gold into gold by refactoring information that is already clinically relevant. In the latter case, the interest of the model may lie in the way it better summarizes or makes the information understandable, but its incremental clinical value is low.

Therefore, the question of the incremental value of the model can be explained as follows: what does the output of the model represent in relation to the inputs? If we restrict ourselves to cases where the absolute biological/clinical value of Y is positive, we can then identify two families of situations. First we can imagine a situation where the mechanistic model has "improved" the value of the inputs: the output would then have a higher value than the inputs (better biological validation, better pronostic value etc.), or in any case a complementary value, a value not present in the inputs. This would correspond to the capture by the model of emerging or non-linear effects. For the sake of simplification, we will here assimilate the two in the sense that a non-linear effect resulting from the interaction between certain variables was indeed not predictable from the components taken individually, and therefore emergent. Note, for example, that the identification and capture by statistical models of non-linear components of treatment response is important in the ability to generalize findings from preclinical models to human tumours [START_REF] Mourragui | Precise+ predicts drug response in patients by non-linear subspacebased transfer from cell lines and pdx models[END_REF]. In the second situation, the output does not capture emergent properties but summarizes, totally or partially, the information present in the inputs. This would correspond to a knowledge-informed dimensionality-reduction. Even in the latter case, the scientific value of the model as a tool for understanding is not necessarily questioned. The analyses presented below are simply intended to supplement the understanding of models and how they process information.

Emergence of information in artificial examples

These questions can be illustrated using a very simple artificial model represented in Figure 7.2. On the one hand there are two latent biological variables called Proliferation (P) and Apoptosis (A) resulting in our biological ground truth, Growth. On the other hand, the modeler has access to three different random variables N 1 , N 2 and N 3 respectively associated with the sign of P, the absolute value of P and the value of A. Two mechanistic models are defined, one linear (with its output O linear ) and one non-linear (with its output O non-linear ). We note that the two outputs are sufficiently well defined to be correlated with Growth but only the non-linear model makes use of N 2 by multiplying it with N 1 .

The ability of models to use inputs to create or summarize information through outputs will be studied using the explained variation metric R 2 . If a linear model is defined as y i = β 0 + β 1 x i + e i , linear coefficients β are estimated by minimizing the sum of squared differences between predicted and real values of y. The fitted model is written ŷi = β0 + β1 x i and R 2 also called coefficient of determination is defined as:

CHAPTER 7. INFORMATION FLOWS IN MECHANISTIC MODELS OF CANCER R 2 = 1 - ∑ n i=1 ( ŷi -ȳi ) 2 ∑ n i=1 (y i -ȳ) 2
Therefore R2 measures the proportion of variation in y that is explained by the regressors. A different way of expressing this is to say that R 2 compares the null model without covariate (observations are compared to their mean) to the linear model with covariates. By extension, it has been proposed to use R2 to assess the effect of adding a new biomarker to a previously established model1 [START_REF] Schemper | Predictive accuracy and explained variation[END_REF]. In order to avoid overfitting, it is possible to calculate the adjusted R 2 that corrects with the number of regressors or to fit the model on training data and calculate the R 2 on validation data. The latter option was chosen using cross validation and averaging over the R 2 obtained in the different folds. Metrics with an interpretation similar to R 2 have been defined for logistic regressions or survival analysis [START_REF] Choodari-Oskooei | A simulation study of predictive ability measures in a survival model i: explained variation measures[END_REF]. In the case of regressions with several variables x i , it is possible to decompose R 2 into different components associated with each of the variables. This decomposition is carried out here by averaging over orderings according to the method proposed by Lindeman [1980] and applied in R code by [START_REF] Grömping | Relative importance for linear regression in r: the package relaimpo[END_REF]. The precise formulas are detailed in appendix C.1.1.

Here is an example of schematic reasoning that can be carried out with R 2 about the two models in Figure 7.2. We will denote R 2 X 1 +X 2 the R 2 corresponding to the linear model Growth = β 0 + β 1 X 1 + β 2 X 2 (written more compactly Y ∼ X 1 + X 2 , by analogy to its implementation in R). Using only the outputs of the models to predict Growth, explained variations are R 2 O non-linear = 0.455 and R 2 O linear = 0.379. The mechanistic models are thus correctly defined since the mechanistic output partly recover the biological read-out. However, the inputs of the model also have an important predictive value since R 2 N 1 +N 2 +N 3 = 0.514. How can we understand the relationship between these values? First, the model including the N i inputs and the output O linear as regressors show identical performances with

R 2 N 1 +N 2 +N 3 +O linear = 0.514 = R 2 N 1 +N 2 +N 3 ,
which means that O linear has no incremental value compared to a linear
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combination of the inputs. This is perfectly obvious from a statistical point of view since the two models are equivalent:

Growth = β 0 + β 1 N 1 + β 2 N 2 + β 3 N 3 + β 4 O linear = β 0 + (β 1 + 2β 4 )N 1 + β 2 N 2 + (β 3 -β 4 )N 3
The purpose of this example is to explicitly underline what is done implicitly in the study of certain mechanistic models. The complexity of the described mechanisms sometimes hides more or less linear combinations of inputs that may make it possible to obtain meaningful biomarkers but without incremental value by construction. On the other hand, O non-linear has allowed to extract an emergent information which improves the global prediction when combined linearly with the inputs:

R 2 N 1 +N 2 +N 3 +O non-linear = 0.586 > R 2 N 1 +N 2 +N 3 .
We can go further in understanding by breaking down the R 2 . In Figure 7.3A and B (left columns), R 2 of the inputs' models (Growth = β 0 +β 1 N 1 +β 2 N 2 +β 3 N 3 ) are decomposed to show that N 1 and N 3 contribute most to the prediction in a linear model. By using the same strategies for decomposing the R 2 and calculating the incremental R 2 , it is also possible to decompose the R 2 of O linear and O non-linear according to its origin: its component N 1 (0.22 in Figure 7.3A) is the proportion of R 2 that is also explained by N 1 , so it can be interpreted as being the part of the value of N 1 captured by O. In the non-linear case, we can see in the decomposition that O non-linear has an additional created component (0.07), it is the non-linear component that is not shared with any of the inputs.

In conclusion, if these two models generate meaningful outputs that are correlated with the biological read-out Growth, the analysis of their information processing classifies them into two different categories outlined in the previous sub-section. The linear model summarizes some of the information present in the inputs, without creating any. It can be likened to a relevant dimensionality reduction. The output of the non-linear model also fails to avoid some information losses, but at the same time it extracts new non-linear information. Thus, in combination with the inputs, it provides incremental value measured by the increase in total R 2 . Note that R 2 is used here as one tool among others to illustrate the reflection on personalized mechanistic models as information processing tools. The point to 

= β 0 + β 1 N 1 + β 2 N 2 + β 3 N 3 + β 4 O
remember is not technical but rather methodological: these mechanistic models using on omics data cannot be evaluated for themselves but must be evaluated in comparison with the data they use in order to better explain the way they process information. Following this rationale of model selection, other tools such as the Akaike Information Criterion (AIC) have been proposed and could allow to quantify if the reduction of dimension carried out by the models (from many omics inputs to one mechanistic output) allows a more parsimonious description of biology than the direct use of inputs [START_REF] Kirk | Model selection in systems and synthetic biology[END_REF].

Reanalysis of mechanistic models of cancer

Using the tools presented above, it is possible to deepen the analysis of some mechanistic models already presented in this thesis.

ODE model of JNK pathway by Fey et al. [2015]

One of the first applications of personalized mechanistic models to cancer is the one proposed by [START_REF] Fey | Signaling pathway models as biomarkers: Patient-specific simulations of jnk activity predict the survival of neuroblastoma patients[END_REF] regarding JNK pathways in patients with neuroblastomas. This work has been described in section 3.4.2 and is recalled in Figure 7.4. The evaluation of the mechanistic models in the original paper was performed by assessing the clinical value of the inputs (RNA levels of ZAK, MKK4, MKK7, JNK and AKT genes) and outputs (H, A and K 50 ) separately by comparing them with survival data. The outputs were binarized to optimize the separation between the curves in a log-rank test. In this section we propose to quantify the value of the output in relation to those of the inputs, leaving the output continuous, using the tools described in the previous section. In the context of survival data, different measures called R 2 by analogy have been described in the literature. The one used thereafter was described by [START_REF] Royston | A new measure of prognostic separation in survival data[END_REF], its detailed definition is given in Appendix C.1.2 and its properties have been studied and validated in previous studies using simulated data [START_REF] Choodari-Oskooei | A simulation study of predictive ability measures in a survival model i: explained variation measures[END_REF]. R 2 is not the preferred tool for survival data and is only used here to allow a qualitative description in line with the previous ones without introducing new tools. A formal and rigorous analysis should favour the tools presented at the beginning of the chapter.

Thus, the R 2 of the output H is 0.39 while that of the combined inputs is 0.60. We can see from the decompositions that H derives most of its the value from ZAK, MKK4 and AKT (Figure 7.5A, right column), which were already the largest contributors in the combined evaluation of the inputs (Figure 7.5A, left column). However, H also includes an emerging nonlinear share (R 2 = 0.08) that was not explained by the linear combination of inputs. Thus, incorporating H with the inputs in a survival prediction model does indeed allow to observe an added value with a global R 2 of 0.68. In addition, the authors in the original study stressed the importance of positive feedback from JNK to MKK7 (Figure 7.4A). In its absence, we find that the value of H is almost reduced to zero, since not only its non-linear part (Figure 7.5, red share), but also its parts derived from inputs, disappear. Analyzing the other outputs of the model (A and K 50 ) reveals similar but less dramatic trends underlining the importance of this feedback which allows the model to capture a clinically relevant behaviour, assimilated by the authors to the capacity of cells to trigger apoptosis in case of stress. In the case of this model, the analyses provide a better understanding of how the model works with respect to survival prediction: the outputs partly summarize clinical information already present in the inputs but also reveal relevant emerging information.
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R2=0.17 In particular, for right colums (modelY ∼ H), the red share represent the proportion of the R 2 of the output H that does not come linearly from the inputs, and therefore its emerging part.

Personalized logical models: BRAF inhibition in melanoma and colorectal cancers

Similarly, it is appropriate to assess the relevance of the personalized logical models presented so far. Unlike the models of the previous sub-section, however, they integrate a much larger number of variables and the decomposition of R 2 is no longer accessible, because of its computational cost, which increases exponentially with the number of variables. If we focus on the example best suited to these models, that of BRAF inhibition sensistivity, we can however reformulate the question more simply. Given that the most important predictor of the answer is the status of the BRAF mutation itself, do the personalized models allow us to do better or provide additional information? In the case of CRISPR data, the R 2 of BRAF alone is 0.75, the R 2 of the personalized scores from the models is 0.73, while the combination of the two increases the R 2 to 0.83. In the absence of a precise decomposition, this gain can come either from the contribution of the other variables used in the model (the RNA levels of CRAF for ex-ample) or from the emergence of non-linear effects. In both cases, these figures are another way of expressing the remarks in section 6.2.4.1: thanks to the integration of other data and their organization in a framework based on literature knowledge, the model provides a more precise and complete vision of the response mechanisms. As positive as it is, this increase in R 2 remains modest, illustrating that the main interest of these models is not necessarily a pure gain in predictive performance. Rather, it lies in their explanatory capacity and in their ability to support the investigation of mechanisms such as in section 6.2.4.1. In a complementary way, one could imagine extending these analyses to other nodes of the model and not only to its output in order to dissect even more precisely the information processing within the model.

Summary

The use of certain mechanistic models of cancer for clinical purposes reinforces the importance of a rigorous evaluation of their performance. One of the main recommendations is to consider the outputs of these models as classical biomarkers, ignoring initially the mechanistic architecture that generated them. Numerous methods and metrics then exist to quantify the clinical information they provide, whether prognostic or predictive. In a complementary way, it is then insightful to examine the particularities of this kind of biomarker which does not come out of nowhere but often results from the knowledge-based transformation of biological data, including possibly other biomarkers. The prognostic or predictive value of mechanistic models must then be interpreted against the value of the biological data used to build or customize the models.

Clinical evidence generation and causal inference

"Maudit soit le père de l'épouse du forgeron qui forgea le fer de la cognée avec laquelle le bûcheron abattit le chêne dans lequel on sculpta le lit où fut engendré l'arrière-grand-père de l'homme qui conduisit la voiture dans laquelle ta mère rencontra ton père!" Robert Desnos (La colombe de l'arche, 1923) T he previous chapter introduced some tools to evaluate and quantify the value of mechanistic models, and in particular their outputs, with simple statistical tools. The latter, such as R 2 , are by no means specific to medical applications. One of the particularities of mechanistic cancer models, on the other hand, is the possibility of simulating treatments that imitate therapeutic interventions. Before tackling more precise questions, this chapter will therefore introduce certain clinical or statistical methods used to evaluate the effect of different types of treatments on patients. A more specific issue related to the evaluation of mechanistic models will be explored in the next chapter using these methods.

Scientific content

This short chapter introduces the framework of causal inference based on the literature and the description of causal inference in the preprint [START_REF] Béal | Causal inference with multiple versions of treatment and application to personalized medicine[END_REF].

Clinical trials and beyond

Randomized clinical trials as gold standards

When it comes to evaluating the effect of a therapeutic intervention, the reference method in most cases in modern medicine is the randomized clinical trial, which will be described now in its simplest version. Without loss of generality, the rationale for this approach can be detailed for one drug, which will be referred to as A in the remainder of the chapter (Figure 8.1). The patients who can benefit from this drug, and therefore those eligible for the clinical trial, are first of all defined (specific disease, characteristics, etc.). Then, they are randomly separated into two distinct groups, one receiving the new treatment to be evaluated (A = 1) and the other generally receiving the treatment considered as standard of care, or a placebo if no validated treatment is available (A = 0). A predefined treatment response criterion Y (viral load, tumor size, etc.) is then compared for the two groups to quantify the average treatment effect (ATE):

AT E = E[Y |A = 1] -E[Y |A = 0]
Thus it will be possible to say, for example, that "compared to patients who received the standard treatment, those treated with the new drug have a 20% lower tumor volume". In this example, randomly choosing how the two groups of patients, treated and untreated, are constituted ensures a priori that the two groups are comparable. Indeed, it should be verified that the untreated patients were not on average suffering from more advanced cancers that are more likely to proliferate and grow. In this case, the difference in outcome between the groups could simply 

Observational data and confounding factors

The problem of comparability between the two groups is reinforced when the data used does not come from a randomized clinical trial. In the remainder of this thesis these data will be called observational data. This means that in the available data, some patients were treated with the new drug (A = 1) and others received the reference treatment (A = 0). However, the assignment of treatment was not decided by the observer. This assignment was therefore made according to a protocol unknown to the observer which has no guarantee that the two groups are in fact comparable.

The situation can be illustrated with a simple simulated example involving a confounding variable C in addition to the treatment variable A and the outcome variable Y . If Y represents tumor volume and A the treatment to be evaluated, C could be a biomarker of cancer agressiveness. 1000 patients have been simulated for all variables in two different settings represented in Figures 8.2 In the second case (Figure 8.3), C has an influence on Y : the more aggressive the tumor, the more likely the patient is to be treated with the new drug. In this case the simultaneous influence of C on A and Y makes it a real confounder. The direct observation of the differences in outcomes between treated and untreated patients reveals only a small benefit of the new treatment which does not correspond to the underlying reality used in these simulations since the theoretical causal influence of A on Y remained the same as in the previous case. The confounding factor prevents the nature of the causal link between A and Y from being simply inferred.

Causal inference methods to leverage data

Despite these difficulties, some statistical methods have been developed to derive estimates with a causal interpretation from observational data, under precise assumptions. This work will focus on the potential outcomes framework [START_REF] Donald B Rubin | Estimating causal effects of treatments in randomized and nonrandomized studies[END_REF]. We will first describe briefly the fundamentals of this framework and different methods that are part of it.

Notations in potential outcomes framework

First of all, the notations used in this and the next chapter are defined as follows. We will use j = 1, ..., N to index the individuals in the population.

A j and Y j correspond respectively to the actual treatment received by individual j and the outcome. In the most simple case, treatment takes values in A = {0, 1}, 1 denoting the treated patients and 0 the control ones. Y j corresponds to the patient's response to treatment. In the case of cancer it may be a continuous value (e.g., size of tumor), a binary value (e.g., status or event indicator), or even a time-to-event (e.g., time to relapse or death).

Only the first two cases will be discussed later. Finally, it is necessary to take into account the possible presence of confounders influencing both A and Y and denoted C j for individual j.

The potential outcomes framework is also described as counterfactual because it defines variables like Y j (a) to denote the potential outcome of individual j in case he/she has been treated by A = a which may be different from what we observe if A j ̸ = a. This definition can be illustrated at the individual level, for patient j, where A is the smoking status (1 for smokers, 0otherwise) and Y is the outcome, e.g., cancer status at a given date. If patient j is a smoker then Y j = Y j (A = 1). Y j (A = 0) would be the outcome if this same patient had not been a smoker, all other things being equal. This counterfactual outcome is therefore not observed in the data. These counterfactual variables make it possible to write the causal estimands. For instance, in this context, we can easily compute the difference in outcome between treated patients and control patients ( 

Identification of causal effects

The next question is whether it is possible to estimate the counterfactual variables Y (A) and under what conditions. The potential outcomes framework explicits assumptions of consistency, positivity and conditional exchangeability to estimate these counterfactual variables and therefore infer causal estimates from observational (non-randomized) data [Rubin, 1974, Hernán and[START_REF] Ma Hernán | Causal inference: What if[END_REF].

CAUSAL INFERENCE METHODS TO LEVERAGE DATA

Consistency means that values of treatment under comparison represent well-defined interventions which themselves correspond to the treatments in the data: if

A j = a, then Y j (a) = Y j .
Exchangeability means that treated and control patients are exchangeable, i.e., if the treated patients had not been treated they would have had the same outcomes as the controls, and conversely. Since we usually observe some confounders we define conditional exchangeability to hold if cohorts are exchangeable for same values of confounding C. Therefore conditional exchangeability will hold if there is no unmeasured confounding:

Y (a) ⊥ ⊥ A|C.
Positivity assumption states that the probability of being administered a certain version of treatment conditional on C is greater than zero: if

P [C = c] ̸ = 0, P [A = a|C = c] > 0.
Intuitively, this positivity condition is required to ensure that the defined counterfactual variables make sense and do not represent something that cannot exist. Under these three assumptions, there are different methods and estimators available to evaluate causal effects from observational data. Two of them will be described and applied to the same example as above: the description of the example and the failure of the direct methods are recalled in Figure 8.5A and B and two causal inference methods are illustrated in Figure 8.5C, D and E.

Standardization or parametric g-formula

The first method is called standardization or parametric g-formula and it is the one that will be described in more detail in this chapter and the following one. It is based on the following equations:

E[Y (a)] = ∑ c E[Y (a)|c] × P [c] = ∑ c E[Y (a)|a, c] × P [c] (exchangeability Y (a) ⊥ ⊥ A|C ) = ∑ c E[Y |a, c] × P [c] (consistency) 
Thus the average effect of treatment on the entire cohort can be written with standardized means: By averaging these values over the whole cohort the confounding effect is corrected and the estimator is much closer to the true value -5 than the naive estimates (Figure 8.5D and B).

E[Y (A = 1)]-E[Y (A = 0)] = ∑ c ( E[Y |A = 1, C = c] -E[Y |A = 0, C = c] ) × P [C = c] (8.1) Computationally, non-parametric estimation of E[Y |A = a, C = c]

Inverse probability weighting (IPW) and propensity scores

Based on the same counterfactual framework, it is possible to build another class of models, called marginal structural models [START_REF] James M Robins | Marginal structural models and causal inference in epidemiology[END_REF], from which we derive estimators different from the standardized estimators called inverse-probability-of-treatment weighted (IPW) estimators [START_REF] Stephen | Constructing inverse probability weights for marginal structural models[END_REF]. IP weighting is equivalent to creating a pseudopopulation where the link between covariates and treatment is cancelled. In the case of binary treatment A ∈ 0, 1, weights are defined for each patient as the inverse of the probability to have received the version of treatment he or she actually received, knowing his or her covariates:

W A = 1 f [A|C] with f [a|c] = P [A = a|C = c],
f [a|c] being called the propensity score, i.e., the probability to have received the treatment A = a, given the covariates C = c. Again, propensity scores will be estimated in later examples using a parametric model. In this case with a binary treatment A, a logistic treatment model is used 1 may indicate (quasi-)violations of positivity. Under the same hypothesis of exchangeability, positivity and consistency, we can derive the modified Horvitz-Thompson estimator [START_REF] Daniel | A generalization of sampling without replacement from a finite universe[END_REF]Thompson, 1952, Hernán and[START_REF] Ma Hernán | Causal inference: What if[END_REF]:

E[Y (a)] = Ê[I(A = a)W A Y ] Ê[I(A = a)W A ] , ( 8.2) 
I being the indicator function, such as

I(A = a) = 1 if A = a and I(A = a) = 0 if A ̸ = a.
Once again, this method brings estimates closer to the true causal effect by correcting for the influence of the confounder (Figure 8.5E).

Limitations and additional methods

These causal inference methods therefore allow to correct some biases due to observed confounders, at the cost of strong hypotheses that it is not possible to verify. The plausibility of these hypotheses, and therefore of the resulting estimates, requires a good knowledge of the context. Furthermore, the estimates are largely based on statical models of outcome or treatment. The correct specification of these models is therefore imperative to ensure unbiased causal estimates. In order to limit the risks of misspecification, some doubly robust approaches have also been developed. They require estimating both an outcome model and a treatment model, but the resulting estimates are consistent if at least one of the two models is correctly specified. One of these methodologies among others, called Targeted Maximum Likelihood Estimation (TMLE), will be mentioned in the next section and is detailed in appendix C.2.4. In summary, evaluating the effect of a treatment requires isolating its impact from that of all confounding factors. This can be done in a randomized clinical trial designed for this purpose. However, there is a great amount of other data available that may not have been generated in this rigorous framework. It is nevertheless possible to draw causal interpretations from them, under certain hypotheses, thus offering insights for a posteriori statistical evaluation of specific therapeutic strategies.

Causal inference for precision medicine

"Felix qui potuit rerum cognoscere causas."

Virgil (Georgics, 29 BC)

T hroughout this manuscript, we first described the complexity of cancer mechanisms, through the diversity of genetic alterations or nonlinear signaling pathways. This complexity naturally led to the choice of systemic modeling approaches and in particular mechanistic models whose explicit nature facilitates the study of the effects of new molecular perturbations such as treatments. The simple study of the response to BRAF inhibitors has thus required the consideration of many other genes and pathways. This final chapter proposes to take the complexity a step further by considering different treatments. The diversity of patients' molecular profiles suggests that the best treatment is not necessarily the same for all patients: this is what is known as precision medicine. This is already a clinical reality in oncology that could be reinforced in the future by the emergence of new computational models of cancer, whether mechanistic or not. How then can we assess the relevance of these models in their ability to guide patient treatment?

Scientific content

This chapter presents an extension of the causal inference framework to quantify the value of precision medicine strategies. This work is currently under revision and is available as a preprint in [START_REF] Béal | Causal inference with multiple versions of treatment and application to personalized medicine[END_REF]. All code is available in the dedicated GitHub repository

Precision medicine in oncology

It is first important to understand what is meant by the concept of precision medicine in the treatment of cancer patients in order to place subsequent questions in a plausible clinical framework.

An illustration with patient-derived xenografts

Precision medicine stems from the diversity of treatment responses observed in different tumors. It has already been observed in previous chapters about BRAF inhibition that different cell lines respond differently to a particular treatment. A broader analysis of pre-clinical data shows that the same is true for the vast majority of treatments. It would be possible to illustrate this using the same data from cell lines extended to other drugs. However, because of the more directly clinical impact of the issues discussed in this chapter, the analyses presented below will focus on another type of data that is closer to patient data: patient-derived xenografts (PDX).

A PDX is a tumor tissue that has been removed from a patient and implanted into immunodeficient mice [START_REF] Hidalgo | Patient-derived xenograft models: an emerging platform for translational cancer research[END_REF]. Unlike cell lines, which are in vitro models, PDXs are in vivo models that allow cancer cells to evolve in a more realistic microenvironment. In the same way as for cell lines, PDX can be used for drug screening. The data used in this chapter come from a study by [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF] which contains several hundred tumors and more than fifty drugs. Not all drugs have been tested for all tumors; details of the drugs and types of cancer tested are available in the appendix A.2. This dataset was generated following the "one animal per model per treatment" approach (1 × 1 × 1), the principles of which are summarized in Figure 9.1A. It should be noted that different drug response metrics are computed in the source data, two of which will be used in the analyses. The first one is continuous and called Best Average Response in the data, it is based on the variation of the tumor volume after treatment, the lower values (and especially negative) corresponding to better responses. The second one is originally categorical and based on a modified Response Evaluation Criteria In Solid Tumors (RECIST) criteria. It was binarized for this study so that the responders have a score of 1 and non-responders 0. The details of the definition and distribution of these metrics are given in appendix A.2.

In order to illustrate the diversity of response to treatment, the database is momentarily restricted to the 4 most widely tested drugs and the 180 tumors (or PDX models) that were evaluated for all four drugs. The four chosen drugs target different pathways: binimetinib (MAPK inhibitor), BKM120 (PIK inhibitor), HDM201 (MDM2 inhibitor) and LEE011 (CDK inhibitor). In Figure 9.2A the 4 treatments show a high variability of response, with a slight advantage for BKM120 and binimetinib on average over all tumors. However, each of the treatments was found to be the most effective of the 4 for a significant proportion of tumors (Figure 9.2B), with binimetinib and BKM being the best treatment for one-third of tumors each and LEE011/HDM201 sharing the remaining onethird of tumors. It thus appears that in view of the molecular diversity of tumors and the increasing number of treatments available, it does not seem advisable, according to these preclinical data, to treat all tumors with the same gold-standard treatment. Furthermore, the tissue of origin of the tumors in this example does not appear to be the main determinant of tumor preference for certain treatments.

Clinical trials and treatment algorithms

These remarks can be extended to patients. Thus, precision medicine (PM) consists in assigning the most appropriate treatment to each patient according to his or her characteristics, usually genomic alterations for cancer patients [START_REF] Adam A Friedman | Precision medicine for cancer with next-generation functional diagnostics[END_REF][START_REF] De Gramont | Pragmatic issues in biomarker evaluation for targeted therapies in cancer[END_REF]. At the individual level, targeted treatments have provided relevant solutions for patients with specific mutations [START_REF] Abou-Jawde | An overview of targeted treatments in cancer[END_REF]. Putting together these various treatments, some precision medicine strategies can be defined. Based on the genomic profile of the patient, the treatment most likely to be successful is chosen. If the information available is reliable, precision medicine can thus be reduced to a treatment algorithm that takes as input the molecular characteristics of the patient's tumor and outputs a recommendation of treatment. An example of 

Computational models to assign cancer treatments

The treatment algorithm example in Figure 9.3 could, however, be more complex. Indeed, previous chapters have stressed, for example, that being mutated for the BRAF gene is not the only predictor of response to an inhibitor of BRAF (here Vemurafenib). The same is true for most treatments that could benefit from more global and systemic analyses, taking into account more variables and their interactions. This complexity would require the use of computational methods.

It is on this point that this chapter links to the previous ones. Some of the cancer models studied throughout this thesis, or their future developments, could be interpreted as treatment algorithms. Indeed, a model capable of predicting the response to a single treatment does not necessarily allow the inference of precision medicine strategies. On the other hand, a model capable of predicting a patient's response to different treatments is also capable of indicating which one is the best. Such models would then move from systems biology to systems therapeutics [START_REF] Hansen | Computation as the mechanistic bridge between precision medicine and systems therapeutics[END_REF], taking patients' genomic features as inputs and outputting a treatment recommendation. In theory, mechanistic models seem to be suitable for this purpose since their explicit representation of genes and proteins makes it possible to simulate the effect of different therapeutic interventions. However, the feasibility of designing and calibrating such a model has yet to be demonstrated. Other types of models are being studied that could achieve these goals. For example, some recent approaches propose the use of deep learning to provide a computational tool for predicting the growth of cells [START_REF] Ma | Using deep learning to model the hierarchical structure and function of a cell[END_REF], or even the sensitivity of cell lines to different treatments [START_REF] Manica | Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders[END_REF].

In short, if no computational model is sufficiently developed to date to replace the clinician, the emergence of this type of tool is likely in the medium term. This raises the question of how to assess the clinical value of the precision medicine strategies (and corresponding treatment algorithms) derived from these models. For the sake of generality, this question will be addressed more broadly in the following without reference to models as a possible source of the treatment algorithm: how to evaluate the clinical impact of a precision medicine strategy and the treatment algorithm? The methods presented will indeed be the same, whether the algorithm evaluated comes from a model or from the knowledge of clinicians as in Figure 9.3. In the spirit of this thesis, the question nevertheless finds its origin in the first hypothesis related to models.

Emulating clinical trials to evaluate precision medicine algorithms

Objectives and applications

The question then arises of how to quantify the clinical benefit provided by these treatment algorithms. Some precision medicine clinical trials have been proposed, demonstrating both the feasibility of collecting information about mutations [START_REF] Le Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (shiva): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial[END_REF] or RNA [START_REF] Rodon | Genomic and transcriptomic profiling expands precision cancer medicine: the winther trial[END_REF] in real-time and the clinical benefit that can be expected from these approaches for some patients [START_REF] Geraldine | Defining precision: the precision medicine initiative trials nci-mpact and nci-match[END_REF]. However, the increasing abundance of genomic data and biological knowledge make it progressively easier to establish new algorithms for precision medicine, either directly based on physician knowledge or provided by computational mod-els [START_REF] Hansen | Computation as the mechanistic bridge between precision medicine and systems therapeutics[END_REF]. For practical reasons it is not possible to propose a real clinical trial for each new precision medicine algorithm or for any variants, comparing standard of care with new algorithm-based therapeutic strategies.

Therefore, this work provides a method to assess the clinical impact of proposed PM treatment algorithm based on already generated data, emulating precision medicine clinical trials and analyzing them in the causal inference framework [START_REF] Miguel | Using big data to emulate a target trial when a randomized trial is not available[END_REF]. First we will define the causal estimates of the precision medicine effects (later referred to as causal estimates) we want to assess, and the corresponding ideal clinical trials one would like to perform. Next, we will define the notations and the causal framework we use to infer the causal effects from observational data with multiple versions of treatment, based on the previous work by [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]. The main principles of the potential outcome framework having been introduced in the previous chapter, an extension to the case of precision medicine will be described, focusing on the multiplicity of treatment versions, i.e., targeted drugs. Then we will apply these methods to simulated data in order to investigate the different biases of the candidate methods. An example scenario will be presented and a RShiny interactive application has been developed to further explore other user-defined settings. Finally, the analysis of data from patient-derived xenografts (PDX) makes it possible both to apply the methods to pre-clinical situation and to have data approximating the counterfactual responses, thus enabling further validation of the proposed estimation methods.

Target trials for precision medicine: definition of causal estimates

We first specify the precision medicine effects that are to be estimated. These effects will finally be estimated based on observational data through the causal framework and target trial emulation [START_REF] Miguel | Using big data to emulate a target trial when a randomized trial is not available[END_REF].

In this context the notion of target trial refers to the real clinical trial whose estimates are sought to be reproduced through causal inference. Thus, if we think in terms of clinical trials, we are not trying to prove or quantify the superiority of one treatment over another but rather to evaluate the clinical utility of a precision medicine strategy assigning treatments based on genomic features of patients. This is therefore closer to the well-studied biomarker-based designs for clinical trials [START_REF] Freidlin | Randomized clinical trials with biomarkers: design issues[END_REF]. In a way, it is a matter of extending these unidimensional biomarker-based designs to multidimensional strategies that allow a choice between quite a number of different treatments. The potentially large number of treatments thus prompts us to draw more inspiration from scalable biomarker-strategy designs than biomarker-stratified designs [START_REF] Freidlin | Randomized clinical trials with biomarkers: design issues[END_REF]. We can draw a methodological parallel with some trials like the Tumor Chemosensitivity Assay Ovarian Cancer study in which a biochemical assay guides the choice of preferred chemotherapy for patients in a panel of twelve different treatments [START_REF] Cree | A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapy versus physician's choice in patients with recurrent platinum-resistant ovarian cancer[END_REF]. More recently, some clinical trials have been proposed that include precision medicine strategies, particularly in oncology [START_REF] Daniel | Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers[END_REF][START_REF] Le Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (shiva): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial[END_REF][START_REF] Keith T Flaherty | The molecular analysis for therapy choice (nci-match) trial: Lessons for genomic trial design[END_REF].

On the basis of these clinical examples, we propose three different target trials and their corresponding causal estimates, the clinical relevance of which may vary according to medical contexts. Each target trial contains a precision-medicine directed arm in which patients are treated in accordance with the precision medicine algorithm recommendations but they are differentiated from each other by alternative control arms (Figure 9.4). Causal effects will be estimated solely on patients eligible for the assignment of a personalized treatment, i.e., those for whom the treatment algorithm is able to recommend a drug.

First causal effect (CE 1 ): comparison with a single standard

The first possible target trial is to compare the precision medicine arm with a control arm in which all patients have been treated with the same single treatment. This could classically be the current standard of care applied to all patients (e.g., chemotherapy cancer treatment).

Second causal effect (CE 2 ): comparison with physician's assignment of drugs

Then, in order to propose a more comprehensive clinical assessment, we propose a second causal effect, comparing the PM arm with the current clinical practice, i.e., the assignment of the same targeted treatments by physicians in the absence of the algorithm. This implicitly means comparing two PM strategies: the one derived from the algorithm and the one that corresponds to current physician's knowledge. Unlike the former, the latter may not be perfectly deterministic depending on the heterogeneity of medical knowledge or practices. This way of defining CE 2 by focusing on the doctor's assignment of the same treatments stems from our question of interest: to quantify the relevance of the algorithm itself. Another possibility would have been to compare the precision medicine arm with the doctor's treatments, allowing him to use treatments other than those of the PM arm, such as the gold-standard one described in CE 1 . But the differences between the arms could then be biased by the use of treatments with different overall efficacy, changing the focus of the question. We will therefore stick to the first definition, which is more focused on the relevance of the algorithm.

Third causal effect (CE 3 ): comparison with random assignment of drugs

Finally, we define the CE 3 effect comparing the PM arm with a control arm using exactly the same pool of treatments assigned randomly.

In this case, we measure the ability of the PM algorithm to assign treatments effectively based on genomic features of patients. This comparison has already been considered in the context of biomarker-based clinical trials [START_REF] Daniel | Clinical trial designs for predictive marker validation in cancer treatment trials[END_REF]. Although this comparison with random assignment is methodologically relevant, it may not make sense from a clinical point of view if the common clinical practice already contains strong indications (or contraindications) for some patient-treatment associations.

Causal inference methods and precision medicine 9.3.1 A treatment with multiple versions

The statement of the potential outcomes framework implicitly implies the uniqueness of the versions of the treatment [START_REF] Donald B Rubin | Randomization analysis of experimental data: The fisher randomization test comment[END_REF] or at least the treatment variation irrelevance [START_REF] Tyler | Concerning the consistency assumption in causal inference[END_REF]. In the precision medicine case, the multiplicity of treatment versions is inherent: a given treatment status may encompass several drugs since a patient may be associated with several molecular agents based on his or her genomic characteristics. A can be seen as a compound treatment [Hernán and Van-derWeele, 2011] or a treatment with multiple versions [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF].

Therefore, we define a variable K j denoting the version of treatment administered to individual j. If A j = a is the arm to which the patient is assigned, K a j is the molecule received, the version of treatment A = a (e.g., a specific anti-cancer drug) and K a j ∈ K a , the set of versions of treatment A = a. In our precision medicine problem, A = 0 will denote control patients and A = 1 the patients treated with an anti-cancer drug of the precision medicine pool. K 1 = {k 1 1 , ..., k 1 P } is the set of P possible targeted treatments for A = 1 patients. For the sake of simplicity we will assume that there is only one treatment version for A = 0 controls, K 0 = {k 0 }. We also need to define other counterfactual variables like K a j (a), the counterfactual version of treatment A = a if the subject had been given the treatment level a. Thus, we finally write the counterfactual outcome as Y j (a, k a ) for individual j when treatment A has been set to a, using k a as the version of treatment a, with k a ∈ K a . Causal relations between variables C, A, K and Y are depicted in the causal diagram in Figure 9.5. It should be noted that A has no direct influence on Y , its only effect is entirely mediated by K, which is the real treatment in the pharmacological sense.

In this context, we can also define the assignment of a version of treatment for patients eligible for precision medicine algorithm. It is important to note that not all patients are necessarily eligible for the precision medicine strategy. Indeed, the treatment assignment algorithm relies on targetable alterations to establish its recommendations. In the absence of these, no recommendation can be offered to the patient. We denote C P M the set of eligible patient profiles and consequently define the drug assignment algorithm as the function r which associates to each C a precision medicine treatment version K such as:

∀j ∈ [[1, N ]], if C j ∈ C P M , r(C j ) ∈ K 1

Causal inference with multiple versions

Consequently, the multiplicity of versions prevents direct application of the framework as described in section 8.2.2. The theoretical framework has however been extended to causal inference under multiple versions of treatment and some identifiability conditions and properties have been studied, especially in the seminal article by [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]. One of the first required adaptation to identify some causal effects is to distinguish between confounders C and W (Figure 9.5). W indicates a collection of covariates that may be causes of treatment A or version of treatment K but are not direct causes of Y . These covariates are of special interest for causal effects identification under multiple versions of treatment. C indicates all other covariates. In our precision medicine settings, the genomic features of patients may define the eligibility to precision medicine and therefore affect A. They may also be used to define the version of treatment K. And finally they can influence the response to treatment Y . Thus, the genomic features of patients are a typical example of type C confounders. All causal relationships are summarized in Figure 9.5. Please note that no W variable is present in the applications provided later because all the covariates considered in this situation were likely to influence A, K and Y and therefore belonged rather to the covariates of type C. However all subsequent formulas and definitions have been derived taking into account W .

We summarize here some general observations from VanderWeele and Hernan [2013] regarding the extension of the framework to multiple versions before discussing specific estimates of interest of our precision medicine settings in the next section. These two sections will be based exclusively on the method called standardization or parametric g-formula described in section 8.2.2.1. The adaptation of other methods to precision medicine will be discussed more briefly in section 9.3.4. First of all, the identifiability conditions have to be adapted. The consistency assumption for instance is extended to K:

if A j = a, then K a j (a) = K a j .
Then, the conditional exchangeability or no-unmeasured confounding assumptions, may be stated in two different ways, either without or with versions of treatment:

Y (a) ⊥ ⊥ A|(C, W ) (9.1) Y (a, k a ) ⊥ ⊥ {A, K}|C (9.2)
If equation (9.1) holds, we can derive a new version of the standardised estimator with multiple versions of treatment [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]:

E[Y (a)] = E[Y (a, K a (a))] = ∑ c,w E[Y |A = a, C = c, W = w] × P [c, w] (9.3)
Specifically, it should be noted that we need to add W in the set of covariates that must be taken into account in standardization, and we need positivity to hold for C and W , i.e., 0 < P [A = a|C = c, W = w] < 1. Detailed proof of equation ( 9.3) is provided in appendix C.2.1. Equation ( 9.3) paves the way to overall treatment effect assessment since

E[Y (1, K 1 (1))] -E[Y (0, K 0 (0))]
would estimate the effect of treatment A = 1 compared to A = 0 with current versions of treatment.

Conversely, estimating a treatment effect for a given unique version of treatment E[Y (a, k a )] would require to check the exchangeability with regard to versions K and therefore to hold equation (9.2) true [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]:

E[Y (a, k a )] = ∑ c E[Y |A = a, K a = k a , C = c] × P [c] (9.4)
Similarly, we can define G a a random variable for versions of treatment with conditional distribution P [G a = k a |C = c] = g k a ,c and assuming the equation (9.2) to be true we can derive the following formula and its formal proof in appendix C.2.2:

E[Y (a, G a )] = ∑ c,k a E[Y |A = a, K a = k a , C = c] × g k a ,c × P [c] (9.5)
In this case, to allow estimation of the right-hand side of the equation, positivity will be defined as 0 < P [A = a, K a = k a |C] < 1.

Application to precision medicine

In the context of the potential outcomes framework extended to treatments with multiple versions, it is therefore possible to apply equations (9.3) and (9.5) in order to define and estimate the precision medicine causal effects previously described in section 9.2.2. A = 0 corresponds to control patients with K 0 = {k 0 } and A = 1 to patients treated with a targeted treatment. It is important to notice that from this point on we systematically restrict ourselves to patients eligible for the precision medicine algorithm, i.e., to individuals j such as C j ∈ C P M .

CE 1 estimation

CE 1 is a comparison between the precision medicine arm and a single version control arm:

CE 1 = E[Y (1, r(C)] -E[Y (0, k 0 )] (9.6)
In details, E[Y (1, r(C)] can be derived from equation (9.5) in the case where g k a , c = 1 if k a = r(c) and g k a , c = 0 otherwise:

E[Y (1, r(C)] = ∑ c E[Y |A = 1, K 1 = r(c), C = c] × P [c] Then, E[Y (0, k 0 )] and E[Y (1, k 1 ref )
] can be derived from equation (9.4):

E[Y (0, k 0 )] = ∑ c E[Y |A = 0, C = c] × P [c]
Alternatively, if one wants to use as control only one of the treatments used in the PM arm the previous estimate could be replaced by the following one:

E[Y (1, k 1 ref )] = ∑ c E[Y |A = 1, K 1 = k 1 ref , C = c] × P [c]
It should be noted that CE 1 , like CE 2 and CE 3 presented later, depends on the PM algorithm of interest r. CE i could therefore also be written CE 1 (r).

CE 2 estimation

Then, CE 2 is written using K 1 (1) the PM targeted treatment that would have been assigned to the patient by the physician if the patient had been allocated in arm A = 1 with PM targeted treatments:

CE 2 = E[Y (1, r(C)] -E[Y (1, K 1 (1))] (9.7) E[Y (1, K 1 (1))] is derived from equation (9.3): E[Y (1, K 1 (1))] = ∑ c,w E[Y |A = 1, C = c, W = w] × P [c, w]

CE 3 estimation

Defining G 1 as the random distribution of versions of treatment k 1 ∈ K 1 , CE 3 expresses as: 

CE 3 = E[Y (1, r(C)] -E[Y (1, G 1 )] with P [G 1 = k 1 i ] = 1 |K 1 P M | , ( 9 
E[Y (1, G 1 )] = 1 |K 1 P M | × ∑ c,k 1 i E[Y |A = 1, K 1 = k 1 i , C = c] × P [c]

Alternative estimation methods

For the sake of simplicity and brevity, we only detailed the standardization in previous sections. However, other popular candidate methods can be used. Estimators based on the inverse probability weighting (IPW) and targeted maximum likelihood estimation (TMLE) will also be computed in the following sections. IPW has the particularity of not trying to model the outcome but rather the process of assigning treatments. Its theoretical bases have been described in section 8.2.2.2 and the details of its adaptation to multiple versions of treatment is provided in appendix C.2.3. 

Y (0, k 0 ) 0 0 15 Y (1, k 1 1 ) -25 -15 10 Y (1, k 1 2 ) 0 0 -20
The TMLE methods are of a different nature [ [START_REF] Mark | Targeted learning: causal inference for observational and experimental data[END_REF]. They combine an outcome model and a treatment model in order to obtain a doubly robust estimate, i.e., an estimate that is robust to a possible misspecification of either model. Moreover, the estimation is done in several steps in order to optimize the equilibrium bias-variance, not for the overall distribution of the data but specifically for the causal effect of interest. These methods also have the particularity of being very often used with machine learning algorithms to fit the outcome or treatment models, instead of the parametric models classically used in standardization and IPW methods. A more detailed description of TMLE properties and the choices that have been made to adapt it to the problem of precision medicine are available in appendix C.2.4.

Code

The methods detailed above have been implemented in R and applied to simulate data and PDX data. The code is provided in the form of R notebooks (simulated data and PDX data) as well as in the form of an RShiny interactive application (simulated data only). All of these files are available in the dedicated GitHub repository.

Application to simulated data

The proposed methods are first tested on simulated data in order to check the performance of the estimators in finite sample sizes.

General settings

Using the R package lava based on latent variable models, we simulate a super-population of 10,000 patients with variables C, A, K and Y as in Figure 9.5. We first define two independent binary variables C 1 and C 2 , rep-resenting mutational status of genomic covariates, with a mutation prevalence of 40%. By analogy with the PDX data, Y represents the evolution of tumor volume and a low value (a fortiori negative) corresponds to a better response. Y is therefore defined as a continuous gaussian variable. For each counterfactual variable of response Y (a, k a ), we specify the intercept and the linear regression coefficients regarding influence of C i as described in Table 9.1. Lower intercepts correspond to better responses/more efficient drugs. Similarly, a negative regression coefficient between Y (a, k a i ) and C j means that the gene C j improves the response to k a i . So all in all, k 1 1 has the best basal response (lowest intercept). C 1 (resp. C 2 ) improves the response to k 1 1 (resp. k 1 2 ). The treatment algorithm of precision medicine is in line with these settings since patients mutated in C 1 (regardless their C 2 status) are recommended to take k 1 1 and patients mutated for C 2 only are recommended to take k 1 2 . Patients without mutations are not eligible for precision medicine and not taken into account in the computations. Since k 1 1 has the best basal response we assume it is assigned with greater probability by the physician and implement the following distribution of observed treatments:

P [K = k 1 1 ] = 0.5 and P [K = k 1 2 ] = P [K = k 0 ] = 0.25
A super-population of 10,000 patients is then generated. 1,000 cohorts of 200 patients are sampled without replacement within this super-population which, with the prevalences defined for the mutations, corresponds to an effective sample size of about 130 patients eligible for the PM algortithm. The causal effects CE 1 , CE 2 and CE 3 are computed based on different methods on the sub-cohort eligible for precision medicine (Figure 9.6):

• True effects, using all simulated counterfactuals for all patients • Naive effects, using observed outcomes only for both PM and control arms • Corrected effects: using observed outcome and standardized estimators (Std), inverse probability weighting (IPW) and targeted maximum likelihood estimators (TMLE).

Simulation results

First, the distribution of data in the super-population of 10,000 patients can be observed in Figure 9.7A, illustrating the different relations and differences described above. In particular, Y (1, k 1 1 ) (resp. Y (1, k 1 2 )) is lower for C 1 -mutated (resp. C 2 -mutated) patients. It can also be seen that the response to precision medicine (Y (1, r(C))) differs according to the groups: patients mutated for C 1 only have the best response, followed by patients mutated for both C 1 and C 2 and patients mutated for C 2 only. There is therefore a heterogeneity of responses to PM which encourages to take into account the groups of patients and their PM versions. The right side of Figure 9.7A shows the deterministic assignment of the recommended PM treatment (r(C)) to each patient profile and the unbalanced distribution of observed treatments (K) with a predominance of k 1 1 .

In the first target trial, true CE 1 estimates in the sampled cohorts are distributed around -40 (Figure 9.7B), confirming the superiority of the PM arm over the control arm as defined in the simulation parameters. Not all methods of estimating the causal effect perform equally well. The so-called naive estimate and the one based on IPW show a net bias. The over-representation of the most advantaged patients by PM tends to cause these methods to overestimate the benefit of PM, as can also be seen in the deviation plots. The same trends are observed for CE 2 and CE 3 (Figure 9.7C and D) where the differences are even more drastic. The mean absolute error of the naive method is thus divided by more than 2 when using standardized estimates or the TMLE. In order to further dissect the influence of simulation parameters on estimation performances, a slightly different simulation scenario with equal probabilities of observed treatments has been studied:

P [K = k 0 ] = P [K = k 1 1 ] = P [K = k 1 2 ] = 1 3
In this case, the random and balanced assignment of the observed treatments logically removes the systematic biases of the naive method by providing them with more randomized data. However, the corrections made by the proposed methods of causal inference, and in particular standardization and TMLE, still reduce the variances in the estimates due to the heterogeneity of the effects of precision medicine as a function of molecular profiles. Randomly, some sampled cohorts are indeed found with an association between C and observed K, thus generating a confounding effect that the causal methods partially correct.

The simulated data allow us to imagine an almost infinite number of scenarios depending on the number of biomarkers taken into account in the algorithm, the number of different treatments, the dependencies of their responses or the distribution of treatments observed. In order to allow easy exploration of these scenarios without having to master the underlying R code, an interactive RShiny application has been developped. It can be accessed by locally running the R source file or by using the online version embedded in Figure 9.8. Readers with the ability to run the application locally are encouraged to favor this option because the hosting of the online application is limited to a maximum amount of time per month. The application allows certain additional analyses not presented in this manuscript, in particular the linking of biases observed in the sampled cohorts according to their composition (prevalence of mutations, treatments, etc.). It is thus possible to trace the origin of the biases.

Application to PDX

The method is then applied to public data from patient-derived xenografts [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF], described in section 9.1.1 and appendix A.2. One of the major interests of this type of data in the context of this chapter is to provide access to treatment response values otherwise considered as hypothetical (or counterfactual). It is indeed possible to have the response of the same tumor (or more precisely of distinct samples from the same tumor) to different treatments, thus representing proxies for counterfactual variables, as ). In addition, it can be noted that these biomarkers have deleterious cross-effects.

The analysis settings are similar to the ones used for simulated data. 1,000 different cohorts of 70 tumors (out of 88) are sampled without replacement assuming each time that only the response to one of the treatments is known for each tumor, reproducing the classical clinical situation. The distribution of the observed treatments was defined randomly:

P [K = k 0 ] = P [K = k 1 1 ] = P [K = k 1 2 ] = 1 3
It should be noted that, contrary to analyses based on simulated data, all the statistical models used for standardization (outcome model), for the IPW (treatment model) and for the TMLE are no longer generalized linear models (GLM) but random forests (RF). Indeed, it was observed that the performance of GLM-based methods was lower than that of the naive method, supporting the importance of relevant model specification consistent with real data. The RF algorithms then allow to limit misspecification due to the largely non-linear nature of the data. Random forests 9.6. LIMITATIONS AND PERSPECTIVES

were chosen for their speed and versatility, especially in view of their ability to handle multinomial classification as well.

The results of estimations are then presented in Figure 9.10. In the presence of randomly assigned and balanced observed treatments, none of the methods (including the naive one) has significant systematic bias. On the other hand, more sophisticated methods, and in particular TMLE, allow to reduce the gap between estimates and true values, as visible on the mean absolute errors in Figure 9.10 right column. An additional analysis using the binary version of outcome Y is presented in Béal and Latouche [2020] with similar trends and conclusions: standardized, IPW and TMLE estimates are closer than naive methods to the true values from PDX. It supports the validity of the extension of the method to binary outcomes. In the same way as before with the simulated data, it would be possible to study the impact of non-random assignment of the observed treatments, which could systematically bias the results of the naive methods.

Limitations and perspectives

In synthesis, this work proposes a conceptual framework for evaluating a precision medicine algorithm, taking advantage of data already generated using adapted causal inference tools. However, in a clinical context, these data were not generated in a purely observational manner. Patients were cared for and treated by physicians who probably took into account some of their characteristics. However, the reasoning, formalized or not, behind the physicians' decisions does not correspond to that which a new investigator might want to test. In the eyes of this new investigator, the data can therefore be considered as observational in that they do not correspond to the randomization he would have liked to have carried out. The possibility for this new investigator to estimate the impact of his PM algorithm using the proposed estimators depends, however, on the consistency, exchangeability and positivity hypotheses.

The hypothesis of consistency has been made more plausible by taking into account the treatment versions, which makes it possible to explicit the heterogeneity of the molecules administered. Exchangeability remains questionable. The simulations and calculations described above underline the importance of taking into account at least the genomic covariates used in the processing algorithm. The inclusion of additional covariates is likely to be necessary in many real-world applications. Positivity, on the other hand, can be violated in a much more obvious way in certain situations. Thus, equation (9.5) requires positivity to be extended to versions of treatment: 0 < P [A = a, K a = k a |C] < 1. If the assignment of the observed treatments was done on a deterministic basis with respect to the variables used by the treatment algorithm, each patient's molecular profile will have been treated with a single drug, thus preventing any subsequent causal inference within the defined framework. The eventual use, by the boards of physicians in charge of assigning the observed treatments, of variables different from those used by the algorithm could then make it possible to verify the positive condition. But these variables would represent unmeasured confounding factors. It is therefore essential to have an in-depth knowledge of the rationales at work in the assignment of the observed treatments.

LIMITATIONS AND PERSPECTIVES

We developed a user-friendly application that extends the scope of the simulations and makes possible to study and quantify the impact of different situations, including possible (quasi-)violations of positivity or unmeasured confounding. It is thus a tool for empirically framing cases where this causal inference is reasonable or not. The analysis of the PDX data provides an illustration and proof of feasibility for these methods on pre-clinical data, closer to the human clinical data generally of interest. Beyond feasibility, this implementation leads to some remarks. Firstly, the improvement of causal inference methods compared to naive estimation of PM effects is conditioned in this case to the use of flexible and non-linear learning algorithms. This underlines the importance of a proper specification of the outcome and treatment models whose imperfection, especially when trained on small samples, could explain the modesty of the results compared to the simulated data. The particular nature of the PDX data design used should also be kept in mind: each tumor is tested only once for each drug, which may lead to greater variability of results due to tumor heterogeneity [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF]. Some studies, with smaller numbers of tumors and treatments, propose to form groups of several mice for each treatment-drug combination [START_REF] Hidalgo | Patient-derived xenograft models: an emerging platform for translational cancer research[END_REF]. The use of these mean effects could contribute to more accurate data. In spite of these limitations, which may diminish their ability to provide values with counterfactual interpretation, PDX data are thus a dataset of interest for studying and validating methods of causal inferences about treatment response. It can also be noted that the very nature of these data, due to the multiplicity of drugs tested for each tumor, can provide a framework in which the constraints of positivity are singularly alleviated. Even if all drugs were not tested on all patients, considering each tumor-drug combination as a different unit increases the coverage of the data. It is then necessary to take into account the clustered nature of the data, each tumor being present several times.

Finally, beyond the pre-clinical data presented here, the theoretical framework developed in this chapter should be more directly applicable to data from clinical trials if these data do not violate the requirements of positivity. If it is necessary to consider several trials, the heterogeneity of practices must be taken into account. The use of different drug lists from one trial to another or from one medical centre to another could also provide an example of confounding factor W , included in the theoretical framework presented here but not used in applications.

Summary

The emergence of targeted treatments coupled with a better understanding of patients' molecular profiles has fostered the development of precision medicine for cancer: the most appropriate treatment is defined according to the patient's genetic alterations. Because they can in some cases allow the simulation and comparison of different treatments for a given molecular profile, mechanistic models can thus be considered as an example of those treatment assignment algorithms that represent precision medicine. It is therefore desirable to evaluate the clinical benefits of these algorithms using clinical trials or causal inference. In the second case explored here, the theoretical framework is extended to allow the existence of different drugs, or versions of treatment, in the treated patients. Different statistical estimators are defined to emulate several clinical trials and estimate the corresponding causal effect of precision medicine algorithms. These methods are tested on simulated data according to different scenarios and an interactive application is proposed to explore others. A second application is presented on preclinical data from PDX, which provides for each tumor the experimental response to different treatments. Access to these data, otherwise considered as counterfactual, allows to validate the capacity of the developed methods to reduce bias in the estimation of effects.

Conclusion One path among others

The aim of this thesis was to trace a path to link the biological knowledge of cancer to the clinical impact through mechanistic models.

At each of the stages that separate the creation of a mechanistic model of cancer from its possible clinical application, choices were made that determined the obstacles encountered and the final shape of this work. Before elaborating on the subject, it is worth summarizing one last time the thread followed during this thesis.

Among the many possible orientations, it was chosen to take the opposite side of the data-intensive machine learning methods. The main approach proposed uses a qualitative logical formalism and integrates the data by interpreting them rather than by optimizing the parameters with respect to a particular objective. As a result, the resulting personalized mechanistic models have proven to be more of an interpretive than a predictive tool. Their versatility and low data requirements nevertheless allow them to be applied to a wide range of questions, particularly concerning the response to treatments that their mechanistic nature facilitates. This seemingly limitless versatility can, however, prove to be a trap because, while all kinds of applications are theoretically possible, the need to rely on detailed biological knowledge and appropriate data limits its scope.

In the case of mechanistic molecular signaling models, this interpretive nature of the models is confirmed by statistical analyses. The main value of these models is to provide an understandable framework for extracting relevant biological information in the context of current biological knowledge. The ability of these models to detect emerging non-linear information is also proven, but is rarer and of relatively smaller magnitude. Given the influx of biological knowledge and data, computa-tional models of cancer, with various formalisms, are nevertheless multiplying, particularly with medical aims. In the context of cancer, their use to recommend personalised treatment for each patient is a possible horizon. The evaluation of these models could then become increasingly acute. This thesis proposes the adaptation of causal inference methods in order to simulate their evaluation in clinical trials and to come as close as possible to medical evaluation standards.

In other directions

Along this path, many forks are conceivable, as well as the further pursuit of some of the paths that have been explored. Without going back over the technical limits and perspectives of parts II and III, already mentioned in sections 6.4 and 9.6 respectively, it is possible to paint a broader picture of some of the obstacles and alternatives.

If we question the different choices and presuppositions of this thesis we must first mention that mechanistic models of cancer are not limited to the modeling of molecular networks. Other fields have been explored, and some applications are already more mature and closer to direct use in clinical oncology. This is essentially the case for pharmacological approaches focusing on the pharmacokinetics or pharmacodynamics of certain compounds and the modeling of tumor size [START_REF] Benzekry | Artificial intelligence and mechanistic modeling for clinical decision making in oncology[END_REF].

The two approaches answer different questions from those raised in this thesis, but they are nevertheless closely linked and we must consider the enrichments they can bring. For example, pharmacokinetic and pharmacodynamic modeling represents a very clear blind spot of the approaches presented in chapter 6 where all BRAF inhibitors are modeled in an identical and crude way: quantitative parameters of BRAF inhibition are not translated. All these aspects constitute the core of mechanistic pharmacokinetic/pharmacodynamic models that are biochemically more accurate and fine-grained. On the other hand, tumor size models present a more macroscopic approach that is easier to relate to patient-level clinical interpretations.

All these considerations thus incite us not to consider a single-layer model and to try to make it cover the entire path, from the molecule to the patient, as proposed in this thesis. Rather than building huge mechanistic models covering all scales, it seems appropriate to work on linking different models in a modular multi-scale approach making it easier 9.6. LIMITATIONS AND PERSPECTIVES to cooperate between fields of modeling that often require different knowledge. As an example, it is possible to combine MaBoSS and its molecular network models with PhysiCell, a 3D multicellular system simulator [START_REF] Ghaffarizadeh | Physicell: an open source physics-based cell simulator for 3-d multicellular systems[END_REF]. The PhysiBoSS framework schematically proposes to encapsulate a logical model in each cell to simulate its internal functions and then let PhysiCell model the three-dimensional interactions between multiple cells of potentially different types [START_REF] Letort | Physiboss: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling[END_REF]. Probably the most promising prospects for mechanistic models lie in synergies of this kind, which, however, require broader collaborations and longer design times to truly enable the different modeling scales to communicate. The idea of proposing multi-scale models encapsulated in a hierarchical way to ensure the modeling from the genetic scale to the phenotype is also found in intermediate approaches between mechanistic and deep learning models that force neural networks to follow this architecture in order to ease post hoc interpretation [START_REF] Ma | Using deep learning to model the hierarchical structure and function of a cell[END_REF].

The previous mention of quantitative pharmacology models also underlines the intrinsic limitations of qualitative mechanistic models, a fortiori for clinical applications. Thus the outputs of the personalized logical models can only be interpreted in relation to each other; it is difficult to give each one an absolute interpretation. Without proper calibration, what does a Proliferation score of 0.2 or 0.8 mean? On first reading, they have only a relative significance that precludes direct clinical interpretation. However, it seems difficult to make these logical models much more quantitative. The very nature of formalism limits the precise translation of biological mechanisms retrieved from literature. Likewise, the partial integration of some omics data only in logical models, presented in chapter 5, required a specific methodology to allow the data to be adapted to the discrete and qualitative formalism. Obtaining truly quantitative and well-calibrated mechanistic models has until now always required intrinsically more quantitative formalisms such as ordinary differential equations [START_REF] Fröhlich | Efficient parameter estimation enables the prediction of drug response using a mechanistic pan-cancer pathway model[END_REF], or Bayesian frameworks allowing a more flexible representation of entities and their relationships [START_REF] Jastrzebski | Integrative modeling identifies key determinants of inhibitor sensitivity in breast cancer cell lines[END_REF]. In these two cases, as in most others, the quantitative quality of the predictions relies on model training and parameter fitting, contrary to the approach proposed in this thesis.

These methods therefore depend very heavily on the available data to train their models. One of their limitations is to use data from cell line screening. Schematically it is necessary to have the response to different treatments for each line in order to obtain personalized models or inter-pretations. The abundance of this type of screening data makes them the preferred methods for these applications where they greatly outperform qualitative models without learning. On the other hand, in a more prospective way, it is interesting to ask the question of the availability of patient data with the view to one day apply these models as close as possible to the clinic. Today it is inconceivable to obtain such rich data for patients. This would imply being able to develop cell lines for each patient, then screen all of them for drugs and use the results. This is a prospect whose feasibility is being studied [START_REF] Lee | Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy[END_REF]], but it is not a routine clinical procedure today. If it were possible, the models would probably be replaced by the experiments themselves. More realistically, it is hoped that once the model has been sufficiently trained, the data required to make predictions for a new patient will be more modest. However, this new patient still needs to remain within the training data field. Conversely, logical models personalized without learning are based on other assumptions, mainly related to the correct mathematical translation of biological knowledge and interpreted omics data. Continued growth in the quantity and quality of data is likely to give an overall advantage in the medium term to the above mentioned quantitative mechanistic methods, more data-intensive but more accurate. Qualitative models such as those presented in chapters 5 and 6 may nonetheless remain a complementary approach, used beforehand or in more data-poor cases that do not allow for learning, as discussed when comparing the results with machine learning approaches in section 6.2.5.

In such a world of abundant data, is it only then relevant to continue to propose mechanistic models instead of biologically agnostic machine learning models? The latter have indeed become much more frequent with a particular emphasis in recent years on deep learning approaches [START_REF] Angermueller | Deep learning for computational biology[END_REF][START_REF] Eraslan | Deep learning: new computational modelling techniques for genomics[END_REF]. The comparison between quantitative mechanistic approaches and machine learning approaches then uses terms similar to the previous comparison between qualitative and quantitative mechanistic approaches. Machine learning approaches can be even more flexible because their degrees of freedom are not constrained by an a priori biological structure, but they consequently require larger amounts of data. The loss of any internal mechanistic structure can however hamper the interpretability of the results, although many methods have been developed to facilitate this interpretation of machine learning models in biology [START_REF] Azuaje | Artificial intelligence for precision oncology: beyond patient stratification[END_REF][START_REF] Manica | Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders[END_REF]. The loss of the mechanistic nature in most machine learning approaches also makes it impossible to test perturbations or hypotheses that are clearly outside the scope of training data. If one can imagine the predominance of well-calibrated machine learning models for routine decisions, more exploratory and prospective investigations could however favour mechanistic models more capable of extrapolation. Moreover, while the question of the acceptability of computational decision support models in oncology arises [START_REF] Vollmer | Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness[END_REF], the explicit representation of the internal mechanisms may present a reassuring aspect. It is simpler for both the patient and the physician to imagine the functioning of a model that replicates human bodies or cells than a more exclusively mathematical black box. However, this argument only seems valid in the case of very similar performances.

Finally, most of the remaining questions that arise concern all computational models of cancer in the same way, whatever their nature. [START_REF] Wiens | Do no harm: a roadmap for responsible machine learning for health care[END_REF] thus propose a roadmap for the responsible use of the models in the clinic that targets a number of challenges. One of them is to know how computational models can be seamlessly integrated into medical practice while leaving the various stakeholders, from medical experts to patients, in the loop. Physicians, for example, need to be informed in a relevant way about the nature and limitations of these models, which can facilitate the decision but whose technical details may escape them. The presentation of these models to them is therefore particularly crucial in order to ensure their proper use, as [START_REF] Mark P Sendak | Presenting machine learning model information to clinical end users with model facts labels[END_REF] point out by proposing standardized methods of presentation and communication. Numerous ethical or data privacy issues also arise when precise genetic information about patients needs to be processed.

One of the challenges mentioned by [START_REF] Wiens | Do no harm: a roadmap for responsible machine learning for health care[END_REF] which resonates particularly with this thesis is that of the rigorous evaluation of the clinical contribution of these models, mechanistic or not. The choice of metrics is therefore very important and must be made to optimize clinical information. For example, while the discrimination capability of models is frequently measured, the calibration performance of risk prediction models is also crucial to inform clinical practice [Van Calster et al., 2019]. In general, although computational cancer models are changing the cancer research landscape, proven standards from epidemiology or clinical statistics for evaluation should be maintained to allow comparison and quantification of improvements beyond scientific trends [START_REF] Christodoulou | A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models[END_REF]. These evaluations require real clinical expertise to measure the extent to which a gain in algorithmic performance can be translated into clinical improvement depending on the patients concerned and the resources mobilized. Concerning the mechanistic models in particular, for example, their capacity to extrapolate and possibly reason about new treatments for which data are missing or few have been underlined several times. However, the clinical evaluation of their impact always requires data at the end of the day. The methods of causal inference applied in chapter 9 make it possible to correct the effects and bring them closer to the standards of clinical trials, but they can only rearrange clinical strategies on the basis of existing data. Mechanistic models are therefore there to guide or enlighten experiments, but are not intended to replace them.

To conclude in a word, cancer models still have a bright future ahead of them. Mechanistic models will continue to be attractive because of their ability not only to predict but, more importantly, to explain. However, the transparency of their mechanisms should not prevent them from being rigorously evaluated statistically. It is not enough for them to explain, they must also be well understood. 

A.1.3 CRISPR-Cas9 screening

On top the previous drug response characterization, some CRISPR-Cas9 screenings have been performed on cancer cell lines. Very basically, this involves using single-guide RNAs (sgRNAs) to direct the targeted inhibition of certain genes. Conceptually, screening is not very different from drug screening since it allows the sensitivity of cell lines to the inhibition of certain targets to be studied. However, this technology makes it possible to target many more different genes since it is based on RNA guide synthesis and not on the existence of drugs with an affinity for the target of interest. Schematically, sreening is therefore broader (thousands of genes), less biased (any gene can be targeted a priori) and more precise (much lower off-target effect).

Among the various databases available, the ones used in this thesis have been downloaded from Cell Model Passports and come from Sanger Institute [Behan et al., 2019] and Broad Institute [START_REF] Meyers | Computational correction of copy number effect improves specificity of crispr-cas9 essentiality screens in cancer cells[END_REF]. Both databases present CRISPR inhibition results for thousands of genes for a few hundred cell lines among those presented in the previous section. The Sanger dataset for instance includes 324 cell lines, and 238 in common with the subcohort previously described in the previous section and in We will mainly focus on Best Average Response. This metric "captures a combination of speed, strength and durability of response into a single value" [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF]. Qualitatively, lower values correspond to more efficient drugs. 

B.2 Extended logical model of cancer pathways

Another logical model of similar size and scope was also used, primarily for the study of treatment responses. This model was built by Loïc Verlingue, a medical oncologist and member of the laboratory and preliminary versions of the model are described in Verlingue et al. [2016b] and Verlingue et al. [2016a]. One of the interests of this model is that it has been designed with a more clinical perspective, notably centred on the response to MTOR inhibitors. In addition, it presents more biological read-outs used for interpretation, and we will use mainly Proliferation (also called G1_S in the model files to designate the associated stage of the cell cycle), Apoptosis and Quiescence in particular. In addition, being able to discuss and collaborate directly with the model autor has helped to avoid potential errors in use.

B.3 Logical model of BRAF pathways in melanoma and colorectal cancer

Here are some details about the regulations represented in Figure 6.4. The MAPK pathway encompasses three families of protein kinases: RAF, MEK, ERK. If RAF is separated into two isoforms, CRAF and BRAF, the other two families MEK and ERK are represented by a single node. When BRAF is inhibited, ERK can still be activated through CRAF, and BRAF binds to and phosphorylates MEK1 and MEK2 more efficiently than CRAF [START_REF] Wellbrock | The raf proteins take centre stage[END_REF], especially in his V600E/K mutated form. When PI3K/AKT pathway is activated, through the presence of the HGF (Hepatocyte Growth Factors), EGF (Epidermal Growth Factors) and FGF (Fibroblast Growth Factors) ligands, it leads to a proliferative phenotype. The activation of this pathway results in the activation of PDPK1 and mTOR, both able to phosphorylate p70 (RPS6KB1) which then promotes cell proliferation and growth [Consortium, 2019]. There has been some evidence of negative regulations of these two pathways carried out by ERK itself [START_REF] Lake | Negative feedback regulation of the erk1/2 mapk pathway[END_REF]: phosphorylated ERK is able to prevent the SOS-GRB2 complex formation through the activation of SPRY [START_REF] Edwin | Intermolecular interactions of sprouty proteins and their implications in development and disease[END_REF], inhibit the EGF-dependent GAB1/PI3K association [START_REF] Lehr | Identification of major erkrelated phosphorylation sites in gab1[END_REF] and downregulate EGFR signal through phosphorylation [START_REF] Lake | Negative feedback regulation of the erk1/2 mapk pathway[END_REF]. The model also accounts for a negative regulation of proliferation through a pathway involving p53 activation in response to DNA damage (represented by ATM); p53 hinders proliferation through the activation of both PTEN, a PI3K inhibitor, and p21 (CDKN1A) responsible for cell cycle arrest.

We hypothesize that a single network is able to discriminate between melanoma and CRC cells. These differences may come from different sources. One of them is linked to the negative feedback loop from ERK to EGFR. As mentioned previously, this feedback leads to one important difference in response to treatment between melanoma and CRC: BRAF (V 600E) • D quantifies the separation of survival curves. It is computed by ordering the estimated prognostic index, β ′ X, calculating the expected standard normal order statistics corresponding to these values, dividing the latter by a factor κ, and performing an auxiliary regression on the scaled scores: the resulting regression coefficient is D. • κ = √ 8/π ≈ 1.60 [START_REF] Royston | A new measure of prognostic separation in survival data[END_REF] • σ 2 ϵ is the variance of the error term, σ 2 ϵ = π 2 /6 for Cox PH models For a better understanding of this formula, it is interesting to note that in a linear regression model Y ∼ N (β ′ X, σ 2 ), it is also possible to write R 2 equivalently as follows:

R 2 = Var(β ′ X) Var(β ′ X) + σ 2
This formula underlines the analogy with R 2 D , with D 2 /κ 2 being interpreted as an estimate of the variance of the prognostic index β ′ X for the Cox PH model.

C.2 Causal inference with multiple versions of treatment

This section gathers the demonstrations of the equations present in chapter 9 when they are not present in this chapter and additional details about other estimators based on IPW and TMLE.

C.2.1 Overall treatment effect with multiple versions of treatment (equation (9.3))

Here is the formal proof for equation (9.3), mostly derived from the proof of Proposition 3 in [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]. Here is the formal proof for equation (9.5), partially derived from the proof of Proposition 5 in [START_REF] Tyler | Causal inference under multiple versions of treatment[END_REF]. 

C.2.4 TMLE

Targeted maximum likelihood estimation is framework based on a doubly robust maximum-likelihood-based approach that includes a "targeting" step that optimizes the bias-variance trade-off for a defined target parameter. In particular, this method is perfectly compatible with the use of machine learning algorithms for outcome or treatment models. A detailed description of the method and its implementations can be found in [START_REF] Mark | Targeted learning: causal inference for observational and experimental data[END_REF].

The implementation proposed in this article is very similar to the one proposed in a recent tutorial concerning the application to binary processing [START_REF] Angel Luque-Fernandez | Targeted maximum likelihood estimation for a binary treatment: A tutorial[END_REF]. The specific characteristics of the problem of precision medicine studied here lead to modify this approach. In particular, the outcome and treatment models used in the first steps are modified in the same way as the one explained for the standardized estimators (outcome model) and for the IPW estimators (treatment model). The step of updating the estimates is done on a model similar to [START_REF] Angel Luque-Fernandez | Targeted maximum likelihood estimation for a binary treatment: A tutorial[END_REF].

The algorithm used for the models internal to the TMLE are, as much as possible, the same as those used for the standardised and IPW estimators:

• For simulated data: generalized linear models in all cases except multinomial classification performed through the function multinom in nnet package. • For PDX data: random forests for all models. Use of SuperLearner [START_REF] Mark | Super learner[END_REF] is made possible by simple modifications to the code but significantly slows down its execution.

A p p e n d i x

D

Résumé détaillé

En vertu de l'article L121-3 du code de l'éducation la langue de rédaction privilégiée en France pour les thèses est le français. Une thèse en anglais doit en conséquence s'accompagner d'un résumé détaillé en français qui est fourni ci-dessous en suivant une progression similaire au manuscrit qui peut alors être titré: Ainsi, on distinguera par la suite les modèles mécanistiques des modèles statistiques. Si tous deux sont des modèles formels, ils diffèrent par leur structure et leurs objectifs (Figure 1.6 et Tableau 1.1). Les premiers cherchent à représenter les mécanismes internes du phénomène, quand les deuxièmes cherchent à optimiser la prédiction du phénomène sans présupposer de connaissances particulières. Une illustration de ces différences, appliquée à la modélisation des interactions écologiques entre proies et prédateurs, est proposée en section 1.2.2.

Un point crucial à retenir concernant ces modèles, et en particulier les modèles mécanistiques, est leur nécessaire simplicité. Puisque leur existence découle de la complexité des phénomènes étudiés, les modèles sont par nature des simplifications de la réalité. Le recours au bon niveau de détail et la justification des choix effectués sont ainsi beaucoup plus importants qu'une impossible exactitude. Ou comme le disait Paul Valéry~:

Ce qui est simple est toujours faux. Ce qui ne l'est pas est inutilisable

De la dérégulation de la machinerie cellulaire au cancer Le cancer, de par sa grande complexité cellulaire et moléculaire, est un terrain de prédilection pour les modèles en tout genre. Les manifestations cliniques de la maladie, caractérisée par une prolifération incontrôlée de cellules, sont connues depuis des siècles. La compréhension des mécanismes biologiques sous-jacents ne s'est elle approfondie qu'à partir de la découverte de l'ADN comme support de l'information génétique, au milieu du XX ème siècle. Le cancer est aujourd'hui reconnu comme une maladie génétique dont l'origine réside essentiellement dans des altérations de l'ADN. C'est la combinaison de plusieurs altérations, souvent accumulées au fil du temps, qui permet d'inactiver les différentes protections biologiques qui prémunissent en temps normal contre une prolifération cellulaire excessive.

Ainsi, il apparait de plus en plus indispensable de considérer les informations biologiques de chaque patient (mutations de l'ADN, niveaux d'expression ARN etc.) non plus séparément mais conjointement afin de comprendre le phénomène tumoral. La prise en compte des réseaux d'interactions entre gènes, ARN et protéines éclaire également la compréhension : le cancer n'est plus seulement une maladie génétique mais également une maladie de réseaux (Figure 2.8).

D.1. MODÉLISATION ET CANCER

Sur le plan technologique, la recherche profite également depuis le début du XXI ème siècle de données beaucoup plus abondantes, issues notamment du séquençage à haut débit, qui permettent une vision plus globale en renseignant sur des milliers de gènes et ce à travers différents types de données omiques : génomique (ADN), transcriptomique (ARN), protéomique (protéines) etc. Ces données sont notamment disponibles publiquement pour des milliers de patients atteints de cancer (consortium TCGA par exemple) mais aussi pour de nombreux modèles précliniques comme des lignées cellulaires provenant de patients.

Modélisation mécanistique du cancer : d'une maladie complexe à la biologie des systèmes L'abondance des données et des relations entre les entités biologiques a rendu nécessaire l'utilisation de méthodes computationnelles pour les comprendre et les modéliser. Ce thèse se focalise sur la modélisation au niveau moléculaire, celui des interactions entre gènes, ARN et protéines au sein des cellules. Même en se focalisant sur les modèles mécanistiques qui intègrent la connaissance biologique et biochimique sur ces entités, plusieurs formalismes mathématique existent pour écrire un modèle. Deux formalismes parmi les plus fréquents concentreront l'essentiel des analyses de cette thèse. Le premier est constitué d'équations différentielles, il est quantitatif mais mobilise de nombreux paramètres. Le second est le formalisme logique, plus parcimonieux mais qualitatif et qui sera décrit en détail plus avant.

L'un comme l'autre ont pour vocation de répliquer le phénomène tumoral étudié (activation d'une voie de signalisation, impact d'une mutations etc.) tout en représentant explicitement les entités biologiques impliquées. De par leur structure complexe, souvent non-linéaire, ils peuvent mettre en évidence des comportements dit émergents qui relèvent d'une réponse du système dans son ensemble et ne pouvaient se déduire des entités biologiques prises séparément.

Au-delà de leur utilité intellectuelle et scientifique dans l'étude des phénomènes tumoraux, ces modèles mécanistiques moléculaires du cancer sont parfois utilisés pour des analyses ou prédictions à portée clinique et médicale : survie d'un patient en l'absence de traitement (valeur pronostique), réponse d'un patient à un traitement donné (valeur prédictive). Cette thèse se focalise essentiellement sur ces questions d'impact clinique des modèles mécanistiques de cancer, entre biologie des systèmes et biostatistiques.

D.2 Des modèles logiques personnalisés de cancer

Principes de modélisation logique et intégration des données L'essentiel des modèles mécanistiques présentés dans cette thèse relèvent du formalisme logique. Chaque entité biologique y est représentée par une variable discrète, souvent binaire, interprétée comme une abstraction de son activité: 0 si inactive (gène non transcrit, ARN dégradé, protéine en trop faible concentration etc.), 1 si active (gène transcrit, protéine phosphorylée etc.). Ces entités sont reliées entre elles par des règles logiques composées à partir des opérateurs ET (&), OU (|), NON (!). On pourra ainsi définir qu'une entité A doit être activée si B l'est et que, dans le même temps, C ne l'est pas ("B & !C").

Par la suite les modèles logiques seront simulés suivant une actualisation asynchrone telle qu'encodée dans le logiciel MaBoSS dont le fonctionnement est résumé en Figure 4.4. En bref, cela signifie que la mise à jour de l'état des variables du modèle (par exemple le passage de l'état 0 à l'état 1 si la règle logique est vérifiée) se fait une variable à la fois et que l'ordre des mises à jour est défini stochastiquement à partir de constantes de réactions associés aux variables (algorithme de Gillespie).

La plupart des modèles logiques utilisés par la suite ont été construits à partir de la littérature comme source primaire d'information. Cependant, dans ce formalisme comme dans les autres, les données biologiques sont de toute première importance à différentes étapes du modèles, que ce soit pour le définir, la paramétrer ou le valider (Figure 4.5).

Personnalisation des modèles logiques : méthode et validation pronostique

Les modèles définis à partir de la littérature sont par construction assez génériques et ne permettent pas d'explorer, pour un même cancer, les différences entre individus en termes d'agressivité de la tumeur ou de réponse au traitement. À partir d'un réseau moléculaire générique, une des possibilités est d'utiliser les données biologiques des différentes tumeurs pour spécifier, personnaliser les modèles. Les méthodes existantes proposent pour Une autre approche a été suivie dans cette thèse consistant à personnaliser les modèles en interprétant biologiquement des données statiques (par opposition aux données de perturbation) issues d'un seul prélèvement initial. Le formalisme logique est alors mobilisé, sa nature qualitative et parcimonieuse étant adaptée aux données utilisées. Peut-on alors obtenir de ces données des modèles mécanistiques de cancer personnalisés et interprétables cliniquement ? La méthode PROFILE conçue durant cette thèse cherche à répondre à cette question sans entraînement des modèles.

Son principe peut se diviser en deux méthodes distinctes: la personnalisation discrète et la personnalisation continue (Figure 5.5). La première infère l'effet fonctionnel des altérations génétiques considérées discrètes comme les mutations ou les altérations du nombre de copies d'un gène. Une mutation connue pour impliquer une perte (resp. un gain) de fonction de l'entité biologique sera traduite en forçant la variable correspondante du modèle à rester à 0 (resp. 1) pour le patient concerné. La seconde méthode consiste elle à interpréter des quantités continues comme peuvent l'être les niveaux d'ARN, de protéines, de phosphorylation etc. Il s'agit alors, pour chaque variable, de détecter la forme de distribution au sein de la cohorte puis de la normaliser, c'est à dire de la transformer en une variable continue comprise entre 0 et 1 (Figure 5.4). Cette valeur peut ensuite être utilisée pour définir les constantes de réactions associées à chaque variable du modèle et qui influent sur la rapidité avec laquelle ladite variable sera mise à jour. Les deux types de personnalisations peuvent être combinés, en intégrant par exemple les mutations et les niveaux d'ARN chacun suivant la méthode adaptée. Cette combinaison sera celle utilisée par défaut dans les analyses évoquées ultérieurement.

Une première validation de la méthode est faite en vérifiant la capacité des modèles logiques personnalisés à différencier des tumeurs plus ou moins agressives. Des analyses de survies de patientes atteintes de cancers du sein sont notamment proposées en Figure 5.9 et démontrent la capacité des modèles personnalisés à stratifier des patientes présentant des pronostics différents.

Une première analyse à large spectre est menée à l'aide de données concernant plusieurs centaines de lignées cellulaires (provenant de différents types de cancer) et de traitements. L'utilisation d'un modèle logique générique n'a cependant pas permis de tirer des enseignements précis de cette analyse. Une étude plus ciblée a donc été menée par la suite pour étudier la réponse aux inhibiteurs de BRAF des mélanomes et cancers colorectaux, étant observé que les premiers répondent assez bien au traitement et pas les seconds, en dépit de profils moléculaires assez semblables. Un modèle centré autour de BRAF tout d'abord construit et validé qualitativement. Il est ensuite personnalisé à l'aide des données de mutations et d'ARN issues de lignées cellulaires des deux cancers concernés. La réponse des modèles personnalisés à l'inhibition de BRAF est ensuite évaluée en observant le score de Prolifération (variable de sortie phénotypique du modèle) atteint par ces modèles avec et sans inhibiteurs. La réduction de Prolifération engendrée par l'inhibition simulée de BRAF est comparée aux résultats expérimentaux issus de l'inhibition de BRAF sur les mêmes lignées cellulaires par un traitement ou par CRISPR/Cas9. Les corrélations significatives entre sensibilités expérimentales et simulées valident la pertinence des modèles personnalisés, en particulier ceux résultant de l'intégration conjointe des données de mutation et d'ARN (Figure 6.6). Les modèles personnalisés apparaissent par ailleurs comme un outil d'investigation qualitative porteur de sens en permettant de mettre en lumière et en contexte certains mécanismes de résistance, liés à CRAF par exemple (Figure 6.7). Une comparaison avec des méthodes d'apprentissage automatique, ici des forêts aléatoires, est effectuée afin de souligner la complémentarité des approches et l'intérêt des modèles logiques personnalisés sans entraînement en présence d'un nombre d'échantillons réduit.

D.3. QUANTIFICATION STATISTIQUE DE L'IMPACT CLINIQUE DES MODÈLES

Une application de cette méthode de personnalisation au cancer de la prostate est ensuite présentée. La stratégie est similaire au cas précédent, en insistant sur l'identification de nouvelles cibles thérapeutiques pour une lignée cellulaire en particulier. Certaines cibles identifiées comme efficaces par les modèles personnalisés sont ensuite testées et validées in vitro.

D.3 Quantification statistique de l'impact clinique des modèles Flux d'informations dans les modèles mécanistiques de cancer

La valeur clinique, c'est à dire pronostique ou prédictive, des modèles mécanistiques a été analysée jusqu'ici de manière assez simple en se focalisant sur la capacité des sorties du modèle (souvent des variables à interprétation phénotypique comme Prolifération) à corréler avec des résultats cliniques. Cependant les données utilisées en entrée des modèles mécanistiques, pour les paramétrer ou les personnaliser, sont souvent déjà des variables pertinentes cliniquement : statut d'une mutation, biomarqueur ARN etc. Il est donc nécessaire de considérer à la fois les variables d'entrée et de sortie du modèle à l'aune des résultats cliniques afin de comprendre comment le modèle traite et transforme les informations cliniques qu'il ingère.

Un premier exemple est fourni, fondé sur des données simulées et l'utilisation du pourcentage de la variance exprimée (R 2 ), pour mettre en exergue deux grandes catégories de modèles mécanistiques (Figures 7.2 et 7.3). La première correspond à ceux dont les sorties ont une valeur clinique inférieure aux entrées. Les sorties du modèles, généralement en nombre réduit, peuvent néanmoins constituer une réduction de dimension pertinente des entrées, souvent nombreuses. La seconde catégorie est celle des modèles dont les sorties ont une valeur supérieure ou complémentaire aux entrées : ils ont capturé un comportement émergent qui a une valeur clinique. Cette analyse est appliquée à des modèles déjà publiés pour illustrer la nature de l'information clinique qu'ils fournissent.

Essais cliniques et inférence causale

Si l'on se focalise sur la capacité des modèles mécanistiques à orienter le choix des traitements, il devient nécessaire de développer d'autres méthodes d'analyse des modèles, plus proches de la pratique clinique. En la matière, l'évaluation des traitements et stratégies thérapeutiques se fait souvent à travers des essais cliniques randomisés qui permettent de comparer des populations similaires qui ne diffèrent que par l'administration du traitement ou du contrôle. Dans le cas de données non randomisées, que l'on appellera ici observationnelles, le choix des patients qui ont reçu le traitement ou le contrôle peut avoir été fait suivant des critères particuliers qui deviennent ainsi des facteurs de confusion dans l'analyse : la différence de résultats peut provenir de l'effet du traitement ou d'une répartition déséquilibrée des patients (Figures 8.2 et 8.3).

Il est toutefois possible d'utiliser des méthodes pour corriger certains de ses déséquilibres et ainsi, sous certaines conditions, d'interpréter les différences résiduelles de résultats entre patients traités et contrôles comme résultant de l'effet causal du traitement. Trois implémentations différentes de ces méthodes d'inférence causale sont utilisées dans la thèse, chacune fondée sur un modèle statistique différent pour contrôler l'effet des facteurs de confusion: la standardisation (modèle du résultat du traitement), la pondération selon l'inverse de la probabilité (modèle de l'assignation du traitement), le targeted maximum likelihood estimation TMLE (combinaison des deux modèles précédents). Ces méthodes dépendent cependant toutes d'hypothèses parfois difficiles à vérifier.

Inférence causale pour la médecine de précision

Mais les modèles mécanistiques peuvent théoriquement permettre de choisir parmi plusieurs traitements pour chaque profil moléculaire de patient. Ils sont ainsi assimilables à une stratégie ou un algorithme de médecine de précision. Peut-on alors appliquer les méthodes d'inférence causale à l'évaluation de ce genre de stratégies cliniques qui englobent différentes molécules thérapeutiques ? Dans le dernier temps de cette thèse, une extension de ces méthodes est proposée pour s'adapter à des stratégies cliniques comprenant différentes versions de traitement. Cela revient à utiliser des données observationnelles pour simuler des essais cliniques comparant un bras où les patients sont traités suivant les recommandations de l'algorithme de médecine de précision (qui peut être un modèle mécanistique) avec différents types de bras contrôle: traitement standard de référence (molécule unique), traitement prévu par le médecin, ou traitement ciblé aléatoirement défini.

Ces méthodes et les estimateurs statistiques associés sont d'abord validés sur des données artificiellement générées afin de mesurer leur capacité à corriger d'éventuels biais causés par l'hétérogénéité de l'effet des traite-D.4. CONCLUSION ments ou la répartition inégale des traitements observés par exemple. Une application interactive RShiny est également fournie pour permettre l'exploration de très nombreux scénarios de simulations, y compris par un public non familier du langage R (Figure 9.8).

Dans un deuxième temps, une application a été menée avec des données précliniques issues de xénogreffes dérivées de patients (PDX). Cela correspond à des tumeurs prélevées chez des patients avant d'être divisées en échantillons implantés chez des souris immunodéprimées identiques qui seront traitées avec des molécules différentes (Figure 9.1). En conséquence, il est possible d'accéder, pour chaque tumeur, à sa réponse thérapeutique face à différents traitements. Ces informations, qui ne sont pas disponibles pour les vrais patients qui ne peuvent recevoir qu'un traitement à la fois, permettent d'accéder directement dans les données à l'effet de différentes stratégies thérapeutiques pour chaque tumeur. Ainsi, il a été possible de valider, sur des données précliniques réelles, la supériorité des valeurs issues des nouvelles méthodes d'inférence causale proposées par rapport aux valeurs obtenues suivant des méthodes plus directes.

D.4 Conclusion

Cette thèse trace un chemin, de la conception de modèles mécanistiques du cancer à la quantification de leur impact clinique. La faculté de ces modèles à passer de l'outil théorique à une interprétation clinique repose ici sur leur personnalisation permise par l'intégration des données omiques dans un canevas tissé à partir des connaissances biologiques issues de la littérature. Les modèles logiques personnalisés qui ont été présentés restent essentiellement des supports qualitatifs à l'interprétation clinique des phénomène tumoraux. La réflexion menée par la suite sur leur impact clinique a mis en évidence l'importance d'une évaluation globale qui permette de comprendre l'origine de leur valeur clinique et la nécessité de développer des méthodes statistiques adaptées pour évaluer leurs apports en termes de médecine de précision.
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RÉSUMÉ

Au delà de ses mécanismes génétiques, le cancer peut être compris comme une maladie de réseaux qui résulte souvent de l'interaction entre différentes perturbations dans un réseau de régulation cellulaire. La dynamique de ces réseaux et des voies de signalisation associées est complexe et requiert des approches intégrées. Une d'entre elles est la conception de modèles dits mécanistiques qui traduisent mathématiquement la connaissance biologique des réseaux afin de pouvoir simuler le fonctionnement moléculaire des cancers informatiquement. Ces modèles ne traduisent cependant que les mécanismes généraux à l'oeuvre dans certains cancers en particulier. Cette thèse propose en premier lieu de définir des modèles mécanistiques personnalisés de cancer. Un modèle générique est d'abord défini dans un formalisme logique (ou Booléen), avant d'utiliser les données omiques (mutations, ARN, protéines) de patients ou de lignées cellulaires afin de rendre le modèle spécifique à chacun. Ces modèles personnalisés peuvent ensuite être confrontés aux données cliniques de patients pour vérifier leur validité. Le cas de la réponse clinique aux traitements est exploré en particulier dans ce travail. La représentation explicite des mécanismes moléculaires par ces modèles permet en effet de simuler l'effet de différents traitements suivant leur mode d'action et de vérifier si la sensibilité d'un patient à un traitement est bien prédite par le modèle personnalisé correspondant. Un exemple concernant la réponse aux inhibiteurs de BRAF dans les mélanomes et cancers colorectaux est ainsi proposé. La confrontation des modèles mécanistiques de cancer, ceux présentés dans cette thèse et d'autres, aux données cliniques incite par ailleurs à évaluer rigoureusement leurs éventuels bénéfices dans la cadre d'une utilisation médicale. La quantification et l'interprétation de la valeur pronostique des biomarqueurs issus de certains modèles méchanistiques est brièvement présentée avant de se focaliser sur le cas particulier des modèles capables de sélectionner le meilleur traitement pour chaque patient en fonction des ses caractéristiques moléculaires. Un cadre théorique est proposé pour étendre les méthodes d'inférence causale à l'évaluation de tels algorithmes de médecine de précision. Une illustration est fournie à l'aide de données simulées et de xénogreffes dérivées de patients. L'ensemble des méthodes et applications décrites tracent donc un chemin, de la conception de modèles mécanistiques de cancer à leur évaluation grâce à des modèles statistiques émulant des essais cliniques, proposant ainsi un cadre pour la mise en oeuvre de la médecine de précision en oncologie.

ABSTRACT

Beyond its genetic mechanisms, cancer can be understood as a network disease that often results from the interactions between different perturbations in a cellular regulatory network. The dynamics of these networks and associated signaling pathways are complex and require integrated approaches. One approach is to design mechanistic models that translate the biological knowledge of networks in mathematical terms to simulate computationally the molecular features of cancers. However, these models only reflect the general mechanisms at work in cancers. This thesis proposes to define personalized mechanistic models of cancer. A generic model is first defined in a logical (or Boolean) formalism, before using omics data (mutations, RNA, proteins) from patients or cell lines in order to make the model specific to each one profile. These personalized models can then be compared with the clinical data of patients in order to validate them. The response to treatment is investigated in particular in this thesis. The explicit representation of the molecular mechanisms by these models allows to simulate the effect of different treatments according to their targets and to verify if the sensitivity of a patient to a drug is well predicted by the corresponding personalized model. An example concerning the response to BRAF inhibitors in melanomas and colorectal cancers is thus presented. The comparison of mechanistic models of cancer, those presented in this thesis and others, with clinical data also encourages a rigorous evaluation of their possible benefits in the context of medical use. The quantification and interpretation of the prognostic value of outputs of some mechanistic models is briefly presented before focusing on the particular case of models able to recommend the best treatment for each patient according to his molecular profile. A theoretical framework is defined to extend causal inference methods to the evaluation of such precision medicine algorithms. An illustration is provided using simulated data and patient derived xenografts. All the methods and applications put forward a possible path from the design of mechanistic models of cancer to their evaluation using statistical models emulating clinical trials. As such, this thesis provides one framework for the implementation of precision medicine in oncology.
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Figure 1

 1 Figure 1.1: A scientist and his model. Joseph Wright of Derby, A Philosopher Giving a Lecture at the Orrery (in which a lamp is put in place of the sun), c. 1763-65, oil on canvas, Derby Museums and Art Gallery

  Figure 1.3: Scientists talk about their models: words cloud. Cloud of words summarizing the lexical fields used by scientists to talk about their models in dedicated interviews reported by Bailer-Jones [2002].

Figure 1

 1 Figure 1.4: Orrery, planets and models. Physical models of planetary motion, either geocentric (Armillary sphere from Plate LXXVII in Encyclopedia Britannica, 1771) or heliocentric in panel B (Bion, 1751, catalogue Bnf) and some geometric representations by Johannes Kepler in panel C (in Astronomia Nova, 1609)

  Figure 1.5: Tree visualization of model semantic context in cancerrelated literature Generated with the 'PubTrees' tool by Ed Sperr, and based on most relevant PubMed entries for "cancer model" search.

Figure 1 . 6 :

 16 Figure 1.6: Different modeling strategies. (A) Data generation from predictors X to response Y in the natural phenomenon. (B) Mechanistic modeling defining mechanisms of data generation inside the box. (C) Statistical modeling finding the function f that gives the best predictions. Adapted from Breiman [2001b].
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 17 Figure 1.7: Some analyses around Lotka-Volterra model of a preypredator system. (A) Evolution of lynx and hares populations based on Hudson Bay Company data about fur pelts. (B) and (C) Linear regression for estimation of parameters. (D) Evolution of lynx and hare populations as predicted by the model based on inferred parameters and initial conditions.
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 21 Figure 2.1: Cancer is an old disease. Rembrandt, Bathsheba at Her Bath, c. 1654, oil on canvas, Louvre Museum, Paris

Figure 2 . 2 :

 22 Figure 2.2: World map and national rankings of cancer as a cause of premature death. Classification of cancer as a cause of death before the age of 70, based on data for the year 2015. Original Figure, data and methods from Bray et al. [2018].
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 24 Figure 2.4: Central dogma of molecular biology. Schematic representation of the information flow within the cell, from DNA to proteins through RNA, more precisely described in this video (Image credit Genome Research Limited).
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 25 Figure 2.5: Hallmarks of cancer. The different biological capabilities acquired by cancer cells. Adapted from Hanahan and Weinberg [2011].
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 26 Figure 2.6: Genetic alterations frequencies for cancer types from TCGA data. Frequencies of alteration per pahway and tumor types as summaried in Pan-cancer analyses from TCGA data. Reprinted from Sanchez-Vega et al. [2018].
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 27 Figure 2.7: Simplistic representation of cellular circuitry. Normal cellular circuit sand sub-circuits (identified by colours) can be reprogrammed to regulate hallmark capabilities within cancer cells. Reprinted from Hanahan and Weinberg [2011].
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 28 Figure 2.8: Genetic alterations frequencies from TCGA data mapped on a schematic signaling network. Frequencies of alteration per pathway and tumor types as summarized in Pan-cancer analyses from TCGA data. Reprinted from Sanchez-Vega et al. [2018].
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 31 Figure 3.1: Dissecting a biological phenomenon using a noncomputational model. Rembrandt, The Anatomy Lesson of Dr Nicolaes Tulp, 1634, oil on canvas, Mauritshuis museum, The Hague

  Figure 3.2: The different scales of cancer modeling.Cancer can be approached at different scales, from molecules to organs, using different data (dark blue), but often with the direct or indirect objective of contributing to the study of clinically interpretable phenomena (yellow boxes), in particular by studying the influence of anticancer agents (pale blue). Reprinted from[START_REF] Barbolosi | Computational oncology-mathematical modelling of drug regimens for precision medicine[END_REF].
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 33 Figure 3.3: PubMed trends in cancer studies. (A) PubMed articles with the word Cancer in either title or abstract from 1950 to 2019. (B) Proportion of the Cancer articles with additional keywords expressed as PubMed logical queries.
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 35 Figure 3.5: Schematic example of logical and ODE modeling around MAPK signaling. (A) Activity flow diagram of a small part of MAPK signaling, each node representing a gene or protein, with an example of logical rule for MEK node for the corresponding logical model. (B) Process description of the same diagram with BRAF and CRAF merged in RAF for the sake of simplicity; each square representing a reaction and the corresponding rate; an example differential equation is provided for the phosphorylated (active) form of MEK.

Figure 3 . 6 :

 36 Figure 3.6: Mechanistic modeling of JNK pathway and survival of neuroblastoma patients, as described by Fey et al. [2015]. (A) Schematic representation, as a process description, for the ODE model of JNK pathway. (B) Response curve (phosphorylated JNK) as a function of the input stimulus (Stress) and characterization of the corresponding sigmoidal function with maximal amplitude A, Hill exponent H and activation threshold K 50 . (C) Survival curves for neuroblastoma patients based on binarized A, K 50 and H; binarization thresholds having been defined based on optimization screening on calibration cohort.

Figure 3 . 7 :

 37 Figure 3.7: Network model of oncogenic signal transduction in ER+ breast cancer, including some drugs and their targets. Reprinted from Zañudo et al. [2017].

Figure 4

 4 Figure 4.1: A simple example of a logical model. Regulatory graph on the left with positive (green) and negative regulations (red); a set of possible corresponding logical rules on the right.

Figure 4 . 2 :

 42 Figure 4.2: State transition graph and synchronous updates. Stable state (A) and limit cycle (B) attractors obtained for the example logical model with synchronous updates (all possible updates simultaneously). Figures above/below STG edges correspond to the number of nodes updated in each transition.

Figure 4 . 3 :

 43 Figure 4.3: State transition graph and asynchronous updates. Stable state (A) and limit cycle (B) attractors obtained for the example logical model with asynchronous updates (one update at a time). Figures above/below STG edges correspond to the number of nodes updated in each transition.

Figure 4 . 4 :

 44 Figure 4.4: Main principles of MaBoSS simulation framework and Gillespie algorithm. (A) A logical model with regulatory graph, logical rules and transition rates. (B) A subset of the corresponding state transition graph with two possible transitions in asynchronous update for a given initial state; the probability probability associated with each transition comes from Gillespie algorithm. (C) Schematic diagram of the Gillespie algorithm applied to the asynchronous transition depicted in (B); random selection of a specific transition and time by the algorithm from two uniform random variables. (D) Schematic representation of a logical model simulation with MaBoSS: average trajectory obtained from the mean of many individual stochastic trajectories, each resulting from the succession of transitions as represented in (C).

Figure 4 . 5 :

 45 Figure 4.5: Data integration in logical modeling. The main types of data used are shown on the left; the essential steps of the logical modeling are shown linearly on the right.

Figure 5 . 1 :

 51 Figure 5.1: Graphical abstract of PROFILE method to personalize logical models with omics data. On the one hand (upper left), a generic logical model, in a MaBoSS format is derived from literature knowledge to serve as the starting-point. On the other hand (upper right), omics data are gathered (e.g., genome and transcriptome) as data frames, and processed through functional inference methods (for already discrete genome data) or binarization/normalization (for continuous expression data). The resulting patient profiles are used to perform model personalization, i.e., adapt the generic model with patient data. The merging of the generic model with the patient profiles creates a personalized MaBoSS model per patient. Then, biological or clinical relevance of these patient-specific models can be assessed.
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 52 Figure 5.2: Bimodal distribution of ERG gene in TCGA prostate cancer cohort. This bimodality is largely explained by the fusion status of ERG gene. Patients for whom the gene has fused with TMPRSS2 have a much higher level of RNA expression for ERG.

Figure 5 . 3 :

 53 Figure 5.3: Bimodality criteria and their combinations. Examples of gene expression distributions for the different combinations of bimodality criteria: Dip test, Bimodality Index (BI) and kurtosis (K). Plots are organized in a Venn diagram.
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 54 Figure 5.4: Normalization of continuous data for logical modeling. (A) Combinations of tests and criteria to classify distributions of continuous data (such as gene expression for one gene and all patients) as bimodal, unimodal or zero-inflated. (B) Normalization methods for each kind of distribution.

Figure 5 . 5 :

 55 Figure 5.5: Methods for personalization of logical models. (A) Personalization with discrete data, such as mutations, with some nodes forced to 0 based on loss of function alteration (left) or 1 based on gain of function/constitutive activation (right). (B) Personalization with continuous data used to define the initial conditions of nodes and to influence the transitions rates and the subsequent probabilities of transition in asynchronous update; the graph on the left represents the normalized values of genes A, B and C for patients 1, 2 and N; the right side represents the personalization of logical model using values from patient N (red profile), first defining the initial probabilities of node activation (middle) and then influencing the probabilities of transitions from one state to another (right).
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 5657 Figure 5.6: Validation of personalized Proliferation scores in cell lines. (A) Comparison with MKI67 proliferation biomarker for all cancer cell lines. (B) Same with breast (BRCA) and lung (LUAD) cancer only. (C) Comparison with doubling times in a subset of 60 cell lines.

Figure 5 . 8 :

 58 Figure 5.8: Hazard ratios for Proliferation and Apoptosis in a survival Cox model in METABRIC cohort. Higher Proliferation (resp. Apoptosis) scores correspond to higher (resp. lower) probabilities of death.

Figure 5 . 9 :

 59 Figure 5.9: Prognostic value of Proliferation scores for breast cancer patients in METABRIC cohort. (A) Survival curve for overall survival stratified with Proliferation scores from personalized models integrating mutations and RNA; scores have been binarized based on median and survival censored at 120 months. (B) Same with Apoptosis scores. (C) Survival curve stratified with combinations of Proliferation and Apoptosis scores, based on the same thresholds, and the corresponding number of patients at risk (D).

Figure 6 . 1 :

 61 Figure 6.1: Schematic extension of PROFILE-personalized logical models to drug investigation. (A) Schematic representation of a logical model of cancer molecular networks, in particular the one described in appendix B.2 and used in the next subsection. (B) Sequential pipeline for drug response investigation with PROFILE, starting from a generic logical model, then transformed into several personalized models with different molecular profiles (correspondong to several cell lines); these models are finally simulated with a defined drug inhibition. (C) A possible analysis of the predictions of personalized models obtained from the generic model described in (A); a PCA is computed based on the final phenotype scores from personalized model, it allows to interpret biologically how the models represent cell lines (e.g., more or less proliferative) and especially what impact of treatment they predict (e.g., decrease Proliferation or increase Apoptosis).

Figure 6

 6 Figure 6.2: PROFILE-generated models and sensitivites to MAP2K1 inhibitors averaged per cancer type. (A) Effects of MAP2K1 inhibitors on personalized logical models averaged per cancer types and represented in a normalized PCA space with super-imposed original phenotypes. (B) Proportion of BRAF-and RAS-mutated cell lines in some cancer types. (C) Zoom on the MAPK pathway of the logical model used.
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 63 Figure 6.3: BRAF modeling flowchart: from a biological question to validated personalized logical models. Logical models are written with MaBoSS, and the checking model procedure is therefore provided in the same formalism. Cell line data are taken from Cell Model Passports [van der Meer et al., 2019].

Figure 6 . 4 :

 64 Figure 6.4: Logical model of signaling pathways around BRAF in colorectal andmelanoma cancers. Grey nodes represent input nodes, which may correspond to the environmental conditions. Square nodes represent multi-valued variable (MEK, ERK, p70 and Proliferation). Dark blue nodes accounts for families (several genes/entities for one node). Light blue node represents the phenotypic read-out of the model, i.e., Proliferation.
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 65 Figure 6.5: Descriptive analysis of cell lines for melanomas and colorectal cancers. (A) Number of cell lines for the four most frequently mutated genes and their combinations (plot from UpSetR package [Conway et al., 2017]). (B) Differential sensitivities to BRAF inhibition by the drug PLX-4720 (lower panel) or by CRISPR inhibition (upper panel), depending on BRAF mutational status and cancer type. Numbers of cell lines in each category are indicated. Note that high sensitivities correspond to low AUC and high scaled Bayesian factors.
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 66 Figure 6.6: Validation of personalized models of BRAF inhibition with cell lines data. (A) Pearson correlations between normalized Proliferation scores from models and experimental sensitivities to BRAF inhibition (drug or CRISPR); only significant correlations are displayed. (B) Scatter plots with non-overlapping points corresponding to correlations of panel A for one drug (PLX-4720) and one CRISPR dataset (Broad) only. (C) Enlargement of one scatter plot in B (left) with the table describing the omics profiles used for each cell line to explore the response mechanisms (right); interactive version in Figure 6.7 or GitHub files. 112

Figure 6 . 8 :

 68 Figure 6.8: Application of personalized models to other CRISPR targets. (A) Personalization strategies using either mutations only (as discrete data) or combined with RNA (as continuous data) with their corresponding scatter plots in panels B and C. (B) Scatter plot comparing normalized Proliferation scores of p53 inhibition in the models with experiment sensitivity of cell lines to TP53 CRISPR inhibition, indicating p53 mutational status as interpreted in the model. Pearson correlations and the corresponding p-values are shown. (C) Similar analysis as in panel B with PI3K model node and PIK3CA CRISPR inhibition.
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 71 Figure 7.1: Evaluation of a mechanistic model. Adapted from Figure 1.6.

  Figure 7.2: Evaluation of a mechanistic model. Adapted from Figure 1.6.

Figure 7 . 3 :

 73 Figure 7.3: Decomposition of R 2 for inputs and output of example models. (A) Results for the non-linear model inputs and output O non-linear as defined in Figure 7.2: the left column represents the R 2 decomposition of model Growth= β 0 + β 1 N 1 + β 2 N 2 + β 3 N 3 and the right column the R 2 decomposition of Growth = β 0 + β 4 O non-linear . (B)Same with the linear model and the corresponding O linear . For both (A) and (B), colors represent the origin of R 2 contribution according to the decomposition. In particular, for right colums (modelY ∼ O), the red share represent the proportion of the R 2 of the regressor O that does not come linearly from the inputs, and therefore its emerging part. The horizontal reference line corresponds to the maximal R 2 obtained from the modelGrowth = β 0 + β 1 N 1 + β 2 N 2 + β 3 N 3 + β 4 O
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 74 Figure 7.4: Mechanistic modeling of JNK pathway and survival of neuroblastoma patients, as described by Fey et al. [2015]. (A) Schematic representation (as a process description [Le Novere, 2015]) for the ODE model of JNK pathway. (B) Response curve (phosphorylated JNK) as a function of the input stimulus (Stress) and characterization of the corresponding sigmoidal function with maximum amplitude A, Hill exponent H and activation threshold K 50 . (C) Survival curves for neuroblastoma patients based on binarized A, K 50 and H; binarization thresholds having been defined based on optimization screening on calibration cohort.

  Figure 7.5: Decomposition of R 2 for inputs and output for ODE model in Fey et al. [2015]. (A) Results for the Fey model inputs and output H as defined in Figure 7.4A and B. (B) Same using the model without positive feedback between JNK and MKK7. Colors represent the origine of R 2 contribution.In particular, for right colums (modelY ∼ H), the red share represent the proportion of the R 2 of the output H that does not come linearly from the inputs, and therefore its emerging part.

  Figure 8.1: Principles of randomized clinical trials.. This trial evaluates the impact of treatment A.
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 82 Figure 8.2: Analysis on observed data without confounder. (A) Directed acyclic graphs with causal relations between variables and parameters used to simulate data. (B) Influence of C on A in observed simulated data. (C) Same with C and Y . (D) Same with A and Y .
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 83 Figure 8.3: Analysis on observed data with confounder. (A) Directed acyclic graphs with causal relations between variables and parameters used to simulate data. (B) Influence of C on A in observed simulated data. (C) Same with C and Y . (D) Same with A and Y .
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 84 Figure 8.4: Association, causation and their associated cohorts. Association analyses are based on observed cohorts and conditional probabilities. Causation analyses are based on counterfactual variables and cohorts.

  Figure 8.4, left part): E[Y |A = 1] -E[Y |A = 0]. However, this difference has no causal interpretation as it does not offer any guarantees as to the confounding factor, as an unbalanced distribution of C can induce biases. Thus we define another estimate: E[Y (1)] -E[Y (0)]. In this case, we compare between two ideal cohorts (Figure 8.4, right part), one in which all patients have been treated (possibly contrary to the fact) and one in which all patients have been left in the control arm (once again, possibly contrary to the fact).

  is usually out of reach. Thus, on real-world dataset, E[Y |A = a, C = c] is estimated through outcome modeling and explicit computation P [C = c] is replaced by its empirical estimate. The nature of the statistical model used will be specified in the various applications presented. In the simple example depicted in Figure 8.5A, a linear model of the outcome (Y ∼ C +A) is fitted on observed data. This model is then used to infer E[Y |A = 1, C = c] and E[Y |A = 0, C = c] for each patient with covariate C = c (Figure 8.5C).
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 85 Figure 8.5: Causal inference methods on a simple example. (A) Directed acyclic graphs with causal relations between variables and parameters used to simulate data. (B) Association between A and Y from observed data. (C) Some simulated samples/patients with their original variables (C, A and Y ), variables from outcome model (E[Y |A = 0, c)], E[Y |A = 1, c)]) and weights from treatment model (W A ). (D) Standardized causal effect of A on Y based on and outcome modeling. (E) IPW causal effect of A on Y based on weights derived from treatment modeling; in this panel weights are taken into account in boxplots and estimations.
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 91 Figure 9.1: Principles of PDX screening. (A) Schematic pipeline for PDX screening with tumor biopsies from one patient divided in several pieces later implanted in similar immunodeficient mice. Each mouse is then treated with a different drug; the collection of mice that have received tumor samples from the same patient but have been treated with different drugs therefore gives access to several outcomes for the same tumor of origin. (B) Corresponding counterfactual variables.
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 92 Figure 9.2: Differences in drug response for 4 drugs and 180 tumors: a call for precision medicine. (A) Distribution of treatment response for the 4 different drugs, each with all 180 tumors. (B) Number of times each of the 4 drugs is the most effective for a given tumor, distribution by tissue of origin.
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 93 Figure 9.3: An example of a precision medicine treatment algorithm: the SHIVA clinical trial. Specific molecular alterations and their associated treatments, as proposed in the SHIVA clinical trial [Le Tourneau et al., 2015].
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 94 Figure 9.4: Target trials to estimate causal effect of precision medicine (PM) algorithm versus different controls. Patients are first screened according to their eligibility for the algorithm: based on their genomic characteristics patients are recommended a specific treatment (eligible) or not (no eligible). Then eligible patients are randomized and assigned either to PM-directed arm or to one of the alternative control arms (CE 1 , CE 2 or CE 3 )
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 95 Figure 9.5: Causal diagram illustrating relations between variables under multiple versions of treatment. Treatment A, version of treatment K, outcome Y , and confounding variables C and W are placed in a causal digram, along with their interpretation in the precision medicine application.

  .8) |.| denoting the cardinality of the set. In this formula, E[Y (1, G 1 )] can be derived from equation (9.5):
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 96 Figure 9.6: Generation and use of simulated data for causal inference. A super-population is first generated (left table) with for each patient all the covariates C, versions of treatment K and outcomes Y (counterfactual and observed). Multiple smaller subcohorts are then sampled (right table) where causal effects are estimated either from observed outcomes alone (causal inference and naive methods) or by using individual counterfactual outcomes (true effects).

  Figure 9.7: Causal effects of precision medicine strategy with simulated data. (A) Main variables and relations in the simulated superpopulation. From left to right: categories of patient based on their mutations; responses to k 0 , k 1 1 , k 1 2 and precision medicine K = r(C); repartition of patients regarding their precision medicine drug and their assigned treatment in observed data. (B) Distribution and deviation of CE 1 estimates based on different methods, deviation scores being computed based on mean absolute error (MAE). (C) Same for CE 2 . (D) Same for CE 3 .
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 99 Figure 9.9: Description of the 88 PDX models cohort. (A) Tissue of origin and prevalences of the drug biomarkers. (B) Drug response to precision medicine targeted treatments in the 88 PDX models cohort depending on the mutational status of biomarkers

  Figure 9.10: Causal estimates with PDX data. Distribution and deviation of CE 1 (A), CE 2 (B) and CE 3 (C) estimates based on different methods as in Figure 9.7B.

  Figure A.2: Drug screening metrics in cell lines. Based on a tested drug concentration range, IC 50 and area under the dose-response curve (AUC) can be computed. For a given drug, red AUC corresponds to a more sensitive cell line than blue AUC.

  Figure A.1.

Figure B. 1 :

 1 Figure B.1: GINsim representation of the logical model described in Fumia and Martins [2013].

Figure B. 2 :

 2 Figure B.2: GINsim representation of the 'Verlingue' logical model described in Verlingue et al. [2016a].

  (a)|a, c, w] × P [c, w] Y (a) ⊥ ⊥ A|(C, W ) (a, K a (a))|a, c, w] × P [c, w] = ∑ c,w,k a E[Y (a, k a )|a, K a (a) = k a , c, w] × P [K a (a) = k a |a, c, w] × P [c, w] = ∑ c,w,k a E[Y (a, k a )|a, K a = k a , c, w] × P [K a = k a |a, c, w] × P [c, w] consistency K = ∑ c,w,k a E[Y |a, K a = k a , c, w] × P [K a = k a |a, c, w] × P [c, w] |a, c, w] × P [c, w]Then, the overall treatment effect can be defined and computed by:E[Y (a, K a (a))] -E[Y (a * , K a * (a * ))]C.2.2 Treatment effect with predefined distributions of versions of treatment (equation (9.5))

  (a, k a )|G a = k a , C = c] × P [G a = k a |C = c] × P [c] = ∑ c,k a E[Y (a, k a )|C = c] × g k a ,c × P [c] since P [G a = k a ] = g k a ,c = ∑ c,k a E[Y (a, k a )|A = a, K a = k a , C = c] × g k a ,c × P [c] with Y (a, k a ) ⊥ ⊥ {A, K}|C = ∑ c,k a E[Y |A = a, K a = k a , C = c] × P [c] by consistency for YIn all the examples presented in this study and implemented in the code, K 0 ∩ K 1 = ∅, it is therefore possible to simplify the joint probabilities since the knowledge of K automatically results in the knowledge of A allowingP [A = a, K = k|C = c] = P [K = k|C = c].The above formulas with the attached probabilities are still necessary in the general case and allow for the derivation of causal effects CE 1 , CE 2 and CE 3 previously described.

  De la modélisation mécanistique des voies de signalisation dans le cancer à l'interprétation des modèles et de leurs apports : applications cliniques et évaluation statistiqueD.1 Modélisation et cancerLa modélisation scientifique, la complexité et l'abstractionIl importe en premier lieu d'effectuer une brève clarification sémantique et épistémologique concernant les modèles, de loin le mot plus fréquent de cette thèse. C'est en effet un terme polysémique, y compris en se restreignant à la seule pratique scientifique. Si les modèles y sont généralement reconnus comme des représentations des phénomènes étudiés, ils peuvent recouvrir des réalités diverses, tantôt objet physique manipulable (Figure1.1) et tantôt construction purement formelle ou mathématique. C'est à cette deuxième catégorie que nous allons nous attacher tout au long de cette thèse, en la spécifiant davantage encore.
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  Since we lack such a space, let us (instead) observe what happens in the thinnest and least resistant media, comparing this with what happens in others less thin and more resistant.

Table 3 .1: Features of quantitative and qualitative modeling ap- plied to biological molecular networks (

 3 

	adapted from Le Novere

  Proliferation

	this chapter, which is essentially methodological in nature, we will
	use a published logical model of cancer pathways to illustrate our
	PROFILE methodology. It is based on a regulatory network summa-
	rizing several key players and pathways involved in cancer mechanisms:
	RTKs, PI3K/AKT, WNT/β-catenin, TGF-β/Smads, Rb, HIF-1, p53 and
	ATM/ATR [Fumia and Martins, 2013]. The later analyses will be mainly
	focused on two read-out nodes,

and Apoptosis. Based on the model's logical rules Proliferation node is activated by any of the cyclins

Table 9 .1: Intercepts and linear coefficients in the linear models specified to simulate data

 9 Response variable InterceptLin. coeff. Y ∼ C 1 Lin. coeff. Y ∼ C 2

Comprehensive overview of tumours and drugs screened in PDX dataset from Gao et al. [2015].

  

		A.2. PATIENT-DERIVED XENOGRAFTS
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Average Response t = mean(∆V ol i , 0 ≤ i ≤ t) Best Average Response = min(Average Response t ), t > 10d

4 Logical model of prostate cancer

  inhibition causes a rapid feedback activation of EGFR, B.4. LOGICAL MODEL OF PROSTATE CANCER loss, or mutations in PI3K or AKT [Manzano et al., 2016] • Experiments in melanoma cell lines support combined treatment with BRAF/MEK + PI3K/AKT inhibitors to overcome resistance [Manzano et al., 2016] • BRAF inhibition (Vemurafenib) leads to the induction of PI3K/AKT pathway and inhibition of EGFR did not block this induction [Corcoran et al., 2012] • Induction of PI3K/AKT pathway signaling has been associated with decreased sensitivity to MAPK inhibition [Corcoran et al., 2012] In the context of the European project PRECISE (Personalized Engine for Cancer Integrative Study and Evaluation), focused on the integrative study of prostate cancer, an adapted logical model has been built. This prostate cancer model is initially based on the generic structure of the Fumia model presented in section B.1, which has been considerably enriched and extended with genes and mechanisms specific to prostate cancer such as ERG, SPOP or AR. The model contains 133 nodes and 449 edges (Figure B.3) and includes pathways like androgen receptor and growth factor signalling, several signaling pathways (Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH), cell cycle, epithelial-mesenchymal transition (EMT), Apoptosis, DNA damage, etc. The model has 9 inputs (EGF, FGF, TGF beta, Nutrients, Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen presence) and 6 outputs (Proliferation, Apoptosis, Invasion, Migration, (bone) Metastasis and DNA repair).

B.

André Malraux, La condition humaine x

More concisely stated by[START_REF] Rosenblueth | The role of models in science[END_REF]: "best material model for a cat is another cat, or preferably the same cat."

"How remarkable is life? The answer is: very. Those of us who deal in networks of chemical reactions know of nothing like it... How could a chemical sludge become a rose, even with billions of years to try." George Whitesides (The improbability of life, 2012)

Additional information on Markov processes and MaBoSS in the following document

Sensitivity is understood throughout this chapter in the biological sense, i.e., the response of a biological system (here cell lines) to an external disturbance (e.g., a drug). This definition is extended to personalized logical models whose response to the same perturbations is studied.

In this thesis, this term refers to data from biological systems (e.g. cell lines) that have been disrupted according to different technologies or molecules: drugs, CRISPR/Cas9 etc. The dynamic response of the studied system to these perturbations is thus accessed instead of being restricted to a static knowledge of the system.

For the sake of completeness, all the steps will be described below or in appendix; the "Logical model" and "Model checking" steps that I supervised jointly without implementing them directly will be described more succinctly.

An unpublished note by Frank Harrell details and illustrates the possibilities and limitations of R

for this type of analysis(link) 
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Summary

The biological knowledge gathered on cancer enables to propose mechanistic models at different scales. This thesis focuses on the molecular level in a bottom-up approach based on the biochemical behaviors described in the literature. These models have in common the mathematical translation of the activation and inhibition networks that link all biological entities within a cancer cell. Different mathematical formalisms exist, including differential equations (continuous and quantitative models) and logical methods (discrete and qualitative models) which are among the most frequent and will be used as examples. For these formalisms as for the others, stochastic approaches are often proposed to translate tumor mechanisms. Most of these mechanistic models have a purely theoretical or investigative purpose but some are used to predict the evolution or response to cancer treatment, they are then respectively prognostic or predictive.

Part II

Personalized logical models of cancer Summary

In the process of evaluating a treatment, it is crucial to monitor the effect of confounding factors in order to identify the causal effect of the treatment and not spurious associations. This may involve randomized clinical trials specifically designed for this evaluation. In the case of observational data generated outside this framework, it is nevertheless possible to use causal inference methods to estimate, under certain conditions, the causal effect of the treatment. Based on the analysis accompanying the published data [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF], some biomarkers of treatment response have been selected and resulted in an example of treatment algorithm: binimetinib (MEK inhibitor) is recommended to KRAS/BRAF mutated tumors, and BYL719 (alpha-specific PI3K inhibitor, also known as Alpelisib) to PIK3CA mutated tumors. PTEN is also included as a covariate because of its detrimental impact on the response to these two treatments. LEE011 drug (a cell cycle inhibitor also known as Ribociclib) is chosen as the reference drug treatment (k 0 ). Among the sequenced tumors, 88 are eligible for this precision medicine algorithm (i.e., mutated for BRAF, KRAS or PIK3CA) and have been tested for all 3 drugs of interest, thus ensuring the availability of all corresponding responses. The following analyses will focus exclusively on this sub-cohort for which a descriptive analysis is provided in Figure 9.9A. As expected BRAF/KRAS-mutated tumors have a better response to binimetinib and PIK3CA-mutated tumors have a better response to BYL719 (Figure

A p p e n d i x

A

About datasets

A.1 Cell lines

Several analyses in previous chapters are based on data derived from cell lines. Among the different databases, the ones used in the thesis are briefly described below. Please refer to corresponding references for additional details.

A.1.1 Omics profiles

The omics profiles of cancer cell lines have been downloaded from Cell Model Passports [START_REF] Van Der Meer | Cell model passports-a hub for clinical, genetic and functional datasets of preclinical cancer models[END_REF] containing genotypic and phenotypic information about more than 1,000 cell lines. Among the available data used in this thesis are the exome sequencing, copy number variations and RNA-sequencing.

A.1.2 Drug screenings

Information about response to treatments is retrieved from Genomics of Drug Sensitivity in Cancer Database (GDSC, Yang et al. [2012]). In order to allow detailed analyses at the level of cancer types, we will restrict ourselves here to tissues represented by at least 20 cell lines and highlighted in dark grey in Figure A.1A. Most of the 663 cell lines in this subcohort have a complete profile with all omics data (mutations, CNA and expression) and drug responses. However, not all cell lines have necessarily been tested for all drugs.

The cell lines are treated with increasing concentration of drugs and the viability of the cell line relative to untreated control is measured. The dose-response relative viability curve is fitted and then used to compute the half maximal inhibitory concentration (IC 50 ) and the area under the doseresponse curve (AUC) [Vis et al., 2016], both being represented in Figure A.2. Since the IC 50 values are often extrapolated outside the concentration range actually tested, we will focus on the AUC metric for all validation with drug screening data. AUC is a value between 0 and 1: values close to 1 mean that the relative viability has not been decreased, and lower values correspond to increased sensitivity to inhibitions. In cases where the ranges Among the different metrics, the examples presented in this thesis will focus on scaled Bayesian factors to assess the effect of CRISPR targeting of genes. These scores are computed based on the fold change distribution of sgRNA [START_REF] Hart | Bagel: a computational framework for identifying essential genes from pooled library screens[END_REF]. The highest values indicate that the targeted gene is essential to the cell fitness.

A.2 Patient-derived xenografts

Another type of data exists, halfway between cell lines and patients, and that is patient-derived xenografts (PDX). Each patient tumour is divided into pieces later implanted in several immunodeficient cloned mice treated with different drugs, thus providing access to sensitivities to several different drugs for each tumour.

A.2.1 Overview of PDX data from Gao et al. [2015]

The PDX dataset used in this thesis is the one published by [START_REF] Gao | High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[END_REF]. The original dataset contains 281 different tumours of origin (sometimes called PDX models, in the sense of a biological model) and 63 tested drugs, not all drugs having been tested for all tumours and some drugs have been tested with tissue-specific patterns (Figure A.3). 192 of these tumours have also been characterized for their mutations, copy-number alterations and mRNA. More detailed analyses of this dataset are available in the dedicated Github repository, in the file Analysis_PDX.Rmd and its corresponding HTML report.

A.2.2 Drug response metrics

A.2.2.1 A continuous outcome

The first drug response metric used in this article is called Best Average Response. For each combination tumour/drug, the response is determined by comparing tumor volume change at time t, V t to tumor volume at time t 0 , V t 0 . Several scores are computed:

A.2.2.2 A binary outcome

Thresholds of Best Response and Best Average Response are also defined, inspired by RECIST criteria [START_REF] Therasse | New guidelines to evaluate the response to treatment in solid tumors[END_REF], in order to classify response to treatment into 4 categories: Complete Response (CR), Partial Response (PR, Stable Disease (SD) and Progressive Disease (PD). We designed a binary response status by combining the response categories (CR, PR and SD) into a single "responder"" category (1), opposed to the "nonresponders" progressive diseases (0).

A.3 Patients

A.3.1 METABRIC

METABRIC dataset is large breast cancer dataset with more than 2'000 patients [START_REF] Pereira | The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes[END_REF]. Mutations, CNA, expression (transcriptomics micro-array) and clinical data are available for a majority of patients (Figure A.4A), with 1'904 patients for whom all the data is available. One of the particular features of these data is to propose a very long clinical follow-up, over more than 10 years (Figure A.4B).

A.3.2 TCGA: Breast cancer

Another reference database for breast cancer is the one from the TCGA consortium [START_REF] Kristin R Swanson | Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion[END_REF]. The cohort is smaller than METABRIC and its clinical follow-up is more limited. In contrast, the omics data are more comprehensive and include RNA sequencing and relative quantification of proteins with RPPA technology (Figure A.5A).

A.3.3 TCGA: Prostate cancer

Similarly, for prostate cancer, reference can be made to data from the TCGA study [START_REF] Abeshouse | The molecular taxonomy of primary prostate cancer[END_REF], which has the same type of data but for a smaller number of patients than the breast cancerp p e n d i x
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About logical models

Several logical models of cancer are used in this thesis and some additional descriptive elements about them are given below.

B.1 Generic logical model of cancer pathways

For this thesis, a published Boolean model from [START_REF] Herman | Boolean network model for cancer pathways: predicting carcinogenesis and targeted therapy outcomes[END_REF] has first been used to illustrate our PROFILE methodology. This regulatory network summarizes several key players and pathways involved in cancer mechanisms such as RTKs, PI3K/AKT, WNT/β-catenin, TGF-β/Smads, Rb, HIF-1, p53 and ATM/ATR. An input node Acidosis has been added, along with an output node Proliferation used as a readout for the activity of any of the cyclins (CyclinA, CyclinB, CyclinD and CyclinE). This slightly extended model contains 98 nodes and 254 edges and its inputs are Acidosis, Nutrients, Growth Factors (GFs), Hypoxia, TNFalpha, ROS, PTEN, p14ARF, GLI, FOXO, APC and MAX. Its outputs are Proliferation, Apoptosis, DNA_repair, DNA_damage, VEGF, Lactic_acid, GSH, GLUT1 and COX412.

which supports continued proliferation. This feedback is observed only in colorectal since melanoma cells express low levels of EGFR and are therefore not subject to this reactivation [START_REF] Prahallad | Unresponsiveness of colon cancer to braf (v600e) inhibition through feedback activation of egfr[END_REF]. Moreover, phosphorylation of SOX10 by ERK inhibits its transcription activity towards multiple target genes by interfering with the sumoylation of SOX10 at K55, which is essential for its transcriptional activity [START_REF] Han | Erk-mediated phosphorylation regulates sox10 sumoylation and targets expression in mutant braf melanoma[END_REF]. The absence of ERK releases the activity of SOX10, which is necessary and sufficient for FOXD3 induction. FOXD3 is then able to directly activate the expression of ERBB3 at the transcriptional level, enhancing the responsiveness of melanoma cells to NRG1 (the ligand for ERBB3), and thus leading to the reactivation of both MAPK and PI3K/AKT pathways [START_REF] Han | Erk-mediated phosphorylation regulates sox10 sumoylation and targets expression in mutant braf melanoma[END_REF]. Furthermore, it has been shown that in colorectal cells, FOXD3 inhibits EGFR signal in vitro [START_REF] Li | Foxd3 is a tumor suppressor of colon cancer by inhibiting egfr-ras-raf-mek-erk signal pathway[END_REF]. Interestingly, SOX10 is highly expressed in melanoma cell lines when compared to other cancer cells. In the model, we define SOX10 as an input because of the lack of information about the regulatory mechanisms controlling its activity. The different expression levels of SOX10 have been reported to play an important role in melanoma (high expression) and colorectal (low expression) cell lines.

Besides a list of formalized biological assertions, retrieved from literature, has been used during the model building to ensure the consitency of the model with some qualitative behaviours. These assertions, listed below, are all verified when the logical model is simulated (details are available on the corresponding GitHub repository):

• BRAF inhibition causes a feedback activation of EGFR in colorectal cancer and not in melanoma [START_REF] Prahallad | Unresponsiveness of colon cancer to braf (v600e) inhibition through feedback activation of egfr[END_REF] et al. [2016]; johannessen2010cot] • Early resistance to BRAF inhibition may be observed in case of PTEN The decomposition of R 2 according to the method of Lindeman [1980] is detailed below. The presentation is taken directly from [START_REF] Grömping | Relative importance for linear regression in r: the package relaimpo[END_REF].

A linear model is written y i = β 0 + β 1 x i1 + ... + β p x ip + e i and the corresponding R 2 is:

Additionally, we define R 2 (S) for a model with regressors in set S. The additional R 2 when adding the regressors in set M to a model with the regressors in set S is given as:

The order of the regressors in any model is a permutation of the available regressors x 1 , ..., x p and is denoted by the tuple of indices r = (r 1 , ..., r p ).

Let S k (r) denote the set of regressors entered into the model before regressor x k in the order r. Then the portion of R 2 allocated to regressor x k in the order r can be written as

All in all, the R 2 allocated to x k after decomposition is:

C.1.2 R 2 for survival data

Among the different R 2 analogues that have been proposed to measure the variation explained by survival models, the one described by [START_REF] Royston | A new measure of prognostic separation in survival data[END_REF], called R 2 D appears to be one of the most relevant with respect to the following criteria: independance from sensoring, interpretability and robustness to model misspecification [START_REF] Choodari-Oskooei | A simulation study of predictive ability measures in a survival model i: explained variation measures[END_REF].

The description is given below in the context of a Cox proportional hazards (PH) survival model with n individuals with T i and C i corresponding respectively to potential death (or relapse) and censoring times, with i = 1, 2, ..., n. In this time-to-event setting, X i = min(T i , C i ) is the time variables and δ i = I(T i ≤ C i ) the status variable, I being the indicator function. The Cox PH model then expresses the hazard function as follows:

, with t the time to a death event, X the covariate vector and beta the parameter vector. The adapted R 2 called R 2 D is given by [START_REF] Royston | Explained variation for survival models[END_REF]:

with the following component:

C.2.3 Inverse probability of treatment weighted (IPW) estimators for precision medicine

An extension of IPW methods described in section 8.2.2.2 to multi-valued treatments (only treatment K with different modalities and no A) has already been studied and the different formulas and estimators adapted accordingly [START_REF] Imbens | The role of the propensity score in estimating doseresponse functions[END_REF][START_REF] Feng | Generalized propensity score for estimating the average treatment effect of multiple treatments[END_REF], defining in particular a generalized propensity score:

and a subsequent estimator:

In our precision medicine settings, to be consistent with the previously defined causal diagram (Figure 9.5), we have both A, binary status depending on the class of drugs, and K, the multinomial variable for versions of treatments, i.e., the precise drug. Therefore we need to define a slightly different propensity score with joint probabilities:

From this we can deduce the estimator:

Des modèles logiques personnalisés pour interpréter la réponse aux traitements

Mais l'intérêt principal des modèles mécanistiques personnalisés réside dans leur représentation explicite des entités et mécanismes biologiques sous-jacents. Une des façons de mettre à profit cet avantage est de s'intéresser à l'effet de certains traitements sur les modèles. Il