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Ce sont les séveres artistes

Que laube attire a ses blancheurs,
Les savants, les inventeurs tristes,
Les puiseurs d’ombre, les chercheurs,
Qui ramassent dans les ténebres

Les faits, les chiffres, les algebres,
Le nombre o1 tout est contenu,

Le doute ot nos calculs succombent,
Et tous les morceaux noirs qui tombent
Du grand fronton de linconnu !
Victor Hugo (Les mages)






Abstract

work disease that often results from the interactions between differ-

ent perturbations in a cellular regulatory network. The dynamics
of these networks and associated signaling pathways are complex and re-
quire integrated approaches. One approach is to design mechanistic models
that translate the biological knowledge of networks in mathematical terms
to simulate computationally the molecular features of cancers. However,
these models only reflect the general mechanisms at work in cancers.

B eyond its genetic mechanisms, cancer can be understood as a net-

This thesis proposes to define personalized mechanistic models of cancer.
A generic model is first defined in a logical (or Boolean) formalism, before
using omics data (mutations, RNA, proteins) from patients or cell lines in
order to make the model specific to each one profile. These personalized
models can then be compared with the clinical data of patients in order
to validate them. The response to treatment is investigated in particular
in this thesis. The explicit representation of the molecular mechanisms by
these models allows to simulate the effect of different treatments according
to their targets and to verify if the sensitivity of a patient to a drug is well
predicted by the corresponding personalized model. An example concerning
the response to BRAF inhibitors in melanomas and colorectal cancers is
thus presented.

The comparison of mechanistic models of cancer, those presented in this
thesis and others, with clinical data also encourages a rigorous evaluation
of their possible benefits in the context of medical use. The quantification
and interpretation of the prognostic value of outputs of some mechanistic
models is briefly presented before focusing on the particular case of models
able to recommend the best treatment for each patient according to his
molecular profile. A theoretical framework is defined to extend causal infer-
ence methods to the evaluation of such precision medicine algorithms. An
illustration is provided using simulated data and patient derived xenografts.
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All the methods and applications put forward a possible path from the
design of mechanistic models of cancer to their evaluation using statistical
models emulating clinical trials. As such, this thesis provides one framework
for the implementation of precision medicine in oncology.

Key-words: Modeling, Cancer, Mechanistic model, Biostatistics,
Causal inference, Precision medicine
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Résumé

u dela de ses mécanismes génétiques, le cancer peut étre compris

comme une maladie de réseaux qui résulte souvent de l'interaction

entre différentes perturbations dans un réseau de régulation cellu-
laire. La dynamique de ces réseaux et des voies de signalisation asso-
ciées est complexe et requiert des approches intégrées. Une d’entre elles
est la conception de modeles dits mécanistiques qui traduisent mathéma-
tiquement la connaissance biologique des réseaux afin de pouvoir simuler le
fonctionnement moléculaire des cancers informatiquement. Ces modeles ne
traduisent cependant que les mécanismes généraux a 1’oeuvre dans certains
cancers en particulier.

Cette these propose en premier lieu de définir des modeéles mécanistiques
personnalisés de cancer. Un modele générique est d’abord défini dans un
formalisme logique (ou Booléen), avant d’utiliser les données omiques (mu-
tations, ARN, protéines) de patients ou de lignées cellulaires afin de rendre
le modele spécifique a chacun. Ces modeles personnalisés peuvent ensuite
étre confrontés aux données cliniques de patients pour vérifier leur validité.
Le cas de la réponse clinique aux traitements est exploré en particulier dans
ce travail. La représentation explicite des mécanismes moléculaires par ces
modeles permet en effet de simuler 'effet de différents traitements suivant
leur mode d’action et de vérifier si la sensibilité d'un patient a un traitement
est bien prédite par le modele personnalisé correspondant. Un exemple con-
cernant la réponse aux inhibiteurs de BRAF dans les mélanomes et cancers
colorectaux est ainsi proposé.

La confrontation des modeles mécanistiques de cancer, ceux présentés
dans cette these et d’autres, aux données cliniques incite par ailleurs a
évaluer rigoureusement leurs éventuels bénéfices dans la cadre d’une utilisa-
tion médicale. La quantification et I'interprétation de la valeur pronostique
des biomarqueurs issus de certains modeles méchanistiques est brievement
présentée avant de se focaliser sur le cas particulier des modeles capables



de sélectionner le meilleur traitement pour chaque patient en fonction des
ses caractéristiques moléculaires. Un cadre théorique est proposé pour éten-
dre les méthodes d’inférence causale a I’évaluation de tels algorithmes de
médecine de précision. Une illustration est fournie a ’aide de données
simulées et de xénogreffes dérivées de patients.

L’ensemble des méthodes et applications décrites tracent donc un
chemin, de la conception de modeles mécanistiques de cancer a leur
évaluation grace a des modeles statistiques émulant des essais cliniques,
proposant ainsi un cadre pour la mise en oeuvre de la médecine de précision
en oncologie.

Mots-clés: Modélisation, Cancer, Modele mécanistique, Biostatis-
tiques, Inférence causale, Médecine de précision
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Preface

decades, fueled in particular by the contribution of increasingly pre-

cise and abundant biological data. These advances have taken cancer
modeling from theory to practice: it is now possible to simulate the molec-
ular mechanisms of cancer in great detail. But are cancer models more
than objects of scientific investigation? Can they be considered
as patient-oriented clinical tools? These questions are at the heart of
the present thesis which will focus on specific and limited examples to bring
some partial answers to these general questions. The following chapters will
thus propose a comprehensive journey, from the design of a cancer
model to its clinical application.

The understanding of cancer has progressed dramatically in recent

In more detail, this thesis is structured in three parts, each subdivided
into three chapters. Since the whole thesis is about cancer modeling, the
first part aims at defining the type of model to be referred to, and in par-
ticular models that will be called mechanistic, as well as the object of the
modeling, i.e., the molecular networks involved in cancer. So the first part
answers the question: what is a cancer model and what is its pur-
pose? It is thus essentially an introduction, intended to outline the
concepts and objects studied afterwards.

The second part will be devoted to the methods developed during this
thesis to transform qualitative models of molecular networks, known as log-
ical models, into personalized models that can be interpreted clinically. In
short, how can a mathematical representation of biological knowl-
edge be transformed into a tool that contributes to the under-
standing of the clinical manifestations of cancer? This part therefore
focuses on the first part of the journey, which is systems biology, start-
ing from the biological question and seeking to model it while beginning to
evaluate the clinical perspectives of such a model.

xi



Finally, the third and last part will look at how the clinical relevance
of all the above-mentioned models can be rigorously evaluated, both in
their ability to predict the evolution of the disease and in their ability
to recommend the most appropriate treatments for each patient. How
to quantify and interpret the value of the clinical information
delivered by these models? So this is the last part of the path, where
the cancer model is considered to be complete, and the aim is to quantify
its clinical relevance, using statistical methods.

As for the form of this thesis, it exists both in PDF format and in an
online HTML version (https://jonasbeal.github.io/files/PhdThesis/). The
two versions are strictly identical but the second one contains some addi-
tional interactive graphs or applications. Both documents have been gen-
erated with R from the same source files that also include the data and
code required for the provided figures?. All materials are available on the
dedicated GitHub repository (https://github.com/JonasBeal/PhdThesis).

2The thesis document, both in its PDF version and its online HTML version, is
based on the R package bookdown and inspired by the architecture proposed by Ladislas
Nalborczyk in his GitHub repository
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Scientific content

Except for the first part, essentially introductory and based on scien-
tific literature, the different chapters are based on original scientific
work done during this thesis (2017-2020) and mentioned at the be-
ginning of each chapter in a box similar to the this one.

The main articles behind this thesis are indicated below with one
published article and two pre-prints currently under review:

o Béal, Jonas, Arnau Montagud, Pauline Traynard, Emmanuel
Barillot, and Laurence Calzone. “Personalization of logical
models with multi-omics data allows clinical stratification of
patients.” Frontiers in physiology 9 (2019): 1965. Link.

« Béal, Jonas, Lorenzo Pantolini, Vincent Noél, Emmanuel Bar-
illot, and Laurence Calzone. “Personalized logical models to
investigate cancer response to BRAF treatments in melanomas
and colorectal cancers.” bioRxiv (2020). Link.

« Béal, Jonas, and Aurélien Latouche. “Causal inference with
multiple versions of treatment and application to personalized
medicine.” arXiv preprint arXiv:2005.12427 (2020). Link.

These three articles were described or completed in oral presen-
tations, respectively in International Conference of Systems Biol-
ogy 2018, conference on Intelligent Systems for Molecular Biology
(ISMB/ECCB 2019, Video) and conference of International Society
of Clinical Biostatistics (ISCB41 2020).
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Part 1

Cells and their models






CHAPTER

Scientific modeling: abstract the complexity

"Ce qui est simple est toujours faux. Ce qui ne l’est pas est inutilisable.”
Paul Valéry (Mauvaises pensées et autres, 1942)

sometimes been used to define the very nature of scientific research.

What is called a model can, however, correspond to very different
realities which need to be defined before addressing the object of this thesis
which will consist, if one wants to be mischievous, in analyzing models
with other models. This semantic elucidation is all the more necessary
as this thesis is interdisciplinary, suspended between systems biology and
biostatistics. In order to convince the reader of the need for such a preamble,
he is invited to ask a statistician and a biologist how they would define what
a model is.

T he notion of modeling is embedded in science, to the point that it has
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Figure 1.1: A scientist and his model. Joseph Wright of Derby, A
Philosopher Giving a Lecture at the Orrery (in which a lamp is put in place
of the sun), c¢. 1763-65, oil on canvas, Derby Museums and Art Gallery

1.1 What is a model?

1.1.1 In your own words

A model is first of all an ambiguous object and a polysemous word. It
therefore seems necessary to start with a semantic study. Among the many
meanings and synonymous proposed by the dictionary (Figure 1.2), while
some definitions are more related to art, several find echoes in scientific
practice. It is sometimes a question of the physical representation of an
object, often on a reduced scale as in Figure 1.1, and sometimes of a the-
oretical description intended to facilitate the understanding of the way in
which a system works [Collins, 2020]. It is even sometimes an ideal to be
reached and therefore an ambitious prospect for an introduction.

The narrower perspective of the scientist does not reduce the complete-
ness of the dictionary’s description to an unambiguous object [Bailer-Jones,
2002]. In an attempt to approach these multi-faceted objects that are the
models, Daniela Bailer-Jones interviewed different scientists and asked them
the same question: what is a model? Across the different profiles and fields
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Figure 1.2: Network visualization of model thesaurus entries. Gen-
erated with the ‘Visual Thesaurus’ ressource

of study, the answers vary but some patterns begin to emerge (Figure 1.3).
A model must capture the essence of the phenomenon being studied. Be-
cause it eludes, voluntarily or not, many details or complexity, it is by
nature a simplification of the phenomenon. These limitations may restrict
its validity to certain cases or suspend it to the fulfilment of some hypothe-
ses. They are not necessarily predictive, but they must be able to generate
new hypotheses, be tested and possibly questioned. Finally, and funda-
mentally, they must provide insights about the object of study and
contribute to its understanding.

These definitions circumscribe the model object, its use and its objec-
tives, but they do not in any way describe its nature. And for good reason,
because even if we agree on the described contours, the biodiversity of the
models remains overwhelming for taxonomists:

Probing models, phenomenological models, computational mod-
els, developmental models, explanatory models, impoverished


https://www.visualthesaurus.com
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Figure 1.3: Scientists talk about their models: words cloud. Cloud
of words summarizing the lexical fields used by scientists to talk about their
models in dedicated interviews reported by Bailer-Jones [2002].

models, testing models, idealized models, theoretical models,
scale models, heuristic models, caricature models, exploratory
models, didactic models, fantasy models, minimal models, toy
models, imaginary models, mathematical models, mechanistic
models, substitute models, iconic models, formal models,
analogue models, and instrumental models are but some of the
notions that are used to categorize models.

[Frigg and Hartmann, 2020]

1.1.2 Physical world and world of ideas

Without claiming to be exhaustive, we can make a first simple dichotomy
between physical/material and formal/intellectual models [Rosen-
blueth and Wiener, 1945]. The former consists in replacing the object of
study by another object, just as physical but nevertheless simpler or better
known. These may be models involving a change of scale such as the simple
miniature replica placed in a wind tunnel, or the metal double helix model
used by Watson and Crick to visualize DNA. In all these cases the model
allows to visualize the object of study (Figure 1.4 A and B), to manipulate
it and play with it to better understand or explain a phenomenon, just like
the scientist with his orrery (Figure 1.1). In the case of biology, there are
mainly model organisms such as drosophila, zebrafish or mice, for example.
We then benefit from the relative simplicity of their genomes, a shorter
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Figure 1.4: Orrery, planets and models. Physical models of planetary
motion, either geocentric (Armillary sphere from Plate LXXVII in Ency-
clopedia Britannica, 1771) or heliocentric in panel B (Bion, 1751, catalogue
Bnf) and some geometric representations by Johannes Kepler in panel C
(in Astronomia Nova, 1609)

time scale or ethical differences, usually to elucidate mechanisms of interest
in humans. Correspondence between the target system and its model can
sometimes be more conceptual, such as that ones relying on mechanical-
electrical analogies: a mechanical system (e.g. a spring-mass system) can
sometimes be represented by an electric network (e.g. a RLC circuit with a
resistor, a capacitor and an inductor).

The model is then no longer simply a mimetic replica but is based on
an intellectual equivalence: we are gradually moving into the realm of for-
mal models [Rosenblueth and Wiener, 1945]. These are of a more symbolic
nature and they represent the original system with a set of logical
or mathematical terms, describing the main driving forces or similar
structural properties as geometrical models of planetary motions summa-
rized by Kepler in Figure 1.4C. Historically these models have often been
expressed by sets of mathematical equations or relationships. Increasingly,
these have been implemented by computer. Despite their sometimes less
analytical and more numerical nature, many so-called computational mod-
els could also belong to this category of formal models. There are then
many formalisms, discrete or continuous, deterministic or stochastic, based
on differential equations or Boolean algebra [Fowler et al., 1997]. Despite
their more abstract nature, they offer similar scientific services: it is possi-
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ble to play with their parameters, specifications or boundary conditions in
order to better understand the phenomenon. One can also imagine these
formal models from a different perspective, which starts from the data in
a bottom-up approach instead of starting from the phenomenon in a top-
down analysis. These models will then often be called statistical models or
models of data [Frigg and Hartmann, 2020]. This distinction will be further
clarified in section 1.2.

To summarize and continue a little longer with the astronomical
metaphor, the study of a particularly complex system (the solar system)
can be broken down into a variety of different models. Physical and
mechanical models such as armillary spheres (1.4A and B) make it possible
to touch the object of study. In addition, we can observe the evolution
of models which, when confronted with data, have progressed from a
geocentric to a heliocentric representation to get closer to the current state
of knowledge. Sometimes, models with more formal representations are
used to give substance to ideas and hypotheses (1.4C). One of the most
conceptual forms is then the mathematical language and one can thus
consider that the previously mentioned astronomical models find their
culmination in Kepler’s equations about orbits, areas and periods that
describe the elliptical motion of the planets. We refer to them today as
Kepler’s laws. The model has become a law and therefore a paragon of
mathematical modeling [Wan, 2018].

1.1.3 Preview about cancer models

As we get closer to the subject of our study, and in order to illustrate
these definitions more concretely, we can take an interest in the meaning
of the word model in the context of cancer research. For this, we restrict
our corpus to scientific articles found when searching for “cancer model” in
the PubMed article database. Among these, we look at the occurrences
of the word model and the sentences in which it is included. This cancer-
related context of model is represented as a tree in Figure 1.5. Some of the
distinctions already mentioned can be found here. The mouse and zenograft
models, which will be discussed later in this thesis, represent some of the
most common physical models in cancer studies. These are animal models
in which the occurrence and mechanisms of cancer, usually induced by the
biologist, are studied. On the other hand, prediction, prognostic or risk
score models refer to formal models and borrow from statistical language.

Another way to classify cancer models may be to group them into the fol-
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Figure 1.5: Tree visualization of model semantic context in cancer-
related literature Generated with the ‘PubTrees’ tool by Ed Sperr, and
based on most relevant PubMed entries for “cancer model” search.

lowing categories: in vivo, in vitro and in silico. The first two clearly belong
to the physical models but one uses whole living organisms (e.g. a human
tumor implanted in an immunodeficient mouse) and the other separates
the living from its organism in order to place it in a controlled environment
(e.g. tumor cells in growth medium in a Petri dish). In the thesis, data
from both in vivo and in vitro models will be used. However, un-
less otherwise stated, a model will always refer to a representation
in silico. This third category, however, contains a very wide variety of
models [Deisboeck et al., 2009], to which we will come back in chapter 3. A
final ambiguity about the nature of the formal models used in this thesis
needs to be clarified beforehand.

1.2 Statistics or mechanistic

A rather frequent metaphor is to compare formal models to black boxes that
take in input X predictors, or independent variables, and output response
variable(s) Y, also named dependent variables. The models then split into
two categories (Figure 1.6) depending on the answer to the question: are
you modeling the inside of the box or not?


https://esperr.github.io/pub-trees/
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Figure 1.6: Different modeling strategies. (A) Data generation from
predictors X to response Y in the natural phenomenon. (B) Mechanis-
tic modeling defining mechanisms of data generation inside the box. (C)
Statistical modeling finding the function f that gives the best predictions.
Adapted from Breiman [2001b].

1.2.1 The inside of the box

The purpose of this section is to present in a schematic, and therefore some-
what caricatural, manner the two competing formal modeling approaches
that will be used in this thesis and that we will call mechanistic model-
ing and statistical modeling. Assuming the unambiguous nature of the
predictors and outputs we can imagine that the natural process consists
in defining the result Y from the inputs X according to a function of a
completely unknown form (Figure 1.6A).

The first modeling approach, that we will call mechanistic, consists
in building the box by imitating what we think is the process of
data generation, or in other words, by representing the mechanisms at
work (Figure 1.6B). This integration of prior knowledge can take different
forms. In this thesis it will often come back to presupposing certain rela-
tions between entities according to what is known about their behaviour.
X which acts on X3 may correspond to the action of one biological entity
on another, supposedly unidirectional; just as the joint action of X5 and X3
may reflect a known synergy in the expression of genes or the action of pro-
teins. Mathematically this is expressed here with a perfectly deterministic
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model defined a priori. All in all, in a purely mechanistic approach, the na-
ture of the relations between entities should be linked to biological processes
and the parameters in the model all have biological definitions in such a
way that it could even be considered to measure them directly. For exam-
ple, the coefficient 2 multiplying X5 X3 can correspond to a stoichiometric
coefficient or a reaction constant which have a theoretical justification or
are accessible by experimentation. In some fields of literature these models
are sometimes called mathematical models because they propose a mathe-
matical translation of a phenomenon, which does not start from the data in
a bottom-up approach but rather from a top-down theoretical framework.
In this thesis we will adhere to the mechanistic model name, which is more
transparent and less ambiguous compared to other approaches also based on
mathematics, without necessarily the other characteristics described above.

The second approach, often called statistical modeling, or sometimes
machine learning depending on the precise context and objective, does not
necessarily seek to reproduce the natural process of data generation but to
find the function allowing the best prediction of Y from X (Figure
1.6C). Pushed to the limit, they are an “idealized version of the data we gain
from immediate observation” [Frigg and Hartmann, 2020|, thus providing
a phenomenological description. The methods and algorithms used are
then intended to be sufficiently flexible and to make the fewest possible
assumptions about the relationships between variables or the distribution
of data. Without listing them exhaustively, the approaches such as simple
linear regressions or more complex support vector machines [Cortes and
Vapnik, 1995] or random forests [Breiman, 2001a], which will sometimes be
mentioned in this thesis, fall into this category which contains many others
[Hastie et al., 2009].

Several discrepancies result from this difference in nature between mech-
anistic and statistical models, some of which are summarized in the Table
1.1. In a somewhat schematic way, we can say that the mechanistic
model first asks the question of how and then looks at the result
for the output. Conversely, the statistical model first tries to approach
the Y and then possibly analyses what can be deduced from it, regarding
the importance of the variables or their relationships in a post hoc approach
[Ishwaran, 2007, Manica et al., 2019]. The greater flexibility of statisti-
cal methods makes it possible to better accept the heterogeneity of the
variables, but this is generally done at the cost of a larger number of pa-
rameters and therefore requires more data. Moreover, statistical models
can be considered as inductive, since they are able to use already generated
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Table 1.1: Some pros and cons for mechanistic and statistical mod-
eling. Adapted from Baker et al. [2018].

Mechanistic modeling Statistical modeling

Definition

Seeks to establish a mechanistic
relationship between inputs and
outputs

Seeks to establish statistical
relationships between inputs and
outputs

Pros and cons

Presupposes and investigates
causal links between the variables

Looks for patterns and establishes
correlations between variables

Capable of handling small
datasets

Requires large datasets

Once validated, can be used as a
predictive tool in new situations
possibly difficult to access through
experimentation

Can only make predictions that
relate to patterns within the data
supplied

Difficult to accurately
incorporate information from
multiple space and time scales due
to constrained specifications

Can tackle problems with multiple
space and time scales thanks to
flexible specifications

Evaluated on closeness to data
and ability to make sense of it

Evaluated based on predictive
performance

data to identify patterns in it. Conversely, mechanistic models are more
deductive and they can theoretically allow to extrapolate beyond the
original data or knowledge used to build the model [Baker et al.,
2018]. Finally, the most relevant way of assessing the value or adequacy of
these models may be quite different. A statistical model is measured by its
ability to predict output in a validation dataset different from the one used
to train its parameters. The mechanistic model will also be evaluated on
its capacity to approach the data but also to order it, to give a meaning. If
its pure predictive performance is generally inferior, how can the value
of understanding be assessed? This question will be one of the threads
of the dissertation.

Mechanistic and statistical models are not perfectly exclusive and rather
form the two ends of a spectrum. The definitions and classification of some
examples is therefore still partly personal and arbitrary. For instance, the
example in 1.6B can be transformed into a model with a more ambiguous
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status:

logit(PlY =1]) = /1 X1 + P23 X2 X3

This model is deliberately ambiguous. As a logistic model, it is therefore
naturally defined as a statistical model. But the definition of the interac-
tion between X, and X3 denotes a mechanistic presupposition. The very
choice of a logistic and therefore parametric model could also result from
a knowledge of the phenomenon, even if in practice it is often a default
choice for a binary output. Finally, the nature of the parameters 5, and
D3 is likely to change the interpretation of the model. If they are deduced
from the data and therefore optimized to fit Y as well as possible, one will
think of a statistical model whose specification is nevertheless based on
knowledge of the phenomenon. On the other hand, one could imagine that
these parameters are taken from the biochemistry literature or other data.
The model will then be more mechanistic. The boundary between these
models is further blurred by the different possibilities of combining these
approaches and making them complementary [Baker et al., 2018, Salvucci
et al., 2019a).

1.2.2 A tale of prey and predators

The following is a final general illustration of the concepts and procedures
introduced with respect to statistical and mechanistic models through a fa-
mous and characteristic example: the Lotka-Volterra model of interactions
between prey and predators. This model was, like many students, my first
encounter with what could be called mathematical biology. The Italian
mathematician Vito Volterra states this system for the first time studying
the unexpected characteristics of fish populations in the Adriatic Sea after
the First World War. Interestingly, Alfred Lotka, an American physicist
deduced the exact same system independantly, starting from very generic
process of redistribution of matter among the several components derived
from law of mass action [Knuuttila and Loettgers, 2017]. A detailed de-
scription of their works and historical formulation can be found in original
articles [Lotka, 1925, Volterra, 1926] or dedicated reviews [Knuuttila and
Loettgers, 2017].

The general objective is to understand the evolution of the populations
of a species of prey and its predator, reasonably isolated from outside in-
tervention. Here we will use Canada lynx (Lynz canadensis) and snowshow
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hare (Lepus americanus) populations for which an illustrative data set ex-
ists [Hewitt, 1917]. In fact, commercial records listing the quantities of furs
sold by trappers to the Canadian Hudson Bay Company may represent a
proxy for the populations of these two species as represented in Figure 1.7A.
Denoting the population of lynx L(t) and the population of hare H(t) it
can be hypothesized that prey, in the absence of predators, would increase
in population, while predators on their own would decline in the absence of
prey. A prey/predator interaction term can then be added, which will pos-
itively impact predators and negatively impact prey. The system can then
be formalized with the following differential questions with all coefficients
ai, as, bl, by > 0:

dH
E:alH—CLQHL
dL

— =-b)L+b,HL
0t 1L+ b2

a; H represents the growth rate of the hare population (prey), i.e., the
population grows in proportion to the population itself according to usual
birth modeling. The main losses of hares are due to predation by lynx, as
represented with a negative coefficient in the —as HT term. It is therefore
assumed that a fixed percentage of prey-predator encounters will result in
the death of the prey. Conversely, it is assumed that the growth of the
lynx population depends primarily on the availability of food for all lynxes,
summarized in the by HL term. In the absence of hares, the lynx popula-
tion decreases, as denoted by the coefficient —b; L. Important features of
mechanistic models are illustrated here: the equations are based on a pri-
ort knowledge or assumptions about the structure of the problem and the
parameters of the model can be interpreted. a, for example, could corre-
spond to the frequency of litters among hares and the number of offspring
per litter.

This being said, the structure of the model having been defined a priori,
it remains to determine its parameters. Two options would theoretically be
possible: to propose values based on the interpretation of the parameters
and ecological knowledge, or to fit the model to the data in order to find
the best parameters. For the sake of simplicity, and because this example
has only a pedagogical value in this presentation, we propose to determine
them approximately using the following Taylor-based approximation:
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Figure 1.7: Some analyses around Lotka-Volterra model of a prey-
predator system. (A) Evolution of lynx and hares populations based on
Hudson Bay Company data about fur pelts. (B) and (C) Linear regression

for estimation of parameters. (D) Evolution of lynx and hare populations as
predicted by the model based on inferred parameters and initial conditions.
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=¥

y 1 yt+1)—yt-1)

1
y(t) dt ~ y(t) 2

By applying this approximation to the two equations of the differen-
tial system and plotting the corresponding linear regressions (Figures 1.7B
and C), we can obtain an evaluation of the parameters such as a; = 0.82,
as = 0.0298, by = 0.509, by = 0.0129. By matching the initial conditions to
the data, the differential system can then be fully determined and solved nu-
merically (Figures 1.7D). Comparison of data and modeling provides a good
illustration of the virtues and weaknesses of a mechanistic model. Firstly,
based on explicit and interpretable hypotheses, the model was able to re-
cover the cyclical behaviour and dependencies between the two species: the
increase in the lynx population always seems to be preceded by the increase
in the hare population. However, the amplitude of the oscillations and their
periods are not exactly those observed in the data. This may be related
to approximations in the evaluation of parameters, random variation in the
data or, of course, simplifications or errors in the structure of the model
itself.

Besides, if one tries to carry out a statistical modeling of these data, it is
very likely that it is possible to approach the curve of populations evolution
much closer, especially for the hares. But should it be expressed simply as
a function of time or should a joint modeling be proposed? The nature of
the causal link between prey and predators will be extremely difficult to
establish without strong hypotheses such as those of the mechanistic model.
On the other hand, if populations in later years had to be predicted as
accurately as possible, it is likely that a sufficiently well-trained statistical
model would perform better. Finally, and this is a fundamental difference,
the mechanistic model enables to test cases or hypotheses that
go beyond the scope of the data. Quite simply, by playing with the
variables or parameters of the model, we can predict the exponential de-
crease of predators in the absence of prey and the exponential growth of
prey in the absence of predator. More generally, it is also possible to study
analytically or numerically the bifurcation points of the system in order
to determine the families of behaviours according to the relative values of
the parameters [Flake, 1998]. It is not possible to infer these new or hypo-
thetical behaviours directly from the data of the statistical model. This is
theoretically possible on the basis of the mechanistic model, provided that
it is sufficiently relevant and that its operating hypotheses cover the cases
under investigation. Now that the value of mechanistic models has been
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illustrated in a fairly theoretical example, all that remains is to explore in
the next chapters how they can be built and used in the context of cancer.

1.3 Simplicity is the ultimate sophistication

Before concluding this modeling introduction, it is important to highlight
one of the most important points already introduced in a concise manner
by the poet Paul Valéry at the beginning of this chapter. Whatever its
nature, a model is always a simplified representation of reality and
by extension is always wrong to a certain extent. This is a generally
well-accepted fact, but it is crucial to understand the implications for the
modeler. This simplification is not a collateral effect but an intrinsic feature
of any model:

No substantial part of the universe is so simple that it can be
grasped and controlled without abstraction. Abstraction consists
in replacing the part of the universe under consideration by a
model of similar but simpler structure. Models, formal and
intellectual on the one hand, or material on the other, are thus

a central necessity of scientific procedure.
[Rosenblueth and Wiener, 1945]

Therefore, a model exists only because we are not able to deal directly
with the phenomenon and simplification is a necessity to make it more
tractable [Potochnik, 2017]. This simplification appeared many times in the
studies of frictionless planes or theoretically isolated systems, in a totally
deliberate strategy. However, this idealization can be viewed in several ways
[Weisberg, 2007]. One of them, called Aristotelian or minimal idealization,
is to eliminate all the properties of an object that we think are not relevant
to the problem in question. This amounts to lying by omission or making
assumptions of insignificance by focusing on key causal factors only [Frigg
and Hartmann, 2020]. We therefore refer to the a priori idea that we have of
the phenomenon. The other idealization, called Galilean, is to deliberately
distort the theory to make it tractable as explicited by Galileo himself:

We are trying to investigate what would happen to moveables
very diverse in weight, in a medium quite devoid of resistance,
so that the whole difference of speed existing between these move-
ables would have to be referred to inequality of weight alone.
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Since we lack such a space, let us (instead) observe what hap-
pens in the thinnest and least resistant media, comparing this
with what happens in others less thin and more resistant.

This fairly pragmatic approach should make it possible to evolve itera-
tively, reducing distortions as and when possible. This could involve the
addition of other species or human intervention into the Lotka-Volterra sys-
tem described above. A three-species Lotka-Volterra model can however
become chaotic [Flake, 1998], and therefore extremely difficult to use and
interpret, thus underlining the importance of simplifying the model.

We will have the opportunity to come back to the idealizations made in
the course of the cancer models but it is already possible to give some orien-
tations. The biologist who seeks to study cancer using cell lines or animal
models is clearly part of Galileo’s lineage. The mathematical or in silico
modeler has a more balanced profile. The design of qualitative mechanistic
models based on prior knowledge, which is the core of the second part of
the thesis, is more akin to minimal idealization, which seeks to highlight
the salient features of a system. The Galilean consistins in studying math-
ematically tractable systems was also important. To take the example of
prey-predator interactions, a differential system with more variables quickly
becomes impossible to solve by hand. The development of more and more
powerful computers has apparently pushed back the limits of the computa-
tionally tractable systems and thus of Galilean idealization. However, this
is always necessary, for example in high-dimensional statistical approaches
(thousands of variables) where the modelers decide to consider the variables
independently while neglecting their interactions.

Because of the complexity of the phenomena, simplification is there-
fore a necessity. The objective then should not necessarily be to make the
model more complex, but to match its level of simplification with its
assumptions and objectives. Faced with the temptation of the author
of the model, or his reviewer, to always extend and complicate the model,
it could be replied with Lewis Carrol words':

)

“That’s another thing we’ve learned from your Nation,” said
Mein Herr, “map-making. But we’ve carried it much further

"More concisely stated by Rosenblueth and Wiener [1945]: “best material model for
a cat is another cat, or preferably the same cat.”

18



1.3. SIMPLICITY IS THE ULTIMATE SOPHISTICATION

than you. What do you consider the largest map that would be
really useful?”

“About six inches to the mile.”

“Only siz inches!” exclaimed Mein Herr. “We very soon got to
siz yards to the mile. Then we tried a hundred yards to the mile.
And then came the grandest idea of alll We actually made a
map of the country, on the scale of a mile to the mile!”

“Have you used it much?” I enquired.

“It has never been spread out, yet,” said Mein Herr: “the farmers
objected: they said it would cover the whole country, and shut
out the sunlight! So we now use the country itself, as its own
map, and I assure you it does nearly as well.”

Lewis Carroll, Sylvie and Bruno (1893)

Summary

Any scientific model has the vocation to allow the understanding of
its object of study by proposing a simplification simpler to handle.
A model can be physical or purely intellectual. This thesis will fo-
cus on the latter, in particular models that explicitly highlight the
mechanisms and relationships between the underlying entities of the
system. These models will be called mechanistic and sometimes op-
posed to statistical models or machine learning models which do not
presuppose a priori knowledge on the internal mechanisms of the
system.
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CHAPTER

Cancer as deregulation of complex
machinery

“Does not the entireness of the complex hint at the perfection of the
simple?”
Edgar Allan Poe (Eureka, 1848)

are going to look at cancer, a particularly complex system that

fully justifies their use. Since the first chapter recalled how im-
portant prior knowledge of the phenomenon under study is for designing
models, whatever their nature, this chapter will briefly summarize some of
the most important characteristics of this disease before returning to the
models themselves in the next chapter. Without aiming for exhaustiveness,
and after an epidemiological and statistical description, we will focus on
the most useful information for the modeler, i.e., the underlying biological
mechanisms and available data.

! rmed with all these models, whether statistical or mechanistic, we
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Figure 2.1: Cancer is an old disease. Rembrandt, Bathsheba at Her
Bath, c. 1654, oil on canvas, Louvre Museum, Paris

2.1 What is cancer?

Cancer can be described as a group of diseases characterized by uncon-
trolled cell divisions and growth which can spread to surrounding
tissues. Descriptions of this disease, especially when associated with solid
tumors, have been found as far back as ancient Egyptian documents, at least
1600 BC and we know from the first century A.D. with Aulus Celsus that it
is better to remove the tumors and this as soon as possible [Hajdu, 2011a].
Progress will accelerate during the Renaissance with the renewed interest
in medicine, and anatomy in particular, which will advance the knowledge
of tumor pathology and surgery [Hajdu, 2011b]. The progress of anatomical
knowledge has also left brilliant testimonies in the field of painting, which
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make the renown of the Renaissance today. The precision of these artists’
traits has also allowed some retrospective medical analyses, some of them
going so far as to identify the signs of a tumor in some of the subjects of
these paintings [Bianucci et al., 2018]. Such is the bluish stain on the left
breast of the Bathsheba painted by Rembrandt (Figure 2.1) which has been
subject to controversial interpretations, sometimes described as an example
of “skin discolouration, distortion of symmetry with axillary fullness and
peau d’orange” [Braithwaite and Shugg, 1983] and sometimes spared by
photonic and computationnal analyses [Heijblom et al., 2014]. The mech-
anisms of the disease only began to be elucidated with the appearance of
the microscope in the 19th century, which revealed its cellular origin [Ha-
jdu, 2012a]. The classification and description of cancers is then gradually
refined and the first non-surgical treatments appear with the discovery of
ionising radiation by the Curies [Hajdu, 2012b]. The 20th century is then
the century of understanding the causes of cancer [Hajdu and Darvishian,
2013, Hajdu and Vadmal, 2013]. Some environmental exposures are charac-
terized as asbestos or tobacco. Finally, the biological mechanisms become
clearer with the identification of tumor-causing viruses and especially with
the discovery of DNA [Watson and Crick, 1953]. The foundations of our
current understanding of cancer date back to this period, which marks the
beginning of the molecular biology of cancer. It is this branch of biology
that contains the bulk of the knowledge that will be used to build our
mechanistic models, and it will be later detailed in Section 2.3.

One of the ways to read this brief history of cancer is to see that theo-
retical and clinical progresses have not followed the same timeframes. The
medical and clinical management of cancers initially progressed slowly but
surely, and this in the absence of an understanding of the mechanisms of
cancer. Conversely, the theoretical progress of the last century has not al-
ways led to parallel medical progress, except on certain specific points. The
interaction between the two is therefore not always obvious. The transfor-
mation of fundamental knowledge into clinical impact is therefore
of particular importance. This is what is called translational medicine,
the aim of which is to go from laboratory bench to bedside [Cohrs et al.,
2015]. It is in this perspective that we will analyze the mechanistic models
studied in this thesis. Their objective is to integrate biological knowledge,
or at least a synthesis of this knowledge, in order to transform it into a
relevant clinical information.
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Figure 2.2: World map and national rankings of cancer as a cause
of premature death. Classification of cancer as a cause of death before
the age of 70, based on data for the year 2015. Original Figure, data and
methods from Bray et al. [2018].

2.2 Cancer from a distance: epidemiology
and main figures

Before going down to the molecular level, it is important to detail some
figures and trends in the epidemiology of cancer today. Following the de-
scription in the previous section, cancer is first and foremost defined as
a disease. Considered to be a unique disease, it caused 18.1 million new
cancer cases and 9.6 million cancer deaths in 2018 according to the Global
Cancer Observatory affiliated to World Health Organization [Bray et al.,
2018]. However, these aggregated data conceal disparities of various kinds.
The first one is geographical. Indeed, mortality figures make cancer one of
the leading causes of premature death in most countries of the world but its
importance relative to other causes of death is even greater in the more de-
veloped countries (Figure 2.2). All in all, cancer is the first or second cause
of premature death in almost 100 countries worldwide [Bray et al., 2018].
These differences call for careful consideration of the impact of population
age structures and health-related covariates.

A second disparity lies in the different types of cancer. If we classify
tumors solely according to their location, i.e., the organ affected first, we
already obtain very wide differences. First of all, the incidence varies con-
siderably (Figure 2.3A)). Cancers do not occur randomly anywhere in the
body and certain environments or cell types appear to be more favourable
[Tomasetti and Vogelstein, 2015]. Mortality is also highly variable but is
not directly inferred from incidence. Not all types of cancer have the same
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prognosis (Figure 2.3A and B) and survival rates [Liu et al., 2018]. Al-
though breast cancer is much more common than lung cancer, it causes
fewer deaths because its prognosis is, on average, much better. The mecha-
nisms at work in the emergence of cancer are therefore not necessarily the
same as those that will govern its evolution or its response to treatment.
And still on the response to treatment, Figure 2.3B highlights another dis-
parity: not only are the survival prognosis associated with each cancer very
different, but the evolution (and generally the improvement) of these prog-
noses has been very uneven over the last few decades. This means that
theoretical and therapeutic advances have not been applied to all types of
cancer with the same success. It is one more indication of the diversity
of cancer mechanisms in different tissues and biological contexts,
which make it impossible to find a panacea, and which, on the contrary,
encourage us to carefully consider the particularities of each tumor, both
to understand them and to treat them. Under a generic name and in spite
of common characteristics, the cancers thus appear as extremely heteroge-
neous. And to understand the sources of this heterogeneity, it is necessary
to consider the disease on a smaller scale.

2.3 Basic molecular biology and cancer

If it is not possible and desirable to summarize here the state of knowledge
about the biology of cancer, we are going to give a very partial vision
focused on the main elements used in this thesis, thus aiming to make it a
self-sufficient document. The details necessary for a finer and more general
understanding can be found in dedicated textbooks such as Alberts et al.
[2007] and Weinberg [2013].

2.3.1 Central dogma and core principles

Some of the principles that govern biology can be described at the level
of one of its simplest element, the cell. Let us consider for the moment a
perfectly healthy cell. It must ensure a certain number of functions neces-
sary for its survival and, sometimes, for its division/reproduction. These
functions are encoded to a large extent in its genetic information in the
form of DNA, which is stable and shared by the different cells since it is
defined at the level of the individual. Most biological functions, however,
are not performed by DNA itself which remains in the nucleus of the cell.
The DNA is thus transcribed into RNA, another nucleic acid which, in
addition to performing some biological functions, becomes the support of
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Figure 2.3: Incidence, mortality and survival per cancer types. (A)
World incidence and mortality for the 19 most frequent cancer types in
2018, expressed with age-standardized rates (adjusted age structure based
on world population); data retrieved from Global Cancer Observatory. (B)
Evolution of 5-years relative survival for the same cancer types based on
US data from SEER registries in 1975-1977 and 2006-2012; data retrieved
from Jemal et al. [2017].

the genetic information in the cell. The RNA is then itself translated into
new molecules composed of long chains of amino acid residues and called
proteins. They are the ones that execute most of the numerous cellular
functions: DNA replication, physical structuring of the cell, molecule trans-
port within the cell etc. A rather simplistic but fruitful way to understand
this functioning is to consider it as a progressive transfer of biological
information from DINA to proteins, which has sometimes been sum-
marized as the central dogma of the molecular biology (2.4), first stated
Francis Crick [Crick, 1970].

However, many changes would be necessary to clarify this scheme and
the uni-directional nature was questioned early on. Above all, a large num-
ber of regulations interact with and disrupt this master plan. The genes are
not always all transcribed, or at least not at constant intensities, interrupt-
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Figure 2.4: Central dogma of molecular biology. Schematic represen-
tation of the information flow within the cell, from DNA to proteins through
RNA, more precisely described in this video (Image credit Genome Research
Limited).

ing or varying the chain upstream. This modulation in the transcription
of genes can be induced by proteins, called transcription factors. After a
gene transcription, its expression can still be regulated at various stages.
RNAs can also be degraded more or less rapidly. RNAs can be reshaped in
their structure during their maturation by a process called splicing, which
varies the genetic information they carry. Finally, proteins are subject to all
kinds of modifications referred to as post-translational, which can change
the chemical nature of certain groups or modify the three-dimensional struc-
ture of the whole protein. For instance, some proteins perform their function
only if a specific amino acid residue is phosphorylated. In addition, these
modifications can be transmitted between proteins, further complicating
the flow of information. All these possibilities of regulation play an
absolutely essential role in the life of the cell by allowing it to
adapt to different contexts, situations and development stages.
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From the same genetic material, a cell of the eye and a cell of the heart
can thus perform different functions. Similarly, the same cell subjected to
different stimuli at different times can provide different responses because
these molecular stimuli trigger a regulation of its programme. But all these
regulatory mechanisms can be corrupted.

2.3.2 A rogue machinery

With the above knowledge we can now return to the definition of cancer
as an uncontrolled division of cells that can lead to the growth of a tumor
that eventually spreads to the surrounding tissues. Therefore, this corre-
sponds to normal processes, like cell division and reproduction, that are no
longer regulated as they should be and are out of control. Experiments
on different model organisms have gradually identified genetic mutations
as a major source of these deregulations [Nowell, 1976, Reddy et al. [1982]]
until cancer was clearly considered as a genetic disease making Renato
Dulbecco, Nobel Laureate in Medicine for his work on oncoviruses, say:

If we wish to learn more about cancer, we must now concentrate

on the cellular genome.
[Dulbecco, 1986].

However, cancer is not a Mendelian disease for which it would be suffi-
cient to identify the one and only gene responsible for deregulation. Indeed,
the cell has many protective mechanisms. For example, if a genetic muta-
tion appears in the DNA, it has a very high chance of being repaired by
dedicated mechanisms. And if it is not repaired, other mechanisms will take
over to trigger the programmed death of the cell, called apoptosis, before it
can proliferate wildly. So a cancer cell is probably a cell that has learned
to resist this cell death. Similarly, in order to generate excessive growth,
a cell will need to be able to replicate itself many times. However, there
are pieces of sequences on chromosomes called telomeres that help to limit
the number of times each cell can replicate. A cancer cell will therefore
have to manage to bypass this protection. Thus we can schematically de-
fine the properties that must be acquired by the cancereous cells in order to
truly deviate the machinery. In an influential article, these properties were
summarized in six hallmarks (Figure 2.5) which are: resisting cell death,
enabling replicative immortality, sustaning proliferative signaling, evading
growth suppressors, activating invasion and inducing angiogenesis [Hanahan
and Weinberg, 2000]. Two new ones were subsequently added in the light of
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Figure 2.5: Hallmarks of cancer. The different biological capabilities
acquired by cancer cells. Adapted from Hanahan and Weinberg [2011].

advances in knowledge [Hanahan and Weinberg, 2011]: deregulating cancer
energetics and avoiding immne destruction. The acquisition of these capac-
ities generally requires many genetic mutations and is therefore favoured by
an underlying genome instability or tumor-promoting inflammation.

Each of these characteristics, or hallmarks, constitutes a research pro-
gram in its own right. And for each one there are genetic alterations. These
are tissue-specific or not, specific to a hallmark or common to several of
them [Hanahan and Weinberg, 2000]. In any case, cancer can only re-
sult from the combination of different alterations that invalidate
several protective mechanisms at the same time. This is often part of
a multi-step process of hallmark acquisition that has been experimentally
documented in some specific cases [Hahn et al., 1999] or more recently in-
ferred from genome-wide data for human patients [Tomasetti et al., 2015].
In summary, it appears that in order to study the functioning of cancer cells
it is necessary to look at several mechanisms and to be able to consider them
not separately but together, in as many different patients as possible. This
ambitious programme has been made possible by a technological revolution.
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2.4 The new era of genomics

2.4.1 From sequencing to multi-omics data

In 2001, the first sequencing of the human genome symbolized the beginning
of a new era, that of what will become high-throughput genomics [Lan-
der et al., 2001, Venter et al., 2001]. From the end of the 20th century, bio-
logical data started to accumulate at an ever-increasing rate [Reuter et al.,
2015], feeding and accelerating cancer research in particular [Stratton et al.,
2009, Meyerson et al., 2010]. The ability to sequence the human genome
as a whole, for an ever-increasing number of individuals, has enabled less
biased and more systematic studies of the causes of cancer [Lander,
2011]. The number of genes associated with cancer increased drastically and
some very important genes such as BRAF or PIK3CA have been identified
[Davies et al., 2002, Samuels et al., 2004]. Progress also extended to the gene
expression data. Gene-expression arrays have made an important contribu-
tion by providing access to transcriptomic data (RNA), i.e., what has been
transcribed from DNA and is therefore one step further in terms of biolog-
ical information. This information has made it possible to further explore
the differences between normal and tumor cells [Perou et al., 1999], or even
to refine the classification of cancers, which until now has been done mainly
according to the tumor site. Breast cancers are thus divided into subtypes
with different combinations of molecular markers that facilitate the under-
standing of clinical behavior [Perou et al., 2000]. One step further, we also
note the appearance of prognostic gene signatures such as gene expression
patterns correlated with the survival of patients [Van’t Veer et al., 2002].
This revolution was then extended to other types of data such as proteins
(proteomics), reversible modifications of DNA or DNA-associated proteins
(epigenomics), metabolites (metabolomics) and others, each representing a
perspective that can complement the others to better understand biological
mechanisms, particularly in the case of diseases [Hasin et al., 2017]. We
have thus entered the era of multi-omics data [Vucic et al., 2012].

2.4.2 State-of-the art of cancer data

With respect to cancer in particular, this wealth of data is particularly rep-
resented by a family of studies conducted by The Cancer Genome
Atlas (TCGA) consortium, started in 2008 [Network et al., 2008]. Co-
horts of several hundred patients are thus sequenced over the years for
different types of cancer [TCGA et al., 2012], resulting today in a total of
11,000 tumors from 33 of the most prevalent forms of cancer [Ding et al.,
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Figure 2.6: Genetic alterations frequencies for cancer types from
TCGA data. Frequencies of alteration per pahway and tumor types
as summaried in Pan-cancer analyses from TCGA data. Reprinted from
Sanchez-Vega et al. [2018].

2018]. Figure 2.6 provides a partial but striking overview of the depth of
data available under this program. We can see the frequencies of alterations
of certain groups of genes for a list of cancer types, making it possible to
visualize the disparities already anticipated in section 2.2 based on patient
survival. There are indeed important differences between the organs but
also between the different subtypes associated with the same organ. And
this representation only corresponds to one layer of data, that of genetic
alterations. It could be used for transcriptomic, epigenomic or proteomic
data, thus giving rise to an incredibly complex photography.

However, the diversity of data available for cancer research extends far
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beyond this, both in terms of technology and type of data. This may be
data from model organisms such as mice or even tumors of human origin
made more suitable for experimentation. In the latter category, it is crucial
to mention the huge amount of data available on cell lines, extracted
from human tumors and transformed to be studied in culture. It is then
possible to go beyond descriptive data and vary the experimental conditions
in order to study the responses of these cells to perturbations and to enrich
our knowledge. This provides an opportunity to know the response to more
than 100 drugs of about 700 cell lines [Yang et al., 2012]. The richness
of these data, coupled with the omic profiling of each cell line, enables to
study the determinants of response to treatment with unprecedented scope
[lorio et al., 2016]. More recently, but following a similar logic, other types
of inhibition screenings have been proposed based on a more specific tech-
nique called CRISPR-Cas9 [Behan et al., 2019]. The simplicity of the cell
lines in relation to the original tumors makes all these studies possible but
sometimes hinders the clinical application of the knowledge acquired. For
this reason, other types of biological models have been developed, includ-
ing patient-derived xenografts (PDX) which is an implant of human tumors
in mice to ensure the existence of a certain tumor microenvironment [Hi-
dalgo et al., 2014], while maintaining drug screening possibilities [Gao et al.,
2015]. These two types of data, cell lines and PDX, have been used in this
thesis, in addition to TCGA patient data, thus justifying the limitation
of this presentation, which could otherwise be extended to other types of
biological models. Similarly, other technologies are becoming increasingly
important in the generation of cancer data, such as single-cell sequencing
[Navin, 2015], but will not be used in this work.

2.5 Data and beyond: from genetic to
network disease

All that remains to be done now is to make sense of all these data, to or-
ganize them, because cancer understanding does not flow directly
from the abundance of data, and the ability to produce it may have
been outpaced by the ability to analyze it [Stadler et al., 2014]. A strik-
ing example is that of the prognostic signatures mentioned above. The
many signatures or lists of genes proposed, even for the same cancer type,
share relatively few genes, are difficult to interpret and their efficiency is
sometimes poorly reproducible [Domany, 2014]. Even more surprisingly,
most signatures composed of randomly selected genes were also found to
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Figure 2.7: Simplistic representation of cellular circuitry. Normal cel-
lular circuit sand sub-circuits (identified by colours) can be reprogrammed
to regulate hallmark capabilities within cancer cells. Reprinted from Hana-
han and Weinberg [2011].

be associated with patient survival [Venet et al., 2011]. One of the main
avenues for improving the interpretability of the data is the integration
of the prior knowledge we have of the phenomena, especially in the case
of cancer [Domany, 2014].

This a priori knowledge is in fact already present in Figure 2.6 since
genetic alterations have been grouped in several categories called pathways.
A pathway is a group of biological entities and associated chemical reactions,
working together to control a specific cell function like apoptosis or cell
division. The interest of these groupings may be understood based on the
description of hallmarks. Indeed, if the “aim” of a cancer cell is to inactivate
each of the protective functions, then it is more relevant to think not by
gene but by function. Inactivating only one of the genes associated with
the function may be sufficient and it is no longer necessary to inactivate the
others. Numerous alterations in a large number of genes in various patients
result often in the same key impaired pathways, like alterations of cell cycle
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or angiogenesis for instance [Jones et al., 2008]. It is therefore possible to
improve the stability and interpretability of analyses by moving from the
gene scale to the pathway scale [Drier et al., 2013]. More generally, the
integration of biological knowledge often leads to improved performance
in various cancer-related prediction tasks, either through the selection of
variables or by taking into account the structure of the variables [Bilal et al.,
2013, Ferranti et al., 2017]. Increasingly, the biological variables are not
interpreted separately but in relation to each other [Barabasi and Oltvai,
2004]. This is reflected in the emergence of more and more resources to
summarize and represent signaling pathways and associated networks such
as SIGNOR [Perfetto et al., 2016] or the Atlas of Cancer Signaling Network
[Kuperstein et al., 2015]. Like other diseases, cancer then goes from a
genetic disease to a network disease [Del Sol et al., 2010] and one can
study how all kinds of genetic alterations affect the wiring of these networks
[Pawson and Warner, 2007], and modify the cellular functions leading to the
previously described cancer hallmarks as depicted schematically in Figure
2.7. In short, the richness of the data did not make it less necessary to use
prior knowledge in order to make the analyses more interpretable and more
robust.

The final step, to obtain one of the most complete and integrated visions
of cancer biology, is then to integrate omics knowledge with knowledge
about the structure of pathways to try to understand in detail how their
combinations can lead to so many cancers that are both similar and different.
An example of such a representation is given by mapping the TCGA data
about genetic alterations, presented in Figure 2.6, on a representation of
the different pathways showing not only their internal organization but also
their cross-talk [Sanchez-Vega et al., 2018]. This representation is proposed
in Figure 2.8 and is one of the most recent and comprehensive view of the
kind of tools and data available to the modeler who wants to dissect more
deeply the mechanisms involved in cancer.
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Figure 2.8: Genetic alterations frequencies from TCGA data
mapped on a schematic signaling network. Frequencies of alteration
per pathway and tumor types as summarized in Pan-cancer analyses from
TCGA data. Reprinted from Sanchez-Vega et al. [2018].
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7

Summary

Cancer is more than ever seen as a genetic disease. Its appearance
in a patient results from the accumulation of various genetic alter-
ations that invalidate the protective mechanisms naturally intended
to prevent uncontrolled proliferation. The simultaneous considera-
tion of the numerous biological entities involved and the regulatory
networks that link them calls for global systems biology methods.
Technological developments also provide access to different types of
omics data (genes, RNA, proteins, etc.) that provide complemen-
tary information, the joint analysis of which allows us to better un-
derstand the complexity of the mechanisms involved. It should be
noted that many physical models of cancer (cell lines) extend the
field of experimentation and generate data.
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CHAPTER

Mechanistic modeling of cancer: from
complex disease to systems biology

"How remarkable is life? The answer is: very. Those of us who deal in
networks of chemical reactions know of nothing like it... How could a
chemical sludge become a rose, even with billions of years to try.”

George Whitesides (The improbability of life, 2012)

and data. The integration of biological knowledge, particularly in

the form of networks, is a first step in this direction. The deepen-
ing of knowledge, however, requires the ability to manipulate objects even
more, to experiment, to dissect their behaviour in an infinite number of sit-
uations, such as the astronomer with his orrery or physicians with their old
anatomical models (Figure 3.1). Is it then possible to create mechanistic
models of cancer in the same way?

T he previous chapter identified the need to organize cancer knowledge
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Figure 3.1: Dissecting a biological phenomenon using a non-
computational model. Rembrandt, The Anatomy Lesson of Dr Nicolaes
Tulp, 1634, oil on canvas, Mauritshuis museum, The Hague

3.1 Introducing the diversity of mechanistic
models of cancer

Modeling cancer is not a new idea. And the diversity of biological phenom-
ena involved in cancer has given rise to an equally important diversity of
models and formalisms, which we seek here to give a brief overview in order
to better identify the specific models that we will focus on later. One way
to order this diversity is to consider the scales of these models (Figure 3.2).
Indeed, cancer can be read at different levels, from the molecu-
lar level of DNA and proteins, to the cellular level, to the level
of tissues and organisms [Anderson and Quaranta, 2008]. Models have
been proposed at all these scales, using different formalisms [Bellomo et al.,
2008] and answering different questions.

Consistent with the evolution of knowledge and data, the early models
were at the macroscopic level. While methods and terminologies may
have changed, there are nevertheless traces of these models as early as the
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Figure 3.2: The different scales of cancer modeling. Cancer can be
approached at different scales, from molecules to organs, using different data
(dark blue), but often with the direct or indirect objective of contributing to
the study of clinically interpretable phenomena (yellow boxes), in particular
by studying the influence of anticancer agents (pale blue). Reprinted from
Barbolosi et al. [2016].

1950s. We then speak rather of mathematical modeling with a meaning
that is intermediate between what we have defined as mechanistic models
and statistical models [Byrne, 2010]. First, the initiation of tumorigenesis
was theorized with biologically-supported mathematical expressions in or-
der to make sense of cancer incidence statistics [Armitage and Doll, 1954,
Knudson, 1971]. These models, however, remained relatively descriptive in
that they did not shed any particular light on the biological mechanisms
involved and focused on gross characteristics of tumors. The integration
of more advanced knowledge as well as the progressive refinement of math-
ematical formalisms has nevertheless allowed these models to proliferate
while gaining in interpretability, with for instance mechanistic models of
metastatic relapse [Nicolo et al., 2020]. Always on a macroscopic scale, the
study of tumor growth has also been the playground of many mathemati-
cians [Araujo and McElwain, 2004, Byrne, 2010], even predicting invasion
or response to surgical treatments using spatial modeling [Swanson et al.,
2003]. This line of research is still quite active today and provides a math-
ematical basis for comparison with tumor experimental growth [Benzekry
et al., 2014].
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Taking it down a step further, it is also possible to model cancer at the
cellular level, for example by looking at the clonal evolution of cancer
[Altrock et al., 2015]. The aim is then to understand the impact of the
processes of mutation, selection, expansion and cohabitation of different
populations of cells, at specifc rates. The accumulation of a mutation in
a population of cells can thus be studied [Bozic et al., 2010]. Modeling at
the cellular level is well suited to the study of interactions between cells,
between cancer cells and their environment or with the immune system.
Similar to other kinds of studies of population dynamics, formalisms based
on differential equations are quite common [Bellomo et al., 2008]; but there
are many other methods such partial differential equations or agent-based
modeling [Letort et al., 2019].

Finally, at an even smaller scale, it is possible to model the molecular
networks at work in cells [Le Novere, 2015]. The aim is then to simulate
mathematically how the different genes and molecules regulate each other,
transmit information and, in the case of cancer, end up being deregulated
[Calzone et al., 2010]. These models will be the subject of the thesis and will
therefore be defined more precisely and used to detail the concepts and tools
of systems biology in the following sections. It can already be noted that
while these models can integrate the most fundamental biological mecha-
nisms of living organisms, one of the most burning questions is whether it is
possible to link them to the larger scales that are clinically more interesting
(tissues, organs etc.). Can these models tell us something about the molecu-
lar nature of cancer? About patient survival? Their response to treatment?
These questions apply to all of the above models, whatever their scales (Fig-
ure 3.2), but are more difficult to answer for models defined at molecular
scale that are further from the clinical data of interest. The aim of this the-
sis is to provide potential answers to these questions. One of the ways of
approaching these issues has been to propose multi-scale models, which are
nevertheless very complex [Anderson and Quaranta, 2008, Powathil et al.,
2015]. We will focus here on the use of models defined almost exclusively
at the molecular scale, which is assumed to be prominent, to study what
can be inferred on the larger scales.

Before restricting the landscape to the molecular level, it is important
to point out that the diversity of mechanistic models also extends to
the numerous mathematical formalisms encountered. Altrock et al.
[2015] delivers a relatively exhaustive list of these, focusing on modeling
at the scale of cell populations. For example, it includes ordinary or par-
tial differential equations, particularly for modeling cell populations, tumor

40



3.2. CELL CIRCUITRY AND THE NEED FOR CANCER SYSTEMS
BIOLOGY

volumes, diffusion or concentration equations for various entities (e.g., oxy-
gen or growth factors). Other formalisms, called agent-based, consider the
interactions between discrete entities, often cells, each of which may expe-
rience events of interest such as mutations or cell death [Wang et al., 2014].
Different more or less discrete formalizations have also been applied to can-
cer modeling, such as Boolean logic or fuzzy logic [Le Novere, 2015]. Many
hybrid models also combine different approaches, such as partial differen-
tial equations for a spatial diffusion reaction coupled with cell population
modeling using discrete agents on a lattice [Altrock et al., 2015].

However, the mechanistic nature of the models does not necessarily force
them to be deterministic, i.e., to deliver always the same results from the
same initial conditions. Indeed, many mechanistic models are based
on stochastic or probabilistic processes, which describe the evolution
over time of random variables by defining event or transition probabilities.
Several examples can be found in the study of the clonal evolution of can-
cers through branching processes that model different cell events such as
mutations, division and death that result in various evolution of the cell
population size [Durrett, 2015, Haeno et al., 2012]. These processes fall
into the category of Markov processes, which can be found applied to many
other examples such as the modeling of cell positions and their evolutions
on a two-dimensional lattice [Anderson et al., 2006]. Note that Markov
processes will be used and described in more detail in section 4.2. All in
all, the strong presence of stochastic approaches thus illustrates the appro-
priateness of their formalism for cancer modeling where many events seem
intrinsically random (e.g., appearance of a mutation) or sometimes appear
as such in the current state of knowledge (e.g., change of cellular status
or phenotype). Understanding the very nature of these stochastic events
and their influence on global behavior is thus a major objective explored by
various modeling approaches [Gupta et al., 2011, Baar et al., 2016].

3.2 Cell circuitry and the need for cancer
systems biology

Most biological systems, and certainly cells, fall into the category of com-
plex systems. These are systems made up of many interacting elements.
While these systems can be found in many different scientific fields, the cell
as a complex system is characterized by the diversity and multifunctional-
ity of its constituent elements (genes, proteins, small molecules, enzymes),
which nevertheless contribute to organized and a priori non-chaotic be-
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haviour [Kitano, 2002]. Thus, the role of a protein such as the p53 tumor
suppressor can only be understood by taking into account the interplay
between its relationships with transcription factors and biochemical modi-
fications of the molecule itself [Kitano, 2002]. In a cell, as in any complex
system, the multiplication of components and interactions can make the re-
sponse or behaviour of the system unexpected or unpredictable. Non-linear
responses, such as abrupt changes in the state of a system, called critical
transitions, can be observed in response to a moderate change in the signal
[Trefois et al., 2015]. Generally speaking, it is possible to observe emergent
behaviours, i.e., behaviours of the system as a whole that were not triv-
ially deducible from the individual behaviours of its components. This has
been documented, through experiments and simulations, in the study of cell
signalling pathways and the resulting biological decisions [Bhalla and Iyen-
gar, 1999, Helikar et al., 2008]. These considerations have thus given rise to
system-level or holistic approaches that aim to integrate data and
knowledge into more comprehensive representations, often called
systems biology.

What is true for the cell in general is just as true for cancer in particular.
Understanding the intertwining of signaling pathways is necessary to study
their contributions to different cancer hallmarks, as shown in Figure 2.7.
The concepts described above can thus be transposed to cancer systems
biology [Hornberg et al., 2006, Kreeger and Lauffenburger, 2010, Barillot
et al., 2012]. Indeed, it is often a question of understanding or predicting the
impact of perturbations on cellular networks. Understanding how a single
genetic mutation disrupts and reprograms networks, or even predicting the
responses triggered by a drug on a presumably promising molecular target,
makes little sense without integrated approaches. In addition, cancers are
characterized by the accumulation of numerous mutations and alterations
over time that must be considered concomitantly. These points of view
of biologists and modelers reinforce the observation already made in the
previous chapter of cancer as a network disease, as a system disease (Figure
2.8).

Finally, to conclude this general presentation, it is important to under-
stand that while small molecular network modeling is not recent, the rise
and multiplication of wide range systems biology approaches is very much
related to the production of biological data [De Jong, 2002]. The last few
decades have seen the emergence of high-throughput data that has made
it possible to identify and link hundreds of genes or proteins involved in
cancer. Exploring the interaction and back and forth between these mod-
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Figure 3.3: PubMed trends in cancer studies. (A) PubMed articles
with the word Cancer in either title or abstract from 1950 to 2019. (B)
Proportion of the Cancer articles with additional keywords expressed as
PubMed logical queries.

els and the data they use or predict is therefore of utmost importance. In
addition, the now massive amount of data has also imposed mathe-
matical or computational approaches as a central element in the
management of this profusion and more and more modeling approaches
are focused on data integration or inference [Frohlich et al., 2018, Bouhad-
dou et al.; 2018]. More generally, Figure 3.3 shows that while the number
of scientific articles devoted to cancer has increased drastically since the
1950s (panel A), the proportion of these same articles mentioning models,
networks or computational approaches has also increased (panel B), illus-
trating a change in paradigms.

3.3 Mechanistic models of molecular
signaling

Once the context has been defined, both biologically and methodologically,

it is possible to begin the exploration of the models that will constitute

the core of this thesis: the mechanistic models of molecular networks
and signaling pathways. Before describing and illustrating some of the
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existing mathematical formalisms, it is possible to describe the common
fundamental elements of this family of approaches.

3.3.1 Networks and data

The first step is to identify the relevant biological entities from a question
or system of interest (e.g. tumor suppressor genes, signaling cascades of
proteins) and then to model their interactions, the regulatory relationships
that link them. At this stage the model can generally be represented by a
network but this word can cover different realities [Le Novere, 2015]. The
simplest network just represents undirected interactions between entities,
which therefore only establishes relationships and not causal mechanisms.
But modeling requires more precise definitions, in particular concerning
the direction of the interaction (is it A that acts on B or the opposite)
and its nature (type of chemical reaction, activation/inhibition etc.). This
is usually summarized as activity flows (or influence diagrams) with
activation and inhibition arrows as in Figure 2.7 or Figure 3.5A. These
arrows emphasize the transformation of static networks into dynamic ob-
jects that can be manipulated and interpreted mechanistically. This work
can be taken further by writing bipartite graphs, known as process descrip-
tions, which explicitly show the different states of each variable (first type
of nodes), depending on their phosphorylation state for instance, and the
reactions that link them (second type of nodes) as in Figure 3.5B. A more
precise description of these different representations and their meanings
can be found in Le Novere [2015]. Once the network structure of the
model has been defined or inferred by the modeler, it is possible
to write the corresponding mathematical formalism and potentially
to refine certain parameters. Finally, the model is often confronted with
new data to check its consistency with the biological behaviour studied or
possibly make new predictions.

However, all these steps are not linear and sequential, but rather itera-
tive and cyclical. This modeling cycle, with back and forth to the data, is
not specific to molecular network models, but it is possible to specify it in
this case (Figure 3.4). The names of the key players involved in the question
of interest are thus first extracted from adapted data or from the literature.
A first mathematical translation of the relationships between the entities is
then proposed before verifying the compatibility of this model with the ob-
servations, whether qualitative or quantitative. If the compatibility is not
good, we come back to the definition or the parameterization of the model.
If compatibility is correct, the model can be used to make new predictions
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Figure 3.4: Modeling a biological network: an iterative and cyclical
process. Reprinted from [Béal et al., 2020]. A different and simpler version
of this cycle is described in [Le Novere, 2015].

or study phenomena that go beyond the initial data set. Ideally, these pre-
dictions will be tested afterwards. This cyclic approach with two successive
checks is analogous to the use of validation and test data in the evaluation
of most learning algorithms. This analogy can sometimes be masked by the
qualitative nature of the predictions or by the lack of explicit fitting of the
parameters.

3.3.2 Different formalisms for different applications

Beyond these similarities in the construction and representation of models,
the precise mathematical formalism that underlies them varies according
to the type of question and the data [De Jong, 2002]. For the sake of
simplicity, and without exhaustiveness, we propose to divide into quantita-
tive and qualitative formalisms which will be essentially illustrated respec-
tively by ordinary differential equation (ODE) models and logical
(or Boolean) models for which a graphical and schematic comparison is
proposed in Figure 3.5.
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Figure 3.5: Schematic example of logical and ODE modeling around
MAPK signaling. (A) Activity flow diagram of a small part of MAPK
signaling, each node representing a gene or protein, with an example of
logical rule for MEK node for the corresponding logical model. (B) Pro-
cess description of the same diagram with BRAF and CRAF merged in
RAF for the sake of simplicity; each square representing a reaction and
the corresponding rate; an example differential equation is provided for the
phosphorylated (active) form of MEK.

One of the most frequent approaches is the use of chemical kinetics
equations to construct ODE systems which are a fairly natural transla-
tion of the process descritption networks described in the previous section
[Polynikis et al., 2009]. For instance, each biological interaction can be
treated as a reaction governed by the law of mass action and, under certain
hypotheses, as a differential equation (Figure 3.5B); the set of reactions
in the system then generates a set of differential equations with coupled
variables, in an analogous way to the Lotka Volterra system presented in
section 1.2.2. Thus the variables generally represent quantities of molecular
species, for example concentrations of RNA or proteins, and the stoichiomet-
ric coefficients and reaction rates are used to define the system parameters.
Approximations are sometimes made to simplify the equations, for exam-
ple by assuming that they can be written as Michaelis-Menten’s enzymatic
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reactions, which have a simple and well known behaviour. However, the
theoretical accuracy of quantitative models has a cost since each differen-
tial equation requires parameters, such as reaction constants or initial
conditions, to which the system is very sensitive [Le Novere, 2015]. The
biochemical interpretation of the parameters sometimes allows to find their
value in the literature, or in dedicated databeses [Wittig et al., 2012], if
the reactions are well characterized, even if possible variations in a given
biological or physical context are often unknown. Since knowledge of the
values of these parameters is often limited or even non-existent, it may re-
quire a very large volume of data (including time series) to fit the many
missing parameters which can be difficult if the number of parameters is
large [Villaverde and Banga, 2014]. However, recent work has demonstrated
the feasibility and scalability of this type of inference with sufficiently rich
data [Frohlich et al., 2018].

At the same time, more qualitative approaches to modeling biological
networks have been proposed with discrete variables linked together by rules
expressed as logical statements [Abou-Jaoudé et al., 2016]. These models
are both more abstract since variables do not have a direct biological inter-
pretation (e.g. concentration of a species) but are more versatile since they
can unify different biological realities under the same formalism (e.g. ac-
tivation of a gene or phosphorlation of a protein). The discrete nature
of the variables can then be seen as an asymptotic case of the sigmoidal
(e.g. Hill function) relationships often found in biology [Le Novere, 2015].
The step function thus obtained can keep a natural interpretation in the
context of biological phenomena: genes activated or not, protein present
or absent etc. Similarly, interactions between species are not quantified
but are based on qualitative statements (e.g. A will be active if B and C
are active), drastically reducing the number of parameters (Figure 3.5A).
If the theoretical interest of this formalism to study biological mechanisms
was proposed quite early [Kauffman, 1969, Thomas, 1973], many concrete
applications have also been developed over the years, particularly in cancer
research [Saez-Rodriguez et al., 2011a, Remy et al., 2015]. This logical
formalism will constitute the core of the work presented in Part
11, where it will therefore be discussed in greater detail.

These two formalisms, which are among the most frequent for modeling
biological networks, share many similarities, in particular the propensity to
be built according to bottom-up strategies based on knowledge of the ele-
mentary parts of the model, i.e., biological entities and reactions. However,
they differ in their implementation and objectives, one aiming at the
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Table 3.1: Features of quantitative and qualitative modeling ap-
plied to biological molecular networks (adapted from Le Novere
[2015])

Quantitative modeling Qualitative modeling

Example Ordinary differential Logical models

formalism equation (ODE) models

Type of Direct translation of Abstract representation of

variables biological quantities, activity levels, usually
usually continuous discrete

Objective Quantitatively accurate and | Coarse-grained simulation
temporal simulation of an of qualitative phenotypes
experimental phenomenon

Advantages || Direct confrontation with Faster design; easy
experimental data; precise; | translation of
linear representation of literature-based assertions;
time simulation of perturbations

Drawbacks Difficulty determining or More difficult to link to
fitting parameters data; lower precision

most accurate representation possible, the other seeking to cap-
ture the essence of the system’s dynamics in a parsimonious way
(Table 3.1). The opposition is not irrevocable, as illustrated by the numer-
ous hybrid formalisms that lie within the spectrum delimited by these two
extremes such as fuzzy logic or discrete-time differential equations [Aldridge
et al., 2009, Le Novere, 2015, Calzone et al., 2018|. To conclude, a compari-
son between the two approaches applied to the same problem is proposed by
Calzone et al. [2018], studying the epithelio-mesenchymal transition (EMT,
a biological process involved in cancer), to illustrate in concrete terms their
complementarity.

3.3.3 Some examples of complex features

With the help of these models, both qualitative and quantitative, many
complex behaviours have been identified. Benefiting from the knowledge
accumulated in the study of dynamic systems, a whole zoo of patterns
with complex and non-intuitive behaviours such as non-linearities have been
highlighted [Tyson et al., 2003]. The MAPK pathway, coarsely described
in Figure 3.5, and often simplified as a rather unidirectional cascade, shows
switch or bistability behaviors generated by the complexity of its multiple
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phosphorylation sites [Markevich et al., 2004]. These models have also
been put at the service of understanding cancer and the erroneous decision-
making by cells resulting from impaired signaling pathways. Thus, Tyson
et al. [2011] summarize superbly well the complexity that can be hidden in
the dynamics of smallest molecular networks as soon as they contain more
than two entites and crossed regulations or feedback loops. Logical models
have also made it possible to better dissect some complex phenomena at play
in the cell such as emergent behaviours [Helikar et al., 2008] or mechanisms
behind mutation patterns in cancer [Remy et al., 2015].

3.4 From mechanistic models to clinical
impact?

Mechanistic models have therefore undeniably led to a better understanding
of the complex molecular machinery of signalling pathways. But beyond
the interest that this understanding represents, do these models also have
a clinical utility? In other words, are they of clinical or only scientific
value?

3.4.1 A new class of biomarkers

Throughout this thesis, the clinical value of mechanistic models will often
be analyzed by analogy to that of biomarkers. Biomarkers are usually de-
fined as measurable indicators of patient status or disease progression, such
as prostate-specific antigen (PSA) for prostate cancer screening or BRCA1
mutation for breast cancer risk [Henry and Hayes, 2012]. Biomarkers also
encompass multivariate signatures that identify more complex patterns with
clinical significance. Taking the logic even further, it was therefore proposed
that mechanistic models, which also reveal complex molecular behaviours,
could be considered as biomarkers, capturing perhaps even dynamic infor-
mation [Fey et al., 2015].

Like oncology biomarkers, the models will be divided into two categories
according to their clinical objectives: prognostic models and predictive
models [Oldenhuis et al., 2008]. Prognostic biomarkers and models are
those that provide information on the evolution of cancer independently of
treatment. They are therefore generally confronted with survival or relapse
data. The protein Ki-67 for example, encoded by the MKI67 gene, is known
to be indicative of the level of proliferation and high levels of expression are
thus associated with a poorer prognosis in many cancers [Sawyers, 2008].
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Predictive biomarkers and models, on the other hand, give an indication of
the effect of a therapeutic strategy. The simplest example, but not the only
one, concerns biomarkers that are themselves the target of treatment: treat-
ments based on monoclonal antibodies directed against HER2 receptors in
breast cancer are only effective if the HER2 receptor has been detected in
the patient [Sawyers, 2008]. Without attempting to be exhaustive, some
logical and ODE models, with either prognostic or predictive claims, will
be described.

3.4.2 Prognostic models

One of the first mechanistic models of cell signalling to have been explicitly
presented as a prognostic biomarker is the one proposed by Fey et al. [2015]
and describing c-Jun N-terminal kinase (JNK) pathway in neuroblastoma
cells. A summary of the study is provided in Figure 3.6. The model is
an ODE translation of the process description network of Figure 3.6A, fur-
ther determined and calibrated with molecular biology experimental data
obtained using neuroblastoma cell lines. We thus observe the non-linear
switch-like dynamics of JNK activation as a function of cellular stress (Fig-
ure 3.6B). The precise characteristics of this sigmoidal response can, how-
ever, vary from one individual to another as captured by the network output
descriptors A, K5y and H. Fey et al. proposed to perform neuroblastoma
patient—specific simulations of the model, using patient gene expressions
for ZAK, MKK4, MKK7, JNK and AKT genes to specify the initial condi-
tions of the ODE system. Since JNK activation induces cell death through
apoptosis, the patient-specific A, K5y and H derived from patient-specifc
models are then analyzed as prognostic biomarkers (Figure 3.6C). Readers
are invited to refer to the original article for details on model calibration
or binarization of network descriptors [Fey et al., 2015]. The authors also
showed that in the absence of positive feedback from JNK** to "TMKK?7,
an important component of non-linearity, the prognostic value is drasti-
cally decreased. All in all, this pipeline from ODE model to survival curves,
thus provides a paradigmatic example of the clinical interpretation
of mechanistic models of molecular networks that will be reused in
later chapters for illustration purposes. Other ODE models following a sim-
ilar rationale have been proposed by the same group for colorectal cancer
[Hector et al., 2012, Salvucci et al., 2017] or glioblastoma [Murphy et al.,
2013, Salvucci et al., 2019b]. Machine learning approaches have also been
proposed to ease the clinical implementation of this kind of prognostic mod-
els by dealing with the potential lack of patient data needed to personalize
them [Salvucci et al., 2019a).
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Figure 3.6: Mechanistic modeling of JNK pathway and survival
of neuroblastoma patients, as described by Fey et al. [2015]. (A)
Schematic representation, as a process description, for the ODE model of
JNK pathway. (B) Response curve (phosphorylated JNK) as a function of
the input stimulus (Stress) and characterization of the corresponding sig-
moidal function with maximal amplitude A, Hill exponent H and activation
threshold Kj5. (C) Survival curves for neuroblastoma patients based on bi-
narized A, K59 and H; binarization thresholds having been defined based
on optimization screening on calibration cohort.

On the logical modeling side, there are also studies including prognos-
tic value validation. Thus, Khan et al. [2017] proposed two logical models
of epithelio-mesenchymal transition (EMT) in bladder and breast cancers.
These models are inferred from prior mechanisms knowledge and data anal-
ysis with particular attention to potential feedback loops. Using these mod-
els, it is possible to study the behaviour of them for all combinations of
model inputs (growth factors and receptor proteins) and derive subsequent
signatures for good or bad prognosis. These signatures are later validated
with cohorts of patients. In this case, the mechanistic model does not seek
to capture a dynamic behavior but to facilitate and make understand-
able the exploration of combinations of input signals that grow
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exponentially with the number of inputs considered. Other for-
malisms, called pathway activity analysis and following the same activity
flows principles (Figure 3.5A), have been analysed in the light of their prog-
nostic value. Their greater flexibility enables the direct use of networks of
several hundred or thousands of genes, such as those present in the KEGG
database [Kanehisa et al., 2012]. The benefit of mechanistic modeling is
then to organize high-dimensional data and to facilitate the a posteriori
analysis of the results.

3.4.3 Predictive models

But the explicit representation of biological entities in mechanistic models
makes them particularly suitable for the study of well-defined pertur-
bations such as drug effects. Indeed, by assuming that the mechanism
of action of a drug is at least partially known, it is possible to integrate
this mechanism into the model if it contains the target of the drug (Figure
3.7). One can therefore simulate the effect of one drug or even compare
several. These strategies have already been implemented in a qualitative
way with logical models used to explain resistance to certain treatments
of breast cancer [Zanudo et al., 2017] or even highlight the synergy of cer-
tain combinations of treatments in gastric cancer [Flobak et al., 2015]. The
value of these models, however, is more scientific than clinical in that they
focus on a single cell line or a restricted group of cell lines. The possibility
to personalize the predictions or recommendations for different molecular
profiles of cell lines or patients is therefore not obvious. Still within the
context of logical formalism, Knijnenburg et al. [2016] proposed a broader
approach: if their model needs to be trained, it can nevertheless provide an
analytical framework for several hundred cell lines, while remaining within
the scope of the training data to ensure the validity of predictions.

Conceptually comparable strategies can be found on the side of dif-
ferential equations where large mechanistic models of cell signalling are
also trained to predict the response to different treatments [Bouhaddou
et al., 2018, Frohlich et al., 2018]. A calibrated model can then predict the
response to a combination of treatments not tested in the training data,
thereby proving the ability of mechanistic models to extend their predictive
value beyond the data [Frohlich et al., 2018]. As with prognostic models,
mechanistic approaches other than logical formalisms and ODEs have been
proposed and validated [Jastrzebski et al., 2018]. What can be learned from
these predictive models is that they require significant training data to
be able to go beyond qualitative predictions and dissect treat-
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Figure 3.7: Network model of oncogenic signal transduction in ER+
breast cancer, including some drugs and their targets. Reprinted
from Zanudo et al. [2017].

ment response mechanisms of many cell lines simultaneously. For
obvious practical and ethical reasons, the validation of these models is for
the moment limited to preclinical data since they require data for many
uncertain therapeutic interventions.

3.4.4 Mechanistic models, interventions and
causality

To conclude this first part in a broader way, it is interesting to note that the
now complete description of mechanistic models of cancer makes it possible
to revisit their characteristics from a different point of view and to link
them to the statistical approaches that will be the subject of the third part
of the dissertation. First of all, it should be remembered that statistical
models only highlight associations between biological variables or entities
and not causal relationships. On the other hand, by explicitly constraining
the structure of relations between variables, mechanistic models become less
flexible flexibility but already propose a causal interpretation. Therefore,
the notion of causality is intrinsically embedded in the definition
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of the mechanistic model (section 1.2).

However, if causality is not a by-product when using a statistical or ma-
chine learning model, it is possible to access it through specific experimental
designs, such as randomized clinical trials, or applying dedicated statistical
methods [Herndn and Robins, 2020], as described later on in chapter 8. In
both cases, the aim is to compare the effect of a treatment, or more gener-
ally of an intervention, on two groups that are as similar as possible to each
other in order to isolate the specific, causal effect of the intervention on
outcome. Schematically, the identification of causal links can be likened to
the study of well-defined interventions on patients: it is a question of being
able to act in a relevant and specific way on a variable and to measure the
consequences. The notion of intervention is thus very present in the liter-
ature on causality [Eberhardt and Scheines, 2007] and was summarized by
Holland [1986] in a concise manner: “no causation without manipulation”.

In this respect, without being part of the same statistical framework at
all, mechanistic models offer an interesting parallel. As suggested in the
previous paragraph, they allow us to test the effect of certain interventions:
how does the model behave with or without the addition of a drug to its
structure? This ability to study the effect of targeted interventions again
contributes, in a slightly different way, to the understanding of the system.
The particularity of mechanistic models, once they have been validated,
is that they can study the effect of interventions for which no data are
available. In any case, a common point between the mechanistic approaches
of the second part of the thesis and the statistical approaches of causal
inference of the third part is to question the mechanisms and true
causes at work throughout the cancer modeling process, from the
biological question to clinical validation. It is indeed at this price that
one can reach the level of understanding and confidence required for a real
world application.

This first bridge between mechanistic models of cell signalling and clin-
ical applications concludes this introductory part. The next part will be
devoted to the definition of new methods to establish this connection based
on logical formalism, before the third part proposes a more statistical eval-
uation of the prognostic and predictive values of the models presented in
the previous parts.
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3.4. FROM MECHANISTIC MODELS TO CLINICAL IMPACT?

Summary

The biological knowledge gathered on cancer enables to propose
mechanistic models at different scales. This thesis focuses on the
molecular level in a bottom-up approach based on the biochemical
behaviors described in the literature. These models have in common
the mathematical translation of the activation and inhibition net-
works that link all biological entities within a cancer cell. Different
mathematical formalisms exist, including di