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Résumé en français

Le travail présenté dans cette thèse est consacré à l'étude du comportement ther-

moélastique des macromolécules d'origine biologique, telles que l'ADN et les protéines.

En e�et, de nombreuses macromolécules présentent un comportement bistable avec des

transitions conformationnelles lorsqu'elles sont soumises à des expériences de traction.

La réponse de ces macromolécules à la déformation suscite un vaste intérêt scienti�que,

que ce soit au niveau de la modélisation mathématique, de la simulation numérique ou

des expériences de spectroscopie de force. Les principaux dispositifs de spectroscopie de

force auxquels nous nous réfèrerons pour la comparaison des données sont présentés dans

l'introduction, ainsi que les principales macromolécules étudiées et les motivations et buts

de notre étude. De plus, les transitions conformationnelles sont observées dans d'autres

domaines tels que la mécanique des phénomènes plastiques de la rupture.

Dans cette thèse, nous nous intéressons à la modélisation mathématique par la mé-

canique statistique de chaînes composées d'unités bistables, c'est-à-dire d'unités présen-

tant deux états (ou conformations) stables. Les chaînes d'unités bistables que nous étu-

dions sont composées d'un faible nombre d'unités, de telle sorte que nos études se situent

loin de la limite thermodynamique. Ceci implique la considération de deux ensembles

statistiques, les ensembles de Gibbs et de Helmholtz, pouvant mener à des comporte-

ments di�érents. La modélisation mathématique de la réponse des macromolécules à la

déformation et aux �uctuations thermiques permet de tester dé�nitivement la validité de

la mécanique statistique des petits systèmes, grâce à la comparaison avec les résultats

expérimentaux obtenus par la spectroscopie de force à l'échelle de la molécule unique, qui

fournit de précieuses informations sur les réponses statiques et dynamiques induites par

les forces appliquées. Notamment, nous comparerons les réponses force-extension de la

�lamine et de la titine obtenues par spectroscopie de force avec celles obtenues à l'aide de

notre modèle.



Le but des théories présentées dans ce manuscrit est d'obtenir les fonctions de partition

pour les ensembles de Gibbs et de Helmholtz, à l'aide de la méthode des variables de

spin. En e�et, les fonctions de partition permettent d'accéder aux valeurs moyennes

des observables physiques d'intérêt. La méthode des variables de spin consiste en la

décomposition d'une énergie potentielle bistable en deux paraboles, chacune identi�ée

grâce à une variable de spin. Ainsi, chaque parabole correspond à un état, plié ou déplié,

de la macromolécule.

La description de l'approche par les variables de spin fait l'objet du second chapitre,

où sont également présentées la thermodynamique des petits systèmes avec transitions

conformationnelles et la statistique complète des chaînes d'unités bistables.

Puis vient le troisième chapitre concernant l'extensibilité des liens entre les unités

bistables d'une chaîne. La prise en compte de l'élasticité des unités est primordiale, car elle

joue un rôle majeur dans la dé�nition de la relation force-extension de la macromolécule.

L'analyse détaillée d'une chaîne d'unités extensibles est fournie et le modèle de chaîne

idéale a été utilisé pour l'étude. Nous obtenons la fonction de partition de Gibbs exacte

en introduisant de relativement hautes valeurs de la constante élastique, en cohérence

avec les macromolécules réelles. Comme la fonction de partition de Helmholtz ne peut

pas être obtenue par intégration directe en raison des interactions implicites engendrées

par la condition isométrique, elle est calculée à partir de la fonction de partition de Gibbs

à l'aide de la transformée de Laplace. Sa forme dé�nitive est obtenue en termes de

polynômes d'Hermite à index négatif.

La quatrième partie permet, quant à elle, de considérer les interactions entre les unités

bistables d'une chaîne, grâce au modèle d'Ising et à son coe�cient λ. Ce modèle permet

de traiter di�érents cas, comme celui d'une interaction positive (λ > 0, assimilable à une

interaction ferromagnétique), c'est-à-dire que le dépliage d'une unité favorise celui d'unités

adjacentes, ou encore celui d'une interaction négative (λ < 0, assimilable à une interac-

tion antiferromagnétique), c'est-à-dire que le dépliage d'une unité empêche celui d'unités

adjacentes. Les interactions sont prises en compte dans l'ensemble de Gibbs grâce à la

technique des matrices de transfert. Quant à la fonction de partition de Helmholtz, elle est

obtenue à partir de la fonction de partition de Gibbs à l'aide de la transformée de Laplace.

Nous étudions dans un premier temps le système loin de la limite thermodynamique. Puis

nous proposons l'exploration de cas asymptotiques (faible et forte interactions), ainsi que

l'évolution de la relation force-extension à la limite thermodynamique pour l'ensemble de

Gibbs. En�n, nous généralisons la théorie pour prendre en compte l'élasticité des liens et

les interactions d'Ising.



Dans la cinquième partie, il est question d'hétérogénéité, paramètre important pour

déterminer la séquence de dépliage dans le repliement des protéines, mais également pour

représenter au mieux les macromolécules réelles, tout comme l'ajout de l'élasticité et des

interactions. Le caractère hétérogène des unités est introduit au niveau énergétique grâce

au spin. En e�et, introduire l'hétérogénéité au niveau énergétique des unités permet de

casser la symétrie et crée une inégalité parmi les probabilités de dépliage. Ainsi, à chaque

instance de dépliage, la probabilité de dépliage d'une unité donnée tend vers 1 et celle

des autres tend vers 0. La fonction de partition de Gibbs est obtenue par intégration

directe. Quant à celle d'Helmholtz, elle est obtenue sous une forme explicite grâce à la

transformée de Laplace et à la forme basée sur le déterminant des formules de Newton-

Girard. Finalement, le concept d'identi�abilité est proposé, a�n de mesurer la capacité

du système à identi�er la séquence de dépliage la plus probable.

En�n, il a été démontré que la vitesse de traction des molécules a une in�uence sur

la hauteur des pics de force et donc sur la relation force-extension. Ainsi, dans le dernier

chapitre, la dynamique de la déformation est décrite à l'aide de la méthode de Langevin,

qui permet de prédire la réponse force-extension des macromolécules biologiques dépliées

par les techniques de spectroscopie de force à une vitesse de traction donnée. L'approche

par la méthode de Langevin peut être acceptée comme compromis entre les méthodes

basées sur les simulations de dynamique moléculaire et d'autres résultats obtenus par des

approximations analytiques, dans le but de considérer un rang plus large de vitesses de

traction.





Publications

Some ideas and �gures have appeared previously in the following publications:

1. M. Benedito and S. Giordano, J. Chem. Phys. 149, 054901 (2018),

DOI: 10.1063/1.5026386 [1],

2. M. Benedito and S. Giordano, Phys. Rev. E 98, 052146 (2018),

DOI: 10.1103/PhysRevE.98.052146 (Editor's suggestion) [2],

3. M. Benedito, F. Manca, and S. Giordano, Inventions 4, 19 (2019),

DOI: 10.3390/inventions4010019 [3],

4. M. Benedito and S. Giordano, Phys. Lett. A 384, 1-9 (2020),

DOI: 10.1016/j.physleta.2019.126124 [4],

5. M. Benedito, F. Manca, P. L. Palla, and S. Giordano, Phys. Biol. 17,

056002 (2020), DOI: 10.1088/1478-3975/ab97a8 [5].





Contents

1 State of the art and motivations 1

1.1 Why nanomechanics of macromolecules? . . . . . . . . . . . . . . . . . . . 1

1.1.1 Structural stability of proteins . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Dynamics of macromolecules . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Thermodynamics of small systems . . . . . . . . . . . . . . . . . . . 5

1.1.4 Mechanical consequences on health . . . . . . . . . . . . . . . . . . 7

1.2 Single-molecule force spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Conventional and high-speed atomic force microscope . . . . . . . . 10

1.2.2 Magnetic tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 MEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 DNA, RNA and models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 DNA and RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Freely jointed chain model and worm-like chain model . . . . . . . . 22

1.4 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Structures with bistability . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Motivations and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Introduction to the thermodynamics of small systems and the spin vari-

able method 39

2.1 Thermodynamics of small systems . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1.2 Thermodynamics of chains with conformational transitions . . . . . 42

2.2 Applications of the spin variable method . . . . . . . . . . . . . . . . . . . 50

2.2.1 One dimensional system . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2.1.1 The Gibbs ensemble . . . . . . . . . . . . . . . . . . . . . 52

2.2.1.2 The Helmholtz ensemble . . . . . . . . . . . . . . . . . . . 56

i



2.2.2 Bistable freely jointed chain . . . . . . . . . . . . . . . . . . . . . . 59

2.2.2.1 The Gibbs ensemble . . . . . . . . . . . . . . . . . . . . . 60

2.2.2.2 The Helmholtz ensemble . . . . . . . . . . . . . . . . . . . 63

2.3 Full statistics of conjugated thermodynamic ensembles in chains of two-

state units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.1 Con�gurational partition functions and force-extension relations in

the Gibbs and the Helmholtz ensembles . . . . . . . . . . . . . . . . 69

2.3.2 Complete probability densities in the Gibbs and the Helmholtz en-

sembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.3.3 Probability density of the couple (ẋN , xN) versus f within the Gibbs
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Chapter 1

State of the art and motivations

1.1 Why nanomechanics of macromolecules?

Nanomechanics of macromolecules is an important area of study, involved in many

research �elds. The application spectrum of this activity is wide, ranging from theoretical

developments in statistical mechanics to applications in biology and related areas. The

importance of taking nanomechanics of macromolecules into account is demonstrated be-

low by the di�erent points discussed, which concern the structural stability of proteins, the

dynamics of macromolecules, the thermodynamics of small systems and the mechanical

consequences on health.

1.1.1 Structural stability of proteins

Proteins are polymers made up of units, also called monomers or amino acids (see

Fig.1.1). Amino acids are organic molecules, of vital importance for our bodies. They

serve, for instance, as hormones, enzyme precursors and neurotransmitters. They are

needed for many of the metabolic processes which take place in our bodies every day. In

biochemistry, proteins have several levels of structure, like the primary structure which

represents the sequence of amino acids [6, 7]. A change in the amino acids sequence can

a�ect the structure of a molecule and cause problems in its function. This can lead to

diseases, e.g. sickle cell disease. Sickle cell disease is an inherited disorder a�ecting the

hemoglobin of red blood cells. This protein is essential for respiratory function, since it

allows the transport of oxygen in our body. It is also involved in the elimination of carbon

dioxide. For people with sickle cell disease, hemoglobin is abnormal, as seen in Fig.1.2.

This disease comes from a point mutation on the 6th amino acid of the chromosome 11,

where glutamine is replaced by valine. When the concentration of oxygen in the blood

decreases, it deforms the red blood cells, which then take the shape of sickles, instead

1



of being biconcave. This results in several characteristic symptoms of the disease, like

chronic anemia, painful vaso-occlusive attacks and increased risk of infection [8]. The

second level of protein organisation is called secondary structure and is useful to identify

folded regions of the protein. The most common folded structures are α-helix and β-sheet,

which are controlled by hydrogen bonds.

Then, the tertiary or three-dimensional structure of a protein refers to its organisation

and folding in space. This folding gives to the protein its functionality. A well-know

structure-function relationship concerns antigen-antibody bond. An antigen is a natural

or synthetic macromolecule that, when recognised by antibodies or cells of an organism's

immune system, is able to trigger an immune response in the organism. If the antibody

does not have the correct form, it can not �x to the antigen. Therefore, the speci�c bond

between them can not be established and the immune response does not occur. So the

tertiary structure of many macromolecules controls the relation between structure and

functions of proteins and macromolecules. Under the action of some factors, the spa-

tial con�guration of proteins can be destroyed, leading to changes in their physical and

chemical properties and to removal of their biological activity. The capacity of macro-

molecules to keep e�ective their spatial con�guration against mechanical factors must be

tested to evaluate their ability to conserve their functions, in particular thanks to the

force spectroscopy (see Section 1.2). Generally, this phenomenon is called protein denat-

uration and these proteins are known as denatured proteins or inactive proteins. In other

words, denatured proteins lose their biological activity and they can no longer perform

their speci�c biological functions. For instance, if a macromolecule is pulled with a large

force, it loses its biological function as the force reduces the structural stability of the

protein. For an enzyme, it represents the loss of its catalytic capacity. For an antibody,

it represents the loss of its ability to bind to an antigen. So, the mechanical actions on

biological macromolecules can lead to crucial modi�cations in their functions, with crucial

physiological consequences.

1.1.2 Dynamics of macromolecules

Many biological processes take place in the cell, like cell cycles, protein biosynthesis

or replication. These processes have characteristic times, depending on the shape and the

function of involved molecules and therefore on the underlying mechanics. The dynamic

mechanical response is very important, especially for the characteristic times of speci�c

internal processes and chemical processes. The classical pictures in books and the static

measurements through NMR or X-ray di�raction could give the inaccurate impression

2



Figure 1.1 � Scheme of amino acids. Proteins are made up of subunits called amino acids.
An amino acid is made up of a central carbon atom, known as the α-carbon, covalently
bound to a hydrogen atom, an amino group (NH2), a carboxyl group (COOH), and a
side chain group (R group). The side chains of the 20 standard amino acids are shown in
this �gure, where the amino acids are grouped according to the properties of their side
chains. Nonpolar, aliphatic amino acids (yellow) have hydrocarbon side chains and are
typically hydrophobic. The aliphatic polar uncharged amino acids (purple) contain an
amino or hydroxyl group and can form hydrogen bonds with atoms in other polar amino
acids or water molecules. Aromatic amino acids (green) contain an aromatic ring and
can be nonpolar or polar. The sulfur containing amino acids (orange) are named cysteine
and methionine. The side chain of methionine is hydrophobic. The side chain of cysteine
can form covalent disulphide bonds with other cysteine residues due to the sulfur-hydryl
(SH) group found on its side-chain. At neutral pH the charged amino acids can be either
charged negative, (acidic, red) or positive (basic, blue) [6].
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Figure 1.2 � Schematic diagram of normal and abnormal hemoglobin. Point mutation
on chromosome 11 replacing glutamine by valine leads to abnormal hemoglobin. This
mutation leads to sickle cell disease [9].

that proteins exist in a single form [10, 11]. However, proteins are dynamic and not

static. Weber quali�ed proteins as �kicking and screaming stochastic molecules� [12] and

it has been proved that a given protein can assume many di�erent con�gurations, called

conformational substates or metastable states [13�15]. These states represent di�erent

geometrical con�gurations of the chain in the space. The protein can be described by

the energy landscape, a very important concept allowing to bring information about

the structure, dynamics, and functions of biomolecules. To perform these functions,

most proteins need to move. Protein motions allow to ligands like O2 to enter and

leave myoglobin or hemoglobin or again to substrates to reach the enzyme center in

enzymatic reactions. These motions can either be thermal equilibrium �uctuations, since

the temperature creates �uctuations in the system modifying the dynamic evolution of the

system, or again non-equilibrium relaxations, for example induced by chemical reactions.

In terms of the energy landscape, motions can be described as jumps of the system from

a substate to another substate. At nano- and micro-scale, changes between states occur

very fast and rate coe�cients of �uctuations are in the range from fs−1 to s−1, or even

less. Hence, many di�erent tools are necessary to study dynamic behaviours, like out-

of-equilibrium statistical mechanics or methods based on Langevin and Fokker-Planck

equations. When a molecule switches from one substate to another one, we can use

Kramers theory [16] or its generalisations [17�19], which manages characteristic times to
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switch between two states of bistability. This large spectrum of theories is very useful to

describe dynamic biological systems, since it is often able to summarise the behaviours of

complex systems with simple stochastic rules.

1.1.3 Thermodynamics of small systems

Why using statistical mechanics instead of classical mechanics to study macromolecules

like DNA, proteins or other biological structures? In fact, for small systems, the energy

related to the thermal �uctuations is comparable to the mechanical energy (for instance,

energy accumulated in elastic bonds, i.e. the enthalpic contributions). Imagine a polymer

whose one end is �xed, which only moves with thermal �uctuations. In this case, the

polymer is randomly distributed on a sphere centred on the �xed end as it freely and

isotropically explores the whole con�gurational phase space. To align polymer i.e. to

extend it, the other end is now pulled. The polymer reacts against this deformation by

creating an entropic force, as it prefers to be in the con�guration of a sphere centred on

�xed end. If the temperature of the system is high, the polymer wants to explore all con-

�gurations randomly. If a mechanical force is pulled on it, the polymer is stretched and

an entropic force is created to go against the aligned con�guration, which prevents the

exploration of the phase space. Therefore, to study the behaviour of macromolecules and

create some pertinent models, several forces have to be taken into account at nano-scale

where thermal �uctuations play a crucial role. Entropic forces represent the paradigmatic

example. Statistical mechanics allow to do so.

Hence, we can use statistical mechanics to study macromolecules made of monomers, like

proteins or DNA. Here, we focus on the nanomechanics of macromolecules. To do so,

we can consider two di�erent systems, yielding two di�erent results. We can consider

a molecular chain with the �rst end-terminal tethered on a substrate. Firstly, we can

imagine to apply a force at the second end of the macromolecule (Gibbs ensemble) or,

secondly, to prescribe the spatial position of this second end (Helmholtz ensemble). Then,

we suppose to measure the force-extension relation in both cases. If the system under con-

sideration consists of in�nitely many units, the statistical mechanics results under these

di�erent conditions are identical, as observed in Fig.1.3, when the number of particles

increases [20]. In this case, the thermodynamic limit is attained and it represents the

limit for a large number of monomers. However, if a system consists of few units as it is

sometimes the case for proteins, equivalence between the ensembles is lost. The latter can

be observed in real life biological experiments. In this case, single-molecule force spec-

troscopy techniques are useful to show non-equivalence between ensembles. Gibbs and
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Figure 1.3 � Force�extension curves for Gibbs and ensembles. The response at constant
applied force, i.e. in the Gibbs ensemble, shows a plateau force. This behaviour has
been observed in the over-stretching of DNA, and in polysaccharides such as the dex-
tran. Regarding the Helmholtz ensemble, with N = 4, 6, 10, 300 units, when the chain
length is increased, the width of the peaks is decreased until, at a large enough N , the
force�extension curve approaches again the plateau curve of the Gibbs ensemble. One
can see the convergence between both ensembles for a su�ciently high N [20].

Helmholtz ensembles made up of few units are an example of ensembles which verify the

non-equivalence. The Gibbs ensemble is typically referred to as the isotensional bound-

ary condition. Typically, the force-extension response observed shows a plateau force,

which the threshold force for which all units unfold at the same time. The Helmholtz

ensemble, for its part, is referred to as the isometric boundary condition. Typically, the

force-extension response shows a saw-tooth pattern, with force peaks, each peak corre-

sponding to the unfolding of a unit of the chain. In the case of small systems, if the force

is imposed or the extension is prescribed, di�erent mechanical responses are observed.

Theory predicts these di�erences and they are veri�ed and tested in experiments with

macromolecules, as observed in Fig.1.4 and Fig.1.5. It is important to underline that the

di�erences in the ensembles behaviours can be appreciated both with equilibrium and

non-equilibrium statistical mechanics. These di�erences will be studied in detail in this

thesis for several particular cases. We note that the non-equivalence of the ensembles can

be observed also in special cases at the thermodynamic limit (e.g., con�ned polymers or

adhesion of polymers) [21�23].

6



Figure 1.4 � Force-extension response of several dextran molecules. Extension curves
of 20 di�erent carboxymethylated dextran �laments obtained with an AFM device with
various contour lengths from 50 nm to 2 µm measured on di�erent samples with di�erent
cantilevers were normalised according to their length [24].

1.1.4 Mechanical consequences on health

As stated above, the structure of proteins determines their function. Misfolding of a

protein or change in its primary structure can a�ect the tertiary structure. An incorrectly

folded protein can have dramatic consequences on human body and health. For instance,

misfolding of a protein can lead to type 2 diabetes, Alzheimer disease, Huntington disease

(see Fig.1.6) and Parkinson disease [26]. In all these cases, a soluble protein that is

normally secreted from the cell is misfolded and secreted as an insoluble protein. The

latter form is called an amyloid �ber and all the diseases due to this misfolding are known

as amyloidoses.

Another example concerns mad cow disease, transmissible to humans, that made us

aware of the importance of the tertiary structure of the protein on health. Indeed, this

disease is neither caused by a virus nor a bacterium. The pathological agent responsible for

the disease is a protein called prion, found by the Nobel Prize for medicine 1997, Stanley

Prusiner [28]. For a sick person, the primary sequence of this protein does not change.

However, the tertiary structure is deeply modi�ed, going from a structure mainly made

of alpha helices to a very rich structure of beta sheets, as observed in Fig.1.7. This new

structure is extremely stable and resistant to almost all disinfection techniques. These

examples show the dramatic consequences of the structure-function relation on the health.

Therefore, it is vitally important to have experimental methodologies to investigate the

static and dynamic responses of macromolecules of biological origin.
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Figure 1.5 � Comparison of force�extension curves for spectrin and titin. On panel a), a
force�extension curve for the cytoskeletal protein spectrin showing the contour length LC
and persistence length p for each of the domains is shown. On panel b), a force�extension
curve for a recombinant fragment of titin consisting of titin Ig domains 27�34 showing
the contour length and persistence length for each of the domains [25].

1.2 Single-molecule force spectroscopy

As described above, the functions of several macromolecules (for instance, proteins) are

strongly related to the three dimensional conformation of their polymeric chain. Study-

ing the relation between the three dimensional conformation of a macromolecule and its

function can be directly done by using force spectroscopy methods (see Fig.1.8), which

can be used to unfold the native folded structure of a macromolecule. The controlled

unfolding leads to the estimate of the involved forces, the energy landscape and many

other dynamic properties of the system under investigation.

Recent developments of mechanical experiments on single-molecule allowed to bet-

ter understand intra- and intermolecular forces, by introducing important information

about the thermodynamics and kinetics of several molecular processes. Single-molecule

experiments are typically based on optical tweezers, magnetic tweezers, microelectrome-

chanical systems (MEMS) and atomic force microscope (AFM) [31]. With such devices,
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Figure 1.6 � Representation of the molecular genesis of Huntington's disease. Huntington's
disease is a progressive and invariably fatal neurodegenerative genetic disorder. The gene
of this disease, Huntingtin, contains a repeat of CAG codon coding for glutamine (a
codon is a sequence of three nucleotides on a messenger ribonucleic acid). If the repeat
contains 35 or more repeats, Huntington's disease develops and it results in the death
of brain cells, leading to, inter alia, problems with mental abilities and a general lack of
coordination [27].

Figure 1.7 � Scheme of a normal prion and a disease-causing prion. In its native confor-
mation, the prion protein consists of two domains, one is unstructured, the other one is
globular made up of helices. However, during the course of the disease, if the primary
sequence of the protein is preserved, the globular domain loses its alpha helices and forms
beta sheets [29].

it is possible to measure the force-extension relation for a molecular chain under di�erent

conditions. These experiments can be applied to DNA, RNA, polysaccharides, or again
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Figure 1.8 � Schematic illustration of a dynamic force spectroscopy experiment. A receptor
is immobilized on the surface, and the ligand is connected via a linker to the tip of an
AFM cantilever which serves as a force transducer. The distance between surface and tip
can be controlled with a piezoelectric element [30].

proteins. The above techniques permit a clearer comprehension of the equilibrium and

out-of-equilibrium thermodynamics of small systems and the experimental veri�cation of

the small systems thermodynamics. These devices explore a large range of sti�ness. For

example, LASER optical tweezers (LOT) and magnetic tweezers are considered as soft de-

vices, with a sti�ness from 10−4 to 100 pN/nm, whereas AFM and MEMS are considered

as a hard device, with a sti�ness from 100 to 102 pN/nm.

1.2.1 Conventional and high-speed atomic force microscope

The atomic force microscope is a well-known technique invented in 1985 by Gerd Bin-

nig, Calvin Quate and Christoph Gerber and commercialised for the �rst time in 1989 [32].

The AFM is a high-resolution scanning probe microscopy instrument allowing to reach

the atomic resolution. In its primary operation mode, also known as "contact mode",

AFM allows to visualise the topography of a sample surface by scanning it horizontally

with a sharp tip placed at the extremity of a cantilever. As high-resolution imaging tool,

it permits to measure the roughness of a sample surface.

The two main components of the AFM are the cantilever, which acts as a �exible sensor

and a piezoelectric positioner, in order to control the sample position in the nanometric

range. An AFM consists of a cantilever, mounted on a cantilever holder, whose position

is controlled by a piezoelectric device. A focused laser beam is re�ected o� the surface
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Figure 1.9 � Schematic diagram of principle of an AFM for SMFS. The protein is bound at
one end to a substrate (here, gold). The gold substrate is placed on top of a piezoelectric
device. A laser beam, re�ected o� of the cantilever tip into a photo-detector, is used to
monitor the de�ections of the cantilever [33].

of the cantilever on a photodetector. The moves of the cantilever can be monitored by

following the movement of the laser spot on the photodiode. The incident light is con-

verted into voltage by the photodiode output, which then outputs the voltage di�erence

when the laser spot moves. The AFM measures the angular deviation of the laser spot

allowing to obtain the forces exerted on the �exible cantilever. This technique has also

been generalised to stretch a macromolecule and therefore to perform single-molecule

force spectroscopy (SMFS), as observed in Fig.1.9. In this case, the pulling speeds used

in SMFS experiments vary in the range of a few nm/s to about 10 µm s−1, and the can-

tilever sti�ness is typically between 6 and 100 pN nm−1.

Recently, a high-speed AFM (HS-AFM) has been developed to unfold proteins at

higher velocities than conventional AFM, allowing to reach pulling speeds of the order

of 4000 µm/s [34�38]. This was made possible by using short cantilevers and miniature
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Figure 1.10 � High-speed force spectroscopy (HS-FS) of titin unfolding. On the left panel,
one can see schematic process of titin forced unfolding showing the relevant steps: 1)
relaxed polyprotein, 2) polyprotein stretching, 3) unfolding of one domain and 4) unfolded
domain stretching. Two examples of force-extension curves revealing three unfolding peaks
at 1 µm s−1 (bottom) and 1000 µm s−1 (top) are also shown. Gray arrows represent the
time required to unfold and stretch a single domain. The inset shows the crystal structure
of I91 domain with the relevant ÿ-strands in colour (PDB 1TIT). On the right panel,
one can see the dynamic force spectrum of titin I91 unfolding using HS-FS (full circle),
conventional AFM (square) and molecular dynamics simulations (triangle) [35].

piezoelectric actuator (see Fig.1.10). This is a signi�cant development since it permits to

SMFS experiments to be comparable to those probed in molecular dynamics simulations,

which o�er atomic-level descriptions of the forced unfolding [39,40].

1.2.2 Magnetic tweezers

Magnetic tweezers are another well-known device used for force spectroscopy experi-

ments. Most commonly, they are used to study mechanical properties of biological macro-

molecules like DNA or proteins in single-molecule experiments. They are also used for

other applications like rheology of soft matter (study of �ow) or study of force-regulated

processes in living cells. In 1996, Strick, Bensimon and Croquette assembled the �rst

magnetic tweezers to study elasticity of supercoiled DNA (over- or under-winding of a

DNA strand) [41].

Magnetic tweezers device consists in magnetic micro-particles, which can be manipulated

with the help of an external magnetic �eld (see Fig.1.11). This �eld is generally generated

with a pair of permanent magnets (made up of rare earth), but generation based on elec-
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Figure 1.11 � Schematic of basic implementation of magnetic tweezers. A molecule is
tethered between the surface of a �ow cell and a paramagnetic bead. The magnetic �eld
generated by a pair of magnets induces a magnetic moment ~m0 in the paramagnetic bead.
The bead experiences a force proportional to the gradient of the �eld. The molecule can
be coiled by rotating the external magnet. The �ducial marker serves as reference to
measure the position of the bead [46].

tromagnets [42�44] or generation with near-�eld of a single permanent magnet [45] have

also been implemented. The position of the magnetic particles is then determined by a

microscopic objective with a camera. There are two main types of magnetic particles, the

superparamagnetic beads and the ferromagnetic nanowires. For the superparamagnetic

beads, one uses spherical particles, whose diameter is micrometric. The bead is made

of a porous latex matrix, in which particles were inserted. The latex is auto�uorescent,

what may be an advantage. About the ferromagnetic nanowires, they allow to explore

much larger applied forces. The length of the wires is in range from tens of nanometers

up to tens of micrometers. Di�erent ways of assembly of magnetic tweezers exist to �ll

diverse experimental needs, like the organisation of the magnetic �eld. Exerted forces are

typically in the range from piconewton to nanonewton.

1.2.3 Optical tweezers

It is well known that light exerts forces on matter. The forces being weak, they re-

mained mere curiosities until the invention of the laser in the 1960s. From then on, the

evolution was rapid and continuous thanks to the work of Arthur Askin in particular [47].

The 1970s marked the �rst realisations of optical traps using two counter-propagating

13



beams, the �rst experiments of optical levitation of microspheres and the �rst realisation

of a single laser beam strongly focused by a high digital aperture objective, creating an

optical gradient force. The year 1986 is considered as the birth year of optical tweez-

ers [48]. On the one hand, optical tweezers allow the precise handling of objects without

any contact, with the consequence of remaining in a perfectly sterile environment during

handling. On the other hand, the forces generated by optical tweezers are typically equiv-

alent to the forces involved in a large number of cellular processes (adhesion, cytoskeletal

mechanics, motricity, operation of molecular motors, etc.). Other �elds than biology use

optical tweezers, such as photochemistry or physics, such as the study and control of

colloidal particles, the setting in motion and control by a light beam of micromotors or

micropumps [49]. The essential elements for making optical tweezers are a laser beam,

a high numerical aperture microscope objective, a sample containing the objects to be

manipulated and a viewing device (see Fig.1.12). To account for the forces by the optical

trap, it is necessary to rely on Lorentz-Mie's generalised theory that describes di�usion

of the light by an object of any shape. The re�ected rays contribute to the di�usion force

that pushes the object in the direction of the laser beam, but the refracted beams incident

at a high angle will keep the bead at the focus point, where the light intensity is highest,

thanks to gradient forces. The trap is stable as soon as the gradient forces exceed the

di�usion forces.

Dynamic studies of single molecules such as DNA or RNA molecules have progressed

through manipulations using optical tweezers. It is now possible to measure the force

applied to a DNA molecule that is attached at one end to the surface of a holder and

at the other end, to a latex bead that is held in place with the optical tweezers, as seen

in Fig.1.13. In this way, the elasticity of DNA can be measured directly. Separation of

the DNA double helix is achievable through the action of a mechanical force exerted with

optical tweezers. It was thus possible to determine the force with which the nitrogenous

base pairs are bound and it was established that these forces vary according to the base

pair sequence. Optical tweezers allowed the identi�cation of defective DNA structures

like base mismatches, missing bases or crosslinks. The latter occur in DNA with high

frequency and must be e�ciently identi�ed and repaired to avoid direct consequences

such as genetic mutations [51�54].

1.2.4 MEMS

Last but not least come microelectromechanical systems (MEMS) and the related

micromechatronics and microsystems, which constitute the technology of microscopic de-
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Figure 1.12 � Scheme of the general principle of optical tweezers. a) Essential elements
for optical tweezers. b) Scheme of the general device. c) Physical principle of optical
tweezers [50].

Figure 1.13 � Scheme of optical tweezers used to directly measure DNA elasticity [50].

vices, especially those with moving parts. MEMS were developed in the early 1970s as

derivatives of microelectronics and were �rst commercialised in the 1980s with silicon

pressure sensors, that quickly replaced older techniques and still form a signi�cant part

of the MEMS market. Since then, the MEMS �eld has been booming. These devices

are used in many �elds like automotive, aeronautics, medicine, biology, telecommunica-

tions and in several "everyday" applications such as high-de�nition television sets or car

airbags.
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Generally, MEMS are made up of components from 1 to 100 µm. Devices holding MEMS

generally range in size from 20 micrometres to a millimetre. They usually consist of a cen-

tral component that processes data (an integrated circuit chip such as microprocessor) and

several components that interact with the environment (such as microsensors). Due to the

large surface area to volume ratio of MEMS, forces created by ambient electromagnetism

(e.g., electrostatic charges and magnetic moments) and �uid dynamics (e.g., surface ten-

sion and viscosity) have to be more taken into account for design than with larger scale

mechanical devices. Considering surface chemistry makes the di�erence between MEMS

technology and molecular nanotechnology or molecular electronics. Moreover, devices like

AFM, optical tweezers and magnetic tweezers are bulky and rather expensive. Some ex-

periments need to be realised in tiny or con�ned areas and MEMS allow to �ll these gaps.

The fabrication of MEMS evolved thanks to the process technology in semiconductor

device fabrication, i.e. the basic techniques are deposition of material layers, patterning

by photolithography and etching to obtain the required shapes. The materials used for

MEMS manufacturing are silicon, polymers, metal and ceramics.

MEMS devices can be, inter alia, used to study macromolecules like DNA or proteins.

For instance, one reports a micromachined DNA manipulation platform to stretch and

rotate a single DNA molecule, as a novel micromachined magnetic tweezers for DNA

manipulation, as seen in Fig.1.14 [55]. One could also cite a new hybrid �eld micro�uidics

(HFM) approach, employing both hydrodynamic forces and an electric �eld to regulate

DNA initial conformations [56] or real time monitoring of the dynamics of the reactions

without any surface or molecular modi�cations [57]. To work with nanoscale systems,

it is possible to use nanoelectromechanics systems (NEMS), for instance, to realise mass

spectrometry in real time [58].

MEMS technology is attracting a lot of interest, including that of the SMMIL-E, an

international research program, whose goal is to transfer works on microsystems made by

the University of Tokyo from Japan to France, in order to improve the research against

cancer. To do so, French national research center CNRS and the University of Tokyo have

established in Lille in 2016 a mirror site of the LIMMS, their common international labo-

ratory installed in Tokyo since 1995. As part of this program, the Hauts-de-France region,

the CHR of Lille, the CNRS and the LIMMS collaborate on the realisation of a speci�c

MEMS device, the silicon nanotweezers (SNT), allowing to mechanically characterise a

DNA bundle exposed to an ionising radiation beam, here delivered by a therapeutic linear
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Figure 1.14 � Schematic diagram of the micromachined platform for DNA. a) Schematic
of the DNA manipulation platform integrated with six microcoils, a �uidic channel and
a gold-patterned surface. b) A tethered-DNA magnetic bead is in equilibrium while
applying the magnetic force, DNA elastic force and the gravity force (which is the apparent
weight of the bead in the bu�er solution). The tethered-bead DNA could be stretched
and rotated under the magnetic �eld [55].

particle accelerator (LINAC) (see Fig.1.15). The radiation induces a mechanical degrada-

tion i.e. a population of breaks in a DNA bundle, which can be quanti�ed by measuring

the elastic properties of the bundle itself. Hence, one could provide a direct relation-

ship between radiation dose and its damaging e�ects. Silicon nanotweezers device resist

against the environment of radiation beams, by still allowing molecular-level accuracy.

The �rst real-time observations carried out using SNTs allow a better understanding of

fundamental and clinical studies of the mechanisms of DNA degradation under ionising

radiation, for better treatment of tumors [59,60].

1.3 DNA, RNA and models

Now that the main techniques of single-molecule force spectroscopy have been pre-

sented, macromolecules whose they allow the study and models used for their represen-

tation are brie�y introduced.

1.3.1 DNA and RNA

Deoxyribonucleic acid, also known as DNA, is a biological macromolecule present

in all cells and in many viruses, bacteriae, and so on. DNA contains all the genetic

information called genome, which allows living beings to develop, live and reproduce. In
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Figure 1.15 � SNT and micro�uidic set-up in the hospital. a) Set-up on a patient bed
support. The medical physicist focuses the beam direction of the CyberKnife (LINAC)
on the tips of the SNT. b) The SNT is aligned in front of the micro�uidic cavity. c) The
top view of the SNT aligned to insert the tips into the cavity. d) Only the tips of the SNT
enter the liquid so that the actuators and sensors can provide their in-air performance [60].

living cells, DNA molecules are made up of two anti parallel strands wrapped around

each other to form a double helix, as observed in Fig.1.16. Hence, DNA is said double-

stranded. Each of the two strands is called polynucleotide. The latter consists of monomers

called nucleotides, linked to one another by covalent bonds between the deoxyribose of

a nucleotide and the phosphate group of the following nucleotide, thus forming a chain

in which polysaccharides and phosphates alternate, with nucleic bases each linked to a

polysaccharide. A nucleotide is formed of a nucleic base or nitrogen base - there are four

of them: adenine (A), cytosine (C) (both forming pyrimidines), guanine (G), and thymine

(T) (both forming purines) - linked to a polysaccharide - here, deoxyribose - itself linked

to a phosphate group. The genetic code is a set of correspondence rules allowing the

genetic message made up of nucleotides to be translated by a cell into a polypeptide chain

made up of amino acids. Each sequence of three consecutive bases carried by the mRNA

corresponds to a single amino acid.

The order in which the nucleotides follow one another along a DNA strand constitutes

the sequence of this strand. It is this sequence which carries the genetic information. The

latter is structured into genes, which are expressed through transcription into ribonucleic

acid (RNA). RNA plays an active role in cells, as it allows to control gene expression

or to communicate responses to cellular signals for example. Cellular organisms use

messenger RNA (mRNA, which is a coding RNA) to convey genetic information (using

the RNA nitrogen bases, there are four of them: guanine (G), uracil (U), adenine (A),

and cytosine (C)) which allows synthesis of speci�c proteins. Many viruses encode their

genetic information using an RNA genome. One of the main and most important roles
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Figure 1.16 � Structure of DNA double helix showing the structure of the four nucleic
bases: adenine, cytosine, guanine and thymine. The atoms in the structure are colour-
coded by element and the detailed structures of two base pairs are shown in the bottom
right [61].

Figure 1.17 � Scheme of RNA role between DNA and protein [62].

is protein synthesis in ribosomes (macromolecules composed of RNA and proteins). This

process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome,

where ribosomal RNA (rRNA, both non-coding) then links amino acids together to form

coded proteins. Some RNA roles are shown in Fig.1.17.

The association of DNA and proteins in which DNA is compacted in the nucleus in

eukaryotic cells is called chromatin. The latter consists of a combination of DNA and

proteins of two types: histones and non-histones, as seen in Fig.1.18. On the one hand,
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Figure 1.18 � Schematic diagram of DNA compaction [63].

non-histones proteins enable the compaction of DNA, but contrarily to histones proteins,

they are not bound to DNA. On the other hand, histones are proteins located in the nuclei

of eukaryotic cells and in archaea. They are the main protein components of chromosomes,

closely associated with DNA since they allow to compact it. This compaction forms

structures called nucleosomes, where DNA is wound around histones like thread around a

coil. As DNA is structured in the chromatin with coils to build up information, knowing

DNA mechanics allows to understand how to access to chromatin coils, in order to read

genetic information.

Single molecule techniques allowed to study the force-extension response of chromatin,

revealing the numerous conformational transitions undergone by the chromatin, as seen

in Fig.1.19. The multiple conformations adopted by chromatin demonstrate a complex

energy landscape due to the di�erent levels of DNA compaction [64�68].

Force spectroscopy allows to study the response and the structure of DNA, which was

�rst elucidated in 1953 by Watson and Crick, the Nobel Prize in Physiology or Medicine

1962 [69]. In 1992, Smith, Finzi, and Bustamante made direct experimental mechani-
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Figure 1.19 � Detailed analysis of the unfolding of a single chromatin �ber. a) A zoom in
on the high-force region shows discrete steps in extension. Dashed gray lines represent the
extensions of all states that are composed of extended and fully unwrapped nucleosomes.
The black line shows the best match between individual data points and the various
states of unwrapping. b) Unfolding of a 15*197 nucleosome repeat lengths chromatin
�ber at low force. Below 7 pN the extension starts to deviate from a string of extended
nucleosomes (gray dashed lines). A single transition (black dashed line) does not capture
the force-extension data [64].

cal measurements on DNA by using magnetic beads [70]. They obtained extension versus

force curves for individual DNA molecules at three di�erent salt concentrations with forces

in the range from 10−14 to 10−11 N. These results have been completely understood from

the theoretical point of view thanks to the works of Marko and Siggia [71,72]. In Fig.1.20,

force-extension response of DNA is shown and compared to two elastic behaviour models,

studied in the next Section. We anticipate that the DNA mechanism is well reproduced

by the WLC model, rather than the FJC model [71, 72]. In the following, the DNA

molecule has been pulled with larger forces and an overstretching phenomenon has been

observed [73]. In particular, a force plateau at around 65 pN has been measured in the

force-extension curve, as seen in Fig.1.21. This speci�c behaviour has been interpreted

in terms of a transition similar to the one observed within the Gibbs ensemble in other

macromolecules, such as several proteins and polysaccharides. The real molecular origin of

this transition has been largely investigated and a debate exists on the DNA conformation

after the overstretching: many researchers think that there is a simple mechanical denat-

uration leading to a transformation of the double-stranded DNA into two single-stranded

DNA [74,75]; however, other researchers have proposed the existence of a new DNA con-
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Figure 1.20 � Force-extension response of DNA. Squares are experimental force versus
extension data for 97 kb λ-DNA dimers from �gure 3 of [70]; solid line is a �t of the
entropic force required to extend a worm-like polymer. The �t parameters are the DNA
length (LC = 32.80 + 0.10µm) and the persistence length (p = 53.4± 2.3 nm). Shown for
comparison (dashed curve) is the freely jointed chain model [70] with LC = 32.7µm and
a segment length b = 100 nm [72].

formation (called S-DNA for stretched DNA) which is an intermediate case between the

double-stranded DNA and its denatured structure [76]; �nally, other researchers thought

that melting or S-DNA was depending on the composition in amino acids of the chain [77].

A discrete worm-like chain model has been implemented to describe the DNA stretching

under force and to investigate dsDNA to ssDNA and dsDNA to S-DNA transitions [78].

1.3.2 Freely jointed chain model and worm-like chain model

The most important single-molecule experiment concerns the stretching of double-

stranded DNA, in order to measure its elastic features, as previously described. Therefore,

to do so, a model is needed to represent the behaviour of the macromolecule, like DNA,

protein, etc. Depending on the structure of the macromolecule, several models can be

considered. The simplest one is called freely jointed chain or ideal chain. This model

allows a good representation of single-stranded DNA, RNA and other simple polymers.

The freely jointed chain model (FJC) schematizes the macromolecule as a sequence of N

segments of length b. The parameter b is the so-called Kuhn length, i.e. the length of a

segment. The contour length LC is the total length of the macromolecule at maximum
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Figure 1.21 � B-DNA overstretching. Force versus extension for dsDNA and ssDNA
molecules. Arrows show changes in extension observed at constant tension during poly-
merisation (Poly) or force-induced exonuclease activity (Exo) [79].

Figure 1.22 � Diagram of comparison between FJC (on the left panel) and WLC model
(on the right panel).

physically possible extension. Hence, we obtain the following relation LC = Nb. The FJC

model does not take interactions among segments into account (see Fig.1.22, left panel).

Moreover, in the FJC model, there is no preferred angle between two segments. This

model is basic and simple, and due to its simplicity, it is easier to make exact analytic

calculations. The force-extension response for the FJC model is given below:

x

Nb
= coth

(
fb

kBT

)
− kBT

fb
= L

(
fb

kBT

)
, (1.1)

with x the extension of the chain, N the number of units, b the Kuhn length, f the exerted

force, kB the Boltzmann constant, T the temperature, and L the Langevin function,

de�ned as L(x) = coth(x)− 1
x
.

However, the most used model is the worm-like chain, which perfectly mimics double-

stranded DNA, as shown in Fig.1.20. Indeed, DNA �exibility, introduced in this scheme,

has an important role in many biological processes. The worm-like chain model is also used

to describe the physics of other polymeric chains, characterised by a given bending rigidity.
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Compared to the previous model, an important parameter is added and it concerns the

angles between the segments composing the polymer. In the ideal chain model, no forces

are necessary to fold the chain. However, in the WLC model, we introduce an energy

depending on the angles between adjacent segments (see Fig.1.22, right panel). More

speci�cally, the energy is set to zero if all segments are aligned and therefore a force can

be applied to fold or bend the chain. This property is taken into consideration by means

of a new parameter called persistence length, p, which is de�ned by the ratio between the

mechanical �exibility or bending sti�ness and the energy of thermal �uctuations. Hence,

it takes into account the balance between enthalpic and entropic contributions [71]. We

remark that the bending sti�ness can be calculated through the product of the Young

modulus, E, multiplied by the moment of inertia, I. Moreover, in the WLC model,

the length ` is set to zero and the number of segments N tends to in�nity, so that the

contour length remains constant: LC = N`. A discrete version of the WLC has been

developed which allows higher forces to be considered and the behaviour of DNA to be

better approximated [80�82]. The partition function cannot be calculated exactly either.

An example of use of the WLC model for the tenascin protein is shown in Fig.1.23. The

behaviour of a chain with the WLC model is the following:

f =
kBT

p

[
1

4

(
1− x

LC

)2

− 1

4
+

x

LC

]
, (1.2)

with f the exerted force, kB the Boltzmann constant, T the temperature, p the persistence

length, x the extension of the chain, and LC the contour length. From the physical point

of view, the persistence length p can be de�ned as the length over which correlations in

the direction of the tangent are lost.

Currently, the accepted model for the double-stranded DNA is the twistable worm-like

chain model (TWLC), which allows to describe helicoidal double-stranded DNA response

under both applied forces and torques [83]. However, this model is not in agreement with

experiments realised on DNA with magnetic torque tweezers [84, 85]. Recently, a model

was proposed to correctly take account of both bending and torsional sti�ness by adding

a coupling term between twist and bend deformations [86,87].

A comparison between the FJC and the WLC to model the behaviour of a polyprotein

can be observed in Fig.1.24. The approximation with the FJC model is reasonable,

however, the approximation with the WLC is quantitatively better. Nevertheless, in our

study, we develop models for chains composed of many units and therefore, we chose to

consider simpler models, like FJC, to be able to take account of several extensions, such
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Figure 1.23 � The entropic elasticity of tenascin protein and domain unfolding. a) The
entropic elasticity of proteins can be described by the WLC (worm-like chain) equation
(inset), which expresses the relationship between force F and extension x of a protein
using its persistence length p and its contour length LC . k is Boltzmann's constant and
T is the absolute temperature. b) The saw-tooth pattern of peaks that is observed when
force is applied to extend the protein corresponds to sequential unravelling of individual
domains of a modular protein. As the distance between substrate and cantilever increases
(from state 1 to state 2) the protein elongates, generating a restoring force that bends
the cantilever. When a domain unfolds (state 3) the free length of the protein increases,
returning the force on the cantilever to near zero. Further extension again results in
force on the cantilever (state 4). The last peak represents the �nal extension of the
unfolded protein prior to detachment from the AFM tip. c) Consecutive unfolding peaks
of recombinant human tenascin-C were �tted using the WLC model. The contour length
(LC) for each of the �ts is shown; the persistence length p was �xed at 0.56 nm [25].

as the interactions among the units and to obtain analytical results. The WLC model

allows for considering a single unit, whereas we use the FJC model to represent the whole

curve of the force-extension response of the macromolecular chain. Thus, we favour the

FJC, a simpler model.
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Figure 1.24 � Examples of the use of polymer elasticity models to �t to protein unfolding
data from SMFS force versus extension experiments. a) The freely jointed chain (FJC)
model is shown, with a Kuhn length of 0.22 nm for the force extension curve of the
polyprotein (pL)5. b) The worm like chain (WLC) model is shown, with a persistence
length, p, of 0.39 nm for the same data, (pL)5. c) A comparison of the model �t to the
data for one protein unfolding event in the polyprotein chain for the FJC (blue) and WLC
(red) models with an p of 0.4 nm and b ≈ 2p = 0.8 nm [6].

1.4 Proteins

Most of the functions in living beings depends on proteins, also called polypeptides,

which are biological macromolecules present in all living cells. There are many di�erent

types of proteins, representing 50 % of the dry mass of cells and playing a variety of

roles for the organism. For example, proteins allow to accelerate chemical reactions, to

store amino acids to biosynthesize other proteins, to defence the organism, they also serve

for structural support, cell communication and movement. A human body has tens of

thousands of proteins. Each of these proteins has its own structure and function. These

conformations are among the most complex biological structures and can be studied using

SMFS techniques. As an example of complexity, if one observes the Fig.1.25, a pulling

speed-dependence of the force peaks can be observed, meaning that the intensity of the

force peaks increases when the pulling speed is increased. Such e�ects will be taken into

account further in this manuscript.
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Figure 1.25 � Schematic diagram illustrating the dependence of pulling speed on force
peaks. a) SMFS force-extension experiments can be completed at di�erent pulling speeds.
b) By measuring the unfolding force of each force peak and creating an unfolding force
histogram, the unfolding force FU can be obtained for a particular pulling velocity. The
higher the pulling velocity, the higher the value of FU . c) Completing force versus ex-
tension experiments at a range of pulling velocities allows the unfolding force FU to be
plotted as a function of the natural logarithm of the pulling velocity [6].

To describe proteins, four levels of structure can be used: primary, secondary, tertiary,

and quaternary. The basic elements of proteins are amino acids. The order of amino

acids in the polypeptide chain represents the sequence of the protein and is known as

the primary structure. These amino acids come from the DNA sequence following the

genetic code, i.e the instructions to build a speci�c protein reading a corresponding gene

(see Fig.1.26). Each gene's code combines the four bases in various ways to spell out

three-letter "words" that specify which amino acid is needed at every step in making a

protein.

Although proteins are di�erent from each other, they are all made up of the same

twenty amino acids, represented in Fig.1.1. Large polypeptide chains are created by

forming peptide bonds between amino and carboxyl groups on two adjacent amino acids.

These bonds are covalent. Then comes the secondary structure, whose most common are

made of β-sheets, formed by parallel or anti-parallel β-strands or α-helices. The exis-

tence of these structures was found in 1951 by the Nobel prize in chemistry 1954, Linus

Pauling [89]. Tertiary structure, for its part, refers to the three-dimensional shape of the

protein, stabilised by interactions between the side chains, and can be classi�ed into three
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Figure 1.26 � Illustration of the genetic code, with the correspondence between nucleic
acids and amino acids [88].

categories: all β-structures, all α-structures and α/β structures. The interactions allowing

to held in place the three-dimensional structures are hydrogen bonds, i.e. dipole-dipole

interaction between a hydrogen atom and an electronegative atom. Forα-helices, hydro-

gen bonding is made between the amine and carbonyl groups on the same polypeptide

chain. Forβ-sheets, they are made between the amine groups of one polypeptide chain

and carbonyl groups on a second adjacent chain. Finally, quaternary structure represents

the assembly and interactions between two or more polypeptides. One notices that only

the proteins consisting of more than one polypeptide have a quaternary structure. In

Fig.1.27, one can see a schematic representation of the four di�erent levels of the protein

structure.

Other interactions can take place proteins or bigger macromolecules like hydrophobic

and hydrophilic interactions or Van Der Walls interactions (distance-dependent interac-

tion between atoms or molecules). Since most of these interactions are quite weak, their
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Figure 1.27 � Diagram of the four levels of structure of a protein [90].

energy may be comparable to the thermal energy �uctuations. This point explains the

complexity of the proteins folding problem and justify the use of equilibrium and non-

equilibrium statistical mechanics.

Once the structure of proteins has been studied, the latter can be classi�ed in three

main classes, represented in Fig.1.28, by the properties of their environment and the con-

cerned interactions.

The �rst class concerns globular proteins. These proteins are water soluble, hence they

are often studied. As the name suggests, they form a globular shape. This results from

an assembly of di�erent secondary structures. These secondary elements form to pro-
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Figure 1.28 � Schematic diagram showing the three classes of proteins. Blue molecules
represent water. On the panel a), a globular protein is shown. One can see hydrophobic
amino acids in the yellow core of the protein, which is water soluble. On the panel b),
a membrane protein traverses through the membrane (composed of lipids and proteins.
Hydrophilic regions of the protein are exposed to the water molecules either side of the
membrane. On the panel c), one can see an example of �brous protein, collagen, which is a
non-soluble protein. Collagen is a �bril made up of α-helices, formed by three intertwined
polyproteins [6].

tect hydrophobic amino acids from contact with water. A well-know globular protein is

hemoglobin, whose role is to transport oxygen from the respiratory system (lungs, gills)

to the rest of the body. Globular proteins can have a structural role (e.g. actin G in the

actin micro�laments). However, in contrast to �brous proteins whose role is limited to a

structural function, globular proteins can behave like enzymes, messengers (to transmit

messages to regulate biological processes), stock of amino acids and so on.

The second class are membrane proteins. These proteins are in cell membranes and they

separate internal components of the cell from external components and environment.

They can contain multiple α-helices, which traverse several times through the membrane,

or multiple β-sheets, which provide a channel through the membrane, or even just single

α-helices allowing to traverse through the membrane once. Membrane proteins have many

functions: transport of various elements across membranes, signalling, sensing, and so on.

Finally, the last class of proteins deals with �brous proteins. The latter allow to provide

structural support to cells and tissues. Fibrous proteins often associate to form �laments

and �brils. They can be separated into three categories: β-structural (made up of β

structures, like silk �bre), α-structural (like superhelix formed by coiled helices) or colla-

gen (non soluble �brils found in the bone matrix). Fibrous proteins can contain smaller

globular proteins, like titin, consisting of combination of regions alternating with both

globular and �brous proteins.
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1.5 Structures with bistability

Most proteins can be viewed as composed of multistable units. Linus Pauling and

Alfred Mirsky quali�ed in 1936 the denatured proteins they studied as "by the absence

of a uniquely de�ned con�guration" [91]. The modern statistical mechanical picture of

protein folding is represented by a funneled energy landscape. In Fig.1.29, a simpli�ed

two-dimensional projection of the energy landscape is shown and nevertheless, it looks

very complex [92]. To simplify the study of such macromolecules, a two-state energy

landscape is often considered. Indeed, many macromolecules of biological origin show a

two-state behaviour, like DNA, RNA or proteins. This two-state behaviour is associated

to two con�gurational states, namely folded and unfolded states. Creating mathematical

models is very useful to predict the behaviour of such structures. In practical terms, the

�rst energy well is associated to the folded (or native) position, energetically the most sta-

ble position. The second potential well represents the unfolded state and is a metastable

state.

At the thermodynamic equilibrium, if the system is far from the thermodynamic limit

i.e. the number of units is small, di�erent cases (or statistical ensembles) have to be

studied. As seen before, di�erences between isometric and isotensional ensembles can be

studied in small systems thanks to statistical mechanics. In the Gibbs ensemble, units

are independent from each other. Their folding or unfolding only depends on applied

forces or temperature e�ects. However, in the Helmholtz ensemble, an implicit inter-

action is created between the units because of the �xed length of the chain (isometric

condition). Therefore, the calculation of the Helmholtz partition function is complicated

due to implicit interactions leading to bonds between units. The mechanics of bistable

chains embedded in a thermal bath is one of the most studied subject in this manuscript.

The modelling of bistable systems is not only useful for the understanding of macro-

molecules, but also relevant for the understanding of the muscle operating principle [94,95].

In this case, bistable mechanical models are able to describe the physical mechanisms of

the two passive and active regimes. Again, the study of bistable chains is also important

in material science to investigate several plastic phenomena. For instance, a sawtooth-like

pattern appears in the force-extension response of several non-biological systems under-

going discrete phase transformations, like ferromagnetic alloys, nano-intended substrates

and plastic materials. A typical case concerns nanowires undergoing phase transforma-

tions [96�98]. When stretched, these structures present a �rst force peak higher than the

others. This corresponds to an overtstress or a nucleation stress. The nucleation is the
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Figure 1.29 � Energy landscape of globular proteins. The protein energy landscape is
represented by the free energy of the protein as a function of some reaction coordinates.
Transiently unfolded proteins are in a higher state of energy. When exploring their energy
landscape proteins transit spontaneously through di�erent folding states, before eventu-
ally ending up in their native state, which is the lowest energy state. This phenomenon
is known as the folding funnel. Within the minimum of the native state, a multitude of
substates, known as conformational substates, are constantly explored [93].

creation of a new crystal structure and therefore of a phase between two interfaces. Using

Ising-like models makes a lot of sense as it confers weight to interfaces. As a matter of

fact, a parallel can be drawn between the �rst force peak observed in Fig.1.30 and the

�rst force peak obtaining with bistable chain in the case of a ferromagnetic-like interac-

tion under isometric condition (cf. Chapter 4). This is explained by the cost of creating

interfaces. A higher force is required to counteract the stable state in which the system

is in, a state in which it would remain if it were not constrained.

In several arti�cial systems, particular performances have obtained with the bistability,

like bistable mechanical metamaterials with a negative Poisson ratio (auxetic media) [99]

or systems to control the waves propagation [100]. Models based on chains of bistable

units with transitions between two states have been also adopted to model hysteretic

behaviours and martensitic transformations in continuum mechanics [101�107], or again

energy dissipation with shock reduction [108], like protection in car crash thanks to energy
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Figure 1.30 � Stress-strain behaviour of a 1.96× 1.96 Cu nanowire at the temperature of
300 K. The comparison of the results of MD simulations with the model predictions is
shown [97].

absorption by changing the energy state of a unit stepwise, which will reduce the impact

of the shock.

1.6 Motivations and goals

To conclude this Introduction, we try here to summarise the motivations and goals

of this thesis. The work presented in this manuscript is focused on the study of chains

with bistable units by means of the spin variable approach. Some speci�c problems

without a thorough understanding in existing literature are addressed here. These prob-

lems are interesting not only for the statistical mechanics theoretical aspects but also

for a better comprehension of the physics underlying the force spectroscopy of biological

macromolecules and other problems in material science (plasticity and so on, as brie�y

described above). From the historical point of view, the �rst biophysical model based on

a discrete quantity, similar to a spin variable, has been performed to predict the response

of skeletal muscles [109, 110]. This method has also recently been applied to di�erent

allosteric systems and macromolecular chains [94, 111, 112]. The spin variable technique

has been developed as an equilibrium statistical mechanics methodology, based on the
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introduction of a set of discrete variables, to describe the thermo-mechanical properties

of a bistable chain under arbitrary external conditions [113]. The aim of this methodol-

ogy is to obtain for both Gibbs and Helmholtz ensembles the partition functions, central

functions of statistical mechanics allowing to obtain values like mean extension or mean

force. A two-state freely jointed chain made up of bistable units is typically considered,

with a stable folded state and a metastable unfolded state i.e. each unit is in only one

of the two possible states (folded or unfolded). Introducing the spin variables permits to

consider a simpler energy pro�le for the units. Indeed, the spin variable indicates in which

of the two potential wells the unit is. Consequently, the potential energy, instead of being

approximated by a bistable continuous function (with two minima), can be divided into

two simpler parabolic functions. This point allows to do rather straightforward calcula-

tions. In this thesis, models for force-extension response of bistable chains are developed,

permitting to take into account di�erent extensions and generalisations of the existing

spin models. These models are developed for both Gibbs and Helmholtz ensembles, as

the force-extension response depends on the applied boundary condition for bistable units.

We successively introduced intrinsic elasticity, interactions through the Ising model, het-

erogeneity and dynamics.

First of all, we add intrinsic elasticity to the existing model. In the classical bistable

freely jointed model, the wells are considered with a very large sti�ness (ideally in�nite)

in order to simplify the calculations. This assumption is coherent with the classical freely

jointed chain where each bond is inextensible. We use in this part of the thesis the spin

variables approach to identify the folded or unfolded state of the chain units by taking into

account units with a �nite elasticity, a property often neglected, while it plays a major

role in determining the force-extension response. Indeed, the most of macromolecules of

biological origin show an intrinsic elasticity, which can be hardly approximated with inex-

tensible bonds. We obtain the complete solution for a speci�c case, namely the two-state

freely jointed chain with extensible units stretched in the three-dimensional case. The

partition function of the isotensional (Gibbs) ensemble is obtained in an exact analytic

form by direct integration. Thanks to the generalisation with negative indices of the Her-

mite polynomials, also the partition function of the isometric (Helmholtz) can be written

in an exact form. These original results allow to interpret stretching experiments, oper-

ated from the entropic regime up to the unfolding processes, by considering an extensible

bistable chain.

Then, it seems obvious to add interactions among the units to the existing models. One of

the main motivations to deal with interactions comes from tandem repeat proteins [114].
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These proteins are de�ned as several (at least, two) adjacent copies having the same or

very similar sequence motifs, generated by internal duplications. The repetition of the

sequence ranges from a single amino-acid up to domains of 100 or more residues. Some

tandem repeat proteins are far from each other in the sequence, however they are near in

the con�gurational space and can interact despite the distance. Introducing interactions

permits to take account of mutual interactions between units. Hence, the systems con-

sidered in this part are bistable and cooperative. It means that each unit can undergo a

transition between the folded and unfolded states and the transition of one unit a�ects

the transition of the others. To better understand the behaviour of both bistable and

cooperative chains, we chose the simple Ising model. The Ising coe�cient, λ, allows to

consider several cases, like the case of a "positive" interaction i.e. the unfolding of one

unit favours the unfolding of other units, or the case of a "negative" interaction, where

the unfolding of unit encourages other units not to unfold. We provide evidence that the

cooperativity, measured by the Ising interaction coe�cient, strongly modi�es the force-

extension response of the chain and its con�gurational properties. Adding interactions

makes our model more realistic. This scheme, in addition to represent the behaviour of

some proteins, is able to explain the nucleation stress in nanowires, as brie�y discussed

above.

To bring the model even closer to reality, the heterogeneity of the chain has be to be

taken into account. Until now, we considered the case of a bistable chain composed of the

same units. The units sequence was homogeneous, at energetic levels for instance. For

a homogeneous system (with all the units identical) in a given condition, the probability

of unfolding is the same for all units, depending on the extension of the chain. If experi-

ments (real or numerical) are made to �nd unfolding pathway of a bistable chain made of

homogeneous bistable units, di�erent unfolding pathways are observed having the same

probability to occur. On the contrary, for a strongly heterogeneous system (units with

di�erent length, sti�ness, energy level, etc), the probability of unfolding one unit tends

to one and to zero for the others and the unfolding pathway can be obtained and iden-

ti�ed with a given probability. Introducing heterogeneity of a macromolecular chain is

really important to get closer from the behaviour of the real chains. Indeed, when a given

unit unfolds, the value of the corresponding spin changes and we are theoretically able

to obtain the sequence of transition. The latter will permit to reconstruct the unfolding

pathway. As a matter of fact, the ultimate goal is to �nd thermomechanical properties

but also more re�ned properties like the unfolding pathway, the relative probability of

unfolding for a couple of units, etc. From the statistical mechanics point of view, the
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heterogeneity can be considered as a quenched disorder introduced within the system.

Quenched disorder is a disorder that remains in the system in spite of its evolution and

is consequently not associated to the thermal �uctuations. In the Chapter dedicated to

the heterogeneity, we investigate the behaviour of a chain made of bistable units with

an heterogeneous distribution of energy jumps between the folded and unfolded states,

with deterministic and random distributions of the energy jumps in both isotensional and

isometric conditions. We obtained the closed form expression of the partition function

thanks to the Laplace-Fourier relation between Gibbs and Helmholtz partition functions

and the determinant form of the so-called Newton-Girard formulae (see details in Chapter

5). We observed that in the case of homogeneous chains, no unfolding pathway can be

identi�ed. On the contrary, we prove that the unfolding pathway is described by the

ascending order of the energy jumps between folded and unfolded states in the case of

heterogeneous units. The statistical properties of this pathway are studied in detail.

Finally, the transition from equilibrium to non-equilibrium statistical mechanics is inves-

tigated in the last Chapter of this manuscript. In previous Chapters, systems of bistable

chains were studied at thermodynamic equilibrium. The thermodynamic equilibrium cor-

responds to a very low velocity (ideally, zero) of increasing extension of the chain i.e.

each time the length of the chain increases, the chain is considered to reach a state of

equilibrium (quasi-static transformations). In real life, with available devices of force spec-

troscopy, it is not possible to pull on the molecular chain with velocities low enough to

exactly work at thermodynamic equilibrium. Currently, analytic solutions and molecular

dynamics simulations are applied to solve the problem. However, analytic solutions per-

mit to work only with very low extension speeds and molecular dynamics, with very high

extension speeds, because of computational cost, limiting the total simulation time. Here,

the aim is to develop theoretical and numerical models to be able to work with arbitrary

extension speeds (of course in a reasonable physically given range). The main motivation

comes from the experimental observation of measures of the peak forces depending on

the pulling speed (see Fig.1.25). Instantaneous forces play an important role since they

deform the energy landscape, modifying the energy jumps and consequently the frequency

of folding and unfolding events. Indeed, we observe that the intensity of the peak forces

measured within the Helmholtz ensemble are strongly dependent on the extension speed

applied to the chain. This point will give the possibility to validate the model against real

data of titin, a heavy chain and �lamin, a light chain. To do so, we will work with the

overdamped Langevin approximation, where the inertial term is neglected, leading up to

a �rst order di�erential equation instead of a second order equation, classically describing
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the motion evolution of the system. Its implementation allows for investigating the e�ect

of the pulling rate and of the device intrinsic elasticity on the chain unfolding response.

Our model allows for considering pulling speed ranging from the standard AFM to the

HS-AFM. A stochastic Monte Carlo scheme is also used to introduce the bistability in an

alternative way.
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Chapter 2

Introduction to the thermodynamics of

small systems and the spin variable

method

2.1 Thermodynamics of small systems

In this Section, we show how the spin variable method can be used to obtain correct

general results concerning the thermodynamics of chains with conformational transitions.

2.1.1 Introduction

As previously said, the whole stretching behaviour of macromolecules (composed of

entropic, enthalpic, unfolding and over-stretching regimes) can be experimentally studied

through SFMS methods. In particular, the unfolding of the units of a chain, governed

by the conformational transitions between two (or more) states, is an important process,

e.g., observed in polypeptides and nucleic acids. These transitions can modify parameters

like the length, the energetic level and the elastic properties of the units of the chains,

and they can be taken into account by means of a potential energy exhibiting two (or

more) minima corresponding to the stable states or con�gurations.

Today, many e�orts are devoted to the application of theoretical physics methods

to the complexity of the biological context [115]. Accordingly, models introducing a

speci�c Hamiltonian for the system and allowing to calculate the pertinent partition

function and, eventually, the thermal and mechanical macroscopic properties, are devel-

oped for macromolecules of biological origin [116�121]. Classically, as previously intro-

duced, macromolecules without con�gurational transitions can be studied through the

FJC model [120, 122], the WLC model [71, 117, 123] and many other generalised ap-

39



x

y

z

x

y

z

Gibbs ensemble Helmholtz ensemble

applied f

imposed z

measured < z >
measured < f >

a) b)

folded domain

unfolded domain

Figure 2.1 � Single-molecule stretching experiments conducted within the Gibbs a) and
the Helmholtz b) ensembles. Each domain of the chain may experience a conformational
transition between folded (length `) and unfolded (length χ`) states [1].

proaches [82,124�127]. On the contrary, for macromolecules exhibiting folding/unfolding

transitions, the boundary condition imposed to the system (see Fig.2.1 for details) has to

be considered in the models. Indeed, the isotensional experiments (at constant applied

force), typically performed with soft devices, correspond to the Gibbs statistical ensemble

(Fig.2.1.a, and the isometric experiments (at prescribed displacement), performed by hard

devices, represent a realisation of the Helmholtz statistical ensemble (Fig.2.1.b [128�131].

If the isotensional condition is applied to the system under consideration (Gibbs ensem-

ble), the force-extension response typically presents a plateau-like shape, with a threshold

force characterising the synchronised unfolding of all the units of the chain. This behaviour

can be interpreted as a cooperative process, which induces the simultaneous transition

of the macromolecular domains [73,77,79,132,133]. Contrarily, the force-extension curve

under isometric conditions (Helmholtz ensemble) typically shows a sawtooth-like shape,

corresponding to the sequential unfolding of the units in reaction to the increasing exten-

sion. This behaviour is therefore interpreted through a non-cooperative process, with a

progressive unfolding of the units [24,25,134�136].

As explained before, the non-equivalence in the force-extension curves above mentioned

(Gibbs versus Helmhotz ensembles) can be measured in the case of a system composed of

a small number of units, or monomers, i.e. when the thermodynamic limit is not satis�ed.

On the other hand, whenever the number of units is very large (ideally, when it tends to

in�nity), the statistical ensembles become equivalent and they are described by the same

constitutive force-extension response [20,124,137�139].

40



In order to get a wider comprehension of this complex scenario, several theoretical

approaches have been so far proposed in literature. Concerning the Gibbs ensemble, the

plateau-like response observed for double-stranded DNA has been largely investigated

with thermodynamic approaches, statistical mechanics and molecular dynamics simula-

tions [68, 74�77, 140]. A similar response has been also observed for long polysaccharides

(e.g.,dextran) and modelled through a continuous two-state model [24, 128,141].

In a like manner, theoretical developments have been adopted to model the sawtooth-

like response observed within the Helmholtz ensemble. Theories for titin, RNA hairpins

and other macromolecules have been elaborated through Landau-like free energies, �rst-

order phase transition, Langevin equations, and Ising models [142�147]. A more general

point of view about two-state systems driven by hard or soft devices can be found in the

mechanical literature concerning discrete systems with multi-basin energy landscapes,

Fermi-Pasta-Ulam chains of bistable elements, and structures undergoing discrete phase

transformations [104,105,107,148].

We present here a general methodology to study the thermodynamics of a system

composed of two-state units and subjected to di�erent boundary conditions. The main

idea consists in associating to each unit a discrete variable (or spin variable), able to

de�ne the state of the unit itself. Such a variable represents a sort of "bit", assuming

the values 0 and 1 for the folded and the unfolded states, respectively. The spin variables

are considered as dynamic variables, thus belonging to the extended phase space of the

system. From the historical point of view, the �rst biophysical model based on a dis-

crete quantity, similar to a spin variable, has been performed to predict the response of

skeletal muscles [109, 110]. This method has been recently applied to di�erent allosteric

systems and macromolecular chains as well [94, 111�113]. The introduction of the spin

variables allows to strongly facilitate the calculation of the partition functions, preserving

at the same time a good accuracy of results [113]. Brie�y, an arbitrary potential function

composed of two minima can be substituted by two quadratic potentials and the switch-

ing between them is governed by the corresponding spin variable. This method works

for both Gibbs and Helmholtz ensembles, allowing to draw direct comparisons between

isotensional and isometric conditions. We remark that the spin variables approach can

be only adopted for systems at thermodynamic equilibrium. As a matter of fact, the

quadratic potentials and the associated spin variables are not su�cient to describe the

dynamics, since the characteristic relaxation times strongly depend on the energy barriers

between the potential wells. This is a well-known result, encoded within the Kramers rate

formula, originally formulated to study chemical reactions [16], and recently generalised
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for arbitrary systems with nonconvex energy landscapes [149, 150]. Hence, we use in the

following the spin variable approach both in Helmholtz and Gibbs ensembles and we show

how it allows to obtain well-known general results of the thermodynamics.

2.1.2 Thermodynamics of chains with conformational transitions

We introduce here a general methodology to describe the problem of the conforma-

tional transitions in chains undergoing typical folding/unfolding processes. It means that

each domain or unit of the chain may be in two states, corresponding to di�erent chemical

conformations. The potential energy of the system is therefore constituted of two wells,

which can be explored during the dynamics of the system. To simplify the description of

the system, considered at thermodynamic equilibrium, it is often convenient to introduce

discrete variables or spins, which are able to indicate what basin is explored for each unit

of the chain. Consequently, the more general form of the Hamiltonian for such a system

can be written as

H =
N∑
i=1

~pi · ~pi
2M

+ U (~r1, ..., ~rN , S1, ..., SN)−
N∑
i=1

µiSi, (2.1)

where Si ∈ {0, 1} are the spin variables ∀i = 1, ..., N introduced in the potential energy

U . A domain is said folded (i.e. it is in the �rst energy well) when Si = 0 and unfolded

(i.e. it is in the second energy well) when Si = 1. The �rst term represents the kinetic

energy (~pi are the linear momenta of the units and M is their mass) and the second term

represents the potential energy depending on the units positions ~ri and on the spins Si.

Finally, the third term represents the e�ect of the external chemical environment on the

state of the domains: if µi > 0, the unfolded state is favoured, and conversely, if µi < 0,

the folded state is favoured. From the experimental point of view, the chemical potentials

µi may mimic the presence of some chemical substances, able to induce or to impede

the units unfolding. An interesting example concerns the e�ect of ethidium molecules on

the force-induced melting of DNA [151]. As discussed below in our model, the chemical

potential is able to shift the e�ective energy jump between folded and unfolded states

of a given bistable system. This exactly corresponds to the experimental observations in

response to an increasing concentration of ethidium, which reported an increase of the

DNA transition force and of the e�ective energy jump between states before and after the

transition [151].

It is important to remark that the introduced Hamiltonian function corresponds to

a coarse-graining approach, applied to the actual molecular architecture of the system.
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Indeed, the concept of units above introduced corresponds to a speci�c ensemble of atoms

with a well-de�ned behaviour, summarised within the coarse-grained potential energy. Of

course, we could have considered an exact Hamiltonian with a very large number of de-

grees of freedom (all the atomic coordinates and momenta as, e.g., introduced in classical

molecular dynamics), but we propose a simpli�cation to provide analytic developments

and corresponding physical interpretations. Therefore, when we mention a physical prop-

erty of one unit (elastic constant or others), we have to keep in mind that it represents the

collective response of the atoms of the unit, and not a real or intrinsic property of an exact

Hamiltonian. Then, these properties of units may be considered temperature-dependent

being de�ned at the mesoscopic scale. This is similar to the expansion of the Landau free

energy used to describe critical phenomena, where the coe�cients depend on temperature

for the same reason. The coarse-graining approach also leads to the following issue in

writing Eq.(2.1): since the extremities of a given unit ~ri−1 and ~ri are associated to the

momenta ~pi−1 and ~pi, it means that we assume the mass concentrated at points ~ri, while

in the real case the mass is distributed between ~ri−1 and ~ri on all the atoms composing

the unit. This is a typical approximation used to describe a one-dimensional chain [152],

but it should be kept in mind since each unit is �nally identi�ed by the two positions of

extremities and by one spin variable.

As an example, a concrete case can be described by the following potential energy

U = −
N−1∑
i=1

λi(2Si − 1)(2Si+1 − 1) +
N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2

+
N∑
i=1

v(Si) +
N−1∑
i=1

1

2
κ(Si)

(
~ti+1 − ~ti

)2
, (2.2)

where the �rst term represents an Ising interaction among the states of the units (λi being

the interaction coe�cients and 2Si − 1 = ±1 if Si = 0, 1), the second and third terms

represent the spring-like behaviour of the two-state domains (k, ` and v are the elastic

constant, the equilibrium length and the basal energy, respectively, of the states), and

the last term represents a discrete worm-like-chain interaction among the units (κ is the

bending constant related to the persistence length p = `κ
kBT

and ~ti = (~ri − ~ri−1)/‖~ri −
~ri−1‖). The Ising scheme represents an interaction among the spin variables, with two

adjacent units favoured to be in the same state if λi > 0 or favoured to be in opposite

states if λi < 0. The typical case arising in protein structures corresponds to a positive

interaction and allows the interpretation of cooperativity of the folding/unfolding process

[153]. An interesting example of cooperativity in forced unfolding concerns the case of
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tandem repeats proteins in red cell spectrin [114]. AFM-measured force-extension curves

of thousands of constructs with few repeats of spectrin have shown a signi�cant statistic

of tandem repeat unfolding processes. It means that two adjacent units unfold at the

same time (cooperatively), thus generating a single force peak in the observed response

[114]. The mechanism at the base of this transition lies in the strongly interconnected

repeats, which unfold in synchrony. This is the typical phenomenon modelled by an Ising

model, as introduced in Eq.(2.2). Also, a similar observation has been made on Filamin

A, where domain-domain interactions lead to a hierarchy of unfolding forces that may

be studied by an Ising scheme [154]. An interesting system for studying interactions

and cooperativity is given by the ankyrin repeat proteins. They present, contrarily to

globular proteins, very few long-range contacts and therefore only local interactions are

present [155]. However, these structures show a high degree of folding cooperativity, and

are therefore very stimulating to analyse the folding/unfolding process. In this system,

it is relatively easy to add or remove units, thus generating ideal models to compare

experiments and theories [155]. We also note that the interactions among domains may be

a�ected by chemical substances, which �nally modify the folding pathway. As an example,

we can cite the e�ects of chaperones on maltose binding proteins (MBP), recently observed

by optical tweezers measurements [156,157]. From the theoretical point of view, it means

that the Ising interaction coe�cients may depend on the external chemical conditions.

We will analyse the Ising interactions in Chapter 4.

Concerning the WLC scheme, we recall that it represents a geometric interaction,

which provides an elastic �exibility to a chain of objects, trying to align them along the

same direction. As an example, in Eq.(2.2), this form of interaction has been introduced

in a discrete form among the units of the chain. It means that the situation with aligned

units is energetically favoured. Nevertheless, it is interesting to note that in most of

protein structures, the WLC scheme can be used to model the force-extension behaviour

of each unit. It means that it should be implemented at the level of the exact Hamiltonian

(at atomic and/or molecular scale), above introduced. It is the basic model chosen to

interpret the force-extension curves of force spectroscopy experiments, including the ones

with folding/unfolding transitions [24,128,135]. In this thesis, the WLC energy term will

be often neglected in order to obtain closed form solutions describing di�erent types of

Hamiltonian functions.

The folding/unfolding of the units, here described by the spin variables, is controlled

by the mechanical boundary conditions applied to the chain and by the chemical potentials

of the external environment. We consider here a chain with the �rst extremity tethered at
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Figure 2.2 � Schematic representation of a stretching experiment within the Gibbs en-
semble, with the typical force-extension response showing a force plateau.

the origin of the reference frame. In general, an arbitrary chain described by Eq.(2.1) can

be studied within the Helmholtz ensemble or within the Gibbs ensemble of the statistical

mechanics. In the �rst situation, we �x the second extremity at a given point of the space

while, in the second situation, we apply an external force to the last unit. In the following,

we brie�y describe the statistical mechanics of both ensembles, eventually verifying that

the proposed approach yields results, which are coherent with standard thermodynamics.

Within the Helmholtz ensemble we have a speci�c Hamiltonian given by

HH = H(~q, ~p, ~S;~r, ~µ), (2.3)

where we introduced ~q = (~r1, ..., ~rN−1) (we �xed ~rN = ~r), ~p = (~p1, ..., ~pN−1) (we �xed

~pN = 0), ~S = (S1, ..., SN), and ~µ = (µ1, ..., µN) (see Fig.2.2). In this scheme, ~r and ~µ are

externally controlled variables and ~q, ~p and ~S are the dynamical variables of the phase

space. Therefore, the density probability of the canonical ensemble is given by [120,158]

ρH(~q, ~p, ~S) =
1

ZH(~r, ~µ, T )
exp

[
−HH(~q, ~p, ~S;~r, ~µ)

kBT

]
, (2.4)

where the Helmholtz partition function reads

ZH(~r, ~µ, T ) =
∑

~S∈{0,1}N

∫
Q

∫
Q

exp

[
−HH(~q, ~p, ~S;~r, ~µ)

kBT

]
d~qd~p, (2.5)

and where Q = R3(N−1). By means of this probability density, one can determine the

average value of any macroscopic variable. This is the reason why calculating the partition
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function is of vital importance in the statistical mechanics. In particular, the average

value of the force ~f = ∂HH
∂~r

needed to �x ~rN = ~r and the average value of each spin

variable Si can be easily obtained through the introduction of the Helmholtz free energy

F = −kBT logZH . Indeed, straightforward calculations yield
〈
~f
〉

= ∂F
∂~r

and
〈
~S
〉

=

−∂F
∂~µ
, which represent two macroscopic or thermodynamic relations. Moreover, the �rst

and second principles for quasi-static transformations can be derived as follows from

previous statements. First of all, we de�ne a quasi-static transformation through the

time evolution of ~r(t), ~µ(t) and T (t), which are considered as externally controlled "slow-

varying" variables. Under these hypotheses, we can assume that the canonical distribution

in Eq.(2.4) remains valid also in this "weak" out-of-equilibrium regime. Therefore, we can

evaluate the rate of change of the internal energy U , de�ned as the average value of the

Helmholtz Hamiltonian

dU
dt

=
∑
~S

∫
Q

∫
Q

d

dt
(HHρH) d~qd~p

=
∑
~S

∫
Q

∫
Q

(
∂HH

∂~µ
· d~µ

dt
+
∂HH

∂~r
· d~r

dt

)
ρHd~qd~p+

∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p

= −
〈
~S
〉
· d~µ

dt
+
〈
~f
〉
· d~r

dt
+
∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p, (2.6)

where all the sums on ~S are performed over {0, 1}N . The �rst two terms represent the

chemical and the mechanical work per unit of time, respectively, done on the system, while

the third one describes the rate of heat entering the system. The latter can be further

elaborated by de�ning η = F−HH
kBT

and ρH = eη. Since
∑

~S

∫
Q

∫
Q e

ηd~qd~p = 1, the derivative

with respect to the time gives
∑

~S

∫
Q

∫
Q e

ηη̇d~qd~p = 0, and since F is independent of ~S, ~q

and ~p, we can also write that
∑

~S

∫
Q

∫
QFeηη̇d~qd~p = 0. The last term in Eq.(2.6) can be

therefore rewritten as∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p =
∑
~S

∫
Q

∫
Q
HHe

ηη̇d~qd~p

=
∑
~S

∫
Q

∫
Q

(HH −F) eηη̇d~qd~p. (2.7)

Now, since HH −F = −kBTη, we also have∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p = −kBT
∑
~S

∫
Q

∫
Q
eηηη̇d~qd~p. (2.8)
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This expression can be easily interpreted by considering the average value of the variable

η given by 〈η〉 =
∑

~S

∫
Q

∫
Q e

ηηd~qd~p and its time derivatives

d 〈η〉
dt

=
∑
~S

∫
Q

∫
Q
eηη̇d~qd~p+

∑
~S

∫
Q

∫
Q
eηηη̇d~qd~p. (2.9)

Since the �rst integral is zero for previous calculations, we eventually obtain∑
~S

∫
Q

∫
Q
HH

dρH
dt

d~qd~p = −kBT
d 〈η〉

dt
= T

dS
dt
, (2.10)

where we introduced the entropy of the system as

S = −kB 〈log ρH〉 = −kB
∑
~S

∫
Q

∫
Q
ρH log ρHd~qd~p. (2.11)

The �rst and the second principles of the thermodynamics for quasi-static transformations

can be �nally summed up through the balance equation

dU
dt

= −
〈
~S
〉
· d~µ

dt
+
〈
~f
〉
· d~r

dt
+ T

dS
dt
. (2.12)

Hence, we proved that the macroscopic thermodynamics is perfectly coherent with the

approach based on the spin variables, introduced to analyse systems with conformational

transitions. In addition, the average value of the relation HH − F = −kBTη yields

F = U − TS, which corresponds to the macroscopic de�nition of Helmholtz free energy.

By di�erentiating with respect to the time, we also have

dF
dt

= −
〈
~S
〉
· d~µ

dt
+
〈
~f
〉
· d~r

dt
− S dT

dt
, (2.13)

from which we can deduce the two already introduced equations
〈
~f
〉

= ∂F
∂~r

and
〈
~S
〉

=

−∂F
∂~µ

and the important relation S = −∂F
∂T
, giving the entropy in terms of the Helmholtz

free energy.

Concerning the Gibbs ensemble, we can introduce the following extended Hamiltonian

HG = H(~q, ~p, ~S; ~µ)− ~f · ~rN , (2.14)

where the second term represents the energy associated to the external force applied to the

last unit of the chain (see Fig.2.3). Here, we introduced ~q = (~r1, ..., ~rN), ~p = (~p1, ..., ~pN),
~S = (S1, ..., SN), and ~µ = (µ1, ..., µN). In this scheme, ~f and ~µ are externally controlled
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Figure 2.3 � Schematic representation of a stretching experiment within the Helmholtz
ensemble, with the typical force-extension response showing a sawtooth-like behaviour.

variables and ~q, ~p and ~S are the dynamical variables of the phase space. Therefore, the

density probability of the canonical ensemble is given by [120,158]

ρG(~q, ~p, ~S) =
1

ZG(~f, ~µ, T )
exp

[
−HG(~q, ~p, ~S; ~f, ~µ)

kBT

]
, (2.15)

where the Gibbs partition function reads

ZG(~f, ~µ, T ) =
∑

~S∈{0,1}N

∫
P

∫
P

exp

[
−HG(~q, ~p, ~S; ~f, ~µ)

kBT

]
d~qd~p, (2.16)

and where P = R3N . As before, the most important expected values can be evaluated

through the introduction of the Gibbs free energy G = −kBT logZG. Simple calculations

yield indeed 〈~r〉 = −∂G
∂ ~f

(where ~r = ~rN) and
〈
~S
〉

= −∂G
∂~µ
, which represent two classical

thermodynamic relations. Also in this isotensional case, we can introduce a quasi-static

transformation through the time evolution of ~f(t), ~µ(t) and T (t), which are, as before,

externally controlled "slow-varying" variables. We can assume that the canonical distri-

bution in Eq.(2.15) remains valid and we can evaluate the rate of change of the average

value of the Gibbs Hamiltonian, which is the so-called enthalpy H
dH
dt

=
∑
~S

∫
P

∫
P

d

dt
(HGρG) d~qd~p

=
∑
~S

∫
P

∫
P

(
∂HG

∂~µ
· d~µ

dt
+
∂HG

∂ ~f
· d~f

dt

)
ρGd~qd~p+

∑
~S

∫
P

∫
P
HG

dρG
dt

d~qd~p

= −
〈
~S
〉
· d~µ

dt
− 〈~r〉 · d~f

dt
+
∑
~S

∫
P

∫
P
HG

dρG
dt

d~qd~p. (2.17)
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While the �rst two terms represent the power (chemical and mechanical) supplied to the

system, the third term is the rate of heat transferred to the system. A calculation similar

to the one developed for the Helmholtz ensemble allows us to rewrite this last term as

follows

dH
dt

= −
〈
~S
〉
· d~µ

dt
− 〈~r〉 · d~f

dt
+ T

dS
dt
, (2.18)

where the entropy for the Gibbs ensemble is given by

S = −kB 〈log ρG〉 = −kB
∑
~S

∫
P

∫
P
ρG log ρGd~qd~p. (2.19)

We can straightforwardly prove the thermodynamic relation G = H− TS and we obtain

the rate of change of the Gibbs free energy as

dG
dt

= −
〈
~S
〉
· d~µ

dt
− 〈~r〉 · d~f

dt
− S dT

dt
. (2.20)

The last energy balance immediately delivers the relations 〈~r〉 = −∂G
∂ ~f

and
〈
~S
〉

= −∂G
∂~µ
,

previously demonstrated, and the result S = − ∂G
∂T
, corresponding to the macroscopic

de�nition of entropy.

The two schemes here outlined represent a complete description able to deliver thermo-

mechanical response of a macromolecular chain undergoing conformational transitions

under isometric or isotensional boundary conditions. We proved that the introduction of

additional "spin" variables to describe the folding or unfolding of the units leaves unal-

tered the general results of the thermodynamics, thus being well-grounded and promising

for applications. As an example, the application of this methodology to the bistable freely

jointed chain can be found in the recent literature [113]. It is important to remark that

the thermo-elastic response may be di�erent for the two introduced ensembles if we con-

sider chains composed of a small number N of units [120]. On the other hand, when the

thermodynamic limit is attained (ideally for N →∞), the two ensembles become equiv-

alent and they exhibit the same physical response [20, 124, 137�139]. This equivalence

property is valid for non-branched single chains without con�nements, i.e. freely �uctuat-

ing in the whole space [20]. Therefore, in our analysis, the only constraints consist in the

punctual boundary conditions de�ning the Helmholtz and the Gibbs ensembles. However,

it is noteworthy to mention that some particular cases on non-equivalence between dual

canonical ensembles have been recently discussed for con�ned polymer chains [21�23].
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2.2 Applications of the spin variable method

In the Section 2.1, we presented some general results of thermodynamics obtained

with the help of the spin variable method. Here, the spin variable approach is described

in detail, for speci�c one-dimensional and three-dimensional systems. The study of these

two cases has already been published in Ref. [113]. They are here presented to introduce

the spin variable method in the simplest cases, without any of the extensions which will be

proposed in the following, like elasticity or again Ising interactions. Moreover, we show an

example to prove that the spin variables method is not also useful to obtain average values

of positions or forces but also to determine the complete probability density describing

systems with bistability.

2.2.1 One dimensional system

In this Section, we present the spin variable approach applied to a system that can be

analytically solved for both the Gibbs (isotensional) ensemble and the Helmholtz (isomet-

ric) ensemble. The aim is to obtain closed form expressions, useful to better understand

the physics of the phenomena underlying the bistability in complex systems.

A one-dimensional system composed of N units with mechanical bistability is con-

sidered here. This means that each unit of the chain can be described by a symmetric

potential energy function U(x) exhibiting four minima (equilibrium points) at x = ±`
and x = ±χ`, where χ represents the elongation ratio between the unfolded and folded

con�gurations (see Fig.2.4). Moreover, the potential energy assumes the minimum value

U = 0 for x = ±` and the minimum value U = ∆E for x = ±χ`. In order to simplify

analysis and calculations, instead of considering the complex continuous potential func-

tion represented in Fig.2.4 (blue dashed line), we introduce an additional discrete variable

y, which behaves as a spin. This variable belongs to the phase space of the system and,

therefore, is a standard variable of the statistical mechanics. The variable y assumes the

values in the set S = {±1,±χ} and allows to identify what basin the system is exploring.

So, the multimodal energy function is substituted with this simpler expression

U(x, y) = v(y) +
1

2
k0(y)(x− y`)2, (2.21)

where we consider v(±1) = 0, v(±χ) = ∆E, k0(±1) = k and k0(±χ) = h. By varying

the value of the spin variable in S, the potential energy in Eq.(2.21) provides the four

parabolic wells represented in Fig.2.4 (red solid lines). The latter permit to fully describe

the behaviour of the system represented by the multimodal energy pro�le when we assume
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−xf = −ℓ−xu = −χℓ xf = ℓ xu = χℓ0 x

U

∆E ∆Ek k

hh

y = −χ

y = −1 y = 1

y = χ

Figure 2.4 � Multistable symmetric potential energy of a single domain (blue dashed line)
and its approximation by means of four parabolic pro�les (red solid lines) [113].

to work at thermodynamic equilibrium. Similar assumptions have been introduced and

analysed in recent literature [105,150].

Here come some comments on the energy pro�le proposed in Fig.2.4. We introduced

four potential wells (two folded and two unfolded) for the following reasons. Since we study

a one-dimensional system, the consideration of positive (x > 0) and negative (x < 0)

orientations of the elements allows to model the four constitutives regimes (entropic,

enthalpic, unfolding and over-stretching). Indeed, if a system whose the �rst end-terminal

is tethered at x = 0 and the second end-terminal free to �uctuate (without externally

applied forces) is considered, we obtain that the mean value of the position of the second

end-terminal is zero because of the random orientation of the domains (almost domains

folded, 50% towards x > 0 and 50% towards x < 0). Incidentally, it means that the force-

extension curve passes through the origin of the axes. If a weak applied force (positive

or negative) is applied, the chain is in the entropic regime and the number of domains

oriented in the direction of the force slightly increases. In these conditions, the mechanical

reaction of the system is governed by the stochastic distribution of the di�erently oriented

domains (entropy) and not by the actual spring-like behaviour of the elements. Then, if

a larger force is applied, we act on the real elasticity of the domains and therefore the

enthalpic regime gives way to the unfolding process up to the over-stretching regime,

described below for both Gibbs and Helmholtz ensembles.

In conclusion, the entropic behaviour of a system under weak applied force can be

represented by the four wells energy pro�le handled by the spin variable. This aspect is

naturally introduced in two- or three-dimensional models by the higher dimensionality,

which automatically induces a larger number of degrees of freedom (see Section 2.2.2 for

details).
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2.2.1.1 The Gibbs ensemble

The total potential energy of the system in the Gibbs ensemble (isotensional condition)

can be written as

UG
tot(~x, ~y; f) =

N∑
i=1

U(xi − xi−1, yi)− fxN , (2.22)

where f is the force applied to the last element, ~x = (x1, x2, ..., xN) are continuous variables

and ~y = (y1, y2, ..., yN) are discrete spin variables. For this system, we can de�ne the

partition function ZG, as follows

ZG(f) =
∑
y1∈S

...
∑
yN∈S

∫
<
...

∫
<
e
− U

G
tot

kBT dx1...dxN , (2.23)

where the variable ~x is integrated whereas ~y is summed. Since we use orthogonal coordi-

nates, the kinetic energy only depends on the linear momentum variables and the potential

energy only on ~x and ~y. Therefore, the kinetic energy has not been considered because

its integral results in a non in�uential multiplicative constant in the partition function,

ZG(f). Eq.(2.22) can now be substituted in Eq.(2.23). To calculate the integral, we apply

the change of variables x1 − x0 = ξ1, x2 − x1 = ξ2,..., xN − xN−1 = ξN , from which we

get xn =
∑N

j=1 ξj (with x0 = 0). The change of variables within the multiple integral

must be applied by considering that d~x = Jd~ξ, where the quantity J is the Jacobian of

the transformation, i.e. J = | det[∂~x/∂~ξ]|, where [∂~x/∂~ξ]ij is the matrix of the partial

derivatives ∂xi/∂ξj. We can easily prove that J = 1 for our change of variables and,

therefore, we get d~ξ = d~x. Hence, we obtain

ZG(f) =
∑
~y∈SN

∫
<N

exp

{
N∑
j=1

[
−U(ξj; yj)

kBT
+

fξj
kBT

]}
d~ξ

=

{∑
y∈S

∫ +∞

−∞
exp

[
−U(ξ; y)

kBT
+

fξ

kBT

]
dξ

}N

=

{∑
y∈S

exp

[
−v(y)

kBT

]
I(f)

}N

, (2.24)

where the integral I(f) is de�ned as

I(f) =

∫ +∞

−∞
exp

[
− k0(y)

2kBT
(ξ − y`)2 +

fξ

kBT

]
dξ. (2.25)
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This integral can be calculated in an explicit form by means of the well-known expression∫ +∞

−∞
e−αx

2

eβxdx =

√
π

α
e
β2

4α (α > 0). (2.26)

The �nal result can be written as follows

I(f) =

√
2πkBT

k0(y)
exp

[
y`f

kBT
+

f 2

2kBTk0(y)

]
. (2.27)

Coming back to the partition function, we obtain

ZG(f) = (2πkBT )
N
2

{∑
y∈S

√
1

k0(y)
exp

[
1

kBT

(
f 2

2k0(y)
+ y`f − v(y)

)]}N

= (8πkBT )
N
2

 ∑
s∈{1,χ}

√
1

k0(s)
exp

[
1

kBT

(
f 2

2k0(s)
− v(s)

)]

× cosh
s`f

kBT

}N

. (2.28)

The last sum can be evaluated as

ZG(f) = (8πkBT )
N
2 DN , (2.29)

by writing

D =

√
1

k
exp

(
f 2

2kBTk

)
cosh

(
`f

kBT

)
+ φ

√
1

h
exp

(
f 2

2kBTh

)
cosh

(
χ`f

kBT

)
,(2.30)

and φ = exp
(
− ∆E
kBT

)
. It is particularly noticeable that there is no interaction between

the elements of the chain in the Gibbs ensemble. Consequently, we can write the parti-

tion function as a power with exponent N . A similar result can be found in Eq.(34) of

Ref. [105], describing the statistical behaviour of a Fermi-Pasta-Ulam chain of bistable

elements. Also in this case a soft device leads to the independence of the bistable units.

With the help of the expression xN = −∂Utot/∂f , the extension of the chain can be

directly calculated and its average value is therefore 〈xN〉 = 〈−∂Utot/∂f〉. It can be

simply evaluated by means of the partition function, as 〈xN〉 = kBT ∂/∂f(logZG). The

calculation eventually gives

〈xN〉
N`

=

{√
1

k
exp

(
f 2

2kBTk

)[
f

k`
cosh

(
`f

kBT

)
+ sinh

(
`f

kBT

)]

+χφ

√
1

h
exp

(
f 2

2kBTh

)[
f

χ`h
cosh

(
χ`f

kBT

)
+ sinh

(
χ`f

kBT

)]}
/D. (2.31)
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In the simpler case with k = h, we get

〈xN〉
N`

=
f

k`
+

sinh

(
`f

kBT

)
+ χφ sinh

(
χ`f

kBT

)
cosh

(
`f

kBT

)
+ φ cosh

(
χ`f

kBT

) . (2.32)

We can also calculate the average value of the spin variable 〈y〉 = 〈yi〉 ∀i, which is inde-

pendent of the characteristics of the elements considered in the chain and is given by

〈y〉 = 〈yi〉 =
N
D ∀i, (2.33)

where

N =

√
1

k
exp

(
f 2

2kBTk

)
sinh

(
`f

kBT

)
+ χφ

√
1

h
exp

(
f 2

2kBTh

)
sin

(
χ`f

kBT

)
,(2.34)

and D is given in Eq.(2.30). In the simpler case with k = h, we get

〈y〉 =

sinh

(
`f

kBT

)
+ χφ sinh

(
χ`f

kBT

)
cosh

`f

kBT
+ φ cosh

(
χ`f

kBT

) . (2.35)

By combining Eq.(2.32) with Eq.(2.35), we immediately obtain 〈xN 〉
N`

= f
k`

+ 〈y〉 or, equiv-
alently,

f = k

(〈xN〉
N
− ` 〈y〉

)
. (2.36)

This constitutive equation represents a spring-like behaviour with an equilibrium length

directly modulated by the average value of the spin variables.

An example of force-extension response and spin variable behaviour is represented in

Fig.2.5 for h = k. In the curve of f`
kBT

versus 〈xN 〉
N`

, a force plateau corresponding to

f ∗ = ± ∆E
(χ−1)`

or, equivalently, f∗`
kBT

= ± ∆E
(χ−1)kBT

is observed. Equivalently, in the curve

of f`
kBT

versus 〈y〉, we can identify the regions 〈y〉 = ±1 and 〈y〉 = ±χ with a transition

corresponding to the same force f ∗. This behaviour can be interpreted as a cooperative

process, with a threshold force f ∗ leading to the transition of all the units of the chain

at the same time. As far as DNA is concerned, it is possible to retrieve the value of its

force plateau by using the following parameters: ∆E = 3, 8KBT , ` = 3, 4 Å, χ = 1, 7

and (χ − 1)` = 2, 4Å. The value of the threshold force thus obtained is about 65 pN,

corresponding to the well-known experimental value [79].

54



< y >,
-10 -5 0 5 10

f
ℓ

k
B
T

-10

-5

0

5

10

< xN

Nℓ
>

h = k

Figure 2.5 � Responses of the one-dimensional system with multistable elements under
Gibbs conditions (h = k): average spin variable (blue line) and normalised extension (red
line) versus dimensionless force. We adopted the parameters ∆E = 30kBT = 12.4 ×
10−20J, χ = 8, ` = 0.5nm and h = k = 2.5kBT/`

2 = 0.0414N/m (at T = 300K). The
results are independent of N within the Gibbs ensemble [113].

The cooperative transition is manifest in both the force-extension curve and the spin

variable behaviour. Of course, the slope of the plateau observed depends on the temper-

ature. For higher values of the temperature, the response is smoother and the transition

of the elements occurs in a less synchronised manner. Anyway, the value of the threshold

force f ∗ can be explained as follows. As the response is symmetric, we limit the following

discussion to the region with f > 0 and 〈xN〉 > 0. We consider the two following potential

energies: U1(x) = 1
2
k(x− `)2− fx and U2(x) = ∆E + 1

2
k(x−χ`)2− fx, corresponding to

the potential wells of the system identi�ed by y = 1 and y = χ. The related equilibrium

positions are de�ned by ∂Ui/∂x = 0 and can be found as x1 = `+f/k and x2 = χ`+f/k.

Thus, the unfolded con�guration becomes more stable than the folded one if and only if

U2(x2) < U1(x1), that is to say f < ∆E
(χ−1)`

, as observed in Fig.2.5. Notably, the value

of the plateau force inducing the conformation transition does not depend on the spring

constant, nor on the temperature. Such a result is readily interpreted in the framework

of the Bell expression, originally derived in the context of the adhesion of cells [159].
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Figure 2.6 � Responses of the one-dimensional system with multistable elements under
Helmholtz conditions for N = 5: average spin variable (blue line) and dimensionless force
(red line) versus normalised extension. We adopted the parameters ∆E = 30kBT =
12.4 × 10−20J, χ = 8, ` = 0.5nm and h = k = 2.5kBT/`

2 = 0.0414N/m (at T = 300K),
as in Fig.2.5. For comparison, we also plotted the Gibbs force-extension response (green
dashed line) [113].

2.2.1.2 The Helmholtz ensemble

We consider now the chain of multistable elements with both end-terminals tethered

at the points x0 = 0 and xN = x, respectively. This leads to the following form for the

potential energy under the isometric condition

UH
tot(~x, ~y;xN) =

N∑
i=1

U(xi − xi−1, yi), (2.37)

where xN = x is the �xed extremity of the chain, ~x = (x1, x2, ..., xN−1) are continuous

variable and ~y = (y1, y2, ..., yN) are discrete spin variables. The potential energy U(x, y)

of a single unit in Eq.(2.37) is given in Eq.(2.21). Therefore, the partition function of the

system can be written as

ZH(xN) =
∑
y1∈S

...
∑
yN∈S

∫
<
...

∫
<
e
− U

H
tot

kBT ddx1...dxN−1. (2.38)

The direct calculation of the integral in Eq.(2.38) is rather complicated, as the equality

xN = x leads to interactions between the units of the chain. Nevertheless, by comparing
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Figure 2.7 � Force-extension response of the one-dimensional system with multistable
elements under Helmholtz (H) conditions for N = 4, 6, 8, 10, 12. We also reported the
Gibbs (G) response to show the equivalence of the ensembles in the thermodynamic limit.
We adopted the parameters ∆E = 30kBT = 12.4 × 10−20J, χ = 8, ` = 0.5nm and
h = k = 2.5kBT/`

2 = 0.0414N/m (at T = 300K), as in Figs.2.5 and 2.6 [113].

Eqs.(2.23) and (2.38), we deduce that the two partition functions ZG and ZH are related

through a bilateral Laplace transform, as follows

ZG(f) =

∫ +∞

−∞
ZH(x) exp

(
fx

kBT

)
dx. (2.39)

Moreover, if we let f = −iωkBT , we simply obtain

ZG(−iωkBT ) =

∫ +∞

−∞
ZH(x) exp (−iωx) dx, (2.40)

which means that the Fourier transform of ZH gives the analytical continuation of ZG on

the imaginary axis. Thus, we can invert the Fourier transform, by getting

ZH(x) =

∫ +∞

−∞
ZG(−iωkBT ) exp (iωx) dω. (2.41)

Consequently, by considering the Gibbs partition function and with the help of Eq.(2.41),

it is possible to study the behaviour of the system in the Helmholtz ensemble. Anyway,

from Eqs.(2.29) and (2.30), we have

ZG(−iωkBT ) = c
N∑
p=0

(
N

p

)√
1

hp

√
1

kN−p
φp exp

[
−1

2
kBT

(
p

h
+
N − p
k

)
ω2

]
× cosp(χ`ω) cosN−p(`ω), (2.42)
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where c is an unimportant multiplicative constant. By using the Newton development

cosn x =
1

2n
e−inx

n∑
t=0

(
n

t

)
e2itx, (2.43)

we obtain from Eqs.(2.41) and (2.42)

ZH(x) = c

N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

)√
1

hp

√
1

kN−p
φp

×
∫ +∞

−∞
exp

[
−1

2
kBT

(
p

h
+
N − p
k

)
ω2

]
× exp [iω(2χ`q − χ`p+ 2`s− `N + `p+ x)] dω. (2.44)

The integral in Eq.(2.44) can be evaluated in a closed form by means of the standard

expression ∫ +∞

−∞
e−αx

2

eiβxdx =

√
π

α
e−

β2

4α (α > 0), (2.45)

eventually giving

ZH(x) = c
N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

)
1√

p
h

+ N−p
k

√
1

hp

√
1

kN−p
φpe−ϕ

2

, (2.46)

where

ϕ =
2χ`q − χ`p+ 2`s− `N + `p+ x√

2kBT
(
p
h

+ N−p
k

) . (2.47)

In this case, it is important to remark that the resulting partition function can not be

written in terms of a power with exponent N . Therefore, the Helmholtz (isotensional)

condition induces an e�ective interaction between the elements. The origin of this inter-

action is not explicitly de�ned in the potential energy of the system (as, e.g., in the Ising

model), but comes from the speci�c boundary conditions characterising the Helmholtz

ensemble. Our result can be compared with Eq.(20) of Ref. [105], obtained for a Fermi-

Pasta-Ulam chain with bistable elements. This work permits to con�rm that using hard

devices leads to interaction among the elements (see also Fig.13 of Ref. [105] for the com-

parison of the mechanical response with soft or hard devices). Now, the average value

of the overall force 〈f〉 = −kBT∂/∂x logZH applied to the system and the average value

of the spin variables 〈y〉 =
〈

1
N

∑N
i=1 yi

〉
describing the transitions can be calculated as

follows
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〈f〉 =

N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

) √
2kBT

p
h

+ N−p
k

√
1

hp

√
1

kN−p
φpϕe−ϕ

2

N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

)
1√

p
h

+ N−p
k

√
1

hp

√
1

kN−p
φpe−ϕ

2

, (2.48)

〈y〉 =

1

N

N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

)
1√

p
h

+ N−p
k

√
1

hp

√
1

kN−p
φpQe−ϕ

2

N∑
p=0

p∑
q=0

N−p∑
s=0

(
N

p

)(
p

q

)(
N − p
s

)
1√

p
h

+ N−p
k

√
1

hp

√
1

kN−p
φpe−ϕ

2

, (2.49)

where Q = (χp− 2χq +N − p− 2s).

An application of Eqs.(2.48) and (2.49) can be found in Fig.2.6 where the average

spin variable and the dimensionless force are represented versus the normalised extension

for h = k and N = 5 (with the same parameters than those used in Fig.2.5). The

force-extension response for the Gibbs condition is also shown for comparison. A non-

cooperative behaviour is observed, showing that the units unfold progressively with the

increasing total length of the system. This is a non-synchronised process, characterised

by the picks visible in the Helmholtz force-extension relation and by the sequence of steps

characterising the average value of the spin variable. In conclusion, whereas in the Gibbs

ensemble, the unfolding of the domains is a collective (cooperative) process, leading to

a force plateau in the force-extension curve, in the Helmholtz ensemble, the unfolding of

the domains is a non-cooperative process, speci�c to each unit, leading to a sawtooth-like

force-extension curve.

In Fig.2.7, the force-extension curve in the Helmholtz ensemble for di�erent values of

N = 4, 6, 8, 10 and 12 is shown. It is particularly noticeable that for an increasing number

N of elements, the Helmholtz response converges to the Gibbs one, by progressively

reducing the pick-to-pick distance in the sawtooth pattern. This is in perfect agreement

with recent results concerning the ensembles equivalence in the thermodynamic limit

[20,139].

2.2.2 Bistable freely jointed chain

In this Section, we elaborate a generalisation of the classical freely jointed chain model

in order to introduce the two-state behaviour in the elements of the system. The model
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Figure 2.8 � Potential energy of a single element of the bistable freely jointed chain
(dashed blue curve). The potential wells are approximated through two parabolic pro�les
identi�ed by s = 0 and 1 [113].

is three-dimensional and the potential energy of the units of the chain is described by a

bistable behaviour (see Fig.2.8, dashed blue line). The two potential wells can be written

as

U(~r, s) = v(s) +
1

2
k(s) [‖~r ‖ − `(s)]2 , (2.50)

where ~r is the end-to-end vector joining both ends of the unit (see Fig.2.8, red lines). The

parameters s ∈ {0, 1} represents a spin variable, permitting to identify what potential

well is explored by the vector ~r. The quantities v(s), k(s) and `(s) stand for the basal

energy, the elastic sti�ness and the equilibrium length of the potential wells, respectively.

It has to be noted that in the classical freely jointed chain, the elastic sti�ness tends to

in�nity or, equivalently, the length of each element is keep constant. Accordingly, the

mechanical behaviour is fully governed by entropic forces since the elastic contribution is

not taken into account. Here, for mathematical convenience, it is better to proceed from

Eq.(2.50), with �nite elastic constants, and to analyse the limiting cases in a following

phase. We will study this system within both the Gibbs and the Helmholtz ensembles.

2.2.2.1 The Gibbs ensemble

In the following, we consider a chain of N elements described by Eq.(2.50), with a

force applied to the last one. Hence, the total potential energy of the system can be

written as

Utot(~q, ~s; ~f) =
N∑
i=1

U(~ri − ~ri−1, si)− ~f · ~rN , (2.51)
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where ~q = (~r1, ..., ~rN) is the generalised coordinates vector containing all positions ~r1, ..., ~rN ,

~s = (s1, ..., sN) is the vector of all spin variables, and ~f is the force applied to the last

element of the chain. The partition function can be therefore calculated by summing the

discrete (spin-like) variables and integrating the continuous (coordinates) ones, as follows

ZG(~f) =
∑

s1∈{0,1}

...
∑

sN∈{0,1}

∫
<3N

e
−Utot(~q,~s;

~f)
kBT d~q. (2.52)

We apply the change of variables ~ξ1 = ~r1−~r0, ~ξ2 = ~r2−~r1,..., ~ξN = ~rN −~rN−1 to evaluate

the integral over the vector ~q, leading to
∑N

k=1
~ξk = ~rN −~r0 and d~q = d~ξ1...d~ξN . By �xing

~r0 at the origin of axes, we obtain

ZG =

 ∑
s∈{0,1}

∫
<3

exp

[
−U(~ξ, s)

kBT
+
~f · ~ξ
kBT

]
d~ξ


N

, (2.53)

which means, giving the power of N , that the partition function is multiplicative with

respect to the elements of the chain (as observed in Eq.(2.28)). Since the system spher-

ically symmetric, we can choose an arbitrary direction for the applied force. Thus, to

further simplify Eq.(2.53), we set ~f = (0, 0, f) and we change the variables accord-

ing to ~ξ = (ξ cosϕ sinϑ, ξ sinϕ sinϑ, ξ cosϑ). As d~ξ = ξ2 sinϑdξdϕdϑ, ‖~ξ‖ = ξ and
~f · ~ξ = fξ cosϑ, we get the following simpler form of the partition function

ZG = c

 ∑
s∈{0,1}

e
− v(s)
kBT

∫ ∞
0

exp

[
− k(s)

2kBT
[ξ − `(s)]2

] sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ


N

, (2.54)

where c stands represents a non in�uential multiplicative constant. As already noted in

the case of the one-dimensional model within the Gibbs ensemble, the elements of the

chain do not interact and this point leads to a partition function which is in the form of

a power with exponent N .

The speci�c properties of the two potential wells can now be described, namely v(0) =

0, `(0) = `, k(0) = K and v(1) = ∆E, `(1) = χ`, k(1) = K, where χ is the elongation

ratio between the unfolded and folded equilibrium lengths. Then, we get

ZG = c


∫ ∞

0

e
− K

2kBT
[ξ−`]2

sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ

+φ

∫ ∞
0

e
− K

2kBT
[ξ−χ`]2

sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ


N

, (2.55)
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Figure 2.9 � Average normalised extension (red line) and normalised spin variable (blue
line) versus the dimensionless force for the bistable freely jointed chain under Gibbs con-
ditions. We adopted the parameters ∆E = 30kBT and χ = 3 (at T = 300K). The curves
are independent of N within the Gibbs ensemble [113].

where φ = exp
(
− ∆E
kBT

)
. To evaluate the limit for K approaching in�nity, the latter

form of the partition function can be used. This allows to properly de�ne the bistable

freely jointed chain. For this purpose, we can use the Dirac delta function property√
α
π
e−α(x−x0)2 →

α→∞
δ(x− x0), eventually yielding

ZG = c

{
sinh y

y
+ χφ

sinh(χy)

y

}N
, (2.56)

where we introduced the dimensionless force y = `f
kBT

. If the system under consideration

is not bistable, the second term in Eq.(2.56) vanishes, and we obtain

ZG = c

{
sinh y

y

}N
, (2.57)

which is the classical partition function of the freely jointed chain model [120, 122, 124].

The cases with �nite values of the elastic constant will be considered in the next Chap-

ter. The following standard relation permits to �nd the force-extension response for the

bistable freely jointed 〈r〉 = kBT
∂ logZG
∂f

, producing the important result

〈r〉 = N`
L(y) + χ2φL(χy) sinh(χy)

sinh y

1 + χφ sinh(χy)
sinh y

, (2.58)
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Figure 2.10 � De�nition of the contour Γ on the complex plane [113].

where L(y) = coth y− 1
y
is the Langevin function. If the average value of the spin variables

is written as 〈s〉 = 1
N

〈∑N
i=1 si

〉
, it is not di�cult to prove that 〈s〉 = −kBT ∂ logZG

N∂∆E
. The

second important achievement is therefore obtained

〈s〉 =
χφ sinh(χy)

sinh y

1 + χφ sinh(χy)
sinh y

. (2.59)

By combining Eqs.(2.58) and (2.59), we can �nd the relationship

〈r〉 = N [(1− 〈s〉) `L(y) + 〈s〉χ`L(χy)] , (2.60)

a�rming that the average extension of the bistable system is given by a linear combination

of the responses of a FJC model with length ` and a FJC model with length χ`, being the

coe�cients controlled by the average value of the spin variable. In other words, when 〈s〉
varies from 0 to 1, the e�ective equilibrium length of the element during the progressive

unfolding increases from ` to χ`.

An application of Eqs.(2.58) and (2.59) is shown in Fig.2.9, where the average nor-

malised extension and the normalised spin variable are represented versus the dimen-

sionless force. The force-extension curve shows a cooperative behaviour due to the col-

lective unfolding of all the domains at the threshold value of the dimensionless force
f∗`
kBT

= ∆E
(χ−1)kBT

, as predicted in Section 2.2.1.1. The spin variable curve con�rms this

behaviour by exhibiting a clear transition from 0 to 1 at the same threshold value of the

force.

2.2.2.2 The Helmholtz ensemble

Here, the system under consideration is the chain of bistable elements with both end-

terminals tethered at the points ~r0 = ~0 and ~rN = ~r. This means that the total potential

energy of the system can be written as

UH
tot(~q, ~s;~rN) =

N∑
i=1

U(~ri − ~ri−1, si), (2.61)
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where ~rN = ~r is the �xed extremity of the chain, ~q = (~r1, ..., ~rN−1) is the generalised

coordinates vector containing all positions ~r1, ..., ~rN−1, and ~s = (s1, ..., sN) is the vector

of all spin variables. The potential energy U(~r, s) of a single unit in Eq.(2.61) is given in

Eq.(2.50). The partition function of this system can be written as

ZH(~rN) =
∑

s1∈{0,1}

...
∑

sN∈{0,1}

∫
<3(N−1)

e
−U

H
tot(~q,~s;~rN )

kBT d~q. (2.62)

The comparison of Eqs.(2.52) and (2.62) allows to deduce the relation between the two

partition functions ZG and ZH through a three-dimensional bilateral Laplace transform,

as follows

ZG(~f) =

∫
<3

ZH(~r) exp

(
~r · ~f
kBT

)
d~r. (2.63)

Moreover, since the problem is spherically symmetric, we easily get the following relation-

ship

ZH(r) = c

∫ +∞

−∞
ZG(iη)

η

r
sin

(
ηr

kBT

)
dη, (2.64)

and by substituting Eq.(2.56), we get the important integral expression

ZH(r) = c

∫ +∞

−∞

{
sin y

y
+ χφ

sin(χy)

y

}N
y

r
sin
(ry
`

)
dy. (2.65)

If the studied system is not bistable, the partition function can be formulated as

ZH(r) = c

∫ +∞

−∞

{
sin y

y

}N
y

r
sin
(ry
`

)
dy, (2.66)

a result which has been largely studied by Rayleigh [160], Polya [161], Treloar [162], and

Wang and Guth [163] to analyse the behaviour of chains and chains networks.

Here, in order to study the behaviour of the chain in the Helmholtz ensemble, we

elaborate Eq.(2.65) in closed form. The function to integrate in Eq.(2.65) is regular on

the real axis and analytical on a strip |=my| < M for an arbitraryM ∈ <. Then, instead
of integrating on the whole real axis, the path Γ shown in Fig.2.10 is used. Therefore, we

can write

ZH(r) = −ic
∫

Γ

{
sin y

y
+ χφ

sin(χy)

y

}N
y

r
ei
ry
` dy. (2.67)

By developing the power in previous expression and by using the expansion

sinn x =
1

(2i)n
einx

n∑
t=0

(
n

t

)
(−1)te−2itx, (2.68)
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Figure 2.11 � Contour in the complex plane used to solve the integral for a > 0 [113].

we obtain

ZH(r) =
c

2N iN+1r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)
×
(
k

q

)
(−1)p+q(χφ)k

∫
Γ

e−iΛy

yN−1
dy, (2.69)

where we de�ned

Λ = k −N + 2p− χk + 2χq − r

`
. (2.70)

For the following calculations, we call a the parameter Λ and m the parameter N − 1.

We evaluate the integral
∫

Γ
eiay

ym
dy over the contour Γ shown in Fig.2.10. To begin, we

suppose a ∈ < and a > 0. In this case, we observe that on the imaginary axis, we have

eiay = e−a=my, which is a decreasing to zero function for =my > 0. So, we consider the

contour in Fig.2.11 and we write∮
ΓR∪CR

eiay

ym
dy = 0, (2.71)

since the function is holomorphic within ΓR ∪ CR. We also have∫
ΓR

eiay

ym
dy +

∫
CR

eiay

ym
dy = 0. (2.72)

Since limR→∞
∫
CR

eiay

ym
dy = 0 for the Jordan lemma and ΓR → Γ when R→∞, we obtain

the �rst result ∫
Γ

eiay

ym
dy = 0 if a > 0. (2.73)
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Figure 2.12 � Contour in the complex plane used to solve the integral for a < 0 [113].

We consider now the case with a < 0. On the imaginary axis, we have eiay = e−a=my,

which is a decreasing to zero function for =my < 0. Therefore, we introduce the contour

shown in Fig.2.12. The function is not holomorphic within ΓR ∪ C ′R since it presents a

pole of order m for y = 0. Hence, we have∮
ΓR∪C′R

eiay

ym
dy = −2πiRes

{
eiay

ym
, 0

}
, (2.74)

or ∫
ΓR

eiay

ym
dy +

∫
C′R

eiay

ym
dy = −2πiRes

{
eiay

ym
, 0

}
. (2.75)

Since a < 0, for the Jordan lemma we have limR→∞
∫
C′R

eiay

ym
dy = 0. Moreover, the residue

can be calculated as follows

Res
{
eiay

ym
, 0

}
=

1

(m− 1)!
lim
y→0

dm−1

dym−1

(
ym

eiay

ym

)
=

(ia)m−1

(m− 1)!
. (2.76)

Summing up, we easily obtain the second result∫
Γ

eiay

ym
dy = −2πim

am−1

(m− 1)!
if a ≤ 0. (2.77)

Hence, we proved in Eqs.(2.73) and (2.77) that∫
Γ

eiay

ym
dy =

{
0 if a > 0

−2πim am−1

(m−1)!
if a ≤ 0

, (2.78)
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Figure 2.13 � Average dimensionless force (red line) and average spin variable (blue line)
versus normalised extension for the bistable freely jointed chain under Helmholtz condi-
tions. We adopted the parameters ∆E = 30kBT , χ = 3 and N = 20 (at T = 300 K). We
also plotted for comparison the force-extension Gibbs response (dashed green line) [113].

and then we �nd from Eq.(2.69) the following result

ZH(r) =
πc

2(N−1)(N − 2)!r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)
×
(
k

q

)
(−1)p+q(χφ)k(−Λ)N−21(Λ), (2.79)

written in terms of the Heaviside step function 1(x), de�ned as 1(x) = 1 if x ≥ 0, and

1(x) = 0 if x < 0. As already noted in the one-dimensional case, the partition function

can not be written in terms of a power with exponent N . The e�ective interaction among

the elements in the Helmholtz ensemble induced by the boundary conditions is therefore

con�rmed.

The knowledge of the partition function allows us to obtain the force-extension re-

sponse through the expression

〈f〉 = −kBT
∂ logZH
∂r

, (2.80)

and the average value of the spin variable, as follows

〈s〉 =

〈
1

N

N∑
i=1

si

〉
= − 1

N
kBT

∂ logZH
∂∆E

. (2.81)
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Figure 2.14 � Force-extension response of the bistable freely jointed chain with under
Helmholtz (H) conditions for N = 10, 15, 20. We also reported the Gibbs (G) response
to show the equivalence of the ensembles in the thermodynamic limit. We adopted the
parameters ∆E = 30kBT and χ = 3 [113].

For the sake of brevity, we omit the development of the derivatives and we show an

example of application of Eqs.(2.80) and (2.81) in Fig.2.13. The typical sawtooth-like

curve is observed in the force-extension response, corresponding to a non-cooperative

process. This is explained by the individual successive unfolding the domains, one by

one, as also con�rmed by the average value of the spin variable, which exhibits a series of

steps corresponding to each unfolding process.

In Fig.2.14, the force-extension curve in the Helmholtz ensemble for di�erent values

of N = 10, 15 and 20 is shown. It has to be noted that when the number N of elements

increases, the Helmholtz response converges to the Gibbs one, by progressively reducing

the pick-to-pick distance in the sawtooth pattern. Once again, the equivalence of the

ensembles in the thermodynamic limit is con�rmed, as recently demonstrated for a large

class of non-con�ned polymer chains [20,139].

Thus, we have described the spin variable method both in the Gibbs and the Helmholtz

ensembles, allowing to consider a simpler form of the potential energy. The one-dimensional

case has been studied, leading to closed forms of both Gibbs and Helmholtz partition

functions. The partition function within the Gibbs ensemble has been calculated by di-

rect integration, which allowed us to obtain the partition function within the Helmholtz

ensemble by means of a bilateral Laplace transform. The three-dimensional case of a
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bistable freely jointed chain has also been studied, yielding both Gibbs and Helmholtz

partition functions in closed form. These results permitted us to give an interpretation of

the cooperative (synchronised) and non-cooperative (non-synchronised) responses of the

folding/unfolding processes. Finally, important values like average value of the extension

(in the Gibbs ensemble), or the force (Helmholtz ensemble), or again the spin variable (in

both ensembles) can now be easily evaluated. The three-dimensional case with a �nite

elasticity will be studied in Chapter 3.

2.3 Full statistics of conjugated thermodynamic ensem-

bles in chains of two-state units

Typically, in the theoretical analyses conducted to study the behaviour of two-state

systems under isotensional or isometric conditions, the considered quantities correspond

to the average values of the �uctuating variables. Consequently, the average extension and

force are respectively considered in the Gibbs and the Helmholtz ensembles. However, it

is important to study the actual distributions of these �uctuating or stochastic variables,

in order to better understand the random behaviour of these systems and to draw more

re�ned comparisons with experiments. Indeed, it is important to underline that the

experimental activities may probe not only the average values of the relevant quantities

but also their actual distribution. Basically, this is achieved by a very large statistics of

the trajectories of the system under investigation, which allows for a good exploration

of the phase space and, consequently, for the determination of the pertinent probability

densities. Therefore, we propose here a methodology to determine the exact distributions

or probability densities of the pertinent quantities de�ned in both Gibbs and Helmholtz

ensembles. In particular, for the Gibbs ensemble, we determine the distribution of the

couple (ẋN , xN), where xN is the extension of a chain of N two-state elements (under

applied deterministic force), and, for the Helmholtz ensemble, the distribution of (ḟ , f),

where f is the measured force (under prescribed deterministic extension).

2.3.1 Con�gurational partition functions and force-extension re-

lations in the Gibbs and the Helmholtz ensembles

We consider a very simple one-dimensional system (a toy model) composed of N

elements with mechanical bistability, connected in series to compose a chain. Each element

of the chain is represented by a symmetric potential energy function U(x) showing two

minima at x = ±` (see Fig.2.15). The variable y assumes its values in the set S = {±1}
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Figure 2.15 � Bistable symmetric potential energy of a single domain (blue dashed line)
and its approximation by means of four parabolic pro�les (red solid lines).

and is used to identify the basin or well explored by the system. In conclusion, the original

bistable energy function is substituted with the simpler mathematical expression

U(x, y) =
1

2
k(x− y`)2. (2.82)

The potential energy in Eq.(2.82), by varying the value of the spin variable in S, generates

the two parabolic wells represented in Fig.2.15 (red solid lines). While without an applied

stretching the units are in each basin with the same probability (the average value of the

end-to-end distance is zero), an applied stretching induces a preferential direction in the

extension of the chain. This stretching can be applied by imposing a force f (positive

or negative) or prescribing the position xN of the last element of the chain. Of course,

in both cases, the �rst element is always tethered at the origin of the x-axis. These two

possible mechanisms of stretching generate di�erent stochastic mechanical behaviours

of the system, which can be studied by calculating the corresponding con�gurational

partition functions.

In the Gibbs ensemble, a force f is applied to the last chain unit, identi�ed by its posi-

tion xN . The total potential energy of the system under the Gibbs condition (isotensional

ensemble) is therefore given by

UG
tot(~x, ~y; f) =

N∑
i=1

U(xi − xi−1, yi)− fxN , (2.83)

where f is the force applied to the last element, ~x = (x1, x2, ..., xN) (continuous vari-

ables) and ~y = (y1, y2, ..., yN) (discrete variables). For this system, we can de�ne the

con�gurational partition function ZG, as follows

ZG(f) =
∑
y1∈S

...
∑
yN∈S

∫
<
...

∫
<
e
− U

G
tot

kBT dx1...dxN , (2.84)
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Figure 2.16 � Average force-extension curves and average spin variables (plotted by means
of dimensionless quantities) for the Gibbs ensemble with N = 5 and k`2

kBT
=10, 15, 30,

100 [3].

where the variable ~x is integrated whereas the variable ~y is summed. We can now substi-

tute Eq.(2.83) in Eq.(2.84) and we eventually obtain the result

ZG(f) =

(
8πkBT

k

)N
2
[
exp

(
f 2

2kBTk

)
cosh

(
`f

kBT

)]N
. (2.85)

The extension of the chain can be directly calculated through the expression xN =

−∂Utot/∂f and its average value is therefore 〈xN〉 = 〈−∂Utot/∂f〉. It can be simply

evaluated by means of the con�gurational partition function, as 〈xN〉 = kBT ∂/∂f(logZG).

The calculation eventually gives

〈xN〉
N`

=
f

k`
+ tanh

(
`f

kBT

)
. (2.86)

We can also calculate the average value of the spin variable 〈y〉 = 〈yi〉 ∀i, which is inde-

pendent of the element considered in the chain and is given by

〈y〉 = 〈yi〉 = tanh

(
`f

kBT

)
∀i. (2.87)

An application of Eqs.(2.86) and (2.87) can be found in Fig.2.16. The force-extension

curves have been plotted with dimensionless quantities and only one parameter de�nes the

shape of the response, namely the elastic constant taken here into consideration through

the dimensionless ratio k`2

kBT
. It represents the ratio between the elastic (enthalpic) energy

and the thermal energy. In these force-extension curves, we note a force plateau (for

f = 0) corresponding to the synchronised switching (sometimes called cooperative) of the

N units. This behaviour is con�rmed by the average spin variable (which is independent
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Figure 2.17 � Average force-extension curves and average spin variables (plotted by means
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of k`2

kBT
), showing a transition from -1 to +1, at the same threshold force f = 0 as the

previously mentioned plateau.

We can now introduce the second boundary condition corresponding to the Helmholtz

ensemble. For imposing the isometric conditions, we consider the chain of bistable units

with the two extremities tethered at the points x0 = 0 and xN = x, respectively. The

total potential energy of the system can be therefore written as

UH
tot(~x, ~y;xN) =

N∑
i=1

U(xi − xi−1, yi), (2.88)

where xN = x is the �xed extremity of the chain, ~x = (x1, x2, ..., xN−1) (continuous

variables) and ~y = (y1, y2, ..., yN) (discrete variables). In Eq.(2.88), the potential energy

U(x, y) of a single element is given in Eq.(2.82). The con�gurational partition function

of this system can be written as

ZH(xN) =
∑
y1∈S

...
∑
yN∈S

∫
<
...

∫
<
e
− U

H
tot

kBT dx1...dxN−1. (2.89)

The two con�gurational partition functions ZG and ZH are related through a bilateral

Laplace transform, and we have

ZH(x) =
1

2π

∫ +∞

−∞
ZG(−iωkBT ) exp (iωx) dω. (2.90)

From Eq.(2.85), we have

ZH(x) =
1

2π

(
8πkBT

k

)N
2
∫ +∞

−∞
exp

(
−NkBTω

2

2k

)
cosN(`ω) exp (iωx) dω, (2.91)
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and the calculation of the integral delivers

ZH(x) =
1

2π

(
2πkBT

k

)N
2

N∑
t=0

(
N

t

)√
2kπ

NkBT
exp

[
− k

2NkBT
(x+ 2t`−N`)2

]
. (2.92)

Now, we can evaluate the average value of the overall force 〈f〉 = −kBT∂/∂x(logZH)

applied to the system and the average value of the spin variables 〈y〉 =
〈

1
N

∑N
i=1 yi

〉
describing the transitions, as follows

〈f〉 =

∑N
t=0

(
N
t

)
k
N

(x+ 2t`−N`) exp
[
− k

2NkBT
(x+ 2t`−N`)2

]
∑N

t=0

(
N
t

)
exp

[
− k

2NkBT
(x+ 2t`−N`)2

] , (2.93)

and

〈y〉 =

1
N

∑N
t=0

(
N
t

)
(N − 2t) exp

[
− k

2NkBT
(x+ 2t`−N`)2

]
∑N

t=0

(
N
t

)
exp

[
− k

2NkBT
(x+ 2t`−N`)2

] . (2.94)

An example of application of Eqs.(2.93) and (2.94) can be found in Fig.2.17, where

we show the force-extension response and the average spin variable for the Helmholtz

ensemble. As before, the force-extension curves have been plotted with dimensionless

quantities and only one parameter de�nes the shape of the response, namely the elastic

constant taken here into consideration through the dimensionless ratio k`2

kBT
. We observe

that the force-extension curve is composed of a number of peaks corresponding to the

non-synchronised (sequential) switching of the units. Sometimes, this behaviour is called

non-cooperative in order to underline the independent transitions of the units. This is

con�rmed by the step-wise curve representing the average spin variable versus the chain

extension. Each step corresponds to the switching of a unit induced by the increasing

extension of the chain.

2.3.2 Complete probability densities in the Gibbs and the Helmholtz

ensembles

We are interested here not only in the average value of the �uctuating quantities,

but also in the complete probability densities. The knowledge of these more re�ned

quantities allows for the determination of expected values of higher order such as variances,

covariances and so on, very important to fully characterise the statistical properties of

these systems. We de�ne here the probability density of the system in the whole phase

space within both the Gibbs and the Helmholtz statistical ensembles. These results will
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be used in the following Sections to �nd the probability density of the speci�c quantities

characterising the Gibbs and Helmholtz statistical ensembles.

Concerning the Gibbs ensemble, we can de�ne the total energy of the system as

EG(~v, ~x, ~y; f) =
N∑
i=1

1

2
mv2

i + UG
tot(~x, ~y; f)

=
N∑
i=1

1

2
mv2

i +
N∑
i=1

U(xi − xi−1, yi)− fxN , (2.95)

where vi is the velocity of the i-th particle of the chain and ~v, ~x, ~y ∈ <N while f ∈ <.
The complete probability density in the phase space is therefore given by the canonical

distribution

ρG(~v, ~x, ~y; f) =
exp

[
− 1
kBT

EG(~v, ~x, ~y; f)
]

(√
2πkBT
m

)N
ZG(f)

, (2.96)

where the term
(√

2πkBT
m

)N
has been added to normalise the kinetic part of the Boltz-

mann factor and the con�gurational partition function ZG(f) is given in Eq.(2.85). Of

course, we have that∑
~y∈{−1,+1}N

∫
~x∈<N

∫
~v∈<N

ρG(~v, ~x, ~y; f)d~vd~x = 1∀f ∈ <. (2.97)

Similarly, for the Helmholtz ensemble we can de�ne the total energy as

EH(~v, ~x, ~y;xN) =
N−1∑
i=1

1

2
mv2

i + UH
tot(~x, ~y;xN) =

N−1∑
i=1

1

2
mv2

i +
N∑
i=1

U(xi − xi−1, yi), (2.98)

where, as before, vi is the velocity of the i-th particle of the chain and ~v, ~x ∈ <N−1, ~y ∈ <N
while xN ∈ <. In this case, the complete probability density in the phase space is given

by the canonical distribution

ρH(~v, ~x, ~y;xN) =
exp

[
− 1
kBT

EH(~v, ~x, ~y;xN)
]

(√
2πkBT
m

)N−1

ZH(xN)

, (2.99)

where the term
(√

2πkBT
m

)N−1

has been added to normalise the kinetic part of the Boltz-

mann factor and the con�gurational partition function ZH(xN) is given in Eq.(2.92). Of
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course, we have that∑
~y∈{−1,+1}N

∫
~x∈<N−1

∫
~v∈<N−1

ρH(~v, ~x, ~y;xN)d~vd~x = 1 ∀ xN ∈ <. (2.100)

The two probability densities here described will be used to obtain a full statistics repre-

senting the behaviour of the two isotensional and isometric ensembles.

2.3.3 Probability density of the couple (ẋN , xN) versus f within

the Gibbs ensemble

Since the force f is imposed within the Gibbs ensemble, we can measure the extension

of the chain. The latter is a random variable that must be de�ned by its probability

density, in order to have a complete description of its behaviour. Here, for the sake of

completeness, we elaborate the probability density %G(ẋN , xN ; f) for the couple (ẋN , xN),

where we de�ned ẋN = vN . In this case, to obtain the probability density, we have to

sum or to integrate all the variables di�erent from vN and xN in the complete density

probability de�ned in Eq.(2.96). It means that we can write

%G(ẋN , xN ; f) =
∑

~y∈{−1,+1}N

∫
x1

...

∫
xN−1

∫
v1

...

∫
vN−1

ρH(~v, ~x, ~y;xN)

×dvN−1...dv1dxN−1...dx1. (2.101)

Now, it is not di�cult to recognise that the integral over the positions x1,...,xN−1 im-

mediately leads to the con�gurational partition function of the Helmholtz ensemble and

the integral over the velocities v1,...,vN−1 can be directly calculated with the classical

Gaussian integral. Eventually, we obtain

%G(ẋN , xN ; f) =

√
m

2πkBT
exp

(
1

2
mẋ2

N

) exp
(
fxN
kBT

)
ZH(xN)

ZG(f)
. (2.102)

This is the most important result of this Section, which represents the probability density

of the couple (ẋN , xN) for any value of the applied force f within the Gibbs ensemble.

We remark that this probability density can be factorised in two terms representing the

density of ẋN and the density of xN . The �rst factor simply corresponds to the Maxwell

distribution for the one-dimensional velocity

%G(ẋN) =

√
m

2πkBT
exp

(
1

2
mẋ2

N

)
. (2.103)
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Figure 2.18 � Three-dimensional representation of the Gibbs density %G(xN ; f) (see
Eq.(2.104)) obtained with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1,
2.8 (a.u.) [3].

On the other hand, it is interesting to observe that the second con�gurational term de-

pends on the ratio between the two partition functions

%G(xN ; f) = exp

(
fxN
kBT

)
ZH(xN)

ZG(f)
. (2.104)

This con�gurational density is correctly normalised because of the Laplace integral rela-

tionship between Gibbs and Helmholtz partition functions. The explicit form of %G(ẋN , xN ; f)

can be found by using the results given in Eqs.(2.85) and (2.92).

An example of application of the results obtained here is given in Figs.2.18, 2.19, 2.20

and 2.21. Since the kinetic component %G(ẋN) is simply given by the Maxwell distribution,

we focus our attention to the con�gurational part given by %G(xN ; f). Accordingly, in

Figs.2.18 and 2.19, we show a three-dimensional and a two-dimensional representation

of the Gibbs density as function of xN force f . These results are represented for four

di�erent levels of thermal agitation in order to understand the e�ects of the disorder on

the switching behaviour between the states. The parameters used in this study are N = 5,

` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.). It is interesting to observe
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Figure 2.19 � Two-dimensional representation of the Gibbs density %G(xN ; f) (see
Eq.(2.104)) obtained with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1,
2.8 (a.u.) [3].

that, in spite of the simple shape of the force-extension response characterised by a force

plateau at f = 0 with a synchronised switching of the units, the probability density of the

quantity xN is multimodal for the force range characterising the transition region. Indeed,

in order to obtain the probability density of xN for a given applied f , we have to section

the plots in Figs.2.18 and 2.19 with a plane parallel to the xN -axis and, at the same time,

perpendicular to the f -axis. So doing, in the central transition region, we can observe

the emergence of a series of peaks in the probability density con�rming its multimodal

character. This can be observed in Fig.2.20, where we plotted several curves %G(xN ; f)

(see Eq.(2.104)), for di�erent values of the applied force f . We can observe the symmetric

and multimodal pro�le of the probability density for f = 0 (at the center of the transition

region) and the asymmetric and monomodal shape of the density for a large applied force

(out of the transition region). We remark the multimodal character of the probability

density of xN in spite of the simple force plateau observed in the force-extension response.

To conclude this analysis, we underline that the knowledge of the full statistics for the

system allows us to determine all possible expected values. As an example, we show in
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Figure 2.20 � Examples of multimodal curves obtained through the Gibbs density
%G(xN ; f) (see Eq.(2.104)). On the left panel, the two-dimensional representation of the
Gibbs density is shown with the cuts corresponding to the curves plotted on the right
panel. We used N = 5, ` = 1 (a.u.), k = 15 (a.u.), kBT=1 (a.u.) and di�erent values of
the applied force f , as indicated in the legend [3].
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Figure 2.21 � Variance of xN obtained by the Gibbs density %G(xN ; f). As before, we
used N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.) [3].

Fig.2.21 the behaviour of the variance of the position in terms of the applied force f and

the thermal energy kBT . We note that the variance is higher in the transition region,
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where the two states of each unit can coexist. Moreover, we observe a larger variance for

higher temperatures, as expected. Finally, we also note that the multimodal character

of the probability density is smeared out by the integration process applied to calculate

the variances. This behaviour will be shown to be dual with respect to the Helmholtz

ensemble response, which is the subject of the next Section.

2.3.4 Probability density of the couple (ḟ , f) versus xN within the

Helmholtz ensemble

The problem of �nding the probability density for f and ḟ when xN is imposed is

more complicated since, in this case, the variables f and ḟ do not belong to the phase

space and, therefore, we can not integrate the super�uous variables in order to get the

searched density. To cope with this problem, we �rst introduce the standard technique

to deal with a function of random variable. We suppose to have two random variables

x and y, linked by a function y = g(x). If Fx(x) and fx(x) are distribution function and

probability density of the random variable x, we search for the same quantities Fy(y) and

fy(y) for y = g(x). We use the symbol ξ for the elements of the probability space and we

can write

Fx(x) = Pr {ξ : x(ξ) ≤ x} , (2.105)

and

fx(x) =
d

dx
Fx(x). (2.106)

Moreover, we can state that

Fy(y) = Pr {ξ : y(ξ) ≤ y} = Pr {ξ : g(x(ξ)) ≤ y}

=

∫
g(x)≤y

fx(x)dx =

∫ +∞

−∞
1(y − g(x))fx(x)dx, (2.107)

where 1(z) is the Heaviside step function. Therefore, we can obtain the probability density

of y = g(x) by di�erentiation

fy(y) =
d

dy
Fy(y)

=
d

dy

∫ +∞

−∞
1(y − g(x))fx(x)dx

=

∫ +∞

−∞
δ(y − g(x))fx(x)dx, (2.108)
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where we have introduced the Dirac delta function δ(z). This method based on the

delta functions can be used to approach the problem of �nding the Helmholtz prob-

ability density. To apply this technique, we need to write the variables f and ḟ in

terms of the variables of the phase space of the system. Given the total potential energy

UH
tot(~x, ~y;xN) =

∑N
i=1 U(xi − xi−1, yi), we can simply write

f =
∂UH

tot

∂xN
= k(xN − xN−1 − yN`) (2.109)

and

ḟ =
d

dt

∂UH
tot

∂xN
=

N−1∑
i=1

∂2UH
tot

∂xi∂xN

dxi
dt

=
N−1∑
i=1

∂2UH
tot

∂xi∂xN
vi =

∂2UH
tot

∂xN−1∂xN
vN−1 = −kvN−1. (2.110)

Now, given the complete probability density ρH(~v, ~x, ~y;xN), we can obtain the density for

the desired variables f and ḟ as follows

%H(ḟ , f ;xN) =
∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ

(
f − ∂UH

tot

∂xN

)
δ

(
ḟ − ∂2UH

tot

∂xN−1∂xN
vN−1

)
×ρH(~v, ~x, ~y;xN)d~xd~v. (2.111)

This expression can be simpli�ed delivering

%H(ḟ , f ;xN) =
∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ (f − kxN + kxN−1 + kyN`) δ
(
ḟ + kvN−1

)

×
exp

[
− 1
kBT

EH(~v, ~x, ~y;xN)
]

(√
2πkBT
m

)N−1

ZN
H (xN)

d~xd~v, (2.112)

where we used the notation ZH(xN) = ZN
H (xN) in order to specify that the Helmholtz

partition function corresponds to a system with N units. Indeed, in the following calcu-

lations, we will also need the same function calculated for a system with N − 1 units.
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The elaboration of %H(ḟ , f ;xN) can be continued as follows

%H(ḟ , f ;xN) =
1(√

2πkBT
m

)N−1

ZN
H (xN)

×
∑
~y

∫
~x∈<N−1

∫
~v∈<N−1

δ (f − kxN + kxN−1 + kyN`) δ
(
ḟ + kvN−1

)

× exp

(
− m

2kBT

N−1∑
i=1

v2
i

)
exp

[
− k

2kBT

N∑
i=1

(xi − xi−1 − yi`)2

]
d~xd~v

=
1(√

2πkBT
m

)N−1

ZN
H (xN)

∫
<N−2

exp

(
− m

2kBT

N−2∑
i=1

v2
i

)
dv1...dvN−2

×
∫
<

1

k
δ

(
1

k
ḟ + vN−1

)
exp

(
− m

2kBT
v2
N−1

)
dvN−1

×
∑
~y

∫
~x∈<N−1

1

k
δ

(
f

k
− xN + xN−1 + yN`

)
exp

[
− k

2kBT

×
N−2∑
i=1

(xi − xi−1 − yi`)2

]
exp

[
− k

2kBT
(xN−1 − xN−2 − yN−1`)

2

]
× exp

[
− k

2kBT
(xN − xN−1 − yN`)2

]
d~x, (2.113)

where we used the property δ(ax) = 1
|a|δ(x). We remember now that

∫ +∞
−∞ exp(−αx2) =√

π
α
for α > 0, we perform the integrals of the delta functions over vN−1 and xN−1, and

we get

%H(ḟ , f ;xN) =
1√

2πkBT
m

ZN
H (xN)

1

k
exp

(
− m

2k2kBT
ḟ 2

)
exp

(
− 1

2kkBT
f 2

)

×
∑
~y

∫
~x∈<N−2

1

k
exp

[
− k

2kBT

N−2∑
i=1

(xi − xi−1 − yi`)2

]

× exp

[
− k

2kBT
(xN −

1

k
f − yN`− xN−2 − yN−1`)

2

]
×dx1...dxN−2. (2.114)
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We can now recall the explicit de�nition of ZN
H (xN) (see Eq.(2.89)), and we also introduce

the exact expression for ZN−1
H (xN−1)

ZN
H (xN) =

∑
y1∈S

...
∑
yN∈S

∫
<
...

∫
<

exp

[
− k

2kBT

N∑
i=1

(xi − xi−1 − yi`)2

]
×dx1...dxN−1, (2.115)

ZN−1
H (xN−1) =

∑
y1∈S

...
∑

yN−1∈S

∫
<
...

∫
<

exp

[
− k

2kBT

N−1∑
i=1

(xi − xi−1 − yi`)2

]
×dx1...dxN−2. (2.116)

So, in Eq.(2.114), we can identify the partition function ZN−1
H (xN−1) calculated for xN−1 =

xN − 1
k
f − yN`, by obtaining

%H(ḟ , f ;xN) =
1

k2

√
2πkBT
m

exp

(
− m

2k2kBT
ḟ 2

)
exp

(
− 1

2kkBT
f 2

)

×
∑

yN
ZN−1
H

(
xN − 1

k
f − yN`

)
ZN
H (xN)

, (2.117)

or, equivalently,

%H(ḟ , f ;xN) =
1

k2

√
2πkBT
m

exp

(
− m

2k2kBT
ḟ 2

)
exp

(
− 1

2kkBT
f 2

)

×Z
N−1
H

(
xN − 1

k
f − `

)
+ ZN−1

H

(
xN − 1

k
f + `

)
ZN
H (xN)

. (2.118)

This is the �nal result for the probability density within the Helmholtz ensemble. It

is interesting to observe that it can be written in terms of the two partition functions

ZN
H (xN) and ZN−1

H (xN−1), corresponding to systems of size N and N − 1, respectively.

We can split this probability density in two independent components describing sep-

arately ḟ and f , as follows

%H(ḟ) =
1

k
√

2πkBT
m

exp

(
− m

2k2kBT
ḟ 2

)
, (2.119)

%H(f ;xN) =
1

k
exp

(
− 1

2kkBT
f 2

)
ZN−1
H

(
xN − 1

k
f − `

)
+ ZN−1

H

(
xN − 1

k
f + `

)
ZN
H (xN)

,(2.120)

and it is not di�cult to prove the normalisation of the two results.
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Figure 2.22 � Three-dimensional representation of the Helmholtz density %H(f ;xN) (see
Eq.(2.120)) obtained with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8
(a.u.) [3].

A numerical application of these results can be found in Figs.2.22, 2.23, 2.24 and 2.25.

Similarly to the Gibbs analysis, also in this case, we observe that the kinetic part of the

probability density %H(ḟ) is a simple Gaussian function and therefore we study in more

detail the con�gurational density %H(f ;xN). Coherently with this planning, in Figs.2.22

and 2.23, we show the three-dimensional and the two-dimensional representation of the

Helmholtz density as function of f and for a prescribed extension xN . As before, the

results have been obtained for four di�erent temperatures to observe the e�ects of the

thermal agitation on the transition processes. The parameters used in this study are

the same already adopted for the Gibbs analysis, namely N = 5, ` = 1 (a.u.), k = 15

(a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.). We give here a description of the behaviour

of the system within the Helmholtz ensemble which is exactly dual with respect to the

response of the Gibbs ensemble. Indeed, we observe that in spite of the saw-tooth shape

of the force-extension response, the probability density of f is quite always monomodal.

More precisely, it can be bimodal only with some sets of parameters and only for forces

being in the transition region between two peaks of the force-extension curve. Anyway,
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Figure 2.23 � Two-dimensional representation of the Helmholtz density %H(f ;xN) (see
Eq.(2.120)) obtained with N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8
(a.u.) [3].

we can a�rm that this density is monomodal in the most cases of practical interest. To

better explain this point, we observe that in order to obtain the probability density of

f for a prescribed xN , we have to section the plots in Figs.2.22 and 2.23 with a plane

parallel to the f -axis and, at the same time, perpendicular to the xN -axis. By performing

this operation, in spite of the complex shape of %H(f ;xN), we get monomodal functions

(with the exceptions discussed above). This can be observed in Fig.2.24, where we plotted

several curves %H(f ;xN) for di�erent values of the prescribed extension xN . As before,

we remark that the knowledge of the full probability density for the Helmholtz case can

be used to determine the expected values of higher order. As an example, in Fig.2.25 we

plotted the variance of the force f , necessary to impose the extension xN . Interestingly

enough, the variance is an increasing function of the temperature, as expected, and shows

some peaks in correspondence to the switching of state of each unit. This is coherent with

the general idea that the variance of the physical quantities is larger in proximity to a phase

transition. Again, we underline the dual behaviour of the Gibbs and Helmholtz ensembles.

Indeed, while the variance for the Gibbs case is given by a single peak corresponding to
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Figure 2.24 � Examples of monomodal curves obtained through the Helmholtz density
%H(f ;xN) (see Eq.(2.120)). On the left panel, the two-dimensional representation of the
Helmholtz density is shown with the cuts corresponding to the curves plotted on the right
panel. We used N = 5, ` = 1 (a.u.), k = 15 (a.u.), kBT=1 (a.u.) and di�erent values of
the prescribed position xN , as indicated in the legend [3].
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Figure 2.25 � Variance of f obtained by the Helmholtz density %H(f ;xN). As before, we
used N = 5, ` = 1 (a.u.), k = 15 (a.u.) and kBT=0.7, 1.4, 2.1, 2.8 (a.u.) [3].
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the synchronised transition of the units, for the Helmholtz ensemble, we have a peak for

each transition, underlying the sequential behaviour of this process.

2.3.5 Final comparison

The results obtained for the speci�c case of a chain of two-state elements show the

emergence of an intriguing duality between the two ensembles. For the isotensional con-

dition, the force-extension curve is monotone with a characteristic force plateau and the

density %(xN ; f) is multimodal in the transition region (near xN = 0 and f = 0). Con-

versely, for the isometric condition, the force-extension curve is composed of a series of

peaks while the density %(f ;xN) is simply monomodal. This duality is also re�ected in

the behaviour of the variances of these processes. In the Gibbs ensemble, we obtained

a monomodal variance σ2
x with the symmetric peak at f = 0, whereas in the Helmholtz

ensemble we obtained a multimodal variance σ2
f with a peak for each transition value

of xN . Of course, the peaks of variance must be explained through large �uctuations

characterising the switching of the units states (classically, it is typical for the phase

transitions).
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Chapter 3

Extensible two-state freely jointed chain

3.1 Introduction

In Chapter 2, we introduced the spin variable approach. This method is used to study

the thermo-elastic behaviour of chains or systems made up of bistable (or two-state) units,

as previously described in Ref. [113]. In this thesis, several extensions are added to the spin

variable model, in order to bring it closer to the reality of some biological macromolecules.

The �rst generalisation added to the bistable freely jointed chain concerns the extensibility

of the bonds between the chain units. Indeed, the classical freely jointed chain considers

rigid segments of �xed length, and adding the elasticity is not a straightforward task. In

this Chapter, we �nd the analytic solution of the partition functions for chains made of

bistable units, taking account of extensibility, within both the Gibbs and the Helmholtz

ensembles. Thus, we obtain the complete solution for a speci�c case, namely the two-

state freely jointed chain with extensible units. It is necessary to take extensibility into

account, since the �nite elastic constant of the bonds between the units plays a major

role in de�ning the force-extension response in both isotensional and isometric ensembles.

Particularly, within the Helmholtz ensemble, the peak-to-peak force of the sawtooth-like

curve strongly depends on the elastic constant. As this quantity is often considered as the

main output of the force spectroscopy measurements, it is important to study the case

with a �nite value of the elastic sti�ness. From the mathematical point of view, the most

di�cult issue concerns the calculation of the Helmholtz partition function. Eventually,

its closed form expression has been found in terms of the Hermite polynomials, suitably

generalised to negative indices.
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Figure 3.1 � Potential energy of a single unit of the bistable freely jointed chain with
extensible bonds (dashed black curve). The potential wells are approximated through
two parabolic pro�les identi�ed by S = 0 and 1 (solid blues curves) [1].

3.2 Two-state freely jointed chain with extensible units:

the Gibbs ensemble

We take into consideration a two-state freely jointed chain composed of N domains.

Here, instead of considering the units with an in�nite elastic sti�ness like in Chapter 2, we

try to consider a �nite elasticity for the bistable domains. The potential energy function of

real domains is represented by a function with two minima, corresponding to the folded

and unfolded con�gurations of the domain (dashed black curve in Fig.3.1). The spin

variable approach consists in considering two quadratic potential curves, approximating

the wells of this system and introducing a spin variable Si for each unit, useful to identify

the potential well explored during the system evolution (see again Fig.3.1). As previously

discussed, the introduced spin variables belong to the phase space of the system and they

must be considered as standard dynamic variables of the statistical mechanics. In other

words, the switching of each spin variable between its two values is controlled by the

boundary conditions applied to the system, here de�ned by the force ~f (Gibbs ensemble).

We start the analysis of the Gibbs ensemble by writing the extended Hamiltonian of the
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system as

HG =
N∑
i=1

~pi · ~pi
2m

+
N∑
i=1

v(Si)− µ
N∑
i=1

Si

+
N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 − ~f · ~rN , (3.1)

where Si ∈ {0, 1} are the spin variables, m is the mass of each unit, ~ri and ~pi are positions

and linear momenta of the units, and ~f is the force applied to the last element of the

chain. The quantities v(Si), k(Si) and `(Si) stand for the basal energy, the elastic sti�ness

and the equilibrium length of the potential wells, respectively (see Fig.3.1 for details).

Moreover, we introduce ~q = (~r1, ..., ~rN) as the generalised vector containing all positions,

~p = (~p1, ..., ~pN) as the generalised vector containing all momenta and ~S = (S1, ..., SN) as

the generalised vector containing all spin variables. For the sake of simplicity, we assume

that all chemical potentials µi take the same value µ. Since the dynamical variables are

~q, ~p and ~S, the partition function is given by

ZG =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
R3N

∫
R3N

exp

[
−HG (~p, ~q, ~s)

kBT

]
d~pd~q

=
∑
~S

[∫
R3

exp

(
− 1

2mkBT
~p · ~p

)
d~p

]N

×
∫
R3

...

∫
R3

exp

[
−

N∑
i=1

v(Si)− µSi
kBT

+
~f · ~rN
kBT

−
N∑
i=1

k(Si)

2kBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
d~r1...d~rN . (3.2)

To begin the simpli�cation, we remember that∫
R3

exp

(
− 1

2mkBT
~p · ~p

)
d~p = (2πmkBT )3/2. (3.3)
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Then, we perform the change of variables ~ξ1 = ~r1−~r0, ..., ~ξN = ~rN −~rN−1. We have that

d~r1...d~rN = d~ξ1...d~ξN . By �xing ~r0 = 0 and knowing that ~rN =
∑N

i=1
~ξi, we obtain

ZG = (2πmkBT )3N/2
∑
~S

∫
R3

...

∫
R3

exp

[
−

N∑
i=1

v(Si)− µSi
kBT

−
N∑
i=1

k(Si)

2kBT

×
[
‖~ξi‖ − `(Si)

]2

+
1

kBT
~f ·

N∑
i=1

~ξi

]
d~ξ1...d~ξN

= (2πmkBT )3N/2
∑
~S

N∏
i=1

∫
R3

exp

[
−v(Si)− µSi

kBT
− k(Si)

2kBT

[
‖~ξi‖ − `(Si)

]2

+
~f · ~ξi
kBT

]
d~ξi. (3.4)

It is important to remark that within the Gibbs ensemble, the elements of the chain do

not interact and this point leads to a factorised partition function, namely in the form of a

power with exponent N . We can further simplify the calculation by means of the spherical

coordinates ~ξ = (ξ cosϕ sinϑ, ξ sinϕ sinϑ, ξ cosϑ). Because of the spherical symmetry of

the problem, we set ~f = (0, 0, f). Since d~ξ = ξ2 sinϑdξdϕdϑ, ‖~ξ‖ = ξ and ~f · ~ξ = fξ cosϑ,

we get the following simpler form of the partition function

ZG = (2πmkBT )3N/2

[∑
S

∫
R3

exp

(
−v(S)− µS

kBT
− k(S)

2kBT

[
‖~ξ‖ − `(S)

]2

+
~f · ~ξ
kBT

)
d~ξ

]N

= (2πmkBT )3N/2

[∑
S

exp

(
−v(S)− µS

kBT

)∫ +∞

0

∫ 2π

0

∫ π

0

exp

(
− k(S)

2kBT

× [ξ − `(S)]2 +
fξ cos θ

kBT

)
ξ2 sin θdθdϕdξ

]N
. (3.5)

We know that
∫ 2π

0
dϕ = 2π, and by de�ning η = cos θ and so dη = − sin θdθ, we obtain∫ π

0

sin θ exp

(
fξ cos θ

kBT

)
dθ

=

∫ 1

−1

exp

(
fξη

kBT

)
dη

=
2kBT

fξ
sinh

(
fξ

kBT

)
. (3.6)
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The Gibbs partition function becomes

ZG = (2πmkBT )3N/2(4π)N

[∑
S

exp

(
−v(S)− µS

kBT

)

×
∫ +∞

0

exp

(
− k(S)

2kBT
[ξ − `(S)]2

) sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ

N . (3.7)

Then, in order to specify the shape of the potential wells represented in Fig.3.1, we

consider `(0) = `, `(1) = χ`, v(0) = 0, v(1) = ∆E and k(0) = k(1) = k. In addition,

from now on, we neglect the non in�uential multiplicative constant within the partition

function. Hence, by replacing the corresponding values, we obtain

ZG(f) =

∫ +∞

0

exp

[
− k

2kBT
(ξ − `)2

] sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ + exp

(
−∆E − µ

kBT

)

×
∫ +∞

0

exp

[
− k

2kBT
(ξ − χ`)2

] sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ

N . (3.8)

We note that the chemical potential µ acts on the system by simply shifting the energy

jump ∆E. We can rewrite the expression of ZG under the form

ZG = {I1 + I2}N , (3.9)

with 
I1 =

∫ +∞
0

exp
[
− k

2kBT
(ξ − `)2

]
sinh

(
fξ
kBT

)
fξ
kBT

ξ2dξ;

I2 = φ
∫ +∞

0
exp

[
− k

2kBT
(ξ − χ`)2

]
sinh

(
fξ
kBT

)
fξ
kBT

ξ2dξ;

φ = exp
(
−∆E−µ

kBT

)
.

(3.10)

To begin, we calculate the �rst integral

I1 =

∫ +∞

0

exp

[
− k

2kBT
(ξ − `)2

] sinh
(

fξ
kBT

)
fξ
kBT

ξ2dξ, (3.11)
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and then, we will determine the value of the second one by substituting ` with χ` and by

multiplying it by φ.

I1 =

{∫ +∞

0

exp

(
− k

2kBT
ξ2

)
exp

(
k

kBT
ξ`

)
exp

(
− k

2kBT
`2

)
×kBT

2f
ξ

[
exp

(
fξ

kBT

)
− exp

(
− fξ

kBT

)]}
dξ

=
kBT

2f
exp

(
− k

2kBT
`2

)∫ +∞

0

exp

(
− k

2kBT
ξ2

)
×
[
exp

(k`+ f)ξ

kBT
− exp

(k`− f)ξ

kBT

]
ξdξ. (3.12)

We calculate the integral A, in order to deduce I1

A =

∫ +∞

0

exp
(
−αx2

)
exp (βx) dx

= exp

(
β2

4α

)∫ +∞

0

exp

[
−α
(
x− β

2α
x

)2
]

dx. (3.13)

Then, we use the change of variable y = x− β
2α
, from which we get

A = exp

(
β2

4α

)∫ +∞

− β
2α

exp
(
−αy2

)
dy. (3.14)

We let t2 = αy2, which means that t =
√
αy and dy = 1√

α
dt. We �nally obtain

A =
1√
α

exp

(
β2

4α

)∫ +∞

− β
2
√
α

exp
(
−t2
)

dt. (3.15)

We know that the error function, erf(x), can be written as erf(x) = 2√
π

∫ x
0

exp (−t2) dt.

Thus, we obtain

A =
1√
α

exp

(
β2

4α

) √
π

2

[
erf (+∞)− erf

(
− β

2
√
α

)]
. (3.16)

With the help of the following results, namely erf (+∞) = 1 and erf(−x) = −erf(x), we

get

A =
1

2

√
π

α
exp

(
β2

4α

)[
1 + erf

(
β

2
√
α

)]
. (3.17)
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Then, we try to obtain the value of the integral B =
∫ +∞

0
exp (−αx2) exp (βx)xdx by

deriving the integral A. Hence, we straightforwardly obtain

B =
∂A

∂β

=
∂

∂β

(
1

2

√
π

α
exp

(
β2

4α

)[
1 + erf

(
β

2
√
α

)])
=

1

2α
+

β

4α

√
π

α
exp

(
β2

4α

)[
1 + erf

(
β

2
√
α

)]
. (3.18)

We continue the calculation of the integral I1, where we let α = k
2kBT

, β1 = k`+f
kBT

and

β2 = k`−f
kBT

, to compare Eq.(3.12) with Eq.(3.18). We get

I1 =
kBT

2f
exp

(
− k

2kBT
`2

)[
1

4α

√
π

α

(
β1 exp

(
β2

1

4α

)
×
[
1 + erf

(
β1

2
√
α

)]
− β2 exp

(
β2

2

4α

)[
1 + erf

(
β2

2
√
α

)])]
=

kBT

2f
exp

(
− k

2kBT
`2

)
kBT

2k

√
2πkBT

k

{(
k`+ f

kBT

)
× exp

(
(k`+ f)2

k2
BT

2

kBT

2k

)[
1 + erf

(
k`+ f

2kBT

√
2kBT

k

)]

−
(
k`− f
kBT

)
exp

(
(k`− f)2

k2
BT

2

kBT

2k

)[
1 + erf

(
k`− f
2kBT

√
2kBT

k

)]}
. (3.19)

We develop the calculation and we obtain

I1 =
(kBT )2

4kf

√
2πkBT

k
exp

(
f 2

2kkBT

){(
k`+ f

kBT

)
exp

(
2k`f

2kkBT

)[
1 + erf

(
k`+ f√
2kkBT

)]
−
(
k`− f
kBT

)
exp

(
− 2k`f

2kkBT

)[
1 + erf

(
k`− f√
2kkBT

)]}
. (3.20)

The �nal result can be written under the following simpli�ed form

I1 =
kBT

4f

√
2πkBT

k
exp

(
f 2

2kkBT

){(
`+

f

k

)
exp

(
`f

kBT

)[
1 + erf

(
k`+ f√
2kkBT

)]
−
(
`− f

k

)
exp

(
− `f

kBT

)[
1 + erf

(
k`− f√
2kkBT

)]}
. (3.21)

The next step consists in considering extensible bonds with relatively high values of the

elastic constant k. Typical values of the elastic constants obtained from experiments as

well as ab initio calculations can be found in the literature and are perfectly compatible
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with such approximations [164�167]. It is necessary to consider the case of relatively

high values of the elastic constant in order to approximate the erf by an exponential

function. Indeed, as the Fourier transform will be used to obtain the Helmholtz partition

function from the Gibbs partition function, terms of the Gibbs partition function have to

be integrable. In this case, we can use the asymptotic expression erf(x) ' 1 − 1√
πx
e−x

2
,

holding for large values of x. We consider f
k
� `, so the argument of error function is

k`± f√
2kkBT

≈ k`√
2kkBT

=

√
k`√

2kBT
. (3.22)

Therefore, we can write

erf

( √
k`√

2kBT

)
' 1−

√
2kBT√
π
√
k`

exp

(
− k`2

2kBT

)
. (3.23)

For high values of k, we can �nally consider that erf
(

k`±f√
2kkBT

)
' 1. Hence,

I1 =
kBT

4f

√
2πkBT

k
exp

(
f 2

2kkBT

)
×
[
2

(
`+

f

k

)
exp

(
`f

kBT

)
− 2

(
`− f

k

)
exp

(
− `f

kBT

)]
=

kBT

4f

√
2πkBT

k
exp

(
f 2

2kkBT

)[
` sinh

(
`f

kBT

)
+
f

k
cosh

(
`f

kBT

)]
. (3.24)

We de�ne the adimensional force y = `f
kBT

, and the ratio α = kBT
k`2

between thermal and

elastic energies. So, we also have

I1 = `2

√
2πkBT

k
exp

(
f 2

2kkBT

)[
kBT

f`2
` sinh

(
`f

kBT

)
+

(
kBT

f`2

)
f

k
cosh

(
`f

kBT

)]
= `2

√
2πkBT

k
exp

(
f 2

2kkBT

)[
sinh y

y
+ α cosh y

]
. (3.25)

The total partition function of the extensible bistable freely jointed chain is composed of

I1 and I2 with I2 = φI1 (`→ χ`). It means that y → χy and α→ α
χ2 . Then, I2 becomes

I2 = φ`2χ2

√
2πkBT

k
exp

(
f 2

2kkBT

)[
sinh(χy)

χy
+

α

χ2
coshχy

]
= φ`2

√
2πkBT

k
exp

(
f 2

2kkBT

)[
χ sinh(χy)

y
+ α coshχy

]
. (3.26)
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The exponential term can be written in terms of y and α (with y = `f
kBT

and α = kBT
k`2

) as

exp

(
f 2

2kkBT

)
= exp

(
k2
BT

2y2

2`2kkBT

)
= exp

(
kBTy

2

2`2k

)
= exp

(
αy2

2

)
. (3.27)

By replacing the corresponding terms, the partition function becomes

Z
(1)
G (f) =

[
sinh y

y
+ α cosh y + φχ

sinh(χy)

y
+ φα cosh(χy)

]N
exp

(
Nαy2

2

)
. (3.28)

This is the �rst approximation that we obtained by simply neglecting the e�ect of the

error function in the exact calculation. Another level of approximation can be obtained

by developing the term into brackets to the �rst order in α. If we let{
a = sinh y

y
+ φχ sinh(χy)

y
;

b = cosh y + φ cosh(χy);
(3.29)

and we suppose that α� 1, then we can write

(a+ αb)N = aN
(

1 + α
b

a

)N
≈ aN

(
1 +Nα

b

a

)
= aN +NαaN−1b. (3.30)

The second approximation for the partition function is therefore

Z
(2)
G (f) =

[(
sinh y

y
+ φχ

sinh(χy)

y

)N
+Nα

(
sinh y

y
+ φχ

sinh(χy)

y

)N−1

× (cosh y + φ cosh(χy))

]
exp

(
Nαy2

2

)
. (3.31)

Finally, the third approximation can be obtained by completely neglecting the linear terms

in α in previous expressions

Z
(3)
G (f) =

(
sinh y

y
+ φχ

sinh(χy)

y

)N
exp

(
Nαy2

2

)
. (3.32)

The exponential term depending on α is responsible for the elasticity of the chain. The

same result without bistability (i.e. with φ = 0), has been discussed in recent literature

[168, 169]. Moreover, the case with bistability but without extensibility of the units is

considered in Chapter 2. In this situation, the partition function simply reduces to

ZG(f) =

(
sinh y

y
+ φχ

sinh(χy)

y

)N
. (3.33)
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As discussed previously, the macroscopic behaviour of this system is described by the

Gibbs free energy G = −kBT logZG. The force-extension response for the bistable freely

jointed chain with extensible elements under isotensional condition can be found through

〈r〉 = −∂G
∂f

= kBT
∂ logZG
∂f

= `
∂ logZG
∂y

. (3.34)

On the other hand, we can de�ne the average value of the spin variables as 〈s〉 =
1
N
〈∑N

i=1 Si〉. We can rewrite the de�nition of the Hamiltonian within the Gibbs ensemble

HG (~q, ~p, S) =
N∑
i=1

~pi · ~pi
2m

+
N∑
i=1

v(Si)− µ
N∑
i=1

Si

+
N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 − ~f · ~rN . (3.35)

The only variable depending on ∆E is the basal energy v (Si) and its value changes

according to the spin. If the spin S takes the value 0, we have v (0) = 0 and if it takes

the value 1, we have v (1) = ∆E. This means that

N∑
i=1

v (Si) = ∆E
N∑
i=1

Si. (3.36)

Therefore we get

HG (~q, ~p, S) =
N∑
i=1

~pi · ~pi
2m

+ ∆E
N∑
i=1

Si − µ
N∑
i=1

Si

+
N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 − ~f · ~rN . (3.37)

We can derive the Hamiltonian according to ∆E

∂HG

∂ (∆E)
=

N∑
i=1

Si. (3.38)

In the same way, we can write the Gibbs partition function

ZG =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
~p

∫
~q

exp

(
− HG

kBT

)
d~pd~q. (3.39)
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We can derive ZG according to ∆E

∂ZG
∂ (∆E)

=
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
~p

∫
~q

exp

(
− HG

kBT

)(
− 1

kBT

) N∑
i=1

Sid~pd~q. (3.40)

As 〈s〉 = 1
N

〈∑N
i=1 Si

〉
, we get

〈s〉 =

(
−kBT

N

)
∂ZG
∂(∆E)

ZG

=

(
−kBT

N

)
1

ZG

∂ZG
∂ (∆E)

. (3.41)

And we �nally obtain

〈s〉 =

(
−kBT

N

)
∂ logZG
∂ (∆E)

. (3.42)

We can also write it like

N 〈s〉 =
∂G
∂∆E

= −∂G
∂µ

. (3.43)

The explicit application of Eq.(3.34) to Eq.(3.32) yields

〈r〉 = N`

[
L(y) + χ2φL(χy) sinh(χy)

sinh y

1 + χφ sinh(χy)
sinh y

+ αy

]
, (3.44)

where L(y) = coth y − 1
y
is the Langevin function. On the other hand, by applying

Eq.(3.43) to Eq.(3.32), we get

〈s〉 =
χφ sinhχy

sinh y

1 + χφ sinhχy
sinh y

, (3.45)

which does not depend on α. By combining Eqs.(3.44) and (3.45), we can �nd the

relationship

〈r〉 = N` [(1− 〈s〉)L(y) + 〈s〉χL(χy) + αy] , (3.46)

stating that the average extension of the extensible bistable system is given by a combi-

nation of the responses of two freely jointed chain models with lengths ` and χ`, and by

a linear term taking into account the elasticity of the system.

A �rst example of application of Eqs.(3.34) and (3.43) is given in Fig.3.2, where we

compare a system with extensibility described by the exact Eq.(3.9) or by the approxi-

mated Eq.(3.32) and another system without extensibility described by Eq.(3.33). First of
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Figure 3.2 � Force-extension response and average spin for a system with extensibility
(k = 1.5N/m) and a system without extensibility (k → ∞). The calculation for the
system with extensibility is based on the exact result in Eq.(3.9) (red curves) and on
the approximation in Eq.(3.32) (blue curves). On the other hand, the system without
extensibility has been studied through Eq.(3.33). We adopted the parameters N = 5,
` = 0.5× 10−9m, T = 300K, χ = 3, ∆E = 20kBT = 8.28× 10−20J and µ = 0 [1].

all, we remark the very good agreement between Eqs.(3.9) and (3.32) for the system with

extensibility (red and blues curves, respectively, in Fig.3.2). This proves the acceptability

of the proposed approximation. Moreover, it is interesting to note the di�erent asymp-

totic behaviour of systems with �nite and in�nite elastic constants. While the sti� system

exhibits a vertical asymptote for large forces, the elastic one shows a tilted asymptote,

which slope represents the e�ective sti�ness of the chain. In the force-extension curve, we

observe a force plateau corresponding to f ∗ = ∆E
(χ−1)`

(in the case of µ = 0). Similarly, in

the spin behaviour, we identify a transition from S = 0 to S = 1 corresponding to the

same force f ∗. We can explain these curves by means of a cooperative process, which

generates the transition of all units at the same value of force f ∗. Notably, the value of

this plateau force does not depend on the spring constant, nor on the temperature. Such

a result is readily interpreted in the framework of the Bell expression, originally derived

in the context of the adhesion of cells [159]. A larger variation of the elastic constant

is shown in Fig.3.3, where force-extension curves, spin variables and Gibbs free energies

are plotted for several values of k = 0.4, 0.8, 1.2, 1.6, 2.0 and 2.4N/m. Also in this case,

we underline the good agreement between exact and approximated results, with a small

deviation appearing only for the softer chains. The origin of the force transition in the
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Figure 3.3 � Force-extension response and average spin (top panel) and Gibbs free en-
ergy (bottom panel) for a system with variable extensibility k = 0.4, 0.8, 1.2, 1.6, 2.0 and
2.4N/m. The calculation of the force-extension response and the average spin is based
on the exact result in Eq.(3.9) (red curves) and on the approximation in Eq.(3.32) (blue
curves). We adopted the parameters N = 5, ` = 0.5 × 10−9m, T = 300K, χ = 3,
∆E = 20kBT = 8.28× 10−20J and µ = 0 [1].

force-extension curve and in the spin behaviour can be recognised in the Gibbs free en-

ergy, which shows a slope change corresponding exactly to the same force. While the spin

variable average remains unaltered by the elastic constant, the force-extension response

is sensibly modi�ed, showing a variable slope in the regions before and after the plateau
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corresponding to the transition. The knowledge of chain behaviour under the isotensional

or Gibbs ensemble is the starting point for the understanding of the isometric ensemble,

as discussed in the next Section.

3.3 Two-state freely jointed chain with extensible units:

the Helmholtz ensemble

We consider now the isometric condition (within the Helmholtz ensemble), where the

last unit of the chain is considered as tethered at a given point ~r of the space. In this

case, we can therefore write the Hamiltonian of the system under the form

HH =
N−1∑
i=1

~pi · ~pi
2m

+
N∑
i=1

v(Si)− µ
N∑
i=1

Si

+
N∑
i=1

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2 , (3.47)

where ~rN = ~r is �xed. Consequently, we also consider ~pN = 0. In this situation, we intro-

duce ~q = (~r1, ..., ~rN−1) as the generalised vector containing all positions, ~p = (~p1, ..., ~pN−1)

as the generalised vector containing all momenta, and ~S = (S1, ..., SN) as the generalised

vector of all spin variables. Similarly to Section 3.2, we assume that all chemical poten-

tials µi take the same value µ. The partition function can be written in terms of these

dynamic variables

ZH =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
R3N−3

∫
R3N−3

exp

−HH

(
~p, ~q, ~S

)
kBT

 d~pd~q

=
∑
~S

[∫
R3

exp

(
− 1

2mkBT
~p · ~p

)
d~p

]N−1 ∫
R3

...

∫
R3

exp

[
−

N∑
i=1

v(Si)− µSi
kBT

−
N∑
i=1

k(Si)

2kBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
d~r1...d~rN−1. (3.48)

It is not di�cult to realise that the calculation of this partition function is much more

complicated than the Gibbs partition function. Indeed, we can not apply a change of

variables in order to factorise the multi-dimensional integral. From the physical point of

view, this di�culty depends on the isometric condition, inducing an e�ective interaction

among the units and so �xing the sum of all vectors ~ri − ~ri−1 (for i from 1 to N). This

problem will produce a �nal result which can not be written under the form of a power
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with exponent N . An useful technique to cope with this di�culty is the following. By

comparing Eqs.(3.2) and (3.48), we deduce that the two partition functions ZG and ZH
are related through a three-dimensional bilateral Laplace transform, as

ZG(~f) =

∫
R3

ZH(~r) exp

(
~r · ~f
kBT

)
d~r, (3.49)

where, as usual, we neglect the non-in�uential multiplicative constants in the partition

function. Moreover, by considering the spherical symmetry of the problem, we easily

obtain the inverse relationship

ZH(r) =

∫ +∞

−∞
ZG(iη)

η

r
sin

(
ηr

kBT

)
dη, (3.50)

where we have introduced the analytic continuation of the function ZG(r) to the imaginary

axis, leading to ZG(iη). We can also write that

ZH(r) =

∫ +∞

−∞
ZG

(
ikBT

y

)
y

r
sin
(ry
`

)
dy. (3.51)

By substituting Eq.(3.32) in Eq.(3.51), we get the important integral expression

ZH(r) =

∫ +∞

−∞

{
sin y

y
+ χφ

sin(χy)

y

}N
exp

(
−Nαy2

2

)
y

r
sin
(ry
`

)
dy. (3.52)

With the help of ex = cosx+ i sinx, we can also write it like

ZH(r) = −i
∫ +∞

−∞

{
sin y

y
+ χφ

sin(χy)

y

}N
exp

(
−Nαy2

2

)
y

r
exp

(
i
ry

`

)
dy. (3.53)

The analysis of such an integral for α = 0 (i.e. without elasticity) has been performed in

recent literature [113] and in Chapter 2. Previous investigations considered the case with

α = 0 and φ = 0, thus dealing with the classical FJC model under isometric condition

[160�163]. However, the presence of a �nite elasticity of the units, quanti�ed by the

parameter α 6= 0, completely modi�es the approach to be used to obtain a closed form

expression for ZH(r). Here, we elaborate Eq.(3.53) in order to get such a closed form

expression, useful to better explain the chain behaviour within the Helmholtz ensemble.

The function to integrate in Eqs.(3.52) or (3.53) is regular on the real axis and analytic (or

holomorphic) on a strip |Im y| < M for an arbitrary M ∈ R. Then, instead of integrating

on the whole real axis, we can use the path Γ shown in Fig.3.4. This will be useful to

elaborate the partition function integral and to write it in a form without singularities at

the origin.
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Im y
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Figure 3.4 � De�nition of the contour Γ on the complex plane with an arbitrary radius
r [1].

We develop the power with the help of the Newton rule(
sin y

y
+ φχ

sin(χy)

y

)N
=

N∑
k=0

(
N

k

)(
sin y

y

)N−k (
φχ

sin(χy)

y

)k
=

1

yN

N∑
k=0

(
N

k

)(
sinN−k y

)
φkχk sink(χy). (3.54)

By developing the power in previous expression with the Newton rule and by using the

following expansion

sinn y =

(
eiy − e−iy

2i

)n
=

1

(2i)n

n∑
t=0

(
n

t

)(
eiy
)n−t (−e−iy)t

=
1

(2i)n

n∑
t=0

(
n

t

)
(−1)t einye−2iyt, (3.55)

we obtain

ZH(r) =
1

2N iN+1r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
×(−1)p+q(χφ)k

∫
Γ

e−iΛye−N
αy2

2
dy

yN−1
, (3.56)

where we de�ned

Λ = k −N + 2p− χk + 2χq − r

`
. (3.57)

The integral appearing in Eq.(3.56) is well de�ned since the path Γ excludes the singularity

at the origin from the integration.
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3.3.1 An integral calculation

To complete the calculation of the partition function, we have to determine the value

of

Im(a, b) =

∫
Γ

eiaye−by
2 dy

ym
, (3.58)

where a ∈ R, b > 0, m ∈ N and the path Γ is given in Fig.3.4. To this aim, we begin to

introduce the closed paths ABCD shown in Fig.3.5. To understand the suitability of this

approach, we �rstly consider the segment CD on the paths shown in Fig.3.5. Here, we

have y = s+ iβ where s ∈ R is a variable and β ∈ R is a constant that we will determine

with the purpose of simplifying the integral calculation. Therefore, we get∫
CD

eiaye−by
2 dy

ym
= −

∫ +R

−R
eia(s+iβ)e−b(s+iβ)2 ds

(s+ iβ)m

= −e−aβebβ2

∫ +R

−R
eis(a−2bβ)e−bs

2 ds

(s+ iβ)m
, (3.59)

and we can let β = a/(2b) to remove the imaginary exponential from the integral. Here,

the value of R is de�ned in Fig.3.5. Hence, the result can be written as∫
CD

eiaye−by
2 dy

ym
= e−

a2

2b e
ba2

4b2

∫ +R

−R

e−bs
2
ds

(s+ iβ)m

= −e−a
2

4b

∫ +R

−R

e−bs
2
ds

(s+ i a
2b

)m
, (3.60)

and, by applying the limit for R → ∞ and the change of variable η =
√
bs, it assumes

the �nal form

lim
R→∞

∫
CD

eiaye−by
2 dy

ym
= −e−a

2

4b

∫ +∞

−∞

e−η
2
dη

√
b
(

η√
b

+ i a
2b

)m
= −e−a

2

4b

∫ +∞

−∞

e−η
2
dη

√
b 1√

b
m

(
η + i a

2
√
b

)m
= −bm−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2
dη(

η + i a
2
√
b

)m . (3.61)

This expression, of course, is valid for both negative and positive values of a.

For the calculation of the integral in Eq.(3.58), we have to consider two separate cases.

If a > 0 or β > 0, the path shown in Fig.3.5.a does not contain the origin of the complex
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Figure 3.5 � De�nition of the contours ABCD on the complex plane for β > 0 a) and
β < 0 b) [1].

plane and therefore the function to integrate is holomorphic within the path. In this

situation, we can directly apply the Cauchy theorem stating that(∫
AB

+

∫
BC

+

∫
CD

+

∫
DA

)
eiaye−by

2 dy

ym
= 0. (3.62)

Now, in the limit for R→∞, it is not di�cult to prove that the integrals on the segments

BC and DA vanish and, as the integral on CD is the opposite of the one on AB, we get

the �rst result for a > 0

Im(a, b) = b
m−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2dη

(η + i a
2
√
b
)m
. (3.63)

If a < 0 or β < 0, the path shown in Fig.3.5.b contains the origin of the complex plane,

which corresponds to a singular point of the function to integrate. Hence, the residue

theorem delivers(∫
AB

+

∫
BC

+

∫
CD

+

∫
DA

)
eiaye−by

2 dy

ym
= −2πiRes

{
eiaye−by

2

ym
, 0

}
, (3.64)

where the residue can be easily calculated since the singular point is a pole or order m

Res

{
eiaye−by

2

ym
, 0

}
=

1

(m− 1)!

dm−1

dym−1

(
eiaye−by

2
)
y=0

. (3.65)
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The derivative in Eq.(3.65) can be elaborated through the general rule

dm−1

dym−1
[f(y)g(y)] =

m−1∑
k=0

(
m− 1

k

)
dkf(y)

dyk
dm−1−kg(y)

dym−1−k . (3.66)

If g(y) = eiay, we simply have

dm−1−kg(y)

dym−1−k = (ia)m−1−keiay. (3.67)

On the other hand, if f(y) = e−by
2
, the calculation of the derivative of order k is more

involved. One method is based on the following result∫ +∞

0

e−αx
2

eβxdx =
1

2

√
π

α
e
β2

4α

[
1 + erf

(
β

2
√
α

)]
, (3.68)

proved in Section 3.2. Since we need∫ +∞

−∞
e−αx

2

eβxdx, (3.69)

we �rst elaborate ∫ 0

−∞
e−αx

2

eβxdx =

∫ 0

−∞
e−αy

2

e−βy (−dy)

=

∫ +∞

0

e−αx
2

e−βxdx

=
1

2

√
π

α
e
β2

4α

[
1 + erf

(
− β

2
√
α

)]
, (3.70)

having used Eq.(3.68), with β → −β. Now, we sum these two equations and we get∫ +∞

−∞
e−αx

2

eβxdx =
1

2

√
π

α
e
β2

4α

[
2 + erf

(
β

2
√
α

)
+ erf

(
− β

2
√
α

)]
. (3.71)

Here, we have that erf(x) = −erf(−x), and therefore∫ +∞

−∞
e−αx

2

e−βxdx =

√
π

α
e
β2

4α . (3.72)

We can substitute β = iy and b = 1
4α

to obtain∫ +∞

−∞
e−

x2

4b eixydx =
√

4πbe−by
2

, (3.73)
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It means that the Fourier transform of e
−x2

4b is proportional to e−by
2
. Incidentally, if b = 1

2

(i.e. 1
4b

= b), then we obtain the eigenvectors of the Fourier transform. We can calculate

the derivative as

dk

dyk
e−by

2

=
1√
4πb

dk

dyk

∫ +∞

−∞
e−

x2

4b eixydx

=
1√
4πb

∫ +∞

−∞
e−

x2

4b (ix)k eixydx. (3.74)

Therefore,

dkf(y)

dyk
=

1√
4πb

∫ +∞

−∞
e−

x2

4b (ix)keixydx. (3.75)

Hence, if we consider y = 0, we get(
dkf(y)

dyk

)
y=0

=
ik√
4πb

∫ +∞

−∞
xke−

x2

4b dx. (3.76)

Then, we observe that the result is di�erent from zero only for k even. Since
∫ +∞
−∞ e−αx

2
dx =√

π
α
(see Eq.(3.72) with β = 0), we get∫ +∞

−∞
−x2e−αx

2

dx =
d

dα

√
π

α

=
√
π

(
−1

2

)
α−3/2

= −1

2

√
π

α3
, (3.77)

or we can also write ∫ +∞

−∞
x2e−αx

2

dx =
1

2

√
π

α3
=

1

2α

√
π

α
. (3.78)

Again ∫ +∞

−∞
−x4e−αx

2

dx =
1

2

√
π

(
−3

2

)
α−5/2

= −3

4

√
π

√
1

α5
. (3.79)

We can sum it up like ∫ +∞

−∞
x2ne−αx

2

dx =
1

αn+1/2

(2n)!

(22n)n!

√
π

=
Γ
(
n+ 1

2

)
αn+1/2

, (3.80)
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and ∫ +∞

−∞
x2n+1e−αx

2

dx = 0. (3.81)

In particular, by �xing α = 1
4b
, we eventually obtain(

dke−by
2

dyk

)
y=0

=

{
(−4b)n√

π
Γ
(
n+ 1

2

)
if k = 2n,

0 if k = 2n+ 1,
(3.82)

where Γ(z) is the Euler Gamma function. By combining Eqs.(3.66), (3.67) and (3.82), we

can rewrite the residue de�ned in Eq.(3.65) as

Res

{
eiaye−by

2

ym
, 0

}
=

m−1∑
k=0

(ia)m−1−k

k!(m− 1− k)!

(−4b)k/2

2
√
π

Γ

(
k + 1

2

)[
1 + (−1)k

]
. (3.83)

Therefore, the residue theorem written in the form of Eq.(3.64), and considered for R→
∞, gives the �nal result for a < 0

Im(a, b) = b
m−1

2 e−
a2

4b

∫ +∞

−∞

e−η
2dη

(η + i a
2
√
b
)m

−
m−1∑
k=0

2πi(ia)m−1−k

k!(m− 1− k)!

(−4b)k/2

2
√
π

Γ

(
k + 1

2

)[
1 + (−1)k

]
. (3.84)

To conclude, Eq.(3.63) for a > 0 and Eq.(3.84) for a < 0 represent the integral Im(a, b)

de�ned in Eq.(3.58) in terms of a second integral, which is the subject of the following

discussion.

3.3.2 The Hermite elements with negative index

First of all, we observe that the integral

Jm(x) =

∫ +∞

−∞

e−η
2
dη

(η + ix)m
, (3.85)

appearing in Eqs.(3.63) and (3.84) with x = a/(2
√
b), is simpler than Im(a, b) since it

is calculated over the real axis and there is no imaginary exponent in the function to

integrate. To approach its calculation, we recall the following integral representation of

the Hermite polynomials [170,171]

Hm(z) =
2m√
π

∫ +∞

−∞
(iη + z)me−η

2

dη

=
(2i)m√
π

∫ +∞

−∞
(η − iz)me−η

2

dη. (3.86)
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If we compare Jm with the last representation of Hm, we note that Jm is formally related

to H−m, which represents an Hermite element with negative index. We underline that

the representation of the Hermite polynomials in Eq.(3.86) makes sense also for negative

values of m. However, we will see that these functions are not polynomials but they

exhibit several properties similar to those of the classical Hermite polynomials. To the

author knowledge, these functions have been �rstly introduced and studied in Ref. [172]

but no other analysis or application can be found in the literature. Anyway, by replacing

m with −m in Eq.(3.86), we de�ne

H−m(z) =
1

(2i)m
√
π

∫ +∞

−∞

e−η
2
dη

(η − iz)m
, (3.87)

and we introduce their properties. Following Ref. [172], we analyse the �rst element

H−1(z). We simply have

H−1(z) =
1

2i
√
π

∫ +∞

−∞

e−η
2
dη

η − iz

=
1

2i
√
π

∫ +∞

−∞

η + iz

η2 + z2
e−η

2

dη

=
1

2
√
π

∫ +∞

−∞

z

η2 + z2
e−η

2

dη. (3.88)

Indeed, the imaginary part is zero since it corresponds to an odd function integrated

over a symmetric interval (−∞,+∞). From Eq.(3.88), we deduce that H−1(z) is an odd

function of z. Then we can study H−1(z) for z > 0. Under this hypothesis, we de�ne

u = η/z and we obtain

H−1(z) =
1

2
√
π

∫ +∞

−∞

e−u
2z2
du

1 + u2
(z > 0), (3.89)

from which we easily deduce the particular value limz→0+ H−1(z) =
√
π/2. In addition,

Eq.(3.89) allows us to get a di�erential equation for H−1(z) (z > 0). By di�erentiation,

we have

d

dz
H−1(z) = − z√

π

∫ +∞

−∞

u2e−u
2z2
du

1 + u2

= − z√
π

∫ +∞

−∞

(
1 + u2

1 + u2
− 1

1 + u2

)
e−u

2z2

du

= −1 + 2zH−1(z). (3.90)

Now, the di�erential equation H ′−1(z) = −1+2zH−1(z) is linear and can be directly solved

for z > 0 with the initial condition H−1(0+) =
√
π/2 proved above. A straightforward
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calculation yields

H−1(z) =

√
π

2
ez

2

[1− erf (z)] , z > 0. (3.91)

Since H−1(z) is odd, i.e. H−1(−z) = −H−1(z), we can also calculate its values for z < 0.

By means of the �rst two functions H0(z) = 1 ∀z and H−1(z) given in Eq.(3.91), we can

determine all other Hermite elements with negative index through the following recursive

formula

H−(n+1)(z) =
1

2n
H−(n−1)(z)− z

n
H−n(z). (3.92)

Following again Ref. [172], Eq.(3.92) can be proved as

H−(n−1)(z) =
1

(2i)n−1
√
π

∫ +∞

−∞

e−η
2
dη

(η − iz)n−1

=
1

(2i)n−1
√
π

∫ +∞

−∞

η − iz
(η − iz)n

e−η
2

dη

=
1

(2i)n−1
√
π

∫ +∞

−∞

ηe−η
2
dη

(η − iz)n

− iz

(2i)n−1
√
π

∫ +∞

−∞

e−η
2
dη

(η − iz)n
. (3.93)

Now, the �rst integral in the result of Eq.(3.93) can be elaborated by parts, eventually

obtaining ∫ +∞

−∞

ηe−η
2
dη

(η − iz)n
= −n

2

∫ +∞

−∞

e−η
2
dη

(η − iz)n+1
. (3.94)

Thus, Eq.(3.93) becomes H−(n−1)(z) = 2nH−(n+1)(z) + 2znH−n(z), which is equivalent to

Eq.(3.92). This recursive law allows us to a�rm that H−n(z) is odd if n is odd and that

H−n(z) is even if n is even. We underline that the Hermite elements with n < 0 are not

polynomials, contrarily to the classical Hermite polynomials, de�ned with n > 0. Many

other interesting properties of this sequence of functions can be found in Ref. [172]. For

the sake of completeness, the �rst functions are reported below for z > 0

H0(z) = 1,

H−1(z) =
√
π

2
ez

2
erfc (z) ,

H−2(z) = 1
2
−
√
π

2
zez

2
erfc (z) ,

H−3(z) = −1
4
z +

√
π

4

(
1
2

+ z2
)
ez

2
erfc (z) ,

H−4(z) = 1
12

(1 + z2)−
√
π

4
z
(

1
2

+ 1
3
z2
)
ez

2
erfc (z) ,

(3.95)
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Figure 3.6 � Plot of the �rst Hermite elements with negative index. We observe that
H−n(z) is odd if n is odd and that that H−n(z) is even if n is even [1].

where erfc(z) = 1− erf(z) is the complementary error function. Their plot can be found

in Fig.3.6. From the computational point of view, the calculation of ez
2
erfc (z) must be

done with the following asymptotic expansion (for z > 4) [170,171]

√
πzez

2

erfc (z) ∼ 1 +
M∑
m=1

(−1)m
1 · 3 · ...(2m− 1)

(2z2)m
, (3.96)

with a su�ciently large value of M .

3.3.3 The partition function and related results

We can now summarise the obtained results and address the determination of the

Helmholtz partition function. Coming back to the calculation of the integral de�ned in

Eq.(3.85), we have �nally obtained the following result, written in terms of the functions

H−m(z)

Jm(x) = (2i)m
√
πH−m(−x). (3.97)
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The integral Im(a, b) de�ned in Eq.(3.58) can be therefore solved by Eq.(3.63) for a > 0

and by Eq.(3.84) for a < 0, rewritten and uni�ed here in the compact form

Im(a, b) =
√
π

{
b
m−1

2 e−
a2

4b (2i)mH−m

(
− a

2
√
b

)
+1(−a)

m−1∑
h=0

(ia)m−1−h(−4b)h/2

ih!(m− 1− h)!
Γ

(
h+ 1

2

)[
1 + (−1)h

]}
, (3.98)

where 1(x) represents the Heaviside step function, de�ned as 1(x) = 1 if x ≥ 0, and

1(x) = 0 if x < 0. We can write that

ZH(r) =
1

2N
1

iN+1

1

r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
(−1)p+q (3.99)

×(χφ)k

[
√
π

(
Nα

2

)N−2
2

(2i)N1e−
Λ2

2NαH−N+1

(
Λ√
2Nα

)
− 1(Λ)2πi

×
m−1∑
h=0

(ia)m−1−h

h!(m− 1− h)!

(−2Nα)h/2

2
√
π

Γ

(
h+ 1

2

)[
1 + (−1)h

]]
.

To conclude, we can simplify Eq.(3.98) to obtain the �nal form of the Helmholtz partition

function

ZH(r) = − 1

2r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
(−1)p+q

×(χφ)k

[
√
π

(
Nα

2

)N−2
2

e−
Λ2

2NαH−N+1

(
Λ√
2Nα

)

+ 1(Λ)

[N2 −1]∑
h=0

(−1)N−1π
(

Λ
2

)N−2

h!(N − 2− 2h)!

(
Nα

2Λ2

)h , (3.100)

where [x] represents the �oor function giving the greatest integer that is less than or equal

to x and Λ depends on k, p and q through Eq.(3.57). This result is the most important

achievement of this Section and allows us to determine the complete response of the two-

state freely jointed chain with extensible lengths in terms of force-extension curve and

average value of the spin variables. Interestingly enough, Eq.(3.100) represents a closed

form expression since all sums are performed over �nite ranges and the Hermite elements

are known recursively, as discussed above. As a check of the procedure, we can see that

if α = 0 (i.e. in�nite sti�ness) the �rst term within the brackets vanishes and the second
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one is given only by the addend with k = 0. Hence, the partition function simpli�es to

give

ZH(r) =
π

2(N−1)(N − 2)!r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)
×
(
k

q

)
(−1)p+q(χφ)k(−Λ)N−21(Λ), (3.101)

in perfect agreement with Chapter 2. In any case, we remark that Eqs.(3.100) and (3.101)

can not be written as a power with exponent N . It means that within the Helmholtz

ensemble there is an e�ective interaction among the elements induced by the isometric

boundary conditions. However, this interaction is not explicitly written in the Hamiltonian

of the system (as, e.g., in the Ising model) but comes from the prescribed positions of the

two chain extremities.

All thermodynamic properties can be evaluated through the Helmholtz free energy

F = −kBT logZH . For instance, the force-extension response is given by the expression

〈f〉 =
∂F
∂r

, (3.102)

and the average value of the spin variable is as

N 〈s〉 =
∂F
∂∆E

= −∂F
∂µ

. (3.103)

Of course, both 〈f〉 and 〈s〉 could be written in closed form by performing the indicated

derivatives. However, for the sake of brevity, we omit this development and we show

an example of application of Eqs.(3.102) and (3.103) in Fig.3.7, where we compare an

elastic system described by Eq.(3.100) with a sti� one described by Eq.(3.101). In the

top panel, we show the force-extension curve for the sti� system with k → ∞ and for

the elastic one with k = 1.5N/m. Moreover, to better compare the responses, we added

the Gibbs force-extension responses for both cases. In the bottom panel, the average

value of the spin variables is also represented for the sti� and the soft systems. These

results prove a non-cooperative behaviour characterised by a progressive unfolding of

units in response to the increasing overall length. This behaviour corresponds to a series

of peaks in the force-extension curves and to a staircase function for the spin variable.

Any peak or step corresponds to an unfolding process induced by the increasing extension.

The overall behaviour is therefore completely di�erent from the Gibbs ensemble, where

all units undergo the conformational transition at the same time. Anyway, for the soft

system, we observe a sensibly reduced peak-to-peak force in the force-extension curve and,
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Figure 3.7 � Force-extension response (top panel) and average spin (bottom panel) for a
system with extensibility (k = 1.5N/m) and a system without extensibility (k →∞). The
calculation for the system with extensibility is based on Eq.(3.100) (red curves) while the
system without extensibility has been studied through Eq.(3.101) (blue curves). In the
top panel, we also added the Gibbs force-extension responses for both cases. We adopted
the parameters N = 8, ` = 0.5× 10−9m, T = 300K, χ = 3, ∆E = 20kBT = 8.28× 10−20J
and µ = 0 [1].

correspondingly, a smoother transition in the steps of the average spin variable. Therefore,

it is important to underline that relatively soft polymers (with small elastic constant) can

have peak-to peak forces much smaller than ones predicted by the two-state freely jointed
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Figure 3.8 � Force-extension response (top panel), average spin variable (bottom-left
panel) and Helmholtz free energy (bottom-right panel) for a system with variable ex-
tensibility k = 0.4, 0.8, 1.2, 1.6, 2.0 and 2.4N/m. The calculation is based on Eq.(3.100).
We also added the Gibbs force-extension responses (black curves) to facilitate the com-
parison. We adopted the parameters N = 5, ` = 0.5 × 10−9m, T = 300K, χ = 3,
∆E = 20kBT = 8.28× 10−20J and µ = 0 [1].

chain.

In Fig.3.8, one can �nd the force-extension response (top panel), the average spin vari-

able (bottom-left panel) and the Helmholtz free energy (bottom-right panel) for a system

with variable extensibility k = 0.4, 0.8, 1.2, 1.6, 2.0 and 2.4N/m. We can observe the pro-

gressive increase of the peak-to-peak force of each unfolding transition with increasing

values of the elastic constant. At the same time, the transition are sharper for sti�er

systems, as clearly visible in the average spin curves. The origin of the force peaks in the

force-extension curve can be highlighted in the Helmholtz free energy curves, which are

characterised by a series of "smooth cusps" able to generate the force peaks by derivation

with respect to the position.

A further analysis concerns the variation of the peak-to-peak force with the elastic
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Figure 3.9 � Shape of the �rst peaks in the force-extension curves for two temperatures
T = 300K and T = 750K and for several values of k = (0.3 + 0.15n)N/m, n = 0, ..., 18.
One can see the exact de�nition of the peak-to-peak force for the �rst peak holding for
each force-extension curve. We adopted the parameters N = 5, ` = 0.5× 10−9m, χ = 3,
∆E = 8.28× 10−20J and µ = 0 [1].

constant k and the temperature T . In Fig.3.9, we can observe the shape of the �rst

peaks for two temperatures T = 300K and T = 750K and for several values of k =

(0.3 + 0.15n)N/m, n = 0, ..., 18. We can observe the strong reduction of the force peak

with increasing elastic constant and/or temperature. Concerning the decrease of the

peak with the temperature, we remark that the spinoidal behaviour of the force-extension

curve (negative slope in some regions) is characterised by a critical temperature, de�ned

as follows. For supercritical temperatures, the slope (or the e�ective sti�ness) is always

positive and for subcritical temperatures, it is negative in some regions. This concept of

critical temperature for the chain within the Helmholtz ensemble is similar to the concept

of Curie temperature governing the ferromagnetic-paramagnetic transition in magnetic

materials. This point has been recently discussed in Refs. [111�113]. Interestingly enough,

we notice that the chain with a negative e�ective sti�ness (spinoidal behaviour), exhibited

in speci�c working conditions, can be viewed as a metamaterial [111] and this property

can be mimicked in bioinspired nanostructures [173]. In Fig.3.10, one can �nd the the

variation of the peak-to-peak force (as de�ned in Fig.3.9) in terms of elastic constant and

temperature. We can see that the force peak becomes negligible for low values of k and

high values of T . This plot shows the importance of considering the correct value of k
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Figure 3.10 � Behaviour of the peak-to-peak force de�ned in Fig.3.9 versus elastic constant
and temperature. We varied the elastic constant in the range k = (0.3 + 0.15n)N/m,
n = 0, ..., 18 and the temperature as T = (300+50m), m = 0, ..., 9. We observe the strong
reduction of the force peak with the increasing of temperature and/or elastic constant.
We adopted the parameters N = 5, ` = 0.5 × 10−9m, χ = 3, ∆E = 8.28 × 10−20J and
µ = 0 [1].

for modelling the folding-unfolding processes of macromolecular chains. Indeed, the force

peaks are typically considered as output of real experiments and their values are used

to draw quantitative conclusions about mechanical and thermodynamic properties of the

macromolecule.

Finally, we show in Fig.3.11 the behaviour of the system as a function of the number

of units of the chain. This is an important analysis since it concerns the validity of the

ensembles equivalence in the thermodynamic limit. In Fig.3.11, one can �nd the results

for N from 2 to 8 for a system with an elastic constant k = 1N/m. It is interesting to

remark that for an increasing value of N , the peak-to-peak force is progressively reduced,

con�rming the convergence of the Helmholtz ensemble to the Gibbs ensemble for N →
∞. Indeed, if two ensembles are equivalent, the corresponding force-extension curves

must coincide. This is perfectly coherent with known results concerning the ensembles

equivalence in the thermodynamic limit, as discussed in recent literature [20,139].
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Figure 3.11 � Force-extension response (top panel), average spin variable (bottom-left
panel) and Helmholtz free energy (bottom-right panel) for a system with a variable number
of units N = 2, 3, 4, 5, 6, 7, and 8. The calculation is based on Eq.(3.100). We also
added the Gibbs force-extension responses (black curves) to facilitate the comparison.
We adopted the parameters k = 1N/m, ` = 0.5 × 10−9m, T = 300K, χ = 3, ∆E =
20kBT = 8.28× 10−20J and µ = 0 [1].

3.4 Conclusion

To conclude, we provided in detail the analysis of a two-state freely jointed chain with

extensible bonds. Despite the complexity of the calculation of the partition function,

especially within the Helmholtz ensemble, we added the extensibility to the units, an

important point to describe real macromolecules. To exactly calculate the Gibbs par-

tition function, we applied an approximation considering relatively high values of the

elastic constant de�ning the extensibility of the units. This is coherent according to

the parameters of most of macromolecules of biological interest. Concerning the Gibbs

ensemble, we obtained the exact partition function by direct integration. The latter is

then used to calculate the elastic response of the system and the average value of the

spin variable. We observed that for a given threshold force, the spin exhibits a transi-
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tion, showing the cooperative (or synchronised) behaviour of the chain within the Gibbs

ensemble. Regarding the Helmholtz ensemble, the implicit interaction induced by the iso-

metric condition complicates the direct calculation of the partition function. Indeed, the

partition function cannot be factorised due to the interdependence of the units extensions.

Both partition functions can be connected through a Laplace transform. This property

is typically exploited in classical literature to prove the equivalence of the ensembles in

the thermodynamic limit [120,124]. Here, this property is used to obtain the closed form

expression for the Helmholtz partition function in terms of the Hermite elements with a

negative index. The Hermite polynomials have been introduced in literature in Ref. [172],

however, to the author's knowledge, the study here presented is the �rst application to a

physical problem. Contrarily to the Gibbs ensemble, the average spin variable, calculated

with the help of the Helmholtz partition function, exhibits a stepwise behaviour, show-

ing the non-cooperative (or non-synchronised) behaviour of the chain. Moreover, as seen

in Fig.3.8, the force-extension response within the Helmholtz ensemble depends on the

intrinsic sti�ness of the units. A weak sti�ness of the chain may strongly reduce the am-

plitude of the force peaks of the response. It means that for force-extension experiments,

sti� macromolecules can be rather used than soft macromolecules to study cooperativ-

ity and other conformational properties. To conclude, in this Chapter, the spin variable

approach is adopted to study bistable chains with extensibility. The next step, to bring

our model closer to reality, involves the consideration of the possible interactions existing

among units.
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Chapter 4

Two-state freely jointed chain with

Ising interactions

4.1 Introduction

The purpose of this Chapter is to introduce in the model interactions existing among

the units of a macromolecular chain, with the help of the Ising scheme, combined with

the spin variable method. We remember that, from the historical point of view, the

statistical models with interactions have been introduced to explain phase transitions in

condensed matter. For instance, Wilhelm Lenz invented the original Ising model and gave

it as a problem to his student, Ernst Ising. The one-dimensional model was solved by

Ising himself during his PhD in 1924. The obtained result, contrarily to the expectations,

did not describe any phase transition. Two decades later, the two-dimensional model

was solved by Lars Onsager (see Fig.4.1). This quite complex calculation showed for the

�rst time a phase transition in an exactly solvable model of the statistical mechanics. In

following studies, the Ising scheme (and many other interaction schemes) have been used to

describe di�erent features of the phase transitions but also to develop models with complex

interactions in other physical and biophysical directions. In our context, we adopt the

Ising scheme to introduce a cooperative or anti-cooperative behaviour in the folding and

unfolding processes of the units of a chain. The study of interactions existing among units

is mainly motivated by repeat tandem proteins [114]. These proteins are de�ned as several

(at least, two) adjacent copies having the same or very similar sequence motifs, generated

by internal duplications. The repetition of the sequence ranges from a single amino-acid up

to domains of 100 or more residues. Interactions among units of the chain do not depend

on the place of the units in the sequence. Indeed, even if units are far apart in the sequence,

they can be next to each other in the con�gurational space, which may lead to interactions.
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Figure 4.1 � Insert published on the occasion of the 90th anniversary of the Ising model
[174].

A �rst reported case concerns the tandem repeats in red cell spectrin [114], where two

units simultaneously unfold because of their strong interaction. Similar observations have

been made on Filamin A [154], where domain-domain interactions lead to a hierarchy

of unfolding forces and the Ising model is appropriate to study them. Indeed, we can

introduce a positive Ising contribution which favours the same state (folded or unfolded)

for adjacent units, or a negative Ising contribution which favours the di�erent state for

adjacent units. While these forms of interactions have been observed in speci�c couples of

units in real protein chains, we introduce in our model the interaction term for all couples

of adjacent units to simplify the analysis.

Hence, the systems considered in this Chapter are bistable and cooperative. There-

fore, each unit can undergo transitions from folded to unfolded states or from unfolded to

folded states, and the transition of one unit a�ects the transition of the others, favourably

or not. The Ising model has been chosen to better understand both bistable and coop-

erative systems because it is one of the simplest interaction scheme and it directly works

on the spin variables. The Ising coe�cient, λ, is the parameter enabling to establish the

desired type of interaction. This Ising coe�cient allows to consider, for instance, the

case of a "positive" interaction with λ > 0, leading to the unfolding of units favoured by

120



the previous unfolding of other units. A "negative" interaction with λ < 0 can also be

considered, when the unfolding of units can prevent other units from unfolding. We pro-

vide evidence that the cooperativity, measured by the Ising interaction coe�cient, strongly

modi�es the force-extension response of the chain, and its con�gurational properties. This

scheme is not only useful to better understand the behaviour of real macromolecules, but

it also enables to explain the nucleation stress in nanowires [96�98], an important topic

in material science. While the Gibbs ensemble will be studied by means of the classical

transfer matrix method [175], typically adopted for one-dimensional interacting models,

the Helmholtz ensemble presents major di�culties and will be approached once again by

exploiting the Laplace transform relationship between the Gibbs and Helmholtz partition

functions [120].

We take into consideration a chain of N two-state elements (see Fig.4.2.a), each de-

scribed by a bistable potential energy with a stable folded state and a metastable unfolded

state (see Fig.4.2.b). The two potential wells in Fig.4.2.b can be characterised by the elas-

tic constant k(Si), the equilibrium length `(Si) and the basal energy v(Si), where Si is a

discrete variable (or spin variable) assuming values in {−1,+1}, used to distinguish one

well from the other. We state that Si = +1 corresponds to unfolded elements, whereas

Si = −1 corresponds to folded ones. This description suggests that the bistable energy

potential can be represented by two quadratic potentials approximating the real wells of

the units (see again Fig.4.2.b) [113]. In this case, the discrete variables belong to the phase

space of the system and allow to specify the explored well for each unit. The introduction

of the discrete or spin variables also allows the direct implementation of an interaction

between adjacent elements of the chain, e.g. described by a classical Ising Hamiltonian.

The overall Hamiltonian of this system can be therefore written as

H = −λ
N−1∑
i=1

SiSi+1 − µ
N∑
i=1

Si +
N∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2

]
. (4.1)

The �rst term in Eq.(4.1) represents the Ising interaction among spin variables, the second

term represents the e�ect of a chemical potential, and the third one describes the spring-

like behaviour of each unit placed between positions ~ri−1 and ~ri, ∀i = 1, ..., N . We

remark that λ > 0 tries to force all elements to be folded or unfolded (ferromagnetic-

like interaction), whereas λ < 0 tries to force all elements to be alternatively folded and

unfolded (anti-ferromagnetic-like interaction). The parameter µ is a sort of external �eld

or chemical potential (µ > 0 tries to unfold the domains and µ < 0 tries to fold them).

In the following, we suppose to embed the system in a thermal bath at the temperature

T , we consider the system at thermodynamic equilibrium and we study the e�ects of
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Figure 4.2 � a) Chain of N two-state units with Ising interactions. While the �rst end-
terminal α is able to tether the �rst unit to a given substrate, the second one β is able
either to apply a force (Gibbs condition) or a position (Helmholtz condition) to the last
unit. b) Potential energy of a single unit of the chain (dashed black curve). The potential
wells are approximated through two parabolic (i.e. quadratic) pro�les (solid blues curves),
identi�ed by Si = −1 (folded state) and Si = +1 (unfolded state) [2].

the Ising interactions on the mechanical and con�gurational behaviour within the Gibbs

(applied external force) or the Helmholtz (prescribed end-to-end distance) ensembles (see

Fig.4.2.a).

4.2 Example of biological cooperativity

Tandem-repeat domains are frequently found protein architectures. In this Section,

we brie�y discuss the cooperativity in the solenoid class of the tandem-repeat proteins

comprising repeats of approximately 12�40 amino acids [176]. The simplest solenoid

proteins contain repeats of two secondary structure elements: α/α, α/β or β/β. More

complex repeats have three or four secondary elements. The `solenoid' term originally

referred to a coil wound into a tightly packed helix. The repeats pack forms super-helices

that di�er greatly in their geometries, as shown in Fig.4.3.

Tandem-repeat protein structures are exclusively stabilised by local interactions either

within a repeat or between adjacent repeats. By contrast, the stability of globular proteins

originates from the high cooperativity between sequence-distant interactions. The simple

topology of the repeat-protein architecture enables the use of a one-dimensional Ising

model description to de�ne the energetic values of each repeat under the assumption of

all repeats being coupled. Indeed, their states are coupled to their nearest neighbours

through an exchange interaction, a potential that favours parallel alignment between
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Figure 4.3 � Secondary structure representations of solenoid tandem-repeat proteins.
From top left to bottom right (PDB identi�ers in parenthesis): ARM-repeat protein
β-catenin (2Z6H), HEAT-repeat protein PR65 (1B3U), Ankyrin-repeat protein gankyrin
(1UOH), HEAT-repeat protein Importin-β (3ND2), leucine-rich repeat (LRR) protein Ri-
bonuclease Inhibitor (1BNH), TPR protein RapI (4I1A), β-helical repeat protein carbonic
anhydrase (1QRE) [176].

Figure 4.4 � Structures of di�erent Rap proteins (C-terminus in red) depicting a possible
mode of action. When the TPR domain binds to a signalling peptide, it causes the
Rap protein to adopt a compact, or `closed' conformation. Upon binding an interaction
partner, however, conformational changes in the TPR domain are minimal, whereas the
N-terminal three-helix bundle �ips by approximately 180�[176].

states. Folding cooperativity of repeat proteins breaks down above approximately 100�150

amino acids, similar to the cooperativity limit of globular proteins.

In recent years, a family of bacterial regulators has been largely investigated: the

RRNPP family. The name of these peptide-sensing regulators refers to the founding

members of the family, Rap-Rgg-NprR-PlcR-Prgx. They all have the same domain or-

ganisation: an N-terminal three-helix bundle, a �exible helical linker and a C-terminal

tratricopeptide repeats (TPR, as shown in Fig.4.3) capable of binding short peptides of

�ve to eight residues [176]. The homologous structures of Rap proteins have been used

to propose a mechanism of action for signal transduction (see Fig.4.4). The compact
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Figure 4.5 � Representative cross-correlation maps for the partner-bound, open and
peptide-bound conformations. Cross-correlation between residues is a measure of how
much these residues move in the same direction, where values of 1 and -1 represent per-
fectly correlated and anti-correlated motions, respectively. The TPR repeats exhibit cor-
related motions only with their nearest neighbours, giving rise to the distinctive pattern
of squares along the diagonal. Movements of the N-terminal three-helix bundle, linker do-
main and �rst TPR motif (blue box) are non-TPR-like, exhibiting non-nearest-neighbour
correlations, suggesting that they form a sub-domain relative to the rest of the TPR re-
peats. Some of these correlations are reduced in the open conformation, or even reversed,
once a continuous TPR array is formed (arrows) and the distinction of this domain is
lost. The global movement of peptide binding TPRs (purple box) and neighbouring re-
peats is only minimally a�ected in the presence of the peptide, which only causes a slight
increase in the nearest-neighbour correlations. The N-terminal helix bundle and TPR
repeats are divided by grey dashed lines and correlations are mirrored across the diagonal
for clarity [176].

solenoid RapJ is the inactive con�guration and the extended solenoid RapI is the active

one. In its active con�guration, the N-terminal helix bundle is capable of exposing the

Spo0F- or ComA- binding regions of RapF and RapH, respectively. Peptide-bound Rap

proteins undergo a conformational change locking the N-terminal domain in a compact

con�guration in which its binding sites are inaccessible.

The properties of RapJ are also studied when it is in complex with the PhrC peptide

[176]. In Ref. [176], the authors analysed the correlation of motion between di�erent

residues of these structures and the results are reported in Fig.4.5. Such structures, as
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clearly shown, exhibit correlated motion only with their nearest neighbours, giving rise

to the distinctive pattern of squares along the diagonal and con�rming the applicability

of the Ising scheme. The binding of the peptide marginally increases nearest-neighbour

correlation at the centre (purple box in Fig.4.5). Moreover, movements of the N-terminal

three-helix bundle, linker domain and �rst TPRs repeat (blue box in Fig.4.5) are strongly

correlated (non-nearest-neighbour), suggesting that they form a sub-domain relative to

the rest of the TPR repeats. Finally, the Rap proteins are a good example of a system

where nearest-neighbour interactions in a repeat array are su�ciently strong to justify a

two-state modelling with a superposed Ising scheme.

4.3 Two-state freely jointed chain with Ising interac-

tions: the Gibbs ensemble

We consider now the extended Hamiltonian

HG = −λ
N−1∑
i=1

SiSi+1 − ~f · ~rN − µ
N∑
i=1

Si

+
N∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2

]
. (4.2)

Here, ~f is the applied force to the last element, identi�ed by its position ~rN . We suppose

that quantities ~ri ∈ R3 and Si ∈ {−1,+1} ∀i ∈ {1...N} belong to the phase space of the

system. Moreover, to �x ideas, we always consider ~r0 = 0. The statistical mechanics of

the system can be introduced by calculating the Gibbs partition function, as

ZG(~f) =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
R3

...

∫
R3

exp

[
−HG

({Si}, {~ri})
kBT

]
d~r1...d~rN

=
∑

S1∈{0,1}

...
∑

SN∈{0,1}

exp

(
λ

kBT

N−1∑
i=1

SiSi+1

)
exp

(
µ

kBT

N∑
i=1

Si

)

× exp

[
− 1

kBT

N∑
i=1

v(Si)

]∫
R3N

exp

(
~f · ~rN
kBT

)

× exp

[
−1

2

N∑
i=1

k(Si)

kBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
d~r1...d~rN . (4.3)
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The integral I =
∫
R3N ...d~r1...d~rN can be developed by means of the change of variables

~ξ1 = ~r1 − ~r0; ~ξ2 = ~r2 − ~r1; ...; ~ξN = ~rN − ~rN−1, giving

I =

∫
R3N

exp

[
−1

2

N∑
i=1

k(Si)

kBT
[‖ξi‖ − `(Si)]2

]
exp

(
~f

kBT
·
N∑
i=1

~ξi

)
d~ξ1...d~ξN . (4.4)

To further simplify the integral, we suppose that ~f = (0, 0, f) (the direction of the force can

be �xed without limiting the generality of the calculation since the system is isotropic) and

we introduce the spherical coordinates for the vectors ~ξi : ~ξi = (ξi cosϕi sin θi; ξi sinϕi sin θi; ξi cos θi).

Therefore, ‖~ξi‖ = ξ ; ~f · ~ξi = fξi cos θi and d~ξi = ξ2
i sin θidξidϕidθi, and the integral be-

comes

I =

∫
B

exp

[
−1

2

N∑
i=1

k(Si)

kBT
[ξi − `(Si)]2

]
exp

(
N∑
i=1

fξi cos θi
kBT

)

×
N∏
i=1

ξ2
i sin θidξidϕidθi, (4.5)

with B = [(0; +∞)× (0; 2π)× (0;π)]N . The calculation can be developed as follows

I = (2π)N
∫

[0;+∞]N
exp

[
−1

2

N∑
i=1

k(Si)

kBT
[ξi − `(Si)]2

](
N∏
i=1

ξ2
i

)

×
∫

[0;π]N
exp

(
N∑
i=1

fξi cos θi
kBT

)
N∏
i=1

sin θidθidξi

= (2π)N
N∏
i=1

{∫ +∞

0

exp

[
−1

2

k(Si)

kBT
[ξi − `(Si)]2

]
ξ2
i

2kBT

fξi

× sinh

(
fξi
kBT

)
dξi

}

= (4π)N
N∏
i=1


∫ +∞

0

exp

[
−1

2

k(Si)

kBT
[ξi − `(Si)]2

] sinh
(
fξi
kBT

)
fξi
kBT

ξ2
i dξi

 . (4.6)

Now, the integral I can be strongly simpli�ed if we make the assumption to deal with

a freely jointed chain model with elements of �xed lengths. It is equivalent to say that

k(+1) = k(−1) → +∞. The case with �nite sti�ness of the wells will be considered in

a following Section. If we use the property
√

α
π
e−αx

2 → δ(x), when α → ∞, we simplify

the result for I, with c a constant, as

I = c×
N∏
i=1

∫ +∞

0

δ [ξi − `(Si)]
sinh

(
fξi
kBT

)
fξi
kBT

ξ2
i

`2
dξi, (4.7)
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where `2 = `2(−1) i.e. ` = `(−1). We �nally obtain

I = c×
N∏
i=1

sinh
[
f`(Si)
kBT

]
f`(Si)
kBT

`2(Si)

`2
dξi. (4.8)

Eventually, the partition function assumes the simpler form

ZG(~f) =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

{
exp

(
λ

kBT

N−1∑
i=1

SiSi+1

)
exp

(
µ

kBT

N∑
i=1

Si

)

× exp

[
− 1

kBT

N∑
i=1

v(Si)

]
N∏
i=1

sinh
[
f`(Si)
kBT

]
f`(Si)
kBT

`2(Si)

`2
dξi

 . (4.9)

We have now to approach the problem of calculating the sums over the spin variables.

To this aim, a more symmetric form of Eq.(4.9) can be obtained by observing that

N∏
i=1

ci =
√
c1

[
N−1∏
i=1

√
cici+1

]
√
cN , (4.10)

with ci > 0, whatever i. So we have

ZG(f) =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

exp

(
µ

2kBT
S1

)
exp

[ −1

2kBT
v(S1)

]√
c1

N−1∏
i=1

{
exp

(
λ

kBT
SiSi+1

)

× exp

[
µ

2kBT
(Si + Si+1)

]
exp

[ −1

2kBT
[v(Si) + v(Si+1)]

]√
cici+1

}
× exp

(
µ

2kBT
SN

)
exp

[ −1

2kBT
v(SN)

]√
cN , (4.11)

where we de�ned

ci =
sinh

[
f`(Si)
kBT

]
f`(Si)
kBT

`2(Si)

`2
. (4.12)

We de�ne `(−1) = `; v(−1) = 0 and `(+1) = χ`; v(+1) = ∆E, where χ is the ratio

between unfolded and folded lengths, and ∆E is the energy jump between the wells. The

next step to elaborate the Gibbs partition function consists in adopting the technique of

the transfer matrix and then we can write

ZG(f) = ~V TTN−1~V , (4.13)
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where we have

~V =


e
− µ

2kBT

√
sinh

(
f`
kBT

)
f`
kBT

e
µ

2kBT e
− ∆E

2kBT

√
χ

sinh
(
f`χ
kBT

)
f`
kBT

 (4.14)

or

~V =

[ √
2p√
2q

]
(4.15)

if we de�ne

p =
1

2
e
− µ
kBT

sinh ξ

ξ
, (4.16)

q =
1

2
e

µ
kBT χφ

sinh(χξ)

ξ
, (4.17)

where

φ = e
− ∆E
kBT , (4.18)

ξ =
f`

kBT
. (4.19)

Moreover,

T =

 e
λ

kBT e
− µ
kBT

sinh ξ
ξ

e
− λ
kBT e

− ∆E
2kBT

√
sinh ξ
ξ
χ sinh(χξ)

ξ

e
− λ
kBT e

− ∆E
2kBT

√
sinh ξ
ξ
χ sinh(χξ)

ξ
e

λ
kBT e

µ
kBT χ sinh(χξ)

ξ
e
− ∆E
kBT

 (4.20)

or again

T = 2

[
pe

λ
kBT

√
pqe

−λ
kBT

√
pqe

−λ
kBT qe

λ
kBT

]
. (4.21)

Since we are studying the thermodynamics of small systems (small N), we need to calcu-

late the exact value of the partition function given in Eq.(4.13) and not its approximation

evaluated for a large value of N , corresponding to the thermodynamic limit. Now, we can

simply calculate the eigenvalues of the transfer matrix T, obtaining

λ1,2 = e
λ

kBT (p+ q)±
√
e

2λ
kBT (p− q)2 + 4e

−2λ
kBT pq

= e
λ

kBT

[
(p+ q)±

√
(p+ q)2 − 4pq

(
1− e

−4λ
kBT

)]
. (4.22)
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We note that if λ1 corresponds to the sign "+" and λ2 to the sign "−", then λ1 > λ2 > 0.

Now, we need to explicitly determine the matrix power TN−1. We introduce the general

theory for an arbitrary matrix function: let f(x) : R → R a function with a Taylor

development f(x) =
∑+∞

k=0Ckx
k, converging in a region D ⊂ C. Then, we consider a

matrix A (M × M), with all eigenvalues in D: λj ∈ D, whatever j = 1, ...,M . So,

we de�ne the value f(A) by the series expansion f(A) =
∑+∞

k=0 CkA
k. We propose an

e�cient technique to determine f(A) with a �nite number of operations. We consider the

characteristic polynomial PA(x) associated to the matrix A

PA(x) = det(A− x1) (4.23)

with solutions being the eigenvalues ofA. We also remember the Cayley-Hamiltonian the-

orem stating that PA(A) = 0. In general, we know the procedure for dividing polynomials

as

n(x)

d(x)
= q(x) +

r(x)

d(x)
(4.24)

or n(x) = q(x)d(x) + r(x), where ∂n = P, ∂d = D, ∂q = M − D and ∂r = D − 1.

We say that n(x) is the dividend, d(x) is the divisor, q(x) is the quotient and r(x)

is the remainder. The important point is that the remainder has a lower degree than

the divisor. The quantities q(x) and r(x) are unique and the procedure is the so-called

Euclidean division. Now, we apply this operation to f(x)
PA(x)

, getting

f(x)

PA(x)
= q(x) +

r(x)

PA(x)
(4.25)

or f(x) = q(x)PA(x) + r(x), with ∂r = M − 1 if A is a matrix M ×M . So, by using

the Cayley-Hamilton theorem, we obtain that f(A) = r(A) with ∂r = M − 1. We �nally

have to �nd the M coe�cient of the polynomial r(x). If λi is a simple root of PA(x), we

can write f(λi) = q(λi)PA(λi) + r(λi) or f(λi) = r(λi), which is a condition to obtain the

coe�cients of r(x). If λi has multiplicity 2 in PA(x), then we can write

f(x) = q(x)PA(x) + r(x), (4.26)

f ′(x) = q′(x)PA(x) + q(x)P
′

A(x) + r′(x), (4.27)

and we have

f(λi) = r(λi), (4.28)

f ′(λi) = r′(λi). (4.29)
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In conclusion, we have the following property: if PA(x) = (−1)M(x− λ1)m1 ...(x− λr)mr ,
with

∑r
i=1 mi = M , we can consider r(x) =

∑M−1
k=0 rkx

k where the coe�cients rk can be

obtained through the system

f (α)(λi) = r(α)(λi), (4.30)

with 0 < α < mi − 1, whatever i from 1 to r.

In our case, we search for TN−1 with a 2 x 2 matrix T(M = 2) having eigenvalues λ1 and

λ2, as

TN−1 = α1 + βT, (4.31)

with

λN−1
1 = α + βλ1, (4.32)

λN−1
2 = α + βλ2, (4.33)

from which we get

α =
λ1λ

N−1
2 − λ2λ

N−1
1

λ1 − λ2

, (4.34)

β =
λN−1

1 − λN−1
2

λ1 − λ2

, (4.35)

or equivalently

TN−1 =
λN−1

1 − λN−1
2

λ1 − λ2

T +
λ1λ

N−1
2 − λ2λ

N−1
1

λ1 − λ2

1. (4.36)

Therefore, the partition function becomes

ZG(~f) = ~V TTN−1~V =
λN−1

1 − λN−1
2

λ1 − λ2

~V TT~V +
λ1λ

N−1
2 − λ2λ

N−1
1

λ1 − λ2

~V T ~V . (4.37)

Thus, we have

~V T ~V =
[√

2p
√

2q
] [ √2p√

2q

]
= 2p+ 2q = 2(p+ q), (4.38)

~V TT~V =
[√

2p
√

2q
] [ 2pe

λ
kBT 2e

− λ
kBT
√
pq

2e
− λ
kBT
√
pq 2qe

λ
kBT

][ √
2p√
2q

]
= 4p2e

λ
kBT + 4pqe

− λ
kBT + 4pqe

− λ
kBT + 4q2e

λ
kBT

= 4e
λ

kBT

[
(p+ q)2 − 2pq(1− e−

2λ
kBT )

]
. (4.39)
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With some other modi�cations, we get

λ1 + λ2 = 2e
λ

kBT (p+ q) = e
λ

kBT ~V T ~V (4.40)

λ1 − λ2 = 2e
λ

kBT

√
(p+ q)2 − 4pq

(
1− e−

4λ
kBT

)
. (4.41)

We try to write ~V T ~V and ~V TT~V in terms of λ1, λ2 and e
λ

kBT . Therefore,

~V T ~V = x(λ1 + λ2), (4.42)

with x = exp
− λ
kBT . From (4.41), we calculate (λ1 − λ2)2

(λ1 − λ2)2 = 4e
2λ
kBT

[[
(λ1 + λ2)

1

2
e
− λ
kBT

]2

− 4pq
(

1− e−
4λ
kBT

)]
. (4.43)

So we get

x2

4

(
λ2

1 + 2λ1λ2 + λ2
2 − λ2

1 + 2λ1λ2 + λ2
2

)
= 4pq

(
1− e−

4λ
kBT

)
. (4.44)

And �nally

pq =
1

4

λ1λ2x
2

(1− x2)(1 + x2)
. (4.45)

Therefore, from (4.39), we obtain

~V TT~V =
4

x

[(x
2

)2

(λ1 + λ2)2 − 2

4

λ1λ2x
2

(1− x4)
(1− x2)

]
=

x(1 + x2)(λ1 + λ2)2 − 2xλ1λ2

1 + x2
. (4.46)

The �nal calculus of ZG(f) gives

ZG(f) =
λN−1

1 − λN−1
2

λ1 − λ2

(x3 + x)(λ1 + λ2)2 − 2λ1λ2

1 + x2

+
λ1λ

N−1
2 − λ2λ

N−1
1

λ1 − λ2

x(λ1 + λ2)

=
x

(λ1 − λ2)(1 + x2)

[
(λN−1

1 − λN−1
2 )

(
(1 + x2)(λ2

1 + λ2
2 + 2λ1λ2)− 2λ1λ2

)
+(λ1 + λ2)(λ1λ

N−1
2 − λ2λ

N−1
1 )(1 + x2)

]
. (4.47)

Then, we calculate the term into brackets[
(λN−1

1 − λN−1
2 )

(
(1 + x2)(λ2

1 + λ2
2 + 2λ1λ2)− 2λ1λ2

)
+ (λ1 + λ2)

×(λ1λ
N−1
2 − λ2λ

N−1
1 )(1 + x2)

]
= λN−1

1 λ1(λ1 − λ2)− λN−1
2 λ2(λ2 − λ1)

+x2(λN−1
1 − λN−1

2 )(λ1 + λ2)2 + x2(λ2
1λ

N−1
2 − λ2λ

N
1 + λ1λ

N
2 − λ2

2λ
N−1
1 )

= λN1
[
λ1 − λ2 + x2(λ1 + λ2)

]
− λN2

[
λ2 − λ1 + x2(λ1 + λ2)

]
. (4.48)
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Finally, we get the following form of the Gibbs partition function

ZG(f) =
x

1 + x2

[
λN1

(
1 + x2λ1 + λ2

λ1 − λ2

)
+ λN2

(
1− x2λ1 + λ2

λ1 − λ2

)]
, (4.49)

where

x = e
− λ
kBT , (4.50)

λ1,2 =
1

x

[
p+ q ±

√
(p+ q)2 − 4pq(1− x4)

]
, (4.51)

p =
1

2
e
− µ
kBT

sinh ξ

ξ
, (4.52)

q =
1

2
e

µ
kBT χφ

sinh(χξ)

ξ
, (4.53)

ξ =
f`

kBT
, (4.54)

φ = e
− ∆E
kBT . (4.55)

As usual, we obtain the force-extension response as

〈r〉 = kBT
∂ logZG(f)

∂f
= kBT

1

ZG

∂ZG
∂f

. (4.56)

We also note that Si+1
2

gives 0 for folded elements and 1 for unfolded elements. There-

fore,the quantity
〈∑N

i=1
Si+1

2

〉
is the average number of unfolded elements. The term∑N

i=1 v(Si) of the Hamiltonian function previously seen can also be written as
∑N

i=1
Si+1

2
∆E,

therefore we have

N∑
i=1

Si + 1

2
=
∂HG

∂∆E
. (4.57)

It follows that
〈∑N

i=1
Si+1

2

〉
can be evaluated through the expression

〈
N∑
i=1

Si + 1

2

〉
=

∑
~S

∫
∂HG
∂∆E

e
− HG
kBT d~r∑

~S

∫
e
− HG
kBT d~r

, (4.58)

which can be simpli�ed to give〈
N∑
i=1

Si + 1

2

〉
= −kBT

∂

∂∆E
log[ZG(f)], (4.59)

corresponding to the average value of unfolded domains. It is useful to introduce here

the Gibbs free energy of the system G = −kBT logZG. The above expected values can be
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Figure 4.6 � Average normalised extension a) and average number of unfolded units b)
versus the applied normalised force for a chain with Ising interactions under isotensional
(Gibbs) condition. The curves have been obtained with ∆E = 7kBT , N=4, χ = 2,
µ = 0, and λ = 0,±1,±2kBT . The black dashed curves correspond to the chain without
interactions (λ = 0), the dark red (or dark gray) curves to ferromagnetic-like Ising interac-
tions (λ > 0) and the orange (or light gray) curves to anti-ferromagnetic-like interactions
(λ < 0) [2].

reformulated in terms of this thermodynamic function as follows

〈r〉 = −∂G
∂f

, (4.60)〈
N∑
i=1

Si + 1

2

〉
=

∂G
∂∆E

. (4.61)
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The knowledge of ZG or G allows therefore the determination of both the average extension

of the chain and the average number of unfolded units as function of the applied force

and temperature.

An application of Eqs.(4.60) and (4.61) can be found in Fig.4.6. First of all, we dis-

cuss the curves for λ = 0, i.e. without Ising interactions: in the force-extension curve

(Fig.4.6.a), we note a force plateau corresponding to the synchronised unfolding of the

N units. This behaviour is con�rmed by the number of unfolded units (Fig.4.6.b), which

shows a transition from 0 to N , at the same threshold force as the previously mentioned

plateau. This force plateau is the classical result of force spectroscopy experiments con-

ducted with soft devices [24, 68, 76, 77, 133, 141] (see also previous Chapters for a wider

discussion). The Ising interactions modify this scenario as follows: if λ > 0, the units

are favoured to be in the same state and the transition is therefore sharper than the

one observed for λ = 0; on the other hand, if λ < 0, it is easier to unfold the �rst

units and the response is therefore smoother. It is interesting to note that, for strong

anti-ferromagnetic-like interactions, even with f = 0, we can have a positive number of

unfolded units because of the energetic compromise between λ and ∆E. Indeed, when we

observe unfolded units with f = 0, the cooperativity e�ect is stronger than the energy

jump between folded and unfolded states. We �nally remark that the curves in Fig.4.6 are

valid for any value of ` and T . If, as an example, we consider ` = 0.4nm and T = 300K,

we get a plateau force at f = 70 pN, which is coherent, e.g., with the DNA overstretching

transition [130].

4.4 Two-state freely jointed chain with Ising interac-

tions: the Helmholtz ensemble

We consider now the Helmholtz ensemble where the last element of the chain is �xed

at a given arbitrary position (isometric condition). The Hamiltonian reads

HH = λ

N−1∑
i=1

SiSi+1 − µ
N∑
i=1

Si

+
N∑
i=1

[
v(Si) +

1

2
k(Si) [‖~ri − ~ri−1‖ − `(Si)]2

]
, (4.62)
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where ~rN = ~r is �xed. The phase space is therefore composed of ~ri ∀i = 1, ..., N − 1 and

Si ∀i = 1, ..., N . Hence, the partition function can be written as

ZH(~r) =
∑

S1∈{0,1}

...
∑

SN∈{0,1}

∫
Q

exp

[
−HH({Si}, {~ri})

kBT

]
d~r1...d~rN−1

=
∑

S1∈{0,1}

...
∑

SN{∈0,1}

exp

(
λ

kBT

N−1∑
i=1

SiSi+1

)

× exp

(
µ

kBT

N∑
i=1

Si

)
exp

[
− 1

kBT

N∑
i=1

v(Si)

]

×
∫
Q

exp

[
−1

2

N∑
i=1

k(Si)

kBT
[‖~ri − ~ri−1‖ − `(Si)]2

]
×d~r1...d~rN−1, (4.63)

where Q = R3(N−1). It is not di�cult to realise that the calculation of ZH(~r) is much more

complicated than the one performed for ZG(~f). Indeed, in this case, we can not apply

a simple change of variables in order to factorise the multi-dimensional integral. From

the physical point of view, this di�culty depends on the fact that the isometric condition

induces an e�ective interaction among the units, �xing the sum of all vectors ~ri−~ri−1 (for

i from 1 to N). Then, we have now the combination of two forms of interaction among

the units, being the �rst implicitly encoded in the isometric condition and the second

explicitly implemented through the Ising scheme. An useful technique to cope with this

di�culty is the following. By comparing Eqs.(4.3) and (4.63), we deduce again that the

two partition functions ZG(~f) and ZH(~r) are related through a three-dimensional bilateral

Laplace transform, as

ZG(~f) =

∫
R3

ZH(~r) exp

(
~r · ~f
kBT

)
d~r, (4.64)

where, as usual, we neglect the non-in�uential multiplicative constants in the partition

functions. Moreover, by considering the spherical symmetry of the problem, we easily

obtain the inverse relationship

ZH(r) =

∫ +∞

−∞
ZG(iη)

η

r
sin

(
ηr

kBT

)
dη, (4.65)

where ZG(iη) is the analytic continuation of the partition function ZG(f) for the Gibbs

ensemble, given in Eq.(4.49). The integral in Eq.(4.65) can be simpli�ed by the change

of variable y = η`
kBT

, leading to

ZH(r) =

∫ +∞

−∞
ZG

(
iy
kBT

`

)
y

r
sin
(yr
`

)
dy, (4.66)
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where, as before, we neglected the non-in�uential multiplicative constant. Coherently

with our assumptions, the variables p and q assume the form

p =
1

2
e
− µ
kBT

sin y

y
=
p̃

y
, (4.67)

q =
1

2
e

µ
kBT χφ

sin(χy)

y
=
q̃

y
. (4.68)

Accordingly, the eigenvalues of the transfer matrix become

λ1,2 =
1

xy

[
p̃+ q̃ ±

√
(p̃+ q̃)2 − 4p̃q̃(1− x4)

]
=
λ̃1,2

y
, (4.69)

where p̃ = py, q̃ = qy, and λ̃1,2 = λ1,2y. Hence, the analytic continuation of the Gibbs

partition function becomes

ZG

(
iy
kBT

`

)
=

x

1 + x2

1

yN

[
λ̃m1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)

+λ̃N2

(
1− x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
, (4.70)

where, importantly, λ̃1 and λ̃2 depend on y only through sin(y) and sin(χy). In particular,

when χ is an integer (or also a rational number), ZG is composed of a periodic function

of y divided by yN . So we have

ZG

(
iy
kBT

`

)
=

1

yN
P (y), (4.71)

where P (y) = P (y + Ly) for a given Ly and we have

P (y) =
x

1 + x2

[
λ̃N1

(
1 + x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)

+λ̃N2

(
1− x2 λ̃1 + λ̃2

λ̃1 − λ̃2

)]
. (4.72)

If we consider integer values of χ, P (y) is periodic with a period of Ly = 2π, and it can

be developed in Fourier series, as

P (y) =
+∞∑

k=−∞

Cke
iky, (4.73)

where

Ck =
1

2π

∫ 2π

0

P (y)e−ikydy. (4.74)
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Figure 4.7 � De�nition of the contour Γ on the complex plane with an arbitrary radius
ε [2].

The values of Ck can be obtained numerically by calculating the integrals through classical

numerical techniques (we veri�ed that the simple Simpson's rule is su�cient to obtain

accurate results). Once determined the Ck coe�cients, the Helmholtz partition function

can be obtained analytically as follows. To begin, we have from Eq.(4.65)

ZH(r) = −i
∫

Γ

ZG

(
iy
kBT

`

)
y

r
e
yr
` dy. (4.75)

Here, we used the Euler formula e
iry
` = cos ry

`
+ i sin ry

`
, and we observed that the integral

with cos ry
`
is zero since ZG

(
iy kBT

`

)
is an even function of y. Moreover, since the function

to integrate is regular on the real axis and holomorphic on a strip |Imy| < M for an

arbitraryM ∈ R, we can use the path Γ shown in Fig.4.7. This will be useful to elaborate

the partition function integral and to write it in a form without singularities at the origin.

Indeed, we have

ZH(r) = −i
∫

Γ

P (y)

yN
y

r
e
iry
` dy

= −i
∫

Γ

1

yN

+∞∑
k=−∞

Cke
iky y

r
e
iry
` dy

= −i
+∞∑

k=−∞

Ck
1

r

∫
Γ

1

yN−1
ei(k+ r

` )ydy, (4.76)

where the last integral is well de�ned since the path Γ excludes the singularity at the origin

from the integration. We know that an application of the residue theorem delivers [113]∫
Γ

eiay

ym
dy =

{
0 if a > 0,

−2πim am−1

(m−1)!
if a ≤ 0,

(4.77)

as proved in Chapter 2, see Eq.(2.78). Therefore,

ZH(r) = i

+∞∑
k=−∞

Ck
r

2πiN−1

(
k + r

`

)N−2

(N − 2)!
1
(
−k − r

`

)
=

2πiN

r

+∞∑
h=−∞

C−h

(
r
`
− h
)N−2

(N − 2)!
1
(
h− r

`

)
, (4.78)
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Figure 4.8 � Force-extension response a), average number of unfolded units b) and
Helmholtz free energy c) for a chain with Ising interactions under isometric (Helmholtz)
condition. The curves have been obtained with ∆E = 5kBT , N=5, χ = 2, µ = 0,
and λ = 0,±0.5,±1kBT . The black curves correspond to the chain without interactions
(λ = 0), the red curves to ferromagnetic-like Ising interactions (λ > 0) and the blue curves
to anti-ferromagnetic-like interactions (λ < 0) [2].
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where 1(x) represents the Heaviside step function, de�ned as 1(x) = 1 if x ≥ 0, and

1(x) = 0 if x < 0. Finally,

ZH(r) =
2πiN

r(N − 2)!

+∞∑
h=−∞

(Ch)
∗
(r
`
− h
)N−2

1
(
h− r

`

)
, (4.79)

where we used the property stating that C−h = (Ch)
∗, which is valid for the Fourier coe�-

cients of a real periodic function. The result obtained in Eq.(4.79) is exact for χ ∈ N, but
it is based on the numerical computation of the coe�cients Ck (semi-analytic procedure).

The limitation introduced by considering integer values for χ does not restrict the physical

interpretation of the results. Moreover, this procedure can be easily generalised in order

to consider arbitrary rational values for χ (of course, the function P (y) remains periodic

with χ ∈ Z). Furthermore, in next Sections, we also discuss additional asymptotic results,

which are not based on restrictions over the values of the parameter χ.

It is important to remark that our semi-analytic procedure, leading to Eq.(4.79) and

based on the numerical implementation of Eq.(4.74), is very e�cient for the determina-

tion of the Helmholtz partition function. Indeed, the direct numerical calculation of the

original integral in Eq.(4.66), grounded on the knowledge of the Gibbs partition func-

tion given in Eq. (4.70), is a really hard � if not impossible � task since the integrand

function is decreasing (as 1/yN−1) and oscillating for any r in the whole interval between

0 and Nχ`. Since we need the quantity logZH(r) to analyse the system behaviour, all

the oscillations of the integrand function (also for large values of |y|) play an important

role in de�ning the result. For this reason, our procedure leads to very accurate results,

being based on the analytic determination of the integral over Γ and on the numerical

evaluation of the integrals over (0, 2π) de�ned in Eq.(4.74), which are much more stable

than the one de�ned in Eq.(4.66).

By mean of ZH(r) given in Eq.(4.79), we can �nd the force-extension response through

the expression

〈f〉 = −kBT
∂

∂r
logZH(r) =

∂F
∂r

, (4.80)

and the average value of unfolded domains with the relation〈
N∑
i=1

Si + 1

2

〉
= −kBT

∂

∂∆E
logZH(r) =

∂F
∂∆E

, (4.81)

where we introduced the Helmholtz free energy of the system F = −kBT logZH . An ex-

ample of application can be found in Fig.4.8, where we show the force-extension response,
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the average number of unfolded units and the Helmholtz free energy for a chain stretched

under isometric condition and with a variable Ising interaction coe�cient. First of all,

concerning the case with λ = 0, we observe that the force-extension curve is composed

of a number of peaks corresponding to the non-synchronised (sequential) unfolding of the

units. This is con�rmed by the step-wise curve representing the average number of un-

folded units versus the chain extension. Each step corresponds to the unfolding of a unit

induced by the increasing extension of the chain. This behaviour agrees with previous

theoretical and experimental results [24,135,141�146] (see also previous Chapter for more

details). This scenario is modi�ed by the introduction of the Ising interactions. If λ > 0,

the unfolding of the �rst units requires a larger force peak since the units are favoured to

remain in the initial folded state. On the contrary, the unfolding of the last units requires

a smaller force since most of the units are already unfolded and they prefer to be in the

same state as the majority. This interpretation equally holds for the plot of the average

value of unfolded units, where we can note that the anti-ferromagnetic-like behaviour

may induce the unfolding of some units also without the applied force. The origin of

the non-synchronised transitions can be highlighted in the Helmholtz free energy curves,

characterised by a series of cusps able to induce the force peaks in the force-extension

curve. To conclude, the Ising interactions induce a speci�c cooperativity, which can be

detected in the modi�cation of the hierarchy of forces in the sawtooth-like response, as

recently observed in force spectroscopy experiments of proteins (e.g., in Filamin A) [154].

A form of criticality can be noticed for the Helmholtz response of the bistable Ising

chain. To do this, in the force-extension curves shown in Fig.4.8.a, we can identify the

spinoidal regions, characterised by a negative slope or, equivalently, by a negative di�eren-

tial sti�ness. It means that, for each force peak observed in Fig.4.8.a, we have a spinoidal

interval with ∂f/∂r < 0. It is interesting to study the evolution of these spinoidal re-

gions in terms of the temperature. In general, we can say that the system is or not in

a spinoidal phase depending on values of r and T . We can therefore determine a sort of

phase diagram, as shown in Fig.4.9, where the end-points of each spinoidal interval (on the

extension axis) are shown versus the temperature. While the left end-point corresponds

to the maximum of the force peak, the right end-point corresponds to the following mini-

mum. These curves have been represented for di�erent values of the interaction coe�cient

λ to explore the e�ects of the Ising scheme on this critical behaviour. Importantly, we can

observe that each spinoidal interval disappears for a given temperature, which is a critical

temperature for the system. Hence, for a given chain composed ofN units, there areN dif-

ferent critical temperatures, one for each unfolding process. We remark that, for a system

140



1 2 3 4 5 6 7 8

4

5

6

7

8

9

Figure 4.9 � Spinoidal phase diagram showing the end-points of the spinoidal intervals
(with ∂f/∂r < 0) versus the temperature of the system (T > T0). Di�erent Ising interac-
tion coe�cients have been considered. The curves have been obtained with ∆E = 5kBT0,
N = 5, χ = 2 and µ = 0. The parameters ` and T0 are arbitrary (typical values are
` = 1nm and T0 = 300K) [2].

without Ising interactions, the critical temperature is larger for the last unfolded units.

This contrast among critical temperatures is further ampli�ed for anti-ferromagnetic-like

systems. On the other hand, a given intensity of ferromagnetic-like interactions is able

to equilibrate the critical temperatures among the unfolding processes (see, e.g., the red

curves in Fig.4.9). This point can be explained by observing that λ > 0 favours the

simultaneous unfolding of the units, thus inducing a similar behaviour of these ones. We

can say that the ferromagnetic-like interactions induce a resistance to �uctuations within

the system. It means that all unfolding processes do not lose their snap-through response

for a given range of temperature. The bistability resistant to �uctuations is an important

concept for micro-and nano-mechanical systems with non-convex elastic energy, where

one attempts to sustain the bistability at possibly large temperatures [177]. We remark

that the observation of a negative di�erential sti�ness for subcritical temperatures and of

a positive di�erential sti�ness for supercritical temperatures can be interpreted by stating

that the system behaves as a metamaterial [111,112]. In a following Section, we will also

explore the e�ect of the intrinsic sti�ness of the units on this critical behaviour.

141



0 2 4 6 8 10r
ℓ

0

5

10

15

20
〈f
〉ℓ

K
B
T

λ = 0

(approx.)

Ferromagnetic-like

λ = 0.3KBT

λ = 0.3KBT
(exact)

a)

0 2 4 6 8 10r
ℓ

0

5

10

15

20

〈f
〉ℓ

K
B
T

λ = 0

(approx.)
λ = −0.3KBT

Antiferromagnetic-like

(exact)
λ = −0.3KBT

c)

0 2 4 6 8 10r

ℓ

0

1

2

3

4

5

6

〈

∑

N i=
1

S
i
+
1

2

〉

λ = 0

λ = 0.3KBT
(approx.)

Ferromagnetic-like

(exact)
λ = 0.3KBT

b)

0 2 4 6 8 10r

ℓ

0

1

2

3

4

5

6

〈

∑

N i=
1

S
i
+
1

2

〉

λ = 0

λ = −0.3KBT
(approx.)

Antiferromagnetic-like

(exact)
λ = −0.3KBT

d)

Figure 4.10 � Force-extension response a)-c) and average number of unfolded units b)-d)
for weak Ising interactions with ferromagnetic-like behaviour a)-b) and anti-ferromagnetic-
like behaviour c)-d). In each panel, the response without interactions (λ = 0, black dashed
curves) is shown together with the exact result (orange or light gray curves) obtained
through Eq.(4.79) and the �rst order approximation (dark red or dark gray curves) given
in Eq.(4.98). The curves have been obtained with ∆E = 5kBT , N = 5, χ = 2, µ = 0 and
λ = ±0.3kBT [2].

4.5 Explicit expression for the Helmholtz response un-

der weak Ising interaction: |λ| � kBT

We investigate in more detail the particular case with weak Ising interaction, i.e.

|λ| � kBT , by supposing both ferromagnetic and anti ferromagnetic interactions. We

know that ZH(r) can be written like

ZH(r) =

∫ +∞

−∞
ZG

(
iy
kBT

`

)
y

r
sin
(yr
`

)
dy. (4.82)
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We can develop ZG
(
iy kBT

`

)
in Taylor series with respect to the parameter λ controlling

the Ising interaction. We easily �nd

ZG

(
iy
kBT

`

)
=

[
1 +

λ

kBT
(N − 1)

]
(a+ b)N − 4λ

kBT
(N − 1) ab

×(a+ b)N−2 + 0(λ2). (4.83)

This expression, which is valid for |λ| � kBT , can be easily integrated to obtain the

Helmholtz partition function. Here, we de�ned

a =
sin y

y
, (4.84)

b = χφ
sin(χy)

y
. (4.85)

We note that, for λ = 0, we obtain the partition function of the system without Ising

interaction. In this Section, we consider µ = 0 to simplify the calculation. We have to

calculate

ZH(r) = −i
∫

Γ

ZG

(
iy
kBT

`

)
y

r
ei
ry
` dy, (4.86)

where ZG(f) is the approximation given previously. We divide the calculation into two

steps, the �rst one is called (1) and the second one is called (2). We �rstly calculate

(1) = −i
∫

Γ

(a+ b)N
(y
r

)
ei
ry
` dy

= −i
∫

Γ

N∑
k=0

(
N

k

)(
sin y

y

)N−k [
χφ

sin(χy)

y

]k (y
r

)
ei
ry
` dy. (4.87)

Now, we have

sinN−k y =
1

(2i)N−k

N−k∑
p=0

(
N − k
p

)
(−1)p eiy(N−k−2p), (4.88)

sink(χy) =
1

(2i)k

k∑
q=0

(
k

q

)
(−1)q eiχy(k−2q). (4.89)
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Then, we �nd

(1) = −i
∫

Γ

1

yN

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
1

(2i)N
(−1)p+q (χφ)k

×eiy(N−k−2p+χk−2qχ)y

r
ei
ry
` dy

= − 1

2N iN−1

1

r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
(−1)p+q (χφ)k

×
∫

Γ

eiy(N−k−2p+χk−2qχ+ r
`
)

yN−1
dy. (4.90)

Now, we use the integral∫
Γ

eiay

yN
dy =

{
0 if a > 0,

−2πiN aN−1

(N−1)!
if a ≤ 0.

(4.91)

Hence, we obtain

(1) =
π

2N−1

1

r(N − 2)!

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)
×(−1)p+q (χφ)k (−λ)N−2 1(λ), (4.92)

where

−λ = N − k − 2p+ χk − 2χq +
r

`
. (4.93)

Now, we calculate the second integral given by

(2) = −i
∫

Γ

ab (a+ b)N−2 y

r
ei
ry
` dy

= −i
∫

Γ

ab
N−2∑
k=0

(
N − 2

k

)
bkaN−2k y

r
ei
ry
` dy

= −i
∫

Γ

N−2∑
k=0

(
N − 2

k

)
bk+1aN−1−k y

r
ei
ry
` dy. (4.94)
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Here again, we develop the powers

(2) = −i
∫

Γ

N−2∑
k=0

k+1∑
q=0

N−1−k∑
p=0

(
N − 2

k

)(
k + 1

q

)(
N − 1− k

p

)
y

r
ei
ry
`

×(−1)p+q
1

(2i)N
1

yN
(χφ)k+1 eiχy(k+1−q)e−iχyqeiy(N−1−k−p)e−iypdy

= −i
∫

Γ

N−2∑
k=0

k+1∑
q=0

N−1−k∑
p=0

(
N − 2

k

)(
k + 1

q

)(
N − 1− k

p

)
(−1)p+q

×(χφ)k+1

(2i)N
1

r yN−1
e(iy[N−1−k−p−p−χq−χq+χk+χ+ r

` ])dy. (4.95)

By using Eq.(4.91), we get

(2) =
N−2∑
k=0

k+1∑
q=0

N−1−k∑
p=0

(
N − 2

k

)(
k + 1

q

)(
N − 1− k

p

)
(−1)p+q

× (χφ)k+1 π

2N−1

1

r(N − 2)!
(−λ0)N−2 1 (λ0) , (4.96)

where

−λ0 = N − 1− k − 2p− 2χq + χk + χ+
r

`
. (4.97)

Finally, the partition function reads

ZH(r) =
π

2N−1(N − 2)!r

N∑
k=0

N−k∑
p=0

k∑
q=0

(
N

k

)(
N − k
p

)(
k

q

)[
1 +

λ

kBT
(N − 1)

]
(−1)p+q

× (χφ)k (−λ)N−2 1(λ)− π

2N−1(N − 2)!r

N−2∑
k=0

k+1∑
q=0

N−1−k∑
p=0

(
N − 2

k

)(
k + 1

q

)
×
(
N − 1− k

p

)
(−1)p+q (χφ)k+1 4λ

kBT
(N − 1) (−λ0)N−2 1(λ0). (4.98)

This is the �nal form of the Helmholtz partition function, calculated under the hypothesis

of weak Ising interaction. In this expression, there are no limitations concerning the

parameter χ. We note that, for λ = 0, we obtain the partition function of the system

without Ising interactions, as discussed in recent literature [113]. In Fig.4.10, one can �nd

some results for λ = 0, λ = +0.3kBT and λ = −0.3kBT . We plotted the force-extension

curves and the average number of unfolded units for both ferromagnetic-like and anti-

ferromagnetic-like interactions. In each case, we compared the approximated result stated

in Eq.(4.98) (dark red or dark gray curves), the exact result given in Eq.(4.79) (orange
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or light gray curves), and the response without Ising interactions (black dashed curves).

We note a good agreement between approximated and exact results both for λ < 0 and

λ > 0. Concerning the interpretation of the curves, the discussion reported at the end of

Section 4.4 remains valid for all results of Fig.4.10.

4.6 Explicit expression for the Helmholtz response un-

der strong Ising ferromagnetic interaction: λ �
kBT

We introduce here an asymptotic development concerning the case of a strong Ising

ferromagnetic-like interaction. If λ → +∞, then e
− λ
kBT → 0, and therefore it is not

di�cult to obtain the asymptotic expression for ZG(f) when λ→∞. The result is

ZG

(
iy
kBT

`

)
= exp

[
λ(N − 1)

kBT

] [(
sin y

y

)N
+

(
χφ

sin(χy)

y

)N]
. (4.99)

Therefore, we easily determine the Helmholtz partition function, as

ZH(r) = −i
∫

Γ

ZG

(
iy
kBT

`

)
y

r
ei
ry
` dy

= −i
∫

Γ

exp

[
λ(N − 1)

kBT

] [
sinN y + (χφ)N sinN(χy)

] 1

yN−1r
ei
ry
` dy

= −i 1

(2i)N
exp

[
λ(N − 1)

kBT

] N∑
k=0

(
N

k

)
(−1)k

(
1

r

)[(
N − 2k + r

`

)N−2

(N − 2)!

×1
(

2k −N − r

`

)
(−2π)iN−1 + (χφ)N (−2π)iN−1

×
(
χN − 2χk + r

`

)N−2

(N − 2)!
1
(

2χk − χN − r

`

)]
. (4.100)

Finally,

ZH(r) =
π

2N−1r(N − 2)!
exp

[
λ(N − 1)

kBT

] N∑
k=0

(
N

k

)
(−1)k

×
[(
N − 2k +

r

`

)N−2

1
(

2k −N − r

`

)
+ (χφ)N

(
χN − 2χk +

r

`

)N−2

1
(

2χk − χN − r

`

)]
. (4.101)

which is valid for strong ferromagnetic-like Ising interactions.

An application of this expression is shown in Fig.4.11. In particular, we compare the
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Figure 4.11 � Force-extension response a), average number of unfolded units b) and
Helmholtz free energy c) for a chain with strong ferromagnetic-like interactions. In each
panel, the response without interactions (λ = 0, black dashed curves) is shown together
with the exact results for an increasing ferromagnetic interaction (λ = 0.5jkBT∀j =
1, ..., 14, red or gray curves) and the asymptotic expansion (λ→∞, yellow or light gray
curves) given in Eq.(4.101). The curves have been obtained with ∆E = 5kBT , N = 5,
χ = 2 and µ = 0 [2].
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approximated result in Eq.(4.101) (yellow or light gray curve) with the exact response

obtained from Eq.(4.79) for λ = 0.5, 1, 1.5, ..., 7kBT (red or gray curves) and with the

response without Ising interactions (black dashed curve). In Fig.4.11, one can �nd the

force-extention curves, the average number of unfolded units and the Helmholtz free en-

ergy. It is interesting to discuss the evolution of the overall behaviour of the system with

an increasing interaction coe�cient. Indeed, as λ is increased, the units are progressively

favoured to be in the same state, and therefore there is an increasing average number

of units which unfolds at r = N`. It means that the number of unfolding processes at

r = N` is a growing function of the Ising coe�cient λ, going from 1 with λ = 0 to N with

λ approaching in�nity. This can be seen in Fig.4.11.b, where this process is represented

by the series of red curves (or gray) with increasing λ, and it ends with the yellow (or

light gray) curve obtained through Eq.(4.101). The latter means that all units unfold at

the same time at r = N` when λ → ∞, and this behaviour is perfectly caught by the

asymptotic development. Accordingly, the peaks in the force-extension curve are strongly

modi�ed by increasing λ: while the �rst peak becomes more and more pronounced, the

others are progressively reduced, as shown in Fig.4.11.a. As a matter of fact, the �rst peak

corresponds to the simultaneous unfolding of the units when λ is very large. Hence, in the

limiting case of λ→∞, the force-extension curve is composed of only one peak (yellow or

light gray curve), as one can see in Fig.4.11.a. Of course, the origin of peaks modi�cation

in the force-extension curve and of the steps structure in the average number of unfolded

units can be observed in the plot of the Helmholtz free energy, shown in in Fig.4.11.c.

Here, we can see the evolution of the typical cusps with the increasing Ising coe�cient.

As an example, the collapse of all the force peaks into a single unfolding event explains

the tandem repeats behaviour in red cell spectrin, where two units unfold simultaneously

because of a strong cooperativity [114].

4.7 Explicit expression for the Helmholtz response un-

der strong Ising anti-ferromagnetic interaction: λ�
−kBT

We discuss here the development of the theory under strong Ising anti-ferromagnetic-

like interactions. As before, we can develop the Gibbs partition function in Taylor series

for λ→ −∞, i.e. x = e
− λ
kBT → +∞.
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The result is

ZG

(
iy
kBT

`

)
= xN−1P

N
2

[(
1 +

1

2

S

P
1
2

)
+ (−1)N

(
1− 1

2

S

P
1
2

)]
= xN−1

[
P

N
2

[
1 + (−1)N

]
+

1

2
P

N−1
2 S

[
1− (−1)N

]]
. (4.102)

And so, we can summarise it as

ZG

(
iy
kBT

`

)
=

{
xN−1P

N
2 if N is even,

xN−1SP
N−1

2 if N is odd.
(4.103)

where

S =
sin y

y
+ χφ

sin(χy)

y
= a+ b, (4.104)

P =
sin y

y
χφ

sin(χy)

y
= ab. (4.105)

We �rst elaborate the Helmholtz partition function for N odd as

ZH(r) = −i
∫

Γ

ZG

(
iy
kBT

`

)
y

r
ei
ry
` dy

= −i
∫

Γ

xN−1

yN−1
[sin y + χφ sin(χy)] [χφ sin y sin(χy)]

N−1
2

1

r
ei
ry
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= −ix
N−1

r
(χφ)

N−1
2

∫
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1
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[
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N+1
2 (y) sin

N−1
2 (χy)

+χφ sin
N−1

2 (y) sin
N+1

2 (χy)
]
ei
ry
` dy. (4.106)

Now, we use the relation

sink y =
1

(2i)k

k∑
p=0

(
k

p

)
(−1)peiy(k−2p), (4.107)

and we have

ZH(r) = −ix
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r
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2
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)
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1
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2
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(
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2

q

)
(−1)q

×eiy(N−1
2
−2q) 1
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2

N+1
2∑

p=0

(
N+1

2

p

)
(−1)peiyχ(
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2
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 ei ry` dy. (4.108)
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This expression can be reorganised like

ZH(r) = −ix
N−1

r
(χφ)

N−1
2

1

(2i)N

N+1
2∑

p=0

N−1
2∑

q=0

(
N+1

2
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)(
N−1

2

q

)
(−1)p+q
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1

yN−1
eiy(

N+1
2
−2p+χN−1

2
−2χq+ r

` )dy

+χφ

∫
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1

yN−1
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N−1
2
−2q+χN+1

2
−2χp+ r

` )dy

]
. (4.109)

Now, since we know that∫
Γ

eiay

ym
dy = −2πim

am−1

(m− 1)!
1(−a), (4.110)

we get

ZH(r) = −ix
N−1

r
(χφ)

N−1
2

1

(2i)N

N+1
2∑

p=0

N−1
2∑

q=0

(
N+1

2

p

)(
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2
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)
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−2πiN−1 (−λa)N−2
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1 (λa) + χφ(−2π)iN−1 (−λb)N−2

(N − 2)!
1 (λb)

]
, (4.111)

where

λa = 2p− N + 1

2
− χN − 1

2
+ 2χq − r

`
, (4.112)

λb = 2q − N − 1

2
− χN + 1

2
+ 2χp− r

`
. (4.113)

We simplify the expression by reorganising it and we obtain the following expression for

the Helmholtz partition function under strong Ising anti-ferromagnetic interaction, for N

odd

ZH(r) =
2π

2N

exp
[
− λ
kBT

(N − 1)
]

(N − 2)!

1

r
(χφ)

N−1
2

N+1
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)(
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2

q

)
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(−λa)N−2 1 (λa) + χφ (−λb)N−2 1 (λb)

]
. (4.114)
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We calculate now the same quantity for N even
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1
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1 (−λc) , (4.115)

where λc = 2p − N
2

+ 2χq − χN
2
− r

`
. Finally, we get the following expression for the

Helmholtz partition function under strong Ising anti-ferromagnetic interaction

ZH(r) =
2π

2N

exp
[
− λ
kBT

(N − 1)
]

(N − 2)!

1

r
(χφ)

N
2

N
2∑

p=0

N
2∑

q=0

(
N
2

p

)(
N
2

q

)
×(−1)p+q (−λc)N−2 1 (λc) , (4.116)

which is valid for N even. The solutions given in Eqs.(4.114) and (4.116) represent the

most important result of this Section and must be discussed as follows.

An example of application of Eq.(4.114) for N odd can be found in Fig.4.12, where

force-extension curves, average number of unfolded units and Helmholtz free energy are

represented for several values of λ. When we consider an increasing value of |λ| (λ < 0),

we observe that the �rst force peaks tend to disappear while the last ones become more

and more pronounced (see Fig.4.12.a). This is coherent with the assumption that, in an

anti-ferromagnetic-like system, the favoured states are alternatively folded and unfolded.

Accordingly, with an increasing value of |λ| (λ < 0), we have an increasing number of

unfolded units in the initial con�guration with r = 0. Clearly, the maximum value of this

number of unfolded units with r = 0 is (N − 1)/2 and not (N + 1)/2 since the unfolded

units are costly from the energetic point of view and the system chooses the con�guration

with the smallest number of unfolded units between (N − 1)/2 and (N + 1)/2. This

overall interpretation of Fig.4.12 must be improved to better understand the yellow (or

light gray) curves corresponding to λ→∞. So, if we look at the equation for N odd, we

note that ZH(r) is di�erent from 0 where λa > 0 or λb > 0. It means that

2p− N + 1

2
− χN − 1

2
+ 2χq − r

`
> 0 (4.117)
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Figure 4.12 � Force-extension response a), average number of unfolded units b) and
Helmholtz free energy c) for a chain with strong anti-ferromagnetic-like interactions and
an odd number of units. In each panel, the response without interactions (λ = 0, black
dashed curve) is shown together with the exact results for an increasing anti-ferromagnetic
interaction (λ = −0.25jkBT ∀j = 1, ..., 6, red or gray curves) and the asymptotic expan-
sion (λ → −∞, yellow or light gray curve) given in Eq.(4.114). The curves have been
obtained with ∆E = 5kBT , N = 5, χ = 2 and µ = 0 [2].
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Figure 4.13 � Force-extension response a), average number of unfolded units b) and
Helmholtz free energy c) for a chain with strong anti-ferromagnetic-like interactions and
an even number of units. In each panel, the response without interactions (λ = 0, black
dashed curve) is shown together with the exact results for an increasing anti-ferromagnetic
interaction (λ = −0.25jkBT ∀j = 1, ..., 6, red or gray curves) and the asymptotic expan-
sion (λ → −∞, yellow or light gray curve) given in Eq.(4.116). The curves have been
obtained with ∆E = 5kBT , N = 4, χ = 2 and µ = 0 [2].
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or

2q − N − 1

2
− χN + 1

2
+ 2χp− r

`
> 0. (4.118)

Now, the maximum values of p and q are N+1
2

and N−1
2
, respectively. So we have

r

`
< 2

N + 1

2
− N + 1

2
− χN − 1

2
+ 2χ

N − 1

2
(4.119)

or

r

`
< 2

N − 1

2
− N − 1

2
− χN + 1

2
+ 2χ

N + 1

2
. (4.120)

Equivalently,

r

`
<
N + 1

2
+ χ

N − 1

2
< Nχ (4.121)

or

r

`
<
N − 1

2
+ χ

N + 1

2
< Nχ, (4.122)

where Nχ is the upper limit of r
`
, attained when all elements are unfolded. It means that

the total length of the unit can not exceed N−1
2

+χN+1
2
, which is the highest value between

Eqs.(4.121) and (4.122). The value N+1
2

+ χN−1
2

corresponds to N+1
2

folded domains and
N−1

2
unfolded domains: this is the starting con�guration for the strong anti-ferromagnetic

system, which can be represented as ~S = {↑↓↑↓↑} forN = 5, where {↑} represents a folded
unit and {↓} an unfolded one. This con�guration is stable with r = 0. When we apply a

su�cient extension, the unfolded domains become more stable, and we have an inversion

in the alternating disposition leading to ~S = {↓↑↓↑↓}. This transition can be observed

through the single peak in the force-extension yellow (or light gray) curve (see Fig.4.12.a)

and in the shift from 2 to 3 of the average number of unfolded units (yellow or light gray

curve in Fig.4.12.b). As a matter of fact, in this case, we can not unfold all elements

because of the hypothesis of large (ideally in�nite) anti-ferromagnetism (λ → −∞). For

this reason, ZH(r) is de�ned for r < N−1
2
` + N+1

2
χ` and not for r < Nχ`, as in previous

cases.

A similar discussion holds for the case with N even. An example of application

of Eq.(4.116) is shown in Fig.4.13. While the red (or gray) curves with an increasing

value of |λ| (λ < 0) are similar to those shown in Fig.4.12, the yellow (or light gray)

curves representing the asymptotic behaviour for λ→ −∞ are di�erent and require some

comments. In this case, ZH(r) is di�erent from 0 if Λc > 0, or if 2p−N
2

+2χq−χN
2
− r

`
> 0.
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Now, p and q assume the same maximum value N
2
and therefore we have r

`
< 2N

2
− N

2
+

2χN
2
−χN

2
or equivalently, r

`
< N

2
+χN

2
. It is evident that

(
N
2

+ χN
2

)
` is the length of the

chain with N
2
folded domains and N

2
unfolded domains. So, if λ → −∞, the number of

unfolded domains is a constant equal to N
2
and ZH(r) is de�ned only for r <

(
N
2

+ χN
2

)
`.

In this case, we have no inversion of the con�guration, which corresponds to ~S = {↓↑↓↑}
or to ~S = {↑↓↑↓} for λ→ −∞ and N = 4. These two con�guration are indeed completely

equivalent from the energetic point of view and they are therefore indistinguishable. As a

conclusion, if λ → −∞, the force-extension curve is a monotonically increasing function

of r (without peaks), the average number of unfolded units is a constant equal to N/2

and the Helmholtz free energy is without cusps (yellow or light gray curves in Fig.4.13).

4.8 The thermodynamic limit

If we consider now the system at the thermodynamic limit, the number of elements of

the chain, N , tends to be in�nite. In this case, for most of the chain models, the Gibbs and

the Helmholtz ensembles are equivalent [20,124,138,139]. It means that the same consti-

tutive equation describes both statistical ensembles. To be precise, it must be admitted

that the known criteria to ensure the equivalence of the ensembles in the thermodynamic

limit are not applicable in our case with the interactions introduced through the Ising

scheme. Nevertheless, we can reasonably assume that this property is also satis�ed in

this case. However, we are unable to provide a rigorous demonstration of this statement

at this time and we leave this research to the near future. In any case, we can study the

thermodynamic limit within the Gibbs ensemble. Then, we try to obtain a closed form

expression for 〈r〉 and 〈∑N
i=1

1
N
Si+1

2
〉, starting from the Gibbs partition function evaluated

for N → +∞. If N → +∞ and λ1 > λ2, we have from Eq.(4.49)

ZG ≈
x

1 + x2
λN1

(
1 + x2λ1 + λ2

λ1 − λ2

)
(4.123)

and therefore

logZG ≈ log
x

1 + x2

(
1 + x2λ1 + λ2

λ1 − λ2

)
+N log λ1 ≈ N log λ1, (4.124)

where

λ1 = e
λ

kBT

[
(p+ q) +

√
(p+ q)2 − 4pq

(
1− e−

4λ
kBT

)]
. (4.125)
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kBT
for a chain with Ising

interactions at the thermodynamic equilibrium within the Gibbs ensemble.

We have

〈r〉 = kBT
∂

∂f
logZG ≈ kBT

∂

∂f
N log λ1. (4.126)

Here,

p =
1

2
e
− µ
kBT

sinh ξ

ξ
, (4.127)

q =
1

2
e

µ
kBT

sinh(χξ)

ξ
χφ, (4.128)
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with φ = e
− ∆E
kBT and ξ = f`

kBT
. We can write

〈r〉 = `N
∂

∂ξ
log λ1

= `N
∂

∂ξ
log

[
(p+ q) +

√
(p+ q)2 − 4pq

(
1− e−

4λ
kBT

)]
. (4.129)

This derivative is calculated �rst

D
sinh(χξ)

ξ
=

χξ cosh(χξ)− sinh(χξ)

ξ2

= χ
sinh(χξ)

ξ

[
cosh(χξ)

sinh(χξ)
− 1

χξ

]
= χ

sinh(χξ)

ξ
L (χξ) , (4.130)

with D = ∂
∂ξ
, and L the Langevin function. Similarly, we can write that

D
sinh ξ

ξ
=

sinh ξ

ξ
L (ξ) . (4.131)

In other words, we can say that

Dp = pL (ξ) , (4.132)

Dq = qχL (χξ) . (4.133)

Hence, we get

〈r〉 = `N

Dp+Dq +
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√
(p+ q)2 − 4pq
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= `N
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(p+ q)2 − 4pq
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√
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−
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To simplify, we introduce

R =

√
1− 4

pq

(p+ q)2

(
1− e−

4λ
kBT

)
, (4.135)
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and

ν =
q

p+ q
. (4.136)

Then, we have

1− ν = 1− q

p+ q
=

p

p+ q
, (4.137)

and we can write

R =
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)
. (4.138)

Therefore, p+ q +
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)
= (p+ q)(1 +R), and we obtain
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where we used the simple property 1−R2 = 4 pq
(p+q)2

(
1− e−

4λ
kBT

)
.

We �nally obtain

〈r〉
N`

=
1

R
[(1− ν)L (ξ) + νχL (χξ)] +

(
1− 1

R

) L (ξ) + χL (χξ)

2
, (4.140)

which is the �rst important result in this Section. We can perform a similar calculation

to �nd 〈
N∑
i=1

Si + 1

2

〉
= −kBT

∂

∂∆E
logZG

≈ −kBTN
∂

∂∆E
log λ1. (4.141)

Since φ = e
− ∆E
kBT , we have that

∂∆

∂∆E
=
∂∆

∂φ

∂φ

∂∆E
=
∂∆

∂φ
φ

( −1

kBT

)
, (4.142)

where ∆ is an arbitrary function. So, we have〈
1

N

N∑
i=1

Si + 1

2

〉
= φ

∂

∂φ
log λ1. (4.143)
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Therefore,〈
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where q′ = ∂q
∂φ

= q
φ
. Hence,
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(p+ q)(R + 1)(p+ q)R

. (4.145)

Since 1−R2 = 4 pq
(p+q)2

(
1− e−

4λ
kBT

)
, we obtain〈

1

N

N∑
i=1

Si + 1

2

〉
=

q(p+ q)(R + 1)− 1
2
(1−R2)(p+ q)2

(p+ q)2R(1 +R)

=
q − 1

2
(1−R)(p+ q)

(p+ q)R

=
1

R

(
q

p+ q

)
+

1

2

(
R− 1

R

)
. (4.146)

Finally, 〈
1

N

N∑
i=1

Si + 1

2

〉
=

1

R
ν +

1

2

(
1− 1

R

)
, (4.147)

which is the second important result of this Section. Eq.(4.140) and Eq.(4.147), combined

with Eq.(4.136) and Eq.(4.138), give the complete solution for the system in thermody-

namic limit (i.e. N → ∞). A numerical application of these equations can be found

in Fig.4.14. Here, we show the average normalised extension and the average number of

unfolded units versus the applied normalised force and the Ising coe�cient λ
kBT

. We can

observe that for large and positive values of λ, all the units unfold cooperatively for a given

threshold force. This can be seen in the heavily pronounced force plateau in Fig.4.14.a
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and in the sharp transition from 0 to 1 in Fig.4.14.b. On the other hand, for large and

negative values of λ, the units remain alternatively folded and unfolded for any value

of the applied force. This can be seen in the smooth force-extension curve correspond-

ing to a freely jointed chain response with half units folded and half units unfolded (see

Fig.4.14.a). Moreover, this behaviour is con�rmed by the average value of the number of

unfolded unit, which is equal to 1
2
(see Fig.4.14.b). For intermediate values of λ, we can

observe a continuous transitional behaviour of the system from the anti-ferromagnetic to

the ferromagnetic response.

4.9 Ising interactions coupled with extensible units

We consider now a chain of bistable units characterised by a �nite intrinsic elastic

constant. We start the analysis by considering the Gibbs ensemble de�ned through the

extended Hamiltonian given in Eq.(4.2). Here, for the sake of simplicity, we suppose that

the folded and unfolded basins of the potential energy shown in Fig.4.2 exhibit the same

�nite elastic constant k(−1) = k(+1) = κ. In this case, it is not di�cult to prove that

Eq.(4.8) of Section 4.3 can be substituted by the approximated result

I = exp

(
f 2

2κkBT

) N∏
i=1

sinh
[
f`(Si)
kBT

]
f`(Si)
kBT

`2(Si)

`2
, (4.148)

which can be easily proved by calculating the exact solution of Eq.(4.6) and by considering

its approximation for relatively high values of κ. The details of this calculation can be

found in recent literature [1] and in Chapter 3. Typical values of κ for real macromolecules

are compatible with such approximations [168]. Coherently with Eq.(4.148), the Gibbs

partition function can be obtained as

ZG(f) =
x

1 + x2
exp

(
Nαξ2

2

)
×
[
λN1

(
1 + x2λ1 + λ2

λ1 − λ2

)
+ λN2

(
1− x2λ1 + λ2

λ1 − λ2

)]
, (4.149)

where, with respect to Eq.(4.49) of Section 4.3, we only added an exponential term,

which is quadratic in the normalised force ξ = f`
kBT

and de�ned through a coe�cient

α = kBT
κ`2

. This latter represents the ratio between the thermal energy and the elastic

one, thus measuring the compromise between the enthalpic contribution and �uctuations.

The parameters x, λ1 and λ2 remain de�ned as in Section 4.3. Concerning the Helmholtz

ensemble, the system is described by the Hamiltonian in Eq.(4.62), where, as before,
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we assume that k(−1) = k(+1) = κ. The calculation of the corresponding partition

function is based on the Laplace transform relation between the Gibbs and the Helmholtz

ensembles, summed up in Eq.(4.66). If we consider integer values for the parameter

χ (ratio between unfolded and folded lengths), the analytic continuation of the Gibbs

partition function assumes the form

ZG

(
iy
kBT

`

)
=

1

yN
exp

(
−Nαy

2

2

)
P (y), (4.150)

where P (y) is the periodic function de�ned in Eq.(4.72) and described by the Fourier

coe�cients given in Eq.(4.74). The Helmholtz partition function can be �nally determined

as

ZH(r) = −i
∫

Γ

ZG

(
iy
kBT

`

)
y

r
e
yr
` dy

= −i
∫

Γ

P (y)

yN
y

r
e−

Nαy2

2 e
iry
` dy

= −i
+∞∑

k=−∞

Ck
1

r

∫
Γ

1

yN−1
e−

Nαy2

2 ei(k+ r
` )ydy

= −i
+∞∑

k=−∞

Ck
1

r
JN−1

(
k +

r

`
,
Nα

2

)
(4.151)

where we used the Fourier development of the function P (y) in order to perform the

calculation. To complete the task, we have to calculate a sequence of integral of the form

JN(a, b) =

∫
Γ

eiaye−by
2 dy

yN
, (4.152)

where a ∈ R, b > 0, N ∈ N and the path Γ is given in Fig.4.7. As largely discussed in

Chapter 3, an application of the complex variable method allows us to obtain the closed

form expression for this integral, as [1]

JN(a, b) =
√
π

{
b
N−1

2 e−
a2

4b (2i)NH−N

(
− a

2
√
b

)
+1(−a)

N−1∑
h=0

(ia)N−1−h(−4b)h/2

ih!(N − 1− h)!
Γ

(
h+ 1

2

)[
1 + (−1)h

]}
, (4.153)

where 1(x) represents the Heaviside step function, and H−N (z) are the generalisation of

the Hermite polynomials, obtained by considering negative indices (see Section 3.3.2 in

Chapter 3). We remember that they can be de�ned as [1, 172]

H−N(z) =
1

(2i)N
√
π

∫ +∞

−∞

e−η
2
dη

(η − iz)N
, (4.154)
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and they can be obtained recursively through the following formula [1, 172]

H−(N+1)(z) =
1

2N
H−(N−1)(z)− z

N
H−N(z), (4.155)

initialised with H0(z) = 1 ∀z ∈ R and H−1(z) =
√
π

2
ez

2
[1− erf (z)] for z > 0 and H−1(z)

odd, i.e. H−1(−z) = −H−1(z) [1,172]. This recursive law allows us to a�rm that H−N(z)

is odd if N is odd and that H−N(z) is even if N is even. We also remember that the

Hermite elements with N < 0 are not polynomials, contrarily to the classical Hermite

polynomials, de�ned with N > 0. Many other interesting properties of this sequence of

functions can be found in Ref. [172].

An application of the Gibbs and Helmholtz partition functions, stated in Eqs.(4.149)

and (4.151), respectively, is presented in Fig.4.15, where we show the force-extension

curves for two values of the constant κ, and for three values of the coe�cient λ. Firstly,

we note that the constant slope of the �nal part of the force-extension curves represents

the �nite e�ective sti�ness of the chain, after the unfolding processes. Moreover, it is

interesting to remark that the softer systems exhibit a sensibly reduced force peaks in the

Helmholtz response. This point can be also noticed by drawing a comparison between

Fig.4.8.a, obtained for κ→∞, and Fig.4.15, corresponding to �nite values of κ. A similar

phenomenon can be also observed in the phase diagram showing the critical behaviour of

the spinoidal response of the system. Indeed, we plotted in Fig.4.16 four phase diagrams

corresponding to four di�erent values of the elastic constant. We observe that the critical

temperatures of the unfolding processes are an increasing function of κ, similarly to the

previously discussed force peaks of the Helmholtz response. Besides, as already seen in

Fig.4.9 concerning the case with κ→∞, anti-ferromagnetic-like interactions amplify the

dissimilarity among the critical temperatures, while ferromagnetic-like interactions reduce

this contrast, eventually producing a more uniform response of the unfolding processes.

4.10 Conclusion

In this Chapter, we investigated the behaviour of a chain made of two-state units

coupled through an Ising interaction scheme with the coe�cient λ, providing a descrip-

tion of the e�ects of bistability and cooperativity in biological and arti�cial micro- and

nano-systems. Accordingly, we �rstly studied our model by means of the statistical me-

chanics of small systems, i.e. far from the thermodynamic limit. We analysed that the

force-extension response exhibits sharp or smooth transitions within the Gibbs ensemble
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Figure 4.15 � Force-extension response for a chain of interacting units with �nite intrinsic
sti�ness κ. We used the values κ`2 = 100kBT a), and κ`2 = 200kBT b). In each panel, the
response without interactions (λ = 0) is shown together with the results with λ = ±1kBT .
The curves have been obtained with ∆E = 5kBT , N = 5, χ = 2 and µ = 0 [2].

depending on λ, and, within the Helmholtz ensemble, the force peaks present a hierar-

chy depending on the "positive" or "negative" cooperativity. The spin variable approach
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Figure 4.16 � Spinoidal phase diagrams obtained for four di�erent values of the intrinsic
sti�ness κ of the units (de�ned by κ`2 = 100, 133, 166, 200kBT0). They show the end-
points of the spinoidal intervals versus the temperature of the system (T > T0). The
curves have been obtained with ∆E = 5kBT0, N = 5, χ = 2, µ = 0 and �ve di�erent
values of the Ising interaction coe�cient λ = 0,±0.5,±1kBT0. The parameters ` and T0

are arbitrary (typical values are ` = 1nm and T0 = 300K) [2].

permitted to elaborate semi-analytic or closed-form expressions for the relevant observ-

ables. Within the Gibbs ensemble, interactions are studied in the model with the help

of the transfer matrix technique. Within the Helmholtz ensemble, the partition function

is elaborated from the Gibbs partition function with the help of the Laplace transform.
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In addition, we propose results exploring asymptotic cases, and describing the behaviour

of the system under weak and strong Ising interactions (for both ferromagnetic-like and

anti-ferromagnetic-like schemes).

We also investigated a form of criticality exhibited by the system. Especially, our anal-

ysis focused on the critical behaviour of the spinoidal regions, characterising the part of

the isometric response, showing a negative di�erential elastic sti�ness. We proved that

each unfolding process exhibits a critical temperature de�ned by stating that we mea-

sure a negative di�erential sti�ness for subcritical temperatures and a positive di�erential

sti�ness for supercritical temperatures. This behaviour is in�uenced by the cooperativity,

which has the capability to make the critical temperatures of the unfolding processes more

uniform. We can therefore state that a positive cooperativity increases the resistance to

�uctuations, making the spinoidal intervals equally stable to temperature variations.

We �nally investigated the thermodynamic limit within the Gibbs ensemble and the gen-

eralisation of the theory with a �nite intrinsic elasticity of the units. A next improvement

to represent more realistic situations concerns the heterogeneity of all parameters de�ning

the properties of the chain units. Indeed, for the macromolecules of biological origin, such

as proteins, parameters should be freely chosen. Thus, it seems important to introduce

this point, in order to determine the full unfolding pathway, depending on the system

microstructure. As an example, this is directly related to the biological function of a

protein.
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Chapter 5

Two-state heterogeneous chains

5.1 Introduction

In this Chapter, we investigate the behaviour of a chain of two-state units with a

heterogeneous distribution of the energy jumps between the folded and unfolded states.

For the sake of generality, we also consider the heterogeneous elastic constants, but we will

observe that they do not modify the qualitative behaviour of the chain. Previously, we

considered that all units were identical, being described by the potential energy of Fig.2.8

with the results discussed in previous Chapters 2, 3 and 4. The bimodal energy potential

of each unit is therefore composed of two potential wells with di�erent basal energies,

separated by a given energy barrier. For a chain made of homogeneous units, loaded by soft

or hard devices, all units have the same probability to unfold at each switching occurrence.

Therefore, it is impossible to identify an unfolding pathway, i.e. a sequence of well de�ned

unfolding processes. Conversely, the heterogeneity represents a quenched disorder from

the statistical mechanics point of view and is able to break the symmetry among the

units. Introducing an heterogeneous distribution of energy jumps will allow to obtain

an unfolding pathway, as the heterogeneity will generate di�erent unfolding probabilities

at each transition, eventually producing a preferential order in the units unfolding. It

is important to underline that the process corresponding to the complete unfolding of a

chain is a probabilistic event. Consequently, the observed pathway assumes a statistical

character. It means that if we repeat the experiment many times, we can observe, as

a result, di�erent unfolding pathways. As a matter of fact, the heterogeneity de�nes

di�erent probabilities for each pathway and therefore, it is possible to identify the most

probable unfolding pathway for a given chain. We will discuss this concept by introducing

the unfolding pathway identi�ability. It is worth noticing that the symmetry breaking

can also be obtained with non-local interactions between the units of the chain [178,179],
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Figure 5.1 � The complex energy landscape for GFP unfolding is constructed based on
the results of simulations and experiments. Starting from the folded structure, which cor-
responds to the native basin of attraction, unfolding occurs by bifurcation in the pathway
after the rupture of the α-helix. The molecules that unfold by the dominant pathway
are shown by green arrows and the purple arrows show the fate of GFP molecules that
follow the minor pathway. The structures of the intermediates in the various basins are
explicitly shown. The approximate fraction of the molecules along each pathway is in-
dicated. These numbers can be altered by mutations (cross-link in this study) and by
changing the force direction. Thus, the energy landscape is not only rugged, but also can
be manipulated [180].

similarly to the case of the Ising scheme discussed in Chapter 4. We propose here a

mathematical model explaining why the heterogeneity breaks the symmetry and generates

the unfolding pathways.

5.2 Examples of unfolding pathway

The nanomanipulation of biomolecules by using single-molecule force spectroscopy and

computer simulations allowed to study the energy landscape of macromolecules undergo-

ing conformational transitions. These studies are very useful to understand the di�erent

structures appearing during the unfolding processes. As discussed in Section 1.1, the func-

tions of a protein are strongly related to its structural conformations. Therefore, forced
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Figure 5.2 � Pathway for the unfolding of the 1TIT domain. (A) X-ray structure, rNC = 45
Å; B�D temperature-induced unfolding pathway; (B) 0.6 ns, rNC = 34 Å, (C) 1.5 ns, rNC
= 37 Å; (D) 4.8 ns, rNC = 38 Å. E�H forced unfolding pathway; (E) rNC = 54 Å; (F) rNC
= 75 Å; (G) rNC = 126 Å; (H) rNC = 138 Å. Native elements of secondary structure are
shown by using the following colour code. The N- and C-terminal atoms are represented
by red and green spheres, respectively; the same colours are used to represent β-strands
belonging to the N- and C-terminal sheets of the β-sandwich proteins. Nonnative elements
are in grey [181].

unfolding is of particular interest for proteins that are under mechanical stress in their

biological function. We present here some examples of unfolding pathway taken from the

recent literature. In Ref. [180], simulations and single-molecule force spectroscopy are

used to reveal the complex energy landscape of green �uorescent protein, also known as

GFP. This protein is expressed in many species, among which human, bacteria and �sh.

Its gene is used as a reporter gene, because it can be observed in the laboratory due to its

�uorescence and its detectable enzymatic activity. It can also be used in di�erent forms

to make biosensors. In Fig.5.1, one can observe the complex energy landscape of the GFP

and its numerous conformational transitions. It is interesting to observe that two di�erent

unfolding pathways can be followed during the unfolding, with two di�erent probabilities

given in this case by 0.72 and 0.28. This point proves the fact that the unfolding pathway

is a statistical concept and justi�es the introduction of the concept of identi�ability in

Section 5.4.

It is also possible to study the unfolding of a protein made of α-helices or β-sheets [181].

Concerning the example in Fig.5.2, we can see the comparison between a thermal induced

unfolding and a force reduced unfolding for an immunoglobulin (Ig) domain (1TIT), which

is a β-sandwich protein. Interestingly, an hairpin not present in the native structure
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is formed in the stage H of the unfolding process induced by a force. Anyway, we can

observe that the overall unfolding process is composed of a well ordered sequence of minor

unfolding occurrences. Other similar examples are thoroughly described and discussed in

Ref. [181]. As previously discussed, we consider in this Chapter the case of a chain of

two-state heterogeneous units. Introducing the heterogeneity is of vital importance, since

it will allow to identify the di�erent conformational states. We prove, in particular, that

a small heterogeneity is su�cient to generate the unfolding pathways.

5.3 Two-state heterogeneous one-dimensional system

The study of the e�ect of the heterogeneity on the mechanical and con�gurational

behaviour of bistable chains will be performed on one-dimensional system in order to

simplify the mathematical complexity of the problem and therefore to better appreciate

the mechanisms at the origin of the unfolding pathway generation. We will analyse both

the Gibbs and the Helmholtz ensembles.

5.3.1 The Gibbs ensemble

We consider a one-dimensional chain aligned with the x-axis of a reference frame and

composed of N units, which are bistable (in each direction, x < 0 and x > 0). Hence,

they can be either folded or unfolded (in each direction). These two-state correspond to

a length ` for the folded state and to a length χ` for the unfolded one. The potential

energy of the units is described by

Ui(x, yi) = vi(yi) +
1

2
ki (x− yi`)2 , (5.1)

where vi(±1) = 0 and vi(±χ) = ∆Ei are the energy jumps between folded and unfolded

states (arbitrarily varying with i). This is coherent with the analysis performed in Section

2.2.1. The parameters ki represent the elastic constants of the units, which are indepen-

dent of the folded or unfolded state but possibly heterogeneous along the chain. Moreover,

yi is the spin variable and assumes the values in S = {±1,±χ}. The value of yi ∈ S allows

the identi�cation of the energy well explored by the i-th unit. We remark that the poten-

tial energy in Eq.(5.1) is symmetric with respect to the coordinate x, thus describing the

folding-unfolding process in both direction of x > 0 and x < 0 (see Fig.2.4). While the

model should be three-dimensional to exactly represent, e.g., the behaviour of real macro-

molecules, we adopt a one-dimensional scheme for the sake of simplicity. In this regard,

the passage at x = 0 is somewhat unphysical, but we will study extensions and forces only
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in the positive direction. Since we consider a one-dimensional system, we introduced four

potential wells (two folded and two unfolded). Indeed, the consideration of positive and

negative orientations of the elements allows modelling entropic, enthalpic, unfolding and

over-stretching regimes, as discussed in Ref. [113] and in Section 2.2.1. As in previous

Chapters, it is also important to underline that the approximation introduced by the spin

variables allows us to perform an analytic study of the system under the hypothesis of

thermodynamic equilibrium [1,2,111�113]. However, if we consider the out-of-equilibrium

regime, the dynamics of the folding-unfolding process is also in�uenced by the energy bar-

rier between the states, as classically described by the reaction-rate Kramers theory [16].

Concerning the Gibbs ensemble, the total potential energy of the one-dimensional system

is given by

UG (~x, ~y, f) =
N∑
i=1

Ui [(xi − xi−1), yi]− f · xN −
N∑
i=1

giyi, (5.2)

where x0 = 0 and f is the applied force to the last element of the chain. Here, we de�ned

~x = (x1, ..., xN) ∈ RN and ~y = (y1, ..., yN) ∈ SN . Moreover, the quantities gi represent an

external �eld ~g directly acting on the con�gurational state of the elements (it acts as a

chemical potential) [1]. While we will consider ~g = 0 in the examples considered in this

Chapter, the vector ~g is very important from the mathematical point of view, to easily

calculate the heterogeneous average values of the spin variables (see Eqs.(5.10), (5.11),

(5.16) and (5.17) below). Therefore, we can write the partition function in the Gibbs

ensemble by summing the discrete spins and integrating the continuous coordinates We

have more explicitly

UG (~x, ~y, f) =
N∑
i=1

[
vi(yi) +

1

2
ki (xi − xi−1 − yi`)2

]
− f · xN −

N∑
i=1

giyi. (5.3)

Therefore, we can write the partition function in the Gibbs ensemble

ZG(f) =
∑
y1∈S

...
∑
yN∈S

∫
R
...

∫
R
e
−UG(~x,~y,f)

kBT dx1...dxN . (5.4)
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We apply now the following change of variables: x1−x0 = ξ1, x2−x1 = ξ2, ..., xN−xN−1 =

ξN , from which we get xN =
∑N

j=1 ξj, with x0 = 0. Hence, we obtain

ZG(f) =
∑
~y∈SN

∫
RN

exp

{
N∑
i=1

[
−vi(yi)
kBT

− 1

2

ki
kBT

(xi − xi−1 − yi`)2

]

+
N∑
i=1

giyi
kBT

+
fxN
kBT

}
dx1...dxN

=
∑
~y∈SN

∫
RN

exp

{
N∑
i=1

[
−vi(yi)
kBT

− 1

2

ki
kBT

(ξi − yi`)2 +
giyi
kBT

+
fξi
kBT

]}
dξ1...dξN

=
N∏
i=1

{∑
yi∈S

e
− v(yi)

kBT

∫
R

exp

[
−1

2

ki
kBT

(ξi − yi`)2 +
fξi
kBT

+
giyi
kBT

]
dξi

}
. (5.5)

We focus now on the integral, which can be evaluated as [113]∫
R

exp

[
−1

2

ki
kBT

(ξi − yi`)2 +
fξi
kBT

+
giyi
kBT

]
dξi

=

√
2πkBT

ki
exp

[
yi(`f + gi)

kBT
+

f 2

2kBTki

]
. (5.6)

Then, we get

ZG(f) =
N∏
i=1

 ∑
yi∈{±1,±χ}

e
− v(yi)

kBT

√
2πkBT

ki
exp

[
yi(`f + gi)

kBT
+

f 2

2kBTki

]
= (8πkBT )N/2

N∏
i=1

{√
1

ki
exp

(
f 2

2kBTki

)[
cosh

(
`f + gi
kBT

)
+φi cosh

(
χ`f + χgi
kBT

)]}
, (5.7)

where φi = e
−∆Ei
kBT are the Boltzmann factors calculated with the energy jumps ∆Ei.

Finally, we get

ZG(f) = (8πkBT )N/2

(
N∏
i=1

1√
ki

)
exp

(
f 2

2kBT

N∑
i=1

1

ki

)

×
N∏
i=1

[
cosh

(
`f + gi
kBT

)
+ φi cosh

(
χ`f + χgi
kBT

)]
. (5.8)

We de�ne the e�ective elastic sti�ness as ke� = N
(∑N

i=1
1
ki

)−1

and we obtain

ZG(f) = c× exp

(
Nf 2

2kBTke�

) N∏
i=1

[
cosh

(
`f + gi
kBT

)
+ φi cosh

(
χ`f + χgi
kBT

)]
, (5.9)
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with c a constant. The macroscopic behaviour of the chain is described by the force-

extension response and by the average value of the spin variables, which can be obtained

through the Gibbs partition function as follows [1, 113]

〈xN〉 = kBT
∂

∂f
logZG, (5.10)

〈 yi 〉 = kBT
∂

∂gi
logZG. (5.11)

When the external �eld ~g is 0, these results may be evaluated as

〈xN〉 =
f

ke�
+

N∑
i=1

`
sinh

(
`f
kBT

)
+ χφi sinh

(
χ`f
kBT

)
cosh

(
`f
kBT

)
+ φi cosh

(
χ`f
kBT

) , (5.12)

〈 yi 〉 =
sinh

(
`f
kBT

)
+ χφi sinh

(
χ`f
kBT

)
cosh

(
`f
kBT

)
+ φi cosh

(
χ`f
kBT

) . (5.13)

While the �rst expression represents the macroscopic mechanical response of the system,

the second one describes the con�gurational state (folded or unfolded) of the units in terms

of the applied force. Interestingly enough, Eqs.(5.12) and (5.13) can be combined to give

〈x〉 = Nf
ke�

+ `
∑N

i=1〈 yi 〉, which represents a spring-like behaviour with the equilibrium

length controlled by the spin variables. An application of Eqs.(5.12) and (5.13) can be

found in Figs.5.3.b, 5.3.c, and 5.3.d, where the force-extension relation, the average spin

variables and the quantities ∂〈 yi 〉/∂〈x〉 versus 〈x〉 are represented for a homogeneous

chain with ∆Ei = ∆E ∀i (blue curves). These results describe a synchronous unfolding

of the units for a given threshold force given by f ∗ = ∆E/[(χ− 1)`] [113,130,159]. It is a

well-known behaviour observed in DNA [71, 73, 182], and in other molecules of biological

origin [132,183]. A second example can be found in Figs.5.3.j, 5.3.k, and 5.3.l, where the

same quantities have been shown for a heterogeneous chain, as represented in Fig.5.3.i.

In this case, while the force-extension curve is only slightly modi�ed, the spin variables

assume di�erent behaviours for the di�erent units, proving the emergence of an unfolding

pathway induced by the heterogeneity of the metastable states energy levels. Also, the

blue curve in Fig.5.3.k shows the mean value of the numbered curves and is similar to the

Gibbs response of the homogeneous case. This is true since we used the same parameter

χ for all the units of the chain. It is important to remark that, for an heterogeneous

parameter χ, we can have a di�erent behaviour between 〈yi〉 of the homogeneous chain

and 1
N

∑N
i=1〈 yi 〉 of the heterogeneous chain. To conclude, we observe that the quantity

∂〈 yi 〉/∂〈x〉 can be considered as an approximated measure of the probability density
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of the position x at which a transition occurs between the states of the i-th unit (see

below for details). Therefore, Fig.5.3.l con�rms the identi�cation of a unfolding sequence

induced by the heterogeneity. The analysis of the Gibbs ensemble is the starting point to

study the behaviour of the Helmholtz ensemble, which is the core of our investigation as

discussed below.

5.3.2 The Helmholtz ensemble

We are now interested in the case of a two-state heterogeneous one-dimensional system

in the Helmholtz ensemble. To analyse this system, we use the Fourier relation linking

the Gibbs and Helmholtz partition functions [20,124]

ZH(x) =

∫ +∞

−∞
ZG(−iωkBT ) exp(iωx)dω. (5.14)

First of all, we have from Eq.(5.9)

ZG (−iωkBT ) = c× exp

(
−Nω

2kBT

2ke�

) N∏
i=1

[
cosh

(
gi − iω`kBT

kBT

)
+φi cosh

(
χgi − iχω`kBT )

kBT

)]
. (5.15)

with c a constant. However, it is better to continue the calculation by observing that we

have to determine the following quantities, both for ~g = 0

〈f〉 = −kBT
1

ZH

∂ZH
∂x

, (5.16)

〈yj〉 = kBT
1

ZH

∂ZH
∂gj

. (5.17)

Therefore, we develop both ZH and ∂ZH(x)
∂gj

with ~g = 0, as follows

ZH(x) =

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N∏
i=1

(a+ φib) dω, (5.18)

∂ZH(x)

∂gj
=

(
− i

kBT

)∫ +∞

−∞
[sin(ω`) + φjχ sin(ωχ`)]

×
N∏

k=1,k 6=j

(a+ φkb) e
−Nω

2kBT

2ke� eiωxdω, (5.19)
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Figure 5.3 � Folding/unfolding processes in homogeneous and heterogeneous chains. Panel
a): Gibbs and Helmholtz conditions in homogeneous chains. Panel b): force-extension
response for isotensional (blue) and isometric (red) conditions. Panel c): average spin vari-
ables (homogeneous chain). All spins have the same behaviour (no unfolding pathway).
Panel d): plot of the quantities ∂〈 yi 〉/∂x (or ∂〈 yi 〉/∂〈x〉) versus x (or 〈x〉) for homo-
geneous chains (proportional to the probability density of the position of the unfolding
transition of the i-th unit). Panel e): Scheme of an heterogeneous chain under isometric
condition (di�erent ∆Ei and ki). Panel f): Helmholtz force-extension response, slightly
modi�ed by the heterogeneity. Panel g): the average spin variables under isometric condi-
tion show the pathway given by the ascending order of the values ∆Ei: 3©, 1©, 4©, 2©, 5© (in
this example ∆E3 < ∆E1 < ∆E4 < ∆E2 < ∆E5). Red curve: mean value 1

N

∑N
i=1〈 yi 〉 of

the averaged spins. Panel h): plot of the quantities ∂〈 yi 〉/∂x, con�rming the symmetry
breaking induced by the heterogeneity. Panel i): scheme of an heterogeneous chain under
isotensional condition (di�erent ∆Ei and ki). Panel j): Gibbs force-extension response,
slightly modi�ed by the introduction of the heterogeneity. Panel k): the average spin vari-
ables under isotensional condition show the unfolding pathway given by the ascending or-
der of the values ∆Ei: 3©, 1©, 4©, 2©, 5© (in this example ∆E3 < ∆E1 < ∆E4 < ∆E2 < ∆E5,
as before). Blue curve: mean value 1

N

∑N
i=1〈 yi 〉 of the averaged spins. Panel l): plot of the

quantities ∂〈 yi 〉/∂〈x〉, con�rming the symmetry breaking induced by the heterogeneity.
We adopted the following parameters: N = 5, ` = 0.5nm, T = 300K, χ = 7, ki = 0.04N/m
∀i, ∆Ei = 30kBT ∀i in the homogeneous chain and ∆E1 = 27.5kBT , ∆E2 = 32.5kBT ,
∆E3 = 25kBT , ∆E4 = 30kBT , ∆E5 = 35kBT in the heterogeneous case [4].
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where we omitted the unimportant multiplicative constant and we de�ned a = cos(ω`)

and b = cos(ωχ`). Hence, we calculate

N∏
i=1

(a+ φib) = aN + aN−1b

N∑
j=1

φj +
1

2
aN−2b2

∑
i 6=j

φiφj +
1

3!
aN−3b3

×
∑

i 6=j,k 6=j,i6=k

φiφjφk + ...+ bNφ1 × ...× φN

=
N∑
k=0

aN−kbkSk, (5.20)

with S0 = 1 and

Sk =
1

k!

∑
Ja 6=Jb∀a6=b

φj1 × ...× φjk. (5.21)

The quantities Sk are called elementary symmetric polynomials in the variables φ1...φN .

We describe here the theory for the calculation of such quantities and we postpone the

calculation of ∂ZH(x)
∂gj

. We consider a polynomial f(x) de�ned as

f(x) =
N∑
k=0

akx
k = a0 + a1x+ a2x

2 + ...+ aNx
N , (5.22)

and we suppose that it has the N zeros φ1, ..., φN . It means that

f(x) = aN(x− φ1)× ...× (x− φN)

= aN

N∏
k=1

(x− φk)

= aN

[
xN − xN−1

N∑
i=1

φi +
1

2
xN−2

N∑
i 6=j

φiφj −
1

3!
xN−3

N∑
i 6=j 6=k

φiφjφk + ...

+(−1)Nφ1 × ...× φN
]

= aN
[
xN − xN−1S1 + xN−2S2 − xN−3S3 + ...+ (−1)NSN

]
. (5.23)

We can also write 

∑N
i=1 φi = −aN−1

aN
= S1,

1
2

∑
i 6=j φiφj = aN−2

aN
= S2,

1
3!

∑
i 6=j 6=k φiφjφk = −aN−3

aN
= S3,

...
φ1 × ...× φN = (−1)N a0

aN
= SN .

(5.24)
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The problem is to easily calculate all these quantities, which can be computationally

expensive because of the very important number of permutations. One possibility to

simplify the calculation is based on the introduction of the so-called power sums, de�ned

as

Ph =
N∑
t=1

φht . (5.25)

We consider, by de�nition, P0 = N . We search for the relation between the power sums

and the elementary symmetric polynomials. We have that

N∑
k=0

akφ
k
t = 0 ∀t = 1, ..., N, (5.26)

since φt is a zero of f(x). By multiplying this expression by φmt , we get

N∑
k=0

akφ
k+m
t = 0 ∀t = 1, ..., N, ∀m ≥ 0. (5.27)

We can sum over t from 1 to N
N∑
k=0

akPk+m = 0 ∀m ≥ 0. (5.28)

These equations allow the determination of all Ph if we know the �rst P1, ...PN−1, and we

remember that P0 = N . To get equations for P1, ...PN−1, we consider

f(x) = aN(x− φ1)× ...× (x− φN), (5.29)

and

f ′(x) =
f(x)

x− φ1

+ ...+
f(x)

x− φN

=
N∑
q=1

f(x)

x− φq
. (5.30)

We can also write

f ′(x) =
N∑
q=1

f(x)

x− φq
=

N∑
q=1

∑N
k=0 akx

k

x− φq
(5.31)

and, since φq is a zero of
∑N

k=0 akx
k, we can also get the expression

f ′(x) =
N∑
q=1

∑N
k=0 ak(x

k − φkq)
x− φq

. (5.32)
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Moreover, the term with k = 0 is zero and we obtain

f ′(x) =
N∑
q=1

∑N
k=1 ak(x

k − φkq)
x− φq

. (5.33)

Now, we have to develop the expression xk−yk
x−y . To do this, we need to calculate the

geometrical sum

S̃ = 1 + x+ x2 + ...+ xN−1. (5.34)

We multiply it by x and we get

xS̃ = x+ x2 + ...+ xN , (5.35)

or again

S̃ − xS̃ = 1− xN , (5.36)

eventually giving

S̃ =
1− xN
1− x . (5.37)

We substitute x with y
x
, getting

1 +
y

x
+
(y
x

)2

+ ...+
(y
x

)N−1

=
1−

(
y
x

)N
1− y

x

, (5.38)

or, in another way of writing, we have

xN−1 + yxN−2 + y2xN−3 + ...+ yN−1 =
xN − yN
x− y . (5.39)

Therefore, we can �nally write

xk − yk
x− y =

k−1∑
j=0

yjxk−j−1. (5.40)

We use this result in Eq.(5.33) and we have

f ′(x) =
N∑
q=1

N∑
k=1

ak

k−1∑
j=0

φjqx
k−j−1. (5.41)

Now, since Pj =
∑N

q=1 φ
j
q, we �nally get

f ′(x) =
N∑
k=1

k−1∑
j=0

akPjx
k−j−1. (5.42)
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And, if we let i = k − j − 1 becoming j = k − i− 1, we can �nd the dual expression

f ′(x) =
N∑
k=1

k−1∑
i=0

akPk−i−1x
i, (5.43)

that we can compare with

f ′(x) =
N∑
i=0

aiix
i−1 =

N∑
i=1

iaix
i−1. (5.44)

To do this comparison, we observe that

N∑
k=1

k−1∑
i=0

=
N−1∑
i=0

N∑
k=i+1

. (5.45)

The previous observation allows us to draw a comparison between

f ′(x) =
N∑
k=1

k−1∑
i=0

akPk−i−1x
i =

N−1∑
i=0

N∑
k=i+1

akPk−i−1x
i (5.46)

and

f ′(x) =
N∑
i=1

iaix
i−1 =

N−1∑
i=0

(i+ 1)ai+1x
i. (5.47)

We �nd

(i+ 1)ai+1 =
N∑

k=i+1

akPk−i−1 ∀i = 0, 1, ..., N − 1. (5.48)

For i = N − 1, we have a trivial identity since we get NaN = aNP0, hence P0 = N . So,

we can write

(i+ 1)ai+1 = Nai+1 +
N∑

k=i+2

akPk−i−1 ∀i = 0, 1, ..., N − 2, (5.49)

and we �nally have (N − 1) equations, given by

−(N − i− 1)ai+1 =
N∑

k=i+2

akPk−i−1 ∀i = 0, 1, ..., N − 2. (5.50)

We can express it in a more explicit way

−(N − 1)a1 = a2P1 +a3P2 + ... +aNPN−1,
−(N − 2)a2 = a3P1 +a4P2 + ... +aNPN−2,
...
−3aN−3 = aN−2P1 +aN−1P2 +aNP3,
−2aN−2 = aN−1P1 +aNP2,
−aN−1 = aNP1.

(5.51)
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The previous system of equations represents the link between (P1, ..., PN−1) and
(
a1

aN
, ..., aN−1

aN

)
=(

(−1)N−1SN−1, ..., S2,−S1

)
. We can also add the equation Eq. (5.28) for m = 0, namely

−Na0 = a1P1 + a2P2 + ...+ aNPN . (5.52)

With this equation, the system links (P1, ..., PN) with
(
a0

aN
, ..., aN−1

aN

)
=
(
(−1)NSN , ...,−S1

)
.

Introducing the equation for m = 0 allows us to write the complete system as

−Na0 −a1P1 −a2P2 − ... −aN−1PN−1 = aNPN ,
−(N − 1)a1 −a2P1 −a3P2 − ... −aN−1PN−2 = aNPN−1,
−(N − 2)a2 −a3P1 −a4P2 − ... −aN−1PN−3 = aNPN−2,
...
−3aN−3 −aN−2P1 −aN−1P2 = aNP3,
−2aN−2 −aN−1P1 = aNP2,
−aN−1 = aNP1.

(5.53)

We can also write it in a matrix form

N P1 P2 P3 ... PN−3 PN−2 PN−1

0 N − 1 P1 P2 ... PN−4 PN−3 PN−2

0 0 N − 2 P1 ... PN−5 PN−4 PN−3

... ... ... ... ... ... ... ...
0 0 0 0 ... 3 P1 P2

0 0 0 0 ... 0 2 P1

0 0 0 0 ... 0 0 1





a0

aN
a1

aN
a2

aN

...
aN−3

aN
aN−2

aN
aN−1

aN


= −



PN
PN−1

PN−2

...
P3

P2

P1


. (5.54)

We apply the Kramer theory to the subsystem composed of the last (N − i) equations

and we get

ai
aN

= −

det


PN−i P1 ... PN−i−3 PN−i−2 PN−i−1

PN−i−1 N − i− 1 ... PN−i−4 PN−i−3 PN−i−2

... ... ... ... ... ...
P3 0 ... 3 P1 P2

P2 0 ... 0 2 P1

P1 0 ... 0 0 1



det


N − i P1 ... PN−i−3 PN−i−2 PN−i−1

0 N − i− 1 ... PN−i−4 PN−i−3 PN−i−2

... ... ... ... ... ...
0 0 ... 3 P1 P2

0 0 ... 0 2 P1

0 0 ... 0 0 1



. (5.55)
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In the �rst determinant, we move the �rst column to the last position, getting

ai
aN

=
(−1)N−i−1(−1)

(N − i)! det



P1 P2 ... PN−i−2 PN−i−1 PN−i
N − i− 1 P1 ... PN−i−3 PN−i−2 PN−i−1

0 N − i− 2 ... PN−i−4 PN−i−3 PN−i−2

... ... ... ... ... ...
0 0 ... P1 P2 P3

0 0 ... 2 P1 P2

0 0 ... 0 1 P1


.(5.56)

Finally, rotations of 180�do not alter the value of a determinant and therefore

ai
aN

=
(−1)N−i

(N − i)! det


P1 1 0 0 ... 0 0
P2 P1 2 0 ... 0 0
P3 P2 P1 3 ... 0 0
... ... ... ... ... ... ...

PN−i−1 PN−i−2 PN−i−3 PN−i−4 ... P1 N − i− 1
PN−i PN−i−1 PN−i−2 PN−i−3 ... P2 P1

 . (5.57)

We remember that Si = (−1)i aN−i
aN

or, equivalently, SN−i = (−1)N−i ai
aN

, and we obtain

the �nal form of the elementary symmetric polynomials

SN−i =
1

(N − i)! det


P1 1 0 0 ... 0 0
P2 P1 2 0 ... 0 0
P3 P2 P1 3 ... 0 0
... ... ... ... ... ... ...

PN−i−1 PN−i−2 PN−i−3 PN−i−4 ... P1 N − i− 1
PN−i PN−i−1 PN−i−2 PN−i−3 ... P2 P1

 , (5.58)
or again

Sj =
1

j!
det


P1 1 0 0 ... 0 0
P2 P1 2 0 ... 0 0
P3 P2 P1 3 ... 0 0
... ... ... ... ... ... ...
Pj−1 Pj−2 Pj−3 Pj−4 ... P1 j − 1
Pj Pj−1 Pj−2 Pj−3 ... P2 P1

 . (5.59)

This is the closed form relation between the elementary symmetric polynomials and the

power sums. These expressions can be named determinant form of the Newton-Girard

formulae [184�187]. With this result, we can now use the determinant form of the terms

Sj to develop the expressions of ZH and ∂ZH
∂gj

, as indicated previously. We start with

ZH(x) and we can write

ZH(x) =

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N∏
i=1

(a+ φib)dω

=

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N∑
k=0

aN−kbkSkdω, (5.60)
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with S0 = 1. So, we �rstly need the calculation of

A =

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx [cos(ω`)]N−k [cos(χω`)]k dω

=

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
(
eiω` + e−iω`

2

)N−k (
eiχω` + e−iχω`

2

)k
dω

=
N−k∑
s=0

k∑
q=0

1

2N

(
N − k
s

)(
k

q

)∫ +∞

−∞
eiω[x+`s−`(N−k−s)+χ`q−χ`(k−q)]

×e−
Nω2kBT

2ke� dω. (5.61)

To solve this integral, we use the well-known relation∫ +∞

−∞
e−αx

2

eiβxdx =

√
π

α
e−

β2

4α , (5.62)

so the equation becomes

A =
N−k∑
s=0

k∑
q=0

1

2N

(
N − k
s

)(
k

q

)√
2πke�
NkBT

e
− ke�[x+`(2s−N+k+2χq−χk)]2

2NkBT . (5.63)

Finally, the �rst result is

ZH(x) =
1

2N

√
2πke�
NkBT

N∑
k=0

N−k∑
s=0

k∑
q=0

(
N − k
s

)(
k

q

)
e
− ke�[x+`(2s−N+k+2χq−χk)]2

2NkBT Sk, (5.64)

where the Sk coe�cients are given by the determinants in Eq.(5.59). Concerning the

calculation of ∂ZH(x)
∂gj

, we need to evaluate as in Eq.(5.19)

∂ZH(x)

∂gj
=

(
− i

kBT

)∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N∏

k=1,k 6=j

[cos(ω`) + φk cos(ωχ`)]

× [sin(ω`) + φjχ sin(ωχ`)] dω. (5.65)

We can de�ne

S
(j)
k =

1

k!

∑
ja 6=jb∀a6=b,jc 6=j∀j

φj1 × ...× φjk, (5.66)

where the quantities S(j)
k (k = 1, ..., N − 1) are de�ned similarly to the quantities Sk

(k = 1, ..., N) but are based on the set containing all φ1, ..., φN except φj. They can
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be simply calculated with the same technique based on the determinants, as shown in

Eq.(5.59). Hence we can write, after developing the power on N

∂ZH
∂gj

=

(
− i

kBT

)∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N−1∑
k=0

[cos(ω`)]N−1−k [cos(χω`)]k S
(j)
k

× [sin(ω`) + φjχ sin(χω`)] dω

=
1

kBT

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N−1∑
k=0

[cos(ω`)]N−1−k [cos(χω`)]k S
(j)
k

×
(
e−iω` − eiω`

2

)
dω +

1

kBT

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N−1∑
k=0

[cos(ω`)]N−1−k

× [cos(χω`)]k S
(j)
k χφj

(
e−iωχ` − eiωχ`

2

)
dω. (5.67)

We separately calculate the two integrals, called βk and γk. We begin the calculation of

βk by developing the powers

βk =

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx [cos(ω`)]N−1−k [cos(χω`)]k
(
e−iω` − eiω`

2

)
dω

=

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx
N−k−1∑
s=0

(
N − k − 1

s

)
eiω`se−iω`(N−1−k−s) 1

2N−1−k

×
k∑
q=0

(
k

q

)
eiχω`qe−iχω`(k−q)

1

2k

(
e−iω` − eiω`

2

)
dω

=
1

2N

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k

q

)[∫ +∞

−∞
e
−Nω

2kBT

2ke� eiω[x+`(2s−N+k+2χq−χk)]dω

−
∫ +∞

−∞
e
−Nω

2kBT

2ke� eiω[x+`(2s+2−N+k−2χq−χk)]dω

]
. (5.68)

Finally, we get

βk =
1

2N

√
2πke�
NkBT

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k

q

)[
e
− ke�[x+`(2s−N+k+2χq−χk)]2

2NkBT

−e−
ke�[x+`(2s−N+2+k+2χq−χk)]2

2NkBT

]
. (5.69)

Now, we calculate the second integral, called γk

γk =

∫ +∞

−∞
e
−Nω

2kBT

2ke� eiωx [cos(ω`)]N−1−k [cos(χω`)]k
(
e−iωχ` − eiωχ`

2

)
dω. (5.70)
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We do the same calculation developed for βk and we obtain

γk =
1

2N

√
2πke�
NkBT

N−k−1∑
s=0

k∑
q=0

(
N − k − 1

s

)(
k

q

)[
e
− ke�[x+`(2s−N+1−χ+k+2χq−χk)]2

2NkBT

−e−
ke�[x+`(2s−N+1+χ+k+2χq−χk)]2

2NkBT

]
. (5.71)

We get the �nal form of ∂ZH(x)
∂gj

∂ZH(x)

∂gj
=

1

kBT

N−1∑
k=0

[
(βk + χγkφj)S

(j)
k

]
. (5.72)

We can �nally deduce the expression of the force-extension response from Eqs.(5.16) and

(5.64) as

〈f〉 =

∑N
k=0

∑N−k
s=0

∑k
q=0

(
N−k
s

)(
k
q

)
e
− ke�ϕ

2

2NkBT ke�ϕSk∑N
k=0

∑N−k
s=0

∑k
q=0

(
N−k
s

)(
k
q

)
e
− ke�ϕ

2

2NkBT Sk

, (5.73)

with ϕ = x + `(2s − N + k + 2χq − χk) and the coe�cients Sk are given in Eq.(5.59).

Similarly, the expression for the average spin variable 〈yj〉 can be obtained from Eqs.(5.17)

and (5.72) as

〈yj〉 =

∑N−1
k=0

(
βkS

(j)
k + γkφjχS

(j)
k

)
ZH

, (5.74)

where the coe�cients S(j)
k are given in Eq.(5.66). Although the quenched disorder strongly

complicates the analysis of the system within the Helmholtz ensemble, the application of

the determinant expression in Eq.(5.59) or Eq.(5.66) (determining the elementary sym-

metric polynomials Sk or S(j)
k related to the Boltzmann factors with arbitrary energy

jumps) allows for an analytic treatment of the problem. In particular, we are able to ob-

tain the partition function in Eq.(5.64) (along with its derivative in Eq.(5.72)) in closed

form and to derive expressions for the macroscopic observables.

A �rst simple application of these results can be found in Figs.5.3.b and 5.3.c, where

we plot 〈f〉 and 〈yi〉 versus the prescribed extension x for a homogeneous chain under

isometric condition (red curves). The behaviour of 〈f〉 and 〈yi〉 can be interpreted through
a sequential unfolding of the units. This response is in good qualitative agreement with

several force spectroscopy measurements performed on proteins and other macromolecules

[135,142�145]. We also plotted ∂〈yi〉/∂x versus x in Fig.5.3.d. This quantity satis�es two
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crucial properties: �rstly,
∫ +∞

0
(∂〈yi〉/∂x)dx = 〈yi〉(+∞)−〈yi〉(0) = χ (which means that

it can be normalised); secondly, 〈yi〉 is always non-decreasing, leading to a non-negative

function ∂〈yi〉/∂x. Hence, it follows that ∂〈yi〉/∂x can be used as a quantity approximately

measuring the probability density of the position x at which a transition occurs between

the states of the i-th unit. We remark that it is not a rigorous statement but a useful

practical approach to quantify the statistics of the unfolding processes. Fig.5.3.d shows

that at each transition occurrence, the switching probability is the same for all units of

the homogeneous chain. Therefore, no unfolding pathway can be identi�ed. We describe

now the behaviour of a heterogeneous chain, as represented in Fig.5.3.e. While the force-

extension curve in Fig.5.3.f is slightly modi�ed with respect to Fig.5.3.b, we observe that

the heterogeneity of the chain, which is a quenched disorder embedded in the system,

is able to perform a symmetry breaking generating an unfolding pathway. Indeed, the

numbered curves of the average spin variables in Fig.5.3.g are able to precisely identify

what unit is unfolded at each transition, indicating the actual sequence of unfolding

processes. Interestingly enough, the red curve in the same panel shows the average value

of these numbered curves and is similar to the Helmhotz response of the homogeneous

case. This is true since we used the same parameter χ for all the units of the chain. It

is important to remark that, for an heterogeneous parameter χ, we can have a di�erent

behaviour between 〈yi〉 of the homogeneous chain and 1
N

∑N
i=1〈 yi 〉 of the heterogeneous

chain. Importantly, it follows that through the spin variables, we can now analyse the

unfolding pathway generated by the heterogeneity. This is further con�rmed by the

plots of ∂〈yi〉/∂x in Fig.5.3.h, where each curve is characterised by one pronounced peak

corresponding to the actual switching, and other smaller peaks measuring the uncertainty

in the pathway identi�cation (see next Section for details). Moreover, the numerical

results show that the unfolding pathway corresponds to the ascending order of the values

∆Ei. This implies that the equilibrium statistical mechanics of this system implements a

statistical sorting procedure. This result is independent of the heterogeneity of the elastic

constants ki since 〈f〉 and 〈yj〉 depend only on the e�ective sti�ness ke�.

5.4 Unfolding pathway identi�ability

While the described identi�cation of the unfolding pathway may seem a simple and

expected result, it is important to observe that: (i) the model elaborated mathematically

explains how the bistable chain can implement the above introduced statistical sorting

procedure, and the same methodology can be also applied to more realistic situations with

additional heterogeneous geometrical and/or physical parameters; (ii) the knowledge of
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the average spin variables given in Eq.(5.74) is also useful to quantitatively evaluate the

identi�ability of the most probable unfolding pathway, i.e. of the most likely observed

unfolding sequence in a given experiment. This concept measures to what extend we are

able to identify the most probable unfolding pathway, which represents the sequence of

unfolding process observed the largest number of times if we conduct several identical

experiments. For the sake of brevity, we develop this concept only by considering the

Helmholtz ensemble. If we look at the density-like curve ∂〈yi〉/∂x for a given unit (see

Fig.5.3.h), the identi�ability can be de�ned as the relative di�erence between the largest

peak and the second largest peak. Indeed, this di�erence measures the capability to

properly identify the transition of that unit with respect to the other ones. Consequently,

if we consider the i-th unit, we can de�ne

Ii =
Fm
{
∂〈yi〉
∂x

}
− Sm

{
∂〈yi〉
∂x

}
Fm
{
∂〈yi〉
∂x

} , (5.75)

where Fm and Sm are operators extracting the largest peak and the second largest peak,

respectively, of a given function. The identi�ability of the whole unfolding process can be

therefore de�ned by the average value of these quantities over the N units

I =
1

N

N∑
i=1

Ii. (5.76)

We �rst apply this concept to a chain composed of N = 5 units with uniformly dis-

tributed energy jumps ∆Ei/(kBT ) ∈ {α, α± ε, α± 2ε}, where the parameter ε measures

their dispersion. The resulting identi�ability I can be found in Fig.5.4, where it is plotted

versus ε and parametrized by the temperature T . We note that I = 0 for the homoge-

neous case with ε = 0, and I → 1 for increasing value of ε, being the limiting value

I = 1 related to the pathway identi�cation without uncertainty. We also observe that

increasing values of the temperature reduce the identi�ability, for a constant ε. This is

coherent with the idea that the thermal �uctuations are able to reduce the knowledge on

the con�gurational state of the system.

A plateau at around ε = 0.5 can be observed and is due to a particular phenomenon

observed for small values of ε. We explain this point as follows. We consider only the case

with T = 300K and N = 5. Then, we assume ∆Ei = {30, 30 + ε, 30− ε, 30 + 2ε, 30− 2ε}
×kBT as in Fig.5.4 (the other parameters used being exactly as quoted in the caption of

Fig.5.4). We take a small value of ε, namely ε = 0.4. In Fig.5.5, we can now observe the
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Figure 5.4 � Identi�ability I de�ned as in Eq.(5.76) as function of the distribution of the
energy jumps ∆Ei (described by the parameter ε) and the temperature T . We adopted
the following parameters: N = 5, ` = 0.5nm, T0 = 300K, χ = 7, ki = 0.04N/m ∀i,
∆Ei
kBT0

∈ {α, α± ε, α± 2ε} with α = 30 and ε variable [4].

behaviour of the average spin variables. However, if we look at the derivatives of the spin

variables, we obtain the plots shown in Fig.5.6.

Therefore, we see that the green curve show the greatest peak at the �rst transition,

as expected, whereas the yellow curve, unexpectedly, does not show the greatest peak at

the second transition but at the �rst one. This is at the origin of the speci�c behaviour

shown by the curves in Fig.5.4 for small ε. We can observe that when, increasing ε,

the peaks assume the �normal� con�guration, and we are at the right extremity of the

small plateau region. The conclusion is that, probably, the identi�cation of the unfolding

sequence on the base of the largest peaks in the derivatives of the spins is not the optimal

approach for very small values of ε, or, equivalently, for not su�ciently spaced energy

jumps. Consequently, also the de�nition of the identi�ability on the base of the peaks

intensity is not well adapted for very low values of ε. Nevertheless, this phenomenon is

observed only for di�erences between the energy jumps lower than 1-2%.

A more complex example deals with a non-linear distribution of energy jumps of

the units. More speci�cally, we can consider an exponential distribution described by

∆Ei = Peiϕ + Q, where P and Q are �xed by imposing the values ∆E1 and ∆EN , ϕ

is a free parameter de�ning the non-linearity of the energy jumps, and i is the index

enumerating the units. It means that the distribution of energy jumps can be written as

∆Ei =
∆E1

(
eNϕ − eiϕ

)
+ ∆EN (eiϕ − eϕ)

eNϕ − eϕ . (5.77)

As a particular case, we observe that if ϕ→ 0, we obtain the linear distribution of energy
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Figure 5.5 � Average spin variable versus x. We see that, although the parameter ε assume
a small value, the spin responses are su�ciently separated to distinguish the unfolding
process. In particular, the green curve corresponds to the lower energy jump, the yellow
curve to the following energy jump, and so forth.

Figure 5.6 � Derivatives of ZH versus x. The green curve corresponds to the spin variable
of the unit with the lower energy jump and the yellow curve to the spin variable of the
unit with the following energy jump (the colours correspond to the previous Figure with
the averages of yi).
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Figure 5.7 � Unfolding pathway in heterogeneous chains with non-uniform distribution
of energy jumps. We adopted the distribution ∆Ei = Peiϕ + Q with P = (∆EN −
∆E1)/(eNϕ − eϕ) and Q = (∆E1e

Nϕ − ∆ENe
ϕ)/(eNϕ − eϕ) (see Eq.(5.77)). Panels a)

and d): average spin variables 〈yi〉 for ϕ = ±1. Panels b) and e): derivatives ∂〈yi〉/∂x
for ϕ = ±1. Panel c): distributions of the energy jumps for −1 ≤ ϕ ≤ +1 and with
∆E1 = 30kBT and ∆EN = ∆E5 = 38kBT . Panel f): identi�abilities Ii and I versus
ϕ. We adopted the following parameters: N = 5, ` = 0.5nm, T = 300K, χ = 7, and
ki = 0.04N/m ∀i [4].

jumps ∆Ei = ∆E1 + ∆EN(i − 1)/(N − 1), already considered in the previous analysis.

The results based on these assumptions can be found in Fig.5.7. In panels a) and b), one

can �nd the average spin variables and their derivatives, respectively, for the case with

ϕ = −1. In this case, the energy jumps are given by a non-linear concave distribution,

as plotted in panel c). Similarly, in panels d) and e), we show the results for ϕ = 1,

corresponding to a non-linear convex distribution, which is shown in panel c), as well.

Finally, in panel f), the identi�abilities are represented for each unit and for the whole

chain. It is important to observe that the non-linearity of the energy jumps is re�ected

in the spread or dispersion of the values Ii, especially for ϕ approaching ±1. Indeed,

it is more di�cult to identify the unfolding pathway of units with similar energy jumps

(see, e.g., I4 and I5 for ϕ = −1 or I1 and I2 for ϕ = +1) than the unfolding pathway of

units with largely spaced energy jumps (see, e.g., I1 and I2 for ϕ = −1 or I4 and I5 for

ϕ = +1). We also note that in the limiting case with ϕ → 0, the distribution becomes

linear, as previously anticipated, and all the quantities Ii assume approximately the same
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Figure 5.8 � Unfolding pathway in randomly heterogeneous chains. Panel a): average spin
variables 〈yi〉. Panel b): derivatives ∂〈yi〉/∂x. In both panels, 50 Monte-Carlo realisations
have been plotted (thin lines) together with their average values (thick lines) for a system
with ∆Ei/(kBT ) = α + δni, where ni are independent and uniform random variables
in the interval (−1, 1). Panel c): identi�ability I versus δ. We plotted 100 Monte-Carlo
realisations (red circles) and the average value (black solid line). We adopted the following
parameters: N = 5, ` = 0.5nm, T = 300K, χ = 7, ki = 0.04N/m ∀i, α = 30 and δ = 10
(in panels a) and b) only) [4].
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value. Coherently, the black curve in panel f), representing the average value I, shows a
maximum for ϕ→ 0, proving that the largest identi�ability is achieved for linearly spaced

or distributed energy jumps.

The applicability of the identi�ability concept is twofold. From one side, it allows a

better understanding of the unfolding pathways of proteins and other bio-macromolecules,

typically measured through force spectroscopy techniques. In particular, it can explain

the statistical modi�cations or variability of the unfolding pathway, which is sometimes

depending on several experimental conditions [188�190]. On the other side, the identi�-

ability concept may be useful to improve the design of heterogeneous micro- and nano-

systems based on bi-and multi-stability, where folding and unfolding sequences represent

the response of the system and should be therefore stable to temperature variations and

to other structural or external parameters [177]. The important point for the applications

is that the identi�ability can be calculated for any set of parameters describing the chain,

and allows therefore a parametric analysis of the stability of the most probable unfolding

pathway, observed when we conduct several identical experiments. Even if we limited

the analysis of the identi�ability only to the Helmholtz case, we can compare the two

ensembles as follows. From panels h) and l) of Fig.5.3, it is not di�cult to realise that for

a �xed chain, the identi�ability in the two ensembles is not the same and the Helmholtz

ensemble is capable to maximise this quantity. Indeed, the variance of the peaks in panel

l) is much larger than the variance of the peaks in panel h). This result can be easily

interpreted in terms of the di�erences between the Helmholtz and the Gibbs ensemble.

As a matter of fact, also for a simple homogeneous chain, in the Gibbs ensemble, we have

a synchronised unfolding of the units whereas in the Helmholtz ensemble, we have a se-

quential unfolding. Therefore, the Helmholtz unfolding, being sequential, is more adapted

to separate the unfolding events and to eventually improve the identi�ability.

To conclude this discussion, we determine I for a bistable chain with random energy

jumps between the folded and unfolded states (under isometric conditions). We assume

that the energy jumps are given by ∆Ei/(kBT ) = α + δni, where α and δ are �xed pa-

rameters while ni are independent and uniform random variables in the interval (−1, 1).

Of course, the parameter δ measures the stochastic spread of the energy jumps distribu-

tion. We generate a given number of chains (Monte-Carlo realisations) using the previous

rule to assign the energy jumps of the units. Then, we sort the units in each chain in

such a way as to have the energy jumps in ascending order. This is simply useful to

easily compare the spin variables of di�erent chains, corresponding to units of the same

ordered position. For any chain, we are able to calculate the average spin variables 〈yi〉
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and their derivatives ∂〈yi〉/∂x with respect to the increasing extension x of the chain.

Consequently, for each chain, we can determine the corresponding identi�ability through

Eq.(5.76). These calculations can be repeated for all generated Monte-Carlo realisations

and the means values can be eventually evaluated (sampling Monte-Carlo approach). The

results can be found in Fig.5.8. In panel a) and b), we show the average spin variables 〈yi〉
and their derivatives ∂〈yi〉/∂x, respectively, for 50 Monte-Carlo realisations of the system.

The results of the single realisations (thin solid lines) are plotted together with their sam-

ple mean values (thick solid lines). We can see that, with the adopted parameters, the

average spin variables allow the unfolding pathway identi�cation also with random energy

jumps. While panels a) and b) of Fig.5.8 concern a �xed value of δ, we can perform a

more complete analysis where δ is variable over a given range. Hence, being the standard

deviation of the energy jumps σ∆Ei = kBTδ/
√

3 proportional to δ, we plot in panel c)

the identi�ability I versus δ. We used 100 Monte-Carlo realisations for each value of δ

(20 values of δ in the range [0, 10]), represented by the red circles in panel c), and we

calculated the sample mean values of the identi�ability, represented by the solid black

line. We repeated the whole protocol several times and we proved that the solid black

line, describing the behaviour of I, remains stable within an maximal error bar of around

±0.1. It means that the Monte-Carlo sample with 100 chains is large enough to give

acceptable results. We observe that, for random chains, relatively large values of δ < α

are necessary to obtain a good average identi�ability of the unfolding path.

5.5 Conclusion

In this Chapter, we considered the statistical and mechanical behaviour of chains of

heterogeneous bistable units. As this system is useful to represent situations of practical

interest, we thoroughly analysed its behaviour in both isotensional and isometric condi-

tions. The most important achievement concerns the exact calculation of the partition

function (and related quantities) within the Helmholtz ensemble (isometric condition). In

this case, the heterogeneity represents a quenched disorder, whose analysis is a di�cult

task of the statistical mechanics. We obtained the closed form expression of the Helmholtz

partition function thanks to the Laplace-Fourier relation between ZH and ZG [20,124] and

using the determinant form of the so-called Newton-Girard formulae [184�187]. This orig-

inal approach represents the core of our analysis. We observed that for a homogeneous

chain, no unfolded pathway can be identi�ed since all units have the same switching prob-

ability at each transition occurrence. On the other hand, the heterogeneity breaks this

symmetry and we can identify an unfolded pathway, which is described by the ascending
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order of the energy jumps between folded and unfolded states of each unit. It means that

the system implements a statistical sorting procedure when we simply prescribe an in-

creasing distance between �rst and last units. Since this process has a statistical character,

we can de�ne the concept of identi�ability, which measures the capability to identify the

most probable unfolding pathway. This concept has been applied to deterministic (linear

and exponential) and random distributions of energy jumps. The results of this work can

be applied to the better interpretation of the force spectroscopy measurements of bio-

logical macromolecules [188�190] and to the accurate design of micro- and nano-systems

based on bistable chains with speci�c properties [177].
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Chapter 6

Pulling speed dependence of the

force-extension response of bistable

chains

6.1 Introduction

The development of single-molecule force spectroscopy techniques has widely pro-

moted the study of the mechanical and kinetic properties of several biological macro-

molecules, such as proteins [6, 25, 33, 134, 191], nucleic acids (DNA [70, 71, 73, 182] and

RNA [192, 193]) and polysaccharides [24, 194, 195]. The static and dynamic responses

of such macromolecules are crucial for assessing the equilibrium and out-of-equilibrium

thermodynamics of small systems. The typical single-molecule experiment is conducted

by tethering the �rst end of the macromolecule and by moving its second end by means

of the force spectroscopy device, such as described in Chapter 1. For practical reasons,

these experiments are typically conducted by imposing a given pulling speed to the sec-

ond end of the chain. This point has crucial e�ects on the force-extension relation, which

shows a strong speed-dependent behaviour. Therefore, it is necessary to consider the

in�uence of the pulling speed on the force-extension response of a macromolecule, as the

force peaks increase with increasing speed [34, 196] (see Fig.6.1). Moreover, the recent

increasing of the pulling speeds used in force spectroscopy experiments with high-speed

AFM [34,35,37,38] requires the consideration of pulling speeds higher than in the existing

models. In Fig.6.1.a, it can be observed that the force peaks are nearly proportional to the

logarithm of the used pulling speed. The exploration of the response for di�erent pulling

speeds allows the reconstruction of the potential energy, as seen in Fig.6.1.b, and as dis-

cussed below. The histograms in Fig.6.1.c clearly show the increasing of the force peaks

when the pulling speed increases. Similarly, in Fig.6.2, a high-speed force spectroscopy
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Figure 6.1 � a) Pulling velocity data obtained through the unfolding of the
Immunoglobulin-like domain 4 (ddFLN4) compared with the theoretical curve given by
the Kramers' theory. b) The reconstructed energy landscape shows detailed curvature
along the unfolding/folding pathway. c) The characteristic behaviour of the experimental
unfolding force distributions with increasing pulling velocity is reproduced well using the
Kramers' model [196].

device is presented, which allows to attain high pulling speed of around 103 − 104µm/s.

The increase in peak force values is also pronounced.

On the one hand, for very low pulling speeds, the system is not far from the thermo-

dynamic equilibrium and its response can be studied by means of the classical canonical

distribution of the statistical mechanics (see Chapters 2, 3, 4 and 5). On the other hand,

it is important to consider the case of a system stretched with a �nite pulling speed.

Its typical values in standard AFM force spectroscopy experiments range between 10−2

and 102µm/s [196�201], and are even larger for high-speed AFM, as shown in Fig.6.2.

Along with experiments, molecular dynamics simulations have been performed to study

the speed-dependent unfolding of bistable macromolecules [39]. However, this approach is

limited to pulling speeds larger than 103µm/s and, therefore, it is not possible to draw a

comparison with standard AFM experiments [40]. Indeed, for lower values of the pulling

speed, the total computational time to observe the unfolding is too extended and the

simulation is not realisable with the available computational resources [35�40]. The ad-

vantage of the molecular dynamics is that the bistable character of the units directly

comes from the molecular architecture of the system. Nevertheless, to reduce the com-

196



plexity of the molecular dynamics simulations, a coarse grained model can be adopted

and implemented through a kinetic Monte Carlo method [128, 202]. In this case, the

bistability of each unit is simply described by a two-state potential energy characterised

by the rates of the folding and unfolding processes. Hence, the reduced complexity of the

model allows to consider a larger range of pulling speeds. Nonetheless, in this approach,

only the folding and unfolding rates are considered to describe the bistable characters of

the units.

By considering the Kramers theory [16], the Bell approximation [159], and the Evans-

Ritchie more elaborated formalism [204], we can assert that the folding and unfolding

rates are directly related to the energy barrier ∆B and the energy jump ∆E between the

two states, as well as the mechanical action applied to the system. This point allows to

a�rm that we can estimate energetic features of the macromolecule (e.g., ∆B and/or ∆E)

from the force-extension response measured at di�erent pulling speeds (energy landscape

reconstruction). In fact, the observed unfolding forces are in�uenced by the dynamic

interplay between the transition rates and the applied pulling speed. Of course, much

theoretical work has been done to apply the Kramers, Bell and Evans-Ritchie theories

for decoding the force spectroscopy data and yielding the energetic parameters that gov-

ern the biomolecular processes [205]. This approach has generated a powerful class of

approximated results, which are of simple application in many di�erent regimes and con-

�gurations [149,150,203,206�209]. In the present Chapter, we propose an approach based

on the numerical implementation of the Langevin methodology. The classical Langevin

equations are equipped with the full description of an arbitrary potential energy mimicking

the bistable units. This method can be used to analyse force spectroscopy experimental

data in order to estimate biological features of the macromolecules, such as ∆E, ∆B or

other biochemical parameters. It allows for considering the whole range of pulling speeds

used in real experiments, including those of standard and high-speed AFM experiments.

Finally, the Langevin approach will be used to elucidate the role of the device in the

single-molecule measurements and to interpret experimental data concerning �lamin and

titin proteins.

6.2 Out-of-equilibrium statistical mechanics through the

Langevin approach

To introduce the out-of-equilibrium statistical mechanics of the pulling process, we

use the Langevin approach. It means that a friction term and a noise term are added to
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Figure 6.2 � a) High-speed force spectroscopy (HS-FS) setup. An objective focuses the
beam of the superluminescent light-emitting diode (SLED) and collects the light re�ected
by the cantilever, �nally detected by a segmented photodiode. Titin I91 concatemers of
eight domains are immobilized on a tilted gold-coated surface via C-terminal cysteines.
They are pulled by their N-terminal histidine tag with a nickel-coated tip at the end
of a short cantilever. Tilting the sample surface further reduces hydrodynamic forces.
Top inset shows a titin I91 domain (PDB ID: 1TIT) with relevant β-strands coloured in
blue (A), yellow (A'), green (B), and red (G). Bottom inset shows a scanning electron
micrograph of a short cantilever. b) Force-extension curves acquired at three di�erent
retraction velocities: 1, 100, and 1000 µm/s. The 1 µm/s curve is moving average��ltered
(red trace, 65-µs time window). Times to unfold a single I91 domain are indicated by
arrows. c) Unfolding force histograms of the 1, 100, and 1000 µm/s retraction velocity
experiments. d) Average unfolding forces versus retraction velocity obtained using HS-FS,
conventional FS (error bars denote standard deviation), and steered molecular dynamics
simulations (data from Ref. [40]). Solid red line is the �t to the entire dynamic range of
HS-FS with the full microscopic model (from Ref. [203]) [34].
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the equation of motion of each degree of freedom of the system. This stochastic evolution

is coherent with the asymptotic behaviour of the system, which is represented by the

classical canonical distribution of the statistical mechanics [210, 211]. For a particle in

motion within the three-dimensional space, the exact Newton dynamic equation is

m
d2~r

dt2
= −∂V

∂~r
−mβd~r

dt
+
√
Dm~n, (6.1)

where V is the potential energy describing the force �eld applied to the particle, β is the

friction coe�cient (per unit mass, the so-called collision frequency) and D is the di�usion

coe�cient (per unit mass) given by the Einstein relation D = kBTβ [212,213]. Moreover,

in Eq.(6.1), ~r is the position vector of the particle, m is its mass and ~n is a random process.

As usual, we assume the following hypotheses on ~n: ~n(t) ∈ R3 is a Gaussian stochastic

process, E{~n(t)} = 0, and E{ni(t1)nj(t2)} = 2δijδ(t1 − t2) (here E means "expected

value", δij is the Kronecker delta, and δ(.) is the Dirac delta function). It is well known

that these properties are su�cient to obtain a correct thermodynamic behaviour for the

system [210�213]. In typical biological environments, the coe�cient mβ describing the

friction is quite large. It means that we can neglect the inertial term within the Newton

equation of motion. This simpli�cation is sometimes named Smoluchowski approximation

and it is valid in the so-called overdamped regime [212,213]. Hence, for large values of β,

we can write

m
d~r

dt
= − 1

β

∂V

∂~r
+

√
Dm

β
~n, (6.2)

being the inertial term negligible.

This approach can be adopted to develop the model for a one-dimensional chain of N

bistable units, unfolded through a force spectroscopy device (see Fig.6.3.a). In this case,

we can write the system of stochastic di�erential equations as

m
dxi
dt

= − 1

β
U ′(xi − xi−1) +

1

β
U ′(xi+1 − xi) +

√
kBTm

β
ni(t), (6.3)

where i = 1, ..., N − 1 if we consider N identical units described by the potential energy

U . This approach has been recently adopted to study the e�ect of the pulling velocity on

the unfolding pathway of heterogeneous chains [152,214], and it is used here to investigate

the e�ect of the pulling velocity on the unfolding forces. These equations must be solved

with the boundary conditions x0(t) = 0 and xN(t) = v0t + N`, where ` is the length of

one folded unit (before the application of the traction). For t = 0, we have xN(0) = N`,

which means that all the units are folded at the beginning of the process. In addition,
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Figure 6.3 � Scheme of the single-molecule force spectroscopy pulling experiments. Panel
a): chain of bistable units stretched by a device without intrinsic elasticity and with
xN(t) = v0t + N`. Panel b): chain of bistable units stretched by a device with intrinsic
sti�ness kd, equilibrium length `d, and xN+1(t) = v0t + N` + `d. Panel c): bistable
potential energy U(x) of a chain unit and its approximation Us(x) based on the spin
variable s (s = 0 for the folded state and s = 1 for the unfolded state) [4].

the latter condition corresponds to a device without intrinsic elasticity, able to perfectly

prescribe the trajectory of the last element of the chain. On the one hand, when v0 is

very small, the system can be studied with the equilibrium statistical mechanics. This is

discussed in previous Chapters. On the other hand, when v0 assumes arbitrary values,

the problem can be approached by the direct integration of Eq.(6.3). To do this, we have

to specify the energy pro�le U(x), which represents the bistable character of the system

units. As a particularly simple example, we will analyse a real bistable system described

by the following potential energy (see Fig.6.3.c)

U(x) =


1
2
kF (x− `)2 if x ≤ xα,

∆B − 1
2
k0(x− χ0`)

2 if xα < x ≤ xβ,
∆E + 1

2
kU(x− χ`)2 if x > xβ.

(6.4)

The parameter kF represents the elastic constant of the folded state, k0 the (reverse)

elastic constant of the concave barrier between the wells, and kU the elastic constant of

the unfolded state. Here, kF > 0, k0 > 0, kU > 0, 1 < χ0 < χ, ∆B represents the

energy barrier between the wells, and ∆E measures the energy jump between the two

states. While ` is the position of the �rst well, the parameters χ0 and χ are geometrical

factors �xing the position of the barrier and of the second well, respectively. The points
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xα and xβ represent the boundaries separating the three di�erent regions (the �rst well,

the spinodal region, and the second well). If the elastic constants of the two wells assume

the same value (see Fig.6.3.c) with kU = kF ), the conditions of continuity and derivability

of U at points xα and xβ give the relations

χ0 =

√
∆B −∆E + χ

√
∆B√

∆B −∆E +
√

∆B
, (6.5)

1

k0

=
`2(χ− 1)2

2
(√

∆B −∆E +
√

∆B
)2 −

1

kF
, (6.6)

xα =
kF + k0χ0

kF + k0

`, (6.7)

xβ =
kFχ+ k0χ0

kF + k0

`. (6.8)

Therefore, once �xed ∆E, ∆B, kF , χ and `, we can easily �nd xα, xβ, k0 and χ0. In

order to further investigate the behaviour of the bistable chain, we will also analyse the

case with a di�erent elastic constant in the two wells (see Fig.6.3.c) with kU 6= kF ). The

conditions of continuity and derivability of U at points xα and xβ give now

(∆B −∆E) (χ0 − 1)2 −∆B(χ− χ0)2 =
2∆B (∆B −∆E) (kU − kF )

kUkF `2
, (6.9)

which is a second degree equation for χ0, and

k0 =
2∆BkF

kF `2(χ0 − 1)2 − 2∆B
, (6.10)

xα =
kF + k0χ0

kF + k0

`, (6.11)

xβ =
kUχ+ k0χ0

kU + k0

`. (6.12)

Therefore, once �xed ∆E, ∆B, kF , kU , χ and `, we can easily �nd xα, xβ, k0 and χ0.

The behaviour of the whole system (with either kU = kF or kU 6= kF ) can be studied

through the numerical solution of the Langevin equation. The results of this analysis will

be described in Sections 6.3 and 6.4.

Thus, the numerical solution of Eq.(6.3), with U(x) de�ned in Eq.(6.4), can be imple-

mented by means of the following procedure. First of all, we integrate Eq.(6.3) over an

arbitrary interval (t, t+ ∆t). This operation delivers for i = 1, ..., N − 1

m [xi(t+ ∆t)− xi(t)] ' − 1

β
U ′ [xi(t)− xi−1(t)] ∆t+

1

β
U ′ [xi+1(t)− xi(t)] ∆t

+

√
kBTm

β

∫ t+∆t

t

ni(t)dt, (6.13)
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where ∆wi =
∫ t+∆t

t
ni(t)dt are independent increments of the Wiener process [212, 213].

It follows that the quantities ∆wi are random Gaussian variables and ful�l the properties

E{∆wi} = 0 and E{∆wi∆wj} = 2∆tδij. We can therefore introduce the random vari-

ables Pi = 1√
2∆t

∆wi, which are independent and normal Gaussian, thus described by the

probability density f(Pi) = 1√
2π
e−P

2
i /2. The motion equations can be therefore written as

xi(t+ ∆t)− xi(t) ' −U ′ [xi(t)− xi−1(t)]
∆t

mβ
+ U ′ [xi+1(t)− xi(t)]

∆t

mβ

+
√

2kBT

√
∆t

mβ
Pi. (6.14)

We can now observe that the time step ∆t controls the convergence of the numerical

scheme and the solution must be stable for decreasing values of ∆t. If we de�ne η = ∆t
mβ

,

we obtain the �nal version of the �nite di�erence scheme of the Langevin equations for

i = 1, ..., N − 1

xi(t+ ∆t)− xi(t) ' −U ′ [xi(t)− xi−1(t)] η + U ′ [xi+1(t)− xi(t)] η
+
√

2kBT
√
ηPi. (6.15)

We draw the random numbers Pi [215], and we generate M realisations of the trajectory

to �nally determine their mean value [216].

The model so far introduced is represented by a chain of N bistable units with the

last unit directly connected to the device (without the intrinsic elasticity) able to apply a

traction de�ned by the uniform motion xN(t) = v0t+N` (see Fig.6.3.a). Actually, a force

spectroscopy device is typically characterised by its intrinsic elasticity, which is rather

important for the understanding of the system behaviour [217, 218]. Therefore, we also

introduce a second model where the last unit of the chain is connected to a device with a

given �nite elasticity (see Fig.6.3.b). It means that Eq.(6.3) must be substituted by the

following system of equations

m
dxi
dt

= − 1

β
U ′(xi − xi−1) +

1

β
U ′(xi+1 − xi) +

√
kBTm

β
ni(t), (6.16)

for i = 1, ..., N − 1 and

m
dxN
dt

= − 1

β
U ′(xN − xN−1) +

1

β
kd(xN+1 − xN − `d) +

√
kBTm

β
nN(t), (6.17)

for the device performing the force spectroscopy measurement. Here, kd represents the

intrinsic elasticity of the device, `d its intrinsic length, and the traction is described by

xN+1(t) = v0t+N`+ `d.
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6.3 Analytical and numerical results

In this Section, we provide the analyses of four di�erent cases dealing with a bistable

chain (typically representing a protein) having the following properties: i) the same elastic

constants kF and kU in the folded and unfolded states, and a device without intrinsic

elasticity; ii) di�erent elastic constants kF and kU , and a device without intrinsic elasticity;

iii) the same elastic constants kF and kU , and a realistic device with kd and `d; iv) di�erent

elastic constants kF and kU , and a realistic device with kd and `d. The comparison of these

four di�erent cases is important to deduce some general features of the force-extension

relation, useful to better interpret and decipher the single-molecule experimental results.

In particular, this analysis will be able to shed light on the role of the force spectroscopy

device in the measured force-extension curves. We underline that in this Section, the

numerical calculations have been performed with reasonable parameters with respect to

real macromolecules but we decided not to refer to speci�c biological systems, in order to

show some general trends. However, we will show in Section 6.4 a direct comparison with

experiments conducted on �lamin and titin proteins.

6.3.1 Device without intrinsic elasticity

In Fig.6.4, we can �nd the results for the �rst case dealing with a chain with equal elas-

tic constants for the two wells and unfolded through a device without intrinsic elasticity.

We considered a macromolecule with N = 4 domains. In Fig.6.4.a, we show the energy

pro�le of the bistable units, where we can observe the energy barrier ∆B = 18kBT and

the energy jump ∆E = 10kBT . Then, in Fig.6.4.b, we show the force-extension curves for

di�erent pulling velocities v0. The dashed black curve corresponds to the theoretical result

obtained with v0 = 0. The other coloured curves represent the response of the chain with

an increasing pulling velocity. Each force-extension curve is obtained by averaging the

solution of the Langevin equation (see Eqs.(6.3) or (6.15)) overM = 2000 Monte Carlo re-

alisations of the process. The deviation between each coloured curve and the dashed black

curve measures how the process is far from the thermodynamic equilibrium. We remark

that, while the case with v0 = 0 is accessible with closed form mathematical expressions

based on the canonical distribution of the statistical mechanics, the out-of-equilibrium

behaviour can be only numerically explored by means of the Langevin formalism. The

important point is that the force peaks, representing the sequential unfolding of the chain

units (or protein domains), are more pronounced for larger values of the pulling velocity.

Therefore, following the experimental protocol, it is interesting to analyse the behaviour
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Figure 6.4 � Results for a chain with equal elastic constants for the two wells and unfolded
through a device without intrinsic elasticity. Bistable potential energy of the chain units
a), average force exerted on the N -th unit for di�erent pulling velocities v0 ≥ 0 (aver-
age curves determined over M=2000 trajectories) b), and force peaks versus the applied
pulling velocity (symbols: data; dashed lines: linear least squares approximations) c). In
panels b) and c), we adopted di�erent pulling velocities from 0.95 to 10 µm/s. The dotted
black curve in panel b) represents the force-extension response at thermodynamic equilib-
rium. The results have been obtained with ∆B = 18kBT , ∆E = 10kBT , T = 300K, N=4,
` = 0.42nm, χ = 2, kF = kU = 5.63N/m, and η variable ranging from η = 2.5× 10−3m/N
with ∆t = 1.47× 10−8s for v = 0.95 µm/s, to η = 2.36× 10−4m/N with ∆t = 1.4× 10−9s
for v = 10 µm/s [4].

of these force peaks in terms of the applied pulling velocity. This result can be found in

Fig.6.4.c, where the intensity of the four peaks (symbols) are plotted versus v0.

The error bars of these results are of the same order of magnitude of the �uctuations

observed in the curves of Fig.6.4.b. Then, they are not represented in Fig.6.4.c since
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Figure 6.5 � Results for a chain with di�erent elastic constants for the two wells and
unfolded through a device without intrinsic elasticity. Bistable potential energy of the
chain units a), average force exerted on the N -th unit for di�erent pulling velocities v0 ≥ 0
(average curves determined over M=2000 trajectories) b), and force peaks versus the
applied pulling velocity (symbols: data; lines: dashed linear least squares approximations)
c). In panels b) and c), we adopted di�erent pulling velocities from 0.95 to 10 µm/s. The
dotted black curve in panel b) represents the force-extension response at thermodynamic
equilibrium. The results have been obtained with ∆B = 18kBT , ∆E = 10kBT , T = 300K,
N=4, ` = 0.42nm, χ = 2, kF = 5.63N/m, kU = 2.81N/m, and η variable ranging from
η = 2.5 × 10−3m/N with ∆t = 1.47 × 10−8s for v = 0.95 µm/s, to η = 2.36 × 10−4m/N
with ∆t = 1.4× 10−9s for v = 10 µm/s [4].

they are smaller than the symbols used to represent the force peaks. This remains true

for all results of Sections 6.3 and 6.4. The �rst important result is that the four force

peaks are linearly increasing with the pulling velocity for a chain with kF = kU , unfolded

through a device without intrinsic elasticity. This is con�rmed by the linear least squares
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approximations (dashed straight lines), shown in Fig.6.4.c. We remark that this behaviour

does not correspond to the typical experimental observation, where the force peaks show

a logarithmic trend with the pulling velocity. This trend, sometimes called Evans and

Ritchie law, is based on the classical Bell theory [159], and it is valid with the extension

speed varying over several orders of magnitude [135, 204, 219]. However, we remark that

such a logarithmic trend can sometimes be inexact, especially for quite large pulling

velocities [34�38]. In order to understand the speci�c features characterising the response

observed in single-molecule force spectroscopy experiments, we therefore explore the cases

with kF 6= kU and/or with a real device.

In Fig.6.5, we can �nd the results for a chain with kF 6= kU , unfolded by means of

a device without intrinsic elasticity. We considered kU = kF/2 and we assumed all the

other parameters exactly as in the case shown in Fig.6.4. The results shown in Fig.6.5 are

quite similar to the ones presented in Fig.6.4 and, in particular, the linear trend between

force peaks and pulling velocity is con�rmed also in this case with kF 6= kU . It means

that the di�erent elastic constants of the two energy wells describing the bistable units

are not at the origin of the dynamic behaviour experimentally observed (with the force

peaks proportional to the logarithm of the pulling velocity). Consequently, we consider in

the following Section the cases with a real device characterised by an intrinsic elasticity

and an intrinsic equilibrium length.

A �nal comment concerns the shape of the force-extension curves represented in Figs.6.4

and 6.5. In both cases, we observe that some lower peaks of the curves correspond to a

negative force. This is a speci�c behaviour induced by the fact that we are studying one-

dimensional systems. In fact, for one-dimensional systems, the idea of a protein chain as a

random coil with a complex distribution of domains is degenerated to a simple alignment

of units on one axis with a preferred total length given by j`+(N−j)χ` (with j = 0, ..., N).

Since the total length is exactly imposed by the device within the Helmholtz ensemble, it

is not di�cult to imagine con�gurations with either a pushing force (negative) or a pulling

one (positive), applied to the device. Of course, this apparently paradoxical behaviour

disappears for two- or three-dimensional geometries, where the exploration of the phase

space is more pertinent to polymer models [131]. Indeed, in these real multi-dimensional

cases, the pulling (negative) forces induce the geometrical rearrangement of the chain and

are not directly observed in the total force measured on the device. It is important to

underline that also the theoretical results obtained with the spin variables for v0 → 0

exhibit the same behaviour con�rming that it is related to the one-dimensional geometry

of our system. In spite of this limitation of our approach, we underline that the model is
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able to correctly evaluate the force versus pulling velocity relation since at the transition

points the macromolecule is quite aligned along the traction direction.

6.3.2 Device with intrinsic elasticity

In Fig.6.6, we show the results for a chain with equal elastic constants for the two

wells and unfolded through a realistic device with intrinsic elasticity. Typically, the elastic

constant of the devices is much smaller than the elastic constant characterising the protein

domains. For the sake of de�niteness, in our case, we assume that kd = kF/8 = kU/8. The

comparison between kF = kU and kd can be observed in Fig.6.6.a, where the potential

energy of the units and of the device are represented. In Fig.6.6.b, the force-extension

response is shown with di�erent values of the pulling velocity. We remark that in this �gure

the curves are represented by plotting the force fN directly applied to the macromolecule

versus the traction xN+1 prescribed by the device.

The dashed black curve in Fig.6.6.b represents the force-extension relation at thermo-

dynamic equilibrium (v0 → 0) by means of the spin variables approach. The peaks of

force shown in Fig.6.6.b represent the sequential unfolding of the units and are quanti�ed

in Figs.6.6.c and 6.6.d. Here, these peaks are represented in terms of the pulling speed in

both linear and logarithmic scales, respectively.

From Fig.6.6.c, characterised by the linear scale of pulling velocity, we deduce that

the linearity between peaks and velocity is not con�rmed in the presence of a device with

intrinsic elasticity. Indeed, by observing Fig.6.6.d, we conclude that we have in this case

a linear dependence between force peaks and the logarithm of the pulling velocity, as

observed in most of experiments. We also observe that this linear relation is not veri�ed

for large values of the pulling velocity. Coherently, deviations from the linearity between

force peaks and the logarithm of the pulling velocity have been experimentally observed in

high-speed single-molecule measurements [34�38]. The dashed straight lines in Fig.6.6.d

represent the linear least squares approximations of the peaks data (for v0 < 2.5µm/s)

and con�rm the linear relation between the force peaks and log10 v0, at least for small

values of v0. This result underlines the crucial role of the realistic device, with its speci�c

sti�ness, in determining the force-extension response and the force peaks observed during

the molecule unfolding.

This scenario is also con�rmed for the case with kF 6= kU , as reported in Fig.6.7.

Finally, the model developed on the base of the Langevin equation is able to thoroughly

take into consideration the bistable character of the units of a given macromolecule as

well as the elasticity of the device used to generate the unfolding process. This point is
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Figure 6.6 � Results for a chain with equal elastic constants for the two wells and unfolded
through a device with intrinsic elasticity. Potential energy of units and device a), average
force exerted on the N -th unit of the chain versus the position xN+1 of the device (average
curves determined over M=2000 trajectories) b), force peaks versus the applied pulling
velocity in linear scale c), and force peaks versus the applied pulling velocity in semi-log
scale (symbols: data; dashed lines: linear least squares approximations) d). In panels b),
c) and d), we adopted di�erent pulling velocities from 0.081 to 10 µm/s. The dotted black
curve in panel b) represents the force-extension response at thermodynamic equilibrium.
The results have been obtained with ∆B = 18kBT , ∆E = 10kBT , T = 300K, N=4,
` = `d = 0.42nm, χ = 2, kF = kU = 5.63N/m, kd = 0.704N/m, and η variable ranging
from η = 3.2×10−2m/N with ∆t = 1.9×10−7s for v = 0.081 µm/s, to η = 2.6×10−4m/N
with ∆t = 1.54× 10−9s for v = 10 µm/s [4].

further substantiated by a direct comparison with two di�erent experiments, as discussed

in the following Section.
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Figure 6.7 � Results for a chain with di�erent elastic constants for the two wells and
unfolded through a device with intrinsic elasticity. Potential energy of units and device a),
average force exerted on the N -th unit of the chain versus the position xN+1 of the device
(average curves determined over M=2000 trajectories) b), force peaks versus the applied
pulling velocity in linear scale c), and force peaks versus the applied pulling velocity in
semi-log scale (symbols: data; dashed lines: linear least squares approximations) d). In
panels b), c) and d), we adopted di�erent pulling velocities from 0.081 to 10 µm/s. The
dotted black curve in panel b) represents the force-extension response at thermodynamic
equilibrium. The results have been obtained with ∆B = 18kBT , ∆E = 10kBT , T = 300K,
N=4, ` = `d = 0.42nm, χ = 2, kF = 5.63N/m, kU = 2.81N/m, kd = 0.704N/m, and η
variable ranging from η = 4.1× 10−2m/N with ∆t = 2.42× 10−7s for v = 0.081 µm/s, to
η = 3.3× 10−4m/N with ∆t = 1.96× 10−9s for v = 10 µm/s [4].

6.4 Theory meets experiments

In this Section, we draw a comparison between the results obtained through the nu-

merical solution of the Langevin equations and two experiments concerning the force
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Figure 6.8 � Realistic and simpli�ed potential energy for the �lamin domain. The sim-
pli�ed potential has been obtained with ∆B = 18.2kBT , ∆E = 4.5kBT , ` = 4.1nm,
χ = 1.58, kF = 0.295N/m and kU = 0.059N/m [4].

spectroscopy analysis of �lamin and titin. The investigated �lamin protein is composed

of a single unit, which represents the fourth domain of Dictyostelium discoideum �lamin

(ddFLN4) [196, 197]. On the other hand, the studied titin molecule is composed by 8

repetitions of the 27th domain from the I-band of the human cardiac titin (I27) [198,203].

6.4.1 Modelling the dynamic stretching of �lamin

Filamin belongs to the family of the actin-crosslinking proteins, involved in the con-

stant reorganisation of the cytoskeleton, consisting in the moving and the multiplication

of cells [221]. These proteins attach to the actin and stabilise the structure of the latter,

and they are therefore called actin-binding-protein (ABP). As a reminder, actin plays

with myosin a very important role in the contracting of the muscle. We focus our at-

tention on the �lamin found in Dictyostelium discoideum (ddFLN), a species of amoeba

living in soil, commonly referred to as slime mold whose many of genes are homologous

to those of humans and share similar organisations. The ddFLN structure is also known

as gelation factor or ABP-120. Experiments were made on several domains of ddFLN,

especially on ddFLN4, the fourth domain of ddFLN, entirely composed of β-sheets [197].

When investigated through force spectroscopy, domain 4 unfolds at a lower force than all

the other domains in the Dictyostelium discoideum �lamin [222]. Therefore, it has been

selected to study the unfolding forces in terms of the pulling speed [196].

Our approach is a strong simpli�cation of the reality. To begin, our model is one-

dimensional whereas the real structure exhibits a complex three-dimensional geometry.

Moreover, since we are interested in understanding the relation between the force peak and
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Figure 6.9 � Comparison between numerical results and experimental data for the �lamin
protein. Panel a): scheme of the force spectroscopy experiment conducted on the �lamin
unit (N = 1). Image from the RCSB PDB (rcsb.org) of PDB ID 1KSR generated by
the NGL viewer with NMR data from Ref. [220]. Panel b): average force exerted on
the �lamin unit versus the prescribed device position (average curves determined over
M=2000 trajectories). Panel c): assumed bistable potential energy of the �lamin and
potential energy of the AFM device. Panel d) and e): force peak versus the applied
pulling velocity in linear scale, and in semi-log scale, respectively. In panels b), d) and e),
we adopted di�erent pulling velocities from 0.35 to 10 µm/s, coherently with experimental
data [196]. The dashed black curve in panel b) represents the force-extension response
at thermodynamic equilibrium. The curves have been obtained with ∆B = 18.2kBT ,
∆E = 4.5kBT , T = 300K, N=1, ` = 4.1nm, χ = 1.58, kF = 0.295N/m, kU = 0.059N/m,
kd = 0.00985N/m, and η variable ranging from η = 2.6m/N with ∆t = 2.6 × 10−7s for
v = 0.35 µm/s, to η = 0.09m/N with ∆t = 9.05× 10−9s for v = 10 µm/s [4].
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the pulling velocity, the important features are concentrated in the transition region of the

dynamics. It means that, for our application, the relevant parts of the potential energy are

the �rst energy well and the following energy barrier. In fact, the peak force is determined

by the barrier crossing. Since, for the sake of simplicity, we represent the potential energy

with the three parabola expression given in Eq.(6.4), we are able to correctly represent

the �rst well and the barrier and we are forced to neglect the exact geometry of the second

well. This simpli�cation should not a�ect the force-velocity relation and can be found in

Fig.6.8, where we compare the realistic and the simpli�ed potential energy. We remark

that several theoretical approximations discussed in the Introduction consider only kF

and ∆B (and kd) for estimating the force-velocity relation. It is therefore important to

remember that our model is quite accurate from the point of view of this force-velocity

relation, but it does not take into account the correct geometry as previously discussed.

The parameters used to model the �rst energy well and the barrier correspond to the

values of the recent literature, obtained by means AFM experiments (under isometric

condition) [196, 197]. Importantly, the realistic geometry of the �lamin domain has been

completely detected by using magnetic tweezers force spectroscopy (under isotensional

condition) [223, 224]. It has been clearly proved that the step size (di�erence between

the energy minima corresponding to the folded and unfolded states) is around 12-18nm

and the total contour length of the unfolded domain is around 25-30nm, as schematically

shown in Fig.6.8.

In Fig.6.9.a, one can �nd the force spectroscopy AFM con�guration applied to the

ddFLN4 domain. The structure represented in Fig.6.9.a has been generated with the

nuclear magnetic resonance (NMR) spectroscopy data reported in Ref. [220]. The com-

parison between the numerical Langevin approach and the experimental data obtained

by force spectroscopy can be found in the other panels of Fig.6.9. In Fig.6.9.c, we can

observe the potential energies of domain (simpli�ed as discussed above) and device with

intrinsic elasticity, and we can observe that the device is much softer that the protein

under investigation. From Fig.6.9.b, we deduce the shape of the force-extension curves

for case with a single unit. We remark that in these curves, the force intensity is cor-

rect but the geometry of the domain (its step size) has not been respected as discussed

above. Moreover, we can observe that the force spectroscopy experiment is conducted

under conditions quite far from thermodynamic equilibrium. Indeed, the coloured curves

corresponding to the di�erent pulling speeds are rather far from the dashed black curve

representing the thermodynamic equilibrium. Nevertheless, we can see in Figs.6.9.d and e

that the force peaks are linearly depending on the logarithm of the applied pulling speed.
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We underline the good agreement between our numerical results based on the Langevin

equation and the experimental ones, con�rmed by the linear least squares approximation

shown in Fig.6.9.e. The important point emerging from the agreement between numerical

and experimental dynamical results is the following. When we perform an experiment at

very low pulling speed, ideally at thermodynamic equilibrium, the force-extension curve

measured depends only on the energy jump ∆E and not on the energy barrier ∆B be-

tween stable and metastable states. However, when a �nite pulling speed is applied, the

response depends also on ∆B, which governs the transition rates between the folded and

unfolded con�gurations. Then, performing experiments in the out-of-equilibrium regime

allows the indirect measurement of the energy barrier ∆B, which can be obtained by

comparing the experimental results with numerical ones. In our speci�c case, the agree-

ment has been obtained with ∆B = 18.2kBT (at room temperature), con�rming the value

reported in the literature [196, 197]. It is interesting to point out that the dynamic force

spectroscopy method may reveal important features of the energy landscape of a protein,

without the necessity to induce the chemical or thermal unfolding of the molecule.

6.4.2 Modelling the dynamic stretching of titin

Titin, also known as connectin, is the largest protein of the human body, whose role is

to assembly and stabilise the sarcomere, the unit of contraction of the muscle, composed

of three systems of �laments: actin, myosin and titin. Data of force spectroscopy show

that titin is able to store and to provide energy, mainly by folding and unfolding its

multiple immunoglobulin-like domains [226]. We especially focus our attention on domain

immunoglobulin-like 27 (I27) of the I-band of the human cardiac titin, also known as

domain I91. Each domain has 89 amino-acids and is composed of β-sheets.

As before, our analysis is strongly simpli�ed with respect to the reality. Firstly, the

model is one-dimensional as previously discussed. In addition, since we are interested in

the force-velocity relationship, we use a simpli�ed geometry, as depicted in Fig.6.8 for the

�lamin. As a matter of fact, also the energy pro�le of the titin domain is composed of a

very narrow �rst well, followed by a quite high barrier and a long smooth second well (see

Fig.7B of Ref. [198] for details). Given that we search for the force peaks as function of

the pulling velocity, we use Eq.(6.4), which allows us to correctly represent the �rst well

and the barrier, but we cannot represent the correct geometry of the second well. This

point, however, as previously discussed, should not a�ect the transition forces. While the

physical parameters of the �rst well and the barrier have been deduced from AFM exper-

iments (under isometric condition) [198,203], the complete geometrical description of the
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Figure 6.10 � Comparison between numerical results and experimental data for the titin
protein. Panel a): scheme of the force spectroscopy experiment conducted on the titin
protein (N = 8). Image from the RCSB PDB (rcsb.org) of PDB ID 1TIT generated by
the NGL viewer with NMR data from Ref. [225]. Panel b): average force exerted on
the titin molecule versus the prescribed device position (average curves determined over
M=2000 trajectories). Panel c): assumed bistable potential energy of the titin protein
and potential energy of the AFM device. Panel d) and e): mean of the N = 8 force peaks
versus the applied pulling velocity in linear scale, and in semi-log scale, respectively. In
panels b), d) and e), we adopted di�erent pulling velocities from 0.1 to 10 µm/s, coherently
with experimental data [198]. The dashed black curve in panel b) represents the force-
extension response at thermodynamic equilibrium. The curves have been obtained with
∆B = 37.5kBT , ∆E = 8.5kBT , T = 300K, N=8, ` = 0.5nm, χ = 5, kF = 9.94N/m,
kU = 3.32N/m and kd = 0.166N/m, and η variable ranging from η = 8.45 × 10−2m/N
with ∆t = 4.2 × 10−7s for v = 0.1 µm/s, to η = 8.45 × 10−4m/N with ∆t = 4.2 × 10−9s
for v = 10 µm/s [4].
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titin domain has been obtained with magnetic tweezers spectroscopy (under isotensional

condition) [227, 228]. In particular, a step size of about 10-20nm and a total contour

length of about 30nm have been measured.

Force spectroscopy experiments on mechanical unfolding of eight tethered I27 do-

mains were realised with a pulling speed varying over three orders of magnitude (from

10−2 to 101µm/s) [198,203]. The NMR spectroscopy allowed to determine the stable I27

structure, which is represented in Fig.6.10.a [225]. In Fig.6.10.b, one can �nd the force-

extension curves numerically obtained for di�erent values of the pulling velocity and with

the potential energy of protein units and device represented in Fig.6.10.c. We remember

that here, the geometry of the second well has not been respected, being the real step

size of about 10-20nm. Each curve in Fig.6.10.b has been obtained as the average value

of M = 2000 independent Langevin trajectories. As before, the black dashed curve in

Fig.6.10.b corresponds to the thermodynamic equilibrium. We remark that some parts of

the force-extensions curves are negative: this behaviour comes from the one-dimensional

geometry of the system, as discussed at the end of Section 6.3.1. Furthermore, we can

underline that the shape of the force peaks in the saw-tooth pattern is not as sharp as

observed in the experimental AFM results. This is mainly due to the fact that, in our

plot, we show the mean value of several trajectories whereas typical experimental curves

correspond to a single realisation of the process. Moreover, in our simpli�ed approach, we

have not implemented the classical worm-like chain model, which is able to correctly rep-

resent the stretching of most macromolecules and shows a sharper force-extension curve.

Indeed, in our one-dimensional chain, we only described the bistable character of the units

without introducing a speci�c persistence length. The observed force peaks are related

to the sequential unfolding of the eight titin domains. Then, in Figs.6.10.d and e, the

mean value of these eight force peaks is represented versus the pulling velocity in linear

and logarithmic scales, respectively. First of all, we observe that the good agreement

between numerical and experimental data has been obtained with ∆B = 37.5kBT , which

is the value accepted in the literature [198, 203]. Moreover, it is interesting to observe

that the relation between the mean unfolding force and the logarithm of v0 is not linear

and we can measure a deviation between the linear �tting (calculated for v0 < 1µm/s)

and the numerical and experimental data for the largest pulling velocities adopted. This

behaviour is coherent with previous investigations [34,203].
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6.5 Conclusion

We presented an approach based on the overdamped Langevin formalism able to pre-

dict the force-extension response of biological macromolecules unfolded through a force

spectroscopy device at a given pulling speed. In particular, we proposed a model able to

work in the out-of-equilibrium regime of the statistical mechanics. This model is useful

to analyse the experimental data in order to estimate the main important biological and

biochemical features of the macromolecule under investigation.

The model presented considers an arbitrary continuous bistable potential energy for

describing the units of the macromolecule. This coarse-grained description has the ad-

vantage to require less computational resources than those required by the molecular

dynamics approach. As a matter of fact, each unit is de�ned by an e�ective bistable

energy, without taking into account the complete atomistic description of the molecular

architecture. On the other hand, the continuous description of the bistable potential

energy is more complete than the simpli�ed representation based on a limited set of pa-

rameters, which is often adopted in several analytical models. In this regard, the Langevin

approach can be seen as a good compromise between methods based on molecular dy-

namics simulations and others based on analytical approximations. Its implementation

allows for considering pulling speeds ranging from the standard AFM to the HS-AFM.

We show here a good agreement between the results obtained with this approach and the

experimental data concerning the unfolding of �lamin and titin.
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Conclusions and perspectives

The work presented in this manuscript provides a detailed analysis of bistable chains

through the spin variable approach within the Gibbs and the Helmholtz ensembles.

First of all, we present the state of the art and the motivations of our studies. An overview

of the single-molecule force spectroscopy techniques is exposed. We also introduce descrip-

tions of the most important macromolecules, such as DNA, RNA or again proteins. We

demonstrate why it is important to study the structures with bistability.

The thermodynamics of small systems is discussed in Chapter 2, allowing to introduce

both the Gibbs and the Helmholtz ensembles of the statistical mechanics. On the one

hand, the Gibbs ensemble is referred to as the isotensional condition, i.e. a force is applied

to �x the second end of the chain. On the other hand, the Helmoltz ensemble is referred

to as the isometric condition, i.e. the position of the second end is prescribed to �x

the chain. This discussion allows to de�nitely test and verify the statistical mechanics

of small systems. Then, a detailed presentation of the spin variable approach, used in

Chapters 3, 4 and 5, is given. Finally, we provide in detail the full statistics of conjugated

thermodynamic ensembles in bistable chains, enabling to consider not only the average

values, but also the complete probability densities of the �uctuating variables.

The Chapter 3 provides the �rst development of the existing spin variable method.

It enables to consider the extensibility of the bonds between the bistable units. Taking

account of extensibility is necessary since the �nite elastic constant of these bonds plays

a major role in the de�nition of the force-extension response, within both the isotensional

and isometric ensembles. A detailed analysis of a two-state extensible freely jointed chain

model is proposed. We obtained the exact Gibbs partition function by introducing an

approximation considering relatively high values of the elastic constant, coherently with

real macromolecules. As the Helmholtz partition function cannot be directly factorised

due to the implicit interaction induced by the isometric condition, it is calculated through

the Laplace transform of the Gibbs partition function, eventually obtaining its closed form

in terms of the Hermite elements with a negative index.
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The Chapter 4 deals with the existing interactions among the units, with the help

of the Ising scheme. We investigate the behaviour of a chain of two-state units coupled

through an Ising interaction scheme. The coe�cient λ, representing the Ising interaction

coe�cient in the �nal partition functions provides a description of the e�ects of bistability

and cooperativity in biological and arti�cial micro- and nano-systems. We consider the

case of a positive interaction when λ > 0, which can be associated to a ferromagnetic-like

interaction, i.e. the unfolding a unit favours the unfolding of adjacent units. Conversely,

we also consider the case of a negative interaction when λ < 0, which can be associated

to an anti-ferromagnetic-like interaction, i.e. the folding of a unit prevents adjacent

units from unfolding. The interactions in the Gibbs partition function are studied in the

model with the help of the transfer matrix technique. Then, the Helmholtz partition

function is elaborated from the Gibbs partition function with the help of the Laplace

transform. We �rstly study the model far from the thermodynamic limit. In addition,

we propose results exploring asymptotic cases, such as weak and strong Ising interactions

(for both ferromagnetic-like and anti-ferromagneticlike schemes). We also provide the

study of bistable chains with Ising interactions at the thermodynamic limit within the

Gibbs ensemble. Finally, we generalise the theory for both extensible bonds and Ising

interactions.

The Chapter 5 provides the last development, performed at the thermodynamic equi-

librium, for a one-dimensional bistable chain through the spin variables method. The

heterogeneity is introduced within the energetic levels. The Helmholtz partition function

is obtained in closed form thanks to the Laplace transform and the determinant form of

the so-called Newton-Girard formulae. The heterogeneity of energetic levels of two-state

units allows to obtain the important unfolding sequence of the bistable chain, i.e. the so-

called unfolding pathway. Indeed, introducing various energetic levels of the units breaks

the symmetry and creates an inequality among the unfolding probabilities. Therefore, at

each switching occurence, once the heterogeneity introduced, the probability of unfolding

one given unit tends to 1, whereas the probability of the others tends to 0. It means that

the system implements a statistical sorting procedure. Eventually, the concept is iden-

ti�ability is proposed, to measure the capability to identify the most probable unfolding

pathway.

Finally, the Chapter 6 considers the case of an out-of-equilibrium bistable chain. In-

deed, it has been proved that the pulling speed exerts an in�uence on the amplitude of the

force peaks measured during stretching experiments on macromolecules. The presented
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approach is based on the Langevin formalism, allowing to predict the force-extension re-

sponse of biological macromolecules unfolded through a force spectroscopy device at a

given pulling speed. The units of the macromolecule are described by an arbitrary con-

tinuous bistable potential. The Langevin approach can be seen as a good compromise

between methods based on molecular dynamics simulations and others based on analytical

approximations, in order to consider a wider range of pulling speeds (from standard to

high-speed AFM). Finally, we show a good agreement between the results obtained with

this approach and the experimental data concerning the unfolding of �lamin and titin.

The models introduced in this thesis are rather simple and paradigmatic, i.e. in-

troduced to study the e�ect of a single chain property to the �nal thermodynamic and

mechanical response. This choice permits to better discuss the theoretical origin of the

speci�c features of the force-extension curves observed in the di�erent situations and their

statistical character. Nevertheless, the models can be further improved to take into ac-

count other relevant physical and geometrical features. For instance, concerning the appli-

cation to macromolecules, the following generalisations can be considered: the dynamical

approach (out-of-equilibrium) should be applied to the case with Ising interactions; the

study of the heterogeneity should be generalised to deal with three-dimensional bistable

freely jointed chains (also with extensibility); the Ising interaction scheme could be gener-

alised to the case where the interactions are not only between neighbouring domains but

also long-range to better describe globular proteins and more complex system. Moreover,

recent works have provided evidence that the traction velocity applied to the chain with

a hard device plays an important role in de�ning the unfolding pathway [152, 229�231].

Therefore, it is important to fully analyse the interplay between the distribution of en-

ergy jumps and the applied traction velocity on the unfolding pathway. To do this, the

Langevin methodology could be combined with the spin variables technique in order to

fully describe the dynamics of the system.

In addition to the applications discussed in the present thesis, force spectroscopy allows

the study of many di�erent problems including, e.g., mechanical resistance of chemical

bonds. In this case, the force at which the bond breaks up can be directly measured [232].

Further, it is possible to map the energy landscape of the chemical bond under mechanical

force [233]. This is very important to investigate the antibody-antigen bond, and the

protein-protein or protein-living cell interactions [234]. Moreover, the adhesion of cells

on tissues or substrates is an interesting similar �eld of research concerning the so-called

Focal Adhesions, which are large macromolecular assemblies through which mechanical

forces are transmitted between the extracellular matrix and cells [235�237] (see Fig.7.1).
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Figure 7.1 � Coarse-grained model for the mechanical response of the Focal Adhesions
(FA). Left panel: schematic of a cell adhered to �brous Extra Cellular Matrix (ECM).
The FA are formed at the periphery of the cell. Right panel: schematic of a coarse-
grained model: stress �bers connect the FA and the nucleus. The FA is connected to
ECM through an integrin layer whose density is correlated with the �ber density under
the cell [238].

Also these problems can be approached with the statistical mechanics methodologies

introduced in this thesis.

On the other hand, in mechanics of materials, and more generally in material science,

similar behaviours have been observed in di�erent situations. First of all, in the plastic

behaviour of materials, each single plastic event can be explained through an instability,

which is able to switch the system from a ground state to a permanently deformed or

metastable state. These forms of micro-instabilities can be seen in di�erent shapes of

the force-extension (or stress-strain) response of plastic materials. For example, Lüders

bands are localised bands of plastic deformation observed in metals experiencing tensile

stresses, which usually starts at one end of the specimen and propagates toward the other

one [239]. During the bands propagation, the stress-strain curve is quite �at with some

�uctuations due to the internal microinstabilities (see Fig.7.2, left). Another example is

given by the Portevin-Le Chatelier e�ect, which can be observed as an unstable plastic

�ow during tensile tests of some dilute alloys (under certain regimes of strain rate and

temperature) [240]. In this case, a series of peaks can be seen in a region with a positive

slope of the stress-strain curve. These peaks represent the sequence of instabilities of the

plastic phenomenon (see Fig.7.2, center). Other manifestations of discontinuous defor-

mation are staircase creep and the Savart�Masson e�ect. They imply the formation of

steps on loading curves with a constant stress rate in a soft testing machine (see Fig.7.2,

right). There are relatively few studies on the Savart�Masson e�ect [241], although it was

discovered long before the Portevin-Le Chatelier e�ect.

Another important situation where the micro-instabilities between two states play a

central role is the adhesion of �lms and their peeling from a substrate [243] (see Fig.7.3,
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Figure 7.2 � Three examples of stress strain curves of materials showing the Lüders bands
in the �rst case, the Portevin�Le Chatelier e�ect in the second case and the Savart�Masson
e�ect in the third one. In all these phenomena, we have a series of micro-instabilities
generating the plastic behaviour [239,241,242].

Figure 7.3 � Microinstabilities in the peeling process (left) and in the crack propagation
(right) [243,244].

left). In this context, one idea to improve and tailor the adhesion properties of arti�cial

materials is to use bioinspired geometries and mechanisms [244]. The combination of

thermal �uctuation and micro-instabilities is also at the origin of the fracture phenomena

in materials. If we think to a crystalline material, the propagation of a crack front must

be identi�ed by the gradual breaking of the atomic interactions along a line of the crystal

structure (see Fig.7.3, right). Therefore, each single crack propagation step is a form

of instability, which can be de�ned by assuming a maximum length of the interatomic

distance before rupture. Of course, the thermal �uctuations modify the crack propagation,

fostering the breaking of the interatomic bonds. In some cases, the temperature e�ects

can cause the crack generation and therefore we say that we have a thermally activated

crack propagation [245,246].

The observed similarities between the problems concerning micro-instabilities in bio-

physics and material science is of great importance, not only from the cultural point of

view, but also for the possibility to adopt the same techniques to approach very di�erent

themes. Indeed, the common denominator in all these examples, from both biophysics and
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material science, is that some units of the system under investigation exhibit a two-state

or multi-state character. In particular, we can identify two classes of micro-instabilities.

On the one side, we can have a bistable (or multistable) behaviour between one ground

state and one (or more) metastable state. These admitted states represent di�erent con-

formations or con�gurations of the intact yet deformable system units. For instance, this

scheme corresponds to conformational transitions in macromolecules, as studied in this

thesis, or plastic transformations in solids. On the other side, we can also have transitions

between the broken or unbroken states of some breakable units of the system. In this case,

the system unit can switch from the intact condition to the damaged condition, and this

process can be reversible or not depending on the speci�c situation. Examples of this

scheme include deadhesion of cells, peeling of �lms or crack propagation.

To better appreciate the real di�erence between these two classes of micro-instabilities,

we can �nd in Fig.7.4 the potential energy U(x) describing the units behaviour in both

cases (we consider a one-dimensional geometry for the sake of simplicity). In the �rst case

(Fig.7.4.a), we have an elastic unit with two con�gurations (folded and unfolded) corre-

sponding to the two wells of the potential energy, having di�erent equilibrium lengths

and elastic constants. In the second case (Fig.7.4.b), we have a breakable mechanical
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and the Gibbs b) ensembles. While in the �rst case, we prescribe the position of the
last unit and we measure the average force 〈r〉, in the second case, we apply a force
f and we measure the average position of the last unit. In both cases, we consider ξ
unbroken vertical springs and N − ξ broken vertical springs. The energy potentials ϕ and
Ψ correspond to the horizontal and the vertical springs, respectively.

unit with the unbroken con�guration corresponding to the potential well, and the broken

con�guration corresponding to horizontal portion of the curve. Indeed, in this region the

exerted force is zero, which means that we are in the broken state of the unit. Peyrard,

Bishop and Dauxois have extensively studied the damage process between the intact (un-

broken) and damaged (broken) states. The adhesion-deadhesion model has been inspired

by their PBD model of DNA denaturation [247�250]. The method of the "spin variables"

discussed in this thesis has been largely adopted to model units with transitions between

ground and metastable states (see Fig.7.4.a). However, the case of units undergoing dam-

age processes between unbroken and broken states (Fig.7.4.b) must be further examined

and can be investigated by the same approach. As a matter of fact, the thermal e�ects

on the damage processes are still far from being fully understood. Therefore, an impor-

tant perspective of the spin variable approach is the analysis of the cohesion-decohesion

processes for complex systems, with the crucial e�ect of the temperature.

To do this, we can imagine a paradigmatic system representing the adhesion-deadhesion

of a �lm from a substrate. This basic system that may be approached is shown in Fig.7.5,

where one can �nd the �lm represented by the horizontal mass-spring chain, and grounded

to the substrate through a series of breakable springs. This con�guration mimics adhesion,

cohesion, and the rupture phenomena in general. The system is embedded in a thermal

bath to consider the thermal �uctuations and their e�ects on the adhesion mechanism.

This point makes the model well adapted to represent adhesion of cells, unzipping of hair-

pins, denaturation of DNA and other macromolecules, peeling of �lms from a substrate,
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fracture propagation in solids, rupture phenomena and so on.

In this scheme, the vertical breakable elements remain intact if the extension is lower

than a given threshold and become broken if the extension is larger than the same thresh-

old. With this de�nition, we can study the adhesion process with an external mechanical

action. The spin variables method allows for describing the system response, at a �xed

temperature, within the two di�erent statistical ensembles. A further envisaged gener-

alisation concern the model shown in Fig.7.5. Here, we can �nd the same geometry of

Fig.7.4 with however a di�erent behaviour in the response of the breakable elements.

Indeed, their response is represented in Fig.7.5.d, where potential energy and force are

plotted. At a given applied extension ±yp (points A or B), we can observe a softening

mechanism, which produces a change of the elastic constant from he to hp with hp < he.

Then, when the extension increases to an even larger value ±yb, we have the complete

breaking of the elements (points C or D).

This scheme perfectly reproduces a biological situation corresponding to the so-called

sacri�cial bond [251]. Sacri�cial bonds are de�ned as bonds that break before the main

structural link (often the molecular backbone) is broken, thus producing a change in the

e�ective elastic constant. These bonds are frequently weaker than the covalent bond of

molecular backbones. Sacri�cial bonds in structural molecules and composites have been

found to greatly increase the fracture toughness of biomaterials by providing a reversible,

molecular-scale energy-dissipation mechanism. In many biological cases, the breaking of

sacri�cial bonds has been found to be reversible, thereby additionally providing a "self-

healing" property to the material. Due to the nanoscopic nature of this mechanism,

single-molecule force spectroscopy using an atomic force microscope has been a useful

tool to investigate this mechanism.

Also in material science, the softening mechanism is relevant to describe the strength

of materials as a function of the temperature. Indeed, in many crystalline materials,

the failure is obtained through the propagation of the crack in correspondence of the

application of the material strength. For higher values of the temperature, however, the

crack propagation occurs after the generation of a population of dislocations (thermally

activated), which are able to reduce the elastic moduli of the material [252]. Then, the

proposed model is relevant to study the strength of materials at high temperature values.

224



k
k k k k k

k
k

k

k

0 1 2 NN−1... ...

y

k
k k k k k

k
k

k

k

0 1 2 NN−1... ...

y

“Helmholtz” “Gibbs”

prescribed position yN+1

measured force 〈f〉 measured 〈yN+1〉

applied force fa) b)

0 0−yp +yp

W U

yi+1 yi− yi

k he

{{

hp

∆E

+yb−yb

0−yp

+yp

∂U
∂yi

yi

he

hp

+yb

−yb0

∂W
∂(yi+1−yi)

yi+1− yi

k

c) d)

AB

CD

Figure 7.6 � Scheme of the cohesion-decohesion process within both the Helmholtz a)
and the Gibbs b) ensembles. While in the �rst case, we prescribe the position of the last
unit of the chain and we measure the average force 〈f〉, in the second case, we apply a
force f and we measure the average position. In both cases, we consider a linear elastic
behaviour for the horizontal springs c) and a breakable response with softening mechanism
d) for the vertical elements. Coherently, the energy potentials W and U correspond to
the horizontal and the vertical springs, respectively.
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Statistical mechanics and thermodynamics of systems with conformational transi-

tions: applications to biological macromolecules

The thermo-elastic behaviour of biological macromolecules, such as DNA and proteins, is addressed

in a wide �eld of studies, with plenty of theoretical and practical applications. Mathematical modelling

of the macromolecules' response to deformation and to thermal �uctuations allows the validation of the

statistical mechanics of small systems, through the comparison with experimental results obtained by

force spectroscopy, thus providing information on the static and dynamic responses induced by applied

forces. These analyses are even more important for bistable macromolecules with conformational

transitions, corresponding to folding/unfolding processes between two stable positions. In order to

obtain analytically the force-deformation response of a chain composed of bistable units, it is necessary

to calculate the partition functions, which are essential objects of the statistical mechanics. Thus,

the bistable potential energy is decomposed into two parabolas, both corresponding to the folded

and unfolded states and identi�ed using the spin variables technique, largely used throughout the

manuscript. The �rst part of this thesis concerns the extensibility of the bonds between the bistable

units of a chain. The second part allows us to consider the interactions between the bistable units of

a chain, thanks to the Ising model. The third part deals with heterogeneity, an important parameter

to determine the unfolding sequence in proteins unfolding. Finally, in the last part, the dynamics of

deformation is described.

Keywords thermomechanics of macromolecules, statistical mechanics, chains of bistable units, sta-

tistical ensembles of Gibbs and Helmholtz, models for single-molecule force spectroscopy

Mécanique statistique et thermodynamique des systèmes avec transitions confor-

mationnelles : applications aux macromolécules biologiques

Le comportement thermoélastique des macromolécules biologiques, telles que l'ADN et les pro-

téines, est abordé dans un vaste champ d'études, aux nombreuses applications théoriques et pratiques.

La modélisation mathématique de la réponse des macromolécules à la déformation et aux �uctuations

thermiques permet de tester la validité de la mécanique statistique des petits systèmes, grâce à la

comparaison avec les résultats expérimentaux obtenus par la spectroscopie de force, qui fournit des

informations sur les réponses statiques et dynamiques induites par les forces appliquées. Ces analyses

sont encore plus importantes pour les macromolécules bistables présentant des transitions conforma-

tionnelles, correspondant à des processus de pliage/dépliage entre deux positions stables. Pour obtenir

analytiquement la réponse force-déformation d'une chaîne composée d'unités bistables, il est nécessaire

de calculer les fonctions de partition, essentielles en mécanique statistique. Ainsi, l'énergie potentielle

bistable est décomposée en deux paraboles, correspondant l'une et l'autre aux états plié et déplié et

identi�ées grâce à la technique des variables de spin, utilisée tout au long du manuscrit. La première

partie de cette thèse concerne l'extensibilité des liens entre les unités bistables d'une chaîne. La seconde

partie permet, quant à elle, de considérer les interactions entre les unités bistables d'une chaîne, grâce

au modèle d'Ising. Dans la troisième partie, il est question de l'hétérogénéité, paramètre important

pour déterminer la séquence de dépliage dans le repliement des protéines. En�n, dans la dernière

partie, la dynamique de la déformation est décrite.

Mots-clés thermomécanique des macromolécules, mécanique statistique, chaînes d'unités bistables,

ensembles statistiques de Gibbs et Helmholtz, modèles pour la spectroscopie de force à molécule unique


	Acknowledgments
	Résumé
	Publications
	State of the art and motivations
	Why nanomechanics of macromolecules?
	Structural stability of proteins
	Dynamics of macromolecules
	Thermodynamics of small systems
	Mechanical consequences on health

	Single-molecule force spectroscopy
	Conventional and high-speed atomic force microscope
	Magnetic tweezers
	Optical tweezers
	MEMS

	DNA, RNA and models
	DNA and RNA
	Freely jointed chain model and worm-like chain model

	Proteins
	Structures with bistability
	Motivations and goals

	Introduction to the thermodynamics of small systems and the spin variable method
	Thermodynamics of small systems
	Introduction
	Thermodynamics of chains with conformational transitions

	Applications of the spin variable method
	One dimensional system
	The Gibbs ensemble
	The Helmholtz ensemble

	Bistable freely jointed chain
	The Gibbs ensemble
	The Helmholtz ensemble


	Full statistics of conjugated thermodynamic ensembles in chains of two-state units
	Configurational partition functions and force-extension relations in the Gibbs and the Helmholtz ensembles
	Complete probability densities in the Gibbs and the Helmholtz ensembles
	Probability density of the couple (N,xN) versus f within the Gibbs ensemble
	Probability density of the couple (,f) versus xN within the Helmholtz ensemble
	Final comparison


	Extensible two-state freely jointed chain
	Introduction
	Two-state freely jointed chain with extensible units: the Gibbs ensemble
	Two-state freely jointed chain with extensible units: the Helmholtz ensemble
	An integral calculation
	The Hermite elements with negative index
	The partition function and related results

	Conclusion

	Two-state freely jointed chain with Ising interactions
	Introduction
	Example of biological cooperativity
	Two-state freely jointed chain with Ising interactions: the Gibbs ensemble
	Two-state freely jointed chain with Ising interactions: the Helmholtz ensemble
	Explicit expression for the Helmholtz response under weak Ising interaction: || kBT
	Explicit expression for the Helmholtz response under strong Ising ferromagnetic interaction: kBT
	Explicit expression for the Helmholtz response under strong Ising anti-ferromagnetic interaction: -kBT
	The thermodynamic limit
	Ising interactions coupled with extensible units
	Conclusion

	Two-state heterogeneous chains
	Introduction
	Examples of unfolding pathway
	Two-state heterogeneous one-dimensional system
	The Gibbs ensemble
	The Helmholtz ensemble

	Unfolding pathway identifiability
	Conclusion

	Pulling speed dependence of the force-extension response of bistable chains
	Introduction
	Out-of-equilibrium statistical mechanics through the Langevin approach
	Analytical and numerical results
	Device without intrinsic elasticity
	Device with intrinsic elasticity

	Theory meets experiments
	Modelling the dynamic stretching of filamin
	Modelling the dynamic stretching of titin

	Conclusion

	Conclusions and perspectives
	Bibliography

