
HAL Id: tel-03189384
https://theses.hal.science/tel-03189384

Submitted on 3 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discrete determinantal point processes and their
application to image processing

Claire Launay

To cite this version:
Claire Launay. Discrete determinantal point processes and their application to image processing.
Probability [math.PR]. Université Paris Cité, 2020. English. �NNT : 2020UNIP7034�. �tel-03189384�

https://theses.hal.science/tel-03189384
https://hal.archives-ouvertes.fr


Université de Paris

Laboratoire MAP5 (CNRS UMR 8145)

École doctorale 386 : Sciences Mathématiques de Paris Centre

THÈSE

présentée par

Claire Launay

pour obtenir le grade de

docteure d'Université de Paris

Spécialité : Mathématiques Appliquées

Processus ponctuels déterminantaux discrets et

leur application au traitement des images

Soutenue le 22 juin 2020 devant un jury composé de

Pierre Chainais Ecole Centrale de Lille Rapporteur
Marianne Clausel Université de Lorraine Examinatrice
Agnès Desolneux CNRS, ENS Paris Saclay Directrice de thèse
Anne Estrade Université de Paris Présidente du jury
Bruno Galerne Université d'Orléans Directeur de thèse
Frédéric Lavancier Université de Nantes Rapporteur





Résumé

Les processus ponctuels déterminantaux (Determinantal Point Processes
ou DPP en anglais) sont des modèles probabilistes qui modélisent les corréla-
tions négatives ou la répulsion à l'intérieur d'un ensemble d'éléments. Ils ont
tendance à générer des sous-ensembles d'éléments diversi�és ou éloignés les
uns des autres. Cette notion de similarité ou de proximité entre les points
de l'ensemble est dé�nie et conservée dans le noyau associé à chaque DPP.
Cette thèse étudie ces modèles dans un cadre discret, dé�nis dans un ensemble
discret et �ni d'éléments. Nous nous sommes intéressés à leur application à
des questions de traitement d'images, lorsque l'ensemble de points de départ
correspond aux pixels ou aux patchs d'une image. Les Chapitres 1 et 2 intro-
duisent les processus ponctuels déterminantaux dans un cadre discret général,
leurs propriétés principales et les algorithmes régulièrement utilisés pour les
échantillonner, c'est-à-dire pour sélectionner un sous-ensemble de points dis-
tribué selon le DPP choisi. Dans ce cadre, le noyau d'un DPP est une matrice.
L'algorithme le plus utilisé est un algorithme spectral qui repose sur le calcul
des valeurs propres et des vecteurs propres du noyau du DPP. Dans le Chapitre
2, nous présentons un algorithme d'échantillonnage qui repose sur une procé-
dure de thinning (ou amincissement) et sur une décomposition de Cholesky
mais qui n'a pas besoin de la décomposition spectrale du noyau. Cet algorithme
est exact et, sous certaines conditions, compétitif avec l'algorithme spectral.
Le Chapitre 3 présente les DPP dé�nis sur l'ensemble des pixels d'une image,
appelés processus pixelliques déterminantaux (Determinantal Pixel Processes
ou DPixP en anglais). Ce nouveau cadre impose des hypothèses de périodicité
et de stationnarité qui ont des conséquences sur le noyau du processus et sur les
propriétés de répulsion générée par ce noyau. Nous étudions aussi ce modèle
appliqué à la synthèse de textures gaussiennes, grâce à l'utilisation de modèles
shot noise. Nous nous intéressons également à l'estimation du noyau de DPixP
à partir d'un ou plusieurs échantillons. Le Chapitre 4 explore les processus
ponctuels déterminantaux dé�nis sur l'ensemble des patchs d'une image, c'est-
à-dire la famille des sous-images carrées d'une taille donnée dans une image.
L'objectif est de sélectionner une proportion de ces patchs, su�samment di-
versi�ée pour être représentative de l'information contenue dans l'image. Une
telle sélection peut permettre d'accélérer certains algorithmes de traitements
d'images basés sur les patchs, voire d'améliorer la qualité d'algorithmes exis-
tants ayant besoin d'un sous-échantillonnage des patchs. Nous présentons une
application de cette question à un algorithme de synthèse de textures.

Mots clés: Processus ponctuels déterminantaux, échantillonnage, pixels,
modèles shot noise, inférence, textures, patchs.



Abstract

Determinantal point processes (DPPs in short) are probabilistic models
that capture negative correlations or repulsion within a set of elements. They
tend to generate diverse or distant subsets of elements. This notion of similar-
ity or proximity between elements is de�ned and stored in the kernel associ-
ated with each DPP. This thesis studies these models in a discrete framework,
de�ned on a discrete and �nite set of elements. We are interested in their ap-
plication to image processing, when the initial set of points corresponds to the
pixels or the patches of an image. Chapter 1 and 2 introduce determinantal
point processes in a general discrete framework, their main properties and the
algorithms usually used to sample them, i.e. used to select a subset of points
distributed according to the chosen DPP. In this framework, the kernel of a
DPP is a matrix. The main algorithm is a spectral algorithm based on the
computation of the eigenvalues and the eigenvectors of the DPP kernel. In
Chapter 2, we present a sampling algorithm based on a thinning procedure
and a Cholesky decomposition but which does not require the spectral decom-
position of the kernel. This algorithm is exact and, under certain conditions,
competitive with the spectral algorithm. Chapter 3 studies DPPs de�ned over
all the pixels of an image, called Determinantal Pixel Processes (DPixPs). This
new framework imposes periodicity and stationarity assumptions that have
consequences on the kernel of the process and on properties of the repulsion
generated by this kernel. We study this model applied to Gaussian textures
synthesis, using shot noise models. In this chapter, we are also interested in
the estimation of the DPixP kernel from one or several samples. Chapter 4
explores DPPs de�ned on the set of patches of an image, that is the family of
small square images contained in the image. The aim is to select a proportion
of these patches, diverse enough to be representative of the information con-
tained in the image. Such a selection can speed up certain patch-based image
processing algorithms, or even improve the quality of existing algorithms that
require patch subsampling. We present an application of this question to a
texture synthesis algorithm.

Keywords: Determinantal point processes, sampling, pixels, shot noise
models, inference, textures, patches.
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Notations

� Y is the underlying space on which is de�ned the point processes.

� Y and X denote given point processes.

� ρ is the intensity of a point process. It is a function de�ned on Y and
if x ∈ Y , ρ(x) = P(x ∈ Y ). If the point process is homogeneous, ρ is a
constant.

� |.| de�ned on the set of subsets of Y is the cardinality of the subset: it
counts the number of elements contained in the subset. |.| applied to a
point of Y or to a vector denotes its modulus.

� MN(C) is the set of matrices of size N ×N , with complex coe�cients.

� M is the complex conjugate matrix of the matrix M .

� M∗ is the conjugate transpose of the matrix M , M∗ = M
t
.

� Similarly, v is the complex conjugate vector of the vector v and v∗ is the
conjugate transpose of v.

� MA×B denote for all subset A and B of Y the matrix (M(x, y))(x,y)∈A×B
and MA = MA×A.

� Ac is the complement of A in Y if A is a subset of Y .

� IA is the matrix whose diagonal coe�cients indexed by the elements of
A are equal to 1 and whose other coe�cients are zero.

� det(M) is the determinant of the square matrix M .

� Tr(M) is the trace of the matrix M , that is the sum of its diagonal
elements.

� rank(M) is the rank of the matrix M .

� λmax is the maximum eigenvalue of a given matrix.
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� M � 0 means that the eigenvalues of M are bounded below by zero. On
the contrary, M � I means that they are bounded above by one.

� K denotes for the (marginal) kernel of determinantal point processes, it is
a positive semide�nite Hermitian matrix, whose eigenvalues are bounded
above by one.

� L denotes a positive semi-de�nite matrix that can de�ne a L-ensemble.

� 〈., .〉 is the canonical scalar product on a Euclidean space, ‖.‖ is the
associated norm.

� v1:k denotes the vector (v1, . . . , vk), for a given k > 0. In particular, 01:k

is the null vector of size k.

� Ω is the image domain: a 2-dimensional discrete grid. If Ω is of size
N1×N2, then we consider Ω = {0, ..., N1−1}×{0, ..., N2−1} ⊂ Z2. Note
that the functions de�ned on Ω can be extended to Z2 by periodicity.

� u : Ω→ Rd is the image de�ned on Ω with d color channels.

� τyu is the translation of the image u by the vector y.

� Ω̂ is the Fourier domain associated to Ω. For instance, if N1 and N2 are
even, Ω̂ =

{
−N1

2
, . . . , N1

2
− 1
}
×
{
−N2

2
, . . . , N2

2
− 1
}
.

� Ω∗ denotes Ω \ {0}, the image domain minus the origin.

� f̂ = F(f) is the discrete Fourier transform of the function f : Ω → C.
F−1(f̂) is the inverse Fourier transform of f̂ .

� f−, given a function f : Ω → C, is the function de�ned for x ∈ Ω by
f−(x) = f(−x).

� f ∗ g denotes the convolution operation of the function f and g.

� Rg : Ω→ C denotes the autocorrelation of the function g.

� S is the shot noise random �eld based on a point process X and a spot
function g, both de�ned on Ω.

� Ber(p) is a Bernoulli variable with parameter p.

� N (m,Σ) is the Gaussian distribution with meanm and covariance matrix
Σ.

� T2 is the torus of dimension two.
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� `2(Z2) is the set of functions f de�ned on Z2 such that

‖f‖2
2 =

∑
x∈Z2

‖f(x)‖2 <∞.

� L2(T2) is the set of functions f de�ned on T2 such that

‖f‖2
2 =

∫
x∈T2

|f(x)|2dx <∞.

� DN ⊂MN(C) is the set of diagonal matrices of size N ×N such that its
coe�cients are of modulus one.

� Ĉn is the set of function Ĉ de�ned on Ω̂ whose inverse Fourier transform
is an admissible DPixP kernel function, that is

{Ĉ ∈ RN such that
∑
ξ∈Ω̂

Ĉ(ξ) = n and ∀ ξ ∈ Ω̂, 0 ≤ Ĉ(ξ) ≤ 1}.

� proj denotes the algorithm that projects a function de�ned on Ω̂ on the
set Ĉn.

� P = {Pi, i = 1, . . . , N}, the set of patches of size (2ρ+ 1)× (2ρ+ 1)× d
of the image u, given a ρ ∈ N.

� P is the matrix gathering all the patches of the image, of size N×d(2ρ+
1)2, with N = N1 ×N2.

� ū, given an image u, is the mean image 1
|Ω|
∑
u(x) and tu is the normal-

ized version of the image u: tu = 1√
|Ω|

(u− ū)1Ω.

� Ω`, given ` = 0, . . . , L − 1 is the coarser image domain Ω ∩ 2`Z2 and u`

is the subsampled version of u on Ω`.

� W 2
2 (µ, ν) is the L2-Wasserstein distance between the probability distri-

butions µ and ν such that

W 2
2 (µ, ν) = inf

(πi,j)

∑
i,j

πi,j‖yi − xj‖2.
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In this thesis, we are interested in the study of speci�c random point processes,
called determinantal point processes (DPPs in short). They allow to model
the repulsive nature of certain sets of points. These point processes capture
negative correlations in the sense that the more similar two points are, the
less likely they are sampled simultaneously: they tend to generate sets of
points that are diverse or distant from each other. The purpose of this work
was to apply DPPs to image processing. We have chosen two axes to realize
this study: a de�nition on the set of pixels and a de�nition on the set of
patches of an image. First, point processes de�ned on pixels are often used
in image processing, for instance in order to synthesize textures, using shot
noise models based on Poisson point processes [130, 48]. Due to their repulsive
nature, DPPs provide an attractive alternative for these applications. We
are hoping that, compared to a Poisson shot noise model, a shot noise model
based on a DPP would be less a�ected by the averaging of the spot function.
Second, this repulsive nature and their easy adaptability make them a useful
tool to subsample sets of data, such as the patches of an image. Given the
huge dimension of images, this set is very large and such selection is regularly
needed in patch-based algorithms. In general, these strategies use a uniform
random selection, which is easy to implement and fast, but DPPs o�er the
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opportunity to improve this selection and thus to improve the patch-based
algorithm.

1.1 Discrete Point Processes

Some of the �rst studies of spatial statistics and random point processes were
done to answer physics and astronomy questions, as for instance, in 1860, to
know the probability that a certain number of stars lies in a given square
[59], assuming that the stars are randomly and uniformly distributed in the
sky. Since then, random point processes have emerged as powerful tools for
modeling natural phenomena, such as monitoring a population [104], plant
locations [47], or neural spiking activity [127]. Figure 1.1 displays the locations
of 126 pine trees in a forest [10]. Because they need to share light and nutrients,
trees often tend to be spaced from each other in a forest and thus to be modeled
by repulsive point processes.

−0.1395106 1.995128 0 1.20 4.733037 1.268212 2 

1
2

3
4

5

V1

V
2

Figure 1.1: Locations of trees in a forest. These data come from the R library
called �spatstat�.

A second use of point processes has recently gained in�uence as the number
and size of data to be handle and analyze has increased: random subset selec-
tions. In that case, the aim of the point process is not to represent an existing
phenomenon anymore but to randomly choose a small proportion of elements
in an initial set. Applications are numerous, such as documents summariza-
tion [69] or recommendation systems [53]. These random selections are often
able to provide results while the optimal selection is intractable, and they tend
to produce di�erent subsets at each trial. Furthermore, if the set of data to
handle is huge, evaluating a function on it may be impossible. The solution
can be to subsample the set of data using a point process to compute statistics
on a large population [126, 93] or to estimate the empirical distribution of a
large set of data [52]. On the other hand, if the dimension of the data is too
high, a solution can be random features selection [17] or in another domain,
stochastic sampling [31]. Indeed, in computer graphics, if a scene needs to
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be subsampled, a random selection of points will provide perceptually better
results and avoid aliasing compared to a subsampling on a regular grid.

At last, random selection using point processes has the major advantage of
being �exible and easily adaptable depending on the data to handle and the
desired selection, as a wide variety of models can be used.

Random point processes

Given a space Y , a point process is a probability measure de�ned on the set of
all subsets of Y . It can be seen as a random countable subset Y ⊂ Y , whose
elements are called points. Its size, that is the number of points it contains,
is called its cardinality and it is itself random. In this thesis, we will consider
discrete point processes, meaning that the space Y on which is de�ned the
point process is discrete and �nite (except in the subsection 3.3.3, where we
will study a point process de�ned on Z2). When considering these general
settings, the space Y will be called the state space, the dataset or the ground
set. Assuming it contains N elements, it will be denoted by Y = {1, . . . , N},
identifying its elements with their index.

Such point processes can be characterized by their marginal probabilities of
inclusion P(A ⊂ Y ), which are the inclusion probabilities of any subset A ⊂ Y .
In the general continuous case, for instance when A contains n points, this
quantity is called the n-th order product density function or the n-correlation
function [85]. These probabilities give the correlations between the points of
the state space.

These marginal probabilities of inclusion also provide various statistics to
describe the point process. The intensity function gives the probability for the
occurrence of any point of Y . It is de�ned for all x ∈ Y by ρ(x) = P(x ∈ Y ).
If the intensity is constant, the point process is called homogeneous or �rst
order stationary. A second statistic describes the interactions between pairs of
points, it is called the pair correlation function. It is often denoted by g and
it is de�ned, for all x, y ∈ Y , by

g(x, y) =
P({x, y} ⊂ Y )

P(x ∈ Y )P(y ∈ Y )
. (1.1)

This quantity is often used to describe local behaviours of attraction or repul-
sion. A point process is said simple if all the points of the process are almost
surely distinct, meaning that an element of Y has a zero probability to be
selected twice in a realization. In that case, one can associate the subset Y
with the vector of size N with ones in the places of the elements of Y and
zeros elsewhere. As we consider point processes as random subsets Y ⊂ Y , all
point processes are implicitly simple in this thesis.
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Di�erent classes of point processes

As we have seen, the chosen model must be adapted to the dataset: the char-
acteristics of the data, the natural phenomenon they can be related to and the
goal of the analysis. We propose here to brie�y and non-exhaustively review
several classes of common point processes.

Bernoulli Point Processes
The discrete counterpart of a Poisson point process is called a Bernoulli

point process. As Poisson point processes, Bernoulli point processes correspond
to models without any interaction or of �complete spatial randomness� [101].
Indeed, given ρ : Y → [0, 1] an intensity function, the elements of the set Y
are selected independently, each element x ∈ Y with probability ρ(x). For Y
a Bernoulli point process, with intensity ρ, we have

∀x ∈ Y , P(x ∈ Y ) = ρ(x) and ∀A ⊂ Y , P(A ⊂ Y ) =
∏
x∈A

P(x ∈ Y ). (1.2)

The simulation of Bernoulli point processes is easy to implement and very
fast, thus they are convenient to model di�erent sorts of phenomena. Yet,
some data may present dependence, for instance attraction or repulsion, or
anisotropic structures, properties that Bernoulli point processes can not cap-
ture. Di�erent models, more adapted to the variability of the situations, are
needed.

Figure 1.2: Realizations sampled from a clustering Cox process (left), from a
Bernoulli point process (center) and from a Determinantal point
process (right), with each 148 points.

As mentioned above, spatial dependency is often described using the pair
correlation function. This statistic is used to characterize the attractive or
repulsive nature of point processes. Notice that it is constant and equal to 1
for Poisson and Bernoulli point processes. Point processes with a pair corre-
lation function above 1 are considered to be attractive point processes, while
point processes with a pair correlation function below 1 are considered to be
repulsive. Note that this notion of repulsion is sometimes associated with the
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notion of regularity, that can be seen as a satisfying covering of the state space.
Poisson and Bernoulli point processes stand for the pivot line between point
processes generating regular and irregular realizations [59]. Figure 1.2 presents
realizations of three point processes. From left to right, it shows a realization
of a clustering Cox process which belongs to the class of attractive point pro-
cesses, a realization of a Bernoulli point process, which model data with no
interaction, and a realization of a determinantal point process, which belongs
to the class of repulsive point processes and which is the object of this thesis.

Attractive point processes

According to Diggle [59], attractive point processes or models of points
aggregation were �rst studied to describe the locations of insect larvae after
hatching from eggs clusters by Neyman in 1939 [104]. The most studied class
of attractive point processes is the class of continuous point processes named
Cox point processes [101]. These processes generalize Poisson point processes,
they are also called doubly stochastic Poisson point process. Given Λ a random
locally �nite measure on Y , the point process X is said to be a Cox process if
conditionally to Λ, it is distributed as a Poisson point process on Y of intensity
Λ. The realization to the left of Figure 1.2 is a sample of a speci�c case of
Cox processes, called a Thomas point process [101], with parameters κ = 7,
σ = 0.09 and α = 21. It was generated using the R package named �spatstat�
[10]. Another speci�c case of Cox processes is the class of permanental point
processes [100, 44], which are the attractive dual form of determinantal point
processes.

An interesting property of most attractive point processes, such as Cox pro-
cesses, is the overdispersion of the counting random variable, which is counting
the number of points of the point process in a given area. That means that the
local number of points has a high variance. On the contrary, repulsive point
processes tend to select points that are evenly distributed through space.

Repulsive point processes

Figure 1.2 illustrates an ambivalence: while one could expect that unifor-
mity and independence would be the good conditions to cover a space, Poisson
and Bernoulli point processes tend to generate realizations with clusters and
large gaps in some regions. On the contrary, repulsive point processes, favor-
ing negative correlations, tend to create sets of points well scattered in space.
Furthermore, they are �exible: by choosing the repulsive model and de�ning
the marginal probabilities of the point process, it is possible to adapt to the
space structure and to the desired covering. Thus, for many point processes
applications, one needs to use repulsive point processes.

Gibbs point processes are a classic category of repulsive point processes
[34, 101, 38]. (Note that it is possible also to de�ne attractive Gibbs point
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processes.) Given U an energy function, a Gibbs point process Y is de�ned by
the marginal probabilities

P(Y = A) ∝ exp(−U(A)), A ⊂ Y . (1.3)

The energy function is often supposed to be such that

exp(−U(A)) =
∏

B⊆A,|B|≤k

ψ|B|(B), (1.4)

where the functions ψ. are called potential functions and k is a small constant
[34]. In the case where the energy functions can be decomposed into potential
functions depending only on adjacent points, the point process is called a
Markov point process [35].

The main advantages of Gibbs point processes are their easy interpretability
and their �exibility as they are de�ned directly using the correlations between
the points. Thus, they can easily adapt to the nature of the dataset and to the
goal of the study. However, their normalization constant is often intractable,
along with most of their describing statistics, and there is, in general, no exact
algorithm to sample a Gibbs point process.

Matérn point processes [98] are another repulsive class of point processes,
generated by the thinning of a Poisson point process. The sampling strategy is
done to ensure that all points are spaced at least a given distance apart. The
Matérn III process, also know as Poisson disk sampling, is particularly used by
stochastic sampling strategies [31], to improve the rendering of pictures and
avoid an aliasing e�ect, perceptually unpleasant. The method called random
sequential adsorption [46] generates points samples using the same model to
ensure a minimal distance between the points. Similarly, given any shape, for
instance a circle or a rectangle, it consists in sequentially and randomly placing
this shape on the space, keeping the current one only if it does not overlap
with the shapes already selected.

These methods are popular in the computer graphics community, as they
allow to randomly copy a given shape, with the certainty that these shapes
won't overlap. Such a property, called �hard-core� repulsion will be investigated
in Section 3.2.3 using determinantal point processes de�ned on the pixels of an
image. While this property has major advantages, these two point processes
classes lack theoretical de�nitions and computational guarantees.

Finally, determinantal point processes belong to the group of repulsive
point processes. Unlike most of the classes we have described, these point
processes have tractable densities and statistics, and exact sampling strategies.
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1.2 Determinantal Point Processes (DPPs)

Determinantal point processes model the repulsion present in certain sets of
points, which can be found in real-world situations: the position of trees in
a forest [85] or the position of apples on a branch, for example. In contrast
to Bernoulli point processes, DPPs tend to avoid the �bunching� phenomenon
and as shown in Figure 1.2, the points generated by a DPP are more evenly
distributed in space than those generated by the Bernoulli point process.

They naturally arose in random matrix theory [65] and they were anal-
ysed for the �rst time in 1975 by Macchi [96] to model fermions, a particle in
quantum mechanics which exhibit natural repulsion. Ever since the work of
Kulesza and Taskar [81], these processes have become more and more popular
in machine learning, because of their ability to draw subsamples that account
for the inner diversity of data sets and the theoretical computations this model
allows. This repulsive nature has been used in many �elds, such as summariz-
ing documents [41], improving a stochastic gradient descent by drawing diverse
subsamples at each step [133], extracting a meaningful subset of a large data
set to estimate a cost function or some parameters [126, 12, 5], or to compute
a Monte Carlo estimator to approximate integrals [11, 58].

De�nition

In this manuscript, we will use the following notations. The initial discrete
dataset, on which is de�ned the point process, is denoted by Y = {1, . . . , N}.
The cardinality, or the size, of a set A is denoted by |A|. When M is a
N × N matrix, with real or complex entries, the complex conjugate matrix
of M is denoted by M . The conjugate transpose of the matrix M is denoted

by M∗ = M
t
and the conjugate transpose of the vector v is denoted by v∗.

We denote by MA×B, for all subsets A,B ⊂ Y , the matrix (M(x, y))(x,y)∈A×B
and we use the short notation MA = MA×A. When focusing on a speci�c
couple of points, for instance x, y ∈ Y , we sometimes identify M(x, y) and
Mxy for clarity purpose. If A and B are subsets of Y such that |A| = |B|, the
determinant det(MA×B) is called a minor of M and in case B = A, det(MA)
is called a principal minor of M .

In this general, discrete and �nite setting, the kernel function associated
with a DPP is a matrix K that will be called its kernel, or kernel matrix. This
kernel can be also called the marginal or the correlation kernel. We assume
that K is a positive semide�nite Hermitian matrix, of size N ×N indexed by
the elements of Y . A random subset Y ⊂ Y is called a determinantal point
process with kernel K if,

∀A ⊂ Y , P (A ⊂ Y ) = det(KA). (1.5)

We will denote X ∼ DPP(K).
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A N ×N matrix K de�nes a determinantal point process on Y if and only
if

0 � K � I, (1.6)

meaning that its eigenvalues are in [0, 1]. For a detailed presentation of dis-
crete DPPs, their properties and some applications to machine learning, we
recommend the article of Kulesza and Taskar [81].

The diagonal coe�cients of K de�ne the marginal probabilities of any sin-
gleton:

∀x ∈ Y , P(x ∈ Y ) = K(x, x), (1.7)

and the o�-diagonal coe�cients of K give the similarity between points. No-
tice that the repulsion property becomes clear when observing the marginal
probability of couples of points. The more similar two points are, the less likely
they are to belong to the DPP simultaneously:

∀{x, y} ⊂ Y , P({x, y} ⊂ Y ) = K(x, x)K(y, y)− |K(x, y)|2. (1.8)

If K is seen as a similarity matrix, then the point process tends to generate
diverse sets of points. Similarly, this negative correlation is observable for any
set of points since, according to Hadamard's inequality, we have for all n ≥ 2,
for all {i1, . . . , in} ⊂ Y ,

P({i1, . . . , in} ⊂ Y ) ≤ P(i1 ∈ Y )P(i2 ∈ Y ) . . .P(in ∈ Y ). (1.9)

Let us take a simple example to highlight this property. We choose a
set Y of 300 points included in [−10, 10] × [−5, 5] and each point i ∈ Y is
associated with its position pi in R2. We de�ne a determinantal point process
with kernel K depending on the distance between the points. Here, we take
K = I − (I + L)−1 with for all i, j ∈ Y by L(i, j) = e−‖pi−pj‖

2
2 : the closer

two points i, j ∈ Y are, the higher the associated element L{i,j} is. This
construction uses what is called an L-ensemble, that we present below. Note
that the eigenvalues of such a kernel K are included in [0, 1).

Table 1.1 shows that when the similarity given by K depends on the dis-
tance between points, subsets of points distant from each other have a signi�-
cantly higher probability of occurrence.

Sampling

The sampling, also called the simulation, of a point process de�ned on Y is
the generation of a subset A of elements of Y , distributed as the considered
point process. The result of a sampling, the subset A, is called a realization, a
selection or simply a sample. It is one of the major operations needed to use
a point process however, and despite the fact that DPPs have been studied
since the 1970s, the question of sampling DPPs seems still unsettled.
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Table 1.1: DPPs tend to generate subsets of points far from one another.

Triplet {i, j, k} {1, 2, 3} {1, 50, 200} {50, 100, 200}

Position -10 0 10
-5

0

5

-10 0 10
-5

0

5

-10 0 10
-5

0

5

10−2× 10−2× 10−2×

K{i,j,k}

 7.4 −0.4 6.5
−0.4 15 −0.5
6.5 −0.5 10

 7.4 0.0 1.5
0.0 8.1 −0.0
1.5 −0.0 8.9

  8.1 −0.1 0.0
−0.1 33 −0.0
0.0 −0.0 8.9


P({i, j, k} ⊂ Y ) 4.8 ×10−4 5.1 ×10−4 23.7 ×10−4

The main sampling algorithm is called the spectral algorihm. It was de-
veloped in 2008 by Hough et al. [72]. It has the signi�cant advantage of
being exact, meaning that it generates a sample which is distributed as the
given DPP in a �nite number of iterations. This spectral algorithm relies on
the computation of the eigenvalues and the eigenvectors of the DPP's kernel
matrix. When the state space Y is large, the matrix is large too, and this
computation is costly. Thus, one main drawback of DPP is that, in a general
context, they take a long time to be exactly sampled.

Some authors have tried to adapt and speed up this algorithm by making
assumptions on the kernel of the DPP such as a bounded rank [53], a decom-
position into more tractable kernels [41] or the association of speci�c DPPs to
uniform spanning trees [110].

On the other hand, some authors, such as A�andi et al. [2], Anari et al. or
[6], have chosen to apply approximate methods to sample DPPs. Approximate
strategies, such as Markov chain Monte Carlo methods, hope that after a
certain number of simpler sampling iterations, the result is su�ciently close
to the target distribution. The problem is twofold. First, one needs to decide
when to stop the algorithm, and what does �su�ciently close� mean. This
desired state is often called the equilibrium. Second, this equilibrium may
need a high number of iterations to be (almost) reached.

Thus, it is important to develop an exact algorithm to sample DPPs in
a general setting. In Chapter 2, we present two exact algorithms to sample
general DPPs, which do not need the eigendecomposition of the kernel. While
the �rst one, called the sequential algorithm, is very slow, the second, that
we call the sequential thinning algorithm, provides competitive results with
respect to the spectral algorithm.
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Properties

Consider Y a determinantal point process with kernelK, de�ned on Y . Denote
the eigenvalues of K by {λ1, . . . , λN}.

Cardinality
The cardinality |Y | of the DPP is distributed as the sum of N independent

Bernoulli random variables: |Y | ∼
∑
x∈Y

Ber(λx), where the Bernoulli variables

take the value 1 with probability λx. Di�erent proofs of this proposition can
be found in the papers [72] or [81]. One can easily note that

E(|Y |) =
∑
x∈Y

λx = Tr(K) and Var(|Y |) =
∑
x∈Y

λx(1− λx). (1.10)

The easy access to the expectation and the variance of the cardinality of any
DPP is very useful when one needs to apply DPPs and to control the number
of points to be sampled, or simply when one needs to compare several DPP
kernels.

DPP de�ned from another DPP
The restriction of the DPP Y to a subset A ⊂ Y , denoted by Y ∩ A, is a

DPP with kernel KA. Thus, for all B ⊂ A,

P(B ⊂ A ∩ Y ) = det(KB). (1.11)

Furthermore, surprisingly, the complement of a DPP also favors repulsion.
Consider Y c = Y \ Y , the complement of Y in Y . This random subset is also
a DPP, associated with the kernel Kc = I −K, where I is the identity matrix
of size N ×N . Hence,

P (A ⊂ Y c) = P(A ∩ Y = ∅) = det((I −K)A). (1.12)

L-ensembles
We consider L a Hermitian matrix of size N ×N such that

L � 0, (1.13)

then the random set Y ⊂ Y de�ned by

∀A ⊂ Y , P(Y = A) =
det(LA)

det(I + L)
(1.14)

is a determinantal point process with likelihood kernel L. We will denote
Y ∼ DPPL(L). This class of DPP is called L-ensembles and was developped
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by Borodin and Rains [23]. To this point onward, the notation L denotes the
kernel of an L-ensemble, which is positive semi-de�nite, while K denotes the
correlation kernel of a general DPP, such that its eigenvalues are in [0, 1].

Note that the matrices K and L de�ne the same DPP if

K = L(L+ I)−1 = I − (I + L)−1 and conversely L = K(I −K)−1. (1.15)

In particular, if the spectral decomposition of K is K =
∑N

n=1 λnvnv
∗
n, then

L =
N∑
n=1

λn
1− λn

vnv
∗
n. (1.16)

Nevertheless, if det(I − K) = 0, or equivalently if any eigenvalue of the
kernel K is equal to 1, the DPP can't be de�ned as an L-ensemble.

The de�nition of a DPP as an L-ensemble is convenient in practice, since,
given a subselection problem, one only has to ensure that the likelihood kernel
L is positive semide�nite. That is why this de�nition is often used in machine
learning applications. Note that, contrary to speci�c DPPs called projection
DPPs that we present right below, the cardinality of an L-ensemble cannot be
�xed, it is random.

An interested reader should also be introduced to a related class of point
processes called k-DPPs. A k-DPP is de�ned by conditioning a given DPP
to generate samples with exactly k elements. This enables to preserve the re-
pulsiveness of DPPs while ensuring that the samples have a �xed cardinality.
This property can be very useful for some applications where the size of the
realizations is crucial. However, in general, these k-DPPs don't share most of
the appealing properties of DPPs, such as characterization through a marginal
kernel, easy computation of marginal probabilities or explicit formulation of
their moments. This is why we do not explore k-DPPs further in the remainder
of this work.

Examples of determinantal point processes
Let us present speci�c cases of determinantal point processes that we will

encounter several times in this manuscript. Suppose again that the set on
which the point processes are de�ned is Y = {1, . . . , N}. The �rst example
is the (inhomogeneous) Bernoulli point process, which, as already introduced,
corresponds to the case where the elements are selected independently from
one another. This point process is also a particular case of DPP, associated
with a diagonal kernel matrix K. Indeed, in that case,

P (A ⊂ Y ) =
∏
x∈A

K(x, x) =
∏
x∈A

P(x ∈ Y ). (1.17)

This is the least repulsive DPP, as there is no repulsion between the points.
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A second common class of DPP is that of projection DPPs. They are
characterized by a kernel matrix K with eigenvalues equal only to 0 or 1.
Equivalently, denoting the eigenvalues of K by {λ1, ..., λN}, we have

∀ i ∈ {1, . . . , N}, λi(1− λi) = 0. (1.18)

Note that the cardinality of the point process is then �xed, equal to the rank
of K as

E(|X|) =
N∑
i=1

λi = rank(K) and Var(|X|) =
N∑
i=1

λi(1− λi) = 0. (1.19)

These DPPs have two main advantages. The �rst one is the �xed cardinality
of the generated samples. Their second advantage, depending of the number
of non-zero eigenvalues, is that they may be associated with a low-rank ma-
trix, which allows the use of faster sampling strategies, either exact [72] or
approximate [56].

1.3 Applications to Image Processing

Point processes are often used in image processing, such as texture synthesis
methods, for instance with shot noise models. These models, usually based
on a Poisson process, generate textures [130, 48]. DPPs may provide an in-
teresting alternative for these applications. This �rst question led us to adapt
the determinantal point processes to the space of the pixels of an image: they
become processes de�ned on a 2-dimensional grid, the image domain, discrete
and under assumptions of stationarity and periodicity. Second, we were in-
terested in the adaptation of the subsampling ability of DPPs to the set of
patches of an image, which is as large as the size of the image itself, and often
too large to be handled.

In this manuscript, on several instances, we will apply DPPs to methods
of texture synthesis.

Texture synthesis

There is no formal and mathematical de�nition of texture images. A general
de�nition was given by Wei in 2009 [131], considering textures as �images with
repeated patterns�, allowing �a certain amount of randomness�. They can be
roughly divided into two categories [48]. First, macro-textures can be seen
as images made of repeated discernible objects. Second, micro-textures are
texture images without geometric details or identi�able objects.

In computer graphics, the realistic rendering of a synthesized image highly
depends on the textures covering the objects in the image. Depending on the
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Figure 1.3: Examples of textures. It is di�cult to formally characterize tex-
ture images as this term encompasses a wide variety of images,
such as textures without identi�able elements, that can represent
the surface of an object, or textures with repeated patterns and
geometrical structures.

applications (video games, virtual reality, special e�ects in movies), it is crucial
to develop algorithms for texture synthesis that generate e�ciently potentially
large images, with high perceptual quality. Discrete shot noise models are
probabilistic models that consist in summing a given spot function translated
around the points of a point process. Let us suppose the shot noise S is de�ned
on an image domain Ω and it is driven by a spot function g : Ω→ R and the
point process X, containing n points. Then, it is de�ned by

∀x ∈ Ω, S(x) =
∑
xi∈X

g(x− xi). (1.20)

In the case where X = (Xi)1≤i≤n is a sequence of i.i.d. random points, the
limit of this model when n tends to in�nity is called the Asymptotic Discrete
Spot Noise (ADSN) [48] and it is a Gaussian random vector whose covari-
ance depends on the spot function. These models generate Gaussian textures
visually related to the shape of the spot function, they are easy and fast to
simulate. In Chapter 3, we study shot noise models based on a determinantal
point process de�ned on the image domain.

Exemplar-based algorithms consist in synthesizing, from a given texture
image, a texture visually equivalent to the initial one. For a review of the main
exemplar-based texture synthesis algorithms, see the survey made by Raad
et al. [112]. Two strategies are generally adopted: statistics-based methods
[48, 68, 135, 108] and patch-based methods [43, 42, 89]. The �rst class methods
rely on the extraction of statistics from the exemplar texture and, using a noisy
image as initialization, they optimize a certain functional to enforce these
statistics on the output. They are known to provide satisfying micro-texture
synthesis. However, in general, these algorithms have trouble to generate more
structured textures. On the contrary, the patch-based methods mainly consist
in copy-paste strategies, meaning that they randomly re-arrange information,
pixels or patches, already contained in the exemplar image, to generate the
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output texture. In general, these methods are able to synthesize more complex
textures than the previous class but they do not introduce innovative content
and risk to create entire regions identical to the original texture. Moreover,
they may be unstable and su�er from what is called �growing garbage�, meaning
that the algorithm gets stuck and incoherently reproduces the same parts of
the input texture.

These last few years, belonging to the �rst category, methods using neu-
ral networks statistics have emerged [54, 94, 18]. The method developed by
Gatys et al. in 2015 [54] still provides state-of-the-art results, but it is com-
putationally very costly, with a huge number of parameters to handle. Several
algorithms [128, 74] tried to improve or speed up the synthesis but the per-
ceptual quality of the result is impacted.

Let us mention also synthesis methods combining both previous classes,
developing a model on the input texture but generating better synthesis from
complex and structured textures than the statistics-based methods [111, 52].
Chapter 4 presents an attempt to accelerate and improve the method intro-
duced by Galerne et al. in [52], using DPPs de�ned on the patches of the
exemplar texture.

DPPs in computer vision and image processing

Several works have already tried to apply DPPs to computer vision and imag-
ing issues. In that case, each point of the process is an image and the purpose
of sampling from these DPPs is to generate a diverse subsample of images.
Indeed, the amount of image and video contents available is overwhelming. To
be handled, to be processed, it needs to be sorted and summarized. That is the
purpose of recommendation systems. Some methods using DPPs have been
developed to cope with this issue and to enforce diverse subsets, for images
selection [79, 1, 27] or video recommendation [132]. Moreover, images and
videos are now in very high resolution, but remain intrinsically redundant.
The strategies for video summarization intend to extract meaningful and rep-
resentative frames using sequential DPPs. This is a type of DPP taking into
account the temporal dependencies of video frames [66, 97]. Besides, Chen et
al. [28] prove that DPPs can be an appropriate tool to reduce the dimension-
ality of hyperspectral images, to select representative pixels from these images
and be able to process such large-scale data.

Except this last paper dealing with hyperspectral images, these previous
works applying DPPs to images de�ne the DPP on a very large set of images,
for instance a video to summarize or a corpus of pictures or videos. In Chapters
3 and 4 of this manuscript, we are given a single image and we de�ne DPPs
on the set of pixels or on the set of patches of this image.
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1.4 Detailed Outline of the Manuscript

This section presents a detailed outline of the thesis. It describes the main con-
tributions of this manuscript and the results obtained in the di�erent chapters.

Chapter 2

Chapter 2 focuses on the methods used to sample a discrete determinantal
point process. As we have seen, sampling a point process generates a subset of
points, that can be used to reduce the size of an initial set of points, to illutrate
the properties of a model or to synthesize an image for instance. Regardless
to the purpose of the sample, the sampling algorithm must produce samples
as close as possible to the target distribution and remain e�cient, even when
the size of the dataset grows. Concerning DPPs, the choice of the sampling
strategy is crucial as it requires manipulating a kernel matrix K, which for
most applications is very large. In Section 2.1, we present basic sampling
strategies, starting with the classically used algorithm to sample general DPPs,
the spectral algorithm. This algorithm relies on the fact that a general DPP
can be considered as a mixture of projection DPPs, speci�c DPPs such that
the eigenvalues of their kernel are either equal to 0 or to 1. The method is
exact and it requires the computation of the eigenvalues and the eigenvectors
of K [72]. As soon as the underlying space, on which the point process is
de�ned, is large, this method is slow. We also present di�erent algorithms,
developed to sample DPPs more e�ciently. In Section 2.2, we introduce a
sampling strategy that does not use the eigendecomposition of the matrix K
but a Cholesky decomposition, that we call the sequential algorithm. However,
this algorithm involves computations to be done sequentially on each point of
the initial space. Hence, it is very slow. Figure 1.4 illustrates how much slower
the sequential algorithm is than the spectral algorithm.

To cope with this problem, we introduce in Section 2.3 a novel algorithm,
called the sequential thinning algorithm. As a �rst step, it samples a dom-
inating point process that contains the target DPP and in a second step, it
applies the sequential algorithm on this reduced space. This strategy is called
the thinning of a point process. If the maximum eigenvalue of K, λmax, is
strictly smaller than 1, we obtain a bound on the cardinality of the dominat-
ing process, which is proportional to the cardinality of the target DPP. As
the sequential sampling step is done on the subset given by the dominating
process, this bound ensures that the overall running time is limited. This also
highlights that the algorithm may have e�ciency issues if λmax is equal to
1. Section 2.4 provides numerical experiments that illustrate the behavior of
these three algorithms. In particular, they present competitive results for the
sequential thinning algorithm with respect to the initial spectral algorithm.

Note that, contrary to the sequential algorithm, the running time of the
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Figure 1.4: Running times of the 3 studied algorithms in function of the size
of the ground set, using a patch-based kernel. The sequential al-
gorithm is much slower than the two other sampling strategies.

sequential thinning algorithm is closer to that of the spectral algorithm (Figure
1.4). Moreover, Figure 1.5 compares the running times of these two algorithms
in di�erent situations, using a DPP kernel de�ned on the patches of an image.
The spectral algorithm is more e�cient when the expected size of the sample
grows with the size of the dataset (left). Yet, when the dataset is large and
the expected size of the sample is limited, one can observe that the sequential
thinning algorithm seems to compete with the spectral algorithm. More il-
lustrations are given in Section 2.4 to understand how the sequential thinning
algorithm operates.

Chapter 3

In Chapter 3, we consider DPPs de�ned on a speci�c space, the set of the
pixels of an image. Section 3.1 introduces these discrete DPPs that we call
Determinantal Pixel Processes (DPixPs). In such a con�guration, it is natural
to assume that the point processes under study are stationary and periodic.
The correlation between pairs of pixels no longer depends on the position of
the pixels but on the di�erence between their position. As a consequence, the
kernel K is a block-circulant matrix. Thus, the kernel can be characterized
using a function C de�ned on the image domain, that we identify with the ker-
nel of the DPixP in the following, so that K(x, y) = C(x− y). Block-circulant
matrices have the particularity to be diagonalized by the Fourier basis. Here,
the eigenvalues of the matrix K are the Fourier coe�cients of the function
C. Thus, the 2D discrete Fourier transform plays a key role in this chapter.
We study the consequences of the stationary and periodic hypotheses on basic
properties of DPPs, in particular on the repulsion generated by these point
processes. Whereas Gibbs point processes can generate hard-core repulsion,
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Figure 1.5: Running times in log-scale of the spectral and the sequential thin-
ning algorithms as a function of the size of the ground set |Y| (two
graphs on the left) or of the expected size of the sample E(Y )
(right-hand graph), using a patch-based kernel. On the left, the
expectation of the number of sampled points is set to 4% of |Y|.
In the middle, E(|Y |) is constant, equal to 20. On the right, the
ground set |Y| is constant and contains 5000 points, while E(|Y |)
grows.

that is imposing a minimal distance between the points of the point process,
it is impossible to de�ne DPixP with such a property. We prove that the only
possible �hard-core� repulsion is directional, meaning that it is possible to de-
�ned a DPixP kernel such that two points of the process can not be aligned
along a given direction.

In Section 3.2, we investigate shot noise models based on DPixPs and on a
given spot function. Consider X a DPP with intensity ρ de�ned on the image
domain Ω and g a (deterministic) function, also de�ned on Ω. The shot noise
random �eld S based on the points X and the spot g is de�ned by

∀x ∈ Ω, S(x) =
∑
xi∈X

g(x− xi). (1.21)

It appears that it is possible to adapt the kernel of a DPixP to the spot
function g, in order to obtain particularly regular or irregular textures. This
is related to an optimization problem based on the variance of the shot noise
model. We are able to obtain the results presented in Figure 1.6. Whatever the
spot function, the DPixP generating the least regular texture is the Bernoulli
point process (Figure 1.6,b.). Given the spot g (Figure 1.6(a)), the DPixP gen-
erating the most regular texture is a projection DPixP (Figure 1.6(c)) whose
Fourier coe�cients are the solution of a combinatorial problem. An approx-
imation of these Fourier coe�cients is given ((d),(e) in Figure 1.6) using a
greedy algorithm. Notice that the shot noise based on a Bernoulli point pro-
cess produces many overlaps of the rectangle shape and regions without any
rectangle, unlike the shot noise based on the projection DPixP.
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(a) Spot g (b) SBPP (c) SDPixP

(d) Ĉ (e) Re(C) (f) DPixP(C)

Figure 1.6: Realizations of the shot noise model based on a rectangle spot
function and on a Bernoulli point process (b) or on projection
DPixP adapted to the spot (c). Both point processes have the
same expected sample's size (n = 80).

We also prove that, in an appropriate framework, shot noise models based
on any DPixP and any spot function verify a Law of Large Number and a
Central Limit Theorem characterizing their convergence to a Gaussian process
(Figure 1.7).

Finally, in Section 3.3, to investigate inference on DPixP kernels, we review
the de�nition of equivalence classes of DPPs in di�erent frameworks, this is
a question called identi�ability. Then, we develop an algorithm that uses the
stationarity hypothesis to estimate the kernel of a DPixP from one or several
samples. This method is fast and provides satisfying results when the initial
kernel is a projection kernel, a class of DPP kernels commonly considered as
the most repulsive ones. Figure 1.8 illustrates these results obtained when we
try to retrieve the Fourier coe�cients of a complex projection DPixP. Observe
that while one realization is not su�cient to �nd the shape of the high Fourier
coe�cients, 10 realizations provide a satisfying approximation of the initial
kernel.

Chapter 4

Chapter 4 examines DPPs de�ned on the patch space of an image. In Section
4.1, we study the choice of di�erent kernels to subsample the set of patches
of a given image. This can be useful to speed up or to improve a patch-
based algorithm, by considering only the most signi�cant patches in the image.
Usually, if necessary, a uniform selection is performed to subsample the set of
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(a) Spot (b) SN , N = 1 (c) SN , N = 2

(d) SN , N = 3 (e) SN , N = 6 (f) N (0,Σ(C))

Figure 1.7: Determinantal shot noise realizations SN as de�ned in Theorem
3.3.4 with various N = 1, 2, 3, 6 and a comparison with their asso-
ciated limit Gaussian random �eld N (0,Σ(C)) (f).

patches. However, this strategy may select points close to each other and miss
some regions of the space. When considering patches, this amounts to select
similar patches while possibly missing crucial regions of the image. In Section
4.1, we study �ve di�erent types of DPP kernels, computed from the patches
of the image. Numerical experiments show that these kernels behave very
di�erently and that it is rather simple to adapt the kernel in function of the
application that will be done with the selected patches.

Figure 1.9 presents an example of �image summarization� and shows several
reconstructions of an image (a) from patches selected using di�erent DPP
kernels. Each reconstruction is done using the patches presented below such
that each patch of the original image is replaced by the most similar patch
in the selection. Thus, for each kernel, the original image is represented by
a small number of patches and a vector connecting each patch to its nearest

(a) Init. Ĉ (b) One sample (c) 1 real. (d) 10 real. (e) 100 real.

Figure 1.8: From left to right: the initial Fourier coe�cients of the kernel, one
realization of the associated DPixP, the estimation of the Fourier
coe�cients from one, from 10 and from 100 realizations.
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(a) Orig. (b) Unif. sample (c)Intens. kernel

(d) PCA kernel (e) Qual-div kern. (f) Optim kern.

Figure 1.9: Image reconstructions comparing di�erent DPP kernels. The �rst
row presents the reconstruction of the image using only the patches
selected by the corresponding kernel, given in the second row.

neighbor among the selection.

Section 4.2 applies this strategy to speed up a texture synthesis algorithm.
This algorithm, presented in [52], uses the empirical distribution of the patches
of an initial texture and heavily relies on semi-discrete optimal transport. This
method enables to synthesize complex textures. The authors propose to uni-
formly subsample the set of patches of the image to approximate the empirical
distribution of the patches, using 1000 patches.

After a presentation of this synthesis strategy, we show how using a DPP
to subsample the distribution of patches enables us to reduce the number of
patches (to 200 or 100) and thus to reduce the execution time of the algo-
rithm while maintaining the quality of the synthesis. Figure 1.10 compares
the strategies for two textures containing structures. The result using DPP is
obtained using ten times less patches than the synthesis in column (b). The
gain in computational time is signi�cant. Once the model has been learned,
for a synthesis of 1024× 1024 images, using a Matlab implementation of the
algorithm on GPU, the algorithm runs in 0.47" using DPPs and 100 patches
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(a) Original (b) Unif-1000 (c) Unif-100 (d) DPP-100

Figure 1.10: We compare the synthesis results when using either a target dis-
tribution with uniform subsampling (with cardinality 1000 or 100)
or DPP subsampling (with expected cardinality 100).

and in 1.7" without DPPs, with 1000 patches.

Chapter 5

In Chapter 5, we conclude this manuscript. We summarize our main contribu-
tions and we discuss their limitations. We also present some perspectives and
unanswered questions we would like to work on.

1.5 Contributions

The algorithms introduced in Chapter 2 is presented in an accepted paper
for the journals of the Applied Probability trust, to appear in the Journal of
Applied Probabilities 57.4 (December 2020)

Exact Sampling of Determinantal Point Processes without

Eigendecomposition, Claire Launay, Bruno Galerne, Agnès Desol-
neux, preprint in Feb. 2018, https://hal.archives-ouvertes.fr/
hal-01710266/document.

The content of Chapter 3 and of Chapter 4 Section 4.1, is presented in the
submitted paper

Determinantal Point Processes for Image Processing, Claire
Launay, Agnès Desolneux, Bruno Galerne, preprint in Mar. 2020,
https://hal.archives-ouvertes.fr/hal-02611259/document.

https://hal.archives-ouvertes.fr/hal-01710266/document
https://hal.archives-ouvertes.fr/hal-01710266/document
https://hal.archives-ouvertes.fr/hal-02611259/document
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A preliminary and French version of the work presented in Chapter 3, Sections
1 and 2, is introduced in the conference paper

Etude de la répulsion des processus pixelliques détermi-

nantaux, Agnès Desolneux, Claire Launay, Bruno Galerne, pro-
ceedings of the GRETSI Conference, Sept. 2017, https://hal.

archives-ouvertes.fr/hal-01548767/document

The application of DPPs to the texture synthesis algorithm [52] is discussed
in

Determinantal Point Processes for Texture Synthesis, Claire
Launay, Arthur Leclaire, proceedings of the GRETSI Conference,
Aug. 2019, https://hal.archives-ouvertes.fr/hal-02088725/

document.

Finally, Matlab and Python implementations of the algorithms presented
in Chapter 2 can be found on my webpage1. A Matlab implementation of
the texture synthesis algorithm using (or not) DPPs can be found on Arthur
Leclaire's webpage2.

1https://claunay.github.io/exact_sampling.html
2https://www.math.u-bordeaux.fr/~aleclaire/texto/

https://hal.archives-ouvertes.fr/hal-01548767/document
https://hal.archives-ouvertes.fr/hal-01548767/document
https://hal.archives-ouvertes.fr/hal-02088725/document
https://hal.archives-ouvertes.fr/hal-02088725/document
https://claunay.github.io/exact_sampling.html
https://www.math.u-bordeaux.fr/~aleclaire/texto/
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2.1 Introduction

The simulation of a point process generates a subset of points, that can be
used to reduce the size of an initial set of points, to illutrate the properties
of a point process or to reduce the dimension of high-dimensional data. A
sampling strategy must be e�cient, especially when the size of the dataset
grows. Concerning DPPs, the choice of the sampling method is crucial as
it requires manipulating a kernel matrix K, which for most applications is
very large. The classically used algorithm to sample general DPPs is called
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the spectral algorithm. This algorithm relies on the fact that a general DPP
can be considered as a mixture of projection DPPs, speci�c DPPs such that
the eigenvalues of their kernel are either equal to 0 or to 1. The method,
introduced in [72], is exact and it requires the computation of the eigenvalues
and the eigenvectors of K. As soon as the underlying space on which the
point process is de�ned is large, this method is slow. Many algorithms have
been developed to sample DPPs more e�ciently, by constraining the kernel to
speci�c hypotheses [78, 41, 8], by approximating the kernel [64, 2] or by using
Markov Chain Monte Carlo strategies [88, 56]. A few recent sampling methods
are exact and apply to general DPP kernels [109, 63, 39].

In this chapter, we present a new exact algorithm to sample DPPs in dis-
crete spaces, that avoids the eigenvalues and the eigenvectors computation. In
Section 2.3, we introduce a sampling strategy that does not use the eigende-
composition of the matrix K but a Cholesky decomposition, that we call the
sequential algorithm. However, this algorithm involves computations to be
done sequentially on each point of the initial space. Hence, it is not e�cient.
To cope with this problem, we introduce in Section 2.4 a novel algorithm,
called the sequential thinning algorithm. The proposed strategy relies on two
new results: (i) the explicit formulation of the marginals of any determinantal
point process and (ii) the derivation of an adapted Bernoulli point process
containing a given DPP. As a �rst step, it samples a dominating point process
that contains the target DPP and in a second step, it applies the sequential
algorithm on this reduced space. This strategy is called the thinning of a point
process. Finally, Section 2.5 presents numerical experiments to illustrate the
behaviors of these algorithms.

This method was �rst presented in the preprint [83] and was, to our knowl-
edge, the �rst exact sampling strategy without spectral decomposition. This
paper has been accepted in the journals of the Applied probability trust. Mat-
lab and Python implementations of this algorithm (using the PyTorch library
in the Python code) are available online1 and hopefully soon in the repository
created by Guillaume Gautier [57] gathering presentations and implementa-
tions of exact and approximate DPP sampling strategies.

In the following, we use the same notations as in the introduction. The state
space, on which the DPP is de�ned, is supposed to be discrete, to contain N
elements and is denoted by Y = {1, . . . , N}. The DPP we want to sample from
is characterized by the kernel K, which is a N ×N matrix, whose eigenvalues
are denoted by {λ1, . . . , λN}.

1https://claunay.github.io/exact_sampling.html

https://claunay.github.io/exact_sampling.html
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2.2 Usual Sampling Method and Related Works

2.2.1 Spectral Algorithm

The spectral algorithm is standard for drawing a determinantal point process.
It relies on the eigendecompostition of its kernel K. It was �rst introduced by
Hough et al. [72] and is also presented in a more detailed way by Scardicchio
[118], Kulesza and Taskar [81] or Lavancier et al. [85].

This algorithm relies on the fact that DPPs can be written as mixtures
of projection DPPs [72], also called elementary DPPs in [81]. We recall that
a projection DPP is a DPP whose kernel has eigenvalues in {0, 1}N . Let us
consider a general discrete DPP kernel K, an eigendecomposition of the kernel

K =
∑
j∈Y

λjvjv
∗
j , and denote Y ∼ DPP(K). We de�ne the following random

projection kernel

KB =
∑
j∈Y

Ber(λj)vjv∗j . (2.1)

where for all j ∈ Y , Ber(λj) is a Bernoulli variable with parameter λj ∈ [0, 1].
Hough et al. [72, Theorem 7] proved that this kernel KB is a random analogue
of K, in the sense that given Y B ∼ DPP(KB), we have

Y B d
= Y. (2.2)

The spectral algorithm takes advantage of this characterization. It proceeds
in 3 steps. During the �rst step, the eigenvalues (λj) and the eigenvectors (vj)
of the matrix K are computed. The second step consists in randomly drawing
N independent Bernoulli variables, each with parameter λj, for j = 1, . . . , N ,
and in storing the eigenvectors associated with the variables equal to 1 in a ma-
trix V . Thus, the matrix V V ∗ (where V ∗ refers to the conjugate transpose of
V ) is an admissible DPP kernel, with every eigenvalue in {0, 1}. The third step
consists in drawing the projection DPP associated to the kernel V V ∗, using
the relation between determinants and volumes of parallelotopes, which are the
generalization of parallelograms in any dimension. This sampling sequentially
selects the points, using a Gram-Schmidt procedure to compute pointwise con-
ditional probabilities given the points already selected. Algorithm 1 presents
this procedure.

This characterization impacts the distribution of the cardinality of the
DPP. Consider n ∈ N such that 1 ≤ n ≤ N and suppose that the second step
of the algorithm produced n Bernoulli variables equal to 1 (and thus N − n
Bernoulli variables equal to 0). The matrix V V ∗ has n non-zero eigenvalues
equal to 1, it is the kernel of a projection process so it generates �xed size
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samples with exactly n points. The size of the generated sample is determined
by the drawing of the independent Bernoulli variables:

|Y | ∼
∑
j∈Y

Ber(λj). (2.3)

We can deduce that necessarily |Y | ≤ rank(K). Furthermore, we retrieve

the properties given in the introduction: E(|Y |) =
∑
j∈Y

λj and Var(|Y |) =∑
j∈Y

λj(1− λj).

Algorithm 1 The spectral sampling algorithm

1. Compute the orthonormal eigendecomposition (λj, vj) of the matrix K.

2. Select a random set of eigenvectors: Draw a Bernoulli process X ∈
{0, 1}N with parameter (λj)j. Denote by n the number of Bernoulli
samples equal to one, {X = 1} = {j1, . . . , jn}. De�ne the matrix V =
(vj1 vj2 · · · vjn) ∈ RN×n and denote by Vk ∈ Rn the k-th line of V , for
k ∈ Y .

3. Return the sequence Y = {y1, y2, . . . , yn} sequentially drawn as follows:
For l = 1 to n

� Sample a point yl ∈ Y from the discrete distribution,

plk =
1

n− l + 1

(
‖Vk‖2 −

l−1∑
m=1

|〈Vk, em〉|2
)
,∀k ∈ Y . (2.4)

� If l < n, de�ne el = wl
‖wl‖
∈ Rn where wl = Vyl −

∑l−1
m=1〈Vyl , em〉em.

This algorithm is exact and relatively fast but it becomes slow when the size
of the ground set grows. For a ground set of size N and a sample of size n, the
third step costs O(Nn3) because of the Gram-Schmidt orthonormalisation.
Tremblay et al. [125] propose to speed it up using optimized computations
and they achieve the complexity O(Nn2) for this third step. Nevertheless, the
eigendecomposition of the matrix K is the heaviest part of the algorithm, as
it runs in time O(N3), and we will see in the numerical results that this �rst
step represents in general more than 90% of the running time of the spectral
algorithm. As nowadays the amount of data explodes, in practice the matrix
K is very large so it seems relevant to try to avoid this costly operation.
At the end of Section 2.4, we compare the time complexities of this spectral
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algorithm with the algorithms we introduce in this chapter, the sequential
algorithm (Algorithm 2) and the sequential thinning algorithm (Algorithm 3).

2.2.2 Other Sampling Strategies

As we have seen in the previous section, the main algorithm to sample DPPs
is a spectral algorithm which uses the eigendecomposition of K to sample Y .
This computation may be very costly when dealing with large-scale data. That
is why numerous algorithms have been conceived to bypass this issue.

Sampling speci�c DPPs

Some authors have designed a sampling algorithm adapted to speci�c DPPs.
For instance, it is possible to use an alternative algorithm, faster than the initial
one, by assuming that K has a bounded rank [78, 81, 53]. These authors use a
dual representation of the kernel so that the main computations in the spectral
algorithm are reduced. In these articles, DPPs are L-ensemble, characterized
by the positive semi-de�nite matrix L. Due to L's positivity, there exists a
D×N matrix B, such that L = BtB, with D ∈ N∗. It is possible to construct a
dual representative C = BBt, a matrix of size D×D. In [78, 81], Kulesza and
Taskar use this dual representation and prove that the computations needed for
the sampling algorithm, to sample DPPL(L), can all be expressed in function
of C, and be done on a D×D matrix instead of the N×N matrix L. They call
this sampling algorithm, which has C as input, the dual sampling algorithm.
Note that Bj, the j-th column of B can be considered as a feature vector
associated to the point j ∈ Y . The authors suppose that in general, D � N ,
meaning that the number of features representing the data is much smaller
than the amount of data. In that case, L is low rank and one can use the
dual algorithm detailed in [81, Algorithm 3] and sample the DPP faster, with
a running complexity of order O(D3).

One can also deal with another class of DPPs associated to kernels K that
can be decomposed into a sum of tractable matrices [41]. In this case, the
sampling is much faster and the authors study the inference on these classes
of DPPs. At last, Propp and Wilson [110] use Markov chains and the theory
of coupling from the past to sample exactly particular DPPs: uniform span-
ning trees. Adapting Propp and Wilson's algorithm, Avena and Gaudillière
[8] provide a similar algorithm to e�ciently sample a parametric DPP kernel
associated to random spanning forests.
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Approximate algorithms

The second option to sample DPPs more e�ciently is to use approximate
methods. A �rst strategy is to approach the initial DPP kernel with another
kernel, simpler to sample from. For instance, some authors approach the
original DPP with a low rank matrix, using random projections [81, 64]. In
these two papers, the authors use the decomposition of the L-ensemble kernel
L seen previously, that is L = BtB, with B a D × N matrix. Here, they
suppose that D is not small, so they want to reduce the dimension of the
feature vectors Bj associated to each point j ∈ Y . To do so, they use a
random projection matrix G, of size d × D, with d � D. The coe�cients of
G are sampled independently from a Gaussian distribution and the authors
prove that this model, applying random projection on the feature vectors, has
a bounded approximation error.

If the previous decomposition of the L-ensemble kernel L is complicated,
one can also use the Nyström approximation [2] to produce a low rank ap-
proximation of L. The main idea of the Nyström approximation is to select,
with a suitable method, a proportion of elements of Y called landmarks and
to compute an approximation of L. In the end, this method produces an ap-
proximated low-rank decomposition L̃ = Bt

WBW , with BW a l×N matrix and
l the number of landmarks. Then, it applies the dual sampling algorithm to
simulate the DPP.

A second strategy consists in using Monte Carlo Markov Chain (MCMC)
methods. The method proposed by Anari et al. [6] and Li et al. [88] is based
on iterative additions, deletions or exchanges of elements, until the mixing of
the chain. In any step, associated to the selected set S, some elements i ∈ S
and j /∈ S are chosen independently and uniformly. Then i is deleted with a
given probability, j is added with another one. Gautier et al. [56] developed a
sampling algorithm based on MCMC strategies but from another perspective.
They consider the initial state space as embedded into a continuous multi-
dimensional polytope. This method consists in moving across this continuous
domain by solving linear programs at each step of the chain. Unlike the pre-
vious MCMC methods modifying at most two elements of S, from one step of
the algorithm to the other, the whole set S can be modi�ed. This enables to
explore the state space more easily but each step needs to solve a costly linear
problem.

It is possible to obtain satisfying convergence guarantees for these strate-
gies for particular DPPs, for instance for k-DPPs with �xed cardinality [6, 87]
or projection DPPs [56]. Li et al. [88] even proposed a polynomial-time sam-
pling algorithm for general DPPs.

Approximate strategies hope that after a certain number of simpler sam-
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pling iterations, the result is su�ciently close to the target distribution. How-
ever, one needs to decide when to stop the algorithm, and what does �suf-
�ciently close� mean. Second, this equilibrium may need a high number of
iterations to be (almost) reached. These algorithms are commonly used as
they save signi�cant time but the price to pay is the lack of precision of the
result.

Recent exact algorithms

Let us mention that three very recent preprints [109, 63, 39] also propose new
algorithms to sample exactly general DPPs without spectral decomposition.

Poulson [109] presents factorization strategies of Hermitian and non-Hermi-
tian DPP kernels to sample general determinantal point processes. As our
sequential algorithm (Algorithm 2), it heavily relies on Cholesky decompo-
sition and proceeds sequentially. It accepts or rejects each element of the
state space according to pointwise conditional probabilities given the points
already accepted. These sampling strategies generalize our own and adapt to
non-Hermitian or sparse DPP kernels.

Gillenwater and al. [63] use the dual representation of L-ensembles pre-
sented previously to construct a binary tree. This tree contains enough infor-
mation on the kernel to sample DPPs in sublinear time, after a preprocessing
step done in O(ND2) time (where D is the size of the features vectors in the
dual representation).

Derezi«ski et al. [39] apply a preprocessing step that preselects a portion
of the points using a regularized DPP. This regularized DPP takes advantage
of the connections between DPP's marginal probabilities and ridge leverage
scores of the L-ensemble kernel L, quantities that have already been used in
sampling strategies. Then, a usual DPP sampling is done on the selection.
Their preprocessing step is called intermediate sampling and is very related
to our thinning procedure using a Bernoulli point process that contains the
target DPP. However note that the authors report that the overall complexity
of their sampling scheme is sublinear while ours is cubic due to Cholesky
decomposition.

Finally, in [15], Blaszczyszyn and Keeler present a similar procedure based
on a continuous space: they use discrete determinantal point processes to thin
a Poisson point process de�ned on that continuous space. The generated point
process o�ers theoretical guarantees on repulsion and is applied to �t network
patterns.

In the next section, we show that any DPP can be exactly sampled by a
sequential algorithm that does not require the eigendecomposition of K.
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2.3 Sequential Sampling Algorithm

Our goal is to build a competitive algorithm to sample DPPs that does not
involve the eigendecomposition of the matrix K. To do so, we �rst develop a
�naive� sequential sampling algorithm and subsequently, we will accelerate it
using a thinning procedure, presented in Section 2.4.

2.3.1 Explicit General Marginal of a DPP

First, we need to specify the marginals and the conditional probabilities of
any DPP. When I − K is invertible, a formulation of the explicit marginals
already exists [81], it implies to deal with a L-ensemble matrix L instead of
the matrix K. However, this hypothesis is reductive: among others, it ignores
the useful case of projection DPPs, when the eigenvalues of K are either 0
or 1. We show below that general marginals can easily be formulated from
the associated kernel matrix K. For all A ⊂ Y , we denote IA the N × N
matrix with 1 on its diagonal coe�cients indexed by the elements of A, and 0
anywhere else. We also denote |A| the cardinality of any subset A ⊂ Y and
Ac ∈ Y the complementary set of A in Y .

Proposition 2.3.1 (Distribution of a DPP). For any A ⊂ Y, we have

P(Y = A) = (−1)|A| det(IA
c −K). (2.5)

Proof. We have that P(A ⊂ Y ) =
∑
B⊃A

P(Y = B). Using the Möbius inversion

formula (see Appendix A.1), for all A ⊂ Y ,

P(Y = A) =
∑
B⊃A

(−1)|B\A|P(B ⊂ Y ) = (−1)|A|
∑
B⊃A

(−1)|B| det(KB)

= (−1)|A|
∑
B⊃A

det((−K)B).
(2.6)

Furthermore, Kulesza and Taskar [81] state in Theorem 2.1 that for all

L ∈ RN×N , for all A ⊂ Y ,
∑

A⊂B⊂Y

det(LB) = det(IA
c

+ L). Then we obtain

P(Y = A) = (−1)|A| det(IA
c −K). (2.7)

We have by de�nition P(A ⊂ Y ) = det(KA) for all A, and as a consequence
P(B ∩ Y = ∅) = det((I −K)B) for all B. The next proposition gives for any
DPP the expression of the general marginal P(A ⊂ Y,B∩Y = ∅), for any A,B
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disjoint subsets of Y , using K. In what follows, HB denotes the symmetric
positive semi-de�nite matrix

HB = K +KY×B((I −K)B)−1KB×Y . (2.8)

Theorem 2.3.1 (General Marginal of a DPP). Let A,B ⊂ Y be disjoint. If
P(B∩Y = ∅) = det((I−K)B) = 0, then P(A ⊂ Y,B ∩ Y = ∅) = 0. Otherwise,
the matrix (I −K)B is invertible and

P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(HB
A ). (2.9)

Proof. Let A,B ⊂ Y disjoint such that P(B ∩ Y = ∅) 6= 0. Using the previous
proposition,

P(A ⊂ Y,B ∩ Y = ∅) =
∑

A⊂C⊂Bc
P(Y = C) =

∑
A⊂C⊂Bc

(−1)|C| det(IC
c −K).

(2.10)
For any C such that A ⊂ C ⊂ Bc, one has B ⊂ Cc. Hence, by reordering

the matrix coe�cients, and using the Schur's determinant formula [70],

det(IC
c −K) = det

(
(IC

c −K)B (IC
c −K)B×Bc

(IC
c −K)Bc×B (IC

c −K)Bc

)
= det

(
(I −K)B −KB×Bc

−KBc×B (IC
c −K)Bc

)
= det((I −K)B) det((IC

c −HB)Bc).

(2.11)

Thus, P(A ⊂ Y,B∩Y = ∅) = det((I−K)B)
∑

A⊂C⊂Bc
(−1)|C| det((IC

c−HB)Bc).

According to Theorem 2.1 in Kulesza and Taskar [81], for all A ⊂ Bc,∑
A⊂C⊂Bc

det(−HB
C ) = det((IA

c −HB)Bc). (2.12)

Then, Möbius inversion formula ensures that, ∀A ⊂ Bc,∑
A⊂C⊂Bc

(−1)|C\A| det((IC
c −HB)Bc) = det(−HB

A ) = (−1)|A| det(HB
A ). (2.13)

Hence, P(A ⊂ Y,B ∩ Y = ∅) = det((I −K)B) det(HB
A ).

With this formula, we can explicitly formulate the pointwise conditional
probabilities of any DPP.

Corollary 2.3.1 (Pointwise conditional probabilities of a DPP). Let A,B ⊂ Y
be two disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) 6= 0, and let k /∈ A ∪ B.
Then,

P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) =
det(HB

A∪{k})

det(HB
A )

= HB(k, k)−HB
{k}×A(HB

A )−1HB
A×{k}.

(2.14)
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This is a straightforward application of the previous expression and the
Schur determinant formula [70]. Note that these pointwise conditional prob-
abilities are related to the Palm distribution of a point process [29] which
characterizes the distribution of the point process under the condition that
there is a point at some location x ∈ Y . Shirai and Takahashi proved in [120]
that DPPs on general spaces are closed under Palm distributions, in the sense
that there exists a DPP kernel Kx such that the Palm measure associated to
DPP(K) and x is a DPP de�ned on Y with kernel Kx. Borodin and Rains
[23] also provide similar results on discrete spaces, using L-ensembles, that
Kulesza and Taskar adapt in [81]. They condition the DPP not only on a
subset included in the point process but also, similarly as Corollary 2.14, on a
subset not included in the point process. As Shirai and Takahashi, they derive
a formulation of the generated marginal kernel L.

Now, we have all the necessary expressions for the sequential sampling of
a DPP.

2.3.2 Sequential Sampling Algorithm of a DPP

This sequential sampling algorithm simply consists in using Formula (2.14)
and updating at each step the pointwise conditional probability, knowing the
previous selected points. It is presented in Algorithm 2. We recall that this
sequential algorithm is the �rst step toward developing a competitive sampling
algorithm for DPPs: with this method, one doesn't need eigendecomposition
anymore. The second strategy (presented in Section 2.4) will be to reduce its
computational cost.

Algorithm 2 Sequential sampling of a DPP with kernel K

� Initialization: A← ∅, B ← ∅.

� For k = 1 to N :

1. Compute HB
A∪{k} = KA∪{k} +KA∪{k}×B((I −K)B)−1KB×A∪{k}.

2. Compute the probability pk given by

pk = P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = HB(k, k)−HB
{k}×A(HB

A )−1HB
A×{k}.
(2.15)

3. With probability pk, k is included, A← A∪{k}, otherwise B ← B ∪ {k}.

� Return A.

The main operations of Algorithm 2 involve solving linear systems re-
lated to (I −K)−1

B . Fortunately, here we can use the Cholesky factorization,
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which alleviates the computational cost. Suppose that TB is the Cholesky
factorization of (I − K)B, that is, T

B is a lower triangular matrix such that
(I −K)B = TB(TB)∗ (where (TB)∗ is the conjugate transpose of TB). Then,
denoting JB = (TB)−1KB×A∪{k}, one simply has HB

A∪{k} = KA∪{k} + (JB)∗JB.
Furthermore, at each iteration where B grows, the Cholesky decomposition

TB∪{k} of (I − K)B∪{k} can be computed from TB using standard Cholesky
update operations, involving the resolution of only one linear system of size
|B|. See Appendix A.2 for the details of a typical Cholesky decomposition
update.

In comparison with the spectral sampling algorithm of Hough et al. [72],
one requires computations for each site of Y , and not just one for each sampled
point of Y . We will see at the end of Section 2.4 and in the experiments that
it is not competitive.

2.4 Sequential Thinning Algorithm

In this section, we show that we can signi�cantly decrease the number of steps
and the running time of Algorithm 2: we propose to �rst sample a point process
X containing Y , the desired DPP, and then make a sequential selection of the
points of X to obtain Y . This procedure can be called a sequential thinning.

2.4.1 General Framework of Sequential Thinning

We �rst describe a general su�cient condition for which a target point process
Y - it will be a determinantal point process in our case - can be obtained as
a sequential thinning of a point process X. This is a discrete adaptation of
the thinning procedure on the continuous line of Rolski and Szekli [114]. To
do this, we will consider a coupling (X,Z) such that Z ⊂ X will be a random
selection of the points of X and that will have the same distribution as Y .
From this point onward, we identify the set X with the vector of size N with
1 in the place of the elements of X and 0 elsewhere, and we use the notations
X1:k to denote the vector (X1, . . . , Xk) and 01:k to denote the null vector of size
k. We want to de�ne the random vector (X1, Z1, X2, Z2, . . . , XN , ZN) ∈ R2N

with the following conditional distributions for Xk and Zk:
P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Xk = 1|X1:k−1 = x1:k−1)

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k = x1:k) = 1{xk=1}
P(Yk = 1|Y1:k−1 = z1:k−1)

P(Xk = 1|X1:k−1 = x1:k−1)
.

(2.16)

Proposition 2.4.1 (Sequential thinning). Assume that X, Y, Z are discrete
point processes on Y that satisfy for all k ∈ {1, . . . , N}, and all z, x ∈ {0, 1}N ,



48 Chapter 2. Sampling Discrete DPPs

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0
implies

P(Yk = 1|Y1:k−1 = z1:k−1) ≤ P(Xk = 1|X1:k−1 = x1:k−1).
(2.17)

Then, it is possible to choose (X,Z) in such a way that (2.16) is satis�ed. In
that case, we have that Z is a thinning of X, that is Z ⊂ X, and Z has the
same distribution as Y .

Proof. Let us �rst discuss the de�nition of the coupling (X,Z). With the
conditions (2.17), the ratios de�ning the conditional probabilities of Equa-
tion (2.16) are ensured to be between 0 and 1 (if the conditional events have non
zero probabilities). Hence the conditional probabilities allow us to construct
sequentially the distribution of the random vector (X1, Z1, X2, Z2, . . . , XN , ZN)
of length 2N , and thus the coupling is well-de�ned. Furthermore, as Equation
(2.16) is satis�ed, Zk = 1 only if Xk = 1, so one has Z ⊂ X.

Let us now show that Z has the same distribution as Y . By complemen-
tarity of the events {Zk = 0} and {Zk = 1}, it is enough to show that for all
k ∈ {1, . . . , N}, and z1, . . . , zk−1 such that P(Z1:k−1 = z1:k−1) > 0,

P(Zk = 1|Z1:k−1 = z1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1). (2.18)

Let k ∈ {1, . . . , N}, (z1:k−1, x1:k−1) ∈ {0, 1}2(k−1), such that P(Z1:k−1 =
z1:k−1, X1:k−1 = x1:k−1) > 0. Since Z ⊂ X, {Zk = 1} = {Zk = 1, Xk = 1}.
Suppose �rst that P(Xk = 1|X1 = x1, . . . , Xk−1 = xk−1) 6= 0. Then

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=P(Zk = 1, Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

=
P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1, Xk = 1)
×P(Xk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Yk = 1|Y1:k−1 = z1:k−1), by Equations (2.16).
(2.19)

If P(Xk = 1|X1:k−1 = x1:k−1) = 0, then P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 =
x1:k−1) = 0 and using (2.17), P(Yk = 1|Y1:k = z1:k) = 0. Hence the identity

P(Zk = 1|Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) = P(Yk = 1|Y1:k−1 = z1:k−1) (2.20)

is always valid. Since the values x1, . . . , xk−1 do not in�uence this conditional
probability, one can conclude that given (Z1, . . . , Zk−1), Zk is independent of
X1, . . . , Xk−1, and thus (2.18) is true.

The characterization of the thinning de�ned here allows both extreme cases:
there can be no pre-selection of points by X, meaning that X = Y and that the
DPP Y is sampled by Algorithm 2, or there can be no thinning at all, meaning
that the �nal process Y can be equal to the dominating process X. Regarding
sampling acceleration, a good dominating process X must be sampled quickly
and with a cardinality as close as possible to |Y |.
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2.4.2 Sequential Thinning Algorithm for DPPs

In this section, we use the sequential thinning approach, where Y is a DPP
of kernel K on the ground set Y , and X is a Bernoulli point process (BPP).
BPPs are the fastest and easiest point processes to sample. The point process
X is a Bernoulli process if the components of the vector (X1, . . . , XN) are
independent. Its distribution is determined by the probability of occurrence
of each point k, that we denote by qk = P(Xk = 1). Due to the independence
property, the conditions (2.17) simpli�es to

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0
implies

P(Yk = 1|Y1:k−1 = z1:k−1) ≤ qk.
(2.21)

The second inequality does not depend on x, hence it must be valid as soon
as there exists a vector x such that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0,
that is, as soon as P(Z1:k−1 = z1:k−1) > 0. Since we want Z to have the same
distribution as Y , we �nally obtain the conditions

∀y ∈ {0, 1}N , P(Y1:k−1 = y1:k−1) > 0 implies P(Yk = 1|Y1:k−1 = y1:k−1) ≤ qk.
(2.22)

Ideally, we want the qk to be as small as possible to ensure that the cardi-
nality of X is as small as possible. So we look for the optimal values q∗k, that
is,

q∗k = max
(y1:k−1) ∈ {0,1}k−1 s.t.

P(Y1:k−1 = y1:k−1) > 0

P(Yk = 1|Y1:k−1 = y1:k−1). (2.23)

A priori, computing q∗k would raise combinatorial issues. However, due to
the repulsive nature of DPPs, we have the following proposition.

Proposition 2.4.2. Let A,B ⊂ Y be two disjoint sets such that P(A ⊂ Y, B∩
Y = ∅) 6= 0, and let k 6= l ∈ (A∪B)c. If P(A∪{l} ⊂ Y, B ∩Y = ∅) > 0, then

P({k} ⊂ Y |A∪{l} ⊂ Y, B∩Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B∩Y = ∅). (2.24)

If P(A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) > 0, then

P({k} ⊂ Y |A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) ≥ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅).
(2.25)

Consequently, for all k ∈ Y, if y1:k−1 ≤ z1:k−1 (where ≤ stands for the inclusion
partial order) are two states for Y1:k−1, then

P(Yk = 1|Y1:k−1 = y1:k−1) ≥ P(Yk = 1|Y1:k−1 = z1:k−1). (2.26)
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In particular, ∀k ∈ {1, . . . , N}, if P(Y1:k−1 = 01:k−1) > 0 then

q∗k = P(Yk = 1|Y1:k−1 = 01:k−1)

= K(k, k) +Kk×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×k.

(2.27)

Proof. Recall that by Proposition 2.3.1, P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) =
HB(k, k) − HB

{k}×A(HB
A )−1HB

A×{k}. Let l /∈ A ∪ B ∪ {k}. Consider TB the

Cholesky decomposition of the matrixHB obtained with the following ordering
the coe�cients: A, l, the remaining coe�cients of Y \ (A ∪ {l}). Then, the
restriction TBA is the Cholesky decomposition (of the reordered) HB

A and thus

HB
{k}×A(HB

A )−1HB
A×{k} = HB

{k}×A(TBA (TBA )∗)−1HB
A×{k}

= ‖(TBA )−1HB
A×{k}‖2

2.
(2.28)

Similarly,

HB
{k}×A∪{l}(H

B
A∪{l})

−1HB
A∪{l}×{k} = ‖(TBA∪{l})−1HB

A∪{l}×{k}‖2
2. (2.29)

Now note that solving the triangular system with b = (TBA∪{l})
−1HB

A∪{l}×{k}
amounts solving the triangular system with (TBA )−1HB

A×{k} and an additional

line at the bottom. Hence, one has ‖b‖2
2 ≥ ‖(TBA )−1HB

A×{k}‖2
2. Consequently,

provided that P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0,

P({k} ⊂ Y |A∪{l} ⊂ Y, B∩Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B∩Y = ∅). (2.30)

The second inequality is obtained by complementarity in applying the
above inequality to the DPP Y c with B ∪ {l} ⊂ Y c and A ∩ Y c = ∅.

As a consequence, an admissible choice for the distribution of the Bernoulli
process is

qk =

{
P(Yk = 1|Y1:k−1 = 01:k−1) if P(Y1:k−1 = 01:k−1) > 0,

1 otherwise.
(2.31)

Note that if for some index k, P(Y1:k−1 = 01:k−1) > 0 is not satis�ed, then
for all the subsequent indexes l ≥ k, ql = 1, that is the Bernoulli process
becomes degenerate and contains all the points after k. In the remaining of
this section, X will denote a Bernoulli process with probabilities (qk) given
by (2.31).

As discussed in the previous section, in addition to being easily simulated,
one would like the cardinality of X to be close to the one of Y , the �nal sample.
The next proposition shows that this is veri�ed if all the eigenvalues of K are
strictly less than 1.
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Proposition 2.4.3 (|X| is proportional to |Y |). Suppose that P (Y = ∅) =
det(I −K) > 0 and denote by λmax(K) ∈ [0, 1) the maximal eigenvalue of K.
Then,

E(|X|) ≤
(

1 +
λmax(K)

2 (1− λmax(K))

)
E(|Y |). (2.32)

Proof. We know that qk = K(k, k)+K{k}×{1:k−1}((I−K){1:k−1})
−1K{1:k−1}×{k},

by Proposition 2.3.1. Since

‖((I −K){1:k−1})
−1‖Mk−1(C) = 1

1−λmax(K{1:k−1})
(2.33)

and λmax(K{1:k−1}) ≤ λmax(K), one has

K{k}×{1:k−1}((I −K){1:k−1})
−1K{1:k−1}×{k} ≤ 1

1−λmax(K)
‖K{1:k−1}×{k}‖2

2. (2.34)

Summing all these inequalities gives

E(|X|) ≤ Tr(K) + 1
1−λmax(K)

N∑
k=1

‖K{1:k−1}×{k}‖2
2. (2.35)

The last term is the Frobenius norm of the upper triangular part of K,
hence in can be bounded by 1

2
‖K‖2

F = 1
2

∑N
j=1 λj(K)2. Since λj(K)2 ≤

λj(K)λmax(K),
∑N

j=1 λj(K)2 ≤ λmax(K) Tr(K) = λmax(K)E(|Y |).

We can now introduce the �nal sampling algorithm that we call sequen-
tial thinning algorithm (Algorithm 3). It presents the di�erent steps of our
sequential thinning algorithm to sample a DPP of kernel K. The �rst step
is a preprocess that must be done only once for a given matrix K. Step 2 is
trivial and fast. The critical point is to sequentially compute the conditional
probabilities pk = P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) for each point of X. Recall
that in Algorithm 2 we use a Cholesky decomposition of the matrix (I −K)B
which is updated by adding a line each time a point is added in B. Here, the
inverse of the matrix (I − K)B is only needed when visiting a point k ∈ X,
so one updates the Cholesky decomposition by a single block, where the new
block corresponds to all indices added to B in one iteration (see Appendix
A.2). The Matlab implementation used for the experiments is available on-
line2, together with a Python version of this code, using the PyTorch library.
Note that, very recently, Guillaume Gautier [55] proposed an alternative com-
putation of the Bernoulli probabilities qk that generate the dominating point
process in the �rst step of Algorithm 3, so that it only requires the diagonal
coe�cients of the Cholesky decomposition T of I −K. These simpli�ed com-
putations should improve the e�ciency of the �rst step of the algorithm. We
plan to test numerically how much this �rst step is sped up.

2https://claunay.github.io/exact_sampling.html

https://claunay.github.io/exact_sampling.html
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Algorithm 3 Sequential thinning algorithm of a DPP with kernel K

1. Compute sequentially the probabilities P(Xk = 1) = qk of the Bernoulli
process X:

� Compute the Cholesky decomposition T of the matrix I −K.

� For k = 1 to N :

� If qk−1 < 1 (with the convention q0 = 0),

qk = K(k, k) + ‖T−1
{1,...,k−1}K{1,...,k−1}×{k}‖2

2. (2.36)

� Else, qk = 1.

2. Draw the Bernoulli process X. Let m = |X| and k1 < k2 < · · · < km be
the points of X.

3. Apply the sequential thinning to the points of X:

� Attempt to add sequentially each point of X to Y :
Initialize A← ∅ and B ← {1, . . . , k1 − 1}.
For j = 1 to m

� If j > 1, B ← B ∪ {kj−1 + 1, . . . , kj − 1}.
� Compute the conditional probability pkj = P({kj} ⊂ Y |A ⊂ Y, B ∩
Y = ∅) (see Formula (2.14)):

* Update TB the Cholesky decomposition of (I − K)B (see Ap-
pendix A.2).

* Compute JB = (TB)−1KB×A∪{kj}.

* Compute HB
A∪{k} = KA∪{kj} + (JB)tJB.

* Compute pkj = HB(kj, kj)−HB
{kj}×A(HB

A )−1HB
A×{kj}.

� Add kj to A with probability
pkj
qkj

or to B otherwise.

� Return A.

2.4.3 Computational Complexity

Recall that the size of the ground set Y is N and the size of the �nal sample
is |Y | = n. Both algorithms introduced in this chapter (Algorithms 2 and
3) have running complexities of order O(N3), as the spectral algorithm. Yet,
if we get into the details, the most expensive task in the spectral algorithm
is the computation of the eigenvalues and the eigenvectors of the kernel K.
As this matrix is Hermitian, the common routine to do so is the reduction
of K to some tridiagonal matrix to which the QR decomposition is applied,



2.5. Experiments 53

meaning that it is decomposed into the product of an orthogonal matrix and
an upper triangular matrix. When N is large, the total number of operations
is approximately 4

3
N3 [124]. In Algorithms 2 and 3, one of the most expensive

operations is the Cholesky decomposition of several matrices. We recall that
the Cholesky decomposition of a matrix of size N × N costs approximately
1
3
N3 computations, when N is large [99]. Concerning the Sequential algorithm

2, at each iteration k, the number of operations needed is of order |B|2|A| +
|B||A|2 + |A|3, where |A| is the number of selected points at step k so it's
lower than n, and |B| the number of unselected points, bounded by k. Then,
when N tends to in�nity, the total number of operations in Algorithm 2 is
lower than n

3
N3 + n2

2
N2 + n3N or O(nN3), as in general n� N . Concerning

Algorithm 3, the sequential thinning from X, coming from Algorithm 2, costs
O(n|X|3). Recall that |X| is proportional to |Y | = n when the eigenvalues of
K are smaller than 1 (see Equation (2.32)) so this step costs O(n4). Then, the
Cholesky decomposition of I−K is the most expensive operation in Algorithm
3 as it costs approximately 1

3
N3. In this case, the overall running complexity

of the sequential thinning algorithm is of order 1
3
N3, which is 4 times less

than the spectral algorithm. When some eigenvalues of K are equal to 1,
Equation (2.32) does not hold anymore so, in that case, the running complexity
of Algorithm 3 is only bounded by O(nN3).

We will retrieve this experimentally as, depending on the application or on
the kernel K, this Algorithm 3 is able to speed up the sampling of DPPs. Note
that in the previous computations, we have not taken into account the possible
parallelization of the sequential thinning algorithm. As a matter of fact, the
Cholesky decomposition is parallelizable [61]. Incorporating this parallel com-
putations would probably speed up the sequential thinning algorithm, since
the Cholesky decomposition of I − K is the most expensive operation when
the expected cardinality |Y | is low. The last part of the algorithm, the thinning
procedure, operates sequentially, so it is not parallelizable. These comments
on the complexity and running times highly depends on the implementation,
on the choice of the programming language and speed up strategies, so they
mainly serve as an illustration.

2.5 Experiments

2.5.1 DPP Models for Runtime Tests

In the following section, we use the common notation of L-ensembles, with
matrix L = K(I −K)−1. We present the results using four di�erent kernels:

(a) A random kernel: K = Q−1DQ, where D is a diagonal matrix with
uniformly distributed random values in (0, 1) and Q an unitary matrix
created from the QR decomposition of a random matrix.
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(b) A kernel similar to the continuous Ginibre kernel: K = L(I +L)−1 with
for all x1, x2 ∈ Y = {1, . . . , N},

L(x1, x2) =
1

π
e−

1
2

(|x1|2+|x2|2)+x1x2 , (2.37)

(c) A patch-based kernel: Let u be a discrete image and Y = P a subset
of all its patches, i.e. square sub-images of size w × w in u. De�ne
K = L(I + L)−1 where for all P1, P2 ∈ P ,

L(P1, P2) = exp

(
−‖P1 − P2‖2

2

s2

)
, (2.38)

where s > 0 is called the bandwidth or scale parameter. We will detail
the de�nition and the use of this kernel in Chapter 4.

(d) A projection kernel: K = Q−1DQ, whereD is a diagonal matrix with the
n �rst coe�cients equal to 1, the others, equal to 0, and Q is a random
unitary matrix as for model (a).

It is often essential to control the expected cardinality of the point process.
For case (d) the cardinality is �xed to n. For the three other cases, we use a
procedure similar to the one developed in [14]. Recall that if Y ∼ DPP(K)

and K = L(I +L)−1, E(|Y |) = tr(K) =
∑
i∈Y

λi =
∑
i∈Y

µi
1 + µi

, where (λi)i∈Y are

the eigenvalues of K and (µi)i∈Y are the eigenvalues of L [72, 81]. Given an
initial matrix L = K(I −K)−1 and a desired expected cardinality E(|Y |) = n,

we run a binary search algorithm to �nd α > 0 such that
∑
i∈Y

αµi
1 + αµi

= n.

Then, we use the kernels Lα = αL and Kα = Lα(I + Lα)−1.

2.5.2 Runtimes

For the following experiments, we ran the algorithms on a laptop HP Intel(R)
Core(TM) i7-6600U CPU and we use the softwareMatlab R2018b. Note that
the computational time results depend on the programming language and the
use of optimized functions by the software. Thus, the following numerical
results are mainly indicative.

First, let us compare the sequential thinning algorithm (Algorithm 3) pre-
sented here with the two main sampling algorithms: the classic spectral al-
gorithm (Algorithm 1) and the �naive� sequential algorithm (Algorithm 2).
Figure 2.1 presents the running times of the three algorithms as a function of
the total number of points of the ground set. Here, we have chosen a patch-
based kernel (c). The expected cardinality E(|Y |) is constant, equal to 20.
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As foreseen, the sequential algorithm (Algorithm 2) is far slower than the two
others. Whatever the chosen kernel and the expected cardinality of the DPP,
this algorithm is not competitive. Note that the sequential thinning algorithm
uses this sequential method after sampling the particular Bernoulli process.
But we will see that this �rst dominating step can be very e�cient and lead
to a relatively fast algorithm.
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Figure 2.1: Running times of the 3 studied algorithms in function of the size
of the ground set, using a patch-based kernel.

From now on, we restrict the comparison to the spectral and the sequential
thinning algorithms (Algorithms 1 and 3). We present in Figure 2.2 the running
times of these algorithms as a function of the size of |Y| in various situations.
The �rst row shows the running times when the expectation of the number of
sampled point E(|Y |) is equal to 4% of the size of Y : it increases as the total
number of points increases. In this case, we can see that whatever the chosen
kernel, the spectral algorithm is faster as the complexity of sequential part of
Algorithm 3 depends on the size |X| that also grows. On the second row, as |Y|
grows, E(|Y |) is �xed to 20. Except for the right-hand-side kernel, we are in
the con�guration where |X| stays proportional to |Y |, then the Bernoulli step
of Algorithm 3 is very e�cient and this sequential thinning algorithm becomes
competitive with the spectral algorithm. For these general kernels, we observe
that the sequential thinning algorithm can be as fast as the spectral algorithm,
and even faster, when the expected cardinality of the sample is small compared
to the size of the ground set. The question is: when and up to which expected
cardinality is Algorithm 3 faster?

Figure 2.3 displays the running times of both algorithms in function of the
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Figure 2.2: Running times in log-scale of the spectral and the sequential thin-
ning algorithms as a function of the size of the ground set |Y|,
using �classic" DPP kernels. From left to right: a random kernel,
a Ginibre-like kernel, a patch-based kernel and a projection kernel.
On the �rst row, the expectation of the number of sampled points
is set to 4% of |Y| and on the second row, E(|Y |) is constant, equal
to 20.

expected cardinality of the sample when the size of the ground set is constant,
equal to 5000 points. Notice that, concerning the three left-hand-side general
kernels with no eigenvalue equal to one, the sequential thinning algorithm
is faster under a certain expected number of points -which depends on the
kernel. For instance, when the kernel is randomly de�ned and the range of
desired points to sample is below 25, it is relevant to use this algorithm. To
conclude, when the eigenvalues of the kernel are below one, Algorithm 3 seems
relevant for large data sets but small samples. This case is quite common,
for instance to summarize a text, to work only with representative points in
clusters or to denoise an image with a patch-based method.

The projection kernel (when the eigenvalues of K are either 0 or 1) is,
as expected, a complicated case. Figure 2.2 (bottom, right) shows that our
algorithm is not competitive when using this kernel. Indeed, the cardinality
of the dominating Bernoulli process X can be very large. In this case, the
bound in Equation (2.32) isn't valid (and even tends to in�nity) as λmax = 1,
and we necessarily reach the degenerated case when, after some index k, all
the Bernoulli probabilities ql, l ≥ k, are equal to 1. Then the second part of
the sequential thinning algorithm -the sequential sampling part- is done on
a larger set which signi�cantly increases the running time of our algorithm.
Figure 2.3 con�rms this observation as in that con�guration, the sequential
thinning algorithm is never the fastest.
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Figure 2.3: Running times of the spectral and sequential thinning algorithms
in function of the expected cardinality of the process. From left to
right, from top to bottom, using a random kernel, a Ginibre-like
kernel, the patch-based kernel and a projection kernel. The size of
the ground set is �xed to 5000 in all examples.
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Figure 2.4: Behavior of the Bernoulli probabilities qk, k ∈ {1, . . . , N}, for the
kernels presented in Section 2.5.1, considering a ground set of N =
5000 elements and varying the expected cardinality of the DPP,
E(|Y |) = 15, 100, 1000.
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Figure 2.4 illustrates how e�cient the �rst step of Algorithm 3 can be
to reduce the size of the initial set Y . It displays Bernoulli probabilities
qk, k ∈ {1, . . . , N} (Equation 2.31) associated to the previous kernels, for dif-
ferent expected cardinality E(|Y |). Observe that the probabilities are overall
higher for a projection kernel. For such a kernel, we know that they necessarily
reach the value 1, at the latest from the item k = E(|Y |). Indeed projection
DPPs have a �xed cardinality (equal to E(|Y |)) and qk computes the probabil-
ity to select the item k given that no other item has been selected yet. Notice
that in general, considering the other kernels, the degenerated value qk = 1 is
rarely reached, even though in our experiments, the Bernoulli probabilities as-
sociated to the patch kernel (c) are sometimes close to one, when the expected
size of the sample is E(|Y |) = 1000. On the opposite, the Bernoulli proba-
bilities associated to the Ginibre-like kernel remain rather close to a uniform
distribution.

In order to understand more precisely to what extent high eigenvalues pe-
nalize the e�ciency of the sequential thinning algorithm (Algorithm 3), Figure
2.5 compares its running times with that of the spectral algorithm (Algorithm
1) in function of the eigenvalues of the kernel K. For these experiments, we
consider a ground set of size |Y| = 5000 items and an expected cardinality
equal to 15. In the �rst case (a), the eigenvalues are either equal to 0 or to
λmax, whith m non-zero eigenvalues so that mλmax = 15. It shows that above
a certain λmax (' 0.65), the sequential thinning algorithm is not the fastest
anymore. In particular, when λmax = 1, the running time takes o�. In the
second case (b), the eigenvalues (λk) are randomly distributed between 0 and
λmax so that

∑
k λk = 15. In practice, (N − 1) eigenvalues are exponentially

distributed, with expectation 15−λmax
N−1

, and the last eigenvalue is set to λmax. In
this case, the sequential thinning algorithm remains faster than the spectral
algorithm, even with high values of λmax, except when λmax = 1. This can be
explained by the fact that, by construction of this kernel, most of the eigenval-
ues are very small. The average size of the Bernoulli process generated (light
grey, right axes) also illustrates the in�uence of the eigenvalues.

Table 2.1 presents the individual weight of the main steps of the three algo-
rithms. Concerning the sequential algorithm, logically, the matrix inversion is
the heaviest part taking 74.25% of the global running time. These proportions
remain the same when the expected number of points n grows. The main oper-
ation of the spectral algorithm is by far the eigendecomposition of the matrix
K, counting for 83% of the global running time, when the expectation of the
number of points to sample evolves with the size of Y . Finally, the sequential
sampling is the heaviest step of the sequential thinning algorithm. We have
already mentioned that the thinning is very fast and that it produces a point
process with a cardinality as close as possible to the �nal DPP. When the ex-
pected cardinality is low, the number of selected points by the thinning process
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N −m zero eigenvalues.
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Figure 2.5: Running times of the spectral and sequential thinning algorithms
(Algorithm 1 and 3) in function of λmax. The size of the Bernoulli
process X is also displayed in light grey (right axis). Here, |Y| =
5000 and E(|Y |) = 15.

is low too, so the sequential sampling part remains bounded (86.53% when the
expected cardinality E(|Y |) is constant). On the contrary, when E(|Y |) grows,
the number of points selected by the dominated process rises as well so the
running time of this step is growing (with a mean of 89.39%). As seen before,
the global running time of the sequential thinning algorithm really depends on
how good the domination is.

Algorithms Steps Expected cardinality

4% of |Y| Constant (20)

Sequential Matrix inversion 74.25% 72.71%
Cholesky computation 22.96% 17.82%

Spectral Eigendecomposition 83.34% 94.24%
Sequential sampling 14.77% 4.95%

Sequential thinning Preprocess to de�ne q 10.07% 13.43%
Sequential sampling 89.39% 86.53%

Table 2.1: Detailed running times of the sequential, spectral and sequential
thinning algorithms for varying ground sets Y with |Y| ∈ [100, 5000]
using a patch-based kernel.

Thus, the main case when this sequential thinning algorithm (Algorithm
3) fails to compete with the spectral algorithm (Algorithm 1) is when the
eigenvalues of the kernel are equal or very close to 1. This algorithm improves
the sampling running times when the target size of the sample is very low
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(below 25 in our experiments).

In cases when multiple samples of the same DPP have to be drawn, the
eigendecomposition of K can be stored and the spectral algorithm is more
e�cient than ours. Indeed, in our case the computation of the Bernoulli prob-
abilities can also be saved but the sequential sampling is the heaviest task and
needs to be done for each sample.

2.6 Conclusion

In this chapter, we proposed a new sampling algorithm (Algorithm 3) adapted
to general determinantal point processes, which doesn't use the spectral de-
composition of the kernel and which is exact. It proceeds in two phases. The
�rst one samples a Bernoulli process whose distribution is adapted to the tar-
get DPP. We know that the generated point process contains the DPP and it
is constructed so that its size is the closest to the size of the target DPP. It is
a fast and e�cient step that reduces the initial number of points of the ground
set. Moreover, if I −K is invertible, the expectation of the cardinality of the
Bernoulli process is proportional to the expectation of the cardinality of the
DPP.

The second phase is a sequential sampling based on the points selected in
the �rst step. This phase is made possible by the explicit formulations of the
general marginals and the pointwise conditional probabilities of any DPP from
its kernel K. The sampling is sped up using updated Cholesky decompositions
to compute the conditional probabilities. This sequential strategy is not e�-
cient, that is why it is crucial that the �rst step reduces the size of the initial
state space as much as possible. Matlab and Python implementations of the
sequential thinning algorithm can be found online3.

In terms of running times, we have detailed the cases for which this algo-
rithm is competitive with the spectral algorithm, in particular when the size
of the ground set is high and the expected cardinality of the DPP is modest.
This framework is common in machine learning applications. Indeed, DPPs
are an interesting solution to subsample a data set, initialize a segmentation
algorithm or summarize an image, examples where the number of datapoints
needs to be signi�cantly reduced, and where our algorithm would speed up the
procedure.

As future works, we would like to investigate methods to further accelerate
our algorithm. We are also interested in a potential adaptation of this strategy
to continuous DPPs, de�ned on a continuous state space. Indeed, the thinning
procedure we use comes from a continuous setting. We would like to examine

3https://claunay.github.io/exact_sampling.html

https://claunay.github.io/exact_sampling.html
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the modi�cation of the rest of the algorithm to a continuous framework. Con-
tinuous DPPs appear in the distribution of the spectrum of Gaussian random
matrices in probability or in the location of fermions in quantum mechanics,
for instance. Note that sampling exactly a continuous DPPs models is a much
more challenging problem than sampling discrete DPPs. The main reasons are
that the domains are often in�nite, and more importantly, because the eigen-
decompositon of the kernel operator generally involves an in�nite number of
eigenvalues. Yet hope that adaptation of the sequential thinning procedure
may provide an adequate sampling procedure for some continuous DPP mod-
els.
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3.1 Introduction

In this chapter, we consider DPPs de�ned on a speci�c space, the set of the
pixels of an image. In such a framework, it seems natural to assume that the
point processes under study are stationary and periodic. Thus, the correlation
between pairs of pixels no longer depends on the position of the pixels but
on the di�erence between their position. As a consequence, the kernel K is
a block-circulant matrix. The kernel can be characterized using a function C
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de�ned on the image domain, that we identify with the kernel of the DPP in
the following. Circulant and block-circulant matrices have the particularity to
be diagonalized by the Fourier basis. In this chapter, the eigenvalues of the
matrix K are the Fourier coe�cients of the function C. Thus, the discrete
Fourier transform plays a key role in this chapter.

Section 3.2 introduces these discrete DPPs that we call Determinantal Pixel
Processes (DPixPs). We study the consequences of the stationarity and peri-
odicity hypotheses on basic properties of DPPs, in particular on the repulsion
generated by these point processes. Gibbs point processes can generate hard-
core repulsion, that is imposing a minimal distance between the points of the
point process. We study the existence of a similar property for DPixPs.

In Section 3.3, we investigate shot noise models based on DPixPs and on a
given spot function. These models consist in summing the spot function trans-
lated around the points of the point process. Usually based on Poisson point
processes, they are fast and easy to simulate and they are used to generate
micro-textures. After presenting these models based on DPixPs, we analyze
the e�ect of the repulsion of DPPs on them. It appears that it is possible to
adapt the kernel of a DPixP to the spot function g, in order to obtain particu-
larly regular or irregular textures. This is related to an optimization problem
based on the variance of the shot noise model. Usual Poisson shot noise mod-
els converge to a Gaussian texture when the intensity of the point process
tends to in�nity. Similarly, we prove that, in an appropriate framework, shot
noise models based on any DPixP and any spot function verify a Law of Large
Number and a Central Limit Theorem characterizing their convergence to a
Gaussian process.

In Section 3.4, in order to investigate inference on DPixP kernels, we re-
view the de�nition of equivalence classes of DPPs in di�erent frameworks.
This is a question called identi�ability. A model is not identi�able if two dif-
ferent parametrizations produce equivalent distributions. Thus, for estimation
purposes, it is crucial to characterize the equivalent kernels of a given DPP
kernel. We develop an algorithm that uses the stationarity hypothesis to esti-
mate the kernel of a DPixP from one or several samples. This method is fast
and provides satisfying results.

3.2 Determinantal Pixel Processes (DPixPs)

In this section, let us present Determinantal Pixel Processes, DPPs de�ned on
the set of pixels of an image, and the main properties of these point processes.
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3.2.1 Notations and De�nitions

In the following sections, we will consider DPPs de�ned on the pixels of an
image. Let us �rst de�ne any image as a function u : Ω→ Rd (d = 1 for gray-
scale images and d = 3 for color images), where Ω = {0, ..., N1−1}×{0, ..., N2−
1} ⊂ Z2 is a �nite grid representing the image domain. The cardinality of Ω,
that is the number of pixels in the image, is denoted by N = |Ω| = N1N2. Note
that, if necessary, the pixels of an image are ordered and they are considered
column by column. For any image u : Ω 7→ Rd, and y ∈ Z2, the translation
τyu of u by the vector y is de�ned by

∀ x = (x1, x2) ∈ Ω, τyu(x1, x2) := u(x1 − y1 modN1, x2 − y2 modN2).

In the following, we consider the Fourier domain Ω̂ =
{
−N1

2
, . . . , N1

2
− 1
}
×{

−N2

2
, . . . , N2

2
− 1
}
if N1 and N2 are even (otherwise, for instance if Ni is odd,

we consider
{
−Ni−1

2
, . . . , Ni−1

2

}
), so that the frequency 0 is centered. We recall

that the discrete Fourier transform of a function f : Ω 7→ C is given by, for all
ξ ∈ Ω̂,

f̂(ξ) = F(f)(ξ) =
∑
x∈Ω

f(x)e−2iπ〈x,ξ〉, with 〈x, ξ〉 = x1ξ1
N1

+ x2ξ2
N2
. (3.1)

This transform is inverted using the inverse discrete Fourier transform:

∀x ∈ Ω, f(x) = F−1
(
f̂
)

(x) =
1

N

∑
ξ∈Ω̂

f̂(ξ)e2iπ〈x,ξ〉. (3.2)

Note that given a function f de�ned on Ω, we consider it is extended by
periodicity to Z2. Thus, for any f de�ned on Ω, we set f−(x) := f(−x). The
convolution of two functions f and g de�ned on Ω is given by

∀x ∈ Ω, f ∗ g(x) =
∑
y∈Ω

f(x− y)g(y), (3.3)

where the boundary conditions are considered periodic. Then, f ∗ g can be
computed in the Fourier domain, since

∀ξ ∈ Ω̂, f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ). (3.4)

The autocorrelation of a function f is denoted by Rf . It is de�ned for all
x ∈ Ω by Rf (x) = f ∗ f−(x). Besides, the Parseval formula asserts that for
any function f : Ω→ C,

‖f‖2
2 =

∑
x∈Ω

|f(x)|2 =
1

N

∑
ξ∈Ω̂

|f̂(ξ)|2 =
1

N
‖f̂‖2

2. (3.5)



66 Chapter 3. Determinantal Point Processes on Pixels

Let us consider a DPP de�ned on Ω with kernel K. In this work, we will
focus on the modeling of textures, which are often characterized by the repeti-
tion of a pattern, or small objects which may be indistinguishable individually.
Their homogeneous aspect can be naturally modeled by a stationary random
�eld. Thus we will suppose that the point processes under study are station-
ary and periodic. This hypothesis amounts to consider that the correlation
between two pixels x and y only depends on the di�erence x− y: the distribu-
tion is invariant by translation, while assuming periodic boundary conditions.
Thus the kernel matrix K is a block-circulant matrix with circulant blocks,
entirely characterized by its �rst row. Note that in practice, the pixels are or-
dered column by column so that the ordered index of a pixel x = (x1, x2) ∈ Ω
is (x1 − 1)N2 + x2.

De�nition 3.2.1. A block-circulant matrix with circulant blocks K veri�es for
all x = (x1, x2), y = (y1, y2) ∈ Ω, for all τ = (τ1, τ2) ∈ Ω,

K (x+ τ, y + τ) = K (x, y) , (3.6)

where we still consider periodic boundary conditions.

Let us de�ne a correlation function C : Ω→ C such that

K(x, y) = C(x − y), ∀ x, y ∈ Ω. (3.7)

Note that C is extended to Z2 by periodicity. As it entirely characterizes K,
it also characterizes the associated DPP. Circulant matrices are diagonalized
in the Fourier basis, thus the eigenvalues of K are the Fourier coe�cients of
C.

In this new framework, we can de�ne DPPs from their correlation function
C, they are now called determinantal pixel processes (DPixP). A DPixP kernel
has two representations: C de�ned on Ω or the initial matrix K de�ned on
Ω × Ω which corresponds to the block-circulant matrix with circulant blocks
whose �rst row is C.

De�nition 3.2.2 (Stationary DPixP). Let C : Ω → C be a function de�ned
on Ω, extended by periodicity to Z2, such that

∀ξ ∈ Ω̂, Ĉ(ξ) is real and 0 ≤ Ĉ(ξ) ≤ 1. (3.8)

Such a function is called an admissible kernel. Any random subset X ⊂ Ω is
called a (stationary) DPixP with kernel C and denoted X ∼ DPixP(C) if

∀A ⊂ Ω, P(A ⊂ X) = det(KA), (3.9)

where KA = (C(x− y))x,y∈A is a |A| × |A| matrix.
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3.2.2 Properties

The next proposition is directly deduced from properties of general DPPs that
were presented in the introduction.

Proposition 3.2.1 (Distribution of the cardinality). The cardinality |X| of a
DPixP is distributed as the sum

∑
ξ∈Ω̂

Bξ, where for all ξ ∈ Ω̂, Bξ are independent

Bernoulli random variables with parameters Ĉ(ξ). In particular,

E(|X|) =
∑
ξ∈Ω̂

Ĉ(ξ) = NC(0) and Var(|X|) =
∑
ξ∈Ω̂

Ĉ(ξ)(1− Ĉ(ξ)). (3.10)

One can notice that it is easy to know and control the expected number of
points in the point process. In the following, when comparing di�erent DPixP
kernels, we will consider a �xed expected cardinality n, meaning that we will
�x C(0) = n

N
.

Proposition 3.2.2 (Separable kernel). Let C1 and C2 be two discrete ker-
nels, of dimension 1, de�ned respectively on {0, ..., N1−1} and {0, ..., N2−1},
both verifying Equation (3.8) (for the 1D Fourier transform). Then the point
process de�ned on Ω by the kernel C given by ∀x = (x1, x2) ∈ Ω, C(x) =
C1(x1)C2(x2), is a DPixP, that will be called separable.

Proof. Notice that for all ξ = (ξ1, ξ2) ∈ Ω̂,

Ĉ(ξ) =

N1−1∑
x1=0

N2−1∑
x2=0

C1(x1)C2(x2)e
−2iπ

(
x1ξ1
N1

+
x2ξ2
N2

)
= Ĉ1(ξ1)Ĉ2(ξ2). (3.11)

Thus, clearly, for all ξ ∈ Ω̂, Ĉ(ξ) is real and 0 ≤ Ĉ(ξ) ≤ 1. C is an admissible
kernel.

Examples

Let us consider two fundamental examples of DPixPs. The �rst one is the
Bernoulli process. It corresponds to the discrete analogous of the Poisson point
process: points are drawn independently and following a Bernoulli distribution
of parameter p ∈ [0, 1]. This point process is the DPixP characterized by the

kernel C such that C = pδ0, or equivalently ∀ξ ∈ Ω̂, Ĉ(ξ) = p ∈ [0, 1]. The sec-
ond main example is the family of projection DPixPs, that are determinantal
processes de�ned by a kernel C which veri�es for all ξ ∈ Ω̂, Ĉ(ξ)(1−Ĉ(ξ)) = 0.
Thus, from Proposition 3.2.1, the number of points of projection DPixPs is
�xed and equal to the number of non-zero Fourier coe�cients of C.
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(a) Re(C) (b) Ĉ (c) Sample

Figure 3.1: Comparison between two samples (both have 148 points) of a
Bernoulli process (�rst line) and a projection DPixP de�ned by

the kernel C such that Ĉ is the indicator function of a discrete
circle (second line). For both DPixPs, from left to right, the real

part of the kernel function C, its Fourier coe�cients Ĉ and one
associated sample.

As we have seen previously, notice that in the general discrete case, the
�rst example corresponds to the case where K is diagonal and the second one
corresponds to the case where the eigenvalues of K are either equal to 0 or to
1. It is also called a projection DPP and the cardinality of the point process
is equal to the number of non-zero eigenvalues, i.e. the rank of K.

Figure 3.1 presents two samples of these particular cases. Clearly, the
projection DPixP enables a more �regular� distribution of the points in the
square, tends to avoid regions with holes and regions with clusters.

Sampling from DPixPs

The common algorithm to sample exactly general determinantal processes is
the spectral algorithm, presented in Section 2.2.1. Remember that this is a
two steps strategy which relies on an eigendecomposition {(λx, vx)}1≤x≤N of
the matrix K. Indeed, de�ne (Bx)1≤x≤N , N independent random variables

such that Bx ∼ Ber(λx) and KB =
∑
x∈Ω

Bxvxv
∗
x. Such a matrix KB is a random

version of K and Hough and al. [73] proved that DPP(K) = DPP(KB).
Hence, the spectral algorithm consists in �rst drawingN independent Bernoulli
random variables of parameters λx: these variables select n eigenvalues and

eigenvectors, where n is distributed as
∑

1≤x≤N

Bx. Then, it samples the n points

from a projection DPP, obtained from the selected eigenvectors, thanks to a
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Gram-Schmidt procedure.
In our discrete stationary periodic framework, the eigenvalues of the matrix

K are the Fourier coe�cients of C and its eigenvectors are the elements of the
Fourier basis. Then an eigendecomposition of a DPixP of kernel C is computed
using the 2D Fast Fourier Transform (FFT2) algorithm. Algorithm 4 presents
the spectral algorithm adapted to sample a DPixP. In this algorithm, (ϕξ)ξ∈Ω̂

denotes the columns of the discrete Fourier transform matrix:

∀ ξ ∈ Ω̂, ∀ x ∈ Ω, ϕξ(x) = e−2iπ〈x,ξ〉. (3.12)

Algorithm 4 Spectral simulation of X ∼ DPixP(C)

� Sample a random �eld U = (Uξ)ξ∈Ω̂ where the Uξ are i.i.d. uniform on
[0, 1].

� De�ne the �active frequencies� {ξ1, . . . , ξn} = {ξ ∈ Ω̂;U(ξ) ≤ Ĉ(ξ)}, and
denote

∀x ∈ Ω, v(x) = (ϕξ1(x), . . . , ϕξn(x)) ∈ Cn. (3.13)

� Sample X1 uniform on Ω, and de�ne e1 = v(X1)/‖v(X1)‖.

� For k = 2 to n do:

� Sample Xk from the probability density pk on Ω, de�ned by

∀x ∈ Ω, pk(x) =
1

n− k + 1

(
n

N
−

k−1∑
j=1

|e∗jv(x)|2
)

(3.14)

� De�ne ek = wk/‖wk‖ where wk = v(Xk)−
k−1∑
j=1

e∗jv(Xk)ej.

� Return X = (X1, . . . , Xn).

Because of the eigendecomposition of a matrix of size |Ω| × |Ω| the initial
spectral algorithm runs inO(|Ω|3), yet thanks to the FFT2 algorithm, sampling
DPixPs costsO(|Ω| log |Ω|). Whereas in general the spectral algorithm is heavy
when dealing with a huge data set, in this setting, it is very e�cient. This
allows us to handle large images. Thus, in addition to the explicit computation
of marginals and of moments of a DPixP from its kernel, this exact sampler is
one more asset of this family of point processes with respect to Gibbs processes.

Figure 3.2 presents the sampling of a projection DPixP. The Fourier coe�-
cients of the kernel function are in {0, 1}, and the non-zero Fourier coe�cients
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Figure 3.2: Sampling of a projection DPixP. From left to right, the real part
of the kernel C, the Fourier coe�cients of C, a capture of the
conditional density during the simulation, the generated sample.

are shaped like a truncated anisotropic Gaussian distribution. Figure 3.2(c)
shows a capture taken during the k-th iteration of the sequential step of the
spectral algorithm. The red asterisks symbolize the k − 1 pixels already se-
lected. The grey scale represents the values of the probability for each pixel to
be selected next given the pixels already selected. The black asterisk symbol-
izes the k-th selected pixel. Observe as a �repulsion zone� is created around
every selected pixel. This zone, where the conditional probability to select a
new pixel is very low, reproduces exactly the shape of the kernel C. Thus, in
the end, the pixels of the sample respect the repulsion imposed by the kernel.

Pair Correlation Function

In spatial statistics, the pair-correlation function (p.c.f.) gX associated to a
point process X is used to describe interactions between pairs of points. It
characterizes the local repulsiveness of X [20]. For any discrete stationary
point process on Ω, it is de�ned for all x ∈ Ω by

gX(x) =
P ({0, x} ⊂ X)

ρ2
, (3.15)

where ρ is the intensity of the point process, ρ = E(|X|)
|Ω| = P(0 ∈ X). It

quanti�es the degree of interaction between two points separated by a gap x:
the closest g is to 1, the less correlated they are. If g(x) > 1, the points are
considered to attract each other, whereas if g(x) < 1 the points are considered
to repel each other. Notice that if X ∼ DPixP(C),

gX(x) =
C(0)2 − |C(x)|2

C(0)2
= 1− |C(x)|2

|C(0)|2
. (3.16)

Thus, if X is a Bernoulli point process, for all x 6= 0, gX(x) = 1: there
is no interaction between the points. Note also that for any DPixP, gX ≤ 1.
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During the sequential step of the sampling, each time a pixel is selected, a
�repulsion zone� appears around it, where the probability for a pixel to be
selected is low and whose shape depends on the kernel function C (Figure
3.2). This local �repulsion zone� is clearly retrieved in the pair correlation
function computation.

3.2.3 Hard-core Repulsion

Gibbs processes are often used as their de�nition enables to precisely charac-
terize the repulsion. Besides, they can provide hard-core repulsion, meaning
that the points are prohibited from being closer than a certain distance. To
compare with this family of point processes, we investigate the possibility of
hard-core repulsion in the case of DPixPs. First, we study a hard-core repul-
sion for pairs of points. Speci�cally, if x ∈ Ω and e ∈ Ω (for instance e = (1, 0)
or (0, 1)), is there a DPixP kernel such that x and x + e can't belong simul-
taneously to the sample? The following proposition answers to this question
and characterizes the associated kernel.

Proposition 3.2.3. Let us consider X ∼ DPixP(C) on Ω and e ∈ Ω. Then
the following propositions are equivalent:

1. For all x ∈ Ω, the probability that x and x + e belong simultaneously to
X is zero.

2. For all x ∈ Ω, the probability that x and x+ λe belong simultaneously to
X is zero, for λ ∈ Q such that λe ∈ Ω.

3. There exists θ ∈ R such that the only frequencies ξ ∈ Ω̂ such that Ĉ(ξ)
is non-zero are located on the discrete line de�ned by 〈e, ξ〉 = θ.

4. X contains almost surely at most one point on every discrete line of
direction e.

This is called directional repulsion.

Proof. Let X be a DPixP de�ned on Ω with kernel C. First, let us prove that
1 ⇔ 3. Recall that for all x ∈ Ω, P

(
{x, x + e} ⊂ X

)
= C(0)2 − |C(e)|2. We

deduce from the triangle inequality that

|C(e)| =

∣∣∣∣∣∣ 1

|Ω|
∑
ξ∈Ω̂

Ĉ(ξ)e2iπ〈e,ξ〉

∣∣∣∣∣∣ ≤ 1

|Ω|
∑
ξ∈Ω̂

Ĉ(ξ) = C(0), (3.17)

and the equality holds if and only if all non-zero elements of the left-hand side
sum have equal argument. Thus, P

(
{x, x + e} ⊂ X

)
= 0 if and only if there
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Figure 3.3: Example of a kernel associated with hard-core repulsion in the
horizontal direction. From left to right, the Fourier coe�cients
of C, the real part of the kernel C, a capture of the conditional
density during the simulation, the associated �nal sample.

exists θ ∈ R such that for all ξ ∈ Ω̂, either Ĉ(ξ) = 0, or 〈e, ξ〉 = θ. Hence, for
all x ∈ Ω, the probability that x and x+ e belong simultaneously to X is zero
if and only if the only non-zeros Fourier coe�cients of C are aligned in the
orthogonal direction of e. Second, let us prove that 2 ⇔ 3. Consider λ ∈ Q
such that λe ∈ Ω. Similarly, P

(
{x, x + λe} ⊂ X

)
= 0 if and only if there

exists θ ∈ R such that for all ξ ∈ Ω̂, either Ĉ(ξ) = 0, or 〈λe, ξ〉 = θ, meaning
that 〈e, ξ〉 = θ

λ
, which also is the equation of a discrete line orthogonal to e.

Finally, suppose that X contains almost surely at most one point on every
discrete line of direction e. Then, for all x ∈ Ω, the probability that x and
x + e belong to X is zero so 4 ⇒ 1 ⇔ 3. Now assume that the only non-zero
Fourier coe�cients of C are aligned on a discrete line that is orthogonal to e.
As 2⇔ 3 for all λ ∈ Q such that λe ∈ Ω, P

(
{x, x+ λe} ⊂ X

)
= 0. Hence, X

contains at most one point on any line of direction e, which can be described
as a hard-core repulsion of direction e.

Figure 3.3 illustrates this proposition: all non-zero Fourier coe�cients are
vertically aligned. The third �gure presents a capture of the conditional density
while the simulation is in progress, after 15 pixels already sampled. In each
pixel, the probability that it is the next point selected is represented by the
gray scale: the lighter a pixel is, the greater its probability of being the next
point sampled. One can see that as soon as a pixel x is sampled, all the pixels
belonging to the horizontal line passing through x have a zero probability of
being sampled next.

Proposition 3.2.4. Let X ∼ DPixP(C) verifying the properties of Proposi-
tion 3.2.3, with e = (1, 0), meaning that X contains at most one point on any
horizontal line and all non-zero Fourier coe�cients of C are aligned on a ver-
tical line. Then C is separable in the sense of Proposition 3.2.2. Besides, the
associated vertical point process is a DPixP of dimension 1 and conditionally



3.3. Shot Noise Models Based on DPixPs 73

to the drawn ordinates, the associated horizontal point process consists of a sin-
gle point chosen uniformly and independently from the other horizontal point
processes. The same proposition holds for e = (0, 1) and vertical hard-core
repulsion (inverting the terms horizontal and vertical).

Proof. Consider an admissible DPixP kernel C such that all its Fourier co-
e�cients are either zero either aligned on a vertical line, positioned in c ∈{
−N1

2
, . . . , N1

2
− 1
}
(here we assume that N1 is even, the proof is similar if N1

is odd). Thus we can de�ne two functions Ĉ1 = 1c and Ĉ2 = Ĉ(c, .) such

that for all ξ = (ξ1, ξ2) ∈ Ω̂, Ĉ(ξ) = Ĉ1(ξ1)Ĉ2(ξ2) = Ĉ2(ξ2)1c(ξ1). Notice that

C = F−1(Ĉ1)F−1(Ĉ2) = C1C2. Such a function C1 corresponds to an admissi-
ble DPixP projection kernel de�ned in one dimension, drawing one point and
remember that the �rst point of a DPixP is drawn uniformly. Furthermore, C
is a separable kernel.

Note that as soon as a pair of points con�guration is prohibited, the whole
direction is prohibited. As imposing a minimum distance between points is
equivalent to prohibiting pair of points con�gurations in all directions, we
deduce that the only DPixP imposing a minimum distance between the points
is the degenerate DPixP, consisting of a single pixel. Hence, we obtain the
following proposition.

Proposition 3.2.5. Let Ω be an image domain. There is no DPixP kernel
de�ned on Ω that generates a point process with hard core repulsion in the
broad sense, except a degenerate DPixP containing only one point.

This property weakens the appeal of DPixPs compared to Gibbs processes.
Indeed, as we have seen before, hard core repulsion is a property appreciated
by the computer graphics community and that Gibbs processes can introduce.

3.3 Shot Noise Models Based on DPixPs

3.3.1 Shot Noise Models and Micro-textures

In the following section, we study discrete shot noise models driven by a DPixP.
Shot noise models naturally appear to model phenomena such as the super-
position of impulses occurring at independent and random times or positions.
These models have been introduced in the computer graphics �eld with the
work of van Wijk [130]. Notice that van Wijk uses the expression spot noise
texture as the spatial counterpart of 1D shot noise models yet the term shot
noise is commonly employed for general models. Thus, in the rest of the sec-
tion, we use this more general expression. Shot noise models are frequently
used to approximate Gaussian textures as they are well-de�ned and simple
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mathematical models that allows us for fast synthesis [82], [49], [51]. Here,
we are interested in the discrete version of these models on the �nite grid
Ω = {0, . . . , N1 − 1} × {0, . . . , N2 − 1} ⊂ Z2.

De�nition 3.3.1 (Shot noise models based on a discrete point process). Con-
sider X a discrete point process with intensity ρ and g a (deterministic) func-
tion de�ned on Ω, periodically extended to Z2. Then, the shot noise random
�eld S based on the points X and the spot g is de�ned by

∀x ∈ Ω, S(x) =
∑
xi∈X

g(x− xi). (3.18)

In general, discrete shot noise models are based on a set of n i.i.d. random
variables: it amounts to summing n randomly shifted versions of the spot.
These models are particularly interesting for Gaussian texture synthesis as
they have a Gaussian limit [48]. Indeed, in that case, the shot noise is the sum
of n i.i.d. random images so that thanks to the Central Limit Theorem, we
obtain a Gaussian limit. We study here shot noise models based on DPixPs. At
the end of the section, we prove that there is a similar Central Limit theorem
for shot noise models based on DPixPs that needs a modi�ed framework but
that ensures a Gaussian limit.

From now on, we consider an admissible kernel C and we suppose that X
is the DPixP of kernel C. We study the interactions between the kernel C and
the spot function g. To compute the moments of a shot noise model S based
on X and a given spot, we need a moment formula ([101], [9]), also known as
the Campbell or Slivnyak-Mecke formula, adapted to our discrete setting in
the following proposition.

Proposition 3.3.1 (Moments formula for DPixPs). Let X be a DPixP of
kernel C de�ned on Ω, let us consider k ≥ 1 an integer and f a function
de�ned on Ωk. We have

E

( 6=∑
x1,...,xk∈X

f(x1, . . . , xk)

)
=

∑
y1,...,yk∈Ω

f(y1, . . . , yk) det((C(yi − yj)1≤i,j≤k),

(3.19)

where

6=∑
x1,...,xk∈X

means that the (xi) are all di�erent. In particular, for k = 1,

we have E

(∑
x∈X

f(x)

)
= C(0)

∑
y∈Ω

f(y).

Proof. By de�nition of the DPixP of kernel C, for any y1, . . . , yk in Ω, we have

P({y1, . . . , yk} ⊂ X) = det((C(yi − yj)1≤i,j≤k). (3.20)
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Therefore, by the Slivnyak-Mecke formula [9], as we have

E

 6=∑
xi1 ,...,xik∈X

f(xi1 , . . . , xik)

 =
∑

y1,...,yk∈Ω

f(y1, . . . , yk)P({y1, . . . , yk} ⊂ X),

(3.21)
we obtain the formula of the proposition.

Since X ∼ DPixP(C) is stationary, S as de�ned in 3.3.1 is also stationary,
so that E(S(x)k) = E(S(0)k) for all x ∈ Ω and for all k ≥ 1.

Proposition 3.3.2 (First and second order moments). Let S be a shot noise

model based on X ∼ DPixP(C) and the spot g. We have E(S(0)) = C(0)
∑
y∈Ω

g(y),

and for all x ∈ Ω, ΓS(x) := Cov(S(0), S(x)) = C(0)Rg(x)− (Rg ∗ |C|2)(x). In
particular,

Var(S(0)) = C(0)
∑
y∈Ω

g(y)2 − (Rg ∗ |C|2)(0), (3.22)

and for all ξ ∈ Ω̂, Γ̂S(ξ) = |ĝ(ξ)|2(C(0)− |̂C|2(ξ)), where Rg = g ∗ g− is the
autocorrelation of g.

Proof. First, let us compute the mean value of such a shot noise model S.
Using the periodicity of g,

E(S(0)) = E

(∑
x∈X

g(−x)

)
=
∑
y∈Ω

g(−y)C(0) = C(0)
∑
y∈Ω

g(y). (3.23)

Second, let us compute the covariance function of S for all x ∈ Ω,

ΓS(x) = Cov (S(0), S(x)) = E ((S(0)S(x))− E (S(0))2

= E

(∑
x1∈X

g(−x1)
∑
x2∈X

g(x− x2)

)
− E (S(0))2

= E

( 6=∑
x1,x2∈X

g(−x1)g(x− x2)

)
+ E

(∑
x1∈X

g(−x1)g(x− x1)

)
− E (S(0))2

=
∑

y1,y2∈Ω

g(−y1)g(x− y2)
(
C(0)2 − |C(y2 − y1)|2

)
+
∑
y∈Ω

g(−y)g(x− y)C(0)

− E (S(0))2

= C(0)g ∗ g−(x)− (g ∗ g− ∗ |C|2)(x).
(3.24)
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3.3.2 Extreme Cases of Variance

We set N = |Ω| = N1N2 ∈ N and Cn the set of admissible kernels such that
C(0) = n

N
, where n ∈ N. If X ∼ DPixP(C), with C ∈ Cn, notice that

E(|X|) = |Ω|C(0) = n. Given a spot function g, we are looking for admissible
kernels C ∈ Cn that generate shot noise models S of maximal and minimal
variance. Indeed, the value Var(S(0)) quanti�es a repulsion �in the sense of
g� or the regularity of the shot noise. The case of a shot noise S based on a
spot function g de�ned as an indicator function provides some intuition into
this idea. If Var(S(0)) is low, the values taken by S are close to its mean
value: there are few regions with no spot and few regions with many overlaps
of the spot. Then the points sampled from DPixP(C) tend to be far from
one another, according to the shape of the function g and S appears more
homogeneous. The repulsion is maximal. On the contrary, when Var(S(0)) is
high, S may take high values, so there can be many points in the same region.
In that case, the repulsion is minimal.

Proposition 3.3.3 (Extreme cases of variance). Fix g : Ω→ R+ and n ∈ N.
The variance of the shot noise model S is maximal if it is based on the Bernoulli
DPixP that belongs to Cn, meaning that its kernel C is such that C(0) = n

N

and for all x 6= 0, C(x) = 0.
The variance of the shot noise model S is minimal when it is based on the
projection DPixP of n points, such that the n frequencies {ξ1, ..., ξn} associated
with the non-zero Fourier coe�cients of its kernel maximize∑

ξ,ξ′∈{ξ1,...,ξn}

|ĝ(ξ − ξ′)|2. (3.25)

Proof. Given a �xed n ∈ N, let us consider C ∈ Cn that maximizes or minimizes

Var(S(0)) = C(0)g ∗ g−(0)− (g ∗ g− ∗ |C|2)(0)

=
n

|Ω|2
∑
ξ

|ĝ(ξ)|2 − 1

|Ω|2
∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ)Ĉ(ξ′). (3.26)

If we identify the function Ĉ to a vector of RN , the question becomes �nding
C ∈ Cn that maximizes or minimizes F : RN → R, where

F (Ĉ) =
∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ)Ĉ(ξ′). (3.27)

Maximal variance: We de�ne a scalar product associated to g for all v, w ∈ RN ,

by 〈v, w〉g =
∑
ξ,ξ′∈Ω

|ĝ(ξ − ξ′)|2vξwξ′ = vtGw where G is the N ×N matrix such

that G = ( |ĝ(ξ−ξ′)|2)ξ,ξ′∈Ω̂. This scalar product is well de�ned as it is bilinear,
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symmetric and for all v ∈ RN ,

N∑
ξ,ξ′=1

|ĝ(ξ− ξ′)|2vξvξ′ = (g ∗g− ∗ |v̂|2)(0) ≥ 0 and

〈v, v〉g = 0 ⇔ v = 0. Notice that since G is symmetric positive de�nite then

F : Ĉ 7→ 〈Ĉ, Ĉ〉g is strictly convex. The case of maximal variance is achieved

for the vector Ĉ that minimizes this strictly convex function on the convex set
Cn: the problem has at most one solution [24].

According to the Cauchy-Schwarz inequality, we have for all v, w ∈ RN ,
|〈v, w〉g| ≤ ‖v‖g‖w‖g. Let us pick v = Ĉ, the vector whose components are
the Fourier coe�cients of a kernel C ∈ Cn and w = 1 (= (1, 1, . . . , 1) the

constant vector of size N). We have ‖v‖2
g = F (Ĉ) and ‖w‖2

g =
∑
ξ,ξ′

|ĝ(ξ − ξ′)|2

=
∑
ξ,ξ′

ĝ ∗ g−(ξ − ξ′) = N2 (g ∗ g−)(0). Hence ‖v‖g‖w‖g =

√
N2F (Ĉ)(g ∗ g−)(0)

and

|〈v, w〉g| =
∑
ξ,ξ′

|ĝ(ξ − ξ′)|2Ĉ(ξ) =
∑
ξ

Ĉ(ξ)
∑
ξ′

|ĝ(ξ − ξ′)|2 = nN (g ∗ g−)(0).

(3.28)

Thus, F (Ĉ) ≥ n2(g∗g−)(0) and F (Ĉ) is minimal if and only if Ĉ is proportional

to w: necessarily, for all ξ ∈ Ω̂, Ĉ(ξ) = n
N
. Hence, C is a Bernoulli process.

This kernel maximizes the variance of any shot noise S, independently of the
spot g. It it the least repulsive DPixP.

Minimal variance: Let us characterize the kernel C that maximizes the func-
tion F on the convex set Cn. F is quadratic so that solutions are on the
boundaries of Cn, meaning that for all kernel Ĉ∗ ∈ Ĉ∗F := {argmax

Ĉ

(F (Ĉ))},∑
ξ

Ĉ∗(ξ) = n and ∀ξ ∈ Ω̂, Ĉ∗(ξ)(1− Ĉ∗(ξ)) = 0. Thus, the solutions are the

projection DPixP kernels C∗ with exactly n frequencies {ξ1, ..., ξn} ⊂ Ω̂ such

that Ĉ∗(ξi) = 1 chosen so that
∑

ξ,ξ′∈{ξ1,...,ξn}

|ĝ(ξ − ξ′)|2 is maximal.

In the end, to determine the kernel with minimal variance, one needs to
maximize a quadratic function, which is NP-hard in general. In practice,
it amounts to solve a combinatorial problem. It is possible to approximate
the solution thanks to a glutton algorithm: �rst, one chooses two frequencies
ξ1, ξ2 maximizing |ĝ(ξ1− ξ2)|2 then, recursively, one chooses the kth frequency

ξk, 2 < k ≤ N, such that it maximizes
∑

ξ∈{ξ1,...,ξk−1}

|ĝ(ξ − ξk)|2.

Figure 3.4 presents some results of this algorithm. This �gure shows that a
projection DPixP adapted to g generates shot noise models with very few spot
superpositions. Recall that in Section 3.2, we proved that it was impossible to
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spot g Ĉ Re(C) DPixP(C) SDPixP SBPP

Figure 3.4: Realizations of the shot noise model driven by several spot func-
tions and the most repulsive DPixP adapted to this spot. From
left to right: the spot function, the Fourier coe�cients obtained
by our glutton algorithm, the real part of the associated kernel C,
a sample of this most repulsive DPixP, a sample of the associated
shot noise model and �nally a Bernoulli shot noise model, both
having the same expected number of points (n = 80).

completely prevent superpositions. Yet, it is possible to characterize the least
and the most repulsive DPixPs according to a speci�c desired repulsion. These
extreme cases are coherent with the results of Biscio and Lavancier [20] who
quanti�ed the repulsion of stationary DPPs de�ned on Rd and stated that the
least repulsive DPP is the Poisson point process whereas the most repulsive
family of DPP contains the kernels C such that their Fourier transform F(C)
is the indicator function of a Borel set, an analog to the projection DPixPs
de�ned here.

3.3.3 Convergence to Gaussian Processes

Shot noise models driven by DPixP enable more diverse types of textures than
the usual shot noise models, based on points drawn uniformly and indepen-
dently. It takes into account this model based on Bernoulli procceses yet it is
important to notice that unlike usual discrete shot noise models, as de�ned in
[48] for instance, here point processes are simple: the points can't coincide.

As with usual shot noise models based on discrete Poisson processes, it is
appealing to study the behavior of the model when the density of the point
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process increases and tends to in�nity. Yet, as the points of the determi-
nantal point process can't coincide, the framework needs to be adapted: if
the intensity tends to in�nity, we also need the size of Ω to tend to in�n-
ity. It is similar to consider Ω as a grid in [0, 1]2 = T2, the torus of di-
mension 2, that is re�ned. The points are allowed to be increasingly close
and the number of points inside [0, 1]2 tends to in�nity. In this con�gu-
ration, it is possible to characterize asymptotic behaviors of these models
and to derive limit theorems such as a Law of Large Numbers or a Cen-
tral Limit Theorem. To this end, let us consider stationary determinan-
tal point processes on Z2 [119], [95], that we will also call determinantal
pixel processes. This point process is de�ned by a discrete bounded opera-
tor K on `2(Z2). That means that K : `2(Z2) → `2(Z2), f 7→ Kf such that
∀ t ∈ Z2, Kf(t) =

∑
s∈Z2 K(t, s)f(s). We suppose that this DPP is stationary:

we de�ne a kernel function C : Z2 → C, such that K(t, s) = C(s − t) and
C ∈ `2(Z2). Then for all t ∈ Z2, Kf(t) =

∑
s∈Z2 C(s − t)f(s): such a K is a

convolution operator.
As C belongs to `2(Z2), there exists a function Ĉ ∈ L2(T2) such that

Ĉ : T2 7→ [0, 1], ∀t ∈ Z2, C(t) =

∫
T2

Ĉ(x)e2iπt.xdx and Ĉ =
∑
t∈Z2

C(t)e−2iπt.· in

the sense of L2(T2). Finally, the point process X ∼ DPixP(C) is de�ned by
∀A ⊂ Z2, a �nite subset,

P(A ⊂ X) = det(CA), where CA = (C(xi − xj))xi,xj∈A . (3.29)

This new de�nition of DPixPs on Z2 is simply an extension of the point
process de�ned on Ω. The main properties of DPixPs are preserved and it
allows us to study the asymptotic behavior of shot noise models driven by
DPixPs, when the grid is re�ned or equivalently when the support of the spot
is spread out. To do so, we need to consider spot functions de�ned on R2.

Limit Theorems and DPixPs

The following limit theorems are based on the works of Shirai and Takahashi
[121], and Soshnikov [122]. Some guidelines for the proofs can be found in
[121] for the Z2 case and in [119] and [120] for its continuous counterpart.

Proposition 3.3.4 (Limit theorems for DPixPs [121]). Let f be a bounded
measurable function on R2 with compact support, and X ∼ DPixP(C) with
C some admissible kernel on Z2. Then, we have the following Law of Large
Numbers

1

N2

∑
x∈X

f
( x
N

)
−−−→
N→∞

C(0)

∫
R2

f(x)dx, a.s and in L1. (3.30)
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Moreover, assume that f is continuous and
∫
R2 f(x)dx = 0. Then,

lim
N→∞

E

(
exp

(
i√
N2

∑
x∈X

f
( x
N

)))
= exp

(
−1

2
σ(C)2‖f‖2

2

)
(3.31)

where σ(C)2 = C(0)−
∑
x∈Z2

|C(x)|2, and consequently, we obtain the following

Central Limit Theorem

1√
N2

∑
x∈X

f
( x
N

)
D−−−→

N→∞
N (0, σ(C)2‖f‖2

2). (3.32)

Appendices B.2 and B.3 provide a detailed proof of the previous proposi-
tion, speci�c to our image framework, using ergodic theory.

Convergence of Determinantal Shot Noise Models

In the following, let g be a spot function, that we assume continuous, with
compact support, and N > 0. Denote the N -normalized shot noise SN associ-

ated to g de�ned for all y ∈ Z2 by SN(y) =
1

N2

∑
x∈X

g
(
y − x

N

)
. We obtain a

Law of Large Numbers for the shot noise driven by DPixPs:

SN(0) =
1

N2

∑
x∈X

g
(
− x
N

)
−−−→
N→∞

C(0)

∫
R2

g(x)dx, a.s and in L1. (3.33)

Finally, it is also possible to obtain a multidimensional central limit theorem
thanks to the previous formulations.

Proposition 3.3.5 (Central Limit theorem for shot noise models). Let g
be a continuous function on R2 with zero mean and compact support, X ∼
DPixP(C) and the related shot noise SN : SN(y) =

1

N2

∑
x∈X

g
(
y − x

N

)
,∀y ∈

Z2.
Then, ∀x1, ..., xm ∈ Z2,

√
N2 (SN(x1), · · · , SN(xm))

D−−−→
N→∞

N (0,Σ(C)) (3.34)

where for all k, l ∈ {1, · · · ,m}

Σ(C)(k, l) =
(
C(0)− ‖C‖2

2

) ∫
R2

g(xk − t)g(xl − t)dt

=
(
C(0)− ‖C‖2

2

)
Rg(xl − xk).

(3.35)
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(a) Spot (b) SN , N = 1 (c) SN , N = 2

(d) SN , N = 3 (e) SN , N = 6 (f) N (0,Σ(C))

Figure 3.5: Determinantal shot noise realizations SN as de�ned in Theorem
3.3.5 with various N = 1, 2, 3, 6 and a comparison with their asso-
ciated limit Gaussian random �eld N (0,Σ(C)) shown in (f). The
shot noise is based on the spot (a) and the projection DPixP with
kernel C whose non-zero Fourier coe�cients form a disk (Figure
3.1, bottom).

Proof. Consider the N -normalized shot noise SN associated to g: ∀y ∈ Z2,

SN(y) =
1

N2

∑
x∈X

g
(
y − x

N

)
. By setting ∀u ∈ Rm,∀x1, ..., xm ∈ Z2,∀x ∈ R2,

f(x) = u1g(x1 − x) + u2g(x2 − x) + · · ·+ umg(xm − x), (3.36)

f is continuous on R2, with compact support such that
∫
R2 f(x)dx = 0 so it is

possible to apply the limit theorem 3.3.4 and the Levy's continuity theorem.

Thus, shot noise models driven by a DPixP also converge to a Gaussian
limit whose covariance is related to the spot and to the kernel C of the point
process. Note that, in the previous proposition, the limit variance Σ(C) is equal
to the product of a constant depending on the kernel C and the autocorrelation
of the spot g. Similarly, a normalized Poisson shot noise associated to the spot
g converges towards the distribution N (0, Rg), where Rg is the autocorrelation
of g [48]. As the Bernoulli case corresponds to the kernel function C = δ0, we
retrieve the same result here. Note also that there is no more interaction
between the spot and the kernel in the limit. The higher the repulsion is, in
the sense of the pair correlation function, involving high kernel coe�cients,
the lower the variance is. Let us mention the similar work in a continuous
framework of Poinas et al. on the limit distribution of sums of functionals of
DPPs de�ned on Rd [107]. Figure 3.5 presents the asymptotic behavior of shot
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noise models driven by a spot that is the indicator function of a rectangle and
a projection DPixP on Z2 with a kernel whose Fourier coe�cients are de�ned
as the indicator function of a disk. When the grid is re�ned, the shot noise as
de�ned in this section tends to a Gaussian texture associated to the spot and
the kernel of the DPixP.

3.4 Inference for DPixPs

One of the purposes of statistical inference is to �t a predetermined model
to data that can be represented by points, using information on their global
or local behaviour. When the data are assumed independent and well rep-
resented by a homogeneous point process, one can use Poisson point pro-
cesses. Yet, some data may present attraction or repulsion, they may also
have an anisotropic structure. DPixP models can be suitable for representing
2-dimensional discrete data points with repulsion. For instance, the positions
of plant seeds [101] or trees in a forest [85] often exhibit repulsion because
of limited shared supply, but also anisotropy due to environmental factors as
wind orientation or ground steepness. DPixPs can also be adapted to model
samples of human cells [10] and the position of their nuclei, which present
a certain shape of repulsion because of the structure of the cell around the
nucleus. Knowledge on this repulsion can provide valuable information, for
instance one could imagine comparing the blood cells from patients with sickle
cell disease, provoking a sickle shape of blood cells, and from healthy patients.
Once one has inferred the parameters of an appropriate model, it is possible
to reproduce similar data, to detect anomalies or distinguish di�erent regions
by statistical testing.

Learning the parameters of a determinantal point process, either the whole
underlying kernel K as in [77, 1] or a few parameters encoding the kernel as
in [13, 21], is still considered as a di�cult task, �rst because the likelihood
is often non-convex, and most of all because it is complex to compute as it
uses the determinant of a huge matrix. Most papers studying inference for
DPPs overcome this di�cult computation by using restrictive hypothesis on
the kernel such as in the papers [80] or [1]. Bardenet and Titsias [13] develop
bounds on the likelihood and use Markov Chain Monte Carlo methods to infer
the parameters of the kernel. On the other hand, using descriptive statistics
to �t the models to the data enables to cope with this di�cult computation
and to obtain more e�cient inference algorithm. It is the approach that we
choose in this chapter. Some authors try to infer �rst order characteristics
such as the intensity of the point process [22], which provides the average
number of points in a given area. In our �nite and discrete setting, we can
obtain a direct estimation of the intensity, as the ratio between the number
of points and the size of the domain. Several second order characteristics
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are used to describe a sample, for example the empty space distance, the
cumulative nearest-neighbor function, the pair correlation function (p.c.f. in
short), presented above, or the Ripley's K function, closely related to the p.c.f
(see [101] for a detailed presentation). These statistics provide information
on the interactions between points. Møller and Waagepetersen [101] present
these di�erent statistics and state that higher order characteristics may be less
stable if the number of points is low. In the following, we choose to focus
on a quantity related to the p.c.f. It has several advantages: it is easy to
interpret, it is easy to compute and it provides insights on local interactions.
Biscio and Lavancier [21] also use the p.c.f for a minimum contrast estimation
in continuous settings.

The purpose of this section is to derive a DPixP kernel function C from one
or several samples of points on a �nite and discrete domain. This estimation
is non-parametric as we focus on general DPixP even though it can be seen
as a parametric estimation of a DPP kernel matrix K of size |Ω| × |Ω| that
we suppose block-circulant and determined by |Ω| parameters, the values of
C. Before we investigate this question, it is necessary to characterize the
identi�ability of DPixP models.

3.4.1 Equivalence Classes of DPP and DPixP

A model is not identi�able if two di�erent parametrizations are equivalent.
Here, it would correspond to several di�erent kernel functions generating the
same DPixP. Indeed, DPixPs, and DPPs in general, are not identi�able, as
illustrates Figure 3.6. It is crucial, in particular for estimation purposes, to
characterize these equivalence classes of kernels. Of course this question is
also decisive in more general cases, when the kernel matrix K is Hermitian,
with real or complex coe�cients. We propose here a brief synthesis of what is
known on this question, and we add a study on DPixP kernels.

Ĉ1 Ĉ2 Ĉ3

Figure 3.6: Three DPixP kernel functions, de�ned by their Fourier coe�cients,
generating the same DPixP.

The distribution of a DPP is entirely de�ned by all its principal minors
(see Equation (1.5)), thus characterizing DPP kernel equivalences classes is
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equivalent to understanding the consequences of equal principal minors on
matrices, in the symmetric or Hermitian cases, and in the DPixP framework
where the matrix is Hermitian circulant.

Notice that the characteristic polynomial of a matrix can be written as a
function of its principal minors:

det(tI +K) =
N∑
k=0

(−1)k

 ∑
A⊆Y,|A|=k

detKA

 tn−k. (3.37)

Hence, two matrices with equal principal minors have equal characteristic poly-
nomial so they have the same eigenvalues, with the same algebraic multiplicity.
Two kernel matrices generating the same DPP have the same spectrum.

A key notion here is the diagonal similarity between two matrices: two
square matrices M1,M2 are called diagonally similar if there exists a diagonal
matrix D such that M2 = D−1M1D. In the following, we also need the notion
of the directed graph associated to a matrix [45, 67, 77]. Consider a matrix
M of size N × N . Its associated directed graph GM contains the N vertices
Y = {1, . . . , N} and an edge between the vertices x and y if and only if
M(x, y) 6= 0. The matrix M is called irreducible if GM is strongly connected,
meaning that there exists a sequence a path from any vertex to any other
one. In the opposite case, the matrix is called reducible, which is equivalent
to being permutation-similar to a block upper triangular matrix. Besides, it
is called completely reducible if it is permutation-similar to a block diagonal
matrix with irreducible blocks, meaning that there exists a permutation matrix

P such that P tMP =

(
M1 0

...
0 Mr

)
, M1, . . . ,Mr irreducible. Notice that a

Hermitian matrix is either irreducible or completely reducible.
Let us consider two general admissible DPP kernels K1 and K2, admissible

meaning that they are Hermitian and their eigenvalues are in [0, 1]. Thanks
to basic determinant properties, notice that if there exists a diagonal matrix
D such that K2 = D−1K1D or Kt

2 = D−1K1D, then K1 and K2 have same
principal minors, that is, the equivalence class of a DPP kernel contains all
the admissible matrices of which the kernel matrix itself or its transpose is
diagonally similar.

Real Symmetric DPPs

In the case where the DPP kernel is real and symmetric, Kulesza [77] proved
the following proposition.

Proposition 3.4.1 (Equivalence classes of real symmetric kernels [77]). Let
K1 and K2 be two real positive symmetric N × N matrices with eigenvalues
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bounded by 1. Then DPP(K1) = DPP(K2) if and only if there exists a N ×N
diagonal matrix D such that K2 = D−1K1D, where the coe�cients of D are
either 1 or -1.

The proof of this proposition is in two parts. First, the author demon-
strates the relation when all coe�cients of the matrices are non-zero. Then,
using graph theory, Kulesza extends this proof to matrices associated to a
connected graph and �nally to a disconnected graph, when the matrix is re-
ducible. This equivalence property for real DPP kernels has impacted serveral
learning strategies as in [113], [25], [129] or [26] which try to estimate real
DPP kernels from several i.i.d. samples. In particular, the �rst two papers
intend to solve the so-called principal minor assignment problem for symmet-
ric matrices, and Brunel et al. [26] maximize a log-likelihood depending on
the equivalence class of DPP kernels. Urschel et al. [129] obtain a bound on
a distance between the estimated kernels L∗ and the equivalence class of the
original kernel: min

D
‖L∗−D−1LD‖F , on diagonal matrices D with coe�cients

only equal to 1 or -1.

Complex Hermitian DPPs

In the paper [123], Stevens characterizes equivalence classes of real or complex
symmetric DPP kernels. We would like to characterize DPP equivalence classes
in a more general setting, where the DPP kernels are no longer real or sym-
metric but complex and Hermitian. Schneider, Saunders and Engel [117, 45])
worked on the relation between equal principal minors and diagonal similarity
through graph theory: see for instance [117] for links between equality of cyclic
products and diagonal similarity, or [45] where they deal with real symmetric
matrices. In 1986, Loewy [92] gives several su�cient conditions ensuring that
if two square matrices have equal principal minors, one is diagonally similar
to the other one or to the conjugate of the other one. We adapt these condi-
tions to Hermitian DPP kernels in Theorem 3.4.1. In the following, we de�ne
DN ⊂ MN(C) as the set of diagonal matrices of size N × N such that its
coe�cients are of modulus one.

Lemma 3.4.1. Let K1 and K2 be two irreducible Hermitian matrices and as-
sume that there exists an invertible diagonal matrix D such that K2 = D−1K1D
or Kt

2 = D−1K1D. Then all the coe�cients of D have the same modulus so
one can choose D in DN .
Proof. Assume that K1 and K2 are two irreducible Hermitian matrices and
there exists a diagonal matrix D such that K2 = D−1K1D or Kt

2 = D−1K1D.
First, let us suppose thatK2 = D−1K1D. For all x, y ∈ Y such thatK1(x, y) 6=
0, we have also K2(x, y) 6= 0 and

K2(x, y) =
1

dx
K1(x, y)dy. (3.38)
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As K2 is Hermitian, K2(x, y) = K2(y, x) =
1

dy
K1(y, x)dx =

dx

dy
K1(x, y). Then

dy
dx

=
dx

dy
, hence for all x, y ∈ Y such that K1(x, y) 6= 0, |dx| = |dy|. Now

recall that K1 is irreducible. Its associated graph is connected and every node
is reachable from any other node so it is possible to propagate this equality so
that for all x, y ∈ Y , |dx| = |dy| = λ. Then without loss of generality, changing
if necessary to 1

λ
D, we can choose D as the matrix such that K2 = D−1K1D

with diagonal coe�cients of modulus equal to 1. The proof is similar if Kt
2 =

D−1K1D.

Now we can prove the following theorem on the equivalence classes of Her-
mitian DPP kernels.

Theorem 3.4.1 (Identi�ability for Hermitian DPP kernels). Let N be a pos-
itive integer and let Y = {1, . . . , N}. Suppose that K1, K2 ∈ MN(C) are
two Hermitian admissible DPP kernels and that K1 is irreducible. If N ≥ 4,
suppose furthermore that, for every partition of Y into subsets α, β such that
|α| ≥ 2, |β| ≥ 2, rank (K1)α×β ≥ 2. Then, the following propositions are
equivalent:

(i) DPP(K1) = DPP(K2),

(ii) There exists a diagonal matrix D such that K2 = D−1K1D or Kt
2 =

D−1K1D,

(iii) There exists a diagonal matrix D ∈ DN such that K2 = D−1K1D or
Kt

2 = D−1K1D.

Proof. De�neK1 andK2 two admissible DPP kernels, such thatK1 veri�es the
hypothesis of Theorem 3.4.1. By de�nition, DPP(K1) = DPP(K2) is equiva-
lent to K1 and K2 having equal principal minors. In the papers [67] (Theorem
7) and [92] (Theorem 1), Hart�el and Loewy prove that if K1 is irreducible and
for every partition of Y into two subsets, α and β such that |α| ≥ 2 and |β| ≥ 2,
rank (K1)α×β ≥ 2, then K1 and K2 have equal principal minors if and only if
there exists a diagonal matrix D such that K2 = D−1K1D or Kt

2 = D−1K1D.
Notice that these two theorems, making the distinction between rank(K1)α×β
and rank(K1)β×α, are equivalent in this Hermitian setting. Then (i) is equiva-
lent to (ii). Besides, clearly (iii) implies (ii) and under these assumptions, by
Lemma 3.4.1, (ii) implies (iii).

In this general setting, assuming that K1 is irreducible is crucial. Indeed,
Hart�el and Loewy [67] provide counterexamples of two admissible hermitian
kernels generating the same DPP distribution without being diagonally similar.
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Determinantal Pixel process

We now turn to the special case of DPixP de�ned on Ω, the image domain
of size N1 × N2. Their kernel matrices are Hermitian block-circulant with
circulant blocks. Recall that matrices generating DPixPs have all the same
eigenvectors, the vectors of the Fourier basis. We also know that two matrices
generating the same DPixP distribution have the same eigenvalues, so there
is at most N1N2! di�erent kernels associated to one DPixP model. In the
following proposition and remark, we prove that in most cases, the class of
equivalence is much more constrained.

Proposition 3.4.2 (Identi�ability for DPixP). Let Ω be a �nite grid of size
N1 × N2, and C1, C2 be two admissible DPixP kernels on Ω, generating the
block-circulant matrices K1 and K2 that satisfy the hypothesis of Theorem
3.4.1. Then, DPixP(C1) = DPixP(C2) if and only if there exists a transla-
tion mapping the Fourier coe�cients of C2 to the Fourier coe�cient of C1 or
to their symmetry with respect to (0, 0), meaning that

DPixP(C1) = DPixP(C2)⇐⇒ ∃ τ ∈ Ω s.t. either ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(ξ − τ)

or ∀ξ ∈ Ω, Ĉ2(ξ) = Ĉ1(−ξ − τ).
(3.39)

Proof. As K1 and K2 satisfy the hypothesis of Therorem 3.4.1, there exists
an invertible diagonal matrix D such that K2 = D−1K1D or Kt

2 = D−1K1D,
where D ∈ DN , meaning that D is a diagonal matrix with coe�cients of
modulus equal to one. First, assume that K2 = D−1K1D. De�ne for all
x ∈ Ω, θx ∈ [0, 2π[ such that D(x, x) = eiθx . The goal is to prove that there
exists τ such that θx = 2π〈x, τ〉, for all x ∈ Ω. Notice that, by changing D
into 1

D(0,0)
D, we can assume that θ0 = 0, that is D(0, 0) = 1. By assumption,

we obtain

∀x, y ∈ Ω, K2(x, y) = C2(y − x) = e−iθxK1(x, y)eiθy = ei(θy−θx)C1(y − x),

and C2(x) = C2(x− 0) = eiθxC1(x). (3.40)

Recall, thanks to Equations (1.7) and (1.8), that C1(0) = C2(0) and that, for
all x ∈ Ω, |C1(x)| = |C2(x)|. As C2(x) = 0 if and only if C1(x) = 0, for such
x ∈ Ω, any value θx is valid. Consider the set Ω∗C = {x ∈ Ω; C1(x) 6= 0}. For
all z ∈ Ω, and all x ∈ Ω, we have

C2(z) = eiθzC1(z) = C2(z + x− x) = ei(θz+x−θx)C1(z + x− x)

= ei(θz+x−θx)C1(z).
(3.41)
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Denote for all x ∈ Ω, α(x) = eiθx . Thus, for all z ∈ Ω∗C , for all x ∈ Ω,

α(z) = α(z+ x)α(x), meaning that α(x) = α(z+ x)α(z). For all ξ ∈ Ω̂, for all
z ∈ Ω∗C , we have

α̂(ξ) =
∑
x∈Ω

α(x)e−2iπ〈x,ξ〉 =
∑
x∈Ω

α(z)α(z + x)e−2iπ〈x,ξ〉 = α(z)e2iπ<z,ξ>α̂(ξ).

(3.42)

As α is not the zero function, consider τ ∈ Ω̂ such that α̂(τ) is non-zero. Then,
for all z ∈ Ω∗C , α(z) = e2iπ<z,τ>. Thus, for all z ∈ Ω∗C , C2(z) = e2iπ<z,τ>C1(z),
which is also true for z such that C1(z) = 0. To conclude, for all z ∈ Ω,
C2(z) = e2iπ<z,τ>C1(z). In the second case when Kt

2 = D−1K1D, the proof is
identical.

Remark 3.4.1. Notice that when we consider two equivalent DPixP kernels
C1 and C2, generating the block-circulant matrices K1 and K2, there are three
possible con�gurations. The �rst one is when K1 veri�es the assumptions
of Theorem 3.4.1, it leads to Proposition 3.4.2. In the second case, K1 is
irreducible, but N = N1N2 ≥ 4 and there exists a partition α, β of Y such
that |α| ≥ 2, |β| ≥ 2 and rank (K1)α×β < 2. In the third case, K1 is not
irreducible. Let us characterize the second and third cases. It appears that
these con�gurations are �rare� in practice.

Case 2: Assume that K1 is irreducible, N = N1N2 ≥ 4 and that there
exists a partition α, β of Y such that |α| ≥ 2, |β| ≥ 2 and rank(K1)α×β < 2.
If rank(K1)α×β = 0, that is (K1)α×β = 0. There exists a permutation matrix
such that K1 is permutation similar to a block diagonal matrix, which is in
contradiction with the irreducible hypothesis. Hence, rank(K1)α×β = 1. This
means that there exist two vectors u ∈ C|α| \ {0} and v ∈ C|β| \ {0} such that
(K1)α×β = utv. In practice, as K1 is Hermitian and the Fourier coe�cients
of C are real, the coe�cients of the matrix K1 are tightly constrained. The
matrix is determined by a small number of modulus and arguments. Then,
when assuming that K1 and K2 are equivalent, as DPixP kernels, the matrices
are even more constrained. See Appendix C.1 for a simple example of this con-
�guration. Notice that in the 1D case of dimension 5, two equivalent DPixP
kernels K1 and K2 in this con�guration still verify that there exists a diagonal
matrix D ∈ DN such that K2 = D−1K1D or Kt

2 = D−1K1D. Our conjec-
ture is that this is always the case, whatever the dimension of Ω. Thus, this
assumption on the rank of the submatrix (K1)α×β leads to degenerate kernels
that are numerically �rare�.

Case 3: K1 is not irreducible. Then, as a Hermitian or circulant matrix,
K1 is necessarily completely reducible, meaning that there exists a permutation
matrix P such that K1 is permutation similar to a block diagonal matrix with
irreducible blocks. We prove in Appendix C.2 that these blocks are copies of
one Hermitian block-circulant sub-matrix, that we can call the canonical block:
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they all have equal size and the coe�cients are identical. Note that restrict-
ing DPP to a subset A de�ne also a DPP on this subset A [81, Section 2.3].
Furthermore, as each block matrix is still circulant, each one de�nes a sub-
DPixP de�ned on the associated subset of pixels. By assumption, these blocks
are irreducible so they are either in the �rst or in the second con�guration.
Let us consider K2 a DPixP kernel equivalent to K1. Thanks to the modulus
equality, K2 is similar to a block diagonal matrix with blocks of same size,
using the same permutation matrix. If the canonical block is in the �rst con-
�guration, verifying the rank hypothesis of Theorem 3.4.1, the �nal diagonal
matrix D is simply the concatenation and rearrangement of all the diagonal
sub-matrices Di associated to its respective i-th block. Notice that as the block
submatrices are identical to the canonical block and each one concerns a di�er-
ent set of pixels, all submatrices are in the same con�guration, meaning that
either for all submatrices K1i of K1, K1i = DiK2iDi or for all submatrices
K1i, K1i = DiK2iDi. On the other side, if the canonical block is in the second
con�guration, we can't conclude on the similarity of both matrices K1 and K2

in the general case yet. Notice that this completely reducible hypothesis is quite
degenerate. It corresponds to a DPixP de�ned on an image domain that can be
partitioned in groups of pixels evenly spaced with independence from one group
to the other: that means that the pixels are independent to their immediate
neighbors. A typical example of this model would be image domain partitioned
following a grid. As DPixPs deals with spatial repulsion, there seems to be few
applications of such models.

It is important to notice that the size of the equivalence classes we charac-
terized in Proposition 3.4.2 is small and known: given a DPixP kernel verifying
the appropriate hypothesis, it admits at most 2|Ω| equivalent kernels, generat-
ing the same DPixP distribution. Moreover, we have shown previously how a
kernel that does not verify the hypothesis of the proposition is quite degener-
ate: in practice, when dealing with kernels adapted to a given problem, these
hypothesis are always veri�ed. Characterizing equivalence classes of DPPs
and DPixPs is crucial for the estimation of DPixP kernels from point process
samples. This is what we investigate in the next subsection.

3.4.2 Estimating a DPixP Kernel from One Realization

First, we address the question of inference from one single realization. Consider
one set of points Y on Ω, the �nite and discrete grid of size N1 × N2 = N
and assume that Y has been sampled from a certain DPixP of kernel C0.
Note that in general, one realization does not provide enough information to
characterize a model. Yet, due to the stationarity of the kernels we consider,
all the translations of Y can also be seen as samples drawn by the same DPixP
kernel C0.
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Let n = |Y | denotes the cardinality of Y . The problem is to �nd Ce an
admissible DPixP kernel that estimates C0, the original one. Equivalently, we
want to �nd the Fourier coe�cients Ĉe ∈ [0, 1]N the closest to Ĉ0, in a sense
de�ned below. In the following, we will work in Fourier domain.

Let C be any admissible kernel on Ω andX ∼ DPixP(C). As before, we will

consider Ĉ either as a function from Ω̂ to [0, 1], or as a vector in [0, 1]N . Recall

that the intensity of the point process is given by
E(|X|)

Ω
=

1

Ω

∑
ξ∈Ω̂

Ĉ(ξ) = C(0).

In case of a kernel estimation from one sample, it is natural to consider that
the expected cardinality of the point process to be estimated is the cardinality
of this unique sample. Thus, a straightforward estimation of the intensity of
the point process is

Ce(0) =
n

N
(3.43)

or equivalently
∑
ξ∈Ω̂

Ĉe(ξ) = n. Now, we want to determine the estimator Ce(x),

for all x ∈ Ω \ {0} denoted Ω∗. Let us consider

pC(x) =

P(x ∈ X| 0 ∈ X) =
P({0, x} ⊂ X)

P(0 ∈ X)
= C(0)− |C(x)|2

C(0)
if x 6= 0,

0 if x = 0.

(3.44)

Now, from the realization Y , we can obtain θ(x) the empirical estimator of
pC(x) by

θ(x) =


1

n

∑
y∈Ω

1Y (y)1Y (y + x) if x 6= 0

0 if x = 0.

(3.45)

For optimization purposes, we express all the quantities in function of Ĉe.
In the following computations, we consider that the vectors are column vectors.
Let us denote the set of admissible functions by

Ĉn = {Ĉ ∈ RN such that
∑
ξ∈Ω̂

Ĉ(ξ) = n and ∀ ξ ∈ Ω̂, 0 ≤ Ĉ(ξ) ≤ 1}. (3.46)
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We are looking for Ĉe such that

Ĉe ∈ argmin
Ĉ∈Ĉn

‖pC − θ‖2
2

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

(
n

N
− N

n
|F−1(Ĉ)(x)|2 − 1

n

∑
y∈Y

1Y (y)1Y (y + x)

)2

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

(
n2

N2
− 1

N

∑
y∈Y

1Y (y)1Y (y + x)− |F−1(Ĉ)(x)|2
)2

= argmin
Ĉ∈Ĉn

∑
x∈Ω∗

(
b(x)− g(Ĉ)(x)

)2

= argmin
Ĉ∈Ĉn

E(Ĉ),

(3.47)

where, for all Ĉ ∈ RN , and for all x ∈ Ω∗,

g(Ĉ)(x) = |F−1(Ĉ)(x)|2 and b(x) =
n2

N2
− 1

N

∑
y∈Ω

1Y (y)1Y (y + x). (3.48)

We want to minimize E on Ĉn a non empty closed convex set so we can
use the projected gradient algorithm. To project on the set of constraints, we
use a classic adapted version of the algorithm to project onto the simplex [30],
integrating a maximum bound constraint, denoted �proj�. Let us compute the
gradient of the energy E we want to minimize.

As g : RN → RN−1, Ĉ 7→
(
|F−1(Ĉ)(x)|2

)
x∈Ω∗

, we have

∀x ∈ Ω∗, ∀ξ ∈ Ω̂,
∂g(Ĉ)(x)

∂Ĉ(ξ)
=

1

N
F−1(Ĉ)(x)e2iπ〈x,ξ〉 +

1

N
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

=
2

N
Re
(
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

)
,

(3.49)

and moreover ∇E(Ĉ) =
(
−Dg(Ĉ)

)t
2
(
b− g(Ĉ)

)
.

Notice that given a vector u = (u0, . . . , uN−1)t ∈ RΩ, we let u∗ be equal to

(u1, . . . , uN−1)t the restriction of u to Ω∗. For all ξ ∈ Ω̂,((
−Dg(Ĉ)

)t
u∗
)
ξ

=
2

N

∑
x∈Ω∗

uxRe
(
F−1(Ĉ)(x)e−2iπ〈x,ξ〉

)
=

2

N
Re

(∑
x∈Ω

(
uxF−1(Ĉ)(x)

)
e−2iπ〈x,ξ〉 − u0C(0)

)
.

Then
(
−Dg(Ĉ)

)t
u∗ =

2

N
Re
(
F
(
u�F−1(Ĉ)

))
− 2n

N2
u0, (3.50)
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where � refers to the componentwise product of vectors. Finally we obtain

∇E(Ĉ) =
4

N
Re
(
F
((
|F−1(Ĉ)|2 − b

)
F−1(Ĉ)

))
− 4n3

N4
, by setting b(0) = 0.

(3.51)

In particular, computing ∇E(Ĉ) only requires two FFT calls. The pro-
jected gradient descent algorithm is recalled and adapted to this problem in
Algorithm 5.

Algorithm 5 Projected gradient descent algorithm used to minimize E.

Input: Y the input realization, step size t, kmax,

� Compute for all x ∈ Ω∗, b(x) = n2

N2 − 1
N

∑
y∈Y 1Y (y)1Y (y + x), b(0) = 0

(3.48).

� Set Ĉ0 = Ĉinit (3.52).

� for k = 1,. . . , kmax

� Compute ∇E(Ĉk−1) (3.51).

� Set Ĉk = proj
(
Ĉk−1 − t∇E(Ĉk−1)

)
.

Output: ĈK .

Note that the energy we want to minimize is not convex and it has several
local minima: the initialization of the algorithm is crucial. Indeed, if the
algorithm is initialized with a random matrix Ĉinit, the results can be far from
the original target. We propose to initialize the algorithm with

Ĉinit = proj
(
F
(√

b
))

, (3.52)

which is believed to be quite close to a solution of the optimization and provides
good results, as observed in the experiments. Note that b can be negative, so
applying a square root to b may produce complex coe�cients to which we
apply the Fourier transform. This enables the initialization kernel Ĉinit to be
asymmetric.

Figures 3.9 and 3.10 (column 3) provides some results of this algorithm,
from one realization generated by di�erent DPixP kernels. One realization
seems enough to retrieve the Fourier coe�cients of a simple symmetric pro-
jection kernel (see Figure 3.9, a, b whose non-zero Fourier coe�cients form
a convex set). Even though for most projection kernels a predominant shape
appears in the estimation, as soon as the kernel is more complex, one sample
does not provide enough information.
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3.4.3 Estimating a DPixP Kernel From Several Realiza-
tions

A unique realization may not provide enough information for our proposed
algorithm to estimate the Fourier coe�cients of a DPixP kernels but if several
realizations are available, combining them provides better results. Assume
that we have J realizations, J ∈ N∗, each of cardinality nj, that we suppose
independently generated by the same DPixP kernel.

Method by Average

The �rst strategy to take advantage of these multiple realizations is to apply
independently the previous estimation process to each realization and then
to average the estimated kernels. This method requires to handle the issue
of identi�ability: the realizations can lead to di�erent kernels belonging to
the same equivalence class. In section 3.4.1, we prove that the equivalence
class of a DPixP kernel C1 includes the set of DPixP kernels C2 such that
there exists a translation mapping the Fourier coe�cients of C2 to the Fourier
coe�cient of C1 or to their symmetry with respect to (0, 0). In order to look
for an admissible canonical kernel and to deal with the equivalence under
translation of Fourier coe�cients, for each estimated kernel, we ensure that the
gravity center of its Fourier coe�cients is centered. Concerning the symmetry
equivalence, we propose to consider the �rst estimator as the canonical one
and, for any subsequent estimation, we try both orientations and keep the
closest to the �rst one.

Figure 3.7 shows some estimated kernel using this strategy. The kernels
we want to retrieve are projection DPixP kernels. For display purpose, we
projected the estimated kernel on the set of projection DPixP kernels. The
results are satisfying if the kernel is simple, meaning that for instance the
high Fourier coe�cients form a convex shape, or if the Fourier coe�cients are
symmetric with respect to (0,0), but as soon as the kernel is more complex, the
algorithm only retrieve a weak approximation of the target kernel. Moreover,
estimating J di�erent kernels does not seem to be the most e�cient method
and it requires the handling of the identi�ability issue.

Method by Combination

We propose a second strategy which combines all the realizations to pro-
duce a better empirical estimator θJ of pC . First, the expected number of
points is approximated by the mean number of points in the realizations,

n =
n1 + · · ·+ nJ

J
.
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a)

b)

c)

d)

Figure 3.7: Estimation of a DPixP kernel from 100 realizations, using a method
by average. From left to right: the target DPixP kernel, one sample
generated from this DPixP, the average of 100 independent estima-
tions done on every sample, its projection on the set of projection
DPixP kernels.

If we have J realizations (Yi)i∈{1,...,J}, Equation (3.45) is replaced by:

∀x ∈ Ω, θJ(x) =


1

nJ

J∑
i=1

∑
y∈Ω

1Yi(y)1Yi(y + x) if x 6= 0,

0 if x = 0.

(3.53)

The rest of the procedure remains similar as we want to minimize the
function ‖pC − θJ‖2

2, in particular, the initialization kernel is

Ĉinit = proj

F
√√√√ n2

N2
− 1

NJ

J∑
i=1

∑
y∈Ω

1Yi(y)1Yi(y + x)

 . (3.54)

Figure 3.8 presents several initialization kernels computed from one, 10 and
100 realizations. As one can see, the initialization is very noisy but already
contains information on the target kernel.
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(a) Target kernel

Ĉ
(b) Initialization

from 1 real.

(c) Initialization

from 10 real.

(d) Initialization

from 100 real.

Figure 3.8: Two examples of initialization of our estimation algorithm. From
left to right: the Fourier coe�cients of the target kernel (a), the
initialization from 1, 10 and 100 realizations.

Figures 3.9 and 3.10 present some experiments on several DPixP kernels,
using the second strategy presented here and combining all the samples in
one estimation process. We have seen in the previous subsection that any
translation of the estimated Fourier coe�cients or a symmetry with respect to
(0, 0) of the estimated Fourier coe�cients generate the same DPixP. Thus, in
Figures 3.9 and 3.10, we display a centered version of the estimation. First,
Figure 3.9 presents the results of this estimation procedure with projection
kernels, meaning that the Fourier coe�cients of these kernels are zero or one.
It shows how 10 realizations provide enough information to retrieve a kernel
close to the original one. Using 100 realizations enables us to obtain satisfying
results. This algorithm is able to retrieve the shape formed by non-zero Fourier
coe�cients, even when it is intricated (for instance (g),(h) in Figure 3.9).

Figure 3.10 presents some results of this algorithm for non-projection DPixP
kernels. Kernel (a) is a Bernoulli kernel: all the Fourier coe�cients are equal to
n
N
. As expected, no speci�c structure appears from the estimation, regardless

of the number of samples used. The estimations (b) and (c) are much noisier
than their projection equivalent (Figure 3.9(a,e)) even if the shape formed by
the Fourier coe�cients (which directly impacts the local repulsion of the point
process) seems retrieved.

To conclude, the algorithm presented in this section provides satisfying
estimations if the original kernel is a projection DPixP kernel, in particular
when we have more than 10 samples. Indeed, as we have seen in Section 3.3.2
and as the authors of [20] noted, projection determinantal processes can be
seen as the most repulsive DPPs. Thus, within a sample, the characteristics of
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a)

b)

c)

d)

e)

f)

g)

h)
J = 1 J = 10 J = 100

Figure 3.9: Experiments on several projection kernels. From left to right: the
target Fourier coe�cients of the kernel we want to recover, one
realization of this DPixP, the estimation of the Fourier coe�cients
from one, from 10 and from 100 realizations, with kmax = 2000.
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a)

b)

c)
J = 1 J = 100 J = 800

Figure 3.10: Experiments on general DPixP kernels. From left to right: the
target Fourier coe�cient of the kernel we want to recover, one
realization of this DPixP, the estimation of the Fourier coe�cients
from one, from 100 and from 800 realizations, with kmax = 2000.

the repulsion, and of the kernel, are more accessible. Nevertheless, if we deal
with a general complex kernel, the algorithm retrieves fewer information.

3.5 Conclusion

In this chapter, we introduced a new type of DPPs de�ned on the pixels of an
image that we call determinantal pixel processes. In this setting, we showed
that the only possible hard-core repulsion for DPixP is directional. Given a
direction, it is possible to impose to select at most one pixel on any discrete
line with this direction in the image, but any further hard-core constraint leads
to a degenerate kernel. We studied shot noise models based on a DPixP as a
method to sample micro-textures and we adapted the choice of DPixP kernel
in function of a given spot function of the shot noise and of the regularity one
is looking for. It appears that the least repulsive DPixP, generating the least
regular textures, is a homogeneous Bernoulli process while the most repulsive
DPixP kernel, generating regular textures, is a projection kernel, which en-
ables getting closer to a hard-core repulsion.

Thus, in Section 3.2, we proved that it is not possible to avoid overlaps if
we randomly copy and place a given shape using a DPixP, unlike particular
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Gibbs processes. However, in Section 3.3, we saw that, given a shape, it is
possible to derive a DPixP kernel so that there are as few overlaps as possi-
ble. This property may be interesting for computer graphics issues especially
since DPixPs have elegant theoretical properties. Notice that our algorithm
to retrieve the �minimal variance� kernel, a kernel minimizing the number of
overlaps, is greedy, it is not optimal. As a future work, we would like to inves-
tigate the development of an algorithm more e�cient and look for a theoretical
bound on the number of overlaps in shot noise models based on this DPixP
and on a given shape.

We also investigated the DPP and DPixP equivalence classes, that is fam-
ilies of kernels generating the same point process. In the DPixP case, two
kernels are equivalent if the Fourier coe�cients of one of them is a transla-
tion and possibly a symmetry of the Fourier coe�cients of the second. We
developed an algorithm to infer the Fourier coe�cients of a DPixP kernel from
one sample or from a set of samples. This algorithm takes advantage of the
stationarity of DPixPs and provides satisfying results, particularly when the
target kernel is a projection kernel, with Fourier coe�cients either equal to 0
or to 1.

We plan to investigate the joint estimation, from a texture image, of the
spot function and of the DPixP kernel associated to a shot noise that could
have generated the texture. As a result, we would be able to reproduce micro-
textures and retrieve the properties of the input texture.
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4.1 Introduction

As datasets to analyze and to process keep being larger and more complex,
strategies to subsample these sets or to reduce the dimension of data have
recently �ourished. As we have seen before, DPP subsampling is part of these
approaches, as it enables capturing the structure of data and produce a repre-
sentative subset of the whole initial set, taking into account its inner diversity.
In image processing and computer vision, DPPs have raised interest through
video summarization ([66], [134]). The authors of [66] introduce sequential
DPPs to take into account both the diversity of the frames and the chronology
of the video. To represent the diversity of the frames they use a decomposition
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similar to the quality-diversity decomposition that is introduced in [81] and
that we recall below. Furthermore, the paper [134] proposes a strategy en-
hanced by DPPs which makes it one of the state of the art methods for video
summarization. This method also uses a decomposition similar to a quality-
diversity decomposition to describe the diversity in the video.

In this chapter, we focus on subsampling the set of patches P of an im-
age. This procedure can be useful for compression purpose for instance. It
can also be necessary in order to �t a model on the patch set using only a
proportion of the set, to increase the e�ciency of the algorithm. For example,
several patch-based denoising methods represent the patch distribution as a
Gaussian mixture model ([136], [71]). These methods rely on the estimation of
the parameters of such models thanks to the Expectation-Maximization (EM)
algorithm. To do so, in general, they randomly and uniformly select a subset
of patches, to reduce the cost of the estimation. This random selection is fast
but, as we have seen in the previous chapters, this strategy may select points
close to each other and miss some regions of the space. When considering
patches, this amounts to select similar patches while possibly missing crucial
areas of the image. Thus, the subset needs to be large enough so that it cap-
tures the patches diversity. The size of this selection impacts the running time
of the estimation process, so a smaller selection, representative of the patches
of the image, would ensure a faster and more accurate estimation. DPPs o�er
the opportunity to select a reduced subset of patches that captures the whole
image.

Agarwal et al. [3] propose to adapt the k-Means algorithm by using a DPP
initialization: the authors sample an appropriate DPP to select the initial cen-
troids for the clustering strategy. The authors prove that this initialization
compares favorably with k-Means++, the most popular adaptation of the k-
Means algorithm, with a deterministic initialization. One advantage of this
algorithm using DPPs over the second is its adaptability concerning the num-
ber of clusters. Similarly, in the previous example with denoising methods,
DPPs could also provide a satisfying initialization to the EM algorithm.

This chapter examines DPPs de�ned on the patch space of an image. We
investigate here the possible choices of DPP kernels for such applications, in
order to subsample the patch space of an image. This can be useful to speed up
or to improve a patch-based algorithm, by considering only the most signi�cant
patches in the image. In Section 4.2, we study several classes of DPP kernels,
computed from the patches of the image. Numerical experiments show that
these kernels behave very di�erently and that it is rather simple to adapt the
kernel in function of the application that will be done with the selected patches.



4.2. Determinantal Patch Processes 101

Section 4.3 applies this strategy to speed up a texture synthesis algorithm.
This algorithm, presented by Galerne et al. in [52], uses the empirical distri-
bution of the patches of an initial texture and heavily relies on semi-discrete
optimal transport. This method enables to synthesize complex textures. The
authors propose to uniformly subsample the set of patches of the image to
approximate the empirical distribution of the patches, using 1000 patches.

After a presentation of this synthesis strategy, we show how using a DPP
to subsample the distribution of patches enables us to reduce the number of
patches (to 200 or 100) and thus to signi�cantly reduce the execution time of
the algorithm while maintaining the quality of the synthesis.

4.2 Determinantal Patch Processes

4.2.1 DPP Kernels to Sample in the Space of Image Patches

When considering determinantal point processes on patches, that can be called
determinantal patch processes, the framework is more general than in Chap-
ter 3: We are no longer dealing with stationary periodic point processes. We
consider a Hermitian kernelK adapted to select diverse subsets of patches from
an image, as set in Equation (1.5). The de�nition of this diversity depends on
the problem we want to solve: for instance, compression, reconstruction of the
image or initialization of the centroids of a clustering or of the EM algorithm.

As we have seen in Section 1.2, there exists a second characterization of
DPPs, using a positive semi-de�nite matrix L. These DPPs are called L-
ensembles.

De�nition 4.2.1. We consider Y = {1, . . . , N} and L a Hermitian matrix of
size N ×N such that L � 0, then the random set X ⊂ Y de�ned by

∀A ⊂ Y , P(X = A) =
det(LA)

det(I + L)
(4.1)

is a DPP with likelihood kernel L. We will denote X ∼ DPPL(L).

Recall that the initial de�nition using the kernel denoted by K, requires
that 0 � K � I. This L-ensemble de�nition doesn't need the constraint of
bounding the eigenvalues of the kernel by one. This property is convenient to
de�ne a kernel, and a diversity model adapted to a speci�c problem. So this
characterization is increasingly used in the machine learning community. That
is also the de�nition we mostly use in this chapter.
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We recall here the relation between the correlation kernel K and the like-
lihood kernel L of a DPP. Consider the following spectral decomposition of a
DPP kernel K, K =

∑N
k=1 λkvkv

∗
k. Note that the de�nitions using the kernels

K and the likelihood kernel L characterize the same DPP if and only if for all
k ∈ {1, . . . , N}, 0 ≤ λk < 1 and if

K = L(L+ I)−1 = I − (I + L)−1 and conversely L = K(I −K)−1. (4.2)

Hence, in this case, L =
N∑
k=1

λk
1− λk

vkv
∗
k. Note that if K has any eigenvalue

equal to 1, the DPP can't be associated to an L-ensemble.

In the following, consider an image u and the initial set P = {Pi, i =
1, . . . , N}, the set of its patches of size (2ρ + 1) × (2ρ + 1) × d, where ρ ∈ N
and d is the number of color channels. Let us present some kernels that can
be used to subsample the patches of this image.

A �rst type of DPP likelihood kernels that are regularly used ([126],[84])
is the class of Gaussian kernels (sometimes called exponential kernels). Let us
consider a Gaussian kernel based on the intensity of the patches, that we call
the Intensity Gaussian kernel, de�ned by

∀Pi, Pj ∈ P , Lij = exp

(
−‖Pi − Pj‖

2
2

s2

)
, (4.3)

where s is called the bandwidth or scale parameter. This kernel depends on the
squared Euclidean distance between the intensity values of pairs of patches. It
is often used as a similarity measure on patches. Despite its natural limitations,
this similarity measure provides good results.

The value of the parameter s has a direct impact on how repulsive the DPP
is. Notice that if s is small, due to the exponential function, Lij converges very
quickly to zero as soon as i 6= j and the distinction between patches is not
very subtle. Thus, if s is small, L is close to the identity matrix and the DPP
selection of patches is similar to a random uniform selection. On the contrary,
for the same reason, the larger s is, the more repulsive the DPP is. How-
ever, this scale parameter should not be set too large because this would cause
high numerical instability. As noticed in [4] and [126], the median of the in-
terdistances between the patches is a satisfying choice for setting the value of s.

We propose to compare this kernel with another Gaussian kernel that we
call the PCA kernel, which depends on the squared distance between patches in
the space given by keeping only the k principal components after a Principal
Component Analysis (PCA). Set P the matrix gathering all the patches of
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the image reshaped in column so that the size of P is d(2ρ + 1)2 × N . We
assume that P has been centered, by subtracting the average patch to all the
patches. It has not been reduced, meaning that patches with high variance, for
instance patches with edges, will highly in�uence the decomposition. Thanks
to a singular value decomposition, consider U, V two unitary matrices and Σ a
diagonal matrix storing the sorted principal values of P such that P = UΣV t.
We choose to keep only k principal components and we obtain the matrix
Pk = VkP, where we kept only the k �rst rows of the matrix V in Vk of size
k× d(2ρ+ 1)2 and the matrix Pk = {P k

i , i = 1, . . . , N} is k×N . Every initial
patch Pi ∈ P is associated with a projected vector P k

i ∈ Pk. Thus, the PCA
kernel is de�ned by

∀Pi, Pj ∈ P , Lij = exp

(
−
‖P k

i − P k
j ‖2

2

s2

)
. (4.4)

This method discards principal vectors associated to small singular values
and projects the patches on a low-dimensional space associated with the large
singular values. This enables to �nd the components that best represent the
variance of the patches and ignores mainly noise (depending on the number of
dimension discarded). Thus, comparing patches in this low-dimensional space
seems relevant to capture more precisely their dissimilarity.

A second type of common likelihood kernels uses a quality-diversity decom-
position of the data. Kulesza and Taskar present in [81] this decomposition that
uses a given quality measure computed on each element of the set and a dissim-
ilarity computed between pairs of elements. Here, each patch Pi is associated
with a quality measure, which is a non-negative number qi = q(Pi,P) ∈ R+,
depending on the patch itself and on the other patches. Each patch Pi is also
associated with a feature vector φi = φ(Pi) ∈ RD, such that ‖φi‖2 = 1, which
depends only on the patch itself. The quality/diversity likelihood kernel L is
de�ned by

∀Pi, Pj ∈ P , Lij = qiφ
t
iφjqj. (4.5)

This class of kernels presents several advantages. The �rst advantage of
this de�nition is its interpretability. Each patch is associated with a quality
measure, that one can adapt depending on the characteristics one wants to
favor. The comparison between patches is also accessible and adjustable to
obtain the most adapted kernel. This decomposition has a second advantage:
the likelihood kernel becomes a low-rank matrix, with a rank equal at most to
D, the number of features. In case of low-rank kernels, Kulesza and Taskar [80]
propose a dual representation and a dual sampling algorithm. This sampling
scheme is equivalent to the original algorithm but it takes advantage of the
low-rank kernel and becomes much faster. We recall that, whatever the DPP
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likelihood kernel, the cardinality of a sample generated from DPPL(L) will
necessarily be lower than the rank of L. This low-rank de�nition imposes to
sample subsets of size smaller than D, the number of features computed from
the patches. Thus, this kernel is adapted when small and very small subsets
of patches are needed. In these cases, it is very important to precisely control
the selection process so such kernels are particularly relevant.

For this kernel that we call Qual-div kernel, we associate each patch with
a feature vector given by a discrete cosine transform of the patch. Thus, each
feature vector is of size d(2ρ + 1)2. Note that in the experiments, we use
color images (with 3 color channels) and patches of size 7 × 7 (meaning that
ρ = 3) so the feature vectors of length 147. We de�ne the quality measure
such that it attributes a high value to patches whose intensity is far from that
of its neighbors in the pixel grid. This choice gives further priority to singular
patches, that can be seen as the outliers of the set of patches. As experiments
will show, it highly favors textures and edges.

4.2.2 Minimizing the Selection Error

The question is to choose the best kernel, such that the sampled DPP on
the patches minimizes an error computed as a distance between the selected
patches and the initial set of patches P . This problem is similar to discrete
optimal quantization problems [106] where the aim is to �nd the best subset
of patches Q such that EQ∼µ(d(Q,P)) is minimal, for a given distance d. Yet,
this computation is often costly and hardly tractable. In the following, we sup-
pose that the patches are of size (2ρ + 1)× (2ρ + 1) for some positive integer
ρ and we denote by ω ⊂ Z2 the patch domain {−ρ, . . . , ρ}2.

First, the error, or the distance between the sample and the initial set of
points, we want to minimize depends on the application. The mean square
error (MSE in short) is commonly used to compare an image and its recon-
struction. Here, we use a similar distance, the squared L2 norm between the
patches of the image and their nearest neighbor in the selection given by the
DPP sampling on the patches. Consider Q a subset of patches. This error is
de�ned by

E1 =
1

N

N∑
i=1

dL2(Pi,Q)2 =
1

N

N∑
i=1

min
Q∈Q

∑
x∈ω

(Pi(x)−Q(x))2, (4.6)

where ω is the patch domain. One hopes that using a DPP to generate Q
will prevent from concentrating only on the most common patches and select
singular patches. The following error can be useful to verify this property:

E2 = max
i∈{1,...,N}

dL2(Pi,Q)2 = max
i∈{1,...,N}

min
Q∈Q

∑
x∈ω

(Pi(x)−Q(x))2 . (4.7)
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A low error value asserts that the outlier patches (non redundant) are selected.

Given an expected cardinality n ∈ N∗ and a kernel Kn, we will consider
Q ∼ DPP(Kn). We would like to �nd the DPP kernel minimizing the expecta-
tion of the errors: EQ∼DPP(Kn)(E1) and EQ∼DPP(Kn)(E2). Yet, this optimization
problem depending on a DPP matrix Kn is intractable. As in the papers by
Kulesza and Taskar [81] and A�andi et al. [1], we would like to have a closed-
form minimization problem to obtain optimal parameters. These strategies
are based on the quality-diversity decomposition of an L-ensemble kernel de-
scribed in the previous section. Given predetermined features vectors, they
determine an appropriate quality measures from the data. Here, we use a sim-
ilar parametrization, using the �rst de�nition of DPPs, with a kernel matrixK.
We suppose that its eigenvectors are �xed (given by features computed from
the patches of the image) and we want to determine the optimal spectrum
so that the associated matrix K minimizes a tractable error. Furthermore,
thanks to the Campbell Formula (3.19), we know that the expectation of some
functionals de�ned on point processes are tractable. That is what we use in
the following.

Suppose we select a subset of patches using a DPP of kernel K: Q ∼
DPP(K). We would like to study the following measure:

R(Q) =
∑
P∈P

∑
Q∈Q

fP (Q). (4.8)

It can be seen as a reconstruction evaluation, if the function fP involves a
distance between the input patch and the patch P . With the appropriate
function fP , R can represent how well a patch P ∈ P is represented by the
selection Q. For instance, by considering the functions fα,P (Q) = 1‖P−Q‖2≤α
or fP (Q) = e−‖P−Q‖

2
, R will return a high value if the selection Q encompasses

the set of patches. Notice that if we use a function fp which depends on the
L2 distance between patches, maximizing R will favor selections similar to the
ones minimizing the MSE. Thus, contrary to the previous error quantities,
E1 and E2, we want to generate a subset Q such that R is large. From the
Campbell Formula (3.19) adapted to general discrete DPPs, we have

E(R(Q)) = E

(∑
P∈P

∑
Q∈Q

fP (Q)

)
=

N∑
j=1

E

(∑
Q∈Q

fPj(Q)

)

=
N∑
j=1

N∑
i=1

fPj(Pi)K(Pi, Pi).

(4.9)
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Assume that K admits the eigendecomposition

K(Pi, Pj) =
D∑
k=1

λkφk(Pi)φ
∗
k(Pj), (4.10)

with D ≤ N , �xed eigenvectors and unknown eigenvalues (λk)k∈{1,··· ,D}. Then
the previous expectation becomes

E(R(Q)) =
D∑
k=1

λk

N∑
i=1

|φk(Pi)|2
N∑
j=1

fPj(Pi). (4.11)

The maximization of this quantity with respect to (λ1, . . . , λD) is a linear

problem under the linear constraints:
∑
P∈P

K(P, P ) =
D∑
k=1

λk = n, and for all

k ∈ {1, . . . , D}, 0 ≤ λk ≤ 1. The advantage of solving such a problem is that
the solution (λ∗k)k∈{1,··· ,D} is explicit. It is on the boundary of the constraints,
meaning that is a kernel K with only n non-zero eigenvalues, each one equal to
1: the solution is a projection DPP. Given any function fp, any integer n ≤ D,
let us consider In the set of the indices associated to the n largest coe�cients
of the vector ψ of size D de�ned by ψk =

∑N
i=1 |φk(Pi)|2

∑N
j=1 fPj(Pi). The

solution of the problem

argmax
(λk)

E (R(Q)) such that
D∑
k=1

λk = n and ∀k, 0 ≤ λk ≤ 1, (4.12)

is the set of eigenvalues (λ∗k)k=1,...,D de�ned by

λ∗k =

{
1 if k ∈ In
0 otherwise

. (4.13)

For instance, if we choose fα,Pi(Pj) = 1‖Pi−Pj‖2≤α, then we need to maximize
the function

E(R(Q)) =
D∑
k=1

λk

N∑
i=1

|φk(Pi)|22
N∑
j=1

1‖Pi−Pj‖≤α

=
D∑
k=1

λk

N∑
i=1

|φk(Pi)|2|B(Pi, α)|,

(4.14)

where B(P, α) is the ball inside P with center P and radius α for the Euclidean
distance between patch intensities and |A| is the cardinality of the subset A.
Thus, |B(Pi, α)| denotes the number of patches in the image that are within a
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distance of Pi smaller than α. In the experiments, we use this function and we
choose α to be half the median of interdistances between patches. Note that
this maximization problem will favor patches similar to many others. This
creates an interesting compromise: the DPP will tend to select diverse subsets
of redundant patches. As anticipated, we will see in the experiments that this
method tends to miss singular patches.

4.2.3 Experiments

The following �gures present some results of subsampling in the space of im-
age patches, for di�erent cardinality. First notice that the cardinality is �xed
for the uniform sampling. It is also �xed for the last optimized kernel, as
we obtain a projection kernel from the maximization problem. Concerning
the three other kernels, they are de�ned using the L-ensemble de�nition in
Equations (4.3), (4.4) and (4.5). We used a common normalization strategy,
formalized in [14], using a likelihood kernel L whose eigenvalues are denoted
(λk)k∈{1,...,N}. Given a desired expected cardinality n, we normalize L to ob-

tain a kernel Lc = cL, where c is chosen such that
N∑
k=1

cλk
1 + cλk

= n. Note also

that the Qual-div kernel (4.5) and the optimized kernel (4.13) are low-rank,
with a rank equal at most to the number of features that we use to de�ned
the kernels. In these experiments, the feature vector associated to each patch
(φ in Equations (4.5) and (4.9)) is obtained from the discrete cosine transform
of the patch. Note that a DPP kernel can't generate samples with more items
than its rank and in the following experiments, we use patches of size 7×7×3.
Thus, the rank of the two previous kernels is 147 and we can observe the re-
sults, with a step of 50, up to a cardinality equal to 100 in Figure 4.4.

Figure 4.1: Original images considered in Figures 4.2 to 4.4.

Figures 4.2 and 4.3 show images reconstructed using the associated se-
lected patches presented below the reconstruction. Each patch in the initial
image is replaced by its nearest neighbor in the DPP selection. The �nal
image is obtained by average: given a pixel, all the overlapping patches con-
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taining this pixel are averaged. This is a common strategy to aggregate the
patches. Several other methods are proposed in the literature, such as using
a weighted average [33, 116] or implicitly including the reconstruction in a
global variational problem [136]. An average considering uniform weights on
all the patches is often used as it does not require any other computation or
information to store. Thus, after subsampling the set of patches, the initial
image can be represented by its size N1 ×N2 = N , the small set of patches of
size (2ρ + 1) × (2ρ + 1) × d and a vector of indices of length N , associating
each initial patch to its nearest neighbor in the selection.

Card Unif. sample Intens. kernel PCA kernel Qual-div kern. Optim kern.

5

25

100

Figure 4.2: Image reconstruction comparing di�erent expected cardinality and
the DPP kernels presented in the previous subsections. For each
cardinality, the �rst row presents the reconstruction of the image
using only the patches selected by the corresponding kernel, given
in the second row.
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Card Unif. sample Intens. kernel PCA kernel Qual-div kern. Optim kern.

5

25

100

Figure 4.3: Same as Figure 4.2 for the Parrot image.

Figure 4.4 compares the errors E1 (4.6), E2 (4.7) and the peak signal-to-
noise ratio (PSNR) of the reconstruction images generated from samples given
by the di�erent kernels. The PSNR is a metric commonly used to evaluate
the quality of the reconstruction of an image. Consider an initial image I0 and
a reconstruction I1, both having d color channels and N pixels with a value
between 0 and 1. Then,

PSNR = 10 log10

Nd
d∑
c=1

N∑
i=1

(I0(i, c)− I1(i, c))2

. (4.15)

First, as expected, a uniform sampling can produce samples which contain
many similar patches. The �rst image (Pool) has several large and regular
regions that could be represented by a few patches and these regions are often
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(a) E1 = 1
N

∑N
i=1 ‖Pi −Q‖22 (b) E2 = max

i∈{1,...,N}
‖Pi −Q‖22 (c) PSNR

Figure 4.4: Reconstruction errors E1 and E2 and the PSNR for the Pool im-
age (top) and the Parrot image (bottom), comparing several DPP
kernels and a uniform selection (Bernoulli kernel) in function of dif-
ferent expected cardinality, from 5 to 250, with a step of 50. Note
that the curves associated to the �Qual/div� and the �Best� kernels
stop at an expected cardinality equal to 100 selected patches due
to the rank of their kernel matrix equal to 147.

over-represented in the results. Note that when we compare the kernels using
the error E1, in particular for the second image (Parrot), the uniform selection
provides satisfying results. On the contrary, small and rare details are often
missed by the uniform sampling, and the second graph of Figure 4.4 shows
that this sampling strategy compares badly with the others when considering
this criteria. Furthermore, the graph presenting the PSNR results illustrates
how this uniform strategy provides overall poorer reconstructed images.

Note that the optimized kernel, making a compromise between the diversity
induced by DPPs and the redundancy imposed by maximizing the chosen
reconstruction error (4.8), produces quantitative results similar to a uniform
sampling. When observing the patches selected by this kernel in Figures 4.2
and 4.3, one can see that this kernel tends to select slightly more diverse
patches than a uniform sampling.

Second, the PCA kernel and the Qual-div kernel behave rather similarly.
They tend to favor singular patches and patches containing edges, even some-
times over-representing them. Thus, they provide good results when looking at
the second error measuring the distance between the selection and the furthest
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patch, especially the PCA kernel. Yet, they can provide even worst results
than the uniform selection when we look at the average distance between the
selection and the initial set of patches (Error E1 (4.6)).

Finally, the Intensity kernel, using only the squared Euclidean distance be-
tween intensities, seems to be the most stable kernel. It provides small average
error and tends to include singular patches in the selection. For both images,
whatever the expected cardinality, the samples generated by this kernel pro-
duce visually satisfying reconstructions.

Thus, the choice of subsampling strategy in the patch space of an image
highly depends on the purpose of the generated selection. The most stable
strategy seems to be using the Intensity kernel (4.3), which provides a selection
close in average to the initial patches and which selects also singular patches.
If the priority of the application is e�ciency, the best strategy may remain
to use a uniform selection with a high number of selected patches. Yet if the
size of the selection needs to be low or if the selection needs to contain mainly
structure and texture information, the good choice may be to use a PCA kernel
or a kernel using the quality-diversity decomposition.

4.3 Application to a Method of Texture Synthe-

sis

The study carried out in this section is a joint work with Arthur Leclaire and
is presented in the proceedings [84]. We build on the texture model proposed
in [52], which exploits optimal transport (OT) in the patch space in order
to reimpose statistics of local features at several resolutions. This model is
based on semi-discrete OT, meaning that it uses transformations of the patch
space that are designed to optimally transport an absolutely continuous source
measure onto a discrete target measure. The chosen discrete target measure
in [52] is the subsampled empirical patch distribution of the exemplar texture,
so that these OT maps help to reimpose the patch statistics of the exemplar.
These OT maps are given by weighted nearest neighbor (NN) assignment on
the points of the target measure support. Therefore, the computational time
for synthesis highly depends on the discrete sampling of the target distribution.
For 3 × 3 patch distributions, a naive 1000-uniform subsampling gives good
results in general. But more accurate subsampling strategies could be used by
taking pro�t of the structure in the patch point cloud.

Here we propose to use a di�erent subsampling strategy based on deter-
minantal point processes (DPPs) de�ned on patches. We propose to integrate
the DPP subsampling strategy in the OT-based texture model of [52]. We
show that because of the repulsion property of the DPP, it is able to cover
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e�ciently the original patch cloud with a low number of samples. As a result,
the obtained transport maps can be applied faster, thus allowing to synthesize
very large textures with competitive computational time. We also discuss the
parameters of the model, in particular the expected cardinality of the DPP,
which should depend on the complexity of the input texture.

4.3.1 Texture Synthesis with Semi-Discrete Optimal
Transport

In this section, we will recall the de�nition given in [52] of the texture model
based on semi-discrete optimal transport. Let u : Ω→ Rd be the exemplar
texture de�ned on a domain Ω ⊂ Z2. As before, the patch domain will be
denoted by ω = {−ρ, . . . , ρ}2 and the associated patch space by RD where
D = d(2ρ+ 1)2.

Monoscale Model

The model is based on a coarse synthesis obtained with a Gaussian random
�eld U , which is called the asymptotic discrete spot noise (ADSN) associated
with the texture u [48]. We have seen this model before, in Section 3.3.3, as
the limit distribution of Poisson discrete shot noise models. Associated to the
texture u, it is de�ned by

∀x ∈ Z2, U(x) = ū+
∑
y∈Z2

tu(y)W (x− y) (4.16)

where ū = 1
|Ω|
∑
u(x), tu = 1√

|Ω|
(u − ū)1Ω and W is a normalized Gaussian

white noise on Z2. However, this Gaussian random �eld model U is only
adapted to the synthesis of unstructured textures. Figure 4.5 shows the ADSN
associated to several textures. Note that the �rst one, which belongs to the
micro-textures family, is the only well synthesized texture.

For that reason, the authors of [52] proposed to apply local modi�cations to
reinforce geometric structures in a statistically coherent way. In other words,
a transformation T : RD → RD is applied to all the patches of U , an image is
recomposed by simple averaging, thus obtaining the transformed random �eld

∀x ∈ Z2, V (x) =
1

|ω|
∑
h∈ω

T (U|x−h+ω)(h). (4.17)

The map T is chosen to solve a semi-discrete optimal transport problem be-
tween the probability distribution µ of the patches of U and a discrete target
distribution ν =

∑J
j=1 νjδQj representing the patches of u (that we de�ne in
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Figure 4.5: Examples of asymptotic discrete spot noise synthesis (4.16). First
row: Input textures. Second row: Synthesis.

Section 4.3.2). This problem can be written as

inf

∫
RD
‖P − T (P )‖2dµ(P ) (4.18)

where the in�mum is taken over all measurable maps T for which the image
measure of µ is ν. As proved in [7, 76], the solution can be obtained as a
weighted Nearest Neighbour (NN) assignment

Tv(P ) = Qj(P ) where j(P ) = argmin
j
‖P −Qj‖2 − vj (4.19)

where v ∈ RJ solves a concave maximization problem. Solving for v relies
on a costly stochastic gradient procedure (see the details in [60, 52]) which is
more and more di�cult when the number J of points in the target distribution
increases. This is a �rst reason to look for a simpli�cation of the target mea-
sure ν with the least possible points. Another reason, which will be highlighted
in the experimental section, is that once the map Tv is estimated, applying it
to all patches of U amounts to applying a weighted NN projection on a set of
J patches; thus the required computational time for synthesis also depends on
the number J of points in the target distribution.

This monoscale model (only one scale of patches) is summarized in Figure
4.6. Given the input texture u, and a discrete distribution ν representing its
patches, a Gaussian random �eld U is generated, providing a coarse approx-
imation of the texture. The continuous distribution of the patches of U is
denoted by µ. A transformation Tv is estimated so that the image distribu-
tion of µ is ν. After applying Tv to the patches of U , they are aggregated by
averaging, to obtain the texture V .
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v

Figure 4.6: Monoscale model de�ned in [52] using semi-discrete optimal trans-
port for texture synthesis, from u the input texture.

Multiscale Model

One drawback of the stochastic algorithm for semi-discrete OT is that it gets
slower when the dimension D increases. In practice, it is thus only applicable
for patches of size 3× 3. A multiscale extension was proposed in [52] in order
to deal with larger structures. It consists in working with subsampled versions
u`, ` = 0, . . . , L−1 of the original texture de�ned on coarser grids Ω` = Ω∩2`Z2,
and with discrete target patch distributions ν`, ` = 0, . . . L− 1.

Starting from a Gaussian random �eld UL−1 estimated from uL−1 as in
(4.16), for ` = L− 1, . . . , 0, we apply a transport map T ` to all patches of U `

V `(x) =
1

|ω|
∑
h∈2`ω

T `(U `
|x−h+2`ω)(h), x ∈ 2`Z2 (4.20)

and we get U `−1 by exemplar-based upsampling (taking the same patches than
T ` but twice larger). The transport map T ` is designed to solve a semi-discrete
OT problem between a source measure µ` (a GMM estimated from the patches
of the current synthesis) and a discrete target distribution ν` representing the
patches of u`. The output texture is V 0.

One strong feature of this multiscale model is that the maps T ` can be
estimated once and for all. Once the model estimated, it can be sampled
e�ciently since applying the map T ` at each scale consists in a simple weighted
NN projection on 3× 3 patches.

4.3.2 DPP Subsampling of the Target Distribution

In this subsection, we discuss how to choose the discrete target distribution ν
in order to represent e�ciently the patches of the original texture u.

Choosing the Target Distribution

One natural choice to represent all the patches of u is of course to consider the
empirical distribution

νemp =
1

N

N∑
i=1

δPi (4.21)
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where P = {Pi, 1 6 i 6 N} is the set of all patches of u. Unfortunately, this
choice must often be discarded because the number N of patches is in general
very large (N � 105) and thus unsuitable for the stochastic algorithm for
semi-discrete OT.

The authors of [52] coped with this problem by considering the simple
subsampling

νunif =
1

J

J∑
j=1

δQj (4.22)

where the patches (Qj) are chosen at random (uniformly) among the patches
P . Although naive, this solution proved to be su�cient for many textures,
with a value of J set as a ground rule to J = 1000 for subsampling 3×3 patch
distributions.

However, as mentioned above, the size J of the support of the target dis-
tribution highly impacts the execution times of the estimation of the model
and of the synthesis step. That is the reason why we propose here to consider
alternative choices in order to use even lower values of J while maintaining the
visual quality of the output texture.

We want to approximate the empirical distribution with a discrete distri-
bution with support of size J

ν =
J∑
j=1

νjδxj (4.23)

where xj ∈ RD, for all j = 1, . . . , J and whose weights (νj) belong to the

probability simplex, meaning that ∀j ≤ J , νj ≥ 0 and
∑J

j=1 νj = 1. One can

formulate this problem using the L2-Wasserstein distance between discrete
probability distributions µ =

∑N
i=1 µiδyi and ν =

∑J
j=1 νjδxj de�ned by

W 2
2 (µ, ν) = inf

(πi,j)

∑
i,j

πi,j‖yi − xj‖2 (4.24)

where the in�mum is taken on (πi,j) ∈ RN×J
+ such that for all i,

∑
j πi,j = µi

and for all j,
∑

i πi,j = νj. Approximating νemp with a discrete distribution
amounts to �nd ν minimizing the Wasserstein distance

ν∗ = argmin
ν

W 2
2 (νemp, ν). (4.25)

Note that solving this optimization problem is actually equivalent to solv-
ing a k-Means clustering problem [105, 32]. In [32], the authors propose an
algorithm to solve, among more general issues, the optimization problem (4.25)
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and state that this method is equivalent to Lloyd's algorithm [91], the common
k-Means clustering algorithm. Note that this problem is non convex and that
Lloyd's algorithm only provides a local minimum. More importantly, in this
image framework, we have a supplementary constraint: we want the points
xi ∈ RD de�ning the support of ν∗ to be part of the initial patches of the
texture. Indeed, the k-Means algorithm may create blurry patches, that do
not belong to the input texture and that would be unsuited to represent it.

Thus, in the following, we propose to �x the support of the distribution
ν and to de�ne it as the realization of a DPP, so that the resulting support
represents the set of patches of the input texture.

Setting the Weights

In the following, we select a subset of patches of the input texture u using a
DPP. Given a DPP kernel K, we denote by Q ∼ DPP (K), a random subset
of patches. The choice of the DPP kernel K is our main concern here and it
will be discussed in the next paragraphs.

Once the support Q = {Qj, 1 6 j 6 J} has been �xed, one must build a
measure ν supported on Q that accurately represents the patches of u. This
amounts to adjusting the masses (νj) associated with (Qj) such that

ν =
J∑
j=1

νjδQj (4.26)

realizes a good approximation of νemp.
As before, one can use the L2-Wasserstein distance to determine ν. Finding

the masses (νj) that minimizes W 2
2 (νemp, ν) is equivalent to solving

π∗i,j = argmin
(πi,j)

∑
i,j

πi,j‖Pi −Qj‖2 (4.27)

such that ∀(i, j), πi,j ≥ 0 and
∑

j πi,j = 1
N
, which is similar to the original OT

problem, but relaxing the second marginal constraint. The solution ν can thus
be obtained with

∀j ∈ {1, . . . , J}, ν∗j =
∑
i

π∗i,j. (4.28)

This is simply a linear programming problem with the projection on a simplex
that can be solved with the �Interior point� or �Dual simplex� algorithms. Fi-
nally we approximate the empirical distribution with the (random) distribution

νDPP =
J∑
j=1

ν∗j δQj , (4.29)

where Q = {Qj, 1 6 j 6 J} is a realization of the DPP with kernel K.
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Choice of a DPP kernel

One needs to choose a DPP kernel such that the selected subset of patches
provides a good approximation of the empirical distribution of the patches of
u. To do so, we compare the di�erent kernels presented in the previous section,
using texture images.

Let us de�ne one more evaluation measure, using the Wasserstein distance
between the empirical distribution νemp and the approximation νDPP presented
above. In practice, we want the DPP kernel that minimizes the error:

E3 = W 2
2 (νemp, νDPP) =

∑
i,j

π∗i,j‖Pi −Qj‖2. (4.30)

Figure 4.7 compares the kernels introduced in Section 4.2 and applied to
subsample the set of patches of several textures (used in the experiment sec-
tion). These graphs display the errors E2 (4.7), E3 (4.30) and the PSNR (4.15),
computed, for each kernel, by averaging the results obtained from 9 texture
images and, for each image, from several samples. One can notice that the
PCA kernel (4.4) and the Intensity kernel (4.3) seem to behave in a more sat-
isfying way than the other kernels and in general their quantitative results are
similar. As we have seen before, in general, the PCA kernel produces more
diverse subsets, with singular patches. For most textures, this kernel is the
one minimizing E2 (4.7) the error computing the maximum distance between
the selection and the rest of the patches.
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Figure 4.7: Error E2 (4.7), PSNR (4.15) and Error E3 (4.30) comparing several
DPP kernels, using 9 di�erent texture images.

Thus, in the following, we choose to use a DPP generated by the PCA kernel
introduced previously. Let us recall that every patch Pi ∈ P is associated with
a vector P k

i ∈ Pk given by keeping only the k principal components after a
Principal Component Analysis (PCA), and we de�ne the likelihood kernel by

∀Pi, Pj ∈ P , Lij = exp

(
−
‖P k

i − P k
j ‖2

2

s2

)
, (4.31)
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where s is the median of the interdistances between the patches and k = 10.
As we have seen in Chapter 2, the exact algorithms to sample DPPs pre-

sented in this manuscript cost O(N3), which is very costly since in general N
is large. Yet, we only need to perform this sampling once (at every scale) and
as it enables to signi�cantly reduce the number of patches used to estimate the
target distribution, we will see in the next section that this cost can be a�orded.
Algorithm 6 presents the steps of the whole texture synthesis algorithm using
semi-discrete optimal transport and DPP subsampling to synthesize textures.
Note that, given a texture, once a �rst synthesis has been done, the model is
estimated and stored. For all subsequent synthesis of the same texture, one
only needs to do the steps written in italic in Algorithm 6.

Algorithm 6 Semi-discrete OT algorithm for texture synthesis, using DPPs.
Input: Exemplar u, number of scales L.

1. Preprocessing:

� De�ne subsampled versions of u, u0, . . . , uL−1.

� At each scale l, select a subset of patches Ql using DPP(K l) (4.31)
de�ned on ul.

� At each scale l, compute νl, representing the patch distribution of
ul (4.29).

2. De�ne UL−1 a Gaussian synthesis (4.16).

3. At each scale l = L− 1, . . . , 0,

� Estimate µl as a Gaussian mixture model from U l (except at scale
L− 1 where we already know the Gaussian distribution of UL−1).

� Compute the weights vl (4.19) using a stochastic gradient descent
algorithm and compute the optimal transport map T lv.

� Apply the map to the patches of U l, which consists in a weighted
nearest neighbor projection on Ql, to obtain V l.

� If l 6= 0, examplar-based upsampling of V l to obtain U l−1.

Output: Synthesized texture V 0.

4.3.3 Results

We now comment the synthesis results obtained by subsampling the target
patch measures with DPPs. All parameters of the texture model are set to
the default values listed in [52] (4 scales, patches of size 3 × 3). The only



4.3. Application to a Method of Texture Synthesis 119

di�erence lies in the subsampling strategy. At each scale, a �rst naive sub-
sampling is performed by drawing (uniformly) 1000 patches in the exemplar
texture. Then, a second subsampling step is performed with either another
uniform subsampling to cardinality J or a DPP subsampling with expected
cardinality J . Let us mention that we cannot use a direct DPP subsampling
of νemp because the total number of patches N is often very large (≈ 106) and
it would be very slow to sample from a DPP kernel that large. In the following
experiments, J ∈ {50, 100, 200}.

First, note that the evaluation of the quality of a texture synthesis relies
usually on human visual assessment. Unlike denoising methods, that can be
evaluated using the PSNR (4.15) for instance, it is di�cult to objectively and
systematically quantify the quality of a generated texture. This is partly due
to the wide diversity of texture images. Thus, in the following, we are only
able to visually assess the quality of the syntheses.

In Figure 4.8, one can observe a predictable loss of quality when going
from 1000 to 100 patches. However, one can see that for many textures, the
visual quality can be maintained to a reasonable level while using 10 times less
patches. This will help us to reach a compromise between visual quality and
execution time for synthesis (see below). One can also observe on Figure 4.8
that uniform and DPP subsampling behave quite di�erently. In particular,
DPP subsampling seems to favor patches with sharper edges and less noise.
Also, on several textures (like the last example of Figure 4.8), the output
seems statistically closer to the input texture; but it would require a more
involved analysis to precisely assess this fact. Let us remark that this statistical
consistency crucially relies on the precise estimation of the weights explained
in Section 4.3.2.

In Figure 4.9, we analyze the in�uence of the cardinality of the target dis-
crete distribution. One can observe that for each texture there is a cardinality
value, which mainly depends on the complexity and the geometric components
in the texture, under which results get visually degenerate and over which the
visual quality is maintained to a reasonable level.

Finally, let us highlight the main bene�t obtained with the proposed sub-
sampling strategy, which lies in the gain in computation time for synthesis.
Once the texture model is estimated, it is indeed very fast to sample large
pieces of it, and since it relies on weighted NN assignments at each scale, the
execution time depends quasi-linearly on the cardinality J of the target mea-
sures. Using a CPU Intel i7-5600U (4 cores at 2.6GHz), for J 6 200 we are
able to synthesize 512 × 512 images in ≈ 0.4” and 1024 × 1024 in ≈ 1.6”.
This execution time can be improved using a GPU implementation: Table 4.1
provides the running times for the synthesis of 1024×1024 textures, for several
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Original Unif-1000 Unif-100 DPP-100

Figure 4.8: Visual comparison of the synthesis results when using either a tar-
get distribution with uniform subsampling (with cardinality 100)
and DPP subsampling (with expected cardinality 100). See the
text for comments.



4.3. Application to a Method of Texture Synthesis 121

DPP-50 DPP-100 DPP-200 Unif-1000

Figure 4.9: We display the visual impact of the expected cardinality of the
DPP on the results. See the text for comments.

values of J . One can notice that these computation times are close to the state
of the art values obtained in [62] for structured textures.

Figures 4.10 and 4.11 present some experiments comparing the synthesis
of 720 × 512 textures using the initial algorithm [52], using 1000 patches to
represent the patch distribution, and our adaptation using a DPP subsampling
of the set of patches. Observe that for most textures the visual quality seems
satisfying. Yet, one can notice a loss of quality between the uses of 1000
and 100 patches, concerning the syntheses from the third and fourth textures
of Figure 4.10. These textures contains larger geometric structures or large
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J 50 100 200 1000
Running time 0.19" 0.28" 0.47" 1.7"

Table 4.1: Execution time for synthesis depending on the number J of
points in the patch target distributions. These execution times
have been obtained with a GPU implementation.

repeated patterns, and a selection of 100 patches appears to be too small to
retrieve such content. The suggested approach thus allows to accelerate the
synthesis algorithm of [52] while maintaining the quality of synthesis. Note
that a Matlab implementation of this adaptated algorithm (for CPU and
GPU) is available online1.

4.4 Conclusion

In this chapter, we investigated the use of determinantal point processes to
subsample the set of patches of an image. We presented several DPP kernels
adapted to the representation of an image and compared them using several
evaluation measures. It appears that the choice of the kernel highly depends
on the purpose of the generated selection. The most stable strategy seems to
be using the Intensity kernel, which provides a selection both close in average
to the initial patches and containing singular patches.

We proposed an alternative strategy to subsample the set of patches of a
texture and to approximate its empirical distribution. This method was ap-
plied to a texture synthesis model using semi-discrete optimal transport. The
resolution of this OT problem involves a weighted nearest neighbor assign-
ment, computed using a slow stochastic gradient procedure. Thus, the execu-
tion times of the estimation of the OT map as well as its application highly
depend on the size of the support of the discrete patch distribution. That
is why we proposed here to approximate the patch distribution using DPP
subsampling. Considering textures, the PCA kernel, along with the Intensity
kernel, provides appealing subsets of patches. As it also tends to select more
singular patches, we choose to use this PCA kernel in the texture synthesis
algorithm. The execution time of the synthesis is signi�cantly shortened be-
cause of the possibility for the estimated patch distribution to have a reduced
support. This strategy proposes a compromise between synthesis quality and
execution speed.

Because of the stochastic gradient descent needed to solve the OT problem,

1https://www.math.u-bordeaux.fr/~aleclaire/texto/

https://www.math.u-bordeaux.fr/~aleclaire/texto/
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the patches can't be too large. In practice, Galerne et al. [52] use 3×3 patches
and, in this study, so do we. However, Leclaire and Rabin [86] recently devel-
oped a multi-layer version of the optimal transport resolution. This method
enables the use of patches of size 7×7, which improves the synthesis of textures
with geometry and large scale structures. We would like to adapt the DPP
subsampling done here to this multilayer algorithm to speed it up and ana-
lyze more precisely the consequences of the estimation of the textured patch
distribution using DPPs.

Notice also that whereas some textures can be represented and synthesized
using very few patches, for some complex textures, 100 or 200 patches may
not be enough to accurately approximate them. It would be interesting to
develop a criterion related to the complexity of the texture, determining the
approximate number of patches needed to represent it.
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Orig. Unif-1000 DPP-100

Figure 4.10: We compare the synthesis results when using either a uniform
subsampling (with cardinal 1000) or a DPP subsampling (with
expected cardinal 100).
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Orig. Unif-1000 DPP-100

Figure 4.11: Same as Figure 4.10.
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This thesis focused on discrete determinantal point processes and on their ap-
plication to image processing. We wanted to use the ability of DPPs to model
repulsive phenomena or to subsample sets of data while enforcing diversity
in the sample. These properties have been explored when the point process
is de�ned on the pixels or the patches of an image. This chapter presents
a synthesis of the main contributions of this manuscript. We also mention
perspectives that we would like to explore for future research.

5.1 Exact Determinantal Point Processes Sam-

pling

In Chapter 2, we focused on sampling general determinantal point processes.
We developed two new sampling algorithms, that we call the sequential sam-
pling algorithm (Algorithm 2) and the sequential thinning algorithm (Algo-
rithm 3). Both algorithms are exact, adapted to general determinantal point
processes and, unlike the usual exact sampling algorithm, they don't use the
spectral decomposition of the kernel. Matlab and Python implementations
of the sequential thinning algorithm can be found online1. Algorithm 2 relies

1https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html

https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html
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on the sequential computation of pointwise conditional probabilities from a
DPP kernel. The sampling is sped up using updated Cholesky decompositions
to compute the conditional probabilities. This strategy is simple but it is not
competitive with usual sampling methods.

We use the thinning of a point process to reduce the execution time of
the sampling. This new sampling algorithm proceeds in two phases. The
�rst one draws a Bernoulli process whose distribution is adapted to the target
DPP. We ensured that the generated point process contains the DPP and it
is constructed so that its cardinality is the closest to the cardinality of the
target DPP. This step is fast and e�cient and it signi�cantly reduces the
initial number of points of the ground set. Moreover, if I−K is invertible, the
expectation of the cardinality of the Bernoulli process is proportional to the
expectation of the cardinality of the DPP. The second phase uses the previous
sequential sampling based on the points selected by the Bernoulli point process.
This sequential strategy is not e�cient, that is why it is crucial that the �rst
step reduces the size of the initial state space as much as possible.

We have illustrated the behavior of these two algorithms with numerical
experiments and compared their running times with the spectral algorithm.
We have detailed the cases for which the sequential thinning algorithm is com-
petitive with the spectral algorithm, in particular when the size of the ground
set is high and the expected cardinality of the DPP is modest. This framework
is common in machine learning applications.

To pursue this work, we would like to explore new methods to further accel-
erate our sampling algorithm. In his thesis [55], Guillaume Gauthier proposed
an alternative computation of the Bernoulli probabilities (2.31), de�ning the
distribution of the dominating Bernoulli process used in the �rst step of the
sequential thinning algorithm. His formula avoids the inversion of a triangular
matrix and thus accelerates the �rst part of the algorithm. Furthermore, using
speci�c matrix factorization techniques and parallelizations, Poulson [109] de-
veloped an e�cient sampling algorithm that relies on same conditional prob-
abilities as our sequential algorithm (Algorithm 2). The author states that
these speedups bring important gains in terms of running times to our sequen-
tial thinning algorithm (Algorithm 3). We would like to further investigate
these speedups and similar factorization strategies, to understand to what ex-
tent a modi�ed sequential thinning algorithm would be more e�cient and to
study other possible improvements.

Another promising perspective would be to extend this strategy to continu-
ous DPPs, de�ned on a continuous state space. Indeed, the thinning procedure
we use comes from a continuous setting. We would like to examine the adapta-
tion of the rest of the algorithm to a continuous framework. Continuous DPPs
appear in the distribution of the spectrum of Gaussian random matrices in
probability or in the location of fermions in quantum mechanics, for instance.
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The common exact sampling algorithm for continuous DPPs is given by Hough
et al. in [72] and still relies on the characterization of a DPP as a mixture
of projection DPP. Scardicchio et al [118] and Lavancier et al. [85] provide
more e�cient implementations based on the previous sampling algorithm, in
particular for the simulation of the Bernoulli variables. These strategies still
use the eigendecomposition of the kernel. Furthermore, some authors, such as
Decreusefont et al. [37], use a MCMC strategy and the method called �cou-
pling from the past� to draw a continuous DPP. They call this method �perfect
simulation� as it reaches the target distribution in a �nite time.

Sampling exactly continuous DPP models is a much more challenging prob-
lem than sampling discrete DPPs. The main reasons that the domains are
often in�nite, and more importantly, because the eigendecompositon of the
kernel operator generally involves an in�nite number of eigenvalues. Yet we
hope that adapting the sequential thinning procedure (Algorithm 3) may pro-
vide an adequate and e�cient sampling procedure for some continuous DPP
models.

5.2 Determinantal Pixel Processes

In Chapter 3, we adapted the de�nition of DPPs to the set of the pixels of
an image. Such a DPP is de�ned on the image domain Ω and is called a de-
terminantal pixel process (DPixP). In this setting, and with the application
to texture synthesis in mind, the stationarity and the periodicity of the point
process are natural hypotheses. We showed that the only possible hard-core
repulsion for DPixP is directional. Given a direction, it is possible to impose
to select at most one pixel on any discrete line with this direction in the image.
In Section 3.3, we studied shot noise models based on DPixP as a method to
sample micro-textures. We developed a method to adapt the DPixP kernel to
a given spot function and to the regularity one is looking for. The regularity
of the shot noise, that can be seen as a speci�c type of repulsion adapted to
the spot function, is related to the variance of the shot noise. This quantity
depends on the spot function and on the DPixP kernel. It appears that the
least repulsive DPixP, which generates the least regular textures and which
maximizes the variance of the shot noise, is the homogeneous Bernoulli pro-
cess. In that case, the kernel is independent of the spot function. On the other
hand, the most repulsive DPixP kernel, generating regular textures and min-
imizing the variance of the shot noise, is a projection kernel which is solution
to a combinatorial problem depending on the spot function. Considering the
associated shot noise models enables getting closer to a hard-core repulsion.

Thus, in Section 3.2, we proved that it is not possible to avoid overlaps if
we randomly copy and place a given shape using a DPixP, unlike particular
Gibbs processes. However, in Section 3.3, we saw that, given a shape (the
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spot function), it is possible to derive a DPixP kernel so that there are as few
overlaps as possible. This property may be interesting for computer graphics
issues especially since DPixPs have elegant theoretical properties. Notice that
our algorithm to retrieve the �minimal variance� kernel, a kernel minimizing
the number of overlaps, is greedy and is not optimal. Further research would
be needed to develop an algorithm more e�cient. Furthermore, we would like
to look for a theoretical bound on the number of overlaps in shot noise models
based on this DPixP and on a given shape.

Note that one of our initial motivations was to reduce the number of spot
overlaps in the shot noise model. This goal is achieved using DPixPs and their
repulsive nature, by choosing a kernel adapted to the spot. Another motiva-
tion could be to generate more �contrasted� textures from shot noise models
containing clusters of patterns. As a future work, we would like to explore
shot noise models based on attractive point processes, such as Cox processes.
It would be interesting to derive properties similar to those we obtain with
DPixPs, for instance while studying shot noise models based on permanental
point processes, which are considered as the attractive counterpart to deter-
minantal point processes. As for DPPs, it is possible to compute the moments
of these point processes. In the continuous case, Blaszczyszyn and Yogesh-
waran [16] study shot noise models based on di�erent point process, sorting
them according to their repulsiveness. They use these results on shot noise
models and Cox processes for wireless networks. Shirai and Takahashi obtain
in [120] a law of large numbers, a central limit theorem and a large devia-
tion result for point processes that they call α-determinantal point processes,
which gather determinantal and permanantal point processes. Thus, one may
retrieve similar convergence conclusions for shot noise models based on perma-
nental processes, as the ones proved in Section 3.3.3, and apply those results
to texture synthesis. As we have seen in Section 3.3.2, shot noise models based
on attractive processes could enhance the contrast of the textures generated,
by creating regions with high amount of spot overlaps and regions without any
point. We could de�ne an objective function to optimize, such as the variance
of the shot noise models, in order to �nd the optimal kernel of the permanental
process in function of the spot function.

In Section 3.4, we endeavored to characterize the equivalence classes of
DPP and DPixP kernels, that are families of kernels generating the same
distribution. In the DPixP case, the equivalence classes involve translation
and symmetry with respect to (0, 0) of the Fourier coe�cients of the kernels.
This question is crucial when dealing with inference, in order to understand
what can be retrieved by an estimation algorithm and in order to assess the
uniqueness of the solution. We developed an algorithm to estimate the Fourier
coe�cients of a DPixP kernel from one sample or from a set of samples. This
algorithm takes advantage of the stationarity of DPixPs and provides satis-
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fying results, particularly when the target kernel is a projection kernel. For
instance, we have seen that the algorithm is able to retrieve most of the kernel
information using only one sample, for some simple projection kernels.

We plan to investigate the joint estimation, from a texture image, of the
spot function and of the DPixP kernel associated to a shot noise that could have
generated the texture. Such an algorithm would allow for the reproduction of
Gaussian textures or the inference of the model underlying the input texture,
in order to retrieve some of the texture properties. Several approaches [40, 50,
51] have focused on this question as they intend to generate, given an input
texture image, what they call a texton. A texton is a compact representation
of the texture, a small texture image, containing the frequency content of
the input. In fact, this texton can be seen as a spot function and it is used to
reproduce the initial Gaussian texture using a discrete shot noise model, based
on a Poisson point process. This whole strategy enables e�cient exemplar-
based texture synthesis for Gaussian textures. A similar algorithm, retrieving
both the texton and the DPixP kernel underlying a given texture could be
a promising method to adapt the previous strategies to a wider family of
textures.

5.3 Determinantal Point Processes on Patches

In Chapter 4, we studied the use of determinantal point processes to subsam-
ple the set of patches of an image. In Section 4.2, we introduced di�erent
DPP kernels adapted to the representation of an image and compared them
using several evaluation measures. The choice of kernel highly depends on the
purpose of the generated selection as each kernel favors di�erent types of se-
lection. The most stable strategy seems to be using the Intensity kernel, which
provides a selection both close in average to the initial patches and containing
singular patches. On the other hand, the PCA kernel, involving the principal
components given by a PCA on the matrix gathering the patches, highly fa-
vors patches with edges or textures. Such selections of key patches can serve to
represent an image using little memory, if the image is reduced to its size, the
small set of selected patches and the vector of indices associating each initial
patch to its nearest neighbor in the selection. Such diverse selections can also
be applied to initialize the centroids of a clustering algorithm or to estimate
the parameters of a model de�ned on the image, by evaluating them on a small
but representative proportion of patches.

Section 4.3 presents an application of these subsampling strategies to a
texture synthesis model [52] using semi-discrete optimal transport (OT). We
developed an alternative strategy to select a small subset of patches of a texture
and to approximate the empirical distribution of the whole set of patches of
the image. The initial texture synthesis algorithm begins with the synthesis
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of a Gaussian random �eld adapted to the input texture, having the same
second order statistics. Then, it uses semi-discrete optimal transport to impose
local features, at several resolutions, to the patches of the Gaussian random
�eld. To do so, the authors need to approximate the discrete distribution of
the input texture's patches. Solving the OT problem involves a stochastic
gradient descent and in the end, the solution is given by a weighted nearest
neighbor assignment between the patches of the Gaussian random �eld and
the considered patches of the input texture.

This algorithm needs to subsample the set of patches of the texture and
to approximate as precisely as possible the distribution of the patches. Using
a DPP instead of a uniform selection allows for the use of much less patches
to represent the texture. Considering textures, the PCA kernel, along with
the Intensity kernel, provide appealing subsets of patches. As it also tends to
select more singular patches, we chose to use this PCA kernel in the texture
synthesis algorithm. Even though sampling a DPP is more costly than sam-
pling a Bernoulli point process, the DPP sampling is done only once, o�ine,
during the analysis part of the algorithm. Moreover, the �nal reduction of
the number of considered patches is decisive both in the analysis part of the
algorithm, estimating the model, but most of all in the online part of the al-
gorithm, synthesizing the output texture. The execution time of the synthesis
is signi�cantly shortened because of the possibility for the estimated discrete
patch distribution to have a reduced support. The experiments show that this
strategy propose a compromise between synthesis quality and execution speed.
Using ten times less patches than in the initial algorithm allows for accelerat-
ing the synthesis by a factor six on a GPU, while for many textures the visual
quality of the result is maintained. Note thatMatlab implementations of the
initial synthesis algorithm and of the DPP acceleration on CPU and GPU can
be found online2.

During the computation of the OT solution, the de�nition of the weights
associated to the nearest neighbor assignment needs the use of stochastic opti-
mization strategies. However, these methods are very slow, particularly in high
dimension. That is the reason why the authors of [52] use 3×3 patches and, in
this study, so did we. Leclaire and Rabin [86] recently developed a multi-layer
version of the OT resolution. They approximate the real OT solution by using
a hierarchical clustering of the patches and estimate the weights of each cluster
and each layer using a tree search strategy, which is very fast. This enables
performance gain during the estimation of the model and during the synthesis
of the texture. This method allows for the use of large patches (for instance of
size 7×7) which capture larger structures in the texture. Thus, this algorithm
is able to synthesize complex textures, with large geometric features. To pur-
sue the work done in Chapter 4, we would like to adapt the DPP subsampling

2https://www.math.u-bordeaux.fr/~aleclaire/texto/

https://www.math.u-bordeaux.fr/~aleclaire/texto/
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studied here to this multi-layer strategy to accelerate the synthesis algorithm
and analyze more precisely the consequences of the estimation of the textured
patch distribution using DPPs. It would also be important to investigate the
behavior of the DPP kernels when using larger patches, capturing much more
information.

Notice also that whereas some textures can be represented and synthesized
using few patches, for some complex textures with geometric structures, 100 or
200 patches may not be enough to accurately approximate their patch distribu-
tion. It would be interesting to develop a criterion related to the complexity of
the texture, determining the approximate number of patches needed to repre-
sent it, so that it is set to the minimum value while maintaining a good visual
synthesis. Unfortunately, this issue is as complex as the evaluation of the
quality of a texture synthesis. As we have seen previously, there is no widely
accepted measure to objectively and systematically assess a texture synthesis.
Several papers [90, 36] propose strategies to automatically sort textures, for
instance by considering the regularity and the repetition of patterns [90] or
the periodicity of the texture [36]. We could rely on similar sorting strategies
to evaluate the complexity of a texture, the amount of geometrical structures,
the nature of the periodicity, and adapt the synthesis algorithm accordingly.
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The following appendix is related to Chapter 2 and the computation of gen-
eral marginals of a DPP. We introduce here the Möbius inversion formula,
needed in Section 2.3 and we present several strategies to update a Cholesky
decomposition. These methods are used to implement the sequential sampling
algorithm (Algorithm 2).

A.1 Möbius Inversion Formula

Proposition A.1.1 (Möbius inversion formula). Let V be a �nite subset and
f and g be two functions de�ned on the power set P(V ) of subsets of V . Then,

∀A ⊂ V, f(A) =
∑
B⊂A

(−1)|A\B|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑
B⊂A

f(B),

(A.1)
and

∀A ⊂ V, f(A) =
∑
B⊃A

(−1)|B\A|g(B) ⇐⇒ ∀A ⊂ V, g(A) =
∑
B⊃A

f(B).

(A.2)
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Proof. The �rst equivalence is proved in [102] for instance. The second equiv-

alence corresponds to the �rst applied to f̃(A) = f(Ac) and g̃(A) = g(Ac).
You will �nd more details on this matter in the book of Rota [115].

A.2 Cholesky Decomposition Update

We describe below various updates for Cholesky decompositions.

A.2.1 Add a Line

We describe here how a Cholesky decomposition of symmetric semi-de�nite
matrixM is computed given the Cholesky decomposition of its largest top left
submatrix.

Let M be a symmetric semi-de�nite matrix of the form

M =

(
A b
bt c

)
(A.3)

where A is a square matrix, b a column vector, and c a real positive number.
We suppose that the Cholesky decomposition of the matrix A is known, that
is, A = TT t where T is lower triangular. The goal is to compute the Cholesky
decomposition of the matrix M given T . Set

v = T−1b (A.4)

x =
√
c− vtv. (A.5)

Then the Cholesky decomposition of M is(
T 0
vt x

)
. (A.6)

Indeed,(
T 0
vt x

)(
T 0
vt x

)t
=

(
T 0
vt x

)(
T t v
0 x

)
=

(
TT t Tv
vtT t vtv + x2

)
=

(
A b
bt c

)
= M.

(A.7)

A.2.2 Add a Bloc

To be e�cient, the sequential algorithm relies on Cholesky decompositions
that are updated step by step to save computations. Let M be a symmetric

semi-de�nite matrix of the form M =

(
A B
Bt C

)
where A and C are square
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matrices. We suppose that the Cholesky decomposition TA of the matrix A has
already been computed and we want to compute the Cholesky decomposition
TM of M . Then, set

V = T−1
A B and X = C − V tV = C −BtA−1B (A.8)

the Schur complement of the block A of the matrix M . Denote by TX the
Cholesky decomposition of X. Then, the Cholesky decomposition of M is
given by

TM =

(
TA 0
V t TX

)
. (A.9)

Indeed,

TMT
t
M =

(
TA 0
V t TX

)(
T tA V
0 T tX

)
=

(
TAT

t
A TAV

V tT tA V tV + TXT
t
X

)
=

(
A B
Bt C

)
.

(A.10)
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This appendix is related to Chapter 3. Its goal is to prove Proposition 3.3.4,
providing convergence results for shot noise based on DPixP de�ned on Z2,
when the grid is re�ned. We obtain a law of large numbers and a central limit
theorem adapted to this framework. Proposition 3.3.4 is adapted from the
work of Shirai and Takahashi in [121, Propositions 3.3 and 3.4].

In order to prove these limit theorems, let us recall some results of ergodic
theory.

B.1 Ergodic Theory

The following de�nitions and theorems, along with more details on ergodic
theory, can be found in the book of Kallenberg [75].

We will denote a measurable space (S,S, µ), T a measurable transformation
on S, ξ a random element of S with probability measure µ and θ a shift on S
de�ned by, ∀x0, x1, · · · ∈ S, θ(x0, x1, ...) = (x1, x2, . . . ). The transformation T

is said to be measure-preserving if and only if Tξ
d
= ξ. Moreover, a random

element of S ξ is stationary if and only if θξ
d
= ξ.
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De�nition B.1.1 (Invariant sets and ergodicity). A set I ⊂ S is said to be
invariant if T−1I = I. The class I of invariant sets in S form a σ-�eld in S
called the invariant σ-�eld.

A mesure-preserving transformation T is ergodic with respect to µ or µ-
ergodic if I the class of T -invariant sets is µ-trivial, that is if µI = 0 or
1,∀I ∈ I. Any random element ξ with distribution µ is said to be ergodic if
and only if P(ξ ∈ I) = 0 or 1, for any I ∈ I.

We can now state the ergodic theorems in general cases and under our
hypothesis.

Theorem B.1.1 (Ergodic theorem - Von Neumann [103], Birkho� [19]). Con-
sider a measurable space S, a measurable transformation T on S with asso-

ciated invariant σ-�eld I and a random element ξ in S where Tξ
d
= ξ. Let

f : S → R be a measurable function with f(ξ) ∈ Lp for some p ≥ 1. Then

1

n

∑
k<n

f
(
T kξ

)
−−−→
n→∞

E (f(ξ)|ξ ∈ I) a.s. and in Lp. (B.1)

Theorem B.1.2 (Multivariate ergodic theorem - Kallenberg [75] Thm 9.9
). As before, consider a measurable space S and a random element ξ with
measure µ in S. Let T1, ..., Td be some measurable, commuting, µ-preserving
transformations on S, and some measurable function f : S → R with f(ξ) ∈ Lp
for some p ≥ 1. Denote I for the (T1, ..., Td)-invariant σ-�eld in S. Then

1

n1 . . . nd

∑
k1<n1

...
∑
kd<nd

f
(
T k11 ...T kdd ξ

)
−−−−−−−→
n1,...,nd→∞

E (f(ξ)|ξ ∈ I) a.s and in Lp.

(B.2)

Our framework is 2D and discrete. Here, the random element X is a
DPixP of some kernel C. The measure-preserving transformations we are
interested in are the vertical shift or translation of a, T1, de�ned by T1(x) =
T1(x1, x2) = (x1 − a, x2) and the vertical shift of b, T2, such that T2(x) =
T2(x1, x2) = (x1, x2 − b). In both directions, the invariant sets associated
with the transformation is {∅,Z}. The associated (T1, T2)-invariant σ-�eld is
I = {∅,Z2} and we can state the following result, for any function f : Z2 → R,
such that f(ξ) ∈ Lp,

1

n1n2

∑
k1<n1

∑
k2<n2

f
(
T k11 T k22 X

)
−−−−−→
n1,n2→∞

E (f(X)) a.s. and in Lp. (B.3)
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B.2 Proof of Proposition 3.3.4 - Law of Large

Numbers

Consider f a given function on R2, andX ∼ DPixP(C) with C some admissible
kernel on Z2. We want to prove the following Law of Large Numbers

1

N2

∑
x∈X

f
( x
N

)
−−−→
N→∞

C(0)

∫
R2

f(x)dx, a.s and in L1. (B.4)

This proof proceeds in 3 steps: �rst, we prove the Law of Large Numbers
(Equation (B.4)) given f is an indicator function. Then, we prove the conver-
gence considering f is a simple function and �nally we prove the proposition
for mesurable functions with compact support.

Let us start by proving the convergence in the case of an indicator function
f : R2 → R, x = (x1, x2) 7→ 1[0,a[×[0,b[(x), with a, b ∈ N. We have ∀n1, n2 ∈ N,

f

(
x1

n1

,
x2

n2

)
= 1[0,n1a[×[0,n2b[ (x1, x2)

=

n1−1∑
k1=0

n2−1∑
k2=0

1[k1a,(k1+1)a[×[k2b,(k2+1)b[ (x1, x2)

=

n1−1∑
k1=0

n2−1∑
k2=0

1[0,a[×[0,b[

(
T k11 T k22 (x1, x2)

)
=
∑
k1<n1

∑
k2<n2

f
(
T k11 T k22 (x1, x2)

)
.

Then, using the bivariate ergodic theorem (Theorem B.1.2), g a mesurable

function de�ned by g(X) =
∑
x∈X

f(x) and the moment formula (Equation

(3.19)),

1

n1n2

∑
x∈X

f

(
x1

n1

,
x2

n2

)
=

1

n1n2

∑
k1<n1

∑
k2<n2

g
(
T k11 T k22 X

)
and then,

1

n1n2

∑
x∈X

f

(
x1

n1

,
x2

n2

)
a.s.,Lp−−−−−→

n1,n2→∞
E (g(X)) = E

(∑
x∈X

f(x)

)

=
∑
x∈Z2

f(x)C(0) =

∫
R2

f(x)C(0)dx because a, b ∈ N.

Let us now consider k1, k2 ∈ N∗. We de�ne f : R2 → R, as f(x) =
1[0, 1

k1
[×[0, 1

k2
[(x), T1 and T2 as the translation of 1 unit in the vertical and hori-
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zontal directions. Then, ∀n1, n2 ∈ N∗,

f

(
x1

n1

,
x2

n2

)
= 1[

0, 1
k1

[
×
[
0, 1
k2

[(x1

n1

,
x2

n2

)
= 1[

0,
n1
k1

[
×
[
0,
n2
k2

[ (x1, x2)

= 1[
0,
⌊
n1
k1

⌋[
×
[
0,
⌊
n2
k2

⌋[ (x) + 1[
0,
⌊
n1
k1

⌋[
×
[⌊
n2
k2

⌋
,
n2
k2

[ (x)

+ 1[⌊n1
k1

⌋
,
n1
k1

[
×
[
0,
⌊
n2
k2

⌋[ (x) + 1[⌊n1
k1

⌋
,
n1
k1

[
×
[⌊
n2
k2

⌋
,
n2
k2

[ (x)

f

(
x1

n1

,
x2

n2

)
=

⌊
n1
k1

⌋
−1∑

l1=0

⌊
n2
k2

⌋
−1∑

l2=0

1[l1,l1+1[×[l2,l2+1[ (x) +

⌊
n1
k1

⌋
−1∑

l1=0

1
[l1,l1+1[×

[⌊
n2
k2

⌋
,
n2
k2

[ (x)

+

⌊
n2
k2

⌋
−1∑

l2=0

1[⌊n1
k1

⌋
,
n1
k1

[
×[l2,l2+1[

(x) + 1[⌊n1
k1

⌋
,
n1
k1

[
×
[⌊
n2
k2

⌋
,
n2
k2

[ (x)

=
∑

l1<
⌊
n1
k1

⌋
∑

l2<
⌊
n2
k2

⌋1[0,1[×[0,1[

(
T l11 T

l2
2 x
)

(1)

+
∑

l1<
⌊
n1
k1

⌋1[0,1[×[
⌊
n2
k2

⌋
,
n2
k2

[

(
T l11 x

)
(2)

+
∑

l2<
⌊
n2
k2

⌋1[
⌊
n1
k1

⌋
,
n1
k1

[×[0,1[

(
T l22 x

)
(3)

+ 1
[
⌊
n1
k1

⌋
,
n1
k1

[×[
⌊
n2
k2

⌋
,
n2
k2

[
(x) . (4)

(B.5)
Now, we are going to study the limit of each part of the term above when we
sum it for x ∈ X and multiply it by 1

n1n2
. First, we have

1

n1n2

∑
x∈X

∑
l1<
⌊
n1
k1

⌋
∑

l2<
⌊
n2
k2

⌋1[0,1[×[0,1[

(
T l11 T

l2
2 x
)

=

⌊
n1

k1

⌋ ⌊
n2

k2

⌋
n1n2

1⌊
n1

k1

⌋ ⌊
n2

k2

⌋ ∑
l1<
⌊
n1
k1

⌋
∑

l2<
⌊
n2
k2

⌋ g
(
T l11 T

l2
2 X

)
,

where g(X) =
∑
x∈X

1[0,1[×[0,1[(x). Since ∀y ∈ R, byc ∼
+∞

y, we have

⌊
n1
k1

⌋⌊
n2
k2

⌋
n1n2

∼
+∞

1
k1k2

. Moreover, thanks to the multivariate ergodic theorem,

1⌊
n1

k1

⌋ ⌊
n2

k2

⌋ ∑
l1<
⌊
n1
k1

⌋
∑

l2<
⌊
n2
k2

⌋ g
(
T l11 T

l2
2 X

) a.s.,Lp−−−−−→
n1,n2→∞

E (g(X)) (B.6)
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and E (g(X)) = E

(∑
x∈X

1[0,1[×[0,1[(x)

)
= C(0)

∑
x∈Z2

1[0,1[×[0,1[(x) = C(0).

Finally, we obtain for this part

1

n1n2

∑
x∈X

∑
l1<
⌊
n1
k1

⌋
∑

l2<
⌊
n2
k2

⌋1[0,1[×[0,1[

(
T l11 T

l2
2 x
) a.s.,Lp−−−−−→

n1,n2→∞

1

k1k2

C(0) =

∫
R2

f(x)C(0)dx.

(B.7)

Second, we need to prove that the 3 other positive terms of the sum tends
to 0. For (2) and (3), the proof is identical:

1

n1n2

∑
x∈X

∑
l1<
⌊
n1
k1

⌋1[0,1[×
[⌊
n2
k2

⌋
,
n2
k2

[ (T l11 x
)
≤ 1

n1n2

|X|
⌊
n1

k1

⌋
∼

+∞

|X|
n2k1

−−−−−→
n1,n2→∞

0.

(B.8)

Similarly, concerning the last term, we have

1

n1n2

∑
x∈X

1[⌊n1
k1

⌋
,
n1
k1

[
×
[⌊
n2
k2

⌋
,
n2
k2

[ (x) ≤ 1

n1n2

|X| −−−−−→
n1,n2→∞

0. (B.9)

Thus,
1

n1n2

∑
x∈X

f

(
x1

n1

,
x2

n2

)
a.s.,Lp−−−−−→

n1,n2→∞

∫
R2

f(x)C(0)dx.

We have proved this property for all indicator functions on intervals of
types [0, a[×[0, b[, for all a, b ∈ N and [0, 1

k1
[×[0, 1

k2
[ for all k1, k2 ∈ N∗. As

we made a translation invariance hypothesis, and thanks to the linearity of
limits and integrals, this property is also veri�ed for any indicator function on
[p1, q1[×[p2, q2[,∀p, q ∈ Q2. As the set of 2D-rational sets generates the Borel
set, this property is veri�ed for all indicator functions on half-open intervals
of R2.

Now, let us prove it when f is a simple function, that is, given A1, . . . , Ap

half-open disjoint intervals of R2, f : R2 → R, x 7→ f(x) =

p∑
k=1

ck1Ak(x).

We can use the following results. Let (Xn)n, (Yn)n be two sequences of
random variables on Z2 and X and Y be two random variables de�ned on
Z2. If Xn

a.s.−−−→
n→∞

X and Yn
a.s.−−−→
n→∞

Y , then Xn + Yn
a.s.−−−→
n→∞

X + Y . Similarly,

Xn
Lp−−−→

n→∞
X and Yn

Lp−−−→
n→∞

Y , then Xn + Yn
Lp−−−→

n→∞
X + Y .
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Hence,

1

n1n2

∑
x∈X

f

(
x1

n1

,
x2

n2

)
=

1

n1n2

∑
x∈X

p∑
k=1

ck1Ak

(
x1

n1

,
x2

n2

)

=

p∑
k=1

ck
1

n1n2

∑
x∈X

1Ak

(
x1

n1

,
x2

n2

)
a.s.,Lp−−−−−→

n1,n2→∞

p∑
k=1

ck

∫
R2

1Ak(x)C(0)dx =

∫
R2

f(x)C(0)dx.

(B.10)

Finally, we need to prove the a.s.-convergence and the L1-convergence for
any bounded measurable function with a compact support. As it is bounded,
there exists an increasing sequence of simple functions (φn)n∈N de�ned on R2

such that φn −−−→
n→∞

f, and the convergence is uniform.

Using this uniform convergence and common dominated convergence the-
orems, we can prove that the limit in Equation (B.4) holds when f is a mea-
surable function with a compact support.

B.3 Proof of Proposition 3.3.4 - Central Limit

Theorem

Consider f a bounded continuous function, with compact support, such that∫
R2 f(x)dx = 0. We want to prove the following result

1√
N2

∑
x∈X

f
( x
N

)
D−−−→

N→∞
N (0, σ(C)2‖f‖2

2). (B.11)

The proof of the Central Limit Theorem will be done in three steps. First,
we need to compute the limit of the variance of

√
N2SN , where SN is de�ned

by

SN(y) =
1

N2

∑
x∈X

f
(
y − x

N

)
,∀y ∈ Z2. (B.12)

Then, we rewrite the characteristic function of
√
N2SN . At last, we compute

its limit.

Let us start by computing the limit of the variance of
√
N2SN when N

tends to in�nity. We need the following lemma.

Lemma B.3.1. Let f be a bounded continuous function on R2 with compact
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support and
∫
R2 f(x)dx = 0 and X ∼ DPixP(C) on Z2. Then, ∀N ∈ N,

Var

(
1

N

∑
x∈X

f
( x
N

))
=
C(0)

N2

∑
x∈Z2

f
( x
N

)2

− 1

N2

∑
x,y∈Z2

|C(x)|2f
( y
N

)
f

(
y + x

N

)
.

(B.13)

Proof. Suppose that f is a bounded continuous function on R2 with compact
support such that

∫
R2 f(x)dx = 0 and that X is a determinantal pixel process

of kernel K, associated with the kernel function C, on Z2.

Thanks to moments formulas [9] on DPPs on Γ with measure µ (here Γ = Z2

and µ is the DPP distribution), we know that, ∀f, h, functions on Γ,

Cov

(∑
x∈X

f(x),
∑
x∈X

h(x)

)
=

∫
Γ

f(x)h(x)K(x, x)µ(dx)

−
∫

Γ2

f(x)h(y)K(x, y)K(y, x)µ(dx)µ(dy).

(B.14)

Then, ∀N ∈ N,

Var

(
1

N

∑
x∈X

f
( x
N

))
=

1

N2
Var

(∑
x∈X

f
( x
N

))

=
1

N2

∑
x∈Z2

f 2
( x
N

)
C(0)−

∑
z,y∈Z2

f 2
( z
N

)
f 2
( y
N

)
|C(z − y)|2


=
C(0)

N2

∑
x∈Z2

f
( x
N

)2

− 1

N2

∑
x,y∈Z2

|C(x)|2f
( y
N

)
f

(
y + x

N

)
.

(B.15)

Notice that C(0)
1

N2

∑
x∈Z2

f
( x
N

)2

−−−→
N→∞

C(0)

∫
R2

f(z)2dz, thanks to the

Riemman sums theory. To compute the limit of the second part of the vari-
ance, we need to use the dominated convergence theorem.

(1) Let us prove �rst that ∀x ∈ Z2, |C(x)|2 1
N2

∑
y∈Z2 f

(
y
N

)
f
(
y+x
N

)
has a
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limit. Let us consider x ∈ Z2 and ε > 0,∀N ∈ N,

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
−
∫
R2

f(z)dz

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
− 1

N2

∑
y∈Z2

f
( y
N

)2

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)2

−
∫
R2

f(z)dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)(
f

(
y + x

N

)
− f

( y
N

))∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)2

−
∫
R2

f(z)dz

∣∣∣∣∣∣ .
(B.16)

Concerning the �rst part, as f has compact support, there exists A ∈ N such
that its support is included in Λ = [−A,A] × [−A,A] and then fN 's support
is included in NΛ = [−NA,NA] × [−NA,NA]. ∀x ∈ Z2, the support of the
function fN(.)fN(.+ x) is also included in ΛN .

As f is bounded, there exists M > 0 s.t. |f | ≤ M and it is uniformly
continuous: ∃η > 0, such that ∀y, z ∈ Z2, |z − y| ≤ η ⇒ |f(z)− f(y)| ≤ ε. As
here x ∈ Z2 is set, there exists Nx ∈ N such that ∀N ≥ Nx,

∣∣ x
N

∣∣ ≤ η and then
∀y ∈ Z2, |f( x+y

N
)−f( y

N
)| ≤ ε.

Concerning the second part, as we have the Riemann sum of a continuous
function on compact support, ∃N2 ∈ N such that ∀N ≥ N2,∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)2

−
∫
R2

f(z)2dz

∣∣∣∣∣∣ < ε. (B.17)

Let us consider N ≥ max(Nx, N2),

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
−
∫
R2

f(z)2dz

∣∣∣∣∣∣
≤ 1

N2

∑
y∈ΛN

∣∣∣f ( y
N

)∣∣∣ ∣∣∣∣f (y + x

N

)
− f

( y
N

)∣∣∣∣+

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)2

−
∫
R2

f(z)2dz

∣∣∣∣∣∣
≤ 1

N2
Mε(2NA)2 + ε = (4MA2 + 1)ε.

(B.18)

Then

∣∣∣∣∣∣ 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
−
∫
R2

f(z)2dz

∣∣∣∣∣∣ −−−→N→∞
0. We can conclude

that ∀x ∈ Z2, 1
N2

∑
y∈Z2 f

(
y
N

)
f
(
y+x
N

)
−−−→
N→∞

∫
z∈R2 f(z)2dz.
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(2) Second, let us prove that, ∀N ∈ N, |C(x)|2 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
is dominated by a sequence that does not depend on N and that is summable.
Using the same notations as before, we can notice that ∀N ∈ N,

∣∣∣∣∣∣|C(x)|2 1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)∣∣∣∣∣∣ ≤ |C(x)|2 1

N2

∑
y∈ΛN

∣∣∣f ( y
N

)∣∣∣ ∣∣∣∣f (y + x

N

)∣∣∣∣
≤ |C(x)|2M

2(2NA)2

N2

= |C(x)|24(MA)2,
(B.19)

and
∑
x∈Z2

|C(x)|24(MA)2 = 4(MA)2
∑
x∈Z2

|C(x)|2 <∞ as C ∈ `2(Z2).

To conclude, we can interchange the limit and the sum and:

lim
N→∞

1

N2

∑
x,y∈Z2

|C(x)|2f
( y
N

)
f

(
y + x

N

)
=
∑
x∈Z2

|C(x)|2 lim
N→∞

1

N2

∑
y∈Z2

f
( y
N

)
f

(
y + x

N

)
=
∑
x∈Z2

|C(x)|2
∫
z∈R2

f(z)2dz.

(B.20)

Thus, lim
N→∞

Var

(
1

N

∑
x∈X

f
( x
N

))
=

(
C(0)−

∑
x∈Z2

|C(x)|2
)∫

R2

f(z)2dz.

(B.21)

Now, let us compute the characteristic function of our studied sum.
As, ∀N ∈ N, fN is de�ned on ΛN ,

E

(
exp

(
i

N

∑
x∈X

f
( x
N

)))
= E

(
exp

(
i

N

∑
x∈X∩ΛN

f
( x
N

)))
. (B.22)

Then, we can consider the process XN = X ∩ ΛN which becomes a �nite
DPixP on ΛN . We introduce the matrix KN -the restriction of K to ΛN - and
the associated kernel function CN . Now let us denote PN of size ΛN × ΛN as
PN = ΦNKN where ΦN is the diagonal matrix with coordinate ΦN(x, x) =

φN(x) = 1− e
i
N
f( xN ),∀x ∈ ΛN .
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As we de�ned KN , we know that there exists a L-ensemble L such that
L = KN(I −KN)−1 and KN = L(L + I)−1 (where I is the ΛN × ΛN -identity
matrix).

Then, ∀N ∈ N,

E

(
exp

(
i

N

∑
x∈X

f
( x
N

)))
=
∑
A⊂ΛN

e
i
N

∑
y∈A f(

y
N ) P(X ∩ ΛN = A)

=
∑
A⊂Ω

e
i
N

∑
y∈A f(

y
N ) det(LA)

det(I + L)

=
1

det(I + L)

∑
A⊂Ω

det ((DNL)A)

(B.23)

where DN is the diagonal matrix of size ΛN × ΛN with DN(y, y) = e
i
N
f( y

N ).

E

(
exp

(
i

N

∑
x∈X

f
( x
N

)))
=

1

det(I + L)
det (I +DNL)

= det
(
L−1L(I + L)−1

)
det
(
I +DNKN(I −KN)−1

)
= det

(
K−1
N (I −KN)KN

)
det
(
(I −KN)(I −KN)−1 +DNKN(I −KN)−1

)
= det (I −KN) det (I −KN +DNKN) det(I −KN)−1

= det(I − (I −DN)KN)

= det(I − ΦNKN)

= det(I − PN)

= exp (tr (ln(I − PN))) .
(B.24)

On the other hand, we can �nd a relation between this quantity and the
limit of the variance of SN(0) by computing tr(PN) and tr(P 2

N).

tr(PN) =
∑
x∈ΛN

PN(x, x) =
∑
x∈ΛN

φN(x)KN(x, x) =
∑
x∈ΛN

C(0)

(
1− e

(
i

Nd/2
f( xN )

))
.

(B.25)
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As 1− exp(x)
0
= −x− x2

2
+ o(x2), for su�ciently large N we have

tr(PN) =
∑
x∈ΛN

C(0)

(
− i

N
f
( x
N

)
+

1

2N2
f 2
( x
N

)
+ o

(
1

N2

))
= −C(0)iN

1

N2

∑
x∈ΛN

f
( x
N

)
+
C(0)

2

1

N2

∑
x∈Z2

f 2
( x
N

)
+ o

(
1

N2

)

= −C(0)iN

(
1

N2

∑
x∈ΛN

f
( x
N

)
−
∫
R2

f(t)dt

)
+
C(0)

2

1

N2

∑
x∈ΛN

f 2
( x
N

)
+ o

(
1

N2

)
−−−→
N→∞

1

2

∫
R2

C(0)f 2(t)dt.

(B.26)

On the other hand, when N is large,

tr(P 2
N) =

∑
n∈ΛN

P 2
N(n, n) =

∑
n∈ΛN

∑
m∈ΛN

φN(n)K(n,m)φN(m)K(m,n)

=
∑

n,m∈Z2

φN(n)φN(m)|C(n−m)|2

=
∑

n,m∈Z2

(
1− e

i
N
f( nN )

)(
1− e

i
N
f(mN )

)
|C(n−m)|2

(B.27)

tr(P 2
N) =

∑
x,y∈Z2

(
1− e

i
N
f(x+yN )

)(
1− e

i
N
f( y

N )
)
|C(x)|2

=
∑
x,y∈Z2

|C(x)|2
(
− i

N
f

(
x+ y

N

)
+ o

(
1

N

))(
− i

N
f
( y
N

)
+ o

(
1

N

))
= − 1

N2

∑
x,y∈Z2

|C(x)|2f
(
x+ y

N

)
f
( y
N

)
+ o

(
1

N2

)
−−−→
N→∞

−
∑
x∈Z2

|C(x)|2
∫
Rd
f(x)2dx, by the same arguments as in the

previous computation of the variance's limit.
(B.28)

We have shown that

lim
N→∞

Var

(
1

N

∑
x∈X

f
( x
N

))
= lim

N→∞

(
2 tr(PN) + tr(P 2

N)
)

= σ(C)2‖f‖2
2.

(B.29)
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Now, let us consider a su�ciently large N ,

∣∣∣∣∣− logE

(
exp

(
i

N

∑
x∈X

f
( x
N

)))
− tr(PN)− 1

2
tr(P 2

N)

∣∣∣∣∣
=

∣∣∣∣− log (det(I − PN))− tr(PN)− 1

2
tr(P 2

N)

∣∣∣∣
=

∣∣∣∣∣−∑
n≥1

(−1)n+1

n
tr(P n

N)(−1)n − tr(PN)− 1

2
tr(P 2

N)

∣∣∣∣∣
≤
∑
n≥3

| tr(P n
N)|

n
≤
∑
n≥3

tr(|P n
N |)

n

≤
∑
n≥3

1

n
tr(|PN |2)‖PN‖n−2, as, given a bounded operator S and a trace class

operator T, tr(|ST |) ≤ ‖S‖ tr(|T |) [120, Lemma 2.1], and PN is bounded.

≤ tr(|PN |2)
∑
n≥1

1

n+ 2
‖PN‖n ≤ tr(|PN |2)

∑
n≥1

1

n
‖PN‖n = − tr(|PN |2) ln(1− ‖PN‖)

because ∀x < 1, ln(1− x) = −
∑
n≥1

xn

n
and as N is large,‖PN‖ is small,

≤ − ln(1− ‖φNKN‖) tr(|PN |2)

≤ − ln(1− ‖φN‖∞‖KN‖) tr(|PN |2) −−−→
N→∞

0, using the fact that

‖φN‖∞ ≤ ‖f‖∞/N, ‖KN‖ ≤ ‖K‖ and tr(|PN |2) ≤ C(0)‖K‖‖f‖∞|suppf |.
(B.30)

Thus, we have

E

(
exp

(
i

N

∑
x∈X

f
( x
N

)))
−−−→
N→∞

exp

(
−1

2

(
C(0)−

∑
x∈Ω

C(x)2

)
‖f‖2

2

)
.

(B.31)
Notice that if we use the function tf instead of the function f , ∀t ∈ R,

then we can apply the Levy's continuity theorem which leads to the following
Central Limit theorem:

1√
N2

∑
x∈X

f
( x
N

)
D−−−→

N→∞
N (0, σ(C)2‖f‖2

2), (B.32)

with σ(C)2 = C(0)−
∑

x∈Z2 |C(x)|2.



Appendix C

Identi�ability of a DPixP
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This appendix is related to Chapter 3. It provides some details on the question
of equivalence classes for DPixP kernels, presented in Section 3.4.1. Proposi-
tion 3.4.2 and Remark 3.4.1 o�er several results on these equivalence classes
depending on the DPixP kernel, dividing the kernels into three categories. The
�rst category corresponds to the DPixP kernels so that the kernel matrix K1

is irreducible and veri�es the rank hypothesis given in Theorem 3.4.1, meaning
that N ≤ 4 or that N ≥ 4 and for every partition of Y into subsets α, β such
that |α| ≥ 2, |β| ≥ 2, rank (K1)α×β ≥ 2. The second category concerns DPixP
kernels such that K1 is irreducible but does not verify the rank hypothesis in
Theorem 3.4.1. Section C.1 gives an insight into this category by developing
the case where the DPixP is de�ned on Ω of size 1× 5. The third case is when
the kernel matrix K1 is not irreducible. Section C.2 discusses the consequences
of this hypothesis on DPixP equivalence classes.

C.1 Remark 3.4.1, Case 2

Let us study the equivalence class of a DPixP of kernel C1 such that its associ-
ated matrix K1 is irreducible and it does not verify the rank hypothesis given
in Theorem 3.4.1, in the case Ω of size 1 × 5. That means that there exists
a partition α, β of Y such that rank(K1)α×β = 1. As an admissible kernel
matrix on Ω, K1 is such that

K1 = circulant
(
C1(0), C1(1), C1(2), C1(2), C1(1)

)
. (C.1)
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De�ne r11, θ11, r12, θ12 the respective modulus and argument of C1(1) and C1(2).
Whatever α, β, the partition of Y such that rank(K1)α×β = 1, due to rows
proportionality, one obtains r11 = r12 and θ12 = −3θ11 mod 2π. Now, assume
that C2 is an admissible DPixP kernel such that DPixP(C2) = DPixP(C1).
Then the matrices K1 and K2 have equal principal minors. Necessarily, K2 is
irreducible and there exists a partition such that rank(K2)α×β = 1, otherwise
K2 would verify the assumptions of Theorem 3.4.1 and so would K1. Then, as
C1, C2 is fully determined by C2(0), one modulus r21 and one argument θ21.
Once again, we know that C1(0) = C2(0) = C0 and thanks to the equality of
principal minors of size 2, the modulus are equal so r21 = r11 = r. One of the
principal minors of size 3 for C1 is equal to

C3
0 + C1(1)C1(1)C1(2) + C1(1)C1(1)C1(2)− C0C1(2)C1(2)− 2C0C1(1)C1(1),

(C.2)
so by equality of principal minors, we obtain

Re
(
C1(1)C1(1)C1(2)

)
= Re

(
C2(1)C2(1)C2(2)

)
⇔ Re

(
r3e2iθ11+3iθ11

)
= Re

(
r3e2iθ21+3iθ21

)
⇔ r3cos(5θ11) = r3cos(5θ21)

⇔ ∃ k ∈ Z s.t. θ11 =

{
θ21 + 2

5
kπ (case 1)

−θ21 + 2
5
kπ (case 2).

(C.3)

Finally, let us assume we are in the �rst case, K1 can be written

K1 = circulant
(
C0, re

i(θ21+ 2
5
kπ), re−3i(θ21+ 2

5
kπ), re3i(θ21+ 2

5
kπ), re−i(θ21+ 2

5
kπ)
)

= DK2D
−1

(C.4)

with D = diag
(

1, ei
2
5
kπ, ei

4
5
kπ, e−i

4
5
kπ, e−i

2
5
kπ
)
, which corresponds to a trans-

lation of the Fourier coe�cients of C of k pixels. The second case yields to
K1 = DK2D

−1 which corresponds to the symmetry and the translation of k
pixels of the Fourier coe�cients of C.

Thus, in that case, even if K1 does not verify the rank hypothesis of Theo-
rem 3.4.1, its equivalence class is de�ned as that of a kernel which does: K2 is
equivalent to K1 if and only if the Fourier coe�cients of K2 are a translation
or a symmetry with respect to (0,0) of the Fourier coe�cients of K1.

Here, this study is limited to the case 1 × 5. We have not been able
to generalize this result to all sizes of image domain yet. We would like to
demonstrate that the equivalence class of a kernel belonging to this second
category, such that it is irreducible and such that there exists a partition α, β of
Y such that rank(K1)α×β = 1, is characterized as in the �rst category: DPixP
kernels are equivalent if and only if they have translated and/or symmetrized
Fourier coe�cients. This question remains open.
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C.2 Remark 3.4.1, Case 3: K1 is not irreducible

In this section, we consider a kernel that belongs to the third category men-
tioned in Remark 3.4.1. That means that its associated matrix is a Hermitian
block-circulant matrix K1 of size N × N that is completely reducible, mean-
ing that it is permutation similar to a block diagonal matrix with irreducible
blocks. We want to prove that in that case, the blocks are identical, that is
they are of equal size and they are composed of the same coe�cients. More-
over, we prove that these blocks are not only irreducible but also Hermitian
and circulant. First, let us study the 1D case, meaning that K1 is a kernel
de�ned on the points of Y = {0, . . . , N − 1} (to be consistant with our 2D
representation) and it is circulant. Therefore, for all i, j ∈ Y , there exists cj−i
such that K1(i, j) = cj−i = ci−j. As K1 is not irreducible, there exist i, j ∈ Y ,
such that K1(i, j) = cj−i = 0. Let us denote k = inf{l > 0 such that cl 6= 0},
hence c1 = · · · = ck−1 = 0 = c−1 = · · · = c−k+1. Notice that k is necessarily
larger or equal to 2, otherwise K1 would not have any zero coe�cient, it would
be possible to access to any index from any other, and it would be irreducible.
Similarly, k necessarily divides N and the only non-zero coe�cients cm are
multiples of k, as otherwise, once again, the non-zero elements of K1 would be
located such that it would be possible to access to any index from any other by
traveling only through non-zero coe�cients: K1 would be irreducible. Then,
if we de�ne l such that N = k × l, there are k cycles of size l in the graph
associated to K1, each block with the same l coe�cients {ck, c2k, . . . , clk}, or
equivalently, ∀ i0 = 0, . . . , N − 1,

K(i0, j) =

{
ckp, if j = kp+ i0 mod N, with p = 0, . . . , l − 1,

0, otherwise.
(C.5)

Thus it is possible to de�ne the permutation matrix P which gathers the cycles,
and which associates K1 with a block diagonal matrix:

∀p = 0, . . . , l − 1, ∀r = 0, . . . , k − 1, P (p+ lr, r + pk) = 1. (C.6)

In other words, the matrix P associates the index r + pk of K1 to the index
p + lr (r-th block, p-th coe�cient) of the permuted block matrix. Moreover,
these blocks (Br)r∈{0,...,k−1} are circulant: for all r = 0, . . . , k− 1, for all i, i′ =
0, . . . , l − 1,

Br(i, i
′) = K(r + ik, r + i′k) = c(i−i′)k, (C.7)

for all τ ∈ Y such that (i + τ mod N) and (i′ + τ mod N) are in the r-th
cycle,

Br(i+ τ, i′ + τ) = K1(r + (i+ τ)k, r + (i′ + τ)k) = c(i−i′)k = Br(i, i
′). (C.8)
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To conclude, K1 is permutation similar to a block-diagonal matrix, which is
the repetition of one irreducible, circulant and Hermitian block.

Now let us consider the 2D case, when K1 is a kernel matrix de�ned on
Ω = {0, . . . , N1 − 1} × {0, . . . , N2 − 1} and assume that K1 is Hermitian,
block-circulant with circulant blocks and completely reducible. De�ne C1 the
function such that for all (i, j), (i′, j′) ∈ Ω, K1 ((i, j), (i′, j′)) = C(i′− i, j′− j).
As in the 1D case, de�ne (e1, e2) ∈ Z2 ∩ Ω the two generating vectors such
that C1(r, s) = 0,∀(r, s) inside the elementary cell generated by (e1, e2). These
two vectors generate a subgroup of Z2 and it contains Z(0, N2) + Z(N1, 0),
as K1 is not irreducible and similarly as in the 1D case. Then e1 divides
N1, e2 divides N2. As before, the only non-zero coe�cients of C1 belong to
{Ze1 + Ze2} ∩ Ω. The size of the elementary cell determines the number of
cycles (and future blocks) and l = ]{Ze1 + Ze2} ∩ Ω de�nes the size of each
cycle. It is possible to de�ne the permutation matrix that transforms K1 into
a block-diagonal matrix with irreducible blocks. For all (i, j) ∈ Ω, let us de�ne
(r, s) its representative element in the elementary cell such that there exists
p, q such that (i, j) = (pe1 + qe2) + (r, s) mod (N1, N2). We de�ne P such
that it associates the index (i, j) of K1 to the index (p, q) + (r, s) (block (r, s),
coe�cient (p, q)) of the permuted block matrix. As before, the blocks (B(r,s))
have the same size and have an identical structure. Let us consider the block
(r, s), consider (i, j), (i′, j′) ∈ Ω,

B(r,s)((i, j), (i
′, j′))

= K1((pe1 + qe2) + (r, s) mod(N1, N2), (p′e1 + q′e2) + (r, s) mod(N1, N2))

= C1((p′ − p)e1 + (q′ − q)e2)
(C.9)

Let (τ1, τ2) ∈ Ω be such that (i+ τ1, j+ τ2), (i′+ τ1, j
′+ τ2) both belong to the

cycle (r, s). Then (τ1, τ2) ∈ Ze1 + Ze2, we can write (τ1, τ2) = t1e1 + t2e2.

B(r,s)((i+ τ1, j + τ2), (i′ + τ1, j
′ + τ2))

= K1((pe1 + qe2) + (r, s) + (t1e1 + t2e2) mod(N1, N2),

(p′e1 + q′e2) + (r, s) + (t1e1 + t2e2) mod(N1, N2))

= C1((p′ − p)e1 + (q′ − q)e2) = B(r,s)((i, j), (i
′, j′)).

(C.10)

Thus, for all (r, s), the associated bloc B(r,s) is block circulant with circulant
blocks. Similarly, it is Hermitian. To conclude, K1 is permutation similar to
a block diagonal matrix de�ned by only one repeated irreducible, circulant,
Hermitian block.
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