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à partir d'un ou plusieurs échantillons. Le Chapitre 4 explore les processus ponctuels déterminantaux dénis sur l'ensemble des patchs d'une image, c'està-dire la famille des sous-images carrées d'une taille donnée dans une image. L'objectif est de sélectionner une proportion de ces patchs, susamment diversiée pour être représentative de l'information contenue dans l'image. Une telle sélection peut permettre d'accélérer certains algorithmes de traitements d'images basés sur les patchs, voire d'améliorer la qualité d'algorithmes existants ayant besoin d'un sous-échantillonnage des patchs. Nous présentons une application de cette question à un algorithme de synthèse de textures.

Résumé

Le Chapitre 3 présente les DPP dénis sur l'ensemble des pixels d'une image, appelés processus pixelliques déterminantaux (Determinantal Pixel Processes ou DPixP en anglais). Ce nouveau cadre impose des hypothèses de périodicité et de stationnarité qui ont des conséquences sur le noyau du processus et sur les propriétés de répulsion générée par ce noyau. Nous étudions aussi ce modèle appliqué à la synthèse de textures gaussiennes, grâce à l'utilisation de modèles shot noise. Nous nous intéressons également à l'estimation du noyau de DPixP Notations Y is the underlying space on which is dened the point processes.

Y and X denote given point processes.

ρ is the intensity of a point process. It is a function dened on Y and if x ∈ Y, ρ(x) = P(x ∈ Y ). If the point process is homogeneous, ρ is a constant.

|.| dened on the set of subsets of Y is the cardinality of the subset: it counts the number of elements contained in the subset. |.| applied to a point of Y or to a vector denotes its modulus.

M N (C) is the set of matrices of size N × N , with complex coecients.

M is the complex conjugate matrix of the matrix M . M * is the conjugate transpose of the matrix M , M * = M t .

Similarly, v is the complex conjugate vector of the vector v and v * is the conjugate transpose of v.

M A×B denote for all subset A and B of Y the matrix (M (x, y)) (x,y)∈A×B and M A = M A×A .

A c is the complement of A in Y if A is a subset of Y.

I A is the matrix whose diagonal coecients indexed by the elements of A are equal to 1 and whose other coecients are zero.

det(M ) is the determinant of the square matrix M .

Tr(M ) is the trace of the matrix M , that is the sum of its diagonal elements.

rank(M ) is the rank of the matrix M .

λ max is the maximum eigenvalue of a given matrix.

M 0 means that the eigenvalues of M are bounded below by zero. On the contrary, M I means that they are bounded above by one.

K denotes for the (marginal) kernel of determinantal point processes, it is a positive semidenite Hermitian matrix, whose eigenvalues are bounded above by one.

L denotes a positive semi-denite matrix that can dene a L-ensemble.

., . is the canonical scalar product on a Euclidean space, . is the associated norm.

v 1:k denotes the vector (v 1 , . . . , v k ), for a given k > 0. In particular, 0 1:k is the null vector of size k.

Ω is the image domain: a 2-dimensional discrete grid. If Ω is of size N 1 ×N 2 , then we consider Ω = {0, ..., N 1 -1}×{0, ..., N 2 -1} ⊂ Z 2 . Note that the functions dened on Ω can be extended to Z 2 by periodicity.

u : Ω → R d is the image dened on Ω with d color channels.

τ y u is the translation of the image u by the vector y.

Ω is the Fourier domain associated to Ω. For instance, if N 1 and N 2 are even, Ω = -N 1 2 , . . . ,

N 1 2 -1 × -N 2 2 , . . . , N 2 2 -1 .
Ω * denotes Ω \ {0}, the image domain minus the origin.

f = F(f ) is the discrete Fourier transform of the function f : Ω → C. F -1 ( f ) is the inverse Fourier transform of f . f -, given a function f : Ω → C, is the function dened for x ∈ Ω by f -(x) = f (-x).

f * g denotes the convolution operation of the function f and g. R g : Ω → C denotes the autocorrelation of the function g.

S is the shot noise random eld based on a point process X and a spot function g, both dened on Ω.

Ber(p) is a Bernoulli variable with parameter p.

N (m, Σ) is the Gaussian distribution with mean m and covariance matrix Σ.

T 2 is the torus of dimension two.

2 (Z 2 ) is the set of functions f dened on Z 2 such that

f 2 2 = x∈Z 2 f (x) 2 < ∞.
L 2 (T 2 ) is the set of functions f dened on T 2 such that

f 2 2 = x∈T 2 |f (x)| 2 dx < ∞.
D N ⊂ M N (C) is the set of diagonal matrices of size N × N such that its coecients are of modulus one.

C n is the set of function C dened on Ω whose inverse Fourier transform is an admissible DPixP kernel function, that is

{ C ∈ R N such that ξ∈ Ω C(ξ) = n and ∀ ξ ∈ Ω, 0 ≤ C(ξ) ≤ 1}.
proj denotes the algorithm that projects a function dened on Ω on the set C n . P = {P i , i = 1, . . . , N }, the set of patches of size (2ρ + 1) × (2ρ + 1) × d of the image u, given a ρ ∈ N. In this thesis, we are interested in the study of specic random point processes, called determinantal point processes (DPPs in short). They allow to model the repulsive nature of certain sets of points. These point processes capture negative correlations in the sense that the more similar two points are, the less likely they are sampled simultaneously: they tend to generate sets of points that are diverse or distant from each other. The purpose of this work was to apply DPPs to image processing. We have chosen two axes to realize this study: a denition on the set of pixels and a denition on the set of patches of an image. First, point processes dened on pixels are often used in image processing, for instance in order to synthesize textures, using shot noise models based on Poisson point processes [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF][START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. Due to their repulsive nature, DPPs provide an attractive alternative for these applications. We are hoping that, compared to a Poisson shot noise model, a shot noise model based on a DPP would be less aected by the averaging of the spot function.

Second, this repulsive nature and their easy adaptability make them a useful tool to subsample sets of data, such as the patches of an image. Given the huge dimension of images, this set is very large and such selection is regularly needed in patch-based algorithms. In general, these strategies use a uniform random selection, which is easy to implement and fast, but DPPs oer the opportunity to improve this selection and thus to improve the patch-based algorithm.

1.1 Discrete Point Processes Some of the rst studies of spatial statistics and random point processes were done to answer physics and astronomy questions, as for instance, in 1860, to know the probability that a certain number of stars lies in a given square [START_REF] Gelfand | Handbook of Spatial Statistics[END_REF], assuming that the stars are randomly and uniformly distributed in the sky. Since then, random point processes have emerged as powerful tools for modeling natural phenomena, such as monitoring a population [START_REF] Neyman | On a new class of contagious distributions, applicable in entomology and bacteriology[END_REF], plant locations [START_REF] Fisher | Design of experiments[END_REF], or neural spiking activity [START_REF] Truccolo | A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate eects[END_REF]. Figure 1.1 displays the locations of 126 pine trees in a forest [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. Because they need to share light and nutrients, trees often tend to be spaced from each other in a forest and thus to be modeled by repulsive point processes. A second use of point processes has recently gained inuence as the number and size of data to be handle and analyze has increased: random subset selections. In that case, the aim of the point process is not to represent an existing phenomenon anymore but to randomly choose a small proportion of elements in an initial set. Applications are numerous, such as documents summarization [START_REF] Hong | A repository of state of the art and competitive baseline summaries for generic news summarization[END_REF] or recommendation systems [START_REF] Gartrell | Low-rank factorization of determinantal point processes[END_REF]. These random selections are often able to provide results while the optimal selection is intractable, and they tend to produce dierent subsets at each trial. Furthermore, if the set of data to handle is huge, evaluating a function on it may be impossible. The solution can be to subsample the set of data using a point process to compute statistics on a large population [START_REF] Tremblay | Determinantal point processes for coresets[END_REF][START_REF] Loonis | Determinantal sampling designs[END_REF] or to estimate the empirical distribution of a large set of data [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF]. On the other hand, if the dimension of the data is too high, a solution can be random features selection [START_REF] Belhadji | A determinantal point process for column subset selection[END_REF] or in another domain, stochastic sampling [START_REF] Cook | Stochastic sampling in computer graphics[END_REF]. Indeed, in computer graphics, if a scene needs to be subsampled, a random selection of points will provide perceptually better results and avoid aliasing compared to a subsampling on a regular grid.

At last, random selection using point processes has the major advantage of being exible and easily adaptable depending on the data to handle and the desired selection, as a wide variety of models can be used.

Random point processes

Given a space Y, a point process is a probability measure dened on the set of all subsets of Y. It can be seen as a random countable subset Y ⊂ Y, whose elements are called points. Its size, that is the number of points it contains, is called its cardinality and it is itself random. In this thesis, we will consider discrete point processes, meaning that the space Y on which is dened the point process is discrete and nite (except in the subsection 3.3.3, where we will study a point process dened on Z 2 ). When considering these general settings, the space Y will be called the state space, the dataset or the ground set. Assuming it contains N elements, it will be denoted by Y = {1, . . . , N }, identifying its elements with their index.

Such point processes can be characterized by their marginal probabilities of inclusion P(A ⊂ Y ), which are the inclusion probabilities of any subset A ⊂ Y.

In the general continuous case, for instance when A contains n points, this quantity is called the n-th order product density function or the n-correlation function [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF]. These probabilities give the correlations between the points of the state space.

These marginal probabilities of inclusion also provide various statistics to describe the point process. The intensity function gives the probability for the occurrence of any point of Y. It is dened for all x ∈ Y by ρ(x) = P(x ∈ Y ).

If the intensity is constant, the point process is called homogeneous or rst order stationary. A second statistic describes the interactions between pairs of points, it is called the pair correlation function. It is often denoted by g and it is dened, for all x, y ∈ Y, by g(x, y) = P({x, y} ⊂ Y ) P(x ∈ Y )P(y ∈ Y ) . (1.1) This quantity is often used to describe local behaviours of attraction or repulsion. A point process is said simple if all the points of the process are almost surely distinct, meaning that an element of Y has a zero probability to be selected twice in a realization. In that case, one can associate the subset Y with the vector of size N with ones in the places of the elements of Y and zeros elsewhere. As we consider point processes as random subsets Y ⊂ Y, all point processes are implicitly simple in this thesis.

Dierent classes of point processes

As we have seen, the chosen model must be adapted to the dataset: the characteristics of the data, the natural phenomenon they can be related to and the goal of the analysis. We propose here to briey and non-exhaustively review several classes of common point processes.

Bernoulli Point Processes

The discrete counterpart of a Poisson point process is called a Bernoulli point process. As Poisson point processes, Bernoulli point processes correspond to models without any interaction or of complete spatial randomness [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF].

Indeed, given ρ : Y → [0, 1] an intensity function, the elements of the set Y are selected independently, each element x ∈ Y with probability ρ(x). For Y a Bernoulli point process, with intensity ρ, we have ∀x ∈ Y, P(x ∈ Y ) = ρ(x) and ∀A ⊂ Y,

P(A ⊂ Y ) = x∈A P(x ∈ Y ). (1.2)
The simulation of Bernoulli point processes is easy to implement and very fast, thus they are convenient to model dierent sorts of phenomena. Yet, some data may present dependence, for instance attraction or repulsion, or anisotropic structures, properties that Bernoulli point processes can not capture. Dierent models, more adapted to the variability of the situations, are needed. As mentioned above, spatial dependency is often described using the pair correlation function. This statistic is used to characterize the attractive or repulsive nature of point processes. Notice that it is constant and equal to 1 for Poisson and Bernoulli point processes. Point processes with a pair correlation function above 1 are considered to be attractive point processes, while point processes with a pair correlation function below 1 are considered to be repulsive. Note that this notion of repulsion is sometimes associated with the notion of regularity, that can be seen as a satisfying covering of the state space.

Poisson and Bernoulli point processes stand for the pivot line between point processes generating regular and irregular realizations [START_REF] Gelfand | Handbook of Spatial Statistics[END_REF]. Figure 1.2 presents realizations of three point processes. From left to right, it shows a realization of a clustering Cox process which belongs to the class of attractive point processes, a realization of a Bernoulli point process, which model data with no interaction, and a realization of a determinantal point process, which belongs to the class of repulsive point processes and which is the object of this thesis.

Attractive point processes

According to Diggle [START_REF] Gelfand | Handbook of Spatial Statistics[END_REF], attractive point processes or models of points aggregation were rst studied to describe the locations of insect larvae after hatching from eggs clusters by Neyman in 1939 [START_REF] Neyman | On a new class of contagious distributions, applicable in entomology and bacteriology[END_REF]. The most studied class of attractive point processes is the class of continuous point processes named Cox point processes [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF]. These processes generalize Poisson point processes, they are also called doubly stochastic Poisson point process. Given Λ a random locally nite measure on Y, the point process X is said to be a Cox process if conditionally to Λ, it is distributed as a Poisson point process on Y of intensity Λ. The realization to the left of Figure 1.2 is a sample of a specic case of Cox processes, called a Thomas point process [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF], with parameters κ = 7, σ = 0.09 and α = 21. It was generated using the R package named spatstat [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF]. Another specic case of Cox processes is the class of permanental point processes [START_REF] Mccullagh | The permanental process[END_REF][START_REF] Eisenbaum | On permanental processes[END_REF], which are the attractive dual form of determinantal point processes.

An interesting property of most attractive point processes, such as Cox processes, is the overdispersion of the counting random variable, which is counting the number of points of the point process in a given area. That means that the local number of points has a high variance. On the contrary, repulsive point processes tend to select points that are evenly distributed through space.

Repulsive point processes Figure 1.2 illustrates an ambivalence: while one could expect that uniformity and independence would be the good conditions to cover a space, Poisson and Bernoulli point processes tend to generate realizations with clusters and large gaps in some regions. On the contrary, repulsive point processes, favoring negative correlations, tend to create sets of points well scattered in space. Furthermore, they are exible: by choosing the repulsive model and dening the marginal probabilities of the point process, it is possible to adapt to the space structure and to the desired covering. Thus, for many point processes applications, one needs to use repulsive point processes.

Gibbs point processes are a classic category of repulsive point processes [START_REF] Daley | An introduction to the theory of point processes[END_REF][START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF][START_REF] Dereudre | Introduction to the theory of Gibbs point processes[END_REF]. (Note that it is possible also to dene attractive Gibbs point processes.) Given U an energy function, a Gibbs point process Y is dened by the marginal probabilities P(Y = A) ∝ exp(-U (A)), A ⊂ Y.

(1.3)

The energy function is often supposed to be such that exp(-U (A)) = B⊆A,|B|≤k ψ |B| (B), (1.4) where the functions ψ . are called potential functions and k is a small constant [START_REF] Daley | An introduction to the theory of point processes[END_REF]. In the case where the energy functions can be decomposed into potential functions depending only on adjacent points, the point process is called a Markov point process [START_REF] Daley | An introduction to the theory of point processes[END_REF].

The main advantages of Gibbs point processes are their easy interpretability and their exibility as they are dened directly using the correlations between the points. Thus, they can easily adapt to the nature of the dataset and to the goal of the study. However, their normalization constant is often intractable, along with most of their describing statistics, and there is, in general, no exact algorithm to sample a Gibbs point process.

Matérn point processes [START_REF] Matérn | Spatial variation[END_REF] are another repulsive class of point processes, generated by the thinning of a Poisson point process. The sampling strategy is done to ensure that all points are spaced at least a given distance apart. The Matérn III process, also know as Poisson disk sampling, is particularly used by stochastic sampling strategies [START_REF] Cook | Stochastic sampling in computer graphics[END_REF], to improve the rendering of pictures and avoid an aliasing eect, perceptually unpleasant. The method called random sequential adsorption [START_REF] Feder | Random sequential adsorption[END_REF] generates points samples using the same model to ensure a minimal distance between the points. Similarly, given any shape, for instance a circle or a rectangle, it consists in sequentially and randomly placing this shape on the space, keeping the current one only if it does not overlap with the shapes already selected.

These methods are popular in the computer graphics community, as they allow to randomly copy a given shape, with the certainty that these shapes won't overlap. Such a property, called hard-core repulsion will be investigated in Section 3.2.3 using determinantal point processes dened on the pixels of an image. While this property has major advantages, these two point processes classes lack theoretical denitions and computational guarantees.

Finally, determinantal point processes belong to the group of repulsive point processes. Unlike most of the classes we have described, these point processes have tractable densities and statistics, and exact sampling strategies.

Determinantal Point Processes (DPPs)

Determinantal point processes model the repulsion present in certain sets of points, which can be found in real-world situations: the position of trees in a forest [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] or the position of apples on a branch, for example. In contrast to Bernoulli point processes, DPPs tend to avoid the bunching phenomenon and as shown in Figure 1.2, the points generated by a DPP are more evenly distributed in space than those generated by the Bernoulli point process.

They naturally arose in random matrix theory [START_REF] Ginibre | Statistical ensembles of complex: Quaternion, and real matrices[END_REF] and they were analysed for the rst time in 1975 by Macchi [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] to model fermions, a particle in quantum mechanics which exhibit natural repulsion. Ever since the work of Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], these processes have become more and more popular in machine learning, because of their ability to draw subsamples that account for the inner diversity of data sets and the theoretical computations this model allows. This repulsive nature has been used in many elds, such as summarizing documents [START_REF] Dupuy | Learning determinantal point processes in sublinear time[END_REF], improving a stochastic gradient descent by drawing diverse subsamples at each step [START_REF] Zhang | Balanced mini-batch sampling for SGD using determinantal point processes[END_REF], extracting a meaningful subset of a large data set to estimate a cost function or some parameters [START_REF] Tremblay | Determinantal point processes for coresets[END_REF][START_REF] Bardenet | On a few statistical applications of determinantal point processes[END_REF][START_REF] Amblard | Subsampling with k-determinantal point processes for estimating statistics in large data sets[END_REF], or to compute a Monte Carlo estimator to approximate integrals [START_REF] Bardenet | Monte Carlo with determinantal point processes[END_REF][START_REF] Gautier | On two ways to use determinantal point processes for Monte Carlo integration[END_REF].

Denition

In this manuscript, we will use the following notations. The initial discrete dataset, on which is dened the point process, is denoted by Y = {1, . . . , N }. The cardinality, or the size, of a set A is denoted by |A|. When M is a N × N matrix, with real or complex entries, the complex conjugate matrix of M is denoted by M . The conjugate transpose of the matrix M is denoted by M * = M t and the conjugate transpose of the vector v is denoted by v * . We denote by M A×B , for all subsets A, B ⊂ Y, the matrix (M (x, y)) (x,y)∈A×B and we use the short notation M A = M A×A . When focusing on a specic couple of points, for instance x, y ∈ Y, we sometimes identify M (x, y) and M xy for clarity purpose. If A and B are subsets of Y such that |A| = |B|, the determinant det(M A×B ) is called a minor of M and in case B = A, det(M A ) is called a principal minor of M .

In this general, discrete and nite setting, the kernel function associated with a DPP is a matrix K that will be called its kernel, or kernel matrix. This kernel can be also called the marginal or the correlation kernel. We assume that K is a positive semidenite Hermitian matrix, of size N × N indexed by the elements of Y.

A random subset Y ⊂ Y is called a determinantal point process with kernel K if, ∀A ⊂ Y, P (A ⊂ Y ) = det(K A ). (1.5)
We will denote X ∼ DPP(K).

A N × N matrix K denes a determinantal point process on Y if and only if 0 K I, (1.6) meaning that its eigenvalues are in [0, 1]. For a detailed presentation of discrete DPPs, their properties and some applications to machine learning, we recommend the article of Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF].

The diagonal coecients of K dene the marginal probabilities of any singleton:

∀x ∈ Y, P(x ∈ Y ) = K(x, x), (1.7)
and the o-diagonal coecients of K give the similarity between points. Notice that the repulsion property becomes clear when observing the marginal probability of couples of points. The more similar two points are, the less likely they are to belong to the DPP simultaneously:

∀{x, y} ⊂ Y, P({x, y} ⊂ Y ) = K(x, x)K(y, y) -|K(x, y)| 2 . (1.8)
If K is seen as a similarity matrix, then the point process tends to generate diverse sets of points. Similarly, this negative correlation is observable for any set of points since, according to Hadamard's inequality, we have for all n ≥ 2, for all {i 1 , . . . , i n } ⊂ Y,

P({i 1 , . . . , i n } ⊂ Y ) ≤ P(i 1 ∈ Y ) P(i 2 ∈ Y ) . . . P(i n ∈ Y ). (1.9)
Let us take a simple example to highlight this property. We choose a set Y of 300 points included in [-10, 10] × [-5, 5] and each point i ∈ Y is associated with its position p i in R 2 . We dene a determinantal point process with kernel K depending on the distance between the points. Here, we take K = I -(I + L) -1 with for all i, j ∈ Y by L(i, j) = e -p i -p j 2 2 : the closer two points i, j ∈ Y are, the higher the associated element L {i,j} is. This construction uses what is called an L-ensemble, that we present below. Note that the eigenvalues of such a kernel K are included in [0, 1).

Table 1.1 shows that when the similarity given by K depends on the distance between points, subsets of points distant from each other have a signicantly higher probability of occurrence.

Sampling

The sampling, also called the simulation, of a point process dened on Y is the generation of a subset A of elements of Y, distributed as the considered point process. The result of a sampling, the subset A, is called a realization, a selection or simply a sample. It is one of the major operations needed to use a point process however, and despite the fact that DPPs have been studied

since the 1970s, the question of sampling DPPs seems still unsettled. The main sampling algorithm is called the spectral algorihm. It was developed in 2008 by Hough et al. [START_REF] Hough | Determinantal processes and independence[END_REF]. It has the signicant advantage of being exact, meaning that it generates a sample which is distributed as the given DPP in a nite number of iterations. This spectral algorithm relies on the computation of the eigenvalues and the eigenvectors of the DPP's kernel matrix. When the state space Y is large, the matrix is large too, and this computation is costly. Thus, one main drawback of DPP is that, in a general context, they take a long time to be exactly sampled.

Some authors have tried to adapt and speed up this algorithm by making assumptions on the kernel of the DPP such as a bounded rank [START_REF] Gartrell | Low-rank factorization of determinantal point processes[END_REF], a decomposition into more tractable kernels [START_REF] Dupuy | Learning determinantal point processes in sublinear time[END_REF] or the association of specic DPPs to uniform spanning trees [START_REF] Propp | How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph[END_REF].

On the other hand, some authors, such as Aandi et al. [ 

Properties

Consider Y a determinantal point process with kernel K, dened on Y. Denote the eigenvalues of K by {λ 1 , . . . , λ N }.

Cardinality

The cardinality |Y | of the DPP is distributed as the sum of N independent Bernoulli random variables: |Y | ∼ x∈Y Ber(λ x ), where the Bernoulli variables take the value 1 with probability λ x . Dierent proofs of this proposition can be found in the papers [START_REF] Hough | Determinantal processes and independence[END_REF] or [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF]. One can easily note that

E(|Y |) = x∈Y λ x = Tr(K) and Var(|Y |) = x∈Y λ x (1 -λ x ).
(1.10)

The easy access to the expectation and the variance of the cardinality of any DPP is very useful when one needs to apply DPPs and to control the number of points to be sampled, or simply when one needs to compare several DPP kernels.

DPP dened from another DPP

The restriction of the DPP Y to a subset A ⊂ Y, denoted by Y ∩ A, is a DPP with kernel K A . Thus, for all B ⊂ A,

P(B ⊂ A ∩ Y ) = det(K B ).
(1.11) Furthermore, surprisingly, the complement of a DPP also favors repulsion.

Consider Y c = Y \ Y , the complement of Y in Y. This random subset is also a DPP, associated with the kernel K c = I -K, where I is the identity matrix of size N × N . Hence,

P (A ⊂ Y c ) = P(A ∩ Y = ∅) = det((I -K) A ).
(1.12)

L-ensembles

We consider L a Hermitian matrix of size N × N such that L 0,

(1.13) then the random set Y ⊂ Y dened by ∀A ⊂ Y, P(Y = A) = det(L A ) det(I + L) (1.14)
is a determinantal point process with likelihood kernel L. We will denote Y ∼ DPP L (L). This class of DPP is called L-ensembles and was developped by Borodin and Rains [START_REF] Borodin | EynardMehta theorem, Schur process, and their Pfaan analogs[END_REF]. To this point onward, the notation L denotes the kernel of an L-ensemble, which is positive semi-denite, while K denotes the correlation kernel of a general DPP, such that its eigenvalues are in [0,[START_REF] Affandi | Learning the parameters of determinantal point process kernels[END_REF].

Note that the matrices K and L dene the same DPP if

K = L(L + I) -1 = I -(I + L) -1 and conversely L = K(I -K) -1 . (1.15)
In particular, if the spectral decomposition of

K is K = N n=1 λ n v n v * n , then L = N n=1 λ n 1 -λ n v n v * n .
(1.16)

Nevertheless, if det(I -K) = 0, or equivalently if any eigenvalue of the kernel K is equal to 1, the DPP can't be dened as an L-ensemble.

The denition of a DPP as an L-ensemble is convenient in practice, since, given a subselection problem, one only has to ensure that the likelihood kernel L is positive semidenite. That is why this denition is often used in machine learning applications. Note that, contrary to specic DPPs called projection DPPs that we present right below, the cardinality of an L-ensemble cannot be xed, it is random.

An interested reader should also be introduced to a related class of point processes called k-DPPs. A k-DPP is dened by conditioning a given DPP to generate samples with exactly k elements. This enables to preserve the repulsiveness of DPPs while ensuring that the samples have a xed cardinality.

This property can be very useful for some applications where the size of the realizations is crucial. However, in general, these k-DPPs don't share most of the appealing properties of DPPs, such as characterization through a marginal kernel, easy computation of marginal probabilities or explicit formulation of their moments. This is why we do not explore k-DPPs further in the remainder of this work.

Examples of determinantal point processes

Let us present specic cases of determinantal point processes that we will encounter several times in this manuscript. Suppose again that the set on which the point processes are dened is Y = {1, . . . , N }. The rst example is the (inhomogeneous) Bernoulli point process, which, as already introduced, corresponds to the case where the elements are selected independently from one another. This point process is also a particular case of DPP, associated with a diagonal kernel matrix K. Indeed, in that case,

P (A ⊂ Y ) = x∈A K(x, x) = x∈A P(x ∈ Y ).
(1.17) This is the least repulsive DPP, as there is no repulsion between the points.

A second common class of DPP is that of projection DPPs. They are characterized by a kernel matrix K with eigenvalues equal only to 0 or 1. Equivalently, denoting the eigenvalues of K by {λ 1 , ..., λ N }, we have

∀ i ∈ {1, . . . , N }, λ i (1 -λ i ) = 0. (1.18)
Note that the cardinality of the point process is then xed, equal to the rank of K as

E(|X|) = N i=1 λ i = rank(K ) and Var(|X|) = N i=1 λ i (1 -λ i ) = 0. (1.19)
These DPPs have two main advantages. The rst one is the xed cardinality of the generated samples. Their second advantage, depending of the number of non-zero eigenvalues, is that they may be associated with a low-rank matrix, which allows the use of faster sampling strategies, either exact [START_REF] Hough | Determinantal processes and independence[END_REF] or approximate [START_REF] Gautier | Zonotope hit-and-run for ecient sampling from projection DPPs[END_REF].

Applications to Image Processing

Point processes are often used in image processing, such as texture synthesis methods, for instance with shot noise models. These models, usually based on a Poisson process, generate textures [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF][START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. DPPs may provide an interesting alternative for these applications. This rst question led us to adapt the determinantal point processes to the space of the pixels of an image: they become processes dened on a 2-dimensional grid, the image domain, discrete and under assumptions of stationarity and periodicity. Second, we were interested in the adaptation of the subsampling ability of DPPs to the set of patches of an image, which is as large as the size of the image itself, and often too large to be handled.

In this manuscript, on several instances, we will apply DPPs to methods of texture synthesis.

Texture synthesis

There is no formal and mathematical denition of texture images. A general denition was given by Wei in 2009 [START_REF] Wei | State of the art in example-based texture synthesis[END_REF], considering textures as images with repeated patterns, allowing a certain amount of randomness. They can be roughly divided into two categories [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. First, macro-textures can be seen as images made of repeated discernible objects. Second, micro-textures are texture images without geometric details or identiable objects.

In computer graphics, the realistic rendering of a synthesized image highly depends on the textures covering the objects in the image. Depending on the 

∀x ∈ Ω, S(x) = x i ∈X g(x -x i ).
(1.20)

In the case where X = (X i ) 1≤i≤n is a sequence of i.i.d. random points, the limit of this model when n tends to innity is called the Asymptotic Discrete Spot Noise (ADSN) [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF] and it is a Gaussian random vector whose covariance depends on the spot function. These models generate Gaussian textures visually related to the shape of the spot function, they are easy and fast to simulate. In Chapter 3, we study shot noise models based on a determinantal point process dened on the image domain.

Exemplar-based algorithms consist in synthesizing, from a given texture image, a texture visually equivalent to the initial one. For a review of the main exemplar-based texture synthesis algorithms, see the survey made by Raad et al. [START_REF] Raad Cisa | A survey of exemplar-based texture synthesis[END_REF]. Two strategies are generally adopted: statistics-based methods [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF][START_REF] Heeger | Pyramid-based texture analysis/synthesis[END_REF][START_REF] Zhu | Filters, random elds and maximum entropy (FRAME): Towards a unied theory for texture modeling[END_REF][START_REF] Portilla | A parametric texture model based on joint statistics of complex wavelet coecients[END_REF] and patch-based methods [START_REF] Efros | Texture synthesis by non-parametric sampling[END_REF][START_REF] Efros | Image quilting for texture synthesis and transfer[END_REF][START_REF] Li | Combining Markov random elds and convolutional neural networks for image synthesis[END_REF]. The rst class methods rely on the extraction of statistics from the exemplar texture and, using a noisy image as initialization, they optimize a certain functional to enforce these statistics on the output. They are known to provide satisfying micro-texture synthesis. However, in general, these algorithms have trouble to generate more structured textures. On the contrary, the patch-based methods mainly consist in copy-paste strategies, meaning that they randomly re-arrange information, pixels or patches, already contained in the exemplar image, to generate the output texture. In general, these methods are able to synthesize more complex textures than the previous class but they do not introduce innovative content and risk to create entire regions identical to the original texture. Moreover, they may be unstable and suer from what is called growing garbage, meaning that the algorithm gets stuck and incoherently reproduces the same parts of the input texture.

These last few years, belonging to the rst category, methods using neural networks statistics have emerged [START_REF] Gatys | Texture synthesis using convolutional neural networks[END_REF][START_REF] Lu | Learning FRAME models using CNN lters[END_REF][START_REF] Bergmann | Learning texture manifolds with the periodic spatial GAN[END_REF]. The method developed by Gatys et al. in 2015 [54] still provides state-of-the-art results, but it is computationally very costly, with a huge number of parameters to handle. Several algorithms [START_REF] Ulyanov | Texture networks: feed-forward synthesis of textures and stylized images[END_REF][START_REF] Johnson | Perceptual losses for realtime style transfer and super-resolution[END_REF] tried to improve or speed up the synthesis but the perceptual quality of the result is impacted.

Let us mention also synthesis methods combining both previous classes, developing a model on the input texture but generating better synthesis from complex and structured textures than the statistics-based methods [START_REF] Raad | A conditional multiscale locally Gaussian texture synthesis algorithm[END_REF][START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF].

Chapter 4 presents an attempt to accelerate and improve the method introduced by Galerne et al. in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF], using DPPs dened on the patches of the exemplar texture.

DPPs in computer vision and image processing

Several works have already tried to apply DPPs to computer vision and imaging issues. In that case, each point of the process is an image and the purpose of sampling from these DPPs is to generate a diverse subsample of images.

Indeed, the amount of image and video contents available is overwhelming. To be handled, to be processed, it needs to be sorted and summarized. That is the purpose of recommendation systems. Some methods using DPPs have been developed to cope with this issue and to enforce diverse subsets, for images selection [START_REF] Kulesza | Fixed-size determinantal point processes[END_REF][START_REF] Affandi | Learning the parameters of determinantal point process kernels[END_REF][START_REF] Celis | Fair and diverse DPP-based data summarization[END_REF] or video recommendation [START_REF] Wilhelm | Practical diversied recommendations on Youtube with determinantal point processes[END_REF]. Moreover, images and videos are now in very high resolution, but remain intrinsically redundant.

The strategies for video summarization intend to extract meaningful and representative frames using sequential DPPs. This is a type of DPP taking into account the temporal dependencies of video frames [START_REF] Gong | Diverse sequential subset selection for supervised video summarization[END_REF][START_REF] Mahasseni | Unsupervised video summarization with adversarial LSTM networks[END_REF]. Besides, Chen et al. [START_REF] Chen | Dimensionality reduction based on determinantal point process and singular spectrum analysis for hyperspectral images[END_REF] prove that DPPs can be an appropriate tool to reduce the dimensionality of hyperspectral images, to select representative pixels from these images and be able to process such large-scale data.

Except this last paper dealing with hyperspectral images, these previous works applying DPPs to images dene the DPP on a very large set of images, for instance a video to summarize or a corpus of pictures or videos. In Chapters 3 and 4 of this manuscript, we are given a single image and we dene DPPs on the set of pixels or on the set of patches of this image.

Detailed Outline of the Manuscript

This section presents a detailed outline of the thesis. It describes the main contributions of this manuscript and the results obtained in the dierent chapters.

Chapter 2

Chapter 2 focuses on the methods used to sample a discrete determinantal point process. As we have seen, sampling a point process generates a subset of points, that can be used to reduce the size of an initial set of points, to illutrate the properties of a model or to synthesize an image for instance. Regardless to the purpose of the sample, the sampling algorithm must produce samples as close as possible to the target distribution and remain ecient, even when the size of the dataset grows. Concerning DPPs, the choice of the sampling strategy is crucial as it requires manipulating a kernel matrix K, which for most applications is very large. In Section 2.1, we present basic sampling strategies, starting with the classically used algorithm to sample general DPPs, the spectral algorithm. This algorithm relies on the fact that a general DPP can be considered as a mixture of projection DPPs, specic DPPs such that the eigenvalues of their kernel are either equal to 0 or to 1. The method is exact and it requires the computation of the eigenvalues and the eigenvectors of K [START_REF] Hough | Determinantal processes and independence[END_REF]. As soon as the underlying space, on which the point process is dened, is large, this method is slow. We also present dierent algorithms, developed to sample DPPs more eciently. In Section 2.2, we introduce a sampling strategy that does not use the eigendecomposition of the matrix K but a Cholesky decomposition, that we call the sequential algorithm. However, this algorithm involves computations to be done sequentially on each point of the initial space. Hence, it is very slow. Figure 1.4 illustrates how much slower the sequential algorithm is than the spectral algorithm.

To cope with this problem, we introduce in Section 2.3 a novel algorithm, called the sequential thinning algorithm. As a rst step, it samples a dominating point process that contains the target DPP and in a second step, it applies the sequential algorithm on this reduced space. This strategy is called the thinning of a point process. If the maximum eigenvalue of K, λ max , is strictly smaller than 1, we obtain a bound on the cardinality of the dominating process, which is proportional to the cardinality of the target DPP. As the sequential sampling step is done on the subset given by the dominating process, this bound ensures that the overall running time is limited. This also highlights that the algorithm may have eciency issues if λ max is equal to 1. Section 2.4 provides numerical experiments that illustrate the behavior of these three algorithms. In particular, they present competitive results for the sequential thinning algorithm with respect to the initial spectral algorithm.

Note that, contrary to the sequential algorithm, the running time of the sequential thinning algorithm is closer to that of the spectral algorithm (Figure 1.4). Moreover, Figure 1.5 compares the running times of these two algorithms in dierent situations, using a DPP kernel dened on the patches of an image.

The spectral algorithm is more ecient when the expected size of the sample grows with the size of the dataset (left). Yet, when the dataset is large and the expected size of the sample is limited, one can observe that the sequential thinning algorithm seems to compete with the spectral algorithm. More illustrations are given in Section 2.4 to understand how the sequential thinning algorithm operates.

Chapter 3

In Chapter 3, we consider DPPs dened on a specic space, the set of the pixels of an image. Section 3.1 introduces these discrete DPPs that we call Determinantal Pixel Processes (DPixPs). In such a conguration, it is natural to assume that the point processes under study are stationary and periodic.

The correlation between pairs of pixels no longer depends on the position of the pixels but on the dierence between their position. As a consequence, the kernel K is a block-circulant matrix. Thus, the kernel can be characterized using a function C dened on the image domain, that we identify with the kernel of the DPixP in the following, so that K(x, y) = C(x -y). Block-circulant matrices have the particularity to be diagonalized by the Fourier basis. Here, the eigenvalues of the matrix K are the Fourier coecients of the function C. Thus, the 2D discrete Fourier transform plays a key role in this chapter.

We study the consequences of the stationary and periodic hypotheses on basic properties of DPPs, in particular on the repulsion generated by these point processes. Whereas Gibbs point processes can generate hard-core repulsion, that is imposing a minimal distance between the points of the point process, it is impossible to dene DPixP with such a property. We prove that the only possible hard-core repulsion is directional, meaning that it is possible to dened a DPixP kernel such that two points of the process can not be aligned along a given direction.

In Section 3.2, we investigate shot noise models based on DPixPs and on a given spot function. Consider X a DPP with intensity ρ dened on the image domain Ω and g a (deterministic) function, also dened on Ω. The shot noise random eld S based on the points X and the spot g is dened by ∀x ∈ Ω, S(x) =

x i ∈X g(x -x i ). Finally, in Section 3.3, to investigate inference on DPixP kernels, we review the denition of equivalence classes of DPPs in dierent frameworks, this is a question called identiability. Then, we develop an algorithm that uses the stationarity hypothesis to estimate the kernel of a DPixP from one or several samples. This method is fast and provides satisfying results when the initial kernel is a projection kernel, a class of DPP kernels commonly considered as the most repulsive ones. Figure 1.8 illustrates these results obtained when we try to retrieve the Fourier coecients of a complex projection DPixP. Observe that while one realization is not sucient to nd the shape of the high Fourier coecients, 10 realizations provide a satisfying approximation of the initial kernel.

Chapter 4

Chapter 4 examines DPPs dened on the patch space of an image. In Section 4.1, we study the choice of dierent kernels to subsample the set of patches of a given image. This can be useful to speed up or to improve a patchbased algorithm, by considering only the most signicant patches in the image.

Usually, if necessary, a uniform selection is performed to subsample the set of patches. However, this strategy may select points close to each other and miss some regions of the space. When considering patches, this amounts to select similar patches while possibly missing crucial regions of the image. In Section 4.1, we study ve dierent types of DPP kernels, computed from the patches of the image. Numerical experiments show that these kernels behave very dierently and that it is rather simple to adapt the kernel in function of the application that will be done with the selected patches. neighbor among the selection.

Section 4.2 applies this strategy to speed up a texture synthesis algorithm.

This algorithm, presented in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF], uses the empirical distribution of the patches of an initial texture and heavily relies on semi-discrete optimal transport. This method enables to synthesize complex textures. The authors propose to uniformly subsample the set of patches of the image to approximate the empirical distribution of the patches, using 1000 patches.

After a presentation of this synthesis strategy, we show how using a DPP to subsample the distribution of patches enables us to reduce the number of patches (to 200 or 100) and thus to reduce the execution time of the algorithm while maintaining the quality of the synthesis. Figure 1.10 compares the strategies for two textures containing structures. The result using DPP is obtained using ten times less patches than the synthesis in column (b). The gain in computational time is signicant. Once the model has been learned, for a synthesis of 1024 × 1024 images, using a Matlab implementation of the algorithm on GPU, the algorithm runs in 0.47" using DPPs and 100 patches Chapter 5

In Chapter 5, we conclude this manuscript. We summarize our main contributions and we discuss their limitations. We also present some perspectives and unanswered questions we would like to work on.

Contributions

The 

Introduction

The simulation of a point process generates a subset of points, that can be used to reduce the size of an initial set of points, to illutrate the properties of a point process or to reduce the dimension of high-dimensional data. A sampling strategy must be ecient, especially when the size of the dataset grows. Concerning DPPs, the choice of the sampling method is crucial as it requires manipulating a kernel matrix K, which for most applications is very large. The classically used algorithm to sample general DPPs is called the spectral algorithm. This algorithm relies on the fact that a general DPP can be considered as a mixture of projection DPPs, specic DPPs such that the eigenvalues of their kernel are either equal to 0 or to 1. The method, introduced in [START_REF] Hough | Determinantal processes and independence[END_REF], is exact and it requires the computation of the eigenvalues and the eigenvectors of K. As soon as the underlying space on which the point process is dened is large, this method is slow. Many algorithms have been developed to sample DPPs more eciently, by constraining the kernel to specic hypotheses [START_REF] Kulesza | Structured determinantal point processes[END_REF][START_REF] Dupuy | Learning determinantal point processes in sublinear time[END_REF][START_REF] Avena | Two applications of random spanning forests[END_REF], by approximating the kernel [START_REF] Gillenwater | Discovering diverse and salient threads in document collections[END_REF]2] or by using Markov Chain Monte Carlo strategies [START_REF] Li | Fast mixing Markov chains for strongly Rayleigh measures, DPPs, and constrained sampling[END_REF][START_REF] Gautier | Zonotope hit-and-run for ecient sampling from projection DPPs[END_REF]. A few recent sampling methods are exact and apply to general DPP kernels [START_REF] Poulson | High-performance sampling of generic determinantal point processes[END_REF][START_REF] Gillenwater | A tree-based method for fast repeated sampling of determinantal point processes[END_REF][START_REF] Derezi«ski | Exact sampling of determinantal point processes with sublinear time preprocessing[END_REF].

In this chapter, we present a new exact algorithm to sample DPPs in discrete spaces, that avoids the eigenvalues and the eigenvectors computation. In Section 2.3, we introduce a sampling strategy that does not use the eigendecomposition of the matrix K but a Cholesky decomposition, that we call the sequential algorithm. However, this algorithm involves computations to be done sequentially on each point of the initial space. Hence, it is not ecient.

To cope with this problem, we introduce in Section 2.4 a novel algorithm, called the sequential thinning algorithm. The proposed strategy relies on two new results: (i) the explicit formulation of the marginals of any determinantal point process and (ii) the derivation of an adapted Bernoulli point process containing a given DPP. As a rst step, it samples a dominating point process that contains the target DPP and in a second step, it applies the sequential algorithm on this reduced space. This strategy is called the thinning of a point process. Finally, Section 2.5 presents numerical experiments to illustrate the behaviors of these algorithms.

This method was rst presented in the preprint [START_REF] Launay | Exact sampling of determinantal point processes without eigendecomposition[END_REF] and was, to our knowledge, the rst exact sampling strategy without spectral decomposition. This paper has been accepted in the journals of the Applied probability trust. Matlab and Python implementations of this algorithm (using the PyTorch library in the Python code) are available online 1 and hopefully soon in the repository created by Guillaume Gautier [START_REF] Gautier | Sampling determinantal point processes with Python[END_REF] gathering presentations and implementations of exact and approximate DPP sampling strategies.

In the following, we use the same notations as in the introduction. The state space, on which the DPP is dened, is supposed to be discrete, to contain N elements and is denoted by Y = {1, . . . , N }. The DPP we want to sample from is characterized by the kernel K, which is a N × N matrix, whose eigenvalues are denoted by {λ 1 , . . . , λ N }.

Usual Sampling Method and Related Works

Spectral Algorithm

The spectral algorithm is standard for drawing a determinantal point process.

It relies on the eigendecompostition of its kernel K. It was rst introduced by Hough et al. [START_REF] Hough | Determinantal processes and independence[END_REF] and is also presented in a more detailed way by Scardicchio [START_REF] Scardicchio | Statistical properties of determinantal point processes in high dimensional Euclidean spaces[END_REF], Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] or Lavancier et al. [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF].

This algorithm relies on the fact that DPPs can be written as mixtures of projection DPPs [START_REF] Hough | Determinantal processes and independence[END_REF], also called elementary DPPs in [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF]. We recall that a projection DPP is a DPP whose kernel has eigenvalues in {0, 1} N . Let us consider a general discrete DPP kernel K, an eigendecomposition of the kernel K = j∈Y λ j v j v * j , and denote Y ∼ DPP(K). We dene the following random projection kernel

K B = j∈Y Ber(λ j )v j v * j . (2.1)
where for all j ∈ Y, Ber(λ j ) is a Bernoulli variable with parameter λ j ∈ [0, 1]. 

Y B d = Y. (2.2) 
The spectral algorithm takes advantage of this characterization. It proceeds in 3 steps. During the rst step, the eigenvalues (λ j ) and the eigenvectors (v j ) of the matrix K are computed. The second step consists in randomly drawing N independent Bernoulli variables, each with parameter λ j , for j = 1, . . . , N , and in storing the eigenvectors associated with the variables equal to 1 in a matrix V . Thus, the matrix V V * (where V * refers to the conjugate transpose of V ) is an admissible DPP kernel, with every eigenvalue in {0, 1}. The third step consists in drawing the projection DPP associated to the kernel V V * , using the relation between determinants and volumes of parallelotopes, which are the generalization of parallelograms in any dimension. This sampling sequentially selects the points, using a Gram-Schmidt procedure to compute pointwise conditional probabilities given the points already selected. Algorithm 1 presents this procedure.

This characterization impacts the distribution of the cardinality of the DPP. Consider n ∈ N such that 1 ≤ n ≤ N and suppose that the second step of the algorithm produced n Bernoulli variables equal to 1 (and thus N -n Bernoulli variables equal to 0). The matrix V V * has n non-zero eigenvalues equal to 1, it is the kernel of a projection process so it generates xed size samples with exactly n points. The size of the generated sample is determined by the drawing of the independent Bernoulli variables:

|Y | ∼ j∈Y Ber(λ j ).

(2.3)

We can deduce that necessarily |Y | ≤ rank(K ). Furthermore, we retrieve the properties given in the introduction:

E(|Y |) = j∈Y λ j and Var(|Y |) = j∈Y λ j (1 -λ j ).
Algorithm 1 The spectral sampling algorithm 1. Compute the orthonormal eigendecomposition (λ j , v j ) of the matrix K.

2. Select a random set of eigenvectors: Draw a Bernoulli process X ∈ {0, 1} N with parameter (λ j ) j . Denote by n the number of Bernoulli samples equal to one, {X = 1} = {j 1 , . . . , j n }. 

Dene the matrix V = (v j 1 v j 2 • • • v jn ) ∈ R N ×n and denote by V k ∈ R n the k-th line of V , for k ∈ Y.
p l k = 1 n -l + 1 V k 2 - l-1 m=1 | V k , e m | 2 , ∀k ∈ Y.
(2.4)

If l < n, dene e l = w l w l ∈ R n where w l = V y l -l-1 m=1 V y l , e m e m .
This algorithm is exact and relatively fast but it becomes slow when the size of the ground set grows. For a ground set of size N and a sample of size n, the third step costs O(N n 3 ) because of the Gram-Schmidt orthonormalisation.

Tremblay et al. [START_REF] Tremblay | Optimized algorithms to sample determinantal point processes[END_REF] propose to speed it up using optimized computations and they achieve the complexity O(N n 2 ) for this third step. Nevertheless, the eigendecomposition of the matrix K is the heaviest part of the algorithm, as it runs in time O(N 3 ), and we will see in the numerical results that this rst step represents in general more than 90% of the running time of the spectral algorithm. As nowadays the amount of data explodes, in practice the matrix K is very large so it seems relevant to try to avoid this costly operation.

At the end of Section 2.4, we compare the time complexities of this spectral algorithm with the algorithms we introduce in this chapter, the sequential algorithm (Algorithm 2) and the sequential thinning algorithm (Algorithm 3).

Other Sampling Strategies

As we have seen in the previous section, the main algorithm to sample DPPs is a spectral algorithm which uses the eigendecomposition of K to sample Y . This computation may be very costly when dealing with large-scale data. That is why numerous algorithms have been conceived to bypass this issue.

Sampling specic DPPs

Some authors have designed a sampling algorithm adapted to specic DPPs.

For instance, it is possible to use an alternative algorithm, faster than the initial one, by assuming that K has a bounded rank [START_REF] Kulesza | Structured determinantal point processes[END_REF][START_REF] Kulesza | Determinantal point processes for machine learning[END_REF][START_REF] Gartrell | Low-rank factorization of determinantal point processes[END_REF]. These authors use a dual representation of the kernel so that the main computations in the spectral algorithm are reduced. In these articles, DPPs are L-ensemble, characterized by the positive semi-denite matrix L. 

Approximate algorithms

The second option to sample DPPs more eciently is to use approximate methods. A rst strategy is to approach the initial DPP kernel with another kernel, simpler to sample from. For instance, some authors approach the original DPP with a low rank matrix, using random projections [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF][START_REF] Gillenwater | Discovering diverse and salient threads in document collections[END_REF]. In these two papers, the authors use the decomposition of the L-ensemble kernel L seen previously, that is L = B t B, with B a D × N matrix. Here, they suppose that D is not small, so they want to reduce the dimension of the feature vectors B j associated to each point j ∈ Y. To do so, they use a random projection matrix G, of size d × D, with d D. The coecients of G are sampled independently from a Gaussian distribution and the authors prove that this model, applying random projection on the feature vectors, has a bounded approximation error.

If the previous decomposition of the L-ensemble kernel L is complicated, one can also use the Nyström approximation [2] to produce a low rank approximation of L. The main idea of the Nyström approximation is to select, with a suitable method, a proportion of elements of Y called landmarks and to compute an approximation of L. In the end, this method produces an approximated low-rank decomposition L = B t W B W , with B W a l × N matrix and l the number of landmarks. Then, it applies the dual sampling algorithm to simulate the DPP.

A second strategy consists in using Monte Carlo Markov Chain (MCMC) methods. The method proposed by Anari et al. [START_REF] Anari | Monte Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes[END_REF] and Li et al. [START_REF] Li | Fast mixing Markov chains for strongly Rayleigh measures, DPPs, and constrained sampling[END_REF] is based on iterative additions, deletions or exchanges of elements, until the mixing of the chain. In any step, associated to the selected set S, some elements i ∈ S and j / ∈ S are chosen independently and uniformly. Then i is deleted with a given probability, j is added with another one. Gautier et al. [START_REF] Gautier | Zonotope hit-and-run for ecient sampling from projection DPPs[END_REF] developed a sampling algorithm based on MCMC strategies but from another perspective.

They consider the initial state space as embedded into a continuous multidimensional polytope. This method consists in moving across this continuous domain by solving linear programs at each step of the chain. Unlike the previous MCMC methods modifying at most two elements of S, from one step of the algorithm to the other, the whole set S can be modied. This enables to explore the state space more easily but each step needs to solve a costly linear problem.

It is possible to obtain satisfying convergence guarantees for these strategies for particular DPPs, for instance for k-DPPs with xed cardinality [START_REF] Anari | Monte Carlo Markov chain algorithms for sampling strongly Rayleigh distributions and determinantal point processes[END_REF][START_REF] Li | Ecient sampling for kdeterminantal point processes[END_REF] or projection DPPs [START_REF] Gautier | Zonotope hit-and-run for ecient sampling from projection DPPs[END_REF]. Li et al. [START_REF] Li | Fast mixing Markov chains for strongly Rayleigh measures, DPPs, and constrained sampling[END_REF] even proposed a polynomial-time sampling algorithm for general DPPs.

Approximate strategies hope that after a certain number of simpler sam-pling iterations, the result is suciently close to the target distribution. However, one needs to decide when to stop the algorithm, and what does sufciently close mean. Second, this equilibrium may need a high number of iterations to be (almost) reached. These algorithms are commonly used as they save signicant time but the price to pay is the lack of precision of the result.

Recent exact algorithms

Let us mention that three very recent preprints [START_REF] Poulson | High-performance sampling of generic determinantal point processes[END_REF][START_REF] Gillenwater | A tree-based method for fast repeated sampling of determinantal point processes[END_REF][START_REF] Derezi«ski | Exact sampling of determinantal point processes with sublinear time preprocessing[END_REF] also propose new algorithms to sample exactly general DPPs without spectral decomposition.

Poulson [START_REF] Poulson | High-performance sampling of generic determinantal point processes[END_REF] presents factorization strategies of Hermitian and non-Hermitian DPP kernels to sample general determinantal point processes. As our sequential algorithm (Algorithm 2), it heavily relies on Cholesky decomposition and proceeds sequentially. It accepts or rejects each element of the state space according to pointwise conditional probabilities given the points already accepted. These sampling strategies generalize our own and adapt to non-Hermitian or sparse DPP kernels.

Gillenwater and al. [START_REF] Gillenwater | A tree-based method for fast repeated sampling of determinantal point processes[END_REF] use the dual representation of L-ensembles presented previously to construct a binary tree. This tree contains enough information on the kernel to sample DPPs in sublinear time, after a preprocessing step done in O(N D 2 ) time (where D is the size of the features vectors in the dual representation).

Derezi«ski et al. [START_REF] Derezi«ski | Exact sampling of determinantal point processes with sublinear time preprocessing[END_REF] apply a preprocessing step that preselects a portion of the points using a regularized DPP. This regularized DPP takes advantage of the connections between DPP's marginal probabilities and ridge leverage scores of the L-ensemble kernel L, quantities that have already been used in sampling strategies. Then, a usual DPP sampling is done on the selection. Their preprocessing step is called intermediate sampling and is very related to our thinning procedure using a Bernoulli point process that contains the target DPP. However note that the authors report that the overall complexity of their sampling scheme is sublinear while ours is cubic due to Cholesky decomposition.

Finally, in [START_REF] Bªaszczyszyn | Determinantal thinning of point processes with network learning applications[END_REF], Blaszczyszyn and Keeler present a similar procedure based on a continuous space: they use discrete determinantal point processes to thin a Poisson point process dened on that continuous space. The generated point process oers theoretical guarantees on repulsion and is applied to t network patterns.

In the next section, we show that any DPP can be exactly sampled by a sequential algorithm that does not require the eigendecomposition of K.

Sequential Sampling Algorithm

Our goal is to build a competitive algorithm to sample DPPs that does not involve the eigendecomposition of the matrix K. To do so, we rst develop a naive sequential sampling algorithm and subsequently, we will accelerate it using a thinning procedure, presented in Section 2.4.

Explicit General Marginal of a DPP

First, we need to specify the marginals and the conditional probabilities of any DPP. When I -K is invertible, a formulation of the explicit marginals already exists [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], it implies to deal with a L-ensemble matrix L instead of the matrix K. However, this hypothesis is reductive: among others, it ignores the useful case of projection DPPs, when the eigenvalues of K are either 0 or 1. We show below that general marginals can easily be formulated from the associated kernel matrix K. For all A ⊂ Y, we denote I A the N × N matrix with 1 on its diagonal coecients indexed by the elements of A, and 0 anywhere else. We also denote |A| the cardinality of any subset A ⊂ Y and A c ∈ Y the complementary set of A in Y.

Proposition 2.3.1 (Distribution of a DPP). For any A ⊂ Y, we have 

P(Y = A) = (-1) |A| det(I A c -K).
P(Y = A) = B⊃A (-1) |B\A| P(B ⊂ Y ) = (-1) |A| B⊃A (-1) |B| det(K B ) = (-1) |A| B⊃A det((-K) B ).
(2.6) Furthermore, Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] state in Theorem 2.1 that for all 

L ∈ R N ×N , for all A ⊂ Y, A⊂B⊂Y det(L B ) = det(I A c + L). Then we obtain P(Y = A) = (-1) |A| det(I A c -K).
H B = K + K Y×B ((I -K) B ) -1 K B×Y . (2.8) Theorem 2.3.1 (General Marginal of a DPP). Let A, B ⊂ Y be disjoint. If P(B∩Y = ∅) = det((I -K) B ) = 0, then P(A ⊂ Y, B ∩ Y = ∅) = 0. Otherwise, the matrix (I -K) B is invertible and P(A ⊂ Y, B ∩ Y = ∅) = det((I -K) B ) det(H B A ).
(2.9)

Proof. Let A, B ⊂ Y disjoint such that P(B ∩ Y = ∅) = 0. Using the previous proposition, P(A ⊂ Y, B ∩ Y = ∅) = A⊂C⊂B c P(Y = C) = A⊂C⊂B c (-1) |C| det(I C c -K).
(2.10)

For any C such that A ⊂ C ⊂ B c , one has B ⊂ C c . Hence, by reordering the matrix coecients, and using the Schur's determinant formula [START_REF] Horn | Matrix Analysis[END_REF],

det(I C c -K) = det (I C c -K) B (I C c -K) B×B c (I C c -K) B c ×B (I C c -K) B c = det (I -K) B -K B×B c -K B c ×B (I C c -K) B c = det((I -K) B ) det((I C c -H B ) B c ).
(2.11)

Thus, P(A ⊂ Y, B ∩ Y = ∅) = det((I -K) B ) A⊂C⊂B c (-1) |C| det((I C c -H B ) B c ).
According to Theorem 2.1 in Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], for all A ⊂ B c ,

A⊂C⊂B c det(-H B C ) = det((I A c -H B ) B c ).
(2.12)

Then, Möbius inversion formula ensures that, ∀A ⊂ B c ,

A⊂C⊂B c (-1) |C\A| det((I C c -H B ) B c ) = det(-H B A ) = (-1) |A| det(H B A ).
(2.13)

Hence, P(A ⊂ Y, B ∩ Y = ∅) = det((I -K) B ) det(H B A ).
With this formula, we can explicitly formulate the pointwise conditional probabilities of any DPP. Then,

P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = det(H B A∪{k} ) det(H B A ) = H B (k, k) -H B {k}×A (H B A ) -1 H B A×{k} . (2.14)
This is a straightforward application of the previous expression and the Schur determinant formula [START_REF] Horn | Matrix Analysis[END_REF]. Note that these pointwise conditional probabilities are related to the Palm distribution of a point process [START_REF] Chiu | Stochastic Geometry and Its Applications[END_REF] which characterizes the distribution of the point process under the condition that there is a point at some location x ∈ Y. Shirai and Takahashi proved in [START_REF] Shirai | Random point elds associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF] that DPPs on general spaces are closed under Palm distributions, in the sense that there exists a DPP kernel K x such that the Palm measure associated to DPP(K ) and x is a DPP dened on Y with kernel K x . Borodin and Rains [START_REF] Borodin | EynardMehta theorem, Schur process, and their Pfaan analogs[END_REF] also provide similar results on discrete spaces, using L-ensembles, that Kulesza and Taskar adapt in [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF]. They condition the DPP not only on a subset included in the point process but also, similarly as Corollary 2.14, on a subset not included in the point process. As Shirai and Takahashi, they derive a formulation of the generated marginal kernel L.

Now, we have all the necessary expressions for the sequential sampling of a DPP.

Sequential Sampling Algorithm of a DPP

This sequential sampling algorithm simply consists in using Formula (2.14)

and updating at each step the pointwise conditional probability, knowing the previous selected points. It is presented in Algorithm 2. We recall that this sequential algorithm is the rst step toward developing a competitive sampling algorithm for DPPs: with this method, one doesn't need eigendecomposition anymore. The second strategy (presented in Section 2.4) will be to reduce its computational cost.

Algorithm 2 Sequential sampling of a DPP with kernel K

Initialization: A ← ∅, B ← ∅. For k = 1 to N : 1. Compute H B A∪{k} = K A∪{k} + K A∪{k}×B ((I -K) B ) -1 K B×A∪{k} . 2. Compute the probability p k given by p k = P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = H B (k, k)-H B {k}×A (H B A ) -1 H B A×{k} .
(2.15)

3. With probability p k , k is included, A ← A∪{k}, otherwise B ← B ∪ {k}.
Return A.

The main operations of Algorithm 2 involve solving linear systems re-

lated to (I -K) -1 B .
Fortunately, here we can use the Cholesky factorization, which alleviates the computational cost. Suppose that T B is the Cholesky factorization of (I -K) B , that is, T B is a lower triangular matrix such that (I -K) B = T B (T B ) * (where (T B ) * is the conjugate transpose of T B ). Then, denoting J B = (T B ) -1 K B×A∪{k} , one simply has H B A∪{k} = K A∪{k} + (J B ) * J B . Furthermore, at each iteration where B grows, the Cholesky decomposition T B∪{k} of (I -K) B∪{k} can be computed from T B using standard Cholesky update operations, involving the resolution of only one linear system of size |B|. See Appendix A.2 for the details of a typical Cholesky decomposition update.

In comparison with the spectral sampling algorithm of Hough et al. [START_REF] Hough | Determinantal processes and independence[END_REF], one requires computations for each site of Y, and not just one for each sampled point of Y . We will see at the end of Section 2.4 and in the experiments that it is not competitive.

Sequential Thinning Algorithm

In this section, we show that we can signicantly decrease the number of steps and the running time of Algorithm 2: we propose to rst sample a point process X containing Y , the desired DPP, and then make a sequential selection of the points of X to obtain Y . This procedure can be called a sequential thinning.

General Framework of Sequential Thinning

We rst describe a general sucient condition for which a target point process Y -it will be a determinantal point process in our case -can be obtained as a sequential thinning of a point process X. This is a discrete adaptation of the thinning procedure on the continuous line of Rolski and Szekli [START_REF] Rolski | Stochastic ordering and thinning of point processes[END_REF]. To do this, we will consider a coupling (X, Z) such that Z ⊂ X will be a random selection of the points of X and that will have the same distribution as Y . From this point onward, we identify the set X with the vector of size N with 1 in the place of the elements of X and 0 elsewhere, and we use the notations X 1:k to denote the vector (X 1 , . . . , X k ) and 0 1:k to denote the null vector of size k. We want to dene the random vector

(X 1 , Z 1 , X 2 , Z 2 , . . . , X N , Z N ) ∈ R 2N with the following conditional distributions for X k and Z k :        P(X k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = P(X k = 1|X 1:k-1 = x 1:k-1 ) P(Z k = 1|Z 1:k-1 = z 1:k-1 , X 1:k = x 1:k ) = 1 {x k =1} P(Y k = 1|Y 1:k-1 = z 1:k-1 ) P(X k = 1|X 1:k-1 = x 1:k-1 )
.

(2.16) Proposition 2.4.1 (Sequential thinning). Assume that X, Y, Z are discrete point processes on Y that satisfy for all k ∈ {1, . . . , N }, and all z, x ∈ {0, 1} N ,

P(Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) > 0 implies P(Y k = 1|Y 1:k-1 = z 1:k-1 ) ≤ P(X k = 1|X 1:k-1 = x 1:k-1 ). (2.17)
Then, it is possible to choose (X, Z) in such a way that (2.16) is satised. In that case, we have that Z is a thinning of X, that is Z ⊂ X, and Z has the same distribution as Y .

Proof. Let us rst discuss the denition of the coupling (X, Z). With the conditions (2.17), the ratios dening the conditional probabilities of Equation (2.16) are ensured to be between 0 and 1 (if the conditional events have non zero probabilities). Hence the conditional probabilities allow us to construct sequentially the distribution of the random vector (X 1 , Z 1 , X 2 , Z 2 , . . . , X N , Z N ) of length 2N , and thus the coupling is well-dened. Furthermore, as Equation

(2.16) is satised, Z k = 1 only if X k = 1, so one has Z ⊂ X.
Let us now show that Z has the same distribution as Y . By complementarity of the events {Z k = 0} and {Z k = 1}, it is enough to show that for all k ∈ {1, . . . , N }, and z 1 , . . . , z k-1 such that P(Z

1:k-1 = z 1:k-1 ) > 0, P(Z k = 1|Z 1:k-1 = z 1:k-1 ) = P(Y k = 1|Y 1:k-1 = z 1:k-1 ). (2.18) Let k ∈ {1, . . . , N }, (z 1:k-1 , x 1:k-1 ) ∈ {0, 1} 2(k-1) , such that P(Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) > 0. Since Z ⊂ X, {Z k = 1} = {Z k = 1, X k = 1}. Suppose rst that P(X k = 1|X 1 = x 1 , . . . , X k-1 = x k-1 ) = 0. Then P(Z k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = P(Z k = 1, X k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = P(Z k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 , X k = 1) ×P(X k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = P(Y k = 1|Y 1:k-1 = z 1:k-1 )
, by Equations (2.16).

(2.19)

If P(X k = 1|X 1:k-1 = x 1:k-1 ) = 0, then P(Z k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = 0 and using (2.17), P(Y k = 1|Y 1:k = z 1:k ) = 0. Hence the identity P(Z k = 1|Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) = P(Y k = 1|Y 1:k-1 = z 1:k-1 ) (2.20)
is always valid. Since the values x 1 , . . . , x k-1 do not inuence this conditional probability, one can conclude that given (Z 1 , . . . , Z k-1 ), Z k is independent of X 1 , . . . , X k-1 , and thus (2.18) is true.

The characterization of the thinning dened here allows both extreme cases:

there can be no pre-selection of points by X, meaning that X = Y and that the DPP Y is sampled by Algorithm 2, or there can be no thinning at all, meaning that the nal process Y can be equal to the dominating process X. Regarding sampling acceleration, a good dominating process X must be sampled quickly and with a cardinality as close as possible to |Y |.

Sequential Thinning Algorithm for DPPs

In this section, we use the sequential thinning approach, where Y is a DPP of kernel K on the ground set Y, and X is a Bernoulli point process (BPP).

BPPs are the fastest and easiest point processes to sample. The point process X is a Bernoulli process if the components of the vector (X 1 , . . . , X N ) are independent. Its distribution is determined by the probability of occurrence of each point k, that we denote by q k = P(X k = 1). Due to the independence property, the conditions (2.17) simplies to

P(Z 1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) > 0 implies P(Y k = 1|Y 1:k-1 = z 1:k-1 ) ≤ q k .
(2.21)

The second inequality does not depend on x, hence it must be valid as soon as there exists a vector x such that P(Z

1:k-1 = z 1:k-1 , X 1:k-1 = x 1:k-1 ) > 0,
that is, as soon as P(Z 1:k-1 = z 1:k-1 ) > 0. Since we want Z to have the same distribution as Y , we nally obtain the conditions

∀y ∈ {0, 1} N , P(Y 1:k-1 = y 1:k-1 ) > 0 implies P(Y k = 1|Y 1:k-1 = y 1:k-1 ) ≤ q k . (2.22)
Ideally, we want the q k to be as small as possible to ensure that the cardinality of X is as small as possible. So we look for the optimal values q * k , that is,

q * k = max (y 1:k-1 ) ∈ {0,1} k-1 s.t. P(Y 1:k-1 = y 1:k-1 ) > 0 P(Y k = 1|Y 1:k-1 = y 1:k-1
).

(2.23)

A priori, computing q * k would raise combinatorial issues. However, due to the repulsive nature of DPPs, we have the following proposition.

Proposition 2.4.2. Let A, B ⊂ Y be two disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) = 0, and let k = l ∈ (A ∪ B) c . If P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0, then P({k} ⊂ Y |A∪{l} ⊂ Y, B ∩Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩Y = ∅). (2.24) If P(A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) > 0, then P({k} ⊂ Y |A ⊂ Y, (B ∪ {l}) ∩ Y = ∅) ≥ P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅). (2.25)
Consequently, for all k ∈ Y, if y 1:k-1 ≤ z 1:k-1 (where ≤ stands for the inclusion partial order) are two states for Y 1:k-1 , then

P(Y k = 1|Y 1:k-1 = y 1:k-1 ) ≥ P(Y k = 1|Y 1:k-1 = z 1:k-1 ). (2.26) In particular, ∀k ∈ {1, . . . , N }, if P(Y 1:k-1 = 0 1:k-1 ) > 0 then q * k = P(Y k = 1|Y 1:k-1 = 0 1:k-1 ) = K(k, k) + K k×{1:k-1} ((I -K) {1:k-1} ) -1 K {1:k-1}×k .
(2.27)

Proof. Recall that by Proposition 2.3.

1, P ({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) = H B (k, k) -H B {k}×A (H B A ) -1 H B A×{k} . Let l / ∈ A ∪ B ∪ {k}. Consider T B the
Cholesky decomposition of the matrix H B obtained with the following ordering the coecients: A, l, the remaining coecients of Y \ (A ∪ {l}). Then, the restriction T B A is the Cholesky decomposition (of the reordered) H B A and thus

H B {k}×A (H B A ) -1 H B A×{k} = H B {k}×A (T B A (T B A ) * ) -1 H B A×{k} = (T B A ) -1 H B A×{k} 2 2 .
(2.28)

Similarly,

H B {k}×A∪{l} (H B A∪{l} ) -1 H B A∪{l}×{k} = (T B A∪{l} ) -1 H B A∪{l}×{k} 2 2 .
( 

≥ (T B A ) -1 H B A×{k} 2 2 . Consequently, provided that P(A ∪ {l} ⊂ Y, B ∩ Y = ∅) > 0, P({k} ⊂ Y |A∪{l} ⊂ Y, B ∩Y = ∅) ≤ P({k} ⊂ Y |A ⊂ Y, B ∩Y = ∅). (2.30)
The second inequality is obtained by complementarity in applying the above inequality to the DPP Y c with B ∪ {l} ⊂ Y c and A ∩ Y c = ∅.

As a consequence, an admissible choice for the distribution of the Bernoulli process is

q k = P(Y k = 1|Y 1:k-1 = 0 1:k-1 ) if P(Y 1:k-1 = 0 1:k-1 ) > 0, 1 otherwise. 
(2.31)

Note that if for some index k, P(Y 1:k-1 = 0 1:k-1 ) > 0 is not satised, then for all the subsequent indexes l ≥ k, q l = 1, that is the Bernoulli process becomes degenerate and contains all the points after k. In the remaining of this section, X will denote a Bernoulli process with probabilities (q k ) given by (2.31).

As discussed in the previous section, in addition to being easily simulated, one would like the cardinality of X to be close to the one of Y , the nal sample. The next proposition shows that this is veried if all the eigenvalues of K are strictly less than 1.

Proposition 2.4.3 (|X | is proportional to |Y |).

Suppose that P (Y = ∅) = det(I -K) > 0 and denote by λ max (K) ∈ [0, 1) the maximal eigenvalue of K.

Then,

E(|X|) ≤ 1 + λ max (K) 2 (1 -λ max (K)) E(|Y |).
(2.32)

Proof. We know that

q k = K(k, k)+K {k}×{1:k-1} ((I -K) {1:k-1} ) -1 K {1:k-1}×{k} , by Proposition 2.3.1. Since ((I -K) {1:k-1} ) -1 M k-1 (C) = 1 1-λmax(K {1:k-1} ) (2.33) and λ max (K {1:k-1} ) ≤ λ max (K), one has K {k}×{1:k-1} ((I -K) {1:k-1} ) -1 K {1:k-1}×{k} ≤ 1 1-λmax(K) K {1:k-1}×{k} 2 2 . (2.34)
Summing all these inequalities gives

E(|X|) ≤ Tr(K) + 1 1-λmax(K) N k=1 K {1:k-1}×{k} 2 2 . (2.35)
The last term is the Frobenius norm of the upper triangular part of K, hence in can be bounded by

1 2 K 2 F = 1 2 N j=1 λ j (K) 2 . Since λ j (K) 2 ≤ λ j (K)λ max (K), N j=1 λ j (K) 2 ≤ λ max (K) Tr(K) = λ max (K)E(|Y |).
We can now introduce the nal sampling algorithm that we call sequential thinning algorithm (Algorithm 3). It presents the dierent steps of our sequential thinning algorithm to sample a DPP of kernel K. The rst step is a preprocess that must be done only once for a given matrix K. Note that, very recently, Guillaume Gautier [START_REF] Gautier | On sampling determinantal point processes[END_REF] proposed an alternative computation of the Bernoulli probabilities q k that generate the dominating point process in the rst step of Algorithm 3, so that it only requires the diagonal coecients of the Cholesky decomposition T of I -K. These simplied computations should improve the eciency of the rst step of the algorithm. We plan to test numerically how much this rst step is sped up.

Algorithm 3 Sequential thinning algorithm of a DPP with kernel K

1. Compute sequentially the probabilities P(X k = 1) = q k of the Bernoulli process X:

Compute the Cholesky decomposition T of the matrix I -K.

For k = 1 to N :

If q k-1 < 1 (with the convention q 0 = 0),

q k = K(k, k) + T -1 {1,...,k-1} K {1,...,k-1}×{k} 2 2 . 
(2.36)

Else, q k = 1.

2. Draw the Bernoulli process X. Let m = |X| and k 1 < k 2 < • • • < k m be the points of X.
3. Apply the sequential thinning to the points of X:

Attempt to add sequentially each point of X to Y : Initialize A ← ∅ and B ← {1, . . . , k 1 -1}. For j = 1 to m If j > 1, B ← B ∪ {k j-1 + 1, . . . , k j -1}. Compute the conditional probability p k j = P({k j } ⊂ Y |A ⊂ Y, B ∩ Y = ∅) (see Formula (2.14)): * Update T B the Cholesky decomposition of (I -K) B (see Ap- pendix A.2). * Compute J B = (T B ) -1 K B×A∪{k j } . * Compute H B A∪{k} = K A∪{k j } + (J B ) t J B . * Compute p k j = H B (k j , k j ) -H B {k j }×A (H B A ) -1 H B A×{k j } .
Add k j to A with probability

p k j q k j
or to B otherwise.

Return A.

Computational Complexity

Recall that the size of the ground set Y is N and the size of the nal sample is |Y | = n. Both algorithms introduced in this chapter (Algorithms 2 and 3) have running complexities of order O(N 3 ), as the spectral algorithm. Yet, if we get into the details, the most expensive task in the spectral algorithm is the computation of the eigenvalues and the eigenvectors of the kernel K.

As this matrix is Hermitian, the common routine to do so is the reduction of K to some tridiagonal matrix to which the QR decomposition is applied, meaning that it is decomposed into the product of an orthogonal matrix and an upper triangular matrix. When N is large, the total number of operations is approximately

4 3 N 3 [124]
. In Algorithms 2 and 3, one of the most expensive operations is the Cholesky decomposition of several matrices. We recall that the Cholesky decomposition of a matrix of size N × N costs approximately 1 3 N 3 computations, when N is large [START_REF] Mayers | An introduction to numerical analysis[END_REF]. Concerning the Sequential algorithm 2, at each iteration k, the number of operations needed is of order |B| 2 |A| + |B||A| 2 + |A| 3 , where |A| is the number of selected points at step k so it's lower than n, and |B| the number of unselected points, bounded by k. Then, when N tends to innity, the total number of operations in Algorithm 2 is lower than

n 3 N 3 + n 2 2 N 2 + n 3 N or O(nN 3
), as in general n N . Concerning Algorithm 3, the sequential thinning from X, coming from Algorithm 2, costs O(n|X| 3 ). Recall that |X| is proportional to |Y | = n when the eigenvalues of K are smaller than 1 (see Equation (2.32)) so this step costs O(n 4 ). Then, the Cholesky decomposition of I -K is the most expensive operation in Algorithm 3 as it costs approximately 1 3 N 3 . In this case, the overall running complexity of the sequential thinning algorithm is of order 1 3 N 3 , which is 4 times less than the spectral algorithm. When some eigenvalues of K are equal to 1, Equation (2.32) does not hold anymore so, in that case, the running complexity of Algorithm 3 is only bounded by O(nN 3 ).

We will retrieve this experimentally as, depending on the application or on the kernel K, this Algorithm 3 is able to speed up the sampling of DPPs. Note that in the previous computations, we have not taken into account the possible parallelization of the sequential thinning algorithm. As a matter of fact, the Cholesky decomposition is parallelizable [START_REF] George | Parallel Cholesky factorization on a shared-memory multiprocessor[END_REF]. Incorporating this parallel computations would probably speed up the sequential thinning algorithm, since the Cholesky decomposition of I -K is the most expensive operation when the expected cardinality |Y | is low. The last part of the algorithm, the thinning procedure, operates sequentially, so it is not parallelizable. These comments on the complexity and running times highly depends on the implementation, on the choice of the programming language and speed up strategies, so they mainly serve as an illustration.

Experiments

DPP Models for Runtime Tests

In the following section, we use the common notation of L-ensembles, with matrix L = K(I -K) -1 . We present the results using four dierent kernels: (a) A random kernel: K = Q -1 DQ, where D is a diagonal matrix with uniformly distributed random values in (0, 1) and Q an unitary matrix created from the QR decomposition of a random matrix.

(b) A kernel similar to the continuous Ginibre kernel: K = L(I + L) -1 with for all x 1 , x 2 ∈ Y = {1, . . . , N },

L(x 1 , x 2 ) = 1 π e -1 2 (|x 1 | 2 +|x 2 | 2 )+x 1 x 2 , (2.37) 
(c) A patch-based kernel: Let u be a discrete image and Y = P a subset of all its patches, i.e. square sub-images of size w × w in u. Dene K = L(I + L) -1 where for all P 1 , P 2 ∈ P,

L(P 1 , P 2 ) = exp - P 1 -P 2 2 2 s 2 , (2.38)
where s > 0 is called the bandwidth or scale parameter. We will detail the denition and the use of this kernel in Chapter 4.

(d) A projection kernel: K = Q -1 DQ, where D is a diagonal matrix with the n rst coecients equal to 1, the others, equal to 0, and Q is a random unitary matrix as for model (a).

It is often essential to control the expected cardinality of the point process.

For case (d) the cardinality is xed to n. For the three other cases, we use a procedure similar to the one developed in [START_REF] Barthelmé | Asymptotic equivalence of xed-size and varying-size determinantal point processes[END_REF].

Recall that if Y ∼ DPP(K) and K = L(I + L) -1 , E(|Y |) = tr(K) = i∈Y λ i = i∈Y µ i 1 + µ i
, where (λ i ) i∈Y are the eigenvalues of K and (µ i ) i∈Y are the eigenvalues of L [START_REF] Hough | Determinantal processes and independence[END_REF][START_REF] Kulesza | Determinantal point processes for machine learning[END_REF]. Given an initial matrix L = K(I -K) -1 and a desired expected cardinality E(|Y |) = n, we run a binary search algorithm to nd α > 0 such that

i∈Y αµ i 1 + αµ i = n.
Then, we use the kernels L α = αL and K α = L α (I + L α ) -1 .

Runtimes

For the following experiments, we ran the algorithms on a laptop HP Intel(R)

Core(TM) i7-6600U CPU and we use the software Matlab R2018b. Note that the computational time results depend on the programming language and the use of optimized functions by the software. Thus, the following numerical results are mainly indicative.

First, let us compare the sequential thinning algorithm (Algorithm 3) presented here with the two main sampling algorithms: the classic spectral algorithm (Algorithm 1) and the naive sequential algorithm (Algorithm 2). As foreseen, the sequential algorithm (Algorithm 2) is far slower than the two others. Whatever the chosen kernel and the expected cardinality of the DPP, this algorithm is not competitive. Note that the sequential thinning algorithm uses this sequential method after sampling the particular Bernoulli process.

But we will see that this rst dominating step can be very ecient and lead to a relatively fast algorithm. expected cardinality of the sample when the size of the ground set is constant, equal to 5000 points. Notice that, concerning the three left-hand-side general kernels with no eigenvalue equal to one, the sequential thinning algorithm is faster under a certain expected number of points -which depends on the kernel. For instance, when the kernel is randomly dened and the range of desired points to sample is below 25, it is relevant to use this algorithm. To conclude, when the eigenvalues of the kernel are below one, Algorithm 3 seems relevant for large data sets but small samples. This case is quite common, for instance to summarize a text, to work only with representative points in clusters or to denoise an image with a patch-based method.

The projection kernel (when the eigenvalues of K are either 0 or 1) is, as expected, a complicated case. Figure 2.2 (bottom, right) shows that our algorithm is not competitive when using this kernel. Indeed, the cardinality of the dominating Bernoulli process X can be very large. In this case, the bound in Equation (2.32) isn't valid (and even tends to innity) as λ max = 1, and we necessarily reach the degenerated case when, after some index k, all the Bernoulli probabilities q l , l ≥ k, are equal to 1. Then the second part of the sequential thinning algorithm -the sequential sampling part-is done on a larger set which signicantly increases the running time of our algorithm. In order to understand more precisely to what extent high eigenvalues penalize the eciency of the sequential thinning algorithm (Algorithm 3), Figure 2.5 compares its running times with that of the spectral algorithm (Algorithm 1) in function of the eigenvalues of the kernel K. For these experiments, we consider a ground set of size |Y| = 5000 items and an expected cardinality equal to 15. In the rst case (a), the eigenvalues are either equal to 0 or to λ max , whith m non-zero eigenvalues so that mλ max = 15. It shows that above a certain λ max ( 0.65), the sequential thinning algorithm is not the fastest anymore. In particular, when λ max = 1, the running time takes o. In the second case (b), the eigenvalues (λ k ) are randomly distributed between 0 and λ max so that k λ k = 15. In practice, (N -1) eigenvalues are exponentially distributed, with expectation 15-λmax N -1

, and the last eigenvalue is set to λ max . In this case, the sequential thinning algorithm remains faster than the spectral algorithm, even with high values of λ max , except when λ max = 1. This can be explained by the fact that, by construction of this kernel, most of the eigenvalues are very small. The average size of the Bernoulli process generated (light grey, right axes) also illustrates the inuence of the eigenvalues.

Table 2.1 presents the individual weight of the main steps of the three algorithms. Concerning the sequential algorithm, logically, the matrix inversion is the heaviest part taking 74.25% of the global running time. These proportions remain the same when the expected number of points n grows. The main operation of the spectral algorithm is by far the eigendecomposition of the matrix K, counting for 83% of the global running time, when the expectation of the number of points to sample evolves with the size of Y. Finally, the sequential sampling is the heaviest step of the sequential thinning algorithm. We have already mentioned that the thinning is very fast and that it produces a point process with a cardinality as close as possible to the nal DPP. When the expected cardinality is low, the number of selected points by the thinning process In cases when multiple samples of the same DPP have to be drawn, the eigendecomposition of K can be stored and the spectral algorithm is more ecient than ours. Indeed, in our case the computation of the Bernoulli probabilities can also be saved but the sequential sampling is the heaviest task and needs to be done for each sample.

Conclusion

In this chapter, we proposed a new sampling algorithm (Algorithm 3) adapted to general determinantal point processes, which doesn't use the spectral decomposition of the kernel and which is exact. It proceeds in two phases. The rst one samples a Bernoulli process whose distribution is adapted to the target DPP. We know that the generated point process contains the DPP and it is constructed so that its size is the closest to the size of the target DPP. It is a fast and ecient step that reduces the initial number of points of the ground set. Moreover, if I -K is invertible, the expectation of the cardinality of the Bernoulli process is proportional to the expectation of the cardinality of the DPP.

The second phase is a sequential sampling based on the points selected in the rst step. This phase is made possible by the explicit formulations of the general marginals and the pointwise conditional probabilities of any DPP from its kernel K. The sampling is sped up using updated Cholesky decompositions to compute the conditional probabilities. This sequential strategy is not ecient, that is why it is crucial that the rst step reduces the size of the initial state space as much as possible. Matlab and Python implementations of the sequential thinning algorithm can be found online 3 .

In terms of running times, we have detailed the cases for which this algorithm is competitive with the spectral algorithm, in particular when the size of the ground set is high and the expected cardinality of the DPP is modest.

This framework is common in machine learning applications. Indeed, DPPs are an interesting solution to subsample a data set, initialize a segmentation algorithm or summarize an image, examples where the number of datapoints needs to be signicantly reduced, and where our algorithm would speed up the procedure.

As future works, we would like to investigate methods to further accelerate our algorithm. We are also interested in a potential adaptation of this strategy to continuous DPPs, dened on a continuous state space. Indeed, the thinning procedure we use comes from a continuous setting. We would like to examine the modication of the rest of the algorithm to a continuous framework. Continuous DPPs appear in the distribution of the spectrum of Gaussian random matrices in probability or in the location of fermions in quantum mechanics, for instance. Note that sampling exactly a continuous DPPs models is a much more challenging problem than sampling discrete DPPs. The main reasons are that the domains are often innite, and more importantly, because the eigendecompositon of the kernel operator generally involves an innite number of eigenvalues. Yet hope that adaptation of the sequential thinning procedure may provide an adequate sampling procedure for some continuous DPP models.

Chapter 

Introduction

In this chapter, we consider DPPs dened on a specic space, the set of the pixels of an image. In such a framework, it seems natural to assume that the point processes under study are stationary and periodic. Thus, the correlation between pairs of pixels no longer depends on the position of the pixels but on the dierence between their position. As a consequence, the kernel K is a block-circulant matrix. The kernel can be characterized using a function C dened on the image domain, that we identify with the kernel of the DPP in the following. Circulant and block-circulant matrices have the particularity to be diagonalized by the Fourier basis. In this chapter, the eigenvalues of the matrix K are the Fourier coecients of the function C. Thus, the discrete Fourier transform plays a key role in this chapter.

Section 3.2 introduces these discrete DPPs that we call Determinantal Pixel Processes (DPixPs). We study the consequences of the stationarity and periodicity hypotheses on basic properties of DPPs, in particular on the repulsion generated by these point processes. Gibbs point processes can generate hardcore repulsion, that is imposing a minimal distance between the points of the point process. We study the existence of a similar property for DPixPs.

In Section 3. This is a question called identiability. A model is not identiable if two different parametrizations produce equivalent distributions. Thus, for estimation purposes, it is crucial to characterize the equivalent kernels of a given DPP kernel. We develop an algorithm that uses the stationarity hypothesis to estimate the kernel of a DPixP from one or several samples. This method is fast and provides satisfying results.

Determinantal Pixel Processes (DPixPs)

In this section, let us present Determinantal Pixel Processes, DPPs dened on the set of pixels of an image, and the main properties of these point processes.

Notations and Denitions

In the following sections, we will consider DPPs dened on the pixels of an 

∀ x = (x 1 , x 2 ) ∈ Ω, τ y u(x 1 , x 2 ) := u(x 1 -y 1 modN 1 , x 2 -y 2 modN 2 ).
In the following, we consider the Fourier domain

Ω = -N 1 2 , . . . , N 1 2 -1 × -N 2 2 , . . . , N 2 2 -1 if N 1 and N 2 are even (otherwise, for instance if N i is odd, we consider -N i -1 2 , . . . , N i -1 2 
), so that the frequency 0 is centered. We recall that the discrete Fourier transform of a function f : Ω → C is given by, for all ξ ∈ Ω,

f (ξ) = F(f )(ξ) = x∈Ω f (x)e -2iπ x,ξ , with x, ξ = x 1 ξ 1 N 1 + x 2 ξ 2 N 2 . (3.1) 
This transform is inverted using the inverse discrete Fourier transform:

∀x ∈ Ω, f (x) = F -1 f (x) = 1 N ξ∈ Ω f (ξ)e 2iπ x,ξ . (3.2)
Note that given a function f dened on Ω, we consider it is extended by periodicity to Z 2 . Thus, for any f dened on Ω, we set f -(x) := f (-x). The convolution of two functions f and g dened on Ω is given by

∀x ∈ Ω, f * g(x) = y∈Ω f (x -y)g(y), (3.3) 
where the boundary conditions are considered periodic. Then, f * g can be computed in the Fourier domain, since

∀ξ ∈ Ω, f * g(ξ) = f (ξ) g(ξ). (3.4)
The autocorrelation of a function f is denoted by R f . It is dened for all

x ∈ Ω by R f (x) = f * f -(x).
Besides, the Parseval formula asserts that for any function f : Ω → C,

f 2 2 = x∈Ω |f (x)| 2 = 1 N ξ∈ Ω | f (ξ)| 2 = 1 N f 2 2 . (3.5)
Let us consider a DPP dened on Ω with kernel K. In this work, we will focus on the modeling of textures, which are often characterized by the repetition of a pattern, or small objects which may be indistinguishable individually.

Their homogeneous aspect can be naturally modeled by a stationary random eld. Thus we will suppose that the point processes under study are stationary and periodic. This hypothesis amounts to consider that the correlation between two pixels x and y only depends on the dierence x -y: the distribution is invariant by translation, while assuming periodic boundary conditions.

Thus the kernel matrix K is a block-circulant matrix with circulant blocks, entirely characterized by its rst row. Note that in practice, the pixels are ordered column by column so that the ordered index of a pixel x = (

x 1 , x 2 ) ∈ Ω is (x 1 -1)N 2 + x 2 .
Denition 3.2.1. A block-circulant matrix with circulant blocks K veries for

all x = (x 1 , x 2 ), y = (y 1 , y 2 ) ∈ Ω, for all τ = (τ 1 , τ 2 ) ∈ Ω, K (x + τ, y + τ ) = K (x, y) , (3.6) 
where we still consider periodic boundary conditions.

Let us dene a correlation function

C : Ω → C such that K(x, y) = C(x -y), ∀ x, y ∈ Ω. (3.7) 
Note that C is extended to Z 2 by periodicity. As it entirely characterizes K, it also characterizes the associated DPP. Circulant matrices are diagonalized in the Fourier basis, thus the eigenvalues of K are the Fourier coecients of C.

In this new framework, we can dene DPPs from their correlation function 

X ∼ DPixP(C) if ∀A ⊂ Ω, P(A ⊂ X) = det(K A ), (3.9) 
where K A = (C(x -y)) x,y∈A is a |A| × |A| matrix.

Properties

The next proposition is directly deduced from properties of general DPPs that were presented in the introduction. 

= (x 1 , x 2 ) ∈ Ω, C(x) = C 1 (x 1 )C 2 (x 2 )
, is a DPixP, that will be called separable.

Proof. Notice that for all ξ = (ξ 1 , ξ 2 ) ∈ Ω, As we have seen previously, notice that in the general discrete case, the rst example corresponds to the case where K is diagonal and the second one corresponds to the case where the eigenvalues of K are either equal to 0 or to 1. It is also called a projection DPP and the cardinality of the point process is equal to the number of non-zero eigenvalues, i.e. the rank of K. 

C(ξ) = N 1 -1 x 1 =0 N 2 -1 x 2 =0 C 1 (x 1 )C 2 (x 2 )e -2iπ x 1 ξ 1 N 1 + x 2 ξ 2 N 2 = C 1 (ξ 1 ) C 2 (ξ 2 ).

Sampling from DPixPs

The common algorithm to sample exactly general determinantal processes is the spectral algorithm, presented in Section 2.2.1. Remember that this is a two steps strategy which relies on an eigendecomposition {(λ x , v x )} 1≤x≤N of the matrix K. Indeed, dene (B x ) 1≤x≤N , N independent random variables

such that B x ∼ Ber(λ x ) and K B = x∈Ω B x v x v * x . Such a matrix K B is a random
version of K and Hough and al. [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] proved that DPP(K) = DPP(K B ).

Hence, the spectral algorithm consists in rst drawing N independent Bernoulli random variables of parameters λ x : these variables select n eigenvalues and eigenvectors, where n is distributed as 1≤x≤N B x . Then, it samples the n points from a projection DPP, obtained from the selected eigenvectors, thanks to a Gram-Schmidt procedure.

In our discrete stationary periodic framework, the eigenvalues of the matrix K are the Fourier coecients of C and its eigenvectors are the elements of the Fourier basis. Then an eigendecomposition of a DPixP of kernel C is computed using the 2D Fast Fourier Transform (FFT2) algorithm. Algorithm 4 presents the spectral algorithm adapted to sample a DPixP. In this algorithm, (ϕ ξ ) ξ∈ Ω denotes the columns of the discrete Fourier transform matrix:

∀ ξ ∈ Ω, ∀ x ∈ Ω, ϕ ξ (x) = e -2iπ
x,ξ . (3.13)

Sample X 1 uniform on Ω, and dene e 1 = v(X 1 )/ v(X 1 ) .

For k = 2 to n do: Sample X k from the probability density p k on Ω, dened by

∀x ∈ Ω, p k (x) = 1 n -k + 1 n N - k-1 j=1 |e * j v(x)| 2 (3.14) Dene e k = w k / w k where w k = v(X k ) - k-1 j=1 e * j v(X k )e j .
Return X = (X 1 , . . . , X n ).

Because of the eigendecomposition of a matrix of size |Ω| × |Ω| the initial spectral algorithm runs in O(|Ω| 3 ), yet thanks to the FFT2 algorithm, sampling DPixPs costs O(|Ω| log |Ω|). Whereas in general the spectral algorithm is heavy when dealing with a huge data set, in this setting, it is very ecient. This allows us to handle large images. Thus, in addition to the explicit computation of marginals and of moments of a DPixP from its kernel, this exact sampler is one more asset of this family of point processes with respect to Gibbs processes. 

Pair Correlation Function

In spatial statistics, the pair-correlation function (p.c.f.) g X associated to a point process X is used to describe interactions between pairs of points. It characterizes the local repulsiveness of X [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]. For any discrete stationary point process on Ω, it is dened for all x ∈ Ω by

g X (x) = P ({0, x} ⊂ X) ρ 2 , (3.15) 
where ρ is the intensity of the point process, ρ = E(|X|) |Ω| = P(0 ∈ X). It quanties the degree of interaction between two points separated by a gap x: the closest g is to 1, the less correlated they are. If g(x) > 1, the points are considered to attract each other, whereas if g(x) < 1 the points are considered to repel each other. Notice that if X ∼ DPixP(C),

g X (x) = C(0) 2 -|C(x)| 2 C(0) 2 = 1 - |C(x)| 2 |C(0)| 2 . (3.16)
Thus, if X is a Bernoulli point process, for all x = 0, g X (x) = 1: there is no interaction between the points. Note also that for any DPixP, g X ≤ 1.

During the sequential step of the sampling, each time a pixel is selected, a repulsion zone appears around it, where the probability for a pixel to be selected is low and whose shape depends on the kernel function C (Figure 3.2). This local repulsion zone is clearly retrieved in the pair correlation function computation.

Hard-core Repulsion

Gibbs processes are often used as their denition enables to precisely characterize the repulsion. Besides, they can provide hard-core repulsion, meaning that the points are prohibited from being closer than a certain distance. To compare with this family of point processes, we investigate the possibility of hard-core repulsion in the case of DPixPs. First, we study a hard-core repulsion for pairs of points. Specically, if x ∈ Ω and e ∈ Ω (for instance e = (1, 0) or (0, 1)), is there a DPixP kernel such that x and x + e can't belong simultaneously to the sample? The following proposition answers to this question and characterizes the associated kernel. 1. For all x ∈ Ω, the probability that x and x + e belong simultaneously to X is zero.

2. For all x ∈ Ω, the probability that x and x + λe belong simultaneously to X is zero, for λ ∈ Q such that λe ∈ Ω.

3. There exists θ ∈ R such that the only frequencies ξ ∈ Ω such that C(ξ) is non-zero are located on the discrete line dened by e, ξ = θ.

4. X contains almost surely at most one point on every discrete line of direction e.

This is called directional repulsion.

Proof. Let X be a DPixP dened on Ω with kernel C. First, let us prove that 1 ⇔ 3. Recall that for all x ∈ Ω,

P {x, x + e} ⊂ X = C(0) 2 -|C(e)| 2 .
We deduce from the triangle inequality that exists θ ∈ R such that for all ξ ∈ Ω, either C(ξ) = 0, or e, ξ = θ. Hence, for all x ∈ Ω, the probability that x and x + e belong simultaneously to X is zero if and only if the only non-zeros Fourier coecients of C are aligned in the orthogonal direction of e. Second, let us prove that 2 ⇔ 3. Consider λ ∈ Q such that λe ∈ Ω. Similarly, P {x, x + λe} ⊂ X = 0 if and only if there exists θ ∈ R such that for all ξ ∈ Ω, either C(ξ) = 0, or λe, ξ = θ, meaning that e, ξ = θ λ , which also is the equation of a discrete line orthogonal to e. Finally, suppose that X contains almost surely at most one point on every discrete line of direction e. Then, for all x ∈ Ω, the probability that x and x + e belong to X is zero so 4 ⇒ 1 ⇔ 3. Now assume that the only non-zero Fourier coecients of C are aligned on a discrete line that is orthogonal to e. As 2 ⇔ 3 for all λ ∈ Q such that λe ∈ Ω, P {x, x + λe} ⊂ X = 0. Hence, X contains at most one point on any line of direction e, which can be described as a hard-core repulsion of direction e. while the simulation is in progress, after 15 pixels already sampled. In each pixel, the probability that it is the next point selected is represented by the gray scale: the lighter a pixel is, the greater its probability of being the next point sampled. One can see that as soon as a pixel x is sampled, all the pixels belonging to the horizontal line passing through x have a zero probability of being sampled next. Proposition 3.2.4. Let X ∼ DPixP(C) verifying the properties of Proposition 3.2.3, with e = (1, 0), meaning that X contains at most one point on any horizontal line and all non-zero Fourier coecients of C are aligned on a vertical line. Then C is separable in the sense of Proposition 3.2.2. Besides, the associated vertical point process is a DPixP of dimension 1 and conditionally to the drawn ordinates, the associated horizontal point process consists of a single point chosen uniformly and independently from the other horizontal point processes. The same proposition holds for e = (0, 1) and vertical hard-core repulsion (inverting the terms horizontal and vertical).

|C(e)| = 1 |Ω| ξ∈ Ω C(ξ)e 2iπ e,ξ ≤ 1 |Ω| ξ∈ Ω C(ξ) = C(0), (3.17 
Proof. Consider an admissible DPixP kernel C such that all its Fourier coecients are either zero either aligned on a vertical line, positioned in c ∈ -N 1 2 , . . . , N 1 2 -1 (here we assume that N 1 is even, the proof is similar if N 1 is odd). Thus we can dene two functions is a separable kernel.

C 1 = 1 c and C 2 = C(c, .) such that for all ξ = (ξ 1 , ξ 2 ) ∈ Ω, C(ξ) = C 1 (ξ 1 ) C 2 (ξ 2 ) = C 2 (ξ 2 )1 c (ξ 1 ). Notice that C = F -1 ( C 1 )F -1 ( C 2 ) = C 1 C 2 . Such
Note that as soon as a pair of points conguration is prohibited, the whole direction is prohibited. As imposing a minimum distance between points is equivalent to prohibiting pair of points congurations in all directions, we deduce that the only DPixP imposing a minimum distance between the points is the degenerate DPixP, consisting of a single pixel. Hence, we obtain the following proposition.

Proposition 3.2.5. Let Ω be an image domain. There is no DPixP kernel dened on Ω that generates a point process with hard core repulsion in the broad sense, except a degenerate DPixP containing only one point.

This property weakens the appeal of DPixPs compared to Gibbs processes.

Indeed, as we have seen before, hard core repulsion is a property appreciated by the computer graphics community and that Gibbs processes can introduce.

Shot Noise Models Based on DPixPs

Shot Noise Models and Micro-textures

In the following section, we study discrete shot noise models driven by a DPixP.

Shot noise models naturally appear to model phenomena such as the superposition of impulses occurring at independent and random times or positions.

These models have been introduced in the computer graphics eld with the work of van Wijk [START_REF] Van Wijk | Spot noise texture synthesis for data visualization[END_REF]. Notice that van Wijk uses the expression spot noise texture as the spatial counterpart of 1D shot noise models yet the term shot noise is commonly employed for general models. Thus, in the rest of the section, we use this more general expression. Shot noise models are frequently used to approximate Gaussian textures as they are well-dened and simple mathematical models that allows us for fast synthesis [START_REF] Lagae | Procedural noise using sparse Gabor convolution[END_REF], [START_REF] Galerne | Gabor noise by example[END_REF], [START_REF] Galerne | Texton noise[END_REF]. Here, we are interested in the discrete version of these models on the nite grid

Ω = {0, . . . , N 1 -1} × {0, . . . , N 2 -1} ⊂ Z 2 .
Denition 3.3.1 (Shot noise models based on a discrete point process). Consider X a discrete point process with intensity ρ and g a (deterministic) function dened on Ω, periodically extended to Z 2 . Then, the shot noise random eld S based on the points X and the spot g is dened by ∀x ∈ Ω, S(x) =

x i ∈X g(x -x i ).

(3.18)

In general, discrete shot noise models are based on a set of n i.i.d. random variables: it amounts to summing n randomly shifted versions of the spot.

These models are particularly interesting for Gaussian texture synthesis as they have a Gaussian limit [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. Indeed, in that case, the shot noise is the sum of n i.i.d. random images so that thanks to the Central Limit Theorem, we obtain a Gaussian limit. We study here shot noise models based on DPixPs. At the end of the section, we prove that there is a similar Central Limit theorem for shot noise models based on DPixPs that needs a modied framework but that ensures a Gaussian limit.

From now on, we consider an admissible kernel C and we suppose that X is the DPixP of kernel C. We study the interactions between the kernel C and the spot function g. To compute the moments of a shot noise model S based on X and a given spot, we need a moment formula ( [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF], [START_REF] Baccelli | Stochastic Geometry and Wireless Networks, Volume I -Theory[END_REF]), also known as the Campbell or Slivnyak-Mecke formula, adapted to our discrete setting in the following proposition. Proposition 3.3.1 (Moments formula for DPixPs). Let X be a DPixP of kernel C dened on Ω, let us consider k ≥ 1 an integer and f a function dened on Ω k . We have Therefore, by the Slivnyak-Mecke formula [START_REF] Baccelli | Stochastic Geometry and Wireless Networks, Volume I -Theory[END_REF], as we have

E = x 1 ,...,x k ∈X f (x 1 , . . . , x k ) = y 1 ,...,y k ∈Ω f (y 1 , . . . , y k ) det((C(y i -y j ) 1≤i,j≤k ),
E   = x i 1 ,...,x i k ∈X f (x i 1 , . . . , x i k )   = y 1 ,...,y k ∈Ω
f (y 1 , . . . , y k )P({y 1 , . . . , y k } ⊂ X), (3.21) we obtain the formula of the proposition.

Since X ∼ DPixP(C) is stationary, S as dened in 3.3.1 is also stationary, so that E(S(x) k ) = E(S(0) k ) for all x ∈ Ω and for all k ≥ 1.

Proposition 3.3.2 (First and second order moments). Let S be a shot noise model based on X ∼ DPixP(C) and the spot g. We have E(S(0)) = C(0) y∈Ω g(y), and for all x ∈ Ω, Γ S (x) := Cov(S(0), S(x)

) = C(0)R g (x) -(R g * |C| 2 )(x). In particular, Var(S(0)) = C(0) y∈Ω g(y) 2 -(R g * |C| 2 )(0), (3.22)
and for all ξ ∈ Ω, Γ S (ξ) = | g(ξ)| 2 (C(0) -|C| 2 (ξ)), where R g = g * g -is the autocorrelation of g. 

= E x 1 ∈X g(-x 1 ) x 2 ∈X g(x -x 2 ) -E (S(0)) 2 = E = x 1 ,x 2 ∈X g(-x 1 )g(x -x 2 ) + E x 1 ∈X g(-x 1 )g(x -x 1 ) -E (S(0)) 2 = y 1 ,y 2 ∈Ω g(-y 1 )g(x -y 2 ) C(0) 2 -|C(y 2 -y 1 )| 2 + y∈Ω g(-y)g(x -y)C(0) -E (S(0)) 2 = C(0)g * g -(x) -(g * g - * |C| 2 )(x).

Extreme Cases of Variance

We set N = |Ω| = N 1 N 2 ∈ N and C n the set of admissible kernels such that C(0) = n N , where n ∈ N. If X ∼ DPixP(C), with C ∈ C n , notice that E(|X|) = |Ω|C(0) = n. Given a spot function g, we are looking for admissible kernels C ∈ C n that generate shot noise models S of maximal and minimal variance. Indeed, the value Var(S(0)) quanties a repulsion in the sense of g or the regularity of the shot noise. The case of a shot noise S based on a spot function g dened as an indicator function provides some intuition into this idea. If Var(S(0)) is low, the values taken by S are close to its mean value: there are few regions with no spot and few regions with many overlaps of the spot. Then the points sampled from DPixP(C ) tend to be far from one another, according to the shape of the function g and S appears more homogeneous. The repulsion is maximal. On the contrary, when Var(S(0)) is high, S may take high values, so there can be many points in the same region.

In that case, the repulsion is minimal. Proposition 3.3.3 (Extreme cases of variance). Fix g : Ω → R + and n ∈ N.

The variance of the shot noise model S is maximal if it is based on the Bernoulli DPixP that belongs to C n , meaning that its kernel C is such that C(0) = n N and for all x = 0, C(x) = 0. The variance of the shot noise model S is minimal when it is based on the projection DPixP of n points, such that the n frequencies {ξ 1 , ..., ξ n } associated with the non-zero Fourier coecients of its kernel maximize 

Var(S(0)) = C(0)g * g -(0) -(g * g - * |C| 2 )(0) = n |Ω| 2 ξ | g(ξ)| 2 - 1 |Ω| 2 ξ,ξ | g(ξ -ξ )| 2 C(ξ) C(ξ ). (3.26)
If we identify the function C to a vector of R N , the question becomes nding C ∈ C n that maximizes or minimizes F : R N → R, where

F ( C) = ξ,ξ | g(ξ -ξ )| 2 C(ξ) C(ξ ). (3.27)
Maximal variance: We dene a scalar product associated to g for all v, w ∈ R N , by v, 

w g = ξ,ξ ∈Ω | g(ξ -ξ )| 2 v ξ w ξ = v t Gw where G is the N × N matrix such that G = ( | g(ξ -ξ )| 2 ) ξ,ξ ∈ Ω .
v ∈ R N , N ξ,ξ =1 | g(ξ -ξ )| 2 v ξ v ξ = (g * g - * | v| 2 )(0) ≥ 0 and v, v g = 0 ⇔ v = 0.
Notice that since G is symmetric positive denite then F : C → C, C g is strictly convex. The case of maximal variance is achieved for the vector C that minimizes this strictly convex function on the convex set C n : the problem has at most one solution [START_REF] Boyd | Convex Optimization[END_REF].

According to the Cauchy-Schwarz inequality, we have for all v, w ∈ R N , | v, w g | ≤ v g w g . Let us pick v = C, the vector whose components are the Fourier coecients of a kernel C ∈ C n and w = 1 (= (1, 1, . . . , 1) the constant vector of size N ). We have v 2 g = F ( C) and w In the end, to determine the kernel with minimal variance, one needs to maximize a quadratic function, which is NP-hard in general. In practice, it amounts to solve a combinatorial problem. It is possible to approximate the solution thanks to a glutton algorithm: rst, one chooses two frequencies 

2 g = ξ,ξ | g(ξ -ξ )| 2 = ξ,ξ g * g -(ξ -ξ ) = N 2 (g * g -)(0). Hence v g w g = N 2 F ( C)(g * g -)(0) and | v, w g | = ξ,ξ | g(ξ -ξ )| 2 C(ξ) = ξ C(ξ) ξ | g(ξ -ξ )| 2 = n N (g * g -)(0).
ξ 1 , ξ 2 maximizing | g(ξ 1 -ξ 2 )| 2 then, recursively, one chooses the kth frequency ξ k , 2 < k ≤ N, such that it maximizes ξ∈{ξ 1 ,...,ξ k-1 } | g(ξ -ξ k )| 2 .

Convergence to Gaussian Processes

Shot noise models driven by DPixP enable more diverse types of textures than the usual shot noise models, based on points drawn uniformly and independently. It takes into account this model based on Bernoulli procceses yet it is important to notice that unlike usual discrete shot noise models, as dened in [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF] for instance, here point processes are simple: the points can't coincide.

As with usual shot noise models based on discrete Poisson processes, it is appealing to study the behavior of the model when the density of the point process increases and tends to innity. Yet, as the points of the determinantal point process can't coincide, the framework needs to be adapted: if the intensity tends to innity, we also need the size of Ω to tend to innity. It is similar to consider Ω as a grid in [0, 1] 2 = T 2 , the torus of dimension 2, that is rened. The points are allowed to be increasingly close and the number of points inside [0, 1] 2 tends to innity. In this conguration, it is possible to characterize asymptotic behaviors of these models and to derive limit theorems such as a Law of Large Numbers or a Central Limit Theorem.

To this end, let us consider stationary determinantal point processes on Z 2 [119], [START_REF] Lyons | Stationary determinantal processes: Phase multiplicity, Bernoullicity, entropy, and domination[END_REF], that we will also call determinantal pixel processes. This point process is dened by a discrete bounded operator K on 2 (Z 2 ). That means that K :

2 (Z 2 ) → 2 (Z 2 ), f → Kf such that ∀ t ∈ Z 2 , Kf (t) = s∈Z 2 K(t, s)f (s).
We suppose that this DPP is stationary: we dene a kernel function C :

Z 2 → C, such that K(t, s) = C(s -t) and C ∈ 2 (Z 2 ). Then for all t ∈ Z 2 , Kf (t) = s∈Z 2 C(s -t)f (s): such a K is a convolution operator.
As C belongs to 2 (Z 2 ), there exists a function C ∈ L 2 (T 2 ) such that

C : T 2 → [0, 1], ∀t ∈ Z 2 , C(t) = T 2 C(x)e 2iπt.x dx and C = t∈Z 2 C(t)e -2iπt.• in the sense of L 2 (T 2 ). Finally, the point process X ∼ DPixP(C) is dened by ∀A ⊂ Z 2 , a nite subset, P(A ⊂ X) = det(C A ), where C A = (C(x i -x j )) x i ,x j ∈A . (3.29)
This new denition of DPixPs on Z 2 is simply an extension of the point process dened on Ω. The main properties of DPixPs are preserved and it allows us to study the asymptotic behavior of shot noise models driven by DPixPs, when the grid is rened or equivalently when the support of the spot is spread out. To do so, we need to consider spot functions dened on R 2 .

Limit Theorems and DPixPs

The following limit theorems are based on the works of Shirai and Takahashi [START_REF] Shirai | Random point elds associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties[END_REF], and Soshnikov [START_REF] Soshnikov | Determinantal random point elds[END_REF]. Some guidelines for the proofs can be found in [START_REF] Shirai | Random point elds associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties[END_REF] for the Z 2 case and in [START_REF] Shirai | Fermion Process and Fredholm Determinant[END_REF] and [START_REF] Shirai | Random point elds associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF] for its continuous counterpart. Proposition 3.3.4 (Limit theorems for DPixPs [START_REF] Shirai | Random point elds associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties[END_REF]). Let f be a bounded measurable function on R 2 with compact support, and X ∼ DPixP(C) with C some admissible kernel on Z 2 . Then, we have the following Law of Large Numbers

1 N 2 x∈X f x N ---→ N →∞ C(0) R 2
f (x)dx, a.s and in L 1 .

(3.30)

Moreover, assume that f is continuous and

R 2 f (x)dx = 0. Then, lim N →∞ E exp i √ N 2 x∈X f x N = exp - 1 2 σ(C) 2 f 2 2 (3.31)
where σ(C) 2 = C(0) -

x∈Z 2 |C(x)| 2
, and consequently, we obtain the following Central Limit Theorem 

1 √ N 2 x∈X f x N D ---→ N →∞ N (0, σ(C) 2 f 2 2 ).

Convergence of Determinantal Shot Noise Models

In the following, let g be a spot function, that we assume continuous, with compact support, and N > 0. Denote the N -normalized shot noise S N associated to g dened for all y ∈ Z 2 by S N (y

) = 1 N 2 x∈X g y - x N
. We obtain a Law of Large Numbers for the shot noise driven by DPixPs:

S N (0) = 1 N 2 x∈X g - x N ---→ N →∞ C(0) R 2
g(x)dx, a.s and in L 1 .

(3.33) Finally, it is also possible to obtain a multidimensional central limit theorem thanks to the previous formulations.

Proposition 3.3.5 (Central Limit theorem for shot noise models). Let g be a continuous function on R 2 with zero mean and compact support, X ∼ DPixP(C) and the related shot noise S N : S N (y

) = 1 N 2 x∈X g y - x N , ∀y ∈ Z 2 . Then, ∀x 1 , ..., x m ∈ Z 2 , √ N 2 (S N (x 1 ), • • • , S N (x m )) D ---→ N →∞ N (0, Σ(C)) (3.34)
where for all k, l ∈ {1, • • • , m} Proof. Consider the N -normalized shot noise S N associated to g:

Σ(C)(k, l) = C(0) -C 2 2 R 2 g(x k -t)g(x l -t)dt = C(0) -C 2 2 R g (x l -x k ).
∀y ∈ Z 2 , S N (y) = 1 N 2 x∈X g y - x N . By setting ∀u ∈ R m , ∀x 1 , ..., x m ∈ Z 2 , ∀x ∈ R 2 , f (x) = u 1 g(x 1 -x) + u 2 g(x 2 -x) + • • • + u m g(x m -x), (3.36) 
f is continuous on R 2 , with compact support such that R 2 f (x)dx = 0 so it is possible to apply the limit theorem 3.3.4 and the Levy's continuity theorem.

Thus, shot noise models driven by a DPixP also converge to a Gaussian limit whose covariance is related to the spot and to the kernel C of the point process. Note that, in the previous proposition, the limit variance Σ(C) is equal to the product of a constant depending on the kernel C and the autocorrelation of the spot g. Similarly, a normalized Poisson shot noise associated to the spot g converges towards the distribution N (0, R g ), where R g is the autocorrelation of g [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. As the Bernoulli case corresponds to the kernel function C = δ 0 , we retrieve the same result here. Note also that there is no more interaction between the spot and the kernel in the limit. The higher the repulsion is, in 

Inference for DPixPs

One of the purposes of statistical inference is to t a predetermined model to data that can be represented by points, using information on their global or local behaviour. When the data are assumed independent and well represented by a homogeneous point process, one can use Poisson point pro-

cesses. Yet, some data may present attraction or repulsion, they may also have an anisotropic structure. DPixP models can be suitable for representing 2-dimensional discrete data points with repulsion. For instance, the positions of plant seeds [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF] or trees in a forest [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] often exhibit repulsion because of limited shared supply, but also anisotropy due to environmental factors as wind orientation or ground steepness. DPixPs can also be adapted to model samples of human cells [START_REF] Baddeley | Spatial Point Patterns: Methodology and Applications with R[END_REF] and the position of their nuclei, which present a certain shape of repulsion because of the structure of the cell around the nucleus. Knowledge on this repulsion can provide valuable information, for instance one could imagine comparing the blood cells from patients with sickle cell disease, provoking a sickle shape of blood cells, and from healthy patients.

Once one has inferred the parameters of an appropriate model, it is possible to reproduce similar data, to detect anomalies or distinguish dierent regions by statistical testing.

Learning the parameters of a determinantal point process, either the whole underlying kernel K as in [START_REF] Kulesza | Learning with Determinantal Point Processes[END_REF][START_REF] Affandi | Learning the parameters of determinantal point process kernels[END_REF] or a few parameters encoding the kernel as in [START_REF] Bardenet | Inference for determinantal point processes without spectral knowledge[END_REF][START_REF] Biscio | Contrast estimation for parametric stationary determinantal point processes[END_REF], is still considered as a dicult task, rst because the likelihood is often non-convex, and most of all because it is complex to compute as it uses the determinant of a huge matrix. Most papers studying inference for DPPs overcome this dicult computation by using restrictive hypothesis on the kernel such as in the papers [START_REF] Kulesza | Learning determinantal point processes[END_REF] or [START_REF] Affandi | Learning the parameters of determinantal point process kernels[END_REF]. Bardenet and Titsias [START_REF] Bardenet | Inference for determinantal point processes without spectral knowledge[END_REF] develop bounds on the likelihood and use Markov Chain Monte Carlo methods to infer the parameters of the kernel. On the other hand, using descriptive statistics to t the models to the data enables to cope with this dicult computation and to obtain more ecient inference algorithm. It is the approach that we choose in this chapter. Some authors try to infer rst order characteristics such as the intensity of the point process [START_REF] Biscio | Standard and robust intensity parameter estimation for stationary determinantal point processes[END_REF], which provides the average number of points in a given area. In our nite and discrete setting, we can obtain a direct estimation of the intensity, as the ratio between the number of points and the size of the domain. Several second order characteristics are used to describe a sample, for example the empty space distance, the cumulative nearest-neighbor function, the pair correlation function (p.c.f. in short), presented above, or the Ripley's K function, closely related to the p.c.f (see [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF] for a detailed presentation). These statistics provide information on the interactions between points. Møller and Waagepetersen [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Process[END_REF] present these dierent statistics and state that higher order characteristics may be less stable if the number of points is low. In the following, we choose to focus on a quantity related to the p.c.f. It has several advantages: it is easy to interpret, it is easy to compute and it provides insights on local interactions. 

Equivalence Classes of DPP and DPixP

A model is not identiable if two dierent parametrizations are equivalent.

Here, it would correspond to several dierent kernel functions generating the same DPixP. Indeed, DPixPs, and DPPs in general, are not identiable, as illustrates Figure 3.6. It is crucial, in particular for estimation purposes, to characterize these equivalence classes of kernels. Of course this question is also decisive in more general cases, when the kernel matrix K is Hermitian, with real or complex coecients. We propose here a brief synthesis of what is known on this question, and we add a study on DPixP kernels. Notice that the characteristic polynomial of a matrix can be written as a function of its principal minors:

det(tI + K) = N k=0 (-1) k   A⊆Y,|A|=k det K A   t n-k . (3.37)
Hence, two matrices with equal principal minors have equal characteristic polynomial so they have the same eigenvalues, with the same algebraic multiplicity.

Two kernel matrices generating the same DPP have the same spectrum.

A key notion here is the diagonal similarity between two matrices: two square matrices M 1 , M 

D such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D, then K 1 and K 2 have same
principal minors, that is, the equivalence class of a DPP kernel contains all the admissible matrices of which the kernel matrix itself or its transpose is diagonally similar.

Real Symmetric DPPs

In the case where the DPP kernel is real and symmetric, Kulesza [START_REF] Kulesza | Learning with Determinantal Point Processes[END_REF] proved the following proposition.

Proposition 3.4.1 (Equivalence classes of real symmetric kernels [START_REF] Kulesza | Learning with Determinantal Point Processes[END_REF]). Let K 1 and K 2 be two real positive symmetric N × N matrices with eigenvalues bounded by 1. Then DPP(K 1 ) = DPP(K 2 ) if and only if there exists a N × N diagonal matrix D such that K 2 = D -1 K 1 D, where the coecients of D are either 1 or -1.

The proof of this proposition is in two parts. First, the author demonstrates the relation when all coecients of the matrices are non-zero. Then, using graph theory, Kulesza extends this proof to matrices associated to a connected graph and nally to a disconnected graph, when the matrix is reducible. This equivalence property for real DPP kernels has impacted serveral learning strategies as in [START_REF] Rising | An ecient algorithm for the symmetric principal minor assignment problem[END_REF], [START_REF] Brunel | Learning signed determinantal point processes through the principal minor assignment problem[END_REF], [START_REF] Urschel | Learning determinantal point processes with moments and cycles[END_REF] or [START_REF] Brunel | Rates of estimation for determinantal point processes[END_REF] which try to estimate real DPP kernels from several i.i.d. samples. In particular, the rst two papers intend to solve the so-called principal minor assignment problem for symmetric matrices, and Brunel et al. 

Complex Hermitian DPPs

In the paper [START_REF] Stevens | Equivalent symmetric kernels of determinantal point processes[END_REF], Stevens characterizes equivalence classes of real or complex symmetric DPP kernels. We would like to characterize DPP equivalence classes in a more general setting, where the DPP kernels are no longer real or symmetric but complex and Hermitian. Schneider, Saunders and Engel [START_REF] Saunders | Flows on graphs applied to diagonal similarity and diagonal equivalence for matrices[END_REF][START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF])

worked on the relation between equal principal minors and diagonal similarity through graph theory: see for instance [START_REF] Saunders | Flows on graphs applied to diagonal similarity and diagonal equivalence for matrices[END_REF] for links between equality of cyclic products and diagonal similarity, or [START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF] where they deal with real symmetric matrices. In 1986, Loewy [START_REF] Loewy | Principal minors and diagonal similarity of matrices[END_REF] gives several sucient conditions ensuring that if two square matrices have equal principal minors, one is diagonally similar to the other one or to the conjugate of the other one. We adapt these conditions to Hermitian DPP kernels in Theorem 3.4.1. In the following, we dene D N ⊂ M N (C) as the set of diagonal matrices of size N × N such that its coecients are of modulus one.

Lemma 3.4.1. Let K 1 and K 2 be two irreducible Hermitian matrices and assume that there exists an invertible diagonal matrix

D such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D.
Then all the coecients of D have the same modulus so one can choose D in D N .

Proof. Assume that K 1 and K 2 are two irreducible Hermitian matrices and there exists a diagonal matrix 

D such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D. First, let us suppose that K 2 = D -1 K 1 D. For all x, y ∈ Y such that K 1 (x, y) = 0, we have also K 2 (x, y) = 0 and K 2 (x, y) = 1 d x K 1 (x, y)d y . (3.38) As K 2 is Hermitian, K 2 (x, y) = K 2 (y, x) = 1 d y K 1 (y, x)d x = d x d y K 1 (x,
K 2 = D -1 K 1 D with diagonal coecients of modulus equal to 1. The proof is similar if K t 2 = D -1 K 1 D.
Now we can prove the following theorem on the equivalence classes of Hermitian DPP kernels. Theorem 3.4.1 (Identiability for Hermitian DPP kernels). Let N be a positive integer and let Y = {1, . . . , N }. Suppose that K 1 , K 2 ∈ M N (C) are two Hermitian admissible DPP kernels and that K 1 is irreducible. If N ≥ 4, suppose furthermore that, for every partition of Y into subsets α, β such that |α| ≥ 2, |β| ≥ 2, rank (K 1 ) α×β ≥ 2. Then, the following propositions are equivalent:

(i) DPP(K 1 ) = DPP(K 2 ), (ii) There exists a diagonal matrix D such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D, (iii) There exists a diagonal matrix D ∈ D N such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D.
Proof. Dene K 1 and K 2 two admissible DPP kernels, such that K 1 veries the hypothesis of Theorem 3.4.1. By denition, DPP(K 1 ) = DPP(K 2 ) is equivalent to K 1 and K 2 having equal principal minors. In the papers [START_REF] Hartfiel | On matrices having equal corresponding principal minors[END_REF] 

D such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D.
Notice that these two theorems, making the distinction between rank(K 1 ) α×β and rank(K 1 ) β×α , are equivalent in this Hermitian setting. Then (i) is equivalent to (ii). Besides, clearly (iii) implies (ii) and under these assumptions, by Lemma 3.4.1, (ii) implies (iii).

In this general setting, assuming that K 1 is irreducible is crucial. Indeed, Hartel and Loewy [START_REF] Hartfiel | On matrices having equal corresponding principal minors[END_REF] provide counterexamples of two admissible hermitian kernels generating the same DPP distribution without being diagonally similar.

Determinantal Pixel process

We now turn to the special case of DPixP dened on Ω, the image domain of size N 1 × N 2 . Their kernel matrices are Hermitian block-circulant with circulant blocks. Recall that matrices generating DPixPs have all the same eigenvectors, the vectors of the Fourier basis. We also know that two matrices generating the same DPixP distribution have the same eigenvalues, so there is at most N 1 N 2 ! dierent kernels associated to one DPixP model. In the following proposition and remark, we prove that in most cases, the class of equivalence is much more constrained. Proposition 3.4.2 (Identiability for DPixP). Let Ω be a nite grid of size N 1 × N 2 , and C 1 , C 2 be two admissible DPixP kernels on Ω, generating the block-circulant matrices K 1 and K 2 that satisfy the hypothesis of Theorem 3.4.1. Then, DPixP(C 1 ) = DPixP(C 2 ) if and only if there exists a translation mapping the Fourier coecients of C 2 to the Fourier coecient of C 1 or to their symmetry with respect to (0, 0), meaning that

DPixP(C 1 ) = DPixP(C 2 ) ⇐⇒ ∃ τ ∈ Ω s.t. either ∀ξ ∈ Ω, C 2 (ξ) = C 1 (ξ -τ ) or ∀ξ ∈ Ω, C 2 (ξ) = C 1 (-ξ -τ ). (3.39)
Proof. As K 1 and K 2 satisfy the hypothesis of Therorem 3.4.1, there exists an invertible diagonal matrix D such that

K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D
, where D ∈ D N , meaning that D is a diagonal matrix with coecients of modulus equal to one. First, assume that K 2 = D -1 K 1 D. Dene for all x ∈ Ω, θ x ∈ [0, 2π[ such that D(x, x) = e iθx . The goal is to prove that there exists τ such that θ x = 2π x, τ , for all x ∈ Ω. Notice that, by changing D into 1 D(0,0) D, we can assume that θ 0 = 0, that is D(0, 0) = 1. By assumption, we obtain ∀x, y ∈ Ω, K 2 (x, y) = C 2 (y -x) = e -iθx K 1 (x, y)e iθy = e i(θy-θx) C 1 (y -x),

and C 2 (x) = C 2 (x -0) = e iθx C 1 (x). (3.40)
Recall, thanks to Equations (1.7) and (1.8), that C 1 (0) = C 2 (0) and that, for

all x ∈ Ω, |C 1 (x)| = |C 2 (x)|. As C 2 (x) = 0 if and only if C 1 (x) = 0, for such x ∈ Ω, any value θ x is valid. Consider the set Ω * C = {x ∈ Ω; C 1 (x) = 0}
. For all z ∈ Ω, and all x ∈ Ω, we have Denote for all x ∈ Ω, α(x) = e iθx . Thus, for all z ∈ Ω * C , for all x ∈ Ω, α(z) = α(z + x)α(x), meaning that α(x) = α(z + x)α(z). For all ξ ∈ Ω, for all z ∈ Ω * C , we have

C 2 (z) = e iθz C 1 (z) = C 2 (z + x -x) = e i(θ z+x -θx) C 1 (z + x -x) = e i(θ z+x -θx) C 1 (z).
α(ξ) = x∈Ω α(x)e -2iπ x,ξ = x∈Ω α(z)α(z + x)e -2iπ
x,ξ = α(z)e 2iπ<z,ξ> α(ξ). (3.42) As α is not the zero function, consider τ ∈ Ω such that α(τ ) is non-zero. Then, for all z ∈ Ω * C , α(z) = e 2iπ<z,τ > . Thus, for all z ∈ Ω * C , C 2 (z) = e 2iπ<z,τ > C 1 (z), which is also true for z such that C 1 (z) = 0. To conclude, for all z ∈ Ω, C 2 (z) = e 2iπ<z,τ > C 1 (z). In the second case when If rank(K 1 ) α×β = 0, that is (K 1 ) α×β = 0. There exists a permutation matrix such that K 1 is permutation similar to a block diagonal matrix, which is in contradiction with the irreducible hypothesis. Hence, rank(K 1 ) α×β = 1. This means that there exist two vectors u ∈ C |α| \ {0} and v ∈ C |β| \ {0} such that (K 1 ) α×β = u t v. In practice, as K 1 is Hermitian and the Fourier coecients of C are real, the coecients of the matrix K 1 are tightly constrained. The matrix is determined by a small number of modulus and arguments. Then, when assuming that K 1 and K 2 are equivalent, as DPixP kernels, the matrices are even more constrained. See Appendix C.1 for a simple example of this conguration. Notice that in the 1D case of dimension 5, two equivalent DPixP kernels K 1 and K 2 in this conguration still verify that there exists a diagonal matrix

K t 2 = D -1 K 1 D,
D ∈ D N such that K 2 = D -1 K 1 D or K t 2 = D -1 K 1 D.
Our conjecture is that this is always the case, whatever the dimension of Ω. Thus, this assumption on the rank of the submatrix (K 1 ) α×β leads to degenerate kernels that are numerically rare.

Case 3: K 1 is not irreducible. Then, as a Hermitian or circulant matrix, K 1 is necessarily completely reducible, meaning that there exists a permutation matrix P such that K 1 is permutation similar to a block diagonal matrix with irreducible blocks. We prove in Appendix C.2 that these blocks are copies of one Hermitian block-circulant sub-matrix, that we can call the canonical block: they all have equal size and the coecients are identical. Note that restricting DPP to a subset A dene also a DPP on this subset A [81, Section 2.3]. Furthermore, as each block matrix is still circulant, each one denes a sub-DPixP dened on the associated subset of pixels. By assumption, these blocks are irreducible so they are either in the rst or in the second conguration.

Let us consider K 2 a DPixP kernel equivalent to K 1 . Thanks to the modulus equality, K 2 is similar to a block diagonal matrix with blocks of same size, using the same permutation matrix. If the canonical block is in the rst conguration, verifying the rank hypothesis of Theorem 3.4.1, the nal diagonal matrix D is simply the concatenation and rearrangement of all the diagonal sub-matrices D i associated to its respective i-th block. Notice that as the block submatrices are identical to the canonical block and each one concerns a dierent set of pixels, all submatrices are in the same conguration, meaning that either for all submatrices K 1i of K 1 , K 1i = D i K 2i D i or for all submatrices K 1i , K 1i = D i K 2i D i . On the other side, if the canonical block is in the second conguration, we can't conclude on the similarity of both matrices K 1 and K 2 in the general case yet. Notice that this completely reducible hypothesis is quite degenerate. It corresponds to a DPixP dened on an image domain that can be partitioned in groups of pixels evenly spaced with independence from one group to the other: that means that the pixels are independent to their immediate neighbors. A typical example of this model would be image domain partitioned following a grid. As DPixPs deals with spatial repulsion, there seems to be few applications of such models.

It is important to notice that the size of the equivalence classes we characterized in Proposition 3.4.2 is small and known: given a DPixP kernel verifying the appropriate hypothesis, it admits at most 2|Ω| equivalent kernels, generating the same DPixP distribution. Moreover, we have shown previously how a kernel that does not verify the hypothesis of the proposition is quite degenerate: in practice, when dealing with kernels adapted to a given problem, these hypothesis are always veried. Characterizing equivalence classes of DPPs and DPixPs is crucial for the estimation of DPixP kernels from point process samples. This is what we investigate in the next subsection.

Estimating a DPixP Kernel from One Realization

First, we address the question of inference from one single realization. Consider one set of points Y on Ω, the nite and discrete grid of size N 1 × N 2 = N and assume that Y has been sampled from a certain DPixP of kernel C 0 . Note that in general, one realization does not provide enough information to characterize a model. Yet, due to the stationarity of the kernels we consider, all the translations of Y can also be seen as samples drawn by the same DPixP kernel C 0 .

Let n = |Y | denotes the cardinality of Y . The problem is to nd C e an admissible DPixP kernel that estimates C 0 , the original one. Equivalently, we want to nd the Fourier coecients C e ∈ [0, 1] N the closest to C 0 , in a sense dened below. In the following, we will work in Fourier domain.

Let C be any admissible kernel on Ω and X ∼ DPixP(C). As before, we will consider C either as a function from Ω to [0, 1], or as a vector in [0, 1] N . Recall that the intensity of the point process is given by

E(|X|) Ω = 1 Ω ξ∈ Ω C(ξ) = C(0).
In case of a kernel estimation from one sample, it is natural to consider that the expected cardinality of the point process to be estimated is the cardinality of this unique sample. Thus, a straightforward estimation of the intensity of the point process is

C e (0) = n N (3.43)
or equivalently

ξ∈ Ω C e (ξ) = n. Now, we want to determine the estimator C e (x),

for all x ∈ Ω \ {0} denoted Ω * . Let us consider p C (x) =    P(x ∈ X| 0 ∈ X) = P({0, x} ⊂ X) P(0 ∈ X) = C(0) - |C(x)| 2 C(0) if x = 0, 0 if x = 0. (3.44)
Now, from the realization Y , we can obtain θ(x) the empirical estimator of p C (x) by

θ(x) =      1 n y∈Ω 1 Y (y)1 Y (y + x) if x = 0 0 if x = 0. (3.45)
For optimization purposes, we express all the quantities in function of C e .

In the following computations, we consider that the vectors are column vectors.

Let us denote the set of admissible functions by

C n = { C ∈ R N such that ξ∈ Ω C(ξ) = n and ∀ ξ ∈ Ω, 0 ≤ C(ξ) ≤ 1}. (3.46)
We are looking for C e such that

C e ∈ argmin C∈ Cn p C -θ 2 2 = argmin C∈ Cn x∈Ω * n N - N n |F -1 ( C)(x)| 2 - 1 n y∈Y 1 Y (y)1 Y (y + x) 2 = argmin C∈ Cn x∈Ω * n 2 N 2 - 1 N y∈Y 1 Y (y)1 Y (y + x) -|F -1 ( C)(x)| 2 2 = argmin C∈ Cn x∈Ω * b(x) -g( C)(x) 2 = argmin C∈ Cn E( C), (3.47) 
where, for all C ∈ R N , and for all x ∈ Ω * ,

g( C)(x) = |F -1 ( C)(x)| 2 and b(x) = n 2 N 2 - 1 N y∈Ω 1 Y (y)1 Y (y + x). (3.48)
We want to minimize E on C n a non empty closed convex set so we can use the projected gradient algorithm. To project on the set of constraints, we use a classic adapted version of the algorithm to project onto the simplex [START_REF] Condat | Fast Projection onto the Simplex and the l1 Ball. Mathematical Programming[END_REF],

integrating a maximum bound constraint, denoted proj. Let us compute the gradient of the energy E we want to minimize. As g :

R N → R N -1 , C → |F -1 ( C)(x)| 2 x∈Ω * , we have ∀x ∈ Ω * , ∀ξ ∈ Ω, ∂g( C)(x) ∂ C(ξ) = 1 N F -1 ( C)(x)e 2iπ x,ξ + 1 N F -1 ( C)(x)e -2iπ x,ξ = 2 N Re F -1 ( C)(x)e -2iπ x,ξ , (3.49) 
and moreover ∇E(

C) = -Dg( C) t 2 b -g( C) .
Notice that given a vector u = (u 0 , . . . , u N -1 ) t ∈ R Ω , we let u * be equal to (u 1 , . . . , u N -1 ) t the restriction of u to Ω * . For all ξ ∈ Ω,

-Dg( C) t u * ξ = 2 N x∈Ω * u x Re F -1 ( C)(x)e -2iπ x,ξ = 2 N Re x∈Ω u x F -1 ( C)(x) e -2iπ x,ξ -u 0 C(0) . Then -Dg( C) t u * = 2 N Re F u F -1 ( C) - 2n N 2 u 0 , (3.50) 
where refers to the componentwise product of vectors. Finally we obtain

∇E( C) = 4 N Re F |F -1 ( C)| 2 -b F -1 ( C) - 4n 3 N 4
, by setting b(0) = 0.

(3.51)

In particular, computing ∇E( C) only requires two FFT calls. The projected gradient descent algorithm is recalled and adapted to this problem in Algorithm 5.

Algorithm 5 Projected gradient descent algorithm used to minimize E.

Input: Y the input realization, step size t, k max , Compute for all x ∈ Ω * , b(x) = n 2 N 2 -1 N y∈Y 1 Y (y)1 Y (y + x), b(0) = 0 (3.48).
Set C 0 = C init (3.52).

for k = 1,. . . , k max Compute ∇E( C k-1 ) (3.51). Set C k = proj C k-1 -t∇E( C k-1
) .

Output: C K .

Note that the energy we want to minimize is not convex and it has several local minima: the initialization of the algorithm is crucial. Indeed, if the algorithm is initialized with a random matrix C init , the results can be far from the original target. We propose to initialize the algorithm with

C init = proj F √ b , (3.52) 
which is believed to be quite close to a solution of the optimization and provides good results, as observed in the experiments. Note that b can be negative, so applying a square root to b may produce complex coecients to which we apply the Fourier transform. This enables the initialization kernel C init to be asymmetric.

Figures 3.9 and 3.10 (column 3) provides some results of this algorithm, from one realization generated by dierent DPixP kernels. One realization seems enough to retrieve the Fourier coecients of a simple symmetric projection kernel (see Figure 3.9, a, b whose non-zero Fourier coecients form a convex set). Even though for most projection kernels a predominant shape appears in the estimation, as soon as the kernel is more complex, one sample does not provide enough information.

Estimating a DPixP Kernel From Several Realizations

A unique realization may not provide enough information for our proposed algorithm to estimate the Fourier coecients of a DPixP kernels but if several realizations are available, combining them provides better results. Assume that we have J realizations, J ∈ N * , each of cardinality n j , that we suppose independently generated by the same DPixP kernel.

Method by Average

The rst strategy to take advantage of these multiple realizations is to apply independently the previous estimation process to each realization and then to average the estimated kernels. This method requires to handle the issue of identiability: the realizations can lead to dierent kernels belonging to the same equivalence class. In section 3.4.1, we prove that the equivalence class of a DPixP kernel C 1 includes the set of DPixP kernels C 2 such that there exists a translation mapping the Fourier coecients of C 2 to the Fourier coecient of C 1 or to their symmetry with respect to (0, 0). In order to look for an admissible canonical kernel and to deal with the equivalence under translation of Fourier coecients, for each estimated kernel, we ensure that the gravity center of its Fourier coecients is centered. Concerning the symmetry equivalence, we propose to consider the rst estimator as the canonical one and, for any subsequent estimation, we try both orientations and keep the closest to the rst one.

Figure 3.7 shows some estimated kernel using this strategy. The kernels we want to retrieve are projection DPixP kernels. For display purpose, we projected the estimated kernel on the set of projection DPixP kernels. The results are satisfying if the kernel is simple, meaning that for instance the high Fourier coecients form a convex shape, or if the Fourier coecients are symmetric with respect to (0,0), but as soon as the kernel is more complex, the algorithm only retrieve a weak approximation of the target kernel. Moreover, estimating J dierent kernels does not seem to be the most ecient method and it requires the handling of the identiability issue.

Method by Combination

We propose a second strategy which combines all the realizations to produce a better empirical estimator θ J of p C . First, the expected number of points is approximated by the mean number of points in the realizations, 

n = n 1 + • • • + n J J a) b) c) d)
∀x ∈ Ω, θ J (x) =        1 nJ J i=1 y∈Ω 1 Y i (y)1 Y i (y + x) if x = 0, 0 if x = 0. (3.53)
The rest of the procedure remains similar as we want to minimize the

function p C -θ J 2 2
, in particular, the initialization kernel is It shows how 10 realizations provide enough information to retrieve a kernel close to the original one. Using 100 realizations enables us to obtain satisfying results. This algorithm is able to retrieve the shape formed by non-zero Fourier coecients, even when it is intricated (for instance (g),(h) in Figure 3.9). To conclude, the algorithm presented in this section provides satisfying estimations if the original kernel is a projection DPixP kernel, in particular when we have more than 10 samples. Indeed, as we have seen in Section 3.3.2 and as the authors of [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF] noted, projection determinantal processes can be seen as the most repulsive DPPs. Thus, within a sample, the characteristics of

C init = proj   F   n 2 N 2 - 1 N J J i=1 y∈Ω 1 Y i (y)1 Y i (y + x)     .
J = 1 J = 10 J = 100 the repulsion, and of the kernel, are more accessible. Nevertheless, if we deal with a general complex kernel, the algorithm retrieves fewer information.

Conclusion

In this chapter, we introduced a new type of DPPs dened on the pixels of an image that we call determinantal pixel processes. In this setting, we showed that the only possible hard-core repulsion for DPixP is directional. Given a direction, it is possible to impose to select at most one pixel on any discrete line with this direction in the image, but any further hard-core constraint leads to a degenerate kernel. We studied shot noise models based on a DPixP as a method to sample micro-textures and we adapted the choice of DPixP kernel in function of a given spot function of the shot noise and of the regularity one is looking for. It appears that the least repulsive DPixP, generating the least regular textures, is a homogeneous Bernoulli process while the most repulsive DPixP kernel, generating regular textures, is a projection kernel, which enables getting closer to a hard-core repulsion.

Thus, in Section 3.2, we proved that it is not possible to avoid overlaps if we randomly copy and place a given shape using a DPixP, unlike particular Gibbs processes. However, in Section 3.3, we saw that, given a shape, it is possible to derive a DPixP kernel so that there are as few overlaps as possible. This property may be interesting for computer graphics issues especially since DPixPs have elegant theoretical properties. Notice that our algorithm to retrieve the minimal variance kernel, a kernel minimizing the number of overlaps, is greedy, it is not optimal. As a future work, we would like to investigate the development of an algorithm more ecient and look for a theoretical bound on the number of overlaps in shot noise models based on this DPixP and on a given shape.

We also investigated the DPP and DPixP equivalence classes, that is families of kernels generating the same point process. In the DPixP case, two kernels are equivalent if the Fourier coecients of one of them is a translation and possibly a symmetry of the Fourier coecients of the second. We developed an algorithm to infer the Fourier coecients of a DPixP kernel from one sample or from a set of samples. This algorithm takes advantage of the stationarity of DPixPs and provides satisfying results, particularly when the target kernel is a projection kernel, with Fourier coecients either equal to 0 or to 1.

We plan to investigate the joint estimation, from a texture image, of the spot function and of the DPixP kernel associated to a shot noise that could have generated the texture. As a result, we would be able to reproduce microtextures and retrieve the properties of the input texture.

Introduction

As datasets to analyze and to process keep being larger and more complex, strategies to subsample these sets or to reduce the dimension of data have recently ourished. As we have seen before, DPP subsampling is part of these approaches, as it enables capturing the structure of data and produce a representative subset of the whole initial set, taking into account its inner diversity.

In image processing and computer vision, DPPs have raised interest through video summarization ( [START_REF] Gong | Diverse sequential subset selection for supervised video summarization[END_REF], [START_REF] Zhang | Video summarization with long short-term memory[END_REF]). The authors of [START_REF] Gong | Diverse sequential subset selection for supervised video summarization[END_REF] introduce sequential DPPs to take into account both the diversity of the frames and the chronology of the video. To represent the diversity of the frames they use a decomposition similar to the quality-diversity decomposition that is introduced in [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] and that we recall below. Furthermore, the paper [START_REF] Zhang | Video summarization with long short-term memory[END_REF] proposes a strategy enhanced by DPPs which makes it one of the state of the art methods for video summarization. This method also uses a decomposition similar to a qualitydiversity decomposition to describe the diversity in the video.

In this chapter, we focus on subsampling the set of patches P of an image. This procedure can be useful for compression purpose for instance. It can also be necessary in order to t a model on the patch set using only a proportion of the set, to increase the eciency of the algorithm. For example, several patch-based denoising methods represent the patch distribution as a Gaussian mixture model ( [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF], [START_REF] Houdard | High-dimensional mixture models for unsupervised image denoising ( HDMI)[END_REF]). These methods rely on the estimation of the parameters of such models thanks to the Expectation-Maximization (EM) algorithm. To do so, in general, they randomly and uniformly select a subset of patches, to reduce the cost of the estimation. This random selection is fast but, as we have seen in the previous chapters, this strategy may select points close to each other and miss some regions of the space. When considering patches, this amounts to select similar patches while possibly missing crucial areas of the image. Thus, the subset needs to be large enough so that it captures the patches diversity. The size of this selection impacts the running time of the estimation process, so a smaller selection, representative of the patches of the image, would ensure a faster and more accurate estimation. DPPs oer the opportunity to select a reduced subset of patches that captures the whole image.

Agarwal et al. [START_REF] Agarwal | Notes on using determinantal point processes for clustering with applications to text clustering[END_REF] propose to adapt the k-Means algorithm by using a DPP initialization: the authors sample an appropriate DPP to select the initial centroids for the clustering strategy. The authors prove that this initialization compares favorably with k-Means++, the most popular adaptation of the k-Means algorithm, with a deterministic initialization. One advantage of this algorithm using DPPs over the second is its adaptability concerning the number of clusters. Similarly, in the previous example with denoising methods, DPPs could also provide a satisfying initialization to the EM algorithm.

This chapter examines DPPs dened on the patch space of an image. We investigate here the possible choices of DPP kernels for such applications, in order to subsample the patch space of an image. This can be useful to speed up or to improve a patch-based algorithm, by considering only the most signicant patches in the image. In Section 4.2, we study several classes of DPP kernels, computed from the patches of the image. Numerical experiments show that these kernels behave very dierently and that it is rather simple to adapt the kernel in function of the application that will be done with the selected patches.

We recall here the relation between the correlation kernel K and the likelihood kernel L of a DPP. Consider the following spectral decomposition of a DPP kernel K, K = N k=1 λ k v k v * k . Note that the denitions using the kernels K and the likelihood kernel L characterize the same DPP if and only if for all k ∈ {1, . . . , N }, 0 ≤ λ k < 1 and if

K = L(L + I) -1 = I -(I + L) -1 and conversely L = K(I -K) -1 . (4.2)
Hence, in this case, L =

N k=1 λ k 1 -λ k v k v * k .
Note that if K has any eigenvalue equal to 1, the DPP can't be associated to an L-ensemble.

In the following, consider an image u and the initial set P = {P i , i = 1, . . . , N }, the set of its patches of size (2ρ + 1) × (2ρ + 1) × d, where ρ ∈ N and d is the number of color channels. Let us present some kernels that can be used to subsample the patches of this image.

A rst type of DPP likelihood kernels that are regularly used ( [START_REF] Tremblay | Determinantal point processes for coresets[END_REF], [START_REF] Launay | Determinantal patch processes for texture synthesis[END_REF]) is the class of Gaussian kernels (sometimes called exponential kernels). Let us consider a Gaussian kernel based on the intensity of the patches, that we call the Intensity Gaussian kernel, dened by

∀ P i , P j ∈ P, L ij = exp - P i -P j 2 2 s 2 , (4.3) 
where s is called the bandwidth or scale parameter. This kernel depends on the squared Euclidean distance between the intensity values of pairs of patches. It is often used as a similarity measure on patches. Despite its natural limitations, this similarity measure provides good results.

The value of the parameter s has a direct impact on how repulsive the DPP is. Notice that if s is small, due to the exponential function, L ij converges very quickly to zero as soon as i = j and the distinction between patches is not very subtle. Thus, if s is small, L is close to the identity matrix and the DPP selection of patches is similar to a random uniform selection. On the contrary, for the same reason, the larger s is, the more repulsive the DPP is. However, this scale parameter should not be set too large because this would cause high numerical instability. As noticed in [4] and [START_REF] Tremblay | Determinantal point processes for coresets[END_REF], the median of the interdistances between the patches is a satisfying choice for setting the value of s.

We propose to compare this kernel with another Gaussian kernel that we call the PCA kernel, which depends on the squared distance between patches in the space given by keeping only the k principal components after a Principal Component Analysis (PCA). Set P the matrix gathering all the patches of the image reshaped in column so that the size of P is d(2ρ + 1) 2 × N . We assume that P has been centered, by subtracting the average patch to all the patches. It has not been reduced, meaning that patches with high variance, for instance patches with edges, will highly inuence the decomposition. Thanks to a singular value decomposition, consider U, V two unitary matrices and Σ a diagonal matrix storing the sorted principal values of P such that P = U ΣV t . We choose to keep only k principal components and we obtain the matrix P k = V k P, where we kept only the k rst rows of the matrix V in V k of size k × d(2ρ + 1) 2 and the matrix P k = {P k i , i = 1, . . . , N } is k × N . Every initial patch P i ∈ P is associated with a projected vector P k i ∈ P k . Thus, the PCA kernel is dened by

∀ P i , P j ∈ P, L ij = exp - P k i -P k j 2 2 s 2 . ( 4.4) 
This method discards principal vectors associated to small singular values and projects the patches on a low-dimensional space associated with the large singular values. This enables to nd the components that best represent the variance of the patches and ignores mainly noise (depending on the number of dimension discarded). Thus, comparing patches in this low-dimensional space seems relevant to capture more precisely their dissimilarity.

A second type of common likelihood kernels uses a quality-diversity decomposition of the data. Kulesza and Taskar present in [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] this decomposition that uses a given quality measure computed on each element of the set and a dissimilarity computed between pairs of elements. Here, each patch P i is associated with a quality measure, which is a non-negative number q i = q(P i , P) ∈ R + , depending on the patch itself and on the other patches. Each patch P i is also associated with a feature vector φ i = φ(P i ) ∈ R D , such that φ i 2 = 1, which depends only on the patch itself. The quality/diversity likelihood kernel L is dened by

∀ P i , P j ∈ P, L ij = q i φ t i φ j q j . (4.5) 
This class of kernels presents several advantages. The rst advantage of this denition is its interpretability. Each patch is associated with a quality measure, that one can adapt depending on the characteristics one wants to favor. The comparison between patches is also accessible and adjustable to obtain the most adapted kernel. This decomposition has a second advantage:

the likelihood kernel becomes a low-rank matrix, with a rank equal at most to D, the number of features. In case of low-rank kernels, Kulesza and Taskar [START_REF] Kulesza | Learning determinantal point processes[END_REF] propose a dual representation and a dual sampling algorithm. This sampling scheme is equivalent to the original algorithm but it takes advantage of the low-rank kernel and becomes much faster. We recall that, whatever the DPP likelihood kernel, the cardinality of a sample generated from DPP L (L) will necessarily be lower than the rank of L. This low-rank denition imposes to sample subsets of size smaller than D, the number of features computed from the patches. Thus, this kernel is adapted when small and very small subsets of patches are needed. In these cases, it is very important to precisely control the selection process so such kernels are particularly relevant.

For this kernel that we call Qual-div kernel, we associate each patch with a feature vector given by a discrete cosine transform of the patch. Thus, each feature vector is of size d(2ρ + 1) 2 . Note that in the experiments, we use color images (with 3 color channels) and patches of size 7 × 7 (meaning that ρ = 3) so the feature vectors of length 147. We dene the quality measure such that it attributes a high value to patches whose intensity is far from that of its neighbors in the pixel grid. This choice gives further priority to singular patches, that can be seen as the outliers of the set of patches. As experiments will show, it highly favors textures and edges.

Minimizing the Selection Error

The question is to choose the best kernel, such that the sampled DPP on the patches minimizes an error computed as a distance between the selected patches and the initial set of patches P. This problem is similar to discrete optimal quantization problems [START_REF] Pagès | Introduction to vector quantization and its applications for numerics[END_REF] where the aim is to nd the best subset

of patches Q such that E Q∼µ (d(Q, P)) is minimal, for a given distance d. Yet,
this computation is often costly and hardly tractable. In the following, we suppose that the patches are of size (2ρ + 1) × (2ρ + 1) for some positive integer ρ and we denote by ω ⊂ Z 2 the patch domain {-ρ, . . . , ρ} 2 .

First, the error, or the distance between the sample and the initial set of points, we want to minimize depends on the application. The mean square error (MSE in short) is commonly used to compare an image and its reconstruction. Here, we use a similar distance, the squared L 2 norm between the patches of the image and their nearest neighbor in the selection given by the DPP sampling on the patches. Consider Q a subset of patches. This error is dened by

E 1 = 1 N N i=1 d L 2 (P i , Q) 2 = 1 N N i=1 min Q∈Q x∈ω (P i (x) -Q(x)) 2 , (4.6) 
where ω is the patch domain. One hopes that using a DPP to generate Q will prevent from concentrating only on the most common patches and select singular patches. The following error can be useful to verify this property:

E 2 = max i∈{1,...,N } d L 2 (P i , Q) 2 = max i∈{1,...,N } min Q∈Q x∈ω (P i (x) -Q(x)) 2 . ( 4.7) 
A low error value asserts that the outlier patches (non redundant) are selected.

Given an expected cardinality n ∈ N * and a kernel K n , we will consider Q ∼ DPP(K n ). We would like to nd the DPP kernel minimizing the expectation of the errors: E Q∼DPP(Kn) (E 1 ) and E Q∼DPP(Kn) (E 2 ). Yet, this optimization problem depending on a DPP matrix K n is intractable. As in the papers by Kulesza and Taskar [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF] and Aandi et al. [START_REF] Affandi | Learning the parameters of determinantal point process kernels[END_REF], we would like to have a closedform minimization problem to obtain optimal parameters. These strategies are based on the quality-diversity decomposition of an L-ensemble kernel described in the previous section. Given predetermined features vectors, they determine an appropriate quality measures from the data. Here, we use a similar parametrization, using the rst denition of DPPs, with a kernel matrix K.

We suppose that its eigenvectors are xed (given by features computed from the patches of the image) and we want to determine the optimal spectrum so that the associated matrix K minimizes a tractable error. Furthermore, thanks to the Campbell Formula (3.19), we know that the expectation of some functionals dened on point processes are tractable. That is what we use in the following.

Suppose we select a subset of patches using a DPP of kernel K: Q ∼ DPP(K). We would like to study the following measure: It can be seen as a reconstruction evaluation, if the function f P involves a distance between the input patch and the patch P . With the appropriate function f P , R can represent how well a patch P ∈ P is represented by the selection Q. For instance, by considering the functions f α,P

R(Q) = P ∈P Q∈Q f P (Q).
(Q) = 1 P -Q 2 ≤α or f P (Q) = e -P -Q 2
, R will return a high value if the selection Q encompasses the set of patches. Notice that if we use a function f p which depends on the L 2 distance between patches, maximizing R will favor selections similar to the ones minimizing the MSE. Thus, contrary to the previous error quantities, E 1 and E 2 , we want to generate a subset Q such that R is large. From the Campbell Formula (3.19) adapted to general discrete DPPs, we have

E(R(Q)) = E P ∈P Q∈Q f P (Q) = N j=1 E Q∈Q f P j (Q) = N j=1 N i=1 f P j (P i )K(P i , P i ). (4.9)
Assume that K admits the eigendecomposition

K(P i , P j ) = D k=1 λ k φ k (P i )φ * k (P j ), (4.10) 
with D ≤ N , xed eigenvectors and unknown eigenvalues (λ k ) k∈{1,••• ,D} . Then the previous expectation becomes

E(R(Q)) = D k=1 λ k N i=1 |φ k (P i )| 2 N j=1 f P j (P i ). (4.11) 
The maximization of this quantity with respect to (λ 1 , . . . , λ D ) is a linear problem under the linear constraints:

P ∈P K(P, P ) = D k=1
λ k = n, and for all k ∈ {1, . . . , D}, 0 ≤ λ k ≤ 1. The advantage of solving such a problem is that the solution (λ * k ) k∈{1,••• ,D} is explicit. It is on the boundary of the constraints, meaning that is a kernel K with only n non-zero eigenvalues, each one equal to 1: the solution is a projection DPP. Given any function f p , any integer n ≤ D, let us consider I n the set of the indices associated to the n largest coecients of the vector ψ of size D dened by

ψ k = N i=1 |φ k (P i )| 2 N j=1 f P j (P i ). The solution of the problem argmax (λ k ) E (R(Q)) such that D k=1 λ k = n and ∀k, 0 ≤ λ k ≤ 1, (4.12) 
is the set of eigenvalues (λ * k ) k=1,...,D dened by

λ * k = 1 if k ∈ I n 0 otherwise . (4.13) 
For instance, if we choose f α,P i (P j ) = 1 P i -P j 2 ≤α , then we need to maximize the function

E(R(Q)) = D k=1 λ k N i=1 |φ k (P i )| 2 2 N j=1 1 P i -P j ≤α = D k=1 λ k N i=1 |φ k (P i )| 2 |B(P i , α)|, (4.14) 
where B(P, α) is the ball inside P with center P and radius α for the Euclidean distance between patch intensities and |A| is the cardinality of the subset A. Thus, |B(P i , α)| denotes the number of patches in the image that are within a distance of P i smaller than α. In the experiments, we use this function and we choose α to be half the median of interdistances between patches. Note that this maximization problem will favor patches similar to many others. This creates an interesting compromise: the DPP will tend to select diverse subsets of redundant patches. As anticipated, we will see in the experiments that this method tends to miss singular patches.

Experiments

The following gures present some results of subsampling in the space of image patches, for dierent cardinality. First notice that the cardinality is xed for the uniform sampling. It is also xed for the last optimized kernel, as we obtain a projection kernel from the maximization problem. Concerning the three other kernels, they are dened using the L-ensemble denition in Equations (4.3), (4.4) and (4.5). We used a common normalization strategy, formalized in [START_REF] Barthelmé | Asymptotic equivalence of xed-size and varying-size determinantal point processes[END_REF], using a likelihood kernel L whose eigenvalues are denoted (λ k ) k∈{1,...,N } . Given a desired expected cardinality n, we normalize L to obtain a kernel L c = cL, where c is chosen such that

N k=1 cλ k 1 + cλ k = n.
Note also that the Qual-div kernel (4.5) and the optimized kernel (4.13) are low-rank, with a rank equal at most to the number of features that we use to dened the kernels. In these experiments, the feature vector associated to each patch (φ in Equations (4.5) and (4.9)) is obtained from the discrete cosine transform of the patch. Note that a DPP kernel can't generate samples with more items than its rank and in the following experiments, we use patches of size 7 × 7 × 3.

Thus, the rank of the two previous kernels is 147 and we can observe the results, with a step of 50, up to a cardinality equal to 100 in image is obtained by average: given a pixel, all the overlapping patches con-taining this pixel are averaged. This is a common strategy to aggregate the patches. Several other methods are proposed in the literature, such as using a weighted average [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative ltering[END_REF][START_REF] Salmon | From patches to pixels in non-local methods: Weighted-average reprojection[END_REF] or implicitly including the reconstruction in a global variational problem [START_REF] Zoran | From learning models of natural image patches to whole image restoration[END_REF]. An average considering uniform weights on all the patches is often used as it does not require any other computation or information to store. Thus, after subsampling the set of patches, the initial Second, the PCA kernel and the Qual-div kernel behave rather similarly.

(a) E 1 = 1 N N i=1 P i -Q 2 2 (b) E 2 = max i∈{1,...,N } P i -Q 2 2 (c) PSNR
They tend to favor singular patches and patches containing edges, even sometimes over-representing them. Thus, they provide good results when looking at the second error measuring the distance between the selection and the furthest patch, especially the PCA kernel. Yet, they can provide even worst results than the uniform selection when we look at the average distance between the selection and the initial set of patches (Error E 1 (4.6)).

Finally, the Intensity kernel, using only the squared Euclidean distance between intensities, seems to be the most stable kernel. It provides small average error and tends to include singular patches in the selection. For both images, whatever the expected cardinality, the samples generated by this kernel produce visually satisfying reconstructions.

Thus, the choice of subsampling strategy in the patch space of an image highly depends on the purpose of the generated selection. The most stable strategy seems to be using the Intensity kernel (4.3), which provides a selection close in average to the initial patches and which selects also singular patches.

If the priority of the application is eciency, the best strategy may remain to use a uniform selection with a high number of selected patches. Yet if the size of the selection needs to be low or if the selection needs to contain mainly structure and texture information, the good choice may be to use a PCA kernel or a kernel using the quality-diversity decomposition.

Application to a Method of Texture Synthesis

The study carried out in this section is a joint work with Arthur Leclaire and is presented in the proceedings [START_REF] Launay | Determinantal patch processes for texture synthesis[END_REF]. We build on the texture model proposed in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF], which exploits optimal transport (OT) in the patch space in order to reimpose statistics of local features at several resolutions. This model is based on semi-discrete OT, meaning that it uses transformations of the patch space that are designed to optimally transport an absolutely continuous source measure onto a discrete target measure. The chosen discrete target measure in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] is the subsampled empirical patch distribution of the exemplar texture, so that these OT maps help to reimpose the patch statistics of the exemplar.

These OT maps are given by weighted nearest neighbor (NN) assignment on the points of the target measure support. Therefore, the computational time for synthesis highly depends on the discrete sampling of the target distribution.

For 3 × 3 patch distributions, a naive 1000-uniform subsampling gives good results in general. But more accurate subsampling strategies could be used by taking prot of the structure in the patch point cloud.

Here we propose to use a dierent subsampling strategy based on determinantal point processes (DPPs) dened on patches. We propose to integrate the DPP subsampling strategy in the OT-based texture model of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF]. We show that because of the repulsion property of the DPP, it is able to cover eciently the original patch cloud with a low number of samples. As a result, the obtained transport maps can be applied faster, thus allowing to synthesize very large textures with competitive computational time. We also discuss the parameters of the model, in particular the expected cardinality of the DPP, which should depend on the complexity of the input texture.

Texture Synthesis with Semi-Discrete Optimal Transport

In this section, we will recall the denition given in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] of the texture model based on semi-discrete optimal transport. Let u : Ω → R d be the exemplar texture dened on a domain Ω ⊂ Z 2 . As before, the patch domain will be denoted by ω = {-ρ, . . . , ρ} 2 and the associated patch space by R D where

D = d(2ρ + 1) 2 .

Monoscale Model

The model is based on a coarse synthesis obtained with a Gaussian random eld U , which is called the asymptotic discrete spot noise (ADSN) associated with the texture u [START_REF] Galerne | Random phase textures: Theory and synthesis[END_REF]. We have seen this model before, in Section 3.3. For that reason, the authors of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] proposed to apply local modications to reinforce geometric structures in a statistically coherent way. In other words, a transformation T : R D → R D is applied to all the patches of U , an image is recomposed by simple averaging, thus obtaining the transformed random eld

∀x ∈ Z 2 , V (x) = 1 |ω| h∈ω T (U |x-h+ω )(h).
(4.17)

The map T is chosen to solve a semi-discrete optimal transport problem between the probability distribution µ of the patches of U and a discrete target distribution ν = J j=1 ν j δ Q j representing the patches of u (that we dene in where the inmum is taken over all measurable maps T for which the image measure of µ is ν. As proved in [START_REF] Aurenhammer | Minkowskitype theorems and least-squares clustering[END_REF][START_REF] Kitagawa | A Newton algorithm for semi-discrete optimal transport[END_REF], the solution can be obtained as a weighted Nearest Neighbour (NN) assignment T v (P ) = Q j(P ) where j(P ) = argmin

j P -Q j 2 -v j (4.19)
where v ∈ R J solves a concave maximization problem. Solving for v relies on a costly stochastic gradient procedure (see the details in [START_REF] Genevay | Stochastic optimization for large-scale optimal transport[END_REF][START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF]) which is more and more dicult when the number J of points in the target distribution increases. This is a rst reason to look for a simplication of the target measure ν with the least possible points. Another reason, which will be highlighted in the experimental section, is that once the map T v is estimated, applying it to all patches of U amounts to applying a weighted NN projection on a set of J patches; thus the required computational time for synthesis also depends on the number J of points in the target distribution.

This monoscale model (only one scale of patches) is summarized in Figure 4.6. Given the input texture u, and a discrete distribution ν representing its patches, a Gaussian random eld U is generated, providing a coarse approximation of the texture. The continuous distribution of the patches of U is denoted by µ. A transformation T v is estimated so that the image distribution of µ is ν. After applying T v to the patches of U , they are aggregated by averaging, to obtain the texture V . 

Multiscale Model

One drawback of the stochastic algorithm for semi-discrete OT is that it gets slower when the dimension D increases. In practice, it is thus only applicable for patches of size 3 × 3. A multiscale extension was proposed in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] in order to deal with larger structures. It consists in working with subsampled versions u , = 0, . . . , L-1 of the original texture dened on coarser grids Ω = Ω∩2 Z 2 , and with discrete target patch distributions ν , = 0, . . . L -1.

Starting from a Gaussian random eld U L-1 estimated from u L-1 as in (4.16), for = L -1, . . . , 0, we apply a transport map T to all patches of U V

(x) = 1 |ω| h∈2 ω T (U |x-h+2 ω )(h), x ∈ 2 Z 2 (4.20) 
and we get U -1 by exemplar-based upsampling (taking the same patches than T but twice larger). The transport map T is designed to solve a semi-discrete OT problem between a source measure µ (a GMM estimated from the patches of the current synthesis) and a discrete target distribution ν representing the patches of u . The output texture is V 0 . One strong feature of this multiscale model is that the maps T can be estimated once and for all. Once the model estimated, it can be sampled eciently since applying the map T at each scale consists in a simple weighted NN projection on 3 × 3 patches.

DPP Subsampling of the Target Distribution

In this subsection, we discuss how to choose the discrete target distribution ν in order to represent eciently the patches of the original texture u.

Choosing the Target Distribution

One natural choice to represent all the patches of u is of course to consider the empirical distribution

ν emp = 1 N N i=1 δ P i (4. 21 
)
where P = {P i , 1 i N } is the set of all patches of u. Unfortunately, this choice must often be discarded because the number N of patches is in general very large (N 10 5 ) and thus unsuitable for the stochastic algorithm for semi-discrete OT.

The authors of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] coped with this problem by considering the simple subsampling

ν unif = 1 J J j=1 δ Q j (4.22)
where the patches (Q j ) are chosen at random (uniformly) among the patches P. Although naive, this solution proved to be sucient for many textures, with a value of J set as a ground rule to J = 1000 for subsampling 3 × 3 patch distributions.

However, as mentioned above, the size J of the support of the target distribution highly impacts the execution times of the estimation of the model and of the synthesis step. That is the reason why we propose here to consider alternative choices in order to use even lower values of J while maintaining the visual quality of the output texture.

We want to approximate the empirical distribution with a discrete distribution with support of size J ν = J j=1 ν j δ x j (4. [START_REF] Borodin | EynardMehta theorem, Schur process, and their Pfaan analogs[END_REF] where x j ∈ R D , for all j = 1, . . . , J and whose weights (ν j ) belong to the probability simplex, meaning that ∀j ≤ J, ν j ≥ 0 and J j=1 ν j = 1. One can formulate this problem using the L 2 -Wasserstein distance between discrete probability distributions µ = N i=1 µ i δ y i and ν = J j=1 ν j δ x j dened by

W 2 2 (µ, ν) = inf (π i,j ) i,j π i,j y i -x j 2 (4.24)
where the inmum is taken on (π i,j ) ∈ R N ×J + such that for all i, j π i,j = µ i and for all j, i π i,j = ν j . Approximating ν emp with a discrete distribution amounts to nd ν minimizing the Wasserstein distance ν * = argmin Note that solving this optimization problem is actually equivalent to solving a k-Means clustering problem [START_REF] Ng | A note on constrained k-Means algorithms[END_REF][START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF]. In [START_REF] Cuturi | Fast computation of Wasserstein barycenters[END_REF], the authors propose an algorithm to solve, among more general issues, the optimization problem (4.25) and state that this method is equivalent to Lloyd's algorithm [START_REF] Lloyd | Least squares quantization in PCM[END_REF], the common k-Means clustering algorithm. Note that this problem is non convex and that Lloyd's algorithm only provides a local minimum. More importantly, in this image framework, we have a supplementary constraint: we want the points

x i ∈ R D dening the support of ν * to be part of the initial patches of the texture. Indeed, the k-Means algorithm may create blurry patches, that do not belong to the input texture and that would be unsuited to represent it.

Thus, in the following, we propose to x the support of the distribution ν and to dene it as the realization of a DPP, so that the resulting support represents the set of patches of the input texture.

Setting the Weights

In the following, we select a subset of patches of the input texture u using a DPP. Given a DPP kernel K, we denote by Q ∼ DP P (K), a random subset of patches. The choice of the DPP kernel K is our main concern here and it will be discussed in the next paragraphs.

Once the support Q = {Q j , 1 j J} has been xed, one must build a measure ν supported on Q that accurately represents the patches of u. This amounts to adjusting the masses (ν j ) associated with (Q j ) such that

ν = J j=1 ν j δ Q j (4.26)
realizes a good approximation of ν emp .

As before, one can use the L 2 -Wasserstein distance to determine ν. Finding the masses (ν j ) that minimizes W 2 2 (ν emp , ν) is equivalent to solving π * i,j = argmin

(π i,j ) i,j π i,j P i -Q j 2 (4.27)
such that ∀(i, j), π i,j ≥ 0 and j π i,j = 

ν DPP = J j=1 ν * j δ Q j , (4.29) 
where Q = {Q j , 1 j J} is a realization of the DPP with kernel K.

Choice of a DPP kernel

One needs to choose a DPP kernel such that the selected subset of patches provides a good approximation of the empirical distribution of the patches of u. To do so, we compare the dierent kernels presented in the previous section, using texture images.

Let us dene one more evaluation measure, using the Wasserstein distance between the empirical distribution ν emp and the approximation ν DPP presented above. In practice, we want the DPP kernel that minimizes the error: Thus, in the following, we choose to use a DPP generated by the PCA kernel introduced previously. Let us recall that every patch P i ∈ P is associated with a vector P k i ∈ P k given by keeping only the k principal components after a Principal Component Analysis (PCA), and we dene the likelihood kernel by

E 3 = W 2 2 (ν emp , ν DPP ) = i,j π * i,j P i -Q j 2 . ( 4 
P i -Q 2 2 (b) PSNR (c) E 3 = W 2 2 (ν emp , ν DPP )
∀ P i , P j ∈ P, L ij = exp - P k i -P k j 2 2 s 2 , (4.31)
where s is the median of the interdistances between the patches and k = 10.

As we have seen in Chapter 2, the exact algorithms to sample DPPs presented in this manuscript cost O(N 3 ), which is very costly since in general N is large. Yet, we only need to perform this sampling once (at every scale) and as it enables to signicantly reduce the number of patches used to estimate the target distribution, we will see in the next section that this cost can be aorded.

Algorithm 6 presents the steps of the whole texture synthesis algorithm using semi-discrete optimal transport and DPP subsampling to synthesize textures.

Note that, given a texture, once a rst synthesis has been done, the model is estimated and stored. For all subsequent synthesis of the same texture, one only needs to do the steps written in italic in Algorithm 6.

Algorithm 6 Semi-discrete OT algorithm for texture synthesis, using DPPs. Input: Exemplar u, number of scales L.

Preprocessing:

Dene subsampled versions of u, u 0 , . . . , u L-1 .

At each scale l, select a subset of patches Q l using DPP(K l ) (4.31) dened on u l .

At each scale l, compute ν l , representing the patch distribution of u l (4.29).

2. Dene U L-1 a Gaussian synthesis (4.16).

3. At each scale l = L -1, . . . , 0, Estimate µ l as a Gaussian mixture model from U l (except at scale L -1 where we already know the Gaussian distribution of U L-1 ).

Compute the weights v l (4.19) using a stochastic gradient descent algorithm and compute the optimal transport map T l v .

Apply the map to the patches of U l , which consists in a weighted nearest neighbor projection on Q l , to obtain V l .

If l = 0, examplar-based upsampling of V l to obtain U l-1 .

Output: Synthesized texture V 0 .

Results

We now comment the synthesis results obtained by subsampling the target patch measures with DPPs. All parameters of the texture model are set to the default values listed in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] (4 scales, patches of size 3 × 3). The only dierence lies in the subsampling strategy. At each scale, a rst naive subsampling is performed by drawing (uniformly) 1000 patches in the exemplar texture. Then, a second subsampling step is performed with either another uniform subsampling to cardinality J or a DPP subsampling with expected cardinality J. Let us mention that we cannot use a direct DPP subsampling of ν emp because the total number of patches N is often very large (≈ 10 6 ) and it would be very slow to sample from a DPP kernel that large. In the following experiments, J ∈ {50, 100, 200}.

First, note that the evaluation of the quality of a texture synthesis relies usually on human visual assessment. Unlike denoising methods, that can be evaluated using the PSNR (4.15) for instance, it is dicult to objectively and systematically quantify the quality of a generated texture. This is partly due to the wide diversity of texture images. Thus, in the following, we are only able to visually assess the quality of the syntheses.

In Figure 4.8, one can observe a predictable loss of quality when going from 1000 to 100 patches. However, one can see that for many textures, the visual quality can be maintained to a reasonable level while using 10 times less patches. This will help us to reach a compromise between visual quality and execution time for synthesis (see below). One can also observe on Figure 4.8 that uniform and DPP subsampling behave quite dierently. In particular, DPP subsampling seems to favor patches with sharper edges and less noise.

Also, on several textures (like the last example of Figure 4.8), the output seems statistically closer to the input texture; but it would require a more involved analysis to precisely assess this fact. Let us remark that this statistical consistency crucially relies on the precise estimation of the weights explained in Section 4.3.2.

In Figure 4.9, we analyze the inuence of the cardinality of the target discrete distribution. One can observe that for each texture there is a cardinality value, which mainly depends on the complexity and the geometric components in the texture, under which results get visually degenerate and over which the visual quality is maintained to a reasonable level.

Finally, let us highlight the main benet obtained with the proposed subsampling strategy, which lies in the gain in computation time for synthesis.

Once the texture model is estimated, it is indeed very fast to sample large pieces of it, and since it relies on weighted NN assignments at each scale, the execution time depends quasi-linearly on the cardinality J of the target measures. Using a CPU Intel i7-5600U (4 cores at 2.6GHz), for J 200 we are able to synthesize 512 × 512 images in ≈ 0.4" and 1024 × 1024 in ≈ 1.6".

This execution time can be improved using a GPU implementation: Table 4.1 provides the running times for the synthesis of 1024×1024 textures, for several

Original

Unif-1000 Unif-100 DPP-100 repeated patterns, and a selection of 100 patches appears to be too small to retrieve such content. The suggested approach thus allows to accelerate the synthesis algorithm of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] while maintaining the quality of synthesis. Note that a Matlab implementation of this adaptated algorithm (for CPU and GPU) is available online 1 .

Conclusion

In this chapter, we investigated the use of determinantal point processes to subsample the set of patches of an image. We presented several DPP kernels adapted to the representation of an image and compared them using several evaluation measures. It appears that the choice of the kernel highly depends on the purpose of the generated selection. The most stable strategy seems to be using the Intensity kernel, which provides a selection both close in average to the initial patches and containing singular patches.

We proposed an alternative strategy to subsample the set of patches of a texture and to approximate its empirical distribution. This method was applied to a texture synthesis model using semi-discrete optimal transport. The resolution of this OT problem involves a weighted nearest neighbor assignment, computed using a slow stochastic gradient procedure. Thus, the execution times of the estimation of the OT map as well as its application highly depend on the size of the support of the discrete patch distribution. That is why we proposed here to approximate the patch distribution using DPP subsampling. Considering textures, the PCA kernel, along with the Intensity kernel, provides appealing subsets of patches. As it also tends to select more singular patches, we choose to use this PCA kernel in the texture synthesis algorithm. The execution time of the synthesis is signicantly shortened because of the possibility for the estimated patch distribution to have a reduced support. This strategy proposes a compromise between synthesis quality and execution speed.

Because of the stochastic gradient descent needed to solve the OT problem, and, in this study, so do we. However, Leclaire and Rabin [START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF] recently developed a multi-layer version of the optimal transport resolution. This method enables the use of patches of size 7×7, which improves the synthesis of textures with geometry and large scale structures. We would like to adapt the DPP subsampling done here to this multilayer algorithm to speed it up and analyze more precisely the consequences of the estimation of the textured patch distribution using DPPs.

Notice also that whereas some textures can be represented and synthesized using very few patches, for some complex textures, 100 or 200 patches may not be enough to accurately approximate them. It would be interesting to develop a criterion related to the complexity of the texture, determining the approximate number of patches needed to represent it.

Orig. Unif-1000 DPP-100 This thesis focused on discrete determinantal point processes and on their application to image processing. We wanted to use the ability of DPPs to model repulsive phenomena or to subsample sets of data while enforcing diversity in the sample. These properties have been explored when the point process is dened on the pixels or the patches of an image. This chapter presents a synthesis of the main contributions of this manuscript. We also mention perspectives that we would like to explore for future research.

Exact Determinantal Point Processes Sampling

In Chapter 2, we focused on sampling general determinantal point processes.

We developed two new sampling algorithms, that we call the sequential sampling algorithm (Algorithm 2) and the sequential thinning algorithm (Algorithm 3). Both algorithms are exact, adapted to general determinantal point processes and, unlike the usual exact sampling algorithm, they don't use the spectral decomposition of the kernel. Matlab and Python implementations of the sequential thinning algorithm can be found online 1 . Algorithm 2 relies 1 https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html on the sequential computation of pointwise conditional probabilities from a DPP kernel. The sampling is sped up using updated Cholesky decompositions to compute the conditional probabilities. This strategy is simple but it is not competitive with usual sampling methods.

We use the thinning of a point process to reduce the execution time of the sampling. This new sampling algorithm proceeds in two phases. The rst one draws a Bernoulli process whose distribution is adapted to the target DPP. We ensured that the generated point process contains the DPP and it is constructed so that its cardinality is the closest to the cardinality of the target DPP. This step is fast and ecient and it signicantly reduces the initial number of points of the ground set. Moreover, if I -K is invertible, the expectation of the cardinality of the Bernoulli process is proportional to the expectation of the cardinality of the DPP. The second phase uses the previous sequential sampling based on the points selected by the Bernoulli point process.

This sequential strategy is not ecient, that is why it is crucial that the rst step reduces the size of the initial state space as much as possible.

We have illustrated the behavior of these two algorithms with numerical experiments and compared their running times with the spectral algorithm.

We have detailed the cases for which the sequential thinning algorithm is competitive with the spectral algorithm, in particular when the size of the ground set is high and the expected cardinality of the DPP is modest. This framework is common in machine learning applications.

To pursue this work, we would like to explore new methods to further accelerate our sampling algorithm. In his thesis [START_REF] Gautier | On sampling determinantal point processes[END_REF], Guillaume Gauthier proposed an alternative computation of the Bernoulli probabilities (2.31), dening the distribution of the dominating Bernoulli process used in the rst step of the sequential thinning algorithm. His formula avoids the inversion of a triangular matrix and thus accelerates the rst part of the algorithm. Furthermore, using specic matrix factorization techniques and parallelizations, Poulson [START_REF] Poulson | High-performance sampling of generic determinantal point processes[END_REF] developed an ecient sampling algorithm that relies on same conditional probabilities as our sequential algorithm (Algorithm 2). The author states that these speedups bring important gains in terms of running times to our sequential thinning algorithm (Algorithm 3). We would like to further investigate these speedups and similar factorization strategies, to understand to what extent a modied sequential thinning algorithm would be more ecient and to study other possible improvements.

Another promising perspective would be to extend this strategy to continuous DPPs, dened on a continuous state space. Indeed, the thinning procedure we use comes from a continuous setting. We would like to examine the adaptation of the rest of the algorithm to a continuous framework. Continuous DPPs appear in the distribution of the spectrum of Gaussian random matrices in probability or in the location of fermions in quantum mechanics, for instance.

The common exact sampling algorithm for continuous DPPs is given by Hough et al. in [START_REF] Hough | Determinantal processes and independence[END_REF] and still relies on the characterization of a DPP as a mixture of projection DPP. Scardicchio et al [START_REF] Scardicchio | Statistical properties of determinantal point processes in high dimensional Euclidean spaces[END_REF] and Lavancier et al. [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] provide more ecient implementations based on the previous sampling algorithm, in particular for the simulation of the Bernoulli variables. These strategies still use the eigendecomposition of the kernel. Furthermore, some authors, such as Decreusefont et al. [START_REF] Decreusefond | Perfect simulation of determinantal point processes[END_REF], use a MCMC strategy and the method called coupling from the past to draw a continuous DPP. They call this method perfect simulation as it reaches the target distribution in a nite time.

Sampling exactly continuous DPP models is a much more challenging problem than sampling discrete DPPs. The main reasons that the domains are often innite, and more importantly, because the eigendecompositon of the kernel operator generally involves an innite number of eigenvalues. Yet we hope that adapting the sequential thinning procedure (Algorithm 3) may provide an adequate and ecient sampling procedure for some continuous DPP models.

Determinantal Pixel Processes

In Chapter 3, we adapted the denition of DPPs to the set of the pixels of an image. Such a DPP is dened on the image domain Ω and is called a determinantal pixel process (DPixP). In this setting, and with the application to texture synthesis in mind, the stationarity and the periodicity of the point process are natural hypotheses. We showed that the only possible hard-core repulsion for DPixP is directional. Given a direction, it is possible to impose to select at most one pixel on any discrete line with this direction in the image.

In Section 3.3, we studied shot noise models based on DPixP as a method to sample micro-textures. We developed a method to adapt the DPixP kernel to a given spot function and to the regularity one is looking for. The regularity of the shot noise, that can be seen as a specic type of repulsion adapted to the spot function, is related to the variance of the shot noise. This quantity depends on the spot function and on the DPixP kernel. It appears that the least repulsive DPixP, which generates the least regular textures and which maximizes the variance of the shot noise, is the homogeneous Bernoulli process. In that case, the kernel is independent of the spot function. On the other hand, the most repulsive DPixP kernel, generating regular textures and minimizing the variance of the shot noise, is a projection kernel which is solution to a combinatorial problem depending on the spot function. Considering the associated shot noise models enables getting closer to a hard-core repulsion.

Thus, in Section 3.2, we proved that it is not possible to avoid overlaps if we randomly copy and place a given shape using a DPixP, unlike particular Gibbs processes. However, in Section 3.3, we saw that, given a shape (the spot function), it is possible to derive a DPixP kernel so that there are as few overlaps as possible. This property may be interesting for computer graphics issues especially since DPixPs have elegant theoretical properties. Notice that our algorithm to retrieve the minimal variance kernel, a kernel minimizing the number of overlaps, is greedy and is not optimal. Further research would be needed to develop an algorithm more ecient. Furthermore, we would like to look for a theoretical bound on the number of overlaps in shot noise models based on this DPixP and on a given shape.

Note that one of our initial motivations was to reduce the number of spot overlaps in the shot noise model. This goal is achieved using DPixPs and their repulsive nature, by choosing a kernel adapted to the spot. Another motivation could be to generate more contrasted textures from shot noise models containing clusters of patterns. As a future work, we would like to explore shot noise models based on attractive point processes, such as Cox processes.

It would be interesting to derive properties similar to those we obtain with DPixPs, for instance while studying shot noise models based on permanental point processes, which are considered as the attractive counterpart to determinantal point processes. As for DPPs, it is possible to compute the moments of these point processes. In the continuous case, Blaszczyszyn and Yogeshwaran [START_REF] Bªaszczyszyn | Directionally convex ordering of random measures, shot noise elds, and some applications to wireless communications[END_REF] study shot noise models based on dierent point process, sorting them according to their repulsiveness. They use these results on shot noise models and Cox processes for wireless networks. Shirai and Takahashi obtain in [START_REF] Shirai | Random point elds associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes[END_REF] a law of large numbers, a central limit theorem and a large deviation result for point processes that they call α-determinantal point processes, which gather determinantal and permanantal point processes. Thus, one may retrieve similar convergence conclusions for shot noise models based on permanental processes, as the ones proved in Section 3.3.3, and apply those results to texture synthesis. As we have seen in Section 3.3.2, shot noise models based on attractive processes could enhance the contrast of the textures generated, by creating regions with high amount of spot overlaps and regions without any point. We could dene an objective function to optimize, such as the variance of the shot noise models, in order to nd the optimal kernel of the permanental process in function of the spot function.

In Section 3.4, we endeavored to characterize the equivalence classes of DPP and DPixP kernels, that are families of kernels generating the same distribution. In the DPixP case, the equivalence classes involve translation and symmetry with respect to (0, 0) of the Fourier coecients of the kernels.

This question is crucial when dealing with inference, in order to understand what can be retrieved by an estimation algorithm and in order to assess the uniqueness of the solution. We developed an algorithm to estimate the Fourier coecients of a DPixP kernel from one sample or from a set of samples. This algorithm takes advantage of the stationarity of DPixPs and provides satis-fying results, particularly when the target kernel is a projection kernel. For instance, we have seen that the algorithm is able to retrieve most of the kernel information using only one sample, for some simple projection kernels.

We plan to investigate the joint estimation, from a texture image, of the spot function and of the DPixP kernel associated to a shot noise that could have generated the texture. Such an algorithm would allow for the reproduction of Gaussian textures or the inference of the model underlying the input texture, in order to retrieve some of the texture properties. Several approaches [START_REF] Desolneux | A compact representation of random phase and Gaussian textures[END_REF][START_REF] Galerne | A texton for fast and exible Gaussian texture synthesis[END_REF][START_REF] Galerne | Texton noise[END_REF] have focused on this question as they intend to generate, given an input texture image, what they call a texton. A texton is a compact representation of the texture, a small texture image, containing the frequency content of the input. In fact, this texton can be seen as a spot function and it is used to reproduce the initial Gaussian texture using a discrete shot noise model, based on a Poisson point process. This whole strategy enables ecient exemplarbased texture synthesis for Gaussian textures. A similar algorithm, retrieving both the texton and the DPixP kernel underlying a given texture could be a promising method to adapt the previous strategies to a wider family of textures.

Determinantal Point Processes on Patches

In Chapter 4, we studied the use of determinantal point processes to subsample the set of patches of an image. In Section 4.2, we introduced dierent DPP kernels adapted to the representation of an image and compared them using several evaluation measures. The choice of kernel highly depends on the purpose of the generated selection as each kernel favors dierent types of selection. The most stable strategy seems to be using the Intensity kernel, which provides a selection both close in average to the initial patches and containing singular patches. On the other hand, the PCA kernel, involving the principal components given by a PCA on the matrix gathering the patches, highly favors patches with edges or textures. Such selections of key patches can serve to represent an image using little memory, if the image is reduced to its size, the small set of selected patches and the vector of indices associating each initial patch to its nearest neighbor in the selection. Such diverse selections can also be applied to initialize the centroids of a clustering algorithm or to estimate the parameters of a model dened on the image, by evaluating them on a small but representative proportion of patches.

Section 4.3 presents an application of these subsampling strategies to a texture synthesis model [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] using semi-discrete optimal transport (OT). We developed an alternative strategy to select a small subset of patches of a texture and to approximate the empirical distribution of the whole set of patches of the image. The initial texture synthesis algorithm begins with the synthesis of a Gaussian random eld adapted to the input texture, having the same second order statistics. Then, it uses semi-discrete optimal transport to impose local features, at several resolutions, to the patches of the Gaussian random eld. To do so, the authors need to approximate the discrete distribution of the input texture's patches. Solving the OT problem involves a stochastic gradient descent and in the end, the solution is given by a weighted nearest neighbor assignment between the patches of the Gaussian random eld and the considered patches of the input texture.

This algorithm needs to subsample the set of patches of the texture and to approximate as precisely as possible the distribution of the patches. Using Using ten times less patches than in the initial algorithm allows for accelerating the synthesis by a factor six on a GPU, while for many textures the visual quality of the result is maintained. Note that Matlab implementations of the initial synthesis algorithm and of the DPP acceleration on CPU and GPU can be found online 2 .

During the computation of the OT solution, the denition of the weights associated to the nearest neighbor assignment needs the use of stochastic optimization strategies. However, these methods are very slow, particularly in high dimension. That is the reason why the authors of [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] use 3 × 3 patches and, in this study, so did we. Leclaire and Rabin [START_REF] Leclaire | A fast multi-layer approximation to semi-discrete optimal transport[END_REF] recently developed a multi-layer version of the OT resolution. They approximate the real OT solution by using a hierarchical clustering of the patches and estimate the weights of each cluster and each layer using a tree search strategy, which is very fast. This enables performance gain during the estimation of the model and during the synthesis of the texture. This method allows for the use of large patches (for instance of size 7 × 7) which capture larger structures in the texture. Thus, this algorithm is able to synthesize complex textures, with large geometric features. To pursue the work done in Chapter 4, we would like to adapt the DPP subsampling 2 https://www.math.u-bordeaux.fr/~aleclaire/texto/ studied here to this multi-layer strategy to accelerate the synthesis algorithm and analyze more precisely the consequences of the estimation of the textured patch distribution using DPPs. It would also be important to investigate the behavior of the DPP kernels when using larger patches, capturing much more information.

Notice also that whereas some textures can be represented and synthesized using few patches, for some complex textures with geometric structures, 100 or 200 patches may not be enough to accurately approximate their patch distribution. It would be interesting to develop a criterion related to the complexity of the texture, determining the approximate number of patches needed to represent it, so that it is set to the minimum value while maintaining a good visual synthesis. Unfortunately, this issue is as complex as the evaluation of the quality of a texture synthesis. As we have seen previously, there is no widely accepted measure to objectively and systematically assess a texture synthesis.

Several papers [START_REF] Liu | A computational model for periodic pattern perception based on frieze and wallpaper groups[END_REF][START_REF] De Bortoli | Patch redundancy in images: A statistical testing framework and some applications[END_REF] propose strategies to automatically sort textures, for instance by considering the regularity and the repetition of patterns [START_REF] Liu | A computational model for periodic pattern perception based on frieze and wallpaper groups[END_REF] or the periodicity of the texture [START_REF] De Bortoli | Patch redundancy in images: A statistical testing framework and some applications[END_REF]. We could rely on similar sorting strategies to evaluate the complexity of a texture, the amount of geometrical structures, the nature of the periodicity, and adapt the synthesis algorithm accordingly.

Denition B.1.1 (Invariant sets and ergodicity). A set I ⊂ S is said to be invariant if T -1 I = I. The class I of invariant sets in S form a σ-eld in S called the invariant σ-eld.

A mesure-preserving transformation T is ergodic with respect to µ or µergodic if I the class of T -invariant sets is µ-trivial, that is if µI = 0 or 1, ∀I ∈ I. Any random element ξ with distribution µ is said to be ergodic if and only if P(ξ ∈ I) = 0 or 1, for any I ∈ I.

We can now state the ergodic theorems in general cases and under our hypothesis.

Theorem B.1.1 (Ergodic theorem -Von Neumann [START_REF] Neumann | Physical applications of the ergodic hypothesis[END_REF], Birkho [START_REF] Birkhoff | Proof of the ergodic theorem[END_REF]). Consider a measurable space S, a measurable transformation T on S with associated invariant σ-eld I and a random element ξ in S where T ξ d = ξ. Let f : S → R be a measurable function with f (ξ) ∈ L p for some p ≥ 1. Then ). As before, consider a measurable space S and a random element ξ with measure µ in S. Let T 1 , ..., T d be some measurable, commuting, µ-preserving transformations on S, and some measurable function f : S → R with f (ξ) ∈ L p for some p ≥ 1. Denote I for the (T 1 , ..., T d )-invariant σ-eld in S. Then Our framework is 2D and discrete. Here, the random element X is a DPixP of some kernel C. The measure-preserving transformations we are interested in are the vertical shift or translation of a, T 1 , dened by T 1 (x) = T 1 (x 1 , x 2 ) = (x 1 -a, x 2 ) and the vertical shift of b, T 2 , such that T 2 (x) = T 2 (x 1 , x 2 ) = (x 1 , x 2 -b). In both directions, the invariant sets associated with the transformation is {∅, Z}. The associated (T 1 , T 2 )-invariant σ-eld is I = {∅, Z 2 } and we can state the following result, for any function f :

Z 2 → R, such that f (ξ) ∈ L p , 1 n 1 n 2 k 1 <n 1 k 2 <n 2 f T k 1 1 T k 2 2 X -----→ n 1 ,n 2 →∞
E (f (X)) a.s. and in L p . 

f x 1 n 1 , x 2 n 2 = 1 [0,n 1 a[×[0,n 2 b[ (x 1 , x 2 ) = n 1 -1 k 1 =0 n 2 -1 k 2 =0 1 [k 1 a,(k 1 +1)a[×[k 2 b,(k 2 +1)b[ (x 1 , x 2 ) = n 1 -1 k 1 =0 n 2 -1 k 2 =0 1 [0,a[×[0,b[ T k 1 1 T k 2 2 (x 1 , x 2 ) = k 1 <n 1 k 2 <n 2 f T k 1 1 T k 2 2 (x 1 , x 2 ) .
Then, using the bivariate ergodic theorem (Theorem B.1.2), g a mesurable function dened by g(X) = x∈X f (x) and the moment formula (Equation 

(3.19)), 1 n 1 n 2 x∈X f x 1 n 1 , x 2 n 2 = 1 n 1 n 2 k 1 <n 1 k 2 <n 2 g T k 1 1 T k 2 2 X and then, 1 n 1 n 2 x∈X f x 1 n 1 , x 2 
∈ N * , f x 1 n 1 , x 2 n 2 = 1 0, 1 k 1 × 0, 1 k 2 x 1 n 1 , x 2 n 2 = 1 0, n 1 k 1 × 0, n 2 k 2 (x 1 , x 2 ) = 1 0, n 1 k 1 × 0, n 2 k 2 (x) + 1 0, n 1 k 1 × n 2 k 2 , n 2 k 2 (x) + 1 n 1 k 1 , n 1 k 1 × 0, n 2 k 2 (x) + 1 n 1 k 1 , n 1 k 1 × n 2 k 2 , n 2 k 2 (x) f x 1 n 1 , x 2 n 2 = n 1 k 1 -1 l 1 =0 n 2 k 2 -1 l 2 =0 1 [l 1 ,l 1 +1[×[l 2 ,l 2 +1[ (x) + n 1 k 1 -1 l 1 =0 1 [l 1 ,l 1 +1[× n 2 k 2 , n 2 k 2 (x) + n 2 k 2 -1 l 2 =0 1 n 1 k 1 , n 1 k 1 ×[l 2 ,l 2 +1[ (x) + 1 n 1 k 1 , n 1 k 1 × n 2 k 2 , n 2 k 2 (x) = l 1 < n 1 k 1 l 2 < n 2 k 2 1 [0,1[×[0,1[ T l 1 1 T l 2 2 x (1) 
+

l 1 < n 1 k 1 1 [0,1[×[ n 2 k 2 , n 2 k 2 [ T l 1 1 x (2) 
+ l 2 < n 2 k 2 1 [ n 1 k 1 , n 1 k 1 [×[0,1[ T l 2 2 x (3) 
+ 1 [ n 1 k 1 , n 1 k 1 [×[ n 2 k 2 , n 2 k 2 [ (x) . ( 4 
) (B.5)
Now, we are going to study the limit of each part of the term above when we sum it for x ∈ X and multiply it by 1 n 1 n 2 . First, we have

1 n 1 n 2 x∈X l 1 < n 1 k 1 l 2 < n 2 k 2 1 [0,1[×[0,1[ T l 1 1 T l 2 2 x = n 1 k 1 n 2 k 2 n 1 n 2 1 n 1 k 1 n 2 k 2 l 1 < n 1 k 1 l 2 < n 2 k 2 g T l 1 1 T l 2 2 X ,
where g(X) = Finally, we obtain for this part

1 n 1 n 2 x∈X l 1 < n 1 k 1 l 2 < n 2 k 2 1 [0,1[×[0,1[ T l 1 1 T l 2 2 x a.s.,L p -----→ n 1 ,n 2 →∞ 1 k 1 k 2 C(0) = R 2
f (x)C(0)dx.

(B.7)

Second, we need to prove that the 3 other positive terms of the sum tends to 0. For ( 2) and ( 3), the proof is identical:

1 n 1 n 2 x∈X l 1 < n 1 k 1 1 [0,1[× n 2 k 2 , n 2 k 2 T l 1 1 x ≤ 1 n 1 n 2 |X| n 1 k 1 ∼ +∞ |X| n 2 k 1 -----→ n 1 ,n 2 →∞ 0. (B.8)
Similarly, concerning the last term, we have We can use the following results. Let (X n ) n , (Y n ) n be two sequences of random variables on Z 2 and X and Y be two random variables dened on Z 2 . If X n a.s. Proof. Suppose that f is a bounded continuous function on R 2 with compact support such that R 2 f (x)dx = 0 and that X is a determinantal pixel process of kernel K, associated with the kernel function C, on Z 2 .

1 n 1 n 2 x∈X 1 n 1 k 1 , n 1 k 1 × n 2 k 2 , n 2 k 2 (x) ≤ 1 n 1 n 2 |X| -----→
Thanks to moments formulas [START_REF] Baccelli | Stochastic Geometry and Wireless Networks, Volume I -Theory[END_REF] on DPPs on Γ with measure µ (here Γ = Z 2 and µ is the DPP distribution), we know that, ∀f, h, functions on Γ, 

1 N 2 y∈Z 2 f y N f y + x N - R 2 f (z)dz ≤ 1 N 2 y∈Z 2 f y N f y + x N - 1 N 2 y∈Z 2 f y N 2 + 1 N 2 y∈Z 2 f y N 2 - R 2 f (z)dz = 1 N 2 y∈Z 2 f y N f y + x N -f y N + 1 N 2 y∈Z 2 f y N 2 - R 2 
f (z)dz . (B.17)

Let us consider N ≥ max(N x , N 2 ), To conclude, we can interchange the limit and the sum and: Thus, in that case, even if K 1 does not verify the rank hypothesis of Theorem 3.4.1, its equivalence class is dened as that of a kernel which does: K 2 is equivalent to K 1 if and only if the Fourier coecients of K 2 are a translation or a symmetry with respect to (0,0) of the Fourier coecients of K 1 .

1 N 2 y∈Z 2 f y N f y + x N - R 2 f (z) 2 dz ≤ 1 N 2 y∈Λ N f y N f y + x N -f y N + 1 N 2 y∈Z 2 f y N 2 - R 2 f (z) 2 dz ≤ 1 N 2 M (2N A) 2 + = (4M A 2 + 1
) - i N f x N + 1 2N 2 f 2 x N + o 1 N 2 = -C(0)iN 1 N 2 x∈Λ N f x N + C(0) 2 1 N 2 x∈Z 2 f 2 x N + o 1 N 2 = -C(0)iN 1 N 2 x∈Λ N f x N - R 2 f (t)dt + C(0) 2 1 N 2 x∈Λ N f 2 x N + o 1 N 2 ---→ N →∞ 1 2 R 2 C(0)f 2 (t)dt.
Here, this study is limited to the case 1 × 5. We have not been able

to generalize this result to all sizes of image domain yet. We would like to demonstrate that the equivalence class of a kernel belonging to this second category, such that it is irreducible and such that there exists a partition α, β of Y such that rank(K 1 ) α×β = 1, is characterized as in the rst category: DPixP kernels are equivalent if and only if they have translated and/or symmetrized Fourier coecients. This question remains open.

  Les processus ponctuels déterminantaux (Determinantal Point Processes ou DPP en anglais) sont des modèles probabilistes qui modélisent les corrélations négatives ou la répulsion à l'intérieur d'un ensemble d'éléments. Ils ont tendance à générer des sous-ensembles d'éléments diversiés ou éloignés les uns des autres. Cette notion de similarité ou de proximité entre les points de l'ensemble est dénie et conservée dans le noyau associé à chaque DPP. Cette thèse étudie ces modèles dans un cadre discret, dénis dans un ensemble discret et ni d'éléments. Nous nous sommes intéressés à leur application à des questions de traitement d'images, lorsque l'ensemble de points de départ correspond aux pixels ou aux patchs d'une image. Les Chapitres 1 et 2 introduisent les processus ponctuels déterminantaux dans un cadre discret général, leurs propriétés principales et les algorithmes régulièrement utilisés pour les échantillonner, c'est-à-dire pour sélectionner un sous-ensemble de points distribué selon le DPP choisi. Dans ce cadre, le noyau d'un DPP est une matrice. L'algorithme le plus utilisé est un algorithme spectral qui repose sur le calcul des valeurs propres et des vecteurs propres du noyau du DPP. Dans le Chapitre 2, nous présentons un algorithme d'échantillonnage qui repose sur une procédure de thinning (ou amincissement) et sur une décomposition de Cholesky mais qui n'a pas besoin de la décomposition spectrale du noyau. Cet algorithme est exact et, sous certaines conditions, compétitif avec l'algorithme spectral.

Figure 1 . 1 :

 11 Figure 1.1: Locations of trees in a forest. These data come from the R library called spatstat.

Figure 1 . 2 :

 12 Figure 1.2: Realizations sampled from a clustering Cox process (left), from a Bernoulli point process (center) and from a Determinantal point process (right), with each 148 points.
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 13 Figure 1.3: Examples of textures. It is dicult to formally characterize texture images as this term encompasses a wide variety of images, such as textures without identiable elements, that can represent the surface of an object, or textures with repeated patterns and geometrical structures.

Figure 1 . 4 :

 14 Figure 1.4: Running times of the 3 studied algorithms in function of the size of the ground set, using a patch-based kernel. The sequential algorithm is much slower than the two other sampling strategies.

(1. 21 )

 21 It appears that it is possible to adapt the kernel of a DPixP to the spot function g, in order to obtain particularly regular or irregular textures. This is related to an optimization problem based on the variance of the shot noise model. We are able to obtain the results presented in Figure 1.6. Whatever the spot function, the DPixP generating the least regular texture is the Bernoulli point process (Figure 1.6,b.). Given the spot g (Figure 1.6(a)), the DPixP generating the most regular texture is a projection DPixP (Figure 1.6(c)) whose Fourier coecients are the solution of a combinatorial problem. An approximation of these Fourier coecients is given ((d),(e) in Figure 1.6) using a greedy algorithm. Notice that the shot noise based on a Bernoulli point process produces many overlaps of the rectangle shape and regions without any rectangle, unlike the shot noise based on the projection DPixP.

Figure 1 . 6 :

 16 Figure 1.6: Realizations of the shot noise model based on a rectangle spot function and on a Bernoulli point process (b) or on projection DPixP adapted to the spot (c). Both point processes have the same expected sample's size (n = 80).
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 17 Figure 1.7: Determinantal shot noise realizations S N as dened in Theorem 3.3.4 with various N = 1, 2, 3, 6 and a comparison with their associated limit Gaussian random eld N (0, Σ(C)) (f ).
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 1 Figure 1.9 presents an example of image summarization and shows several reconstructions of an image (a) from patches selected using dierent DPP kernels. Each reconstruction is done using the patches presented below such that each patch of the original image is replaced by the most similar patch in the selection. Thus, for each kernel, the original image is represented by a small number of patches and a vector connecting each patch to its nearest

Figure 1 . 8 :

 18 Figure 1.8: From left to right: the initial Fourier coecients of the kernel, one realization of the associated DPixP, the estimation of the Fourier coecients from one, from 10 and from 100 realizations.

Figure 1 . 9 :

 19 Figure 1.9: Image reconstructions comparing dierent DPP kernels. The rst row presents the reconstruction of the image using only the patches selected by the corresponding kernel, given in the second row.
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 110 Figure 1.10: We compare the synthesis results when using either a target distribution with uniform subsampling (with cardinality 1000 or 100) or DPP subsampling (with expected cardinality 100).

3 .

 3 Return the sequence Y = {y 1 , y 2 , . . . , y n } sequentially drawn as follows: For l = 1 to n Sample a point y l ∈ Y from the discrete distribution,

( 2 . 5 )

 25 Proof. We have that P(A ⊂ Y ) = B⊃A P(Y = B). Using the Möbius inversion formula (see Appendix A.1), for all A ⊂ Y,

(2. 7 )

 7 We have by denition P(A ⊂ Y ) = det(K A ) for all A, and as a consequenceP(B ∩ Y = ∅) = det((I -K) B ) for all B.The next proposition gives for any DPP the expression of the general marginal P(A ⊂ Y, B ∩ Y = ∅), for any A, B disjoint subsets of Y, using K. In what follows, H B denotes the symmetric positive semi-denite matrix

Corollary 2 . 3 . 1 (

 231 Pointwise conditional probabilities of a DPP). Let A, B ⊂ Y be two disjoint sets such that P(A ⊂ Y, B ∩ Y = ∅) = 0, and let k / ∈ A ∪ B.

. 29 )

 29 Now note that solving the triangular system with b = (T B A∪{l} ) -1 H B A∪{l}×{k} amounts solving the triangular system with (T B A ) -1 H B A×{k} and an additional line at the bottom. Hence, one has b 2 2

  Step 2 is trivial and fast. The critical point is to sequentially compute the conditional probabilities p k = P({k} ⊂ Y |A ⊂ Y, B ∩ Y = ∅) for each point of X. Recall that in Algorithm 2 we use a Cholesky decomposition of the matrix (I -K) B which is updated by adding a line each time a point is added in B. Here, the inverse of the matrix (I -K) B is only needed when visiting a point k ∈ X, so one updates the Cholesky decomposition by a single block, where the new block corresponds to all indices added to B in one iteration (see Appendix A.2). The Matlab implementation used for the experiments is available online 2 , together with a Python version of this code, using the PyTorch library.

Figure 2 .

 2 Figure 2.1 presents the running times of the three algorithms as a function of the total number of points of the ground set. Here, we have chosen a patchbased kernel (c). The expected cardinality E(|Y |) is constant, equal to 20.
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 21 Figure 2.1: Running times of the 3 studied algorithms in function of the size of the ground set, using a patch-based kernel.

  . seq. thin. algo.Size of the ground set

Figure 2 . 2 :

 22 Figure 2.2: Running times in log-scale of the spectral and the sequential thinning algorithms as a function of the size of the ground set |Y|, using classic" DPP kernels. From left to right: a random kernel, a Ginibre-like kernel, a patch-based kernel and a projection kernel. On the rst row, the expectation of the number of sampled points is set to 4% of |Y| and on the second row, E(|Y |) is constant, equal to 20.

Figure 2 .

 2 Figure 2.3 conrms this observation as in that conguration, the sequential thinning algorithm is never the fastest.

Figure 2 . 3 :

 23 Figure 2.3: Running times of the spectral and sequential thinning algorithms in function of the expected cardinality of the process. From left to right, from top to bottom, using a random kernel, a Ginibre-like kernel, the patch-based kernel and a projection kernel. The size of the ground set is xed to 5000 in all examples.

Figure 2 . 4 :

 24 Figure 2.4: Behavior of the Bernoulli probabilities q k , k ∈ {1, . . . , N }, for the kernels presented in Section 2.5.1, considering a ground set of N = 5000 elements and varying the expected cardinality of the DPP, E(|Y |) = 15, 100, 1000.

Figure 2 .

 2 Figure 2.4 illustrates how ecient the rst step of Algorithm 3 can be to reduce the size of the initial set Y. It displays Bernoulli probabilities q k , k ∈ {1, . . . , N } (Equation2.31) associated to the previous kernels, for different expected cardinality E(|Y |). Observe that the probabilities are overall higher for a projection kernel. For such a kernel, we know that they necessarily reach the value 1, at the latest from the item k = E(|Y |). Indeed projection DPPs have a xed cardinality (equal to E(|Y |)) and q k computes the probability to select the item k given that no other item has been selected yet. Notice that in general, considering the other kernels, the degenerated value q k = 1 is rarely reached, even though in our experiments, the Bernoulli probabilities associated to the patch kernel (c) are sometimes close to one, when the expected size of the sample is E(|Y |) = 1000. On the opposite, the Bernoulli probabilities associated to the Ginibre-like kernel remain rather close to a uniform distribution.

  m eigenvalues equal to λ max and N -m zero eigenvalues. N random eigenvalues between 0 and λ max .

Figure 2 . 5 :

 25 Figure 2.5: Running times of the spectral and sequential thinning algorithms (Algorithm 1 and 3) in function of λ max . The size of the Bernoulli process X is also displayed in light grey (right axis). Here, |Y| = 5000 and E(|Y |) = 15.

  using a patch-based kernel.Thus, the main case when this sequential thinning algorithm (Algorithm 3) fails to compete with the spectral algorithm (Algorithm 1) is when the eigenvalues of the kernel are equal or very close to 1. This algorithm improves the sampling running times when the target size of the sample is very low (below 25 in our experiments).

  3, we investigate shot noise models based on DPixPs and on a given spot function. These models consist in summing the spot function translated around the points of the point process. Usually based on Poisson point processes, they are fast and easy to simulate and they are used to generate micro-textures. After presenting these models based on DPixPs, we analyze the eect of the repulsion of DPPs on them. It appears that it is possible to adapt the kernel of a DPixP to the spot function g, in order to obtain particularly regular or irregular textures. This is related to an optimization problem based on the variance of the shot noise model. Usual Poisson shot noise models converge to a Gaussian texture when the intensity of the point process tends to innity. Similarly, we prove that, in an appropriate framework, shot noise models based on any DPixP and any spot function verify a Law of Large Number and a Central Limit Theorem characterizing their convergence to a Gaussian process.In Section 3.4, in order to investigate inference on DPixP kernels, we review the denition of equivalence classes of DPPs in dierent frameworks.

  image. Let us rst dene any image as a function u : Ω → R d (d = 1 for grayscale images and d = 3 for color images), where Ω = {0, ..., N 1 -1}×{0, ..., N 2 -1} ⊂ Z 2 is a nite grid representing the image domain. The cardinality of Ω, that is the number of pixels in the image, is denoted by N = |Ω| = N 1 N 2 . Note that, if necessary, the pixels of an image are ordered and they are considered column by column. For any image u : Ω → R d , and y ∈ Z 2 , the translation τ y u of u by the vector y is dened by

Proposition 3 . 2 . 1 (Proposition 3 . 2 . 2 (

 321322 Distribution of the cardinality). The cardinality |X| of a DPixP is distributed as the sum ξ∈ Ω B ξ , where for all ξ ∈ Ω, B ξ are independent Bernoulli random variables with parameters C(ξ). In particular,E(|X|) = ξ∈ Ω C(ξ) = N C(0) and Var(|X|) = ξ∈ Ω C(ξ)(1 -C(ξ)). (3.10)One can notice that it is easy to know and control the expected number of points in the point process. In the following, when comparing dierent DPixP kernels, we will consider a xed expected cardinality n, meaning that we will x C(0) = n N . Separable kernel). Let C 1 and C 2 be two discrete kernels, of dimension 1, dened respectively on {0, ..., N 1 -1} and {0, ..., N 2 -1}, both verifying Equation (3.8) (for the 1D Fourier transform). Then the point process dened on Ω by the kernel C given by ∀x

(3. 11 )

 11 Thus, clearly, for all ξ ∈ Ω, C(ξ) is real and 0 ≤ C(ξ) ≤ 1. C is an admissible kernel. Examples Let us consider two fundamental examples of DPixPs. The rst one is the Bernoulli process. It corresponds to the discrete analogous of the Poisson point process: points are drawn independently and following a Bernoulli distribution of parameter p ∈ [0, 1]. This point process is the DPixP characterized by the kernel C such that C = pδ 0 , or equivalently ∀ξ ∈ Ω, C(ξ) = p ∈ [0, 1]. The second main example is the family of projection DPixPs, that are determinantal processes dened by a kernel C which veries for all ξ ∈ Ω, C(ξ)(1-C(ξ)) = 0. Thus, from Proposition 3.2.1, the number of points of projection DPixPs is xed and equal to the number of non-zero Fourier coecients of C.

Figure 3 . 1 :

 31 Figure 3.1: Comparison between two samples (both have 148 points) of a Bernoulli process (rst line) and a projection DPixP dened by the kernel C such that C is the indicator function of a discrete circle (second line). For both DPixPs, from left to right, the real part of the kernel function C, its Fourier coecients C and one associated sample.

Figure 3 .

 3 Figure 3.1 presents two samples of these particular cases. Clearly, the projection DPixP enables a more regular distribution of the points in the square, tends to avoid regions with holes and regions with clusters.

(3. 12 )Algorithm 4

 124 Spectral simulation of X ∼ DPixP(C) Sample a random eld U = (U ξ ) ξ∈ Ω where the U ξ are i.i.d. uniform on [0, 1]. Dene the active frequencies {ξ 1 , . . . , ξ n } = {ξ ∈ Ω; U (ξ) ≤ C(ξ)}, and denote ∀x ∈ Ω, v(x) = (ϕ ξ 1 (x), . . . , ϕ ξn (x)) ∈ C n .

Figure 3 .Figure 3 . 2 :

 332 Figure 3.2 presents the sampling of a projection DPixP. The Fourier coecients of the kernel function are in {0, 1}, and the non-zero Fourier coecients

Proposition 3 . 2 . 3 .

 323 Let us consider X ∼ DPixP(C) on Ω and e ∈ Ω. Then the following propositions are equivalent:

Figure 3 . 3 :

 33 Figure 3.3: Example of a kernel associated with hard-core repulsion in the horizontal direction. From left to right, the Fourier coecients of C, the real part of the kernel C, a capture of the conditional density during the simulation, the associated nal sample.

Figure 3 .

 3 Figure 3.3 illustrates this proposition: all non-zero Fourier coecients are vertically aligned. The third gure presents a capture of the conditional density

  a function C 1 corresponds to an admissible DPixP projection kernel dened in one dimension, drawing one point and remember that the rst point of a DPixP is drawn uniformly. Furthermore, C

1

 1 ,...,x k ∈X means that the (x i ) are all dierent. In particular, for k = 1,we have E x∈X f (x) = C(0) y∈Ω f (y).

  Proof. By denition of the DPixP of kernel C, for any y 1 , . . . , y k in Ω, we have P({y 1 , . . . , y k } ⊂ X) = det((C(y i -y j ) 1≤i,j≤k ).

  Proof. First, let us compute the mean value of such a shot noise model S. Using the periodicity of g, E(S(0)) = E x∈X g(-x) = y∈Ω g(-y)C(0) = C(0) y∈Ω g(y).

( 3 . 23 )

 323 Second, let us compute the covariance function of S for all x ∈ Ω, Γ S (x) = Cov (S(0), S(x)) = E ((S(0)S(x)) -E (S(0))2 

ξ,ξ ∈{ξ 1

 1 ,...,ξn} | g(ξ -ξ )| 2 . (3.25) Proof. Given a xed n ∈ N, let us consider C ∈ C n that maximizes or minimizes

(3. 28 )

 28 Thus, F ( C) ≥ n 2 (g * g -)(0) and F ( C) is minimal if and only if C is proportional to w: necessarily, for all ξ ∈ Ω, C(ξ) = n N . Hence, C is a Bernoulli process. This kernel maximizes the variance of any shot noise S, independently of the spot g. It it the least repulsive DPixP. Minimal variance: Let us characterize the kernel C that maximizes the function F on the convex set C n . F is quadratic so that solutions are on the boundaries of C n , meaning that for all kernel C * ∈ C * F := {argmax C (F ( C))}, ξ C * (ξ) = n and ∀ξ ∈ Ω, C * (ξ)(1 -C * (ξ)) = 0. Thus, the solutions are the projection DPixP kernels C * with exactly n frequencies {ξ 1 , ..., ξ n } ⊂ Ω such that C * (ξ i ) = 1 chosen so that ξ,ξ ∈{ξ 1 ,...,ξn} | g(ξ -ξ )| 2 is maximal.

Figure 3 .Figure 3 . 4 :

 334 Figure 3.4 presents some results of this algorithm. This gure shows that a projection DPixP adapted to g generates shot noise models with very few spot superpositions. Recall that in Section 3.2, we proved that it was impossible to

(3. 32 )

 32 Appendices B.2 and B.3 provide a detailed proof of the previous proposition, specic to our image framework, using ergodic theory.

Figure 3 . 5 :

 35 Figure 3.5: Determinantal shot noise realizations S N as dened in Theorem 3.3.5 with various N = 1, 2, 3, 6 and a comparison with their associated limit Gaussian random eld N (0, Σ(C)) shown in (f ). The shot noise is based on the spot (a) and the projection DPixP with kernel C whose non-zero Fourier coecients form a disk (Figure 3.1, bottom).

  the sense of the pair correlation function, involving high kernel coecients, the lower the variance is. Let us mention the similar work in a continuous framework of Poinas et al. on the limit distribution of sums of functionals of DPPs dened on R d [107]. Figure 3.5 presents the asymptotic behavior of shot noise models driven by a spot that is the indicator function of a rectangle and a projection DPixP on Z 2 with a kernel whose Fourier coecients are dened as the indicator function of a disk. When the grid is rened, the shot noise as dened in this section tends to a Gaussian texture associated to the spot and the kernel of the DPixP.

3 Figure 3 . 6 :

 336 Figure 3.6: Three DPixP kernel functions, dened by their Fourier coecients, generating the same DPixP.

[ 26 ]

 26 maximize a log-likelihood depending on the equivalence class of DPP kernels. Urschel et al. [129] obtain a bound on a distance between the estimated kernels L * and the equivalence class of the original kernel: min D L * -D -1 LD F , on diagonal matrices D with coecients only equal to 1 or -1.

Figure 3 . 7 :

 37 Figure 3.7: Estimation of a DPixP kernel from 100 realizations, using a method by average. From left to right: the target DPixP kernel, one sample generated from this DPixP, the average of 100 independent estimations done on every sample, its projection on the set of projection DPixP kernels.

(3. 54 )Figure 3 . 8

 5438 Figure 3.8 presents several initialization kernels computed from one, 10 and 100 realizations. As one can see, the initialization is very noisy but already contains information on the target kernel.

Figure 3 . 8 :

 38 Figure 3.8: Two examples of initialization of our estimation algorithm. From left to right: the Fourier coecients of the target kernel (a), the initialization from 1, 10 and 100 realizations.

Figures 3 .Figure 3 . 9

 339 Figures 3.9 and 3.10 present some experiments on several DPixP kernels, using the second strategy presented here and combining all the samples in one estimation process. We have seen in the previous subsection that any translation of the estimated Fourier coecients or a symmetry with respect to (0, 0) of the estimated Fourier coecients generate the same DPixP. Thus, in Figures 3.9 and 3.10, we display a centered version of the estimation. First, Figure3.9 presents the results of this estimation procedure with projection kernels, meaning that the Fourier coecients of these kernels are zero or one.

Figure 3 .

 3 Figure 3.10 presents some results of this algorithm for non-projection DPixP kernels. Kernel (a) is a Bernoulli kernel: all the Fourier coecients are equal to n N . As expected, no specic structure appears from the estimation, regardless of the number of samples used. The estimations (b) and (c) are much noisier than their projection equivalent (Figure 3.9(a,e)) even if the shape formed by the Fourier coecients (which directly impacts the local repulsion of the point process) seems retrieved.

Figure 3 . 9 :

 39 Figure 3.9: Experiments on several projection kernels. From left to right: the target Fourier coecients of the kernel we want to recover, one realization of this DPixP, the estimation of the Fourier coecients from one, from 10 and from 100 realizations, with k max = 2000.

Figure 3 . 10 :

 310 Figure 3.10: Experiments on general DPixP kernels. From left to right: the target Fourier coecient of the kernel we want to recover, one realization of this DPixP, the estimation of the Fourier coecients from one, from 100 and from 800 realizations, with k max = 2000.
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Figure 4 . 1 :

 41 Figure 4.1: Original images considered in Figures 4.2to 4.4.

Figures 4. 2

 2 Figures 4.2and 4.3 show images reconstructed using the associated se-

  Figures 4.2and 4.3 show images reconstructed using the associated selected patches presented below the reconstruction. Each patch in the initial image is replaced by its nearest neighbor in the DPP selection. The nal

Figure 4 . 2 :Figure 4 . 3 :

 4243 Figure 4.2: Image reconstruction comparing dierent expected cardinality and the DPP kernels presented in the previous subsections. For each cardinality, the rst row presents the reconstruction of the image using only the patches selected by the corresponding kernel, given in the second row.

Figure 4 . 2 .

 42 Figure 4.4 compares the errors E 1 (4.6), E 2 (4.7) and the peak signal-tonoise ratio (PSNR) of the reconstruction images generated from samples given by the dierent kernels. The PSNR is a metric commonly used to evaluate the quality of the reconstruction of an image. Consider an initial image I 0 and a reconstruction I 1 , both having d color channels and N pixels with a value between 0 and 1. Then, PSNR = 10 log 10 N d d

Figure 4 . 4 :

 44 Figure 4.4: Reconstruction errors E 1 and E 2 and the PSNR for the Pool image (top) and the Parrot image (bottom), comparing several DPP kernels and a uniform selection (Bernoulli kernel) in function of different expected cardinality, from 5 to 250, with a step of 50. Note that the curves associated to the Qual/div and the Best kernels stop at an expected cardinality equal to 100 selected patches due to the rank of their kernel matrix equal to 147.

and 4 . 3 ,

 43 one can see that this kernel tends to select slightly more diverse patches than a uniform sampling.

2 t

 2 3, as the limit distribution of Poisson discrete shot noise models. Associated to the texture u, it is dened by∀ x ∈ Z 2 , U (x) = ū + y∈Z u (y)W (x -y) ), t u = 1 √ |Ω| (u -ū)1 Ω and W is a normalized Gaussian white noise on Z 2 . However, this Gaussian random eld model U is only adapted to the synthesis of unstructured textures. Figure4.5 shows the ADSN associated to several textures. Note that the rst one, which belongs to the micro-textures family, is the only well synthesized texture.

Figure 4 . 5 :

 45 Figure 4.5: Examples of asymptotic discrete spot noise synthesis (4.16). First row: Input textures. Second row: Synthesis.

  v

Figure 4 . 6 :

 46 Figure 4.6: Monoscale model dened in [52] using semi-discrete optimal transport for texture synthesis, from u the input texture.

Figure 4 . 7 :

 47 Figure 4.7: Error E 2 (4.7), PSNR (4.15) and Error E 3 (4.30) comparing several DPP kernels, using 9 dierent texture images.

Figure 4 . 8 :

 48 Figure 4.8: Visual comparison of the synthesis results when using either a target distribution with uniform subsampling (with cardinality 100) and DPP subsampling (with expected cardinality 100). See the text for comments.

Figures 4. 10

 10 Figures 4.10and 4.11 present some experiments comparing the synthesis

and 4 . 1 :

 41 Figures 4.10and 4.11 present some experiments comparing the synthesis of 720 × 512 textures using the initial algorithm [52], using 1000 patches to represent the patch distribution, and our adaptation using a DPP subsampling of the set of patches. Observe that for most textures the visual quality seems satisfying. Yet, one can notice a loss of quality between the uses of 1000 and 100 patches, concerning the syntheses from the third and fourth textures of Figure 4.10. These textures contains larger geometric structures or large

Figure 4 . 10 :

 410 Figure 4.10: We compare the synthesis results when using either a uniform subsampling (with cardinal 1000) or a DPP subsampling (with expected cardinal 100).

100 Figure 4 . 11 :

 100411 Figure 4.11: Same as Figure 4.10.

a

  DPP instead of a uniform selection allows for the use of much less patches to represent the texture. Considering textures, the PCA kernel, along with the Intensity kernel, provide appealing subsets of patches. As it also tends to select more singular patches, we chose to use this PCA kernel in the texture synthesis algorithm. Even though sampling a DPP is more costly than sampling a Bernoulli point process, the DPP sampling is done only once, oine, during the analysis part of the algorithm. Moreover, the nal reduction of the number of considered patches is decisive both in the analysis part of the algorithm, estimating the model, but most of all in the online part of the algorithm, synthesizing the output texture. The execution time of the synthesis is signicantly shortened because of the possibility for the estimated discrete patch distribution to have a reduced support. The experiments show that this strategy propose a compromise between synthesis quality and execution speed.

  k ξ ---→ n→∞ E (f (ξ)|ξ ∈ I) a.s. and in L p . (B.1) Theorem B.1.2 (Multivariate ergodic theorem -Kallenberg [75] Thm 9.9
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 1 ..T k d d ξ -------→ n 1 ,...,n d →∞ E (f (ξ)|ξ ∈ I) a.s and in L p . (B.2)
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 3224 Proof of Proposition 3.3.4 -Law of Large Numbers Consider f a given function on R 2 , and X ∼ DPixP(C) with C some admissible kernel on Z 2 . We want to prove the following Law of Large Numbers (x)dx, a.s and in L 1 . This proof proceeds in 3 steps: rst, we prove the Law of Large Numbers (Equation (B.4)) given f is an indicator function. Then, we prove the convergence considering f is a simple function and nally we prove the proposition for mesurable functions with compact support. Let us start by proving the convergence in the case of an indicator function f : R 2 → R, x = (x 1 , x 2 ) → 1 [0,a[×[0,b[ (x), with a, b ∈ N. We have ∀ n 1 , n 2 ∈ N,

2 f 1 [×[0, 1 k 2 [

 2112 (x)C(0)dx because a, b ∈ N. Let us now consider k 1 , k 2 ∈ N * . We dene f : R 2 → R, as f (x) = 1 [0, 1 k (x),T 1 and T 2 as the translation of 1 unit in the vertical and hori-142Appendix B. Convergence of Shot Noise Models Based on DPixP zontal directions. Then, ∀n 1 , n 2

x∈X 1 [, we have n 1 k 1 n 2 k 2 n 1 n 2 ∼ 1 k 1 k 2 . 2 1

 122122 0,1[×[0,1[ (x). Since ∀y ∈ R, y ∼ +∞ y+∞ Moreover, thanks to the multivariate ergodic theorem, [0,1[×[0,1[ (x) = C(0).

n 1 ,n 2 n 1 ,n 2 →∞ R 2 f

 1212 (x)C(0)dx.We have proved this property for all indicator functions on intervals oftypes [0, a[×[0, b[, for all a, b ∈ N and [0, 1 k 1 [×[0, 1 k 2 [ for all k 1 , k 2 ∈ N * . Aswe made a translation invariance hypothesis, and thanks to the linearity of limits and integrals, this property is also veried for any indicator function on[p 1 , q 1 [×[p 2 , q 2 [, ∀p, q ∈ Q 2 .As the set of 2D-rational sets generates the Borel set, this property is veried for all indicator functions on half-open intervals of R 2 . Now, let us prove it when f is a simple function, that is, given A 1 , . . . , A p half-open disjoint intervals of R 2 , f : R 2 → R, x → f (x) = p k=1 c k 1 A k (x).

2 1 2 f 11 )

 2211 A k (x)C(0)dx = R (x)C(0)dx. (B.10)Finally, we need to prove the a.s.-convergence and the L 1 -convergence for any bounded measurable function with a compact support. As it is bounded, there exists an increasing sequence of simple functions (φ n ) n∈N dened on R 2 such that φ n ---→ n→∞ f, and the convergence is uniform.Using this uniform convergence and common dominated convergence theorems, we can prove that the limit in Equation (B.4) holds when f is a measurable function with a compact support. B.3 Proof of Proposition 3.3.4 -Central Limit Theorem Consider f a bounded continuous function, with compact support, such that R 2 f (x)dx = 0. We want to prove the following result The proof of the Central Limit Theorem will be done in three steps. First, we need to compute the limit of the variance of √ N 2 S N , where S N is dened by rewrite the characteristic function of √ N 2 S N . At last, we compute its limit. Let us start by computing the limit of the variance of √ N 2 S N when N tends to innity. We need the following lemma. Lemma B.3.1. Let f be a bounded continuous function on R 2 with compact support and R 2 f (x)dx = 0 and X ∼ DPixP(C) on Z 2 . Then, ∀N ∈ N,

2 f

 2 x∈X f (x), x∈X h(x) = Γ f (x)h(x)K(x, x)µ(dx) -Γ (x)h(y)K(x, y)K(y, x)µ(dx)µ(dy).

2 f 1 N 2 y∈Z 2

 2122 (z) 2 dz, thanks to the Riemman sums theory. To compute the limit of the second part of the variance, we need to use the dominated convergence theorem. (1) Let us prove rst that ∀x ∈ Z 2 , |C(x)| 2 f y N f y+x N has a 146Appendix B. Convergence of Shot Noise Models Based on DPixP limit. Let us consider x ∈ Z 2 and > 0, ∀N ∈ N,

(B. 16 ) 2 f

 162 Concerning the rst part, as f has compact support, there existsA ∈ N such that its support is included in Λ = [-A, A] × [-A, A] and then f N 's support is included in N Λ = [-N A, N A] × [-N A, N A]. ∀x ∈ Z 2 , the support of the function f N (.)f N (. + x) is also included in Λ N . As f is bounded, there exists M > 0 s.t. |f | ≤ M and it is uniformly continuous: ∃η > 0, such that ∀y, z ∈ Z 2 , |z -y| ≤ η ⇒ |f (z) -f (y)| ≤ ε. As here x ∈ Z 2 is set, there exists N x ∈ N such that ∀N ≥ N x , x N ≤ η and then ∀y ∈ Z 2 , |f ( x+y N )-f ( y N )| ≤ ε.Concerning the second part, as we have the Riemann sum of a continuous function on compact support, ∃N 2 ∈ N such that ∀N ≥ N 2 , (z) 2 dz < .

and x∈Z 2

 2 |C(x)| 2 4(M A) 2 = 4(M A) 2 x∈Z 2 |C(x)| 2 < ∞ as C ∈ 2 (Z 2 ).

2 |C(x)| 2 R 2 f 1 = det K - 1 N

 22211 (z) 2 dz. (B.21) Now, let us compute the characteristic function of our studied sum.As, ∀N ∈ N, f N is dened on Λ N , can consider the process X N = X ∩ Λ N which becomes a nite DPixP on Λ N . We introduce the matrix K N -the restriction of K to Λ N -and the associated kernel function C N . Now let us denote P N of size Λ N × Λ N asP N = Φ N K N where Φ N is the diagonal matrix with coordinate Φ N (x, x) = φ N (x) = 1 -e i N f ( x N ) , ∀x ∈ Λ N .148Appendix B. Convergence of Shot Noise Models Based on DPixPAs we dened K N , we know that there exists a L-ensemble L such that L = K N (I -K N ) -1 and K N = L(L + I) -1 (whereI is the Λ N × Λ N -+ L) A⊂Ω det ((D N L) A ) (B.23) where D N is the diagonal matrix of size Λ N × Λ N with D N (y, y) = e L) det (I + D N L) = det L -1 L(I + L) -1 det I + D N K N (I -K N ) -(I -K N )K N det (I -K N )(I -K N ) -1 + D N K N (I -K N ) -1 = det (I -K N ) det (I -K N + D N K N ) det(I -K N ) -1 =det(I -(I -D N )K N ) = det(I -Φ N K N ) = det(I -P N ) = exp (tr (ln(I -P N ))) .

(B. 24 )

 24 On the other hand, we can nd a relation between this quantity and the limit of the variance of S N (0) by computing tr(P N ) and tr(P 2 N ).tr(P N ) = x∈Λ N P N (x, x) = x∈Λ N φ N (x)K N (x, x) = x 2 ),for suciently large N we have tr(P N ) = x∈Λ N C(0

(B. 26 )n,m∈Z 2 φ 2 =f= 2 = 1 (C. 4 )

 2622214 On the other hand, when N is large,tr(P 2 N ) = n∈Λ N P 2 N (n, n) = n∈Λ N m∈Λ N φ N (n)K(n, m)φ N (m)K(m, n) = N (n)φ N (m)|C(n -m)| (x)2 dx, by the same arguments as in the previous computation of the variance's limit. Convergence of Shot Noise Models Based on DPixP Now, let us consider a suciently large N , -log (det(I -P N )) -tr(P N ) -N | 2 ) P N n-2 , as, given a bounded operator S and a trace class operator T, tr(|ST |) ≤ S tr(|T |) [120, Lemma 2.1], and P N is bounded.≤ tr(|P N | 2 ) n≥1 1 n + 2 P N n ≤ tr(|P N | 2 ) n≥1 1 n P N n = -tr(|P N | 2 ) ln(1 -P N ) because ∀x < 1, ln(1 -x) = -n≥1x n n and as N is large, P N is small,≤ -ln(1 -φ N K N ) tr(|P N | 2 ) ≤ -ln(1 -φ N ∞ K N ) tr(|P N | 2 ) ---→ N →∞ 0, using the fact that φ N ∞ ≤ f ∞ /N, K N ≤ K and tr(|P N | 2 ) ≤ C(0) K f ∞ |suppf |.we use the function tf instead of the function f , ∀t ∈ R, then we can apply the Levy's continuity theorem which leads to the following Central Limit theorem: C(0) -x∈Z 2 |C(x)| 2 . Dene r 11 , θ 11 , r 12 , θ 12 the respective modulus and argument of C 1 (1) and C 1 (2). Whatever α, β, the partition of Y such that rank(K 1 ) α×β = 1, due to rows proportionality, one obtains r 11 = r 12 and θ 12 = -3θ 11 mod 2π. Now, assume that C 2 is an admissible DPixP kernel such that DPixP(C 2 ) = DPixP(C 1 ). Then the matrices K 1 and K 2 have equal principal minors. Necessarily, K 2 is irreducible and there exists a partition such that rank(K 2 ) α×β = 1, otherwise K 2 would verify the assumptions of Theorem 3.4.1 and so would K 1 . Then, as C 1 , C 2 is fully determined by C 2 (0), one modulus r 21 and one argument θ 21 .Once again, we know that C 1 (0) = C 2 (0) = C 0 and thanks to the equality of principal minors of size 2, the modulus are equal so r 21 = r 11 = r. One of the principal minors of size 3 for C 1 is equal toC 3 0 + C 1 (1)C 1 (1)C 1 (2) + C 1 (1)C 1 (1)C 1 (2) -C 0 C 1 (2)C 1 (2) -2C 0 C 1 (1)C 1(1), (C.2)so by equality of principal minors, we obtainRe C 1 (1)C 1 (1)C 1 (2) = Re C 2 (1)C 2 (1)C 2(2) ⇔ Re r 3 e 2iθ 11 +3iθ 11 = Re r 3 e 2iθ 21 +3iθ 21 ⇔ r 3 cos(5θ 11 ) = r 3 cos(5θ 21 ) ⇔ ∃ k ∈ Z s.t. θ 11 = θ 21 + 2 5 kπ (case 1) -θ 21 + 2 5 kπ (case 2). (C.3) Finally, let us assume we are in the rst case, K 1 can be written K 1 = circulant C 0 , re i(θ 21 + 2 5 kπ) , re -3i(θ 21 + 2 5 kπ) , re 3i(θ 21 + 2 5 kπ) , re -i(θ 21 + 2 5 kπ) = DK 2 D -with D = diag 1, e i 2 5 kπ , e i 4 5 kπ , e -i 4 5 kπ , e -i 2 5 kπ , which corresponds to a trans- lation of the Fourier coecients of C of k pixels. The second case yields to K 1 = DK 2 D -1 which corresponds to the symmetry and the translation of k pixels of the Fourier coecients of C.

Table 1 .

 1 1: DPPs tend to generate subsets of points far from one another.

	Triplet {i, j, k}	{1, 2, 3}	{1, 50, 200}	{50, 100, 200}
	Position			

  In the middle, E(|Y |) is constant, equal to 20. On the right, the ground set |Y| is constant and contains 5000 points, while E(|Y |)

		10 3	spec. algo.		10 2	spec. algo.		70	spec. algo.
			seq. thin. algo.			seq. thin. algo.		60	seq. thin. algo.
	Time (sec)	10 0 10 1 10 2		Time (sec)	10 0 10 1		Time (sec)	30 40 50	
					10 -1			20	
		10 -1						10	
		10 2	10 3 Size of the ground set	10 4	10 2	10 3 Size of the ground set	10 4	10	20 Expected cardinality of the DPP 30 40 50 60	70
	Figure 1.5: Running times in log-scale of the spectral and the sequential thin-
			ning algorithms as a function of the size of the ground set |Y| (two
			graphs on the left) or of the expected size of the sample E(Y )
			(right-hand graph), using a patch-based kernel. On the left, the
			expectation of the number of sampled points is set to 4% of |Y|.

grows.

  Hough et al. [72, Theorem 7] proved that this kernel K B is a random analogue of K, in the sense that given Y B ∼ DPP(K B ), we have

  Due to L's positivity, there exists a D×N matrix B, such that L = B t B, with D ∈ N * . It is possible to construct a dual representative C = BB t , a matrix of size D × D.

	In [78, 81], Kulesza and
	Taskar use this dual representation and prove that the computations needed for
	the sampling algorithm, to sample DPP L (L), can all be expressed in function
	of C, and be done on a D ×D matrix instead of the N ×N matrix L. They call
	this sampling algorithm, which has C as input, the dual sampling algorithm.
	Note that B j , the j-th column of B can be considered as a feature vector
	associated to the point j ∈ Y. The authors suppose that in general, D	N ,
	meaning that the number of features representing the data is much smaller
	than the amount of data. In that case, L is low rank and one can use the
	dual algorithm detailed in [81, Algorithm 3] and sample the DPP faster, with
	a running complexity of order O(D 3 ).	
	One can also deal with another class of DPPs associated to kernels K that
	can be decomposed into a sum of tractable matrices [41]. In this case, the
	sampling is much faster and the authors study the inference on these classes
	of DPPs. At last, Propp and Wilson [110] use Markov chains and the theory
	of coupling from the past to sample exactly particular DPPs: uniform span-
	ning trees. Adapting Propp and Wilson's algorithm, Avena and Gaudillière
	[8] provide a similar algorithm to eciently sample a parametric DPP kernel
	associated to random spanning forests.	

Table 2 .

 2 

1: Detailed running times of the sequential, spectral and sequential thinning algorithms for varying ground sets Y with |Y| ∈

[START_REF] Mccullagh | The permanental process[END_REF] 5000] 

  Such a function is called an admissible kernel. Any random subset X ⊂ Ω is called a (stationary) DPixP with kernel C and denoted

	(3.8)

C, they are now called determinantal pixel processes (DPixP). A DPixP kernel has two representations: C dened on Ω or the initial matrix K dened on Ω × Ω which corresponds to the block-circulant matrix with circulant blocks whose rst row is C. Denition 3.2.2 (Stationary DPixP). Let C : Ω → C be a function dened on Ω, extended by periodicity to Z 2 , such that ∀ξ ∈ Ω, C(ξ) is real and 0 ≤ C(ξ) ≤ 1.

  This scalar product is well dened as it is bilinear, symmetric and for all

  The purpose of this section is to derive a DPixP kernel function C from one or several samples of points on a nite and discrete domain. This estimation is non-parametric as we focus on general DPixP even though it can be seen as a parametric estimation of a DPP kernel matrix K of size |Ω| × |Ω| that we suppose block-circulant and determined by |Ω| parameters, the values of C. Before we investigate this question, it is necessary to characterize the identiability of DPixP models.

	Biscio and Lavancier [21] also use the p.c.f for a minimum contrast estimation
	in continuous settings.

  2 are called diagonally similar if there exists a diagonal matrix D such that M 2 = D -1 M 1 D. In the following, we also need the notion of the directed graph associated to a matrix[START_REF] Engel | Matrices diagonally similar to a symmetric matrix[END_REF][START_REF] Hartfiel | On matrices having equal corresponding principal minors[END_REF][START_REF] Kulesza | Learning with Determinantal Point Processes[END_REF]. Consider a matrix Let us consider two general admissible DPP kernels K 1 and K 2 , admissible meaning that they are Hermitian and their eigenvalues are in [0, 1]. Thanks to basic determinant properties, notice that if there exists a diagonal matrix

	M 1	0
	. . .	
	0	Mr

M of size N × N . Its associated directed graph G M contains the N vertices Y = {1, . . . , N } and an edge between the vertices x and y if and only if M (x, y) = 0. The matrix M is called irreducible if G M is strongly connected, meaning that there exists a sequence a path from any vertex to any other one. In the opposite case, the matrix is called reducible, which is equivalent to being permutation-similar to a block upper triangular matrix. Besides, it is called completely reducible if it is permutation-similar to a block diagonal matrix with irreducible blocks, meaning that there exists a permutation matrix P such that P t M P = , M 1 , . . . , M r irreducible. Notice that a Hermitian matrix is either irreducible or completely reducible.

  y). ∈ Y such that K 1 (x, y) = 0, |d x | = |d y |. Now recall that K 1 is irreducible. Its associated graph is connected and every node is reachable from any other node so it is possible to propagate this equality so that for all x, y ∈ Y, |d x | = |d y | = λ. Then without loss of generality, changing if necessary to 1 λ D, we can choose D as the matrix such that

				Then
	d y d x	=	d x d y	, hence for all x, y

  (Theorem 7) and[START_REF] Loewy | Principal minors and diagonal similarity of matrices[END_REF] (Theorem 1), Hartel and Loewy prove that if K 1 is irreducible and for every partition of Y into two subsets, α and β such that |α| ≥ 2 and |β| ≥ 2, rank (K 1 ) α×β ≥ 2, then K 1 and K 2 have equal principal minors if and only if there exists a diagonal matrix

  Notice that when we consider two equivalent DPixP kernels C 1 and C 2 , generating the block-circulant matrices K 1 and K 2 , there are three possible congurations. The rst one is when K 1 veries the assumptions of Theorem 3.4.1, it leads to Proposition 3.4.2. In the second case, K 1 is irreducible, but N = N 1 N 2 ≥ 4 and there exists a partition α, β of Y such that |α| ≥ 2, |β| ≥ 2 and rank (K 1 )

	the proof is
	identical.
	Remark 3.4.1.

α×β < 2. In the third case, K 1 is not irreducible. Let us characterize the second and third cases. It appears that these congurations are rare in practice.

Case 2: Assume that K 1 is irreducible, N = N 1 N 2 ≥ 4 and that there exists a partition α, β of Y such that |α| ≥ 2, |β| ≥ 2 and rank(K 1 ) α×β < 2.

  .30) Figure4.7 compares the kernels introduced in Section 4.2 and applied to subsample the set of patches of several textures (used in the experiment section). These graphs display the errors E 2 (4.7), E 3 (4.30) and the PSNR (4.15), computed, for each kernel, by averaging the results obtained from 9 texture images and, for each image, from several samples. One can notice that the PCA kernel (4.4) and the Intensity kernel (4.3) seem to behave in a more satisfying way than the other kernels and in general their quantitative results are similar. As we have seen before, in general, the PCA kernel produces more diverse subsets, with singular patches. For most textures, this kernel is the one minimizing E 2 (4.7) the error computing the maximum distance between the selection and the rest of the patches.
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  't be too large. In practice, Galerne et al.[START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF] use 3 × 3 patches
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	the patches can	

1 https://www.math.u-bordeaux.fr/~aleclaire/texto/

  ) . 2) Second, let us prove that, ∀N ∈ N, |C(x)| 2 1 N 2 is dominated by a sequence that does not depend on N and that is summable. Using the same notations as before, we can notice that ∀N ∈ N,≤ |C(x)| 2 M 2 (2N A) 2 N 2 = |C(x)| 2 4(M A) 2 ,

													y∈Z 2	f	y N	f	y + x N
		|C(x)| 2 1 N 2	y∈Z 2	f	y N	f	y + x N	≤ |C(x)| 2 1 N 2	y∈Λ N	f	y N	f	y + x N
													(B.19)
													(B.18)
	Then	1 N 2	y∈Z 2	f	y N	f	y + x N	-	R 2	f (z) 2 dz ---→ N →∞	0. We can conclude
	that ∀x ∈ Z 2 , 1 N 2	y∈Z 2 f y N f y+x N	---→ N →∞	z∈R 2 f (z) 2 dz.
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Remerciements

Section 4.3 applies this strategy to speed up a texture synthesis algorithm. This algorithm, presented by Galerne et al. in [START_REF] Galerne | A texture synthesis model based on semi-discrete optimal transport in patch space[END_REF], uses the empirical distribution of the patches of an initial texture and heavily relies on semi-discrete optimal transport. This method enables to synthesize complex textures. The authors propose to uniformly subsample the set of patches of the image to approximate the empirical distribution of the patches, using 1000 patches.

After a presentation of this synthesis strategy, we show how using a DPP to subsample the distribution of patches enables us to reduce the number of patches (to 200 or 100) and thus to signicantly reduce the execution time of the algorithm while maintaining the quality of the synthesis.

Determinantal Patch Processes

DPP Kernels to Sample in the Space of Image Patches

When considering determinantal point processes on patches, that can be called determinantal patch processes, the framework is more general than in Chapter 3: We are no longer dealing with stationary periodic point processes. We consider a Hermitian kernel K adapted to select diverse subsets of patches from an image, as set in Equation (1.5). The denition of this diversity depends on the problem we want to solve: for instance, compression, reconstruction of the image or initialization of the centroids of a clustering or of the EM algorithm.

As we have seen in Section 1.2, there exists a second characterization of DPPs, using a positive semi-denite matrix L. These DPPs are called Lensembles. Denition 4.2.1. We consider Y = {1, . . . , N } and L a Hermitian matrix of size N × N such that L 0, then the random set X ⊂ Y dened by

is a DPP with likelihood kernel L. We will denote X ∼ DPP L (L).

Recall that the initial denition using the kernel denoted by K, requires that 0 K I. This L-ensemble denition doesn't need the constraint of bounding the eigenvalues of the kernel by one. This property is convenient to dene a kernel, and a diversity model adapted to a specic problem. So this characterization is increasingly used in the machine learning community. 

A.1 Möbius Inversion Formula

Proposition A.1.1 (Möbius inversion formula). Let V be a nite subset and f and g be two functions dened on the power set P(V ) of subsets of V . Then,

and

Proof. The rst equivalence is proved in [START_REF] Mumford | Pattern Theory: The Stochastic Analysis of Real-World Signals[END_REF] for instance. The second equivalence corresponds to the rst applied to f (A) = f (A c ) and g(A) = g(A c ).

You will nd more details on this matter in the book of Rota [START_REF] Rota | On the foundations of combinatorial theory I. Theory of Möbius functions[END_REF].

A.2 Cholesky Decomposition Update

We describe below various updates for Cholesky decompositions.

A.2.1 Add a Line

We describe here how a Cholesky decomposition of symmetric semi-denite matrix M is computed given the Cholesky decomposition of its largest top left submatrix.

Let M be a symmetric semi-denite matrix of the form

where A is a square matrix, b a column vector, and c a real positive number. We suppose that the Cholesky decomposition of the matrix A is known, that is, A = T T t where T is lower triangular. The goal is to compute the Cholesky decomposition of the matrix M given T . Set

Then the Cholesky decomposition of M is

Add a Bloc

To be ecient, the sequential algorithm relies on Cholesky decompositions that are updated step by step to save computations. Let M be a symmetric semi-denite matrix of the form M = A B B t C where A and C are square matrices. We suppose that the Cholesky decomposition T A of the matrix A has already been computed and we want to compute the Cholesky decomposition

the Schur complement of the block A of the matrix M . Denote by T X the Cholesky decomposition of X. Then, the Cholesky decomposition of M is given by

Indeed, In order to prove these limit theorems, let us recall some results of ergodic theory.

B.1 Ergodic Theory

The following denitions and theorems, along with more details on ergodic theory, can be found in the book of Kallenberg [START_REF] Kallenberg | Foundations of modern probability, second ed. Probability and its Applications[END_REF].

We will denote a measurable space (S, S, µ), T a measurable transformation on S, ξ a random element of S with probability measure µ and θ a shift on S dened by, ∀x 0 , x 1 , • • • ∈ S, θ(x 0 , x 1 , ...) = (x 1 , x 2 , . . . ). Let us study the equivalence class of a DPixP of kernel C 1 such that its associated matrix K 1 is irreducible and it does not verify the rank hypothesis given in Theorem 3.4.1, in the case Ω of size 1 × 5. That means that there exists a partition α, β of Y such that rank(K 1 ) α×β = 1. As an admissible kernel matrix on Ω, K 1 is such that

C.2 Remark 3.4.1, Case 3: K 1 is not irreducible

In this section, we consider a kernel that belongs to the third category mentioned in Remark 3.4.1. That means that its associated matrix is a Hermitian block-circulant matrix K 1 of size N × N that is completely reducible, meaning that it is permutation similar to a block diagonal matrix with irreducible blocks. We want to prove that in that case, the blocks are identical, that is they are of equal size and they are composed of the same coecients. Moreover, we prove that these blocks are not only irreducible but also Hermitian and circulant. First, let us study the 1D case, meaning that K 1 is a kernel dened on the points of Y = {0, . . . , N -1} (to be consistant with our 2D representation) and it is circulant. Therefore, for all i, j ∈ Y, there exists c j-i

. Notice that k is necessarily larger or equal to 2, otherwise K 1 would not have any zero coecient, it would be possible to access to any index from any other, and it would be irreducible.

Similarly, k necessarily divides N and the only non-zero coecients c m are multiples of k, as otherwise, once again, the non-zero elements of K 1 would be located such that it would be possible to access to any index from any other by traveling only through non-zero coecients: K 1 would be irreducible. Then, if we dene l such that N = k × l, there are k cycles of size l in the graph associated to K 1 , each block with the same l coecients {c k , c 2k , . . . , c lk }, or equivalently, ∀ i 0 = 0, . . . , N -1, K(i 0 , j) = c kp , if j = kp + i 0 mod N, with p = 0, . . . , l -1, 0, otherwise.

(C.5)

Thus it is possible to dene the permutation matrix P which gathers the cycles, and which associates K 1 with a block diagonal matrix: ∀p = 0, . . . , l -1, ∀r = 0, . . . , k -1, P (p + lr, r + pk) = 1.

In other words, the matrix P associates the index r + pk of K 1 to the index p + lr (r-th block, p-th coecient) of the permuted block matrix. Moreover, these blocks (B r ) r∈{0,...,k-1} are circulant: for all r = 0, . . . , k -1, for all i, i = 0, . . . , l -1, B r (i, i ) = K(r + ik, r

for all τ ∈ Y such that (i + τ mod N ) and (i + τ mod N ) are in the r-th cycle,

To conclude, K 1 is permutation similar to a block-diagonal matrix, which is the repetition of one irreducible, circulant and Hermitian block. Now let us consider the 2D case, when K 1 is a kernel matrix dened on Ω = {0, . . . , N 1 -1} × {0, . . . , N 2 -1} and assume that K 1 is Hermitian, block-circulant with circulant blocks and completely reducible. Dene C 1 the function such that for all (i, j), (i , j ) ∈ Ω, K 1 ((i, j), (i , j )) = C(i -i, j -j). As in the 1D case, dene (e 1 , e 2 ) ∈ Z 2 ∩ Ω the two generating vectors such that C 1 (r, s) = 0, ∀(r, s) inside the elementary cell generated by (e 1 , e 2 ). These two vectors generate a subgroup of Z 2 and it contains Z(0, N 2 ) + Z(N 1 , 0), as K 1 is not irreducible and similarly as in the 1D case. Then e 1 divides N 1 , e 2 divides N 2 . As before, the only non-zero coecients of C 1 belong to {Ze 1 + Ze 2 } ∩ Ω. The size of the elementary cell determines the number of cycles (and future blocks) and l = {Ze 1 + Ze 2 } ∩ Ω denes the size of each cycle. It is possible to dene the permutation matrix that transforms K 1 into a block-diagonal matrix with irreducible blocks. For all (i, j) ∈ Ω, let us dene (r, s) its representative element in the elementary cell such that there exists p, q such that (i, j) = (pe 1 + qe 2 ) + (r, s) mod (N 1 , N 2 ). We dene P such that it associates the index (i, j) of K 1 to the index (p, q) + (r, s) (block (r, s), coecient (p, q)) of the permuted block matrix. As before, the blocks (B (r,s) )

have the same size and have an identical structure. Let us consider the block (r, s), consider (i, j), (i , j ) ∈ Ω, B (r,s) ((i, j), (i , j ))

= K 1 ((pe 1 + qe 2 ) + (r, s) mod(N 1 , N 2 ), (p e 1 + q e 2 ) + (r, s) mod(N 1 , N 2 )) = C 1 ((p -p)e 1 + (q -q)e 2 )

(C.9)

Let (τ 1 , τ 2 ) ∈ Ω be such that (i + τ 1 , j + τ 2 ), (i + τ 1 , j + τ 2 ) both belong to the cycle (r, s). Then (τ 1 , τ 2 ) ∈ Ze 1 + Ze 2 , we can write (τ 1 , τ 2 ) = t 1 e 1 + t 2 e 2 .

B (r,s) ((i + τ 1 , j + τ 2 ), (i + τ 1 , j + τ 2 )) = K 1 ((pe 1 + qe 2 ) + (r, s) + (t 1 e 1 + t 2 e 2 ) mod(N 1 , N 2 ), (p e 1 + q e 2 ) + (r, s) + (t 1 e 1 + t 2 e 2 ) mod(N 1 , N 2 )) = C 1 ((p -p)e 1 + (q -q)e 2 ) = B (r,s) ((i, j), (i , j )).

(C.10) Thus, for all (r, s), the associated bloc B (r,s) is block circulant with circulant blocks. Similarly, it is Hermitian. To conclude, K 1 is permutation similar to a block diagonal matrix dened by only one repeated irreducible, circulant, Hermitian block.