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Summary of the Thesis

Ultrafast spectroscopy techniques have been recognized as a valuable approach to study the fascinating properties of strongly correlated materials. Time-resolved optical and photoemission spectroscopies have been extensively used as a probe of electron-phonon interaction, e.g. through the excitation and detection of coherent phonons in pump-probe setups. This thesis is dedicated to the theoretical investigation of the out of equilibrium lattice dynamics induced by an ultrafast pump-pulse. In chapter 1 and chapter 3, we introduce the necessary material to contextualize our work.

In chapter 2, we develop a Hamiltonian based microscopic description of displacive coherent phonons in a metallic environment. The microscopic theory captures the feedback of the coherent phonon motion upon the electronic fluid, which is missing in the state-of-theart phenomenological formulation. We show that including the phonon feedback leads to a richer description of the phonon dynamics, and demonstrate that the average atomic displacement oscillates with a time dependant phase. At short timescales, the later phase leads to chirping. Whereas, at long times, it appears as a finite phase in the oscillatory signal.

We successfully apply the microscopic theory and quantitatively describe the A 1g coherent phonon of the parent compound of an iron based superconductor BaFe 2 As 2 . We explain the origin of the phase in the oscillatory signal reported in recent experiments, and we predict that the system will exhibit redshifted chirping at larger fluence. A microscopic theory opens the possibility to extract equilibrium information from coherent phonon dynamics.

In the late decades, noise spectroscopy in pump-probe setups has become a powerful tool to investigate the complex dynamic of the lattice fluctuations out of equilibrium. In particular, oscillations at double phonon frequency 2ω have been reported in a wide variety of systems. These 2ω oscillations are a consequence of the non equilibrium dynamics of the lattice fluctuation driven by the ultrashort pump-pulse, and are invariably interpreted as signatures of macroscopic squeezed phonon states. While it is well established that squeezing a phonon will result in temporal oscillations of the noise at double the phonon frequency 2ω, it is not guaranteed that 2ω oscillations in noise necessarily imply that the phonon is in a squeezed state. We show that this converse statement is not correct. In other Chapter 1 Introduction

Pump probe spectroscopy

The study of the physical properties of a condensed matter system is often based on nonequilibrium techniques and concepts. In general, a physical property is inferred from measurements performed by applying an external perturbation to the system, which drives it out of equilibrium. In transport or tunneling measurements [1,2], for example, the external perturbation is the electric field that drives the motion of the charge carriers. Similarly, in optical and photoemission spectroscopies an electromagnetic radiation is used to induce transitions between different energy levels in the system. Although the equilibrium state is perturbed, the common nature of these experiments is such that the external stimuli are either very weak or their duration is much longer than the interaction time scale between the internal degrees of freedom. Thus, a steady state regime is reached on a timescale much faster than the observation time. This provides a quasi-equilibrium information, which can be treated consistently by conventional statistical approaches [START_REF] Coleman | Introduction to Many Body Physics[END_REF][START_REF] Mahan | Many-Particle Physics[END_REF].

The possibility of breaking this paradigm by applying external perturbations faster than the typical relaxation times led to innovative ways to probe material properties, which are not accessible through conventional methods. In condensed matter, where the interactions are often confined in the sub-nanosecond timescale, a turning point was reached with the discovery of ultrafast laser sources [START_REF] Reid | Ultrafast laser technology and spectroscopy[END_REF]. These lasers deliver ultrashort, coherent and tunable light pulses with durations ranging from a few to several hundreds of femtoseconds. Thus, ultrafast laser pulses allow for the fascinating possibility of creating non-equilibrium conditions on timescales shorter than the energy exchange with lattice vibrations, magnetic excitations and other degrees of freedom. Hence, these techniques uncovered a plethora of physical phenomena with no analog in equilibrium physics, such as coherent phonon generation. media, of a material pumped by an intense pulse at initial time t = 0 and probed at later time t. Assuming that the atomic displacement is small, we expand the reflectivity to first order and write R(t) = R 0 (t) + λ(t)u(t), (1.1) where R 0 (t) is the unperturbed reflectivity, which is a purely decaying background, and u(t) oscillates at the frequency of the phonon mode ω 0 . The coupling constant λ(t) and the unperturbed reflectivity R 0 (t) can be time dependant due to the photo-excitation of the electronic sub-system. Thus, experimentally, a typical signature of a coherent phonon excitation is an oscillatory signal superposed on a decaying background in time-resolved spectroscopic probes such as X-ray spectroscopy, photoemission and reflectivity measurements, see Fig 1 .3. Coherent phonons have been studied in a variety of materials that include semiconductors [18,19,20], semimetals [21,22,23,24,25,26,27], transition metals [28], Cu-based [29,30,31,32], and the Fe-based [33,34,35,36,37,38,39,40,41] hightemperature superconductors, charge density wave systems [42,43,44,45,46], as well as

Mott [47,48,49,50] and topological [51,52,53] insulators. More recently, it has been recognized that the physics of Floquet dynamics can be made experimentally accessible via coherent phonon excitations [54,55].

in the electronic temperature ∆T (t) leads to similar results. We assume that the quasiequilibrium position Q 0 (t) relaxes back to equilibrium exponentially and write

Q 0 (t) = Q d e -αt , (1.2) 
where Q d is the displacement amplitude, and α the relaxation rate. We define the origin of the atoms with respect to the equilibrium position before the pump, so that Q 0 (0 -) = Q 0 (+∞) = 0.

The dynamics of the atomic displacement Q(t) is governed, phenomenologically, by a damped harmonic oscillator with a time dependant equilibrium position Q 0 (t) which reads

Q(t) + 2γ Q(t) + ω 2 0 Q(t) -Q 0 (t) = 0, (1.3) 
where ω 0 and γ denote the phonon frequency and damping, respectively. At initial time t = 0, the atomic displacement and velocity satisfy Q(0) = 0 and Q(0) = 0. Hence, using the initial conditions, we find that the atomic displacement is given by

Q(t) = ω 2 0 Q 0 ω 2 0 -2γα + α 2 e -αt -e -γt cos (Ωt) - α -γ Ω sin (Ωt) , (1.4) 
where Ω = ω 2 0γ 2 . The detection of a coherent phonon necessarily implies that in a typical experimental situation γ, α ≪ ω 0 , and hence, the atomic displacement reads Q(t) ≈ Q d e -αte -γt cos (ω 0 t) .

(1.5)

In the DECP theory, the atomic displacement oscillates with a cosine around a displaced quasi-equilibrium position, which exponentially relaxes back to its equilibrium value.

Impulsive stimulated Raman scattering mechanism

Here, we present the impulsive stimulated Raman scattering (ISRS) mechanism as applied to the experimental situation of one ultrashort pulse propagating through a medium with a Raman-active vibrational mode. The electric field of the laser light exerts a classical force on the atoms, which drives a coherent phonon. The results are easily understood by analogy to a simple classical harmonic oscillator which is subject to an impulse driving force that gives the oscillator an initial kick.

In the ISRS theory [14,15,17,56], the time dependence of the atomic displacement Q(t) is governed by the equation of motion

Q(t) + 2γ Q(t) + ω 2 0 Q(t) = ij ∂χ ij ∂Q E i E j , (1.6) 
where χ ij is the linear electronic susceptibility tensor, E i and E j are the electric fields of the pump pulse along i and j directions, respectively. For laser pulses with a duration shorter than the oscillator's vibrational period, the envelop of the pump can be modeled by a Dirac distribution and the equation of motion reads

Q(t) + 2γ Q(t) + ω 2 0 Q(t) = F 0 δ(t), (1.7) 
with F 0 a phenomenological constant. The effect of the impulsive force can be interpreted as a kick of the harmonic oscillator, which gives an initial velocity to the atoms. Before the pump pulse, the atomic displacement and the velocity are vanishing. Hence, using the initial condition, we solve the equation of motion 1.7 and find that the time evolution of the atomic displacement is given by

Q(t) = F 0 ω 0 e -γt sin(ω 0 t), (1.8) 
where we took the limit γ ≪ ω 0 . A coherent phonon excited via the ISRS mechanism oscillates with a sine. This is in contrast with the DECP mechanism where the oscillatory component is a cosine. Furthermore, unlike the DECP, phonon excited by the ISRS mechanism can be of any symmetry, and not necessarily A 1g phonons.

Squeezed phonon states

Here, we give a brief introduction to phonon squeezed states. We first discuss the properties of single mode vacuum squeezed states, and then, take into account the coupling of the bosonic mode to its environment and introduce thermal squeezed states.

Vacuum squeezed states were initially introduced in quantum optics as non classical states of light [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF] Gerry | Introductory Quantum Optics[END_REF], with a quantum uncertainty lower than that of the vacuum state.

Therefore, they are ideal candidate for technological application [START_REF] Grote | [END_REF], and of a great fundamental interest as well [START_REF] Gerry | Introductory Quantum Optics[END_REF]. The physics of squeezed states is not intrinsic to photons, and can be generalised to any bosonic excitation. In the following, we consider the particular case where the bosonic mode is a simple harmonic oscillator.

The dynamics of a quantum harmonic oscillator [60] is described by the quadratic Hamil-tonian

H = p2 2m + 1 2 mω 2 0 x2 , (1.9) 
where ω 0 and m are the frequency and the mass of the phonon mode, respectively. The operators p and x denote the momentum and position operators, respectively, and satisfy the canonical commutation relation [x, p] = i ; with the reduced Planck constant. We define the creation â † and annihilation â operators of a the harmonic oscillator as

â = mω 0 2 x + i mω 0 p , (1.10a 
)

â † = mω 0 2 x - i mω 0 p , (1.10b) 
with â † the Hermitian conjugate of â. The ladder operators obey the bosonic commutation relation [â, â † ] = 1. We express the Hamiltonian of the harmonic oscillator Eq. (1.9) with respect to the bosonic operators and write

H 0 = ω 0 â † â + 1/2 . (1.11) 
The transformation Eq. (1.10) diagonalizes the Hamiltonian of the the harmonic oscillator.

Therefore, the eigenstates of the system are that of the the number operator |n

n |n = n |n , (1.12) 
with n = â † â the number operator. The action of the Hamiltonian on the number state |n gives

H 0 |n = ω 0 n + 1/2 |n , (1.13) 
where E n = ω 0 n + 1/2 denote the energies of the Harmonic oscillator. It follows from the commutation properties of the bosonic operators that

â † |n = √ n + 1 |n + 1 , (1.14a 
)

â |n = √ n |n -1 . (1.14b)
It is worth noting that for a harmonic oscillator, the difference in energy between two

successive eigenstates E n+1 -E n = ω 0 is a constant. Therefore, the eigenstates of a harmonic oscillator |n can be interpreted a sum of n quanta with energy ω 0 . We associate the action of the creation â † and annihilation â operators with the creation and annihilation of a quanta with energy ω 0 in the eigenstate, respectively. The ground state of the harmonic oscillator is the vacuum state |0 , i.e. a state with no excitation and with energy E 0 = ω 0 /2, and the n th excited states states is obtained by adding n excitations to the vacuum

|n = (â † ) n √ n! |0 . (1.15)
It is insightful to consider the uncertainty associated with the the position x and momentum p of a harmonic oscillator in its ground state

x2 0 = 2mω 0 , (1.16a 
)

p2 0 = mω 0 2 , (1.16b) 
where Ô 0 = 0| Ô |0 denotes the average over the vacuum state. We immediately see that a harmonic oscillator in its ground state saturates the Heisenberg inequality

x2 0 p2 0 = 2 4 . (1.17) 
This gives a fundamental limitation to the noise associated with two canonical variables. It is however possible to reduce the noise in one quadrature by increasing that of its conjugate variable; phonon squeezed states achieve just that.

We define vacuum squeezed states |ψ(r, φ) as |ψ(r, φ) ≡ S(r, φ) |0 , (1.18) where S(r, φ) is the squeezing operator

S(r, φ) = exp -i r 2 (e iφ (b † ) 2 + e -iφ b 2 ) , (1.19) 
|0 the vacuum state, and r and φ are the squeezing parameters; we later elaborate on their physical meaning. Any observable can be expressed with respect to the canonical operators 

with sh(r) and ch(r) the sine and cosine hyperbolic functions, respectively, and θ = φ + π 2 . Note that the squeezing operation can be viewed as a Bogoliubov transformation, and hence, preserves the canonical commutation relations

[b sq , b † sq ] = ch 2 (r) -sh 2 (r) [b, b † ] = 1. (1.24)
We evaluate the expression of the variance of the position x and momentum p of a particle in a vacuum squeezed state

x2 (t) sq = 2mω 0 0| Ŝ † b(t) + b † (t) 2 Ŝ |0 , (1.25a) p2 (t) sq = - mω 0 2 0| Ŝ † b † (t) -b(t) 2 Ŝ |0 . (1.25b)
where sq denotes the average over a vacuum squeezed state. In the Heisenberg picture, the time dependence due to the quantum evolution of the system is carried by the operators, and the states are constant in time. In particular, the time evolution of the bosonic operators is given by b(t) = e iH 0 t be -iH 0 t = e -iω 0 t b, (1.26a) b † (t) = e iH 0 t b † e -iH 0 t = e iω 0 t b † , (

where H 0 is the free Hamiltonian Eq. (1.11). Thus, a straight forward calculation gives the variance of the atomic displacement and momentum x2 (t) sq = 2mω 0 ch(2r)sh(r) cos 2ω 0 tθ , (1.27a) p2 (t) sq = mω 0 2 ch(2r) + sh(r) cos 2ω 0 tθ ,

with r and θ the squeezing parameter and angle. The squeezing parameter r gives the squeezing strength. The squeezing angle θ can be interpreted as the angle of the squeezed variable in the position and momentum space at initial time t = 0. In particular, the squeezing angle θ = 0 and θ = π correspond to position and momentum squeezing, respectively.

The uncertainties of the canonical variables drop below the quantum limit, and oscillate in opposite phases at frequency 2ω 0 . Thus, the reduction of the noise in one variable is compensated by an increase in that of its conjugate variable, and the Heisenberg uncertainty principle is satisfied, see Fig. 1.5.

induces a quench of the thermal bath. We argue that a microscopic description of coherent phonons can be used to extract equilibrium information from pump-probe spectroscopy.

Then, we examine the noise properties of a bosonic excitation coupled to a quenched thermal bath.

Chapter 2

Microscopic Theory of Displacive

Coherent Phonons in Pump-Probe

Setups

The study of strongly correlated systems is a great challenge for condensed matter physics.

The numerous degrees of freedom in this system are strongly interacting, and hard to disentangle. In this regard, terahertz spectroscopy together with pump-probe techniques, see Sec. 1.1, have led to innovative ways to probe such complex materials and disentangle the interplay between their various degrees of freedom. In particular, the generation and detection of coherent phonons in pump-probe setups have been widely used to study electron-phonon coupling in strongly correlated systems [34,39]. While the experimental work is quite extensive [56,63,64,[START_REF] Ishioka | Springer Series in Chemical Physics[END_REF], theoretically there is scope to develop a microscopic description that takes into account different consequences of electron-phonon interaction, which can eventually allow to make contact with the equilibrium properties of the system.

Motivated by this we develop in this chapter, within the conceptual framework of displacive excitation of coherent phonons (DECP), see Sec. 1.2.1, a microscopic Hamiltonianbased description of coherent phonons in an environment where the timescale for the photoexcited carriers to thermalize is short compared to the electron relaxation rate and the phonon frequency, such as a metal with gapless charge excitations. Here, we focus on coherent phonon excitation driven by laser heating of carriers, a phenomenon which is relevant experimentally, but which has received less attention theoretically. As we show below, the microscopic formulation provides a more systematic treatment of electron-phonon interaction compared to the phenomenological model that is currently used to analyze experimental data [12]. In the phenomenological model [12], the pump pulse quenches the temperature of the electronic fluid, which shifts the equilibrium position of the phonon mode. The tem-perature then relaxes back to equilibrium exponentially with a time constant τ e . Therefore, the dynamics of the coherent phonon is described by a forced harmonic oscillator, and the atomic position at time t after the pump pulse is given by

u(t) = Q d e -t/τe -e -γt cos(ω 0 t) , (2.1) 
where ω 0 and γ denote the frequency and damping of the phonon mode, respectively, and Q d is the amplitude of the atomic displacement. Our theory captures how the coherent phonon excitation modifies the electronic fluid, and how this modification feeds back on the coherent phonon dynamics. The main advances of our work compared to the phenomenological theory of Zeiger et al [12] are the following. First, including the lattice feedback effect leads to a richer description of the dynamics. In particular, we show that at short time scales this leads to chirping or temporal variations of the oscillation frequency, while staying within a harmonic description of the coherent phonons. On the other hand, at long times the feedback leads to a finite phase shift in the oscillatory signal. The origin of this phase is distinct from that in the phenomenological DECP theory [12], and it is likely to be dominant quantitatively. Importantly, the theory predicts that the sign of the phase is determined by whether the chirping is red or blue shifted. Second, a Hamiltonian formulation opens the possibility of extracting microscopic equilibrium information from coherent phonon studies.

Finally, the microscopic formulation can be refined systematically using methods of manybody to deal with various interaction effects. This chapter is organized as follows. In Sec. 2.1, we develop a Hamiltonian based microscopic description of displacive coherent phonons in metallic systems, and compare our findings with the phenomenological theory of Zeiger et al [12]. In Sec. 2.2, we apply the theory to BaFe 2 As 2 and we show that the data from a recent time resolved X-ray study can be successfully described by our theory, starting from a tight binding model. We conclude in Sec. 2.3.

Microscopic description of displacive A 1g coherent phonons

In this section, we first discuss in Sec. 2.1.1 the rationale for treating the effect of the pump as a quench of the electronic temperature. In Sec. 2.1.2, we define the Hamiltonian of the system, and describe the dynamics of the coherent phonon using Heisenberg equation of motion. In Sec. 2.1.3, we solve the above equation, and we discuss our main results, emphasizing the new physics introduced by taking into account the feedback of the coher-ent phonon motion on the electron fluid that is generated by electron-phonon interaction.

We also explain how pump-probe spectroscopy can be used as a probe of the equilibrium properties of the system.

Pump induced thermal quench of electrons

The microscopic description of the dynamics of strongly correlated electrons in pump-probe setups requires a full microscopic treatment of the light-matter coupling and electronelectron interaction, which is quite challenging. We argue that for our problem, the effect of the pump pulse can be modeled as a quench of the electronic temperature.

After the pump, the initial dynamics of a metallic system is dominated by light-matter and by electron-electron interactions. The pump pulse excites the electronic subsystem, and creates a non-equilibrium electronic distribution. However, as time and angle resolved photoemission (tr-ARPES) experiments have shown [38], due to electron-electron scattering the electronic subsystem equilibrates after a time τ r of order few tens of femtoseconds at a higher temperature T H . Hence, at longer times an instantaneous effective electronic temperature T (t) can be defined. For time t > τ r , the excess energy of the electrons is deposited into the lattice via electron-phonon scattering. The electronic temperature then relaxes back to the base temperature T L , and the system reaches thermal equilibrium.

In this work, we focus on the regime t ≫ τ r . Accordingly, we assume τ r → 0, such that the effect of the laser pump can be modeled as inducing a temperature quench of the electrons. We assume that the electronic temperature relaxation is characterized by a timescale τ e , and is described phenomenologically by

T (t) = T L + (T H -T L )e -t/τe , (2.2) 
where T L is the lattice temperature before the pump T L = T (0 -), T H is the temperature after the pulse T H = T (0 + ), and τ e is the decay rate, see Fig. 2.1.

The Hamiltonian defined above does not include light-matter coupling, which is responsible for the photoexcitation of the electrons. The microscopic treatment of the excitation of the electronic fluid by the pump pulse and their thermalization is beyond the scope of the present work. In Sec. 2.1.1, we discussed how we can phenomenologically take into account light-matter coupling as a quench of the effective electronic temperature, to study the coherent dynamics over sufficiently long time scales.

In the Heisenberg picture, the time evolution of the phonon annihilation operator b(t) is governed by Heisenberg equation of motion

∂ t b = -i[b, H] = -iω 0 b -i λ √ N kabσ C ab (k)c † kaσ c kbσ . (2.4)
Hence, taking the second derivative with respect to time of the phonon operators b(t) and b † (t) we obtain

∂ 2 t b = -ω 2 0 b - λω 0 √ N kabσ C ab (k)c † kaσ c kbσ -i λ √ N kabσ C ab (k)∂ t c † kaσ c kbσ , (2.5a) 
∂ 2 t b † = -ω 2 0 b † - λω 0 √ N kabσ C ab (k)c † kaσ c kbσ + i λ √ N kabσ C ab (k)∂ t c † kaσ c kbσ . (2.5b) 
The dimensionless displacement operator of the zone center mode û(t) is defined as

û(t) ≡ b(t) + b † (t). (2.6) 
We sum Eq. (2.5a) with Eq. (2.5b) and find that the equation of motion of the dimensionless atomic displacement u(t) ≡ û(t) is given by

∂ 2 t + ω 2 0 u(t) = -2 λω 0 √ N kabσ C ab (k) c † kaσ (t)c kbσ (t) H,T (t) , (2.7) 
where H,T (t) denotes the average over the interacting many-body state at time t after the pump pulse where system is characterized by a temperature T (t). We stress that the above equation of motion is not that of a simple forced harmonic oscillator. Indeed, the average H,,T (t) is over a many-body interacting system, hence due to electron-phonon interaction, the forcing (RHS of Eq. (2.7)) implicitly depends on the atomic position u(t), and can generate anharmonic terms. Moreover, the density matrix of the electronic state is described by a Boltzmann distribution with a time dependant temperature T (t).

We first discuss the equation of motion of the coherent phonon Eq. (2.7) before the pump pulse at time t = 0 -, where the system is in equilibrium at the base temperature T = T L . The atomic position does not depend on time ∂ t u = 0, and the stationary solution of Eq. (2.7) gives the equilibrium position u eq of the A 1g mode

u eq = - 2λ ω 0 √ N kabσ C ab (k) c † kaσ c kbσ H,T L . (2.8)
In the transient regime t > 0, one is interested in the displacement of the atomic position with respect to equilibrium, i.e., the shift in the mean position ũ(t) ≡ u(t)u eq . Thus, we drop the tilde for convenience and write the equation of motion of the shifted variable as

∂ 2 t + ω 2 0 u(t) = F (t), (2.9) 
with

F (t) = -2 λω 0 √ N kabσ C ab (k) c † kaσ (t)c kbσ (t) H,T (t) - kabσ C ab (k) c † kaσ c kbσ H,T L , (2.10) 
where the forcing F (t) depends explicitly on time in the transient regime. The evaluation of the forcing F (t) for an interacting system is a challenging task for the following reasons.

First, the averages in Eq. (2.10) are over an interacting many-body state and implicitly depend on the phonon variable û(t). Thus, given that the phonon field is a quantum object, the forcing F (t) depends on both the mean atomic displacement u(t) and the phonon fluctuations û2 H , see definition Eq. (2.6). Second, the electrons and phonons are at different temperatures T = T ph (see Sec. 2.1.1 for details), therefore the forcing can not be evaluated using the equilibrium imaginary time formalism. In the phenomenological DECP theory, the phonon feedback, or the implicit dependence of F (t) on u(t), is neglected, and the forcing F (t) is independent of the phonon variable û(t). Later, we develop a perturbative scheme to evaluate the forcing F (t) that captures the phonon feedback, and compare our results with the phenomenological DECP theory.

The forcing F (t) can not be evaluated analytically and needs to be approximated, as it is often the case for many-body interacting systems. Our goal is to take into account the phonon feedback at least qualitatively, for which it is enough to evaluation the forcing F (t) to second order in the electron-phonon interaction λ 2 . At this order, the phonon variable can be treated as a time dependent classical field, since any quantum fluctuations û2 are higher order corrections in λ. The problem is then reduced to a hot electronic fluid interacting with a time dependent field induced by the phonon motion. In Sec. 3.2, we prove this statement rigorously using Keldysh formalism. The forcing F (t) can be evaluated to second order in λ, by considering that the dynamics of the system can be described by the effective mean-field Hamiltonian

H eff = k,a,b,σ ǫ ab -µδ ab c † kaσ c kbσ + λ k,a,b,σ C ab (k)c † kaσ c kbσ u(t), (2.11) 
with u(t) = b(t) + b † (t) . To second order in the electron-phonon interaction O(λ 2 ), we can evaluate the forcing F (t) using standard linear response theory [START_REF] Fetter | Quantum Theory of Many-Particle Systems[END_REF] and obtain

F (t) = -2ω 0 Ô H 0 ,T (t) -Ô H 0 ,T L -2ω 0 +∞ -∞ Π T (t) (t -t ′ )u(t ′ )dt ′ , (2.12) 
with

Π R (t, t ′ ) ≡ iθ(t -t ′ ) Ô(t ′ ), Ô(t) H 0 ,T (t) , (2.13a) 
Ô(t) ≡ λ √ N k,a,b,σ C(k) ab c † kaσ (t)c kbσ (t), (2.13b) 
where H 0 ≡ H(λ = 0), T L is the lattice temperature before the pump pulse, T (t) is the time dependent effective electronic temperature in the transient regime, and

Π T (t) (t -t ′ )
is the retarded (causal) response function. At this stage, it is evident that, if needed, electron-electron and electron-phonon interaction can be included in the formalism. Since, all averages, defined in Eq. (2.12), are taken with respect to H 0 , which has no explicit time dependence, one can in principle use the equilibrium imaginary time formalism to evaluate the forcing F (t). However, the electronic temperature explicitly depends on time, and it is not obvious that using the imaginary time formalism, for which the temperature is constant in time, is meaningful. This issue is addressed in details in Appendix A.1, where we show that, the forcing F (t) can be evaluated using the standard equilibrium formalism, and replacing the constant temperature with the time dependent electronic temperature T (t) at the end of the calculation. As a result, Π T (t) (tt ′ ) is a function not just of (tt ′ ) but also of time t via its dependence on the electronic temperature T (t). Moreover, the Fourier transform of the response function Π T (t) (Ω) coincides with the equilibrium retarded phonon self-energy Σ ph (Ω) evaluated to second order in λ and at temperature T (t) (see Appendix A.1 for details).

We evaluate the convolution term of the forcing F (t), the second term of Eq. (2.12), in frequency domain and obtain

+∞ -∞ Π T (t) (t -t ′ )u(t ′ )dt ′ = 1 2π +∞ -∞ Π[T (t), ω]u(ω)e iωt dω. (2.14) 
The fact that the coherent phonon is a well-defined excitation implies that the retardation in

Π T (t) (t -t ′
) is weak, and that it is sufficient to expand the retarded self-energy in frequency

+∞ -∞ Π T (t) (t -t ′ )u(t ′ )dt ′ ≈ 1 2π +∞ -∞ π (T ) + i(ω/ω 0 )γ (T ) u(ω)e iωt dω, ≈ π (T ) u(t) + γ (T ) /ω 0 ∂ t u(t), (2.15) 
with π(T ) ≡ Π(ω = 0, T ) and γ(T )/ω 0 ≡ ∂ ω Π(ω, T ) ω=0 . The retarded phonon self-energy

Π T (t -t ′
) is a real quantity, see Eq. (2.13a), which implies that its Fourier transform

satisfies the relation Π R [ω] = (Π R [-ω]) * .
Hence, both Π(ω = 0, T ) and Π(ω, T ) Ω=0 are real quantities. In general, both π(T ) and γ(T ) are time dependent through their T (t)

dependencies. In the following we simplify the discussion by assuming that the decay rate γ is constant, even though the current formulation can handle time-dependent decay rates.

This gives

∂ 2 t + 2γ∂ t + ω 2 0 u = f (t), (2.16) 
with

f (t) ≡ -2ω 0 Ô T,H 0 -Ô T L ,H 0 + {π(T ) -π(T L )}u(t) (2.17) 
the instantaneous out of equilibrium force. The second term involving Ô T L is a constant, and adding it is equivalent to setting the zero of the displacement u to be the atomic position at T L (see Eq. (2.8)). The fourth term involving π(T L )u(t) renormalize the frequency

ω 2 0 → ω 2 0 + 2ω 0 π(T L )
, and adding it is equivalent to identifying ω 0 with the equilibrium renormalized phonon frequency at T L . Once these two terms are added, we now get the behavior that is physically expected, namely

f (t = 0 -) = f (t → ∞) = 0, see Eq. (2.2).
Note that the phonon damping is naturally derived from the microscopic formulation.

The functions Ô T and π(T ) are well-defined thermodynamic quantities which, in the absence of a phase transition, are analytic in T . Thus, they can be expanded around

T L Ô T,H 0 -Ô T L ,H 0 = n d n Ô T,H 0 dT n T =T L (T -T L ) n , (2.18a) π(T ) -π(T L ) = n d n π dT n T =T L (T -T L ) n , (2.18b) 
where T L is the base temperature. We replace the electronic temperature by its expression 

T (t) = T L + (T H -T L )e -t/
π(T ) -π(T L ) = n b n e -nt/τe , (2.19b) 
with

a n = d n Ô T,H 0 dT n T =T L (T H -T L ) n , (2.20a) b n = d n π dT n T =T L (T H -T L ) n . (2.20b)
In general, the temperature dependence of the thermodynamic functions Ô T and π(T ) is non trivial, and solving the equation of motion with these series of exponentials is unnecessarily cumbersome. Hence, we first express them in a form that is more practical. This is achieved by noticing that these series can be truncated after the first few terms, and that the time scale of the decay rates τ n = n/τ e are given by the electronic temperature decay rate τ e . Therefore, each of the series n a n e -nt/τe and n b n e -nt/τe , in Eq. (2.19), can be modeled as a single decaying exponential with effective decay rates τ 1,2 respectively

Ô T,H 0 -Ô T L ,H 0 ≈ -(X 1 /2) e -t/τ 1 , (2.21a 
)

π(T ) -π(T L ) ≈ -(X 2 /2) e -t/τ 2 , (2.21b) 
and effective amplitudes

X 1 = -2 Ô T H ,H 0 -Ô T L ,H 0 , X 2 = -2 π(T H ) -π(T L ) , (2.22) 
where the parameters X 1 and X 2 are calculated from the initial conditions. Since the time scale of the decay rates appearing in the two series is given by the electronic temperature decay rate τ e , we expect the effective decay rates τ 1/2 ≈ τ e . This mismatch between the electronic temperature decay rate τ e and the forcing decay rate τ 1 is observed using tr-ARPES [38]. The temperature dependencies of O T and π(T ) can, in principle, be obtained from the microscopic theory. Then, the parameters [X 1 , X The instantaneous force f (t) in the equation of motion of the coherent phonon reads

f (t) = ω 0 X 1 e -t/τ 1 +X 2 e -t/τ 2 u(t) , (2.23) 
where the second term, which is absent in the phenomenological theory, is the lattice feedback generated by electron-phonon interaction. This feedback can be interpreted as the effect of the change in the electron dispersion due to the coherent phonon excitation. Equations (2.16) and (2.23), together with the initial conditions u(0) = 0 and ∂ t u(0) = 0, describe the coherent phonon dynamics. Evaluating the force f (t) to linear order in λ is equivalent to ignoring the lattice feedback by setting X 2 = 0 in Eq. (2.23). In this limit, we recover the phenomenological result of Zeiger et al. [12], namely

u(t) = X 1 ω 0 e -t/τ 1 -e -γt cos(ω 0 t -φ 0 )/ cos φ 0 ,
with the phase φ 0 ∼ max[γ/ω 0 , 1/(ω 0 τ 1 )]. However, the detection of a coherent phonon necessarily implies that in a typical experimental situation

ω 0 ≫ γ, 1/τ 1/2 , (2.24) 
and so φ 0 ≪ 1, which means that the phase alluded to within the phenomenological framework is negligible. As we show below, keeping the lattice feedback term also leads to a finite phase of a different physical origin, and this latter is quantitatively more significant than φ 0 .

Beyond the phenomenological theory: interaction induced phonon feedback corrections

In this section, we discuss the effects of the phonon feedback on the atomic motion. The equation of motion of the coherent phonon is given by

∂ 2 t + 2γ∂ t + ω 2 0 u = ω 0 X 1 e -t/τ 1 +ω 0 X 2 e -t/τ 2 u(t), (2.25) 
where due to the presence of the feedback term X 2 = 0, the solution of the atomic position is modified. The solution of the above equation is discussed in details in Appendix(A.2), where we show that finite X 2 leads to a richer dynamics and a modified solution. In particular, in the limit [γ/ω 0 , 1/(ω 0 τ 1/2 )] → 0, which is experimentally relevant, the solution of the Unlike in the phenomenological DECP theory, the coherent phonon oscillates with a time dependent phase Φ(t). For small times t τ 2 , we can expand the feedback Φ(t) to first order in t/τ e and get

Φ(t) ≈ - X 2 2 t,
and hence, the feedback term describes temporal variation of the oscillation frequency, i.e.

chirping, with a frequency variation ∆ω 0 ∼ -X 2 /2, see Fig. 2.2. On the other hand, for t ≫ τ 2 we get a finite residual phase the phase φ = (∆ω 0 /ω 0 )(ω 0 τ 2 ) can be substantial since it involves the large parameter ω 0 τ 2 , c.f., Eq. (2.24). Since in our theory the frequency shift ∆ω 0 and the residual phase φ are related by

φ ∞ ≡ Φ(t → ∞) = -X 2 τ 2 /
φ ∞ = -∆ω 0 τ 2 , (2.29) 
an important conclusion is that red-shifted (blue shifted) chirp is accompanied by negative (positive) residual phase. Note, the time dependent phase Φ(t) is qualitatively different from a constant phase that is usually discussed in the literature. The chirping discussed here is related to the temperature quench of the electron bath, and hence, to the time dependence of the phonon frequency due to electron-phonon interaction. This is to be contrasted with other mechanisms of chirping discussed in the literature, such as that due to phonon anharmonicity [23] and carrier diffusion [25,[START_REF] Tangney | [END_REF]68].

Note, equilibrium Raman spectroscopy of BaFe 2 As 2 shows that the A 1g phonon frequency softens with increasing temperature [69]. Simultaneously, the phonon lifetime [69] has an atypical temperature dependence across the magnetic transition of BaFe 2 As 2 which is very reminiscent of the T -dependence of resistivity [70], implying that the phonon temperature dependencies are likely due to interaction with the electrons. Thus, from these equilibrium trends, we conclude that X 2 > 0, and we predict that the coherent A 1g phonon of BaFe 2 As 2 will show red-shifted chirp accompanied by a negative residual phase at sufficiently high fluence. The above prediction is indeed correct for the A 1g coherent phonon of BaFe 2 As 2 , which softens with increasing temperature, and for which a negative phase φ = -0.1π has been reported [38,39], see also the discussion in Sec. 2.2.

Quantitative description of the A 1g Coherent Phonon in BaFe 2 As 2

In this section, we apply the theory quantitatively to the coherent A 1g phonon of the strongly correlated metal BaFe 2 As 2 , and compare with a recent time-resolved X-ray study [39], see 

Motivations

The strongly correlated metal BaFe 2 As 2 is the parent compound of a class of high temperature superconductors that also have rather interesting magnetic and nematic properties [71].

The A 1g phonon of the system corresponds to the out-of-phase oscillations of the arsenic atoms in the direction perpendicular to the iron plane, see Fig 2 .3. The A 1g coherent phonon has also been widely studied using a variety of pump-probe techniques [33,34,36,38,39],

including time-resolved X-ray spectroscopy [39] which provides the most direct information about the As motion. The electronic properties of the BaFe 2 As 2 are known [72] to be very sensitive to the As height, which makes the study of the coherent phonon motion all the more interesting.

Our overall goal in this section is to check to what extent a microscopic tight-binding model, that has been successfully used to understand equilibrium properties, can be used to describe the transient temperature dependencies involved in a pump-probe setting. Such an exercise is a step in the direction of extracting information about equilibrium properties from a pump-probe setup. 

Microscopic model

Here, we briefly review the basic equilibrium properties of BaFe 2 As 2 required to define the various parameters of the microscopic Hamiltonian of Eq. (2.3). Then, we propose a scheme to evaluate the driving force f (t), defined in Eq. (2.17). For a detailed review on iron based superconductors, see Ref. [74] and references therein.

Electronic structure

Despite the simple lattice structure of BaFe 2 As 2 [73], DFT calculations [75] and ARPES measurements [76] show that its electronic structure is rather complex [77]. The system has a 3d multi-band electronic structure with electrons strongly dispersing along the z direction, and the Fermi surface topology changes going from the k z = 0 to the k z = π plane.

Moreover, the electronic band-structure shows incipient bands around the M = (π, π, 0)

and A = (π, π, π) points that can easily be excited by thermal fluctuations, see Fig 2 .4.

Therefore, the equilibrium properties of the BaFe 2 As 2 are strongly temperature dependent. This is true in particular for the chemical potential and the Fermi surface [78], and this property is conducive in order to efficiently drive a coherent phonon (see Eq. (2.12) and discussion below).

We take the electronic kinetic part ǫ ab (k) from Ref. [75], which itself is obtained as a tight-binding fit of the LDA band structure onto a basis of five d Fe orbitals [79]. This where [t nn ] ab is the diagonal nearest-neighbour entries of the tight-binding parameters ǫ ab (k).

Indeed, one can see that, at the mean field level , increasing the arsenic displacement u renormalizes the nearest neighbour part of the hoping according to

[t nn ] ab (k) → 1 -λ [t nn ] ab (k),
which reduces the bandwidth of the electronic dispersion. In our scheme, the entire electronphonon coupling is ultimately described by a single additional dimensionless parameter λ that defines the electron-phonon interaction strength. This parameter can later be absorbed in an overall scaling factor between the calculated u(t) and the experimental X-ray intensity (see also the discussion following Eq. (2.33) below).

Calculation of the driving force in the transient regime

We describe the calculation of the thermodynamic functions Ô T and π(T ) needed for the evaluation of the out-of-equilibrium force f (t). Using Eq. (2.12), the thermal average of the weighted electron density operator Ô T reads

Ô H 0 ,T ≡ λ √ N k,a,b,σ C(k) ab c † kaσ c kbσ H 0 ,T = λ √ N k,ν,σ C(k) νν n F ξ ν (k) -µ(T ), T , (2.31) 
where the last equality is written in the band basis. Here, n F is the Fermi function, ξ ν (k) is the energy of an electron in the band ν with momentum k, C(k) νν is the electron-phonon matrix elements in the band basis, and µ(T ) is the chemical potential at the transient temperature T (t) at time t. We assume that there is no electronic diffusion [35], and that the particle number is conserved during the pump-probe cycle, which is consistent with the conclusions of a recent time-resolved photo-emission study [38]. We divide the Brillouin zone into a (10 × 10 × 10) grid, and diagonalize H 0 at each point of the grid to obtain the electronic dispersion ξ ν (k). The chemical potential is then calculated by solving the particle number conservation equation numerically. In Fig. 2.5 (a), we show the result of our calculation of Ô H 0 ,T for temperatures ranging from 0 to 3500 K.

The T -dependence of the thermodynamic functions Ô T is transformed into a time dependence using Eq. (2.2), provided we have an estimate of the phenomenological parameters (T H , τ e ), and gives the instantaneous out of equilibrium force f(t). The resulting time dependence can be modeled by a single decaying exponential using Eq. (2.21), which gives an estimate of (X 1 , τ 1 ). The solid (black) line of Fig. 2.5 (b) gives such a transformation Ô H 0 ,T → Ô (t) for a representative value of (T H , τ e ).

Comparison with time resolved X-ray spectroscopy

In this section, we compare the microscopic theory with time resolved X-ray scattering measurement on BaFe 2 As 2 [39], which is the most direct probe of the arsenic position.

Where the X-ray intensity of a Bragg pick associated with the arsenic position is probed in the transient regime, for a pump fluence ranging from 0.7 to 3.5 (mJ/cm 2 ) at a constant base temperature T L = 140K.

We discuss the relevance of the λ 2 contribution to the force f (t) that is implied in the experiment of Ref. [38,39], where a residual phase φ ∞ ≈ -0.1π in the oscillatory signal is reported. This contribution can be estimated from the following argument. To λ 2 accuracy, π(T ) can also be identified as the equilibrium phonon self-energy whose T -dependence can be inferred from equilibrium Raman measurement of ω 0 (T ) [69]. For T L = 140 K and T H ∼ 500 K, which roughly corresponds to the quenched temperature in the transient regime [38], an extrapolation of ω 0 (T ) reported in Ref. [69] gives ∆ω 0 = 0.4 THz, and therefore X 2 ω 0 ≈ 0.01. This small fraction implies that the λ 2 contribution to the force f (t) is unimportant for the fluences used in Ref. [39]. Nevertheless, for the fits we kept the phase Φ(t) generated by the feedback effect, and we used the expression u(t) = (X 1 /ω 0 )(e -t/τ 1e -γt cos[ω 0 t + Φ(t)]),

(2.32) by setting X 2 ω 0 → 0 in Eq. (2.26). To model Φ(t), we assume that it is fluence independent, and that the experimentally reported phase φ = -0.1π [39,38] can be identified with Φ(t → ∞) = -X 2 τ 2 /2 (see Eq. (2.27)), from which we get τ 2 ≈ 800 fs. This value of the decay rate τ 2 has the same scale as the electronic decay rate τ e , as it is expected from the microscopic theory. Note also, for time t τ e the quality of the fit is marginally affected by including the feedback Φ(t) term. As argued in Sec.(2.2.2.3), the parameters [X 1 ,τ 1 ] can be calculated from the microscopic theory provided we know [T H ,τ e ], see dashed (red) line of Fig. 2.5(b). These are the only two phenomenological parameters of the theory, and are estimated by fitting the X-ray data (see Fig. 2.5 (c)). Thus, the atomic displacement in the transient regime can be used as a probe of the electronic temperature. Note, the above step should not be interpreted as a mere replacement of two phenomenological parameters (X 1 , τ 1 ) by two other phenomenological parameters (T H , τ e ). This is because in our scheme, the estimation of (X 1 , τ 1 ) at each fluence is obtained via the evaluation of Ô H 0 ,T from the microscopic Hamiltonian Eq. (2.3) whose parameters are themselves fluence independent. In addition, the lattice temperature is kept constant at T L = 140K for all fluences. Thus, the modeling is highly constrained, and it is not obvious that the (X 1 , τ 1 ) needed for a given fluence can be obtained in our scheme for reasonable values of (T H , τ e ) once the Hamiltonian is fixed. One way to appreciate the nontrivial step involved in our quantitative modeling is to note that our scheme can provide meaningful (T H , τ e ) only if Ô H 0 ,T is a monotonically increasing function of temperature. On the other hand, such a property is a priori not guaranteed. Likewise, if the slope of the thermodynamic function Ô H 0 ,T is too large/small it would lead to values of T H that are too small/large compared to the estimates currently available from time-resolved photoemission studies [38].

Finally, we compare the calculated arsenic displacement u(t) with that measured in time resolved X-ray scattering [39] for a fluence range of 0.7 to 3.5 (mJ/cm 2 ). The intensity is convolved with a Gaussian pulse to account for the limited time resolution [39]. In the kinematic approximation [39], the variation of the intensity is proportional to the arsenic displacement and is given by

∆I I 0 (t) = B τ r √ π ∞ 0 e -( t-τ τr ) 2 u(τ )dτ, (2.33) 
where I 0 is the equilibrium intensity, ∆I is the variation of intensity out of equilibrium, τ r ≈ 96 fs is the experimental resolution of the probe pulse, and u(t) is computed using Eq. (2.32) following the microscopic prescription described above. B is a dimensionless proportionality constant, independent of fluence, that sets the overall scale of the theoretically evaluated ∆I/I 0 with respect to the experimentally measured ones. Physically, B is related to the change of the relevant X-ray form factor with the As atomic position. Within our scheme, the constant B and the dimensionless electron-phonon coupling λ cannot be estimated separately. We find that best fits are obtained for λB = 4.9. In Fig. 2.5 (c), we compare the calculated ∆I/I 0 (lines) with the data of Ref. [39] (solid symbols).

From Fig. 2.5(c), we conclude that the two-parameter fit is quite reasonable, given the simplicity of the starting model. Furthermore, our estimation of (T H , τ e ), given in the inset of Fig. 2.5 (c), compares well with the experimental estimations given in Ref. [38]. The above attempt at a quantitative description is an important step towards making connection between equilibrium microscopic description of electrons with out-of-equilibrium pump-probe data. Note, the above calculation does not include temperature dependencies of the single electron properties arising due to electron-electron interaction. While such interaction effects can be incorporated in the current formalism, it is beyond the scope of the current work.

the oscillatory signal reported in recent experiments [38,39] on this system, and we predict that it will exhibit red-shifted chirping at larger fluence.

Chapter 3

Quantum Field Theory Out Of

Equilibrium

The study of out of equilibrium dynamic of strongly correlated systems, using femtosecond pulses, have emerged as a promising tool to disentangle the complex interplay between their various degrees of freedom. Simultaneously, pump-probe setups allow for the fascinating possibility to study a wide range of phenomena with no analog in equilibrium physics, such as the transient excitation of coherent optical phonons [56,63,64,[START_REF] Ishioka | Springer Series in Chemical Physics[END_REF], and light induced phase transitions [36,81]. In these experiments the pump pulse breaks time translational symmetry and can drive the many-body state out of equilibrium such that the density matrix ρ deviated from the Boltzmann distribution ρ = e -βH , where β is the inverse temperature and H the Hamiltonian of the system. Therefore, a theoretical microscopic description of these out of equilibrium problems can be very challenging, and lies beyond the scope of the imaginary time formalism; which is sufficient to describe systems in equilibrium. In this chapter, we give a brief introduction to the Keldysh formalism [82], which is an extension of the equilibrium quantum field theory and constitutes an elegant theoretical framework to describe systems out-of-equilibrium including those encountered in pump-probe setups. In this introduction, we present the necessary material needed to contextualize and understand Chapter 4, where we shall discuss the out of equilibrium dynamic of the phonon fluctuations in pump-probe setups. The reader interested in a detailed review of the non equilibrium quantum field theory can refer to [START_REF] Rammer | Quantum Field Theory of Non-equilibrium States[END_REF][START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems[END_REF][START_REF] Calzetta | Nonequilibrium Quantum Field Theory[END_REF][START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF]. Although not necessary, some familiarity with the equilibrium quantum field theory would help the readability of this chapter. We advice the reader unfamiliar with the topic to see [START_REF] Coleman | Introduction to Many Body Physics[END_REF][START_REF] Mahan | Many-Particle Physics[END_REF][START_REF] Timm | Theory of superconductivity[END_REF][START_REF] Tinkham | Introduction to Superconductivity[END_REF], where a detailed analysis of the equilibrium formalism is presented, and relevant examples are provided. This list of references is by no mean extensive, and only reflects the inclination of the author.

This chapter is organized as follows. In Sec. 3.1, we introduce the idea of closed time contour evolution, and formulate the non equilibrium quantum field theory in path integrals.

In Sec. 3.2, we formulate the microscopic theory of displacive coherent phonons, developed in Chapter 2, in path integral language. We conclude in Sec. 3.3.

Introduction to the Keldysh formalism

In this section, we develop a many-body perturbation scheme using the concept of closed time contour evolution [82,[START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF]. Then, we formulate the out of equilibrium quantum field theory in path integrals, and introduce the Keldysh rotation.

Closed time contour

First, let us briefly discuss the equilibrium quantum field theory, as it can be instructive to understand exactly why the finite temperature imaginary time formalism breaks down for time dependent Hamiltonian [START_REF] Coleman | Introduction to Many Body Physics[END_REF][START_REF] Mahan | Many-Particle Physics[END_REF]. In equilibrium, the Hamiltonian H of a quantum system is time independent. Therefore, the evolution operator of the many-body state is given by

U (t 2 , t 1 ) = e -i(t 2 -t 1 )H , (3.1) 
and the density matrix by the Boltzmann distribution

ρ = e -βH , (3.2) 
with β = 1 T the inverse temperature. The imaginary time formalism takes advantage of the similarity in the functional form between the density matrix ρ = e -βH and the evolution operator U (t 2 , t 1 ) = e -i(t 2 -t 1 )H . Indeed, the density matrix can be seen as an evolution of the quantum state along the imaginary time axis. Therefore, one can evaluate the average of an operator Ô(τ ) at the imaginary time τ , and use analytical continuation to get the average Ô(t) for real time time t. In the interaction picture, we split the Hamiltonian H of the system in two parts and write

H = H 0 + V, (3.3) 
where H 0 and V are the free and the interacting part of the total Hamiltonian, respectively.

Thus, the average of an operator Ô(τ ) at the imaginary time τ can be written as

Ô(τ ) = 1 Tr {e -βH } Tr e -βH 0 U (β)U -1 (τ )e H 0 τ Ô(0)e -H 0 τ U (τ ) , (3.4) 
where U (τ ) ≡ e H 0 τ e -τ H is the imaginary time evolution operator and U -1 (τ ) its inverse.

For time -β < τ < β, this average can be formally written in the interaction picture as

Ô(τ ) = 1 Tr {e -βH } Tr e -βH 0 T τ S(β) ÔI (τ ) , (3.5) 
where O I (τ ) = e τ H 0 Ô(0)e -τ H 0 , T τ denotes the imaginary time ordering operator, and S(β) ≡ T τ e -β 0 V (τ )dτ . Time-ordered bosonic and fermionic operators are commutingand anti-commuting, respectively, inside the time ordering [START_REF] Mahan | Many-Particle Physics[END_REF]. This implies that, in the interaction picture, we can expand the S(β) = e -β 0 H(τ )dτ matrix in powers of the interacting part of the Hamiltonian V , and perturbatively evaluate any time-ordered average using Wick theorem.

This approach, based on the similarity between the evolution operator and the density matrix, breaks down for out of equilibrium problems where the Hamiltonian depends explicitly on time. The Keldysh formalism was developed to overcome this constraint, and extend the many-body perturbation theory to time dependent Hamiltonian. This is done by introducing the closed time contour evolution. Following the seminal work by Keldysh [82], we introduce the concept of time-ordered contour evolution, and explain how to develop a many-body perturbation scheme for time dependent Hamilotnians.

Consider a many-body interacting system described by the Hamiltonian

H(t) = H 0 + V (t), (3.6) 
where H 0 is the free part of the Hamiltonian and V (t) the interacting part, that may or may not contain explicit time dependence. In the interaction representation, the average of an operator Ô(t) is given by

Ô(t) = 1 Tr{ρ(0)} Tr U (0, t) Ô(t)U (t, 0)ρ(0) (3.7)
where Tr is the trace over a complete basis set of the Hilbert space, and the evolution operator is formally given by

U (t, t ′ ) =      Texp -i t t ′ V (t)dt t > t ′ , Texp -i t t ′ V (t)dt t ′ < t, (3.8) 
with T and T the time ordering and anti-time ordering operators, respectively. We assume that the density matrix at initial time ρ(0), can be adiabatically connected to that of a non-interacting system in the distant past ρ(-∞) and write

ρ(0) = U (0, -∞)ρ(-∞)U (-∞, 0). (3.9)
In general, it is not guaranteed that the interaction can be adiabatically switched. We mention that, one can develop a non-equilibrium quantum field theory without the adiabatic switching assumption, see [START_REF] Stefanucci | Nonequilibrium Many-Body Theory of Quantum Systems[END_REF]. However, the formalism is more convoluted and for many systems the adiabatic assumption is valid. We replace ρ(0) in Eq. 3.7, and write the average of the operator Ô(t) as

Ô(t) = 1 Tr{ρ(0)} Tr U (-∞, t) Ô(t)U (t, -∞)ρ(-∞) , (3.10) 
where we used the cyclic property of the trace.

The evolution of a quantum state is unitary. Hence, we can insert the identity operator U (t, +∞)U (+∞, t) = 1 in order to extend the evolution to the distant future t = +∞ and write

Ô(t) = 1 Tr{ρ(0)} Tr U (-∞, +∞)U (+∞, t) Ô(t)U (t, -∞)ρ(-∞) . (3.11) 
The key idea of the Keldysh formalism is that the evolution depicted above is time ordered along a closed time contour, see Fig (3.1). Indeed, reading from right to left, the system evolves from the infinite past t = -∞ to the time t where the observable Ô(t) is measured, then to the infinite future t = +∞, we refer to this as the forward evolution. The system then evolves from the infinite future t = +∞ back the infinite past t = -∞, we refer to this as the backward evolution. Thus, the evolution in Eq. (3.11) is time-ordered from right to left, if we consider that any time on the forward branch is prior to the backward branch.

Notice that inserting the operator U (t, +∞)U (+∞, t) = 1 to the right of Ô(t) in Eq. Eq. (3.12), we define the bosonic Green's function in matrix notation as Ĝi,j (t, 

t ′ ) = G T (t, t ′ ) G < (t, t ′ ) G > (t, t ′ ) G T(t, t ′ ) = -i Tb(t)b † (t ′ ) b † (t)b(t ′ ) b(t)b † (t ′ ) Tb(t)b † (t ′ ) (3.
> (t, t ′ ), G < (t, t ′ ), G T (t, t ′
) and G T(t, t ′ ) denote the greater, lesser, ordered and anti-time ordered

Green's function, respectively.

In conclusion, the many-body perturbation theory can be extended to non equilibrium problems with time dependent Hamiltonians V (t). This is achieved by introducing the closed time contour C, defined in Fig (3.1), and writing the average operator in a time-ordered form Eq. (3.11), which can then be treated perturbatively. The price to pay is that, due to the forward-backward evolution, we have a doubling of the degrees of freedom, and hence, the Green's function has four components. In Sec. 3.1.3, we shall define the Keldysh rotation Eq. 3.34 where the structure of the four components Green's function becomes physically transparent.

Bosonic path integrals

The closed time contour evolution Fig (3.1) is the key idea of the Keldysh formalism, and provides a perturbative scheme to evaluate any time-ordered correlation function. In this section, we formulate the non equilibrium quantum field theory in path integrals, which is strictly equivalent to the operator formalism [START_REF] Rammer | Quantum Field Theory of Non-equilibrium States[END_REF]. However, it is often more convenient and intuitive to express a physical problem in path integrals. In Sec. 3.2, we reformulate the microscopic theory of displacive coherent phonon generation using path integrals, and illustrate the advantages of the formalism.

For clarity, we first discuss the simple case of a single non-interacting bosonic mode.

Later, we comment on how to extend the formalism to fermions, using Grassmann algebra, and discuss the general case of interacting systems. The Hamiltonian of a single bosonic mode with frequency ω 0 is given by We introduce the coherent states |φ , defined as the eigenstates of the annihilation operator b with eigenvalue φ, and write

H 0 = ω 0 b † b, (3.16 
b |φ = φ |φ , (3.17a 
)

φ| b † = φ φ| , (3.17b) 
with φ the complex conjugate of φ. Since the coherent states are, literally, eigenstates of the field operators, they are often a great theoretical tool [START_REF] Nazarov | Advanced Quantum Mechanics[END_REF]. We will take advantage of the properties of these states to construct a path integral formulation of the non equilibrium quantum field theory. Unlike the number state basis |n , the coherent states are not orthogonal and form an over-complete basis set, where the overlap between two coherent states is given by

φ i |φ j = e φi φ j . (3.18)
Note that in this notation, the coherent states |φ are not normalized. The resolution of unity 1 in the coherent state representation can be expressed as

1 = d[φ, φ]e -|φ| 2 |φ φ| , (3.19) 
where d[φ, φ] = 1 π Im(φ)Re(φ), see [START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF] for details. The central object in path integral is the partition function, defined as

Z = 1 Tr{ρ(0)} Tr{U (-∞, +∞)U (+∞, -∞)ρ(-∞)}, (3.20) 
from which any time-ordered average can in principle be calculated. We divide the time evolution along the closed time contour C, see Fig (3.1), into 2N pieces with equal time interval δt. We replace the evolution over the forward branch U (+∞, -∞) with the product of evolution operators U (t i + δt, t i ) with infinitesimal time δt, inserted at each of the N steps in the forward branch. Similarly, we replace the evolution over the backward branch U (-∞, +∞) with a product of evolution operators U (t iδt, t i ) with infinitesimal time δt, inserted at each of the N steps in the backward branch. The partition function is then given by

Z = 1 Tr{ρ(0)} Tr U -δt ..U -δt N U δt ..U δt N ρ(-∞) , (3.21) 
where U δt and U -δt are infinitesimal evolution along the forward and backward branches, respectively. We insert the identity operator

1 = d[φ, φ]e -|φ| 2 |φ φ| , (3.22) 
at each step of the evolution, and write the partition function as

Z = 1 Tr{ρ(0)} φ 2N | U -δt ..U -δt |φ N +1 φ N +1 | U -δt |φ N φ N | U δt ..U δt |φ 2 φ 2 | U δt |φ 1 φ 1 | ρ(-∞) |φ 2N e - 2N i=1 |φ i | 2 D[φ, φ], (3.23) 
where

D[φ, φ] = 2N i=1 1 π Im(φ i )Re(φ i ), and we used Tr Ô = e -|φ 2N | 2 φ 2N | Ô |φ 2N d[φ, φ]
. Notice that at each step of the contour evolution we have the matrix elements of the evolution operator between two successive times

φ j | U ±δt |φ j-1 ≡ φ j | e ∓iH 0 (b,b † )δt |φ j-1 , ≈ φ j | 1 ∓ iH 0 (b, b † )δt |φ j-1 , ≈ e φj φ j-1 ∓iH 0 ( φj ,φ j-1 )δt , (3.24) 
where φ j | U ±δt |φ j-1 refers to the forward and backward evolution, respectively. In the last step, we used the property that H 0 is normal ordered, and neglected terms of order O(δt 2 ). Note, it is clear that even if the Hamiltonian of the system contains time dependent interaction, the above equality would still be correct, assuming the Hamiltonian V (t) is normal ordered. One can show that [START_REF] Kamenev | Field Theory of Non-Equilibrium Systems[END_REF], the matrix element of the density matrix between the boundary states |φ 1 and |φ 2N is given by

φ 1 | ρ(-∞) |φ 2N = e φ1 φ 2N ρ(ω 0 ) , (3.25) 
with ρ(ω 0 ) = e -βω 0 . Regrouping all the terms, we finally obtain for the partition function

Z = 1 Tr{ρ(0)} D[φ, φ] e iS 0 , (3.26) 
with the action S 0 defined as

S 0 = N -1 j=1 i φj+1 (φ j -φ j ) -H 0 ( φj+1 , φ j )δt + 2N j=N i φj+1 (φ j+1 -φ j ) + H 0 ( φj+1 , φ j )δt -i φ1 φ 2N ρ(ω 0 ) + i φ1 φ 1 .
(3.27)

We take the limit δt → 0, and label the bosonic field with a continuous time φ i → φ(z).

The partition function can then be formally written in continuum notation as

S 0 = C φ(z)(i∂ z -ω 0 )φ(z)dz, (3.28) 
where the integral is defined over the closed time contour C.

To avoid integration along the closed time contour, it is convenient to split the bosonic field φ(z) into the two components φ + (t) and φ -(t), which reside on the forward and backward branches of the time contour, respectively. We replace in the action, and obtain

S = +∞ -∞ φ+ (t)(i∂ t -ω 0 )φ + (t) - +∞ -∞ φ-(t)(i∂ t -ω 0 )φ -(t), (3.29) 
where the relative minus sign comes from the reversed direction of the time integration on the backward branch. Note that to avoid contour integrals, one needs to describe the bosonic mode with two fields φ ± (t), and hence, double the degrees of freedom. In the continuum notation, it appears as if the two fields φ ± (t) are uncorrelated, and that the action does not depend on the density matrix ρ(ω 0 ). We stress that the continuum form of the action is to be understood as a mere handful notation of the discrete action Eq. (3.27).

Hence, in practice, any correlation function should be evaluated using the discrete action.

In Sec. 3.1.3, we introduce the Keldysh rotation and present a self-consistent continuum action that does not appeal to the discrete representation. Moreover, in the Keldysh basis the meaning of the two fields will be physically transparent. Finally, using the definition of time ordering Eq. (3.12), we express the correlation function of the fields φ ± (t) with respect to the various components of the Green's function and write

φ + (t) φ-(t ′ ) = iD < (t, t ′ ) = b † (t ′ )b(t) , (3.30a) φ -(t) φ+ (t ′ ) = iD > (t, t ′ ) = b(t)b † (t ′ ) , (3.30b) φ + (t) φ+ (t ′ ) = iD T (t, t ′ ) = Tb(t)b † (t ′ ) , (3.30c) φ -(t) φ-(t ′ ) = iD T(t, t ′ ) = Tb(t ′ )b † (t ′ ) , (3.30d) 
where denotes the average over the density matrix ρ. Thus, this provides a functional formulation to evaluate the bosonic Green's function, and higher order correlation functions. A straightforward calculation gives the four components of the non-interacting bosnic Green's function

D < 0 (t, t ′ ) = -in B [ω 0 , T ]e i(t-t ′ ) , (3.31a) 
D > 0 (t, t ′ ) = -i n B [ω 0 , T ] + 1 e i(t-t ′ ) , (3.31b) 
D T 0 (t, t ′ ) = θ(t -t ′ )D > 0 + θ(t -t ′ )D < 0 , (3.31c) 
D T 0 (t, t ′ ) = θ(t -t ′ )D < 0 + θ(t -t ′ )D > 0 , (3.31d) 
where n B [ω 0 , T ] = 1 e βω 0 -1 is the Bose distribution at temperature T , ω 0 the frequency of the mode, whereas T and T the real time ordering and anti-time ordering operators, respectively.

In this section, we discussed the simple case of a single non-interacting mode. The formalism we presented here can be readily extended to interacting bosons. To this end, we simply replace the non-interacting Hamiltonian with the full Hamiltonian H 0 → H, in the discrete action Eq. (3.27).

Keldysh Rotation

The evolution operator U (t, t ′ ) is unitary, and hence, the evolution along the forward and backward branches are equivalent. Therefore, in the forward-backward representation discussed so far, the average of an observable can be evaluated by plugging the observable O(t) either on the forward or backward branch, and hence

Ô(t) = O(t + ) = O(t -) , (3.32) 
where O(t + ) and O(t -) denote the average of the operator Ô inserted on the forward and backward branches, respectively. Using this property, one can show that the four compo-nents of the Green's functions are not independent and obey the relation

D < (t, t ′ ) + D > (t, t ′ ) + D T (t, t ′ ) + D T(t, t ′ ) = 0, (3.33) 
where the four component of the Green's function are defined in Eq. (3.15).

We take advantage of the forward-backward symmetry of the theory, and define the Keldysh rotation as

φ cl (t) = φ + (t) + φ -(t) √ 2 , φ q (t) = φ + (t) -φ -(t) √ 2 , (3.34) 
where φ cl (t) and φ q (t) are the classical and quantum fields, respectively. Using the definition (3.34), a straightforward calculation gives the two times correlation function in the Keldysh basis

φ i (t) φj (t) = i D(t, t ′ ) = i D K (t, t ′ ) D R (t, t ′ ) D A (t, t ′ ) 0 (3.35) 
where the subscript i, j = (cl, q) denotes the classical and quantum component of the field. The fact that the (q, q) is vanishing in this representation is a direct consequence of Eq. (3.33). Superscripts R, A and K stand for the retarded, advanced and Keldysh components of the Green's function, respectively. These three Green's functions are the fundamental objects of the Keldysh formalism. Following Eq. (3.15), we find that

D R (t, t ′ ) = -iθ(t -t ′ ) b(t), b † (t ′ ) , (3.36a) 
D A (t, t ′ ) = -iθ(t ′ -t) b † (t ′ ), b(t) , (3.36b) 
D K (t, t ′ ) = -i b(t), b † (t ′ ) , (3.36c) 
where

b(t), b † (t ′ ) = b(t)b † (t ′ )+b † (t ′ )b(t)
is the anti-commutator, denotes the expectation value, and θ(tt ′ ) the Heaviside step function. Finally, we evaluate the Green's functions of the non interacting Hamiltonian Eq. (3.16), and find that

D R 0 (t, t ′ ) = -iθ(t -t ′ )e -iω 0 (t-t ′ ) , (3.37a) 
D A 0 (t, t ′ ) = iθ(t -t ′ )e -iω 0 (t-t ′ ) , (3.37b) 
D K 0 (t, t ′ ) = -i coth(ω 0 /2T )e -iω 0 (t-t ′ ) . (3.37c)
We Fourier transform the Green's function D(t, t ′ ) Eq. (3.31), and write

D R 0 (ω) = 1 ω -ω 0 + iη , (3.38a) 
D A 0 (ω) = 1 ω -ω 0 -iη , (3.38b) 
D K 0 (ω) = -2πicoth(ω/2T )δ(ω -ω 0 ), (3.38c) 
where η is an infinitesimal positive constant, and T the temperature of the bath. Note that the Keldysh component of the Green's function carries information about the statistics.

Whereas, the retarded and advanced components describe the spectrum of the bosonic mode. Moreover, the average of the quantum field is vanishing to all orders φ n q (t) = 0, which heavily simplifies the calculations.

It is unpractical to compute correlation functions using the discrete form of the action. Thus, it is highly desirable to formulate the theory in a way that does not relay on the discrete notation. This is achieved by defining the free action S 0 , such that it correctly produces the expected Green's functions. Consider the definition of the Green's function in the Keldysh representation

D ij (t, t ′ ) = -i φ i (t) φj (t ′ )e iS 0 D[φ, φ] (3.39) 
where the subscript i, j = (cl, q) denotes the classical and quantum component of the field.

Using the basic properties of bosonic Gaussian integrals, we find that the free action S 0 is given by

S 0 = +∞ -∞ φ(t) D-1 0 (t, t ′ )φ(t ′ )dtdt ′ , (3.40) 
where D-1 0 (t, t ′ ) denotes the inverse of the matrix Green's function. From the expression of the Fourier transform of the Green's function Eq. (3.38), we find that the inverse Green's function in frequency space is given by

D-1 0 (ω) ≡ 0 D -1 0,A (ω) D -1 0,R (ω) D -1 0,K (ω) , (3.41) 
with

D -1 0,R (ω) = ω -ω 0 + iη, (3.42a) D -1 0,A (ω) = ω -ω 0 -iη, (3.42b) 
D -1 0,K (ω) = -2πiη coth [ω/2T ], (3.42c) 
where D -1 0,R (ω) and D -1 0,A (ω) denote the Fourier transform of the inverse retarded and advanced Green's function, respectively. Note, D -1 0,K (ω) is not the inverse of the Keldysh Green's function D K 0 (ω), and satisfies the relation

D K 0 (ω) = -D R 0 (ω)D -1 0,K (ω)D A 0 (ω).

Fermionic path integrals

We now consider the case of a single non interacting fermionic field ĉ, and extend the path integral formulation to fermionic particles. To this end, we introduce the anti-commuting Grasmann numbers, and formulate the path integrals using Grasmann fields. We define the Hamiltonian of a single fermionic mode with energy ǫ as

H = ǫĉ † ĉ, (3.43) 
where ĉ † and ĉ are the fermionic creation and annihilation operators, which satisfy the canonical anti-commutation relations

{ĉ, ĉ † } = 1, {ĉ, ĉ} = 0, {ĉ † , ĉ † } = 0. (3.44)
In analogy with bosons, we define the fermionic coherent states as eigenstates of the field ĉ and write

ĉ |c = c |c , (3.45) 
with |c an eigenstate with eigenvalue c. Since fermionic operators are anti-commuting we have that c 2 = 0, and hence, the eigenvalue c can not be a complex number, except for the trivial case where c = 0. We can avoid this difficulty by introducing Grasmann numbers [START_REF] Coleman | Introduction to Many Body Physics[END_REF]. Grasmann number are defined as anti-commuting numbers, and satisfy the following relations

c 1 c 2 = -c 2 c 1 , c 2 1 = c 2 2 = 0, (3.46) 
where c 1 and c 2 are two Grasmann numbers.

Grasmann numbers are anti-commuting, and hence, we have that

f (c) = f 0 + f 1 c, (3.47) 
where f (c) is an arbitrary function, f 0 and f 1 are two complex coefficients, c a Grasmann number, and we used c 2 = 0. This expansion provides a natural way to define derivatives of Grasmann numbers as

∂ c f (c) = f 1 . (3.48)
We also define integration over Grasmann numbers as

dc = 0, cdc = 1. (3.49)
The integral and derivative over Grasmann numbers are definitions [START_REF] Coleman | Introduction to Many Body Physics[END_REF], and should not be compared with that of Complex numbers. Moreover, Grasmann numbers should be understood as a helpful mathematical tool to formulate the fermionic path integral, without any particular physical intepretation.

The fermionic coherent states Eq. (3.45) form an over-complete basis set where the overlap is given by

c 1 |c 2 = e c 1 c 2 , (3.50) 
with c 1 and c 2 two Grasmann numbers. Finally, following the properties of Grasmann algebra, we can show that the resolution of unity in the fermionic coherent states basis reads

1 = dc 1 dc 2 e -c 1 c 2 |c 1 c 2 | . (3.51)
Thus, using Grasmann algebra, we can proceed similarly to the bosonic case and write the action of a free fermionic field as

S F = +∞ -∞ ccl (t 1 ) cq (t 1 ) 0 G -1 0,A (t 1 , t 2 ) G -1 0,R (t 1 , t 2 ) G -1 0,K (t 1 , t 2 ) c cl (t 2 ) c q (t 2 ) dt 1 dt 2 , (3.52) 
with

G -1 0,R (t 1 , t 2 ) = δ(t 1 -t 2 ) (i∂ t 2 -ω 0 + iη, ) G -1 0,A (t 1 , t 2 ) = δ(t 1 -t 2 ) (i∂ t 2 -ω 0 -iη, ) G -1 0,K (t 1 , t 2 ) = iη π +∞ -∞ tanh [ω/2T ]e -iω(t 1 -t 2 ) dω, (3.53) 
where η is an infinitesimal positive constant. In conclusion, path integrals can be extended to fermionic particles using Grasmann anti-commuting numbers. We emphasize that Grasmann algebra is simply a useful mathematical tool to formulate fermionic path integrals, and have no particular physical interpretation.

Summary

In this section, we gave an overview of the Keldysh formalism in path integrals and introduced the Keldysh rotation, where the quantum component of the Green's function is vanishing φ q (t)φ q (t ′ ) = 0. Compared to the forward-backward representation, the Keldysh action is more convenient and physically transparent. Indeed, the retarded and advanced

Green's function carry information about the spectrum, whereas the Keldysh component carries information about the statistics. Moreover, the classical φ cl (t) and quantum φ q (t)

field have different interpretations. The classical field φ cl (t) has a non vanishing average and carries information about the classical motion. Whereas the quantum field φ q (t) has, by construction, a vanishing average to all orders φ n q (t) = 0 and carries information about the fluctuations of the field around the average value. This will be discussed further in the next section.

Bosonic mode coupled to a quenched electronic bath

The Keldysh formalism is a powerful theoretical framework to deal with non equilibrium phenomena, such as the one encountered in pump-probe spectroscopy. The goal of this section is to acquire a better understanding of the quantum field theory out of equilibrium, and exemplify the versatility of the formalism. We explain how, using Keldysh techniques, one can systematically expand the action of a bosonic mode coupled to an electronic bath in powers of the electron-phonon interaction. We reformulate the microscopic theory of displacive coherent phonons excitation, discussed in Sec. 2.1.2, in path integrals. The results and conclusions derived therein remain unchanged. This section is also intended as an introduction to the next chapter 4, where we shall describe the dynamics of the phonon fluctuations in details.

As a preliminary discussion, let us examine how the out of equilibrium dynamic of the phonon mode is conceptually different from equilibrium, and the advantages of formulating the problem in path integrals. In equilibrium, the average position of a phonon mode u = X = b + b † is constant in time. Moreover, due to quantum and thermal fluctuations its variance is finite and time independent ( Xu) 2 = const. However, when the system is driven by a laser pump both the average position u(t), if u is shifted from its equilibrium value, and the phonon fluctuations ( Xu) 2 (t) pick up time dependence. Thus, it can be difficult to disentangle the two effects. This issue is resolved in path integrals, where the classical X cl and quantum X q component of the displacement field carry information about the dynamics of the average atomic position and phonon fluctuations, respectively.

We consider an electronic system interacting with a zero wavevector A 1g phonon mode.

It is described by the Hamiltonian

H = k ǫ(k)c † k c k + w 0 b † b + k C(k)c † k c k (b + b † ), (3.54) 
where ǫ(k) is the electronic dispersion, c † k creates an electron with momentum k, b † creates an A 1g zone centre phonon, i.e. the associated displacements are the same across all the unit cells, and C(k) is the scalar electron-phonon coupling. For clarity, we only include the phonon mode that is coherently excited and neglected modes with finite momentum q = 0, we also drop the band and spin index of the electronic degrees of freedom.

The action of the interacting electron-phonon system, described by the Hamiltonian Eq. (3.54) is given by

S = S e 0 + S ph 0 + S I , (3.55) 
where S e 0 is the action of the free electrons, S ph 0 the action of the A 1g phonon mode, and S I describes the electron-phonon interaction. A full microscopic theory should also include light-matter coupling, as well as electron-electron interaction. Such terms are crucial to understand the excitation and thermalization of the electronic bath. In this section, similarly to Chapter 2, we treat this thermalization process at the phenomenological level, see Sec. 2.1.1 for details.

We define the electronic action S e 0 as

S e 0 = k +∞ -∞ ccl (k, t 1 ) cq (k, t 1 ) 0 G -1 0,A (t 1 , t 2 , k) G -1 0,R (t 1 , t 2 , k) G -1 0,K (t 1 , t 2 , k) c cl (k, t 2 ) c q (k, t 2 ) dt 1 dt 2 , (3.56) 
where

c cl (k, t) = 1 √ 2 (c + (k, t)+c -(k, t)) and c q (k, t) = 1 √ 2 (c + (k, t)-c -(k, t))
are the classical and quantum component of the fermionic field. Henceforth for clarity, we write the electronic Green's function Eq. (3.56) in matrix form and denote it by Ĝ0 (t 1 , t 2 , k). In the transient regime, the pump breaks time translational symmetry, hence, the electronic Green's function Ĝ0 (t 1 , t 2 , k) is a function of both its arguments t 1 and t 2 and not only the time difference. Henceforth, we express two time correlation functions, such as Ĝ0 (t 1 , t 2 , k), with respect to the average time τ = t 1 +t 2 2 and time difference ∆ = t 1t 2 . The intuition behind this choice are the following. First, the retarded and advanced Green's functions Eq. (3.36) are formally defined with respect to the commutator of the canonical operators at two times, which satisfy the relation

[b(t), b † (t ′ )] = [b(t ′ ), b † (t)] * , where [b(t ′ ), b † (t)] * denotes the complex conjugate of [b(t), b † (t ′ )]
. Similarly, the Keldysh Green's function satisfy the relation D K (t, t ′ ) = D K (t ′ , t) * . These properties of the Green's function with respect to time permutation are more explicit in the (∆, τ ) representation.

Second, in equilibrium the Green's function is a function of the time difference only ∆, and hence, any dependence on the total time τ is due to the external perturbation. We introduce the Wigner transform of the inverse electronic Green's function Ĝ-1 0 (ω, τ, k), which is defined as the Fourier transform with respect to the time difference ∆, and write Ĝ-1

0 (τ + ∆/2, τ -∆/2, k) = 1 2π +∞ -∞ Ĝ-1 0 (ω, τ, k)e -iω∆ dω, (3.57) 
where Ĝ-1 0 (ω, τ, k, ) denotes the inverse electronic Green's function in matrix notation, defined in Eq. (3.56). The Wigner transform is a useful transformation for non equilibrium problems, as it provides a convenient way to express two time correlation functions and simplifies the calculations. We recall that in this model the effect of the pump pulse is to quench the electronic temperature. Therefore, we find that a simple way to phenomenologically account for this temperature quench, described in Sec. 2.1.1, is to define the Wigner transform of the electronic Green's function as

Ĝ0 [ω, k, τ ] → Ĝ0 [ω, k, T e (τ )], (3.58) 
where T e (τ ) is the instantaneous electronic temperature. We neglect the temperature dependence of the electronic dispersion ǫ k , and write the Wigner transform of the inverse Green's function as

G -1 0,R (ω, k) = ω -ǫ k + iη, G -1 0,A (ω, k) = ω -ǫ k -iη, G -1 0,K (ω, τ ) = 2iη tanh ω/2T e (τ ) , (3.59) 
where T e is the electronic temperature evaluated at the average time τ = t 1 +t 2 2 , and ǫ k describes the equilibrium electronic dispersion.

We now discuss the expression of the action of the free bosonic mode. Since, we are interested in the dynamics of the atomic position X(t) = b(t) + b † (t), we introduce the displacement field defined as

X cl (t) = φ cl (t) + φcl (t), (3.60a) X q (t) = φ q (t) + φq (t), (3.60b) 
and write for the action

S ph = - +∞ -∞ X q 1 2ω 0 Ẍcl (t) + ω 2 0 X cl (t) dt, (3.61) 
where ω 0 is the bare frequency of the phonon mode. Later, we show that interaction effects give a finite life-time to the bosonic mode. Therefore, we neglect the regularization term, quadratic term in the quantum field, since it is of O(η). Finally, the interacting part of the action reads

S I = - k +∞ -∞ C(k) c+ (k, t)c + (k, t)X + (t) -c-(k, t)c -(k, t)X -(t) dt = - k C(k) +∞ -∞ n cl (k, t)X q (t) + n q (k, t)X cl (t) dt, (3.62) 
with

n cl (k, t) = 1 √ 2 ccl (k, t)c cl (k, t) + cq (k, t)c q (k, t) , (3.63a 
)

n q (k, t) = 1 √ 2 ccl (k, t)c q (k, t) + cq (k, t)c cl (k, t) , (3.63b) 
where

c cl = c + (k,t)+c -(k,t) √ 2 and c q = c + (k,t)-c -(k,t) √ 2
denote the classical and quantum component of the fermionic fields, respectively.

The average position of the dimensionless atomic position u(t) = b + b † at the pumpprobe delay time t is given by

u(t) = 1 √ 2 X cl (t) = 1 √ 2 +∞ -∞ X cl (t) e iS dX cl dX q dcdc. (3.64)
The average atomic position u(t) depends explicitly on time, this is because the electronic Green's functions, as defined in Eq. (3.59), break time translational symmetry through their dependence on the instantaneous electronic temperature T e (τ ).

Since we are interested in the dynamics of the phonon, we integrate out the electronic degrees of freedom and write the action in terms of the phonon variable only. The interacting term S I is bi-linear in the fermionic fields, hence, using the properties of Grassman integrals we write the partition function as

Z = 1 Tr{ρ(0)} det Ĝ-1 0 (t 1 , t 2 , k) - C(k) √ 2 X q (t 1 ) X cl (t 1 ) X cl (t 1 ) X q (t 1 ) δ(t 1 -t 2 ) e iS ph dX cl dX q , (3.65) 
where Ĝ-1 0 (t 1 , t 2 , k) is the inverse Green's function, defined in Eq. (3.59). Taking the logarithm of the determinant, and using the property

det(M ) = exp Tr ln(M ) , (3.66) 
we finally write the action as

iS = iS e 0 -i +∞ -∞ X q 1 2ω 0 Ẍcl (t) + ω 2 0 X cl dt + +∞ -∞ Tr ln 1δ(t -t ′ ) - C(k) √ 2 Ĝ0 (t, t ′ , k) X q (t ′ ) X cl (t ′ ) X cl (t ′ ) X q (t ′ ) dt, (3.67) 
where S e 0 is the electronic part of the action, and the trace is over momentum k and the Keldysh indices, i.e. quantum and classical components of the field. Note, in general the trace should include all the degrees of freedom of the system; e.g. spin, orbital, or phonon branch. The expression above is just a formal way to write the action, as one needs to expand the trace-log in order to evaluate the average of the atomic position. Similarly to Chapter 2, we evaluate the leading order corrections in the electron-phonon interaction. Thus, we expand the trace-log to second order in the electron-phonon interaction C(k), and write the effective action of the phonon as

S eff = +∞ -∞ -1 2ω 0 Ẍcl (t) + ω 2 0 X cl + 2ω 0 k C(k) n cl (k, t) 0 X q (t)dt - +∞ -∞ Π R (t, t ′ )X cl (t ′ )X q (t)dtdt ′ - 1 2 +∞ -∞ Π K (t, t ′ )X q (t ′ )X q (t)dtdt ′ . (3.68)
with the retarded and Keldysh phonon self-energy defined as

Π R (t, t ′ ) = -i k C 2 (k) n cl (k, t)n q (k', t ′ ) 0 , (3.69a) Π K (t, t ′ ) = -i k C 2 (k) n cl (k, t)n cl (k', t ′ ) 0 , (3.69b) 
where 0 denotes the average over the free Hamiltonian. The description of the fluctuation dynamics of the phonon mode and the corrections due to the quantum field X q (t) are discussed in details in Chapter 4. Here, we are only interested in the time evolution of the average atomic position u(t), which is given by the expectation value of the classical field

u(t) = 1 √ 2 X cl , see Eq. (2.6
). Therefore, we can neglect the quadratic part in the quantum field, see discussion following Eq (4.59), and write the effective action as

S eff = - +∞ -∞ 1 2ω 0 Ẍcl (t) + ω 2 0 X cl + 2ω 0 k C(k) n cl (k, t) 0 X q (t)dt - +∞ -∞ Π R (t, t ′ )X cl (t ′ )X q (t)dtdt ′ . (3.70)
The average atomic position is given by the expectation value of the classical field

u(t) = 1 √ 2 X cl (t)
, hence, we integrate-out the action over the quantum field X q (t). Since the action is linear in the quantum field X q (t), the partition function after integration is given by

Z = +∞ -∞ δ Ẍcl (t) + ω 2 0 X cl + 2ω 0 k C(k) n cl (k, t) 0 + +∞ -∞ Π R (t, t ′ )X cl (t ′ )dt ′ . dX cl . (3.71)
The probability distribution is a delta function and forces the evolution of the classical field X cl (t) along the classical trajectory. Therefore, the equation of motion of the atomic

position u(t) = 1 √ 2 X cl (t) is given by ü(t) + ω 2 0 u(t) + +∞ -∞ Π R (t, t ′ )u(t ′ )dt ′ = - 2ω 0 √ 2 k C(k) n cl (k, t) 0 . (3.72)
where 0 denotes the average over the non interacting density matrix ρ ≡ e -βH 0 , and t the pump-probe time delay. Equation (3.72) is the same as the equation of motion of the coherent phonon Eq. (2.9) derived in Sec. 2.1.2.

The retarded phonon self-energy Eq. (3.69a) is an average over fermionic operators at time t and t ′ , and hence, it can be expressed as a product of electronic Green's function at the two times (t, t ′ ). The fact that the out of equilibrium electronic Green's function is related to the equilibrium Green's function by Ĝ [∆, τ ] = Ĝeq [∆, T e (τ )], see Eq. (3.58), implies that the retarded response function is the equilibrium phonon self-energy at the electronic temperature T e (τ ), where τ = t+t ′ 2 is the total time. Note that this is only true to second order in the electron-phonon interaction.

In order to evaluate the convolution term in the equation of motion Eq. (3.72), we Wigner transform it and write

+∞ -∞ Π R t -t ′ , T e ( t + t ′ 2 ) u(t ′ )dt ′ = 1 2π +∞ -∞ Π R [ω, T e (τ )]e -iω(t-t ′ ) u(t ′ )dωdt ′ , (3.73) 
where τ = t+t ′ 2 . The fact that the coherent phonon is a well-defined excitation implies that the retardation in Π R [ω, T e (τ )] is weak, and thus, it is sufficient to expand the self-energy in frequency and write

+∞ -∞ Π R t -t ′ , T e u(t ′ )dt ′ ≈ 1 2π +∞ -∞ π [T e (τ )] -i ω ω 0 γ [T e (τ )] u(t ′ )e -iω(t-t ′ ) dωdt ′ , (3.74) with π [T e (τ )] ≡ Π [ω, T e (τ )] ω=0 and γ [T e (τ )] ≡ ω 0 ∂ ω Π [ω, T e (τ )] ω=0 .
We exploit the identity

δ(t ′ -t) = 1 2π
e iω(t ′ -t) dω and get

+∞ -∞ Π R t -t ′ , T e (τ ) u(t ′ )dt ′ = +∞ -∞ π [T e (τ )] δ(t -t ′ ) + γ [T e (τ )] ω 0 δ ′ (t ′ -t) u(t ′ )dt ′ , ≈ π [T e (t)] u(t) + (γ [T e (t)] /ω 0 )∂ t u(t), (3.75) 
where δ ′ (t

′ -t) = ∂ t ′ δ(t ′ -t)
is the derivative of the Dirac distribution, and we neglect the time dependence of the phonon damping ∂ t γ (T e (t)) ≈ 0. We see that the retarded response function Π R (t, t ′ ) contributes with a dissipative term 2γ u(t), and renormalizes the frequency of the phonon mode ω 2 0 → ω 2 0 + 2π(T )ω 0 . We replace the convolution term Eq. (3.75) in the equation of motion of the average atomic position u(t) Eq.(3.72), and finally obtain

∂ 2 t + 2γ(T e )∂ t + ω 2 0 + 2π(T e )ω 0 u(t) = -2ω 0 k C(k)n F [ǫ k , T e (t)] - k C(k)n F [ǫ k , T L ] , (3.76) 
where we used

n cl (t) = 1 √ 2 n + (t) + n -(t) 0 = √ 2n F [T e (t)],
T L is the base temperature before the pump pulse. The second term in the forcing is a constant shift that sets the zero of the displacement u(t) to be the atomic position at the lattice temperature T L , see discussion following Eq. (2.17). This last equation is the result that we derived in Sec. 2.1.2.

Conclusion

In this chapter, we introduced the basic ideas of the Keldysh formalism and the concept of closed time contour evolution. As an illustration of the theory, we reformulated the microscopic theory of displacive coherent phonon excitation rigorously using Keldysh techniques.

Moreover, the Keldysh formalism opens the possibility to go beyond the linear response theory and describe the non-equilibrium dynamics of the phonon fluctuations, which will be discussed in details in Chapter 4.

Chapter 4

Noise Dynamics of Phonons Out of

Equilibrium

The physics of strongly correlated systems is a fascinating and challenging field in condensed matter [71,[START_REF] Fernandes | [END_REF]. The interplay between the often large number of degrees of freedom in these materials can be overwhelmingly hard to describe. This has resulted in the introduction of innovative techniques to explore their properties [71,91]. In the last decades, probing the ultra-fast dynamics of strongly correlated electrons, using pump-probe techniques [34,78,92], has allowed us to gain valuable insights on these systems [START_REF] Giannetti | [END_REF]. In particular, the role of the lattice degrees of freedom has been the subject of intense scientific investigations, e.g. [38,39], and studied in a large class of materials, e.g. [18,19,20]. The fluctuations of the vibrational modes might be relevant in understanding the origin of intriguing material properties [START_REF] Pines | Elementary Excitations in Solids : Lectures on Phonons, Electrons, and Plasmons (Advanced Book Classics[END_REF].

Lately, noise spectroscopy in pump-probe setups has emerged as a powerful tool to investigate lattice fluctuations of strongly correlated systems out of equilibrium. In such experiments, the material is excited with an intense laser pulse, which drives the system out of equilibrium. Then, using a weak pulse properly delayed in time, we probe the dynamics of the noise associated with the phononic degrees of freedom in the system. To this end, one can for example measure the averaged intensity of the transmitted light T (t) [START_REF] Garrett | [END_REF] or its variance ∆ 2 T = T 2 (t) -T (t) 2 [95], or study the Debye-Waller factor in time resolved

x-ray spectroscopy [96]. Note, it is only if in the measured signal one detects a signature of the phonon variable that the dynamics of the noise can be associated with the lattice fluctuations. In Ref [START_REF] Garrett | [END_REF]95,96], oscillations at 2ω 0 , with ω 0 a phonon frequency, have been reported in noise spectroscopy. Such oscillations can be attributed to the oscillation of the variance of the atomic displacement ∆ 2 x(t) = x2 (t)x(t) 2 , where x denotes the displacement operator, out of equilibrium and are invariably interpreted as a signature of a macroscopic squeezed phonon states [97,98]. The physics of photon squeezed states, whereby a few bosonic modes are being controlled, is a well understood topic in quantum optics [START_REF] Loudon | The Quantum Theory of Light[END_REF]99]. In contrast, phonon squeezing in solids involves controlling a macroscopic N A ∼ 10 23 number of atoms, which is far more complex. Thus, if confirmed, squeezing phonons of a solid using laser pump is an exciting achievement and a promising approach to control quantum states of matter by manipulating their lattice fluctuations. From that point of view it is important to determine what is an unequivocal signature of a squeezed phonon state in pump-probe spectroscopy. The purpose of the current chapter is to address this question.

It is well established in the literature [START_REF] Garrett | [END_REF]97,98,100,101,102] that squeezing a bosonic excitation will result in temporal oscillations of the noise at double the bosonic frequency 2ω 0 , i.e. ∆ 2 x(t) ∼ e -2γt sin(2ω 0 t) where γ is the inverse lifetime of the phonon. In this chapter, we ask whether the converse statement is correct or not. Namely, whether an observation of 2ω 0 oscillation in the variance of the atomic displacement implies that a phonon has been squeezed. We show that this converse statement is not correct. In other words, there are mechanisms by which a system shows 2ω 0 oscillations without involving phonon squeezing. We identify two such mechanisms of 2ω 0 oscillations that do not involve squeezing the phonon state. In Sec. 4.3.1, we show that a pump induced temperature quench of the bath to which the phonon is coupled can drive oscillations in the variance of the atomic displacement. In Sec. 4.3.2, we demonstrate that exciting a coherent phonon for which cubic anharmonicity is allowed by symmetry can also produce such 2ω 0 oscillations in noise spectroscopy without squeezing the phonon state. We conclude that, while 2ω 0 oscillations are a necessary condition, such oscillations are not sufficient to claim the existence of a squeezed phonon. Rather, they can simply be signatures of broken time translation symmetry.

This chapter is organized as follows. In Sec. 4.1, we introduce noise spectroscopy in pump-probe setups [95]. In Sec. 4.2, using Keldysh techniques, we describe the noise dynamics of a squeezed phonon coupled to a thermal bath. Finally in Sec 4.3, we propose two mechanisms that can drive 2ω 0 oscillations in the variance of the atomic position, without squeezing the phonon state. We conclude in Sec. 4.4, and we point out what can be a reliable criteria to identify a squeezed phonon by pump-probe spectroscopy.

Introduction

In this section, we outline the general scheme of pump-probe noise spectroscopy experiments, and explain the originality of this technique compared to standard pump-probe setups. In Sec. 4.1.2, we comment on how using the impulsive stimulated Raman scattering [97,103] mechanism one can generate phonon squeezed states [START_REF] Garrett | [END_REF]98,102,104].

Noise spectroscopy in pump-probe setups

The measurement of any physical quantity is subject to noise. In general, this noise is due to the limits of the experimental setup. However, even for a perfect measurement, the physical system has an intrinsic noise due to quantum and thermal fluctuations, at finite temperature.

Thus, in the experimental conditions where the uncertainty associated with the measuring apparatus can be disregarded, it is possible to probe the noise characteristics of the material.

Investigating the fluctuation dynamic is a powerful technique to obtain valuable information on a system, which is not accessible via conventional methods. Historically, the study of noise dates back to the seminal paper of Walter Schottky [105] in 1918. In this work, he reported that the noise associated with current fluctuation in a vacuum tube follows a Poisson statistic, which is a consequence of the discrete nature of the charge carriers.

Since then, the study of noise has developed into a fascinating subfield of condensed matter physics, see [106] for a review article.

Ordinarily, in pump-probe spectroscopy [46,48,107] the system under consideration is pumped with an ultra-short intense laser pulse that will ultimately drive it out of equilibrium. Then, the sample is probed with a second weak pulse properly delayed in time.

The response of the material is averaged over many repeated measurements, and the output signal is the averaged intensity of the probe pulse after either reflection, transmission, or scattering [33,34,38,39]. In pump-probe noise spectroscopy [START_REF] Garrett | [END_REF]95,96], one is rather interested in probing the fluctuation dynamic of the material. An interesting approach to probe the dynamics of the noise in pump-prob setups is by measuring the variance of the signal, e.g the variance of the transmitted light [95]. The acquisition scheme is such that, for every pump-probe time delay τ , the measurement is repeated many times and each output is recorded. Therefore, not only it is possible to measure the averaged signal I(t) , but also the noise associated with it

∆ 2 I(t) = I 2 (t) -I(t) 2 , see Fig 4.1.
The aim is that one can extract valuable information about the fluctuations of the important degrees of freedom, such as lattice fluctuations [95].

Recent pump-probe noise spectroscopy measurements [95] reported oscillations at 2ω 0 , with ω 0 the frequency of a phonon mode, in the variance of the transmitted light intensity 

T (t), see
T (t) = T 0 + λx(t), (4.1) 
where T 0 is the unperturbed transmitted light intensity. Therefore, the variance of the transmitted light intensity is given by

∆ 2 T (t) ≡ T 2 (t) -T (t) 2 = λ 2 ∆ 2 x(t), (4.2) 
where denotes the expectation value, and 2 is the variance of the atomic displacement. Thus, the 2ω 0 oscillations in the variance of the transmitted light intensity suggest that the the pump-pulse drives 2ω 0 oscillations in the variance of the atomic displacement. This is reminiscent of the dynamics of a squeezed phonon state [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF]Quantum Squeezing[END_REF],

∆ 2 x(t) = x 2 (t) -x(t)
where the variance of the quadratures oscillate at 2ω 0 . In this chapter, we examine the interpretation that 2ω 0 oscillations are a signature of phonon squeezing, and present other sources of double phonon frequency oscillations in noise spectroscopy that do not squeeze the phonon state, see Sec. 4.3. Here, we explain how an impulsive pump-pulse can drive a phonon initially prepared in a thermal state, into a squeezed phonon state [START_REF] Garrett | [END_REF]103,[START_REF] Hu | [END_REF]. A single phonon mode with frequency ω 0 is described by the free Hamiltonian

H 0 = ω 0 b † b, (4.3) 
where b and b † are bosonic creation and annihilation operators. We assume that the phonon is coupled to a thermal bath at finite temperature T , hence, before the pump, i.e. at time t < 0, the phonon is described by the density matrix

ρβ = e -βH 0 Tr [e -βH 0 ] , (4.4) 
where β = 1/k B T is the inverse temperature. The variance of the displacement operator of a phonon x ≡ b + b † in a thermal state is given by

x2 ≡ Tr ρβ x2 = coth [ω 0 /2T ]. (4.5) 
Let us now consider a pump-probe experiment, whereby a system with a single phonon mode is pumped by an intense laser pulse at time t = 0, and probed with a weak probe at later time t > 0. The dynamics of the phonon mode is governed by the light-matter coupling. Using the rotating wave approximation [START_REF] Gerry | Introductory Quantum Optics[END_REF], we expand the Hamiltonian of the system to second order in the phonon operators and write

H = ω 0 b † b + c 1 âb † + c1 â † b + c 2 â2 (b † ) 2 + c2 (â † ) 2 b 2 , (4.6) 
where â and â † are the annihilation and creation operators of the electromagnetic field, and c 1 and c 2 are the complex conjugates of c1 and c2 , respectively. We drop contributions of the form V ∼ a † ab † b in the Hamiltonian, since such terms describe, in the mean-field limit â → a(t), the renormalization of the phonon frequency ω 0 by the electromagnetic radiation, which is negligible. In a typical pump-probe experiment, the system is pumped with a high intensity field. Thus, we can use the mean field approximation and replace the photon operators with c-numbers â → a(t), which simplifies the theoretical treatment. Hence, the Hamiltonian of the system can be written as

H = ω 0 b † b + λb † + λb + ξ(b † ) 2 + ξb 2 δ(t), (4.7) 
where λ and ξ are the complex conjugates of λ and ξ, respectively, and the Dirac distribution δ(t) accounts for the impulsive character of the laser. The parameters λ and ξ can be evaluated from a more microscopic theory or they can be taken as phenomenological input parameters. The first order λ and second order ξ light-matter coupling constants in the Hamiltonian Eq. (4.6) describe two distinct phenomena, namely, the excitation of a coherent phonon and phonon squeezing, respectively. Thus, we expect in general that an impulsive pulse can both excite a coherent phonon and also squeeze the phonon state. However, to simplify the discussion we will drop the linear coupling by setting λ = 0, since the effects of exciting a coherent phonon has been already discussed in Chapter 2, and write the Hamiltonian of the system as

H = ω 0 b † b + ξ(b † ) 2 + ξb 2 δ(t). (4.8) 
The pump-pulse breaks time translational symmetry, and the Hamiltonian of the system depends explicitly on time. Thus, the evolution operator U (t 1 , t 2 ) of the phonon mode is a time-ordered exponential and reads

U (t 1 , t 2 ) = T exp -i t 1 t 2 V(t)dt , (4.9) 
with T the time ordering operator, and V(t) = ξ(b † ) 2 + ξb 2 δ(t) the light-matter coupling.

In general, one should worry about the time-ordering of the evolution operator. However, for a delta shaped pump-pulse, one can safely perform the integral in the exponential. Hence, the evolution operator for positive pump-probe time delay t > 0 is given by

U (t, 0) = exp -i ξ(b † ) 2 + ξb 2 . (4.10)
Thus, the effect of the pump-pulse on the phonon mode is to rotate its density matrix according to

ρ(0 + ) = e i(ξ(b † ) 2 + ξb 2 ) ρβ e -i(ξ(b † ) 2 + ξb 2 ) , (4.11) 
where ρ(0 + ) and ρβ are the density matrices of the phonon before and after the pump, respectively. The state of the phonon mode just after the pump-excitation is a squeezed thermal state. This implies that the variance of the atomic displacement oscillates at 2ω 0 after the pump pulse, see Sec 1.3 for details. In Sec (4.3), we present other sources of 2ω 0 oscillations that do not squeeze the phonon state.

Non equilibrium dynamics of light driven squeezed states

In this section, we use Keldysh techniques in path integral, and describe the noise dynamics of a squeezed phonon coupled to a thermal bath. To simplify the discussion, we consider a zone center q = 0 Raman active phonon with A 1g symmetry, even though phonons of other symmetries can be excited through stimulated Raman scattering processes. The phonon mode is coupled to an electronic bath in a metallic system. We mention that the overall results of this section remain unchanged for a bosonic bath. We take into account the electron-phonon interaction, and evaluate the variance of the displacement out of equilibrium. We show that, as it is expected [START_REF] Loudon | The Quantum Theory of Light[END_REF][START_REF]Quantum Squeezing[END_REF], the variance of a squeezed phonon oscillates at double phonon frequency 2ω 0 with a damping rate 2γ; where γ is the equilibrium phonon damping.

Microscopic model

We consider a center zone q = 0 mode, interacting with an electronic fluid, squeezed by an impulsive laser-pulse and write the Hamiltonian of the system as

H = k ǫ(k)c † k c k + ω 0 b † b + k C(k)c † k c k (b + b † ) + 1 2 g(t)(b 2 + (b † ) 2 ), (4.12) 
where c † k creates an electron with momentum k, b † creates an A 1g zone centre phonon, i.e. the associated displacements are the same across all the unit cells, C(k) is the scalar electron-phonon coupling. The third term in the Hamiltonian is the light-matter coupling and describes a second order Raman scattering process [START_REF] Garrett | [END_REF]96,97,103,100], see Sec. (4.1.2) for details. We assume that the duration of the pump-pulse is the shortest time scale, and model its shape with a Dirac distribution g(t) = rδ(t), with r the dimensionless squeezing parameter. Furthermore, for simplicity, we consider the case of a real squeezing parameter.

The fluctuation dynamics of a light induced phonon squeezed state have been discussed in a large variety of systems [95,96,97,103,110,102]. In the following, we shall take into account the electron-phonon interaction and present a microscopic theory of phonon squeezing in metallic systems, using Keldysh techniques in the path integral language. To this end, we evaluate the effective action of a squeezed phonon mode coupled to an electronic fluid at finite temperature T perturbatively in the electron-phonon interaction C(k).

The action of the many body system described by the Hamiltonian Eq. (4.12) is given by S = S 0,e + S sq + S I , (

where S e 0 is the action of the free fermions Eq. (3.52), S sq is the action of a squeezed phonon mode, and S I describes the electron-phonon coupling. In Chapter 3, we showed that the free electron S 0,e action Eq. (3.52) and the electron-phonon action S I action Eq. (3.62) are given by

S I = - k C(k) +∞ -∞ n cl (k, t)X q (t) + n q (k, t)X cl (t) dt, (4.14a) 
S 0,e = k +∞ -∞ ccl (t 1 , k) cq (t 1 , k) Ĝ-1 (t 1 , t 2 , ǫ k ) c cl (t 2 , k) c q (t 2 , k) dt 1 dt 2 , (4.14b) 
see Eq. (3.56) for the definition of the inverse electronic Green's function Ĝ-1 (t 1 , t 2 , ǫ k ). The action of a non interacting squeezed phonon mode can be written as

S sq = +∞ -∞ φcl (t 1 ) φq (t 1 ) 0 D -1 0,A (t 1 , t 2 ) D -1 0,R (t 1 , t 2 ) D -1 0,K (t 1 , t 2 ) φ cl (t 2 ) φ q (t 2 ) dt 1 dt 2 - 1 2 +∞ -∞ g(t) φ cl (t)φ q (t) + φcl (t) φq (t) dt. (4.15) 
with D-1 0,R , D-1 0,A , and D-1 0,K the retarded advanced and Keldysh components of the inverse free phonon Green's function. Henceforth, we denote the inverse matrix Green's function of the free phonon by D-1 0 (t, t ′ ), see definition in Eq. (3.35). The second term in the action describes the squeezing induced by the impulsive pump-pulse, and generates anomalous terms in the action.

We recall that the inverse Keldysh Green's function of a non interacting boson is defined as

D -1 0,K (ω) = -2πiη coth [ω/2T ], (4.16) 
with η an infinitesimal positive constant Eq. (3.41). Later, we take into account the electronphonon coupling C(k), which gives a finite life time to the phonon mode. Therefore, we can neglect the Keldysh component of the inverse Green's function in the action S sq , since it is of order O(η), and simply write it as

D-1 0 (t 1 , t 2 ) = δ(t 1 -t 2 ) 0 i∂ t 2 -ω 0 i∂ t 2 -ω 0 0 , (4.17) 
with ω 0 the bare frequency of the phonon mode, and δ(t 1t 2 ) the Dirac distribution.

In this section, we aim to investigate the dynamics in the noise of the atomic displacement. Hence, it is convenient to write the action in the position and momentum (x,p) representation. For clarity, we define the displacement X(t) and momentum P(t) fields in the Keldysh space according to

X(t) = X cl (t) X q (t) = φ cl (t) + φcl (t) φ q (t) + φq (t) , (4.18a) 
P(t) = P cl (t) P q (t) = -i φ cl (t) -φcl (t) φ q (t) -φq (t) , (4.18b) 
where (cl, q) denote the classical and quantum component, respectively. Following this notation, we express the action of a squeezed phonon S sq with respect to the displacement X(t) and momentum P(t) fields and obtain

S sq = 1 4 +∞ -∞ X(t 1 ) D-1 0 (t 1 , t 2 )X(t 2 )dt 1 dt 2 + 1 4 +∞ -∞ P(t 1 ) D-1 0 (t 1 , t 2 )P(t 2 )dt 1 dt 2 + i 4   +∞ -∞ X(t 1 ) D-1 0 (t 1 , t 2 )P(t 2 )dt 1 dt 2 - +∞ -∞ P(t 1 ) D-1 0 (t 1 , t 2 )X(t 2 )dt 1 dt 2   - 1 2 +∞ -∞ g(t) X cl (t)X q (t) -P cl (t)P q (t) dt. (4.19)
The expression of the action S sq can be simplified by noticing that since the displacement fields X(t) is real, it satisfies the relation

+∞ -∞ X(t 1 ) D-1 0 (t 1 , t 2 )X(t 2 )dt 1 dt 2 = 1 2 +∞ -∞ X(t 1 ) D-1 0 (t 1 , t 2 ) + [ D-1 0 ] ⊺ (t 1 , t 2 ) X(t 2 )dt 1 dt 2 , = +∞ -∞ X(t) 0 -ω 0 -ω 0 0 X(t)dt, (4.20) 
where [ D-1 0 ] ⊺ (t 2 , t 1 ) denotes the transpose of the inverse phonon Green's function D-1 0 (t 1 , t 2 ), see Eq. (4.17). The same result applies for momentum P(t), second term in Eq. (4.19).

Likewise, the terms that couple the displacement X(t) and momentum P(t) fields in the action S sq satisfy the relation Finally, we regroup all the terms and write the action of a squeezed free bosonic mode S sq in the position and momentum basis (X, P) as

+∞ -∞ X(t 1 ) D0 (t 1 , t 2 )P(t 2 )dt 1 dt 2 = +∞ -∞ X(
S sq = 1 4 +∞ -∞ X(t) 0 -ω 0 -g(t) -ω 0 -g(t) 0 X(t)dt - 1 2 +∞ -∞ X(t) 0 ∂ t ∂ t 0 P(t)dt, + 1 4 +∞ -∞ P(t) 0 -ω 0 + g(t) -ω 0 + g(t) 0 P(t)dt, (4.23) 
where g(t) = rδ(t) describes the impulsive light squeezing.

In this work, we assume that the width of the pump-pulse is the smallest time scale of the problem, and hence, and that it can be well approximated by a Dirac distribution. It is, however, uncomfortable to deal with the non-analyticity of the Dirac distribution in path integrals. Indeed, for a delta shaped pump pulse centered at time t = 0, the displacement X(t) and momentum P(t) fields are not well defined at initial time t = 0. In practice, however, the shape of a physical pump-pulse is a smooth function with a finite width τ p , and the approximation with a Dirac distribution is just a practical mathematical description.

Therefore, to avoid complication, we solve the problem for a general pulse with a smooth envelope g(t) centered at time t = 0 and with a finite width τ p , and only take the limit τ p → 0 for which g(t) → rδ(t) at the end of the calculations.

The electron-phonon coupling is independent of the momentum field P(t). Hence, for a smooth pulse envelope g(t), we can integrate out the momentum field P(t), and find that the action of the squeezed phonon with respect to the displacement field X(t) is given by

Ssq = - +∞ -∞ 1 2ω 0 h(t) Ẍcl (t) + h ′ (t) Ẋcl (t) + (ω 2 0 + g(t)ω 0 )X cl (t) X q (t)dt, (4.24) 
where h(t) = ω 0 ω 0 -g(t) , and the prime implies the derivative with respect to time h ′ (t) = ∂ t h(t). We also integrate out the fermionic degrees of freedom, and write the effective action of the phonon mode with respect the displacement field X(t)

S eff = - +∞ -∞ 1 2ω 0 Lsq X cl (t) -f (t) X q (t)dt - 1 2 +∞ -∞ Π K (t, t ′ )X q (t ′ )X q (t)dt, (4.25) 
so that

Π K (t 1 , t 2 ) ≡ -i k C 2 (k) n cl (t 1 )n cl (t 2 ) 0 , (4.26a 
)

f (t) ≡ -2ω 0 k C(k) n cl (k, t) 0 , (4.26b 
)

Lsq ≡ h(t)∂ 2 t + h ′ (t) + 2γ ∂ t + ω 2 0 + g(t)ω 0 , (4.26c) 
where 0 is the average over the non-interacting action, Π K (t 1 , t 2 ) is the Keldysh self-energy, and f (t) the driving force, see Sec. 3.2 and discussion therein for details. The bosonic mode is in equilibrium with the electronic bath, and hence, the Keldysh component of the Green's function satisfies the fluctuation dissipation theorem

Π K (ω) = coth [ω/2T e ](Π R (ω) -Π A (ω)) ≈ -2i γ ω 0 ω coth [ω/2T e ], (4.27) 
where Π K (ω) denotes the Fourier transform of the Keldysh self-energy.

The goal of this work is to discuss the noise properties of the phonon state out of equilibrium. The driving force f (t) describes the excitation of a coherent phonon, and does not change the dynamics of the phonon fluctuations. Here, we neglect the linear coupling in the displacement field in the action Eq. 4.25 by setting the driving force f (t) = 0 for clarity. It is clear that, if needed, the model can be systematically refined to describe coherent squeezed states. In this model the average atomic displacement X = 0, hence, the variance of the phonon is given by

∆ 2 X(t) = X2 (t) = 1 2 X 2 cl (t) , (4.28) 
where X(t) = b(t) + b † (t) is the displacement operator, and denotes the expectation value with respect to the Keldysh action S eff . We express the action in matrix notation and write

S eff = 1 2 +∞ -∞ X(t 1 ) 0 D -1 A (t 1 , t 2 ) D -1 R (t 1 , t 2 ) -Π K (t 1 , t 2 ) X(t 2 )dt 1 dt 2 , (4.29) 
where the inverse retarded and advanced Green's function are defined as

D -1 R (t 1 , t 2 ) = - 1 2ω 0 δ(t 1 -t 2 ) g(t 2 )∂ 2 t 2 + g ′ (t 2 )∂ t 2 + 2γ∂ t 2 + ω 2 0 + g(t 2 )ω 0 , (4.30a) 
D -1 A (t 1 , t 2 ) = - 1 2ω 0 δ(t 1 -t 2 ) g(t 2 )∂ 2 t 2 + g ′ (t 2 )∂ t 2 -2γ∂ t 2 + ω 2 0 + g(t 2 )ω 0 , (4.30b) 
and satisfy the relation

D -1 R (t 1 , t 2 ) = D -1 A (t 2 , t 1
). The prime denotes the derivative with respect to time g ′ (t) = ∂ t g(t). The effective action action S eff of the phonon is quadratic.

Hence, the correlation function of the displacement field is given by

X i (t)X j (t ′ ) = i D(t, t ′ ), (4.31) 
where the subscript i, j = (cl, q) are the classical and quantum component of the field, and D(t, t ′ ) is the phonon propagator, evaluated to second order in the electron-phonon interaction C(k), and is defined by the equation

+∞ -∞ 0 D -1 A (t, s) D -1 R (t, s) -Π K (t, s) D(s, t ′ )ds = δ(t, t ′ ). (4.32)
Since the quantum component of the Green's function is vanishing, the phonon Green's function can be written as

D(t, t ′ ) = D K (t, t ′ ) D R (t, t ′ ) D A (t, t ′ ) 0 , (4.33) 
where the Keldysh and retarded Green's function are given by

D K (t, t ′ ) = +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ , (4.34a) 1 2ω 0 h(t)∂ 2 t + h ′ (t)∂ t + 2γ∂ t + ω 2 0 + g(t)ω 0 D R (t, s) = δ(t -s). (4.34b) 
The retarded and advanced Green's function satisfy the relation D R (t, t ′ ) = D A (t ′ , t), hence, it is enough to solve the equation for the retarded Green's function only. In Appendix B, we solve Eq. (4.34b) and evaluate the Green's function of the squeezed phonon. Here, we only state the final result, which is that the Green's function of a squeezed phonon is defined piece-wise and reads

D R (t, s) =    D R eq (t, s) sign(t) = sign(s), D R sq (t, s) sign(t) = sign(s), (4.35) 
with

D R eq (t, s) = -2θ(t -s)e -γ(t-s) sin [Ω(t -s)], (4.36a) 
D R sq (t, s) = -2θ(ts)e -γ(t-s) ch(r) sin [Ω(ts)])sh(r) cos [Ω(t + s)] .

(4.36b)

The Green's function D R eq (t, s) and D R sq (t, s) stand for the equilibrium and squeezed retarded Green's function. The fact that the squeezed propagator is not a function of the time difference D R sq (t, s) = D R sq (t-s) is a consequence of breaking time translational symmetry. It is interesting to see that the pump-pulse modifies the retarded Green's function D R (t, s) only for times sign(t) = sign(s). This can be understood from the following intuitive argument.

The retarded Green's function D R (t, s) describes the propagation of a phonon between the time interval s to t. On the other hand, the action of the light on the phonon is instantaneous, and non vanishing only at initial time t = 0. Thus, a phonon propagating before t, s < 0 or after t, s > 0 the pump-pulse does not feel the action of the pump.

Noise properties of a squeezed phonon

We now evaluate the variance of the atomic displacement, which is given by the equal time correlation function of the classical field

∆ 2 X(t) = 1 2 X 2 cl (t) . (4.37)
The effective action of the phonon Eq. (4.29) is quadratic in the displacement field X(t), hence, the variance of the displacement reads

∆ 2 X(t) = i 2 +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ , (4.38) 
with D R (t, s) the retarded phonon Green's function, and Π K (s, s ′ ) the Keldysh self-energy defined in Eq. (4.27). We express the Keldysh self-energy with respect to its Fourier transform Π K (ω) and write for the equal time correlation function

X 2 cl (t) = i 2π +∞ -∞ D R (t, s)D R (t, s ′ )Π K (ω)e -iω(s-s ′ ) dsds ′ dω. (4.39)
We shift the integration variables according to s = t -∆ and s ′ = t -∆ ′ , and rewrite the integral as

X 2 cl (t) = i 2π +∞ -∞ D R (t, t -∆)e iω∆ D R (t, t -∆ ′ )e -iω∆ ′ Π K (ω)d∆d∆ ′ dω, = i 2π +∞ -∞ D R (t, ω)D R (t, -ω)Π K (ω)dω, (4.40) 
where

D R (t, ω) = +∞ -∞ D R (t, t -∆)e iω∆ d∆. (4.41) 
Note that the Fourier transform defined above is different from the Wigner transform, see definition Eq. (3.57). The pump-pulse breaks time translational symmetry, which makes the retarded propagator D R (t 1 , t 2 ) a function of both its arguments. This implies that the Fourier transform of the phonon Green's function D R (t, ω) with respect to the time difference ∆ depends explicitly on time t.

We evaluate the Fourier transform of the phonon propagator D R (t, ω). In time domain, the phonon propagators D R (t 1 , t 2 ) of the squeezed phonon is defined piece-wise Eq. (4.36).

Thus, we split the integral Eq. (4.41) over the two time domains and write

D R (t, ω) = t -∞ D R eq (t, t -∆)e iω∆ d∆ + +∞ t D R sq (t, t -∆)e iω∆ d∆, = +∞ -∞ D R eq (t, t -∆)e iω∆ d∆ + +∞ t D R sq (t, t -∆) -D R eq (t, t -∆) e iω∆ d∆, (4.42) 
where we added and subtracted ∞ t D R eq (t, t -∆)e iω∆ d∆ to extend the limits of the first integral to +∞. The first term of the integral is the equilibrium contribution and is time independent, since the equilibrium propagator is a function of the time difference only

D R eq (t, t -∆) = D R eq (∆)
. The second term is the out-of-equilibrium contribution to the retarded propagator D R (t, ω), and vanishes for a vanishing squeezing parameter r = 0 or for negative times t < 0. For positive times after the pump-pulse t > 0, we have

I(t, ω) ≡ +∞ t D R sq (t, t -∆) -D R eq (∆) e iω∆ d∆ = -2 +∞ t g 2 (t) sin (Ω∆) -g 1 (t) cos (Ω∆) e (iω-γ)∆ d∆, (4.43) 
where the complex functions g 1 (t) and g 2 (t) are defined as g 1 (t) = sh(r) cos (2Ωt), (4.44a)

g 2 (t) = ch(r) -sh(r) sin (2Ωt) -1, (4.44b) 
with Ω = ω 2 0γ 2 . We define the complex function A(t) = g 1 (t) + ig 2 (t) and express the non equilibrium part of the retarded Green's function I(ω, t) in a compact exponential form

I(t, ω) = +∞ t A(t)e iΩ∆ + Ā(t)e -iΩ∆ e (iω-γ)∆ d∆, = i 2Ω A(t) ω -Ω + iγ e i(ω+Ω+iγ)t + Ā(t) ω + Ω + iγ e i(ω-Ω+iγ)t D R eq (ω), (4.45) 
where D R eq (ω) denotes the equilibrium retarded Green's function. Finally, the Fourier transform of the retarded Green's function is given by

D R (t, ω) = 1 + i 2ω 0 θ(t)e -γt K(t, ω)e iωt D R eq (ω), (4.46) 
We insert the Fourier transform of the retarded Green's function D R (t, ω) in the expression of the equal time correlation function Eq. (4.39) and write for time t > 0

X 2 cl (t) = i 2π +∞ -∞ D R (t, ω)D R (t, -ω)Π K (ω)dω, = 1 2π +∞ -∞ 1 -y(ω, t) D K eq (ω)dω, (4.49) 
where y(ω, t) is the non equilibrium part of the Keldysh Green's function and is given by

y(ω, t) ≡ 1 4ω 2 0 e -2γt K(t, ω)K(t, -ω) - i 2ω 0 e -γt K(t, -ω)e -iωt + K(t, ω)e iωt . ( 4 

.50)

We recall that the equilibrium Keldysh Green's function is given by

D K eq (ω) = 8γω 0 ω coth [ω/2T ] [ω -Ω] 2 + γ 2 [ω + Ω] 2 + γ 2 = 2γ coth [ω/2T ] (ω -Ω) 2 + γ 2 - 2γ coth [ω/2T ] (ω + Ω) 2 + γ 2 , (4.51) 
where we see that it is peaked at ω = ±ω 0 with a width γ. Therefore, in the limit where γ ≪ ω 0 , the coth [ω/2T ] is a slow function of frequency and the Keldysh Green's function can be approximated by

D K eq (ω) ≈ 2γ coth [ω 0 /2T ] (ω -ω 0 ) 2 + γ 2 + 2γ coth [ω 0 /2T ] (ω + ω 0 ) 2 + γ 2 , (4.52) 
where we used coth [-ω 0 /2T ] =coth [ω 0 /2T ]. We replace in the expression of the equal time correlation function of the classical field and obtain

X 2 cl (t) = 2 π coth [ω 0 /2T ] +∞ -∞ γ (ω -ω 0 ) 2 + γ 2 × 1 - 1 4ω 2 0 e -2γt K(t, ω)K(t, -ω) + i 2ω 0 e -γt K(t, -ω)e -iωt + K(t, ω)e iωt dω. (4.53) 
The function K(t, ω), defined in Eq. (4.47b), is an analytic function of frequency. Hence the integral in Eq. (4.53) can be evaluated using the Cauchy theorem [START_REF] Priestley | Introduction to Complex Analysis[END_REF][START_REF] Needham | Visual Complex Analysis[END_REF]. We integrate over the frequency ω and obtain for the equal time correlation function

X 2 cl (t) = 2 coth [ω 0 /2T ] 1 - 1 4ω 2 0 e -2γt K(t, ω 0 + iγ)K(t, -ω 0 -iγ) + i 2ω 0
e -2γt K(t, -ω 0iγ)e -iω 0 t + K(t, ω 0 + iγ)e iω 0 t .

(4.54)

We take the limit γ ≪ ω 0 for which

K(t, ω 0 + iγ) ≈ 2ω 0 Ā(t)e -iω 0 t , K(t, -ω 0 -iγ) ≈ -2ω 0 A(t)e iω 0 t , (4.55) 
and write the correlation function as

X 2 cl (t) = 2 coth [ω 0 /2T ] 1 + e -2γt Ā(t)A(t) + ie -2γt Ā(t) -A(t) . (4.56) 
We replace the complex function A(t) by its expression in Eq. (4.44) and obtain for the variance after simplification

∆ 2 X(t) = coth [ω 0 /2T ] 1 + e -2γt [ch(2r) -1] -sh(2r) sin 2ω 0 t e -2γt , (4.57) 
where sh(2r) and ch(2r) are the sine and cosine hyperbolic functions, and r the squeezing parameters. Equation 4.57 summarizes the main result of this section, where we see that the variance of the atomic displacement oscillates at twice the frequency of the mode 2ω 0 .

Moreover, taking into account the electron-phonon interaction, we find that the oscillatory amplitude and the phonon squeezing are damped, with a decay rate 2γ.

The microscopic model we developed in this section was applied to the particular case of a zone center q = 0 phonon mode coupled to an electronic bath. However, one should bear in mind that the fluctuations of phonon modes with finite momentum are also excited by the pump-pulse. Furthermore, the results and conclusions derived in this work are also valid for a general bosonic excitation. Likewise, the thermal bath can be either fermionic or bosonic.

Other sources of double phonon frequency oscillations in noise spectroscopy

The oscillations at double phonon frequency 2ω 0 in noise spectroscopy, are invariably interpreted as a signature of macroscopic squeezed phonon states [15,95,96]. However, it is not evident that 2ω 0 oscillations necessarily imply that the phonon is in a squeezed state. In fact, in this section, we propose two mechanisms that drive 2ω 0 oscillations in the variance of the atomic displacement, without squeezing the phonon state. In Sec 4.3.1, we consider a zone center q = 0 phonon mode coupled to an electronic thermal bath, whose temperature is quenched by the laser-pump, and show that its variance oscillates at 2ω 0 without squeezing the phonon mode. In Sec 4.3.2, we show that exciting a coherent phonon, for which cubic anharmonicity is allowed by symmetry, drives 2ω 0 oscillations in the variance of the atomic displacement. We conclude that double phonon frequency 2ω 0 oscillations do not necessarily imply a macroscopic phonon squeezed state.

Thermal quench of the electronic bath

In pump-probe spectroscopy, when a metallic system is pumped with an intense laser pulse, the temperature of the electronic environment can be quenched due to laser heating, see Sec. 2.1.1 for a detailed discussion. The non equilibrium dynamics of the average atomic displacement of a phonon coupled to a thermal electronic bath with a quenched temperature Eq. (2.2) was discussed in Sec (3.2). Here, we extend the model to describe the fluctuation dynamics of the phonon mode out of equilibrium. We mention that the mechanism that we develop here is valid for a general bosonic excitation coupled to a thermal bath which can be bosonic or fermionic in nature.

Consider the Hamiltonian of a zone center A 1g phonon mode coupled to a thermal electronic bath

H = k ǫ(k)c † k c k + ω 0 b † b + k C(k)c † k c k (b + b † ), (4.58) 
where ǫ(k) is the electronic dispersion, c † k creates an electron with momentum k, b † creates an A 1g zone centre phonon, i.e. the associated displacements are the same across all the unit cells, and C(k) is the scalar electron-phonon coupling. For clarity, we drop the band and spin index of the electronic degrees of freedom, and ignore phonon mode with finite momentum q = 0.

The action of a bosonic mode coupled to an electronic thermal bath, to second order in the electron-phonon interaction, is given by

S eff = - +∞ -∞ 1 2ω 0 X q (t) Ẍcl (t) + 2γ Ẋcl + ω 2 0 X cl -f (t) dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 (4.59)
where Π K (t 1 , t 2 ) is the Keldysh self-energy, and f (t) ≡ -2ω 0 k C(k) n cl (k, t) 0 the driving force, see Eq. (3.68) for details. Let us first comment on the effects of the Keldysh self-energy on the dynamics of the average atomic displacement. The Keldysh self-energy couples to the quantum component of the displacement field X q (t), whereas the average atomic displacement is given by the expectation value of the classical field u(t) = 1 √ 2 X cl (t) . Using Hubbard-Stratonovich transformation, one can integrate out the quantum field X q (t), and show the the equation of motion of the classical field is given by

Ẍcl (t) + 2γ Ẋcl + ω 2 0 X cl = f (t) + ξ(t), (4.60) 
where ξ(t) is a random noise with a vanishing average ξ(t) . Thus, the dynamics of the average atomic displacement u(t) = 1 

u(t) = 1 √ 8ω 0 t 0 D R (t, s)f (s)ds, (4.61) 
with D R (t, s) the retarded Green's function.

It is practical to define the classical field with respect to its average

X cl = √ 2u(t) such that δX cl (t) ≡ X cl (t) - √ 2u(t). (4.62)
We express the effective action Eq. (4.59) with respect to the displaced classical field δX cl (t)

and obtain

S eff = 1 2 +∞ -∞ δX cl (t 1 ) X q (t 1 ) 0 D -A (t 1 , t 2 ) D -R (t 1 , t 2 ) -Π K (t 1 , t 2 ) δX cl (t 2 ) X q (t 2 ) dt 1 dt 2 . (4.63)
The variance of the atomic displacement ∆ 2 X(t) is given by

∆ 2 X(t) = 1 2 δX 2 cl (t) . (4.64)
It follows from the basic properties of Gaussian integrals that the equal time correlation function of the classical field reads

δX 2 cl (t) = i +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ . (4.65)
The frequency of a phonon coupled to an electronic bath with a time dependent temperature depends explicitly on time, see Eq. (2.16), hence the retarded Green's function is also a function of both its time arguments and not only the time difference. The effect of a pump induced frequency change on the noise dynamics of a phonon mode, in pump-probe setups, have been discussed in the literature [START_REF] Garrett | [END_REF]100,[START_REF] Janszky | [END_REF], where it was shown that a sudden change in the frequency squeezes the phonon state. Here, we neglect the temperature dependence of the phonon frequency to avoid confusion, and demonstrate that the variance of the atomic displacement still oscillates at 2ω 0 without squeezing the phonon state. We assume that the frequency of the phonon coincides with the equilibrium frequency at the lattice temperature T (0 -) = T L before the pump ω 0 (t) ≈ ω 0 (T L ). Thus, the retarded phonon propagator is a

function of the time difference only D R (t, s) = D R (t -s).
The Keldysh self-energy Π K (s, s ′ ) depends on the properties of the electronic bath, which breaks time translational symmetry, and is therefore a function of both its time arguments.

The phonon mode is coupled an electronic bath with a time dependent temperature T e (t), see Fig (2.1). Therefore, the Wigner transform of the Keldysh self-energy satisfies the fluctuation dissipation theorem with a time dependant temperature

Π K (ω, τ ) = coth [ω/2T e ](Π R (ω) -Π A (ω)) ≈ -2i γ ω 0 ω coth [ω/2T e (τ )], (4.66) 
where γ is the equilibrium phonon damping, and T e (τ ) the instantaneous temperature of the electronic bath.

We write the variance of the atomic displacement with respect to the Wigner transform of the Keldysh self-energy Eq. (4.66) and obtain

∆ 2 X(t) = i 4π +∞ -∞ D R (t -s)D R (t -s ′ )Π K (ω, T e [ s + s ′ 2 ])e -iω(s-s ′ ) dsds ′ dω, (4.67) 
In equilibrium, the integral can be evaluated in frequency space where it takes the form of a simple product. Clearly, the integral is more involved out of equilibrium, since the Keldysh self-energy Π K (ω, T e ) depends on time through the instantaneous electronic temperature. We find that the expression of the variance takes a simpler form in frequency space. Therefore, we Fourier transform it and get

∆ 2 X(Ω) ≡ +∞ -∞ ∆ 2 X(t)e iΩt dt, = i 4π +∞ -∞ D R (ω + Ω 2 )D A (ω - Ω 2 )Π K (ω, T e [τ ])e iΩτ dωdτ, (4.68) 
where the equilibrium retarded Green's function is given by

D R (ω) = 2ω 0 ω 2 + 2iγω -ω 2 0 , (4.69) 
and D A (ω) is the advanced phonon Green's function which satisfies the relation

D A (ω) = D R (-ω).
We replace Π K (ω, τ ) by its expression Eq. (4.66), and write the variance of the atomic displacement as

∆ 2 X(Ω) = 2γω 0 π +∞ -∞ 1 K(ω, Ω) ω coth [ω/2T e ]e iΩτ dωdτ, (4.70) 
where we introduced the denominator

K(ω, Ω) ≡ (ω + Ω/2) 2 + 2iγ(ω + Ω/2) -ω 2 0 (ω -Ω/2) 2 -2iγ(ω -Ω/2) -ω 2 0 , (4.71)
to make the expression more compact. We express the denominator K(ω, Ω) in a form that makes the pole structure of the frequency integral more explicit and write

1 K(ω, Ω) = 1 4ω 0 (Ω/2 + iγ) 1 ω 2 -z 2 1 - 1 ω 2 -z 2 2 , (4.72) 
where z 1 and z 2 are defined by the relations

z 1 = Ω/2 + iγ + ω 2 0 -γ 2 ≈ Ω/2 + iγ + ω 0 , (4.73a) z 2 = Ω/2 + iγ -ω 2 0 -γ 2 ≈ Ω/2 + iγ -ω 0 , (4.73b)
and we took the limit γ ≪ ω 0 . We replace the denominator by its expression Eq (4.72), and write the variance of the atomic displacement in frequency space

∆ 2 X(Ω) = γ 2π(Ω/2 + iγ) +∞ -∞ ω coth [ω/2T e ] 1 ω 2 -z 2 1 - 1 ω 2 -z 2 2 e iΩτ dωdτ.
(4.74)

In out of equilibrium, one is interested in the variation of the physical quantities with respect to their equilibrium value. Thus, subtracting a time independent quantity from the variance is without consequence on the final answer. We make use of this freedom, and redefine the variance with respect to the time independent variance at zero temperature and write

∆ 2 X(Ω) ≡ ∆ 2 X(Ω) -∆ 2 X(Ω, T = 0), (4.75) 
where the expression of the variance at zero temperature is given by

∆ 2 X(Ω, T = 0) ≡ γ 2π(Ω/2 + iγ) +∞ -∞ |ω| 1 ω 2 -z 2 1 - 1 ω 2 -z 2 2 e iΩτ dωdτ, (4.76) 
and we used lim

T →0
coth(ω/2T ) = sign(ω). Finally, we define the dimensionless variable x ≡ ω/2T e (τ ) and write the shifted variance as

∆ 2 X(Ω) = γ 2π(Ω/2 + iγ) +∞ -∞ A [Ω + 2ω 0 , T e (τ )] -A [Ω -2ω 0 , T e (τ )] e iΩτ dτ, (4.77) 
where

A(z, T e ) = +∞ -∞ [x coth (x) -|x|] x 2 -[(z + 2iγ)/4T e ] 2 dx. (4.78)
Defining the variance ∆ 2 X(Ω) with respect to the zero temperature contribution makes the function A(z, T e ) more practical for analytical treatment, see Appendix C for details.

Henceforth, we drop the tilde in the shifted variance for convenience.

The main objective of this work is to investigate the oscillatory behavior of the variance of the atomic displacement ∆ 2 X(t). Thus, it is sufficient to study the pole structure of the of the variance ∆ 2 X(Ω) or equivalently that of the function A [Ω -2ω 0 , T e (τ )] in the complex plane with respect to the dimensionless parameter γ/2T e . For clarity purposes, we choose to present the details of this calculation in Appendix C , and only state the final result. We find that in the high temperature regime T e ≫ γ, which is what is typically expected in pump-probe setups [38], the function A(z, T e ) has simple poles at Ω = ±2ω 0 -2iγ which are asymptotically given by

A(Ω ± 2ω 0 ) ≈ 2iπ 2T e (τ ) Ω + 2iγ ± 2ω 0 . (4.79)
The poles of the variance ∆ 2 X(Ω) at Ω = ±2ω 0 -2iγ translates into oscillations at double the phonon frequency in time domain, with a damping 2γ. In equilibrium, the electronic temperature does not depend on time. Hence, one can perform the integration over total time τ in Eq (4.77) and get a Dirac distribution in frequency space X 2 (Ω) ∼ δ(Ω), which suppresses the 2ω 0 pole. However, when the system is driven out of equilibrium, in our case via the temperature quench of the electronic bath, it breaks time translational symmetry and the Dirac delta function is broadened in frequency space. Hence, one can observe 2ω 0 oscillations in the variance of the atomic displacement. It is insightful to see that driving 2ω 0 oscillations in the variance of the atomic displacement ∆ 2 X(Ω) does not depend on the relaxation dynamics of the electronic bath. Instead, these oscillations are a consequence of suddenly breaking the time translational symmetry of the thermal bath; here through the Keldysh self-energy Eq. 4.66.

We Fourier transform the variance ∆ 2 X(Ω) back, and write it in time domain

∆ 2 X(t) ≡ 1 2π +∞ -∞ ∆ 2 X(Ω)e -iΩt , = 1 4π 2 γ (Ω/2 + iγ) +∞ -∞ A [Ω + 2ω 0 , T e (τ )] -A [Ω -2ω 0 , T e (τ )] e iΩ(τ -t) dτ. (4.80)
Since we are interested in the oscillatory behavior of the variance, it is enough to only evaluate the contribution of the poles at Ω = ±2ω 0 -i2γ to the integral. Using Cauchy theorem [START_REF] Priestley | Introduction to Complex Analysis[END_REF][START_REF] Needham | Visual Complex Analysis[END_REF], we integrate around the poles at Ω = ±2ω 0 -i2γ and obtain

R(t) = - 2γ ω 0 t 0 e i(2ω 0 -i2γ)(τ -t) + e i(-2ω 0 -i2γ)(τ -t) T e (τ ) -T L dτ, (4.81) 
where we subtracted the equilibrium contribution for which T e (τ ) = T L . We use the expression of the instantaneous electronic temperature T e (τ ) = T L + (T H -T L )e -τ /τe , see Eq (2.2), and write

t 0 T e (τ )e (2γ+i2ω 0 )(τ -t) dτ ≈ -i T H -T L 2ω 0 e -t/τe -e -i(2ω 0 -i2γ)t , (4.82) 
where we took the limit [γ, 1/τ e ] ≪ ω 0 . Finally, we drop the purely decaying contribution and write the oscillatory part of the variance as

∆ 2 X osc (t) = - 2γ(T H -T L ) ω 2 0 e -2γt sin (2ω 0 t). (4.83)
Thus, a bosonic mode coupled to an electronic bath with a quenched electronic temperature oscillates at double the phonon frequency 2ω 0 . This is a consequence of breaking the time translational symmetry of the bath. Therefore, it is not possible to conclude whether a phonon has been squeezed solely based on the oscillatory behavior of the variance.

Phonon anharmonicity

In this section, we study the noise dynamics of a zone center q = 0 phonon mode, for which cubic anharmonic terms in the Hamiltonian are allowed by symmetry. We show that, as a consequence of phonon anharmonicity, exciting a coherent phonon in pumpprobe setups drives double phonon frequency 2ω 0 oscillations in the variance of the atomic displacement. We mention that the mechanism that we propose here is valid for a general bosonic or fermionic excitation, not necessarily a phonon, coupled to thermal bath which can be bosonic or fermionic in nature.

We consider a zone center A 1g phonon mode with cubic anharmonicity coupled to a thermal electronic bath, and write the Hamiltonian of the system as

H = k ǫ(k)c † k c k + ω 0 b † b + k C(k)c † k c k (b + b † ) + λ 6 (b + b † ) 3 , (4.84) 
where ǫ(k) is the electronic dispersion, c † k creates an electron with momentum k, b † creates an A 1g zone center phonon, and C(k) is the scalar electron-phonon coupling. The coupling constant λ describes the strength of the phonon anharmonicity, and is assumed to be weak.

Note the above Hamiltonian with the cubic anharmonic term is relevant for the Eg phonon of α-quartz which has been studied extensively using noise spectroscopy [95]. In principle, the anharmonic term is not restricted to the center of the Brillouin zone q = 0, and cubic terms with finite momentum are allowed; provided that the total momentum is conserved.

Here, we neglect such terms for clarity and comment on their effects later.

We integrate out the electronic degrees of freedom, see Sec. 3.2 and discussion therein, and write the effective action with respect the phononic degrees of freedom only

S eff = - +∞ -∞ 1 2ω 0 X q (t) LX cl (t) -f (t) dt - λ 6 √ 2 +∞ -∞ 3X 2 cl (t)X q (t) + X 3 q (t) dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 , (4.85) 
so that

f (t) ≡ -2ω 0 k C(k) n cl (k, t) S 0,e , L ≡ ∂ 2 t + 2γ∂ t + ω 2 0 , (4.86) 
and S 0,e is the average over the free electronic action, for details of the derivation see Eq (3.67). We do not specify the driving mechanism of the coherent phonon, i.e. whether the driving force is impulsive [15,17] or displacive [12] in nature. Instead, we keep the discussion general and explain how the dynamics of the coherent phonon can drive 2ω 0 oscillations in the variance of the the atomic displacement. The goal is to have, at least, a qualitative understanding of the fluctuation dynamics of the phonon mode out of equilibrium. Therefore, we consider the limit where the phonon anharmonicity is weak λ, and evaluate the variance of the atomic displacement to leading order in λ.

We use Heisenberg equation, and write the equation of motion of the average dimen-

sionless atomic displacement u(t) ≡ b(t) + b † (t) as ü(t) + 2γ u(t) + ω 2 0 u(t) = f (t) -λω 0 X2 (t) , (4.87) 
with X(t) = b(t) + b † (t) the dimensionless atomic displacement operator. It is convenient to define the classical field X cl (t) with respect to its average value X cl (t) = √ 2u(t) such as

X cl (t) = δX cl (t) + √ 2u(t). (4.88)
We express the action of the system with respect to displaced classical field δX cl (t). After some algebraic manipulations, we find that

S eff = - +∞ -∞ 1 2ω 0 X q (t) L + 2λω 0 u(t) δX cl dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 , - λ 6 √ 2 +∞ -∞ 3 δX 2 cl (t) -δX 2 cl (t) X q (t) + X 3 q (t) dt. (4.89)
Interestingly, the quadratic part of the action is non trivial when a coherent phonon is excited by the pump-pulse u(t) = 0. This implies that, to leading order in the phonon anharmonicity λ, it is enough to only keep the quadratic part of the action. Indeed, the terms with odd powers in the quantum field X q (t) contribute with higher order corrections, in the phonon anharmonicity O(λ 2 ), to the variance of the atomic displacement ∆ 2 X. Thus, to leading order in the phonon anharmonicity λ, we can we neglect the odd power in the quantum field and write the action as

S eff ≈ - +∞ -∞ 1 2ω 0 X q (t) L + 2λω 0 u(t) δX cl (t)dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 .
(4.90)

In the above, the most interesting part for the dynamics of the fluctuating field δX cl (t) is the time dependent potential proportional to λu(t). This time dependent potential appears as a feedback from the anharmonic term to the breaking of time translation symmetry due to the coherent phonon excitation.

We now evaluate the variance of the atomic displacement, defined as

∆ 2 X(t) ≡ X(t) -u(t) 2 = 1 2 δX 2 cl (t) . (4.91)
The action is quadratic in the displacement field, and hence, the variance of the atomic displacement is given by

∆ 2 X(t) = i 2 +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ , (4.92) 
where the retarded Green's function D R (t, s) satisfies the equation

∂ 2 t + 2γ∂ t + ω 2 0 + 2λω 0 u(t) D R (t, s) = -2ω 0 δ(t -s). (4.93) 
We write the phonon Green's function as a power-serie in the phonon anharmonicity λ

D R (t, s) = D R n (t, s)λ n , (4.94) 
and solve Eq. (4.93) perturbatively. We insert the power-serie in the equation of the retarded Green's function, and find that the first order correction D R 1 (t, s) satisfies the equation

- 1 2ω 0 ∂ 2 t + 2γ∂ t + ω 2 0 D R 1 (t, s) = u(t)D R 0 (t -s), (4.95) 
with λ the strength of the phonon anharmonicity, and D R 0 (ts) the unperturbed phonon Green's function, which satisfies the equation

- 1 2ω 0 ∂ 2 t + 2γ∂ t + ω 2 0 D R 0 (t, s) = δ(t -s). (4.96) 
Hence, the first order correction to the phonon Green's function is formally given by

D R 1 (t, t ′ ) = +∞ -∞ D R 0 (t -s)u(s)D R 0 (s -t ′ )ds. (4.97) 
Following Eq (4.92), we find that to leading order in the phonon anharmonicity λ, the variance of the atomic displacement is given by

∆ 2 X(t) ≈ i 2 +∞ -∞ D R 0 (t, s) + λD R 1 (t, s) D R 0 (t, s ′ ) + λD R 1 (t, s ′ ) Π K (s, s ′ )dsds ′ , ≈ i 2 D K 0 (t, t) + iλ +∞ -∞ D R 0 (t, s)D R 1 (t, s ′ )Π K (s, s ′ )dsds ′ , (4.98) 
where the equal time equilibrium Keldysh Green's function D K 0 (t, t) is time independent, and we used the property Π K (s, s ′ ) = Π K (s ′ , s). In pump-probe experiments, one is rather interested in the deviation of the variance with respect to its equilibrium value. Thus, we drop the time independent contribution to the variance. After simplification, we find that the out of equilibrium part of the variance reads

∆ 2 X(t) = λ +∞ -∞ D R 0 (t, t ′ )u(t ′ )D K 0 (t, t ′ )dt ′ . (4.99) 
We replace the Keldysh Green's function by its expression in time domain

D K (t, s) = 2 coth [ω 0 /2T ]e -γ|t-s| cos ω 0 (t -s), (4.100) 
and finally obtain

∆ 2 X(t) = -2λ coth [ω 0 /2T ] t -∞ e -2γ(t-t ′ ) sin [2ω 0 (t -t ′ )]u(t ′ )dt ′ . (4.101) 
We recognize the Green's function of a harmonic oscillator with frequency 2ω 0 and damping 2γ in the above integral. Thus, it is straightforward to show that the variance of the atomic displacement ∆ 2 X(t) satisfies the equation of motion

∂ 2 t + 4γ∂ t + 4ω 2 0 ∆ 2 X(t) = 4ω 0 λ coth [ω 0 /2T ]u(t). (4.102) 
This last equation summarizes the main result of this section, and makes the discussion transparent. The equation of motion of the variance is a damped harmonic oscillator with frequency 2ω 0 and a damping 2γ. An intuitive interpretation of this result is that the equation of motion of the coherent phonon u(t) = X is a harmonic oscillator with frequency ω 0 and damping γ. Hence, we expect the dynamics of the variance, which is a square of the displacement operator X, to be described by a harmonic oscillator with frequency 2ω 0 and a damping 2γ. This argument shows that the variance ∆ 2 X(t) has a 2ω 0 oscillatory component irrespective of the precise form of the coherent phonon motion u(t). Thus,

similarly to what we found in Sec 4.3.1, the 2ω 0 oscillations in the variance of the atomic displacement are a consequence of breaking time translational symmetry. Here, it is via the coherent phonon excitation; the atomic displacement u(t) = 0 before the pulse and is time dependent after u(t) = 0.

We recall that within the framework of the displacive excitation of coherent phonon theory [15], the average atomic position, in the limit τ e , γ ≪ ω 0 , is given by

u(t) = Q 0 e -t/τe -e -γt cos (ω 0 t) , (4.103) 
where Q 0 is the displacement of the equilibrium atomic position after the temperature quench, and τ e the temperature decay rate, see Eq. (2.1) for details. We replace u(t) in Eq (4.102), and evaluate the variance of the atomic position

∆ 2 X(t) = - λQ 0 coth [ω 0 /2T ] 3ω 0 e -2γt cos (2ω 0 t) + 3e -t/τe -4e -γt cos (ω 0 t) . (4.104) 
When a phonon with cubic anharmonicity is coherently driven, the variance of the atomic displacement oscillates at both the first ω 0 and second harmonic 2ω 0 of the phonon mode.

Equivalently, for systems where the driving mechanism of the coherent phonon is ISRS [15], the average atomic position oscillates with a sine

u(t) = Q 0 e -γt sin (ω 0 t). (4.105) 
Hence, the variance of the atomic displacement is given by

∆ 2 X(t) = - 4λQ 0 coth [ω 0 /2T ] 3ω 0 e -γt sin (ω 0 t) - 1 2 e -2γt sin (2ω 0 t) . (4.106) 
Thus, irrespective of whether the coherent phonon is excite by a displacive [12] or by ISRS mechanism [17,15], we get a 2ω 0 oscillatory term in the variance of the atomic displacement. We mention that taking into account cubic anharmonicity at finite momentum in the Hamiltonian, one can show that the variance the phonon at finite momentum ∆X q = X 2 q (t) -X q (t) 2 oscillates at 2ω q , with ω q the frequency of the phonon mode with momentum q.

Discussion and conclusion

In this chapter, we developed a microscopic theory, using Keldysh techniques in path integrals, to study the out of equilibrium dynamics of lattice fluctuations in metallic systems. In particular, we investigate the oscillatory behavior of the variance of the atomic displacement driven by the pump pulse. We find that when a phonon is squeezed by an impulsive pump, the variance of the atomic displacement oscillates at 2ω 0 with a damping rate 2γ due to electron-phonon interaction, which is in agreement with previous studies [START_REF] Garrett | [END_REF]96,97,98,100,103]. However, we propose two different mechanisms which can also drive 2ω 0 oscillations in the variance of the atomic displacement, without squeezing the phonon state. First, we demonstrate that the variance of the atomic displacement of a phonon coupled to a thermal bath with a quenched electronic temperature oscillates at 2ω 0 .

Second, we explain how exciting a coherent phonon for which cubic anharmonic terms are allowed in the Hamiltonian can also excite 2ω 0 in the variance of the atomic displacement.

Our finding suggest that the 2ω 0 oscillations are a consequence of suddenly breaking time translational symmetry by the pump. In the temperature quench mechanism, the pump breaks the time translational symmetry of the electronic bath, and the information is in the Keldysh self-energy. Whereas, in the phonon anharmonicity mechanism the time de-pendence of the average atomic position u(t) breaks the time translational symmetry, and the relevant information is in the retarded phonon propagator. Overall, we emphasise that these 2ω 0 oscillations are a necessary but not a sufficient condition to assert that the phonon is in a squeezed state.

In general, it is not possible to conclude whether a phonon has been squeezed only by looking at the 2ω 0 oscillatory component in the variance of the atomic displacement. Here, we propose a more reliable criteria to detect phonon squeezing in pump-probe spectroscopy.

The fact that the variance of the atomic displacement has 2ω 0 oscillation both in the case of a squeezed phonon and in the case of a thermal quench of the bath implies that in these two cases the Keldysh Green's functions have the same qualitative feature. On the other hand, the retarded Green's functions in the two cases remains very different. Thus, these two mechanisms can be distinguished by inspecting the retarded Green's function of the phonon. Indeed, it is only when the phonon is squeezed by the pump-pulse that its retarded Green's function breaks time translational symmetry, see Eq. (4.36). This is to be contrasted with the case of the thermal quench of the bath where the retarded phonon Green's function is essentially that in equilibrium. Therefore, it is in principle possible to detect phonon squeezing by measuring the retarded Green's function.

In order to detect a squeezed phonon in pump-probe spectroscopy, one needs to probe a two time correlation function, or equivalently, a physical quantity with information on both frequency and time, such as the Wigner transform of the retarded Green's function

D R W (t, ω) = +∞ -∞ D R (t + ∆/2, t -∆/2)e iω∆ d∆. (4.107) 
Standard fluctuation-dissipation theorem breaks for systems out of equilibrium, and hence, there is no direct way to connect correlation functions with response functions [114,115].

However, as we show below two measurements at ω and -ω can be used to extract the retarded Green's function out of equilibrium, see Eq. (4.110). In time resolved Raman spectroscopy [116,117,118,119], the intensity of the measured signal is proportional to the Wigner transform of the greater Green's function I(t, ω) ∼ iD > (t, ω). Note, it is not possible to have an arbitrarily sharp pulse in both time and frequency simultaneously. Thus, to have a good resolution on both time and frequency, one needs to carry one-pump-two-probes femtosecond Raman spectroscopy [118,119].

We now derive a relation that connects the greater and retarded Green's function out of equilibrium. The greater component of the Green's function satisfies the relation

D > (t, t ′ ) = 1 2 D K (t, t ′ ) + D R (t, t ′ ) -D A (t, t ′ ) , (4.108) 
hence, from the linear property of the Wigner transform we find that

D > W (t, ω) = 1 2 D K W (t, ω) + D R W (t, ω) -D A W (t, ω) . (4.109) 
The Keldysh Green's function is symmetric with respect to its two time arguments. Therefore, its Wigner transform satisfies the relation

D K W (t, ω) = D K W (t, -ω).
Similarly, the advanced and retarded Green's function are related by the identity D R (t, t ′ ) = D A (t ′ , t),

which implies that D R W (t, ω) = D A W (t, -ω)
. Thus, we have that

D > W (t, ω) -D > W (t, -ω) = D R W (t, ω) -D R W (t, -ω) , D > W (t, ω) -D > W (t, -ω) = 2i Im D R W (t, ω) , (4.110) 
where we used

D R W (t, ω) = D R W (t, -ω) * .
In Appendix B, we derive the expression of the Wigner transform of the retarded Green's function and find that

∆D R W (t, ω) = (1 -ch(r)) e -2γt e 2i(ω+ω 0 )t ω + ω 0 + iγ - e 2i(ω-ω 0 )t ω -ω 0 + iγ + 2 i sh(r) cos (2ω 0 t)e -2γt e 2iωt ω + iγ , (4.111) 
where ∆D R W (t, ω) ≡ D R W (t, ω) -D R eq,W (t, ω) and D R eq,W (t, ω) is the Wigner transform of equilibrium retarded Green's function. We see from Eq. (4.111) that the imaginary part of the Wigner transform of the retarded Green's function oscillates in time for all frequencies ω. No such oscillatory spectral weight can be expected in the case of thermal quench of the bath. Thus, it is possible to detect phonon squeezed states by probing the retarded Green's function using time resolved Raman spectroscopy. Note that the Wigner transform is peaked at frequency ω = ±ω 0 , where the oscillatory component is small O(γ/ω 0 ) compared to time-independent component.

General Conclusion

The out of equilibrium lattice dynamics following the excitation by an untrashort pump, as monitored in ultrafast spectroscopy, is complex and very challenging to describe microscopically. In this thesis, we explored the interplay between the lattice and charge degrees of freedom in strongly correlated systems driven out of equilibrium by an ultrafast laser pulse.

A particularly interesting manifestation of the lattice degrees of freedom in pump-probe spectroscopy, that received a lot of attention experimentally, is the generation of coherent phonons by the pump. Motivated by this, we developed in Chapter 2 a microscopic theory of displacive coherent phonons driven by laser heating of carriers. The microscopic theory captures physics beyond the standard phenomenological description, namely, the modification of the electronic energy levels due to the phonon excitation, and how this change feeds back on the phonon dynamics. This effect of electron-phonon interaction leads to a richer dynamic and qualitative corrections to the coherent phonon motion. In particular, we demonstrated that the average atomic displacement oscillates with a time dependent phase. This phase can be interpreted as chirping at short time scales, whereas, at long times it appears as a finite residual phase in the oscillatory signal. We successfully applied the theory to the A 1g coherent phonon of BaFe 2 As 2 , thereby demonstrating that pump-probe data can be related to microscopic quantities and eventually to equilibrium physics.

An important aspect of the lattice dynamics is the fluctuation around the average atomic displacement. After a preliminary discussion in Chapter 3, we developed in Chapter 4 a microscopic description, using Keldysh, of the out of equilibrium dynamics of lattice fluctuations in metallic systems. In particular, we investigated theoretically the oscillatory behavior of the variance of the atomic displacement driven by the pump pulse. We found that when a phonon is squeezed by an impulsive pump, the variance of the atomic displacement oscillates at 2ω 0 . However, we proposed two other mechanisms which can also excite such 2ω 0 oscillations in the variance of the atomic displacement, without squeezing the phonon state.

We showed that the variance of the atomic displacement of a phonon coupled to a thermal bath with a quenched temperature oscillates at 2ω 0 . Also, we explain how exciting a coherent phonon for which cubic anharmonic terms are allowed can also excite such 2ω 0 oscillations in noise. We argued that the 2ω 0 oscillations are rather a consequence of suddenly breaking time translational symmetry by the pump. Thus, we emphasise that these 2ω 0 oscillations are a necessary but not a sufficient condition to conclude that the phonon is in a squeezed state.

The variance of the atomic displacement has qualitatively the same properties in the case of a temperature quench of the thermal bath and a squeezed phonon. Thus, it is not possible to detect phonon squeezing solely based on the measurement of the variance out of equilibrium. However, the retarded Green's functions in the two mechanisms are in fact very different. Therefore, these two mechanisms can be distinguished by probing the retarded Green's function of the phonon, since it is only when the phonon is squeezed that the retarded Green's function breaks time translational symmetry. In particular, we showed that the imaginary part of the Wigner transform of the retarded Green's function oscillates in time if the phonon is in a squeezed state, and that no such oscillation in the spectral weight can be expected in the case of thermal quench of the bath. Thus, it is possible to detect phonon squeezed states by probing the Wigner transform of the retarded Green's function. We showed that by comparing the spectral weight at two frequencies ω and -ω in time resolved Raman spectroscopy one can extract the retarded Green's function out of equilibrium.

The microscopic description of the noise out of equilibrium provides new insights on how to interpret the experimental data in pump-probe spectroscopy. We proposed a concrete experiment to detect phonon squeezing using time resolved Raman spectroscopy techniques.

We hope that our findings will stimulate further experimental investigations, and that the experimental protocol we propose shall be implemented in the future.

Chapter 5

Résumé Substantiel

Introduction générale

La spectroscopie ultrarapide est devenue un sous-domaine de la matière condensée. Ces techniques ont été appliquées avec succès pour sonder diverses excitations, notamment le spin, la charge [7,8], et les vibrations du réseau [START_REF] Giannetti | [END_REF]9], ce qui démontre la polyvalence des expériences pompe-sonde. En particulier, les spectroscopies optiques et de photoémission résolue en temps sont devenues des outils précieux pour sonder l'interaction électron-phonon.

Un phénomène fascinant qui a été largement étudié dans la spectroscopie pompe-sonde est la génération de phonons optiques cohérents [START_REF]Progress in Ultrafast Intense Laser Science[END_REF] et leur modulation des propriétés électroniques. Cet effet fournit non seulement des moyens puissants pour étudier la dynamique femtoseconde du réseau, mais peut également être utilisé pour contrôler de manière cohérente la structure électronique.

Phonons Cohérents

Un phonon cohérent est excité lorsque les atomes concernés du solide cristallin, qui sont en nombre macroscopique, vibrent avec une fréquence et une phase identiques. Ceci est à mettre en contraste avec le mouvement incohérent déclenché par les fluctuations quantiques et thermiques à l'équilibre, où les fréquences et les phases ne sont pas corrélées d'un atome à l'autre. Lorsqu'un phonon cohérent de fréquence ω 0 est excité, le déplacement atomique moyen oscille à la fréquence du phonon ω 0 . Par conséquent, un phonon cohérent brise nécessairement la symétrie de translation temporelle et est intrinsèquement un phénomène de non-équilibre. Du côté de la théorie, ce phénomène est généralement décrit soit comme une excitation displacive des phonons cohérents (DECP) [12,13] soit comme une diffusion Raman stimulée impulsive (ISRS) [14,15,16,17]. Dans le premier mécanisme, la pho-toexcitation conduit à un déplacement de la position d'équilibre du phonon, tandis que dans le second, le rayonnement électromagnétique fournit une courte force impulsive aux atomes. Dans les expériences pompe-sonde, un phonon cohérent peut être généré en pompant un matériau avec une impulsion laser térahertz, qui entraîne des oscillations dans le déplacement atomique moyen u(t) à la fréquence du phonon ω 0 .

Le mouvement atomique induit un changement dans la polarisabilité du milieu, et par conséquent, dans les propriétés spectroscopiques du matériau. Les mesures de photoémission et de réflectivité [34,38,48] fournissent une preuve claire de l'excitation cohérente des phonons en pompes-sondes, et nous ont permis de mieux comprendre le couplage électronphonon. Cependant, ces expériences ne sont pas une mesure directe des degrés de liberté du réseau, et il n'est pas possible d'extraire la dépendance temporelle du déplacement atomique sans d'autres hypothèses sur la dynamique de relaxation du sous-système électronique.

Par conséquent, la spectroscopie à rayons X à résolution temporelle [39], qui constitue la mesure la plus directe de la position atomique, est cruciale pour comprendre le mécanisme microscopique sous-jacent de la génération de phonons cohérents.

Théorie microscopique des phonons cohérents displacives

Nous développons dans ce chapitre une description microscopique des phonons cohérents dans un environnement où l'échelle le temps de thermalization pour des éléctrons photoexcités est courte par rapport au taux de relaxation des électrons et à la fréquence des phonons, comme un métal avec des excitations de charge sans intervalle. Ici, nous nous concentrons sur l'excitation des phonons cohérents par transfert de chaleurs aux électrons par le laser, un phénomène qui est pertinent expérimentalement, mais qui a reçu moins d'attention théoriquement. Comme nous le montrons ci-dessous, la formulation microscopique permet un traitement plus systématique de l'interaction électron-phonon par rapport au modèle phénoménologique qui est actuellement utilisé pour analyser les données expérimentales [12].

Notre théorie capture comment l'excitation cohérente des phonons modifie le fluide électronique, et comment cette modification se répercute sur la dynamique cohérente des phonons.

Quench thermique des électrons

Les expériences pompe-sonde nécessitent un traitement microscopique complet du couplage lumière-matière et de l'interaction électron-électron, ce qui est assez difficile. Pour notre problème, l'effet de l'impulsion de pompage peut être modélisé comme une extinction de la température électronique.

Après la pompe, la dynamique initiale d'un système métallique est dominée par l'interaction lumière-matière et par les interactions électrons-électron. L'impulsion de la pompe excite le sous-système électronique et crée une distribution électronique hors équilibre. Cependant, comme l'ont montré les expériences de photoémission à résolution temporelle et angulaire (tr-ARPES), en raison de la diffusion électron-électron, le sous-système électronique s'équilibre après un temps τ r d'ordre quelques dizaines de femtosecondes à une température plus élevée T H . Ainsi, à des temps plus longs, on peut définir une température électronique effective instantanée T (t). Pour le temps t > τ r , l'énergie excédentaire des électrons est déposée dans le réseau par diffusion électron-phonon. La température électronique relaxe alors pour revenir à la température de initiale T L , et le système atteint l'équilibre thermique.

Dans ce travail, nous nous concentrons sur le régime t ≫ τ r . En conséquence, nous supposons τ r → 0, de sorte que l'effet de la pompe laser peut être modélisé comme induisant un quench de la température des électrons. Nous supposons que la relaxation électronique de la température est caractérisée par une échelle de temps τ e , et est décrite phénoménologiquement par

T (t) = T L + (T H -T L )e -t/τe , (5.1) 
où T L est la température du réseau avant la pompe T L = T (0 -), T H est la température après l'impulsion T H = T (0 + ), et τ e est le taux de relaxation.

Description Microscopique de la dynamique du phonon cohérent A 1g

Nous considérons un système électronique multiorbital interagissant avec un phonon A 1g uniforme. Il est décrit par l'Hamiltonien A 1g avec la fréquence ω 0 , et N est le nombre total de sites. L'interaction électron-phonon est décrite par λC(k) ab , où C(k) ab sont les éléments de la matrice électron-phonon dans la base orbitale, qui sont de l'ordre de l'énergie de Fermi, et λ < 1 est un petit paramètre sans dimension qui quantifie la force de l'interaction.

H = k,a,b,σ ǫ(k) ab -µδ ab c † kaσ c kbσ + w 0 b † b + 1/2 + λ √ N k,a,b,σ C ab (k)(b + b † )c † kaσ c kbσ , (5.2 
Nous montrons que l'évolution temporelle du déplacement atomique u(t) ≡ û(t) ≡ b(t) + b † (t) est donnée par l'équation de mouvement

∂ 2 t + ω 2 0 u(t) = F (t), (5.3) 
avec

F (t) = -2 λω 0 √ N kabσ C ab (k) c † kaσ (t)c kbσ (t) H,T (t) - kabσ C ab (k) c † kaσ c kbσ H,T L , (5.4) 
où H,T (t) désigne la moyenne sur l'état à plusieurs corps en interaction au temps t après l'impulsion de la pompe où le système est caractérisé par une température T (t), et la force La force F (t) ne peut pas être évalué analytiquement et doit être approximé, comme c'est souvent le cas pour les systèmes à plusieurs corps en interaction. Notre but est de prendre en compte la rétroaction phononique au moins qualitativement, pour laquelle il suffit d'évaluer la force F (t) au second ordre dans l'interaction électron-phonon λ 2 . A cet ordre, la variable phonon peut être traitée comme un champ classique dépendant du temps, puisque toutes les fluctuations quantiques û2 sont des corrections d'ordre supérieur dans λ. Le problème est alors réduit à un fluide électronique chaud interagissant avec un champ dépendant du temps induit par le mouvement du phonon.La force F (t) peut être évalué au second ordre dans λ, en considérant que la dynamique du système peut être décrite par le champ moyen effectif Hamiltonien

F (t)
H eff = k,a,b,σ ǫ ab -µδ ab c † kaσ c kbσ + λ k,a,b,σ C ab (k)c † kaσ c kbσ u(t), (5.5) 
avec u(t) = b(t) + b † (t) . Au second ordre dans l'interaction électron-phonon O(λ 2 ), on peut montrer que l'équation de mouvement du phonon cohérent est donnée par

∂ 2 t + 2γ∂ t + ω 2 0 u = f (t) = ω 0 X 1 e -t/τ 1 +X 2 e -t/τ 2 u(t) , , (5.6) 
avec

X 1 = -2 Ô T H ,H 0 -Ô T L ,H 0 , X 2 = -2 π(T H ) -π(T L ) , (5.7) 
où f (t) est la force instantanée hors équilibre, π(T ) la self-energy du phonon, et les paramètres X 1 et X 2 sont calculés à partir des conditions initiales. Le deuxième terme de la force f (t), qui est absent dans la théorie phénoménologique, est le rétroaction du réseau généré par l'interaction électron-phonon.

5.2.3

Au-delà de la théorie phénoménologique : les corrections induites par l'interaction Dans cette section, nous discutons les effets de la rétroaction des phonons sur le mouvement atomique. L'équation de mouvement du phonon cohérent est donnée par

∂ 2 t + 2γ∂ t + ω 2 0 u = ω 0 X 1 e -t/τ 1 +ω 0 X 2 e -t/τ 2 u(t), (5.8) 
où, en raison de la présence du terme de rétroaction X 2 = 0, la solution de la position atomique est modifiée.Dans la limite [γ/ω 0 , 1/(ω 0 τ 1/2 )] → 0, qui est expérimentalement pertinente, la solution de l'équation de mouvement est donnée par

u(t) = X 1 e -t/τ 1 ω 0 -X 2 e -t/τ 2 - X 1 e -γt ω 0 -X 2 cos[ω 0 t + Φ(t)], (5.9) 
où chirping discutés dans la littérature, tels que ceux dus à l'anharmonicité du phonon [23] et à la diffusion du porteur de charge [25,[START_REF] Tangney | [END_REF]68].

Φ(t) ≡ - X 2 τ 2 2 1 -e -t/
φ ∞ ≡ Φ(t → ∞) = -X 2 τ 2 /2, ( 5 
Note, la spectroscopie Raman à l'équilibre de BaFe 2 As 2 montre que la fréquence du phonon A 1g diminue avec l'augmentation de la température [69]. Simultanément, la durée de vie du phonon [69] a une dépendance atypique de la température à travers la transition magnétique de BaFe 2 As 2 qui rappelle beaucoup la dépendance de la résistivité T [70],

impliquant que les dépendances de la température du phonon sont probablement dues à l'interaction avec les électrons. Ainsi, à partir de ces tendances d'équilibre, nous concluons que X 2 > 0, et nous prédisons que le phonon cohérent A 1g de BaFe 2 As 2 présentera un pépiement décalé vers le rouge accompagné d'une phase résiduelle négatif à une fluence suffisamment élevée. La prédiction ci-dessus est en effet correcte pour le phonon cohérent A 1g de BaFe 2 As 2 , qui diminue avec l'augmentation de la température, et pour lequel une phase négative φ = -0.1π a été rapportée [38,39].

Conclusions

Nous avons développé une théorie microscopique des phonons cohérents displacive excité par transfert de chaleur du laser aux porteurs de charge. Notre théorie capture la physique au-delà de la description phénoménologique standard, à savoir la modification des niveaux d'énergie électronique due à l'excitation du phonon, et comment ce changement se répercute sur la dynamique du phonon. Cet effet de l'interaction électron-phonon conduit à un chirping aux temps court, e apparaît comme une phase finie dans le signal oscillant aux temps longs.

Nous avons appliqué avec succès la théorie au phonon cohérent A 1g de BaFe 2 As 2 , démontrant ainsi que les données en pompe-sonde peuvent être reliées à des quantités microscopiques et éventuellement à la physique de l'équilibre. Nous avons expliqué l'origine de la phase dans le signal oscillatoire rapporté dans les récentes expériences [38,39] sur ce système, et nous prédisons qu'il présentera un chirping décalé vers le rouge à une fluence plus importante.

5.3 Dynamique du bruit des phonons hors équilibre .

Introduction

La physique des systèmes fortement corrélés est un domaine fascinant et stimulant de la matière condensée [71,[START_REF] Fernandes | [END_REF]. L'interaction entre le nombre souvent important de degrés de liberté dans ces matériaux peut être extrêmement difficile à décrire. Ceci a conduit à l'introduction de techniques innovantes pour explorer leurs propriétés [71,91]. Au cours des dernières décennies, l'étude de la dynamique ultra-rapide d'électrons fortement corrélés, en utilisant des techniques pompe-sonde [34,78,92], nous a permis d'acquérir des connaissances précieuses sur ces systèmes [START_REF] Giannetti | [END_REF]. En particulier, le rôle des degrés de liberté du réseau a fait l'objet de recherches scientifiques intenses, par exemple [38,39], et a été étudié dans une grande classe de matériaux, par exemple [18,19,20]. Les fluctuations des modes vibratoires pourraient être pertinentes pour comprendre l'origine des propriétés intrigantes des matériaux [START_REF] Pines | Elementary Excitations in Solids : Lectures on Phonons, Electrons, and Plasmons (Advanced Book Classics[END_REF].

Récemment, la spectroscopie de bruit dans les installations de pompes-sondes a émergé comme un outil puissant pour étudier les fluctuations du réseau de systèmes fortement corrélés hors équilibre. Dans de telles expériences, le matériau est excité avec une impulsion laser intense, qui conduit le système hors de l'équilibre. Ensuite, à l'aide d'une faible impulsion correctement retardée dans le temps, nous sondons la dynamique du bruit associé aux degrés de liberté phononiques dans le système. Pour celà, on peut par exemple mesurer l'intensité moyenne de la lumière transmise T (t) [START_REF] Garrett | [END_REF] ou sa variance ∆ 2 T = T 2 (t) -T (t) 2

[95], ou étudier le facteur Debye-Wall en spectroscopie à rayons X à résolution temporelle [96]. Remarque, ce n'est que si l'on détecte dans le signal mesuré une signature de la variable phonon que la dynamique du bruit peut être associée aux fluctuations du réseau. Dans

Ref [START_REF] Garrett | [END_REF]95,96], des oscillations à 2ω 0 , avec ω 0 par fréquence de phonon, ont été rapportées en spectroscopie de bruit. De telles oscillations peuvent être attribuées à l'oscillation de la variance du déplacement atomique ∆ 2 x(t) = x2 (t)x(t) 

H = k ǫ(k)c † k c k + w 0 b † b + k C(k)c † k c k (b + b † ), (5.13 
S eff = 1 2 +∞ -∞ δX cl (t 1 ) X q (t 1 ) 0 D -A (t 1 , t 2 ) D -R (t 1 , t 2 ) -Π K (t 1 , t 2 ) δX cl (t 2 ) X q (t 2 ) dt 1 dt 2 . ( 5 
(t) = i +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ . (5.16) 
Nous supposons que la fréquence du phonon coïncide avec la fréquence d'équilibre à la température du réseau T (0 -) = T L avant la pompe ω 0 (t) ≈ ω 0 (T L ). Ainsi, le propagateur de phonon retardé est une fonction de la différence de temps seulement D R (t, s) = D R (t-s).

La self-energy de Keldysh Π K (s, s ′ ) dépend des propriétés du bain électronique, qui brise la symétrie de translation temporelle, et est donc fonction de ses deux arguments temporels. Le mode phonon est couplé à un bain électronique avec une température dépendant du temps T e (t). Par conséquent, la transformée de Wigner de la self-energy de Keldysh satisfait le théorème de fluctuation-dissipation avec une température dépendant du temps

Π K (ω, τ ) = coth [ω/2T e ](Π R (ω) -Π A (ω)) ≈ -2i γ ω 0 ω coth [ω/2T e (τ )], (5.17) 
où γ est l'amortissement du phonon à l'équilibre, et T e (τ ) la température instantanée du bain électronique.

On écrit la variance du déplacement atomique par rapport à la transformée de Wigner de l'équation de la self-energy de Keldysh (5.17) et on obtient

∆ 2 X(t) = i 4π +∞ -∞ D R (t -s)D R (t -s ′ )Π K (ω, T e [ s + s ′ 2 ])e -iω(s-s ′ ) dsds ′ dω, . (5.18) 
à l'équilibre, l'intégrale peut être évaluée dans l'espace des fréquences où elle prend la forme d'un simple produit. Il est clair que l'intégrale est plus compliquée hors équilibre, puisque la self-energy de Keldysh Π K (ω, T e ) dépend du temps à travers la température électronique instantanée. Nous trouvons que l'expression de la variance prend une forme plus simple produit dans l'espace des fréquences. Nous transformons la variance par une transformation de Fourier et obtenons après quelques manipulations algébriques

∆ 2 X(Ω) = γ 2π(Ω/2 + iγ) +∞ -∞ A [Ω + 2ω 0 , T e (τ )] -A [Ω -2ω 0 , T e (τ )] e iΩτ dτ, (5.19) 
où une conséquence de la brisure soudaine de la symétrie de translation temporelle du bain thermique; ici par la self-energy de Keldysh Eq. 5.17.

A(z, T e ) = +∞ -∞ [x coth (x) -|x|] x 2 -[(z + 2iγ)/4T e ] 2 dx. ( 5 
Nous appliquons une transformation de Fourier à la variance ∆ 2 X(Ω), et l'écrivons dans le domaine temporel et trouvons que la partie oscillatoire de la variance est donnée par

∆ 2 X osc (t) = - 2γ(T H -T L ) ω 2 0 e -2γt sin (2ω 0 t). (5.22) 
Ainsi, un mode bosonique couplé à un bain électronique avec une température électronique quenché oscille au double de la fréquence du phonon 2ω 0 . C'est la conséquence de la brisure de la symétrie temporelle du bain. Par conséquent, il n'est pas possible de conclure si un phonon a été squeezé uniquement sur la base du comportement oscillatoire de la variance.

anharmonicité des phononons

Dans cette section, nous étudions la dynamique du bruit d'un mode phonon en centre de zone q = 0, pour lequel les termes cubiques anharmoniques dans l'hamiltonien sont autorisés par symétrie. Nous montrons que, en conséquence de l'anharmonicité phononique, l'excitation d'un phonon cohérent dans les expériences pompe-sonde entraîne des oscillations à double fréquence phononique 2ω 0 dans la variance du déplacement atomique. Nous considérons un mode phonon de centre de zone A 1g à anharmonicité cubique couplé à un bain électronique thermique, et écrivons l'hamiltonien du système comme Notez que l'hamiltonien ci-dessus avec le terme anharmonique cubique est pertinent pour le phonon Eg de α-quartz qui a été étudié de manière extensive en utilisant la spectroscopie de bruit [95].

H = k ǫ(k)c † k c k + w 0 b † b + k C(k)c † k c k (b + b † ) + λ 6 (b + b † ) 3 , ( 5 
Nous intégrons les degrés de liberté électroniques et nous écrivons l'action effective en fonction des degrés de liberté phononiques seulement

S eff = - +∞ -∞ 1 2ω 0 X q (t) LX cl (t) -f (t) dt - λ 6 √ 2 +∞ -∞ 3X 2 cl (t)X q (t) + X 3 q (t) dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 , (5.24) 
de manière à ce que 

f (t) ≡ -2ω 0 k C(k) n cl (k, t) S 0,e , L ≡ ∂ 2 t + 2γ∂ t + ω 2 0 , (5.25 
S eff = - +∞ -∞ 1 2ω 0 X q (t) L + 2λω 0 u(t) δX cl dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 , - λ 6 √ 2 +∞ -∞ 3 δX 2 cl (t) -δX 2 cl (t) X q (t) + X 3 q (t) dt.
(5.28)

Il est intéressant de noter que la partie quadratique de l'action est non triviale lorsqu'un phonon cohérent est excité par la pompe u(t) = 0. Cela implique que, à l'ordre principal dans l'anharmonicité du phonon λ, il suffit de garder la partie quadratique de l'action. En effet, les termes de puissances impaires dans le champ quantique X q (t) contribuent avec des corrections d'ordre supérieur, dans l'anharmonie phononique O(λ 2 ), à la variance du déplacement atomique ∆ 2 X. Ainsi, à l'ordre dominant en l'anharmonie phononique λ, nous pouvons négliger la puissance impaire dans le champ quantique et écrire l'action comme

S eff ≈ - +∞ -∞ 1 2ω 0 X q (t) L + 2λω 0 u(t) δX cl (t)dt - 1 2 +∞ -∞ X q (t 1 )Π K (t 1 , t 2 )X q (t 2 )dt 1 dt 2 .
( 

∆ 2 X(t) = i 2 +∞ -∞ D R (t, s)D R (t, s ′ )Π K (s, s ′ )dsds ′ , (5.31) 
où la fonction de Green retardée D R (t, s) satisfait l'équation

∂ 2 t + 2γ∂ t + ω 2 0 + 2λω 0 u(t) D R (t, s) = -2ω 0 δ(t -s). (5.32) 
Nous trouvons que, pour l'ordre dominant dans l'anharmonie phononique, la partie hors équilibre de la variance du déplacement atomique est donnée par 

∆ 2 X(t) = -2λ coth [ω 0 /2T ] t -∞ e -2γ(t-t ′ ) sin [2ω 0 (t -t ′ )]u(t ′ )dt ′ . ( 5 
∂ 2 t + 4γ∂ t + 4ω 2 0 ∆ 2 X(t) = 4ω 0 λ coth [ω 0 /2T ]u(t). (5.34) 
Cette dernière équation résume le principal résultat de cette section et rend la discussion transparente. L'équation de mouvement de la variance est un oscillateur harmonique amorti de fréquence 2ω 0 et un amortissement de 2gamma. Une interprétation intuitive de ce résultat est que l'équation de mouvement du phonon cohérent u(t) = X est un oscillateur harmonique de fréquence ω 0 et d'amortissement γ. On s'attend donc à ce que la dynamique de la variance, qui est un carré de l'opérateur de déplacement X, soit décrite par un oscillateur harmonique de fréquence 2ω 0 et d'amortissement 2γ. Cet argument montre que la variance ∆ 2 X(t) a une composante oscillatoire de 2ω 0 indépendamment de la forme précise du mouvement cohérent du phonon u(t). Ainsi, de façon similaire à ce que nous avons trouvé dans Sec 5.3.2, les oscillations 2ω 0 de la variance du déplacement atomique sont une conséquence de la brisure de la symétrie translationnelle temporelle. Ici, c'est via l'excitation cohérente du phonon.

Nous rappelons que dans le cas d'une excitation displacive du phonon cohérent [15], la position atomique moyenne dans la limite τ e , γ ≪ ω 0 est donnée par

u(t) = Q 0 e -t/τe -e -γt cos (ω 0 t) , (5.35) 
où Q 0 est le déplacement de la position atomique d'équilibre après l'extinction de la température, et τ e le taux de relaxation de la température. On remplace u(t) dans Eq (5.34), et on évalue la variance de la position atomique

∆ 2 X(t) = - λQ 0 coth [ω 0 /2T ]
3ω 0 e -2γt cos (2ω 0 t) + 3e -t/τe -4e -γt cos (ω 0 t) .

(5.36)

Lorsqu'un phonon à anharmonicité cubique est excité de manière cohérente, la variance du déplacement atomique oscille à la fois avec la première ω 0 et la seconde harmonique 2ω 0 du mode phonon.

De même, pour les systèmes où le mécanisme d'excitation du phonon cohérent est ISRS [15], la position atomique moyenne oscille avec un sinus u(t) = Q 0 e -γt sin (ω 0 t).

(5.37)

Ainsi, la variance du déplacement atomique est donnée par

∆ 2 X(t) = - 4λQ 0 coth [ω 0 /2T ] 3ω 0 e -γt sin (ω 0 t) - 1 2 e -2γt sin (2ω 0 t) . (5.38) 
Ainsi, que le phonon cohérent soit excité par un méchanisme displacive [12] ou par un mécanisme ISRS [17,15], on obtient un terme oscillatoire de 2ω 0 dans la variance du déplacement atomique. Afin de détecter un phonon squeezé en spectroscopie pompe-sonde, il faut sonder une fonction de corrélation à deux temps, ou de façon équivalente, une grandeur physique avec des informations sur la fréquence et le temps, tell que la transformée de Wigner de la fonction de Green retardée

Discussion et conclusion

D R W (t, ω) = +∞ -∞ D R (t + ∆/2, t -∆/2)e iω∆ d∆. (5.39) 
Le théorème standard de fluctuation-dissipation n'est pas valide pour les systèmes hors équilibre, et par conséquent, il n'y a pas de moyen direct de relier les fonctions de corrélation aux fonctions de réponse [114,115]. Cependant, nous montrons que deux mesures à ω et -ω peuvent être utilisées pour extraire la partie imaginaire de la transformée de Wigner de la fonction de Green retardée hors de l'équilibre.

L'expression de la transformé de Wigner de la fonction de Green retardée est donné par

∆D R W (t, ω) = (1 -ch(r)) e -2γt e 2i(ω+ω 0 )t ω + ω 0 + iγ - e 2i(ω-ω 0 )t ω -ω 0 + iγ + 2 i sh(r) cos (2ω 0 t)e -2γt e 2iωt ω + iγ , (5.40) 
où ∆D R W (t, ω) ≡ D R W (t, ω) -D R eq,W (t, ω) et D R eq,W ( 
t, ω) est la transformée de Wigner de la fonction de Green retardée à l'équilibre. Nous voyons dans Eq. (5.40) que la partie imaginaire de la transformée de Wigner de la fonction de Green retardée oscille dans le temps pour toutes les fréquences ω. On ne peut pas s'attendre à un tel poids spectral oscillatoire dans le cas d'un quencg thermique du bain. Ainsi, il est possible de détecter les états squeezé du phonon en sondant la fonction de Green retardée à l'aide de la spectroscopie Raman à résolution temporelle.

Conclusion générale

La dynamique du réseau hors équilibre suivant l'excitation par une pompe non courte, telle qu'observé en spectroscopie ultra-rapide, est complexe et très difficile à décrire microscopiquement. Dans cette thèse, nous avons exploré l'interaction entre les degrés de liberté du réseau et de la charge dans des systèmes fortement corrélés excité hors équilibre par une impulsion laser ultra-rapide. Une manifestation particulièrement intéressante des degrés de liberté du réseau dans la spectroscopie pompe-sonde, qui a reçu beaucoup d'attention expérimentalement, est la génération de phonons cohérents par la pompe. Motivé par cela, nous avons développé une théorie microscopique des phonons cohérents dislacive excité par transfert de chaleur. La théorie microscopique capture la physique au-delà de la description phénoménologique standard, à savoir, la modification des niveaux d'énergie électronique due à l'excitation du phonon, et comment ce changement se répercute sur la dynamique du phonon. Cet effet de l'interaction électron-phonon conduit à une dynamique plus riche et à des corrections qualitatives du mouvement cohérent du phonon. En particulier, nous avons démontré que le déplacement atomique moyen oscille avec une phase dépendante du temps.

Cette phase peut être interprétée comme un "chirping" à des échelles de temps courtes, alors que, à des échelles de temps longues, elle apparaît comme une phase résiduelle finie dans le signal oscillatoire. Nous avons appliqué avec succès la théorie au phonon cohérent A 1g de BaFe 2 As 2 , démontrant ainsi que les données de la pompe-sonde peuvent être reliées à des quantités microscopiques et éventuellement à la physique de l'équilibre.

Un aspect important de la dynamique du réseau est la fluctuation autour du déplacement atomique moyen. Après une discussion préliminaire, nous avons développé une description microscopique, en utilisant Keldysh, de la dynamique hors équilibre des fluctuations du réseau dans les systèmes métalliques. En particulier, nous avons étudié théoriquement le comportement oscillatoire de la variance du déplacement atomique entraîné par l'impulsion de la pompe. Nous avons trouvé que lorsqu'un phonon est squeezé par une pompe impulsive, la variance du déplacement atomique oscille à 2ω 0 . Cependant, nous avons proposé deux autres mécanismes qui peuvent aussi exciter de telles oscillations de la variance du déplacement atomique à 2ω 0 , sans squeezer l'état du phonon. Nous avons montré que la variance du déplacement atomique d'un phonon couplé à un bain thermique avec une température quenché oscille à 2ω 0 . Nous expliquons aussi comment l'excitation d'un phonon cohérent pour lequel des termes cubiques anharmoniques sont autorisés peut aussi exciter de telles oscillations à 2ω 0 dans le bruit. Nous affirmons que les oscillations de 2ω 0 sont plutôt une conséquence de la brisure soudaine de la symétrie de translation temporelle par la pompe.

Ainsi, nous insistons sur le fait que ces oscillations à 2ω 0 sont nécessaires mais pas suffisantes pour conclure que le phonon est dans un état squeezé.

La variance du déplacement atomique a qualitativement les mêmes propriétés dans le cas d'un quench de la température du bain thermique et d'un phonon squeezé. Ainsi, il n'est pas possible de détecter un squeezing de phonon seulement en se basant sur la mesure de la variance hors équilibre. Cependant, les fonctions de Green retardée dans les deux mécanismes sont en fait très différentes. Par conséquent, ces deux mécanismes peuvent être distingués en sondant la fonction de Green retardé du phonon, puisque ce n'est que lorsque le phonon est squeezé que la fonction de Green retardé brise la symétrie de translation temporelle. En particulier, nous avons montré que la partie imaginaire de la transformée de Wigner de la fonction de Green retardée oscille dans le temps si le phonon est dans un état squeezé, et qu'on ne peut s'attendre à une telle oscillation du poids spectral dans le cas d'un quench thermique du bain. Ainsi, il est possible de détecter les états squeezé du phonon en sondant la transformée de Wigner de la fonction de Green retardée. Nous avons montré qu'en comparant le poids spectral à deux fréquences ω et -ω dans la spectroscopie Raman à résolution temporelle, on peut extraire la fonction de Green retardée hors équilibre. where η is an arbitrarily small positive constant that ensures the convergence of the Fourier transform. By inspection, we see that the response function in frequency domain (A.3) is the equilibrium retarded phonon self-energy evaluated to second order in the electron-phonon interaction (λ 2 ) at temperature T (t) = 1/β(t).

A.2 Solution of the equation of motion

As discussed in the main text, if the instantaneous out-of-equilibrium force f (t) is evaluated to second order in electron-phonon interaction the theory captures the modification of the electronic dispersion due to the coherent phonon excitation, and how that feeds back upon the dynamics of the phonon itself. Taking this feedback into account the differential equation governing the atomic displacement u(t) is given by [see Eqs. ( 4) and [START_REF] Giannetti | [END_REF] in main text] ∂ 2 t + 2γ∂ t + ω 2 0 u = f (t) = ω 0 X 1 e -t/τ 1 +uX 2 e -t/τ 2 .

(A.4)

The parameters (ω 0 , X 1 , X 2 , γ, τ 1/2 ) are defined in the main text. Here we discuss the solution of the above differential equation subject to the initial conditions u(0) = 0 and ∂ t u(0) = 0, and in the experimentally relevant limit of [γ/ω 0 , 1/(ω 0 τ 1/2 )] → 0. The equation of motion (A.4) is linear, the solution is then the sum of the homogeneous and particular solution u(t) = y h (t) + y p (t). We first discuss the homogeneous solution, then following the same method we give the particular solution. We start from the following ansatz for the homogeneous solution

y h (t) = ∞ n=0
a n e knt + cc, (A.5)

with k n = iω 1γn/τ 2 , and ω 1 = (ω 0 ) 2γ 2 . We insert (A.5) into the homogeneous equation, and obtain an equation for the coefficients a n a n (k 2 n + 2γ 0 k n + (ω 0 ) 2 ) = ω 0 X 2 a n-1 , a 0 (k 2 0 + 2γ 0 k 0 + (ω 0 ) 2 ) = 0.

(A.6) where Ω 2 = ω 2 0 -γ 2 . This form of the solution ensures that for constant X 0 (t, s) and P 0 (t, s), the functions D R (t, s) and K(t, s) satisfy the equation of motion of a damped harmonic oscillator. The fact that the phonon is a well defined excitation implies that γ ≪ ω 0 . Thus, in this limit the equations of motion for X 0 (t, s) and P 0 (t, s) read where ch(x) and sh(x) denote the cosine and sine hyperbolic functions, respectively. K 1 (s)

∂ t X 0 (t,
and K 2 (s) are arbitrary functions independent of time t, that are to be calculated using the boundary conditions, see Eq. (B.3) and Eq. (B.4). Finally, using Eq. (B.6a), the retarded phonon Green's function in the limit γ ≪ ω 0 is given by D R (t, s) = ch[F (t, s)] K 1 (s) cos (Ωt) + K 2 (s) sin (Ωt) e -γt

sh[F (t, s)] K 2 (s) cos (Ωt) + K 1 (s) sin (Ωt) e -γt .

(B.12)

We evaluation the arbitrary functions K 1 (s), K 2 (s) using the boundary conditions. For clarity, we define the arbitrary functions A(s) and φ(s) such as The function A(s) can be calculated using the jump condition Eq. (B.4). We evaluate the derivative of the phonon propagator ∂ t D R (t, s) and get ∂ t D R (t, s) = g(t) sh[F (t, s)] sin [Ω(ts)])ch[F (t, s)] cos [Ω(t + s)] A(s)e -γ(t-s)

+ Ω ch[F (t, s)] cos [Ω(ts)]) + sh[F (t, s)] sin [Ω(t + s)] A(s)e -γ(t-s) , (B.17)

where we took the limit γ ≪ ω 0 . We use F (t, t) = 0 and write the derivative of the Green's function as where D R eq (t, s) and D R sq (t, s) stand for the equilibrium and squeezed retarded Green's function. The fact that the squeezed propagator is not a function of the the time difference D R sq (t, s) = D R sq (ts) is a consequence of breaking time translational symmetry. It is inter-esting to see that the pump-pulse modifies the retarded Green's function D R (t, s) only for times sign(t) = sign(s). This can be understood from the following intuitive argument. The retarded Green's function D R (t, s) describes the evolution of the phonon between the time interval s to t. On the other hand, the action of the light on the phonon is instantaneous at time t = 0. Thus, a phonon propagating before t, s < 0 or after t, s > 0 the pump-pulse does not feel the action of the pump.

∂ t D
We now calculate the Wigner transform of the retarded Green's function defined in 

b

  and b † . Therefore, it is instructive to evaluate the result of the squeezing operation S(r, φ) on the canonical operators b and b †b sq = S † (r, φ)bS(r, φ), (1.20a) b † sq = S † (r, φ)b † S(r, φ),(1.20b)where b sq (r, φ) and b † sq (r, φ) stand for the squeezed bosonic operators, and S † (r, φ) is the conjugate of the squeezing operator. We take the derivative of the squeezed operators Eq. (1.20) with respect to the squeezing parameter r and write∂ r b sq = -i 2 [b sq , e iφ (b † sq ) 2e -iφ b 2 sq ] = -ie iφ b † sq , sq , e iφ (b † sq ) 2e -iφ b 2 sq ] = ie -iφ b sq . (1.21b)The above is a set of two first order differential equations. A straight forward calculation gives the solution for the squeezed bosonic operatorsb sq = ch(r)âe iθ sh(r)â † , (1.22a) b † sq = ch(r)â †e -iθ sh(r)â,(1.22b)where â and â † are complex conjugate of one an other, and can be determined from the boundary conditions. For a vanishing squeezing parameter r = 0, we have that b sq (r = 0) = b and b † sq (r = 0) = b † which gives b sq = ch(r)be iθ sh(r)b † , (1.23a) b † sq = ch(r)b †e -iθ sh(r)b,
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 23 Figure 2.3: Crystal structure of BaFe2As2 (space group I4/mmm). Reproduced from Ref. [73].

  (3.11), one could equally well arrange to have the observable Ô(t) on the backward branch of the contour. As we shall see in Sec. 3.1.3, the most convenient choice is to take a half sum of these two equivalent representations. culated. Since the closed time contour has two branches, see Fig (3.1), the time-ordered Green's function has 4 components. Following the definition of the contour time ordering

  15) where b and b † denote the annihilation and creation operators of a bosonic excitation, and obey the canonical commutation relation [b, b † ] = 1. The matrix indices i, j = ± refer to the forward and backward branches, respectively. The correlation functions G

  ) where b † and b are boson creation and annihilation operators, respectively, and obey the canonical bosonic commutation relation b, b † = 1.
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 41 These double phonon frequency oscillations can be attributed to the fluctuation dynamics of the lattice. The intensity of the transmitted light is sensitive to the displacement of the atomic position x(t). Assuming that the perturbation due to the atomic motion is small, we can expand the intensity of the transmitted light to first order in the atomic displacement and write
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 41 Figure 4.1: ∆T mean (blue curve) and ∆ 2 T var (red curve) as a function of the pump-probe time delay. The zero time is the instant at which pump and probe arrive simultaneously on the sample. In the inset a zoom of the variance for the first 3 ps is shown. (b) Wavelet analysis (Morlet power spectrum) of the variance oscillating part. (c) Fourier transforms of the oscillating parts of mean (blue curve) and variance (red curve).In a and c, the left axis is related to the mean while the right axis is related to the variance. Reproduced from[95].

√ 2 X

 2 cl (t) is the same as described in Sec. (3.2), since the expectation value of the random noise vanishes ξ(t) = 0. The solution of the equation of motion of the coherent phonon u(t) is formally given by

  ) où nous travaillons en unités où = 1, ǫ(k) ab décrit la dispersion dans une base orbitale, µ est le potentiel chimique, c † kaσ et c kaσ sont des opérateurs de création et d'annihilation d'électrons, respectivement, avec un vecteur d'onde k, un indice orbital a, et un spin σ. Les opérateurs (b † , b) décrivent les opérateurs de création et d'annihilation pour le phonon

. 11 )

 11 Note, même si |∆ω 0 | /ω 0 ≪ 1 et que le chirping n'est pas expérimentalement observable à faible fluence, la phase φ = (∆ω 0 /ω 0 )(ω 0 τ 2 ) peut être substantielle puisqu'elle implique le grand paramètre ω 0 τ 2 . Puisque dans notre théorie le décalage de fréquence ∆ω 0 et la phase résiduelle φ sont liés parφ ∞ = -∆ω 0 τ 2 , (5.12) une conclusion importante est que le chirping décalé vers le rouge (décalé vers le bleu) est accompagné d'une phase résiduelle négative (positive). Notez que la phase dépendante du temps Φ(t) est qualitativement différente d'une phase constante qui est habituellement discutée dans la littérature. Le chirping discuté ici est lié à l'extinction en température du bain d'électrons, et donc à la dépendance temporelle de la fréquence du phonon due à l'interaction électron-phonon. Ceci est à mettre en contraste avec d'autres mécanismes de

  ) où ǫ(k) est la dispersion électronique, c † k crée un électron avec une vecteur d'onde k, b † crée un phonon A 1g en centre de zone, c'est-à-dire que les déplacements associés sont les mêmes à travers toutes les cellules unitaires, et C(k) est le couplage scalaire électron-phonon. Pour plus de clarté, nous laissons tomber l'indice de bande et le spin des degrés de liberté électroniques, et nous ignorons le mode phonon à vecteur d'onde fini q = 0. L'action d'un mode bosonique couplé à un bain thermique électronique, au second ordre dans l'interaction électron-phonon, est donnée par

. 23 )

 23 où ǫ(k) est la dispersion électronique, c † k crée un électron avec une impulsion k, b † crée un phonon central de zone A 1g , et C(k) est le couplage scalaire électron-phonon. La constante de couplage λ décrit la force de l'anharmonicité du phonon, et est supposée être faible.

  En général, il n'est pas possible de conclure si un phonon a été squeezé seulement en regardant la composante oscillatoire de 2ω 0 dans la variance du déplacement atomique. Ici, nous proposons un critère plus fiable pour détecter le squeezig de phonon en spectroscopie pompe-sonde. Le fait que la variance du déplacement atomique ait une oscillation de 2ω 0 à la fois dans le cas d'un phonon squeezé et dans le cas d'un quench thermique du bain implique que dans ces deux cas la composante Keldysh de la fonction de Green ont la même caractéristique qualitative. D'un autre côté, Les fonctions de Green retardé dans les deux cas restent très différentes. Ainsi, on peut distinguer ces deux mécanismes en inspectant la fonction du phonon de Green retardé. En effet, ce n'est que lorsque le phonon est squeezé par l'impulsion de pompe que sa fonction de Green retardée brise la symétrie de translation temporelle. Ceci est à mettre en contraste avec le cas du quench thermique du bain où la fonction du phonon retardé de Green est essentiellement celle en équilibre. Par conséquent, il est en principe possible de détecter un phonon squeezé en mesurant la fonction de Green retardée.

  La description microscopique du bruit hors équilibre fournit de nouvelles indications sur la façon d'interpréter les données expérimentales en spectroscopie pompe-sonde. Nous avons proposé une expérience concrète pour détecter le squeezing des phonons en utilisant des techniques de spectroscopie Raman à résolution temporelle. Nous espérons que nos résultats stimuleront d'autres recherches expérimentales, et que le protocole expérimental que nous proposons sera mis en oeuvre dans le futur.respect to the time difference (tt ′ ) evaluated at the electronic temperature T (t)Π T (t) (Ω) = n,m | n| Ô |m | 2 1 E n -E m -Ω + iη× e -β(t)Ene -β(t)Em , (A.[START_REF] Coleman | Introduction to Many Body Physics[END_REF] 

K 1 (

 1 s) = -A(s) sin Ωs + φ(s) e γs , (B.13a) K 2 (s) = A(s) cos Ωs + φ(s) e γs , (B.13b)and write the propagator in a more convenient formD R (t, s) = ch[F (t, s)] sin [Ω(ts)φ(s)])sh[F (t, s)] cos [Ω(t + s) + φ(s)] A(s)e -γ(t-s) . (B.14)Using the continuity condition Eq. (B.3) of the retarded Green's functionD R (t, t ′ ) = 0, we get ch[F (t, t)] sin [-φ(t)]sh[F (t, t)] cos [2Ωt + φ(t)] A(t) = 0. (B.15)Following the definition of F (t, s) Eq. (B.11) we have that F (t, t) = 0, hence, using ch(0) = 1 and sh(0) = 0 we obtain φ(t) = 0. (B.16) 
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 2252 Eq. (B.23). The out of equilibrium part of the Wigner transform is defined as∆D R W (t, ω) ≡ D R W (t, ω) -D R eq (ω), = +∞ -∞ D R (t + ∆/2, t -∆/2) -D R eq (∆)e iω∆ d∆, (B.24) where D R eq (ω) is the equilibrium retarded Green's function. Note, in equilibrium the Wigner transform of a two time correlation function coincides with its Fourier transform. The retarded Green's function D R (t + ∆/2, t -∆/2) of a squeezed phonon is different from equilibrium only for times where Sign(t + ∆/2) = Sign(t -∆/2). Therefore, the integral in Eq.(B.24) does not vanish only for times ∆ > 2t, where the Wigner can be written as∆D R W (t, ω) = +∞ 2t D R sq (t + ∆/2, t -∆/2) -D R eq (∆) e iω∆ d∆, = -2 ch(r) -1 +∞ 2t sin(2ω 0 ∆)e -2γt e iω∆ d∆ + 2 sh(r) cos(2ω 0 t) +∞ 2te -2γt e iωt .(B.25)We write the sine function in complex notation sin(2ω 0 t) = e iω 0 t -e iω 0 t 2i , and get∆D R W (t, ω) = i ch(r) -1 +∞ 2t e i(ω+ω 0 +iγ)e i(ω-ω 0 +iγ)∆ d∆ + 2 sh(r) cos(2ω 0 t) +∞ 2t e -2γt e iωt , (B.26)we integrate over time ∆ and find∆D R W (t, ω) = 1ch(r) e -2γt e 2i(ω+ω 0 )t ω + ω 0 + iγ -e 2i(ω-ω 0 )∆ ωω 0 + iγ + 2i sh(r) cos(2ω 0 t)e -2γt e iωt ω + iγ . (B.27)The Wigner transform of a squeezed phonon oscillates in time for all frequencies ω. approximated byA(Ω + 2ω 0 , T e ) ≈ -4T iγ ± ω 0 ) [x] -1) dx = π 2 6 .The variance in frequency space has a poles at Ω = ±2ω 0 -i2γ, therefore it oscillates at frequency 2ω 0 in time domain. However since this result is valid for small temperature T e /γ ≪ 1, such oscillations are expected to be small. We now consider the high temperature regime γ ≫ T e , which is more relevant for pumpprobe experiments, and writeA(Ω + 2ω 0 , T e ) = +∞ -∞ x coth [x] -|x| x 2 -[(Ω + 2ω 0 + i2γ)/4T e ] 2 dx, (C.4)we split the denominator and getA(Ω+2ω 0 , T e ) = 2T e (τ ) Ω + 2ω 0 + i2γ +∞ -∞ x coth [x] -|x| x -(Ω + 2ω 0 + i2γ)/4T e -x coth [x] -|x| x + (Ω + 2ω 0 + i2γ)/4T e dx.We see that the function has a simple pole at Ω ≈ -2ω 0 -2iγ, and hence, we expect the variance to oscillate at 2ω 0 in time domain. Since x coth (x) -|x| is a smooth function, we find that the for Ω ≈ -2ω 0 the function A(Ω + 2ω 0 , T e ) is asymptotically given byA(z 1 /2T e (τ )) ≈ 2T e (τ ) Ω + 2ω 0 + i2γ +∞ -∞ (x coth [x] -|x|) 1 xiγ/2T e -1 x + iγ/2T e dx, ≈ 2T e (τ ) Ω + 2ω 0 + i2γ +∞ -∞ (x coth [x] -|x|) 2i(γ/2T e ) x 2 + (γ/2T e ) 2 dx. (C.6)We take the limit γ/T e → 0 and obtainA(z 1 /2T e (τ )) ≈ 2iπ 2T e (τ ) Ω + 2ω 0 + i2γ +∞ -∞ (x coth [x] -|x|)δ(x)dx, ≈ 2iπ 2T e (τ ) Ω + 2iγ + 2ω 0 , (C.7)where we used lim x→0x coth(x) = 1. In conclusion, the variance ∆ 2 X(Ω) of the atomic displacement in frequency space can be written as∆ 2 X(Ω) = γ 2π(Ω/2 + iγ) +∞ -∞ A [Ω + 2ω 0 , T e (τ )] -A [Ω -2ω 0 , T e (τ )] e iΩτ dτ (C.8)where the function A [Ω ± 2ω 0 , T e (τ )] has a pole at Ω ≈ ±2ω 0iγ, which is asymptotically given byA(Ω ± 2ω 0 ) ≈ 2iπ 2T e (τ ) Ω + 2iγ ± 2ω 0 γ ≪ T e , (C.9a) A(Ω ± 2ω 0 ) ≈iγ ± ω 0 ) 2 γ ≫ T e ,(C.9b) with γ and ω 0 the phonon damping and frequency, respectively, and T e is the electronic temperature. The poles at Ω = ±2ω 0 -i2γ, translates into oscillations at 2ω in time domain. Titre : Dynamique Hors Équilibre du Réseaux Dans les Expériences Pompe-sonde Résumé : L'étude de la dynamique hors équilibre des systèmes fortement corrélés, à l'aide de laser femtoseconde, a révélé une variété de phénomènes sans analogue en physique d'équilibre. Dans cette thèse, nous étudions théoriquement la dynamique hors équilibre des degrés de liberté du réseau et leur signature en spectroscopie pompe-sonde. Nous développons une description microscopique des phonons cohérents displacive excité par le laser. La théorie capture la rétroaction de l'excitation des phonons sur le fluide électronique, qui manque dans la formulation phénoménologique actuelle. Nous montrons que cette rétroaction conduit à une oscillation avec une fréquence qui dépend du temps aux temps courts, même si le mouvement des phonons est harmonique. Pour les temps longs, cette rétroaction apparaît comme une phase résiduelle dans le signal oscillatoire. Nous appliquons la théorie au BaFe 2 As 2 , nous expliquons l'origine de la phase du signal oscillatoire rapporté dans des expériences récentes, et nous prédisons que le système oscille avec une fréquence décalé vers le rouge pour les grandes fluences. Notre théorie ouvre également la possibilité d'extraire des informations d'équilibre à partir la dynamique des phonons cohérents. Un autre phénomène intéressant qui a été observé en spectroscopie pompe-sonde est l'oscillation des fluctuations du réseau à 2ω, où ω est la fréquence d'un phonon du système étudié. Ces oscillations sont interprétées comme une signature d'états de phonons squeezé macroscopique. Dans ce travail, nous identifions d'autres mécanismes d'oscillations à 2ω autre que le squeezing. Nous montrons qu'un quench de la température du bain thermique induite par la pompe, à laquelle le phonon est couplé, ou l'excitation d'un phonon cohérent pour lequel l'anharmonicité cubique est permise par symétrie peut également produire de telles oscillations en spectroscopie sans que le phonon soit dans un état squeezé. Nous concluons que, contrairement à ce qui est communément admis, les oscillations à double fréquence phononique en spectroscopie de bruit ne sont pas nécessairement une signature des phonons squeezés. Nous soulignons ce qui peut être un critère fiable pour identifier un phonon squeezé en utilisant la spectroscopie pompe-sonde. Mots clefs : Spectroscopie Pompe-Sonde, Electron phonon, excitation displacive des phonon cohérent, Interaction des phonons cohérents, Phonon squeezé, Quench thermique, électrons fortement corrélés, Formalisme de Keldysh.

  4.1.2 Phonon Squeezed States Generated by Impulsive Raman ScatteringPhonon squeezed states are quantum states of matter with remarkable properties such as a reduced uncertainty for one of the two canonical variables. The possibility of engineering phonon squeezed states in a macroscopic condensed matter system, using impulsive light stimulation in pump-probe setups, has been widely discussed in the literature[START_REF] Garrett | [END_REF]96,97,98,100,102,103,104]. The idea is that a femtosecond pump-pulse can prepare a macroscopic phonon squeezed state immediately after the pump excitation t = 0 + . If indeed such a state can be created by pumping, then one signature of it would be that the atomic displacement oscillates at 2ω 0 according to Eq. (1.28).

  t 1 ) D⊺ 0 (t 1 , t 2 )P(t 2 )dt 1 dt 2 ,

				(4.21)
	which in turn gives			
	+∞ -∞	+∞ X(t) -∞	0 ∂ t ∂ t 0	P(t)dt. (4.22)

X(t 1 ) D0 (t 1 , t 2 )P(t 2 ) -P(t 1 ) D0 (t 1 , t 2 )X(t 2 ) dt 1 dt 2 = 2i

  dépend explicitement du temps dans le régime transitoire. L'évaluation de la force F (t) pour un système en interaction est une tâche difficile pour les raisons suivantes. Premièrement, les moyennes dans Eq. (5.4) sont sur un état d'interaction à plusieurs corps et dépendent implicitement de la variable phonon û(t). Ainsi, étant donné que le champ du phonon est un objet quantique, la force F (t) dépend à la fois du déplacement atomique moyen u(t) et des fluctuations du phonon û2H . Deuxièmement, les électrons et les phonons sont à des températures différentes T = T ph , donc la force ne peut pas être évalué en utilisant le formalisme du temps imaginaire d'équilibre. Dans la théorie phénoménologique DECP, la rétroaction du phonon, ou la dépendance implicite de F (t) sur u(t), est négligée, et la force F (t) est indépendant de la variable phonon û(t). Plus tard, nous développons une approche perturbative pour évaluer le force F (t) qui capture la rétroaction du phonon, et nous comparons nos résultats avec la théorie phénoménologique DECP.

  temps qui décroît dans le temps. Cependant, comme le terme de rétroaction X 2 est de l'ordre de λ 2 , nous nous attendons à ce que les corrections de l'amplitude décroissante soient négligeables. Ce n'est pas le cas pour la phase dépendante du temps Φ(t). Ce qui précède semble être une description en cinq paramètres du phonon cohérent. Cependant, si la prescription microscopique est suivie, (X 1 , X 2 , τ 1 , τ 2 ) peut être obtenu à partir des paramètres phénoménologiques T H et τ e définis dans Eq. (5.1). De plus, si la théorie à O(λ 2 ) est quantitativement suffisante, alors γ -1 est la durée de vie du phonon -dire chirping, avec une variation de fréquence ∆ω 0 ∼ -X 2 /2. En revanche, pour t ≫ τ 2 on obtient une phase résiduelle finie

	τ 2 . Eqs. (5.9) et (5.10) résument les principaux résultats de la théorie microscopique par rap-(5.10) port à la théorie phénoménologique. Le terme de rétroaction du phonon, conduit à une oscillation du phonon cohérent avec une phase dépendant du temps Φ(t), et aussi à une phénoménologique DECP, le phonon cohérent oscille avec une phase dépendant du temps Φ(t). Pour les petits temps t τ 2 , nous développons la rétroaction Φ(t) au premier ordre dans t/τ e et trouvons Φ(t) ≈ -X 2 2 t, et donc, le terme de rétroaction décrit la variation temporelle de la fréquence d'oscillation, amplitude dépendant du à l'équilibre mesurée par, disons, la réponse Raman à l'équilibre. Contrairement à la théorie c'est-à

  2 , où x désigne l'opérateur de déplacement, hors équilibre et sont invariablement interprétés comme une signature d'un état macroscopique de phonon squeezé[97,98]. La physique des états squeezés des photons, par laquelle quelques modes bosoniques sont contrôlés, est un sujet bien compris en optique quantique[START_REF] Loudon | The Quantum Theory of Light[END_REF]99]. En revanche, le squeezing des phonons dans les solides implique le contrôle d'un nombre macroscopique d'atomes N A ∼ 10 23 , ce qui est beaucoup plus complexe. , c'est-à-dire ∆ 2 x(t) ∼ e -2γt sin(2ω 0 t) où γ est la durée de vie inverse du phonon. Dans ce chapitre, nous demandons si l'inverse est correct ou non. A savoir, si une observation de l'oscillation de 2ω 0 dans la variance du déplacement atomique implique qu'un phonon a été squeezé. Nous montrons que cette affirmation inverse n'est pas correcte. En d'autres termes, il existe des mécanismes par lesquels un système montre des oscillations de 2ω 0 sans impliquer de compression de phonon. Nous identifions deux de ces mécanismes d'oscillations de 2ω 0 qui n'impliquent pas de squeezing de l'état du phonon.Nous montrons qu'un quench de la température du bain thermique auquel le phonon est couplé peut entraîner des oscillations dans la variance du déplacement atomique. Nous démontrons que l'excitation d'un phonon cohérent pour lequel l'anharmonicité cubique est permise par la symétrie peut aussi produire de telles oscillations de 2ω 0 en spectroscopie de bruit sans squeezer l'état du phonon. Nous concluons que, bien que les oscillations de 2ω 0 soient une condition nécessaire, de telles oscillations ne sont pas suffisantes pour affirmer l'existence d'un phonon squeezé. Au contraire, elles peuvent simplement être des signatures d'une brisure de la symétrie de translation dans le temps.

	Ainsi, si cela est confirmé, le squeezing de phonons d'un solide à l'aide d'une pompe laser est une réalisation impréssionante et une approche prometteuse pour contrôler les états quan-tiques de la matière en manipulant les fluctuations de leur réseau. De ce point de vue, il est important de déterminer ce qu'est une signature non équivoque d'un état de phonon squeezé en spectroscopie pompe-sonde. Le but du présent chapitre est d'aborder cette question. Il est bien établi dans la littérature [94, 97, 98, 100, 101, 102] que le fait de presser une excitation bosonique entraînera des oscillations temporelles du bruit au double de la En spectroscopie pompe-sonde, lorsqu'un système métallique est pompé avec une impulsion laser intense, la température de l'environnement électronique peut subir un quench grâce à la chaleur transféré par le laser. Ici, nous étendons le modèle pour décrire la dynamique de fluctuation du mode phonon hors équilibre. Considérons l'Hamiltonien d'une zone centre A 1g phonon couplé à un bain électronique fréquence bosonique 2ω 0 5.3.2 Quench thermique du bain électronique thermique

  Ainsi, il suffit d'étudier la structure polaire de la de la variance ∆ 2 X(Ω) ou équivalent à celui de la fonction A [Ω -2ω 0 , T e (τ )] dans le plan complexe par rapport au paramètre sans dimension γ/2T e . Nous trouvons que dans le régime de haute température T e ≫ γ, ce qui est typiquement attendu dans les réglages pompe-sonde[38], la fonction A(z, T e ) a des pôles simples à Ω = ±2ω 0 -2iγ qui sont donnés Les pôles de la variance ∆ 2 X(Ω) at Ω = ±2ω 0 -2iγ se traduit par des oscillations au double de la fréquence du phonon dans le domaine temporel, avec un amortissement de 2γ. A l'équilibre, la température électronique ne dépend pas du temps. Ainsi, on peut effectuer l'intégration sur le temps total τ dans Eq (5.19) et obtenir une distribution de Dirac dans l'espace de fréquence X 2 (Ω) ∼ δ(Ω), qui supprime le pôle 2ω 0 . Cependant, lorsque le système est hors l'équilibre il brise la symétrie de translation temporelle et la fonction delta de Dirac est élargie dans l'espace de fréquence. Ainsi, on peut observer des oscillations de 2ω 0 dans la variance du déplacement atomique. Il est intéressant de voir que le fait les oscillations à 2ω 0 dans la variance du déplacement atomique ∆

	asymptotiquement par	A(Ω ± 2ω 0 ) ≈ 2iπ	2T e (τ ) Ω + 2iγ ± 2ω 0	.	(5.21)

.20) 

où la variance ∆ 2 X(Ω) est définie par rapport à la contribution à température nulle. L'objectif principal de ce travail est d'étudier le comportement oscillatoire de la variance du déplacement atomique ∆ 2 X(t). 2 X(Ω) ne dépend pas de la dynamique de relaxation du bain électronique. Au contraire, ces oscillations sont

  Au lieu de cela, nous gardons la discussion générale et expliquons comment la dynamique du phonon cohérent peut conduire à des oscillations de 2ω 0 dans la variance du déplacement atomique. Le but est d'avoir, au moins, une compréhension qualitative de la dynamique de fluctuation du mode du phonon hors équilibre. Par conséquent, nous considérons la limite où l'anharmonicité du phonon est faible λ, et évaluons la variance du déplacement atomique à l'ordre principal en λ. + b † (t) l'opérateur de déplacement atomique. Il est pratique de définir le champ classique X cl (t) par rapport à sa valeur moyenne X cl (t) =

	avec X(t) = b(t) √	2u(t) tel que
	X cl (t) = δX cl (t) +	√	2u(t).		(5.27)
	Nous exprimons l'action du système par rapport au champ classique déplacé δX cl (t). Après
	quelques manipulations algébriques, nous trouvons que	
	Nous utilisons l'équation de Heisenberg, et écrivons l'équation de mouvement du dé-
	placement atomique moyen u(t) ≡ b(t) + b † (t) comme	
	ü(t) + 2γ u(t) + ω 2 0 u(t) = f (t) -λω 0	X2 (t) ,	(5.26)

) et S 0,e est la moyenne sur l'action électronique libre. Nous ne précisons pas le mécanisme d'entraînement du phonon cohérent, c'est-à-dire si la force motrice est de nature impulsive

[15,17] 

ou displacive

[12]

.

  .29) Dans ce qui précède, la partie la plus intéressante pour la dynamique du champ δX cl (t) est le potentiel dépendant du temps proportionnel à λu(t). Ce potentiel dépendant du temps apparaît comme une rétroaction du terme anharmonique à la brisure de la symétrie de translation temporelle due à l'excitation cohérente du phonon.

	déplacement atomique est donnée par				
	Nous évaluons maintenant la variance du déplacement atomique, défini comme	
	.∆ 2 X(t) ≡ X(t) -u(t)	2 =	1 2	δX 2 cl (t) .	(5.30)
	L'action est quadratique dans le champ de déplacement, et par conséquent, la variance du

  To solve the homogeneous equation of the retarded Green's function Eq. (B.2), we replace it by a set of two coupled first order equations and write∂ t D R (t, s) = [ω 0g(t)] K(t, s), (B.5a) ∂ t K(t, s) = -[ω 0 + g(t)] D R (t, s) -2 γ ω 0 ∂ t D R (t, s), (B.5b)where K(t, s) is a function that we introduce as a mathematical tool to solve Eq. (B.2).Notice that for g(t) = 0, the equation of the retarded Green's function Eq. (B.5) is that of a damped harmonic oscillator. Therefore, we propose the following ansatz for the solutionD R (t, s) = X 0 (t,s) cos(Ωt)e -γt + 1 Ω [ω 0 P 0 (t, s) + γX 0 (t, s)] sin(Ωt)e -γt , (B.6a) K(t, s) = P 0 (t, s) cos(Ωt)e -γt -1 Ω [ω 0 X 0 (t, s) + γP 0 (t, s)] sin(Ωt)e -γt , (B.6b)

  We take the limit where the width of the pump-pulse goes to zero τ p → 0 and recover the Dirac delta function g(t) = rδ(t). Using the properties of the Dirac distribution, we haveThe above equation can be solved analytically, and one can show that X 0 (t) and P 0 (t) are given byX 0 (t, s) = ch[F (t, s)]K 1 (s)sh[F (t, s)]K 2 (s), (B.10a) P 0 (t, s) = ch[F (t, s)]K 2 (s)sh[F (t, s)]K 1 (s),

							(B.10b)
	with		t			
		F (t, s) =	g(t ′ )dt ′ ,		(B.11)
			s			
	s) ∂ t P 0 (t, s)	= -g(t)	-sin (2Ωt) cos (2Ωt) cos (2Ωt) sin (2Ωt)	X 0 (t, s) P 0 (t, s)	.	(B.7)
	that					
		sin(Ωt)g(t) = sin(0)g(t) = 0,		(B.8a)
		cos(Ωt)g(t) = cos(0)g(t) = g(t),		(B.8b)
	hence Eq. (B.7) further simplifies, and we obtain		
	∂ t X 0 (t, s) ∂ t P 0 (t, s)	= -g(t)	0 1 1 0	X 0 (t, s) P 0 (t, s)	.	(B.9)

  R sq (t + , t) = A(t) Ωg(t) cos (2Ωt) .(B.18)In the limit g(t) = rδ(t), for time t = 0 the function A(t) is given byA(t) = -2. (B.19)Finally, we replace in Eq. (B.14) and write the phonon Green's function as D

	t				
		δ(t ′ )dt ′ = r	sign(t) = sign(s)	(B.21a)
	s				
	t				
	F (t, s) = r	δ(t ′ )dt ′ = 0	sign(t) = sign(s)	(B.21b)
	s				
	with sign(t) the sign function. Thus, the retarded phonon Green's function is defined piece-
	wise and reads				
	D R (t, s) =		D R eq (t, s)	sign(t) = sign(s),	(B.22)
			D R sq (t, s)	sign(t) = sign(s),	
	with				
	D R eq (t, s) = -2θ(t -s)e -γ(t-s) sin [Ω(t -s)],		(B.23a)
	D R sq (t, s) = -2e -γ(t-s) θ(t -s) ch(r) sin [Ω(t -s)]) -sh(r) cos [Ω(t + s)] ,	(B.23b)

R (t, s) = θ(ts) ch[F (t, s)] sin [Ω(ts)])sh[F (t, s)] cos [Ω(t + s)] e -γ(t-s) , (B.20)

where for a delta shaped pump-pulse g(t) = rδ(t), we have

F (t, s) = r

Remerciements

where Ô ≡ (λ/N ) k,a,b,σ C(k) ab c † kaσ c kbσ is the weighted electron density operator, H 0 ≡ H(λ = 0), and the Hamiltonian H is given by Eq. (1) in the main text. In equilibrium Π T (t) (tt ′ ) is a function of (tt ′ ) only, but this is no longer the case out-of-equilibrium.

Here, we discuss the t and t ′ dependencies of Π T (t) (tt ′ ). We write the response function in the Lehmann representation where the time structure can be made explicit

where E n and |n are respectively a complete set of eigenenergies and eigenstates of the Hamiltonian H 0 . We see from (A.2) that the response function is a function of the time difference (tt ′ ), and that the explicit time t dependence enters only through the electronic temperature T (t). We can then define the Fourier transform of the response function with Since k 0 satisfies the equation (k 2 0 + 2γ 0 k 0 + (ω 0 ) 2 ) = 0, a 0 is then an arbitrary complex constant. We solve the coupled equation (A.6), and obtain for a n

where in the last step we took the limit [γ/ω 0 , 1/(ω 0 τ 2 )] → 0, the homogeneous solution then reads

We replace a 0 = 1 2 Ae iψ and finally obtain for the homogeneous solution

where (A, ψ) are arbitrary constants to be determined from the initial conditions. We follow the same method to find the particular solution, we start from the ansatz

b n e αnt , (A.10) with α n = -1/τ 1n/τ 2 . We insert (A.10) into the equation of motion (A.4), and get an

We solve the coupled equations and obtain

where in the last step we took the limit [γ/ω 0 , 1/(ω 0 τ 1/2 )] → 0, the particular solution then reads

We use the initial conditions u(0) = 0 and ∂ t u(0) = 0 to calculate the arbitrary constants

where we finally recognize Eq (8) of the main text.

Appendix B

Green's Function of a Squeezed Phonon

Coupled to a Thermal Bath

Here, we evaluate the retarded phonon Green's function defined by

see Eq. (4.34b) of the main text. The Dirac delta function δ(tt ′ ) is vanishing for t = t ′ , hence, for time time t = t ′ the Green's function satisfies the homogeneous equation

The retarded Green's function has a causal structure, i.e. it vanishes for t < t ′ . Since the retarded Green's function satisfies a second order differential equation, it is defined up to two arbitrary constants. Thus, we need two further equations to compute the arbitrary constants of the Green's function. The first condition is obtained from the definition of the retarded Green's function at equal time In this appendix, we study the pole structure of the variance of the atomic displacement of a phonon coupled to a thermal bath. In the main text, we showed that Eq. (4.77) the variance of the atomic displacement in frequency space is given by

Let us first discuss the different energy scales of the problem involved in pump-probe setups. Typically, the electronic subsystem system is pumped to a high temperature T H ∼ 800K [38], for which we expect T H ≫ γ. On the other hand, the system can be pumped from an arbitrarily low temperature where γ ≪ T L . Therefore, we shall discuss the behavior of the function A(z, T e ) in the two regimes γ ≫ T e and γ ≪ T e .

Consider the low temperature regime where we have γ ≫ T e (τ ). The integral defined in Eq. (4.78) is quickly converging, and decays exponentially for x ≫ 1. Therefore in the low temperature limit we have that Ω/2+iγ±ω 0 2Te ≫ x, and the function A(Ω + 2ω 0 , T e ) can be Title : Out Of Equilibrium Lattice Dynamics in Pump Probe Setups
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