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Résumeé / Abstract

Les octocoralliaires représentent 1’un des principaux groupes formant la communauté macrobenthique
des récifs coralliens tropicaux. Ils sont notamment abondants au sein des écosystémes perturbés ou les
changements environnementaux entrainent le déclin des coraux constructeurs de récifs. Bien que la
nutrition joue un role fondamental dans la régulation de I’abondance d’une population, I’acquisition de
nutriments par les octocoralliaires reste a ce jour peu connue. Dans ce contexte, les objectifs de cette
these étaient 1) de caractériser I’acquisition et 1’assimilation de carbone et d’azote, par différentes
especes d’octocoralliaires de mer Rouge, et 2) d’évaluer les changements de nutrition le long d’un
gradient de profondeur, depuis la surface (5 m) jusqu’a la zone récifale mésophotique supérieure (50
m). Les résultats démontrent que les octocoralliaires forment une symbiose nutritionnelle avec leurs
dinoflagellés, dont le fonctionnement differe largement de celui de la symbiose dinoflagellés-
scléractiniaire. La symbiose des octocoralliaires se démarque particuliérement par un apport de carbone
autotrophe stable le long du gradient de profondeur, alors que les scléractiniaires connaissent un
approvisionnement réduit avec 1’augmentation de profondeur. De plus, I’assimilation de composés
azotés dissous (par les dinoflagellés ou les symbiotes microbiens) par les octocoralliaires est trés
inférieure a celle des scléractiniaires. Ces résultats suggerent que les octocoralliaires dépendent
largement de sources alimentaires hétérotrophes pour satisfaire leurs besoins nutritionnels.
L’importance de I’hétérotrophie est confirmée par de fortes concentrations tissulaires en biomarqueurs
lipidiques spécifiques du zooplancton aux deux profondeurs, avec une augmentation en milieu
mésophotique chez certaines espéces. Une telle mixotrophie confére aux octocoralliaires une grande
plasticité trophique, ce qui pourrait contribuer a une plus grande résistance aux changements
environnementaux en cours.

Mots clés : octocoralliaires | symbiose | autotrophie | hétérotrophie | mésophotique

Octocorals are one of the major groups forming the macrobenthic community of tropical coral reefs.
They are notably abundant within disturbed ecosystems where environmental changes have led to the
decline of reef-building corals. Although nutrition plays a fundamental role in regulating the abundance
of a population, the acquisition of nutrients by octocorals has received little attention to date. In this
context, the aims of this thesis were to 1) characterize the acquisition and assimilation of carbon and
nitrogen by several octocoral species from the Red Sea, and 2) investigate the nutritional changes along
a depth gradient, from the shallow (5 m) down to the upper mesophotic (50 m) reef zone. The results
show that octocorals form a nutritional symbiosis with dinoflagellates, but the functioning differs
significantly as compared to the scleractinian-dinoflagellate symbiosis. Particularly, the octocoral
symbiosis is characterized by a stable supply of autotrophic carbon along the depth gradient, whereas
scleractinian corals experience a reduced supply with increase in water depth. In addition, octocorals
assimilate along the entire depth gradient significantly less dissolved nitrogen compounds (from
dinoflagellates or microbial symbionts) as compared to scleractinian corals. These results suggest that
octocorals strongly depend on heterotrophic food sources to meet their nutritional requirements. The
importance of heterotrophy is confirmed by high concentrations of lipid biomarkers specific to
zooplankton in the octocoral tissue at shallow and mesophotic depths, with an increased concentration
for some species in the mesophotic environment. Such mixotrophy provides octocorals with a wide
trophic plasticity, which may contribute to their higher resistance to cope with already on-going
environmental changes.

Key words: octocoral | symbiosis | autotrophy | heterotrophy | mesophotic
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Chapter 1 | Introduction

1.1 Tropical coral reefs

1.1.1 Importance of coral reef ecosystems

Biogenic reefs are hard structures exhibiting topographic relief, which are created
through the growth of living benthic organisms (Fliigel and Kiessling 2002). The first reef-like
carbonate structures were formed by stromatolites and are among the earliest evidences of life
on Earth (Allwood et al. 2007). Nowadays, the most common and well-known reefs are those

formed by hard corals (Cnidaria, Scleractinia), which are the most emblematic builders.

Coral reefs thus result from the deposition of calcium carbonate by corals over
millennia. One of them, the Great Barrier Reef, is one of the world’s biggest structures ever
built by living organisms. Reef formation depends on the speed of skeletal deposition by hard
corals and the extent of skeleton erosion (Rohwer et al. 2010). Reefs are found whenever coral
larvae can settle on hard substrate, such as in the deep ocean floor, volcanic islands and
continental coastlines. Large reef ecosystems, built by the so-called cold-water corals, exist in
the deep zones of all oceans (Roberts et al. 2006). This thesis will however focus on tropical
reefs, built by scleractinian corals living in symbiosis with dinoflagellate algae. These corals
need optimal living environmental conditions and are thus limited to the photic zone, within
latitudes ranging from 30°N to 30°S (Figure 1).

Tropical coral reefs are ecologically important because they constitute complex, diverse,
and productive ecosystems. Their extent (260,000-600,000 km?) represents less than 0.2% of
the ocean’s surface, which equates to a smaller land area than France. Yet, they shelter from
one-quarter to one-third of the world’s marine species (Knowlton et al. 2010). The epicenter of
the planet’s marine biodiversity is called the Coral Triangle. Located in Indo-Pacific, this area
gathers more species diversity than anywhere else in the world (Figure 1). Secondary centers
are identified in the Red Sea and North of Madagascar (Veron et al. 2015). Due to this
exceptional biodiversity, coral reefs are often referred to as the ‘rainforests of the sea’(Connell
et al. 1978). Coral reefs, and their associated mangrove wetlands and seagrass meadows are

also among the most productive ecosystems per unit surface area (Costanza et al. 1998). These



three habitats are tightly interlinked, especially for providing nurseries and feeding grounds to
reef fishes (Dorenbosch et al. 2005).

<50 600

Figure 1. Global diversity of symbiotic hard coral species, indicated by records of
occurrences. Modified from Veron et al. (2015).

Besides their ecological role, coral reefs provide humans with multiple essential goods
and services. For example, they protect shorelines from erosion, are an important source of food
for the population living nearby, generate incomes thanks to fisheries, tourism, and molecules
of interest for the pharmaceutical industry (Moberg and Folke 1999; Wells 2006; Laurans et al.
2013). Reefs generate around thirty billion dollars per year (Spalding et al. 2001; Stoeckl et al.
2011) and 500 million people directly benefit from the reefs (Wilkinson 2008).

1.1.2 Major benthic groups: the bricks*, the cement- and the stabilizers

Although hard corals are considered as the bricks of the reef framework, they are not
capable of building reefs on their own. The coral reef ecosystem includes a mosaic of ecosystem
engineers such as crustose coralline algae (CCA), sponges and octocorals, which contribute to
the three-dimensional structure of the reef (Figure 2). All together, they function similarly to
terrestrial forests providing architectural complexity, food and shelter to other reef organisms.
As trees in the forest, they also contribute significantly to the reef primary productivity and

biogeochemical cycles, either directly or through symbiotic associations (Rossi 2013).

* Designation from Dr. Maggie D. Johnson



Crustose coralline algae (CCA) form hard crusts on rocky surfaces and cement the coral
bricks together. The CCA crusts provide a settlement substrate for marine invertebrate larvae
of corals, abalones and sea urchins among others (Heyward and Negri 1999; Nelson 2009).
Fleshy algae, encompassing turfs and macroalgae, are not considered as reef engineers, but are
however common components of the reefscape. They are the primary food source of herbivores
and the most common competitors with hard corals. Sponges act as reef stabilizers through their
impact on benthic substrates. On the one hand, they are one of the primary bioeroders of coral
reefs, processing solid carbonate into smaller fragments and fine sediments (Bell 2008) and
references therein). On the other hand, they are known to bind coral fragments or rubble
together, thereby increasing coral survival by enhancing settlement of carbonate secreting
organisms (Wulff and Buss 1979; Wulff 1984).

Octocorals, which are the main subject of this thesis, do contribute to the habitat
complexity of the reef but are not considered as reef-builders as such (Fabricius 2011; Schubert
et al. 2017 and references therein). Only few exceptions produce a solid skeleton (e.g.,
Heliopora coerulea, Tubipora musica and Corallium spp.) or massive trunks of consolidated
sclerites (some species of the genus Sinularia, (Schuhmacher 1997; Jeng et al. 2011), thus
contributing to the reef construction and growth. Most of the species contribute to substrate
stabilization by releasing sclerites after their death.

Figure 2. Painting representing some of the major benthic groups on reefs (hard coral,
octocoral, sponge and algae). Modified from Creartgraphic.



1.2 Ecophysiology of soft corals

1.2.1 Classification and anatomy

Soft corals belong to the phylum Cnidaria, class Anthozoa, subclass Octocorallia and
order Alcyonacea (Figure 3). Cnidarian are tentacle-bearing invertebrates, distinguished by
stinging structures called nematocysts and a radial symmetry. They are also characterized by
an internal cavity that opens through a single orifice (i.e. the mouth, which serves for nutrient
uptake and excretion). Members of the class Anthozoa, also named ‘flower animals’, are
represented at the adult stage by small units called polyps. Both hard and soft corals belong to
this class and, except few single-polyp species, form a colonial arrangement made of a myriad
of polyps. While soft corals belong to the sub-class Octocorallia, reef-building corals belong to
the Hexacorallia. The most pronounced characteristic that differentiates these subclasses is that
members of Octocorallia have an eight-fold symmetry (i.e. eight tentacles on each polyp)
fringed on both sides by one or several rows of pinnules, whereas Hexacorallia tentacules have
a six-fold symmetry without pinnules (Fabricius and Alderslade 2001).

At present, Octocorallia consists of three orders, which are Heliporacea (commonly
called blue corals), Pennatulacea (commonly called sea pens) and Alcyonacea (Figure 3). The
main groups of the order Alcyonacea are sea fans, sea whips, sea rods, sea plumes (all globally
termed gorgonians) and soft corals. Unlike ‘gorgonians’, soft corals do not present a solid
internal axis. Throughout this thesis, the term octocoral will qualify any member of Alcyonacea

family, without further distinction between taxa.

Cnidaria
Anthozoa Cubozoa Hydrozoa ? Myxozoa | -| Scyphozoa |W | Staurozoa | |
Ceriantharia Hexacorallia ) Octocorallia
X &
Helioporacea Pennatulacea Alcyonacea

Figure 3. Simplified phylogeny of Cnidaria. Taxonomic position of studied species appears
in blue. Adapted from http://www.marinespecies.org/. Picture credits: (top) (Leclére and
Rottinger 2017) and (middle) https://ian.umces.edu/.
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Soft coral growth forms are divided into categories ranging from encrusting to
arborescent (Bayer et al. 1983). The shape and size of soft coral colonies can thus widely vary
from one species to another. Even within the same species, these features can considerably vary
in response to the environmental conditions. In massive and erect forms, it is often possible to

distinguish parts such as stalk, stem, branches, or capitulum (Figure 4).

Figure 4. Morphological parts of soft coral (left) and gorgonian (right) colonies. The
following terms have been described by Bayer et al. (1983). Capitulum: more or less disk-
shaped or hemispherical, polypiferous part of soft coral colony. Stalk: barren basal part of the
colony, in Alcyonacea and Pennatulacea; narrow proximal part of a non-retractile polyp in
Nephtheidae. Stem: basal part of the colony from which branches may or may not arise, in
gorgonians; polypiferous part of the colony usually giving rise to branches in soft corals. Photos
credit: C. Pupier.

Soft corals species are called monomorphic or dimorphic depending whether the colony
bears one or two polyp categories, respectively. The typical type of polyp is the autozooid,
responsible for food capture and reproduction. In addition, some species can have another polyp
category called siphonozooid, which ensures seawater irrigation through the colony.
Autozooids are cylindrical with a mouth and tentacles at one end whereas siphonozooids are
smaller and have no or rudimentary tentacles (Fabricius and Alderslade 2001). Tentacles and
their pinnules are mobile, contractile and hollow. An octocoral polyp consists of two main parts.
The portion that extends above the colony surface or completely retracts is called anthocodia
(cylindrical body with terminal mouth and tentacles). The lower part of the polyp extends from
the mouth into the gastrovascular cavity and includes the pharynx (Figure 5). The pharynx is
the place where digestion of food particles starts and it encompasses a gutter lined with cilia,
which ensures water circulation inside the gastrovascular cavity. From there, can be
distinguished eight protruding tissue plates, the mesenteries, which have an important function
in the hydraulic system of the polyps. They thicken into mesenterial filaments, including two

that create an upward current in the gastrovascular cavity, and six that contain digestive glands



and gonads (they complete the digestion of food particles that has started in the pharynx). At
the base of a colony, desmocytes are extensions originating from the ectoderm, which play an
active role in anchoring tissue to substrate (Barneah et al. 2002).

Soft corals are diploblastic animals, namely they comprise two epithelial cell layers
(Figure 5). The outer tissue layer (i.e. epidermis) is the interface with seawater, which extends
over the entire colony. It gathers mucocysts, the cells that produce mucus, along with sensory
cells such as nematocysts. The inner tissue layer (i.e. gastrodermis) lines the tentacles, pharynx
and gastrovascular cavity. In soft corals living in symbiosis with Symbiodiniaceae
dinoflagellates (see 1.2.4), most of the symbionts are localized in the cytoplasm of the
gastrodermic coral cells, within a symbiosome (Roth et al. 1988). In between these two cell
layers stands an acellular tissue called coenenchyme. It consists of mesoglea usually containing
fibrous proteins like collagen, sclerites, along with amoeboid cells that play a role in fighting
infections and phagocytosing debris and bacteria. The coenenchyme is thin in the tentacles but
makes the main bulk of the colony in most species. It is crossed by a network of canals (solenia),

which connect the gastrovascular cavity of each polyp to the others.

Although mostly studied in other Cnidaria taxa, soft corals may have a basic and
diffused nervous system (Watanabe et al. 2009), with muscle bundles and nerve fibers located
in the coenenchyme and other nerve and muscle cells lying under the epithelial layers
(Josephson 2004).

Tentacle
Mouth

Pharynx

- Pinnule
Siphonoglyph

- Mesenterial filament

- Asulcal mesentery

- Mesoglea/Coenenchyme
- Gonad

- Solenia

Gastrodermis

Figure 5. Autozooid polyp of octocoral. The longitudinal section highlights the epithelial
layers and internal body organization. For clarity, pinnules are only represented on one tentacle
and solenia are limited to a little part of the coenenchyme. This is a simplified scheme, which
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should comprise eight mesenteries (i.e. that alternate with the eight tentacles) and eight
mesenterial filaments. The gastrovascular cavity ends in a dead-end canal. Retractor septal
muscles and transverse fibers of mesenteries, which play a role in polyp retraction and
movement of tentacles are not displayed here. Drawing by C. Pupier, based on Fabricius and
Alderslade (2001).

Conversely to hard corals, soft corals do not produce a calcium carbonate skeleton.
Instead, they rely on hydrostatic pressure for body support. Most soft corals however possess
small isolated calcium carbonate structures called sclerites. They are formed by specialized
cells (i.e. scleroblasts) in the coenenchyme and are composed of magnesium-enriched calcite.
Sclerites are an important feature used for the identification of soft corals since their shape, size
and coloration vary widely among species. For example, spindle-shaped sclerites of up to 3 mm
long are observed in Dendronephthya sp. while tiny oval corpuscules of 0.02 mm long are rather

found in Xenia sp. (Figure 6).

Figure 6. Sclerites of soft corals. (a) Sclerites are visible on the surface of branches of
Dendronephthya sp. (photo credit: M. Lanini). (b) Sclerites of Dendronephthya sp. seen under
an electron microscope (x 250, from Bayer et al., 1983). C: Sclerite of Xenia sp. seen under an
electron microscope (x 1750, from Bayer et al., 1983).

1.2.2 Life history features and habitat requirements

Octocorals are the second most common group of macrobenthic animals on many Indo-
Pacific, Caribbean and Red Sea reefs after hard corals (Benayahu and Loya 1981; Fabricius and
Alderslade 2001; Benayahu et al. 2019). Some soft coral species of the family Xeniidae and

Nephtheidae present high growth rates and asexual reproduction by colony fission (Benayahu
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and Loya 1985, 1987; Fabricius et al. 1995a; Karlson et al. 1996). Such features can allow them
to be pioneer colonizers of cleared substrates and also increase their chances to successfully
compete for space. Species like Xenia macrospiculata even have the ability to actively migrate
for settling on living colonies of hard corals or natural surfaces (Benayahu and Loya 1981,
1985). Conversely, most Alcyoniidae are characterized by slow growth, low reproduction rates
and greater persistence (Fabricius 1995). They are able to perform fission too, though operating
slower than for the other families, with asexual recruits making a greater contribution to the
population than sexual recruits (Bastidas et al. 2004). These life history features can result in
the formation of large aggregations over the long-term (Bastidas et al. 2004). Moreover, some
soft coral species, probably introduced through aquarium leak, have been reported as invasive
species and overgrew coral communities in Venezuela and Brazil (Lages et al. 2006; Ruiz Allais
et al. 2014; Mantelatto et al. 2018).

Most octocorals occur in high abundance in wave-protected areas because they are
susceptible to abrasion and dislodgement. They also search for strong currents for maximizing
food encounter (Fabricius and Alderslade 2001). For symbiotic soft coral species, the presence
of algal endosymbionts limits them to the photic zone, or deeper depending on the slope and
water quality (Schubert et al. 2017). Up to 75% of octocoral species however occur in depths
greater than 50 m, and are mostly dominated by non-symbiotic species.

1.2.3 Octocorals and reef organisms

Soft corals are well known for their secondary metabolites, which are of particular
interest for medical bioprospecting (reviewed in van de Water et al. 2018). In the reef
environment, these substances are allelopathic and can act as a barrier to recruitment, growth
and survival of hard corals (Sammarco et al. 1983; Fleury et al. 2006). However, octocorals can
host many macro organisms such as sponges, hydrozoans and decapods (e.g. (Nakano and Fujii
2014; Maggioni et al. 2019). They provide essential resources for fishes and nudibranchs,
including food, shelter and protection (e.g., Avila et al. 1999; Pratchett 2005; FitzPatrick et al.
2012; Epstein and Kingsford 2019). As all multicellular organisms, octocorals are holobiont
entities associated with many microorganism assemblages (van de Water et al. 2018). In other

words, they are complex meta-organisms, which comprise the coral animal host, its symbiotic
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dinoflagellates and other microorganisms, including fungi, bacteria, archaea and viruses
(Knowlton and Rohwer 2003).

1.2.4 Symbiosis with Symbiodiniaceae: a nutritional-based partnership

e Symbiosis: definition

A symbiosis is the “living together” of two unlike organisms in a long-term relationship.
It is a biological interaction that can span from mutualism to commensalism and parasitism
(Table 1). However, the nature of these associations is not completely fixed and can shift from
mutualism to commensalism or parasitism depending on environmental conditions. Symbioses
can be either obligate, meaning that one or both of the partners entirely depend on each other
for survival, or facultative (they can generally live independently). The bigger organism is
called host while the smaller is the symbiont. In addition, the symbioses can be designated
depending on the location of the symbionts. They can be referred as intra- or extracellular
endosymbiosis (symbionts inside host cells or tissue, respectively), or ectosymbiosis

(symbionts outside the host tissue).

Table 1. Description of the different symbioses. One example is provided for each type of
symbiosis. The species that benefits from the association (B) may obtain nutrients, shelter,
support or even locomotion from the host species (A).

Effect on species A Effect on species B

Beneficial
Ex: sea anemone and clownfish

Neither beneficial or

detrimental
Ex: shark and remora

> Beneficial

Detrimental
Ex: fish and parasitic isopod

Symbiotic associations are ubiquitous and play important roles in ecological and

evolutionary processes (Thrall et al. 2007). The symbiotic association between soft or hard
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corals and dinoflagellates of the family Symbiodiniaceae (see below) is qualified of mutualistic
endosymbiosis. Symbionts are localized inside endodermic host cells (in the tentacles and
periphery of the flesh, in the shallow gastrodermis, mostly not deeper than about 100 pm, Y.
Benayahu pers. com.) and both partners benefit from this relationship, through nutritional
interactions described in detail in the next chapters. In addition, the coral host provides its
symbionts with a protected habitat (as compared to free-living Symbiodiniaceae that are more
likely grazed). Environmental conditions can create disparity in benefits and costs of the two
partners, which rather promotes a hybrid model straddling between mutualism and parasitism
(e.g., Baker et al. 2018). In addition to photosynthetic dinoflagellates, corals harbor a diverse
array of microorganisms such as bacteria, archaea, fungi and viruses (Knowlton and Rohwer
2003). The metabolic interactions within this symbiotic consortium are fundamental and drive
coral’s response to environmental changes (e.g., reviews of Ainsworth et al. 2017; Benavides
et al. 2017; Bednarz et al. 2019; Pernice et al. 2019).

e Symbiodiniaceae

Dinoflagellates of the family Symbiodiniaceae (kingdom Chromista, infrakingdom
Alveolata, class Dinophyceae, order Suessiales) are of particular interest in tropical oligotrophic
waters, because they can form mutualistic symbioses with a wide array of benthic metazoan
and protist hosts (Figure 7). Dinoflagellates are unicellular microeukaryotes, characterized by
two flagella, which allow them to migrate through the water column when they are free living
or released in the water by their host.

Figure 7. Octocoral polyps and close-up on their Symbiodiniaceae endosymbionts. Photo
credits: B. Ping (left) and S. Santos (right).
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The taxonomy of the Symbiodiniaceae was recently revised, including a formal
description of seven genera (LaJeunesse et al. 2018). Five of them can be associated with

octocorals and their distribution and occurrence vary across biogeographic regions (Figure 8).

W Symbiodinium (A)

B Breviolum (B) '.-Great

Il Cladocopium (C) Barrier
B Durusdinium (D) Reef

Gerakladium (G) .
Without Symbiodiniaceae

Figure 8. Relative abundance of Symbiodiniaceae genera in octocorals of several
biogeographic regions. Genera are indicated in the bottom-left corner, followed by the former
clade designation in brackets. A large number of octocoral species does not possess algal
symbionts (< 50%), similarly to hard corals. Unreported are Effrenium sp. (formerly clade E)
and Fugacium sp. (formerly clade F), which can be found associated with hard corals. Modified
from van de Water al. (2018).

The genetic diversity within and between Symbiodiniaceae genera also reflects a
physiological diversity, explaining their different response to environmental changes. For
example, Durusdinium sp. was characterized as tenacious symbiont concerning thermal stress,
meaning that it undergoes photo-damage but is not expelled by the host (Silverstein et al. 2017).
Due to the physiological diversity of the symbionts, some hard coral species can shuffle or
switch their symbionts (sensu Baker 2003) to acclimate to changing environmental conditions
(but see Stat et al. 2009). Octocorals are however known to present more stable relationships
with their dinoflagellates overtime (Goulet and Coffroth 2003; Kirk et al. 2005; Goulet 2006,
2007).

e A nutritional-based partnership

Symbiotic corals are considered as mixotrophic organisms because they can use both

inorganic and organic sources of nutrients. This dual mode of nutrition enables them to reap the
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maximum benefit in oligotrophic waters, where each of the partner would hardly persist alone

due to the low concentration of inorganic nutrients and prey availability (Stoecker et al. 2017).

Most of the knowledge on the nutritional ecology of corals is from hard corals, as
described in the next two paragraphs. Corals are animals capable of heterotrophic feeding (i.e.,
the capture of particulate food in suspension in seawater, (Houlbréque and Ferrier-Pagés 2009).
Heterotrophy is especially important for supplying the host with nitrogen (N), phosphorus (P),
amino-acids, or trace elements (e.g., iron and vitamins) for tissue, skeletal growth and reserve
stocks (Ferrier-Pages et al. 2003, 2010, 2018; Seemann et al. 2013; Tremblay et al. 2016).
Corals can capture food directly, with their tentacles, or via suspension feeding (Bak et al. 1998;
Anthony 1999). The coral host can transfer a fraction of its heterotrophically-acquired nutrients
to the symbionts, for their own needs (Tremblay et al. 2015). It also transfers large amounts of
dissolved inorganic carbon (DIC) resulting from its respiration, along with metabolic waste

products (Muscatine and Porter 1977).

Corals are also autotrophic organisms thanks to the presence of their photosynthetic
symbionts, which transform inorganic into organic nutrients. The chloroplasts of
Symbiodiniaceae cells possess photosynthetic pigments (chlorophyll a and c, carotenoids) that
enable the symbionts to catch light energy. As a result of cascading chemical reactions, the
symbionts produce, from DIC, low molecular weight organic compounds called photosynthates
(Muscatine et al. 1981). These organic molecules are rich in carbon and are generally in the
form of sugars (e.g., glucose, Burriesci et al. 2012). Besides DIC, symbionts are likely the first
site of assimilation of other nutrients dissolved in seawater, such as dissolved inorganic
(ammonium, nitrate) and organic (urea, DFAA) nitrogen (DIN and DON, respectively) (Grover
et al. 2002, 2003, 2006, 2008; Pernice et al. 2012) or dissolved inorganic and organic
phosphorus (DIP and DOP, respectively) (see Ferrier-Pagés et al. 2016) and references therein)
for the two major macronutrients. These nutrients can also be transferred to the coral host in the
form of amino acids and other phosphorylated nutrients (Wang and Douglas 1999). Since the
dinoflagellates are embedded in the animal tissue, dissolved inorganic nutrients first transit
through the host tissues, which have developed particular adaptations (Furla et al. 2011). Most
of the autotrophically-acquired nutrients, which are not used directly by the symbionts for their
own needs and growth, are transferred to the host (Muscatine et al. 1984; Tremblay et al. 2012).

A large percentage of the photosynthates is either immediately respired by the host to cover its
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metabolic needs, or released as dissolved and particulate organic matter (Tremblay et al. 2012).

The remaining photosynthates can be used for growth and energy reserves (Grottoli et al. 2006).

In addition, corals are associated with a large diversity of microorganisms, which can
contribute to providing nutrients to the coral host and symbionts. For example, diazotrophs are
specialized bacteria able to transform dinitrogen (N2) gas into a bioavailable form of N. They
have been discovered within the surface mucus layer, the coral tissue and skeleton (Lema et al.
2012; Ainsworth et al. 2015). Studies that used the labelled gas N, demonstrated that
diazotrophically-derived N (DDN) was assimilated by the coral host and symbionts (reviewed
by Benavides et al. 2017). Although this form of N contributes only to ca. 1% to the N needs
of the coral holobiont compared to the other N forms (inorganic N dissolved in seawater or
from the host metabolic wastes), it may help corals recovering faster from bleaching (Bednarz
etal. 2017).

-> FOCUS ON OCTOCORALS

In octocorals, the relative contribution of autotrophy and heterotrophy to the holobiont’s
nutritional requirements is poorly known (reviewed in Schubert et al. 2017). The common belief
is that octocorals have low rates of primary productivity and depend on both autotrophy and
heterotrophy to meet their metabolic needs (Sorokin 1991; Fabricius and Klumpp 1995).
However, the few reports investigating the contribution of photosynthesis to host respiration
(P:R ratio) rather support a reliance on autotrophy for the respiratory needs (Mergner and
Svoboda 1977; Sorokin 1991; Fabricius and Klumpp 1995; Riegl and Branch 1995; Kremien
et al. 2013; Bednarz et al. 2015; Rossi et al. 2018, 2020), except for few species (Ramsby et al.
2014; Baker et al. 2015). The small number of studies, which have addressed a carbon budget
observed high interspecies variation, with photosynthate translocation rates ranging from 10%
in Capnella gabonensis to 75% in Sinularia flexibilis (Schlichter et al. 1983; Farrant et al. 1987,
Sorokin 1991; Khalesi et al. 2011). In gorgonian octocorals, the symbionts performance is
linked to the host morphology because species with thin branches and small polyps are more
autotrophic than those with a massive shape and large polyps (Baker et al. 2015; Rossi et al.
2018). The colony morphology may also play an important role in the nutrition of soft corals.
The ratio of body surface area to volume, which determines both gas exchange through the
epidermal tissue and photosynthetically active radiation (PAR) exposure, is low in soft corals
as compared to hard corals (Fabricius and Klumpp 1995). Any increase of this ratio, through

the expansion of colony, may enhance primary productivity. More investigations are therefore
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needed to better understand the autotrophic capacities of octocorals in general, and soft corals

in particular.

Regarding heterotrophy, soft corals have long been considered as mainly suspension
feeders, because their nematocysts are small, simply structured and inefficient for paralyzing
actively swimming prey (Mariscal and Bigger 1976). However, the recent discovery of a novel
type of nematocysts could potentially highlight a more diverse arsenal of stinging structures
than previously thought (Yoffe et al. 2012). Moreover, microvilii densely cover the epidermis
of soft corals and likely plays a role in the absorption of dissolved matter (Schlichter 1982b, a).
The diet of octocorals has been determined via field and feeding experiments, from temperate
(Comaetal. 1994, 1998, 2015; Orejas et al. 2003; Rossi et al. 2004) and tropical species (Lewis
1982; Sebens and Koehl 1984; Sorokin 1991; Fabricius and Dommisse 2000; Rossi et al. 2020).
It is composed of small zooplankton (Figure 9). In addition, and on the contrary to many hard
corals, soft corals can also largely prey on phytoplankton (Figure 9), whose ingestion has been
described in both asymbiotic (Fabricius et al. 1995a, b, 1998) and symbiotic species (Ribes et
al. 1998; Leal et al. 2014; Piccinetti et al. 2016). A particular behavior called ‘deposit feeding’
has even been observed in the cold-water soft coral Gersemia Antarctica, which bends against

the substrate to supplement its capture of prey on sediment (Slattery et al. 1997).
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Figure 9. Plankton size classes included in the diet of octocorals. The classes highlighted in
blue indicate the microbial fraction. Scanning electron micrographs of A: Prochlorococcus sp.
(0.6 um) and B: Synechococcus sp. (1 um). C: epifluorescence microscope image showing one
nanoflagellate cell indicated by the arrow. D: ciliates (100-200 pum) taken under phase contrast
microscope. E: crab zoea (1000 um). Modified from Houlbréque and Ferrier-Pages (2009).

The relative contribution of auto- and heterotrophy to soft coral nutrition may not be
fixed and depend on environmental conditions and/or on the availability of resources (i.e. depth

and season; (Rossi et al. 2020). However, this remains to be further investigated.
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1.3 Major threats to coral reefs and soft corals

Existing coral reefs are not the result of continuous growth. They have faced both natural
and human-induced disturbances that have affected and still affect their integrity periodically
or over the long-term. Reefs are generally able to recover from natural disturbances in a few
years to decades (e.g., Harmelin-Vivien 1994). However, human activities add up local and
global stressors to the natural disturbances, which act together to weaken coral reefs and

eventually drive major declines.
1.3.1 Global disturbances

Anthropogenic activities such as fossil fuel combustion, industrialization and
deforestation, have raised the concentrations of greenhouse gases in the atmosphere since the
beginning of the industrial era (Sabine et al. 2004). Such emissions are the cause of global
climate changes including ocean warming and acidification. As a result, marine ecosystems are
changing and coral reefs are among the most threatened (Hoegh-Guldberg et al. 2014; Gattuso
et al. 2015).

e (Ocean warming

All coral live close to their upper thermal maximum and can suffer from thermal stress
when sea surface temperatures increase by > 1°C above the average summer maximum
(Wooldridge 2013). When corals experience extreme and prolonged heat stress, the symbiosis
with their photosynthetic dinoflagellates is disrupted, resulting in the expulsion of the
symbionts, a phenomenon called bleaching (Brown 1997). Bleached corals are physiologically
damaged, and prolonged bleaching often leads to high levels of coral mortality (Hughes et al.
2018). Although positive thermal anomalies are the main cause for bleaching, it can also be
induced by other stress factors such as bacterial infections, burial under sediment or high
irradiance (Fabricius and Alderslade 2001). According to the World Meteorological
Organization, the last decade was the warmest one on record. Reefs worldwide have therefore
encountered unprecedented and recurrent coral mass bleaching events (Hughes et al. 2017). The
increased frequency of heat waves has prevented corals to fully recover between two bleaching

episodes and continuously reduced coral populations in many places. For example, estimated
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losses of hard corals in the Great Barrier Reef (Australia) were respectively due to tropical
cyclones (48%), predation by crown-of-thorn starfishes (COTS) (42%) and bleaching (10%) in
the 1985-2012 period (De’Ath et al. 2012), whereas marine heatwaves caused the loss of 50%
of the shallow corals in the past five years (Hoegh-Guldberg et al. 2019). However,
physiological responses to thermal stress and subsequent recovery are highly variable among
species, depending on both the symbionts harbored (e.g., different functional traits, Suggett et
al. 2017) and the host (e.g., different metabolic and morphological traits, Baird et al. 2009; van
Woesik et al. 2012; Wooldridge 2014).

-> FOCUS ON OCTOCORALS

Mass bleaching of tropical octocorals has been reported in many reefs worldwide
(Slattery and Mcclintock 1995; Paulay and Benayahu 1999; Marshall and Baird 2000; Arceo et
al. 2001; Loya et al. 2001; McClanahan et al. 2001; Celliers and Schleyer 2002; Goulet et al.
2008a; Chavanich et al. 2009; Prada et al. 2010; van Woesik et al. 2011; Dias and Gondim
2015; Slattery et al. 2019). Similarly to other coral groups, their susceptibility to thermal stress
IS heterogeneous and, some species or individuals exhibit a higher tolerance, depending on the
host or symbiont genus or on the general health state, energetic reserves and acclimatization of
the colonies (Loya et al. 2001; Lasker 2003; Strychar et al. 2005; Goulet et al. 2008a; van
Woesik et al. 2011; Slattery et al. 2019). Records of bleaching may also be biased towards
greater numbers of bleached persistent species (e.g. Alcyoniidae), as opposed to the ones that
die and disintegrate (e.g. Xeniidae) within several days (Fabricius 1999).

The few experimental studies tackling tropical octocoral responses to thermal stress
mostly performed acute heat-stress on a short period of time (e.g. from +2-8°C during 48 h to
+5°C during 35 days). Overall, they showed negative responses, including reduced
photosynthesis, bleaching, decline in energetic reserves and reproductive output, and necrosis
(Michalek-Wagner and Willis 2001; Drohan et al. 2005; Strychar et al. 2005; Imbs and
Yakovleva 2012; Sammarco and Strychar 2013; Netherton et al. 2014). The exception is a
species of the family Xeniidae (Bayerxenia spp.), which did not display changes neither related
to the symbionts or host cells, after being exposed to +6°C during one week (Ziegler et al.
2014). Some species also mitigated bleaching through symbionts migration and accumulation
in the stolons (Parrin et al. 2012, 2016). Therefore, octocorals seem to be as affected as hard
corals by ocean warming. The overall stability of octocoral populations, while hard corals have
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steadily declined (e.g., Ruzicka et al. 2013), may involve other processes than resistance (i.e.

resilience, acclimatization, and life history features).

e Ocean acidification (OA)

OA is an on-going process, which induces several changes in the seawater carbonate
chemistry (e.g. Feely et al. 2004). In particular, it decreases seawater pH and the concentration
of carbonate ions. Such modifications therefore negatively affect the biogenic calcification (e.g.
of aragonite and calcite) and can also drive the net dissolution of carbonate structures. Thus,
OA poses significant problems to marine organisms that form calcium carbonate shells,
skeletons, or internal structures (Orr et al. 2005; Gattuso and Hansson 2011). For example,
present-day conditions have been shown to dissolve exoskeletons of Dungeness crab larvae
(Bednarsek et al. 2020). On reefs, OA can lead to reduced structural complexity and resilience
due to decreased coral abundance and calcification rates (Kroeker et al. 2013; Smith et al. 2020).
Observations of acidified natural environments such as carbon dioxide seeps have shown a loss
of key habitat-forming species and major simplification of the ecosystem (Sunday et al. 2017;
Agostini et al. 2018). Overall, reefs acclimatized to acidified waters demonstrate a clear
dominance of non-calcareous macroalgae (pH < 7.7, Enochs et al. 2015), followed by
monospecific aggregations of hard corals (e.g. Porites sp., Fabricius et al. 2011) or soft corals
(e.g., Sarcophyton sp., Inoue et al. 2013) under moderate conditions (pH > 7.8). Mesocosm
experiments have shown that the effects of OA are highly context dependent and will differ
greatly between habitats, and depending on species composition (e.g. Comeau et al. 2012, 2014,
2019).

- FOCUS ON OCTOCORALS

While in situ observations suggest shifts from hard coral to octocoral dominance under
levels of pH predicted by the end of the century (Inoue et al. 2013), only few experimental
studies have addressed octocoral’s response to OA. They showed that octocoral tissue
descriptors and physiological parameters (i.e. symbiont cell density, pigmentation, sclerite
structure, polyp pulsation rate and growth) were not affected by OA (Gabay et al. 2013, 2014,
Enochs et al. 2016). Only one study showed a decreased calcification, but the pH tested (7.1)
exceeded the values projected by the end of the century (Gémez et al. 2015). OA mitigation by

octocorals could be explained by their thick tissue, which can protect sclerites (Gabay et al.
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2013, 2014), and the process of calcification itself, which may be more stable than the one of
hard corals despite altered carbonate chemistry (Enochs et al. 2016). Although there is a paucity
of data on the combined effects of OA and other threats on octocorals, it has been suggested
that hard corals, which are already stressed by OA alone, will be more affected than octocorals

with the combination of several stressors (e.g., eutrophication, Januar et al. 2017).

1.3.2 Local stressors

Coral reefs can be affected by local anthropogenic pressures such as overfishing,
invasive species and various sources of pollution (sediment, nutrients, and pesticides loads) due
to coastal and agriculture development (Burke et al. 2011; Anthony et al. 2015; Wear and
Thurber 2015). At the ecosystem level, local stressors may be the cause of structural impairment
and mortality of most organisms (e.g. destructive fishing). They may also impact reefs
indirectly by inducing cascading effects across the ecosystem. For example, overfishing
(alteration in top-down controls) depletes stocks of large predators and grazers, and leads to
reduced herbivory and subsequent algal overgrowth (Hughes 1994; Jackson et al. 2001;
Scheffer et al. 2005). Finally, reduced water quality, due to overloads of nutrients and sediments
(alteration of bottom-up controls), can stimulate the growth of algae (McCook et al. 2001), the
development of diseases (Pollock et al. 2014) and can favor the emergence of corallivorous
Acanthaster planci outbreaks (Birkeland 1982; Brodie et al. 2005; Fabricius et al. 2010). At the
organism level, the severity of water pollution on hard corals depends on the intensity, duration
and frequency of exposure. They contribute to the impairment of coral fitness and to lessen
their capacity to withstand global threats. Responses include reduced physiological
performance, disruption of the coral-dinoflagellate symbiosis, tissue injury and mortality (e.qg.,
Fabricius 2005; Erftemeijer et al. 2012; Weber et al. 2012; D’Angelo and Wiedenmann 2014;
Morris et al. 2019).

-> FOCUS ON OCTOCORALS

Reports on the effects of declining water quality on the abundance of soft corals are not
conclusive. They either show a negative impact on the cover of both hard and soft corals
(Fabricius and De’ Ath 2004), no effect (Fabricius and De’ath 2000), or a relative dominance of
soft corals in areas affected by sedimentation (McClanahan and Obura 1997; Schleyer and

Celliers 2003), moderate to high concentrations of suspended particulate matter (Fabricius and
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Dommisse 2000; Fabricius 2005), or a combination of particulate and dissolved matter (Baum
et al. 2016). Data from the Great Barrier Reef, Hong-Kong and Palau suggest that a poor water
quality is rather related to a decline in species diversity (Fabricius and De’ Ath 2004; Fabricius
et al. 2005, 2007; Fabricius and McCorry 2006). Further research is thus needed to explain the

confounding effects of water quality on octocorals.

1.3.3 Changes in the reef community structure: phase shifts to octocoral-

dominated reefs

Intense competition continuously takes place between benthic reef organisms for the
access to light and space. Intra- or interspecific competitive interactions can have major effects
on the growth, recruitment and survivorship of benthic competitors (Chadwick and Morrow
2011). Human activities may unbalance the dynamic of these interactions, by favoring the
decline of an organism or providing the competitive advantage to another. Phase shifts are
community changes in response to a persistent modification in environmental conditions (Done
1992; Dudgeon et al. 2010). On coral reefs, a phase shift results in the transition from a hard
coral-dominated reef to a reef dominated by other benthic organisms such as algae, sponges,
octocorals, or corallimorphs (McCook 1999; Norstrom et al. 2009; Barott and Rohwer 2012).
This process is often associated with reef degradation, due to the loss of the ‘bricks’ of the
ecosystem and associated functions. Unless few exceptions, a community shift may be difficult

to reverse to pre-disturbance conditions (e.g., Diaz-Pulido et al. 2009).

Although shifts to algae-dominated reefs are prominent worldwide, shifts to other major
benthic groups, such as octocorals and sponges, have also been reported (Norstrom et al. 2009).
Changes in the community structure ending up towards the dominance of octocorals can occur
following COTS outbreaks, anthropogenic pollution, storms, bleaching, diseases and dynamite
fishing (Figure 10 and Table 2). These disturbances led to a decreased cover of hard corals

whereas soft corals maintained or increased their abundance.
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Figure 10. High cover of soft corals. Local dominance of Sarcophyton sp. observed in the
Seychelles (left, photo credit: M. Boussion) and high abundance of multi-species assemblage
of soft corals observed in Indonesia (right, photo credit: C. Pupier).

The colonization of the reef by octocorals occurs when the right conditions regarding
their recruitment and growth are met. For example, Wood and Dipper (2008) recorded that,
under similar environmental conditions, some fields of coral rubble have provided suitable
settlement substrate for soft corals whereas some others did not. The successfully colonized
part of the reef underwent a phase shift from hard corals to xeniids-Clavularia assemblage and
the other part remained unoccupied, likely not stable enough. Moreover, Fabricius (1997)
observed that there was no difference in soft coral cover before and after a COTS outbreak that
removed a large proportion of hard corals. Even eight years after the event, soft corals showed
little tendency to take advantage of increased available space due to the environmental

conditions that were not suitable for them (Fabricius and Alderslade 2001).
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Table 2. Reported shifts from hard corals to soft corals dominance. COTS: crown-of-thorn starfishes. From van de Water et al. (2018).

Location

Red Sea North and Center

South

Caribbean Florida Keys
US Virgin Islands
Indian Ocean = Madagascar/Seychelles

Seychelles

Pacific Ocean Malaysia

Indonesia

Australia
Fiji

Cause

Anthropogenic pollution,
COTS outbreak

Anthropogenic pollution,
bleaching, storms

Bleaching
Diseases
Bleaching

Anthropogenic pollution,
bleaching

Bleaching, COTS outbreak,
dynamite fishing

Anthropogenic pollution
Dynamite fishing
Bleaching, COTS outbreak

Anthropogenic pollution

Abundance of octocoral

(cover)
From (%) Upto (%)
5-10 30-50
4 30
6 14
1.3 2
1 30
7 13
10 16

References

(Al-Zibdah et al. 2007; Tilot et al.
2008; Wilkinson 2008)

(Reinicke et al. 2003; Bruckner and
Dempsey 2015)

(Ruzicka et al. 2013)
(Lenz et al. 2015)
(Stobart et al. 2005)
(Wilkinson 2008)

(Wood and Dipper 2008)

(Baum et al. 2016)
(Fox et al. 2003)
(Wakeford et al. 2008)
(Hoffmann 2002)
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1.4 Soft corals of the Northern Red Sea

Red Sea coral reefs, like other marine ecosystems, experience global warming and ocean
acidification (Fine et al. 2019). However, hard corals in the Gulf of Agaba have an unusually
high thermal tolerance and rarely experience bleaching, despite rapidly rising sea surface
temperatures and recurrent positive temperature anomalies. They withstand water temperature
anomalies that cause severe bleaching or mortality in most hard corals elsewhere when the
water temperature exceeds 1-2°C above the local maximum monthly mean (e.g., Bellworthy
and Fine 2017; Grottoli et al. 2017). As a consequence, the Gulf of Agaba has been identified
as a coral refuge from climate change (Fine et al. 2013; Kleinhaus et al. 2020).

1.4.1 Study site

Most of the experiments of this thesis were conducted on corals collected in Eilat, in the
reef adjacent to the Interuniversity Institute for Marine Sciences (Figure 11). This site is of
particular interest for giving access to shallow and mesophotic reef zones. Mesophotic coral
reef ecosystems comprise the light-dependent communities of corals and other organisms found
at depths below 30 to 150 m in tropical and subtropical regions (Puglise et al. 2009). Based on
measurements of light intensity and spectrum (Tamir et al. 2019), combined with concomitant
changes in benthic composition, the mesophotic reefs of Eilat have been classified into two
distinctive light habitats: the upper-mesophotic zone (30-80 m), which is characterized by a
high diversity of depth-generalist coral species, and the lower mesophotic zone (80-160 m),
dominated by a single species of depth-generalist (Eyal et al. 2019). For our work, corals were
collected at depths of 8-10 m (shallow) and 40-50 m (upper-mesophotic). Light attenuation at
these depths is described in Appendix Il. Characteristics of the water are stable along this
gradient, including a salinity over 41%o, temperatures ranging from 20.7°C to 30.3°C at 10 m
depth and 20.9-27.8°C at 50 m depth over the year, as well as low concentrations of dissolved
nutrients (<0.5 uM dissolved nitrogen and <0.2 uM dissolved phosphorus) (data from the Israel
National Monitoring Program, Eyal et al. 2019).
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Figure 11. Study site in the Red Sea (Eilat, Israel, Gulf of Eilat/Aqgaba). IUI: Interuniversity
Institute for Marine Sciences. The three bathymetric zones are represented (shallow water
corresponding to 0-30 m depth, in blue; mesophotic zone corresponding to 30-150 m depth, in
red; and deep waters corresponding to 150-800 m depth, in green). Modified from Shoham and
Benayahu (2016).

Soft corals are the second most abundant faunal group in the shallow and mesophotic
reefs of Eilat, after scleractinians. They have a moderate cover of 3-10% along the depth
gradient but rarely cover more than 20% of the substrate (Eyal et al. 2019). Two distinct
communities of octocorals have been identified at shallow and upper-mesophotic (30-45 m)
depths, which only shared 16% of species in common (Shoham and Benayahu 2017). The
upper-mesophotic octocoral community features a higher species richness, but a similar
diversity, as compared to the shallow one. More particularly, the upper-mesophotic octocoral
community is characterized by a predominance of symbiotic species (Shoham and Benayahu
2017).
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1.4.2 Biological material

Several species of soft and hard corals were studied in this thesis, chosen depending on
their morphology and physiological characteristics (Figure 12 and Figure 13).

Dendronephthya sp. (Kikenthal, 1905) is the only species that does not harbor any
Symbiodiniaceae and have ca. 180-200 polyps per g DW, of a diameter of 3-4 mm (Lewis 1982;
Sorokin 1995). Heteroxenia fuscescens (Kolliker, 1874) have polyps of 12-14 mm (Lewis
1982). Members of the family Xeniidae exhibit a unique, rhythmic pulsation of their tentacles.
Such feature induces an upward motion and enables the mixing of the coral boundary layer,
which prevents refiltration of water by neighboring polyps and enhances the coral’s
photosynthesis (Kremien et al. 2013). Litophyton sp. (Forskal, 1775) has 550 polyps per g DW
of a width and height of 0.5 mm (Ofwegen 2016). Rhytisma fulvum fulvum (Forskal, 1775) and
Sarcophyton sp. (Lesson, 1834) have ca. 180-200 polyps per g DW of a diameter of 2.5-4 mm
(Lewis 1982; Sorokin 1995).

Regarding hard corals, the branching species studies here, Acropora eurystoma
(Klunzinger, 1979), Pocillopora damicornis (Linnaeus, 1758), Seriatopora hystrix (Dana,
1846) and Stylophora pistillata (Esper, 1792), have small polyps (less than 2 mm, Palardy et
al. 2005). Galaxea fascicularis (Linnaeus, 1758) is particular due to its phaceloid shape. The
mounding-shaped corals, Goniastrea sp. (Milne Edwards and Haime, 1848) and Cynarina sp.

(Briiggemann, 1877) have large polyps (> 5mm).
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Dendronephthya sp.
(Kiikenthal, 1905)
Nephtheidae family

No Symbiodiniaceae
Arborescent shape

Chapters 2,4, 5

Heteroxenia fuscescens
(Kolliker, 1874)
Xeniidae family
Durusdinium sp.
Cylindrical shape

Chapter 2

Litophyton sp.
(Forskal, 1775)
Nephtheidae family
Symbiodinium sp.
Arborescent shape

Rhytisma fulvum fulvum
(Forskal, 1775)
Alcyoniidae family
Cladocopium sp.
Encrusting shape

Chapters 2, 3,4, 5

Sarcophyton sp.
(Lesson, 1834)
Alcyoniidae family
Cladocopium sp.
Capitate shape

Chapters 4, 5

Figure 12. Soft corals used during this thesis. Corresponding family, Symbiodiniaceae
associated with the coral and growth form of the colony are mentioned. Photo credits are
attributed to M. Boussion for Dendronephthya sp. and H. fuscescens (right), G. Banc-Prandi
for Litophyton sp. (left), P. Colla for Sarcophyton sp. (right), and C. Pupier for H. fuscescens
(left), R. f. fulvum (left) and Sarcophyton sp. (left).
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Acroporaeurystoma
(Klunzinger, 1879)

Acroporidae family, branching shape
Cladocopium sp.

Chapter 4

Cynarina sp.

(Briiggemann, 1877)

Lobophyliidae family, mounding shape
Cladocopium sp.

Chapter 4

Galaxea fascicularis
(Linnaeus, 1758)

Oculinidae family, phaceloid shape
Cladocopium sp.

Chapter 4

Goniastrea sp.

(Milne Edwards and Haime, 1848)
Merulinidae family, mounding shape
Cladocopium sp.

Chapter 4

Pocillopora damicornis
(Linnaeus, 1758)

Pocilloporidae family, branching shape
Cladocopium sp.

Chapter 4

Seriatopora hystrix

(Dana, 1846)

Pocilloporidae family, branching shape
Cladocopium sp.

Chapter 4

Stylophora pistillata

(Esper, 1792)

Pocilloporidae family, branching shape
Symbiodinium sp. (shallow)
Cladocopium sp. (deep)

Chapters 3,4, 5

Figure 13. Hard corals used during this thesis. Corresponding family, growth form of the
colony and Symbiodiniaceae associated with the coral are mentioned. Photo credits are
attributed to E. Turak for A. eurystoma, N. Coleman for Cynarina sp., G. Paulay for Goniastrea
sp., C. Veron for S. hystrix, and C. Pupier for G. fascicularis, P. damicornis and S. pistillata.
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1.5 Aims of the thesis

1.5.1 Why a focus on soft corals?

As described in the above parts, octocorals are important components of reefs:
- They are the second main group of macrobenthic animals on reefs (part 1.2.2).
- They are ecosystem engineers, and thus provide essential habitat and food to reef-
associated organisms (parts 1.1.2 and 1.2.3).
- They are often abundant within disturbed reef systems, where they can exhibit a higher

survivorship than hard corals in a wide range of environmental conditions (part 1.3).

However, the accumulated data on the physiological characteristics of soft corals, or on
their trophic ecology and relationship with endosymbionts is highly fragmented and not
exhaustive (Schubert et al. 2017; van de Water et al. 2018). It does not help having a holistic
view of the functional role and ecological importance of these organisms. Research on
octocorals indeed lags well behind the research on hard corals (Figure 14) and important
knowledge gaps related to their physiology, particularly to their nutrition, still need to be

addressed.

Publications
1200

1000 Scleractinian corals
800
600
400

200 ® ® Py . . Octocorals
0
2014 2015 2016 2017 2018

Figure 14. Number of publications obtained in a Google scholar search. Key words used
are “Scleractinian corals” and “physiology” versus “Octocorals” and “physiology”.
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1.5.2 Aims of the thesis

Nutrition is one of the most important factors regulating the abundance and distribution
of a community within an ecosystem, along with environmental conditions and interactions
with other organisms (e.g., competition and predation). Particularly, nutrient acquisition
supplies energy for coral growth, reproduction and can promote coral resistance or resilience to
environmental changes.

In the oligotrophic reefs of Eilat (Gulf of Agaba, northern Red Sea), two distinct
communities of octocorals have been identified at shallow and upper-mesophotic depths.
Interestingly, the upper-mesophotic octocoral community is characterized by a higher species
richness, along with a predominance of symbiotic species. While these characteristics suggest
an adequate light regime for coral’s photosynthesis to occur there (Shoham and Benayahu
2017), the nutritional strategies of soft corals have received little attention so far.

This thesis therefore focuses on the functioning of the dinoflagellate-soft coral
symbiosis and aims to bring insights into the nutritional interactions between different partners
of the holobiont. The respective contributions of auto- and heterotrophy in the metabolic needs
of soft corals along the depth gradient were of particular interest. For this purpose, the
acquisition and allocation of several forms of carbon and nitrogen were assessed. Four
objectives corresponding to the following chapters were identified to explore these nutrient
fluxes under different environmental conditions and to compare them to processes already

known in hard corals.

e Aim1 - Chapter 2: Normalization metric and processing protocol

Normalization is a fundamental step in data treatment that will deeply affect the outcome
of an experiment. Several problems have been identified for soft corals: 1) The gelatinous and
leather-like nature of soft coral tissue do not allow an easy extraction of tissue descriptors, such
as symbiont density, pigment and protein concentration, 2) the most widely used normalization
metric in scleractinian corals, the skeletal surface area, is not relevant for soft corals since they
do not possess any skeleton, 3) surface area of a nubbin is difficult to estimate due to their
highly variable hydroskeleton, which can change size by several fold depending on
environmental conditions, and 4) physiological parameters and processes of soft corals need to

be compared with other coral species, such as scleractinians.

30



An experiment was thus designed to 1) develop a fast protocol for an easy tissue
homogenization and 2) identify a normalization metric that can be used to perform inter-

studies and inter-species comparisons.

For this purpose, the effect of different tissue sample states and media used for
homogenization were tested on the measurement of tissue descriptors in the soft coral
Heteroxenia fuscescens. Moreover, the suitability of several normalizing metrics was
investigated in Dendronephthya sp., Heteroxenia fuscescens, Litophyton arboreum and

Rhytisma fulvum fulvum.

e Aim 2 - Chapter 3: Acquisition of dissolved inorganic carbon

The autotrophic carbon acquisition contributes largely to the metabolic needs of hard
corals, which receive 90% of the photosynthates produced by the symbionts. In octocorals, the
contribution of the symbionts to the energetic requirements of their host is still poorly
understood. First of all, studies addressing the productivity of soft corals are scarce, limited to
a depth of 20 m, and the results obtained present a high variability (see supplementary
information in Rossi et al. 2018). There are several identified sources for such variability: 1)
soft coral colonies can reach various degrees of expansion depending on the environmental
conditions, that confers a high biological variability to the measurements (e.g., Fabricius and
Klumpp 1995); 2) the morphology of octocoral colony and polyps, notably their surface area to
volume ratio, can be more or less suited for autotrophy (Baker et al. 2015; Rossi et al. 2018);
and 3) the use of different methods and normalization metrics (see Chapter 2 for the latter)
hardly enables comparisons. In addition, the quantification of photosynthate translocation from
the symbionts to the host has been investigated in only one tropical (Heteroxenia fuscecens)
and one temperate species (Capnella gaboensis) using **C (Schlichter et al. 1983; Farrant et al.
1987).

An experiment was conducted to estimate the importance of autotrophically

acquired carbon for the host requirements in soft corals.

For this purpose, bicarbonate labeled with the stable isotope *3C was used and its fate

was traced within the host-symbionts association. We tested the effect of light availability
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(depth) and Symbiodiniaceae genus on two soft coral species (Litophyton sp. and Rhytisma
fulvum fulvum), sampled in the Red Sea at two depths (8 m and 40 m depth). These species
harbor two different Symbiodiniaceae genera and different morphological shapes. The two
depths tested enabled the assessment of the effect of light availability on carbon fluxes and the
comparison with the carbon acquisition and allocation in the scleractinian coral Stylophora

pistillata living at the same location and depths.

e Aim 3 - Chapter 4: Acquisition of dissolved inorganic/organic nitrogen

Nitrogen is considered as one of the limiting nutrients in the oceans due to the scarcity
of its dissolved forms. As described in this chapter, corals can acquire almost all forms of
dissolved nitrogen, the dinitrogen gas, the dissolved inorganic forms (DIN) such as ammonium
and nitrate, as well as the dissolved organic forms (DON). In this thesis, we have tackled the
assimilation of all these forms by soft corals, and compared the assimilation rates obtained with

those measured in scleractinian coral species.

i) Diazotrophy

The most abundant dissolved N form, the dinitrogen, is only bioavailable to corals
through the action of diazotrophs. Only two publications have investigated the rates of
dinitrogen fixation in the presence of soft corals (e.g., Bednarz et al. 2015; Cardini et al. 2016).
However, these studies have used the acetylene reduction assay, which only quantifies gross
dinitrogen fixation occurring in the seawater without providing insights into who- among the
seawater or coral associated microorganisms, the coral host or the symbionts, is actually
assimilating the fixed nitrogen. Only the use of N, gas, allows tracing the fate of

diazotrophically-acquired nitrogen (DDN) in the different compartments.

An experiment was thus performed to assess the importance of dinitrogen fixation
for soft coral nutrition. The point arising from this objective notably questions whether
soft corals are associated with active diazotrophs. The influence of the trophic status (i.e.
strict heterotroph versus mixotroph) and increased heterotrophic capacity with depth on

this process were tested. Moreover, a comparison with hard corals was undertaken.

This experiment was designed to measure net dinitrogen fixation and distinguish

between the different compartments (i.e., seawater particles, coral tissue, dinoflagellate
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symbionts) for the very first time in soft corals, using labelled *N. gas. For this purpose,
experiments were performed 1) in the laboratory, to assess whether soft and hard corals have
the same capacities to assimilate DDN, and 2) to assess dinitrogen fixation in corals collected
from the field. For 1), the soft Sarcophyton sp. and hard Stylophora pistillata corals were used.
For 2) soft coral (Dendronephthya sp., Litophyton sp. and Rhytisma fulvum fulvum) and hard
coral (Acropora eurystoma, Pocillopora damicornis, Goniastrea sp. and Cynarina sp.) species
were sampled in the Red Sea at two depths (8-10 m and 40-45 m depth). These species harbor
different Symbiodiniaceae genera (or not at all) and different morphological shapes. The depths
investigated enable the assessment of the effect of increased heterotrophic capacity on

dinitrogen fixation.

ii) Uptake of DIN and DON
A second experiment on nitrogen assimilation investigated the acquisition of
dissolved inorganic and organic nitrogen by the soft coral-Symbiodiniaceae symbiosis. It
aimed to determine which sources of dissolved nitrogen are acquired by soft corals. The
effects of light availability (depth), Symbiodiniaceae genus and increased temperature
were tested. As for the previous experiment, a comparison with hard corals was made to

evaluate the efficiency of nitrogen assimilation among coral species.

This experiment was designed to measure the assimilation of NH4", NO3z", and DFAA
in soft and hard corals, using stable isotope labelling. For this purpose, several species of soft
corals (Litophyton arboreum, Rhytisma fulvum fulvum and Sarcophyton sp.) and hard corals
(Galaxea fascicularis, Stylophora pistillata and Seriatopora hystrix) were sampled in the Red
Sea at two depths (8-10 m and 40-50 m depth). These species harbor different Symbiodiniaceae

genera and present different morphological shapes.

e Aim 4 - Chapter 5: In situ acquisition of autotrophic and heterotrophic nutrients in
soft corals

As corals have the ability to capture preys, heterotrophy can represent a significant
acquisition of carbon, nitrogen and other nutrients. Literature on the diet of tropical soft corals
is however very sparse (e.g., Lewis 1982; Fabricius et al. 1995a; Sorokin 1995) and the
heterotrophic capacity of corals has been mostly estimated through laboratory studies, or studies
undertaken with incubation chambers. The heterotrophic status of corals under in situ

conditions is thus still poorly understood, in all coral species.
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An experiment was designed to investigate the autotrophic and heterotrophic
status of soft corals in situ, using their fatty acid composition. The effect of depth was

tested and a comparison with a hard coral species was made.

For this purpose, the concentrations of fatty acids specific to autotrophy (stearidonic and
docosapentaenoic acids) and heterotrophy (cis-gondoic acid) were measured in soft and hard
corals collected in the field. Species investigated were Dendronephthya sp., Litophyton sp.,
Rhytisma fulvum fulvum, and Sarcophyton sp. for the soft corals and Stylophora pistillata for
the scleractinian. They were collected in the Red Sea at two depths (8-10 m and 40-50 m depth).
These species harbor different Symbiodiniaceae genera and different morphological shapes.
The depths investigated enable the assessment of the effect of putative increased heterotrophic

capacity.
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Abstract

Soft corals (Octocorallia) often constitute the second most abundant macrobenthic
group on many tropical and temperate reefs. However, the gelatinous and leather-like nature of
their tissue and their variable hydroskeleton entails a number of problems for tissue
homogenization and data normalization. An easy and fast protocol for tissue homogenization,
as well as a normalization metric that can be used to perform inter-studies or inter-species
comparisons, are thus needed. In this study, we tested whether the tissue sample state before
processing (frozen vs freeze-dried samples) and the media used for tissue homogenization (0.2
pm filtered seawater; FSW vs milliQ water; DI) affects the quantitative measurements of tissue
descriptors (chlorophyll, protein and Symbiodinium concentrations) in the model species
Heteroxenia fuscescens. Furthermore, the suitability of dry weight (DW) and ash-free dry
weight (AFDW) as size-normalizing metric was investigated across different soft coral species.
Our results reveal that freeze-drying the samples and homogenizing them in DI water exhibited
several benefits, namely enhancing chlorophyll and protein concentrations up to 50%, saving
processing time and providing a more accurate determination of DW and AFDW. Overall, this
optimized tissue processing protocol offers a more reliable quantification of tissue descriptors

and reduces the chance of underestimating these parameters in soft corals. Finally, since the

37



contribution of sclerites to the total DW of the colony can highly differ between species, we
demonstrate that AFDW is a reliable metric for normalizing soft coral data, particularly when

inter-species comparisons are made.

2.1 Introduction

Soft corals (Octocorallia: Alcyonacea) represent, after reef-building scleractinian corals,
the second most abundant macrobenthic group on many tropical and temperate reefs (Fabricius
and Alderslade 2001). They notably become often dominant within disturbed reef systems
(Inoue et al. 2013). High abundances of octocorals (soft corals or gorgonians) have thus been
observed in Caribbean and Indo-Pacific eutrophicated reefs, where a reduced water quality does
not favour the growth of scleractinian corals (Fabricius et al. 2005; Baum et al. 2016). Despite
the fact that soft corals are increasingly recognized as key taxa on reefs, two major issues
regarding physiological and ecological studies remain however to be clarified.

First, the coenenchyme (colonial tissue) of soft corals consists of thick gelatinous
material containing fibres, amoeboid cells, scleroblast cells and calcareous sclerites (Fabricius
and Alderslade 2001). Altogether, these leather-like tissue elements make cell layers difficult
to break apart and tissue homogenization challenging. Therefore, measurements of tissue
descriptors (Symbiodinium, chlorophyll and protein concentrations) are difficult to obtain from
frozen or fresh soft coral samples, and a reliable and easy tissue homogenization protocol
remains to be implemented.

Second, a common normalization metric to perform inter-species comparisons of
physiological and/or ecological processes is required. For example, apprehending functional
processes that occur at the reef-ecosystem level (e.g., primary production) implies to understand
how soft corals operate over space and time compared to scleractinian corals. Comparative
measurements related to these sub-classes are therefore necessary, but are only enabled if they
are normalized to the same metric. Normalization of tissue parameters or physiological
measurements requires a metric that reflects the size of the organisms and is stable across
variable environmental conditions. In scleractinian corals, skeletal surface area is the most
commonly used metric for normalizing data to the size of the colony (Edmunds and Gates
2002). However, soft corals lack a calcium carbonate skeleton and rely on hydrostatic pressure
for body shape maintenance (Fabricius and Alderslade 2001). Although this hydroskeleton can

vary over time depending on environmental fluctuations (Fabricius 1995; Hellstrom and Benzie
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2011), few studies have approximated soft coral surface area based on geometric body
measurements (e.g., Bednarz et al. 2012, 2015; Kremien et al. 2013) or linear projections
(Fabricius and Dommisse 2000). Such normalization metric is critical when studying processes
(e.g., photosynthesis) that strongly depend on a vectorial parameter (e.g., light) as it allows
understanding the effectiveness of these processes (Kremien et al. 2013). For other
measurements, such as the quantification of structural tissue descriptors or the production of
metabolites, the variable size of the hydroskeleton excludes the possibility to accurately
normalize to surface area at different time intervals (Haydon et al. 2018). Several other
normalization metrics have thus been applied to soft corals and are summarized in Figure 15,
Table 3 and Appendix | — Table S1.
Sclerites DW (2%)

Colony (2%)

Buoyant weight (4%)
Polyp number (5%)

DW

249
(24%) Symbiodinium cell

(7%)

Surface area
(11%)

Wet weight
(18%)

Protein
(13%)

AFDW (15%)

Figure 15. Normalization metrics used in physiological studies on soft corals. Percentages
are based on the occurrence of the studies using the metric of interest. DW = dry weight. AFDW
= ash-free dry weight.
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Table 3. Summary about the range of metrics used in previous studies to normalize physiological processes in soft corals. AFDW = ash-
free dry weight. DW = total dry weight. BW = buoyant weight. DMSP = dimethylsulfopropionate. P/A pigments = photosynthetic and accessory
pigments. ETS = electron transport system. DOM = dissolved organic matter. The group ‘biochemical composition of tissues’ gathers measured
parameters such as amino acid, protein, carbohydrate and/or lipid content. The asterisk notifies a study for which the normalizing metric (i.e., dry

weight of decalcified samples) has been considered as ash-free dry weight by the authors.

Normalization
metric

AFDW

DW

Sclerites DW

Wet weight

Family

Alcyoniidae

Briareidae
Nephtheidae

Xeniidae

Alcyoniidae

Clavulariidae
Nephtheidae

Xeniidae

Alcyoniidae

Alcyoniidae

Anthothelidae

Measured parameter

Biochemical composition of tissues, DMSP concentration,
feeding rates, mucus production, nutrient flux, oxygen flux

Oxygen flux
Feeding rates, oxygen flux
Oxygen flux

Biochemical composition of tissues, caloric content,

metabolite concentration, P/A pigments, Symbiodinium

density

Biochemical composition of tissues

Biochemical composition of tissues, inorganic carbon,

oxygen flux, P/A pigments, Symbiodinium density

Biochemical composition of tissues, caloric content,

inorganic carbon, P/A pigments
Calcification rate

Biochemical composition of tissues, calcification rate,

DMSP concentration, ETS activity, P/A pigments,
Symbiodinium density

DMSP concentration

Reference

(Fabricius and Klumpp 1995; Riegl and Branch
1995*; Migné and Davoult 1997a, b, 2002; Van
Alstyne et al. 2006; Slattery et al. 2013)
(Fabricius and Klumpp 1995)
(Fabricius and Klumpp 1995; Fabricius et al.
1995a, 1998)

(Fabricius and Klumpp 1995)

(Slattery and Mcclintock 1995; Ben-David-
Zaslow and Benayahu 1998; Khalesi et al. 2007,
2009; Rocha et al. 2013b, b; Leal et al. 2014;
Costa et al. 2016)

(Slattery and Mcclintock 1995)

(Farrant et al. 1987; Slattery and Mcclintock
1995)

(Schlichter et al. 1983, 1984; Ben-David-Zaslow
and Benayahu 1998, 1999; Bednarz et al. 2012)
(Tentori and Allemand 2006)
(Michalek-Wagner and Willis 2001; Tentori and
Allemand 2006; Van Alstyne et al. 2006; Khalesi
et al. 2007; Imbs et al. 2010; Baum et al. 2016;
Haydon et al. 2018)

(Haydon et al. 2018)
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Biochemical composition of tissues, calcification rate, cell
Nephtheidae growth, DMSP concentration, ETS activity, inorganic
carbon, oxygen flux, P/A pigments, Symbiodinium density
Biochemical composition of tissues, DOM flux, inorganic

(Farrant et al. 1987; Tentori et al. 2004; Baum et
al. 2016; Haydon et al. 2018)

Xeniidae (Schlichter 1982a)

carbon
BW Alcyoniidae Budding rate, energy expenditure, oxygen flux (Khalesi et al. 2009, 2011)
Colony Xeniidae Oxygen flux (Kremien et al. 2013)
Polyp number Nephtheidae Feeding rates, oxygen flux, P/A pigments (Fabricius et al. 1995a, b, 1998)
Alcvoniidae Calcification rate, DMSP concentration, P/A pigments, (Tentori and Allemand 2006; Khalesi et al. 2009;
Y Symbiodinium density Haydon et al. 2018)
Protein Anthothelidae DMSP concentration (Haydon et al. 2018)
Nephtheidae Calcification rate, cell growth, DMSP concentration (Tentori et al. 2004; Haydon et al. 2018)
Xeniidae Metabolite concentration, oxygen flux, P/A pigments, (Zeevi Ben-yosef et al. 2006; Gabay et al. 2013;
symbiodinium density, uptakes of nutrients Ezzat et al. 2016)
Alcyoniidae Oxygen flux, Symbiodinium density (Drew 1972; Bednarzzgig)l. 2015; Cardini et al
Surface area  Nephtheidae Dinitrogen fixation, inorganic carbon, oxygen flux, P/A (Farrant et al. 1987; Bednarz et al. 2015; Cardini
P pigments, Symbiodinium density et al. 2016)
.. .. L (Bednarz et al. 2012, 2015; Kremien et al. 2013,
Xeniidae Dinitrogen fixation, OM flux, oxygen flux Cardini et al. 2016)
. " . . (Van Alstyne et al. 2006; Gabay et al. 2013;
Symblczcljllmum Alcyoniidae DMSP concentration, P/A pigments Rocha et al. 2013a, b)
Xeniidae P/A pigments (Gabay et al. 2013)
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Among these metrics, those involving wet weight and buoyant weight may also be
sources of error as soft coral tissue withholds a lot of water and the density of a colony may be
similar to that of seawater (Davies 1989). For example, normalization of
dimethylsulphoniopropionate (DMSP) production to soft coral fresh weight (Van Alstyne et al.
2006) led to significant lower values compared to the normalization to protein content,
underestimating the functional role of soft compared to hard corals (Haydon et al. 2018). Coral
biomass may therefore offer a greater potential to accurately reflect the size of a soft coral
colony. Protein content has been widely used to normalize physiological data in corals.
However it can encounter great variability across environmental conditions, and may thus
interfere with the intrinsic pattern of the parameter of interest (Edmunds and Gates 2002). Ash-
free dry weight (AFDW) is another common proxy for tissue biomass of many benthic reef
organisms such as scleractinian corals, coralline algae, sponges (Kotter and Pernthaler 2002;
Schoepf et al. 2013; Comeau et al. 2014) and soft corals (Figure 15). AFDW quantification
relies on a completely destructive method, whereas dry weight (DW) allows for potential
analysis of tissue parameters before burning the sample. Although tissue energy reserves (i.e.,
lipid, protein and carbohydrate) of soft corals have been determined from dried material (Ben-
David-Zaslow and Benayahu 1999), the possibility to obtain reliable measurements involving
Symbiodinium (cell density and chlorophyll content) still needs to be tested.

Based on these issues the present study aimed 1) to optimize a protocol for soft coral
tissue processing and 2) to find the normalization metric most relevant for physiological
experiments involving interspecies comparisons. We tested whether the tissue sample state
before processing (frozen vs freeze-dried samples) and the media used for tissue
homogenization (0.2 um filtered seawater; FSW vs milliQ water; DI) affects the quantitative
measurements of tissue descriptors in the model species Heteroxenia fuscescens (Ehrenberg,
1834). Furthermore, the suitability of DW and AFDW as size-normalizing metric was
investigated across different soft coral species (H. fuscescens, Dendronephthya sp.
(Kuekenthal, 1905), Litophyton arboreum (Forskal, 1775) and Rhytisma fulvum (Forskal,
1775), which are key components of Red Sea reefs. These species particularly exhibit different
growth forms ranging from arborescent (Dendronephthya sp. and L. arboreum) to capitate (H.

fuscescens) and encrusting (R. fulvum).
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2.2 Materials and methods

2.2.1 Biological material

Nineteen colonies of H. fuscescens with 20 polyps and four colonies of Dendronephthya
sp., L. arboreum and R. fulvum, collected in the Red Sea were used for the experiments. They
were equally allocated to five 20 L tanks and maintained under the same conditions for eight
weeks prior to starting the experiments. Tanks were continuously supplied with seawater, at a
renewal rate of 10 L h™t. HQI lamps (Tiger E40, Faeber, Italy) above the tanks provided
photosynthetically active radiation (PAR) of 200 pmol photons m2 s,

2.2.2 Optimized protocol for Symbiodinium, chlorophyll and protein

determination

A first experiment, performed with H. fuscescens, aimed to compare Symbiodinium,
chlorophyll and protein concentrations in frozen or freeze-dried samples, homogenized in FSW
or DI. Four combinations were thus considered, with 5 replicates per condition: (i) freeze-dried
samples homogenized in FSW, (ii) freeze-dried samples homogenized in DI, (iii) frozen
samples homogenized in FSW and (iv) frozen samples homogenized in DI. For this purpose,
20 tubes were prepared, each containing one freshly cut polyp of ten colonies of H. fuscescens
randomly chosen in the tanks. All tubes were flash-frozen in liquid nitrogen. Half of them were
processed directly whereas the other half was freeze-dried (Alpha 2-4 LDplus freeze-dryer,
Martin Christ, Germany), until obtaining a dried powder. Frozen and freeze-dried samples were
ground with a potter tissue grinder and solubilized in 10 mL FSW or DI. This procedure was
rapid for the freeze-dried samples (5 minutes) but took more than 30 minutes for the frozen
samples. From each homogenate, 500 uL was collected for total protein measurement (see
following section). The remaining homogenate was centrifuged for 10 min (at 11,000 g at 4°C)
to pellet the Symbiodinium. Light microscopy confirmed the total removal of Symbiodinium
from the supernatant (i.e., host fraction), which was freeze-dried again. This was done to
determine the host DW and to subsequently compare the tissue parameters of frozen and freeze-
dried samples normalized to the same metric. Symbiodinium pellets were rinsed twice to

eliminate any remaining host cells (Tremblay et al. 2012), and re-suspended in 10 mL FSW or
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DI. After mixing, 100 pL and 5 mL were subsampled for the determination of Symbiodinium

density and total chlorophyll concentration, respectively (see following section).

2.2.3 Tissue parameter measurements

Proteins were extracted from the 500 pL subsamples in a sodium hydroxide solution
(0.5 M) for 5 h at 60°C. Thereafter, protein content was measured using a BC assay kit
(Interchim, France) (Smith et al. 1985), and protein standards were prepared using bovine serum
albumin (Interchim, France). Absorbance of subsamples was measured at 562 nm by an UVmc?
spectrophotometer (SAFAS, Monaco). Symbiodinium density was quantified microscopically
via eight replicate haemocytometer counts in the 100 pL subsamples (Neubauer
haemocytometer, Marienfeld, Germany). For chlorophyll analysis, the 5 mL subsamples were
centrifuged for 10 min (at 8,000 g at 4°C). The supernatant was discarded and 5 mL of acetone
(100%) amended with magnesium chloride (Sigma Aldrich, Germany) were added to the
Symbiodinium pellet to extract the chlorophyll over 24h in the dark (at 4°C). After
centrifugation at 11,000 g for 15 min at 4°C, absorbances were measured at 750 nm, 663 nm
and 630 nm using a Xenius spectrophotometer (SAFAS, Monaco) and chlorophyll

concentrations calculated according to (Jeffrey and Humphrey 1975).

2.2.4 Normalization parameters

An experiment was performed with H. fuscescens to highlight any correlation between
biomass (DW), protein content and colony’s body volume. The body volume of 5 colonies with
different polyp numbers was estimated using the water displacement technique (Benayahu and
Loya 1986), before colonies were freeze-dried and homogenized in 10 mL DI. A subsample of
500 uL was used for protein content determination. We also compared the DW and ash weight
(AW) of the four different coral species listed above. For this purpose, colonies of each species
were freeze-dried, crushed and split in five powder heaps of different weights (DW). They were
combusted at 450°C for 4 h in a muffle furnace (Thermolyne 62700, Thermo Fischer Scientific,
the United States). Such combustion process avoids losses of sclerites (Harvell and Fenical,

1989) and allows estimating the DW of sclerites.
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2.2.5 Statistical analyses

Analyses were performed using R software (R Foundation for Statistical Computing)
and assumptions of normality and homoscedasticity of variance were evaluated through
Shapiro’s and Bartlett’s tests along with graphical analyses of residuals. Protein, Symbiodinium
and chlorophyll concentrations were analyzed using a two-way ANOVA, in which the sample
state (frozen vs freeze-dried) and type of water (FSW vs DI) were fixed effects. Regression
equations were established between colony DW and protein content, volume or AW. Pearson’s
product moment correlation coefficients were calculated to test the strength of the linear

associations.

2.3 Results and discussion

This study shows that both the sample state (i.e., frozen and freeze-dried) and the
homogenization media (i.e., DI and FSW) significantly influence the quantification of tissue
parameters in soft corals, while no effect was observed for Symbiodinium counts (Figure 16 and
Table 4). Sample state mainly affects chlorophyll determinations with two-fold higher
concentrations in freeze-dried as compared to frozen samples (Figure 16b). A previous work
on reef sands also demonstrated a 27 to 39 % increased chlorophyll concentration in freeze-
dried over frozen samples, likely due to the removal of mucous matrices surrounding the cells
and a better exposure of pigments to the solvent in the former (Hannides et al. 2014). Here, the
reduced chlorophyll concentration in frozen samples likely results from pigment damage due
to the longer homogenization period of frozen fragments (30 min) as compared to the freeze-
dried fragments (5 min). Although samples were kept on ice during homogenization, this
caution did not prevent tissue slurry from mechanic heating with the Potter grinder. Similarly,
(Hannides et al. 2014) highlighted that longer sonication periods caused a significant decline in
chlorophyll content, due to pigment degradation (Metaxatos and Ignatiades 2002). Variations
in the length of the homogenization procedure can occur for coral samples with different tissue
thickness, and may amplify variance in the chlorophyll measurements. Future studies on corals
should thus take into account such tissue processing flaws and compare the efficacy of the usual
tissue extraction procedure with the freeze-drying one. Care must also be taken when comparing
studies that use photosynthetic pigments as normalization metric for other parameters (e.g, coral

productivity). As highlighted in this study, a 50% reduced photosynthetic pigment extraction in
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frozen as compared to freeze-dried samples can lead to a significant overestimation of the
productivity in the former, an issue that can be extended to scleractinian corals too. Finally,
saving time is another benefit when processing freeze-dried over frozen samples, which is
important in experiments involving numerous samples. Although the homogenization media
has an overall low effect on tissue processing, the use of DI compared to FSW significantly
increases the protein content measurable in tissue samples (Figure 16¢ and Table 4). This could
have important implications when comparing physiological processes across different coral
species and environmental conditions. The use of DI also reduces the amount of salts in
homogenates, thereby providing a higher accuracy for the determination of absolute host and
Symbiodinium DW as well as avoiding salt crystals entering instruments such as mass
spectrometers (Baker et al. 2015).
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Figure 16. Tissue parameter quantification in soft corals using different sample
processing techniques. Samples were either processed frozen or after freeze-drying and
homogenized in filtered seawater (FSW) or MilliQ water (DI). All tissue parameters
(Symbiodinium density, (a); chlorophyll, (b) and protein content, (c)) are normalized to host
dry weight. Error bars represent standard deviation of five samples.
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Table 4. Statistical results about the effect of sample state and homogenization media on
Symbiodinium density, total chlorophyll and protein concentrations measured in
Heteroxenia fuscescens.

Factor df F values p values
Symbiodinium density

Sample state 1 0.801 0.384
Homogenization media 1 1.121 0.305
Sample state x homogenization media 1 0.026 0.873
Residuals 16

Total chlorophyll concentration
Sample state 1 80.478 <0.01
Homogenization media 1 3.058 0.100
Sample state x homogenization media 1 0.284 0.602
Residuals 16

Protein concentration
Sample state 1 1.251 0.280
Homogenization media 1 11.925 <0.01
Sample state x homogenization media 1 0.005 0.947
Residuals 16

As highlighted in the introduction, a literature review identified 36 physiological studies
on soft corals, which display a wide variety of normalization metrics (Figure 15, Table 3 and
Table S1). Although the choice of the metrics certainly depends on the process under study and
the information provided, a consensual normalization metric is important to allow better
comparability of results among studies. For a given soft coral species maintained under a
constant environmental condition, all metrics can be proxies for biomass and colony size.
Results obtained with H. fuscescens indeed exhibit significant linear relationships between total
DW and body volume or protein concentration (Figure 17a and Table 5). Other studies have
also shown significant correlations between AFDW or DW and polyp number, colony height,
or carbon and nitrogen content (Migné and Davoult 1993; Fabricius et al. 1995a; Migné et al.
1996). However, the use of several metrics listed above can be unsatisfactory when comparing
processes between different species or different environmental conditions. We demonstrate that
DW does not provide a reliable normalization metric to compare tissue parameters across coral
species (Figure 17b and Table 5), although dried samples enable better tissue processing in soft
corals. Linear regression analyses between DW and AW of different soft coral species show
species-specific linear relationships; this is due to the presence of sclerites, which can differ in

size, shape and abundance within a colony and between species (Van Alstyne et al. 1992).
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Sclerites are frequently used as taxonomic indicator, and species-specific differences likely
depend on the necessity to accumulate sclerites for structural defence against predators and/or
skeletal support against wave action (Van Alstyne et al. 1992). Overall, our results show that
the contribution of sclerites to the total DW of the colony can highly differ between species,
and thus, we recommend the use of AFDW over DW for normalizing physiological processes

in soft corals, particularly when inter-species comparisons are made.
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Figure 17. Correlations between the normalizing metrics. (a) Total dry weight with protein
content and body volume of five Heteroxenia fuscescens colonies. (b) Linear regressions
between total dry weight and ash of four colonies of Rhytisma fulvum, Dendronephthya sp., H.
fuscescens and Litophyton arboreum. Grey areas display confidence interval of 0.95 around the
regression lines.
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Table 5. Significant correlations between dry weight (DW), protein content, body volume
and ash weight (AW) of Heteroxenia fuscescens, Rhytisma fulvum, Dendronephthya sp. and
Litophyton arboreum.

Species Tested correlation R t df  pvalues
DW x protein content  0.9682  6.7005 3 <0.01

H. fuscescens DW x body volume 0.9964 20341 3 <0.01

R. fulvum DW x AW 0.9997 161.28 18 <0.01
Dendronephthya sp. DW x AW 0.9996 157.53 18 <0.01
H. fuscescens DW x AW 0.9868 25.866 18 <0.01
L. arboreum DW x AW 0.9648 15.575 18 <0.01

In conclusion, we recommend to dry the biological material for biochemical and tissue
parameter analyses and to use a subset of the dried powder for AFDW determination as final
normalization metric (Figure 18). AFDW stands for a useful metric to normalize tissue
parameters in soft corals, benefiting of the aforementioned advantages owed from its freeze-
dried state and allowing best comparability among species. Other non-destructive normalization
metrics, such as surface area, can however be used in parallel to provide a different information

on the physiological processes studied.
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Figure 18. Optimized workflow for processing soft coral tissue samples. DW = dry weight.
AFDW = ash-free dry weight. DI = MilliQ water.
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Abstract

Soft corals often constitute one of the major benthic groups of coral reefs. Although they
have been documented to outcompete reef-building corals following environmental
disturbances, their physiological performance and thus their functional importance in reefs are
still poorly understood. In particular, the acclimatization to depth of soft corals harboring
dinoflagellate symbionts and the metabolic interactions between these two partners have
received little attention. We performed stable isotope tracer experiments on two soft coral
species (Litophyton sp. and Rhytisma fulvum fulvum) from shallow and upper mesophotic Red
Sea coral reefs to quantify the acquisition and allocation of autotrophic carbon within the
symbiotic association. Carbon acquisition and respiration measurements distinguish Litophyton
sp. as mainly autotrophic and Rhytisma fulvum fulvum as rather heterotrophic species. In both
species, carbon acquisition was constant at the two investigated depths. This is a major

difference from scleractinian corals, whose carbon acquisition decreases with depth. In
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addition, carbon acquisition and photosynthate translocation to the host decreased with an
increase in symbiont density, suggesting that nutrient provision to octocoral symbionts can
quickly become a limiting factor of their productivity. These findings improve our
understanding of the biology of soft corals at the organism-scale and further highlight the need

to investigate how their nutrition will be affected under changing environmental conditions.

3.1 Introduction

Mutualistic symbioses between cnidarians and photosynthetic dinoflagellates of the
family Symbiodiniaceae are widespread in marine environments (Venn et al. 2008). In coral
reef ecosystems, this association is the backbone for the growth and survival of corals
surrounded by oligotrophic waters that hardly provide any exogenous nutrients. Indeed, the
dinoflagellate symbionts of scleractinian corals translocate a large proportion of their
photosynthetically fixed carbon compounds to the coral host for its own nutrition, growth,
reproduction and energetic needs (Muscatine et al. 1984). The percentage of carbon
translocation can be as high as 90% in well-lit shallow waters (Falkowski et al. 1984; Tremblay
et al. 2012), and can remain high in mesophotic environments (Ezzat et al. 2017). However, the
total amount of autotrophically-acquired carbon generally decreases from shallow to deep reef
environments through a reduced productivity of dinoflagellate symbionts (Ezzat et al. 2017).
Simultaneously, the coral host becomes more dependent on heterotrophic food sources and it is
the plasticity between host heterotrophy and symbiont autotrophy that allows the association to
thrive in such contrasting reef environments (Houlbréque and Ferrier-Pagés 2009). So far, our
understanding of coral holobiont performance and host-symbiont metabolic interactions under
different environmental conditions is limited to studies on scleractinian corals, while there is
very little information available for other prominent members of reef systems such as soft corals
(Alcyonacea).

Soft corals often constitute the second major benthic group of reef ecosystems (Schubert
et al. 2017). They can thrive with relative high abundance and diversity under very different
environmental conditions ranging from turbid to clear-water (Fabricius and Dommisse 2000;
Fabricius and De’ath 2008) or from shallow to mesophotic reef environments (Shoham and
Benayahu 2017). Similarly to scleractinian corals, a large proportion (> 50%) of soft coral taxa
is associated with Symbiodiniaceae in the Eastern Pacific, Caribbean, Red Sea and Great
Barrier Reef (Schubert et al. 2017). There is evidence showing that the abundance of soft coral
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populations maintained or increased in most regions worldwide whereas scleractinian coral
cover generally declined over the last decades (Stobart et al. 2005; Lenz et al. 2015), due to
increased sea surface temperatures, eutrophication and pollution. This is usually explained by
a greater nutritional plasticity of soft corals, which are considered as mixotrophic species
(Fabricius and Klumpp 1995). They can therefore acquire nutrients through the autotrophic
activity of the symbionts, but also through the heterotrophic capacity of the host (Fabricius and
Klumpp 1995; Fabricius and Dommisse 2000). Evidence in the literature demonstrates that
feeding has a positive effect on coral tissue, enhancing the growth of both partners of the
symbiosis (Ferrier-Pages et al. 2011). In addition, feeding can play a central role in maintaining
physiological function when autotrophy is reduced (Anthony et al. 2009). The lower
dependency of soft corals on autotrophy, compared to scleractinian corals, has been deduced
from few measurements performed in shallow water conditions (0-20 m) (Fabricius and
Klumpp 1995; Ramsby et al. 2014; Baker et al. 2015; Schubert et al. 2017; Rossi et al. 2018).
Therefore, knowledge gaps exist for the main autotrophic physiological processes in soft corals
thriving under different environmental conditions. The few studies which have dealt with their
carbon budget observed highly variable contributions of photosynthetically fixed carbon
provided by the symbionts to the host, with carbon translocation rates ranging from 10% in
Capnella gabonensis to 75% in Sinularia flexibilis (Schlichter et al. 1983; Farrant et al. 1987,
Sorokin 1991; Khalesi et al. 2011). In addition, different normalization metrics for
physiological processes in soft and scleractinian corals often hinder comparisons of the trophic
characteristics between the two groups.

While tropical soft corals are considered reef engineers which create habitats for other
reef species (Benayahu 1985; Schubert et al. 2017), little comprehensive data exist on their
trophic ecology, and therefore on their functional role as primary producers and carbon sinks
within the reef ecosystem (Fabricius and Klumpp 1995; Fabricius et al. 1995a; Fabricius and
Dommisse 2000; Bednarz et al. 2015). Since autotrophic carbon acquisition is a key factor
shaping coral productivity, physiology, and ecology, and partly explains coral success or failure
under changing environmental conditions, more studies should be dedicated to better
understand the autotrophic capacity of soft corals. Therefore, the present study aims to assess
the carbon fluxes between dinoflagellate symbionts and host of two common soft coral species
(Litophyton sp. and Rhytisma fulvum fulvum) from shallow and mesophotic reefs of the Gulf of
Eilat. For this purpose, we used stable isotope tracers (**C-bicarbonate) to measure the rates of
carbon fixed, exchanged and lost by the shallow and mesophotic symbiotic associations under

their natural photosynthetically active irradiance (PAR) levels. Importantly, we also compare
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our results with those of scleractinian coral species by applying a standardized normalization

metric for all parameters (Haydon et al. 2018; Pupier et al. 2018).

3.2 Material and methods

3.2.1 Soft coral collection and experimental setup

The study was conducted in November 2017 at the Inter-University Institute for Marine
Science (1UI), Gulf of Eilat. Experiments were performed with two soft coral species harboring
dinoflagellate symbionts, Litophyton sp. (Forskal, 1775) and Rhytisma fulvum fulvum (Forskal,
1775) belonging to the Alcyoniidae family.

Ten colonies per species were sampled on the reef adjacent to the TUI (29°51°N,
34°94°E) at 8 m and 40 m depth, respectively, to generate a total of 40 nubbins per species (two
nubbins per colony). Nubbins were allowed to recover for ten days in open-water cages placed
at the original collection site before being brought back to the Red Sea Simulator facility
(Bellworthy and Fine 2018). There, nubbins were allocated to three different outside aquaria
per species and depth. All aquaria were continuously supplied with water directly pumped from
the reef and were exposed to the natural diurnal light cycle. Furthermore, aquaria were shaded
with several layers of mesh clothes to adjust daily maximum light levels to the maximum
irradiance measured at the corresponding depth. Thus, all nubbins were maintained under
natural diurnal variation in irradiance and received the depth-corresponding in situ maximum
irradiance at noon. Levels of photosynthetically active radiation (PAR) were obtained from the

Israel National Monitoring program of the Gulf of Eilat (http://www.iui-

eilat.ac.il/Research/NMPMeteoData.aspx). During the five days of our experiment, surface
water PAR reached 1200 pmoles photon m s at midday (Appendix 11 - Figure S1). The PAR

received at 10 m and 40 m depth peaked at ca. 550 pmoles photon m2 st and 50 umoles photon
m s respectively, considering attenuation coefficients of 0.072-0.1 m™* at this precise location
(Akkaynak et al. 2017; Tamir et al. 2019). These values are in agreement with one-off
measurements performed with a data logger during coral collection. The in situ seawater
temperature (24°C) and nutrient concentrations (< 0.5 uM dissolved nitrogen, and < 0.2 uM
dissolved phosphorus) were stable throughout the investigated depth gradient and period of

time (http://www.iui-eilat.ac.il/Research/NMPMeteoData.aspx). Coral nubbins were

maintained for one day under these conditions before the following measurements were

performed in the outside aquaria under exactly the same environmental conditions.
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3.2.2 NaH2COj; incubations

The rates at which carbon was fixed by the shallow and mesophotic coral colonies under
their natural PAR levels were estimated using 13C- labelled bicarbonate according to Tremblay
etal. (2012). To take into account variation in PAR levels during the day, corals were incubated
for 5h, between 10 am and 3 pm, to cover the maximal daily irradiance (Stambler 2006)
(Appendix Il - Figure S1). For each species and depth condition, 10 coral nubbins, from 10
different colonies were placed in individual beakers filled with 200 mL FSW enriched with 0.6
mM NaH®COs (98 atom % 3C, #372382, Sigma-Aldrich, St-Louis, MO, USA). After this
“pulse” period of 5h, half of the corals were sampled and stored frozen at -20°C until further
analysis (To). The other half was transferred into 200 mL of non-enriched FSW for a chase
period of 19 h (T24). The determination of %'3C enrichment, and total carbon content in the
symbionts and host compartments were performed with a Delta plus Mass spectrometer coupled
to a C/N analyser (Thermo Fischer Scientific, Bremen, Germany). The natural isotopic
abundance of each species at each depth was determined from the corals used for the respiration
measurements. Detailed calculations are described in (Tremblay et al. 2012). Data were

normalized to ash-free dry weight of the organisms (Pupier et al. 2018).

3.2.3 Physiological and tissue descriptor measurements

Estimation of the dark respiration rates of the whole colony, as well as of the isolated
symbionts, was needed for the establishment of the daily carbon budget. Dark respiration rates
were measured on four nubbins per species and depth (from four different colonies), as well as
on freshly isolated symbionts from four other nubbins according to Tremblay et al. (2012).
Dark-acclimated nubbins/symbionts were individually placed in stirred incubation chambers
filled with 0.45 uM filtered seawater and maintained at 24°C. Changes in dissolved oxygen
were monitored over 30 minutes using optodes connected to an Oxy-4 (PreSense, Regensburg,
Germany). Oxygen fluxes were converted into carbon equivalents (Rc) (Tremblay et al. 2012).
The autotrophic carbon acquisition to respiration ratios (Pc/Rc) were estimated considering a
maximal autotrophic carbon acquisition rate for 6h, and a half rate for the remaining 6h. At the
end of the incubations, nubbins were flash-frozen in liquid nitrogen, freeze-dried, weighed for
the total DW determination and processed as described in Pupier et al. (2018) (Appendix I1) for
the further determination of the symbiont density, total chlorophyll concentration and ash-free
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dry weight (AFDW). The genus of the symbionts hosted by the shallow and mesophotic
populations of Litophyton sp. and R. f. fulvum was investigated following the protocol of Santos
et al. (Santos et al. 2002).

3.2.4 Interspecies comparisons

To compare our data on soft corals, normalized to AFDW, with those found in the
literature on scleractinian corals, often normalized to skeletal surface area, it was necessary to
use the same normalization metric. As surface area could not be measured with accuracy on
soft corals (since they have a highly variable hydroskeleton which expands and shrinks the
colony size by several folds depending on the environmental conditions), we normalized all
data to AFDW (Pupier et al. 2018). For this purpose, we chose eight nubbins (skeletal surface
area ranging from 4 to 29 cm?) of the scleractinian coral Stylophora pistillata originating from
the Red Sea and grown at the Monaco Scientific Center, as it is one of the dominant species in
the Gulf of Eilat and many data have been acquired on this species. AFDW was determined as
described above after separating the tissue from the skeleton and combusting it. Surface area
was determined using the wax technique (Veal et al. 2010). A conversion factor (255.65 + 8.98,
Table S5), estimated from the ratio between skeletal surface area (in cm?) and AFDW (in g) of
these nubbins, was used to transform data normalized to surface area (Appendix Il - Table S4)
into data normalized to AFDW.

3.2.5 Statistical analyses

Analyses were performed using R software (R Foundation for Statistical Computing).
All data were expressed as mean + standard error. Prior to analyses, outlier values were
identified using Grubb’s test and were excluded when p-values were significant (p < 0.05).
Assumptions of normality and homoscedasticity of variance were evaluated through Shapiro’s
and Bartlett’s tests along with graphical analyses of residuals. A two-way analysis of variance
(ANOVA) was performed to test the effect of species and depth on symbiont density,
chlorophyll concentrations and carbon acquisition. The rates at which carbon was assimilated,
translocated and lost were analysed separately between the two time points (i.e., pulse and chase
periods) using 2-way ANOVAs with species and depth as fixed effects. When the interaction

was significant pairwise, Tukey tests were performed as a posteriori testing.
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3.3 Results

3.3.1 Physiological measurements

The dinoflagellate-host association was species-specific. Litophyton sp. harbored
Symbiodinium sp. (formerly Symbiodinium clade A, LaJeunesse et al. 2018) whereas R. f.
fulvum was associated with Cladocopium thermophilum (formerly Symbiodinium
thermophilum clade C3, Hume et al. 2015; LaJeunesse et al. 2018), regardless of the depth
investigated. Symbiodiniaceae density, normalized to AFDW, was two-fold higher in
Litophyton sp. than in R. f. fulvum at both depths and was for both species always higher in
shallow than in mesophotic con-specifics (Figure 19a, Appendix Il - Table S2). For both
species, total chlorophyll concentrations (per AFDW) were significantly higher for mesophotic
corals (Figure 19b, Appendix Il - Table S2). Also, symbionts contained significantly more
chlorophyll per cell in mesophotic corals (2.8-10° + 3.2-107 pg cell* for Litophyton sp. and
7.5-10°+ 4.9:107 pg cell* for R. f. fulvum, Appendix Il - Table S2) as compared to shallow
corals (1.6-10° + 1.5-107" g cell™* for Litophyton sp. and 4.2-10° + 1.2-10°® ug cell™! for R. f.
fulvum, Appendix Il - Table S2).
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Figure 19. Physiological and tissue descriptors measured in the soft coral species
investigated. For panels (a), (b) and (c), data are normalized to ash-free dry weight. (a)
Symbiodiniaceae density. (b) Total chlorophyll concentration. (c) Autotrophic carbon
acquisition. (d) Autotrophic carbon acquisition per Symbiodiniaceae cell. Error bars represent
standard error. There were significant differences between species and depths for (a), between
depths for (b) and (d), and between species for (¢) (* =p <0.05, ** =p <0.01, *** =p <0.001).

Autotrophic carbon acquisition, estimated using *C-bicarbonate incorporation over 5h
under maximal irradiance (Pc, expressed in pg C g AFDW h1), was significantly different
between the two coral species, with Litophyton sp. exhibiting higher Pc rates than R. f. fulvum
(Figure 19c, Appendix Il - Table S2). When normalized to symbiont cells, Pc rates were
significantly different between depths, with higher values obtained in mesophotic conditions
(Figure 19d, Appendix Il - Table S2). Respiration rates (Rc, expressed in pug C g AFDW h?)
were similar between depths for R. f. fulvum (347 + 45 and 489 * 47 in shallow and mesophotic
conditions, respectively), whereas they were two-fold lower for mesophotic (148 * 47) than
shallow (406 £ 18) nubbins of Litophyton sp. (Appendix Il - Table S2, Tukey HSD p < 0.01).
While symbiont respiration accounted for less than 1% of the holobiont respiration for
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Litophyton sp. in both depths, symbiont respiration accounted ca. 6% and 4% to holobiont

respiration for mesophotic and shallow R. f. fulvum, respectively.

3.3.2 Carbon budget

After the pulse period (5h), both species exhibited significant differences in their carbon
budget between depths (Figure 20a, b, ¢, d, Appendix Il - Tables S2 and S3). Overall, rates of
photosynthate translocation were lower in Litophyton sp. at both depths (36% to 60% of the
total fixed carbon) compared to R. f. fulvum (85%), and symbionts of Litophyton sp. retained
four to five times more carbon than those of R. f. fulvum (Figure 20b, d, Appendix Il - Table
S2). However, no difference was observed in the rate of carbon assimilated by the host between
depths and species (134-150 pg C gt AFDW h). For Litophyton sp. from mesophotic depth,
symbionts translocated less carbon to the host (36% versus 60%) and less carbon was lost by
the holobiont (19% versus 44%) as compared to nubbins from shallow depth. On the contrary,
photosynthate translocation (85%) and carbon loss (64-70%) were comparable between shallow
and mesophotic R. f. fulvum corals.

After the chase period (24h), the carbon budget of both species was clearly species-
specific but without depth-specific differences (Figure 21a, b, ¢, d, Appendix Il — Table S2). In
Litophyton sp., symbiont cells assimilated half of the photosynthesized carbon and translocated
only 47% to the coral host in both shallow and mesophotic colonies (Figure 21a, b, c, d,
Appendix Il — Table S2). On the contrary, symbionts in R. f. fulvum translocated 86-92% of the
photosynthetically fixed carbon to the host and assimilated only 4-11% of this carbon for their
own energetic needs. Consequently, significant differences were evident between the two
species for the rates of carbon 1) translocated (up to one third lower in Litophyton sp. than in
R. f. fulvum), 2) retained in the symbionts (ten-fold higher in Litophyton sp. than in R. f. fulvum)
and 3) lost from the symbiotic association (two-fold lower in Litophyton sp. than in R. f. fulvum)
(Figure 21a, b, ¢, d, Appendix Il — Table S2).

3.3.3 Relationship between Symbiodiniaceae density and carbon flux

Our results show that in the two coral species at both depths the carbon acquisition per

symbiont cell exponentially decreased with increasing symbiont density (Figure 22a). In
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addition, we found a positive linear correlation between symbiont cell carbon acquisition and

translocation (Figure 22b).
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Figure 20. Carbon budgets obtained after the 5 hours pulse period in the soft coral species investigated. (a) Shallow Litophyton sp.. (b)
Mesophotic Litophyton sp.. (¢) Shallow Rhytisma fulvum fulvum. (d) Mesophotic Rhytisma fulvum fulvum. Symbionts are represented by a green
circle. Pc = autotrophic carbon acquisition. ps = carbon assimilated in Symbiodiniaceae. py= carbon assimilated by the coral host. Ts = translocation
of photosynthates. Crs = carbon lost by the symbionts through respiration. CLu = carbon lost by the host through respiration. Pc and carbon fluxes
are expressed in pg C g'AFDW h'l,
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Figure 21. Carbon budgets obtained after the 24 hours chase period in the soft coral species investigated. (a) Shallow Litophyton sp.. (b)
Mesophotic Litophyton sp.. (¢) Shallow Rhytisma fulvum fulvum. (d) Mesophotic Rhytisma fulvum fulvum. Symbionts are represented by a green
circle. ps = carbon assimilated in Symbiodiniaceae. py = carbon assimilated by the coral host. Ts = translocation of photosynthetates. Crs = carbon

lost by the symbionts through respiration. Cry = carbon lost by the host through respiration and mucus production. Carbon fluxes are expressed in
ng C g'AFDW h'l,
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3.4 Discussion

This study shows that the functioning of the coral-dinoflagellate symbiosis in soft
corals holds some different characteristics to that in many scleractinian corals, and that the
two groups are differently acclimatized to depth. The two investigated soft coral species
maintained an equivalent carbon acquisition from shallow to poorly-lit mesophotic
habitats, while carbon acquisition of scleractinian corals generally decreases with depth.
This autotrophic efficiency, combined with putative high heterotrophic capacities, may
provide soft corals with an ecological advantage in the upper Red Sea mesophotic reefs
(Shoham and Benayahu 2017). In addition, the results show that carbon acquisition and
translocation rates per symbiont cell were negatively correlated with the symbiont density
within the host tissue, with a higher assimilation of carbon in symbiont biomass under high
symbiont density. However, the rates at which carbon was translocated to and assimilated
by the host were unaffected, indicating that dense symbiont populations can remain

mutualistic.

Our findings indicate that the mean autotrophic carbon acquisition in both soft coral
species (measured during 5h and using ‘*C-labelling) remained stable from shallow to
mesophotic environments, which suggests that soft corals are either photo-limited in

shallow waters or well photo-acclimatized to depth (Figure 23).
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Figure 23. Metabolic interactions between soft corals and their dinoflagellate
symbionts. (a) Shallow Litophyton sp.. (b) Mesophotic Litophyton sp.. (¢) Shallow
Rhytisma fulvum fulvum. (d) Mesophotic Rhytisma fulvum fulvum. Boxes and arrows are
indicative of differences in density and fluxes. Color intensity of symbionts corresponds to
chlorophyll concentration levels.

This is in agreement with previous observations (Fabricius and Klumpp 1995) that
maximal photosynthetic rates of several soft coral species from the Great Barrier Reef were
measured at 20 m depth rather than in shallower waters (Table 6). Such constant carbon
acquisition along the depth gradient is surprising in comparison to the general patterns
observed in scleractinian corals. Most scleractinian corals experience a significant decrease
in rates of carbon acquisition with depth, although this physiological parameter has been
poorly investigated in mesophotic environments (Lesser et al. 2010; Einbinder et al. 2016;
Ezzat et al. 2017). However, a recent study, which investigated the photosynthetic
performance of the mesophotic coral Euphyllia paradivisa, found a high photosynthetic
capacity of this coral species under low light conditions (Eyal et al. 2016).
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Table 6. Tissues descriptors and autotrophic carbon acquisition reported for different
octocorals, normalized to ash-free dry weight (AFDW). Pc = autotrophic carbon

acquisition.

Species

Great Barrier Reef
Asterospicularia sp.
Briareum stechei

Capnella lacertiliensis

Efflatounaria sp.
Lobophytum spp.

Nephthea sp.

Paralemnalia sp.

Sarcophyton spp.

Sinularia spp.

Xenia spp.

Caribbean

Antillogorgia sp.

Briareum asbestinum

Eunicea sp.
Gorgonia ventalina
Plexaura sp.
Pterogorgia anceps
Red Sea
Litophyton sp.

Rhytisma f. fulvum

Depth

(m)

20
5
20
5
20
5
20
5
20
5
10
20
5
10
20
5
10
20
5
10
20
5
10
20

2-8

3-8
2-8
2-8
2-8
2-8

OCTOCORALS

Symbiont
density
(108 cell g*
AFDW)

1-3

1-4

0.5

9.4
6.4
45
2.9

Total chlorophyll
(at+c2)

(ug g* AFDW)

Pc Reference
(ug C g* AFDW
h?)

530
419-452
707-838

949-1047
511
975-1375
772-1191
367
419
1145
1100

956 Fabricius and
838-923 Klumpp (1995)

792-1191
884-956
367-445

1034-3076
511-707
713-825

772

406-903
890-1231
1165-1872
812

Baker et al. (2015);
Rossi et al. (2018)

249 Baker et al. (2015)
760-2150 51-382
730 457-3284 Baker et al. (2015);

1280 20-742 Rossi et al. (2018)
3490-4050 184-3338

1300-2120 1105-2291

1591 958
2240 829 This study
1222 554
2075 710
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Pigment content, symbiont density and symbiont genus are generally involved in
shaping the photo-acclimatization of the coral symbiosis from shallow to mesophotic
environments. Our results highlight for the two soft coral species a host-specific
Symbiodiniaceae genus that remained stable along the depth profile up to 40 m depth.
Litophyton sp. was associated with Symbiodinium sp., as previously reported (formerly
Symbiodinium clade A, Barneah et al. 2004; LaJeunesse et al. 2009), while R. f. fulvum was
rather associated with Cladocopium sp., in agreement with studies performed in the Red
Sea (formerly Symbiodinium clade C, Barneah et al. 2004), or the Great Barrier Reef (van
Oppen et al. 2005; Goulet et al. 2008b). Such clade specificity is assumed to be persistent
both in space and time in octocorals (Goulet and Coffroth 2003; Baker et al. 2013a). Thus,
acclimatization of the soft corals to low light levels was independent of the symbiont genus,
but potentially driven by higher concentrations of total chlorophyll per AFDW and per
symbiont cell in mesophotic corals (Figure 19b), which maximize the light harvesting
capacity of the cells under low light levels (Mass et al. 2007; Ezzat et al. 2017). In addition,
both species exhibited a decreased symbiont density in mesophotic as compared to shallow
colonies which is likely another adaptation to depth by reducing self-shading under reduced
PAR (Cohen and Dubinsky 2015; Ziegler et al. 2015). A lower symbiont density also
reduces the competition for inorganic nutrient supply (Cunning et al. 2017). It has been
demonstrated that mesophotic scleractinian corals can display several strategies to
acclimatize to low light levels, such as modifications in the organization of photosynthetic
apparatus (shift to a PSll-based system, including additional photosynthetic antenna,
Einbinder et al. 2016), modifications in the organization of antenna (growth of specialized
paracrystalline light-harvesting antenna domains, Scheuring and Sturgis 2005), or the
synthesis of fluorescent pigments by the host (that can perform wavelength transformation
to facilitate light penetration, Smith et al. 2017); however, these strategies remain to be
further investigated in soft corals.

The autotrophic carbon acquisition to respiration ratios (Pc/Rc) of Litophyton sp.
ranged from 1 to 2 from shallow to mesophotic depths, the latter value being above the
conservative threshold for net autotrophy (Pc/Rc>1.5). Considering that the solar radiation
level in November is one of the lowest annual levels (Stambler 2006), the data suggest that
Litophyton sp. is mostly an autotrophic species. On the contrary, Pc/Rc ratios of R. f. fulvum
in November were always below compensation (Pc/Rc = 1) even when considering a
maximal autotrophic carbon acquisition rate sustained for 12h. This strongly suggests that

this species relies, at least in winter, on heterotrophy to sustain its daily respiratory needs.
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The difference in Pc/Rc between the two species may be due to their different growth
shapes and different micro-morphological features of the polyps. Two recent studies on
gorgonian octocorals, indeed highlighted a correlation between host morphology, polyp
size and productivity (Baker et al. 2015; Rossi et al. 2018), thereby corroborating the first

observations of Porter (1976).

Symbiont cell carbon acquisition was negatively correlated with symbiont density
in both investigated soft coral species and decreased exponentially as soon as the symbiont
density increased. Although this pattern is first described on soft corals in this study, similar
observations were reported with gorgonian octocorals (Rossi et al. 2018) and scleractinian
corals (Scheufen et al. 2017), and might be due to a host-dependent regulation of light and
nutrient ressources (Scheufen et al. 2017), or a self-shading of the symbionts (Cunning et
al. 2017).

Our results also highlight a positive correlation between carbon acquisition and
carbon translocation rates per symbiont cell, similarly to a previous study on scleractinian
corals (Leal et al. 2015). In Litophyton sp., a low carbon acquisition per cell corresponded
to a high symbiont density and consequently, symbiont cells assimilated more carbon for
their own metabolism rather than translocating it to the host (50% translocation). In
contrast, the symbionts in R. f. fulvum translocated significantly more carbon (80 to 90%
translocation) to the host, likely due to their lower abundancy and increased rates of carbon
acquisition per cell. Carbon translocation rates of >80% have also been reported for other
coral species (Falkowski et al. 1984; Muscatine et al. 1984; Tremblay et al. 2012). For
example, Scheufen et al. (2017) measured highest productivity rates in corals during the
very oligotrophic summer season despite seasonally reduced symbiont density. This may
also imply a high carbon translocation to the host that is essential when exogenous food
sources are scarce.

Differences in cell-specific carbon assimilation and translocation rates may not only
be related to the symbiont density but also to the symbiont genus. Indeed, Symbiodinium
sp. (associated with Litophyton sp. here) is known to translocate less carbon to its host as
compared to Cladocopium sp. (associated with R. fulvum fulvum here) (Starzak et al. 2014;
Leal et al. 2015; Baker et al. 2018). However, an important observation is that the lower
percentage of carbon translocation in Litophyton sp. is not indicative of a shift towards
symbiont parasitism (Baker et al. 2018), as the carbon translocation to the host still

exceeded the metabolic costs for holobiont respiration. In R. f. fulvum, due to the low
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symbiont density, an increased translocation rate per cell was needed to transfer the same
amount of carbon to the host. In addition, the percentage of carbon lost by the host was
lower in Litophyton sp. than in R. f. fulvum, compensating for the lower percentage of
carbon translocated from the symbionts. As a consequence, the rates at which carbon was
retained in the host were constant between species and depths (between 13% and 19% of
the photosynthesized carbon, or 93 to 138 pg C g* AFDW h'1). Assimilation rates of 10 to
20% of the photosynthesized carbon by the animal host seems to be a general feature in
corals (Tremblay et al. 2012; Ezzat et al. 2017).

Soft and scleractinian corals therefore seem to exhibit a different trend of carbon
acquisition along the depth gradient, although more investigations with different
scleractinian and soft coral species are still needed. In order to compare carbon fixation per
biomass between soft and scleractinian corals, we used data previously obtained on the
scleractinian coral Stylophora pistillata sampled at the exact same location, depths and
month (Ezzat et al. 2017) (Appendix Il - Table S4) and normalized the rates to AFDW.
The estimates we obtained show that soft corals fix less carbon per biomass as compared
to S. pistillata at shallow depth in November (estimation of 2426 pg C gt AFDW h'! for
S. pistillata versus 554-958 ug C g* AFDW ht), although soft corals contain comparable
or higher dinoflagellate density (Thornhill et al. 2011) and chlorophyll content per biomass
(Appendix Il - Table S4) than scleractinian corals. However, in deeper environments, soft
corals tend to fix carbon per biomass at similar or even higher rates (estimation of 555 ug
C g1 AFDW ht for S. pistillata versus 710-829 pg C g* AFDW h! for R. f. fulvum and
Litophyton sp.). This may indicate that in shallow waters, soft corals have particularly less
fixed carbon available to maintain or grow their biomass as compared to scleractinian
corals. Morphological characteristics of the host, which have an impact on the diffusion
and transmission of light to the symbionts, may explain differences in carbon acquisition
in shallow water corals. Soft corals lack a calcium carbonate skeleton, contrary to
scleractinian corals, and only possess sclerites as calcified structures. However, skeletons
present light scattering abilities, which enhance light absorption efficiency of the symbionts
(e.g., Enriquez et al. 2017). Although characteristics of sclerites and tissues remain to be
investigated to understand the potential light amplification and dispersion in soft corals, we
hypothesized that they would affect the light environment of the symbionts to a lesser
extent than skeletons do in scleractinian corals. In addition, soft corals have a thick

coenenchyme and exhibit a low ratio of colony surface area to volume, which does not
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favor light exposure and gas or nutrient exchange through the epidermal tissue
(Wangpraseurt et al. 2014). Finally, the variability of their hydroskeleton allows soft corals
to contract and expand their tissue. Tissue contraction removes symbionts from the tissue
surface, thereby higher irradiance is required to reach the symbionts and to achieve

photosynthetic compensation and saturation.

Understanding nutritional ecology of octocorals is still in its infancy. The common
belief is that octocorals are more heterotrophic than scleractinian corals, because of their
low carbon acquisition in surface waters, and because their morphology is more suited for
heterotrophy (Schubert et al. 2017). Two recent studies on Caribbean gorgonian octocorals
have observed a possible correlation between host morphology and symbiont performance
(Baker et al. 2015; Rossi et al. 2018). Octocorals with thin branches and small polyps can
be more autotrophic as compared to those with a massive shape and large polyps. In our
work, a different degree of autotrophy was demonstrated for the two investigated soft coral
species, which might be linked to morphological traits. The arborescent shape of
Litophyton sp. may enhance the exposure of symbionts to light and thus favour autotrophy
compared to the mat-forming shape of R. f. fulvum. In addition, our results strongly support
the view that high symbiont density results in lower cell-specific carbon translocation and
acquisition. However, soft corals with high symbiont densities (Litophyton sp.) reached
similar carbon translocation than those with low symbiont density. Further work involving
various soft coral species, growth-shapes and symbiont-specificities will be essential to
provide more insight into the physiology and trophic ecology of octocorals thriving along

environmental gradients.
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Abstract

Corals are associated with dinitrogen (N2)-fixing bacteria that potentially represent
an additional nitrogen (N) source for the coral holobiont in oligotrophic reef environments.
Nevertheless, the few studies investigating the assimilation of diazotrophically-derived
nitrogen (DDN) by tropical corals are limited to a single scleractinian species (i.e.
Stylophora pistillata). The present study quantified DDN assimilation rates in four
scleractinian and three soft coral species from the shallow waters of the oligotrophic
Northern Red Sea using the °N; tracer technique. All scleractinian species significantly

stimulated N fixation in the coral-surrounding seawater (and mucus) and assimilated DDN
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into their tissue. Interestingly, N2 fixation was not detected in the tissue and surrounding
seawater of soft corals, despite the fact that soft corals were able to take up DDN from a
culture of free-living diazotrophs. Soft coral mucus likely represents an unfavorable habitat
for the colonization and activity of diazotrophs as it contains a low amount of particulate
organic matter, with a relatively high N content, compared to the mucus of scleractinian
corals. In addition, it is known to present antimicrobial properties. Overall, this study
suggests that DDN assimilation into coral tissues depends on the presence of active
diazotrophs in the coral’s mucus layer and/or surrounding seawater. Since N is often a
limiting nutrient for primary productivity in oligotrophic reef waters, the divergent capacity
of scleractinian and soft corals to promote N» fixation may have implications for N

availability and reef biogeochemistry in scleractinian versus soft coral dominated reefs.

4.1 Introduction

Coral reefs are highly productive ecosystems despite thriving in oligotrophic
waters, which contain low levels of essential dissolved inorganic nutrients such as nitrogen
(N) (de Goeij et al. 2013). Corals, which are the main reef builders, can achieve high
productivity thanks to their association with endosymbiotic dinoflagellates, which recycle
the animal waste products and are efficient in scavenging inorganic N dissolved in seawater
(Wang and Douglas 1999; Grover et al. 2003). Corals also profit from high rates of N
recycling in the water column and sediments via microbial processes (Carpenter and
Capone, 2008), and from biological dinitrogen (N2) fixation of diazotrophic symbionts
(Bednarz et al. 2017), which are heterotrophic bacteria and cyanobacteria that convert
atmospheric N2 into bioavailable N. In addition to being associated with benthic organisms
(reviewed in Benavides et al., 2017), diazotrophs can live pelagic, and colonize reef
substrates (e.g., sediments, coral rubble). Many studies using the acetylene reduction assay
(ARA) method have recorded high rates of N fixation either in reef waters or in the
presence of corals (i.e., Bednarz et al., 2015; Cardini et al., 2016; R&decker et al., 2015).
The ARA technique quantifies gross N> fixation without providing insights into DDN
(diazotrophically-derived nitrogen) assimilation by the coral-dinoflagellate symbiosis.
Instead, the use of labelled ®N, gas measures DDN assimilation (net N fixation) and

distinguishes between the different compartments (i.e. seawater particles, tissue,

76



dinoflagellate symbionts), but it is still poorly known to what extent and under which

conditions corals profit from DDN.

Most of the research using the ®N, method to assess DDN assimilation in adult
tropical corals has been directed towards only one species, Stylophora pistillata, belonging
to the Pocilloporidae family. These studies showed that S. pistillata can acquire DDN via
grazing on a culture of diazotrophic cells (Benavides et al. 2016). However, under natural
conditions, this coral species has variable capacities to stimulate diazotrophic activity in
seawater as well as variable DDN assimilation rates into the coral holobiont (Grover et al.
2014; Bednarz et al. 2017; Lesser et al. 2018). As DDN can play a major role in supplying
N to corals (Cardini et al. 2016; Bednarz et al. 2017), the estimation of the capacity of
different coral species to take advantage of this nutrient source can help in understanding
how they cope with nutrient limitation. In addition, no study so far investigated DDN
assimilation by soft corals, although they represent together with scleractinian corals the
two most dominant benthic groups on many reefs worldwide. Soft corals can quickly
colonize open space due to their fast growth rates, high fecundity and asexual reproduction
and these opportunistic life history features may be facilitated by diazotrophs as additional
N source (i.e. DDN). The aim of this study was to perform a multi-species comparison and
to investigate the capacity of different scleractinian and soft coral species to either

assimilate DDN/diazotrophic cells and/or transfer it to the surrounding seawater.

4.2 Materials and methods

4.2.1 Laboratory experiment: DDN assimilation from external

diazotrophs

To assess whether scleractinian and soft corals have the same capacities to
assimilate DDN from external active diazotrophs in the seawater, an experiment was
performed at the Monaco Scientific Centre. We used the scleractinian coral S. pistillata
and the soft coral Sarcophyton sp., which have been maintained in aquaria for years, and
are not associated with active diazotrophs (V. Bednarz, unpublished data; Kooperman et

al., 2007). All colonies were maintained under the same light (200 pmoles photons m2 s
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1y and temperature (25°C) conditions to ensure comparability between the species during
the following experiment. For this purpose, a culture of diazotrophs (Crocosphaera
watsonii) was prepared and diluted to obtain two cell concentrations of 100 and 1000 cells
mL?, respectively, matching concentrations of 3-20 pm size class phycoerythrin-
containing unicellular cyanobacteria under non-bloom and bloom conditions (Campbell et
al. 1997). C. watsonii concentrations were determined using a hemocytometer (Z1 particles
counter, Beckman Coulter, USA). Four nubbins of each coral species per C. watsonii
concentration were then individually placed in 320 mL gas tight bottles completely filled
with 280 mL of 0.22 um-filtered seawater amended with the adequate concentration of
diazotrophs and 40 mL of *°N; enriched seawater. In addition, three nubbins of each species
were incubated under the same above conditions but without C. watsonii cells. At the end
of the 24h incubation, corals were removed and stored frozen until subsequent analysis.

They were then processed as described below.

4.2.2 Field experiment: DDN/diazotrophic cells assimilation and

transfer to seawater

e Biological material

The study was conducted during November 2017 at the Interuniversity Institute
(IUI1) of Marine Sciences, Eilat, Red Sea. Coral fragments were collected by SCUBA
diving from different colonies of the reef adjacent to the IUI and were brought back to the
Red Sea Simulator facility (see Bellworthy and Fine, 2018 for more details regarding the
system) to recover for one day prior to starting the incubations. Scleractinian corals
(Acropora eurystoma, n = 6; Pocillopora damicornis, n = 3; Goniastrea sp., n = 3; and
Cynarina sp., n = 2) were sampled in shallow waters (8-10 m depth) and soft corals (n =5
for all species; Dendronephthya sp., Rhytisma fulvum fulvum and Litophyton sp.) in shallow
waters and at upper mesophotic depths (40-45 m). Biological replicates for each species
were derived from individual colonies and the different species were chosen in order to
cover a broad range of families and morphological traits (Table 7). Three additional
nubbins per species per depth were collected to measure natural N abundance of the

corals. At the collection time, the site was characterized by stable temperature (24-25°C)

78



and nutrient levels (< 0.5 uM dissolved N and < 0.2 uM dissolved phosphorus) along the
depth gradient (data from the Israel National Monitoring program of the Gulf of Eilat,
http://www.iui-eilat.ac.il/Research/NMPMeteoData.aspx).

Table 7. Scleractinian and soft coral species investigated in the study.

Coral group  Species Family Morphology

Scleractinian = Acropora eurystoma Acroporidae Branching
Cynarina sp. Lobophyliidae Mounding
Goniastrea sp. Merulinidae Mounding
Pocillopora damicornis Pocilloporidae Branching

Soft Dendronephthya sp. Nephtheidae Arborescent
Litophyton sp. Nephtheidae Arborescent
Rhytisma fulvum fulvum Alcyoniidae Mat-forming

e N, fixation measurements

The N seawater addition method was used to assess N fixation rates. For this
purpose, °Nz-enriched seawater was produced prior to the incubation experiment by
injection of 10 mL of ®N; gas (98% Eurisotop) into gas-tight 250 mL bottles completely
filled with degassed, 0.2 um filtered seawater, followed by vigorous shaking for 12 h to
ensure 100% °N; equilibration (Mohr et al. 2010). In order to test which coral species can
assimilate DDN or can enrich the seawater in DDN, collected nubbins from each coral
species were individually placed in gas-tight bottles of 600 mL. Bottles were completely
filled with 120 um-filtered seawater, directly pumped from the reef, with 10% replaced by
®N,-enriched seawater (resulting in theoretical enrichment of ~9.8 atom%). A first set of
three control bottles was prepared as described above but without corals to measure the
baseline of N fixation by planktonic diazotrophs. To evaluate the natural *N abundance
of the corals, a second set of controls consisted in incubating three coral nubbins from each
species (only two for Cynarina sp.) in 120 um-filtered seawater incubations without °N;
addition. All bottles were incubated for 24 h in several outdoor aquaria. The seawater
temperature was kept constant at in situ temperature (~ 24°C) by using continuous supply
of seawater in the aquaria. Corals were exposed to the natural diel light cycle and shaded
to the corresponding irradiance of their collection site by applying layers of black mesh
above the aquaria and considering an attenuation coefficient equal to 0.072-0.1 m*
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(Akkaynak et al. 2017; Tamir et al. 2019). At the end of the incubations, corals were
removed from seawater and stored frozen until subsequent analysis. Incubation water of all
bottles was filtered onto pre-combusted (450°C for 5 h) GF/F filters which were dried at
60°C for 48h. Corals and filters were processed as described in the sample analysis section.

4.2.3 Sample analysis

For scleractinian corals, the tissue was removed from the skeleton using an air brush
and homogenized with a potter tissue grinder. The host tissue and zooxanthellae were
separated through a series of centrifugations according to Grover et al. (2003) and each
fraction was freeze-dried. Soft corals were treated as described in Pupier et al. (2018).
Briefly, they were freeze-dried, the resulting powder homogenized in distilled water and
then separated in several centrifugation steps into the host tissue and zooxanthellae
fractions as described above. Each fraction was subsequently freeze-dried again. The N
enrichment, as well as particulate organic carbon (POC) and particulate N content (PN) of
each sample and filter were determined using a mass spectrometer (Delta Plus; Thermo
Fisher Scientific, Germany) coupled to a C/N analyzer (Flash EA; Thermo Fisher
Scientific, Germany). To calculate N> fixation in particles of the incubation water or DDN
assimilation by corals (host and/or zooxanthellae), the equation of Montoya et al. (1996)

was used:

atom% " Nexcess X PNsample
tx 9.8

N> fixation or DDN assimilation=

Where: t is the incubation time, 9.8 the initial *°N enrichment of the incubation
water, and PNsampie the particulate N content of the samples. For each sample, the
atom% °Nexcess €nrichment was calculated by subtracting the natural **N enrichment of
control samples without ®N, exposure (atom% *Ncontrol) from the °N enrichment of
samples after exposure to *°N; enriched seawater (atom% Nsampie). The atom% Nsample
was considered significant when it was at least three fold higher than the standard deviation
of the atom% ®Ncontror. N2 fixation and DDN assimilation values were normalized to the

volume of water filtered or to the total dry weight of the sample. For comparison with
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previous studies, scleractinian corals data were also normalized to the skeletal surface area

determined using the wax technique (Veal et al. 2010).

4.2.4 Statistical analyses

Analyses were performed using R software (R Foundation for Statistical
Computing). All data were expressed as mean + standard error. Prior to analyses, outlier
values were identified using Grubb’s test and were excluded when p-values were
significant (p < 0.05). Assumptions of normality and homoscedasticity of variance were
evaluated through Shapiro’s and Bartlett’s tests. A non-parametric Kruskal-Wallis test was
used to test for differences between groups (hard vs soft corals) and depths (shallow vs
deep soft corals) on POC and POC:PN. Analyses of variance (ANOVA) were performed
to respectively test the effect of species and morphologies on DDN transfer and

assimilation. Tukey tests were performed as a posteriori testing.

4.3 Results

In the laboratory experiment, no N> fixation (neither in seawater nor in coral tissue)
was measured when corals were incubated without the addition of Crocophaera watsonii
cells to the seawater. Both S. pistillata and Sarcophyton sp. however demonstrated abilities
to assimilate DDN in the presense of active diazotrophs (i.e. Crocosphaera watsonii) in
seawater (Figure 24). Overall, Sarcophyton sp. assimilated 65% more DDN in its tissue
than S. pistillata. While there was no difference between the DDN assimilations of S.
pistillata exposed at the two cell concentrations (Tukey HSD: p = 0.389), Sarcophyton sp.
significantly increased its DDN assimilation under higher cell concentration (Tukey HSD:
p = 0.020).
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Figure 24. Scleractinian and soft corals DDN assimilation from two concentrations of
active diazotrophs (Crocosphaera watsonii) in seawater. Investigated species are
Stylophora pistillata (scleractinian coral) and Sarcophyton sp. (soft coral). Error bars
indicate standard error. Letters refer to Tukey HSD testing. DDN = diazotrophically-
derived nitrogen. DW = dry weight.

In the field experiment, a very low level of N> fixation was measured in seawater
with natural populations of diazotrophs, in the absence of corals (Figure 25a). All coral
species enriched the seawater in mucus-containing particles during the 24 h incubation
(Figure 25a). Particulate organic carbon, which is a proxy for living and detrital particles
present in the water and being released by the corals, was two to seven fold higher in
chambers containing scleractinian corals compared to those containing soft corals
(Kruskal-Wallis: p < 0.001). There was no difference in POC release between shallow and
mesophotic soft corals (Kruskal-Wallis: p = 0.138). Particles released by scleractinian
corals presented a higher POC:PN ratio (between 11.9 and 16.6) compared to those of soft
corals (between 4.9 and 7.5) (Figure 25b, Kruskal-Wallis: p < 0.001). While there was no
N2 fixation in the incubation water containing all soft coral species sampled in shallow or
mesophotic environments, a significant fixation was observed in the incubation water of
all four scleractinian species (Figure 26a, b). Fixation rates ranged from 34to 211 ng N L°
! over the 24 h incubation, or between 6 and 135 10 ng N mg DW! h'! when expressed

per coral biomass. For both normalizations, rates were significantly different between
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species (ANOVA: p =0.003 and p = 0.002, respectively) and morphologies (branching vs
mounding, ANOVA: p < 0.001) with higher rates obtained for A. eurystoma and P.
damicornis. Significant assimilation of DDN was observed in the host tissue and
zooxanthellae of scleractinian corals, but not for the soft coral species from either shallow
or mesophotic environments (Figure 26¢). The DDN assimilation in host tissue was equal
or higher than the assimilation in the zooxanthellae fraction. Moreover, an inverse trend
was observed between N2 fixation occurring in incubation water and DDN assimilated by

the whole symbiotic association (Figure 26d).
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Figure 25. POC (a) and POC:PN ratio (b) measured in the incubation water of corals.
POC = Particulate Organic Carbon; PN = Particulate Nitrogen. DW = dry weight. Asterisks
indicate a significant difference between the two groups (scleractinian vs soft corals, p <
0.001). From left to right: Acr. = Acropora cervicornis, Cyn. = Cynarina sp., Gon. =
Goniastrea sp., Poc. = Pocillopora damicornis, Den. = Dendronephthya sp., Lit.
Litophyton sp., Rhy. = Rhytisma fulvum fulvum.

84



250.00 a a 0.151 =
¢ 20000 g _
® & I
o -
£ 5 150.00 2 % 0.10
g 2
£z i2
= g 100.00 b Sz 0.05
=2 o .
g 5 &
X 50.00 b g
> | = z b
0.00 n.d n.d n.d = 0.00. = n.d nd nd
' Acr. Cyn. Gon. Poc. Den. Lit. Rhy. - Acr. Cyn. Gon. Poc. Den. Lit. Rhy.
c d
a
T ()]
a 2 Mounding corals
W
, 080 T 2 060"
2 5T
% N l ] = = Acr.
Sk 0.40. - Fraction = o 0404 > Cyn.
c 3 ab [ Coral host 2 2 * Gon.
£ED T mz o * Poc
= - ooxanthellae == .
S Eo 020-
8 E J_ 2
0w =
EZ 0.20] S
2E > 5 000 Branching corals
E 0.00 0.05 0.10 0.15
o 0.00] n.d nd _nd N, fixation rates in seawater
Acr. Cyn. Gon.  Poc. Den. Lit. Rhy. (ng N mg'DW h)

Figure 26. N fixation in seawater (a,b), assimilation in coral tissues (c), and relationship between the two (d). The white line indicates N>
fixation rate occurring in 120 um-filtered seawater incubated without corals. Error bars indicate standard error. n.d. = not detected. DDN =
diazotrophically-derived nitrogen. DW = dry weight. From left to right: Acr. = Acropora cervicornis, Cyn. = Cynarina sp., Gon. = Goniastrea sp.,
Poc. = Pocillopora damicornis, Den. = Dendronephthya sp., Lit. = Litophyton sp., Rhy. = Rhytisma fulvum fulvum.
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4.4 Discussion

4.4.1 Divergent capacity of coral mucus to enrich seawater with DDN

This study first highlights contrasting capacities of scleractinian and soft corals to
promote N fixation in seawater. Freshly fixed N2 was traced in the incubation water containing
scleractinian coral species, while no fixation in the seawater occurred in presence of soft corals.
A previous study, which has used the ARA method has also recorded much lower rates of gross
N> fixation in the presence of soft compared to scleractinian corals (Bednarz et al. 2015). A
difference in the quality and/or quantity of mucus (particulate and dissolved organic carbon,
POC and DOC) released by the two coral groups as observed here, together with a different
amount of mucus-associated bacteria most likely explain differences in seawater diazotroph
abundance or activity. While the sugar composition of the mucus can be similar between soft
and scleractinian corals (Meikle et al. 1988; Hadaidi et al. 2019), both the amount and POC:PN
content of mucus is often species-dependent (Naumann et al. 2010; Hadaidi et al. 2019).
Pogoreutz et al. (2017) highlighted that DOC enrichment, in the form of sugars, can
significantly stimulate diazotrophic N> fixation. In our study, scleractinian corals released
between 1.9 and 8.9 mg POC m h, which is in the range of what has been reported for Red
Sea scleractinian corals (between 0.3 to 6.5 mg POC m? h'!) by Naumann et al. (2010). Soft
corals however released POC at two- to ten-fold lower rates. This is in agreement with previous
measurements performed on another Red Sea soft coral belonging to the Xeniidae family, for
which no POC release was observed (Bednarz et al. 2012). As POC is a proxy for detrital and
living particles, the lower particle content in the soft coral surrounding seawater can be
explained by the well-known antimicrobial properties of soft coral mucus (Kelman et al. 2006;
Nakajima et al. 2018). These authors indeed demonstrated that little antimicrobial activity was
measured for scleractinian coral mucus whereas soft corals, including those studied in this
work, significantly inhibited the growth of co-occurring seawater bacteria through the
production of antibiotic compounds. Hence, scleractinian corals release mucus with a large
number of bacteria into the surrounding seawater that can influence the activity and diversity
of planktonic diazotroph populations. This feature may be greatly reduced in soft corals, as their
high antimicrobial activity constitutes a defense strategy against invading pathogens and
fouling organisms for the holobiont, thus possibly assisting in competition over space and
nutrition (Kelman et al. 2009). Finally, the organic matter (OM) released by soft corals

presented a particularly low POC:PN content (of 5 to 7, i.e. particles enriched in N) compared
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to the OM released by scleractinian corals (from 12 to 17 in this study; range in agreement
with Naumann et al., 2010). This is also in agreement with the findings of two previous studies
(Meikle et al. 1988; Nakajima et al. 2018), which observed a higher protein and lower
carbohydrate composition of soft coral mucus compared to scleractinian coral mucus. Since N2
fixation is rather promoted by N deprivation (Knapp 2012), a low POC:PN ratio is not in favour
of N> fixation. Put together, our results suggest that the lack of N> fixation in seawater
surrounding soft corals is potentially due to the antimicrobial properties of soft coral mucus and
the N repletion of the released particles. On the contrary to soft corals, seawater N fixation was
recorded in presence of scleractinian corals. Measured rates (0.01-0.13 ng N mg™* DW h! or
0.03 nmol N cm? h or 2 to 15 nmol N L* d!) are however significantly lower than those
recorded for other benthic substrates such as sediment, sands or microbial mats (reviewed in
Benavides et al., 2017). Nevertheless, they are in the same range as those previously measured
with seawater diazotrophs of the Great Barrier Reef (from 5to 70 nmol N L d, Messer et al.,
2017).

4.4.2 Divergent capacity of corals to assimilate DDN

Our results demonstrate that all investigated scleractinian species assimilated DDN,
since ®N enrichment was observed in both host tissue and symbionts. In contrast, no **N
enrichment of soft coral tissue was detected either in corals collected from shallow or
mesophotic reefs. The fact that even mesophotic soft coral colonies did not assimilate DDN
stands in contrast to the scleractinian species S. pistillata, which shows higher assimilation rates
in deep compared to shallow waters (Bednarz et al. 2017). Here, DDN assimilation rates of
scleractinian corals (ca. 0.3 to 1 ng cm? h™ or 0.6 to 1.7 nmol cm™ d*) are in agreement with
those measured for the species S. pistillata sampled in shallow waters of the Red Sea or the
Great Barrier Reef (Bednarz et al. 2017; Lesser et al. 2018). However, they were 6 to 10 times
lower than those measured for corals depending more on heterotrophy, such as bleached corals
or those living in mesophotic and temperate environments (Bednarz et al. 2017, 2019). These
observations suggest that the contribution of DDN to the N requirements of corals increases
during nutrient deprivation, or when the uptake of other inorganic N forms by dinoflagellate
symbionts is reduced (Bednarz et al. 2019). The inverse trend observed in this study between
seawater N> fixation and DDN assimilation rates in corals suggests that a substantial part of the

DDN assimilated by corals is obtained from heterotrophic feeding on fixed N compounds
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and/or from diazotrophic cells growing in the mucus layer (Bednarz et al. 2017). Therefore, the
lack of N> fixation in the surrounding seawater of soft corals (highlighting the absence of active
diazotrophs in their mucus) may also explain why we did not detect any DDN assimilation by
shallow and mesophotic soft corals. Furthermore, coral polyps with a mounding morphology
show generally higher heterotrophic feedings rates as compared to those with a branching
morphology (Palardy et al. 2005). This corresponds to the higher DDN assimilation rates
observed for Cynarina sp. and Goniastrea sp. (mounding morphology) as compared to A.
cervicornis and P. damicornis (branching morphology). Corals can receive DDN not only from
mucus-associated but also from pelagic diazotrophs (Camps et al. 2016). In our experiment on
C. watsonii cells, both corals assimilated DDN (i.e. in the form of N fixing C. watsonii cells
or DDN compounds released by C. watsonii cells) from the surrounding seawater with rates
similar to those observed for our corals from the Red Sea. Moreover, Sarcophyton sp.
assimilated more DDN in the high versus the low C. watsonii concentration suggesting that the
assimilation capacity of this species was not saturated even under simulated bloom conditions.
This indeed indicates that soft corals also have the capacity to assimilate diazotrophs/DDN from
the seawater. Thus, the lack in DDN assimilation by Red Sea soft corals sampled in the field,
including the Symbiodiniaceae-free and heterotrophic genus Dendronephthya sp., is likely not
due to a lower heterotrophy as compared to scleractinian corals, but rather linked to the absence
of active diazotrophs in the soft coral mucus. For example, strains of putative diazotrophs
(Vibrio campbellii and Vibrio parahaemolyticus; Chimetto et al., 2008) have been isolated from
Dendronephthya sp. (Harder et al. 2003). We therefore hypothesize that even if diazotrophs can
be present, the mucus of soft corals does not represent a favorable habitat for diazotrophic
activity. Moreover, non-negligible DDN assimilation rates have been detected in the skeleton
of scleractinian corals due to the activity of endolithic diazotrophs (Sangsawang et al. 2017;
Bednarz et al. 2019). Such contribution to the total N budget of the holobiont cannot be
observed in soft corals as they lack a calcium carbonate skeleton. In situ experiments remain to
be investigated to assess whether soft corals benefit from any other external source of N on

reefs that could enhance their opportunistic life history features.
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4.5 Conclusion

It is widely accepted that N is one of the most limiting nutrients for reef primary
productivity (Eyre et al. 2008), and that benthic N2 fixation plays an important role in supplying
bioavailable N within benthic and pelagic reef habitats (Cardini et al. 2016; Messer et al. 2017).
The surface structure of benthic organisms and substrates provides an important habitat for the
colonization by diazotrophs, but the abundance, composition and activity of the diazotrophic
community may depend on the type of organism/substrate. Here, we suggest that soft coral
mucus represents likely a less favorable habitat for microbes as compared to scleractinian coral
mucus due to its relatively low C but high N content along with antimicrobial properties. The
resulting different capacity of scleractinian and soft corals to promote active diazotroph
populations and N2 fixation in reef waters may have several implications for N availability and
reef biogeochemistry in the future. Particularly coral reefs that have experienced phase shifts
from hard to soft coral dominance (Stobart et al. 2005; Norstrom et al. 2009; Pratchett 2010;
Inoue et al. 2013) may suffer from a significant decrease in N2 fixation and subsequent N
limitation. This may ultimately affect primary production, carbon sequestration and the

functioning of coral reef ecosystems and could be an interesting topic for future studies.
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Abstract

Symbioses between marine organisms and photosynthetic dinoflagellates of the family
Symbiodiniaceae are vital for reef ecosystems. Coral holobionts are able to grow and survive
in oligotrophic environments through the efficient uptake, conservation and recycling of
nutrients. Nitrogen (N) is one essential nutrient for coral holobiont functioning but nitrogen
availability is often low in reef waters. Recent studies have advanced our understanding of
nitrogen cycling in scleractinian corals but the nutrient metabolism of other major benthic
organisms on reefs still needs to be addressed. For example, the capacity of soft corals to
assimilate dissolved nitrogen at the organism level remains unexplored. Here, using stable
isotope labeling, we performed a multi-species comparison to investigate dissolved nitrogen
(i.e. ammonium, nitrate, and free amino acids) assimilation in several species of soft and
scleractinian corals sampled in the Red Sea (Eilat, Israel) at two different depths (8-10 m and
40-50 m depth). The main result shows that for all nitrogen sources, scleractinian corals
exhibited higher assimilation rates per tissue biomass than soft corals (up to ten fold), despite
harboring the same genera of Symbiodiniaceae in similar densities. Soft corals may thus
complement their low acquisition of DN by the acquisition of other N forms, thereby rather
relying on heterotrophic feeding to meet their N requirements. This finding highlights a very

different acquisition of N between the soft and scleractinan-dinoflagellate associations. Such
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contrasting capacities to take advantage of this nutrient source can help in understanding how

soft and scleractinian corals cope with different nutrient loads.

4.6 Introduction

Nitrogen (N) is essential for the life of all organisms on Earth, as it is required for the
biosynthesis of key cellular components. However, N concentrations are low in many marine
ecosystems such as coral reefs, with the most abundant N form, dinitrogen gas (N2), being only
available to nitrogen-fixing microorganisms. N is therefore a growth-limiting nutrient for most
organisms living in oligotrophic environments. Animals are only able to assimilate particulate
and dissolved organic N (DON), such as free amino acids (DFAA) and urea, whereas algae and
microorganisms can also assimilate the inorganic forms (DIN) such as nitrate (NO3") and
ammonium (NH4") (Muscatine et al. 1979). Consequently, many reef animals have evolved as
symbiotic meta-organisms (i.e. holobionts), in which the host is associated with microorganism
assemblages, in order to efficiently take up, conserve and recycle the few available nutrients.
Consequently, many reef animals have evolved as symbiotic metaorganisms (i.e., holobionts),
in which the host is associated with microalgae and/or nitrogen-fixing bacteria to survive in
their nutrient-poor environment.

Symbiotic corals are the most iconic reef holobionts. They are indeed associated with a
wide range of microorganisms such as diazotrophs and dinoflagellates of the family
Symbiodiniaceae (LaJeunesse et al. 2018). As a result, they can use almost all N forms available
in their surrounding environment, with the symbionts primarily assimilating DIN (Grover et al.
2002, 2003; Pernice et al. 2012), and the host DON (Grover et al. 2006, 2008). Therefore, when
corals bleach (i.e. loss of dinoflagellate symbionts due to environmental stress), they are
depleted of a major N source and their chances of recovery are partly determined by their ability
to restore the functions of their symbionts (Suggett et al. 2017). Assimilation of dissolved N
also depends on the environmental conditions to which the corals are exposed. For example,
elevated seawater temperatures, which reduce nutrient availability through water column
stratification (Behrenfeld et al. 2006), lessens the ability of the coral holobiont to take up DIN
(Godinot et al. 2011; Krueger et al. 2018). Finally, metabolic compatibility between coral hosts
and their algal symbionts also determine the nutritional performance of the coral holobiont
(Leal et al. 2015; Pernice et al. 2015). Overall, the nutritional status of corals and their capacity
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to efficiently exploit nutrients from the surrounding environment are major functional traits
influencing their distribution and abundance in a given environment.

However, the nutritional ecology of coral-dinoflagellate symbioses, regarding their N
metabolism, has most exclusively concerned few species of hard corals, as they are the main
reef builders (Muscatine et al. 1989; Hoegh-Guldberg and Williamson 1999; Mills et al. 2004;
Baker et al. 2013b; Ezzat et al. 2017). Other major benthic reef organisms such as soft corals
have been overlooked (qualitative assimilation of NH4" in Lobophyton sp., Burris 1983); uptake
of DFAA by Heteroxenia fuscescens, Schlichter 1982b). This lack of data, together with
different normalization metrics between the two coral groups prevent any predictions on the
nutritional conditions that favour the growth of either hard or soft corals. Soft corals have
however been observed in higher abundance in areas with high concentrations of dissolved
inorganic nutrients (Baum et al. 2016). This observation suggests that they might have a
different nutrient metabolism than hard corals, or a different nutritional relationship with their
symbionts, but these hypotheses remain to be investigated. Therefore, this study assessed
dissolved N assimilation (i.e. NH4", NOs", and DFAA) in soft corals, addressed which forms
present the highest assimilation rates, and compared assimilation rates of soft and hard corals.
For this purpose, a multi-species comparison was performed using the *°N stable isotope tracer
to follow N incorporation into the tissues of several soft and hard corals sampled in shallow
and upper mesophotic reefs of the Red Sea. This study thus allows a better understanding of

the functional ecology of both soft and hard corals.

4.7 Material and methods

4.7.1 Biological material

The study was conducted at the Inter-University Institute (IUI) for Marine Sciences (Eilat,
Israel) in November 2018. The experiment was performed with 3 species of hard corals
(Galaxea fascicularis, Stylophora pistillata and Seriatopora hystrix) and 3 species of soft corals
(Litophyton arboreum, Rhytisma fulvum fulvum and Sarcophyton sp.). Coral fragments were
collected by SCUBA diving on the shallow (8-10 m depth) and mesophotic (40-50 m depth)
reefs adjacent to the IUI. Temperature and nutrient levels at the time of sampling were not
different between the shallow and mesophotic reefs. Temperature ranged from 24.7 to 25.4°C
during the length of the experiment. Nitrate concentrations ranged from 0.17 to 0.25 uM,

whereas dissolved inorganic phosphorus and ammonium were below 0.2 uM (data obtained
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from the National Monitoring Program of the Gulf of Eilat (http://www.iui-

eilat.ac.il/Research/NMPMeteoData.aspx). The genus of the symbionts hosted by the corals

was investigated following the protocol of Santos et al. (2002), using chloroplastic ribosomal
deoxyribonucleic acid sequences.

To assess the assimilation rates of N under natural living conditions, twenty nubbins per
coral species were collected from different colonies at the shallow and mesophotic depths
(except for L. arboreum which was only found in shallow waters). Five nubbins were
immediately frozen for the determination of Symbiodiniaceae genus and natural isotopic
abundance, while the others were brought back to the Red Sea Simulator facility (described in
Bellworthy and Fine 2018) to recover for one week prior to starting the incubations with the
15N stable isotope tracers (see below). For this purpose, nubbins were allocated to 12 outdoor
aquaria (one per species and depth), which were continuously supplied with seawater directly
pumped from the reef. Corals were maintained under the natural light cycle at levels
corresponding to their in situ depth (ca. 450 and 30 umole photons m s at midday, for shallow
and mesophotic environments respectively). These levels were adjusted using mesh clothes.

In addition to the conditions described above, 3 additional aquaria were prepared, each
containing 5 nubbins per species of soft corals collected from the shallow reef (5 m). Aquaria
were maintained under the exact same conditions as above, except that temperature was
gradually increased (+ 0.5°C per day) up to 30°C (+5°C than the control condition). Corals
were kept at this higher temperature for one week prior to the incubations with °N tracers, run

at the same time as the other incubations.

4.7.2 Incubations

5N stable isotope tracers were used to assess the assimilation rates of dissolved
inorganic and organic N sources by hard and soft corals. To this end, 15 L of 0.45 pum-filtered
seawater were enriched with either ®NH4Cl, NOsCl and ®N-DFAA (all at 98 atom %®N,
Sigma-Aldrich, St-Louis, USA) to reach a final N concentration of 3 pM. Five 200 mL beakers
were prepared per species, depth and N compound and entirely filled with the °N-enriched
solution. Incubations were performed in the Red Sea simulator under the natural irradiance of
shallow and mesophotic depths. Corals were incubated at 25°C or at 30°C for five hours,

between 11:00 am and 04:00 pm to cover the maximal daily irradiance. At the end of the

93


http://www.iui-eilat.ac.il/Research/NMPMeteoData.aspx
http://www.iui-eilat.ac.il/Research/NMPMeteoData.aspx

incubations, coral nubbins were rinsed in 0.2 um-filtered seawater (FSW) and frozen at -80°C

until further analysis.

4.7.3 Samples processing

Soft coral samples were processed as described in Pupier et al. (2018). Briefly, they
were freeze-dried, weighed and crushed into powder. For hard corals, the tissue was first
removed from the skeleton using an air-brush and homogenized with a Potter-Elvehjem tissue
grinder, before being freeze-dried, weighed and crushed into powder. The skeleton was kept
for the determination of the skeletal surface area using the wax dipping technique (Veal et al.
2010). A fraction of the powder (i.e. ca. 30 mg) was used for the determination of the ash-free
dry weight (AFDW) as described below and the remaining tissue was homogenized in 10 mL
distilled water with a Potter-Elvehjem tissue grinder. The host and symbiont fractions of each
sample were separated through a series of centrifugations (Grover et al. 2003). The symbiont
pellet was re-dissolved in 10 mL distilled water. A 500 pL subsample was used for the
determination of algal symbiont density via haemocytometer counts (Neubauer-improved
haemocytometer, Marienfeld, Germany) using a light microscope. In addition, a 2.5 mL
subsample from the symbiont fraction was used for the determination of the chlorophyll
concentration according to Jeffrey and Humphrey (1975), using a spectrophotometer (SAFAS,
Monaco). The remaining fractions of the host and symbionts were subsequently freeze-dried
and weighed. Approximately 500 pg of host and symbiont powder were transferred in tin caps
for analysis of the °N enrichment, N content and the natural 5™°N signatures using a mass
spectrometer (Delta Plus, Thermo Fisher Scientific, Germany) coupled to a C/N analyzer (Flash
EA, Thermo Fisher Scientific, Germany). The total amount of N assimilated in each
compartment was then determined using the modified equations of Dugdale and Wilkerson
(1986) according to Grover et al. (2002, 2003, 2008). These equations compare the N
enrichment obtained in the incubations with **N with the natural isotopic values of control
corals, sampled at the beginning of the experiment.

All data were normalized to the AFDW of the nubbins, which was used as a proxy for
biomass. The subsample used for the determination of the AFDW was first weighed, and then
combusted at 450°C for 4 h in a muffle furnace (Thermolyne 62700, Thermo Fischer Scientific,
the United States). AFDW was determined as the difference between the dry weight and ash

weight of the subsample and extrapolated to the total weight of the nubbin. AFDW was chosen
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for normalization because the surface area of soft corals cannot be accurately determined, as
besides polyp expansion, their fleshy body can extend or retract extensively depending on
environmental conditions (e.g., Fabricius and Klumpp 1995). Moreover, since N is assimilated
into coral biomass, it is therefore more relevant to estimate the assimilation rates per biomass.
This is in agreement with the observations of Edmunds and Gates (2002), who also concluded
that normalizing data to biomass is most effective in accounting for coral size in comparative

studies.

4.7.4 Statistical analyses

Analyses were performed using the R environment for statistical computing and
graphics (R Core Team, 2017 Generalized linear models were used to test: 1) the effect of
species, depth and N source on the assimilation rates of N by the host or the dinoflagellate
fractions at 25°C, 2) the effect of species, temperature and N source on the assimilation rates
of N by the host or dinoflagellate fractions in shallow soft corals, and 3) the effect of species
and depth on tissue descriptors. We did not differentiate between the three N sources tissue
descriptor data, as we assumed that the incubation time and N concentration used here would
not affect symbiont density and chlorophyll concentration (Hoegh-Guldberg 1994), and the N
assimilated represented less than 0.5% of the total N content. Generalized linear models (family
= Gaussian) were fitted on data transformed using the Box-Cox transformation procedure ((x*
H/x, Appendix 111 - Table S6) as implemented in the R-package MASS (Venables and Ripley,
2002). Compliance with the assumptions of a normal distribution of the model residuals and
homoscedasticity was verified using, respectively, the Shapiro-Wilk test and Levene’s test as
implemented in the R-package car (Fox and Weisberg, 2019). The emmeans package (Lenth et
al. 2020) was used to calculate estimated marginal means and compute biologically relevant
contrasts (i.e. between depths for each species and between species for each depth). The
Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was used for multiplicity

adjustments of p-values.

4.8 Results

For clarity, the results of the statistical treatments are reported in Appendix Il (Table

S7) only. Shallow nubbins of L. arboreum and S. pistillata harbored Symbiodinium sp.
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(formerly clade A), while nubbins from all other species and depths were associated with
Cladocopium sp. (formerly clade C). Symbiodiniaceae densities per tissue biomass (Figure 27)
were overall similar between hard and soft corals. They were significantly different between
depths only for G. fascicularis, S. hystrix (lower at mesophotic depth) and R. f. fulvum (higher
at mesophotic depth). Total chlorophyll concentration per tissue biomass was significantly
higher in R. f. fulvum at shallow depth, compared to the other species (Appendix Il -Figure
S2a). Mesophotic colonies presented a higher chlorophyll concentration per biomass than
shallow colonies in S. hystrix and S. pistillata (Appendix 111 -Figure S2a). At shallow depth, R.
f. fulvum and Sarcophyton sp. contained higher chlorophyll concentrations per symbiont cell
than hard corals (Appendix Il - Figure S2b). All hard coral species, as well as Sarcophyton sp,
showed significant higher concentrations in chlorophyll at the mesophotic depth as compared
to shallow (Appendix Il - Figure S2b).
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Figure 27. Symbiodiniaceae density in the species investigated. The first three species
(Galaxea fascicularis, Seriatopora hystrix, Stylophora pistillata) are hard corals and the last
three (Litophyton arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.) are soft corals.
Significant differences between depths are displayed with an asterisk. Significant differences
between species are distinguished with letters by depth. AFDW = ash-free dry weight. ns = not
sampled.
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Concerning the elemental composition of the host tissue, the C:N ratios increased from
ca. 5 in scleractinian corals and L. arboreum from shallow and mesophotic depths to ca. 8 in
shallow and mesophotic Sarcophyton sp, and to more than 15 in R. fulvum fulvum (Figure 28a).
Such C:N increase in the last two species was explained by a higher C content rather than a
lower N content, which was not different between species (Figure 28b). The C:N ratio
decreased with depth in G. fascicularis and S. hystrix. Again, these changes were not entirely
due to changes in the N content of the coral tissue, which increased in S. hystrix only. The
Symbiodiniaceae fraction presented variable C:N ratios (Figure 29a), which were however
higher in shallow colonies of R. f. fulvum, due to a lower N content compared to the other corals
(Figure 29b). Overall, the C:N ratios increased with depth except in R. f. fulvum, due to a
decrease in N content.
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Figure 28. Elemental composition of the host tissue in the species investigated. (a) C:N
ratio. (b) N content. The first three species (Galaxea fascicularis, Seriatopora hystrix,
Stylophora pistillata) are hard corals and the last three (Litophyton arboreum, Rhytisma fulvum
fulvum, Sarcophyton sp.) are soft corals. Significant differences between depths are displayed
with an asterisk. Significant differences between species are distinguished with letters by depth.
AFDW = ash-free dry weight. ns = not sampled.
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Figure 29. Elemental composition of the Symbiodiniaceae fraction in the species
investigated. (a) C:N ratio. (b) N content. The first three species (Galaxea fascicularis,
Seriatopora hystrix, Stylophora pistillata) are hard corals and the last three (Litophyton
arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.) are soft corals. Significant differences
between depths are displayed with an asterisk. Significant differences between species are
distinguished with letters by depth. AFDW = ash-free dry weight. ns = not sampled.
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The assimilation of N per tissue biomass in the host is ca. ten-fold higher in hard
compared to soft corals for all investigated N sources (Figure 30). At each depth, scleractinian
species had similar assimilation rates of NHs4, NO3 and DFAA into host tissue, except G.
fasicularis, which had higher NO3 assimilation compared to the other species at shallow depth
(Table S2, Figure 30a). Rates of DFAA assimilation into host tissue were consistently higher
at mesophotic compared to shallow depth (Figure 30a and Appendix Il - Table S7). The same
depth effect was observed on the rates of NO3 assimilation into the host tissue of S. hystrix and
S. pistillata. No effect of depth was observed for NH4 assimilation rates. Finally, NH4 was
assimilated at higher rates than the other N sources in shallow hard corals, whereas there was
no difference in assimilation rates between sources in mesophotic colonies (Appendix Il -
Table S7). Concerning the soft coral species, and at each depth, NHs and DFAA assimilation
rates were significantly lower in Sarcophyton sp. than in the two other species, while NOs
assimilation rates were higher in R. fulvum fulvum (Figure 30b and Appendix Il - Table S7).
There was no difference in the assimilation rates of NH4, NO3z and DFAA between shallow and
mesophotic soft corals, except for NOs assimilation rate in R. fulvum fulvum, which was higher
at mesophotic depth (Appendix Il - Table S7). Soft corals assimilated NH4 at higher rates at
both depths, as compared to NOs and DFAA (Figure 30b).

Assimilation rates in algal symbionts were also overall higher in hard compared to soft
corals, with the following exceptions (Figure 31): symbionts of shallow colonies of L. arboreum
and mesophotic colonies of R. f. fulvum had similar NH4 assimilation rates than symbionts of
G. fascicularis at the corresponding depths. DFAA assimilation rates were not different
between the symbionts of shallow colonies of L. arboreum, S. pistillata and G. fascicularis.
Mesophotic depth decreased the assimilation rates of NH4 and NOs in Sarcophyton sp, as well
as NOs in R. fulvum fulvum. However, it increased DFAA assimilation in R. fulvum fulvum.
There was no preferential assimilation of a nitrogen source by the symbionts of soft corals.

After exposing shallow soft corals to +5°C during one week (Figure 32), we observed,
at 30°C, higher assimilation rates of NH4 in the host tissue and symbionts of R. f. fulvum as well
as in the host tissue of L. arboreum. Assimilation rates of NO3z were enhanced in the host tissue
and symbionts of R. f. fulvum while assimilation rates of DFAA were higher in both the host
tissue and symbionts of R. f. fulvum and Sarcophyton sp. at 30°C. At both 25°C and 30°C,
Sarcophyton sp. assimilated NH4 (both host and symbiont fractions) and DFAA (host fraction)
at lower rates than the other species. Assimilation rates of NOz were significantly higher in R.

f. fulvum at the two temperatures (both fractions) and the assimilation of DFAA was higher in
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L. arboreum (symbiont fraction). NH4 remained the source assimilated at the highest rate at
30°C in all host fractions (Appendix Il - Table S7).
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Figure 30. Assimilation rates of dissolved N in the host tissue in (a) hard corals (Galaxea
fascicularis, Seriatopora hystrix, Stylophora pistillata) and (b) soft corals (Litophyton
arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.). Significant differences between
depths are displayed with an asterisk. Since there was no similar assimilation rates between
hard and soft corals, A shows the species that differentiate from the other two within its group
(i.e. either hard or soft corals, for a single N source). AFDW = ash-free dry weight. DFAA =
dissolved free amino acids. ns = not sampled.
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Figure 31. Assimilation rates of dissolved N in the Symbiodiniaceae fraction in (a) hard
corals (Galaxea fascicularis, Seriatopora hystrix, Stylophora pistillata) and (b) soft corals
(Litophyton arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.). Significant differences
between depths are displayed with an asterisk. Significant differences between species are
distinguished with letters by depth. Blue bold letters highlight a similar rate between hard and
soft coral species. AFDW = ash-free dry weight. ns = not sampled. DFAA = dissolved free
amino acids. ns = not sampled.
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Figure 32. Assimilation rates of dissolved N in shallow soft corals exposed at two
temperatures. (a) gathers rates related to the host tissue and (b) to the Symbiodiniaceae
fraction. (Litophyton arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.). Significant
differences between temperatures are displayed with an asterisk. A shows the species that
differentiate from the other two within its group (i.e. either host or Symbiodiniaceae fraction,
for a single N source). AFDW = ash-free dry weight. DFAA = dissolved free amino acids. ns

= not sampled.
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4.9 Discussion

N availability is a major factor determining coral growth and productivity, and its
acquisition is thus among one of the major processes affecting coral fitness (Radecker et al.
2015). Therefore, the capacity of different coral species to efficiently exploit nutrients from the
surrounding environment, or compete for nutrients with other species, can explain coral
distribution and response to environmental stress. We thus compared the assimilation rates of
different forms of N in soft and hard corals, sampled at shallow and mesophotic depths, in order
to better understand their ecological strategies and the conditions favouring their growth. This
study first highlights a different capacity of soft and hard corals to assimilate dissolved N forms.
The lower assimilation rates per unit biomass observed in soft corals are likely due to divergent
nutritional strategies, along with different morphological traits. In addition, we observed, for
most but not all species, an increased assimilation of N with increasing depth or seawater

temperature.

4.9.1 Differences in N assimilation between soft and hard corals

This study first highlights ten-fold lower rates of DIN and DON assimilation per unit
biomass in soft compared to hard corals, whose uptake rates are comparable to previous studies
(Figure 30, Figure 31, Figure 33, Appendix Il — Figure S2; Grover et al. 2002; Pernice et al.
2012; Ezzat et al. 2017). These lower assimilation rates of DIN/DON in soft corals suggest that
they have lower needs in these N sources for tissue growth or alternatively, lower uptake
capacities than hard corals, due to differences in Symbiodiniaceae characteristics. Uptake rates
of dissolved nutrients have been linked to the Symbiodiniaceae densities in host tissue, or
Symbiodiniaceae species, some being less efficient than others in nutrient acquisition (Baker et
al. 2013a; Ezzat et al. 2017). In our study, however, the genus and density of Symbiodiniaceae
were similar between the soft and hard corals investigated and can thus not explain the
differences observed in N assimilation rates.

The similar N contents per unit biomass in soft and hard corals (Figure 28) do not
support lower N needs in soft corals. Therefore, a different nutritional strategy of the soft and
hard corals is the most likely explanation for the lower assimilation of DN by soft corals. Since
N> fixation does not occur in many soft corals (Pupier et al. 2019a), they should likely rely on

the heterotrophic feeding on particulate organic matter (POM) to meet their N requirements
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(Fabricius and Dommisse 2000). Soft corals, and octocorals in general, are known to capture
high amounts of phyto- and zooplankton, as well as other forms of POM suspended in the
surrounding seawater (Sebens and Koehl 1984; Fabricius et al. 19953, b, 1998; Fabricius and
Dommisse 2000; Migné and Davoult 2002). Ingestion of diatoms has also been observed in soft
coral species such as Sinularia flexibilis (Piccinetti et al. 2016).

Several morphological and metabolic characteristics can contribute to higher N
assimilation rates in hard corals compared to soft corals. For example, photosynthesis of hard
corals living in shallow waters is higher than the one of soft corals (e.g., Fabricius and Klumpp
1995). As N uptake is proportional to symbiont’s photosynthetic activity (e.g., Grover et al.
2002), the higher photosynthesis of hard corals can explain their higher rates of N assimilation.
In addition, soft corals are primarily characterized by the absence of a calcium carbonate
skeleton and only possess sclerites as calcified structures (Fabricius and Alderslade 2001). In
hard corals, the deposition of a hard skeleton (calcification) generates protons that have to be
neutralized to avoid tissue acidification (Comeau et al. 2012). Crossland and Barnes (1974) but
also Bisceré et al. (2018), suggested that ammonia may be involved in proton neutralization,
through the ornithine cycle and urea production, therefore possibly promoting the uptake of
DIN by the holobiont. Moreover, coral skeletons harbor endolithic communities, which can
assimilate nitrogenous compounds and translocate them back to the coral host (see review by
Pernice et al. 2019). Finally, soft corals comprise a large coenenchyme mostly constituted of
mesoglea, which includes collagen fibers, sclerites and free amoeboid cells (Helman et al. 2008;
Orgel etal. 2017). Although they have a large gastrovascular system allowing efficient transport
of metabolites within the colony (Gatefio et al. 1998), several experiments on sea anemones
suggested that the mesoglea can represent a significant barrier to transepithelial diffusion of
molecules (oxygen in Bradfield and Chapman 1983); bicarbonate in Furla et al. 1998). The
expansion state, together with the low surface area to body volume ratio, usually found for soft
corals exhibiting fleshy and massive morphologies, are also not in favor of exchanges through
the epidermal tissue (Kirschner 1991; Shick 1991; Fabricius and Klumpp 1995).
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4.9.2 Effect of the N form, depth and seawater temperature on N

assimilation rates

The higher assimilation rates of NHa, over the other N forms, in both hard and soft corals
sampled in shallow waters is in agreement with previous studies (Grover et al. 2002, 2003,
2008). As NH; assimilation does not involve a redox reaction, it requires less energy than the
assimilation of NOs. As NHa is also a smaller molecule compared to DFAA, and can be
absorbed more easily, it is likely the preferred dissolved N source. At mesophotic depths,
however, the increased needs in N with depth (see below) caused corals to assimilate all
available forms of N in seawater equally.

Both soft and hard corals increased either their chlorophyll content per unit biomass or
per symbiont cell, which is a likely a strategy to increase the capture of light energy (Kahng et
al. 2019) for acclimation to the lower light levels at mesophotic depth. Depth had however a
different effect on the assimilation rates of DN and the tissue N content of hard and soft corals.
In hard corals, the overall assimilation rates of N in host tissue (especially DFAA, and NO3),
were enhanced at mesophotic depth. This finding is in contrast with previous observations that
light stimulates N uptake and assimilation (Grover et al. 2002). Such discrepancy may be due
to the fact that previous measurements of assimilation rates were normalized to surface area
whereas our data is normalized to tissue biomass, which decreases with depth. The higher
assimilation of organic N (DFAA) corresponds with a reduced reliance on autotrophy due to
reducing light levels with increasing depth in mesophotic hard corals. Consequently, they may
rely more on heterotrophy (Williams et al. 2018), as well as obtain more N from diazotrophic
bacteria (Bednarz et al. 2018). Overall, the enhanced assimilation rates of N at mesophotic
depth suggest higher N needs in mesophotic colonies to sustain their metabolism, but this
hypothesis remains to be further investigated. In contrast to hard corals, there were consistent
assimilation rates of N throughout the depth gradient in soft corals, suggesting that low rates of
N supply may be sufficient for all basal requirements of soft corals. Increased temperatures,
however, tended to enhance the assimilation of N in both the host tissue and symbiont fractions
of soft corals, which is in agreement with a previous study performed on N assimilation rates
of S. pistillata at high temperature (29°C) (Godinot et al. 2011). Such increase in N assimilation

can be of a mechanistic nature, for example a thermal optimum reached for the enzymes
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involved in N assimilation. It could also be linked to an increased metabolism at high

temperature (Gillooly et al. 2001), but this hypothesis remains to be tested.

4.9.3 Conclusion

This study corroborates the dependency of soft corals on another N source than
dissolved compounds to meet their N requirements for tissue growth. This observation suggests
that soft corals rely primarily on heterotrophy, especially for species bearing polyps with low
surface area to volume ratios, which were shown to have lower photosynthetic rates and rely
less on autotrophy than polyps with high surface area to volume ratios (Baker et al. 2015; Rossi
et al. 2018). A higher reliance on heterotrophy can help soft corals to cope with higher turbidity
or sedimentation regimes, two conditions, which decrease the amount of light received by corals
(decreased autotrophy), but increase the amount of particles in suspension in seawater
(McClanahan and Obura 1997). Further, soft corals may benefit from lower DN assimilation
rates in areas with low water quality. Indeed, under excess N availability, symbionts can shift
from an N limited to a phosphorus-starved state (Wiedenmann et al. 2012), which then causes
the substitution of phospholipids with sulpholipids in the chloroplast thylakoid membranes.
Since phospholipids are essential to the stability of the membranes under heat-stress (Tchernov
et al. 2004), increased N availability may increase the bleaching susceptibility of corals
(Wiedenmann et al. 2012). In addition, it was shown that excess N can reduce photosynthate
translocation rates by Symbiodiniaceae (Ezzat et al. 2015), leading to the starvation of the coral
host. Since soft corals have low assimilation rates of N, it is unlikely that excess N enters the
tissue and disrupts the symbiosis. Soft corals have thus been shown to be more abundant than
hard corals in reefs, which suffer from high concentrations of dissolved inorganic nutrients
(Baum et al. 2016). Further studies investigating the N and phosphorus budget of soft versus
hard corals along a eutrophication gradient are needed to investigate how nutrients may explain
the ecological niches of these two coral groups.
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Abstract

Octocorals are important reef inhabitants, from the shallow to mesophotic depths and
beyond. However information regarding their nutritional ecology along the depth gradient is
limited, despite the fact that nutrient acquisition is a fundamental process explaining the health
condition and distribution of reef organisms. In particular, the contribution of the autotrophic
versus heterotrophic acquisition of nutrients in symbiotic soft corals is poorly known. Here, the
abundance of three lipid biomarkers, specific for autotrophy and heterotrophy, was investigated
in the tissue of four octocoral species and one scleractinian sampled in shallow and upper

mesophotic reefs of the oligotrophic Northern Red Sea. Our findings show functional

111



mixotrophy for all dinoflagellate-bearing species, with a significant input of heterotrophic
feeding on crustacean zooplankton at both depths. Although octocorals maintained similar
concentrations of autotrophic markers with increasing depth, the scleractinian species exhibited
a decrease in autotrophy with depth, in agreement with previous measurements of
photosynthetically-fixed carbon acquisition. The increase in heterotrophic capacity with depth
was species-specific, likely related to physiological and morphological characteristics. The
relatively high level of the heterotrophic marker in all symbiotic species in shallow conditions
does not corroborate the common idea that corals rely mostly on autotrophy in shallow waters.
This study thus highlights the importance of heterotrophy across the euphotic-upper mesophotic
depth gradient and brings major advances on our understanding of the ecological significance
of feeding for reef corals. Furthermore, it allows for a better understanding of the capacity of
different octocoral species to exploit nutrient resources and help improving predictions on the

impacts of climate and environmental changes on this important reef-dwelling taxon.

5.1 Introduction

Mixotrophs are some of the most widespread organisms on Earth (Selosse et al. 2016;
Stoecker et al. 2017) because their dietary flexibility often allows them to use both inorganic
and organic nutrients (Berge et al. 2017). This dual mode of feeding is particularly
advantageous in oligotrophic ecosystems with low concentrations of inorganic nutrients and
prey availability (Stoecker et al. 2017). Mixotrophic species can span from predominantly
autotrophic to predominantly heterotrophic (Rottberger et al. 2013), although it is often difficult
to disentangle the relative contributions of each feeding modes to the diet. Therefore, the trophic
ecology of mixotrophic species is still not fully understood.

Symbiotic corals are some of the most well-known mixotrophic organisms, because they
build the framework and form the basis of coral reefs, which are among the most productive
and biologically diverse ecosystems in the planet (Knowlton et al. 2010; Sheppard et al. 2017).
Corals display a tripartite trophic feeding strategy: (i) photoautotrophy performed by their
dinoflagellate endosymbionts (Symbiodiniaceae — see LaJeunesse et al. (LaJeunesse et al.
2018)) which translocate photosynthates to the coral host, (ii) heterotrophy by actively feeding
on plankton and suspended particles, and (iii) osmotrophy, which is a form of heterotrophy that
is based on the absorption of dissolved organic matter (Muscatine 1990; Sorokin 1991; Al-
Moghrabi et al. 1993; Ferrier-Pagés et al. 2003; Houlbréque and Ferrier-Pages 2009). Most
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studies on coral nutritional ecology have focused on the scleractinian (reef-building) coral
group. Symbiotic scleractinian corals living in shallow waters largely rely on the symbiont-
derived autotrophic supply of nutrients for most of their immediate metabolic needs (Muscatine
etal. 1984; Tremblay et al. 2014). These corals can however switch to a dominant heterotrophic
feeding mode whenever their autotrophic nutrition is impacted. For example, heterotrophy is
enhanced during bleaching (loss of the dinoflagellate symbionts — see Glynn 1993), or in deep
waters where zooplankton availability is higher and light levels are too low for effective
photosynthesis to occur (Muscatine et al. 1989; Hughes and Grottoli 2013; Tremblay et al.
2016). Therefore, heterotrophy is a key factor that contributes to the resistance and resilience
of corals to environmental stress. Independently of a stressful situation, a few studies have also
suggested that coral heterotrophy can be significant even when corals receive a large nutritional
input from their autotrophic symbionts (Radice et al. 2019), but this aspect remains to be further
investigated. Since nutrition is an important driver of coral population dynamics, further studies
are needed to quantify variation in coral nutrition in the field, both for scleractinians and other
important but understudied taxa, such as octocorals (soft corals).

Octocorals are important members of shallow and mesophotic coral reef communities
(Schubert et al. 2017; Benayahu et al. 2019) and create complex three-dimensional habitats for
other reef species (i.e. marine forests — see Rossi et al. 2017). Although some symbiotic
octocoral species have been reported as mixotrophic in shallow waters (Fabricius and Klumpp
1995), two recent studies performed on gorgonian octocorals have concluded that the extent of
autotrophy and heterotrophy depends on host morphology (e.g., colony shape and polyp size)
and symbiont specificity (Baker et al. 2015; Rossi et al. 2018). Therefore, octocorals may differ
from scleractinians in the extent to which they depend on heterotrophy for nutrition. These
differences remain however poorly defined, with a small number of studies dedicated to their
trophic ecology (but see Rossi et al. 2020). With natural and anthropogenic impacts on coral
reefs leading to the overall decline in scleractinian coral cover (Hoegh-Guldberg et al. 2007;
De’Ath et al. 2012; Hughes et al. 2018), octocorals may become one of the dominant reef taxa
in the next decades (Lasker et al. 2020). It is therefore urgent to understand the conditions that
favor octocoral growth and survivorship. In particular, their nutritional ecology may explain
their diversity and abundance in locations where those of scleractinian corals are lower
(Schubert et al. 2017).

Lipids such as fatty acids (FA) have been widely applied in marine food webs as markers
of predator-prey interactions. Since FA composition is often specific to particular groups of

organisms (Volkman 1986; Volkman et al. 1989) and animals are generally unable to produce
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all necessary FA (Dalsgaard et al. 2003; Ruess et al. 2005; Budge et al. 2006), their content in
coral tissue can give useful information on their autotrophic or heterotrophic origin. While
specific FA have been validated as tracers of the photosynthetic contribution of the symbionts,
such as stearidonic acid (SDA, 18:4®3) and docosapentaenoic acid (DPA, 22:5w3) (Papina et
al. 2003; Treignier et al. 2008; Imbs et al. 2014; Mies et al. 2017, 2018), other FA may be
specific to crustacean zooplankton and therefore heterotrophy, such as the cis-gondoic acid
(CGA, 20:1®9) (Dalsgaard et al. 2003; Dodds et al. 2009; Naumann et al. 2015; Mies et al.
2018).

In this study, we quantified autotrophy- (SDA, DPA) and heterotrophy-specific (CGA)
markers to investigate whether symbiotic octocorals of the upper mesophotic reefs (40-50 m)
of the Northern Red Sea rely more on heterotrophy than those living at shallow depths. For this
purpose, four octocoral species (Dendronephthya sp., Litophyton arboreum, Rhytisma fulvum
fulvum, and Sarcophyton sp.) and one scleractinian coral species (Stylophora pistillata) were
sampled. Our results shed light on the nutritional ecology of octocorals, which are one of the
less studied coral groups. In addition, because nutrition is an important factor involved in coral
resistance and resilience, studies on this subject may contribute to understanding coral reef

response to environmental changes.

5.2 Materials and methods

5.2.1 Collection and sampling procedures

Colonies of Dendronephthya sp. (a non-symbiotic species), L. arboreum, R. f. fulvum,
Sarcophyton sp. and S. pistillata (Figure 34) were sampled by scuba diving on the reef adjacent
to the Inter-University Institute for Marine Science (IUI) (29°51°N, 34°94°E), Gulf of Eilat,
Israel, in November 2018. Five nubbins of approximately 3 cm were collected from different
colonies for each of the five species. Samples were directly frozen at -80°C and freeze-dried
after one week. These procedures were performed at both shallow (8-10 m) and upper
mesophotic (40-50 m) sections of the reef.
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Figure 34. The five Red Sea coral species investigated for their nutritional ecology. From
left to right: the asymbiotic octocoral Dendronephthya sp. (photo credit: M. Boussion) and
symbiotic octocorals Litophyton arboreum (photo credit: G. Banc-Prandi), Rhytisma fulvum
fulvum (photo credit: C. Pupier) and Sarcophyton sp. (photo credit: C. Pupier), along with the
symbiotic scleractinian Stylophora pistillata (photo credit: E. Tambutté).

5.2.2 Laboratory experimental controls

Although SDA, DPA and CGA have been validated as precise and specific trophic
markers for corals and other marine taxa (Dalsgaard et al. 2003; Mies et al. 2017, 2018), four
controls were performed to further confirm their specificity, especially for octocorals: (i)
symbiont cells (isolated from S. pistillata grown in the laboratory), to confirm the presence of
SDA and DPA and the absence of CGA; (ii) S. pistillata and Sarcophyton sp. colonies,
originating from the Red Sea and grown in the laboratory, maintained in strict autotrophy to
confirm presence of SDA and DPA and, most importantly, absence of CGA, (iii) S. pistillata
and Sarcophyton sp. colonies fed with zooplankton (to confirm presence of CGA); and (iv) a
mixture of zooplankton to confirm the absence of SDA and DPA and the presence of CGA. For
this purpose, ten nubbins per species (S. pistillata and Sarcophyton sp.) were kept in 20-L tanks
for one month prior to starting the experiment. The tanks received a continuous supply of
oligotrophic seawater (< 0.5 pM dissolved inorganic nitrogen and < 0.2 pM inorganic
phosphate) at a flow rate of 20 L h™t. Water was mixed using mini-pumps (404 L h, Newa,
Loreggia, Italy). Seawater temperature was kept at 25°C with the use of submersible resistance
heaters (300 W Titanium, Schego, Offenbach, Germany) and light level was maintained at 200
umol photons m™2 st (12:12) using metal halide lamps (Philips, HPIT 400 W, Distrilamp,
Bossée, France). Nubbins were then separated in two groups, one unfed (i.e. strict autotrophy)
and the other fed (i.e. mixotrophy). Sarcophyton sp. was fed for two months with a mixture of
rotifers and copepods (Ocean Nutrition, San Diego, USA) three days a week, and Artemia
salina nauplii (Ocean Nutrition, San Diego, USA) twice a week. The scleractinian S. pistillata

was only fed twice a week with A. salina nauplii. At the end of the experiment, nubbins were
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frozen at -80°C and freeze-dried for subsequent analyses. Each sample was crushed into powder
using a mortar and pestle and then divided in two subsamples. A subsample was kept for lipid
extraction and gas chromatography analysis, while the other was weighed and combusted at
450°C for 4 h in a muffle furnace (Thermolyne 62700, Thermo Fischer Scientific, USA). Ash-
free dry weight (AFDW) was determined as the difference between the dry weight (DW) and
ash weight, and extrapolated to the total weight of powder used for lipid extraction (Appendix
IV - Table S8).

5.2.3 Symbiont identification

The predominant symbiont phylotype had been previously identified (C. Pupier,
unpublished data) for all sampled coral species through gDNA extraction and standard PCR
and sequencing protocols (Sambrook et al. 1989). The primer set (taken from (Santos et al.
2002) used for PCR amplification targeted amplicons for the chloroplast large subunit (cp23S-
rDNA), a marker that is widely used for assessments of Symbiodiniaceae diversity (Santos et
al. 2002; LaJeunesse et al. 2018).

5.2.4 Lipid extraction and gas chromatography analysis

Lipid extraction was performed in similar fashion to (Bligh and Dyer 1959), with minor
modifications. One milliliter of a solution of methanol and dichloromethane (1:1) was added to
each sample tube together with 125 L of the internal standard (C13:0 triacylglyceride, T3882,
Sigma) solution (5 mg mL™ in hexane). Thereafter, the tubes were agitated for 1 min and
centrifuged at 10,000 X g (-4°C). The solvent was dried in pure N2 gas, then the samples were
methylated by dissolving in 500 pL of 5% HCI in methanol, before heating to 100°C for 2 h.
Fatty acid methyl esters were then extracted with hexane.

Gas chromatography procedures were nearly identical to Martins et al. (2018). Fatty
acid methyl esters were analysed by gas chromatography coupled with mass spectrometry
(QP2010, Shimadzu, Japan). A 30-m fused silica capillary column (VF-Max, 0.25 pum film,
Agilent) was utilized. One microliter of each sample was injected at 220°C in split mode. The
carrier gas was helium, at a flow rate of 1 mL min. Initial temperature was 60°C with an
increase of 5°C per minute until it reached 260°C, which was then maintained for 10 min. The

fatty acid methyl esters of the three polyunsaturated fatty acids, including two autotrophy
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markers (SDA and DPA) and one heterotrophy marker (CGA), were identified by comparison
of their retention times against those in the certified reference standard 47033 PUFA No. 1
Marine Source (Sigma).

5.2.5 Statistical analyses

The following analysis was performed using the R environment for statistical computing
and graphics (R Core Team 2017). Generalized linear models (GLM) were fitted to test for
differences in SDA, DPA and CGA concentrations between species, depths, and the interaction
of these factors. Data were transformed using the Box-Cox transformation procedure ((x*1)/A,
with A = -0.060606 for SDA, A = -0.343434 for DPA, and A = 0.101010 for CGA), as
implemented in Venables and Ripley (2002) to comply with assumptions of normality of
residuals (tested for with the Shapiro-Wilk test) and homoscedasticity (tested for with Levene’s
test; Fox and Weisberg 2018). Biologically relevant pairwise comparisons (i.e., between depths
for each species and between species for each depth) were made for species with detectable
fatty acid concentrations based on estimated marginal means (Lenth et al. 2020) and
simultaneous general linear hypothesis testing (glht() function of the multcomp package;
Hothorn et al. 2008). P-values were adjusted using the Benjamini-Hochberg procedure
(Benjamini and Hochberg 1995).

To address multivariate differences in markers’ concentration between the five species
and the two depth strata we used a non-metric multidimensional scaling (nMDS) ordination to
summarize similarities (Bray-Curtis) on SDA, DPA and CGA content. The Spearman non-
parametric correlation coefficient, based on ranks, was used to investigate the relationship
between variables and the MDS axes, with results illustrated as superimposed vectors in the
MDS diagram. In addition, a 2-way crossed analysis of similarities (ANOSIM) was used to
evaluate significant differences according to species and depth levels. The MDS and ANOSIM
analyses were performed using the PRIMER 6 software (Clarke and Gorley 2006).

5.3 Results

The identities of Symbiodiniaceae phylotypes associated with the four symbiotic species
are summarized in Table 8. While the three octocorals were associated with the same symbiont

phylotype in both shallow and mesophotic depths (Symbiodinium sp. A10 or Cladocopium
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goreaui), S. pistillata displayed a different association between depths (Symbiodinium

microadriaticum in the shallow and Cladocopium goreaui at mesophotic depths).

Table 8. Predominant symbiont species associated with the four symbiotic Red Sea coral
species sampled at shallow and mesophotic depths of the reef adjacent to the Inter-
University Institute for Marine Sciences in Eilat, Israel.

Host coral species Shallow (8-10 m) Mesophotic (40-50 m)
Litophyton arboreum Symbiodinium sp. A10 Symbiodinium sp. A10
Rhytisma fulvum _ _ ) )
Cladocopium goreaui C1 Cladocopium goreaui C1
fulvum
Sarcophyton sp. Cladocopium goreaui C1 Cladocopium goreaui C1

o Symbiodinium ) _
Stylophora pistillata ) o Cladocopium goreaui C1
microadriaticum Al

The first laboratory experimental control confirmed the presence of both SDA and DPA
and the absence of CGA in the symbiont cells (Figure 35). The exact opposite was detected for
the plankton mixture, with presence of CGA and absence of SDA and DPA. Colonies of
Sarcophyton sp. kept in strict autotrophy also displayed higher concentration of the autotrophic
markers and absence of the heterotrophy marker. The same was observed for S. pistillata,
although with trace amounts of CGA. The last controls, S. pistillata and Sarcophyton sp.
colonies fed with the plankton mix, displayed similar SDA and DPA content to those unfed,
but also displayed up to 20 times more CGA. In addition, in situ nubbins of the non-symbiotic

octocoral Dendronephthya sp. contained CGA, while SDA was found in trace concentrations.
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Figure 35. Controls used for validation of the specificity of the fatty acid trophic markers
SDA, DPA (stearidonic acid and docosapentaenoic acid, autotrophy markers) and CGA
(cis-gondoic acid, heterotrophy marker). Sty and Sar respectively refer to Stylophora
pistillata and Sarcophyton sp. grown at the laboratory. auto = autotrophy. mixo = mixotrophy.
(i) Isolated symbiont cells from Stylophora pistillata, (ii) Stylophora pistillata and Sarcophyton
sp. tissue from nubbins maintained under strict autotrophy, (iii) Stylophora pistillata and
Sarcophyton sp. tissue from nubbins fed with zooplankton, and (iv) zooplankton mix,
comprising rotifers, copepods and Artemia salina nauplii, used to feed the coral nubbins. Fatty
acid concentration (ug g* ash-free dry weight) is expressed as mean + standard error.

The ANOSIM detected significant differences between both species (R = 0.488; P =
0.001) and depths (R =0.197; P =0.011). The two-dimensional MDS ordination diagram (with
a stress value equal to 0.08) presented a clear gradient of species showing, on one side, high
CGA and SDA content and low DPA content (e.g. R. f. fulvum), intermediate values (e.g. L.
arboreum) and, in the other side, species showing lower CGA and SDA content and higher
DPA content (e.g. Sarcophyton sp.) (Figure 36). Figure 37 shows that all corals sampled in situ
contained the three markers at different concentrations. Pairwise comparisons highlighted
significant differences between depths in SDA for L. arboreum (decrease with depth), in DPA
for S. pistillata (decrease with depth) and in CGA for Dendronephthya sp. and R. f. fulvum
(increase with depth) (Appendix IV - Table S9).
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Figure 36. Non-metric multidimensional scaling (MDS) ordination used to assess similarities in the concentration (ug g* ash-free dry
weight) of the fatty acids SDA, DPA (autotrophy markers) and CGA (heterotrophy marker) in the tissues of Dendronephthya sp.,
Litophyton arboreum, Rhytisma fulvum fulvum, Sarcophyton sp., and Stylophora pistillata, sampled in both shallow (8-10 m) and mesophotic
(40-50 m) sections of the reef adjacent to the Inter-University Institute for Marine Sciences, in Eilat, Israel.
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Figure 37. Concentration (ug g ash-free dry weight) of the fatty acid trophic markers (a)
SDA, (b) DPA (stearidonic acid and docosapentaenoic acid, autotrophy markers) and (c)
CGA (cis-gondoic acid, heterotrophy marker) from the tissues of Dendronephthya sp.
(asymbiotic octocoral, Den), Litophyton arboreum (symbiotic octocoral, Lit), Rhytisma
fulvum fulvum (symbiotic octocoral, Rhy), Sarcophyton sp. (symbiotic octocoral, Sar), and
Stylophora pistillata (symbiotic scleractinian coral, Sty), sampled in both shallow (8-10 m)
and mesophotic (40-50 m) sections of the reef adjacent to the Inter-University Institute
for Marine Sciences, in Eilat, Israel. Data are expressed as mean + standard error.
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5.4 Discussion

This study is one of the first to evaluate the shift in autotrophic/heterotrophic nutrition
along the depth gradient for several species of octocorals sampled in the Northern Red Sea and
to compare their nutritional ecology with the most abundant scleractinian coral species
(Stylophora pistillata) of this oligotrophic area. Octocorals are indeed one of the most abundant
groups of organisms in the upper mesophotic zone of the Red Sea reefs, often displaying higher
species richness than in shallow reefs (Shoham and Benayahu 2017; Eyal et al. 2019). A better
knowledge of their trophic ecology along the depth gradient is therefore of prime importance
to understand their distribution and growth in nutrient-poor conditions. Our findings highlight
several species-specific aspects of the nutritional ecology of octocorals. The analysis of specific
fatty acid markers shows that soft corals did not reduce their autotrophic capacity in mesophotic
reefs, and that both symbiotic and asymbiotic species can display an increased heterotrophy
with increasing depth. The symbiotic reef-building coral, on the contrary, showed significant
decrease in autotrophic activity with depth. However, it displayed a high heterotrophic capacity
throughout the depth gradient, and even at very shallow depths.

The fatty acids SDA, DPA and CGA had been previously validated as specific markers
of feeding strategies for reef corals (Mies et al. 2017, 2018; Marangoni et al. 2019). The
additional experimental controls produced here all confirmed their specificity. Although nearly
undetectable amounts of CGA were found in S. pistillata maintained in strict autotrophy, such
residual trace concentrations are not unusual for corals that have been kept under starvation for
short periods (Mies et al. 2018). Therefore, our controls agree with previous experiments and
validations. It is important to note that CGA concentration reflects predation on crustacean
zooplankton only; therefore, although copepods may comprise the most abundant and
ecologically relevant group of zooplankton in coral reef systems (Hamner and Carleton 1979),
uptake of other dietary items such as salps is not detected. Thus, CGA is a valid proxy, but
likely an underestimation of the total heterotrophic capacity (Mies et al. 2018).

Field analyses show that R. f. fulvum is the species with the highest concentration of
autotrophy markers at both shallow and deep sites, likely being the most autotrophic of all
octocorals investigated. Although there may be some correlation between the concentration of
autotrophic markers and symbiont density in host tissue, it is often weak because of variations
in fatty acid production, storage and translocation by Symbiodiniaceae (Zhukova and Titlyanov

2003; Imbs et al. 2014; Mies et al. 2017, 2018), as well as environmental influence on these
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processes (Kneeland et al. 2013). Further evidence for this is that the highest symbiont density
for the five coral species investigated was observed in L. arboreum (Pupier et al. 2019b), which
did not have the highest concentration of autotrophy markers. Symbiont genotypic diversity can
also affect the quantity of translocated material to the host (Loram et al. 2007; Starzak et al.
2014), although no clear relationship between CGA levels and symbiont identity could be
observed in the present study. The concentration of autotrophy markers did not significantly
decrease with depth for any of the octocoral species investigated, in agreement with a recent
finding that carbon acquisition in octocorals is constant from shallow to at least 40 m depth
(Pupier et al. 2019b). For S. pistillata, however, autotrophic markers were found in higher
concentration in the shallow colonies, which is also in agreement with findings that
photosynthesis and carbon acquisition in this species decrease along the depth gradient (Mass
et al. 2007; Einbinder et al. 2016; Ezzat et al. 2017). Altogether, these results suggest that
octocorals may have a greater ability to transform light in energy at deep reefs, which might
explain their relatively high abundance/diversity at mesophotic depths.

The bathymetric stability of the symbiont-host association might explain the constant
level of autotrophic markers in octocoral species. Symbiodiniaceae is a functionally-diverse
group, with species displaying differences in adaptation to light intensity, thermal stress, and
many other environmental conditions (Baker 2003; Robison and Warner 2006; Stat et al. 2008;
Swain et al. 2017). All octocoral species investigated here were associated with the same
symbiont phylotype at shallow and mesophotic depths, as often observed for octocorals (van
Oppen et al. 2005; Goulet 2007). However, our findings show that S. pistillata shifts from
Symbiodinium microadriaticum to Cladocopium goreaui at mesophotic depths. Symbiodinium
microadriaticum has been reported to assimilate less autotrophic carbon and have a lower
capacity of photosynthate translocation than C. goreaui (Stat et al. 2008; Ezzat et al. 2017),
indicating that plasticity in symbiont association may explain between-species differences in
bathymetric distribution.

Photosynthetic products are carbon-rich but may be deficient in other critical elements
for growth including nitrogen and phosphorus (Battey and Patton 1987; Titlyanov et al. 2001;
Palardy et al. 2006). Therefore, heterotrophic feeding is critical for fulfilling such deficiency
(Al-Moghrabi et al. 1993; Anthony and Fabricius 2000; Ferrier-Pages et al. 2003; Houlbreque
and Ferrier-Pagés 2009). Most octocorals are known to ingest organic matter, bacteria,
phytoplankton and zooplankton (Fabricius et al. 1995a, 1998; Widdig and Schlichter 2001;
Ribes et al. 2003; Coma et al. 2015; Piccinetti et al. 2016). Our findings show that the

heterotrophic input in Red Sea octocorals is species- and depth-specific. Rhytisma f. fulvum
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presented the highest CGA content at both shallow and mesophotic depths, suggesting that it is
also the most effective heterotrophic species, out of the four ones evaluated here. CGA values
for R. f. fulvum were even higher than for Dendronephthya sp., an asymbiotic and obligate
heterotroph. Combined with its high autotrophic capacity, this might explain why R. f. fulvum
has high resilience, efficiently colonizing reefs and forming large carpets after major
environmental disturbances (Benayahu and Loya 1977; Buckley et al. 2004, 2008; Stobart et
al. 2005).

The scleractinian S. pistillata showed a relatively high degree of heterotrophy (i.e high
CGA content) even at shallow depth. This is contrary to the common belief that shallow
scleractinian corals rely almost exclusively on autotrophy (Muscatine et al. 1989; Muscatine
and Kaplan 1994; Lesser et al. 2010). In fact, our findings suggest that heterotrophy may not
compensate for a lack of autotrophy, but rather complement it. A more profound investigation
of CGA content in other scleractinian coral species should confirm whether this heterotrophic
capacity is restricted to S. pistillata, to Eilat reefs, or a general feature of shallow scleractinian
corals. It is important to note that there is a strong diel pattern of increased zooplankton biomass
at dusk and dawn in the Gulf of Agaba/Eilat, often ten-fold higher during the night than during
the day (Yahel et al. 2005). In addition, the region is characterized by convective mixing of
approximately 300 m in autumn and winter (when our collections were performed) (Labiosa et
al. 2003), which may have enhanced coral heterotrophy in shallow waters (Gove et al. 2006;
Roder et al. 2010; Sevadjian et al. 2012; Williams et al. 2018). If most coral species are as
heterotrophic as S. pistillata in shallow areas, zooplankton abundance should then be considered
as a major driver of scleractinian abundance and health and further explorations on this topic
are warranted.

A bathymetric trophic zonation was evident for R. f. fulvum and Dendronephthya sp.,
which displayed CGA increase at mesophotic depths. This pattern may be explained by an
increase in predation pressure and/or increased zooplankton availability (reviewed in
Houlbréque and Ferrier-Pages 2009). However, CGA content for L. arboreum and Sarcophyton
sp. did not differ between shallow and deep sites. This, together with the lower CGA content in
these two species, suggest that they either have a limited prey capture ability or rely on other
resources such as bacteria and/or dissolved organic matter. This agrees with previous reports
that species within Litophyton and Sarcophyton genera are poor zooplankton-feeders and rely
more on bacterioplankton (Sorokin 1991). Nonetheless, our results reinforce that depth is a
critical factor in shaping Red Sea octocoral communities also because species diversity

increases significantly at 20-60 m (Shoham and Benayahu 2017; Eyal et al. 2019).
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The species-specificity in heterotrophic capacity for the five coral species studied here can be
related to the identity and/or functioning of the symbionts hosted by each species, as it has been
demonstrated that heterotrophy was positively correlated with the amount of translocated
carbon (Leal et al. 2015). This finding matches with the observation that the most autotrophic
species (Rhytisma f. fulvum) is also the most heterotrophic one. Alternatively, heterotrophy can
be associated with the morphophysiological characteristics of the species. Increased
heterotrophy and predation capacities have been linked to polyp and/or corallite size (Anthony
and Fabricius 2000; Marangoni et al. 2019). Rhytisma f. fulvum, a species that presented high
CGA content, has a polyp diameter similar to Sarcophyton sp. (2.4-4 mm; Lewis 1982; Sorokin
1991), while L. arboreum, a low-CGA species, features polyps almost ten times smaller
(Ofwegen 2016). Species-specificity is also evident for the autotrophic markers. Rhytisma f.
fulvum presented unusually high SDA and absence of DPA, which, as of now, is unique for all
symbiotic octocorals/scleractinians investigated (Mies et al. 2018; Marangoni et al. 2019). It is
unclear whether the host, symbiont or the environment, controls the concentration of specific
autotrophy markers, but R. f. fulvum has been reported as a species with unusual biochemical
composition and processes (Trifman et al. 2016). Therefore, the cause for variations in trophic
behavior is likely a multifactorial interaction between holobiont physiology and environmental
conditions.

This study shows that Red Sea octocorals are functional mixotrophs in both shallow and
mesophotic reefs. In addition, our findings show that heterotrophy becomes even more relevant
at mesophotic reefs, and without a reduction in autotrophic input. This later finding was
unexpected, as soft corals display a different pattern than the one known for scleractinians. This
consistent autotrophic capacity may have major implications for explaining differences in
bathymetric distribution/dominance of species across depth gradients. In addition, it suggests
that soft corals may find more efficient thermal-stress refugia in deep reefs than scleractinians,
and may become the dominant group in some coral reefs in the future. This study helps
understanding coral functional and trophic ecology, especially in mesophotic reefs, which are

conservation-dependent areas (Rocha et al. 2018; Eyal et al. 2019).
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Chapter 6 | General discussion and perspectives

6.1 General discussion

The main objective of this thesis was to provide insights into the nutritional ecology of
several symbiotic octocoral species from the Northern Red Sea, down to mesophotic depths.
The dinoflagellate-octocoral symbiosis is known to be different from the one of scleractinian
corals, in terms of diversity and stability. While octocorals exhibit low symbiont diversity,
scleractinian corals generally host multiple symbiont types and are more flexible depending on
the prevalent environmental conditions (Baker and Romanski 2007). This difference has been
attributed to octocorals having a greater dependence on heterotrophy and therefore having less
to gain from retaining flexibility as a symbiotic trait (van Oppen et al. 2005). However, the
importance of autotrophy and heterotrophy and their respective contribution to the host’s energy
budget has been scarcely studied in octocorals, and mainly tested in gorgonians (Rossi et al.
2020). Advancing knowledge on the nutritional ecology of soft coral symbioses is though of
increasing importance, considering that soft corals are one of the main components of reef
ecosystems and that climate change and local disturbances are predicted to increasingly induce
transitions from hard coral- to octocoral-dominated reefscapes (e.g., Tsounis and Edmunds
2017).

Therefore, in this thesis, we investigated the acquisition and fluxes of organic and
inorganic sources of nutrients, relative to carbon and nitrogen, in several soft coral hosts, their
dinoflagellates symbionts, and other possibly associated microorganisms such as diazotrophs.
Comparisons with scleractinian-dinoflagellate symbioses highlighted major functional
differences between the two groups and allowed the discussion of our results in a broader

context.

6.1.1 Soft and scleractinian corals form different functional symbioses

from the shallow down to the upper mesophotic reef zone

e Autotrophy remains stable along the depth gradient in soft corals whereas it

decreases in scleractinian corals
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The autotrophic acquisition of carbon by the coral symbionts was assessed in this thesis
in three different soft coral species via two different but complementary approaches. The first
one (Chapter 3) consisted in measuring the acquisition and assimilation of dissolved inorganic
carbon into the coral host tissue and symbionts, using a *3*C-bicarbonate tracer. The second
technique consisted in measuring the concentration of two fatty acids (stearidonic and
docosapentaenoic acids) specific to autotrophy (Chapter 5) in the coral tissue. A comparison
was made with the scleractinian coral Stylophora pistillata, using the same techniques.

The two approaches showed, and for all soft coral species investigated, that the short
and long-term assimilation of carbon in the coral host tissue was stable along the depth gradient
or even increased at mesophotic depths. The stability in autotrophic nutrient supply along the
depth gradient suggests that soft corals are either photo-limited in shallow waters and/or well
photo-acclimatized to depth. This is in agreement with previous observations that maximal
photosynthetic rates of several soft coral species from the Great Barrier Reef were measured at
20 m depth rather than in shallower waters (Fabricius and Klumpp 1995). Strategies of
acclimatization to low light levels were noticed in the symbionts (i.e., reduced self-shading and
increased light harvesting capacity of the symbiont cells; Cohen and Dubinsky 2015; Ziegler et
al. 2015; Einbinder et al. 2016). However, the autotrophic stability was independent of the
Symbiodiniaceae genus harbored by the soft coral host, since the associations were species-
specific and are prone to be stable over space and time (Goulet and Coffroth 2003). On the
contrary, the hard coral S. pistillata experienced a two-fold decrease in autotrophic carbon
acquisition with depth and shifted from Symbiodinium (previously clade A) to Cladocopium
(previously clade C) from shallow to deep reefs (Mass et al. 2007; Ezzat et al. 2017).

The comparison of the carbon budget in soft and scleractinian corals indicates that the
rates of autotrophic carbon acquisition is at least two-fold higher in S. pistillata at shallow
depth, as compared to the soft coral species investigated. However, the carbon acquired was
also lost (as respiration and mucus production) twice faster in scleractinian corals, suggesting
a different functioning of the symbioses and a different metabolic demand between soft and
hard coral species. The higher metabolic demand in scleractinian corals is likely due to
calcification, since most of the carbon respired is used for calcium carbonate deposition. Indeed,
almost 70-75% of the carbon used for calcification in hard corals comes from respiration, and
the remaining 25-30% comes from external seawater carbon (Erez 1978; Furla et al. 2000;
Hughes et al. 2010). Moreover, the presence of skeleton enhances coral productivity through
internal light scattering, which may also contribute to explain the differences in carbon

acquisition between soft and hard corals.
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e Heterotrophy is important at all depths and increases in the mesophotic reef for

several species

Another main finding of this thesis points out that symbiotic soft corals from both
shallow and mesophotic depths are most likely to depend more on heterotrophy than
autotrophy for nutrient acquisition, as compared to hard corals. This finding is supported by
the large amount of lipid biomarkers, specific to crustacean zooplankton, measured in the soft
coral tissue from shallow and mesophotic reefs (Chapter 5). For some species, the amount of
biomarker significantly increased with depth, suggesting that this type of nutrition is favored
in the mesophotic reef. In addition, we found in Chapter 4 that soft corals have a low
assimilation of dissolved inorganic or organic nitrogen (DIN and DON) and therefore need to

acquire nitrogen from particulate feeding.

6.1.2 Soft and scleractinian corals form different functional symbioses
with their dinoflagellates, which might explain the greater resistance

of soft corals to eutrophication

We observed that soft corals have a lower capacity than scleractinian corals to assimilate
inorganic and organic nitrogen dissolved in seawater. As low amounts of inorganic nutrients
enter the soft coral-dinoflagellate symbiosis, it is unlikely that changes in water quality related
to nutrients (e.g., eutrophication) disrupt the symbiosis.

First of all, we showed that soft coral mucus likely represents an unfavorable habitat for
the colonization and activity of diazotrophs, as it is known to present antimicrobial properties
and contains particles with a relatively high N content (Kelman et al. 2006; Nakajima et al.
2018). As a result, soft corals neither promoted N fixation in their surrounding seawater nor
assimilated DDN. Moreover, up to ten-fold lower assimilation rates of dissolved N (NH4, NOs,
DFAA) were observed in soft corals as compared to hard corals, with no clear difference
between depths. This could not be explained by i) a different capacity for nutrient acquisition
related to the dinoflagellate symbionts (Baker et al. 2013a; Ezzat et al. 2017), since both groups
shared the same symbiont genotypes and/or density or ii) a different need in structural N, since
soft and hard corals exhibited similar N tissue content. Soft corals therefore likely rely on

heterotrophic feeding to meet their N requirements.
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Overall, due to the poor capacity of soft coral symbionts to acquire dissolved nutrients,
it is unlikely that changes in water quality related to nutrients (e.g., eutrophication) disrupt the
soft coral-dinoflagellate symbiosis. Although this finding has not been experimentally tested in
this thesis and remains hypothetical, it could be mechanistically supported by the conceptual
model on unfavorable ratios of dissolved inorganic nutrients, introduced by Wiedenmann et al.
(2012). In a nutshell, in hard corals, increased dissolved inorganic nitrogen concentrations
promote a fast population growth of dinoflagellates. A proliferating symbiont population can
induce an enhanced cellular demand, thereby leading to an undersupply in phosphorus or other
essential nutrients, and ultimately to the starvation of symbiont cells. Such condition alters the
lipid composition of their membranes, which renders corals more susceptible to bleaching
through the production of reactive oxygen species (D’Angelo and Wiedenmann 2014).
Therefore, since less dissolved nitrogen enters the tissue of soft corals, the scenario described
above may be restricted to hard corals.

As a matter of fact, the relative dominance of soft corals has been reported in areas
affected by high concentrations of dissolved and particulate matter (McClanahan and Obura
1997; Fabricius and Dommisse 2000; Schleyer and Celliers 2003; Fabricius 2005; Baum et al.
2016). In addition, the capacity of soft corals to thrive under environmental conditions ranging
from turbid to clear-water (Fabricius and Dommisse 2000; Fabricius and De’ath 2008) may
also be attributed to their nutritional flexibility. For example, under high turbidity or
sedimentation regimes, a lower reliance on the symbiosis could help soft corals to cope with
reduced light availability, while suspended particles can represent a potential source of nutrients

for heterotrophic feeding.

6.1.3 Graphical summary

The main results of this thesis are summarized in Figure 38. The stability of the octocoral
symbiosis along the depth gradient is ensured by a stable association (one symbiont genus), and
the maximization of nutrient acquisition and conservation at the two depths by both autotrophy
and heterotrophy. This is supported by a low assimilation of DIN and DON, a stable acquisition
of DIC (per AFDW and per pg chlorophyll) a large amount of POM assimilated at both depths
and no DDN assimilation nor promotion of N fixation in the surrounding seawater. Moreover,
the same amounts of carbon acquired through photosynthesis were translocated from the

symbionts to the host at the two depths. In comparison to soft corals, scleractinian corals
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exhibited a higher assimilation of DIN and DON (with increased rates of DON assimilated with
depth), an acquisition of DIC higher in the shallow but similar (per pg chlorophyll), perhaps
lower (per AFDW), one at mesophotic depths, significant assimilation of DDN and promotion
of N2 fixation in the surrounding seawater (although not investigated in the deeper corals). They
also had a higher carbon loss in the shallow but lower carbon loss than soft corals at the
mesophotic depth and symbionts transferred much lower amounts of carbon with depth. The
presence of a calcium carbonate skeleton in hard corals likely plays an important role in the
differences of metabolism (i.e., energy requirements) and productivity highlighted here.
Finally, species-specific differences in nutrient acquisition and allocation may be due to i) the
ratio of colony surface area to volume (a low ratio do not favor light exposure and gas or nutrient
exchange through epidermal tissue), ii) micro-morphological features of the polyps (thin
branches, small polyps, and high polyp surface area to volume ratio being more suited for
autotrophy; big polyps for heterotrophy), iii) the symbiont species hosted (influencing cell-
specific carbon assimilation and translocation), iv) the symbiont density (influencing cell-
specific carbon assimilation and translocation), and v) the nutritional status (higher

heterotrophic efficiency being correlated with higher rates of translocated carbon).
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Figure 38. Contrast between the functioning of soft coral versus hard coral nutritional
symbioses from shallow to mesophotic reef zones in Eilat (Red Sea). The range of rates
corresponding to nutrient acquisition and fluxes is indicated below the nutrient acronym. These
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rates are not comparable between each other but between groups (soft vs hard corals) and depths
(shallow vs mesophotic) only. Chl = Chlorophyll concentration (ug Chl (a + c2) gt AFDW).
Pg = Autotrophic carbon acquisition (ug C pg™ Chl). Ts = Carbon translocated from the
symbionts to the host (ug C g* AFDW ht). AFDW = ash-free dry weight. DIN = Dissolved
inorganic nitrogen (including NH4 and NOs, in ug N gt AFDW ht). DON = Dissolved organic
nitrogen (including DFAA, in ug N gt AFDW h''). DFAA = Dissolved free amino acids. DDN
= Diazotrophically-derived nitrogen (ng N mg™t DW h1). DW = Dry weight. Rate of N fixation
in seawater are in ng N L™ d. DIC = Dissolved inorganic carbon (ug C gt AFDW h). POM
= Particulate organic matter. The assimilation of POM has been investigated with a lipid
biomarker specific to crustacean zooplankton (cis-gondoic acid (CGA, 20:1®9), in pg g
AFDW). Lipid biomarkers specific to autotrophy, stearidonic acid (SDA, 18:4®3) and
docosapentaenoic acid (DPA, 22:5®3), do not appear on the figure. Concentrations of SDA
were 1-70 and 1-146 pg g* AFDW in shallow and mesophotic corals, respectively, and
decreased from 11 to 3 ug gt AFDW with depth in the hard coral. Concentrations of DPA were
3-7 and 3-5 ug g AFDW in shallow and mesophotic corals, respectively, and decreased from
5to 2 pug gt AFDW with depth in the hard coral.

6.2 Conclusion

A functional mixotrophy was observed throughout the depth gradient for all symbiotic
soft coral species, with a significant input of heterotrophic feeding on crustacean zooplankton
at all depth. Mixotrophy was also observed for the only scleractinian species investigated in
this thesis (Stylophora pistillata), suggesting that all coral species need to fulfill the deficiency
of photosynthetic products in nitrogen and phosphorus through heterotrophy (see Houlbreque
and Ferrier-Pagés 2009). Moreover, heterotrophic feeding on zooplankton significantly
increased with depth for several species, thereby emphasizing an increase in predation pressure
and/or zooplankton availability with depth.

This thesis therefore highlights the importance of both autotrophic and heterotrophic
inputs in soft coral nutrition, which provides them with a trophic plasticity along the depth
gradient. Such dual mode of nutrition surely represents an asset for the successful settlement in
different habitats and may provide them with an adaptive mechanism to sustain growth under

stressful conditions.
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6.3 Perspectives

The findings obtained in each chapter paved the way for future experiments, allowing a
deeper understanding of the processes observed here at the organism scale. Some examples are

given below.

6.3.1 Investigate the internal light environment of soft corals: the role of

tissue and sclerites

Scleractinian corals have the ability to regulate the light environment perceived by their
symbionts in hospite. For example, they can filter out the excess of light that can be harmful to
the algae or enhance their internal light diffusion and scattering due to unique optical properties
of their tissue and skeleton. Such amplification in the local light field of the symbionts notably
improves photosynthesis. While soft corals do not have a skeleton, which might explain their
lower rates of carbon acquisition and assimilation compared to scleractinian corals, they possess
a large amount of sclerites. Sclerites could act as light diffusers, and their species-specific size,
shape and color could help explaining differences in photosynthetic efficiencies. It would thus
be interesting to investigate the internal light environment of soft corals as well as the possible
role of sclerites in light scattering, using light microsensors. The hydroskeleton of soft corals

may however entail some technical problems as it is likely to shrink on microsensors.

6.3.2 Importance of phosphorus acquisition for the stability of the soft

coral symbiosis

In scleractinian corals, it has been shown that the nitrogen to phosphorus ratio (N:P)
plays a major role in the stability of the symbiosis. Mainly, an increase in nitrogen availability
(mostly in the form of nitrate) without a similar increase in phosphorus, can enhance the
population growth of the dinoflagellates and subsequently enhance coral bleaching. Since soft
corals are less prone to take up dissolved inorganic nitrogen, it would be interesting to test i)
the levels of nitrate inducing a disruption of the symbiosis, 2) the role of phosphorus availability
for the maintenance of such symbiosis under diverse nitrogen and/or environmental conditions.
The results could bring information on how soft corals cope with eutrophication and thermal

stress.
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6.3.3 Investigate the oxidative stress in soft corals

The presence of symbionts in corals is often beneficial due to the energetic input
supplied from photosynthesis. However, it can also impose restrictions (e.g., bathymetric
distribution) and risks (e.g., higher increase in reactive oxygen species released under stressful
conditions through photosynthesis). At the cellular level, the production of reactive oxygen and
nitrogen species represents a pivotal factor responsible for coral bleaching. Since the results of
this thesis show different nutritional strategies displayed by soft and hard corals along the depth
gradient (especially regarding nitrogen), a different reliance on autotrophy, along with an
overall flexibility towards the symbiosis, it could be interesting to investigate mechanisms

possibly leading to a breakdown of the symbiosis in soft corals, in a context of thermal stress.

6.3.4 Heterotrophy

As heterotrophic nutrition was only assessed through a lipid biomarker specific to
zooplankton, experiments involving incubations with a wide size range of labelled prey (pico-
and nano-plankton) would help to further characterize the diet of soft corals. Particularly, the
use of stable isotope labelling would confirm the effective ingestion of the prey, since the mucus
of soft corals is known to have antimicrobial properties, which could eventually affect the
concentrations of plankton measured in the chambers.

6.3.5 Contribution of autotrophy versus heterotrophy in the nutritional

budget of soft corals

Finally, this thesis could not quantitatively provide any relative contribution of auto- and
heterotrophic nutrient supply in the metabolic needs of the holobiont. Another experiment using
lipid biomarkers specific to auto- and heterotrophy could be designed for this purpose and must
involve different nutritional situations encountered by the same colonies (e.g., seasonal follow-
up). Another possibility would be to use a multi-biomarkers approach, by combining stable
isotope (5'°C and 5'°N) signatures, along with total lipids (discriminate between neutral and

polar lipid’s fatty acids).
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Résumé du contenu de la these




Résumé développé

1. Introduction et objectifs de la thése

1.1 Récifs coralliens tropicaux

Les récifs coralliens tropicaux sont considérés comme 1’un des écosystemes les plus
productifs de la planéte, du fait de la forte biomasse qu’ils renferment. Leur étendue (260000-
600000 km?) représente moins de 0,2 % de I'océan, ce qui équivaut & une surface terrestre plus
petite que la France. Pourtant, les récifs abritent entre un quart et un tiers des especes marines
du monde (Knowlton et al., 2010). Outre leur role écologique, les récifs coralliens fournissent
a I'numanité de multiples services essentiels a son développement et a sa survie. Par exemple,
ils protegent les cotes de I'érosion, constituent une source importante de nourriture pour la
population vivant a proximité, génerent des revenus grace a la péche, au tourisme et a des
molécules d'intérét pour l'industrie pharmaceutique (Moberg et Folke, 1999 ; Wells, 2006 ;
Laurans et al., 2013). Les récifs générent environ trente milliards de dollars par an (Spalding et
al., 2001 ; Stoeckl et al., 2011) et 500 millions de personnes bénéficient directement des récifs
(Wilkinson, 2008).

La structure tri-dimentionnelle des récifs est formée, a la base, par le dépot d’un
squelette de carbonate de calcium par les polypes des coraux scléractiniaires, encore appelés
coraux durs ou constructeurs de récifs. Cependant, les coraux scléractiniaires ne sont pas les
seuls batisseurs de ces immenses structures. L'écosystéme corallien comprend une mosaique
d'especes « ingénieurs d’écosysteme » tels que les algues corallines calcifiantes, les éponges et
les octocoralliaires qui contribuent a la structure tridimensionnelle du récif. Ensemble, ils
constituent une « forét animale marine », qui fonctionne de la méme maniere que les foréts
terrestres en fournissant une complexité architecturale, de la nourriture et un abri aux autres
organismes du récif. En tant qu'arbres de la forét, ils contribuent également de maniére
significative a la productivité primaire et aux cycles biogéochimiques du récif, soit directement,

soit par le biais d’associations symbiotiques (Rossi, 2013).

1.2 Lasymbiose, a la base de la productivité des récifs coralliens

Les coraux constructeurs de récifs (scléractiniaires), ainsi que de nombreux

octocoralliaires, sont des méta-organismes complexes, constitués par le corail animal hote, des
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dinoflagellés photosynthétiques et un large éventail d'autres microorganismes tels que des
bactéries, des archées, des champignons et des virus (Knowlton et Rohwer, 2003 ; van de Water
etal., 2018). La taxonomie des Symbiodiniaceae a été récemment révisée, avec une description
formelle de sept genres (LaJeunesse et al., 2018). L'association entre les coraux et les
dinoflagellés est appelée symbiose mutualiste et se présente comme un partenariat basé sur la
nutrition. Les coraux symbiotiques sont ainsi considérés comme des organismes mixotrophes
car ils peuvent utiliser des sources de nutriments a la fois inorganiques et organiques. Alors que
I’animal est capable de capturer des proies en suspension dans le milieu, les dinoflagellés fixent
le carbone inorganique via la photosynthése et sont également capables d’absorber d’autres
nutriments dissous, comme I’ammonium, les nitrates et les phosphates. Certaines bactéries
telles que les diazotrophes fixent quant a elles le diazote. Chaque partenaire échange des
nutriments avec les autres partenaires pour soutenir sa propre nutrition et subvenir a ses propres
besoins métaboliques. Ainsi, les dinoflagellés transférent plus de 90% de leurs photosynthétats
a ’animal (dans le cas des coraux scléractiniaires) dans les récifs de surface. Ce mode de
nutrition multiple permet aux coraux de tirer le meilleur parti des eaux oligotrophes, ou chacun
des partenaires ne persisterait guere seul en raison de la faible concentration de nutriments
inorganiques et de la faible disponibilité des proies (Stoecker et al. 2017). Les interactions
métaboliques au sein de ce consortium symbiotique, qui sont nombreuses et diverses,
conditionnent également la réponse du corail aux changements environnementaux (par
exemple, voir Ainsworth et al. 2017 ; Benavides et al. 2017 ; van de Water et al. 2018 ; Pernice
et al. 2019).

1.3 Zoom sur la symbiose et la nutrition des octocoralliaires

Les octocoralliaires, qui sont le sujet principal de cette thése, appartiennent au phylum
Cnidaria et a la classe Anthozoa. Actuellement, les octocoralliaires se composent de trois
ordres : Helioporacea (communément appelés « coraux bleus »), Pennatulacea (communément
appelées « plumes de mer ») et Alcyonacea. Les principaux groupes de l'ordre Alcyonacea
incluent les gorgones, le corail rouge et les coraux mous. Contrairement aux gorgones et au
corail rouge, les coraux mous ne présentent pas d'axe interne solide. Tout au long de ce résumeé,
le terme « octocoralliaire » qualifie donc tout membre de cette sous-classe sans distinction entre
taxons, alors le terme « coraux mous » se réfere uniquement aux octocoralliaires ne disposant

pas d’un axe interne solide.

140



Le principal trait qui distingue les octocoralliaires des scléractiniaires (coraux durs),
outre une symétrie d’ordre huit, est I’absence d’un squelette de carbonate de calcium. De ce
fait, les coraux mous dépendent, pour le soutien de leur corps, a la fois de la pression
hydrostatique et d’une « micro-ossature » constituée d’une multitude de petites structures
isolées de carbonate de calcium appelées sclérites. Les octocoralliaires constituent le deuxieme
groupe d'animaux macrobenthiques le plus abondant sur de nombreux récifs de I'Indo-
Pacifique, des Caraibes et de la mer Rouge, aprées les coraux durs (Benayahu et Loya, 1981 ;
Fabricius et Alderslade, 2001 ; Benayahu et al., 2019 et références dans ce document). Les
octocoralliaires peuvent étre associés a cing genres de Symbiodiniaceae selon les régions
biogéographiques. La diversité génétique au sein des genres de la famille Symbiodiniaceae
reflete également une diversité physiologique, expliquant différentes réponses aux

changements environnementaux.

Chez les octocoralliaires, la contribution relative de l'autotrophie et de I'nétérotrophie
aux besoins nutritionnels de I'nolobionte est mal connue (revue dans Schubert et al., 2017). On
pense géenéralement que les octocoralliaires ont un faible taux de productivité primaire et qu'ils
dépendent a la fois de l'autotrophie et de [I'hétérotrophie pour satisfaire leurs besoins
métaboliques (Sorokin, 1991 ; Fabricius et Klumpp, 1995). Cependant, les quelques études
portant sur la contribution de la photosynthése a la respiration de I'néte (rapport P:R)
soutiennent plutét une dépendance a l'autotrophie pour satisfaire les besoins respiratoires
(Mergner et Svoboda, 1977 ; Sorokin, 1991 ; Riegl et Branch, 1995 ; Fabricius et Klumpp, 1995
; Kremien et al., 2013 ; Bednarz et al., 2015 ; Rossi et al., 2017, 2020), excepté pour quelques
especes (Ramsby et al., 2014 ; Baker et al., 2015). Le peu d'études qui ont porté sur un bilan de
carbone montrent une forte variation inter-especes, avec des taux de transfert de photosynthétats
allant de 10 % chez Capnella gabonensis a 75 % chez Sinularia flexibilis (Schlichter et al.,
1983 ; Farrant et al., 1987 ; Sorokin, 1991 ; Khalesi et al., 2011). La performance des symbiotes
semble liée a la morphologie de I'héte, les especes ayant des branches fines et de petits polypes
étant plus autotrophes que celles ayant une forme massive et de gros polypes (Baker et al., 2015
; Rossi et al.,, 2018). La morphologie de la colonie entiere peut également jouer un réle
important dans la nutrition des coraux mous : le rapport entre la surface corporelle et le volume,
qui détermine a la fois I'échange gazeux a travers le tissu épidermique et I'exposition au
rayonnement photosynthétiquement actif, est faible chez les coraux mous par rapport aux
coraux durs (Fabricius et Klumpp, 1995). Toute augmentation de ce rapport, induit par

I'expansion de la colonie, peut améliorer la productivité primaire. Des recherches
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supplémentaires sont donc nécessaires pour mieux comprendre les capacités autotrophes des

octocoralliaires en général, et des coraux mous en particulier.

En ce qui concerne I'hétérotrophie, les coraux mous ont longtemps été considérés
comme étant principalement des suspensivores, car leurs nématocystes sont petits, simplement
structurés et inefficaces pour paralyser des proies nageant activement (Mariscal et Bigger,
1977). Toutefois, la découverte récente d'un nouveau type de nématocystes pourrait
potentiellement mettre en évidence un arsenal de structures urticantes plus diversifiées qu'on
ne le pensait auparavant (Yoffe et al., 2012). De plus, des microvillosités recouvrent I'épiderme
des coraux mous de maniere dense et jouent probablement un réle dans I'absorption de la
matiere dissoute (Schlichter, 1982a, 1982b). Le régime alimentaire des octocoralliaires a été
déterminé par des expériences impliquant des especes tempérées (Coma et al., 1994 ; 1998 ;
2015 ; Orejas et al., 2003 ; Rossi et al., 2004) et tropicales (Lewis, 1982 ; Sebens et Koehl, 1984
; Sorokin, 1991 ; Fabricius et Domisse 2000 ; Rossi et al. 2020), et comprend du zooplancton
de petite taille, ainsi que phytoplancton (Fabricius et al., 1995a, 1995b ; 1998 ; Ribes et al. 1998
; Leal et al. 2013 ; Piccinetti et al., 2016). La contribution relative de l'autotrophie et de
I'hétérotrophie a la nutrition des coraux mous n’est pas fixe et dépend des conditions
environnementales et/ou de la disponibilité des ressources (par exemple de la profondeur et de
la saison ; Rossi et al. 2020). Cependant, cette notion reste a étudier plus en détails.

1.4 Les principales menaces pesant sur les récifs coralliens et les coraux mous

Les récifs coralliens sont généralement capables de se remettre des perturbations
naturelles en quelques années ou décennies s’ils ne subissent pas d’autres dommages entre
temps. Cependant, les activités humaines ajoutent aux perturbations naturelles des facteurs de
stress locaux et globaux, qui agissent ensemble pour affaiblir les récifs coralliens et finissent
par entrainer des déclins importants. En conséquence, les écosystemes marins se modifient et

les récifs coralliens sont parmi les plus menacés.

Les activités anthropiques telles que la combustion d’énergies fossiles,
I'industrialisation et la déforestation, ont augmenté les concentrations de gaz a effet de serre
dans I'atmosphere depuis le début de I'ere industrielle (Sabine et al., 2004). Ces émissions sont
la cause de changements climatiques a 1’échelle mondiale, notamment le réchauffement et

I'acidification des océans.
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e Le réchauffement de I'océan

Les coraux vivent dans des conditions environnementales proches de leur maximum
thermique et peuvent souffrir de stress thermique lorsque la température de la surface de la mer
augmente de > 1°C au-dessus du maximum estival moyen (Wooldridge, 2013). Lorsque les
coraux subissent un stress thermique extréme et prolonge, la symbiose avec leurs dinoflagellés
photosynthétiques est perturbée, ce qui entraine généralement I'expulsion des symbiotes, un
phénomeéne appelé blanchissement (Brown, 1997). Les coraux blanchis sont physiologiquement
endommagés, et un blanchissement prolongé entraine souvent des niveaux elevés de mortalité

chez les coraux (Hughes et al., 2018).

Ce phénomeéne aujourd’hui généralisé a €té signalé dans de nombreux récifs du monde
entier et n’épargne pas les octocoralliaires (Paulay et Benayahu, 1999, Marshall et Baird 2000,
Arceo et al. 2001, Loya et al. 2001, McClahanan et al. 2001, Cellier et Schleyer 2002, Goulet
et al. 2008, Chavanich et al. 2009, Prada et al. 2009, van Woesik et al. 2011, Dias et Gondim
2015, Slattery et al. 2019). Tout comme pour les coraux durs, il a été montré que la sensibilité
des octocoralliaires au stress thermique n’est pas uniforme et qu’il existe une tolérance plus
élevée chez certaines espéces, voire entre individus d’une méme espéce (Loya et al., 2001 ;
Lasker 2003, Strychar et al. 2005 ; Goulet et al. 2008 ; van Woesik et al. 2011 ; Slattery et al.
2019). Les quelques études expérimentales qui portent sur les réponses des octocoralliaires
tropicaux au stress thermique ont montré une majorité de réponses négatives, impliquant
notamment une réduction de la photosynthése, un blanchissement, une diminution des réserves
énergétiques et de la production reproductive, ainsi que de la nécrose (Michalek-Wagner et
Willis 2001, Drohan et al. 2005, Strychar et al. 2005 ; Imbs et Yakatova, 2012 ; Sammarco et
Strychar, 2013 ; Netherton et al. 2014). Par conséquent, les octocoralliaires semblent étre aussi

affectés que les coraux durs par le réchauffement de I'océan.

e Acidification des océans

L'acidification des oceans est un processus se produisant actuellement de maniere
continue, qui induit plusieurs changements dans la chimie des carbonates de I'eau de mer (e.g.,
Feely et al., 2004). En particulier, il diminue le pH de I'eau de mer et la concentration des ions
carbonate. Ces modifications ont donc un effet négatif sur la calcification biogénique (e.g., de

I'aragonite et de la calcite) et peuvent également entrainer la dissolution nette des structures
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carbonatées. Ainsi, l'acidification des océans pose d’importants problémes aux organismes
marins qui forment des coquilles, des squelettes ou des structures internes en carbonate de
calcium (Gattuso et Hansson, 2011 ; Orr et al., 2005).

Alors que les observations in situ suggerent qu’une baisse du pH de 1’eau de mer dans
les années a venir devrait induire une transition de la dominance des coraux scléractiniaires vers
une prépondérance des coraux mous et autres espéces non-calcifiantes (Inoue et al., 2013),
seules quelques études expérimentales ont abordé la réponse des octocoralliaires a
I'acidification des océans. Elles montrent que les descripteurs tissulaires et les parametres
physiologiques (c'est-a-dire la densité des cellules des symbiotes, la pigmentation, la structure
des sclérites, le taux de pulsation des polypes et la croissance) ne sont pas affectés par
I'acidification (Gabay et al., 2013, 2014, Enochs et al. 2015b). Une seule étude a montré une
diminution de la calcification, mais le pH testé (7,1) dépasse les valeurs prévues pour la fin du
siécle (Gomez et al., 2014). L'atténuation de l'acidification par les octocoralliaires pourrait
s'expliquer par leur tissu épais, qui peut protéger les sclérites (Gabay et al., 2013 ; 2014), et par
le processus de calcification lui-méme, qui pourrait étre moins affecté que celui des coraux durs
malgré l'altération de la chimie des carbonates (Enochs et al., 2015b). Bien qu'il existe peu de
données sur les effets combinés de I'acidification et d'autres menaces sur les octocoralliaires, il
a €t suggéré que les coraux durs, qui sont déja stressés par I’acidification seule, seront plus
touchés que les octocoralliaires s’ils sont déja confrontés a d’autres facteurs de stress tels que

I'eutrophisation (Januar et al., 2017).

e Eutrophisation et autres facteurs de stress locaux

L’eutrophisation de 1’eau est un phénomene complexe qui implique une augmentation
de la concentration en sels nutritifs dissous (nitrates, phosphates), une augmentation des
particules en suspension et une réduction de la luminosité. Les récifs cdtiers sont les plus
impactés par I’eutrophisation, qui résulte d’une agriculture et/ou urbanisation intensive, ainsi
que du rejet de polluants inorganiques dans I’eau. Les effets de 1’eutrophisation sur I'abondance
des coraux mous ne sont pas concluants. En effet, les études portant sur le taux de couverture
des coraux durs et mous montrent un impact négatif (Fabricius et De'ath 2004), un effet nul
(Fabricius et De'ath, 2001), ou bien une dominance relative des coraux mous dans des zones
affectées par la sédimentation (McClanahan et Obura, 1997, Schleyer et Celliers, 2003) ou

soumises a de fortes concentrations de particules en suspension et matieres dissoutes (Fabricius,
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2005 ; Fabricius et Dommisse, 2000 ; Baum et al., 2016). Des données provenant de la Grande
Barriere de Corail, de Hong-Kong et de Palau suggérent qu’une pauvre qualité d’eau (incluant
tous les parameétres cités ci-dessus) serait plutét liée a une diminution de la diversité des especes
(Fabricius et De'ath, 2004 ; Fabricius et McCorry, 2006 ; Fabricius et al., 2005 ; 2007). Des
recherches supplémentaires sont donc nécessaires pour expliquer les effets de la qualité de I'eau

sur les octocoralliaires.

En conséquence, les octocoralliaires sont souvent abondants dans les systemes récifaux
perturbés ou ils peuvent présenter un taux de survie plus élevé que les coraux durs sous un large
éventail de conditions environnementales. Des changements dans la structure de lacommunauté
aboutissant a la dominance des octocoralliaires ont été observés suite a des épidémies d’étoiles
de mer corallivores (Acanthaster planci), a la pollution anthropique, a des tempétes, au
blanchissement, a des maladies et a la péche a la dynamite. Ces perturbations ont conduit a une
diminution de la couverture des coraux durs alors que les coraux mous ont maintenu ou

augmenté leur abondance.

1.5 Obijectifs de la these

La communauté scientifique n’a encore que trés peu de données sur les caractéristiques
physiologiques des coraux mous, ou sur leur écologie trophique et leur relation avec leurs
symbiotes (Schubert etal., 2017, van de Water et al., 2018). La recherche sur les octocoralliaires
est en effet tres en retard par rapport a la recherche sur les coraux durs et d'importantes lacunes
dans les connaissances relatives a leur physiologie, en particulier a leur nutrition, doivent encore

étre comblées.

La nutrition est lI'un des facteurs les plus importants impliqués dans la régulation de
I'abondance et la distribution d'une communauté au sein d'un écosystéeme, au méme titre que les
conditions environnementales et les interactions avec d'autres organismes (par exemple la
compétition et la prédation). En particulier, l'acquisition de nutriments fournit I'énergie
nécessaire a la croissance et a la reproduction des coraux et peut favoriser la résistance ou la
résilience des coraux aux changements environnementaux. Dans les récifs oligotrophes d'Eilat
(golfe d'Agaba, nord de la mer Rouge), deux communautés distinctes d'octocoralliaires ont été
identifiées, I’une en surface et I’autre dans la zone mésophotique supérieure (30-45 m). Il est

intéressant de noter que la communauté d’octocoralliaires qui se développe en profondeur est
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caractérisee par une plus grande richesse en especes, ainsi que par une prédominance d'especes
symbiotiques. Bien que ces caractéristiques suggérent un régime lumineux adéquat pour que la
photosynthése du corail s'y déroule (Shoham et Benayahu, 2017), les stratégies nutritionnelles

de ces coraux mous ont fait I'objet de peu d'attention jusqu'a présent.

Cette these se concentre donc sur le fonctionnement de la symbiose dinoflagellé-corail
mou et vise a apporter des connaissances sur I'écologie nutritionnelle de plusieurs espéces
d'octocoralliaires symbiotiques du nord de la mer Rouge, jusqu'a des profondeurs
mésophotiques. La symbiose dinoflagellé-octocoralliaire est connue pour étre différente de
celle des coraux scléractiniaires, en termes de diversité et de stabilité. Alors que les
octocoralliaires présentent une faible diversité de symbiotes, les coraux scléractiniaires
hébergent généralement plusieurs types de symbiotes et sont plus flexibles en fonction des
conditions environnementales dominantes (Baker et Romanski, 2006). Cette différence a été
attribuée au fait que les octocoralliaires dépendent davantage de I'nétérotrophie et ont donc
moins a gagner d’une telle flexibilité symbiotique (van Oppen et al., 2005). Cependant,
I'importance de l'autotrophie et de I'hétérotrophie, ainsi que leur contribution respective aux
besoins métaboliques de I'h6te ont été peu étudiées chez les octocoralliaires et principalement
testées chez les gorgones (Rossi et al., 2020). Les coraux mous étant l'une des principales
composantes des écosystemes récifaux et le changement climatique et les perturbations locales
étant susceptibles d’induire des transitions de plus en plus importantes vers des récifs dominés
par les octocoralliaires (par exemple Tsounis et Edmunds, 2017), il devient primordial de faire

progresser les connaissances sur I'écologie nutritionnelle de leur symbiose.

Par conséquent, dans cette these, nous avons étudié I'acquisition et les flux de nutriments
organiques et inorganiques, chez plusieurs hétes de corail mou, leurs symbiotes dinoflagellés,
et d'autres micro-organismes avec lesquels ils seraient éventuellement associés tels que les
diazotrophes. Les comparaisons avec les symbioses scléractiniaires-dinoflagellés ont mis en
évidence des différences fonctionnelles majeures entre les deux groupes et ont permis de

discuter nos résultats dans un contexte plus large.
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2. Resultats
2.1 Métrique de normalisation et protocole de traitement des échantillons
(Chapitre 2)

La normalisation est une étape fondamentale dans le traitement des données, dont la
pertinence influencera profondément le résultat d'une expérience et son interprétation. Chez les
coraux durs, ce choix se porte généralement sur la surface du squelette, ainsi que la quantité de
chlorophylles ou de protéines aprés extraction des tissus. Cependant, la structure des coraux
mous entraine un certain nombre de problémes pour I'homogénéisation des tissus et la
normalisation des données : 1) La nature gélatineuse, ou semblable au cuir, des tissus des coraux
mous ne permet pas une extraction facile des descripteurs tissulaires, tels que la densité des
symbiotes, la concentration de pigments et de protéines, 2) la métrique de normalisation la plus
utilisée chez les coraux scléractiniaires, la surface du squelette, n'est pas pertinente pour les
coraux mous puisqu'ils ne possedent pas de squelette, 3) la surface d'un fragment de corail mou
est difficile a estimer en raison de leur hydrosquelette trés variable, qui peut rapidement changer
de taille en fonction des conditions environnementales et 4) ils ne permettent pas la comparaison
de parameétres et processus physiologiques des coraux mous a ceux d'autres especes de coraux

comme les scléractiniaires.

Un protocole simple et rapide pour I'homogénéisation des tissus, ainsi qu'une métrique
de normalisation pouvant étre utilisée pour effectuer des études ou des comparaisons inter-
especes, sont donc nécessaires. Dans cette premiére étude, nous avons Vérifié si I'état de
I'échantillon de tissu avant traitement (échantillons congelés vs lyophilisés) et le milieu utilisé
pour I'homogénéisation des tissus (eau de mer filtrée a 0,2 um vs eau distillée) affectent les
mesures des descripteurs de tissu (concentrations en chlorophylles, protéines et dinoflagellés)
chez l'espéce modéle Heteroxenia fuscescens. En outre, la pertinence du poids sec (apres
lyophilisation) et du poids sec sans cendres (apres calcination a 450°C pendant plusieurs heures)
comme métrique de normalisation a été étudiée chez différentes especes de coraux mous. Nos
résultats ont révélé que la lyophilisation des échantillons et leur homogénéisation dans de I'eau
distillée présentent plusieurs avantages, a savoir la minimalisation des pertes de chlorophylles
et protéines (jusqu'a 50%), un gain de temps, ainsi qu’une détermination plus précise du poids
sec et du poids sec sans cendres. Dans I'ensemble, ce protocole optimisé offre une quantification

plus fiable des descripteurs tissulaires et réduit le risque de sous-estimation de ces paramétres
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chez les coraux mous. Enfin, étant donné que la contribution des sclérites au poids sec total de
la colonie peut étre tres différente d'une espéce a l'autre, nous avons démontré que la différence
entre le poids sec et le poids sec sans cendre, qui correspond a la quantité de matiere organique
de I’échantillon, est une mesure fiable pour normaliser les données relatives aux coraux mous,

notamment lorsque des comparaisons entre especes sont effectuées.

2.2 Acquisition du carbone inorganique dissous (Chapitre 3)

L'acquisition autotrophe de carbone contribue largement aux besoins métaboliques des
coraux durs, qui recoivent 90% des photosynthétats produits par les symbiotes. Chez les
octocoralliaires, la contribution des symbiotes aux besoins énergétiques de leur hote est encore
mal comprise. Tout d'abord, les études portant sur la productivité (primaire) des coraux mous
sont rares, limitées a une profondeur de 20 m et les résultats obtenus présentent une forte
variabilité (voir les informations supplémentaires dans Rossi et al., 2018). Il existe plusieurs
sources identifiées pour cette variabilité : 1) les colonies de coraux mous peuvent atteindre
différents degrés d'expansion en fonction des conditions environnementales, ce qui confere une
grande variabilité biologique aux mesures (voir par exemple Fabricius et Klumpp, 1995) ; 2) la
morphologie de la colonie et des polypes, notamment le rapport surface/volume, peut étre plus
ou moins adaptée a l'autotrophie (Baker et al., 2015 ; Rossi et al., 2018) ; et 3) l'utilisation de
différentes méthodes et mesures de normalisation ne permet guere de faire des comparaisons.
En outre, la quantification du transfert de photosynthétats des symbiotes vers I'h6te a été étudiée
chez une seule espece tropicale (Heteroxenia fuscecens) et une seule espéce tempérée (Capnella
gaboensis) en utilisant le *C (Schlichter et al., 1983 ; Farrant et al., 1987).

Nous avons donc réalisé des expériences de tracage du carbone inorganique acquis par
voie autotrophe au moyen de bicarbonate enrichi en *C, qui est un isotope stable, sur deux
espéces de coraux mous (Litophyton sp. et Rhytisma fulvum fulvum), provenant des récifs
coralliens de la mer Rouge de surface et de la zone mésophotique supérieure (40-50 m), afin de
quantifier l'acquisition et l'allocation de carbone autotrophe au sein de I'association
symbiotique. Les mesures de I'acquisition et de la respiration du carbone distinguent Litophyton
sp. comme une espéce principalement autotrophe et Rhytisma fulvum fulvum comme une espece
plutdt hétérotrophe. Chez les deux especes, I'acquisition du carbone était constante aux deux
profondeurs étudiées. Cela représente une différence majeure avec les coraux scléractiniaires,

dont I'acquisition de carbone diminue avec la profondeur. De plus, I'acquisition du carbone et
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le transfert de photosynthétats vers I'hdte diminuent avec l'augmentation de la densité des
symbiotes, ce qui suggere qu’a forte densité, les symbiotes conservent les nutriments pour leurs

propres besoins au lieu de les transférer a leur hote.

2.3 Acquisition de l'azote inorganique/organique dissous (Chapitre 4)

La présence des dinoflagellés symbiotiques procure de nombreux avantages aux
organismes qui les accueillent au sein de leurs cellules. Parmi ces avantages figurent la capacité
de survivre dans des environnements oligotrophes grace a une absorption, une conservation et
un recyclage efficaces des nutriments, réalisés essentiellement par les symbiotes. L'azote est un
élément nutritif essentiel au fonctionnement des holobiontes coralliens, mais sa disponibilité
est souvent faible dans les eaux récifales du fait de la rareté de ses formes dissoutes. Des études
récentes ont fait progresser notre compréhension du cycle de l'azote chez les coraux
scléractiniaires. 1l a été montré que ces coraux peuvent acquérir presque toutes les formes
d'azote dissous, dont le diazote gazeux, les formes inorganiques telles que I'ammonium et le
nitrate, ainsi que des composés organiques dissous tels que des acides aminés. Malgré ces
connaissances obtenues sur les coraux scléractiniaires, la capacité des autres groupes coralliens,
tels que les octocoralliaires, a assimiler les différentes formes d’azote n’a pratiquement jamais
été évaluée. Dans cette these, nous avons donc aborde I'assimilation de toutes ces formes
d’azote par les coraux mous, et comparé les taux d'assimilation obtenus avec ceux mesurés chez

les espéces de coraux scléractiniaires.

e Diazotrophie

La forme la plus abondante d'azote dissous, le diazote atmosphérique, ne peut étre
rendue biologiquement disponible que par I'action de bactéries fixatrices de diazote appelées
diazotrophes (qui réduisent le diazote en ammonium). En milieu marin, ces bactéries
diazotrophes existent sous forme libre ou forment une association symbiotique avec de
nombreux invertébrés qui vont tirer profit de leur activité fixatrice. Les quelques études portant
sur l'assimilation de I'azote dérivé des diazotrophes (DDN) par les coraux tropicaux se limitent
a quelques especes de scléractiniaires (e.g. Stylophora pistillata) et seules deux publications ont
étudié les taux de fixation du diazote en présence de coraux mous (Bednarz et al., 2015, Cardini
et al., 2016). Cependant, ces études ont utilisé la technique de réduction de I'acétyléne, qui ne

quantifie que la fixation de diazote se produisant dans l'eau de mer brute, sans fournir
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d'indications sur les bénéficiaires de I'azote fixé parmi les constituants de 1’holobionte. Seule
l'utilisation du gaz N, permet de suivre le devenir de I'azote diazotrophe (DDN) dans les

différents compartiments de 1’holobionte corallien.

Une premiére étude a donc été réalisée pour évaluer I'importance de la fixation d'azote
pour la nutrition des coraux mous. L’objectif de cette étude était notamment de savoir si les
coraux mous sont associés a des diazotrophes actifs. Nous avons quantifié les taux
d'assimilation de DDN chez quatre espéces de scléractiniaires et trois espéces de coraux mous
des eaux peu profondes de la mer Rouge en utilisant la technique du traceur °N,. Toutes les
espéces de scléractiniaires ont stimulé de maniére significative la fixation de N> dans l'eau de
mer (et le mucus) entourant le corail et ont assimilé le DDN dans leurs tissus. Au contraire, la
fixation de N2 n'a pas été détectée dans l'eau d’incubation des coraux mous, et aucune
assimilation de DDN n’a été¢ mesurée dans les tissus de ces coraux. Cependant, des incubations
au laboratoire de coraux mous avec des cultures de diazotrophes ont montré que les coraux
mous étaient capables d'absorber le DDN provenant de diazotrophes libres. Le mucus des
coraux mous représente probablement un habitat défavorable pour la colonisation et l'activité
des diazotrophes car il contient une faible quantité de matiere organique particulaire, avec une
teneur en azote relativement élevée, par rapport au mucus des coraux scléractiniaires. De plus,
il est connu pour présenter des propriétés antimicrobiennes. Dans I'ensemble, cette étude
suggere que l'assimilation du DDN dans les tissus du corail dépend de la présence de
diazotrophes actifs dans la couche de mucus du corail et/ou dans I'eau de mer environnante.
Etant donné que I'azote est souvent un nutriment limitant la productivité primaire dans les eaux
oligotrophes des récifs, la capacité divergente des coraux scléractiniaires et des coraux mous a
favoriser la fixation de I'azote peut avoir des implications sur la disponibilité de I'azote et la
biogéochimie des récifs dominés par des scléractiniaires par rapport aux récifs dominés par les

coraux mous.

e Assimilation du DIN et du DON

La capacité des coraux mous a assimiler 1'azote dissous a I’échelle de I'organisme restant
inexplorée, une deuxiéme expérience sur l'assimilation d'azote a eu pour objet 1’étude de
l'acquisition de l'azote inorganique et organique dissous par la symbiose coraux mous-
Symbiodiniaceae. En utilisant le marquage avec des isotopes stables, nous avons effectué une

comparaison multi-espéces pour étudier l'assimilation d'ammonium, de nitrate et d’acides
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aminés libres chez plusieurs espéces de coraux mous et scléractiniaires échantillonnés dans la
mer Rouge (Eilat, Israél) a deux profondeurs différentes (8-10 m et 40-50 m). Le principal
résultat montre que pour toutes les sources d'azote, les coraux scléractiniaires présentent des
taux d'assimilation par biomasse plus élevés que les coraux mous (jusqu'a dix fois), bien qu'ils
abritent les mémes genres de Symbiodiniaceae en densités similaires. Cela suggere que les
coraux mous doivent compléter leur faible acquisition d’azote dissous par l'acquisition d'autres
formes d’azote, s'appuyant ainsi plutdt sur une alimentation hétérotrophe pour satisfaire leurs
besoins en azote structurel. Cette découverte met en évidence une acquisition d'azote tres
différente entre les symbioses de coraux mous et scléractiniaires avec leurs dinoflagellés. Un
tel contraste dans la capacité a tirer parti de cette source de nutriments peut aider & comprendre
comment les coraux mous et scléractiniaires répondent a différents degré d’enrichissement

d’eau de mer en nutriments.

2.4 Acquisition in situ de nutriments autotrophes et hétérotrophes chez les coraux

mous (Chapitre 5)

Les octocoralliaires sont d'importants habitants des récifs, de la surface aux profondeurs
mésophotiques et au-dela. Cependant, I'acquisition autotrophe ou hétérotrophe de nutriments
est mal connue chez les coraux mous symbiotiques. Comme les coraux ont la capacité de
capturer des proies, I'hétérotrophie peut représenter une acquisition importante de carbone,
d'azote et d'autres nutriments. La littérature sur le régime alimentaire des coraux mous tropicaux
est cependant tres rare (par exemple Lewis, 1982 ; Sorokin, 1991 ; Fabricius et al., 1995) et la
capacité hétérotrophe des coraux a été principalement estimée par des études en laboratoire. Le
statut hétérotrophe des coraux en conditions in situ est donc encore mal compris, et ce pour

toutes les espéces de coraux.

Une expérience a été congue pour étudier le statut autotrophe et hétérotrophe des coraux
mous in situ. A cette fin, I'abondance de trois biomarqueurs lipidiques, spécifiques de
l'autotrophie et de [I'hétérotrophie, a été étudiée dans les tissus de quatre espéces
d’octocoralliaires, et une de scléractiniaire, prélevées au sein de récifs peu profond et
mésophotique supérieur de mer Rouge. Nos résultats montrent une mixotrophie fonctionnelle
pour toutes les especes symbiotiques, avec un apport significatif de zooplancton aux deux
profondeurs. Bien que les octocoralliaires aient maintenu des concentrations similaires de

marqueurs autotrophes avec 1'augmentation de la profondeur, 1’espéce scléractiniaire a montré
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une diminution de l'autotrophie avec la profondeur, en accord avec les mesures précédentes
d'acquisition de carbone par la photosynthése. L'augmentation de la capacité hétérotrophe avec
la profondeur était spécifique a I'espece, probablement liée aux caractéristiques physiologiques
et morphologiques. Le niveau relativement élevé du marqueur hétérotrophe chez toutes les
especes symbiotiques en eaux peu profondes ne corrobore pas l'idée recue selon laquelle les
coraux dépendent principalement de I'autotrophie dans les eaux peu profondes. Cette étude
souligne donc I'importance de I'hétérotrophie a travers le gradient de profondeur euphotique-
mésophotique supérieur et apporte des avancées majeures dans notre compréhension de
I'importance écologique de l'alimentation chez les coraux. En outre, elle permet de mieux
comprendre la capacité des différentes espéces d'octocoralliaires & exploiter les ressources en
nutriments et contribue a améliorer les prévisions concernant les effets des changements

climatiques et environnementaux sur cet important taxon vivant dans les récifs.

3. Discussion générale et perspectives
3.1 Les coraux mous et scléractiniaires forment des symbioses fonctionnelles
differentes avec leurs dinoflagellés tant dans les récifs de surface que dans

les recifs de la zone mésophotique supeérieure

e L'autotrophie reste stable le long du gradient de profondeur chez les coraux mous alors

qu'elle diminue chez les coraux scléractiniaires

L'acquisition autotrophe de carbone par les symbiotes du corail a été évaluée dans cette
thése par deux approches complémentaires (traceur bicarbonate $3C et acides gras spécifiques
a ’autotrophie, Chapitres 3 et 5). Les deux approches ont montré, pour toutes les espéces de
coraux mous étudiées, que l'assimilation a court et a long terme du carbone dans le tissu héte
du corail était stable le long du gradient de profondeur ou méme augmentée en profondeur
mésophotique. La stabilité de I'apport en nutriments autotrophes le long du gradient de
profondeur suggére que les coraux mous sont soit photo-limités dans les eaux peu profondes
et/ou photo-acclimatés en profondeur. Ceci est en accord avec de précédentes observations
indiquant des taux de photosynthese maximaux mesurés a 20 m de profondeur (en comparaison
avec des eaux de surface) chez plusieurs espéces de coraux mous de la Grande Barriere de
Corail (Fabricius et Klumpp, 1995). Des stratégies d'acclimatation a de faibles niveaux de

lumiere ont été observées chez les symbiotes (c'est-a-dire une réduction de l'auto-ombrage et
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une augmentation de la capacité de captage de la lumiére des cellules des symbiotes ; Cohen et
Dubinsky, 2015 ; Ziegler et al., 2015 ; Einbinder et al., 2016). Cependant, la stabilité de
’autotrophie le long du gradient de profondeur était indépendante du genre de Symbiodiniaceae
hébergé par le corail hote, puisque les associations étaient spécifiques a I'espéce et sont
susceptibles d'étre stables dans I'espace et le temps (Goulet et Coffroth, 2003). Au contraire,
chez le corail dur S. pistillata, on observe une diminution de I'acquisition de carbone autotrophe
avec la profondeur et le remplacement du genre de symbiote Symbiodinium (anciennement
clade A) au genre Cladocopium (anciennement clade C) avec la profondeur (Mass et al., 2007
; Ezzat et al., 2017).

La comparaison du bilan carbone chez les coraux mous et scléractiniaires indique que
le taux d'acquisition du carbone autotrophe est au moins deux fois plus élevé chez S. pistillata
a faible profondeur par rapport aux especes de coraux mous étudiées. Cependant, le carbone
acquis est également perdu (sous forme de respiration et de production de mucus) deux fois
plus vite chez les coraux scléractiniaires, ce qui suggére un fonctionnement différent des
symbioses, ainsi qu’une demande métabolique différente entre les espéces de coraux mous et
durs. La demande métabolique plus élevée chez les coraux scléractiniaires est probablement
due a la calcification, puisque la majeure partie du carbone respire est utilisée pour le dépét de
carbonate de calcium. En effet, prés de 70-75% du carbone utilisé pour la calcification chez les
coraux durs provient de la respiration, et les 25-30% restants du carbone externe de I'eau de mer
(Erez, 1978 ; Furlaetal., 2000 ; Hughes et al., 2010). En outre, la présence du squelette améliore
la productivité du corail grace a la diffusion interne de la lumiere, ce qui peut également
contribuer a expliquer les différences d'acquisition du carbone entre les coraux mous et les

coraux durs.

e L'hétérotrophie est importante a toutes les profondeurs et augmente en zone

mésophotique pour plusieurs especes

Une autre conclusion principale de cette these est que les coraux mous symbiotiques de
surface et de profondeur mésophotique sont plus susceptibles de dépendre de I'hétérotrophie
que de l'autotrophie pour l'acquisition de nutriments, par rapport aux coraux durs. Cette
conclusion est étayée par la grande quantité de biomarqueurs lipidiques, spécifiques au
zooplancton, mesurée dans les tissus des coraux mous aux deux profondeurs (Chapitre 5). Pour

certaines espéces, la quantité de biomarqueurs augmente significativement avec la profondeur,
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ce qui suggere que ce type de nutrition est favoriseé dans le récif mésophotique. En outre, nous
avons constaté au Chapitre 4 que les coraux mous ont une faible assimilation d'azote
inorganique ou organique dissous et ont donc besoin d'acquérir de I'azote a partir d'une autre

source telle que 1’alimentation particulaire.

3.2 Lescoraux mous et scléractiniaires forment des symbioses fonctionnelles différentes
avec leurs dinoflagellés, ce qui pourrait expliquer la plus grande résistance des

coraux mous a I'eutrophisation

Tout d'abord, nous avons montré que le mucus des coraux mous représente un habitat
probablement défavorable pour la colonisation et l'activité des diazotrophes, car il est connu
pour présenter des propriétés antimicrobiennes et contient des particules a teneur relativement
élevée en azote (Kelman et al., 2006 ; Nakajima et al., 2018). En conséquence, les coraux mous
ne favorisent pas la fixation de diazote dans I'eau de mer qui les entoure et n'assimilent pas le
DDN. De plus, des taux d'assimilation de I'azote dissous jusqu'a dix fois inférieurs ont été
observés chez les coraux mous par rapport aux coraux durs, sans différence nette entre les
profondeurs. Cela ne peut pas s'expliquer par 1) une capacité différente d'acquisition des
nutriments liée aux symbiotes dinoflagellés (Baker et al., 2013 ; Ezzat et al., 2017), puisque les
deux groupes partagent les mémes génotypes et/ou densité de symbiotes ou 2) un besoin
différent en azote structurel, puisque les coraux mous et durs présentent une teneur en azote
similaire. Les coraux mous dépendent donc probablement d'une alimentation hétérotrophe pour

satisfaire leurs besoins en azote.

Du fait de la faible capacité des coraux mous a assimiler I'azote dissous dans I'eau de
mer, de faibles quantités de nutriments inorganiques pénétrent dans leurs tissus. 1l est donc peu
probable que les changements de la qualité de I'eau liés aux nutriments (e.g., eutrophisation)
perturbent la symbiose des coraux mous, contrairement aux coraux durs. Bien que cette
conclusion n'ait pas été testée expérimentalement dans le cadre de cette thése et reste
hypothétique, elle pourrait étre illustrée par le modele conceptuel des rapports défavorables des
nutriments inorganiques dissous, introduit par Wiedenmann et al. (2012). En résumeg, les coraux
durs ont de fortes capacités d’assimilation d’azote dissous, ainsi de grandes quantités d’azote
pénetrent au sein de leurs tissus lorsque 1’azote est disponible en fortes concentrations dans
I’eau de mer. Cela favorise une croissance rapide de la population de dinoflagellés, donc une

demande cellulaire accrue, a laquelle ne peuvent subvenir de faibles concentrations en
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phosphore ou autres nutriments essentiels. Un apport insuffisant en phosphore entraine une
modification de la composition lipidique des membranes des symbiotes (qui passent des
phospholipides aux sulpholipides), ce qui les rend plus sensibles au blanchissement (D'Angelo
et Wiedenmann, 2014). La théorie selon laquelle ce modéle ne serait applicable qu’aux coraux
durs, et donc que la symbiose des coraux mous ne serait perturbée qu’en moindre mesure par
une augmentation de nutriments, est soutenue par des observations de terrain : une dominance
relative des coraux mous a été signalée dans les zones impactées par de fortes concentrations
de matieres dissoutes et particulaires (McClanahan et Obura, 1997, Fabricius et Dommisse,
2000 ; Schleyer et Celliers, 2003 ; Fabricius, 2005 ; Baum et al., 2016). De plus, d’autres
propriétés physiologiques pourraient s’ajouter a leur faible capacité a assimiler I’azote dissous
pour expliquer ce phénomene : 1) I’eutrophisation entrainant une plus forte turbidité de I’eau,
une moindre dépendance des coraux mous sur leur symbiose avec leurs dinoflagellés pourrait
les aider a faire face a une diminution de la quantité de lumiére disponible pour la photosynthese
et 2) les particules en suspensions pourraient représenter une source potentielle de nutriments

pour I’alimentation hétérotrophe.

3.3 Synthese graphique

Les principaux résultats de cette thése sont résumés dans la figure ci-apres. La stabilité de la
symbiose des octocoralliaires le long du gradient de profondeur est assurée par la maximisation
de Il'acquisition et de la conservation des nutriments aux deux profondeurs par autotrophie et
hétérotrophie. Ceci est soutenu par une faible assimilation d’azote dissous, une acquisition
stable de carbone inorganique dissous, une grande quantité de matiere organique particulaire
assimilée aux deux profondeurs et aucune assimilation de DDN. De plus, les mémes quantités
de carbone acquises par photosynthése ont été transférées des symbiotes a I'néte aux deux
profondeurs. Par rapport aux coraux mous, les coraux scléractiniaires ont une assimilation plus
¢levée d’azote dissous (avec des taux d'assimilation d’azote organique dissous plus élevés en
profondeur), une acquisition de carbone inorganique dissous plus élevée dans les eaux peu
profondes mais similaire (voire plus faible) en profondeur, une assimilation significative de
DDN et une stimulation de la fixation de diazote dans I'eau de mer environnante. lls subissent
également une perte de carbone plus importante en eaux peu profondes, mais plus faible que
les coraux mous a la profondeur mésophotique. Les symbiotes des coraux scléractiniaires ont
transféré des quantités de carbone beaucoup plus faibles avec la profondeur que ceux des coraux

mous. La présence d'un squelette de carbonate de calcium chez les coraux durs joue
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probablement un réle important dans les différences de métabolisme (c'est-a-dire de besoins
énergétiques) et de productivité mises en évidence ici. Enfin, les différences spécifiques aux
espéces en matiere d'acquisition et de répartition des nutriments peuvent étre dues 1) au rapport
entre la surface et le volume de la colonie (un faible rapport ne favorise pas I'exposition a la
lumiere et I'échange de gaz ou de nutriments a travers le tissu épidermique), 2) aux
caractéristiques micro-morphologiques des polypes (les branches fines, les petits polypes et le
rapport éleve entre la surface et le volume des polypes étant plus adaptés a l'autotrophie ; grands
polypes pour I'nétérotrophie), 3) lI'espece de symbiote hébergée (influence I'assimilation et le
transfert de carbone), 4) la densité des symbiotes (influence I'assimilation et le transfert du
carbone), et 5) I'état nutritionnel (une efficacité hétérotrophe plus élevée étant corrélée a des
taux plus éleves de carbone transfére).
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Figure récapitulative. Différence de fonctionnement des symbioses nutritionnelles du corail
mou et du corail dur des zones récifales peu profondes a mésophotiques en mer Rouge. La
gamme des taux correspondant a lI'acquisition et aux flux de nutriments est indiquée sous I'acronyme
des nutriments. Ces taux ne sont pas comparables entre eux mais uniquement entre les groupes
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(coraux mous contre coraux durs) et les profondeurs (peu profond contre mesophotique). Chl =
concentration en chlorophylles (ug Chl (a + ¢2) g™t AFDW). Pg = Acquisition de carbone autotrophe
(ug C pg? Chl). Ts = Carbone transféré des symbiotes vers 'hote (ug C gt AFDW ht). AFDW =
poids sec sans cendres. DIN = Azote inorganique dissous (comprenant NH4 et NO3, en pg N g™
AFDW h). DON = Azote organique dissous (comprenant les acides aminés libres dissous, en pg
N g AFDW h). DFAA = Acides aminés libres dissous. DDN = Azote provenant des diazotrophes
(ng N mg™ DW h). DW = Poids sec. Les taux de fixation de N2 dans I'eau de mer sont exprimés
enng N L d. DIC = Carbone inorganique dissous (ug C gt AFDW h'). POM = Matiére organique
particulaire. L'assimilation de POM a été étudiee avec un biomarqueur lipidique spécifique du
zooplancton (acide cis-gondoique (CGA, 20:109), en pug g* AFDW). Les biomarqueurs lipidiques
specifiques de l'autotrophie, 1'acide stéaridonique (SDA, 18:4 ®3) et I'acide docosapentaénoique
(DPA, 22:5 ®3), n'apparaissent pas sur la figure. Les concentrations de SDA étaient de 1-70 et de
1-146 ng g XAFDW dans les coraux peu profonds et mésophotiques, respectivement, et ont diminué
de 11 a3 pg g AFDW avec la profondeur dans le corail dur. Les concentrations de DPA étaient de
3-7 et 3-5 ng g AFDW dans les coraux peu profonds et les coraux mésophotiques, respectivement,
et diminuaient de 5 a 2 pg g™ d’AFDW avec la profondeur dans le corail dur.

3.4 Conclusion et perspectives

Cette these souligne I'importance des apports autotrophes et hétérotrophes dans la
nutrition des coraux mous, ce qui leur confere une plasticité trophique le long du gradient de
profondeur. Ce double mode de nutrition représente certainement un atout pour la colonisation
de différents habitats et peut leur fournir un mécanisme d'adaptation pour soutenir leur
croissance en conditions stressantes. Les résultats obtenus dans chaque chapitre ont ouvert la
voie a de futures expériences, qui permettraient une compréhension plus approfondie des

processus observeés ici a I'échelle de I'organisme. Quelques exemples sont donnés ci-dessous.

e Etudier I'environnement lumineux interne des coraux mous : le role des tissus et des

sclérites

Les coraux scléractiniaires ont la capacité de réguler I'environnement lumineux percu
par leurs symbiotes a I’intérieur de leurs tissus. Par exemple, ils peuvent filtrer 1'excés de
lumiere qui peut étre nocif pour les algues ou améliorer la diffusion et la dispersion interne de
la lumiere grace aux propriétés optiques uniques de leurs tissus et de leur squelette. Une telle
amplification dans le champ lumineux local des symbiotes améliore notablement la
photosynthése. Bien que les coraux mous n‘aient pas de squelette, ce qui pourrait expliquer leur
taux d'acquisition et d'assimilation du carbone plus faible par rapport a ceux des coraux

scléractiniaires, ils possedent une grande quantité de sclérites. Les sclérites pourraient agir

158



comme diffuseurs de lumiére. Leur taille, leur forme et leur couleur spécifiques a l'espece
pourraient notamment contribuer a expliquer les différences d'efficacité de la photosynthése. Il
serait donc intéressant d'étudier I'environnement lumineux interne des coraux mous, ainsi que
le role possible des sclérites dans la diffusion de la lumiere, en utilisant des microcapteurs de
lumiere. L'hydrosquelette des coraux mous peut cependant poser quelques problémes

techniques car il est susceptible de se contracter sur les microcapteurs.

e Importance de l'acquisition du phosphore pour la stabilité de la symbiose des coraux

mous

Chez les coraux scléractiniaires, il a été démontré que le rapport azote/phosphore joue un
role majeur dans la stabilit¢ de la symbiose. Principalement, une augmentation de la
disponibilité en azote (majoritairement sous forme de nitrate) sans une augmentation similaire
de phosphore, peut augmenter la croissance de la population de dinoflagellés et par conséquent
augmenter le blanchissement des coraux. Comme les coraux mous sont moins enclins a
absorber I'azote inorganique dissous, il serait intéressant de tester 1) les niveaux de nitrate
induisant une rupture de la symbiose et 2) le réle de la disponibilité en phosphore pour le
maintien de cette symbiose dans diverses conditions d'azote et/ou environnementales. Les
résultats pourraient apporter des informations sur la maniére dont les coraux mous font face a

I'eutrophisation et au stress thermique.

e FEtudier le stress oxydant chez les coraux mous

La présence de symbiotes chez les coraux est souvent bénéfique en raison de I'apport
énergétique fourni par la photosynthése. Toutefois, elle peut également imposer des restrictions
(e.g., la distribution bathymétrique) et des risques (e.g., une augmentation plus importante des
espéeces réactives a I'oxygeéne libérées dans des conditions de stress par la photosynthese). Au
niveau cellulaire, la production d'espéces réactives d'oxygene et d'azote représente un facteur
responsable du blanchissement des coraux. Puisque les résultats de cette thése montrent
différentes stratégies nutritionnelles affichées par les coraux mous et durs le long du gradient
de profondeur (en particulier en ce qui concerne l'azote), une dépendance différente a
l'autotrophie, ainsi qu'une flexibilité générale envers la symbiose, il pourrait étre intéressant
d'étudier les mécanismes pouvant conduire a une rupture de la symbiose chez les coraux mous,

dans un contexte de stress thermique.
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e Hétérotrophie

La nutrition hétérotrophe n'ayant été évaluée qu'a l'aide d'un biomarqueur lipidique
specifique au zooplancton dans cette these, des expériences impliquant des incubations avec
une large gamme de proies marquées (picoplancton et nanoplancton) permettraient de mieux
caractériser le régime alimentaire des coraux mous. En particulier, l'utilisation d'un marquage
a I’aide d’isotopes stables confirmerait I'efficacité de l'ingestion des proies, puisque le mucus
des coraux mous est connu pour avoir des propriétés antimicrobiennes et pourrait

éventuellement affecter les concentrations de plancton mesurées dans les chambres.

e Contribution de l'autotrophie par rapport a I'nétérotrophie dans le budget nutritionnel

des coraux mous

Enfin, cette thése n'a pu fournir d’information sur la contribution relative de I'apport en
nutriments autotrophes et hétérotrophes dans les besoins métaboliques de I'holobionte. Une
autre expérience utilisant des biomarqueurs lipidiques spécifiques de l'autotrophie et de
I'nétérotrophie pourrait étre congue a cette fin et devrait impliquer différentes situations
nutritionnelles rencontrées par les mémes colonies (e.g., un suivi saisonnier). Une autre
possibilité serait d'utiliser une approche multi-biomarqueurs, en combinant les signatures

d'isotopes stables avec les lipides totaux.
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Appendices

Appendix | — Supplementary material of publication n°1 (Chapter 2)

Table S1 Review of the literature: metrics used for normalizing soft coral data in physiological studies. AFDW = ash-free dry weight. DW
= dry weight. DMSP = dimethylsulfopropionate. DOM = dissolved organic matter. The asterisk notifies a study for which the normalizing metric
(i.e., dry weight of decalcified samples) has been considered as ash-free dry weight by the authors.

Normalizing metric Family Taxa Measured parameter Reference
Xeniidae Asterospicularia sp. Oxygen flux
Briareidae Briareum stechei Oxygen flux
Nephtheidae Capnella lacertiliensis Oxygen flux
Nephtheidae Dendronephthya spp. Oxygen flux
Xeniidae Efflatounaria sp. Oxygen flux
Alcyoniidae Lobophytum spp. Oxygen flux
Nephtheidae Nephthea sp. Oxygen flux (Fabricius and Klumpp 1995)
AFDW Nephtheidae Paralemnalia clavata Oxygen flux
Nephtheidae = Paralemnalia digitiformis Oxygen flux
Alcyoniidae Sarcophyton spp. Oxygen flux
Nephtheidae Scleronephthya sp. Oxygen flux
Alcyoniidae Sinularia spp. Oxygen flux
Xeniidae Xenia spp. Oxygen flux
Nephtheidae  Scleronephthya corymbosa Oxygen flux Fabricius et al. (1995b)
Alcyoniidae Alcyonium digitatum Nutrient flux (ammonium) Migné and Davoult (1997a)
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Alcyoniidae Alcyonium digitatum Oxygen flux Migné and Davoult (1997b)
Nephtheidae = Dendronephthya hemprichi Feeding rates (phytoplankton) Fabricius et al. (1998)
Alcyoniidae Alcyonium digitatum Feeding rates (phyto- and zooplankton) Migné and Davoult (2002)
Alcyoniidae trosfhrglcl)ggﬁ)c:'ﬁm DMSP concentration
Alcyoniidae Sinularia macropodia DMSP concentration
.. . . . . Van Alstyne et al. (2006)
Alcyoniidae Sinularia maxima DMSP concentration
Alcyoniidae Sinularia pauli DMSP concentration
Alcyoniidae Sinularia polydactyla DMSP concentration
Alcyoniidae Sinularia maxima B'OCheg:gzlh;%':;'igj:gTig: dtl(;sgrl:teesn(grotem,
Alcyoniidae Sinularia polydactyla B'OCheg:Cbilh;%':;ngggTig: dtl(;sosrl:teesngrotem, Slattery et al. (2013)
Alcyoniidae Sinulariz_a polydac_tyla X  Biochemical composition_ o_f tissues (protein,
maxima hybrid carbohydrate and lipid content)

Alcyoniidae Lobophytum patulum Oxygen flux and mucus production
Alcyoniidae Lobophytum depressum Oxygen flux and mucus production
Alcyoniidae Sinularia dura Oxygen flux and mucus production Riegl and Branch (1995)*
Alcyoniidae Sinularia leptoclados Oxygen flux and mucus production
Alcyoniidae Sarcophyton glaucum Oxygen flux and mucus production

Xeniidae Heteroxenia fuscescens Biochemical composition of tissues (protein

. . con-t o) Schlichter et al (1983)
Xeniidae Heteroxenia fuscescens Inorganic carbon
DW Xeniidae Heteroxenia fuscescens Photosynthetic and accessory pigments

Xeniidae Heteroxenia fuscescens Inorganic carbon Schlichter et al (1984)

Nephtheidae Capnella gaboensis Inorganic carbon

Nephtheidae

Capnella gaboensis

Oxygen flux

Farrant et al. (1987)
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Nephtheidae

Nephtheidae

Alcyoniidae

Clavulariidae

Nephtheidae
Xeniidae
Alcyoniidae
Xeniidae

Alcyoniidae
Alcyoniidae

Xeniidae

Alcyoniidae
Alcyoniidae
Alcyoniidae

Alcyoniidae

Alcyoniidae

Alcyoniidae

Capnella gaboensis

Capnella gaboensis

Alcyonium paessleri

Clavularia frankliniana

Gersemia antartica
Xenia umbellata
Rhytisma fulvum

Heteroxenia fuscescens

Sinularia flexibilis
Sinularia flexibilis

Xenia

Sinularia flexibilis
Sinularia flexibilis
Sarcophyton cf. glaucum

Sinularia flexibilis

Sarcophyton cf. glaucum

Sarcophyton cf. glaucum

Photosynthetic and accessory pigments
(chlorophyll content)

Symbiodinium density
Biochemical composition of tissues

(carbohydrates, lipids, protein, refractory,
ash)

Biochemical composition of tissues
(carbohydrates, lipids, protein, refractory,
ash)

Biochemical composition of tissues
(carbohydrates, lipids, protein, refractory,
ash)

Caloric content

Caloric content

Biochemical composition of tissues
(carbohydrates, lipids, protein, ash)

Symbiodinium density (DW)
Metabolite concentration (flexibilide)

Photosynthetic and accessory pigments
(chlorophyll a content)

Photosynthetic and accessory pigments
Symbiodinium density
Symbiodinium density

Photosynthetic and accessory pigments
(chlorophyll a content)

Photosynthetic and accessory pigments
(chlorophyll a content)

Photosynthetic and accessory pigments

Slattery and McClintock (1995)

Ben-David-Zaslow and Benayahu
(1998)

Ben-David-Zaslow and Benayahu
(1999)

Khalesi et al. (2007)
Khalesi et al. (2009)

Bednarz et al. (2012)

Rocha et al. (2013a)

Rocha et al. (2013b)

Leal et al. (2014)

Costa et al. (2016)
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Alcyoniidae  Sarcophyton cf. glaucum Symbiodinium density
Sclerites DW Alcyoniidae Cladellia sp. Calcification rate Tentori and Allemand (2006)
Xeniidae Heteroxenia fuscescens DOM flux
Xeniidae Heteroxenia fuscescens Inorganic carbon Schlichter (1982)
Xeniidae Heteroxenia fuscescens Amino acids and glucose
Nephtheidae Capnella gaboensis Inorganic carbon
Nephtheidae Capnella gaboensis Oxygen flux
i i Farrant et al. (1987
Nephtheidae Capnella gaboensis Photosynthetic and accessory pigments ( )
(chlorophyll content)
Nephtheidae Capnella gaboensis Symbiodinium density
Alcyoniidae Lobophytum compactum Symbiodinium density Mlchalek—vzlgggf)r and Willis
Nephtheidae Litophyton arboreum Biochemical composition of tissues (protein
content)
Wet weight Nephtheidae Litophyton arboreum Calcification rate .
. . Tentori et al (2004)
Nephtheidae Litophyton arboreum Cell growth
Nephtheidae Litophyton arboreum Biochemical comré%s;]l;té?]rtw)of tissues (protein

Alcyoniidae
Alcyoniidae

Alcyoniidae
Alcyoniidae
Alcyoniidae
Alcyoniidae

Alcyoniidae

Cladellia sp.

Sarcophyton
trocheliophorum

Sinularia maxima
Sinularia pauli
Sinualria polydactyla
Sinularia macropodia

Sinularia flexibilis

Calcification rate
DMSP concentration

DMSP concentration
DMSP concentration
DMSP concentration
DMSP concentration

Biochemical composition of tissues (protein
content)

Tentori and Allemand (2006)

Van Alstyne et al. (2006)

Khalesi et al. (2007)
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Photosynthetic and accessory pigments

Alcyoniidae Sinularia flexibilis (chlorophyll a content)
Alcyoniidae Sinularia flexibilis Symbiodinium density
" . . Biochemical composition of tissues (lipids
Alcyoniidae Sinularia sp. and fatty acids) Imbs et al. (2010)
Nephtheidae Nephthea spp. Electron transport system activit
P .. P PP port sy - Y Baum et al. (2016)
Alcyoniidae Sarcophyton spp. Electron transport system activity
Alcyoniidae Sinularia sp. DMSP concentration
Alcyoniidae Sarcophyton sp. DMSP concentration
Y . Py P . . Haydon et al. (2018)
Nephtheidae Capnella gaboensis DMSP concentration
Anthothelidae  Erythropodium hicksoni DMSP concentration
Alcyoniidae Sinularia flexibilis Budding rate Khalesi et al. (2009)
Buoyant weight Alcyoniidae Sinularia flexibilis Energy expenditure
Y J / . . . - yexp Khalesi et al. (2011)
Alcyoniidae Sinularia flexibilis Oxygen flux
Colony Xeniidae Heteroxenia fuscescens Oxygen flux Kremien et al. (2013)
Photosynthetic and accessory pigments
Nephtheidae  Dendronephthya hemprichi (chlorophyll a, phaeopigments and total Fabricius et al. (1995a)
photopigments)
Photosynthetic and accessory pigments
Nephtheidae = Dendronephthya sinaiensis (chlorophyll a, phaeopigments and total

Polyp number

Nephtheidae
Nephtheidae
Nephtheidae
Nephtheidae
Nephtheidae

Dendronephthya hemprichi
Dendronephthya sinaiensis
Scleronephthya corymbosa
Dendronephthya hemprichi
Dendronephthya hemprichi

photopigments)
Feeding rates (phytoplankton)
Feeding rates (phytoplankton)
Feeding rates (phytoplankton)
Feeding rates (phytoplankton)
Feeding rates (phytoplankton)

Fabricius et al. (1995b)

Fabricius et al. (1998)
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Nephtheidae

Dendronephthya hemprichi

Oxygen flux

Nephtheidae Litophyton arboreum Calcification rate .
. k Tentori et al (2004)
Nephtheidae Litophyton arboreum Cell growth
Alcyoniidae Cladellia sp. Calcification rate Tentori and Allemand (2006)
Xeniidae Heteroxenia fuscescens Metabolite concentration (palythine) Zeevi Ben-Yosef et al. (2006)
Alcyoniidae Sinularia flexibilis Photosynthetic and accessory pigments .
(chlorophyll a content) Khalesi et al. (2009)
Alcyoniidae Sinularia flexibilis Symbiodinium density
Xeniidae Ovabunda macrospiculata Symbiodinium density Gabay et al. (2013)
. Xeniidae Heteroxenia fuscescens Oxygen flux
Protein . .
Xeniidae Heteroxenia fuscescens Photosynthetic and accessory pigments (total
chlorophyll content)
.. . . . Ezzat et al. (2016)
Xeniidae Heteroxenia fuscescens Symbiodinium density
Xeniidae Heteroxenia fuscescens Uptakes of nutrients (ammonium, nitrate and
phosphorus)
Alcyoniidae Sinularia sp. DMSP concentration
Alcyoniidae Sarcophyton sp. DMSP concentration
Y . Py P . . Haydon et al. (2018)
Nephtheidae Capnella gaboensis DMSP concentration
Anthothelidae  Erythropodium hicksoni DMSP concentration
Alcyoniidae Alcyonium fulvum Symbiodinium densit
y . Y y o i y Drew (1972)
Alcyoniidae Sarcophyton Symbiodinium density
Nephtheidae Capnella gaboensis Inorganic carbon

Surface area

Nephtheidae
Nephtheidae

Nephtheidae
Xeniidae

Capnella gaboensis
Capnella gaboensis

Capnella gaboensis
Xenia

Oxygen flux

Photosynthetic and accessory pigments
(chlorophyll content)

Symbiodinium density
OM flux

Farrant et al. (1987)

Bednarz et al. (2012)
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Xeniidae Xenia Oxygen flux
Xeniidae Heteroxenia fuscescens Oxygen flux Kremien et al. (2013)
Nephtheidae Sarcophyton Dinitrogen fixation
Xeniidae Xeniidae Dinitrogen fixation
. Bednarz et al. (2015)
Alcyoniidae Sarcophyton Oxygen flux
Xeniidae Xeniidae Oxygen flux
Nephtheidae Sarcophyton Dinitrogen fixation
Xeniidae Xeniidae Dinitrogen fixation .
" Cardini et al. (2016)
Alcyoniidae Sarcophyton Oxygen flux
Xeniidae Xeniidae Oxygen flux
Alcyoniidae Sarcophyton DMSP concentration
trochellophorum
Alcyoniidae Sinularia maxima DMSP concentration
. Sinularia maxima x .
Alcyoniidae polydactyla hybrid DMSP concentration Van Alstyne et al. (2006)
Alcyoniidae Sinularia pauli DMSP concentration
o ' Alcyoniidae Sinualria polydactyla DMSP concentration
Symbiodinium ce Alcyoniidae Sinularia macropodia DMSP concentration
Alcyoniidae  Sarcophyton cf. glaucum Photosynthetic and accessory pigments Rocha et al. (2013Db)
Alcyoniidae Sinularia flexibilis Photosynthetic and accessory pigments Rocha et al. (2013a)
Xeniidae Heteroxenia Photosynthetic and accessory pigments
(chlorophyll a content)
" heti i Gabay et al. (2013)
Alcyoniidae Sarcaphyton sp. Photosynthetic and accessory pigments

(chlorophyll a content)
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Appendix Il — Supplementary material of publication n°3
(Chapter 3)

Material and Methods

Physiological and tissue descriptor measurements

For the determination of the symbiont density, total chlorophyll concentration and ash-free dry
weight (AFDW) from the experimental nubbins, we followed the protocol of Pupier et
al.(Pupier et al. 2018). Briefly, freeze-dried samples were homogenized in a Potter tissue
grinder. A subsample was weighed, and then combusted at 450°C for 4 h in a muffle furnace
(Thermolyne 62700, Thermo Fischer Scientific, the United States). AFDW was determined as
the difference between the DW and ash weight (AW) of the subsample and extrapolated to the
total weight of the nubbin. The remaining sample was also weighed, and then homogenized
with 10 mL distilled water (DI). The homogenate was centrifuged for 10 min (at 11,000 g at
4°C) to separate the animal host (supernatant) from the symbionts (pellet). Light microscopy
confirmed the total removal of symbionts from the supernatant. The symbiont pellet was rinsed
twice to eliminate any remaining host cells(Tremblay et al. 2012), and re-suspended in 10 mL
DI. After mixing, 500 pL and 2.5 mL were subsampled for the determination of symbiont
density and total chlorophyll concentration, respectively. Symbiont density was quantified
microscopically via eight replicate haemocytometer counts (Neubauer-improved
haemocytometer, Marienfeld, Germany). For chlorophyll analysis, the 2.5 mL subsamples were
centrifuged for 10 min (at 8,000 g at 4°C) and the supernatant was discarded. Pellets were re-
suspended into 4 mL of acetone (100%) amended with magnesium chloride (Sigma Aldrich,
Germany) in order to extract the chlorophyll during 24h in the dark at 4°C. Chlorophyll a and
C2 concentrations were determined following the method of Jeffrey & Humphrey(Jeffrey and
Humphrey 1975) by the use of a spectrophotometer (SAFAS, Monaco). Data were normalized
to the total AFDW of the nubbin.

NaH2COs; incubations

Carbon incorporation rates in the symbionts (ps) and coral host tissue (pH) were calculated as

follow:
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_ (Cmeas - Cnat) * Msample * M
P (Cinc - Cmeas) * (tpulse + tchase) * AFDW

where Cmeas and Cnat are the percentages of *3C measured on the samples (symbionts or host
tissues) from 3C-enriched experiments and controls, respectively. Cinc is the percent *C
enrichment of the incubation medium; Msample IS the mass of the freeze-dried sample (mg); Mc
is the mass of carbon per milligram of symbiont or host tissue (ug mg™); AFDW is the ash-free
dry weight (g); and tpuise and tehase are incubation times (h) of the nubbins in the enriched and
non-enriched incubation media, respectively. Cinc varied during the pulse chase and was

calculated as:

Cio = (Cpulse * tpulse) + (Cchase * tchase)
e (tpulse + tchase)

where Cpuse and Cenase are the percent 2*C enrichment of the enriched and non-enriched
incubation media, respectively (Cchase=1.1%).

The amount of carbon acquired through photosynthesis, translocated from the symbionts to the

host (Ts) was calculated as:
Ts=Pc—ps—Rs

where Pc is the total amount of autotrophic carbon produced by the symbionts; ps is the carbon

assimilation rate and Rs the respiration rate of the symbionts.

Finally, the amount of carbon lost (Cr) through respiration (Rc) and through particulate and

dissolved carbon release (proc/poc) iS:

CL=Pc—ps—pu
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Table S2: Statistical results (two-way ANOVA) about the effect of species and depth on
tissue descriptors (Symbiodiniaceae density and total chlorophyll (a+c2) concentrations, n
=9 to 10 per condition) and carbon budgets in Litophyton sp. and Rhystima fulvum fulvum
from 8 m and 40 m depth (n = 3 to 5 per condition). AFDW = ash-free dry weight. Pc =
autotrophic carbon acquisition. Rc = respired carbon. Pulse and chase refer to the periods of
time to trace the fate of inorganic carbon assimilated by host (pn) and symbionts (ps). Ts =
photosynthates translocation. C. = carbon lost as respiration of the holobiont and organic matter
release.

Df F-value p-value
TISSUE DESCRIPTORS
Symbiodiniaceae density

Species 1 31.230 <0.01
Depth 1 9.783 <0.01
Species:Depth 1 0.996 0.32518
Residuals 35

Chlorophyll concentration (ug g* AFDW)
Species 1 2.326 0.135965
Depth 1 18.395 <0.01
Species:Depth 1 0.341 0.563096
Residuals 36

Chlorophyll concentration (g symbiont cell™)
Species 1 27.996 <0.01
Depth 1 10.260 <0.01
Species:Depth 1 2.188 0.14806
Residuals 35

Pc (ug C g AFDW h?)
Species 1 9.619 <0.01
Depth 1 0.004 0.9524
Species:Depth 1 2.654 0.1241
Residuals 15

Pc (ug C symbiont cell?)
Species 1 3.231 0.0938
Depth 1 6.124 0.0267
Species:Depth 1 0.978 0.3395
Residuals 14

Rc (ug C g* AFDW h)
Species 1 13.504 <0.01
Depth 1 3.151 0.10352
Species:Depth 1 23.537 <0.01
Residuals 11

PULSE

pr (Ug C gt AFDW h?)
Species 1 0.020 0.888
Depth 1 0.177 0.680
Depth:Species 1 0.008 0.931
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Residuals

ps(ug C gt AFDW h?)
Species
Depth
Depth:Species
Residuals
Ts(ug C gt AFDW ht)
Species
Depth
Depth:Species
Residuals
CiL(ug C gt AFDW h?)
Species
Depth
Depth:Species
Residuals

pr (g C g AFDW h?)
Species
Depth
Depth:Species
Residuals
ps(ug C g* AFDW h)
Species
Depth
Depth:Species
Residuals
Ts(ug C gt AFDW ht)
Species
Depth
Depth:Species
Residuals
CL(ug C gt AFDW h)
Species
Depth
Depth:Species
Residuals

CHASE

15

14

27.360
1.285
0.623

15.25
7.95
52.82

78.426
6.758
14.945

0.908
1.309
0.515

51.692
0.052
1.147

5.850
0.049
1.935

6.785
0.033
0.866

<0.01
0.274752
0.442087

<0.01
0.01294
<0.01

<0.01
0.0201
<0.01

0.357
0.272
0.485

<0.01
0.823
0.302

0.0298
0.8277
0.1859

0.0208
0.8584
0.3678

173



Table S3 Atom% 3C of studied corals (Host) and their Symbiodiniaceae (Symbionts) after a 5h pulse of H3COs and a 19h chase in
filtered seawater. Data represent the mean * standard error of five replicates collected from the shallow (8 m depth) and mesophotic (40 m depth)
reef in Eilat, Israel. Nat. ab. = Natural abundance; reflects the natural abundance isotope composition prior to tracer incubation.

Host Symbionts
Nat. ab. Pulse Chase Nat. ab Pulse Chase
(%) (%) (%) (%) (%) (%)

_ Shallow 1.0816 + 1.2272 + 1.2216 + 1.0844 + 1.2645 + 1.2986 +

Litophyton sp. 0.0003 0.0205 0.0198 0.0002 0.0346 0.0325
Mesophotic 1.0803 £ 1.2449 + 1.2348 £ 1.0823 £ 1.3123 + 1.3021 +

0.0003 0.0175 0.0094 0.0005 0.0287 0.0279
Rhytisma fulvum Shallow 1.0835 + 1.1730 £ 1.1734 + 1.0904 + 1.1245 + 1.1026 +

fulvum 0.0003 0.0065 0.0132 0.0008 0.0055 0.0029
Mesophotic 1.0830 £ 1.1617 £ 1.1532 + 1.0957 + 1.1324 + 1.1242 +

0.0001 0.0142 0.0092 0.0018 0.0025 0.0066
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Table S4: Total chlorophyll and autotrophic carbon acquisition of Stylophora
pistillata along the depth gradient. (a) Parameters normalized to surface area of the
skeleton(Ezzat et al. 2017). (b) Parameters normalized to ash-free dry weight. The values
of this table represent estimates calculated from A using a conversion coefficient (255.65
+ 8.98) determined in this study. Pc = autotrophic carbon acquisition.

a Total chlorophyll Pc
(hg cm?) (Mg C cmh)

Depth (m) November November

5 3.61 9.49

50 6.87 2.17

b Total chlorophyll Pc

(Mg g™ AFDW) (Mg C g* AFDW h?)

Depth (m) November November

5 923 2,426

50 1,756 555

Table S5: Coefficients estimated to convert data normalized to surface area of the
skeleton into data normalized to ash-free dry weight (mean + standard error = 255.65
+ 8.98). The nubbins (n = 8) were fragmented from Stylophora pistillata colonies grown at
the Monaco Scientific Center. DW = dry weight. AFDW = ash-free dry weight. Calculated
coefficients are the ratio between surface area of the skeleton and ash-free dry weight.

Nubbin ~ DW (g) AFDW (g)  Surface area (cm?)  Coefficient

1 0.0609 0.0488 11.921 244.416
2 0.0610 0.0460 10.461 227.373
3 0.0992 0.0836 19.183 229.524
4 0.0855 0.0688 16.154 234.830
5 0.1341 0.0984 28.983 294.543
6 0.1071 0.0892 24.614 276.018
7 0.1112 0.0991 25.748 259.860
8 0.0158 0.0146 4.065 278.638
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Figure S1: Levels of photosynthetically active radiation (PAR) received at the seasurface, 10 m depth and 40 m depth in Eilat during the
five days of our experiment. Surface data was provided by the Israel National Monitoring program of the Gulf of Eilat and levels along the depth
gradient were calculated according to Beer-Lambert law, with an attenuation coefficient of 0.1 m™ (Akkaynak et al. 2017; Tamir et al. 2019).
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Appendix Il - Supplementary material of publication n°5
(Chapter 4)

Table S6. Lambda of Box-Cox transformation (x*1/i) used for statistical tests.

Variable Figure Lambda
Symbiodiniaceae density 1 0.101010
C:N of the host 2A -0.666666
N content of the host 2B -0.181818
C:N of the symbionts 3A -1.474747
N content of the symbionts 3B -1.030303
DN assimilation rate in the host (per AFDW) 4 -0.060606
DN assimilation rate in the symbionts (per AFDW) 5 -0.060606
DN assimilation rate in the host (per AFDW) 6A 0.060606
DN assimilation rate in the symbionts (per AFDW) 6B 0.020202
Chlorophyll concentration (per AFDW) S1A 0.262626
Chlorophyll concentration (per symbiont cell) S1B 0.262626
DN assimilation rate in the host (per surface) S2A 0.343434
DN assimilation rate in the symbionts (per surface) S2B 0.141414

Table S7. Statistical differences estimated between sources in the host and
Symbiodiniaceae fractions.

DN assimilation in the host fraction (per AFDW) — Figure 4

Depth = Deep, Species = Galaxea:

Source emmean SE df asymp.LCL asymp.UCL .group

Nitrate 2.8788 0.167 Inf 2.5517 3.206 a
Ammonium 3.1948 0.167 Inf 2.86767 3.522 a

DFAA 3.3961 0.167 Inf 3.06897 3.723 a

Depth = Deep, Species = Rhytisma:

Source emmean SE df asymp.LCL asymp.UCL .group

DFAA -0.0938 0.167 Inf -0.42085 0.233 a

Nitrate 1.0336 0.167 Inf 0.70652 1.361 b
Ammonium 1.76 0.167 Inf 1.43296 2.087 c

Depth = Deep, Species = Sarcophyton:
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Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

Source
Nitrate
Ammonium
DFAA

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

emmean SE df asymp.LCL
-2.4887 0.167 Inf -2.81578
-0.8421 0.167 Inf -1.16916
-0.1498 0.167 Inf -0.47686

Depth = Deep, Species = Seriatopora:

emmean SE df asymp.LCL
2.9323 0.167 Inf 2.60519
3.3656 0.167 Inf 3.03852
3.4852 0.167 Inf 3.15813

Depth = Deep, Species = Stylophora:

emmean SE df asymp.LCL
2.6151 0.167 Inf 2.28801
3.2699 0.167 Inf 2.9428
3.3586 0.167 Inf 3.03148

Depth = Shallow, Species = Galaxea:

emmean SE df asymp.LCL
2.4936 0.167 Inf 2.16654
3.1077 0.167 Inf 2.78057
3.2491 0.167 Inf 2.92197

Depth = Shallow, Species = Litophyton:

emmean SE df asymp.LCL
-1.388 0.167 Inf -1.7151
-0.1899 0.167 Inf -0.51702
1.2232 0.187 Inf 0.85749

Depth = Shallow, Species = Rhytisma:

emmean SE df asymp.LCL
-0.5066 0.167 Inf -0.83364
0.3197 0.167 Inf -0.00742
1.4321 0.187 Inf 1.06641

Depth = Shallow, Species = Sarcophyton:

emmean SE df asymp.LCL
-2.3626 0.167 Inf -2.68966
-1.0863 0.167 Inf -1.41334
-0.015 0.187 Inf -0.38067

Depth = Shallow, Species = Seriatopora:

emmean SE df asymp.LCL
2.0527 0.167 Inf 1.72558
2.2123 0.167 Inf 1.88516
3.4938 0.167 Inf 3.1667

Depth = Shallow, Species = Stylophora:

asymp.UCL
-2.162
-0.515
0.177

asymp.UCL
3.259
3.693
3.812

asymp.UCL
2.942
3.597
3.686

asymp.UCL
2.821
3.435
3.576

asymp.UCL
-1.061
0.137
1.589

asymp.UCL
-0.179
0.647
1.798

asymp.UCL
-2.035
-0.759
0.351

asymp.UCL
2.38
2.539
3.821
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Source

Nitrate

DFAA
Ammonium

emmean
1.8189
2.2423
3.3253

SE df asymp.LCL
0.167 Inf 1.49184
0.167 Inf 1.91523
0.167 Inf 2.99819

DN assimilation in the Symbionidinaceae fraction — Figure 5

Source
Nitrate
Ammonium
DFAA

Source

Nitrate

DFAA
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

emmean
1.6264
1.8664
1.9423

emmean
-0.1784
0.0133
1.284

Depth = Deep, Species = Galaxea:

SE df asymp.LCL
0.199 Inf 1.2367
0.199 Inf 1.4766
0.222 Inf 1.5066

Depth = Deep, Species = Rhytisma:

SE df asymp.LCL
0.199 Inf -0.5682
0.199 Inf -0.3764
0.199 Inf 0.8943

Depth = Deep, Species = Sarcophyton:

emmean

-1.9264

-1.3339
-0.781

SE df asymp.LCL
0.199 Inf -2.3161
0.199 Inf -1.7236
0.199 Inf -1.1707

Depth = Deep, Species = Seriatopora:

emmean
1.915
2.6506
2.8001

SE df asymp.LCL
0.222 Inf 1.4793
0.199 Inf 2.2609
0.199 Inf 2.4104

Depth = Deep, Species = Stylophora:

emmean
2.2872
2.5943
2.7448

SE df asymp.LCL
0.222 Inf 1.8515
0.199 Inf 2.2046
0.199 Inf 2.3551

Depth = Shallow, Species = Galaxea:

emmean
1.477
2.2978
2.3215

SE df asymp.LCL
0.199 Inf 1.0873
0.199 Inf 1.9081
0.199 Inf 1.9318

Depth = Shallow, Species = Litophyton:

emmean
-1.3415
1.1549
1.734

SE df asymp.LCL
0.199 Inf -1.7312
0.199 Inf 0.7652
0.199 Inf 1.3443

asymp.UCL
2.146
2.569
3.652

asymp.UCL
2.016
2.256
2.378

asymp.UCL
0.211
0.403
1.674

asymp.UCL
-1.537
-0.944
-0.391

asymp.UCL
2.351
3.04
3.19

asymp.UCL
2.723
2.984
3.135

asymp.UCL
1.867
2.688
2.711

asymp.UCL
-0.952
1.545
2.124
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Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Depth = Shallow, Species = Rhytisma:

emmean SE df asymp.LCL
-0.8722 0.199 Inf -1.2619
0.521 0.222 Inf 0.0853
0.8382 0.222 Inf 0.4025

Depth = Shallow, Species = Sarcophyton:

emmean SE df asymp.LCL
-1.5362 0.199 Inf -1.9259
-1.2347 0.199 Inf -1.6245
-0.0254 0.199 Inf -0.4151

Depth = Shallow, Species = Seriatopora:

emmean SE df asymp.LCL
2.1631 0.222 Inf 1.7274
24711 0.222 Inf 2.0353
2.8849 0.199 Inf 2.4952

Depth = Shallow, Species = Stylophora:

emmean SE df asymp.LCL
1.8023 0.199 Inf 1.4126
2.5301 0.222 Inf 2.0944
3.1161 0.199 Inf 2.7264

DN assimilation in the host fraction (per AFDW) — Figure 6 Temperature

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source
Nitrate

Temperature = 25, Species = Litophyton:

emmean SE df asymp.LCL
-1.35 0.157 Inf -1.6575
-0.1886 0.157 Inf -0.4961
1.2564 0.175 Inf 0.9125

Temperature = 25, Species = Rhytisma:

emmean SE df asymp.LCL
-0.4983 0.157 Inf -0.8058
0.3227 0.157 Inf 0.0152
1.4785 0.175 Inf 1.1347

Temperature = 25, Species = Sarcophyton:

emmean SE df asymp.LCL
-2.2549 0.157 Inf -2.5624
-1.0623 0.157 Inf -1.3698
-0.0132 0.175 Inf -0.357

Temperature = 30, Species = Litophyton:
emmean SE df asymp.LCL
-1.1274 0.157 Inf -1.4349

asymp.UCL
-0.483
0.957
1.274

asymp.UCL
-1.147
-0.845
0.364

asymp.UCL
2.599
2.907
3.275

asymp.UCL
2.192
2.966
3.506

asymp.UCL
-1.043
0.119
1.6

asymp.UCL
-0.191
0.63
1.822

asymp.UCL
-1.947
-0.755
0.331

asymp.UCL
-0.82
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DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

0.0221 0.157 Inf -0.2854
1.826 0.157 Inf 1.5185
Temperature = 30, Species = Rhytisma:
emmean SE df asymp.LCL
0.1935 0.175 Inf -0.1503
0.8811 0.175 Inf 0.5372
2.1178 0.157 Inf 1.8103

Temperature = 30, Species = Sarcophyton:

emmean SE df asymp.LCL
-1.6453 0.157 Inf -1.9528
-1.3083 0.157 Inf -1.6158
-0.512 0.175 Inf -0.8558

0.33
2.134

asymp.UCL
0.537
1.225
2.425

asymp.UCL
-1.338
-1.001
-0.168

DN assimilation in the Symbiodiniaceae fraction (per AFDW) — Figure 6 Temperature

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

DFAA

Nitrate
Ammonium

Temperature = 25, Species = Litophyton:

emmean SE df asymp.LCL

-1.2491 0.236 Inf -1.712
1.212 0.211 Inf 0.798
1.8732 0.211 Inf 1.459

Temperature = 25, Species = Rhytisma:

emmean SE df asymp.LCL
-0.834 0.211 Inf -1.248
0.5358 0.236 Inf 0.073
0.8691 0.236 Inf 0.406

Temperature = 25, Species = Rhytisma:

emmean SE df asymp.LCL
-1.4385 0.211 Inf -1.852
-1.0351 0.211 Inf -1.449
-0.0202 0.211 Inf -0.434

Temperature = 30, Species = Litophyton:

emmean SE df asymp.LCL
-1.3204 0.211 Inf -1.734
1.0603 0.211 Inf 0.646
1.6943 0.273 Inf 1.16

Temperature = 30, Species = Rhytisma:

emmean SE df asymp.LCL
-0.1224 0.236 Inf -0.585
1.324 0.211 Inf 0.91
1.7141 0.211 Inf 1.3

asymp.UCL
-0.786
1.626
2.287

asymp.UCL
-0.42
0.998
1.332

asymp.UCL
-1.025
-0.621
0.394

asymp.UCL
-0.907
1.474
2.229

asymp.UCL
0.34
1.738
2.128

.group

.group

b
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Source

Nitrate

DFAA
Ammonium

Temperature = 30, Species = Sarcophyton:

emmean SE df asymp.LCL
-1.0584 0.211 Inf -1.472
-0.7463 0.211 Inf -1.16
0.0184 0.211 Inf -0.395

DN assimilation in the host fraction (per surface) — Figure S2

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

Nitrate

DFAA
Ammonium

Source

Nitrate

DFAA
Ammonium

Depth = Shallow, Species = Galaxea:

emmean SE df asymp.LCL
11.52 0.829 Inf 9.89
14.54 0.742 Inf 13.09
15.09 0.829 Inf 13.46

Depth = Shallow, Species = Seriatopora:

emmean SE df asymp.LCL
7.81 0.742 Inf 6.36
9.61 0.829 Inf 7.99
19.77 0.742 Inf 18.32

Depth = Shallow, Species = Stylophora:

emmean SE df asymp.LCL
4.05 0.742 Inf 2.6
5.82 0.742 Inf 4.37
11.23 0.742 Inf 9.78

Depth = Deep, Species = Galaxea:

emmean SE df asymp.LCL
9.41 0.742 Inf 7.95
9.84 0.742 Inf 8.39
12.82 0.742 Inf 11.37

Depth = Deep, Species = Seriatopora:

emmean SE df asymp.LCL
7.37 0.742 Inf 5.91
13.75 0.742 Inf 12.3
16.3 0.829 Inf 14.67

Depth = Deep, Species = Stylophora:

emmean SE df asymp.LCL
5.57 0.829 Inf 3.94
9.67 0.742 Inf 8.21
12.67 0.829 Inf 11.04

DN assimilation in the Symbiodiniaceae fraction (per surface) — Figure S2

Depth = Shallow, Species = Galaxea:

asymp.UCL
-0.645
-0.332
0.432

asymp.UCL
13.14
15.99
16.71

asymp.UCL
9.27
11.24
21.23

asymp.UCL
5.5
7.28
12.68

asymp.UCL
10.86
11.29
14.28

asymp.UCL
8.82
15.21
17.92

asymp.UCL
7.2
11.12
14.3

182

.group

.group

.group

a
b
c



Source
DFAA
Ammonium
Nitrate

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

DFAA

Nitrate
Ammonium

Source

Nitrate

DFAA
Ammonium

emmean SE df asymp.LCL
3.2 0.292 Inf 2.63
3.37 0.292 Inf 2.8
3.8 0.292 Inf 3.23

Depth = Shallow, Species = Seriatopora:

emmean SE df asymp.LCL
3.96 0.292 Inf 3.39
4.21 0.326 Inf 3.57
4.97 0.292 Inf 4.4

Depth = Shallow, Species = Stylophora:

emmean SE df asymp.LCL
2.48 0.292 Inf 191
3.07 0.292 Inf 2.5
4.27 0.292 Inf 3.7

Depth = Deep, Species = Galaxea:

emmean SE df asymp.LCL
1.99 0.326 Inf 1.35
2.15 0.292 Inf 1.58
2.62 0.292 Inf 2.05

Depth = Deep, Species = Seriatopora:

emmean SE df asymp.LCL
2.43 0.326 Inf 1.79
3.2 0.292 Inf 2.63
4.6 0.292 Inf 4.03

Depth = Deep, Species = Stylophora:

emmean SE df asymp.LCL
2.78 0.326 Inf 2.14
2.88 0.292 Inf 2.31
3.37 0.292 Inf 2.8

asymp.UCL
3.77
3.94
4.38

asymp.UCL
4.53
4.85
5.54

asymp.UCL
3.05
3.64
4.84

asymp.UCL
2.63
2.73
3.19

asymp.UCL
3.07
3.77
5.17

asymp.UCL
3.42
3.45
3.94
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Figure S2. Total chlorophyll concentration in the species investigated. Normalized
to biomass in the top panel (AFDW = ash-free dry weight) and normalized to
Symbiodiniaceae cell in the bottom panel. The first three species (Galaxea fascicularis,
Seriatopora hystrix, Stylophora pistillata) are hard corals and the last three (Litophyton
arboreum, Rhytisma fulvum fulvum, Sarcophyton sp.) are soft corals. Significant
differences between depths are displayed with an asterisk. Significant differences
between species are distinguished with letters by depth. ns = not sampled.
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Figure S3. Assimilation rates of the three N sources in hard corals, normalized to
surface area of the skeleton, in the host tissue (top panel) and in the
Symbiodiniaceae fraction (bottom panel). Significant differences between depths are
displayed with an asterisk. Significant differences between species are distinguished
with letters by depth. Gal = Galaxea fascicularis. Ser = Seriatopora hystrix. Sty =

Stylophora pistillata.
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Appendix IV — Supplementary material of publication n°4
(Chapter 5)

Table S8. Coefficient used to convert dry weight (DW) of the nubbins into their
ash-free dry weight (AFDW), used to normalize marker concentrations (AFDW =
coefficient x DW). Asterisks denote samples containing seawater before being
freeze-dried.

Samples collected in Eilat

Species Shallow (8-10 m) Mesophotic (40-50 m)
Dendronephthya sp. 0.2479 0.2479
Litophyton arboreum 0.6145 0.6545
Rhytisma fulvum fulvum 0.2094 0.1254
Sarcophyton sp. 0.7029 0.7029
Stylophora pistillata* 0.3068 0.3068

Samples grown in laboratory

Stylophora pistillata

isolated symbionts 0.8375
Stylophora pistillata 0.4805
Sarcophyton sp. 0.2836
Mix of zooplankton* 0.2703
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Table S9. Biologically relevant pairwise comparisons based on estimated marginal
means and simultaneous general linear hypothesis testing. Data are p-values adjusted

using Benjamini-Hochberg procedure. Significant values (p < 0.05) are displayed in bold.

Species are Dendronephthya sp., Litophyton arboreum, Rhystima fulvum fulvum and
Sarcophyton sp. for the octocorals, and Stylophora pistillata for the scleractinian.

SDA

Differences between depths (shallow — mesophotic)

Litophyton 0.0278
Rhytisma 0.2454
Sarcophyton 0.4656
Stylophora 0.0536

Shallow corals: differences between species

Litophyton - Rhytisma 3.82E-09
Litophyton - Sarcophyton 3.87E-07
Litophyton - Stylophora 0.491963
Rhytisma - Sarcophyton < 2.00E-16
Rhytisma - Stylophora 2.38E-08
Sarcophyton - Stylophora 0.000351

Mesophotic corals: differences between species

Litophyton - Rhytisma < 2.00E-16
Litophyton - Sarcophyton 0.000725
Litophyton - Stylophora 0.428486
Rhytisma - Sarcophyton < 2.00E-16
Rhytisma - Stylophora < 2.00E-16
Sarcophyton - Stylophora 0.009185
DPA

Differences between depths (shallow — mesophotic)
Litophyton 0.79007
Sarcophyton 0.79007
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Stylophora

Shallow corals: differences between species
Litophyton - Sarcophyton

Litophyton - Stylophora

Sarcophyton - Stylophora

Mesophotic corals: differences between species

Litophyton - Sarcophyton
Litophyton - Stylophora
Sarcophyton - Stylophora
CGA

Differences between depths (shallow — mesophotic)

Dendronephthya

Litophyton

Rhytisma

Sarcophyton

Stylophora

Shallow corals: differences between species
Dendronephthya - Litophyton
Dendronephthya - Rhytisma
Dendronephthya - Sarcophyton
Dendronephthya - Stylophora
Litophyton - Rhytisma
Litophyton - Sarcophyton
Litophyton - Stylophora
Rhytisma - Sarcophyton
Rhytisma - Stylophora
Sarcophyton - Stylophora

Mesophotic corals: differences between species

Dendronephthya - Litophyton
Dendronephthya - Rhytisma

0.00132

0.1368
0.0249
0.3715

0.1368
0.6981
0.0928

0.000697
0.30513

0.001709
0.222839
0.069579

0.424288
2.21E-05
5.12E-05
0.120509
0.000536
1.37E-06
0.025377
< 2.00E-16
4.08E-08
0.027373

0.040002
0.000894
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Dendronephthya - Sarcophyton 4.45E-11

Dendronephthya - Stylophora 0.001042
Litophyton - Rhytisma 2.69E-08
Litophyton - Sarcophyton 1.37E-06
Litophyton - Stylophora 0.183275
Rhytisma - Sarcophyton < 2.00E-16
Rhytisma - Stylophora 1.14E-11
Sarcophyton - Stylophora 0.000569
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Flow-driven micro-scale pH
variability affects the physiology
of corals and coralline algae under
ocean acidification

S.Comeau(H%% CE Cornwall(®*** C_A. Pupier(5%%% T.M.DeCarlo(21?, C. Alessi®,
R.Trehern® & M. T. McCullochi® ™

MNatural variability in pH in the diffusive boundary layer (DBL), the discrete layer of seawater between
bulk seawater and the outer surface of organisms, could be animportant factor determining the
response of corals and coralline algae to ocean acidification (0A). Here, two corals with different
morphologies and one coralline alga were maintained vnder two different regimes of flow velocities,
pH, and light intensities in a 12 flumes experimental system for a period of 27 weeks. We used a
combination of gecchemical proxies, physiclogical and micro-probe measvrements to assess how these
treatments affected the conditions in the DEL and the response of organisms to OA. Overall, low flow
velocity did not ameliorate the negative effect of low pH and therefore did not provide a refugia from
QA Flow velocity had species-specific effects with positive effects on calcification for two species. pHin
the calcifying fluid (pH_:) was reduced by bow flow in both corals at low light only. pH.s was significantly
impacted by pH in the DBL for the two species capable of significantly modifying pH in the DEL. The
dissolved inorganic carbon in the calcifying fluid (D1C.) was highest under low pH for the corals and

low flow for the coralline, while the saturation state in the calcifying fluid and its prosoy (FWHM) were
generally not affected by the treatments. This study therefore demonstrates that the effects of OA will
manifest most severely in a combination of lower light and lower flow habitats for sub-tropical coralline
algae. These effects will also be greatest in lower flow habitats for some corals. Together with existing
literature, these findings reinforce that the effects of OA are highly context dependent, and will differ
greatly between habitats, and depending on species composition.

Orcean acidification (OA) 15 2 major threat to many marine cakoifying species, acting to reduce the calafication
of ecologically important species such as reef-forming corals and coralline algae’. However, there 1s evidence
that responses to (A are context-dependent, with interactions across species and the emvironment mediating
the strength of responses™. One potentially important and stll poorly studied controller of the direction and
magnitude of responses is the seawater velocity that resdent organisms are exposed to®, This 1s expected to be
most important at the discrete boundary layer between marine organtsms and ambient seawater, where flow 1s
reduced to the point such that the movement of dissolved substances between the bulk seawater and the surface
of the organism is dominated by molecular diffusion®. This layer, known as the diffuston/diffusive boundary laver
(DBL), increases in thickness as seawater veloctty decreases™.

There are three main reasons via which mass transfer limitation in the DBL could influence the response of
calcifying organtsms to OA: (1) by changing the pH environment at thetr surface™', (2) by Bmiting the transfer
of essential nutrients and dissolved inorganic carbon'2, (3) or by causing the buld- up of waste substances, such

*The University of westemn australia, Oceans Graduate School and Oceans Institute, 35 stiding Highway, Crawley,
£009, Western Australia, Australia. *aRC Centre of Excellence for Coral Reef Studies, 35 Stiding Highway, Crawley,
5008, Westam Australia, Australia. *Sorbonne Université, CNRS-INSU, Laboratoire d'Océanographie de villefranche,
181 chemin dw Lazaret, F-06230, Villefranche-sur-mer, France. *5chool of Bislogical Sciences, Victoria University
of wellington, Wellington, Maw Zealand. *Centre Sciantifigue de Monaco, 2 Quai Anteina ler, MC-32000, Monaco,
Menaco. “Serbonne Université, Collége doctoral, F-75005, Paris, France. 5. Comeau and C. E. Comwall contributed
equally. Comespondence and reguasts for materials should be addressad to 5.C. (email: comeawi@obs-vifr.fr)
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as protons during calctfication". The concentration gradient within the DBL ts directly related to its thickness
and the metabolic activity of the organism®!*. Therefore, when water velocity decreases, 1t Increases the thick-
ness of the DBEL which favouwrs the increase of pH at the surface of pholosynthetic organisms during the day, and
decreases in pH at night due to respiration'™®, There has been significant discussion of whether such diurnal
changes in DBEL pH may ameliorate the impacts of OA, whereby pH during the day and mean pH encountered by
the organism are increased relative to the overlying seawater'®.

Conversely, reduced dissolved inorganic carbon or nutrients within thicker DELs could have negative rami-
fcations under OA. In many temperate systems, reduced nutrient concentrations at the surface of the organism
might not have great impacts, but o already nutrient-poor systems such as coral reefs, these effects could have
large Impacts on organism metabolism. These would act additively with the impacts of OA. Reduced export of
protons from the calctfying fluid to the external seawater s another possible negative ramification of thicker DELs
that could alter responses to OA, following the proton flux hypothesis™. This would mantfest by reducting pH in
the caloifying fluid (pH_ ), with the effects expected to be most pronounced under both OA and slow flow.

Omly two studies have examined the interactive effects of water velocity and OA, finding contrasting effects.
Cornwall ef al* found that the effects of OA were ameliorated for a temperate articulate coralline alga under
slow flow (interactive effects). Dally increases in pH within the DEL were greater under siow fiow and 04 than
nightly decreases in pH, thereby Increasing mean pH at the surface, corresponding to faster calcification rates.
Comversely, Comeau ef al.* found that a coral reef community comprised of corals, crustose coralline algae (CCA)
and carbonate sediments had lower caldfication under both reduced pH and under slower flow (additive effects).
Three logical explanations exist for the contrasting results due to: (1) differences between organtsm physiology;
(2} environmental conditions; or (3] the incluston of sediment in Comeauw ef al’s study. Coral reef communities
are more likely to display mass-transfer llmitation than temperate macroalgae™, therefore any posttive effects of
pH modification tn the DEL may be overwhelmed by the negattve impacts of nutrient imitation during Comeaw
et al . Troplcal corals (and even CCA) might therefore be expected to respond differently from temperate artic-
ulate coralline algae. This could be due to the fact that the capactty of corals 10 modify pH at thelr surface might
‘be much less than that of the coralline algae, or becawse their export of protons from their calcfyving site might be
differentially impacted by flow. Unfortunately, netther Cornwall et 6l.” nor Comeau ef al.* measured pH_g, nor did
Comeau et @l.* measure pH tn the DBL of the different spectes in thelr communities.

Here we atternpd to gain a greater understanding of how seawater velocity will interact with OA for key calcify-
g spectes, corals and CCA, by testing two competing questions, based on the results of seemingly contradictory
studes™*. Will slow flow provide a refugta from (A for calcifying species'®, or will faster flow reduce the impacts
of AT We tease out the phystologlcal mechanisms responsible for both past results by growing corals and CCA
under an interactive combination of slowfast flow and bowfambtent pH over a longer duration than used pre-
wiously (27 weeks), and measure pH both at the surface of all organtsms within the DEL, and pH within their
calcifying flubds. We do this by wsing both taxa {corals and CCA) and by also crossing the already complex design
‘with two irradiance regimes, with both high and kow light for each taxon. While light 15 known to influence cal-
cification and photosynthesls rates of both taxa'™'", and can be particularly important in mediating the response
of macroalgae to 0A, these regimes also allow us to have one condition where pH modification tn the DEBL is
potentially high and another where it 1s bow (Le. high and low hght respectively). We conduct these experiments
under conditions where nutrtent concentrations are similar to those in coral reef systems (low concentrations), to
represent the natural condittons where the organisms were collected and to test whether mass transfer lmitation
could be responsible for past results™. We hypothesize (1) that if slow fow acts ublquitously as a refugla, then
day time pH in the DEL will be directly correlated to calctfication rates and favourable calcifying fluld chemistry
across all treatments, (2) that if the export of protons imits calcfication under slow flow, then pH_pwill be lower
under slow fow for all taxa, particularly when combined with (A, and (3) If netther hypothesis s correct then
miass-transfer llmitation 1s responsible for the interactive effects.

Materials and Methods

Organism collection and preparation.  The experiment was carrted out from February 15 until August
255 3017 in the University of Western Australias Indian Ocean Marine Research Centre at Watermans Bay. Two
weeks prior to the start of the experiment organtsms were collected from Salmon Bay, Rottnest Island, WA,
Australia (32901 16,4475, 115°31" 16.60"E), which 1s located ~ 15 km offshore the marine laboratory (see Ross ef al. ™
for the site description). A total of 48 branches (-5 cm tall) of the coral Acropora yonge! were hand-collected
and 48 whole colondes (-5 cm in dlameter) of the coral Plestasfren versipora were chiselled out from the reef at
~1-2m depth. Acropora branches were collected -5 m apart to maximise genetic diversity. Additionally, 48 whale
rhodaliths of the coralline alga (CCA) Sporoiithon dirum (~5-8 cm) were hand picked at - 1-2 m depth. Only 5.
dururm with lmited or no exposed skeleton were selected. Back at the laboratory, the corals were glued to plastic
supparts using epoxy glue and tags were attached to 5. durim using nylon lines. Organtsms were accimated to
the laboratory lghting. temperature, and flow conditions (similar to the one experienced it sifu and then used
during the experiment) in a flow trowgh system during two weeks under ambtent pH (pHy ~ 8.1). At the end of
the acclimation period. skeletons of the organisms were stained by placing the samples for 24 hours in a bath of
seawater enriched with caloein at 50 mgl-* with pH adiusted to 8.1 by additton of NaOH. The stain Hne was used
during the geochemical analyses as a visual indicator to select portion of the skeleton grown under the expert-
mental condimions (Le. section above the stain hne).

Experimental set-up. Twelve custom-made flumes were used to maintain the organtsms under controfled
conditions of fow, temperature, light and pH. The 90 L flumes consisted of a 1.5 m = 0.2 m > 0.2 m working sec-
tion. Seawater was circulated at the upstream side of the flume through a 0.3 m long transition chamber mounted
with flow stralghteners made of stacked PVC pipes (dlameter of 1.5cm) covered by a shade cloth to obtain a
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Figure 1. DMagram representing the experimental set-up used to maintain the corals and coralline algae for 27
weeks. The organisms were maintained under two flow velocttles created by pumps placed at the end (left of the
diagram) of the flumes. pH was regulated independently in each flume using a pH controller. Positions of the
organisms within the flumes were used to control Hght levels. Organisme directly under the light recetved --250
pmol quanta m~* s~ at midday (High light treatment for corals), while organisms on the side recetved etther

- 100 pmol quanta m™* s~ (Low light for corals, High light for CCA) at midday or ~50 gmol quantam™ 5" at
midday | Low light for CCA)L

unidirectional semi-laminar flow. The return section was made of 0.1 m diameter PV pipes. The organisms were
maintained at two flow velocittes of 0.025 ms-! {Slow Flow) and 0,08 ms—* (Fast Flow) that were obtained using
bwo types of underwater pumps (D1 and D3 - DC wave maker pemps, Macro Aqua, China). Flow velocities were
chosen to remain within ecologically relevant conditions. Flow velocity was determined at ~15 cm depth, where
the organisms were placed, and adjusted for each flume using an Acoustic Doppler Velocdimeter (Mortek Yectrino,
Morway).

The flume experiments were destgned to test the interactive effects of bwo regimes of fow veloctttes (0.025 and
0.08 ms—"), pH (amblent pH: pHy =8.05 and low pH: pHy= 7.65) between flumes, and Hght levels (Fig. 1) For
clarity, in the following secttons the ambdent pH treatment 1s described as "pH 8.0 and the low pH treatment as
‘pH 78" Treatments of flow and pH were mndomly assigned to obtain three fumes per combination of fow and
pH. Light leveks were controlled by the relative position of organisms within the flumes. Organisms directly under
the light recetved - 250 gmol quanta m-2 s~' at midday {High Hght treatment for corals only), while organisms
on the stde recetved elther -~ 100 gmol quanta m-? 5~ | Losw light for corals, High ght for CCA) at midday or ~50
pmol quanta m~? 5~ at midday {Low light for CCA only). The light levels corresponded to light infensities reg-
ularly experienced by organisms in Salmon Bay™. Prior expertmentation delermined that these light conditions
‘were optimal for growing these spectes in the laboratory™ . Four corals per species were randomly placed under
250 or 100 gmol quanta m—?* s~° (n= 2 per light treatments for each flume). Four coralline algae were randomly
placed under 100 or 50 ymol quanta m—* 5" (n=1 per lght treatments for each flume). With this design, &
organisms of each species were exposed to each combination of treatments.

Temperature was maintained constant at -20.5°C, which 1s the mean i sifw temperature at the collection
slte™, during the experiment. Light was provided by 150W LED ( Malibu LED, Ledzeal) that followed a diel cycle.
Light was gradually ramped-up in the morning, commencing from 600 h untl 10:00 am o reach maximum
Intensity, remained at maximum intenstty for four howrs, and then ramped down until total darkness at 18:00 b
pH was manipulated in the flumes wsing pH-controllers (AquaController, Neptune systems, USA) that control
the bubbling of pure C0,. Ambient atr was continuously bubbled in each flume to maintain the O and amblent
pH constant. The flumes worked as a flow through system with sand-filtered seawater | porosity ~25 um) delivered
continuously at ~0.5 Lmin-*.

Carbonate chemistry measurement and calculations.  Seawater pH and temperature were measured
every --1-2 d in each flume using a pH meter callbrated every 2 d on the total scale using TrisHCI buffers made
following™®. Total alkalimity (A7) was measured weekly in all the flumes using an open cell potentiometric method
(Mettler Toledo, TE0). Ar was calculated using a modified Gran function and titrations of certified reference
materials (CRM, batch 161) provided by A.G. Dickson lab ylelded A values within 5 pmol kg~ ' of the certified
value. Ay, pHy, temperature, and salinity were used to caloulate the carbonate chemistry parameters using the
seacarb package running in B

Physiclogical measurements.  Cakcification was measured over the 27-week experimental duration using
the buoyant welght method™. Met calcification was determined on each organism by converting the difference in
welght between the beginning and the end of the incubation pertod to dry welght using an aragonite density of
293 gcm—* (for the corals) and a cakcite density (for the CCA) of 2.73 gom-2. Net calcification was normabized to
the surface area determined wsing the fodl method® for P versipora and 3. durum, and the relationship between
skelefton welght and surface area for A. yongel determined by CT scanning.

Light short-term incubations were carried out after 2 months of exposwre to the treatments to assess the
response of photosynthests and respiration. Incubations were conducted at this time to ensure adequate acclima-
tion to the growing conditions. Each individual was placed into an incubation chamber filled with seawater orig-
Inating from is respective flume. Flow and light were manipulated to approximate the respective conditions in
the flumes. Organisms were chosen randomly for a total of 4 replicates of each spectes per treatment combination
(96 Indiiduals total) and controls with only flume seawater were run during each Incubation. Incubations lasted
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~1.5-2h and changes in dissolved oxygen (using an A 323 dissolved oxygen portable meter, Orion Star, Thermo
Sclenttfic, USA) and temperature between the beginning and end of each Incubation were determined. All rates
were normalized to surface-area of the organisms.

Calcifying fluid pHy and DIC,.  Calcifying flud pH (pH,¢) for all organtsms and DIC (DIC ;) for corals was
calculated using the £'B proxy method for pH_ - and the B and B/'Ca method for DIC™. Geochemical meas-
urements were done on the matertal representing the average calcium carbonate depostied durtng the 27 weeks
of incubation {as confirmed by calcein staining)™4, The portions of the skeleton grown ender the experimental
conditions were sampled using cutting pliers (for A. yorger) or a dental drill (for 5. durum and P oversipors).

All powders of selected material were processed in the dean laboratory of the Advanced Geochemical Facility
for Indlan Ocean Research [AGFIOR, Untversity of Western Australla {UWA)] for dissolution and dilution to
10-ppm Ca soluttons. Ten mg of each sample was placed in 6.25% MNaClO for 15 mins, rinsed in MG water 3
times and then dried for 24 h. Samples were then dissobved 1n 0.51 N HNO,, and the boron was quantitatively
separated on 1on exchange columns. §''B was measured on a multicollector inducttvely coupled plasma mass
spectrometry (WU IT). Measurements of the international carbonate standard 1Cp-1 yielded a mean value of
24.35 +£0.13%= (mean + 5E, n=5), which was similar to the nominal value of 24.33 +0.11%x (5E) reported pre-
wiously*. Cakculations of pH; based on §°B were made using the calculations of*;

' Boy — BBy
PH, = PKy - ""J TR B - 1000 Tl
nl{ﬁum- i Bars Bew (g gy — 1)) (1

where pKy, Is the dissoctation constant dependent on temperature and salinity, §'B,, = 330617, and og,-y, s the
‘haron tsstopic fractionation factor for the pH dependent equilibrium of the borate (BOOH),~ ) relative to the boric
acld (B{OH]),) spectes in the calcifying fluid. with a value of LOZT7I™.

B/Ca rattos and £'B measured on the same material was utiized to determine [C0,7-] and then [DIC] at the
site of calctfication [DIC]  following™*. B/Ca rattos were determined on the same allquot of the solution used
for pH,_restimates, and DIC ywas calculated from estimates of CO,% using the following equations described in®®:

[0, = Kol BIOHI L /(B/Calcan, i1

Where Ky, = Kpg exp(—kgp[H* ) with = 297 £ 0017 = 1073 (195% CI), &, = 0.0202 +0.042. The concentration
of DNC s was then calculated from estimates of pH_-and [C0,7 ] 5 using the B package seacarh.

Raman spectroscopy. We utilized confocal Raman spectroscopy to determine sample mineralogy (arag-
onite versus calctte) and as a proxy of cakolfying fluld saturation state (1), Measurements were conducted on a
WiTec Alpha30iPA + using a 785 nm laser, 130mm-—" {~-1.3cm~! spectral resclution), and a 20 objective with
0.5 numerical aperture follewing®. The wavenumber was routinely calibrated with a silicon chip (nominal peak
at 520.5cm- ") Topography maps were made with the TrueSurace modulbe for skeleton samples placed on glass
slides {powders for corals, and cut sections for CCA). The topography maps were then followed with an auto-
mated stage while conducting Raman measurements o ensure the optics rematned in focus. For each sample,
L0} spectra were collected in a square grid. 300 pm by 300 gm using 1 s integrations for corals and 1 mm by 1 mm
using s Integrations for CCA. Spectra with poor signal (= 100 arbitrary intensity untts or sigmal/noise ratio of
- 1) or contaminated by cosmic rays were excluded.

Sample mineralogy was evaluated by first confirming each sample 15 CaC(}, based on the v, peak at - 1085-
1090 e Mext, each sample was distinguished between aragonite and cabcite based on the shape and posttion
of the v, peak between T00-720cm ', where a double peak < 710 cm ! 1s indicative of aragonite and a single peak
=T10cm~" 15 indicative of cakcite. We found only aragonite tn our coral samples and only high-Mg calctte tn our
CCA samples, confirming the mineralogy expected for each species.

The widths of the v, peaks were used as proxy measures of calcifving flusd 01", We wsed the ablogenic arag-
onite calibration equation of™ to calculate {3, for the two coral species from the v, full width at half maximum
Intensity (FWHM ). Although there 15 no published ablogenic high-Mg calcite (2 calthration, we used the Mg
concentration-normalized peak widths as relative indicators of 0 for CCA The effect of Mg on v, FWHM
‘was acoounted for using the equations of®, where [Mg] Is determined from v, wavenumber, and the restdual v,
FWHM 15 determined for qualitative calcite £ interpretations

Calcifying fluid Ca; +cf.  [Ca**];was calculated as:
8"l = ura Kg/ICO3 T, 3
where[003 ], and 1} gy rare dertved from boron systematics and Raman spectroscopy, respectively.

Micro-sensor measvrements. The DBL pH was determined after 16-27 weeks of iIncubations using a
Unisense microprofiling system (Unisense AJS, Denmark). Measurements were made directly tn the flumes on
the organisms maintained under thetr respective condittons of light, pH, and flow. pHy of the flumes bulk sea-
water was measured following the method described above before each profile determinations. pH in the DBL
was measured with a pH-50 microelectrode with a 40-60 um tip diameter and an external reference electrode
(Radiometer analytical). The pH microdectrode was calibrated using NBS buffers every day, and standardised to
the total scale based on Tris mV prior to any further measurements.
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Table 1. Mean carbonate chemistry in the lumes during the 27 weeks experiment. pCOy; was caloulated using
mieasured pHy, total alkahimity { A7), temperature and a salinity of 36.3 (SE < 0L1). All values are mean + SE
(n=64).

A Unisense manual micro-mantpulator and a hand-held magnifying glass were used to position the sen-
sors. For A. yorger, micro pH electrodes were positioned between polyps as close as possible to the surface of
the organtsms, while for P versipora the probes were positioned inside the gap made by their large polyps. For
5 deersem, the sensors were placed as close as possible to the surface in the gap between protuberances. Aftera
45min accimation pertod, measurements of pH were made every 100 pm above the organtsms (50 pm for the
first 4 steps) surface up o 1800 pm, with a final measurement at 2800 pm. At each step, measurements were col-
lected for 2 min. The difference in pH between the surrounding seawater and the diffuston boundary kayer (DEL)
were determined on at least three P versipong and 5 durum for each experimental treatment. Measurements on
A yongel were only done on three Individuals becawse It was not possible to detect a consistent change in pH in
the DBL. pH in the DBL in the dark was also determined on two P versipora., two 5. duwrim and one A yongel. A
I-month period was necessary to perform all the measurements so they could be conducted roughly at the same
time of day.

Statistical analyses. Factorial ANOVA models were used to detect differences in calcification, pho-
tosynthesis, pH_;, DIC ;. Ca* (1 and DEL pH for the corals, and calcdfication, photosynthests, pH . BiCa,
Raman-derived FWHM and DBEL pH for 5. durum. pH, flow and light were fixed factors in the models, where
flume of origin was also incduded as a random factor. The random Ector was dropped from the analyses when it
was not significant (p < 0.25). All data conformed to normality and homogenedty of variance. All analyses were
done in B. All data will be archived in the Pangaea database.

Results

During the 27 weeks of the experiment, carbonate chemistry was successfully maintained constant across the
treatments (Table 1) pH was maintained on average at 804 +0.02 (mean + SE, n=384) in the pH 8.0 treatment
and 7.62 + .03 (mean 4 SE, n = 384) in the pH 7.6 treatments, corresponding to respective pCO, of 421 £+ 26 and
1282 + 83 patm. Ower the course of the experiment, the nutrient concentrations were: NH,* =307 £ 2epgl!
(n=8), NOx= 083+ 1.42ugl-", and PO,= 6+ 1.42 ugl-'. No bleaching or mortality of corals as a function of
the treatment was found, though 7 CCA expertenced mortality (not linked to the treatment) and were subse-
quently excleded from further analysis.

Calcification.  For P versipora, the highest calcification was found i the pH 8.0 - Fast Flow conditions under
High and Low Light, while calcification was the slowest in the pH 7.6, High Light, Slow Flow treatment (Fig. 2A4).
Calctfication was stgnificantly affected by pH (p= 0.011, Tahle 51}, but there was no significant effect of Light
(p= 0.675). Flow significantly affected calcification (p=0.034) that was on average higher at Fast Flow than
Slow Flow. There was no significant interactive effect between the tested parameters.

For A yomgel, the highest mean net calcification was measured in the pH 8.0 - High Light - Slow Flow
treatment and the lowest in the pH 7.6 — Low Light —Fast Flow (Fig. 2B). Net calcification was affected by pH
(p= 0L0D0, Table 51}, Light (p= 0,003}, and their interaction {p= (L007) with calcification on average higher at
pH 8.0 and High Light compare to pH 7.6 and Low Light. Flow did not impact calctfication (p= 0.293), but there
was a significant interaction between pH. Light and Flow becawse the negative effects of flow were larger at Low
Light and pH 7.6 (p < 0.01&).

Calctfication of the CCA 5. durum was fastest in the High Light treatment at pH 8.0 (for the Fast and Slow
Flow) and negative in the two pH 7.6 - Slow Flow treatments (Fig. 2C). CCA calcification was significantly
affected by pH (p- 0.001), Light (p- 0.001), and Flow (p= 0L019). However, there were no statistically signif-
cant Interactive effects.
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Figure 2. Effects of pH. flow and hght on the surface-area normalized net calclfcation rates of the corals
Plestastrea versipor and Acropora yorgel and the coralline alga Sporoltthon durum. Caloification was measured
on organtsms grown in flumes for 27 weeks. pH was maintained at ambient pH {green bars, pH = 8.1) and bow
pH {orange bars, pH= 7.65). Seawater velocity was adjested to high flow (8 cms— ') and low flow (2.5 cms—").
Light levels were mantpulated within the flumes to high light (250 umol photon m~ 5~* for corals and 100 pmol
photon m~? 5~ for the OCA) and low light {100 gmol photon m = s~ for corals and 50 gmol photon m— 57"
for the OCA) levels. Values displayed are mean + 5F (n= g).
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Figure 3. Estimates of pH n the calcifying fluid (pH_ ;) dertved from 8B for the corals Mlesiastrea versipora
and Acrapora yonget and the coralline alga Sporolithon durem. pH s was determined at the end of the 27 week
Incubation period on organisms maintained at amblent pH (green bars, pH = 8.1) and low pH (orange bars,
pH=7.a5). Seawater velocity was adjusted to high flow (8 cms—") and low flow (2.50m s~ ') Light levels were
manipulated within the flumes to high light {250 pmol photon m~? s~" for corals and 100 pmal photon m—*
5" fior the CCA) and bow light {100 gmel photon m™* 5~ for corals and 50 pmal photon m~* 5" for the CCA)
levels. Values displayed are mean + 5E (n=6).

Calcifying fluid pH. For Flestastrea, the lowest pH  was found in the pH 7.6 - Low Light - Fast Flow
treatment and the highest in the pH 8.0 under High Light at both flows. As a result, there was an effect of pH
(p< 0001, Table 52), Light (p= 0.001), and the interaction between Light and Flow (p -0.048) (Fig. 2AL

For A. yomged, estimates of pH,;were the highest in the pH 8.0 - Fast Flow treatments under both Light condl-
tions (Fig. 3B). There was a significant effect of pH (p < 0.001, Table 52) and Flow (p= 00034 as well as an inter-
active effect between Flow and pH (p = 0.017) with pH,; being redwced by slow flow rates under seawater pH 8.0,

pH_; of the coralline 5. dwrven ranged from 8.64 (pH 7.6 - Low Light — Slow Flow) to 8.78 (pH 8.0 - High
Light - Slow Flowand pH 8.0 - Low Light- Fast Flow). pH.s was only affected by pH (p < 0,001, Table 5I) with the
lowest values recorded in all the pH 7.6 treatments (Fig. 3C).

Calcifying fluid DIC.  For P versipora, DIC . was affected by pH (p =0.001, Table 53) and Light (p=0.044).
The interaction between pH, Light and Flow (p= 0.044) was also significant because the effects of Flow and
pH were reversed at Low Light (Fig. 4A). Estimates of DIC; for A. yonge! were only affected by pH (p = 0L003,
Table 53) with DIC ; more elevated on average in the pH 7.6 treatments (Fig. 4B).

B/Caof 5. durem, which 1s expected to be indicative of DIC ;. was the highest under the pH 7.6 - Slow Flow
conditions and was similar in all the pH 8.0 treatments (Fig. 4C). Flow significantly affected B/Ca (p=0.03%,
Table 53) and there was a trend towards a significant interacttve effect of Flow and pH (p= 0.063) becawse B/Ca
was more elevated at pH 7.6 only under Slow Flow.
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Figure 5. Estimates of the aragonite saturation state in the calctfying fluid ({1 ) for the corals Plestastrea
versipora and Acropora yongei. £, was estimated using Raman mbcrcrsmp;ﬁcslduaj FWHM 15 directly used
as a proxy of £, ¢ for the coralling alga Sporoitthon durum because no empirtcal relationship between restduwal
FWHM and {2 exist. Values displayed are mean +5E (n= ).

0, yand residval FWHM.  For P wersipora, {1 ; was affected by Flow (p= 0.034, Table 54) because 2 ;was on
average more elevated under bow flow. However, there were no effects of pH and Light on P versipona £1; (Fig. 54,
Table 54). The (3 of A. yongel was not significanthy affected by any treatment (Fig. SB).

The treatments did nol significantly affect the restdual FWHM {indicator of the high-Mg calcite saturation
state In the calclfying fluld) of 5. dwrum (Fig. 5C, Table 54).

Calcifying fluid Ca?+. Ca**_in P versipora was significantly affected by pH (p< 0,001, Table 55) and Light
(p=0.014). Ca**_was more elevated under low pH and low light (Flg. 6A). For A. vounget, Ca** ; was only
affected by flow, with the highest values measured under kow flow (Fig. aB).

Photosynthetic rates.  Net photosynthetic rates of P versipora were only affected by Light (p = 0.043), with
lower rates recorded in the Low Light treatment. For A. yonget, net photosynthetic rates were only significantly
affected by Flow (p=0.042) because of lower rates under Low Flow (Fig. 7B, Table 54). Net photosynthetic rates
of & durwm were not affected by the treatments (Fig. 7, Table S&).

Metabolic alteration of pHin the DBL. Delta pH (pH values recorded near the organism surface with
MCIo-Sensors minws mainstream seawater pH) in the DBL in the light was not successfully measured on A pon-
pel because the changes in pH were too small. The only profile completed in the dark showed a strong decrease
of ApH In the DBEL of 0.7 unit. For, P versipora, there was a significant effect of pH (p= 0.050, Table 58}, Flow
(p= 0.2}, and thetr interaction (p=0.002) on ApH. This imeractive effect was due to greater ApH in the low
pH treatments under Low flow (Fig. 8A). As a consequence pH in the DBEL was similar between pH treatments
under low flow (Fig. 51). Light {p < 0.001) and the interaction between Light and pH (p= 0.021) also affected
ApH. This was caused by higher A pH under high light, particularly in the kow pH treatment. The two measure-
ments of ApH in the dark in the pH 8.0 - Fast Flow treatments showed a decrease in pH in the DBEL of - 0.6 wnit.
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Figure 6. Estimates of the calctum concentration in the calclfying fluid {Ca™* <) for the corals Plestastren
versipora and Acropora yongel. Ca* s was calculated from estimates of 1, cand estimates of DIC . Values
digplayed are mean + 5E (n=&). The horizontal dashed line shows the approximate [Ca) in seawater during the
experiment. Values displayed are mean + 5E (n=6).

For 5. dwrum, only Light had a significant effect on ApH in the DEL (p= (L006), with higher ApH in the high
light treatments. There was also a trend toward an interaction between pH and Flow (p= 0.061) because ApH
was higher at pH 8.0 in the Slow Flow conditions. In the dark, ApH in the DBL was (.07 and 0.05 for the two test
measurements made on 5. durien from the pH 8.0 - Fast Flow treatments.

Discussion

Understanding the role played by different physical parameters is necessary to explain the large range of responses
o A measured tn past stedies, and to accurately predict how OA will mantfest across habitats with differing
environmental conditions. We demonstrate here that flow, light, and pH and thelir interactions are critical factors
Impacting organtsms’ physlology, internal chemistry, and condittons tn the DBL. As a result of these complex
Interactions, calcification responded differently to the treatments in all the tested organisms because of mor-
phological and physiological differences. In contrast to our intial hypotheses (1) low flow conditions did not
alleviate the negative effects of OA on calcfication and (2) the export of protons is likely not the main driver of
calcification in all species, because there was not a consistent effect of flow on pH_:. In contrast, cur results suggest

that mass-transfer Hmitation of nutrients or night-time dissolution play an important role in the control of net
calcification rates.

Low flow does not provide a general refugia from OA.  In the present experiment, low flow did not
allevlate the effect of QA for the three species. These results are in contrast to Cormwall ef al®, who showed that
low flow conditions amellorate the negative effect of OA on calcification of the temperate articulate coralling alga
Arthrocardia corymbosa. Here, the coralline alga exhibited negattve rates of calcification under both irradiances
under low flow and low pH conditions. The discrepancy between the two studies can Itkely be explatned by two
non-exclusive hypotheses. First, the present study was performed on sub-tropical algae that were grown in low
nutrient concentratbons similar to undisturbed coral reefs™”, while Cornwall ef al.® wsed temperate algae grown
under higher nutrient concentrations. It 1s therefore likely that under low fow 5. dwries were nutrient hmited,
which in turn Iimited their calcification rates. Mutrient uptake in oligotrophic waters s indeed dependent on
flow®" and can have large impacts on calcification rates. Second, it &5 possible that the increase of pH in the DBL
measured here was not suffictent to limit the effect of OA on calctfication. Despite a linear relationship between
pH in the DBL and calcificatbon in 5. dereom (Fig. 52), the increase tn pH in the DBL was not suffictent to amelio-
rate the effect of OA. Here, the relattvely low photosynthetic activity of coralline algae in all the treatments and
the flow velocities used (mindmum of 2.5cms ') can explain the Dmited increase of pH in the DBEL under OA.
Furthermore, 1t 1s possible that the increase in pH during the day was not sufficlent to counteract the kower pH at
night in the DEL. and therefore that mean DEL pH was not elevated on average over a 24 howrs cycle under slow
flow. Unfortunately, pH tn the D¥EL at night was not measured because of kogistical and experimental constraimts.

{Chur results are partially In agreement with Comeau ef al* who found that calcification of coral communities
5 enhanced by faster flow under amblent and OA conditions. Here, this 1s true for one of the two coral species, as
the effects of OA on calcification of P versipora were ameliorated under high fliow. However, this was not true for
A. yonigel. These specles-specific responses were likely driven by different morphologies (branching vs mound-
ing) and different physiobogles. The mounding phystology of P versipora, with deep polyps, likely created areas
with alternatively low and thick DBEL. However, enhanced pH in the DBEL during the day was not associated with
Increased cabcification in P versipora. Calcification was the lowest in the kow flow and low pH treatments where
the largest DBL ApH was measured. This result indicates a control of calctfication by etther bulk seawater pH
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(lower cakcification recorded in the low pH treatment), nutrlent concentrations (Lower nutrient available at low
flow) and/or low pH n the DBL at night. The few measurements of pH in the DBL in the dark for P versipora
showed a negative delta pH of similar magnitude to the light ApH, which could indicate that the positive effect
of higher pH during the day is balanced by the negative effects of lower pH at night under slow flow. However,

further stdles will be necessary to confirm this observation.

The export of protons is not the main driver of calcification in all species.  Our results demonstrate
that the chemistry at the site of calcfication ts strongly impacted by the physical and chemical conditions in
which the organtsms are lving. The relationship between pH ; and seawater pH 15 specles-spectfic in corals and
CCA™ Y This trend was repeated here with the three tested taxa exhibiting different pH_.. For example, mean
PH_; In the amblent seawater pH treatments was 8.68, 8.51, and 878 for P versipora, A yorge!, and 5. durum
respectively. These walues are within the range of what has been reported previously using a variety of technbgques
such as micro-electrodes ', pH-sensitive dye'®, and boron tsotope proxes™. In addition, the present study also
demonstrates that pH_ ;. and the general chemistry at the site of calctfication (DIC g, Ca™ . €1 ), 15 also modulated
by flow and/or Hght depending on the spectes. This has important repercussions, as It demonstrates that using
pH_;or DIC ; a5 indicators of the seawater chemistry™ can be confounded by other physical parameters. This
result also suggests that seasonal variation in pH g and DIC# could be partly driven by seasonal varlations in
both light and flow, which should now be measured in the future in sty proogy research o improve acouracy of any

reconstructions of the physical or chemical environment.
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Generally, seawater pH was the main driver of pH.s In the three tested spectes, while the effects of flow and
hght were spectes-spectfic and subtler. Light had the strongest effects on P versipora, with pH,; being lower within
low light treatments. This could have been driven by generally ower DBEL ApH under low light for P versipora.
The linear relationship between DBEL ApH and pH,; for B verstpora and 5. durm (Flg. 53) suggests that the eleva-
tion of pH at the surface of the organisms can slightly modify pH,;and favour the export of protons from the site
of calcification by reducing the proton gradient between the calcifying fluld and the mainstream seawater. This
Indicates that pH near the surface of the organism could be more important than bulk seawater pH in Influenc-
Ing pH,;, particulardy for mounding species. However, this is not found in all the corals, as it was not possible to
hink pH_;and DBL ApH n A. yonget, because DEL ApH was nearly impossible to measure (Le. close to 07) here,
something which has been recently repeated with another Acropora species™. We also did not find any direct rela-
tionships between calcification and pH_; for the two corals (Fig. 54). This 1s in agreement with our previous work
that showed that pH_;does not always drive calcification®™-77, For 8 durwm, there was also no linear relationship
between pH_;and calcification but calcification and pH,; were the lowest in the low pH treatments.

Chemistry in the calcifying fluid. [Ca® ] of B versipora Increased at lower seawater pH, thowgh it
remained lower than seawater [Ca?+], as found previously in Pociilopora damicarnis®, This could be one of the
miechantsms usad by this species to maintain elevated 1 ;and calcification under bow pH. A. younger [Ca®* | calso
showed similar patterns to that chserved previowsly in this spectes, as [Ca™ ] was not affected by seawater pH™.
In contrast, the higher [Ca™ rof A. younger under low flow conditions were not correlated with higher cald-
ficattom rates. Together with previous observattons™, this collectively demonstrates that [Ca®*] ;15 both driven
by environmental parameters and 1s highly species-spectfic. Mevertheless, [Ca® ] ;and [C0, ]y were linearly
correlated in both spectes (Fig. 55), demonstrating that increasing [Ca®™ | ; can be wsed by both species as a com-
pensatory mechanism in response to declining [C0,% ] e

There were strong specles-specific effects of the experimental conditions on DIC . The few studies that have
Imvestigated DNC ;have assumed that DNC ; was driven by photosynthesis, seawater pH, or seawater DIC7A7#50
Here we also show that flow and light can have complex effects on DIC - and that these effects are pH dependent.
The relationship between B/Ca and the employed treatments for the coralline alga was also complex. Under high
flow, B/'Ca was lower {DIC s higher) at low seawater pH, which 1s stmilar to the effects of seawater pH on corals™.
However, here the opposite was found for 5 duwrum at low flow, demonstrating that seawater carbonate chemistry
15 mot the only driver of CCA DIC ;. This lower B/Ca could be the result of the very low consumption of DIC by
calcification in the low flow, Low pH treatments where the lowest rates of calcification were measured.

The overall lack of an effect of the treatment on {1, ;or FWHM while calcification varied between treat-
mients 15 indicattve of three processes. First, (1, ;and FWHM represents the chemical condition in the calcifying
flutd when the prectpitation of calctum carbonate occurred. Here, our results show that corals and CCA need to
reach a certaln spectes-spectfic threshold o {0r FWHM) to inttate the precipitation process (Le., (.~ 11
for A. yorget and ~10 for P wersipora, FWHM - 10 for 5 durinr), regardless of the external conditions of flow,
light and pH. Second, (g (or FWHM) does not provide information on the bulk rate of caktfication (Le. the
Instantaneous precipitation rate ntegrated over time and surface area). Finally, the discrepancy between o
{or FWHM) and calcification could be the sign that dissolution in some treatments played a role, as this wo
decrease calcification without affecting the chemistry at the site of cakctfication during calcification.

Conclusion

The present study shows that light, flow, and pH have complex species-specific effects on corals and coralline
algae. Slow fow conditions did not provide refugla from ocean acidification, and in contrast it had no effect
or negative effects on calcificatton. Mor did elevated seawater velocity show clear evidence of Increased proton
export. Here we clearly demonstrate the role of flow 1s context and specles-specific. This highlights the necessity of
assessing hypotheses regarding how climate change will manifest across multiple species under a variety of envi-
ronmental conditions, whike at the same time evaluating the phystological effects of these parameters. Further, the
strong effects of rradiance and fiow on the carbonate chemistry within the calcifying flusd confirm the dificulties
assoctated with using skeletal proxies to estimate environmental and physiological conditions=4%*!, Therefore,
caution must be applied to assuming constant offsets of these parameters from seawater carbonate chemistry
across different sites, even within the same species. Most importantly however, we demonstrate here that the
effects of ccean actdification will mantfest differently between habitats with differences in light and seawater
velocty. These differences are complex, difficult to predict based on extsting hypotheses regarding the impacts of
seawater velocity, and are specles-specific. This indicates the need for more targeted research that further assesses
the Impacts of seawater velocity; based on our findings further work should couple stmilar research with assess-
mient of dissolution and/or mantpulations of nutrient concentrations.
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Résumeé / Abstract

Les octocoralliaires représentent 1’un des principaux groupes formant la communauté macrobenthique
des récifs coralliens tropicaux. Ils sont notamment abondants au sein des écosystémes perturbés ou les
changements environnementaux entrainent le déclin des coraux constructeurs de récifs. Bien que la
nutrition joue un role fondamental dans la régulation de 1’abondance d’une population, I’acquisition de
nutriments par les octocoralliaires reste a ce jour peu connue. Dans ce contexte, les objectifs de cette
thése étaient 1) de caractériser I’acquisition et I’assimilation de carbone et d’azote, par différentes
especes d’octocoralliaires de mer Rouge, et 2) d’évaluer les changements de nutrition le long d’un
gradient de profondeur, depuis la surface (5 m) jusqu’a la zone récifale mésophotique supérieure (50
m). Les résultats démontrent que les octocoralliaires forment une symbiose nutritionnelle avec leurs
dinoflagellés, dont le fonctionnement differe largement de celui de la symbiose dinoflagellés-
scléractiniaire. La symbiose des octocoralliaires se démarque particuliérement par un apport de carbone
autotrophe stable le long du gradient de profondeur, alors que les scléractiniaires connaissent un
approvisionnement réduit avec 1’augmentation de profondeur. De plus, 1’assimilation de composés
azotés dissous (par les dinoflagellés ou les symbiotes microbiens) par les octocoralliaires est trés
inférieure a celle des scléractiniaires. Ces résultats suggérent que les octocoralliaires dépendent
largement de sources alimentaires hétérotrophes pour satisfaire leurs besoins nutritionnels.
L’importance de I’hétérotrophie est confirmée par de fortes concentrations tissulaires en biomarqueurs
lipidiques specifiques du zooplancton aux deux profondeurs, avec une augmentation en milieu
mésophotique chez certaines espéces. Une telle mixotrophie confére aux octocoralliaires une grande
plasticité trophique, ce qui pourrait contribuer a une plus grande résistance aux changements
environnementaux en cours.

Mots clés : octocoralliaires | symbiose | autotrophie | hétérotrophie | mésophotique

Octocorals are one of the major groups forming the macrobenthic community of tropical coral reefs.
They are notably abundant within disturbed ecosystems where environmental changes have led to the
decline of reef-building corals. Although nutrition plays a fundamental role in regulating the abundance
of a population, the acquisition of nutrients by octocorals has received little attention to date. In this
context, the aims of this thesis were to 1) characterize the acquisition and assimilation of carbon and
nitrogen by several octocoral species from the Red Sea, and 2) investigate the nutritional changes along
a depth gradient, from the shallow (5 m) down to the upper mesophotic (50 m) reef zone. The results
show that octocorals form a nutritional symbiosis with dinoflagellates, but the functioning differs
significantly as compared to the scleractinian-dinoflagellate symbiosis. Particularly, the octocoral
symbiosis is characterized by a stable supply of autotrophic carbon along the depth gradient, whereas
scleractinian corals experience a reduced supply with increase in water depth. In addition, octocorals
assimilate along the entire depth gradient significantly less dissolved nitrogen compounds (from
dinoflagellates or microbial symbionts) as compared to scleractinian corals. These results suggest that
octocorals strongly depend on heterotrophic food sources to meet their nutritional requirements. The
importance of heterotrophy is confirmed by high concentrations of lipid biomarkers specific to
zooplankton in the octocoral tissue at shallow and mesophotic depths, with an increased concentration
for some species in the mesophotic environment. Such mixotrophy provides octocorals with a wide
trophic plasticity, which may contribute to their higher resistance to cope with already on-going
environmental changes.
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