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Titre : Classification des images IRM multimodales par l’apprentissage profond:
Application au diagnostic de la Maladie d’Alzheimer.

Résumé: Dans cette thèse, nous nous intéressons à la classification automatique des images IRM

cérébrales pour le diagnostic de la maladie d’Alzheimer (MA). Nous cherchons à construire des

modèles intelligents qui fournissent au clinicien des décisions sur l’état de la maladie d’un patient

à partir de caractéristiques visuelles extraites d’images IRM. L’objectif consiste à classifier les

patients (sujets) en trois catégories principales : sujets sains (NC), sujets atteints de troubles cognitifs

légers (MCI), et sujets atteints de la maladie d’Alzheimer (AD). Nous utilisons des méthodes

d’apprentissage profond (Deep learning), plus précisément les réseaux neuronaux convolutifs (CNN)

basés sur des biomarqueurs visuels à partir d’images IRM multimodales (IRM structurelle et l’IRM de

tenseur de diffusion - DTI), pour détecter les changements structurels dans le cerveau, en particulier

dans la région hippocampique du cortex limbique. Nous proposons une approche appelée "2-D+ε"

appliquée sur notre ROI (Region-of-Interest): hippocampe. Cette approche permet d’extraire des

coupes 2D à partir de trois plans (sagittale, coronale et axiale) de notre région en préservant les

dépendances spatiales entre les coupes adjacentes selon chaque dimension. Nous présentons une

étude complète de différentes méthodes artificielles d’augmentation de données, ainsi que différentes

approches d’équilibrage de données pour analyser l’impact de ces conditions sur nos modèles pendant

la phase d’entraînement. Ensuite, nous proposons nos méthodes pour combiner des informations

provenant de différentes sources (projections/modalités) avec notamment deux stratégies de fusion

(fusion précoce et fusion tardive). Enfin, nous présentons des schémas d’apprentissage par transfert

en introduisant trois cadres : (i) un schéma inter-modale (IRM structurelle et DTI), (ii) un schéma

inter-domaine qui implique des données externes (MNIST), (iii) et un schéma hybride avec ces deux

méthodes (i) et (ii). Les méthodes que nous proposons conviennent à l’utilisation des réseaux (CNN)

peu profonds pour les images IRM multimodales. Elles donnent des résultats encourageants même

si le modèle est entraîné sur de petits ensembles de données, ce qui est souvent le cas en analyse

d’images médicales.

Mots clés : Maladie d’Alzheimer (MA), Imagerie par Résonance Magnétique (IRM), Apprentissage

Profond, IRM structurel, IRM de tenseur de diffusion (DTI), Déficit cognitif léger (MCI), réseaux

neuronaux convolutifs (CNN), Apprentissage profond (DL), Transfert d’apprentissage,

Multimodalitie, Traitement d’image, Classification des images
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Title : Classification of multimodal MRI images using Deep Learning: Application to the
diagnosis of Alzheimer’s disease.

Abstract: In this thesis, we are interested in the automatic classification of brain MRI images to

diagnose Alzheimer’s disease (AD). We aim to build intelligent models that provide decisions about

a patient’s disease state to the clinician based on visual features extracted from MRI images. The

goal is to classify patients (subjects) into three main categories: healthy subjects (NC), subjects

with mild cognitive impairment (MCI), and subjects with Alzheimer’s disease (AD). We use deep

learning methods, specifically convolutional neural networks (CNN) based on visual biomarkers

from multimodal MRI images (structural MRI and DTI), to detect structural changes in the brain

hippocampal region of the limbic cortex. We propose an approach called "2-D+ε" applied to our

ROI (Region-of-Interest): the hippocampus. This approach allows extracting 2D slices from three

planes (sagittal, coronal, and axial) of our region by preserving the spatial dependencies between

adjacent slices according to each dimension. We present a complete study of different artificial

data augmentation methods and different data balancing approaches to analyze the impact of these

conditions on our models during the training phase. We propose our methods for combining

information from different sources (projections/modalities), including two fusion strategies (early

fusion and late fusion). Finally, we present transfer learning schemes by introducing three

frameworks: (i) a cross-modal scheme (using sMRI and DTI), (ii) a cross-domain scheme that

involves external data (MNIST), and (iii) a hybrid scheme with these two methods (i) and (ii). Our

proposed methods are suitable for using shallow CNNs for multimodal MRI images. They give

encouraging results even if the model is trained on small datasets, which is often the case in medical

image analysis.

Keywords : Alzheimer’s Disease (AD), Magnetic Resonance Imaging (MRI), Diffusion Tensor

Imaging (DTI), Mild Cognitive Impairment (MCI), Convolutional Neural Network (CNN), Deep

Learning, Transfer learning, Multi-modality, Image processing, Image classification
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Résumé

Introduction

Maladie d’alzheimer

La maladie d’Alzheimer (MA) est l’une des formes les plus courantes de démence pour laquelle

il n’existe pas encore de remède ou de traitement efficace. Il s’agit d’une maladie dégénérative

progressive et irréversible qui dévaste les cellules du cerveau humain et provoque la démence chez

les personnes âgées, principalement celles de 65 ans ou plus. La maladie est une priorité mondiale

majeure en matière de santé publique, qui s’est considérablement accrue au cours des dernières

décennies.

Aujourd’hui, nous estimons que plus de 44 millions de personnes sont touchées par la maladie

dans le monde, et il y a environ 7,7 millions de nouveaux cas chaque année. Selon les prévisions

de l’organisation mondiale de la santé (OMS), ce nombre va presque doubler tous les 20 ans, pour

atteindre 75 millions en 2030 et 131,5 millions en 2050. Autrement, toutes les 67 secondes, quelqu’un

dans le monde développe (MA). La croissance des soins de santé de la (MA), outre le fait qu’elle

constitue un important problème social et économique, est une source de préoccupation due au

fait que la maladie dévaste non seulement les personnes touchées, mais également la famille et les

aides-soignants. Ces derniers ont la lourde tâche de prendre soin du patient.

De nos jours, de nombreux projets de recherche s’intéressent à la détection automatique de la

maladie, en particulier à son stade précoce, ce qui peut contribuer à retarder le développement et la

progression de la maladie ou à conduire un meilleur traitement.

Les phases cliniques de la maladie d’Alzheimer

L’évaluation de la progression de (MA) montre que le patient passe par trois étapes différentes avant

d’être converti en pathologie probable de la (MA). Cependant, nous pouvons diagnostiquer le patient

en utilisant différentes méthodes et outils pour identifier le degré de gravité de la maladie. En effet,

le diagnostic précoce de la maladie peut aider les cliniciens à prescrire des traitements pour aider

les patients à préserver le fonctionnement quotidien ou réduire les risques de la maladie pendant un

certain temps.

Nous pouvons définir les cas en trois phases cliniques de la maladie comme suit:

AD préclinique: Les personnes à ce stade ne signalent aucun symptôme de troubles cognitifs.

Néanmoins, certains changements structurels peuvent se produire dans des régions spécifiques du

cerveau, comme dans le sang et le liquide céphalo-rachidien (LCR). En effet, cette phase n’est
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pas encore évidente à détecter car la dégénérescence des cellules pertinentes pour la (MA) peut

commencer des années, voire des décennies, avant l’apparition des premiers symptômes.

MCI (le déficit cognitif léger): Avec l’âge de la population, certains sujets développent des difficultés

de mémoire plus importantes que celles prévues pour leur âge. Dans la jungle de la (MA), ces

personnes peuvent être atteintes de la maladie (MCI). La MCI est une phase de transition au cours

de laquelle les sujets commencent à développer un certain déclin des fonctions cognitives avant de

devenir atteints de la maladie d’Alzheimer. À ce stade, les symptômes liés à la capacité de mémoire et

à la réflexion apparaissent progressivement chez les patients eux-mêmes, sans pour autant influencer

leur vie quotidienne.

Diagnostic clinique de la MA: C’est le dernier stade du diagnostic de la maladie d’Alzheimer, où

les sujets souffrent d’une diminution de leurs capacités de réflexion et de comportement. À ce stade,

les symptômes sont déjà lucides et évidents en raison de la dégénérescence des cellules du cerveau,

en particulier dans les zones considérées comme atteintes par la (MA).

Etat de l’art sur la classification automatique de la maladie

d’alzheimer

Dans ce chapitre 1, nous présentons une étude bibliographique complète sur la problématique de la

classification de la maladie d’alzheimer (MA) à l’aide des méthodes d’apprentissage automatique. Ce

chapitre se compose de trois grandes partie:

Les biomarqueurs visual pour la détection de (MA):

Nous couvrons une liste exhaustive de tous les biomarqueurs visuels utilisés pour diagnostiquer la

maladie (AD), telles que l’épaisseur de la corticale, l’élargissement des ventricules, et l’atrophie de

l’hippocampe. Ces biomarqueurs visuels peuvent être classés en plusieurs groupes en fonction du

type d’informations qu’ils fournissent: (i) Atrophie globale: morphométrie basée sur les voxels et les

tenseurs, par exemple pour mesurer l’élargissement des ventricules). (ii) Atrophie diffusée: atrophie

propagé de la matière grise le long du cortex cérébral (épaisseur corticale). (iii) Atrophie focale:

morphométrie basée sur le volume dans des régions spécifiques (hippocampe, cortex entorhinal).

Les méthodes d’évaluation appliqués sur les images IRM:

Nous présentons les méthodes de mesure qui permettent de suivre les changements structurels à

travers de l’imagerie IRM. Dans cette section, nous faisons un bref détour et examinons certaines

des approches les plus utilisées dans le diagnostic de (MA), ainsi pour étudier les variations de toutes

les régions vulnérables à la pathologie.
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Les algorithmes de classification automatiques pour MA:

Nous présentons les travaux les plus pertinents utilisant les techniques d’apprentissage automatique

pour la classification de la (MA). Nous couvrons différentes méthodes et approches, y compris

les types conventionnels de classificateurs, les algorithmes d’extraction de caractéristiques et les

méthodes de réseaux neuronaux profonds. Cependant, dans cette section, nous mettons l’accent sur

seulement un aperçu général des méthodes utilisées à cet égard.

A la fin de ce chapitre, nous conclurons par une analyse comparative de toutes ces méthodes et

approches (2D, 3D, etc ...) et les différents biomarqueurs visuels afin de choisir une piste de recherche

qui peut nous amener à de meilleurs résultats de notre problème de classification.

Imagerie médical pour le diagnostic de la maladie d’alzheimer

Comme nous avons discuté dans l’introduction de cette thèse , nous pouvons diagnostiquer le patient

en utilisant différentes méthodes et outils pour déterminer le degré de gravité de la pathologie : (1)

Tests d’évaluation basés sur les scores : (MMSE, ADAS-Cog, CDR-SB etc...), (2) ou par l’analyse

de l’imagerie cérébrale: (IRM, PET, DTI etc...).

Dans ce travail, nous utilisons uniquement les méthodes basées sur l’imagerie cérébrale. Le

choix d’une modalité d’imagerie médicale pour un diagnostic d’une telle maladie nécessite une

connaissance biologique préalable de la pathologie, et aussi une connaissance approfondie de

l’imagerie médicale, ainsi dans la première partie de ce chapitre 2, nous introduisons les méthodes

d’acquisition pour l’imagerie IRM en expliquant les deux types de modalité d’images utilisées dans

ce travail : l’IRM structurelle et l’IRM en tenseur de diffusion (DTI), et la théorie qui les entourent,

et pourquoi sont ils convient pour l’évaluation et le traitement de la maladie d’alzheimer. Ensuite,

nous présentons une brève description des différentes bases de données publiques ainsi que leurs

compositions. Dans la dernière partie, nous fournissons le processus de prétraitement de données

et l’extraction automatique des régions d’intérêt (la région hippocampique). En effet, nous avons

développé une bibliothèque qui permet de générer une base de données d’images IRM concrètes.

Cette étape consistait à suivre une chaîne ordonnée des processus de traitement d’images que ce

soit le pré-traitement et post-traitement de toute la base de données. Une sélection automatique des

régions d’intérêt (ROI) avec une augmentation artificielle spécifique de données pour nos modèles de

l’apprentissage.

Les méthode d’apprentissage profond pour la classification

Dans ce chapitre 3, nous fournissons une présentation complète des algorithmes d’apprentissage

profond utilisés dans ce travail. Nous couvrons une analyse des concepts de bases des réseaux de
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neurones, plus précisément la théorie derrière les réseaux de neurones convolutifs (CNN) avec leurs

principaux composants et les méthodes d’optimisation telles que la méthode de descente du gradient

et ses dérivés. En outre, nous abordons les contraintes de la limitation des données et introduisons

des solutions alternatives adaptées pour surmonter et affronter le phénomène de sur-apprentissage

(overfitting).

Modélisations des réseaux de neurones pour la classification

Dans ces trois chapitres, nous présentons les différents modèles de classification que nous avons

développés durant les travaux de cette thèse.

Partie I: 2-D+epsilon

Après avoir étudié l’état de l’art de la classification de la maladie d’alzheimer (Chapitre 1), nous

avons fait une synthèse qui compare les méthodes d’évaluation et de mesure. Nous avons entamé une

piste de recherche en focalisant uniquement sur le région hippocampique (la région la plus vulnérable

à la pathologie). Dans le chapitre 4, nous proposons une approche appelée "2-D+ε" appliquée sur

notre région d’intérêt (ROI). Cette approche permet d’extraire des coupes 2D à partir de trois plans

(sagittale, coronale et axiale) de notre région en préservant les dépendances spatiales entre les coupes

adjacentes selon chaque dimension. Ensuite, nous explicitons notre modèle d’apprentissage (CNN)

en proposant une architecture efficace et adéquate pour notre problème de la classification. Nous

exposons les différentes démarches suivies pour trouver un modèle qui offre de meilleurs résultats.

Nous exposons, par la suite, une étude complète de différentes méthodes d’augmentation artificielles

de données, ainsi que différents paramètres d’équilibrage de données pour analyser l’impact de ces

conditions sur nos modèles pendant la phase d’entraînement.

Partie II: Fusions et combinaisons des modèles

Dans le chapitre 5, nous décrivons l’extension de l’approche proposée auparavant concernant le

modèle basé sur les CNN afin de rendre la classification plus performante. Dans ce sens, nous

proposons nos méthodes en appliquant la fusion d’information à partir de diverses sources dans le but

de rendre plus robuste le modèle proposé. Nous combinons les informations provenant de différentes

sources (projections/modalités) avec deux stratégies de fusion (fusion précoce et fusion tardive). Nous

exposons un cadre à flux multiple composé de trois modèles uniques tout en pratiquant l’apprentissage

simultanément à partir de différentes projections et modalités.
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Partie III: l’apprentissage par transfert

Dans ce dernier chapitre 6, nous exposons les démarches proposées pour l’apprentissage par

transfert en introduisant trois cadres: (i) un schéma inter-modale (IRM structurelle et DTI): ici,

nous appliquons le transfert d’apprentissage à partir d’un modèle pré-entraîné sur les données IRM

structurelles (source) vers l’ensemble de données DTI (cible). (ii) un schéma inter-domaine (en

utilisant un jeu de données externe - MNIST): nous introduisons une base de données externe du

domaine pour étudier et évaluer la méthode via une base de données complètement différente de

notre domaine. (iii) un schéma d’apprentissage hybride incluant ces deux méthodes (i) et (ii).

Par conséquent, les méthodes intermodales et hybrides fournissent des résultats prometteurs. Elles

convient pour travailler avec des réseaux CNN peu profond avec des images IRM à basse résolution

et une donnée de données très limitée. Les résultats fournis témoignent des performances de la

classification comparables aux méthodes utilisant un jeu de données volumineux.

Conclusion et perspectives

Enfin, nous présentons une conclusion qui récapitule les principales contributions, en outre nous

exposons quelques perspectives et pistes pour les futurs travaux.



Contents

List of Tables XVIII

List of Figures XXII

Introduction 1
0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.1 Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.1.2 Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

0.2 Clinical phases of Alzheimer’s Disease . . . . . . . . . . . . . . . . . . . . . . . . . 3

0.3 Diagnosis of Alzheimer’s disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

0.3.1 Score-based evaluation tests . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.3.2 Brain imaging analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.4 Computer-aided diagnosis for AD classification . . . . . . . . . . . . . . . . . . . . 8

0.5 Challenges and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

0.6 Thesis contribution and organization . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

0.6.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1 Alzheimer’s Disease classification state-of-the-art: Background and Literature review 13
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Visual biomarkers for Alzheimer’s disease detection . . . . . . . . . . . . . . . . . . 14

1.2.1 Cortical thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Hippocampus volume atrophy (loss) . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Entorhinal cortex (ERC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.4 Ventricles enlargement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.5 Cerebro-spinal fluid (CSF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Methods and approaches for AD evaluation on brain images . . . . . . . . . . . . . 17

1.3.1 Volume-level methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 ROI-level methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Slice-level methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.4 Voxel-based morphometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

XIII



XIV

1.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Automatic classification algorithms for Alzheimer’s Disease . . . . . . . . . . . . . 20

1.4.1 Methods using engineered Visual Features . . . . . . . . . . . . . . . . . . . 21

1.4.2 Methods using Deep learning approach . . . . . . . . . . . . . . . . . . . . 23

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Acquisition Methods and Neuroimaging Data preprocessing 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Magnetic Resonance Imaging (MRI) image formation . . . . . . . . . . . . . . . . . 30

2.2.1 Structural MRI (sMRI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.2 Diffusion Tensor Imaging (DTI) . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Data sets and corrections for image analysis . . . . . . . . . . . . . . . . . . . . . . 37

2.3.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Data correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Data processing for region-of-interest (ROI) extraction . . . . . . . . . . . . . . . . 42

2.4.1 Spatial Normalization (Alignment) . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Multimodal co-registration for ROI Selection . . . . . . . . . . . . . . . . . 46

2.4.3 Intensity Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.4.4 ROI Selection using Automated Anatomical Labeling (AAL) . . . . . . . . . 49

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Deep learning methods for object classification 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Formal Neuron (Perceptron) . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Multi layer Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Activation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Convolution Neural Networks (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 The Convolution transformation . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Pooling Layer (Pool) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3.3 Fully connected layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 Loss functions (Cost functions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1 L1 and L2 mean loss function . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Cross Entropy Loss (Log Loss) . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Optimization Methods and policies for Model Training . . . . . . . . . . . . . . . . 62

3.5.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Optimizing the Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . 65



XV

3.5.3 Adaptive Learning rate policy . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Deep learning and Data limitation constraint . . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Motivation: Over-fitting Phenomena . . . . . . . . . . . . . . . . . . . . . . 66

3.6.2 Artificial data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 Regularization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.4 Transfer Learning and Fine-tuning Approach . . . . . . . . . . . . . . . . . 69

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 The 2-D+ε Approach with Shallow Convolutional Neural Networks. 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The hippocampal region and visual atrophy in AD diagnosis . . . . . . . . . . . . . 73

4.4 The 2-D+ε Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 The 2-D+ε concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Shallow Architecture design for AD classification . . . . . . . . . . . . . . . . . . . 78

4.6 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.1 MRI processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6.2 Data groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.1 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.2 Specific data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8 Discussion and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.1 Results of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Data Fusion for Alzheimer’s Disease Recognition on Brain Imaging. 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Fusion methods: From Single model to data and models combination . . . . . . . . 93

5.4 Fusion application for AD classification . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Intermediate fusion designs . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Late fusion designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.3 Final multi-modal fusion architecture . . . . . . . . . . . . . . . . . . . . . 98

5.5 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



XVI

5.6 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.1 Single modality experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Discussion and comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Transfer Learning for Brain imaging classification with multiple sources 105
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Works based on a transfer learning approach . . . . . . . . . . . . . . . . . 106

6.3 Methodology and approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.1 The 2D+ε Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Transfer learning for brain image classification . . . . . . . . . . . . . . . . 109

6.3.3 Adapted cross-domain/cross-modal transfer learning schemes . . . . . . . . 111

6.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 Dataset description and learning setup parameters . . . . . . . . . . . . . . . 112

6.4.2 2-D+ε single and fusion architecture . . . . . . . . . . . . . . . . . . . . . . 115

6.4.3 Evaluation of transfer Learning. . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Discussion and Comparison with literature review . . . . . . . . . . . . . . . . . . . 119

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

General conclusion and future lines research 123

List of Publications 127

A Figures 129

References 133



List of Tables

1 Preview results: main binary AD classification results covered in this thesis. . . . . . 10

1.1 A comparison of the advantages and disadvantages of different methods. . . . . . . . 20

1.2 Some studies used both engineered features and deep learning method reported in the

literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Demographic description of the ADNI dataset group. Values are reported as mean

and ± standard deviation (? Subjects with both modalities). . . . . . . . . . . . . . . 40

4.1 Details of the proposed architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Demographic description of the ADNI dataset group. Values are reported as mean

and ± standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Data augmentation: "G" is the Gaussian blur, "T" is the translation, "F" is the flip. . . 83

4.4 Binary classifications with augmented data (10x): flip, translation, blur. . . . . . . . 83

4.5 Data balancing: (1) simple data reduction, (2) data augmentation by duplication of

original scans, (3) randomized reduction of the augmented data. . . . . . . . . . . . 84

4.6 AD vs MCI and MCI vs NC with and without a roughly equilibrated number of scans

(reduction balancing) with blurred images. . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 AD/NC and MCI/NC with and without additional blurred images with reduction data

balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 The results with translated and blurred images including the reduction data process

for balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9 Data balancing, (1) simple data reduction (2) data augmentation by duplication (3)

randomized reduction of the augmented data . . . . . . . . . . . . . . . . . . . . . . 86

4.10 Confusion matrix for 3-way classification . . . . . . . . . . . . . . . . . . . . . . . 86

4.11 Impact of the data augmentation on results . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Demographic description of the ADNI dataset group. Values are reported as mean

and ± standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Demographic description of the ADNI screening 1.5T Images studied population

(reduction subject details) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Number of subjects for each class, with its corresponding augmentation. . . . . . . . 100

5.4 MRI results: single-projection comparison. . . . . . . . . . . . . . . . . . . . . . . 101

XVII



XVIII

5.5 MRI results: intermediate fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.6 MRI results: Late fusion comparison (Max, Mean, and Majority Vote). . . . . . . . . 102

6.1 Demographic description of the ADNI dataset group. Values are reported as mean

and ± standard deviation (* Subjects with both modalities). . . . . . . . . . . . . . . 113

6.2 Number of subjects for each class, with its corresponding augmentation, (∗ Both

modalities). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Classification results for each single projection and fusion by majority vote on sMRI

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Binary classification results with Transfer Learning from sMRI to MD-DTI data and

fusion (* both modalities). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Classification results with One-level scheme Transfer Learning: From MNIST to

SMRI & From MNIST to DTI-MD data. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 classification results with Two-level scheme Transfer Learning: From MNIST to

DTI-MD crossed sMRI data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.7 Comparison of classification performances reported in the literature. . . . . . . . . . 122



List of Figures

1 Pie-chart of the leading causes of dementia: patients who have Alzheimer’s disease

outline around 60% of the dementia [55]. . . . . . . . . . . . . . . . . . . . . . . . 2

2 Brain shrinkage instance for two subjects: (left) - Normal control brain and (right) -

brain with Alzheimer’s disease. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Clinical phases: Charting the course from healthy aging to AD condition [156]. . . . 5

1.1 Illustration of Cortical thickness measurement through MRI imaging. . . . . . . . . 15

1.2 A comparison of the hippocampal region atrophy from two subjects (left) AD - (right)

NC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Ventricles enlargement severely over stages of AD brain. . . . . . . . . . . . . . . . 17

2.1 A cutaway view of the Magnetic Resonance Imaging (MRI) scanner system [52]. . . 30

2.2 A coils view of the Magnetic Resonance Imaging (MRI) scanner system [52]. . . . . 31

2.3 An example of human brain slices: (Sagittal, Axial, and Coronal) projections [52]. . 31

2.4 Example: Axial slices of T1-weighted (left), T2-weighted (center), and Flair (right)

images of brain tissue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 The diffusion ellipsoids and tensors for isotropic unrestricted diffusion, isotropic

restricted diffusion, and anisotropic restricted diffusion are shown [138]. . . . . . . . 35

2.6 Isoprobability surfaces derived from the diffusion tensor field. Note that in each voxel

the isoprobability surface is an ellipsoid which is uniquely defined by the tensors’

eigenvectors and eigenvalues. Image courtesy of Alexander Leemans [95]. . . . . . . 36

2.7 An example of the isoprobability surfaces derived from the diffusion tensor field. . . 37

2.8 Illustration of denoising method, images at the left and right represent the data before

and after the denoising process, respectively [50]. . . . . . . . . . . . . . . . . . . . 40

2.9 Intensity inhomogeneity in MR brain image [194]. . . . . . . . . . . . . . . . . . . 41

2.10 The MNI Template: MNI-152 example [72]. . . . . . . . . . . . . . . . . . . . . . . 43

2.11 A typical registration algorithm consists of four main components: a transformation

model, a correspondence basis, an optimization technique, and an interpolation

method. The optimization problem can be carried out in a multiresolution or

multiscale framework [77]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

XIX



XX

2.12 Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI

space, followed with intensity normalization. ii) ROI selection process using the Atlas

AAL for both hippocampal regions. iii) 2D-slice extraction from selected 3D-volume.

iv) feeding the CNN networks [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.13 Example of sMRI skull stripping: - (left) an original brain scan - (right) the brain

result after removal skull process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.14 Illustration of the co-registration process includes spatial normalization and skull

stripping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 The AAL atlas views: (Left) coronal slice, (Center) Sagittal slice, and (Right) Axial

slice. The regions are colored to identify region boundaries. . . . . . . . . . . . . . . 50

2.16 An illustration of the hippocampal region using the Atlas AAL. . . . . . . . . . . . . 51

2.17 Two 3D Bounding Boxes include the Left (green) et the Right (red) Hippocampus

ROIs in three projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Formal Perceptron illustration: An example of single perceptron with tree inputs

(I1, I2, and I3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Multi Layer Neural Network: example of fully connected network with tree layers

(Input, Hidden and Output). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Activation functions graphs examples: (a) - the sigmoid function. (b) - the tanh

function. (c) - the Rectified Linear Unit (Relu) function. (d) - the Leaky ReLU [7]. . 56

3.4 An example of a CNN architecture: model for handwritten digits classification. . . . 57

3.5 The convolution transformation: case of 2D input image . . . . . . . . . . . . . . . . 59

3.6 Sub-sampling illustration: case of Max-Pooling with a 2×2 filter and a stride with 2

steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7 Different learning rate where training and validation of a Deep CNN [100]. . . . . . 63

3.8 Gradient Descent examples: Two functions - (a) having global minima, and - (b) a

non-convex function having a local minima and global minima. . . . . . . . . . . . . 64

3.9 Early stopping for best generalization performance [100]. . . . . . . . . . . . . . . . 68

3.10 An example of two Neural networks: (a): Standard Neural Network - (b): After

applying dropout method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.11 Three ways in which transfer might improve learning: a higher performance at

the very beginning of learning, a steeper slope in the learning curve, or a higher

asymptotic performance [144]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Example of the Hippocampus Atrophy: (A) Alzheimer’s Disease subject - (B) Normal

subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 The global diagram of proposed approach for Alzheimer’s Classification. . . . . . . 76



XXI

4.3 Geometric illustration of the 2-D+ε Approach. . . . . . . . . . . . . . . . . . . . . . 77

4.4 Example of the Hippocampus Region: Sagittal, Coronal, and Axial Projections. . . . 77

4.5 Architecture of our CNN: Shallow Network. . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI

space, followed with intensity normalization. ii) ROI selection process using the Atlas

AAL for both hippocampal regions. iii) 2D-slice extraction from selected 3D-volume.

iv) feeding the CNN networks [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 Multi-instance of the selected central slice (sagittal view) with different gaussian blur

settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 AD/NC: An example of accuracy and loss plots during training the network. . . . . . 83

5.1 Intermediate fusion architecture: built for three the projection input data (Sagittal,

Coronal, and Axial) of the sMRI modality. . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Late fusion-level using two strategies: (a) - different algebraic aggregation on scores

(b) - Majority vote on final decisions. . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Multi-modal intermediate fusion architecture: Data come from sMRI and DTI scans,

and the fusion is applied on six single network. . . . . . . . . . . . . . . . . . . . . 99

5.4 Features example patch of AD (a), NC (b) subjects and there features of conv1 and

pool2 layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Illustration of the 2-D+ε Approach from each projection. . . . . . . . . . . . . . . . 109

6.2 Example of the hippocampal region with different projections for two Subjects: (A) -

MD and (B) - sMRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 The scheme of Transfer Learning for parameters optimization from sMRI to MD-DTI

modality. An example of the proposed architecture for 2-way classification. . . . . . 111

6.4 LeNET-5 design: A modified version the original LeNET which takes data of 28×28

resolution from MNIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5 Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI

space, followed with intensity normalization. ii) ROI selection process using the Atlas

AAL for both hippocampal regions. iii) 2D-slice extraction from selected 3D-volume.

iv) feeding the CNN networks [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Learning parameters for training comparison on the SMRI dataset. . . . . . . . . . . 116

6.7 Example of Transfer learning for single network - comparison of AD/NC: a) Transfer

from sMRI to MD-DTI, b) Training from scratch on MD-DTI Dataset. . . . . . . . . 118

6.8 Example of Transfer learning - comparison of AD/MCI: a) Transfer from sMRI to

MD-DTI, b) Training from scratch on MD-DTI Dataset. . . . . . . . . . . . . . . . 118



XXII

6.9 Temporal loss curves comparison: a) From sMRI to MD-DTI transfer learning with

reduced over-fitting - b) Training from scratch with small over-fitting. . . . . . . . . 119

A.1 AD/NC: Comparison of the three single projections curves (Accuracy and Loss). . . 130

A.2 AD/NC: Comparison of Intermediate Fusion and Sagittal projection only (Accuracy

and Loss). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



Introduction

In this section, we will briefly expose our research motivation in the field of Computer-Aided

Diagnosis of Alzheimer’s Disease.

0.1 Motivation

0.1.1 Dementia

As the median age of the population in developed countries increases, aged people are exposed

to neurodegenerative diseases with dementia. Dementia is an overall term for a variety of mental

illnesses that covers a wide range of specific cognitive pathologies. It is characterized by a decline

in memory, loss of thinking and reasoning skills, and behavioral abilities that interfere with daily

life. The clinical syndrome of dementia is very subtle, vague, and may not be evident in early-stage

patients. Worldwide, it is estimated that 50 million people have dementia, and this number is projected

to reach 82 million in 2030 and 152 million in 2050 [18]. Dementia can be caused by a variety of

diseases, mainly those related to memory troubles.; the most common is Alzheimer’s Disease (AD),

followed by Parkinson’s disease (PaD), Frontotemporal dementia (FD), Cerebrovascular disease

(CDB), and Dementia with Lewy bodies (DLB). According to statistics, solely AD represents around

60% (see Figure 1). Therefore, it is necessary to lead efforts in Alzheimer’s disease research to

prevent and control its evolution.

0.1.2 Alzheimer’s Disease

Alzheimer’s Disease (AD) is one of the most common forms of dementia for which there is no known

cure or effective treatment thus far. It is a progressive degenerative disease that devastates cells in the

human brain and causes dementia for elderly individuals, mostly those aged 65 or older. The disease

is a major worldwide public health priority that increased significantly over the last decades [20, 19].

The prevalence of AD and pain both increase with advancing age [9]. Nowadays, numerous research

projects investigate on detecting the disease, especially in its early stage - this may help to achieve a

delay in the disease’s progression or lead to better treatment outcomes.

People affected by AD show several types of symptoms. The sharpness degree and the severity of

the onset of these symptoms depend on the disease’s level progression. However, clinical symptoms

1
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Figure 1: Pie-chart of the leading causes of dementia: patients who have Alzheimer’s disease outline around
60% of the dementia [55].

can be classified into different types, related to physiology, psychology, cognitive functions, and

behaviors.

Indeed (Today), about 44 million people are diagnosed with AD in the world, and there are 7.7

million new cases each year. According to World Health Organisation predictions, this number will

almost double every 20 years, to reach 75 million in 2030 and 131.5 million in 2050; every 67 seconds,

someone in the world is developing Alzheimer’s disease [9]. In the United States (USA), 5.7 million

individuals live with AD in 2018, and this number will approximately triplicate by 2050. Currently,

5.3 million of these people are over the age of 65 [20]. The AD costs around 150 Billion $ per year,

18 Billion hours of unpaid care, and a contribution to the nation valued budget at over 220.2 Billion

$. See [18] for a more extended picture and details.

In Europe, in 2009 more than 7 million people are suffering directly from Alzheimer’s Disease

(AD), and the cost is evaluated to 71 Billion e of direct spendings and a prudent opportunity cost of

89 Billion e , which represents more than 22000 e per sufferer per year [102]. In recent statistical

studies, about 900.000 persons are diagnosed with AD in France, and each year 225.000 new cases

are identified [108]. In 2020, 3 million people will be affected and impacted by Alzheimer’s disease

(patients and caregivers); the costs are estimated at more than 14.3 Billione (5.3 Billione of medical

and paramedical cost + 9 Billion e of social-medical cost). Furthermore, the opportunity costs are

estimated at 14 Billion e [8]. In 2015, an estimated 119.000 people were living with Alzheimer’s

disease in Morocco. This number is expected to nearly quadruple to 460.000 people by the year 2050,

and 30,000 new cases are diagnosed each year [160].

The growth of healthcare concern of the AD aside from being a significant social and economic

issue is due to the fact that the disease devastates not only the affected people but also the family

members and caregivers. The latter have the heavy duty of taking care of the patient. In the following

section, we present the main clinical phases of AD, in which a patient may pass through before being
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0.2. Clinical phases of Alzheimer’s Disease

diagnosed with AD. Furthermore, a brief review of the biological transformations that occur in the

brain substances will be presented.

0.2 Clinical phases of Alzheimer’s Disease

The assessment of Alzheimer’s disease progression shows that the patient goes through three different

stages before being converted to probable AD condition [157]. However, we can diagnose the subject

using different methods and tools to identify the disease’s severity degree. Indeed, as stated above, the

early diagnosis of the disease can aid the clinicians in prescribing treatment to help patients preserve

daily functioning for a while. Medically speaking, AD patient has an accumulation of a protein called

beta-amyloid in healthy neurons [64], this process makes neurons weaker and consequently neurons

lose their ability to communicate with other neurons. Eventually, as the disease progresses over time,

these neurons undermine and die. Thus, this gives rise to what is called atrophy caused by the loss of

brain cells (shrinkage). Figure 2 illustrates the difference between a normal and an affected brain.

Figure 2: Brain shrinkage instance for two subjects: (left) - Normal control brain and (right) - brain with
Alzheimer’s disease.

We can summarize the cases in three clinical phases (stages) of AD as follows:
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• Preclinical AD: People at this stage do not report any symptoms of cognitive troubles.

Nevertheless, some structural changes may occur in specific brain regions, such as in blood

and the Cerebro Spinal Fluid (CSF). Indeed, this phase is still not evident to be detected since

the degeneration of the cells relevant to AD may start years or even decades before any earlier

symptoms arise. Hence, it is a big challenge to interpret structural patterns or biological changes

in analyzing the early stage of the AD.

• Mild Cognitive Impairment (MCI): With the growing age of the population, some subjects

develop memory difficulties which are stronger than those expected for their age. In the AD

jungle, these people may have the (MCI) condition. MCI is a transitional phase where subjects

start developing some declines in cognitive functions before they become in AD condition. At

this stage, symptoms related to the memory capacity and thinking ability arise incrementally

for patients themselves, and yet do not influence their daily life. Indeed, longitudinal studies

show that not all patients diagnosed in the MCI stage develop AD. This group of patients is

considered stable MCI (s-MCI). It was estimated that only 10-15% of people with MCI might

develop dementia and then convert over a while to AD (c-MCI). On the other hand, MCI is

a challenging group - it contains two separate sub-categories of MCI: early MCI (e-MCI) and

late MCI (l-MCI). Patients prone to the disease in the l-MCI stage are more likely to convert

to AD [135] contrariwise to those in the e-MCI stage, where they have the earlier symptoms of

cognitive troubles.

• Clinically Diagnosed AD: Is the last stage of the Alzheimer’s Disease diagnosis, where

subjects are suffering from decreased thinking and behavioral ability. In this stage, symptoms

are already lucid and evident due to cell degeneration in the brain, particularly in areas

considered to be stroked by AD. The hippocampal region is such one. In the advanced

stage, the prevalence of cells decrying to other regions in the brain reaches a state where the

patient becomes unable to complete the daily activities. At this level, the patient is considered

(converted) to AD condition. Figure 3 shows current thinking about the evolution from healthy

aging to AD condition.

In the next section, we will briefly expose the principal tools used to assess AD, namely the

psychological evaluation tests and neuroimaging methods.

0.3 Diagnosis of Alzheimer’s disease

Early diagnosis of Alzheimer’s Disease (AD) is an important step to help patients getting appropriate

treatment, care, and plans for the future. Self-reporting regarding the disease symptoms or

information provided by nearby family members can be vital to the disease assessment. On the
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0.3. Diagnosis of Alzheimer’s disease

Figure 3: Clinical phases: Charting the course from healthy aging to AD condition [156].

other hand, the disease can be assessed using methods based on physiological signals, psychological

evaluation, cognitive analysis, and imaging methods to evaluate abilities associated with Alzheimer’s

disease condition. However, Lab tests, imaging tools, and some other exams are designed to detect

and control disease progression. In this section, we review solely two tools to diagnose the AD:

Score-based tests and imaging methods.

0.3.1 Score-based evaluation tests

Mental status tests are conducted to evaluate some skills and abilities relevant to the disease,

proffering an overall view of the diagnosed patient. These tests can be performed in different

ways and forms to assign scores according to the severity of the disease. The evaluation process

comprises methods based on psychological examinations and cognitive analysis. Mini Mental State

Evaluation (MMSE) is most commonly used in the diagnostic of Alzheimer’s disease, alongside other

methods using cognitive tests such as the Severe Cognitive Impairment Rating Scale (SCIRS) and the

Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), which focus on attention,

orientation, language, executive functioning, and memory skills.

Below, we briefly describe the most frequently used tests:
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• Mini Mental State Evaluation (MMSE): The MMSE is the most widely used cognitive

assessment tool designed to test and evaluate patients’ cognitive state of a range of mental

skills. It is composed of a series of questions asked by health specialists to assess the cognitive

domains affected in Alzheimer’s disease. The test is used both in clinical and research settings.

The maximum score of the MMSE is 30 points. Patients are categorized accordingly to a range

of intervals: A score of 20 to 24 indicates mild dementia, 13 to 20 indicates moderate dementia,

and less than 12 indicates severe dementia [70].

• Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): Was developed to

measure the level of cognitive dysfunction in AD assessment. It is used in pre-dementia clinical

studies where cognitive impairments are more serve. ADAS-cog can detect changes at earlier

stages of AD progression [150]. It includes eleven tasks that assess the cognitive domains of

memory, language, word recall, naming objects and fingers, commands, constructional praxis,

ideational praxis, orientation, word recognition, and comprehension [158].

• Clinical Dementia Rating–Sum of Boxes (CDR-SB): The CDR-SB is a widely used method

to stage the severity of dementia using the patient’s provided scores. It evaluates the

patient’s functioning in six domains commonly affected in Alzheimer’s disease (AD): memory,

orientation, judgment and problem solving, community affairs, home, hobbies, and personal

care [137].

However, these clinical tests remain limited to the early diagnosis of Alzheimer’s disease. No

single test can discover whether if a person presents the disease or no. Despite the widespread

utilization of these tools in clinical routine, it is complicated to arrive at a correct disease state

diagnosis. Many conditions can exhibit symptoms resembling those in the early stage of AD. These

constraints lead to the development of new methods determining specific symptoms and biological

brain indications in the earlier stage before these impairments diminish patients’ cognitive abilities.

0.3.2 Brain imaging analysis

Brain imaging exams are another way to assess physical, structural, and functional changes in the

brain. Since AD is a gradual degeneration that damages brain cells and can occur in different regions,

neuroimaging methods are promising tools for effectively studying the disease, particularly for the

early detection of AD. The imagery methods provide the ability to observe and track variations in the

brain’s areas, which are supposed to be affected before arising of any cognitive symptoms. Hence,

an early diagnosis may help prevent the disease’s progression from expanding to other vulnerable

regions. Unlike the mental status test, imaging methods would help health professionals to designate

medication to slow the disease’s progression in its more initial stage.
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0.3. Diagnosis of Alzheimer’s disease

Nevertheless, using only scans to examine the patient’s condition is not enough, since they can

not provide the final stage of the disease. Here is an overlap in what doctors consider a standard

age-related change in the brain and abnormal change. However, brain imaging tools can avert other

causes, such as brain tumors or the distinguishing of different degenerative diseases, and provide a

baseline of the degree of degeneration.

The brain-imaging technologies most often used are:

• Magnetic resonance imaging (MRI): MRI uses powerful radio waves and magnets to produce

detailed images of the brain. It is considered to be among the safe and painless exams compared

to other imaging methods.

• Computerized tomography (CT): CT scans use X-rays, which are aimed to generate

cross-sectional images (or slices) of the brain. These slices are called tomographic images

and are collected together to form 3D images.

• Diffusion-weighted imaging (DWI): DWI is a form of MR imaging that measures the random

motion of water molecules found in different brain tissues. In general simplified terms, highly

cellular tissues, or those with cellular swelling exhibit lower diffusion coefficients. Diffusion is

particularly useful in tumor characterization and cerebral ischemia.

• Positron emission tomography (PET): scans have recently been developed that detect clusters

of amyloid proteins (plaques), which are associated with Alzheimer’s dementia; however, this

type of PET scan is typically used in the research setting.

The human brain is a very vulnerable substance that can be harmed by high-power rays. Thus, the use

of painless and non-invasive methods can produce relevant information without compromising the

brain. MRI techniques use a powerful magnetic field and radio waves to produce high-resolution 3D

detailed internal brain structures (commonly known as Head MRI or cranial MRI). These technologies

are suitable for brain disease analysis since they do not use ionizing radiation (x-rays). MRI scans

allow clinicians and researchers to investigate the brain structures and seamlessly identify AD disease

stages by visual or automatic image analysis.

Therefore, in this thesis, we work with MRI modalities widely used for AD diagnosis, especially

with the structural Magnetic Resonance Imaging (sMRI) and the Diffusion Tensor Imaging (DTI).

Chapter 2 exhibits the acquisition methods for these two modalities and provides the reasons and

facts on which we have based our choice for selecting suitable images for AD study.
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0.4 Computer-aided diagnosis for AD classification

Computer-Aided Diagnosis (CAD) systems assist the clinicians and radiologists in detecting

and analyzing diseases; it yields support and information that medical professionals necessitate

understanding better the diseases and their evolution in a short time. CAD comprises many

technologies that merge elements of artificial intelligence and computer vision alongside radiological

and pathology image processing.

The needs of accurate and seamless AD diagnosis lead to integrating intelligent modules to

manage and interpret medical information that helps professionals’ health sustain reliable decisions.

Conventional machine learning algorithms such as Support Vector Machines (SVM), Decision trees,

linear and logistic regression, and Artificial Neural Network (ANN) have been extremely explored

in investigating AD classification until the apparition of powerful computer units. Indeed, there are

whole swaths of models that have been developed over the years for AD classification and detection

using engineered-features algorithms [153]. This kind of method needs reduced and alleviated vectors

of features to feed models, probably yielding loss information. Although these models provide

competitive results in terms of accuracy and other scores, they recommend the pre-reduction of

representative information since they cannot use substantial data dimensions. However, it will be

more beneficial to introduce end-to-end solutions that include full information and provide robust

brain diagnosis results.

With the advent of high-powered computers equipped with strong GPUs, the return to the

application of deep methods is becoming ubiquitous. These methods have reached a level of maturity

that allows them to be used for various intelligent diagnostics. Deep learning methods have an extreme

number of parameters to train, which allows going insight and encompass more input data to better

construct intelligent models, unlike conventional methods that are bounded, as they use a merely

small vector of restricted information (features /signatures).

An improvement of the accuracy was reached nearly up to 10% on sMRI data, especially

for AD/NC binary classification compared to conventional algorithms [62, 76]. Thus, these

limitations and constraints lead to bring and integrate deep and robust models instead of implementing

conventional methods for better disease diagnosis.

Therefore, in this thesis, we investigate the deep learning models for AD classification using

multi-modal MRI due to its success and emergence.

0.5 Challenges and Objectives

MRI imaging provides comprehensive information concerning the anatomy of the brain for the

diagnosis of AD. As noted in the previous section, AD can progress by infecting brain cells before

the onset of any associated cognitive symptoms. Hence, the classification of the selected patterns
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via the MRI images to be analyzed should focus on areas that are more at risk than others of being

affected by AD degeneration.

This thesis aims to investigate the automatic AD classification problem through MRI multi-modal

imaging, namely, structural MRI and DTI modalities. We identify solely reliable local visual

biomarkers, e.g., the hippocampus region, of the AD rather than entirely working on the brain in

order to provide valuable information for diagnosing the disease. However, categorizing brains into

the appropriate classes (AD, MCI, and NC) using MRI images remains a challenge for intelligent

classifier models. Indeed, the setting up of these models using deep learning methods needs a

large dataset for training models - medical imaging datasets are not often available to deploy deep

networks. Furthermore, since the research topic is interdisciplinary, it needs strong knowledge and

background in the medical domain alongside computer science skills. In general, raw data needs

robust preprocessing and segmentation processes; the latter is crucial if the treatment is focused on

particular regions of the brain, for instance.

This research aims to design end-to-end classifiers that can recognize AD brains from MCI/NC,

robust and less resource-consuming (time and complexity) on materials hardware, and achieve high

classification accuracy. Hence, we attempt and investigate to design original concepts and models to

answer these issues.

We can summarize the challenges of our work as follows:

• Using Deep learning methods for AD classification (small dataset - medical domain);

• Focusing only on a small region of the brain that requires domain knowledge for selecting the

reliable Alzheimer’s Disease biomarker (ROI);

• Restricted region (ROI-level method) results in a reduced amount of information and drives

limited data to well-train AD classification models;

• Determining a suitable approach to deal with a small dataset (medical data are not often

sufficient for deep learning models);

• Improve AD classification performance by combining models and data from multiple sources;

• Benefit from transfer learning to improve training behaviors to bypass overfitting phenomena;

0.6 Thesis contribution and organization

0.6.1 Summary of contributions

The work presented in this thesis includes the following contributions:
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• We develop classification models for AD/MCI subjects separation from NC using 2D

Multi-modal images rather than 3D MRI Volumes;

• We propose a specific data augmentation to tackle the problem of the limitation of the amount

of data;

• We use the domain knowledge of the acquired MRI and Alzheimers disease characteristics to

extract appropriate features from the most involved ROIs in AD: Hippocampus (HIPP);

• We propose an intermediate and late fusion of networks to improve the discriminating power of

classifiers. We apply this approach not only to discriminate AD and NC but also to recognize

the most difficult subject class (MCI);

• We introduce the Transfer Learning approach using cross-modal and cross-domain schemes:

we evaluate the benefits of using this approach on medical and non-medical datasets;

Chapter Methods Subjects Modality Accuracy

AD MCI NC AD vs. NC AD vs. MCI MCI vs. NC

Chapter (4) M1 188 399 228 sMRI 82.8% 64.7% 61.8%

Chapter (5) M1 188 399 228 sMRI 80.15% 66.40% 57.56%
M2 188 399 228 sMRI 89.84% 63.28% 66.25%
M3 188 399 228 sMRI 91.41% 69.53% 65.62%

Chapter (6) M1 252 672 627 sMRI+DTI 92.11% 74.41% 73.91%
M2 64 273 399 sMRI+DTI 86.83% 71.45% 69.85%
M3 - - - sMRI+DTI 92.30% 79.16% 78.48%

Table 1: Preview results: main binary AD classification results covered in this thesis.

0.6.2 Thesis outline

The remainder of the thesis is structured as follows:

• Chapter 1: In this chapter, we will summarize the related works. We will present the

state-of-the-art methods and approaches relevant to the AD diagnosis, particularly classification

and detection methods. First, we introduce the main visual biomarkers used for accurate

Alzheimer’s disease assessment. Second, we present a set of measurement approaches to

different brain structures comprising different imaging modalities. Finally, we compare

different studies using classifiers based on both conventional algorithms and deep learning

methods.
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• Chapter 2: This chapter consists of two main parts: first, we will present the acquisition

method for both types of image modalities (sMRI and DTI). We will briefly explain the

technology behind them, and why they are suitable for the diagnosis of AD, then we will

describe the data set used in the elaboration of this thesis. Next, we cover the processes of

data cleaning and preparation; lastly, we will present all the schemes concerning the extraction

of the region-of-interest (ROI).

• Chapter 3: In this chapter, we are going to cover a whole presentation of the deep learning

algorithms used in our AD classification implementation. It includes a theoretical analysis

of CNN networks with their mains components and the optimization methods such as gradient

descent and their derivatives. On the other hand, we will discuss the constraint of data limitation

and introduce alternative AD-adapted solutions to overcome and confront the overfitting

phenomenon.

• Chapter 4: In this chapter, we are going to present our effort in designing effective CNN model

for AD classification. We will introduce and discuss the novel concept called "2-D+ε", which

is well-suited for our problem. Besides, we will provide an overview of different settings for

balancing datasets in order to analyze their result on accuracy metric. We will exhibit that the

proposed framework has good results in terms of accuracy, and our experiments show that it

achieves state-of-the-art performance.

• Chapter 5: In this chapter, we will further extend our proposed CNN-based model to

consolidate the performances for AD classification. We will introduce different strategies

to enhance the robustness of our models, applying the fusion from multiple sources. We

will provide a multiple stream framework composed of a couple of single models and learn

classification simultaneously from different projections and modalities.

• Chapter 6: In this chapter, we are going to introduce the transfer learning approach. We will

evaluate various types of transfer learning through the following mechanisms: (i) cross-modal

(sMRI and DTI) and (ii) cross-domain transfer learning (using external dataset- the MNIST

dataset) (iii) a hybrid transfer learning through both of them.
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Chapter 1

Alzheimer’s Disease classification
state-of-the-art: Background and Literature
review

1.1 Introduction

In this chapter, we present a systematic overview of the state-of-the-art for Alzheimer’s Disease (AD)

classification. We provide an unbiased comparison of visual biomarkers relevant to AD on which

methods focused on discriminating and classifying patients, such as the hippocampus and entorhinal

cortex. We present the retrieval approaches used to measure and analyze brain AD, focusing on the

most commonly used methods. Eventually, we survey current researches using machine learning

algorithms. We pay particular attention to deep learning works that form the basis of this thesis. At

the end, we briefly discuss the existing neural models for AD diagnosis to introduce novel methods

for improving performances.

Highlights:

• We present a brief review of imagery (visual) biomarkers for Alzheimer’s Disease diagnosis;

• We provide the state-of-the-art on the classification of (AD) using machine learning algorithms,

by interesting on Deep learning works using MRI modalities;

• We summarize the different used approaches in the field applied either local region or whole

brain for classification problem;

• We give a benchmark of methods using engineered features classifiers and Convolutional

Neural Networks (CNN);
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1.2 Visual biomarkers for Alzheimer’s disease detection

Alzheimer’s Disease (AD) is a neurodegenerative disease that causes structural changes in the

brain’s regions regarded as sensitive to memory and cognitive functions. These microscopic changes

accompanied by progressive brain atrophy lead to continuous deterioration due to the death of

neurons, followed by synaptic dysfunction. The use of MRI imaging technique has attracted

considerable interest as a tool to observe the phenomenon in which we can measure and analyze

the volumetric brain atrophy, notably in regions identified as biomarkers for AD. Several studies were

carried out on the monitoring of atrophy or abnormal changes in different parts of the brain. We can

review brain regions variations as follows:

• A global atrophy and ventricle expansion with increasing amounts of CSF;

• A spread gray matter atrophy along the cerebral cortex;

• Focal atrophy focused on the medial temporal lobe, particularly in the hippocampus and

entorhinal cortex;

Numerous studies assessing structural brain variances have been reported in the literature,

demonstrating the atrophy of AD and prodromal AD that is spatially distributed over many brain

regions. The spread degeneration starts from the medial temporal lobe structures that include the

entorhinal cortex and hippocampus to encompassing the whole cortex’s brain, involving lateral and

inferior temporal structures, anterior and posterior cingulate [36]. In this section, we will explore the

imaging biomarkers used to diagnose Alzheimer’s Disease, by which we can observe and measure

the evolution stages in affected brains.

1.2.1 Cortical thickness

The cerebral cortex is a key element in many brain imaging studies. It is the outer covering of

Gray Matter (GM) over the brain’s hemispheres and is typically measured of 2-3mm. The cortex

comprises areas of the posterior parietal lobe, the temporal lobe, and the anterior part of the occipital

lobes responsible for essential functions such as memory, language, abstraction, creativity, judgment,

emotion, and attention.

In AD studies, the cortex undergoes changes in thickness in a characteristic pattern during disease

development and progression [185]. The measurement of these changes is a powerful approach

that can expose worthy information about Alzheimer’s disease progression. Indeed, various studies

have reported that patients with AD, or who have cognitive impairment MCI, have restriction and

atrophy of the cerebral cortex [38]. Therefore, cortical thickness estimation in vivo through MRI is

an essential technique for diagnosing and understanding AD’s progression. Different approaches have
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been reported to automate this measurement of cortical thickness from (MRI) data [11]. Figure 1.1

illustrates a brain instance where the cortex is selected and measuring of the thickness is performed.

Figure 1.1: Illustration of Cortical thickness measurement through MRI imaging.

1.2.2 Hippocampus volume atrophy (loss)

Historically, the Hippocampus (HIPP) has enormous potential as a biomarker of AD pathology.

It is the most discriminant in terms of diagnostic categorization [72, 73]. Hippocampus can be

considered damaged when the first clinical symptom of Alzheimer’s disease appears [34]. Indeed,

the hippocampus is a structure within the temporal lobe that plays a significant role in long-term

memory and cognitive information. Therefore, these two brain regions (left and right) hippocampus

have become the primary target of many studies in the detection and recognition of AD.

Due to the high-resolution images that offer MRI technique, various studies have shown increased

rates of hippocampal volume loss in patients diagnosed with Alzheimer’s disease [103, 92, 93],

and mild cognitive impairment (MCI) [89, 192] on average compared with those on normal control

condition. Volume reduction of the hippocampal regions is the most common pronounced change

that occurred in affected patients with AD, according to the study presented in [57]; There exists

a relationship between hippocampal atrophy rate and memory impairment. The measure of the

progression of hippocampal loss can be used as a potential surrogate for therapeutic interventions’

efficacy measure.

The Quantification of the hippocampus volume helps establishing the diagnostic of the AD.

Authors in [198, 165] demonstrate that over time, the hippocampal region changes the shape and

looses volume at different rates, thus distancing the mild stage of AD from the normal state.

Consequently, around 15-30% of the hippocampus volume is lost on average at the mild dementia

stage, whereas 10-15% at the early stage of AD [170]. Figure 1.2 presents two instances of brains

comparing the atrophy between a healthy brain and an AD diagnosed brain.
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Figure 1.2: A comparison of the hippocampal region atrophy from two subjects (left) AD - (right) NC.

1.2.3 Entorhinal cortex (ERC)

Entorhinal Cortex (ERC) is a region located in the medial lobe structure alongside the Hippocampus

(HIPP) that are vital systems responsible for attention, memory, and cognition. Like the hippocampus,

it has been found that AD patients also have volume losses of ERC [61, 58, 207, 98, 33]. Indeed,

many studies have demonstrated the medial temporal lobe structures are the first areas of the brain

that undergo the earliest changes in AD, in particular, the ERC and HIPP [35]. The tracking of the

degeneration progression using structural imaging shows atrophic changes of the entorhinal cortex

from where it progresses to the hippocampus and then the limbic system, temporal and parietal lobes,

and finally involves the frontal lobes in latest ages of AD [60, 99, 93, 56]. Volumetric analysis of MRI

imaging indicates that in MCI stage, the entorhinal cortex and hippocampus show volume reductions

of 20-25% relative to normal control.

1.2.4 Ventricles enlargement

Ventricular enlargement (expansion) is another useful visual biomarker known to be susceptible to

Alzheimer’s Disease alongside other related dementia neurodegeneration diseases. It represents a

short-term marker of AD [139]. According to many studies using the MRI images, researchers

demonstrate that Alzheimer’s Disease causes an enlargement of ventricles in individuals’ brain with

MCI or AD compared to those measured in normal stage (NC) [4, 132, 155]. This construe the

correlation between the volume change of lateral ventricle and AD over time. The level effect of the

ventricles area depends on the stage of the disease progression. In fact, in the advanced stage of AD,

a more significant expansion in this area can be observed; besides, prominent atrophy and shrinking

of Hippocampus (HIPP) and Entorhinal Cortex (ERC), which can be recognized in MR scans [67].

However, the expansion of lateral ventricles may not be a sufficient measure to be specific to MCI or

AD. This lead to incorporating other structural information (regions) of the brain, which could serve

in diagnosing and identifying the related AD patterns, especially in the early stage. Figure 1.3 shows
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typical MRI scans for subjects from the three stages of AD. It presents a coronal view with different

enlargement of lateral ventricles.

Figure 1.3: Ventricles enlargement severely over stages of AD brain.

1.2.5 Cerebro-spinal fluid (CSF)

Cerebro Spinal Fluid (CSF) is a fluid of the central nervous system that surrounds the brain and spinal

cord. Besides, it is also located in the meninges and the central cavities of the brain. The fluid plays a

vital role in protecting the brain from external shocks. CSF is qualified as a reliable biological marker

of Alzheimer’s disease in biofluids. Indeed, several studies have shown that proteins measured in

the CSF are associated with Alzheimer’s disease and that some features belong to it, such as the tau

(T-tau), hyperphosphorylated tau (P-tau), and the 42-amino acid isoform of amyloid-beta (Aβ42) are

considered biomarkers for the diagnosis and monitoring of AD progression [133]. Aβ is the most

typical CSF measurement focused on the detection of AD.

In imagery analysis, the spread of CSF in some specific brain regions can be used as a visual

biomarker for AD diagnosis. Indeed, since AD reveals extensive neuronal loss and atrophy, CSF can

replace brain tissue affected by AD. In other words, AD causes degeneration of neuronal cells, leading

to atrophy of sensitive region in the brain, particularly the hippocampus; moreover, an enlargement of

the ventricles also allows the CSF filling the damaged tissue in these areas. The phenomenon shows

a significant amount of fluid around the hippocampus, medial temporal, and ventricles in individuals

with AD and MCI compared to those with NC. We can, for example, see and analyze the distribution

of CSF fluid in structural MRI images represented by dark areas.

1.3 Methods and approaches for AD evaluation on brain images

Previously, we exposed the conventional imaging biomarkers of Alzheimer’s disease. However, to

analyze and evaluate the disease’s progression, we need robust and effective measurement methods
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to track structural changes using MRI imaging of the brain. In this section, we take a brief detour

and consider some of the most widely used approaches in AD classification methods, to study the

variations of all related-AD brain regions such as cortical thickness, ventricle enlargement, and

hippocampus loss volume.

1.3.1 Volume-level methods

Features extraction can be fulfilled either at the whole brain or at some specific local regions. In

AD detection literature, numerous methods using the full brain which rely on different approaches to

extract representative and relevant volumetric features to the AD disease are reported. The methods

consist of involving all regions to discriminate patients from AD/MCI stages. Many studies have

been used volumetric frameworks for AD classification. Some of them are focused on the study

of White Matter (WM), Gray Matter (GM), or CSF volumes for tracking the disease. Other works

used the method to assess the correlation between a specific ROI and the whole brain to compare the

classification process’s performance. For example, [193] used a whole-brain voxel-based correlative

approach to assess the relationships between hippocampal atrophy, WM, and GM. Overall, these

methods remain heavy in terms of computation. Besides, the fact that the negative impact and effect

of other regions considered is not informative for AD pathology.

1.3.2 ROI-level methods

ROI-based description methods focus on measuring anatomical volumes in predefined areas in the

brain. As believed, the AD impacts regions that are related to the memory system and cognitive

functions. Thus, it is intuitive to focus exclusively on regions identified as AD biomarkers; they can

reflect the disease’s stage, namely in the earlier stage. Many works used ROI-based methods in AD

diagnosis involving different regions to study the disease progression, such as hippocampal volume

[90, 91], cortical thickness [69, 54], and tissue density [209, 211] in specific brain regions using MRI

imaging. However, designing frameworks to serve with ROI methods requires a priori knowledge

of abnormal areas from a structural or/and function viewpoint to determine regions in the brain. In

contrast, in practice, it can not always be inherent. For instance, the disease starts in certain regions

in the early stage, and it may progress to span to other ROIs over time. Thus, focusing on a specific

partition of the brain could provide outstanding results, although it may produce suboptimal learning

performance. Nevertheless, these methods are still better than working on whole-brain methods from

the viewpoint of complexity.
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1.3.3 Slice-level methods

The use of the slice-based methods reduces volumetric data into a two-dimensional representation.

There is undoubtedly a loss of information since the original tissue morphology is in a

three-dimensional form. The benefit of the full slice-based methods is that they does not require

tissue segmentation; they only take a 2D slice and ignore the rest. However, the selection methods

differ from one to another. Many studies have used their specific way to extract 2D image slices

from brain scans, whereas others consider standard projections of neuroimaging modalities; the axial,

coronal, and sagittal planes. Nevertheless, none of the studies in this category performed a full brain

analysis since a 2D image slice cannot include all the brain scan information.

In AD assessment works, the Axial plane is the most widely used, followed by the coronal.

However, the latter covers the three most critical AD-related regions in the brain (hippocampal, cortex,

and ventricles) [80]. Indeed, many studies employ Axial slice in their frameworks to analyze related

AD brain regions, mostly GM structures. For example, the authors in [66] used the slice-based method

on the GM volumes by analyzing the Axial view. In the same way, [191] used median axial slices

from an MRI, [65] 166 axial slices of GM, and 43 axial slices of fMRI [101]. Moreover, this method

is more suitable for measuring cortical thickness biomarkers since the cerebral cortex can be well

presented.

1.3.4 Voxel-based morphometry

The voxel-based method is one of automated approaches used in various studies since it has

been introduced [206, 15]; It is relatively easy to use and apply it to different types of scans

(MRI or PET). It provides credible biological results. This approach measures local tissue of the

brain through voxel-wise analysis for identifying pathological changes in discriminative regions

in AD diagnosis. It uses the voxel intensity values from the whole brain volume or some tissue

components from MRI data. However, it typically requires spatial alignment (coregistration) and

normalization, where brain images are aligned to a common space. Most studies that imply this

method perform full-brain research in either single-modality or multi-modality mode. In other

works, tissue segmentation (such as GM, ROI) was performed on MRI images before feeding the

classifier models. To implement classification models using the voxel-based method may require

feature dimension reduction technique, especially methods using engineered visual features, but is not

necessarily useful in deep structures. Nevertheless, various methods exist to overcome the problem

of high feature dimensionality when using classical machine learning methods.
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1.3.5 Summary

Many studies show that global brain atrophy is relatively low in discrimination compared to methods

using target region atrophy. However, slice-based methods remain useful in the 2D analysis

since it gives more representative information of some visual biomarkers, especially from specific

dimensions or projections. For instance, focusing on the hippocampal region for AD analysis, the

axial and coronal plans exhibit more information than the sagittal plane. Since the hippocampus

is a symmetric substance (left and right regions), we can observe both hippocampal regions from

these two projections. In contrast, the sagittal plane provides only one single region view. We open

a comparison reference to the covered methods by presenting an overview of the advantages and

inconveniences in the following Table 1.1.

Finally, we pay particular attention to all analysis methods based on the ROI-level and thickness

of the cerebral cortex. These methods require reliable segmentation processes that are paramount

to extract the studies’ regions and depict the cerebral cortex’s surface. Indeed, this segmentation

process’s achievement is a crucial and essential phase in the medical image processing area. Instead

of using manual segmentation methods that need fastidious processing and a considerable amount

of time to perform it on a more massive database, several algorithms are used to extract them

automatically. The most popular we find those that use SPM [72], FSL [94] and FreeSurfer [68]

tools, also online tools like VolBarin [130].

Methods advantage drawback

Volume-based - Includes all brain regions - Bringing all regions risks confusing the discrimination
- Does not require ROI extraction - 3D information is heavy for computation

ROI-based - Easily interpretable - Produce limited knowledge about the brain
- Low feature dimension (specific region) regions involved in AD
- Fewer features can reflect the entire - Ignores detailed abnormalities (between regions)
brain

Slice-based - Avoids confronting with millions of - There is the loss of spatial dependencies
parameters during training and results in adjacent slices
in simplified networks

Voxel-based - Provide 3D information of a brain - Contains high feature dimensionality and high
scan computation load

- Ignores the local information of the neuroimaging
modalities as it treats each voxel independently

Table 1.1: A comparison of the advantages and disadvantages of different methods.

1.4 Automatic classification algorithms for Alzheimer’s Disease

In this section, we review the most relevant works using machine learning techniques for AD

classification. We cover different methods and approaches, including conventional types of classifiers,
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1.4. Automatic classification algorithms for Alzheimer’s Disease

feature extraction algorithms, and deep neural network methods. However, in this section, we point

only a general overview of the methods used in this regard. Therefore, Chapters 4, 5, and 6, which

are our contribution chapters, contain review of specific related works relevant to their contribution.

We present in this section two main types of methods: conventional classifiers using visual

features and signature vectors such as SVM, and the second type of methods using deep learning

approach, in particular CNN networks.

1.4.1 Methods using engineered Visual Features

Machine learning algorithms, for a long time, have used feature-based methods to reduce data

dimensionality rather than working directly on entire data. Visual feature extraction is a crucial phase

in decreasing the amount of data and retaining solely valuable information, especially when using

heavy multimedia objects such as images and videos. Its principle is to derive enough information

to represent the content of an object in feature vector format, and thus reducing computational

complexity while preserving useful information. In the literature, a wide range of approved

extraction and decomposition algorithms have been introduced in the clinical diagnosis process

for AD detection, namely Bag-of-Visual-Words (BoVW), Circular Harmonic Functions (CHF), and

ROI-wise based features. Indeed, there are different types of methods for designing visual features

from images. However, some of them are more adaptable to the algorithms that are implemented in

AD classification studies.

Back in the work of [105], the authors showed the performance of employing the SVM approach

for automatic classification purpose of discriminating AD subjects from those with Normal control

(NC). Their method was concentrated on the gray matter (GM) voxels. MRI scans were normalized

into a standard anatomical space and then were segmented to extract gray matter area. They used

the GM density map of the entire brain, together with SVM, and the results were promising. They

proved a relatively low GM density in the hippocampal region in AD patients, indicating a strong

relationship between the disease and the atrophy in that region [71]. This study was amongst the first

ones to highlight the potential of computer-aided diagnostic methods as support where experts are

scarce, or simply reduce time and effort for the diagnosis.

A comprehensive survey [154] yielded over 100 papers on MRI-based work for AD classification

that compared various applied machine learning methods. These studies used multimodal MRI data,

namely structural MRI, functional MRI, PET, and DTI. Half of the studies used only structural

MRI. The most used classifiers include various kinds of SVM, Linear Discriminant Analysis, and

Logistic Regression. Moreover, most of these methods are characterized by the following phases:

feature extraction according to different atlases or Regions of Interest (ROIs), feature selection or

dimensionality reduction, and finally, classification. In some cases, particular emphasis was given to
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the process of finding ROIs; in others, it lays in the classification itself. Although there are numerous

works, addressing the subject, we focus our attention only on some of them.

In a previous work, Ben Ahmed et al. [27, 6, 5] have computed visual features from sMRI scans

for AD diagnosis. They have selected Hippocampus and Posterior Cingulate Cortex (PCC) regions as

biomarkers. The originality of the work consisted of using a decomposition approach combined with

features extractor to cut down information. However, instead of using traditional descriptors such

as Sift and Surf, they implemented the Gauss-Laguerre Harmonic Functions (GL-CHFs) approach

to capture local directions of the image signal involving the principal decomposition function of the

original CHF algorithms. The method is appropriate for the gray-scale MRI modality due to the

smooth contrasts it has. After that, they have calculated the signature vector from each projection

of ROIs by using a Bag-of-Visual-Words Model (BoVWM) with a low-dimensional dictionary with

300 clusters. Thus for each image they obtained signature with a length of 1800. Afterwards, the

signatures vectors were classified using SVM with RBF kernel and 10-fold cross-validation. The

method achieves promising results in terms of accuracy, 87% for AD/NC, 78.2% for NC/MCI, and

72.23% for MCI/AD.

Wolz et al. [205] proposed multiple frameworks using both Linear Discriminant Analysis (LDA)

and SVM linear classification methods. In order to increase classification accuracy, they establish a

combination of different MR-based features extracted from different regions or/and brain structures.

Their works are based on hippocampal volume, cortical thickness, tensor-based morphometry, and

they used a novel technique based on manifold learning. The hippocampal region underwent the

extraction process using the Atlas method. Indeed, they apply the multi-atlas label propagation to

select the hippocampus segments for each brain MRI. From a pool composed of hippocampus atlas,

they chose a set of them according to the image similarity to the query image. Then they generate

a spatial prior from the multiple label maps to obtain a final segmentation of the hippocampus.

In the case of cortical thickness, they practice the surface-based method on the MRI volume after

registration and intensity normalization for each brain. The method consists of segmentation of the

brain into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). Moreover, they

divide the brains automatically into two separate hemispheres; the cortex’s inner and outer surfaces

were extracted according to intersections between WM and GM (white matter surface, WMS) as

well as GM and CSF (grey matter surface, GMS). Regarding the Tensor-based Morphometry (TBM)

approach, they perform a multi-template approach by randomly selecting 30 images from NC, MCI,

and AD subjects, where each template was non-rigidly registered to the study image. The determinant

of the Jacobian matrix (’the Jacobian’) of the deformation was used to measure the voxel-level

morphometry. Finally, for classification methods, they employ the two classifiers, as mentioned

above, performed either on individual features and or on their combination. As a result, for AD/NC,

they achieved 81% accuracy for both HV and CTH, 87% for TBM, and 89% for combing all features
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1.4. Automatic classification algorithms for Alzheimer’s Disease

methods using LDA. At the same time, they obtained similar performance for SVM methods except

for the combination method; they get lower results (3 points) compared to LDA method.

1.4.2 Methods using Deep learning approach

The arrival of powerful computing units, mainly (GPUs), has made it possible to develop sophisticated

models based on machine learning algorithms, precisely on the deep learning methods. Indeed, deep

learning methods have quickly become the more popular methodology for various medical domain

applications. They encompass different types of models such as CNN, RNN, and Reinforcement

Learning. Convolution neural networks (CNN) is one of the main sections of DL widely used

for image classification, pattern recognition, and intelligent image segmentation. It has shown an

inescapable performance to solve various complex problems, notably decision-making problems. For

a complete overview of the CNN method, see Chapter 3.

Unlike those who need visual features, CNN-based architectures do not require engineering of

features, since the first (convolutional) layers of CNNs serve as features extractors with trainable

filters. The last layers of Deep CNNs represent fully connected Neural Network classifiers (MLP, see

section 3.3.3). Hence the process of feature extraction and classification of them is implemented in

a complete end-to-end architecture. However, the main constraint on using deep learning methods

is that it requires abundant samples for training, which are not often available in the medical area.

In this section, we review the most exciting works leveraging Deep learning methods. We present

various implementation strategies and their performances for Alzheimer’s disease detection, including

volumetric and surface-based methods.

2D-CNN approach

Most of the published deep learning works for AD classification use CNNs either to perform

slice-based or volumetric classification. There are considerable studies where the input data are

composed of 2D slices extracted from 3D volume [163, 162, 164, 31, 173, 191, 115, 200, 42, 140, 66,

80, 83, 87]. The usual deep model here is a couple of convolutional layers paired with pooling layers

and followed by fully-connected layers and a softmax layer. For example, 2D CNNs models were

designed with several numbers of convolutional layers; two layers in [146], three layers in [184, 152]

and five layers in [22]. All these works applied classification only on single-modality data. However,

there are works employing 2D models with multimodality, such as [201], where the authors used five

layers. Other examples using the 2D CNNs with two convolutional layers that use some MRI image

slices from the coronal plan [80]; six convolutional layers taking only one sagittal MRI slice [199].

Some of the works take advantage of the existing CNNs, which had tremendous successes for

image classification. The authors in [163, 162, 164] proposed an adaptive pipeline approach for

2-Way classification using structural and functional magnetic resonance imaging (sMRI, fMRI). They
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designed a 2D architectures based on two popular networks; the lightest LeNet-5 [112] and GoogleNet

[183], by converting images from 3D data to a stack of 2D slices. They resized the images to 28×28

pixels to match the input in the case of the adapted LeNet-5 network. In [31], Billones et al. proposed

a modified version of the VGG-Net network [173], which they called DeMNet to classify sMRI

images. The model takes 2D images as input with 224×24 resolution for both 2-Way and 3-Way

classification. Their work classifies 20 slices separately, selected from the 3D volume. Another

work used 2D-CNN approach, the authors in [191] used two networks, a baseline single-layer CNN

(only one convolution layer), and a pre-trained ResNet network, they used a single 2D Axial slice per

subject (median slice from the 3D volume) as input. They studied the impact of transfer learning from

RestNet trained on ImageNet, besides, data augmentation approach. Lee et al. [115] used a modified

AlexNet network known as a high-performance pre-trained model. They proposed a data permutation

scheme with outlier rejection and slice selection methods, all 2D slices (obtained by permutation from

axial, sagittal, and coronal planes) used for training the network.

In summary of these selected works, we found that some of them take advantage of existing

CNNs models that resulted in findings successful in natural image classification. However, their

approaches have limitations, mainly due to the fact that MRI is three-dimensional data, whereas

2D convolutional filters analyze all slices of a subject independently. Furthermore, there are many

different ways to select slices to be used as input. On the other hand, the use of a full 2D slice may

impact the performance of the classification task since the slices are not informative as they contain

certain brain regions not considered as biomarkers for Alzheimer’s Disease. Moreover, they loose

spatial dependencies in adjacent slices.

3D subject-level CNN

Recent studies introduced the use of the 3D-based methods that integrate the whole brain. In this

approach, the classification is performed on the complete data of the brain, where all regions (and

spatial information) are fully included. However, building 3D-CNN models requires a larger quantity

of parameters to train than in case of 2D-CNNs. This may lead to overfitting, especially when the

dataset is relatively small.

Many works implemented 3D architecture with a couple of 3D convolution layers; four layers

in [40, 88], five in [23], and a deep model with twelve layers was designed in [24]. In [116], Li

et al. used a combination of multi-modal convolutional networks applied to the whole MRI brain.

Their framework comprised two networks; a deep 3D-CNN for hierarchically feature extraction and a

multi-scale 3D convolutions to learn features, which were combined with a fully connected layer and

softmax layer for classification. In a related method, 3D CNNs were pre-trained with Auto-Encoders

with multi convolutional layers, one in [148], or three in [85, 85]. Vu et al. [195] designed two
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1.4. Automatic classification algorithms for Alzheimer’s Disease

3D-CNNs networks, each with only one convolutional layer pre-trained with a sparse AE using two

MRI modalities, fused within a fully connected layer.

Other studies defined original architectures [23, 24, 43, 85, 116, 195, 196, 197]. One crucial

difference between these studies is in the preprocessing step: [23] used a non-linear registration

whereas [43] did not perform registration. [116] proposed a more complex framework fusing the

results of a CNN and three networks pre-trained with an AE.

Many studies take advantage of popular networks by adapting them to their classification problem.

For instance, the authors in [106, 172] readapted the two classical architectures: the ResNet and

VGGNet, to encompass the whole brain. Korolev et al, applied two different 3D-CNN approaches; the

first, VoxCNN architecture with 21 layers derived from voxResNet, the second, a plain 3DvoxCNN

network with four convolutional layers. In both works, their models perform quite well compared to

other studies of the same section.

In 3D-subject level approach the number of samples is small compared to the number of

parameters to optimize. Indeed, there is one sample per subject, typically a few hundreds to thousands

of subjects in a dataset, thus increasing the risk of overfitting.

ROI-based CNNs

Using 3D full brain data remains a heavy approach since it encompasses all brain parts. First, it

requires powerful computing resources; second, the whole brain includes surely non-informative

regions. For instance, as shown before, 3D patch-level methods take data from the brain volume

and slice them into small inputs. However, most of these inputs include some perturbing information,

not a visual biomarker for the pathology. Methods based on regions of interest (ROI) overcome this

issue by focusing only on specific brain regions [63]. However, using these methods implies apriori

knowledge from a long-term experience of the disease studies to select proper ROIs. In this way, the

framework’s complexity can be decreased since a few inputs are used to feed and train the networks.

The authors in [177, 179] computed around 93 ROIs from MRI and PET data; they extract features

only from GM tissue volume. Similarly, S. Liu et al. in [124, 126, 125] used 83 functional ROIs

obtained from MRI (GM) and PET. Choi et al. [181] calculated GM tissue volumes of 93 ROIs, and

next picked out regional abnormalities utilizing a single deep model of each region. Another work

[118, 117, 129] extract 93 ROI-based volumetric features from MRI and the same number of PET

features, here the authors applied (PCA) to reduce the dimensionality of data.

In [86, 97], 90 ROIs were extracted from fMRI images and the correlation coefficient between

each possible pair of brain regions computed. Ortiz et al. [145], applying a voxel preselection process,

they selected 98 ROIs (GM only) from both modalities, MRI and PET, and they conceived a deep

architecture for each ROI.
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Suk et al. [182] selected 116 ROIs from fMRI images and then trained a deep model on the

mean intensities of each ROI; in this way, they found, in an unsupervised and hierarchical way, the

non-linear relations between the ROIs. Together with patch-based features of GM and deformation

magnitudes (DM) from MRI scans, Shi et al. extracted 113 ROI volumes [169].

Image patches were extracted in each of 62 ROIs of PET [210] or MRI images in [41], while 85

ROIs from PET [128], and 87 ROIs from PET and MRI (GM only) [127] were extracted, from which

these ROIs were further used in a patch-based method. In another study, 90 ROIs were extracted, and

then a brain network connectivity matrix calculated from multi-modal data [201].

Bhatkoti et al. [30] devised a patch-based representation of different brain sub-regions, including

left and right hippocampus, mid-occipital, parahippocampus, vermis, and fusiform. Shakeri et al.

extracted morphological features as 3D surface meshes from the hippocampus structure of MRIs

[167]. Dolph et al. [59] extracted Fractal Dimension (FD) texture features, together with volumetric,

cortical thickness, and surface area features of the segmented hippocampus, from MRIs and then

calculated the statistical properties of the Gray-Level Co-Occurrence Matrix (GLCM) to describe the

FD feature pattern. Collazos-Huertas et al. [47] used morphological measurements of different parts

of MRI scans, including cortical and subcortical volumes, average thickness and standard deviation,

and surface area. In another MRI study [53], the two hippocampus were segmented and a local 3D

image patch was extracted from the center of each; a deep model was then used for classification. In

[121] a non-linear registration was performed to obtain a voxel correspondence between the subjects,

and the voxels belonging to the hippocampus 12 were identified after a segmentation implemented

with MALP-EM [114]. 151 patches were extracted per image with sampling positions fixed during

experiments. Each of them was made of the concatenation of three 2D slices along the three possible

planes (sagittal, coronal and axial) originated at one voxel belonging to the hippocampus.

The main drawback of this methodology is that it studies only one (or a few) regions while

AD alterations span over multiple brain areas. However, it may allow avoiding overfitting because

the inputs are smaller (3000 voxels in our bibliography) and fewer than in methods allowing patch

combinations.

Having analyzed the previous works presented above, focusing on specific "region-of-interest"

that is known to be a reliable discriminator might be better able to diagnosis the disease, especially

when field expertise is involved in the choice of ROI. Consequently, the complexity of the computing

is cut down, due to the reason of the reduction of the dimension of the features, knowing that only

small regions are used instead of the whole brain.
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1.5. Conclusion

Author Methods Approach Modalities Dataset Instances

Shi et al., [171] DPN + SVM ROI-based MRI-PET ADNI 202
Suk et al., [180] DBM + SVM Voxel-based/Patch-based MRI-PET ADNI 398
Li et al., [117] PCA + RBMs + SVM ROI-based MRI - PET - CSF ADNI 202
Suk et al., [178, 181] SAE + SVM ROI-based MRI-PET-CSF ADNI 2020
Ortiz et al., [145] DBN + SVM ROI-based MRI - PET ADNI 275

Sarraf et al., [164, 162] CNN Slice-based fMRI ADNI 144
Payan et al., [148] Sparse AEs and 3D CNN Voxel-based MRI ADNI 2265
Liu et al., [124, 126] Stacked sparse AEs and a softmax layer ROI-based MRI - PET ADNI 311
Liu et al., [123] 3D-CNN for Landmark Patch-based MRI ADNI + MIRIAD 1526
Wang et al., [199] 2D-CNN Slice-based MRI OASIS + Local Data 196
Suk et al., [179] Sparse regression + 2D-CNN ROI-based MRI ADNI 805
Hosseini et al.,[85] 3D-CNN + Stacked 3D Conv AEs Voxel-based MRI ADNI 240
Lu et al., [127] DNNs + Stacked AE + Softmax layer Patch-based/ROI-based MRI + PET ADNI 1242
Korolov et al., [106] 3D-CNN - ResNet/VGG-Net Voxel-based MRI ADNI 231
Choi et al., [46] 3D-CNN Voxel-based PET (FDG and AV-45) ADNI 492
Gupta et al., [81] Sparse AE + CNN Patch-based MRI ADNI 755

Gupta et al. [81] CNN Slice-based sMRI ADNI 483
Billones et al. [31] CNN - VGG-Net Slice-based sMRI ADNI 531
Bumshik et al. [115] CNN - Alexnet Slice-based sMRI ADNI 819

CNN - Alexnet Slice-based sMRI OASIS 416
Valliani et al. [191] CNN - ResNet Slice-based sMRI ADNI 660
Cheng et al. [44] CNN 3D-full brain sMRI ADNI 428
Glozman et al. [78] CNN - AlexNet Slice-based sMRI ADNI 553
Hon et al. [83] CNN - VGG-Net Slice-based sMRI ADNI 200

CNN - Inception V4 Slice-based sMRI ADNI 200

Table 1.2: Some studies used both engineered features and deep learning method reported in the literature.

1.5 Conclusion

In this chapter, we have provided the state-of-art of MRI-based methods for the Alzheimer’s Disease

(AD) classification. We have covered the most used approaches treating the related research.

However, analyzing and comparing these methods, it is evidenced that deep learning methods show

an efficient power for AD classification compared to those associating feature extraction. They are

now considered the trend tools that provide high-level learning. On the opposite side, the deep

learning methods require a sufficient dataset, mostly when the network model is excessively deep.

Furthermore, the ROI-based approaches still turn out to be a suitable method over others for the

extraction of the relevant specific biomarker and taking the classification decision on it.

In the next chapter, we will introduce the acquisition methods for MRI imagery, and the flow of

dataset preprocessing steps.
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Chapter 2

Acquisition Methods and Neuroimaging Data
preprocessing

2.1 Introduction

In the previous chapter, we reviewed the state-of-art of AD classification related research by

highlighting the most recent works using deep learning methods. We have seen different methods

and approaches with different imaging modalities, especially MRI, PET, and DTI; before that, we

covered the most AD visual biomarkers on which diagnosis of AD is focused. In this chapter, we

introduce MRI imaging formation, specifically structural MRI (sMRI) and diffusion tensor imaging

(DTI) modalities used in the preparation of this thesis. We briefly present the fundamental concepts

behind the acquisition and formation of these modalities. Next, we cite the most popular datasets

by providing a general presentation of their composition. Besides, we give the flow scheme of our

contribution to data preprocessing; in this part, we provide all performed steps that aim to obtain a

clean and coherent dataset, followed by a post-processing step to produce an aligned and normalized

dataset. Finally, we present the approach used to extract AD-related ROIs.

Highlights:

• We present the formation of the multimodality of MRI and the theory behind it;

• We provide a brief detour through the most popular AD datasets;

• We present the fundamental process of data preparation, including denoising, correction, and

normalization;

• We outline all the post-processing steps for ROI extraction;
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2.2 Magnetic Resonance Imaging (MRI) image formation

Magnetic Resonance Imaging (MRI) is a spectroscopic imaging method used in medical settings to

acquire information from the interior of the human body without dissection (in vivo). First developed

in 1973 [109], it has many advantages compared to other imaging techniques like conventional

X-rays, Computed Tomography (CT), or similar diagnostic methods. MRI is a mature analytical

modality used in non-invasive tests to diagnose diseases within clinical medicine and research. The

method utilizes radio waves and powerful magnetic fields to produce contrast images that do not

rely on ionizing radiation. Indeed, this magnetic field is sensitive to the hydrogen element (in water

molecules), which is the main constituent of any biological organ. Therefore, by mapping the position

of water molecules, we could detect the contrast in MRI images, as hydrogen atoms behave somehow

differently in different tissues of the patient’s body. Figure 2.1 presents a cutaway view of the major

components of an MRI scanner system.

Figure 2.1: A cutaway view of the Magnetic Resonance Imaging (MRI) scanner system [52].

MRI units are based on sophisticated technology that uses radio waves sent into the patient’s

body to reorient the axes of spinning protons. It excites and detects the change in the direction of

the rotational axis of protons found in the water, and thus serve to detect pathological changes deep

within an organ [82].

Indeed, inside the MRI scanner system, there are three additional gradient magnets called x, y, and

z; each oriented along with a different projection of the body, all of them far less powerful than the

main magnet (as illustrated in Figure 2.2); they modify the magnetic field at selective points and work

in conjunction with the RF pulses. When we place a patient inside a more powerful magnetic field,

the radiofrequency current is pulsed through the patient’s body, and every hydrogen atom is forced

to align itself with this field. The atoms are stimulated to resist the attraction of the magnetic field.
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2.2. Magnetic Resonance Imaging (MRI) image formation

Figure 2.2: A coils view of the Magnetic Resonance Imaging (MRI) scanner system [52].

When the radio-frequency field is deactivated, the protons realign with the static magnetic field, and

the MRI sensors detect and capture the energy released during the realignment [52], this depends on

the time that protons take to realign with the magnetic field, as well as the amount of energy released.

The x, y, and z gradients can be used in combination to generate image slices in any dimension and

obtain 3D gray-scale images. We can also differentiate all parts of the body due to the variety of the

environment and chemical nature of the molecules [37]. The resulting slices can be seen illustrated in

Figure 2.3.

Figure 2.3: An example of human brain slices: (Sagittal, Axial, and Coronal) projections [52].

MRI systems are well-suited for working on the body’s boneless or soft tissue parts since they do

not emit the damaging ionizing radiation found in x-ray and Computed Tomography (CT) imaging,

this makes the technology suitable for diagnosis or therapy, especially for the brain. Therefore, the

MRI techniques are used in Alzheimer’s Disease (AD) diagnosis, since it is a safety tool that produces
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high-resolution slice images. It allows us to represent the brain on the axial, coronal, and sagittal

planes.

2.2.1 Structural MRI (sMRI)

structural Magnetic Resonance Imaging (sMRI) is the most commonly used modality to monitor

and observe structures development in the brain, amongst other modalities, such as PET and DTI. It

permits tracking structural changes in the brain and measuring the inevitable atrophy caused by the

neurodegenerative aspect of the AD pathology [73]. Moreover, sMRI provides helpful information

with which we can affinely describe the shape, size, and integrity of GM and WM structures in the

brain.

Here, we present the principle MRI imaging:

• T1-weighted (T1; short TP and short TE): The T1 Weighted (also known as the spin-lattice

relaxation time T1) is one of the primary pulse sequences in MRI. It provides good contrast

between gray matter (dark gray) and white matter (lighter gray) tissues, while Cerebrospinal

Fluid (CSF) is void of signal (black). The contrast in these images allows for accurate

differentiation of brain structures. We can reach the T1-weighted scans by using an opposite

recovery sequence or by inserting short repetition time TR (<750ms) and echo time TE (<40ms)

conditions in conventional spin-echo sequences.

• T2-weighted (T2; long TR and long TE): Unlike the T1-weighted image, the T2-Weighted

MRI is built with long TE and long TR (TR > 2000ms, TE > 80ms). It provides a good contrast

between (CSF) which is bright, and brain tissue (dark), GM is light gray, and WM is dark gray.

The contrast in T2-weighted allows radiologists to see abnormalities within the ventricles and

cerebral cortex better than on T1-weighted images due to the better measurement of water

content. Moreover, white matter boundaries are not as clearly defined as in T1-weighted

images.

2.2.2 Diffusion Tensor Imaging (DTI)

DTI Concept

Diffusion Tensor Imaging (DTI) is a relatively new imaging method that uses magnetic resonance

technology, which was initially introduced by Peter Basser in 1994 [26, 25]. It is a powerful modality

technique for inferring tissue structure largely used to map White Matter (WM) pathways in healthy

and diseased brain [110, 17]. DTI is a sensitive probe of cellular structure that provides quantitative

information, mainly used to measure the substance anisotropy by quantifying the isotropic and
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2.2. Magnetic Resonance Imaging (MRI) image formation

Figure 2.4: Example: Axial slices of T1-weighted (left), T2-weighted (center), and Flair (right) images of
brain tissue.

anisotropic water diffusion. For instance, the diffusion in an equitable medium of pure water would

be the same in all directions (isotropic), whereas, in an oriented tissue, along different directions

(anisotropic) that describes the microscopic tissue heterogeneity [26, 147]. Thus, the method

allows us to calculate and measure the distribution of the diffusion directions of water molecules

at each spatial point. Indeed, quantifying the random motion of water molecules reflects significant

characteristics of microstructural brain tissue. In other words, this new concept makes it possible

to capture tissue microstructural properties through diffusion signals that were not possible with

traditional anatomical MRI. Therefore, we indirectly obtain the position orientation of axons and

the anisotropy of fibrous structures, particularly the white matter bundles of the brain. It should be

taken into account that diffusion tensor is not able to entirely represent the crossing of the fiber tracts

[204, 187].

DTI measurement

To measure water diffusion amount at different brain positions, a repetitive process of diffusion using

the magnetic gradient field in several directions can capture molecules water behaviors at each point

in the brain. This process yields an estimated three-dimensional model (called tensor) representing

the degree of anisotropy in each voxel (volumetric pixels) in the 3D space. In other words, diffusion

imaging introduces extra gradient pulses whose effect “cancels out” for stationary water molecules

and causes a random phase shift for molecules that diffuse. Due to their random phase, the signal

from diffusing molecules is lost and thus creates darker voxels. This means that white matter (WM)

fiber tracts parallel to the gradient direction and thus appear dark in the diffusion-weighted image

for that direction. However, the decreased signal (Si) is compared to the original signal (S0). The

equation allows us to estimate the apparent diffusion coefficient (D) and describes the signal intensity

at each voxel. Note that the diffusion is free and modeled by Gaussian diffusion. The measurement

of the signal loss function is defined as follows:

Si = S0× e−b×ĝT
i ×D×ĝi where b = γ

2G2
δ

2(∆ − δ

3
) (2.1)
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Where S0 is the original image intensity at the voxel (without the diffusion weighting) and Si is

the intensity measured after the application of the i-th diffusion gradient in the (unit) direction ĝi, γ is

the proton gyromagnetic ratio, G is the strength of the diffusion gradient pulses, δ is the duration of

the diffusion gradient pulses, and ∆ is the time between diffusion gradient RF pulses [203].

The product ADCi = ĝT
i ×D× ĝi represents the estimated diffusivity or the apparent diffusion

coefficient (ADC) in direction ĝi.

ln(Si/S0)/b =−ADCi =−ĝT
i ×D× ĝi (2.2)

- D is the estimated diffusion tensor (a 3 × 3 matrix).

Geometrical interpretation

As presented above, the diffusion tensor (DT) is a three-dimensional diffusion object/model that

describes the diffusion of water molecules. Mathematically speaking, the tensor is proportional to

a symmetrical positive D matrix of degree 3 (a co-variance matrix) that models the diffusive flux

represented by the variation of the Gaussian distribution. We define the tensor object as the 2D matrix

as follows:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.3)

The diagonal elements Dxx, Dyy and Dzz are the diffusion variances along the x, y and z axes, and

the off-diagonal elements are the covariance terms and are symmetric about the diagonal (Dxz = Dzx).

The matrix D is a symmetric tensor that can be diagonalized to ran eigenvalues and eigenvectors

as follow:

D = EΛE−1 (2.4)

with

E = [e1,e2,e3] and Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 (2.5)

This yields the orthogonal eigenvectors e1, e2, e3 and the diagonal matrix of eigenvalues λ1, λ2,

and λ3. The three eigenvalues λi correspond to the diffusivities along the principle axes of the

diffusion tensor, and the three ei are describing the orientation of these axes which are mutually

orthogonal by definition. Consequently, the principal axes of the ellipsoidal isoprobability surface of
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2.2. Magnetic Resonance Imaging (MRI) image formation

the diffusion tensor and their corresponding radii, are given by the eigenvectors ei and the eigenvalues

λi , respectively. By convention, the eigenvalues and their corresponding eigenvectors are sorted

as follows: λ1 > λ2 > λ3. Consequently, the first eigenvector e1 describes the dominant diffusion

direction and is also called the principal diffusion vector (PDV).

Figure 2.5: The diffusion ellipsoids and tensors for isotropic unrestricted diffusion, isotropic restricted
diffusion, and anisotropic restricted diffusion are shown [138].

Scalar measures

From the eigenvalues, various DTI maps can be generated that characterize the diffusion profile such

as fractional anisotropy (FA) and mean diffusivity (MD) providing representative and meaningful

information. Indeed, throughout the whole volume of the brain and in each voxel, different scalars

can be computed that yield different information characterizing the diffusion behaviors. As a result,

image data are distilled into more straightforward scalar maps that are suitable to study pathology

well.

Here we present the main scalar measures can be extracted:

• Mean diffusivity: Mean Diffusivity (MD) is an inverse measure of membrane density. It

represents the average magnitude of molecular displacement by diffusion, as it informs on the

microstructure of (WM) being sensitive to cell density, axon size, and quantities of water. MD
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Figure 2.6: Isoprobability surfaces derived from the diffusion tensor field. Note that in each voxel the
isoprobability surface is an ellipsoid which is uniquely defined by the tensors’ eigenvectors and eigenvalues.
Image courtesy of Alexander Leemans [95].

is the average of the three eigenvalues (λ1 + λ2 + λ3)/3. A higher MD value reflects more

isotropy of the tissue.

MD = λ̃ =
λ1 +λ2 +λ3

3
(2.6)

• Fractional anisotropy: Fractional Anisotropy (FA) is a measure of the degree of diffusion

anisotropy. It reflects the directions of molecular motion in a certain voxel. FA is calculated

from the standard formula:

FA =

√
3
2

√√√√√(λ1− λ̃ )2 +(λ2− λ̃ )2 +(λ3− λ̃ )2√
λ 2

1 +λ 2
2 +λ 2

3

(2.7)

Where λ̃ is the mean diffusivity (MD). The values of FA vary between 0, which means the

voxel space is totally isotropic, and 1, which means infinite anisotropic diffusion. In CSF, the

value of FA is zero due to the equality of the diffusion in all directions.

• Axial diffusivity: Axial diffusivity was defined as the primary (largest) eigenvalue (AxD = λ3),

and captures the longitudinal diffusivity, or the diffusivity parallel to axonal fibers (assuming
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2.3. Data sets and corrections for image analysis

of course that the principal eigenvector is indeed following the dominant fiber direction, which

may be unclear in regions with extensive fiber crossing).

AD = λ3 (2.8)

• Radial diffusivity: Radial diffusivity (RD), which captures the average diffusivity

perpendicular to axonal fibers, was calculated as the average of the two smaller eigen-values:

RD =
λ2 +λ3

2
(2.9)

(a) FA (b) MD

(c) L1 (d) L2 (e) L3

Figure 2.7: An example of the isoprobability surfaces derived from the diffusion tensor field.

2.3 Data sets and corrections for image analysis

In this section, we present the most known public datasets used for AD studies. We briefly give an

overview of each of them, then confer a description of the dataset used in the current work. We

describe the necessitated data correction for each modality afterwords.
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2.3.1 Data sets

• ADNI: Data used in the preparation of this work were downloaded from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database 1. The ADNI was launched in 2004 by

the National Institute on Aging (NIA), the National Institute of Bio-medical Imaging and

Bio-engineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical

companies and non-profit organizations, as a $60 million, 5-year public-private partnership,

it is a longitudinal multi-center study designed to develop clinical, imaging, genetic, and

biochemical bio-markers for the early detection and tracking of Alzheimer’s disease (AD).

ADNI is the result of efforts of many co-investigators from a broad range of academic

institutions and private corporations, and subjects have been recruited from over 50 sites across

the U.S. and Canada. Since its launch dates of more than a decade ago, the project has now three

phases, the ADNI-1, ADNI-GO (Grand Opportunities), ADNI-2, and ADNI-3. The initial goal

of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and ADNI-2.

To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate in

the research, consisting of cognitively normal older individuals, people with early or late MCI,

and people with early AD. The follow up duration of each group is specified in the protocols

for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO

had the option to be followed in ADNI-2. ADNI3 began in 2016 and involves scientists at

59 research centers in the United States and Canada. Between 1070-2000 participants will

be enrolled: approximately 700-800 rollover participants from ADNI2 and 370-1200 newly

enrolled subjects. Clinical, cognitive, imaging, biomarker and genetic characteristics will be

assessed across three cohorts: Cognitively normal, MCI and mild AD dementia. For up-to-date

information, see www.adni-info.org/.

• AIBL: Australian Imaging Biomarkers and Lifestyle (AIBL) 2: lunched in 2006, is an

Australian study project of over 2,000 people assessed over a long period (over ten years).

It aims to discover and determine the biomarkers and cognitive characteristics of AD that can

help diagnose the disease before symptoms appear. The objective is to provide new preventative

treatments and find diet exercise interventions that can prevent or delay the disease. AIBL data

is collected in two centers, where images are obtained from patients aged at least 60 years old.

The dataset is composed of three categories of subjects; the CN for cognitively normal, MCI for

mild impairment cognitive stage, and AD for subjects diagnosed with the disease. Similar to

the ADNI project, AIBL provides a longitudinal study where data and information are collected

over time; it contains the converters and stable subjects.

1http://adni.loni.usc.edu/
2https://aibl.csiro.au/
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2.3. Data sets and corrections for image analysis

• OASIS: Open Access Series of Imaging Studies (OASIS) 3 is an open-access project

distributing datasets of brains acquired from MRI studies freely available to the scientific

community. It provides anatomical MRI data and clinical assessments of CN subjects and AD

patients. Indeed, the project consists of three phases; OASIS-1 and OASIS-2 contain MRI data

that represents subjects across the adult life span aged from 18 to 96 years, with numbers equal

to 416 and 150 subjects, respectively. OASIS-3 has both MRI and PET modalities sessions

from around 1098 subjects.

• 3-City Cohort: The Three-City (3C) 4 study was established in 1999 to investigate the

influence of vascular factors on the risk of dementia and cognitive impairment. The Three-City

Study, a prospective French study designed to evaluate the risk of dementia in persons aged 65

years and older. Participants were recruited from three French cities: Bordeaux (South-West),

Dijon (North-East), and Montpellier (South-East). The 9,294 eligible participants who

participated in the baseline examination have since been invited to three waves of follow-up,

2001-2002, 2003-3004, and 2006-2007. At the time of the baseline examination, 60% of

the participants were female, and they were, on average, 74 years old. The participants

in a subset from the Bordeaux site of the Three-City (3C) study, a longitudinal multicenter

population-based cohort designed to evaluate risk factors of dementia count 2104 subjects.

Subjects were non-institutionalized individuals aged from 65 years old and older and were

randomly recruited from electoral lists.

In this work, we use only MRI and DTI data from the ADNI project. Data were collected from three

phases; ADNI-1, ADNI-2&Go, and ADNI-3. Pertaining to ADNI-1: it contains a total of 815 subjects

that hold only sMRI data. Categorized into three classes, as presented in Table 2.1. In this phase, the

images are standard 1.5 T screening baseline T1 weighted obtained using volumetric 3D MPRAGE

protocol. However, ADNI-2&Go and ADNI-3 hold both modalities; for each subject, there are sMRI

and the DTI with their derived maps MD, FA, RD, and AD maps. Table 2.1 provides the demographic

description of the datasets, besides, their clinical informations.

2.3.2 Data correction

Noise correction (Denoising)

MRI scans are subject to interference and random noise generated during the acquisition process.

The noise introduces some disturbance in the measurement of voxel intensities for further pathology

analysis. There are several techniques to disbar or reduce these disturbances, such as averaging

multiple MRI acquisition methods. The non-local mean filter (NLM) method initially proposed for
3http://www.oasis-brains.org/
4http://www.three-city-study.com/
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Classes # Subjects Age [range] / µ(θ ) Gender (#F/ #M) MMSE [range] / µ(θ )

ADNI-1 AD 188 [55.18, 90.99] / 75.37 ± 7.52 99/89 23.3 ± 2.03
MCI 399 [54.63, 89.38] / 74.89 ± 7.30 256/143 27.0 ± 1.78
NC 228 [60.02, 89.74] / 75.98 ± 5.02 118/110 29.1 ± 1.00

ADNI-2/Go AD *48 [55.73, 90.87] / 75.60 ± 8.63 28/20 23.0 ± 2.42
MCI *108 [55.33, 93.62] / 74.40 ± 7.47 66/42 27.4 ± 1.99
NC *58 [59.91, 93.25] / 74.91 ± 5.90 28/30 28.9 ± 1.18

ADNI-3 AD *16 [55.26, 86.10] / 74.63 ± 9.92 4/12 -
MCI *165 [55.88, 95.93] / 75.01 ± 7.91 71/94 -
NC *341 [55.79, 95.39] / 73.52 ± 7.82 209/132 -

Table 2.1: Demographic description of the ADNI dataset group. Values are reported as mean and ± standard
deviation (? Subjects with both modalities).

denoising natural images was adapted to process MRI images. It was introduced by Buade et al. [39]

to deal with images, and it is based on a non-local averaging of all pixels in the processed image.

Methods that use the NLM approach aim to find similar regions and average them to overcome

noise impact. These methods provide excellent results for denoising, whereas conserving the high

frequency in the scans [50]. Figure 2.8 illustrates an example of MRI noise correction.

Figure 2.8: Illustration of denoising method, images at the left and right represent the data before and after the
denoising process, respectively [50].

Bias field Correction

Correcting bias fields is one of the most fundamental correction methods that need to be applied to

MRI data. Indeed, the MRI scans can suffer from artifacts caused by the intensity inhomogeneity.

Technically speaking, during the image acquisition process, artifacts may come from two different

sources, either from the deficiency produced by MRI devices or from the property of the patient

himself due to his position, shape, and orientation inside the magnet field of the scanners. This

variation in intensity can be seen as degradation throughout the image. Figure 2.9 shows an example

of this variation between two examples (Original and corrected image). This phenomenon can

negatively influence the intensity of tissue in some regions compared to others. However, to tackle
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this problem, some correction algorithms can be used to minimize the influence of the signal that

obscures the white/gray matter.

In this thesis, we have applied the "N4 bias field" algorithm of the ANTS package [189] on the

whole structural MRI dataset. Indeed, N4 is a variant of the popular N3 bias correction algorithm

(nonparametric, nonuniform normalization). Based on the assumption that the low-frequency bias

field corruption can be modeled as a convolution of the intensity histogram by a Gaussian, the basic

algorithmic protocol consists in iterating between the deconvolution of the intensity histogram by a

Gaussian, the remapping of the intensities, and then the spatial smoothing of this result by B-spline

modeling of the bias field itself. The modifications and improvements obtained over the original N3

algorithm are described in [189].

Figure 2.9: Intensity inhomogeneity in MR brain image [194].

Eddy current correction

Using DTI modality for the the detection and the classification of Alzheimer’s disease (AD) involves

an essential step of correction, which is the "eddy current" correction. Eddy current, also known

as (Foucault currents) are parasites or distortions that occur due to the fast diffusion gradients.

The source of these changes in the magnetic field can be either the imaging gradients or the radio

frequency (RF) coils. Furthermore, it is widely accepted to take into account that parasites originally

came from the patent’s motion caused by himself. Indeed, the conductive material in which the

eddy currents are induced can be any metallic component of the MR scanner (other coils, screens,

tubes, wires, or devices inside), or even possibly on the patient himself. However, Eddy currents are

undesirable because they generate their magnetic fields, which may oppose the first magnetic field via

Lenz’s law, and thus distort the spatial and the temporal performance of the desired overall magnetic

field. Consequently, these distortions need to be corrected to carry out a reliable analysis, and many

methodologies have been proposed to address these distortions. This correction, therefore, consists

of compensating the non-linear susceptibility [175] and the eddy current distortions induced by the

41



movement of the head [10]. After that, computing the mean diffusivity (MD) maps of the scattering

tensor to integrate DTI data into the classifier model [94]. In this work, we used the "eddy current"

(Foucault currents) correction tool of FSL (Version 5.0, FMRIB, Oxford, UK, 5) [174].

2.4 Data processing for region-of-interest (ROI) extraction

In this section, we present data-preprocessing methods, which include spatial normalization,

multi-modal co-registration, and intensity normalization.

2.4.1 Spatial Normalization (Alignment)

The MNI template

In the literature, there are many templates used in data pre-processing, especially for the registration

process. However, the most commonly used templates for spatial normalization are those developed

at the Montreal Neurological Institute, known as the MNI templates, which are based on MRI imaging

technology. These templates were developed to provide a very useful tool to perform the automatic

registration process. Among these templates, we find MNI305, which was created from a set of

images (305 images) earlier aligned with the Talairach atlas. Indeed, the principle is to compute an

average image (template) with these images, then align each image of any database on this average

image using a 12-parameter affine registration. Due to this process, we can spatially normalize a

database. Subsequently, and with the limit of MNI305 at the resolution level, another template has

been introduced with a high resolution, known as ICBM-152, developed with a number of unbiased

non-linear averages from the MNI-152 database (AVG152). The MNI institution provides a different

version of this template. In this thesis, we use the MNI-152-T1 version, built by averaging 152 scans

of normal subjects. The Figure 2.10 presents it from different planes [72].

Affine transformation (registration)

Image registration (or image transformation) is one of the most fundamental and crucial methods in

biomedical image processing. The technique is considered as an optimization method where the goal

is to find the best spatial transformation (or deformation) parameters that align a source images to

match the target image or template (Figure 2.11) [77]. Many of biomedical image processing tools

and resources are based on the image registration techniques. Indeed, working with a heterogeneous

dataset of medical images may have a great variety in terms of interest structure. Due to the full range

of medical imaging applications, these limitations and constraints make the processing and the study

of these images nearly impossible.

5http://www.fmrib.ox.ac.uk/fsl/
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Figure 2.10: The MNI Template: MNI-152 example [72].

In the study of Alzheimer’s disease, images of the brain come from different people. Besides, the

different position of each subject during the process of acquiring MRI images, we have a variation in

the form of internal structure from one person to another. Therefore, this heterogeneity requires the

registration process. The purpose of registration methods is to align a set of images from a dataset

to a common space to facilitate the processing and study of these images, and further for better

performance and efficiency. The use of brain registration has been widely studied [21, 48, 12, 120,

131].

The registration methods can be classified into three kinds of transformation process [77]: i)

A rigid transformation that preserves the distances between every pair of points, as well as lines

and planes. The method involves translation and rotation operations. ii) Affine transformation

is composed in addition to inherited operations from the rigid transformation, the shear, and

scale modifications. Moreover, similar to the rigid method, affine transformation preserves also

straight lines and planes. However, it does affect angles between lines and planes, besides, the

distances between points which are not preserved. iii) Non-rigid registration methods, these types

of transformation can align images with a proper transformation at each voxel. They allow us to

get better alignment of anatomical structures, yet are less robust in comparison to the other methods

[21]. In this thesis, we used only the affine transformation method, which is suitable for our AD

studies owing to its performance and capabilities. The affine transformation has advantages over

the rigid and non-rigid transformations. The method is very accurate in achieving successful results

with reduced timing, especially compared to the rigid transformation, whereas the non-rigid method

requires considerable time in the estimation process.

As mentioned in Section 2.3.1, in this thesis, we use the ADNI datasets which are composed of
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Figure 2.11: A typical registration algorithm consists of four main components: a transformation model, a
correspondence basis, an optimization technique, and an interpolation method. The optimization problem can
be carried out in a multiresolution or multiscale framework [77].

sMRI and DTI modalities. The preprocessing step for sMRI scans includes a couple of tasks to be

completed, as illustrated in Figure 2.12. In the first step (1) of our scheme, we perform the 3D affine

transformation to align sMRI images on the common template (MNI) 2.4.1 [1]. Affine transformation

uses 12 parameters (m1 to m12) of the matrix M to perform deformation of sMRI images to the (MNI)

standard space. The goal is to estimate these parameters for a given image ( f ) to fit a template image

(g), including translation, rotation, scaling, and shearing deformations [16].

We can formally define the 3D affine transformation as a function Ta f f ine that acts on a point (or

vector) x = (x1,x2,x3)
ᵀ in the real 3-dimensional vector space R3, and generates the transformed point

(or vector) y = (y1,y2,y3)
ᵀ.

Ta f f ine(x) = y (2.10)

The function uses the 12-parameters affine deformation (m1 to m12) as stated above, which are

related to translation, rotation, scaling and shearing transformations. The registration algorithm uses

an optimization method to estimate and find these 12-parameters by minimizing a cost function (e.g.

mean square error criterion) or maximizing the similarity of the source images ( f ) and (g) target

image, which means fit a given image ( f ) to the template image (g) [13].
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Figure 2.12: Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI space,
followed with intensity normalization. ii) ROI selection process using the Atlas AAL for both hippocampal
regions. iii) 2D-slice extraction from selected 3D-volume. iv) feeding the CNN networks [3].

Hence, the affine transformation is defined as follows :
y1

y2

y3

1

=


m1 m4 m7 m10

m2 m5 m8 m11

m3 m6 m9 m12

0 0 0 1




x1

x2

x3

1

 (2.11)

We refer this mapping equation as y = M× x, where M is the transformation matrix and mi

elements are functions of parameters q1 to q12 (the results of how to carry out the transformation).

The matrix M can be decomposed as a product of four matrices, translation, rotation, scaling, and

shearing (eq. 2.12).

M = MTranslation×MRotation×MScaling×MShearing (2.12)

The parameters q1,q2, and q3 correspond to 3 translation parameters, q4,q5, and q6 correspond

to 3 rotations parameters. q7,q8, and q9 to 3 zooms and finally q10,q11, and q12 are the 3 shear
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parameters.

MTranslation =


1 0 0 q1

0 1 0 q2

0 0 1 q3

0 0 0 1

 (2.13)

MRotation =


1 0 0 0

0 cos(q4) sin(q4) 0

0 −sin(q4) cos(q4) 0

0 0 0 1

×


cos(q5) 0 sin(q5) 0

0 1 0 0

−sin(q5) 0 cos(q5) 0

0 0 0 1

×


cos(q6) sin(q6) 0 0

−sin(q6) cos(q6) 0 0

0 0 1 0

0 0 0 1



MScaling =


q7 0 0 0

0 q8 0 0

0 0 q9 0

0 0 0 1

 (2.14)

MShearing =


1 q10 q11 0

0 1 q12 0

0 0 1 0

0 0 0 1

 (2.15)

The objective function to minimize is the sum of squared differences (SSD) between the subject

( f ) and template images (g). The optimization method is the Gauss-Newton algorithm [14, 75]. An

additional parameter w is added to the function to correct the difference scale that can be produced in

images. The function to minimize is then:

SSD( f ,g) =
I

∑
i=1

( f (M ∗ xi︸ ︷︷ ︸
yi

)−wg(xi))
2 (2.16)

The process was done using the software SPM8 (Wellcome Trust Centre for Neuroimaging at

UCL, London, UK) 6 to fulfill the registration and the normalization [74].

2.4.2 Multimodal co-registration for ROI Selection

The same subject’s MRI and DTI modalities have to refer to the same physical structures in the brain.

For this purpose, we need to coregister them. This step is essential in order to get correspondence

between the regions of interest through these images. However, an important preliminary step is

6http://www.fil.ion.ucl.ac.uk/
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required to be performed; the noise skull stripping, which has not been fulfilled on sMRI. Indeed, as

we explain this further, we work only on biomarker ROI inside the brain volume on sMRI. Hence the

skull stripping is not mandatory.

Skull stripping

As we have the DTI images without the skull, we need to extract the brain from sMRIby removing

any other confused parts. In this step, the skull stripping task was performed to pull out only the brain

from the sMRI modality. There are many methods and tools to perform skull stripping, such as FSL

and BET. In our work, we used a method based on the segmentation of the brain. Indeed, the process

was applied using the SPM12 toolbox with Matlab to segment the brain scans into Gray Matter (GM),

White Matter (WM) and Cerebro Spinal Fluid (CSF), then merging these three maps we can subtract

skull region from original sMRI scan. Figure 2.13 presents an example of sMRI skull removal.

Figure 2.13: Example of sMRI skull stripping: - (left) an original brain scan - (right) the brain result after
removal skull process.

Coregistration

After performing skull stripping step, we obtain a base of images of the brain without the skull. As

we have different modalities of image acquisition, the co-registration step is essential to work with

the multimodal images in our database [134, 45]. Indeed our objective is to extract the patches of our

region of interest from the DTI-MDl map relative to the same region as in sMRI. The co-registration

between sMRI and MD consists of estimating the transformation parameters using the criterion of

mutual information in some specific areas to match the standard space (MNI) at the end. Thus, we

routinely co-register the MD image in the corresponding sMRI coordinate system. The co-registration

algorithm uses brightness of voxels. In order to avoid distortions which may be induced by bright skull

voxels, the skullstripping step is performed as described above. Figure 2.14 illustrates the three main

steps of data preprocessing, 1) the alignment of sMRI to the template MNI, as discussed in 2.4.1, 2)

skull stripping, and the last step 3) the co-registration between sMRI and DTI image.
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Finally, we obtain for each subject two MRI and DTI images as results. They are aligned to

the MNI common space. These images have a similar resolution of 121× 145× 121, and the voxel

element measures 1.5×1.5×1.5 mm3.

Figure 2.14: Illustration of the co-registration process includes spatial normalization and skull stripping.

2.4.3 Intensity Normalization

In the acquisition phase, the MRI images produced are acquired in arbitrary units. This arbitrariness

develops a difference in the scale of the intensity provided by the scanners, which makes it difficult

to analyze images together. Indeed, MRI images are not comparable across scanners, visits, or even

sometimes when using the same protocol. This variability can negatively impact the performance

of image processing and machine learning algorithms, i.e. methods of segmentation, detection,

classification etc. The intensity normalization process is therefore an essential step to work on a

set of images of a medical database. This task allows bringing the intensities to a common standard

scale across all the elements of the database. Several image intensity normalization algorithms have

been proposed by researchers in the field, among them, we find those that are adapted to brain images.

In this thesis work, we used an algorithm developed by "Nyul Laszlo and Udupa Jayaram" that

we will call "Nyul and Udupa" for short [143]. This technique is based on the use of the histogram

of the image. Indeed, the idea behind is to compute a standard histogram through the delimitation of

landmarks of predefined interest on a specific database, then make a deformation of the histogram

of each image to obtain a correspondence of intensities of this image with those of the standard

histogram. In other words, the objective is to have with the same protocol and the same brain region,

a similar intensity in all images of the database, which allows us to find the same tissue (See [142,
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2.4. Data processing for region-of-interest (ROI) extraction

143] for more details).

In our case, we define landmarks as intensity percentiles at 1,10,20, . . . ,90,99 percent (where the

intensity values below 1% and above 99% are discarded as outliers).

As we must pre-define a standard intensity range, we set the interval as [ms
min,m

s
max] with ms

min = 0

and ms
max = 255.

Let us consider I = {I1, I2, . . . , IK} a set of K MRI brain images,

We calculate the following set of quantities mi
1 and mi

99, which are the 1% and 99% intensity

values for the image Ii ∈ I. We then map all the intensity values of Ii with the following linear

mapping

Ĩi(x) =
(
Ii(x)−mi

1 +ms
min
)(ms

max

mi
99

)
(2.17)

which takes the intensities of Ii to the range [ms
min,ms

max] excluding outliers. Then we calculate the

deciles for the new image Ĩi, i.e., the set m̃i
10, m̃i

20, . . . , m̃i
90 (note that m̃i

0 = ms
min and m̃i

100 = ms
max).

This is done over every image Ii ∈ I and the mean of each corresponding value is the learned landmark

for the standard histogram. That is, for n ∈ 10,20, . . . ,90, we have:

ms
n =

1
K

K

∑
i=1

m̃i
n (2.18)

and the standard scale landmarks is the set {ms
min,m

s
10, . . . ,m

s
90,m

s
max}.

For a test image I, the transform for the normalization is done by first calculating the set of

percentiles {m1,m10,m20, . . . ,m90,m99}. These values are then used to segment the image into deciles,

i.e., we define 10 non-overlapping sets of indices Di, j = {x | mi ≤ I(x)< m j} where

i, j ∈ {1,10,20, . . . ,90,99} and restricting j to equal the next value in the set greater than i. We then

piecewise linearly map the intensities associated with these deciles to the corresponding decile on the

standard scale landmarks. Noting that each Di, j is disjoint from the other, the normalized image is

then defined as

Inu =
⋃

i, j∈{1,10,20,...,90,99}i6= j,i≤ j+10

(
I(Di, j)−mi

m j−mi

)(
ms

j−ms
i
)
+ms

i . (2.19)

2.4.4 ROI Selection using Automated Anatomical Labeling (AAL)

The alignment of sMRI brain scans to the common MNI space, followed by the co-registration

with DTI images deforms the individual’s morphology. Hence we do not perform fine- grained

segmentation of the images. Instead of this our approach relies on selection of the ROI and generating

patches encircling the area of a biomarker (hippocampus) Hence, we only need a locator that allows
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us to select the ROI in the scans. Therefore, we have introduced a selection approach based on the

use of atlases.

Atlas AAL

Before going any further to present the used Atlas, let us briefly define the Atlas meaning in the field

and the difference between it and a template.

• An atlas: gives a pattern to the location of anatomical characteristics in coordinate space. It

is useful for localization of activation and interpretation of results and avoiding performing the

segmentation’s fastidious process.

• A template: is a model or reference used as a representative of the atlas and provides a target

to which individual images from a dataset can be registred to match this reference. It can hold

an image from a single individual scan or an average of several individuals scans.

There exist many atlas that we can used to select region from brain, In this work, we used

a brain Atlas called Automated Anatomical Labeling (AAL) [190] developed at the Institute of

Neurodegenerative Diseases) IMN 7. The AAL atlas is a single-subject atlas based on the MNI

Colin27 T1 atlas. Figure 2.15 shows the standard AAL template (with different projections) which

comprises 116 brain anatomical regions. After alignment of sMRI modality on MNI template and

co-registration of MD-DTI, the ROI can be selected on the automated anatomical labeling Brain atlas

(AAL) [190]. The Figure 2.16 is an example of the results of the selection of the hippocampal region.

Figure 2.15: The AAL atlas views: (Left) coronal slice, (Center) Sagittal slice, and (Right) Axial slice. The
regions are colored to identify region boundaries.

ROI and Patches extraction

Since, we have for each subject a sMRI and DTI images which are affinelly registered to the common

standard space and interpolated in the same definition of the MNI template. The next step is

identifying the region-of-interest.
7(IMN-UMR5293- CNRS, CEA, Université de Bordeaux
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2.4. Data processing for region-of-interest (ROI) extraction

Hippocampus: is the region investigated in this study which is suggested by our medical partners,

and is considered as a visual biomarker that is the first region affected by (AD) [57, 58] (See Chapter

1).

Figure 2.16: An illustration of the hippocampal region using the Atlas AAL.

The selection ROI process consists of superimposing geometrically the registred individual scan

and the Atlas AAL, then extracting exclusively voxels that are identified as the hippocampal region in

the Atlas. From the brain volume, we extract and compute Hippocampal regions and compute their

3D bounding boxes. We get a sub-volume of the whole 3D scan, which encircles the hippocampus

in both modalities: sMRI and DTI. As we know that the hippocampus is a symmetrical anatomical

structure in the brain consisting of two regions, we then get two 3D-bounding boxes for the two

regions, the left hippocampal region (Fl) and the right (Fr) as illustrated in Figure 2.17.

Note: The resolution of normalized sMRI and MD volumes is quite low (121×145×121, see above),

thus the hippocampal ROI occupies a small amount of voxels (28×28×28). Finally the data were

converted to the lossless Portable Network Graphics (PNG) format for 2D studies, or were keeped as

3D volumes for 3D studies to feed the CNN classifier.

Formally, we can define the function that allows the extraction process of the ROIs with LD as in

(Equation 2.20) using the selected dataset Dbrain, which return the two bounding boxes as follow:

Hl,Hr = f (Dbrain) = LD(Cl,Cr,θ ,s) with Hl,Hr ∈ Rd1,d2,d3 (2.20)

Where Cl = [xl,(min,max),y(min,max),z(min,max)], and Cr = [xr,(min,max),y(min,max),z(min,max)] are the

coordinates that computed from the Atlas for x, y, and z dimensions. θ and s are supplementary

parameters which used for the artificial augmentation process.

*In this work of thesis, we have focused on the use of ROI-based methods for AD classification.

Therefore, we developed a library for ROI extraction suitable and adapted for all brain datasets, as

presented in section 2.3.1. It provides seamless tools to select the investigated ROIs with the help of

a compatible multi-label atlas and then generates a dataset of increased samples for model training

and testing. Indeed, besides the simplicity that it offers for selecting regions, the tool comprises
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Figure 2.17: Two 3D Bounding Boxes include the Left (green) et the Right (red) Hippocampus ROIs in three
projections.

domain specific data augmentation with geometrical and grey-level transformations we will describe

in the following chapters. increases as well the dataset with further parameters predefined, and it

includes a couple of methods for artificial data augmentation, such as translation, gaussian blurring,

rotation, flipping, and others. See Annexe B (related paper in preparation)*.

The tool and code-source are available in GitHub link below. "Brain Med Extraction" 8

2.5 Conclusion

In this chapter, we have introduced the preprocessing pipeline of MRI and DTI data. We have also

presented the MRI acquisition methods and the theory behind sMRI and DTI. Next, we provided an

overview of the used dataset and its processing flow through a set of coupled methods to obtain a

clean and coherent dataset. Finally, we presented the extraction module to achieve the final ROIs

data.

In the next chapter, we will present the deep learning methods to build robust models for AD

classification. We cover almost all basic concepts from simple neural network to deep CNN network,

including the principle modules and functions to build architectures.

8https://github.com/kaderghal/ADNI_Data_processing/
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Chapter 3

Deep learning methods for object
classification

3.1 Introduction

Artificial Intelligence has been broadly applied to various domains. One of its branches, namely

machine learning and specifically its sub-domain deep learning, has been developed extensively.

Nowadays, computer-aided diagnostic (CAD) systems for neuroimaging have included advanced

algorithms based on deep learning methods. Classification, detection, and segmentation are specific

high-level tasks that have been engaged in research, and many studies are related to neurodegenerative

diseases. Alzheimer’s Disease (AD) is one such study. In this chapter, we present an overview of deep

learning methods, which have been used in elaborating this thesis, particularly the Convolutional

Neural Network (CNN) architecture. We can summarize this part in three main subparts: first, we

briefly recall the traditional neural networks from the perceptron to the multi-layered perceptron, then

we introduce the main element used in deep neural networks: the CNN approach. In the follow

up we explore different standard components of CNN networks and present a short study of the

most well-known activation functions. Besides, we overview optimization methods. Eventually,

we contribute to the problem of data limitation in deep learning applications and submit alternative

solutions.

3.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is a computer system based on the functioning of the human

brain, inspired by biological neural networks. These artificial neural networks have generated a great

deal of excitement in the machine learning research and industry.
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3.2.1 Formal Neuron (Perceptron)

The basic block in a neural network is the neuron (perceptron), sometimes called a node or a unit. It

receives inputs from either some previous nodes or an external source, then computes and produces

an output. Each input is associated with a weight (w), which is assigned on the basis of its relative

importance compared to other inputs. The node applies a function ( f ) to the weighted sum of its

inputs as shown in Formula 3.1.

ŷ = f (X) = f

(
n

∑
i=1

wixi +bias

)
(3.1)

The function f is the activation function that is used to activate or not the neurones (See 3.2.3).

The idea and objective behind the activation function are to introduce non-linearity into the output of

a neuron, emulating biological response.

The Figure 3.1, illustrates an example of perceptron, the latter takes numerical inputs (x1,x2,x3)

which has (w1,w2,w3) the associated weights. Besides, another input parameter is b, which is used to

adjust the output (called the Bias). The output ŷ from the neuron is computed, as shown in the figure.

x1

x2

x3

I1

I2

I3

Σ

Bias
b

W1

W2

W3

f

Activate
function Output

ŷ

"Weights"

ŷ = f (∑n
i=1Wixi +b)

Figure 3.1: Formal Perceptron illustration: An example of single perceptron with tree inputs (I1, I2, and I3).

3.2.2 Multi layer Neural Networks

The multi-layer perceptron (MLP) is a type of neural network that contains one or more hidden

layers. A layer can be interpreted as a hyperplane that includes several simple perceptrons, it is used

to enhance the separation capability of the network. If a (MLP) network contains more than one layer,

it is called a deep neural network (DNN). The concept of back-propagation was introduced to train

hidden layers in (MLP) networks. Indeed, the input layer contains, in addition to the bias, numerical

values that depend on the database (I1, I2, ... In); they all feed nodes located in the first hidden layer.

By performing the calculation process in the hidden layer, including an activation function (( f ) see
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3.2. Artificial Neural Networks

3.2.3) we obtain local scores in this layer. The same process is repeated on each hidden layers until

the last one which is the output layer. Figure 3.2 shows typical multi-layer perceptron network with

only single hidden layer.

I1

I2

I3

I4

I5

O1

O2

O3

O4

O5

Input
layer

Hidden
layer

Output
layer

Figure 3.2: Multi Layer Neural Network: example of fully connected network with tree layers (Input, Hidden
and Output).

3.2.3 Activation functions

The output of a neuron is computed using an activation function which is a non-linear function as

shown in Figure 3.1. There are several activation functions to model neural response [141].

Here we present some common activation functions mostly used in the deep learning area:

• Sigmoid: The function takes a real-valued input and squashes it to range between 0 and 1. The

function also called (logistic function)

sigmoid(x) =
1

1+ e−x (3.2)

• ReLU: The ReLU function stands for Rectified Linear Unit. It takes a real-valued input and

thresholds it at zero.

ReLU(x) = max(0,x) (3.3)
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Figure 3.3: Activation functions graphs examples: (a) - the sigmoid function. (b) - the tanh function. (c) - the
Rectified Linear Unit (Relu) function. (d) - the Leaky ReLU [7].

• Leaky ReLU: unlike ReLU, this function has a small slope for negative values, instead of a

plain zero. It fixes the “dying ReLU” problem, as it does not have zero-slope parts, and it

speeds up the training.

LReLU(x) = max(αx,x) (3.4)

with 0 < α ≤ 1

• Tanh: The function takes a real-valued input and squashes it to the range [-1, 1].

tanh(x) =
2

1+ e−2x −1 = 2σ(2x)−1. (3.5)

Figure 3.3 plots curves of these functions. In this thesis, we use only the ReLU and sigmoid

activation functions.
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3.3. Convolution Neural Networks (CNN)

Input
(28×28×1)

Conv1
(24×24×n1)

Pool1
(12×12×n1)

Conv2
(8×8×n2)

Pool2
(4×4×n2)

n3 Units

Fully Connected

Output

Flattened

Figure 3.4: An example of a CNN architecture: model for handwritten digits classification.

3.3 Convolution Neural Networks (CNN)

A Convolutional Neural Network also called CNN or ConvNet, is a type of deep feed-forward

artificial neural networks mostly applied in analyzing visual data. It is widely used in machine

learning, especially in deep learning algorithms. Their functioning is based on the mathematical

convolution operation. A CNN architecture is composed of a series of layers. Every layer of the

network goes through a differentiable function to transform itself from one volume of activation to

another. Many types of layers are used to build a CNN, among them we list: i) Convolutional layer,

ii) Normalization layer, iii) Pooling layer, and iv) Fully-connected layer and so on. All these layers

are stacked somehow together to form a full CNN model. In a more advanced architectures, CNNs

may contain complicated blocks that are built from these layers or new innovated layers. The Figure

below 3.4 is a complete example flow of CNN network LeNet to process an input image and classify

the digits. It takes an image input of 1×28×28 resolution from the MNIST 1 data set [112].

In CNN, there are generally more layers interspersed between these four basic layers:

• Convolution transformation.

• Pooling layer.

• Activation functions.

• Fully connected layer.

3.3.1 The Convolution transformation

The convolution layer is the core element of CNN networks, it allows us to extract the characteristics

of an input image by specifying parameters such as the number of filters, kernel size etc. The choice

1http://yann.lecun.com/exdb/mnist/
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of the size of the receptive field depends on the resolution of the input image, as well as on the nature

of these images.

We can formally define the transformation (convolution) function Ttr(I) as a mapping of the input

data I ∈ RH×W×C where I = [x1,x2, ...,xC] and xc represents a single channel of the input I, to feature

maps O ∈ RH
′×W

′×C
′

where O = [y1,y2, ...,yC′].

We denote V = [v1,v2, ...,vC′ ] the learned set of filter kernels, where vi refers to i-th filter (one

filter = one activation map). And each "learned kernel" has the same number of "channels" as the

input I.

We can write vi = [v1
i ,v

2
i , ...,v

C
i ]. Equation 3.6 recaps the operation for each kernel (vi).

yc = vc ~ I =
C
′

∑
s=1

vs
c ~ xs (3.6)

Here ~ denotes the convolution operator, and vs
c is a 2D single slice from learned filter.

The equation 3.7 represents the general rule to compute output size of the convolution. P is

padding, F is receptive field size, and S is the stride step. The figure 3.5 illustrates an example of 2D

convolution transformation.

Wi+1 = (Wi−F +2×P)/S+1 (3.7)

• An image matrix (Volume) of dimension (H×W ×C)

• A filter ( fh× fw×C)

• Outputs a volume dimension (((Ih− fh +2∗P)/S+1)× ((Iw− fw +2∗P)/S+1)×1)

3.3.2 Pooling Layer (Pool)

The pooling layer is a quite a simple operation in a Convolutional Neural Network (CNN), this layer

consists in reducing the spatial dimensions (W and H) while preserving the same depth as the previous

layer (C’). Indeed, it takes some k× k region from a selected slice "feature map" and produces a

single value. By using a stride step for x and y directions, we achieve "sub-sampled" feature maps

in each feature channel. The application of this operation allows us to obtain a new block of feature

maps with low resolution and same depth. The fundamental purpose of the Pooling layer is the gain

of the computation performance to train in a neural network model ("less information means less

parameters").

Different functions can be used in the pooling layer: we explore and evaluate two main functions,

the average pooling (3.8) and the max-pooling (3.9) [166].
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3.3. Convolution Neural Networks (CNN)

I

C

W

H

I = [x1,x2, ...,xC]

...

"C’: learned kernels"

V = [v1,v2, ...,vC′] with vi = [v1
i ,v

2
i , ...,v

C
i ]

yc = vc ~ I
O

C’

W’
H’

O = [y1,y2, ...,yC′]

Convolution

Targeted neuron

Local Receptive field C’: Feature Maps

Figure 3.5: The convolution transformation: case of 2D input image .

• Average pooling: takes the average for each local window of kxk over features maps and

produces new feature block with the same depth.

hn
j(x,y) = 1/K ∑

x̄∈N(x),ȳ∈N(y)
hn−1

j (x̄, ȳ) (3.8)

• Max-Pooling: this function retains the maximal value in a window kxk from the input feature

map.

hn
j(x,y) = max

x̄∈N(x),ȳ∈N(y)
hn−1

j (x̄, ȳ) (3.9)

We denote by N the kxk neighborhood of (x,y). In Figure 3.6 we illustrate an example of the

Max-Pooling operation. In this example we choose a window with size of 2×2, and we assign 2 to

the stride S which is the step of sliding the window on the feature map.

3.3.3 Fully connected layer

Fully connected Layer (or Inner Product Layer) is a layer where all neurons have full connections

with the previous layer. As seen in (Section 3.2.2) each neuron in ith Layer has full connection to all

neurons in i−1th Layer, and we can compute its activation with a matrix of multiplication of values

and weights of neurons in i−1th Layer (see Figure 3.2).
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Figure 3.6: Sub-sampling illustration: case of Max-Pooling with a 2×2 filter and a stride with 2 steps.

3.4 Loss functions (Cost functions)

In the machine learning, all algorithms rely on optimizing an objective function or "criterion". Loss

functions are a kind of function used to minimize the error between the true label "target" and

the predicted element "output", this group of functions are also called cost functions [111]. CNN

networks are supervised machine learning methods, they learn the prediction function from a training

data set. The loss functions are used to measure how the model can predict the result compared with

ground truth. Finding the minimum point with the help of the optimization methods (see Section 3.5

), the CNN model converges to a state in which the error tends to zero or to the lowest possible value.

In other form, we can summarize the definition of the loss function as a measure which quantifies the

variation (error) of the output prediction (ŷi) from the expected response (yi) [168].

J(W ) =
1
n

n

∑
i=1

L(xi,yi)∈Dtrain( fw(xi),yi) (3.10)

Formally, as the CNN networks are a typical supervised learning methods. let us consider Dtrain =

{(xi,yi)} with i ∈ {1, ..,N} a set of features (samples) that uses the model to make prediction, yi

corresponds to the label of xi, and the ŷi = fw(xi) is the function to optimize, with w ∈W its weight

parameters. The optimization process utilizes dataset Dtrain in the training step.

By minimizing the loss function L(ŷ,y), the fw(x) model discovers "good" parameters (synaptic

weights in the network) to make prediction the closest to the ground truth. Therefore the loss function

is used to evaluate the error between input item/ground truth y and the predicted output ŷ.

minimize
W

(L(x,y)∈Dtrain( fw(x),y)) (3.11)
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3.4. Loss functions (Cost functions)

Different loss functions give different errors for the same prediction task, we can broadly

categorize them into two types: Classification and Regression Loss. In this chapter we tackle

classification problems, that is our y variable is discrete. In the following we present the most popular

loss functions.

The soft-max function: a desired function for multi-class classification

The Softmax function (3.12) is a function which aims to transform a real-valued vector Z of dimension

K into a vector of real numbers P in range (0,1), which summs up to 1 (3.13):

p(Z)i =
ezi

∑
k
j=1 ez j

(3.12)

The function is used in the last layer of a given Multi-layer neural network, which takes real

number scores from the previous layer Z = [z1,z2, ...,zk] with zi ∈ R and k ∈ N, then computes the

estimated "probabilities" values P = [p1, p2, ..., pk] with pi ∈ [0,1].

K

∑
i=1

p(Z)i = 1 (3.13)

One hot encoding: is a method to represent a target vector into a binary vector where all values

equal 0 except the target class which is equal to 1.

Consider K the number of classes and the dataset Dtrain = {(x1,y1), ...,(xN ,yN)}, we introduce

the K-binary vectors Li = [li
1, l

i
2, ..., l

i
K]∀i ∈ [1..N] each mapped to an input label (yi). Specifically, if

yi =Ck then li
k = 1 and ∀ j 6= k l j = 0 where k ∈ [1, ...,K].

3.4.1 L1 and L2 mean loss function

Mean Squared Error (L2 loss) and Mean Absolute Error (L1 loss) are the two standard loss functions,

which produce a mean error on a selected train dataset.

• Mean Squared Error (MSE): It is basically minimizing the sum of the square of the differences

L(ŷi,yi) between the target value yi and the estimated values ŷi.

L(ŷ,y) =
1
n

n

∑
i
(yi− ŷi)

2 (3.14)

• Mean Absolute Error (MAE): It’s used for minimizing the sum of the absolute differences

L(ŷi,yi) between the target value yi and the estimated values ŷi.

L(ŷ,y) =
1
n

n

∑
i
|yi− ŷi| (3.15)
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3.4.2 Cross Entropy Loss (Log Loss)

The cross-entropy function is a particular loss function mostly used in classification problems that

measures the cross-entropy between the predicted and the target class. The computation of this

function consists in the closeness’s comparison of the probability distribution of output scores

produced from the model and the expected target class.

The equation 3.16 results only the output value corresponding the predicted class including its

cost. li is the one hot encoding vector for ith sample and p j is the predicted output probability of each

class.

L(ŷi,yi) =−
k

∑
j=1

li
j log(ρ j) (3.16)

To train the networks usual approach is to use a batch of n samples from the data set. Then the

average cross-entropy function is computed, which is simply the average value over all the batch

introduced in equation 3.17.

L(ŷ,y) =−1
n

n

∑
i=1

k

∑
j=1

li
j log(ρ j) (3.17)

As seen before, machine learning models use the cost functions to estimate and minimize the error

between yi and ŷi, therefore the main objective is in finding the optimal parameters of the network to

minimize the error.

In the next section we shortly review the optimization methods used for training Deep NNs.

3.5 Optimization Methods and policies for Model Training

In machine learning, finding the best parameters for a model is the most complicated process. Neural

network models are non-linear, this means that they can learn complex non-linearity of classification

resurfaces in data representation space. A downside of this flexibility is that they learn via a stochastic

training algorithm. During the training phase, we try to minimize the variance of the cost function at

each iteration “forward pass”. As stated in Section 3.4, the aim is to reach/converge towards a state in

which the model gives better results. The achievement of this purpose depends on several parameters,

such as learning rate, learning policy etc. Hence the importance of optimization algorithms such as

stochastic gradient descent and other algorithms from these family [7].

The principle of these algorithms is updating the model’s parameters (weights), moving them in

the direction opposite to the gradient of the loss function. These moves a regulated by the so-called

learning rate, which also can be changed accordingly to different policies. 3.5.3). This algorithms

follow iterative schemes of model parameter updates, regulated by learning rate. We schematize the

behavior of such iterative schemes in Figure 3.7 below.
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3.5. Optimization Methods and policies for Model Training

(a) training and validation accuracy curves. (b) Loss curve during training.

Figure 3.7: Different learning rate where training and validation of a Deep CNN [100].

Figure - (a) 3.7 presents curves of training and validation accuracies, the gap between the training

and validation accuracy indicates the amount of overfitting (we will explicit this notion below). The

second Figure - (b) shows an example of training and validation behaviors with different learning rate

configurations.

As we can observe, choosing the learning rate parameter plays a very important role in model

parameter optimization. Indeed, it is a way to avoid overfitting, that’s why learning rate is considered

as a regularization parameter 3.6.3.

In the following we present the most popular optimization algorithms used for DNN parameter

optimization.

3.5.1 Gradient Descent

Gradient Descent (GD) is the fundamental algorithm for optimization of parameters in Deep Neural

Networks. Once initialized,(randomly or in another way) the parameters-arguments W of the

objective function J(W ) built with the loss function (L( fw(x),y) 3.10) are moved into direction

opposite to the direction of its gradient ∇W J(W ) [7]. In other words, we follow the direction of

the slope of the surface created by the objective function downhill until we reach a valley.

The iteration step for the gradient descent is given by:

Wt+1←Wt−η∇W J(W ) (3.18)

The learning rate η determines the size of the steps we take to reach a "local" minimum. Without

going very deep into the theory of Gradient descent algorithm and conditions of its convergence, we

remark, that it is a well known mathematical fact that for the non-convex functions the optimization

process may be stacked in a local minimum.
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Figure 3.8 illustrates update process and convergency to (a) global minimum of a convex function,

and (b) the possibility to still converge to a global and not local minimum of the objective function if

the learning rate and thus induced step-size have been correctly chosen.

J(W )

w

×

×

×

×

local minima

(a)

J(W )

w

×

×

×
×

local minima

global minima

∂J
∂W = 0

(b)

Figure 3.8: Gradient Descent examples: Two functions - (a) having global minima, and - (b) a non-convex
function having a local minima and global minima.

• Stochastic Gradient Descent Algorithm (SGD):

The Stochastic Gradient Descent (SGD) algorithm is another iterative variant of GD. Indeed,

if we have a large database, practicing the GD algorithm needs a considerable time for only

one pass on entire database before updating the parameter values, which makes training very

time-consuming, even infeasible. Indeed we have to update the learning rate for each single

sample of the training data set. Contrarily, in SGD, we use merely a single or subset of the

training sample set to perform the update operation at each particular iteration. A sample subset

is called "batch" on the field. It is a subset, randomly chosen of of the whole training dataset.

SGD often converges fast compared to GD.

As mentioned above, when we use a batch of data, for each iteration we compute the mean

update of the gradient descent as in the equation 3.19. Bs design the batch-size, and s is the

size.

Wt+1←Wt−η
1
Bs

s

∑
j=1

∇W J
(

fwt (x
j
t ),y

j
t
)

(3.19)

Remark: The relationship between epoch and iteration: One epoch is when an entire data set is

passed forward and backward through the neural network (see 3.20).

(1) one epoch =
”dataset”

”batch− size”
= ] iteration(s) (3.20)
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3.5. Optimization Methods and policies for Model Training

3.5.2 Optimizing the Gradient Descent

Under some conditions, the stochastic gradient descent (SGD) algorithm can become very slow, e.g,

when the gradient is consistently small. To tackle this cases, there are some acceleration methods

which can improve the update rules. Momentum and Nesterov Momentum (also called Nesterov

Accelerated Gradient) are slight variations of normal gradient descent that can speed up training and

improve convergence significantly.

• Momentum:

Momentum method can be used to accelerate learning compared to the plain Stochastic

Gradient Descent. It is a technique that can accelerate gradient descent by taking into account

previous gradients in the update rule at each iteration. This can be clearly observed in the update

rule equation in every iteration.

The iteration step for the momentum concept in the gradient descent update is given as follows:

vt+1← µvt−η∇W J(Wt)

Wt+1← vt+1 +Wt
(3.21)

Moreover, the algorithm is only guaranteed to converge to the global solution in the case where

the function J is strictly convex. If that’s not the case, the algorithm will not even be guaranteed

to find a local minimal.

• Nestrov accelerated gradient (NAG):

Nesterov Accelerated Gradient is another method that is related to Momentum. It is a simple

change to normal momentum method where every update happens in two steps. First, the

gradient term is computed from the position (Wt + µvt) in parameter space, and then the final

update velocity is calculated as in the normal momentum method (see 3.22). If the momentum

term points in the wrong direction or overshoots, the gradient can still "go back" and correct it

in the same update step.

vt+1← µvt−η∇W J(Wt +µvt)

Wt+1← vt+1 +Wt
(3.22)

3.5.3 Adaptive Learning rate policy

The learning rate is a positive scalar that defines the step size during training [111]. It refers to the

amount that the weights are updated and thus controls the speed at which the model learns. However,

the learning rate is a configurable hyper-parameter and should be set prudently to well-train models.
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Generally, a significant learning rate allows the model to learn faster by arriving on an optimal set of

weights, nevertheless with a large learning rate there is a danger to bypass the "good " minimum of

the objective function to minimize. In contrast, a lower learning rate may allow the model to learn

more or less well; however, it takes a long time to train and converge and also does not prevent from

stacking in a local minimum. To improve the training process and produce a model that converges

quickly and efficiently, we can adapt the learning rate. We base this mechanism on different policies

for updating the learning rate [7]. Here we recall some of them, which are widely used in the

optimization of parameters of DNNs on the basis of gradient descent family of methods:

• Step decay: After each k epochs, multiply the learning rate by a constant C < 1.

• Polynomial decay: Set the learning rate as

∀t ≥ 0, ηt =
a0

1+b0tn , a0,b0 ∈ R+. (3.23)

• Exponential decay: Set the learning rate as

∀t ≥ 0, ηt = a0e−b0t , a0,b0 ∈ R+. (3.24)

The sense of all these adaptation strategies consists in using a large learning rate at the beginning of the

iterative process and little-by-little reducing it when approaching to the (hopefully) global minimum

of the objective function.

3.6 Deep learning and Data limitation constraint

3.6.1 Motivation: Over-fitting Phenomena

Over-fitting or learning-by-heart means that resulting from the optimization process the model fits

very well to the training data, but yield strong error on the unseen( test) data. One of the reasons

of it is the small size of the used training dataset. Indeed, these methods require sufficient training

samples to learn well and thus avoid the overfitting problem. To address the phenomenon in context of

CNNs, there are specific techniques called regularization methods, such as artificial data augmentation

and transfer learning, which may be employed to overcome the problem. In this section, we briefly

introduce some of them.
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3.6. Deep learning and Data limitation constraint

3.6.2 Artificial data augmentation

Artificially increasing data is one of the most intuitive solutions to circumvent the over-fitting

problem. However, different methods can be engaged in the image processing field to augment and

expand dataset. Geometric transformation such as shearing, zooming rotation, and random mask,

and application of noise such as gaussian blur, are the most popular methods. They are called

"label-preserving transformations", as they do not change the label of the training data samples. In

the medical field, the images’ nature differs from those we perceive in daily life in both form and

content. Hence a suitable domain-dependent data augmentation strategy has to be designed. In AD

classification, we have applied the gaussian blur, and the flip operation, besides the translation along

several dimensions. We avoided using some operations like the contrast change, the shearing, and

the zooming since we already applied the spatial normalization that uses affine deformation, which

includes these transformations to align images to a standard space. Recently data augmentation with

Generative Adversarial Networks has become popular, when from a random noise image and some

training example the network generates images similar to training examples. We do not apply this

strategy in our work and thus do not present it here.

3.6.3 Regularization Methods

Regularization is a very important technique in machine learning to prevent over-fitting. First-of-all

the way to prevent over-fitting is to stop the training process sufficiently early when the model fits well

to the training data and still remains sufficiently good at the test data. This is called "early stopping"

Early Stopping of training

The question here is how many epochs we need to train a network. This is a major challenge in training

neural networks. Too many training epochs can lead to an over-fitting of the model to the training

data set, and consequently, a poor performance on the test set, while too few learning epochs means

that the model will under-fit the training set. Wherefore, all standard neural network architectures

are prone to over-fitting. To obtain good performance, early stopping is a method that allows us to

process and fix the number of learning epochs, to specify an arbitrary number of epochs; while the

model seems to get better results, we stop learning immediately when the performance on the unseen

set is getting worse. Figure 3.9 shows an example of a learning task, in this figure we can notice that

when we exceed the optimal capacity (epochs), the model over-fits (red curve).

L1 & L2 Regularization

L1 and L2 Regularization are a very important techniques to prevent learning algorithm from

over-fitting. These methods add a penalty term to the cost (loss in our case) function to form the
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Figure 3.9: Early stopping for best generalization performance [100].

objective J(W ) and control the model complexity using that penalty term. The penalty term expresses

a constraint on the parameters (weights of the network) to train. The difference between the L1 and

L2 is just that L2 is the sum of the squares of the weights, while L1 is just the sum of the weights. As

follows:

• L1 regularization in L1:

J(W ) = L(x,y)(
k

∑
i=1

fwi(x),y)+λ

k

∑
i=1
|wi| (3.25)

• L2 regularization in L2:

J(W ) = L(x,y)(
k

∑
i=1

fwi(x),y)+λ

k

∑
i=1

w2
i (3.26)

The λ here is the regularization parameter. It is a hyper-parameter in the Neural Network training.

It is usually fixed after several trials. Bisection method or other optimization methods could be used,

everything depends on the computational resource available for training of the Neural Network.

Dropout Regularization

Dropout is another method that also aids to combat the problem of over-fitting. Basically, during

training the method simulates a scattered activation of a given layer, which means that certain fractions

of the neurons in that layer will be randomly deactivated or dropped out [176]. The effect of the

dropout is to make the learning process noisy, forcing the nodes of a layer to take more or less

responsibility for the inputs. The technique can be easily implemented. At training step, each neuron

has a probability p of being disconnected. This improves generalization because it forces the layer
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3.6. Deep learning and Data limitation constraint

to learn the same “concept” with different neurons. Figure 3.10 presents an example of applying the

dropout method.

(a) (b)

Figure 3.10: An example of two Neural networks: (a): Standard Neural Network - (b): After applying dropout
method.

Batch Normalization

Batch normalization is another technique that may help, to prevent the over-fitting, It basically

consists in the transformation of all data samples known in statistics as "whitening" of the data. It

consists in subtraction of the mean and division by the standard deviation of the marginal distribution.

This kind of approaches was proposed namely for the VGG-Net architecture [173].

3.6.4 Transfer Learning and Fine-tuning Approach

Generally, in the machine learning domain, we can represent a simple classifier as a function ( f ),

which computes an output (ŷ) from a vector input (x), written as follow:

ŷ = fW (x) (3.27)

Where (W ) is the weights parameters and ( f ) is the model - classifier.

Transfer learning is an optimization that allows for fast progress and improves performances when

the model takes a very long time to converge "it is a shortcut to saving time", even more, it is used

in cases where the size of the database is very limited to avoid the problem of over-fitting. This

technique makes it possible to transfer the knowledge acquired on a "source" dataset to better process

a new "target" dataset. The goal of transfer learning is to improve learning in the target task by

leveraging knowledge from the source task. Transfer learning can be defined as a fine-tuning process

[28, 208], this approach takes pre-trained model parameters and uses them as a starting point in other

processing tasks. In fact, in real-life cases, learning a model from scratch is a relatively complicated

task due to the depth size of the network, or sometimes in the case where the training data set is

insufficient.
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We can formally define the transfer learning strategy as follows:W0 ←W ′
φ

Wi+1 ← F(Wi)
(3.28)

where W ′
φ

is a trained model parameters on a "source" dataset. Therefore the initial W0 receives

these parameters, and fine-tune layers of the architecture. F is the optimization scheme as detailed in

3.5.

In general, it is not obvious that there will be a benefit from using transfer learning in the

domain until the model has been developed and evaluated. Figure 3.11 illustrates the difference

in performance measures, between two cases of training (with and without transfer).

Figure 3.11: Three ways in which transfer might improve learning: a higher performance at the very beginning
of learning, a steeper slope in the learning curve, or a higher asymptotic performance [144].

3.7 Conclusion

In this chapter, we presented an overview of the deep learning approach. We briefly exposed

the fundamental theories of neural networks, from pure perception, through the definition of the

multi-layer network, to deep convolutional networks. We also briefly reminded the fundamental

concepts behind, which serve to optimize models in the machine learning domain and specifically

in Deep Neural Networks classifiers. We then presented some techniques to address the over-fitting

phenomenon, namely artificial data augmentation, regularization methods, and transfer learning. We

do not pretend that our synthesis is exhaustive, nor we tried to present methods with all mathematical

demonstrations. This chapter was a kind of reminder for introduction of our solutions in the problem

of AD classification on MRI modalities.

In the next chapter, we will present our AD classification approaches and their implementations

using CNN neural networks methods.
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Chapter 4

The 2-D+ε Approach with Shallow
Convolutional Neural Networks.

4.1 Introduction

In interactive health care systems, emerging models of convolutional neural networks (CNNs) have

been integrated into various disease diagnostics applications, such as the classification of magnetic

resonance imaging (MRI) scans for Alzheimer’s disease assessment.

In this chapter, we present our contributions to the AD classification problem over the MRI

imaging modality. We focus on the hippocampus morphology, which is known to be affected by

the illness’s progress by using the ROI-level methods. We use a subset of the ADNI (Alzheimer’s

Disease Neuroimaging Initiative) database, presented in chapter 2, to classify brains belonging to

Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal control (NC) classes.

As the number of images in such studies is somewhat limited regarding the needs of CNN models,

we propose an analysis of different data augmentation strategies adapted to the specificity of sMRI

scans. We further propose our "2-D+ε" approach, where only a very limited amount of consecutive

slices are used for training and classification, besides a pragmatic investigation of engaging the

well-suited network design to obtain encouraging classification results.

Highlights:

• We present the main target ROI which is a biomarker of Alzheimer disease and the proposed

approach for its selection to be further used used for AD classification;

• We introduce the 2-D+ε approach as envisioned spatial data input and networks input layer

architecture;

• We present an effective CNN network for AD classification;
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• We study different implementation and settings for dataset augmentation;

4.2 Related work

Despite its recent tremendous successes, CNNs are only starting to be used for CAD in classification

of brain images, and the literature does not provide many attempts to use CNN for diagnosis and

prognosis of AD. Amongst them we have found two previous works [148, 85] closely related to

our approach. In [148] MRI of the whole brain have been used, 150 features were first learned

then used for the first and the only convolutional layer of their CNN. Features were using a sparse

auto encoder on 5 × 5 × 5 image patches. These features are not further trained during the last

back-propagation training stage of the final network, the convolutional layers are followed by a

max-pooling layer, a fully connected layer of 800 units and the output units. Results are promising:

three- way classification: 89.47%, AD/NC: 95.39%, AD/MCI: 86.84%, NC/MCI: 92.11% on an

ADNI dataset of 755 patients in each one of the three classes, for a total of 2,265 scans. In their

experiments 3-D patches provided better classification results than 2-D patches. The main distinctions

from our work is that we focus on a specific part of the brain while they considered the whole brain,

we use more than one convolutional layer and we did not pre-train features.

Another study using 3-D CNN [85] confirms that the usage of CNN is a good choice for classifying

MRI scans as belonging to NC/MCI/AD individuals. The 3-D CNN was used on the whole brain and

initialised with convolutional auto-encoders, training was done on the CADementia database and the

resulting CNN was tested on 210 scans of the ADNI database. Comparisons with other techniques

using various image modalities confirm that both the choice of using sMRI and CNN is relevant.

Nonetheless, several other previous attempts to use deep neural nets have already been made using

multiple modalities. For instance, in [117] multiple indicators from multiple modalities: MRI, PET

scans and CSF biomarkers were fused to evaluate the state of the patient. The inputs consist of

93-region-of-interest-based-volumetric features extracted from PET and MRI scans and completed

with three bio-markers from the CSF for a total amount of 189 features. Principal Component

Analysis (PCA) was then performed on these features, with selection of the discriminative ones.

A deep belief network (DBN), consisting of three hidden layers with hidden units of 100-50-20, was

trained and dropout was used in the multi-task learning (MTL) to fine-tune the network. The last

layer was then used as a new feature representation on which SVM was applied to classify between

AD vs. non-AD. Multiple learning schemes have been used and they evaluated their impact by using

them or not and measuring the differences in the final classification accuracy. This method, dubbed

impact evaluation, showed that dropout and MTL have the major impacts on their performance. The

proposed method achieved 91.4%, 77.4%, 70.1%. accuracies for AD/NC, MCI/NC, AD/MCI. For

the task of classification converters - to Alzheimer - cMCI vs. stable mild cognitive impaired - sMCI
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4.3. The hippocampal region and visual atrophy in AD diagnosis

the accuracy was 57.4%. We note that cMCI are also called progressive MCI (pMCI) and these

classification task is very difficult, as the brain scans are not distinctive even for an experience human

observer, such as medical doctor.

A similar study, combining multiple modalities and using artificial networks as an element of

its learning algorithms is [181]. These studies [181, 186, 205, 51], focusing on prognosis, classify

stable MCI (sMCI) vs. progressive MCI (pMCI) . In [205] an accuracy of 65% for sMCI/pMCI was

obtained, 70% in [186] 74% in [51] and 83% accuracy for sMCI/cMCI in [181].

Despite many attempts made to use visual visual features extracted in patches, such as Scale

Invariant Feature Transform (SIFT) or spectral representations [6], which have shown for a while

state of the art results, CNN approaches are consistently superseding them, setting new standards for

state of the art recognition. We will speak of filters in CNN instead of features in the remainder of our

manuscript. This is often explained by the fact that filters relevant to the application are learnt and not

designed and as such are more specific to the application domain on which they have been trained.

In the above cited studies various brain regions were used: the whole brain, the hippocampal

region or the cingulate posterior cortex together with the hippocampus, etc. In our work we focus

on the hippocampal region. Indeed, some parts of the brain present more modifications than others

at the onset of AD. It was shown, using morphometric techniques on the hippocampus, in [49] that

studying the hippocampus can give good prediction of the evolution from MCI to AD. The accuracy

of these predictions appears to be comparable to classification methods operating at the whole brain

level highlighting the relevance of this region. Pennanen et al. [149] showed that using stepwise

discriminant function analysis the hippocampal volume can be used to classify AD vs. NC with an

accuracy of 90.7% and AD vs. MCI with 82.3%. However, for MCI vs. NC, the volume of the

entorhinal cortex provided better accuracy with 65.9% against 59.7% with the hippocampal volume.

This 2003 study comprised 59 NC, 65 MCI and 48 AD subject from Finland. There could be a

lateralization of the illness, also, as higher resolution scans of the hippocampus show that not all of

its parts are affected equally. While the first element, if deemed useful, could be taken into account

during the training of the network, CNN would naturally take into account the second element.

4.3 The hippocampal region and visual atrophy in AD diagnosis

In the diagnosis of Alzheimer’s Disease (AD), different regions of the brain know structural changes

resulting in global atrophy that encircling Gray Matter (GM) along the cerebral cortex. Besides, the

changes also include the expansion of the lateral ventricle that is observable from the global view of

the brain alongside a local narrowing centered on the medial temporal lobe.

The global brain atrophy analysis does not provide robust discrimination for AD diagnosis.

Indeed, numerous researches showed that AD firstly affects some local regions in the brain even
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before the relevant symptoms appear; the hippocampus and amygdala are the most common for their

vulnerability to Alzheimer’s disease.

In chapter 1, we have presented the state-of-art of AD diagnostics in which we discussed

the different visual biomarkers used to analyze the AD pathology such as cortical thickness,

Hippocampus, Entorhinal Cortex (ERC), and Ventricles enlargement over different MRI modalities

scans (3D, 2D, and ROI methods).

Serving with full 3D brain scans can be considered as straightforward as it may seem at first

glance. This method has advantages as it has drawbacks. As presented earlier in the chapter 1, using

full brain methods can not be regarded as a reliable approach since i) the disease can be detected

locally in certain regions instead of being analyzing the whole brain, as we know that the degeneration

starts in some areas, and it spreads to the others, ii) some regions in the brain can provide confusing

information if we integrate all regions.

For this reason, local ROI methods would be a useful alternative: first, lower quantity of features

can be extracted that make studies more convenient; second, a small region can reflect the entire brain

since the disease touch only some particular regions. However, ROI-based methods require expertise

in the field to identify the proper regions despite extracting regions is a very complicated process. The

method needs reliable segmentation techniques to select and specify interest regions from the whole

brain scan.

Hippocampus volume is the emerging imaging biomarker to measure the severity of AD; it is

considered as a robust discriminating region and well helps in the diagnosis of AD, especially in

the early stages of the disease. Admittedly, the hippocampus substance undergoes shrinking in its

volume due to cells’ death. This phenomenon leads to CSF liquid to fill the resulted extra space that

surrounds the hippocampus (black area) [193]. Figure 4.1 illustrates two examples of subjects; it

shows the amount of the lost volume of hippocampus detectable with the black area.

We summarize possible different methods which can be employed as follows:

• 3D-level: This approach provides information on 3D volume; it contains high characteristics.

However, this method comprises some brain regions that are not necessarily appropriate,

especially whether we want an early AD diagnosis. Furthermore, working with 3D volume

requires high computing power (needs a strong GPU capability).

• 2D-slice-level: Unlike the 3D method, the 2D slice-based approach avoids confronting with a

massive number of parameters (millions) to train; the defect of this method is that we lose spatial

dependencies in adjacent slices (brain morphology and connectivity in 3D representation).

• ROI-based method: The method is suitable for accurate analysis; it has a low feature

dimension compared to the 3D volume. Moreover, changes in a small local region may reflect
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4.4. The 2-D+ε Approach

the pathological degeneration of the entire brain, but has limited knowledge about other regions

involved in AD.

Although various methodologies can measure the disease, the ROI-method,leads to plausible

performance. Therefore, in this thesis, we focus only on the hippocampal region, which is considered

our target ROI by carrying the analysis of all methods. Table 1.1 presents a review of the different

introduced approaches (for more details, see chapter 1).

Figure 4.1: Example of the Hippocampus Atrophy: (A) Alzheimer’s Disease subject - (B) Normal subject.

4.4 The 2-D+ε Approach

4.4.1 Problem formulation

In the Computer-Aided Diagnosis (CAD) field, the developed technologies can be used to improve

diagnosis in vivo evaluation in hospitals and research centers. In this thesis, we work on the

classification problems for Alzheimer’s disease, and we are interested in predicting AD patients from

those in MCI/NC stages. In other words, for each selected subject from a given dataset, we aim to

estimate to which group he/she belongs. As we have seen in chapter , we can categorize the patients

in three different main classes AD, MCI, and NC. The MCI class is composed of two sub-groups

(e-MCI and l-MCI); nevertheless, in this work, we consider them only as a single class.

We summarize the process of the proposed approach, as illustrated in Figure 4.2.

As illustrated in figure 4.2, we have a couple of steps to achieve. We divide the problem into

two main parts: First, the dataset preparation after data collections and cleaning - it includes several

preprocessing procedures such as registration, normalization, and (ROI) extraction. Second, the step

of searching and achieving a suitable network design to obtain influential classification scores.

4.4.2 The 2-D+ε concept

In order to design and build powerful models for AD classification, we have investigated various

implementations of approaches to achieve better performance. We have confronted numerous
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Figure 4.2: The global diagram of proposed approach for Alzheimer’s Classification.

restrictions in solving the problem. We come up with two main issues here: 1) how to ensure that

the input data were used to feed the model, and 2) how to design a proper network adapted to limited

data of a low definition. As we saw in the previous section, the ROI method is targeted, which leads

us to use only small data. Based on these constraints, we thought of producing a new approach using

a few 2D slices selected from the ROI while preserving the inter-slices spatial dependency. We called

it "2-D+ε". In the same vein, we take note that in the chapter 2, we presented data preprocessing,

where we obtained a 3D-ROI of both hippocampal regions, and from which we were able to extract

axial, sagittal and coronal slices.

2-D+ε Approach: Here is the explanation of the name of the technique "2-D+ε" instead of using only

one sagittal slice of the hippocampus and taking into account inter-subject morphological differences

we used three adjacent slices. This is not a full 3D approach, but still a 3D portion of the volume

comprising a limited number of slices is used. Let us recall that inter-subject differences are kept

intact during the alignment (registration) process, which was the rigid-body affine transformation

(see chapter 2.4). For a given sagittal slice, from one subject to another, slightly different parts of the

hippocampus can be captured. From an implementation perspective, the input layer of the network

constituted of 28× 28× 3 units and receives data from three 28× 28 sagittal central slices of the

hippocampal region. Additionally, during data augmentation, we considered translations of these

three layers. The translation orthogonal to the sagittal plane led us to consider the two slices adjacent

to the three above-mentioned central slices. As a result, the network is trained, considering the five

sagittal slices at the center of the hippocampal region. Since we are not training our network directly

on the 3-D region that encompasses the hippocampus, which would be of size 28× 28× 28, and to

distinguish the considered input from this more general input, we called the technique 2-D+ε .

The epsilon refers to the differences between the adjacent slices in a specific plane, such as sagittal.

We denote the definition of the method as the following equation:

∆Si
Dimk

= ‖Si
2d−Si+1

2d ‖Dimk = ε where k ∈ {Sagittal,Coronal,Axial} (4.1)
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4.4. The 2-D+ε Approach

Where k is the selected projection, and Si
2d is the i-th slice along the axis projection in

two-dimensions (2D). Figure 4.3 contains a geometrical illustration of the proposed approach.

P2D+ε = P((xi−1,i,i+1),y,z)

∆P2D+ε = P(xi−1,y,z)−P(xi,y,z) = ε
∆S = ε

S = [s1,s2, ...,sn]

Figure 4.3: Geometric illustration of the 2-D+ε Approach.

The depletion of the computing platform’s resources and the execution time are vital constraints;

this implies us to think for reducing the computation time and resources allocated to the system

instead of draining it. Therefore, using this approach ensures two fundamental pressures. It provides

a slightly 3D representation of the target region, with tiny differences inter-slices (the epsilon), which

is light compared to full ROI data.

Besides, it avoids to include disturbing information from outlier sides since the region of interest

is a 3D form encompassed inside a bounding box (Figure 4.4). Thus taking the central slice and its

neighbors lead to reduce and prevent the impact of the undesired surroundings of the hippocampus.

Figure 4.4: Example of the Hippocampus Region: Sagittal, Coronal, and Axial Projections.
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4.5 Shallow Architecture design for AD classification

Building a effective classifier model needs in-depth studies and experiences. It requires investigation

to find an adequate combination of different parameters for designing the network architecture,

namely the number of layers such as the convolution layer, the quantity and the spatial dimension

of the filters, and the data reduction factors.

Our dataset contains images of low resolution, the voxel element measures 1.5× 1.5× 1.5 mm3

(see chapter 2 for further details), the full brain scans have 121× 145× 121 dimension which is

a relatively good definition. However, the volume of the ROI included in the cubic container has

only 28× 28× 28 definition. Therefore, we cannot reasonably propose an architecture that is too

deep. Indeed, designing a good network depends not only on the input data’s definition but also on

the content and nature of the used dataset. In our case, it is a medical dataset. However, image

data of the hippocampal region describe its pattern in gray-scale representation. We have conceived

various implementations of networks with different depths: we have designed a couple of networks

containing from one to five convolutional layers for both 2-way and 3-way classification problems.

We realize that whether we increase the number of convolution layers, the model loses its power,

and thus, an architecture containing three or more layers provides low resulting scores. In chapter 1,

we presented some kinds of deep neural networks. The evolution of CNN architecture started from

a small and straightforward network like LeNet [113] to very complex networks using a couple of

blocks, ResNet is an example. However, before the adventure of these block-based networks, much

deeper architectures were already introduced to improve performance. AlexNet is an example of a

reasonably Deep simple architecture. Many works tried to overcome the limitation of some small

networks by building profound architectures; however, through experiences, they proved that adding

more layers does not systematically increase the performance of the network after several layers have

been introduced. In our case, since we have a low resolution of the input data, we have studied various

settings of architectures with different numbers of convolutional layers. Due to these preliminary

experiments which we do not report in the manuscript, we design a shallow network whether we

do not need to employ block-based networks. All the architectural principles of conventional deep

neural networks are respected in it; specifically, we have convolution transformation designed to

extract features, alongside using sub-sampling (pooling) and finally connected to the fully connected

layers stacked with the softmax function.

However, we suggested a lightweight architecture to resemble the LeNET [113] in terms of the

depth and number of layers. Nevertheless, these two networks are different from input data point of

view; our architecture uses the "2-D+ε" input approach, whereas the LeNet uses single channels input

data. The figure 4.5 presents the network, besides, different settings for each layer are given.

The architecture of our network consists of two convolutional and two max-pooling layers.

Rectified linear units (ReLU) were used as activation functions. One fully connected layer is
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4.6. Materials

Figure 4.5: Architecture of our CNN: Shallow Network.

introduced before the output. The hyperparameters of our network are presented below and in the

table 4.1.

• filter size at convolutional layers: F1 = 4x4, F2 = 3x3

• number of filters at the first conv. layer: N1 = 32

• number of filters at the second layer:N2 = 64

• stride at conv. layers: Sconv = 1

• stride at pooling layers : Spool = 2

4.6 Materials

In this section, we briefly present the dataset composition and its proper preprocessing steps for

effectuating our presented approaches.

4.6.1 MRI processing

As described in the chapter 2, sMRI images were processed through a couple step of data

preprocessing as shown in Figure 4.6. The preprocessing is based on: (a) a denoising step with
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Layer (Type) Layer (Params) output shape Trainable Params
Input data - [-1, 3, 28, 28] -

Conv2D-1 F=4*4 [-1, 32, 27, 27] 1,568

Max-Pool-1 F=3*3 [-1, 32, 13, 13] -

ReLU-1 - [-1, 32, 13, 13] 0

Conv2D-2 F=2*2 [-1, 64, 12, 12] 8,256

ReLU-2 - [-1, 64, 12, 12] 0

Max-Pool-2 F=2*2 [-1, 64, 7, 7] 0

Linear-2 - [-1, 2] 242
- - 386506

Table 4.1: Details of the proposed architecture.

an adaptive non-local mean filter, (b) image alignment (affine registration [16]) in the MNI space

[72], (c) image intensity normalization, (d) ROI selection and extraction using the AAL atlas [190].

Figure 4.6: Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI space,
followed with intensity normalization. ii) ROI selection process using the Atlas AAL for both hippocampal
regions. iii) 2D-slice extraction from selected 3D-volume. iv) feeding the CNN networks [1].

4.6.2 Data groups

Data used in this chapter contains 815 baseline structural MRIs from the ADNI-1 dataset with 188

Alzheimer’s Disease (AD) patients, 228 cognitively normal (NC) and 399 Mild Cognitive Impairment

(MCI) subjects. Images are standard 1.5T screening baseline T1-weighted obtained using volumetric

3D MPRAGE protocol. Demographic information about this group is given in Table 4.2.
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4.7. Experiments and results

Classes # Subjects Age [range] / µ(θ ) Gender (#F/ #M) MMSE [range] / µ(θ )

ADNI-1 AD 188 [55.18 90.99] / 75.37 ± 7.52 99/89 [18 27] / 23.3 (± 2.03)
MCI 399 [54.63 89.38] / 74.89 ± 7.30 256/143 [23 30] / 27.0 (± 1.78)
NC 228 [60.02 89.74] / 75.98 ± 5.02 118/110 [25 30] / 29.1 (± 1.00)

Table 4.2: Demographic description of the ADNI dataset group. Values are reported as mean and ± standard
deviation.

*Data used in the preparation of this article were obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical and neuropsychological assessment can

be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD)*.

4.7 Experiments and results

4.7.1 Evaluation metrics

To evaluate performance of our CNN classifiers in both single modality and fusion tasks we

considered the metrics widely used in medical statistics. We denote tp, tn, fp, and fn respectively

True positives, True negatives, False positives, and False negatives. The metrics used are as follows:

Accuracy (Acc) =
t p+ tn

t p+ tn+ f n+ f p
(4.2)

Sensitivity (Sen) =
t p

t p+ f n
(4.3)

Specificity (Spe) =
tn

tn+ f p
(4.4)

Finally, balanced accuracy (BAcc) measure, which is the average of sensitivity and specificity is

defined as:

BAcc =
1
2
(Sen+Spe)

=
1
2

(
t p

t p+ f n
+

tn
tn+ f p

) (4.5)

Here True Positives (TP) are AD patients correctly identified as AD, True Negatives (TN) are

controls correctly classified as controls, False Negatives (FN) are AD patients incorrectly identified
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as controls and False Positives (FP) are controls incorrectly identified as AD. Similar definition is

hold for other binary classification problems NC/MCI and AD/MCI.

Hardware configuration: The experiments were conducted on a GPU-based high-performance

computing platform featuring an Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz processor, 187 Gb

of RAM, equipped with two Nvidia TESLA P-100 graphics cards with 16GB dedicated memory. The

computational time for one epoch at the training step with batch-size of 64 samples was 2.03 seconds

in average.

The network was implemented with "Caffe" Deep learning Framework [96]. we have added a

dropout layer to tackle the over-fitting phenomena as a method of regularization.

4.7.2 Specific data augmentation

The classification of medical images with Deep learning classifiers suffers from a lack of data. One

of the direct ways to overcome this difficulty consists of data augmentation (DA) [28]. This is a

process of generation of new data from existing data. Recently, such a generation is performed with

Generative Adversary Networks (GANS) [79], but it is still a direct way to augment the data using

domain knowledge remains plausible. For further details, (see chapter 2.4). The selected dataset has

been split as follows: 60% for the training, 20% for validation, 20% to test the trained classifier. We

proposed a domain-dependent data augmentation process compatible with the MRI acquisition.

The first way to augment the data consists in blurring it, as proposed for general-purpose images

in [96]. This imitates possible contrast variations in original scans. The blurring was fulfilled with

3× 3, 5× 5, 7× 7 Gaussian filters with (weak) scale parameter: θ = 0.7, 0.7, 0.6 respectively. We

illustrate the effect of blurring in figure 4.7

Our second augmentation technique is the translation of the hippocampal ROI by ±1 pixel in

each dimension, providing thus seven times more data than the original one. This considers possible

variations due to alignment imprecisions of scans on the MNI template.

Finally, a "flipping" technique was used. Since the hippocampus is a symmetrical structure of the

brain, for each scan twice as much information is obtained by flipping the left hippocampus to match

the right one. This is summed up in Table 4.3.

Note, that the three DA techniques were applied only to the training and validation data. In our

work we follow a scenario where no pre-processing is operated on a new brain scan submitted for

classification; as such no DA is performed on the test dataset.

Table 4.4 presents early scores obtained on different metrics of the network on the original data

with a ten-fold DA (additional blurred images, translated images and flipping). The over-sampling

of the MCI category is noticeable for the sensitivity of AD/MCI and the specificity of MCI/NC. This

suggests to balance the dataset.
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4.7. Experiments and results

O G(×3) T(×6) (O+T+F)×2
AD 188 564 1128 3760
MCI 399 1197 2394 7980
NC 228 684 1368 4560
Total 815 16300
O: number of original scans
G: number of Gaussian filtered scan
T: translated scans
(O+G+T)×2: total number of data input

Table 4.3: Data augmentation: "G" is the Gaussian blur, "T" is the translation, "F" is the flip.

Figure 4.7: Multi-instance of the selected central slice (sagittal view) with different gaussian blur settings.

AD/NC AD/MCI MCI/NC
Accuracy 83.7% 66.5% 64.9%
Sensitivity 79.16% 36.76% 76.9%
Specificity 87.2% 79.01% 45.2%
scans AD(188), MCI(399), NC(228)

Table 4.4: Binary classifications with augmented data (10x): flip, translation, blur.

Figure 4.8: AD/NC: An example of accuracy and loss plots during training the network.
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4.7.3 Evaluation

In this section we report the results we obtained when applying different training strategies with the

designed shallow Network architecture and "2-D+ε" approach.

Balancing the Data:

Balancing the data consists of taking a similar number of samples for each category. We first have

studied three balancing strategies on AD (188 scans) vs NC (228 scans) classification task, as these

two classes are more easily separable. The three techniques of data balancing that we used are: i) the

reduction of the number of original scans from the over-sampled category. Here 188 scans are taken

for both AD and NC categories; ii) the random duplication of the original data from the under-sampled

category. Here 228 scans were used for both AD and NC categories; iii) the random reduction of the

augmented data from the category having more data, thus keeping the data variety of the dataset: 188

× 2 × 28 = 10528 scans. The results are given in table 4.5.

1 2 3
Accuracy 82.8% 71.3% 79.3%
Sensitivity 79.68% 70.31% 82.81%
Specificity 85.93% 75% 75.86%

Table 4.5: Data balancing: (1) simple data reduction, (2) data augmentation by duplication of original scans,
(3) randomized reduction of the augmented data.

From this table we can see, that the first data balancing technique by a random data reduction is

the most effective. Indeed, in this case we preserve the original data and do not induce bias by data

duplication. Hence we have applied it to the more challenging classification problems of AD/MCI

and MCI/NC. Results are given in table 4.6. Despite a drop in accuracy, linked to the loss of training

data, and showing the necessity of a data augmentation strategy, the three metrics are more balanced

compared to results without data balancing.

AD vs MCI MCI vs NC
unbalanced balanced unbalanced balanced

Accuracy 66.5% 63.22 % 64.9% 58.23%
Sensitivity 36.7% 60 % 76.9% 63.33%
Specificity 79.1% 67.14 % 45.2% 52.5 %
scans AD(188), MCI(399) (188), MCI(199) MCI(399), NC(228) MCI(199), (228)

Table 4.6: AD vs MCI and MCI vs NC with and without a roughly equilibrated number of scans (reduction
balancing) with blurred images.
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4.7. Experiments and results

Blurring the Dataset:

To augment the dataset, a filter is used to blur scans. These newly generated scans are added to

the training and validation datasets. Comparing the accuracy of the resulting trained network, all

other parameters being kept unchanged, showed an increase in accuracy for AD/NC which seemed to

validate the approach.

However, if we consider MCI/NC the results are opposite; for some reasons, probably related to

small enough differences to be discarded by blurring, the blurring seems to affect negatively accuracy

and specificity for this binary classification (table 4.7).

A similar effect appears for specificity in the result section when comparing the second and third

part of table 4.11. This could be linked to the nature of the visual differences between these two

categories and how it is affected by blurring.

AD/NC MCI/NC
0 blurring +blurring 0 blurring +blurring

Accuracy 80.7% 83.7% 69.1% 58.23%
Sensitivity 74.28% 79.1% 52% 52.5%
Specificity 86.45% 87.2% 84.21% 63.33%
scans AD(188), NC(228) MCI(199), NC(228)

Table 4.7: AD/NC and MCI/NC with and without additional blurred images with reduction data balancing.

Applying blurring to all translated images the following results were obtained:

AD/NC AD/MCI MCI/NC
Accuracy 83.5% 67.5% 65.1%
Sensitivity 81.92% 74.92% 77.64%
Specificity 86.74% 58.97% 52.94%
scans AD(188), MCI(199), NC(228)

Table 4.8: The results with translated and blurred images including the reduction data process for balancing.

Other tests on data balancing

In order to optimize the usage of the scarce available data we tried different balancing techniques. For

AD duplicated in order to train the network, for each epoch equally on AD scans and MCI scans.

These three techniques have been used to categorize AD (188 scans) vs NC (228 scans):

1. reducing the number of scans, 188 scans for both categories, thus loosing part of the data.

2. randomly duplicating scans of the under-sampled category, 228 scans for both categories.

3. reducing the augmented data thus keeping the data variety of the dataset, 188*2*28=10528

augmented scans.
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1 2 3
Accuracy 82.8% 71.3% 79.3%
Sensitivity 79.68% 70.31% 82.81%
Specificity 85.93% 75% 75.86%
scans A D(188), MCI(199), NC(228)

Table 4.9: Data balancing, (1) simple data reduction (2) data augmentation by duplication (3) randomized
reduction of the augmented data

The results appear in the following table (Table 4.9).

For (2) the idea was to train the network in such a way that for each epoch (see section 3.5.1), the

data would be exposed to as many samples from both categories. Although more testing should be

done it seems that the idea is misfunded.

Perhaps surprisingly, as there is a loss of original data, the simple reduction provided better results.

Assuming generalization to other binary classification we opted for this approach to carry on tests on

other binary classifications.

Ternary classification

Ternary classification lead to poor results (AD: 33.82%, MCI: 62.80%, NC: 52.12% of exact

classification) the overall accuracy is 53.5%. mis-classification for AD and NC could be due to the

oversampling of MCI subjects.

Predicted classes
AD MCI NC exact classification

Real AD (68) 23 42 3 34%
classes MCI (164) 26 35 103 21%

NC (94) 3 42 49 52%
Prediction rates 44% 55% 56%
Balanced prediction rates 63.98% 16.70%

Table 4.10: Confusion matrix for 3-way classification

thus we dropped this avenue that might not be practical for clinicians anyway.

4.8 Discussion and comparison

4.8.1 Results of the method

The following table presents the test results of the CNN. We used a 56-fold Data Augmentation (DA)

(× 7 from translations, × 4 from blurring and × 2 from symmetry) and reduction data balancing

that balances sensitivity and specificity at the expense of a slight reduction in accuracy. Tests were

performed on non augmented data first except for the "flipping" technique. Then translation was added
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4.8. Discussion and comparison

and finally blurring. In each binary classification task the number of original samples for training the

two-class network was the same : 188 for AD vs NC, and 228 for MCI vs NC and 188 for AD vs

MCI.

Wihtout data augmentation but for the flip (x2)
AD vs NC MCI vs NC AD vs MCI

Accuracy 82.2 % 61.8 % 64.7 %
Sensitivity 88.3 % 53.0 % 70.0 %
Specificity 76.6 % 68.3 % 60.0 %
Data augmentation using translation and flipping (x14)

AD vs NC MCI vs NC AD vs MCI
Accuracy 76.6 % 60.8 % 60.6 %
Sensitivity 73.4 % 60.6 % 57.8 %
Specificity 81.2 % 62.5 % 64.0 %
Trained with blurred, translated and flipped images (x56)

AD vs NC MCI vs NC AD vs MCI
Accuracy 82.8 % 66.0 % 62.5 %
Sensitivity 79.6 % 73.7 % 60.0 %
Specificity 85.9 % 58.7 % 64.0 %

Table 4.11: Impact of the data augmentation on results

Contrary to what we expected, accuracies are reduced by the translation DA scheme, see part

1 and 2 of table 4.11. Because the stride is 1 for the receptive fields of the first convolution layer,

translations, except for borders, have mostly no effects on the data over which filters are trained,

additional tests with stride 2, that will provide a blindness effect compensated by the translations

DA strategy are needed to have a finer interpretation of what is happening. The fact that border

effects have such an impact on the formation of filters might rise some question about the validity of

inter subject variability hypothesis, however from a creativity point of view it might also led to some

innovation. Nonetheless all metrics, except specificity for MCI/NC, are boosted back by augmenting

the dataset with blurred images (second and third part of table 4.11). It remains to determine which

blurring parameters provide best results. It would also be interesting to isolate the effect of the blurring

DA scheme without the translation DA scheme

4.8.2 Comparison

We assumed the real-life scenario of CAD interactive system where only real-world images obtained

from MRI are submitted for classification without a preprocessing stage. Hence, in the test set we

have not used any data augmentation. The scenario model being that a doctor submits the digital scan

to the system which will return the probability for his patient to be in one of the three classes NC, AD

and MCI.
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To put our result into perspective we can use as baseline, studies on patch-based classification

which, for the classification task of AD/NC, have an accuracy of 80%, sensitivity 81% and specificity

79% [186, 205]. In addition, it was shown [205] that an accuracy of 78% can be obtained for

pMCI/NC with the same feature. These results can be compared to the 2 first columns for AD/NC

and MCI/NC of the table 4.11.

In our study we used only five gray-value patches that are coarse segmentation of the hippocampus

on a saggital projection as presented in the previous section. We can see, that our approach gives

comparable and even slightly outperforming results for separation of these classes on nearly the same

set of sMRI images.

The direct comparison of MCI classification is not possible, as they use more fine taxonomy of

stable MCI and progressive MCI (Alzheimer converters). In [205] they use multiple features extracted

from sMRI and by a Linear Discriminant Analysis (LDA) obtain rather good classification results for

NC vs progressive MCI of 82%. In our work we used only grey-value patches and one projection.

In [148] accuracies obtained are: 89.47% for 3-way classification, 95.39% for AD/NC 86.84% for

AD/MCI and 92.11% for MCI/NC. Nevertheless the whole brain scan has been used to obtain these

results. In [85] results in accuracy are respectively 89.1%, 97.6%, 95% and 90.8%, the classifier has

also been trained on whole brain scans but this time on the CAD Dementia dataset and tested on 210

scans of the ADNI dataset. The base-line approaches [186], [205] do not use a CNN classifier. In

our case, even if the architecture of the network is shallow, the quantity of available original scans for

training is rather low. This can explain this difference. Furthermore, in our work we used only one,

saggital projection of sMRI.

To interpret this, one has to keep in mind that morphological MCI features are likely to be closer to

NC features than AD features, additionally the MCI range could be quite large it could then be difficult

for specific MCI trained features to emerge stage classification from symptoms or from structure (MCI

early stage, closer to NC farther from AD blurred line between AD/MCI plus a large range of MCI,

feature training how blurring can affect them ? small sulcus could be masked by blurring disturbing

the trained feature.

4.9 Conclusion

From this pilot study a few pathways are emerging. Since CNN discriminative power notoriously

depends on the size of training data, we have artificially augmented the dataset by translating and

blurring it. While the first DA technique by translation was not conclusive the DA technique using

blurring has shown a strong potential of improvement for our type of classifier. Additionally, we

measured the influence of a few data balancing techniques and showed that balancing the data by

suppressing excess data from one category was providing best results. Despite using only a subset of
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4.9. Conclusion

the hippocampal region, through the “2-D+ε” approach, encouraging accuracy results were obtained:

AD/NC 82.2% MCI/NC 66.0% AD/MCI 62.5% that validate the approach and confirm independent

and similar works on the topic [148, 85]. While figures for MCI binary tasks classification remain

to be improved, this should naturally occur with the different following improvement perspectives.

Considering the input of the networks the direct perspective of this research is to further this study

with coronal and transversal slices. Combining these data could lead to a new type of feature/kernel.

The more classical avenues of 3-D convolutional network and the usage of unsupervised pretrained

filters could also be followed. From the point of view of the network architecture, a first improvement

would be to add a fully connected layer of n units (n to be determined) just before the softmax layer.

Finally, more investigations on the translations DA strategy has to be carried out. Tweaking the stride

parameters of the network architecture could be the key.
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Chapter 5

Data Fusion for Alzheimer’s Disease
Recognition on Brain Imaging.

5.1 Introduction

In the previous chapter, we introduced the "2-D+ε" as an approach for modeling input data. Besides,

we designed a shallow network for the AD classification problem. Our proposed approach provides

promising results, although it uses a restricted region with fewer slices. However, to enhance

the classification performance, various methods and strategies can be used. The most efficient

research works typically used various tracks, namely, ensemble methods, multiple algorithms, feature

selection, fusion, and combining models and data [159, 151].

In our work, we seek to build strong classifier models by introducing multiple fusion approaches

to design efficient architectures, broadening the classifier’s capability from multiple data sources.

This chapter follows the same approach "2D+ε" as proposed in Chapter 4, where we accommodate

multiple networks through different projections (Sagittal, Axial, and Coronal), moreover, implying

different MRI modalities.

Highlights:

• We present the fusion framework through different mechanisms: early, intermediate and late

fusion;

• We provide various aggregation methods in order to increase performance;

• We combine the selected approach by using data from different planes and MRI modalities;
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5.2 Related work

In spite of its success in the classification problems tasks, CNNs are in their infancy to be used for

decision making in brain medical image classification. Still their use is massively researched today

completed with domain knowledge of AD phenomena in the brain. Here we will briefly discuss some

of them. In [148] the authors have taken a two-stage approach on the whole MRI brain scans, firstly

they used a sparse auto-encoder to learn filters for convolution operations, and secondly they built a

3D CNN whose first layer uses these learned filters. The auto-encoder was made with 150 hidden

units, and was trained on a set of 3D patches of size 5×5×5, extracted from the MRI scans. The 3D

CNN architecture was made up of convolutional layers followed by a max-pooling, a fully-connected

layer of 800 units and the output units. In a 3-class classification problem (AD, NC, MCI) they

achieved the accuracy of 89.47% which was 4% higher than on a 2D projections. In case of pairwise

binary classification problems they have achieved better accuracies AD vs. NC:95.39%, AD vs. MCI:

86.84%, NC vs. MCI: 92.11%, in the case of 3D convolutional networks on the ADNI dataset that

consists of 755 patients in each one of the three classes (AD, MCI, and NC), for a total of 2,265

scans. The main distinction from our work is that we focus on a specific part of the brain while

they considered the whole brain. We use more than one convolutional layer and we did not pre-train

features. Another study using 3-D CNN [84] confirms that the usage of CNN is a good choice for

classifying MRI scans as belonging to NC/MCI/AD individuals. The 3-D CNN was used on the

whole brain and initialized with convolutional auto-encoders, training was done on the CA Dementia

database and the resulting CNN was tested on 210 scans of the ADNI database. Comparisons with

other techniques using various image modalities confirm that both the choice of using sMRI and

CNN is relevant. The studies [186, 51, 205] are focusing on prognosis, the problem here is to classify

stable MCI (sMCI) vs. progressive MCI (pMCI), also called MCI converters (cMCI), see chapter

4.1. In [205] an accuracy of 65% for sMCI vs. pMCI was obtained, 70% in [186], 74% in [51]

and 83% accuracy for sMCI vs. cMCI in [181]. Multiple modalities have been used in [117], MRI,

PET scans and CSF biomarkers were fused to classify subject state disease, 93 regions-of-interest

were extracted from MRI and PET scans. A total of 189 features were used by adding 3 bio-markers

from the CSF, and Principal Component Analysis (PCA) was applied. In a recent paper [179], the

authors use MRI image segmentation into three tissue types of Gray Matter (GM), White Matter

(WM), and Cerebrospinal Fluid (CSF). They then parcel them into 93 regions of interest (ROIs).

Only the GM densities spatially normalized were considered in this work which is widely used in

the field for AD classification problem. Their architecture named DeepESRNet was made up by two

convolutional layers and a max-pooling layer, followed by two fully-connected layers. The proposed

method achieved, for AD vs. NC 91.02%, 92.72%, and 89.94%, and for MCI vs. NC 73.02%,

77.60%, 68.22%, of Accuracy, Sensitivity, Specificity respectively. In the above cited studies various

brain regions were used: the whole brain, the hippocampal region or the cingulate posterior cortex
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5.3. Fusion methods: From Single model to data and models combination

together with the hippocampus, etc. In our work we focus on the hippocampal region as it is the

strongest biomarker of Alzheimer disease and has not been sufficiently studied yet.

5.3 Fusion methods: From Single model to data and models

combination

Aiming to improve models’ performances, specific methods can be introduced to achieve better

prediction capability. The primary purpose of all decision support systems (DSS) is to build a

robust model that takes restricted or minimum input data and provides correct decisions. The fusion

approach is such a method. It is an effective way to improve single-classifier results combining

diverse data sources (features) or/and classifiers (models). This method remains a choice among

available strategies to consolidate performance and integrate heterogeneous information from various

representations. Indeed, it is inferred that if individual method performs well, multiple combinations

of such of them may reduce overall classification errors and emphasize correct outputs. With its

variances, this method has been widely introduced toward many computer vision and machine

learning applications. However, the combination can be carried out on three levels of abstraction

closely connected with the flow of the classification process: data-level fusion, feature level fusion,

and classifier fusion [29]. There are two groups of fusion approaches; first, they generally operate on

classifiers and emphasize the development of the classifier structures. Second, they operate mainly

on classifiers output, and effectively the combination of classifier outputs, is calculated. Class labels,

class ranking, and soft/fuzzy outputs are the main groups of classifier fusion systems.

In the previous chapter (4), we proposed an AD classification model based on a single network

of data (uni-source) with solely a few patches (the "2-D+ε" input). However, this model design

may encounter limitations of incoming data such as the lack of a complete representation of the

region-of-interest; moving from 3D data to restricted 2D slices. Nevertheless, to overcome these

drawbacks, different promising approaches using single or multiple characteristics over multi-source

data resolve or alleviate this issue. Indeed, if the intention is to avoid considering the whole brain

regions, a pragmatic combination of features coming from different views (planes) or areas (other

ROIs) and even implying other imaging modalities, may yield complementary information of the

target region. Here, the key point is to continue using the ROI-level method and add more useful

information from other sources - joining features from alternative sources may produce better results.

Thus, the combination methods can be considered suitable for studying the brain and its pathologies

since the disease affects only some specific regions.

To remain with ROI-based method in a fusion framework is nevertheless justified since the disease

affects only some specific regions. These approaches are based on different multi-projection and

multi-modal features. On the other hand, it was observed that the disease-induced structural changes

93



also occur in several inter-related-regions; thus, the correlations between different brain regions could

also be extracted for more accurate characterization of brain pathology. Still in our work we focus on

only one region - hippocampal and will apply fusion methods on it.

However, if more irrelevant and noisy information is included in the feature set, the disease

classification and interpretation could become very difficult due to the small number of training

samples in the neuroimaging study. Although promising results have been reported for brain image

analysis in the above studies, it is still potentially advantageous to investigate building and combining

multiple classifiers for making full use of the rich imaging and structural information, to improve

classification performance [122].

Here we can summarize three levels (or ways) to combine different useful sources:

• The early fusion (low-level): This strategy merges data in the input. Here, the raw data or

pre-extracted features are combined from different sources and stacked to build a single input

to the classifier. In the case of AD classification, the new feature vector becomes a single

element with higher dimensionality and represents the single brain from different spaces. For

instance, if the features are extracted from two independents ROIs, creating the new vector via

concatenation yields the two vectors into a single new vector.

• The intermediate fusion (mid-level): As mentioned above, many fusion methods operate

on the classifiers themselves rather than on their outputs. Here we study how to improve

classification performance by advancing multiple classifiers in a single optimized structure.

Indeed, each model can be combined with its counterpart through different internal mechanisms

to share characteristics or scores in order to improve classification results. Concatenation is such

an example of an intermediate method usually used to consolidate models.

• The late fusion (late-level): The classifiers produce the least amount of useful information for

the combination process. Each model can receive multiple input data, and over its layers, it

provides predicted class individually. Afterwards, the fusion lies at the decision level, which

means taking the post-decision for every single model and applying a selected fusion method

on classification scores to make the final decision. The two most representative methods used

in this level are the generalized voting and Knowledge-Behavior methods [159].

5.4 Fusion application for AD classification

This section presents our fusion methods based on the same architecture previously showed in the

chapter 4. We furthermore use the "2-D+ε" input approach, whereas we bring and integrate data from

various sources. We serve on the sMRI data in the first step, and yet here; we only extract region
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5.4. Fusion application for AD classification

representation from different projection (planes). Next, we incorporate data from two modalities:

sMRI and DTI, and tracking data from different view projections in the second step. However, we

implement both strategies: Intermediate and late fusion, as seen earlier on either for single or both

modalities.

5.4.1 Intermediate fusion designs

As seen above, fusion can be applied in different ways using three single networks - each image

projection for each network. The only constraint is that the three input images must be taken from

the same subject and the appropriate projection to feed the networks correctly. However, in this part,

we consider the intermediate fusion, which consists of a concatenation layer at the three networks’

FC layer. Indeed, as we have a 3D-ROI representation of our hippocampus region, we take the

three projections sagittal, coronal, and axial as input, respectively, for each single network. Then,

the networks are combined through the intermediate fusion by concatenation of the fully connected

layers. Afterward, we get an FC layer merging the three combined layers into two output scores

to reach the binary classification. An overview of the full architecture is illustrated in Figure 5.1.

Each network for a single projection was implemented using the same architecture 2-D+ε approach

made up of two convolutional layers, two pooling layers, followed by the ReLU activation function,

a fully-connected layer as defined in the chapter 4.

Figure 5.1: Intermediate fusion architecture: built for three the projection input data (Sagittal, Coronal, and
Axial) of the sMRI modality.

5.4.2 Late fusion designs

Contrary to the intermediate fusion approach, which relies on fusion within models. The late fusion

consists of applying some specific operations to the outputs of the last layers of each network. In
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other words, we affect the operation either on the scores of the outputs of the lats layers or on the

post-decision of each individual network to generate the final classification.

We distinct nevertheless two late fusion designs: (a) - we perform algebraic aggregation on the

outputs such as mean, median, and max, followed by the softmax function to convert the scores

to a probability decision. In (b) - we use the majority vote system on the post-decision of all models.

Figure 5.2 illustrates the both architectures.

Figure 5.2: Late fusion-level using two strategies: (a) - different algebraic aggregation on scores (b) - Majority
vote on final decisions.

Here we present the aggregation functions and the majority vote algorithm used in elaboration of

this work:

• Algebraic aggregation

Reminder: The "softmax function" (eq. 5.1) takes a vector of real values as input and convert

them to range between 0 and 1. The sum of the latter values equal to 1 (See Chapter 3).

f j(z) =
ez j

∑
K
k=1 ezk

, with j = 1, ...,K (5.1)

Where K is the vector size of the input data, and j is the current element of the vector Z.

In our case, as we have binary AD classification, the soft-max function takes a vector with only

two real-value. The latter is the result values after applying the aggregation function on the

output scores simultaneously for every single model. We define our condition as follows:

j = {0,1} , Z ∈ R2 , k = {0,1} , f j ∈ J0,1K (5.2)

We proposed the following fusion functions to improve classification performance.
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5.4. Fusion application for AD classification

α = max;α j = max
i=1..M

(
f i

j
)

α = mean;α j =
1
M ∑

M
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(
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j

)
and R2 ∗ · · · ∗R2︸ ︷︷ ︸

M
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j
)

Where M is the number of single networks, and j is jthitem element of the output score for M

network.

Z(i)


z(i)1

z(i)2

...

z(i)K

→so f tmax f (i) =


f (i)1

f (i)2

...

f (i)K

 (5.3)

• Majority vote:

The second method is the majority vote system (see the pseudo algorithm below). In this

approach, we implement the voting system on the post-decision for every single model in order

to produce the final decision for a specific binary classification.

Here we have some comments regarding the functioning of this system:

– Even when the input sequence has no majority, the algorithm will report one of the

sequence elements as its result.
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– It is possible to perform a second pass over the same input sequence in order to count

the number of times the reported element occurs and determine whether it is actually a

majority.

– In our case: the sequence consists of 3 and 6 elements, respectively, for the MRI

projections and the MRI joined to the DTI-MD data. Both have outputs at intervals of

[| 0, 1|].

5.4.3 Final multi-modal fusion architecture

In this part of our work, we apply the fusion approaches presented above. We use both modalities

sMRI and DTI data. However, instead of using only three networks, we managed to enhance our

models’ design by modifying them to accept multiple data. Indeed, the design is realized by linking

six networks of both modalities and all projections in each of them. We thus build a full siamese

architecture presented in figure 5.3.

From left-to-right, we have the input of three slices of each projection for both modalities (sMRI

and DTI-MD). Then the single branch network is designed and parameterized as that one presented in

section 4.5. Finally the fusion layer consists in the two strategies presented before: The concatenation

of the features (the intermediate fusion), and the aggregation functions besides majority vote as second

application (the late fusion). The both approaches are applied on the six networks.

In the first design, we have implemented the intermediate fusion as introduced in the section 5.4.1,

yet here it was modified to work in parallel over sMRI and DTI data. The output of each network has

been concatenated to feed an FC layer, as depicted in Figure 5.3. In the second implementation, we

followed the same way as in section 5.4.2; we have combined networks using late fusion. The two

methods: the algebraic aggregation and the majority vote; nevertheless, in the case, we have designed

to adapt multi-modal features.

We notice that this fusion scheme’s implementation is provided in the following chapter (chapter

6). Furthermore, we present the transfer learning approach - which is not discussed in this chapter -

in order to be able to use the DTI-MD modality associated with MRI data. In the next chapter, we

present the two fusion methods using only MRI images. We present the materials and the results of

our experiments.

5.5 Materials

In this chapter, we worked with the MRI materials associated with the previous chapter (see chapter

4.6). We use the same subject composition; however, we exclusively used the data balancing approach

toward our augmentation process, which is considered the most suited setting for training our models,

as proven by experiments.
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5.6. Experiments and results

Figure 5.3: Multi-modal intermediate fusion architecture: Data come from sMRI and DTI scans, and the
fusion is applied on six single network.

We retain the description of our ADNI-1 dataset (see table 5.1).

Classes # Subjects Age [range] / µ(θ ) Gender (#F/ #M) MMSE [range] / µ(θ )

ADNI-1 AD 188 [55.18, 90.99] / 75.37 ± 7.52 99/89 23.3 ± 2.03
MCI 399 [54.63, 89.38] / 74.89 ± 7.30 256/143 27.0 ± 1.78
NC 228 [60.02, 89.74] / 75.98 ± 5.02 118/110 29.1 ± 1.00

Table 5.1: Demographic description of the ADNI dataset group. Values are reported as mean and ± standard
deviation.

5.6 Experiments and results

This section consists of the implementation and experiments of the fusion methods entirely for sMRI

modality.

The experiments were conducted on a GPU-based high-performance computing platform

featuring an Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz processor, 187 Gb of RAM, equipped

with two Nvidia TESLA P-100 graphics cards with 16GB dedicated memory. The networks were

trained from scratch by stochastic gradient descent with Nesterov momentum (see chapter 3). The

parameters used in the training phase were: 60.000 iterations which gives about 1000 epochs, the

Learning rate: 0.0001 and policy: fixed; Momentum: 0.9 Batch-size: 256.
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5.6.1 Single modality experiments

a) Data description used for single modality fusion:
We first prepared our sMRI dataset (Dataset-1) by adjusting the number of subjects for each class to

generate a well-balanced dataset for all binary classification tasks. In chapter 4, we deduced from

experiences that with an equivalent data set for our AD classification, we achieve better results than

with an unbalanced data set. Similarly, we follow the same strategy in the ongoing work to build our

dataset for our AD binary classification. The table 5.2 describes the composition of the used dataset

after subjects balancing. We have reduced NC and MCI groups in two ways in order to match their

pair classes. For instance, we have passed from NC/MCI (228/399) to AD/NC (228/228).

Classes # Subjects Age [range] / µ(θ ) Gender(#F/ #M) MMSE [range] / µ(θ )

ADNI-1 AD 188 [55 91] / 75.4 ± 7.52 99/89 [18 27] / 23.3 ± 2.03
NC 188 [60 90] / 76.2 ± 7.18 98/90 [25 30] / 29.1 ± 2.03
NC 228 [60 90] / 76.0 ± 5.02 118/110 [25 30] / 29.1 ± 1.00
MCI 188 [57 89] / 74.9 ± 7.04 124/64 [23 30] / 27.0 ± 1.75
MCI 228 [54 89] / 74.9 ± 7.16 148/80 [23 30] / 27.0 ± 1.74

Table 5.2: Demographic description of the ADNI screening 1.5T Images studied population (reduction subject
details)

Similarly, we followed the same way for data augmentation and splitting settings, as practiced

in the previous chapter. We divided the dataset into three folders, 20% for both validation and test

sets, and the rest (60%) for the train set. Thus, we get an augmented and balanced dataset for our

experiments. The table 5.3 illustrates the selected subjects alongside the augmentation details.

Before Augmentation After Augmentation
AD MCI NC AD a MCI a NC a

D
at

as
et

1

Train 112 112/136 112/136 6272 6272/7616 6272/7616
Valid 38 38/46 38/46 2128 2128/2576 2128/2576
Test 38 38/46 38/46 2128 2128/2576 2128/2576

188 188/228 188/228 10528 10528/12768 10528/12768

Table 5.3: Number of subjects for each class, with its corresponding augmentation.

b) Classification results:
It is interesting to visualize the features to analyze and understand training process; In Figure 5.4 the

two left images (a) result from processing of AD subject. In (b) in same figure a NC example is given.

One can distinguish quite different structures in these outputs of the first Conv. Layer and the 2nd

max pooling layer.

This part is composed of two series of experiments: The first (i), are single networks over the

three projections scans. Here, we realize models for sagittal, coronal, and axial planes. The results are

presented in the table 5.4. The second (ii) series are the proposed fusion approaches, we implemented
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5.7. Discussion and comparison

Figure 5.4: Features example patch of AD (a), NC (b) subjects and there features of conv1 and pool2 layers.

the two fusion methods and the results are given on the tables - (b) 5.5 for intermediate fusion, and

(b) - 5.6 for late fusion with aggregation and majority vote.

Sagittal Coronal Axial

AD vs. NC AD vs. MCI MCI vs. NC AD vs. NC AD vs. MCI MCI vs. NC AD vs. NC AD vs. MCI MCI vs. NC

Accuracy 82.80% 62.50% 66.12% 80.15% 66.40% 57.56% 79.69% 61.72% 61.25%
Specificity 79.61% 60.00% 58.70% 78.53% 57.89% 58.71% 78.12% 68.75% 55.00%
Sensitivity 85.89% 64.00% 73.75% 82.67% 75.10% 56.35% 81.25% 54.63% 67.00%

Table 5.4: MRI results: single-projection comparison.

Fusion (intermediate)

AD vs. NC AD vs. MCI MCI vs. NC

Accuracy 85.94% 63.28% 65.61%
Specificity 84.38% 60.94% 66.23%
Sensitivity 87.50% 65.62% 65.12%

Table 5.5: MRI results: intermediate fusion.

5.7 Discussion and comparison

In the first series of experiments we identify the most discriminative projection for our binary

classification tasks. In the Figure A.1 are shown three curves of accuracy and loss for single

projection each. One can see that the sagittal projection ensures a little higher accuracies than coronal

projection after stabilization. In Table 5.4 are given results for the three projections at the iteration

]60.000 we selected after stabilization. Analyzing results of different projections, we state that the

sagittal projection is the most discriminative. Indeed, in the most “clear” classification task from

physiological point of view AD/NC, it performs the best in all three metrics. This is the case also for

NC/MCI classification task. Nevertheless, in AD/MCI there is no consensus on metrics. Indeed

AD/MCI is probably the most difficult classification task as it is difficult to trace the separation
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Max Mean Majority Vote

AD vs. NC AD vs. MCI MCI vs. NC AD vs. NC AD vs. MCI MCI vs. NC AD vs. NC AD vs. MCI MCI vs. NC

Accuracy 89.06% 59.38% 66.25% 89.84% 63.28% 66.25% 91.41% 69.53% 65.62%
Specificity 85.94% 57.81% 71.25% 85.94% 64.06% 68.75% 89.06% 67.49% 66.25%
Sensitivity 92.19% 60.94% 61.25% 93.75% 62.50% 63.75% 93.75% 71.88% 65.00%

Table 5.6: MRI results: Late fusion comparison (Max, Mean, and Majority Vote).

between Mild Cognitive Impairment (MCI) and already installed Alzheimer disease even for medical

experts.

In the second series of experiments we explore if i) fusion of results from different projections

in the same "2-D+ε" perspective improves the scores and ii) by which fusion method. The results

of our intermediate fusion scheme on FC layer are presented in Figure A.2 in comparison with the

best performing sagittal projection. The corresponding figures are presented in the Table 5.5. The

proposed fusion scheme with fusion of FC layers performs the best in all three metrics Accuracy,

Specificity and Sensitivity compared to the most discriminative sagittal projection. In order to

benchmark this intermediate fusion scheme with a classical algebraic operators and other late fusion

schemes, we performed three experiments with i) max, ii) mean and a majority vote. These outcomes

are illustrated in Figure 5.2 and results are presented in Table 5.6 below. The max and mean fusion

were done on the results of scores before their binarization, and the majority vote after the binarization

of scores. The AD/NC classification gives the best results with Majority vote. This simple fusion

scheme clearly outperforms intermediate fusion on Fully Connected layers, the improvement is of

5.5% in average. With regard to the single sagittal projection it is of 8.6%. In NC/MCI classification,

max and mean fusion give better results than FC fusion and single sagittal, but the difference is very

small (0.25%).

To position our approach with regard to the literature, we compare it with the most recent work in

[179]. Note that a strict comparison is not possible as we use ADNI screening dataset and the authors

of [179] do use baseline dataset. Both of them contain a strong intersection, but the screening dataset

is larger. Nevertheless, the number of scans is similar. The difference is that we balance the number

of subjects in all classification tasks. Particularly for AD/NC classification we use 188 scans for each

class. In this paper the authors segment the brain into grey matter (GM), white mater (WM) and

cerebrospinal fluid (CFS). Then they parcelate GM into 93 regions and use normalized densities of

these regions as features as an input into a Deep ensemble sparse regression network. For the AD/NC

classification problem we obtain the same figures in accuracy (91,41% vs. 91,02%), better results in

sensitivity (93,75% vs. 92,72%) and we are nearly the same in specificity (89,06% vs. 89,94%).
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5.8. Conclusion

5.8 Conclusion

In this chapter we continued elaborating the "2-D+ε" approach in the task of classification of MRI

in a study of three groups of subjects NC, AD and MCI. In this classification, as well as in our

previous works, we used the ROI in a brain, which is an Alzheimer biomarker that is Hippocampal

region. We first studied the discriminative power of single projection data and stated that in

accordance to the medical practice, the sagittal projection is more discriminative in terms of all metrics

accuracy, specificity and sensitivity. To increase the classification power, we used two different

fusion strategies. The first one – the intermediate fusion consists in a joint joint training of three

Deep CNNs concatenating features in a FC layer. The second one consists in applying algebraic

late fusion operators and a majority vote. The conclusion is indeed, that on the baseline classification

problem, AD/NC, both fusion strategies achieve better performances. The winner is the majority vote,

which results are comparable with the latest state-of-the-art methods which use much more complex

approaches for input data preparation for Deep NNs. In the follow-up of this research, we will use

new transfer leaning schemes and add more imaging modalities.
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Chapter 6

Transfer Learning for Brain imaging
classification with multiple sources

6.1 Introduction

In the previous chapter, we proposed the fusion methods for AD classification by introducing two

principal fusion strategies. The results were promising, and we notice that this pathway is exciting,

especially using the majority vote system. As seen in chapter 2, ADNI suggests the DTI-MD

modality, which is further interesting to assess related AD-region shrinkage. The MD maps give

extra information regarding our ROI. However, we strike to the amount of dataset element of this

modality. Therefore, force us to investigate and go further to incorporate an innovating concept to

grab this restraint,e.g., transfer learning in such one. In this chapter, we address the transfer learning

methodology as an answer either for improving the performance results and tackling the constraint

of data size limitation. Here, we transfer features previously learned on enough large dataset to a

new network that will use a small dataset. Nevertheless, we introduce three principles schemes of

transfer learning: (i) A cross-modal framework, which consists of using the transfer features from

one modality to another. (ii) A cross-domain framework, here we include an external dataset, e.g.,

the MNIST - to study the model’s behaviors and analyze the effect of using foreign features. (iii)

A hybrid scheme where the transfer passes through two levels stages of the knowledge transfer (a

mixture of the two proposed frameworks), in such case, we exhibit an evaluation of all results.

Highlights:

• We preserve the same shallow CNN method for Alzheimer’s disease classification in a 2D

approach;

• We combine multiple models through various data projections and MRI modalities;
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• We introduce two transfer learning approaches: cross-modal and cross-domain transfer learning

to improve performances;

• We empirically evaluate and report the improvements results over divers models combination

and hybrid transfer learning settings;

6.2 Related work

An improved classification performance of such CNN models as AlexNet, VGGNet, GoogleNet, and

ResNet with transfer learning has been reported in various applications in medical domain. There

are some recent related works relevant to our methodologies using the 2D-based CNN classification

instead of working with the 3D or 4D imaging. In the follow-up, we shortly review the works

which use these known architecture and adapt them to the medical image classification, and on the

application of transfer learning method as a solution for the limited volume of medical datasets.

6.2.1 Works based on a transfer learning approach

Overall, the more the architecture is deep the more it needs huge data, and consequently a considerable

time for training. The crucial issue here is that, in general, data in medical area are not sufficiently

available. For this reason, numerous research works have used transfer learning approach, whether

based on popular networks or on novel methods to address the lack of data.

In [78] authors used AlexNet architecture pretrained on a general purpose large-scale ImageNet

dataset to fine-tune last layers in the model on target sMRI and PET modalities. In the conclusion of

their work, the authors state that as neuroimaging data differs significantly from the source domain

data, such a transfer method is not optimal. Indeed, the accuracy values achieved for classification

of AD/NC on sMRI modality are rather low (around 66%) and even worse when AD/MCI/NC

classification problem is addressed. Another study [200] employs the transfer learning on the same

kind of images, such as brain scans from the same modality (sMRI) but with the source database

different from target data to deal with the limited target data to recognize MCI on MRI images.

Here two different datasets OASIS 1 and LIDC 2 have been used for the pretraining stage. They

achieved best performance with accuracy of 90.6% for MCI/NC. [42] integrates a method called

Multi-Domain Transfer Feature Selection (MDTFS) to select discriminant features for classification

of AD/NC. In their case, an auxiliary domain corresponds to classification problem on the same data

but for different target classes. When classifying AD/NC they consider s-MCI/c-MCI and MCI/NC.

Their experiments have been conducted on ADNI-1 sMRI and classification accuracies achieved were

1http://www.oasis-brains.org/
2https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI/
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6.2. Related work

of 95.2% and 82.1% for AD/NC, and MCI/NC respectively. The DTI image maps are often seen as

a good modality for the detection of Alzheimer’s disease. Thus the authors in [140] have compared

the NC, AD and MC using MD and FA maps. Their results showed that MD was a better indicator of

brain atrophy than FA.

With the same concept of reusing an efficient architecture, authors in [32] used a modified version

of VGGNet [173] network called DemNet that takes 2D images as input. It was composed of 13

convolutional layers and of three fully connected layers with dropout after each pooling layer, to

reduce the over-fitting.

The neural network took as an input a 2D slice from MRI data with 224×224 resolution for both

2-way and 3-way classification problems. The authors selected 20 slices for each brain, classified each

of them and measured the accuracy. The results showed that the first and the last two slices (111, 129,

and 130) had significantly lower accuracy than the average accuracy per slice. They have achieved

an overall accuracy of 98.33% for AD/NC classification. In [191], the authors used two networks,

a baseline single-layer CNN and a pretrained ResNet network, they used a single 2D axial slice per

subject (median slice from the 3D volume) as an input, the baseline CNN network was composed

of only one convolutional layer and of two FC layers. They studied the impact of transfer learning

from RestNet trained on ImageNet, and the data augmentation in a real time, at training phase, they

conclude that the ResNet architecture successfully fits to the MRI domain, and pretraining with data

augmentation improves the prediction. In a recent study, Bumshi et al. [115] used a modified AlexNet

network which is known as a high-performance pretrained model. The architecture is composed of

five layers for convolution computation and a last FC layer with two outputs for binary classification

AD/NC, or three outputs for 3-way classification (AD/MCI/NC). Due to the presence of some noise

in the dataset, they proposed a data permutation scheme with outlier rejection, and slice selection

methods by removing pixels to eliminate interfering data. All 2D slices (obtained by permutation

from axial, sagittal, and coronal planes) were used for training the network, and finally the network

was fine-tuned using OASIS and ADNI datasets. They achieved 98.74%, and 95.35% accuracy in

AD/NC classification task, respectively on the OASIS and ADNI datasets. For 3-way classification

their method achieved 98.06% on ADNI 3T dataset.

In a recent work, Ahsan et al. [188] proposed multiple deep 2D neural networks for binary AD/NC

classification. They introduced two architectures that use the transfer learning approach based on the

InceptionV3 and Xcepetion models whose weights are pretrained on Imagenet LSVRC. In addition,

a custom CNN network is built with the help of separable convolutional layers. They used 96 central

2D-slices from each subject’s brain by ignoring the first and the last 40 outer slices. They used three

datasets with different settings from the OASIS project, which are composed of 416 T1-weighted

MRI scans. The two datasets are respectively (i) a balanced with 180 and (ii) unbalanced sets with

114 subjects. The third dataset is the one used in the work of [83]. The authors used different
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configurations of fold cross-validation over the three datasets for the experiments. They achieved an

average accuracy of 64% on the first dataset, 82.79% on the second dataset, and 99.45% on the third

dataset for AD/NC classification. The latter is doubtful as they used the dataset from [83], and it was

mentioned that there could be a problem of leakage in this dataset [202]. They concluded that the

transfer learning approaches outperform non-transfer learning-based approaches. This demonstrates

the effectiveness of these approaches for the binary AD classification task.

Contrarily to all these approaches we propose a transfer learning scheme from one modality to

another, on the same dataset. Indeed the sMRI modality shows good discrimination performance for

AD diagnosis in brain atrophy analysis, it is our source modality. The supplementary modality is of

the same nature, it is the DTI-MD modality which represents our target domain. Otherwise, in our

previous chapter and in [2] we have shown that multimodal approach increases performances, hence

it is interesting to explore if the fusion framework can be more efficient with a transfer learning. We

remain using a shallow CNN-based architecture with only a small number of convolutional/pooling

layers since the input region dimension is rather low (28×28×28).

The contributions of the chapter are as follows:

• we transfer knowledge between sMRI and DTI modalities using a shallow architecture

specifically designed for our "2-D+ε" approach.

• we use a similar architecture, LeNet trained on a large set (60K) of images from MNIST3 which

has (28×28) resolution as input, i.e. the same size as of our Hippocampal region-of-interest,

and then fine-tune this model on ADNI dataset.

Hence in both cases we perform the "cross" transfer. In the first case, it is a cross-modality transfer.

The modalities are similar as the target pathology is expressed by the same image deformations

yet in the opposite luminance. In the second case, it is a cross-domain transfer. The domains are

different; character images (MNIST) have nothing to do with MRI scans except the fact that they are

not coloured. In the next section we present our approaches.

6.3 Methodology and approach

Before introducing our study of transfer learning approach for brain image classification, we will

briefly remind the architecture of our classification framework.

6.3.1 The 2D+ε Network Architecture

In this chapter we use our proposed architecture as in Chapter 4 wich we called it "2-D+ε"

approach for ROI classification. We use a 2D convolution in a CNN architecture feeding it with
3http://yann.lecun.com/exdb/mnist/
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6.3. Methodology and approach

three neighbouring slices for each projection Sagittal, Axial, and Coronal. The median slice of

Hippocampal ROI and its two neighbours have been selected (see Figure. 6.1). Then the classification

results of all three projections were fused, see figure 6.1. We remind that our CNN is relatively shallow

due to the low resolution (28×28) of the ROI in each projection. It consists of two convolutional layers

followed by a max pooling layer for each one, and a fully connected layer. We get three networks

associated with each modality, for the Sagittal, Axial and Coronal projections. Different tested fusion

schemes resulted in application of the (best) late fusion with majority vote fusion operator [2] on the

six binary classification tasks AD/NC, NC/MCI, and MCI/AD on three projections. We use the same

fusion scheme in the follow up of this chapter.

Figure 6.1: Illustration of the 2-D+ε Approach from each projection.

As we have stated, the amount of available training data in our Alzheimer studies remaining low,

see chapter 4.7.2, the initialization of the training process is of crucial importance. This initialization

is known as "transfer learning" we focus on it in the next section.

6.3.2 Transfer learning for brain image classification

Transfer learning [208] is a popular way of dealing with limited volumes of training datasets.

Actually, the CNN models can be either learned from scratch, i.e; with random or arbitrary

initialization of parameters or with the fine-tuning approach from pretrained models. From the domain

knowledge of medical research, we retain that the shrinkage of hippocampal ROI which accompanies

the development of AD is observable on both modalities sMRI and MD. Figure 6.2 illustrates this

phenomenon, it presents two examples of subjects: for the left a normal control (NC) subject, and the

right an (AD) subject, with both modalities; the (A) is the MD map, and (B) is sMRI scan. It shows

the hippocampal region from different projection views. From the top to the bottom, also the Axial,

Sagittal, and Coronal planes respectively.
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As we can observe from the illustrative figure, the atrophy of the hippocampus can be recognized

from both modalities by conserving the same shape, but in inverted representation. This means the

signal spawned from CSF flows surrounding the Hippocampus portion can be interpreted by a dark

area in sMRI scans, while it is bright in MD maps. For this reason, we could adopt a transfer learning

strategy between these two types of data, from designing trained models in the source domain of

sMRI towards the target domain MD called cross-modal transfer learning.

Figure 6.2: Example of the hippocampal region with different projections for two Subjects: (A) - MD and (B)
- sMRI.

In the framework of learning CNN parameters, we can formally define the transfer learning

strategy from the source modality (sMRI) to target MD as follows:W0 ←W ′
φ

Wi+1 ← F(Wi)
(6.1)

Where W ′
φ

is the best trained model on the large sMRI dataset, we initialize the training with the

parameters of W ′
φ

, and fine-tune all or some layers of the used architecture. F is the optimization

scheme.

As stated before, we manage to implement the cross-modal transfer learning approach from sMRI

to MD-DTI modalities. We fine-tune only the last layer - the (FC) - in our architecture whereas

we fix the two convolutional layers with the features extracted from the source dataset. Indeed, we

deduced our investigation from the work of [28] regarding the transfer learning. They provided a

pragmatic analysis of the transfer learning approach through various settings of the same architecture

to well-understand the behaviors of their method. However, since we have two imaging modalities
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6.3. Methodology and approach

of the same studied ROI, we used the same approach by fine-tuning only the FC layer. The other

layers remained untouched as we have a pretty similar representation of our studied ROI.The transfer

of the parameters in our CNN architecture is illustrated in Fig. 6.3. The arrows depict initialization

of optimization process for each convolutional and fully connected layer.

For fine tunning we use Stochastic Gradient Descent with Nesterov momentum as in [107], and as

a cost function J(Wi) to minimize we used cross-entropy loss as in [1]. The weights update formula

is defined as follows:

Vi+1← µVi−α∇J(Wi +µVi) (6.2)

Wi+1←Wi +Vi+1

where Wi are the parameters of each layer at iteration i, α is the learning rate, µ is the momentum

coefficient and Vi is the velocity.

Figure 6.3: The scheme of Transfer Learning for parameters optimization from sMRI to MD-DTI modality.
An example of the proposed architecture for 2-way classification.

6.3.3 Adapted cross-domain/cross-modal transfer learning schemes

It is believed that transfer learning improves classification performance, especially when the source

and the target domains are close. In order to validate our proposed scheme of intra-domain, we

compare the classification efficiency across two different domains by using both known pretrained

model and dataset. We have selected the LeNet 6.4 network owing to similarity at the design level

[112]. It takes the same input definition 28×28 as ours, and almost the same depth of layers except

the fully connected layers. In this view, we take this model which is already pretrained on MNIST

dataset, and apply it to our brain image data DTI-MD and sMRI. Nevertheless, the model has been

modified in FC layers and adapted to 2-way classification problem instead of ten. We freeze the two

first convolutional layers which already capture the universal features, and then we fine-tune it on the

Alzheimer’s disease dataset by optimizing weights only in the two FC layers of the model.
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Figure 6.4: LeNET-5 design: A modified version the original LeNET which takes data of 28×28 resolution
from MNIST.

We evaluate the approach through two mechanisms as follows:

(i) One-level transfer scheme: In this first approach, we realize the transfer using our LeNet-like

model for both modalities from MNIST to sMRI and from MNIST to DTI-MD followed by our

fusion scheme (Majority vote).

(ii) Two-level transfer scheme: In this second approach, we multiply the transfers; it is applied as

MNIST-DTI-MD through sMRI. LeNet-like model trained on MNIST dataset is first used as the basis

for training of sMRI classification model. Next from sMRI model we transfer to the DTI-MD images

of the same domain. After that, we build our fusion framework from this model combined with the

model we obtained from the cross-modal transfer (sMRI to DTI).

6.4 Experiments and results

As described in the chapter 2, sMRI images have undergone some pre-processing steps, illustrated

in Figure 6.5. DTI images have also been pre-processed (See section 2.3.2 for further details). We

briefly recap the data preprocessing: (a) a denoising step with an adaptive non-local mean filter (See

2), (b) image alignment (affine registration) in the MNI space, (c) image intensity normalization, (d)

ROI selection and extraction using the AAL atlas. Alongside (d) skull striping, and (c) co-registration

for DTI scans.

6.4.1 Dataset description and learning setup parameters

Since we work with multimodal imaging, we consider two subsets of the whole data from ADNI. The

first one is the data that were selected from the ADNI-1 screening baseline with only anatomical MRI

T1-weighted sequences, in this set all subjects underwent whole-brain MRI scanning on 1.5 Tesla at

14 acquisition sites. It is the same dataset as used in [1]. With the same demographic information for

each of the diagnosis groups (NC, AD and MCI), The data sample consists of 815 structural MRIs

including 188 Alzheimer’s Disease (AD) patients, 228 cognitively normal (NC) and 399 subjects with
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6.4. Experiments and results

Figure 6.5: Schematic diagram of dataset preprocessing: i) registration of all MRI scans on MNI space,
followed with intensity normalization. ii) ROI selection process using the Atlas AAL for both hippocampal
regions. iii) 2D-slice extraction from selected 3D-volume. iv) feeding the CNN networks [1].

Mild Cognitive Impairment (MCI). The second subset includes images of subjects screened with both

structural MRI and DTI modalities. It is a union of data from the ADNI-2&Go, and ADNI-3. The

table 6.1 presents demographic characteristics of subjects, including age, gender, and the Mini Mental

State Examination (MMSE) score. The age of different groups ranges between 54 and 95 years old,

and the proportions of male and female are close in AD/NC groups while the proportions of male are

higher than female in MCI groups. We have visually checked all T1-weighted MR images and DTI

maps for quality assurance, to exclude scans with excessive motion and/or artifacts. We note that the

MMSE score is not mentioned for the ADNI-3 phase (missed from metadata of all subjects of this

phase). However, this lack of data does not affect our method as we do not use these features thus far.

Classes # Subjects Age [range] / µ(θ ) Gender (#F/ #M) MMSE [range] / µ(θ )

ADNI-1 AD 188 [55.18, 90.99] / 75.37 ± 7.52 99/89 23.3 ± 2.03
MCI 399 [54.63, 89.38] / 74.89 ± 7.30 256/143 27.0 ± 1.78
NC 228 [60.02, 89.74] / 75.98 ± 5.02 118/110 29.1 ± 1.00

ADNI-2/Go AD *48 [55.73, 90.87] / 75.60 ± 8.63 28/20 23.0 ± 2.42
MCI *108 [55.33, 93.62] / 74.40 ± 7.47 66/42 27.4 ± 1.99
NC *58 [59.91, 93.25] / 74.91 ± 5.90 28/30 28.9 ± 1.18

ADNI-3 AD *16 [55.26, 86.10] / 74.63 ± 9.92 4/12 -
MCI *165 [55.88, 95.93] / 75.01 ± 7.91 71/94 -
NC *341 [55.79, 95.39] / 73.52 ± 7.82 209/132 -

Table 6.1: Demographic description of the ADNI dataset group. Values are reported as mean and ± standard
deviation (* Subjects with both modalities).

Data Augmentation parameters: In order to sufficiently increase our dataset size, we applied the

data augmentation strategy as presented in Chapter 2. Thus, we have set an augmentation factor F

upon which the calculations are based. Indeed, we have proposed an approach to increase the data

in an equitable manner. The method consists in setting the factor (a multiplication coefficient) for
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the most represented class, and by multiplying this factor to the cardinal of this class we obtain large

enough class (this one). The next step of the approach is increasing all other classes to reach the same

size of the first one. In this way we obtain a balanced dataset.

Hence, we defined the factor F to 100 for the both datasets: The subset "1" and subset "2".

However, the factor was set for MCI class in subset "1" since it is the most represented class, in

the same way, NC class was selected for subset "2" as well. The max shift was set to 2 slices (note

that two slices of sagittal axis for example represent about 7.4% of the Hippocampus 3D Bounding

Box) and the maximum scale parameter of smoothing Gaussian Blur was set to 1.2 (See Algorithm

1). Indeed, the original signal on both modalities is blurred and a stronger blurring would destroy

the structure of the ROI. The parameters were generated randomly and selected to avoid similar

augmentation for the same brain scan. Table 6.2 describes the split of samples before and after the

augmentation process. Data are divided into Training, Validation, and Test subsets.

Algorithm 1 DA pseudo algorithm
Input: D dataset, F for augmentation factor, S for Max-Shift, and σ for Max-Blur.
Output: augmented and balanced dataset.

1: procedure PROCESS() //* Function to generate samples. *//
2: N = (max{card(#AD),card(#MCI),card(#NC)})×F
3: while N 6= 0 do
4: i, j,k,x← random_generate_parameters() //* (i, j,k) ∈ J-S,SK and x ∈ [0,σ ] *//
5: Compute: element← augmentaion_function(i, j, k, x) //* for a given scan. *//
6: Compute: roi←Hippocampus_cube(element) //* return the mean of the left and right of

the ROI. *//
7: Compute: patches_extraction() //* Extraction of 2D patches. *//
8: N← N−1

Before Augmentation After Augmentation
AD MCI NC AD a MCI a NC a

D
at

as
et

1

Train 146 482 446 48200 48200 48200
Valid 42 126 117 12600 12600 12600
Test 64 64 64 640 640 640

252 672 627 61440 61440 61440

D
at

as
et

2
∗

Train 31 198 299 29900 29900 29900
Valid 13 55 80 8000 8000 8000
Test 20 20 20 200 200 200

64 273 399 38100 38100 38100

Table 6.2: Number of subjects for each class, with its corresponding augmentation, (∗ Both modalities).

Hardware configuration: The experiments were conducted on a GPU-based high-performance

computing platform featuring an Intel(R) Xeon(R) CPU E5-2680 v2 @2.80GHz processor, 187 Gb
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6.4. Experiments and results

of RAM, equipped with two Nvidia TESLA P-100 graphics cards with 16GB dedicated memory.

The computational time for one epoch at the training step with batch-size of 64 samples was 2.03

seconds in average.

Optimization settings: To pick the best learning parameters, we have trained our basic "2-D+ε"

network on the sMRI dataset, considering that the ideal results differ from a specific model to others,

and also depend on the nature of the dataset. We have explored how the learning rate, the various

optimization methods and the parameters affect model training for each learning policy. The Figure

6.6 presents examples of training behaviors with different configurations.

The choice of appropriate hyper-parameters was realized in various training trials, and the

"Stochastic Gradient Descent" optimizer method was selected as the best configuration setting to

minimize the cost function L(Wi). The weights update formulas are as follows:

Vi+1← µVi−α∇L(Wi +µVi) (6.3)

Wi+1←Wi +Vi+1

where Wi are the parameters of each layer at iteration i, α is the learning rate, µ the momentum

(µ = 0.9) and Vi is the velocity.

We use the exponential learning rate decay policy, α = α0 · γ i, where α0 is the initial value of

learning rate, and γ ∈ [0,1]. In our case we set γ to 0.95, and α0 = 0.0001. We set the batch size as

64. After several iterations, stabilization of the training is observed around the 30th epoch.

The network was implemented with "Caffe" Deep learning Framework [96]. we have added a

dropout layer to tackle the over-fitting phenomena as a method of regularization.

In order to evaluate the efficiency of our method, different adaptive transfer learning schemes

were adopted here, in this section we provide experimental results on the two proposed approaches:

the cross-modal and cross-domain.

6.4.2 2-D+ε single and fusion architecture

We use the "2-D+ε" network (see Section 6.3.1) we proposed on sMRI data. It was shown that

further improvements can be achieved through the fusion approach in particular the majority vote.

Likewise, in this section we use only sMRI data but with a larger number of subjects compared to the

previous results in this manuscript. In addition, the best fusion method the "Majority Vote" as used

in [2] is adopted here. We base our classification on two different models: single network for each

projection (Axial, Coronal, and Sagittal), and a late fusion which is designed to improve and enhance

classification performances.

We have designed two architectures to perform the classification: (i) 3-way classification

(AD/MCI/NC) and (ii) 2-way classification (AD/MCI, AD/NC, and MCI/NC) as the most works in the
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a) ADAM optimizer algorithm. (b) Nesterov accelerated gradient (NAG)

(a) Stochastic gradient descent (SGD) (b) Stochastic gradient descent (SGD)
with Gamma 0.95 with Gamma 0.75

Figure 6.6: Learning parameters for training comparison on the SMRI dataset.

literature. We built a 3-way classification baseline model, and accuracies of 60.23%, 58.71%, 56.84%,

and 66.49% for Sagittal, Coronal, Axial, and fusion, respectively, were obtained. We found that the

3-way model performs somewhat faintly. However, we considered only the 2-way classification in

our work since the application domain requires only to test positive or negative for the AD diagnosis.

Besides, most of the related works provide only binary classification results with which we can make

the comparison. Hence, we performed our method as presented above, and Table 6.3 presents an

overview of the 2-Way classification results.

On average, the single network on the sagittal projection shows better results than other

projections, but the fusion method with majority vote achieves the best results for each classification

tasks in terms of accuracy which is coheret with results we obtained in earlier chapters. For example,

for the AD/NC classification we obtain 82.92% of accuracy for the single sagittal network, while

with the fusion we get 91.86%. For the classification tasks involving MCI class (e.g., AD/MCI, and

MCI/NC), we can notice that the accuracy is lower than AD/NC, we have 69.65% for AD/MCI, and

68.52% for MCI/NC. As we have already stated, this class is special, as it includes two subclasses:
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6.4. Experiments and results

the early MCI (e-MCI), and the late MCI (l-MCI). l-MCI have more similarity of the atrophy with

AD in our ROI, making it difficult to distinguish between subjects in MCI and AD classes. The same

conclusion can be derived from the MCI/NC classification.

Tasks Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC Sagittal 82.92% 85.72% 79.84% 82.78%
Coronal 81.04% 83.20% 78.63% 80.41%
Axial 79.81% 81.31% 77.65% 79.48%

fusion ∗ 91.86% 93,90% 89.88% 91.89%

AD vs. MCI Sagittal 66.73% 68.52% 63.91% 66.21%
Coronal 67.61% 71.25% 61.88% 66.56%
Axial 65.55% 66.60% 61.57% 64.08%

fusion ∗ 69.95% 73.41% 68.22% 70.81%

MCI vs. NC Sagittal 65.51% 61.64% 69.48% 65.56%
Coronal 66.45% 60.27% 65.11% 62.69%
Axial 63.89% 59.15% 64.57% 61.86%

fusion ∗ 68.52% 65.59% 70.15% 67.87%

Table 6.3: Classification results for each single projection and fusion by majority vote on sMRI dataset.

6.4.3 Evaluation of transfer Learning.

In this section we provide experimental results on the two proposed approaches: the cross-modal and

cross-domain trasfer learning.

Transfer learning from sMRI to DTI-MD with the 2D+ε approach

With the similarity between the structural MRI and DTI-MD, we proposed a cross-modal transfer

learning from sMRI dataset as a source to the DTI-MD dataset, which is considered the target

dataset. The model was first trained on the sMRI dataset and then fine-tuned with the DTI-MD

dataset. Obviously, with the experiments, the cross-modal method yields slightly better results than

the training from scratch (by random initialization of network parameters). We can see the difference

of the behavior in training (loss) and validation (loss and accuracy) in Figures 6.7, and 6.8 for AD/NC

and AD/MCI respectively. We get improved accuracy at the final 30th epoch with transfer learning,

and the loss is lower on both sets along training epochs. Figure 6.9 illustrates that with the transfer

from sMRI to DTI-MD the overfitting is slightly reduced (a) compared to training from scratch (b).

Table 6.4 presents the final results of cross-modal transfer learning for each projection and with the

late fusion by majority vote. Compared with the results from table 6.3, we have clearly augmentation

of all metrics up to 5% for the most challenging classes AD/MCI and MCI/NC.
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(a) (b)

Figure 6.7: Example of Transfer learning for single network - comparison of AD/NC: a) Transfer from sMRI
to MD-DTI, b) Training from scratch on MD-DTI Dataset.

(a) (b)

Figure 6.8: Example of Transfer learning - comparison of AD/MCI: a) Transfer from sMRI to MD-DTI, b)
Training from scratch on MD-DTI Dataset.

From MNIST knowledge to sMRI and DTI cross-domain learning

In this part of the experiment, we apply our second proposed method for cross-domain transfer

learning. We build the LeNet-like model, and perform the experiments as follows:

• One-level transfer scheme: The transfer is realized for both modalities from MNIST to sMRI

and from MNIST to DTI-MD followed by our fusion scheme. Table 6.5 presents an overview

of results for both experiments and also results for the fusion. Analyzing the table, we obtain

accuracies around 3% in average lower than the previous results for each classification task.

For AD/NC as example, we passed from 82.92% to 80.02% for sMRI, and from 84.93 % to

81.85% for DTI-MD on the sagittal projection. For the other classification tasks, the situation
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6.5. Discussion and Comparison with literature review

Tasks Modalities Projection ACC (%) SEN (%) SPE (%) BAC (%)

AD vs. NC MD Sagittal 84.93% 86.07% 81.23% 83.65%
Coronal 80.62% 81.15% 79.75% 80.45%
Axial 79.50% 81.91% 78.04% 79.97%

Fusion (*) 92.11% 94.53% 90.02% 92.27%

AD vs. MCI MD Sagittal 65.12% 72.25% 68.44% 70.34%
Coronal 72.87% 76.58% 71.93% 74.25%
Axial 64.79% 69.14% 66.28% 67.71%

Fusion (*) 74.41% 80.13% 76.02% 78.07%

MCI vs. NC MD Sagittal 65.59% 66.48% 69.32% 67.90%
Coronal 69.14% 67.97% 70.82% 69.39%
Axial 64.98% 67.71% 71.06% 69.38%

Fusion (*) 73.91% 76.79% 79.63% 78.21%

Table 6.4: Binary classification results with Transfer Learning from sMRI to MD-DTI data and fusion (* both
modalities).

is pretty much the same. The results are poorer than those for cross-modal transfer in the same

domain, see table 6.4.

• Two-level transfer scheme: In this setting we perform the experiments using the scheme as

explained in 6.3.3. Table 6.6 presents the results. We can notice that the use of the Two-level

transfer scheme, may clearly give better results which we will analyze in the following section.

6.5 Discussion and Comparison with literature review

Hence, we experienced three knowledge transfer types: cross-modal with LeNet-like designed

architecture and cross-domain one-level and two-level transfer using LeNet Architecture. Comparing

the results presented in Tables 6.4, 6.5, and 6.6, we can conclude the following. The cross-domain

(a) (b)

Figure 6.9: Temporal loss curves comparison: a) From sMRI to MD-DTI transfer learning with reduced
over-fitting - b) Training from scratch with small over-fitting.
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Tasks Modalities Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC SMRI Sagittal 80.02% 81.95% 79.26% 80.60%
Coronal 79.94% 80.59% 78.18% 79.38%

Axial 79.11% 81.05% 79.42% 80.23%

MD Sagittal 81.85% 83.24% 79.49% 81.36%
Coronal 79.22% 83.01% 78.56% 80.78%

Axial 78.69% 82.44% 79.71% 81.07%

Fusion (*) 86.83% 90.94% 87.14% 89.04%

AD vs. MCI SMRI Sagittal 65.32% 66.81% 64.52% 65.66%
Coronal 64.57% 65.63% 63.74% 64.68%

Axial 61.74% 63.05% 59.88% 61.46%

MD Sagittal 64.95% 70.19% 66.45% 68.32%
Coronal 68.60% 72.51% 67.96% 70.23%

Axial 62.36% 68.24% 62.47% 65.35%

Fusion (*) 71.45% 78.66% 73.16% 75.91%

MCI vs. NC SMRI Sagittal 64.75% 62.35% 66.72% 64.53%
Coronal 60.49% 58.62% 63.40% 61.01%

Axial 60.15% 59.14% 62.63% 60.88%

MD Sagittal 63.59% 63.18% 66.93% 65.05%
Coronal 67.14% 64.24% 69.86% 67.05%

Axial 64.98% 63.91% 68.55% 66.23%

Fusion (*) 69.85% 70.46% 75.73% 73.10%

Table 6.5: Classification results with One-level scheme Transfer Learning: From MNIST to SMRI & From
MNIST to DTI-MD data.

transfer, which is a very popular transfer learning scheme, performs the worst even on very distinct

classes such as AD and NC. Hence definitely, the cross-modal transfer in the same domain (sMRI and

DTI in our case) is a better solution. When multiplying transfers such as in the two-level cross-domain

transfer scheme, we manage to get slightly better results for the most difficult classification tasks.

Indeed with the transfer from MNIST to sMRI and then DTI, we get a nearly 5% accuracy

increase in the classification AD/MCI and MCI/NC. We note that in other metrics, such as Specificity,

Sensitivity, and BAcc, the methods perform similarly. Thus, the two-level transfer increases the

metrics by more than 5% for the most difficult classification tasks, which is an interesting result.

Indeed, the transfer from a pre-trained model does not cost too much; hence the first step of it can be

done from a different domain using publicly available trained models such as LeNet on MNIST in

our case. Although further transfer in the same domain is needed to improve the result.

Now we will compare our best results with methods from literature, see table 6.7. We have to note

that an exact comparison in the medical image domain is not possible, as different ADNI databases are

used in each work. To illustrate this, we show the number of analyzed brain scans for AD, MCI, and

NC subjects in the first three columns of this table. The authors of [148, 44, 104] use 3D convolutions.

The authors of [161, 81, 32, 191] use the whole brain scans. Our method remains "light" in the sense

that we focus only on one ROI, which is the biomarker of AD, the Hippocampal ROI. Afterwards, we

do not use the 3D volume entirely, but only a light version of it, such as three slices. Even with this

lightweight method, we get quite decent results, namely in the separation of AD/NC.
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6.5. Discussion and Comparison with literature review

Tasks Modalities Projection Acc (%) Sen (%) Spe (%) BAcc (%)

AD vs. NC MD Sagittal 85.14% 87.95% 84.14% 86.04%
Coronal 82.57% 84.55% 80.84% 82.69%

Axial 81.21% 84.26% 81.10% 82.68%

Fusion (*) 92.30% 93.95% 90.65% 92.30%

AD vs. MCI MD Sagittal 70.84% 77.25% 73.51% 75.38%
Coronal 76.53% 78.39% 76.64% 77.51%

Axial 69.21% 73.08% 68.52% 70.8%

Fusion (*) 79.16% 82.72% 78.36% 80.54%

MCI vs. NC MD Sagittal 71.09% 70.15% 74.95% 72.55%
Coronal 75.34% 72.41% 76.39% 74.40%

Axial 70.21% 69.10% 73.64% 71.37%

Fusion (*) 78.48% 77.72% 81.44% 79.58%

Table 6.6: classification results with Two-level scheme Transfer Learning: From MNIST to DTI-MD crossed
sMRI data.

However, for the most challenging classifications MCI/NC and AD/MCI, even though we earn

some accuracy points, the results remain slightly weaker compared to AD/NC. This leads to the

investigation of other brain structures and regions or even implies the entire brain for this study.

Indeed, as our models focus on the hippocampus atrophy for the discrimination task, working on the

hippocampus’s limbus can involve more advantages to improve performances, where it encompasses

the outermost surface of the hippocampus, which seems to be the most affected by the passage

of the MCI stage. Going back to our approach "2-D+ε", we take only three slices where only a

fraction of that surface, i.e., "the limbus" intersects, which could explain why MCI/AD and NC/MCI

discrimination scores relatively low compared to a method that would be full 3D. Therefore, at

the resolution at which we operate, the disease’s characterization could be better determined at the

hippocampus limbus level than with its whole internal structure [136].

Despite our classification results still need to be improved by introducing other regions of

interest or additional information, as mentioned above, the proposed cross-modal transfer learning

definitely yields increased performances. It can thus be re-used in combination with other methods

of classification, as those using whole brain or full 3D information. Specifically, in such a field as

medical image analysis and classification where large corpora of annotated data are not available,

proposed transfer learning will help in circumventing the lack of training data. The cross-domain

transfer learning method presents good results in applications on natural images. On the contrary,

cross-domain transfer from natural images to medical image domain remains limited as our results

show. This is due to the large difference in terms of content between natural and medical images.

In this chapter, we have shown the efficiency of implementing a cross-modal transfer in medical

diagnostic applications. We hope that this finding will be successfully used by the research

community for medical image classification tasks.
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Study Subjects Classifer Modality Approach Accuracy

AD MCI NC AD vs. NC AD vs. MCI MCI vs. NC

Sarraf et al. [161] 52 - 92 CNN - LeNET-5 sMRI 2D slice-level 97.88% - -
211 - 91 CNN - GoogleNet sMRI 2D slice-level 98.74% - -

khvostikov et al. [104] 53 228 250 CNN sMRI+DTI 3D ROI-based 93.3% 86.7% 73.3%

Gupta et al. [81] 200 411 232 CNN sMRI 2D slice-level 93.80% 86.30% 83.30%

Billones et al. [32] 53 228 250 CNN - VGG-Net sMRI 2D slice-level 98.33% 93.89% 91.67%

Bumshik et al. [115] 192 398 229 CNN - Alexnet sMRI 2D slice-level 98.74% - -
100 - 316 CNN - Alexnet sMRI 2D slice-level 95.35% - -

Valliani et al. [191] 188 243 229 CNN - ResNet sMRI 2D slice-level 81.3% - -

Cheng et al. [44] 199 - 229 CNN sMRI 3D subject-level 83.88% - -

Glozman et al. [78] 200 132 221 CNN - AlexNet sMRI 2D slice-level 66.51% - -

Hon et al. [83] 100 - 100 CNN - VGG-Net sMRI 2D slice-level 92.30% - -
- CNN - Inception V4 sMRI 2D slice-level 96.25% - -

payan et al. [148] 755 755 755 CNN sMRI 3D subject-level 95.39% 86.84% 92.13%

Lian et al. [119] 358 - 429 H-FCN sMRI 3D patch-level 90,00% - -

Proposed cross-modal transfer (1) 252 672 627 CNN sMRI+DTI 2D ROI-based 92.11% 74.41% 73.91%
Cross-domain One-level transfer (2) 64 273 399 CNN - LeNet sMRI+DTI 2D ROI-based 86.83% 71.45% 69.85%
Proposed Two-level transfer (3) 64 273 399 CNN - LeNet sMRI+DTI 2D ROI-based 92.30% 79.16% 78.48%

Table 6.7: Comparison of classification performances reported in the literature.

6.6 Conclusion

In this chapter, we have shown that intelligently initializing the network parameters, through transfer

learning, allows to obtain better classification of AD stages by more that 5 points in some classification

tasks (MCI/AD and NC/MCI). We compared various transfer learning schemes: cross-modal transfer

learning using sMRI and DTI-MD brain images, cross-domain transfer learning from non-medical

data to medical brain scans and a combination of both using a shallow LeNet network. Our approach

remains light-weight in the sense that we used the "2D+ε" scheme we previously developed on the

hippocampal region, avoiding both 3D convolutions and full-brain usage. As an interpretation of

our results, filters trained on a modality have similar geometrical characteristics that need a small

adaptation when transferred to another modality. We think that this is due to the fact that underlying

structures of the hippocampus present similar geometrical patterns, visual markers, on both modalities

that characterize the progression of the disease. We think that proposed multi-modal transfer learning

approach can be useful in other classification tasks on medical images.
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General conclusion and future work

In this dissertation, we studied the challenge of Alzheimer’s disease classification using the MRI

multimodal imaging technique. These imaging tools could accurately diagnose Alzheimer’s disease

condition and its evolution for a while, whether in clinical assessment or research settings.

Machine learning algorithms, especially its "Deep Learning" sub-domain, have produced

emerging results for various domain applications. The medical field is one of them. At this stage,

there is no doubt about the advantages and benefits of using models (Deep Learning) for AD pattern

recognition. Thus, in the current Ph.D. work, we proposed a CAD approaches for AD classification

that integrates high automatic classification modules to help clinicians understand AD pathology

and make accurate and quick decisions. These methods consist of developing robust end-to-end

supervised architectures that do not require any prior feature extraction or signature generation

process and adopt them for brain MRI imaging. We specifically considered three categories in disease

assessment, and the purpose is to classify subjects with (AD) from those in normal condition (NC) or

Mild Cognitive Impairment (MCI).

During this work, our goal has been to show the effectiveness of such approaches combined

with domain knowledge in supporting AD diagnosis. We engaged both MRI modalities images -

the structural MRI and the DTI-derived map - in developing intelligent models for AD classification.

However, the deep methods necessitate large datasets for training models; overall, they consist of

millions of parameters. This is a big challenge in the medical field, while datasets are not often

readily available. Thus, we addressed two main crucial points. How to deal with the constraint of

limitation of the available dataset, and how to conceive adaptable architecture designs for our AD

classification challenge.

In chapter 2, we firstly introduced the acquisition methods for MRI scans by proving the theory

and the concept behind these techniques. Besides a complete description of the used datasets. Then,

we presented the neuro-imaging flow-diagram with preprocessing steps of data-preparation. It mainly

consists of three main levels, (i) Data correction and denoising processes, which are applied to the

raw incoming MRI scans. (ii) Specific processing in order to select our target region on the brain,

we followed successive operations that contains the spatial normalization and intensity normalization

for sMRI scans, and skull stripping, co-registration for DTI scans as well. (iii) This is the final step,

which the ROI-extraction. Here we developed an automated selection framework that provides a final

dataset properly extracted and augmented. The result is settings folders that are ready to feed models

for training and testing purposes.
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In chapter 3, we covered a detailed presentation on the deep learning algorithms used in our

AD classification problem. It includes a theoretical analysis of CNN methods with their mains

components. We also presented optimization methods such as gradient descent and their derivatives.

On the other hand, it discusses the constraint of data limitation and introduces alternative AD-adapted

solutions to overcome and confront the problem of overfitting.

In chapter 4, we proposed our "2-D+ε" approach using the ROI-level method. We investigated

and designed an adapted architecture suitable for our challenging problem by taking into account the

complexity of computing that needs to be low, whereas increasing the accuracy of results. We made

various analyses with different settings in order to study the impact of data augmentation mechanism,

namely (i) simple data augmentation (ii) data augmentation with duplication of original scans (ii)

randomized reduction of the augmented dataset.

In chapter 5, we further extended our proposed CNN-based model by introducing the fusion

methods. We developed multiple parallel single networks to include different projections and different

modalities. We took advantage of the combination methods using different settings and strategies to

enhance our models’ robustness. We showed the effectiveness of using multiple data taken from

various representations of the target ROI. Moreover, we exhibited the improved results provided by

the majority vote system applied to post-decisions.

In chapter 6, we investigated the application of the transfer learning approach. Here, we proposed

two innovative approaches: (i) A cross-modal transfer learning where we pre-trained our models

on one MRI modality dataset to the other. (ii) A cross-domain transfer learning by incorporating

an external dataset and a LeNET-like model. Besides these two mechanisms, we also introduced a

hybrid scheme that combines two-levels of transfer knowledge using (i) and (ii) methods. We showed

that the cross-modal method provides adequate results, and it is suitable for working with a shallow

CNN network for low-resolution MRI scans. It yields significant results even if the model is trained

on small datasets, which is often the case in medical image analysis.

The obtained results demonstrate promising classification performance and simplicity compared

to the state-of-the-art, even for full-volumetric-level ou ROI-level AD diagnosis methods.

Lastly, we conclude this thesis by identifying and discussing potential future research lines that

can be envisaged either for improving performances by bringing extensions to the proposed models

preserving the ROI-level approach, or going further to investigate the AD prediction problem.

Turning to the proposed approaches in chapter 5. Combining information from varied sources

obviously enhances performances, as exhibited by using structural MRI and DTI modalities.

However, more complementary modalities used in Alzheimer’s disease studies, namely PET imagery

may be integrated. In fact, as we know, the hallmarks of AD include tissue lesions such as the

amyloid plaques and neurofibrillary tangles (degeneration), besides neuronal and synaptic loss. PET
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6.6. Conclusion

imaging may add more information about amyloid-β (Aβ ) for plaques and tau since it utilizes specific

radiotracers to visualize them in the brain at various stages. On the other hand, investigation of

other ROIs related to AD alongside hippocampus regions would be more discriminative together for

diagnosis.

Furthermore, the classification MCI category remains the more challenging class, whether for the

two-binary classification - AD/MCI or MCI/NC - or itself as it contains two sub-class: the e-MCI and

l-MCI, as stated in . Still, the ROI-level method that we applied in this thesis remains appropriate to

deal with this challenge. However, it would be necessary for future work to reinforce models with

other sources of information, and extended brains structures, probably the whole brain.

One interesting research line that we have not covered in this thesis is the AD prediction over

time, i.e., predicting subject conversion to AD rather than recognizing its class. This is an exciting

pathway that can help clinicians prescribe medical treatment and even present cognitive therapy to

prevent patients from converting to AD. Siamese networks can be employed, for instance, to compare

different states of a patient using MRI scans to predict its stability condition. Another approach

would be interesting to investigate, which is the recurrent neural networks (R-NN). The latter has been

introduced in many research applications that necessitate recursive recognition processes such as text

treatment and speech recognition. This would develop more comprehensible and valuable systems

that bring the concept of sequence or time dimensions for well-estimating the brain variation of more

sensitive AD regions over time. Long Short-Term Memory (LSTM) and its variations methods, for

example, seem a promising way of addressing this challenge.
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Figures

129



(a)

(b)

Figure A.1: AD/NC: Comparison of the three single projections curves (Accuracy and Loss).
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(a)

(b)

Figure A.2: AD/NC: Comparison of Intermediate Fusion and Sagittal projection only (Accuracy and Loss).
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