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Résumé

Dans cette these, apport le plus important a consisté en I'implémentation d’algorithmes modernes
adaptés aux architectures massivement paralleles, dans un logiciel industriel dédié aux études de
stireté nucléaire, le code Cathare. Ce logiciel est dédié a la simulation des écoulements diphasiques
au sein d’'un réacteur nucléaire en conditions nominales ou accidentelles. L’implémentation de
ces nouvelles techniques représentent en soi une contribution importante dans la physique des
réacteurs car il permettra de déterminer, avec un temps de calcul réduit et de fagon précise,
I’état du cceur au cours d’accidents graves. Un effort particulier a été mené pour paralléliser
de maniere efficace la variable temporelle par ’algorithme pararéel. Pour cela, nous avons
proposé une méthode pararéelle qui integre de fagon plus optimisée la présence de schémas en
temps multi-pas. En effet, cette famille de schémas permet d’obtenir une approximation d’ordre
supérieur a celui d’un schéma en temps a un pas. Cependant l'initialisation de la propagation en
temps en chaque fenétre doit étre choisie avec soin. L’idée principale de ce nouveau schéma est de
définir une approximation consistante des solutions permettant l'initialisation des propagations
en temps, permettant ainsi a ’algorithme de converger vers la solution avec la précision voulue.
Cette méthode a ensuite été appliquée sur deux cas tests représentatifs des défis numériques ren-
contrés dans la simulation des écoulements diphasiques dans le cadre des études de siireté nucléaire.

La seconde partie de cette theése est consacrée au développement de méthodes numériques
permettant de traiter les difficultés numériques spécifiques aux modeles diphasiques avec un temps
de calcul réduit. Dans cette partie, on développe un cadre d’analyse rigoureux pour 1’étude des
schémas volumes finis sur grille décalée comme celui utilisé dans le code Cathare. Les schémas
décalés sont en pratique plus précis pour les fluides quasi incompressibles et sont couramment
utilisés dans la communauté thermohydraulique. Cependant, pour les fluides compressibles, les
études de stabilité ont été historiquement menées par une approche heuristique et par le réglage
de parametres numériques. Cette question est abordée par ’analyse des opérateurs de diffusion
numérique qui permettent de porter un nouveau regard sur les schémas décalés. Cela nous permet
de montrer que les schémas décalés classiques sont linéairement stables L? uniquement lorsque les
vitesses sont de signe constant. On propose une classe de schémas décalés linéairement stables
L? ainsi qu'une classe de schémas décalés entropiques. Ces nouvelles classes sont construites
a l'aide d’'un opérateur de diffusion numérique particulier et sont mieux adaptées aux modeles
diphasiques pour lesquels les vitesses phasiques changent fréquemment de signe. Ces méthodes
ont été appliquées au systeme d’Euler isentropique sur des cas tests analytiques et nous pensons
que les développements actuels permettront a I’avenir son utilisation dans des cas plus réalistes et
complexes, comme la simulation des écoulements diphasiques au sein d’une installation nucléaire.






Abstract

In this thesis, the most important contribution has consisted in the implementation of modern
algorithms that are well adapted for modern parallel architectures, in an industrial software
dedicated to nuclear safety studies, the Cathare code. This software is dedicated to the simulation
of two-phase flows within nuclear reactors under nominal or accidental situations. This work
represents in itself an important contribution in nuclear safety studies thanks to the reduction
of the computational time and the better accuracy that it can provide for the knowledge of the
state of nuclear power plants during severe accidents. A special effort has been made in order to
efficiently parallelise the time variable through the use of the parareal algorithm. For this, we have
first designed a parareal scheme that takes more efficiently into account the presence of multi-step
time schemes. This family of time schemes can potentially bring higher approximation orders than
plain one-step methods but the initialisation of the time propagation in each time window needs
to be appropriately chosen. The main idea consists in defining a consistent approximation of the
solutions involved in the initialisation of the time propagations, allowing to reach convergence
with the desired accuracy. Then, this method has been succesfully applied on test cases that are
representative of the numerical challenges for the simulation of two-phase flows in the context of
nuclear safety studies.

A second phase of our work has been to explore numerical methods that could handle better the
numerical difficulties that are specific to two-phase flows with a lower computational cost. This part
of the thesis has been devoted to the understanding of the theoretical properties of finite volume
schemes on staggered grids such as the one used in the Cathare code. Staggered schemes are known
to be more precise for almost incompressible flows in practice and are very popular in the thermal
hydraulics community. However, in the context of compressible flows, their stability analysis has
historically been performed with a heuristic approach and the tuning of numerical parameters. This
question has been addressed by analysing their numerical diffusion operator that gives new insight
into these schemes. For classical staggered schemes, the stability is obtained only in the case of
constant sign velocities. We propose a class of linearly L2-stable staggered schemes and a class of
entropic staggered schemes. These new classes are based on a carefully chosen numerical diffusion
operator and are more adapted to two-phase flows where phasic velocities frequently change signs.
These methods have been successfully applied in analytical cases (involving Euler equations) and
we expect that the present developments will allow its use in more realistic and complex cases in
the future, like the one of the simulation of two-phase flows within a nuclear reactor during an
accidental scenario.
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Introduction (Version francaise)

Contexte industriel

On appelle "accident grave” ou “accident de fusion du cceur” d’un réacteur nucléaire a eau pres-
surisé un accident au cours duquel le combustible du réacteur est significativement dégradé avec
fusion plus ou moins étendue du ceeur du réacteur. La fusion résulterait d’une absence prolongée
de refroidissement du coeur par le fluide caloporteur et consécutivement a une augmentation
importante de la température des crayons combustibles dénoyés. C’est un type d’accident qui, en
raison des mesures de prévention mises en place, ne peut survenir qu’a la suite d’une accumulation
de dysfonctionnements (défaillances multiples, humaines ou matérielles).

Si la dégradation du cceur ne peut pas étre arrétée dans la cuve du réacteur par refroidissement
du coeur dégradé (renoyage dans la cuve par le fluide caloporteur), l'accident peut & terme
conduire & une perte de 'intégrité du confinement et a des relachements importants de substances
radioactives dans I’environnement. En raison des répercussions importantes qu’aurait un tel rejet,
des efforts importants sont consacrés a I’étude de ce type de scénario pour pouvoir en limiter les
conséquences (approche déterministe). L’étude des accidents de fusion du coeur passe en premier
lieu par l'identification des principaux scénarios pouvant conduire & ce type d’accident. En
complément des études déterministes, des études probabilistes de siireté sont également menées.
La méthode consiste a analyser de fagon exhaustive tous les scénarios accidentels envisageables,
d’estimer, souvent en les regroupant par famille, leur probabilité d’occurrence et les conséquences
associées a l'intérieur de l'installation (fusion du cceur) ou a lextérieur (rejets radioactifs dans
lenvironnement).

Dans le domaine des accidents graves, les phénomenes physiques mis en jeu sont extrémement
complexes. Les objectifs de la recherche sont donc de parvenir & comprendre au mieux ces
phénomenes physiques et de développer des modeles applicables aux réacteurs. Ces modeles,
regroupés au sein de codes de calcul informatiques, doivent permettre de prévoir le déroulement
d’un accident grave. Comme il est impossible d’effectuer, dans ce domaine, des essais a taille
réelle et de reproduire toutes les situations envisageables, il est nécessaire de réaliser des essais
élémentaires, permettant d’étudier séparément chaque phénomene physique. Le tout doit se faire
a des échelles compatibles avec les capacités techniques et économiques des installations, tout en
restant représentatives pour l’extrapolation a 1’échelle du réacteur. Les réacteurs expérimentaux
constituent notamment des équipements privilégiés pour étudier le comportement des combustibles
nucléaires en régime accidentel.

Dans ce contexte, le logiciel Cathare est un code thermohydraulique décrivant le réacteur
nucléaire a I’échelle systeme, développé par le CEA depuis 1979. Ce code est dédié aux études de
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streté pour les Réacteurs a Eau sous Pression et la validation des prodédures post-accidentelles.

L’objectif de cette introduction n’est pas d’effectuer une liste exhaustive de tous les scénarios
accidentels faisant I'objet d’études de sureté mais de décrire un type de scénario appelé APRP
(pour Accidents de Perte de Réfrigérant Primaire) afin d’illustrer de maniere synthétique la
démarche alliant campagnes expérimentales et codes de simulation numérique.

Accidents de perte de réfrigérant primaire (APRP):

L’événement initiateur de ces accidents est une bréche dans la paroi du circuit primaire, [I].
La breche provoque une fuite de réfrigérant primaire et une dépressurisation du circuit primaire.
Plusieurs scénarios sont a distinguer selon 1’état initial du réacteur, 'emplacement et la taille de
la breche. En cas ’APRP, la dépressurisation du circuit primaire entraine I’arrét automatique du
réacteur, puis le démarrage automatique de l'injection de sécurité.

Les fonctions & assurer par les systemes de protection et de sauvegarde pour limiter les con-
séquences de ’accident sont les suivantes:

e la maitrise de la réactivité
e le maintien de 'inventaire en eau dans la cuve du réacteur

e ’évacuation de la puissance résiduelle dégagée par le combustible

La maitrise de la réactivité est assurée par l'arrét automatique du réacteur et l'injection d’eau
borée dans le cceur. Le maintien de I'inventaire en eau dans la cuve du réacteur est assuré par le
systeme d’injection de sécurité. L’évacuation de la puissance résiduelle dégagée par le combustible
est assurée par le refroidissement de ’eau circulant dans la cuve. Les scenarii accidentels menant
a une fusion du ceeur supposent la défaillance de I'un ou de plusieurs des systémes de sauvegarde
et sont toujours associés a une défaillance du maintien d’eau en quantité suffisante dans le circuit
primaire pour refroidir le coeur.

Le réacteur de recherche PHEBUS [2] est un réacteur expérimental construit en 1977 sur le
Centre d’études de Cadarache. Il a été congu pour étudier le comportement des combustibles des
centrales nucléaires dans des situations accidentelles du type perte de réfrigérant primaire pouvant
aller jusqu’a la fusion du combustible. La principale problématique associée a 1’étude des accidents
de perte de réfrigérant est celle de la dégradation du combustible et de ses conséquences: a partir de
quelle température, au bout de combien de temps a-t-on rupture de la gaine du combustible ou pire,
fusion du cceur? Quel est le relachement de produits de fission associé a ces deux phénomenes?
Le réacteur PHEBUS entre dans la catégorie des réacteurs d’essais en streté. L’objectif de ce
programme était I’étude du comportement du combustible des réacteurs a eau sous pression (REP)
dans des situations de perte de réfrigérant primaire correspondant a une situation accidentelle
faisant suite & un fonctionnement en conditions nominales. Cet accident était suivi de la mise en
ceuvre du refroidissement de secours. La phénoménologie étudiée était liée a 'accident de référence
des REP, qui ne va pas jusqu’a la fusion du cceur. Deux objectifs étaient recherchés:

e ¢évaluer les marges relatives aux deux principaux critéres retenus, dans le cadre du dimen-
sionnement du réacteur: la température maximale et ’'oxydation maximale des gaines

e valider les codes de comportement du combustible utilisés par I’analyse de sureté et, en
particulier, le module combustible du code de calcul Cathare.
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De méme, le logiciel Cathare a été validé sur 20 scénarii accidentels basés sur 10 installations
expérimentales.

Par ailleurs, le code Cathare est également utilisé au sein de simulateurs de réacteurs. Le
simulateur est notamment l'outil de formation au fonctionnement normal et accidentel des
réacteurs a eau pressurisée pour des ingénieurs de 'IRSN ainsi que pour des opérateurs. Le role
de l'opérateur au sein d’une centrale est d’activer les procédures de conduite post-accidentelles
et de maintenir le réacteur en conditions de fonctionnement nominales. Parmi les moyens
disponibles pour effectuer des études de siireté des réacteurs, SOFIA - Simulateur d’Observation
du Fonctionnement Incidentel et Accidentel [3] est un systéme informatique permettant le calcul
et le suivi en temps réel de I’évolution des parametres physiques d’'un réacteur nucléaire. 1l
permet de simuler les défaillances de matériel et les actions des opérateurs, d’arréter le calcul pour
examiner ’état de l'installation & un instant donné et de revenir en arriere, afin de modifier le
scénario. Le simulateur SOFIA utilise le code de calcul Cathare en temps réel.

Objectifs de la these

Le code Cathare est un code a 1’échelle systeme et décrit ’ensemble d’un réacteur nucléaire a
l'aide d’un assemblage de conduites, de cuves et de pompes dont la taille est d’environ 10 metres
(taille de la cuve: 13m x 5m x 5m). Pour simuler I’ensemble de 'installation nucléaire, le code
Cathare possedent des restrictions au niveau de la taille des cellules du maillage: en prenant en
compte la taille importante des circuits, la taille d’'une maille peut étre relativement grande, et
peut aller de quelque centimetres a un metre. Apres discrétisation des variables, les simulations
numériques font intervenir entre 102 et 10% inconnues et jusqu’a un million de pas de temps. Une
méthode de décomposition de domaine en espace est implémentée dans le code Cathare et les
performances atteignent actuellement un plateau malgré qu’il y ait des ressources informatiques
supplémentaires. Les performances de cette méthode de décomposition de domaine en espace sont
limitées car les maillages utilisés dans les simulations du code Cathare sont peu raffinés afin de
représenter I’ensemble du réacteur nucléaire. Le premier objectif de cette thése est de proposer une
nouvelle stratégie de parallélisation, complémentaire a la méthode de décomposition de domaine
en espace. Pour cette raison, on propose d’élaborer une méthode de décomposition de domaine en
temps. De plus, on souhaite appliquer cette stratégie de maniere non intrusive et utiliser le code
Cathare en boite noire. Pour cela, on se base sur l'algorithme pararéel. Les résultats a ce sujet
sont présentés dans les chapitres 2 et 3.

Le restant des chapitres de cette these est motivé par le besoin en méthodes numériques
nouvelles pour mieux traiter les difficultés numériques spécifiques aux modeles diphasiques avec
un coit en temps de calcul raisonnable. Cette seconde partie est dédiée a I'analyse des aspects
théoriques des schémas volumes finis sur grille décalée, comme celui utilisé dans le code Cathare.
L’objectif est de développer une méthode d’analyse de stabilité rigoureuse des schémas décalés
classiques et de proposer une nouvelle classe de schémas décalés stable L?. De méme, on souhaite
développer une nouvelle classe de schémas décalés entropiques. La méthodologie développée dans
le manuscrit est tres générale et pourrait s’appliquer aux modeles diphasiques.

Dans les paragraphes suivants, nous présentons un bref résumé de chaque chapitre de ce
manuscrit.
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Résumé des résultats par chapitres

Partie I: Chapitre 1

Ce premier chapitre a essentiellement pour but de résumer les connaissances actuelles que 1'on
peut trouver dans la bibliographie au sujet du modele diphasique utilisé dans le code Cathare: le
modele bifluide & 6 équations. La plupart de ce qui est donc présenté n’est pas nouveau, mais il
nous a semblé intéressant de présenter cette compilation d’informations pour positionner le modele
et les méthodes numériques du code Cathare dans la littérature sur la simulation des écoulements
diphasiques.

Apres la présentation du modele bifluide & 6 équations, nous rappellerons les principaux
résultats théoriques concernant I’hyperbolicité du modele. Nous présenterons ensuite la structure
complexe de la solution du modele qui est spécifique aux modeles diphasiques.

Les techniques de discrétisation des variables du modele seront ensuite présentées en insistant
particulierement sur le traitement du terme de convection par les schémas décalés les plus répan-
dus. Bien que les modeles diphasiques héritent des connaissances actuelles sur la modélisation
et les méthodes numériques pour les fluides monophasiques, ils possedent néanmoins plusieurs
spécificités. Nous présenterons certaines d’entre elles avec notamment le traitement des produits
non conservatifs, la configuration des phases évanescentes et le traitement des termes sources
discontinus.

La derniere partie du chapitre est consacrée aux techniques d’accélération actuellement dé-
ployées dans le code Cathare. On présentera également les facteurs qui limitent les performances
de ces méthodes malgré la disponibilité de ressources informatiques supplémentaires. On présente
ensuite la stratégie de parallélisation en temps choisie pour le code Cathare. La parallélisation
de la variable temporelle est particulierement délicate étant donné que le temps est séquentiel par
nature. Malgré cela, plusieurs stratégies ont été proposées a ce sujet-la dans la littérature (see
[27], [50]). Nous nous sommes concentrés sur la méthode pararéelle car c’est celle qui donne les
meilleures performances sur des applications complexes (voir notamment [13], [49], [104]).

Partie I: Chapitre 2

Le deuxiéme chapitre résume les moyens mis en ceuvre pour implémenter l'algorithme pararéel
au code Cathare de maniére non intrusive. Nous présenterons les deux outils que nous avons
développé durant la these pour appliquer l'algorithme pararéel au code Cathare: d’une part,
une maquette du code Cathare restreinte a un cas test et d’autre part une librairie qui utilise le
code Cathare en boite noire de maniere parallele. Les deux cas tests que nous avons étudiés sont
représentatifs des défis numériques rencontrés dans la simulation des écoulements diphasiques
dans le cadre des études de sureté. Ces défis numériques comprennent notamment les phases
évanescentes pour lesquelles une des phases liquide ou vapeur disparait dans une partie du domaine
ou encore la simulation d’une breche dans le circuit primaire d’une réacteur causant ainsi une
dépressurisation rapide dans le systeme.

La contribution principale de ce travail est ’adaptation de l'algorithme pararéel a ’architecture
logicielle du code Cathare et sa discrétisation en temps de maniere non intrusive, sans modifier
les fichiers sources du code, dans le but de réduire le temps de calcul et de se rapprocher d'une
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réponse en temps réel du code.

Finalement, dans les exemples numériques que nous avons traité, 'utilisation de 1’algorithme
pararéel peut accélérer les calculs d’environ un facteur 3 avec 25 processeurs. Du point de vue de
Pefficacité, ces résultats ne sont pas aussi compétitifs que les méthodes de décomposition de domaine
en espace fournies, mais comme il sera expliqué au chapitre 2, il existe des raisons théoriques
qui expliquent la relativement basse efficacité de la méthode pararéelle. Pour cette raison, cette
méthode devient intéressante pour atteindre des performances additionnelles dans un contexte ou
les autres techniques de parallélisation dont on peut disposer atteignent saturation.

Partie I: Chapitre 3

Comme il sera expliqué aux chapitres 1 et 2, la discrétisation en temps dans le code Cathare est
basée sur un schéma en temps a deux pas. Un schéma en temps multi-pas permet d’obtenir une
approximation d’ordre supérieur a celui d’un schéma en temps a un pas cependant l'initialisation
de la propagation en temps en chaque fenétre doit étre définie avec rigueur. Lorsque le solveur
fin et/ou le solveur grossier est un schéma en temps multi-pas, il est nécessaire de définir une
approximation consistante des solutions intervenant dans l’initialisation du schéma, fin pour chaque
fenétre en temps. Autrement, I’erreur commise & l'initialisation sera propagée sur l'intervalle de
temps et empéchera ’algorithme pararéel de converger vers la solution avec la précision souhaitée.

Dans I'objectif d’aborder ce probleme, nous présentons dans ce chapitre une nouvelle variante de
I’algorithme pararéel adaptée a ce type de discrétisation et qui permet de converger vers la solution
cible avec un taux de convergence similaire a celui de ’algorithme pararéel classique. Un effort
particulier a été réalisé afin de construire un algorithme adapté aux schémas multi-pas de maniére
non intrusive dans les solveurs grossier et fin. Cela permet au code Cathare d’étre utilisé en boite
noire, assurant ainsi la portabilité de ce nouvel algorithme. Concernant la méthode d’initialisation,
I’algorithme pararéel multi-pas est plus consistant avec le schéma sous-jacent. Nous montrons a
I’aide de résultats théoriques et numériques que les propriétés de précision et de convergence de
I’algorithme pararaéel multi-pas sont compétitives lorsque ’on initialise rigoureusement chaque
fenétre en temps.

Part II: Chapitre 4

La seconde partie de cette these est consacrée au développement d’un cadre d’analyse rigoureux
pour I’étude des schémas volumes finis sur grille décalée comme celui utilisé dans le code Cathare.
En particulier, la méthode présentée pourrait étre appliquée dans le futur au code Cathare pour
traiter les spécificités numériques propres aux modeles diphasiques. Pour développer un tel outil,
il a été nécessaire tout d’abord d’étudier préalablement certains aspects théoriques et c’est ce qui
est présenté dans la deuxieme partie de ce manuscrit. Plusieurs exemples numériques simples
seront aussi présentés, notamment sur la résolution du systeme d’Euler isentropique, dans le but
d’illustrer la technique proposée ainsi que ses performances.

Les schémas décalés sont en pratique plus précis pour les fluides quasi incompressibles et sont
couramment utilisés dans la communauté thermohydraulique ([63] 08| 26]). Cependant, dans le
contexte des fluides compressibles, les études de stabilité ont été historiquement menées par une
approche heuristique et par le réglage de parametres numériques ([70]). Dans [66, 65, [67], les
auteurs construisent des schémas décalés conservatifs avec des preuves rigoureuse de stabilité: le
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caractere entropique et 'inégalité discrete de 1’énergie cinétique. Néanmoins, le caractére bornée
de I'entropie n’implique pas nécessairement que la solution reste bornée et c’est particulierement
le cas pour le systéme d’Euler complet. Par conséquent, on étudie dans ce chapitre la stabilité L?
linéaire des schémas décalés.

Cette question est abordée par I'analyse des opérateurs de diffusion numérique qui permet de
porter un nouveau regard sur les schémas décalés. On développe d’abord la forme de 'opérateur
de diffusion numérique pour les schémas décalés classiques, ce qui permet de montrer que ces
schémas sont linéairement stables L? uniquement lorsque les vitesses sont de signe constant. On
propose ensuite une classe de schémas décalés linéairement stables L?. Cette nouvelle classe est
construite a 'aide d’un opérateur de diffusion numérique particulier et est mieux adaptée aux
modeles diphasiques pour lesquels les vitesses phasiques changent fréquemment de signe.

Un schéma numérique appartenant a cette nouvelle classe de schémas décalés a été implémenté
avec succes pour la simulation d’un probleme de Riemann et nous pensons que les développements
actuels permettront a ’avenir son utilisation dans des cas plus réalistes et complexes.

Part II: Chapitre 5

Dans le dernier chapitre, nous abordons la question du caractere entropique des schémas décalés.
On écrit le bilan d’entropie discret pour une classe de schémas décalés. A partir de 1a, on propose
des conditions explicites sur les coefficients de la matrice de diffusion numérique pour garantir la
dissipation de ’entropie discrete. La méthodologie est tres générale et pourrait s’appliquer aux
modeles diphasiques. On applique en premier lieu cette méthode au systéme d’Euler isentropique.
On implémente ensuite un schéma appartenant a cette nouvelle classe schémas décalés entropiques
pour la simulation d’un probleme de Riemann dont la solution est composée d’une onde de dé-
tente transonique. Ces résultats numériques illustrent bien que notre méthode capture la solution
entropique correcte.
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Industrial context

We call "serious accident” or "meltdown accident” of a pressurised water reactor an accident where
the fuel of the reactor is significantly degraded with a more or less extensive meltdown of the
reactor core. This meltdown would be the consequence of a prolonged absence of the coolant in
the core causing an increase of the dewater fuel rods temperature. Due to the actual prevention
measures, this type of accidents may only occur after an accumulation of malfunctions (multiple
failures, human or material).

If the damages can not be stopped in the vessel by the cooling of the damaged core (reflooding
of the vessel by the coolant) then the accident could lead to a loss of containment and to significant
releases of radioactive substances in the environment. Due to the major consequences of such a
sequence of events, several studies of these accidents are conducted to limit their consequences
(deterministic approach). These studies firstly start by the identification of the main scenarii
that can lead to the reactor core meltdown. Complementing the deterministic studies, proba-
bilistic safety studies are also conducted. They consist in analysing exhaustively every possible
accidental scenarii, in estimating its probability of occurence and their consequences inside the nu-
clear power plant (core meltdown) or outside (release of radioactive substances in the environment).

The physical phenomena encountered in nuclear safety are extremely complex. This research
field is dedicated to the understanding of these phenomena and to develop physical and mathe-
matical models applicable to reactors. These models are grouped within softwares for numerical
simulation and allow to predict the course of a serious accident. Since it is impossible in nuclear
safety to reproduce all possible accidental situations on real size experimental installations,
it is necessary to perform several elementary experiments allowing to study seperately each
physical phenomenon. These steps must be at scales that are compatible with the technical
and economical constraints while remaining close to the behavior of the nuclear power plant.
The experimental reactors constitute in particular a privileged equipment to study the behavior
of nuclear fuel in accidental situation and represent a considerable economic and human investment.

In this context, the Cathare code (Code for Analysis of THermalhydraulics during Accident
and for Reactor safety Evaluation) is a thermalhydraulic code describing a nuclear reactor at the
system scale, developed by CEA since 1979 as part of an agreement between CEA, EDF, AREVA
and ITRSN. This software is dedicated to the safety studies of Pressurised Water Reactor and the
validation of emergency procedures during an accidental scenario.

The objective of this introduction is not to give an exhaustive account of all the possible



8 Introduction (English version)

accidental scenarii studied in nuclear safety but to describe a type of accidents called LOCA
(Loss Of Coolant Accident) to illustrate synthetically the approach that couples experimental
campaigns and numerical simulation softwares.

Loss Of Coolant Accident (LOCA):

The initiating event of these accidents is a breach in the primary circuit, [I]. This breach causes a
leak of the coolant and a depressurisation of the primary circuit. Many accidental scenarii are then
possible according to the initial state of the reactor, the location and the size of the breach. In the
case of a LOCA, the depressurisation in the primary circuit will generate an automatic shutdown
of the reactor and an automatic start of backup cooling system.

To limit the consequences of these accidents, protection and backup systems will ensure the
following functions:

e control of the reactivity
e maintaining the water inventory in the reactor vessel
e evacuate the residual heat released by the fuel rods

The control of the reactivity is ensured by the automatic shutdown of the reactor and by the
injection of borated water within the core. The water inventory in the vessel is maintained
by the safety injection of water. The residual heat released by the fuel rods is evacuated
by the cooling of the water circulating in the vessel. Accidental scenarii leading to a core
meltdown are the consequences of the failure of one or several backup systems and are always
associated to a failure in maintaining enough coolant in the primary circuit to cool the reactor core.

The research reactor PHEBUS [2] is an experimental reactor built in 1977 in the CEA research
Center of Cadarache. It is dedicated to the study of the fuel rods behavior in nuclear power plants
under accidental conditions of LOCA type. The main issue associated to this type of accidents
is the fuel rods degradation and its consequences: from which temperature, after how long do we
have the break of the fuel rod cladding or worse core meltdown? How much fission products are
released due to these two phenomena? The PHEBUS reactor is an experimental reactor for safety
studies. The objective of this program is to study the behavior of fuel rods for pressurised water
reactors under LOCA type accidents especially. There are two main goals:

e evaluate the relative margins for two selected criteria, in order to sizing the reactor: the
maximum temperature and the maximum oxidation of the fuel rod cladding

e validate the softwares used in the nuclear safety studies, particularly the fuel module of the
Cathare code.

Likewise, the Cathare code has been validated on 20 accidental scenarii based on 10 experimental
installations.

In addition, the Cathare code is daily used on reactor simulators for the training of operators.
During an accidental scenario, the role of the operator is to activate emergency procedures to keep
the reactor in nominal working conditions. Reactor simulators are used by IRSN and other French
and foreign organisations to train their engineers. Among the available tools to make nuclear
safety studies, SOFIA - Simulateur d’Observation du Fonctionnement Incidentel et Accidentel [3],
is a computer system allowing the real-time tracking of the evolution of many physical parameters
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in a nuclear reactor. It simulates the material failures and actions of the operator, it also stops
the computation to analyse the installation at a given time and step back to modify the scenario.
The SOFIA simulator uses the Cathare code in real-time.

Aims of this thesis

The Cathare code is a system code and describes the whole reactor as an assembly of pipes, vessels
and pumps whose sizes are around 10 meters (size of the vessel: 13m x 5m x 5m). To simulate
the whole system, the Cathare code has restrictions on the mesh size: taking into account the
important size of the circuits, the mesh size used can be relatively large, from a few centimeters to
a meter. After the discretisation of all the variables, typical cases involve up to 102 or 10° cells with
3D elements and involve up to a million of numerical time steps. A space domain decomposition
method is implemented in the Cathare code and reaches its limits in its ability to use the entire
computational resources. The scalability properties of the space domain decomposition method
are limited by the small number of cells in the meshes of the Cathare simulations. We seek in this
work to investigate a novel strategy of parallelisation to complement the actual parallelism in the
Cathare code. For this reason, if we have more processors at our disposal and wish additional
speed-ups, the parallelisation of other variables needs to be addressed. Our purpose is to design
a strategy of time domain decomposition. We would like to use a non intrusive approach where
the Cathare code is used as a black box. In this context we investigate the ability of the parareal
method to match our requirements. This work constitutes the first part of this thesis and is
presented in chapters 1, 2 and 3.

The remaining chapters of this thesis are motivated by the need of novel numerical methods
that could handle better the numerical difficulties that are specific to two-phase flows with a
lower computational cost. This second part is dedicated to the understanding of the theoretical
properties of finite volume schemes on staggered grids such as the one used in the Cathare code.
We seek to develop a rigorous framework for the stability analysis of classical staggered schemes
and to propose a class of L2-stable staggered schemes. In addition, we seek to derive a class of
entropic staggered schemes. The procedure derived in the thesis is very general and could be
applied to two-phase flows models.

In the following section, a summary of every chapter will be provided.

Summary of the results by chapters

Part I: Chapter 1

The aim of this first chapter is twofold: first, it is intended to provide a bibliographical overview
of the two-phase flow model used in the Cathare code, namely the six-equation two-fluid model.
Most of what is stated here is not new but it seemed interesting to us to present this compilation
of information to position the model and numerical methods in the Cathare code within the
existing litterature of two-phase flows simulation.

After introducing the six-equation two-fluid model, the main theoretical results regarding the
hyperbolicity of the model will be presented. We will then explain the complex nature of the
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solution displayed by the model that is specific to two-phase flows models.

We will continue by recalling the existing discretisation techniques of the variables involved in
the equations and a special emphasis will be put ont the treatment of the convection term for the
most widespread staggered schemes. Even if two-fluid models inherit achievements performed in
the modeling, mathematical theory and numerical methods for single-phase flows, they however
display many specific difficulties. We will discuss some difficulties existing in the two-phase flow
models such as the presence of non conservative products, the configuration of the vanishing phase
and the handling of discontinuous source terms.

The last part of the chapter is devoted to the existing acceleration techniques that are actually
available in the Cathare code. First, these methods will be presented as well as their limits in the
ability to use the entire computational resources. We finally present the strategy followed in the
Cathare code to parallelise the time variable. The parallelisation of the time variable is particularly
involved given the sequential nature of time. Despite this, several strategies have been proposed in
the literature (see [27], [50]). We have focused on the parareal in time method because it is the one
that seems to provide the best performances with many applications (see [13], [49], [104] among
many others).

Part I: Chapter 2

The second chapter summarises the special efforts we made to implement the parareal algorithm
to the Cathare code in a non intrusive way. We will present the two computational tools we
developped during the PhD in order to apply the parareal algorithm to the Cathare code: firstly
a numerical clone of Cathare that is restricted to one test case and secondly through a library
that uses the Cathare code as a black box in a parallel way. The two test cases we investigate
are representative of the numerical challenges for the simulation of two phase flows in the
context of safety studies. Numerical challenges include for instance, the vanishing phase issue
where one of the two phases liquid or gas disappears in some parts of the domain or the sim-
ulation of a breach in the primary circuit that causes a fast depressurisation within the reactor core.

The main contribution of this work has been to adapt the parareal algorithm to the architecture
of the software and to its time discretisation in a non intrusive way, without modification of the
source files of the Cathare code, in order to reduce the computational time and get closer to a
real-time response of the code.

In the numerical examples treated, the use of the parareal algorithm can speed-up the calcu-
lations by a factor of about 3 with 25 processors. From an efficiency point of view, these results
are not as competitive as the high efficiency that domain decomposition methods provide, but,
as it will be explained in chapter 2, there are theoretical reasons that explain the relatively low
efficiency of the parareal method. Because of this fact, parareal is a useful technique to obtain ad-
ditional speed-ups in the context where other more efficient parallelisation techniques have reached
saturation.

Part I: Chapter 3

As will be presented in detail in chapters 1 and 2, the time discretisation of the Cathare code relies
on a two-step time scheme. A multi-step time scheme can potentially bring higher approximation
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orders than plain one-step methods but the initialisation of the time propagation in each time
window needs to be appropriately chosen. When the fine and/or coarse propagators is a multi-step
time scheme, we need to choose a consistent approximation of the solutions involved in the
initialisation of the fine solver at each time window. Otherwise, an initialisation error would be
propagated over the whole time interval and would prevent the parareal algorithm to converge
towards the solution with the desired accuracy.

In an attempt to address this issue, this chapter presents a new variant of the parareal algorithm,
adapted to this type of discretisation, and that ensures to recover the target solution with a
convergence rate similar to the one of the classical parareal algorithm. A special effort has been
made to design an algorithm adapted to this type of discretisation without being intrusive in the
coarse or fine solvers. This allows to the Cathare code to be treated as a black box, which ensures
the portability of this new algorithm. With regard to the initialisation procedure, the multi-step
parareal algorithm is more consistent with the underlying time scheme. We show both theoretically
and numerically that the accuracy and convergence of the multi-step parareal algorithm are very
competitive when we choose carefully the initialisation of each time window.

Part 1I: Chapter 4

The second part of this thesis is devoted to the development of a rigorous framework for the analysis
of finite volume schemes on staggered grids such as the one used in the Cathare code. In particular,
the family of schemes presented here could be applied in the future to the Cathare code to handle
the numerical difficulties specific to two-phase flows models. The derivation of the method has
required the analysis of some theoretical aspects beforehand and this is what is presented in this
second part of the manuscript. Nevertheless, some analytical numerical examples will be presented
on the solution of the isentropic Euler equations with the purpose of illustrating the technique and
its performances.

Staggered schemes are known to be more precise for almost incompressible flows in practice and
are very popular in the thermal hydraulics community ([63] 98], 26]). However, in the context of
compressible flows, their stability analysis has historically been performed with a heuristic approach
and the tuning of numerical parameters ([70]). Yet the conservative staggered schemes presented in
[66, [65] are proven to be entropic and to satisfy a kinetic energy preservation [67]. Unfortunately,
the boundedness of the entropy does not necessarily imply the boundedness of the solution and this
is particularly the case for the full Euler system. Hence, we investigate in this chapter the linear
L stability of staggered schemes. This question has been addressed by analysing their numerical
diffusion operator that gives a new insight into these schemes. We first derive the numerical
diffusion operator for classical staggered schemes and show that the L? stability is obtained only
in the case of constant sign velocities. We then propose a class of linearly L?-stable staggered
schemes. This new class is based on a carefully chosen numerical diffusion operator and is more
adapted to two-phase flows where phasic velocities frequently change signs.

A scheme belonging to this new class of staggered schemes has been successfully applied to the
simulation of a Riemann problem and we expect that the present developments will allow its use
in more realistic and complex cases in the future.

Part II: Chapter 5

In the last chapter, we address the question of the entropic character of staggered schemes. We
derive a discrete entropy balance for a class of staggered schemes. On this basis, we give explicit
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constraints on the coefficients of the numerical diffusion matrix to ensure the dissipation of the
discrete entropy. The procedure is very general and could be applied to two-phase flows models.
We first investigate this strategy on the isentropic Euler system. We then implement a scheme
belonging to this new class of entropic staggered schemes for the simulation of a Riemann problem
that displays transonic rarefaction waves. These numerical results illustrate the ability of our
method to capture the correct entropic solution in a stable way.
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This first chapter is intended to be a bibliographic summary about the six-equation two-fluid
model: an overview of some theoretical results, discretisation, numerical and HPC methods to
solve the model are presented. We will also show the numerical difficulties that are specific to
two-phase flows and represent an obstruction to obtain a satisfactory simulation at a reasonnable
computational cost. In this context, the main contribution of this work has been to explore parallel
acceleration techniques to reduce this computational time (see chapters 2 and 3) and also to explore
numerical methods that could handle better these numerical difficulties with a lower computational
cost (see part II of this manuscript).
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1.1 The six-equation two-fluid model

1.1.1 Balance equations

Considering a two-phase flow of vapour (subscript ,) and liquid (subscript ;) phases, we are inter-
ested in determining unknown physical quantities that are the vapour and liquid volume fractions
(o, aq € [0,1]), average pressures (p, € Ry and p; € R;), densities (p, € R4 and p; € Ry),
temperatures (T, € R, and Tj € R,), velocities (i, € R* and 4; € R?), enthalpies (h, € Ry and
h; € Ry) and total energies (F, € Ry and E; € Ry).

The two-fluid model equations are obtained by averaging the balance equations for each separated
phase, using space, time or ensemble averaged quantities (see [39, [71l [72]). The mass, momentum
and energy balance equations for each phase then read as follows:
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(1.1)

One also has to consider the closure relation:
oy +a; =1,

which expresses the fact that the whole available volume is filled up with the fluids.
The interface interaction transfers consist in the following terms:

e I';, the interfacial mass transfer terms,

. ﬁ,ﬁ”t the interfacial momentum transfer terms, which are either of algebraic or differential
nature. They result of the viscous stresses at the interface and pressure forces normal to
the interface. They can be further divided into a non-viscous component ﬁ,?v containing for
instance the interfacial pressure term, the virtual mass force and a viscous component such
as the interfacial friction term. The interfacial pressure term takes the following form:

FP = (pi"* — pr)Vau,

e @™ the interfacial velocity,
° 0,? the interfacial heat transfer terms.

The wall interaction modeling, denoted by the subscript w, includes wall heat transfer and wall
frictional forces:
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e ()}’ the wall heat transfer rates,
e F the wall frictional forces.

Tr are the Reynolds stresses and g are the turbulent heat fluxes.

Equations of state

The number of unknown variables is in general greater than the number of equations in the
system of PDEs. Therefore, it is necessary to consider supplementary constitutive equations such
as equations of state. In general, such equations depend on the specific two-phase flow model and
on the flow regimes. The equations of state considered are: py = pi(p, ex).

The Cathare code uses tabulated equations of state based on the industrial formulation IAPWS
(The International Association for the Properties of Water and Steam, [I16]). These equations of
state compute all the thermodynamical variables necessary for the simulation thanks to experi-
mental measurements of pressures and temperatures and polynomial interpolations.

1.1.2 Closure laws

The jump conditions at the interface are:

e Mass transfer:

> Tip=0.
l

k=g,

> Frt=o.

k=g,l

e Interface momentum transfer:

e Energy transfer:

> @kt + o) = 0.
k=g,l

In our work in this thesis, we have worked under the following assumptions:

e We assume here that the Reynolds stresses and turbulent heat fluxes are negligible, as we
are considering convection driven flow where viscosity tensor play a minor role.

e There is only one bulk average pressure in the system. We assume that the pressures re-
laxation time is negligible, and pressure equilibrium is considered to be reached in the flow:

Do(pvs Ev) = pi(p1, E1) = p.

e We neglect surface tension phenomena in the two-fluid model: pf}"t = p%”t = p™,

e We neglect as many authors do the pressure default (p — p™) in the energy equation.

Providing the general expressions of the momentum transfer terms is a difficult task with many
ongoing works. We summarise in the sequel some expressions that are commonly employed:

Interfacial pressure term
If we neglect virtual mass force, the Cathare model for the interface pressure force is given by [20]

[075187] [ N N
PP iy 2.

Ap=p—p™ =
QypL + Py
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The coefficient 0 can be gauged such that the two-fluid model becomes hyperbolic ([89]). Let
us note that the Cathare model for the interfacial pressure term is slightly different in the case
of stratified flows. We will give more details about this point in the section dedicated to the
hyperbolicity of the six equation two-fluid model.

Virtual mass force
The dynamic drag or the transient forces that result from relative acceleration of the phases, usually
also called the added mass effects is modeled in Cathare with the following formula, issued from
20]

. . ot . ot .

Fgm:Flvm: —,vaayalpm ﬂJrﬁy'Vﬁv — ﬂ—i—ﬁl'vm ,

ot ot

where [, is the virtual mass coefficient depending on the flow regime.
Interfacial friction term or Drag force
The drag model depends on the flow regime (dispersed, stratified, ...) and has the following general
form:

- 1
FP = iCDaipk:(oe)Huv — %,
where Cp is the drag coefficient and k(«) is a function that strongly couples the phases when one

of them tends to disappear. More details will be given in section dedicated to one important
numerical difficulty of the two-fluid model: the vanishing phase.

Interfacial velocity
Assuming that the no slip condition is satisfied, the interfacial velocities for momentum and energy

transfer are equal for both phases u‘™ = " = 4™ . The formulation used in Cathare is a volume
fraction averaged formulation:

am = Uy + iy,

1.1.3 Boundary conditions and initial condition
We will assume that the domain © is a bounded open set of R®. We denote the boundary 9 with
71(X) the outward unit normal to 992 at point X. We define the following partitions of 9€2:

o0 = 0™ U 0 U 09l

We list here some of the usual boundary conditions that are associated to problem ((1.1)).
Inlet and outlet boundary conditions

The flow velocity profile is specified at inlet boundaries to model the incoming of liquid or vapour
in the domain:
up(t, X) - A(X) = ui™(t),vt € [0,T] and X € 9Q™.

The pressure is specified at outlet boundaries to model the outgoing of liquid or vapour in the
domain. Outlet boundary conditions for the pressure give informations external to the domain:
depending on the test case, the outlet pressure can be equal to the atmospheric pressure (1 x 105Pa)
or to the pressure within a nuclear reactor under nominal working conditions (155 x 10°Pa).

p(t, X) = p”*(t),Vt € [0,T] and X € 9Q°™.

In practice, one generally uses a ghost cell formulation at the boundary. The inlet boundary
condition consists in imposing a Dirichlet condition for the velocity and a Neumann condition for
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the other variables (pressure, volume fractions, enthalpies). For Neumann boundary conditions,
we prescribe the gradient normal to the boundary of a variable at the boundary. Usually, we take
the state of the ghost cell equal to the internal state.

Wall boundary conditions

This is commonly known as no-slip boundary condition. It specifies the conditions for velocity
components at the wall. The normal component is set to zero since the wall is static:

i (t, X) - 7i(X) = 0,¥t € [0,T] and X € 9wl
The tangential component is set to the velocity of the wall:
i (t, X) - H(X) = uP(t),¥t € [0,T] and X € 9Qw.

Heat transfer through the wall can be specified or set to zero in the case of adiabatic walls.

Periodic boundary conditions

Periodic boundary conditions are often used to simulate a large system by modeling a small part
that is far from its edge. These conditions consist in enforcing a relation of the form:

ﬁk(t7 X) = ﬁk(ta Xl)a
For X and X' in Q. For instance, if Q = [0, L] in a 1D case, the condition would read:
Uk(t, 0) = ﬁk(t, L), Vit € [0, T].

The initial condition depends on the situation under consideration. In the analysis of reactor
cores, what one wishes in the end is to understand the connection between a stationary state and
some transient state. In practise, there are two ways of initialising a simulation:

e First one can start with constant values of the unknowns. However this can set the system
in a state that is very far from the stationnary state. Furthermore the transient dynamics
can be very different from the one observed when one studies nuclear accident.

e The second option is the one used in thermalhydraulics (in particular in the Cathare code).
It consists in computing first a stationnary condition in a normal regime using the values of
the boundary condition then changing the source term and the boundary condition to reflect
the occurence of a nuclear accident.

1.2 Hyperbolicity of the model

When considering equal pressure law and neglecting the interfacial pressure term and the virtual
mass term, the original two-fluid model (|1.1)) is not unconditionnally hyperbolic in the low Mach
flow regime in nuclear safety studies:

Oy Py + Q)
QupiCy + upuey’

Up = Uy — U] K Cgm, With the mixture sound speed: cgp, = \/

where ¢, ¢; are the phasic sound speeds.
Taking into account interfacial pressure default or the virtual mass the system becomes hyperbolic
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in the flow regime of interest. The reader is referred to [1111 20, 113, [0, 114} 90] for details. In the
sequel, we only study the effect of the interfacial pressure correction on the hyperbolicity of the
model.

In this section, we first give the Taylor expansion of the spectrum for the compressible six-equation
model in The complex expression of the eigenvalues makes difficult a rigorous analysis of the
compressible model, hence we turn our attention to the study of the low Mach regime in In
section [1.2.2] we show the effect of the interfacial pressure term in the incompressible case and give
closure laws that ensure the hyperbolicity of the incompressible model. In section [[.2.3] we list
some closure laws for the interfacial pressure term that ensure the hyperbolicity of the compressible
model. In section we summarise the analysis of the Riemann problem for two incompressible
phases. This analysis also takes into account the case of a vanishing phase where one of the volume
fraction ay, goes to zero. In the last section [I.2.5] we show the singularity that appears in the case
of a vanishing phase and the difficulty to ensure the positivity of the volume fractions ay.

1.2.1 Eigenstructure of the compressible six-equation model

In [91], the author gives the spectral properties of the three-dimensional two-fluid model: six real
eigenvalues are trivially computed and the remaining eigenvalues are the roots of a 4-th degree
polynomial that is exactly the characteristic polynomial of the one dimensional isentropic two-fluid

system:
( Doy py N Oty Py y 0,
ot ox
daypy daypru;
+ =0,
agtp U 80(83; u? dp fole (1.2)
vPv Uy vPv Uy, op A v _
5 ot + 5 oz +agax * gax 0,
P Py IP L ApZM
\ ot * oz ta oz +ap oz

Denoting the unknown variable U = (o, py, 0ty putiy, ypr, aypiug), the system (1.2]) can be rewritten

as the quasi-linear form:

ou ou
v A(U)% =

where A(U) is the Jacobian matrix of system (1.2)).
For practical purposes, one usually does not find the exact solution of the fourth degree charac-

0

teristic polynomial. Instead, following the works in [I13] and [42], the authors suggest using a
perturbation method to compute approximate eigenvalues.
Denoting the perturbation parameter:

where cg,, is an approximate mixture sound speed defined by:

\/ Py +
Csm =
QyPICy + QY PyCY

The analysis of the eigenvalues for the six-equation two-fluid model is approximately made around

the mechanical equilibrium, i.e. the eigenvalues are computed as a perturbation of the relative
Uy — U

velocity in comparison to the mixture sound speed, (¢ = ). The first order approximation

sm
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of the compressibel two-fluid system eigenvalues gives:

Qi P1Uy + O Py U]

Alg = T Com + O(€?), pressure or acoustic waves
QypL + Py

Aa3 = CoPith + 04yt < D — Wu?) + O(€?), void waves
QupPl + Py Qy P+ Qpy QP+ QY Py

(1.3)

We see from ([1.3]) that for small relative velocities, the two eigenvalues A 4 are always real and have
QO Py PL 2
—u

Qupr+py
the two other eigenvalues A 3 are complex. We will discuss the influence of the interfacial pressure

the order of magnitude of the mixture speed of sound cg,,. In contrast, if Ap <

term on the hyperbolicity of the system in the next section. Assuming that the four eigenvalues
are real, we can see that the eigenvalues may easily change sign. The two-fluid model displays
a complicated eigenstructure and its spectrum is more complex than the one of for single-phase
flows.

For single-phase flows, both mathematical theory and numerical methods of the Euler system have
been studying well by numerous authors in the litterature. This system is a system of hyperbolic
conservation laws with two Genuinely Non Linear fields and one Linearly Degenerate field (in one
dimension). Even if the two-fluid models inherit achievements obtained in the single phase flow
including of modeling, mathematical theory and numerical methods, however, the two-phase flow
models possess many of specific difficulties due to existence of two phases in the same domain of
interest and their interactions as well. We will see in section that for the incompressible limit
of system the study of the spectrum proves that the eigenvalues are not a priori ordered and
that the characteristic fields are neither GNL nor LD.

1.2.2 Hyperbolicity of the incompressible model

From the system , we see that there is a critical Ap which ensures the positivity of the value
under the square root. In this section, we show the influence of the interfacial pressure term on
the hyperbolicity of the two-fluid model in the incompressible case.

To understand the role of the interfacial pressure term to get the hyperbolicity of the system, we
show the eigenstructure of a reduced system where both phases are assumed incompressible in

(1.2), derived in [91].

o (p 9 (pY\_ (0 (PN _ [owpr - upy
51 (p~u> —i—ATedax <p~u> = (0> , where: <p~u> = (pvuv o) (1.4)

with
Q1 Py Uy + Qi PIUY _aval(pv - Pl)
Aved = avpé + upy QP+ Py
e popi(uy — w) B Ap pytly + awpruy |7

(pv — p1)(Cwpr + upy)  way(po — 1) Qupr + Qpy

and its eigenvalues are:

1 _ 2
Ay, = C1Potl +avpu (Ap _ awaupepr(Uy — w) )
Qy P+ Py QP+ Qpy QyPr + Py

The incompressible limit of the two-fluid model is hyperbolic provided:

0y pr (U — ul)2

Ap >
QP + Py
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This type of coefficient is used in the industrial code Cathare (see [20]) to make the compressible
two-fluid model hyperbolic.

If we remove the interfacial pressure term by setting Ap = 0, the matrix A,.q of system (1.4)

becomes:
QPyUy + Oy PUY _aval(pv - pl)
A _ QP+ Py QP + Py 1.6
red Popr (e — uy) QUpuly + Py (1.6)

(po — p1)(awpr +aupy)  wpr + cupy
In , Areq is a 2 X 2 matrix with two diagonal coefficients that are equal. Such a matrix
has real eigenvalues provided the extradiagonal terms have the same sign. The efficiency of the
parameter Ap in r2naking the system hyperbolic comes from the fact that it removes the component:
PopL(Uy — ur)

(pv — pu)(wpr + upy)
the system hyperbolic, another possibility is to cancel this component by assuming an algebraic

that gives rise to complex eigenvalues, as we can see in (1.4). Thus to make

pressure disequilibrium. Without the assumption of pressure equality, the evolution equation of
pu would be:

dpu ﬂ (pu)? 4 2 ( o popi(wy — up)? ) _

ot 0x2(ps—p) 0z \"" T (oy — p)(cwp + aupn))
An alternative to the use of an interfacial pressure correction Ap is the assumption that there is
an algebraic pressure disequilibrium having the form:

pvpl(uv - ul)2 (1.7)
pv — p1)(awpr + apy)

Hence, one can use a pressure disequilibrium of the form (|1.7)) or a parameter Ap of the form (1.5
to ensure the hyperbolicity of the isentropic two-fluid model for two incompressible phases. In [93],

pv_pl:(

the authors prove the existence and uniqueness of an admissible solution to the Riemann problem
for the isentropic two-fluid model for two incompressible phases with a pressure disequilibrium of
the form (1.7)). In section we detail the properties of this model and the results obtained in
[93].

1.2.3 Hyperbolicity of the compressible model

In this section, we give some closures laws for the isentropic two-fluid model in the compress-
ible case that ensure the hyperbolicity of the system for a range of relative velocities wu,..

For small relative velocities (u, — u;), closure laws were proposed in [IT1] and [20] that ensure the
hyperbolicity of the system with the following form:

avalpvpl(uv - Ul)2
P+ Py

In the more general case of large relative velocities, the hyperbolicity of the isentropic system (|1.2)
has been studied in [9], [90], [91], [I15] with:

Ay X Py Pl 2 1 QX Py Pl 4
Ap = —2 (y, —uy +<p—>u—ul )
QupPl + Py ( ! ) 012; ! QP + Py ( ! )

Ap=4¢ , with: 6 > 1

This closure law guarantees the hyperbolicity for the relative velocities up to the sound speed of
vapour phase c,.
On the other hand, the authors in [9, O1] introduces the interfacial of the form:

Ap = py(uy, —uy)?
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This closure law guarantees the hyperbolicity in the region where |u, — u| < ¢,.

In the next section, we will present some recent existence results obtained on a system for two
incompressible phases.

1.2.4 The Riemann problem for two incompressible phases

In [93], the authors study a 2 x 2 system of conservation laws that models the dynamic of two
incompressible phases. They establish their model from the following system:

Orvypy + Oz (aypy) =0
Oraqpy + Oz (aypr) =0
at(avpvuv) + ax(avpvu?)) + avaxpv = QypPvg
O(cuprwr) + O (uprui) + cudapr = cupry

where the non zero pressure difference p, — p; takes the form (1.7)).
Assuming in (1.8)) that both phases are incompressible, the resulting system focuses on the study
of the void waves that determine the composition of the mixture:

8to¢+0x< ol — aw >:0

. <a(pzw5 pv) +Pv( | (1.9)
w c\ o7 N ] = v
t 2(pv — pl) P pL)g

We introduce the unknown variable vector U = (g), and the space of admissible states H =
a,w), o € w e . We also denote the sets an _ such that:
{(a,w), [0, 1], R}. We also d h H, and H h th

Hy ={(o,w),w e Ry \ {0}, € (0,1)}
Many specificities arise from this incompressible model:
e the two eigenvalues A1 and A9 are not a priori ordered:

Pv — P (alpr = po) +pu)?) pv — Pl

e the characteristic fields associated to A; and A are genuinely nonlinear in each domain H
and H_ but are neither genuinely nonlinear nor linearly degenerate in general:

- ) S

(ot — pv) + pv)?’ (po— 1)

where 71,79 are the eigenvectors of VF' associated to A1, As.
e the system is strictly hyperbolic in H1 and in general weakly hyperbolic on the domain H

Considering the Riemann problem for the conservative system (1.9) in the case g = 0 with a
piecewise constant initial data:

Urplap,w ifz <0
s = | il

Ur(ag,wr) ifx>0
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the authors prove the existence and uniqueness of an admissible solution, satisfying the Liu crite-
rion.

Due to the complex structure of the shock and rarefaction curves, numerous cases are studied. In
some cases, the Riemann problem does not give rise to classical weak solutions made of two waves
of different families separated by an intermediate state Ur(ay,wr). In the sequel, four examples of
the non classical solutions to the Riemann problem are given in order to illustrate the originality
of this system that describes the void waves of the two-fluid model:

e solution made of two rarefactions of the same family, the 2-family
e solution made of three waves connected by two intermediate states U* and U™

e solution made of three shocks. In this case, a pure phase («) is observed and the velocity of
the vanishing phase does not necessarily equal the one of the remaining phase

e solution made of two waves of different families where one is a non classical shock wave. This
shock wave is called non classical because a left state which is on a branch of a hyperbola
that goes out of the domain H is connected to a right state through an intermediate state
Ur located on the other branch of the hyperbola where it comes back in H (see Figure 3a in
[93]).

1.2.5 Vanishing phase

In the two-fluid model, the total boiling or condensation of one phase will arise a singularity. The
absent phase is called vanishing phase or ghost phase. It poses a difficulty in the two-fluid model
owing to its independent velocities. The smgularltz arises when one computes the absent phase

Ok as agpr — 0.
APk

Studying the one dimensional two-fluid model, we are interested in the mathematical properties
of the vanishing phase which is assumed to be vapour: o = «a,, = 0. Let us take into account the
isentropic model ((1.2)), when o = 0, the Jacobian matrix becomes:

velocity using the conservative variables up =

0 0 1 0
0 0 1
Aa=0 = —ug 0 2u, 0
2
oo cl2 — ulQ 0 2y
Pv

which has four real eigenvalues:
Uy s Uy, Uy + €, UL — €

but the matrix is not diagonalizable because there are only three eigenvectors:

2 2
Ture, = (0,0, 1, uy £ ¢)), T, =" <p”((““_2“l) _ 1),%@(M —1), 1,uv>
Pl ¢ Pl q

The hyperbolicity of system is then broken for «,, = 0.

One of the objectives of [93] was to prove that the positiveness of the volume fractions ay is
inherent to the model. At the discrete level, it is not always the case that a numerical method
capture positive volume fraction. In the thermalhydraulic platform Cathare, an interfacial friction
term is used to ensure the positiveness of the volume fractions. We explain here the role of the
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interfacial friction term in ensuring that the volume fractions ay(t) € [0,1],Vt € [0,T]. We consider
in the sequel that the unknowns are smooth enough:

Ozp Ap Ch
Ortly + Uy Optty + ; +a P Ox vZT"uv_ul"(uv_ul)
v vMvU v 1.10)
) A Ch (
Opuy + wOpuy + Gub + P Opy = —||ug — wy||(ug — uy)

Pl apr

We now write the momentum equation for the relative velocity w, = u, — u;:

1 1 1 1
815(“1} - UZ) + Uy Optty — w0z + ( - > axp =-Cp ( + ) ”Uv - ul||(uv - ul)
Pv P Pv Pl
Since the variables u,, u;, p and their derivatives are assumed bounded, when the drag coefficient
Cp goes to infinity, the relative velocity u, verifies the ODE:

Opur = —Cplluy — w|(uy — w)

Hence, the system tends to an equilibrium of the velocities with u, — 0. The numerical difficulty of
the vanishing phase is thus handled by the Cathare code by imposing the equality of the two phasic
velocities through an interfacial friction term that dominates the momentum equations when one
of the volume fraction goes to 0.

Assuming that the vapour phase is the vanishing phase and neglecting the interfacial friction
coefficient Cp, the corresponding momentum equation in shows that the velocity of the
vanishing phase follows a Burgers equation and does not have to be equal to the velocity of the
remaining phase.

1.3 Discretisation of the two-fluid model

In general, there exists two families of numerical methods for the simulation of two-phase flows.
Firstly, colocated schemes are generally used on unstructured meshes where the unknowns are
located in the same place (cell-centered). In the litterature, many authors developed Riemann
solvers (either Godunov-type methods or Roe-type schemes or Osher schemes or AUSM schemes)
for the simulation of two-phase flows dealing with the numerical challenges encountered: vanishing
phase [32], 311 88, [107, [8, 142} 93], non conservative products [88, 87, 42| [113] and stiff source terms
[93, 94]. We can also mention the VFFC scheme ([56], 57]) that has a generic formulation by con-
trast with the Roe scheme ([I00]) that is applied under some algebraic conditions on the system.
This category of schemes is robust but present a lack of accuracy for low Mach number/almost
incompressible flows. Corrections are proposed in [36] [37] to overcome this issue but generate an
instability with checker-board type oscillations. We can also mention the pressure-based methods
with colocated variables such as the one used in the platform Neptune-CFD (developed by EDF
and CEA, [10]). This type of schemes does not suffer from a lack of precision for low Mach number
flows but show checker-board type oscillations. A way to overcome this issue is to use Rhie and
Chow type corrections to avoid spurious oscillations, [43].

On the other hand, staggered schemes are used on structured meshes with unknows located either
on edges or cell centers. This category of schemes has a good behaviour for almost incompressible
flows. The space discretisation in the Cathare code is based on a staggered scheme. The main
drawback of this family of schemes is the handling of complex geometries since its use is limited to
structured meshes. In this section, we first introduce the family of staggered schemes as initially
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proposed in [63], [62] (see section . We also discuss the properties of these numerical meth-
ods depending on the discretisation of the convection term for the isentropic Euler system (see
section . In section we present a family of staggered schemes derived with a new
approach that discretises the conservative form of the Euler system. In section we detail the
discretisation of the one dimensional Cathare model to compare it with the existing litterature on
staggered schemes. In the last section, we explain some numerical challenges of two-phase flows
simulation by addressing:

e strategies of discretisation for non conservative products occuring in two-fluid models (see

section [1.3.3.1)),

e simulations made with the Cathare scheme on test cases showing vanishing phase (see section

L3372

e strategies of discretisation for discontinuous source terms occuring in two-fluid models (see

section [1.3.3.3)).

1.3.1 An introduction to ICE schemes

We refer here to the numerical methods designed on staggered grids to simulate compressible flows
at low Mach number. The velocity unknowns are located at cell interfaces whilst the density and
pressure unknowns are located at cell centers. The expression of the products pu, pdyu and pu?
then raises an issue since velocity and density are located in different places that is adressed in a
different way by different authors.

Historically the Marker and Cell numerical scheme (MAC) [64] was designed for incompressible
flows. Then the Implicit Continuous-fluid Eulerian (ICE) [63], [62] method was designed for com-
pressible flows at low Mach numbers as well as high Mach numbers. The historical ICE method
[63, [62] discretises the conservative Navier-Stokes equations in a way that reduces to the MAC
method for incompressible flows. In the seminal papers [63, [62], the velocity unknowns are first
eliminated then the pressure unknowns are determined in an iterative process and the velocity
unknowns follow. For the velocity elimination to be valid the momentum fluxes are treated in a
semi-explicit way (see section for more details).

The ICE method encountered a considerable success with numerous variants (explicit/implicit,
with/without prediction correction steps) and became popular in the thermal hydraulics community
[07, O8]. There the Navier-Stokes equations are discretised in non conservative form, which makes
the velocity elimination easier. The mass flux is upwinded for better stability but the approach
still consists in eliminating the velocity unknowns in order to first retrieve the pressure (see
for more details). However for the elimination to be rigourously valid the momentum flux should
be entirely explicit, which yields a restriction on the time step.

Herbin et al ([65], [66]) proposed an approach that does not rely on velocity elimination and
enables full implicitation. They were able to derive rigourous proofs of stability (see section
for more details).

We will consider in the sequel the 1D isentropic Euler equations in conservative form

Op+0,q=0

e (1.11)
8tq + &E; + azp =0.
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and in non conservative form

Op + Ox(pu) =0
L , (1.12)
pou + §p8xu +0zp=0

We will give the expression of each scheme on the Euler equations which gives a first insight

ou
into the schemes. The discretisation of the momentum convective term ua— should verify the
x

conservation of h = p + %qu. Some non conservative schemes discretise the form %&tuz and
satisfy the Bernoulli principle. Other non conservative schemes discretise the form ud,u and do
not naturally recover the Bernoulli principle at the discrete level. In the sequel, we give the
expression of several schemes proposed in the litterature in the single-phase case and the extension
to two-phase flows can be found in references therein.

1.3.1.1 The original scheme of Harlow and Amsden

We summarise here the numerical method for all flow speeds described in the seminal article [63]. In
[63], the stability analysis used the heuristic approach of [70] by estimating the numerical diffusion
of the scheme and tuning the numerical viscosity to make it positive. A mass diffusion coefficient
7 and artificial viscosity coefficients A and p are considered for example in [62]. For simplicity of
the exposure, we neglect the various artificial viscosity terms, and present the scheme only in 1D.
The discrete 1D isentropic Euler equations take the form

Ay (P = (pw) ™y » )
At Az N '
ntl n 1 1 1 1
RS L SO U e Ut A AP
At Az Az '

The expression of the cell centered velocity u? required in the momentum equation raises an
issue of interpolation between face and cell that is adressed in different ways by different authors.
There are at least four historical types of interpolation formula for u; (see [63] page 207) :

w1 w12
—_ = +7
Centered: u? = <12212)

o ZIP: u? =U;_1U; 1

3 ity
U, 1 +U;_ 1
1—5 1+ 5
u, 1 —2 2 if w, 1 4u,1>0
: 2 =3 i—3 i+
e Partial Donor: uf = w1 %u )
i—3 i+l ¢ 0
Uig 1 5 it w1 +ui+% <
2
u? i w,_ 1+wu,1>0
a2 i—3 5 it+3
e Complete Donor: u; = 9 ¢ 0
Uppl U 1 U1 <

In the next section, we list some choices of discretisation for the convection term and discuss the
properties of the resulting schemes.
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1.3.1.2 The traditional non conservative discretisation

Other forms of the ICE method used in the thermal hydraulics community ([98] section 11.2,
Cathare, Sabena [97]) discretise the non conservative version (1.12)) of the Euler equations. The
schemes take the generic form

p?""l — p,:l + L( up un+1 . up un+1) _ 0
A B Pieyties TPyt = L
n+1 _an . .
N ui+% uz‘+% 1 P |l ntly
p”%T + 5(/) U )i+% + E(Piﬂ -p7)=0
with
_ Pi + pit1
Pz‘+% = 9

For stability reasons, the mass flux pu at the cell interfaces is generally defined using an upwind
density p“? (see [98] section 11.2) defined on faces as :

; it w, 0
up o pi it+3 =

. 1 —
+5

p
pit1 if UH%SO

Here are some examples of expressions for the momentum convection term:

e semi implicit discretisation (Cathare 3D module section 11.5 page 339 of [74], [25])
In this case the density is explicit in the mass flux pu, in the velocity evolution terms pdyu
and the convection term pudyu. The scheme takes the form

n+1

pi PP L upn, gl upn nly
At + ArPird Uiy TPy ) =0 (L.16)
ntl , 1.16
_n uiJF% u?""% + 1 up,n(a 2) + i( n+l n-i-l) -0
Pirs T At ol Tt iy T A Wikt TR )=
with 1
2yntl _ 2\ if . >0
) A:L'Z'_;'_l ((U )Z-f—% (u‘ )l—%) 1 ul—i—%
(Opu”)i 1 = 12 (1.17)

Afcw% ((UQ)Z:F%I - (UQ)?JF%) it u,
The Bernouilli principle is recovered at the discrete level in the case of stationary incom-
pressible non viscous flows. Note that in 2D /3D, the density is upwinded in axial momentum
terms of the form pu? but centered in non axial terms of the form puw.

The treatment in allows for a stronger implicitation of the velocity and larger time steps
whilst retaining the elimination of the velocity unknowns. However this approach introduces
a time consistency error as we detail in the following.

We apply a standard truncation error analysis to the discrete momentum equation in ({1.16|)

1> 0:

) .. . ou u
assuming constant densities. This corresponds to the term: —— +u——, in the case u;, 1
2

ot ox

W(Zit1/2, tnt1) — wW(Tiq1/2, tn) N 1U2(37i+1/2, tng1) — U (2_1/2, tn)
At 2 Az




1.3.

Discretisation of the two-fluid model 29

_
ot

At ou
+E <U(Xi+1/2, tn)ﬁ(xﬂl/% tn) + O(At))

10
($i+1/27 tn) + O(At) + 5%@62(1'2‘_’_1/2, tn> + O(A$)

When the time step At and the mesh size Az goes to zero, the consistency error tends to

ou ou
o + ua— with an additional term in bold that prevent the scheme to be consistent with the
x

momentum equation.

fully implicit discretisation (Cathare 1D module section 11.3 page 320 of [74], [26])

In this case the density is treated implicitly in the discrete mass flux pu, in the discrete
evolution terms pd,u and in the discrete convection term pud,u. The scheme takes the
generic form

n+1 n 1
pz pi + ( up,n+1 n+1 up, n+1 n+1) 0
At Ag \itg H‘ ~ i =3
U:L_:ll — U?+l 1 )
—n+1 2 2 —n—+1 n+1 n+1
pi+%7At + pz+ 1 (u0y ’U,)Z+1+7A (pify —pi™) =0
with
1 un+1(un+1 n+1) if n+1 >0
Ay 1 i+ ik i ird
(udp)iy g = L i n 1 1
e ) i <o
ﬂfi+% 2 2 2 2

This treatment allows for a stronger implicitation of the velocity and larger time steps, whilst
retaining the elimination of the velocity unknowns. The Bernouilli principle is not recovered
at the discrete level in the case of stationary incompressible non viscous flows.

explicit discretisation (Sabena [97])
In this case the density is explicit in the mass flux pu, in the velocity evolution terms pdyu
and the convection term pud,u. The scheme takes the form

pTL+1 pn 1 . .
i — i + Am(pup v u?j -p” g u?jg) 0
I ) s (1.18)
—n H—% H’% -n 1 n+1 n+1
piJr%T + Pyl ( Opu )z+1 + K(pz+1 —p;) =0
with
1 n 1 2\n 2\n .
— = ! f ) >0
Loty o — 4 2 Doy (@) — 0O 3wy
QN ik 1 1’ 2 2 .
’ pz—‘rl ACC ((U ):L_A,_% - (u )Z_%) if UH_% < 0

The Bernouilli principle is recovered at the discrete level in the case of stationary incom-
pressible non viscous flows.
The explicit treatment introduces constraints on the time step.
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e explicit convection ([98] section 11.2.1, equation 11.16)
In this particular case the density is explicit in the mass flux pu, in the velocity evolution
terms pdyu and the convection term pud,u. The scheme takes the form

ot — ol 1 +1 +1
i i up,n, n up,n_ n
—_— + —(p. U — p ] =0
A Ao Piry Vi~ Pimt iy
’U;n+11 —u™ 1 )
_ its its _ 1 1 1
p?+% QAt =+ p?+§(“axu)?+% + N P —pi ™) =0
with
- u? (U, —u if o .>0
2 2 Ay iy Ty i+
2
(puaxu)H_% 1 P? + p?—i—l 1 n n n : n
- wl s (ul s —ul ) if W <0
2 2 A:EZ-+; itg ity it3 it3
2

With this treatment the velocity unknowns are easily eliminated using the momentum equa-
tion. This numerical scheme differs from the previous explicit discretisation (1.18) in the

1.18

scheme the form u0,u is discretised. The Bernouilli principle is not recovered at the discrete

treatment of the convection term. In

, the form §8$u2 is used and in the present

level in the case of stationary incompressible non viscous flows.

In most of the methods the velocity unknowns are first eliminated, and the resulting system is
solved in a way that is compatible with the incompressible regime. The drawback of this approach
is that there are constraints on the discretisation of the momentum flux pi ® @ and of the viscous
terms p/Ad for the elimination of the velocity unknowns to be possible. The elimination can take
place rigorously speaking when the convective flux pid ® & and the viscous terms u/Ad are explicit
in time. However explicit discretisations yield time step limitations.

1.3.1.3 The recent scheme of Herbin, Latché et al

In the past decade, Herbin, Latché and their coauthors have proposed a new approach with rigorous
proofs of stability. They discretise the conservative form of the Euler equations (equation
with a conservative scheme. Their approach does not rely on velocity elimination and thus explicit
and implicit variants are possible.
The different variants include one step ([65] section 2.1, [66] section 3.1) and prediction/correction
steps ([65] section 2.2, [66] section 4.1) variants, fully implicit ([66] section 3, [65] section 2.1), semi
implicit and almost explicit [66] (all but the pressure gradient are explicit-in-time) variants.

For simplicity we present the discrete equation of the fully implicit variant ([66] section 3, [65]
section 2.1) for the 1D isentropic Euler equations in conservative form:

1 1
ntl prPr iy — Py
pi Pi + G i+3 ) 2 =0 (1 19)
At Az
—n+1 n+l —n n
S u. —p.l U, —n+1, upn+l —n+1 upn+l n+1 n+1
Pieg ey ~Pirging Plivi Yipy — — PU Y Piy1 —Pi
+ + =0. (1.20)
At Az Az

The pressure p; and the density p; are located at the cell centers whereas the velocity w; 1 are
2

located at the cell interfaces. The expression of the products pu, pd;u and pu2 between the
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velocity located at cell interfaces and the density located at cell centers thus has to be defined

through interpolation formula.

The mass flux pu at the cell interfaces is defined using an upwind density p?j_’ , defined as :
2

up
1

Pits

i if ui+% >

pit1 if Upl <
pi + pit1 .
B + szgn(uH%

0

)

Pi — Pitl

5 (1.21)

which is the sum of a centered and an upwind terms.

The expression of p, 1 in the discrete momentum equation accounts for an average of the neigh-
2

bouring densities

2
The expression of pu in the discrete momentum equation is
1, wp

Piyt = 5(pi+ piv1)- (1.22)

pu; = 1+

2

p?f%uwé) (1.23)

The upwind velocity w;” at cell centers is defined as :

pu; >0
up
pu; <0

u.

i u;

1+ u,
-1 i i

2

which is the sum of a centered and an upwind terms.
It is possible to use a centered velocity @ instead of the upwind velocity u"? (see [66]).

1 —u

= + sign(pu;)

1
+5

2 )

N

(1.24)

We presented the conservative staggered schemes studied in [65], [66] that is proven to be
entropic and to satisfy a kinetic energy preservation. In the next section, we introduce the one
dimensional Cathare scheme in the two-phase flows configuration.

1.3.2 The one dimensional Cathare scheme

In this section, we first give some details on the one dimensional two-fluid model before giving the
discrete equations of Cathare. We presented a generic two-fluid model in the section with the
system In the sequel, we write the one dimensional Cathare model which is a variable cross
section area model.

( 0Aagpr,  OAagprug
= T
ot a+ ) B :

Aaypy, 67: + ukaf; + Aoy, 8]; = Aopprg + Fi" + FP + Aol u™
0 u? 0 u? Op ;
A— H, + £ — A H, + £ = Aap—+ A [ H™
5 [%Pk( E+ 5 )] +69: [ Oékpkuk< E+ 5 >] ko + Aagprurg + k( A

+ QF+ U]?

(1.25)
where A is the cross section area of the channel.
In the sequel, we specify the discretisation of some terms of the system ((1.25):

("

2

)
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e In the mass balance laws, the void fraction (a;"”);+1/2 and density (p,”);11/2 at the cell edge

i+ 1/2 for the term:

<(9Aakpkuk>
Ox i+1/2

are determined with an upwinding approach. (a;”);,; /2 1s upwinded according to the velocity
(uk)i+1/2 and the density (p,");11/2 according to the quantity (a;”);1/2(ur)is1/2,

inf
alP), _ ()i O‘km7 (uk)it1/2 >
( k ) +1/2 { <ak)i+1 — O‘k f’ (uk)i+l/2 < 0 (1 26)
up :
(PP)ir)y = { (Pr)is (" )ig1y2(uk)igr/2 >0
i (Pr)iv1,  (a")iza/2(ur)iy1ye <0

! are constants for the minimal values of ag. The Cathare code considers that

the volume fraction of each phase admit a non-zero minimum value and therefore, also a

where «)"

maximum value very slightly lower than one. It is therefore accepted that a flow is never
completely single-phase, the residual phase represents respectively bubbles or tiny drops in
a practically single-phase liquid or vapour zone.

The mass and energy balance equations in the one dimensional Cathare model are
written in a conservative form, whereas the momentum balance equation is written in a non
conservative form.

To evaluate (pg)it1/2, (Qk)iy1/2 the cell-centered values at the edge i + 1/2 for the term:

6uk 8uk

A R o
Ok Pk [ ot + ug oz L+1/z’

an average of the adjacent values is taken weighted by the cell volumes.

Volip; + Volii1pit1
VOli + VOlZ'_H

k™ )
r ) ;11 /2

is determined with an upwinding approach,

( 3uk> _ { (ur)iv1/2((ur)izrs2 = (Ur)i—1/2),  (Ur)igry2 >0
i+1/2 (ur)ivr2((ur)ivsra — (Wk)iviz2),  (Wk)iy1y2 <0

(pk)i+1/2 =

The convection term:

The value of the cross section area is carefully chosen in the term

8uk
Aakﬂk“k%

to ensure the Bernoulli principle for single phase flows with varying cross section.

Aip1y2 Aipry2 + Ais)2

o (Wk)iy12 >0

P 2 Aiz1y2
ern,i+1/ A’H‘l/? Ai+1/2 + Ai+3/2 (uk)) 172 < 0
2 Az 7 A

VOli + VOl/L'Jrl

Wlth Ai+1/2 = 2Al‘
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n+1

e In the energy balance laws, the velocity (u); " at the cell ¢ for the time derivative term:

n
1

)%)

ot 2 At

is computed with an interpolation using the adjacent velocity at edges and the void fractions.
In this interpolation, the void fractions are explicit in time
(0 () + (n)fop) Aiaja () g + ()} + (@) ) Avgr o (un)i
k . =
' ((o)f + (k)i 1) Aicayz + (@) + (o)1) Ao

(1.27)

In the time derivative term of the energy equations the approximation involves the terms
(a1)7™ and (ag)?. From the interpolation formula , we see that the evaluation of
(a1,)7T! is made with the adjacent volume fractions at time 7™ and with the volume fractions
at time 77! for the term (@)?. Hence, the approximation of the time derivative at time
T"*! in the energy equations is a function of the unknowns at times 77", 7™ and 77!
From this reason, the Cathare time scheme is a two-step time scheme. This point will raise
additional difficulties in the application of the time parallel algorithm, the parareal method.
This requires an adaptation of the parareal algorithm to this type of multi-step time schemes
that should not be intrusive in the Cathare code. We will detail this aspect in the next

chapter.

e All the terms are implicit in time in the system (|1.25]) except for the interpolated velocity at
nodes in the energy equations.

1.3.3 Difficulties of two-phase flow models

Even if two-fluid models inherit achievements obtained in the single-phase flow modeling, mathe-
matical theory and numerical methods, however, they possess many specific difficulties due to the
existence of two phases in the same domain and their interactions. In this section we will dis-
cuss some difficulties in general existing in the two-phase flow models such as the presence of non
conservative products, the configuration of the vanishing phase and the handling of discontinuous
source terms. We illustrate the mathematical challenge in discretising non conservative products

0
on the term ak—p appearing in the the momentum equations of the six-equation two-fluid model

x
(1.1) (see section [1.3.3.1)). Then we comment in section [1.3.3.2| how the Cathare code handles
numerically vanishing phases. Finally in section [1.3.3.3] we present the challenges coming from the
discretisation of stiff source terms.

1.3.3.1 Non conservative products in the two-fluid model

A theory of hyperbolic conservation laws, studied in depth in the literature, can be found in
[106l, [76l, 77, 75, 21), 24), 33, B8, 58]. Such a theory gives a fundamental understanding and main
ideas for plenty of numerical methods to solve a hyperbolic system of conservation laws, i.e. find a
weak solution in the sense of distributions. However, our system possesses non conservative
products and is not therefore a conservative system. A discontinuous solution would lead to the
product of two distributions that is not well-defined. In order to study the weak solutions of a non
conservative hyperbolic system, one may consider different approaches.

In general, the most popular approach to deal with non conservative products is the theory of
non conservative hyperbolic systems studied by Dal Maso et al in [84]. In the classical theory of

; Lékpk: <Hk + uj%)] ()i (o) ((H)F + 5 (@7 1)) — ()i (on)i ((H)F + 5 (@),
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conservation laws, a shock wave depends merely on its left state and right state, the definition of
Dal Maso et al depends on the choice of a specific path which connects a left state to a right state
around a shock wave for non conservative products. Defining an appropriate path requires realistic
physical information which is not easy, especially in a complicated two-fluid model. Moreover, once
the appropriate path is chosen, different numerical methods may converge to different solutions,
see comments in [4] and references therein.

Therefore, one may prefer to solve the two-fluid model by using a simpler consideration of the non
conservative product. For example, in [I13], the authors rewrite the 1D two-fluid model and
choose jump conditions based on a particular case where the system has a conservative form. The
resulting two-fluid model includes two conservation laws of mass of each phase, one conservation
law of mixture of momentum and one equation for the liquid velocity assumed incompressible.
More precisely, it consists in the following equations:

Oay Pv + aavpvuv

ot Ox =0 (128)

33;/)1 3a£“l — 0 (1.29)

f?cwvu?9 e | dowpuiy g;lpl“z”p - (1.30)
861;1-1'6(1(1;%%-51) = 0. (1.31)

0
In [113], they propose a formula to locally linearize the term aj in the product ak—p around a

discontinuity. This local linearisation denoted &y, is chosen such that the original isentropic model
(1.2) (neglecting Apd,ay) and the system (1.2811.31]) have the same Rankine-Hugoniot relation.
After calculations, [113] finds:

- 2alLole s _1_4
Oél—alL_’_aﬁ, Qy = 1L — .
This formula is then applied to the simulation of two-fluid model, [114]. It is important to note
that although Ap was neglected in the identification of jump conditions for the systems and
(1.2811.31]), its contribution is fundamental in practice to obtain real characteristic waves.

On the other hand the non conservative term in the energy equations is written as a spacial
derivative in [I13] using the assumption of incompressible liquiq together with the liquid mass
equation:

Oy = =0 (oquy).

Other authors focusing on the numerical methods usually neglect the product of pdiay in the
energy equations, see for example [88], 87].

1.3.3.2 Cathare treatment of the vanishing phase
An elementary test case: the oscillating manometer:

In this section, we illustrate the role of the interfacial friction term on a two-phase test case where
one of the phases disappears. The equations used are the simplified Cathare equations, .
Transfers between phases (mass and heat) and wall friction are neglected in the system .
The only source terms we consider in this test case are the gravity force and the interfacial forces
.
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In [69], the oscillating manometer is proposed as a numerical benchmark test for system codes
to test the ability of each numerical sheme to preserve system mass and to retain the gas-liquid
interface. It consists in a U-shaped tube manometer which is connected at the top, so that a
closed system is formed. The system contains initially gas and liquid with the liquid forming

air D
equilibrioum .
I level air
H]
lowest level
for the liquid

Figure 1.1: Oscillating manometer test case

equal levels in each arm of the manometer. Further, all parts of the fluid system have initially
a uniform non zero velocity, but zero acceleration. Under these initial conditions, a hydrostatic
pressure hypothesis is made throughout the system. Also, the system is isothermal at 50°C with
10° Pa pressure at the vapour-liquid interfaces. Distance in the direction of the flow is measured
by x in meters. The length of the manometer is 20 m and the diameter is D = 1 m. The initial
position of the vapour-liquid interface is 5m from the bottom of each manometer leg and the fluid
initially has a velocity of up = 2.1 m/s. This initial velocity will cause the interface to oscillate
approximately £1.5 m in height from the initial location.

We seek to show the influence of the interfacial friction term on the behaviour of the scheme
when one of the phases disappears in some parts of the domain. Previously in section , we
saw that the interfacial friction coefficient C'p goes to infinity in the configuration of a vanishing
phase, as a consequence the system tends to an equilibrium of the velocities. The expression of
the interfacial friction term depends on the flow regime (bubbly, annular, dispersed,...) and on the
geometry:

CD = f(akapka O, U, Dh)

where: o is the surface tension, Dj, the hydraulic diameter and uj are liquid and vapour dynamical
viscosities.

The equation of motion of the vapour-liquid interface in each leg of the manometer is the following:

Pz 29z _
2 L ; _
2(t=0)=0, “o(t=0)=u

dt
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| L /2
The solution to this equation is: x(t) = 2ug Q—Sin ( gt) and the liquid velocity is :
g
2
ur(t) = ugcos (\/it) , (1.32)

where g designates the acceleration of gravity and L designates the water length equal to 12 m.

For these simulations, the variation versus time of the liquid velocity at the bottom of the
manometer (at one edge) is plotted. In Figure we compare the reference solution of the

Analytical solution

44 cells, AT =1073 ———
110 cells, AT = 4 10~*

3L 220 cells, AT =2 107* i
440 cells, AT = 104

880 cells, AT =5 107> ———

Liquid velocity (m/s)

Time (s)
Figure 1.2: Convergence of the 1D Cathare scheme

oscillating manometer with several numerical solutions computed with the one dimensionnal
Cathare scheme. These results show that the numerical solution converge to another solution
that is damped. This can be explained by the treatment of the vanishing phase used in Cathare.
When the interfacial friction term dominates the system (section [1.2.5), it behaves as if a diffusion
term was present in the model that damped the solution and prevent the numerical solution to
converge towards the reference solution of the test case.

An industrial test case: the Water-Packing

The treatment of the vanishing phase is a challenge for every software that simulates two-phase
flows. In the context of nuclear safety studies, a well known problem linked to vanishing phases
is the Water-Packing. It occurs during the simulation of a water level rise due to condensation as
well as in other more complex situations. The typical situation in which this problem was studied
is a vertical tube initially filled with superheated steam, connected to a steam tank at its top,
is gradually filled with very cold liquid from below. As the liquid front progresses upwards, the
vapour condenses and the resulting local depression aspirates steam from the tank and the liquid
front gradually heats up with the condensation. Provided you know the rate of phase change
by condensation, the analytical solution to this problem is simple with regard to the pressure at
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the bottom of the tube. Assuming that the front rises slowly, the problem is quasi-static and
the pressure at the bottom of the tube then increases regularly due to the weight of the liquid
column which increases by the addition of liquid injection and condensation. On the other hand, if
one wishes to simulate this flow numerically, one runs up against difficulties: the field of physical
pressure is disturbed by parasitic waves of strong amplitudes. This is the phenomenon of Water-
Packing. The simulation of this kind of stratified flow is of great interest. In fact this type of
situation is encountered in a more complex form in accidental transient calculations (for example,
the filling phase of the reactor core after a large breach). The calculation of the water level rise in a
simple situation is therefore used to analyse and solve a problem occurring in much more complex
situations. This problem occurs in all the codes of thermalhydraulics dedicated to the simulation of
accidental transients in the circuits of a nuclear reactor. It has been the subject of numerous studies
and it is used to evaluate codes in test batteries called benchmarks. The Water-Packing benchmark
was formalized by V. H. Ransom in 1987, in [68], under the title "expulsion of steam by cold water”
(see Figure . To understand the origin of this phenomenon, we recall how the Cathare code

Source de vapeur
T=163°C

Condition limite
sortie

\ T

P = 4 bars
Vapeur
163 °C
e
[INTERFACE]
Liquide
S0 %C
~——"[ Condition limite
—0 entrée
V_lig=10.5 m/s
alig=1
T_liq = 50 °C

Figure 1.3: Setting of the Water-Packing benchmark in [6§]

handles vanishing phase. The principle consists in considering that the volume fraction of each
phase admit a non-zero minimum value and therefore, also a maximum value very slightly lower
than one. It is therefore accepted that a flow (or a flow zone) is never completely single-phase,
the residual phase represents respectively bubbles or tiny drops in a practically single-phase liquid
or vapour zone. So even when a single-phase flow (or flow zone) is simulated, all the equations
are solved. Also the mechanical equilibrium is forced: the residual phase has the same velocity
as the dominant phase, consequence of an interfacial friction made artificially very large (section
. This choice was made in the Cathare code since its initiation and has been valid for a large
number of use cases. However it raises problems in the representative test case of Water-Packing.
Physically, this choice amounts to say that the residual bubbles (resp. drops) in the liquid (resp.
vapour) are entrained by the dominant liquid phase (resp. vapour).

In the context of test case , the liquid front is rising thus the liquid velocity is positive
below the interface. The steam condenses at the interface with cold liquid, thereby creating an
intake of additional steam from the top of the tube. The vapour velocity is negative when above
the interface. The residual liquid velocity in the vapour phase is then negative. Therefore, when
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a cell close to the interface is filled up with liquid, liquid velocity suddenly changes direction. A
vector node located above the interface at a negative liquid velocity will become positive when it
is joined by the interface. Artificial pressure spikes are then observed whenever the liquid level fills
up a cell (see Figure red curve).

Here is an explanatory diagram of the behaviour of the liquid velocity during the advance of
the liquid front(see Figure [1.4)).

=g \/itesse liquide residuelle

= Vitesse liquide dans la
phase liquide

= =@ Vitesse liquide apreés le
passage de l'interface

/\ Interface liquide-vapeur

X Noeuds Vecteurs

m Phase liquide pure
D Phase Vapeur pure

Figure 1.4: Behaviour of the liquid velocity during the Water-Packing phenomenon, from [86]

Currently, the Cathare code uses an Anti-Water-Packing correction, specially dedicated to the
treatment of this problem. However, it comes with a large number of shortcomings with respect
to the balance laws and returns sometimes erroneous values. The principle consists in locating
the cell(s) in which the interface is located, then greatly reduce the rate of condensation. As a
consequence, the pressure shows artificial spikes with lower amplitude (see Figure blue curve)
because by decreasing the rate of condensation, the velocity at which the vapour is aspirated
decreases too and the velocity of the residual liquid phase just above the interface decreases too.
The inversion of the liquid velocity still takes place but it goes from a weakly negative velocity to
a stronger positive one. In summary, the inversion of the liquid velocity occurs more gradually.
The upwinding approach in the Cathare numerical scheme plays an important role in solving this
problem. Indeed, during the simulation of a counter-current flow, the upwinding strategy can
be inconsistent with the dynamics we want to capture. Each momentum equation is upwinded
according to the sign of its phasic velocity (reference section schema de Cathare). This approach
is consistent when bot phasic velocities have the same sign but may fail to capture the void waves
when the phasic velocities have opposite signs. In [93], the authors propose colocated schemes to
capture void waves without forcing a mechanical equilibrium with a large interfacial friction. This
scheme is based on upwinding according to the volume fraction wave speed that is different from
the phasic velocities.

1.3.3.3 Discontinuous source terms

In the thermalhydraulics of nuclear reactors, two-fluid models display stiff source terms S(U, x).
The stiffness of these source terms has different origins. First, the heat source @ is localised on the
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Figure 1.5: Pressures spikes with or without Cathare anti-Water-Packing correction, from [86]

core of the reactor which yields a discontinuity in space. Moreover, the dry-out of the Uranium rod
when the temperature reaches a threshold (the critical heat flux) yields a discontinuity of ® as a
function of the temperature. Secondly, the boiling of the fluid is a stiff phenomena with a threshold
that is the boiling temperature (or enthalpy). For these reasons the simulation of boiling of
two-phase flows is challenging both from a mathematical and a numerical point of view. The source
term S(U, ) being discontinuous both in U and = makes it impossible to use Cauchy- Lipschitz type
of theorems for the existence of solutions even for ODEs. However, there are particular cases where
a unique solution may exist (see [23]). The source term S(U, ) being discontinuous in U makes
numerical approximation more difficult in the numerical simulation because of the stiffness of the
solution. Classical approaches to deal with stiff source term assume it is Lipschitz in the variable U.

In this section, we introduce non-homogeneous hyperbolic systems of conservation laws, i.e. we
take into account a non zero source term S as below

ou

E"ﬁ‘a F(U):S(U,l‘), reR,t>0, (1.33)
The source term S is usually a function of the unknown vector U and spacial variable z, S(U, z).
A simple approach to solve the non homogeneous system of conservation laws is to include a source

term in the right hand side as follows:

urtt —up N Fivijg — Ficajp

n 1.34
Al AL Si'y (1.34)

where S;' is an approximation of

tn+1

Si= AxAt/t

and Fj/o is some interfacial flux function.

The numerical scheme is a classical one solving the non homogeneous system of conservation
laws. Sometimes both the flux divergence 0,F(U) and the source term S(U,z) are discretised
independently and in practice, S is simply considered as the source function at the average value
Ui, i.e. S;* = S(U]",x;). However this approach may generate instabilities in the simulation of the

Ti4+1
/ Sdxdt (1.35)
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system ([1.33)), especially for stiff source terms functions S.
We are interested in the capture of the stationary regime of a two-phase flow characterised by the
stationary equation:

0, F(U)=S5. (1.36)

In some cases, for example with stiff source terms, using S;' = S(U",z;) in implies the
instability of the numerical solution at the stationary state. In order to improve the numerical
simulation, one suggests either upwinding the source terms ([I7]) or developping well-balanced
schemes ([22]) in the sense that it preserves the stationary state. In a two-fluid model, due to
the complexity of the flux function and the lack of regularity of source terms, it seems difficult to
construct a well-balanced scheme.

1.4 Acceleration techniques for the simulation of two phase flows

In the numerical resolution of partial differential equations, we generally have to solve linear or
nonlinear systems arising from the discretisation. The large size of these systems and the fact that
they are ill conditionned make a global resolution difficult. In this section, we firstly summarise
in the resolution method used by the Cathare code to solve the nonlinear system arising
from the discretisation of the two-fluid model. Then we present the actual acceleration methods
available in the Cathare code in Finally, we introduce in the time parallel algorithm
that we consider in this thesis, the parareal algorithm.

1.4.1 Solution algorithm for the two-fluid model

After discretisation in space and time of the two-fluid model, we obtain a non linear system that
is solved with a Newton method. Before describing the implementation of this method, we recall
here the dependance of the different equations according to the implicited variables:

e the mass and energy balance equations at cell ¢ depend on the pressure, void fraction and
enthalpies defined at cell 7 and on the velocities defined at the edges.

e the momentum balance equations at edge i + 1/2 depend on the velocities defined at edges
i+1/2,i—1/2 and i+ 3/2 and on the cell centered unknowns defined at the adjacent cells
of the edge i + 1/2.

After applying the semi-implicit time scheme of the Cathare code, we obtain a system of the
following form:
UnJrl —_yun
At
This non linear system is solved by a Newton method:

+ AU U™ = S(UM)

5Uk+1 B
AT J(U*, UMSURY = S(U™, U*), where: UM = UFtt — p*

CprkHl okl k1 prkl ppk+l k1l k4l
and : U™ = (p"" o HY T HY T w T  uy )

(1.37)

Uk—l—l

The increments of the principal variables in the Cathare code are denoted & and the terms of

the Jacobian matrix J(U* U™) are computed as follows:

OF;
Ji’j = Uk
J
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Since the Cathare time discretisation is semi-implicit, this term corresponds to the derivative of
the balance equation FE; with respect to the principal variable Uf that is implicited, for the k-
th Newton iteration. Hence, the Cathare code uses the derivatives with respect to the variables
(p, v, Hy, Hy, u, uy) instead of the conservative variables (auypy, aqpp, ey, Ug, 0 po By, cqprEy).

The resulting linear system at each Newton iteration is solved by a Gauss elimination to obtain
a system with pressure increments only. Another specificity of the Cathare code is that it uses a
semi-implicit pressure solver without splitting techniques for the velocity (no prediction/correction
steps), and no explicit construction of an elliptic problem on the pressure.

In the Cathare software, the junction is an element of the geometry that links two other elements
of the geometry: a 1D element (a pipe, ...) with a 3D element (vessel, ...) or a 1D/3D element with
a boundary condition element (see Figure . The junctions store the informations about the
edge that is common to the two elements linked by this junction (two velocities and derivatives of
the momentum equations associated to this edge with respect to the principal unknowns). Hence
the system depends on the IV; pressure increments belonging to the internal cells and on the N;
pressure increments belonging to the junctions. The unknowns associated to the junctions are
called external variables. The dependance on the external pressure increments appears when we
write the momentum balance equations associated to the junctions. The resulting system is of the
following form:

A A Ap(N;) S1 (1.38)
Ay Ago Ap(N;) So

The method adopted in the Cathare code consists in eliminating the internal pressure increments
Ap(N;) and then solve the problem on the external pressure increments Ap(Nj):

(A2 — A21A1_11A12) Ap(N;) = Sy — Ay ALSy
This linear system is then solved by a direct method with the library LAPACK BLAS.
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Figure 1.6: Example of a geometry in the Cathare code with elements and junctions
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1.4.2 Actual acceleration methods in Cathare

In [101], the authors present the strategy implemented in the Cathare code in order to make its
use compatible with a real-time response. This work was carried out within the context of the
integration of the Cathare code in the SIPA simulator (Post-Accident Simulator) for training and
engineering studies on nuclear PWR reactors under nominal conditions or accidental transients.
In the sequel, we list the steps of the solution algorithm described in section that were
parallelised:

e Each element of the Cathare geometry (see figure assembles a block of the Jacobian
matrix in parallel. Hence, for each element, the matrix block depends on the IN; pressure
increments belonging to the internal cells of the element and on the N; pressure increments
belonging to the junctions associated to the element (step () in figure [L.7).

An element of the Cathare geometry can be seen as a subdomain of a spacial domain decom-
position method.

e Each element eliminates the internal variables of system (|1.38)) and obtains a system depend-
ing on the junction variables Ap(N;) only (step (i) in figure [L.7).

e The pressure increments Ap(N;) for all the junctions of the Cathare geometry are computed
by a Gauss elimination. It is performed by an iterative algorithm that successively eliminates
the blocks of the Jacobian matrix corresponding to a junction common to two elements.
This process goes on, as long as the non-eliminated junctions are common to at least one
other element. The order used to eliminate the block matrices is called an elimination tree.
It depends on the reactor meshing and is optimised by the Cathare code for a sequential

resolution (step (i) in figure [1.7).

e The increments of the other principal variables (velocities, volume fractions and enthalpies)
are computed in parallel over all the elements (step (iv) in figure [1.7)).

In figure we see the performances of the actual parallel method implemented in the Cathare
code. We see in the left figure that the computational cost of the step (7) in the solution algorithm
represents 65% of the global computational time of the simulation. Hence, the parallelisation of
step (i) over the elements of the geometry offers good speed up performances: a speed up of 10 is
obtained for the parallelisation of step (i) on 12 processors where the global speed up is 6.
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Figure 1.7: Performances with the actual parallelism in Cathare for two industrial test cases on
12 processors, [101]

This actual acceleration method has been successfully applied on industrial test cases for the
simulation of a nuclear reactor under an accidental scenario. However, these parallel methods are
implemented with OpenMP that allows shared memory parallelism. Their use is limited to a level
of parallelism of about 20 processors or of at most all the processors of a standard desk computer.
Moreover, the performances of this strategy reaches its limit when the geometry of the simulation
includes 1D elements with ~ 10? cells and 3D elements with ~ 10%. This imbalance of tasks
between the processors can damage the speed up performances. We illustrate this behaviour in the
left figure [I.§ where the computational time of one step of the Jacobian assembling is measured
for one Newton iteration in one time step.

An optimisation of the parallel method that we have previously described has been proposed to
overcome the issue of tasks imbalance between processors. This new algorithm allows to assign
elements of the geometry to the processors with load balancing, knowing the computational time
of the previous time step. In the right figure we see that this algorithm allows to significantly
improve the load balancing between processors and thus the performances of the parallel method.
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Figure 1.8: Load balancing between two threads in a Cathare simulation
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1.4.3 Time domain decomposition: the parareal algorithm

The scalability properties of the space domain decomposition method implemented in the Cathare
code are limited by the small number of cells in the meshes of the Cathare simulations. Several
works are in progress to propose novel parallel algorithms in the Cathare development group.
For example, the possibility to assign a 3D element to many threads by dividing the element
on subdomains is actually investigated. Since the number of elements in a Cathare simulation
is usually smaller than the number of available processors, we seek in this work to investigate a
novel strategy of parallelisation to complement the actual parallelism in the Cathare code. For this
reason, if we have more processors at our disposal and wish additional speed-ups, the parallelisation
of other variables needs to be addressed.
Several approaches have been proposed over the years to decompose the time direction when solving
a partial differential equation (see [96], [27], [41], [40], [51], [30], [44], [50]). Of these, the parareal
algorithm, whose performances we explore in this work, was proposed two decades ago by [78] and
has received an increasing amount of attention in the last years. The parareal method can also
be cast into the category of multiple shooting type methods that were introduced in [96] (we refer
to [55] for a detailed discussion about the several possible interpretations of the parareal method).
The parareal method has been applied successfully to a number of applications (see [13], [49], [104],
[79], [105] among many others), demonstrating its versatility. Theoretical advances on this method
include stability analysis ( [16], [I08], [15], [35]), its coupling with spatial domain decomposition
methods ( [82], [61]) and control problems ( [81], [82]).
To see how the method works and how it has been applied to the two-fluid model, we write the
system , after the discretisation in space on A4~ degrees of freedom:

oU

o PAU) =0, t€[0,T), Ut =0)=0° (1.39)

A:RxRY - R”, U eR” (1.40)

where U is the unknown, in our case, U = (p, ay, hy, hy, Uy, u;). Let us assume that we have two
propagators G and F' to solve . For any given ¢t € [0,T], s € [0,T — t] and any function
w in a Banach space, G(t,s,w) (respectively F(t,s,w)) takes w as an initial value at time ¢ and
propagates it at time ¢ + s.

e G(T", AT, U ") computes a coarse approximation of U(T™"!) with initial condition
ur ) " (low computational cost)

e F(T™ AT,U™) computes a more accurate approximation of U(T™"!) with initial condition
U(T") ~ U " (high computational cost)

The fine propagator F' can perform the propagation of the phenomenon with small time steps §t
and with very accurate physics described by A. On the other hand, the coarse approximation G
does not need to be as accurate as F' and can be chosen much less expensive, by the use of a scheme
with a much larger time step AT > §t or by treating reduced physics.

In addition to these two propagators F' and G, the parareal in time algorithm is based on the
division of the time interval [0, 7] into N sub-intervals [0, 7] = U= [T " T that will each be
assigned to a processor P". The parareal algorithm applied to is an iterative technique
where, at each iteration k, the value U(T™) is approximated by U’ with an accuracy that tends to
the one achieved by the fine solver when k increases. Uj’ is obtained by the recurrence relation:

Uptl = G(T", AT, Upy) + F(T", AT, UY) — G(T™, AT, Uy') (1.41)
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Starting from UJ*! = G(T™, AT, UY).

From formula , one can see by recursion that the method is exact after enough iterations.
Indeed, for any n > 0,U" = F(T°, 7" —T° U°). However, convergence of U} to F(T°,T"—T1°,U")
goes much faster than this.

While the main results about the convergence properties of the method were studied in depth
several years ago (see [78], [13], [16]), more recent efforts ([85], [11], [40], [18], [80]) focus on the
algorithmics to implement it in order to improve the speed-up provided by the original algorithm.

1.4.4 Time domain decomposition for hyperbolic problems

An instability of the parareal algorithm may appear when it is applied to convection dominated
problems. In [I5], the author points out the need of a strong regularity on the initial condition
to ensure the stability of the parareal algorithm. When the problem is parabolic, the smoothing
character of the problem prevents the appearance of instabilities even if the initial condition is
not regular enough but when the problem is hyperbolic, an initial condition with high frequencies
components may trigger the instability. Moreover in [15], the author shows the influence of the
numerical diffusion on this instability. This aspect has also been explored in [102], [49], [79],
[103].

Others strategies have been studied to treat the instability of the original parareal. They
propose to improve the coarse approximations at every parareal iteration using the previous fine
solutions to overcome the instability issues with hyperbolic equations. In [48] and [54], the
parareal solution is projected in a Krylov subspace generated by the set of fine solutions from the
previous parareal iterations. In [29], the authors use a subspace thanks to a reduced basis built
from the matrix made of the previous fine solutions. In the same spirit, in [35], the authors propose
a parareal algorithm with an additional step that project the parareal solution in a manifold to
ensure the conservation of invariants (for example, the conservation of the Hamiltonian).

Other contributions propose cures to the parareal algorithm with an algebraic viewpoint. In
[28], the authors formulate the method with an iteration matrix and propose preconditionners to
improve the behaviour of the parareal algorithm.

In [52], the author shows the difficulties of the parareal algorithm to converge in a reason-
able number of iterations on the advection equation and the wave equation using the method of
characteristics.

In [95], the authors propose an algorithm called Communication Aware Adaptive Parareal
(CAAP) to speed up the non linear shallow water equation beyond what is possible using spatial
domain decomposition methods alone.

We will also note that the application of other parallel in time algorithms is not straightforward
on convection dominated problems. In [I09], the authors propose MGRIT algorithms that im-
prove stability and scalability for the resolution of the advection equation with 1st-order numerical
scheme. In [110], analysis tools are proposed to understand the source of the instability issues
on MGRIT algorithms and on the parareal algorithm using the multigrid interpretation. In [73],
a convergence analysis is conducted to propose criteria for coarse-grid operators involved in the
MGRIT and parareal algorithms. This strategy can ensure stability and scalability for the time
parallelisation of the advection equations with high order discretisations.
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In this chapter, we present the two strategies we developed during the PhD in order to apply
the parareal algorithm to the Cathare code: a numerical clone of Cathare that is restricted to one
test case and a library that uses the Cathare code in a non intrusive way. The main contribution
of this work has been to adapt the parareal algorithm to the architecture of the software and to its
time discretisation in a non intrusive way, without any changes of the source files of the Cathare
code, in order to reduce the computational time and get closer to a real-time response of the code.
In section [2.1] we present the challenges of implementing the parareal algorithm on an industrial
software, the Cathare code, in a non intrusive way. In section we introduce the new algorithm
we designed to handle multi-step time schemes such as the one used within the Cathare code. In
the last section, we report the speed up performances obtained on two test cases: the oscillating
manometer using the numerical clone of the Cathare code and the Omega test case using the
Parareal library that uses the Cathare software. Each test case is representative of the numerical
challenges for the simulation of two phase flows in the context of safety studies such as vanishing
phases and discontinuous source terms.
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2.1 The Parareal library for the Cathare code

The development of the Cathare code started 30 years ago for the simulation of nuclear reactors
under nominal or accidental situations. The software was designed for engineers in nuclear energy
and experts in the thermalhydraulics of accidental scenarii in nuclear power plants. Hence, the
terminology used in Cathare is directly linked to the physics of nuclear reactors. For example, to
define the geometry of the simulation, the user has to define a reactor, a primary and a secondary
circuit and hydraulic elements representing pumps or steam generators. Generally, the definition
of the simulation one seeks to run is composed of two main blocks:

e First, informations are given for the description of the circuits. Each element is defined with
the reference to a hydraulic element or Cathare element (1-D, 0-D, 3-D, junction, etc...).
Geometrical parameters and meshing are defined. Elements are connected to constitute
elementary circuits (one primary and several secondary circuits). Heat exchangers between
elementary circuits are defined.

e The characteristics of the calculation are then specified. Successive directives are given
corresponding to the different steps of the simulation:

— operation of the initial state process,
— time propagation called transient calculation,
— time step control,

— events occuring during the calculation (safety injection, break opening, valves, ...).

The actual parallel methods available in the Cathare code (see section chapter 1) are imple-
mented with OpenMP that allows shared memory parallelism. Their use is limited to a level of
parallelism of about 20 processors or of at most all the processors of a standard desk computer. In
this work, all the developments of the parareal algorithm applied to the Cathare code were made
with MPI that allows distributed memory parallelism. Hence, the parareal algorithm allows to
run a Cathare simulation in parallel on many processors located in different computers, including
supercomputers.

In the sequel, we summarise the obstructions linked to the Cathare structure and the strategies
we chose to handle them. These cures were of two natures: computer science and algorithmic. We
think that the experience of implementing a parallel algorithm to an industrial software in a non
intrusive way will be instructive for the future developments of parallel techniques in the Cathare
code. This is why we list the obstructions that are only of a computer science nature. In the sequel,
we list the adaptations and adjustments necessary to develop a library that applies the parareal
algorithm to the Cathare code where it is used as a black box without modifying the source files
of the software.

2.1.1 Obstructions linked to the data structure of the Cathare code
2.1.1.1 Data structure

The data structure in the Cathare code mainly lies on an array of values containing the informations
related to the mesh, the unknowns, the coefficients of the Jacobian matrix and of the right hand
side. This array stores the principal variables of pressure, volume fraction and liquid and vapour
velocities and enthalpies for every cell of the mesh. The Cathare array also contains auxiliary
variables that are necessary to carry on the simulation. These auxiliary values are of different
natures:
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e variables computed from the principal unknowns

e variables tracked during the simulation: for example, the water level in an element of the
system

e boolean variables giving the flow regime in an area of the system: bubbly, annular, dispersed,
seperated phases, etc.

The first obstruction we met is that we can only define one system (one reactor and one array of
values) in a Cathare simulation while in the context of the parareal algorithm we use two systems:
a coarse one and a fine one. The first difficulty is to run a simulation with coarse and fine systems
in the same processor. There are two possible approaches:

e When running the simulation over N processors, we assign one processor (“the coarse proces-
sor”) to the coarse propagation for all time windows [T™,7""!] and the remaining processors
("the fine processors”) run the fine propagation only, over one time window. The coarse
processor will also transmit the coarse approximation at times T" to the corresponding fine
processor. The main drawback of this approach is the multiplication of communications and
the use of N + 1 ressources for a parallelism over N time windows.

e We use the same array of values for the coarse and the fine propagations in each processor.
This is made possible by the use of the Parareal library that is independent of the Cathare
code and contains the parareal algorithm. This library collects the coarse and fine propa-
gations made by the Cathare code then apply the parareal corrections and finally send to
the Cathare code the updated initial conditions for each processor [T, T"H]. Depending on
whether the Cathare will make a coarse or a fine propagation, the Parareal library will send
the data array associated to the coarse or the fine solver (for example, the coarse or fine time
step and the suitable initial condition). For the implementation of the parareal algorithm
applied to the Cathare in a non intrusive way, we chose this option.

The data structure of the Cathare code represents a challenge for memory storage with up to 10°
variables and a size of about 8 Go. To reduce the cost of communication, we choose to exchange
only the principal variables between processors. Some of the auxiliary variables are then computed
from the principal unknowns. This choice will have consequences on the accuracy due to the error
made on the reconstruction of the auxiliary variables. This question is addressed in section [2.3.2

2.1.1.2 Data set
A Cathare data set can be split in different blocks of instructions:
e definition of the geometry and the mesh

e calculation of an initial condition: computation of a stationary state starting from the in-
structions of the user: pressures and temperatures for some specific cells, for example, or
rotating speed of a pump or flow direction

e a loop for the time integration from 7° to T

The first two points are called "Initialisation” step and the last one "Time integration” step.

For the application of the parareal algorithm, we split the Cathare data file into two files for the
“Initialisation” step and for the "Time integration” step. Each processor P, has an initialisation file
and a file for the time integration between 7™ and T™"!. The initialisation file of processor P° is
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particular since it builds the geometry and mesh, calculates the initial state of the simulation and
sends them to the other processors. The initial state will not be used in the remaining processors
but this communication allows to initialise the size of the Cathare arrays in each processor. After
that, Py makes a coarse propagation and sends G(TO, T, Ug ) to P;. The other processors receive
the informations for the geometry and mesh and their local initial condition G(T™~!, 7™, UJ™ ") to
run their own coarse propagation. We met two obstructions at this stage:

e The calculation in [T%,7?] and generally for [T™, T""!], with n # 0, has to start from an
initial time T different from 0. It is unusual for the Cathare code to start a simulation from
a time T" # 0. The consequence is: instead of beginning the calculation with the coarse
solution sent from the previous time window as an initial condition, the processor uses the
initial state sent from rank O processor.
To treat this difficulty, the time window makes one time step and delete the computed
solution. This allows to fix the initial time T™ of the time window to the correct value.

e The size of the arrays for every processors is computed at the moment processor Py sends
to B;,i =1,--- , N — 1 the geometry, mesh and initial state. If some variables are declared
between the initialisation step and the time loop then the array in processor Py will have
the correct size but the arrays in the remaining processors will still have the size of the state
sent by Py during the initialisation step. Hence, the arrays in processors P;,i =1,--- ,N —1
have a different size from the one in processor Py. This will generate conflicts during the
communications between processors and the copy of arrays. Thus we need to adapt the
"Initialisation” data file of processor Py to handle this.

2.1.2 Obstructions linked to the time discretisation

The Cathare time discretisation is based on a two-step time scheme (see Chapter 1, section m
on the Cathare discretisation methods). This leads us to design a new variant of the parareal
algorithm that takes more efficiently into account the presence of multi-step time schemes. We
detail this aspect in section Moreover, the Cathare time scheme uses an adaptive time step.

In a Cathare simulation, the user imposes an initial time step Aty and a maximal time step
Atpmae. At each iteration, the code gets closer to Atq: by multiplying by 2 the current time
step while respecting the CFL condition integrated in the code. If in a time iteration, the Newton
method does not converge after the maximal number of iterations, the current time step is reduced

by multiplying it by % Thus, we need to communicate the fine and coarse time steps between
processors. For the coarse propagation, we can transfer the time step computed at the current
parareal iteration because it is a sequential step. Since the fine propagation is made in parallel,
the time window [T™,T™"!] at the k-th parareal iteration uses the fine time step from the time
window [T"~%,T™] computed at the (k — 1)-th parareal iteration.

2.1.3 A numerical clone of the Cathare code

In this section, we present the numerical clone of the Cathare code, called MiniCathare, imple-
mented during the PhD. This tool allowed us to make a first trial on the efficiency of the parareal
algorithm to speed up a two-phase test case using the Cathare model and numerical scheme. The
test case we consider here is the oscillating manometer (see section for the description of the
test case and the numerical results obtained with the numerical clone). Hence, MiniCathare is
restricted to one test case. We give in the sequel some details about this numerical tool:
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MiniCathare only makes the time propagation in a time intervall [TO,Tf ] and does not
compute an initial state like the Cathare code. The initial condition in MiniCathare is
extracted from the Cathare code after the initial state process.

MiniCathare is implemented in C++ and the parareal algorithm in MPI.

MiniCathare allows to make convergence tests which is not possible with the Cathare code
since there is a limitation on the mesh size in Cathare. In Chapter 1, section 1.3.3.2, we show
the convergence properties of the Cathare numerical scheme on the oscillating manometer by
comparing several numerical solutions, obtained by MiniCathare, to the reference solution of
this test case.

The only difference between MiniCathare and the Cathare code is the solution of the non
linear problem at each time step:

UnJrl —_yn

n+1 ny __ n
AU = S

In both cases, this non linear system is solved by a Newton method:

k+1 ~
5UA —+ J(UF, UMSURY = S(U™, UF), where: UM = UFtt — p* (2.1)

. k+1 _ ( k+1 _k+1 k+1 k+1 | k+1 | k+1
and : U™ = (p"" o HY T HY T w T uy )

The increments of the principal variables in Cathare are denoted 6U**! and the terms of the
Jacobian matrix J(U*,U™) are computed as follows:

OF;
Jij =
5] U]k

Since the Cathare time discretisation is semi-implicit, this term corresponds to the derivative
of the balance equation E; with respect to the principal variable UJ’Y-C that is implicited for the
k-th Newton iteration. The resulting linear system is solved differently in Cathare and
MiniCathare:

k+1

— Cathare, by a Gauss elimination, obtains a system with pressure increments dp"™ " only

and then solves the problem in pressure with a direct linear solver (Lapack-Blas)

— MiniCathare assembles the whole Jacobian matrix and solves the complete linear system
with an iterative linear solver (PETSC library)

2.2 Multi-step variant of the parareal algorithm

Several approaches have been proposed over the years to decompose the time direction when solving

a partial differential equation (see [50] for an overview). Of these, the parareal in time algorithm,

which performances we explore in this work, has received an increasing amount of attention in the
last twenty years with many applications (see [13], [49], [I04] among many others). In the sequel,
we recall the classical parareal algorithm ([78], [I3], [16]) and present the multi-step variant we will
apply to the Cathare code.
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2.2.1 Original parareal algorithm and notations

After the discretisation of a PDE in space, we obtain an ODE system of the form:

% +A(t,u) =0, t€[0,T], u(t=0)=uo (2.2)

where A: R x R — R”", and .4 denotes the number of degrees of freedom.

Let G and F be two propagators such that, for any given t € [0,7], s € [0,T — ¢] and any function
w in a Banach space, G(t, s, w) (respectively F(t,s,w)) takes w as an initial value at time ¢ and
propagates it at time ¢ + s. The full time interval is divided into N¢ sub-intervals [T", T""!] of
size AT that will each be assigned to a processor. The algorithm is defined using two propagation
operators:

e G(T", AT, u™) computes a coarse approximation of u(7™*!) with initial condition
u(T™) ~ u" (low computational cost)

e F(T",AT,u™) computes a more accurate approximation of u(7T™"!) with initial condition
u(T™) ~ u" (high computational cost)

Starting from a coarse approximation v at times 7’ 07t ... . TN obtained using G, the parareal
algorithm performs for £k =0, 1,--- the following iteration:

witl = G(T", AT, 1) + F(T", AT, u}) — G(T", AT, u})

In the parareal algorithm, the value w(7™) is approximated by wu} at each iteration k with an
accuracy that tends rapidly to the one achieved by the fine solver, when k increases. The coarse
approximation G can be chosen much less expensive than the fine solver F' by the use of a scheme
with a much larger time step (even 67 = AT') §T > 6t (time step of the fine solver) or by using
a reduced model. All the fine propagations are made in parallel over the time windows and the
coarse propagations are computed in a sequential way but have a low computational cost. We refer
to [80] about the parallel efficiency of parareal and a recent work offering a new formulation of the
algorithm to improve the parallel efficiency of the original one. The main convergence properties
were studied in [55] and stability analysis was made in [108], [14].

2.2.2 Adaptation to multi-step time schemes

2.2.2.1 Case of a two-step fine time scheme

In the sequel, we will consider the case where the fine solver is a two-step time scheme. Hence we
will use the following notation for the fine solver F' that takes two initial values:

F(t,s,x,y), te€[0,T], se€l0,T—t
and the initial values x,y are in a Banach space U.

Example 2.1. If one solves (2.2)) with a multi-step time scheme as fine propagator F like the
second-order BDF method:

3 . 1 . . . .
§u]+1 — ol + 5uJ—l = —StAWTL Y, j=1,-.. N/ P =6t

Here the fine solver reads as: /! = F(tj, 5t,uj_1,uj). Now, we apply the parareal algorithm with
a coarse grid: TC,--- TN where:
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T —T" = AT = N/ 6t.

Then we can write: w(T™ + jot) ~u™,j=1,--- , N/ n=1,... N°€.

In order to perform the fine propagation, in a given time window [T", T”H], we only need the local
initial condition up and a consistent approzimation of u(T™ — ot).

In [12], the authors propose a consistent approximation in the context of the simulation of
molecular dynamics. The proposed method was linked to the nature of the model and the sym-
plectic character of their algorithm is shown, which is an important property to verify for molecular
dynamics.

In the context of our application to the thermalhydraulic code Cathare, we want to derive a multi-
step variant of parareal that will not be intrusive in the software. We seek to derive a consistent ap-
proximation of u(7T™—6t). The only fine trajectory at our disposal is F(T" ™1, AT, uZ_Q’Nf_l, uZ_l).
Its final value at time T™ is:

F(T" Y AT, uZ’fZNLl, uzfl)(T”) from which we compute wj;, | by the parareal correction. Hence,
we translate the solution:

F(T" ', AT — 6t, uZ_g’Nf_l, uZ_l)(T” — Jt) by the same correction:

Upyq —F (T 1, AT, uZ_z’Nf_l, uZ_l) and obtain the so called consistent approximation u
to initialise the fine propagation in [T™, T""!]. We now detail our algorithm:

n—1,Nf—1
k+1

uptt = G(T™, AT, uy), 0<n<N-1

n—1,Nf-1 _ p
UO = UO

W = QT AT, uf ) + F(T AT, N g
—G(T",AT,u}), 0<n<N-1, k>0

uZﬁffl = F(T", AT — 6t, uzfl’fol, uyp) + u};‘_ﬁ
P AT, WYY ), 0<n<N—1, k>0

(2.3)

Another option to treat this issue is to use a one-step time scheme to initialise the fine computation.
We will see from the numerical results that this choice generates an error greater than the target
accuracy and prevents the parareal algorithm to converge towards the solution with the desired
accuracy.

The algorithm adds consistency with the fine scheme. Also, this strategy can be generalised
to multi-step time schemes involving several fine time steps preceding the time T" by applying the

f_; .
NI, L

same correction to terms taking the form: w;’ |
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Iteration k
F(Ty, AT, U, (T 6t),U})

1 1
I Y
| |
| |
| |
| |
| | G(T, AT, UL, )
| | —G(T\, AT, U})
| |
¢
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Ut Upsa(T2-61) | Uk
| |
| | 1
TO Tl T2 T3
1,Nf-1

at time 72 — 0t in [T, T?] for the initialisation of the fine
propagation in [T?, T°]

Figure 2.1: Correction of u;’,

2.2.2.2 Case of two-step coarse and fine time schemes

In the sequel, we will consider the case where the fine solver and the coarse solver are both two-step
time schemes. Hence we will use the following notation for the coarse G solver that takes two initial
values:

G(t,s,x,y), for t € [0,T],s € [0,T —t[ and 2,y € U

We propose to add a correction for the solution at time 7" — 6T, where 0T is the coarse time step,
to initialise the coarse propagation in each time window in a consistent way. The parareal solution
at time T™ — §T and k-th parareal iteration is:

oT
where R is the ratio between the coarse and the fine time steps: R = —.

The full multi-step parareal algorithm ([2.4) makes two additionnal corrections compared to the
classical parareal algorithm when the coarse and fine propagators are based on one two-step time
schemes: one at times 7" — §t (see figure [2.1)) and the other at times T — 67" (see figure [2.2]).

,

(2.4)

att = G AT N T )+ P AT N ),

— QI A gle‘R,u’,g), 0<n<N-1, k>0
up N = B AT = St Y T )t - P AT, Y T ), 0<n < N -1,
upN R q(T,, AT - 6T, Z+}’Nf Bou ) + F(T, AT — 6T, up N =1 )

— G(T, AT =0T "N R ) 0<n<N-1, k>0

k>0
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Iteration k

| |
! G(T', AT, Uy 1 (T'- 6T), U} )
| ¢ U

Uli-*—l Uk+1 (T27 (ST)

|
I
I
I
F(TY, AT, U,(T'= 6t), U})

G(T, AT, Up(T'= 8T),U})

I
I
I
I
|
T° T! T2 6T T2

1,Nf—R

P at time 72 — 0T in [T", T?] for the initialisation of the coarse

propagation in [T2, T3]

Figure 2.2: Correction of u

The full multi-step version ([2.4) of the algorithm does not take into account the adaptive time

stepping of the Cathare time scheme. A consequence of the adaptive time steppping can be seen

f_
on the update of the solution uZﬁ R This quantity is corrected at each iteration as follows:

_ f_ _ f_
wet (T = 6Tfy) = G (T, AT = 6T¢ 1, iy ™ ) + F(Ty AT — ST ™ )

— Gi(To, AT — 5T PN R )y

(2.5)
We distinguish the coarse solver G at iterations k and k + 1 by the subscript Gy and Gg1 because
the solver G does not have the same sequence of time steps at iterations k£ and k + 1. Hence:
0Ty 1 # 0T} and the correction combines a quantity at time 77! — 0Ty, with other quan-
tities at time 77! — 0Ty'. This correction becomes incoherent. To correct this inconsistency, we
propose to store the times 7" — §7};' for each time window, at the parareal initialisation. Then, we
impose to the coarse solver to pass by the point 7" — T} in [T, T™ 1), for every parareal iterations.

In the next section, we apply the multi-step parareal algorithm to two-phase test cases: the
oscillating manometer and the simulation of a breach in the primary circuit of a nuclear reactor.
The convergence analysis of this new algorithm is the subject of the next chapter.

2.3 Application to the Cathare code

2.3.1 The oscillating manometer

Here we apply the multi-step parareal algorithm to the resolution of an oscillating manometer
([6, [7]). This test case is proposed in [69] for system codes to test the ability of each numerical
scheme to preserve system mass and to retain the gas-liquid interface. In [69], the oscillating
manometer is proposed as a numerical benchmark test for system codes to test the ability of each
numerical sheme to preserve system mass and to retain the gas-liquid interface. It consists in
a U-shaped tube manometer which is connected at the top, so that a closed system is formed.
The system contains initially gas and liquid with the liquid forming equal levels in each arm of
the manometer. Further, all parts of the fluid system have initially a uniform non zero velocity,
but zero acceleration. Under these initial conditions, a hydrostatic pressure hypothesis is made
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Figure 2.3: Oscillating manometer test case

throughout the system. Also, the system is isothermal at 50°C with 105 Pa pressure at the vapour-
liquid interfaces. Distance in the direction of the flow is measured by z in meters. The length of
the manometer is 20 m and the diameter is D = 1 m. The initial position of the vapour-liquid
interface is 5m from the bottom of each manometer leg and the fluid initially has a velocity of
ug = 2.1 m/s. This initial velocity will cause the interface to oscillate approximately +1.5 m in
height from the initial location.

In this test case, the phases are separated and the interfacial friction term will be important in
this configuration.

2.3.1.1 Model

The model used in Cathare is the 6 equation two-fluid model that considers a set of balance laws
(mass, momentum and energy) for each phase, liquid and vapor. It assumes independent velocities
and a pressure equilibrium.

The unknowns are the volume fraction oy € [0,1], the pressure p > 0, the velocity uy and the
enthalpy Hj of each phase. The subscript & stands for [ if it is the liquid phase and ¢ for the gas
phase. For the sake of simplicity, we write the terms of the model involved in our test case, studied

in section 2.3.11

Oy (agpr) + Or(arprur) =0

Pk Otk + QD + akdep = agprg + PP (2.6)
U2 U2
O [Oékpk <Hk + ;)] + 0y [Oékpkuk: <Hk + ;)] = ap0p + appruryg

with a, + oy = 1 and the two equations of state : pr = pr(p, Hg).

The interfacial forces F, ,int are of 2 types. The first ensures hyperbolicity of the system (see [89)
for the well-posedness of the 6 equation model). The second is the interfacial friction term that
has an important role for our test case. For the oscillating manometer, the phases are separated
which means that one of the two phases vanishes in some parts of the domain. It is numerically
challenging to compute the velocity of the vanishing phase (see [93]). For this reason, the Cathare
scheme forces the two velocities to be equal with the use of a damping term: the interfacial friction

term.
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2.3.1.2 Numerical method

The Cathare scheme is based on a finite volume method on a staggered grid (MAC scheme) and
on a two step time scheme. In a staggered scheme the i-th component of the velocity is located at
the center of the edge orthogonal to the i-th unit vector. Pressures, void fractions and enthalpies
are cell-centered. Given a time discretisation 70,7, T2, - - of the full time interval [0,T"), we use

n

the following notations: (agpx)™ is an approximation of (agpx) at time 7. Here, we write the

time discretisation of the Cathare scheme:

(arpe)™ ™t — (appr)”

At

n+1 n
n+1 U T Ug
(kpr) A7

1 u2 n,n+1 ’LL2 n—1,n (27)
il n+l ( Zk _ n g Zk
A [(akpk) ( K+ 2) (owpr) ( K+ 2)

u? il 1Pn+1 —p" 1
+0z [Oékpkuk <Hk + ;)] =" AL + (owprur)" g

n+1:O

+ Oz (g prur)

+ (appru) 1 Oul ! + oL = () Ly + L

Where the notation F,? "1 shows that the time discretisation of F}, is a function of the numerical
T, After discretisation, the non linear system is solved by a Newton
method. In this test case, a numerical difficulty of two-phase flows simulations arises, namely

solution at times 7" and

the vanishing phase. An important issue is to guarantee the positivity of the volume fraction.
Many schemes were designed to ensure this property (like [93] for two incompressible phases). The
Cathare code uses a high interfacial friction to deal numerically with this difficulty.

2.3.1.3 About the convergence

In this section, we apply the multi-step parareal algorithm to the simulation of the oscillating
manometer. We use the same physical model and the same mesh (110 cells) for both the coarse
and the fine solvers: the only difference is the size of the time steps, dt for F and AT for G. All
the calculations have been evaluated with a stopping criteria where the tolerance is fixed to the
fine solver accuracy, e = 5 - 1072, With this threshold, parareal convergence is achieved after 2 or
3 iterations.

In the sequel, after giving a numerical proof of the convergence of the parareal algorithm in our
test case, some results about measured speed-up will be presented.

Figure illustrates that the multi-step parareal algorithm effectively converges when applied to
the problem of the oscillating manometer. For a given time step T and parareal iteration k, the
relative error in L? norm between the parareal solution and the sequential fine solver decreases
beyond our given convergence threshold e. In the figure, the test case has been solved with the
multi-step parareal algorithm when 6t = 107° and AT = 105t.

These results are obtained on 16 time windows.

2.3.1.4 Speed-up performances

In the following strong scaling tests, the same setting is used for the multi-step parareal algorithm.
The test case has been solved on an increasing number N, of processes Ny o = 5,10,15,---, 70.
In figure with 25 processes, we obtain a speed up of 3.4 and of 3.7 with 50 processes. Here, we
observe two global trends:
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Figure 2.4: Convergence of the multi-step parareal algorithm when 6t = 107° and AT = 105t

e For Ny, = {5, 10, 15,20, 25,40, 50}, the speed up first monotonically increases until reaching
25 processes and then increase again with 40 and 50 processes. This is due to the number of
parareal iterations that is equal to 2 in this case

o For Ny = {30, 35,45, 55,60, 65,70}, the speed up is drastically reduced because the parareal
algorithm converges in 3 iterations in this case

In the sequel, we recall the well-known dependence of the computational cost of the parareal
algorithm on the number of iterations. Let T';,. be the CPU time to run the fine solver in a
sequential way on the whole time interval [0,7"). Since the coarse time step is ten times greater

than the fine time step we suppose that the cpu time of the coarse solver T ogrse = ch e This
ratio between coarse and fine solvers should be as high as possible to minimise the computational
cost of the coarse solver which is launched in a sequential way. When the algorithm converges in
N iterations, the coarse solver is launched N;; times and the fine solver N;; — 1 times in parallel
over the number of processes Nj.o.. Hence, we can write the cpu time in parallel T}q. in terms of
Ttine:

Ty, Ng—1 N
Tpara = (Nit - l)Jmee + NitTcoarse +7= ( ]\Zf + 16t> Tfine +7
proc proc

where 7 contains the time of communication between processes and the cpu time for the computa-
tion of the parareal corrections and of the error. Now, we can deduce an upper bound of the speed
up S when the parareal algorithm converges in 2 or 3 iterations by neglecting 7:

S — Tfine < 1
B Toara — Nie=l 4 Ni
p Nproc ' 10

Ezxample: On 25 processes, the algorithm converges in 2 iterations: S ~ 4 when the measured
speed up is 3.4.

On 35 processes, the algorithm converges in 3 iterations: S = 2.8 when the measured speed up is
2.3.
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Figure 2.5: Strong scaling results with the multi-step variant of the parareal algorithm

2.3.2 An industrial test case
2.3.2.1 Description of the test case

In this section, we report our efforts to apply the parareal algorithm to the time parallelisation of
an industrial test case representative of the numerical difficulties met in nuclear safety studies. This
test case simulates a breach in the primary circuit downstrean on the reactor core of a Pressurised
Water Reactor. The size of this breach is 512mm?. This accidental scenario is studied to simulate
numerically the behaviour of the nuclear reactor under a hypothetic break of a pipe welding and
during the emergency procedure following the accident. In our test case, we only simulates the
reactor core before the emergency procedure. Here, the system is composed of:

e the primary circuit
e the downcomer where the fluid transits from the primary circuit to the reactor core
e the reactor core, modeled by two sets of uranium rods

The boundary conditions replicate the effects of the breach on the system:

e Inlet boundary conditions: at ¢ = 0 there is a single-phase liquid flow then the liquid flowrate
decreases from t = 2.8s, time of the breach appearance, until reaching 0 at time ¢ = 7.9s.
After the breach, the volume fraction of the vapour phase increases until reaching the maximal
value 1 at time ¢t = 19s.

e Outlet boundary conditions: the pressure within the system decreases since there is a leak
of liquid.

Concerning the power generated by the uranium rods in the reactor core, it is set to zero at time
t = 7.9s to model the effect of the control rods on reducing the reactivity.

After the breach and the disappearance of liquid in the reactor core, the fuel rods cladding is not
anymore in contact with the coolant. Hence, the heat exchanges are limited and this can drive to
the meltdown of the rod cladding.
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2.3.2.2 Application of the parareal algorithm

The Parareal library is an intermediate between the solutions computed by Cathare and the cor-
rections made by the parareal algorithm. The library collects the fine and coarse approximations
from Cathare, extracts from the Cathare arrays the principal unknows (liquid and vapour veloci-
ties, pressure, enthalpies, void fraction) and stores them in other arrays belonging to the Parareal
library. From there, the local initial conditions are updated with the parareal correction by com-
bining the solutions coming from the coarse and fine propagations. Then, the updated initial
conditions are copied in Cathare arrays. Before making new coarse and fine propagations the
Cathare code needs auxiliary values in addition to the principal unknowns. These auxiliary values
are of different natures:

e variables computed from the principal unknowns

e variables tracked during the simulation: for example, the water level in an element of the
system

e boolean variables giving the flow regime in an area of the system: bubbly, annular, dispersed,
seperated phases, etc.

For the first category of auxiliary variables, they can be recalculated using the updated initial
conditions. However, the others are the last saved quantities before the copy of the corrected
initial conditions. Hence, there is an inconsistency between the updated variables depending on
the principal unknowns and the other variables that are unchanged. We show the consequences of
this inconsistency by the following numerical experiment.

We denote F™/ the target fine solution we seek to approximate with the parareal algorithm.
This solution is computed in a sequential way with a finer time step than the one of the fine solver
used within the parareal algorithm, denoted FP*"®. The propagator F"® replaces the exact propa-
gator since we do not have the expression of the exact solution for this test case and will be called
the reference solution in this section.

On the one hand, we initialise in the Parareal library every time window with the principal variables

of the reference solution F™/ at times 7", n =0,---,N. Then we transfer these initial condi-
tions to the Cathare code to make N parallel fine propagations FIT[;J; T H](T”, AT, Fref (10, 177 —

7°,u%)(T™)), where Iﬂ?;ﬁ pot1) 18 the restriction of the reference solution F"¢ to the time inter-

val [T",T ”H]. From this information, the Cathare code builds the Cathare array composed of
principal unknowns and auxiliary variables and propagates this initial state over the time window
[T", "1, We plot in figure the following quantity for every time windows [1™, 7™

HFref

(7 pni) (T AT, Fref (10,177 — 70, 4%)(T™)) — Fref(T0, T — T°,u%)|| 2

| E7e(T0, T — TO, u0)|| 2

(Ti)7 i=0,--- 7Nf
(2.8)

AT
where N/ = 50 is the number of fine time steps in a time window of size AT. This numerical

experiment will allow us to see the error made on the recalculation of the auxiliary variables. If
there was no error at this stage, the quantity would be equal to zero. In figure we see that
the inconsistency between principal variables and auxiliary variables in the Cathare array leads
to an additionnal error. This error prevents the parareal algorithm to recover the fine sequential
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solution with the target accuracy. This target accuracy is computed in the following way:

mazn_1,... N||[FP (T, T — T %) — Fre/(T0 7™ — 79, u0)|\L2(m
MmaTp=1,. ,N‘ |Fref(T0’ ™ —1T9, UO)HLQ(Q)

where FP** is the fine solver used within the parareal algorithm. This target accuracy is thus the
accuracy ey of the fine solver compared to the reference solution F"/.

Error between fine and sequential solutions
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Figure 2.6: Sending only the principal variables to the Cathare code

On the other hand, the Parareal library transfers to the Cathare code the whole initial
state with principal and auxiliary variables computed by the reference solution F"¢f (TO,T” —
T O,UO). Then from these initial states, the Cathare code makes N parallel fine propagations
F|7[";{L’Tn+1}(T",AT, Fref (0, 1 — 70 %) (T™)) spread over the N time windows [T™,7"*1]. In
figure we plot the error for this new configuration. In figure we see that sending all
the state to initialise the fine propagations in [T, T ”+1] improves the accuracy of the fine solutions
computed by the Cathare code, compared to figure where we only initialise the time propaga-
tions with the principal variables. However, we still observe a non negligible error of about 1074,
especially starting from time ¢ = 5, after the appearance of the breach in the system that occurs

at time t = 2.8.
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Figure 2.7: Sending all the state to the Cathare code on 10 time windows

We propose a strategy to improve the transfer of the auxiliary variables between time windows.
The method consists in correcting at each parareal iteration the vector of auxiliary values in a
specific way. Firstly, we need to define V*“* the vector of auxiliary variables and V* the vector of
principal variables. We distinguish:

o VWT(VP(T™)) the auxiliary variables computed from the principal variables at time 7.
o VE(T™) the auxiliary variables computed by the Cathare code at time T™.

Secondly, we denote T™ the point belonging to the interval [T, 7"] and T} the one belonging to
[T™, T"™"1]. We propose the following correction for the auxiliary variables at time 7™ and (k+1)-th
parareal iteration:

VT (TY) = VO (VE(TT)) = VEE(VE(TD)) 4 Ve (TD). (2.9)

Since the Cathare time scheme is a two-step time scheme, we also apply a correction to the
auxiliary variables at time T" — §t.

VIRE(T" = 6t) = V(VE (T — 60t)) — VRE(VI(T™ — 6t)) + V(T — ot). (2.10)

This choice for the correction of the auxiliary values is motivated by the two numerical experiments
and The figure [2.6] illustrates the error we make by computing the auxiliary variables with:

Y (TE) = VO (VE(TY)).

In this configuration, the error is greater than the accuracy of the fine solver and is the main actual
barrier to efficiently apply the parareal algorithm to the Cathare code in a non intrusive way.
On the other hand, the figure 2.7]illustrates the error we make by computing the auxiliary variables
with:

VGU$ (T_?”_l) — VGU$ (Til).
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In this case, the error is lower than the accuracy of the fine solver but is still non negligible. The
correction we propose (2.9 combines the two approaches with a third term V**“*(VP(T™)). It is
important to mention that when the parareal algorithm converges, we obtain:

VQUI(T—’;}) — VauI(T:L)’
since we have:
VP(TY) = VP(T"), and then : V““x(Vp(T}Z)) = VaE(Vve(T"))

We have not implemented this promising strategy yet to handle specifically the auxiliary variables
of the Cathare code. The actual option to reconstruct the auxiliary variables is to compute them
from the principal variables. In figures [2.6] and we see that the reconstruction error is greater
than the fine solver accuracy on 10 time windows: in figure the reconstruction error is about
4 x 1072 while the fine solver accuracy is ep = 5 x 1072. Hence we can not reach the fine solver
accuracy with the parareal algorithm since the reconstruction error of the auxiliary variables will
dominate and pollute the simulation. However, the reconstruction error of the auxiliary variables
is in the order of the fine solver accuracy ex on 5 time windows. In figures 2.8 and we make the
same numerical experiment as in figures and [2.7)on 5 time windows. We see in figure [2.8] that,
in this particular case, the reconstruction of the auxiliary variables from the principal variables
generates an error in the order of e at the initial times of the 5 time windows. In figure
we observe the same behaviour as on 10 processors: sending all the state to initialise the fine
propagations in [T™, T"!] improves the accuracy of the fine solutions computed by the Cathare
code.

Hence, in the case of 5 processors, the reconstruction error of the auxiliary variables from the
principal variables is in the order of the accuracy of the fine solver and may not pollute the
parareal algorithm.
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Figure 2.8: Sending only the principal variables to the Cathare code on 5 time windows
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Figure 2.9: Sending all the state to the Cathare code on 5 time windows

In the sequel, we investigate the performances of the parareal algorithm when the reconstruction
error is close to the fine solver accuracy to illustrate the behaviour of the parareal method when
we will implement the specific treatment of the auxiliary values . Hence, we apply the
parareal algorithm to the simulation of a breach in the primary circuit on 5 processors. The
reference solution F"* is computed with a fine time step dt,e ;= 10~*. The fine solver FP@
within the parareal algorithm has a time step 6t = 10~% and an accuracy ep = 5 x 1073, hence the
target accuracy of the parareal algorithm is fixed to 5 x 1073, The coarse solver has an accuracy
e = 1071 with a coarse time step 67 = 0.5 = 5006¢t. We apply the full multi-step parareal
that corrects both the coarse and the fine solvers to properly initialise the time propagations. The
simulation lasts 25 seconds and we split the time interval over 5 processors. In figure [2.10, we plot
the following error at each time T™ = nAT and each parareal iteration k, where n =0,--- ,5 and
AT is the size of the time window :

[|[FPore (T AT, uft) — F7H (T, T — T, u)|| 120

™ =0,---,5
P (0,77 =19, ) =0

In this case, the parareal algorithm reaches the fine solver accuracy at the initial times of the 5
time windows after 3 iterations. Hence, when the reconstruction error is close to the fine solver
accuracy the parareal algorithm can reach the target accuracy for the solution at times 7.

In figures [2.11], 2.12] and [2.13], we see the volume fraction «,, in one cell of the mesh computed
by the fine solver in the multi-step parareal algorithm for the three first iterations, compared to the
reference solution. After the first parareal iteration, we clearly distinguish the fine propagations
made by the parareal algorithm and the reference solution, over the different time windows. Then
for the second and the third iteration, the reference and the fine parareal solutions are very close.
We capture the dynamic of the test case with o, ~ 0 at time ¢t = 0 since the system is initially
filled with water. Then the vapour volume fraction increases from ¢t = 2.8s, time of the breach

appearance until reaching its maximal value 1 at time ¢ = 19s.
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Figure 2.10: Convergence of the multi-step parareal algorithm when 6t = 10™* and AT = 0.5 for
an industrial test case on 5 processors
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Figure 2.11: The reference solution and the fine solution after 1 parareal iteration

2.4 Conclusion

In this chapter, we developed two strategies to apply the parareal algorithm to the Cathare code:
a numerical clone of Cathare that is restricted to one test case and a Parareal library that uses the
Cathare code in a non intrusive way. The main contribution of this work has been to adapt the
parareal algorithm to the architecture of the software and to its time discretisation in a non intrusive
way. The results obtained with the numerical clone on the oscillating manometer show that the
parareal algorithm can effectively speed-up two-phase flows simulations. These preliminary results
illustrate the behaviour of the multi-step parareal algorithm on a test case that is representative of
the numerical challenges for two phase flows. However, the Parareal library that uses the Cathare
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Figure 2.12: The reference solution and the fine solution after 2 parareal iterations
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Figure 2.13: The reference solution and the fine solution after 3 parareal iterations

code as a black box suffers from a lack of accuracy. This is due to the data structure of the Cathare
code that depends on principal and auxiliary variables. Hence, a reconstruction of the auxiliary
values is necessary after the parareal update of the principal variables. The actual reconstruction
error is greater than the target accuracy and prevents the parareal algorithm to converge towards
the desired solution. We derived a strategy to accurately reconstruct the auxiliary variables by
adding a parareal update specific to them and the efficiency of this method will be the subject of
future works.
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In this paper, we consider the problem of accelerating the numerical simulation of time depen-
dent problems involving a multi-step time scheme by the parareal algorithm. A multi-step time
scheme can potentially bring higher approximation orders than plain one-step methods but the
initialisation of each time window needs to be appropriately chosen. Our main contribution is the
design and analysis of an algorithm adapted to this type of discretisation without being intrusive in
the coarse or fine propagators. This property allows to apply this variant of the parareal algorithm
on a software as a black box and ensures the portability of the method. The parareal method is
based on combining predictions made by two propagators: an accurate and expensive one used in
a parallel way over the time windows and a coarse and cheaper one used in a sequential way. At
convergence, the parareal algorithm provides a solution that has the fine solver’s accuracy. In the
classical version of parareal, the local initial condition of each time window is corrected at every
iteration. When the fine and/or coarse propagators is a multi-step time scheme, we need to choose
a consistent approximation of the solutions involved in the initialisation of the fine solver at each
time window. Otherwise, we could loose one of the well known property of the parareal method:
to recover the fine solution at the machine precision after IV iterations, where N is the number of
time windows. In this paper, we develop a variant of the algorithm that overcomes this obstacle.
Thanks to this, the parareal algorithm is more coherent with the underlying time scheme and we
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recover the properties of the original version. We show both theoretically and numerically that
the accuracy and convergence of the multi-step variant of parareal algorithm are very competitive
when we carefully choose the initialisation of each time window.

3.1 Introduction

Solving complex models with high accuracy and within a reasonable computing time has motivated
the search for numerical schemes that exploit efficiently parallel computing architectures. In this
paper, the model consists of a Partial Differential Equation (PDE) set on a domain D. In this
context, one of the main ideas to parallelize a simulation is to break the problem into subproblems
defined over subdomains of a partition of D. The domain can potentially have high dimensionality
and be composed of different variables like space, time, velocity or even more specific variables for
some problems. There exist algorithms with very good scalability properties for the decomposition
of the spatial variable (see [99] or [IT12] for an overview) and time domain decomposition is more and
more considered to complement this strategy when the speed up performances stagnates despite
remaining computing resources. Research on time parallel algorithms is currently very active and
has by now a history of at least 50 years (back to at least [96]) during which several algorithms
have been explored (see [50] for an overview).

In this work, we report our recent effort to adapt one particular time-parallel algorithm: the
parareal in time algorithm, to multi-step time schemes. The method was first introduced in [7§]
and has been well accepted by the community because it is easily applicable to a relatively large
spectrum of problems (some specific difficulties are nevertheless encountered on certain types of
PDEs as reported in [35, [47] for hyperbolic systems or [34] for hamiltonian problems). Some
limitations persist for the classical version of the parareal algorithm like the parallel efficiency that
decreases with the final number of iterations K as 1/K. This limitation is addressed in [80] that
proposes an adaptive variant of the parareal method where the only remaining factor limiting high
performance becomes the cost of the coarse solver. Without entering into very specific details of
the algorithm at this stage, we can summarize the procedure by saying that we build iteratively
a sequence to approximate the exact solution of the problem by a predictor-corrector algorithm.
At every iteration, predictions are made by a solver which has to be as numerically inexpensive as
possible since it is run on the full time interval. It usually involves coarse physics and/or coarse
resolution. Corrections involve an expensive solver with high- fidelity physics and high resolution
which is propagated in parallel over small time subdomains. In the classical version of parareal,
the fine solver has a fixed high accuracy across all iterations. It is set to the one that we would use
to solve the dynamics at the desired accuracy with a purely sequential solver. At each iteration,
the local initial conditions are corrected for every time windows until convergence. Multi-step time
schemes require several previous steps to compute the solution at a new point in time. When
the fine and/or coarse propagators is a multi-step time scheme, we need to choose a consistent
approximation of the solutions at previous steps involved in the initialisation of the fine and/or
coarse solver at each time windows. Otherwise, the initialisation error will prevent the parareal
algorithm to converge towards the solution with fine solver’s accuracy. This point was addressed in
the context of multigrid in time method in [46l, [45]. Here, the authors adapt the MGRIT algorithm
framework to the use of multi-step time schemes, the BDF methods. In this paper, we propose
a variant of the algorithm that overcome this obstacle. Thanks to this, the parareal algorithm
is more coherent with the underlying time scheme and we recover the properties of the original
version.
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We present in section 2 the variant of the parareal algorithm adapted to multi-step time schemes.
This method includes additional corrections at previous steps involved in the intialisation of the
fine and/or coarse solver at each time window. This choice has the benefit to be non intrusive into
the code we seek to parallelise by a time domain decomposition.

In the last section, we illustrate the performance of the algorithm on numerical examples: the
damped oscillator and the Brusselator. We show that this variant allows the parareal algorithm to
converge towards the solution with fine solver’s accuracy.

3.2 A multi-step variant of the parareal algorithm

In this section, after introducing some preliminary notations in section 2.1, we formulate the new
variant of the parareal algorithm adapted to multi-step time schemes (section 2.2). We then
present the hypothesis we consider in this article and restrict ourselves to two-step time schemes
for the convergence analysis (section 2.3). We prove that the multi-step variant converges with a
convergence rate similar to that of the classical parareal algorithm. Finally, we discuss how the
new paradigm can be generalised to multi-step time schemes, not only two-step times schemes,
used in the fine and/or the coarse solver (section 2.4).

3.2.1 Setting and preliminary notations

Let U be a Banach space of functions defined over a domain Q ¢ R? (d > 1). Let
S:[0,T] x[0,T] xU—U (3.1)

be a solver, that is, an operator such that, for any given time ¢ € [0,7], s € [0,T — t] and any
function w € U takes an initial value at time t and propagates it at time ¢t + s. We further assume
that S is defined through the discretisation of the time-dependent problem:

{ u'(t) + A(t,u(t)) =0, te][0,T] (3.2)

u(0) e U

where A is a locally Lipschitz operator from [0, 7] x U. This ODE system can also be obtained from
the discretisation of a PDE in space with A : R x RY — RV and A denotes the number of degrees
of freedom. We seek to approximate the solution of problem at a given target accuracy by
a solver S. We denote £(t, s, w) the propagator giving the exact solution of system , for any
initial value w € U, any ¢t € [0,7] and any s € [0, — t]. Thus, S(t, s, w) approximates (¢, s, w)
with an accuracy 7 > 0 such that we have:

105t s, w)[| = [le(t, s,w) = S(t, 5, w)|| < ns(L+ |[w]]), vt €[0,T],s €[0,T —t,,weU (3.3)

where || - || denotes the norm in U.

The choice of the solver S determines the quality of the approximation and the computational cost
of its implementation. One can potentially bring higher approximation orders than plain one-step
methods by using a multi-step time discretisation method. Multi-step time schemes require several
previous steps to compute the solution at a new point in time. Hence, the notation does not
hold when the solver is based on a multi-step time scheme. Here and in the following, we consider
only two-step time schemes and we will use the following notation:

S:[0,7T]x[0,T]xUxU—U (3.4)
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such that S(t,s,w',w?) for any given time ¢ € [0,T], s € [0,T — t] and any functions w',w® € U
takes two initial values at times ¢t and ¢t — dt and propagates them at time ¢ + s, where 0t is the
time step of the two-step time scheme underlying in S.

3.2.2 A multi-step variant of the parareal algorithm

We consider a given decomposition of the time interval [0,7] into N subintervals [T™, 7], n =
0,---, N—1. Without loss of generality, we will take them of uniform size AT = T'/N which means
that T = nAT for n = 0,--- ,N. For a given target accuracy n > 0, the goal of the parareal
algorithm is to accelerate the computation of an approximation a(7") of u(7T™) such that:

maz1<n<n|[u(T") — a(T)[] <

The classical way to compute such an approximation is to set @(1") = Sseq(0, 7", u(0)),1 <n < N,
where Sse, is some sequential solver in [0,7]. On the other hand, the strategy of the parareal
algorithm follows the following steps, using two propagation operators:

o G(T™, AT,u™) computes a coarse approximation of u(T™"1) with initial condition u(T™) ~
u". The coarse propagation is sequential but have a low computational cost.

e F(T",AT,u™). computes a more accurate approximation of u(7™"!) with initial condition
u(T") ~ u". The action of F' is distributed over N time windows and N processors solve
over each interval [T™, T" "] of size AT instead of solving over [0, T7.

In the sequel, we analyse the convergence rate of the multi-step variant of parareal algorithm when
the coarse solver is a one-step time scheme and the fine one is a two-step time scheme.
Hypotheses (H): There exists eg, Cy,C > 0 such that for any functions z,y € U and for any
te[0,7) and s € [0,T —¢],

le(t, s,2) = G(t, s, 2)|| < s(1+ |[z]])eq < |[6G(L, s, 2)|| < seq(1+[|z]]) (3.5)
IG(t,s,2) = G(t,5,9)|| < (1 +Cs)||z —y| (3.6)
[F'(t,s,21,51) — F(t, s, 22,92)|| < (1+ Cs) ([lz1 — z2f| + |ly1 — y2l]) (3.7)
16G (L, s,x) — dG(t, 5,y)|| < Caseqllz — yl| (3.8)
H (F(t737€(t7 _6tay1)7y1) - €<t787y1)) - (F<t7 87€<t7 _6t7 y2)7y2> - E(t,S,QQ)) H < CS(StHyl - yQH
(3.9)
”(F(t?‘s - 5t7y1 - 51)3/1) - F(t78 - 6t7y2 - 52)3/2)) - (F(t757y1 - (517y1) - F(t757y2 - 627?/2))“
< (14 Cs)dt[|or — d2[ + (1 + Cs)dt|[yr — y2|
(3.10)
|[F'(t,s,e(t, —0t,y),y) — (¢, 5,y)[| < sep(1+ [[y[]) (3.11)

Note that the hypothesis — are the classical properties of numerical schemes related to
stability and accuracy. Hypotheses and are Lipschitz conditions and the quantity eg
is a small constant which, in the case of the explicit Euler scheme, would be proportionnal to the
time step size. Hypotheses and are specific to two-step time schemes. There are two
sources of error for two-step time schemes:

e the error from the discretisation of the time derivative, common to one-step time schemes.

e the error from the inconsistency between the two initial conditions z1 and y; in F'(t, s, 21, y1)-
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In hypothesis (3.9)), assuming the term x; = (¢, —dt,y1),y1) is defined, there is no inconsistency
between the two initial values since x1 is computed with the exact propagator starting from ;.
Hence, the only remaining errors are:

e the difference between y; and ys.
e the error from the time propagation over a time window of size s.

e the error between the fine and the exact propagators that is proportionnal to the fine time
step dt.

On the other hand, we assume hypothesis (3.10) holds for s > AT, the time window size. This
hypothesis includes the inconsistency between the two initial values and is denoted &1 and &s.
Hence, we describe here the errors coming from:

e the inconsistency d; between the two initial values of the fine solver.
e the difference between the principal initial values y; and ys.
e the time propagation over time windows of size s.

Example 3.1. Here, we illustrate the validity of hypothesis on a simple linear ODE. The
parameters involved in hypothesis are: s, yi, Y2, 01 and 6. In the proof of convergence,
we apply this hypothesis for y1 = uy_,, the parareal solution at k — 1 iteration and time T", and
ya = u(T™), the exact solution at time T™, hence these two parameters are very close. On the other
hand, 61 = up_, — qu’Nf_l, where qu’Nf_l is the parareal solution at (k — 1) iteration and
time T™ — 6t, and 69 = u(T™) —u(T™ — 6t), where u(T" — 0t) is the exact solution at time T™ — ot
and s is equal to the time window size.

{ y'(t) =yt), telo,T]

yOa’ yOb g'L"Ue'n/

where y°, y% are the two seed values to initialise the time propagation with the second-order BDF
method:
Yy’ = (y1 = 01) — (y2 — d2), Y =y —ys

We solve this system by a second-order BDF method:

3 1

5yn+1 _ 2yn + 5ynfl —_ 5tyn+1 (312)

: : S ! with NF = L
From (3.19), we have the expression of the numerical solution y"™ forn =0, --- N’ with N7 = ﬁ:

y" = ary + fry

such that:
24+ V1+20t )
2-V1t26t 1 4t )
°TY= T o5 —5—5—1-0(575).

In , the term 1y tends rapidly to zero when n goes to infinity. Thus we neglect its
contribution.
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.o— ro(01 — d2) + (1 — r2)(y1 — y2)
TL —T9

(r1 —1)(y1 — y2) — 11(61 — d2)
=T

L] ﬂ =
In the linear case, we can write hypothesis :

lyN T —yN|| < (14 Cs)dt][y" — y®|| + (1 + Cs)5t||y™|]

where: yN = F(0,5 — t,4°%,y"), ¢V = F(0,s,4°,y®) and (N + 1) is the number of fine
time steps in a time window of size s: N +1 = ;

53 =5 From the expression of y™ in (3.19):

y N —yN = ard (r — 1) + Br (r2 — 1)

Neglecting the term rév, we obtain:

1 _
NN = 2 (1 ATYSHS) — 6) + —— 2 (1 + AT)t(y1 — 1) + O(6t2)
KT —T9 KT —T9

Hence, the second-order BDF method verify hypothesis .

In the following example, we explain the problem of initialising the fine solver in a time window
when the fine propagator is a two-step time scheme:

Example 3.2. If one solves with a multi-step time scheme as fine propagator F like the
second-order BDF method:

gujH — 2l + %uj_l = —StAWTL Y, j=1,-.. NPT =6t

Here the fine solver reads as: /! = F(tj, St,ul uj). Now, we apply the parareal algorithm with
a coarse grid: TC, - - TN where:

T —T" = AT = N/t

Then we can write: u(T™ + jot) ~ uIj=1,--- Nfn=1,... N°

In order to perform the fine propagation, in a given time window [T", T"H], we only need the local
initial condition up and a consistent approzimation of u(T™ — ot).

In [12], the authors propose a consistent approximation in the context of the simulation of
molecular dynamics. The proposed method was linked to the nature of the model and the sym-
plectic character of their algorithm is shown, which is an important property to verify for molecular
dynamics.

We now detail our algorithm:

(uftt = G(T",AT,u}), 0<n<N-1
ug’fol = ugﬂ, 0<n<N-1
uptt = QT AT, W) + F(T AT, w5 5.13)
~G(T",AT,u}), 0<n<N-1, k>0 '
uZ;iVlf_l = F(T", AT — ét, uz_l’Nf_l, up) + UZI%
P AT, WYy 0<n < N—1, k>0
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At this point, several comments are in order. To derive a consistent approximation of u(7" — dt),
we use the only fine trajectory at our disposal which is F(T”_l,AT, uZ_2’Nf_1,uZ_1). Its final
value at T" is:

F(T" Y AT, quZ’NLl, up 1) (T™) from which we compute uf, ; by the parareal correction. Hence,
we translate the solution:

F(T" Y AT — 6t, uz_2’Nf_1, up 1) (T™ — §t) by the same correction:

upy —F (1", AT, uZ_Q’Nf_l, uz_l) and obtain the so called consistent approximation u
to initialize the fine propagation in [T, T 1.

Moreover, an important feature of this new algorithm is to preserve a well known property of the
parareal algorithm:

n—1,Nf—1
k+1

up = F(T°, 17" — T°4°), for: k>n, n=0,---,N (3.14)

This comes from the term:
G(T", AT, up 1) — G(T", AT, uy)

that is equal to zero when k >n, n=0,---,N.
In our case, the multi-step variant of the parareal algorithm verifies (3.14) and the additionnal
correction of the solution at time 7" — 4t leads to:

n,Nf—1

_1NF—
Uy = F(T",AT - 6t,u}; LN l,u’,;”)—l—u"Jrl

k+1
P AT, Y 0<n<N-1, k>0
= F(T", AT — 5t,u "N =1 ) 4+ G(T, AT g, )
—G(T",AT,uy), 0<n<N-1, k>0
Hence, the multi-step parareal method satisfies the same property (3.14]) at time 7" — §t:

U,Z’Nf_l :F(TO,Tn—5t—TO,UO)7 for: k2n7 TL:O,"' 7]\7 (3.15)

The convergence result of theorem and its proof are helpful to understand the main mechanisms
driving the convergence of the algorithm and explaining its behavior. To present it, we introduce
the shorthand notation for the error norm:

El =l — (T, T" —T° u%),k > 0,0 <n <N,

We introduce the following quantities:

le% = CdGGAT

wo = CATG

B = 14 C.AT (3.16)
vo = ATegmazo<n<n(1+ [[u(T™)|])

vr = ATepmazo<p<n(l+ [|u(T")]])

as shorthand notations for the proof of convergence.

Theorem 3.3 (Convergence of the multi-step parareal algorithm). Let G, F' and G satisfy Hy-
potheses f . Let k > 0 be any given positive integer. If the time step dt of the fine solver
verifies:

5t < AT?é2, (3.17)
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then the (uy),, of the multi-step parareal scheme satisfy:

mazo<n<n||ug —uw(T™)|] < %GCTmaxn(l + Hu(T")H)Te*CATeg, n>1
G

« «

~kt1 ~ A R - \ k—1
mazoenen|ul — u(T)|| < A (f’”G <“) LRSS YT, (‘“) ) nS kel k>l

= Tk 1\ 26 T 2Flag
(3.18)

where:

(1 + \/5)k+1 _ (1 o \/g)k+1
2k+1\/5 :

and &, yg and Yp are perturbations of the coefficients o, vg and yp respectively, such that:

e“Tmazo<n<n(1+ [|Ju(T™)]))

, T=2T= 2CdT€_CAT€G, fi =
Cq

A\ =

=1+ O(ATeq), ;LF = O(ATec)
G

e _ 1+ O(ATeq),
VG

Q|

Let us make a couple of remarks before giving the proof of the theorem. First, the convergence
rate of the multi-step parareal algorithm is similar to the one of the classical parareal algorithm

~k+1 k+1
with the factor PEETE since in the classical version the convergence rate is ]: T The remaining
G (&\" 5 |
factors —, <) and -£ are close to 1 and their contributions are negligible. The term fj is
G « G

specific to the multi-step variant and have the following asymptotic behaviour when k tends to

fr <1+\/5>k+1

2k+1 k—+o00 4

infinity:

Proof. The proof is in the spirit of existing results from the litterature [78] 14, 53].
If £ = 0, using definition (3.13) for u(, we have for 0 <n < N — 1,

E6L+1 _ u6z+1 — (T, T+ — 70, 40)
Eytt = G(T™, AT, uf) — e(T", AT, u(T™))
1B < |G(T™, AT, ug) — G(T™, AT, w(T™))|| + ||G(T", AT, u(T™)) — &(T", AT, u(T™))||
< (1+ CAT)||Ey| + ATeq (L + [|u(T)]])
< BIIEG | +a

where we have used (3.5) and (3.6)) to derive the second to last inequality.
For k > 1, starting from (3.13)), we have

E]:H—l _ UZH — (T, T — 70, u0)
= G(T", AT, u}) + F(T", AT, " "N~V un ) — G(T", AT, uf_,) — (", AT, u(T™))
In the sequel, we add and substract the following quantites to E,?H:
o G(T",AT,u(T™)) and e(T", AT, uj_;)

o c(T", AT, u(T")) and F(T", AT, u(T") — dx,u(T™))
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F(T", AT, u}_| — 6z,u}_,) and F(T", AT, u}}_, — b6z, u}l_,)

where:

dr =u(T") —u(T™ — ot), dx=up_q— N1,

, dx=up_q —e(T", —dot,up_)

£
??‘2
,_.,_.

Eptt = G(T", AT, u}t) — G(T", AT, w(T™)) + 6G(T™, AT, u(T™)) — 6G(T™, AT, u}_;)
+ F(T", AT, e(T", =6t u}_,),uft ;) —e(T", AT, u ;)
— (F(T", AT, e(T", =t,u(T™)),u(T™)) — e(T", AT, u(T™)))
+ F(T” AT, uf | — bz ul ) — F(T™, AT, u} | — bz, u} ;)
F(T™ AT, u} | — dx,ul |) — F(T™ AT, u} | — x,u} ;)
F(T", AT, u(T™ — 6t), u(T")) — e(T™, AT, u(T™))

Taking norms and using (3.6)), (3.7)), (3.8]), (3.9), (3.11f), we derive:
|EZT < (1+ CAT)||ER|| + CATeq||ER_y|| + CATSH|Ef_ || + C|[dx — bz|| + C|6z — |
+ ATep (1 + [|u(T™)])

On the one hand, the term 6z — dx becomes:
bz — bz = ul "IN o — 5ty — (up — u(T) = BN - Bt = st
On the other hand, we derive a bound for the term: ||6z — 0z||:
162 — 0| = [[u(T™ — 6t) — e(T", —dt,uf_y) — (u(T™) = uf_y)]]

Writing the Taylor expansions of u(7" —ot) and (T, —dt, uj_;) around 7" and uj_, respectively,
we obtain formally:

2
w(T™ — 6t) — u(T™) = SLA(T™, u(T™)) + ‘% (%’j gAA> (T, u(T™)) + O(5t%)

§t2 (0A O0A
€(Tn, —5t,u271) Uk 1= 5t./4( Uk 1) —+ — 9 <8t A) ( Uzil) + O(6t3)
. . o A O0A . .
Hence, assuming the operator A and its derivatives 5 ou are locally Lipschitz:
U
- 5t?
[|6z — dz|| < (05t+c >HEk A+ Cst?

We recall: vp = ATepmazo<p<n(1+ ||u(T™)|]). Since, the fine solver is based on a two-step time
then ep ~ dt2. Hence, we neglect in the sequel the contribution Ct3:

062
IERTH) < BIIER|| + (a4 p+ Cot +

MEE-ll+ ClOEL |l +
In the sequel, we derive an upper bound for the error terms E,?’N ~!and 6E,?+1 = EZ’Nf*l —E,?H.
+1 _ Nf-1 +1
SE;T =E); - By
5E,7§H _ uZ’NLl — (70, T 5t — 70,0 — n+1 4 e(T0, T — 70, 40)

In the sequel, we add and substract the following quantites to 5E£+1:
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o [(T", AT — ot,u(T™) — dx,u(T™))
o [(T" AT, u(T") — dz,u(T™))
SEXTY = F(T", AT — §t,u(T") — dz,u(T™)) — e(T™, AT — 5t,u(T™))
— (F(T"™, AT, u(T") — dx,u(T™)) — e(T™, AT, u(T™)))
+ F(T", AT — §t,u} | — dxz,uft ) — F(T"™, AT — 6t,u(T™) — dx,u(T™))
- (F(Tnu AT? szl - 626', szl) - F(Tnu ATv U(Tn) - 5$7 u(Tn>))
Taking norms and using (3.10)), (3.11)), we derive:

OEIHY| < 2ATep(1 + [[u(T™)][) + Cotlfup ™' ™ = w(T™ = 6t) — (uf_y — u(T™))|]
+ Ct||up_y — u(T")]]

16ER Y| < Cotl|oER_, || + Cot||EP_y|| + 2vr

f_ f_
EpNTT = N (10, T 5t — 70, u0)

F(T™, AT — 6t 2N = un ) = p(rm, AT a2~ PN an ) — e(T7, AT — 6ty u(T™))
In the sequel, we add and substract the same quantites to E,?’Nf*l as those for the term 5E,7€L+1.

BN Syt (T AT, u(T)) + F(T™, AT — 6t,u(T™) — 62, u(T™)) — e(T™, AT — 6t, u(T™))
— (F(T", AT, u(T") — dx,u(T™)) — e(T", AT, u(T™)))
+ F(T", AT — 6t,u} | —dx,u} ;) — F(T", AT — 6t u(T") — 6z, u(T™))
- (F(T", AT, ul_, — dz,ul_,) — F(T™, AT, w(T™) — bz, u(T”)))

Taking norms and using (3.10)), (3.11)), we derive:

nNF . . Cot?
[z 1”SIBHEkH+(C+C5t)”6Ek—1||+(O‘+N+206t+7)||Ek 1+ 3vp

We summarise the obtained inequalities:

C6t?
e < BlIER +(a+/~b+05t+7)”Ek 1l + ClOEL Al + vr (3.19)
i C(S 2
1B < BIERI+ (@ + p+ 205t + IEE-ll + C(L+ 0|6 By || + 3vr (3.20)
6B < C5t|\5Ek_1||+C5t|\Ek_1||+27F (3.21)
Since the upper bound of the error term HE’”N || depends on the error terms ||E;|| and
|6E Y| we focus on the inequalities (3.19 . Hence, we can write by induction:
Ca 2 e
BRI < BB+ (a+ p+ Ot + =) R + C%6t Y _(Coty 2|7 || + C(Cat) |6 EG |
j=2

1— (Cot)k1

(3.22)
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k
The governing term in the sum C25t Z(C’(St)j_2HEZ:;H is the term C?4t||E}'~7||. To ensure that
j=2

Cot?

it does not dominate the term (a + p + Cdt + )||E}~1||, we suppose that the fine time step

verifies: 0t < AT?e% (see hypothesis (3.17)).

1 — (Cot)k1
1 —(Cot)
of the sum for j > 3 can be distributed over the terms: ||E}||, ||Ex |, ||Ef~1| and || Ey~7]|, where

||[ER| is a perturbation of ||ER]|.

In the sequel, we show that the residual terms 6Egik , <1 + 2C ) ~vr and all the terms

Setting the error perturbation to:

20 + 3+ 20?6t

_|_
B—1ta+3utCott 08y "
(3.23)

BRI = BRI+ NOER| + Cot (1B I + [19ER =1 ])

The following inequality is satisfied by ||EZ||:
IR < BIEL | + &l Ep=y || + C2ot|| B | (3.24)

where the constant & is defined in (3.25)).
Hence, for £ = 0, we have:

1E811 < BIES ] + e
Then, for kK = 1, we have:
BRI < BIETH| + &llEG | +3r
where: In the sequel, we use the following notations:

2
a = a+3,u+305t+05t

20 + 3+ 20?5t
B—1+a+3u+0st+ 0% Lozt " (3.25)
) ( 2C + 3 + 20265t

Yo = 76+ Cot+

+3 | yr + Cdt + 2C6t>
B—1+a+3u+Cot+C% + 25t )VF

Following [53], we consider the sequence (€f),,> >0 defined recursively as follows. For k = 0:

. 0 ,if n=0 ( )
en = 3.26
0 ﬁé’gil +9¢ ,if n>1

For k = 1:
~n 0 s if n= 0, 1 (3 27)
e = .
P\ et vaa 4 Ap i n>2
For k > 2:
n 0 ) if n= 0, ]., 2 ( )
% = 3.28
' Bert +ael | +C%tey s if n>3
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Since ||ER|| < ||ER|| < &}, for k>0, n =0,---, N, we analyse the behavior of (¢}) to derive a
bound for E}. For this, we consider the generating function:

&)=Y &

n>0
From (3:26), (3:27) and (328) we get:
N §lels
po(§) =
TSI R
~ « ~ VF
p1(&) = —=zpo(&) + 3.29
© 1_5/%() i (329)
Q t
0 = Dk k>2
From which we derive, for & > 1
~ I = (e 1 e B ey o1
() = spat S SO gy Lo e € T(C (k]
(-2 & \ j )0 s -9 % & \
(3.30)
For k = 0, we have:
P
=3c6 | D) [ DA | =96 (Z Bl> ¢!
p=0 p=>0 p>0 \I=0
By a change of variable p = n — 1, we obtain:
ey = A (Z ﬁl> Je e“Tmaz, (1 + |[u(T)|)Te “Teq, n>1
For k > 1, using the binomial expansion in (3.30)):
1 k—J —|—p> D P
T e = < G
(L=peket=s =\ p
and by a change of variable, we obtain:
Yo =qgat > K18+ Apa Y K] 8
n>0 n>k+1 n>k
Identifying the term & in the expansion yields to:
&y = Apa" K
This gives an upper bound for the error terms ||EF||, % > 1. We do not use this estimate since

the parareal algorithm ensures uf = F(T°, T" — T°, u°) for k > n, which yields:
|ERll = Oler), k=1
In the sequel, we identify the terms £ for n > k + 1 in the expansion:

& =Aca" K,y 1 +Ard" K],
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We now compute the terms

Kﬁ_ﬁiwm (C%517 (k= j\ (k=i+1)
p_l:O_y (a+3u+Cst)2\ j l
and
p k2 c725t 1\ (k—1—j+1
I ([
=0 j=0 J !
. k—j+1 k+1 C?6t . 2 92
: < : <1, f h h A7) < AT
Using l ) < < and (ot autCong = b rom hypothesis (3.17): ot < e
We have:

p [k/2] o
K<Y (‘“l”)ﬁl 3 (’“j J) < fk<’“+;+p)ﬁp

1=0 §=0
P [k—1/2] .
k—1+1 k—1—3j k+p
I < ! < 2
e () s () s ()

where fj, is the general term of the Fibonacci sequence defined by fo = fi = 1 and fry1 =
fe+ fr—1,k > 1:

k/2) . . k41 (1 k41
fk‘Z(k J>_(1+\@)+ (1—/5)Ft

= j 2k+1\/5
Hence, we derive the bound:
n [n ~n /?G CcT n —CAT
= = = n 9 =
IEG] < lEg]l < &5 < —e" maxn(1 + |[u(T")[|)Te €, n=1
G
IEEl = O(er), k=1
~ » - - n _
1B < BRI <& <deatn () ot e aeat e ()8t nz kel k2
(3.31)
which ends the proof of the theorem. O

3.3 Advantages of the multi-step parareal algorithm

We proposed in the last section a new variant of the parareal algorithm with a consistent ap-
proximation of the solution at time T — §t in a non intrusive way. The initialisation of the fine
propagation in each time window has te be appropriately chosen because an initialisation error
would be propagated over the whole time interval and would prevent the parareal algorithm to
converge towards the target solution. Another option to treat this issue is to use a one-step time
scheme or a multi-stage Runge Kutta method to initialize the fine computation. This option is
intrusive since we have to implement new time scheme for the initialisation. Morevover, we will see
in section that this strategy prevents the parareal to converge to the numerical solution with
the target accuracy since the first-order scheme error will dominate.

This method adds consistency with the fine scheme. Also, this strategy can be applied to multi-

step time schemes involving several fine time steps preceding the time T" by applying the same

correction to terms taking the form: uZ’ﬁ , 1=1,---,1.
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We detail the algorithm for a multi-step time scheme involving more than one fine time step
preceding the time T".

uptt = GT" AT ,ug), 0<n<N-1
wpt = QT AT, W) + BT AT,
—G(T", AT, uy), 0<n<N-1, k>0
uZ’ﬁf_i = F(T" AT —idt, uz_l’Nf_I, uZ_l’Nf_IH, ) +upt
\ (T AT, N L W NIy 0,1, 0<n< N -1,
where we denote F'(t, s,whw?, - ,wI) the multi-step propagator for any given time t € [0,7],
s € [0,T — t] and any function w', .-+ ,w' € U takes I initial values at times ¢ and ¢t — 6t and

propagates it at time t + s, where Jt is the fine time step. We illustrate the good convegence
properties in the next section by applying the parareal algorithm to an ODE system solved by
a coarse solver based on a one-step time scheme and a fine solver based on a third-order BDF
method.

When the coarse solver is a multi-step time scheme, there exists several options to initialise it on
each time window:

e [f the coarse time step §7 is equal to the size of the time window AT, there is no additional
correction in the parareal algorithm since the solution at every coarse time step are updated

o If T < AT, there are intermediate coarse time iterations in each time window. In [12],
the initialisation of the coarse solver is addressed and the authors propose a parareal-type
correction at time T — 6T

upt N = (T AT — 6T, ) + F(T™ AT — 6T, uf =N =1 )
_Ne¢ oT
— G(T", AT — 8T, u}” N i, Now== 0<n<N-1 k=0

(3.33)

We illustrate the behavior of the full multi-step parareal algorithm with specific initialisation of
the fine and coarse solver in the next section where the two solvers involved in the parareal method
are the second-order BDF method.

3.4 Numerical tests

We apply the multi-step parareal algorithm to a simple ODE firstly, the damped oscillator and
then to a stiff problem, the Brusselator system. Our results illustrate that our approach improves
the convergence properties with respect to the classical parareal algorithm. We also show that the
generalisation of this approach to third-order time schemes holds and the convergence properties
derived in Theorem are preserved. Finally, we address the question of the parallel efficiency
of the multi-step parareal. In the last section, we apply the adaptive parareal algorithm (see [80])
where the accuracy of the fine solver is increased accross the iterations.

3.4.1 Nwumerical convergence results
3.4.1.1 The damped oscillator

We consider the damped oscillator system:

u (t) + 20/ (t) + wiu(t) =0, t € (0,T), with u(0) =up, T = 10,

(3.32)

k>0
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We rewrite it as a first order ODE system:

X'(t) = AX(t), te(0,T), with X(0) = <u9> AZ( 02 —12>\>

Uo —Wo

This system models the dynamic of a simple nonstiff harmonic oscillator under a frictional force.

1
For our tests, we set A = 0.05, wg =1 and Xg = <8 2>.

The coarse solver is a Backward Euler method with a coarse time step:
AT =0.1

which corresponds to 100 time windows and the fine solver is a second-order BDF method with a
fine time step 0t = 10~% (respecting hypothesis ) In figure the fine solver is based on a
two-step time scheme where the computation of the solution «™/ ™ at time T™ + (5 + 1)6t depends
on the solutions u™/ and u™/ ™! at times T" + jét and T™ 4 (j — 1)6t, respectively. We use the
multi-step variant of parareal to initialise the fine solver in each time window, starting from
the parareal iteration k > 2. At the parareal iteration k& = 1, we use a Backward Euler method to
initialise the fine solver since we did not use the fine propagator yet.

In this section, we analyse the evolution of two different errors accross the parareal iterations:

e the error between the fine solution computed in a sequential way and the parareal solution
in L>°(0,7T) norm,
mazi<p<n||jup — F(T°,T" — T° u%)| (3.34)

e the error between the exact solution and the parareal solution in L°°(0,7") norm

mazycen|luf — u(T)]] (3.35)

In all the figures of this section, we plot the evolution of errors (3.3543.34) in the two following
cases:

e Without a multi-step adaptation (red curve): the error between the parareal solution where
the Backward Euler method is used at each iteration for the initialisation of the fine solver
and the fine solution computed in a sequential way for (3.34) (the exact solution for (3.35))),

on one hand,

e With a multi-step adaptation (blue curve): the error between the solution given by the multi-
step parareal algorithm the fine solution computed in a sequential way for (3.34]) (the exact
solution for (3.35))), on the other hand.

In figure we see that without the multi-step adaptation the error stagnates around 1076
without recovering the fine solution at the machine precision, even after 100 iterations. On the
other hand, using the multi-step parareal algorithm, the error continues to decrease until reaching
the machine precision. Moreover, in the right figure, we see that the only way to recover the
correct approximation of the exact solution is to use a multi-step adaptation, otherwise, without
adaptation, the parareal algorithm will not reach the target accuracy. This result shows that
making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to
obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure [3.1f on a fine solver based on the second-order
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Figure 3.1: Convergence of the multi-step parareal for the second-order BDF method, 6t = 1074
(left: error (3.34), right: error (3.35))

BDF method with time step 6t = 1072,
In figure (3.2]), we apply the extension of the multi-step parareal algorithm (3.32) to three-step
time schemes by giving a consistent approximation of the solutions u(7™ — §t) and u(T™ — 20t).

We illustrate the convergence properties of this strategy by applying it on a fine solver based

on the third-order BDF method with a time step 6t = 107* (see figure [3.2)).

We observe the

same behaviour of the errors (3.3543.34)): without a multi-step adaptation, the fine propagation is
initialised by two Backward Euler iterations and does not allow to recover the target approximation

of the exact solution while the multi-step parareal converges to the exact solution with the desired

accuracy.
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Figure 3.2: Convergence of the multi-step parareal for the third-order BDF method, 6t = 10~%
(left: error (3.34), right: error (3.35))
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3.4.1.2 The Brusselator system

We consider the Brusselator system:

¥ = A+2%y— (B+ 1)z
y = Bx-—z%

with initial condition z(0) = 0 and y(0) = 1. This is a stiff ODE that models a chain of chemical
reactions. It was already studied in previous works on the parareal algorithm ([53, 80]). The

system has a fixed point at x = A and y = B which becomes unstable when B > 1 4+ A? and
leads to oscillations. We place ourselves in this oscillatory regime by setting A = 1 and B = 3.
The dynamics present large velocity variations in some time sub-intervals, making the use of high
order time schemes particularly desirable for an appropriate treatment of the transient. The coarse
solver is a Backward Euler method with a coarse time step:

AT =0.1

which corresponds to 180 time windows since T = 18. The fine solver is a second-order BDF
method with a fine time step 6t = 10~* (respecting hypothesis (3.17))). In figure the fine solver
is based on a two-step time scheme. We use the multi-step parareal algorithm to initialise
the fine solver in each time window.

Likewise, we analyse the evolution of the errors (3.34) and (3.35)) accross the parareal iterations. In
Figure we see that without the multi-step adaptation the error M stagnates around 107%
without recovering the fine solution at the machine precision, even after 180 iterations. On the
other hand, using the multi-step parareal algorithm, the error continues to decrease until reaching
the machine precision. Moreover, in the right figure, we see that the only way to recover the
correct approximation of the exact solution is to use a multi-step adaptation, otherwise, without

adaptation, the parareal algorithm will not reach the target accuracy. This result shows that
making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to
obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure [3.3] on a fine solver based on the second-order
BDF method with time step 6t = 1074

Brusselator system Brusselator system
1 r T T T T T 1 T T T T T
without multi-step adaptation —e— S without multi-step adaptation —e—
g 0.0l L with multi-step adaptation —e— | & 0.1 with multi-step adaptation —e— 3
o o
3 3
= L
5 0.0001 | ; o
= ~0.001 ¢
2 le06 g
. = 0.0001 [
2 1e08 | £
g S 1e-05 |
[ [
2 le-10 F 2
E E le-06 F
g le12 £ 1e07 |
16—14 1 1 1 1 1 16—08 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Number of iterations Number of iterations

Figure 3.3: Convergence of the multi-step parareal for the second-order BDF method, 6t = 1074
(left: error (3.34), right: error (3.35))
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In the figure , we apply the extension of the multi-step parareal algorithm to three-
step time schemes by giving a consistent approximation of the solutions u(7™ —dt) and u(T" —20t).
We illustrate the convergence properties of this strategy by applying it on a fine solver based on the
third-order BDF method with time steps 6t = 10™* (see figure . We observe the same behavior
of the errors (|3.3543.34)):

two Backward Euler iterations and does not allow to recover the target approximation of the exact

without a multi-step adaptation, the fine propagation is initialised by

solution while the multi-step parareal converges to the exact solution with the desired accuracy.

Brusselator system

Brusselator system

1 T T T T T 1 T T T T T
without multi-step adaptation —e— 1 without multi-step adaptation —e—
g 001 with multi-step adaptation —e—y | & 0.01 with multi-step adaptation —e—
3 ’ 3 : ;
g g
g 0.0001 3 L
o ° 0.0001
= =
. 1e-06 S 1006 |
— —
g 1e-08 | b
g ey
= le10 | =
3 3 le-10
le-12 |
1 1 1 1 1 16—12 1 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30

Number of iterations Number of iterations

Figure 3.4: Convergence of the multi-step parareal for the third-order BDF method, 6t = 10™%
(left: error (3.34), right: error (3.35)

3.4.2 Parallel efficiency

We address in this section the question of the speed up performances for the multi-step parareal

algorithm. The only additional operations in the multi-step variant compared to the classical

parareal are the corrections of solutions involved in the initialisation of the fine solver in each time
. n,Nf—1 .

window (update of ;" in (3.13

cost of the multi-step variant is the same as the one of the classical parareal. In a recent work

for example). Hence, we consider that the computational

[80], the authors propose a new method, the adaptive parareal algorithm, where the accuracy of
the fine solver is increased across the iterations. This new point of view improves the speed up
performances of the parareal method and the only remaining factor limiting high performance
becomes the cost of the coarse solver. In this section, we seek to improve the parallel efficiency
of the multi-step parareal method by increasing the accuracy of fine solver at each iteration. We
first recall the parallel efficiency for the classical parareal (CP) and the adaptive parareal (AP) to
obtain a solution with accuracy n and a propagation over [0, T

el fer(n0.T) ~ o

1
effap(n,[0,T]) ~ T under the hypothesis of Proposition 3.1 in [80]
1+eq

where K (n) is the number of parareal iterations to obtain the approximation of the exact solution
with the target accuracy n and «, the order of the fine time scheme. To apply this approach
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on the multi-step variant, we need to carefully initialise each time window. If the fine scheme is
the second-order BDF method, the computation of ©™™! depends on ™ and "~ ! and with the
adaptive paradigm we have:

Hence, we initialise the fine solver with one variable step-size BDF method.

We apply this strategy to the damped oscillator system with the Backward Euler method as a
coarse solver (AT = 0.1) and the second-order BDF method as a fine solver with the sequence of
time steps indicated in table

Multi-step parareal Adaptive parareal
Iteration | Time step Error Time step Error

k=1 1074 5x 1072 1072 5x 1072
k=2 1074 9x 1073 5x 1073 2 x 1072
k=3 1074 1073 1073 3x 1073
k=4 1074 9x107° 5x 1074 3x107*
k=5 1074 7x 1076 4x 107" 2% 107°
k=6 1074 4 %1077 25x107% [ 3x10°°
k=17 1074 3.8 x107° 2x 1074 3x 1077
k=8 1071 2% 107° 1074 29 %1078

Table 3.1: Convergence of the adaptive parareal and the multi-step parareal with a target
accuracy n = 3 x 1078

The multi-step parareal algorithm with adaptivity converges to the exact solution with an
accuracy obtained by a sequential fine solution with time step 6t = 10™% after 8 iterations such
as the multi-step method without adaptivity (see table . With the sequence of fine time steps
used in the adaptive parareal method, convergence is reached with the same number of iterations
as the multi-step variant. The adaptive algorithm allows to obtain better speed-up performances
compared to the nonadaptive version since the fine solver (5t = 10_4) is used only one time instead
of 8 times in the multi-step variant. In table we give the speed-up and the efficiency of the

Speed-up Multi-step parareal | Adaptive parareal
With cost G 10.9 23.7
Without cost G 12.5 32.2

Efficiency Multi-step parareal | Adaptive parareal
With cost G 10.9% 23.7%
Without cost G 12.5% 32.2%

Table 3.2: Speed up and efficiency with 7' = 10, 6t = 10~% and N = 100

adaptive and multi-step parareal algorithms applied to the damped oscillator. The speed-up is
defined as the ratio:
Tseq(na 0,77)

Tyar (1, [0, T7)°
between the cost to run a sequential fine solver achieving a target accuracy n with the cost to run
a parareal algorithm providing at the end the same target accuracy n. The parallel efficiency of

5(77> [Oa TD =
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the method is then defined as the ratio of the above speed up with the number of processors which
gives a target of 1 to any parallel solver:

S(n,[0,T7)

eff(n,10,T]) :== — N

To compare the speed-up of the multi-step and adaptive parareal algorithms, we use the number
of fine and coarse propagations involved in the numerical solution and the computational cost of
the coarse and fine propagations (communication delays have not been taken into account). For
example, in table [3.1] the cost of the multi-step parareal algorithm is equal to the cost of 9 coarse
propagations over [0, 7] plus 8 fine propagations over [T, 7" 1] with a fine time step 6t = 1072
In [80], the authors show that the main element affecting the performance of the adaptive parareal
method is no longer the cost of the fine solver but the cost of the coarse solver. Hence, we compare
the speed-up and efficiency when we count or do not count the cost of the coarse solver in table[3.2]
Obviously, when we do not count the cost of the coarse solver, the performance of both algorithms
improves.

3.5 Conclusion

We have built a new variant of the parareal algorithm allowing to overcome the issue of initialising
the fine and the coarse solvers when they are based on a multi-step time scheme ([5]). The
convergence properties of the multi-step parareal are very close to that of the classical parareal
algorithm in the case of two-step time schemes. An extension of our approach to generic multi-step
time schemes is proposed and validated numerically on a three-step time scheme. In addition, the
accuracy of the multi-step parareal algorithm is illustrated on the numerical solution of a stiff ODE
such as the Brusselator system. Finally, we address the question of the parallel efficiency of our
strategy by coupling it with the adaptive parareal algorithm proposed in [80]. The new adaptive
formulation of the parareal algorithm opens the door to improve significantly the parallel efficiency
of the method provided that the cost of the coarse solver is moderate.
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4.1 Introduction
As an introduction to the issue, we consider a 1D conservative non linear hyperbolic system
U (z,t) + 0, F(U)(z,t) =0, (4.1)

with unknown vector U € R™ and Lipschitz flux F' : R™ — R™ with real-diagonalisable Jacobian
matrix A(U) = VyF(U) € R™*™.

In the rest of the introduction we review some notions about the numerical diffusion.

4.1.1 Consistency analysis

When approximating smooth solutions U of (4.1)) by a consistent numerical method on a regular
mesh with space step Az, the semi-discrete equations approximate to the first order in Az the
following perturbed version of equation (4.1)) :

atUAa: + 8mF(UA33) = D(UA:ca A$) + O(AJ)), (42)
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where U, is the numerical solution and D is a second order differential operator.

When the flux function F' is linear, linear numerical methods yield a linear diffusion operator
D(U, Ax) = Ax0,(DOyU). The matrix D comes from the upwind (off-centered) contributions of
the discrete equations and gives a first insight into the scheme precision and stability. In the non
linear case (F' Lipschitz), the numerical diffusion operator can often be approximated to the first
order by a non linear diffusion operator :

DU, Ax) = Azx0x(D(U)0,U) + o(Ax). (4.3)

This is the case for instance for colocated schemes based on characteristic upwinding such as
Godunov [60], Roe [100], VFRoe [83] or VFFC [56] schemes where the non linear numerical diffusion
tensor is D(U) = |A(U)|.

We recall that in the case of symmetric hyperbolic systems (*A(U) = A(U)), any entropy
solution to preserves the L? norm (see [59] Example 3.2 in the Introduction chapter) and we
would like the discrete L? norm of any scheme to be bounded as well. In the case of non-symmetric
systems, one first symmetrises the system using entropic variables V(U) = Vs(U) where s a strictly
convex entropy of the system is assumed to exist (see [59] Theorem 3.2 in the introduction
chapter). The new symmetric system:

OV +A(V)8,V =0, with'A= A (4.4)

is linearly L?-stable. Any numerical scheme yields a numerical diffusion E(V) in the symmetrised
basis and we require that the diffusion operator D have positive symmetric part : *D + D > 0.

The operator D gives a first insight into the scheme precision since the smaller the operator D,
the closer the approximate solution Ua, is to U. However the numerical diffusion operator gives
also important informations about the scheme stability.

4.1.2 Stability analysis

In the case of symmetric hyperbolic systems (*A(U) = A(U)), the exact equation (4.1) yields the
conservation of the L? norm (see [59] Example 3.2 in the Introduction chapter)

veeRe 0 [ Ul de =0 (45)
R
whilst the perturbed equation (4.2)) yields most of the time the first order estimate

vVt € Ry, 8t/ Uz ||3(z, t)dz = A:J;/tUAxax(D(UAI)&CUAI)dx—i—o(Aaz)
R R (4.6)
_ _As / H(0,Une) D(Une)(0sUns)dz + o( ),
R

In order to obtain an L? stable scheme, it is therefore usual to require that the diffusion operator
D have positive symmetric part : *D + D > 0.

In the case of non symmetric systems, one first symmetrises the system using entropic variables
&(U) = Vys(U) where s is an entropy of the system. The new system is entropic and yields

VteRy, & /R E) Bz, )dz = o, (4.7)
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We remark that a scheme that is entropic 0 / s(U) < 0 is not necessarily stable since s is not

R
necessarily bounded below as is the case with the full Euler system. We recall the expression of
the entropy for the full Euler system:

2
s =C, (ln (pE - gp) —vIn p> , (4.8)

where C), is the specific heat and 7 the adiabatic constant such that: p = (v — 1)pe, e is the
internal energy and F, the total energy. If a numerical scheme applied to the full Euler system is
entropic then the quantity decays. This does not imply the boundedness of the unknowns
p,u, E. For example, assuming p is constant, the variables F and ¢ can grow infinitely while

maintaining the difference pE — ;— constant.
p

We investigate in this chapter the L?-stability of staggered schemes. In this first account of
our research, we investigate the isentropic Euler system which raises an issue that will remain
with more complex fluid model : the numerical treatment of the mass balance equation and of the
momentum equation yields a non classical diffusion operator. In order to obtain a straightforwardly
stable scheme we propose a new discretisation with positive numerical diffusion. In section we
determine the numerical diffusion of the staggered schemes and show it does not straightforwardly
yield a linear stability. We then present a new class of staggered schemes and prove their linear
stability in section Some numerical results are given in section [£.4]

4.2 The numerical diffusion of staggered schemes for the Euler
system

We address here the following system, the isentropic Euler equations, written in the following

conservative form :

Op + Oz (pu) =0

1P x@)2 (4.9)

O (pu) + Oz (pu”) + Oep =0
This problem is posed over an open bounded connected subset €2 of R, with boundary 912, and a
finite time interval (0,7"). The variable ¢ stands for the time, p, v and p are the density, velocity
and pressure in the flow.
The results can be extended to the multidimensional Euler system but the calculations are lengthier
and do not help the intuition.
The Euler system (4.9) can take the non conservative form

BU + A(U)d,U = 0 (4.10)

U:<2) Mw:(@?ﬁ i). (4.11)

Remark 4.1. In the sequel, we seek to show the upwind matrices for numerical schemes based on
the principle of vector upwinding using the eigenbasis of the Jacobian matriz A such as: Godunov
[60], Roe [100] and VFRoe [83]. The upwind matrices have two arguments: a left state Ur, and a
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right state Ur. Here, we illustrate their behaviour with the Roe scheme. When the right and left
states are equal, the upwind matrix has the following expression:

1 & —u? U
D UU)=|AU)| = - . 4.12
0.0 =140 = ¢ (o' 2 ) (112)
If the flux F in[{.1] is linear, the upwind matrices of the Godunov and VFRoe schemes have the
same form . We remark that by a change of basis, we obtain a system of decoupled transport
equation where the transport speed is positive, hence ensuring the L?-stability for each equation and
thus for the original problem.
|ul

Also for low Mach numbers (—— < 1), for a fized velocity u and the sound speed c tending to
c

infinity, the upwind matriz of the Roe scheme converges towards the identity matrix:
1
Dypyy = clld+ O(-) (4.13)
c

The diffusion is evenly distributed on the mass and momentum equations. We see that there is
problem in the order of magnitude:

e Considering the mass equation of the system @, the discretisation introduced a perturbation
of the order pc in the right hand side while the left hand side is of the order pu:

Op + 0pq = cAx0zp + o(Ax). (4.14)
Hence, the numerical scheme is too diffusive for the mass equation.

e Considering the momentum equation of the system @, the discretisation introduced a per-

turbation of the order puc in the right hand side while the left hand side is of the order

pc?:
2

Orq + 8:5% + 0pp = cATDyrq + o( Ax). (4.15)
Hence, the numerical scheme is not diffusive enough for the mometum equation.

The upwind type schemes can be proven to be linearly L? stable ([60], [I00], [83]). However the
amount of numerical diffusion is proportional to the sound speed ¢ and for low Mach number flows,
the schemes based on characteristics upwinding are not able to capture nearly incompressible
solutions (see [36, [37] for more details).

On the contrary, staggered schemes are known to be more precise for low Mach number flows in
practice and are very popular in the thermal hydraulics community ([98]). However their stability
analysis is historically based on heuristics ([70]). Yet the conservative staggered schemes presented
in [66], [65] are proven to be entropic and to satisfy a kinetic energy preservation [67]. Likewise in
[19], the authors present a kinetic scheme on staggered grids for the barotropic Euler equations,
derive stability conditions which preserve both the positivity of the density and the decay of the
discrete global entropy, and satisfy a kinetic energy preservation. Unfortunately the boundedness
of the entropy does not necessarily imply the boundedness of the solution. Indeed a strictly convex
function is not necessarily bounded below. This is in particular the case for the full Euler system
since the entropy involves the function —In which is strictly convex but not bounded below (see
[59] Example 3.3 in the Introduction chapter). In the next subsection we show that the first order
perturbed equation associated to staggered schemes yields not the classical diffusion operator
but instead a strongly nonlinear numerical diffusion operator.
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4.2.1 The staggered scheme of Herbin et al.

Using staggered schemes, the density and pressure are located on cells and the velocity on faces
(nodes in 1D) [63] [62]. The momentum variable is usually split as a product between the density
and the velocity : ¢ = pu. The main difference between the various staggered schemes is the
treatment of the convection term p# ® @ in the momentum equation. We consider the staggered
scheme of [67] as a prototype of staggered schemes. Indeed, the main results of this section extends
to other staggered schemes. This is because the mass discretisation is the same in all staggered
schemes and therefore the mass diffusion operator will be non classical. In the past decade, Herbin,
Latché and their coauthors have proposed a new approach with rigorous proofs of stability: discrete
inequality for the kinetic energy and entropic character. They discretise the conservative form of
the Euler equations (eq:euler syst cons 1D) with a conservative scheme.
The different variants include one step ([65] section 2.1, [66] section 3.1) and prediction/correction
steps ([65] section 2.2, [66] section 4.1) variants, fully implicit ([66] section 3, [65] section 2.1), semi
implicit and almost explicit [66] (all but the pressure gradient are explicit-in-time) variants.

For simplicity we present the discrete equation of the fully implicit variant ([66] section 3, [65]
section 2.1) for the 1D isentropic Euler equations in conservative form.

1 1
ntl  n pyp,lrz+ u pyp,ln+ utl
P; P; ity  it3 iy i—3
VAN Az
-n+1, n+1 -n n
S, — P U, —n+1, upn+1l  —n+1_ upn+l n+1 n+1
Pieg iy ~ Pird%ieg Plivi Yigy — — PU U Piy1 — P
+ + —0. (4.17)
YAN? Az Az

The pressure p; and the density p; are located at the cell centers whereas the velocity wu; 1 are

located at the cell interfaces. The expression of the products pu, pd;u and pu2 between the
velocity located at cell interfaces and the density located at cell centers thus has to be defined
through interpolation formula.
The mass flux pu at the cell interfaces is defined using an upwind density p?j_’ , defined as :
2
up B i if UH_% >0
“ra Pi+1 if w.,1<0
% i+l =
pi + pit1
2
which is the sum of a centered and an upwind terms.
The expression of p,, 1 in the discrete momentum equation accounts for an average of the neigh-
2
bouring densities

Pi — Pi+1

5 (4.18)

+ sign(uiJr%)

_ 1
Pirt = 5(pit pit1). (4.19)
The expression of pu in the discrete momentum equation is
1
i = U g+ o) (120)

The upwind velocity u;? at cell centers is defined as :

2
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= # + sign(pu;)

— U

NI

i+3
—2 2 4.21

2 ? ( )
which is the sum of a centered and an upwind terms.

It is possible to use a centered velocity u instead of the upwind velocity u*? (see [66]).

4.2.2 The numerical diffusion of the scheme

The scheme presented in [66] section 3 and [65] section 2.1 is proven to be entropic. However the
boundedness of the entropy does not necessarily imply the boundedness of the solution. Indeed a
convex function is not necessarily bounded below. This is in particular the case for the full Euler
system (not the isentropic one) because the entropy involves the function — In which is convex but
not bounded below.

We would like to study the L? stability of the scheme by analysing its numerical diffusion operator.
This would give a new insight into the scheme and prove at least a linear stability and a nonlinear
stability in the case of almost constant initial data.

In this section, we assume that the exact solution is smooth and we determine the numerical
diffusion of the scheme . In the context of staggered schemes, we have two meshes: one
for the cell centered unknowns at points z;,7 = 1,--- , N and the other for the unknowns defined
on edges at points z;,1/o. Then we could write the consistency error for the momentum equation
around x = x; or T;;1 /5. To stay in the spirit of the staggered schemes, we first develop the analysis
around = = z;, /5 then in a second time around x = x; to be closer to the classical analysis of the
consistency error. To obtain the consistency error for the mass equation, we perform the following
Taylor expansions around x = x;, assuming smooth solutions with u # 0 :

pi-1 = px;) — Axdyp(z;) + %(Aa:)Qamp(xi) + O(Az?) (4.22)

pir1 = p(x;) + Az0ep(z;) + %(Ax)zamp(:vi) + O(Az?) (4.23)
2

U1 = u(x;) — %&;u(mz) + % (A;) Dpzu(z;) + O(Azd) (4.24)
2

Uppl = u(z;) + %Gxu(azz) + % <A2x> Orau(x;) + O(A{L‘g) (4.25)

Mass numerical diffusion From (4.16)), (A.1)) and (A.2)) the discrete mass flux is (we omit the

time indices)
up up 1 2 s 3
Py = Py = Aadu(pu) (i) — 5 (Aa)Psign(u(zi))d(u(i)0up) + O(A®)(4.26)
2 2
Hence the mass flux consistency is finally

up U,
Piiatpl =P, U 1 A
t3 e = Oy(pu)(x;) — szzgn(u(x@))ﬁx(uaxp)(xz) + O(Az?).  (4.27)

and the numerical diffusion associated to th mass conservation law is the strongly non linear
diffusion term sign(u)0;(udyp). The linear stability analysis of such a strongly nonlinear diffusion
is not classical and we are not aware of any reference.

If we assume that u does not change sign then the diffusion term simplifies to the weakly non linear
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diffusion term 0, (|u|0,p) which is positive diffusion coefficient |u|. The weakly non linear diffusion
term Oy(|u|0zp) can be linearised around a constant state (pg, ug # 0 as:

Oz (|uol0rp) + Ou(|uldzpo) = [uo|Ozzp).

Hence if u > 0 or u < 0 the mass equation has a positive contribution on the diagonal of the
numerical diffusion tensor D and thus has a stabilising effect.

If we allow u to change sign then the multiplication with sign(u) makes things more complicate
and we can not rule out potential instabilities. The linearisation is not trivial since the smoothness
of u does not imply even the continuity of sign(u). The consistency analysis is only a first step
that requires smooth solutions but the final goal of capturing discontinuous weak solutions with
velocity that change sign will raise even more questions.

Momentum numerical diffusion For the momentum numerical diffusion we compute

e the contribution from the pressure
1
Pis1—Di = Axaxp(:c,-)+§(Aaz)Qamp(xi)+(’)(Aa:3).pi+1—pl- = Axaxp(xiJr%)—i-O(Ax‘g). (4.28)

e the contribution from the time evolution term (case of the conservative scheme (4.1644.17))

(it1) = 2p(z; 1) + plai)
" t(ﬂ +1 p2 +3/ TP u) (5111,0.29

at(ﬁi+%u)<37i+1 t) = Olpu)(w; 1.t

= =
2 2

2
= Ot(pu)(:ciJr%,t) + % <A2:r> O ((Opzp)u) (mi+%, t) + O(Az3)4.30)

The time evolution term will bring a perturbation in (Am)2 that we can neglect since we are
interested in first order error terms in (Ax).

To obtain the consistency error, we perform the following Taylor expansions around = =z, 1
assuming smooth solutions with u # 0:
Ax Az?
Pi+1 = P(%Jr%) + 73xp(33i+%) + Tamp(fwr%) +0(Az%)
3Ax 9Az? 3
Pi+2 = p(xu-%) + Taa:p(xz-i-%) + Tazxp(‘rz-i-%) + O(Az”)
Ax Az?
pi = ) = 0w y) + S Onp(wiy) + O(ATY) (431)
3Ax 9Az?
Pi-1 = p(xz‘-i-%) - Tazp(xzq-%) + T&mp(mi-ﬁ-%) +O(Az?)
1
Uips = u(:):z_%) + A:m?zu(:vH%) + §<A$)28mxu($i+%) + O(Az?)
1
U1 = u(a:z_%) — Aa:&,;u(xH%) + §(Aq:)28mu(xi+%) + O(Az?)

Momentum numerical diffusion From (4.17)), (A.7) and (A.8), the discrete momentum flux
yields (we omit the time indices)

_ u o Az?

Py — P = Aad (o) (e, y) — - sign(pu(z,, 1))0s (pudin) (1)
Ag? (4.32)
x

2

sign(u(z,  1))0(u20,p) ;1) + O(Az?)
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Hence, from (4.32)) and (4.28)), the momentum flux consistency is finally:

— up . up
PUi1U;q 1 — PUY,; X Pi+1 — Di

_ 2
Az Az = Ou(pu )(xz+%) + 8rp(xi+%)

- % {sign(u(@,1)0u(u20up) (@, 1) + sign(pu(z, )0 (pudsu) (1) }

+ O(Az?)
(4.33)
For smooth solutions u and p:

Oz (pudyu) = 8x(pu8x%) = Oy (u0yq — uanp)

We obtain:

— up  —— up
P Uiy — PUY, Di+1 — Di
Ax Az

= a$(pu2)(xi+%) + 83:17(371'_5_%)

a % {<3ig"(u($i+%)) - Sign(ﬂu($i+%))> On(u"0rp) (211.1)

sign(pu(e,, )0 (ueq)(w,, 1) b+ O(Az?)

4.34
Assuming that the scheme (4.16{4.17)) preserves the positivity of p, we have: ( )
sign(pu(z,, 1)) = sign(u(z,, 1))
Hence:
DU ugty — puw”  piy — p; = 0y(pud)(z,0 1) + Oup(z 1)
Az Ax vhel TR (4.35)
— Bl signuley, 1))0u (ud0) (2, 3) + O(B?)

The numerical diffusion associated to the momentum conservation law is the term sign(u)0;(u0q)
and is decoupled from the mass diffusion. The linear stability analysis of such a strongly non linear
diffusion is not classical and we are not aware of any reference in the litterature.

If we assume that « does not change sign then the diffusion term simplifies to the weakly non linear
diffusion term 9, (|u|0yq) which involves a positive diffusion coefficient |u|. The weakly non linear
diffusion term 0, (|u|0q) can be linearised around a constant state (qo,ug # 0 as:

Oz (|0]|02q) + 0(|u|02q0) = |u0|Orq)-

Hence if u > 0 or u < 0 the momentum equation has a positive contribution on the diagonal of the
numerical diffusion tensor D and thus has a stabilising effect.

If we allow u to change sign then the multiplication with sign(u) makes things more complicated
and we can not rule out potential instabilities. The linearisation is not trivial, even taking u smooth
enough, since the function sign(u) is not continuous. The consistency analysis is only a first step
that requires smooth solutions but the final goal of capturing discontinuous weak solutions with
velocity that change sign will raise even more issues.

Finally, the staggered scheme (4.1614.17) have the following numerical diffusion operator:
HUng + 0. F(Upg) = D(Ung, Az) + O(Az?)

Az sign(u(z;)) 0 u(®i) 0 pla:)
(4.36
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Now that we derived the consistency error around the point x = ;5 for the momentum equation
we turn to the classical way to analyse the consistency error around = = z;.

e the contribution from the pressure
1
Pit1 — pi = Ax0yp(w;) + §(A$)2amp($i) +0(Az%). (4.37)
e the contribution from the time evolution term (case of the conservative scheme (4.1614.17))

ﬁi—i—%ui—}—% = §(Pi+Pi+1)“i+%

X :L‘2 ZE2
= (ou)an) + SR 0u (o) () + S pdanlan) + S D (udep) () + O(A?)

4
(4.38)
Since we are interested in first order error terms in (Ax), we neglect the perturbation in
(Az)? and obtain:

(piyru)(zit) = 8t(P“)($i7t)+%@(@(pu))(mi,t)—#—O(Aﬁ) (4.39)

Since (pu)(w;, t) is a solution of ([4.9):
8t(az(pu))<xu t) = &r(at(pu))(xh t) = _axx(pUZ)(xb t) - 8arxp(xia t)
Az

(piyruw)(zit) = c‘%(pu)(xz»t)—78xx(pu2)(xi,t)—%amp(xi,twcf)(m?) (4.40)

We seek to derive the numerical diffusion for the momentum equation around z = z;:

A Az?
MwﬁﬁwﬁpzAdéwmw+;@mwm0—ijMM@wmmmv@ﬂ
(4.41)

Hence, from (4.41]) and (4.37)), the momentum flux consistency is finally:

__ up — _up
B PUi 1 Uiq g — PUU, Piv1 —Pi ) Y. .
at(p%u) + A t A = O(pu)(zi) + 0z (pu”)(x;) + Op(i)

_ % {szgn(u(xl))ﬁx (U&CQ) (l‘z) - &vxp(xl)

~za(pu?) (w5) — O (Du(pu)) (2:) } + O(Az?)

(4.42)
From , we obtain:
J— up —— up
_ PU+1Wip1 — PUL, Di+1 —Pi , 2Y( .. ‘
at(pi+%u) + N A = 8t(PU) (551) + 8x(Pu )(332) + azp(xz)
A
— S sign(u(e:)d.(udeq)(a) + O(Ac?)

(4.43)

Finally, the staggered scheme (4.16H4.17)) have the following numerical diffusion operator when the

consistency error is derived around x = x; in the momentum equation:

OUpz + 0, F(Upy) = D(Upg, Az) + O(Az?)

D(Uny, Az) = % <sign(g($z')) Sign((i (m))) o, <<u(§i) u((;)) o, (Zg;)) (4.44)

Hence, we have the following result on the numerical diffusion operator of the staggered schemes.
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Theorem 4.2 (Numerical diffusion of staggered schemes). The second order perturbation operator
associated to the staggered scheme on a 1D regular mesh with space step Ax is the
strongly nonlinear operator :

D(U, Az) = Ax( Sigg(“) 0 )ax [( u 0 )am ( 5 )} +o(Az). (4.45)

sign(u) ¢ u

The numerical diffusion associated to the mass conservation law is the same for every staggered
scheme since they all have the same discretisation of the mass equation. Hence all the staggered
schemes have a non classical diffusion operator at least for the mass equation. Each staggered
scheme differs from the others with the discretisation of the momentum equation, especially the
convective term (non conservative or conservative scheme, implicit or semi implicit, ...). Hence,
theorem holds for both the mass and the momentum equations only for the Herbin et al

staggered scheme (4.16{4.17)).

In the context of staggered schemes, there are two meshes, one for the density p and one for the
velocity u. Hence we have two options to write the consistency error for the momentum equation.
This leads to two numerical diffusion operators and . writes the momentum
consistency equation at point z; 1/ whereas writes it at point x;. Provided that the velocity
u has a constant sign then these operators are equivalent and the diffusion operator obtained

T
around ;19 = T; + 53 converges towards the diffusion operator (4.44]) obtained around z;, when

Az tends to zero. However, if the velocity changes sign, there is not enough regularity to have
the equivalence of (4.36)) and (4.44)). In practice, the velocity u changes sign on a finite number of
points in the domain, hence, the numerical diffusion operators (4.36)) and (4.44) will differ only in

some points.

In the next section, we propose a new class of staggered schemes whose numerical diffusion operator
has a classical form (4.3) and ensures the L2-stability of the scheme.

4.3 A new class of staggered schemes for the Euler equations

The most advanced result regarding staggered schemes are the kinetic energy inequality and the
entropic stability proved for the scheme (4.16H4.17) in [66]. These properties however do not
guarantee the boundedness of the solution (see the discussion in section [1.1.2). In this section,
we propose a class of staggered schemes for conservation laws which are linearly L2-stable.
Unlike classical staggered schemes which have a non classical diffusion operator (see the discussion
at the end of section and therorem {4.2). We impose a classical diffusion operator D ,
such that the diffusion tensor verifies: D 4 ‘D > 0, where D is the matrix D in the basis that
symmetrises the Euler system.

We specify this new class in the particular case of the following 2D isentropic Euler equations in
conservative form:

) c9d . (4.46)
8tq+V~¥+Vp:O
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This can be written:
Op+0qy +0qy =0

2
dz x4y 2

Oqe + 0p | == oy | —2 Oep =10

e <p>+y<p>+c g : (4.47)

2
q
Orgy + 0z | 2 | + 0 <qqu) + 628yp =0
p p
The isentropic Euler system takes the conservative form

U +V - F(U) =0, (4.48)

where U = (p,q) and F is the flux matrix.
The isentropic Euler system takes the non conservative form

oU + Ay (U)0,U + Ay(U)o,U = 0. (4.49)
It is usual to define the Jacobian of F along vectors @i = (n,,n,) € R* as

AU, R) = ngA(U) +n,A,U)
B 0 b (4.50)
T\ FA—(a-A)a de@d+ (@-i)ly )’

0
with ¢ = 8—1) assumed constant.
0

We consider the class Stag of discrete staggered conservative schemes of the form:

FT _ p® Y _ Y Pi.j
Ul .(t - t -9 ith: U, ; = e d: 4.51
Z:]( )+ Am + Ay ’ Wil 1,] q§/+1/27.7 ? an ( )
%5412
F2(U; ) + F* (U415 Ui — Uy
FY = GE) 5 Wit14) + Dstag (Ui, Ui, 1) ———— Sa (4.52)
FZJU_|_FZ/U R U. . — U -
Fjj— = ( ZJ) 2 ( Z7]+1) + DStag<Ui7jan7j+1vny) = 2 Z7J+17 (453)

where Dgyqq is a 3 X 3 matrix valued function. An example of scheme in the class Stag is the
staggered centered scheme, which correspond to the case Dgiqq = 0.
Schemes of the class Stag admit a classical diffusion operator (4.3]).

Theorem 4.3 (Classical diffusion of Stag schemes). Let Dgiqq : R3 — R3*3 be a matriz valued
Lipshitz function. A staggered conservative scheme with a numerical flur F'y and F* of the
form admits the following classical diffusion operator

DU, Az, Ay) = Ax0y(Dstag(U,U,7iz)0:U) + AyOy(Dsiag(U, U, 7iy)(0,U) 4+ o( Az, Ay).
on a reqular mesh with space steps Ax and Ay.

In the sequel, we analyse an element of the class of schemes Stag whose expression is:

,

Oupij + ‘jfﬂ/z,jA_xq_fUz,j 4 Q3j+1/2A—yQ§j1/z —0
(s~ (), P ()

atqzﬂl/z,j‘i‘ P i+lix P i P ¢+1/27j+1/2Ay P i+1/27j—1/2+62pi+12;pi,j -0 .
=B, (B ()

3tqzj+1/2+ P i,j+1Ay P z‘,j+ 14 i+1/2,j+1/2Ax P i—1/2,j+1/2+cgpi,j+1A; Pi,j —0

(4.54)
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This numerical scheme (4.54) can be written in the form (4.51)-(4.53|) based on the following

numerical flux:

_ .y
@iv1)9, B j+1/2
5 _
qx> 5 UGy
T _ - + " pit1,j Y _ <>
By (P ) i+1,5 » Fr P S it1/2,541)2 ’ (4.55)
4zq q?
(s (5) et
P Ji+1/2,5+1/2 P Jij+1

Using the Roe average, the scheme takes a more compact form that follows:

) Pii — PisL
Tiy125 = Qip1y2,; + (ua| — Ux)%

~ 2
Q>  (yayay) Giv1/2, ~ Yivs/2g
- = ——— 4 (|ug| — uz) 9
P Jit1; Pij

~ T Yy x _ T
<qqu> _ G292 (g — )qz'+1/2,j Tiv1/2,5+1
- = yl — Uy

P/ iv1/2,5+1/2 Pi.j 2

qf+1/2,j qf+3/2,j
\VPi,j VPi+1,5
VPij +\/Pit1j

Y oy
g | — )qi,j+1/2 9i.5+3/2
y y

Pij 2

Where u; is a Roe-type average: u, =

y 2
y W)
Gjrrpp= — .  + (

= :L« y y oy
qz Gy ~ TGivay2,% 541/2 b j+1/2 — Qiv1,5+1/2
= + (|U2‘ - ux) 5
P/ it1/2,5+1/2 Pi.j

Y Y
%i+1/2 9i,5+3/2

\VPi,j \/Pi,j+1
Using the fact that the numerical scheme (4.54]) has a numerical flux of the form (4.51H4.53)), we
can determine the scheme upwind operator: Dgiq(Us j, Uit1,j, Tz ).

Where u, is a Roe-type average: u, =

Tiv1/9,
2
o FWUig) + F*(Ui1)  _ <qx> +Epivayg
i 5 P Jit1,
(%%)
P/ it1/2,5+1/2
x X
Tiy1/2,5 T Giv3/2,
((ﬂ 1/2 ‘)2 (qqﬂ 3/2 ')2
_L| R BRI 4 20+ pisy)
2 Pij Pitli
Tit1/2,5 & . Ti13/2,5 ¢
pij TR pipay LR
. [t | — g 1 0 Pi+1,5 = Pi,j
x X
= - — =2 |ug|+up, O Ti+3/2,5 — di+1/2,5
Yy Y
— Uy Uy luzl/ \ %1112 = Gijaryo

(4.56)
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We obtain Dgiaq(Ui j, Uit1,j, M) and Dgiaq(Us 5, Us j+1,7,) (with the same approach on Fy+) the
matrices coming from the upwind contributions of the discrete equations:

|tg| — uy 1 0
DStag(Ui,j7 Ui+17j7 ﬁa:) = —02 — ui |U;p| + Uy 0 y
—Ug Uy Uy |tz (4.57)
uy| —uy 0 1
Dstag(Uijs Uij1,1y) = | —uztty  |uyl Uy
e uf/ 0 |uy|+uy

4.3.1 The linearised system

In order to simplify the stability analysis we consider the linearised Euler system around a state

1
with density pg, momentum ¢y and velocity @y = —¢gp. From the identity:
Po

797 T o T90g
V:-—=(V-9)-+(Vq)- — Vo,
5 (V-9 p (V) PR
the linearised Euler system is obtained as the following constant coefficient PDE system
- S (4.58)
o+ (V- D + V) o + (1 — g @ i) Vp = 0
This can be written:
Oip + 02qy + Oyqy = 0
O +uS(V - g+ 0pqs) + uf0yqe + (A — (ug)?)Oup — udufdyp =0 . (4.59)
gy + U%’(V “q + Oyqy) + ugOzqy + (02 - (Ug)2)3yp - Ugugazp =0
The linearised Euler system takes the form
wU+V-FU) =0, (4.60)

where U = (p,§) and F is the linearisation of the matrix flux F, and satisfies F(U)i = A(7)U
where the jacobian matrix A(7) = n, A, + ny A, has expression

_ 0 tﬁ
— 2 JER
A = 4.61
VmE RS (do, 1) <c2ﬁ—(ﬁo-ﬁ)ﬂ’0 ﬁg®ﬁ+(ﬁo-ﬁ)ﬂd>’ (4.61)
The scheme ([4.54)) applied to the linearised Euler system writes:

(

— =Y Y
Giy1/2 ~ Gi-1/24 n Gijvi2 ~ YGij-1/2

Orpi i + 0
tPi,5 Ax Ay
~ ~ =Y =) oty T
Giv1j — Tig Yij+1 — %y Div1/2,5+1/2 ~ Liv1/2,5-1/2
8 .’E ) + 2 x ). ). + x ), ), + Yy ), )
t9i+1/2,; U Az Ug Ay Ug Ay
2Pi+1g — Pij _ oaN2Pig T Pimlyx yPig T Pij—1 0 . 4.62
+c Ax (UO) Az UpUg Ay ( )
@i —q T — @ qy+1/2.+1/2—q~3/ 12,5412
Y Yy 1) 1,] y 17 5] 2, x ~? 5J 1— 5]
045 j 112 T 2ug Ay +ug Ax +up Ao
+c2 Pig+1 — Pij (ug)Q Pij — Pij—1 uﬁug Pij — Pi-1j _ 0

Ay Ay Az
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The numerical scheme (4.62) can be written in the form (4.51))-(4.53)) as follows:

_ _ _ — Pij
Fe — Fr Y _ FY ?
— + — .
U0+ =g+ g, =0 with: U = Gy |, and: (4.63)
9 j+1/2
_ FxUA._}_FzU, . _ oL U: . —U; .
Fi _ (Ui,j) 5 (Uit1,5) + DStag(UmuO,nx)WfH‘lv% (4.64)
YU+ FYUijr) |~ . Uiy = Uijn
F—&y— _ (Ui;) 5 (Uijt1) + DSmg(U07U07ny)wfw+v (4.65)
based on the following numerical flux:
_ =Y
Tiv1)0, 9 j+1/2
ij = 2u§q§"’+17j + C2Pi+1,j - (uS)QPz',j ) nyr = Uﬁq:yi,jﬂ — ugupPig + uggz'x+1/2,j+1/2
ugGit1j — UGUOPig + UG o 412 2u3a 41+ i1 — (45)pi

(4.66)
Using the Roe average, the scheme takes a more compact form that follows:

- i — Pitl
qgc+1/2,j = Qf+1/2,j + (Jugl — U%)M

2
o Givageg T Ghspey L+ sign(ud) Gvyeg — Givs/eg
Gi+1,j = 2 2 2

=T . X
Qi+1,5 = 9it1/2,5

y y y oy
U j12 T Q1412 9 j+1/2 — Yit1,5+1/2

~y _ .
Dit1/2,541/2 = 5 + sign(ug) 5
—y _ .y y y\Pig — Pij+l
qi,j+1/2 - qi,j+1/2 + (|u0| - UO) 2
qy, —|—q?.”. ; Y qy. —qy.
o g2 T Gjrse 14 sign(ug) G172 — Gigs/e
CEA 2 T 2

= _ .y
Yij+1 = 4 jr1)2
X X
Div1/2,5 — Qiv1/2,5+1
2

. B Gy1y2; T G241 . y
Tit1/2,5+1/2 = 5 + sign(ug)

Using the fact that the numerical scheme (4.62)) has a numerical flux of the form (4.6344.65)), we
can determine the scheme upwind operator: Dgtag(ﬂ’o, U, Ty ).

—T
4it1/2,5

_ FE(U: )+ FY(U; 1 -
FY = Giy) 5 Wing) _ 2uf 7 + Cpivry — (u§)piy

Y w4 uEdY
UpGi+1,5 — UoUpPij T Uiy /2, j41/2

Y
Giv1/2,5 T v/,

1 ) ) 4.67
. 28 (1 + rgjng) + (= () pis + pisy) (4.67)
U%(Qfﬂ/z,j + ng'c+3/2,j) — ugup(pij + pit1,j) + ug(qzj+1/2 + q?+1,j+1/2)
| — ul 1 0 Pi+1j = Pij
1 2 )2 x x z z
= 5 |- (uy)” Jug] +us 0 9i+3/2,5 — Qiv1/2,5

T Y Y T Y _ Y
UoUo Uo [uol/ \dit1j41/2 = Gijerse
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We obtain Dsmg(ﬁo,ﬂ’o,ﬁgg) and Dgtag(ﬁo, U, 1y) (with the same approach on F’J ) the matrices
coming from the upwind contributions of the discrete equations:

|ug| — ug 1 0 ugl —ug 0 1
Dstag(@o, o, i) = | —* = (ug)?® |ugl+ug O |, Dsiag(tlo,do.7iy) = |  —uguy  |ufl  uf
2 2
—uguy ug gl —c"—(up)® 0 |ug| +ug
(4.68)

4.3.2 Linear stability of the class Stag

In order to study the stability of the Stag class of staggered schemes, the first step is to use the
variables that symmetrise the continuous system and the second to prove that the energy (L2
norm) of the new variables decreases with time. The reason why symmetrising is important is that
the contribution of the first order derivatives to the energy balance:

/ "W A0,V + 'V A0, Vdxdy
R2
vanishes if A is a symmetric matrix since in that case

1 1
"WV A0,V + VA0,V = 8x§tVAIV - 8y§tVAyV,
1 t
which is the divergence of the vector field 3 (ti‘iiig>

cp

The linearised Euler system can be symmetrised using the variable V = (ﬂ
q — puo

) . We obtain

the following system that is equivalent to the linearised Euler system:
Mp+cV-d+idy-Vp=0
Oyt + (Vid)ilo + cVp =0

c
with p = —p. The symmetrisation of the linearised Euler system therefore takes the form:
Po

WV +V-F(V)=0

where F is the symmetrisation of the linearised matrix flux F. The Jacobian matrix associated to
F is the symmetric operator A with expression:

(g
A=\ "t .7

From the symmetrised Euler system, we have the following property of L? stability for the schemes
of the class Stag.

Theorem 4.4 (LQ—stability of Stag schemes). A staggered conservative scheme with a
numerical flux ij,F_f of the form such that the diffusion operator Dgi.g verifies: ]__)gmg +
tDStag > 0, is linearly L?-stable.
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Proof. After the linearisation around the state VpR® and symmetrisation, the Euler system takes
the form:

8V + A(Vy)V -V =0, V:( P >
q — piio

The values V; ; of V' in the cell C; ; are solutions of:

FT _ = Fy_Fy
+ L= + -
at ,]_'_ A:[,’ + Ay —0
with fluxes:
_ Vij+Vies | = Vi~ Vit
-f A(V(]a m)mfw"‘DStag(%aVOanw)%M
- VitV Vi — Vi
:A(%’ny)ﬂf’]ﬂ DStag(Vb7‘/07ny)mfm+l

We compute the evolution in time of ||V||3 = / o + ||§ — pilo||*dzdy using the symmetry of A
R2

and the positiveness of l:)smg:
1d||V||3 B av. dV;
A7 V'g = zi:;’czﬂvm :
B ZZW“’V‘ ﬁf—fﬁ+Fy FY
N — L T Ax Ay

- Z Z 'C” 5+ AV, i) (Vigry — Viery)

Cz = — = —
-5 ZZ ‘ ily, .. (DStag(Vm Vo, 72)(Vij — Vig1,5) — Dstag(Vo, Vo, ) (Vier,j — Vzg))

C;
-5 ZZ | J’V,g AV, ) (Vi — Vi)

Cz ~ — B —
) ZZ | A; Vi + (Dstag(Vo: Vo, ) (Vi = Vig+1) = Dstag(Vos Vo, i) (Vi1 = Vi)
L

Since: B B - B
A(Vo, iz) = "A(Vo, 7iz) and A(Vo,7iy) = "A(Vo, 7iy)
Then:
’CZJ‘ |CU‘ A = T —
Z Z V,j A V(]anx)(vz—i-l,] V 1]) = 0 and: Z Z V,j A(Vg, ny)(vz,j—i-l Vz,j—l) =0
J
1d||V = R
2 H H2 = Z Z 1,7 z+1,] DStag(‘/Oa ‘/0, nx)(‘/i,j - VYiJrl,j)
ZZ ,j z]+1 DStag(VO»VOaﬁy)(V;,j - V;JJA)

Since

(Vi — Vit1j) - Dstag(Vo, Vo, 7ia) (Vij — Vis15) = "Dstag(Vo, Vo, ) (Vi — Virrg) - (Vig — Vit1,)
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We have:
_ - 1 _ B _
(‘/i,j — Vit1 j) : DStag(V()y %7”%)(m,j - i+1,j) = i(vi,j — Vi+1 j) (DStag(V(h V(]anac) + tDStag(VOa Vo, nx))
(Vig = Vi)
—Vig1j)

7,+1,] (EStag(‘/Ov‘/Oaﬁz) +t55tag(vbav()7ﬁx)> (‘/;]

10”|V||2: ZZ -

2
’Lj-‘rl (BStag(‘/()a‘/bvﬁy) +tl:)Stag(V07vaﬁy)) (V,] V]-H)

ZZ i

(Dsm(%,vo,nxw Dstag(Vo, Vo, s )ZZIIV,J Vis1 113

Ay

4
AI = 2
_T (DStag(%7%7ny)+ DStag ‘/07‘/07ny >ZZH%] i,j—l—lHQ
e T Ld||V|}3
Since: Dgtag(Vo, Vo, 1) + ngg(VO,VO, i) > 0, we obtain — 5™ & < 0. O
Corollary 4.5. The numerical scheme is linearly L* stable.
Proof. We determine the upwinding matrices l:)gmg(Vg, Vo, 1) and l:)smg(\/b, Vo, Tiy)
1
0 - 0
. ¢ -1 c
We have: V = PU with: P = , Pmm =1 3
—tp Iy Y,
Thus, we have:
> = - |t - 71| Ctﬁx
D Vo, Ve PD Vo, Ve P
Stag( 05 07”1) Stag( 0 07”1) < —CTLI ‘ﬁo ) ﬁx’]IQ
_ 7oA t
D 7Y — PD - 1_ |t - 7y C My
Stag(v()a‘/()vny) Stag(vba‘/o’ny) < *Cﬁy |u0 ny|]12
We have:
1d||V A = . =
2 @ - = Z Z 1,5 Z+1,] (DStag(‘/Oa Vo, nx) + tDStag(Vba Vo, na:)) (‘/z] - ‘/i+1,j)
]—1—1 <55tag(‘/0"/07ﬁy) ‘f‘tBStag(‘/O’vaﬁy)) (V] VJ-H)

ZZ i

= ‘ﬁO‘ﬁy‘HB

Since:

Dstag(Vo, Vo, i)+ Dstag(Vo, Vo, i) = |tio-Te|Tz and: Dgtag(Vo, Vo, ty)+* Dstag(Vo, Vo, i)

1dHVH Az
5 -2 = Iuo nxlE E Vi — Visr,4l13 — 1 o - 71y > > NIVig — Vigrall3
i j

[\l )

LaviB _
2 dt
Since Dsztag satisfies the hypotheses of Theorem this numerical scheme is linearly L* stable. [
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Remark 4.6. For one dimensionnal flows and low Mach numbers (M < 1), the numerical scheme
c

of the class Stag has the following numerical diffusion matriz:

0 1 1
Dsig = g ) +00).

obtained for a fized velocity u and the sound speed c tending to infinity in . We see that the
diffusion is less important on the mass than on the momentum equation while it is evenly distributed
for the Roe scheme (see . In the mass equation, the discretisation introduced a perturbation
ANx0yzq:

Op + 0pq = ANxDprq + o Ax). (4.69)

It can be expected that the scheme yield a better accuracy with less numerical diffusion on
the mass equation than the upwind scheme .

Now that we proved that the scheme 1) is L%-stable, we show in the next section some
numerical results with an implicit version of the numerical scheme.

4.4 Numerical results

In this section, we assess the behaviour of our new staggered scheme ([92]) on a one dimensional
Riemann problem. The robustness of the scheme is illustrated on a compressible fluid with isother-
mal equation of state p = ,002 where the sound speed is ¢ = 300m/s. We choose initial conditions
such that the structure of the solution consists in a rarefaction wave followed by a shock wave,
with sufficiently strong shock to allow an easy discrimination of correct numerical solutions. These
initial conditions are:

9 . Pleft
left state: (Pleft) = 9 . right state: (pmght> _ 72
Qieft 100pleft Qright _100pleft

We consider this Riemann problem for the isentropic Euler system . The problem is posed
over = (0,1) and the discontinuity is initially located at z = 0.5. In figures and the
solution displays a rarefaction (smooth) wave followed by a (discontinuous) shock wave. Our new
method is able to capture both waves in a distinct and stable way.
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Riemann problem for Euler system on 500 cells

13 1

—— |mplicit staggered scheme
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Figure 4.1: Density at time ¢ = 0.001 with Az = 0.002 and CFL= 0.99

Riemann problem for Euler system on 500 cells

—— |mplicit staggered scheme
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Figure 4.2: Momentum at time ¢t = 0.001 with Az = 0.002 and CFL= 0.99

4.5 Conclusion

In this chapter, we developed a rigorous framework for the L?-stability analysis of finite volume
schemes on staggered grids. The derivation of the method has required the analysis of some
theoretical aspects beforehand. We also presented some analytical numerical examples on the
solution of the isentropic Euler equations with the purpose of illustrating the technique and its
performances. The family of schemes presented here could be applied in the future to the Cathare
code to handle the numerical difficulties specific to two-phase flows models.

A major challenge for the simulation of two-phase flows is the configuration of the vanishing phase
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where one of the phases disappears in some parts of the domain. The prediction of this complex
dynamic mainly relies on the capture of the void waves that appear in the two-fluid model. Since
the void waves have a complex structure with a propagation speed that frequently change signs,
it is important for the numerical scheme to be stable regardless of the velocity sign. Our new
class of staggered schemes is a promising alternative to the actual numerical treatment of the
vanishing phase implemented in the Cathare code. The actual strategy relies on an interfacial
friction coefficient that becomes high when one of the phases vanishes and has reached its limits
for some test cases like the one of the Water-packing, that is relevant for nuclear safety studies. A
first step toward the implementation of a new staggered scheme in the Cathare code could be the
application to the reduced system of [93] that focuses on the study of the void waves.



Appendix A

The numerical diffusion of the Herbin
et al staggered scheme

Preliminary calculations for the mass equation From (4.18)) and (4.21)) we have

up u. 1 =
Piyi%ity =

up
. U, 1 =
pl—% =3

Pi t Pit1 . Pi — Pit1
<Z2’—|—319n(ui+%) : 5 : )uH

1
2

(p(:vz) + % (Am@zp(xi) + %(Ax)Qamp(xi) + O(Aw3)> (1-— szgn(u(xﬂ)))

2
X (u(mz) + %@Cu(mz) + % <A2x> Opzu(x;) + O(Ax3)>

o)) + 2 (pla)osu(z) + (L~ sign(u(z)u(r)dep(a)
Ag? Ly 1—si - Vap(:) + (D) (1) (D :
+BZ (p<xi>2 att(i) + (1 sign(u(z:))) (u(z:)asp(:) + (Dop) (z:)( zu><xz>>)

+O(Ax3)

plai)u(ei) + % (p(2i)Opu(wi) + (1 — sign(u(ei)))u(zi)Ozp(2:))

1:2
#55 (o) goneu(e) + (1 signlu))0(udep)(a:)
pi-1tpi . Pi—1 — Pi
(12 + szgn(ui_%)12> i1

,o(:ci)Jr1 —Ax0yp(x;) +
(s 5

1'2
#50 (pla) 0nau(a) + (L sign(u@) (u(a:)0cep(w:) + (Do) 2:) Ou) 1))

pli)u(zi) — —= (p(zi)dpu(z:) + (1 + sign(u(zi)))u(zi)Ozp(2:))
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:1:2
#55 (pla) goneu(e) + (14 sign(u))0(udep) o)

+O(ALY). (A.2)

Preliminary calculations for the momentum equation

PUit1

1 U U,

§(Pi_f%“i+% + Pifg%g)

1 Ax Az?

! <(pu)(xi+é) S sign(u(zy, 1) udep(a, )—|—8u8mp(a:i+é)+(’)(Ag;3)>

2
1 Am 5Az?
3 <P($Z+;) + Ax@xp(mi+1) - 7‘”9”( w(z;y ))6P( ) + Tamp(xm-%)

2

Az | 1
_szgn(u(fci+é))0xxp(ﬂci+é)> (u(xHé) + Ax@xu(:rH%) + Q(A;p)anxu(xiJr;))

2
Az Ax | 3Az?
(pu) ('Tpr%) + 7636([716) ($z+%) - 782gﬂ(ﬂ($i+%))u8xp($i+%) + ?Uam:p(xpré)

Ax? Az? Az?
7/78301:“(%4-%) + 78&:/)(%“(%4-%) - 7519”(“(1’1’-&-%))am(uawp)(wi-i-%) + O(Arc?’)

4 2 4
(A.3)

1
5Py pluz+1+p ;1)
1 Aac Az?
: (<pu><x”;> B2 sign(u(z,, 1) Judep(r,, >+8uamp<xi+;>+omx3>)
1 Az . 5Az2
2(p<xi+;>—A:caxp<xi+;>—2szgn<u<xi+;>>8p<xi D+ 22 0p(e0)

8

.732
+A2sz’gn(u(xi+;>>amp<xi+;>) (u(x,+> Awdu(y, 1) + 5(Aa)’ amu<xi+;>)
2

(P0) 11 3) — S 0b (o)1) — o sign(u(z ) udpli ) + sl 1)
Az? Az? Az?

Sign(u(ﬂsH%))Bx(uaxp)(xH%) + O(Az?)

Tpamu(xiJr%) + Tﬁxpaxu@”%) +—
(A4)
u Uipd tUys Uyl U3
Uity : 5 : +319"(Pui+1)#
1= sign(pu(z;, 1)) 1= sign(pu(zy 1))
! v 2 3
u(a;H%) + 5 2 Ax(‘)xu(:vH%) 4 1 2 Az 8mu(:1:i+%) + O(Azx?)
(A.5)
Uy 1+ Uyt Wil = Uy
upr T sign ()
1+ sign(pu(z; 1)) L+ sign(pu(z; 1))
u(mH%) - 5 2 Am@xu(xH%) + I 2 Ax26xwu(.%'i+%) + O(Az?)
(A.6)
From and ( - we have:
u Az . Az . Azx
Pty = (o) (i) + (1 — sign(pu)) pudsu-+ (1~ sign(pu))pudes + oudupu
Az? Az Ax
+ 1 —— (1 — sign(pu))Opudypu — 7819%( w)u?pp — szign(u)(l — sign(pu))udyudyp
3A Az? Az? Az?
+ 8x U Opup + Tmpuﬁmu + Txuﬁmua@p — szign(u)uﬁm(uﬁxp) + O(Az?)

(A.7)
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From (A.4) and (A.6), we have:

A Az? A
i = (pu?)(wp1) = (L4 sign(pw) pudu + ——(1 + sign(pu))pudu — —-ud,pu
Az? Az?
+ Tm(l + sign(pu)) 0y udypu — %sign(u)uQ&Bp + szign(u)(l + sign(pu))ud,udyp
3Az? Az? Ax? Ax?
+ Sx w2 0yup + Tx,ouamu + Txuaxuaxp + f sign(u)udy (udyp) + O(Az3)

(A.8)
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5.1 Introduction

In the previous chapter we have derived a linearly L? stable class of staggered schemes for the
isentropic Euler equations. This linear stability has been characterised by using the properties
of the numerical diffusion matrix. A L? stable scheme can however capture non entropic weak
solutions as is the case with the Roe scheme ([38, [100]).

In this section, we focus on some non linear property of the scheme, namely the entropy property.
We will characterise the staggered schemes that are entropic by analysing the properties of the
diffusion matrix.

In section we recall the derivation of the entropy-entropy flux pair for the isentropic Euler
equations. The main result of this chapter is in section [5.2] with the definition of a new class
of entropic staggered schemes. For the sake of simplicity, the analysis is performed in the one
dimensional case with a linear state equation p = pc? but the strategy can be extended to the mul-
tidimensional case with a general state law p(p). In the last section, we illustrate the performance
of a prototype scheme belonging to the class of entropic staggered schemes on a one dimensional
Riemann problem.

5.1.1 Entropy of the isentropic Euler system

The derivation of the entropy-entropy flux pair is recalled in this section for the particular case
p = pc. The proof that the family of staggered schemes is entropic will follow the same lines
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albeit using discrete quantities.

We recall that the mathematical entropy function in this case is
-
Szp(2\|ul|2—|—c2lnp) . (5.1)

s is strictly convex since its hessian matrix

P, @t
3 2
I PP
H(s) 7 ! (5.2)
p? P
is positive definite since ¢? > 0.
Let us assume that 4 and p are smooth functions solving
op  + V-(pﬁ):g (5.3)
poyi + pu-Vi+ Vp=0, ‘
we compute
1 c?
Os = §Hﬁll2~l—c2 lnp> Op+p <ﬁ-8tﬁ+8tp>
. p (5.4)
— (SlaF+ ) o+ g0
Using the fact that @ and p solve (/5.3]), we obtain
1 - -
—O0is = <2||7J||2 + (1 +lnp)> V- (p)+pt- (4 -Vu)+d-Vp 55)
5.5
1 - — —
= iH?Z'HQV (pl) + A1 pV - (pil) + pV - i@ + i - Vp + pii - (@ - Vu) + i@ - Vp.
Since p = pc? and ?pV - U@ + 1@ - Vp=V- (pt) we obtain
1 - -
—Os = §HﬁHQV (pil) + 1 pV - (pid) + *ii - NVp + pii - (@ - Vu) + V - (pil). (5.6)
: I leioie /a0 - .
Since @ - Vu = §VHU|| + (V x 1) x @ we obtain
1 - 1 -
~Os = =||@|]*V - (pit) + A 1npV - (pil) + *ii - Vp + P V||@|* + V - (pid)

1 . (5.7)
= §V - (|12 pit) + 2 In pV - (pid) + ¢*ii - Vp + V - (pi).

Since In pV - (pii) + @ - Vp = V - (pIn pii) we finally obtain
1 R R _
—Ois =V - (§\|ﬁ||2pu+02plnpu+pu). (5.8)

and finally
s+ V- ((s+p)u) =0, (5.9)

and s is an entropy with the associated entropy flux

. 1. -
oti.p) = (o (Gl1IP + 1up) +0) @ (5.10)
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5.2 Entropy bound for a new class of staggered schemes

For the sake of pedagogy, we investigate the state law p = pc®. For general 1D flows, we study the
following scheme:

i 1 —q;_1
Oups +T =0, (5.11)
1 (@ @ Pit1 — Pi
0sq, — ol ——— =0 5.12
tql+% + ACC (er_l D; + Al‘ ) ( )

In the sequel, we analyse the entropic character of this class of staggered schemes (5.11))-(5.12))
that can be written in a more compact form as follows:

Fiyn — F; : i
Ul(t) + SHLT TN 0, with: Uy = < P ) , and: (5.13)
Ax dit+1/2
FU,) + F(U; U, - U;
Fi = 200 5 Wir1) + Dstag(Us, Ui1) ——5 (5.14)

where Dgiqg is a 2 X 2 matrix valued function:

Giit1 it
DStag(Ui7 Ui+1) - < d
Cii+1 i,i+1

7 72
Hence, the interpolated quantities g;11/2, ¢;—1/2, i1 and 4 have the following expressions:
Pi+1 Pi

_ Qi+1/2 T Qit3/2 i — Pitl Qit+1/2 — 4i+3/2
Gir1j2 = %/f/ + %H% 4 bz-,m%
Pi — Pit+1 qi+1/2 — 9i+3/2

= qit1/2 + Qi1 + (biiv1 — 1)

2 2
62 qi2+1/2 qi2+3/2 . ¢
A o : ; — Di i+1/2 — 4i+3/2
itl _ P pit1 +ci7i+1pz Pi+1 +dii i+1/ i+3/
Pi+1 2 2 2
2 2 2
Qiv12 1 [ 9iv12 it3)2 Pi — Pit1 Qi+1/2 — 4i+3/2
=—— - |— - — | tcinn——F — +diipn————
pi 2\ pi Pi+1 2 2
2
Q'+1 2 i — Pi+1 qi+1/2 — 4;+3/2
= Zpi/ + (i1 + u?,i-i—l)% + (diit1 — 2Ui,i+l)%

where the Roe average is given by:

qi41/2 9i+3/2

VIR (5.15)
VPi T /Pit1

Ui j+1 =

The coefficients a; 11, bi i+1, Cii+1 and d; ;41 depend on the left state U; = (q pi > and the right
i+1/2

state U;41 = < Pit1 ) In the sequel, we will derive constraints on these coefficients to ensure the
4i+3/2
entropic character of a new class of staggered schemes.

From now on, we set the coefficient b; ;41 = 1. This choice is motivated by the remarks 4.1 and 4.6
made in the previous chapter about the low Mach number accuracy of the upwind-type schemes and
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the staggered schemes. Setting b; ;11 = 1, we obtain the following expressions for the interpolated
quantities:

Pi — Pitl

Giv1/2 = Git1j2 T Giir1—

Py G

1 i+1/2

Dl TR (Ciji1 + UFi41)
Pi+1 Pi

Hence, the class of staggered schemes we study in this section takes the form (5.13))-(5.14]) where
the matrix diffusion has the following generic expresssion:

Pi — Pi+1
2

di+1/2 — 9i+3/2

+ (dijis1 — 2u4i41) 5

it 1
Dstag(Ui, Uit1) = T ) e
stag(Uis Uit1) (—c2+6i,i+1 dii1 o1

2

where the term —c” comes from the discretisation of the pressure gradient.

Theorem 5.1 (A class of entropic staggered schemes). A staggered conservative scheme
with a numerical flur F; ;11 of the form such that, the coefficients a;—1;, ci—1,; and di—1; of
the diffusion operator Dsiaq satisfy:

, . Qi1 -
E(ai—14, Ci—1:dic1,) = Pqi—1y < P _g—m- 2 ) + A" (pi—1 — pi) In pi
pi-1 pPi-1 2 pi

1 Givie  Gic12\°  @io1i Giv1/2\> Gic1/2\>
+ %‘—1/2( mE ey ) 4 (pi-1 — pi) ( w/ > - (=2
2 pi Pi—1 4 pi Pi—1

Ci1i Uiy qi— i
n i—1,8 5 i—1, (pi_l —,OZ') < i—1/2  4i+1/2
i 5 Pi—1 Pi
i1, — 2Ui—14 di+1/2 %1/2)
I L LY ) — g E ) >0
9 (Qz+1/2 4q; 1/2) i i1

(5.17)
is entropic and the following discrete entropy dissipation estimate holds:

1 (. (%+1)2 ~ [ 4i-1/2 1
. . - — Y . L)< 1
Osi + . <g ( ,p,) J < s Pie1 E(a; 1> Ci—1,, d; 1,2) <0 (5.18)

Pi Pi—1
where:
2
- [ Qi+1/2 1 qi+1/2 di+1/2
g (”M‘) = 3%i+1/2 ( ant ) SR AL + i1 joInp;
Pi Pi i
Pi — Pi+1 9 di+1/2 9 1 (qiv1/2 2
+ = | (it + i) +aiip1 | C(npi+1) — o ( ——
2 ’ pi 2\ pi
diit1 — 211 Git1/2
+ = 5 Lt 2l (Git1/2 — Git3/2)
Pi
(5.19)
1s the numerical entropy flux that is consistent with .
Proof. Firstly, we seek to derive the discrete analog of the velocity evolution equation:
PO + pudyu + Oxp =0 (5.20)

From ([5.12)), we derive:

qi4-1/2 n dit+1/2 , _ 1 <67¢2+1 . q?) I Pit1 = Pi _ 0

Pit1/20t— —
1/ Piv1/2  Pit1/2 Az
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Assuming p; /2 = pi, and from (5.11)), we obtain:

Qi+1/2  Qi+1/2 Gtr1/2 — Di-1/2 1 (¢ @ Dit+1 — Di
) - +— (-t )+ ——=0
pi pi Az Az \pit1  pi Ax
7’
From the expression of the interpolated quantities g; /o and 1 this yields to:
Pi+1

q di+1/2  9i-1/2

) i i— Pi+1 — Di
5 i+1/2 - P Pi—1

1Vt + ql 1/2 ACL’ + A"E

= Dt qi+1/2 i—1 — Pi dit+1/2
+ B P ((Cz‘,z’+1 +ufip) = Qi Zpl/ >+ S <az’—17i mE (Ci—l,i+U?1,i)>

()

2A3§ 1 QA:E
d"’_i'_l — 2U‘7‘+1 i1 — 2u._17A
%(%Jﬂﬂ - qi+3/2) + %(qlﬁrlﬂ — %‘—1/2) =0

+
(5.21)

1
Since s = p <2|]u||2 + ¢ lnp), we have:

1 (Gitv1/2 2 9 Qiv+1/2 5 Gi+1/2 o
=0wpi | 5 : +ctlnp; | 4+ pi——""0——= + c*Opi

i Pi

From (5.21)) and (5.12), we obtain:

1 4 2 q . q 4 di+1/2  di—1/2 4
Y - << z+l/2> +c2lnpi> i+1/2 i—1/2 4 z+%/2qi71/2 pi Pi—1 i i+1/2 Pi+1 — Pi

2 Pi Az Di Ax Pi Az

Pi — Pit+1 9i+1/2 N 2 o Git1)2
+ QA"E pz ((CZ7Z+1 + uz’z-l,-l) aZ,’L-‘rl p’L

d. . _ 2U . q 1/9
2 i+l A+l dit1/
— (€1 + ui_17i)> 4 = 5AL i

di+1/2 Pi—1 — Pi <a~ dit1/2

+ Py 9AL i—1, i o (q,-+1/2 - Q¢+3/2)
di—1i — 2ui—1; Gi+1/2 0 Qi+1/2 = Qi—1/2
AL o (Git172 — Gim12) + Az
Using:
di—1/2 qi+1/2  4i—1/2
. —q: — C— 0, 1)+ p; - —0),
qi+1/2 — 9i-1/2 Di1 (i — pi—1) + pi( Py i1 )
and: q q q q q
i+1/2 i—1/2 i+1/2 i+1/2 i—1/2
A pi( = 22l )+ — / (pit1 — pi) = — /Pz‘+1— - /pz',
Pi Pi—1 Pi Pi pi—1
We obtain:
CAwdrs — 1 Git+1/2 2 1 qi—1/2 2 n 1 Qit1/2  Gi-1/2 2
tSi = 2Qz+1/2 7&' 2(1171/2 i1 2(1171/2 Py Ti—l

4i+1/2 di—1/2 Di
+ = / Pit1 — u;Dz‘ +c <(Qi+1/2 - %-1/2) Inp; + qi—1/2 < — — 1>>
Pi Pi—1 Pi—1

2
— i1 Qi+1/2 1 (Giv1)2
+ % <(Ci,i+1 + i) Zp,/ + it <C2(lnpi +1) -3 <zp/> ))
K3

)




118 Chapter 5. A new class of entropic staggered schemes for the Euler equations

+ % <ai—1,i (2 (H / ) — A (Inp; + 1)) —(ci—1: + U?fl,i) Z+A/ )
Pi Pi

dii+1 — 2U; 41 Git1/2
) i (Qi+1/2 - Qi+3/2)
(3

_l’_

di—1; — 2ui—14 Qi+1/2(

5 i div1/2 — %‘—1/2)

In order to deal with the term (g;y1/2 — ¢i—1/2) In p;, we add and substract the quantity

C2qi,1/2 In ppll . (522)

In order to absorb the terms containing the variables p; 11 and g;1 3/ into flux differences, we add
and substract the quantities:

2
Pi—1 — Pi 9 qi—1/2 9 1 /4i—1/2
o5 | (Cim1i tuiq i1, Inpi1+1)— = 2
5 ((c 1 +u 1’)pi—1 +ai1, (c(np 1+ 1) 2([%—1))) (5.23)

and
di—1; — 2ui—1, 9i-1/2

2 Pi-1

(Gi-1/2 = Giv1/2) (5.24)

We obtain:
i+1 1
1 a_1/2\> q-1/2 s
—Azdis; = 3 [q_1/2 < p/ ) + [ p/ p+1} +c? [a41/2Inp
i

1 Git12 Q12> i i
+ 5%i-1/2 <Z+/ - l/> + i1y < ——1-In— >

]iJrl
A

(3
2 pPi pi—1 Pi—1 Pi—1

Pi-1— Pi 9 qi—1/2 9 1 (gi—1/2
ol o P L 2 o np ++1)— =
5 ((c, 1i tuig ) - + a1 (c (Inp;—1 +1) 5 < o |

(2

_l’_

i+1

(2

R 1 ) 2 9 o 2 o
i Pi—1 plaiiu i (qz+1/2) 1 <QZ 1/2> L Pi—1
2 2\ pi 2\ pi1 Pi

Pi-1—Pi, 2 [ %i-12  dit1)2
Py (22 1)

n [di—l,i — 2ui-1,i 9i—1/2

9 i1 (Qi71/2 - q@'+1/2)]

dio1i— 214
+ %(%}1/2 = Qi—1/2) (

Giv1/2 %—1/2)
Pi Pi—1

which becomes:

- [ 9i+1/2 - 9i-1/2
—Aa?am—g( an ,p¢> —g< = 7Pi—1>
Pi Pi—1

+ 02%‘—1/2 < pz —1—1In pZ > + 02 FiLi (pifl — ,01) In pl_l
pi-1 pi—1 2 pi

1 Givie Gic12\° | @i Giv1/2)\> G172\ >
+Qi—1/2< iz ey > + = (pi1 — i) < ax ) - (=2
2 Pi Pi-1 4 pi Pi—1
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Ci—1,i + U2—1 j QGi-1/2 Gi+1/2
4 %(pi_l — ) <1/ _ 2
Pi—1 Pi

di—1; — 2ui—14

qi+1/2 qi—1/2
+ f(%’+1/2 - %—1/2) <+/ - />

Pi Pi—1

Corollary 5.2. The numerical scheme with a numerical flux F; ;1 of the form such
that the coefficients a;—1, ci—1,; and d;—1; of the diffusion operator Dgiqq satisfy:

di—1/2  4i+1/2 9
L = Qe 4 _ T2
G-1s il < Pi—1 pi > Y1, (5.25)
di—1; = ai—15+2u;—1y
where u;—1; is the Roe average and:
ai—14 > max | —2q;_ — —q;_ Wi—14(pic1 — pi )
i—14 = qi—1/2 (pie1 — pi)In p;l i1 + pi 2% 1/2 i—1,i\Pi—1 — Pi

s entropic and the discrete entropy dissipation estimate holds. The numerical entropy flux

s given by and is consistent with .

Proof. Let us recall the entropy balance of our class of entropic staggered schemes:

s <Qi+1/2 > s (%‘1/2 )
g yPi | — 4 y Pi—1
Pi Pi—1

+ 02%’—1/2

—Axdss;

pi-1 pi—1 2 pi

1 Gis12 Gie1j2\°  Gio1g Giv12\> Gi-12\>
+ %1/2( Hp_ Sl > + —=(pi-1 — pi) ( SR (R
2 pi Pi-1 4 pi Pi—1

i1+ Uiy, Gi—1/2  Git1/2
+ %(pi—l — ) (Z/ _ L2

p 5 Pi—1 Pi
+ i—1,0 i—1,4 4i—1/2 (Pz _ Pz’-l) i+1/2 4 1/2>
2 Pi—1 éoz Pi—1
di—1; — 2ui—1; <Qi+l/2 %—1/2)
+ pPi -
2 Pi Pi—1

(5.27)
We define a;_1; as:

Qi1 = Gi—14 — |Wi1,i| + wim14

Hence the coefficients a;—1; and d;_1; are defined as:

Qi1 = |Wim14| — Wi, + i1

dic1i = |wim14| + i1+ @ic1
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The entropy balance ((5.27) becomes:

- [ Qi+1/2 - 9i-1/2
—Azdys; = g< it/ ,pi> —g< =l ,pu)
Pi Pi—1

+ 02%‘_1/2 —1-m-P > + 2 i1 = wic1i + @ic14 (pi_1 — pi)In Pi—1
Pi-1 Pi—1 2 i

7

1 Gir12  Gie12\° | Juic1] — wis1 + aion Git12\”
+ i1y ( i+1/2  Yi-1/ > + | i 1,z| i—1,i i—1,0 (pi—l _ Pz) ( i+1/ > .
2 pi Pi—1 4 pi

Ciritup g, di—1/2  Gi+1/2
b N ) <Z/ _ 12

2 Pi—1 Pi
n |wi—14| — Uz2—1@ + i1, 4i-1/2 (9 — pi1) <Qi+1/2 B %‘—1/2)
Pi—1 pi Pi—1
|wi—1i] — wi—1,i + i—1 <Qi+1/2 %1/2)
+ pi -
2 Pi Pi—1
(5.28)
From hypothesis (5.25)), the coefficient ¢;_; ; is defined as:
qi—-1/2  4i+1/2
Ci—1,47 = 2ui_1,¢< izl - H_/) —u?ﬁl’i (529)
Pi—1 pPi
and we finally obtain:
~ [ Qi+1)2 ~ [ 4i-1/2
—Azdys;i = § < asll ,p¢> ~ g ( = 7Pi—1>
Pi Pi—1

. . Wt s .
+ & <Qz‘1/2 < P 1w ) + 2 iy — p)In 2 1> (5.30)

pi—1 pi—1 2 pi

Qi+1/2  9i-1/2 21 ai—1;
+ <,07; — m_l> (2%‘—1/2 + T’(Pi—l +pi) Fuic1i(pio1 — Pz))

This term is positive provided the upwinding coefficient a;_1 ; is large enough. The threshold values
are

Pi —1—1In Pi

Pi—1 Pi—1
Qi1 = |Ui-14] —Ui—1i+@ic1i > —2¢i1/2 (= p)in pzl (5.31)
and
i1 = |wim14] —ui—1s F o1y > —L <1q,;1/2 +ui-1i(pio1 — Pz)) (5.32)
’ I El ’ —_— plfl +pz 2 I’
L]

Remark 5.3. Particular case: p; — pi—1 — O:

Here, we give the asymptotic behaviour, when (p; — pi—1) tends to zero, of the coefficient a;—; ; that

satisfies the condition .
When Pi 14 0, we have:

Pi—1
vy 2 ) 3
Pz‘p—i1 _1_1npip—i1 §<pi_1 _1) +O<<m_1_1) >
(pic1 — pi)In =t 2 pi 3
P (pi—l - 1) + O <P¢—1 - 1)
1 .
< 3 + C, where C is a constant.

Hence, the first lower bound of the coefficient a;—1; in s asymptotically bounded when
(pi — pi—1) tends to zero.

qi—1/2
Pi—1

/)
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5.3 Numerical results

5.3.1 Entropy default of the L*-stable staggered scheme from Corollary

In this section, we discuss the entropic character of the L?-stable staggered scheme introduced in
Chapter 4, (equation in the one dimensional case. This staggered scheme has the following
upwinding matrix:

DStag(Uia Ui+1) _ <|ul,z—;1 ;%,H—l 1 )

=" —ui;y || Fuii

In practice, the lack of entropy decrease results in a shock wave being captured instead of a
rarefaction wave. This is particularly the case for Riemann solvers (|38, [100]) where the violation
of entropy decrease leads to the capture of a non entropic stationnary shock wave instead of a
transonic rarefaction wave. Since the upwinding matrix of our class of staggered schemes is not
based on the eigenvalues of the system, it is not straightforward to choose a numerical test that will
show the entropy default. Hence, we need the entropy balance to identify the configurations
that could lead to the capture of non entropic solutions.
For the L?-stable staggered scheme , we have:

1 (. (%+12 ~ [ 9i-1/2 1
Orsi + s <9< Z;i/ ,pz‘> - 9( ;Z_i ,Pi—1)> = _EE(ai—l,iyCi—l,iadi—l,i)

with:
, i1 — i1 a
E(ai—1, i1, dic13) = ¢ (%1/2( R P > + il ~ i (pi-1— pi)In 2 1)
pi-1 pi—1 2 Pi
Git1/2  Gi-1/2 1 [wiz1i| — wi—1, ' '
+ <p¢ . ) <2qz—1/2 A E— (pi—1+ pi)

(5.33)
From (j5.33)), we see that the scheme violates the entropy decrease property in the two following
cases:

e For constant densities, if ¢;_1/o < 0 and w;—1; = 0, then F(a;-1;,¢i-1,4,di—1;) < 0. Hence,
in this case, the L?-stable scheme locally generates a positive contribution of the entropy in
the order of |qi_1/2|2.

e For variable densities and high negative velocities u;_1 /5, then FE(a;—1,¢i-14,di-1,) < 0.
Hence, in this case, the L2-stable scheme locally generates a positive contribution of the
entropy in the order of ¢2.

The largest amount of entropy creation occurs in the second case, because the entropy creation is
proportional to ¢?. In the sequel, we solve Riemann problems for the isentropic Euler system with
initial conditions such that the scheme initially violates the entropy decrease.

5.3.1.1 Entropy default for negative high velocities

In the sequel, we assess the behaviour of the L2-stable staggered scheme on a one dimensional
Riemann problem. We choose initial conditions such that the structure of the solution consists in a
shock followed by a rarefaction wave to allow an easy discrimination of correct numerical solutions.
These initial conditions are:

1 ; 2
left state: <pleft> = ( > , right state: <p”ght> = < > (5.34)
qleft PleftUo Qright Prightto
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We consider this Riemann problem for the isentropic Euler system . The problem is posed
over {2 = (0, 1) and the discontinuity is initially located at = 0.5. This case illustrates the second
configuration of entropy default for the L?-stable scheme with variable densities and an entropy
creation proportional to 2.

In figures and the L2-stable staggered scheme captures a shock wave followed by a rar-
efaction wave. Hence, the method captures the correct entropic solution despite the initial entropy
creation proportional to ¢®. Hence for long time simulations the entropy default we observe in

theory in ([5.33)) does not lead to the capture of non entropic solutions.

Riemann problem for Euler system on 1000 cells

24 4 —— |mplicit staggered scheme

22 1

2.0 1

15 -

Density

146 -

14 -

12 -

10 +

0.0 0.2 0.4 0.6 0.5 10
w (mi)

Figure 5.1: Density at time t =5 x 10™* with Az =1 x 1072 and CFL= 0.99 for uy = —300
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Figure 5.2: Momentum at time t = 5 x 10~% with Az =1 x 107 and CFL= 0.99 for ug = —300
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5.3.1.2 Case of high and low Mach number flows

In this section, the numerical tests we choose do not generate an entropy violation in the entropy
balance (5.33) of the L?-stable staggered scheme. They illustrate the behaviour of the L%-stable
scheme for high and low Mach number flows. Here, we solve the Riemann problem with the initial

condition (5.34)) where ug = 300 (see figures and and ug = —1 (see figures and [5.6). In

these two cases, our conservative staggered scheme is able to capture shock and rarefaction waves
without any prior information on the characteristic fields.
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Figure 5.3: Density at time t = 5 x 10™% with Az =1 x 1073 and CFL= 0.99 for uy = 300
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Figure 5.4: Momentum at time ¢ = 5 x 107% with Az =1 x 1073 and CFL= 0.99 for uo = 300
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Riemann problem for Euler system on 1000 cells
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Figure 5.5: Density at time t = 5 x 107* with Az = 1 x 1073 and CFL= 0.99 for ug = —1
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Figure 5.6: Momentum at time t = 5 x 1074 with Az =1 x 1073 and CFL= 0.99 for ug = —1
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5.3.1.3 Entropy default for constant densities

In this section, we consider the Riemann problem where the initial conditions are chosen such that
the structure of the solution consists in two transonic rarefaction waves:

o Pest [ 1 ) : , (Pm;ht) B ( 1 )
left state: = , right state: = 5.35
(qleft) (—300 & Gright)  \300 (5.35)

This case illustrates the first configuration of entropy default for the L2-stable scheme with constant
densities and an entropy creation proportional to |g;_; /2|2 (see introduction of section . In
figures and we see that despite the initial entropy creation the scheme captures the correct
entropic solution of the Riemann problem with two transonic rarefaction waves. Hence for long
time simulations the entropy default we observe in theory in does not lead to the capture of
non entropic solutions.
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Figure 5.7: Density at time ¢t = 5 x 10™* with Az = 1 x 1073 and CFL= 0.99
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Figure 5.8: Momentum at time ¢t = 5 x 10~% with Az = 1 x 1072 and CFL= 0.99

5.3.2 The entropic staggered scheme from Corollary

In this section, we show some numerical results obtained with the entropic staggered scheme defined
in Corollary This staggered scheme has the following numerical diffusion matrix:

541 1
Dsiag(Ui, Uigr) = 5 9
=" =i+ 22U i1 A1 Gigr + 2U4 4

Qi+1/2  dit3/2

Pi Pi+1
the entropic character of this numerical method is ensured. For this numerical scheme, we have:

1 (. (%+1/2 - qi-1/2 1
Orsi + s <9< Zpi/ ,pz) - g( ;i_i ,Pz‘—1>> = —EE(CL@—M,Cz'—1,z',di—1,z‘)

with Av; 41 = . The coefficient a; ;41 of this diffusion matrix is chosen such that

with:

. ‘ a1 -
E(a;i—14,¢i—14,di—1;) ? <Qi—1/2 ( P _p—m - > + = (g — pi) In P 1>

P, pi—1 2 pi
Giv1/2  i-1/2 1 a;—1,
+ (sz/ — ;_i) <2q,-_1/2 + %(,Oi—l + pi) + Uz’—l,i(Pi—l - ,01))

(5.36)
The coefficient a;—1; is set to ensure E(a;—1,,¢i—14,di—1,;) > 0 and hence the entropic character
of this numerical method, according to the semi-discrete analysis of the entropy balance in section
0. 2)

5.3.2.1 Case of negative high velocities

In the sequel, we assess the behaviour of the entropic staggered scheme (5.2]) on a one dimensional
Riemann problem. We choose initial conditions such that the structure of the solution consists
in a shock followed by a rarefaction wave to allow an easy discrimination of correct numerical
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solutions. This initial condition is given by with ug = —300. In figures and
the numerical scheme captures a shock wave followed by a rarefaction wave with spurious
oscillations. Hence, the method captures the correct entropic solution of the Riemann problem but
generates oscillations around the rarefaction wave. The entropic staggered scheme seems to have
a lower numerical diffsion than the L2-stable staggered scheme. The semi-discrete analysis gives
a theoretical lower bound for the coefficient a;_; to ensure the entropic character of the scheme
but seems not sufficient to avoid spurious oscillations.
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Figure 5.9: Density at time t = 5 x 10™% with Az = 1 x 1073 and CFL= 0.99 for ug = —300
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Figure 5.10: Momentum at time ¢t = 5 x 10™* with Az = 1 x 10~% and CFL= 0.99 for ug = —300
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5.3.2.2 Case of high and low Mach number flows

In this section, we illustrate the behaviour of the entropic staggered scheme for high and low
Mach number flows. Here, we solve the Riemann problem with the initial condition where
ug = 300 (see figures and and up = —1 (see figures and [5.14). In these two cases,
our conservative entropic staggered scheme is able to capture shock and rarefaction waves
without any prior information on the characteristic fields. In the case of high Mach number flow,
the numerical method captures the correct entropic solution of the Riemann problem but generates
oscillations around the stationnary shock wave. In the case of low Mach number flows, we do not
observe spurious oscillations.
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Figure 5.11: Density at time ¢t = 5 x 10~% with Az =1 x 1072 and CFL= 0.99 for ug = 300
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Figure 5.12: Momentum at time ¢t = 5 x 10™* with Az = 1 x 1072 and CFL= 0.99 for uy = 300
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Riemann problem for Euler system on 1000 cells
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Figure 5.13: Density at time ¢t = 5 x 1074 with Az =1 x 107% and CFL= 0.99 for uy = —1
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5.3.2.3 Case of constant densities

In this section, we consider the Riemann problem where the initial conditions are chosen such that
the structure of the solution consists in two transonic rarefaction waves:

| Pleft) 1 ) . . (pright> - ( 1 >
left state: = , right state: = 5.37
(qlef) (—300 : Gright)  \300 (5:37)

In figures and we see that the entropic staggered scheme (5.2)) captures the correct
entropic solution of the Riemann problem with two transonic rarefaction waves. In this case, we
do not observe spurious oscillations.
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Figure 5.15: Density at time ¢ = 5 x 10~* with Az = 1 x 10~® and CFL= 0.99
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5.4 Conclusion

In this chapter, we developed a rigorous framework for the analysis of the entropic character of
finite volume schemes on staggered grids. We also presented some analytical numerical examples
on the solution of the isentropic Euler equations. These numerical results illustrate the behaviour
of the L%-stable staggered scheme from Corollary in configurations with a theoretical entropy
violation, on the one hand. They also illustrate the behaviour of the entropic staggered scheme
from Corollary in the same configurations, on the other hand. The L?-stable staggered scheme
captures the correct entropic solution despite the initial entropy default. In future works, we will
analyse in detail the local entropy violation in the first time steps for the L?-stable scheme to have
a better insight on the entropic character of this scheme. Depending on the conclusions from this
first analysis, we will derive a fully discrete entropic analysis. On the other hand, the entropic
staggered scheme from Corollary captures the correct entropic solution but generates spurious
oscillations. In future works, we will derive a strategy to limit the appearance of these spurious
oscillations for the entropic staggered scheme. The multidimensionnal formulation of the new class
of entropic schemes, introduced in this chapter, and its entropic stability analysis will be in a
forthcoming paper. An extension of this strategy to the six-equation two-fluid model will be the
subject of future works.






Conclusions and perspectives

In the present work, we have first of all developed acceleration techniques in the Cathare code in
order to deal with the computational complexity with reasonable computing times. These methods
take advantage of modern computer architectures by the use of a time domain decomposition
method. The latter has been implemented with the parareal in time algorithm. A very special
stress has been put on the adaptation of this algorithm to the Cathare code in a non intrusive way
allowing to use the Cathare code as a black box.

This development will be useful for several applications. First of all, the tool is important for
safety calculations in the nuclear industry for the analysis of two-phase flows during accidental
scenarii. A major challenge for the Cathare code is to produce real-time simulations when the
software is governing a reactor simulator. A reactor simulator allows to reproduce the behaviour of
a nuclear power plant under nominal or accidental conditions for the training of the operators and
for the validation of the emergency procedures. Coupling the parareal algorithm with the actual
acceleration techniques of the Cathare code represents a step toward a real-time response of the
code.

Furthermore, since the time discretisation of the two-fluid model is done through a two-step
time scheme, we designed a new variant of the parareal algorithm adapted to this family of
methods. This work aims at solving the loss of accuracy in the parareal algorithm that can arise
when an initialisation error is made at each time window. The parallel efficiency of this new
variant is similar to the one achieved by the classical parareal algorithm and a way to improve
these performances is to introduce adaptivity in the algorithm ([80]), by dynamically increasing
the accuracy of the fine solver accross the parareal iterations. This adaptive formulation of the
parareal algorithm offers new degrees of freedom to optimise the speed-up performances such
as the choice of increasing target tolerances. A very interesting and challenging task would be
the design of adaptive refinements based on a posteriori estimators. It would allow local time
stepping adaptation in the parareal algorithm as well as spatial refinement if the problem involves
also spatial variables. This strategy would be particularly interesting in the context of hyperbolic
equations with whom the parareal algorithm may suffer from an instability. It has been shown
([102], [103], [79]) that the numerical diffusion of the coarse and the fine solvers has an impact on
the appearance of the parareal instability. Hence, introducing local refinements in the algorithm
may reduce the instability we may observe when the parareal algorithm is applied to hyperbolic
problems.

The second main contribution of this work has been devoted to the understanding of the
theoretical properties of finite volume schemes on staggered grids such as the one used in the
Cathare code. The idea consists in analysing the properties of the numerical diffusion operator.
After showing that the staggered schemes do not straightforwardly yield a linear stability, we
derive a linearly L2-stable class of staggered schemes for the isentropic Euler equations. We also
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implemented a scheme of the L2-stable class of schemes and perform a simulation of a Riemann
problem with satisfactory results. Unlike classical staggered schemes that are L2-stable for constant
sign velocities, the new class is L2-stable for variable sign velocities. This property is important in
the context of the approximation of two-phase flows models since the phasic velocities frequently
change signs. A major challenge for the simulation of two-phase flows is the configuration of the
vanishing phase where one of the phases disappears in some parts of the domain. The prediction of
this complex dynamic mainly relies on the capture of the void waves that appear in the two-fluid
model. Since the void waves have a complex structure with a propagation speed that frequently
change signs, it is important for the numerical scheme to be stable regardless of the velocity sign.
Our new class of staggered schemes is a promising alternative to the actual numerical treatment of
the vanishing phase implemented in the Cathare code. The actual strategy relies on an interfacial
friction coefficient that becomes high when one of the phases vanishes and has reached its limits
for some test cases like the one of the Water-packing, that is relevant for nuclear safety studies. A
first step toward the implementation of a new staggered scheme in the Cathare code could be the
application to the reduced system of [93] that focuses on the study of the void waves.

In a second time, we analyse a non linear property of the staggered schemes, namely the entropy
property. We design a new class of entropic staggered schemes for the isentropic Euler equations
by deriving conditions on the coefficients of the numerical diffusion operator. We implemented
a scheme of this class of entropic schemes and perform with success a simulation of a Riemann
problem that displays a transonic rarefaction wave with successful results. Hence, our conservative
entropic staggered scheme is able to capture shock and rarefaction waves without any prior infor-
mation on the characteristic fields. In the continuation of this analysis, there are several points
that still need to be addressed for a better theoretical understanding of staggered schemes like
the low Mach number accuracy. The multidimensionnal formulation of the new class of entropic
schemes and its entropic stability analysis will be in a forthcoming work. An extension of this
strategy to the six-equation two-fluid model will be the subject of future works.
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