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Résumé

Dans cette thèse, l’apport le plus important a consisté en l’implémentation d’algorithmes modernes

adaptés aux architectures massivement parallèles, dans un logiciel industriel dédié aux études de

sûreté nucléaire, le code Cathare. Ce logiciel est dédié à la simulation des écoulements diphasiques

au sein d’un réacteur nucléaire en conditions nominales ou accidentelles. L’implémentation de

ces nouvelles techniques représentent en soi une contribution importante dans la physique des

réacteurs car il permettra de déterminer, avec un temps de calcul réduit et de façon précise,

l’état du cœur au cours d’accidents graves. Un effort particulier a été mené pour paralléliser

de manière efficace la variable temporelle par l’algorithme pararéel. Pour cela, nous avons

proposé une méthode pararéelle qui intègre de façon plus optimisée la présence de schémas en

temps multi-pas. En effet, cette famille de schémas permet d’obtenir une approximation d’ordre

supérieur à celui d’un schéma en temps à un pas. Cependant l’initialisation de la propagation en

temps en chaque fenêtre doit être choisie avec soin. L’idée principale de ce nouveau schéma est de

définir une approximation consistante des solutions permettant l’initialisation des propagations

en temps, permettant ainsi à l’algorithme de converger vers la solution avec la précision voulue.

Cette méthode a ensuite été appliquée sur deux cas tests représentatifs des défis numériques ren-

contrés dans la simulation des écoulements diphasiques dans le cadre des études de sûreté nucléaire.

La seconde partie de cette thèse est consacrée au développement de méthodes numériques

permettant de traiter les difficultés numériques spécifiques aux modèles diphasiques avec un temps

de calcul réduit. Dans cette partie, on développe un cadre d’analyse rigoureux pour l’étude des

schémas volumes finis sur grille décalée comme celui utilisé dans le code Cathare. Les schémas

décalés sont en pratique plus précis pour les fluides quasi incompressibles et sont couramment

utilisés dans la communauté thermohydraulique. Cependant, pour les fluides compressibles, les

études de stabilité ont été historiquement menées par une approche heuristique et par le réglage

de paramètres numériques. Cette question est abordée par l’analyse des opérateurs de diffusion

numérique qui permettent de porter un nouveau regard sur les schémas décalés. Cela nous permet

de montrer que les schémas décalés classiques sont linéairement stables L2 uniquement lorsque les

vitesses sont de signe constant. On propose une classe de schémas décalés linéairement stables

L2 ainsi qu’une classe de schémas décalés entropiques. Ces nouvelles classes sont construites

à l’aide d’un opérateur de diffusion numérique particulier et sont mieux adaptées aux modèles

diphasiques pour lesquels les vitesses phasiques changent fréquemment de signe. Ces méthodes

ont été appliquées au système d’Euler isentropique sur des cas tests analytiques et nous pensons

que les développements actuels permettront à l’avenir son utilisation dans des cas plus réalistes et

complexes, comme la simulation des écoulements diphasiques au sein d’une installation nucléaire.





Abstract

In this thesis, the most important contribution has consisted in the implementation of modern

algorithms that are well adapted for modern parallel architectures, in an industrial software

dedicated to nuclear safety studies, the Cathare code. This software is dedicated to the simulation

of two-phase flows within nuclear reactors under nominal or accidental situations. This work

represents in itself an important contribution in nuclear safety studies thanks to the reduction

of the computational time and the better accuracy that it can provide for the knowledge of the

state of nuclear power plants during severe accidents. A special effort has been made in order to

efficiently parallelise the time variable through the use of the parareal algorithm. For this, we have

first designed a parareal scheme that takes more efficiently into account the presence of multi-step

time schemes. This family of time schemes can potentially bring higher approximation orders than

plain one-step methods but the initialisation of the time propagation in each time window needs

to be appropriately chosen. The main idea consists in defining a consistent approximation of the

solutions involved in the initialisation of the time propagations, allowing to reach convergence

with the desired accuracy. Then, this method has been succesfully applied on test cases that are

representative of the numerical challenges for the simulation of two-phase flows in the context of

nuclear safety studies.

A second phase of our work has been to explore numerical methods that could handle better the

numerical difficulties that are specific to two-phase flows with a lower computational cost. This part

of the thesis has been devoted to the understanding of the theoretical properties of finite volume

schemes on staggered grids such as the one used in the Cathare code. Staggered schemes are known

to be more precise for almost incompressible flows in practice and are very popular in the thermal

hydraulics community. However, in the context of compressible flows, their stability analysis has

historically been performed with a heuristic approach and the tuning of numerical parameters. This

question has been addressed by analysing their numerical diffusion operator that gives new insight

into these schemes. For classical staggered schemes, the stability is obtained only in the case of

constant sign velocities. We propose a class of linearly L2-stable staggered schemes and a class of

entropic staggered schemes. These new classes are based on a carefully chosen numerical diffusion

operator and are more adapted to two-phase flows where phasic velocities frequently change signs.

These methods have been successfully applied in analytical cases (involving Euler equations) and

we expect that the present developments will allow its use in more realistic and complex cases in

the future, like the one of the simulation of two-phase flows within a nuclear reactor during an

accidental scenario.
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Introduction (Version française)

Contexte industriel

On appelle ”accident grave” ou ”accident de fusion du cœur” d’un réacteur nucléaire à eau pres-

surisé un accident au cours duquel le combustible du réacteur est significativement dégradé avec

fusion plus ou moins étendue du cœur du réacteur. La fusion résulterait d’une absence prolongée

de refroidissement du cœur par le fluide caloporteur et consécutivement à une augmentation

importante de la température des crayons combustibles dénoyés. C’est un type d’accident qui, en

raison des mesures de prévention mises en place, ne peut survenir qu’à la suite d’une accumulation

de dysfonctionnements (défaillances multiples, humaines ou matérielles).

Si la dégradation du cœur ne peut pas être arrêtée dans la cuve du réacteur par refroidissement

du cœur dégradé (renoyage dans la cuve par le fluide caloporteur), l’accident peut à terme

conduire à une perte de l’intégrité du confinement et à des relâchements importants de substances

radioactives dans l’environnement. En raison des répercussions importantes qu’aurait un tel rejet,

des efforts importants sont consacrés à l’étude de ce type de scénario pour pouvoir en limiter les

conséquences (approche déterministe). L’étude des accidents de fusion du cœur passe en premier

lieu par l’identification des principaux scénarios pouvant conduire à ce type d’accident. En

complément des études déterministes, des études probabilistes de sûreté sont également menées.

La méthode consiste à analyser de façon exhaustive tous les scénarios accidentels envisageables,

d’estimer, souvent en les regroupant par famille, leur probabilité d’occurrence et les conséquences

associées à l’intérieur de l’installation (fusion du cœur) ou à l’extérieur (rejets radioactifs dans

l’environnement).

Dans le domaine des accidents graves, les phénomènes physiques mis en jeu sont extrêmement

complexes. Les objectifs de la recherche sont donc de parvenir à comprendre au mieux ces

phénomènes physiques et de développer des modèles applicables aux réacteurs. Ces modèles,

regroupés au sein de codes de calcul informatiques, doivent permettre de prévoir le déroulement

d’un accident grave. Comme il est impossible d’effectuer, dans ce domaine, des essais à taille

réelle et de reproduire toutes les situations envisageables, il est nécessaire de réaliser des essais

élémentaires, permettant d’étudier séparément chaque phénomène physique. Le tout doit se faire

à des échelles compatibles avec les capacités techniques et économiques des installations, tout en

restant représentatives pour l’extrapolation à l’échelle du réacteur. Les réacteurs expérimentaux

constituent notamment des équipements privilégiés pour étudier le comportement des combustibles

nucléaires en régime accidentel.

Dans ce contexte, le logiciel Cathare est un code thermohydraulique décrivant le réacteur

nucléaire à l’échelle système, développé par le CEA depuis 1979. Ce code est dédié aux études de



2 Introduction (Version française)

sûreté pour les Réacteurs à Eau sous Pression et la validation des prodédures post-accidentelles.

L’objectif de cette introduction n’est pas d’effectuer une liste exhaustive de tous les scénarios

accidentels faisant l’objet d’études de sûreté mais de décrire un type de scénario appelé APRP

(pour Accidents de Perte de Réfrigérant Primaire) afin d’illustrer de manière synthétique la

démarche alliant campagnes expérimentales et codes de simulation numérique.

Accidents de perte de réfrigérant primaire (APRP):

L’événement initiateur de ces accidents est une brèche dans la paroi du circuit primaire, [1].

La brèche provoque une fuite de réfrigérant primaire et une dépressurisation du circuit primaire.

Plusieurs scénarios sont à distinguer selon l’état initial du réacteur, l’emplacement et la taille de

la brèche. En cas d’APRP, la dépressurisation du circuit primaire entrâıne l’arrêt automatique du

réacteur, puis le démarrage automatique de l’injection de sécurité.

Les fonctions à assurer par les systèmes de protection et de sauvegarde pour limiter les con-

séquences de l’accident sont les suivantes:

� la mâıtrise de la réactivité

� le maintien de l’inventaire en eau dans la cuve du réacteur

� l’évacuation de la puissance résiduelle dégagée par le combustible

La mâıtrise de la réactivité est assurée par l’arrêt automatique du réacteur et l’injection d’eau

borée dans le cœur. Le maintien de l’inventaire en eau dans la cuve du réacteur est assuré par le

système d’injection de sécurité. L’évacuation de la puissance résiduelle dégagée par le combustible

est assurée par le refroidissement de l’eau circulant dans la cuve. Les scenarii accidentels menant

à une fusion du cœur supposent la défaillance de l’un ou de plusieurs des systèmes de sauvegarde

et sont toujours associés à une défaillance du maintien d’eau en quantité suffisante dans le circuit

primaire pour refroidir le cœur.

Le réacteur de recherche PHÉBUS [2] est un réacteur expérimental construit en 1977 sur le

Centre d’études de Cadarache. Il a été conçu pour étudier le comportement des combustibles des

centrales nucléaires dans des situations accidentelles du type perte de réfrigérant primaire pouvant

aller jusqu’à la fusion du combustible. La principale problématique associée à l’étude des accidents

de perte de réfrigérant est celle de la dégradation du combustible et de ses conséquences: à partir de

quelle température, au bout de combien de temps a-t-on rupture de la gaine du combustible ou pire,

fusion du cœur? Quel est le relâchement de produits de fission associé à ces deux phénomènes?

Le réacteur PHÉBUS entre dans la catégorie des réacteurs d’essais en sûreté. L’objectif de ce

programme était l’étude du comportement du combustible des réacteurs à eau sous pression (REP)

dans des situations de perte de réfrigérant primaire correspondant à une situation accidentelle

faisant suite à un fonctionnement en conditions nominales. Cet accident était suivi de la mise en

œuvre du refroidissement de secours. La phénoménologie étudiée était liée à l’accident de référence

des REP, qui ne va pas jusqu’à la fusion du cœur. Deux objectifs étaient recherchés:

� évaluer les marges relatives aux deux principaux critères retenus, dans le cadre du dimen-

sionnement du réacteur: la température maximale et l’oxydation maximale des gaines

� valider les codes de comportement du combustible utilisés par l’analyse de sûreté et, en

particulier, le module combustible du code de calcul Cathare.
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De même, le logiciel Cathare a été validé sur 20 scénarii accidentels basés sur 10 installations

expérimentales.

Par ailleurs, le code Cathare est également utilisé au sein de simulateurs de réacteurs. Le

simulateur est notamment l’outil de formation au fonctionnement normal et accidentel des

réacteurs à eau pressurisée pour des ingénieurs de l’IRSN ainsi que pour des opérateurs. Le rôle

de l’opérateur au sein d’une centrale est d’activer les procédures de conduite post-accidentelles

et de maintenir le réacteur en conditions de fonctionnement nominales. Parmi les moyens

disponibles pour effectuer des études de sûreté des réacteurs, SOFIA - Simulateur d’Observation

du Fonctionnement Incidentel et Accidentel [3] est un système informatique permettant le calcul

et le suivi en temps réel de l’évolution des paramètres physiques d’un réacteur nucléaire. Il

permet de simuler les défaillances de matériel et les actions des opérateurs, d’arrêter le calcul pour

examiner l’état de l’installation à un instant donné et de revenir en arrière, afin de modifier le

scénario. Le simulateur SOFIA utilise le code de calcul Cathare en temps réel.

Objectifs de la thèse

Le code Cathare est un code à l’échelle système et décrit l’ensemble d’un réacteur nucléaire à

l’aide d’un assemblage de conduites, de cuves et de pompes dont la taille est d’environ 10 mètres

(taille de la cuve: 13m × 5m × 5m). Pour simuler l’ensemble de l’installation nucléaire, le code

Cathare possèdent des restrictions au niveau de la taille des cellules du maillage: en prenant en

compte la taille importante des circuits, la taille d’une maille peut être relativement grande, et

peut aller de quelque centimètres à un mètre. Après discrétisation des variables, les simulations

numériques font intervenir entre 102 et 103 inconnues et jusqu’à un million de pas de temps. Une

méthode de décomposition de domaine en espace est implémentée dans le code Cathare et les

performances atteignent actuellement un plateau malgré qu’il y ait des ressources informatiques

supplémentaires. Les performances de cette méthode de décomposition de domaine en espace sont

limitées car les maillages utilisés dans les simulations du code Cathare sont peu raffinés afin de

représenter l’ensemble du réacteur nucléaire. Le premier objectif de cette thèse est de proposer une

nouvelle stratégie de parallélisation, complémentaire à la méthode de décomposition de domaine

en espace. Pour cette raison, on propose d’élaborer une méthode de décomposition de domaine en

temps. De plus, on souhaite appliquer cette stratégie de manière non intrusive et utiliser le code

Cathare en bôıte noire. Pour cela, on se base sur l’algorithme pararéel. Les résultats à ce sujet

sont présentés dans les chapitres 2 et 3.

Le restant des chapitres de cette thèse est motivé par le besoin en méthodes numériques

nouvelles pour mieux traiter les difficultés numériques spécifiques aux modèles diphasiques avec

un coût en temps de calcul raisonnable. Cette seconde partie est dédiée à l’analyse des aspects

théoriques des schémas volumes finis sur grille décalée, comme celui utilisé dans le code Cathare.

L’objectif est de développer une méthode d’analyse de stabilité rigoureuse des schémas décalés

classiques et de proposer une nouvelle classe de schémas décalés stable L2. De même, on souhaite

développer une nouvelle classe de schémas décalés entropiques. La méthodologie développée dans

le manuscrit est très générale et pourrait s’appliquer aux modèles diphasiques.

Dans les paragraphes suivants, nous présentons un bref résumé de chaque chapitre de ce

manuscrit.
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Résumé des résultats par chapitres

Partie I: Chapitre 1

Ce premier chapitre a essentiellement pour but de résumer les connaissances actuelles que l’on

peut trouver dans la bibliographie au sujet du modèle diphasique utilisé dans le code Cathare: le

modèle bifluide à 6 équations. La plupart de ce qui est donc présenté n’est pas nouveau, mais il

nous a semblé intéressant de présenter cette compilation d’informations pour positionner le modèle

et les méthodes numériques du code Cathare dans la littérature sur la simulation des écoulements

diphasiques.

Après la présentation du modèle bifluide à 6 équations, nous rappellerons les principaux

résultats théoriques concernant l’hyperbolicité du modèle. Nous présenterons ensuite la structure

complexe de la solution du modèle qui est spécifique aux modèles diphasiques.

Les techniques de discrétisation des variables du modèle seront ensuite présentées en insistant

particulièrement sur le traitement du terme de convection par les schémas décalés les plus répan-

dus. Bien que les modèles diphasiques héritent des connaissances actuelles sur la modélisation

et les méthodes numériques pour les fluides monophasiques, ils possèdent néanmoins plusieurs

spécificités. Nous présenterons certaines d’entre elles avec notamment le traitement des produits

non conservatifs, la configuration des phases évanescentes et le traitement des termes sources

discontinus.

La dernière partie du chapitre est consacrée aux techniques d’accélération actuellement dé-

ployées dans le code Cathare. On présentera également les facteurs qui limitent les performances

de ces méthodes malgré la disponibilité de ressources informatiques supplémentaires. On présente

ensuite la stratégie de parallélisation en temps choisie pour le code Cathare. La parallélisation

de la variable temporelle est particulièrement délicate étant donné que le temps est séquentiel par

nature. Malgré cela, plusieurs stratégies ont été proposées à ce sujet-là dans la littérature (see

[27], [50]). Nous nous sommes concentrés sur la méthode pararéelle car c’est celle qui donne les

meilleures performances sur des applications complexes (voir notamment [13], [49], [104]).

Partie I: Chapitre 2

Le deuxième chapitre résume les moyens mis en œuvre pour implémenter l’algorithme pararéel

au code Cathare de manière non intrusive. Nous présenterons les deux outils que nous avons

développé durant la thèse pour appliquer l’algorithme pararéel au code Cathare: d’une part,

une maquette du code Cathare restreinte à un cas test et d’autre part une librairie qui utilise le

code Cathare en bôıte noire de manière parallèle. Les deux cas tests que nous avons étudiés sont

représentatifs des défis numériques rencontrés dans la simulation des écoulements diphasiques

dans le cadre des études de sûreté. Ces défis numériques comprennent notamment les phases

évanescentes pour lesquelles une des phases liquide ou vapeur disparâıt dans une partie du domaine

ou encore la simulation d’une brèche dans le circuit primaire d’une réacteur causant ainsi une

dépressurisation rapide dans le système.

La contribution principale de ce travail est l’adaptation de l’algorithme pararéel à l’architecture

logicielle du code Cathare et sa discrétisation en temps de manière non intrusive, sans modifier

les fichiers sources du code, dans le but de réduire le temps de calcul et de se rapprocher d’une
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réponse en temps réel du code.

Finalement, dans les exemples numériques que nous avons traité, l’utilisation de l’algorithme

pararéel peut accélérer les calculs d’environ un facteur 3 avec 25 processeurs. Du point de vue de

l’efficacité, ces résultats ne sont pas aussi compétitifs que les méthodes de décomposition de domaine

en espace fournies, mais comme il sera expliqué au chapitre 2, il existe des raisons théoriques

qui expliquent la relativement basse efficacité de la méthode pararéelle. Pour cette raison, cette

méthode devient intéressante pour atteindre des performances additionnelles dans un contexte où

les autres techniques de parallélisation dont on peut disposer atteignent saturation.

Partie I: Chapitre 3

Comme il sera expliqué aux chapitres 1 et 2, la discrétisation en temps dans le code Cathare est

basée sur un schéma en temps à deux pas. Un schéma en temps multi-pas permet d’obtenir une

approximation d’ordre supérieur à celui d’un schéma en temps à un pas cependant l’initialisation

de la propagation en temps en chaque fenêtre doit être définie avec rigueur. Lorsque le solveur

fin et/ou le solveur grossier est un schéma en temps multi-pas, il est nécessaire de définir une

approximation consistante des solutions intervenant dans l’initialisation du schéma fin pour chaque

fenêtre en temps. Autrement, l’erreur commise à l’initialisation sera propagée sur l’intervalle de

temps et empêchera l’algorithme pararéel de converger vers la solution avec la précision souhaitée.

Dans l’objectif d’aborder ce problème, nous présentons dans ce chapitre une nouvelle variante de

l’algorithme pararéel adaptée à ce type de discrétisation et qui permet de converger vers la solution

cible avec un taux de convergence similaire à celui de l’algorithme pararéel classique. Un effort

particulier a été réalisé afin de construire un algorithme adapté aux schémas multi-pas de manière

non intrusive dans les solveurs grossier et fin. Cela permet au code Cathare d’être utilisé en bôıte

noire, assurant ainsi la portabilité de ce nouvel algorithme. Concernant la méthode d’initialisation,

l’algorithme pararéel multi-pas est plus consistant avec le schéma sous-jacent. Nous montrons à

l’aide de résultats théoriques et numériques que les propriétés de précision et de convergence de

l’algorithme pararaéel multi-pas sont compétitives lorsque l’on initialise rigoureusement chaque

fenêtre en temps.

Part II: Chapitre 4

La seconde partie de cette thèse est consacrée au développement d’un cadre d’analyse rigoureux

pour l’étude des schémas volumes finis sur grille décalée comme celui utilisé dans le code Cathare.

En particulier, la méthode présentée pourrait être appliquée dans le futur au code Cathare pour

traiter les spécificités numériques propres aux modèles diphasiques. Pour développer un tel outil,

il a été nécessaire tout d’abord d’étudier préalablement certains aspects théoriques et c’est ce qui

est présenté dans la deuxième partie de ce manuscrit. Plusieurs exemples numériques simples

seront aussi présentés, notamment sur la résolution du système d’Euler isentropique, dans le but

d’illustrer la technique proposée ainsi que ses performances.

Les schémas décalés sont en pratique plus précis pour les fluides quasi incompressibles et sont

couramment utilisés dans la communauté thermohydraulique ([63, 98, 26]). Cependant, dans le

contexte des fluides compressibles, les études de stabilité ont été historiquement menées par une

approche heuristique et par le réglage de paramètres numériques ([70]). Dans [66, 65, 67], les

auteurs construisent des schémas décalés conservatifs avec des preuves rigoureuse de stabilité: le
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caractère entropique et l’inégalité discrète de l’énergie cinétique. Néanmoins, le caractère bornée

de l’entropie n’implique pas nécessairement que la solution reste bornée et c’est particulièrement

le cas pour le système d’Euler complet. Par conséquent, on étudie dans ce chapitre la stabilité L2

linéaire des schémas décalés.

Cette question est abordée par l’analyse des opérateurs de diffusion numérique qui permet de

porter un nouveau regard sur les schémas décalés. On développe d’abord la forme de l’opérateur

de diffusion numérique pour les schémas décalés classiques, ce qui permet de montrer que ces

schémas sont linéairement stables L2 uniquement lorsque les vitesses sont de signe constant. On

propose ensuite une classe de schémas décalés linéairement stables L2. Cette nouvelle classe est

construite à l’aide d’un opérateur de diffusion numérique particulier et est mieux adaptée aux

modèles diphasiques pour lesquels les vitesses phasiques changent fréquemment de signe.

Un schéma numérique appartenant à cette nouvelle classe de schémas décalés a été implémenté

avec succès pour la simulation d’un problème de Riemann et nous pensons que les développements

actuels permettront à l’avenir son utilisation dans des cas plus réalistes et complexes.

Part II: Chapitre 5

Dans le dernier chapitre, nous abordons la question du caractère entropique des schémas décalés.

On écrit le bilan d’entropie discret pour une classe de schémas décalés. A partir de là, on propose

des conditions explicites sur les coefficients de la matrice de diffusion numérique pour garantir la

dissipation de l’entropie discrète. La méthodologie est très générale et pourrait s’appliquer aux

modèles diphasiques. On applique en premier lieu cette méthode au système d’Euler isentropique.

On implémente ensuite un schéma appartenant à cette nouvelle classe schémas décalés entropiques

pour la simulation d’un problème de Riemann dont la solution est composée d’une onde de dé-

tente transonique. Ces résultats numériques illustrent bien que notre méthode capture la solution

entropique correcte.
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Industrial context

We call ”serious accident” or ”meltdown accident” of a pressurised water reactor an accident where

the fuel of the reactor is significantly degraded with a more or less extensive meltdown of the

reactor core. This meltdown would be the consequence of a prolonged absence of the coolant in

the core causing an increase of the dewater fuel rods temperature. Due to the actual prevention

measures, this type of accidents may only occur after an accumulation of malfunctions (multiple

failures, human or material).

If the damages can not be stopped in the vessel by the cooling of the damaged core (reflooding

of the vessel by the coolant) then the accident could lead to a loss of containment and to significant

releases of radioactive substances in the environment. Due to the major consequences of such a

sequence of events, several studies of these accidents are conducted to limit their consequences

(deterministic approach). These studies firstly start by the identification of the main scenarii

that can lead to the reactor core meltdown. Complementing the deterministic studies, proba-

bilistic safety studies are also conducted. They consist in analysing exhaustively every possible

accidental scenarii, in estimating its probability of occurence and their consequences inside the nu-

clear power plant (core meltdown) or outside (release of radioactive substances in the environment).

The physical phenomena encountered in nuclear safety are extremely complex. This research

field is dedicated to the understanding of these phenomena and to develop physical and mathe-

matical models applicable to reactors. These models are grouped within softwares for numerical

simulation and allow to predict the course of a serious accident. Since it is impossible in nuclear

safety to reproduce all possible accidental situations on real size experimental installations,

it is necessary to perform several elementary experiments allowing to study seperately each

physical phenomenon. These steps must be at scales that are compatible with the technical

and economical constraints while remaining close to the behavior of the nuclear power plant.

The experimental reactors constitute in particular a privileged equipment to study the behavior

of nuclear fuel in accidental situation and represent a considerable economic and human investment.

In this context, the Cathare code (Code for Analysis of THermalhydraulics during Accident

and for Reactor safety Evaluation) is a thermalhydraulic code describing a nuclear reactor at the

system scale, developed by CEA since 1979 as part of an agreement between CEA, EDF, AREVA

and IRSN. This software is dedicated to the safety studies of Pressurised Water Reactor and the

validation of emergency procedures during an accidental scenario.

The objective of this introduction is not to give an exhaustive account of all the possible
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accidental scenarii studied in nuclear safety but to describe a type of accidents called LOCA

(Loss Of Coolant Accident) to illustrate synthetically the approach that couples experimental

campaigns and numerical simulation softwares.

Loss Of Coolant Accident (LOCA):

The initiating event of these accidents is a breach in the primary circuit, [1]. This breach causes a

leak of the coolant and a depressurisation of the primary circuit. Many accidental scenarii are then

possible according to the initial state of the reactor, the location and the size of the breach. In the

case of a LOCA, the depressurisation in the primary circuit will generate an automatic shutdown

of the reactor and an automatic start of backup cooling system.

To limit the consequences of these accidents, protection and backup systems will ensure the

following functions:

� control of the reactivity

� maintaining the water inventory in the reactor vessel

� evacuate the residual heat released by the fuel rods

The control of the reactivity is ensured by the automatic shutdown of the reactor and by the

injection of borated water within the core. The water inventory in the vessel is maintained

by the safety injection of water. The residual heat released by the fuel rods is evacuated

by the cooling of the water circulating in the vessel. Accidental scenarii leading to a core

meltdown are the consequences of the failure of one or several backup systems and are always

associated to a failure in maintaining enough coolant in the primary circuit to cool the reactor core.

The research reactor PHEBUS [2] is an experimental reactor built in 1977 in the CEA research

Center of Cadarache. It is dedicated to the study of the fuel rods behavior in nuclear power plants

under accidental conditions of LOCA type. The main issue associated to this type of accidents

is the fuel rods degradation and its consequences: from which temperature, after how long do we

have the break of the fuel rod cladding or worse core meltdown? How much fission products are

released due to these two phenomena? The PHEBUS reactor is an experimental reactor for safety

studies. The objective of this program is to study the behavior of fuel rods for pressurised water

reactors under LOCA type accidents especially. There are two main goals:

� evaluate the relative margins for two selected criteria, in order to sizing the reactor: the

maximum temperature and the maximum oxidation of the fuel rod cladding

� validate the softwares used in the nuclear safety studies, particularly the fuel module of the

Cathare code.

Likewise, the Cathare code has been validated on 20 accidental scenarii based on 10 experimental

installations.

In addition, the Cathare code is daily used on reactor simulators for the training of operators.

During an accidental scenario, the role of the operator is to activate emergency procedures to keep

the reactor in nominal working conditions. Reactor simulators are used by IRSN and other French

and foreign organisations to train their engineers. Among the available tools to make nuclear

safety studies, SOFIA - Simulateur d’Observation du Fonctionnement Incidentel et Accidentel [3],

is a computer system allowing the real-time tracking of the evolution of many physical parameters
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in a nuclear reactor. It simulates the material failures and actions of the operator, it also stops

the computation to analyse the installation at a given time and step back to modify the scenario.

The SOFIA simulator uses the Cathare code in real-time.

Aims of this thesis

The Cathare code is a system code and describes the whole reactor as an assembly of pipes, vessels

and pumps whose sizes are around 10 meters (size of the vessel: 13m × 5m × 5m). To simulate

the whole system, the Cathare code has restrictions on the mesh size: taking into account the

important size of the circuits, the mesh size used can be relatively large, from a few centimeters to

a meter. After the discretisation of all the variables, typical cases involve up to 102 or 103 cells with

3D elements and involve up to a million of numerical time steps. A space domain decomposition

method is implemented in the Cathare code and reaches its limits in its ability to use the entire

computational resources. The scalability properties of the space domain decomposition method

are limited by the small number of cells in the meshes of the Cathare simulations. We seek in this

work to investigate a novel strategy of parallelisation to complement the actual parallelism in the

Cathare code. For this reason, if we have more processors at our disposal and wish additional

speed-ups, the parallelisation of other variables needs to be addressed. Our purpose is to design

a strategy of time domain decomposition. We would like to use a non intrusive approach where

the Cathare code is used as a black box. In this context we investigate the ability of the parareal

method to match our requirements. This work constitutes the first part of this thesis and is

presented in chapters 1, 2 and 3.

The remaining chapters of this thesis are motivated by the need of novel numerical methods

that could handle better the numerical difficulties that are specific to two-phase flows with a

lower computational cost. This second part is dedicated to the understanding of the theoretical

properties of finite volume schemes on staggered grids such as the one used in the Cathare code.

We seek to develop a rigorous framework for the stability analysis of classical staggered schemes

and to propose a class of L2-stable staggered schemes. In addition, we seek to derive a class of

entropic staggered schemes. The procedure derived in the thesis is very general and could be

applied to two-phase flows models.

In the following section, a summary of every chapter will be provided.

Summary of the results by chapters

Part I: Chapter 1

The aim of this first chapter is twofold: first, it is intended to provide a bibliographical overview

of the two-phase flow model used in the Cathare code, namely the six-equation two-fluid model.

Most of what is stated here is not new but it seemed interesting to us to present this compilation

of information to position the model and numerical methods in the Cathare code within the

existing litterature of two-phase flows simulation.

After introducing the six-equation two-fluid model, the main theoretical results regarding the

hyperbolicity of the model will be presented. We will then explain the complex nature of the



10 Introduction (English version)

solution displayed by the model that is specific to two-phase flows models.

We will continue by recalling the existing discretisation techniques of the variables involved in

the equations and a special emphasis will be put ont the treatment of the convection term for the

most widespread staggered schemes. Even if two-fluid models inherit achievements performed in

the modeling, mathematical theory and numerical methods for single-phase flows, they however

display many specific difficulties. We will discuss some difficulties existing in the two-phase flow

models such as the presence of non conservative products, the configuration of the vanishing phase

and the handling of discontinuous source terms.

The last part of the chapter is devoted to the existing acceleration techniques that are actually

available in the Cathare code. First, these methods will be presented as well as their limits in the

ability to use the entire computational resources. We finally present the strategy followed in the

Cathare code to parallelise the time variable. The parallelisation of the time variable is particularly

involved given the sequential nature of time. Despite this, several strategies have been proposed in

the literature (see [27], [50]). We have focused on the parareal in time method because it is the one

that seems to provide the best performances with many applications (see [13], [49], [104] among

many others).

Part I: Chapter 2

The second chapter summarises the special efforts we made to implement the parareal algorithm

to the Cathare code in a non intrusive way. We will present the two computational tools we

developped during the PhD in order to apply the parareal algorithm to the Cathare code: firstly

a numerical clone of Cathare that is restricted to one test case and secondly through a library

that uses the Cathare code as a black box in a parallel way. The two test cases we investigate

are representative of the numerical challenges for the simulation of two phase flows in the

context of safety studies. Numerical challenges include for instance, the vanishing phase issue

where one of the two phases liquid or gas disappears in some parts of the domain or the sim-

ulation of a breach in the primary circuit that causes a fast depressurisation within the reactor core.

The main contribution of this work has been to adapt the parareal algorithm to the architecture

of the software and to its time discretisation in a non intrusive way, without modification of the

source files of the Cathare code, in order to reduce the computational time and get closer to a

real-time response of the code.

In the numerical examples treated, the use of the parareal algorithm can speed-up the calcu-

lations by a factor of about 3 with 25 processors. From an efficiency point of view, these results

are not as competitive as the high efficiency that domain decomposition methods provide, but,

as it will be explained in chapter 2, there are theoretical reasons that explain the relatively low

efficiency of the parareal method. Because of this fact, parareal is a useful technique to obtain ad-

ditional speed-ups in the context where other more efficient parallelisation techniques have reached

saturation.

Part I: Chapter 3

As will be presented in detail in chapters 1 and 2, the time discretisation of the Cathare code relies

on a two-step time scheme. A multi-step time scheme can potentially bring higher approximation
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orders than plain one-step methods but the initialisation of the time propagation in each time

window needs to be appropriately chosen. When the fine and/or coarse propagators is a multi-step

time scheme, we need to choose a consistent approximation of the solutions involved in the

initialisation of the fine solver at each time window. Otherwise, an initialisation error would be

propagated over the whole time interval and would prevent the parareal algorithm to converge

towards the solution with the desired accuracy.

In an attempt to address this issue, this chapter presents a new variant of the parareal algorithm,

adapted to this type of discretisation, and that ensures to recover the target solution with a

convergence rate similar to the one of the classical parareal algorithm. A special effort has been

made to design an algorithm adapted to this type of discretisation without being intrusive in the

coarse or fine solvers. This allows to the Cathare code to be treated as a black box, which ensures

the portability of this new algorithm. With regard to the initialisation procedure, the multi-step

parareal algorithm is more consistent with the underlying time scheme. We show both theoretically

and numerically that the accuracy and convergence of the multi-step parareal algorithm are very

competitive when we choose carefully the initialisation of each time window.

Part II: Chapter 4

The second part of this thesis is devoted to the development of a rigorous framework for the analysis

of finite volume schemes on staggered grids such as the one used in the Cathare code. In particular,

the family of schemes presented here could be applied in the future to the Cathare code to handle

the numerical difficulties specific to two-phase flows models. The derivation of the method has

required the analysis of some theoretical aspects beforehand and this is what is presented in this

second part of the manuscript. Nevertheless, some analytical numerical examples will be presented

on the solution of the isentropic Euler equations with the purpose of illustrating the technique and

its performances.

Staggered schemes are known to be more precise for almost incompressible flows in practice and

are very popular in the thermal hydraulics community ([63, 98, 26]). However, in the context of

compressible flows, their stability analysis has historically been performed with a heuristic approach

and the tuning of numerical parameters ([70]). Yet the conservative staggered schemes presented in

[66, 65] are proven to be entropic and to satisfy a kinetic energy preservation [67]. Unfortunately,

the boundedness of the entropy does not necessarily imply the boundedness of the solution and this

is particularly the case for the full Euler system. Hence, we investigate in this chapter the linear

L2-stability of staggered schemes. This question has been addressed by analysing their numerical

diffusion operator that gives a new insight into these schemes. We first derive the numerical

diffusion operator for classical staggered schemes and show that the L2 stability is obtained only

in the case of constant sign velocities. We then propose a class of linearly L2-stable staggered

schemes. This new class is based on a carefully chosen numerical diffusion operator and is more

adapted to two-phase flows where phasic velocities frequently change signs.

A scheme belonging to this new class of staggered schemes has been successfully applied to the

simulation of a Riemann problem and we expect that the present developments will allow its use

in more realistic and complex cases in the future.

Part II: Chapter 5

In the last chapter, we address the question of the entropic character of staggered schemes. We

derive a discrete entropy balance for a class of staggered schemes. On this basis, we give explicit
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constraints on the coefficients of the numerical diffusion matrix to ensure the dissipation of the

discrete entropy. The procedure is very general and could be applied to two-phase flows models.

We first investigate this strategy on the isentropic Euler system. We then implement a scheme

belonging to this new class of entropic staggered schemes for the simulation of a Riemann problem

that displays transonic rarefaction waves. These numerical results illustrate the ability of our

method to capture the correct entropic solution in a stable way.
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This first chapter is intended to be a bibliographic summary about the six-equation two-fluid

model: an overview of some theoretical results, discretisation, numerical and HPC methods to

solve the model are presented. We will also show the numerical difficulties that are specific to

two-phase flows and represent an obstruction to obtain a satisfactory simulation at a reasonnable

computational cost. In this context, the main contribution of this work has been to explore parallel

acceleration techniques to reduce this computational time (see chapters 2 and 3) and also to explore

numerical methods that could handle better these numerical difficulties with a lower computational

cost (see part II of this manuscript).
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1.1 The six-equation two-fluid model

1.1.1 Balance equations

Considering a two-phase flow of vapour (subscript v) and liquid (subscript l) phases, we are inter-

ested in determining unknown physical quantities that are the vapour and liquid volume fractions

(αv, αl ∈ [0, 1]), average pressures (pv ∈ R+ and pl ∈ R+), densities (ρv ∈ R+ and ρl ∈ R+),

temperatures (Tv ∈ R+ and Tl ∈ R+), velocities (~uv ∈ R3 and ~ul ∈ R3), enthalpies (hv ∈ R+ and

hl ∈ R+) and total energies (Ev ∈ R+ and El ∈ R+).

The two-fluid model equations are obtained by averaging the balance equations for each separated

phase, using space, time or ensemble averaged quantities (see [39, 71, 72]). The mass, momentum

and energy balance equations for each phase then read as follows:

∂αvρv
∂t

+ ∇ · (αvρv~uv) = Γv,

∂αlρl
∂t

+ ∇ · (αlρl~ul) = Γl,

∂αvρv~uv
∂t

+ ∇ · (αvρv~uv ⊗ ~uv) + αv ~∇pv = ∇ · (αv(¯̄τv + t ¯̄τv)) + αvρv~g + ~F intv + ~Fwv + Γv~u
int
v ,

∂αlρl~ul
∂t

+ ∇ · (αlρl~ul ⊗ ~ul) + αl~∇pl = ∇ · (αl(¯̄τl + t ¯̄τl)) + αlρl~g + ~F intl + ~Fwl + Γl~u
int
l ,

∂αvρvEv
∂t

+ pintv
∂αv
∂t

+∇ · (αvρv~uv(Ev +
pv
ρv

)) = αvρv~uv · ~g + ~F intv · ~uintv + σQv

+∇ · (αv(qv + tqv)) + Γv(h
int
v +

(~uintv )2

2
) +Qwv ,

∂αlρlEl
∂t

+ pintl
∂αl
∂t

+∇ · (αlρl~ul(El +
pl
ρl

)) = αlρl~ul · ~g + ~F intl · ~uintl + σQl

+∇ · (αl(ql + tql)) + Γl(h
int
l +

(~uintl )2

2
) +Qwl .

(1.1)

One also has to consider the closure relation:

αv + αl = 1,

which expresses the fact that the whole available volume is filled up with the fluids.

The interface interaction transfers consist in the following terms:

� Γk the interfacial mass transfer terms,

� ~F intk the interfacial momentum transfer terms, which are either of algebraic or differential

nature. They result of the viscous stresses at the interface and pressure forces normal to

the interface. They can be further divided into a non-viscous component ~Fnvk containing for

instance the interfacial pressure term, the virtual mass force and a viscous component such

as the interfacial friction term. The interfacial pressure term takes the following form:

~F pk = (pintk − pk)~∇αk,

� ~uint the interfacial velocity,

� σQk the interfacial heat transfer terms.

The wall interaction modeling, denoted by the subscript w, includes wall heat transfer and wall

frictional forces:
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� Qwk the wall heat transfer rates,

� ~Fwk the wall frictional forces.

¯̄τk are the Reynolds stresses and qk are the turbulent heat fluxes.

Equations of state

The number of unknown variables is in general greater than the number of equations in the

system of PDEs. Therefore, it is necessary to consider supplementary constitutive equations such

as equations of state. In general, such equations depend on the specific two-phase flow model and

on the flow regimes. The equations of state considered are: ρk = ρk(p, ek).

The Cathare code uses tabulated equations of state based on the industrial formulation IAPWS

(The International Association for the Properties of Water and Steam, [116]). These equations of

state compute all the thermodynamical variables necessary for the simulation thanks to experi-

mental measurements of pressures and temperatures and polynomial interpolations.

1.1.2 Closure laws

The jump conditions at the interface are:

� Mass transfer: ∑
k=g,l

Γk = 0.

� Interface momentum transfer: ∑
k=g,l

~F intk = 0.

� Energy transfer: ∑
k=g,l

(Γkh
int
k + σQk ) = 0.

In our work in this thesis, we have worked under the following assumptions:

� We assume here that the Reynolds stresses and turbulent heat fluxes are negligible, as we

are considering convection driven flow where viscosity tensor play a minor role.

� There is only one bulk average pressure in the system. We assume that the pressures re-

laxation time is negligible, and pressure equilibrium is considered to be reached in the flow:

pv(ρv, Ev) = pl(ρl, El) = p.

� We neglect surface tension phenomena in the two-fluid model: pintv = pintl = pint.

� We neglect as many authors do the pressure default (p− pint) in the energy equation.

Providing the general expressions of the momentum transfer terms is a difficult task with many

ongoing works. We summarise in the sequel some expressions that are commonly employed:

Interfacial pressure term

If we neglect virtual mass force, the Cathare model for the interface pressure force is given by [20]

∆p = p− pint = δ
αvαlρvρl
αvρl + αlρv

||~uv − ~ul||2.
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The coefficient δ can be gauged such that the two-fluid model becomes hyperbolic ([89]). Let

us note that the Cathare model for the interfacial pressure term is slightly different in the case

of stratified flows. We will give more details about this point in the section dedicated to the

hyperbolicity of the six equation two-fluid model.

Virtual mass force

The dynamic drag or the transient forces that result from relative acceleration of the phases, usually

also called the added mass effects is modeled in Cathare with the following formula, issued from

[20]

~F vmv = ~F vml = −βvmαvαlρm
[(

∂~uv
∂t

+ ~uv · ~∇~uv
)
−
(
∂~ul
∂t

+ ~ul · ~∇~ul
)]

,

where βvm is the virtual mass coefficient depending on the flow regime.

Interfacial friction term or Drag force

The drag model depends on the flow regime (dispersed, stratified, ...) and has the following general

form:
~FD =

1

2
CDaiρk(α)||uv − ul||2,

where CD is the drag coefficient and k(α) is a function that strongly couples the phases when one

of them tends to disappear. More details will be given in section 1.2.5 dedicated to one important

numerical difficulty of the two-fluid model: the vanishing phase.

Interfacial velocity

Assuming that the no slip condition is satisfied, the interfacial velocities for momentum and energy

transfer are equal for both phases uintv = uintl = uint . The formulation used in Cathare is a volume

fraction averaged formulation:

~uint = αv~ul + αl~uv.

1.1.3 Boundary conditions and initial condition

We will assume that the domain Ω is a bounded open set of R3. We denote the boundary ∂Ω with

~n(X) the outward unit normal to ∂Ω at point X. We define the following partitions of ∂Ω:

∂Ω = ∂Ωin ∪ ∂Ωout ∪ ∂Ωwall.

We list here some of the usual boundary conditions that are associated to problem (1.1).

Inlet and outlet boundary conditions

The flow velocity profile is specified at inlet boundaries to model the incoming of liquid or vapour

in the domain:

uk(t,X) · ~n(X) = uink (t), ∀t ∈ [0, T ] and X ∈ ∂Ωin.

The pressure is specified at outlet boundaries to model the outgoing of liquid or vapour in the

domain. Outlet boundary conditions for the pressure give informations external to the domain:

depending on the test case, the outlet pressure can be equal to the atmospheric pressure (1×105Pa)

or to the pressure within a nuclear reactor under nominal working conditions (155× 105Pa).

p(t,X) = pout(t), ∀t ∈ [0, T ] and X ∈ ∂Ωout.

In practice, one generally uses a ghost cell formulation at the boundary. The inlet boundary

condition consists in imposing a Dirichlet condition for the velocity and a Neumann condition for
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the other variables (pressure, volume fractions, enthalpies). For Neumann boundary conditions,

we prescribe the gradient normal to the boundary of a variable at the boundary. Usually, we take

the state of the ghost cell equal to the internal state.

Wall boundary conditions

This is commonly known as no-slip boundary condition. It specifies the conditions for velocity

components at the wall. The normal component is set to zero since the wall is static:

~uk(t,X) · ~n(X) = 0, ∀t ∈ [0, T ] and X ∈ ∂Ωwall.

The tangential component is set to the velocity of the wall:

~uk(t,X) · ~t(X) = uwallk (t),∀t ∈ [0, T ] and X ∈ ∂Ωwall.

Heat transfer through the wall can be specified or set to zero in the case of adiabatic walls.

Periodic boundary conditions

Periodic boundary conditions are often used to simulate a large system by modeling a small part

that is far from its edge. These conditions consist in enforcing a relation of the form:

~uk(t,X) = ~uk(t,X
′),

For X and X ′ in ∂Ω. For instance, if Ω = [0, L] in a 1D case, the condition would read:

~uk(t, 0) = ~uk(t, L), ∀t ∈ [0, T ].

The initial condition depends on the situation under consideration. In the analysis of reactor

cores, what one wishes in the end is to understand the connection between a stationary state and

some transient state. In practise, there are two ways of initialising a simulation:

� First one can start with constant values of the unknowns. However this can set the system

in a state that is very far from the stationnary state. Furthermore the transient dynamics

can be very different from the one observed when one studies nuclear accident.

� The second option is the one used in thermalhydraulics (in particular in the Cathare code).

It consists in computing first a stationnary condition in a normal regime using the values of

the boundary condition then changing the source term and the boundary condition to reflect

the occurence of a nuclear accident.

1.2 Hyperbolicity of the model

When considering equal pressure law and neglecting the interfacial pressure term and the virtual

mass term, the original two-fluid model (1.1) is not unconditionnally hyperbolic in the low Mach

flow regime in nuclear safety studies:

ur = uv − ul � csm, with the mixture sound speed: csm =

√
αvρv + αlρl

αvρlcv + αlρvcl
,

where cv, cl are the phasic sound speeds.

Taking into account interfacial pressure default or the virtual mass the system becomes hyperbolic
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in the flow regime of interest. The reader is referred to [111, 20, 113, 9, 114, 90] for details. In the

sequel, we only study the effect of the interfacial pressure correction on the hyperbolicity of the

model.

In this section, we first give the Taylor expansion of the spectrum for the compressible six-equation

model in 1.2.1. The complex expression of the eigenvalues makes difficult a rigorous analysis of the

compressible model, hence we turn our attention to the study of the low Mach regime in 1.2.2. In

section 1.2.2, we show the effect of the interfacial pressure term in the incompressible case and give

closure laws that ensure the hyperbolicity of the incompressible model. In section 1.2.3, we list

some closure laws for the interfacial pressure term that ensure the hyperbolicity of the compressible

model. In section 1.2.4, we summarise the analysis of the Riemann problem for two incompressible

phases. This analysis also takes into account the case of a vanishing phase where one of the volume

fraction αk goes to zero. In the last section 1.2.5, we show the singularity that appears in the case

of a vanishing phase and the difficulty to ensure the positivity of the volume fractions αk.

1.2.1 Eigenstructure of the compressible six-equation model

In [91], the author gives the spectral properties of the three-dimensional two-fluid model: six real

eigenvalues are trivially computed and the remaining eigenvalues are the roots of a 4-th degree

polynomial that is exactly the characteristic polynomial of the one dimensional isentropic two-fluid

system: 

∂αvρv
∂t

+
∂αvρvuv
∂x

= 0,

∂αlρl
∂t

+
∂αlρlul
∂x

= 0,

∂αvρvuv
∂t

+
∂αvρvu

2
v

∂x
+ αv

∂p

∂x
+ ∆p

∂αv
∂x

= 0,

∂αlρlul
∂t

+
∂αlρlu

2
l

∂x
+ αl

∂p

∂x
+ ∆p

∂αl
∂x

= 0.

(1.2)

Denoting the unknown variable U = (αvρv, αvρvuv, αlρl, αlρlul), the system (1.2) can be rewritten

as the quasi-linear form:
∂U

∂t
+A(U)

∂U

∂x
= 0

where A(U) is the Jacobian matrix of system (1.2).

For practical purposes, one usually does not find the exact solution of the fourth degree charac-

teristic polynomial. Instead, following the works in [113] and [42], the authors suggest using a

perturbation method to compute approximate eigenvalues.

Denoting the perturbation parameter:

ε =
uv − ul
csm

=
ur
csm

where csm is an approximate mixture sound speed defined by:

csm =

√
αvρv + αlρl

αvρlcv + αlρvcl

The analysis of the eigenvalues for the six-equation two-fluid model is approximately made around

the mechanical equilibrium, i.e. the eigenvalues are computed as a perturbation of the relative

velocity in comparison to the mixture sound speed, (ε =
uv − ul
csm

). The first order approximation
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of the compressibel two-fluid system eigenvalues gives:
λ1,4 =

αvρluv + αlρvul
αvρl + αlρv

∓ csm +O(ε2), pressure or acoustic waves

λ2,3 =
αvρlul + αlρvuv
αvρl + αlρv

∓
√

1

αvρl + αlρv

(
∆p− αvαlρvρl

αvρl + αlρv
u2
r

)
+O(ε2), void waves

(1.3)

We see from (1.3) that for small relative velocities, the two eigenvalues λ1,4 are always real and have

the order of magnitude of the mixture speed of sound csm. In contrast, if ∆p <
αvαlρvρl
αvρl + αlρv

u2
r ,

the two other eigenvalues λ2,3 are complex. We will discuss the influence of the interfacial pressure

term on the hyperbolicity of the system in the next section. Assuming that the four eigenvalues

are real, we can see that the eigenvalues may easily change sign. The two-fluid model displays

a complicated eigenstructure and its spectrum is more complex than the one of for single-phase

flows.

For single-phase flows, both mathematical theory and numerical methods of the Euler system have

been studying well by numerous authors in the litterature. This system is a system of hyperbolic

conservation laws with two Genuinely Non Linear fields and one Linearly Degenerate field (in one

dimension). Even if the two-fluid models inherit achievements obtained in the single phase flow

including of modeling, mathematical theory and numerical methods, however, the two-phase flow

models possess many of specific difficulties due to existence of two phases in the same domain of

interest and their interactions as well. We will see in section 1.2.4 that for the incompressible limit

of system (1.2) the study of the spectrum proves that the eigenvalues are not a priori ordered and

that the characteristic fields are neither GNL nor LD.

1.2.2 Hyperbolicity of the incompressible model

From the system (1.3), we see that there is a critical ∆p which ensures the positivity of the value

under the square root. In this section, we show the influence of the interfacial pressure term on

the hyperbolicity of the two-fluid model in the incompressible case.

To understand the role of the interfacial pressure term to get the hyperbolicity of the system, we

show the eigenstructure of a reduced system where both phases are assumed incompressible in

(1.2), derived in [91].

∂

∂t

(
ρ̃

ρ̃u

)
+Ared

∂

∂x

(
ρ̃

ρ̃u

)
=

(
0

0

)
, where:

(
ρ̃

ρ̃u

)
=

(
αvρl + αlρv
ρvuv − ρlul

)
, (1.4)

with

Ared =


αlρvuv + αvρlul
αvρl + αlρv

−αvαl(ρv − ρl)
αvρl + αlρv

ρvρl(uv − ul)2

(ρv − ρl)(αvρl + αlρv)
− ∆p

αvαl(ρv − ρl)
αlρvuv + αvρlul
αvρl + αlρv

 ,

and its eigenvalues are:

λinc =
αlρvuv + αvρlul
αvρl + αlρv

±
√

1

αvρl + αlρv

(
∆p− αvαlρvρl(uv − ul)2

αvρl + αlρv

)
.

The incompressible limit of the two-fluid model is hyperbolic provided:

∆p ≥ αvαlρvρl(uv − ul)2

αvρl + αlρv
(1.5)
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This type of coefficient is used in the industrial code Cathare (see [20]) to make the compressible

two-fluid model hyperbolic.

If we remove the interfacial pressure term by setting ∆p = 0, the matrix Ared of system (1.4)

becomes:

Ared =


αlρvuv + αvρlul
αvρl + αlρv

−αvαl(ρv − ρl)
αvρl + αlρv

ρvρl(uv − ul)2

(ρv − ρl)(αvρl + αlρv)

αlρvuv + αvρlul
αvρl + αlρv

 (1.6)

In (1.6), Ared is a 2 × 2 matrix with two diagonal coefficients that are equal. Such a matrix

has real eigenvalues provided the extradiagonal terms have the same sign. The efficiency of the

parameter ∆p in making the system hyperbolic comes from the fact that it removes the component:
ρvρl(uv − ul)2

(ρv − ρl)(αvρl + αlρv)
that gives rise to complex eigenvalues, as we can see in (1.4). Thus to make

the system hyperbolic, another possibility is to cancel this component by assuming an algebraic

pressure disequilibrium. Without the assumption of pressure equality, the evolution equation of

ρ̃u would be:

∂ρ̃u

∂t
+

∂

∂x

(ρ̃u)2

2(ρv − ρl)
+

∂

∂x

(
pv − pl −

ρvρl(uv − ul)2

(ρv − ρl)(αvρl + αlρv)

)
= 0

An alternative to the use of an interfacial pressure correction ∆p is the assumption that there is

an algebraic pressure disequilibrium having the form:

pv − pl =
ρvρl(uv − ul)2

(ρv − ρl)(αvρl + αlρv)
(1.7)

Hence, one can use a pressure disequilibrium of the form (1.7) or a parameter ∆p of the form (1.5)

to ensure the hyperbolicity of the isentropic two-fluid model for two incompressible phases. In [93],

the authors prove the existence and uniqueness of an admissible solution to the Riemann problem

for the isentropic two-fluid model for two incompressible phases with a pressure disequilibrium of

the form (1.7). In section 1.2.4, we detail the properties of this model and the results obtained in

[93].

1.2.3 Hyperbolicity of the compressible model

In this section, we give some closures laws for the isentropic two-fluid model (1.2) in the compress-

ible case that ensure the hyperbolicity of the system for a range of relative velocities ur.

For small relative velocities (uv − ul), closure laws were proposed in [111] and [20] that ensure the

hyperbolicity of the system (1.2) with the following form:

∆p = δ
αvαlρvρl(uv − ul)2

αvρl + αlρv
, with: δ > 1

In the more general case of large relative velocities, the hyperbolicity of the isentropic system (1.2)

has been studied in [9], [90], [91], [115] with:

∆p =
αvαlρvρl
αvρl + αlρv

(uv − ul)2 +
1

c2
v

(
ρv −

αvαlρvρl
αvρl + αlρv

)
(uv − ul)4.

This closure law guarantees the hyperbolicity for the relative velocities up to the sound speed of

vapour phase cv.

On the other hand, the authors in [9, 91] introduces the interfacial of the form:

∆p = ρv(uv − ul)2.
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This closure law guarantees the hyperbolicity in the region where |uv − ul| ≤ cv.

In the next section, we will present some recent existence results obtained on a system for two

incompressible phases.

1.2.4 The Riemann problem for two incompressible phases

In [93], the authors study a 2 × 2 system of conservation laws that models the dynamic of two

incompressible phases. They establish their model from the following system:
∂tαvρv + ∂x(αvρv) = 0

∂tαlρl + ∂x(αlρl) = 0

∂t(αvρvuv) + ∂x(αvρvu
2
v) + αv∂xpv = αvρvg

∂t(αlρlul) + ∂x(αlρlu
2
l ) + αl∂xpl = αlρlg

(1.8)

where the non zero pressure difference pv − pl takes the form (1.7).

Assuming in (1.8) that both phases are incompressible, the resulting system focuses on the study

of the void waves that determine the composition of the mixture:
∂tα+ ∂x

(
α(1− α)ω

α(ρl − ρv) + ρv

)
= 0

∂tω + ∂x

(
ω2

2(ρv − ρl)

)
= (ρv − ρl)g

(1.9)

We introduce the unknown variable vector U =

(
α

ω

)
, and the space of admissible states H =

{(α, ω), α ∈ [0, 1], ω ∈ R}. We also denote the sets H+ and H− such that:

H± = {(α, ω), ω ∈ R± \ {0} , α ∈ (0, 1)}

Many specificities arise from this incompressible model:

� the two eigenvalues λ1 and λ2 are not a priori ordered:

λ1 =
ω

ρv − ρl

(
1− ρvρl

(α(ρl − ρv) + ρv)2

)
, λ2 =

ω

ρv − ρl

� the characteristic fields associated to λ1 and λ2 are genuinely nonlinear in each domain H+

and H− but are neither genuinely nonlinear nor linearly degenerate in general:

~∇λ1 · ~r1 =
−2ρvρlω

(α(ρl − ρv) + ρv)3
, ~∇λ2 · ~r2 =

ρvρlω

(ρv − ρl)

where r1, r2 are the eigenvectors of ∇F associated to λ1, λ2.

� the system is strictly hyperbolic in H± and in general weakly hyperbolic on the domain H

Considering the Riemann problem for the conservative system (1.9) in the case g = 0 with a

piecewise constant initial data:

U0(x) =

{
UL(αL, ωL) if x ≤ 0

UR(αR, ωR) if x > 0
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the authors prove the existence and uniqueness of an admissible solution, satisfying the Liu crite-

rion.

Due to the complex structure of the shock and rarefaction curves, numerous cases are studied. In

some cases, the Riemann problem does not give rise to classical weak solutions made of two waves

of different families separated by an intermediate state UI(αI , ωI). In the sequel, four examples of

the non classical solutions to the Riemann problem are given in order to illustrate the originality

of this system that describes the void waves of the two-fluid model:

� solution made of two rarefactions of the same family, the 2-family

� solution made of three waves connected by two intermediate states U? and U??

� solution made of three shocks. In this case, a pure phase (α) is observed and the velocity of

the vanishing phase does not necessarily equal the one of the remaining phase

� solution made of two waves of different families where one is a non classical shock wave. This

shock wave is called non classical because a left state which is on a branch of a hyperbola

that goes out of the domain H is connected to a right state through an intermediate state

UI located on the other branch of the hyperbola where it comes back in H (see Figure 3a in

[93]).

1.2.5 Vanishing phase

In the two-fluid model, the total boiling or condensation of one phase will arise a singularity. The

absent phase is called vanishing phase or ghost phase. It poses a difficulty in the two-fluid model

owing to its independent velocities. The singularity arises when one computes the absent phase

velocity using the conservative variables uk =
αkρkuk
αkρk

as αkρk → 0.

Studying the one dimensional two-fluid model, we are interested in the mathematical properties

of the vanishing phase which is assumed to be vapour: α = αv = 0. Let us take into account the

isentropic model (1.2), when α = 0, the Jacobian matrix becomes:

Aα=0 =


0 0 1 0

0 0 0 1

−u2
v 0 2uv 0

ρlc
2
l

ρv
c2
l − u2

l 0 2ul


which has four real eigenvalues:

uv, uv, ul + cl, ul − cl
but the matrix is not diagonalizable because there are only three eigenvectors:

~vul±cl = t (0, 0, 1, ul ± cl) , ~vuv = t

(
ρv
ρl

(
(uv − ul)2

c2
l

− 1), uv
ρv
ρl

(
(uv − ul)2

c2
l

− 1), 1, uv

)
The hyperbolicity of system (1.2) is then broken for αv = 0.

One of the objectives of [93] was to prove that the positiveness of the volume fractions αk is

inherent to the model. At the discrete level, it is not always the case that a numerical method

capture positive volume fraction. In the thermalhydraulic platform Cathare, an interfacial friction

term is used to ensure the positiveness of the volume fractions. We explain here the role of the
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interfacial friction term in ensuring that the volume fractions αk(t) ∈ [0, 1],∀t ∈ [0, T ]. We consider

in the sequel that the unknowns are smooth enough:
∂tuv + uv∂xuv +

∂xp

ρv
+

∆p

αvρv
∂xαv =

CD
ρv
||uv − ul||(uv − ul)

∂tul + ul∂xul +
∂xp

ρl
+

∆p

αlρl
∂xαl =

CD
ρl
||ul − uv||(ul − uv)

(1.10)

We now write the momentum equation for the relative velocity ur = uv − ul:

∂t(uv − ul) + uv∂xuv − ul∂xul +

(
1

ρv
− 1

ρl

)
∂xp = −CD

(
1

ρv
+

1

ρl

)
||uv − ul||(uv − ul)

Since the variables uv, ul, p and their derivatives are assumed bounded, when the drag coefficient

CD goes to infinity, the relative velocity ur verifies the ODE:

∂tur = −CD||uv − ul||(uv − ul)

Hence, the system tends to an equilibrium of the velocities with ur → 0. The numerical difficulty of

the vanishing phase is thus handled by the Cathare code by imposing the equality of the two phasic

velocities through an interfacial friction term that dominates the momentum equations when one

of the volume fraction goes to 0.

Assuming that the vapour phase is the vanishing phase and neglecting the interfacial friction

coefficient CD, the corresponding momentum equation in (1.10) shows that the velocity of the

vanishing phase follows a Burgers equation and does not have to be equal to the velocity of the

remaining phase.

1.3 Discretisation of the two-fluid model

In general, there exists two families of numerical methods for the simulation of two-phase flows.

Firstly, colocated schemes are generally used on unstructured meshes where the unknowns are

located in the same place (cell-centered). In the litterature, many authors developed Riemann

solvers (either Godunov-type methods or Roe-type schemes or Osher schemes or AUSM schemes)

for the simulation of two-phase flows dealing with the numerical challenges encountered: vanishing

phase [32, 31, 88, 107, 8, 42, 93], non conservative products [88, 87, 42, 113] and stiff source terms

[93, 94]. We can also mention the VFFC scheme ([56, 57]) that has a generic formulation by con-

trast with the Roe scheme ([100]) that is applied under some algebraic conditions on the system.

This category of schemes is robust but present a lack of accuracy for low Mach number/almost

incompressible flows. Corrections are proposed in [36, 37] to overcome this issue but generate an

instability with checker-board type oscillations. We can also mention the pressure-based methods

with colocated variables such as the one used in the platform Neptune-CFD (developed by EDF

and CEA, [10]). This type of schemes does not suffer from a lack of precision for low Mach number

flows but show checker-board type oscillations. A way to overcome this issue is to use Rhie and

Chow type corrections to avoid spurious oscillations, [43].

On the other hand, staggered schemes are used on structured meshes with unknows located either

on edges or cell centers. This category of schemes has a good behaviour for almost incompressible

flows. The space discretisation in the Cathare code is based on a staggered scheme. The main

drawback of this family of schemes is the handling of complex geometries since its use is limited to

structured meshes. In this section, we first introduce the family of staggered schemes as initially
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proposed in [63, 62] (see section 1.3.1.1). We also discuss the properties of these numerical meth-

ods depending on the discretisation of the convection term for the isentropic Euler system (see

section 1.3.1.2). In section 1.3.1.3, we present a family of staggered schemes derived with a new

approach that discretises the conservative form of the Euler system. In section 1.3.2, we detail the

discretisation of the one dimensional Cathare model to compare it with the existing litterature on

staggered schemes. In the last section, we explain some numerical challenges of two-phase flows

simulation by addressing:

� strategies of discretisation for non conservative products occuring in two-fluid models (see

section 1.3.3.1),

� simulations made with the Cathare scheme on test cases showing vanishing phase (see section

1.3.3.2,

� strategies of discretisation for discontinuous source terms occuring in two-fluid models (see

section 1.3.3.3).

1.3.1 An introduction to ICE schemes

We refer here to the numerical methods designed on staggered grids to simulate compressible flows

at low Mach number. The velocity unknowns are located at cell interfaces whilst the density and

pressure unknowns are located at cell centers. The expression of the products ρu, ρ∂tu and ρu2

then raises an issue since velocity and density are located in different places that is adressed in a

different way by different authors.

Historically the Marker and Cell numerical scheme (MAC) [64] was designed for incompressible

flows. Then the Implicit Continuous-fluid Eulerian (ICE) [63, 62] method was designed for com-

pressible flows at low Mach numbers as well as high Mach numbers. The historical ICE method

[63, 62] discretises the conservative Navier-Stokes equations in a way that reduces to the MAC

method for incompressible flows. In the seminal papers [63, 62], the velocity unknowns are first

eliminated then the pressure unknowns are determined in an iterative process and the velocity

unknowns follow. For the velocity elimination to be valid the momentum fluxes are treated in a

semi-explicit way (see section 1.3.1.1 for more details).

The ICE method encountered a considerable success with numerous variants (explicit/implicit,

with/without prediction correction steps) and became popular in the thermal hydraulics community

[97, 98]. There the Navier-Stokes equations are discretised in non conservative form, which makes

the velocity elimination easier. The mass flux is upwinded for better stability but the approach

still consists in eliminating the velocity unknowns in order to first retrieve the pressure (see 1.3.1.2

for more details). However for the elimination to be rigourously valid the momentum flux should

be entirely explicit, which yields a restriction on the time step.

Herbin et al ([65], [66]) proposed an approach that does not rely on velocity elimination and

enables full implicitation. They were able to derive rigourous proofs of stability (see section 1.3.1.3

for more details).

We will consider in the sequel the 1D isentropic Euler equations in conservative form
∂tρ+ ∂xq = 0

∂tq + ∂x
q2

ρ
+ ∂xp = 0.

(1.11)
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and in non conservative form 
∂tρ + ∂x(ρu) = 0

ρ∂tu +
1

2
ρ∂xu

2 + ∂xp = 0
, (1.12)

We will give the expression of each scheme on the Euler equations which gives a first insight

into the schemes. The discretisation of the momentum convective term u
∂u

∂x
should verify the

conservation of h = p +
1

2
ρu2. Some non conservative schemes discretise the form

1

2
∂xu

2 and

satisfy the Bernoulli principle. Other non conservative schemes discretise the form u∂xu and do

not naturally recover the Bernoulli principle at the discrete level. In the sequel, we give the

expression of several schemes proposed in the litterature in the single-phase case and the extension

to two-phase flows can be found in references therein.

1.3.1.1 The original scheme of Harlow and Amsden

We summarise here the numerical method for all flow speeds described in the seminal article [63]. In

[63], the stability analysis used the heuristic approach of [70] by estimating the numerical diffusion

of the scheme and tuning the numerical viscosity to make it positive. A mass diffusion coefficient

τ and artificial viscosity coefficients λ and µ are considered for example in [62]. For simplicity of

the exposure, we neglect the various artificial viscosity terms, and present the scheme only in 1D.

The discrete 1D isentropic Euler equations take the form

ρn+1
i − ρni
4t +

(ρu)n+1
i+ 1

2

− (ρu)n+1
i− 1

2

4x = 0 (1.13)

(ρu)n+1
i+ 1

2

− (ρu)n
i+ 1

2

4t +
ρn+1
i+1 (u2)ni+1 − ρn+1

i (u2)ni
4x +

pn+1
i+1 − pn+1

i

4x = 0 (1.14)

The expression of the cell centered velocity u2
i required in the momentum equation raises an

issue of interpolation between face and cell that is adressed in different ways by different authors.

There are at least four historical types of interpolation formula for ui (see [63] page 207) :

� Centered: u2
i =

(ui− 1
2

+ ui+ 1
2

2

)2

� ZIP: u2
i = ui− 1

2
ui+ 1

2

� Partial Donor: u2
i =


ui− 1

2

ui− 1
2

+ ui+ 1
2

2
if ui− 1

2
+ ui+ 1

2
> 0

ui+ 1
2

ui− 1
2

+ ui+ 1
2

2
if ui− 1

2
+ ui+ 1

2
< 0

� Complete Donor: u2
i =

{
u2
i− 1

2

if ui− 1
2

+ ui+ 1
2
> 0

u2
i+ 1

2

if ui− 1
2

+ ui+ 1
2
< 0

In the next section, we list some choices of discretisation for the convection term and discuss the

properties of the resulting schemes.
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1.3.1.2 The traditional non conservative discretisation

Other forms of the ICE method used in the thermal hydraulics community ([98] section 11.2,

Cathare, Sabena [97]) discretise the non conservative version (1.12) of the Euler equations. The

schemes take the generic form
ρn+1
i − ρni
4t +

1

4x(ρup
i+ 1

2

un+1
i+ 1

2

− ρup
i− 1

2

un+1
i− 1

2

) = 0

ρ̄i+ 1
2

un+1
i+ 1

2

− un
i+ 1

2

4t +
1

2
(ρ∂xu

2)i+ 1
2

+
1

4x(pn+1
i+1 − pn+1

i ) = 0

. (1.15)

with

ρ̄i+ 1
2

=
ρi + ρi+1

2

For stability reasons, the mass flux ρu at the cell interfaces is generally defined using an upwind

density ρup (see [98] section 11.2) defined on faces as :

ρup
i+ 1

2

=

 ρi if ui+ 1
2
> 0

ρi+1 if ui+ 1
2
≤ 0

Here are some examples of expressions for the momentum convection term:

� semi implicit discretisation (Cathare 3D module section 11.5 page 339 of [74], [25])

In this case the density is explicit in the mass flux ρu, in the velocity evolution terms ρ∂tu

and the convection term ρu∂xu. The scheme takes the form
ρn+1
i − ρni
4t +

1

4x(ρup,n
i+ 1

2

un+1
i+ 1

2

− ρup,n
i− 1

2

un+1
i− 1

2

) = 0

ρ̄n
i+ 1

2

un+1
i+ 1

2

− un
i+ 1

2

4t +
1

2
ρup,n
i+ 1

2

(∂xu
2)i+ 1

2
+

1

4x(pn+1
i+1 − pn+1

i ) = 0

, (1.16)

with

(∂xu
2)i+ 1

2
=


1

4xi+ 1
2

((u2)n+1
i+ 1

2

− (u2)n
i− 1

2

) if ui+ 1
2
> 0

1

4xi+ 1
2

((u2)n+1
i+ 3

2

− (u2)n
i+ 1

2

) if ui+ 1
2
≤ 0

(1.17)

The Bernouilli principle is recovered at the discrete level in the case of stationary incom-

pressible non viscous flows. Note that in 2D/3D, the density is upwinded in axial momentum

terms of the form ρu2 but centered in non axial terms of the form ρuv.

The treatment in (1.17) allows for a stronger implicitation of the velocity and larger time steps

whilst retaining the elimination of the velocity unknowns. However this approach introduces

a time consistency error as we detail in the following.

We apply a standard truncation error analysis to the discrete momentum equation in (1.16)

assuming constant densities. This corresponds to the term:
∂u

∂t
+u

∂u

∂x
, in the case ui+ 1

2
> 0:

u(xi+1/2, tn+1)− u(xi+1/2, tn)

∆t
+

1

2

u2(xi+1/2, tn+1)− u2(xi−1/2, tn)

∆x
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=
∂u

∂t
(xi+1/2, tn) +O(∆t) +

1

2

∂

∂x
u2(xi+1/2, tn) +O(∆x)

+
∆t

∆x

(
u(xi+1/2, tn)

∂u

∂t
(xi+1/2, tn) +O(∆t)

)
When the time step ∆t and the mesh size ∆x goes to zero, the consistency error tends to
∂u

∂t
+u

∂u

∂x
with an additional term in bold that prevent the scheme to be consistent with the

momentum equation.

� fully implicit discretisation (Cathare 1D module section 11.3 page 320 of [74], [26])

In this case the density is treated implicitly in the discrete mass flux ρu, in the discrete

evolution terms ρ∂tu and in the discrete convection term ρu∂xu. The scheme takes the

generic form
ρn+1
i − ρni
4t +

1

4x(ρup,n+1

i+ 1
2

un+1
i+ 1

2

− ρup,n+1

i− 1
2

un+1
i− 1

2

) = 0

ρ̄n+1
i+ 1

2

un+1
i+ 1

2

− un
i+ 1

2

4t + ρ̄n+1
i+ 1

2

(u∂xu)i+ 1
2

+
1

4x(pn+1
i+1 − pn+1

i ) = 0

,

with

(u∂xu)i+ 1
2

=


1

4xi+ 1
2

un+1
i+ 1

2

(un+1
i+ 1

2

− un+1
i− 1

2

) if un+1
i+ 1

2

> 0

1

4xi+ 1
2

un+1
i+ 1

2

(un+1
i+ 3

2

− un+1
i+ 1

2

) if un+1
i+ 1

2

≤ 0

This treatment allows for a stronger implicitation of the velocity and larger time steps, whilst

retaining the elimination of the velocity unknowns. The Bernouilli principle is not recovered

at the discrete level in the case of stationary incompressible non viscous flows.

� explicit discretisation (Sabena [97])

In this case the density is explicit in the mass flux ρu, in the velocity evolution terms ρ∂tu

and the convection term ρu∂xu. The scheme takes the form
ρn+1
i − ρni
4t +

1

4x(ρup,n
i+ 1

2

un+1
i+ 1

2

− ρup,n
i− 1

2

un+1
i− 1

2

) = 0

ρ̄n
i+ 1

2

un+1
i+ 1

2

− un
i+ 1

2

4t + ρ̄n
i+ 1

2

(
1

2
∂xu

2)n
i+ 1

2

+
1

4x(pn+1
i+1 − pn+1

i ) = 0

, (1.18)

with

1

2
(ρ∂xu

2)i+ 1
2

=


1

2
ρni

1

4xi+ 1
2

((u2)n
i+ 1

2

− (u2)n
i− 1

2

) if ui+ 1
2
> 0

1

2
ρni+1

1

4xi+ 1
2

((u2)n
i+ 3

2

− (u2)n
i+ 1

2

) if ui+ 1
2
≤ 0

The Bernouilli principle is recovered at the discrete level in the case of stationary incom-

pressible non viscous flows.

The explicit treatment introduces constraints on the time step.
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� explicit convection ([98] section 11.2.1, equation 11.16)

In this particular case the density is explicit in the mass flux ρu, in the velocity evolution

terms ρ∂tu and the convection term ρu∂xu. The scheme takes the form
ρn+1
i − ρni
4t +

1

4x(ρup,n
i+ 1

2

un+1
i+ 1

2

− ρup,n
i− 1

2

un+1
i− 1

2

) = 0

ρ̄n
i+ 1

2

un+1
i+ 1

2

− un
i+ 1

2

4t + ρ̄n
i+ 1

2

(u∂xu)n
i+ 1

2

+
1

4x(pn+1
i+1 − pn+1

i ) = 0

,

with

(ρu∂xu)i+ 1
2

=


1

2

ρni + ρni+1

2

1

4xi+ 1
2

un
i+ 1

2

(un
i+ 1

2

− un
i− 1

2

) if un
i+ 1

2

> 0

1

2

ρni + ρni+1

2

1

4xi+ 1
2

un
i+ 1

2

(un
i+ 3

2

− un
i+ 1

2

) if un
i+ 1

2

≤ 0

With this treatment the velocity unknowns are easily eliminated using the momentum equa-

tion. This numerical scheme differs from the previous explicit discretisation (1.18) in the

treatment of the convection term. In (1.18), the form
1

2
∂xu

2 is used and in the present

scheme the form u∂xu is discretised. The Bernouilli principle is not recovered at the discrete

level in the case of stationary incompressible non viscous flows.

In most of the methods the velocity unknowns are first eliminated, and the resulting system is

solved in a way that is compatible with the incompressible regime. The drawback of this approach

is that there are constraints on the discretisation of the momentum flux ρ~u⊗ ~u and of the viscous

terms µ4~u for the elimination of the velocity unknowns to be possible. The elimination can take

place rigorously speaking when the convective flux ρ~u⊗ ~u and the viscous terms µ4~u are explicit

in time. However explicit discretisations yield time step limitations.

1.3.1.3 The recent scheme of Herbin, Latché et al

In the past decade, Herbin, Latché and their coauthors have proposed a new approach with rigorous

proofs of stability. They discretise the conservative form of the Euler equations (equation 1.11)

with a conservative scheme. Their approach does not rely on velocity elimination and thus explicit

and implicit variants are possible.

The different variants include one step ([65] section 2.1, [66] section 3.1) and prediction/correction

steps ([65] section 2.2, [66] section 4.1) variants, fully implicit ([66] section 3, [65] section 2.1), semi

implicit and almost explicit [66] (all but the pressure gradient are explicit-in-time) variants.

For simplicity we present the discrete equation of the fully implicit variant ([66] section 3, [65]

section 2.1) for the 1D isentropic Euler equations in conservative form:

ρn+1
i − ρni
4t +

ρup,n+1

i+ 1
2

un+1
i+ 1

2

− ρup,n+1

i− 1
2

un+1
i− 1

2

4x = 0 (1.19)

ρ̄n+1
i+ 1

2

un+1
i+ 1

2

− ρ̄n
i+ 1

2

un
i+ 1

2

4t +
ρun+1

i+1 u
up,n+1
i+1 − ρun+1

i uup,n+1
i

4x +
pn+1
i+1 − pn+1

i

4x = 0. (1.20)

The pressure pi and the density ρi are located at the cell centers whereas the velocity ui+ 1
2

are

located at the cell interfaces. The expression of the products ρu, ρ∂tu and ρu2 between the
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velocity located at cell interfaces and the density located at cell centers thus has to be defined

through interpolation formula.

The mass flux ρu at the cell interfaces is defined using an upwind density ρup
i+ 1

2

defined as :

ρup
i+ 1

2

=

 ρi if ui+ 1
2
> 0

ρi+1 if ui+ 1
2
≤ 0

=
ρi + ρi+1

2
+ sign(ui+ 1

2
)
ρi − ρi+1

2
, (1.21)

which is the sum of a centered and an upwind terms.

The expression of ρ̄i+ 1
2

in the discrete momentum equation accounts for an average of the neigh-

bouring densities

ρ̄i+ 1
2

=
1

2
(ρi + ρi+1). (1.22)

The expression of ρu in the discrete momentum equation is

ρui =
1

2
(ρup
i− 1

2

ui− 1
2

+ ρup
i+ 1

2

ui+ 1
2
). (1.23)

The upwind velocity uupi at cell centers is defined as :

uupi =

 ui− 1
2

if ρui > 0

ui+ 1
2

if ρui ≤ 0

=
ui− 1

2
+ ui+ 1

2

2
+ sign(ρui)

ui− 1
2
− ui+ 1

2

2
, (1.24)

which is the sum of a centered and an upwind terms.

It is possible to use a centered velocity ū instead of the upwind velocity uup (see [66]).

We presented the conservative staggered schemes studied in [65], [66] that is proven to be

entropic and to satisfy a kinetic energy preservation. In the next section, we introduce the one

dimensional Cathare scheme in the two-phase flows configuration.

1.3.2 The one dimensional Cathare scheme

In this section, we first give some details on the one dimensional two-fluid model before giving the

discrete equations of Cathare. We presented a generic two-fluid model in the section 1.1 with the

system 1.1. In the sequel, we write the one dimensional Cathare model which is a variable cross

section area model.

∂Aαkρk
∂t

+
∂Aαkρkuk

∂x
= Γk

Aαkρk

[
∂uk
∂t

+ uk
∂uk
∂x

]
+Aαk

∂p

∂x
= Aαkρkg + F intk + Fwk +AσMk u

int

A
∂

∂t

[
αkρk

(
Hk +

u2
k

2

)]
+

∂

∂x

[
Aαkρkuk

(
Hk +

u2
k

2

)]
= Aαk

∂p

∂t
+Aαkρkukg + Γk

(
H int
k +

(uintk )2

2

)
+ Qwk + σQk

(1.25)

where A is the cross section area of the channel.

In the sequel, we specify the discretisation of some terms of the system (1.25):
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� In the mass balance laws, the void fraction (αupk )i+1/2 and density (ρupk )i+1/2 at the cell edge

i+ 1/2 for the term: (
∂Aαkρkuk

∂x

)
i+1/2

are determined with an upwinding approach. (αupk )i+1/2 is upwinded according to the velocity

(uk)i+1/2 and the density (ρupk )i+1/2 according to the quantity (αupk )i+1/2(uk)i+1/2,

(αupk )i+1/2 =

{
(αk)i − αinfk , (uk)i+1/2 > 0

(αk)i+1 − αinfk , (uk)i+1/2 < 0

(ρupk )i+1/2 =

{
(ρk)i, (αupk )i+1/2(uk)i+1/2 > 0

(ρk)i+1, (αupk )i+1/2(uk)i+1/2 < 0

(1.26)

where αinfk are constants for the minimal values of αk. The Cathare code considers that

the volume fraction of each phase admit a non-zero minimum value and therefore, also a

maximum value very slightly lower than one. It is therefore accepted that a flow is never

completely single-phase, the residual phase represents respectively bubbles or tiny drops in

a practically single-phase liquid or vapour zone.

� The mass and energy balance equations in the one dimensional Cathare model (1.25) are

written in a conservative form, whereas the momentum balance equation is written in a non

conservative form.

To evaluate (ρ̄k)i+1/2, (ᾱk)i+1/2 the cell-centered values at the edge i+ 1/2 for the term:

Aαkρk

[
∂uk
∂t

+ uk
∂uk
∂x

]
i+1/2

,

an average of the adjacent values is taken weighted by the cell volumes.

(ρ̄k)i+1/2 =
V oliρi + V oli+1ρi+1

V oli + V oli+1

� The convection term: (
uk
∂uk
∂x

)
i+1/2

,

is determined with an upwinding approach,(
uk
∂uk
∂x

)
i+1/2

=

{
(uk)i+1/2((uk)i+1/2 − (uk)i−1/2), (uk)i+1/2 > 0

(uk)i+1/2((uk)i+3/2 − (uk)i+1/2), (uk)i+1/2 < 0

The value of the cross section area is carefully chosen in the term

Aαkρkuk
∂uk
∂x

to ensure the Bernoulli principle for single phase flows with varying cross section.

ABern,i+1/2 =


Āi+1/2

2

Ai+1/2 +Ai−1/2

Ai−1/2
, (uk)i+1/2 > 0

Āi+1/2

2

Ai+1/2 +Ai+3/2

Ai+3/2
, (uk)i+1/2 < 0

with Āi+1/2 =
V oli + V oli+1

2∆x



1.3. Discretisation of the two-fluid model 33

� In the energy balance laws, the velocity (ūk)
n+1
i at the cell i for the time derivative term:

∂

∂t

[
αkρk

(
Hk +

u2
k

2

)]
i

=
(αk)

n+1
i (ρk)

n+1
i

(
(Hk)

n+1
i + 1

2((ūk)
n+1
i )2

)
− (αk)

n
i (ρk)

n
i

(
(Hk)

n
i + 1

2((ūk)
n
i )2
)

∆t

is computed with an interpolation using the adjacent velocity at edges and the void fractions.

In this interpolation, the void fractions are explicit in time

(ūk)
n+1
i =

((αk)
n
i + (αk)

n
i−1)Ai−1/2(uk)

n+1
i−1/2 + ((αk)

n
i + (αk)

n
i+1)Ai+1/2(uk)

n+1
i+1/2

((αk)
n
i + (αk)

n
i−1)Ai−1/2 + ((αk)

n
i + (αk)

n
i+1)Ai+1/2

(1.27)

In the time derivative term of the energy equations the approximation involves the terms

(ūk)
n+1
i and (ūk)

n
i . From the interpolation formula (1.27), we see that the evaluation of

(ūk)
n+1
i is made with the adjacent volume fractions at time Tn and with the volume fractions

at time Tn−1 for the term (ūk)
n
i . Hence, the approximation of the time derivative at time

Tn+1 in the energy equations is a function of the unknowns at times Tn+1, Tn and Tn−1.

From this reason, the Cathare time scheme is a two-step time scheme. This point will raise

additional difficulties in the application of the time parallel algorithm, the parareal method.

This requires an adaptation of the parareal algorithm to this type of multi-step time schemes

that should not be intrusive in the Cathare code. We will detail this aspect in the next

chapter.

� All the terms are implicit in time in the system (1.25) except for the interpolated velocity at

nodes in the energy equations.

1.3.3 Difficulties of two-phase flow models

Even if two-fluid models inherit achievements obtained in the single-phase flow modeling, mathe-

matical theory and numerical methods, however, they possess many specific difficulties due to the

existence of two phases in the same domain and their interactions. In this section we will dis-

cuss some difficulties in general existing in the two-phase flow models such as the presence of non

conservative products, the configuration of the vanishing phase and the handling of discontinuous

source terms. We illustrate the mathematical challenge in discretising non conservative products

on the term αk
∂p

∂x
appearing in the the momentum equations of the six-equation two-fluid model

(1.1) (see section 1.3.3.1). Then we comment in section 1.3.3.2 how the Cathare code handles

numerically vanishing phases. Finally in section 1.3.3.3, we present the challenges coming from the

discretisation of stiff source terms.

1.3.3.1 Non conservative products in the two-fluid model

A theory of hyperbolic conservation laws, studied in depth in the literature, can be found in

[106, 76, 77, 75, 21, 24, 33, 38, 58]. Such a theory gives a fundamental understanding and main

ideas for plenty of numerical methods to solve a hyperbolic system of conservation laws, i.e. find a

weak solution in the sense of distributions. However, our system (1.1) possesses non conservative

products and is not therefore a conservative system. A discontinuous solution would lead to the

product of two distributions that is not well-defined. In order to study the weak solutions of a non

conservative hyperbolic system, one may consider different approaches.

In general, the most popular approach to deal with non conservative products is the theory of

non conservative hyperbolic systems studied by Dal Maso et al in [84]. In the classical theory of
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conservation laws, a shock wave depends merely on its left state and right state, the definition of

Dal Maso et al depends on the choice of a specific path which connects a left state to a right state

around a shock wave for non conservative products. Defining an appropriate path requires realistic

physical information which is not easy, especially in a complicated two-fluid model. Moreover, once

the appropriate path is chosen, different numerical methods may converge to different solutions,

see comments in [4] and references therein.

Therefore, one may prefer to solve the two-fluid model by using a simpler consideration of the non

conservative product. For example, in [113], the authors rewrite the 1D two-fluid model (1.2) and

choose jump conditions based on a particular case where the system has a conservative form. The

resulting two-fluid model includes two conservation laws of mass of each phase, one conservation

law of mixture of momentum and one equation for the liquid velocity assumed incompressible.

More precisely, it consists in the following equations:

∂αvρv
∂t

+
∂αvρvuv
∂x

= 0 (1.28)

∂αlρl
∂t

+
∂αlρlul
∂x

= 0 (1.29)

∂αvρvuv + αlρlul
∂t

+
∂αvρvu

2
v + αlρlu

2
l + p

∂x
= 0 (1.30)

∂ul
∂t

+
∂

∂x

(
u2
l

2
+
p

ρl

)
= 0. (1.31)

In [113], they propose a formula to locally linearize the term αk in the product αk
∂p

∂x
around a

discontinuity. This local linearisation denoted α̃k is chosen such that the original isentropic model

(1.2) (neglecting ∆p∂xαk) and the system (1.28-1.31) have the same Rankine-Hugoniot relation.

After calculations, [113] finds:

α̃l =
2αLl α

R
l

αLl + αRl
, α̃v = 1− α̃l.

This formula is then applied to the simulation of two-fluid model, [114]. It is important to note

that although ∆p was neglected in the identification of jump conditions for the systems (1.2) and

(1.28-1.31), its contribution is fundamental in practice to obtain real characteristic waves.

On the other hand the non conservative term in the energy equations is written as a spacial

derivative in [113] using the assumption of incompressible liquiq together with the liquid mass

equation:

∂tαl = −∂x(αlul).

Other authors focusing on the numerical methods usually neglect the product of p∂tαk in the

energy equations, see for example [88, 87].

1.3.3.2 Cathare treatment of the vanishing phase

An elementary test case: the oscillating manometer:

In this section, we illustrate the role of the interfacial friction term on a two-phase test case where

one of the phases disappears. The equations used are the simplified Cathare equations, (1.25).

Transfers between phases (mass and heat) and wall friction are neglected in the system (1.25).

The only source terms we consider in this test case are the gravity force and the interfacial forces

F intk .
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In [69], the oscillating manometer is proposed as a numerical benchmark test for system codes

to test the ability of each numerical sheme to preserve system mass and to retain the gas-liquid

interface. It consists in a U-shaped tube manometer which is connected at the top, so that a

closed system is formed. The system contains initially gas and liquid with the liquid forming

Figure 1.1: Oscillating manometer test case

equal levels in each arm of the manometer. Further, all parts of the fluid system have initially

a uniform non zero velocity, but zero acceleration. Under these initial conditions, a hydrostatic

pressure hypothesis is made throughout the system. Also, the system is isothermal at 50◦C with

105 Pa pressure at the vapour-liquid interfaces. Distance in the direction of the flow is measured

by x in meters. The length of the manometer is 20 m and the diameter is D = 1 m. The initial

position of the vapour-liquid interface is 5m from the bottom of each manometer leg and the fluid

initially has a velocity of u0 = 2.1 m/s. This initial velocity will cause the interface to oscillate

approximately ±1.5 m in height from the initial location.

We seek to show the influence of the interfacial friction term on the behaviour of the scheme

when one of the phases disappears in some parts of the domain. Previously in section (1.2.5), we

saw that the interfacial friction coefficient CD goes to infinity in the configuration of a vanishing

phase, as a consequence the system tends to an equilibrium of the velocities. The expression of

the interfacial friction term depends on the flow regime (bubbly, annular, dispersed,...) and on the

geometry:

CD = f(αk, ρk, σ, µk, Dh)

where: σ is the surface tension, Dh the hydraulic diameter and µk are liquid and vapour dynamical

viscosities.

The equation of motion of the vapour-liquid interface in each leg of the manometer is the following:

d2x

dt2
+

2gx

L
= 0

x(t = 0) = 0,
dx

dt
(t = 0) = u0

.
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The solution to this equation is: x(t) = 2u0

√
L

2g
sin

(√
2g

L
t

)
and the liquid velocity is :

uL(t) = u0cos

(√
2g

L
t

)
, (1.32)

where g designates the acceleration of gravity and L designates the water length equal to 12 m.

For these simulations, the variation versus time of the liquid velocity at the bottom of the

manometer (at one edge) is plotted. In Figure 1.2, we compare the reference solution of the
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Figure 1.2: Convergence of the 1D Cathare scheme

oscillating manometer (1.32) with several numerical solutions computed with the one dimensionnal

Cathare scheme. These results show that the numerical solution converge to another solution

that is damped. This can be explained by the treatment of the vanishing phase used in Cathare.

When the interfacial friction term dominates the system (section 1.2.5), it behaves as if a diffusion

term was present in the model that damped the solution and prevent the numerical solution to

converge towards the reference solution (1.32) of the test case.

An industrial test case: the Water-Packing

The treatment of the vanishing phase is a challenge for every software that simulates two-phase

flows. In the context of nuclear safety studies, a well known problem linked to vanishing phases

is the Water-Packing. It occurs during the simulation of a water level rise due to condensation as

well as in other more complex situations. The typical situation in which this problem was studied

is a vertical tube initially filled with superheated steam, connected to a steam tank at its top,

is gradually filled with very cold liquid from below. As the liquid front progresses upwards, the

vapour condenses and the resulting local depression aspirates steam from the tank and the liquid

front gradually heats up with the condensation. Provided you know the rate of phase change

by condensation, the analytical solution to this problem is simple with regard to the pressure at
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the bottom of the tube. Assuming that the front rises slowly, the problem is quasi-static and

the pressure at the bottom of the tube then increases regularly due to the weight of the liquid

column which increases by the addition of liquid injection and condensation. On the other hand, if

one wishes to simulate this flow numerically, one runs up against difficulties: the field of physical

pressure is disturbed by parasitic waves of strong amplitudes. This is the phenomenon of Water-

Packing. The simulation of this kind of stratified flow is of great interest. In fact this type of

situation is encountered in a more complex form in accidental transient calculations (for example,

the filling phase of the reactor core after a large breach). The calculation of the water level rise in a

simple situation is therefore used to analyse and solve a problem occurring in much more complex

situations. This problem occurs in all the codes of thermalhydraulics dedicated to the simulation of

accidental transients in the circuits of a nuclear reactor. It has been the subject of numerous studies

and it is used to evaluate codes in test batteries called benchmarks. The Water-Packing benchmark

was formalized by V. H. Ransom in 1987, in [68], under the title ”expulsion of steam by cold water”

(see Figure 1.3). To understand the origin of this phenomenon, we recall how the Cathare code

Figure 1.3: Setting of the Water-Packing benchmark in [68]

handles vanishing phase. The principle consists in considering that the volume fraction of each

phase admit a non-zero minimum value and therefore, also a maximum value very slightly lower

than one. It is therefore accepted that a flow (or a flow zone) is never completely single-phase,

the residual phase represents respectively bubbles or tiny drops in a practically single-phase liquid

or vapour zone. So even when a single-phase flow (or flow zone) is simulated, all the equations

are solved. Also the mechanical equilibrium is forced: the residual phase has the same velocity

as the dominant phase, consequence of an interfacial friction made artificially very large (section

1.2.5). This choice was made in the Cathare code since its initiation and has been valid for a large

number of use cases. However it raises problems in the representative test case of Water-Packing.

Physically, this choice amounts to say that the residual bubbles (resp. drops) in the liquid (resp.

vapour) are entrained by the dominant liquid phase (resp. vapour).

In the context of test case (1.3), the liquid front is rising thus the liquid velocity is positive

below the interface. The steam condenses at the interface with cold liquid, thereby creating an

intake of additional steam from the top of the tube. The vapour velocity is negative when above

the interface. The residual liquid velocity in the vapour phase is then negative. Therefore, when
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a cell close to the interface is filled up with liquid, liquid velocity suddenly changes direction. A

vector node located above the interface at a negative liquid velocity will become positive when it

is joined by the interface. Artificial pressure spikes are then observed whenever the liquid level fills

up a cell (see Figure 1.5, red curve).

Here is an explanatory diagram of the behaviour of the liquid velocity during the advance of

the liquid front(see Figure 1.4).

Figure 1.4: Behaviour of the liquid velocity during the Water-Packing phenomenon, from [86]

Currently, the Cathare code uses an Anti-Water-Packing correction, specially dedicated to the

treatment of this problem. However, it comes with a large number of shortcomings with respect

to the balance laws and returns sometimes erroneous values. The principle consists in locating

the cell(s) in which the interface is located, then greatly reduce the rate of condensation. As a

consequence, the pressure shows artificial spikes with lower amplitude (see Figure 1.5, blue curve)

because by decreasing the rate of condensation, the velocity at which the vapour is aspirated

decreases too and the velocity of the residual liquid phase just above the interface decreases too.

The inversion of the liquid velocity still takes place but it goes from a weakly negative velocity to

a stronger positive one. In summary, the inversion of the liquid velocity occurs more gradually.

The upwinding approach in the Cathare numerical scheme plays an important role in solving this

problem. Indeed, during the simulation of a counter-current flow, the upwinding strategy can

be inconsistent with the dynamics we want to capture. Each momentum equation is upwinded

according to the sign of its phasic velocity (reference section schema de Cathare). This approach

is consistent when bot phasic velocities have the same sign but may fail to capture the void waves

when the phasic velocities have opposite signs. In [93], the authors propose colocated schemes to

capture void waves without forcing a mechanical equilibrium with a large interfacial friction. This

scheme is based on upwinding according to the volume fraction wave speed that is different from

the phasic velocities.

1.3.3.3 Discontinuous source terms

In the thermalhydraulics of nuclear reactors, two-fluid models display stiff source terms S(U, x).

The stiffness of these source terms has different origins. First, the heat source Φ is localised on the
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Figure 1.5: Pressures spikes with or without Cathare anti-Water-Packing correction, from [86]

core of the reactor which yields a discontinuity in space. Moreover, the dry-out of the Uranium rod

when the temperature reaches a threshold (the critical heat flux) yields a discontinuity of Φ as a

function of the temperature. Secondly, the boiling of the fluid is a stiff phenomena with a threshold

that is the boiling temperature (or enthalpy). For these reasons the simulation of boiling of

two-phase flows is challenging both from a mathematical and a numerical point of view. The source

term S(U, x) being discontinuous both in U and x makes it impossible to use Cauchy- Lipschitz type

of theorems for the existence of solutions even for ODEs. However, there are particular cases where

a unique solution may exist (see [23]). The source term S(U, x) being discontinuous in U makes

numerical approximation more difficult in the numerical simulation because of the stiffness of the

solution. Classical approaches to deal with stiff source term assume it is Lipschitz in the variable U .

In this section, we introduce non-homogeneous hyperbolic systems of conservation laws, i.e. we

take into account a non zero source term S as below

∂U

∂t
+ ∂xF (U) = S(U, x), x ∈ R, t ≥ 0, (1.33)

The source term S is usually a function of the unknown vector U and spacial variable x, S(U, x).

A simple approach to solve the non homogeneous system of conservation laws is to include a source

term in the right hand side as follows:

Un+1
i − Uni

∆t
+
Fi+1/2 − Fi−1/2

∆x
= Sni , (1.34)

where Sni is an approximation of

Si =
1

∆x

1

∆t

∫ tn+1

tn

∫ xi+1

xi

Sdxdt (1.35)

and Fi±1/2 is some interfacial flux function.

The numerical scheme (1.34) is a classical one solving the non homogeneous system of conservation

laws. Sometimes both the flux divergence ∂xF (U) and the source term S(U, x) are discretised

independently and in practice, Sni is simply considered as the source function at the average value

Ui, i.e. Sni = S(Uni , xi). However this approach may generate instabilities in the simulation of the
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system (1.33), especially for stiff source terms functions S.

We are interested in the capture of the stationary regime of a two-phase flow characterised by the

stationary equation:

∂xF (U) = S. (1.36)

In some cases, for example with stiff source terms, using Sni = S(Uni , xi) in (1.35) implies the

instability of the numerical solution at the stationary state. In order to improve the numerical

simulation, one suggests either upwinding the source terms ([17]) or developping well-balanced

schemes ([22]) in the sense that it preserves the stationary state. In a two-fluid model, due to

the complexity of the flux function and the lack of regularity of source terms, it seems difficult to

construct a well-balanced scheme.

1.4 Acceleration techniques for the simulation of two phase flows

In the numerical resolution of partial differential equations, we generally have to solve linear or

nonlinear systems arising from the discretisation. The large size of these systems and the fact that

they are ill conditionned make a global resolution difficult. In this section, we firstly summarise

in 1.4.1 the resolution method used by the Cathare code to solve the nonlinear system arising

from the discretisation of the two-fluid model. Then we present the actual acceleration methods

available in the Cathare code in 1.4.2. Finally, we introduce in 1.4.3 the time parallel algorithm

that we consider in this thesis, the parareal algorithm.

1.4.1 Solution algorithm for the two-fluid model

After discretisation in space and time of the two-fluid model, we obtain a non linear system that

is solved with a Newton method. Before describing the implementation of this method, we recall

here the dependance of the different equations according to the implicited variables:

� the mass and energy balance equations at cell i depend on the pressure, void fraction and

enthalpies defined at cell i and on the velocities defined at the edges.

� the momentum balance equations at edge i + 1/2 depend on the velocities defined at edges

i+ 1/2, i− 1/2 and i+ 3/2 and on the cell centered unknowns defined at the adjacent cells

of the edge i+ 1/2.

After applying the semi-implicit time scheme of the Cathare code, we obtain a system of the

following form:
Un+1 − Un

∆t
+A(Un+1, Un) = S(Un)

This non linear system is solved by a Newton method:

δUk+1

∆t
+ J(Uk, Un)δUk+1 = S̃(Un, Uk), where: δUk+1 = Uk+1 − Uk

and : Uk+1 = (pk+1, αk+1
v , Hk+1

l , Hk+1
v , uk+1

l , uk+1
v )

(1.37)

The increments of the principal variables in the Cathare code are denoted δUk+1 and the terms of

the Jacobian matrix J(Uk, Un) are computed as follows:

Ji,j =
∂Ei

Ukj
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Since the Cathare time discretisation is semi-implicit, this term corresponds to the derivative of

the balance equation Ei with respect to the principal variable Ukj that is implicited, for the k-

th Newton iteration. Hence, the Cathare code uses the derivatives with respect to the variables

(p, αv, Hl, Hv, ul, uv) instead of the conservative variables (αvρv, αlρl, uv, ul, αvρvEv, αlρlEl).

The resulting linear system (2.1) at each Newton iteration is solved by a Gauss elimination to obtain

a system with pressure increments only. Another specificity of the Cathare code is that it uses a

semi-implicit pressure solver without splitting techniques for the velocity (no prediction/correction

steps), and no explicit construction of an elliptic problem on the pressure.

In the Cathare software, the junction is an element of the geometry that links two other elements

of the geometry: a 1D element (a pipe, ...) with a 3D element (vessel, ...) or a 1D/3D element with

a boundary condition element (see Figure 1.6). The junctions store the informations about the

edge that is common to the two elements linked by this junction (two velocities and derivatives of

the momentum equations associated to this edge with respect to the principal unknowns). Hence

the system depends on the Ni pressure increments belonging to the internal cells and on the Nj

pressure increments belonging to the junctions. The unknowns associated to the junctions are

called external variables. The dependance on the external pressure increments appears when we

write the momentum balance equations associated to the junctions. The resulting system is of the

following form: [
A11 A12

A21 A22

][
∆p(Ni)

∆p(Nj)

]
=

[
S1

S2

]
(1.38)

The method adopted in the Cathare code consists in eliminating the internal pressure increments

∆p(Ni) and then solve the problem on the external pressure increments ∆p(Nj):(
A22 −A21A

−1
11 A12

)
∆p(Nj) = S2 −A21A

−1
11 S1

This linear system is then solved by a direct method with the library LAPACK BLAS.

Figure 1.6: Example of a geometry in the Cathare code with elements and junctions
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1.4.2 Actual acceleration methods in Cathare

In [101], the authors present the strategy implemented in the Cathare code in order to make its

use compatible with a real-time response. This work was carried out within the context of the

integration of the Cathare code in the SIPA simulator (Post-Accident Simulator) for training and

engineering studies on nuclear PWR reactors under nominal conditions or accidental transients.

In the sequel, we list the steps of the solution algorithm described in section 1.4.1, that were

parallelised:

� Each element of the Cathare geometry (see figure 1.6) assembles a block of the Jacobian

matrix in parallel. Hence, for each element, the matrix block depends on the Ni pressure

increments belonging to the internal cells of the element and on the Nj pressure increments

belonging to the junctions associated to the element (step (i) in figure 1.7).

An element of the Cathare geometry can be seen as a subdomain of a spacial domain decom-

position method.

� Each element eliminates the internal variables of system (1.38) and obtains a system depend-

ing on the junction variables ∆p(Nj) only (step (ii) in figure 1.7).

� The pressure increments ∆p(Nj) for all the junctions of the Cathare geometry are computed

by a Gauss elimination. It is performed by an iterative algorithm that successively eliminates

the blocks of the Jacobian matrix corresponding to a junction common to two elements.

This process goes on, as long as the non-eliminated junctions are common to at least one

other element. The order used to eliminate the block matrices is called an elimination tree.

It depends on the reactor meshing and is optimised by the Cathare code for a sequential

resolution (step (iii) in figure 1.7).

� The increments of the other principal variables (velocities, volume fractions and enthalpies)

are computed in parallel over all the elements (step (iv) in figure 1.7).

In figure 1.7, we see the performances of the actual parallel method implemented in the Cathare

code. We see in the left figure that the computational cost of the step (i) in the solution algorithm

represents 65% of the global computational time of the simulation. Hence, the parallelisation of

step (i) over the elements of the geometry offers good speed up performances: a speed up of 10 is

obtained for the parallelisation of step (i) on 12 processors where the global speed up is 6.
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Figure 1.7: Performances with the actual parallelism in Cathare for two industrial test cases on

12 processors, [101]

This actual acceleration method has been successfully applied on industrial test cases for the

simulation of a nuclear reactor under an accidental scenario. However, these parallel methods are

implemented with OpenMP that allows shared memory parallelism. Their use is limited to a level

of parallelism of about 20 processors or of at most all the processors of a standard desk computer.

Moreover, the performances of this strategy reaches its limit when the geometry of the simulation

includes 1D elements with ∼ 102 cells and 3D elements with ∼ 103. This imbalance of tasks

between the processors can damage the speed up performances. We illustrate this behaviour in the

left figure 1.8 where the computational time of one step of the Jacobian assembling is measured

for one Newton iteration in one time step.

An optimisation of the parallel method that we have previously described has been proposed to

overcome the issue of tasks imbalance between processors. This new algorithm allows to assign

elements of the geometry to the processors with load balancing, knowing the computational time

of the previous time step. In the right figure 1.8, we see that this algorithm allows to significantly

improve the load balancing between processors and thus the performances of the parallel method.

Figure 1.8: Load balancing between two threads in a Cathare simulation
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1.4.3 Time domain decomposition: the parareal algorithm

The scalability properties of the space domain decomposition method implemented in the Cathare

code are limited by the small number of cells in the meshes of the Cathare simulations. Several

works are in progress to propose novel parallel algorithms in the Cathare development group.

For example, the possibility to assign a 3D element to many threads by dividing the element

on subdomains is actually investigated. Since the number of elements in a Cathare simulation

is usually smaller than the number of available processors, we seek in this work to investigate a

novel strategy of parallelisation to complement the actual parallelism in the Cathare code. For this

reason, if we have more processors at our disposal and wish additional speed-ups, the parallelisation

of other variables needs to be addressed.

Several approaches have been proposed over the years to decompose the time direction when solving

a partial differential equation (see [96], [27], [41], [40], [51], [30], [44], [50]). Of these, the parareal

algorithm, whose performances we explore in this work, was proposed two decades ago by [78] and

has received an increasing amount of attention in the last years. The parareal method can also

be cast into the category of multiple shooting type methods that were introduced in [96] (we refer

to [55] for a detailed discussion about the several possible interpretations of the parareal method).

The parareal method has been applied successfully to a number of applications (see [13], [49], [104],

[79], [105] among many others), demonstrating its versatility. Theoretical advances on this method

include stability analysis ( [16], [108], [15], [35]), its coupling with spatial domain decomposition

methods ( [82], [61]) and control problems ( [81], [82]).

To see how the method works and how it has been applied to the two-fluid model, we write the

system (1.1), after the discretisation in space on N degrees of freedom:

∂U

∂t
+A(t, U) = 0, t ∈ [0, T ], U(t = 0) = U0 (1.39)

A : R× RN → RN , U ∈ RN (1.40)

where U is the unknown, in our case, U = (p, αv, hl, hv, uv, ul). Let us assume that we have two

propagators G and F to solve (1.39). For any given t ∈ [0, T ], s ∈ [0, T − t] and any function

w in a Banach space, G(t, s, w) (respectively F (t, s, w)) takes w as an initial value at time t and

propagates it at time t+ s.

� G(Tn,∆T,Un) computes a coarse approximation of U(Tn+1) with initial condition

U(Tn) ' Un (low computational cost)

� F (Tn,∆T,Un) computes a more accurate approximation of U(Tn+1) with initial condition

U(Tn) ' Un (high computational cost)

The fine propagator F can perform the propagation of the phenomenon with small time steps δt

and with very accurate physics described by A. On the other hand, the coarse approximation G

does not need to be as accurate as F and can be chosen much less expensive, by the use of a scheme

with a much larger time step ∆T � δt or by treating reduced physics.

In addition to these two propagators F and G, the parareal in time algorithm is based on the

division of the time interval [0, T ] into N sub-intervals [0, T ] = ∪N−1
n=0 [Tn, Tn+1] that will each be

assigned to a processor Pn. The parareal algorithm applied to (1.39) is an iterative technique

where, at each iteration k, the value U(Tn) is approximated by Unk with an accuracy that tends to

the one achieved by the fine solver when k increases. Unk is obtained by the recurrence relation:

Un+1
k+1 = G(Tn,∆T,Unk+1) + F (Tn,∆T,Unk )−G(Tn,∆T,Unk ) (1.41)



1.4. Acceleration techniques for the simulation of two phase flows 45

Starting from Un+1
0 = G(Tn,∆T,Un0 ).

From formula (1.41), one can see by recursion that the method is exact after enough iterations.

Indeed, for any n > 0, Unn = F (T 0, Tn−T 0, U0). However, convergence of Unk to F (T 0, Tn−T 0, U0)

goes much faster than this.

While the main results about the convergence properties of the method were studied in depth

several years ago (see [78], [13], [16]), more recent efforts ([85], [11], [40], [18], [80]) focus on the

algorithmics to implement it in order to improve the speed-up provided by the original algorithm.

1.4.4 Time domain decomposition for hyperbolic problems

An instability of the parareal algorithm may appear when it is applied to convection dominated

problems. In [15], the author points out the need of a strong regularity on the initial condition

to ensure the stability of the parareal algorithm. When the problem is parabolic, the smoothing

character of the problem prevents the appearance of instabilities even if the initial condition is

not regular enough but when the problem is hyperbolic, an initial condition with high frequencies

components may trigger the instability. Moreover in [15], the author shows the influence of the

numerical diffusion on this instability. This aspect has also been explored in [102], [49], [79],

[103].

Others strategies have been studied to treat the instability of the original parareal. They

propose to improve the coarse approximations at every parareal iteration using the previous fine

solutions to overcome the instability issues with hyperbolic equations. In [48] and [54], the

parareal solution is projected in a Krylov subspace generated by the set of fine solutions from the

previous parareal iterations. In [29], the authors use a subspace thanks to a reduced basis built

from the matrix made of the previous fine solutions. In the same spirit, in [35], the authors propose

a parareal algorithm with an additional step that project the parareal solution in a manifold to

ensure the conservation of invariants (for example, the conservation of the Hamiltonian).

Other contributions propose cures to the parareal algorithm with an algebraic viewpoint. In

[28], the authors formulate the method with an iteration matrix and propose preconditionners to

improve the behaviour of the parareal algorithm.

In [52], the author shows the difficulties of the parareal algorithm to converge in a reason-

able number of iterations on the advection equation and the wave equation using the method of

characteristics.

In [95], the authors propose an algorithm called Communication Aware Adaptive Parareal

(CAAP) to speed up the non linear shallow water equation beyond what is possible using spatial

domain decomposition methods alone.

We will also note that the application of other parallel in time algorithms is not straightforward

on convection dominated problems. In [109], the authors propose MGRIT algorithms that im-

prove stability and scalability for the resolution of the advection equation with 1st-order numerical

scheme. In [110], analysis tools are proposed to understand the source of the instability issues

on MGRIT algorithms and on the parareal algorithm using the multigrid interpretation. In [73],

a convergence analysis is conducted to propose criteria for coarse-grid operators involved in the

MGRIT and parareal algorithms. This strategy can ensure stability and scalability for the time

parallelisation of the advection equations with high order discretisations.
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In this chapter, we present the two strategies we developed during the PhD in order to apply

the parareal algorithm to the Cathare code: a numerical clone of Cathare that is restricted to one

test case and a library that uses the Cathare code in a non intrusive way. The main contribution

of this work has been to adapt the parareal algorithm to the architecture of the software and to its

time discretisation in a non intrusive way, without any changes of the source files of the Cathare

code, in order to reduce the computational time and get closer to a real-time response of the code.

In section 2.1, we present the challenges of implementing the parareal algorithm on an industrial

software, the Cathare code, in a non intrusive way. In section 2.2, we introduce the new algorithm

we designed to handle multi-step time schemes such as the one used within the Cathare code. In

the last section, we report the speed up performances obtained on two test cases: the oscillating

manometer using the numerical clone of the Cathare code and the Omega test case using the

Parareal library that uses the Cathare software. Each test case is representative of the numerical

challenges for the simulation of two phase flows in the context of safety studies such as vanishing

phases and discontinuous source terms.
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2.1 The Parareal library for the Cathare code

The development of the Cathare code started 30 years ago for the simulation of nuclear reactors

under nominal or accidental situations. The software was designed for engineers in nuclear energy

and experts in the thermalhydraulics of accidental scenarii in nuclear power plants. Hence, the

terminology used in Cathare is directly linked to the physics of nuclear reactors. For example, to

define the geometry of the simulation, the user has to define a reactor, a primary and a secondary

circuit and hydraulic elements representing pumps or steam generators. Generally, the definition

of the simulation one seeks to run is composed of two main blocks:

� First, informations are given for the description of the circuits. Each element is defined with

the reference to a hydraulic element or Cathare element (1-D, 0-D, 3-D, junction, etc...).

Geometrical parameters and meshing are defined. Elements are connected to constitute

elementary circuits (one primary and several secondary circuits). Heat exchangers between

elementary circuits are defined.

� The characteristics of the calculation are then specified. Successive directives are given

corresponding to the different steps of the simulation:

– operation of the initial state process,

– time propagation called transient calculation,

– time step control,

– events occuring during the calculation (safety injection, break opening, valves, ...).

The actual parallel methods available in the Cathare code (see section 1.4 chapter 1) are imple-

mented with OpenMP that allows shared memory parallelism. Their use is limited to a level of

parallelism of about 20 processors or of at most all the processors of a standard desk computer. In

this work, all the developments of the parareal algorithm applied to the Cathare code were made

with MPI that allows distributed memory parallelism. Hence, the parareal algorithm allows to

run a Cathare simulation in parallel on many processors located in different computers, including

supercomputers.

In the sequel, we summarise the obstructions linked to the Cathare structure and the strategies

we chose to handle them. These cures were of two natures: computer science and algorithmic. We

think that the experience of implementing a parallel algorithm to an industrial software in a non

intrusive way will be instructive for the future developments of parallel techniques in the Cathare

code. This is why we list the obstructions that are only of a computer science nature. In the sequel,

we list the adaptations and adjustments necessary to develop a library that applies the parareal

algorithm to the Cathare code where it is used as a black box without modifying the source files

of the software.

2.1.1 Obstructions linked to the data structure of the Cathare code

2.1.1.1 Data structure

The data structure in the Cathare code mainly lies on an array of values containing the informations

related to the mesh, the unknowns, the coefficients of the Jacobian matrix and of the right hand

side. This array stores the principal variables of pressure, volume fraction and liquid and vapour

velocities and enthalpies for every cell of the mesh. The Cathare array also contains auxiliary

variables that are necessary to carry on the simulation. These auxiliary values are of different

natures:
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� variables computed from the principal unknowns

� variables tracked during the simulation: for example, the water level in an element of the

system

� boolean variables giving the flow regime in an area of the system: bubbly, annular, dispersed,

seperated phases, etc.

The first obstruction we met is that we can only define one system (one reactor and one array of

values) in a Cathare simulation while in the context of the parareal algorithm we use two systems:

a coarse one and a fine one. The first difficulty is to run a simulation with coarse and fine systems

in the same processor. There are two possible approaches:

� When running the simulation over N processors, we assign one processor (”the coarse proces-

sor”) to the coarse propagation for all time windows [Tn, Tn+1] and the remaining processors

(”the fine processors”) run the fine propagation only, over one time window. The coarse

processor will also transmit the coarse approximation at times Tn to the corresponding fine

processor. The main drawback of this approach is the multiplication of communications and

the use of N + 1 ressources for a parallelism over N time windows.

� We use the same array of values for the coarse and the fine propagations in each processor.

This is made possible by the use of the Parareal library that is independent of the Cathare

code and contains the parareal algorithm. This library collects the coarse and fine propa-

gations made by the Cathare code then apply the parareal corrections and finally send to

the Cathare code the updated initial conditions for each processor [Tn, Tn+1]. Depending on

whether the Cathare will make a coarse or a fine propagation, the Parareal library will send

the data array associated to the coarse or the fine solver (for example, the coarse or fine time

step and the suitable initial condition). For the implementation of the parareal algorithm

applied to the Cathare in a non intrusive way, we chose this option.

The data structure of the Cathare code represents a challenge for memory storage with up to 106

variables and a size of about 8 Go. To reduce the cost of communication, we choose to exchange

only the principal variables between processors. Some of the auxiliary variables are then computed

from the principal unknowns. This choice will have consequences on the accuracy due to the error

made on the reconstruction of the auxiliary variables. This question is addressed in section 2.3.2.

2.1.1.2 Data set

A Cathare data set can be split in different blocks of instructions:

� definition of the geometry and the mesh

� calculation of an initial condition: computation of a stationary state starting from the in-

structions of the user: pressures and temperatures for some specific cells, for example, or

rotating speed of a pump or flow direction

� a loop for the time integration from T 0 to T f

The first two points are called ”Initialisation” step and the last one ”Time integration” step.

For the application of the parareal algorithm, we split the Cathare data file into two files for the

”Initialisation” step and for the ”Time integration” step. Each processor Pn has an initialisation file

and a file for the time integration between Tn and Tn+1. The initialisation file of processor P 0 is
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particular since it builds the geometry and mesh, calculates the initial state of the simulation and

sends them to the other processors. The initial state will not be used in the remaining processors

but this communication allows to initialise the size of the Cathare arrays in each processor. After

that, P0 makes a coarse propagation and sends G(T 0, T 1, U0
0 ) to P1. The other processors receive

the informations for the geometry and mesh and their local initial condition G(Tn−1, Tn, Un−1
0 ) to

run their own coarse propagation. We met two obstructions at this stage:

� The calculation in [T 1, T 2] and generally for [Tn, Tn+1], with n 6= 0, has to start from an

initial time Tn different from 0. It is unusual for the Cathare code to start a simulation from

a time Tn 6= 0. The consequence is: instead of beginning the calculation with the coarse

solution sent from the previous time window as an initial condition, the processor uses the

initial state sent from rank 0 processor.

To treat this difficulty, the time window makes one time step and delete the computed

solution. This allows to fix the initial time Tn of the time window to the correct value.

� The size of the arrays for every processors is computed at the moment processor P0 sends

to Pi, i = 1, · · · , N − 1 the geometry, mesh and initial state. If some variables are declared

between the initialisation step and the time loop then the array in processor P0 will have

the correct size but the arrays in the remaining processors will still have the size of the state

sent by P0 during the initialisation step. Hence, the arrays in processors Pi, i = 1, · · · , N − 1

have a different size from the one in processor P0. This will generate conflicts during the

communications between processors and the copy of arrays. Thus we need to adapt the

”Initialisation” data file of processor P0 to handle this.

2.1.2 Obstructions linked to the time discretisation

The Cathare time discretisation is based on a two-step time scheme (see Chapter 1, section 1.3.2

on the Cathare discretisation methods). This leads us to design a new variant of the parareal

algorithm that takes more efficiently into account the presence of multi-step time schemes. We

detail this aspect in section 2.2. Moreover, the Cathare time scheme uses an adaptive time step.

In a Cathare simulation, the user imposes an initial time step ∆t0 and a maximal time step

∆tmax. At each iteration, the code gets closer to ∆tmax by multiplying by 2 the current time

step while respecting the CFL condition integrated in the code. If in a time iteration, the Newton

method does not converge after the maximal number of iterations, the current time step is reduced

by multiplying it by
2

3
. Thus, we need to communicate the fine and coarse time steps between

processors. For the coarse propagation, we can transfer the time step computed at the current

parareal iteration because it is a sequential step. Since the fine propagation is made in parallel,

the time window [Tn, Tn+1] at the k-th parareal iteration uses the fine time step from the time

window [Tn−1, Tn] computed at the (k − 1)-th parareal iteration.

2.1.3 A numerical clone of the Cathare code

In this section, we present the numerical clone of the Cathare code, called MiniCathare, imple-

mented during the PhD. This tool allowed us to make a first trial on the efficiency of the parareal

algorithm to speed up a two-phase test case using the Cathare model and numerical scheme. The

test case we consider here is the oscillating manometer (see section 2.3.1 for the description of the

test case and the numerical results obtained with the numerical clone). Hence, MiniCathare is

restricted to one test case. We give in the sequel some details about this numerical tool:
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� MiniCathare only makes the time propagation in a time intervall [T 0, T f ] and does not

compute an initial state like the Cathare code. The initial condition in MiniCathare is

extracted from the Cathare code after the initial state process.

� MiniCathare is implemented in C++ and the parareal algorithm in MPI.

� MiniCathare allows to make convergence tests which is not possible with the Cathare code

since there is a limitation on the mesh size in Cathare. In Chapter 1, section 1.3.3.2, we show

the convergence properties of the Cathare numerical scheme on the oscillating manometer by

comparing several numerical solutions, obtained by MiniCathare, to the reference solution of

this test case.

� The only difference between MiniCathare and the Cathare code is the solution of the non

linear problem at each time step:

Un+1 − Un
∆t

+A(Un+1, Un) = S(Un)

In both cases, this non linear system is solved by a Newton method:

δUk+1

∆t
+ J(Uk, Un)δUk+1 = S̃(Un, Uk), where: δUk+1 = Uk+1 − Uk

and : Uk+1 = (pk+1, αk+1
v , Hk+1

l , Hk+1
v , uk+1

l , uk+1
v )

(2.1)

The increments of the principal variables in Cathare are denoted δUk+1 and the terms of the

Jacobian matrix J(Uk, Un) are computed as follows:

Ji,j =
∂Ei

Ukj

Since the Cathare time discretisation is semi-implicit, this term corresponds to the derivative

of the balance equation Ei with respect to the principal variable Ukj that is implicited for the

k-th Newton iteration. The resulting linear system (2.1) is solved differently in Cathare and

MiniCathare:

– Cathare, by a Gauss elimination, obtains a system with pressure increments δpk+1 only

and then solves the problem in pressure with a direct linear solver (Lapack-Blas)

– MiniCathare assembles the whole Jacobian matrix and solves the complete linear system

with an iterative linear solver (PETSC library)

2.2 Multi-step variant of the parareal algorithm

Several approaches have been proposed over the years to decompose the time direction when solving

a partial differential equation (see [50] for an overview). Of these, the parareal in time algorithm,

which performances we explore in this work, has received an increasing amount of attention in the

last twenty years with many applications (see [13], [49], [104] among many others). In the sequel,

we recall the classical parareal algorithm ([78], [13], [16]) and present the multi-step variant we will

apply to the Cathare code.
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2.2.1 Original parareal algorithm and notations

After the discretisation of a PDE in space, we obtain an ODE system of the form:

∂u

∂t
+A(t, u) = 0, t ∈ [0, T ], u(t = 0) = u0 (2.2)

where A : R× RN → RN , and N denotes the number of degrees of freedom.

Let G and F be two propagators such that, for any given t ∈ [0, T ], s ∈ [0, T − t] and any function

w in a Banach space, G(t, s, w) (respectively F (t, s, w)) takes w as an initial value at time t and

propagates it at time t + s. The full time interval is divided into N c sub-intervals [Tn, Tn+1] of

size ∆T that will each be assigned to a processor. The algorithm is defined using two propagation

operators:

� G(Tn,∆T, un) computes a coarse approximation of u(Tn+1) with initial condition

u(Tn) ' un (low computational cost)

� F (Tn,∆T, un) computes a more accurate approximation of u(Tn+1) with initial condition

u(Tn) ' un (high computational cost)

Starting from a coarse approximation un0 at times T 0, T 1, · · · , TNc
, obtained using G, the parareal

algorithm performs for k = 0, 1, · · · the following iteration:

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, unk)−G(Tn,∆T, unk)

In the parareal algorithm, the value u(Tn) is approximated by unk at each iteration k with an

accuracy that tends rapidly to the one achieved by the fine solver, when k increases. The coarse

approximation G can be chosen much less expensive than the fine solver F by the use of a scheme

with a much larger time step (even δT = ∆T ) δT � δt (time step of the fine solver) or by using

a reduced model. All the fine propagations are made in parallel over the time windows and the

coarse propagations are computed in a sequential way but have a low computational cost. We refer

to [80] about the parallel efficiency of parareal and a recent work offering a new formulation of the

algorithm to improve the parallel efficiency of the original one. The main convergence properties

were studied in [55] and stability analysis was made in [108], [14].

2.2.2 Adaptation to multi-step time schemes

2.2.2.1 Case of a two-step fine time scheme

In the sequel, we will consider the case where the fine solver is a two-step time scheme. Hence we

will use the following notation for the fine solver F that takes two initial values:

F (t, s, x, y), t ∈ [0, T ], s ∈ [0, T − t[

and the initial values x, y are in a Banach space U.

Example 2.1. If one solves (2.2) with a multi-step time scheme as fine propagator F like the

second-order BDF method:

3

2
uj+1 − 2uj +

1

2
uj−1 = −δtA(uj+1, tj+1), j = 1, · · · , Nf , tj+1 − tj = δt

Here the fine solver reads as: uj+1 = F (tj , δt, uj−1, uj). Now, we apply the parareal algorithm with

a coarse grid: T 0, · · · , TNc
where:
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Tn+1 − Tn = ∆T = Nfδt.

Then we can write: u(Tn + jδt) ' un,j , j = 1, · · · , Nf , n = 1, · · · , N c.

In order to perform the fine propagation, in a given time window [Tn, Tn+1], we only need the local

initial condition unk and a consistent approximation of u(Tn − δt).

In [12], the authors propose a consistent approximation in the context of the simulation of

molecular dynamics. The proposed method was linked to the nature of the model and the sym-

plectic character of their algorithm is shown, which is an important property to verify for molecular

dynamics.

In the context of our application to the thermalhydraulic code Cathare, we want to derive a multi-

step variant of parareal that will not be intrusive in the software. We seek to derive a consistent ap-

proximation of u(Tn−δt). The only fine trajectory at our disposal is F (Tn−1,∆T, un−2,Nf−1
k , un−1

k ).

Its final value at time Tn is:

F (Tn−1,∆T, un−2,Nf−1
k , un−1

k )(Tn) from which we compute unk+1 by the parareal correction. Hence,

we translate the solution:

F (Tn−1,∆T − δt, un−2,Nf−1
k , un−1

k )(Tn − δt) by the same correction:

unk+1−F (Tn−1,∆T, un−2,Nf−1
k , un−1

k ) and obtain the so called consistent approximation un−1,Nf−1
k+1

to initialise the fine propagation in [Tn, Tn+1]. We now detail our algorithm:

un+1
0 = G(Tn,∆T, un0 ), 0 ≤ n ≤ N − 1

un−1,Nf−1
0 = un0

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, un−1,Nf−1

k , unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1

−F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

(2.3)

Another option to treat this issue is to use a one-step time scheme to initialise the fine computation.

We will see from the numerical results that this choice generates an error greater than the target

accuracy and prevents the parareal algorithm to converge towards the solution with the desired

accuracy.

The algorithm (2.3) adds consistency with the fine scheme. Also, this strategy can be generalised

to multi-step time schemes involving several fine time steps preceding the time Tn by applying the

same correction to terms taking the form: un,N
f−i

k+1 , i = 1, · · · , I.
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Iteration k

T 0 T 1 T 2 T 3

b

bb

bb

G(T1,∆T, U1
k+1)

−G(T1,∆T, U1
k )

F (T1,∆T, Uk(T
1− δt), U1

k )

U1
k U2

k+1Uk+1(T
2− δt)

Figure 2.1: Correction of u1,Nf−1
k+1 at time T 2 − δt in [T 1, T 2] for the initialisation of the fine

propagation in [T 2, T 3]

2.2.2.2 Case of two-step coarse and fine time schemes

In the sequel, we will consider the case where the fine solver and the coarse solver are both two-step

time schemes. Hence we will use the following notation for the coarse G solver that takes two initial

values:

G(t, s, x, y), for t ∈ [0, T ], s ∈ [0, T − t[ and x, y ∈ U

We propose to add a correction for the solution at time Tn− δT , where δT is the coarse time step,

to initialise the coarse propagation in each time window in a consistent way. The parareal solution

at time Tn − δT and k-th parareal iteration is:

un−1,Nf−R
k ' u((n− 1)∆T + (Nf −R)δt) = u(Tn − δT )

where R is the ratio between the coarse and the fine time steps: R =
δT

δt
.

The full multi-step parareal algorithm (2.4) makes two additionnal corrections compared to the

classical parareal algorithm when the coarse and fine propagators are based on one two-step time

schemes: one at times Tn − δt (see figure 2.1) and the other at times Tn − δT (see figure 2.2).

un+1
k+1 = G(Tn,∆T, un−1,Nf−R

k , unk+1) + F (Tn,∆T, un−1,Nf−1
k , unk),

− G(Tn,∆T, un−1,Nf−R
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1 − F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

un,N
f−R

k+1 = G(Tn,∆T − δT, un−1,Nf−R
k+1 , unk+1) + F (Tn,∆T − δT, un−1,Nf−1

k , unk)

− G(Tn,∆T − δT, un−1,Nf−R
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

(2.4)
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Iteration k

T 0 T 1 T 2− δT T 2

b

b b

b b

G(T 1,∆T, Uk+1(T
1− δT ), U1

k+1)

F (T 1,∆T, Uk(T
1− δt), U1

k )

G(T 1,∆T, Uk(T
1− δT ), U1

k )

b

b b

b b

U1
k

U1
k+1

U2
k+1

Uk+1(T
2− δT )

Figure 2.2: Correction of u1,Nf−R
k+1 at time T 2 − δT in [T 1, T 2] for the initialisation of the coarse

propagation in [T 2, T 3]

The full multi-step version (2.4) of the algorithm does not take into account the adaptive time

stepping of the Cathare time scheme. A consequence of the adaptive time steppping can be seen

on the update of the solution un,N
f−R

k+1 . This quantity is corrected at each iteration as follows:

uk+1(Tn+1 − δTnk+1) = Gk+1(Tn,∆T − δTnk+1, u
n−1,Nf−R
k+1 , unk+1) + F (Tn,∆T − δTnk , un−1,Nf−1

k , unk)

− Gk(Tn,∆T − δTnk , un−1,Nf−R
k , unk)

(2.5)

We distinguish the coarse solver G at iterations k and k+ 1 by the subscript Gk and Gk+1 because

the solver G does not have the same sequence of time steps at iterations k and k + 1. Hence:

δTnk+1 6= δTnk and the correction (2.5) combines a quantity at time Tn+1 − δTnk+1 with other quan-

tities at time Tn+1 − δTnk . This correction becomes incoherent. To correct this inconsistency, we

propose to store the times Tn− δTn0 for each time window, at the parareal initialisation. Then, we

impose to the coarse solver to pass by the point Tn−δTn0 in [Tn, Tn+1], for every parareal iterations.

In the next section, we apply the multi-step parareal algorithm to two-phase test cases: the

oscillating manometer and the simulation of a breach in the primary circuit of a nuclear reactor.

The convergence analysis of this new algorithm is the subject of the next chapter.

2.3 Application to the Cathare code

2.3.1 The oscillating manometer

Here we apply the multi-step parareal algorithm to the resolution of an oscillating manometer

([6, 7]). This test case is proposed in [69] for system codes to test the ability of each numerical

scheme to preserve system mass and to retain the gas-liquid interface. In [69], the oscillating

manometer is proposed as a numerical benchmark test for system codes to test the ability of each

numerical sheme to preserve system mass and to retain the gas-liquid interface. It consists in

a U-shaped tube manometer which is connected at the top, so that a closed system is formed.

The system contains initially gas and liquid with the liquid forming equal levels in each arm of

the manometer. Further, all parts of the fluid system have initially a uniform non zero velocity,

but zero acceleration. Under these initial conditions, a hydrostatic pressure hypothesis is made
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Figure 2.3: Oscillating manometer test case

throughout the system. Also, the system is isothermal at 50◦C with 105 Pa pressure at the vapour-

liquid interfaces. Distance in the direction of the flow is measured by x in meters. The length of

the manometer is 20 m and the diameter is D = 1 m. The initial position of the vapour-liquid

interface is 5m from the bottom of each manometer leg and the fluid initially has a velocity of

u0 = 2.1 m/s. This initial velocity will cause the interface to oscillate approximately ±1.5 m in

height from the initial location.

In this test case, the phases are separated and the interfacial friction term will be important in

this configuration.

2.3.1.1 Model

The model used in Cathare is the 6 equation two-fluid model that considers a set of balance laws

(mass, momentum and energy) for each phase, liquid and vapor. It assumes independent velocities

and a pressure equilibrium.

The unknowns are the volume fraction αk ∈ [0, 1], the pressure p ≥ 0, the velocity uk and the

enthalpy Hk of each phase. The subscript k stands for l if it is the liquid phase and g for the gas

phase. For the sake of simplicity, we write the terms of the model involved in our test case, studied

in section 2.3.1.
∂t(αkρk) + ∂x(αkρkuk) = 0

αkρk∂tuk + αkρkuk∂xuk + αk∂xp = αkρkg + F int
k

∂t

[
αkρk

(
Hk +

u2
k

2

)]
+ ∂x

[
αkρkuk

(
Hk +

u2
k

2

)]
= αk∂tp+ αkρkukg

(2.6)

with αv + αl = 1 and the two equations of state : ρk = ρk(p,Hk).

The interfacial forces F int
k are of 2 types. The first ensures hyperbolicity of the system (see [89]

for the well-posedness of the 6 equation model). The second is the interfacial friction term that

has an important role for our test case. For the oscillating manometer, the phases are separated

which means that one of the two phases vanishes in some parts of the domain. It is numerically

challenging to compute the velocity of the vanishing phase (see [93]). For this reason, the Cathare

scheme forces the two velocities to be equal with the use of a damping term: the interfacial friction

term.
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2.3.1.2 Numerical method

The Cathare scheme is based on a finite volume method on a staggered grid (MAC scheme) and

on a two step time scheme. In a staggered scheme the i-th component of the velocity is located at

the center of the edge orthogonal to the i-th unit vector. Pressures, void fractions and enthalpies

are cell-centered. Given a time discretisation T 0, T 1, T 2, · · · of the full time interval [0, T ), we use

the following notations: (αkρk)
n is an approximation of (αkρk) at time Tn. Here, we write the

time discretisation of the Cathare scheme:

(αkρk)
n+1 − (αkρk)

n

∆t
+ ∂x(αkρkuk)

n+1 = 0

(αkρk)
n+1u

n+1
k − unk

∆t
+ (αkρkuk)

n+1∂xu
n+1
k + αn+1

k ∂xp
n+1 = (αkρk)

n+1g + Fn,n+1
k

1

∆t

[
(αkρk)

n+1

(
Hk +

u2
k

2

)n,n+1

− (αkρk)
n

(
Hk +

u2
k

2

)n−1,n
]

+∂x

[
αkρkuk

(
Hk +

u2
k

2

)]n+1

= αn+1
k

pn+1 − pn
∆t

+ (αkρkuk)
n+1g

(2.7)

Where the notation Fn,n+1
k shows that the time discretisation of Fk is a function of the numerical

solution at times Tn and Tn+1. After discretisation, the non linear system is solved by a Newton

method. In this test case, a numerical difficulty of two-phase flows simulations arises, namely

the vanishing phase. An important issue is to guarantee the positivity of the volume fraction.

Many schemes were designed to ensure this property (like [93] for two incompressible phases). The

Cathare code uses a high interfacial friction to deal numerically with this difficulty.

2.3.1.3 About the convergence

In this section, we apply the multi-step parareal algorithm (2.4) to the simulation of the oscillating

manometer. We use the same physical model and the same mesh (110 cells) for both the coarse

and the fine solvers: the only difference is the size of the time steps, δt for F and ∆T for G. All

the calculations have been evaluated with a stopping criteria where the tolerance is fixed to the

fine solver accuracy, ε = 5 · 10−2. With this threshold, parareal convergence is achieved after 2 or

3 iterations.

In the sequel, after giving a numerical proof of the convergence of the parareal algorithm in our

test case, some results about measured speed-up will be presented.

Figure 2.4 illustrates that the multi-step parareal algorithm effectively converges when applied to

the problem of the oscillating manometer. For a given time step Tn and parareal iteration k, the

relative error in L2 norm between the parareal solution and the sequential fine solver decreases

beyond our given convergence threshold ε. In the figure, the test case has been solved with the

multi-step parareal algorithm when δt = 10−5 and ∆T = 10δt.

These results are obtained on 16 time windows.

2.3.1.4 Speed-up performances

In the following strong scaling tests, the same setting is used for the multi-step parareal algorithm.

The test case has been solved on an increasing number Nproc of processes Nproc = 5, 10, 15, · · · , 70.

In figure 2.5, with 25 processes, we obtain a speed up of 3.4 and of 3.7 with 50 processes. Here, we

observe two global trends:
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Figure 2.4: Convergence of the multi-step parareal algorithm when δt = 10−5 and ∆T = 10δt

� For Nproc = {5, 10, 15, 20, 25, 40, 50}, the speed up first monotonically increases until reaching

25 processes and then increase again with 40 and 50 processes. This is due to the number of

parareal iterations that is equal to 2 in this case

� ForNproc = {30, 35, 45, 55, 60, 65, 70}, the speed up is drastically reduced because the parareal

algorithm converges in 3 iterations in this case

In the sequel, we recall the well-known dependence of the computational cost of the parareal

algorithm on the number of iterations. Let Tfine be the CPU time to run the fine solver in a

sequential way on the whole time interval [0, T ). Since the coarse time step is ten times greater

than the fine time step we suppose that the cpu time of the coarse solver Tcoarse =
Tfine

10
. This

ratio between coarse and fine solvers should be as high as possible to minimise the computational

cost of the coarse solver which is launched in a sequential way. When the algorithm converges in

Nit iterations, the coarse solver is launched Nit times and the fine solver Nit − 1 times in parallel

over the number of processes Nproc. Hence, we can write the cpu time in parallel Tpara in terms of

Tfine:

Tpara = (Nit − 1)
Tfine
Nproc

+NitTcoarse + τ =

(
Nit − 1

Nproc
+
Nit

10

)
Tfine + τ

where τ contains the time of communication between processes and the cpu time for the computa-

tion of the parareal corrections and of the error. Now, we can deduce an upper bound of the speed

up S when the parareal algorithm converges in 2 or 3 iterations by neglecting τ :

S =
Tfine
Tpara

≤ 1
Nit−1
Nproc

+ Nit
10

Example: On 25 processes, the algorithm converges in 2 iterations: S ≈ 4 when the measured

speed up is 3.4.

On 35 processes, the algorithm converges in 3 iterations: S ≈ 2.8 when the measured speed up is

2.3.
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Figure 2.5: Strong scaling results with the multi-step variant of the parareal algorithm

2.3.2 An industrial test case

2.3.2.1 Description of the test case

In this section, we report our efforts to apply the parareal algorithm to the time parallelisation of

an industrial test case representative of the numerical difficulties met in nuclear safety studies. This

test case simulates a breach in the primary circuit downstrean on the reactor core of a Pressurised

Water Reactor. The size of this breach is 512mm2. This accidental scenario is studied to simulate

numerically the behaviour of the nuclear reactor under a hypothetic break of a pipe welding and

during the emergency procedure following the accident. In our test case, we only simulates the

reactor core before the emergency procedure. Here, the system is composed of:

� the primary circuit

� the downcomer where the fluid transits from the primary circuit to the reactor core

� the reactor core, modeled by two sets of uranium rods

The boundary conditions replicate the effects of the breach on the system:

� Inlet boundary conditions: at t = 0 there is a single-phase liquid flow then the liquid flowrate

decreases from t = 2.8s, time of the breach appearance, until reaching 0 at time t = 7.9s.

After the breach, the volume fraction of the vapour phase increases until reaching the maximal

value 1 at time t = 19s.

� Outlet boundary conditions: the pressure within the system decreases since there is a leak

of liquid.

Concerning the power generated by the uranium rods in the reactor core, it is set to zero at time

t = 7.9s to model the effect of the control rods on reducing the reactivity.

After the breach and the disappearance of liquid in the reactor core, the fuel rods cladding is not

anymore in contact with the coolant. Hence, the heat exchanges are limited and this can drive to

the meltdown of the rod cladding.
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2.3.2.2 Application of the parareal algorithm

The Parareal library is an intermediate between the solutions computed by Cathare and the cor-

rections made by the parareal algorithm. The library collects the fine and coarse approximations

from Cathare, extracts from the Cathare arrays the principal unknows (liquid and vapour veloci-

ties, pressure, enthalpies, void fraction) and stores them in other arrays belonging to the Parareal

library. From there, the local initial conditions are updated with the parareal correction by com-

bining the solutions coming from the coarse and fine propagations. Then, the updated initial

conditions are copied in Cathare arrays. Before making new coarse and fine propagations the

Cathare code needs auxiliary values in addition to the principal unknowns. These auxiliary values

are of different natures:

� variables computed from the principal unknowns

� variables tracked during the simulation: for example, the water level in an element of the

system

� boolean variables giving the flow regime in an area of the system: bubbly, annular, dispersed,

seperated phases, etc.

For the first category of auxiliary variables, they can be recalculated using the updated initial

conditions. However, the others are the last saved quantities before the copy of the corrected

initial conditions. Hence, there is an inconsistency between the updated variables depending on

the principal unknowns and the other variables that are unchanged. We show the consequences of

this inconsistency by the following numerical experiment.

We denote F ref the target fine solution we seek to approximate with the parareal algorithm.

This solution is computed in a sequential way with a finer time step than the one of the fine solver

used within the parareal algorithm, denoted F para. The propagator F ref replaces the exact propa-

gator since we do not have the expression of the exact solution for this test case and will be called

the reference solution in this section.

On the one hand, we initialise in the Parareal library every time window with the principal variables

of the reference solution F ref at times Tn, n = 0, · · · , N . Then we transfer these initial condi-

tions to the Cathare code to make N parallel fine propagations F ref|[Tn,Tn+1]
(Tn,∆T, F ref (T 0, Tn −

T 0, u0)(Tn)), where F ref|[Tn,Tn+1]
is the restriction of the reference solution F ref to the time inter-

val [Tn, Tn+1]. From this information, the Cathare code builds the Cathare array composed of

principal unknowns and auxiliary variables and propagates this initial state over the time window

[Tn, Tn+1]. We plot in figure 2.6 the following quantity for every time windows [Tn, Tn+1]:

||F ref|[Tn,Tn+1]
(Tn,∆T, F ref (T 0, Tn − T 0, u0)(Tn))− F ref (T 0, Tn − T 0, u0)||L2

||F ref (T 0, Tn − T 0, u0)||L2

(T i), i = 0, · · · , Nf

(2.8)

where Nf =
∆T

δt
is the number of fine time steps in a time window of size ∆T . This numerical

experiment will allow us to see the error made on the recalculation of the auxiliary variables. If

there was no error at this stage, the quantity (2.8) would be equal to zero. In figure 2.6, we see that

the inconsistency between principal variables and auxiliary variables in the Cathare array leads

to an additionnal error. This error prevents the parareal algorithm to recover the fine sequential
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solution with the target accuracy. This target accuracy is computed in the following way:

maxn=1,··· ,N ||F para(T 0, Tn − T 0, u0)− F ref (T 0, Tn − T 0, u0)||L2(Ω)

maxn=1,··· ,N ||F ref (T 0, Tn − T 0, u0)||L2(Ω)

where F para is the fine solver used within the parareal algorithm. This target accuracy is thus the

accuracy εF of the fine solver compared to the reference solution F ref .
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Figure 2.6: Sending only the principal variables to the Cathare code

On the other hand, the Parareal library transfers to the Cathare code the whole initial

state with principal and auxiliary variables computed by the reference solution F ref (T 0, Tn −
T 0, u0). Then from these initial states, the Cathare code makes N parallel fine propagations

F ref|[Tn,Tn+1]
(Tn,∆T, F ref (T 0, Tn − T 0, u0)(Tn)) spread over the N time windows [Tn, Tn+1]. In

figure 2.7, we plot the error (2.8) for this new configuration. In figure 2.7, we see that sending all

the state to initialise the fine propagations in [Tn, Tn+1] improves the accuracy of the fine solutions

computed by the Cathare code, compared to figure 2.6 where we only initialise the time propaga-

tions with the principal variables. However, we still observe a non negligible error of about 10−4,

especially starting from time t = 5, after the appearance of the breach in the system that occurs

at time t = 2.8.
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Figure 2.7: Sending all the state to the Cathare code on 10 time windows

We propose a strategy to improve the transfer of the auxiliary variables between time windows.

The method consists in correcting at each parareal iteration the vector of auxiliary values in a

specific way. Firstly, we need to define V aux, the vector of auxiliary variables and V p the vector of

principal variables. We distinguish:

� V aux(V p(Tn)) the auxiliary variables computed from the principal variables at time Tn.

� V aux(Tn) the auxiliary variables computed by the Cathare code at time Tn.

Secondly, we denote Tn− the point belonging to the interval [Tn−1, Tn] and Tn+ the one belonging to

[Tn, Tn+1]. We propose the following correction for the auxiliary variables at time Tn and (k+1)-th

parareal iteration:

V aux
k+1 (Tn+) = V aux(V p

k+1(Tn+))− V aux(V p
k (Tn−)) + V aux

k (Tn−). (2.9)

Since the Cathare time scheme is a two-step time scheme, we also apply a correction to the

auxiliary variables at time Tn − δt.

V aux
k+1 (Tn − δt) = V aux(V p

k+1(Tn − δt))− V aux(V p
k (Tn − δt)) + V aux

k (Tn − δt). (2.10)

This choice for the correction of the auxiliary values is motivated by the two numerical experiments

2.6 and 2.7. The figure 2.6 illustrates the error we make by computing the auxiliary variables with:

V aux(Tn+) = V aux(V p(Tn+)).

In this configuration, the error is greater than the accuracy of the fine solver and is the main actual

barrier to efficiently apply the parareal algorithm to the Cathare code in a non intrusive way.

On the other hand, the figure 2.7 illustrates the error we make by computing the auxiliary variables

with:

V aux(Tn+) = V aux(Tn−).
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In this case, the error is lower than the accuracy of the fine solver but is still non negligible. The

correction we propose (2.9) combines the two approaches with a third term V aux(V p(Tn)). It is

important to mention that when the parareal algorithm converges, we obtain:

V aux(Tn+) = V aux(Tn−),

since we have:

V p(Tn+) = V p(Tn−), and then : V aux(V p(Tn+)) = V aux(V p(Tn−))

We have not implemented this promising strategy yet to handle specifically the auxiliary variables

of the Cathare code. The actual option to reconstruct the auxiliary variables is to compute them

from the principal variables. In figures 2.6 and 2.7, we see that the reconstruction error is greater

than the fine solver accuracy on 10 time windows: in figure 2.6, the reconstruction error is about

4 × 10−2 while the fine solver accuracy is εF = 5 × 10−3. Hence we can not reach the fine solver

accuracy with the parareal algorithm since the reconstruction error of the auxiliary variables will

dominate and pollute the simulation. However, the reconstruction error of the auxiliary variables

is in the order of the fine solver accuracy εF on 5 time windows. In figures 2.8 and 2.9, we make the

same numerical experiment as in figures 2.6 and 2.7 on 5 time windows. We see in figure 2.8 that,

in this particular case, the reconstruction of the auxiliary variables from the principal variables

generates an error in the order of εF at the initial times of the 5 time windows. In figure 2.9,

we observe the same behaviour as on 10 processors: sending all the state to initialise the fine

propagations in [Tn, Tn+1] improves the accuracy of the fine solutions computed by the Cathare

code.

Hence, in the case of 5 processors, the reconstruction error of the auxiliary variables from the

principal variables is in the order of the accuracy of the fine solver and may not pollute the

parareal algorithm.

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25

R
el

at
iv

e
er

ro
r

in
L
2

n
or

m

Time

Error between fine and sequential solutions

Target accuracy

Figure 2.8: Sending only the principal variables to the Cathare code on 5 time windows



64 Chapter 2. Parareal algorithm for two phase flows simulation

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25

R
el

at
iv

e
er

ro
r

in
L
2

n
or

m

Time

Error between fine and sequential solutions

Target accuracy

Figure 2.9: Sending all the state to the Cathare code on 5 time windows

In the sequel, we investigate the performances of the parareal algorithm when the reconstruction

error is close to the fine solver accuracy to illustrate the behaviour of the parareal method when

we will implement the specific treatment of the auxiliary values (2.9-2.10). Hence, we apply the

parareal algorithm to the simulation of a breach in the primary circuit on 5 processors. The

reference solution F ref is computed with a fine time step δtref = 10−4. The fine solver F para

within the parareal algorithm has a time step δt = 10−4 and an accuracy εF = 5× 10−3, hence the

target accuracy of the parareal algorithm is fixed to 5× 10−3. The coarse solver has an accuracy

εG = 10−1 with a coarse time step δT = 0.5 = 500δt. We apply the full multi-step parareal (2.4)

that corrects both the coarse and the fine solvers to properly initialise the time propagations. The

simulation lasts 25 seconds and we split the time interval over 5 processors. In figure 2.10, we plot

the following error at each time Tn = n∆T and each parareal iteration k, where n = 0, · · · , 5 and

∆T is the size of the time window :

||F para(Tn,∆T, unk)− F ref (T 0, Tn − T 0, u0)||L2(Ω)

||F ref (T 0, Tn − T 0, u0)||L2(Ω)
(Tn), n = 0, · · · , 5

In this case, the parareal algorithm reaches the fine solver accuracy at the initial times of the 5

time windows after 3 iterations. Hence, when the reconstruction error is close to the fine solver

accuracy the parareal algorithm can reach the target accuracy for the solution at times Tn.

In figures 2.11, 2.12 and 2.13, we see the volume fraction αv in one cell of the mesh computed

by the fine solver in the multi-step parareal algorithm for the three first iterations, compared to the

reference solution. After the first parareal iteration, we clearly distinguish the fine propagations

made by the parareal algorithm and the reference solution, over the different time windows. Then

for the second and the third iteration, the reference and the fine parareal solutions are very close.

We capture the dynamic of the test case with αv ' 0 at time t = 0 since the system is initially

filled with water. Then the vapour volume fraction increases from t = 2.8s, time of the breach

appearance until reaching its maximal value 1 at time t = 19s.
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Figure 2.10: Convergence of the multi-step parareal algorithm when δt = 10−4 and ∆T = 0.5 for

an industrial test case on 5 processors
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Figure 2.11: The reference solution and the fine solution after 1 parareal iteration

2.4 Conclusion

In this chapter, we developed two strategies to apply the parareal algorithm to the Cathare code:

a numerical clone of Cathare that is restricted to one test case and a Parareal library that uses the

Cathare code in a non intrusive way. The main contribution of this work has been to adapt the

parareal algorithm to the architecture of the software and to its time discretisation in a non intrusive

way. The results obtained with the numerical clone on the oscillating manometer show that the

parareal algorithm can effectively speed-up two-phase flows simulations. These preliminary results

illustrate the behaviour of the multi-step parareal algorithm on a test case that is representative of

the numerical challenges for two phase flows. However, the Parareal library that uses the Cathare
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Figure 2.12: The reference solution and the fine solution after 2 parareal iterations
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Figure 2.13: The reference solution and the fine solution after 3 parareal iterations

code as a black box suffers from a lack of accuracy. This is due to the data structure of the Cathare

code that depends on principal and auxiliary variables. Hence, a reconstruction of the auxiliary

values is necessary after the parareal update of the principal variables. The actual reconstruction

error is greater than the target accuracy and prevents the parareal algorithm to converge towards

the desired solution. We derived a strategy to accurately reconstruct the auxiliary variables by

adding a parareal update specific to them and the efficiency of this method will be the subject of

future works.
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In this paper, we consider the problem of accelerating the numerical simulation of time depen-

dent problems involving a multi-step time scheme by the parareal algorithm. A multi-step time

scheme can potentially bring higher approximation orders than plain one-step methods but the

initialisation of each time window needs to be appropriately chosen. Our main contribution is the

design and analysis of an algorithm adapted to this type of discretisation without being intrusive in

the coarse or fine propagators. This property allows to apply this variant of the parareal algorithm

on a software as a black box and ensures the portability of the method. The parareal method is

based on combining predictions made by two propagators: an accurate and expensive one used in

a parallel way over the time windows and a coarse and cheaper one used in a sequential way. At

convergence, the parareal algorithm provides a solution that has the fine solver’s accuracy. In the

classical version of parareal, the local initial condition of each time window is corrected at every

iteration. When the fine and/or coarse propagators is a multi-step time scheme, we need to choose

a consistent approximation of the solutions involved in the initialisation of the fine solver at each

time window. Otherwise, we could loose one of the well known property of the parareal method:

to recover the fine solution at the machine precision after N iterations, where N is the number of

time windows. In this paper, we develop a variant of the algorithm that overcomes this obstacle.

Thanks to this, the parareal algorithm is more coherent with the underlying time scheme and we
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recover the properties of the original version. We show both theoretically and numerically that

the accuracy and convergence of the multi-step variant of parareal algorithm are very competitive

when we carefully choose the initialisation of each time window.

3.1 Introduction

Solving complex models with high accuracy and within a reasonable computing time has motivated

the search for numerical schemes that exploit efficiently parallel computing architectures. In this

paper, the model consists of a Partial Differential Equation (PDE) set on a domain D. In this

context, one of the main ideas to parallelize a simulation is to break the problem into subproblems

defined over subdomains of a partition of D. The domain can potentially have high dimensionality

and be composed of different variables like space, time, velocity or even more specific variables for

some problems. There exist algorithms with very good scalability properties for the decomposition

of the spatial variable (see [99] or [112] for an overview) and time domain decomposition is more and

more considered to complement this strategy when the speed up performances stagnates despite

remaining computing resources. Research on time parallel algorithms is currently very active and

has by now a history of at least 50 years (back to at least [96]) during which several algorithms

have been explored (see [50] for an overview).

In this work, we report our recent effort to adapt one particular time-parallel algorithm: the

parareal in time algorithm, to multi-step time schemes. The method was first introduced in [78]

and has been well accepted by the community because it is easily applicable to a relatively large

spectrum of problems (some specific difficulties are nevertheless encountered on certain types of

PDEs as reported in [35, 47] for hyperbolic systems or [34] for hamiltonian problems). Some

limitations persist for the classical version of the parareal algorithm like the parallel efficiency that

decreases with the final number of iterations K as 1/K. This limitation is addressed in [80] that

proposes an adaptive variant of the parareal method where the only remaining factor limiting high

performance becomes the cost of the coarse solver. Without entering into very specific details of

the algorithm at this stage, we can summarize the procedure by saying that we build iteratively

a sequence to approximate the exact solution of the problem by a predictor-corrector algorithm.

At every iteration, predictions are made by a solver which has to be as numerically inexpensive as

possible since it is run on the full time interval. It usually involves coarse physics and/or coarse

resolution. Corrections involve an expensive solver with high- fidelity physics and high resolution

which is propagated in parallel over small time subdomains. In the classical version of parareal,

the fine solver has a fixed high accuracy across all iterations. It is set to the one that we would use

to solve the dynamics at the desired accuracy with a purely sequential solver. At each iteration,

the local initial conditions are corrected for every time windows until convergence. Multi-step time

schemes require several previous steps to compute the solution at a new point in time. When

the fine and/or coarse propagators is a multi-step time scheme, we need to choose a consistent

approximation of the solutions at previous steps involved in the initialisation of the fine and/or

coarse solver at each time windows. Otherwise, the initialisation error will prevent the parareal

algorithm to converge towards the solution with fine solver’s accuracy. This point was addressed in

the context of multigrid in time method in [46, 45]. Here, the authors adapt the MGRIT algorithm

framework to the use of multi-step time schemes, the BDF methods. In this paper, we propose

a variant of the algorithm that overcome this obstacle. Thanks to this, the parareal algorithm

is more coherent with the underlying time scheme and we recover the properties of the original

version.
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We present in section 2 the variant of the parareal algorithm adapted to multi-step time schemes.

This method includes additional corrections at previous steps involved in the intialisation of the

fine and/or coarse solver at each time window. This choice has the benefit to be non intrusive into

the code we seek to parallelise by a time domain decomposition.

In the last section, we illustrate the performance of the algorithm on numerical examples: the

damped oscillator and the Brusselator. We show that this variant allows the parareal algorithm to

converge towards the solution with fine solver’s accuracy.

3.2 A multi-step variant of the parareal algorithm

In this section, after introducing some preliminary notations in section 2.1, we formulate the new

variant of the parareal algorithm adapted to multi-step time schemes (section 2.2). We then

present the hypothesis we consider in this article and restrict ourselves to two-step time schemes

for the convergence analysis (section 2.3). We prove that the multi-step variant converges with a

convergence rate similar to that of the classical parareal algorithm. Finally, we discuss how the

new paradigm can be generalised to multi-step time schemes, not only two-step times schemes,

used in the fine and/or the coarse solver (section 2.4).

3.2.1 Setting and preliminary notations

Let U be a Banach space of functions defined over a domain Ω ⊂ Rd (d ≥ 1). Let

S : [0, T ]× [0, T ]× U→ U (3.1)

be a solver, that is, an operator such that, for any given time t ∈ [0, T ], s ∈ [0, T − t] and any

function w ∈ U takes an initial value at time t and propagates it at time t+ s. We further assume

that S is defined through the discretisation of the time-dependent problem:{
u′(t) +A(t, u(t)) = 0, t ∈ [0, T ]

u(0) ∈ U (3.2)

where A is a locally Lipschitz operator from [0, T ]×U. This ODE system can also be obtained from

the discretisation of a PDE in space with A : R×RN → RN and N denotes the number of degrees

of freedom. We seek to approximate the solution of problem (3.2) at a given target accuracy by

a solver S. We denote ε(t, s, w) the propagator giving the exact solution of system (3.2), for any

initial value w ∈ U, any t ∈ [0, T ] and any s ∈ [0, T − t]. Thus, S(t, s, w) approximates ε(t, s, w)

with an accuracy η > 0 such that we have:

||δS(t, s, w)|| = ||ε(t, s, w)− S(t, s, w)|| ≤ ηs(1 + ||w||),∀t ∈ [0, T ], s ∈ [0, T − t], w ∈ U (3.3)

where || · || denotes the norm in U.

The choice of the solver S determines the quality of the approximation and the computational cost

of its implementation. One can potentially bring higher approximation orders than plain one-step

methods by using a multi-step time discretisation method. Multi-step time schemes require several

previous steps to compute the solution at a new point in time. Hence, the notation (3.1) does not

hold when the solver is based on a multi-step time scheme. Here and in the following, we consider

only two-step time schemes and we will use the following notation:

S : [0, T ]× [0, T ]× U× U→ U (3.4)
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such that S(t, s, w1, w2) for any given time t ∈ [0, T ], s ∈ [0, T − t] and any functions w1, w2 ∈ U
takes two initial values at times t and t − δt and propagates them at time t + s, where δt is the

time step of the two-step time scheme underlying in S.

3.2.2 A multi-step variant of the parareal algorithm

We consider a given decomposition of the time interval [0, T ] into N subintervals [Tn, Tn+1], n =

0, · · · , N−1. Without loss of generality, we will take them of uniform size ∆T = T/N which means

that Tn = n∆T for n = 0, · · · , N . For a given target accuracy η > 0, the goal of the parareal

algorithm is to accelerate the computation of an approximation ũ(Tn) of u(Tn) such that:

max1≤n≤N ||u(Tn)− ũ(Tn)|| ≤ η

The classical way to compute such an approximation is to set ũ(Tn) = Sseq(0, T
n, u(0)), 1 ≤ n ≤ N ,

where Sseq is some sequential solver in [0, T ]. On the other hand, the strategy of the parareal

algorithm follows the following steps, using two propagation operators:

� G(Tn,∆T, un) computes a coarse approximation of u(Tn+1) with initial condition u(Tn) '
un. The coarse propagation is sequential but have a low computational cost.

� F (Tn,∆T, un). computes a more accurate approximation of u(Tn+1) with initial condition

u(Tn) ' un. The action of F is distributed over N time windows and N processors solve

over each interval [Tn, Tn+1] of size ∆T instead of solving over [0, T ].

In the sequel, we analyse the convergence rate of the multi-step variant of parareal algorithm when

the coarse solver is a one-step time scheme and the fine one is a two-step time scheme.

Hypotheses (H): There exists εG, Cd, C > 0 such that for any functions x, y ∈ U and for any

t ∈ [0, T ] and s ∈ [0, T − t],

||ε(t, s, x)−G(t, s, x)|| ≤ s(1 + ||x||)εG ⇔ ||δG(t, s, x)|| ≤ sεG(1 + ||x||) (3.5)

||G(t, s, x)−G(t, s, y)|| ≤ (1 + Cs)||x− y|| (3.6)

||F (t, s, x1, y1)− F (t, s, x2, y2)|| ≤ (1 + Cs) (||x1 − x2||+ ||y1 − y2||) (3.7)

||δG(t, s, x)− δG(t, s, y)|| ≤ CdsεG||x− y|| (3.8)

|| (F (t, s, ε(t,−δt, y1), y1)− ε(t, s, y1))− (F (t, s, ε(t,−δt, y2), y2)− ε(t, s, y2)) || ≤ Csδt||y1 − y2||
(3.9)

||(F (t, s− δt, y1 − δ1, y1) − F (t, s− δt, y2 − δ2, y2))− (F (t, s, y1 − δ1, y1)− F (t, s, y2 − δ2, y2))||
≤ (1 + Cs)δt||δ1 − δ2||+ (1 + Cs)δt||y1 − y2||

(3.10)

||F (t, s, ε(t,−δt, y), y)− ε(t, s, y)|| ≤ sεF (1 + ||y||) (3.11)

Note that the hypothesis (3.5)-(3.8) are the classical properties of numerical schemes related to

stability and accuracy. Hypotheses (3.6) and (3.7) are Lipschitz conditions and the quantity εG
is a small constant which, in the case of the explicit Euler scheme, would be proportionnal to the

time step size. Hypotheses (3.9) and (3.10) are specific to two-step time schemes. There are two

sources of error for two-step time schemes:

� the error from the discretisation of the time derivative, common to one-step time schemes.

� the error from the inconsistency between the two initial conditions x1 and y1 in F (t, s, x1, y1).
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In hypothesis (3.9), assuming the term x1 = ε(t,−δt, y1), y1) is defined, there is no inconsistency

between the two initial values since x1 is computed with the exact propagator starting from y1.

Hence, the only remaining errors are:

� the difference between y1 and y2.

� the error from the time propagation over a time window of size s.

� the error between the fine and the exact propagators that is proportionnal to the fine time

step δt.

On the other hand, we assume hypothesis (3.10) holds for s ≥ ∆T , the time window size. This

hypothesis includes the inconsistency between the two initial values and is denoted δ1 and δ2.

Hence, we describe here the errors coming from:

� the inconsistency δi between the two initial values of the fine solver.

� the difference between the principal initial values y1 and y2.

� the time propagation over time windows of size s.

Example 3.1. Here, we illustrate the validity of hypothesis (3.10) on a simple linear ODE. The

parameters involved in hypothesis (3.10) are: s, y1, y2, δ1 and δ2. In the proof of convergence,

we apply this hypothesis for y1 = unk−1, the parareal solution at k − 1 iteration and time Tn, and

y2 = u(Tn), the exact solution at time Tn, hence these two parameters are very close. On the other

hand, δ1 = unk−1 − un−1,Nf−1
k−1 , where un−1,Nf−1

k−1 is the parareal solution at (k − 1) iteration and

time Tn− δt, and δ2 = u(Tn)− u(Tn− δt), where u(Tn− δt) is the exact solution at time Tn− δt
and s is equal to the time window size.{

y′(t) = y(t), t ∈ [0, T ]

y0a, y0b given

where y0a, y0b are the two seed values to initialise the time propagation with the second-order BDF

method:

y0a = (y1 − δ1)− (y2 − δ2), y0b = y1 − y2

We solve this system by a second-order BDF method:

3

2
yn+1 − 2yn +

1

2
yn−1 = δtyn+1 (3.12)

From (3.12), we have the expression of the numerical solution yn for n = 0, · · · , Nf with Nf =
T

δt
:

yn = αrn1 + βrn2

such that:

� r1 =
2 +
√

1 + 2δt

3− 2δt
= 1 + δt+O(δt2)

� r2 =
2−
√

1 + 2δt

3− 2δt
=

1

3
− δt

9
+O(δt2).

In (3.12), the term rn2 tends rapidly to zero when n goes to infinity. Thus we neglect its

contribution.



72 Chapter 3. Convergence analysis of the multi-step variant of the parareal algorithm

� α =
r2(δ1 − δ2) + (1− r2)(y1 − y2)

r1 − r2

� β =
(r1 − 1)(y1 − y2)− r1(δ1 − δ2)

r1 − r2

In the linear case, we can write hypothesis (3.10):

||yN+1 − yN || ≤ (1 + Cs)δt||y0a − y0b||+ (1 + Cs)δt||y0b||

where: yN = F (0, s − δt, y0a, y0b), yN+1 = F (0, s, y0a, y0b) and (N + 1) is the number of fine

time steps in a time window of size s: N + 1 =
s

δt
=

∆T

δt
. From the expression of yn in (3.12):

yN+1 − yN = αrN1 (r1 − 1) + βrN2 (r2 − 1)

Neglecting the term rN2 , we obtain:

yN+1 − yN =
r2

r1 − r2
(1 + ∆T )δt(δ1 − δ2) +

1− r2

r1 − r2
(1 + ∆T )δt(y1 − y2) +O(δt2)

Hence, the second-order BDF method verify hypothesis (3.10).

In the following example, we explain the problem of initialising the fine solver in a time window

when the fine propagator is a two-step time scheme:

Example 3.2. If one solves (3.2) with a multi-step time scheme as fine propagator F like the

second-order BDF method:

3

2
uj+1 − 2uj +

1

2
uj−1 = −δtA(uj+1, tj+1), j = 1, · · · , Nf , tj+1 − tj = δt

Here the fine solver reads as: uj+1 = F (tj , δt, uj−1, uj). Now, we apply the parareal algorithm with

a coarse grid: T 0, · · · , TN where:

Tn+1 − Tn = ∆T = Nfδt.

Then we can write: u(Tn + jδt) ' un,j , j = 1, · · · , Nf , n = 1, · · · , N c.

In order to perform the fine propagation, in a given time window [Tn, Tn+1], we only need the local

initial condition unk and a consistent approximation of u(Tn − δt).

In [12], the authors propose a consistent approximation in the context of the simulation of

molecular dynamics. The proposed method was linked to the nature of the model and the sym-

plectic character of their algorithm is shown, which is an important property to verify for molecular

dynamics.

We now detail our algorithm:

un+1
0 = G(Tn,∆T, un0 ), 0 ≤ n ≤ N − 1

un,N
f−1

0 = un+1
0 , 0 ≤ n ≤ N − 1

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, un−1,Nf−1

k , unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1

−F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

(3.13)
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At this point, several comments are in order. To derive a consistent approximation of u(Tn − δt),
we use the only fine trajectory at our disposal which is F (Tn−1,∆T, un−2,Nf−1

k , un−1
k ). Its final

value at Tn is:

F (Tn−1,∆T, un−2,Nf−1
k , un−1

k )(Tn) from which we compute unk+1 by the parareal correction. Hence,

we translate the solution:

F (Tn−1,∆T − δt, un−2,Nf−1
k , un−1

k )(Tn − δt) by the same correction:

unk+1−F (Tn−1,∆T, un−2,Nf−1
k , un−1

k ) and obtain the so called consistent approximation un−1,Nf−1
k+1

to initialize the fine propagation in [Tn, Tn+1].

Moreover, an important feature of this new algorithm is to preserve a well known property of the

parareal algorithm:

unk = F (T 0, Tn − T 0, u0), for: k ≥ n, n = 0, · · · , N (3.14)

This comes from the term:

G(Tn,∆T, unk+1)−G(Tn,∆T, unk)

that is equal to zero when k ≥ n, n = 0, · · · , N .

In our case, the multi-step variant of the parareal algorithm verifies (3.14) and the additionnal

correction of the solution at time Tn − δt leads to:

un,N
f−1

k+1 = F (Tn,∆T − δt, un−1,Nf−1
k , unk) + un+1

k+1

−F (Tn,∆T, un−1,Nf−1
k , unk), 0 ≤ n ≤ N − 1, k ≥ 0

= F (Tn,∆T − δt, un−1,Nf−1
k , unk) +G(Tn,∆T, unk+1)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0

Hence, the multi-step parareal method satisfies the same property (3.14) at time Tn − δt:

un,N
f−1

k = F (T 0, Tn − δt− T 0, u0), for: k ≥ n, n = 0, · · · , N (3.15)

The convergence result of theorem 3.3 and its proof are helpful to understand the main mechanisms

driving the convergence of the algorithm and explaining its behavior. To present it, we introduce

the shorthand notation for the error norm:

Enk := unk − ε(T 0, Tn − T 0, u0), k ≥ 0, 0 ≤ n ≤ N,

We introduce the following quantities:

α := CdεG∆T

µ := C∆Tδt

β := 1 + Cc∆T

γG := ∆TεGmax0≤n≤N (1 + ||u(Tn)||)
γF := ∆TεFmax0≤n≤N (1 + ||u(Tn)||)

(3.16)

as shorthand notations for the proof of convergence.

Theorem 3.3 (Convergence of the multi-step parareal algorithm). Let G, F and δG satisfy Hy-

potheses (3.5)–(3.11). Let k ≥ 0 be any given positive integer. If the time step δt of the fine solver

verifies:

δt ≤ ∆T 2ε2G, (3.17)
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then the (unk)n of the multi-step parareal scheme (3.13) satisfy:
max0≤n≤N ||un0 − u(Tn)|| ≤ γ̃G

γG
eCTmaxn(1 + ||u(Tn)||)Te−C∆T εG, n ≥ 1

max0≤n≤N ||unk − u(Tn)|| ≤ λ
τ̃k+1

k + 1!

(
fk

2k+1

γ̃G
γG

(
α̃

α

)k
+
k + 1

τ

fk−1

2k+1

γ̃F
γG

(
α̃

α

)k−1
)
, n ≥ k + 1, k ≥ 1

(3.18)

where:

λ =
eCTmax0≤n≤N (1 + ||u(Tn)||)

Cd
, τ̃ = 2τ = 2CdTe

−C∆T εG, fk =
(1 +

√
5)k+1 − (1−

√
5)k+1

2k+1
√

5
.

and α̃, γ̃G and γ̃F are perturbations of the coefficients α, γG and γF respectively, such that:

γ̃G
γG

= 1 +O(∆TεG),
α̃

α
= 1 +O(∆TεG),

γ̃F
γG

= O(∆TεG)

Let us make a couple of remarks before giving the proof of the theorem. First, the convergence

rate of the multi-step parareal algorithm is similar to the one of the classical parareal algorithm

with the factor
τ̃k+1

k + 1!
, since in the classical version the convergence rate is

τk+1

k + 1!
. The remaining

factors
γ̃G
γG

,

(
α̃

α

)k
and

γ̃F
γG

are close to 1 and their contributions are negligible. The term fk is

specific to the multi-step variant and have the following asymptotic behaviour when k tends to

infinity:

fk
2k+1

∼
k→+∞

(
1 +
√

5

4

)k+1

Proof. The proof is in the spirit of existing results from the litterature [78, 14, 53].

If k = 0, using definition (3.13) for un0 , we have for 0 ≤ n ≤ N − 1,

En+1
0 = un+1

0 − ε(T 0, Tn+1 − T 0, u0)

En+1
0 = G(Tn,∆T, un0 )− ε(Tn,∆T, u(Tn))

||En+1
0 || ≤ ||G(Tn,∆T, un0 )−G(Tn,∆T, u(Tn))||+ ||G(Tn,∆T, u(Tn))− ε(Tn,∆T, u(Tn))||

≤ (1 + C∆T )||En0 ||+ ∆TεG(1 + ||u(Tn)||)

≤ β||En0 ||+ γG

where we have used (3.5) and (3.6) to derive the second to last inequality.

For k ≥ 1, starting from (3.13), we have

En+1
k = un+1

k − ε(T 0, Tn+1 − T 0, u0)

= G(Tn,∆T, unk) + F (Tn,∆T, un−1,Nf−1
k−1 , unk−1)−G(Tn,∆T, unk−1)− ε(Tn,∆T, u(Tn))

In the sequel, we add and substract the following quantites to En+1
k :

� G(Tn,∆T, u(Tn)) and ε(Tn,∆T, unk−1)

� ε(Tn,∆T, u(Tn)) and F (Tn,∆T, u(Tn)− δx, u(Tn))
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� F (Tn,∆T, unk−1 − δx, unk−1) and F (Tn,∆T, unk−1 − δ̂x, unk−1)

where:

δx = u(Tn)− u(Tn − δt), δ̃x = unk−1 − un−1,Nf−1
k−1 , δ̂x = unk−1 − ε(Tn,−δt, unk−1)

En+1
k = G(Tn,∆T, unk)−G(Tn,∆T, u(Tn)) + δG(Tn,∆T, u(Tn))− δG(Tn,∆T, unk−1)

+ F (Tn,∆T, ε(Tn,−δt, unk−1), unk−1)− ε(Tn,∆T, unk−1)

− (F (Tn,∆T, ε(Tn,−δt, u(Tn)), u(Tn))− ε(Tn,∆T, u(Tn)))

+ F (Tn,∆T, unk−1 − δx, unk−1)− F (Tn,∆T, unk−1 − δ̂x, unk−1)

+ F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, unk−1 − δx, unk−1)

+ F (Tn,∆T, u(Tn − δt), u(Tn))− ε(Tn,∆T, u(Tn))

Taking norms and using (3.6), (3.7), (3.8), (3.9), (3.11), we derive:

||En+1
k || ≤ (1 + C∆T )||Enk ||+ C∆TεG||Enk−1||+ C∆Tδt||Enk−1||+ C||δ̂x− δx||+ C||δx− δ̃x||

+ ∆TεF (1 + ||u(Tn)||)

On the one hand, the term δx− δ̃x becomes:

δx− δ̃x = un−1,Nf−1
k−1 − u(Tn − δt)− (unk−1 − u(Tn)) = En,N

f−1
k − En+1

k = δEn+1
k

On the other hand, we derive a bound for the term: ||δx− δ̂x||:

||δx− δ̂x|| = ||u(Tn − δt)− ε(Tn,−δt, unk−1)− (u(Tn)− unk−1)||

Writing the Taylor expansions of u(Tn−δt) and ε(Tn,−δt, unk−1) around Tn and unk−1 respectively,

we obtain formally:

u(Tn − δt)− u(Tn) = δtA(Tn, u(Tn)) +
δt2

2

(
∂A
∂t

+
∂A
∂u
A
)

(Tn, u(Tn)) +O(δt3)

ε(Tn,−δt, unk−1)− unk−1 = δtA(Tn, unk−1) +
δt2

2

(
∂A
∂t

+
∂A
∂u
A
)(

Tn, unk−1

)
+O(δt3)

Hence, assuming the operator A and its derivatives
∂A
∂t

,
∂A
∂u

are locally Lipschitz:

||δx− δ̂x|| ≤
(
Cδt+

Cδt2

2

)
||Enk−1||+ Cδt3

We recall: γF = ∆TεFmax0≤n≤N (1 + ||u(Tn)||). Since, the fine solver is based on a two-step time

then εF ≈ δt2. Hence, we neglect in the sequel the contribution Cδt3:

||En+1
k || ≤ β||Enk ||+ (α+ µ+ Cδt+

Cδt2

2
)||Enk−1||+ C||δEnk−1||+ γF

In the sequel, we derive an upper bound for the error terms En,N
f−1

k and δEn+1
k = En,N

f−1
k −En+1

k .

δEn+1
k = En,N

f−1
k − En+1

k

δEn+1
k = un,N

f−1
k − ε(T 0, Tn+1 − δt− T 0, u0)− un+1

k + ε(T 0, Tn+1 − T 0, u0)

In the sequel, we add and substract the following quantites to δEn+1
k :
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� F (Tn,∆T − δt, u(Tn)− δx, u(Tn))

� F (Tn,∆T, u(Tn)− δx, u(Tn))

δEn+1
k = F (Tn,∆T − δt, u(Tn)− δx, u(Tn))− ε(Tn,∆T − δt, u(Tn))

− (F (Tn,∆T, u(Tn)− δx, u(Tn))− ε(Tn,∆T, u(Tn)))

+ F (Tn,∆T − δt, unk−1 − δ̃x, unk−1)− F (Tn,∆T − δt, u(Tn)− δx, u(Tn))

−
(
F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, u(Tn)− δx, u(Tn))

)
Taking norms and using (3.10), (3.11), we derive:

||δEn+1
k || ≤ 2∆TεF (1 + ||u(Tn)||) + Cδt||un−1,Nf−1

k−1 − u(Tn − δt)− (unk−1 − u(Tn))||
+ Cδt||unk−1 − u(Tn)||

||δEn+1
k || ≤ Cδt||δEnk−1||+ Cδt||Enk−1||+ 2γF

En,N
f−1

k = un,N
f−1

k − ε(T 0, Tn+1 − δt− T 0, u0)

= F (Tn,∆T − δt, un−1,Nf−1
k−1 , unk−1) + un+1

k − F (Tn,∆T, un−1,Nf−1
k−1 , unk−1)− ε(Tn,∆T − δt, u(Tn))

In the sequel, we add and substract the same quantites to En,N
f−1

k as those for the term δEn+1
k .

En,N
f−1

k = un+1
k − ε(Tn,∆T, u(Tn)) + F (Tn,∆T − δt, u(Tn)− δx, u(Tn))− ε(Tn,∆T − δt, u(Tn))

− (F (Tn,∆T, u(Tn)− δx, u(Tn))− ε(Tn,∆T, u(Tn)))

+ F (Tn,∆T − δt, unk−1 − δ̃x, unk−1)− F (Tn,∆T − δt, u(Tn)− δx, u(Tn))

−
(
F (Tn,∆T, unk−1 − δ̃x, unk−1)− F (Tn,∆T, u(Tn)− δx, u(Tn))

)
Taking norms and using (3.10), (3.11), we derive:

||En,Nf−1
k || ≤ β||Enk ||+ (C + Cδt)||δEnk−1||+ (α+ µ+ 2Cδt+

Cδt2

2
)||Enk−1||+ 3γF

We summarise the obtained inequalities:

||En+1
k || ≤ β||Enk ||+ (α+ µ+ Cδt+

Cδt2

2
)||Enk−1||+ C||δEnk−1||+ γF (3.19)

||En,Nf−1
k || ≤ β||Enk ||+ (α+ µ+ 2Cδt+

Cδt2

2
)||Enk−1||+ C(1 + δt)||δEnk−1||+ 3γF (3.20)

||δEn+1
k || ≤ Cδt||δEnk−1||+ Cδt||Enk−1||+ 2γF (3.21)

Since the upper bound of the error term ||En,Nf−1
k || depends on the error terms ||En+1

k || and

||δEn+1
k || we focus on the inequalities (3.19)-(3.21). Hence, we can write by induction:

||Enk || ≤ β||En−1
k ||+ (α+ µ+ Cδt+

Cδt2

2
)||En−1

k−1 ||+ C2δt
k∑
j=2

(Cδt)j−2||En−jk−j ||+ C(Cδt)k−1||δEn−k0 ||

+

(
1 + 2C

1− (Cδt)k−1

1− (Cδt)

)
γF

(3.22)
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The governing term in the sum C2δt

k∑
j=2

(Cδt)j−2||En−jk−j || is the term C2δt||En−2
k−2 ||. To ensure that

it does not dominate the term (α + µ + Cδt +
Cδt2

2
)||En−1

k−1 ||, we suppose that the fine time step

verifies: δt ≤ ∆T 2ε2G (see hypothesis (3.17)).

In the sequel, we show that the residual terms δEn−k0 ,

(
1 + 2C

1− (Cδt)k−1

1− (Cδt)

)
γF and all the terms

of the sum for j ≥ 3 can be distributed over the terms: ||Ẽnk ||, ||Ẽn−1
k ||, ||Ẽn−1

k−1 || and ||Ẽn−2
k−2 ||, where

||Ẽnk || is a perturbation of ||Enk ||.
Setting the error perturbation to:

||Ẽnk || = ||Enk ||+ ||δEnk ||+ Cδt
(
||En−1

k−1 ||+ ||δEn−1
k−1 ||

)
+

2C + 3 + 2C2δt

β − 1 + α+ 3µ+ Cδt+ Cδt2

2 + C2δt
γF

(3.23)

The following inequality is satisfied by ||Ẽnk ||:

||Ẽnk || ≤ β||Ẽn−1
k ||+ α̃||Ẽn−1

k−1 ||+ C2δt||Ẽn−2
k−2 || (3.24)

where the constant α̃ is defined in (3.25).

Hence, for k = 0, we have:

||Ẽn0 || ≤ β||Ẽn−1
0 ||+ γ̃G

Then, for k = 1, we have:

||Ẽn1 || ≤ β||Ẽn−1
1 ||+ α̃||Ẽn−1

0 ||+ γ̃F

where: In the sequel, we use the following notations:

α̃ = α+ 3µ+ 3Cδt+
Cδt2

2

γ̃G = γG + Cδt+
2C + 3 + 2C2δt

β − 1 + α+ 3µ+ Cδt+ C δt2

2 + C2δt
γF

γ̃F =

(
2C + 3 + 2C2δt

β − 1 + α+ 3µ+ Cδt+ C δt2

2 + C2δt
+ 3

)
γF + Cδt+ 2Cδt2

(3.25)

Following [53], we consider the sequence (ẽnk)n≥0,k≥0 defined recursively as follows. For k = 0:

ẽn0 =

{
0 , if n = 0

βẽn−1
0 + γ̃G , if n ≥ 1

(3.26)

For k = 1:

ẽn1 =

{
0 , if n = 0, 1

βẽn−1
1 + α̃ẽn−1

0 + γ̃F , if n ≥ 2
(3.27)

For k ≥ 2:

ẽnk =

{
0 , if n = 0, 1, 2

βẽn−1
k + α̃ẽn−1

k−1 + C2δtẽn−2
k−2 , if n ≥ 3

(3.28)
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Since ||Enk || ≤ ||Ẽnk || ≤ ẽnk , for k ≥ 0, n = 0, · · · , N , we analyse the behavior of (ẽnk) to derive a

bound for Ẽnk . For this, we consider the generating function:

ρ̃k(ξ) =
∑
n≥0

ẽnkξ
n

From (3.26), (3.27) and (3.28) we get:
ρ̃0(ξ) =

γ̃Gξ

(1− βξ)(1− ξ)
ρ̃1(ξ) =

α̃ξ

1− βξ ρ̃0(ξ) +
γ̃F ξ

(1− βξ)(1− ξ)
ρ̃k(ξ) =

α̃ξ

1− βξ ρ̃k−1(ξ) +
C2δtξ2

1− βξ ρ̃k−2(ξ), k ≥ 2

(3.29)

From which we derive, for k ≥ 1:

ρ̃k(ξ) = γ̃Gα̃
k ξk+1

(1− ξ)

[k/2]∑
j=0

(C2δt)j

α̃2j

(
k − j
j

)
1

(1− βξ)k+1−j +γ̃F α̃
k−1 ξk

(1− ξ)

[k−1/2]∑
j=0

(C2δt)j

α̃2j

(
k − 1− j

j

)
1

(1− βξ)k−j
(3.30)

For k = 0, we have:

ρ̃0(ξ) = γ̃Gξ

∑
p≥0

ξp

∑
p≥0

βpξp

 = γ̃G
∑
p≥0

(
p∑
l=0

βl

)
ξp+1

By a change of variable p = n− 1, we obtain:

ẽn0 = γ̃G

(
n−1∑
l=0

βl

)
≤ γ̃G
γG
eCTmaxn(1 + ||u(Tn)||)Te−C∆T εG, n ≥ 1

For k ≥ 1, using the binomial expansion in (3.30):

1

(1− βξ)k+1−j =
∑
p≥0

(
k − j + p

p

)
βpξp

and by a change of variable, we obtain:∑
n≥0

ẽnkξ
n = γ̃Gα̃

k
∑

n≥k+1

Kn−k−1ξ
n + γ̃F α̃

k−1
∑
n≥k

K ′n−kξ
n

Identifying the term ξk in the expansion yields to:

ẽkk = γ̃F α̃
k−1K ′0

This gives an upper bound for the error terms ||Ẽkk ||, k ≥ 1. We do not use this estimate since

the parareal algorithm ensures unk = F (T 0, Tn − T 0, u0) for k ≥ n, which yields:

||Ekk || = O(εF ), k ≥ 1

In the sequel, we identify the terms ξn for n ≥ k + 1 in the expansion:

ẽnk = γ̃Gα̃
kKn−k−1 + γ̃F α̃

k−1K ′n−k
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We now compute the terms

Kp =

p∑
l=0

[k/2]∑
j=0

(C2δt)j

(α+ 3µ+ Cδt)2j

(
k − j
j

)(
k − j + l

l

)
βl

and

K ′p =

p∑
l=0

[k−1/2]∑
j=0

(C2δt)j

α̃2j

(
k − 1− j

j

)(
k − 1− j + l

l

)
βl

Using:

(
k − j + l

l

)
≤
(
k + l

l

)
and:

C2δt

(α+ 3µ+ Cδt)2
≤ 1, from hypothesis (3.17): δt ≤ ∆T 2ε2G.

We have:

Kp ≤
p∑
l=0

(
k + l

l

)
βl

[k/2]∑
j=0

(
k − j
j

)
≤ fk

(
k + 1 + p

p

)
βp

K ′p ≤
p∑
l=0

(
k − 1 + l

l

)
βl

[k−1/2]∑
j=0

(
k − 1− j

j

)
≤ fk−1

(
k + p

p

)
βp

where fk is the general term of the Fibonacci sequence defined by f0 = f1 = 1 and fk+1 =

fk + fk−1, k ≥ 1:

fk =

[k/2]∑
j=0

(
k − j
j

)
=

(1 +
√

5)k+1 − (1−
√

5)k+1

2k+1
√

5

Hence, we derive the bound:

||En0 || ≤ ||Ẽn0 || ≤ ẽn0 ≤
γ̃G
γG
eCTmaxn(1 + ||u(Tn)||)Te−C∆T εG, n ≥ 1

||Ekk || = O(εF ), k ≥ 1

||Enk || ≤ ||Ẽnk || ≤ ẽnk ≤ γ̃Gα̃kfk
(

n

k + 1

)
βn−k−1 + γ̃F α̃

k−1fk−1

(
n

k

)
βn−k, n ≥ k + 1, k ≥ 1

(3.31)

which ends the proof of the theorem.

3.3 Advantages of the multi-step parareal algorithm

We proposed in the last section a new variant of the parareal algorithm with a consistent ap-

proximation of the solution at time Tn − δt in a non intrusive way. The initialisation of the fine

propagation in each time window has te be appropriately chosen because an initialisation error

would be propagated over the whole time interval and would prevent the parareal algorithm to

converge towards the target solution. Another option to treat this issue is to use a one-step time

scheme or a multi-stage Runge Kutta method to initialize the fine computation. This option is

intrusive since we have to implement new time scheme for the initialisation. Morevover, we will see

in section 3.4 that this strategy prevents the parareal to converge to the numerical solution with

the target accuracy since the first-order scheme error will dominate.

This method adds consistency with the fine scheme. Also, this strategy can be applied to multi-

step time schemes involving several fine time steps preceding the time Tn by applying the same

correction to terms taking the form: un,N
f−i

k+1 , i = 1, · · · , I.
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We detail the algorithm for a multi-step time scheme involving more than one fine time step

preceding the time Tn.

un+1
0 = G(Tn,∆T, un0 ), 0 ≤ n ≤ N − 1

un+1
k+1 = G(Tn,∆T, unk+1) + F (Tn,∆T, un−1,Nf−1

k , unk)

−G(Tn,∆T, unk), 0 ≤ n ≤ N − 1, k ≥ 0

un,N
f−i

k+1 = F (Tn,∆T − iδt, un−1,Nf−I
k , un−1,Nf−I+1

k , · · · , unk) + un+1
k+1

−F (Tn,∆T, un−1,Nf−I
k , un−1,Nf−I+1

k , · · · , unk), i = 0, · · · , I, 0 ≤ n ≤ N − 1, k ≥ 0

(3.32)

where we denote F (t, s, w1, w2, · · · , wI) the multi-step propagator for any given time t ∈ [0, T ],

s ∈ [0, T − t] and any function w1, · · · , wI ∈ U takes I initial values at times t and t − iδt and

propagates it at time t + s, where δt is the fine time step. We illustrate the good convegence

properties in the next section by applying the parareal algorithm to an ODE system solved by

a coarse solver based on a one-step time scheme and a fine solver based on a third-order BDF

method.

When the coarse solver is a multi-step time scheme, there exists several options to initialise it on

each time window:

� If the coarse time step δT is equal to the size of the time window ∆T , there is no additional

correction in the parareal algorithm since the solution at every coarse time step are updated

� If δT < ∆T , there are intermediate coarse time iterations in each time window. In [12],

the initialisation of the coarse solver is addressed and the authors propose a parareal-type

correction at time Tn − δT :

u
n+1−Nc

int
k+1 = G(Tn,∆T − δT, un−N

c
int

k+1 , unk+1) + F (Tn,∆T − δT, un−1,Nf−1
k , unk)

− G(Tn,∆T − δT, un−N
c
int

k , unk), N c
int =

δT

δt
0 ≤ n ≤ N − 1, k ≥ 0

(3.33)

We illustrate the behavior of the full multi-step parareal algorithm with specific initialisation of

the fine and coarse solver in the next section where the two solvers involved in the parareal method

are the second-order BDF method.

3.4 Numerical tests

We apply the multi-step parareal algorithm to a simple ODE firstly, the damped oscillator and

then to a stiff problem, the Brusselator system. Our results illustrate that our approach improves

the convergence properties with respect to the classical parareal algorithm. We also show that the

generalisation of this approach to third-order time schemes holds and the convergence properties

derived in Theorem (3.3) are preserved. Finally, we address the question of the parallel efficiency

of the multi-step parareal. In the last section, we apply the adaptive parareal algorithm (see [80])

where the accuracy of the fine solver is increased accross the iterations.

3.4.1 Numerical convergence results

3.4.1.1 The damped oscillator

We consider the damped oscillator system:

u′′(t) + 2λu′(t) + ω2
0u(t) = 0, t ∈ (0, T ), with u(0) = u0, T = 10,
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We rewrite it as a first order ODE system:

X ′(t) = AX(t), t ∈ (0, T ), with X(0) =

(
u0

u′0

)
, A =

(
0 1

−ω2
0 −2λ

)
This system models the dynamic of a simple nonstiff harmonic oscillator under a frictional force.

For our tests, we set λ = 0.05, ω0 = 1 and X0 =

(
0.1

0.2

)
.

The coarse solver is a Backward Euler method with a coarse time step:

∆T = 0.1

which corresponds to 100 time windows and the fine solver is a second-order BDF method with a

fine time step δt = 10−4 (respecting hypothesis (3.17)). In figure 3.1, the fine solver is based on a

two-step time scheme where the computation of the solution un,j+1 at time Tn + (j+ 1)δt depends

on the solutions un,j and un,j−1 at times Tn + jδt and Tn + (j − 1)δt, respectively. We use the

multi-step variant of parareal (3.13) to initialise the fine solver in each time window, starting from

the parareal iteration k ≥ 2. At the parareal iteration k = 1, we use a Backward Euler method to

initialise the fine solver since we did not use the fine propagator yet.

In this section, we analyse the evolution of two different errors accross the parareal iterations:

� the error between the fine solution computed in a sequential way and the parareal solution

in L∞(0, T ) norm,

max1≤n≤N ||unk − F (T 0, Tn − T 0, u0)|| (3.34)

� the error between the exact solution and the parareal solution in L∞(0, T ) norm

max1≤n≤N ||unk − u(Tn)|| (3.35)

In all the figures of this section, we plot the evolution of errors (3.35-3.34) in the two following

cases:

� Without a multi-step adaptation (red curve): the error between the parareal solution where

the Backward Euler method is used at each iteration for the initialisation of the fine solver

and the fine solution computed in a sequential way for (3.34) (the exact solution for (3.35)),

on one hand,

� With a multi-step adaptation (blue curve): the error between the solution given by the multi-

step parareal algorithm the fine solution computed in a sequential way for (3.34) (the exact

solution for (3.35)), on the other hand.

In figure 3.1, we see that without the multi-step adaptation the error (3.34) stagnates around 10−6

without recovering the fine solution at the machine precision, even after 100 iterations. On the

other hand, using the multi-step parareal algorithm, the error continues to decrease until reaching

the machine precision. Moreover, in the right figure, we see that the only way to recover the

correct approximation of the exact solution is to use a multi-step adaptation, otherwise, without

adaptation, the parareal algorithm will not reach the target accuracy. This result shows that

making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to

obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure 3.1 on a fine solver based on the second-order
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Figure 3.1: Convergence of the multi-step parareal for the second-order BDF method, δt = 10−4

(left: error (3.34), right: error (3.35))

BDF method with time step δt = 10−4.

In figure (3.2), we apply the extension of the multi-step parareal algorithm (3.32) to three-step

time schemes by giving a consistent approximation of the solutions u(Tn − δt) and u(Tn − 2δt).

We illustrate the convergence properties of this strategy by applying it on a fine solver based

on the third-order BDF method with a time step δt = 10−4 (see figure 3.2). We observe the

same behaviour of the errors (3.35-3.34): without a multi-step adaptation, the fine propagation is

initialised by two Backward Euler iterations and does not allow to recover the target approximation

of the exact solution while the multi-step parareal converges to the exact solution with the desired

accuracy.
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Figure 3.2: Convergence of the multi-step parareal for the third-order BDF method, δt = 10−4

(left: error (3.34), right: error (3.35))
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3.4.1.2 The Brusselator system

We consider the Brusselator system:{
x′ = A+ x2y − (B + 1)x

y′ = Bx− x2y

with initial condition x(0) = 0 and y(0) = 1. This is a stiff ODE that models a chain of chemical

reactions. It was already studied in previous works on the parareal algorithm ([53, 80]). The

system has a fixed point at x = A and y =
B

A
which becomes unstable when B > 1 + A2 and

leads to oscillations. We place ourselves in this oscillatory regime by setting A = 1 and B = 3.

The dynamics present large velocity variations in some time sub-intervals, making the use of high

order time schemes particularly desirable for an appropriate treatment of the transient. The coarse

solver is a Backward Euler method with a coarse time step:

∆T = 0.1

which corresponds to 180 time windows since T = 18. The fine solver is a second-order BDF

method with a fine time step δt = 10−4 (respecting hypothesis (3.17)). In figure 3.3, the fine solver

is based on a two-step time scheme. We use the multi-step parareal algorithm (3.13) to initialise

the fine solver in each time window.

Likewise, we analyse the evolution of the errors (3.34) and (3.35) accross the parareal iterations. In

Figure 3.3, we see that without the multi-step adaptation the error (3.34) stagnates around 10−6

without recovering the fine solution at the machine precision, even after 180 iterations. On the

other hand, using the multi-step parareal algorithm, the error continues to decrease until reaching

the machine precision. Moreover, in the right figure, we see that the only way to recover the

correct approximation of the exact solution is to use a multi-step adaptation, otherwise, without

adaptation, the parareal algorithm will not reach the target accuracy. This result shows that

making an initialisation error for a multi-step fine solver will prevent the parareal algorithm to

obtain the approximation of the exact solution with the desired accuracy.

The convergence properties are illustrated in figure 3.3 on a fine solver based on the second-order

BDF method with time step δt = 10−4.

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

0 5 10 15 20 25 30

R
el
at
iv
e
er
ro
r
in

L
∞

n
or
m

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30

R
el
at
iv
e
er
ro
r
in

L
∞

n
or
m

Number of iterations

Brusselator system

without multi-step adaptation
with multi-step adaptation

Figure 3.3: Convergence of the multi-step parareal for the second-order BDF method, δt = 10−4

(left: error (3.34), right: error (3.35))
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In the figure (3.4), we apply the extension of the multi-step parareal algorithm (3.32) to three-

step time schemes by giving a consistent approximation of the solutions u(Tn−δt) and u(Tn−2δt).

We illustrate the convergence properties of this strategy by applying it on a fine solver based on the

third-order BDF method with time steps δt = 10−4 (see figure 3.4). We observe the same behavior

of the errors (3.35-3.34): without a multi-step adaptation, the fine propagation is initialised by

two Backward Euler iterations and does not allow to recover the target approximation of the exact

solution while the multi-step parareal converges to the exact solution with the desired accuracy.
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Figure 3.4: Convergence of the multi-step parareal for the third-order BDF method, δt = 10−4

(left: error (3.34), right: error (3.35))

3.4.2 Parallel efficiency

We address in this section the question of the speed up performances for the multi-step parareal

algorithm. The only additional operations in the multi-step variant compared to the classical

parareal are the corrections of solutions involved in the initialisation of the fine solver in each time

window (update of un,N
f−1

k+1 in (3.13) for example). Hence, we consider that the computational

cost of the multi-step variant is the same as the one of the classical parareal. In a recent work

[80], the authors propose a new method, the adaptive parareal algorithm, where the accuracy of

the fine solver is increased across the iterations. This new point of view improves the speed up

performances of the parareal method and the only remaining factor limiting high performance

becomes the cost of the coarse solver. In this section, we seek to improve the parallel efficiency

of the multi-step parareal method by increasing the accuracy of fine solver at each iteration. We

first recall the parallel efficiency for the classical parareal (CP) and the adaptive parareal (AP) to

obtain a solution with accuracy η and a propagation over [0, T ]:

effCP (η, [0, T ]) ∼ 1

K(η)

effAP (η, [0, T ]) ∼ 1

1 + ε
1/α
G

, under the hypothesis of Proposition 3.1 in [80]

where K(η) is the number of parareal iterations to obtain the approximation of the exact solution

with the target accuracy η and α, the order of the fine time scheme. To apply this approach
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on the multi-step variant, we need to carefully initialise each time window. If the fine scheme is

the second-order BDF method, the computation of un+1 depends on un and un−1 and with the

adaptive paradigm we have:

tn − tn−1 6= tn+1 − tn

Hence, we initialise the fine solver with one variable step-size BDF method.

We apply this strategy to the damped oscillator system with the Backward Euler method as a

coarse solver (∆T = 0.1) and the second-order BDF method as a fine solver with the sequence of

time steps indicated in table 3.1.

Multi-step parareal Adaptive parareal

Iteration Time step Error Time step Error

k = 1 10−4 5× 10−2 10−2 5× 10−2

k = 2 10−4 9× 10−3 5× 10−3 2× 10−2

k = 3 10−4 10−3 10−3 3× 10−3

k = 4 10−4 9× 10−5 5× 10−4 3× 10−4

k = 5 10−4 7× 10−6 4× 10−4 2× 10−5

k = 6 10−4 4× 10−7 2.5× 10−4 3× 10−6

k = 7 10−4 3.8× 10−8 2× 10−4 3× 10−7

k = 8 10−4 2× 10−8 10−4 2.9× 10−8

Table 3.1: Convergence of the adaptive parareal and the multi-step parareal with a target

accuracy η = 3× 10−8

The multi-step parareal algorithm with adaptivity converges to the exact solution with an

accuracy obtained by a sequential fine solution with time step δt = 10−4 after 8 iterations such

as the multi-step method without adaptivity (see table 3.1). With the sequence of fine time steps

used in the adaptive parareal method, convergence is reached with the same number of iterations

as the multi-step variant. The adaptive algorithm allows to obtain better speed-up performances

compared to the nonadaptive version since the fine solver (δt = 10−4) is used only one time instead

of 8 times in the multi-step variant. In table 3.2, we give the speed-up and the efficiency of the

Speed-up Multi-step parareal Adaptive parareal

With cost G 10.9 23.7

Without cost G 12.5 32.2

Efficiency Multi-step parareal Adaptive parareal

With cost G 10.9% 23.7%

Without cost G 12.5% 32.2%

Table 3.2: Speed up and efficiency with T = 10, δt = 10−4 and N = 100

adaptive and multi-step parareal algorithms applied to the damped oscillator. The speed-up is

defined as the ratio:

S(η, [0, T ]) :=
Tseq(η, [0, T ])

Tpar(η, [0, T ])
,

between the cost to run a sequential fine solver achieving a target accuracy η with the cost to run

a parareal algorithm providing at the end the same target accuracy η. The parallel efficiency of
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the method is then defined as the ratio of the above speed up with the number of processors which

gives a target of 1 to any parallel solver:

eff(η, [0, T ]) :=
S(η, [0, T ])

N
.

To compare the speed-up of the multi-step and adaptive parareal algorithms, we use the number

of fine and coarse propagations involved in the numerical solution and the computational cost of

the coarse and fine propagations (communication delays have not been taken into account). For

example, in table 3.1, the cost of the multi-step parareal algorithm is equal to the cost of 9 coarse

propagations over [0, T ] plus 8 fine propagations over [Tn, Tn+1] with a fine time step δt = 10−4.

In [80], the authors show that the main element affecting the performance of the adaptive parareal

method is no longer the cost of the fine solver but the cost of the coarse solver. Hence, we compare

the speed-up and efficiency when we count or do not count the cost of the coarse solver in table 3.2.

Obviously, when we do not count the cost of the coarse solver, the performance of both algorithms

improves.

3.5 Conclusion

We have built a new variant of the parareal algorithm allowing to overcome the issue of initialising

the fine and the coarse solvers when they are based on a multi-step time scheme ([5]). The

convergence properties of the multi-step parareal are very close to that of the classical parareal

algorithm in the case of two-step time schemes. An extension of our approach to generic multi-step

time schemes is proposed and validated numerically on a three-step time scheme. In addition, the

accuracy of the multi-step parareal algorithm is illustrated on the numerical solution of a stiff ODE

such as the Brusselator system. Finally, we address the question of the parallel efficiency of our

strategy by coupling it with the adaptive parareal algorithm proposed in [80]. The new adaptive

formulation of the parareal algorithm opens the door to improve significantly the parallel efficiency

of the method provided that the cost of the coarse solver is moderate.
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4.1 Introduction

As an introduction to the issue, we consider a 1D conservative non linear hyperbolic system

∂tU(x, t) + ∂xF (U)(x, t) = 0, (4.1)

with unknown vector U ∈ Rm and Lipschitz flux F : Rm → Rm with real-diagonalisable Jacobian

matrix A(U) = ∇UF (U) ∈ Rm×m.

In the rest of the introduction we review some notions about the numerical diffusion.

4.1.1 Consistency analysis

When approximating smooth solutions U of (4.1) by a consistent numerical method on a regular

mesh with space step 4x, the semi-discrete equations approximate to the first order in 4x the

following perturbed version of equation (4.1) :

∂tU∆x + ∂xF (U∆x) = D(U∆x,4x) + o(4x), (4.2)
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where U∆x is the numerical solution and D is a second order differential operator.

When the flux function F is linear, linear numerical methods yield a linear diffusion operator

D(U,4x) = 4x∂x(D∂xU). The matrix D comes from the upwind (off-centered) contributions of

the discrete equations and gives a first insight into the scheme precision and stability. In the non

linear case (F Lipschitz), the numerical diffusion operator can often be approximated to the first

order by a non linear diffusion operator :

D(U,4x) = 4x∂x(D(U)∂xU) + o(4x). (4.3)

This is the case for instance for colocated schemes based on characteristic upwinding such as

Godunov [60], Roe [100], VFRoe [83] or VFFC [56] schemes where the non linear numerical diffusion

tensor is D(U) = |A(U)|.
We recall that in the case of symmetric hyperbolic systems (tA(U) = A(U)), any entropy

solution to (4.1) preserves the L2 norm (see [59] Example 3.2 in the Introduction chapter) and we

would like the discrete L2 norm of any scheme to be bounded as well. In the case of non-symmetric

systems, one first symmetrises the system using entropic variables V (U) = ~∇s(U) where s a strictly

convex entropy of the system (4.1) is assumed to exist (see [59] Theorem 3.2 in the introduction

chapter). The new symmetric system:

∂tV + ¯̄A(V )∂xV = 0, with t ¯̄A = ¯̄A (4.4)

is linearly L2-stable. Any numerical scheme yields a numerical diffusion ¯̄D(V ) in the symmetrised

basis and we require that the diffusion operator ¯̄D have positive symmetric part : t ¯̄D + ¯̄D ≥ 0.

The operator D gives a first insight into the scheme precision since the smaller the operator D,

the closer the approximate solution U∆x is to U . However the numerical diffusion operator gives

also important informations about the scheme stability.

4.1.2 Stability analysis

In the case of symmetric hyperbolic systems (tA(U) = A(U)), the exact equation (4.1) yields the

conservation of the L2 norm (see [59] Example 3.2 in the Introduction chapter)

∀t ∈ R+, ∂t

∫
R
||U ||22(x, t)dx = 0, (4.5)

whilst the perturbed equation (4.2) yields most of the time the first order estimate

∀t ∈ R+, ∂t

∫
R
||U∆x||22(x, t)dx = 4x

∫
R

tU∆x∂x(D(U∆x)∂xU∆x)dx+ o(4x)

= −4x
∫
R

t(∂xU∆x)D(U∆x)(∂xU∆x)dx+ o(4x),
(4.6)

In order to obtain an L2 stable scheme, it is therefore usual to require that the diffusion operator

D have positive symmetric part : tD +D ≥ 0.

In the case of non symmetric systems, one first symmetrises the system using entropic variables
~ξ(U) = ∇Us(U) where s is an entropy of the system. The new system is entropic and yields

∀t ∈ R+, ∂t

∫
R
||ξ(U)||22(x, t)dx = 0, (4.7)
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We remark that a scheme that is entropic ∂t

∫
R
s(U) ≤ 0 is not necessarily stable since s is not

necessarily bounded below as is the case with the full Euler system. We recall the expression of

the entropy for the full Euler system:

s = Cv

(
ln

(
ρE − q2

2ρ

)
− γ ln ρ

)
, (4.8)

where Cv is the specific heat and γ the adiabatic constant such that: p = (γ − 1)ρe, e is the

internal energy and E, the total energy. If a numerical scheme applied to the full Euler system is

entropic then the quantity (4.8) decays. This does not imply the boundedness of the unknowns

ρ, u,E. For example, assuming ρ is constant, the variables E and q can grow infinitely while

maintaining the difference ρE − q2

2ρ
constant.

We investigate in this chapter the L2-stability of staggered schemes. In this first account of

our research, we investigate the isentropic Euler system which raises an issue that will remain

with more complex fluid model : the numerical treatment of the mass balance equation and of the

momentum equation yields a non classical diffusion operator. In order to obtain a straightforwardly

stable scheme we propose a new discretisation with positive numerical diffusion. In section 4.2, we

determine the numerical diffusion of the staggered schemes and show it does not straightforwardly

yield a linear stability. We then present a new class of staggered schemes and prove their linear

stability in section 4.3. Some numerical results are given in section 4.4.

4.2 The numerical diffusion of staggered schemes for the Euler

system

We address here the following system, the isentropic Euler equations, written in the following

conservative form : {
∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + ∂xp = 0
(4.9)

This problem is posed over an open bounded connected subset Ω of R, with boundary ∂Ω, and a

finite time interval (0, T ). The variable t stands for the time, ρ, u and p are the density, velocity

and pressure in the flow.

The results can be extended to the multidimensional Euler system but the calculations are lengthier

and do not help the intuition.

The Euler system (4.9) can take the non conservative form

∂tU +A(U)∂xU = 0 (4.10)

with c2 =
∂p

∂ρ
, u =

q

ρ
and

U =

(
ρ

q

)
, A(U) =

(
0 1

c2 − u2 2u

)
. (4.11)

Remark 4.1. In the sequel, we seek to show the upwind matrices for numerical schemes based on

the principle of vector upwinding using the eigenbasis of the Jacobian matrix A such as: Godunov

[60], Roe [100] and VFRoe [83]. The upwind matrices have two arguments: a left state UL and a
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right state UR. Here, we illustrate their behaviour with the Roe scheme. When the right and left

states are equal, the upwind matrix has the following expression:

Dupw(U,U) = |A(U)| = 1

c

(
c2 − u2 u

u(c2 − u2) u2 + c2

)
. (4.12)

If the flux F in 4.1 is linear, the upwind matrices of the Godunov and VFRoe schemes have the

same form (4.12). We remark that by a change of basis, we obtain a system of decoupled transport

equation where the transport speed is positive, hence ensuring the L2-stability for each equation and

thus for the original problem.

Also for low Mach numbers (
|u|
c
� 1), for a fixed velocity u and the sound speed c tending to

infinity, the upwind matrix of the Roe scheme converges towards the identity matrix:

Dupw = cId+O(
1

c
) (4.13)

The diffusion is evenly distributed on the mass and momentum equations. We see that there is

problem in the order of magnitude:

� Considering the mass equation of the system (4.9), the discretisation introduced a perturbation

of the order ρc in the right hand side while the left hand side is of the order ρu:

∂tρ+ ∂xq = c4x∂xxρ+ o(4x). (4.14)

Hence, the numerical scheme is too diffusive for the mass equation.

� Considering the momentum equation of the system (4.9), the discretisation introduced a per-

turbation of the order ρuc in the right hand side while the left hand side is of the order

ρc2:

∂tq + ∂x
q2

ρ
+ c2∂xρ = c4x∂xxq + o(4x). (4.15)

Hence, the numerical scheme is not diffusive enough for the mometum equation.

The upwind type schemes can be proven to be linearly L2 stable ([60], [100], [83]). However the

amount of numerical diffusion is proportional to the sound speed c and for low Mach number flows,

the schemes based on characteristics upwinding are not able to capture nearly incompressible

solutions (see [36, 37] for more details).

On the contrary, staggered schemes are known to be more precise for low Mach number flows in

practice and are very popular in the thermal hydraulics community ([98]). However their stability

analysis is historically based on heuristics ([70]). Yet the conservative staggered schemes presented

in [66, 65] are proven to be entropic and to satisfy a kinetic energy preservation [67]. Likewise in

[19], the authors present a kinetic scheme on staggered grids for the barotropic Euler equations,

derive stability conditions which preserve both the positivity of the density and the decay of the

discrete global entropy, and satisfy a kinetic energy preservation. Unfortunately the boundedness

of the entropy does not necessarily imply the boundedness of the solution. Indeed a strictly convex

function is not necessarily bounded below. This is in particular the case for the full Euler system

since the entropy involves the function − ln which is strictly convex but not bounded below (see

[59] Example 3.3 in the Introduction chapter). In the next subsection we show that the first order

perturbed equation (4.2) associated to staggered schemes yields not the classical diffusion operator

(4.3) but instead a strongly nonlinear numerical diffusion operator.
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4.2.1 The staggered scheme of Herbin et al.

Using staggered schemes, the density and pressure are located on cells and the velocity on faces

(nodes in 1D) [63, 62]. The momentum variable is usually split as a product between the density

and the velocity : ~q = ρ~u. The main difference between the various staggered schemes is the

treatment of the convection term ρ~u ⊗ ~u in the momentum equation. We consider the staggered

scheme of [67] as a prototype of staggered schemes. Indeed, the main results of this section extends

to other staggered schemes. This is because the mass discretisation is the same in all staggered

schemes and therefore the mass diffusion operator will be non classical. In the past decade, Herbin,

Latché and their coauthors have proposed a new approach with rigorous proofs of stability: discrete

inequality for the kinetic energy and entropic character. They discretise the conservative form of

the Euler equations (eq:euler syst cons 1D) with a conservative scheme.

The different variants include one step ([65] section 2.1, [66] section 3.1) and prediction/correction

steps ([65] section 2.2, [66] section 4.1) variants, fully implicit ([66] section 3, [65] section 2.1), semi

implicit and almost explicit [66] (all but the pressure gradient are explicit-in-time) variants.

For simplicity we present the discrete equation of the fully implicit variant ([66] section 3, [65]

section 2.1) for the 1D isentropic Euler equations in conservative form.

ρn+1
i − ρni
4t +

ρup,n+1

i+ 1
2

un+1
i+ 1

2

− ρup,n+1

i− 1
2

un+1
i− 1

2

4x = 0 (4.16)

ρ̄n+1
i+ 1

2

un+1
i+ 1

2

− ρ̄n
i+ 1

2

un
i+ 1

2

4t +
ρun+1

i+1 u
up,n+1
i+1 − ρun+1

i uup,n+1
i

4x +
pn+1
i+1 − pn+1

i

4x = 0. (4.17)

The pressure pi and the density ρi are located at the cell centers whereas the velocity ui+ 1
2

are

located at the cell interfaces. The expression of the products ρu, ρ∂tu and ρu2 between the

velocity located at cell interfaces and the density located at cell centers thus has to be defined

through interpolation formula.

The mass flux ρu at the cell interfaces is defined using an upwind density ρup
i+ 1

2

defined as :

ρup
i+ 1

2

=

 ρi if ui+ 1
2
> 0

ρi+1 if ui+ 1
2
≤ 0

=
ρi + ρi+1

2
+ sign(ui+ 1

2
)
ρi − ρi+1

2
, (4.18)

which is the sum of a centered and an upwind terms.

The expression of ρ̄i+ 1
2

in the discrete momentum equation accounts for an average of the neigh-

bouring densities

ρ̄i+ 1
2

=
1

2
(ρi + ρi+1). (4.19)

The expression of ρu in the discrete momentum equation is

ρui =
1

2
(ρup
i− 1

2

ui− 1
2

+ ρup
i+ 1

2

ui+ 1
2
). (4.20)

The upwind velocity uupi at cell centers is defined as :

uupi =

 ui− 1
2

if ρui > 0

ui+ 1
2

if ρui ≤ 0
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=
ui− 1

2
+ ui+ 1

2

2
+ sign(ρui)

ui− 1
2
− ui+ 1

2

2
, (4.21)

which is the sum of a centered and an upwind terms.

It is possible to use a centered velocity ū instead of the upwind velocity uup (see [66]).

4.2.2 The numerical diffusion of the scheme

The scheme presented in [66] section 3 and [65] section 2.1 is proven to be entropic. However the

boundedness of the entropy does not necessarily imply the boundedness of the solution. Indeed a

convex function is not necessarily bounded below. This is in particular the case for the full Euler

system (not the isentropic one) because the entropy involves the function − ln which is convex but

not bounded below.

We would like to study the L2 stability of the scheme by analysing its numerical diffusion operator.

This would give a new insight into the scheme and prove at least a linear stability and a nonlinear

stability in the case of almost constant initial data.

In this section, we assume that the exact solution is smooth and we determine the numerical

diffusion of the scheme (4.16-4.17). In the context of staggered schemes, we have two meshes: one

for the cell centered unknowns at points xi, i = 1, · · · , N and the other for the unknowns defined

on edges at points xi+1/2. Then we could write the consistency error for the momentum equation

around x = xi or xi+1/2. To stay in the spirit of the staggered schemes, we first develop the analysis

around x = xi+1/2 then in a second time around x = xi to be closer to the classical analysis of the

consistency error. To obtain the consistency error for the mass equation, we perform the following

Taylor expansions around x = xi, assuming smooth solutions with u 6= 0 :

ρi−1 = ρ(xi)−∆x∂xρ(xi) +
1

2
(∆x)2∂xxρ(xi) +O(∆x3) (4.22)

ρi+1 = ρ(xi) + ∆x∂xρ(xi) +
1

2
(∆x)2∂xxρ(xi) +O(∆x3) (4.23)

ui− 1
2

= u(xi)−
∆x

2
∂xu(xi) +

1

2

(
∆x

2

)2

∂xxu(xi) +O(∆x3) (4.24)

ui+ 1
2

= u(xi) +
∆x

2
∂xu(xi) +

1

2

(
∆x

2

)2

∂xxu(xi) +O(∆x3) (4.25)

Mass numerical diffusion From (4.16), (A.1) and (A.2) the discrete mass flux is (we omit the

time indices)

ρup
i+ 1

2

ui+ 1
2
− ρup

i− 1
2

ui− 1
2

= ∆x∂x(ρu)(xi)−
1

2
(∆x)2sign(u(xi))∂x(u(xi)∂xρ) +O(∆x3).(4.26)

Hence the mass flux consistency is finally

ρup
i+ 1

2

ui+ 1
2
− ρup

i− 1
2

ui− 1
2

∆x
= ∂x(ρu)(xi)−

∆x

2
sign(u(xi))∂x(u∂xρ)(xi) +O(∆x2). (4.27)

and the numerical diffusion associated to th mass conservation law is the strongly non linear

diffusion term sign(u)∂x(u∂xρ). The linear stability analysis of such a strongly nonlinear diffusion

is not classical and we are not aware of any reference.

If we assume that u does not change sign then the diffusion term simplifies to the weakly non linear
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diffusion term ∂x(|u|∂xρ) which is positive diffusion coefficient |u|. The weakly non linear diffusion

term ∂x(|u|∂xρ) can be linearised around a constant state (ρ0, u0 6= 0 as:

∂x(|u0|∂xρ) + ∂x(|u|∂xρ0) = |u0|∂xxρ).

Hence if u > 0 or u < 0 the mass equation has a positive contribution on the diagonal of the

numerical diffusion tensor D and thus has a stabilising effect.

If we allow u to change sign then the multiplication with sign(u) makes things more complicate

and we can not rule out potential instabilities. The linearisation is not trivial since the smoothness

of u does not imply even the continuity of sign(u). The consistency analysis is only a first step

that requires smooth solutions but the final goal of capturing discontinuous weak solutions with

velocity that change sign will raise even more questions.

Momentum numerical diffusion For the momentum numerical diffusion we compute

� the contribution from the pressure

pi+1−pi = ∆x∂xp(xi)+
1

2
(∆x)2∂xxp(xi)+O(∆x3).pi+1−pi = ∆x∂xp(xi+ 1

2
)+O(∆x3). (4.28)

� the contribution from the time evolution term (case of the conservative scheme (4.16-4.17))

∂t(ρ̄i+ 1
2
u)(xi+ 1

2
, t) = ∂t(ρu)(xi+ 1

2
, t) + ∂t

(
ρ(xi+1)− 2ρ(xi+ 1

2
) + ρ(xi)

2
u

)
(xi+ 1

2
, t)(4.29)

= ∂t(ρu)(xi+ 1
2
, t) +

1

2

(
∆x

2

)2

∂t ((∂xxρ)u) (xi+ 1
2
, t) +O(∆x3)(4.30)

The time evolution term will bring a perturbation in (∆x)2 that we can neglect since we are

interested in first order error terms in (∆x).

To obtain the consistency error, we perform the following Taylor expansions around x = xi+ 1
2
,

assuming smooth solutions with u 6= 0:

ρi+1 = ρ(xi+ 1
2
) +

∆x

2
∂xρ(xi+ 1

2
) +

∆x2

8
∂xxρ(xi+ 1

2
) +O(∆x3)

ρi+2 = ρ(xi+ 1
2
) +

3∆x

2
∂xρ(xi+ 1

2
) +

9∆x2

8
∂xxρ(xi+ 1

2
) +O(∆x3)

ρi = ρ(xi+ 1
2
)− ∆x

2
∂xρ(xi+ 1

2
) +

∆x2

8
∂xxρ(xi+ 1

2
) +O(∆x3)

ρi−1 = ρ(xi+ 1
2
)− 3∆x

2
∂xρ(xi+ 1

2
) +

9∆x2

8
∂xxρ(xi+ 1

2
) +O(∆x3)

ui+ 3
2

= u(xi+ 1
2
) + ∆x∂xu(xi+ 1

2
) +

1

2
(∆x)2∂xxu(xi+ 1

2
) +O(∆x3)

ui− 1
2

= u(xi+ 1
2
)−∆x∂xu(xi+ 1

2
) +

1

2
(∆x)2∂xxu(xi+ 1

2
) +O(∆x3)

(4.31)

Momentum numerical diffusion From (4.17), (A.7) and (A.8), the discrete momentum flux

yields (we omit the time indices)

ρui+1u
up
i+1 − ρuiu

up
i = ∆x∂x(ρu2)(xi+ 1

2
)− ∆x2

2
sign(ρu(xi+ 1

2
))∂x(ρu∂xu)(xi+ 1

2
)

− ∆x2

2
sign(u(xi+ 1

2
))∂x(u2∂xρ)(xi+ 1

2
) +O(∆x3)

(4.32)
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Hence, from (4.32) and (4.28), the momentum flux consistency is finally:

ρui+1u
up
i+1 − ρuiu

up
i

∆x
+
pi+1 − pi

∆x
= ∂x(ρu2)(xi+ 1

2
) + ∂xp(xi+ 1

2
)

− ∆x

2

{
sign(u(xi+ 1

2
))∂x(u2∂xρ)(xi+ 1

2
) + sign(ρu(xi+ 1

2
))∂x(ρu∂xu)(xi+ 1

2
)
}

+ O(∆x2)
(4.33)

For smooth solutions u and ρ:

∂x(ρu∂xu) = ∂x(ρu∂x
q

ρ
) = ∂x(u∂xq − u2∂xρ)

We obtain:

ρui+1u
up
i+1 − ρuiu

up
i

∆x
+
pi+1 − pi

∆x
= ∂x(ρu2)(xi+ 1

2
) + ∂xp(xi+ 1

2
)

− ∆x

2

{(
sign(u(xi+ 1

2
))− sign(ρu(xi+ 1

2
))
)
∂x(u2∂xρ)(xi+ 1

2
)

+sign(ρu(xi+ 1
2
))∂x(u∂xq)(xi+ 1

2
)
}

+O(∆x2)

(4.34)

Assuming that the scheme (4.16-4.17) preserves the positivity of ρ, we have:

sign(ρu(xi+ 1
2
)) = sign(u(xi+ 1

2
))

Hence:

ρui+1u
up
i+1 − ρuiu

up
i

∆x
+
pi+1 − pi

∆x
= ∂x(ρu2)(xi+ 1

2
) + ∂xp(xi+ 1

2
)

− ∆x

2
sign(u(xi+ 1

2
))∂x(u∂xq)(xi+ 1

2
) +O(∆x2)

(4.35)

The numerical diffusion associated to the momentum conservation law is the term sign(u)∂x(u∂xq)

and is decoupled from the mass diffusion. The linear stability analysis of such a strongly non linear

diffusion is not classical and we are not aware of any reference in the litterature.

If we assume that u does not change sign then the diffusion term simplifies to the weakly non linear

diffusion term ∂x(|u|∂xq) which involves a positive diffusion coefficient |u|. The weakly non linear

diffusion term ∂x(|u|∂xq) can be linearised around a constant state (q0, u0 6= 0 as:

∂x(|u0|∂xq) + ∂x(|u|∂xq0) = |u0|∂xxq).

Hence if u > 0 or u < 0 the momentum equation has a positive contribution on the diagonal of the

numerical diffusion tensor D and thus has a stabilising effect.

If we allow u to change sign then the multiplication with sign(u) makes things more complicated

and we can not rule out potential instabilities. The linearisation is not trivial, even taking u smooth

enough, since the function sign(u) is not continuous. The consistency analysis is only a first step

that requires smooth solutions but the final goal of capturing discontinuous weak solutions with

velocity that change sign will raise even more issues.

Finally, the staggered scheme (4.16-4.17) have the following numerical diffusion operator:

∂tU∆x + ∂xF (U∆x) = D(U∆x,∆x) +O(∆x2)

D(U∆x,∆x) =
∆x

2

(
sign(u(xi)) 0

0 sign(u(xi+ 1
2
))

)
∂x

((
u(xi) 0

0 u(xi+ 1
2
)

)
∂x

(
ρ(xi)

q(xi+ 1
2
)

))
(4.36)
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Now that we derived the consistency error around the point x = xi+1/2 for the momentum equation

we turn to the classical way to analyse the consistency error around x = xi.

� the contribution from the pressure

pi+1 − pi = ∆x∂xp(xi) +
1

2
(∆x)2∂xxp(xi) +O(∆x3). (4.37)

� the contribution from the time evolution term (case of the conservative scheme (4.16-4.17))

ρ̄i+ 1
2
ui+ 1

2
=

1

2
(ρi + ρi+1)ui+ 1

2

= (ρu)(xi) +
∆x

2
∂x(ρu)(xi) +

∆x2

8
ρ∂xxu(xi) +

∆x2

4
∂x(u∂xρ)(xi) +O(∆x3)

(4.38)

Since we are interested in first order error terms in (∆x), we neglect the perturbation in

(∆x)2 and obtain:

∂t(ρ̄i+ 1
2
u)(xi, t) = ∂t(ρu)(xi, t) +

∆x

2
∂t(∂x(ρu))(xi, t) +O(∆x2) (4.39)

Since (ρu)(xi, t) is a solution of (4.9):

∂t(∂x(ρu))(xi, t) = ∂x(∂t(ρu))(xi, t) = −∂xx(ρu2)(xi, t)− ∂xxp(xi, t)

∂t(ρ̄i+ 1
2
u)(xi, t) = ∂t(ρu)(xi, t)−

∆x

2
∂xx(ρu2)(xi, t)−

∆x

2
∂xxp(xi, t) +O(∆x2) (4.40)

We seek to derive the numerical diffusion for the momentum equation around x = xi:

ρui+1u
up
i+1 − ρuiu

up
i = ∆x

(
∂x(ρu2)(xi) +

∆x

2
∂xx(ρu2)(xi)

)
− ∆x2

2
sign(u(xi))∂x(u∂xq)(xi) +O(∆x3)

(4.41)

Hence, from (4.41) and (4.37), the momentum flux consistency is finally:

∂t(ρ̄i+ 1
2
u) +

ρui+1u
up
i+1 − ρuiu

up
i

∆x
+
pi+1 − pi

∆x
= ∂t(ρu)(xi) + ∂x(ρu2)(xi) + ∂xp(xi)

− ∆x

2
{sign(u(xi))∂x(u∂xq)(xi)− ∂xxp(xi)

−∂xx(ρu2)(xi)− ∂t(∂x(ρu))(xi)
}

+O(∆x2)
(4.42)

From (4.40), we obtain:

∂t(ρ̄i+ 1
2
u) +

ρui+1u
up
i+1 − ρuiu

up
i

∆x
+
pi+1 − pi

∆x
= ∂t(ρu)(xi) + ∂x(ρu2)(xi) + ∂xp(xi)

− ∆x

2
sign(u(xi))∂x(u∂xq)(xi) +O(∆x2)

(4.43)

Finally, the staggered scheme (4.16-4.17) have the following numerical diffusion operator when the

consistency error is derived around x = xi in the momentum equation:

∂tU∆x + ∂xF (U∆x) = D(U∆x,∆x) +O(∆x2)

D(U∆x,∆x) =
∆x

2

(
sign(u(xi)) 0

0 sign(u(xi))

)
∂x

((
u(xi) 0

0 u(xi)

)
∂x

(
ρ(xi)

q(xi)

)) (4.44)

Hence, we have the following result on the numerical diffusion operator of the staggered schemes.
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Theorem 4.2 (Numerical diffusion of staggered schemes). The second order perturbation operator

associated to the staggered scheme (4.16-4.17) on a 1D regular mesh with space step ∆x is the

strongly nonlinear operator :

D(U,∆x) = 4x
(
sign(u) 0

0 sign(u)

)
∂x

[(
u 0

c2 u

)
∂x

(
ρ

q

)]
+ o(4x). (4.45)

The numerical diffusion associated to the mass conservation law is the same for every staggered

scheme since they all have the same discretisation of the mass equation. Hence all the staggered

schemes have a non classical diffusion operator at least for the mass equation. Each staggered

scheme differs from the others with the discretisation of the momentum equation, especially the

convective term (non conservative or conservative scheme, implicit or semi implicit, ...). Hence,

theorem 4.2 holds for both the mass and the momentum equations only for the Herbin et al

staggered scheme (4.16-4.17).

In the context of staggered schemes, there are two meshes, one for the density ρ and one for the

velocity u. Hence we have two options to write the consistency error for the momentum equation.

This leads to two numerical diffusion operators (4.36) and (4.44). (4.36) writes the momentum

consistency equation at point xi+1/2 whereas (4.44) writes it at point xi. Provided that the velocity

u has a constant sign then these operators are equivalent and the diffusion operator (4.36) obtained

around xi+1/2 = xi+
∆x

2
converges towards the diffusion operator (4.44) obtained around xi, when

∆x tends to zero. However, if the velocity changes sign, there is not enough regularity to have

the equivalence of (4.36) and (4.44). In practice, the velocity u changes sign on a finite number of

points in the domain, hence, the numerical diffusion operators (4.36) and (4.44) will differ only in

some points.

In the next section, we propose a new class of staggered schemes whose numerical diffusion operator

has a classical form (4.3) and ensures the L2-stability of the scheme.

4.3 A new class of staggered schemes for the Euler equations

The most advanced result regarding staggered schemes are the kinetic energy inequality and the

entropic stability proved for the scheme (4.16-4.17) in [66]. These properties however do not

guarantee the boundedness of the solution (see the discussion in section 4.1.2). In this section,

we propose a class of staggered schemes for conservation laws (4.1) which are linearly L2-stable.

Unlike classical staggered schemes which have a non classical diffusion operator (see the discussion

at the end of section 4.2.1 and therorem 4.2). We impose a classical diffusion operator D (4.3),

such that the diffusion tensor verifies: ¯̄D + t ¯̄D ≥ 0, where D̄ is the matrix D in the basis that

symmetrises the Euler system.

We specify this new class in the particular case of the following 2D isentropic Euler equations in

conservative form: 
∂tρ+∇ · ~q = 0

∂t~q +∇ · ~q ⊗ ~q
ρ

+ ~∇p = 0
. (4.46)
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This can be written: 

∂tρ+ ∂qx + ∂qy = 0

∂tqx + ∂x

(
q2
x

ρ

)
+ ∂y

(
qxqy
ρ

)
+ c2∂xρ = 0

∂tqy + ∂x

(
q2
y

ρ

)
+ ∂x

(
qxqy
ρ

)
+ c2∂yρ = 0

. (4.47)

The isentropic Euler system takes the conservative form

∂tU +∇ · F (U) = 0, (4.48)

where U = (ρ, ~q) and F is the flux matrix.

The isentropic Euler system takes the non conservative form

∂tU +Ax(U)∂xU +Ay(U)∂yU = 0. (4.49)

It is usual to define the Jacobian of F along vectors ~n = (nx, ny) ∈ R2 as

A(U,~n) = nxAx(U) + nyAy(U)

=

(
0 t~n

c2~n− (~u · ~n)~u ~u⊗ ~n+ (~u · ~n)I2

)
,

(4.50)

with c2 =
∂p

∂ρ
assumed constant.

We consider the class Stag of discrete staggered conservative schemes of the form:

U ′i,j(t) +
F x+ − F x−

∆x
+
F y+ − F y−

∆y
= 0, with: Ui,j =

 ρi,j
qxi+1/2,j

qyi,j+1/2

 , and: (4.51)

F x+ =
F x(Ui,j) + F x(Ui+1,j)

2
+DStag(Ui,j , Ui+1,j , ~nx)

Ui,j − Ui+1,j

2
, (4.52)

F y+ =
F y(Ui,j) + F y(Ui,j+1)

2
+DStag(Ui,j , Ui,j+1, ~ny)

Ui,j − Ui,j+1

2
, (4.53)

where DStag is a 3 × 3 matrix valued function. An example of scheme in the class Stag is the

staggered centered scheme, which correspond to the case DStag = 0.

Schemes of the class Stag admit a classical diffusion operator (4.3).

Theorem 4.3 (Classical diffusion of Stag schemes). Let DStag : R3 → R3×3 be a matrix valued

Lipshitz function. A staggered conservative scheme (4.51) with a numerical flux F x+ and F x− of the

form (4.53) admits the following classical diffusion operator

D(U,∆x,∆y) = ∆x∂x(DStag(U,U, ~nx)∂xU) + ∆y∂y(DStag(U,U, ~ny)(∂yU) + o(4x,4y).

on a regular mesh with space steps ∆x and ∆y.

In the sequel, we analyse an element of the class of schemes Stag whose expression is:

∂tρi,j +
q̄xi+1/2,j − q̄xi−1/2,j

∆x
+
q̄yi,j+1/2 − q̄

y
i,j−1/2

∆y
= 0

∂tq
x
i+1/2,j +

¯( q2x
ρ

)
i+1,j

− ¯( q2x
ρ

)
i,j

∆x
+

¯̄( qxqy
ρ

)
i+1/2,j+1/2

−
¯̄( qxqy
ρ

)
i+1/2,j−1/2

∆y
+ c2 ρi+1,j − ρi,j

∆x
= 0

∂tq
y
i,j+1/2 +

¯( q2y
ρ

)
i,j+1

− ¯( q2y
ρ

)
i,j

∆y
+

˜(
qxqy
ρ

)
i+1/2,j+1/2

− ˜(
qxqy
ρ

)
i−1/2,j+1/2

∆x
+ c2 ρi,j+1 − ρi,j

∆y
= 0

.

(4.54)
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This numerical scheme (4.54) can be written in the form (4.51)-(4.53) based on the following

numerical flux:

F x+ =



q̄xi+1/2,j

¯(
q2
x

ρ

)
i+1,j

+ c2ρi+1,j

˜(
qxqy
ρ

)
i+1/2,j+1/2

 , F y+ =



q̄yi,j+1/2

¯̄(
qxqy
ρ

)
i+1/2,j+1/2

¯(q2
y

ρ

)
i,j+1

+ c2ρi,j+1


. (4.55)

Using the Roe average, the scheme takes a more compact form that follows:

q̄xi+1/2,j = qxi+1/2,j + (|ux| − ux)
ρi,j − ρi+1,j

2

¯(
q2
x

ρ

)
i+1,j

=
(qxi+1/2,j)

2

ρi,j
+ (|ux| − ux)

qxi+1/2,j − qxi+3/2,j

2

˜(
qxqy
ρ

)
i+1/2,j+1/2

=
qxi+1/2,jq

y
i,j+1/2

ρi,j
+ (|uy| − uy)

qxi+1/2,j − qxi+1/2,j+1

2

Where ux is a Roe-type average: ux =

qx
i+1/2,j√
ρi,j

+
qx
i+3/2,j√
ρi+1,j√

ρi,j +
√
ρi+1,j

q̄yi,j+1/2 =
(qyi,j+1/2)2

ρi,j
+ (|uy| − uy)

qyi,j+1/2 − q
y
i,j+3/2

2
¯̄(
qxqy
ρ

)
i+1/2,j+1/2

=
qxi+1/2,jq

y
i,j+1/2

ρi,j
+ (|ux| − ux)

qyi,j+1/2 − q
y
i+1,j+1/2

2

Where uy is a Roe-type average: uy =

qy
i,j+1/2√
ρi,j

+
qy
i,j+3/2√
ρi,j+1√

ρi,j +
√
ρi,j+1

Using the fact that the numerical scheme (4.54) has a numerical flux of the form (4.51-4.53), we

can determine the scheme upwind operator: DStag(Ui,j , Ui+1,j , ~nx).

F x+ −
F x(Ui,j) + F x(Ui+1,j)

2
=



q̄xi+1/2,j

¯(
q2
x

ρ

)
i+1,j

+ c2ρi+1,j

˜(
qxqy
ρ

)
i+1/2,j+1/2



−1

2


qxi+1/2,j + qxi+3/2,j

(qxi+1/2,j)
2

ρi,j
+

(qxi+3/2,j)
2

ρi+1,j
+ c2(ρi,j + ρi+1,j)

qxi+1/2,j

ρi,j
qyi,j+1/2 +

qxi+3/2,j

ρi+1,j
qyi+1,j+1/2


= −1

2

|ux| − ux 1 0

−c2 − u2
x |ux|+ ux 0

−uxuy uy |ux|


 ρi+1,j − ρi,j

qxi+3/2,j − qxi+1/2,j

qyi+1,j+1/2 − q
y
i,j+1/2


(4.56)
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We obtain DStag(Ui,j , Ui+1,j , ~nx) and DStag(Ui,j , Ui,j+1, ~ny) (with the same approach on F+
y ) the

matrices coming from the upwind contributions of the discrete equations:

DStag(Ui,j , Ui+1,j , ~nx) =

|ux| − ux 1 0

−c2 − u2
x |ux|+ ux 0

−uxuy uy |ux|

 ,

DStag(Ui,j , Ui,j+1, ~ny) =

|uy| − uy 0 1

−uxuy |uy| ux
−c2 − u2

y 0 |uy|+ uy


(4.57)

4.3.1 The linearised system

In order to simplify the stability analysis we consider the linearised Euler system around a state

with density ρ0, momentum ~q0 and velocity ~u0 =
1

ρ0
~q0. From the identity:

∇ · ~q ⊗ ~q
ρ

= (∇ · ~q)~q
ρ

+ (~∇~q)~q
ρ
− ~q ⊗ ~q

ρ2
~∇ρ,

the linearised Euler system is obtained as the following constant coefficient PDE system ∂tρ+∇ · ~q = 0

∂t~q +
(

(∇ · ~q)Id + ~∇~q
)
~u0 + (c2Id − ~u0 ⊗ ~u0)~∇ρ = 0

. (4.58)

This can be written:
∂tρ+ ∂xqx + ∂yqy = 0

∂tqx + ux0(∇ · q + ∂xqx) + uy0∂yqx + (c2 − (ux0)2)∂xρ− ux0uy0∂yρ = 0

∂tqy + uy0(∇ · q + ∂yqy) + ux0∂xqy + (c2 − (uy0)2)∂yρ− ux0uy0∂xρ = 0

. (4.59)

The linearised Euler system takes the form

∂tU +∇ · F̄ (U) = 0, (4.60)

where U = (ρ, ~q) and F̄ is the linearisation of the matrix flux F , and satisfies F̄ (U)~n = Ā(~n)U

where the jacobian matrix Ā(~n) = nxĀx + nyĀy has expression

∀~n ∈ R2, Ā(~u0, ~n) =

(
0 t~n

c2~n− (~u0 · ~n)~u0 ~u0 ⊗ ~n+ (~u0 · ~n)Id

)
, (4.61)

The scheme (4.54) applied to the linearised Euler system writes:

∂tρi,j +
q̄xi+1/2,j − q̄xi−1/2,j

∆x
+
q̄yi,j+1/2 − q̄

y
i,j−1/2

∆y
= 0

∂tq
x
i+1/2,j + 2ux0

q̄xi+1,j − q̄xi,j
∆x

+ ux0
¯̄qyi,j+1 − ¯̄qyi,j

∆y
+ uy0

q̃xi+1/2,j+1/2 − q̃xi+1/2,j−1/2

∆y

+c2 ρi+1,j − ρi,j
∆x

− (ux0)2 ρi,j − ρi−1,j

∆x
− ux0uy0

ρi,j − ρi,j−1

∆y
= 0

∂tq
y
i,j+1/2 + 2uy0

q̄yi,j+1 − q̄
y
i,j

∆y
+ uy0

¯̄qxi+1,j − ¯̄qxi,j
∆x

+ ux0
q̃yi+1/2,j+1/2 − q̃

y
i−1/2,j+1/2

∆x

+c2 ρi,j+1 − ρi,j
∆y

− (uy0)2 ρi,j − ρi,j−1

∆y
− ux0uy0

ρi,j − ρi−1,j

∆x
= 0

. (4.62)
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The numerical scheme (4.62) can be written in the form (4.51)-(4.53) as follows:

U ′i,j(t) +
F̄ x+ − F̄ x−

∆x
+
F̄ y+ − F̄ y−

∆y
= 0, with: Ui,j =

 ρi,j
qxi+1/2,j

qyi,j+1/2

 , and: (4.63)

F̄ x+ =
F̄ x(Ui,j) + F̄ x(Ui+1,j)

2
+ D̄Stag(~u0, ~u0, ~nx)

Ui,j − Ui+1,j

2
, (4.64)

F̄ y+ =
F̄ y(Ui,j) + F̄ y(Ui,j+1)

2
+ D̄Stag(~u0, ~u0, ~ny)

Ui,j − Ui,j+1

2
, (4.65)

based on the following numerical flux:

F̄ x+ =


q̄xi+1/2,j

2ux0 q̄
x
i+1,j + c2ρi+1,j − (ux0)2ρi,j

uy0 ¯̄qi+1,j − ux0uy0ρi,j + ux0 q̃
y
i+1/2,j+1/2

 , F̄ y+ =


q̄yi,j+1/2

ux0 ¯̄qyi,j+1 − ux0u
y
0ρi,j + uy0 q̃

x
i+1/2,j+1/2

2uy0 q̄
y
i,j+1 + c2ρi,j+1 − (uy0)2ρi,j

 .

(4.66)

Using the Roe average, the scheme takes a more compact form that follows:

q̄xi+1/2,j = qxi+1/2,j + (|ux0 | − ux0)
ρi,j − ρi+1,j

2

q̄xi+1,j =
qxi+1/2,j + qxi+3/2,j

2
+

1 + sign(ux0)

2

qxi+1/2,j − qxi+3/2,j

2
¯̄qxi+1,j = qxi+1/2,j

q̃yi+1/2,j+1/2 =
qyi,j+1/2 + qyi+1,j+1/2

2
+ sign(ux0)

qyi,j+1/2 − q
y
i+1,j+1/2

2

q̄yi,j+1/2 = qyi,j+1/2 + (|uy0| − uy0)
ρi,j − ρi,j+1

2

q̄yi,j+1 =
qyi,j+1/2 + qyi,j+3/2

2
+

1 + sign(uy0)

2

qyi,j+1/2 − q
y
i,j+3/2

2
¯̄qyi,j+1 = qyi,j+1/2

q̃xi+1/2,j+1/2 =
qxi+1/2,j + qxi+1/2,j+1

2
+ sign(uy0)

qxi+1/2,j − qxi+1/2,j+1

2

Using the fact that the numerical scheme (4.62) has a numerical flux of the form (4.63-4.65), we

can determine the scheme upwind operator: D̄Stag(~u0, ~u0, ~nx).

F̄ x+ − F̄ x(Ui,j) + F̄ x(Ui+1,j)

2
=


q̄xi+1/2,j

2ux0 q̄
x
i+1,j + c2ρi+1,j − (ux0)2ρi,j

uy0 ¯̄qi+1,j − ux0uy0ρi,j + ux0 q̃
y
i+1/2,j+1/2



−1

2


qxi+1/2,j + qyi+3/2,j

2ux0(qxi+1/2,j + qxi+3/2,j) + (c2 − (ux0)2)(ρi,j + ρi+1,j)

uy0(qxi+1/2,j + qxi+3/2,j)− ux0u
y
0(ρi,j + ρi+1,j) + ux0(qyi,j+1/2 + qyi+1,j+1/2)


= −1

2

 |ux0 | − ux0 1 0

−c2 − (ux0)2 |ux0 |+ ux0 0

−ux0uy0 uy0 |ux0 |


 ρi+1,j − ρi,j

qxi+3/2,j − qxi+1/2,j

qyi+1,j+1/2 − q
y
i,j+1/2



(4.67)
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We obtain D̄Stag(~u0, ~u0, ~nx) and D̄Stag(~u0, ~u0, ~ny) (with the same approach on F̄+
y ) the matrices

coming from the upwind contributions of the discrete equations:

D̄Stag(~u0, ~u0, ~nx) =

 |ux0 | − ux0 1 0

−c2 − (ux0)2 |ux0 |+ ux0 0

−ux0uy0 uy0 |ux0 |

 , D̄Stag(~u0, ~u0, ~ny) =

 |uy0| − uy0 0 1

−ux0uy0 |uy0| ux0
−c2 − (uy0)2 0 |uy0|+ uy0


(4.68)

4.3.2 Linear stability of the class Stag

In order to study the stability of the Stag class of staggered schemes, the first step is to use the

variables that symmetrise the continuous system and the second to prove that the energy (L2

norm) of the new variables decreases with time. The reason why symmetrising is important is that

the contribution of the first order derivatives to the energy balance:∫
R2

tV Ax∂xV + tV Ay∂yV dxdy

vanishes if A is a symmetric matrix since in that case

tV Ax∂xV + tV Ay∂yV = ∂x
1

2
tV AxV + ∂y

1

2
tV AyV,

which is the divergence of the vector field
1

2

(tV AxV
tV AyV

)
.

The linearised Euler system can be symmetrised using the variable V =

(
cρ

~q − ρ~u0

)
. We obtain

the following system that is equivalent to the linearised Euler system:{
∂tρ̃+ c∇ · ~u+ ~u0 · ~∇ρ̃ = 0

∂t~u+ (~∇~u)~u0 + c~∇ρ̃ = 0

with ρ̃ =
c

ρ0
ρ. The symmetrisation of the linearised Euler system therefore takes the form:

∂tV +∇ · ¯̄F (V ) = 0

where ¯̄F is the symmetrisation of the linearised matrix flux F̄ . The Jacobian matrix associated to
¯̄F is the symmetric operator ¯̄A with expression:

¯̄A(~u0, ~n) =

(
~u0 · ~n ct~n

c~n ~u0 · ~n

)

From the symmetrised Euler system, we have the following property of L2 stability for the schemes

of the class Stag.

Theorem 4.4 (L2-stability of Stag schemes). A staggered conservative scheme (4.51) with a

numerical flux F x+, F
y
+ of the form (4.53) such that the diffusion operator DStag verifies: ¯̄DStag +

t ¯̄DStag ≥ 0, is linearly L2-stable.
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Proof. After the linearisation around the state V0R3 and symmetrisation, the Euler system takes

the form:

∂tV + ¯̄A(V0)∇ · V = 0, V =

(
cρ

~q − ρ~u0

)
The values Vi,j of V in the cell Ci,j are solutions of:

∂tVi,j +
¯̄F x+ − ¯̄F x−

∆x
+

¯̄F y+ − ¯̄F y−
∆y

= 0

with fluxes:

¯̄F x+ = ¯̄A(V0, ~nx)
Vi,j + Vi+1,j

2
+ ¯̄DStag(V0, V0, ~nx)

Vi,j − Vi+1,j

2

¯̄F y+ = ¯̄A(V0, ~ny)
Vi,j + Vi,j+1

2
+ ¯̄DStag(V0, V0, ~ny)

Vi,j − Vi,j+1

2

We compute the evolution in time of ||V ||22 =

∫
R2

c2ρ2 + ||~q − ρ~u0||2dxdy using the symmetry of ¯̄A

and the positiveness of ¯̄DStag:

1

2

d||V ||22
dt

= V · dV
dt

=
∑
i

∑
j

|Cij |Vi,j ·
dVi,j
dt

= −
∑
i

∑
j

|Cij |Vi,j ·
(

¯̄F x+ − ¯̄F x−
∆x

+
¯̄F y+ − ¯̄F y−

∆y

)

= −1

2

∑
i

∑
j

|Cij |
∆x

Vi,j · ¯̄A(V0, ~nx)(Vi+1,j − Vi−1,j)

− 1

2

∑
i

∑
j

|Cij |
∆x

Vi,j ·
(

¯̄DStag(V0, V0, ~nx)(Vi,j − Vi+1,j)− ¯̄DStag(V0, V0, ~nx)(Vi−1,j − Vi,j)
)

− 1

2

∑
i

∑
j

|Cij |
∆y

Vi,j · ¯̄A(V0, ~ny)(Vi,j+1 − Vi,j−1)

− 1

2

∑
i

∑
j

|Cij |
∆y

Vi,j ·
(

¯̄DStag(V0, V0, ~ny)(Vi,j − Vi,j+1)− ¯̄DStag(V0, V0, ~ny)(Vi,j−1 − Vi,j)
)

Since:
¯̄A(V0, ~nx) = t ¯̄A(V0, ~nx) and ¯̄A(V0, ~ny) = t ¯̄A(V0, ~ny)

Then:∑
i

∑
j

|Cij |
∆x

Vi,j · ¯̄A(V0, ~nx)(Vi+1,j−Vi−1,j) = 0 and:
∑
i

∑
j

|Cij |
∆y

Vi,j · ¯̄A(V0, ~ny)(Vi,j+1−Vi,j−1) = 0

1

2

d||V ||22
dt

= −∆y

2

∑
i

∑
j

(Vi,j − Vi+1,j) · ¯̄DStag(V0, V0, ~nx)(Vi,j − Vi+1,j)

− ∆x

2

∑
i

∑
j

(Vi,j − Vi,j+1) · ¯̄DStag(V0, V0, ~ny)(Vi,j − Vi,j+1)

Since

(Vi,j − Vi+1,j) · ¯̄DStag(V0, V0, ~nx)(Vi,j − Vi+1,j) = t ¯̄DStag(V0, V0, ~nx)(Vi,j − Vi+1,j) · (Vi,j − Vi+1,j)
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We have:

(Vi,j − Vi+1,j) · ¯̄DStag(V0, V0, ~nx)(Vi,j − Vi+1,j) =
1

2
(Vi,j − Vi+1,j)·

(
¯̄DStag(V0, V0, ~nx) + t ¯̄DStag(V0, V0, ~nx)

)
(Vi,j − Vi+1,j)

1

2

d||V ||22
dt

= −∆y

4

∑
i

∑
j

(Vi,j − Vi+1,j) ·
(

¯̄DStag(V0, V0, ~nx) + t ¯̄DStag(V0, V0, ~nx)
)

(Vi,j − Vi+1,j)

− ∆x

4

∑
i

∑
j

(Vi,j − Vi,j+1) ·
(

¯̄DStag(V0, V0, ~ny) + t ¯̄DStag(V0, V0, ~ny)
)

(Vi,j − Vi,j+1)

= −∆y

4

(
¯̄DStag(V0, V0, ~nx) + t ¯̄DStag(V0, V0, ~nx)

)∑
i

∑
j

||Vi,j − Vi+1,j ||22

− ∆x

4

(
¯̄DStag(V0, V0, ~ny) + t ¯̄DStag(V0, V0, ~ny)

)∑
i

∑
j

||Vi,j − Vi,j+1||22

Since: ¯̄DStag(V0, V0, ~n) + t ¯̄DStag(V0, V0, ~n) ≥ 0, we obtain
1

2

d||V ||22
dt

≤ 0.

Corollary 4.5. The numerical scheme (4.54) is linearly L2 stable.

Proof. We determine the upwinding matrices ¯̄DStag(V0, V0, ~nx) and ¯̄DStag(V0, V0, ~ny):

We have: V = PU with: P =

(
c 0

−~u0 I2

)
, P−1 =

 1

c
0

~u0

c
I2

.

Thus, we have:

¯̄DStag(V0, V0, ~nx) = PD̄Stag(V0, V0, ~nx)P−1 =

(|~u0 · ~nx| ct~nx
−c~nx |~u0 · ~nx|I2

)

¯̄DStag(V0, V0, ~ny) = PD̄Stag(V0, V0, ~ny)P
−1 =

(|~u0 · ~ny| ct~ny
−c~ny |~u0 · ~ny|I2

)
We have:

1

2

d||V ||22
dt

= −∆y

4

∑
i

∑
j

(Vi,j − Vi+1,j) ·
(

¯̄DStag(V0, V0, ~nx) + t ¯̄DStag(V0, V0, ~nx)
)

(Vi,j − Vi+1,j)

− ∆x

4

∑
i

∑
j

(Vi,j − Vi,j+1) ·
(

¯̄DStag(V0, V0, ~ny) + t ¯̄DStag(V0, V0, ~ny)
)

(Vi,j − Vi,j+1)

Since:

¯̄DStag(V0, V0, ~nx)+t ¯̄DStag(V0, V0, ~nx) = |~u0·~nx|I3 and: ¯̄DStag(V0, V0, ~ny)+
t ¯̄DStag(V0, V0, ~ny) = |~u0·~ny|I3

1

2

d||V ||22
dt

= −∆y

4
|~u0 · ~nx|

∑
i

∑
j

||Vi,j − Vi+1,j ||22 −
∆x

4
|~u0 · ~ny|

∑
i

∑
j

||Vi,j − Vi,j+1||22

1

2

d||V ||22
dt

≤ 0

Since ¯̄DStag satisfies the hypotheses of Theorem 4.4, this numerical scheme is linearly L2 stable.
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Remark 4.6. For one dimensionnal flows and low Mach numbers (
|u|
c
� 1), the numerical scheme

(4.54) of the class Stag has the following numerical diffusion matrix:

DStag =

(
0 1

−c2 0

)
+O(

1

c
),

obtained for a fixed velocity u and the sound speed c tending to infinity in (4.57). We see that the

diffusion is less important on the mass than on the momentum equation while it is evenly distributed

for the Roe scheme (see 4.13). In the mass equation, the discretisation introduced a perturbation

4x∂xxq:
∂tρ+ ∂xq = 4x∂xxq + o(4x). (4.69)

It can be expected that the scheme (4.54) yield a better accuracy with less numerical diffusion on

the mass equation than the upwind scheme (4.14).

Now that we proved that the scheme (4.54) is L2-stable, we show in the next section some

numerical results with an implicit version of the numerical scheme.

4.4 Numerical results

In this section, we assess the behaviour of our new staggered scheme ([92]) on a one dimensional

Riemann problem. The robustness of the scheme is illustrated on a compressible fluid with isother-

mal equation of state p = ρc2 where the sound speed is c = 300m/s. We choose initial conditions

such that the structure of the solution consists in a rarefaction wave followed by a shock wave,

with sufficiently strong shock to allow an easy discrimination of correct numerical solutions. These

initial conditions are:

left state:

(
ρleft
qleft

)
=

( 10

9
100ρleft

)
, right state:

(
ρright
qright

)
=

( ρleft
2

−100ρleft

)

We consider this Riemann problem for the isentropic Euler system (1.11). The problem is posed

over Ω = (0, 1) and the discontinuity is initially located at x = 0.5. In figures 4.1 and 4.2, the

solution displays a rarefaction (smooth) wave followed by a (discontinuous) shock wave. Our new

method is able to capture both waves in a distinct and stable way.
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Figure 4.1: Density at time t = 0.001 with ∆x = 0.002 and CFL= 0.99

Figure 4.2: Momentum at time t = 0.001 with ∆x = 0.002 and CFL= 0.99

4.5 Conclusion

In this chapter, we developed a rigorous framework for the L2-stability analysis of finite volume

schemes on staggered grids. The derivation of the method has required the analysis of some

theoretical aspects beforehand. We also presented some analytical numerical examples on the

solution of the isentropic Euler equations with the purpose of illustrating the technique and its

performances. The family of schemes presented here could be applied in the future to the Cathare

code to handle the numerical difficulties specific to two-phase flows models.

A major challenge for the simulation of two-phase flows is the configuration of the vanishing phase
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where one of the phases disappears in some parts of the domain. The prediction of this complex

dynamic mainly relies on the capture of the void waves that appear in the two-fluid model. Since

the void waves have a complex structure with a propagation speed that frequently change signs,

it is important for the numerical scheme to be stable regardless of the velocity sign. Our new

class of staggered schemes is a promising alternative to the actual numerical treatment of the

vanishing phase implemented in the Cathare code. The actual strategy relies on an interfacial

friction coefficient that becomes high when one of the phases vanishes and has reached its limits

for some test cases like the one of the Water-packing, that is relevant for nuclear safety studies. A

first step toward the implementation of a new staggered scheme in the Cathare code could be the

application to the reduced system of [93] that focuses on the study of the void waves.



Appendix A

The numerical diffusion of the Herbin

et al staggered scheme

Preliminary calculations for the mass equation From (4.18) and (4.21) we have

ρup
i+ 1

2

ui+ 1
2

=

(
ρi + ρi+1

2
+ sign(ui+ 1

2
)
ρi − ρi+1

2

)
ui+ 1

2

=

(
ρ(xi) +

1

2

(
∆x∂xρ(xi) +

1

2
(∆x)2∂xxρ(xi) +O(∆x3)

)
(1− sign(u(xi)))

)
×
(
u(xi) +

∆x

2
∂xu(xi) +

1

2

(
∆x

2

)2

∂xxu(xi) +O(∆x3)

)

= ρ(xi)u(xi) +
∆x

2
(ρ(xi)∂xu(xi) + (1− sign(u(xi)))u(xi)∂xρ(xi))

+
∆x2

4

(
ρ(xi)

1

2
∂xxu(xi) + (1− sign(u(xi))) (u(xi)∂xxρ(xi) + (∂xρ)(xi)(∂xu)(xi))

)
+O(∆x3)

= ρ(xi)u(xi) +
∆x

2
(ρ(xi)∂xu(xi) + (1− sign(u(xi)))u(xi)∂xρ(xi))

+
∆x2

4

(
ρ(xi)

1

2
∂xxu(xi) + (1− sign(u(xi)))∂x(u∂xρ)(xi)

)
+O(∆x3) (A.1)

ρup
i− 1

2

ui− 1
2

=

(
ρi−1 + ρi

2
+ sign(ui− 1

2
)
ρi−1 − ρi

2

)
ui− 1

2

=

(
ρ(xi) +

1

2

(
−∆x∂xρ(xi) +

1

2
(∆x)2∂xxρ(xi) +O(∆x3)

)
(1 + sign(u(xi)))

)
×
(
u(xi)−

∆x

2
∂xu(xi) +

1

2

(
∆x

2

)2

∂xxu(xi) +O(∆x3)

)

= ρ(xi)u(xi)−
∆x

2
(ρ(xi)∂xu(xi) + (1 + sign(u(xi)))u(xi)∂xρ(xi))

+
∆x2

4

(
ρ(xi)

1

2
∂xxu(xi) + (1 + sign(u(xi))) (u(xi)∂xxρ(xi) + (∂xρ)(xi)(∂xu)(xi))

)
+O(∆x3)

= ρ(xi)u(xi)−
∆x

2
(ρ(xi)∂xu(xi) + (1 + sign(u(xi)))u(xi)∂xρ(xi))
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+
∆x2

4

(
ρ(xi)

1

2
∂xxu(xi) + (1 + sign(u(xi)))∂x(u∂xρ)(xi)

)
+O(∆x3). (A.2)

Preliminary calculations for the momentum equation
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From (A.3) and (A.5), we have:
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up
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From (A.4) and (A.6), we have:
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5.1 Introduction

In the previous chapter we have derived a linearly L2 stable class of staggered schemes for the

isentropic Euler equations. This linear stability has been characterised by using the properties

of the numerical diffusion matrix. A L2 stable scheme can however capture non entropic weak

solutions as is the case with the Roe scheme ([38, 100]).

In this section, we focus on some non linear property of the scheme, namely the entropy property.

We will characterise the staggered schemes that are entropic by analysing the properties of the

diffusion matrix.

In section 5.1.1, we recall the derivation of the entropy-entropy flux pair for the isentropic Euler

equations. The main result of this chapter is in section 5.2 with the definition of a new class

of entropic staggered schemes. For the sake of simplicity, the analysis is performed in the one

dimensional case with a linear state equation p = ρc2 but the strategy can be extended to the mul-

tidimensional case with a general state law p(ρ). In the last section, we illustrate the performance

of a prototype scheme belonging to the class of entropic staggered schemes on a one dimensional

Riemann problem.

5.1.1 Entropy of the isentropic Euler system

The derivation of the entropy-entropy flux pair is recalled in this section for the particular case

p = ρc2. The proof that the family of staggered schemes is entropic will follow the same lines
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albeit using discrete quantities.

We recall that the mathematical entropy function in this case is

s = ρ

(
1

2
||~u||2 + c2 ln ρ

)
. (5.1)

s is strictly convex since its hessian matrix

H(s) =


||~q||2
ρ3

+
c2

ρ
−
t~q

ρ2

− ~q

ρ2

1

ρ

 (5.2)

is positive definite since c2 > 0.

Let us assume that ~u and ρ are smooth functions solving{
∂tρ + ∇ · (ρ~u) = 0

ρ∂t~u + ρ~u · ∇~u+ ~∇p = 0,
(5.3)

we compute

∂ts =

(
1

2
||~u||2 + c2 ln ρ

)
∂tρ+ ρ

(
~u · ∂t~u+

c2

ρ
∂tρ

)
=

(
1

2
||~u||2 + c2(1 + ln ρ)

)
∂tρ+ ρ~u · ∂t~u.

(5.4)

Using the fact that ~u and ρ solve (5.3), we obtain

−∂ts =

(
1

2
||~u||2 + c2(1 + ln ρ)

)
∇ · (ρ~u) + ρ~u · (~u · ~∇u) + ~u · ~∇p

=
1

2
||~u||2∇ · (ρ~u) + c2 ln ρ∇ · (ρ~u) + c2ρ∇ · ~u+ c2~u · ~∇ρ+ ρ~u · (~u · ~∇u) + ~u · ~∇p.

(5.5)

Since p = ρc2 and c2ρ∇ · ~u+ ~u · ~∇p = ∇ · (p~u) we obtain

−∂ts =
1

2
||~u||2∇ · (ρ~u) + c2 ln ρ∇ · (ρ~u) + c2~u · ~∇ρ+ ρ~u · (~u · ~∇u) +∇ · (p~u). (5.6)

Since ~u · ~∇u =
1

2
~∇||~u||2 + (~∇× ~u)× ~u we obtain

−∂ts =
1

2
||~u||2∇ · (ρ~u) + c2 ln ρ∇ · (ρ~u) + c2~u · ~∇ρ+

1

2
ρ~u · ~∇||~u||2 +∇ · (p~u)

=
1

2
∇ · (||~u||2ρ~u) + c2 ln ρ∇ · (ρ~u) + c2~u · ~∇ρ+∇ · (p~u).

(5.7)

Since ln ρ∇ · (ρ~u) + ~u · ~∇ρ = ∇ · (ρ ln ρ~u) we finally obtain

− ∂ts = ∇ · (1

2
||~u||2ρ~u+ c2ρ ln ρ~u+ p~u). (5.8)

and finally

∂ts+∇ · ((s+ p)~u) = 0, (5.9)

and s is an entropy with the associated entropy flux

g(~u, ρ) =

(
ρ

(
1

2
||~u||2 + c2 ln ρ

)
+ p

)
~u. (5.10)
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5.2 Entropy bound for a new class of staggered schemes

For the sake of pedagogy, we investigate the state law p = ρc2. For general 1D flows, we study the

following scheme:

∂tρi +
q̄i+ 1

2
− q̄i− 1

2

4x = 0, (5.11)

∂tqi+ 1
2

+
1

∆x

(
q̄2
i+1

ρi+1
− q̄2

i

ρi

)
+
pi+1 − pi
4x = 0, (5.12)

In the sequel, we analyse the entropic character of this class of staggered schemes (5.11)-(5.12)

that can be written in a more compact form as follows:

U ′i(t) +
Fi+1 − Fi

∆x
= 0, with: Ui =

(
ρi

qi+1/2

)
, and: (5.13)

Fi+1 =
F (Ui) + F (Ui+1)

2
+DStag(Ui, Ui+1)

Ui − Ui+1

2
(5.14)

where DStag is a 2× 2 matrix valued function:

DStag(Ui, Ui+1) =

(
ai,i+1 bi,i+1

ci,i+1 di,i+1

)

Hence, the interpolated quantities q̄i+1/2, q̄i−1/2,
q̄2
i+1

ρi+1
and

q̄2
i

ρi
have the following expressions:

q̄i+1/2 =
qi+1/2 + qi+3/2

2
+ ai,i+1

ρi − ρi+1

2
+ bi,i+1

qi+1/2 − qi+3/2

2

= qi+1/2 + ai,i+1
ρi − ρi+1

2
+ (bi,i+1 − 1)

qi+1/2 − qi+3/2

2

q̄2
i+1

ρi+1
=

q2
i+1/2

ρi
+

q2
i+3/2

ρi+1

2
+ ci,i+1

ρi − ρi+1

2
+ di,i+1

qi+1/2 − qi+3/2

2

=
q2
i+1/2

ρi
− 1

2

(
q2
i+1/2

ρi
−
q2
i+3/2

ρi+1

)
+ ci,i+1

ρi − ρi+1

2
+ di,i+1

qi+1/2 − qi+3/2

2

=
q2
i+1/2

ρi
+ (ci,i+1 + u2

i,i+1)
ρi − ρi+1

2
+ (di,i+1 − 2ui,i+1)

qi+1/2 − qi+3/2

2

where the Roe average is given by:

ui,i+1 =

qi+1/2√
ρi

+
qi+3/2√
ρi+1√

ρi +
√
ρi+1

(5.15)

The coefficients ai,i+1, bi,i+1, ci,i+1 and di,i+1 depend on the left state Ui =

(
ρi

qi+1/2

)
and the right

state Ui+1 =

(
ρi+1

qi+3/2

)
. In the sequel, we will derive constraints on these coefficients to ensure the

entropic character of a new class of staggered schemes.

From now on, we set the coefficient bi,i+1 = 1. This choice is motivated by the remarks 4.1 and 4.6

made in the previous chapter about the low Mach number accuracy of the upwind-type schemes and
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the staggered schemes. Setting bi,i+1 = 1, we obtain the following expressions for the interpolated

quantities:

q̄i+1/2 = qi+1/2 + ai,i+1
ρi − ρi+1

2

q̄2
i+1

ρi+1
=
q2
i+1/2

ρi
+ (ci,i+1 + u2

i,i+1)
ρi − ρi+1

2
+ (di,i+1 − 2ui,i+1)

qi+1/2 − qi+3/2

2

Hence, the class of staggered schemes we study in this section takes the form (5.13)-(5.14) where

the matrix diffusion has the following generic expresssion:

DStag(Ui, Ui+1) =

(
ai,i+1 1

−c2 + ci,i+1 di,i+1

)
(5.16)

where the term −c2 comes from the discretisation of the pressure gradient.

Theorem 5.1 (A class of entropic staggered schemes). A staggered conservative scheme (5.13)

with a numerical flux Fi,i+1 of the form (5.14) such that, the coefficients ai−1,i, ci−1,i and di−1,i of

the diffusion operator DStag satisfy:

E(ai−1,i, ci−1,i, di−1,) = c2qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+ c2ai−1,i

2
(ρi−1 − ρi) ln
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+
1

2
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(
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−
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)2
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4
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(
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)
+
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2
(qi+1/2 − qi−1/2)

(
qi+1/2

ρi
−
qi−1/2
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)
≥ 0

(5.17)

is entropic and the following discrete entropy dissipation estimate holds:

∂tsi +
1

∆x

(
g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

))
= − 1

∆x
E(ai−1,i, ci−1,i, di−1,i) ≤ 0 (5.18)

where:

g̃

(
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ρi
, ρi

)
=

1

2
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(
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)2
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(
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(
c2(ln ρi + 1)− 1

2

(
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ρi

)2
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+
di,i+1 − 2ui,i+1

2

qi+1/2

ρi
(qi+1/2 − qi+3/2)

(5.19)

is the numerical entropy flux that is consistent with (5.10).

Proof. Firstly, we seek to derive the discrete analog of the velocity evolution equation:

ρ∂tu+ ρu∂xu+ ∂xp = 0 (5.20)

From (5.12), we derive:

ρ̄i+1/2∂t
qi+1/2

ρ̄i+1/2
+
qi+1/2

ρ̄i+1/2
∂tρ̄i+1/2 +

1

∆x

(
q̄2
i+1

ρi+1
− q̄2

i

ρi

)
+
pi+1 − pi
4x = 0
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Assuming ρ̄i+1/2 = ρi, and from (5.11), we obtain:

ρi∂t
qi+1/2

ρi
−
qi+1/2

ρi

q̄i+1/2 − q̄i−1/2

∆x
+

1

∆x

(
q̄2
i+1

ρi+1
− q̄2

i

ρi

)
+
pi+1 − pi
4x = 0

From the expression of the interpolated quantities q̄i+1/2 and
q̄2
i+1

ρi+1
, this yields to:

ρi∂t
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ρi
+ qi−1/2
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∆x
+
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2∆x

(
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ρi

)
+
ρi−1 − ρi

2∆x

(
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ρi
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)
+

di,i+1 − 2ui,i+1

2∆x
(qi+1/2 − qi+3/2) +

di−1,i − 2ui−1,i

2∆x
(qi+1/2 − qi−1/2) = 0

(5.21)

Since s = ρ

(
1

2
||u||2 + c2 ln ρ

)
, we have:

∂tsi = ∂t

(
ρi

(
1

2

(
qi+1/2

ρi

)2

+ c2 ln ρi

))

= ∂tρi

(
1

2

(
qi+1/2

ρi

)2

+ c2 ln ρi

)
+ ρi

qi+1/2

ρi
∂t
qi+1/2

ρi
+ c2∂tρi

From (5.21) and (5.12), we obtain:

−∂tsi =

(
1

2

(
qi+1/2

ρi

)2

+ c2 ln ρi

)
q̄i+1/2 − q̄i−1/2

∆x
+
qi+1/2

ρi
qi−1/2

qi+1/2

ρi
− qi−1/2

ρi−1

∆x
+
qi+1/2

ρi

pi+1 − pi
4x

+
ρi − ρi+1

2∆x

qi+1/2

ρi

(
(ci,i+1 + u2

i,i+1)− ai,i+1

qi+1/2

ρi

)
+
qi+1/2

ρi

ρi−1 − ρi
2∆x

(
ai−1,i

qi+1/2

ρi
− (ci−1,i + u2

i−1,i)

)
+
di,i+1 − 2ui,i+1

2∆x

qi+1/2

ρi
(qi+1/2 − qi+3/2)

+
di−1,i − 2ui−1,i

2∆x

qi+1/2

ρi
(qi+1/2 − qi−1/2) + c2 q̄i+1/2 − q̄i−1/2

∆x

Using:

qi+1/2 − qi−1/2 =
qi−1/2

ρi−1
(ρi − ρi−1) + ρi(

qi+1/2

ρi
−
qi−1/2

ρi−1
),

and:

c2ρi(
qi+1/2

ρi
−
qi−1/2

ρi−1
) +

qi+1/2

ρi
(pi+1 − pi) =

qi+1/2

ρi
pi+1 −

qi−1/2

ρi−1
pi,

We obtain:

−∆x∂tsi =
1

2
qi+1/2

(
qi+1/2

ρi

)2

− 1

2
qi−1/2

(
qi−1/2

ρi−1

)2

+
1

2
qi−1/2

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

+
qi+1/2

ρi
pi+1 −

qi−1/2

ρi−1
pi + c2

(
(qi+1/2 − qi−1/2) ln ρi + qi−1/2

(
ρi
ρi−1

− 1

))

+
ρi − ρi+1

2

(
(ci,i+1 + u2

i,i+1)
qi+1/2

ρi
+ ai,i+1

(
c2(ln ρi + 1)− 1

2

(
qi+1/2

ρi

)2
))
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+
ρi−1 − ρi

2

(
ai−1,i

(
1

2

(
qi+1/2

ρi

)2

− c2(ln ρi + 1)

)
− (ci−1,i + u2

i−1,i)
qi+1/2

ρi

)

+
di,i+1 − 2ui,i+1

2

qi+1/2

ρi
(qi+1/2 − qi+3/2)

+
di−1,i − 2ui−1,i

2

qi+1/2

ρi
(qi+1/2 − qi−1/2)

In order to deal with the term (qi+1/2 − qi−1/2) ln ρi, we add and substract the quantity

c2qi−1/2 ln
ρi
ρi−1

. (5.22)

In order to absorb the terms containing the variables ρi+1 and qi+3/2 into flux differences, we add

and substract the quantities:

ρi−1 − ρi
2

(
(ci−1,i + u2

i−1,i)
qi−1/2

ρi−1
+ ai−1,i

(
c2(ln ρi−1 + 1)− 1

2

(
qi−1/2

ρi−1

)2
))

(5.23)

and
di−1,i − 2ui−1,i

2

qi−1/2

ρi−1
(qi−1/2 − qi+1/2) (5.24)

We obtain:

−∆x∂tsi =
1

2

[
q−1/2

(
q−1/2

ρ

)2
]i+1

i

+

[
q−1/2

ρ
p+1

]i+1

i

+ c2
[
q+1/2 ln ρ

]i+1

i

+
1

2
qi−1/2

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

+ c2qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)

+

[
ρi−1 − ρi

2

(
(ci−1,i + u2

i−1,i)
qi−1/2

ρi−1
+ ai−1,i

(
c2(ln ρi−1 + 1)− 1

2

(
qi−1/2

ρi−1

)2
))]i+1

i

+

[
di−1,i − 2ui−1,i

2

qi−1/2

ρi−1
(qi−1/2 − qi+1/2)

]i+1

i

+
ρi−1 − ρi

2
ai−1,i

(
1

2

(
qi+1/2

ρi

)2

− 1

2

(
qi−1/2

ρi−1

)2

+ c2 ln
ρi−1

ρi

)

+
ρi−1 − ρi

2
(ci−1,i + u2

i−1,i)

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
+
di−1,i − 2ui−1,i

2
(qi+1/2 − qi−1/2)

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)
which becomes:

−∆x∂tsi = g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

)
+ c2qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+ c2ai−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

+
1

2
qi−1/2

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

+
ai−1,i

4
(ρi−1 − ρi)

((
qi+1/2

ρi

)2

−
(
qi−1/2

ρi−1

)2
)
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+
ci−1,i + u2

i−1,i

2
(ρi−1 − ρi)

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
+
di−1,i − 2ui−1,i

2
(qi+1/2 − qi−1/2)

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)

Corollary 5.2. The numerical scheme (5.13) with a numerical flux Fi,i+1 of the form (5.14) such

that the coefficients ai−1,i, ci−1,i and di−1,i of the diffusion operator DStag satisfy:

 ci−1,i = 2ui−1,i

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
− u2

i−1,i

di−1,i = ai−1,i + 2ui−1,i

(5.25)

where ui−1,i is the Roe average (5.15) and:

ai−1,i ≥ max
(
−2qi−1/2

ρi
ρi−1
− 1− ln ρi

ρi−1

(ρi−1 − ρi) ln ρi−1

ρi

,− 4

ρi−1 + ρi

(
1

2
qi−1/2 + ui−1,i(ρi−1 − ρi)

))
(5.26)

is entropic and the discrete entropy dissipation estimate (5.18) holds. The numerical entropy flux

is given by (5.19) and is consistent with (5.10).

Proof. Let us recall the entropy balance of our class of entropic staggered schemes:

−∆x∂tsi = g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

)
+ c2qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+ c2ai−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

+
1

2
qi−1/2

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

+
ai−1,i

4
(ρi−1 − ρi)

((
qi+1/2

ρi

)2

−
(
qi−1/2

ρi−1

)2
)

+
ci−1,i + u2

i−1,i

2
(ρi−1 − ρi)

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
+

di−1,i − 2ui−1,i

2

qi−1/2

ρi−1
(ρi − ρi−1)

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)
+

di−1,i − 2ui−1,i

2
ρi

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

(5.27)

We define αi−1,i as:

αi−1,i = ai−1,i − |ui−1,i|+ ui−1,i

Hence the coefficients ai−1,i and di−1,i are defined as:

ai−1,i = |ui−1,i| − ui−1,i + αi−1,i

di−1,i = |ui−1,i|+ ui−1,i + αi−1,i
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The entropy balance (5.27) becomes:

−∆x∂tsi = g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

)
+ c2qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+ c2 |ui−1,i| − ui−1,i + αi−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

+
1

2
qi−1/2

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

+
|ui−1,i| − ui−1,i + αi−1,i

4
(ρi−1 − ρi)

((
qi+1/2

ρi

)2

−
(
qi−1/2

ρi−1

)2
)

+
ci−1,i + u2

i−1,i

2
(ρi−1 − ρi)

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
+
|ui−1,i| − ui−1,i + αi−1,i

2

qi−1/2

ρi−1
(ρi − ρi−1)

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)
+
|ui−1,i| − ui−1,i + αi−1,i

2
ρi

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2

(5.28)

From hypothesis (5.25), the coefficient ci−1,i is defined as:

ci−1,i = 2ui−1,i

(
qi−1/2

ρi−1
−
qi+1/2

ρi

)
− u2

i−1,i (5.29)

and we finally obtain:

−∆x∂tsi = g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

)
+ c2

(
qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+
ai−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

)
+

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2(1

2
qi−1/2 +

ai−1,i

4
(ρi−1 + ρi) + ui−1,i(ρi−1 − ρi)

) (5.30)

This term is positive provided the upwinding coefficient ai−1,i is large enough. The threshold values

are

ai−1,i = |ui−1,i| − ui−1,i + αi−1,i ≥ −2qi−1/2

ρi
ρi−1
− 1− ln ρi

ρi−1

(ρi−1 − ρi) ln ρi−1

ρi

(5.31)

and

ai−1,i = |ui−1,i| − ui−1,i + αi−1,i ≥ − 4

ρi−1 + ρi

(
1

2
qi−1/2 + ui−1,i(ρi−1 − ρi)

)
(5.32)

Remark 5.3. Particular case: ρi − ρi−1 → 0:

Here, we give the asymptotic behaviour, when (ρi−ρi−1) tends to zero, of the coefficient ai−1,i that

satisfies the condition (5.26).

When
ρi
ρi−1

− 1→ 0, we have:

ρi
ρi−1
− 1− ln ρi

ρi−1

(ρi−1 − ρi) ln ρi−1

ρi

=

1
2

(
ρi
ρi−1
− 1
)2

+O
((

ρi
ρi−1
− 1
)3
)

(
ρi
ρi−1
− 1
)2

+O
((

ρi
ρi−1
− 1
)3
)

≤ 1

2
+ C, where C is a constant.

Hence, the first lower bound (5.31) of the coefficient ai−1,i in (5.26) is asymptotically bounded when

(ρi − ρi−1) tends to zero.
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5.3 Numerical results

5.3.1 Entropy default of the L2-stable staggered scheme from Corollary 4.5

In this section, we discuss the entropic character of the L2-stable staggered scheme introduced in

Chapter 4, (equation 4.54) in the one dimensional case. This staggered scheme has the following

upwinding matrix:

DStag(Ui, Ui+1) =

(
|ui,i+1| − ui,i+1 1

−c2 − u2
i,i+1 |ui,i+1|+ ui,i+1

)
In practice, the lack of entropy decrease results in a shock wave being captured instead of a

rarefaction wave. This is particularly the case for Riemann solvers ([38, 100]) where the violation

of entropy decrease leads to the capture of a non entropic stationnary shock wave instead of a

transonic rarefaction wave. Since the upwinding matrix of our class of staggered schemes is not

based on the eigenvalues of the system, it is not straightforward to choose a numerical test that will

show the entropy default. Hence, we need the entropy balance (5.33) to identify the configurations

that could lead to the capture of non entropic solutions.

For the L2-stable staggered scheme (4.54), we have:

∂tsi +
1

∆x

(
g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

))
= − 1

∆x
E(ai−1,i, ci−1,i, di−1,i)

with:

E(ai−1,i, ci−1,i, di−1,i) = c2

(
qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+
|ui−1,i| − ui−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

)
+

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2(1

2
qi−1/2 +

|ui−1,i| − ui−1,i

4
(ρi−1 + ρi)

)
(5.33)

From (5.33), we see that the scheme violates the entropy decrease property in the two following

cases:

� For constant densities, if qi−1/2 < 0 and ui−1,i = 0, then E(ai−1,i, ci−1,i, di−1,i) < 0. Hence,

in this case, the L2-stable scheme locally generates a positive contribution of the entropy in

the order of |qi−1/2|2.

� For variable densities and high negative velocities ui−1/2, then E(ai−1,i, ci−1,i, di−1,i) < 0.

Hence, in this case, the L2-stable scheme locally generates a positive contribution of the

entropy in the order of c2.

The largest amount of entropy creation occurs in the second case, because the entropy creation is

proportional to c2. In the sequel, we solve Riemann problems for the isentropic Euler system with

initial conditions such that the scheme initially violates the entropy decrease.

5.3.1.1 Entropy default for negative high velocities

In the sequel, we assess the behaviour of the L2-stable staggered scheme (4.54) on a one dimensional

Riemann problem. We choose initial conditions such that the structure of the solution consists in a

shock followed by a rarefaction wave to allow an easy discrimination of correct numerical solutions.

These initial conditions are:

left state:

(
ρleft
qleft

)
=

(
1

ρleftu0

)
, right state:

(
ρright
qright

)
=

(
2

ρrightu0

)
(5.34)
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We consider this Riemann problem for the isentropic Euler system (1.11). The problem is posed

over Ω = (0, 1) and the discontinuity is initially located at x = 0.5. This case illustrates the second

configuration of entropy default for the L2-stable scheme with variable densities and an entropy

creation proportional to c2.

In figures 5.1 and 5.2, the L2-stable staggered scheme captures a shock wave followed by a rar-

efaction wave. Hence, the method captures the correct entropic solution despite the initial entropy

creation proportional to c2. Hence for long time simulations the entropy default we observe in

theory in (5.33) does not lead to the capture of non entropic solutions.

Figure 5.1: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −300

Figure 5.2: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −300
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5.3.1.2 Case of high and low Mach number flows

In this section, the numerical tests we choose do not generate an entropy violation in the entropy

balance (5.33) of the L2-stable staggered scheme. They illustrate the behaviour of the L2-stable

scheme for high and low Mach number flows. Here, we solve the Riemann problem with the initial

condition (5.34) where u0 = 300 (see figures 5.3 and 5.4) and u0 = −1 (see figures 5.5 and 5.6). In

these two cases, our conservative staggered scheme is able to capture shock and rarefaction waves

without any prior information on the characteristic fields.

Figure 5.3: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = 300

Figure 5.4: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = 300
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Figure 5.5: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −1

Figure 5.6: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −1
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5.3.1.3 Entropy default for constant densities

In this section, we consider the Riemann problem where the initial conditions are chosen such that

the structure of the solution consists in two transonic rarefaction waves:

left state:

(
ρleft
qleft

)
=

(
1

−300

)
, right state:

(
ρright
qright

)
=

(
1

300

)
(5.35)

This case illustrates the first configuration of entropy default for the L2-stable scheme with constant

densities and an entropy creation proportional to |qi−1/2|2 (see introduction of section 5.1.1). In

figures 5.7 and 5.8, we see that despite the initial entropy creation the scheme captures the correct

entropic solution of the Riemann problem with two transonic rarefaction waves. Hence for long

time simulations the entropy default we observe in theory in (5.33) does not lead to the capture of

non entropic solutions.

Figure 5.7: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99
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Figure 5.8: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99

5.3.2 The entropic staggered scheme from Corollary 5.2

In this section, we show some numerical results obtained with the entropic staggered scheme defined

in Corollary 5.2. This staggered scheme has the following numerical diffusion matrix:

DStag(Ui, Ui+1) =

(
ai,i+1 1

−c2 − u2
i,i+1 + 2ui,i+1∆vi,i+1 ai,i+1 + 2ui,i+1

)

with ∆vi,i+1 =
qi+1/2

ρi
−
qi+3/2

ρi+1
. The coefficient ai,i+1 of this diffusion matrix is chosen such that

the entropic character of this numerical method is ensured. For this numerical scheme, we have:

∂tsi +
1

∆x

(
g̃

(
qi+1/2

ρi
, ρi

)
− g̃

(
qi−1/2

ρi−1
, ρi−1

))
= − 1

∆x
E(ai−1,i, ci−1,i, di−1,i)

with:

E(ai−1,i, ci−1,i, di−1,i) = c2

(
qi−1/2

(
ρi
ρi−1

− 1− ln
ρi
ρi−1

)
+
ai−1,i

2
(ρi−1 − ρi) ln

ρi−1

ρi

)
+

(
qi+1/2

ρi
−
qi−1/2

ρi−1

)2(1

2
qi−1/2 +

ai−1,i

4
(ρi−1 + ρi) + ui−1,i(ρi−1 − ρi)

)
(5.36)

The coefficient ai−1,i is set to ensure E(ai−1,i, ci−1,i, di−1,i) ≥ 0 and hence the entropic character

of this numerical method, according to the semi-discrete analysis of the entropy balance in section

5.2.

5.3.2.1 Case of negative high velocities

In the sequel, we assess the behaviour of the entropic staggered scheme (5.2) on a one dimensional

Riemann problem. We choose initial conditions such that the structure of the solution consists

in a shock followed by a rarefaction wave to allow an easy discrimination of correct numerical
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solutions. This initial condition is given by (5.34) with u0 = −300. In figures 5.9 and 5.10,

the numerical scheme (5.2) captures a shock wave followed by a rarefaction wave with spurious

oscillations. Hence, the method captures the correct entropic solution of the Riemann problem but

generates oscillations around the rarefaction wave. The entropic staggered scheme seems to have

a lower numerical diffsion than the L2-stable staggered scheme. The semi-discrete analysis gives

a theoretical lower bound for the coefficient ai−1,i to ensure the entropic character of the scheme

but seems not sufficient to avoid spurious oscillations.

Figure 5.9: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −300

Figure 5.10: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −300
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5.3.2.2 Case of high and low Mach number flows

In this section, we illustrate the behaviour of the entropic staggered (5.2) scheme for high and low

Mach number flows. Here, we solve the Riemann problem with the initial condition (5.34) where

u0 = 300 (see figures 5.11 and 5.12) and u0 = −1 (see figures 5.13 and 5.14). In these two cases,

our conservative entropic staggered scheme (5.2) is able to capture shock and rarefaction waves

without any prior information on the characteristic fields. In the case of high Mach number flow,

the numerical method captures the correct entropic solution of the Riemann problem but generates

oscillations around the stationnary shock wave. In the case of low Mach number flows, we do not

observe spurious oscillations.

Figure 5.11: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = 300

Figure 5.12: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = 300
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Figure 5.13: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −1

Figure 5.14: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99 for u0 = −1
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5.3.2.3 Case of constant densities

In this section, we consider the Riemann problem where the initial conditions are chosen such that

the structure of the solution consists in two transonic rarefaction waves:

left state:

(
ρleft
qleft

)
=

(
1

−300

)
, right state:

(
ρright
qright

)
=

(
1

300

)
(5.37)

In figures 5.15 and 5.16, we see that the entropic staggered scheme (5.2) captures the correct

entropic solution of the Riemann problem with two transonic rarefaction waves. In this case, we

do not observe spurious oscillations.

Figure 5.15: Density at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99

Figure 5.16: Momentum at time t = 5× 10−4 with ∆x = 1× 10−3 and CFL= 0.99
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5.4 Conclusion

In this chapter, we developed a rigorous framework for the analysis of the entropic character of

finite volume schemes on staggered grids. We also presented some analytical numerical examples

on the solution of the isentropic Euler equations. These numerical results illustrate the behaviour

of the L2-stable staggered scheme from Corollary 4.5 in configurations with a theoretical entropy

violation, on the one hand. They also illustrate the behaviour of the entropic staggered scheme

from Corollary (5.2) in the same configurations, on the other hand. The L2-stable staggered scheme

captures the correct entropic solution despite the initial entropy default. In future works, we will

analyse in detail the local entropy violation in the first time steps for the L2-stable scheme to have

a better insight on the entropic character of this scheme. Depending on the conclusions from this

first analysis, we will derive a fully discrete entropic analysis. On the other hand, the entropic

staggered scheme from Corollary 5.2 captures the correct entropic solution but generates spurious

oscillations. In future works, we will derive a strategy to limit the appearance of these spurious

oscillations for the entropic staggered scheme. The multidimensionnal formulation of the new class

of entropic schemes, introduced in this chapter, and its entropic stability analysis will be in a

forthcoming paper. An extension of this strategy to the six-equation two-fluid model will be the

subject of future works.





Conclusions and perspectives

In the present work, we have first of all developed acceleration techniques in the Cathare code in

order to deal with the computational complexity with reasonable computing times. These methods

take advantage of modern computer architectures by the use of a time domain decomposition

method. The latter has been implemented with the parareal in time algorithm. A very special

stress has been put on the adaptation of this algorithm to the Cathare code in a non intrusive way

allowing to use the Cathare code as a black box.

This development will be useful for several applications. First of all, the tool is important for

safety calculations in the nuclear industry for the analysis of two-phase flows during accidental

scenarii. A major challenge for the Cathare code is to produce real-time simulations when the

software is governing a reactor simulator. A reactor simulator allows to reproduce the behaviour of

a nuclear power plant under nominal or accidental conditions for the training of the operators and

for the validation of the emergency procedures. Coupling the parareal algorithm with the actual

acceleration techniques of the Cathare code represents a step toward a real-time response of the

code.

Furthermore, since the time discretisation of the two-fluid model is done through a two-step

time scheme, we designed a new variant of the parareal algorithm adapted to this family of

methods. This work aims at solving the loss of accuracy in the parareal algorithm that can arise

when an initialisation error is made at each time window. The parallel efficiency of this new

variant is similar to the one achieved by the classical parareal algorithm and a way to improve

these performances is to introduce adaptivity in the algorithm ([80]), by dynamically increasing

the accuracy of the fine solver accross the parareal iterations. This adaptive formulation of the

parareal algorithm offers new degrees of freedom to optimise the speed-up performances such

as the choice of increasing target tolerances. A very interesting and challenging task would be

the design of adaptive refinements based on a posteriori estimators. It would allow local time

stepping adaptation in the parareal algorithm as well as spatial refinement if the problem involves

also spatial variables. This strategy would be particularly interesting in the context of hyperbolic

equations with whom the parareal algorithm may suffer from an instability. It has been shown

([102], [103], [79]) that the numerical diffusion of the coarse and the fine solvers has an impact on

the appearance of the parareal instability. Hence, introducing local refinements in the algorithm

may reduce the instability we may observe when the parareal algorithm is applied to hyperbolic

problems.

The second main contribution of this work has been devoted to the understanding of the

theoretical properties of finite volume schemes on staggered grids such as the one used in the

Cathare code. The idea consists in analysing the properties of the numerical diffusion operator.

After showing that the staggered schemes do not straightforwardly yield a linear stability, we

derive a linearly L2-stable class of staggered schemes for the isentropic Euler equations. We also
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implemented a scheme of the L2-stable class of schemes and perform a simulation of a Riemann

problem with satisfactory results. Unlike classical staggered schemes that are L2-stable for constant

sign velocities, the new class is L2-stable for variable sign velocities. This property is important in

the context of the approximation of two-phase flows models since the phasic velocities frequently

change signs. A major challenge for the simulation of two-phase flows is the configuration of the

vanishing phase where one of the phases disappears in some parts of the domain. The prediction of

this complex dynamic mainly relies on the capture of the void waves that appear in the two-fluid

model. Since the void waves have a complex structure with a propagation speed that frequently

change signs, it is important for the numerical scheme to be stable regardless of the velocity sign.

Our new class of staggered schemes is a promising alternative to the actual numerical treatment of

the vanishing phase implemented in the Cathare code. The actual strategy relies on an interfacial

friction coefficient that becomes high when one of the phases vanishes and has reached its limits

for some test cases like the one of the Water-packing, that is relevant for nuclear safety studies. A

first step toward the implementation of a new staggered scheme in the Cathare code could be the

application to the reduced system of [93] that focuses on the study of the void waves.

In a second time, we analyse a non linear property of the staggered schemes, namely the entropy

property. We design a new class of entropic staggered schemes for the isentropic Euler equations

by deriving conditions on the coefficients of the numerical diffusion operator. We implemented

a scheme of this class of entropic schemes and perform with success a simulation of a Riemann

problem that displays a transonic rarefaction wave with successful results. Hence, our conservative

entropic staggered scheme is able to capture shock and rarefaction waves without any prior infor-

mation on the characteristic fields. In the continuation of this analysis, there are several points

that still need to be addressed for a better theoretical understanding of staggered schemes like

the low Mach number accuracy. The multidimensionnal formulation of the new class of entropic

schemes and its entropic stability analysis will be in a forthcoming work. An extension of this

strategy to the six-equation two-fluid model will be the subject of future works.
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[101] A. Ruby, O. Antoni, V. Créach, P. Dufeil, C. Rose, and F. Iffenecker, Quest for

the real-time for the safety analysis code cathare 2 used in the post-accident simulator sipa,

Technical Report, CEA, EDF, IRSN, (2003).

[102] D. Ruprecht, Convergence of Parareal with spatial coarsening, PAMM, 14(1), pp.

1031–1034, (2014).

[103] D. Ruprecht, Wave propagation characteristics of Parareal, Computing and Visualization

in Science, 19, no. 1, pp. 1–17 (2018).

[104] D. Samaddar, D. E. Newman, and R. Sanchez, Parallelization in time of numeri-

cal simulations of fully-developed plasma turbulence using the parareal algorithm, Journal of

Computational Physics, 229(18), pp. 6558-6573, (2010).

[105] G. Samaey and T. Slawig, A micro/macro parallel-in-time (parareal) algorithm applied

to a climate model with discontinuous non-monotone coefficients and oscillatory forcing.

https://arxiv.org/abs/1806.04442, 2018.

[106] D. Serre, System of Conservation Laws 1 : Hyperbolicity, Entropies, Shock Waves, Cam-

bridge University Press, 1999.

[107] Y. Shekari and E. Hajidavalloo, Application of Osher and PRICE-C schemes to solve

compressible isothermal two-fluid models of two-phase flow, Computers and Fluids, 86, pp.

363-379, (2013).

https://arxiv.org/abs/1806.04442


142 Bibliography

[108] G. Staff and E. Ronquist, Stability of the parareal algorithm, Domain Decomposition

Methods in Science and Engineering, Lecture Notes in Computational Science and Engineer-

ing, 40, pp. 449-456 (2005).

[109] H. D. Sterck, R. D. Falgout, A. J. M. Howse, S. P. MacLachlan, and J. B.

Schroder, Parallel-in-time multigrid with adaptive spatial coarsening for the linear ad-

vection and inviscid Burgers equations, SIAM Journal on Scientific Computing, 41(1), pp.

A538–A565, (2019).

[110] H. D. Sterck, S. Friedhoff, A. J. M. Howse, and S. P. MacLachlan, Convergence

analysis for parallel-in-time solution of hyperbolic systems, arXiv:1903.08928, (2019).

[111] J. H. Stuhmiller, The Influence of Interfacial Pressure Forces on the Character of Two-

Phase Flow Model Equations, Int. J. Multiphase Flow, 3, (1977).

[112] A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory,

vol. vol. 3, Springer, 2005.

[113] I. Toumi and A. Kumbaro, An Approximate Linearized Riemann Solver for a Two-Fluid

Model, Journal of Computational Physics, 124, pp. 286–300, (1996).

[114] I. Toumi, A. Kumbaro, and H. Paillere, Approximate Riemann solvers and flux vector

splitting schemes for two-phase flow, 30th Computational Fluid Dynamics, (1999).
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