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Acknowledgements

This work was supported by the Ecole doctorale Mathématiques, Informatique et Télécom-
muncations de Toulouse, l’Institut de Mathématiques de Toulouse and financially supported
by the Université Toulouse III Paul Sabatier. I am indebted to them for permitting this PhD
work to see the light. I am also grateful to the INSA de Toulouse for granting me everything I
needed for my research and teaching activities. I am thankful to the Service Hydrographique
et Océanographique de la Marine (SHOM) for financing some of my research activities and
covering the fees of my conferences and workshop participations. Lastly, I would like to thank
Aix-Marseille Université and IUSTI for their collaboration and support.

Besides, this journey would not have any meaning in my life if not for all the wonderful
persons I met on the way. These words are but a very small token of gratitude towards them,
and I’m certain I’ll be forgetting many.

Naturally, I would like to extend my deepest thanks to my PhD advisor Jean-Paul Vila. I
have learned a lot by your side, in numerical analysis, mechanics, hydrodynamics, simply in
everything that was related to my work. Although, it usually takes me a while to understand
your suggestions, they usually proved to be efficient. I’m really grateful for the time you
invested into taking care of me, despite all your commitments and extremely busy schedule.
Thank you for seeing this work to the end.

Then, I would like to express my gratitude towards my Phd co-advisor Nicolas Favrie.
Nicolas, you have always been there, you have been a great help during this experience. I
learned a lot, really a lot by your side, be it in mechanics, numerics, coding, writing proposals,
making presentations and especially finding solutions and never giving up. Your support was
always very important, especially in the hard times and all the stressful periods. Thanks for
always treating me as an equal, for always giving me tips and pieces of advice for my career.
Thanks for caring about my career than you did for the work itself. This PhD would not
have been possible, if not for your perseverance and your faith in me. I hope I did not fail
your trust.

Next, I would like to sincerely thank Sergey Gavrilyuk for the great help he provided
during all this period of time. Thanks for everything you have taught me, in the most
pedagogic way ever. Thanks for answering the insane amount of questions I kept asking, for
all the hints and tips you taught me, for all the differential calculus I learned by your side,
for the very accurate explanations that got me through hard parts, for the sense of humor
that kept us going, for all the inspiring quotes. Thank you for all the time you devoted to
my care. Thank you for all the encouragements. I feel truly blessed to have worked by your
side. I am deeply grateful for everything.

Now, I would like to express my sincere thanks to the jury members for devoting of
their time to examine this work. First, I would like to thank Michael Dumbser and Thierry
Gallouët for kindly accepting to review this manuscript. Their insightful comments, questions

i



and suggestions are surely to improve the quality of this work. Thanks also to Christophe
Besse and to Sylvie Benzoni-Gavage for their perspicacious remarks, and for the fruitful
discussion, which shed light on interesting aspects to be addressed.

A great part of this PhD work took place at l’INSA de Toulouse, precisely at the GMM
department, and I would like to thank all the colleagues, with whom I shared a lot of laughter,
interesting discussions and teaching duties. First, I would like to thank my office mate Ilya
Peshkov who shared with me every last detail of this PhD experience. Thank you for listening
to me complain all the time, for all the helpful advice, and for all the constructive discussions
we had. Thanks to Sandrine Bosc for always being there for us and for taking care of any
administrative tasks in a record time. Thanks to Victor for the many helpful tips, especially
in numerics. Thanks also to you and Clémentine for always listening to my everyday stories.
I would have been quite lonely at many occasions if not for you two. Also thanks to Pascal,
Fred and Rémy for the interesting discussions and for their continuous interest and support.
A big thank you to all my teaching colleagues, especially to Géraldine, Sandrine and Olivier.
My first steps in teaching were done under your excellent mentorship. Thank you sincerely
for all the advice and tips. I would also like to extend my thanks to my fellow colleagues in
numerical analysis, especially to grand chef Robin, to Romain and to Florent. Thanks for
sharing the passion and for the great work atmosphere you all provide. A thought goes to all
those I meet regularly in the cafeteria, in the corridors, at lunch time or in the afterworks.
Thanks for sharing experiences, for sharing a laughter, a cup of coffee, for playing cross
words, although I never figured out any of the words. In particular, thanks to Marlène,
Mélisande, Maria, Jean-Yves, Béatrice, Stéphane, Simona, Aude, Jérôme, Aldéric, Anthony,
Pierre, Cathy and David. Last but not least, I wish all my colleagues currently doing their
PhD, the best of luck, although I’m certain they don’t need any. In particular, I wish the
best of luck to Josué, Armando, Thibault, Morgane, Franck, Mahmoud, Clément and Jessica.
May the power be with you!

I would like to acknowledge my colleagues from IUSTI, where I carried on my work for
around two years. I would like to thank all the colleagues from the research team there,
namely Jacques, Olivier, Eric, Fabien, Aziz, Henri, Joris, Kevin, and Ksenia. Thanks for the
constant support, for the many discussions about science, work and life. Then I would like to
acknowledge my Bratan Sergey, for sharing most of this experience with me, for the interesting
conversations and the philosophical debates, about maths, science and existence. Thanks also
to my friends and office mates Nabila and Sanjeev for the very friendly atmosphere, for all
the coffee breaks we had and for all the stories we shared. A very big thank you goes to my
colleague and dear friend Naima. Thanks for your unconditional support, all the delightful
moments we spent together, all the stories we told each other, all the laughter we shared
and all the dinners you kindly organized. I’m sure your PhD will end up in a great success,
so keep up the hard work! I would now like to express my gratitude towards my friend
Pascal Campion for all the comforting talks we had, for all the inspiration in poetry and for
the very kind pieces of advice. Special thanks also to my colleague in science and also in
music Jeongeun. Thanks for all the nice times when we gathered and played piano together.
Last but not least, I would like to thank all the colleagues, be it PhD students, postdoctoral
fellows, researchers, professors, administrative and technical staff. In particular I wish the
best of luck to all my fellow PhD students. I have faith that every last one of you will be

ii



successful. Best of luck to all of you.
This PhD work would not have been possible without the help and the commitment

of many administrative personnel, to whom I am indebted. I would like to especially thank
Catherine Stasiulis for a job wonderfully done, for providing excellent advice and for listening
to all our problems. My sincere thanks to all agents who worked on my hosting agreement in
Marseille as well, in particular, thanks to Patricia, Ariane and Romain and all the agents from
Université Paul Sabatier. Also thanks to Agnès Requis and to Mihai Maris from the doctoral
school MITT for always replying to my many questions in time, clearly and concisely.

To all my friends whose support and assistance were inexhaustible, I would like to thank
you for your concern and sincere friendship. In particular thanks to Ines, Marwen and Adnen
for always being there all along and for always caring despite the distance and also for greatly
helping out with typos and corrections. I am most grateful to you. I would also like to express
my gratitude towards all my friends who kept calling and regularly checking in during the
PhD period. Thanks especially to Hamma, Nidhal, Brahim, Amal, Sameh, for keeping me
company during both hard and joyful times. Thanks also to all the friends I met during
conferences and workshops, conferences and during Cemracs 2019. Thanks in particular to
Andrea, Arnaud, Benoit, Roland, Jiao, Khaoula, Dali, Solène (sorry I was really bad at
card games) and to all the great ping-pong players (yo Louis and Abraham), thank you for
mentoring me.

Lastly, I would like to thank my family : My mother Sarra, my father Sami and my
brother Elyes for their unfaltering commitment, their constant support and their unwavering
dedication since my existence to make my life better. I would not have made it this far if
not for you. For that, I thank you.

iii



iv



Contents

1 A First order Hyperbolic model for Euler Korteweg Systems 1
1.1 Augmented Lagrangian approach . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 The concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Augmented system of equations . . . . . . . . . . . . . . . . . . . . . 3

1.2 Comparison with the original equations . . . . . . . . . . . . . . . . . . . . . 6
1.3 Hyperbolicity of the Augmented E-K equations . . . . . . . . . . . . . . . . 7
1.4 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Non-Linear Schrödinger equation 13
2.1 About the NLS equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Focusing versus Defocusing NLSE . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Madelung Transformation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Reference solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 General form of periodic solutions . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Gray solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Dispersive shockwaves . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Augmented Lagrangian formulation for NLSE . . . . . . . . . . . . . . . . . 22
2.3.1 System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Dispersion Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Estimation of β and α . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Numerical Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 MUSCL-Hancock method . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2 IMEX-(2,2,2) scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Gray solitons : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Dispersive shockwaves . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Thin film flows with capillarity 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 About thin film equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Setting and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Dispersion relation and stability analysis . . . . . . . . . . . . . . . . 42
3.2.3 Asymptotic expansion of phase velocities . . . . . . . . . . . . . . . . 43

3.3 Augmented Lagrangian formulation . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Contents

3.3.2 Dispersion Relation: α and β scaling . . . . . . . . . . . . . . . . . . 46
3.3.3 Neutral stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Nonlinear surface tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5.1 Test for a Gaussian initial data . . . . . . . . . . . . . . . . . . . . . 50
3.5.2 Liu & Gollub’s experiment . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Stationary droplets on a solid substrate 57
4.1 Setting and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Equilibrium equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Smooth droplet profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Explicit example: P (h) = −A/(h+ h?) . . . . . . . . . . . . . . . . . . . . . 64
4.5 Remarks on droplets with singularities . . . . . . . . . . . . . . . . . . . . . 65
4.6 Augmented model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 On the stability of modified equations for linear schemes 75
5.1 On modified equations and heuristic stability . . . . . . . . . . . . . . . . . . 76

5.1.1 Obtaining the equations . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1.2 Heuristic stability and limitations . . . . . . . . . . . . . . . . . . . . 77

5.2 Theory of stability through modified equations . . . . . . . . . . . . . . . . . 78
5.2.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Fourier stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.3 Scheme stability domain and series convergence domain . . . . . . . . 81
5.2.4 Link between the stability of the scheme and the stability of a truncation 83

5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.1 Heat equation - centered finite differences . . . . . . . . . . . . . . . . 84
5.3.2 Transport equation - Upwind Euler . . . . . . . . . . . . . . . . . . . 85

Conclusion and perspectives 87

A Calculus and developments for the augmented E-K system 95
A.1 Augmented Lagrangian Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1.1 Euler-Lagrange equation associated with δη . . . . . . . . . . . . . . 96
A.1.2 Euler-Lagrange equation associated with δx . . . . . . . . . . . . . . 97

A.2 Asymptotics of the Augmented Momentum equation . . . . . . . . . . . . . 99
A.3 Invariance by rotations of the group SO(3) . . . . . . . . . . . . . . . . . . . 100
A.4 Analog of Helmholtz’s equation for vorticity . . . . . . . . . . . . . . . . . . 101
A.5 Derivation of the dispersion relation . . . . . . . . . . . . . . . . . . . . . . . 103
A.6 IMEX scheme : General explicit form . . . . . . . . . . . . . . . . . . . . . . 105

vi Contents



Contents

B About Elliptic integrals and functions 107
B.1 Elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Jacobi’s elliptic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
B.3 Practical example: Periodic solution of NLS equation . . . . . . . . . . . . . 110
B.4 Asymptotic structure of a DSW : Values of τi . . . . . . . . . . . . . . . . . 111

C Asymptotics for the augmented thin film flows model 115
C.1 Neutral stability analysis for thin films equations . . . . . . . . . . . . . . . 115
C.2 Dispersion relation expansion . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D Modified equations : Computing radii of convergence 121
D.1 Centered scheme for the heat equation : λ2 = 1

2 . . . . . . . . . . . . . . . . 121
D.2 Centered scheme for the heat equation : λ2 = 1

4 . . . . . . . . . . . . . . . . 122
D.3 Proof of convergence for λ1 ≤ 1 of Upwind Euler for transport equation . . . 123

Contents vii



Contents

viii Contents



List of Figures

1.1 Representation of the eigenvalues of the augmented E-K system. u is a triple
eigenvalue. ξ±4 can coincide with u and ξ±4 can coincide with ξ±5 . . . . . . . . 10

2.1 Overall shape of the gray soliton solution in terms of the variables ρ and u for
arbitrary values of the parameters b1 and b3 at t = 0 . . . . . . . . . . . . . . 18

2.2 Asymptotic profile of the solution to NLS equation (continuous line) for the
Riemann problem ρL = 2, ρR = 1 , uL = uR = 0. The boundaries τi, i =
1, 2, 3, 4 delimit the DSW and the rarefaction wave regions. The modulation
of the DSW profile between τ2 and τ1 is described by the rarefaction wave
solution to the Whitham system (bold dashed line). The oscillatory profile
is shown at t = 70. The values of τi, i = 1, 2, 3, 4, are given by τ1 = uR +
8ρ0 − 8√ρ0ρR + ρR

2√ρ0 −
√
ρR

, τ2 = uR +√ρ0, τ3 = u0 −
√
ρ0, τ4 = uL −

√
ρL. . . . . 21

2.3 Asymptotic profile of invariant r2 for Whitham’s system. In the DSW region
τ2 < τ < τ1, r2 (dashed line) varies while the other invariants ri, i 6= 2, are
constants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 The dispersion relation (2.53) (continuous line) and (2.52) for the augmented
Lagrangian (dashed lines) for β = 10−4 and different values of α. . . . . . . . 23

2.5 Numerical profiles of ρ (left) and u (right) for the grey soliton at t = 0 (dot-
dashed line) and at t = 2T (continuous line). The used domain is L = [−20, 20]
with ∆x = 0.0002, the period is T = D/U = 20. Parameters used for the
simulation are b1 = 1.5, b3 = 1, U = 2, ε = 1, β = 10−4, α = 2.10−3. . . . . 29

2.6 Magnified view on the numerical ‘grey’ soliton peak, for different mesh sizes,
at t = 2T . The theoretical amplitude and position are ρ = 1 and x = 0.
Parameters used for the simulation are the same as in figure (2.5). . . . . . . 29

2.7 The log-log plot of the L2 error. The dots show the measured L2 errors for
different mesh sizes (10000, 20000, 50000, 100000) at t = 40. The continuous
line is a linear interpolation. The measured convergence slope is approximately
1.53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 The phase error as a function of time (left) and as a function of the time
squared (right), for three different mesh sizes : Nx = 20000, 50000 and 100000. 30

2.9 Numerical profiles of ρ (left) and u (right) for the gray soliton for t = 0, t = 2T
and t = 4T . The used domain is L = [−20, 20] with ∆x = 0.0002, the period
is T = D/U = 20. Parameters used for the simulation are b1 = 1.5, b3 =
1, U = 2, ε = 1, β = 10−4, α = 2.10−3. . . . . . . . . . . . . . . . . . . . . . 31

ix



List of Figures

2.10 Differences ∆ρ = ρ(x, t)− ρ(x, 0) (left) and ∆u = u(x, t)− u(x, 0) (right) for
the gray soliton for t = 0, t = 2T and t = 4T . The parameters are the same
ones used above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Evolution of the errors ∆m, ∆q and ∆E over time. . . . . . . . . . . . . . . 32
2.12 Magnified view over the smoothed step (continuous line) for δ = 0.1, ∆x =

0.000667. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.13 Comparison of the numerical results (thin line) with the Whitham modu-

lational profile of the DSW (thick line) at t = 70. The left figure shows
ρ = f(x/t) and the right figure shows u = f(x/t). The displayed τi are
the theoretical boundaries of the DSW and the rarefaction wave. The val-
ues of ρ0 and u0 are the theoretical values in the central plateau given by
ρ0 = 1

4(√ρR + √ρL + 1
2(uL − uR))2 and u0 = 1

2(uL + uR) + √ρL −
√
ρR.

The initial values used for this simulation are ρL = 2, ρR = 1, uL = uR = 0.
The parameters are: β = 2.10−5, α = 3.33.10−3,∆x = 0.000667. The whole
computational domain is [−800, 800]. . . . . . . . . . . . . . . . . . . . . . . 34

2.14 Vanishing oscillations at the vicinity of the singular point τ = τ4. The figure
on the left shows that these oscillations decrease in time. The figure on the
right shows that the amplitude of the first oscillation a is such that at3/2 is
linear. This implies the power law a ∝ t−1/2. . . . . . . . . . . . . . . . . . . 34

2.15 Relative error on the position of the first soliton plotted as function of time. 35
2.16 The step initial condition considered for the Riemann problem and the pa-

rameters ρL = 2, ρR = 1,uL = uR = 0, and δ = 10−5. The whole computation
domain is shown here. The inset shows a zoom at the mesh size’s level around
the initial discontinuity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.17 Comparison of the numerical results obtained for the previous initial conditions
(thin line) with the Whitham modulational profile of the DSW (thick line)
at t = 50. The upper figure shows ρ = f(x/t) and the lower figure shows
u = f(x/t). The parameters are β = 2.10−5, α = 3.33 10−3,∆x = 0.000667.
The whole computational domain is [−800, 800]. . . . . . . . . . . . . . . . . 36

2.18 Comparison of the numerical results obtained with an IMEX scheme for the
previous initial conditions (thin line) with the Whitham modulational profile of
the DSW (thick line) at t = 70. The left figure shows ρ = f(x/t) and the right
figure shows u = f(x/t). The parameters are β = 2.10−5, α = 10−3,∆x = 0.01.
The whole computational domain is [−500, 500] . . . . . . . . . . . . . . . . 37

3.1 Schematic of a flowing thin film over an inclined horizontal plate with the
notations used in this section. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Stability regions for equations (3.6) in the (k,Re) plane. The thick red line
corresponds to the neutral stability curve. The gray region are instable waves.
The white region are stable waves. The parameters used here correspond to
the Liu & Gollub’s experiments [57] with θ = 6.4◦, We = 0.184, F = 0.847
and ε = 0.006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

x List of Figures



List of Figures

3.3 Neutral stability curves in the (k,Re) plane for the original model (continuous
blue line) and the augmented model for various scalings of α and β with respect
to ε. The parameters used here are the same as in figure 3.2. . . . . . . . . . 49

3.4 Shape of the Gaussian initial data. . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Comparison of the obtained numerical results (solid lines) with the converged

numerical solutions proposed in [14] (dots), for the Gaussian initial data (3.52)
at t = 5ms. Parameters used here are g = 9.81m.s−2, σ = 0.0728Kg.s−2,
ρ = 1000Kg.m−3, h0 = 2.725mm, h0 = h1, b = 1.5h1 and b0 = 4.29193.
α̃ = 10−3m−2s2 and β̃ = 10−5. Results are shown with a mesh resolution of
n = 5000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Comparison of h̃x̃ (dashed lines) and p̃ (continuous lines) for the same values
as above for both linear and nonlinear surface tension models. The curves
coincide perfectly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Dimensionless water height as a function of space (dimensioned), in the setting
of the Liu & Gollub experiment, for an imposed frequency of 1.5Hz. (Obtained
through numerical simulation). Parameters used here are : Re = 19.33, κ =
1.440.10−4, Fr = 0.8476,θ = 6.4◦ . . . . . . . . . . . . . . . . . . . . . . . . 53

3.8 Dimensionless water depth as a function of the downstream distance x̃ for
different frequencies : (a) f̃ = 1.5Hz, (b) f̃ = 3.0Hz and (c) f̃ = 4.5Hz
in the experiments of Liu & gollub [57]. Figures reprinted from J. Liu and
J. P. Gollub. “Solitary wave dynamics of film flows”. In: Physics of Fluids 6.5
(1994), pp. 1702–1712, with the permission of AIP Publishing. . . . . . . . . 53

3.9 Experimental results of Liu & gollub [57] (right) along the obtained numerical
results (left), for different forcing frequencies, respectively equal to (a) : f̃1 =
1.5Hz, (b) : f̃2 = 3.0Hz and (c) : f̃ = 4.5Hz. The number of mesh points is
n = 40000. Experimental results figures are reprinted from J. Liu and J. P.
Gollub. “Solitary wave dynamics of film flows”. In: Physics of Fluids 6.5
(1994), pp. 1702–1712, with the permission of AIP Publishing. . . . . . . . . 55

3.10 Superimposed numerical simulation with the experimental result for f̃ = 1.5Hz. 56

4.1 One-dimensional profile of the droplet. . . . . . . . . . . . . . . . . . . . . . 57
4.2 Sketches of the overall shape of some droplets. To the left : the droplet is

completely concave. Its edge forms a contact angle with the solid substrate
underneath. To the right, the droplet changes convexity for some value h = hc
and flattens in the vicinity of the contact angle, forming what we may call a
precursor film. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 sketch of the profiles of P (h) (left) and P ′(h) (right) as a function of h. . . . 64
4.4 Different drop shapes for different values of K, obtained through numeri-

cally solving equation (4.21). Parameters used here are : g = 9.8ms−2,
σ = 0.072Kg.s−2, h0 = 1.262mm, h? = 0.252mm and θ = 30◦. . . . . . . . . 65

4.5 Different drop shapes for different values of θ, obtained through numerically
solving equation (4.21). Parameters used here are : g = 9.8ms−2, σ =
0.072Kg.s−2, h0 = 0.45mm, h? = 0.09mm and A = 10−9m4s−2. . . . . . . . . 65

4.6 graphic of h2
x as a function of h in the case of a singularity . . . . . . . . . . 66

List of Figures xi



List of Figures

4.7 Admissible phase portraits in the case of a single root hs. The left phase
portrait corresponds to a contact angle θ < π/2 with a singularity in the
middle. The right phase portrait corresponds to a contact angle θ > π/2. . 66

4.8 Full shape of a droplet for θ = 150◦, obtained through the above numerical
algorithm. Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 =
2.61mm, h? = 0.261mm, A = 3.761.10−8m4s−2 and ∆x = 80nm. . . . . . . . 68

4.9 Full shape of a droplet for θ = 30◦, obtained through numerical simulation.
Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 = 2.61mm,
h? = 0.261mm, A = 3.761.10−8m4s−2 and ∆x = 80nm. . . . . . . . . . . . . 68

4.10 Convergence rates of Cα and Dα towards C and D respectively. The plots
represent the relative errors

∣∣∣Cα−C
C

∣∣∣ (blue circular points) and
∣∣∣Dα−D

D

∣∣∣ (red
triangular points), as a function of α in a log-log representation. the measured
slopes are respectively r1 = 1.009 and r2 = 1.005 for Cα and Dα. . . . . . . . 71

4.11 Comparison of the overall shape of the droplet for the augmented system
(dashed/dotted lines) and the reference model (blue continuous line) for several
values of α. Parameters used here are g = 9.8ms−2, σ = 0.072Kg.s−2, θ = 30◦,
h0 = 0.7mm, h? = 0.14mm and A = 10−9m4s−2. The mesh size is ∆x = 0.1µm. 72

5.1 Plot of the function |S(θ, λ2,∆x)| along |S2(θ, λ2,∆x)| and |S8(θ, λ2,∆x)| for
the values of λ2 = 1/2 (left) and λ2 = 1/4 (right). We can see that for
λ2 = 1/2, which lies outside of the convergence domain, the truncation curves
stray away from the curve of S starting from θ = R. For λ2 = 1/4, the
truncations match well with S. . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Plot of the function |S(θ, λ1,∆x)| along |S6(θ, λ1,∆x)| for different values of
λ1 in the stable region (left) and in the unstable region (right). The continuous
lines stand for the amplification factor |S(θ, λ1,∆x)| and the dashed lines rep-
resent the truncated modified equation amplification factor |S6(θ, λ1,∆x)|. We
can see that for λ1 ≤ 1 the truncation curves match well with the exact ampli-
fication factor even in the boundaries of stability. Inversely, it seems according
to the right-hand graphic that λ1 = 1 marks the threshold of convergence. . 86

B.1 Plot of the overall behavior of the complete elliptic integrals of first (left) and
second (right) kind. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.2 Overall behavior of the Jacobi elliptic functions for different values of the
elliptic modulus s. Represented from left to right are sn, cn and dn. For each
plot, the blue and red line represent the limiting behaviors for s → 0 and
s→ 1 respectively. the gray lines correspond to arbitrary values of 0 < s < 1. 109

B.3 Representative graphic of P (ρ) for arbitrary parameters b1 > b2 > b3. . . . . 110

xii List of Figures



Abstract

An approximate first order quasilinear hyperbolic model for Euler-Korteweg (E-K) equations,
describing compressible fluid flows whose energy depend on the gradient of density, is derived.
E-K system can be seen as the Euler-Lagrange equations to a Lagrangian submitted to the
mass conservation constraint. Due to the presence of the density gradient in the Lagrangian,
one recovers high-order derivatives of density in the motion equations. The approach pre-
sented here permits us to obtain a system of hyperbolic equations that approximate E-K
system. The idea is to introduce a new order parameter which approximates the density
via a carefully chosen penalty method. The gradient of this new independent variable will
then replace the original gradient of density in the Lagrangian, resulting in the so-called
augmented Lagrangian. The Euler-Lagrange equations of the augmented Lagrangian result
in a first order hyperbolic system with stiff source terms and fast characteristic speeds. Such
a system is then analyzed and solved numerically by using IMEX schemes. In particular,
this approach was applied to the defocusing nonlinear Schrödinger equation (which can be
reduced to the E-K equations via the Madelung transform), for which a comparison with
exact and asymptotic solutions, namely gray solitons and dispersive shock waves was per-
formed. Then, the same approach was extended to thin film flows with capillarity, for which
comparison of the numerical results with both reference numerical solutions and experimental
results was performed. It was shown that the augmented model is also extendable to models
with full nonlinear surface tension. In the same setting, a study of stationary droplets on a
horizontal solid substrate was conducted in an attempt to classify droplet profiles depending
on their energy forms. This also allowed to compare the augmented Lagrangian approach
in the case of stationary solutions, and which showed excellent agreement with the reference
solutions. Lastly, an independent part of this work is devoted to the study of modified equa-
tions associated to numerical schemes for stability purposes. It is shown that for a linear
scheme, stability conditions which are obtained from a truncation of the associated modified
equation, are only relevant if the corresponding series in Fourier space is convergent for the
admissible wavenumbers.
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Résumé

On présente un modèle hyperbolique quasi-linéaire de premier ordre approximant les équa-
tions d’Euler-Korteweg (E-K), qui décrivent des écoulements de fluides compressibles dont
l’énergie dépend du gradient de la densité. Le système E-K peut être vu comme les équa-
tions d’Euler-Lagrange d’un Lagrangien soumis à la conservation de la masse. Vu la présence
du gradient de la densité dans le Lagrangien, des dérivées d’ordre élevé de la densité ap-
paraissent dans les équations du mouvement. L’approche présentée ici permet d’obtenir un
système d’équations hyperboliques qui approxime le système E-K. L’idée est d’introduire un
nouveau paramètre d’ordre qui approxime la densité via une méthode de pénalisation clas-
sique. Le gradient de cette nouvelle variable remplace alors le gradient de la densité dans
le Lagrangien, ce qui permet de construire le Lagrangien augmenté. Les équations d’Euler-
Lagrange associées à celui-ci, sont des équations hyperboliques avec des termes sources raides
et des vitesses de caractéristiques rapides. Ce système est analysé puis résolu numérique-
ment en utilisant des schémas de type IMEX. En particulier, cette approche a été appliquée
à l’équation de Schrödinger nonlinéaire défocalisante (qui peut être réduite au système E-K
via la transformée de Madelung), pour laquelle des comparaisons avec des solutions exactes
et asymptotiques ont été faites, notamment pour des solitons gris et des ondes de choc dis-
persives. La même approche a été également appliquée aux équations de filmes minces avec
capillarité, pour lesquelles une comparaison avec des résultats numériques de référence et
des résultats expérimentaux a été faite. Il a été démontré que le modèle augmenté peut
aussi bien s’appliquer pour des modèles dont le terme de capillarité est non-linéaire. Dans ce
même cadre, une étude de gouttes stationnaires sur un substrat solide horizontal a été établie
afin de classifier les profils possibles de gouttes selon leur énergie. Ceci a permis également
de faire des comparaisons du modèle augmenté sur des solutions stationnaires. Enfin, une
partie indépendante de ce travail est consacrée à l’étude des équations équivalentes associées
aux schémas numériques, où l’on démontre que les conditions de stabilité qui dérivent d’une
troncature de l’équation équivalente, n’a du sens que si la série correspondante dans l’espace
de Fourier est convergente, sur les longueurs d’onde admissibles dans la pratique.
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Introduction

In 1893, Van der Waals published a paper in the Verhandelingen of the Academy, entitled
The thermodynamic theory of capillarity under the hypothesis of a continuous variation of
density [72]. It took sixty years to understand the worth of his work [48]. Regrettably, new
ideas are more prone to rejection, no matter how great a contribution they could have been.

Van der Waals assumed in his paper a continuous transition of the density across the
layer separating a liquid and its vapor. In such a setting, he stated that equilibrium states
where the density distribution is heterogeneous, are compatible with capillarity, only if the
free energy at a point, not only depended on its local density, but also on the densities in
the neighboring points [72, 48]. Based on the work of Van der Waals, Korteweg formulated
a constitutive equation of the Cauchy stress that depended on the density and its spatial
gradients [50] in the static case. The dynamical form of the equations, based on Hamilton’s
principle of stationary action, was obtained by Casal [16, 17] and a year later independently
by Eglit [29].

Van der Waals-Korteweg type equations (often called Euler-Korteweg (E-K) equations),
appear also in other fields of physics, like capillary fluids, thin films flows and quantum
hydrodynamics. It has been the subject of interest in many works in recent decades which
include for example [3, 7, 8, 9, 11, 12, 13, 18, 36, 44, 61].

The aim of this thesis is to derive a first order hyperbolic model which approximates
the E-K system in an attempt to open new perspectives for its numerical resolution and the
understanding of its solutions properties. This manuscript is organized as follows. Chap-
ter one is dedicated to the augmented Lagrangian method for the E-K system in general.
Explanations on how the approach works in general, and how it affects the structure of the
system are given. Full details for the derivation of the corresponding system of equations are
given. The structure of the obtained system is then discussed. This includes the proof of the
hyperbolicity of the system and how it approximates the E-K system.

In chapter two, the augmented Lagrangian approach is applied to the defocusing nonlinear
Schrödinger equation. Preliminaries on how to cast the equation into a system of conservation
laws via the Madelung transform, and how to obtain traveling wave solutions are presented.
Then, the augmented formulation of the equations is given and analyzed. In particular,
heuristic estimations of the introduced penalty parameters via the dispersion relation are
suggested. Finally, the numerical schemes are given in details and numerical results are
presented and compared for both exact and asymptotic solutions, namely gray solitons and
dispersive shock waves, for which the asymptotic behavior is obtained through Whitham’s
modulation equations.

In chapter three, the same approach is applied to thin film flows with capillarity. Details
on the used model are first reminded, in particular the governing equations, the dispersion
relation and the following stability condition. The corresponding augmented model is then
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presented and analyzed. The main difference in this case, is that the expressions of the phase
velocities could not be obtained explicitly. Instead, an asymptotic expansion of the latter
were performed and compared at leading orders with the original system. This permitted to
obtain a suitable scaling of the penalty parameters as a function of the long-wave parameter
ε, which governs the asymptotics of the original model. Then it is explained, how the
augmented Lagrangian approach is extendable to energy forms that have nonlinear surface
tension terms. The corresponding system of equations is computed and shown hyperbolic.
Finally, numerical results for models with linear and nonlinear surface tension terms are
presented and compared with reference numerical solutions obtained in [14] as well as the
experimental results of Liu and gollub [57].

Chapter four, deals with stationary droplets on a horizontal solid substrate, under the ef-
fects of gravity and surface tension. The governing equilibrium equations are derived through
variational principles and cast into a first order differential equation satisfied by the droplet
height. Under some assumptions on the energy form, we discuss under which conditions,
a droplet may admit a change of convexity. The study is conducted for both smooth and
singular profiles. Most of the results are given in generic cases and then supplemented with
explicit expressions of the total energy. The study is extended to the augmented Lagrangian
model. This permitted to perform comparisons of the augmented and original models for a
stationary solutions. This permitted to perform comparisons of the differential equation, as
well as the numerical solutions, which showed excellent agreement between both models.

Lastly, chapter five, which is completely independent from the rest, deals with a pure
numerical analysis problem, which is stability conditions derived from modified equations.
In particular, we discuss some limitations of the modified equations approach as a tool for
stability analysis for a class of explicit linear schemes to scalar partial derivative equations.
We show that the infinite series obtained by Fourier transform of the modified equation
is not always convergent and that in the case of divergence, it becomes unrelated to the
scheme. Based on these results, we explain when the stability analysis of a given truncation
of a modified equation may yield a reasonable estimation of a stability condition for the
associated scheme. We illustrate our analysis by some examples of schemes namely for the
heat equation and the transport equation.

The work presented in these chapters, is complemented by four appendixes, which contain
most of the computational details. Appendix A includes the variational calculus required
to derive the augmented system of equations from the Lagrangian and details about the
augmented model’s properties. Step-by-step computations to obtain the dispersion relation
and obtain an explicit form of the IMEX scheme are also given. Appendix B is a reminder on
elliptic functions and integrals. This includes practical examples on their usage in order to
obtain periodic solutions of the nonlinear Schrödinger equation, and to describe the structure
of a dispersive shock wave. Appendix C concerns mainly the asymptotic analysis performed
for thin films equations. Lastly, appendix D contains details on how to compute some radii of
convergence of some explicit power series, needed to explain the stability of some considered
finite differences schemes.
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CHAPTER1
A First order Hyperbolic model for

Euler Korteweg Systems

In this chapter we explain the core idea behind this PhD work, namely the mechanisms
behind the augmented Lagrangian approach for the E-K system. We first explain the concept
of the method and how it affects the structure of the system from the variational point of
view. Next, we explain how to obtain the corresponding system of augmented equations and
then justify how it approximates the original E-K system of equations and finally discuss its
hyperbolicity. Before we proceed any further, it seems necessary to remind that E-K systems
refer in general to the following system of conservation laws :

∂ρ

∂t
+ div(ρu) = 0

∂ρu
∂t

+ div (ρu⊗ u + Π) = 0
(1.1)

where Π is given by :

Π =
(
ρ2ε′(ρ)− 1

2 (ρK ′(ρ) +K(ρ)) |∇ρ|2 − ρK(ρ)∆ρ
)

Id +K(ρ)∇ρ⊗∇ρ (1.2)

Here, ρ is the fluid density, u is the velocity field, ε(ρ) is the specific hydrodynamic energy and
K(ρ) is a given function of ρ. This system can be derived as the Euler-Lagrange equations
for the Lagrangian :

L =
∫

Ωt

(
ρ
|u|2

2 − ρε(ρ)− 1
2K(ρ) |∇ρ|2

)
dΩ (1.3)

E-K system admits an additional scalar conservation law for the total energy :
∂E

∂t
+ div (Eu + Πu− ρ̇K(ρ)∇ρ) = 0, (1.4)

where the energy E is given by :

E = ρ
|u|
2

2

+ ρε(ρ) + 1
2K(ρ) |∇ρ|2 . (1.5)
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1.1. Augmented Lagrangian approach

Compared to classical models, for which the potential energy does not depend explicitly
on ∇ρ, we have an additional term in the energy flux −ρ̇K(ρ)∇ρ known as interstitial
working [28]. This system covers the majority of the applications presented in this thesis.
Even if the physical meaning of unknowns will be not the same as in E-K system, the
mathematical structure of the governing models will remain the same.

1.1 Augmented Lagrangian approach

1.1.1 The concept
The method we use here follows the same philosophy introduced in [33] for the Serre-Green-
Naghdi equations. While many relaxation techniques involve straightforward modifications
in the system of equations, we prefer to rather act on the Lagrangian. This has the advantage
of preserving the Hamiltonian structure of the obtained equations. Let us proceed step by
step from the Lagrangian (1.3) as a starting point. Normally, in order to obtain the E-K
equations, one can apply Hamilton’s principle in order to minimize the Lagrangian (1.3)
under the mass conservation constraint. In terms of variations, mass conservation links the
velocity and the density (and consequently the gradient of density) in such a way that their
respective Eulerian variations can be expressed in terms of the virtual displacement of the
continuum. The idea is to create a new unconstrained variable that will approximate the
gradient of density, while being independent from mass conservation. For this purpose, let
us consider a new variable, which we call η(x, t). The key idea here is to guarantee that
η converges towards ρ in a certain limit and then substitute ∇ρ by ∇η in the Lagrangian.
Hence, consider the new augmented Lagrangian :

L =
∫

Ωt

ρ |u|22 − ρε(ρ)− 1
2K(ρ) |∇η|2 − ρ

2α

(
1− η

ρ

)2

+ β

2 ρη̇
2

 dΩ (1.6)

Let us explain how this Lagrangian meets the expectations of the above description. First,
the so-called augmented Lagrangian is constructed from the original one (1.3) by replacing
∇ρ by ∇η and adding two terms :

• The term ρ

2α (1− η/ρ)2 is a classical penalty term where α is a small parameter. Indeed,
when α→ 0, the difference (1− η/ρ) is expected to vanish, implying that η → ρ. The
choice of the form of this term follows the discussion in [33] for the Serre-Green-Naghdi
equations, where it is shown that some other formulations can result in the loss of
hyperbolicity or the cancellation of dispersive effects.

• The term β

2 ρη̇
2 ensures a regular time evolution of η. β is a small parameter so that

the contribution of this additional term remains negligible. The form of this term is
also reminiscent of the dispersion in the Serre-Green-Naghdi equations. So, it can be
perceived as a small micro-inertia term.
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Chapter 1. A First order Hyperbolic model for Euler Korteweg Systems

1.1.2 Augmented system of equations
Given the Lagrangian (1.6), let us consider the associated Hamilton’s action in an arbitrary
time interval [t0, t1] :

a =
∫ t1

t0
Ldt (1.7)

In a more compact form, we can write the augmented Lagrangian as :

Le =
∫

Ωt

(
ρ
|u|
2

2

−W (ρ, η, η̇,∇η)
)
dΩ. (1.8)

where W is the potential given by :

W (ρ, η, η̇,∇η) = ρε(ρ) + 1
2K(ρ) |∇η|2 + ρ

2α

(
1− η

ρ

)2

− β

2 ρη̇
2 (1.9)

We remind that the variation of Hamilton’s action is submitted to the constraint which is
the mass conservation law :

∂ρ

∂t
+ div (ρu) = 0. (1.10)

For the sake of keeping this part light and readable, applying Hamilton’s principle and all
the related calculus will be carried out in the appendix A.1. Nevertheless, it seems necessary
to give a few words on how the differential calculus is done in order to highlight some
differences between the augmented model and the original one in terms of variations. In the
original Lagrangian, all the variables’ variations are linked to the virtual displacement of the
continuum. In fact they write :

δ̂ρ = −div (ρδx) , δ̂u = ˙(δx)− ∂u
∂xδx, δ̂∇ρ = ∇

(
δ̂ρ
)

= −∇ (div (ρδx)) (1.11)

Here, the ’hat’ means that we use variations at fixed Eulerian variables (see further details
about Lagrangian and Eulerian variations in [26]). Note that the variation of the gradient of
density is obtained simply by using Schwartz’s theorem to interchange the order of derivatives.
Thus, in this case applying Hamilton’s principle results in one Euler-Lagrange equation that
is the momentum balance equations of E-K system .
In the case of the augmented Lagrangian, the gradient ∇η which substitutes the gradient of
density is no longer dependent on the density and velocity. Thus, it depends only on the new
unconstrained variable η. Naturally in this case, one needs to separate the variables in two
sets depending on their respective variations. The first type corresponds to the usual virtual
displacement of the continuum, respecting the mass conservation law and will be denoted by
δx. The second one corresponds to the variation of η as an independent variable and will be
denoted by δη. The independent variables upon which the augmented Lagrangian depends
classify into these types according to the following schematic :

δx︷ ︸︸ ︷
u, ρ, η̇, η,∇η︸ ︷︷ ︸

δη

Chapter 1. A First order Hyperbolic model for Euler Korteweg Systems 3



1.1. Augmented Lagrangian approach

Note that η̇ is included in both kinds, as it depends explicitly on derivatives of η but also
on the velocity field u. Let us now detail how these variations write and express the corre-
sponding Euler-Lagrange equation in each case.

Variation with respect to δx

The variations of the density, velocity and η̇ are related to δx by :

δ̂ρ = −div (ρδx) , δ̂u = ˙(δx)− ∂u
∂xδx, δ̂η̇ = δ̂u · ∇η. (1.12)

Applying Hamilton’s principle on the action (1.7), under the mass conservation law, yields
the following Euler-Lagrange equation (Details in Appendix A.1.1):

∂ρu
∂t

+ div
(
ρu⊗ u +

(
ρ
∂W

∂ρ
−W

)
Id + ∂W

∂∇η
⊗∇η

)
= 0 (1.13)

Variation with respect to δη

By virtue of the Schwartz’s theorem, the variations of ∇η and η̇ are related to δη by :

δ(∇η) = ∇ (δη) (1.14)

δη̇ = δ

(
∂η

∂t

)
+ ∂δη

∂x u = ∂δη

∂t
+ ∂δη

∂x u (1.15)

Similarly, applying Hamilton’s principle on the action (1.7) results in the Euler-Lagrange
equation (Details are given in Appendix A.1.2):

∂

∂t

(
∂W

∂η̇

)
+ div

(
∂W

∂η̇
u + ∂W

∂∇η

)
= ∂W

∂η
(1.16)

In order to make the obtained system of equations first order hyperbolic, we perform a last
step which is a sort of an order reduction. Indeed, let us consider the variables :

p = ∇η, w = η̇ (1.17)

Under these notations, if we gather the previous equations, one obtains a set of three con-
servation laws (Mass conservation + 2 Euler-Lagrange equations) that are dependent on five
independent variables (ρ,u, η,∇η, η̇). Therefore, we need to provide two additional equations
in order to close the system. First, by definition of w one gets :

∂η

∂t
+ ∂η

∂xu = w (1.18)

This already depicts the evolution of η in time. Furthermore, by taking the gradient of this
equation and applying Schwartz’s theorem, we obtain :

∂∇η
∂t

+∇
(
∂η

∂xu− w
)

= 0 (1.19)
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which can be put in the form :

∂p
∂t

+ div
((

∂η

∂xu− w
)

Id
)

= 0 (1.20)

Thus, now the system of equations is completed. Expanding the expression of W in both
Euler-Lagrange equations and putting all the equations in their conservative form permits
us to obtain the following system:

∂ρ

∂t
+ div(ρu) = 0,

∂ρu
∂t

+ div (ρu⊗ u + P) = 0,

∂ρw

∂t
+ div

(
ρwu− 1

β
K(ρ)p

)
= 1
αβ

(
1− η

ρ

)
,

∂ρη

∂t
+ div(ρηu) = ρw,

∂p
∂t

+ div ((p · u− w) Id) = 0

(1.21)

where the tensor P is given by :

P =
(
ρ2ε′(ρ) + 1

2(ρK ′(ρ)−K(ρ))|p|2 + η

α

(
1− η

ρ

))
Id +K(ρ)p⊗ p (1.22)

One can derive an additional conservation law for the total energy of the augmented system :

∂E

∂t
+ div (Eu + Pu−K(ρ)wp) = 0,

where the total energy expression writes :

E = ρ
|u|
2

2

+ ρε(ρ) + 1
2K(ρ)|p|2 + 1

2αρ
(
η

ρ
− 1

)2

+ β

2 ρw
2.

It is worthy of note, that even for the augmented system, the energy conservation law still
contains, as in the case of original system the interstitial working term written here in the
form −K(ρ)wp. It remains now to check whether or not the system of equations (1.21)
fulfilled all the required conditions, namely, is the obtained system first order hyperbolic and
does it approximate Euler-Korteweg equations? Let us first address the latter and compare
both original and augmented system.

Remark 1.1.1. In the augmented setting, p is by definition the gradient of η. Thus, it
should satisfy the compatibility condition curl(p) = 0. Even though we will focus mainly on
one-dimensional applications in the current work, it should be kept in mind that p should be
curl-free in the multi-dimensional case.
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Remark 1.1.2. The used hyperbolic reformulation changes the definition of a potential flow.
In fact, for Euler-Korteweg fluids, the definition of a potential flow is classical : u = ∇φ
and hence curl(u) = 0. In the hyperbolic setting, the flow is potential if K = ∇φ where K is
defined by [37] :

K = u− 1
ρ

∂W

∂w
p (1.23)

This is a consequence from the fact that the augmented Lagrangian depends on the material
derivative of η (See Appendix A.4 for details).

1.2 Comparison with the original equations
All we need to compare are the mass and momentum balance equations. The remaining
equations of the augmented system serve mainly as intermediate steps and couplings in the
augmentation process. Let us proceed from the third equation in system (1.21). In fact,
multiplying it by β yields :

β
∂ρw

∂t
+ βdiv (ρwu)− div (K(ρ)p) = 1

α

(
1− η

ρ

)
(1.24)

which means that :

1
α

(
1− η

ρ

)
= − (K(ρ)∆η +K ′(ρ)∇ρ · ∇η) + βρẇ (1.25)

Assuming we work on smooth solutions in which no singularities arise so that ∇η and ∆η
remain bounded quantities, the last equation gives the relative error between ρ and η as :

ρ− η
ρ

= −α (K(ρ)∆η +K ′(ρ)∇ρ · ∇η) + αβρẇ (1.26)

First, as expected, one recovers a vanishing error in the limit α→ 0. We can write :

η = ρ+O(α)⇒

∇η = ∇ρ+O(α)
∆η = ∆ρ+O(α)

(1.27)

With this asymptotic approximations taken into account we replace the expression (1.25)
into the momentum equation, and we obtain after simplifications (see appendix A.2):

∂ρ

∂t
+ div(ρu⊗ u) +∇(p(ρ)) = ρ∇

(
K(ρ)∆ρ+ 1

2K
′(ρ) |∇ρ|2

)
+O(α) +O(β) (1.28)

This illustrates the fact that the augmented system approaches the original E-K system in
the limits α → 0 and β → 0, which answers to one of the requirements of this model. It
remains now to justify its hyperbolicity, which we investigate in the following section.
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1.3 Hyperbolicity of the Augmented E-K equations
While in one dimension of space the question of hyperbolicity of the augmented E-K system
is a trivial matter, it requires some additional manipulations in the multidimensional case
which we will discuss in the current section. For this purpose, it is more practical to cast the
system (1.21) into the form :

∂U
∂t

+ A∂U
∂x

+ B∂U
∂y

+ C∂U
∂z

= S(U) (1.29)

In a general framework, let us define hyperbolicity based on such a system of PDEs [21][67] :

Definition 1.3.1. Consider a smooth hypersurface H(t, x, y, z) = 0. Then, under the fol-
lowing notations :

τ = Ht; ξ = Hx; ν = Hy; ζ = Hz, (1.30)

the hypersurface is charactersitic if :

det (τI + ξA + νB + ζC) = 0 (1.31)

The system of equations (1.29) is hyperbolic if for every (ξ, ν, ζ)T , the matrix A defined as :

A = ξA + νB + ζC (1.32)

has all its eigenvalues real and admits a basis of eigenvectors.

When it comes to practice, some considerations may fairly reduce the amount of work
needed to show hyperbolicity. In particular, if the system of equations (1.29) is invariant by
rotations of the SO(3) Group, it is sufficient to consider the 1D case, that is the conserved
variables and their respective fluxes only depend on time and on one dimension of space
(U(t, x, y, z) = U(t, x))[60]. We can prove that system of equations (1.21) is in fact invariant
by rotation (see proof in Appendix A.3) and consequently, we will make use of such simpli-
fications. Lastly and most importantly, there is a subtle change of structure that is required
in order to obtain hyperbolicity in the multidimensional case. This last step relies on the
fact that by definition, the vector p is equal to ∇η and is thus irrotational. Hence, adding
terms which are proportional to curl(p) only alters the form of the system. Following this,
we rewrite the momentum conservation equation and p conservation equation respectively
as follows :

∂ρu
∂t

+ div (ρu⊗ u + P)−K(ρ) curl(p) ∧ p = 0 (1.33)

∂p
∂t

+ div ((p · u− w) Id) + curl(p) ∧ u = 0 (1.34)

In this new form, and with all assumptions taken into consideration, the augmented E-K
system can be put into the quasilinear form :

∂U
∂t

+ A(U)∂U
∂x

= 0 (1.35)
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in which the vector of state variables and the quasilinear matrix are respectively given by :

U =



ρ
u
v
w
p1
p2
η


, A(U) =



u ρ 0 0 0 0 0
a21 u 0 0 a25 p2K

′(ρ) ρ−2η
αρ2

p1p2K′(ρ)
ρ

0 u 0 p2K(ρ)
ρ

0 0
−p1K′(ρ)

βρ
0 0 u −K(ρ)

βρ
0 0

0 p1 p2 −1 u 0 0
0 0 0 0 0 u 0
0 0 0 0 0 0 u


(1.36)

a21 = K ′(ρ)p2
1

ρ
+ 2ε′(ρ) + 1

2
(
p2

1 + p2
2

)
K ′′(ρ) + ρε′′(ρ) + η2

αρ3 , a25 = p1

(
K(ρ)
ρ

+K ′(ρ)
)

We have chosen here a set of non-conservative equations since it seemed easier for com-
putations. Obviously, this does not affect in any way the hyperbolicity property. Next,
a straightforward computation shows that the eigenvalues of A, which correspond to the
characteristic speeds of the augmented system are :

ξ1,2,3 = u, ξ±4 = u±

√
b−
√
b2 − 4c
2 , ξ±5 = u±

√
b+
√
b2 − 4c
2 (1.37)

where :

b = ρ

(
2ε′(ρ) + 1

2
(
p2

1 + p2
2

)
K ′′(ρ) + ρε′′(ρ) + η2

αρ3

)
+ p2

1 + p2
2

ρ
K(ρ)+K(ρ)

βρ
+2p2

1K
′(ρ) (1.38)

c =
(
p2

2 + 1
β

)(
K(ρ)

(
2ε′(ρ) + 1

2
(
p2

1 + p2
2

)
K ′′(ρ) + ρε′′(ρ) + η2

αρ3

)
− 2p2

1K
′(ρ)2

)
(1.39)

In the general case where ε(ρ) and K(ρ) are abstract functions, the computation of the
eigenvectors is quite tedious and results in very heavy expressions. This task will be done
separately in the next chapters for explicitly defined systems such as the NLS equation.
Nevertheless, we will show here the following proposition:

Proposition 1.3.2. If the total energy associated to the augmented E-K system is convex in
the conserved variables, then the system is at least weakly hyperbolic.

Proof. By definition, we need to show that all the eigenvalues (1.37) are real. This only
requires us to prove that :

b2 − 4c ≥ 0
b±
√
b2 − 4c ≥ 0

or equivalently


b2 − 4c ≥ 0
b ≥ 0
c ≥ 0

(1.40)

In order to show this, let us first cast b and c into a more convenient form, in which, the
derivatives of the total energy appear explicitly :

b = 1
ρ

(
ρ2Eρρ + p2

1Ep1p1 + 2p1ρEp1ρ + p2
2Ep1p1 + 1

β
Ep1p1

)
= 1
ρ

(
etHe + p2

2Ep2p2 + 1
β
Ep1p1

)
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c =
(
p2

2 + 1
β

)(
EρρEp1p1 − E2

p1ρ

)
The convexity of the total energy with respect to the conserved variables (ρ, ρu, ρv, ρw, p1, p2, ρη)
implies its convexity in every sub-base and in particular in (ρ, p1). The Hessian matrix in
this sub-base

H =
(
Eρρ Eρp1

Eρp1 Ep1p1

)

is thus semi-definite positive which implies that :

b = 1
ρ

(
etHe + p2

2Ep2p2 + 1
β
Ep1p1

)
≥ 0, eT = (ρ, p1)

c =
(
p2

2 + 1
β

)
det(H) ≥ 0

It only remains to show that the discriminant b2 − 4c ≥ 0. Let us write :

b2 − 4c2 = 1
ρ2

(
ρ2Eρρ + p2

1Ep1p1 + 2p1ρEp1ρ +
(

1
β

+ p2
2

)
Ep1p1

)2

− 4
(
p2

2 + 1
β

)(
EρρEp1p1 − E2

p1ρ

)

= 1
ρ2

(
ρ2Eρρ + p2

1Ep1p1 + 2p1ρEp1ρ −
(

1
β

+ p2
2

)
Ep1p1

)2

− 4
(
p2

2 + 1
β

)(
EρρEp1p1 − E2

p1ρ

)
+ 4
ρ2

(
p2

2 + 1
β

)(
ρ2EρρEp1p1 + p2

1E
2
p1p1 + 2p1ρEp1ρEp1p1

)

= 1
ρ2

(
ρ2Eρρ + p2

1Ep1p1 + 2p1ρEp1ρ −
(

1
β

+ p2
2

)
Ep1p1

)2

+ 4
ρ2

(
p2

2 + 1
β

)
(p1Ep1p1 + ρEp1ρ)

2 ≥ 0

Thus all the eigenvalues of A are real which concludes the proof.

Remark 1.3.3. Obtaining the explicit expression of the whole eigensystem of the augmented
system is a nontrivial task in general. The triple eigenvalue ξ = u always admits three
independent eigenvectors which are given by :

v1 =
(

(2η − ρ)K(ρ)
αρ2 (a21K(ρ)− a25p1K ′(ρ)) , 0, 0, 0,−

p1(2η − ρ)K ′(ρ)
αρ2 (a21K(ρ)− a25p1K ′(ρ)) , 0, 1

)

v2 =
(
− p2K(ρ)K ′(ρ)
a21K(ρ)− a25p1K ′(ρ) , 0, 0, 0,−

p1p2B
′(ρ)2

a25p1K ′(ρ)− a21K(ρ) , 1, 0
)

v3 = (0, 0, 1, p2, 0, 0, 0)

For the remaining eigenvalues, additional analysis is needed, as some of the eigenvalues may
coincide with one another. This is actually the case if we have c = 0, in which case ξ±4 = u,
or b2 = 4c, in which case ξ±4 = ξ±5 .
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ξ
u ξ+4 ξ+5ξ−4ξ−5

Figure 1.1: Representation of the eigenvalues of the augmented E-K system. u is a triple
eigenvalue. ξ±4 can coincide with u and ξ±4 can coincide with ξ±5 .

1.4 Dispersion Relation
For a dispersionless system, waves propagate at a velocity that is independent from the
wavelength. This is not the case in dispersive systems and the fundamental relation that
relates the velocity to the wavenumber is called the dispersion relation. Besides providing the
expression of the wave velocity, it also permits to quantify the damping or the amplification
of small perturbations to the system and consequently check its stability with respect to the
perturbation frequency. In the general case, for nonlinear systems such as the one we study
here, obtaining the exact dispersion relation is a major challenge, and in most cases it is
impossible to obtain. Nevertheless, it is usually possible to derive a linearized version that
still provides relevant information for small enough disturbances. Hence, let us consider a
monochromatic perturbation of a constant equilibrium state U0 = (ρ0, 0, ρ0, 0, 0)T defined
by, U(x, t) = U0 + U′ei(kx−ωt). Plugging this expression in our system of equations and
linearizing allows us to obtain an expression of the phase velocity cp = ω/k as an eigenvalue
of the matrix A(U0) + i/k∇S(U0). (See details in Appendix A.5). Its explicit expression is
given by :

(cp(k)±)2 = 1
2

(
B(k)±

√
B(k)2 − 4C(k)

)
(1.41)

where the functions B(k) and C(k) are given by :

B(k) = K(ρ)
βρ

+ 1
α

+ 1
αβk2ρ2 + ρ2ε′′(ρ) + 2ρε′(ρ) (1.42)

C(k) = (ρ2ε′′(ρ) + 2ρε′(ρ))
(
K(ρ)
βρ

+ 1
αβk2ρ2

)
+ K(ρ)

αβρ
(1.43)

Unlike the original E-K system, there are two possible positive values for the phase velocity
which we call c+

p and c−p . One can see through a simple limit computation that for c−p , in the
limits α → 0 and β → 0, one recovers the original phase velocity for the E-K system which
is given by :

cp(k)2 = ρ2ε′′(ρ) + 2ρε′(ρ) + k2ρK(ρ). (1.44)

The value c+
p is rather linked to the fact that the system is ’mimicking’ a dispersive system by

virtue of hyperbolic equations. In fact, while dispersive systems tolerate perturbations that
are felt across the whole domain instantaneously, hyperbolic equations only allow for finite
propagation velocities and hence bounded phase velocities. Thus, in the limits α → 0 and
β → 0, the phase velocity c+

p becomes infinite to exhibit the same instantaneous behavior as
a dispersive system. For fixed α > 0 and β > 0, one can say that the approximate augmented
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system approaches the instantaneous propagation velocity through very fast characteristics.
Lastly, the dispersion relation also proves useful to get an additional estimate for the intro-
duced parameters α and β. While the estimate remains heuristic, it is based on the fact that
both the original system and the augmented one should display close properties in terms of
wave velocities, stability regions and amplitude damping, since these aspects are of a signifi-
cant physical relevancy. Most of these aspects are strongly dependent on the explicit system
and are of no concern in the generic case as the E-K system has no inherent dissipation
or energy production. Consequently, more explicit analysis will be performed in the next
chapters.
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CHAPTER2
Non-Linear Schrödinger equation

2.1 About the NLS equation

2.1.1 A brief history
The Non-linear Schrödinger equation (NLSE) is a nonlinear version of the Schrödinger equa-
tion that has been a subject of extensive research in the latest 50 years. Since many versions
of the equation commonly share the exact same name, it seems necessary, as to avoid am-
biguity to point out that we refer precisely to the cubic Non-Linear Schrödinger equation,
which is given by :

iψt + 1
2∆ψ + κ |ψ|2 ψ = 0, (2.1)

where ψ(x, t) is a complex-valued field. Although the appellation Schrödinger equation may
invoke quantum mechanics and therefore lead the reader into associating ψ with a quan-
tum state vector, NLSE is widely used in classical physics and represents a universal model
to describe wave propagation in nonlinear media with dispersion. Variants of the equation
appeared since 1950, for example in the Ginzburg-Landau theoretical works on superconduc-
tivity [53, 52] and in the works of Ginzburg-Pitaevskii on the theory of superfluidity [40].
It was only later that practical applications of NLSE appeared, for example in nonlinear
optics with the works of Chiao [19] and Talanov [69] in 1964, describing the propagation
of light beams in nonlinear media, allowing for the beam to focus rather than spread, thus
creating zones of very high intensity. A few years later in 1968, Zakharov while working
on the stability of surface gravity waves in an infinitely deep fluid [76] established that for
slowly modulated surface waves, the wave amplitude is governed by the NLS equation. In the
same context, Benney and Roskes derived in [6] a variant of NLS, namely the Benney-Roskes
equation (also referred to as the Davey-Stewartson system [23]) and obtained similar results
for a finite depth fluid.
From the mathematics point of view, NLSE is also a very interesting object of analysis and
its popularity among mathematicians increased significantly after the (1+1)-dimensional case
was shown integrable by Zakharov and Shabat [68] by virtue of the inverse scattering trans-
form, under which setting, the latter equation becomes a compatibility condition for a system
of two linear equations, namely the Zakharov-Shabat system. Another major contribution
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to its arising fame in mathematics, is the existence and uniqueness results by Ginibre and
Vélo [39], on the associated initial value problem to the NLSE (in a more general case which
treats a power-law nonlinearity).
The above list of contributions is but a carefully handpicked selection, and is by no means
exhaustive. For more thorough informations, the reader may consult for example [34, 1].
Nevertheless, one can see that the aforementioned examples already involve many fields of
physics, of theoretical and practical interest, and thus demonstrate how versatile and worth
considering is the NLSE, for both physicists and mathematicians.

2.1.2 Focusing versus Defocusing NLSE
At this point it seems necessary to make the distinction between the so-called defocusing
and focusing NLSE, as they exhibit fundamentally different behaviors. The term focusing
seems to find its original meaning in nonlinear optics, in the description of the propagation of
beams in nonlinear media. For instance consider a medium whose refractive index n changes
accordingly to the amplitude of the applied electric field E, namely a Kerr medium [34]:

n2 = n2
0 + 4n0n2|E|2 (2.2)

This means that the medium gets more (resp. less) refractive for higher amplitudes of E if
n2 is positive (resp. negative). In such a medium and for some conditions, the propagation
of a continuous wave laser beam is modeled, at leading order by a NLS equation that can be
cast into the form [34] :

iψz + ∆⊥ψ + 4n2

n0
|ψ|2ψ = 0, (2.3)

where ψ(x, y, z) is the slowly-varying amplitude of the electrical field propagating along the
z-axis, ∆⊥ = ∂2

xx + ∂2
yy denotes the Laplacian in the transverse directions. Equation (2.3)

tells that the propagation of the laser beam is only governed by the diffraction term (Laplace
operator) and the nonlinear Kerr effects. It is shown by geometric arguments [34] that if both
terms have the same sign, that is n2 > 0, the beam will have a tendency to bend towards
the axis and increase its intensity. Hence, this is called self-focusing of the light beam as
opposed to self-defocusing when n2 < 0. The same terminology holds in the general case so
that equation (2.1) is called focusing NLSE if κ > 0 and defocusing NLSE if κ < 0.

2.1.3 Madelung Transformation
There exists a reformulation of NLSE which casts it into a system of conservation laws in
terms of real variables. This reformulation, introduced by Erwin Madelung [58] and thus
bearing his name, is done by decomposing ψ(x, t) into a particular polar form that writes :

ψ(x, t) =
√
ρ(x, t)eiθ(x,t). (2.4)

Here, ρ(x, t) ≥ 0 and θ(x, t) are real valued functions that represent the square of the modulus
and the argument of ψ(x, t) respectively. Replacing into equation (2.1) gives :(

i

2ρρt − θt
)

+
(

1
2

∆(√ρ)
√
ρ

+ i

2ρdiv(ρ∇θ)− 1
2∇θ · ∇θ

)
+ κρ = 0 (2.5)
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As a consequence, it is now possible to isolate the real and imaginary parts of the equation. If
we further consider a vector field variable u(x, t) defined as u = ∇θ , we obtain the following
system: 

ρt + div(ρu) = 0

ut + (u · ∇) u−∇
(
κρ+

∆(√ρ)
2√ρ

)
= 0

(2.6)

This formulation of NLSE is referred to asMadelung equations, quantum hydrodynamics equa-
tions or simply as hydrodynamic form of NLSE, since it bears similarities in many respects
to Euler equations of hydrodynamics. More importantly, it represents a particular case of an
Euler-Korteweg system with K(ρ) = 1/4ρ. System (2.6) can also be written in conservative
form : ρt + div(ρu) = 0,

(ρu)t + div (ρu⊗ u + Π) = 0,
(2.7)

with the now usual stress tensor :

Π = −
(
κ
ρ2

2 + 1
4∆ρ

)
Id + 1

4ρ∇ρ⊗∇ρ. (2.8)

System (2.7) admits an energy conservation law given by :

Et + div
(
Eu + Πu− ρ̇

4ρ∇ρ
)

= 0, (2.9)

with a total energy density expressed as :

E = ρ
|u|
2

2

− κρ
2

2 + 1
4ρ
|∇ρ|

2

2

. (2.10)

Consequently, the corresponding Lagrangian is given by :

L =
∫

Ωt

(
ρ
|u|
2

2

+ κ
ρ2

2 −
1
4ρ
|∇ρ|

2

2)
dΩ. (2.11)

It is worth noting that in the dispersionless case, the E-K system reduces to an Euler system,
which is hyperbolic in the defocusing case and elliptic in the focusing case. Consequently,
even though it may be worthwhile to test our augmented Lagrangian approach on the focusing
NLSE, the hyperbolicity of the resulting system is not given. Thus, for the next part and the
following numerical tests, we will retain only the defocusing cubic NLSE in (1+1) dimensions,
that is :

iψt + 1
2ψxx − |ψ|

2 ψ = 0, (2.12)

to which corresponds the following Euler-Korteweg system :
ρt + (ρu)x = 0,

(ρu)t +
(
ρu2 + ρ2

2 + 1
4ρ(ρ2

x − ρρxx)
)
x

= 0
(2.13)
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2.2 Reference solutions

2.2.1 General form of periodic solutions
In this part we are looking for periodic solutions to equation (2.12). Precisely, we are looking
for traveling wave solutions, meaning they depend on x and t only in the combination :

ψ(x, t) = A(ξ)eiθ(ξ) ; ξ = x− Ut. (2.14)

where A(ξ) =
√
ρ(x, t) and φ(ξ) = θ(x, t). Under these assumptions and notations, equation

(2.12) written in the real variables A and φ yields :

− iU(A′ + iφ′A) + 1
2(A′′ − φ′2 + i(2A′φ′ + φ′′A))− A3 = 0 (2.15)

Separating real and imaginary parts yields:
A′φ′ + 1

2φ
′′A = UA′

UAφ′ + 1
2(A′′ − φ′2)− A3 = 0

(2.16)

The first equation of this system can be solved explicitly as an ODE in terms of the variable
φ′ which gives :

φ′ = U + q

A2 (2.17)

where q is a constant of integration. Plugging this expression into the second equation of
system (2.16) and integrating yields :

A′2 + U2A2 + q2

A2 − A
4 = d (2.18)

where d is another constant of integration. Switching to the hydrodynamic variables ρ(x, t) =
A2(ξ) and u(x, t) = φ′(ξ), finally gives the system :

(
dρ

dξ

)2

= 4(ρ3 − U2ρ2 + dρ− q2) = P (ρ)

u = U + q

ρ

(2.19)

Since we are looking for real periodic solutions, this requires P (ρ) to have two positive roots
so that ρ oscillates periodically between them. Thus, we can write :(

dρ

dξ

)2

= 4(ρ− b1)(ρ− b2)(ρ− b3). (2.20)

Identifying the expressions in (2.19) and (2.20) allows to obtain the relations :

q2 = b1b2b3 ; U2 = b1 + b2 + b3 (2.21)
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Without loss of generality, we can assume that b1 > b2 > b3 > 0. Finally, one can obtain
a solution of (2.20) in terms of the Jacobi elliptic function dn (See Appendix B.3 for the
details) :

ρ(x, t) = b1 − (b1 − b3)dn2
(√

b1 − b3 (x− Ut) , s
)
, u(x, t) = U + q

ρ(x, t) . (2.22)

We remind that s is the elliptic modulus satisfying the relation :

s2 = b2 − b3

b1 − b3
, 0 < s < 1. (2.23)

Also note that for each fixed value of 0 < s < 1, solution (2.2.1) is a periodic wave of
amplitude a and wavenumber k given by :

a = b2 − b3

2 , k = π

K(s)

√
2a
s2 . (2.24)

where K(s) is the complete elliptic integral of the first kind . This shows that the amplitude
and the wavelength of the solution are tightly linked. For the limiting values s → 0 and
s→ 1, it follows from the formulas (2.24) that the solution is no longer periodic. Periodicity
is lost differently in each of the limits. In the case s → 0, the amplitude of the oscillations
vanishes. The wave number remains at a finite value given by k → 2

√
b1 − b3. In the case

s→ 1, we get K(s)→∞ and therefore the solution is no more oscillatory as the wavenumber
k → 0. More precisely, Since dn(v, s)|s→1 = 1/cosh(v) the solution behaves like a soliton of
amplitude (b1− b3). Below, we will present some exact and asymptotic solutions to the NLS
equation based on the representation (2.2.1).

2.2.2 Gray solitons
The first case corresponds to the family of solutions obtained from (2.2.1) in the limit s→ 1 :

ρ(x, t) = b1 −
b1 − b3

cosh2
(√

b1 − b3 (x− Ut)
) u(x, t) = U − b1

√
b3

ρ(x, t) (2.25)

This corresponds to a two-parameter family of solitary waves called gray solitons. It consists
of a localized density dip, of amplitude (b1 − b3) which propagates at a constant velocity U
without deforming or collapsing. It maintains its shape due to a perfect balance between the
nonlinearity and dispersion. The parameters b1 and b3 define the limit values of the soliton
such that :

lim
|x|→∞

ρ(x, t) = b1 ; ρmin = b3 ; lim
|x|→∞

u(x, t) = U −
√
b3 ; umin = U − b1√

b3
. (2.26)

The shape of the soliton is shown on Figure 2.1.
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0
ζ

ρ

b1

b3

0
ζ

u

u∞

u0

Figure 2.1: Overall shape of the gray soliton solution in terms of the variables ρ and u for
arbitrary values of the parameters b1 and b3 at t = 0

Remark 2.2.1. The particular case where b3 = 0 is called a dark soliton. Notice that the
soliton peak in this case reaches a point where ρ = 0 to which corresponds a singularity in
the velocity.

2.2.3 Dispersive shockwaves
In classical hydrodynamics described by dispersionless hyperbolic Euler equations, shock
waves (strong discontinuities) can appear. In the case of dispersive hydrodynamics, these
singularities are resolved by the appearance of an oscillatory wave train in a region of space
which expands over time. This is referred to as a dispersive shock wave (or alternatively dis-
sipationless shockwave, collisionless shockwaves). We will denote it by DSW for shortness.
Many works in the literature have been devoted to the study and analysis of such solutions,
their behaviors and their structures. See for example [43, 42, 32, 30, 31]. Dispersive shock-
waves generally display a highly nonlinear behavior, and involve a slowly modulated train
of fast oscillations. Whitham’s modulation equations [75] are in this case a very powerful
tool that provides a precise description of the slow modulation of the wavetrain of oscilla-
tions, through averaging techniques. This allows for a proper construction of the asymptotic
behavior of the DSW. In particular, it permits us to obtain an asymptotic envelope of the
oscillations which will serve later as a reference for the numerical results. In this context, we
will focus on DSWs that appear in the case of a Riemann problem for the defocusing NLSE.
Thus, consider the initial condition :ρ(x) = ρL x < 0

ρ(x) = ρR x > 0

u(x) = uL x < 0

u(x) = uR x > 0
(2.27)

Such an initial discontinuity gives rise to either a DSW or a rarefaction wave on each side.
The evolution of the amplitude of the DSW is described in terms of the Riemann invariants
ri (r1 > r2 > r3 > r4) of the corresponding Whitham’s averaged equations [63], [41] :

∂ri
∂t

+ Vi
∂ri
∂x

= 0, i = 1, 2, 3, 4. (2.28)
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The characteristic velocities are given by :

V1 = U(r) + 1
2(r1 − r2)

(
1− r2 − r4

r1 − r4

E(s)
K(s)

)−1

,

V2 = U(r)− 1
2(r1 − r2)

(
1− r1 − r3

r2 − r3

E(s)
K(s)

)−1

,

V3 = U(r) + 1
2(r3 − r4)

(
1− r2 − r4

r2 − r3

E(s)
K(s)

)−1

,

V4 = U(r)− 1
2(r3 − r4)

(
1− r1 − r3

r1 − r4

E(s)
K(s)

)−1

,

where the complete elliptic integral of the second kind E(s) is defined as:

E(s) =
∫ π

2

0

√
1− s2 sin2(θ)dθ.

The variables bi and U are linked to the ri via the relations [63], [41] :

b1 = 1
16 (r1 + r2 − r3 − r4)2 , (2.29)

b2 = 1
16 (r1 + r3 − r2 − r4)2 , (2.30)

b3 = 1
16 (r1 + r4 − r2 − r3)2 , (2.31)

U = 1
4 (r1 + r2 + r3 + r4) , (2.32)

s2 = (r1 − r2)(r3 − r4)
(r1 − r3)(r2 − r4) . (2.33)

If we consider a self-similar evolution of the Riemann invariants, ri depend only on τ = x/t
and equations (2.28) reduce to :

r′i(Vi − τ) = 0, i = 1, 2, 3, 4. (2.34)

It means that one of the Riemann invariants, say rj, changes in space and time and its
characteristic speed is Vj = τ , while the three other invariants are constants determined by
the initial conditions on both sides of the initial discontinuity. Outside of the DSW region,
it was shown in [41] that the Whitham equations for the defocusing cubic NLSE degenerate
into the Euler equations for shallow water flows. This transition occurs when two of the
Riemann invariants ri merge together, leading to either s2 = 0 or s2 = 1. The two remaining
invariants behave like Riemann invariants for the shallow water equations :

r± = u± 2√ρ (2.35)

The solution is then determined via matching of the Riemann invariants at the DSW fronts
[43], [41]. Since this procedure depends strongly on the structure of the flow, we will consider
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the case in which a rarefaction wave on the left and a DSW on the right are created (see
Figure 2.2). At the oscillatory front (corresponding to the leading edge of the DSW, s2 = 0)
we get [32], [31]:

r1 = r2, V1 = V2, r3 = r+(R), r4 = r−(R). (2.36)
At the soliton front (corresponding to the trailing edge of the DSW, s2 = 1), we get :

r2 = r3, V2 = V3, r1 = r+(0), r4 = r−(0). (2.37)

Here, r±(0) and r±(R) are the values of the invariants r± at the states ’0’ (the constant state
found solving the Riemann problem for the non-dispersive shallow water equations) and ’R’
(the state on the right of the initial discontinuity). Matching these invariants on either side of
the constant state allows to obtain the theoretical values of ρ0 and u0 at the central plateau.
Indeed we write :

r+(0) = r1 ⇒ u0 + 2√ρ0 = uL + 2√ρL (2.38)
r−(0) = r4 ⇒ u0 − 2√ρ0 = uR − 2√ρR (2.39)

Combining both equations permits us to obtain :

ρ0 =
(1

4 (uL − uR + 2√ρL + 2√ρR)
)2

(2.40)

u0 = 1
2 (uL + uR + 2√ρL − 2√ρR) (2.41)

Particularly in the case where uR = uL = 0 we get :

ρ0 =
(1

2 (√ρL +√ρR)
)2

(2.42)

u0 = √ρL −
√
ρR (2.43)

These expressions are in agreement with the ones in [46][32]. Next, we shall denote by τ1
and τ2 the asymptotic boundaries of the DSW region, and by τ3 and τ4 the boundaries of the
rarefaction wave when t→ +∞. Their values are given by : (See Appendix B.4 for details)

τ1 = uR +
8ρ0 − 8√ρ0ρR + ρR

2√ρ0 −
√
ρR

, τ2 = uR +√ρ0, τ3 = u0 −
√
ρ0, τ4 = uL −

√
ρL. (2.44)

The asymptotic profile of the solution is shown in Figure 2.2. The oscillatory part of the
solution is plotted according to the following algorithm :

1. Set the values of ρL, ρR, uL, uR.

2. Calculate the values of ρ0 u0, r1, r3, r4.

3. Calculate r2(s) = (r1(r3 − r4) + s2(r1 − r3)r4)/(r3 − r4 + (r1 − r3)s2).

4. Calculate the functions b1(s), b2(s), b3(s), U(s).
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5. Calculate τ(s) = V2(s).

6. Choose a time instant t. The DSW is shown as a parametric plot of (2.2.1) : ρ(s, t) =
ρ(τ(s), t), 0 ≤ s ≤ 1.

7. The low and upper boundaries of the oscillatory profile are described by :

ρinf (s) = b3(s), ρsup(s) = s2b1(s) + (1− s2)b3(s).

τ2 τ1τ3τ4
τ=x/t

ρ0

ρR

ρL

ρ

Figure 2.2: Asymptotic profile of the solution to NLS equation (continuous line) for the
Riemann problem ρL = 2, ρR = 1 , uL = uR = 0. The boundaries τi, i = 1, 2, 3, 4 delimit
the DSW and the rarefaction wave regions. The modulation of the DSW profile between τ2
and τ1 is described by the rarefaction wave solution to the Whitham system (bold dashed
line). The oscillatory profile is shown at t = 70. The values of τi, i = 1, 2, 3, 4, are given by
τ1 = uR +

8ρ0 − 8√ρ0ρR + ρR
2√ρ0 −

√
ρR

, τ2 = uR +√ρ0, τ3 = u0 −
√
ρ0, τ4 = uL −

√
ρL.

τ2 τ1
τ = x/t

r+(0)

r+(R)

r2

Figure 2.3: Asymptotic profile of invariant r2 for Whitham’s system. In the DSW region
τ2 < τ < τ1, r2 (dashed line) varies while the other invariants ri, i 6= 2, are constants.
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2.3 Augmented Lagrangian formulation for NLSE

2.3.1 System of Equations
In the same notations as in section 1.1, the augmented Lagrangian for the defocusing NLSE
writes :

L =
∫

Ωt

ρ |u|2
2

+ β

2 ρη̇
2 − ρ2

2 −
1
4ρ
|∇η|

2

2

− 1
2αρ

(
η

ρ
− 1

)2
 dΩ (2.45)

and the corresponding system of equations is given by :

∂ρ

∂t
+ div(ρu) = 0, (2.46)

∂ρu
∂t

+ div
(
ρu⊗ u +

(
ρ2

2 −
1
4ρ |p|

2 + η

α

(
1− η

ρ

))
Id + 1

4ρp⊗ p
)

= 0, (2.47)

∂ρη

∂t
+ div(ρηu) = ρw, (2.48)

∂ρw

∂t
+ div

(
ρwu− 1

4ρβp
)

= 1
αβ

(
1− η

ρ

)
, (2.49)

∂p
∂t

+ div ((p · u− w) Id) = 0; curl(p) = 0. (2.50)

This system admits the energy conservation law :

∂E

∂t
+ div

(
Eu + Pu− 1

4ρwp
)

= 0,

where

E = ρ
|u|
2

2

+ β

2 ρη̇
2 + ρ2

2 + 1
4ρ
|p|
2

2

+ ρ

2α

(
η

ρ
− 1

)2

,

P =
(
ρ2

2 −
1
4ρ |p|

2 + η

α

(
1− η

ρ

))
Id + 1

4ρp⊗ p.

We will concentrate on the one-dimensional case where u = (u, 0, 0)T and p = (p, 0, 0)T . In
this case, the equations are hyperbolic and the corresponding eigensystem is given by :

ξ1 = u , v1 = ( ρ
αρ3+η2 , 0, 0, p

αρ3+η2 ,
1

2η−ρ)T

ξ2 = u+ 1
2ρ
√
β

, v2 = (0, 0,
√
β, 2, 0)T

ξ3 = u− 1
2ρ
√
β

, v3 = (0, 0,−
√
β, 2, 0)T

ξ4 = u+
√
ρ+ η2

αρ2 , v4 = (ρ,
√
ρ+ η2

αρ2 , 0, p, 0)T

ξ5 = u−
√
ρ+ η2

αρ2 , v5 = (ρ,−
√
ρ+ η2

αρ2 , 0, p, 0)T

(2.51)
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2.3.2 Dispersion Relation
Linearizing the governing equations on the constant solution ρ = ρ0, u = 0, w = 0, p = 0, η =
ρ0 and looking for the solutions which are proportional to ei(kx−ωt), where k is the wave
number and ω is the frequency, one can obtain the dispersion relation expressed here in the
form cp = cp(k), where cp = ω/k is the phase velocity :

(c±p )2 =

1
4βρ2

0
+ ρ0 + 1

α
+ 1
αβρ2

0k
2 ±

√√√√( 1
4βρ2

0
+ ρ0 + 1

α
+ 1
αβρ2

0k
2

)2

− 4
(

1
αβρ0k2 +

ρ0 + 1
α

4βρ2
0

)
2 .

(2.52)

Remark 2.3.1. One can easily see that in the linear case, at fixed positive values of α and
β, the phase velocity approaches to the characteristic velocity in the limit k →∞.

2.3.3 Estimation of β and α

As discussed already, the augmented Lagrangian approach requires a choice of β and α.
This choice can be based, for example, on the fact that the dispersion relations for both
augmented and original systems must remain close in a specific range of wave numbers, that
is wave numbers of interest. For the equilibrium state defined by ρ = ρ0, u = u0 = 0, the
dispersion relation for the original Euler-Korteweg NLS system (2.13) is :

c2
p = ρ0 + k2/4. (2.53)

When (β, α) → (0, 0), the convergence of these dispersion relations is not uniform, that is,
the curves almost coincide for low wave numbers but start to stray away from each other
beginning from a certain threshold wave number kmax(β, α). This threshold wave number
must be chosen such that the wave numbers that may be present in the solution are contained
in [0, kmax].

0

1

2

3

4

5

6

0 2 4 6 8 10 12 k

cp

α=0.1

α=
0.0

1
α=

0.
00
1

Figure 2.4: The dispersion relation (2.53) (continuous line) and (2.52) for the augmented
Lagrangian (dashed lines) for β = 10−4 and different values of α.
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2.4 Numerical Schemes
In this part, we explain all the necessary steps related to the numerical resolution of the
augmented NLS system in one dimension of space. Since the latter is a first order hyperbolic
system of equations, any appropriate finite volume scheme should be able to deal with the
numerical resolution. In our case we will use two types of schemes, namely a MUSCL-Hancock
[70] scheme with a splitting strategy for the source terms, and an Implicit-Explicit type
scheme ((2,2,2) Diagonally-Implicit Runge-Kutta scheme) [2]. We will present here details
about the algorithms for both schemes are found. Boundary conditions will be discussed
later for each test case separately. In a most generic case, the system to solve numerically
can be written as :

∂U
∂t

+ ∂F(U)
∂x

= S(U), (2.54)

where U, F(U) and S(U) are respectively the vector of conservative variables, flux vector
and source terms vector. In the case of augmented NLS system, they are given by :

U =


ρ
ρu
ρη
ρw
p

 , F(U) =



ρu

ρu2 + ρ2

2 + η
α

(
1− η

ρ

)
ρηu

ρwu− 1
4ρβp

pu− w

 , S(U) =


0
0
ρw

1
αβ

(
1− η

ρ

)
0

 .

2.4.1 MUSCL-Hancock method
In a first attempt, we solve the hyperbolic system (2.54) by using the MUSCL-Hancock
extension to the Godunov scheme [70]. Since we have a non-zero source term, a splitting
strategy is applied [70] in which, at each time step, the numerical resolution is split into a
hyperbolic part :

∂U
∂t

+ ∂F(U)
∂x

= 0, (2.55)

and an ordinary differential equation part for the source terms :

dU
dt = S(U). (2.56)

so that at each time step ∆t = tn+1 − tn, the numerical resolution is split as follows [70]:

Hyperbolic step


∂U
∂t

+ ∂F
∂x

= 0

IC: U(x, tn) = Un

 =⇒ Ūn+1 ODE step


dU
dt = S(U)

IC: U(x, tn) = Ūn+1

 =⇒ Un+1

Thus the algorithm can be summarized as follows :

1. Boundary conditions : Setting the appropriate boundary conditions in the ghost
cells U0 and UN+1.
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2. Data Reconstruction: Replaces the constant states Un
i by piecewise linear functions

uni (x) defined by the extreme points :

UL
i = ui(0) = uni −

1
2∆i ; UR

i = ui(∆x) = uni + 1
2∆i (2.57)

Where ∆i is the slope.

3. Prediction Step: Time transition of UL
i and UR

i by half a time-step ∆t
2 :

ŪL
i = UL

i + ∆t
2∆x(F(UL

i )− F(UR
i ))

ŪR
i = UR

i + ∆t
2∆x(F(UL

i )− F(UR
i ))

4. Updating of solution to hyperbolic part: It is done according to the conservative
formula :

Un+1
i = Un

i −
∆t
∆x

(
F∗i+ 1

2
− F∗i− 1

2

)
, 1 ≤ i ≤ N. (2.58)

The intercell fluxes are obtained by solving the Riemann problem with UL = ŪR
i and

UR = ŪL
i . We use in our case a Rusanov flux given by :

F∗i+ 1
2

= 1
2 (F(UL) + F(UR))− 1

2κ
n
i+ 1

2
(UR −UL) , (2.59)

where κn
i+ 1

2
is obtained by using the Davis approximation [24] :

κni+1/2 = max
j

(|cj(Un
i )|, |cj(Un

i+1)|), (2.60)

with cj, the eigenvalues of the Jacobian ∂F
∂U .

5. Solving the ODE part: The final stage which corresponds to the taking into account
of the source term by solving the differential equation (2.56). In our case, this ordinary
differential equation is integrable. Indeed, it writes :

dρ

dt
= 0, d(ρu)

dt
= 0, d(ρη)

dt
= ρw,

d(ρw)
dt

= 1
αβ

(
1− η

ρ

)
,

dp

dt
= 0 (2.61)

This can be cast into : 

dρ

dt
= 0, dρu

dt
= 0, dp

dt
= 0

d2η

dt2
+ 1
αβρ

η − 1
αβ

= 0,

w = dη

dt
.
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Finally, solving the Cauchy problem associated to this step gives the solution :

ρn+1 = ρ̄n un+1 = ūn pn+1 = p̄n

ηn+1 = ρ̄n + (η̄n − ρ̄n) cos( 1
αβρ2 ∆t) + w̄n

αβρ2 sin( 1
αβρ2 ∆t)

wn+1 = 1
αβρ2 (ρ̄n − η̄n) sin( 1

αβρ2 ∆t) + w̄ncos ( 1
αβρ2 ∆t)

The algorithm loops over the previous steps until an initially defined final time is reached.
Since this is a purely first-order hyperbolic system of equations, stability of the scheme is
ensured by a usual Courant–Friedrichs–Lewy constraint on the time step ∆t :

∆t ≤ Ccfl
∆x

max
1≤i≤N

(|c(Un
i )|) (2.62)

The characteristic speeds in the x-direction are given by :

c = u, (c− u)2
± =

1
4βρ2 + ρ+ η2

αρ2 ± | − 1
4βρ2 + ρ+ 1η2

αρ2 |
2 . (2.63)

This means that depending on the sign of the quantity − 1
4βρ2 + ρ+ η2

αρ2 , there are 5 possible
values for the characteristic speed given by :

c1 = u, c2,3 = u±
√
ρ+ η2

αρ2 , c4,5 = u±
√

1
4βρ2

Thus, the characteristic speed is bounded by :

max
1≤i≤N

(|c(Ui)|) = max
1≤i≤N

max
|ui| , |ui|+

√√√√ρi + η2
i

αρ2
i

, |ui|+
√

1
4βρ2

i


In practice, β and α are small parameters. Therefore, although the time step scales linearly
with the mesh size ∆x, the coefficient which multiplies ∆x can be very small for small values
of α and β. This remains advantageous for refined meshes.

2.4.2 IMEX-(2,2,2) scheme
The name IMEX stands for Explicit-Implicit Runge-Kutta scheme [2][62]. This is a family
of multistep schemes which are well adapted to differential equations and partial differen-
tial equations with stiff terms. This is particularly the case for hyperbolic equations with
relaxation, as the latter often involves small time scales that stiffen source terms. The main
concept behind an IMEX Runge-Kutta scheme is to apply an implicit discretization to the
stiff part of the system and an explicit one to the remaining part. There are many variants of
IMEX schemes, and to help classify them, there is generally an associated triplet of integers
(s, σ, p) where s characterizes the number of stages of the implicit part, σ the number of
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stages of the explicit part and p the order of the scheme. Under this notation, the scheme we
will use is an IMEX-(2,2,2) scheme. It can be represented by two tables in the usual Butcher
notations for RK-schemes :

0 0 0 0
γ γ 0 0
1 γ − 1 2− γ 0

γ − 1 2− γ 0

0 0 0 0
γ 0 γ 0
1 0 1− γ γ

0 1− γ γ

γ = 1− 1√
2

(2.64)

where the left table corresponds to the explicit part and the right one to the implicit part.
When applied to the conservative equation (2.54), this yields the two-stage scheme :
Un,0 = Un

Un,1 = U? = Un − γ ∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
+ γ∆tS(U?)

Un,2 = Un+1 = Un − (γ − 1) ∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
− (2− γ) ∆t

∆x

(
F ?
i+ 1

2
− F ?

i− 1
2

)
+ (1− γ)∆tS(U?) + γ∆tS(Un+1)

In these formulas, F n
i+ 1

2
are the usual intercell fluxes computed by using a Riemann solver

as is the case for a classical Godunov scheme. Note that, for the second step of the scheme,
it is required to also compute intercell fluxes F ?

i+ 1
2
for the intermediate state U? (which also

requires to apply another MUSCL reconstruction beforehand). The source terms are resolved
implicitly, which requires a little bit of additional work when compared to explicit resolution.
The summary of the numerical resolution algorithm is given as follows :

1. Boundary conditions : Setting the appropriate boundary conditions in the ghost
cells U0 and UN+1.

2. MUSCL Reconstruction: Replaces the constant states Un
i by piecewise linear func-

tions uni (x) as explained in the previous section.

3. Compute the intercell Fluxes F n
i+ 1

2
: This is done using a Rusanov Flux :

Fn
i+ 1

2
= 1

2 (F(UL) + F(UR))− 1
2κ

n
i+ 1

2
(UR −UL) ,

4. IMEX intermediate step: Consists in solving the equation :

U? = Un − γ ∆t
∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
︸ ︷︷ ︸

=V1 (known)

+γ∆tS(U?)

where the only unknown is U?. All the variables at the time tn are known. It can be
simply put into the form :

U? − γ∆tS(U?)− V1 = 0

This equation can be solved numerically by any suitable root-finding algorithm (e.g
Newton-Raphson or a fixed-point method) for an equation f(U?) = 0 where f is given
by :

f(U?) = U? − γ∆tS(U?)− V1
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5. MUSCL Reconstruction of the state U?: Applies a MUSCL reconstruction for
the piece-wise data U? in order to compute the intercell fluxes F ?

i+ 1
2
.

6. Boundary conditions for the state U?: Applying the boundary conditions for U?,
to compute the boundary intercell fluxes.

7. Computation of the intercell Fluxes F ?
i+ 1

2
: The intercell fluxes are obtained by

solving again the Riemann problem with UL = Ū?R

i and UR = Ū?L

i .

8. IMEX final step: We now have everything we need to solve the equation :

Un+1 = Un − (γ − 1) ∆t
∆x

(
F n
i+ 1

2
− F n

i− 1
2

)
− (2− γ) ∆t

∆x
(
F ?
i+ 1

2
− F ?

i− 1
2

)
+ (1− γ)∆tS(U?)︸ ︷︷ ︸

known=V2

+ γ∆tS(Un+1)

It reduces to exactly the same form of equation to solve as in the intermediate step,
that is an equation of the form g(Un+1) = 0 where g is given by :

g(Un+1) = Un+1 − γ∆tS(Un+1)− V2

This equation is solved identically as above.

Before we move on, a few remarks of practical interest are worth mentioning.

• The time-step is constrained by the usual CFL condition ∆t ≤ Ccfl
∆x

max
1≤i≤N

(|c(Un
i )|) .

• This IMEX scheme is second order accurate.

• It is possible and more robust to solve the implicit part of the scheme by hand and
implement it directly into the code (see Appendix A.6). Although this makes for a less
generic code and more manual labor, this also avoids convergence issues of root-finding
algorithms and saves computational power.

2.5 Numerical Results

2.5.1 Gray solitons :
Initial condition and boundary conditions

We consider the initial conditions corresponding to the solitary wave solutions of NLS equa-
tion :

ρ(x, 0) = b1 −
b1 − b3

cosh2
(√

b1 − b3 x
) u(x, 0) = U − b1

√
b3

ρ(x, 0) , (2.65)

η(x, 0) = ρ(x, 0), w(x, 0) = −ρ(x, 0)ux(x, 0), p(x, 0) = ρx(x, 0).
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We use periodic boundary conditions in the computational domain. Thus we impose the
following relation between numerical fluxes in the first and last numerical cells:

F∗1
2

= F∗N+ 1
2

= F∗ (Un
N ,Un

1 ) . (2.66)

It means that when the soliton passes through one of the boundaries, it continuously reap-
pears on the other side. This permits us to run simulations for a longer time without having
to use large domains. The period of such a configuration is the required time for the soliton
to reach back its initial position. Such boundary conditions would normally apply to periodic
solutions. The results are shown on Figure 2.5:
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Figure 2.5: Numerical profiles of ρ (left) and u (right) for the grey soliton at t = 0 (dot-dashed
line) and at t = 2T (continuous line). The used domain is L = [−20, 20] with ∆x = 0.0002,
the period is T = D/U = 20. Parameters used for the simulation are b1 = 1.5, b3 = 1, U =
2, ε = 1, β = 10−4, α = 2.10−3.

One can see that the shape and the position of the simulated soliton are in perfect
agreement with the exact solution. Furthermore, Figure 2.6 shows the solution for different
mesh sizes ∆x = 0.004, ∆x = 0.002, ∆x = 0.0008 and ∆x = 0.0002, with a focus on the
soliton peak. We can see that for more refined meshes, we get more accurate values for
the soliton position and amplitude. This gives a preliminary idea on the convergence of the
scheme, which will be studied thoroughly in the following paragraphs.
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Figure 2.6: Magnified view on the numerical ‘grey’ soliton peak, for different mesh sizes, at
t = 2T . The theoretical amplitude and position are ρ = 1 and x = 0. Parameters used for
the simulation are the same as in figure (2.5).
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Convergence study

We measure hereafter the L2 relative error of the soliton’s profile across the domain. Since
the gray soliton admits non vanishing limits at infinity, we will be considering the quantity
ρ− ρ∞. This quantity is integrable and corresponds to the density of matter being expelled
when the soliton propagates. Hence, we consider the following error :

∆2(ρ) =

√√√√∑N
i=0 (ρ(i)− ρe(i))2∑N
i=0 (ρe(i)− ρ∞)2 (2.67)

Where ρ(i) and ρe(i) are respectively the simulated value and the exact solution value of ρ
taken at the ith cell.
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Figure 2.7: The log-log plot of the L2 error. The dots show the measured L2 errors for
different mesh sizes (10000, 20000, 50000, 100000) at t = 40. The continuous line is a linear
interpolation. The measured convergence slope is approximately 1.53.

It is interesting to investigate the phase error as well, that is the difference in the predicted
and simulated values of the solitary wave’s peak position. This error we measure is given by :

∆φ(t) = |xcp(t)− xcs(t)| (2.68)

where xcp(t) and xcs(t) are respectively the predicted and simulated position of the soliton’s
peak at time t. Figure (2.8) shows this error as a function of time for different meshes :
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Figure 2.8: The phase error as a function of time (left) and as a function of the time squared
(right), for three different mesh sizes : Nx = 20000, 50000 and 100000.
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According to these graphs, The phase error seems to be quadratic in time and vanishes
with mesh refinement.

Long time behavior

We carried on calculations until t = 80. The same behavior is observed, the soliton still
conserves its shape and travels at the same velocity without breaking-down. Figure (2.9)
shows the numerical solution for t = 80 along previously shown solutions for t = 0 and
t = 40 and Figure (2.10) shows the difference with the initial state for the solutions for
t = 40 and t = 80. The error is growing in time especially at the center of the solitary wave,
mainly due to the phase error.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

-20 -10  0  10 x

ρ

t=0

t=2T

t=4T  0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -10  0  10 x

u

t=0

t=2T

t=4T

Figure 2.9: Numerical profiles of ρ (left) and u (right) for the gray soliton for t = 0, t = 2T and
t = 4T . The used domain is L = [−20, 20] with ∆x = 0.0002, the period is T = D/U = 20.
Parameters used for the simulation are b1 = 1.5, b3 = 1, U = 2, ε = 1, β = 10−4, α = 2.10−3.
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Figure 2.10: Differences ∆ρ = ρ(x, t)−ρ(x, 0) (left) and ∆u = u(x, t)−u(x, 0) (right) for the
gray soliton for t = 0, t = 2T and t = 4T . The parameters are the same ones used above.
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Conserved quantities

The following analysis is carried out in order to see how well the mass, momentum and energy
are conserved, we consider a similar normalization to the one introduced in (2.67), meaning
we calculate the integral quantities according to :

m′ =
N∑
i=1

(ρ∞ − ρ(i)) ∆x; q′ =
N∑
i=1

(ρ∞u∞ − ρ(i)u(i)) ∆x; E ′ =
N∑
i=1

(E∞ − E(i)) ∆x (2.69)

where, m’, q’ and E’ correspond respectively to the mass, momentum and total energy, which
are expelled by the soliton’s propagation. They are estimated with numerical integration over
the whole computational domain . We compare these quantities with their initial values, using
the following relative errors :

∆m(t) =
∣∣∣∣∣m(t)−m0

m0

∣∣∣∣∣ ; ∆q(t) =
∣∣∣∣∣q(t)− q0

q0

∣∣∣∣∣ ; ∆E(t) = E(t)− E0

E0
(2.70)

Figure (2.11) shows the evolution of these errors over time.
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Figure 2.11: Evolution of the errors ∆m, ∆q and ∆E over time.

We can see that the mass and the momentum are well conserved. The measured errors
remain around the same values even after reaching the long time domain. A different behavior
is observed for the energy. Indeed, it steadily decreases from its initial value in a linear
manner. This is due to the numerical dissipation of the scheme.

2.5.2 Dispersive shockwaves
MUSCL-Hancock : Smoothed initial step

We present here the results for dispersive Riemann problem. In order to get the case where
a DSW propagates to the right and a rarefaction wave to the left, the initial values must
satisfy the condition [32] :

r+(L) > r+(R) > r−(R) > r−(L) (2.71)
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An initial step function trivially induces an infinite gradient at the point of discontinuity.
Thus, the gradient of density is proportional to a Dirac Delta function. The latter is not L2

which implies an initially infinite total energy in this case. Besides, since in our model, the
gradient is also an independent variable that must be initialized as a Delta function. From
the numerical point of view, this is impossible in the sense that machine-wise, real numbers
have a finite memory representations and infinite values cannot be stored. Thus, in order to
solve the Riemann problem, with properly implemented initial conditions, we will consider a
regular step-like function defined by :

ρ0(x) = ρL + ρR
2 +

(
ρL − ρR

2

)
tanh

(
x

δ

)
, (2.72)

u0(x) = uL + uR
2 +

(
uL − uR

2

)
tanh

(
x

δ

)
. (2.73)

The parameter δ controls the steepness of the jump, in the sense that the abrupt discontinuity
is spread over a region approximately delimited by [−2δ, 2δ] as shown in Figure (2.12) :

ρR

ρL

−2δ 0 2δ x

ρ
theoretical step
smoothed step

Figure 2.12: Magnified view over the smoothed step (continuous line) for δ = 0.1, ∆x =
0.000667.

Now, given this custom initial condition, we investigate the long time behavior of the
solution. We plot the quantities ρ and u, obtained numerically, as functions of the self-
similar variable x/t. The results are shown in figure (2.13). Clearly, the overall structure of
the solution complies with the asymptotic one shown on Figure 2.2. The amplitude of the
oscillations shows a very good agreement with the asymptotic DSW profile from Whitham’s
theory of modulations. The oscillations develop in both regions: τ > τ1 and τ < τ1. These
oscillations are part of the solution but they do not appear in the asymptotic (in time) limit
because they vanish when t→∞ as their amplitude a decreases with time as a ∝ t−1/2 [42].
This behavior is also displayed with the same power law in our results. By measuring the
amplitude a of the first oscillation at the vicinity of τ4, we could plot the function f(t) = at3/2

(see Figure (2.14) . The plot shows that f(t) is a linear function of time which implies that
a
√
t is constant.
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Figure 2.13: Comparison of the numerical results (thin line) with the Whitham modulational
profile of the DSW (thick line) at t = 70. The left figure shows ρ = f(x/t) and the right
figure shows u = f(x/t). The displayed τi are the theoretical boundaries of the DSW and the
rarefaction wave. The values of ρ0 and u0 are the theoretical values in the central plateau
given by ρ0 = 1

4(√ρR + √ρL + 1
2(uL − uR))2 and u0 = 1

2(uL + uR) + √ρL −
√
ρR. The

initial values used for this simulation are ρL = 2, ρR = 1, uL = uR = 0. The parameters are:
β = 2.10−5, α = 3.33.10−3,∆x = 0.000667. The whole computational domain is [−800, 800].
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Figure 2.14: Vanishing oscillations at the vicinity of the singular point τ = τ4. The figure
on the left shows that these oscillations decrease in time. The figure on the right shows that
the amplitude of the first oscillation a is such that at3/2 is linear. This implies the power law
a ∝ t−1/2.

Another important detail is to check the position of the soliton which arises at the vicinity
of τ = τ2. Let τs(t) be the soliton position at time t. We will compare τs(t) with the
asymptotic position τ2. The relative error is given by :

errpos(t) =
∣∣∣∣∣τs(t)− τ2

τ2

∣∣∣∣∣ . (2.74)

The time evolution of this error is shown on Figure (2.15) :
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Figure 2.15: Relative error on the position of the first soliton plotted as function of time.

MUSCL-Hancock : True discontinuity

We come back here to the issue of integrating a true discontinuity. As mentioned previously,
one must be careful at the choice of the initial condition, since if we consider a step function
for ρ(x, 0), we must also choose Dirac’s delta function for p(x, 0) = ρx(x, 0). Thus, the safest
option would be to choose a δ that is sufficiently small (smaller than the mesh size) and still
use the initial condition :

ρ(x, 0) = ρL + ρR
2 +

(
ρL − ρR

2

)
tanh(x

δ
) (2.75)

u(x, 0) = 0 (2.76)
η(x, 0) = ρ(x, 0) (2.77)
w(x, 0) = 0 (2.78)

p(x, 0) =
(
ρL − ρR

2δ

)(
1− tanh2

(
x

δ

))
(2.79)

Under theses assumptions the initial condition is plotted on figure (2.16).
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Figure 2.16: The step initial condition considered for the Riemann problem and the param-
eters ρL = 2, ρR = 1,uL = uR = 0, and δ = 10−5. The whole computation domain is shown
here. The inset shows a zoom at the mesh size’s level around the initial discontinuity.
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We ran simulations using this initial condition. The result is shown on figure (2.18) :
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Figure 2.17: Comparison of the numerical results obtained for the previous initial conditions
(thin line) with the Whitham modulational profile of the DSW (thick line) at t = 50. The
upper figure shows ρ = f(x/t) and the lower figure shows u = f(x/t). The parameters are
β = 2.10−5, α = 3.33 10−3,∆x = 0.000667. The whole computational domain is [−800, 800].

Like the results for the smoothed discontinuity, the numerical results overall comply with
the asymptotic solution. However, in the profile of ρ, a non-vanishing glitch appears at the
central plateau. It seems to be a sort of Gibbs phenomenon which appears at the initial
discontinuity. Further refining the mesh does not prevent its appearance. Still, it does
not hinder in anyway the propagation of the dispersive shock and rarefaction, nor does it
significantly impact the central plateau.
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IMEX result
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Figure 2.18: Comparison of the numerical results obtained with an IMEX scheme for the
previous initial conditions (thin line) with the Whitham modulational profile of the DSW
(thick line) at t = 70. The left figure shows ρ = f(x/t) and the right figure shows u = f(x/t).
The parameters are β = 2.10−5, α = 10−3,∆x = 0.01. The whole computational domain is
[−500, 500]

2.6 Conlusion
We presented in this chapter the application of our augmented Lagrangian approach for the
defocusing Nonlinear Schrödinger equation in one dimension of space. The numerical re-
sults show a very good agreement for both stationary solutions and non-stationary solutions.
There are advantages as well as disadvantages when presenting this approach as a yet another
method among others to solve the NLSE in general. First, out of the many methods that
exist in the literature, the majority treats directly the NLSE in its complex field form. Most
of these methods are spectral methods and are often accompanied by an arsenal of numer-
ical techniques for the resulting ODE in Fourier space. Such techniques include Split-Steps
[51][4][5] , Runge-Kutta Sliders [35], Integrating Factors [55] and exponential time differenc-
ing [59]. With the effective use and implementations of such methods, one can achieve very
high accuracy with minimal computational costs, see for example [49] where 4th order time
stepping is considered in combination with Fourier spectral methods in x, to numerically
solve the KdV equation and the NLS equation. However, while in terms of performance, the
method we present may not have the upper hand, it offers the possibility of solving a system
of first-order hyperbolic conservation laws in which the mass and momentum in terms of
Madelung variables are conserved. The hyperbolic setting also offers flexibility from the nu-
merical point of view, in the sense that numerical methods for hyperbolic equations are quite
universal and do not require too much additional work, especially for boundary conditions.
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CHAPTER3
Thin film flows with capillarity

3.1 Introduction

This chapter is devoted to another interesting application of the Euler-Korteweg system :
thin film flows where surface tension effects are not negligible. The subject has many use-
ful industrial applications in relation to windshield defrosting for planes, coatings, painting,
cooling of microelectronic equipment, etc. It also offers a variety of challenging problems for
the researcher. One of the greatest challenges in this context is to derive an accurate model
that is easy to solve. However, very precise models tend to call for complex mathematical
structures which are either impossible to solve by hand or require extremely heavy computa-
tions. Thus, decreasing the complexity of the problem is a major concern, in order to obtain
models which are fairly accurate but also solvable in a reasonable time.

It is in this context, that we would like to test out our augmented Lagrangian approach.
In fact, it may prove useful to provide a new family of models which are first order hyperbolic,
and which approximate existing models. From the numerical point of view, the hyperbolic
setting is relatively comfortable, since the used methods, stability conditions, and scheme
implementations are quite universal and do not call for much customization and additional
analysis. The approach we offer is also extendable to more complex energy forms. For
instance, the surface energy that is commonly used is linearly dependent on ||∇h||2. While
this approximation is generally satisfactory, it becomes less reliable in the case where large
gradients of fluid height appear. Since the method allows for it (as will be shown later), it
seems beneficial to analyze some cases with non-linearized surface tension term, for which
the capillary energy is given by :

Eca = σ

ρ

√
1 + ||∇h||2 (3.1)

We will begin by clarifying the setting, the assumptions and the notations that will be used
throughout this part and then proceed to the analysis.
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3.2 About thin film equations

3.2.1 Setting and notations
We consider a thin film that flows over an inclined horizontal plate under the effects of
gravity :

x

u(x,z,t)

h(x,t)

g

z

O

θ

L

~

~ ~ ~ ~

~

~ ~

~

Figure 3.1: Schematic of a flowing thin film over an inclined horizontal plate with the nota-
tions used in this section.

Here, the ’tilde’ infers that the associated quantity is dimensional. h̃(x̃, t̃) refers to the
fluid height and ũ(x̃, z̃, t̃) is the local velocity. The x̃ and z̃ respectively denote the direction
parallel to the plane and normal to the plane. The transverse direction ỹ is neglected, as the
applications considered here exhibit mainly two-dimensional dynamics. The angle θ is the
constant inclination of the plate and g is the acceleration of gravity. The typical distance
in the Ox direction will be denoted by L. For periodic waves this refers to the wavelength.
In the long wave approximation, the ratio ε between the typical depth and wavelength is
considered small.

In order to obtain a non-dimensional form of the equations, one needs to consider some
scaling of reference. For that, let us consider the Nusselt flow solution. It corresponds to
the equilibrium solution, balancing the viscous forces and the gravity-driven acceleration
resulting in a semi-parabolic velocity profile :

h̃(x̃, t̃) = h̃N

ũ(x̃, z̃, t̃) = ũN(z) = g

ν
sin θz̃

(
h̃N −

z̃

2

) (3.2)

the velocity is dependent on the fluid height and thus, in order to obtain a relevant character-
istic velocity, we need to average it across the depth. For the sake of lightness, the averaged
velocity over the depth will be denoted by its uppercase equivalent :

ŨN = 1
h̃N

∫ h̃N

0
ũN(z̃)dz̃ = gh̃2

N

3ν sin θ (3.3)
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Using this reference solution, we can define the Reynolds number (Re), the Froude number
(F ) and the Weber number (We) as follows :

Re = h̃N ŨN
ν

, F = ŨN√
gh̃N

, We = ρ

γ
h̃N Ũ

2
N .

The long wave parameter is defined as :

ε = h̃N
L

(3.4)

These definitions permit to perform a rescaling of the variables in order to obtain their
dimensionless versions:

u = ũ

ŨN
, U = Ũ

ŨN
, h = h̃

h̃N
, x = x̃

L
, z = z̃

h̃N
, t = t̃

L
ŨN (3.5)

Under these notations, the averaged governing equations write in dimensionless form [54, 65,
64] : 

∂h

∂t
+ ∂hU

∂x
= 0

∂hU

∂t
+ ∂

∂x

(
hU2 + 2λ2

225h
5 + cos θ

2F 2 h
2
)

= 1
εRe

(
λh− 3U

h

)
+ κ

F 2hhxxx

(3.6)

The dimensionless parameters λ, and κ are introduced for convenience, as in [64] and are
defined by :

λ = Re sin θ
F 2 , κ = ε2F 2

We
(3.7)

Remark 3.2.1. Although the previous definitions imply that λ = 3 in this case, we will keep
its expression as it is. Indeed, some later developments will require the expression instead of
the numerical value.

Remark 3.2.2. When compared to the previously studied NLS equation, this system admits
inherent dissipation in the right hand side. It is well-known that, dissipative systems do
not derive from a Lagrangian formulation. This problem can be overcome by applying the
augmented Lagrangian method to the dissipationless part of the system and then adding back
the source terms, once the new augmented system is derived. Although, the term λh/εRe
may be put into the Lagrangian, as it corresponds to the conservative forces of gravity, it
would change nothing to the resulting augmented system, whether it is added before or after
the derivation. So we will keep it for later as well.

Remark 3.2.3. This system of equations is derived through asymptotic expansions in the
small parameter ε. As such, it would admit not only the small parameters related to the
augmentation method but also the small parameter ε that governs the asymptotics of the
original equations. This problem will be addressed in due time, after the new governing
system of equations is established.
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Following these remarks, removing the dispersionless source terms and integrating the
dispersive terms into the momentum flux results in the following system :

∂h

∂t
+ ∂hU

∂x
= 0

∂hU

∂t
+ ∂

∂x

(
hU2 + 2λ2

225h
5 + cos θ

2F 2 h
2 + κ

2F 2h
2
x −

κ

F 2hhxx

)
= 0

(3.8)

To these equations, we can associate the following Lagrangian :

L =
∫

Ωt

(1
2hU

2 − hf(h)− 1
2
κ

F 2h
2
x

)
dΩ, f(h) = h cos θ

2F 2 + λ2h4

450 (3.9)

and the total energy :
E = 1

2hU
2 + h2 cos θ

2F 2 + λ2h5

450 + 1
2
κ

F 2h
2
x (3.10)

Before proceeding to the augmented Lagrangian approach for this system, let us first analyze
the full system of equations (3.6), with all its terms included. Even if the hyperbolization
process only concerns the dissipationless part, comparisons between both models shall be
done only after reinserting the source terms into the augmented system.

3.2.2 Dispersion relation and stability analysis
In this section, we shall derive the dispersion relation for equations (3.6). The latter can be
written as :

∂U
∂t

+ A(U)∂U
∂x

+B(U)∂
3U
∂x3 = S(U) (3.11)

where :

U =
(
h
U

)
, A(U) =

 U h
cos θ
F 2 + λ2h3

45 U

 , B(U) =
 0 0
− κ

F 2 0

 , S(U) =
 0

λ

εRe
− 3λU
εh2Re


We consider an equilibrium state U0 = (h0, u0) and look for solutions which are proportional
to ei(kx−wt), where k is the wave number and ω is the frequency. For simplicity, we can take
h0 = 1 and u0 = 1 which corresponds to the Nusselt equilibirum solution. We consequently
obtain the phase velocities as the eigenvalues of the matrix :

M = A(U0)− k2B(U0) + i

k
∇S(U0) (3.12)

A straightforward computation shows that the eigenvalues satisfy the equation :

ε(1− cp)2 − 3i
kRe

(1− cp)− ε
(
cosθ

F 2 + 2λ2

45 + k2ε2

We

)
− 6i
kRe

= 0 (3.13)

Equation (3.13) has a complex valued discriminant. Computing the expression of the phase
velocities is a trivial task, but separating the real and imaginary parts is not. Thus it brings
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no additional information. However, it is possible to recover at least the stability condition for
this equation. Since we are considering solutions which are proportional to ei(kx−wt), stability
requires the imaginary part of the frequency ω to be positive, so that the wave amplitude
does not grow exponentially in time. This defines the stability criterion :

Im(ω) < 0 ⇔ Im(cp) < 0 (3.14)

We can show that this condition comes down to the well-known stability condition (see
developments in appendix C.1):

cotg θ + κ

sin θk
2 >

6
5Re (3.15)

Hence, the neutral stability curve g(k) in the quadrant (k > 0, Re > 0) is defined by :

g(k) =
√

sin θ
κ

(6
5Re− cotg θ

)
(3.16)
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Figure 3.2: Stability regions for equations (3.6) in the (k,Re) plane. The thick red line cor-
responds to the neutral stability curve. The gray region are instable waves. The white region
are stable waves. The parameters used here correspond to the Liu & Gollub’s experiments
[57] with θ = 6.4◦, We = 0.184, F = 0.847 and ε = 0.006.

3.2.3 Asymptotic expansion of phase velocities
Instead of computing the exact expressions of the phase velocities, it is possible and more
insightful in this case, to compute their asymptotic expansions in power series of the small
parameter ε. In particular, this will prove useful when comparing the augmented model with
this one (see section 3.3.2). This gives the leading order behavior of wave propagation. For
more simplicity, we consider the variable X = 1−cp. In a first attempt, assume the following
expansion in a regular perturbation series :

X = X0 + εX1 + ε2X2 +O(ε3) (3.17)
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Such an expansion is possible if the considered eigenvalue is sufficiently smooth in terms of
ε and bounded when ε → 0. There will be cases where such assumptions on the regularity
are not verified. In these cases, we will use results from the singular perturbation theory to
find which form of the expansion is more suitable. Substituting the expansion (3.17) in the
characteristic polynomial (3.13) yields :

−
(3iX0

kRe
+ 6i
kRe

)
−
(

3iX1

kRe
+ cosθ

F 2 + 2λ2

45 −X
2
0

)
ε+

(
2X0X1 −

3iX2

kRe

)
ε2+O(ε3) = 0 (3.18)

by successively equating the coefficients multiplying εn to zero for n ∈ {0, 1, 2} we get :

X0 = −2, X1 = i

3kRe
(
cosθ

F 2 + 2λ2

45 − 4
)
, X2 = −4

9k
2Re2

(
cosθ

F 2 + 2λ2

45 − 4
)

(3.19)

Hence :

X = −2 + i

3kRe
(
cosθ

F 2 + 2λ2

45 − 4
)
ε− 4

9k
2Re2

(
cosθ

F 2 + 2λ2

45 − 4
)
ε2 +O(ε3)

Substituting the expansion in the second degree characteristic polynomial yields only one
eigenvalue. This is due to the fact that the considered polynomial clearly degenerates into a
first degree equation in the limit ε→ 0. Therefore, one of the eigenvalues was missed because
it approaches infinity in the limit ε → 0. In the general case, in order to find the missing
solution, we introduce a rescaled variable Y (ε) = Xδ(ε) and substitute it in the characteristic
polynomial :

ε
Y 2

δ(ε)2 −
3i
kRe

Y

δ(ε) − ε
(
cosθ

F 2 + 2λ2

45 + κ
k2

F 2

)
− 6i
kRe

= 0

In order to get a nontrivial solution, we need the leading order terms to have the same order
of magnitude, otherwise in the limit ε→ 0, one of them will simply vanish and the equation
will degenerate again. Balancing the two first terms yields:

δ(ε)2 = εδ(ε)⇒ δ(ε) = ε

and so :
Y 2 − 3i

kRe
Y − ε2

(
cosθ

F 2 + 2λ2

45 + k2ε2

We

)
− 6iε
kRe

= 0

Now we take Y in the form :

Y = Y0 + εY1 + ε2Y2 + Y3ε
3 +O(ε4) (3.20)

In this expansion, we are looking for Y0 6= 0, otherwise, this will lead again to the previous
trivial solution. We truncate at one higher order than previously to remain at a second order
approximation when replacing back X. Substituting in the characteristic polynomial gives :

Y 2
0 −

3i
kRe

Y0 +
(

2Y0Y1 −
3i
kRe

Y1 −
6i
kRe

)
ε+

(
Y 2

1 + 2Y0Y2 −
3i
kRe

Y2 −
cosθ

F 2 −
2λ2

45

)
ε2

+
(

2Y1Y2 −
3iY3

kRe
+ 2Y0Y3

)
+O(ε4) = 0
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once again, by successively equating the coefficients multiplying εn to zero, for n = {0, 1, 2, 3}
, we get :

Y0 = 3i
kRe

, Y1 = 2, Y2 = i
kRe

3

(
4− cosθ

F 2 −
2λ2

45

)
, Y3 = −4

9k
2Re2

(
4− cosθ

F 2 −
2λ2

45

)

we substitute X = Y/ε to obtain :

X = 3i
kεRe

+ 2 + i
kRe

3

(
4− cosθ

F 2 −
2λ2

45

)
ε− 4

9k
2Re2

(
4− cosθ

F 2 −
2λ2

45

)
ε2 +O(ε3) (3.21)

To conclude, the expansions of two phase velocities cp = 1−X are given by:

cp1 = 3− i

3kRe
(
cosθ

F 2 + 2λ2

45 − 4
)
ε+ 4

9k
2Re2

(
cosθ

F 2 + 2λ2

45 − 4
)
ε2 +O(ε3)

cp2 = − 3i
kεRe

− 1 + i

3kRe
(
cosθ

F 2 + 2λ2

45 − 4
)
ε− 4

9k
2Re2

(
cosθ

F 2 + 2λ2

45 − 4
)
ε2 +O(ε3)

3.3 Augmented Lagrangian formulation

3.3.1 Governing equations
In this section, we will apply the augmented Lagrangian approach to thin film equations. We
remind that the augmentation process concerns the sourceless system of equations (3.8). The
source terms shall be added by hand after the derivation of the equations. The augmented
Lagrangian based on the Lagrangian (3.22) writes :

L =
∫

Ωt

(
1
2hU

2 + β

2hη̇
2 − hf(h)− 1

2
κ

F 2p
2 − h

2α

(
η

h
− 1

)2
)
dΩ (3.22)

To this Lagrangian corresponds the following system of augmented equations :
∂h

∂t
+ ∂

∂x
(hU) = 0, (3.23)

∂hU

∂t
+ ∂

∂x

(
hU2 + h2

2F 2 cosθ + 2λ2h5

225 + κ

2F 2p
2 + η

α

(
1− η

h

))
= 0, (3.24)

∂hη

∂t
+ ∂

∂x
(hηU) = hw, (3.25)

∂hw

∂t
+ ∂

∂x

(
hwU − κ

βF 2p

)
= 1
αβ

(
1− η

h

)
, (3.26)

∂p

∂t
+ ∂

∂x
(pU − w) = 0 (3.27)

Now, all that remains is to add back, by hand, the previously removed source terms to the
momentum equation, so that it becomes :

∂hU

∂t
+ ∂

∂x

(
hU2 + h2

2F 2 cosθ + 2λ2h5

225 + κ

2F 2p
2 + η

α

(
1− η

h

))
= 1
εRe

(
λh− 3U

h

)
(3.28)
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Remark 3.3.1. As to relieve ambiguity, the augmented system will now refer to equations
(3.23)–(3.27), where we substitute the momentum equation (3.43) by (3.28).

In this case, the characteristic speeds ξi are given by :
ξ1 = u

ξ2,3,4,5 = U ±
√

(1 + βp2)a+ b±
√

((1 + βp2)a+ b)2 − 4ab
(3.29)

where a et b are positive quantities given by :

a = κ

2βhF 2 , b = λ2h4

45 + η2

2αh2 + h cos θ
2F 2 (3.30)

The five eigenvalues are real and distinct, unless we have :

p = 0, and 2λ2h5

45 + η2

αh
+ h2 cos θ

F 2 − κ

βF 2 = 0 (3.31)

in which case the eigenvalues become :

ξ1 = U, ξ2,3 = U +
√
b, ξ4,5 = U −

√
b (3.32)

Even in this case, it is easy to check that we still obtain a full set of linearly independent
eigenvectors.

Remark 3.3.2. It would have been straightforward to obtain the hyperbolicity of the system
if its energy was convex with respect to the conservative variables. This is not the case here
mainly due to the penalty term.

3.3.2 Dispersion Relation: α and β scaling
Like for the NLS equation, we must assign values to the relaxation parameters α and β. Unlike
the NLS equation, it proved impossible in the current case, to obtain an explicit expression
of the phase velocities. The task requires an unreasonable number of assumptions on the
parameters. Instead, since we performed an asymptotic expansion of the phase velocities for
the original equations, we will do equivalently for the augmented system and try to conserve
the asymptotic behavior up to a given order. First, let us cast the augmented system into a
quasilinear form :

∂U
∂t

+ A(U)∂U
∂x

= S(U) (3.33)

where :

U =


h
U
η
w
p

 , A(U) =



U h 0 0 0
C + 1

αh
U 1

α

(
1− 2η

h

)
0 κp

F 2h

0 0 U 0 0
0 0 0 U − κ

βF 2h

0 p 0 −1 U

 , S(U) =


0

λ
εRe
− 3λU

εh2Re

w
1

αβh

(
1− η

h

)
0
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where C = cos θ
F 2 + 2λ2h3

45 . We consider an equilibrium state U0 such that h = h0, U = U0, η =
h0, w = 0, p = 0 and look for solutions which are proportional to ei(kx−wt). Similarly to the
previous section, we will perform the analysis in terms of the variable X = u0 − cp which
makes computations slightly lighter. We will also assume the Nuesselt flow as reference
equilibrium solution and thus take h0 = 1 and U0 = 1. Under these assumptions, the phase
velocities are given as the eigenvalues of the matrix A(U0) + i

k
∇S(U0) which writes :

A(U0) + i

k
∇S(U0) =


1 1 0 0 0

C + 1
α

+ 6i
εkRe

1− 3i
kεRe

− 1
α

0 0
0 0 1 i

k
0

i
αβk

0 −i
αβk

1 − κ
βF 2

0 0 0 −1 1

 (3.34)

to which corresponds the characteristic polynomial, written in terms of the variable X:

1
αβεk3X

(
A0 + A1X + A2X

2 + A3X
3 + A4X

4
)

= 0 (3.35)

where the coefficients are given by :

A0 = 6i
Re

+ Cεk + 6iα
ReWe

k2ε2 + 1 + αC

We
k3ε3, A1 = 3i

Re
+ 3iα
ReWe

k2ε2

A2 = −
(6iα
Re

βk2 +
(
1 + βk2 + αCβk2

)
kε+ α

We
k3ε3

)
, A3 = −3iαβk2

Re
, A4 = αβεk3

The main purpose of this analysis, is to obtain the asymptotic behavior of the phase velocities
in the small parameter ε, in order to compare with original system. The characteristic
polynomial (3.35) has five complex roots. One root is trivial which is X = 0. Out of the four
remaining roots, two should be approximately the same as in the original system. We denote
the corresponding phase velocities by c′p1 and cp′2 . The two remaining roots are rather linked
to the fast characteristics of the augmented system. Before we proceed, it would be safest to
set all small parameters as a function of ε. Having more than one small parameter may result
in an erroneous asymptotic analysis. Thus a choice of α and β as functions of ε is necessary.
A reasonable choice would be to make sure that the phase velocities of the augmented system
match the original one, at least up to first order in ε. It is shown in appendix C.2 that the
latter statement is valid if α and β given by :

α = O(ε), β = O(ε3) (3.36)

Under such a scaling, the phase velocities, which correspond to the roots of (3.35), can be
expanded into power series of ε as follows :

cp0 = 1
c′p1 = 3− i

3kRe
(
cosθ
F 2 + 2λ2

45 − 4
)
ε+ 4

9k
2Re2

(
cosθ
F 2 + 2λ2

45 − 4
)
ε2 +O(ε3)

c′p2 = − 3i
kεRe
− 1 + i

3kRe
(
cosθ
F 2 + 2λ2

45 − 4
)
ε− 4

9k
2Re2

(
cosθ
F 2 + 2λ2

45 − 4
)
ε2 +O(ε3)

cp3,4 = ± 1
kε2

+ o
(

1
ε2

) (3.37)
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3.3.3 Neutral stability analysis
Another important property of the model to be checked is its stability curve. If the neutral
stability curves of both systems are significantly different, then discrepancies in their respec-
tive behaviors may be observed for the same frequencies. Unstable waves in the original
system could become stable for the augmented model or vice-verse. Avoiding this inconsis-
tency requires us to check the stability condition Im(cp) < 0 (equivalently Im(X) > 0). This
task requires tedious calculations but can be greatly simplified if we instead look for the crit-
ical curve Im(cp) = 0. This literally means that we search for real roots of the characteristic
polynomial (3.35). We discard the root X = 0 and we consider a nontrivial root X ∈ R∗
of (3.35). Equating the real and imaginary parts of (3.35) respectively to zero yields the
equations (after normalization) :

Qre(X) = X4 −
(

1
α

+ C + κ

βF 2 + 1
αβk2

)
X2 + C

β

(
κ

F 2 + 1
αk2

)
+ κ

αβF 2 = 0

Qim(X) = X3 + 2X2 −
(

κ

βF 2 + 1
αβk2

)
X − 2

(
κ

βF 2 + 1
αβk2

)
= 0

(3.38)

where X must be a common root to the two polynomials. Qim admits three real roots:

X1 = −2 ; X2,3 = ±
√

κ

βF 2 + 1
αβk2 (3.39)

Let us plug the obtained roots in QRe. The latter is biquadratic implying that X2 and X3
are equivalent. We obtain :

Qre(X1) = 1
k2

(
κk2

F 2 − 4 + C

)
+ α

(
4β − κ

F 2

)
(4− C)− 4β

Qre(X2,3) = − 1
α2β

Clearly, Qre(X2,3) is always a non-zero value .This leaves X1 as the unique possible common
root. It remains to replace C by its value :

C = cos θ
F 2 + 2λ2

45 = cos θ
F 2 + 6Re sin θ

45F 2

Simplifying gives the neutral stability curve:(
cotgθ + κk2

sin θ −
6Re

5

)
+ k2(O(α) +O(β)) = 0 (3.40)

This equation is consistent with the stability condition (3.15) in the limits α → 0, β → 0.
The error terms are proportional to the square of the wavenumber implying that convergence
is not uniform with respect to k. This is confirmed in figure 3.3 where neutral stability curves
for the original system and the augmented one are compared for several values of α and β.
The values which were obtained through the asymptotic analysis show a very good agreement
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in terms of stability regions. Less restrictive values of either α or β are shown to exhibit a
different behavior in the sense that the instability region in these cases is significantly wider.
In terms of convergence, it is clear that for low frequencies the curves match very well up
to a certain cut-off frequency, starting from which there is a notable increase in the error of
approximation. This is similar to what we had observed for the NLS equation for the phase
velocity.

Re

k

original model
α = ε, β = ε3

α = ε, β = ε2

α =
√
ε, β = ε3

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40

Instable region

Stable region

Figure 3.3: Neutral stability curves in the (k,Re) plane for the original model (continuous
blue line) and the augmented model for various scalings of α and β with respect to ε. The
parameters used here are the same as in figure 3.2.

3.4 Nonlinear surface tension

We will address now the problem of nonlinear surface energy. We will keep to all the previous
setting but the capillary terms. We revert back to the total energy of a thin film without
surface tension linearization :

Enl = 1
2hU

2 + h2 cos θ
2F 2 + λ2h5

450 + κ

ε2F 2

√
1 + ε2h2

x (3.41)

This form is more suitable to larger gradients of fluid height, for which the usually used
Taylor expansion, simplifying the surface energy term, becomes less relevant. We show that
this adds almost no difficulty when using the augmented Lagrangian approach. This form
of energy is still compatible with the generic Lagrangian (A.1), for which we derived the
Euler-Lagrange equations. Thus, applying Hamilton’s principle to the associated augmented
Lagrangian :

L =
∫

Ωt

(
1
2hU

2 + β

2hη̇
2 − h2 cos θ

2F 2 − λ2h5

450 −
κ

ε2F 2

√
1 + ε2p2 − 1

2αh
(
η

h
− 1

)2
)
dΩ (3.42)
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submitted to the mass conservation law, and adding the usual closure equations results in
the augmented system :

∂h

∂t
+ ∂

∂x
(hU) = 0, (3.43)

∂hU

∂t
+ ∂

∂x

(
hU2 + h2

2F 2 cosθ + 2λ2h5

225 −
κ

F 2ε2
√

1 + ε2p2 + η

α

(
1− η

h

))
= 0, (3.44)

∂hη

∂t
+ ∂

∂x
(hηu) = hw, (3.45)

∂hw

∂t
+ ∂

∂x

(
hwU − κp

βF 2
√

1 + ε2p2

)
= 1
αβ

(
1− η

h

)
, (3.46)

∂p

∂t
+ ∂

∂x
(pU − w) = 0 (3.47)

The characteristic speeds ξi of this system are given by :
ξ1 = U

ξ2,3,4,5 = U ±
√
a′(1 + βp2) + b±

√
(a′(1 + βp2) + b)2 − 4a′b

(3.48)

where b is defined as in equation (3.30) and a′ is given by :

a′ = κ

2βhF 2(1 + p2)3/2 = a(1 + p2)−3/2 > 0, (3.49)

The hyperbolicity of this system is obtained exactly as in the linear surface tension case.

3.5 Numerical simulations

3.5.1 Test for a Gaussian initial data
In a first attempt, we compare with the results obtained in [14] for a Gaussian initial data.
It offers the advantage of being one of the few tests that was compared for both linear and
nonlinear surface tensions in the non-stationary case. Thus, for the setting of this test, we
consider the following Lagrangian, in dimensioned variables :

L =
∫

Ωt

(
1
2 h̃Ũ

2 − 1
2gh̃

2 − σ

ρ

√
1 + h̃2

x̃

)
dΩ (3.50)

to which corresponds, in the augmented setting, the Lagrangian :

L =
∫

Ωt

(
1
2 h̃Ũ

2 + 1
2 β̃h̃w̃

2 − 1
2gh̃

2 − σ

ρ

√
1 + p̃2 + h̃

2α̃

(
1− η̃

h̃

)2)
dΩ (3.51)
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We consider the initial data :

h̃(x̃, t̃ = 0) = h0 + h1e
− x2

2(b/b0)2

η̃(x̃, t̃ = 0) = h̃(x̃, t̃ = 0)

p̃(x̃, t̃ = 0) = − h1
(b/b0)2 x̃e

− x2

2(b/b̃0)2

Ũ(x̃, t̃ = 0) = 0
w̃(x̃, t̃ = 0) = 0

(3.52)

Here, h0 is the water elevation at rest. b, b0 and h1 are parameters that define the shape of
the deformation as can be seen in figure 3.4.

h0

h1

b
x

h

Figure 3.4: Shape of the Gaussian initial data.

Starting from the initial condition (3.52), we compute the time evolution of the deforma-
tion, which generates both gravity and capillary waves. For the simulation, we take a domain
of L = [−50mm, 50mm]. The numerical results, at t = 5ms, is displayed in figure 3.5, with
both linear and nonlinear capillarity terms :

2

2.5

3

3.5

4

0 5 10 15 x̃(mm)

h̃(mm)

−0.2

−0.1

0

0.1

0.2

0 5 10 15 x̃(mm)

ũ(m.s−1)

linear capillarity sim.
linear capillarity ref.
nonlinear capillarity sim.
nonlinear capillarity ref.

linear capillarity sim.
linear capillarity ref.
nonlinear capillarity sim.
nonlinear capillarity ref.

Figure 3.5: Comparison of the obtained numerical results (solid lines) with the converged nu-
merical solutions proposed in [14] (dots), for the Gaussian initial data (3.52) at t = 5ms. Pa-
rameters used here are g = 9.81m.s−2, σ = 0.0728Kg.s−2, ρ = 1000Kg.m−3, h0 = 2.725mm,
h0 = h1, b = 1.5h1 and b0 = 4.29193. α̃ = 10−3m−2s2 and β̃ = 10−5. Results are shown with
a mesh resolution of n = 5000.
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3.5. Numerical simulations

The shown results are obtained by using an IMEX-2,2,2 scheme with MUSCL reconstruc-
tion. The cfl is set to 0.8. Unlike what was used in [14], there is no need to adjust the cfl to
be able to capture the capillary waves, as the characteristic velocity of the model, naturally
includes the fast oscillations scale. The comparison shows a perfect agreement, in terms of
wave amplitude, wave frequency and wave speed. The comparison of p̃ with h̃x̃, computed
through centered finite differences is given in the next figure for both capillarity forms:

−1

−0.5

0

0.5

1

1.5

0 5 10 15 x(mm)

h(mm)

nonlinear capillarity : p̃

nonlinear capillarity : h̃x̃

linear capillarity : p̃

linear capillarity : h̃x̃

Figure 3.6: Comparison of h̃x̃ (dashed lines) and p̃ (continuous lines) for the same values as
above for both linear and nonlinear surface tension models. The curves coincide perfectly.

This test shows that the numerical results obtained for both linear and nonlinear surface
tension models match perfectly with the converged numerical solutions of [14]. Although
the reference we compare with, is not an exact solution, this test shows that the augmented
model in this setting, approximates the original model with excellent accuracy.

3.5.2 Liu & Gollub’s experiment

We study here the experiments done by Liu and Gollub [57]. It consists in a two-meters
long canal, inclined with a constant angle θ, containing a thin film of water (around one
millimeter). The fluid is initially at rest. At t = 0, a periodic perturbation, with an arbi-
trary amplitude, is imposed at one of its boundaries. Depending on the frequency of the
perturbation, the thus generated waves have amplitudes that may decay or grow in time.
The frequencies of interest in this experiment are the unstable frequencies, for which it was
observed that the wave amplitude grows until it reaches a stationary state whose behavior
is strongly dependent on the imposed frequency. An example is given in figure 3.7 for a
frequency of 1.5Hz. The perturbation is imposed on the left boundary. One can see that the
initial oscillations grow as they propagate until a wave-train of small capillary oscillations
appears in the vicinity of the leading front which stabilizes the time evolution.
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Figure 3.7: Dimensionless water height as a function of space (dimensioned), in the setting
of the Liu & Gollub experiment, for an imposed frequency of 1.5Hz. (Obtained through
numerical simulation). Parameters used here are : Re = 19.33, κ = 1.440.10−4, Fr =
0.8476,θ = 6.4◦

An important feature of this experiment is that, for different imposed frequencies, the
generated wave displays significantly different features (presented in figure 3.8). For higher
frequencies, the front and tail of the waves become closer which hinders the development of
the wave precursors and may lead to strong interaction between the successive pulses.

(a) (b)

(c)

Figure 3.8: Dimensionless water depth as a function of the downstream distance x̃ for different
frequencies : (a) f̃ = 1.5Hz, (b) f̃ = 3.0Hz and (c) f̃ = 4.5Hz in the experiments of Liu
& gollub [57]. Figures reprinted from J. Liu and J. P. Gollub. “Solitary wave dynamics of
film flows”. In: Physics of Fluids 6.5 (1994), pp. 1702–1712, with the permission of AIP
Publishing.
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3.5. Numerical simulations

Before proceeding to the numerical resolution of this experiment by means of the aug-
mented system, it is obviously unreasonable to attempt a comparison without taking viscos-
ity into account in the system of equations. The modification only concerns the momentum
equation which writes instead :

∂hU

∂t
+ ∂

∂x

(
hU2 + h2cosθ

2F 2 + 2h5

25 + κp2

2F 2 + η

α

(
1− η

h

))
= 1
εRe

(
λh− 3U

h

)
+ 9ε

2Re
∂

∂x

(
h
∂U

∂x

)
(3.53)

From the numerical point of view, this additional diffusive term is solved by an explicit finite
differences scheme given by :

∂

∂x

(
h
∂U

∂x

)∣∣∣∣∣
t=tn

x=xi
' 1

4∆x2 ((hni + hni+1)(Un
i+1 − Un

i )− (hni + hni−1)(Un
i − Un

i−1)) (3.54)

To summarize, the system to solve numerically writes fully :

∂h

∂t
+ ∂

∂x
(hU) = 0,

∂hU

∂t
+ ∂

∂x

(
hU2 + h2cosθ

2F 2 + 2h5

25 + κp2

2F 2 + η

α

(
1− η

h

))
= 1
εRe

(
λh− 3U

h

)
+ 9ε

2Re
∂

∂x

(
h
∂U

∂x

)
,

∂hη

∂t
+ ∂

∂x
(hηU) = hw,

∂hw

∂t
+ ∂

∂x

(
hwU − κ

βF 2p

)
= 1
αβ

(
1− η

h

)
,

∂p

∂t
+ ∂

∂x
(pU − w) = 0

Note that solving this system with the IMEX-222 scheme along the finite differences (3.54)
for the additional viscous term, requires a stability condition of the form :

max
(
ξm

∆t
∆x,

9ε
2Re

∆t
∆x2

)
< 1 (3.55)

where ξm is the maximum characteristic velocity. In order to simulate the experiments of Liu
& Gollub, we consider the following initial condition :

h(x, 0) = η(x, 0) = U(x, 0) = 1, w(x, 0) = p(x, 0) = 0 (3.56)

which corresponds to the Nusselt flow solution. The boundary conditions are given in this
case by :

x = 0 :



hn0 = 1 + 0.1 sin(2πftn)
un0 = 1
ηn0 = hn0
wn0 = 0.2πf cos(2πftn)
pn0 = (ηn1 − ηn0 )/∆x

x = L :



hnN+1 = hnN
unN+1 = unN
ηnN+1 = ηnN
wnN+1 = wnN
pnN+1 = pnN

(3.57)
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The dimensionless frequency is given by f = f̃L/ŨN , where f̃ is the imposed dimensioned
frequency. In all the below presented numerical simulations, we take the following values of
the relevant physical parameters:

Fluid properties Reference quantities Dimensionless numbers
g 9.81m/s2 h̃N 1.279mm Re 19.33
σ 0.067Kg/s2 ŨN 94.94mm/s F 0.8476
ν 6.28.10−6m2/s L 210.5mm κ 0.000144
ρ 1080Kg/m3 θ 6.4◦ ε 0.006076

The augmented model parameters are taken equal to α = ε and β = ε3. The numerical
results are given below :
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Figure 3.9: Experimental results of Liu & gollub [57] (right) along the obtained numerical
results (left), for different forcing frequencies, respectively equal to (a) : f̃1 = 1.5Hz, (b) : f̃2 =
3.0Hz and (c) : f̃ = 4.5Hz. The number of mesh points is n = 40000. Experimental results
figures are reprinted from J. Liu and J. P. Gollub. “Solitary wave dynamics of film flows”.
In: Physics of Fluids 6.5 (1994), pp. 1702–1712, with the permission of AIP Publishing.

Chapter 3. Thin film flows with capillarity 55



3.6. Conclusion
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Figure 3.10: Superimposed numerical simulation with the experimental result for f̃ = 1.5Hz.

Remark 3.5.1. It may seem that the value Re = 19.33 used here is in discrepancy with the
one used in [57] which is Re′ = 29. The fact that Re′ = 3Re/2 is due to the fact that they are
defined with different reference velocities. In fact, we consider here as reference velocity the
averaged equilibrium velocity over the depth ŨN , while the reference value used in [57] is the
value of the velocity at the water surface ũN(hN) = 3ŨN/2. (See equations (3.3) and (3.2) )

For the different forcing frequencies, the numerically simulated waves display similar
features to the experimental measures for the chosen values of α = ε and β = ε3. The
agreement is qualitatively very good. One can see on figure 3.10 that the amplitude and the
wavelength of both the wave peak and the capillary ripples, are approximately well recovered
through the augmented model for the chosen values of α and β.

3.6 Conclusion
The numerical results obtained through the augmented Lagrangian approach permitted to
obtain good numerical results for examples involving thin film flows. The approach was
shown to be easily adaptable to both models with linear and nonlinear surface tensions, as
the structure of the obtained hyperbolic equations remains almost the same in both cases.
This approach, in its current version, is unable to deal with flows involving dry or nearly dry
regions. This is due to the fact that the maximum characteristic velocity tends to infinity
when the fluid depth h tends to 0. The treatment of dry zones will need significant efforts,
on both the modeling and numerical aspects.
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CHAPTER4
Stationary droplets on a solid

substrate

4.1 Setting and assumptions

In this chapter, we consider a droplet of liquid, resting at rest on a plane horizontal solid
substrate (see figure 4.1). We are interested in the stationary shape of the droplet submitted
to its own weight and surface energy. In such a setting, it is reasonable to consider that the
droplet is isotropic in the plane of the substrate so that we can restrict the analysis to one
dimension of space. This assumption will make calculations more straightforward but not
any less rigorous.

0

h0

x = 0

h

x
θ

Figure 4.1: One-dimensional profile of the droplet.

In this setting, we are looking for an admissible droplet profile h(x) where h designates
the local height of the droplet. If we assume that its center is located at x = 0, we can
further narrow down the analysis to the domain x ≥ 0, assuming that h(x) = h(−x). In
what follows, we denote by h(x = 0) = h0, the central height and we assume that the edge of
the droplet connects to the solid substrate (h = 0) forming a contact angle θ known a priori.
We assume that the droplet spreads over a finite length equal to 2L, which is unknown.
Under these assumptions and notations, we have the following constraints at the boundaries
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4.2. Equilibrium equations

of the droplet :

x = 0

h = h0

hx = 0
x = L

h = 0
hx = − tan(θ)

(4.1)

where hx denotes the derivative of h with respect to x. Finally, we consider that the total
energy of our system writes :

E(h, hx) = 1
2gh

2 + σ

ρ

√
1 + h2

x + P (h) (4.2)

where g is the gravity acceleration, σ is the surface tension of the liquid, ρ is the density of
the liquid. P (h), as introduced in [25] in general and following Derjaguin [27] is often called
disjoining energy and is a sort of correction to the surface tension that should be such that
P (∞) = 0.

4.2 Equilibrium equations
In this part, we establish the differential equation satisfied by the profile h(x) in the most
generic case. In fact, for any energy that is dependent on h and hx, we can write Hamilton’s
action as :

a =
∫ +∞

−∞
E(h, hx) dx. (4.3)

The latter is submitted to the mass conservation constraint, which writes:

δh = −(hδx)x (4.4)

We now apply Hamilton’s principle of stationary action :

δa = 0⇐⇒
∫ +∞

−∞
(δE(h, hx)) dx = 0 (4.5)

⇐⇒
∫ +∞

−∞

(
∂E

∂h
δh+ ∂E

∂hx
δhx

)
dx = 0 (4.6)

We plug in the mass conservation constraint and use Shwartz’s theorem δhx = (δh)x to
obtain : ∫ +∞

−∞

(
−∂E
∂h

(hδx)x −
∂E

∂hx
(hδx)xx

)
dx = 0 (4.7)

Integrating by parts gives:∫ +∞

−∞

(
d

dx

(
∂E

∂h

)
hδx+ d

dx

(
∂E

∂hx

)
(hδx)x

)
dx = 0 (4.8)

We integrate again the second term by parts to obtain :∫ +∞

−∞

(
d

dx

(
∂E

∂h
− d

dx

(
∂E

∂hx

))
hδx

)
dx = 0 ∀δx (4.9)
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Therefore the Euler-Lagrange equation writes:

h
d

dx

(
∂E

∂h
− d

dx

(
∂E

∂hx

))
= 0 (4.10)

Since we are looking for nontrivial solutions, we would like to investigate the case where h(x)
is not zero over a continuous region. Thus:

d

dx

(
∂E

∂h
− d

dx

(
∂E

∂hx

))
= 0 (4.11)

Integrating this equation gives :

∂E

∂h
− d

dx

(
∂E

∂hx

)
= C (4.12)

It is possible to integrate again the equation. In fact multiplying (4.12) by hx gives:

hx
∂E

∂h
− hx

d

dx

(
∂E

∂hx

)
= Chx (4.13)

⇒ d

dx

(
E − hx

∂E

∂hx

)
= Chx (4.14)

So that finally we have :
E − hx

∂E

∂hx
= Ch+D (4.15)

Remark 4.2.1. Both C and D are constants of integration that are independent of x.

Remark 4.2.2. Equation (4.15) is compatible with the equilibrium state of the momentum
equation in the Euler-Korteweg system, associated with the potential energy (4.2). Indeed, at
equilibrium the momentum balance writes :

∂

∂x
(hxEhx + hEh − E − (hEhx)x) = 0 (4.16)

Integrating once yields :

h
∂E

∂h
− h d

dx

(
∂E

∂hx

)
− E + hx

∂E

∂hx
= cst (4.17)

Which is exactly obtained by replacing C in equation (4.15) by its expression given in equation
(4.12).

In our case of interest, that is when the energy is expressed as in equation (4.2), we
obtain :

gh2/2 + P (h) + σ

ρ
√

1 + h2
x

= Ch+D (4.18)
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which implies that h(x) satisfies the differential equation :

h2
x =

(
σ/ρ

Ch+D − gh2/2− P (h)

)2

− 1. (4.19)

In order to render the formulas less cumbersome, we denote by Q(h) the function :

Q(h) = 1 + ρ

σ

(
gh2

2 + P (h)− (Ch+D)
)

(4.20)

So that the differential equation (4.19) becomes :

h2
x =

(
1

1−Q(h)

)2

− 1 (4.21)

Naturally, since we are looking for real-valued solutions, it is necessary to have :

Q(h) ≥ 0 ∀h ∈ [0, h0] (4.22)

Depending on the setting which defines the properties of the function Q(h), we can have
different admissible droplet shapes. The regularity of the solution strongly depends on the
allowed values of the contact angle θ. If we were to consider hydrophobic substrates, which
comes down to imposing θ > π/2, then the droplet must bend at some point in order to
form an obtuse angle in the vicinity of the substrate. In this case, proper description of the
water height requires two profiles h1(x) and h2(x) separated by a singularity in which the
derivative of the droplet height reaches infinity. This singular case will be considered later
and we will focus first on smooth droplets.

4.3 Smooth droplet profiles
In a first attempt, we will restrict to contact angles θ < π/2. Since we look for smooth
solutions, we impose :

Q(h) < 1 ∀h ∈ [0, h0] (4.23)
Taking into account the boundary conditions (4.1), and plugging them in equation (4.18)
yields: 

P (0) + σ

ρ
√

1 + tan(θ)2
= D

Ch0 +D = gh2
0/2 + σ

ρ
+ P (h0)

(4.24)

which allows us to obtain the expressions of C, D and consequently Q(h) as follows :

D = P (0) + σ

ρ
cos(θ)

C = gh0/2 + σ

ρh0
(1− cos(θ)) + P (h0)− P (0)

h0

Q(h) =
(

1− cos(θ)
h0

− ρ

σ

(
gh

2 + P (h0)− P (h)
(h0 − h) − P (h0)− P (0)

h0

))
(h0 − h)

(4.25)
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It is useful to note that the constraints (4.22) and (4.23) write explicitly in this case :

gh/2 + P (h0)− P (h)
h0 − h

≤ σ

ρh0
(1− cos(θ)) + P (h0)− P (0)

h0
∀h ∈ [0, h0] (4.26)

gh/2 + P (h0)− P (h)
h0 − h

>
σ

ρh0
(1− cos(θ))− σ

ρ(h0 − h) + P (h0)− P (0)
h0

∀h ∈ [0, h0] (4.27)

These constraints are not local and do not have a simpler formulation in the general case as
there are no restraints on the behavior of P (h). However, in the few cases we will consider,
it is possible to extract more practical necessary or sufficient conditions from them.

Now that all is set, we are interested in classifying the possible profile structures that are
obtainable through solving equation (4.19) under the assumptions (4.1). Depending on the
setting, i.e. the explicit form of P (h) and the values of the physical parameters, there can be
different smooth structures of the droplet we are seeking. Two examples are shown in figure
(4.2) below :

0

h0

h

x
θ

A

0

hc

h0

h

xθ

θa

B

Figure 4.2: Sketches of the overall shape of some droplets. To the left : the droplet is
completely concave. Its edge forms a contact angle with the solid substrate underneath. To
the right, the droplet changes convexity for some value h = hc and flattens in the vicinity of
the contact angle, forming what we may call a precursor film.

The main difference in both shown profiles is the change in convexity that appears in
the rightmost graphic of figure 4.2. In this case, although the edge of the droplet still forms
an angle θ with the solid substrate, and which is in agreement with the imposed constraints
(4.1), there is meaning into considering a secondary angle, θa, which appears at the inflection
point location. Generally, the convex part of such a droplet lies in the close vicinity of the
contact line (hc << h0). This means that, from the macroscopic point of view, it would be
more reasonable to consider θa as the "apparent" contact angle. Following these remarks, in
order to investigate whether any changes in convexity are likely to happen, it is important
to have a look at the sign of hxx inside the interval [0, h0]. The expression of the latter
is obtained by deriving both sides of the differential equation (4.21) with respect to x and
simplifying by hx. This allows us to write :

hxx = − Q′(h)
(1−Q(h))3 (4.28)
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Accordingly, the profile h(x) admits as many inflection points as the number of local extrema
of the function Q(h) in the interval [0, h0]. Therefore let us further analyze this function and
its derivatives. First, let us recall its expression:

Q(h) = 1 + ρ

σ

(
gh2

2 + P (h)− (Ch+D)
)

(4.29)

its first and second derivative are given by :

Q′(h) = ρ

σ
(gh+ P ′(h)− C) , Q′′(h) = ρ

σ
(g + P ′′(h)) (4.30)

Since conditions (4.1) impose that :hx = 0 at h = h0

hx = − tan(θ) ≤ 0 at h = 0
(4.31)

this results in:
Q(h0) = 0 and Q(0) = 1− cos(θ) (4.32)

Since Q(h) ≥ 0 and Q(h0) = 0 then Q(h0) is a global minimum in [0, h0] and:

Q′(h0) ≤ 0 (4.33)

As a consequence, for a strictly concave droplet, since hxx does not change curvature, Q′(h)
admits no roots and thus does not change its sign. Therefore, a necessary condition for
a concave droplet is Q′(0) < 0. Otherwise, there exists at least one root of the equation
Q′(h) = 0 inside the interval ]0, h0[, meaning there is at least an inflection point.

First case : P ′′(h) > 0
In this case, the conclusions are rather straightforward. In fact, it implies that :

Q′′(h) > 0 ∀h ∈ [0, h0] (4.34)

Therefore, Q′(h) is an increasing function over [0, h0]. Since Q′(h0) < 0 then Q′(h) < 0 ∀h ∈
[0, h0]. Therefore, h(x) admits no inflection points and only profile A of figure 4.2 is admissible
in this case.

Second case : P ′′(h) < 0
This includes some explicit forms of P (h) that are commonly used in practice. This situation
allows for many possible scenarios, as there are no bounds on the number of roots of Q′(h)
as long as P (h) is not explicitly given. A case of interest is when the equation Q′′(h) = 0
admits at most one root in all the domain [0,+∞[. Such is the case for instance, if P ′′(h)
is monotonic. We show in this particular setting that only the cases A and B displayed in
figure 4.2 are admissible.
Indeed, if the equation Q′′(h) = 0 admits no more than one root, then Q′(h) admits at most
two roots in [0, h0]. Let us investigate the possible situations :
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1. If Q′(h) has no roots in ]0, h0[, then h(x) is strictly concave (case A).

2. If Q′(h) has one root hc ∈ [0, h0], then h(x) changes convexity once (case B).

3. Assume Q′(h) has two roots in ]0, h0[ then Q′′(h) admits a root hs in ]0, h0[ (Rolle’s
theorem). Since there is one change of sign of Q′(h) then Q′(0) < 0. Since we assumed
that Q′′(h) does not admit any more than one root and that Q′′(∞) = g > 0, then
this implies that Q′(h) is decreasing in [0, hs] and increasing in [hs, h0] and therefore
Q′(h) < 0 ∀h ∈ [0, h0] which contradicts the assumption that Q′(h) admits roots in
[0, h0].

Therefore, if P ′′(h) is monotonic and negative, then only admissible profiles of h(x) are case
A and case B. In particular :

• If Q′(0) ≤ 0 then the droplet is strictly concave.

• If Q′(0) < 0 then the droplet admits an inflection point.

Remark 4.3.1. Since P (∞) = 0 and P (h) is concave in this case, it follows trivially that:

P (h) < 0 ∀h ∈ [0, h0]; P ′(h) > 0 ∀h ∈ [0, h0] (4.35)

and that :
P (h0)− P (h)

h0 − h
≤ P (h0)− P (0)

h0
∀h ∈ [0, h0] (4.36)

This permits to obtain more practical information from the constraints (4.26) and (4.27).
Indeed this implies that :

1. A sufficient condition for the constraint (4.26) to be respected is :

gh/2 ≤ σ

ρh0
(1− cos(θ)) ∀h ∈ [0, h0] ⇐⇒ h2

0/2 ≤
σ

ρg
(1− cos(θ)) (4.37)

which can be cast into the form:

h0 ≤ 2lc sin(θ/2) (4.38)

where lc is the capillary length given by lc =
√

σ
ρg

2. A necessary condition for the constraint (4.27) to be respected is :

ρgh/2 + σ

h0 − h
>

σ

h0
(1− cos(θ)) ∀h ∈ [0, h0] (4.39)

Since the left-hand side of the inequality is an increasing function of h, then it is enough
to check the inequality for h = 0 which gives :

cos(θ) > 0 (4.40)

Which is a natural consequence of a smooth droplet assumption, since it does not allow
for θ = π/2.
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4.4 Explicit example: P (h) = −A/(h + h?)
This form of P (h) satisfies the assumptions P ′′(h) > 0 and P (∞) = 0. Its behavior is also
discussed in [25] (case(b) on p.92). Out of concave functions reaching to 0 in infinity with a
finite value for h = 0, the one we choose here may be the simplest in terms of calculations.
It is also possible to consider the exponential function, which qualitatively delivers the same
behavior. Without further ado, let us detail some of this potential’s properties.

P (h) = − A

h+ h?
(4.41)

where A and h? < h0 are positive constants. It follows from it that :

P ′(h) = A

(h+ h?)2 ; P ′′(h) = − 2A
(h+ h?)3 < 0 (4.42)

P (0) = −A
h?

; P ′(0) = A

h2
?

> 0 (4.43)

The graph of P (h) and its derivative are given in the figure 4.3 below:

h? 5h? 10h?

P

h

0

−A/h?

h? 5h? 10h?

P ′

h
0

A/h2
?

Figure 4.3: sketch of the profiles of P (h) (left) and P ′(h) (right) as a function of h.

Replacing P (h) in the expressions of Q′(h) and Q′′(h) yields :

Q′(h) = ρ

σ

(
gh+ A

(h+ h?)2 − C
)
, (4.44)

Q′′(h) = ρ

σ
(g − 2A

(h+ h?)3 ) (4.45)

In this case, we can clearly see that Q′′(h) is a strictly increasing function. As a matter of
fact, it follows from the analysis done in the previous section that the profile of the droplet
only depends on the sign of Q′(0). Let us consider the dimensionless constant K = 2A/gh3

?.
The equality Q′(0) < 0 can be cast into the form :

K > Kc, where Kc =
(

1 + 4 l
2
c

h2
0

sin2(θ/2)
)

(1 + h0/h?) (4.46)
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If this equality holds, then h(x) admits an inflection point. Otherwise it is strictly concave.
By solving numerically the differential equation (4.21), for different values of the parameter
K (varying A at fixed h?) we can plot the following figure :
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x(mm)

h(mm)

K = 0.5Kc
K = Kc
K = 20Kc

Figure 4.4: Different drop shapes for different values of K, obtained through numerically
solving equation (4.21). Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 =
1.262mm, h? = 0.252mm and θ = 30◦.

While, theoretically, a change of convexity appears for any K > Kc, it becomes only
discernible at sufficiently high values of K. For values of K slightly higher than Kc, the
inflection point remains in the extremity of the droplet edge. It is also possible to fix A and
then vary the contact angle instead. We obtain the following figure :
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Figure 4.5: Different drop shapes for different values of θ, obtained through numerically
solving equation (4.21). Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 =
0.45mm, h? = 0.09mm and A = 10−9m4s−2.

4.5 Remarks on droplets with singularities
Before moving on to testing these results under the augmented formulation, we would like
to give a few brief remarks on some cases with singularities, with points where hx reaches
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an infinite value. Clearly, by looking at the differential equation (4.21), such a singularity
occurs if there exists hs ∈]0, h0[ such that Q(hs) = 1. This equality writes :

gh2
s

2 + P (hs) = Chs +D (4.47)

We will disregard the case where multiple roots of this equation exist and focus on the case
where only one root hs exists. The curve h2

x = f(h) in this case is plotted in the following
figure :

h

h2x

1− cosθ
hs h0

Figure 4.6: graphic of h2
x as a function of h in the case of a singularity

Such a setting suggests two possible phase portraits which are displayed below :

h

hx

−tanθ

hs h0
h

hx

−tanθ

hs h0

Figure 4.7: Admissible phase portraits in the case of a single root hs. The left phase portrait
corresponds to a contact angle θ < π/2 with a singularity in the middle. The right phase
portrait corresponds to a contact angle θ > π/2.

As shown in figure 4.7, there are two admissible phase portraits. The left graphic corre-
sponds to a droplet on a hydrophilic substrate, given the sign of tan θ and the sign of hx in
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the region [0, h0]. This means that after the singularity, there is a change of convexity and the
droplet edge connects with solid substrate, similarly as for a regular droplet with an inflection
point, forming a contact angle θ < π/2 (see figure 4.9). The second possibility, which is in
the right part of figure 4.7, corresponds to a droplet on a hydrophobic solid substrate. The
singularity that occurs at h = hs corresponds to the turnaround point so that the droplet
can bend over to form an angle θ > π/2 (see figure 4.8). In these circumstances, the sign of
cos θ is undetermined. The initially chosen contact angle imposes which branch to take in
this case. The constants C and D write more generally :


D = P (0) + σ

ρ
|cos(θ)|

C = gh0/2 + σ

ρh0
(1− |cos(θ)|) + P (h0)− P (0)

h0

(4.48)

so that equation (4.47) explicitly writes :

ghs/2 + σ

ρh0

(
|cos θ|+ hs

h0 − hs

)
= P (h0)− P (0)

h0
− P (h0)− P (hs)

h0 − hs
(4.49)

The left-hand side of this equality is positive and so must be the right-hand side. This case is
clearly incompatible with convex forms of P (h) since the considered slope difference is always
negative. For a concave P (h) we may have roots hs. For example, for the explicit case of
P (h) we have used previously, this equation writes explicitly :

ghs/2 + σ

ρh0

(
|cos θ|+ hs

h0 − hs

)
= Ahs
h?(h0 + h?)(hs + h?)

(4.50)

Or in dimensionless form :

1
2 + l2c

h0hs

(
|cos θ|+ hs

h0 − hs

)
= K

(1 + h0/h?)(1 + hs/h?)
(4.51)

In the case where this equation admits exactly one root, as discussed earlier, there are two
possible outcomes. While the governing differential equation is independent of the sign of
cos θ, what makes the difference is the boundary condition hx = − tan θ at x = 0. If θ > π/2,
and if we note by xs the space coordinate of the singularity, we need to solve :

hx = −
√(

1
1−Q(h)

)2
− 1 ∀x ∈ [0, xs[

h(0) = h0

hx =
√(

1
1−Q(h)

)2
− 1 ∀x ∈ [L, xs[

h(xs) = hs
(4.52)

Solving successively these equations yields the following profile :
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Figure 4.8: Full shape of a droplet for θ = 150◦, obtained through the above numerical
algorithm. Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 = 2.61mm,
h? = 0.261mm, A = 3.761.10−8m4s−2 and ∆x = 80nm.

The measured contact angle complies with the imposed value. For the same configuration
but the contact angle, which we take as θ = π/6, in order to obtain the corresponding profile
we need to solve :hx = −

√(
1

1−Q(h)

)2
− 1 ∀x ∈ [0, xs[

h(0) = h0

hx = −
√(

1
1−Q(h)

)2
− 1 ∀x ∈]xs, L]

h(xs) = hs
(4.53)

We obtain the following profile :
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Figure 4.9: Full shape of a droplet for θ = 30◦, obtained through numerical simulation.
Parameters used here are : g = 9.8ms−2, σ = 0.072Kg.s−2, h0 = 2.61mm, h? = 0.261mm,
A = 3.761.10−8m4s−2 and ∆x = 80nm.

Remark 4.5.1. From the numerical point of view, hs is obtained through solving equation
(4.51) numerically. The first differential is solved until h reaches hs. The second equation is
solved until h reaches 0. So there is no need to compute xs and L beforehand.
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4.6 Augmented model analysis
In this section, we would like to extend the results of the previous section to the augmented
model. This requires us to properly define the equations governing the stationary state in
this case. The main difference here is that the energy of the augmented system does not
depend on hx anymore, but depends on the unconstrained variable η and its derivative ηx
instead. It writes :

E(h, η, ηx) = gh2/2 + h

2α

(
1− η

h

)2
+ σ

ρ

√
1 + η2

x + P (h) (4.54)

Given that only h is constrained through the mass conservation law, it is straightforward to
prove that the governing equations are consequent from :

d

dx

(
∂E

∂h

)
= 0⇐⇒ ∂E

∂h
= Cα

∂E

∂η
− d

dx

(
∂E

∂ηx

)
= 0

(4.55)

Since we are looking for non-trivial solutions, that is η(x) different from the zero function,
we multiply the second equation by ηx :

ηx
∂E

∂η
− ηx

d

dx

(
∂E

∂ηx

)
= 0

Then using the identity :
∂E

∂η
ηx = dE

dx
− ∂E

∂h
hx −

∂E

∂ηx
ηxx (4.56)

which implies :
dE

dx
− ∂E

∂h
hx −

∂E

∂ηx
ηxx − ηx

d

dx

(
∂E

∂ηx

)
= 0 (4.57)

Thus we can write :
dE

dx
− Cαhx −

d

dx

(
ηx
∂E

∂ηx

)
= 0 (4.58)

Integrating the equation with respect to x finally gives the system :
∂E

∂h
= Cα

E − ηx
∂E

∂ηx
= Cαh+Dα

(4.59)

Remark 4.6.1. This system of equation is not specific to the energy form (4.54) but to any
energy that depends explicitly on (h, η, ηx) where h is constrained by the mass conservation
law and η is a free variable. In particular, it can be used regardless of whether the surface
tension term is linearized or not.
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Remark 4.6.2. This final system is consistent with the Euler-Lagrange equations (4.55)
as well as with the stationary state of the augmented system conservation laws. The main
advantage of the provided form is that it only requires to solve a first order differential equation
instead of a second order one which is more convenient in practice.

For the energy (4.54) we obtain the system of equations:
gh+ P ′(h) + 1

2α

(
1− η

h

)(
1− 2η

h

)
= Cα (4.60)

σ

ρ

1√
1 + η2

x

= Cαh+Dα − gh2/2− h

2α

(
1− η

h

)2
− P (h) (4.61)

Now, let us establish the differential equation satisfied by h in this case. Multiplying equation
(4.60) by 2αh2 and simplifying yields :

2η2 − 3hη + h2(1 + 2α(gh+ P ′(h)− Cα)) = 0 (4.62)

which, solved in terms of η yields the roots :

η± = h

4

(
3±

√
1− 8α(gh+ P ′(h)− Cα)

)
(4.63)

Clearly, the root of interest is the one that permits to recover η → h when α→ 0. Thus we
take :

η = h

4

(
3 +

√
1− 8α(gh+ P ′(h)− Cα)

)
(4.64)

We derive the latter with respect to x to obtain :

ηx = fα(h)hx (4.65)

where fα(h) is given by :

fα(h) =
1 + 4α(2Cα − 3gh− 2P ′(h)− hP ′′(h)) + 3

√
1− 8α(gh+ P ′(h)− Cα)

4
√

1− 8α(gh+ P ′(h)− Cα)
(4.66)

Lastly, equation (4.64) also permits to write :

1− η

h
= 2αϕα(h); where ϕα(h) = (gh+ P ′(h)− Cα)(

1 +
√

1− 8α(gh+ P ′(h)− Cα)
) (4.67)

Thus, putting equation (4.61) into a more convenient form and substituting η and ηx via the
above formulas yields the differential equation :

h2
x = 1

(fα(h))2

( σ/ρ

Cαh+Dα − gh2/2− 2αh(ϕα(h))2 − P (h)

)2

− 1
 (4.68)
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Before solving this system of equations, it remains to define the values of Cα and Dα through
imposing suitable boundary values. We use the same boundary conditions as in the original
case, that is:

x = 0

h = h0

hx = 0
x = L

h = 0
hx = − tan(θ)

(4.69)

We recall that the value x = L is unknown, that is we only impose hx = − tan(θ) when the
droplet height reaches 0. Under these assumptions, the constants Cα and Dα can be obtained
as follows. Equation (4.61) can be cast into the form :

σ

ρ

1√
1 + (fα(h)hx)2

= Cαh+Dα − gh2/2− 2αh(ϕα(h))2 − P (h) (4.70)

which allows us to compute the limit h→ 0:

Dα = P (0) + σ

ρ
√

1 + (fα(0) tan(θ))2
(4.71)

As fα(0) is dependent on Cα, the above expression links Dα and Cα. It only remains to
calculate Cα, by considering equation (4.68) in the point x = 0. It follows that :

Cα+ σ/(ρh0)√
1 + (fα(0) tan(θ))2

− 2α(gh0 + P ′(h0)− Cα)2(
1 +

√
1− 8α(gh0 + P ′(h0)− Cα)

)2 = σ

ρh0
+gh0/2+P (h0)− P (0)

h0

(4.72)
This equation is solved numerically to obtain the value of Cα and consequently Dα. One can
see that in the limit α→ 0 we recover the same values as for the original system :

lim
α→0

Cα = σ

ρh0
(1− cos θ) + gh0/2 + P (h0)− P (0)

h0
= C (4.73)

lim
α→0

Dα = P (0) + σ

ρ
cos θ = D (4.74)

We can show that the convergence rate is linear in α as shown in figure 4.10:
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Figure 4.10: Convergence rates of Cα and Dα towards C and D respectively. The plots
represent the relative errors

∣∣∣Cα−C
C

∣∣∣ (blue circular points) and ∣∣∣Dα−D
D

∣∣∣ (red triangular points),
as a function of α in a log-log representation. the measured slopes are respectively r1 = 1.009
and r2 = 1.005 for Cα and Dα.
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Finally, by taking the Cauchy problem
h2
x = 1

(fα(h))2

( σ/ρ

Cαh+Dα − gh2/2− 2αh(ϕα(h))2 − P (h)

)2

− 1


h(x = 0) = h0

(4.75)

we can see that in the limit α → 0, we recover exactly its equivalent counterpart for the
original system of equations. The numerical resolution of this differential equation, for the
same form of P (h) introduced in the previous section, yields the following results :
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Figure 4.11: Comparison of the overall shape of the droplet for the augmented system
(dashed/dotted lines) and the reference model (blue continuous line) for several values of
α. Parameters used here are g = 9.8ms−2, σ = 0.072Kg.s−2, θ = 30◦, h0 = 0.7mm,
h? = 0.14mm and A = 10−9m4s−2. The mesh size is ∆x = 0.1µm.

The mesh size is taken small enough as not to pollute the measures of the contact angle
through a numerical derivation of h. Clearly, for α = 0.01, the curves coincide already. When
comparing for higher values of α ,the most significant dissimilarity lies in the vicinity of the
contact angle. The angle itself seems to be conserved independently of α. The length L is
also different and seems to be an increasing function of α, that is the higher α is, the wider
the drop spreads.

4.7 Concluding remarks
We have addressed in this part droplet profiles which were derived through Hamilton’s prin-
ciple of stationary action. We restricted ourselves to some specific assumptions on P (h)
which were fully addressed and some criteria that may help classify the droplets’ shape were
established in a some cases. Although the droplet structures that were discussed here are
mathematically admissible and compatible with Hamilton’s principle, this does infer in any
way that they are mechanically stable configurations, in which case their existence in nature
would be also likely. This question shall be addressed in due time. This investigation of
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droplets also provided a good setting of comparison for the augmented model in a stationary
case, in which it is possible to obtain an explicit expression of η as a function of h. The
comparison of the resulting differential equations, allowed for a better understanding of the
penalty method and how close it approximates the original system.

Besides, we have chosen here to impose the central height of the droplet along the contact
angle. The resulting profiles, correspond to droplets with different masses. Thus, it would
be also interesting to conduct a similar study in which the mass and the contact angle are
fixed beforehand for instance, which gives different values of h0 as a consequence. This could
give another perspective to the problem.
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CHAPTER5
On the stability of modified equations

for linear schemes

Modified equations have been the subject of investigations and debates in numerical analysis.
And yet, despite being relatively easy to establish, their use has been regarded with a lot
of skepticism due to the lack of theoretical justification and the trickiness of their analysis.
The first use of this technique for stability purposes is due to Hirt [45]. He provided the
first practical examples for which modified equations give relevant information, in a heuristic
manner. The pionneering work of Warming and Hyett [73] introduced how to obtain these
equations in the general case and mostly clarified the link between the stability of the scheme
and the modified equations. They provided a simple and efficient way to obtain the exact
Von Neumann stability conditions from a finite number of the modified equation coefficients,
for linear scalar schemes. An alternate way to obtain modified equations was introduced in
[15]. The method permits to obtain the same modified equation through a series expansion
of a an explicitly known function rather than the elimination technique of [73]. Other works
that tried to tackle stability analysis through modified equations include [56, 71].

In this independent chapter, we investigate the modified equations for some finite differ-
ence schemes, in an attempt to make it clear why this technique often fails to provide relevant
information on stability. First, we present a reminder on how to obtain modified equations
for a given linear scalar scheme. We explain the basics of the heuristic stability theory and its
limitations through some examples. In the second part, we present the technical framework
and tools needed for stability analysis. We then clarify the mathematical reasons behind
the frequent failures of the heuristic stability theory by investigating the convergence of the
Fourier transform of the modified equation. We show that the latter is conditionally conver-
gent and only then does it give significant results. Then, we compare the stability conditions
of truncated modified equations with the corresponding scheme in the region of convergence.
Finally, we present some examples to justify our analysis.
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5.1 On modified equations and heuristic stability

5.1.1 Obtaining the equations
Consider as an example, the linear scalar transport equation given by :

∂ũ

∂t
+ c

∂ũ

∂x
= 0 (5.1)

with positive velocity c. In order to solve this equation with a finite difference scheme, we
first introduce a uniform grid of points defined as usual by (xj = j∆x, tn = n∆t) and we
denote by unj = u(xj, tn) the value of the numerical solution in the corresponding grid point.
Under these notations, take for instance the upwind Euler scheme for equation (5.1) :

un+1
j − unj

∆t + c
unj − unj−1

∆x = 0 (5.2)

Generally, in order to get relevant information on the consistency of the scheme [66] or its
convergence rate, we assume the existence of a smooth, infinitely differentiable numerical
solution u(x, t) that satisfies u(xj, tn) = unj in each grid point. Provided this solution, we
expand each term of the scheme in Taylor series in the vicinity of (xj, tn), for instance :

un+1
j = u(xi, tn+1) = u(xj, tn + ∆t) = unj + ∆t

∂unj
∂t

+ ∆t2
2
∂2unj
∂t2

+ . . . (5.3)

unj−1 = u(xi−1, t
n) = u(xj −∆x, tn) = unj −∆x

∂unj
∂x

+ ∆x2

2
∂2unj
∂x2 + . . . (5.4)

which leads to an equation satisfied by u containing an infinite number of partial derivatives :

∂u

∂t
+ ∆t

2
∂2u

∂t2
+ ∆t2

6
∂3u

∂t3
+ . . . = −c∂u

∂x
+ c∆x

2
∂2u

∂x2 + c∆x2

6
∂3u

∂x3 + . . . (5.5)

This equation as is, is sufficient to prove consistency. In fact, we can clearly see that the
in the limit ∆t → 0 and ∆x → 0 we recover the original transport equation. However, for
further analysis of the numerical effects induced by the scheme, it would be more intuitive to
consider an evolution equation with only space derivatives. This would deliver an evolution
equations that is more amenable to physical interpretation. To do that, we use the elimina-
tion procedure introduced by Warming and Hyett in [73], that is we repeatedly use linear
combinations of the equation (5.5) and its derivatives in order to eliminate time derivatives
of order higher than one. Let us demonstrate how this works. First we derive (5.5) with
respect to t and multiply it by ∆t/2 to obtain :

∆t
2
∂2u

∂t2
= −∆t2

4
∂3u

∂t3
− ∆t3

12
∂4u

∂t4
− c∆t

2
∂u2

∂x∂t
+ c2∆x∆t

4
∂3u

∂x2∂t
+ c2∆x2∆t

12
∂4u

∂x3∂t
+ . . . (5.6)

replacing this expression in the (5.5) and truncating to the same order of consistency only
does half of its expected job, as it eliminates the second derivative in time but there appeared
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instead a mixed derivative with respect to x and t :

∂u

∂t
−∆t2

4
∂3u

∂t3
−c∆t

2
∂u2

∂x∂t
+ c2∆x∆t

4
∂2u

∂x2 + ∆t2
6
∂3u

∂t3
+ . . . = −c∂u

∂x
+ c∆x

2
∂2u

∂x2 + c∆x2

6
∂3u

∂x3 + . . .
(5.7)

This term can be eliminated by using the combination (5.7) + c
∆t
2

∂

∂x
(5.5) and so on. The

same procedure is applied successively until we finally obtain the equation :

∂u

∂t
+ c

∂u

∂x
= c

∆x
2

(
1− c∆t

∆x

)
∂2u

∂x2 −
∆x2

6

(
1− c∆t

∆x

)(
1− 2c∆t

∆x

)
∂3u

∂x3 . . . (5.8)

This is called the modified equation associated with the upwind Euler scheme for the trans-
port equation (5.1). It is worth noting that this is not a partial derivative equation in the
conventional sense as it does not have an order or a finite amount of partial derivatives. For
a solution to exist, one also needs a proper definition of infinitely many boundary conditions.
Therefore, we restrict our analysis to solutions that are periodic [73].

5.1.2 Heuristic stability and limitations
Besides proving consistency, the modified equation quantifies explicitly the additional numer-
ical effects. For example, it tells that up to first order in ∆x and ∆t, the numerical solution
rather satisfies a convection diffusion equation with a numerical dissipation coefficient given
by c∆x

2

(
1− c∆t

∆x

)
. Note however that the sign of the latter can be negative in which case

this equation becomes unstable and admits solutions that grow exponentially in time rather
than decay. It follows from this that a necessary and sufficient condition of stability for the
solutions of this convection-diffusion equivalent is :

c
∆t
∆x ≤ 1 (5.9)

which turns out to be exactly the CFL condition for the scheme (5.2). This gives a lot of
potential for the modified equations to be a practical tool for stability analysis. Although
the analysis is completely heuristic and has no rigorous foundation, its results make sense for
a large class of schemes. However, there are also many examples for which this analysis fails
to provide any practical stability condition. Consider for example the one dimensional heat
equation :

∂u

∂t
− α∂

2u

∂x2 = 0 (5.10)

where α > 0 is the diffusion coefficient. We discretize this equation using centered finite
differences :

un+1
i − uni

∆t − α
uni+1 − 2uni + uni−1

∆x2 = 0 (5.11)

Using the same elimination procedure we obtain the following modified equation up to 4th
order :

∂u

∂t
− α∂

2u

∂x2 = α∆x2

12

(
1− 6 ∆t

∆x2

)
∂4u

∂x4 + . . . (5.12)
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If we choose to stop at the first non-zero truncation term as previously, the conclusions are
already less straightforward as we have a non-vanishing second order term that comes from
the heat equation itself and a 4th order term that comes from the numerical effects. Therefore
in order to look into stability of this equation, let us shift to Fourier space. Let v(k, t) be the
Fourier transform of u(x, t) then under these notations, equation (5.12) yields :

∂v

∂t
= −αk2

(
1− k2∆x2

12

(
1− 6 ∆t

∆x2

))
v (5.13)

It is reasonable to only consider the wavenumbers that are bound by |k∆x| ≤ π, since these
are the only wavenumbers admissible by the discrete mesh. In this setting, it is easy to verify
that :

− αk2
(

1− k2∆x2

12

(
1− 6 ∆t

∆x2

))
≤ 0 ∀k ∈

[
− π

∆x,
π

∆x

]
(5.14)

which implies that the considered truncation is unconditionally stable for all admissible ∆t
and ∆x. This result is obviously erroneous as it is well known that the Von Neumann stability
analysis proves that a necessary and sufficient stability condition for the scheme (5.11) is :

α
∆t

∆x2 ≤
1
2 (5.15)

Thus, the heuristic analysis of this truncation of the modified equation failed to provide any
practical stability condition for the scheme and truncating the equation at higher orders
does not seem to do any better. This is one of the examples that demonstrates limitations
of the method. In what follows, we first introduce all the necessary notations and setting
for stability analysis before attempting to explain why the stability of the truncation is
sometimes incoherent with the stability of the scheme.

5.2 Theory of stability through modified equations

5.2.1 Notations and assumptions
We will consider for our analysis partial derivative equations that are linear, first order in
time and of arbitrary order in space :

∂ũ

∂t
+

P∑
p=1

Ap
∂pũ

∂xp
= 0 (5.16)

where Ap are constants. We consider explicit in time schemes, that are consistent with
equation (5.16) and can be written as :

un+1
j = unj + ∆t

nr∑
p=−nl

bp (∆x)unj+p (5.17)
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where nl and nr are the number of mesh points to the left and to the right of xj respectively,
used in every iteration. The coefficients bp verify :

nr∑
p=−nl

bp(∆x) = 0 (5.18)

for consistency purposes, so that constant solutions, which are solution of the PDE (5.16)
remain as such for the scheme. Sometimes it is preferable to cast the scheme (5.17) into an
equivalent form :

un+1
j = unj + ∆t

∆xq
nr∑

p=−nl
Bp (∆x)unj+p (5.19)

where q is the highest power of 1/∆x present in the summation. Very often, when using
standard finite differences, the coefficients bp are polynomials in 1/∆x and q is the highest
degree among these polynomials which is frequently equal to the order P of the PDE (5.16).
This formulation can be practical for stability analysis since most stability conditions for
explicit schemes are given by bounds on the quantity λq = ∆t/∆xq in the limit ∆x → 0
and ∆t→ 0. Therefore, setting λq as a non-vanishing parameter is a reasonable assumption
that permits to reduce the number of free small parameters, that is we can take ∆t =
gq(∆x) = λq∆xq and consider instead λq and ∆x as free independent parameters. In what
follows, in order to perform stability analysis in Fourier space, we consider a space continuous
counterpart of the scheme (5.19) :

un+1(x) = un(x) + λq
nr∑

p=−nl
Bp (∆x)un(x+ p∆x) (5.20)

Let v(k, t) be the Fourier transform in space of u(x, t). If we take θ = k∆x, then the Fourier
transform of equation (5.20) yields :

vn+1(k) =
1 + λq

nr∑
p=−nl

Bp(∆x)eipθ

 vn(k) = S(θ, λq,∆x)vn(k) (5.21)

Since we will be operating most of the time in Fourier space, it seems necessary to recall
consistency of the scheme in the same setting. Therefore if we assume that the exact solution
to the PDE (5.16) satisfies in Fourier space:

ṽ(k, t+ ∆t) = exp
∆t

P∑
p=1

(ik)pAp

 ṽ(k, t) = G̃(θ,∆t)ṽ(k, t) (5.22)

then the scheme (5.17) is consistent with the PDE (5.16) to order s if and only if [22] :∣∣∣∣∣G̃(θ,∆t)− S(θ, λq,∆x)
∆t

∣∣∣∣∣ = O(∆ts) (5.23)

Lastly, we denote the modified equation associated to the scheme (5.17) by :

ut =
∞∑
p=1

µp(λq,∆x)∂
pu

∂xp
(5.24)

where µp are constants depending on ∆x and λq.
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5.2.2 Fourier stability analysis
In this part, we focus on the link between the modified equation and the scheme [73]. The
amplification factor of the scheme is none other than the modulus of S(θ, λq,∆x). Now, in
order to recover an equivalent expression in the continuous time for the modified equation,
we apply the Fourier transform to (5.24). This implies that v(k, t) satisfies the differential
equation:

dv

dt
=
 ∞∑
p=1

(ik)pµp(λq,∆x)
 v(k, t) =

 ∞∑
p=1

αp(λq,∆x)θp
 v(k, t) = G(θ, λq,∆x)v(k, t)

(5.25)
where αp(λq,∆x) = µp(λq,∆x)ip/∆xp. For convenience, we will say that the modified equa-
tion is stable if, for an initial condition v(k, t = 0) = v0(k), the solution to the Cauchy
problem : 

dv

dt
= G(θ, λq,∆x)v(k, t)

v(k, 0) = v0(k)
(5.26)

that is given by:
v(k, t) = etG(θ,λq ,∆x)v0(k) (5.27)

remains bounded ∀t < T , where T > 0. Given this solution, one can obviously write :

v(k, t+ ∆t) = e∆tG(θ,λq ,∆x)v(k, t) (5.28)

Now, since the solution to the scheme (5.17) with the same initial condition is also an exact
solution to the modified equation (5.24) [73], uniqueness of this solution gives :

e∆tG(θ,λq ,∆x) = eλq∆xqG(θ,λq ,∆x) = S(θ, λq,∆x) (5.29)

It follows from that the proposition :

Proposition 5.2.1. For any scheme that writes as (5.17) and that is consistent with (5.16),
there exists a positive number θm that depends only on λq and ∆x such that, ∀θ ∈ ]−θm, θm[
the expansion

G(θ, λq,∆x) = −
∞∑
p=1

(1− S(θ, λq,∆x))p
pλq∆xq

holds and the series ∑∞p=1 αp(λq,∆x)θp converges to 1
λq∆xq ln(S(θ, λq,∆x)).

Proof. The scheme (5.17) is consistent with the PDE (5.16) and so |S(0, λq,∆x)− 1| =
0 < 1. Since S is a continuous function with respect to θ, ∃θm(λq,∆x) > 0 such that
|S(θ, λq,∆x)− 1| < 1 ∀θ ∈]−θm, θm[, and consequently, the principal logarithm ln(S(θ, λq,∆x))
defined by the series expansion :

ln(S(θ, λq,∆x)) = ln(1− (1− S(θ, λq,∆x))) =
∞∑
p=1
−(1− S(θ, λq,∆x))p

p
(5.30)
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is convergent and eln(S(θ,λq ,∆x)) = S(θ, λq,∆x). This proves that the function:

G(θ, λq,∆x) = 1
λq∆xq

ln(S(θ, λq,∆x)) (5.31)

is a solution of equation (5.29) for θ ∈]−θm, θm[. The exponential function is locally invertible
in the vicinity of 0 and so this expansion is unique in this vicinity [15] and therefore ∀θ ∈
]− θm, θm[ . Moreover, since S(θ, λq,∆x) is entire (as a finite sum of exponential functions)
then further expanding S into power series of θ for θ ∈]− θm, θm[ finally yields:

G(θ, λq,∆x) =
∞∑
p=1

αpθ
p = 1

λq∆xq
ln(S(θ, λq,∆x)) (5.32)

and hence,∑∞p=1 αp(λq,∆x)θp is the series expansion of 1
λq∆xq ln(S(θ, λq,∆x)). This concludes

our proof.

Remark 5.2.2. Equality (5.32) also implies that the coefficients αp(λq,∆x) are given by :

αp(λq,∆x) = ∂p

∂θp

(
ln(S(θ, λq,∆x))

p!λq∆xq

)∣∣∣∣∣
θ=0

(5.33)

Remark 5.2.3. θm is not the radius of convergence of the series G(θ, λq,∆x). If we denote
by R the radius of convergence, then we have R ≥ θm. The exact radius is not trivial to
find in practice in the general case, since G(θ, λq,∆x) is a series expansion of a composite
function. However it is sometimes possible to give estimates or exact values of the radius for
some examples as will be shown later.

Remark 5.2.4. In practice, when looking for convergence, we are mainly searching for con-
straints in λq and ∆x, for which the series G(θ, λq,∆x) is convergent ∀θ ∈ [−π, π], that is
we want R > π. A sufficient condition is θm > π.

So far, we have shown that for fixed parameters ∆x and λq, the series G(θ, λq,∆x)
converges if θ ∈]− θm, θm[. This being a sufficient condition of convergence, we do not know
what happens for |θ| ≥ θm. On the other hand it is worth noting that, for |θ| > R, the series
is divergent and equality (5.29) does not hold anymore. Therefore, the modified equation
stability is not linked to that of the scheme for |θ| > R.

5.2.3 Scheme stability domain and series convergence domain
Generally, in the Von Neumann setting, stability conditions of the scheme are given by
constraints linking λq and ∆x so that the inequality

|S(θ, λq,∆x)| ≤ 1 ∀θ ∈ [−π, π] (5.34)

is verified. These constraints define a region of stability Rs in the (λq,∆x) plane, that is :

Rs =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |S(θ, λq,∆x)| ≤ 1

}
(5.35)
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In the same manner, we can define a region Rc of the same plane, in which the series
G(θ, λq,∆x) converges :

Rc =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |G(θ, λq,∆x)| <∞

}
(5.36)

which is also equivalent to :

Rc =
{

(λq,∆x) ∈ R2
+ : R(λq,∆x) ≥ π

}
(5.37)

In practice, it is not always possible to exactly determine Rc. It is however easier to explicitly
find a subset of this region, that is :

Ωc =
{

(λq,∆x) ∈ R2
+ : ∀θ ∈ [−π, π] : |1− S(θ, λq,∆x)| < 1

}
⊂ Rc (5.38)

It is worth mentioning that Ωc is always a non-empty set. Indeed, for λq = 0, we have
S(θ, 0,∆x) = 1 and consequently ∀∆x ∈ R+ there exists in R2 a neighborhood of (∆x, λq)
in which we have |1− S(θ, λq,∆x)| < 1. This means that we always have convergence for
sufficiently small values of λq. Lastly, we denote by Rm the region of stability of the modified
equation :

Rm =
{

(λq,∆x) ∈ R2
+ :

∣∣∣eλq∆xqG(θ,λq ,∆x)
∣∣∣ ≤ 1

}
=
{

(λq,∆x) ∈ R2
+ : Re(G(θ, λq,∆x) ≤ 0

}
(5.39)

Provided these definitions, we can distinguish two cases :

1. If Rs ⊂ Rc then the stability of the modified equation provides reliable and complete
information regarding the scheme stability.

2. If any subset of Rs lies outside of the convergence domain Rc, this means that there is
information on the stability limit of the scheme that is missed by the modified equations
since its Fourier transform is non existing outside of Rc.

The following proposition is a direct consequence :

Proposition 5.2.5. For any scheme that writes as (5.17) and that is consistent with (5.16)
we have (Rm ∩Rc) ⊂ Rs, that is if the modified equation is stable and its Fourier series is
convergent then the scheme is also stable.

This proves that inside the convergence domain Rc, the stability of the modified equation
is a sufficient stability condition for the scheme. Furthermore, we shall add that if Rs ⊂ Rc

then this condition is also necessary. This result, literally, is not of practical interest as the
stability of the full series S(θ, λq,∆x) is either nontrivial or impossible to obtain. But we
will show that the above classification permits to justify whether a truncated version of the
modified equation yields significant information on stability.
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5.2.4 Link between the stability of the scheme and the stability of
a truncation

Instead of the full series expansion, let us consider a truncated modified equation to an
arbitrary order N > P :

ut =
N∑
p=1

µp(λq,∆x)∂
pu

∂xp
, µN 6= 0 (5.40)

We recall that our main purpose is to know in which case does the stability of this truncation
provide relevant information on the stability of the corresponding scheme. This differs from
the approach of Warming and Hyett [73] in the sense that they showed how to reconstruct
the exact Von Neumann amplification factor using a finite amount of coefficients µp without
actually analyzing the stability of the truncated version. Under the Fourier transform, the
previous equation writes :

dv

dt
=
 N∑
p=1

αp(λq,∆x)θp
 v(k, t) = PN(θ, λq,∆x)v(k, t) (5.41)

Here, PN(θ, λq,∆x) is a polynomial of θ of degree N which is trivially a truncation of the
series G(θ, λq,∆x). In the same manner as previously, the ordinary differential equation
(5.41) yields :

v(k, t+ ∆t) = e∆tPN (θ,λq ,∆x)v(k, t) = SN(θ, λq,∆x)v(k, t) (5.42)

In contrast to the full series, the stability conditions of the truncation are obtainable in most
cases through the analysis of the polynomial function PN(θ, λq,∆x). Let RN(θ, λq,∆x) be
the rest of the series defined by :

RN(θ, λq,∆x) = G(θ, λq,∆x)− PN(θ, λq,∆x) =
∞∑

p=N+1
αp(λq,∆x)θp (5.43)

In the convergence domain Rc, the rest RN(θ, λq,∆x) is bounded and we have :

lim
N→+∞

RN(θ, λq,∆x) ≡ 0 and lim
N→+∞

SN(θ, λq,∆x) ≡ S(θ, λq,∆x) (5.44)

In this setting we can state the following result :

Proposition 5.2.6. Assume an initial condition satisfying supp(v0) ∈ [−M,M ] and an
arbitrary truncation order N > P , then for any (∆x, λq) ∈ Rc, if the truncated modified
equation is stable in the sense that there exists C > 0 such that:

|SN(θ, λq,∆x)| ≤ 1 + C∆t (5.45)

then the scheme is also stable in the same sense.
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Proof. For (∆x, λq) ∈ Rc we have :

S(θ, λq,∆x) = e∆tG(θ,λq ,∆x) = SN(θ, λq,∆x)e∆tRN (θ,λq ,∆x)

Thus, since vn = Snv0, we can write :

|vn| = |Snv0| ≤ |SN |n
∣∣∣en∑∞N+1 αpθ

p

v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enAθN+1
v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enA(k∆x)N+1
v0

∣∣∣
≤ (1 + C∆t)n

∣∣∣enA∆xN+1−q∆tkN+1/λqv0

∣∣∣
≤ eCT

∣∣∣eAT∆xN+1−qMN+1/λqv0

∣∣∣
≤ eCT eAT∆xN+1−qMN+1/λq |v0|

That is, vn is L2-stable for initial conditions that are of compact support in the frequency
domain, that is k ∈ [−M,M ].

5.3 Examples

5.3.1 Heat equation - centered finite differences
Consider the centered finite differences scheme for the heat equation. It can be cast into the
form :

un+1
i = uni + αλ2

(
uni−1 − 2uni + uni−1

)
(5.46)

We take for simplicity α = 1. The modified equations associated to this scheme up to 8th
order for example is given by :

∂u

∂t
=∂

2u

∂x2 + ∆x2

12 (1− 6λ2) ∂
4u

∂x4 + ∆x4

360

(
1− 30λ2

(
1− 4λ2

))
∂6u

∂x6

+ ∆x6

20160

1− 42λ2

(
3− 40λ2

(
1− 3λ2

))∂8u

∂x8 + . . . (5.47)

Straightforward computations yield :

S(θ, λ2,∆x) = 1 + 4λ2 sin2(θ/2) (5.48)

Rs =
{

(λq,∆x) ∈ R2 : λ2 ≤
1
2

}
; Ωc =

{
(λq,∆x) ∈ R2 : λ2 ≤

1
4

}
(5.49)

∆tP8(θ, λ2,∆x) =− λ2

(
θ2 − 1− 6λ2

12 θ4 + 1− 30λ2 (1− 4λ2)
360 θ6

)

+ λ2
1− 42λ2(3− 40λ2(1− 3λ2))

20160 θ8 (5.50)
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The domains of stability and convergence only depend on the parameter λ2 independently of
∆x. This permits to take an arbitrary value of ∆x = 1 and carry on the analysis, based on
only λ2. Furthermore since |S(θ, λ2,∆x)| is an even function with respect to θ it suffices to
look at θ ∈ [0, π]. Figure 5.1 shows a comparison between |S(θ, λ2,∆x)| and |SN(θ, λ2,∆x)|
for N = 2 and N = 8 in two cases. In the limit of stability λ2 = 1/2, the scheme is stable but
the series G(θ, λ2,∆x) is not convergent for θ > R = π/2 (See Appendix D.1). As displayed
in the left-hand side of figure 5.1, the curves begin aligned in the low frequencies, and then
the truncation curves begin to diverge completely from the function |S(θ, λ2,∆x)| once θ
surpasses the threshold R. This is not the case for λ2 = 1/4. For this value we can calculate
the radius of convergence R = π (See Appendix D.2). In fact, we can see on the right-hand
side of the figure that for λ2, the curves remain very close ∀θ ∈ [0, π]. For N = 8, the two
curves almost overlap.
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Figure 5.1: Plot of the function |S(θ, λ2,∆x)| along |S2(θ, λ2,∆x)| and |S8(θ, λ2,∆x)| for the
values of λ2 = 1/2 (left) and λ2 = 1/4 (right). We can see that for λ2 = 1/2, which lies
outside of the convergence domain, the truncation curves stray away from the curve of S
starting from θ = R. For λ2 = 1/4, the truncations match well with S.

5.3.2 Transport equation - Upwind Euler
The scheme writes :

un+1
i = uni − cλ1(uni − uni−1) (5.51)

We take c = 1. In this case, the modified equation up to 4th order for example is given by :

∂u

∂t
+∂u

∂x
= (1−λ1)

(
∆x
2
∂2u

∂x2 −
∆x2

6 (1− 2λ1)∂
3u

∂x3 + ∆x3

24 (1− 6λ1(1− λ1))∂
4u

∂x4

)
+. . . (5.52)

Straightforward computations yield :

S(θ, λ1,∆x) = 1− λ1
(
1− e−iθ

)
(5.53)

Rs =
{

(λq,∆x) ∈ R2 : λ1 ≤ 1
}

; Ωc =
{

(λq,∆x) ∈ R2 : λ1 ≤
1
2

}
(5.54)

Chapter 5. On the stability of modified equations for linear schemes 85



5.3. Examples

∆tP4(θ, λ1,∆x) = −iλ1θ+λ1(1−λ1)
(
−1

2θ
2 + 1

6(1− 2λ1)iθ3 + 1
24(1− 6λ1(1− λ1))θ4

)
+ . . .

(5.55)
In contrast to the previous example for the heat equation, we could not compute explicitly

the radius of convergence for values of interest of λ1. Nevertheless, it is possible to extend Ωc

to cover all the values of λ1 that are in Rs (See appendix D.3). Hence, as shown in figure 5.2,
for values of λ1 ≤ 1, the amplification factor of the truncation to 6th order |S6(θ, λ1,∆x)|
seems to be a very good approximation of the scheme amplification factor |S(θ, λ1,∆x)|, even
for values of λ1 that are in the vicinity of the stability threshold.
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Figure 5.2: Plot of the function |S(θ, λ1,∆x)| along |S6(θ, λ1,∆x)| for different values of λ1
in the stable region (left) and in the unstable region (right). The continuous lines stand for
the amplification factor |S(θ, λ1,∆x)| and the dashed lines represent the truncated modified
equation amplification factor |S6(θ, λ1,∆x)|. We can see that for λ1 ≤ 1 the truncation
curves match well with the exact amplification factor even in the boundaries of stability.
Inversely, it seems according to the right-hand graphic that λ1 = 1 marks the threshold of
convergence.

Conclusion and perspectives
We could explain throughout this work that one of the main reasons behind the failures of the
modified equations technique is non other than series divergence. Although the analysis only
provides sufficient conditions in general, it lifts some well-known ambiguities and provides
some assumptions required by the technique to be of a more justified practical use. We show
that in these settings, the stability of a truncation gives already reasonable approximations
to stability conditions of the scheme. An extension of the obtained results to the case of
systems is underway. It would be also interesting to extend this approach to cover a larger
class of explicit and also implicit schemes.
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The main contribution of this work is the development of a new first order hyperbolic system
of equations that approximates Euler-Korteweg type systems. The approach was shown
efficient for two cases, namely for the defocusing cubic nonlinear Schrödinger equation and
for thin films flows with capillarity. The obtained numerical results showed a very good
agreement for a variety of solutions, including exact and asymptotic solutions, reference
numerical solutions and experimental results in the one-dimensional case.

A natural continuation of this work would be to extend the results presented here to the
multi-dimensional case. This requires the use of schemes with structure preserving prop-
erties in order to obtain results which are compatible with the curl-free constraint on p.
Such a problem has been addressed for example in a recent work on a hyperbolic reformula-
tion of compressible flows with surface tension [20], which exhibits similar properties as the
augmented Euler-Korteweg model.

Another interesting point to investigate is to generalize this approach to systems that are
not only dispersive but also inherently dissipative and in particular, systems of the Navier-
Stokes-Korteweg type. This can provide a more efficient way to numerically address the thin
film equations, for which we employed classical finite differences for the diffusive terms. This
would also generalize the approach to a wider class of equations.

It would be interesting to study the extension of the augmented Lagrangian approach
to systems with a non-convex free energy such as the focusing NLSE. Some recent advance
in that direction has been done for the study of bistable tapespring in [10] where the non-
convexity zone is bounded.

Lastly, it would be helpful to properly implement transparent boundary conditions for this
approach. This point was not addressed in the current work and was avoided by considering
sufficiently large computational domains when necessary, to avoid the spurious oscillations
which would reflect on the boundaries.
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APPENDIX A
Calculus and developments for the

augmented E-K system

In this part of the appendix, we will detail all the necessary calculus for deriving motion
equations from a given Lagrangian. This will be done in particular for both the original
Lagrangian of the Euler-Korteweg system and for the associated augmented Lagrangian as
well. In each case, we will first remind how the variations write and then proceed to a step-
by-step computation. Several details which would have been too tedious to put into the main
text are also exposed later, for example on how to compare the augmented model with the
original one and how to compute the dispersion relation.

A.1 Augmented Lagrangian Calculus
Here, we will proceed in a generic manner, meaning that will we consider a very general
form of the Lagrangian. This choice makes for much lighter and less cumbersome computa-
tions which serve the same purpose, while also providing more flexibility. Let us consider a
Lagrangian whose expression can be put into the form :

L =
∫

Ωt

(
ρ
|u|
2

2

−W (ρ, η, η̇,∇η)
)
dΩ. (A.1)

Assume that this Lagrangian is submitted to a differential constraint that is the mass con-
servation law :

∂ρ

∂t
+ div (ρu) = 0.

We associate to the given Lagrangian, Hamilton’s action for an arbitrary time interval [t0, t1]:

a =
∫ t1

t0
Ldt (A.2)

We recall that the variables in this case are separated into two types depending on their
variations in the sense that the variation δη involves η, ∇η and η̇, while the variation δx
involves ρ, u and η̇. In both cases, it is supposed that the variations are vanishing at the
boundary of [t0, t1]× Ωt.
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A.1.1 Euler-Lagrange equation associated with δη

We recall that the variations of ∇η and η̇ write :

δ(∇η) = ∇(δη), δη̇ = ∂δη

∂t
+ ∂δη

∂x u (A.3)

By applying Hamilton’s principle of stationary action to (A.2), we can write :

δa = 0 ⇒ δ

(∫ t1

t0

∫
Ωt

(
ρ
|u|
2

2

−W (ρ, η, η̇,∇η)
)
dΩ dt

)
= 0 (A.4)

consequently:

δa =
∫ t1

t0

∫
Ωt
δ

(
ρ
|u|
2

2

−W (ρ, η, η̇,∇η)
)
dΩdt

=
∫ t1

t0

∫
Ωt
−
(
∂W

∂η
δη + ∂W

∂η̇
δη̇ + ∂W

∂∇η
δ∇η

)
dΩdt

=
∫ t1

t0

∫
Ωt
−
(
∂W

∂η
δη + ∂W

∂η̇

∂δη

∂t
+ ∂W

∂η̇

∂δη

∂x u + ∂W

∂∇η
δ∇η

)
dΩdt.

Using Gauss-Ostrogradski’s theorem and taking into account that the variation δη is van-
ishing on the boundary of [t0, t1] × Ωt, we can eliminate derivatives of variations. Let us
demonstrate how this process works on one of the terms in the last integral. We write for
example:

∫ t1

t0

∫
Ωt

(
∂W

∂η̇

∂δη

∂t

)
dΩtdt =

∫ t1

t0

∫
Ωt

(
∂

∂t

(
∂W

∂η̇
δη

)
− ∂

∂t

(
∂W

∂η̇

)
δη

)
dΩtdt

=
∫

Ωt

[
∂W

∂η̇
δη

]t1
t0
dΩt︸ ︷︷ ︸

=0

−
∫ t1

t0

∫
Ωt

∂

∂t

(
∂W

∂η̇

)
δη dΩtdt

= −
∫ t1

t0

∫
Ωt

∂

∂t

(
∂W

∂η̇

)
δη dΩtdt

Applying the same technique for the remaining terms, yields:

δa =
∫ t1

t0

∫
Ωt

(
−∂W
∂η

+ ∂

∂t

(
∂W

∂η̇

)
+ div

(
∂W

∂η̇
u
)

+ div
(
∂W

∂∇η

))
δη dΩdt = 0, for any δη.

Thus, we obtain Euler-Lagrange’s equation for η:

∂

∂t

(
∂W

∂η̇

)
+ div

(
∂W

∂η̇
u + ∂W

∂∇η

)
= ∂W

∂η
. (A.5)
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A.1.2 Euler-Lagrange equation associated with δx
In this case, the variations write :

δ̂ρ = −div (ρδx) , δ̂u = ˙(δx)− ∂u
∂xδx, δ̂η̇ = δ̂u · ∇η. (A.6)

Hamilton’s action writes :

δa =
∫ t1

t0

∫
Ωt
δ

(
ρ
|u|
2

2
−W (ρ, η, η̇,∇η)

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
|u|
2

2
δ̂ρ+ ρu · δ̂u− ∂W

∂ρ
δ̂ρ− ∂W

∂η̇
δ̂η̇

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
|u|
2

2
δ̂ρ+ ρu · δ̂u + ∂W

∂ρ
div(ρδx)− ∂W

∂η̇
(δu · ∇η)

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
|u|
2

2
δ̂ρ+ ρu · δ̂u− ρ∇

(
∂W

∂ρ

)
· δx

)
dΩdt−

∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t

+ (u · ∇) δx−∇uδx
)
· ∇η

)
dΩdt

For now let us split Hamilton’s action into two separate integrals, as each of them still requires
some work and term rearrangements. Thus, we write :

δa = δa1 − δa2

where :

δa1 =
∫ t1

t0

∫
Ωt

(
|u|
2

2
δ̂ρ+ ρu · δ̂u− ρ∇

(
∂W

∂ρ

)
· δx

)
dΩdt (A.7)

δa2 =
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t

+ (u · ∇) δx−∇uδx
)
· ∇η

)
dΩdt (A.8)

We develop :

δa1 =
∫ t1

t0

∫
Ωt

(
−|u|2

2
div(ρδx) + ρu ·

(
˙(δx)− ∂u

∂xδx
)
− ρ∇

(
∂W

∂ρ

)
· δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
ρ∇

(
|u|
2

2)
· δx + ρu ·

(
∂δx
∂t

+ ∂δx
∂x u− ∂u

∂xδx
)
− ρ∇

(
∂W

∂ρ

)
· δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
ρ∇

(
|u|
2

2)
· δx− ∂ρu

∂t
· δx− div(ρu⊗ u) · δx− ρu · ∂u

∂xδx− ρ∇
(
∂W

∂ρ

)
· δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

(
ρ∇

(
|u|
2

2)
· δx− ρu · ∂u

∂xδx−
(
∂ρu
∂t

+ div(ρu⊗ u) + ρ∇
(
∂W

∂ρ

))
· δx

)
dΩdt.

For lightness, let us denote by A the quantity:

A = −
(
∂ρu
∂t

+ div(ρu⊗ u) + ρ∇
(
∂W

∂ρ

))
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and let us pursue the development of the remaining terms :

δa1 =
∫ t1

t0

∫
Ωt

(
ρ∇

(
|u|
2

2)
· δx− ρu · (div(δx⊗ u)− div(δx)u)) +A · δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

((
ρ
∂u
∂xu

)
· δx + tr

(
(δx⊗ u)∂ρu

∂x

)
+ ρ |u|2 div(δx) +A · δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

((
ρ
∂u
∂xu

)
· δx + u ·

(
∂ρu
∂x δx

)
+ ρ |u|2 div(δx) +A · δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

((
ρ
∂u
∂xu

)
· δx + u · (div(δx⊗ ρu)− ρu div(δx))−∇

(
ρ |u|2

)
· δx +A · δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

((
ρ
∂u
∂xu

)
· δx + u · div(δx⊗ ρu) +A · δx

)
dΩdt

=
∫ t1

t0

∫
Ωt

((div(u⊗ u)− div(u)u) · (ρδx) + u · div(δx⊗ ρu) +A · δx) dΩdt

=
∫ t1

t0

∫
Ωt

(div((u⊗ u)ρδx) +A · δx) dΩdt =
∫ t1

t0

∫
Ωt

(
−
(
∂ρu
∂t

+ div(ρu⊗ u) + ρ∇
(
∂W

∂ρ

))
· δx

)
dΩdt

This concludes the computation of δa1. Using the same techniques and hints, let us carry on
by developing δa2. We write :

δa2 =
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t

+
(
∂δx
∂x u−∇uδx

)
· ∇η

))
dΩdt

=
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t
· ∇η +

(
∂δx
∂x u

)
· ∇η − (∇uT∇η) · δx

))
dΩdt

=
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t
· ∇η + (div(u⊗ δx)− δxdiv(u)) · ∇η − (∇uT∇η) · δx

))
dΩdt

=
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t
· ∇η +

(
div(u⊗ δx∇η)− tr

(
u⊗ δx∂∇η

∂x

)
− div(u)∇η · δx

)
− (∇uT∇η) · δx

))
dΩdt

=
∫ t1

t0

∫
Ωt

(
∂W

∂η̇

(
∂δx
∂t
· ∇η +

(
div((∇η · δx)u)−

(
∂∇η
∂x u

)
· δx− div(u)∇η · δx

)
− (∇uT∇η) · δx

))
dΩdt.

Now we use the Green-Ostrogradski’s theorem, taking into account that δx = 0 on the
boundary ∂Ωt, to obtain :

δa2 = −
∫ t1

t0

∫
Ωt

(
∂

∂t

(
∂W

∂η̇
∇η
)

+ u · ∇
(
∂W

∂η̇

)
∇η + ∂W

∂η̇

(
∂∇η
∂x u

)
+ ∂W

∂η̇
div(u)∇η +

(
∂W

∂η̇
∇uT∇η

))
·δxdΩdt

Reuniting both parts into Hamilton’s action δa we finally get :

∫ t1

t0

∫
Ωt

(
∂

∂t

(
∂W

∂η̇
∇η
)

+ u · ∇
(
∂W

∂η̇

)
∇η + ∂W

∂η̇

(
∂∇η
∂x u

)
+ ∂W

∂η̇
div(u)∇η +

(
∂W

∂η̇
∇uT∇η

)
−A

)
·δxdΩdt = 0 ∀δx
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Hence,

− ∂ρu
∂t
− div (ρu⊗ u)− ρ∇

(
∂W

∂ρ

)
+
(
∂

∂t

(
∂W

∂η̇

)
+ div

(
∂W

∂η̇
u
))
∇η + ∂W

∂η̇

(
∇
(
∂

∂t
η + u∇η

))
= 0

− ∂ρu
∂t
− div (ρu⊗ u)− ρ∇

(
∂W

∂ρ

)
+
(
∂W

∂η
− div

(
∂W

∂∇η

))
∇η + ∂W

∂η̇

(
∇
(
∂

∂t
η + u∇η

))
= 0

− ∂ρu
∂t
− div (ρu⊗ u)− ρ∇

(
∂W

∂ρ

)
+
(
∂W

∂η
− div

(
∂W

∂∇η

))
∇η + ∂W

∂η̇
∇η̇ = 0

− ∂ρu
∂t
− div (ρu⊗ u)− ρ∇

(
∂W

∂ρ

)
− div

(
∂W

∂∇η

)
∇η +

(
∂W

∂η
∇η + ∂W

∂η̇
∇η̇
)

= 0

− ∂ρu
∂t
− div (ρu⊗ u)− ρ∇

(
∂W

∂ρ

)
− div

(
∂W

∂∇η

)
∇η +

(
∇W − ∂W

∂ρ
∇ρ−

(
∂∇η
∂x

)
∂W

∂∇η

)
= 0

− ∂ρu
∂t
− div (ρu⊗ u)−

(
ρ∇

(
∂W

∂ρ

)
+ ∂W

∂ρ
∇ρ−∇W

)
−
(

div
(
∂W

∂∇η

)
∇η +

(
∂∇η
∂x

)
∂W

∂∇η

)
= 0

∂ρu
∂t

+ div (ρu⊗ u) + div
((

ρ
∂W

∂ρ
−W

)
Id

)
+ div

(
∂W

∂∇η
⊗∇η

)
= 0

Finally , we obtain the Euler-Lagrange equation:

∂ρu
∂t

+ div
(
ρu⊗ u +

(
ρ
∂W

∂ρ
−W

)
Id + ∂W

∂∇η
⊗∇η

)
= 0 (A.9)

A.2 Asymptotics of the Augmented Momentum equa-
tion

In this section we show that the momentum balance equation for the augmented system and
which we remind here :

∂ρu
∂t

+div
(
ρu⊗ u +

(
ρ2ε′(ρ) + 1

2(ρK ′(ρ)−K(ρ))|p|2 + η

α

(
1− η

ρ

))
Id +K(ρ)p⊗ p

)
= 0

approaches the original one :

∂ρu
∂t

+ div (ρu⊗ u) +∇(ρ2ε′(ρ)) = ρ∇
(
K(ρ)∆ρ+ 1

2K
′(ρ) |∇ρ|2

)
in the limits of the small parameters α → 0 and β → 0. Let us proceed by replacing in the
momentum equation, accordingly to equation (1.25), the term :

1
α

(
1− η

ρ

)
= − (K(ρ)∆η +K ′(ρ)∇ρ · ∇η) + βρẇ

we obtain :
∂ρu
∂t

+div
(
ρu⊗ u +

(
ρ2ε′(ρ) + 1

2(ρK ′(ρ)−K(ρ))|p|2 − ρ (K(ρ)∆η +K ′(ρ)∇ρ · ∇η) + βρẇ

)
Id +K(ρ)∇η ⊗∇η

)
= 0
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By making use of the asymptotic formulas :

η = ρ+O(α), ∇η = ∇ρ+O(α), ∆η = ∆ρ+O(α)

we get :

∂ρu
∂t

+div (ρu⊗ u)+∇
(
ρ2ε′(ρ)

)
= ∇

(
1
2(ρK ′(ρ) +K(ρ))|∇ρ|2 + ρK(ρ)∆ρ

)
−div (K(ρ)∇ρ⊗∇ρ)+O(α)+O(β)

Thus it only remains to show that :

∇
(

1
2(ρK ′(ρ) +K(ρ))|∇ρ|2 + ρK(ρ)∆ρ

)
− div (K(ρ)∇ρ⊗∇ρ) = ρ∇

(
K(ρ)∆ρ+ 1

2K
′(ρ) |∇ρ|2

)

For this purpose, let us expand the left hand side :

∇
(

1
2(ρK ′(ρ) +K(ρ))|∇ρ|2 + ρK(ρ)∆ρ

)
− div (K(ρ)∇ρ⊗∇ρ)

= ∇
(
ρ

(
1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)

+ 1
2K(ρ)|∇ρ|2

)
− div (K(ρ)∇ρ)∇ρ−K(ρ)∂∇ρ

∂x ∇ρ

= ρ∇
(

1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)

+
(

1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)
∇ρ+ 1

2∇
(
K(ρ)|∇ρ|2

)
− div (K(ρ)∇ρ)∇ρ−K(ρ)∂∇ρ

∂x ∇ρ

= ρ∇
(

1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)

+
(

1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)
∇ρ+ 1

2K
′(ρ)|∇ρ|2∇ρ+K(ρ)∂∇ρ

∂x ∇ρ

−K ′(ρ)|∇ρ|2∇ρ−K(ρ)∆ρ∇ρ−K(ρ)∂∇ρ
∂x ∇ρ

= ρ∇
(

1
2K

′(ρ)|∇ρ|2 +K(ρ)∆ρ
)

This ends the computation and shows that the augmented E-K momentum equation writes
as:

∂ρu
∂t

+ div (ρu⊗ u) +∇(ρ2ε′(ρ)) = ρ∇
(
K(ρ)∆ρ+ 1

2K
′(ρ) |∇ρ|2

)
+O(α) +O(β)

A.3 Invariance by rotations of the group SO(3)

In order to simplify the hyperbolicity check, we will show that our system is invariant by
rotation. Let O ∈ SO(3) be a constant orthogonal transformation (OOT = Id). The aim
is to show that the set of equations (1.21) remains unchanged after applying the orthogonal
transformation O. Let us consider the variables in the new transformed base, denoted with
primes :

x′ = Ox u′ = Ou p′ = Op , t′ = t ρ′ = t w′ = w η′ = η (A.10)
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For the mass conservation equation for example we have :

∂ρ

∂t
+ div(ρu) = 0

∂ρ′

∂t′
+ div(ρ′OTu′) = 0

∂ρ′

∂t′
+ tr

(
OT ∂

∂x (ρ′u′)
)

= 0

∂ρ′

∂t′
+ tr

(
OT ∂

∂x′ (ρ
′u′) O

)
= 0

∂ρ′

∂t′
+ div′(ρ′u′) = 0

The denotation div′ means that we derive with respect to the transformed base coordinates
given by x′ = Ox. More generally for any vector v and scalar λ we give the following relations
:

div(v) = div
(
OTv′

)
= tr

(
OT ∂v′

∂x

)
= tr

(
OT ∂v′

∂x′O
)

= tr

(
∂v′
∂x′

)
= div′ (v′)) (A.11)

∂λ

∂x = ∂λ′

∂x′O ⇔ ∇′λ′ = OT∇λ (A.12)

This permits to easily prove that the system of equations (1.21) are invariant by rotation.

A.4 Analog of Helmholtz’s equation for vorticity

Given that the potential W depends explicitly on the material derivative of the macroscopic
variable η, one can derive an analog of Helmholtz’s equation for vorticity. We proceed as in
[37], [38] and define the quantity :

K = u− 1
ρ

∂W

∂w
p. (A.13)

We would like to show that K satisfies the PDE :

∂K
∂t

+ curl(K) ∧ u +∇
(

1
2 |u|

2 − 1
ρ

∂W

∂w
p · u + ∂W

∂ρ

)
= 0

Let us start from the augmented system, written here in its general form :

Appendix A. Calculus and developments for the augmented E-K system 101



A.4. Analog of Helmholtz’s equation for vorticity

∂ρ

∂t
+ div(ρu) = 0

∂u
∂t

+ ∂u
∂xu + 1

ρ
div

(
∂W

∂p

)
p + 1

ρ

∂p
∂x

∂W

∂p + 1
ρ
∇
(
ρ
∂W

∂ρ
−W

)
= 0

∂p
∂t

+ ∂p
∂xu +

(
∂u
∂x

)T
p−∇w = 0

∂

∂t

(
∂W

∂w

)
+ div

(
∂W

∂w
u
)

+ div
(
∂W

∂p

)
− ∂W

∂η
= 0

Hence :
∂K
∂t

=∂u
∂t

+ 1
ρ2
∂W

∂w

∂ρ

∂t
p− 1

ρ

∂

∂t

(
∂W

∂w

)
p− 1

ρ

∂W

∂w

∂p
∂t

=− ∂u
∂xu− 1

ρ
div

(
∂W

∂p

)
− 1
ρ

∂p
∂x

∂W

∂p −
1
ρ
∇
(
ρ
∂W

∂ρ
−W

)

− 1
ρ2
∂W

∂w
div (ρu) p + 1

ρ
div

(
∂W

∂w
u
)

p + 1
ρ

div
(
∂W

∂p

)
p

− 1
ρ

∂W

∂η
p + 1

ρ

∂W

∂w

∂p
∂xu + 1

ρ

∂W

∂w

(
∂u
∂x

)T
p− 1

ρ

∂W

∂w
∇w

=− ∂u
∂xu− 1

ρ

∂p
∂x

∂W

∂p −
1
ρ

∂W

∂ρ
∇ρ−∇

(
∂W

∂ρ

)
+ 1
ρ
∇W − 1

ρ2
∂W

∂w
div (ρu) p

+ 1
ρ

div
(
∂W

∂w
u
)

p− 1
ρ

∂W

∂η
p + 1

ρ

∂W

∂w

∂p
∂xu + 1

ρ

∂W

∂w

(
∂u
∂x

)T
p− 1

ρ

∂W

∂w
∇w

=− ∂u
∂xu−∇

(
∂W

∂ρ

)
− 1
ρ2
∂W

∂w
div (ρu) p + 1

ρ
div

(
∂W

∂w
u
)

p

+ 1
ρ

∂W

∂w

∂p
∂xu + 1

ρ

∂W

∂w

(
∂u
∂x

)T
p

=− ∂u
∂xu−∇

(
∂W

∂ρ

)
+ ∂W

∂w

(
∇
(

1
ρ

)
· u
)

p− 1
ρ

∂W

∂w
div (u) p

+ 1
ρ

div
(
∂W

∂w
u
)

p + 1
ρ

∂W

∂w
∇ (p · u)

=− ∂u
∂xu−∇

(
∂W

∂ρ

)
+
(
∂W

∂w
∇
(

1
ρ

)
· u
)

p +
(

1
ρ
∇
(
∂W

∂w

)
· u
)

p + 1
ρ

∂W

∂w
∇ (p · u)

=− ∂u
∂xu−∇

(
∂W

∂ρ

)
+
(
∇
(

1
ρ

∂W

∂w

)
· u
)

p + 1
ρ

∂W

∂w
∇ (p · u)
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We calculate now curl (K) ∧ u as follows

curl (K) ∧ u =
∂K
∂x −

(
∂K
∂x

)Tu

Which gives :

curl (K) ∧ u = ∂u
∂xu−

(
∂u
∂x

)T
u−

(
∇
(

1
ρ

∂W

∂w

)
· u
)

p + (p · u)∇
(

1
ρ

∂W

∂w

)

Hence, summing both equations yields :

∂K
∂t

+ curl (K) ∧ u = −
(
∂u
∂x

)T
u−∇

(
∂W

∂ρ

)
+ 1
ρ

∂W

∂w
∇ (p · u) + (p · u)∇

(
1
ρ

∂W

∂w

)

Finally, we obtain Lamb’s form of the momentum equation :

∂K
∂t

+ curl (K) ∧ u +∇
(

1
2 |u|

2 − 1
ρ

∂W

∂w
p · u + ∂W

∂ρ

)
= 0

Applying the curl operator to this equation we get :

Ωt + curl (Ω ∧ u) = 0, (A.14)

where Ω = curl (K) is called a generalized vorticity [37]. The previous equation implies that
if Ω = 0 initially then it remains 0 for all times.

A.5 Derivation of the dispersion relation
We consider the pde :

∂U
∂t

+ A(U)∂U
∂x

= S(U) (A.15)

Here, the vector U = (ρ, u, w, p, η) is the vector of state variables. The order is chosen as
such only because it seemed easier to compute eigenvalues in this basis. Next we assume
a constant equilibrium state defined by U0 = (ρ0, 0, 0, 0, ρ0) where ρ0 is arbitrary and we
consider a small monochromatic perturbation of this state in the x direction so that :

U = U0 + εU1 exp(ikx− iωt) (A.16)

We plug this expression of U into the previous pde and we linearize around the equilibrium
state U0, that is we neglect powers of ε that are quadratic or higher. We obtain the following
equation :

− iωU1 + ikA(U0)U1 = (∇S(U0)) U1 (A.17)
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where :

A(U0) =


0 ρ 0 0 0

2ε′(ρ) + ρε′′(ρ) + 1
αρ

0 0 0 − 1
αρ

0 0 0 −K(ρ)
βρ

0
0 0 −1 0 0
0 0 0 0 0

 , ∇(S(U0) =


0 0 0 0 0
0 0 0 0 0
1

αβρ2 0 0 0 −1
αβρ2

0 0 0 0 0
0 0 1 0 0


Thus we obtain :(

−cpId + A(U0)− i

k
(∇S(U0))

)
U1 = 0, where cp = ω/k (A.18)

which implies :
det

(
−cpId + A(U0)− i

k
(∇S(U0))

)
= 0 (A.19)

The last equation means that cp is an eigenvalue of the matrix A(U0)− i
k
∇S(U0) :

A(U0)− i

k
∇S(U0) =


0 ρ 0 0 0

2ε′(ρ) + ρε′′(ρ) + 1
αρ

0 0 0 − 1
αρ

− i
kαβρ2 0 0 −K(ρ)

βρ
i

kαβρ2

0 0 −1 0 0
0 0 −i/k 0 0

 (A.20)

Thus one obtains the characteristic polynomial :

−cp
(
c4
p −B(k)c2

p + C(k)
)

= 0

where B(k) and C(k) are the same as in section 1.4, which we remind here :

B(k) =
(

1
α

+ 1
k2αβρ2 + K(ρ)

βρ
+ 2ρe′(ρ) + ρ2e′′(ρ)

)

C(k) =
(
K(ρ)
αβρ

+ (2ρe′(ρ) + ρ2e′′(ρ))
(
K(ρ)
βρ

+ 1
k2αβρ2

))

The eigenvalues are therefore given by :

cp = 0, (cp(k)±)2 = 1
2

(
B(k)±

√
B(k)2 − 4C(k)

)
(A.21)

The phase velocities are all real since the augmented E-K system admits no inherent dissi-
pation. In fact, a trivial computation shows that :

B(k)2 − 4C(k) =
(

1
α

+ 1
k2αβρ2 + K(ρ)

βρ
+ 2ρe′(ρ) + ρ2e′′(ρ)

)2

+ 4
α2βρ2k2 > 0
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A.6 IMEX scheme : General explicit form
We use the same IMEX scheme presented in section 2.4.2. Nevertheless, we detail its explicit
formulation that does not require the risky use of root-finding algorithms. We use here the
generic case, in which we put no additional source terms. In this setting, the conserved
variables, fluxes and sources terms are respectively given by :

U =


ρ
ρu
ρη
ρw
p

 , F =


ρu

ρu2 + ρWρ −W + pWp

ρηu
ρwu−Wp

pu− w

 , S =


0
0
ρw

(1− η/ρ) /αβ
0

 (A.22)

We recall that at each time step tn, the two stages of the scheme write as follows :

U? = Un − γ ∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
+ γ∆tS(U?)

Un+1 = Un − (γ − 1) ∆t
∆x

(
Fn
i+ 1

2
− Fn

i− 1
2

)
− (2− γ) ∆t

∆x

(
F ?
i+ 1

2
− F ?

i− 1
2

)
+ (1− γ)∆tS(U?) + γ∆tS(Un+1)

with γ =
√

2
2 − 1 a constant parameter. The vector of intercell fluxes is computed as usual

using the appropriate Riemann solver of choice. For all what follows, we shall denote the
intercell fluxes by Fn

i+ 1
2

= (fnρ
i+ 1

2
, fnρu

i+ 1
2
, fnρη

i+ 1
2
, fnρw

i+ 1
2
, fnp

i+ 1
2
)T . With these notations, the let

us detail how the scheme writes. The first stage of the scheme writes :

ρ? = ρn − γ ∆t
∆x

(
fnρ

i+ 1
2
− fnρ

i− 1
2

)
u? =

(
ρnun − γ ∆t

∆x

(
fnρu

i+ 1
2
− fnρu

i− 1
2

))
/ρ?

η? =
(
ρnηn − γ ∆t

∆x

(
fnρη

i+ 1
2
− fnρη

i− 1
2

)
+ γ∆tρ?w?

)
/ρ?

w? =
(
ρnwn − γ ∆t

∆x

(
fnρw

i+ 1
2
− fnρw

i− 1
2

)
+ γ∆t

αβ
(1− η?/ρ?)

)
/ρ?

p? = ρnun − γ ∆t
∆x

(
fnρu

i+ 1
2
− fnρu

i− 1
2

)
(A.23)

Thus, we first compute ρ? and p? since their expressions are explicit. Then we use the value
of ρ? to compute u?. It remains to solve the implicit part for η? and w?. we denote by Y n

and Zn the quantities :
Y n =

(
ρnηn − γ ∆t

∆x

(
fnρη

i+ 1
2
− fnρη

i− 1
2

))
/ρ?

Zn =
(
ρnwn − γ ∆t

∆x

(
fnρw

i+ 1
2
− fnρw

i− 1
2

))
/ρ?

(A.24)

so that the expressions of η? and w? reduce to :η
? = Y n + γ∆tω?

w? = Zn + γ∆t
αβρ?

(
1− η?

ρ?

) (A.25)
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Solving this linear system yields :
η? = 1

1+ γ2∆t2
αβρ?2

(
Y n + γ∆tZn + γ2∆t2

αβρ?

)
w? = 1

1+ γ2∆t2
αβρ?2

(
Zn − γ∆t

αβρ?2Y n + γ∆t
αβρ?

) (A.26)

which concludes the first step of the scheme. After using the obtained values of the vector
U? to calculate new intercell fluxes F?

i+ 1
2

= (f ?ρ
i+ 1

2
, f ?ρu

i+ 1
2
, f ?ρη

i+ 1
2
, f ?ρw

i+ 1
2
, f ?p

i+ 1
2
)T , we proceed

to the second step which writes :

ρn+1 = ρn − (γ − 1) ∆t
∆x

(
fnρ

i+ 1
2
− fnρ

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f ?ρ

i+ 1
2
− f ?ρ

i− 1
2

)
un+1 =

(
ρnun − (γ − 1) ∆t

∆x

(
fnρu

i+ 1
2
− fnρu

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f ?ρu

i+ 1
2
− f ?ρu

i− 1
2

))
/ρn+1

ηn+1 =
(
ρnηn − (γ − 1) ∆t

∆x

(
fnρη

i+ 1
2
− fnρη

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f ?ρη

i+ 1
2
− f ?ρη

i− 1
2

))
/ρn+1

+ ((1− γ)∆tρ?w? + γ∆tρn+1wn+1) /ρn+1

wn+1 =
(
ρnwn − (γ − 1) ∆t

∆x

(
fnρw

i+ 1
2
− fnρw

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f ?ρw

i+ 1
2
− f ?ρw

i− 1
2

))
/ρn+1

+
(
(1− γ) ∆t

αβ
(1− η?/ρ?) + γ∆t

αβ
(1− ηn+1/ρn+1)

)
/ρn+1

p? = ρnun − γ ∆t
∆x

(
fnρu

i+ 1
2
− fnρu

i− 1
2

)
(A.27)

Solving the implicit part goes exactly as in the first steps, since we can write :η
n+1 = Y ? + γ∆tωn+1

wn+1 = Z? + γ∆t
αβρ?

(
1− ηn+1

ρn+1

) (A.28)

with Y ? and Z? defined by :
Y ? =

(
ρnηn − (γ − 1) ∆t

∆x

(
fnρη

i+ 1
2
− fnρη

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f?ρη

i+ 1
2
− f?ρη

i− 1
2

)
+ (1− γ)∆tρ?w?

)
/ρn+1

Z? =
(
ρnwn − (γ − 1) ∆t

∆x

(
fnρw

i+ 1
2
− fnρw

i− 1
2

)
+ (γ − 2) ∆t

∆x

(
f?ρw

i+ 1
2
− f?ρw

i− 1
2

)
+ (1− γ) ∆t

αβ (1− η?/ρ?)
)
/ρn+1

This reduces the explicit expressions of ηn+1 and wn+1 to :
ηn+1 = 1

1+ γ2∆t2
αβρ?2

(
Y ? + γ∆tZ? + γ2∆t2

αβρ?

)
wn+1 = 1

1+ γ2∆t2
αβρ?2

(
Z? − γ∆t

αβρ?2Y ? + γ∆t
αβρ?

) (A.29)

106 Appendix A. Calculus and developments for the augmented E-K system



APPENDIX B
About Elliptic integrals and functions

While usual trigonometric functions can be defined as coordinates with respect to the unit
circle, elliptic functions can be seen as the generalization of the latter for other conics,
particularly ellipses in our case. Historically, they owe their existence to Carl Gustav Jakob
Jacobi [47], who introduced them in 1829, as inverse functions to elliptic integrals. This
appendix is developed in an attempt to summarize the main properties of the canonical
elliptic functions sn, cn and dn. This task naturally requires notions from the theory of elliptic
integrals which we first recall. A complete example providing details on how to compute exact
periodic solution to NLSE is presented afterward as a reference to demonstrate the practical
usage of such functions.

B.1 Elliptic integrals
We consider the Lagrange forms of elliptic integrals. The incomplete elliptic integral of the
first kind is defined by :

F (ϕ, s) =
∫ ϕ

0

dθ√
1− s2 sin2(θ)

(B.1)

where 0 < s < 1 is a parameter usually referred to as the elliptic modulus. Similarly, the
incomplete elliptic integral of the second kind is defined by :

E(ϕ, s) =
∫ ϕ

0

√
1− s2 sin2(θ) dθ (B.2)

For a fixed value of ϕ = π/2, these integrals become functions of only s, called the complete
integrals of first and second kind, respectively :

K(s) =
∫ π/2

0

dθ√
1− s2 sin2(θ)

(B.3)

E(s) =
∫ π/2

0

√
1− s2 sin2(θ) dθ (B.4)
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B.2. Jacobi’s elliptic functions

The asymptotic expansions of both complete integrals is given below in the vicinity of the
limiting values. For s→ 0 we have :

K(s) = π

2

(
1 + s2

4 + 9s2

64

)
+ · · · (B.5)

E(s) = π

2

(
1− s2

4 + 3s2

64

)
+ · · · (B.6)

and for s→ 1 :

K(s) = ln
(

4√
1− s2

)
+ 1

4

(
ln 4√

1− s2
− 1

)
(1− s2) + · · · (B.7)

E(s) = 1 + 1
2

(
ln
(

4√
1− s2

)
− 1

2

)
(1− s2) + · · · (B.8)

For more insight, we plot the graphs of both functions in the figure below :

0

π/2

0 1/4 1/2 3/4 1
s

K(s)

0

1

π/2

0 1/4 1/2 3/4 1
s

E(s)

Figure B.1: Plot of the overall behavior of the complete elliptic integrals of first (left) and
second (right) kind.

B.2 Jacobi’s elliptic functions
Let us first introduce the amplitude function. For a fixed value of the elliptic modulus s, we
can consider the inverse function to F (ϕ, s) denoted as:

am(u, s) = ϕ (B.9)

This allows us to define the elliptic functions in terms of am(u, s), by :

sn(u, s) = sin(am(u, s)) (B.10)
cn(u, s) = cos(am(u, s)) (B.11)

dn(u, s) =
√

1− s2 sin2(am(u, s)) (B.12)
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These functions are called respectively elliptic sine, elliptic cosine and delta amplitude. The
definition we use does not provide an explicit expression of any of the three functions since
the amplitude function am is defined implicitly. Therefore, we will try to summarize the
main properties.

1. Periodicity : For any fixed value of 0 < s < 1, sn and cn are periodic in terms of
the real variable u, of period 4K(s). dn is also periodic in the same setting, of period
2K(s).

2. Limiting behaviors :

cn(u, s)|s→0 = cos(u) cn(u, s)|s→1 = 1/ cosh(u)
sn(u, s)|s→0 = sin(u) sn(u, s)|s→1 = tanh(u)
dn(u, s)|s→0 = 1 dn(u, s)|s→1 = 1/ cosh(u)

3. Useful Relations

cn2(u, s) + sn2(u, s) = 1 (B.13)
dn2(u, s) + s2sn2(u, s) = 1 (B.14)

4. Differential equations

cn : y′2 = (1− y2)(1− s2 + s2y2) (B.15)
sn : y′2 = (1− y2)(1− s2y2) (B.16)
dn : y′2 = (1− y2)(y2 − 1 + s2) (B.17)

5. Graphs

−1

0

1

−2π −π 0 π 2π
s

cn(s)

−1

0

1

−2π −π 0 π 2π
s

sn(s)

0

1

−2π −π 0 π 2π
s

dn(s)

s→ 0
s→ 1

s→ 0
s→ 1

s→ 0
s→ 1

Figure B.2: Overall behavior of the Jacobi elliptic functions for different values of the elliptic
modulus s. Represented from left to right are sn, cn and dn. For each plot, the blue and
red line represent the limiting behaviors for s → 0 and s → 1 respectively. the gray lines
correspond to arbitrary values of 0 < s < 1.
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B.3. Practical example: Periodic solution of NLS equation

B.3 Practical example: Periodic solution of NLS equa-
tion

We established in section 2.2 that a periodic travelling wave solution to NLSE satisfies the
differential equation : (

dρ

dξ

)2

= 4(ρ− b1)(ρ− b2)(ρ− b3) = P (ρ) (B.18)

with b3 < b2 < b1. As long as these roots are simple (i.e. P ′(bi) 6= 0), equation (B.18) can
have a real-valued periodic solution corresponding to the oscillations of ρ between b2 and b3,
given that P (u) ≥ 0 in this interval, as shown in the figure below:

0 ρ

P (ρ)

b3 b2 b1

Figure B.3: Representative graphic of P (ρ) for arbitrary parameters b1 > b2 > b3.

In this setting, the wavelength of ρ(ξ) corresponds to the distance it takes ρ to move back
and forth from b3 to b2. Let us denote by ξ3 and ξ2 the values of ξ such that :

ρ(ξ3) = b3; ρ(ξ2) = b2. (B.19)

While ξ3 is arbitrary, we take ξ2 as the smallest value of ξ verifying ξ2 > ξ3. Let ξ ∈ [ξ3, ξ2].
Then, it follows from equation (B.18) that:

ξ − ξ3 =
∫ ξ

ξ3

dξ =
∫ ρ

b3

dρ

ρξ
=
∫ ρ

b3

dρ

2
√

(ρ− b1)(ρ− b2)(ρ− b3)
(B.20)

Now, we consider the classical change of variables :

ρ = b3 − (b3 − b2) sin2(ϕ); ϕ ∈ [0, π/2] (B.21)
dρ = 2(b2 − b3) sin(ϕ) cos(ϕ)dϕ (B.22)

the factors inside the square root become :

ρ− b1 = −(b1 − b3)
(
1− s2 sin2(ϕ)

)
(B.23)

ρ− b2 = −(b2 − b3)(1− sin2(ϕ)) = −(b2 − b3) cos2(ϕ) (B.24)
ρ− b3 = (b2 − b3) sin2(ϕ) (B.25)

110 Appendix B. About Elliptic integrals and functions



Appendix B. About Elliptic integrals and functions

where s =
√
b2 − b3

b1 − b3
. Under these variables, we can write :∫ ρ

b3

dρ

2
√

(ρ− b1)(ρ− b2)(ρ− b3)
=
∫ ϕ

0

(b2 − b3) sin(ϕ) cos(ϕ)dϕ√
(ρ− b1)(ρ− b2)(ρ− b3)

(B.26)

=
∫ ϕ

0

dϕ√
(b1 − b3) (1− s2 sin2(ϕ))

(B.27)

= 1√
b1 − b3

F (ϕ, s) (B.28)

So that : √
b1 − b3(ξ − ξ3) = F (ϕ, s) =⇒ am

(√
b1 − b3(ξ − ξ3), s

)
= ϕ (B.29)

Thus :
ρ = b3 − (b3 − b2) sin2(ϕ) = b3 − (b3 − b2)sn2

(√
b1 − b3(ξ − ξ3), s

)
(B.30)

Or equivalently :
ρ(ξ) = b1 − (b1 − b3)dn2

(√
b1 − b3(ξ − ξ3), s

)
(B.31)

Since this is a travelling wave solution, we can take ξ3 = 0 to obtain the solution :

ρ(ξ) = b1 − (b1 − b3)dn2
(
ξ
√
b1 − b3, s

)
(B.32)

B.4 Asymptotic structure of a DSW : Values of τi
We recall that we consider the case of an initial discontinuity that leads to a DSW propagating
to the right and a rarefaction wave propagating to the left. At the leading edge of the DSW
(s2 = 0) we have :

r1 = r2 = u0 + 2√ρ0; r3 = uR + 2√ρR; r4 = uR − 2√ρR (B.33)

In this setting, and inside of the DSW region, the merging of the Riemann invariants r1 and
r2 trivially implies the equality of their corresponding characteristic velocities :

lim
s2→0

V1(s) = lim
s2→0

V2(s) = lim
s2→0

τ(s) = τ1. (B.34)

Referring back to the expressions of the characteristic velocities, let us calculate lim
s2→0

V1(s) :

lim
s2→0

V1(s) = lim
s2→0

U + 1
2(r1 − r2) 1

1− r2−r4
r1−r4

E(s)
K(s)
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Besides we have :

U = 1
4 (r1 + r2 + r3 + r4) = 1

4 (2r1 + uR + 2√ρR + uR − 2√ρR) = 1
2(r1 + uR)

r1 − r2 = (r1 − r3)(r2 − r4)
r3 − r4

s2

Thus :

lim
s2→0

V1(s) = lim
s2→0

(
U + 1

2(r1 − r2) (r1 − r4)K(s)
(r1 − r4)K(s)− (r2 − r4)E(s)

)

= lim
s2→0

(
U + 1

2(r1 − r2) (r1 − r4)(1 + s2/4)
(r1 − r4)(1 + s2/4)− (r2 − r4)(1− s2/4)

)

= lim
s2→0

(
U + 1

2(r1 − r2) (r1 − r4)(1 + s2/4)
r1 − r2 + s2

4 (r1 − 2r4 + r2)

)

= lim
s2→0

U + 1
2

(r1 − r3)(r2 − r4)
r3 − r4

s2 (r1 − r4)(1 + s2/4)
(r1−r3)(r2−r4)

r3−r4 s2 + s2

4 (r1 − 2r4 + r2)


= U + (r1 − r4)(r1 − r3)(r2 − r4)

2(r1 − r3)(r2 − r4) + (r2 − r4)(r3 − r4) = U + (r1 − r4)(r1 − r3)
2(r1 − r3) + (r3 − r4)

Substituting the values of the Riemann invariants and using the equality uR − 2√ρR =
u0 − 2√ρ0, we finally obtain :

τ1 = lim
s2→0

V1(s) = uR +
8ρ0 − 8√ρ0ρR + ρR

2√ρ0 −
√
ρR

(B.35)

In a similar fashion, we can calculate the asymptotic value τ2 which corresponding to the
trailing edge (s2 = 1). In this setting we have :

r2 = r3 = uR + 2√ρR, V2 = V3, r1 = u0 + 2√ρ0, r4 = u0 − 2√ρ0. (B.36)
In this case, the Riemann invariants who merge are r2 and r3 and thus :

lim
s2→1

V3(s) = lim
s2→1

V2(s) = lim
s2→1

τ(s) = τ2. (B.37)

and we have :
r2 − r3 = (r1 − r3)(r2 − r4)

(r1 − r4) (1− s2) (B.38)

lim
s2→1

V3(s) = lim
s2→1

U + 1
2(r3 − r4) 1

1− r2−r4
r2−r3

E(s)
K(s)


= lim

s2→1

U + 1
2(r3 − r4) 1

1− r2−r4
r2−r3

1
ln(4/

√
1−s2)


= lim

s2→1

U + 1
2(r3 − r4) 1

1− r1−r4
(r1−r3)(1−s2) ln(4/

√
1−s2)
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It might be more intuitive to consider the variable s′2 = 1 − s2, in which case, the previous
equality yields :

lim
s′2→0

V3(s′) = lim
s′2→0

U + 1
2(r3 − r4)

s′2
(
ln(4)− 1

2 ln(s′2)
)

s′2
(
ln(4)− 1

2 ln(s′2)
)
− r1−r4

r1−r3



since lim
s′2→0

(
s′2
(

ln(4)− 1
2 ln(s′2)

))
= 0 then we get :

τ2 = lim
s′2→0

V3(s′) = U = 1
4 (r1 + r2 + r3 + r4) = uR +√ρ0 (B.39)

The values of τ3 and τ4 which delimit the rarefaction wave, are obtained exactly as in the
case of Euler equations with a pressure p(ρ) = ρ2/2 :

τ3 = uR − 2√ρR, τ4 = uL − 2√ρL (B.40)
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APPENDIX C
Asymptotics for the augmented thin

film flows model

C.1 Neutral stability analysis for thin films equations
We recall that the phase velocities of thin films equations (3.6) satisfy the equation :

ε(1− cp)2 − 3i
kRe

(1− cp)− ε
(
cosθ

F 2 + 2λ2

45 + k2ε2

We

)
− 6i
kRe

= 0

For lightness we introduce the positive constants :

a = cos θ
F 2 + 2λ2

45 + k2ε2

We
, b = 3

kεRe
(C.1)

and we consider the variable X = 1− cp. The stability condition becomes Im(X) > 0. Thus,
under the previous notations, X satisfies the equation :

X2 − ibX − (a+ 2ib) = 0 (C.2)

In order to solve this second degree equation, we write

∆ = −b2 + 4(a+ 2ib) =⇒ X1,2 = −ic±
√

∆
2 (C.3)

Let us define a complex square root of ∆ by taking :
√

∆ = p+ iq, ∆ =
√

∆
2

= p2 − q2 + 2ipq (C.4)

so that the roots X1,2 satisfy the equation :

2X1,2 = ib± (p+ iq)

The stability condition Im(X) > 0 thus writes :

b± q > 0
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Given that b > 0 then this condition is equivalent to :

b2 > q2

It remains to obtain an explicit expression of q2. for that let us identify the real and imaginary
parts in the equality ∆ =

√
∆2:

√
∆

2
= ∆⇔

p
2 − q2 = −b2 + 4a
pq = 4b > 0⇔ p2 = 16b2

q2

Now we substitute p2 = 16b2/q2 in the first equation and multiply by q2 to obtain :

q4 − (b2 − 4a)q2 − 16b2 = 0⇒ q2 =
b2 − 4a±

√
(b2 − 4a)2 + 64b2

2

For q ∈ R, we have q2 ≥ 0 and hence :

q2 =
b2 − 4h0 +

√
(b2 − 4ah0)2 + 64b2u2

0

2

We substitute this expression into the stability condition b2 − q2 > 0 to obtain:

b2 + 4−
√

(b2 − 4a)2 + 64b2 > 0

⇔ b2 + 4a >
√

(b2 − 4a)2 + 64b2 > 0
⇔ (b2 + 4a)2 > (b2 − 4a)2 + 64b2

⇔ 16b2a > 64b2 ⇔ a > 4

Finally:

a > 4⇔ cosθ

F 2 + 2λ2

45 + κ
k2

F 2 > 4

⇔ cosθ

F 2 + 2
15
Re sin(θ)

F 2 + κ
k2

F 2 > 4

⇔ cosθ + 2Re sin(θ)
15 + κk2 > 4F 2

⇔ cosθ + 2Re sin(θ)
15 + κk2 >

4Resinθ
3

⇔ cotgθ + κk2

sinθ
>

6Re
5

which concludes the development.
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C.2 Dispersion relation expansion

In this part, we show how to obtain the series expansions of the phase velocities of the
augmented system for thin film flows. In order to perform an asymptotic analysis, the
penalty parameters are set to be power functions of ε:

α = εm, β = εp, m, p ∈ N∗ (C.5)

We will assume that m ≥ 1 and p ≥ 1, so that α and β are O(ε). We recall that in this
context, the characteristic polynomial writes :

1
αβεk3XQ0(X) = 0, Q0(X) = A0 + A1X + A2X

2 + A3X
3 + A4X

4 (C.6)

with the coefficients :

A0 = 6i
Re

+ Cεk + 6i
ReWe

k2ε2+m + 1 + εmC

We
k3ε3, A1 = 3i

Re
+ 3i
ReWe

k2ε2+m

A2 = −
( 6i
Re

εm+pk2 +
(
1 + εpk2 + Cεm+pk2

)
kε+ 1

We
k3ε3+m

)
, A3 = −3iεm+pk2

Re
, A4 = εm+p+1k3

We disregard in what follows the trivial solution X = 0 and will focus on the roots of Q0(X).
First, let us look for solutions that are compatible with a regular perturbation series of the
form :

X = X0+εX1+ε2X2+εmXm+εm+1Xm+1+ε2mX2m+εpXp+εp+1Xp+1+ε2pX2p+εm+pXm+p+O(ε3)
(C.7)

Such an expansion only reveals the roots X which remain bounded in the limit ε→ 0. Since
we assumed that m, p ≥ 1, all the combinations that may be of order O(ε3) are used in the
expansion. Replacing (C.7) in the characteristic polynomial (3.35) and setting to zero the
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leading terms in ε yields:

Order 0 : 3iX0

Re
+ 6i
Re

= 0

Order 1 : Ck − kX2
0 + 3iX1

Re
= 0

Order 2 : −2kX0X1 + 3iX2

Re
= 0

Order m : 3iXm

Re
= 0

Order m+ 1 : −2kX0Xm + 3iXm1

Re
= 0

Order 2m : 3iX2m

Re
= 0

Order p : 3iXp

Re
= 0

Order p+ 1 : −k3X2
0 − 2kX0Xp + 3iXp1

Re
= 0

Order 2p : 3iX2p

Re
= 0

Order p+m : −3ik2X3
0

Re
− 6ik2X2

0
Re

+ 3iXmp

Re
= 0

(C.8)

Solving successively this set of equations gives the coefficients of the expansion as follows:

X0 = −2, X1 = ikRe

3 (C − 4) , X2 = −4
9k

2Re(C − 4), Xp+1 = −4i
3 Rek

3 (C.9)

Xm = X2m = Xm+1 = Xp = Xm+p = X2p = 0 (C.10)
Thus, X expands in a regular series as follows :

X = −2+ iRe

3

(
cos θ
F 2 + 2λ2h3

45 − 4
)
kε−4Re

9

(
cos θ
F 2 + 2λ2h3

45 − 4
)
k2ε2−4i

3 Rek
3εp+1+O(ε3)

(C.11)
As the above computation confirms, the regular expansion (C.7) yields a unique root. Out
of the coefficients that are dependent on α or β, only Xp+1 has a non-zero value among the
concerned terms. The remaining terms correspond exactly to the series expansion of the
phase velocity cp1 of the original system. Thus, in order keep this expansion valid up to first
order, it suffices that the term Xp+1ε

p+1 is of second order, yielding a first constraint :

p ≥ 1 (C.12)

We shall now look for the remaining three roots. Trivially, Q0(X) degenerates into a first
order polynomial in the limit ε→ 0. This means that the three remaining roots go to infinity
in the same limit and only remains the obtained root of the previous expansion. These missed
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solutions can be found by use of proper rescaling of the equation. In such a case we consider
a new variable Y (ε) = εdX where Y (ε) can be expanded into a regular series. In order to
obtain the singular expansion, one needs to find and balance the leading-order dominant
terms with respect to ε. Substituting X by Y/εd leads to the polynomial:

Q1(Y ) = B0 +B1Y +B2Y
2 +B3Y

3 +B4Y
4, Bn = ε−ndAn, n ∈ {0, 1, 2, 3, 4} (C.13)

where :

B0 = 6i
ReWe

k2ε2+m + C

We
k3ε3+m + 6i

Re
+ Ckε+ k3ε3

We

B1 = 3i
ReWe

k2εm+2−d + 3i
Re

ε−d

B2 = −kε1−2d − k3εp+1−2d − 1
We

k3ε3−2d+m − 6i
Re

k2ε−2d+m+p − Ck3ε1−2d+m+p

B3 = − 3i
Re

k2εm+p−3d

B4 = k3ε1−4d+m+p

Identifying the leading order in ε in these coefficients yields :

B0 = O(1), B1 = O(ε−d), B2 = O(ε1−2d), B3 = O(εm+p−3d), B4 = O(εm+p+1−4d)
(C.14)

Balancing leading order dominant terms yields two possibilities :

• Balancing B1 and B2 as leading terms gives d = 1.

• Balancing B2 and B4 as leading terms gives d = m+p
2 .

It is easy to check that all other combinations either lead to balancing non dominant terms
or overlap with the previous cases. Thus, rescaling the equation by εd for d = 1 and d = m+p

2
should reveal all the remaining roots.

Let us start with the case d = 1. This scaling is trivially reminiscent of cp2 of the original
system, so one should intuitively recover its corresponding eigenvalue. Similarly to before we
consider the following expansion :

Y = Y0 + εY1 + ε2Y2 + ε3Y3 + εmYm + εm+1Ym+1 + εm+2Ym+2 + ε2mY2m + ε2m+1Y2m+1 + ε3mY3m + εpYp

+ εp+1Yp+1 + εp+2Yp+2 + ε2pY2p + ε2p+1Y2p+1 + ε3pY3p + εm+pYm+p + εm+p+1Ym+p+1 +O(ε3)

There are more terms in this expansion compared with (C.7) since, in order to have a second
order expansion in X, one needs to go to third order in Y . It would be best to replace Y by
this series in εQ(Y ) to have order 0 as leading order. Setting to zero the leading terms in ε
and identifying, yields the expressions :

Y0 = 3i
kRe

, Y1 = 2, Y2 = − i3kRe(C − 4), Y3 = 4
9k

2Re2(C − 4) (C.15)

Yp = −3ik
Re

, Yp+2 = 4
3ik

3Re, Y2p = 3ik3

Re
, Y3p = −3ik5

Re
(C.16)
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Ym = Ym+1 = Ym+2 = Y2m = Y3m = Yp+1 = Y2p+1 = Ym+p = Ym+p+1 = 0 (C.17)

So that when replacing back Y by X/ε we obtain :

X = 3i
Rekε

+ 2− i

3Re
(

cos θ
F 2 + 2λ2h3

45 − 4
)
kε+ 4

9Re
2
(

cos θ
F 2 + 2λ2h3

45 − 4
)
k2ε2

− 3i
Re

kεp−1 + 4
3iRek

3εp+1 + 3i
Re

k3ε2p−1 − 3i
Re

k5ε3p−1 + . . .

Thus, the same situation arises as before and we need to choose p so that leading order in
the additional terms is at least of second order. In this case, and ∀p ≥ 1, the leading order
is of order εp−1, which leads the constraint :

p ≥ 3 (C.18)

This concludes the asymptotic comparison of phase velocities. In conclusion, in order to have
phase velocities which comply with the original model at least at first order, one needs to
impose p ≥ 3. Note that, the previous analysis does not yields any constraint on α besides
the assumption we did in the beginning m ≥ 1. This is due to the fact that in the augmented
model, α mainly intervenes in the capillary terms which are taken proportional to ε2, thus
making them appear in later orders in the expansion (order 3 and higher). Even in this case
where κ is assumed O(1), one can show that the same analysis yields m ≥ 1 through the
asymptotic analysis, which is not any more restrictive than the initial assumption.

While, this fully addresses the comparison between the original system system phase
velocities and their equivalents in the augmented system, this analysis did not yet investigate
all of the eigenvalues. In fact, two eigenvalues are still missing and which are obtained by
taking d = m+p

2 as a rescaling factor. While, the task of obtaining a precise expansion in
this case is more tedious, it is not anymore rewarding, since stability analysis was already
performed regardless of these values. Nevertheless, it remains beneficial to at least give the
leading order behavior of these roots which write as follows :

X3,4 = ± 1
k
√
εp+m

+ · · · (C.19)

such a form was expected in the sense that these velocities should go to infinity in the limit
ε→ 0. To conclude this part, we obtained a necessary and sufficient condition for the leading
order behavior of the phase velocity to match that of the original system. While the choice
of p = 3 yields the best results in this regard, the resulting system requires both ε and k as
independent variables, while in the original system, the analysis can be performed in terms
of only kε. It is possible to conserve such a structure for a unique choice of α and β such
that α ∝ ε and β ∝ ε2. However, as proved by the previous computations, this does not
guarantee accuracy nor does it maintain a good agreement stability-wise.
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APPENDIX D
Modified equations : Computing radii

of convergence

In each of the following cases, we would like to check the convergence radius of the series :

ln(S(θ, λq,∆x) =
∞∑
p=0

αp
λq∆xq

θp =
∞∑
p=0

apθ
p (D.1)

For that, we use the root convergence test, that is the radius of convergence R is given by :

lim
p→+∞

|ap|1/p = 1
R

(D.2)

D.1 Centered scheme for the heat equation : λ2 = 1
2

We have :
S(θ, λ2,∆x) = 1− 2 sin(θ/2)2 (D.3)

In this case, it is possible to obtain an explicit expression of the pth term of the sequence ap
which is given by : 

a0 = 0

a2p = −(−4)pE2p−1(0)
2(2p)! ∀p ≥ 1

a2p+1 = 0 ∀p ≥ 0

(D.4)

where Ep(x) denotes the pth Euler polynomial function defined by :

2ext
et + 1 =

∞∑
n=0

En(x) t
n

n! (D.5)

Since the series has only even order coefficients, it is equivalent and more convenient to check
the convergence of the series :

∞∑
p=0

bpφ
p (D.6)
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D.2. Centered scheme for the heat equation : λ2 = 1
4

where φ = θ2 and bp = a2p. We proceed as follows in order to check the radius of convergence.
We use Bernoulli’s number [74]:

B2p = −pE2p−1(0)
(22p − 1) (D.7)

and plug this ansatz into bp to obtain :

|bp| =
∣∣∣∣∣(4)pE2p−1(0)

2(2p)!

∣∣∣∣∣ =
∣∣∣∣∣(4)p(22p − 1)

2p(2p)! B2p

∣∣∣∣∣ ∼p→∞
∣∣∣∣∣ 22p

p(π)2p

∣∣∣∣∣
Hence we can write :

|bp| ∼
p→∞

1
p

( 2
π

)2p
(D.8)

and so:

lim
p→+∞

|bp|1/p =
( 2
π

)2
(D.9)

This means that the series (D.6) has a radius Rφ = π2/4 which implies that the radius of
convergence of the series G(θ, 1/2,∆x) is R = π/2.

D.2 Centered scheme for the heat equation : λ2 = 1
4

We have :
S(θ, λ2,∆x) = 1− sin(θ/2)2 (D.10)

The expression of the pth term ap is given by :


a0 = 0

a2p = −(−1)pE2p−1(0)
(2p)! ∀p ≥ 1

a2p+1 = 0 ∀p ≥ 0

(D.11)

Using the same previous notations as in (D.6), we have :

|bp| =
∣∣∣∣∣(E2p−1(0)

(2p)!

∣∣∣∣∣ =
∣∣∣∣∣(22p − 1)
p(2p)! B2p

∣∣∣∣∣ ∼p→∞
∣∣∣∣∣ 2
pπ2p

∣∣∣∣∣ (D.12)

which yields :

lim
p→+∞

|bp|1/p = 1
π2 . (D.13)

This gives the radius of convergence of the series G(θ, 1/4,∆x) is R = π.
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D.3 Proof of convergence for λ1 ≤ 1 of Upwind Euler
for transport equation

Since Ωc =
{

(λq,∆x) ∈ R2 : λ1 ≤ 1
2

}
, then the series G(θ, λ1,∆x) is convergent ∀λ1 ≤ 1/2

and we have :
e∆tG(θ,λ1,∆x) = S(θ, λ1,∆x)

Since stability only depends on the modulus of S(θ, λ1,∆x) it is sufficient for our analysis to
consider the equality :

e∆xλ1Re(G(θ,λ1,∆x)) = |S(θ, λ1,∆x)| (D.14)

Next, we show the following symmetry :

|S(θ, 1/2− λ1,∆x)| = |S(θ, 1/2 + λ1,∆x)|

Indeed we have :

S(θ, 1/2− λ1,∆x) = 1− (1/2− λ1)
(
1− e−iθ

)
= (1/2 + λ1) + (1/2− λ1)e−iθ

S(θ, 1/2 + λ1,∆x) = 1− (1/2 + λ1)
(
1− e−iθ

)
= (1/2− λ1) + (1/2 + λ1)e−iθ

=
(
(1/2 + λ1) + (1/2− λ1)eiθ

)
e−iθ

= e−iθS(θ, 1/2− λ1,∆x)

where the bar denotes the complex conjugate. Hence |S(θ, 1/2− λ1,∆x)| = |S(θ, 1/2 + λ1,∆x)|.
This implies through equality (D.14) that :

∆x(1/2− λ1)Re(G(θ, 1/2− λ1,∆x)) = ∆x(1/2 + λ1)Re(G(θ, 1/2 + λ1,∆x)) (D.15)

which also implies in terms of coefficients:

(1/2− λ1)α2p(1/2− λ1,∆x) = (1/2 + λ1)α2p(1 + λ1,∆x) ∀p ≥ 1 (D.16)

Therefore, since the series is convergent for 0 ≤ λ1 ≤ 1/2, it is also convergent for 1/2 ≤
λ1 ≤ 1.
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