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Abstract

An approximate first order quasilinear hyperbolic model for Euler-Korteweg (E-K) equations, describing compressible fluid flows whose energy depend on the gradient of density, is derived. E-K system can be seen as the Euler-Lagrange equations to a Lagrangian submitted to the mass conservation constraint. Due to the presence of the density gradient in the Lagrangian, one recovers high-order derivatives of density in the motion equations. The approach presented here permits us to obtain a system of hyperbolic equations that approximate E-K system. The idea is to introduce a new order parameter which approximates the density via a carefully chosen penalty method. The gradient of this new independent variable will then replace the original gradient of density in the Lagrangian, resulting in the so-called augmented Lagrangian. The Euler-Lagrange equations of the augmented Lagrangian result in a first order hyperbolic system with stiff source terms and fast characteristic speeds. Such a system is then analyzed and solved numerically by using IMEX schemes. In particular, this approach was applied to the defocusing nonlinear Schrödinger equation (which can be reduced to the E-K equations via the Madelung transform), for which a comparison with exact and asymptotic solutions, namely gray solitons and dispersive shock waves was performed. Then, the same approach was extended to thin film flows with capillarity, for which comparison of the numerical results with both reference numerical solutions and experimental results was performed. It was shown that the augmented model is also extendable to models with full nonlinear surface tension. In the same setting, a study of stationary droplets on a horizontal solid substrate was conducted in an attempt to classify droplet profiles depending on their energy forms. This also allowed to compare the augmented Lagrangian approach in the case of stationary solutions, and which showed excellent agreement with the reference solutions. Lastly, an independent part of this work is devoted to the study of modified equations associated to numerical schemes for stability purposes. It is shown that for a linear scheme, stability conditions which are obtained from a truncation of the associated modified equation, are only relevant if the corresponding series in Fourier space is convergent for the admissible wavenumbers.
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Résumé

On présente un modèle hyperbolique quasi-linéaire de premier ordre approximant les équations d'Euler-Korteweg (E-K), qui décrivent des écoulements de fluides compressibles dont l'énergie dépend du gradient de la densité. Le système E-K peut être vu comme les équations d'Euler-Lagrange d'un Lagrangien soumis à la conservation de la masse. Vu la présence du gradient de la densité dans le Lagrangien, des dérivées d'ordre élevé de la densité apparaissent dans les équations du mouvement. L'approche présentée ici permet d'obtenir un système d'équations hyperboliques qui approxime le système E-K. L'idée est d'introduire un nouveau paramètre d'ordre qui approxime la densité via une méthode de pénalisation classique. Le gradient de cette nouvelle variable remplace alors le gradient de la densité dans le Lagrangien, ce qui permet de construire le Lagrangien augmenté. Les équations d'Euler-Lagrange associées à celui-ci, sont des équations hyperboliques avec des termes sources raides et des vitesses de caractéristiques rapides. Ce système est analysé puis résolu numériquement en utilisant des schémas de type IMEX. En particulier, cette approche a été appliquée à l'équation de Schrödinger nonlinéaire défocalisante (qui peut être réduite au système E-K via la transformée de Madelung), pour laquelle des comparaisons avec des solutions exactes et asymptotiques ont été faites, notamment pour des solitons gris et des ondes de choc dispersives. La même approche a été également appliquée aux équations de filmes minces avec capillarité, pour lesquelles une comparaison avec des résultats numériques de référence et des résultats expérimentaux a été faite. Il a été démontré que le modèle augmenté peut aussi bien s'appliquer pour des modèles dont le terme de capillarité est non-linéaire. Dans ce même cadre, une étude de gouttes stationnaires sur un substrat solide horizontal a été établie afin de classifier les profils possibles de gouttes selon leur énergie. Ceci a permis également de faire des comparaisons du modèle augmenté sur des solutions stationnaires. Enfin, une partie indépendante de ce travail est consacrée à l'étude des équations équivalentes associées aux schémas numériques, où l'on démontre que les conditions de stabilité qui dérivent d'une troncature de l'équation équivalente, n'a du sens que si la série correspondante dans l'espace de Fourier est convergente, sur les longueurs d'onde admissibles dans la pratique.
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Introduction

In 1893, Van der Waals published a paper in the Verhandelingen of the Academy, entitled

The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[END_REF]. It took sixty years to understand the worth of his work [START_REF] Kipnis | Van der Waals and molecular science[END_REF]. Regrettably, new ideas are more prone to rejection, no matter how great a contribution they could have been.

Van der Waals assumed in his paper a continuous transition of the density across the layer separating a liquid and its vapor. In such a setting, he stated that equilibrium states where the density distribution is heterogeneous, are compatible with capillarity, only if the free energy at a point, not only depended on its local density, but also on the densities in the neighboring points [START_REF] Van Der Waals | The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density[END_REF][START_REF] Kipnis | Van der Waals and molecular science[END_REF]. Based on the work of Van der Waals, Korteweg formulated a constitutive equation of the Cauchy stress that depended on the density and its spatial gradients [START_REF] Korteweg | Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais connues et sur la théorie de la capillarité dans l'hypothèse d'une variation continue de la densité[END_REF] in the static case. The dynamical form of the equations, based on Hamilton's principle of stationary action, was obtained by Casal [START_REF]Capillarité interne en mécanique des millieux continus[END_REF][START_REF]La capillarité interne[END_REF] and a year later independently by Eglit [START_REF] Eglit | A generalization of the model of an ideal compressible fluid[END_REF].

Van der Waals-Korteweg type equations (often called Euler-Korteweg (E-K) equations), appear also in other fields of physics, like capillary fluids, thin films flows and quantum hydrodynamics. It has been the subject of interest in many works in recent decades which include for example [START_REF] Audiard | Global well-posedness of the Euler-Korteweg system for small irrotational data[END_REF][START_REF] Benzoni-Gavage | Planar traveling waves in capillary fluids[END_REF][START_REF] Benzoni-Gavage | On the well-posedness for the Euler-Korteweg model in several space dimensions[END_REF][START_REF] Benzoni-Gavage | Structure of Korteweg models and stability of diffuse interfaces[END_REF][START_REF] Bresch | On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models[END_REF][START_REF] Bresch | New extended formulations of euler-korteweg equations based on a generalization of the quantum bohm identity[END_REF][START_REF] Bresch | A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations[END_REF][START_REF] Gouin | A representation of liquid-vapor interfaces by using fluids of second grade[END_REF][START_REF] Gavrilyuk | Media With Equations of State That Depend on derivatives[END_REF][START_REF] Haspot | Existence of strong solutions for nonisothermal Korteweg system[END_REF][START_REF] Noble | Stability theory for difference approximations of some dispersive shallow water equations and application to thin film flows[END_REF].

The aim of this thesis is to derive a first order hyperbolic model which approximates the E-K system in an attempt to open new perspectives for its numerical resolution and the understanding of its solutions properties. This manuscript is organized as follows. Chapter one is dedicated to the augmented Lagrangian method for the E-K system in general. Explanations on how the approach works in general, and how it affects the structure of the system are given. Full details for the derivation of the corresponding system of equations are given. The structure of the obtained system is then discussed. This includes the proof of the hyperbolicity of the system and how it approximates the E-K system.

In chapter two, the augmented Lagrangian approach is applied to the defocusing nonlinear Schrödinger equation. Preliminaries on how to cast the equation into a system of conservation laws via the Madelung transform, and how to obtain traveling wave solutions are presented. Then, the augmented formulation of the equations is given and analyzed. In particular, heuristic estimations of the introduced penalty parameters via the dispersion relation are suggested. Finally, the numerical schemes are given in details and numerical results are presented and compared for both exact and asymptotic solutions, namely gray solitons and dispersive shock waves, for which the asymptotic behavior is obtained through Whitham's modulation equations.

In chapter three, the same approach is applied to thin film flows with capillarity. Details on the used model are first reminded, in particular the governing equations, the dispersion relation and the following stability condition. The corresponding augmented model is then xvii presented and analyzed. The main difference in this case, is that the expressions of the phase velocities could not be obtained explicitly. Instead, an asymptotic expansion of the latter were performed and compared at leading orders with the original system. This permitted to obtain a suitable scaling of the penalty parameters as a function of the long-wave parameter ε, which governs the asymptotics of the original model. Then it is explained, how the augmented Lagrangian approach is extendable to energy forms that have nonlinear surface tension terms. The corresponding system of equations is computed and shown hyperbolic. Finally, numerical results for models with linear and nonlinear surface tension terms are presented and compared with reference numerical solutions obtained in [START_REF] Bresch | Augmented skew-symmetric system for shallow-water system with surface tension allowing large gradient of density[END_REF] as well as the experimental results of Liu and gollub [START_REF] Liu | Solitary wave dynamics of film flows[END_REF].

Chapter four, deals with stationary droplets on a horizontal solid substrate, under the effects of gravity and surface tension. The governing equilibrium equations are derived through variational principles and cast into a first order differential equation satisfied by the droplet height. Under some assumptions on the energy form, we discuss under which conditions, a droplet may admit a change of convexity. The study is conducted for both smooth and singular profiles. Most of the results are given in generic cases and then supplemented with explicit expressions of the total energy. The study is extended to the augmented Lagrangian model. This permitted to perform comparisons of the augmented and original models for a stationary solutions. This permitted to perform comparisons of the differential equation, as well as the numerical solutions, which showed excellent agreement between both models. Lastly, chapter five, which is completely independent from the rest, deals with a pure numerical analysis problem, which is stability conditions derived from modified equations. In particular, we discuss some limitations of the modified equations approach as a tool for stability analysis for a class of explicit linear schemes to scalar partial derivative equations. We show that the infinite series obtained by Fourier transform of the modified equation is not always convergent and that in the case of divergence, it becomes unrelated to the scheme. Based on these results, we explain when the stability analysis of a given truncation of a modified equation may yield a reasonable estimation of a stability condition for the associated scheme. We illustrate our analysis by some examples of schemes namely for the heat equation and the transport equation.

The work presented in these chapters, is complemented by four appendixes, which contain most of the computational details. Appendix A includes the variational calculus required to derive the augmented system of equations from the Lagrangian and details about the augmented model's properties. Step-by-step computations to obtain the dispersion relation and obtain an explicit form of the IMEX scheme are also given. Appendix B is a reminder on elliptic functions and integrals. This includes practical examples on their usage in order to obtain periodic solutions of the nonlinear Schrödinger equation, and to describe the structure of a dispersive shock wave. Appendix C concerns mainly the asymptotic analysis performed for thin films equations. Lastly, appendix D contains details on how to compute some radii of convergence of some explicit power series, needed to explain the stability of some considered finite differences schemes.
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CHAPTER 1

A First order Hyperbolic model for Euler Korteweg Systems

In this chapter we explain the core idea behind this PhD work, namely the mechanisms behind the augmented Lagrangian approach for the E-K system. We first explain the concept of the method and how it affects the structure of the system from the variational point of view. Next, we explain how to obtain the corresponding system of augmented equations and then justify how it approximates the original E-K system of equations and finally discuss its hyperbolicity. Before we proceed any further, it seems necessary to remind that E-K systems refer in general to the following system of conservation laws :

         ∂ρ ∂t + div(ρu) = 0 ∂ρu ∂t + div (ρu ⊗ u + Π) = 0 (1.1)
where Π is given by :

Π = ρ 2 (ρ) - 1 2 (ρK (ρ) + K(ρ)) |∇ρ| 2 -ρK(ρ)∆ρ Id + K(ρ)∇ρ ⊗ ∇ρ (1.2)
Here, ρ is the fluid density, u is the velocity field, (ρ) is the specific hydrodynamic energy and K(ρ) is a given function of ρ. This system can be derived as the Euler-Lagrange equations for the Lagrangian :

L = Ωt ρ |u| 2 2 -ρ (ρ) - 1 2 K(ρ) |∇ρ| 2 dΩ (1.
3) E-K system admits an additional scalar conservation law for the total energy :

∂E ∂t + div (Eu + Πu -ρK(ρ)∇ρ) = 0, (1.4)
where the energy E is given by :

E = ρ |u| 2 2 + ρ (ρ) + 1 2 K(ρ) |∇ρ| 2 . (1.5) 1 1.1. Augmented Lagrangian approach
Compared to classical models, for which the potential energy does not depend explicitly on ∇ρ, we have an additional term in the energy flux -ρK(ρ)∇ρ known as interstitial working [START_REF] Dunn | On the thermomechanics of interstitial working[END_REF]. This system covers the majority of the applications presented in this thesis. Even if the physical meaning of unknowns will be not the same as in E-K system, the mathematical structure of the governing models will remain the same.

Augmented Lagrangian approach 1.The concept

The method we use here follows the same philosophy introduced in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF] for the Serre-Green-Naghdi equations. While many relaxation techniques involve straightforward modifications in the system of equations, we prefer to rather act on the Lagrangian. This has the advantage of preserving the Hamiltonian structure of the obtained equations. Let us proceed step by step from the Lagrangian (1.3) as a starting point. Normally, in order to obtain the E-K equations, one can apply Hamilton's principle in order to minimize the Lagrangian (1.3) under the mass conservation constraint. In terms of variations, mass conservation links the velocity and the density (and consequently the gradient of density) in such a way that their respective Eulerian variations can be expressed in terms of the virtual displacement of the continuum. The idea is to create a new unconstrained variable that will approximate the gradient of density, while being independent from mass conservation. For this purpose, let us consider a new variable, which we call η(x, t). The key idea here is to guarantee that η converges towards ρ in a certain limit and then substitute ∇ρ by ∇η in the Lagrangian. Hence, consider the new augmented Lagrangian :

L = Ωt   ρ |u| 2 2 -ρ (ρ) - 1 2 K(ρ) |∇η| 2 - ρ 2α 1 - η ρ 2 + β 2 ρ η2   dΩ (1.6)
Let us explain how this Lagrangian meets the expectations of the above description. First, the so-called augmented Lagrangian is constructed from the original one (1.3) by replacing ∇ρ by ∇η and adding two terms : 2 is a classical penalty term where α is a small parameter. Indeed, when α → 0, the difference (1 -η/ρ) is expected to vanish, implying that η → ρ. The choice of the form of this term follows the discussion in [START_REF] Favrie | A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves[END_REF] for the Serre-Green-Naghdi equations, where it is shown that some other formulations can result in the loss of hyperbolicity or the cancellation of dispersive effects.

• The term ρ 2α (1 -η/ρ)
• The term β 2 ρ η2 ensures a regular time evolution of η. β is a small parameter so that the contribution of this additional term remains negligible. The form of this term is also reminiscent of the dispersion in the Serre-Green-Naghdi equations. So, it can be perceived as a small micro-inertia term.

Augmented system of equations

Given the Lagrangian (1.6), let us consider the associated Hamilton's action in an arbitrary time interval [t 0 , t 1 ] :

a = t 1 t 0 Ldt (1.7)
In a more compact form, we can write the augmented Lagrangian as :

L e = Ωt ρ |u| 2 2 -W (ρ, η, η, ∇η) dΩ. (1.8)
where W is the potential given by :

W (ρ, η, η, ∇η) = ρ (ρ) + 1 2 K(ρ) |∇η| 2 + ρ 2α 1 - η ρ 2 - β 2 ρ η2 (1.9)
We remind that the variation of Hamilton's action is submitted to the constraint which is the mass conservation law :

∂ρ ∂t + div (ρu) = 0. (1.10)
For the sake of keeping this part light and readable, applying Hamilton's principle and all the related calculus will be carried out in the appendix A.1. Nevertheless, it seems necessary to give a few words on how the differential calculus is done in order to highlight some differences between the augmented model and the original one in terms of variations. In the original Lagrangian, all the variables' variations are linked to the virtual displacement of the continuum. In fact they write :

δρ = -div (ρδx) , δu = (δx) - ∂u ∂x δx, δ∇ρ = ∇ δρ = -∇ (div (ρδx)) (1.11)
Here, the 'hat' means that we use variations at fixed Eulerian variables (see further details about Lagrangian and Eulerian variations in [START_REF] Dell | Variational Models and Methods[END_REF]). Note that the variation of the gradient of density is obtained simply by using Schwartz's theorem to interchange the order of derivatives. Thus, in this case applying Hamilton's principle results in one Euler-Lagrange equation that is the momentum balance equations of E-K system .

In the case of the augmented Lagrangian, the gradient ∇η which substitutes the gradient of density is no longer dependent on the density and velocity. Thus, it depends only on the new unconstrained variable η. Naturally in this case, one needs to separate the variables in two sets depending on their respective variations. The first type corresponds to the usual virtual displacement of the continuum, respecting the mass conservation law and will be denoted by δx. The second one corresponds to the variation of η as an independent variable and will be denoted by δη. The independent variables upon which the augmented Lagrangian depends classify into these types according to the following schematic : Note that η is included in both kinds, as it depends explicitly on derivatives of η but also on the velocity field u. Let us now detail how these variations write and express the corresponding Euler-Lagrange equation in each case.

Variation with respect to δx

The variations of the density, velocity and η are related to δx by : δρ = -div (ρδx) , δu = (δx) -∂u ∂x δx, δ η = δu • ∇η.

(1.12)

Applying Hamilton's principle on the action (1.7), under the mass conservation law, yields the following Euler-Lagrange equation (Details in Appendix A.1.1):

∂ρu ∂t + div ρu ⊗ u + ρ ∂W ∂ρ -W Id + ∂W ∂∇η ⊗ ∇η = 0 (1.13)

Variation with respect to δη

By virtue of the Schwartz's theorem, the variations of ∇η and η are related to δη by :

δ(∇η) = ∇ (δη) (1.14) δ η = δ ∂η ∂t + ∂δη ∂x u = ∂δη ∂t + ∂δη ∂x u (1.15) 
Similarly, applying Hamilton's principle on the action (1.7) results in the Euler-Lagrange equation (Details are given in Appendix A.1.2):

∂ ∂t ∂W ∂ η + div ∂W ∂ η u + ∂W ∂∇η = ∂W ∂η (1.16)
In order to make the obtained system of equations first order hyperbolic, we perform a last step which is a sort of an order reduction. Indeed, let us consider the variables :

p = ∇η, w = η (1.17)
Under these notations, if we gather the previous equations, one obtains a set of three conservation laws (Mass conservation + 2 Euler-Lagrange equations) that are dependent on five independent variables (ρ, u, η, ∇η, η). Therefore, we need to provide two additional equations in order to close the system. First, by definition of w one gets :

∂η ∂t + ∂η ∂x u = w (1.18)
This already depicts the evolution of η in time. Furthermore, by taking the gradient of this equation and applying Schwartz's theorem, we obtain : 

∂∇η ∂t + ∇ ∂η ∂x u -w = 0 (1.
∂p ∂t + div ∂η ∂x u -w Id = 0 (1.20)
Thus, now the system of equations is completed. Expanding the expression of W in both Euler-Lagrange equations and putting all the equations in their conservative form permits us to obtain the following system:

                                       ∂ρ ∂t + div(ρu) = 0, ∂ρu ∂t + div (ρu ⊗ u + P) = 0, ∂ρw ∂t + div ρwu - 1 β K(ρ)p = 1 αβ 1 - η ρ , ∂ρη ∂t + div(ρηu) = ρw, ∂p ∂t + div ((p • u -w) Id) = 0 (1.21)
where the tensor P is given by :

P = ρ 2 (ρ) + 1 2 (ρK (ρ) -K(ρ))|p| 2 + η α 1 - η ρ Id + K(ρ)p ⊗ p (1.22) 
One can derive an additional conservation law for the total energy of the augmented system :

∂E ∂t + div (Eu + Pu -K(ρ)wp) = 0,
where the total energy expression writes :

E = ρ |u| 2 2 + ρ (ρ) + 1 2 K(ρ)|p| 2 + 1 2α ρ η ρ -1 2 + β 2 ρw 2 .
It is worthy of note, that even for the augmented system, the energy conservation law still contains, as in the case of original system the interstitial working term written here in the form -K(ρ)wp. It remains now to check whether or not the system of equations (1.21) fulfilled all the required conditions, namely, is the obtained system first order hyperbolic and does it approximate Euler-Korteweg equations? Let us first address the latter and compare both original and augmented system. In fact, for Euler-Korteweg fluids, the definition of a potential flow is classical : u = ∇φ and hence curl(u) = 0. In the hyperbolic setting, the flow is potential if K = ∇φ where K is defined by [START_REF] Gavrilyuk | Generalized vorticity for bubbly liquid and dispersive shallow water equations[END_REF] :

K = u - 1 ρ ∂W ∂w p (1.23)
This is a consequence from the fact that the augmented Lagrangian depends on the material derivative of η (See Appendix A.4 for details).

Comparison with the original equations

All we need to compare are the mass and momentum balance equations. The remaining equations of the augmented system serve mainly as intermediate steps and couplings in the augmentation process. Let us proceed from the third equation in system (1.21). In fact, multiplying it by β yields :

β ∂ρw ∂t + βdiv (ρwu) -div (K(ρ)p) = 1 α 1 - η ρ (1.24)
which means that :

1 α 1 - η ρ = -(K(ρ)∆η + K (ρ)∇ρ • ∇η) + βρ ẇ (1.25)
Assuming we work on smooth solutions in which no singularities arise so that ∇η and ∆η remain bounded quantities, the last equation gives the relative error between ρ and η as :

ρ -η ρ = -α (K(ρ)∆η + K (ρ)∇ρ • ∇η) + αβρ ẇ (1.26)
First, as expected, one recovers a vanishing error in the limit α → 0. We can write :

η = ρ + O(α) ⇒    ∇η = ∇ρ + O(α) ∆η = ∆ρ + O(α) (1.27)
With this asymptotic approximations taken into account we replace the expression (1.25) into the momentum equation, and we obtain after simplifications (see appendix A.2):

∂ρ ∂t + div(ρu ⊗ u) + ∇(p(ρ)) = ρ∇ K(ρ)∆ρ + 1 2 K (ρ) |∇ρ| 2 + O(α) + O(β) (1.28)
This illustrates the fact that the augmented system approaches the original E-K system in the limits α → 0 and β → 0, which answers to one of the requirements of this model. It remains now to justify its hyperbolicity, which we investigate in the following section.

Hyperbolicity of the Augmented E-K equations

While in one dimension of space the question of hyperbolicity of the augmented E-K system is a trivial matter, it requires some additional manipulations in the multidimensional case which we will discuss in the current section. For this purpose, it is more practical to cast the system (1.21) into the form :

∂U ∂t + A ∂U ∂x + B ∂U ∂y + C ∂U ∂z = S(U) (1.29)
In a general framework, let us define hyperbolicity based on such a system of PDEs [START_REF] Dafermos | Hyperbolic conservation laws in continuum physics[END_REF][67] : 

Definition 1.
det (τ I + ξA + νB + ζC) = 0 (1.31)
The system of equations (1.29) is hyperbolic if for every (ξ, ν, ζ) T , the matrix A defined as :

A = ξA + νB + ζC (1.32)
has all its eigenvalues real and admits a basis of eigenvectors.

When it comes to practice, some considerations may fairly reduce the amount of work needed to show hyperbolicity. In particular, if the system of equations (1.29) is invariant by rotations of the SO(3) Group, it is sufficient to consider the 1D case, that is the conserved variables and their respective fluxes only depend on time and on one dimension of space (U(t, x, y, z) = U(t, x)) [START_REF] Ndanou | Criterion of hyperbolicity in hyperelasticity in the case of the stored energy in separable form[END_REF]. We can prove that system of equations (1.21) is in fact invariant by rotation (see proof in Appendix A.3) and consequently, we will make use of such simplifications. Lastly and most importantly, there is a subtle change of structure that is required in order to obtain hyperbolicity in the multidimensional case. This last step relies on the fact that by definition, the vector p is equal to ∇η and is thus irrotational. Hence, adding terms which are proportional to curl(p) only alters the form of the system. Following this, we rewrite the momentum conservation equation and p conservation equation respectively as follows :

∂ρu ∂t + div (ρu ⊗ u + P) -K(ρ) curl(p) ∧ p = 0 (1.33) ∂p ∂t + div ((p • u -w) Id) + curl(p) ∧ u = 0 (1.34)
In this new form, and with all assumptions taken into consideration, the augmented E-K system can be put into the quasilinear form :

∂U ∂t + A(U) ∂U ∂x = 0 (1.35) Chapter 1. A First order Hyperbolic model for Euler Korteweg Systems      u ρ 0 0 0 0 0 a 21 u 0 0 a 25 p 2 K (ρ) ρ-2η αρ 2 p 1 p 2 K (ρ) ρ 0 u 0 p 2 K(ρ) ρ 0 0 -p 1 K (ρ) βρ 0 0 u -K(ρ) βρ 0 0 0 p 1 p 2 -1 u 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 u              
(1.36)

a 21 = K (ρ)p 2 1 ρ + 2 (ρ) + 1 2 p 2 1 + p 2 2 K (ρ) + ρ (ρ) + η 2 αρ 3 , a 25 = p 1 K(ρ) ρ + K (ρ)
We have chosen here a set of non-conservative equations since it seemed easier for computations. Obviously, this does not affect in any way the hyperbolicity property. Next, a straightforward computation shows that the eigenvalues of A, which correspond to the characteristic speeds of the augmented system are :

ξ 1,2,3 = u, ξ ± 4 = u ± b - √ b 2 -4c 2 , ξ ± 5 = u ± b + √ b 2 -4c 2 (1.37) 
where :

b = ρ 2 (ρ) + 1 2 p 2 1 + p 2 2 K (ρ) + ρ (ρ) + η 2 αρ 3 + p 2 1 + p 2 2 ρ K(ρ)+ K(ρ) βρ +2p 2 1 K (ρ) (1.38) c = p 2 2 + 1 β K(ρ) 2 (ρ) + 1 2 p 2 1 + p 2 2 K (ρ) + ρ (ρ) + η 2 αρ 3 -2p 2 1 K (ρ) 2 (1.39)
In the general case where (ρ) and K(ρ) are abstract functions, the computation of the eigenvectors is quite tedious and results in very heavy expressions. This task will be done separately in the next chapters for explicitly defined systems such as the NLS equation. Nevertheless, we will show here the following proposition: Proposition 1.3.2. If the total energy associated to the augmented E-K system is convex in the conserved variables, then the system is at least weakly hyperbolic.

Proof. By definition, we need to show that all the eigenvalues (1.37) are real. This only requires us to prove that :

   b 2 -4c ≥ 0 b ± √ b 2 -4c ≥ 0 or equivalently        b 2 -4c ≥ 0 b ≥ 0 c ≥ 0 (1.40)
In order to show this, let us first cast b and c into a more convenient form, in which, the derivatives of the total energy appear explicitly : 

b = 1 ρ ρ 2 E ρρ + p 2 1 E p 1 p 1 + 2p
c = p 2 2 + 1 β E ρρ E p 1 p 1 -E 2 p 1 ρ
The convexity of the total energy with respect to the conserved variables (ρ, ρu, ρv, ρw, p 1 , p 2 , ρη) implies its convexity in every sub-base and in particular in (ρ, p 1 ). The Hessian matrix in this sub-base

H = E ρρ E ρp 1 E ρp 1 E p 1 p 1
is thus semi-definite positive which implies that :

b = 1 ρ e t He + p 2 2 E p 2 p 2 + 1 β E p 1 p 1 ≥ 0, e T = (ρ, p 1 ) c = p 2 2 + 1 β det(H) ≥ 0
It only remains to show that the discriminant b 2 -4c ≥ 0. Let us write :

b 2 -4c 2 = 1 ρ 2 ρ 2 E ρρ + p 2 1 E p 1 p 1 + 2p 1 ρE p 1 ρ + 1 β + p 2 2 E p 1 p 1 2 -4 p 2 2 + 1 β E ρρ E p 1 p 1 -E p ρ = 1 ρ 2 ρ 2 E ρρ + p 2 1 E p 1 p 1 + 2p 1 ρE p 1 ρ - 1 β + p 2 2 E p 1 p 1 2 -4 p 2 2 + 1 β E ρρ E p 1 p 1 -E p ρ + 4 ρ 2 p 2 2 + 1 β ρ 2 E ρρ E p 1 p 1 + p 2 1 E 2 p 1 p 1 + 2p 1 ρE p 1 ρ E p 1 p 1 = 1 ρ 2 ρ 2 E ρρ + p 2 1 E p 1 p 1 + 2p 1 ρE p 1 ρ - 1 β + p 2 2 E p 1 p 1 2 + 4 ρ 2 p 2 2 + 1 β (p 1 E p 1 p 1 + ρE p 1 ρ ) 2 ≥ 0
Thus all the eigenvalues of A are real which concludes the proof.

Remark 1.3.3. Obtaining the explicit expression of the whole eigensystem of the augmented system is a nontrivial task in general. The triple eigenvalue ξ = u always admits three independent eigenvectors which are given by :

v 1 = (2η -ρ)K(ρ) αρ 2 (a 21 K(ρ) -a 25 p 1 K (ρ)) , 0, 0, 0, - p 1 (2η -ρ)K (ρ) αρ 2 (a 21 K(ρ) -a 25 p 1 K (ρ)) , 0, 1 v 2 = - p 2 K(ρ)K (ρ) a 21 K(ρ) -a 25 p 1 K (ρ)
, 0, 0, 0, -

p 1 p 2 B (ρ) 2 a 25 p 1 K (ρ) -a 21 K(ρ)
, 1, 0

v 3 = (0, 0, 1, p 2 , 0, 0, 0)
For the remaining eigenvalues, additional analysis is needed, as some of the eigenvalues may coincide with one another. This is actually the case if we have c = 0, in which case ξ ± 4 = u, or b 2 = 4c, in which case ξ ± 4 = ξ ± 5 .
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Dispersion Relation

For a dispersionless system, waves propagate at a velocity that is independent from the wavelength. This is not the case in dispersive systems and the fundamental relation that relates the velocity to the wavenumber is called the dispersion relation. Besides providing the expression of the wave velocity, it also permits to quantify the damping or the amplification of small perturbations to the system and consequently check its stability with respect to the perturbation frequency. In the general case, for nonlinear systems such as the one we study here, obtaining the exact dispersion relation is a major challenge, and in most cases it is impossible to obtain. Nevertheless, it is usually possible to derive a linearized version that still provides relevant information for small enough disturbances. Hence, let us consider a monochromatic perturbation of a constant equilibrium state U 0 = (ρ 0 , 0, ρ 0 , 0, 0) T defined by, U(x, t) = U 0 + U e i(kx-ωt) . Plugging this expression in our system of equations and linearizing allows us to obtain an expression of the phase velocity c p = ω/k as an eigenvalue of the matrix A(U 0 ) + i/k∇S(U 0 ). (See details in Appendix A.5). Its explicit expression is given by :

(c p (k) ± ) 2 = 1 2 B(k) ± B(k) 2 -4C(k) (1.41)
where the functions B(k) and C(k) are given by :

B(k) = K(ρ) βρ + 1 α + 1 αβk 2 ρ 2 + ρ 2 (ρ) + 2ρ (ρ) (1.42) C(k) = (ρ 2 (ρ) + 2ρ (ρ)) K(ρ) βρ + 1 αβk 2 ρ 2 + K(ρ) αβρ (1.43)
Unlike the original E-K system, there are two possible positive values for the phase velocity which we call c + p and c - p . One can see through a simple limit computation that for c - p , in the limits α → 0 and β → 0, one recovers the original phase velocity for the E-K system which is given by : c p (k) 2 = ρ 2 (ρ) + 2ρ (ρ) + k 2 ρK(ρ).

(1.44)

The value c + p is rather linked to the fact that the system is 'mimicking' a dispersive system by virtue of hyperbolic equations. In fact, while dispersive systems tolerate perturbations that are felt across the whole domain instantaneously, hyperbolic equations only allow for finite propagation velocities and hence bounded phase velocities. Thus, in the limits α → 0 and β → 0, the phase velocity c + p becomes infinite to exhibit the same instantaneous behavior as a dispersive system. For fixed α > 0 and β > 0, one can say that the approximate augmented system approaches the instantaneous propagation velocity through very fast characteristics. Lastly, the dispersion relation also proves useful to get an additional estimate for the introduced parameters α and β. While the estimate remains heuristic, it is based on the fact that both the original system and the augmented one should display close properties in terms of wave velocities, stability regions and amplitude damping, since these aspects are of a significant physical relevancy. Most of these aspects are strongly dependent on the explicit system and are of no concern in the generic case as the E-K system has no inherent dissipation or energy production. Consequently, more explicit analysis will be performed in the next chapters.
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CHAPTER 2

Non-Linear Schrödinger equation 2.1 About the NLS equation

A brief history

The Non-linear Schrödinger equation (NLSE) is a nonlinear version of the Schrödinger equation that has been a subject of extensive research in the latest 50 years. Since many versions of the equation commonly share the exact same name, it seems necessary, as to avoid ambiguity to point out that we refer precisely to the cubic Non-Linear Schrödinger equation, which is given by :

iψ t + 1 2 ∆ψ + κ |ψ| 2 ψ = 0, (2.1) 
where ψ(x, t) is a complex-valued field. Although the appellation Schrödinger equation may invoke quantum mechanics and therefore lead the reader into associating ψ with a quantum state vector, NLSE is widely used in classical physics and represents a universal model to describe wave propagation in nonlinear media with dispersion. Variants of the equation appeared since 1950, for example in the Ginzburg-Landau theoretical works on superconductivity [START_REF] Landau | On the theory of superconductivity[END_REF][START_REF] Landau | On the theory of superconductivity[END_REF] and in the works of Ginzburg-Pitaevskii on the theory of superfluidity [START_REF] Ginzburg | On the theory of superfluidity[END_REF].

It was only later that practical applications of NLSE appeared, for example in nonlinear optics with the works of Chiao [START_REF] Chiao | Self-trapping of optical beams[END_REF] and Talanov [START_REF] Talanov | Self-focusing of wave beams in nonlinear media[END_REF] in 1964, describing the propagation of light beams in nonlinear media, allowing for the beam to focus rather than spread, thus creating zones of very high intensity. A few years later in 1968, Zakharov while working on the stability of surface gravity waves in an infinitely deep fluid [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] established that for slowly modulated surface waves, the wave amplitude is governed by the NLS equation. In the same context, Benney and Roskes derived in [START_REF] Benney | Wave Instabilities[END_REF] a variant of NLS, namely the Benney-Roskes equation (also referred to as the Davey-Stewartson system [START_REF] Davey | On three-dimensional packets of surface waves[END_REF]) and obtained similar results for a finite depth fluid.

From the mathematics point of view, NLSE is also a very interesting object of analysis and its popularity among mathematicians increased significantly after the (1+1)-dimensional case was shown integrable by Zakharov and Shabat [START_REF] Shabat | Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media[END_REF] by virtue of the inverse scattering transform, under which setting, the latter equation becomes a compatibility condition for a system of two linear equations, namely the Zakharov-Shabat system. Another major contribution 2.1. About the NLS equation to its arising fame in mathematics, is the existence and uniqueness results by Ginibre and Vélo [START_REF] Ginibre | On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case[END_REF], on the associated initial value problem to the NLSE (in a more general case which treats a power-law nonlinearity). The above list of contributions is but a carefully handpicked selection, and is by no means exhaustive. For more thorough informations, the reader may consult for example [START_REF] Fibich | The Nonlinear Schrödinger Equation[END_REF][START_REF] Ablowitz | Nonlinear Schrodinger systems: continuous and discrete[END_REF]. Nevertheless, one can see that the aforementioned examples already involve many fields of physics, of theoretical and practical interest, and thus demonstrate how versatile and worth considering is the NLSE, for both physicists and mathematicians.

Focusing versus Defocusing NLSE

At this point it seems necessary to make the distinction between the so-called defocusing and focusing NLSE, as they exhibit fundamentally different behaviors. The term focusing seems to find its original meaning in nonlinear optics, in the description of the propagation of beams in nonlinear media. For instance consider a medium whose refractive index n changes accordingly to the amplitude of the applied electric field E, namely a Kerr medium [START_REF] Fibich | The Nonlinear Schrödinger Equation[END_REF]:

n 2 = n 2 0 + 4n 0 n 2 |E| 2 (2.2)
This means that the medium gets more (resp. less) refractive for higher amplitudes of E if n 2 is positive (resp. negative). In such a medium and for some conditions, the propagation of a continuous wave laser beam is modeled, at leading order by a NLS equation that can be cast into the form [START_REF] Fibich | The Nonlinear Schrödinger Equation[END_REF] :

iψ z + ∆ ⊥ ψ + 4 n 2 n 0 |ψ| 2 ψ = 0, (2.3) 
where ψ(x, y, z) is the slowly-varying amplitude of the electrical field propagating along the z-axis, ∆ ⊥ = ∂ 2 xx + ∂ 2 yy denotes the Laplacian in the transverse directions. Equation (2.3) tells that the propagation of the laser beam is only governed by the diffraction term (Laplace operator) and the nonlinear Kerr effects. It is shown by geometric arguments [START_REF] Fibich | The Nonlinear Schrödinger Equation[END_REF] that if both terms have the same sign, that is n 2 > 0, the beam will have a tendency to bend towards the axis and increase its intensity. Hence, this is called self-focusing of the light beam as opposed to self-defocusing when n 2 < 0. The same terminology holds in the general case so that equation (2.1) is called focusing NLSE if κ > 0 and defocusing NLSE if κ < 0.

Madelung Transformation

There exists a reformulation of NLSE which casts it into a system of conservation laws in terms of real variables. This reformulation, introduced by Erwin Madelung [START_REF] Madelung | Quantentheorie in Hydrodynamischer Form[END_REF] and thus bearing his name, is done by decomposing ψ(x, t) into a particular polar form that writes : ψ(x, t) = ρ(x, t)e iθ(x,t) .

(2.4)

Here, ρ(x, t) ≥ 0 and θ(x, t) are real valued functions that represent the square of the modulus and the argument of ψ(x, t) respectively. Replacing into equation (2.1) gives :

i 2ρ ρ t -θ t + 1 2 ∆( √ ρ) √ ρ + i 2ρ div(ρ∇θ) - 1 2 ∇θ • ∇θ + κρ = 0 (2.5)
As a consequence, it is now possible to isolate the real and imaginary parts of the equation. If we further consider a vector field variable u(x, t) defined as u = ∇θ , we obtain the following system:

       ρ t + div(ρu) = 0 u t + (u • ∇) u -∇ κρ + ∆( √ ρ) 2 √ ρ = 0 (2.6)
This formulation of NLSE is referred to as Madelung equations, quantum hydrodynamics equations or simply as hydrodynamic form of NLSE, since it bears similarities in many respects to Euler equations of hydrodynamics. More importantly, it represents a particular case of an Euler-Korteweg system with K(ρ) = 1/4ρ. System (2.6) can also be written in conservative form :

   ρ t + div(ρu) = 0, (ρu) t + div (ρu ⊗ u + Π) = 0, (2.7) 
with the now usual stress tensor :

Π = -κ ρ 2 2 + 1 4 ∆ρ Id + 1 4ρ ∇ρ ⊗ ∇ρ. (2.8)
System (2.7) admits an energy conservation law given by :

E t + div Eu + Πu - ρ 4ρ ∇ρ = 0, (2.9) 
with a total energy density expressed as :

E = ρ |u| 2 2 -κ ρ 2 2 + 1 4ρ |∇ρ| 2 2 .
(2.10)

Consequently, the corresponding Lagrangian is given by :

L = Ωt ρ |u| 2 2 + κ ρ 2 2 - 1 4ρ |∇ρ| 2 2 dΩ. (2.11)
It is worth noting that in the dispersionless case, the E-K system reduces to an Euler system, which is hyperbolic in the defocusing case and elliptic in the focusing case. Consequently, even though it may be worthwhile to test our augmented Lagrangian approach on the focusing NLSE, the hyperbolicity of the resulting system is not given. Thus, for the next part and the following numerical tests, we will retain only the defocusing cubic NLSE in (1+1) dimensions, that is :

iψ t + 1 2 ψ xx -|ψ| 2 ψ = 0, (2.12) 
to which corresponds the following Euler-Korteweg system :

       ρ t + (ρu) x = 0, (ρu) t + ρu 2 + ρ 2 2 + 1 4ρ (ρ 2 x -ρρ xx ) x = 0 (2.13)
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Reference solutions 2.2.1 General form of periodic solutions

In this part we are looking for periodic solutions to equation (2.12). Precisely, we are looking for traveling wave solutions, meaning they depend on x and t only in the combination :

ψ(x, t) = A(ξ)e iθ(ξ) ; ξ = x -U t. (2.14)
where A(ξ) = ρ(x, t) and φ(ξ) = θ(x, t). Under these assumptions and notations, equation (2.12) written in the real variables A and φ yields :

-iU (A + iφ A) + 1 2 (A -φ 2 + i(2A φ + φ A)) -A 3 = 0 (2.15)
Separating real and imaginary parts yields:

       A φ + 1 2 φ A = U A U Aφ + 1 2 (A -φ 2 ) -A 3 = 0 (2.16)
The first equation of this system can be solved explicitly as an ODE in terms of the variable φ which gives :

φ = U + q A 2 (2.17)
where q is a constant of integration. Plugging this expression into the second equation of system (2.16) and integrating yields :

A 2 + U 2 A 2 + q 2 A 2 -A 4 = d (2.18)
where d is another constant of integration. Switching to the hydrodynamic variables ρ(x, t) = A 2 (ξ) and u(x, t) = φ (ξ), finally gives the system :

         dρ dξ 2 = 4(ρ 3 -U 2 ρ 2 + dρ -q 2 ) = P (ρ) u = U + q ρ (2.19)
Since we are looking for real periodic solutions, this requires P (ρ) to have two positive roots so that ρ oscillates periodically between them. Thus, we can write :

dρ dξ 2 = 4(ρ -b 1 )(ρ -b 2 )(ρ -b 3 ). (2.20)
Identifying the expressions in (2. [START_REF] Chiao | Self-trapping of optical beams[END_REF]) and (2.20) allows to obtain the relations :

q 2 = b 1 b 2 b 3 ; U 2 = b 1 + b 2 + b 3 (2.21)
Without loss of generality, we can assume that b 1 > b 2 > b 3 > 0. Finally, one can obtain a solution of (2.20) in terms of the Jacobi elliptic function dn (See Appendix B.3 for the details) :

ρ(x, t) = b 1 -(b 1 -b 3 )dn 2 b 1 -b 3 (x -U t) , s , u(x, t) = U + q ρ(x, t) . (2.22)
We remind that s is the elliptic modulus satisfying the relation :

s 2 = b 2 -b 3 b 1 -b 3 , 0 < s < 1. (2.23)
Also note that for each fixed value of 0 < s < 1, solution (2.2.1) is a periodic wave of amplitude a and wavenumber k given by :

a = b 2 -b 3 2 , k = π K(s) 2a s 2 .
(2.24)

where K(s) is the complete elliptic integral of the first kind . This shows that the amplitude and the wavelength of the solution are tightly linked. For the limiting values s → 0 and s → 1, it follows from the formulas (2.24) that the solution is no longer periodic. Periodicity is lost differently in each of the limits. In the case s → 0, the amplitude of the oscillations vanishes. The wave number remains at a finite value given by k → 2 √ b 1 -b 3 . In the case s → 1, we get K(s) → ∞ and therefore the solution is no more oscillatory as the wavenumber k → 0. More precisely, Since dn(v, s)| s→1 = 1/cosh(v) the solution behaves like a soliton of amplitude (b 1 -b 3 ). Below, we will present some exact and asymptotic solutions to the NLS equation based on the representation (2.2.1).

Gray solitons

The first case corresponds to the family of solutions obtained from (2.2.1) in the limit s → 1 :

ρ(x, t) = b 1 - b 1 -b 3 cosh 2 √ b 1 -b 3 (x -U t) u(x, t) = U - b 1 √ b 3 ρ(x, t) (2.25)
This corresponds to a two-parameter family of solitary waves called gray solitons. It consists of a localized density dip, of amplitude (b 1 -b 3 ) which propagates at a constant velocity U without deforming or collapsing. It maintains its shape due to a perfect balance between the nonlinearity and dispersion. The parameters b 1 and b 3 define the limit values of the soliton such that :

lim |x|→∞ ρ(x, t) = b 1 ; ρ min = b 3 ; lim |x|→∞ u(x, t) = U -b 3 ; u min = U - b 1 √ b 3 . (2.26)
The shape of the soliton is shown on 

Dispersive shockwaves

In classical hydrodynamics described by dispersionless hyperbolic Euler equations, shock waves (strong discontinuities) can appear. In the case of dispersive hydrodynamics, these singularities are resolved by the appearance of an oscillatory wave train in a region of space which expands over time. This is referred to as a dispersive shock wave (or alternatively dissipationless shockwave, collisionless shockwaves). We will denote it by DSW for shortness. Many works in the literature have been devoted to the study and analysis of such solutions, their behaviors and their structures. See for example [START_REF] Gurevich | Nonstationary structure of a collisionless shock wave[END_REF][START_REF] Gurevich | Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics[END_REF][START_REF] El | Decay of an initial discontinuity in the defocusing NLS hydrodynamics[END_REF][START_REF] El | Unsteady undular bores in fully nonlinear shallow-water theory[END_REF][START_REF] El | Dispersive shock waves and modulation theory[END_REF]. Dispersive shockwaves generally display a highly nonlinear behavior, and involve a slowly modulated train of fast oscillations. Whitham's modulation equations [START_REF] Whitham | Linear and nonlinear waves[END_REF] are in this case a very powerful tool that provides a precise description of the slow modulation of the wavetrain of oscillations, through averaging techniques. This allows for a proper construction of the asymptotic behavior of the DSW. In particular, it permits us to obtain an asymptotic envelope of the oscillations which will serve later as a reference for the numerical results. In this context, we will focus on DSWs that appear in the case of a Riemann problem for the defocusing NLSE. Thus, consider the initial condition :

     ρ(x) = ρ L x < 0 ρ(x) = ρ R x > 0      u(x) = u L x < 0 u(x) = u R x > 0 (2.27)
Such an initial discontinuity gives rise to either a DSW or a rarefaction wave on each side. The evolution of the amplitude of the DSW is described in terms of the Riemann invariants r i (r 1 > r 2 > r 3 > r 4 ) of the corresponding Whitham's averaged equations [START_REF] Pavlov | Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging[END_REF], [START_REF] Gurevich | Dissipationless shock waves in media with positive dispersion[END_REF] :

∂r i ∂t + V i ∂r i ∂x = 0, i = 1, 2, 3, 4.
(2.28)

The characteristic velocities are given by :

V 1 = U (r) + 1 2 (r 1 -r 2 ) 1 - r 2 -r 4 r 1 -r 4 E(s) K(s) -1 , V 2 = U (r) - 1 2 (r 1 -r 2 ) 1 - r 1 -r 3 r 2 -r 3 E(s) K(s) -1 , V 3 = U (r) + 1 2 (r 3 -r 4 ) 1 - r 2 -r 4 r 2 -r 3 E(s) K(s) -1 , V 4 = U (r) - 1 2 (r 3 -r 4 ) 1 - r 1 -r 3 r 1 -r 4 E(s) K(s) -1
, where the complete elliptic integral of the second kind E(s) is defined as:

E(s) = π 2 0 1 -s 2 sin 2 (θ)dθ.
The variables b i and U are linked to the r i via the relations [START_REF] Pavlov | Nonlinear Schrödinger equation and the Bogolyubov-Whitham method of averaging[END_REF], [START_REF] Gurevich | Dissipationless shock waves in media with positive dispersion[END_REF] :

b 1 = 1 16 (r 1 + r 2 -r 3 -r 4 ) 2 , (2.29) b 2 = 1 16 (r 1 + r 3 -r 2 -r 4 ) 2 , (2.30) b 3 = 1 16 (r 1 + r 4 -r 2 -r 3 ) 2 , (2.31) U = 1 4 (r 1 + r 2 + r 3 + r 4 ) , ( 2.32 
)

s 2 = (r 1 -r 2 )(r 3 -r 4 ) (r 1 -r 3 )(r 2 -r 4 ) . (2.33)
If we consider a self-similar evolution of the Riemann invariants, r i depend only on τ = x/t and equations (2.28) reduce to :

r i (V i -τ ) = 0, i = 1, 2, 3, 4. (2.34) 
It means that one of the Riemann invariants, say r j , changes in space and time and its characteristic speed is V j = τ , while the three other invariants are constants determined by the initial conditions on both sides of the initial discontinuity. Outside of the DSW region, it was shown in [START_REF] Gurevich | Dissipationless shock waves in media with positive dispersion[END_REF] that the Whitham equations for the defocusing cubic NLSE degenerate into the Euler equations for shallow water flows. This transition occurs when two of the Riemann invariants r i merge together, leading to either s 2 = 0 or s 2 = 1. The two remaining invariants behave like Riemann invariants for the shallow water equations :

r ± = u ± 2 √ ρ (2.35)
The solution is then determined via matching of the Riemann invariants at the DSW fronts [START_REF] Gurevich | Nonstationary structure of a collisionless shock wave[END_REF], [START_REF] Gurevich | Dissipationless shock waves in media with positive dispersion[END_REF]. Since this procedure depends strongly on the structure of the flow, we will consider Chapter 2. Non-Linear Schrödinger equation the case in which a rarefaction wave on the left and a DSW on the right are created (see Figure 2.2). At the oscillatory front (corresponding to the leading edge of the DSW, s 2 = 0) we get [START_REF] El | Decay of an initial discontinuity in the defocusing NLS hydrodynamics[END_REF], [START_REF] El | Dispersive shock waves and modulation theory[END_REF]:

r 1 = r 2 , V 1 = V 2 , r 3 = r + (R), r 4 = r -(R). (2.36)
At the soliton front (corresponding to the trailing edge of the DSW, s 2 = 1), we get :

r 2 = r 3 , V 2 = V 3 , r 1 = r + (0), r 4 = r -(0). (2.37)
Here, r ± (0) and r ± (R) are the values of the invariants r ± at the states '0' (the constant state found solving the Riemann problem for the non-dispersive shallow water equations) and 'R' (the state on the right of the initial discontinuity). Matching these invariants on either side of the constant state allows to obtain the theoretical values of ρ 0 and u 0 at the central plateau. Indeed we write :

r + (0) = r 1 ⇒ u 0 + 2 √ ρ 0 = u L + 2 √ ρ L (2.38) r -(0) = r 4 ⇒ u 0 -2 √ ρ 0 = u R -2 √ ρ R (2.39)
Combining both equations permits us to obtain :

ρ 0 = 1 4 (u L -u R + 2 √ ρ L + 2 √ ρ R ) 2 (2.40) u 0 = 1 2 (u L + u R + 2 √ ρ L -2 √ ρ R ) (2.41)
Particularly in the case where u R = u L = 0 we get :

ρ 0 = 1 2 ( √ ρ L + √ ρ R ) 2 
(2.42)

u 0 = √ ρ L - √ ρ R (2.43)
These expressions are in agreement with the ones in [46][32]. Next, we shall denote by τ 1 and τ 2 the asymptotic boundaries of the DSW region, and by τ 3 and τ 4 the boundaries of the rarefaction wave when t → +∞. Their values are given by : (See Appendix B.4 for details)

τ 1 = u R + 8ρ 0 -8 √ ρ 0 ρ R + ρ R 2 √ ρ 0 - √ ρ R , τ 2 = u R + √ ρ 0 , τ 3 = u 0 - √ ρ 0 , τ 4 = u L - √ ρ L . (2.44)
The asymptotic profile of the solution is shown in Figure 2.2. The oscillatory part of the solution is plotted according to the following algorithm : 6. Choose a time instant t. The DSW is shown as a parametric plot of (2.2.1) : ρ(s, t) = ρ(τ (s), t), 0 ≤ s ≤ 1.

1. Set the values of ρ L , ρ R , u L , u R . 2. Calculate the values of ρ 0 u 0 , r 1 , r 3 , r 4 . 3. Calculate r 2 (s) = (r 1 (r 3 -r 4 ) + s 2 (r 1 -r 3 )r 4 )/(r 3 -r 4 + (r 1 -r 3 )s 2 ).
7. The low and upper boundaries of the oscillatory profile are described by : 

ρ inf (s) = b 3 (s), ρ sup (s) = s 2 b 1 (s) + (1 -s 2 )b 3 (s). τ 2 τ 1 τ 3 τ 4 τ=x/t ρ 0 ρ R ρ L ρ
τ 1 = u R + 8ρ 0 -8 √ ρ 0 ρ R + ρ R 2 √ ρ 0 - √ ρ R , τ 2 = u R + √ ρ 0 , τ 3 = u 0 - √ ρ 0 , τ 4 = u L - √ ρ L . τ 2 τ 1 τ = x/t r + (0) r + (R) r 2 Figure 2.
3: Asymptotic profile of invariant r 2 for Whitham's system. In the DSW region τ 2 < τ < τ 1 , r 2 (dashed line) varies while the other invariants r i , i = 2, are constants.

Augmented Lagrangian formulation for NLSE

System of Equations

In the same notations as in section 1.1, the augmented Lagrangian for the defocusing NLSE writes :

L = Ωt   ρ |u| 2 2 + β 2 ρ η2 - ρ 2 2 - 1 4ρ |∇η| 2 2 - 1 2α ρ η ρ -1 2   dΩ (2.45)
and the corresponding system of equations is given by :

∂ρ ∂t + div(ρu) = 0, (2.46 
)

∂ρu ∂t + div ρu ⊗ u + ρ 2 2 - 1 4ρ |p| 2 + η α 1 - η ρ Id + 1 4ρ p ⊗ p = 0, (2.47 
)

∂ρη ∂t + div(ρηu) = ρw, ( 2.48 
)

∂ρw ∂t + div ρwu - 1 4ρβ p = 1 αβ 1 - η ρ , (2.49 
)

∂p ∂t + div ((p • u -w) Id) = 0; curl(p) = 0. (2.50) 
This system admits the energy conservation law :

∂E ∂t + div Eu + Pu - 1 4ρ wp = 0,
where

E = ρ |u| 2 2 + β 2 ρ η2 + ρ 2 2 + 1 4ρ |p| 2 2 + ρ 2α η ρ -1 2 , P = ρ 2 2 - 1 4ρ |p| 2 + η α 1 - η ρ Id + 1 4ρ p ⊗ p.
We will concentrate on the one-dimensional case where u = (u, 0, 0) T and p = (p, 0, 0) T . In this case, the equations are hyperbolic and the corresponding eigensystem is given by :

ξ 1 = u , v 1 = ( ρ αρ 3 +η 2 , 0, 0, p αρ 3 +η 2 , 1 2η-ρ ) T ξ 2 = u + 1 2ρ √ β , v 2 = (0, 0, √ β, 2, 0) T ξ 3 = u -1 2ρ √ β , v 3 = (0, 0, - √ β, 2, 0) T ξ 4 = u + ρ + η 2 αρ 2 , v 4 = (ρ, ρ + η 2 αρ 2 , 0, p, 0) T ξ 5 = u -ρ + η 2 αρ 2 , v 5 = (ρ, -ρ + η 2 αρ 2 , 0, p, 0) T (2.51)

Dispersion Relation

Linearizing the governing equations on the constant solution ρ = ρ 0 , u = 0, w = 0, p = 0, η = ρ 0 and looking for the solutions which are proportional to e i(kx-ωt) , where k is the wave number and ω is the frequency, one can obtain the dispersion relation expressed here in the form c p = c p (k), where c p = ω/k is the phase velocity :

(c ± p ) 2 = 1 4βρ 2 0 + ρ 0 + 1 α + 1 αβρ 2 0 k 2 ± 1 4βρ 2 0 + ρ 0 + 1 α + 1 αβρ 2 0 k 2 2 -4 1 αβρ 0 k 2 + ρ 0 + 1 α 4βρ 2 0 2 .
(2.52) Remark 2.3.1. One can easily see that in the linear case, at fixed positive values of α and β, the phase velocity approaches to the characteristic velocity in the limit k → ∞.

Estimation of β and α

As discussed already, the augmented Lagrangian approach requires a choice of β and α. This choice can be based, for example, on the fact that the dispersion relations for both augmented and original systems must remain close in a specific range of wave numbers, that is wave numbers of interest. For the equilibrium state defined by ρ = ρ 0 , u = u 0 = 0, the dispersion relation for the original Euler-Korteweg NLS system (2.13) is :

c 2 p = ρ 0 + k 2 /4. ( 2.53) 
When (β, α) → (0, 0), the convergence of these dispersion relations is not uniform, that is, the curves almost coincide for low wave numbers but start to stray away from each other beginning from a certain threshold wave number k max (β, α). This threshold wave number must be chosen such that the wave numbers that may be present in the solution are contained in [0, k max ]. 

Numerical Schemes

In this part, we explain all the necessary steps related to the numerical resolution of the augmented NLS system in one dimension of space. Since the latter is a first order hyperbolic system of equations, any appropriate finite volume scheme should be able to deal with the numerical resolution. In our case we will use two types of schemes, namely a MUSCL-Hancock [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF] scheme with a splitting strategy for the source terms, and an Implicit-Explicit type scheme ((2,2,2) Diagonally-Implicit Runge-Kutta scheme) [START_REF] Ascher | Implicit-explicit Runge-Kutta methods for timedependent partial differential equations[END_REF]. We will present here details about the algorithms for both schemes are found. Boundary conditions will be discussed later for each test case separately. In a most generic case, the system to solve numerically can be written as :

∂U ∂t + ∂F(U) ∂x = S(U), (2.54) 
where U, F(U) and S(U) are respectively the vector of conservative variables, flux vector and source terms vector. In the case of augmented NLS system, they are given by :

U =         ρ ρu ρη ρw p         , F(U) =          ρu ρu 2 + ρ 2 2 + η α 1 -η ρ ρηu ρwu -1 4ρβ p pu -w          , S(U) =         0 0 ρw 1 αβ 1 -η ρ 0         .

MUSCL-Hancock method

In a first attempt, we solve the hyperbolic system (2.54) by using the MUSCL-Hancock extension to the Godunov scheme [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF]. Since we have a non-zero source term, a splitting strategy is applied [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF] in which, at each time step, the numerical resolution is split into a hyperbolic part :

∂U ∂t + ∂F(U) ∂x = 0, (2.55) 
and an ordinary differential equation part for the source terms :

dU dt = S(U).
(2.56) so that at each time step ∆t = t n+1 -t n , the numerical resolution is split as follows [START_REF] Toro | Riemann solvers and numerical methods for fluid dynamics: a practical introduction[END_REF]:

Hyperbolic step        ∂U ∂t + ∂F ∂x = 0 IC: U(x, t n ) = U n        =⇒ Ūn+1 ODE step        dU dt = S(U) IC: U(x, t n ) = Ūn+1        =⇒ U n+1
Thus the algorithm can be summarized as follows :

1. Boundary conditions : Setting the appropriate boundary conditions in the ghost cells U 0 and U N +1 .

2. Data Reconstruction: Replaces the constant states U n i by piecewise linear functions u n i (x) defined by the extreme points :

U L i = u i (0) = u n i - 1 2 ∆ i ; U R i = u i (∆x) = u n i + 1 2 ∆ i (2.57)
Where ∆ i is the slope.

Prediction

Step: Time transition of U L i and U R i by half a time-step ∆t 2 :

         ŪL i = U L i + ∆t 2∆x (F(U L i ) -F(U R i )) ŪR i = U R i + ∆t 2∆x (F(U L i ) -F(U R i ))
4. Updating of solution to hyperbolic part: It is done according to the conservative formula :

U n+1 i = U n i - ∆t ∆x F * i+ 1 2 -F * i-1 2 , 1 ≤ i ≤ N. (2.58)
The intercell fluxes are obtained by solving the Riemann problem with U L = ŪR i and U R = ŪL i . We use in our case a Rusanov flux given by :

F * i+ 1 2 = 1 2 (F(U L ) + F(U R )) - 1 2 κ n i+ 1 2 (U R -U L ) , (2.59) 
where κ n i+ 1 2 is obtained by using the Davis approximation [START_REF] Davis | Simplified second-order Godunov-type methods[END_REF] :

κ n i+1/2 = max j (|c j (U n i )|, |c j (U n i+1 )|), (2.60) 
with c j , the eigenvalues of the Jacobian ∂F ∂U .

Solving the ODE part:

The final stage which corresponds to the taking into account of the source term by solving the differential equation (2.56). In our case, this ordinary differential equation is integrable. Indeed, it writes :

dρ dt = 0, d(ρu) dt = 0, d(ρη) dt = ρw, d(ρw) dt = 1 αβ 1 - η ρ , dp dt = 0 (2.61)
This can be cast into :

                   dρ dt = 0, dρu dt = 0, dp dt = 0 d 2 η dt 2 + 1 αβρ η - 1 αβ = 0, w = dη dt .
Finally, solving the Cauchy problem associated to this step gives the solution :

                 ρ n+1 = ρn u n+1 = ūn p n+1 = pn η n+1 = ρn + (η n -ρn ) cos( 1 αβρ 2 ∆t) + wn αβρ 2 sin( 1 αβρ 2 ∆t) w n+1 = 1 αβρ 2 (ρ n -ηn ) sin( 1 αβρ 2 ∆t) + wn cos ( 1 αβρ 2 ∆t)
The algorithm loops over the previous steps until an initially defined final time is reached. Since this is a purely first-order hyperbolic system of equations, stability of the scheme is ensured by a usual Courant-Friedrichs-Lewy constraint on the time step ∆t :

∆t ≤ C cf l ∆x max 1≤i≤N (|c(U n i )|) (2.62)
The characteristic speeds in the x-direction are given by :

c = u, (c -u) 2 ± = 1 4βρ 2 + ρ + η 2 αρ 2 ± | -1 4βρ 2 + ρ + 1η 2 αρ 2 | 2 . ( 2.63) 
This means that depending on the sign of the quantity -1 4βρ 2 + ρ + η 2 αρ 2 , there are 5 possible values for the characteristic speed given by :

c 1 = u, c 2,3 = u ± ρ + η 2 αρ 2 , c 4,5 = u ± 1 4βρ 2
Thus, the characteristic speed is bounded by :

max 1≤i≤N (|c(U i )|) = max 1≤i≤N   max   |u i | , |u i | + ρ i + η 2 i αρ 2 i , |u i | + 1 4βρ 2 i    
In practice, β and α are small parameters. Therefore, although the time step scales linearly with the mesh size ∆x, the coefficient which multiplies ∆x can be very small for small values of α and β. This remains advantageous for refined meshes.

IMEX-(2,2,2) scheme

The name IMEX stands for Explicit-Implicit Runge-Kutta scheme [2][62]. This is a family of multistep schemes which are well adapted to differential equations and partial differential equations with stiff terms. This is particularly the case for hyperbolic equations with relaxation, as the latter often involves small time scales that stiffen source terms. The main concept behind an IMEX Runge-Kutta scheme is to apply an implicit discretization to the stiff part of the system and an explicit one to the remaining part. There are many variants of IMEX schemes, and to help classify them, there is generally an associated triplet of integers (s, σ, p) where s characterizes the number of stages of the implicit part, σ the number of stages of the explicit part and p the order of the scheme. Under this notation, the scheme we will use is an IMEX-(2,2,2) scheme. It can be represented by two tables in the usual Butcher notations for RK-schemes :

0 0 0 0 γ γ 0 0 1 γ -1 2 -γ 0 γ -1 2 -γ 0 0 0 0 0 γ 0 γ 0 1 0 1 -γ γ 0 1 -γ γ γ = 1 - 1 √ 2 (2.64)
where the left table corresponds to the explicit part and the right one to the implicit part.

When applied to the conservative equation (2.54), this yields the two-stage scheme :

U n,0 = U n U n,1 = U = U n -γ ∆t ∆x F n i+ 1 2 -F n i-1 2 + γ∆tS(U ) U n,2 = U n+1 = U n -(γ -1) ∆t ∆x F n i+ 1 2 -F n i-1 2 -(2 -γ) ∆t ∆x F i+ 1 2 -F i-1 2 + (1 -γ)∆tS(U ) + γ∆tS(U n+1 )
In these formulas, F n i+ 1 2 are the usual intercell fluxes computed by using a Riemann solver as is the case for a classical Godunov scheme. Note that, for the second step of the scheme, it is required to also compute intercell fluxes F i+ 1 2 for the intermediate state U (which also requires to apply another MUSCL reconstruction beforehand). The source terms are resolved implicitly, which requires a little bit of additional work when compared to explicit resolution. The summary of the numerical resolution algorithm is given as follows :

1. Boundary conditions : Setting the appropriate boundary conditions in the ghost cells U 0 and U N +1 .

MUSCL Reconstruction:

Replaces the constant states U n i by piecewise linear functions u n i (x) as explained in the previous section.

Compute the intercell Fluxes

F n i+ 1 2
: This is done using a Rusanov Flux :

F n i+ 1 2 = 1 2 (F(U L ) + F(U R )) - 1 2 κ n i+ 1 2 (U R -U L ) ,

IMEX intermediate step:

Consists in solving the equation :

U = U n -γ ∆t ∆x F n i+ 1 2 -F n i-1 2 =V 1 (known) +γ∆tS(U )
where the only unknown is U . All the variables at the time t n are known. It can be simply put into the form :

U -γ∆tS(U ) -V 1 = 0
This equation can be solved numerically by any suitable root-finding algorithm (e.g Newton-Raphson or a fixed-point method) for an equation f (U ) = 0 where f is given by :

f (U ) = U -γ∆tS(U ) -V 1
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IMEX final step:

We now have everything we need to solve the equation :

U n+1 = U n -(γ -1) ∆t ∆x F n i+ 1 2 -F n i-1 2 -(2 -γ) ∆t ∆x F i+ 1 2 -F i-1 2 + (1 -γ)∆tS(U ) known=V 2 + γ∆tS(U n+1 )
It reduces to exactly the same form of equation to solve as in the intermediate step, that is an equation of the form g(U n+1 ) = 0 where g is given by :

g(U n+1 ) = U n+1 -γ∆tS(U n+1 ) -V 2
This equation is solved identically as above.

Before we move on, a few remarks of practical interest are worth mentioning.

• The time-step is constrained by the usual CFL condition ∆t

≤ C cf l ∆x max 1≤i≤N (|c(U n i )|) .
• This IMEX scheme is second order accurate.

• It is possible and more robust to solve the implicit part of the scheme by hand and implement it directly into the code (see Appendix A.6). Although this makes for a less generic code and more manual labor, this also avoids convergence issues of root-finding algorithms and saves computational power.

Numerical Results

Gray solitons : Initial condition and boundary conditions

We consider the initial conditions corresponding to the solitary wave solutions of NLS equation :

ρ(x, 0) = b 1 - b 1 -b 3 cosh 2 √ b 1 -b 3 x u(x, 0) = U - b 1 √ b 3 ρ(x, 0) , (2.65) η(x, 0) = ρ(x, 0), w(x, 0) = -ρ(x, 0)u x (x, 0), p(x, 0) = ρ x (x, 0).
We use periodic boundary conditions in the computational domain. Thus we impose the following relation between numerical fluxes in the first and last numerical cells:

F * 1 2 = F * N + 1 2 = F * (U n N , U n 1 ) . (2.66)
It means that when the soliton passes through one of the boundaries, it continuously reappears on the other side. This permits us to run simulations for a longer time without having to use large domains. The period of such a configuration is the required time for the soliton to reach back its initial position. Such boundary conditions would normally apply to periodic solutions. The results are shown on Figure 2.5: One can see that the shape and the position of the simulated soliton are in perfect agreement with the exact solution. Furthermore, Figure 2.6 shows the solution for different mesh sizes ∆x = 0.004, ∆x = 0.002, ∆x = 0.0008 and ∆x = 0.0002, with a focus on the soliton peak. We can see that for more refined meshes, we get more accurate values for the soliton position and amplitude. This gives a preliminary idea on the convergence of the scheme, which will be studied thoroughly in the following paragraphs. Chapter 2. Non-Linear Schrödinger equation

Convergence study

We measure hereafter the L 2 relative error of the soliton's profile across the domain. Since the gray soliton admits non vanishing limits at infinity, we will be considering the quantity ρ -ρ ∞ . This quantity is integrable and corresponds to the density of matter being expelled when the soliton propagates. Hence, we consider the following error :

∆ 2 (ρ) = N i=0 (ρ(i) -ρ e (i)) 2 N i=0 (ρ e (i) -ρ ∞ ) 2 (2.67)
Where ρ(i) and ρ e (i) are respectively the simulated value and the exact solution value of ρ taken at the i th cell. It is interesting to investigate the phase error as well, that is the difference in the predicted and simulated values of the solitary wave's peak position. This error we measure is given by :

∆φ(t) = |x cp (t) -x cs (t)| (2.68)
where x cp (t) and x cs (t) are respectively the predicted and simulated position of the soliton's peak at time t. Figure (2.8) shows this error as a function of time for different meshes : According to these graphs, The phase error seems to be quadratic in time and vanishes with mesh refinement.

Long time behavior

We carried on calculations until t = 80. The same behavior is observed, the soliton still conserves its shape and travels at the same velocity without breaking-down. Figure (2.9) shows the numerical solution for t = 80 along previously shown solutions for t = 0 and t = 40 and Figure (2.10) shows the difference with the initial state for the solutions for t = 40 and t = 80. The error is growing in time especially at the center of the solitary wave, mainly due to the phase error. 

Conserved quantities

The following analysis is carried out in order to see how well the mass, momentum and energy are conserved, we consider a similar normalization to the one introduced in (2.67), meaning we calculate the integral quantities according to :

m = N i=1 (ρ ∞ -ρ(i)) ∆x; q = N i=1 (ρ ∞ u ∞ -ρ(i)u(i)) ∆x; E = N i=1 (E ∞ -E(i)) ∆x (2.69)
where, m', q' and E' correspond respectively to the mass, momentum and total energy, which are expelled by the soliton's propagation. They are estimated with numerical integration over the whole computational domain . We compare these quantities with their initial values, using the following relative errors :

∆m(t) = m(t) -m 0 m 0 ; ∆q(t) = q(t) -q 0 q 0 ; ∆E(t) = E(t) -E 0 E 0 (2.70)
Figure (2.11) shows the evolution of these errors over time. We can see that the mass and the momentum are well conserved. The measured errors remain around the same values even after reaching the long time domain. A different behavior is observed for the energy. Indeed, it steadily decreases from its initial value in a linear manner. This is due to the numerical dissipation of the scheme.

Dispersive shockwaves MUSCL-Hancock : Smoothed initial step

We present here the results for dispersive Riemann problem. In order to get the case where a DSW propagates to the right and a rarefaction wave to the left, the initial values must satisfy the condition [START_REF] El | Decay of an initial discontinuity in the defocusing NLS hydrodynamics[END_REF] :

r + (L) > r + (R) > r -(R) > r -(L) (2.71)
An initial step function trivially induces an infinite gradient at the point of discontinuity. Thus, the gradient of density is proportional to a Dirac Delta function. The latter is not L 2 which implies an initially infinite total energy in this case. Besides, since in our model, the gradient is also an independent variable that must be initialized as a Delta function. From the numerical point of view, this is impossible in the sense that machine-wise, real numbers have a finite memory representations and infinite values cannot be stored. Thus, in order to solve the Riemann problem, with properly implemented initial conditions, we will consider a regular step-like function defined by :

ρ 0 (x) = ρ L + ρ R 2 + ρ L -ρ R 2 tanh x δ , (2.72) u 0 (x) = u L + u R 2 + u L -u R 2 tanh x δ .
(2.73)

The parameter δ controls the steepness of the jump, in the sense that the abrupt discontinuity is spread over a region approximately delimited by [-2δ, 2δ] as shown in Figure (2.12) : Now, given this custom initial condition, we investigate the long time behavior of the solution. We plot the quantities ρ and u, obtained numerically, as functions of the selfsimilar variable x/t. The results are shown in figure (2.13). Clearly, the overall structure of the solution complies with the asymptotic one shown on Figure 2.2. The amplitude of the oscillations shows a very good agreement with the asymptotic DSW profile from Whitham's theory of modulations. The oscillations develop in both regions: τ > τ 1 and τ < τ 1 . These oscillations are part of the solution but they do not appear in the asymptotic (in time) limit because they vanish when t → ∞ as their amplitude a decreases with time as a ∝ t -1/2 [START_REF] Gurevich | Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics[END_REF]. This behavior is also displayed with the same power law in our results. By measuring the amplitude a of the first oscillation at the vicinity of τ 4 , we could plot the function f (t) = at 3/2 (see Figure (2.14) . The plot shows that f (t) is a linear function of time which implies that a √ t is constant.

ρ R ρ L -2δ 0 2δ x ρ theoretical step smoothed step
Chapter 2. Non-Linear Schrödinger equation Another important detail is to check the position of the soliton which arises at the vicinity of τ = τ 2 . Let τ s (t) be the soliton position at time t. We will compare τ s (t) with the asymptotic position τ 2 . The relative error is given by : 

τ 4 τ 3 τ 2 τ 1 ρ L ρ R ρ 0 x/t ρ τ 4 τ 3 τ 2 τ 1 u L u R u 0 x/
√ ρ R + √ ρ L + 1 2 (u L -u R )) 2 and u 0 = 1 2 (u L + u R ) + √ ρ L - √ ρ R .
err pos (t) = τ s (t) -τ 2 τ 2 . ( 2 

MUSCL-Hancock : True discontinuity

We come back here to the issue of integrating a true discontinuity. As mentioned previously, one must be careful at the choice of the initial condition, since if we consider a step function for ρ(x, 0), we must also choose Dirac's delta function for p(x, 0) = ρ x (x, 0). Thus, the safest option would be to choose a δ that is sufficiently small (smaller than the mesh size) and still use the initial condition :

ρ(x, 0) = ρ L + ρ R 2 + ρ L -ρ R 2 tanh( x δ ) (2.75) u(x, 0) = 0 (2.76) η(x, 0) = ρ(x, 0) (2.77) w(x, 0) = 0 (2.78) p(x, 0) = ρ L -ρ R 2δ 1 -tanh 2 x δ (2.79)
Under theses assumptions the initial condition is plotted on figure (2.16).

-400 -200 0 200 400 Like the results for the smoothed discontinuity, the numerical results overall comply with the asymptotic solution. However, in the profile of ρ, a non-vanishing glitch appears at the central plateau. It seems to be a sort of Gibbs phenomenon which appears at the initial discontinuity. Further refining the mesh does not prevent its appearance. Still, it does not hinder in anyway the propagation of the dispersive shock and rarefaction, nor does it significantly impact the central plateau. 
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Conlusion

We presented in this chapter the application of our augmented Lagrangian approach for the defocusing Nonlinear Schrödinger equation in one dimension of space. The numerical results show a very good agreement for both stationary solutions and non-stationary solutions. There are advantages as well as disadvantages when presenting this approach as a yet another method among others to solve the NLSE in general. First, out of the many methods that exist in the literature, the majority treats directly the NLSE in its complex field form. Most of these methods are spectral methods and are often accompanied by an arsenal of numerical techniques for the resulting ODE in Fourier space. Such techniques include Split-Steps [START_REF] ∼a | Difference schemes for multidimensional problems[END_REF][4] [START_REF] Bao | Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semiclassical regimes[END_REF] , Runge-Kutta Sliders [START_REF] Fornberg | A fast spectral algorithm for nonlinear wave equations with linear dispersion[END_REF], Integrating Factors [START_REF] Lawson | Generalized Runge-Kutta processes for stable systems with large Lipschitz constants[END_REF] and exponential time differencing [START_REF] Minchev | A review of exponential integrators for first order semi-linear problems[END_REF]. With the effective use and implementations of such methods, one can achieve very high accuracy with minimal computational costs, see for example [START_REF] Klein | Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation[END_REF] where 4th order time stepping is considered in combination with Fourier spectral methods in x, to numerically solve the KdV equation and the NLS equation. However, while in terms of performance, the method we present may not have the upper hand, it offers the possibility of solving a system of first-order hyperbolic conservation laws in which the mass and momentum in terms of Madelung variables are conserved. The hyperbolic setting also offers flexibility from the numerical point of view, in the sense that numerical methods for hyperbolic equations are quite universal and do not require too much additional work, especially for boundary conditions.

CHAPTER 3

Thin film flows with capillarity

Introduction

This chapter is devoted to another interesting application of the Euler-Korteweg system : thin film flows where surface tension effects are not negligible. The subject has many useful industrial applications in relation to windshield defrosting for planes, coatings, painting, cooling of microelectronic equipment, etc. It also offers a variety of challenging problems for the researcher. One of the greatest challenges in this context is to derive an accurate model that is easy to solve. However, very precise models tend to call for complex mathematical structures which are either impossible to solve by hand or require extremely heavy computations. Thus, decreasing the complexity of the problem is a major concern, in order to obtain models which are fairly accurate but also solvable in a reasonable time.

It is in this context, that we would like to test out our augmented Lagrangian approach. In fact, it may prove useful to provide a new family of models which are first order hyperbolic, and which approximate existing models. From the numerical point of view, the hyperbolic setting is relatively comfortable, since the used methods, stability conditions, and scheme implementations are quite universal and do not call for much customization and additional analysis. The approach we offer is also extendable to more complex energy forms. For instance, the surface energy that is commonly used is linearly dependent on ||∇h|| 2 . While this approximation is generally satisfactory, it becomes less reliable in the case where large gradients of fluid height appear. Since the method allows for it (as will be shown later), it seems beneficial to analyze some cases with non-linearized surface tension term, for which the capillary energy is given by :

E ca = σ ρ 1 + ||∇h|| 2 (3.1)
We will begin by clarifying the setting, the assumptions and the notations that will be used throughout this part and then proceed to the analysis.

About thin film equations

Setting and notations

We consider a thin film that flows over an inclined horizontal plate under the effects of gravity :

x u (x ,z ,t ) h (x ,t ) Here, the 'tilde' infers that the associated quantity is dimensional. h(x, t) refers to the fluid height and ũ(x, z, t) is the local velocity. The x and z respectively denote the direction parallel to the plane and normal to the plane. The transverse direction ỹ is neglected, as the applications considered here exhibit mainly two-dimensional dynamics. The angle θ is the constant inclination of the plate and g is the acceleration of gravity. The typical distance in the Ox direction will be denoted by L. For periodic waves this refers to the wavelength. In the long wave approximation, the ratio ε between the typical depth and wavelength is considered small.

In order to obtain a non-dimensional form of the equations, one needs to consider some scaling of reference. For that, let us consider the Nusselt flow solution. It corresponds to the equilibrium solution, balancing the viscous forces and the gravity-driven acceleration resulting in a semi-parabolic velocity profile :

     h(x, t) = hN ũ(x, z, t) = ũN (z) = g ν sin θz hN - z 2 (3.2)
the velocity is dependent on the fluid height and thus, in order to obtain a relevant characteristic velocity, we need to average it across the depth. For the sake of lightness, the averaged velocity over the depth will be denoted by its uppercase equivalent :

ŨN = 1 hN hN 0 ũN (z)dz = g h2 N 3ν sin θ (3.3)
Using this reference solution, we can define the Reynolds number (Re), the Froude number (F ) and the Weber number (W e) as follows :

Re = hN ŨN ν , F = ŨN g hN , W e = ρ γ hN Ũ 2 N .
The long wave parameter is defined as :

ε = hN L (3.4)
These definitions permit to perform a rescaling of the variables in order to obtain their dimensionless versions:

u = ũ ŨN , U = Ũ ŨN , h = h hN , x = x L , z = z hN , t = t L ŨN (3.5)
Under these notations, the averaged governing equations write in dimensionless form [START_REF] Lavalle | Integral modeling of liquid films sheared by a gas flow[END_REF][START_REF] Richard | Optimization of consistent twoequation models for thin film flows[END_REF][START_REF] Richard | A three-equation model for thin films down an inclined plane[END_REF] :

         ∂h ∂t + ∂hU ∂x = 0 ∂hU ∂t + ∂ ∂x hU 2 + 2λ 2 225 h 5 + cos θ 2F 2 h 2 = 1 εRe λh - 3U h + κ F 2 hh xxx (3.6)
The dimensionless parameters λ, and κ are introduced for convenience, as in [START_REF] Richard | A three-equation model for thin films down an inclined plane[END_REF] and are defined by :

λ = Re sin θ F 2 , κ = ε 2 F 2 W e (3.7)
Remark 3.2.1. Although the previous definitions imply that λ = 3 in this case, we will keep its expression as it is. Indeed, some later developments will require the expression instead of the numerical value. Remark 3.2.2. When compared to the previously studied NLS equation, this system admits inherent dissipation in the right hand side. It is well-known that, dissipative systems do not derive from a Lagrangian formulation. This problem can be overcome by applying the augmented Lagrangian method to the dissipationless part of the system and then adding back the source terms, once the new augmented system is derived. Although, the term λh/εRe may be put into the Lagrangian, as it corresponds to the conservative forces of gravity, it would change nothing to the resulting augmented system, whether it is added before or after the derivation. So we will keep it for later as well. Remark 3.2.3. This system of equations is derived through asymptotic expansions in the small parameter ε. As such, it would admit not only the small parameters related to the augmentation method but also the small parameter ε that governs the asymptotics of the original equations. This problem will be addressed in due time, after the new governing system of equations is established.

Chapter 3. Thin film flows with capillarity Following these remarks, removing the dispersionless source terms and integrating the dispersive terms into the momentum flux results in the following system :

         ∂h ∂t + ∂hU ∂x = 0 ∂hU ∂t + ∂ ∂x hU 2 + 2λ 2 225 h 5 + cos θ 2F 2 h 2 + κ 2F 2 h 2 x - κ F 2 hh xx = 0 (3.8)
To these equations, we can associate the following Lagrangian :

L = Ωt 1 2 hU 2 -hf (h) - 1 2 κ F 2 h 2 x dΩ, f (h) = h cos θ 2F 2 + λ 2 h 4 450 (3.9)
and the total energy :

E = 1 2 hU 2 + h 2 cos θ 2F 2 + λ 2 h 5 450 + 1 2 κ F 2 h 2 x (3.10)
Before proceeding to the augmented Lagrangian approach for this system, let us first analyze the full system of equations (3.6), with all its terms included. Even if the hyperbolization process only concerns the dissipationless part, comparisons between both models shall be done only after reinserting the source terms into the augmented system.

Dispersion relation and stability analysis

In this section, we shall derive the dispersion relation for equations (3.6). The latter can be written as :

∂U ∂t + A(U) ∂U ∂x + B(U) ∂ 3 U ∂x 3 = S(U) (3.11)
where :

U = h U , A(U) =    U h cos θ F 2 + λ 2 h 3 45 U    , B(U) =   0 0 - κ F 2 0   , S(U) =   0 λ εRe - 3λU εh 2 Re  
We consider an equilibrium state U 0 = (h 0 , u 0 ) and look for solutions which are proportional to e i(kx-wt) , where k is the wave number and ω is the frequency. For simplicity, we can take h 0 = 1 and u 0 = 1 which corresponds to the Nusselt equilibirum solution. We consequently obtain the phase velocities as the eigenvalues of the matrix :

M = A(U 0 ) -k 2 B(U 0 ) + i k ∇S(U 0 ) (3.12)
A straightforward computation shows that the eigenvalues satisfy the equation :

ε(1 -c p ) 2 - 3i kRe (1 -c p ) -ε cosθ F 2 + 2λ 2 45 + k 2 ε 2 W e - 6i kRe = 0 (3.13)
Equation (3.13) has a complex valued discriminant. Computing the expression of the phase velocities is a trivial task, but separating the real and imaginary parts is not. Thus it brings no additional information. However, it is possible to recover at least the stability condition for this equation. Since we are considering solutions which are proportional to e i(kx-wt) , stability requires the imaginary part of the frequency ω to be positive, so that the wave amplitude does not grow exponentially in time. This defines the stability criterion :

Im(ω) < 0 ⇔ Im(c p ) < 0 (3.14)
We can show that this condition comes down to the well-known stability condition (see developments in appendix C.1):

cotg θ + κ sin θ k 2 > 6 5 Re (3.15)
Hence, the neutral stability curve g(k) in the quadrant (k > 0, Re > 0) is defined by : 

g(k) = sin θ κ 6 5 Re -cotg θ (3.

Asymptotic expansion of phase velocities

Instead of computing the exact expressions of the phase velocities, it is possible and more insightful in this case, to compute their asymptotic expansions in power series of the small parameter ε. In particular, this will prove useful when comparing the augmented model with this one (see section 3.3.2). This gives the leading order behavior of wave propagation. For more simplicity, we consider the variable X = 1 -c p . In a first attempt, assume the following expansion in a regular perturbation series :

X = X 0 + εX 1 + ε 2 X 2 + O(ε 3 ) (3.17)
Chapter 3. Thin film flows with capillarity Such an expansion is possible if the considered eigenvalue is sufficiently smooth in terms of ε and bounded when ε → 0. There will be cases where such assumptions on the regularity are not verified. In these cases, we will use results from the singular perturbation theory to find which form of the expansion is more suitable. Substituting the expansion (3.17) in the characteristic polynomial (3.13) yields :

- 3iX 0 kRe + 6i kRe - 3iX 1 kRe + cosθ F 2 + 2λ 2 45 -X 2 0 ε+ 2X 0 X 1 - 3iX 2 kRe ε 2 +O(ε 3 ) = 0 (3.18)
by successively equating the coefficients multiplying ε n to zero for n ∈ {0, 1, 2} we get :

X 0 = -2, X 1 = i 3 kRe cosθ F 2 + 2λ 2 45 -4 , X 2 = - 4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 (3.19)
Hence :

X = -2 + i 3 kRe cosθ F 2 + 2λ 2 45 -4 ε - 4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 ε 2 + O(ε 3 )
Substituting the expansion in the second degree characteristic polynomial yields only one eigenvalue. This is due to the fact that the considered polynomial clearly degenerates into a first degree equation in the limit ε → 0. Therefore, one of the eigenvalues was missed because it approaches infinity in the limit ε → 0. In the general case, in order to find the missing solution, we introduce a rescaled variable Y (ε) = Xδ(ε) and substitute it in the characteristic polynomial :

ε Y 2 δ(ε) 2 - 3i kRe Y δ(ε) -ε cosθ F 2 + 2λ 2 45 + κ k 2 F 2 - 6i kRe = 0
In order to get a nontrivial solution, we need the leading order terms to have the same order of magnitude, otherwise in the limit ε → 0, one of them will simply vanish and the equation will degenerate again. Balancing the two first terms yields:

δ(ε) 2 = εδ(ε) ⇒ δ(ε) = ε
and so :

Y 2 - 3i kRe Y -ε 2 cosθ F 2 + 2λ 2 45 + k 2 ε 2 W e - 6iε kRe = 0
Now we take Y in the form :

Y = Y 0 + εY 1 + ε 2 Y 2 + Y 3 ε 3 + O(ε 4 ) (3.20)
In this expansion, we are looking for Y 0 = 0, otherwise, this will lead again to the previous trivial solution. We truncate at one higher order than previously to remain at a second order approximation when replacing back X. Substituting in the characteristic polynomial gives :

Y 2 0 - 3i kRe Y 0 + 2Y 0 Y 1 - 3i kRe Y 1 - 6i kRe ε + Y 2 1 + 2Y 0 Y 2 - 3i kRe Y 2 - cosθ F 2 - 2λ 2 45 ε 2 + 2Y 1 Y 2 - 3iY 3 kRe + 2Y 0 Y 3 + O(ε 4 ) = 0
once again, by successively equating the coefficients multiplying ε n to zero, for n = {0, 1, 2, 3} , we get :

Y 0 = 3i kRe , Y 1 = 2, Y 2 = i kRe 3 4 - cosθ F 2 - 2λ 2 45 , Y 3 = - 4 9 k 2 Re 2 4 - cosθ F 2 - 2λ 2 45
we substitute X = Y /ε to obtain :

X = 3i kεRe + 2 + i kRe 3 4 - cosθ F 2 - 2λ 2 45 ε - 4 9 k 2 Re 2 4 - cosθ F 2 - 2λ 2 45 ε 2 + O(ε 3 ) (3.21)
To conclude, the expansions of two phase velocities c p = 1 -X are given by:

c p 1 = 3 - i 3 kRe cosθ F 2 + 2λ 2 45 -4 ε + 4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 ε 2 + O(ε 3 ) c p 2 = - 3i kεRe -1 + i 3 kRe cosθ F 2 + 2λ 2 45 -4 ε - 4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 ε 2 + O(ε 3 )

Augmented Lagrangian formulation

Governing equations

In this section, we will apply the augmented Lagrangian approach to thin film equations. We remind that the augmentation process concerns the sourceless system of equations (3.8). The source terms shall be added by hand after the derivation of the equations. The augmented Lagrangian based on the Lagrangian (3.22) writes :

L = Ωt 1 2 hU 2 + β 2 h η2 -hf (h) - 1 2 κ F 2 p 2 - h 2α η h -1 2 dΩ (3.22)
To this Lagrangian corresponds the following system of augmented equations :

∂h ∂t + ∂ ∂x (hU ) = 0, (3.23 
)

∂hU ∂t + ∂ ∂x hU 2 + h 2 2F 2 cosθ + 2λ 2 h 5 225 + κ 2F 2 p 2 + η α 1 - η h = 0, (3.24 
)

∂hη ∂t + ∂ ∂x (hηU ) = hw, (3.25) ∂hw ∂t + ∂ ∂x hwU - κ βF 2 p = 1 αβ 1 - η h , ( 3.26 
)

∂p ∂t + ∂ ∂x (pU -w) = 0 (3.27)
Now, all that remains is to add back, by hand, the previously removed source terms to the momentum equation, so that it becomes : In this case, the characteristic speeds ξ i are given by :

∂hU ∂t + ∂ ∂x hU 2 + h 2 2F 2 cosθ + 2λ 2 h 5 225 + κ 2F 2 p 2 + η α 1 - η h = 1 εRe λh - 3U h (3.
     ξ 1 = u ξ 2,3,4,5 = U ± (1 + βp 2 )a + b ± ((1 + βp 2 )a + b) 2 -4ab (3.29)
where a et b are positive quantities given by :

a = κ 2βhF 2 , b = λ 2 h 4 45 + η 2 2αh 2 + h cos θ 2F 2 (3.30)
The five eigenvalues are real and distinct, unless we have : p = 0, and

2λ 2 h 5 45 + η 2 αh + h 2 cos θ F 2 - κ βF 2 = 0 (3.31)
in which case the eigenvalues become :

ξ 1 = U, ξ 2,3 = U + √ b, ξ 4,5 = U - √ b (3.32)
Even in this case, it is easy to check that we still obtain a full set of linearly independent eigenvectors.

Remark 3.3.2. It would have been straightforward to obtain the hyperbolicity of the system

if its energy was convex with respect to the conservative variables. This is not the case here mainly due to the penalty term.

Dispersion Relation: α and β scaling

Like for the NLS equation, we must assign values to the relaxation parameters α and β. Unlike the NLS equation, it proved impossible in the current case, to obtain an explicit expression of the phase velocities. The task requires an unreasonable number of assumptions on the parameters. Instead, since we performed an asymptotic expansion of the phase velocities for the original equations, we will do equivalently for the augmented system and try to conserve the asymptotic behavior up to a given order. First, let us cast the augmented system into a quasilinear form :

∂U ∂t + A(U) ∂U ∂x = S(U) (3.33)
where :

U =         h U η w p         , A(U) =          U h 0 0 0 C + 1 αh U 1 α 1 -2η h 0 κp F 2 h 0 0 U 0 0 0 0 0 U -κ βF 2 h 0 p 0 -1 U          , S(U) =         0 λ εRe -3λU εh 2 Re w 1 αβh 1 -η h 0        
where C = cos θ F 2 + 2λ 2 h 3 45 . We consider an equilibrium state U 0 such that h = h 0 , U = U 0 , η = h 0 , w = 0, p = 0 and look for solutions which are proportional to e i(kx-wt) . Similarly to the previous section, we will perform the analysis in terms of the variable X = u 0 -c p which makes computations slightly lighter. We will also assume the Nuesselt flow as reference equilibrium solution and thus take h 0 = 1 and U 0 = 1. Under these assumptions, the phase velocities are given as the eigenvalues of the matrix A(U 0 ) + i k ∇S(U 0 ) which writes :

A(U 0 ) + i k ∇S(U 0 ) =         1 1 0 0 0 C + 1 α + 6i εkRe 1 -3i kεRe -1 α 0 0 0 0 1 i k 0 i αβk 0 -i αβk 1 -κ βF 2 0 0 0 -1 1         (3.34)
to which corresponds the characteristic polynomial, written in terms of the variable X:

1 αβ k 3 X A 0 + A 1 X + A 2 X 2 + A 3 X 3 + A 4 X 4 = 0 (3.35)
where the coefficients are given by :

A 0 = 6i Re + Cεk + 6iα ReW e k 2 ε 2 + 1 + αC W e k 3 ε 3 , A 1 = 3i Re + 3iα ReW e k 2 ε 2 A 2 = - 6iα Re βk 2 + 1 + βk 2 + αCβk 2 kε + α W e k 3 ε 3 , A 3 = - 3iαβk 2 Re , A 4 = αβεk 3
The main purpose of this analysis, is to obtain the asymptotic behavior of the phase velocities in the small parameter ε, in order to compare with original system. The characteristic polynomial (3.35) has five complex roots. One root is trivial which is X = 0. Out of the four remaining roots, two should be approximately the same as in the original system. We denote the corresponding phase velocities by c p 1 and c p 2 . The two remaining roots are rather linked to the fast characteristics of the augmented system. Before we proceed, it would be safest to set all small parameters as a function of ε. Having more than one small parameter may result in an erroneous asymptotic analysis. Thus a choice of α and β as functions of ε is necessary.

A reasonable choice would be to make sure that the phase velocities of the augmented system match the original one, at least up to first order in ε. It is shown in appendix C.2 that the latter statement is valid if α and β given by :

α = O(ε), β = O(ε 3 ) (3.36)
Under such a scaling, the phase velocities, which correspond to the roots of (3.35), can be expanded into power series of ε as follows :

               c p 0 = 1 c p 1 = 3 -i 3 kRe cosθ F 2 + 2λ 2 45 -4 ε + 4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 ε 2 + O(ε 3 ) c p 2 = -3i kεRe -1 + i 3 kRe cosθ F 2 + 2λ 2 45 -4 ε -4 9 k 2 Re 2 cosθ F 2 + 2λ 2 45 -4 ε 2 + O(ε 3 ) c p 3,4 = ± 1 kε 2 + o 1 ε 2 (3.37)
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Neutral stability analysis

Another important property of the model to be checked is its stability curve. If the neutral stability curves of both systems are significantly different, then discrepancies in their respective behaviors may be observed for the same frequencies. Unstable waves in the original system could become stable for the augmented model or vice-verse. Avoiding this inconsistency requires us to check the stability condition Im(c p ) < 0 (equivalently Im(X) > 0). This task requires tedious calculations but can be greatly simplified if we instead look for the critical curve Im(c p ) = 0. This literally means that we search for real roots of the characteristic polynomial (3.35). We discard the root X = 0 and we consider a nontrivial root X ∈ R * of (3.35). Equating the real and imaginary parts of (3.35) respectively to zero yields the equations (after normalization) :

           Q re (X) = X 4 - 1 α + C + κ βF 2 + 1 αβk 2 X 2 + C β κ F 2 + 1 αk 2 + κ αβF 2 = 0 Q im (X) = X 3 + 2X 2 - κ βF 2 + 1 αβk 2 X -2 κ βF 2 + 1 αβk 2 = 0 (3.38)
where X must be a common root to the two polynomials. Q im admits three real roots:

X 1 = -2 ; X 2,3 = ± κ βF 2 + 1 αβk 2 (3.39)
Let us plug the obtained roots in Q Re . The latter is biquadratic implying that X 2 and X 3 are equivalent. We obtain :

Q re (X 1 ) = 1 k 2 κk 2 F 2 -4 + C + α 4β - κ F 2 (4 -C) -4β Q re (X 2,3 ) = - 1 α 2 β Clearly, Q re (X 2,3
) is always a non-zero value .This leaves X 1 as the unique possible common root. It remains to replace C by its value :

C = cos θ F 2 + 2λ 2 45 = cos θ F 2 + 6Re sin θ 45F 2
Simplifying gives the neutral stability curve:

cotgθ + κk 2 sin θ - 6Re 5 + k 2 (O(α) + O(β)) = 0 (3.40)
This equation is consistent with the stability condition (3.15) in the limits α → 0, β → 0. The error terms are proportional to the square of the wavenumber implying that convergence is not uniform with respect to k. This is confirmed in figure 3.3 where neutral stability curves for the original system and the augmented one are compared for several values of α and β. The values which were obtained through the asymptotic analysis show a very good agreement in terms of stability regions. Less restrictive values of either α or β are shown to exhibit a different behavior in the sense that the instability region in these cases is significantly wider. In terms of convergence, it is clear that for low frequencies the curves match very well up to a certain cut-off frequency, starting from which there is a notable increase in the error of approximation. This is similar to what we had observed for the NLS equation for the phase velocity.

Re k 

original model α = ε, β = ε 3 α = ε, β = ε 2 α = √ ε, β = ε 3

Nonlinear surface tension

We will address now the problem of nonlinear surface energy. We will keep to all the previous setting but the capillary terms. We revert back to the total energy of a thin film without surface tension linearization :

E nl = 1 2 hU 2 + h 2 cos θ 2F 2 + λ 2 h 5 450 + κ ε 2 F 2 1 + ε 2 h 2 x (3.41)
This form is more suitable to larger gradients of fluid height, for which the usually used Taylor expansion, simplifying the surface energy term, becomes less relevant. We show that this adds almost no difficulty when using the augmented Lagrangian approach. This form of energy is still compatible with the generic Lagrangian (A.1), for which we derived the Euler-Lagrange equations. Thus, applying Hamilton's principle to the associated augmented Lagrangian :

L = Ωt 1 2 hU 2 + β 2 h η2 - h 2 cos θ 2F 2 - λ 2 h 5 450 - κ ε 2 F 2 1 + ε 2 p 2 - 1 2α h η h -1
submitted to the mass conservation law, and adding the usual closure equations results in the augmented system :

∂h ∂t + ∂ ∂x (hU ) = 0, (3.43) ∂hU ∂t + ∂ ∂x hU 2 + h 2 2F 2 cosθ + 2λ 2 h 5 225 - κ F 2 ε 2 √ 1 + ε 2 p 2 + η α 1 - η h = 0, (3.44 
)

∂hη ∂t + ∂ ∂x (hηu) = hw, (3.45) ∂hw ∂t + ∂ ∂x hwU - κp βF 2 √ 1 + ε 2 p 2 = 1 αβ 1 - η h , ( 3.46 
)

∂p ∂t + ∂ ∂x (pU -w) = 0 (3.47)
The characteristic speeds ξ i of this system are given by :

     ξ 1 = U ξ 2,3,4,5 = U ± a (1 + βp 2 ) + b ± (a (1 + βp 2 ) + b) 2 -4a b (3.48)
where b is defined as in equation (3.30) and a is given by :

a = κ 2βhF 2 (1 + p 2 ) 3/2 = a(1 + p 2 ) -3/2 > 0, (3.49) 
The hyperbolicity of this system is obtained exactly as in the linear surface tension case.

Numerical simulations

Test for a Gaussian initial data

In a first attempt, we compare with the results obtained in [START_REF] Bresch | Augmented skew-symmetric system for shallow-water system with surface tension allowing large gradient of density[END_REF] for a Gaussian initial data. It offers the advantage of being one of the few tests that was compared for both linear and nonlinear surface tensions in the non-stationary case. Thus, for the setting of this test, we consider the following Lagrangian, in dimensioned variables :

L = Ωt 1 2 h Ũ 2 - 1 2 g h2 - σ ρ 1 + h2 x dΩ (3.50)
to which corresponds, in the augmented setting, the Lagrangian : We consider the initial data :

L = Ωt 1 2 h Ũ 2 + 1 2 βh w2 - 1 2 g h2 - σ ρ 1 + p2 + h 2α 1 -η h
                       h(x, t = 0) = h 0 + h 1 e -x 2 2(b/b 0 ) 2 η(x, t = 0) = h(x, t = 0) p(x, t = 0) = -h 1 (b/b 0 ) 2 xe -x 2 2(b/ b0 ) 2 Ũ (x, t = 0) = 0 w(x, t = 0) = 0 (3.52)
Here, h 0 is the water elevation at rest. b, b 0 and h 1 are parameters that define the shape of the deformation as can be seen in figure 3.4. Starting from the initial condition (3.52), we compute the time evolution of the deformation, which generates both gravity and capillary waves. For the simulation, we take a domain of L = [-50mm, 50mm]. The numerical results, at t = 5ms, is displayed in figure 3.5, with both linear and nonlinear capillarity terms : The shown results are obtained by using an IMEX-2,2,2 scheme with MUSCL reconstruction. The cf l is set to 0.8. Unlike what was used in [START_REF] Bresch | Augmented skew-symmetric system for shallow-water system with surface tension allowing large gradient of density[END_REF], there is no need to adjust the cf l to be able to capture the capillary waves, as the characteristic velocity of the model, naturally includes the fast oscillations scale. The comparison shows a perfect agreement, in terms of wave amplitude, wave frequency and wave speed. The comparison of p with hx , computed through centered finite differences is given in the next figure for both capillarity forms: This test shows that the numerical results obtained for both linear and nonlinear surface tension models match perfectly with the converged numerical solutions of [START_REF] Bresch | Augmented skew-symmetric system for shallow-water system with surface tension allowing large gradient of density[END_REF]. Although the reference we compare with, is not an exact solution, this test shows that the augmented model in this setting, approximates the original model with excellent accuracy.

Liu & Gollub's experiment

We study here the experiments done by Liu and Gollub [START_REF] Liu | Solitary wave dynamics of film flows[END_REF]. It consists in a two-meters long canal, inclined with a constant angle θ, containing a thin film of water (around one millimeter). The fluid is initially at rest. At t = 0, a periodic perturbation, with an arbitrary amplitude, is imposed at one of its boundaries. Depending on the frequency of the perturbation, the thus generated waves have amplitudes that may decay or grow in time. The frequencies of interest in this experiment are the unstable frequencies, for which it was observed that the wave amplitude grows until it reaches a stationary state whose behavior is strongly dependent on the imposed frequency. An example is given in figure 3.7 for a frequency of 1.5Hz. The perturbation is imposed on the left boundary. One can see that the initial oscillations grow as they propagate until a wave-train of small capillary oscillations appears in the vicinity of the leading front which stabilizes the time evolution. An important feature of this experiment is that, for different imposed frequencies, the generated wave displays significantly different features (presented in figure 3.8). For higher frequencies, the front and tail of the waves become closer which hinders the development of the wave precursors and may lead to strong interaction between the successive pulses. Chapter 3. Thin film flows with capillarity Before proceeding to the numerical resolution of this experiment by means of the augmented system, it is obviously unreasonable to attempt a comparison without taking viscosity into account in the system of equations. The modification only concerns the momentum equation which writes instead :

∂hU ∂t + ∂ ∂x hU 2 + h 2 cosθ 2F 2 + 2h 5 25 + κp 2 2F 2 + η α 1 - η h = 1 εRe λh - 3U h + 9ε 2Re ∂ ∂x h ∂U ∂x (3.53)
From the numerical point of view, this additional diffusive term is solved by an explicit finite differences scheme given by :

∂ ∂x h ∂U ∂x t=t n x=x i 1 4∆x 2 ((h n i + h n i+1 )(U n i+1 -U n i ) -(h n i + h n i-1 )(U n i -U n i-1 )) (3.54)
To summarize, the system to solve numerically writes fully :

∂h ∂t + ∂ ∂x (hU ) = 0, ∂hU ∂t + ∂ ∂x hU 2 + h 2 cosθ 2F 2 + 2h 5 25 + κp 2 2F 2 + η α 1 - η h = 1 εRe λh - 3U h + 9ε 2Re ∂ ∂x h ∂U ∂x , ∂hη ∂t + ∂ ∂x (hηU ) = hw, ∂hw ∂t + ∂ ∂x hwU - κ βF 2 p = 1 αβ 1 - η h , ∂p ∂t + ∂ ∂x (pU -w) = 0
Note that solving this system with the IMEX-222 scheme along the finite differences (3.54) for the additional viscous term, requires a stability condition of the form :

max ξ m ∆t ∆x , 9ε 2Re ∆t ∆x 2 < 1 (3.55)
where ξ m is the maximum characteristic velocity. In order to simulate the experiments of Liu & Gollub, we consider the following initial condition :

h(x, 0) = η(x, 0) = U (x, 0) = 1, w(x, 0) = p(x, 0) = 0 (3.56)
which corresponds to the Nusselt flow solution. The boundary conditions are given in this case by : The augmented model parameters are taken equal to α = ε and β = ε 3 . The numerical results are given below : [START_REF] Liu | Solitary wave dynamics of film flows[END_REF] which is Re = 29. The fact that Re = 3Re/2 is due to the fact that they are defined with different reference velocities. In fact, we consider here as reference velocity the averaged equilibrium velocity over the depth ŨN , while the reference value used in [START_REF] Liu | Solitary wave dynamics of film flows[END_REF] is the value of the velocity at the water surface ũN (h N ) = 3 ŨN /2. (See equations (3.3) 

x = 0 :                    h n 0 = 1 + 0.1 sin(2πf t n ) u n 0 = 1 η n 0 = h n 0 w n 0 = 0.2πf cos(2πf t n ) p n 0 = (η n 1 -η n 0 )/∆x x = L :                    h n N +1 = h n N u n N +1 = u n N η n N +1 = η n N w n N +1 = w n N p n N +1 = p n N ( 3 
and (3.2) )
For the different forcing frequencies, the numerically simulated waves display similar features to the experimental measures for the chosen values of α = ε and β = ε 3 . The agreement is qualitatively very good. One can see on figure 3.10 that the amplitude and the wavelength of both the wave peak and the capillary ripples, are approximately well recovered through the augmented model for the chosen values of α and β.

Conclusion

The numerical results obtained through the augmented Lagrangian approach permitted to obtain good numerical results for examples involving thin film flows. The approach was shown to be easily adaptable to both models with linear and nonlinear surface tensions, as the structure of the obtained hyperbolic equations remains almost the same in both cases. This approach, in its current version, is unable to deal with flows involving dry or nearly dry regions. This is due to the fact that the maximum characteristic velocity tends to infinity when the fluid depth h tends to 0. The treatment of dry zones will need significant efforts, on both the modeling and numerical aspects.

CHAPTER 4

Stationary droplets on a solid substrate

Setting and assumptions

In this chapter, we consider a droplet of liquid, resting at rest on a plane horizontal solid substrate (see figure 4.1). We are interested in the stationary shape of the droplet submitted to its own weight and surface energy. In such a setting, it is reasonable to consider that the droplet is isotropic in the plane of the substrate so that we can restrict the analysis to one dimension of space. This assumption will make calculations more straightforward but not any less rigorous. In this setting, we are looking for an admissible droplet profile h(x) where h designates the local height of the droplet. If we assume that its center is located at x = 0, we can further narrow down the analysis to the domain x ≥ 0, assuming that h(x) = h (-x). In what follows, we denote by h(x = 0) = h 0 , the central height and we assume that the edge of the droplet connects to the solid substrate (h = 0) forming a contact angle θ known a priori. We assume that the droplet spreads over a finite length equal to 2L, which is unknown. Under these assumptions and notations, we have the following constraints at the boundaries 4.2. Equilibrium equations of the droplet :

0 h 0 x = 0 h x θ
x = 0    h = h 0 h x = 0 x = L    h = 0 h x = -tan(θ) (4.1)
where h x denotes the derivative of h with respect to x. Finally, we consider that the total energy of our system writes :

E(h, h x ) = 1 2 gh 2 + σ ρ 1 + h 2 x + P (h) (4.2)
where g is the gravity acceleration, σ is the surface tension of the liquid, ρ is the density of the liquid. P (h), as introduced in [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF] in general and following Derjaguin [27] is often called disjoining energy and is a sort of correction to the surface tension that should be such that P (∞) = 0.

Equilibrium equations

In this part, we establish the differential equation satisfied by the profile h(x) in the most generic case. In fact, for any energy that is dependent on h and h x , we can write Hamilton's action as :

a = +∞ -∞ E(h, h x ) dx. (4.
3)

The latter is submitted to the mass conservation constraint, which writes:

δh = -(hδx) x (4.4)
We now apply Hamilton's principle of stationary action :

δa = 0 ⇐⇒ +∞ -∞ (δE(h, h x )) dx = 0 (4.5) ⇐⇒ +∞ -∞ ∂E ∂h δh + ∂E ∂h x δh x dx = 0 (4.6)
We plug in the mass conservation constraint and use Shwartz's theorem δh x = (δh) x to obtain :

+∞ -∞ - ∂E ∂h (hδx) x - ∂E ∂h x (hδx) xx dx = 0 (4.7)
Integrating by parts gives:

+∞ -∞ d dx ∂E ∂h hδx + d dx ∂E ∂h x (hδx) x dx = 0 (4.8)
We integrate again the second term by parts to obtain : Integrating this equation gives :

∂E ∂h - d dx ∂E ∂h x = C (4.12)
It is possible to integrate again the equation. In fact multiplying (4.12) by h x gives:

h x ∂E ∂h -h x d dx ∂E ∂h x = Ch x (4.13) ⇒ d dx E -h x ∂E ∂h x = Ch x (4.14)
So that finally we have : 

E -h x ∂E ∂h x = Ch + D (4.
∂ ∂x (h x E hx + hE h -E -(hE hx ) x ) = 0 (4.16)
Integrating once yields :

h ∂E ∂h -h d dx ∂E ∂h x -E + h x ∂E ∂h x = cst (4.17)
Which is exactly obtained by replacing C in equation (4.15) by its expression given in equation (4.12).

In our case of interest, that is when the energy is expressed as in equation ( 4.2), we obtain :

gh 2 /2 + P (h) + σ ρ 1 + h 2 x = Ch + D (4.18)
Chapter 4. Stationary droplets on a solid substrate which implies that h(x) satisfies the differential equation :

h 2 x = σ/ρ Ch + D -gh 2 /2 -P (h) 2 -1. (4.19)
In order to render the formulas less cumbersome, we denote by Q(h) the function :

Q(h) = 1 + ρ σ gh 2 2 + P (h) -(Ch + D) (4.20)
So that the differential equation (4.19) becomes :

h 2 x = 1 1 -Q(h) 2 -1 (4.21)
Naturally, since we are looking for real-valued solutions, it is necessary to have :

Q(h) ≥ 0 ∀h ∈ [0, h 0 ] (4.22)
Depending on the setting which defines the properties of the function Q(h), we can have different admissible droplet shapes. The regularity of the solution strongly depends on the allowed values of the contact angle θ. If we were to consider hydrophobic substrates, which comes down to imposing θ > π/2, then the droplet must bend at some point in order to form an obtuse angle in the vicinity of the substrate. In this case, proper description of the water height requires two profiles h 1 (x) and h 2 (x) separated by a singularity in which the derivative of the droplet height reaches infinity. This singular case will be considered later and we will focus first on smooth droplets.

Smooth droplet profiles

In a first attempt, we will restrict to contact angles θ < π/2. Since we look for smooth solutions, we impose :

Q(h) < 1 ∀h ∈ [0, h 0 ] (4.23)
Taking into account the boundary conditions (4.1), and plugging them in equation (4.18) yields:

         P (0) + σ ρ 1 + tan(θ) 2 = D Ch 0 + D = gh 2 0 /2 + σ ρ + P (h 0 ) (4.24)
which allows us to obtain the expressions of C, D and consequently Q(h) as follows : 

                   D = P (0) + σ ρ cos(θ) C = gh 0 /2 + σ ρh 0 (1 -cos(θ)) + P (h 0 ) -P (0) h 0 Q(h) = 1 -cos(θ) h 0 - ρ σ gh 2 + P (h 0 ) -P (h) (h 0 -h) - P (h 0 ) -P (0) h 0 (h 0 -h) (4.
gh/2 + P (h 0 ) -P (h) h 0 -h ≤ σ ρh 0 (1 -cos(θ)) + P (h 0 ) -P (0) h 0 ∀h ∈ [0, h 0 ] (4.26) gh/2 + P (h 0 ) -P (h) h 0 -h > σ ρh 0 (1 -cos(θ)) - σ ρ(h 0 -h) + P (h 0 ) -P (0) h 0 ∀h ∈ [0, h 0 ] (4.27)
These constraints are not local and do not have a simpler formulation in the general case as there are no restraints on the behavior of P (h). However, in the few cases we will consider, it is possible to extract more practical necessary or sufficient conditions from them. Now that all is set, we are interested in classifying the possible profile structures that are obtainable through solving equation ( 4 The main difference in both shown profiles is the change in convexity that appears in the rightmost graphic of figure 4.2. In this case, although the edge of the droplet still forms an angle θ with the solid substrate, and which is in agreement with the imposed constraints (4.1), there is meaning into considering a secondary angle, θ a , which appears at the inflection point location. Generally, the convex part of such a droplet lies in the close vicinity of the contact line (h c << h 0 ). This means that, from the macroscopic point of view, it would be more reasonable to consider θ a as the "apparent" contact angle. Following these remarks, in order to investigate whether any changes in convexity are likely to happen, it is important to have a look at the sign of h xx inside the interval [0, h 0 ]. The expression of the latter is obtained by deriving both sides of the differential equation (4.21) with respect to x and simplifying by h x . This allows us to write : 3 (4.28)

h xx = - Q (h) (1 -Q(h))
Chapter 4. Stationary droplets on a solid substrate Accordingly, the profile h(x) admits as many inflection points as the number of local extrema of the function Q(h) in the interval [0, h 0 ]. Therefore let us further analyze this function and its derivatives. First, let us recall its expression:

Q(h) = 1 + ρ σ gh 2 2 + P (h) -(Ch + D) (4.29)
its first and second derivative are given by :

Q (h) = ρ σ (gh + P (h) -C) , Q (h) = ρ σ (g + P (h)) (4.30)
Since conditions (4.1) impose that :

   h x = 0 at h = h 0 h x = -tan(θ) ≤ 0 at h = 0 (4.31)
this results in:

Q(h 0 ) = 0 and Q(0) = 1 -cos(θ) (4.32) Since Q(h) ≥ 0 and Q(h 0 ) = 0 then Q(h 0 ) is a global minimum in [0, h 0 ] and: Q (h 0 ) ≤ 0 (4.33)
As a consequence, for a strictly concave droplet, since h xx does not change curvature, Q (h) admits no roots and thus does not change its sign. Therefore, a necessary condition for a concave droplet is Q (0) < 0. Otherwise, there exists at least one root of the equation Q (h) = 0 inside the interval ]0, h 0 [, meaning there is at least an inflection point.

First case : P (h) > 0

In this case, the conclusions are rather straightforward. In fact, it implies that :

Q (h) > 0 ∀h ∈ [0, h 0 ] (4.34) Therefore, Q (h) is an increasing function over [0, h 0 ]. Since Q (h 0 ) < 0 then Q (h) < 0 ∀h ∈ [0, h 0 ]
. Therefore, h(x) admits no inflection points and only profile A of figure 4.2 is admissible in this case.

Second case : P (h) < 0

This includes some explicit forms of P (h) that are commonly used in practice. This situation allows for many possible scenarios, as there are no bounds on the number of roots of Q (h) as long as P (h) is not explicitly given. A case of interest is when the equation Q (h) = 0 admits at most one root in all the domain [0, +∞[. Such is the case for instance, if P (h) is monotonic. We show in this particular setting that only the cases A and B displayed in figure 4.2 are admissible. Indeed, if the equation Q (h) = 0 admits no more than one root, then Q (h) admits at most two roots in [0, h 0 ]. Let us investigate the possible situations :

1. If Q (h) has no roots in ]0, h 0 [, then h(x) is strictly concave (case A).

2. If Q (h) has one root h c ∈ [0, h 0 ], then h(x) changes convexity once (case B).

3. Assume Q (h) has two roots in ]0, h 0 [ then Q (h) admits a root h s in ]0, h 0 [ (Rolle's theorem). Since there is one change of sign of Q (h) then Q (0) < 0. Since we assumed that Q (h) does not admit any more than one root and that Q (∞) = g > 0, then this implies that Q (h) is decreasing in [0, h s ] and increasing in [h s , h 0 ] and therefore

Q (h) < 0 ∀h ∈ [0, h 0 ] which contradicts the assumption that Q (h) admits roots in [0, h 0 ].
Therefore, if P (h) is monotonic and negative, then only admissible profiles of h(x) are case A and case B. In particular :

• If Q (0) ≤ 0 then the droplet is strictly concave.

• If Q (0) < 0 then the droplet admits an inflection point. Remark 4.3.1. Since P (∞) = 0 and P (h) is concave in this case, it follows trivially that:

P (h) < 0 ∀h ∈ [0, h 0 ]; P (h) > 0 ∀h ∈ [0, h 0 ] (4.35)
and that :

P (h 0 ) -P (h) h 0 -h ≤ P (h 0 ) -P (0) h 0 ∀h ∈ [0, h 0 ] (4.36) 
This permits to obtain more practical information from the constraints (4.26) and (4.27). Indeed this implies that :

1. A sufficient condition for the constraint (4.26) to be respected is :

gh/2 ≤ σ ρh 0 (1 -cos(θ)) ∀h ∈ [0, h 0 ] ⇐⇒ h 2 0 /2 ≤ σ ρg (1 -cos(θ)) (4.37) 
which can be cast into the form:

h 0 ≤ 2l c sin(θ/2) (4.38)
where l c is the capillary length given by l c = σ ρg 2. A necessary condition for the constraint (4.27) to be respected is :

ρgh/2 + σ h 0 -h > σ h 0 (1 -cos(θ)) ∀h ∈ [0, h 0 ] (4.39)
Since the left-hand side of the inequality is an increasing function of h, then it is enough to check the inequality for h = 0 which gives :

cos(θ) > 0 (4.40)
Which is a natural consequence of a smooth droplet assumption, since it does not allow for θ = π/2.
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Explicit example: P (h) = -A/(h + h )

This form of P (h) satisfies the assumptions P (h) > 0 and P (∞) = 0. Its behavior is also discussed in [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF] (case(b) on p.92). Out of concave functions reaching to 0 in infinity with a finite value for h = 0, the one we choose here may be the simplest in terms of calculations.

It is also possible to consider the exponential function, which qualitatively delivers the same behavior. Without further ado, let us detail some of this potential's properties.

P (h) = - A h + h (4.41)
where A and h < h 0 are positive constants. It follows from it that :

P (h) = A (h + h ) 2 ; P (h) = - 2A (h + h ) 3 < 0 (4.42) P (0) = - A h ; P (0) = A h 2 > 0 (4.43)
The graph of P (h) and its derivative are given in the figure 4.3 below: Replacing P (h) in the expressions of Q (h) and Q (h) yields :

h 5h 10h P h 0 -A/h h 5h 10h P h 0 A/h 2
Q (h) = ρ σ gh + A (h + h ) 2 -C , ( 4.44) 
Q (h) = ρ σ (g - 2A (h + h ) 3 ) (4.45)
In this case, we can clearly see that Q (h) is a strictly increasing function. As a matter of fact, it follows from the analysis done in the previous section that the profile of the droplet only depends on the sign of Q (0). Let us consider the dimensionless constant K = 2A/gh 3 . The equality Q (0) < 0 can be cast into the form : While, theoretically, a change of convexity appears for any K > K c , it becomes only discernible at sufficiently high values of K. For values of K slightly higher than K c , the inflection point remains in the extremity of the droplet edge. It is also possible to fix A and then vary the contact angle instead. We obtain the following figure : 

K > K c , where K c = 1 + 4 l 2 c h 2 0 sin 2 (θ/2) (1 + h 0 /h ) (4.
h(mm) K = 0.5K c K = K c K = 20K c
0 0.1 0.2 0.3 0.4 0.5 0 0.5 1 1.5 2 2.5 x(mm) h(mm) θ = 0 • θ = 10 • θ = 30 • θ = 60 •

Remarks on droplets with singularities

Before moving on to testing these results under the augmented formulation, we would like to give a few brief remarks on some cases with singularities, with points where h x reaches Chapter 4. Stationary droplets on a solid substrate an infinite value. Clearly, by looking at the differential equation (4.21), such a singularity occurs if there exists h s ∈]0, h 0 [ such that Q(h s ) = 1. This equality writes :

gh 2 s 2 + P (h s ) = Ch s + D (4.47)
We will disregard the case where multiple roots of this equation exist and focus on the case where only one root h s exists. The curve h 2 x = f (h) in this case is plotted in the following figure :

h h 2 x 1 -cosθ h s h 0 Figure 4.6: graphic of h 2
x as a function of h in the case of a singularity Such a setting suggests two possible phase portraits which are displayed below : As shown in figure 4.7, there are two admissible phase portraits. The left graphic corresponds to a droplet on a hydrophilic substrate, given the sign of tan θ and the sign of h x in the region [0, h 0 ]. This means that after the singularity, there is a change of convexity and the droplet edge connects with solid substrate, similarly as for a regular droplet with an inflection point, forming a contact angle θ < π/2 (see figure 4.9). The second possibility, which is in the right part of figure 4.7, corresponds to a droplet on a hydrophobic solid substrate. The singularity that occurs at h = h s corresponds to the turnaround point so that the droplet can bend over to form an angle θ > π/2 (see figure 4.8). In these circumstances, the sign of cos θ is undetermined. The initially chosen contact angle imposes which branch to take in this case. The constants C and D write more generally :

h h x -tanθ h s h 0 h h x -tanθ h s h 0
       D = P (0) + σ ρ |cos(θ)| C = gh 0 /2 + σ ρh 0 (1 -|cos(θ)|) + P (h 0 ) -P (0) h 0 (4.48) 
so that equation (4.47) explicitly writes :

gh s /2 + σ ρh 0 |cos θ| + h s h 0 -h s = P (h 0 ) -P (0) h 0 - P (h 0 ) -P (h s ) h 0 -h s (4.49)
The left-hand side of this equality is positive and so must be the right-hand side. This case is clearly incompatible with convex forms of P (h) since the considered slope difference is always negative. For a concave P (h) we may have roots h s . For example, for the explicit case of P (h) we have used previously, this equation writes explicitly :

gh s /2 + σ ρh 0 |cos θ| + h s h 0 -h s = Ah s h (h 0 + h )(h s + h ) (4.50)
Or in dimensionless form :

1 2 + l 2 c h 0 h s |cos θ| + h s h 0 -h s = K (1 + h 0 /h )(1 + h s /h ) (4.51) 
In the case where this equation admits exactly one root, as discussed earlier, there are two possible outcomes. While the governing differential equation is independent of the sign of cos θ, what makes the difference is the boundary condition h x = -tan θ at x = 0. If θ > π/2, and if we note by x s the space coordinate of the singularity, we need to solve : The measured contact angle complies with the imposed value. For the same configuration but the contact angle, which we take as θ = π/6, in order to obtain the corresponding profile we need to solve :

     h x = - 1 1-Q(h) 2 -1 ∀x ∈ [0, x s [ h(0) = h 0      h x = 1 1-Q(h) 2 -1 ∀x ∈ [L, x s [ h(x s ) = h s
     h x = - 1 1-Q(h) 2 -1 ∀x ∈ [0, x s [ h(0) = h 0      h x = - 1 1-Q(h) 2 -1 ∀x ∈]x s , L] h(x s ) = h s (4.53)
We obtain the following profile : 

0 0.5 1 1.5 2 2.5 3 -2 -1 0 1 2 h = hs x(mm) h(mm)

Augmented model analysis

In this section, we would like to extend the results of the previous section to the augmented model. This requires us to properly define the equations governing the stationary state in this case. The main difference here is that the energy of the augmented system does not depend on h x anymore, but depends on the unconstrained variable η and its derivative η x instead. It writes :

E(h, η, η x ) = gh 2 /2 + h 2α 1 - η h 2 + σ ρ 1 + η 2 x + P (h) (4.54) 
Given that only h is constrained through the mass conservation law, it is straightforward to prove that the governing equations are consequent from :

           d dx ∂E ∂h = 0 ⇐⇒ ∂E ∂h = C α ∂E ∂η - d dx ∂E ∂η x = 0 (4.55)
Since we are looking for non-trivial solutions, that is η(x) different from the zero function, we multiply the second equation by η x :

η x ∂E ∂η -η x d dx ∂E ∂η x = 0
Then using the identity :

∂E ∂η η x = dE dx - ∂E ∂h h x - ∂E ∂η x η xx (4.56)
which implies :

dE dx - ∂E ∂h h x - ∂E ∂η x η xx -η x d dx ∂E ∂η x = 0 (4.57) 
Thus we can write :

dE dx -C α h x - d dx η x ∂E ∂η x = 0 (4.58)
Integrating the equation with respect to x finally gives the system :

       ∂E ∂h = C α E -η x ∂E ∂η x = C α h + D α (4.59)
Remark 4.6.1. This system of equation is not specific to the energy form (4.54) but to any energy that depends explicitly on (h, η, η x ) where h is constrained by the mass conservation law and η is a free variable. In particular, it can be used regardless of whether the surface tension term is linearized or not.

Chapter 4. Stationary droplets on a solid substrate Remark 4.6.2. This final system is consistent with the Euler-Lagrange equations (4.55)

as well as with the stationary state of the augmented system conservation laws. The main advantage of the provided form is that it only requires to solve a first order differential equation instead of a second order one which is more convenient in practice.

For the energy (4.54) we obtain the system of equations:

           gh + P (h) + 1 2α 1 - η h 1 - 2η h = C α (4.60) σ ρ 1 1 + η 2 x = C α h + D α -gh 2 /2 - h 2α 1 - η h 2 -P (h) (4.61) 
Now, let us establish the differential equation satisfied by h in this case. Multiplying equation (4.60) by 2αh 2 and simplifying yields :

2η 2 -3hη + h 2 (1 + 2α(gh + P (h) -C α )) = 0 (4.62)
which, solved in terms of η yields the roots :

η ± = h 4 3 ± 1 -8α(gh + P (h) -C α ) (4.63) 
Clearly, the root of interest is the one that permits to recover η → h when α → 0. Thus we take :

η = h 4 3 + 1 -8α(gh + P (h) -C α ) (4.64) 
We derive the latter with respect to x to obtain :

η x = f α (h)h x (4.65)
where f α (h) is given by :

f α (h) = 1 + 4α(2C α -3gh -2P (h) -hP (h)) + 3 1 -8α(gh + P (h) -C α ) 4 1 -8α(gh + P (h) -C α ) (4.66) 
Lastly, equation (4.64) also permits to write :

1 - η h = 2αϕ α (h); where ϕ α (h) = (gh + P (h) -C α ) 1 + 1 -8α(gh + P (h) -C α ) (4.67) 
Thus, putting equation (4.61) into a more convenient form and substituting η and η x via the above formulas yields the differential equation :

h 2 x = 1 (f α (h)) 2   σ/ρ C α h + D α -gh 2 /2 -2αh(ϕ α (h)) 2 -P (h) 2 -1   (4.68)
Before solving this system of equations, it remains to define the values of C α and D α through imposing suitable boundary values. We use the same boundary conditions as in the original case, that is:

x = 0    h = h 0 h x = 0 x = L    h = 0 h x = -tan(θ) (4.69) 
We recall that the value x = L is unknown, that is we only impose h x = -tan(θ) when the droplet height reaches 0. Under these assumptions, the constants C α and D α can be obtained as follows. Equation (4.61) can be cast into the form :

σ ρ 1 1 + (f α (h)h x ) 2 = C α h + D α -gh 2 /2 -2αh(ϕ α (h)) 2 -P (h) (4.70) 
which allows us to compute the limit h → 0:

D α = P (0) + σ ρ 1 + (f α (0) tan(θ)) 2 (4.71) 
As f α (0) is dependent on C α , the above expression links D α and C α . It only remains to calculate C α , by considering equation (4.68) in the point x = 0. It follows that :

C α + σ/(ρh 0 ) 1 + (f α (0) tan(θ)) 2 - 2α(gh 0 + P (h 0 ) -C α ) 2 1 + 1 -8α(gh 0 + P (h 0 ) -C α ) 2 = σ ρh 0 +gh 0 /2+ P (h 0 ) -P (0) h 0 (4.72) 
This equation is solved numerically to obtain the value of C α and consequently D α . One can see that in the limit α → 0 we recover the same values as for the original system :

         lim α→0 C α = σ ρh 0 (1 -cos θ) + gh 0 /2 + P (h 0 ) -P (0) h 0 = C (4.73) lim α→0 D α = P (0) + σ ρ cos θ = D (4.74)
We can show that the convergence rate is linear in α as shown in figure 4.10:

- [START_REF] Whitham | Linear and nonlinear waves[END_REF] we can see that in the limit α → 0, we recover exactly its equivalent counterpart for the original system of equations. The numerical resolution of this differential equation, for the same form of P (h) introduced in the previous section, yields the following results : The mesh size is taken small enough as not to pollute the measures of the contact angle through a numerical derivation of h. Clearly, for α = 0.01, the curves coincide already. When comparing for higher values of α ,the most significant dissimilarity lies in the vicinity of the contact angle. The angle itself seems to be conserved independently of α. The length L is also different and seems to be an increasing function of α, that is the higher α is, the wider the drop spreads.
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Concluding remarks

We have addressed in this part droplet profiles which were derived through Hamilton's principle of stationary action. We restricted ourselves to some specific assumptions on P (h) which were fully addressed and some criteria that may help classify the droplets' shape were established in a some cases. Although the droplet structures that were discussed here are mathematically admissible and compatible with Hamilton's principle, this does infer in any way that they are mechanically stable configurations, in which case their existence in nature would be also likely. This question shall be addressed in due time. This investigation of droplets also provided a good setting of comparison for the augmented model in a stationary case, in which it is possible to obtain an explicit expression of η as a function of h. The comparison of the resulting differential equations, allowed for a better understanding of the penalty method and how close it approximates the original system.

Besides, we have chosen here to impose the central height of the droplet along the contact angle. The resulting profiles, correspond to droplets with different masses. Thus, it would be also interesting to conduct a similar study in which the mass and the contact angle are fixed beforehand for instance, which gives different values of h 0 as a consequence. This could give another perspective to the problem.

Chapter 4. Stationary droplets on a solid substrate CHAPTER 5

On the stability of modified equations for linear schemes

Modified equations have been the subject of investigations and debates in numerical analysis. And yet, despite being relatively easy to establish, their use has been regarded with a lot of skepticism due to the lack of theoretical justification and the trickiness of their analysis.

The first use of this technique for stability purposes is due to Hirt [START_REF] Hirt | Heuristic stability theory for finite-difference equations[END_REF]. He provided the first practical examples for which modified equations give relevant information, in a heuristic manner. The pionneering work of Warming and Hyett [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF] introduced how to obtain these equations in the general case and mostly clarified the link between the stability of the scheme and the modified equations. They provided a simple and efficient way to obtain the exact Von Neumann stability conditions from a finite number of the modified equation coefficients, for linear scalar schemes. An alternate way to obtain modified equations was introduced in [START_REF] Carpentier | On the derivation of the modified equation for the analysis of linear numerical methods[END_REF]. The method permits to obtain the same modified equation through a series expansion of a an explicitly known function rather than the elimination technique of [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF]. Other works that tried to tackle stability analysis through modified equations include [START_REF] Li | The von Neumann analysis and modified equation approach for finite difference schemes[END_REF][START_REF] Tyler | Heuristic analysis of convective finite difference techniques[END_REF].

In this independent chapter, we investigate the modified equations for some finite difference schemes, in an attempt to make it clear why this technique often fails to provide relevant information on stability. First, we present a reminder on how to obtain modified equations for a given linear scalar scheme. We explain the basics of the heuristic stability theory and its limitations through some examples. In the second part, we present the technical framework and tools needed for stability analysis. We then clarify the mathematical reasons behind the frequent failures of the heuristic stability theory by investigating the convergence of the Fourier transform of the modified equation. We show that the latter is conditionally convergent and only then does it give significant results. Then, we compare the stability conditions of truncated modified equations with the corresponding scheme in the region of convergence. Finally, we present some examples to justify our analysis.

On modified equations and heuristic stability

Obtaining the equations

Consider as an example, the linear scalar transport equation given by :

∂ ũ ∂t + c ∂ ũ ∂x = 0 (5.1)
with positive velocity c. In order to solve this equation with a finite difference scheme, we first introduce a uniform grid of points defined as usual by (x j = j∆x, t n = n∆t) and we denote by u n j = u(x j , t n ) the value of the numerical solution in the corresponding grid point. Under these notations, take for instance the upwind Euler scheme for equation (5.1) :

u n+1 j -u n j ∆t + c u n j -u n j-1 ∆x = 0 (5.2)
Generally, in order to get relevant information on the consistency of the scheme [START_REF] Richtmyer | Difference methods for initial-value problems[END_REF] or its convergence rate, we assume the existence of a smooth, infinitely differentiable numerical solution u(x, t) that satisfies u(x j , t n ) = u n j in each grid point. Provided this solution, we expand each term of the scheme in Taylor series in the vicinity of (x j , t n ), for instance :

u n+1 j = u(x i , t n+1 ) = u(x j , t n + ∆t) = u n j + ∆t ∂u n j ∂t + ∆t 2 2 ∂ 2 u n j ∂t 2 + . . . (5.
3)

u n j-1 = u(x i-1 , t n ) = u(x j -∆x, t n ) = u n j -∆x ∂u n j ∂x + ∆x 2 2
∂ 2 u n j ∂x 2 + . . . (5.4) which leads to an equation satisfied by u containing an infinite number of partial derivatives :

∂u ∂t + ∆t 2 ∂ 2 u ∂t 2 + ∆t 2 6 ∂ 3 u ∂t 3 + . . . = -c ∂u ∂x + c∆x 2 ∂ 2 u ∂x 2 + c∆x 2 6 ∂ 3 u ∂x 3 + . . . (5.5)
This equation as is, is sufficient to prove consistency. In fact, we can clearly see that the in the limit ∆t → 0 and ∆x → 0 we recover the original transport equation. However, for further analysis of the numerical effects induced by the scheme, it would be more intuitive to consider an evolution equation with only space derivatives. This would deliver an evolution equations that is more amenable to physical interpretation. To do that, we use the elimination procedure introduced by Warming and Hyett in [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF], that is we repeatedly use linear combinations of the equation (5.5) and its derivatives in order to eliminate time derivatives of order higher than one. Let us demonstrate how this works. First we derive (5.5) with respect to t and multiply it by ∆t/2 to obtain : ∆t 2

∂ 2 u ∂t 2 = - ∆t 2 4 ∂ 3 u ∂t 3 - ∆t 3 12 
∂ 4 u ∂t 4 -c ∆t 2 ∂u 2 ∂x∂t + c 2 ∆x∆t 4 ∂ 3 u ∂x 2 ∂t + c 2 ∆x 2 ∆t 12
∂ 4 u ∂x 3 ∂t + . . . (5.6) replacing this expression in the (5.5) and truncating to the same order of consistency only does half of its expected job, as it eliminates the second derivative in time but there appeared 76 Chapter 5. On the stability of modified equations for linear schemes Chapter 5. On the stability of modified equations for linear schemes instead a mixed derivative with respect to x and t :

∂u ∂t - ∆t 2 4 ∂ 3 u ∂t 3 -c ∆t 2 ∂u 2 ∂x∂t + c 2 ∆x∆t 4 ∂ 2 u ∂x 2 + ∆t 2 6 ∂ 3 u ∂t 3 +. . . = -c ∂u ∂x + c∆x 2 ∂ 2 u ∂x 2 + c∆x 2 6 ∂ 3 u ∂x 3 +. . . (5.7)
This term can be eliminated by using the combination (5.7) + c ∆t 2 ∂ ∂x (5.5) and so on. The same procedure is applied successively until we finally obtain the equation :

∂u ∂t + c ∂u ∂x = c ∆x 2 1 -c ∆t ∆x ∂ 2 u ∂x 2 - ∆x 2 6 1 -c ∆t ∆x 1 -2c ∆t ∆x ∂ 3 u ∂x 3 . . . (5.8)
This is called the modified equation associated with the upwind Euler scheme for the transport equation (5.1). It is worth noting that this is not a partial derivative equation in the conventional sense as it does not have an order or a finite amount of partial derivatives. For a solution to exist, one also needs a proper definition of infinitely many boundary conditions. Therefore, we restrict our analysis to solutions that are periodic [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF].

Heuristic stability and limitations

Besides proving consistency, the modified equation quantifies explicitly the additional numerical effects. For example, it tells that up to first order in ∆x and ∆t, the numerical solution rather satisfies a convection diffusion equation with a numerical dissipation coefficient given by c ∆x 2 1 -c ∆t ∆x . Note however that the sign of the latter can be negative in which case this equation becomes unstable and admits solutions that grow exponentially in time rather than decay. It follows from this that a necessary and sufficient condition of stability for the solutions of this convection-diffusion equivalent is :

c ∆t ∆x ≤ 1 (5.9)
which turns out to be exactly the CFL condition for the scheme (5.2). This gives a lot of potential for the modified equations to be a practical tool for stability analysis. Although the analysis is completely heuristic and has no rigorous foundation, its results make sense for a large class of schemes. However, there are also many examples for which this analysis fails to provide any practical stability condition. Consider for example the one dimensional heat equation :

∂u ∂t -α ∂ 2 u ∂x 2 = 0 (5.10)
where α > 0 is the diffusion coefficient. We discretize this equation using centered finite differences :

u n+1 i -u n i ∆t -α u n i+1 -2u n i + u n i-1 ∆x 2 = 0 (5.11)
Using the same elimination procedure we obtain the following modified equation up to 4th order :

∂u ∂t -α ∂ 2 u ∂x 2 = α∆x 2 12 1 -6 ∆t ∆x 2 ∂ 4 u ∂x 4 + . . . (5.12)
Chapter 5. On the stability of modified equations for linear schemes If we choose to stop at the first non-zero truncation term as previously, the conclusions are already less straightforward as we have a non-vanishing second order term that comes from the heat equation itself and a 4th order term that comes from the numerical effects. Therefore in order to look into stability of this equation, let us shift to Fourier space. Let v(k, t) be the Fourier transform of u(x, t) then under these notations, equation (5.12) yields :

∂v ∂t = -αk 2 1 - k 2 ∆x 2 12 1 -6 ∆t ∆x 2 v (5.13)
It is reasonable to only consider the wavenumbers that are bound by |k∆x| ≤ π, since these are the only wavenumbers admissible by the discrete mesh. In this setting, it is easy to verify that :

-αk 2 1 - k 2 ∆x 2 12 1 -6 ∆t ∆x 2 ≤ 0 ∀k ∈ - π ∆x , π ∆x (5.14)
which implies that the considered truncation is unconditionally stable for all admissible ∆t and ∆x. This result is obviously erroneous as it is well known that the Von Neumann stability analysis proves that a necessary and sufficient stability condition for the scheme (5.11) is :

α ∆t ∆x 2 ≤ 1 2 (5.15) 
Thus, the heuristic analysis of this truncation of the modified equation failed to provide any practical stability condition for the scheme and truncating the equation at higher orders does not seem to do any better. This is one of the examples that demonstrates limitations of the method. In what follows, we first introduce all the necessary notations and setting for stability analysis before attempting to explain why the stability of the truncation is sometimes incoherent with the stability of the scheme.

Theory of stability through modified equations

Notations and assumptions

We will consider for our analysis partial derivative equations that are linear, first order in time and of arbitrary order in space :

∂ ũ ∂t + P p=1 A p ∂ p ũ ∂x p = 0 (5.16)
where A p are constants. We consider explicit in time schemes, that are consistent with equation (5.16) and can be written as : for consistency purposes, so that constant solutions, which are solution of the PDE (5.16) remain as such for the scheme. Sometimes it is preferable to cast the scheme (5.17) into an equivalent form :

u n+1 j = u n j + ∆t
u n+1 j = u n j + ∆t ∆x q nr p=-n l B p (∆x) u n j+p (5.19)
where q is the highest power of 1/∆x present in the summation. Very often, when using standard finite differences, the coefficients b p are polynomials in 1/∆x and q is the highest degree among these polynomials which is frequently equal to the order P of the PDE (5.16). This formulation can be practical for stability analysis since most stability conditions for explicit schemes are given by bounds on the quantity λ q = ∆t/∆x q in the limit ∆x → 0 and ∆t → 0. Therefore, setting λ q as a non-vanishing parameter is a reasonable assumption that permits to reduce the number of free small parameters, that is we can take ∆t = g q (∆x) = λ q ∆x q and consider instead λ q and ∆x as free independent parameters. In what follows, in order to perform stability analysis in Fourier space, we consider a space continuous counterpart of the scheme (5.19) :

u n+1 (x) = u n (x) + λ q nr p=-n l B p (∆x) u n (x + p∆x) (5.20)
Let v(k, t) be the Fourier transform in space of u(x, t). If we take θ = k∆x, then the Fourier transform of equation (5.20) yields :

v n+1 (k) =   1 + λ q nr p=-n l B p (∆x)e ipθ   v n (k) = S(θ, λ q , ∆x)v n (k) (5.21)
Since we will be operating most of the time in Fourier space, it seems necessary to recall consistency of the scheme in the same setting. Therefore if we assume that the exact solution to the PDE (5.16) satisfies in Fourier space:

ṽ(k, t + ∆t) = exp   ∆t P p=1 (ik) p A p   ṽ(k, t) = G(θ, ∆t)ṽ(k, t) (5.22)
then the scheme (5.17) is consistent with the PDE (5.16) to order s if and only if [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II[END_REF] :

G(θ, ∆t) -S(θ, λ q , ∆x) ∆t = O(∆t s ) (5.23)
Lastly, we denote the modified equation associated to the scheme (5.17) by :

u t = ∞ p=1 µ p (λ q , ∆x) ∂ p u ∂x p (5.24)
where µ p are constants depending on ∆x and λ q .
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Fourier stability analysis

In this part, we focus on the link between the modified equation and the scheme [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF]. The amplification factor of the scheme is none other than the modulus of S(θ, λ q , ∆x). Now, in order to recover an equivalent expression in the continuous time for the modified equation, we apply the Fourier transform to (5.24). This implies that v(k, t) satisfies the differential equation:

dv dt =   ∞ p=1 (ik) p µ p (λ q , ∆x)   v(k, t) =   ∞ p=1 α p (λ q , ∆x)θ p   v(k, t) = G(θ, λ q , ∆x)v(k, t)
(5.25) where α p (λ q , ∆x) = µ p (λ q , ∆x)i p /∆x p . For convenience, we will say that the modified equation is stable if, for an initial condition v(k, t = 0) = v 0 (k), the solution to the Cauchy problem :

   dv dt = G(θ, λ q , ∆x)v(k, t) v(k, 0) = v 0 (k) (5.26)
that is given by: v(k, t) = e tG(θ,λq,∆x) v 0 (k) (5.27) remains bounded ∀t < T , where T > 0. Given this solution, one can obviously write :

v(k, t + ∆t) = e ∆tG(θ,λq,∆x) v(k, t) (

Now, since the solution to the scheme (5.17) with the same initial condition is also an exact solution to the modified equation (5.24) [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF], uniqueness of this solution gives : e ∆tG(θ,λq,∆x) = e λq∆x q G(θ,λq,∆x) = S(θ, λ q , ∆x) (5.29)

It follows from that the proposition : Proposition 5.2.1. For any scheme that writes as (5.17) and that is consistent with (5.16), there exists a positive number θ m that depends only on λ q and ∆x such that, ∀θ ∈ ]-θ m , θ m [ the expansion

G(θ, λ q , ∆x) = - ∞ p=1
(1 -S(θ, λ q , ∆x)) p pλ q ∆x q holds and the series ∞ p=1 α p (λ q , ∆x)θ p converges to 1 λq∆x q ln(S(θ, λ q , ∆x)).

Proof. The scheme (5.17) is consistent with the PDE (5.16) and so |S(0, λ q , ∆x) -1| = 0 < 1. Since S is a continuous function with respect to θ, ∃θ m (λ q , ∆x) > 0 such that |S(θ, λ q , ∆x) -1| < 1 ∀θ ∈]-θ m , θ m [, and consequently, the principal logarithm ln(S(θ, λ q , ∆x)) defined by the series expansion :

ln(S(θ, λ q , ∆x)) = ln(1 -(1 -S(θ, λ q , ∆x))) = ∞ p=1 - (1 -S(θ, λ q , ∆x)) p p (5.30)
is convergent and e ln(S(θ,λq,∆x)) = S(θ, λ q , ∆x). This proves that the function:

G(θ, λ q , ∆x) = 1 λ q ∆x q ln(S(θ, λ q , ∆x)) (5.31) is a solution of equation (5.29) for θ ∈]-θ m , θ m [. The exponential function is locally invertible in the vicinity of 0 and so this expansion is unique in this vicinity [START_REF] Carpentier | On the derivation of the modified equation for the analysis of linear numerical methods[END_REF] and therefore ∀θ ∈ ] -θ m , θ m [ . Moreover, since S(θ, λ q , ∆x) is entire (as a finite sum of exponential functions) then further expanding S into power series of θ for θ ∈] -θ m , θ m [ finally yields:

G(θ, λ q , ∆x) = ∞ p=1
α p θ p = 1 λ q ∆x q ln(S(θ, λ q , ∆x)) (5.32) and hence, ∞ p=1 α p (λ q , ∆x)θ p is the series expansion of 1 λq∆x q ln(S(θ, λ q , ∆x)). This concludes our proof. Remark 5.2.2. Equality (5.32) also implies that the coefficients α p (λ q , ∆x) are given by :

α p (λ q , ∆x) = ∂ p ∂θ p
ln(S(θ, λ q , ∆x)) p!λ q ∆x q θ=0

(5.33)

Remark 5.2.3. θ m is not the radius of convergence of the series G(θ, λ q , ∆x). If we denote by R the radius of convergence, then we have R ≥ θ m . The exact radius is not trivial to find in practice in the general case, since G(θ, λ q , ∆x) is a series expansion of a composite function. However it is sometimes possible to give estimates or exact values of the radius for some examples as will be shown later.

Remark 5.2.4. In practice, when looking for convergence, we are mainly searching for constraints in λ q and ∆x, for which the series G(θ, λ q , ∆x) is convergent ∀θ ∈ [-π, π], that is we want R > π. A sufficient condition is θ m > π.

So far, we have shown that for fixed parameters ∆x and λ q , the series G(θ, λ q , ∆x) converges if θ ∈] -θ m , θ m [. This being a sufficient condition of convergence, we do not know what happens for |θ| ≥ θ m . On the other hand it is worth noting that, for |θ| > R, the series is divergent and equality (5.29) does not hold anymore. Therefore, the modified equation stability is not linked to that of the scheme for |θ| > R.

Scheme stability domain and series convergence domain

Generally, in the Von Neumann setting, stability conditions of the scheme are given by constraints linking λ q and ∆x so that the inequality

|S(θ, λ q , ∆x)| ≤ 1 ∀θ ∈ [-π, π] (5.34)
is verified. These constraints define a region of stability R s in the (λ q , ∆x) plane, that is :

R s = (λ q , ∆x) ∈ R 2 + : ∀θ ∈ [-π, π] : |S(θ, λ q , ∆x)| ≤ 1 (5.35)
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In the same manner, we can define a region R c of the same plane, in which the series G(θ, λ q , ∆x) converges :

R c = (λ q , ∆x) ∈ R 2 + : ∀θ ∈ [-π, π] : |G(θ, λ q , ∆x)| < ∞ (5.36)
which is also equivalent to :

R c = (λ q , ∆x) ∈ R 2 + : R(λ q , ∆x) ≥ π (5.37)
In practice, it is not always possible to exactly determine R c . It is however easier to explicitly find a subset of this region, that is :

Ω c = (λ q , ∆x) ∈ R 2 + : ∀θ ∈ [-π, π] : |1 -S(θ, λ q , ∆x)| < 1 ⊂ R c (5.38)
It is worth mentioning that Ω c is always a non-empty set. Indeed, for λ q = 0, we have S(θ, 0, ∆x) = 1 and consequently ∀∆x ∈ R + there exists in R 2 a neighborhood of (∆x, λ q ) in which we have |1 -S(θ, λ q , ∆x)| < 1. This means that we always have convergence for sufficiently small values of λ q . Lastly, we denote by R m the region of stability of the modified equation :

R m = (λ q , ∆x) ∈ R 2 + : e λq∆x q G(θ,λq,∆x) ≤ 1 = (λ q , ∆x) ∈ R 2 + : Re(G(θ, λ q , ∆x) ≤ 0 (5.39) Provided these definitions, we can distinguish two cases :

1. If R s ⊂ R c then the stability of the modified equation provides reliable and complete information regarding the scheme stability.

2. If any subset of R s lies outside of the convergence domain R c , this means that there is information on the stability limit of the scheme that is missed by the modified equations since its Fourier transform is non existing outside of R c .

The following proposition is a direct consequence : Proposition 5.2.5. For any scheme that writes as (5.17) and that is consistent with (5.16) we have (R m ∩ R c ) ⊂ R s , that is if the modified equation is stable and its Fourier series is convergent then the scheme is also stable.

This proves that inside the convergence domain R c , the stability of the modified equation is a sufficient stability condition for the scheme. Furthermore, we shall add that if R s ⊂ R c then this condition is also necessary. This result, literally, is not of practical interest as the stability of the full series S(θ, λ q , ∆x) is either nontrivial or impossible to obtain. But we will show that the above classification permits to justify whether a truncated version of the modified equation yields significant information on stability.

Link between the stability of the scheme and the stability of a truncation

Instead of the full series expansion, let us consider a truncated modified equation to an arbitrary order N > P :

u t = N p=1 µ p (λ q , ∆x) ∂ p u ∂x p , µ N = 0 (5.40)
We recall that our main purpose is to know in which case does the stability of this truncation provide relevant information on the stability of the corresponding scheme. This differs from the approach of Warming and Hyett [START_REF] Warming | The Modified Equation Approach to the Stability and Accuracy Analysis of Finite-Difference Methods[END_REF] in the sense that they showed how to reconstruct the exact Von Neumann amplification factor using a finite amount of coefficients µ p without actually analyzing the stability of the truncated version. Under the Fourier transform, the previous equation writes :

dv dt =   N p=1 α p (λ q , ∆x)θ p   v(k, t) = P N (θ, λ q , ∆x)v(k, t) (5.41)
Here, P N (θ, λ q , ∆x) is a polynomial of θ of degree N which is trivially a truncation of the series G(θ, λ q , ∆x). In the same manner as previously, the ordinary differential equation (5.41) yields :

v(k, t + ∆t) = e ∆tP N (θ,λq,∆x) v(k, t) = S N (θ, λ q , ∆x)v(k, t) (5.42)
In contrast to the full series, the stability conditions of the truncation are obtainable in most cases through the analysis of the polynomial function P N (θ, λ q , ∆x). Let R N (θ, λ q , ∆x) be the rest of the series defined by :

R N (θ, λ q , ∆ x ) = G(θ, λ q , ∆ x ) -P N (θ, λ q , ∆ x ) = ∞ p=N +1 α p (λ q , ∆x)θ p (5.43)
In the convergence domain R c , the rest R N (θ, λ q , ∆x) is bounded and we have :

lim N →+∞ R N (θ, λ q , ∆x) ≡ 0 and lim N →+∞ S N (θ, λ q , ∆x) ≡ S(θ, λ q , ∆x) (5.44) 
In this setting we can state the following result : Proposition 5.2.6. Assume an initial condition satisfying supp(v 0 ) ∈ [-M, M ] and an arbitrary truncation order N > P , then for any (∆x, λ q ) ∈ R c , if the truncated modified equation is stable in the sense that there exists C > 0 such that:

|S N (θ, λ q , ∆x)| ≤ 1 + C∆t (5.45)
then the scheme is also stable in the same sense.

Chapter 5. On the stability of modified equations for linear schemes Proof. For (∆x, λ q ) ∈ R c we have : S(θ, λ q , ∆x) = e ∆tG(θ,λq,∆x) = S N (θ, λ q , ∆x)e ∆tR N (θ,λq,∆x)

Thus, since v n = S n v 0 , we can write :

|v n | = |S n v 0 | ≤ |S N | n e n ∞ N +1 αpθ p v 0 ≤ (1 + C∆t) n e nAθ N +1 v 0 ≤ (1 + C∆t) n e nA(k∆x) N +1 v 0 ≤ (1 + C∆t) n e nA∆x N +1-q ∆tk N +1 /λq v 0 ≤ e CT e AT ∆x N +1-q M N +1 /λq v 0 ≤ e CT e AT ∆x N +1-q M N +1 /λq |v 0 | That is, v n is L 2 -stable for initial conditions that are of compact support in the frequency domain, that is k ∈ [-M, M ].

Examples

Heat equation -centered finite differences

Consider the centered finite differences scheme for the heat equation. It can be cast into the form :

u n+1 i = u n i + αλ 2 u n i-1 -2u n i + u n i-1
(5.46)

We take for simplicity α = 1. The modified equations associated to this scheme up to 8th order for example is given by :

∂u ∂t = ∂ 2 u ∂x 2 + ∆x 2 12 (1 -6λ 2 ) ∂ 4 u ∂x 4 + ∆x 4 360 1 -30λ 2 1 -4λ 2 ∂ 6 u ∂x 6 + ∆x 6 20160   1 -42λ 2 3 -40λ 2 1 -3λ 2   ∂ 8 u ∂x 8 + . . . ( 5.47) 
Straightforward computations yield :

S(θ, λ 2 , ∆x) = 1 + 4λ 2 sin 2 (θ/2) (5.48) R s = (λ q , ∆x) ∈ R 2 : λ 2 ≤ 1 2 ; Ω c = (λ q , ∆x) ∈ R 2 : λ 2 ≤ 1 4 (5.49) ∆tP 8 (θ, λ 2 , ∆x) = -λ 2 θ 2 - 1 -6λ 2 12 θ 4 + 1 -30λ 2 (1 -4λ 2 ) 360 θ 6 + λ 2 1 -42λ 2 (3 -40λ 2 (1 -3λ 2 )) 20160 θ 8 (5.50)
The domains of stability and convergence only depend on the parameter λ 2 independently of ∆x. This permits to take an arbitrary value of ∆x = 1 and carry on the analysis, based on only λ 2 . Furthermore since |S(θ, λ 2 , ∆x)| is an even function with respect to θ it suffices to look at θ ∈ [0, π]. . We can see that for λ 2 = 1/2, which lies outside of the convergence domain, the truncation curves stray away from the curve of S starting from θ = R. For λ 2 = 1/4, the truncations match well with S.

Transport equation -Upwind Euler

The scheme writes :

u n+1 i = u n i -cλ 1 (u n i -u n i-1 ) (5.51) 
We take c = 1. In this case, the modified equation up to 4th order for example is given by :

∂u ∂t + ∂u ∂x = (1-λ 1 ) ∆x 2 ∂ 2 u ∂x 2 - ∆x 2 6 (1 -2λ 1 ) ∂ 3 u ∂x 3 + ∆x 3 24 (1 -6λ 1 (1 -λ 1 )) ∂ 4 u ∂x 4 +. . . (5.52)
Straightforward computations yield :

S(θ, λ 1 , ∆x) = 1 -λ 1 1 -e -iθ (5.53) R s = (λ q , ∆x) ∈ R 2 : λ 1 ≤ 1 ; Ω c = (λ q , ∆x) ∈ R 2 : λ 1 ≤ 1 2 (5.54)
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∆tP 4 (θ, λ 1 , ∆x) = -iλ 1 θ + λ 1 (1 -λ 1 ) - 1 2 θ 2 + 1 6 (1 -2λ 1 )iθ 3 + 1 24 (1 -6λ 1 (1 -λ 1 ))θ 4 + . . .
(5.55) In contrast to the previous example for the heat equation, we could not compute explicitly the radius of convergence for values of interest of λ 1 . Nevertheless, it is possible to extend Ω c to cover all the values of λ 1 that are in R s (See appendix D.3). Hence, as shown in figure 5.2, for values of λ 1 ≤ 1, the amplification factor of the truncation to 6th order |S 6 (θ, λ 1 , ∆x)| seems to be a very good approximation of the scheme amplification factor |S(θ, λ 1 , ∆x)|, even for values of λ 1 that are in the vicinity of the stability threshold. We can see that for λ 1 ≤ 1 the truncation curves match well with the exact amplification factor even in the boundaries of stability. Inversely, it seems according to the right-hand graphic that λ 1 = 1 marks the threshold of convergence.

Conclusion and perspectives

We could explain throughout this work that one of the main reasons behind the failures of the modified equations technique is non other than series divergence. Although the analysis only provides sufficient conditions in general, it lifts some well-known ambiguities and provides some assumptions required by the technique to be of a more justified practical use. We show that in these settings, the stability of a truncation gives already reasonable approximations to stability conditions of the scheme. An extension of the obtained results to the case of systems is underway. It would be also interesting to extend this approach to cover a larger class of explicit and also implicit schemes.

Conclusion and perspectives

The main contribution of this work is the development of a new first order hyperbolic system of equations that approximates Euler-Korteweg type systems. The approach was shown efficient for two cases, namely for the defocusing cubic nonlinear Schrödinger equation and for thin films flows with capillarity. The obtained numerical results showed a very good agreement for a variety of solutions, including exact and asymptotic solutions, reference numerical solutions and experimental results in the one-dimensional case.

A natural continuation of this work would be to extend the results presented here to the multi-dimensional case. This requires the use of schemes with structure preserving properties in order to obtain results which are compatible with the curl-free constraint on p. Such a problem has been addressed for example in a recent work on a hyperbolic reformulation of compressible flows with surface tension [START_REF] Chiocchetti | High order ADER schemes and GLM curl cleaning for a first order hyperbolic formulation of compressible flow with surface tension[END_REF], which exhibits similar properties as the augmented Euler-Korteweg model.

Another interesting point to investigate is to generalize this approach to systems that are not only dispersive but also inherently dissipative and in particular, systems of the Navier-Stokes-Korteweg type. This can provide a more efficient way to numerically address the thin film equations, for which we employed classical finite differences for the diffusive terms. This would also generalize the approach to a wider class of equations.

It would be interesting to study the extension of the augmented Lagrangian approach to systems with a non-convex free energy such as the focusing NLSE. Some recent advance in that direction has been done for the study of bistable tapespring in [START_REF] Bourgeois | Dynamics of a regularized and bistable Ericksen bar using an extended Lagrangian approach[END_REF] where the nonconvexity zone is bounded.

Lastly, it would be helpful to properly implement transparent boundary conditions for this approach. This point was not addressed in the current work and was avoided by considering sufficiently large computational domains when necessary, to avoid the spurious oscillations which would reflect on the boundaries.

A.1.1 Euler-Lagrange equation associated with δη

We recall that the variations of ∇η and η write :

δ(∇η) = ∇(δη), δ η = ∂δη ∂t + ∂δη ∂x u (A.3)
By applying Hamilton's principle of stationary action to (A.2), we can write :

δa = 0 ⇒ δ t 1 t 0 Ωt ρ |u| 2 2 -W (ρ, η, η, ∇η) dΩ dt = 0 (A.4) consequently: δa = t 1 t 0 Ωt δ ρ |u| 2 2 -W (ρ, η, η, ∇η) dΩdt = t 1 t 0 Ωt - ∂W ∂η δη + ∂W ∂ η δ η + ∂W ∂∇η δ∇η dΩdt = t 1 t 0 Ωt - ∂W ∂η δη + ∂W ∂ η ∂δη ∂t + ∂W ∂ η ∂δη ∂x u + ∂W ∂∇η δ∇η dΩdt.
Using Gauss-Ostrogradski's theorem and taking into account that the variation δη is vanishing on the boundary of [t 0 , t 1 ] × Ω t , we can eliminate derivatives of variations. Let us demonstrate how this process works on one of the terms in the last integral. We write for example:

t 1 t 0 Ωt ∂W ∂ η ∂δη ∂t dΩ t dt = t 1 t 0 Ωt ∂ ∂t ∂W ∂ η δη - ∂ ∂t ∂W ∂ η δη dΩ t dt = Ωt ∂W ∂ η δη t1 t0 dΩ t =0 - t 1 t 0 Ωt ∂ ∂t ∂W ∂ η δη dΩ t dt = - t 1 t 0 Ωt ∂ ∂t ∂W ∂ η δη dΩ t dt
Applying the same technique for the remaining terms, yields:

δa = t 1 t 0 Ωt - ∂W ∂η + ∂ ∂t ∂W ∂ η + div ∂W ∂ η u + div
∂W ∂∇η δη dΩdt = 0, for any δη.

Thus, we obtain Euler-Lagrange's equation for η:

∂ ∂t ∂W ∂ η + div ∂W ∂ η u + ∂W ∂∇η = ∂W ∂η . (A.5) δ ρ |u| 2 2 -W (ρ, η, η, ∇η) dΩdt = t 1 t 0 Ωt |u| 2 2 δρ + ρu • δu - ∂W ∂ρ δρ - ∂W ∂ η δ η dΩdt = t 1 t 0 Ωt |u| 2 2 δρ + ρu • δu + ∂W ∂ρ div(ρδx) - ∂W ∂ η (δu • ∇η) dΩdt = t 1 t 0 Ωt |u| 2 2 δρ + ρu • δu -ρ∇ ∂W ∂ρ • δx dΩdt - t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t + (u • ∇) δx -∇uδx • ∇η dΩdt
For now let us split Hamilton's action into two separate integrals, as each of them still requires some work and term rearrangements. Thus, we write :

δa = δa 1 -δa 2
where :

δa 1 = t 1 t 0 Ωt |u| 2 2 δρ + ρu • δu -ρ∇ ∂W ∂ρ • δx dΩdt (A.7) δa 2 = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t + (u • ∇) δx -∇uδx • ∇η dΩdt (A.8)
We develop :

δa 1 = t 1 t 0 Ωt - |u| 2 2 div(ρδx) + ρu • (δx) - ∂u ∂x δx -ρ∇ ∂W ∂ρ • δx dΩdt = t 1 t 0 Ωt ρ∇ |u| 2 2 • δx + ρu • ∂δx ∂t + ∂δx ∂x u - ∂u ∂x δx -ρ∇ ∂W ∂ρ • δx dΩdt = t 1 t 0 Ωt ρ∇ |u| 2 2 • δx - ∂ρu ∂t • δx -div(ρu ⊗ u) • δx -ρu • ∂u ∂x δx -ρ∇ ∂W ∂ρ • δx dΩdt = t 1 t 0 Ωt ρ∇ |u| 2 2 • δx -ρu • ∂u ∂x δx - ∂ρu ∂t + div(ρu ⊗ u) + ρ∇ ∂W ∂ρ • δx dΩdt.
For lightness, let us denote by A the quantity:

A = - ∂ρu ∂t + div(ρu ⊗ u) + ρ∇ ∂W ∂ρ
and let us pursue the development of the remaining terms :

δa 1 = t 1 t 0 Ωt ρ∇ |u| 2 2 • δx -ρu • (div(δx ⊗ u) -div(δx)u)) + A • δx dΩdt = t 1 t 0 Ωt ρ ∂u ∂x u • δx + tr (δx ⊗ u) ∂ρu ∂x + ρ |u| 2 div(δx) + A • δx dΩdt = t 1 t 0 Ωt ρ ∂u ∂x u • δx + u • ∂ρu ∂x δx + ρ |u| 2 div(δx) + A • δx dΩdt = t 1 t 0 Ωt ρ ∂u ∂x u • δx + u • (div(δx ⊗ ρu) -ρu div(δx)) -∇ ρ |u| 2 • δx + A • δx dΩdt = t 1 t 0 Ωt ρ ∂u ∂x u • δx + u • div(δx ⊗ ρu) + A • δx dΩdt = t 1 t 0 Ωt ((div(u ⊗ u) -div(u)u) • (ρδx) + u • div(δx ⊗ ρu) + A • δx) dΩdt = t 1 t 0 Ωt (div((u ⊗ u)ρδx) + A • δx) dΩdt = t 1 t 0 Ωt - ∂ρu ∂t + div(ρu ⊗ u) + ρ∇ ∂W ∂ρ • δx dΩdt
This concludes the computation of δa 1 . Using the same techniques and hints, let us carry on by developing δa 2 . We write :

δa 2 = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t + ∂δx ∂x u -∇uδx • ∇η dΩdt = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t • ∇η + ∂δx ∂x u • ∇η -(∇u T ∇η) • δx dΩdt = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t • ∇η + (div(u ⊗ δx) -δxdiv(u)) • ∇η -(∇u T ∇η) • δx dΩdt = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t • ∇η + div(u ⊗ δx∇η) -tr u ⊗ δx ∂∇η ∂x -div(u)∇η • δx -(∇u T ∇η) • δx dΩdt = t 1 t 0 Ωt ∂W ∂ η ∂δx ∂t • ∇η + div((∇η • δx)u) - ∂∇η ∂x u • δx -div(u)∇η • δx -(∇u T ∇η) • δx dΩdt.
Now we use the Green-Ostrogradski's theorem, taking into account that δx = 0 on the boundary ∂Ω t , to obtain :

δa 2 = - t 1 t 0 Ωt ∂ ∂t ∂W ∂ η ∇η + u • ∇ ∂W ∂ η ∇η + ∂W ∂ η ∂∇η ∂x u + ∂W ∂ η div(u)∇η + ∂W ∂ η ∇u T ∇η •δxdΩdt
Reuniting both parts into Hamilton's action δa we finally get : 

t 1 t 0 Ωt ∂ ∂t ∂W ∂ η ∇η + u • ∇ ∂W ∂ η ∇η + ∂W ∂ η ∂∇η ∂x u + ∂W ∂ η div(u)∇η + ∂W ∂ η ∇u T ∇η -A •δxdΩdt = 0 ∀δx Hence, - ∂ρu ∂t -div (ρu ⊗ u) -ρ∇ ∂W ∂ρ + ∂ ∂t ∂W ∂ η + div ∂W ∂ η u ∇η + ∂W ∂ η ∇ ∂ ∂t η + u∇η = 0 - ∂ρu ∂t -div (

A.2 Asymptotics of the Augmented Momentum equation

In this section we show that the momentum balance equation for the augmented system and which we remind here : The denotation div means that we derive with respect to the transformed base coordinates given by x = Ox. More generally for any vector v and scalar λ we give the following relations : This permits to easily prove that the system of equations (1.21) are invariant by rotation.

A.4 Analog of Helmholtz's equation for vorticity

Given that the potential W depends explicitly on the material derivative of the macroscopic variable η, one can derive an analog of Helmholtz's equation for vorticity. We proceed as in [START_REF] Gavrilyuk | Generalized vorticity for bubbly liquid and dispersive shallow water equations[END_REF], [START_REF] Gavrilyuk | A new form of governing equations of fluids arising from Hamilton's principle[END_REF] and define the quantity : The last equation means that c p is an eigenvalue of the matrix A(U 0 ) -i k ∇S(U 0 ) : The eigenvalues are therefore given by :

K = u - 1 
A(U 0 ) - i k ∇S(U 0 ) =         0 ρ 0 0 0 2 (ρ) + ρ (ρ) + 1 αρ 0 0 0 -1 αρ -i kαβρ 2 0 0 -K(ρ) βρ i kαβρ 2 0 0 -1 0 0 0 0 -i/k 0 0         (A.
c p = 0, (c p (k) ± ) 2 = 1 2 B(k) ± B(k) 2 -4C(k) (A.21)
The phase velocities are all real since the augmented E-K system admits no inherent dissipation. In fact, a trivial computation shows that :

B(k) 2 -4C(k) = 1 α + 1 k 2 αβρ 2 + K(ρ) βρ + 2ρe (ρ) + ρ 2 e (ρ) 2 + 4 α 2 βρ 2 k 2 > 0
) T . With these notations, the let us detail how the scheme writes. The first stage of the scheme writes : This reduces the explicit expressions of η n+1 and w n+1 to :

                               ρ = ρ n -γ ∆t ∆x f n
       η n+1 = 1 1+ γ 2 ∆t 2 αβρ 2 Y + γ∆tZ + γ 2 ∆t 2 αβρ w n+1 = 1 1+ γ 2 ∆t 2 αβρ 2 Z -γ∆t αβρ 2 Y + γ∆t αβρ (A.29)
These functions are called respectively elliptic sine, elliptic cosine and delta amplitude. The definition we use does not provide an explicit expression of any of the three functions since the amplitude function am is defined implicitly. Therefore, we will try to summarize the main properties.

1. Periodicity : For any fixed value of 0 < s < 1, sn and cn are periodic in terms of the real variable u, of period 4K(s). dn is also periodic in the same setting, of period 2K(s). 

B.3 Practical example: Periodic solution of NLS equation

We established in section 2.2 that a periodic travelling wave solution to NLSE satisfies the differential equation : Besides we have :

U = 1 4 (r 1 + r 2 + r 3 + r 4 ) = 1 4 (2r 1 + u R + 2 √ ρ R + u R -2 √ ρ R ) = 1 2 (r 1 + u R )
r 1 -r 2 = (r 1 -r 3 )(r 2 -r 4 ) r 3 -r 4 s 2 Thus : lim Substituting the values of the Riemann invariants and using the equality u R -2

s 2 →0 V 1 (s) = lim
√ ρ R = u 0 -2 √ ρ 0 , we finally obtain :

τ 1 = lim s 2 →0 V 1 (s) = u R + 8ρ 0 -8 √ ρ 0 ρ R + ρ R 2 √ ρ 0 - √ ρ R (B.35)
In a similar fashion, we can calculate the asymptotic value τ 2 which corresponding to the trailing edge (s 2 = 1). In this setting we have :

r 2 = r 3 = u R + 2 √ ρ R , V 2 = V 3 , r 1 = u 0 + 2 √ ρ 0 , r 4 = u 0 -2 √ ρ 0 . (B.36)
In this case, the Riemann invariants who merge are r 2 and r 3 and thus : lim where :

s 2 →1 V 3 (s) = lim s 2 →1 V 2 (s) = lim
B 0 = 6i ReW e k 2 ε 2+m + C W e k 3 ε 3+m + 6i Re + Ckε + k 3 ε 3 W e B 1 = 3i ReW e k 2 ε m+2-d + 3i Re ε -d B 2 = -kε 1-2d -k 3 ε p+1-2d - 1 W e k 3 ε 3-2d+m - 6i Re k 2 ε -2d+m+p -Ck 3 ε 1-2d+m+p B 3 = - 3i Re k 2 ε m+p-3d B 4 = k 3 ε 1-4d+m+p
Identifying the leading order in ε in these coefficients yields : Let us start with the case d = 1. This scaling is trivially reminiscent of c p 2 of the original system, so one should intuitively recover its corresponding eigenvalue. Similarly to before we consider the following expansion :

B 0 = O(
Y = Y 0 + εY 1 + ε 2 Y 2 + ε 3 Y 3 + ε m Y m + ε m+1 Y m+1 + ε m+2 Y m+2 + ε 2m Y 2m + ε 2m+1 Y 2m+1 + ε 3m Y 3m + ε p Y p + ε p+1 Y p+1 + ε p+2 Y p+2 + ε 2p Y 2p + ε 2p+1 Y 2p+1 + ε 3p Y 3p + ε m+p Y m+p + ε m+p+1 Y m+p+1 + O(ε 3 )
There are more terms in this expansion compared with (C.7) since, in order to have a second order expansion in X, one needs to go to third order in Y . It would be best to replace Y by this series in εQ(Y ) to have order 0 as leading order. Setting to zero the leading terms in ε and identifying, yields the expressions : where φ = θ 2 and b p = a 2p . We proceed as follows in order to check the radius of convergence. We use Bernoulli's number [START_REF] Weisstein | Euler Polynomial" From MathWorld-A Wolfram Web Resource[END_REF]: 

Y 0 = 3i kRe , Y 1 = 2, Y 2 = -
B 2p = -pE 2p-1 (0) ( 2 
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  δx u, ρ, η, η, ∇η δη Chapter 1. A First order Hyperbolic model for Euler Korteweg Systems
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 111112 In the augmented setting, p is by definition the gradient of η. Thus, it should satisfy the compatibility condition curl(p) = 0. Even though we will focus mainly on one-dimensional applications in the current work, it should be kept in mind that p should be curl-free in the multi-dimensional case. Chapter 1. A First order Hyperbolic model for Euler Korteweg Systems 1.2. Comparison with the original equations The used hyperbolic reformulation changes the definition of a potential flow.
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 511 Figure 1.1: Representation of the eigenvalues of the augmented E-K system. u is a triple eigenvalue. ξ ± 4 can coincide with u and ξ ± 4 can coincide with ξ ± 5 .
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 221221 Figure 2.1: Overall shape of the gray soliton solution in terms of the variables ρ and u for arbitrary values of the parameters b 1 and b 3 at t = 0 Remark 2.2.1. The particular case where b 3 = 0 is called a dark soliton. Notice that the soliton peak in this case reaches a point where ρ = 0 to which corresponds a singularity in the velocity.

4 .

 4 Calculate the functions b 1 (s), b 2 (s), b 3 (s), U (s). 20 Chapter 2. Non-Linear Schrödinger equation Chapter 2. Non-Linear Schrödinger equation 5. Calculate τ (s) = V 2 (s).
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 22 Figure 2.2: Asymptotic profile of the solution to NLS equation (continuous line) for the Riemann problem ρ L = 2, ρ R = 1 , u L = u R = 0. The boundaries τ i , i = 1, 2, 3, 4 delimit the DSW and the rarefaction wave regions. The modulation of the DSW profile between τ 2 and τ 1 is described by the rarefaction wave solution to the Whitham system (bold dashed line). The oscillatory profile is shown at t = 70. The values of τ i , i = 1, 2, 3, 4, are given by

Figure 2 . 4 :

 24 Figure 2.4: The dispersion relation (2.53) (continuous line) and (2.52) for the augmented Lagrangian (dashed lines) for β = 10 -4 and different values of α.
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 52672 MUSCL Reconstruction of the state U : Applies a MUSCL reconstruction for the piece-wise data U in order to compute the intercell fluxes F i+ 1 Boundary conditions for the state U : Applying the boundary conditions for U , to compute the boundary intercell fluxes. Computation of the intercell Fluxes F i+ 1 The intercell fluxes are obtained by solving again the Riemann problem with U L = Ū R i and U R = Ū L i .
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 25 Figure 2.5: Numerical profiles of ρ (left) and u (right) for the grey soliton at t = 0 (dot-dashed line) and at t = 2T (continuous line). The used domain is L = [-20, 20] with ∆x = 0.0002, the period is T = D/U = 20. Parameters used for the simulation are b 1 = 1.5, b 3 = 1, U = 2, = 1, β = 10 -4 , α = 2.10 -3 .
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 26 Figure 2.6: Magnified view on the numerical 'grey' soliton peak, for different mesh sizes, at t = 2T . The theoretical amplitude and position are ρ = 1 and x = 0. Parameters used for the simulation are the same as in figure (2.5).

Figure 2 . 7 :

 27 Figure 2.7: The log-log plot of the L 2 error. The dots show the measured L 2 errors for different mesh sizes (10000, 20000, 50000, 100000) at t = 40. The continuous line is a linear interpolation. The measured convergence slope is approximately 1.53.
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 28 Figure 2.8: The phase error as a function of time (left) and as a function of the time squared (right), for three different mesh sizes : N x = 20000, 50000 and 100000.
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 29 Figure 2.9: Numerical profiles of ρ (left) and u (right) for the gray soliton for t = 0, t = 2T and t = 4T . The used domain is L = [-20, 20] with ∆x = 0.0002, the period is T = D/U = 20. Parameters used for the simulation are b 1 = 1.5, b 3 = 1, U = 2, = 1, β = 10 -4 , α = 2.10 -3 .

Figure 2 . 10 :

 210 Figure2.10: Differences ∆ρ = ρ(x, t) -ρ(x, 0) (left) and ∆u = u(x, t) -u(x, 0) (right) for the gray soliton for t = 0, t = 2T and t = 4T . The parameters are the same ones used above.

Figure 2 . 11 :

 211 Figure 2.11: Evolution of the errors ∆m, ∆q and ∆E over time.

Figure 2 . 12 :

 212 Figure 2.12: Magnified view over the smoothed step (continuous line) for δ = 0.1, ∆x = 0.000667.

Figure 2 . 13 :

 213 Figure 2.13: Comparison of the numerical results (thin line) with the Whitham modulational profile of the DSW (thick line) at t = 70. The left figure shows ρ = f (x/t) and the right figure shows u = f (x/t). The displayed τ i are the theoretical boundaries of the DSW and the rarefaction wave. The values of ρ 0 and u 0 are the theoretical values in the central plateau given by ρ 0 = 1 4 (

Figure 2 . 14 :

 214 Figure 2.14: Vanishing oscillations at the vicinity of the singular point τ = τ 4 . The figure on the left shows that these oscillations decrease in time. The figure on the right shows that the amplitude of the first oscillation a is such that at 3/2 is linear. This implies the power law a ∝ t -1/2 .

. 74 )Figure 2 . 15 :

 74215 Figure 2.15: Relative error on the position of the first soliton plotted as function of time.

Figure 2 . 16 :

 216 Figure 2.16: The step initial condition considered for the Riemann problem and the parameters ρ L = 2, ρ R = 1,u L = u R = 0, and δ = 10 -5 . The whole computation domain is shown here. The inset shows a zoom at the mesh size's level around the initial discontinuity.

Figure 2 . 17 :

 217 Figure 2.17: Comparison of the numerical results obtained for the previous initial conditions (thin line) with the Whitham modulational profile of the DSW (thick line) at t = 50. The upper figure shows ρ = f (x/t) and the lower figure shows u = f (x/t). The parameters are β = 2.10 -5 , α = 3.33 10 -3 , ∆x = 0.000667. The whole computational domain is [-800, 800].

Figure 2 . 18 :

 218 Figure 2.18: Comparison of the numerical results obtained with an IMEX scheme for the previous initial conditions (thin line) with the Whitham modulational profile of the DSW (thick line) at t = 70. The left figure shows ρ = f (x/t) and the right figure shows u = f (x/t).The parameters are β = 2.10 -5 , α = 10 -3 , ∆x = 0.01. The whole computational domain is[-500, 500] 
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 1 Schematic of a flowing thin film over an inclined horizontal plate with the notations used in this section.

Figure 3 . 2 :

 32 Figure 3.2: Stability regions for equations(3.6) in the (k, Re) plane. The thick red line corresponds to the neutral stability curve. The gray region are instable waves. The white region are stable waves. The parameters used here correspond to the Liu & Gollub's experiments[START_REF] Liu | Solitary wave dynamics of film flows[END_REF] with θ = 6.4 • , W e = 0.184, F = 0.847 and ε = 0.006.

28 )Chapter 3 .Remark 3 . 3 . 1 .

 283331 Thin film flows with capillarity As to relieve ambiguity, the augmented system will now refer to equations (3.23)-(3.27), where we substitute the momentum equation (3.43) by(3.28).

Figure 3 . 3 :

 33 Figure 3.3: Neutral stability curves in the (k, Re) plane for the original model (continuous blue line) and the augmented model for various scalings of α and β with respect to ε. The parameters used here are the same as in figure 3.2.
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 3 Thin film flows with capillarity Chapter 3. Thin film flows with capillarity

Figure 3 . 4 :

 34 Figure 3.4: Shape of the Gaussian initial data.

Figure 3 . 5 :

 35 Figure 3.5: Comparison of the obtained numerical results (solid lines) with the converged numerical solutions proposed in [14] (dots), for the Gaussian initial data (3.52) at t = 5ms. Parameters used here are g = 9.81m.s -2 , σ = 0.0728Kg.s -2 , ρ = 1000Kg.m -3 , h 0 = 2.725mm, h 0 = h 1 , b = 1.5h 1 and b 0 = 4.29193. α = 10 -3 m -2 s 2 and β = 10 -5 . Results are shown with a mesh resolution of n = 5000.

Figure 3 . 6 :

 36 Figure 3.6: Comparison of hx (dashed lines) and p (continuous lines) for the same values as above for both linear and nonlinear surface tension models. The curves coincide perfectly.

Figure 3 . 7 :

 37 Figure 3.7: Dimensionless water height as a function of space (dimensioned), in the setting of the Liu & Gollub experiment, for an imposed frequency of 1.5Hz. (Obtained through numerical simulation). Parameters used here are : Re = 19.33, κ = 1.440.10 -4 , F r = 0.8476,θ = 6.4 •

Figure 3 . 8 :

 38 Figure 3.8: Dimensionless water depth as a function of the downstream distance x for different frequencies : (a) f = 1.5Hz, (b) f = 3.0Hz and (c) f = 4.5Hz in the experiments of Liu & gollub [57]. Figures reprinted from J. Liu and J. P. Gollub. "Solitary wave dynamics of film flows". In: Physics of Fluids 6.5 (1994), pp. 1702-1712, with the permission of AIP Publishing.
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 39310351 Figure 3.9: Experimental results of Liu & gollub [57] (right) along the obtained numerical results (left), for different forcing frequencies, respectively equal to (a) : f1 = 1.5Hz, (b) : f2 = 3.0Hz and (c) : f = 4.5Hz. The number of mesh points is n = 40000. Experimental results figures are reprinted from J. Liu and J. P. Gollub. "Solitary wave dynamics of film flows". In: Physics of Fluids 6.5 (1994), pp. 1702-1712, with the permission of AIP Publishing.
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 41 Figure 4.1: One-dimensional profile of the droplet.

Figure 4 . 2 :

 42 Figure 4.2: Sketches of the overall shape of some droplets. To the left : the droplet is completely concave. Its edge forms a contact angle with the solid substrate underneath. To the right, the droplet changes convexity for some value h = h c and flattens in the vicinity of the contact angle, forming what we may call a precursor film.

Figure 4 . 3 :

 43 Figure 4.3: sketch of the profiles of P (h) (left) and P (h) (right) as a function of h.

Figure 4 . 4 :

 44 Figure 4.4: Different drop shapes for different values of K, obtained through numerically solving equation (4.21). Parameters used here are : g = 9.8ms -2 , σ = 0.072Kg.s -2 , h 0 = 1.262mm, h = 0.252mm and θ = 30 • .
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 45 Figure 4.5: Different drop shapes for different values of θ, obtained through numerically solving equation (4.21). Parameters used here are : g = 9.8ms -2 , σ = 0.072Kg.s -2 , h 0 = 0.45mm, h = 0.09mm and A = 10 -9 m 4 s -2 .

Figure 4 . 7 :

 47 Figure 4.7: Admissible phase portraits in the case of a single root h s . The left phase portrait corresponds to a contact angle θ < π/2 with a singularity in the middle. The right phase portrait corresponds to a contact angle θ > π/2.

( 4 . 52 )Figure 4 . 8 :

 45248 Figure 4.8: Full shape of a droplet for θ = 150 • , obtained through the above numerical algorithm. Parameters used here are : g = 9.8ms -2 , σ = 0.072Kg.s -2 , h 0 = 2.61mm, h = 0.261mm, A = 3.761.10 -8 m 4 s -2 and ∆x = 80nm.

Figure 4 . 9 :Remark 4 . 5 . 1 .

 49451 Figure 4.9: Full shape of a droplet for θ = 30 • , obtained through numerical simulation. Parameters used here are : g = 9.8ms -2 , σ = 0.072Kg.s -2 , h 0 = 2.61mm, h = 0.261mm, A = 3.761.10 -8 m 4 s -2 and ∆x = 80nm. Remark 4.5.1. From the numerical point of view, h s is obtained through solving equation (4.51) numerically. The first differential is solved until h reaches h s . The second equation is solved until h reaches 0. So there is no need to compute x s and L beforehand.
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 410 Figure 4.10: Convergence rates of C α and D α towards C and D respectively. The plots represent the relative errors Cα-C C

Figure 4 . 11 :

 411 Figure 4.11: Comparison of the overall shape of the droplet for the augmented system (dashed/dotted lines) and the reference model (blue continuous line) for several values of α. Parameters used here are g = 9.8ms -2 , σ = 0.072Kg.s -2 , θ = 30 • , h 0 = 0.7mm, h = 0.14mm and A = 10 -9 m 4 s -2 . The mesh size is ∆x = 0.1µm.

  nr p=-n l b p (∆x) u n j+p (5.17) 78 Chapter 5. On the stability of modified equations for linear schemes where n l and n r are the number of mesh points to the left and to the right of x j respectively, used in every iteration. The coefficients b p verify : nr p=-n l b p (∆x) = 0 (5.18)

Figure 5 .Figure 5 . 1 :

 551 Figure 5.1: Plot of the function |S(θ, λ 2 , ∆x)| along |S 2 (θ, λ 2 , ∆x)| and |S 8 (θ, λ 2 , ∆x)| for the values of λ 2 = 1/2 (left) and λ 2 = 1/4 (right). We can see that for λ 2 = 1/2, which lies outside of the convergence domain, the truncation curves stray away from the curve of S starting from θ = R. For λ 2 = 1/4, the truncations match well with S.

Figure 5 . 2 :

 52 Figure 5.2: Plot of the function |S(θ, λ 1 , ∆x)| along |S 6 (θ, λ 1 , ∆x)| for different values of λ 1 in the stable region (left) and in the unstable region (right). The continuous lines stand for the amplification factor |S(θ, λ 1 , ∆x)| and the dashed lines represent the truncated modified equation amplification factor |S 6 (θ, λ 1 , ∆x)|.We can see that for λ 1 ≤ 1 the truncation curves match well with the exact amplification factor even in the boundaries of stability. Inversely, it seems according to the right-hand graphic that λ 1 = 1 marks the threshold of convergence.

2 KA. 3 . 3 ) 2 K (ρ) |∇ρ| 2 For∇ ρ 1 2 K∇ρ = ρ∇ 1 2 K 2 K 2 ∇∇ρ = ρ∇ 1 2 K 2 K 2 K∇ρ = ρ∇ 1 2 K 2 KA. 3 3 )

 2332222222222233 ∂ρu ∂t +div ρu ⊗ u + ρ 2 (ρ) + 1 2 (ρK (ρ) -K(ρ))|p| 2 + η α 1 -η ρ Id + K(ρ)p ⊗ p = 0approaches the original one :∂ρu ∂t + div (ρu ⊗ u) + ∇(ρ 2 (ρ)) = ρ∇ K(ρ)∆ρ + 1 (ρ) |∇ρ| 2in the limits of the small parameters α → 0 and β → 0. Let us proceed by replacing in the momentum equation, accordingly to equation (1.25), the term : K(ρ)∆η + K (ρ)∇ρ • ∇η) + βρ ẇ we obtain :∂ρu ∂t +div ρu ⊗ u + ρ 2 (ρ) + 1 2 (ρK (ρ) -K(ρ))|p| 2 -ρ (K(ρ)∆η + K (ρ)∇ρ • ∇η) + βρ ẇ Id + K(ρ)∇η ⊗ ∇η = 0Invariance by rotations of the group SO(By making use of the asymptotic formulas :η = ρ + O(α), ∇η = ∇ρ + O(α), ∆η = ∆ρ + O(α)we get :∂ρu ∂t +div (ρu ⊗ u)+∇ ρ 2 (ρ) = ∇ 1 2 (ρK (ρ) + K(ρ))|∇ρ| 2 + ρK(ρ)∆ρ -div (K(ρ)∇ρ ⊗ ∇ρ)+O(α)+O(β)Thus it only remains to show that :ρ) + K(ρ))|∇ρ| 2 + ρK(ρ)∆ρ -div (K(ρ)∇ρ ⊗ ∇ρ) = ρ∇ K(ρ)∆ρ + 1this purpose, let us expand the left hand side :∇ 1 2 (ρK (ρ) + K(ρ))|∇ρ| 2 + ρK(ρ)∆ρ -div (K(ρ)∇ρ ⊗ ∇ρ) = (ρ)|∇ρ| 2 + K(ρ)∆ρ + 1 2 K(ρ)|∇ρ| 2 -div (K(ρ)∇ρ) ∇ρ -K(ρ) ∂∇ρ ∂x (ρ)|∇ρ| 2 + K(ρ)∆ρ + 1 (ρ)|∇ρ| 2 + K(ρ)∆ρ ∇ρ + 1 K(ρ)|∇ρ| 2 -div (K(ρ)∇ρ) ∇ρ -K(ρ) ∂∇ρ ∂x (ρ)|∇ρ| 2 + K(ρ)∆ρ + 1 (ρ)|∇ρ| 2 + K(ρ)∆ρ ∇ρ + 1 (ρ)|∇ρ| 2 ∇ρ + K(ρ) ∂∇ρ ∂x ∇ρ -K (ρ)|∇ρ| 2 ∇ρ -K(ρ)∆ρ∇ρ -K(ρ) ∂∇ρ ∂x (ρ)|∇ρ| 2 + K(ρ)∆ρThis ends the computation and shows that the augmented E-K momentum equation writes as:∂ρu ∂t + div (ρu ⊗ u) + ∇(ρ 2 (ρ)) = ρ∇ K(ρ)∆ρ + 1 (ρ) |∇ρ| 2 + O(α) + O(β)Invariance by rotations of the group SO(In order to simplify the hyperbolicity check, we will show that our system is invariant by rotation. Let O ∈ SO(3) be a constant orthogonal transformation (OO T = Id). The aim is to show that the set of equations (1.21) remains unchanged after applying the orthogonal transformation O. Let us consider the variables in the new transformed base, denoted with primes :x = Ox u = Ou p = Op , t = t ρ = t w = w η = η (A.10)For the mass conservation equation for example we have :

  div(v) = div O T v = tr O T ∂v ∂x = tr O T ∂v ∂x λ = O T ∇λ (A.12)

  Id + A(U 0 ) -i k (∇S(U 0 )) U 1 = 0, where c p = ω/k (A.18)which implies :det -c p Id + A(U 0 ) -i k (∇S(U 0 )) = 0 (A.19)

20 )

 20 Thus one obtains the characteristic polynomial :-c p c 4 p -B(k)c 2 p + C(k) = 0where B(k) and C(k) are the same as in section 1.4, which we remind here :

ρ i+ 1 2 -f n ρ i-1 2 u = ρ n u n -γ ∆t ∆x f n ρu i+ 1 2= ρ n η n -γ ∆t ∆x f n ρη i+ 1 2 -f n ρη i-1 2 +n ρw i+ 1 2 -f n ρw i-1 2 +n ρu i+ 1 2 -f n ρu i-1 2 (A. 23 )Y n = ρ n η n -γ ∆t ∆x f n ρη i+ 1 2Z n = ρ n w n -γ ∆t ∆x f n ρw i+ 1 2n ρu i+ 1 2 -f n ρu i-1 2 + (γ - 2 ) ∆t ∆x f ρu i+ 1 2 -f ρu i- 1 2n ρη i+ 1 2 -f n ρη i-1 2 + 2 -f ρη i- 1 2n ρw i+ 1 2 -f n ρw i-1 2 + 2 -f ρw i-1 2 /ρ n+1 + ( 1 -n ρu i+ 1 2 -f n ρu i-1 2 (A. 27 )Yn ρη i+ 1 2 -f n ρη i-1 2 + (γ - 2 ) ∆t ∆x f ρη i+ 1 2 -f ρη i-1 2 + ( 1 n ρw i+ 1 2 -f n ρw i-1 2 + (γ - 2 ) ∆t ∆x f ρw i+ 1 2 -f ρw i-1 2 + ( 1

 22122222223112222122212222n+112227222221222221 γ∆tρ w /ρ w = ρ n w n -γ ∆t ∆x f γ ∆t αβ (1 -η /ρ ) /ρ p = ρ n u n -γ ∆t ∆x fThus, we first compute ρ and p since their expressions are explicit. Then we use the value of ρ to compute u . It remains to solve the implicit part for η and w . we denote by Y n and Z n the quantities : expressions of η and w reduce to :   η = Y n + γ∆tω w = Z n + γ∆t αβρ 1 -η ρ (A.25) u n+1 = ρ n u n -(γ -1) ∆t ∆x f /ρ n+1 η n+1 = ρ n η n -(γ -1) ∆t ∆x f (γ -2) ∆t ∆x f ρη i+ 1 /ρ n+1 + ((1 -γ)∆tρ w + γ∆tρ n+1 w n+1 ) /ρ n+1 w n+1 = ρ n w n -(γ -1) ∆t ∆x f (γ -2) ∆t ∆x f ρw i+ 1 γ) ∆t αβ (1 -η /ρ ) + γ ∆t αβ (1 -η n+1 /ρ n+1 ) /ρ n+1 p = ρ n u n -γ ∆t ∆x fSolving the implicit part goes exactly as in the first steps, since we can write :   η n+1 = Y + γ∆tω n+1 w n+1 = Z + γ∆t αβρ 1 -η n+1 ρ n+1 (A.28)with Y and Z defined by : = ρ n η n -(γ -1) ∆t ∆x fγ)∆tρ w /ρ n+1 Z = ρ n w n -(γ -1) ∆t ∆x fγ) ∆t αβ (1 -η /ρ ) /ρ n+1

2 .y 2 = ( 1 -y 2 )( 1 -s 2 + s 2 y 2 )y 2 = ( 1 -y 2 )( 1 -s 2 y 2 )y 2 = ( 1 -y 2 )(y 2 - 1 + s 2 ) 1 Figure B. 2 :

 22121222121221221212 Figure B.2: Overall behavior of the Jacobi elliptic functions for different values of the elliptic modulus s. Represented from left to right are sn, cn and dn. For each plot, the blue and red line represent the limiting behaviors for s → 0 and s → 1 respectively. the gray lines correspond to arbitrary values of 0 < s < 1.
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 2413 Figure B.3: Representative graphic of P (ρ) for arbitrary parameters b 1 > b 2 > b 3 .

1 -r 2 ) (r 1 - 1 -r 2 ) (r 1 - 1 -r 2 ) (r 1 -(r 1 -

 1211211211 r 4 )K(s) (r 1 -r 4 )K(s) -(r 2 -r 4 )E(s) r 4 )(1 + s 2 /4) (r 1 -r 4 )(1 + s 2 /4) -(r 2 -r 4 )(1 -s 2 /4) r 4 )(1 + s 2 /4) r 1 -r 2 + s 2 4 (r 1 -2r 4 + r 2 ) r 3 )(r 2 -r 4 ) r 3 -r 4 s 2 (r 1 -r 4 )(1 + s 2 /4) (r 1 -r 3 )(r 2 -r 4 ) r 3 -r 4 s 2 + s 2 4 (r 1 -2r 4 + r 2 )   = U + (r 1 -r 4 )(r 1 -r 3 )(r 2 -r 4 ) 2(r 1 -r 3 )(r 2 -r 4 ) + (r 2 -r 4 )(r 3 -r 4 ) = U + (r 1 -r 4 )(r 1 -r 3 ) 2(r 1 -r 3 ) + (r 3 -r 4 )

r 2 -r 3 = (r 1 -r 3 )(r 2 -r 4 ) (r 1 -r 4 ) ( 1 - 3 -r 4 ) 1 1 -r 2 -r 4 r 2 -r 3 Er 1

 231324141314231 -r 4 (r 1 -r 3 )(1-s 2 ) ln(4/ √ 1-s 2 )  solutions can be found by use of proper rescaling of the equation. In such a case we consider a new variable Y (ε) = ε d X where Y (ε) can be expanded into a regular series. In order to obtain the singular expansion, one needs to find and balance the leading-order dominant terms with respect to ε. Substituting X by Y /ε d leads to the polynomial:Q 1 (Y ) = B 0 + B 1 Y + B 2 Y 2 + B 3 Y 3 + B 4 Y 4 , B n = ε -nd A n , n ∈ {0,1, 2, 3, 4} (C.13)

  1), B 1 = O(ε -d ), B 2 = O(ε 1-2d ), B 3 = O(ε m+p-3d ), B 4 = O(ε m+p+1-4d ) (C.14) Balancing leading order dominant terms yields two possibilities : • Balancing B 1 and B 2 as leading terms gives d = 1. • Balancing B 2 and B 4 as leading terms gives d = m+p 2 . It is easy to check that all other combinations either lead to balancing non dominant terms or overlap with the previous cases. Thus, rescaling the equation by ε d for d = 1 and d = m+p 2 should reveal all the remaining roots.
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 39233 kRe(C -4), Y 3 = 4 Re 2 (C -4) (C.15) Y p = -3ik Re , Y p+2 = 4 Re, Y 2p = 3ik 3 Re , Y 3p = -3ik5Re (C.[START_REF]Capillarité interne en mécanique des millieux continus[END_REF] 
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 2921 2p -1) (D.[START_REF] Benzoni-Gavage | Planar traveling waves in capillary fluids[END_REF] and plug this ansatz into b p to obtain :|b p | = (4) p E 2p-1This means that the series (D.6) has a radius R φ = π 2 /4 which implies that the radius of convergence of the series G(θ, 1/2, ∆x) is R = π/2. Centered scheme for the heat equation :λ 2 =We have :S(θ, λ 2 , ∆x) = 1 -sin(θ/2) 2 (D.10)The expression of the pth term a p is given by :p→+∞ |b p | 1/p = 1 π 2 . (D.13)This gives the radius of convergence of the series G(θ, 1/4, ∆x) is R = π.

  

  Thin film flows with capillarityThe dimensionless frequency is given by f = f L/ ŨN , where f is the imposed dimensioned frequency. In all the below presented numerical simulations, we take the following values of the relevant physical parameters:

	Fluid properties	Reference quantities Dimensionless numbers
	g	9.81m/s 2	hN	1.279mm	Re	19.33
	σ	0.067Kg/s 2	ŨN	94.94mm/s	F	0.8476
	ν 6.28.10 -6 m 2 /s L	210.5mm	κ	0.000144
	ρ	1080Kg/m 3	θ	6.4 •	ε	0.006076

.57) 54 Chapter 3. Thin film flows with capillarity Chapter 3.

  It is useful to note that the constraints (4.22) and (4.23) write explicitly in this case :

25) 60 Chapter 4. Stationary droplets on a solid substrate

  If this equality holds, then h(x) admits an inflection point. Otherwise it is strictly concave. By solving numerically the differential equation (4.21), for different values of the parameter K (varying A at fixed h ) we can plot the following figure :

	1.2									
	1									
	0.8									
	0.6									
	0.4									
	0.2									
	0	0	1	2	3	4	5	6	7	8 x(mm)

46) 64 Chapter 4. Stationary droplets on a solid substrate

  Finally , we obtain the Euler-Lagrange equation:

				ρu ⊗ u) -ρ∇		∂W ∂ρ		+	∂W ∂η		-div	∂W ∂∇η	∇η +	∂W ∂ η	∇	∂ ∂t	η + u∇η	= 0
	-	∂ρu ∂t	-div (ρu ⊗ u) -ρ∇		∂W ∂ρ		+	∂W ∂η		-div	∂W ∂∇η	∇η +	∂W ∂ η ∇ η = 0
	-	∂ρu ∂t	-div (ρu ⊗ u) -ρ∇		∂W ∂ρ		-div	∂W ∂∇η	∇η +	∂W ∂η	∇η +	∂W ∂ η ∇ η = 0
	-	∂ρu ∂t	-div (ρu ⊗ u) -ρ∇		∂W ∂ρ		-div	∂W ∂∇η	∇η + ∇W -	∂W ∂ρ	∇ρ -	∂∇η ∂x	∂W ∂∇η	= 0
	-	∂ρu ∂t	-div (ρu ⊗ u) -ρ∇	∂W ∂ρ	+	∂W ∂ρ	∇ρ -∇W -div	∂W ∂∇η	∇η +	∂∇η ∂x	∂W ∂∇η	= 0
	∂ρu ∂t	+ div (ρu ⊗ u) + div	ρ	∂W ∂ρ	-W Id + div	∂W ∂∇η	⊗ ∇η = 0
				∂ρu ∂t	+ div ρu ⊗ u + ρ	∂W ∂ρ	-W Id +	∂W ∂∇η	⊗ ∇η = 0	(A.9)

  Let us start from the augmented system, written here in its general form : A.4. Analog of Helmholtz's equation for vorticity

						∂ρ ∂t	+ div(ρu) = 0
						∂u ∂t		+	∂u ∂x	u +	1 ρ	div	∂W ∂p	p +	1 ρ	∂p ∂x	∂W ∂p	+	1 ρ	∇ ρ	∂W ∂ρ	-W = 0
						∂p ∂t		+	∂p ∂x	u +			∂u ∂x	T	p -∇w = 0
						∂ ∂t			∂W ∂w				+ div	∂W ∂w	u + div	∂W ∂p	-	∂W ∂η	= 0
	Hence :																		
	∂K ∂t	=	∂u ∂t	+		1 ρ 2	∂W ∂w	∂ρ ∂t	p -	1 ρ	∂ ∂t	∂W ∂w	p -	1 ρ	∂W ∂w	∂p ∂t
		= -	∂u ∂x	u -	1 ρ	div		∂W ∂p	-	1 ρ	∂p ∂x	∂W ∂p	-	1 ρ	∇ ρ	∂W ∂ρ	-W
			-	1 ρ 2	∂W ∂w	div (ρu) p +	1 ρ	div	∂W ∂w	u p +	1 ρ	div	∂W ∂p	p
			-	1 ρ	∂W ∂η	p +	1 ρ	∂W ∂w	∂p ∂x	u +	1 ρ	∂W ∂w	∂u ∂x	T	p -	1 ρ	∂W ∂w	∇w
		= -	∂u ∂x	u -	1 ρ	∂p ∂x	∂W ∂p		-	1 ρ	∂W ∂ρ	∇ρ -∇	∂W ∂ρ	+	1 ρ	∇W -	1 ρ 2	∂W ∂w	div (ρu) p
			+	1 ρ	div		∂W ∂w	u p -	1 ρ	∂W ∂η	p +	1 ρ	∂W ∂w	∂p ∂x	u +	1 ρ	∂W ∂w	∂u ∂x	T	p -	1 ρ	∂W ∂w	∇w
		= -	∂u ∂x	u -∇		∂W ∂ρ				-	1 ρ 2	∂W ∂w	div (ρu) p +	1 ρ	div	∂W ∂w	u p
			+	1 ρ	∂W ∂w	∂p ∂x	u +	1 ρ	∂W ∂w	∂u ∂x	T	p
	ρ • u p -∂W p. 1 ρ ∂w We would like to show that K satisfies the PDE : = -∂u ∂x u -∇ ∂W ∂ρ + ∂W ∂w ∇ 1 ρ + 1 ρ div ∂W ∂w u p + 1 ρ ∂W ∂w ∇ (p • u)	∂W ∂w	div (u) p	(A.13)
		= -	∂u ∂x	∂K ∂t u -∇		+ curl(K) ∧ u + ∇ ∂W ∂ρ + ∂W ∂w ∇	1 ρ	1 2	|u| 2 -• u p + 1 ρ	∂W ∂w 1 ρ ∇ p • u + ∂W ∂w	∂W ∂ρ • u p + = 0	1 ρ	∂W ∂w	∇ (p • u)
		= -	∂u ∂x	u -∇		∂W ∂ρ				+ ∇	1 ρ	∂W ∂w	• u p +	1 ρ	∂W ∂w	∇ (p • u)
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APPENDIX A

Calculus and developments for the augmented E-K system

In this part of the appendix, we will detail all the necessary calculus for deriving motion equations from a given Lagrangian. This will be done in particular for both the original Lagrangian of the Euler-Korteweg system and for the associated augmented Lagrangian as well. In each case, we will first remind how the variations write and then proceed to a stepby-step computation. Several details which would have been too tedious to put into the main text are also exposed later, for example on how to compare the augmented model with the original one and how to compute the dispersion relation.

A.1 Augmented Lagrangian Calculus

Here, we will proceed in a generic manner, meaning that will we consider a very general form of the Lagrangian. This choice makes for much lighter and less cumbersome computations which serve the same purpose, while also providing more flexibility. Let us consider a Lagrangian whose expression can be put into the form :

Assume that this Lagrangian is submitted to a differential constraint that is the mass conservation law : ∂ρ ∂t + div (ρu) = 0.

We associate to the given Lagrangian, Hamilton's action for an arbitrary time interval [t 0 , t 1 ]:

We recall that the variables in this case are separated into two types depending on their variations in the sense that the variation δη involves η, ∇η and η, while the variation δx involves ρ, u and η. In both cases, it is supposed that the variations are vanishing at the boundary of [t 0 , t 1 ] × Ω t .

A.1.2 Euler-Lagrange equation associated with δx

In this case, the variations write :

Hamilton's action writes :

Appendix A. Calculus and developments for the augmented E-K system

We calculate now curl (K) ∧ u as follows

Which gives :

Hence, summing both equations yields :

∂W ∂w

Finally, we obtain Lamb's form of the momentum equation :

Applying the curl operator to this equation we get :

where Ω = curl (K) is called a generalized vorticity [START_REF] Gavrilyuk | Generalized vorticity for bubbly liquid and dispersive shallow water equations[END_REF]. The previous equation implies that if Ω = 0 initially then it remains 0 for all times.

A.5 Derivation of the dispersion relation

We consider the pde :

Here, the vector U = (ρ, u, w, p, η) is the vector of state variables. The order is chosen as such only because it seemed easier to compute eigenvalues in this basis. Next we assume a constant equilibrium state defined by U 0 = (ρ 0 , 0, 0, 0, ρ 0 ) where ρ 0 is arbitrary and we consider a small monochromatic perturbation of this state in the x direction so that :

We plug this expression of U into the previous pde and we linearize around the equilibrium state U 0 , that is we neglect powers of ε that are quadratic or higher. We obtain the following equation :

-

A.6 IMEX scheme : General explicit form

We use the same IMEX scheme presented in section 2.4.2. Nevertheless, we detail its explicit formulation that does not require the risky use of root-finding algorithms. We use here the generic case, in which we put no additional source terms. In this setting, the conserved variables, fluxes and sources terms are respectively given by : Solving this linear system yields :

which concludes the first step of the scheme. After using the obtained values of the vector U to calculate new intercell fluxes

) T , we proceed to the second step which writes :

APPENDIX B

About Elliptic integrals and functions

While usual trigonometric functions can be defined as coordinates with respect to the unit circle, elliptic functions can be seen as the generalization of the latter for other conics, particularly ellipses in our case. Historically, they owe their existence to Carl Gustav Jakob Jacobi [START_REF] Jacobi | Fundamenta nova theoriae functionum ellipticarum[END_REF], who introduced them in 1829, as inverse functions to elliptic integrals. This appendix is developed in an attempt to summarize the main properties of the canonical elliptic functions sn, cn and dn. This task naturally requires notions from the theory of elliptic integrals which we first recall. A complete example providing details on how to compute exact periodic solution to NLSE is presented afterward as a reference to demonstrate the practical usage of such functions.

B.1 Elliptic integrals

We consider the Lagrange forms of elliptic integrals. The incomplete elliptic integral of the first kind is defined by :

where 0 < s < 1 is a parameter usually referred to as the elliptic modulus. Similarly, the incomplete elliptic integral of the second kind is defined by :

For a fixed value of ϕ = π/2, these integrals become functions of only s, called the complete integrals of first and second kind, respectively :

3)

The asymptotic expansions of both complete integrals is given below in the vicinity of the limiting values. For s → 0 we have :

and for s → 1 :

For more insight, we plot the graphs of both functions in the figure below : 

B.2 Jacobi's elliptic functions

Let us first introduce the amplitude function. For a fixed value of the elliptic modulus s, we can consider the inverse function to F (ϕ, s) denoted as:

This allows us to define the elliptic functions in terms of am(u, s), by : sn(u, s) = sin(am(u, s))

. Under these variables, we can write :

So that :

Thus :

Or equivalently :

Since this is a travelling wave solution, we can take ξ 3 = 0 to obtain the solution :

B.4 Asymptotic structure of a DSW : Values of τ i

We recall that we consider the case of an initial discontinuity that leads to a DSW propagating to the right and a rarefaction wave propagating to the left. At the leading edge of the DSW (s 2 = 0) we have :

In this setting, and inside of the DSW region, the merging of the Riemann invariants r 1 and r 2 trivially implies the equality of their corresponding characteristic velocities : lim

Referring back to the expressions of the characteristic velocities, let us calculate lim

About Elliptic integrals and functions

It might be more intuitive to consider the variable s 2 = 1 -s 2 , in which case, the previous equality yields : lim

s 2 ln(4) -1 2 ln(s 2 ) = 0 then we get :

The values of τ 3 and τ 4 which delimit the rarefaction wave, are obtained exactly as in the case of Euler equations with a pressure p(ρ) = ρ 2 /2 :

APPENDIX C

Asymptotics for the augmented thin film flows model

C.1 Neutral stability analysis for thin films equations

We recall that the phase velocities of thin films equations (3.6) satisfy the equation :

For lightness we introduce the positive constants :

and we consider the variable X = 1 -c p . The stability condition becomes Im(X) > 0. Thus, under the previous notations, X satisfies the equation :

In order to solve this second degree equation, we write

Let us define a complex square root of ∆ by taking :

so that the roots X 1,2 satisfy the equation :

The stability condition Im(X) > 0 thus writes :

It remains to obtain an explicit expression of q 2 . for that let us identify the real and imaginary parts in the equality ∆ = √ ∆ 2 :

Now we substitute p 2 = 16b 2 /q 2 in the first equation and multiply by q 2 to obtain :

For q ∈ R, we have q 2 ≥ 0 and hence :

We substitute this expression into the stability condition b 2 -q 2 > 0 to obtain:

Finally:

Re sin(θ)

which concludes the development.

C.2 Dispersion relation expansion

In this part, we show how to obtain the series expansions of the phase velocities of the augmented system for thin film flows. In order to perform an asymptotic analysis, the penalty parameters are set to be power functions of ε:

We will assume that m ≥ 1 and p ≥ 1, so that α and β are O(ε). We recall that in this context, the characteristic polynomial writes :

with the coefficients :

We disregard in what follows the trivial solution X = 0 and will focus on the roots of Q 0 (X). First, let us look for solutions that are compatible with a regular perturbation series of the form :

) Such an expansion only reveals the roots X which remain bounded in the limit ε → 0. Since we assumed that m, p ≥ 1, all the combinations that may be of order O(ε 3 ) are used in the expansion. Replacing (C.7) in the characteristic polynomial (3.35) and setting to zero the leading terms in ε yields:

Solving successively this set of equations gives the coefficients of the expansion as follows:

Thus, X expands in a regular series as follows :

As the above computation confirms, the regular expansion (C.7) yields a unique root. Out of the coefficients that are dependent on α or β, only X p+1 has a non-zero value among the concerned terms. The remaining terms correspond exactly to the series expansion of the phase velocity c p 1 of the original system. Thus, in order keep this expansion valid up to first order, it suffices that the term X p+1 ε p+1 is of second order, yielding a first constraint :

We shall now look for the remaining three roots. Trivially, Q 0 (X) degenerates into a first order polynomial in the limit ε → 0. This means that the three remaining roots go to infinity in the same limit and only remains the obtained root of the previous expansion. These missed

So that when replacing back Y by X/ε we obtain :

Thus, the same situation arises as before and we need to choose p so that leading order in the additional terms is at least of second order. In this case, and ∀p ≥ 1, the leading order is of order ε p-1 , which leads the constraint :

This concludes the asymptotic comparison of phase velocities. In conclusion, in order to have phase velocities which comply with the original model at least at first order, one needs to impose p ≥ 3. Note that, the previous analysis does not yields any constraint on α besides the assumption we did in the beginning m ≥ 1. This is due to the fact that in the augmented model, α mainly intervenes in the capillary terms which are taken proportional to ε 2 , thus making them appear in later orders in the expansion (order 3 and higher). Even in this case where κ is assumed O(1), one can show that the same analysis yields m ≥ 1 through the asymptotic analysis, which is not any more restrictive than the initial assumption. While, this fully addresses the comparison between the original system system phase velocities and their equivalents in the augmented system, this analysis did not yet investigate all of the eigenvalues. In fact, two eigenvalues are still missing and which are obtained by taking d = m+p 2 as a rescaling factor. While, the task of obtaining a precise expansion in this case is more tedious, it is not anymore rewarding, since stability analysis was already performed regardless of these values. Nevertheless, it remains beneficial to at least give the leading order behavior of these roots which write as follows :

such a form was expected in the sense that these velocities should go to infinity in the limit ε → 0. To conclude this part, we obtained a necessary and sufficient condition for the leading order behavior of the phase velocity to match that of the original system. While the choice of p = 3 yields the best results in this regard, the resulting system requires both ε and k as independent variables, while in the original system, the analysis can be performed in terms of only kε. It is possible to conserve such a structure for a unique choice of α and β such that α ∝ ε and β ∝ ε 2 . However, as proved by the previous computations, this does not guarantee accuracy nor does it maintain a good agreement stability-wise.

APPENDIX D

Modified equations : Computing radii of convergence

In each of the following cases, we would like to check the convergence radius of the series :

For that, we use the root convergence test, that is the radius of convergence R is given by : lim

D.1 Centered scheme for the heat equation :

We have :

In this case, it is possible to obtain an explicit expression of the pth term of the sequence a p which is given by :

where E p (x) denotes the pth Euler polynomial function defined by :

Since the series has only even order coefficients, it is equivalent and more convenient to check the convergence of the series : 

D.3 Proof of convergence for λ 1 ≤ 1 of Upwind Euler for transport equation

Since Ω c = (λ q , ∆x) ∈ R 2 : λ 1 ≤ 1 2 , then the series G(θ, λ 1 , ∆x) is convergent ∀λ 1 ≤ 1/2 and we have : e ∆tG(θ,λ 1 ,∆x) = S(θ, λ 1 , ∆x)

Since stability only depends on the modulus of S(θ, λ 1 , ∆x) it is sufficient for our analysis to consider the equality : Therefore, since the series is convergent for 0 ≤ λ 1 ≤ 1/2, it is also convergent for 1/2 ≤ λ 1 ≤ 1.